
RodnayZaks

PROGRAMMING
THE6502

PROGRAMMING
THE6502

RODNAYZAKS

FOURTH EDITION
Incorporating Answers to the Exercises

BERKELEY• PARIS• DtiSSELDORF

Cover art: Daniel Le Noury

Every effort has been made to supply complete and accurate information. However,
Sybex assumes no responsibility for its use, nor for any infringements of patents or other
rights of third parties which would result. No license is granted by the equipment manufac
turers under any patent or patent right. Manufacturers reserve the right to change circuitry
at any time without notice.

Copyright © 1983 SYBEX Inc. 2344 Sixth Street, Berkeley, CA 94710. World rights
reserved. No part of this publication may be stored in a retrieval system, copied, transmit
ted, or reproduced in any way, including, but not limited to photocopy, photography, mag
netic or other recording, without the prior agreement and written permission of the
publisher.

ISBN 0-89588-135-7
Library of Congress Card Number: 83-61686
First Edition published 1978. Fourth Edition 1983
Printed in the United States of America
10 9 8 7 6 5 4 3 2 I

CONTENTS

PREFACE . vii

I. BASIC CONCEPTS 7

Introduction. What is Programming? Flowcharting. Information
Representation.

II. 6502 HARDWARE ORGANIZATION 38

Introduction. System Architecture. lnlernal Organization of the 6502. The
Instruction Execution Cycle. The Stack. The Paging Concept. The 6502
Chip. Hardware Summary.

III. BASIC PROGRAMMING TECHNIQUES 53

Introduction. Arithmetic Programs. BCD Arithmetic. Important Self-Test.
Logical Operations. Subroutines. Summary.

IV. THE 6502 INSTRUCTION SET 99

PART I-OVERALL DESCRIPTION
Introduction. Classes of Instructions. Instructions Available on the 6502.
PART2-THE INSTRUCTIONS
Abbreviations. Description of Each Instruction.

V. ADDRESSING TECHNIQUES 188

Introduction. Addressing Modes. 6502 Addressing Modes. Using the 6502
Addressing Modes. Summary.

VI. INPUT/OUTPUT TECHNIQUES 211

Introduction. Input/Output. Parallel Word Transfer. Bit Serial Transfer.
Basic 110 Summary. Communicating with Input/Output Devices.
Peripheral Summary. Input/Output Scheduling. Summary. Exercises.

v

VII. INPUT /OUTPUT DEVICES 254

VIII.

Introduction. The Standard PIO (6520). The Internal Control Register.
The 6530. Programming a PIO. The 6522. The 6532. Summary.

APPLICATION EXAMPLES 262

Introduction. Clear a Section of Memory. Polling I 10 Devices. Getting
Characters In. Testing a Character. Bracket Testing. Parity Generation.
Code Conversion: ASCII to BCD. Find the Largest Element of a Table.
Sum of N Elements. A Checksum Computation. Count the Zeroes. A
String Search. Summary.

IX. DATA STRUCTURES 275

PART I-DESIGN CONCEPTS
Introduction. Pointers. Lists. Searching and Sorting. Summary. Data Structures.
PART 2-DES/GN EXAMPLES
Introduction. Data Representation for the List. A Simple List. Alphabetic
List. Binary Tree. A Hashing Algorithm. Bubble-Sort. A Merge Algorithm.
Summary.

X. PROGRAM DEVELOPMENT 343

Introduction. Basic Programming Choices. Software Support. The Pro
gram Development Sequence. The Hardware Alternatives. Summary of
Hardware Alternatives. Summary of Hardware Resources. The Assembler.
Macros. Conditional Assembly. Summary.

XI. CONCLUSION 368

Technological Development. The Next Step.

APPENDICES ... 371

A. Hexadecimal Conversion Table
B. 6502 Instruction-Set: Alphabetic
C. 6502 Instruction-Set: Binary
D. 6502 Instruction-Set: Hexadecimal and Timing
E. ASCII Table
F. Relative Branch Table
G. Hex Opcode Listing
H. Decimal to BCD Conversion
I. Answers to the Exercises

INDEX .. ,402

vi

PREFACE

This book has been designed as a complete self-contained text
to learn programming, using the 6502. It can be used by a person
who has never programmed before, and should also be of value to
anyone using the 6502.

For the person who has already programmed, this book will
teach specific programming techniques using (or working around)
the specific characteristics of the 6502. This text covers the
elementary to intermediate techniques required to start pro
gramming effectively.

This text aims at providing a true level of competence to the
person who wishes to program using this microprocessor. Nat
urally, no book will teach effectively how to program, unless one
actually practices. However, it is hoped that this book will take
the reader to the point where he feels that he can start program
ming by himself and solve simple or even moderately complex
problems using a microcomputer.

This book is based on the author's experience in teaching more
than 1000 persons how to program microcomputers.· As a result,
it is strongly structured. Chapters normally go from the simple to
the complex. For readers who have already learned elementary
programming, the introductory chapter may be skipped. For
others who have never programmed, the final sections of some
chapters may require a second reading. The book has been de
signed to take the reader systematically through all the basic
concepts and techniques required to build increasingly complex
programs. It is, therefore, strongly suggested that the ordering of
the chapters be followed. In addition, for effective results, it is
important that the reader attempt to solve as many exercises as
possible. The difficulty within the exercises has been carefully
graduated. They are designed to verify that the material which
has been presented is really understood. Without doing the pro
gramming exercises, it will not be possible to realize the full
value of this book as an educational medium. Several of the exer
cises may require time, such as the multiplication exercise for
example. However, by doing these, you ~ill actually program and
learn by doing. This is indispensable.

For those who will have acquired a taste for programming when
reaching the.end of this volume, companion volumes are available:

vii

-''6502 Applications'' covers input/output.
-''Advanced 6502 Programming'' covers complex algorithms.

Other books in this series cover programming for other popular
microprocessors.

For those who wish to develop their hardware knowledge, it is
suggested that the reference books "From Chips to Systems" (ref.
C201A) and "Microprocessor Interfacing Techniques" (ref. C207) be
consulted.

The author would like to thank Rockwell International, who pro
vided access to one of the first ASM65 development systems.

The contents of this book have been checked carefully and are
believed to be reliable. However, inevitably, some typographical
or other errors will be found. The author will be grateful for any
comments by alert readers so that future editions may benefit from
their experience. Any other suggestions for improvements, such as
other programs desired, developed, or found of value by readers,
will be appreciated.

PREFACETOTHEFOURTHEDITION

In the five years since this book was originally published, the audience
of 6502 microprocessor users has grown exponentially, and it continues
to grow. This book has expanded with its audience.

The Second Edition increased in size by almost I 00 pages, with most
of the new material being added to Chapters I and 9. Additional
improvements have been made continually throughout the book. In this
Fourth Edition, answers to the exercises have been included as an appen
dix (Appendix I). These answers appear in response to the request of
many readers, who wanted to make sure that their knowledge of 6502
programming was thorough.

I would like to thank the many readers of the previous editions who
have contributed valuable suggestions for improvement. Special
acknowledgements are due to Eric Novikoff and Chris Williams for their
contributions to the answers to the exercises, as well as to the complex
programming examples in Chapter 9. Speeial thanks also go to Daniel J.
David, for his many suggested improvements. A number of changes and
enhancements are also due to the valuable analysis and comments pro
posed by Philip K. Hooper, John Smith, Ronald Long, Charles Curlay,
N. Harris, John McClenon, Douglas Trusty, Fletcher Carson, and Pro
fessor Myron Calhoun.

viii

Acknowledgements

The author would like to express his appreciation to Rockwell Interna
tional and, in particular, to Scotty Maxwell, who made available to him
one of the very first system 65 development systems. The availability of
this powerful development tool, at the time the first version of this book
was being written, was a major help for the accurate and efficient check
out of all the programs. I would also like to thank Professor Myron
Calhoun for his contributions.

1

BASIC CONCEPTS

INTRODUCTION

This chapter will introduce the basic concepts and definitions re
lating to computer programming. The reader already familiar with
these concepts may want to glance quickly at the contents of this
chapter and then move on to Chapter 2. It is suggested, however,
that even the experienced reader look at the contents of this intro
ductory chapter. Many significant concepts are presented here in
cluding, for example, two's complement, BCD, and other represen
tations. Some of these concepts may be new to the reader; others
may improve the knowledge and skills of experienced programmers.

WHAT IS PROGRAMMING?

Given a problem, one must first devise a solution. This solution,
expressed as a step-by-step procedure, is called an algorithm. An
algorithm is a step-by-step specification of the solution to a given
problem. It must terminate in a finite number of steps. This
algorithm may be expressed in any language or symbolism. A sim
ple example of an algorithm is:

I-insert key in the keyhole
2-turn key one full turn to the left
3-seize doorknob
4-turn doorknob left and push the door

7

PROGRAMMING THE 6502

At this point, if the algorithm is correct for the type of lock in·
volved, the door will open. This four-step procedure qualifies as an
algorithm for door opening.

Once a solution to a problem has been expressed in the form of
an algorithm, the algorithm must be executed by the computer.
Unfortunately, it is now a well-established fact that computers
cannot understand or execute ordinary spoken English (or any
other human language). The reason lies in the syntactic ambiguity
of all common human languages. Only a well-defined subset of
natural language can be "understood" by the computer. This is
called a programming language.

Converting an algorithm into a sequence of instructions in a pro
gramming language is called programming. To be more specific,
the actual translation phase of the algorithm into the program
ming language is called coding. Programming really refers not just
to the coding but also to the overall design of the programs and
"data structures" which will implement the algorithm.

Effective programming requires not only understanding the
possible implementation techniques for standard algorithms, but
also the skillful use of all the computer hardware resources, such as
internal registers, memory, and peripheral devices, plus a creative
use of appropriate data structures. These techniques will be
covered in the next chapters.

Programming also requires a strict documentation discipline, so
that the programs are understandable to others, as well as to the
author. Documentation must be both internal and external to the
program.

Internal program documentation refers to the comments placed
in the body of a program, which explain its operation.

External documentation refers to the design documents which
are separate from the program: written explanations, manuals,
and flowcharts.

FLOWCHARTING

One intermediate step is almost always used between the
algorithm and the program. It is called a fl,owchart. A flowchart is
simply a symbolic representation of the algorithm expressed as a
sequence of rectangles and diamonds containing the steps of the
algorithm. Rectangles are used for commands, or "executable
statements." Diamonds are used for tests such as: If information

8

BASIC CONCEPTS

X is true, then take action A, else B. Instead of presenting a formal
definition of flowcharts at this point, we will introduce and discuss
flowcharts later on in the book when we present programs.

Flowcharting is a highly recommended intermediate step be
tween the algorithm specification and the actual coding of the solu
tion. Remarkably, it has been observed that perhaps 10% of the
programming population can write a program successfully with
out having to flowchart. Unfortunately, it has also been observed
that 900'/o of the population believes it belongs to this 100/o ! The
result: 80% of these programs, on the average, will fail the first
time they are run on a computer. (These percentages are naturally
not meant to be accurate.) In short, most novice programmers sel
dom see the necessity of drawing a flowchart. This usually results
in ''unclean'' or erroneous programs. They must then spend a long
time testing and correcting their program (this is called the

START

READ TEMPERATURE SETIING "T"

ON THERMOSTAT BOX

2
READ ACTUAL ROOM TEMPERATURE "R •

FROM THERMOMITTR OR OTHER SENSOR

NO

(ROOM
TOO COLD)

HEATERON 4

(OPTIONAL DELAY)

YES

(ROOM
TOO HOT!)

5 HEATEROFF

(OPTIONAL DELAY)

Fig. 1-1: A Flowchart for Keeping Room Temperature Constant

9

PROGRAMMING THE 6502

debugging phase). The discipline of flowcharting is therefore
highly rec_ommended in all cases. It will require a small amount of
additional time prior to the coding, but will usually result in a clear
program which executes correctly and quickly. Once flowcharting
is well understood, a small percentage of programmers will be able
to perform this step mentally without having to do it on paper. Un·
fortunately, in such cases the programs that they write will usual·
ly be hard to understand for anybody else without the documenta·
tion provided by flowcharts. As a result, it is universally recom
mended that flowcharting be used as a strict discipline for any
significant program. Many examples will be provided throughout
the book.

INFORMATION REPRESENTATION

All computers manipulate information in the form of numbers or
in the form of characters. Let us examine here the external and
internal representations of information in a computer.

INTERNAL REPRESENTATION OF INFORMATION

All information in a computer is stored as groups of bits. A bit
stands for a binary digit ("0" or "l "). Because of the limitations
of conventional electronics, the only practical representation of infor
mation uses two-state logic (the representation of the state "0" and
"l "). The two states of the circuits used in digital electronics
are generally "on" or "off", and these are represented logi
cally by the symbols "0" or "1 ". Because these circuits are
used to implement "logical" functions, they are called "binary
logic." As a result, virtually all information-processing today is
performed in binary format. In the case of microprocessors in
general, and of the 6502 in particular, these bits are structured in
groups of eight. A group of eight bits is called a byte. A group of
four bits is called a nibble.

Let us now examine how information is represented internally in
this binary format. Two entities must be represented inside the
computer. The first one is the program, which is a sequence of
instructions. The second one is the data on which the program will
operate, which may include numbers or alphanumeric text. We will
discuss below three representations: program, numbers, and alpha·
numerics.

10

BASIC CONCEPTS

Program Representation

All instructions are represented internally as single or multiple
bytes. A so-called "short instruction" is represented by a single
byte. A longer instruction will be represented by two or more
bytes. Because the 6502 is an eight-bit microprocessor, it fetches
bytes successively from its memory. Therefore, a single-byte
instruction always has a potential for executing faster than a two
or three-byte instruction. It will be seen later that this is an impor
tant feature of the instruction set of any microprocessor and in
particular the 6502, where a special effort has been made to pro
vide as many single-byte instructions as possible in order to im
prove the efficiency of the program execution. However, the limita
tion to 8 bits in length has resulted in important restrictions which
will be outlined. This is a classic example of the compromise be
tween speed and. flexibility in programming. The binary code used
to represent instructions is dictated by the manufacturer. The
6502, like any other microprocessor, comes equipped with a fixed
instruction set. These instructions are defined by the manufac
turer and are listed at the end of this book, with their code. Any
program will be expressed as a sequence of these binary instruc
tions._ The 6502 instructions are presented in Chapter 4.

Representing Numeric Data

Representing numbers is not quite straightforward, and several
cases must be distinguished. We must first represent integers, then
signed numbers, i.e., positive and negative numbers, and finally we
must be able to represent decimal numbers. Let us now address
these requirements and possible solutions.

Representing integers may be performed by using a direct
binary representation. The direct binary representation is simply
the representation of the decimal value of a number in the binary
system. In the binary system, the right-most bit represents 2 to
the power 0. The next one to the left represents 2 to the power l,
the next represents 2 to the power 2, and the left-most bit
represents 2 to the power 7=128.

b7b6b5b4bsb2b1b0

represents
b727 + b626 + b525 + b424 + b323 + b222 + b121 + b02°

11

PROGRAMMING THE 6502

The powers of 2 are:

27 = 128, 26 = 64, 26 = 32, 2" = 16, 23 = 8, 22 = 4, 21 = 2, 2° = 1

The binary representation is analogous to the decimal representa
tion of numbers, where "123" represents:

1 x 100 = 100
+ 2 x 10 = 20
+ax 1= a

= 123

Note that 100 = 102
, 10 = 101

, 1 = 10°.
In this "positional notation," each digit represents a power of 10.
In the binary system, each binary digit or "bit" represents a power
of 2, instead of a power of 10 in the decimal system.

Example: ''00001001 ''in binary represents:

1 x 1 = 1 (2°)
0 x 2 = 0 (21)

0 x 4 = 0 (22)

1 x 8 = 8 (2,
0 x 16 = 0 (2")
0 x 32 = 0 (26

)

0 x 64 = 0 (26)

0 x 128 = 0 (27
)

in decimal: = 9

Let us examine some more examples:

"10000001" represents:

in decimal:

1 x 1 = 1
OX 2= 0
ox 4= 0
ox 8= 0
0 x 16 = 0
0 x 32 = 0
OX 64= 0
1 x 128 = 128

= 129

"10000001" represents, therefore, the decimal number 129.

12

BASIC CONCEPTS

By examining the binary representation of numbers, you will
understand why bits are numbered from 0 to 7, going from right to
left. Bit 0 is "b0 " and corresponds to .2°. Bit 1 is "b1 " and cor
responds to 2 1

, and so on.

Decimal Binary Decimal Binary

0 00000000 32 00100000
1 00000001 33 00100001
2 00000010 .
3 00000011 .
4 00000100 .
5 00000101 63 00111111
6 00000110 64 01000000
7 00000111 65 01000001
8 00001000 .
9 00001001 .

10 00001010 127 01111111
11 00001011 128 10000000
12 00001100 129 10000001
13 00001101
14 00001110 .
15 00001111 .
16 00010000
17 00010001 254 11111110
31 00011111 255 11111111

Fig. 1-2: Decimal-Binary Table

The binary equivalents of the numbers from 0 to 255 are shown
in Fig. 1-2.

' 2.Ss'° Exercise 1.1: What is the decimal, ua/,ue of "11111100' ? _:::-1

;J ~'],

13

PROGRAMMING THE 6502

Decimal to Binary

Conversely, let us compute the binary equivalent of "11" decimal:
11 + 2 = 5 remains 1 ___.I (LSB)
5 +2=2 remains 1--.1
2 + 2 = 1 remains 0 ___.O
1 +2=0 remains 1-.1 (MSB)

The binary equivalent is 1011 (read right-most column from bottom
to top).
The binary equivalent of a decimal number may be obtained by dividing

~ successively by 2 until a quotient of 0 is obtained.
l~~l..:.9.,1 l.$"1-l-2.-;.p.i(•I llo~~-=-B~.<> ;00
~.:. i.. u , 1 Exercise 1.2: What is the binary for 257? ,_,.'is~. a..:. t>'\ ~0 N~~ 'i~0 °"Oa

• , 1.,. C.-t~1..:.31.~0 •'/..l.J.;.2,?() ~,
4. ,j • . h J'l-1-i..:. 1i..~o 1'...z - +~o

-:Z.; ~ b Exercise 1.3: Convert 19 to bmaryll ten back to aeczmal. r;,_~ D.,I
: 7~o 1..;or::. GOO\OO\I l'IC\~ I o><.&::D

i ~ ~: 0 , 1 Operating on Binary Data ~ ~ \-~ ~ f 1'\ia'*

1 o 0 1 I The arithmetic rules for binary numbers are straightforward. The rules
for addition are:

O+O= 0
O+l= 1
1+0= 1
1+l=(l)0

where (1) denotes a ''carry'' of 1 (note that ''10'' is the binary equivalent
of "2" decimal). Binary subtraction will be performed by "adding the
complement" and will be explained once we learn how to represent
negative numbers.

Example:

(2) 10
+(l) +01

=(3) 11

Addition is performed just like in decimal, by adding columns, from
right to left:

Adding the right-most column:

14

10
+01

(0 + 1 = 1. No carry.)

BASIC CONCEPTS

Adding the next column:
IDfi..:~ ~o

$ f 2; l ...; I
0101

~
I +.i. c. I I J. -7 l ~ \ ~ 0 I II I

10
+01

s- IO\ 1..;z-eo~I 1x1=1I 11 U+O=l.Nocarry.)
- I l<'l~ .,__ I,... I,,

10: lotO ,,..~_,. ~ (- ~

Exercise 1.4: Com~Jtl ~ + 10 in binary. Verify that the result is 15.

Some additional examples of binary addition:

0010
+0001

=0011

(2)
(1)

(3)

0011
+0001

=0100

This last example illustrates the role of the carry.

Looking at the right-most bits: 1 + 1 = (1) 0

(3)
(1)

(4)

A carry of 1 is generated, which must be added to the next bits:

001 - column 0 has just been added
+ooo -
+ 1 (carry)

= (1)0-where (1) indicates a new
carry into column 2.

The final result is: 0100

Another example:

0111
+0011

1010

(7)
+ (3)

=(10)

In this example, a carry is again generated, up to the left-most co
lumn.

Exercise 1.5: Compute the result of:

1111 (IS)

+0001 (IJ

=?/•'' (11.>)
10000

IS

PROGRAMMING THE 6502

Does the result hold in four bits?

With eight bits, it is therefore possible to represent directly the
numbers "00000000" to "11111111," i.e., "O" to "255''. Two
obstacles should be visible immediately. First, we are only
representing positive numbers. Second, the magnitude of these
numbers is limited to 255 if we use only eight bits. Let us address
each of these problems in turn.

Signed Binary

In a signed binary representation, the left-most bit is used to in
dicate the sign of the number. Traditionally, "O" is used to denote
a positive number while "l" is used to denote a negative number.
Now "11111111" will represent -127, while "01111111" will
represent + 127. We can now represent positive and negative
numbers, but we have reduced the maximum magnitude of these
numbers to 127.

Example: "0000 0001" represents +l (the leading "O" is"+",
followed by "000 000 l" = 1).

"1000 0001" is -1 (the leading "1" is " - ").

Exercise 1.6: What is the representation of "-5" in signed binary?
roooo101

Let us now address the magnitude problem: in order to represent
larger numbers, it will be necessary to use a larger number of bits.
For example, if we use sixteen bits (two bytes) to represent
numbers, we will be able to represent numbers from -32K to
+32K in signed binary (lK in computer jargon represents 1,024).
Bit 15 is used for the sign, and the remaining 15 bits (bit 14 to bit
0) are used for the magnitude: 215 = 32K. If this magnitude is still
too small, we will use 3 bytes or more. If we wish to represent large
integers, it will be necessary to use a larger number of bytes inter
nally to represent them. This is why most simple BASICs, and
other languages, provide only a limited precision for integers. This
way, they can use a shorter internal format for the numbers which
they manipulate. Better versions of BASIC, or of these other
languages, provide a larger number of significant decimal digits at
the expense of a large number of bytes for each number.

Now let us solve another problem, the one of speed efficiency.
We are going to attempt performing an addition in the signed

16

BASIC CONCEPTS

binary representation which we have introduced. Let us add "-5"
and "+7".

+7 is represented by
-5 is represented by

The binary sum is:

00000111
10000101

10001100, or -12

This is not the correct result. The correct result should be +2. In
order to use this representation, special actions must be taken, de
pending on the sign. This results in increased complexity and re
duced performance. In other words, the binary addition of signed
numbers does not "work correctly." This is annoying. Clearly, the
computer must not only represent information, but also perform
arithmetic on it.

The solution to this problem is called the two's complement
representation, which will be used instead of the signed binary
representation. In order to introduce two's complement let us first
introduce an intermediate step: one's complement.

One's Complement

In the one's complement representation, all positive integers are
represented in their correct binary format. For example "+3" is
represented as usual by 00000011. However, its complement "-3"
is obtained by complementing every bit in the original representa
tion. Each 0 is transformed into a 1 and each 1 is transformed into
a 0. In our example, the one's complement representation of "-3"
will be 11111100.

Another example:

+2 is 00000010
-2 is 11111101

Note that, in this representation, positive numbers start with a
"O" on the left, and negative ones with a "1" on the left.

Exercise 1.7: The representation of "+6" is "00000110". What is
the representation of ••-6" in one's complement? i u 11 0 01

As a test, let us add minus 4 and plus 6:

17

PROGRAMMING THE 6502

the sum is:

-4 is 11111011
+6 is 00000110

(1) 00000001 where (1) indicates a
carry

The "correct result" should be "2", or "00000010".

Let us try again:

- 3 is 11111100
- 2 is 11111101

The sum is:
(1) 00000001

or "1," plus a carry. The correct result should be " - 5." The repre
sentation of " - 5" is 11111010. It did not work.

This representation does represent positive and negative
numbers. However the result of an ordinary addition does not
always come out ''correctly.'' We will use still another representa
tion. It is evolved from the one's complement and is called the
two's complement representation.

Two's Complement Representation

In the two's complement representation, positive numbers are
still represented, as usual, in signed binary, just like in one's com
plement. The difference lies in the representation of negative
numbers. A negative number represented in two's complement is
obtained by first computing the one's complement, and then ad
ding one. Let us examine this in an example:

+3 is represented in signed binary by 00000011. Its one's com
plement representation is 11111100. The two's complement is ob
tained by adding one. It is 11111101.

Let us try an addition:

(3) 00000011
+(5) +00000101

=(8) =00001000

The result is correct.

18

BASIC CONCEPTS

Let us try a subtraction:

(3) 00000011
(-5) +11111011

=11111110

Let us identify the result by computing the two's complement:

the one's complement of 11111110 is 00000001
Adding 1 + 1

therefore the two's complement is 00000010 or +2

Our result above, "11111110" represents "-2". It is correct.

We have now tried addition and subtraction, and the results were correct
(ignoring the carry). It seems that two's complement works!

Exercise 1.8: What is the two's complement representation of"+ 127"? 011w 11

Exercise 1.9: What is the two's complement representation of " - 128"?o11, \\"
!!_!? l>o .,~ I
I O(hoooo

Let us now add +4 and -3 (the subtraction is performed by add
ing the two's complement):

The result is:

+4 is 00000100
-3 is 11111101

(1) 00000001

If we ignore the carry, the result is 00000001, i.e., "1" in decimal. This
is the correct result. Without giving the complete mathematical proof,
let us simply state that this representation does work. In two's comple
ment, it is possible to add or subtract signed numbers regardless of the
sign. Using the usual rules of binary addition, the result comes out
correctly, including the sign. The carry is ignored. This is a very signifi
cant advantage. If it were not the case, one would have to correct the
result for sign every time, causing a much slower addition or subtraction
time.

For the sake of completeness, let us state that two's complement is
simply the most convenient representation to use for simpler processors
such as microprocessors. On complex processors, other representations
may be used. For example, one's complement may be used, but it requires
special circuitry to "correct the result."

19

PROGRAMMING THE 6502

From this point on, all signed integers will implicitly be represented
internally in two's complement notation. See Fig. 1-3 for a table of
two's complement numbers.

c;,..i..\\..,'.: -\"'~Exercise 1.10: What are the smallest and the largest numbers which one
L~:·\e.-.;.--_ *''v may represent in two,s complement notation, using only one byte?

0
, o\

00
, Exercise 1.11: Compute the two ,s complement of 20. Then compute the

0
,
0
\, !;)~~' wo,scomplementofyourresult. Doyoufind20again? '1t..'5

()C 0 \ \

, ' '
0

The following examples will serve to demonstrate the rules of two's

1 0 ,, 00 complement. In particular, C denotes a possible carry (or borrow)
k\;c;-,- ~~~\ condition. (It is bit 8 of the result.)
o~ V denotes a two's complement overflow, i.e., when the sign of the

0 0 result is changed "accidentally" because the numbers are too
large. It is an essentially internal carry from bit 6 into bit 7 (the
sign bit). This will be clarified below.

Let us now demonstrate the role of the carry "C" and the overflow
"V".

The Carry C

Here is an example of a carry:

(128) 10000000
+(129) + 10000001

(257) = (1) 00000001

where (1) indicates a carry.

The result requires a ninth bit (bit "8", since the right-most bit is
"O"). It is the carry bit.

If we assume that the carry is the ninth bit of the result, we
recognize the result as being 100000001 = 257.

However, the carry must be recognized and handled with care.
Inside the microprocessor, the registers used to hold information
are generally only eight-bit wide.When storing the result, only bits 0 to
7 will be preserved.

A carry, therefore, always requires special action: it must be
detected by special instructions, then processed. Processing the
carry means either storing it somewhere (with a special instruc
tion), or ignoring it, or deciding that it is an error (if the largest
authorized result is "11111111 ").

20

BASIC CONCEPTS

+
2's complement - 2's complement

code code

+ 127 01111111 -128 10000000
+ 126 01111110 -127 10000001
+,l25 01111101 -126 10000010
... -125 10000011

. ..
+65 01000001 -65 10111111
+64 01000000 -64 11000000
+63 00111111 -63 11000001
.
+33 00100001 -33 11011111
+32 00100000 -32 11100000
+31 00011111 -31 11100001
.
+17 00010001 -17 11101111
+16 00010000 -16 11110000
+ 15 00001111 -15 11110001
+ 14 00001110 -14 11110010
+ 13 00001101 -13 11110011
+ 12 00001100 -12 11110100
+ 11 00001011 -11 11110101
+ 10 00001010 -10 11110110
+9 00001001 -9 11110111
+8 00001000 -8 11111000
+7 00000111 -7 11111001
+6 00000110 -6 11111010
+5 00000101 -5 11111011
+4 ()()()()() 100 -4 11111100
+3 00000011 -3 11111101
+2 00000010 -2 11111110
+l 00000001 -1 11111111
+O 00000000

Fig. 1-3: 2's Complement Table

21

PROGRAMMING THE 6502

Overflow V

Here is an example of overflow:

bit 6
bit7 J

01000000
+01000001

(64)
+(65)

=10000001 =(-127)

An internal carry has been generated from bit 6 into bit 7. This is
called an overflow.

The result is now negative, "by accident." This situation must
be detected, so that it can be corrected.

Let us examine another situation:

11111111 (-1)
+11111111 +(-1)

=(1) 11111110 =(-2)

' carry

In this case, an internal carry has been generated from bit 6 into
bit 7, and also from bit 7 into bit 8 (the formal "Carry" C we have
examined in the preceding section). The rules of two's complement
arithmetic specify that this carry should be ignored. The result is
then correct.

This is because the carry from bit 6 into bit 7 did not change the
sign bit.

This is not an overflow condition. When operating on negative
numbers, the overflow is not simply a carry from bit 6 into bit 7.
Let us examine one more example.

11000000
+10111111

=(1) 01111111

' carry

(-64)
(-65)

(+127)

This time, there has been no internal carry from bit 6 into bit 7, but
there has been an external carry. The result is incorrect, as bit 7
has been changed. An overflow condition should be indicated.

22

Overflow will occur in four situations:

1-adding large positive numbers
2-adding large negative numbers

BASIC CONCEPTS

3-subtracting a large positive number from a large negative
number

4-subtracting a large negative number from a large positive
number.

Let us now improve our definition of the overflow:

Technically, the overflow indicator, a special bit reserved for this
purpose, and called a ''flag,·· will be set when there is a carry from
bit 6 into bit 7 and no external carry, or else when there is no carry
from bit 6 into bit 7 but there is an external carry. This indicates
that bit 7, i.e., the sign of the result, has been accidentally
changed. For the technically-minded reader, the overflow flag is
set by Exclusive ORing the carry-in and carry-out of bit 7 (the sign
bit). Practically every microprocessor is supplied with a special
overflow flag to automatically detect this condition, which re
quires corrective action.

Overflow indicates that the result of an addition or a subtraction
requires more bits than are available in the standard eight-bit
register used to contain the result.

The Carry and the Overflow

The carry and the overflow bits are called ''flags.'' They are pro
vided in every microprocessor, and in the next chapter we will
learn to use them for effective programming. These two indicators
are located in a special register called the flags or "status ..
register. This register also contains additional indicators whose
function will be clarified in Chapter 4.

Examples

Let us now illustrate the operation of the carry and the overflow
in actual examples. In each example, the symbol V denotes the
overflow, and C the carry.

If there has been no overflow, V = 0. If there has been an
overflow, V = 1 (same for the carry C). Remember that the rules of
two's complement specify that the carry be ignored. (The
mathematical proof is not supplied here.)

23

PROGRAMMING THE 6502

Positive-Positive

00000110 (+6)
+ 00001000 (+8)

= 00001110 (+14) V:O C:O

(CORRECT)

Positive-Positive with Overflow

01111111 (+127)
+ 00000001 (+1)

= 10000000 (-128) V:l C:O

The above is invalid because an overflow has occurred.

(ERROR)

Positive-Negative (result positive)

00000100 (+4)
+ 11111110 (-2)

=(1)00000010 (+2) V:O

(CORRECT)

C: 1 (disregard)

Positive-Negative (result negative)

00000010 (+2)
+ 11111100 (-4)

= 11111110 (-2) V:O C:O

(CORRECT)

Negative-Negative

11111110 (-2)
+ 11111010. (-4)

=(1)11111010· (-6) V:O

<CORRECT)

Negative-Negative with Overflow

10000001 (-127)
+ 11000010 (-62)

=(1)01000011 (67) V:l

(ERROR)

24

C: 1 (disregard)

C:l

BASIC CONCEPTS

This time an ·'underflow'' has occurred, by adding two large
negative numbers. The result would be -189, which is too large to
reside in eight bits.

Exercise 1.12: Complete the following additions. Indicate the
result, the carry C, the overflow V, and whether the result is correct
or not:

10111111 (-\.S.) 11111010 (:_L)

+11000001 (- (.~) +11111001 (=-1.....)

= l'OQOOOo o V:_b_ C:_t_ =JI I/ 001\ V:~ C:_f_
~CORRECT [J ERROR ~CORRECT OERROR

00010000 (t- 1"1) 01111110 (+l'l.lo)

+01000000 (~) +00101010 (~)

= 01 0 fOOt>o V:__Q_ C:_Q_ = lDIOIOOO V:_l_ C:__lL_
IZl CORRECT I~ ERROR D CORRECT ~ERROR

Exercise 1.13: Can you show an example of overflow when adding a
positive and a negative number? Why?

Fixed Format Representation

Now we know how to represent signed integers. However, we
have not yet resolved the problem of magnitude. If we want to
represent larger integers, we will need several bytes. In order to
perform arithmetic operations efficiently, it is necessary to use a
fixed number of bytes rather than a variable one. Therefore, once
the number of bytes is chosen, the maximum magnitude of the
number which can be represented is fixed.

Exercise 1.14: What are the largest and the smallest numbers
which may be represented in two bytes using two's complement?

The Magnitude Problem

When adding numbers we have restricted ourselves to eight bits
because the. processor we will use operates· internally on eight bits
at a time. However, this restricts us to the numbers in the range
-128to+127. Clearly, this is not sufficient for many applications.

Multiple precision will be used to increase the number of digits
which can be represented. A two-, three-, or N-byte format may

25

PROGRAMMING THE 6502

then be used. For example, let us examine a 16-bit, "double-pre
cision'' format:

00000000 00000000 is "O"
00000000 00000001 is "1"

01111111 11111111 is "32767"
11111111 11111111 is "-1"
11111111 11111110 is "-2"

Exercise 1.15: What is the largest negative integer which can be
represented in a two's complement triple-precision format?

However, this method will result in disadvantages. When adding
two numbers, for example, we will generally have to add them
eight bits at a time. This will be explained in Chapter 4 (Basic Pro
gramming Techniques). It results in slower processing. Also, this
representation uses 16 bits for any number, even if it could be
represented with only eight bits. It is, therefore, common to use 16
or perhaps 32 bits, but seldom more.

Let us consider the following important point: whatever the
number of bits N chosen for the two's complement representation,
it is fixed. If any result or intermediate computation should
generate a number requiring more than N bits, some bits will be
lost. The program normally retains the N left-most bits (the most
significant) and drops the low-order ones. This is called truncating
the result.

Here is an example in the decimal system, using a six digit
representation:

123456
x 1.2

246912
123456

=148147.2

The result requires 7 digits! The "2" after the decimal point will be
dropped and the final result will be 148147. It has been truncated.
Usually, as long as the position of the decimal point is not lost, this
method is used to extend the range of the operations which may be
performed, at the expense of precision.

The problem is the same in binary. The details of a binary multi-

26

BASIC CONCEPTS

plication will be shown in Chapter 4.
This fixed-format representation may cause a loss of precision,

but it may be sufficient for usual computations or mathematical
operations.

Unfortunately, in the case of accounting, no loss of precision is
tolerable. For example, if a customer rings up a large total on a
cash register, it would not be acceptable to have a five figure
amount to pay, which would be approximated to the dollar.
Another representation must be used wherever precision in the
result is essential. The solution normally used is BCD, or
binary-coded decimal.

BCD Representation

The principle used in representing numbers in BCD is to encode
each decimal digit separately, and to use as many bits as necessary
to represent the complete number exactly. In order to encode each
of the digits from 0 through 9, four bits are necessary. Three bits
would only supply eight combinations, and can therefore not en
code the ten digits. Four bits allow sixteen combinations and are
therefore sufficient to encode the digits "O" through "9". It can
also be noted that six of the possible codes will not be used in the
BCD representation (see Fig. 1-3). This will result later on in a po
tential problem during additions and subtractions, which we will
have to solve. Since only four bits are needed to encode a BCD

BCD BCD
CODE SYMBOL CODE SYMBOL

0000 0 1000 8
0001 I 1001 9
0010 2 1010 unused
0011 3 IOI I unused
0100 4 1100 unused
0101 5 1101 unused
0110 6 1110 unused
0111 7 1111 unused

Fig. 1-4: BCD Table

27

PROGRAMMING THE 6502

digit, two BCD digits may be encoded in every byte. This is called
"packed BCD. "

As an example, "00000000" will be "00" in BCD. "10011001"
will be "99".

A BCD code is read as follows:

0010 0001

BCD digit "2" ._j J
BCD digit "l" ... ~1-----
BCD number "21"

Exercise 1.16: What is the BCD representation/or "29"? "91 "?

Exercise 1.17: Is "10100000° a valid BCD representation? Why?

As many bytes as necessary will be used to represent all BCD
digits. Typically, one or more nibbles will be used at the beginning
of the representation to indicate the total number of nibbles, i.e.,
the total number of BCD digits used. Another nibble or byte will
be used to denote the position of the decimal point. However, con
ventions may vary.

Here is an example of a representation for multibyte BCD in
tegers:

3 + 2 2 (3bytes)

+ l
~

number number ''221 ''

of digits
(up to 255) sign

This represents +221
(The sign may be represented by 0000 for+, and 0001 for-, for
example.)

Exercise 1.18: Using the same convention, represent "-23123". Show
it in BCD format, as above, then in binary.

Exercise 1.19: Show the BCD/or "222" and "111", then/or the result
of 222 x 111. (Compute the result by hand, then show it in the above
representation.)

The BCD representation can easily accommodate decimal
numbers.

28

BASIC CONCEPTS

For example, +2.21 may be represented by:

I 3 2 + 2

l i l ""'--

2 1

221
3 digits ". " is on the +

left of digit 2

The advantage of BCD is that it yields absolutely correct
results. Its disadvantage is that it uses a large amount of memory
and results in slow arithmetic operations. This is acceptable only
in an accounting environment and is normally not used in other
cases.

Exercise 1.20: How many bits are required to encode ~9999,, in BCD?
And in Two•s complement?

We have now solved the problems associated with the represen·
tation of integers, signed integers and even large integers. We
have even already presented one possible method of representing
decimal numbers, with BCD representation. Let us now examine
the problem of representing decimal numbers in a fixed length for·
mat.

Floating-Point Representation

The basic principle is that decimal numbers must be represented
with a fixed format. In order not to waste bits, the representation
will normalize all the numbers.

For example, "0.000123" wastes three zeros on the left of the
number, which have no meaning except to indicate the position of
the decimal point. Normalizing this number results in .123 X 10-s.
".123" is called a normalized mantissa, "-3" is called the expo
nent. We have normalized this number by eliminating all the meaning
less zeros on the left of it and adjusting the exponent.

Let us consider another example:

22.1 is normalized as .221 x 102

or M X lOE where M is the mantissa, and E is the exponent.

29

PROGRAMMING THE 6502

It can be readily seen that a normalized number is characterized
by a mantissa less than 1 and greater or equal to .1 in all cases
where the number is not zero. In other words, this can be repre
sented mathematically by:

.1 ~ M < 1 or 10-1 ~ M < 10°

Similarly, in the binary representation:

2- 1~M<2° (or .5~M<l)

Where M is the absolute value of the mantissa (disregarding the
sign).

For example:

111.01 is normalized as: .11101 XV.

The mantissa is 11101.

The exponent is 3.

Now that we have defined the principle of the representation,
let us examine the actual format. A typical floating-point represen
tation appears below.

31 24 23 16 15 8 7 0

1--s-:--EX_P __ l __ s__,,....:---M--.~-N T I s ~ A

Fig. 1-5: Typical Floating-Point Representation

In the representation used in this example, four bytes are used
for a total of 32 bits. The first byte on the left of the illustration is
used to represent the exponent. Both the exponent and the man
tissa will be represented in two's complement. As a result, the
maximum exponent will be - 128. "S" in Fig. 1-5 denotes the sign
bit.

Three bytes are used to represent the mantissa. Since the first
bit in the two's complement representation indicates the sign, this
leaves 23 bits for the representation of the magnitude of the man
tissa.

JO

BASIC CONCEPTS

Exercise 1.21: How many decimal digits can the mantissa repre
sent with the 23 bits?

This is only one example of a floating point representation. It is
possible to use only three bytes, or it is possible to use more. The
four-byte representation proposed above is just a common one
which represents a reasonable compromise in terms of accuracy,
magnitude of numbers, storage utilization, and efficiency in
arithmetic operation.

We have now explored the problems associated with the rep
resentation of numbers and we know how to represent them in in
teger form, with a sign, or in decimal form. Let us now examine
how to represent alphanumeric data internally.

Representing Alphanumeric Data

The representation of alphanumeric data, i.e. characters, is com
pletely straightforward: all characters are encoded in an eight-bit
code. Only two codes are in general use in the computer world, the
ASCII Code, and the EBCDIC Code. ASCII stands for" American
Standard Code for Information Interchange," and is universally
used in the world of microprocessors. EBCDIC is a variation of
ASCII used by IBM, and therefore not used in the microcomputer
world unless one interfaces to an IBM terminal.

Let us briefly examine the ASCII encoding. We must encode 26
letters of the alphabet for both upper and lower case, plus 10
numeric symbols, plus perhaps 20 additional special symbols. This
can be easily accomplished with 7 bits, which allow 128 possible
codes. (See Fig.1-6.) All characters are therefore encoded in 7 bits.
The eighth bit, when it is used, is the parity bit. Parity is a tech
nique for verifying that the contents of a byte have not been ac
cidentally changed. The number of l's in the byte is counted and
the eighth bit is set to one if the count was odd, thus making the
total even. This is called even parity. One can also use odd parity,
i.e. writing the eighth bit (the left-most) so that the total number of
l's in the byte is odd.

Example: let us compute the parity bit for "0010011" using even
parity. The number of l's is 3. The parity bit must therefore be a 1
so that the total number of bits is 4, i.e. even. The result is
10010011, where the leading 1 is the parity bit and 0010011 iden
tifies the character.

31

PROGRAMMING THE 6502

The table of 7-bit ASCII codes is shown in Fig. 1-6. In practice, it
is used "as is," i.e. without parity, by adding a 0 in the left-most
position, or else with parity, by adding the appropriate extra bit on
the left.

Exercise 1.22: Compute the 8-bit representation of the digits .. O"
through "9", using even parity. (This code will be used in applica
tion examples of Chapter 8.)

Exercise 1.23: Same for the letters "A" through "F".

Exercise 1.24: Using a non-parity ASCII code (where the left-most
bit is "0'1, indicate the binary contents of the 4 bytes below:
''A 11

1 ''T'', ''S'', ''X''.

BIT NUMBERS
0 0 0 0 1 1 1 1

~

.... 0 0 1 f 0 0 1 1

l
~

_f - 0 1 0 1 0 1 0 1

b. bo bo b. b. b, b,

~ ' ' ' ' + + ~ 0 1 2 3 .. 5 6 7
0

0 0 0 0 0 NUL DLE Sf' 0 @ p p

0 0 0 1 1 SOH DCI I 1 A Q a q

0 0 1 0 2 STX DC2 .. 2 B R b r

0 0 1 1 3 ETX DC3 ' 3 c s c s

0 1 0 0 .. EOT DCo4 s .. D T d I

0 1 0 1 5 ENQ NAK % 5 E u e u

0 1 1 0 6 ACK SYN & 6 F v f v

0 1 1 1 7 BEL ETB 7 G w g w

1 0 0 0 8 es CAN (8 H x h JI

1 0 0 1 9 HT EM) 9 I y i y

1 0 1 0 10 lF SUB . : J z i z

I 0 1 1 11 VT ESC + ; K [k I
1 1 0 0 12 FF FS < l \ I I

I
1 1 0 1 13 CR GS - - M) m I
I 1 I 0 1"4 so RS > N " n -
I 1 I I 15 SI us I 1 0 0 DEL -

Fig. 1-6: ASCII Conversion Table

In specialized situations such as telecommunications, other
codings may be used such as error-correcting codes. However they
are beyond the scope of this book.

32

BASIC CONCEPTS

We have examined the usual representations for both program
and data inside the computer. Let us now examine the possible ex
ternal representations.

EXTERNAL REPRESENTATION OF INFORMATION

The external representation refers to the way i~formation is pre
sented to the user, i.e. generally to the programlher. Information
may be presented externally in essentially three formats: binary,
octal or hex decimal, and symbolic.

1. Binary

It has been seen that information is stored internally in bytes,
which are sequences of eight bits (O's or 1 's). It is sometimes
desirable to display this internal information directly in its binary
format and this is called binary representation. One simple exam
ple is provided by Light Emitting Diodes (LEDs) which are essen
tially miniature lights, on the front panel of the microcomputer. In
the case of an eight-bit microprocessor, a front panel will typically
be equipped with eight LEDs to display the contents of any inter
nal register. (A register is used to hold eight bits of information
and will be described in Chapter 2). A lighted LED indicates a one.
A zero is indicated by an LED which is not lighted. Such a binary
representation may be used for the fine debugging of a complex
program, especially if it involves input/output, but is naturally
impractical at the human level. This is because in most cases, one
likes to look at information in symbolic form. Thus "9" is much
easier to understand or remember than "1001 ". More convenient
representations have been devised, which improve the person
machine interface.

2. Octal and Hexadecimal

"Octal" and "hexadecimal" encode respectively three and four
binary bits into a unique symbol. In the octal system, any
combination of three binary bits is represented by a number be
tween 0 and 7.

"Octal" is a format using three bits, where each combination of
three bits is represented by a symbol between 0 and 7:

33

PROGRAMMING THE 6502

binary octal

000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

Fig. 1-7: Octal Symbols

For example, "00 100 100" binary is represented by:

' ' ' 0 4 4
or "044" in octal.

Another example: 11 111 111 is:

' ' ' 3 7 7

or "377" in octal.

Conversely, the octal "211" represents:

010 001 001

or "1000100 l" binary.

Octal has traditionally been used on older computers which were
employing various numbers of bits ranging from 8 to perhaps 64.
More recently, with the dominance of eight-bit microprocessors,
the eight-bit format has become the standard, and another more
practical representation is used. This is hexadecimal.

In the hexdecimal representation, a group of four bits is en
coded as one hexadecimal digit. Hexadecimal digits are
represented by the symbols from 0 to 9, and by the letters A, B, C,
D, E, F. For example, "0000" is represented by "O", "0001" is
represented by "1" and "1111" is represented by the letter "F"
(see Fig. 1-8).

34

BASIC CONCEPTS

DECIMAL BINARY HEX OCTAL

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 8 10

9 1001 9 11

10 1010 A 12

11 1011 B 13

12 1100 c 14

13 1101 D 15

14 1110 E 16

15 1111 F 17

Fig. 1-8: Hexadecimal Codes

35

PROGRAMMING THE 6502

Example: 1010 0001 in binary is represented by
~~

A 1 in hexadecimal.

Exercise 1.25: What is the hexadecimal representation of
"10101010?"

Exercise 1.26: Conversely, what is the binary equivalent of "FA"
hexadecimal?

Exercise 1.27: What is the octal of "01000001 "?

Hexadecimal offers the advantage of encoding eight bits into on
ly two digits. This is easier to visualize or memorize and faster to
type into a computer than its binary equivalent. Therefore, on
most new microcomputers, hexadecimal is the preferred method of
representation for grcups of bits.

Naturally, whenever the information present in the memory has
a meaning, such as representing text or numbers, hexadecimal is
not convenient for representing the meaning of this information
when it is brought out for use by humans.

Symbolic Representation

Symbolic representation refers to the external representation of
information in actual symbolic form. For example, decimal num
bers are represented as decimal numbers, and not as sequences of
hexadecimal symbols or bits. Similarly, text is represented as
such. Naturally, symbolic representation is most practical to the
user. It is used whenever an appropriate display device is
available, such as a CRT display or a printer. (A CRT display is a
television-type screen used to display text or graphics.) Unfortu
nately, in smaller systems such as one-board microcomputers, it is
uneconomical to provide such displays, and the user is restricted
to hexadecimal communication with the computer.

Summary of External Representations

Symbolic representation of information is the most desirable
since it is the most natural for a human user. However, it requires
an expensive interface in the form of an alphanumeric keyboard,
plus a printer or a CRT display. For this reason, it may not be

36

BASIC CONCEPTS

available on the less expensive systems. An alternative type of rep
resentation is then used, and in this case hexadecimal is the domi
nant representation. Only in rare cases relating to fine de-bugging
at the hardware or the software level is the binary representation
used. Binary directly displays the contents of registers of memory
in binary format.

(The utility of a direct binary display on a front panel has always
been the subject of a heated emotional controversy, which will not
be debated here.)

We have seen how to represent information internally and exter
nally. We will now examine the actual microprocessor which will
manipulate this information.

Additional Exercises

Exercise 1.28: What is the advantage of two's complement over other
representations used to represent signed numbers?

Exercise 1.29: How would you represent "1024" in direct binary? Signed
binary? Two's complement?

Exercise 1.30: What is the V-bit? Should the programmer test it after an
addition or subtraction?

Exercise 1.31: Compute the two's complement of "+ 16", "+ 17",
"+18", "-16", "-17", "-18".

Exercise 1.32: Show the hexadecimal representation of the foil owing
text, which has been stored internally in ASCII format, with no parity:
="MESSAGE".

37

2

6502 HARDWARE ORGANIZATION

INTRODUCTION

In order to program at an elementary level, it is not necessary
to understand in detail the internal structure of the processor
that one is using. However, in order to do efficient programming,
such an understanding is required. The purpose of this chapter is
to present the basic hardware concepts necessary for understan-
ding the operation of the 6502 system. The complete microcompu
ter system includes not only the microprocessor unit (here the
6502), but also other components. This chapter presents the 6502
proper, while the other devices (mainly input/output) will be pre
sented in a separate chapter (Chapter 7).

We will review here the basic architecture of the microcomputer
system, then study more closely the internal organization of the
6502. We will examine, in particular, the various registers. We will
then study the program execution and sequencing mechansim.
From a hardware standpoint, this chapter is only a simplified
presentation. The reader interested in gaining detailed understanding
is referred to our book ref. C201 ("Microprocessors," by the same
author).

SYSTEM ARCHITECTURE

The architecture of the microcomputer system appears in Figure
2-1. The microprocessor unit (MPU), which will be a 6502 here,
appears on the left of the illustration. It implements the functions

38

6502 HARDWARE ORGANIZATION

of a central processing unit (CPU) within one chip: it in
cludes an arithmetic-logical-unit (ALU), plus its internal registers,
and a control-unit (CU) in charge of sequencing the system.
Its operation will be explained in this chapter.

POWER

MPU

16-BIT ADDRESS BUS

CONTROL LINES

Rg. 2-1: Architecture of a Standard Microprocessor System

The MPU creates three buses: an 8-bit bi-directional data-bus,
which appears at the top of the illustration, a 16-bit mono
directional address-bus and a control-bus which appears at the
bottom of the illustration. Let us describe the function of each of
the buses.

The data-bus carries data being exchanged by the various
elements of the system. Typically, it will carry data from the
memory to the MPU, from the MPU to the memory, or from
the MPU to an input/ouput chip. (An input/output chip is a com
ponent in charge of communicating with an external device.)

The address-bus carries an address generated by the MPU,
which will select one internal register within one of the chips
attached to the system. This address specifies the source, or the
destination, of the data which will transit along the data-bus.

The control-bus carries the various synchronization signals re
quired by the system.

39

PROGRAMMING THE 6502

Having described the purpose of the busses, let us now connect the ad
ditional components required by a complete system.

Every MPU requires a precise timing reference, which is supplied by a
clock and a crystal. In most "older" microprocessors, the clock-oscilla
tor is external to the MPU and requires an extra chip. In most recent mi
croprocessors, the clock oscillator is usually incorporated within the
MPU. The quartz crystal, however, because of its bulk is always external
to the system. The crystal and the clock appear on the left of the MPU
box in the illustration.

Let us now turn our attention to the other elements of the system. Go
ing from left to right on the illustration, we distinguish:

The ROM is the read-only-memory and contains the program for the
system. The advantage of the ROM is that its contents are permanent
and do not disappear whenever the system is turned off. The ROM,
therefore, always contains a bootstrap or a monitor program (their func
tion will be explained later) to permit initial system operation. In a pro
cess-control environment, nearly all the programs will reside in ROM as
they will probably never be changed. In such case, the industrial user has
to protect the system against power failures: programs may not be vola
tile. They must be in ROM.

However, in a hobbyist environment, or in a program-development
environment (when the programmer tests the program), most of the pro
grams will reside in RAM so that they can easily be changed. Later, they
may remain in RAM, or be transferred into ROM, if desired. RAM,
however, is volatile. Its contents are lost when power is turned off.

The RAM (random-access-memory) is the read/write memory for the
system. In the case of a control system, the amount of RAM will typi
cally be small (for data only). On the other hand, in a program-develop
ment environment, the amount of RAM will be large, as it will contain
programs plus development software. All RAM contents must be loaded
prior to use from an external device.

Finally, the system will contain one or more interface chips so that it
may communicate with the external world. The most frequently used in
terface chip is the up/O" or parallel-input-output chip. It is the one
shown in the illustration. This PIO, like all other chips in the system,
connects to all three busses and provides at least two 16-bit ports for
communication with the outside world. For more details on how an ac
tual PIO works, refer to book C201 or else, for specifics of the 6502 sys
tem, refer to Chapter 7 (Input/Output devices).

40

6502 HARDWARE ORGANIZATION

All these chips are connected to all three busses, including the
control bus. However, to clarify the illustration, the connections be
tween the control bus and these various chips are not shown on the
diagram.

The functional modules which have been described need not
necessarily reside on a single LSI chip. In fact, we will use combina
tion chips which include both a PIO and a limited amount of ROM
or RAM. For more details refer to Chapter 7.

Still more components will be required to build a real system. In
particular, the busses usually need to be buffered. Also decoding
logic may be used for the memory RAM chips, and finally some
signals may need to be amplified by drivers. These auxiliary circuits
will not be described here as they are not relevant to programming.
The reader interested in specific assembly and interfacing tech
niques is referred to book C207 "Microprocessor Interfacing Tech
niques.''

INTERNAL ORGANIZATION OF THE 6502

A simplified diagram of the internal organization of the 6502 ap
pears in Figure 2-2.

The arithmetic logical unit (ALU) appears on the right of the il
lustration. It can easily be recognized by its characteristic "V"
shape. The function of the ALU is to perform arithmetic and logical
operations on the data which is fed to it via its two input ports. The
two input ports of the ALU are respectively the "left input" and the
"right input." They correspond to the top extremities of the "V"
shape. After performing an arithmetic operation such as an addition
or subtraction, the ALU outputs its contents at the bottom of the il
lustration.

The ALU is equipped with a special register, the accumulator (A).
The accumulator is on the left input. The ALU will automatically
reference this accumulator as one of the inputs. (However, a bypass
also exists.) This is a classic accumulator-based design. In
arithmetic and logical operations, one of the operands will be the ac
cumulator, and the other will typically be a memory location.
The result will be deposited in the accumulator. Referencing the ac
cumulator as both the source and the destination for data is the
reason for its name: it accumulates results. The advantage of this
accumulator-based approach is the possibility of using very short
instructions-just a single byte (8 bits) to specify the "opcode" i.e.

41

PROGRAMMING THE 6502

S: STACK POINTER

PC: PROGRAM
COUNTER

A: ACCUMULATOR

P = PROCESSOR
STATUS

MUX = MULTIPLEXER
ALU = ARITHMETIC

LOGIC UNIT

Rg. 2-2: Internal Organization of the 6502

ADOllU$lOW

A0-7

AOORIUHIGH

AB-15

the nature of the operation performed If the operand had to be
fetched from one of the other registers (other than an accumulator),
it would be necessary to use a number of extra bits to designate this
register within the instruction. The accumulator architecture there
fore, results in improved execution speed. The disadvantage is that
the accumulator must always be loaded with the desired data prior
to its use. This may result in some inefficiency.

Let us go back to the illustration. By the side of the ALU, to its
left, appears a special 8-bit register, the processor status-flags (P).
This register contains 8 status bits. Each of these bits, physiCally
implemented by a flip-flop inside the register is used to denote a
special condition. The function of the various status bits will be ex
plained progressively during the programming examples presented
in the next chapter, and will be described completely in Chapter
4, which presents the complete instruction set. As an example,
three such status flags are the N, Z, and C bits.

42

6502 HARDWARE ORGANIZATION

N stands for "negative." It is bit 7 (i.e., the left-most) of regis
ter P. Whenever this bit is one it indicates that the result of the
operation through the ALU is negative.

Bit Z stands for zero. Whenever this bit (bit position 1) is a one,
it denotes that a zero result was obtained.

Bit C, in the right-most position (position 0), is a carry bit.
Whenever two 8-bit numbers are added and the result cannot be
contained in 8 bits, bit C is the ninth bit of the result. The carry is
used extensively during arithmetic operations.

These status bits are automatically set by the various instruc
tions. A complete list of the instructions and the way in which
they affect the status bits of the system appears in Appendix A, as
well as in Chapter 4. These bits will be used by the programmer to
test various special or exceptional conditions, or else to test
quickly for some erroneous result. As an example, testing bit Z
may be accomplished with special instructions and will im
mediately tell whether the result of a previous operation was 0
or not. All decisions in an assembly language program, i.e. in all
the programs that will be developed in this book, will be based on
the testing of bits. These bits will be either bits that will be read
from the outside world, or else the status bits of the ALU. It is
therefore very important to understand the function and use of all
status bits in the system. The ALU here is equipped with a status
register containing these bits. All other input/output chips in the
system will also be equipped with status bits. These will be
studied in Chapter 7.

Let us now move leftwards of the ALU on illustration 2-2. The
horizontal rectangles represent the internal registers of the 6502.

PC is the program counter. It is a 16-bit register and is physi
cally implemented as two 8-bit registers: PCL and PCH. PCL
stands for the low half of the program counter, i.e., bits 0 through
7. PCH stands for the high part of the program counter, i.e., bits 8
through 15. The program counter is a 16-bit register which con
tains the address of the next instruction to be executed. Every
computer is equipped with a program counter so that it knows
which instruction to execute next. Let us review briefly the mem
ory access mechanism in order to illustrate the role of the pro
gram counter.

43

PROGRAMMING THE 6502

MPU ROM

PC

PC:

ADDRESS BUS

Ag. 2-3: Fetching an Instruction from the Memory

THE INSTRUCTION EXECUTION CYCLE

Let us refer now to Figure 2-3. The microprocessor unit appears
on the left, and the memory appears on the right. The memory
chip may be a ROM or a RAM, or any other chip which happens to
contain memory. The memory is used to store instructions and
data. Here, we will fetch one instruction from the memory to
illustrate the role of the program counter. We assume that the
program counter has valid contents. It now holds a 16-bit address
which is the address of the next instruction to fetch in the mem
ory. Every processor proceeds in three cycles:

1 - Fetch the next instruction
2 - Decode the instruction
3 - Execute the instruction

Fetch

Let us now follow the sequence. In the first cycle, the contents of
the program counter are deposited on the address bus and gated
to the memory (on the address bus). Simultaneously, a read signal
may be issued on the control bus of the system, if required. The
memory will receive the address. This address is used to specify
one location within the memory. Upon receiving the read signal,

44

6502 HARDWARE ORGANIZATION

the memory will decode the address it has received, through
internal decoders, and will select the location specified by the
address. A few hundred nanoseconds later, the memory will de
posit the 8-bit data corresponding to the specified address on its
data-bus. This 8-bit word is the instruction that we want to fetch.
In our illustration, this instruction will be deposited on top of the
data bus.

Let us briefly summarize the sequencing. The contents of the
program counter are output on the address bus. A read signal is
generated. The memory cycles. Perhaps 300 nanoseconds later,
the instruction at the specified address is deposited on the data
bus. The microprocessor then reads the data-bus and deposits its
contents into a specialized internal register, them register. The
IR register is the instruction-register. It is 8 bits wide and is used
to contain the instruction just fetched from the memory. The fetch
crcle is now completed. The 8 bits of the instruction are now physi-
cally in the special internal register of the 6502, the IR register.
This ffi register appears on the left of Figure 2-4.

Decoding and Execution

Once the instruction is contained in m, the control-unit of the
microprocessor will decode the contents and will be able to gen
erate the correct sequence of internal and external signals for the
execution of the specified instruction. There is, therefore, a short
decoding delay followed by an execution phase, the length of
which depends on the nature of the instruction specified. Some
instructions will execute entirely within the MPU. Other instruc
tions will fetch or deposit data from or into the memory. This is
why the various instructions of the 6502 require various lengths
of time to execute. This duration is expressed as a number of
(clock) cycles. Refer to the Appendix for the number of cycles re
quired by each instruction. A typical 6502 uses one-megahertz
clock. The length of each cycle is therefore 1 microsecond. Since
various clock rates may be used with different components, speed
of execution is normally expressed in number of cycles rather
than in number of nanoseconds.

In the case of the 6502, its clock is internal, represented by the in -
ternal oscillator (see Fig. 2-1).

45

PROGRAMMING THE 6502

Fetching the Next Instruction

We have now described how, using the program counter, an
instruction can be fetched from the memory. During the execution
of a program, instructions are fetched in sequence from the mem
ory. An automatic mechanism must therefore be provided to fetch
instructions in sequence. This task is performed by a simple in
crementor attached to the program counter. This is illustrated in
Figure 2-4. Every time that the contents of the program counter
(at the bottom of the illustration) are placed on the address-bus,
its contents will be incremented and written back into the pro
gram counter. As an example, if the program counter did contain
the value 0, the value 0 would be output in the address bus. Then
the contents of the program counter would be incremented and
the value 1 would be written back into the program counter. In
this way, the next time that the program counter is used, it is the
instruction at address 1 that will be fetched. We have just imple
mented an automatic mechanism for sequencing instructions.

Mi.MORY

MPU
DATA SUS

0

IR

IN!>T 2:io.

!>IGNAlS REAO

·~ PC
Ml#IOflY

PROPER

ADORfSS BUS ot
ADORfSS DECOOER

AODlllSSE!>

Ag. 2-4: Automatic Sequencing

46

6502 HARDWARE ORGANIZATION

It must be stressed that the above descriptions are simplified.
In reality, some instructions may be 2- or even 3-bytes long so that
successive bytes will be fetched in this manner from the memory.
However, the mechanism is identical. The program counter is
used to fetch successive bytes of an instruction, as well as to fetch
successive instructions themselves. The program counter, to
gether with its incrementer, provides an automatic mechanism
for pointing to successive memory locations.

Other 6502 Registers

One last area on Figure 2-2 has not yet been explained. It is the
set of three registers labeled X, Y and S. Registers X and Y are
called index registers. They are 8 bits wide. They may be used to
contain data on which the program will operate. However, they
normally are used as index registers.

The role of index registers will be described in Chapter 5 on
addressing techniques. Briefly, the contents of these two index
registers may be added in several ways to any specified address
within the system to provide an automatic offset. This is an im
portant facility for retrieving data efficiently when it is stored in
tables. These two registers are not completely symmetrical, and
their roles will be differentiated in the chapter on addressing
techniques.

The stack register S is used to contain a pointer to the top of the
stack area within the memory.

Let us now introduce the formal concept of a stack.

THE STACK

A stack is formally called an LIFO structure Oast-in, first-out). A
stack is a set of registers, or memory locations, allocated to this
data structure. The essential characteristic of this structure is
that it is a chronological structure. The first element introduced
into the stack is always at the bottom of the stack. The element
most recently deposited in the stack is on the top of the stack. The
analogy can be drawn to a stack of plates on a restaurant
counter. There is a hole in the counter with a spring in the bottom.
Plates are piled up in the hole. With this organization, it is
guaranteed that the plate which has been put first in the stack
(the oldest) is always at the bottom. The one that has been placed

47

PROGRAMMING THE 6502

most recently on the stack is the one which is on top of it. This
example also illustrates another characteristic of the stack. In
normal use, a stack is only accessible via two instructions: "push"
and "pop" (or "pull"). The push operation results in depositing one
element on top of the stack. The pull operation consists of remov
ing one element from the stack. In practice, in the case of a mic
roprocessor, it is the accumulator that will be deposited on top of
the stack. The pop will result in a transfer of the top element of
the stack into the accumulator. Other specialized instructions
may exist to transfer the top of the stack between other spe
cialized registers, such as the status register.

The availability of a stack is required to implement three pro
gramming facilities within the computer system: subroutines, in
terrupts, and temporary data storage. The role of the stack during
subroutines will be explained in Chapter 3 (Basic Programming
Techniques). The role of the stack during interrupts will be ex
plained in Chapter 6 (Input/Output Techniques). Finally, the role
of the stack to save data at high speed will be explained during
specific application programs.

We will simply assume at this point that the stack is a required
facility in every computer system. A stack may be implemented
in two ways:

1. A fixed number of registers may be provided within the mi
croprocessor itself. This is a "hardware stack." It has the advan
tage of high speed. However, it has the disadvantage of a limited
number of registers.

2. Most general-purpose microprocessors choose another ap
proach, the software stack, in order not to restrict the stack to
a very small number of registers. This is the approach chosen in
the 6502. In the software approach, a dedicated register within
the microprocessor, here register S, stores the stack pointer, i.e.,
the address of the top element of the stack (or more precisely, the
address of the top element of the stack plus one). The stack is then
implemented as an area of memory. The stack pointer will therefore
require 16 bits to point anywhere in the memory.

However, in the case of the 6502, the stack pointer is restricted
to 8 bits. It includes a 9th bit, in the left-most position, always set
to 1. In other words, the area allocated to the stack in the case of
the 6502 ranges from address 256 to address 511. In binary, this is
"100000000" to "111111111." The stack always starts at address
111111111 and may have up to 255 words. This may be viewed

48

6502 HARDWARE ORGANIZATION

as a limitation of the 6502 and will be discussed later in this book.
In the 6502, the stack is at the high address, and grows
"backwards"; the stack pointer is decremented by a PUSH.

In order to use the stack, the pi;ogrammer will simply initialize
the S register. The rest is automatic.

The stack is said to reside in page 1 of the memory. Let us now
introduce the paging concept.

MICROPROCESSOR r--------...,
I REGISTER I
I I
I 7 DATA 0 I
I I
I
I
I
I
I SP
I
I
L--------.J

PUSH

-POP,_ __ _

Fig. 2-5: The 2 Stack Manipulation Instructions

THE PAGING CONCEPT

BASE

The 6502 microprocessor is equipped with a 16-bit address-bus.
16 binary bits may be used to create up to 216 = 64K combinations
(lK equals 1,024). Because of addressing features of the 6502
which will be presented in Chapter 5, it is convenient to partition
the memory into logical pages. A page is simply a block of 256
words. Thus, memory locations 0 to 255 are page 0 of the memory.
It will be used for "page zero" addressing.Page 1 of the memory
includes memory locations 256 through 511. We have just estab
lished that page 1 is normally reserved for the stack area. All
other pages in the system are unconstrained by the design and
may be used in any way. In the case of the 6502, it is important to
keep in mind the page organization of the memory. Whenever a
page boundary has to be crossed, it will often introduce an extra
cycle delay in the execution of an instruction.

49

PROGRAMMING THE 6502

15

PAGE#

ADDRESS

8 7

LOCATION

0

MEMORY

0

PAGEO

255
1--------t

256
PAGE I

511 -------
512

PAGE t--------4

LOCATION l
WITHIN ..__ ________ ,

WORD

Fig. 2-6: The Paging Concept

THE 6502 CHIP

To complete our description of the diagram, the data bus at the up
per part of Figure 2-2 represents the external data bus. It will be used to
communicate with the external devices, and the memory in particular.
AO-7 and AS-15 represent respectively the low-order and the high-order
part of the address-bus created by the 6502.

For completeness, we present here the actual pin-out of the
6502 microprocessor. You need not read it to understand the rest
of this book. However, if you intend to connect devices to a system,
this description will be valuable.

The actual pin-out of the 6502 appears in Figure 2-7. The data
bus is labeled DB0-7 and is easily recognizable on the right of the
illustration. The address bus is labeled A0-11 and A12-15. It comes

50

6502 HARDWARE ORGANIZATION

(Powor Ground) vss 40 m (Reset)

(Ready) ROY 39 ¢2 (Clock)

(Clock) s61 38

(Interrupt Roquoat) ~ 37 r/>O (Clock)

36 -
(Non-Moskablo
Interrupt)

~ 6 35

(Synchronize) SYNC 34 R/W (Road/Write)

(Power: +SV) vcc 8

26-33 D~-7 (Data Bus)

(Memory Bus (Momory Bua A'/J- I I 9-20 22-25 Al 2-15 lines 12 to 15) lines 0 to 11)

21 vss (Powor Ground)

Rg. 2-7: 6502 Plnout

from pins 9 to 20 on the left of the chip, and pins 22 to 25 on its
right.

The rest of the signals are power and control signals.

The control signals

-R/W: the READ/WRITE line controls the direction of data
transfers on the data-bus.

-IRQ and NMI are "Interrupt Request" and "Non-Maskable
Interrupt". They are two interrupt lines and will be used in
Chapter7.

-SYNC is a signal which indicates an opcode fetch to the exter
nal world.

-RDY is normally used to synchronize with a slow memory: it
will stop the processor.

-SO sets the overflow flag. It is normally not used.
~' ~ and ~2 are clock signals.
-RES is RESET, used to initialize.
-Vss and Vee are for power (5V).

51

PROGRAMMING THE 6502

HARDWARE SUMMARY

This completes our hardware description of the internal organi
zation of the 6502. The exact internal bussing structure of the
6502 is not important at this point. However, the exact role of
each of the registers is important and should be fully understood
before the reader proceeds. If you are familiar with the concepts
that have been presented, read on. If you do not feel sure about
some of them, it is suggested that you read again the relevant
sections of this chapter, as they will be needed in the next chap
ters. It is suggested that you look again at Figure 2-2 and make
sure that you understand the function of every register in the
illustration.

52

3

BASIC PROGRAMMING
TECHNIQUES

INTRODUCTION

The purpose of this chapter is to present all the basic tech
niques necessary to write a program using the 6502. This chapter
will introduce additional concepts such as register management,
loops, and subroutines. It will focus on programming techniques
using only the internal 6502 resources, i.e., the registers. Actual
programs will be developed such as arithmetic programs. These
programs will serve to mustrate the various concepts presented
so far and will use actual instructions. Thus, it will be seen how
instructions may be used to manipulate the information between
the memory and the MPU, as well as manipulate information
within the MPU itself. The next chapter will then discuss in com
plete detail the instructions available on the 6502. Chapter 6 will
present the techniques available to manipulate information out
side the 6502: the input/ output techniques.

iQ this chapter, we will essentially learn by "doing." By examining
programs of increasing complexity, we will learn the role of the
various instructions and of the registers and will apply the concepts
developed so far. However, one important concept will not be
presented here; it is the concept of addressing techniques. Because of
its apparent complexity, it will be presented separately in chapter 5.

Let us immediately start writing some programs for the 6502.
We will start with arithmetic programs.

53

PROGRAMMING THE 6502

ARITHMETIC PROGRAMS

Arithmetic programs cover addition, subtraction, multiplication,
and division The programs that will be presented here will operate on
integers. These integers may be positive binary integers or may be ex
pressed in two's complement notation, in which case the left-most bit
is the sign bit (See Chapter 1 for a reminder of the two's complement
notation.)

8-Bit Addition

We will add two 8-bit operands called OPl and OP2, re
spectively stored at memory address ADRl and ADR2. The sum
will be called RES and will be stored at memory address ADR3.
This is illustrated in Figure 3-1. The program which will perform
this addition is the following:

LDA
ADC
STA

54

ADRl
ADR2
ADR3

ADRl -----4-1

ADR2 -------4-1

ADDRESSES

LOAD OPl IN A
ADD OP2 TO OPl
SAVE RES AT ADR3

MEMORY

OPI (FIRST OPERAND}

OP2 (SECOND OPERAND}

(RESULT}

Fig. 3-1: 8-Blt Addition Res= OPl + OP2

BASIC PROGRAMMING TECHNIQUES

This is a three-instruction program. Each line is one instruc
tion, in symbolic form. Each such instruction will be translated by
the assembler program into I, 2, or 3 binary bytes. We will not
concern ourselves with the translation here and only look at the
symbolic representation. The first line specifies an LOA instruc
tion. LOA means "load the accumulator A from the address which
follows."

The address specified on the first line is AORl. AORl is a sym
bolic representation for an actual 16-bit address. Somewhere else
in the program, the ADRI symbol will be defined. It could be, for
example, address 100.

The instruction LOA specifies "load accumulator N' (inside the
6502) from memory location 100. This will result in a read opera
tion from address 100, the contents of which will be transmitted
along the data-bus and deposited inside the accumulator. You
will recall that arithmetic and logical operations operate on the ac
cumulator as one of the source operands. (Refer to the previous
chapter for more details.) Since we wish to add the two values
OPl and OP2 together, we first load OPl into the accumulator.
Then we will be able to add the contents of the accumulator (0Pl)
to OP2.

The right-most field of this instruction is called a comment field.
It is ignored by the processor, but it is provided for program
readability. In order to understand what the program does, it is of
paramount importance to use good comments.

This is called documenting a program. Here the comment is self
explanatory: the value of OPl, which is located at address AORl,
is being loaded in accumulator A.

The result of this first instruction is illustrated by Figure 3-2.

A

Fig. 3-2: LOA ADRl: OPl Is Loaded from Memory

55

PROGRAMMING THE 6502

The second instruction of our program is:

ADC ADR2

It specifies "add the contents of memory location ADR2 to the
accumulator." Referring to Figure 3-1, the contents of memory
location ADR2 are OP2, our second operand. The actual contents of
the accumulator now OPl, our first operand. As a result of the
execution of the second instruction, OP2 will be fetched from the
memory and added to OPI. The sum will be deposited in the
accumulator. The reader will remember that the results of an
arithmetical operation, in the case of the 6502, are deposited back
into the accumulator. In other microprocessors, it may be possible
to deposit these results in other registers or back into the memory.

The sum of OPI and OP2 is now in the accumulator. We have
just to transfer the contents of the accumulator into memory loca
tion ADR3 in order to store the results at the specified location.
Again, the right-most field of the second instruction is simply a
comment field which explains the role of the instruction (add OP2
to A).

Fig. 3-3: ADC ADR2

The effect of the second instruction is illustrated by Figure 3-3.
It can be verified in Figure 3-3 that, initially the accumulator

contained OPI. After the addition, a new result has been written
into the accumulator. It is OPI + OP2. The contents of any regis
ter within the system, as well as any memory location, remain the
same when a read operation is performed. In other words, reading
the contents of a register or a memory location does not change its
contents. It is only, and exclusively, a write operation that will

56

BASIC PROGRAMMING TECHNIQUES

change the contents of a register. In this example, the contents of
memory locations ADRl and ADR2 are unchanged. However,
after the second instruction of this program, the contents of the
accumulator have been modified because the output of the ALU
has been written into the accumulator. Its previous contents are
then lost.

Let us now save this result at address ADR3 and we will have
completed our simple addition.

The third instruction specifies: STA ADR3. This means "Store
the contents of accumulator A at the address ADR3." This is self
explanatory and is illustrated in Figure 3-4.

DATA DUS

A ;

(AOR3}

Fig. 3-4: STA ADR3 (Save Accumulator In Memory)

6502 Peculiarities

The above three-instruction program would indeed by the com
plete program for most microprocessors. However, two
peculiarities of the 6502 exist, which will normally require two
additional instructions.

First, the ADC instruction really means rt add with carry:'
rather than nadd." The difference is that a regular add instruction
adds two numbers together. An add-with-carry adds two numbers
together plus the value of the carry bit. Since we are adding here
8-bit numbers, no carry should be used, and at the time we start
the addition we do not necessarily know the condition of the carry
bit (it may have been set by a previous instruction), so we must clear
it, i.e., set it to zero. This will be accomplished by the CLC instruc
tion: "clear carry."

57

PROGRAMMING THE 6502

Unfortunately, the 6502 does not have both types of addition
operations. It has only an ADC operation. As a result, for single
8-bit additions, a necessary precaution is to always clear the carry
bit. This is no significant disadvantage but should not be forgot
ten.

The second peculiarity of the 6502 lies with the fact that it is
equipped with powerful decimal instructions, which will be used
in the next section on BCD arithmetic. The 6502 always operates
in one of two modes: binary or decimal. The state it is in is con
ditioned by a status bit, the "D" bit (of register P). Since we are
operating in binary mode in this example, it is necessary to make
sure that the D bit is correctly set. This will be done by a CLD
instruction, which will clear the D bit. Naturally, if all arithmetic
within the system is done in binary, the D bit will be cleared once
and for all at the beginning of the program, and it will not be
necessary to set it every time. Therefore, this instruction may, in
fact, be omitted in most programs. However, the reader, who will
practice these exercises on a computer, may go back and forth
between BCD and binary exercises, and this extra instruction has
been included here as it must appear at least once before any
binary addition is performed.

To summarize: our complete, and safe, 8-bit program is now:

CLC
CLD
LDA
ADC
STA

ADRl
ADR2
ADR3

CLEAR CARRY BIT
CLEAR DECIMAL BIT
LOAD OPl IN A
ADD OP2 TO OPl
SAVE RES AT ADR3

Actual physical addresses may be used instead of ADRl, ADR2,
and ADR3. If one wishes to keep symbolic addresses, it will be
necessary to use so-called "pseudo-instructions" which specify the
value of these symbolic addresses so that the assembly program
may, during translation, substitute the actual physical addresses.
Such pseudo-instructions would be, for example:

ADRl = $100
ADR2 = $120
ADR3 = $200

Exercise 3.1: Now close this book. Refer only to the list of instruc
tions at the end of the book. Write a program which will add two

58

BASIC PROGRAMMING TECHNIQUES

numbers stored at memory locations WCl and WC2. Deposit the
results at memory location LOC3. Then, compare your program to
the one above.

16-Bit Addition

An 8-bit addition will only allow the addition of 8-bit numbers, i.e.,
numbers between 0 and 255, if absolute binary is used. For most prac
tical applications it is necessary to use muJ:aplepredsion and to add
numbers having 16 bits or more. We will present here examples of
arithmetic on 16-bit numbers. They can be readily extended to 24,
32 bits, or more. (One always uses multiples of 8 bits.) We will assume
that the first operand is stored at memory locations ADRI and
ADRl -1. Since OPl is a 16-bit number this time, it will require two
8-bit memory locations. Similarly, OP2 will be stored at ADR2 and
ADR2-1. The result is to be deposited at memory addresses ADR3
and ADR3-1. This is illustrated in Figure 3-5.

MiMORY

AORl-1 (OPl)H

ADRI (OPl)l

ADR2-1 (OPR2}H

ADR2 (OPR2)l

ADR3-1 (RES)H

ADR3 (RES)L

Ag. 3-5: 16 Bit Addition: The Operands

59

PROGRAMMING THE 6502

The logic of this program is exactly analogous to the previous
one. First, the lower half of the two operands will be added, since
the microprocessor can only add on 8 bits at a time. Any carry
generated by the addition of these low order bytes will be au
tomatically stored in the internal carry bit ("C"). Then, the high
order half of the two operands will be added together along with
any carry, and the result will be saved in the memory. The pro
gram appears below:

CLC
CLD
LDA
ADC
STA
LDA
ADC
STA

ADRl
ADR2
ADR3
ADRl-1
ADR2-1
ADR3-1

LOW HALF OF OPl
(OPl + OP2) LOW
SAVE LOW HALF OF RES
HIGH HALF OF OPl
(0Pl + OP2) HIGH + CARRY
SAVE HIGH HALF OF RES

The first two instructions of this program are used to be safe: CLC,
CLD. Their roles have been explained in the previous section. Let us
examine the program. The next three instructions are essentially iden
tical to the ones for the 8-bit addition. 'fhey result in ad~g the least
significant half (bits 0 through 7) of OPl and OP2. The sum, called
RES, is stored at memory location ADR3.

Automatically, whenever an addition is performed, any result
ing carry is saved in the carry bit of the flags register (register P).
If the two 8-bit numbers do not generate any carry, the value of
the carry bit will be zero. If the two numbers do generate a carry,
then the C bit will be equal to 1.

The next three instructions of the program are also essentially
identical to the previous 8-bit addition program. They add to
gether the most significant half (bits 8 through 15) of OPl and
OP2, plus any carry, and store the results at address ADR3-1.
After this program has been executed, the 16-bit result is stored
at memory locations ADR3 and ADR3-l.

It is assumed here that no carry will result from this 16-bit
addition. It is assumed that the result is, indeed, a 16-bit number.
If the programmer suspects for any reason that the result might
have 17 bits, then additional instructions should be inserted that
would test the carry bit after this addition.

60

BASIC PROGRAMMING TECHNIQUES

The location of the operands in the memory is illustrated in Fig
ure 3-5.

Note that we have assumed here that the high part of the operand
is stored "on top of" the lower part, i.e., at the lower memory ad
dress. This need not necessarily be the case. In fact, addresses
are stored by the 6502 in the reverse manner: the low part is first
saved in the memory, and the high part is saved in the next
memory location. In order to use a common convention for both
addresses and data, it is recommended that data also be kept with
the low part on top of the high part. This is illustrated in Figure
3-6A.

EMORY

AORI 10 l)l

AORI •I 10PRllH

AOR2 10PR2)l

AOR2~ I (Ol'R21H

ADR3 (RESll

ADllH I

Fig. 3-6A: Storing Operands in Reverse Order

Exercise 3.2: Rewrite the 16-bit addition program above with the mem
ory layout indicated in Figure 3-6A.

Exercise 3.3: Assume now that ADRJ does not point to the lower half of
OPRJ (see Figure 3-6A}, but points to the higher part of OPRJ. This is
illustrated in Figure 3-68. Again, write the corresponding program.

61

PROG~AMMING THE 6502

AOlll-1 10PllllL

ADlll 10PlllJH

AOll2·1 (OPll21l

AOll2 10Pll2)H

A0113 1 (l!ES)l

A01!3 (RES)H

Fig. 3-68: Pointing to the High Byte

It is the programmer, i.e., you, who must decide how to store 16-bit
numbers (low part or high part first) and also whether your address
references point to the lower or to the higher half of such numbers.
This is the first of many choices which you will learn to make when
designing algorithms or data structures.

We have now learned to perform a binary addition. Let us turn
to the subtraction.

Subtracting 16-Bit Numbers

Doing an 8-bit subtract would be too simple. Let us keep it as an ex
ercise and directly perform a 16-bit subtract. As usual, our two
numbers, OPRl and OPR2, are stored at addresses ADRl and ADR2.
The memory layout will be assumed to be that of Figure 3-6A. In order
to subtract, we will use a subtact operation (SBC) instead of an add
operation (ADC). The only other change, when comparing it to the
addition, is that we will use an SEC instruction at the beginning of the

62

BASIC PROGRAMMING TECHNIQUES

program instead of a CLC. SEC means ''set carry to 1.'' This in
dicates a "no-borrow" condition. The rest of the program is identical
to the one for addition. The program appears below:

CLD
SEC
LDA
SBC
STA
LDA
SBC
STA

ADRl
ADR2
ADR3
ADRl + 1
ADR2 + 1
ADR3 + 1

SET CARRY TO 1
(OPRl) L INTO A
(OPRl) L -(OPR2)L
STORE (RESULT)L
(OPRl) H INTO A
(OPRl) H -(OPR2)H
STORE (RESULT)H

Exercise 3.4: Write the subtraction program for 8-bit operands.

It must be remembered that in the case of two's complement
arithmetic, the final value of the carry flag has no meaning. If an
overflow condition has occurred as a result of the subtraction,
then the overflow bit (bit V) of the flags register will have been
set. It can then be tested.

The examples just presented are simple binary additions. How
ever, another type of addition may be necessary; it is the BCD
addition.

BCD Arithmetic

8-Bit BCD Addition

·The concept of BCD arithmetic has been presented in Chapter 1.
It is used essentially for business applications where it is impera
tive to retain every significant digit in a result. In the BCD nota
tion, a 4-bit nibble is used to store one decimal digit (0 through 9).
As a result, every 8-bit byte may store two BCD digits. (This is
called packed BCD.) Let us now add two bytes containing two
BCD digits each.

In order to identify the problems, let us try some numeric
examples first.

Let us add "01" and "02":

"01" is represented by 0000 0001.

63

PROGRAMMING THE 6502

"02" is represented by 0000 0010.
The result is 0000 0011.

This is the BCD representation for "03". (If you feel unsure of the
BCD equivalent, refer to the conversion table at the end of the
book.) Everything worked very simply in this case. Let us now try
another example.

"08" is represented by 0000 1000.
"03" is represented by 0000 0011.

Exercise 3.5: Compute the sum of the two numbers above in the
BCD representation. What do you obtain? (answer follows)

If you obtain 0000 1011, you have computed the binary sum of
"8" and "3". You have indeed obtained "11" in binary. Unfortu
nately, "1011" is an illegal code in BCD. You should obtain the
BCD representation of "11", i.e., "0001 0001"!

The problem stems from the fact that the BCD representation
uses only the first ten combinations of 4 digits in order to encode
the decimal symbols "O" through "9". The remaining six possible
combinations of 4 digits are unused, and illegal "1011" is one such
combination. In other words, whenever the sum of two binary
digits is greater than "9", then one must add "6" to the result in
order to skip over the unused 6 codes. Add the binary representa
tion for "6" to "1011":

The result is:

1011
+ 0110

0001 0001.

(illegal binary result)
(+ 6)

This is, indeed, "11" in the BCD notation! We now have the
correct result.

This example illustrates one of the basic difficulties of the BCD
mode. One must compensate for the six missing codes. On most
microprocessors, a special instruction, called "decimal adjust,"
must be used to adjust the result of the binary addition (add 6 if
result greater than 9). In the case of the 6502, the ADC instruc
tion does it automatically. This is a clear advantage of the 6502
when doing BCD arithmetic.

The next problem is illustrated by the same example. In our
example, the carry will be generated from the lower BCD digit

64

BASIC PROGRAMMING TECHNIQUES

(the right-most one) into the left-most one. This internal carry
must be taken into account and added to the second BCD digit.
The addition instruction for the 6502 takes care of this automati
cally. However, it is often convenient to detect this internal carry
from bit 3 to bit 4 (the "half-carry"). No flag is provided in the
6502.

Finally, just as in the case of the binary addition, the usual
SED and CLC instructions must be used prior to executing the
BCD addition proper. As an example, a program to add the BCD
numbers "11" and "22" appears below:

CLC
SED
LDA
ADC
STA

#$11
#$22
ADR

CLEAR CARRY
SET DECIMAL MODE
LITERAL BCD "11"
LITERAL BCD "22"

In this program, we are using two new symbols: "#"and"$".
The "#" symbol denotes that a "literal" (or constant) follows. The
"$" sign within the operand field of the instruction specifies that

MEMORY

LOA

I
I I

l

AOC

{1
7

T
7

l

(RESULT) tAORJ

Ag. 3-7: Storing BCD Digits

65

PROGRAMMING THE 6502

the data which follows is expressed in hexadecimal notation. The
hexadecimal and the BCD representations for digits "O" through
"9" are identical. Here we wish to add the literals (or constants)
"11" and "22". The result is stored at the address ADR. When the
operand is specified as part of the instruction, as it is in the above
example, this is called immediate addressing. (The various ad
dressing modes will be discussed in detail in Chapter 5.) Storing
the result at a specified address, such as STA ADR, is called abso
lute addressing when ADR represents a regular 16-bit address.

Exercise 3.6: Could we move the CLC instruction in the program
below the instruction LDA?

BCD Subtraction

BCD subtraction appears to be complex. In order to perform a
BCD subtraction, one must add the lO's complement of the num
ber, just like one adds the 2's complement of a number to perform
a binary subtract. The lO's complement is obtained by comput
ing the complement to 9, then adding 1. This typically requires
three to four operations on a standard microprocessor. However,
the 6502 is equipped with a special BCD subtraction instruction
which performs this in a single instruction! Naturally, and just as
in the binary example, the program will be preceded by the in
structions SED, which sets the decimal mode, unless it has been
previously set, and SEC, which sets the carry to 1. Thus, the pro
gram to subtract BCD "25" from BCD "26" is the following:

SED
SEC
LDA
SBC
STA

#$26
#$25
ADR

16-Bit BCD Addition

SET DECIMAL MODE
SET CARRY
LOAD BCD 26
MINUS BCD 25
STORE RESULT

16-bit addition is performed just as simply as in the binary
case. The program for such an addition appears below:

CLC
SED
LDA ADRl

66

BASIC PROGRAMMING TECHNIQUES

ADC ADR2
STA ADR3
LDA ADRl-1
ADC ADR2-1
STA ADR3-1

Exercise 3. 7: Compare the program above to the one for the 16-bit
binary addition. What is the difference?

Exercise 3.8: Write the subtraction program for a 16-bit BCD. (Do
not use CLC and ADC!)

BCD Flags

In BCD mode, the carry flag during an addition indicates the
fact that the result is larger than 99. This is not like the two's
complement situation, since BCD digits are represented in true
binary. Conversely, the absence of the carry flag during a subtrac
tion indicates a borrow.

Programming Hints for Add and Subtract

-Always clear the carry flag before performing an addition.
-Always set the carry flag to 1 before performing a subtrac-

tion.
-Set the appropriate mode: binary or decimal.

Instruction Types

We have now used three types of microprocessor instructions.
We have used LDA and STA, which respectively load the ac
cumulator from the memory address and store its contents at the
specified ad~ress. These two instructions are data trans{ er in
structions.

Next, we have used arithmetic instructions, such as ADC and
SBC. They perform respectively an addition and a subtraction
operation. More ALU instructions will be introduced in this chap
ter soon.

Finally, we have used instructions such as CLC, SEC and others,
which manipulate the flag bits (respectively the carry and the de
cimal bits in our examples). They are status manipulation or con
trol instructions. A comprehensive description of the 6502 instruc-

67

PROGRAMMING THE 6502

tions will be presented in Chapter 4.
Still other types of instructions are available within the micro

processor which we have not yet used. They are in particular
the "branch" and "jump" instructions, which will modify the order
in which the program is being executed. This new type of instruc
tion will be introduced in our next example.

Multiplication

Let us now examine a more complex arithmetic problem: the
multiplication of binary numbers. In order to introduce the al
gorithm for a binary multiplication, let us start by examining a
usual decimal multiplication: We will multiply 12 by 23.

12 (Multiplicand) (MPD)
x23 (Multiplier) (MPR)

36 (Partial Product) (PP)
+24

=276 (Final Result) (RES)

The multiplication is performed by multiplying the right-most digit
of the multiplier by the multiplicand, i.e., "3" x "12". The partial
product is "36." Then one multiplies the next digit of the multi
plier, i.e., "2," by "12." "24" is then added to the partial pro
duct.

But there is one more operation: 24 is offset to the left by one
position. We will say that 24 is being shifted left by one position.
Equivalently, we could have said that the partial product (36) had
been shifted one positwn to the right before adding.

The two numbers, correctly shifted, are then added and the sum
is 276. This is simple. Let us now look at the binary multiplica
tion. The binary multiplication is performed in exactly the same
way.

68

Let us look at an example. We will multiply 5 x 3:

(5)
(3)

(15)

101
xon

101
101

000
01111

(MPD)
(MPR)
(PP)

(RES)

BASIC PROGRAMMING TECHNIQUES

In order to perform the multiplication, we operate exactly as
we did above. The formal representation of this algorithm ap
pears in Figure 3-8. It is a flowchart for the algorithm, our first
flowchart. Let us examine it more closely.

NO

SET RESULT TO ZERO

RESULT=

RESULT+ MPD

LEFT SHIFT (I) MPD
OR RIGHT SHIFT (1) RES

NEXT LSB (MPR)

DONE

NO

Rg. 3-8: The Basic MuHlpllcatlon Algorithm: Rowchart

This flow-chart is a symbolic representation of the algorithm we
have just presented. Every rectangle represents an order to be
carried out. It will be translated into one or more program in
structions. Every diamond-shaped symbol represents a test being
performed. This will be a branching point in the program. If the
test succeeds, we will branch to a specified location. If the test
does not succeed, we will branch to another location. The concept
of branching will be explained later in the program itself. The
reader should now examine this flow-chart and ascertain that it
does indeed represent the algorithm exactly. Note that there is an
~ow coming out of the last diamond at the bottom of the flow
chart, back to the first diamond on top. This is because the same
portion of the flow-chart will be executed eight times, once for

69

PROGRAMMING THE 6502

every bit of the multiplier. Such a situation where execution will
restart at the same point is called a program loop, for obvious
reasons.

Exercise 3.9: Multiply ~4" by ~7" in binary using the flow chart,
and verify that you obtain ~28:' If you do not, try again. It is only if
you obtain the correct result that you are ready to translate this flow
chart into a program.

Let us now translate this flow-chart into a program for the
6502. The complete program appears in Figure 3.9. We are now go
ing to study it in detail. As you will recall from Chapter 1, pro
gramming consists here of translating the flowchart of Figure
3-8 into the program of Figure 3-9. Each of the boxes in the flow
chart will be translated by one or more instructions.

It is assumed that MPR and MPD already have a value.

LDA 10 ZERO ACCUMULATOR
STA TMP CLEAR THIS ADDRESS
STA RESAD CLEAR
STA RESAD+l CLEAR
LDX 118 XIS COUNTER

MULT LSR MP RAD SHIFT MPR RIGHT
BCC NO ADD TEST CARRY BIT
LDA RES AD LOAD A WITH LOW RES
CLC PREPARE TO ADD
ADC MPDAD ADD MPD TO RES
STA RE SAD SAVE RESULT
LDA RESAD+l ADD REST OF SHIFTED MPD
ADC TMP
STA RESAD+l

NO ADD ASL MPDAD SHIFT MPD LEFT
ROL TMP SAVE BIT FROM MPD
DEX DECREMENT COUNTER
BNE MULT DO IT AGAIN IF COUNTER 110

Fig. 3-9: 8x8 Multiply

The first box of the flow-chart is an initialization box. It is neces
sary to set a number of registers or memory locations to "O:' as
this program will require their use. The registers which will be
used by the multiplication program appear in Figure 3-10. On the
left of the illustration appears the relevant portion of the 6502
microprocessor. On the right of the illustration appears the rele-

70

BASIC PROGRAMMING TECHNIQUES

vant section of the memory. We will assume here that memory
addresses increase from the top to the bottom of the illustration.
Naturally, the reverse convention could be used. The X register on
the far left (one of the two index registers of the 6502) will be used
as a counter. Since we are doing an 8-bit multiplication, we will
have to test 8 bits of the multiplier. Unfortunately, there is no in
struction in the 6502 which allows us to test those bits in se
quence. The only bits that can conveniently be tested are the
flags in the status register. As a result of this limitation of most
microprocessors, in order to test successively all the bits of the
multiplier, it will be necessary to transfer the multiplier value
into the accumulator. Then, the contents of the accumulator will
be shifted right. A shift instruction moves every bit in the regis
ter by one position to the right or to the left. The bit which falls
off the register drops into the carry bit of the status register. The
effect of a shift operation is illustrated in Figure 3-11. There are
many variations possible depending upon the bit that comes into
the register, but these differences will be discussed in Chapter 4
(6502 instruction set).

DATA BUS

p
IW°9ADJ

Ag. 3-10: Multlpllcatlon: The Registers

Let us go back to the successive testing of each of the 8 bits of
the multiplier. Since one can easily test the carry bit, the multi
plier will be shifted by one position 8 times. Every time its right
most bit will fall into the carry bit, where it will be tested.

The next problem to be solved is that the partial product which
is accumulated during the successive additions will require
16 bits. Multiplying two 8-bit numbers may yield a 16-bit re-

71

PROGRAMMING THE 6502

suit. This is because 28 x 28 =216 • We need to reserve 16 bits for this
result. Unfortunately, the 6502 has very few internal registers, so
that this partial product cannot be stored within the 6502 itself.
In fact, because of the limited number of registers, we are unable
to store the multiplier, the multiplicand, or the partial product
within the 6502. They will all be stored in the memory. This will
result in a slower execution than if it were possible to store them
all in internal registers. This is a limitation inherent in the 6502.
The memory area used for the multiplication appears on the right
of Figure 3-10. On top one can see the memory word allocated for
the multiplier. We will assume, for example, that it contains "3" in
binary. The address of this memory location is MPRAD. Below it,
we find a "temporary" whose address is TMP. The role of this
location will be clarified below. We will shift the multiplicand left
into this location prior to adding it to the partial product. The
multiplicand is next and will be assumed to contain the value "5"
in binary. Its address is MPDAD.

Finally, at the bottom of the memory, we find the two words
allocated for the partial product or the result. Their address is
RESAD.

SHIFT LEFT

ROTATE LEFT

Fig. 3-11: Shift and Rotate

72

BASIC PROGRAMMING TECHNIQUES

These memory locations will be our "working registers:' and
the word "register" may be used interchangeably with "location"
in this context.

The arrow which appears on the top right of the illustration
coming out of MPR into bit C is a symbolic way of showing how
the multiplier will be shifted in the carry bit. Naturally, this carry
bit is physically contained within the 6502 and not within the
memory.

Let us now go back to the program of Figure 3-9. The first five
instructions are initialization instructions:

The first four instructions will clear the contents of "registers"
TMP, RESAD, and RESAD+l. Let us verify this.

LDA#O

This instruction loads the accumulator with the literal value "0."
As a result of this instruction, the accumulator will contain
''00000000.,'

The contents of the accumulator will now be used to clear the
three "registers" in the memory. It must be remembered that
reading a value out of a register does not empty it. It is possible to
read as many times as necessary out of a register. Its contents are
not changed by the read operation. Let us proceed:

STA TMP

This instruction stores the contents of the accumulator in mem
ory location TMP. Ref er to Figure 3-10 to understand the flow of
data in the system. The accumulator contains "00000000." The
result of this instruction will be to write all zeroes in memory
location TMP. Remember that the contents of the accumulator
remain 0 after a read operation on the accumulator. It is unchanged.
We are going to use it again.

STARESAD

This instruction operates just like the one before and clears the
contents of address RESAD. Let us do it one more time:

STARESAD+l

We finally clear memory location RESAD+ 1 which has been re
served to store the high part of the result. (The high half is bits
8-15; the low part is bits 0-7 .)

Finally, in order to able to stop shifting the multiplier bits

73

PROGRAMMING THE 6502

at the right time, it is necessary to count the number of shifts that
have to be performed. Eight shifts are necessary. Register X will
be used as a counter and initialized to the value "8." Every time
that the shift will have been performed, the contents of this
counter will be decremented by 1. Whenever the value of this
counter reaches "O:' the multiplication is finished. Let us ini
tialize this register to "8":

LDX#8

This instruction loads the literal "8" into register X.
Referring back to the flow chart of Figure 3-8, we must test the

least significant bit of the multiplier. It has been indicated above
that this test cannot be performed in a single instruction. Two instruc
tions must be used. First the multiplier will be shifted right, then the
bit which fell out of it will be tested. It is the carry bit. Let us perform
these. operations:

LSRMPRAD

This instruction is a '"~ogical Shift Right" of the contents of
memory location MPRAD.

Exercise 3.10: Assuming that the multiplier in our example is
"3, "which bit falls off the right end of memory locationMPRAD?
(In other words, which will be the value of the carry after this
shift?)

The next instruction tests the value of the carry bit:

BCCNOADD

This instruction means "Branch if Carry Clear" (i.e. equals zero)
to the address NOADD.

This is the first time we encounter a branch instruction. All the
programs we have considered so far have been strictly sequential.
Each instruction was executed after the previous one. In order to
be able to use logical tests such as testing the carry bit, one must
be able to execute instructions anywhere in the program after the
test. The branch instruction performs just such a function. It will
test the value of the carry bit. If the carry was "O:' i.e., if it was
cleared, then the program will branch to address NOADD. This
means that the next instruction executed after the BCC will be
the instruction at address NOADD if the test succeeds.

74

BASIC PROGRAMMING TECHNIQUES

Otherwise, if the test fails, no branch will occur and the in
struction following BCC NOADD will be normally executed.

One more explanation is in order about NOADD: this is a sym
bolic label. It represents an actual physical address within the
memory. For the convenience of the programmer, the assembler
program allows using symbolic names instead of actual addres
ses. During the assembly process, the assembler will substitute
the real physical address instead of the symbol "NOADD." This
improves the readability of the program substantially and also
allows the programmer to insert additional instructions between
the branch point and NOADD, without having to rewrite every
thing. These merits will be studied in more detail in Chaper I 0 on
the assembler.

If the test fails, the next sequential instruction in the program
is executed. We will now study both alternatives:

Alternative 1: the carry was "'1."
If the carry was I, the test specified by BCC has failed and the next
instruction after BCC is executed.

LDARESAD

Alternative 2: the carry was "'O:'
The test succeeds, and the next instruction is the one at label
"NOADD."

Referring to Figure 3-8, the flow-chart specifies that if the carry
bit was 1, the multiplicand must be added to the partial product
(here, the RES registers). Also, a shift must be performed. The
partial product must be moved by one position to the right or else
the multiplicand must be moved by one position to the left. We
will adopt here the usual convention in performing multiplica
tions by hand, and we will move the multiplicand by one position
to the left.

The multiplicand is contained in registers TMP and MPDAD.
(To simplify, we call memory locations "registers;' a usual term.)
The 16 bits of the partial product are contained in memory ad
dresses RESAD and RESAD + I.

In order to illustrate this, let us assume that the multiplicand
was "5." The various registers appear in Figure 3-10.

We simply have to add two 16-bit numbers. This is a problem
that we have learned to solve. (If you have any doubts, ref er to
the section on 16-bit addition above.) We are going to add the low-

75

PROGRAMMING THE 6502

order bytes first, and then the high-order bytes. Let us proceed:

LDARESAD

The accumulator is loaded with the low part of RES.

CLC

Prior to any addition, the 6502 requires that the carry bit be
cleared. It is important to do so here as we know that the carry bit
had been set to 1. It must be cleared.

ADCMPDAD

The multiplicand is added to the accumulator, which contains
(RES)LOW.

BrARESAD

The result of the addition is saved at the appropriate memory
location, (RES)LOW. The second half of the addition is then per
formed. When checking execution of this program later by hand,
do not forget that the addition will set the carry bit. The carry will
be set to either "O" or "1" depending on the results of the addition.
Any carry that might have been generated will automatically be
carried forward into the high-order part of the result.

Let us now finish the addition:

LDA RESAD+l
ADC TMP
srA RESAD+l

These three instructions complete our 16-bit add. We have now
added the multiplicand to RES. We still have to shift it by one
position to the left in anticipation of the next addition. We could
also have considered shifting the multiplicand by one position
to the left be/ ore adding, except for the first time. This is one of many
programming options which are always open to the programmer.

Let us shift the multiplicand to the left:

NOADD ASL MPDAD

This instruction is an tl\.rithmetic Shift Left." It will shift by one
position to the left the contents of memory location MPDAD
which happens to contain the low part of the multiplicand. This is
not enough. We cannot afford to lose the bit which falls off the left

76

BASIC PROGRAMMING TECHNIQUES

end of the multiplicand. This bit will fall into the carry bit. It
should not be stored there permanently since it can be destroyed
by any arithmetic operation. This bit should be saved in a
"permanent" register. It should be shifted into memory location
TMP. This is precisely accm~plished by the next instruction:

ROLTMP

This specifies: "Rotate Left" the contents of TMP.
One interesting observation can be made here. We just used two

different kinds of shift instructions to shift a register by one posi
tion to the left. The first one is ASL. The second one is ROL.
What · is the difference?

The ASL instruction shifts the contents of the register. The
ROL instruction is a rotate instruction. It does shift the contents
of the register by one position to the left, and the bit falling off the
left end goes into the carry bit, as usual. The difference is that the
previous con'lents of the carry bit are farced into the right-most posi
tion. This is called a circular rotation in mathematics (a 9-bit
rotation). This is exactly what we want. As a result of the ROL,
the bit which had been shifted out of MPDAD on the left and pre
served in the carry bit C will land in the right-most position of
register TMP. It works.

We are now finished with the arithmetic portion of this pro
gram. We still have to test whether we have performed the opera
tion eight times, i.e., whether we are finished. As usual in most
microprocessors, this test will require two instructions:

DEX

This instruction decrements the contents of register X. If it con
tained 8, its contents will be 7 after execution of this instruction.

BNEMULT

This is another test-and-branch instruction. It specifies "branch if
result is not equal to 0 to location MULT." As long as our counter
register decrements to a non-zero integer, there will be an au
tomatic branch back to label MULT. This is called the multiplica
tion loop. Referring back to the multiplication flow-chart, this corre
ponds to the arrow coming out of the last box. This loop will be
executed 8 times.

Exercise 3.1.1: What happens when X decrements to O? What is

77

PROGRAMMING THE 6502

the next instruction to be executed?

In most cases, the program that we just developed will be a
subroutine and the final instruction in the subroutine will be
RTS. The subroutine mechanism will be explained later in this
chapter.

IMPORTANTSELF~Esr

If you wish to learn how to program, it is extremely important
that you understand such a typical program in complete detail.
We have introduced many new instructions. The algorithm is rea
sonably simple, but the program is much longer than the previous
programs that we have developed so far. It is very strongly sug
gested that you do the foil owing exercise completely and correctly
be/ ore you proceed in this chapter. If you do it correctly, you will
have really understood the mechanism by which instructions
manipulate the contents of memory and of the microprocessor
registers and how the carry flag is being used. If you do not, it is
likely that you will experience difficulties in writing programs
yourself. Learning to program does involve actually programming.
Please pause to take a piece of paper and do the following exer
cise.

Exercise 3.12: Every time that a program is written, one should
verify it by hand, in order to ascertain that its results will be correct.
We are going to do just that: the purpose of this exercise is to fill in
the table of Figure 3-12.

You can write directly on it or else make a copy of it. The
purpose is to determine the contents of every relevant register
and memory location in the system after each instruction is exe
cuted by this program, from beginning to end. You will find hori
zontally on Figure 3-12 all the register locations used by the
program: X, A, MPR, C (the carry bit flag), TMP, MPD, RESADL,
RESADH. On the left part of the illustration you must fill in the
label, if applicable, and the instruction being executed. At the
right of the illustration you must write the contents of every reg
ister after execution of that instruction. Whenever the contents
of a register are indefinite, we will use dashes. Let us start filling

78

BASIC PROGRAMMING TECHNIQUES

::c
0
~ w
~

_.
0
< V)
w
~

0 a.
~

a.

~

u

Ct: a.
~

<

x

z
0
5
:::>
Ct:
t;
~

_.
~
~

79

PROGRAMMING THE 6502

in this table together. You will have to fill in the remainder alone.
The first line appears below:

Rg. 3-13: Rrst lnstrucHon of Mulflpllcaflon

The first instruction to be executed is LDA #0.
After execution of this instruction, the contents of register X

are unknown. This is indicated by dashes. The contents of the
accumulator are all zeroes. We also assume that the multiplier
and the multiplicand had been loaded by the programmer prior to
execution of this program. (Otherwise, additional instructions
would be needed to set the contents ofMPR and MPD.) We find in
MPR the binary value for "3." We find in MPD the binary value
for "5." The carry bit is undefined. Register TMP is undefined.
And both registers used for RESAD are undefined. Let us now fill
the next line. It appears below; the only difference is that the con
tents of register TMP have been set to "0." The next instruction
will set the contents of RESAD to "0" and the one after will set
the contents of RESAD +1 to "O."

10.UO OOCOCOCO COIXICXlll -- ----- 00000101 ----- -----
$IA !(Ml' 00000000

Rg. 3-14: Rrst Two Unes of Multlpllcatton

The fifth instruction, #8, will set the contents of X to "8." Let
us do one more instruction set (see Figure 3-15).

The LSR MPRAD instruction will shift the contents of MPRAD
right by one position. You can see that after the shift the contents
of MPR are "0000 0001." The right-most "I" of MPR has fallen

80

BASIC PROGRAMMING TECHNIQUES

IOAIO CXIOXIOQQ CXIOXIQll -- ----- acaao101 ----- -----
SIAllW CXIOXIOQQ

CllO SJAllSAO OCXIOXIOO
SfAllSAO•I CXIOXIOQQ

~.. OCllOICl:IO
MUii 1111-...0 QCXIOXIOI 1

ICCNOAGO
IOAllSAO
ac
Al)(WDAI) ao:ioa101

101 lfAllSAO OCllOQIOI
IOA-•1 OCX10X100
AIXIWI'
SfA-01

l()lll)"S&- QCllOIQIO

IOl 11.W
Cl• OIXl:IOlll
llNIMIAI

-;.;;- I;~- --··-- -----1-;;;; ~- ----+---- --- --r-----

Fig. 3-15: Partially Completed Form For Exercise 3-12

into the carry bit. Bit C is now set to 1. Other registers are un
changed.

It is now your turn. Please fill in the rest of this table com
pletely. It is not difficult, but it does require attention. If you have
doubt.a about the role of some instructions, you may want to refer
to Chapter 4 where you will find each of them listed and de
scribed, or else to the Appendix section of this book where they
are listed in table form.

The final result of your multiplication should be "15" in binary
fonn, contained in registers RESAD low and high. RESAD high should
be set to "0000 0000." RESAD low should be "()()()() 1111." If you
obtained this result, you won. If you did not, try one more time.
The most frequent source of errors is a mishandling of the carry
bit. Make sure that the carry bit is changed every time you per
form an arithmetic instruction. Do not forget that the ALU will
set the carry bit after each addition operation.

Programming Alternatives

The program that we have just developed is one of many
ways in which it could have been written. Every programmer can
find ways to modify and sometimes improve a program. For
example, we have shifted the multiplicand left before adding. It
would have been mathematically equivalent to shift the result by
one position to the right before adding it to the multiplicand. The
advantage is that we would not have required register TMP, thus
saving one memory location. This would be a preferred method in
a microprocessor equipped with enough internal registers so that

81

PROGRAMMING THE 6502

MPR, MPD, and RESAD could be contained within the microproces
sor. Since we were obliged to use the memory to perform these
operations, saving one memory location is not relevant. The ques
tion is, therefore, whether the second method might result in a
somewhat faster multiplication. This is an interesting exercise:

Exercise 3.13: Now write an 8 x 8 multiply, using the same al
gorithm, but shifting the result by one position to the right instead of
shifting the multiplicand by one position to the left. Compare it to
the previous program and determine whether this different ap
proach would be faster or slower than the preceding one.

One more problem may come up: In order to determine the
speed of the program, you may want to refer to the tables in the
Appendix section which list the number of cycles required by
each instruction. However, the number of cycles required by
some instructions depends on where they are located. A special
addressing mode exists for the 6502 called the Direct Addressing
Zero Page Mode, where the first page (memory location 0 to 255)
is reserved for fast execution. This will be explained in Chapter 5
on addressing techniques. Briefly, all programs that require a
fast execution time will use variables located in page 0 so that in
structions require only two bytes to address memory locations
(addressing 256 locations requires only one byte), whereas instruc
tions located anywhere else in the memory will typically require
3-byte instructions. Let us defer this analysis until after Chap
ter 5.

An Improved Multiplication Program

The program we have just developed is a straightforward
translation of the algorithm into code. However, effective pro
gramming requires close attention to detail so that the length of
the program can be reduced and so that its execution speed can be
improved. We are now going to present an improved implementa
tion of the same algorithm.

One of the tasks which consume instructions and time is the
shifting of the result and the multiplier. A standard "trick" used
in the multiply algorithm is based on the following observation:
every time that the multiplier is shifted by one bit position to the
right, a bit position becomes available on the left. Simultane
ously, we can observe that the first result (or partial product) will

82

BASIC PROGRAMMING TECHNIQUES

use, at most, 9 bits. After the next multiply shift, the size of the
partial product will be increased by one bit again. In other words,
we can just reserve, initially, one memory location for the partial
product and then use the bit positions which are being freed by
the multiplier as it is being shifted.

We are now going to shift the multiplier right. It will free one bit posi
tion to the left. We are going to enter the right-most bit of the partial
product into this bit position that has been freed. Let us now consider the
program.

Let us now also consider the optimal use of registers. The inter
nal registers of the 6502 appear in Fig. 3-16. X is best used as a
counter. We will use it to count the number of bits shifted. The
accumulator is (unfortunately) the only internal register which
can be shifted. In order to improve efficiency, we should store in
it either the multiplier or the result.

A I ACCUMULAIQa

~--------111NotXREG1sm1s

I 1 l ______ _.I SIACKPOINTEI!

·~
PC Pl!OGl!AM COUNTER

Fig. 3-16: 6502 Registers

Which one should we put in the accumulator? The result must be
added to the multiplicand every time a I is shifted out. Since the
6502 also always adds something to the accumulator only, it is the
result which will reside in the accumulator.

The other numbers will have to reside in the memory (see Fig
gure 3-17).

A and B will hold the result. A will hold the high part of the
result, and B will hold the low part of the result. A is the ac
cumulator, and B is a memory location, preferably in page 0. C
will hold the multiplier (a memory location). D holds the multipli-

83

PROGRAMMING THE 6502

COUl\llllt R£SH RISI.

MPll

Rg. 3-17: Register Allocatlon (Improved Multiply)

cand (a memory location). The program appears below:

MULT

LOOP

NO ADD

LOA #0
STA B
LDX #8
LSR C
BCC NOADD
CLC
ADC D
RORA
ROR B
DEX
BNE LOOP

INITIALIZE RESULT TO ZERO (lllGH)
INITIALIZE RESULT (LOW)
XIS SHIFr COUNTER
SHIFrMPR

CARRY WAS ONE. CLEAR IT
A=A+MPD
SIIlFTRESULT
CATCH BIT INTO B
DECREMENT COUNTER
LAST SIIlFT?

Rg. 3-18: Improved Multlply

Let us examine the program. Since A and B will hold the result,
they must be initialized to the value 0. Let us do it:

MULT LDA#O
STAB

We will then use register X as a shift counter and initialize it to
the value 8:

LDX#8

We are now ready to enter the main multiplication loop as
before. We will first shift the multiplier, then test the carry bit
which holds the right-most bit of the multiplier, which has fallen
off. Let us do it:

LOOPLSRC
BCCNOADD

84

BASIC PROGRAMMING TECHNIQUES

Here we shift the multiplier right as before. This is equivalent
to the previous algorithm because the addition operation is said
to be communicative.

Two possibilities exist: if the carry was 0, we will branch to
NOADD. Let us assume that the carry was 1. We will proceed:

CLC
ADCD

Since the carry was 1, it must be cleared, and we then add the
multiplicand to the accumulator. (The accumulator holds the re
sults, 0 so far.)
Let us now shift the partial product:

NOADD RORA
RORB

The partial product in A is shifted right by one bit. The right
most bit falls into the carry bit. The carry bit is captured and
rotated into register B, which holds the low part of the result.

We simply have to test whether we are finished:

DEX
BNE LOOP

If we now examine this new program, we see that it has been
written in about half the number of instructions of the previous
program. It will also execute much faster. This shows the value of
selecting the correct registers to contain the information.

A straightforward design will result in a program that works. It ·
will not result in a program that is optimized. It is, therefore, of
significant importance to use the available registers and memory
locations in the best possible way. This example illustrates a ra
tional approach to register selection for maximum efficiency.

Exercise 3.14: Compute the speed of a multiplication operation
using this last program. Assume that a branch will occur in fifty
percent of the cases. Look up the number of cycles required by every
instruction in the table at the end of the book. Assume a clock rate
of one cycle = 1 microsecond.

85

PROGRAMMING THE 6502

Binary Division

The algorithm for binary division is analogous to the one which
has been used for multiplication. The divisor is successively
subtracted from the high order bits of the dividend. After each
subtraction, the result is used instead of the initial dividend. The
value of the quotient is simultaneously increased by 1 every time.
Eventually, the result of the subtraction is negative. This is called
an overdraw. One must then restore the partial result by adding
the divisor back to it. Naturally, the quotient must be simultane
ously decremented by 1. Quotient and dividend are then shifted
by one bit position to the left and the algorithm is repeated.

The method just described is called the restoring method. A
variation of this method which yields an improved speed of execu
tion is called non-restoring methort.

END (1l(MAINOll ISIN UfT (OIYUND))

Rg. 3-19: 8 Bit Binary Division Flowchart

The 16-bit Division

The non-restoring division for a 16-bit dividend, and an 8-bit divisor
will now be described. The result will have 8 bits. The register and memory

86

BASIC PROGRAMMING TECHNIQUES

location for this program are shown in Fig. 3-22. The dividend is con
tained in the accumulator (high part) and in memory location 0, called B
here. The result is contained in Q (memory location I). The divisor is
contained in D (memory location 2). The result will be contained in Q and
A (A will contain the remainder).

The program appears on Fig. 3-21, the corresponding flow chart is
shown in Fig. 3-20.

Exercise 3.15: Verify the correct operation of this program by
performing the division by hand and exercising the program, as
you did in Exercise 3.12. Divide 33 by 3. The result naturally
should be 11, with a remainder of 0.

LOGICAL OPERATIONS

The other class of instructions that the ALU inside the micro
processor can execute is the set of logical instructions. They in
clude: AND, OR and exclusive OR (EOR). In addition, one can also
include there the shift operations which have already been
utilized, and the comparison instruction, called CMP for the 6502.
The individual use of AND, ORA, EOR, will be described in Chap
ter 4 on the 6502 instruction set. Let us now develop a brief
program which will check whether a given memory location
called LOC contains the value "0," the value "1," or something
else. The program appears below:

NONE FOUND

ZERO

ONE

LOA
CMP
BEQ
CMP
BEQ

LOC
#$00
ZERO
#$01
ONE

READ CHARACTER IN LOC
COMPARE TO ZERO
IS IT AO?
1?

The first instruction: LDA LOC reads the contents of memory
location LOC. This is the character we want to test.

CMP #$00

87

PROGRAMMING THE 6502

YES

BIT COUNTER
=8

RESULT =DIVIDEND

RES=RES-D

SHIFT RES LEFT

RES=RES-D

OUT

Fig. 3-20: 16 by 8 Division Flowchart

88

BASIC PROGRAMMING TECHNIQUES

LINE II LOC CODE LINE

0002 0000 * = $0
0003 0000 B * =. + 1
0004 0001 Q • = * + 1
0005 0002 D • = * + 1
0006 0003 • = $200
0007 0200 A008 DIV LOY 118
0008 0202 38 SEC
0009 0203 E502 SBCD
0010 0205 08 LOOP PHP
0011 0206 2601 ROLQ
0012 0208 0600 ASLB
0013 020A 2A ROLA
0014 0208 28 PLP
0015 020C 9005 BCCADD
0016 020E E502 SBCD
0017 0210 4(1502 JMPNEXT
0018 0213 6502 ADD ADCD
0019 0215 88 NEXT DEY
0020 0216 DO ED BNE LOOP
0021 0218 8003 BCSLAST
0022 021A 6502 ADCD
0023 021C 18 CLC
0024 021D 2601 LAST ROLQ
0025 021F 00 BRK
0026 0220 END

Fig. 3.21: Program

---------------,

IAI
OIVL

(ALSO REMAINDER I L---- RESULT
01

DIVISOR
02

PROGRAM

STACK

Fig. 3·22: 16 by 8 Division Registers and Memory Map (non-restoring 8-bit result)

89

PROGRAMMING THE 6502

This instruction compares the contents of the accumulator with
the literal hexadecimal value "00" (i.e., the bit pattern

"00000000"). This comparison instruction will set the Z bit in the
flags register, which will then be tested by the next instruction:

BEQZERO

The BEQ instruction specifies "branch if equal?' The branch
instruction will determine whether the test succeeds by examin
ing the Z bit. If set, the program will branch to ZERO. If the test
fails, then the next sequential instruction will be executed:

CMP #$01

The process will be repeated against the new pattern. If the test
succeeds, the next instruction will result in a branch to location
one. If it fails, the next sequential instruction will be executed.

Exercise 3.16: Write a program which will read the contents of
memory location "24,, and branch to the address called "ST AR,, if
there were au•" in memory location 24. The bit pattern/or a"*"' in
assembly language notation is represented by "00101010".

SUMMARY

We have now studied most of the important instructions of the
6502 by using them. We have transferred values between the
memory and the registers. We have performed arithmetic and
logical operations on such data. We have tested it, and depending
on the results of these tests, we have executed various portions of
the program. We have also introduced a structure called the loop,
in the multiplication program. An important programming struc
ture will be introduced now: the subroutine.

SUBROUTINES

In concept, a subroutine is simply a block of instructions which
has been given a name by the programmer. From a practical
standpoint, a subroutine must start with a special instruction
called the subroutine declaration, which identifies it as such for
the assembler. It is also terminated by another special instruction
called a return. Let us first illustrate the use of subroutines in the
program in order to demonstrate its value. Then, we will examine
how it is actually implemented.

90

BASIC PROGRAMMING TECHNIQUES

MAIN PliOGl!AM

SUBllOUTINE

CALL SUB

CAl.LSUB RflURN

Fig. 3-23: SUbroutlne Calls

The use of a subroutine is illustrated in Figure 3-23. The main
program appears on the left of the illustration. The subroutine is
represented symbolically on the right. Let us examine the sub
routine mechanism. The lines of the main program are executed
succesively until a new instruction, CALL SUB, is met. This
special instruction is the subroutine call and results in a transfer
to the subroutine. This means that the next instruction to be
executed after the CALL SUB is the first instruction within the
subroutine. This is illustrated by arrow 1 in the illustration.

Then, the subprogram within the subroutine executes just like
any other program. We will assume that the subroutine does not
contain any other calls. The last instruction of this subroutine is a
RETURN. This is a special instruction which will cause a return
to the main program. The next instruction to be executed after
the RETURN is the one following the CALL SUB. This is illus
trated by arrow 3 in the illustration. Program execution con
tinues then as illustrated by arrow 4.

In the body of the main program a second CALL SUB appears.
A new transfer occurs, shown by arrow 5. This means that the
body of the subroutine is again executed following the CALL SUB
instruction.

Whenever the RETURN within the subroutine is encountered,
a return occurs to the instruction following the CALL SUB in
question. This is illustrated by arrow 7. Following the return to
the main program, program execution proceeds normally, as illus
trated by arrow 8.

The role of the two special instructions CALL SUB and RE-

91

PROGRAMMING THE 6502

TURN should now be clear. What is the value of the subroutine?
The essential value of the subroutine is that it can be called

from any number of points in the main program and used re
peatedly without rewriting it. A first advantage is that this ap
proach saves memory space and there is no need to rewrite the
subroutine every time. A second advantage is that the pro
grammer can design a specific subroutine only once and then use
it repeatedly. This is a significant simplification in program de
sign.

Exercise 3.17: What is the main disadvantage of a subroutine?

The disadvantage of the subroutine should be clear just from
examining the flow of execution between the main program and
the subroutine. A subroutine results in a slower execution, since
extra instructions must be executed: the CALL SUB and the RE
TURN.

Implementation of the Subroutine Mechanism

We will examine here how the two special instructions, CALL
SUB and RETURN, are implemented internally within the processor.
The effect of the CALL SUB instruction is to cause the next instruct
ion to be fetched at a new address. You will remember (or else read
Chapter I again) that the address of the next instruction to be ex
ecuted in a computer is contained in the program counter (PC). This
means that the effect of the CALL SUB is to substitute new contents
in register PC. Its effect is to load the start address of the subrou
tine in the program counter. Is that really enough?

To answer this question, let us consider the other instruction
which has to be implemented: the RETURN. The RETURN must
cause, as its name indicates, a return to the instruction that fol
lows the CALL SUB. This is possible only if the address of this
instruction has been preserved somewhere. This address happens
to be the value of the program counter at the time that the CALL
SUB was encountered. This is because the program counter is
automatically incremented every time it is used (read Chapter I
again?). This is precisely the address that we want to preserve so
that we can later perform RETURN.

The next problem is: where can we save this return address?

92

BASIC PROGRAMMING TECHNIQUES

This address must be saved in a reasonable location where it is
guaranteed that it will not be erased. However, let us now consi
der the following situation, illustrated by Figure 3-24: in this
example, subroutine 1 contains a call to SUB2. Our mechanism
should work in this case as well. Naturally, there might even be
more than two subroutines, say N "nested" calls. Whenever a
new CALL is encountered, the mechanism must . therefore store
the program counter again. This implies that we need at least 2N
memory locations for this mechanism. Additionally, we will need
to return from SUB2 first and SUBl next. In other words, we need
a structure which can preserve the chronological order in which
data will have been saved.

The structure has a name. We have already introduced it. It is
the stack. Figure 3-26 shows the actual contents of the stack
during successive subroutine calls. Let us look at the main pro
gram first. At address 100, the first call is encountered: CALL
SUBl. We will assume that, in this microprocessor, the subroutine
call uses 3 bytes. The next sequential address is therefore not

CAllSUB I

Fig. 3-24: Nested Calls

"101", but "103."The CALL instruction uses addresses "100",
"101 ", and "102". Because the control unit of the 6502 "knows' that it
is a 3-byte instruction, the value of the program counter when the
call has been completely decoded will be "103". The effect of the
call will be to load the value "280" in the program counter. "280"
is the starting address of SUBl.

The second effect of the CALL will be to push into the stack (to
preserve) the value "103" of the program counter. This is illus
trated at the bottom left of the illustration which shows that at
time 1, the value "103" is preserved in the stack. Let us move to
the right of the illustration. At location 300, a new call is encoun-

93

PROGRAMMING THE 6502

tered. Just as in the preceding case, the value "900" will be
loaded in the program counter. This is the starting address of
SUB2. Simultaneously, the value "303" will be pushed into the
stack. This is illustrated at the bottom left of the illustration
where the entry at time 2 is "303". Execution will then proceed
to the right of the illustration within SUB2.

We are now ready to demonstrate the effect of the RETURN
instruction and the correct operation of our stack mechanism.
Execution proceeds within SUB2 until the RETURN instruction
is encountered at time 3. The effect of the RETURN instruction is
simply to pop· the top of the stack into the program counter. In
other words, the program counter is restored to its value prior to
the entry into the subroutine. The top of the stack in our example
is "303." Figure 3-26 shows that, at time 3, value "303" has been
removed from the stack and has been put back into the program
counter. As a result, instruction execution proceeds from address
"303." At time 4, the RETURN of SUBI is encountered. The value
on top of the stack is "103." It is popped and is installed in the
program counter. As a result, the program execution will proceed
from location "103" on within the main program. This is, indeed,

ADDRESS (MAIN)

100 CALL SUB I

(SUB2)

300 CALLSUB2

303

RETURN

RETURN

Fig. 3-25: The subroutine Calls

the effect that we wanted. Figure 3-26 shows that at time 4 the
stack is again empty. The mechanism works.

94

BASIC PROGRAMMING TECHNIQUES

The subroutine call mechanism works up to the maximum di
mension of the stack. This is why early microprocessors, which
had a 4 or 8-register stack, were essentially limited to 4 or 8 levels
of subroutine calls. In theory, the 6502, which is restricted to 256
memory locations for the stack (Page 1), can therefore accommo
date up to 128 successive subroutine calls. This is true only if
there are no interrupts, if the stack is used for no other purpose,
and if no register needs be stored within the stack. In practice,
fewer subroutine levels will be used.

Note that, on illustrations 3-24 and 3-25, the subroutines
have been shown to the right of the main program. This is only for
the clarity of the diagram. In reality, the subroutines are typed by
the user as regular instructions of the program. On a sheet of

STACK: TIME CD TIME@ TIME@ TIME© J
103 103 103

303

Fig. 3-26: Stack vs. Time

paper, in a listing of the complete program, the subroutines may
be at the beginning of the text, in its middle, or· at the end. This is
why they are preceded by a subroutine declaration: they must be
identified. The special instructions tell the assembler that what
follows should be treated as a subroutine. Such assembler di
rectives will be presented in Chapter 10.

6502 Subroutines

We have now described the subroutine mechanism, and how the
stack is used to implement it. The subroutine call instruction for
the 6502 is called JSR (jump to subroutine). It is, indeed, a 3-byte
instruction. Unfortunately, it is an unconditional jump: it does not
test bits. Explicit branches must be inserted prior to a JSR if a
test need be performed.

The return from subroutine is the RTS instruction (Return
from subroutine). It is a 1-byte instruction.

95

PROGRAMMING THE 6502

Exercise 3.18: Why is the return from a subroutine as long as the
CALL? (Hint: if the answer is not obvious, look again at the stack
implementation of the subroutine mechanism and analyze the
internal operations that must be per/ ormed.)

Subroutine Examples

Most of the programs that we have developed and are going to
develop would usually be written as subroutines. For example,
the multiplication program is likely to be used by many areas of
the program. In order to facilitate program development and
clarify it, it is therefore convenient to define a subroutine whose
name would be, for example, MULT. At the end of this subroutine
we would simply add the instruction, RTS.

Exercise 3.19: If MULT is used~ a subroutine, would it 0 damage"
any internal flags or registers?

Recursion

Recursion is a word used to indicate that a subroutine is calling
itself. If you have understood the implementation mechanism,
you should now be able to answer the following question:

Exercise 3.20: Is it legal to let a subroutine call itself? (In other
words, will everything work even if a subroutine calls itself?) If
you are not sure, draw the stack and fill it with the successive ad
dresses. You will physically verify whether it works or not. This
will answer the question. Then, look at the regi,sters and memory
(see Exercise 3.19) and determine if a problem exists.

Subroutine Parameters

When calling a subroutine, one normally expects the sub
routine to work on some data. For example, in the case of the
multiplication, one wants to transmit two numbers to the sub
routine which will perform the multiplication. We saw in the case
of the multiplication routine that this subroutine expected to find
the multiplier and the multiplicand in given memory locations. This
illustrates the first method of passing parameters: through mem
ory. 'l\vo other techniques are used, and parameters can be passed
in three ways:

1. Through registers

96

BASIC PROGRAMMING TECHNIQUES

2. Through memory
3. Through the stack

-Registers can be used to pass parameters. This is an advan
tageous solution, provided that registers are available, since
one does not need to use a fixed memory location. The sub
routine remains memory-independent. If a fixed memory loca
tion is used, any other user of the subroutine must be very
careful that he uses the same convention and that the memory
location is indeed available (look at Exercise 3-20 above). This is
why, in many cases, a block of memory locations is reserved,
simply to pass parameters between various subroutines.
-Using memory has the advantage of greater flexibility (more data),
but results in poorer performance and also in tying up the sub
routine to a given memory area.
-Depositing parameters in the stack has the same advantage as using
registers: it is memory-independent. The subroutine simply knows that
it is supposed to receive, say, two parameters which are stored on top
of the stack. Naturally, it has a disadvantage: it clutters the stack with
data and, therefore, reduces the number of possible levels of sub
routine calls.

The choice is up to the programmer. In general, one wishes to
remain independent from actual memory locations as long as pos
sible.

If registers are not available, the next best solution is usually
the stack. However, if a large quantity of information should be
passed to a subroutine, then this information will have to reside
in the memory. An elegant way around the problem of passing a
block of data is to simply transmit a pointer to the information. A
pointer is the address at the beginning of the block. A pointer can
be transmitted in a register (in the case of the 6502, this limits
the pointer to 8 bits), or else in the stack (two-stack locations can
be used to store a 16-bit address).

Finally, if neither of the two solutions is applicable, then an
agreement may be made with the subroutine that the data will be
at some fixed memory location (the "mailbox").

Exercise 3.21: Which of the three methods above is best for recur
sion?

97

PROGRAMMING THE 6502

Subroutine Library

There is a strong advantage to structuring portions of a pro
gram into identifiable subroutines: they can be debugged inde
pendently and can have a mnemonic name. Provided that they
will be used in other areas of the program, they become shareable,
and one can thus build a library of useful subroutines. However,
there is no general panacea in computer programming. Using
subroutines systematically for any set of instructions that can be
grouped by function may also result in poor efficiency. The alert
programmer will have to weigh the advantages vs. the disadvan
tages.

SUMMARY

This chapter has presented the way information is manipulated
inside the 6502 by instructions. Increasingly complex algorithms
have been introduced, and translated into programs. The main
types of instructions have been used.

Important structures such as loops, stacks and subroutines
have been defined.

You should now have acquired a basic understanding of pro
gramming, and of the major techniques used in standard applica
tions. Let us study the instructions available.

98

4

THE 6502 INSTRUCTION SET
PART 1- OVERALL DESCRIPTION

INTRODUCTION
This chapter will first analyze the various classes of instruc

tions which should be available in a general purpose computer. It
will then analyze one by one all of the instructions available for
the 6502, and explain in detail their purpose and the manner in
which they affect flags, or can be used in conjunction with the
various addressing modes. A detailed discussion of addressing
techniques will be presented in Chapter 5.

CLASSES OF INSTRUCTIONS

Instructions may be classified in many ways, and there is no
standard. We will distinguish here five main categories of instruc
tions:

1. data transfers
2. data processing
3. test and branch
4. inpuUoutput
5. control

Let us now examine in turn each of these classes of instruc
tions.

Data transfers

Data transfer instructions will transfer 8-bit data between two

99

PROGRAMMING THE 6502

registers, or between a register and memory, or between a register
and an input/ output device. Specialized transfer instructions may
exist for registers which play a special role, for example, a push
and pull operation, for efficient stack implementation. They will
move a word of data between the top of the stack and the ac
cumulator in a single instruction, while automatically updating the
stack-pointer register.

Data Processing

Data processing instructions fall into four general categories:

- arithmetic operations (such as plus/minus)
- logical operations (such as AND, OR, exclusive OR)
- skew and shift operations (such as shift, rotate, swap)
- increment and decrement

It should be noted that for efficient data processing, it is desir
able to have powerful arithmetic instructions, such as multiply and
divide. Unfortunately, this is not available on most microprocessors.
It is also desirable to have powerful shift and skew instructions, such
as shift n bits, or a nibble exchange, where the right half and the
left half of the byte are exchanged. These are also unavailable on
most microprocessors.

Before examining the actual 6502 instructions, let us recall the
difference between a shift and a rotation. The shift will move the
contents of a register or a memory location by one bit· location to
the left or to the right. The bit falling out of the register will go
into the carry bit. The bit coming in on the other side will be a "O."

In the case of a rotation, the bit coming out still goes in the
carry. However, the bit coming in is the previous value which was
in the carry bit. This corresponds to a 9-bit rotation. It would often
be desirable to have a true 8-bit rotation where the bit coming in
on one side is the one falling off on the other side. This is not us
ually provided on microprocessors. Finally, when shifting a word
to the right, it is convenient to have one more type of shift called
a sign-extension or an "arithmetic shift right". When doing opera
·tions on two's complement numbers, particularly when implement
ing floating-point routines, it is often necessary to shift a negative
number to the right. When shifting a two's complement number to
the right, the bit which must come in on the left side should be a I
(the sign bit should get repeated as many times as needed by the sue-

100

6502 INSTRUCTION SET

SHIFT LEFT

CARRY

ROTATE LEFT

CARRY

Rg. 4-1: Shift and Rotate

cessive shifts). Unfortunately, this type of shift does not exist in the
6502. It exists in other microprocessors.

Test and Branch

The test instructions will test all bits of the flags register of "0"
or "1," or combinations. It is, therefore, desirable to have as many
flags as possible in this register. In addition, it is convenient to be
able to test for combinations of such bits with a single instruction.
Finally, it is desirable to be able to test any bit position in any
register, and to test the value of a register compared to the value of
any other register (greater than, less than, equal). Microprocessor
test instructions are usually limited to testing single bits of the
flags register.

The jump instructions that may be available generally fall into
three categories:

- the jump proper, which specifies a full 16-bit address,
- the branch, which often is restricted to an 8-bit displacement

field,
- the call, which is used\vith subroutines.

101

PROGRAMMING THE 6502

It is convenient to have two- or even three-way branches, de
pending, for example, on whether the result of a comparison is
"greater than:' "less than:' or "equal!' It is also convenient to
have skip operations, which will jump forward or backwards by a
few instructions. Finally, in most loops, there is usually a decre
ment or increment operation at the end, followed by a test and
branch. The availability of a single-instruction increment/
decrement plus test and branch is, therefore, a significant advan
tage for efficient loop implementation. This is not available in
most microprocessors. Only simple branches, combined with sim
ple tests, are available. This naturally complicates programming,
and reduces efficiency.

Input/Output

Input/ output instructfons are specialized instructions for the
handling of input/ output devices. In practice, nearly all micro
processors use memory-mapped 110. This means that input/output
devices are connected to the address-bus, just like memory chips,
and addressed as such. They appear to the programmer as mem
ory locations. All memory-type operations can then be applied to
desired devices. This has the advantage of providing a wide vari
ety of instructions which can be applied. The disadvantage is that
memory-type operations normally require 3 bytes and are, there
fore, slow. For efficient input/output handling in such an envi
ronment, it is desirable to have a short addressing mechanism
available so that 1/0 devices whose handling speed is crucial may
reside in page 0. However, if page 0 addressing is available, it is
usually used for RAM memory, and therefore prevents its eff ec
tive use for input/output devices.

Control Instructions

Control instructions supply synchronization signals and may
suspend or interrupt a program. They can also function as a break
or a simulated interrupt. (Interrupts will be described in Chapter
6 on Input/Output Techniques.)

INSTRUCTIONS AVAILABLE ON THE 6502

Data 'fransfer Instructions

The 6502 has a complete set of data transfer instructions, ex-

102

6502 INSTRUCTION SET

cept for the loading of the stack pointer, which is restricted in
flexiblility. The contents of the accumulator may be exchanged
with a memory location with the instructions LOA (load) and
STA (store). The same applies to registers X and Y. These are,
respectively, instructions LOX LDY, and STX STY. There is no
direct loading for S. Inter-register transfers are naturally pro
vided: the instructions are TAX (transfer A to X), TAY, TSX,
TXA, TXS, TY A. There is a slight asymmetry, since the stack
contents may be exchanged with X, but not with Y.

There is no 2-address memory to memory operation, such as "add
contents of LOCI and LOC2."

Stack Operations

Two "push" and "pop" operations are available. They transfer
register A or the status register (P) to the top of the stack in the
memory while updating the stack pointer S. They are PHA and
PHP. The reverse instructions are PLA and PLP (pull A and pull
P), which transfer the top of the stack respectively into A or P.

Data Processing

Arithmetic

The usual (restricted) complement of arithmetic, logical and
shift functions is available. Arithmetic operations are: ADC,
SBC. ADC is an addition with carry, and there is no addition
without carry. This is a minor nuisance as it requires a CLC
instruction prior to any addition. The subtraction is performed by
SBC.

A special decimal mode is available which allows the direct
addition and subtraction of numbers expressed in BCD. In many
other microprocessors only one of these BCD instructions is av
ailable as a separate instruction code. The presence of the decimal
flag multiplies by two the effective number of arithmetic opera
tions available.

Increment/ Decrement

Increment and decrement operations are available on the
memory, and on index registers X and Y, but not on the ac
cumulator. They are respectively: INC and DEC, which operate on
the memory; INX, INY and DEX, DEY, which operate on index
registers X and Y.

103

PROGRAMMING THE 6502

Logical Operations

The logical operations are the classic ones: AND, ORA, EOR.
The role of each of these instructions will be clarified.

AND

Each logical operation is characterized by a truth table, which
expresses the logical value of the result in function of the inputs.
The truth table for AND appears below:

OANDO=O
OANDl=O
lANDO=O
lANDl=l

The AND operation is characterized by the fact that the output
is "1" only if both inputs are "l." In other words, if one of the
inputs is "O:' it is guaranteed that the result is "O:' This feature is
used to zero a bit position in a word. This is called "masking."

One of the important uses of the AND instruction is to clear or
mask out one or more specified bit positions in a word. Assume, for
example, that we want to zero the right-most four-bit positions in a
word. This will be performed by the following program:

LDA WORD
AND #%11110000

WORD CONTAINS '10101010'
'11110000' IS MASK

Let us assume that WORD is equal to '10101010.' The result of
this program is to leave in the accumulator the value '1010 0000.'
"%" is used to represent a binary number.

Exercise 4.1: Write a three-line program which will zero bits 1 and
60/ WORD.

Exercise.4.2: What happens with a mask: MASK = '11111111'?

ORA

This instruction is the inclusive OR operation. It is charac-

104

terized by the following truth table:

0 OR 0 = 0
0 OR 1 = 1
1OR0 = 1
1OR1=1

6502 INSTRUCTION SET

The logical OR is characterized by the fact that if any one of the
operands is "1 ", the result is to set any bit in a word to= "I".

LDA #WORD
ORA #%00001111

Let us assume that WORD did contain '10101010.' The final
value of the accumulator will be '10101111.'

Exercise 4.3: What would happen if we were to use the instruction
ORA #%10101111?

Exercise 4.4: What is the effect of ORing with uFF" hexadecimal?

EOR

EOR stands for "exclusive OR." The exclusive OR differs from the
inclusive OR, that we have just described, in one respect: the result is" l"
only if one, and only one, of the operands is equal to "l." If both operands
are equal to "l," the normal OR would give a "I" result. The exclusive
OR gives a "0" result. The truth table is:

0 EOR 0 = 0
0EOR1=1
1EOR0 = 1
1EOR1=0

The exclusive OR is used for comparisons. If any bit is different,
the exclusive OR of two words will be non-zero. In addition, in the
case of the 6502, the exclusive OR is used to complement a word,
since there is no specific complement instruction. This is done by
performing the EOR of a word with all l's. The program appears
below:

LDA #WORD
EOR #%11111111

105

PROGRAMMING THE 6502

Let us assume that WORD did contain "10101010." The final
value of the accumulator will be "01010101." We can verify that
this is the complement of the original value.

Exercise 4.5: What is the effect of EOR #$00?

Shift Operations

The standard 6502 is equipped with a left shift, called ASL
(arithmetic shift left), and a right shift, called LSR (logical shift
right). They will be described below.

However, the 6502 has only one rotate instruction, to the left
(ROL).

Warning: newer versions of the 6502 have an extra rotate instruction.
Check the manufacturer's data to verify this fact. (ROR=rotate right)

Comparisons

Registers X, Y, A can be compared to the memory with instruc
tions CPX, CPY, CMP.

Test and Branch

Since testing is almost exclusively performed on the flags regis
ter, let us examine now the flags available in the 6502. The con
tents of the flags register appear in Figure 4-2 below.

7 6 5 4 3 2 1 0
N v B D I z c

SIGN BREAK
(NEGATIVE)

INTERRUPT CARRY

OVERFLOW DECIMAL ZERO

Rg. 4-2: The Rags Register

106

6502 INSTRUCTION SET

Let us examine the function of the flags from left to right.

Sign

The N flag is identical to bit 7 of the accumulator, in most cases.
As a result, bit 7 of the accumulator is the only bit that one can
test conveniently with a single instruction. To test any other bit of
the accumulator, it is necessary to shift its contents. In all cases
where one wants to test the contents of the word quickly, the
preferred bit position will, therefore, be bit 7. This is why input/
output status bits are normally connected to position 7 of the
data-bus. When reading the status of an 1/0 device, one will simply
read the contents of the external status register into the ac
cumulator and then test bit N.

The left-most bit is the sign bit, or negative bit. Whenever N is
1, it indicates that the value of a result is negative in two's com
plement representation. In practice, flag N is identical to bit 7 of a
result. It is set, or reset, by all data transfers and data processing
instructions.

The bit within the accumulator which is the next easiest to test
is bit Z (zero). However, it requires a right shift by 1 into the carry
bit so that it can be tested.

Instructions that set N are: ADC, AND, ASL, BIT, CMP, CPY,
CPX, DEC, DEX, DEY, EOR, INC, INX, INY, LDA, LDX, LDY,
LSR, ORA, PLA, PLP, ROL, ROR, TAX, TAY, TXS, TXA, TYA.

Overflow

The role of the overflow has already been discussed in Chapter
3 in the section on arithmetic operations. It is used to indicate
that the result of the addition or subtraction of two's complement
numbers might be incorrect because of an overflow from bit 6 to
bit 7, i.e., into the sign bit. A special correction routine must be
used whenever this bit is set. If one does not use two's complement
representation, but direct binary, the overflow bit is equivalent to
a carry from bit 6 into bit 7.

107

PROGRAMMING THE 6502

A special use of this bit is made by the BIT instruction. A result
of this instruction is to set the "V'' bit identical to bit 6 of the data
being tested.

The V flag is conditioned by ADC, BIT, CLV, PLP, RTI, SBC.

Break

This break flag is automatically set by the processor if an inter
rupt is caused by the BRK command. It differentiates between a
programmed break and a hardware interrupt. No other user in
struction will modify it.

Decimal

The use of this flag has already been discussed in Chapter 3 in
the section on arithmetic programs. Whenever Dis set to "1", the
processor operates in BCD mode, and whenever it is set to "O", it
operates in binary mode. This flag is conditioned by four instruc
tions: CLD, PLP, RTI, SED.

Interrupt

This interrupt-mask bit may be set explicitly by the programmer with
the SEI or PLP instructions, or by the microprocessor during the reset or
during an interrupt.

Its effect is to inhibit any further interrupt.
Instructions which condition this bit are: BRK, CLI, PLP, RTI,

SEI.

Zero

The Z flag indicates, when set (equal to "I"), that the result of
a transfer or an operation is a zero. It is also set by the comparison
instruction. There is no specific instruction which will set or clear

108

6502 INSTRUCTION SET

the Z bit. However, the same result can easily be accomplished. In
order to set the zero bit, one can, for example, execute the follow
ing instruction:

LDA#O

The Z bit is conditioned by many instructions: ADC, AND,
ASL, BIT, CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC, INX,
INY, LDA, LDX, LDY, LSR, ORA, PLA, PLP, ROL, ROR, RTI,
SBC, TAX, TAY, TXA, TYA.

Carry

It has been seen that the carry bit is used for a dual purpose. Its
first purpose is to indicate an arithmetic carry or borrow during
arithmetic operations. Its second purpose is to store the bit "falling
out'' of a register during the shift or rotate operations. The
two roles do not necessarily need be confused, and they are not on
larger computers. However, this approach saves time in the mi
croprocessor, in particular for the implementation of a multiplica
tion or a division. The carry bit can be set or cleared explicitly.

Instructions which will condition the carry bit are: ADC, ASL,
CLC, CMP, CPX, CPY, LSR, PLP, ROL, ROR, RTI, SBC, SEC.

'Jest and Branch Instructions

In the 6502, it is not possible to test every bit of the flags regis
ter for one or zero. There are 4 bits which can be tested, and there are,
therefore, 8 different branch instructions. They are:

BMI (branch on minus), BPL (branch on plus). These two
instructions, naturally, test the N bit.
BCC (branch on carry clear) and BCS (branch on carry set):
they' test C.
BEQ (branch when result is null) and BNE (branch on
result not zero). They test Z.
BVS (branch when overflow is set) and BVC (branch on
overflow clear). They test V.

109

PROGRAMMING THE 6502

These instructions test and branch within the same instruction.
All branches specify a displacement relative to the current in
struction. Since the displacement field is 8 bits, this allows a
displacement of -128 to + 127 (in two's complement). The dis
placement is added to the address of the first instruction following
the branch.

Since all branches are 2 bytes long, this results in an effective
displacement of -128 + 2 = -126 to + 127 +2 = + 129.

Two more unconditional instructions are available: JMP and
JSR. JMP is a jump to a 16-bit address. JSR is a subroutine call. It
jumps to a new address and automatically preserves the program
counter into the stack. Being unconditional, these two instructions
are usually preceded by a ''test and branch'' instruction.

Two returns are available: RTI, a return from interrupt, which
will be discussed in the interrupt section, and RTS, a return from
subroutine, which pulls a return address from the stack (and in
crements it).

Two special instructions are provided especially for bit-testing
and for comparisons.

The BIT instruction performs an AND between the memory
location and the accumulator. One important aspect is that it does
not change the cont.ents of the accumula'tor. The flag N is set to the
value of bit 7 of the location tested, while the V flag is set to
bit 6 of the memory location being tested. Finally, bit Z indicates
the result of the AND operation. Z is set to "1" ifthe result is "O".
Typically a mask will be loaded in the accumulator, and successive
memory values will then be tested using the BIT instruction.
If the mask contains a single "1" for example, this will test
whether any given memory word does contain a "1" in that posi
tion. In practice, this means that a mask should be used only
when one is testing memory bit locations "O" to "5". The reader
will remember that bit locations "6" and "7" are automatically
stored respectively in the "V" flag and in the "N" flag. They do not
need to be masked.

The CMP instruction will compare the contents of the memory
location to those of the accumulator by subtracting it from the ac
cumulator. The result of the comparison will be indicated, there-

110

6502 INSTRUCTION SET

fore, by bits Z and N. One can detect equality, greater than, or less
than. The value of the accumulator is not changed by the compar
ison. CPX and CPY will compare to X and Y respectively.

Input/Output Instructions

There are no specialized input/output instructions in the 6502.

Control Instructions

Control instructions include specialized instructions to set or
clear the flags. They are: CLC, CLD, CLI, CLV, which clear re
spectively bits C, D, I and V; and SEC, SED, SEI, which set re
spectively in bits C, D, and I.

The BRK instruction is the equivalent of a software interrupt
and will be described in Chapter 7 in the interrupt section.

The NOP instruction is an instruction which has no effect and is
commonly used to extend the timing of a loop. Finally, two special
pins on the 6502 will trigger an interrupt mechanism, and this will
be explained in Chapter 6 on input/ output techniques. It is a hard
ware control facility (IRQ and NMI pins).

Let us now examine each instruction in detail.
In order to truly understand the various addressing modes, the reader

is encouraged to read the following section quickly the first time, and
then in more detail the second time after studying Chapter 5 on
Addressing Techniques.

111

PROGRAMMING THE 6502

112

PART 2 -THE INSTRUCTIONS

A
M
p
s
x
y
DATA
HEX
PC
PCH
PCL
STACK
v
A
¥
•
~

()
(M6)

ABBREVIATIONS

Accumulator
Specified address (memory)
Status register
Stack pointer
Index register
Index register
Specified data
Hexadecimal
Program counter
Program counter high
Program counter low
Contents of top of stack
Logical or
Logical and
Exclusive or
Change
Receives the value of (assignment)
Contents of
Bit position 6 at address M

6502 INSTRUCTION SET

ADC Add with carry

Function: A._ (A) + DATA + C

Format:
r-----------~-----------.-------------

_____ 01_1b_b_~_1 __ ____..__ __ A_oo_R_1o_AT_A __ __.l_ _____ ~~~----j
Description:

Add the contents of memory address or literal to the ac
cumulator, plus the carry bit. The result is left in the ac
cumulator.
Remarks:

-ADC may operate either in decimal or binary mode: flags
must be set to the correct value

-To ADD without carry, flag C must be cleared (CLC).

Data Paths:
A

Addressing Modes:

BYTES

CYCllS s• ,

bbb 011 001 010 Ill 110 000 100 101

•:PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

Flags: N V 0 2 c

113

PROGRAMMING THE 6502

Instruction Codes:

ABSOLUTE 01101101 16-BIT : ADDRESS

bbb= 011 HEX.., 6D CYCLES= 4

ZERO-PAGE 01100101 ADDR

bbb-= 001 HEX-= 65 CYCLES= 3

IMMEDIATE 01101001 DATA

bbb= 010 HEX= 69 CYCLES= 2

ABSOLUTE, X 01111101 16 BIT : ADDRESS

bbb~ 111 HEX"' 70 CYCLES= 4•

ABSOLUTE, Y 01111001 16BIT : ADDRESS

bbb = 110 HEX~ 79 CYCLES= ,.

(IND. X) I 01100001 ADDR

bbb= 000 HEX · 61 CYCLES= 6

(IND),Y 01110001 AODR

bbb; 100 HEX · 71 CYCLES= s·

7ERO-PAGE, X 01110101 ADDR

bbb-= 101 HEX.., 75 CYCLES= 4

•: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

114

6502 INSTRUCTION SET

AND Logical AND

Function: A._ (A) A DATA

Format: ~-----------,------~------.-------------

.__ ___ 00_1_bb_b0_1 ____ _,_ ___ A_o_oR_/O_A_TA ____ l_ ____ ~~~~----j
Description:

Perform the logical AND of the accumulator and specified data.
The result is left in the accumulator.

The truth table is: i
'A\M 0 1

0 0 0

.I 0 1

Data Paths:

A

Addressing Modes:

Hfl(20 25 29 30 39 21 31 35

BYTES

CYClfS 4• 4• s·
bbb 011 001 010 111 110 000 100 101

•: PlUS I CYCLE IF CROSSING PAGE BOUNDARY.

Flags:
N v D z c

l•I l•I
115

PROGRAMMING THE 6502

Instruction Codes:

ABSOLUTE 00101101 16-BIT : ADDRESS

bbb-= Oil HEX-= 20 CYCLES"' 4

ZERO-PAGE 00100101 ADDR

bbb = 001 HEX= 25 CYCLES.,, J

IMMEDIATE 00101001 DATA

bbb·""' 010 HEX-~ 29 CYCLES"'

ABSOLUTE, X 00111101 16-BIT : ADDRESS

bbb ~ Ill HEX~ 30 CYCLES= 4•

ABSOLUTE, Y 00111001 16-BIT : ADDRESS

bbb·-= 110 HEX= 39 CYCLES-= 4•

(IND.XI I 00100001 ADDR

bbb= 000 HEX ' 21 CYCLES·- 6

(IND),Y 0011001 ADDR

bbb 100 HEX · 31 CYCLES · 5•

/ERO PAGE, X 00110101 ADDR

hbb IOI HEX · 35 CYClES = 4

•: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

116

6502 INSTRUCTION SET

ASL Arithmetic shift left

Function:

Format:

Description:
Move the contents of the accumulator or of the memory location

left by one bit position. 0 comes in on the right. Bit 7 falls into the
carry. The result is deposited in the source, i.e. either accumulator
or memory.

Data paths: -----,
----1 !

Addressing Modes:

OA OE 06 IE 16

BYTES

C'iClil

bbb 010 011 QOI 111 101

Flags:
N I/ 0 1 c

l•l•I

117

PROGRAMMING THE 6502

Instruction Codes:

ACCUMULATOR 00001010

bbb=OIO

ABSOLUTE 000011 10

bbb=Oll

ZERO-PAGE 000001 10

bbb=OOI

ABSOLUTE, X 00011110

bbb= 111

ZERO-PAGE, X 00010110

bbb=IOI

118

HEX= OA CYCLES= 2

AD~RESS
HEX= OE CYCLES= 6

ADDR

HEX= 06 CYCLES= 5

AD~RESS
HEX= IE CYCLES= 7

ADDR

HEX= 16 CYCLES= 6

6502 INSTRUCTION SET

BCC Branch on carry clear

Function:
Go to specified address if C = 0

Format:
I 00 I 000 DISPLACEMENT

Description:
Test the carry flag. If C = 0, branch to the current address plus

the signed displacement (up to + 127 or -128). If C = 1, take no
action. The displacement is added to the address of the first in
struction following the BCC. This results in an effective dis
placement of + 129 to -126.

Data Paths:

PC AOORl BCC

+12

NEXT ADDRI

Addressing Mode:

Relative only:
HEX = 90, bytes = 2, cycles = 2 + 1 if branch succeeds

+ 2 if into another page

Flags:
N V D c

(NOACllON)

119

PROGRAMMING THE 6502

BCS Branch on carry set

Function:
Go to specified address if C = 1

Format: 10110000 DISPLACEMENT

Description:
Test the carry flag. If C = 1, branch to the current address plus

the signed displacement (up to + 127 or - 128). If C = 0, take no
action. The displacement is added to the address of the first instruc
tion following the BCS. This results in an effective displacement of
+ 129 to - 126.

Data Paths:

PC AOORI BCS

+12

NEXT AOORl

D
FLAG

Addressing Mode:
Relative only:
HEX = BO, bytes = 2, cycles = 2 + 1 if branch succeeds

+ 2 if into another page

Flags:
N V 8 D C

I
!NO ACTION)

120

6502 INSTRUCTION SET

BEQ Branch if equal to zero

Function:
Go to specified address if Z = 1 (result = 0).

Format: J 11110000 I 01sPLAcEMENr

Description:
Test the Z flag. If Z = I, branch to the current address plus the

signed displacement (up to + 127 or -128). If Z = 0, take no
action.

The displacement is added to the address of the first instruction
following the BEQ. This results in an effective displacement of
+ 129 to -126.

Data Paths:

PC ADDRI

D
FLAG

Addressing Mode:
Relative only:
HEX= FO, bytes= 2, cycles= 2

Flags:

N V 0

(NO ACTION)

BEQ

+12

NEXT ADDRI

+ 1 if branch succeeds
+ 2 if into another page

c

121

PROGRAMMING THE 6502

BIT Compare memory bits with accumulator

Function: ----z .. (A) A (M) 'N .. (M7), v~(M0)

Format:

Description:
The logical AND of A and M is performed, but not stored. The result

of the comparison is indicated by Z. Z = 1 if the comparison fails; 0
otherwise. In addition, bits 6 and 7 of the memory data are transferred
into V and N of the status register. It does not modify the contents of A.

Data Paths:
A

BITS 6 AND 7

BYIES

bt.b 011 OC>I

Flags: N V 8 0

Instruction Codes:

---- ---i
'--------- I I I

I I

DATA

ABSOIUIE L..I __ 00_10_11_00 _ __._ ___ 1_6-B_1r__._: A_oo_11E_ss __ ---1

H£Xa 2C CYCLES• •

ZERO.PAGE L..I __ 00_100_100 __ ...___ __ AD_o_11 --...J

HEX~ 2• cYQES = 3

122

6502 INSTRUCTION SET

BMI Branch on minus

Function:
Go to specified address if N = 1 (result < 0).

Format: 00110000 DISPLACEMENT

Description:
Test the N flag (sign). If N = 1, branch to the current address

plus the signed displacement (up to + 127 or -128). If N = 0, take
no action.

The displacement is added to the address of the first instruction
following the BMI. This results in an effective displacement of
+ 129 to -126.

Data Paths:

PC AODRI

D
FLAG

Addressing Mode:
Relative only:
HEX = 30, bytes = 2, cycles := 2

Flags:
N V 0

(NO ACTION)

BMI

+12

NEXT AOORI

+ 1 if branch succeeds
+ 2 if into another page

c

123

PROGRAMMING THE 6502

BNE Branch on not equal to zero

Function:
Go to specified address if Z = 0 (result '# 0).

Format: 11010000 DISPLACEMENT

Description:
Test the result (Z flag). If the. result is not equal to 0 (Z = 0),

branch to the current address plus the signed displacement (up to
+ 127 to -128). If Z = I, take no action.

The displacement is added to the address of the first instruction
following the BNE. This results in an effective displacement of
+ 129 to -126.

Data Paths:

PC ADDRl

D
FLAG

Addressing Mode:
Relative only:
HEX = DO, bytes = 2, cycles = 2 :

Flags:
N V 0

(NO ACTION)

124

BNE

+12

NEXT ADDRl

+ I if branch succeeds
+ 2 if into another page

c

6502 INSTRUCTION SET

BPL Branch on plus

Function:
Go to specified address if N = 0 (result ~ 0).

Format: 00010000 DISPLACEMENT

Description:
Test the N flag (sign). If N = 0 (result positive), branch to the

current address plus the signed displacement (up to + 127 or
- 128). If N = 1, take no action.

The displacement is added to the address of the first instruction
following the BPL. This results in an effective displacement of
+ 129 to - 126.

Data Paths:

PC AOORI BPL

+12

NEXT AOOR1

D
FLAG

Addressing Mode:
Relative only:
HEX = 10, bytes = 2, cycles = 2 + 1 if branch succeeds

+ 2 if into another page

Flags:
N V 8 D C

I
(NO ACTION)

125

PROGRAMMING THE 6502

BRK Break

Function:
STACK (PC)+ 2, STACK (P), PC ~(FFFE,FFFF)

Format: I 00000000 I
Description:

Operates like an interrupt: the program counter is pushed on
the stack, then the status register P. The con~nts of memory
locations FFFE and FFFF are then deposited respectively in PCL
and PCH. The value of P stored in the stack has the B flag set to 1,
to differentiate a BRK from an ffiQ.

Important: unlike an interrupt, PC + 2 is saved. This may not
be the next instruction, and a correction may be necessary. This is
due to the assumed use of BRK to patch existing programs where BRK
replaces a 2-byte instruction. When debugging a program, BRK is gen
erally used to cause exit to monitor. Then, BRK often replaces the first
byte of an instruction.

Data Paths:

------PC ____ ___.,._~

Addressing Mode:
Implied only:
HEX= 00 , byte= 1, cycles= 7

Flags: N V B D

oc ..

Note: B is set in before P is pushed in the stack.

126

6502 INSTRUCTION SET

BVC Branch on overflow clear

Function:
Go t.o specified address if V = 0.

Format: 0101000 DISPLACEMENT

Description:
Test the overflow ftag(V). If there is no overflow (V = 0), branch

to the current address plus the signed displacement (up to + 127
or - 128). If V = 1, take no action.

The displacement is added to the address of the first instruction
following the BVC. This results in an effective displacement of
+ 129 to - 126.

Data Paths:

PC ADDRl

D
FLAG

Addressing Mode:
Relative only:

Hex= 50, bytes = 2, cycles = 2

Flags:
N V D

(NO ACTION)

ave

+12

NEXT ADDRI

+ 1 if branch succeeds
+ 2 .i.f into another page

c

127

PROGRAMMING THE 6502

BVS Branch on overflow set

Function:
Go to specified address if V = 1.

Format: 01110000 DISPLACEMENT

Description:
Test the overflow flag (V). If an overflow has occurred (V = 1),

branch to the current address plus the signed displacement (up to
+ 127 or - 128). If V = 0, take no action.

The displacement is added to the address of the first instruction
following the BVS. This results in an effective displacement of
+ 129 to - 126.

Data Paths:

PC ADDRI BVS

+12

NEXT ADDRI

D
FLAG

Addressing Mode:
Relative only:

HEX= 70, bytes= 2, cycles= 2 + 1 if branch succeeds
+ 2 if into another page

Flags:
N V B D C

I
(NO ACTION)

128

CLC
Function:
c.-~

Format:

Description:

6502 INSTRUCTION SET

Clear carry

00011000

The carry bit is cleared. This is often necessary before an ADC.

Addressing Mode:
Implied only
HEX = 18, byte = 1, cycles= 2

Flags:
N V 0

129

PROGRAMMING THE 6502

CLD Clear decimal flag

Function:
D.-ftj

Format: 11011000

Description:
The D flag is cleared, setting the binary mode for ADC and

SBC.

Addressing Mode:
Implied only:
HEX = DB, byte = 1, cycles= 2

Flags:
N V c

130

CLI
Function:

·~~
Format:

Description:

6502 INSTRUCTION SET

Clear interrupt mask

01011000

The interrupt mask bit is set to 0. This enables interrupts. An
interrupt handling routine must always clear the I bit, or else
other interrupts may be lost.

Addressing Mode:
Implied only:
HEX= 58, byte= 1, cycles= 2

Flags:
N V 8 c

131

PROGRAMMING THE 6502

CLV Clear overflow flag

Function:
V.-tl

Format: 10111000

Description:
The overflow flag is cleared.

Addressing Mode:
Implied only:
HEX = BB, byte = 1, cycles = 2

Flags: N V B D c

132

6502 INSTRUCTION SET

CMP Compare to accumulator

Function:
(A) - DATA- NZC:

+ (A>Do\TA) - (A<OATA)

-01 011 -00

Format:
.----------------t-------------
...._ __ 11_0b_bb0_1 __ ..___A_oo_R1_0A_T_A __ I_ ----~~~R- - - - _ j

Description:
The specified contents are subtracted from A. The result is not

stored, but flags NZC are conditioned, depending on whether the
result is positive, null or negative. The value of the accumulator
is not changed. Z is set by an equality, reset otherwise; N is set;
reset by the sign (bit 7), C is set when (A) ;;;i: DATA. CMP is usual
ly followed by a branch: BCC detects A< DATA, BEQ detects A
=DATA, BCS detects A ;;;i: DATA, and BEQ followed by BCS
detects A> DATA.

Data Paths:
A

Addressing Modes:

HEX CD cs C9 DO

BYTES

CYCLES ...
bbb 011 001 010 Ill

D9

..
110

Cl

,, __ ---1_ - - - - - ,

'"--"'"""'1-----i I
I I

M DATA

DI DS

s•

000 100 101

•:PLUS I CYQE IF CROSSING PAGE BOUNDARY.

Flags:
N v D z c

l•I l•l•I
133

PROGRAMMING THE 6502

Instruction Codes;

ABSOLUTE 11001101 16-BIT : ADDRESS

bbb= 011 HEX= CD CYCLES= 4

ZERO-PAGE 11000101 ADDR

bbb= 001 HEX= cs CYCLES= 3

IMMEDIATE 11001001 DATA

bbb= 010 HEX= C9 CYCLES= 2

ABSOLUTE. x I 11011101 16-BIT : ADDRESS

bbb= 111 HEX= DD CYCLES= 4*

ABSOLUTE, Y 11011001 16-BIT : ADDRESS

bbb= 110 HEX= 09 CYCLES= 4•

(IND,X) I 11000001 ADDR

bbb= 000 HEX= Cl CYCLES= 6

(INO),Y 11010001 ADOR

bbb= 100 HEX= DI CYCLES= s·

ZERO-PAGE. X 11010101 ADDR

bbb= IOI HEX= DS CYCLES= 4

•: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

134

6502 INSTRUCTION SET

CPX Compare to register X

Function: +(X> DATA) -(X<OATA)

X- DATA -.NZC:--_-
01
--r---

0
,-
1
--+--_-

00
----t

Format: 1--- --A~~R-----1
.____ ____ ____,....._ ____ _.. __ --- - --- - - - - - J

ADDR/DATA

Description:
The specified contents are subtracted from X. The result is not

stored, but flags NZC are conditioned, depending on whether the
result is positive, null or negative. The value of the accumulator
is not changed. CPX is usually followed by a branch: DCC detects X <
DAT A, BEQ detects X =DAT A, and BEQ followed by BCS detects
X>DATA. BCS detects X ~DATA.

Data Paths:
x

Addressing Modes:

HEX EC EA EO

CYClES

bb II 01 00

Flags:
N I/ 8 0

------.
"'----1-----1 I

I I

M DATA

z c

l•l•I
135

PROGRAMMING THE 6502

Instruction Codes:

ABSOLUTE 11101100 16-BIT : ADDRESS

bb= 11 HEX; EC CYCLES= 4

ZERO-PAGE I 11100100 ADDR

bb= 01 HEX= E4 CYCLES= 3

IMMEDIATE 11100000 DATA

bb= 00 HEX= EO CYCLES= 2

136

6502 INSTRUCTION SET

CPY Compare to register Y

Function: +(Y>DATA) -(Y<DATA)

(Y) - DATA ~NZC:
-01 Oii -oo

Format:
.___"_OOb_bOO ___ ,___A_oo_R_·oA_r_A _ _..I_ __ -_~~~~~~~~~ J

Description:
The specified contents are subtracted from Y. The result is not

stored, but flags NZC are conditioned, depending on whether the
result is positive, null or negative. The value of the accumulator
is not changed. CPY is usually followed by a branch: BCC detects
Y < data, BEQ detects Y = data, and BEQ followed by BCS
detects Y > data. BCS detects Y ~ data.

Data Paths:
y

Addressing Modes:

bYl(~

CYCLES

bb 11 01 00

Flags:.
N V

l•I
0

------,
.--~-----1 I

I I

M DATA

2 c

l•l•I

137

PROGRAMMING THE 6502

Instruction Codes:

ABSOWTE 11001100 16-BIT : ADDRESS

bb= 11 HEX= CC CYCLES= 4

ZERO-PAGE I 11000100 ADDR

bb= 01 HEX= C4 CYCLES= 3

IMMEDIATE 11000000 DATA

bb= 00 HEX= CO CYCLES= 2

138

6502 INSTRUCTION SET

DEC
Function:
~(M)-1

Decrement

r--~~~~~-.-~~~~~---------------

~~-1-10b_b_11_0~--'~~-A-D_DR~~-''------~~~----j Format:

Description:
The contents of the specified memory address are decremented

by 1. The result is stored back at the specified memory address.

Data Paths:

------i
----- I

: I

DATA DATA--OATA-1

-1

Addressing Modes:

HIX a C6 DE 06

evns

cvcus

•. bb 01 00 II 10

Flags:
N V D z c

l•I l•I

139

PROGRAMMING THE 6502

Instruction Codes:

ABSOLUTE 11001110 AD~RESS
bb=Ol HEX= CE CYCLES= 6

ZERO-PAGE I 11000110 ADDR

bb:;;:()() HEX"" C6 CYCLES= s

ABSOLUTE, X 11011110 AD~RESS
bb=ll HEX:;; DE CYCLES= 7

ZERO-PAGE. x I 11010110 ADDR

bb=IO HEX= 06 CYCLES= 6

140

6502 INSTRUCTION SET

DEX DecrementX

Function:
X .._ (X) - 1 -------

Format: 11001010

Description:
The contents of X are decremented by 1. Allows the use of X as

a counter.

Data Paths:

x

N

z

Addressing Mode:
Implied only:
HEX = CA, byte= 1, cycles= 2

Flags:

N V B 0

141

PROGRAMMING THE 6502

DEY Decrement Y

Function:
Y ..- (Y) -1

Format: 10001000

Description:
The contents of Y are decremented by 1. Allows the use of Y as

a counter. '

Data Paths:

y

N

z

Addressing Mode:
Implied only:
HEX= 88, byte= 1, cycles= 2

Flags:

N V D

l•I

142

6502 INSTRUCTION SET

EOR Exclusive-OR with accumulator

Function:
A.- (A) \f DATA

Format: ----~-----~------------------
'---0_1_0b_bb0_1 --'---A-O-DR_1_DA-TA_----11_ ---- -A~~~ - - - _ j

Description:
The contents of the accumulator are exclusive - ORed with the

specific data. The truth table is:

Note: EOR with "-1" may be used to complement.

Data Paths: A < -----,
....,. -----i I

I I
ll

M~ DATA

Addressing Modes:

HEX •D .s IR 50 59 41 51 55

BYTES

CYC:lES 5'

bbb 011 o:n 010 111 110 000 100 101

•: PLUS I CYCLE IF CROSSING PAGE BOUNDARY.

Flags:
N v D z c

l•I l•I

143

PROGRAMMING THE 6502

Instruction Codes:

ABSOLUTE 01001101 16-BIT : ADDRESS

bbb= Oil HEX= 40 CYCLES= 4

ZERO-PAGE 01000101 ADDR

bbb= 001 HEX= 45 CYClES= 3

IMMEDIATE 01001001 DATA

bbb-= 010 HEX-= 49 CYCLES=

ABSOLUTE. x I 01011101 16-BIT : ADDRESS

bbb= 111 HEX = 5D CYCLES-: 4•

ABSOLUTE, Y 01011001 16 BIT : ADDRESS

bbb-: 110 HEX__, 59 CYCLES= 4•

(IND. X) I 01000001 ADDR

bbb c= 000 HEX= 41 CYCLES - 6

(IND). y I 01010001 ADDR

bbb~ 100 HEX · 51 CYCLES - 5•

ZERO-PAGE, X 010101-01 ADDR

hbb ~ IOI HEX ' 55 CYCLES= 4

•: PLUS I CYCLE IF CROSSING PAGE BOUNDARY.

144

6502 INSTRUCTION SET

INC Increment memory

Function:
M ...- (M) +1

Format:j,... --11-,b-b-110------A-oo_R ___ [~-~=~~~~~~~]

Description:
The contents of the specified memory location are incremented

by one, then redeposited into it.

Data Paths:

------i __ ,, _____ I

l I

M DATA DATA--OATA +I

+I

Addressing Modes:

BYTES

CYCUS

bb 01 00 11 10

Flags:
N V 8 0 z c

l•I l•I

145

PROGRAMMING THE 6502

Instruction Codes:

ABSOLUTE 11101110 AO~RESS
bb=Ol HEX= EE CYCLES= 6

ZERO-PAGE 11100110 ADDR

bb=OO HEX= E6 CYCLES= s

ABSOLUTE. X 11111110 AD~RESS
bb=ll HEX= FE CYCLES:::: 7

ZERO-PAGE, X 11110110 ADDR

bb=lO HEX= F6 CYCLES== 6

146

6502 INSTRUCTION SET

INX Increment X

Function:
X-4-(X)+l

Format: 11101000

Description:
The contents of X are incremented by one. This allows the use

of X as counter.

Data Paths:

x

Addressing Mode:
Implied only:
HEX = EB, byte = 1, cycles = 2

Flags:

N V D z c

147

PROGRAMMING THE 6502

INY
Function:

y._ (Y)+ 1

Format:

Description:

Increment Y

11001000

The contents of Y are incremented by one. This allows the use
of Y as counter.

Data Paths:

y

Addressing Mode:
Implied only:
HEX= CS, byte= 1, cycles= 2

Flags:

N V D z c

l•I

148

6502 INSTRUCTION SET

JMP Jump to address

Function:
pc._ ADDRESS

Format: OlbOllOO

Description:
A new address is loaded in the program counter, causing ajump

to occur in the program sequence. The address specification may
be absolute or indirect.

Data Paths:

PC

JMP

ADDRESS

(ABSOLUTE)

BYttS

cvrus

Flags:

N V D c

(NOffFECT)

149

PROGRAMMING THE 6502

Instruction Codes:

ABSOLUTE 01001100 AD~RESS
b=O HEX=4C CYCLES=3

INDIRECT 01101100 ADD: RESS

b=l HEX::::6C CYCLES=5

p c JMP

I I I
I-t-- ADDRESS -

'-
I'- FINAL ADDRESS -

(INDIRECT)

150

6502 INSTRUCTION SET

JSR Jump to subroutine

Function:
STACK.- (PC) +2
PC~ADDRESS

Format: 00100000

Description:
The contents of the program counter + 2 are saved into the

stack. (This is the address of the instruction following the JSR).
The subroutine address is then loaded into PC. This is also called
a "subroutine CALL."

Data Paths:

PC <D Jo. -1)
PC

II
+2 ---------~ +2

---------l J STACK
(). .i. ii"

®
JSR

f-- ADOQ -
-

Addressing Mode:
Absolute only:
HEX = 20, bytes = 3, cycles = 6

Flags:
N V D c

(NOfFFECf)

151

PROGRAMMING THE 6502

LDA Load accumulator

Function:
A.- DATA

Format:
.--~~~~~~--~~~~~~-------------

L-~~10_1b-bbO~l ~~L-~-AO-O-R/_D_AT_A~--''-----~~~~----j
Description:

The accumulator is loaded with new data.

Data Paths:

M
A

Addressing Modes:

HlX NJ AS A9 llO 119 Al 81 85

bYlfS

CYCltS , .
bbb Oil 001 010 111 110 000 100 101

•:PLUS I CYClE IF CROSSING PAGE BOUNDARY.

Flags:

N v 0 z c

l•I l•I

152

6502 INSTRUCTION SET

Instruction Codes:

ABSOLUTE 10101101 16-BIT : ADDRESS

bbb = 011 HEX-.. AD CYCLES'-' 4

ZERO-PAGE 10100101 ADOR

bbb"' 001 HEX..., AS CYCLES= 3

IMMEDIATE 10101001 DATA

bbb·- 010 HEX..., A9 CYCLES= 2

ABSOLUTE. X 10111101 16-BIT : ADDRESS

bbb 111 HEX~ BO CYCLES-= 4•

ABSOLUTE, Y 10111001 16-BIT : ADDRESS

bbb-= 110 HEX= B9 CYCLES= 4•

!IND. X) I 10100001 AODR

bbb - 000 HEX·= Al CYCLES~ 6

tlNO),Y 10110001 ADDR

Lbb c 100 HEX Bl CYCLES= s·

/ERO-PAGE. X 10110101 AOOR

bbb 101 HEX~ BS CYCLES= 4

•: PLUS I CYCLE IF CROSSING PAGE BOUNDARY.

153

PROGRAMMING THE 6502

LDX Load register X

Function:
x._DATA

.--------...--------.-------------
'---'-01_b-bb_10 __ __,, __ A_o_oR_1o_A_TA _ ___.I_ ___ --~~~ ____ j Format:

Description:
Index register X is loaded with data from the specified address.

Data Paths:

x

Addressing Modes:

HfX

BYTES

CYCLES

bbb 011 001 000

~~~~r------i ----, : 
I I 
I I 

M 

4• 

111 110 

•: PLUS I CYCLE IF CROSSING PAGE BOUNDARY. 

Flags: 
N V D z c 

l•I l•I 

154 



6502 INSTRUCTION SET 

Instruction Codes: 

ABSOLUTE 10101110 16·BIT : ADDRfSS 

bbt.. = 011 HEX ~ AE CYCLES-= 4 

It RO-PAGE 10100110 ADDR 

bbb - 001 HEX~ A6 CYCIES = 3 

IMl\l\FDIAIE 10100010 DATA 

bbb = 000 HEX ' A2 CYCLES ' 

ABSOLUTE. Y 10111110 16-BIT : ADDRESS 

hbb . 111 HEX BE CYClES = 4• 

/ERO PAGE. Y 10111010 ADDR 

bbb 110 MEX · 86 CYCIFS ' 4 

':PLUS l CYCLE If CROSSING PAGE BOUNDARY. 

155 



PROGRAMMING THE 6502 

LDY Load register Y 

Function: 
Y~DATA 

Format: 
~~~~~~~~~~~~~--------------

---~_'_01_bbb00~~~--~-A-DD_R_1o_A_TA~--Jl_ _____ ~~~----j

Description:
Index register Y is loaded with data from the specified address.

Data .Paths:

y

Addressing Modes:

HEX AC AA AO OC

BYTES

CYCLES 4•

011 001 I.OD Ill 101

': PLUS I CYCLE IF CROSSING PAGE BOUNDARY.

Flags:

N V B D

l•I

156

6502 INSTRUCTION SET

Instruction Codes:

ABSOLUTE 10101100 16-BIT : ADDRESS

bbb= 011 HEX= AC CYCLES= 4

ZERO-PAGE 10100100 ADOR

bbb=OOl HEX= A4 CYCLES-= 3

IMMEDIATE 10100000 DATA

bbb:: 000 HEX= AO CYCLES=2

ABSOLUTE, X 10111100 16-BIT : ADDRESS

bbb= Ill HEX=BC CYCLES:= 4•

ZERO-PAGE, X 10110100 ADDR

bbb= 101 HEX= B4 CYCLES-= 4

•: PLUS I CYCLE IF CROSSING PAGE BOUNDARY.

157

PROGRAMMING THE 6502

LSR Logical shift right

..-------i------------------------·
.__0_1o_b-bb_10 ___ 1 _ --~~~~o~~ ___ j ____ ~~~ _____ _l Format:

Description:
Shift the specified contents (accumulator or memory) right by

one bit position. A "O" is forced into bit 7. Bit 0 is transferred to
the carry. The shifted data is deposited in the source, i.e., either
accumulator or memory.

Data Paths:

< - -----i
v ----, I

I I
I I

I

M- DATA

Addressing Modes:

HEX tA 4 "6 Sl ~·

BYTES

CVQES

bbb 010 011 001 111 IOI

Flags:
N v e 0 z c

1¢1 l•l•I

158

6502 INSTRUCTION SET

Instruction Codes:

ACCUMULATOR I 01010110

bbb=OIO HEX=4A CYCLES=2

ABSOLUTE 01011110 AD~RESS
bbb=Oll HEX= 4E CYCLES= 6

ZERO-PAGE 01001110 ADDR

bbb=OOl HEX= 46 CYCLES= 5

ABSOLUTE, X 01111110 AO~RESS
bbb=ll I HEX= SE CYCLES= 7

ZERO-PAGE. x I 01101110 ADDR

bbb=101 HEX= 56 CYCLES= 6

159

PROGRAMMING THE 6502

NOP No operation

Function:
None

Format: 11101010

Description:
Does nothing for 2 cycles. May be used to time a delay loop or to

fill patches in a program.

Addressing Mode:
Implied only:
HEX= EA, byte= 1, cycles= 2

Flags:
N V 8 0 C

(NO ACTION)

160

6502 INSTRUCTION SET

ORA Inclusive OR with accumulator

Function:
A._(A)VDATA

Format:j r---OOOb-bb0-1 ----,,---A-oo-R-10-Ar_A_......,

Description:
Performs the logical (inclusive) OR of A and the specified data.

The result is stored in A. May be used to force a "1" at selected bit
locations.

Truth table:

Data Paths:

A

Addressing Modes:

HEX OD 05 ~ 10 19 01 II 15

ems

CYCLES 4• 4• s•

bbl> 011 001 010 111 110 000 100 101

•: PlUS I CYCLE IF CROSSING PAGE ROUNDARY.

Flags:
N v D z c

1•1 l•I
161

PROGRAMMING THE 6502

Instruction Codes:

ABSOLUTE 00001101 16-BIT : ADDRESS

bbb= 011 HEX= OD CYCLES= 4

ZERO-PAGE 00000101 ADDR

bbb= 001 HEX= 05 CYCLES= 3

IMMEDIATE 00001001 DATA

bbb= 010 HEX= 09 CYCLES-= 2

ABSOLUTE, x I 00011101 16-BIT : ADDRESS

bbb= 111 HEX= ID CYCLES= 4•

ABSOLUTE, Y 00011001 16-BIT : ADDRESS

bbb= 110 HEX= 19 CYCLES"' 4•

(IND, X) I 00000001 ADDR

bbb= 000 HEX-= 01 CYCLES-= 6

(IND),Y 00010001 ADCR

bbb= 100 HEX-= 11 CYCLES" 5•

ZERO-PAGE, X 00010101 ADDR

bbb= 101 HEX= 15 CYCLES= 4

•: PLUS I CYCLE IF CROSSING PAGE BOUNDARY.

162

PHA
Function:

STACK.-(A)
s~ cs) -1

Push A

Format: 01001000

Description:

6502 INSTRUCTION SET

The contents of the accumulator are pushed on the stack. The
stack pointer is updated. A is· unchanged.

Data Path:

A

Addressing Mode:
Implied only:
HEX = 48, byte = 1, cycles = 3

Flags:
N V 8 0 Z C

(NO EFFECT)

163

PROGRAMMING THE 6502

PHP Push processor status

Function:
STACK.- (P)
s (8) -1

Format:

Description:

00001000

The contents of the status register P are pushed on the stack.
The stack pointer is updated. A is unchanged.

Data Path:

Addressing Mode:
Implied only
Hex= 08, byte = 1, cycles= 3

Flags:
N V 0 c

(NO EFFECT)

164

PLA
Function:

A..-(STACK)
s ... (8) +1

Pull accumulator

______ __,

Format: 01101000

Description:

6502 INSTRUCTION SET

Pop the top word of the stack into the accumulator. Increment
the stack pointer.

Data Paths:

A

Addressing Mode:
Implied only:
HEX= 68, byte= 1, cycles= 4

Flags:

N V 8 D Z C

1•1 l•I

165

PROGRAMMING THE 6502

PLP Pull processor status from stack

Function:
p._(STACK)
s~ <S> +i

Format: I 00101000

Description:
The top word of the stack is popped (transferred) into the status

register P. The stack pointer is incremented.

Data Paths:

p

STAC:!<

Addressing Mode:
Implied only:
HEX= 28, byte= 1, cycles= 4

Flags:
NV 8 0 I Z C

l•l•l•l•l•l•l•I
166

6502 INSTRUCTION SET

ROL Rotate left one bit

Function:

[l 7 I 6 I s I , I 3 I 2 I I I ·1 c

·D
Format:

Description:
The contents of the specified address (accumulator or memory)

are rotated left by one position. The carry goes into bit 0. Bit 7
sets the new value of the carry. This is a 9-bit rotation.

Data Paths:

Addressing Modes:

HEX 2A 2E 26

llYT£$

.:vcus

bbb 010 011 001

Flags:
N

l•I

3E

Ill

v D

/1-----"1--- -- - -1 '----... /~---, :

36

101

z c

l•l•I

167

PROGRAMMING THE 6502

Instruction Codes:

ACCUMULATOR 00101010

bbb=OlO HEX=2A CYCLES=2

ABSOLUTE 00101110 16 BIT-~DRESS
bbb=Oll HEX= 2E CYCLES= 6

ZERO-PAGE 00100110 ADDR

bbb=OOl HEX=26 CYCLES= 5

ABSOLUTE, X 00111110 16 BIT-A~DRESS
bbb=lll HEX=JE CYCLES= 7

ZERO-PAGE, X 00110110 ADDR

bbb=101 HEX= 36 CYCLES= 6

168

6502 INSTRUCTION SET

ROR Rotate right one bit

Warning: This instruction may not be available on older 6502's;
also., it may exist but not be listed.

Function:

c 7 I 6 I
• I g;.I 2 I 1 I ·1

Format: OllbbblO
---,---------,

ADDR I ADDR I ________ i _________ ~

Description:
The contents of the specified address (accumulator or memory)

are rotated right by one bit position. The carry goes into bit 7. Bit 0
sets the new value of the carry .. This is a 9-bit rotation.

Data Paths:
,, ___ _.., ... ______ !

'\..r----./t----, :

°"'"'

Addressing Modes:

H(X 6A (If 66 7£ 76

8Yl!S

CYCl!S

bbh 010 011 001 111 101

Flags:
N v D z c

1•1 l•l•I

169

PROGRAMMING THE 6502

Instruction Codes:

ACCUMULATOR I 01101010

bbb::::OlO HEX=6A CYCLES=2

ABSOLUTE 01101110

bbb::::Oll HEX= 6E CYCLES= 6

ZERO-PAGE 01100110 AODR

bbb=OOI HEX= 66 CYCLES= 5

ABSOLUTE. X 01111110 16 BIT·A~DRESS
bbb= 111 HEX= 7E CYCLES= 7

ZERO-PAGE, X 01110110 AODR

bbb::::JOI HEX= 76 CYCLES== 6

170

6502 INSTRUCTION SET

RTI
Function:
P ~(STACK)
s (8) +1
PCL ._(STACK)
S ._(S) +1
PCH ._(STACK)
S ..- (S) +1

Format:

Description:

Return from interrupt

01000000

Restore the status register P and the program counter (PC)
which had been saved in the stack. Adjust the stack pointer.

Data Paths:

PC
STACK

Addressing Mode:
Implied only:
HEX= 40, byte= 1, cycles= 6

Flags:
NV 8 DI Z C

l•l•l•l•l•l•l•I
171

PROGRAMMING THE 6502

RTS
Function:
PCL .,_(STACK)
S ._(S)+l
PCH._ (STACK)
S -4-(S)+l
PC .-(PC+ 1)

Format:

Description:

Return from subroutine

01100000

Restore the program counter from the stack and increment it
by one. Adjust the stack pointer.

Data Paths:
s

~
PCL

PCH

STACK

+1

Addressing Mode:
Implied only:
HEX= 60, byte= 1, cycles= 6

Flags:
N V 0 c

(NOe:RCT)

172

6502 INSTRUCTION SET

SBC Subtract with carry

Function:
A._ (A) -DATA -c (C is borrow)

Format:

Description:
Subtract from the accumulator the data at the specified ad

dress, with borrow. The result is left in A. Note: SEC is used for a
subtract without borrow.

SBC may be used in decimal or binary mode, depending on bit
D of the status register.

Data Paths:

A

Addressing Modes:

~~~------i 
~ -----i I 

M 

I I 
I I 

HEX ED £5 E9 FD F9 El Fl f5 

BYltS 

CYCLES 4• 4• s· ' 
bbb 011 001 010 "' 110 OQQ 100 101 

•: PLUS I CYCLE IF CROSSING PAGE BOUNDARY. 

Flags: 
N V 8 D 

l•l•I 

173 



PROGRAMMING THE 6502 

Instruction Codes: 

ABSOLUTE 11101101 16-BIT : ADDRESS 

bbb =Oil HEX= ED CYCLES= 4 

ZERO-PAGE 11100101 ADDR 

bbb-= 001 HEX= ES CYCLES= 3 

IMMEDIATE 11101001 DATA 

bbb =010 HEX'= E9 CYCLES= 2 

ABSOLUTE, X 11111101 16-BIT : ADDRESS 

bbb = 111 HEX-= FD CYCLES= 4• 

ABSOLUTE. Y 11111001 16-BIT : ADDRESS 

bbb'-" 110 HEX= F9 CYCLES.,,4• 

(IND, X) I 11100001 ADOR 

bbb=ooo HEX-=EI CYCLES= 6 

(INO),Y 11110001 ADDR 

bbb-= 100 HEX= fl CYCLES= s• 

ZERO-PAGE, X 11110101 ADDR 

bbb= 101 HEX= FS CYCLES= 4 

•:PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY. 

174 



6502 INSTRUCTION SET 

SEC Set carry 

Function: 
C•l 

Format: 00111000 

Description: 
The carry bit is set to 1. This is used prior to an SBC to perform 

a subtract without carry. 

Addressing Modes: 
Implied only: 
HEX = 38, byte = 1, cycles= 2 

Flags~ N V 8 0 c 

175 



PROGRAMMING THE 6502 

SED Set decimal mode 

Function: 
D.-1 

Format: 

11111000 

Description: 
The decimal bit of the status register is set to 1. When it is 0, 

the mode is binary. When it is 1, the mode is decimal for ADC and 
SBC. 

Addressing Modes: 
Implied only: 
HEX= F8, byte= 1, cycles= 2 

Flags: N V 8 0 c 

176 



6502 INSTRUCTION SET 

SEI Set interrupt disable 

Function: 
I+-1 

Format: 01111000 

Description: 
The interrupt mask is set to I. Used during an interrupt or a system 

reset. 

Addressing Modes: 
Implied only: 

HEX = 78, byte = I, cycles = 2 

Flags: N V B D C 

I I I I I I I I 

177 



PROGRAMMING THE 6502 

STA Store accumulator in memory 

Function: 
M._ (A) 

Format: 
------------. - ------ -----------
,__ ___ 100b_bb0_1 --~I- ______ :o~R~- ______ _I 

Description: 
The contents of A are copied at the specified memory location. 

The contents of A are not changed. 

Data Paths: 

A 

Addressing Modes: 

HEX eo as 

BYTES 

CY Cl ES 

bbb 011 001 

Flags: 
N V 

178 

----, 

90 99 81 91 95 

111 110 000 100 101 

D c 

[NOEJffCT) 

I 
I 
I 
I 
I 



6502 INSTRUCTION SET 

Instruction Codes: 

ABSOLUTE 10001101 16-BIT : ADDRESS 

bbb=Oll HEX= 8D CYCLES=4 

ZERO-PAGE 10000101 ADDR 

bbb= 001 HEX= 85 CYCLES= 3 

ABSOLUTE. X 10011101 16-BIT : ADDRESS 

bbb= II 1 HEX=9D CYCLES= 5 

ABSOLUTE, Y 10011001 16-BIT : ADDRESS 

bbb= 110 HEX= 99 CYCLES= 5 

(IND, X) I 10000001 ADDR 

bbb= 000 HEX= 81 CYCLES= 6 

(INO),Y 10010001 ADDR 

bbb= 100 HEX=91 CYCLES~ 6 

ZERO-PAGE. X 10010101 ADDR 

bbb= 101 HEX= 95 CYCLES= 4 

179 



PROGRAMMING THE 6502 

STX Store X in memory 

Function: 
M~(X) 

Format: .__ ___ 100-bb_1 _10 __ ___,I_ _ ~ ~ _-_-_ ~ ~~~~ ~ -_-_-~ -~-J 
Description: 

Copy the contents of index register X at the specified memory 
location. The contents of X are left unchanged. 

Data Paths: 

x 

Addressing Modes: 

H[K 

-----, 
----, I 

I I 
I I 
I 

..J -; 
', " 

8Y!f51 
t---f---+----l---f--+---+--4--+--f---1--1---+-~ 

CVCl!5 

01 00 10 

Flags: 
N V D c 

(NO EFFECT) 

Instruction Codes: 

A&S.Olurr ._I ___ ___,_ ____ ,._o~.__"s_s ---

z•,o•AGt ._I ___ ___.. ___ __ 

('t"(lt~ J 

ZlRO PAC,.[ VIL------'------J 
bb .. 10 o;fK-96 

180 



6502 INSTRUCTION SET 

STY Store Y in memory 

Function: 
M~(Y) 

Format: 

Description: 
Copy the contents of index register Y at the specified memory 

location. The contents of Y are left unchanged. 

Data Paths: 

ams 

CYCW 

bb 01 00 

Flags: N V 

Instruction Codes: 

10 

D c 

(NO EFFECT) 

-----, 
I 

I I 
I I 
I I 

AOSOtufl ._I ___ _._ ___ •oo ........ :Ql_ss __ __. 

l!IO PAGI I lo:JCOICI) 

zuo,AGE.xl ..... ___ ........_ __ ___, 

CY(Lf\ • 41 

181 



PROGRAMMING THE 6502 

TAX Transfer accumulator into X 

Function: 
x._ (A) 

Format: 

Description: 

10101010 

Copy the contents of the accumulator into index register X. The 
contents of A are left unchanged. 

Data Paths: 

x - - I 
Addressing Mode: 

Implied only: 
HEX= AA, byte= 1, cycles= 2 

Flags: 
N V B D I Z C 

l•I I I I 1•1 I 

182 



6502 INSTRUCTION SET 

TAY Transfer accumulator into Y 

Function: 
Y.- (A) 

Format: 10101000 

Description: 
Transfer the contents of the accumulator into index register Y. 

The contents of A are left unchanged. 

Data Paths: 

Addressing Mode 
Implied only: 
HEX= AB, byte= 1, cycles= 2 

Flags: 
N V 8 D Z C 

l•I l•I 

183 



PROGRAMMING THE 6502 

TSX Transfer S into X 

Function: 
X~(S) 

Format: 

10111010 

Descriptiqn: 
The contents of the stack pointer S are transferred into index 

register X. The contents of S are unchanged. 

Data Paths: 

s - --
Addressing Mode: 

Implied only: 
HEX= BA, byte= 1, cycles= 2 

Flags: 
N V 8 D I Z C 

l•I I I I l•I I 

184 



6502 INSTRUCTION SET 

TXA Transfer X into accumulator 

Function: 
A._ (X) 

Format: 10001010 

Description: 
The contents of index register X are transferred into the ac

cumulator. The contents of X are unchanged. 

Data Paths: 

x - --
Addressing Mode: 

Implied only: 
HEX= BA, byte= 1, cycles= 2 

Flags: 
NV 8 DI Z C 

l•I I I I l•I I 

185 



PROGRAMMING THE 6502 

TXS Transfer X into S 

Function: 
s._ (X) 

Format: 

Description: 

10011010 

The contents of index register S are transferred into the stack 
pointer. The contents of X are unchanged. 

Data Paths: 

- xj -
Addressing Mode: 

Implied only: 
HEX= 9A, byte= 1, cycles= 2 

Flags: 

N V 8 D I Z C 

I I I I I I I I 
(NOACllON) 

186 



6502 INSTRUCTION SET 

TY A Transfer Y into A 

Function: 
A._(Y) 

Format: 10011000 

Description: 
The contents of index register Y are transferred into the ac

cumulator. The contents of Y are unchanged. 

Data Paths: 

y -Ar 
Addressing Mode: 

Implied only: 
HEX = 98, byte = 1, cycles = 2 

Flags: 
NV 8 DI Z C 

l•I I I I l•I I 

187 



5 

ADDRESSING TECHNIQUES 

INTRODUCTION 

This chapter will present the general theory of addressing, with 
the various techniques which have been developed to facilitate 
the retrieval of data. In a second section, the specific addressing 
modes which are available in the 6502 will be reviewed, along 
with their advantages and limitations, where they exist. Finally, 
in order to familiarize the reader with the various trade-offs pos· 
sible, an applications section will show possible trade-offs be
tween the various addressing techniques by studying specific ap
plication programs. 

Because the 6502 has no 16-bit register, other than the program 
counter, which can be used to specify an address, it is necessary 
that the 6502 user understand the various addressing modes, and 
in particular, the use of the index registers. Complex retrieval 
modes, such as a combination of indirect and indexed, may be 
omitted at the beginning stage. However, all the addressing 
modes are useful in developing programs for this micro
processor. Let us now study the various alternatives available. 

ADDRESSING MODES 

Addressing refers to the specification, within an instruction, of 
the location of the operand on which the instruction will operate. 
The main methods will now be examined. 

188 



ADDRESSING TECHNIQUES 

7 0 

IMPLICIT /IMPLIED OPCODE A 

IMMEDIATE OPCODE 

LITERAL 

r-----------, 
I LITERAL I 
.._ _______ -- -- - J 

DIRECT/SHORT OPCODE 

SHORT ADDRESS 

EXTENDED/ ABSOLUTE OPCODE 

FULL 16-BIT 

ADDRESS 

INDEXED OPCODE 

DISPLACEMENT 

r----- -- - - -, 
1 OR ADDRESS 1 
'"'-- ------ - -- ~ Rg. 5-1: Addressing 

189 



PROGRAMMING THE 6502 

Implicit Addressing 

Instructions which operate exclusively on registers normally 
use implicit addressing. This is illustrated in Figure 5-1. An im
plicit instruction derives its name from the fact that it does not 
specifically contain the address of the operand on which it oper
ates. Instead, its opcode specifies one or more registers, usually 
the accumulator, or else any other register(s). Since internal reg
isters are usually few in number (say a maximum of 8), this will 
require a small number of bits. As an example, three bits within 
the instruction will point to 1 out of 8 internal registers. Such in
structions can, therefore, normally be encoded within 8 bits. This 
is an important advantage, since an 8-bit instruction normally 
executes faster than any two- or three-byte instruction. 

An example of an implicit instruction for the 6502 is TAX which 
specifies ''transfer the contents of A to X.'' 

Immediate Addressing 

Immediate addressing is illustrated in Figure 5-1. The 8-bit 
opcode is followed by an 8- or a 16-bit literal (a constant). This 
type of instruction is needed, for example, to load an 8-bit value 
to an 8-bit register. If the microprocessor is equipped with 16-bit 
registers, it may be nece~sary to load 16-bit literals. This depends 
upon the internal architecture of the processor. An example of an 
immediate instruction is ADC #0. 

The second word of this instruction contains the literal "O", 
which is added to the accumulator. 

Absolute Addressing 

Absolute addressing refers to the way in which data is usually 
retrieved from memory, where an opcode is followed by a 16-bit 
address. Absolute addressing, therefore, requires 3-byte instruc
tions. An example of absolute addressing is ST A $1234. 

It specifies that the contents of the accumulator are to be stored 
at the memory location "1234" hexadecimal. 

The disadvantage of absolute addressing is to require a 3-byte 
instruction. In order to improve the efficiency of the microproces
sor, another addressing mode may be made available, where only 
one word is used for the address: direct addressing. 

190 



ADDRESSING TECHNIQUES 

Direct Addressing 

In this addressing mode, the opcode is followed by an 8-bit 
address. This is illustrated in Figure 5-1. The advantage of this 
~pproach is to require only 2 bytes instead of 3 for absolute ad
dressing. The disadvantage is to limit all addressing within this 
mode to addresses 0 to 255. This is page 0. This is also called 
short addressing, or 0-page adciressipg. Whenever short addressing 
is available, absolute addressing is often called extended addressing 
by contrast. 

Relative Addressing 

Normal jump or branch instructions require 8 bits for the op
code, plus the 16-bit address which is the address to which the 
program has to jump. Just as in the preceding example, this has 
the inconvenience of requiring 3 words, i.e., 3 memory cycles. To 
provide more efficient branching, relative addressing uses only a 
two-word format. The first word is the branch specification, 
usually along with the test it is implementing. The second word is 
a displacement. Since the displacement must be positive or nega
tive, a relative branching instruction allows a branch forward to 
128 locations (7-bits) or a branch backwards to 128 locations (plus 
or minus 1, depending on the conventions). Because most loops 
tend to be short, relative branching can be used most of the time 
and results in significantly improved performance for such short 
routines. As an example, we have already used the instruction 
BCC, which specifies a "branch on carry clear" to a location 
within 127 words of the branch instruction. 

Indexed Addressing 

Indexed addressing is a technique specifically useful to access 
successively the elements of a block or of a table. This will be 
illustrated by examples later in this chapter. The principle of 
indexed addressing is that the instruction specifies both an index 
register and an address. In the most general scheme, the contents 
of the register are added to the address to provide the final ad
dress. In this way, the address could be the beginning of a table in 
the memory. The index register would then be used to access 
successively all the elements of the table in an efficient way. In 
practice, restrictions often exist and may limit the size of the 

191 



PROGRAMMING THE 6502 

index register, or the size of the address or displacement field. 

Pre-indexing and Post-indexing 

Two modes of indexing may be distinguished. Pre-indexing is 
the usual indexing mode where the final address is the sum of a 
displacement or address and the contents of the index register. 

Post-indexing treats the contents of the displacement field like 
the address of the actual displacement, rather than the displace
ment itself. This is illustrated in Figure 5·2. In post-indexing, the 
final address is the sum of the contents of the index register plus 
the contents of the memory word designa:ted by the dispkzcement 
field. This feature utilizes, in fact, a combination of indirect ad
dressing and pre-indexing. But we have not defined indirect ad
dressing yet, so let us do that now. 

192 

OPCOOE 

SHORT ADOllESS 

POINTER= BASE 

PAGE ZERO 

POINTER 

DATAN 

FINAL 
16-BIT 

ADDRESS 

Rg. 5-2: Indirect Post-Indexed Addressing 

Y (index) 

N 



ADDRESSING TECHNIQUES 

Indirect Addressing 

We have already seen the case where two subroutines may wish 
to exchange a large quantity of data stored in the memory. More 
generally, several programs, or several subroutines, may need ac
cess to a common block of information. To preserve the generality 
of the program, it is desirable not to keep such a block at a fixed 
memory location. In particular, the size of this block might grow 
or shrink dynamically, and it may have to reside in various 
areas of the memory, depending on its size. It would, therefore, 
be impractical to try to have access to this block using absolute 
addresses. 

The solution to this problem lies in depositing the starting ad
dress of the block at a fixed memory location. This is analogous 
to a situation in which several persons need to get into a house, 

INSTRUCTION MEMORY 

OPCODE 

INDIRECT (Ao) FINAL 

1-- ~ t--
ADDRESS Ao ADDRESS (A2) 

Az DATA ~ 

Rg. 5-3: Indirect Addressing 

193 



PROGRAMMING THE 6502 

and only one key exists. By convention, the key to the house 
will be hidden under the mat. Every user will then know where to 
look (under the mat) to find the key to the house (or, perhaps, to 
find the address of a scheduled meeting, to have a more correct 
analogy). Indirect addressing, therefore, uses an 8-bit opcode fol
lowed by a 16-bit address. Simply, this address is used to retrieve 
a word from the memory. Normally, it will be a 16-bit word (in our 
case, two bytes) within the memory. This is illustrated by Figure 
5-3. The two bytes at the specified address, Al, contain A2. A2 is 
then interpreted as the actual address of the data that one wishes 
to access. 

Indirect addressing is particularly useful any time that pointers 
are used. Various areas of the program can then ref er to these 
pointers to access conveniently and elegantly a word or a block of 
data. 

Combinations of Modes 

The above addressing modes may be combined. In particular, it 
should be possible in a completely general addressing scheme to 
use many levels of indirection. The address A2 could be inter
preted as an indirect address again, and so on. 

Indexed addressing can also be combined with indirect access. 
That allows the efficient access to word n of a block of data, pro
vided one knows where the pointer to the starting address is. 

We have now become familiar with all usual addressing modes 
that can be provided in a system. Most microprocessor systems, 
because of the limitation on the complexity of an MPU, which 
must be re8lized within a single chip, do not provide all possible 
modes but only a small subset of these. The 6502 provides an 
unusually large subset of possibilities. Let us examine them now. 

6502 ADDRESSING MODES 

Implied Addressing (6502) 

Implied addressing is used by a single byte instruction which 
operates on internal registers. Whenever implicit instructions 
operate exclusively in internal registers, they require only two 
clock cycles to execute. Whenever they access memory, they re
quire three cycles. 

Instructions which operate exclusively inside the 6502 

194 



ADDRESSING TECHNIQUES 

are: CLC, CLD, CLI, CLV, DEX, DEY, INX, INY, NOP, SEC, SED: 
SEI, TAX, TAY, TSX, TXA, TXS, TYA. 

Instructions which require memory access are: BRK, PHA, 
PHP, PLA, PLP, RTI, RTS. 

These instructions have been described in the preceding chap
ter, and their mode of operation should be clear. 

Immediate Addressing (6502) 

Since the 6502 has only 8-bit working registers (the PC is not a 
working register), immediate addressing in the case of the 6502 is 
limited to 8-bit constants. All instructions in immediate addressing 
mode are, therefore, two bytes in length. The first byte contains 
the ·opcode, and the second byte contains the constant or literal 
which is to be loaded in a register or used in conjunction with one 
of the registers for an arithmetic or logical operation. 

Instructions using this addressing mode are: ADC, AND, CMP, 
CPX, CPY, EOR, LDA, LDX, LDY, ORA, SBC. 

Absolute Addressing (6502) 

By definition, absolute addressing requires three bytes. The 
first byte is the opcode and the next two bytes are the 16-bit 
address specifying the location of the operand. Except in the case 
of a jump absolute, this address mode requires four cycles. 

Instructions which may use absolute addressing are: ADC, 
AND, ASL, BIT, CMP, CPX, CPY, DEC, EOR, INC, JMP, JSR, 
LDA, LDX, LDY, LSR, ORA, ROL, ROR, SBC, STA, STX, STY. 

Zero-Page Addressing (6502) 

By definition zero-page addressing requires two bytes: the first 
one is for the opcode; the second one is for the 8-bit, or short 
address. 

Zero-page addressing requires three cycles. Because zero-page 
addressing offers significant speed advantages as well as shorter 
code, it should be used whenever possible. This requires careful 
memory management by the programmer. Generally speaking, 
the first 256 locations of memory may be viewed as the set of 
working registers for the 6502. Any instruction will essentially 
execute on these 256 "registers" in just three cycles. This space 
should, therefore, be carefully reserved for essential data that 

195 



PROGRAMMING THE 6502 

needs to be retrieved at high speed 
Instructions which can use zero-page addressing are those 

which can use absolute addressing, except for JMP and JSR 
(which require a 16-bit address). 

The list of legal instructions is: ADC, AND, ASL, BIT, CMP, 
CPX, CPY, DEC, EOR, INC, LDA, LDX, LDY, LSR, ORA, 
ROL, ROR, SBC, STA, STX, STY. 

Relative Addressing (6502) 

By definition, relative addressing uses two bytes. The first one 
is a jump instruction, whereas the second one specifies the dis
placement and its sign. In order to differentiate this mode from 
the jump instruction, they are here labeled branches. Branches, 
in the case of the 6502, always use the relative mode. Jumps 
always use the absolute mode (plus, naturally, the other sub
modes which may be combined with those, such as indexed and 
indirect). From a timing standpoint, this instruction should be 
examined with caution. Whenever a test fails, i.e., whenever there 
is no branch, this instruction requires only two cycles. This is be
cause the next instruction to be executed is pointed to by the pro
gram counter. However, whenever the test succeeds, i.e., whenever 
the branch must take place this instruction requires three cycles: a 
new effective address must be computed. The updating of the 
program counter requires an extra cycle. However, if a branch 
occurs through a page boundary, one mor~ updating is necessary 
for the program counter, and the effective length of the instruc
tion becomes four cycles. 

From a logical standpoint, the user does not need to worry about 
crossing a page boundary. The hardware takes care of it. However, 
because an extra carry or borrow is generated whenever one crosses 
a page boundary, the execution time of the branch will be changed. 
If this branch was part of an exact timing loop, caution must be 
exercised. 

A good assembler will normally tell the programmer at the 
time the program is assembled that a branch is crossing a page 
boundary, in case timing might be critical. 

Whenever one is not sure whether the branch will succeed, one 
must take into consideration the fact that sometimes the branch 

196 



ADDRESSING TECHNIQUES 

will require two cycles, and sometimes three. Often an average 
time is computed. 

The only instructions which implement relative addressing are the 
branch instructions. There are 8 branch instructions which test flags 
within the status register for value "0" or "1". The list is: BCC, 
BCS, BEQ, BMI, BNE, BPL, BVC, BVS. 

Indexed Addressing (6502) 

The 6502 does not provide a completely general capability, but 
only a limited one. It is equipped with two index registers. How
ever, these registers are limited to 8 bit.s. The contents of an index 
register are added to the address field of the instruction. Usually, 
the index register is used as a counter in order to access ele
ments of a block or a table successively. This is why specializ.ed 
instructions are available to increment or decrement each one of 
the index registers separately. In addition, two specialized in
structions exist to compare the contents of the index registers 
against a memory location, an important facility for the effective 
use of the index registers to test against limit.a. 

In practice, because most user tables are normally shorter than 
256 words, the limitation of the index registers to 8 bits is usually 
not a significant limitation. 

The indexed addressing mode can be used not only with regular 
absolute addressing, i.e., with 16-bit address fields, but also with 
the zero-page addressing mode, i.e., with 8-bit address fields. 

There is only one restriction. Register X can be used with both 
types of addressing. Howe.ver, register Y allows only absolut.e in
dexed addressing and not zero-page indexed addressing (except tor 
LDX and STX instructions, which can be modified by register Y). 

Absolute indexed addressing will require four cycles, unless the 
page boundary is being crossed, in which case five cycles will be 
required. 

Absolute indexed instructions can use either registers X or Y to 
provide the displacement field. The list of instructions which may 
use this mode are: 

- with X: ADC, AND, ASL, CMP, DEC, EOR, INC, LDA, LDY, 
LSR, ORA, ROL, ROR, SBC, STA, (not STY). 

197 



PROGRAMMING THE 6502 

-with Y: ADC, AND, CMP, EOR, LOA, LOX, ORA, SBC, STA 
(not ASL, DEC, LSR, ROL, ROR). 

In the case of zero-page indexed addressing, register X is the 
legal displacement register, except for LOX and STX. Legal in
structions are: ADC, AND, ASL, CMP, DEC, EOR, INC, LDA, 
LDY, LSR, ORA, ROL, ROR, SBC, STA, STY. 

Indirect Addressing (6502) 

The 6502 does not have a fully general indirect addressing 
capability. It restricts the address field to 8 bits. In other words, 
all indirect addressing uses the sub-mode of zero page addressing. 
The effective address on which the opcode is to operate is then the 
16 bits specified by the zero-page address of the instruction. Also, 
no further indirection may occur. This means that an address 
retrieved from page zero must be used as is, and cannot be used as 
a further indirection. 

Finally, all indirect accesses must be indexed, except for JMP. 
For fairness, it should be noted that very few microprocessors 

provide any indirect addressing at all. Further, it is possible to 
implement a more general indirect addressing using a macro 
definition. 

Two modes of indirect addressing are possible: (pre) indexed indirect 
addressing, and indirect indexed addressing (post-indexed), except 
with JMP, which uses pure indirect. 

Indexed Indirect Addressing 

This mode adds the contents of index register X to th~ zero-page 
address to retrieve the final 16-bit address. This is an efficient way to 
retrieve one of several possible data pointed to by pointers whose 
number is contained in index register X. This is illustrated in Figure 
5-4. 

In this illustration, page zero contains a table of point.ers. The 
first pointer is at the address A, which is part of the instruction. If 
the contents of X are 2N, then this instruction will access point.er 
number N of this table and retrieve the data itis pointing to. 

Indexed indirect addressing requires 6 cycles. It is naturally 
less efficient time-wise than any direct addressing mode. Its ad
vantage is the flexibility which may result in coding, or the overall 
speed improvement. 

198 



ADDRESSING TECHNIQUES 

OPCOOEIX) 

ADDRESS A r---------1 

i---------·t-ENJRV. N POINTER 

2 1661J ADDlllSS 

llESJOF 
MEMOllV 

DAYA 

Fig. 5-4: Pre-Indexed Indirect Addressing 

Permissible instructions are: ADC, AND, CMP, EOR, LDA, 
ORA, SBC, STA. 

Indirect Indexed Addressing 

This corresponds to the post-indexing mechanism which has 
been described in the preceding section. There, the indexing is 
performed after the indirection, rather than before. In other 
words, the short address which is part of the instructions is used 
to access a 16-bit pointer in page zero. The contents of index 
register Y are then added as a displacement to this pointer. The 
final data are then retrieved. (see Fig. 5-2.) 

In this case, the pointer contained in page zero indicates the 
base of a table in the memory. Index register Y provides a dis
placement. It is a true index within a table. This instruction is 
particularly powerful for referring to the nth element of a table, 
provided that the start address of the table is saved in page zero. 

199 



PROGRAMMING THE 6502 

It can do so in just two bytes. 
Legal instructions are: ADC, AND, CMP, EOR, LDA, ORA, SBC, 

STA. 

Exception: Jump Instruction. 

The jump instruction may use indirect absolute. It is the only 
instruction that may use this mode. 

USING THE 6502 ADDRESSING MODES 

Long and Short Addressing 

We have already used branch instructions in various programs 
that we have developed. They are self explanatory. One interest
ing question is: what can we do if the permissible range for 
branching is not sufficient for our needs? One simple solution is to 
use a so-called long branch. This is simply a branch to a location 
which contains a jump specification: 

BCC +3 

JMPFAR 
(NEXT INSTRUCTION) 

BRANCH TO CURRENT ADDRESS 
+3 IF C CLEAR 
OTHERWISE JUMP TO FAR 

The two-line program above will result in branching to location 
FAR whenever the carry is set. This solves our long branch 
problem. Let us therefore now consider the more complex addres
sing modes, i.e. indexing and indirection. 

Use of indexing for sequential block accesses 

Indexing is primarily used to address successive locations 
within a table. The restriction is that the maximum displacement 
must be less than 256 so that it can reside in an 8-bit index 
register. 

We have learned to check for the character '*'. Now we will 
search a table of 100 elements for the presence of a'*'. The start
ing address for this table is called BASE. The table has only 100 
elements. It is less than 256 and we can use an index register. The 
program appears below: 

200 



SEARCH 
NEXT 

NOT FOUND 
STARFOUNO 

ADDRESSING TECHNIQUES 

LOX #0 
LOA BASE, X 
CMP #'* 
BEQ STARFOUND 
INX 
CPX #100 
BNE NEXT 

The flowchart for this program appears in Figure 5-5. The equiva
lence between the flowchart and the program should be verified. 
The logic of the program is quite simple. Register X is used to 
point to the element within the table. The second instruction of 
the program: 

NEXT LOA BASE, X 

uses absolute indexed addressing. It specifies that the accumu
lator is to be loaded from the address BASE (16-bit absolute ad
dress) plus contents of X. At the beginning, the contents of X are 
"O." The first element to be accessed will be the one at address 
BASE. It can be seen that after the next iteration, X will have the 
value "1:' and the next sequential element of the table will be 
accessed, at address BASE + 1. 

The third instruction of the program, CMP #'* compares the value 
of the character which has been read in the accumulator with the code 
for "*." The next instruction tests the results of the comparison. If a 
match has been found, the branch occurs to the label ST ARFOUND: 

BEQ STARFOUND 

Otherwise, the next sequential instruction is executed: 

INX 

201 



PROGRAMMING THE 6502 

The index counter is incremented by 1. We find by inspecting the 
bottom of the flow-chart of Figure 5.5 that the value of our index 
register at this point must be checked to make sure that we are 
not going beyond the bounds of the table (here 100 elements). 
This is implemented by the following instruction: 

NO 

CPX #100 

INITIALIZE 
TOELEMENTO 

READ NEXT 
ELEMENT 

POINT TO 
NEXT ELEMENT 

LAST ELEMENT? 

Fig. 5-5: Character 5earchlng Table 

This instruction compares register X to the value $100. If the test 
fails we must again fetch the next character. This is what occurs 
with: 

BNENEXT 

This instruction specifies a branch to the label NEXT if the test 
has failed (the second instruction in our program). This loop will 
be executed as long as a"*" is not found, or as long as the value 
"100" is not reached in the index. Then the next sequential in-

202 



ADDRESSING TECHNIQUES 

struction to be executed will be "NOT FOUND". It corresponds to 
the case where a"*" has not been found. 

The actions taken for"*" found and not found are irrelevant 
here and would be specified by the programmer. 

We have learned to use the indexed addressing mode to 
access successive elements in a table. Let us now use this new 
skill and slightly increase the difficulty. We will develop an im
portant utility program, capable of copying a block from one area 
of the memory into another. We will initially assume that the 
number of the elements within the block is less than 256 so that 
we can use index register X. Then we will consider the general 
case where the number of elements in the block is greater than 
256. 

A Block Trans/ er Routine for less than 256 elements 

We will call "NUMBER" the number of elements in the block to 
be moved. _ The number is assumed to be less than 256. BASE is 
the base address of the block. DESTINATION is the base of the 
memory area where it should be moved. The algorithm is quite simple: 
we will move a word at a time, keeping track of which word we are 
moving by storing its position in index register X. The program 
appears below: 

NEXT 

Let us examine it: 

LDX #NUMBER 
LDA BASE, X 
STA DEST, X 
DEX 
BNE NEXT 

LDX #NUMBER 

This line of the program loads the number N of words to be trans
ferred in the index register. The next instruction loads word #N of 
the block within the accumulator and the third instruction depo
sits it into the destination area. See Figure 5-6. 

CAUTION: this program will work correctly only if the base 
pointer is assumed to point just below the block, just like the 
destination register. Otherwise a small adjustment to this 
program is needed. 

203 



PROGRAMMING THE 6502 

After a word has been transferred from the origin to the desti
nation area, the index register must be updated. This is per
formed by the instruction DEX, which decrements it. Then the 
program simply tests whether X has decremented to 0. If so, the 
program tsminates. Otherwise, it loops again by going back to 
location NEXT. 

You will notice that when X = 0, the program does not loop. 
Therefore, it will not transfer the word at location BASE. The last 
word to be transferred will be at BASE+ 1. This is why we have 
assumed that the base was just below the block. 

Exercise 5.1: Modify the program above, assuming that 
BASE and DEST point to the first entry in the block. 

This program also illustrates the use of loop counters. You will 
notice that X has been loaded with the final value, then decre
mented and tested. At first sight, it might seem simpler to start 
with "O" in X, and then increment it until it reaches the maxi
mum value. However, in order to test whether X has attained its 
maximum value, one extra instruction would be needed (the com
parison instruction). This loop would then require 5 instructions 
instead of 4. Since this transfer program will normally be used for 
large numbers of words, it is important to reduce the number of 
instructions for the loop. This is why, at least for short loops, the 
index register is normally decremented rather than incremented. 

A. Block Transfer Routine (more than 256 elements) 

Let us now consider the general case of moving a block which 
may contain more than 256 elements. We can no longer use a 
single index register as 8 bits do not suffice to store a number 
greater than 256. The memory organization for this program is 
illustrated in Figure 5-7. The length of the memory-block to be 
transferred requires 16 bits, and therefore is stored in memory. 
The high-order part represents the number of 256-word blocks: 
"BLOCKS". The rest is called "REMAIN'' and is the number of 
words to be transferred after all the blocks have been transferred. 
The address for the source and the destination will be memory 
locations FROM and TO. Let us first assume that REMAIN is 

204 



ADDRESSING TECHNIQUES 

1 SOURCE BlOCK 

I------------_, 
~-----------"" 

A x 

[ J N 

TRANSFER 

DEST 

1 DESTINATION BlOCK 

1------------
------------

Rg.5-6:Mem orv Organization for Block Transfer 

PAGE II 

Ag. 5-7: Memorv Map for General BIOCk Transfer 

205 



PROGRAMMING THE 6502 

zero, i.e., that we are transferring 256 word blocks. The program 
appears below: 

LDA #SOURCELO 
STA FROM 
LDA #SOURCEHI 
STA FROM + 1 STORE SOURCE ADDRESS 
LDA #DESTLO 
STA TO 
LDA #DESTHI 
STA TO+l 
LDX #BLOCKS 
LOY #0 

NEXT LDA (FROM), Y 
STA (TO), Y 
DEY 
BNE NEXT 

NEXBLK INC FROM+l 
INC TO+l 
DEX 
BMI DONE 
BNE NEXT 
LDY #REMAIN 
BNE NEXT 

STORE DEST ADDRESS 
HOW MANY BLOCKS 
BLOCK SIZE 
READ ELEMENT 
TRANSFER IT 
UPDATE WORD POINTER 
FINISHED? 
INCREMENT BWCK POINTER 
SAME 
BLOCK COUNTER 

The 16-bit source address is stored by the first four instructions at 
memory address "FROM." The next four instructions do the 
same thing for the destination, which is stored at address "TO". 
Since we have to transfer a number of words greater than 256, we 
will simply use two 8-bit index registers. The next instruction 
loads register X with the number of blocks to be transferred. This 
is instruction 9 in the program. The next instruction loads the 
value zero in index register Y in order to initialize it for the 
transfer of 256 words. We will now use indexed indirect address
ing. It should be remembered that indexed indirect will result 
first in an indirection within page zero, then an indexed access to 
the 16-bit address specified by the index register. LOok at the 
program: 

NEXT LDA (FROM), Y 

The instruction loads the accumulator with the contents of the 
memory location whose address is the source plus the index regis
ter Y's contents. Look at Figure 5-7 for the memory map. Here, 
the content of register Y is initially 0. "A" will therefore be loaded 
from memory address "SOURCE." Not.e that here, unlike in our 

206 



ADDRESSING TECHNIQUES 

previous example, we assume that "SOURCE" is the address of 
the first word within the block. 

Using the same technique, the next instruction will deposit the 
contents of the accumulator (the first word of the block we want to 
transfer) at the appropriate destination location: 

STA (TO), Y 

Just as in the preceding case, we simply decrement the index 
register, then we loop 256 times. This is implemented by the 
next two instructions: 

DEY 

BNENEXT 

Caution: a programming trick is used here for compact pro
gramming. The alert reader will notice that the index register Y 
is decremented. The first word to be transferred will, therefore, be 
the word in position 0. The next one will be word 255. This is 
because decrementing 0 yields all l's in the register (or 255). The 
reader should also ascertain that there is no error. Whenever 
register Y decrements to 0, a transfer will not occur. The next 
instruction to be executed will be: NEXBLK. Therefore, exactly 
256 words will have been transferred. Clearly this trick could 
have been used in the previous program to write a shorter pro
gram. 

Once a complete block has been transferred, it is simply a mat
ter of pointing to the next page within our original block and our 
destination block. This is accomplished by adding "l" to the 
higher order part of the address for source and destination. This is 
performed by the next two instructions in the program: 

NEXBLKINC 
INC 

FROM+l 
TO+l 

After having incremented the page pointer, we simply check 
whether or not we should transfer one more block by decrement
ing the block counter contained in X. This is performed by: 

DEX 

If all blocks have been transferred, we exit from the program by 
branching to location DONE: 

207 



PROGRAMMING THE 6502 

BMIDONE 

Otherwise, we have two possibilities: Either we have not de
cremented to 0 or else we have exactly decremented to zero. Ifwe 
have not yet decremented to 0, we branch to location NEXT: 

BNENEXT 

If we have decremented exactly to 0, we still have to transfer 
the words specified by REMAIN. This is the last part of our 
transfer. This is accomplished by: 

LDY #REMAIN 

which loads index Y with the transfer count. 
We then branch back to location NEXT: 

BNENEXT 

The reader should ascertain that, during this last loop where 
the branch instruction to NEXT will be executed, the next time 
we re-enter NEXBLK, we will, indeed, exit for good from this 
program. This is because the index X had the value 0 prior to 
entering NEXBLK. The third instruction of NEXBLK will 
change it to -1, and we will exit to DONE. 

Adding Two Blocks 

This example will provide a simple illustration of the use of an 
index register for the addition of two blocks of less than 256 
element.s. Then, the next program will make use of the indirect 
indexed feature to address blocks whose address is known to re
side at the given location, but whose actual absolute address is 
not known. The program appears below: 

BLKADD LOY 
NEXT CLC 

LDA 
ADC 
STA 
DEY 
BPL 

#NBR -1 ---LOAD COUNTER 

PTRl, Y ---READ NEXT ELEMENT 
PTR2, Y ADD THEM 
PTR3, Y STORE RESULT 

DECREMENT COUNTER 
NEXT FINISHED? 

Index Y is used as an index counter and is loaded with the 
number of elements minus one. We assume that pointer PTRl 
points to the first element of Block 1, PTR2 to the first element of 

208 



ADDRESSING TECHNIQUES 

Block 2, and PTR3 points to the destination area where the re
sults should be stored. 

The program is self-explanatory. The last element of Block 1 is 
read in the accumulator, then added to the last element of Block 
2. It is then stored at the appropriate location of Block 3. The next 
sequential element is added, and so on. 

Same Exercise Using Indexed Indirect Addressing 

We assume here that the addresses PTRl, PTR2, PTR3 are not 
known initially. However, we know that they are stored in Page 0 
at addresses LOCI, LOC2, LOC3. This is a common mechanism 
for passing information between subroutines. The corresponding 
program appears below: 

BLKADD LDY #NBR-1 
NEXT CLC 

LDA (LOCl), Y 
ADC (LOC2), Y 
STA (LOC3), Y 
DEY 
BPL NEXT 

The correspondence between this new program and the previous 
one should now be obvious. It illustrates clearly the use of the 
indexed indirect mechanism whenever the absolute address is not 
known at the time that the program is written, but the location of the 
information is known. It can be rioted that the two programs 
have exactly the same number of instructions. An interesting 
exercise is now to determine which one will execute faster. 

Exercise 5.2: Compute the number of bytes and the number of 
cycles for each of these two programs, using the tables in the Ap
pendix section. 

SUMMARY 

A complete description of addressing modes has been presented. 
It has been shown that the 6502 offers most of the possible mecha
nisms, and its features have been analyzed. Finally, several ap
plication programs have been presented to demonstrate the value 
of each of the addressing mechanisms. Programming the 6502 
requires an understanding of these mechanisms. 

209 



PROGRAMMING THE 6502 

EXERCISES 

5.3: Write a program to add the first 10 bytes of a table stored at 
location "BASE." The result will have 16 bits. (This is a 
checksum computation). 

5.4: Can you solve the same problem without using the indexing 
mode? 

5.5: Reverse the order of the 10 bytes of this table. Store the re
sult at address "RE VER. " 

5.6: Search the same table for its largest element. Store it at 
memory address "LARGE." 

5.7: Add together the corresponding elements of three tables, 
whose bases are BASEl, BASE2, BASE3. The length of 
these tables is stored in page zero at address "LENGTH." 

210 



6 

INPUT/OUTPUT TECHNIQUES 

INTRODUCTION 

We have learned so far how to exchange information between the 
memory and the various registers of the processor. We have 
learned to manage the registers and to use a variety of instruc
tions to manipulate the data. We must now learn to communicate 
with the external world. This is called the input/output. 

Input refers to the capture of data from outside peripherals 
(keyboard, disk, or physical sensor). Output refers to the transfer 
of data from the microprocessor or the memory to external devices 
such as a printer, a CRT, a disk, or actual sensors and relays. 

We will proceed in two steps. First, we will learn to perform the 
input/output operations required by common devices. Second, we 
will learn to manage several input/output devices simultaneously, 
i.e., to schedule them. This second part will cover, in particular, 
polling vs. interrupts. 

INPUT/OUTPUT 

In this section we will learn to sense or to generate simple 
signals, such as pulses. Then we will study techniques for enforc
ing or measuring correct timing. We will then be ready for more 
complex types of input/output, such as high-speed serial and par
allel transfers. 

211 



PROGRAMMING THE 6502 

Generate a Signal 

In the simplest case, an output device will be turned off (or on) 
from the computer. In order to change the state of the output 
device, the programmer will merely change a level from a logical 
"O" to a logical "l", or from "1" to "O". Let us assume that an 
external relay is connected to bit "O" of a register called "OUTl." 
In order to turn it on, we will simply write a "1" into the appropri
ate bit position of the register. We assume here that OUTl repre
sents the address of this output register within our system. The 
program which will tum the relay on is: 

TURNON LDA 
STA 

#%00000001 
OUTl 

We have assumed that the state of the other 7 bits of the regis
ter OUTl is irrelevant. However, this is often not the case. 
These bits might be connected to other relays. Let us, therefore, 
improve this simple program. We want to tum the relay on, with
out changing the state of any other bit within this register. We 
will assume that it is possible to read and write the contents of 
this register. Our improved program now becomes: 

TURNON LDA OUTl READ CONTENTS OF OUTl 
ORA #%00000001 FORCE BIT 0 TO "1" 
STA OUTl 

The program first reads the contents of location OUTl, then 
performs an inclusive OR on its contents. This changes only bit 
position 0 to "1 ", and leaves the rest of the register intact. (For 
more details on the ORA operation, refer to Chapter 4). This is 
illustrated by Figure 6-1. 

Pulses 

Generating a pulse is accomplished exactly as in the case of 
the level above. An output bit is first turned on, then later turned 
off. This results in a pulse. This is illustrated in Figure 6-2. This 
time, however, an additional problem must be solved: one must 
generate the pulse for the correct length of time. Let us, therefore, 
study the generation of a computed delay. 

212 



INPUT/OUTPUT TECHNIQUES 

CPU 

BEFORE 

OATABUS 

OUT I 

OUTPUT~T 
l!EGIST!R 

AFTER 

RELAY RELAY 

OFF ON 

Rg. 6-1: Turning on a Relay 

SIGNAL 

- NUSEC -

-----~' 0-1 •--o 
THEPROGllAM:~&mnf=REGISTERWITHPAmRN 

WAIT (lOOPFORNUSEC) 
LOAD OUTPUT PORT WITH ZERO 
RfTIJRN 

Rg. 6-2: A Programmed Pulse 

Delay Generation and Measurement 

A delay may be generated by software or by hardware methods. 
We will study here the way to perform it by program, and later 
show how it can also be accomplished with a hardware counter, 
called a programmable interval timer (PIT). 

Programmed delays are achieved by counting. A counter regis
ter is loaded with a value, then is decremented. The program 
loops on itself and keeps decrementing until the counter reaches 
the value ''0". The total length of time used by this process will 
implement the required delay. As an example, let us generate a 
delay of 37 microseconds. 

213 



PROGRAMMING THE 6502 

DELAY 
NEXT 

LDY #07 
DEY 
BNE NEXT 

YISCOUNTER 
DECREMENT 
TEST 

This program loads index register Y with the value 7. The next 
instruction decrements Y, and the next instruction will cause a 
branch to NEXT to occur as long as Y does not decrement to "O." 
When Y finally decrements to zero, the program will exit from 
this loop and execute whatever instruction follows. The logic of 
the program is simple and appears in the flow chart of Figure 6-3. 

COUNTER =VALUE 

DECREMENT COUNTER 

NO 

OUT 

Fig. 6-3: A Delay Flowchart 

Let us now compute the effective delay which will be im:
plement.ed by the program. Looking at the Appendix section of the 
book, we will look up the number of cycles required by each of 
these instructions: 

LDY, in the immediate mode, requires 2 cycles. DEY will use 2 
cycles. Finally, BNE will use 3 cycles. When looking up the 
number of cycles for BNE in the table, verify that 3 possibilities 
exist: if the branch does not occur, BNE will only require 2 cycles. 
If the branch does succeed, which will be the normal case during 
the loop, then one more cycle is required. Finally, if the page 
boundary is being crossed, then one extra cycle will be required. 
We assume here that no page boundary will be crossed. 

The timing is, therefore, 2 cycles for the first instruction, plus 5 

214 



INPUT/OUTPUT TECHNIQUES 

cycles for the next 2, multiplied by the number of times the loop 
will be executed, minus one cycle for the last BNE: 
Delay = 2 + 5 x 7 - 1 = 36. 

Assuming a I-microsecond cycle time, this programmed delay 
will be 36 microseconds. 

We can see that the maximum definition with which we can 
adjust the length of the delay is 2 microseconds. The minimum 
delay is 2 microseconds. 

Exercise 6.1: What is the maximum delay which can be imple
mented with these three instructions? Can you modify the pro
gram to obtain a one microsecond delay? 
Exercise 6.2: Modify the program to obtain a delay of about 100 
microseconds. 

If one wishes to implement a longer delay, a simple solution is 
to add extra instructions in the program, between DEY and BNE. 
The simplest way to do so is to add NOP instructions. (The 
NOP does nothing for 2 cycles). 

Longer Delays 

Generating longer delays by software can be achieved by using 
a wider counter. 'IWo internal registers, or, better, two words in the 
memory, can be used to hold a 16-bit count. To simplify, let us 
assume that the lower count is "O." The lower byte will be loaded 
with "255;' the maximum count, then go through a decrementa
tion loop. Whenever it is decremented to "O;' the upper byte of the 
counter will be decremented by 1. Whenever the upper byte is 
decremented to the value "O;' the program terminates. If more 
precision is required in the delay generation, the lower count can 
have a non-null value. In this case, we would write the program 
just as explained and add at the end the three-line delay genera
tion program, which has been described above. 

Naturally, still longer delays could be generated by using more 
than two words. This is analogous to the way an odometer works 
on a car. When the right-most wheel goes from "9" to "O," the next 
wheel to the left is incremented by 1. This is the general principle 
when counting with multiple discrete units. 

However, the main objection is that when one is counting long 
delays, the microprocessor will be doing nothing else for hundreds 
of milliseconds or even seconds. If the computer has nothing else 

215 



PROGRAMMING THE 6502 

to do, this is perfectly acceptable. However, in the general case, 
the microcomputer should be available for other tasks so that 
longer delays are normally not implemented by software. In fact, 
even short delays may be objectionable in a system if it is to 
provide some guaranteed response time in given situations. 
Hardware delays must then be used. In addition, if interrupts are 
used, timing accuracy may be lost if the counting loop can be 
interrupted. 

Exercise 6.3: Write a program to implement a 100 ms delay (for a 
Teletype). 

Hardware Delays 

Hardware delays are implemented by using a programmable 
interval timer, or "timer" for short. A register of the timer is loaded 
with a value. The difference is that, this time, the timer will 
automatically decrement this counter periodically. The period is 
usually adjustable or selectable by the programmer. Whenever 
the timer will have decremented to "O:' it will normally send an 
interrupt to the microprocessor. It may also set a status bit which 
can be sensed periodically by the computer. The use of interrupts 
will be explained later in this chapter. 

Other timer operating modes may include starting from "O" and 
counting the duration of the signal, ·or else counting the number 
of pulses received. When functioning as an interval timer, the 
timer is said to operate in a one-shot mode. When counting pulses, 
it is said to operate in a pulse-counting mode. Some timer devices 
may even include multiple registers and a number of optional 
facilities which are program-selectable. This is the case, for 
example, with the timers contained in the 6522 component, an 1/0 
chip described in the next chapter. 

Sensing Pulses 

The problem of sensing pulses is the reverse problem of gener
ating pulses, plus one more difficulty: whereas an output pulse is 
generated under program control, input pulses occur asynchron
ously with the program. In order to detect a pulse, two methods 
may be used: polling and interrupts. Interrupts will be discussed 
later in this chapter. 

Let us consider now the polling technique. Using this technique, 
the program reads the value of a given input register continu-

216 



INPUT/OUTPUT TECHNIQUES 

ously, testing a bit position, perhaps bit 0. It will be assumed that 
bit 0 is originally "0 ." Whenever a pulse is received, this bit will 
take the value "l." The program monitors bit 0 continuously until 
it takes the value "l." When a "l" is found, the pulse has been 
detected. The program appears below: 

POLL 
AGAIN 

ON 

LDA 
BIT 
BEQ 

#$01 
INPUT 
AGAIN 

Conversely, let us assume that the input line is normally "1" 
and that we wish to detect a "O." This is the normal case for 
detecting a START bit when monitoring a line connected to a 
Teletype. The program appears below: 

POLL 
NEXT 

START 

LDA 
BIT 
BNE 

#$01 
INPUT 
NEXT 

Monitoring the Duration 

Monitoring the duration of the pulse may be accomplished in 
the same way as computing the duration of an output pulse. 
Either a hardware or a software technique may be used. When 
monitoring a pulse by software, a counter is regularly in
cremented by 1, then the presence of the pulse is verified. If the 
pulse is still present, the program loops upon itself. Whenever the 
pulse disappears, the count contained in the counter register is 
used to compute the effective duration of the pulse. The program 
appears below 

DUR TN LDX #0 CLEAR COUNTER 
LDA #$01 MONITOR BIT 0 

AGAIN BIT INPUT 
BEQ AGAIN 

LONGER INX 
BIT INPUT 
BNE LONGER 

Naturally, we assume that the maximum duration of the pulse 
will not cause register X to overflow. If this were the case, the 

217 



PROGRAMMING THE 6502 

program would have to be longer to take this into account (or else 
it would be a programming error!) 

Since we now know how to sense and generate pulses, let us 
capture or transfer larger amounts of data. 'l\vo cases will be 
distinguished: serial data and parallel data. Then we will apply 
this knowledge to actual input/output devices. 

PAGEf 

Ag. 6-4: Parallel Word Transfer: The Memory 

PARALLEL WORD TRANSFER 

It is assumed here that 8 bits of transfer data are available in 
parallel at address "INPUT:' The microprocessor must read the 
data word at this location whenever a status word indicates that 
it is valid The status information will be assumed to be cont.ained 
in bit 7 of address "STATUS." We will here write a program 

218 



INPUT /OUTPUT TECHNIQUES 

which will read and automatically save each word of data as it 
comes in. To simplify, we will assume that the number of words 
to be read is known in advance and is contained in location 
"COUNT." If this information were not available, we would test 
for a so-called break character, such as a rubout, or perhaps the 
character"*." We have learned to do this already. 

NO 

POLLING OR SERVICE REQUEST 

READ COUNT 

TRANSFER 
WORD 

DECREMENT 
COUNTER 

OUT 

NO 

Rg. 6-5: Parallel Word Transfer: Row~rt 

The flow chart appears in Figure 6-5. It is quite straightfor
ward. We test the status information until it becomes "l," indi
cating that a word is ready. When the word is ready, we read 
it and save it at an appropriate memory location. We decre
ment the counter and then test whether it has decremented to 

219 



PROGRAMMING THE 6502 

"O." If so, we are finished; if not, we read the next word. The 
program which implements this algorithm appears below: 

PARAL 
WATCH 

LDX COUNT 
LDA STATUS 
BPL WATCH 
LDA · INPUT 
PHA 
DEX 
BNE WATCH 

COUNTER 
BIT 7 IS "1" IF DATA VALID 
DATA VALID? 
READIT 
SAVE IT IN THE STACK 

The first two instructions of the program read the status infor
mation and cause a loop t.o occur as long as bit 7 of the status 
register is "O." (It is the sign bit, i.e. bit N). 

WATCH LDA STATUS 
BPLWATCH 

When BPL fails, data is valid and we can read it: 

LDAINPUT 

The word has now been read from address INPUT where it was, 
and must be saved. Assuming that the number of words to be trans
ferred is small enough, we use: 

PHA 

If the stack is full, or the number of words to be transferred is large, 
we could not push them on the stack and we would have to transfer 
them to a designated memory area, using, for example, an indexed 
instruction. However, this would require an extra instruction to in
crement or decrement the index register. PHA is faster. 

The word of data has now been read and saved. We will simply 
decrement the word counter and test whether we are finished: 

DEX 
BNEWATCH 

We keep looping until the counter eventually decrements to ''0. '' 
This 6-instruction program can be called a benchmark. A bellchmark 
program is a carefully optimized program designed to test the cap
abilities of a given processor in a specific situation. Parallel trans
fers are one such typical situation. This program has been designed 
for maximum speed and efficiency. Let us now compute the maximum 

220 



INPUT /OUTPUT TECHNIQUES 

transfer speed of this program. We will assume that COUNT is con
tained in page 0. The duration of every instruction is determined by 
inspecting the table at the end of the book and is found to be the 
following: 

CYCLES 
LDX COUNT 3 

WATCH LDA srATUS 4 
BPL WATCH 2/3 (FAIUSUCCEED) 
LDA INPUT 4 
PHA 3 
DEX 2 
BNE WATCH 2/3 (FAIL/SUCCEED) 

The minimum execution time is obtained by assuming that 
data is available every time that we sample STATUS. In other 
words, the first BPL will be assumed to fail every time. Timing is 
then: 3 + (4+2+4+3+2+3) x COUNT. 

Neglecting the first 3 microseconds necessary to initialize the 
counter register, the time used to transfer one word is 18 mi
croseconds. 

The maximum data transfer rate is, therefore, 

- 1- = 55 K bytes per second. 
18(10-6) 

Exercise 6.4: Assume that the number of words to be transfe"ed 
is greater than 256. Modify the program accordingly and deter
mine the impact on the maximum data transfer rate. 

We have now learned to perform high-speed parallel transfers. 
Let us consider a more complex case. 

BIT SERIAL TRANSFER 

A serial input is one in which the bits of information (O's or 
1 's) come in successively on a line. These bits may come in at 
regu1ar int.ervals. This is normally called synchronous transmis
sion. Or else, they may come as bursts of data at random inter
vals. This is called asynchronous transmission. We will develop a 
program which can work in both cases. The principle of the cap
ture of sequential data is simple: we will watch an input line, 
which will be assumed to be line 0. When a bit of data is det;ec1;ed 
on this line, we will read the bit in, and shift it into a holding reg
istier. Whenever 8 bits have been assembled, we will preserve the 

221 



PROGRAMMING THE 6502 

Fig. 6-6: Serial to Parallel Conversion 

byte of data into the memory and assemble the next one. In order 
to simplify, we will assume that the number of bytes to be received 
is known in advance. Otherwise, we might, for example, have to 
watch for a special break character, and stop the bit-serial 
transfer at this point. We have learned to do that. The flow-chart 
for this program appears in Figure 6·7. The program appears 
below: 

SERIAL LDA #$00 
STA WORD 

WOP LDA INPUT BIT 7 IS STATUS, "O" IS DATA 
BPL LOOP BIT RECEIVED? 
LSR A SHIFT IT INTO C 
ROL WORD SAVE BIT IN MEMORY 
BCC LOOP CONTINUE IF CARRY = "O" 
LDA WORD 
PHA SAVE ASSEMBLED BYTE 
LDA #$01 RESET BIT COUNTER 
STA WORD 
DEC COUNT DECREMENT WORD COUNT 
BNE LOOP ASSEMBLE NEXT WORD 

222 



INPUT /OUTPUT TECHNIQUES 

This program has been designed for efficiency and will use new 
techniques which we will explain. (See Fig. 6-6.) 

The conventions are the following: memory location COUNT is 
assumed to contain a count of the number of words to be trans
ferred. Memory location WORD will be used to assemble 8 con
secutive bits coming in. Address INPUT refers to an input regis
ter. It is assumed that bit position 7 of this register is a status flag, 
or a clock bit. When it is "O:' data is not valid. When it is "1:' the 
data is valid. The data itself will be assumed to appear in bit 
position 0 of this same address. In many instances, the status 
information will appear on a different register than the data reg-

POLLING OR SERVICE REQUEST 

READ WORD COUNT 

NO 

STORE Bl:r 
INCREMENT COUNTER 

NO 

STORE WORD 
RESET BIT COUNTER 

DECREMENT WORD COUNT 

NO 

DONE 

Ag. 6-7: Bit 5erlal Transfer: Aowchart 

223 



PROGRAMMING THE 6502 

ister. It should be a simple task, then, to modify this program 
accordingly. In addition, we will assume that the first bit of data 
to be received by this program is guaranteed to be a "l." It indi
cates that the real data follows. If this were not the case, we will 
see later an obvious modification to take care of it. The program 
corresponds exactly to the flowchart of Figure 6-7. The first few 
lines of the program implement a waiting loop which tests 
whether a bit is ready. To determine whether a bit is ready, we 
read the input register then test the sign bit (N). As long as this 
bit is "O;' the instruction BPL will succeed, and we will branch 
back to the loop. Whenever the status (or clock) bit will become 
true ("1"), then BPL will fail and the next instruction will be 
executed. 

Remember that BPL means "Branch on Plus," i.e. when bit 7 
(the sign bit) is "O." This initial sequence of instructions corre
sponds to arrow 1 on Figure 6-6. 

At this point, the accumulator contains a "1" in bit position 7 
and the actual data bit in bit position 0. The first data bit to arrive 
is going to be a "1:' However, the following ones may be either "O" 
or "l." We now wish to preserve the data bit which has been 
collected in position 0. The instruction: 

LSRA 

shifts the contents of the accumulator right by one position. This 
causes the right-most bit of A, which is our data bit, to fall into 
the carry bit. We will now preserve this dat.a bit into the memory 
location WORD (this is illustrated by arrows 2 and 3 in Fig. 6-6): 

ROLWORD. 

The effect of this instruction is to read the carry bit into the 
right-most bit position of address WORD. At the same time, the 
left-most bit of WORD falls into the carry bit. (If you have any 
doubts about the rotation operation, refer to Chapter 4!) 

It is important to remember that a rotation operation will both 
save the carry bit, here into the right-most bit position, and also 
recondition the carry bit with the value of bit 7. 

Here, a "O" will fall into the carry. The next instruction: 

BCC LOOP 

OOsts the carry and branches back to address LOOP as long as the 
carry is "O." This is our automatic bit count.er. It can readily be 

224 



INPUT/OUTPUT TECHNIQUES 

seen that as a result of the first ROL, WORD will contain 
"00000001!' Eight shifts later, the "1" will finally fall into the 
carry bit and stop the branching. This is an ingenious way to 
implement an automatic loop counter without having to waste an 
instruction to decrement the contents of an index register. This 
technique is used in order to shorten the program and improve its 
performance. 

Whenever BCC finally fails, 8 bits have been assembled into I~ 
cation WORD. This value should be preserved in the memory. This 
is accomplished by the next instructions (arrow 4 in Fig. 6-6): 

LDAWORD 
PHA 

We are here saving the WORD of data (8 bits) into the stack. 
Saving it into the stack is possible only ifthere is enough room in 
the stack. Provided that this condition is met, it is the fastest way 
to preserve a word in the memory. The stack pointer is updated 
automatically. If we were not pushing a word in the stack, we 
would have to use one more instruction to update a memory 
pointer. We could equivalently perform an indexed addressing 
operation, but that would also involve decrementing or incre
menting the index, using extra time. 

After the first WORD of data has been saved, there is no longer 
any guarantee that the first data bit to come in will be a "I ." It can 
be anything. We must, therefore, reset the contents of WORD to 
"00000001" so that we can keep using it as a bit counter. This is 
performed by the next two instructions: 

LDA #$01 
STA WORD 

Finally, we will decrement the word counter, since a word has 
been assembled, and test whether we have reached the end of the 
transfer. This is accomplished by the next two instructions: 

DEC COUNT 
BNE LOOP 

The above program has been designed for speed, so that one 
may capture a fast input stream of data bits. Once the program 
terminates, it is naturally advisable to immediately read away 
from the stack the words'that have been saved there and transfer 
them elsewhere into the memory. We have already learned to 

225 



PROGRAMMING THE 6502 

perform such a block transfer in Chapter 2. 

Exercise 6.5: : Compute the maximum speed at which this pro
gram will be able to read serial bits. To compute this speed, as
sume that addresses WORD and COUNT are kept in Page 0. Also, 
assume that the complete program resides within the same page. 
Look up the number of cycles required by every instruction, in the 
table at the end of this book, then compute the time which will 
elapse during execution of this program. To compute the length 
of time which will be used by a loop, simply multiply the total 
duration of this loop, expressed in microseconds, by the number 
of times it will be executed. Also, when computing the maximum 
speed, assume that a data bit will be ready every time that the in
put location is sensed. 

This program is more difficult to understand than the previous 
ones. Let us look at it again (refer to Figure 6-6) in more detail, 
examining some trade-offs. 

A bit of data comes into bit position 0 of "INPUT" from 
time to time. There might be, for example, three "l's" in succession. 
We must, therefore, differentiate between the successive bits com
ing in. This is the function of the "clock" signal. 

The clock (or ST A TUS) signal tells us that the input bit is 
now valid. 

Before reading a bit, we will therefore first test the status bit. 
If the status is "O", we must wait. If it is "1 ", then the data 
bit is good. 

We assume here that the status signal is connected to bit 7 
of register INPUT. 

Exercise 6.6: Can you explain why bit 7 is used for status, and 
bit 0 for data? 

Once we have captured a data bit, we want to preserve it in 
a safe location, then shift it left, so that we can get the next bit. 

Unfortunately, the accumulator is used to read and test both data 
and status in this program. If we were to accumulate data in the 
accumulator, bit position 7 would be erased by the status bit. 

Exercise 6.7: Can you suggest a way to test status without eras
ing the contents of the accumulator (a special instruction)? If this 

226 



INPUT/OUTPUT TECHNIQUES 

can be done, could we use the accumulator to accumulate the suc
cessive bits coming in? 

Exercise 6.8: Re-write the program, using the accumulator to 
store the bits coming in. Compare it to the previous one in terms 
of speed and number of instructions. 

Let us address two more possible variations: 
We have assumed that, in our particular. example, the very first bit to 

come in would be a special signal, guaranteed to be '' 1 .'' However, in 
the general case, it may be anything. 

Exercise 6.9: Modify the program above, assuming that the very 
first bit to come in is valid data (not to be discarded), and can be 
"O" or "1." Hint: our "bit counter;; should still work co"ectly, 
if you initialize it with the co"ect value. 

Finally, we have been saving the ~led WORD in the st.ack, to 
gain time. We could naturally save it in a specified memory area: 

Exercise 6.10: Modify the program above, and save the assem
bled WORD in the memory area starting at BASE. 

Exercise 6.11: Modify the program above so that the transfer 
will stop when the character "S" is detected in the input stream. 

The Hardware Alternative 

As usual for most standard input/output algorithms, it is possi
ble to implement this procedure by hardware. The chip is called a 
UART.It will automatically accumulate the bits. 8owever, when 
one wishes to reduce the 'component count, this program, or a 
vaiia.tion of it, will ·be used instead. 

Exercise 6.12: Modify the program assuming that data is avail
able in bit position 0 of location INPUT, while the status informa
tion is available in bit position 0 of address INPUT+ 1. 

227 



PROGRAMMING THE 6502 

BASIC 1/0 SUMMARY 

We have now learned to perform elementary input/output op
erations as well as to manage a stream of parallel data or serial 
bits. We are ready to communicate with real input/output devices. 

COMMUNICATING WITH INPUT/OUTPUT DEVICES 

In order to exchange data with input/output devices, we will 
first have to ascertain whether data is available, if we want to 
read it, or whether the device is ready to accept data, if we want to 
send it. Two procedures may be used: handshaking and inter
rupts. Let us study handshaking first. 

Handshaking 

Handshaking is generally used to communicate between any 
two asynchronous devices, i.e., between any two devices which 
are not synchronized. For example, if we want to send a word to a 
parallel printer, we must first make sure that the input buffer of 
this printer is available. We will, therefore, ask the printer: Are 
you ready? The printer will say "yes" or "no." If it is not ready we 
will wait. If it is ready, we will send the data. (See Fig. 6-8.) 

OUTPUT D 
REGISTER 

llOCHIP 

Rg. 6-8: Handshaking (OUtput) 

OUIPUI 

OE VICE 

Conversely, before reading data from an input device, we will 
verify whether the data is valid. We will ask: "Is data valid?" And 
the device will tell us "yes" or "no." The "yes" or "no" may be 
indicated by status bits, or by other means. (See Fig. 6-9.) 

228 



INPUT/OUTPUT TECHNIQUES 

Fig. 6-9: Handshaking (Input) 

In short, whenever you wish to exchange information with 
someone who is independent and might be doing something else 
at the time, you should ascertain that he is ready to communicate 
with you. The usual courtesy rule is to shake his hand. Data 
exchange may then follow. This is the procedure normally used in 
communicating with input/output devices. 

Let us . illustrate this procedure now with a simple example: 

Sending a Character To The Printer 

The character will be assumed to be contained in memory loca
tion CHAR. The program to print it appears below: 

CHARPR LDX CHAR READ CHARACTER 
WAIT LDA STATUS BIT 7 IS "READY'' 

BPL WAIT 
TXA 
STA PRINTD 

Register X is first loaded from the memory with a character to 
be printed. Then we test the status bit of the printer to determine 
that it is ready to accept the character. As long as it is not ready to 
print, however, we branch back to address WAIT, and we. loop. 
Whenever the printer indicates that it is ready to print by setting 
its ready-bit (here bit 7 by convention of address STATUS), we 
can send the character. We transfer the character from regist.er X 
to register A: 

TXA 

229 



PROGRAMMING THE 6502 

and we send it to the printer's output register address, called here 
PRINTD. 

STAPRINTD 

Exercise 6.13: Modify the program above to print a string of n 
characters, where n will be assumed to be less than 255. 

Exercise 6.14: Modify the above program to print a string of 
characters until a "carriage-return" code is encountered. 

Let us now complicate the output procedure by requiring a code 
conversion and by outputting to several devices at a time: 

F 

E/3:' 
A/ A/ 

.....; ... , 
D 

A 

Fig. 6-10: Seven Segment LED 

Output to a 7-Segment LED 

A traditional 7-segment light-emitting-diode (LED) may dis
play the digits "O" through "9," or even "O" through "F" hexadec
imal by lighting combinations of its 7 segments. A 7-segment 
LED is shown in illustration 6-10. The characters that may be gen
erated with this LED appear in Figure 6-11. The segments of an LED 
ARE LABELLED "A" through "G" in Figure 6-10. 

For example, "O" will be displayed by lighting the segments 

230 



INPUT/OUTPUT TECHNIQUES 

"ABCDEF." Let us assume, now, that bit "O" of an output port is 
connected to segment "A," that "1" is connected to segment "B," 
and so on. Bit 7 is not used. The binary code required to light up 
"FEDCBA" (to display "0") is, therefore, "0111111." In hexa
decimal this is ''3F.'' Do the following exercise. 

A 

I I I I LI ,-
I c I I _7 -

D 

I ,- -, If I I r1 ,- I l I I LI _/ 
LI I_ ,- I I - ,-
I I l_/ L l I ,- ,-

Fig. 6-11: Characters Generated with a 7-Segment LED 

Exercise 6.15: Compute the 7-segment equivalent for the hexa
decimal digits "O" through "F. "Fill out the table below: 

Hex LED code Hex LED code Hex LED code Hex LED code 
0 3F' 4 8 c 
1 5 9 D 
2 6 A E 
3 7 B F 

Let us now display hexadecimal values on several LEDs. 

Driving Multiple LEDs 

An LED has no memory. It will display the data only as long as 
its segment lines are active. In order to keep the cost of an LED 
display low, the microprocessor will display information in tum 
on each of the LEDs. The rotation between the LEDs must be fast 
enough so ~t there is no apparent blinking. This implies that 
the time spent from one LED to the next is less than 100 milli-

231 



PROGRAMMING THE 6502 

seconds. Let us design a program which will accomplish this. 
Register Y will be used to point to the LED on which we want to 
display a digit. The accumulator is assumed to contain the 
hexadecimal value to be displayed on the LED. Our first concern 
is to convert the hexadecimal value into its 7-segment repre
sentation. In the preceding section, we have built the equivalence 
table. Since we are accessing a table, we will use the indexed 
addressing mode, where the displacement index will be provided 
by the hexadecimal value. This means that the 7-segment code for 
hexadecimal digit #3 is obtained by looking up the third element 
of the table after the base. The address of the base will be called 
SEGBAS. The program appears below: 

LEDS TAX 
LOA 
LOX 
STX 
STA 

LOX 
STY 

DELAY DEX 
BNE 
DEY 
BNE 
LOY 

OUT RTS 

SEGBAS,X 
#$00 
SEGDAT 
SEGDAT 

#$70 
SEGADR 

DELAY 

OUT 
LEDNBR 

USE HEX VALUE AS INDEX 
READ CODE IN A 

TURN OFF SEGMENT DRIVERS 
DISPLAY DIGIT 

ANY LARGE NUMBER 

POINT TO NEXT LED 

The program assumes that register Y contains the number of the 
LED to be illuminated next, and that register X contains the digit 
to be displayed. 

The program first looks up the 7-segment code corresponding to 
the hexadecimal value contained in the accumulator with its first 
two instructions. The next two instructions load "00" as the value 
of the segments to be displayed, i.e., tum them off. The next 
instruction then selects the appropriate LED segments for dis
play: STY SEGADR. 

A three-instruction loop delay is then implemented before 
switching to the next LED. Finally, the LED pointer is de
cremented. (It could be incremented). 

If the LED pointer decrements to "O," it must be reloaded with 
the highest LED number. This is accomplished by the next two 
instructions. It is assumed here that this is a subroutine and the 
last instruction is an RTS: "return from subroutine." 

232 



INPUT/OUTPUT TECHNIQUES 

Sl'Cf 1 S11f 2 

KARK - - -::-:-, h '21 3 h I s ! & I 7'a I 1 1 
SPACE- - - - KSB 

I LSB 
9,09 HS -.+-f 

Fig. 6-12: Format of a Teletype Word 

Exercise 6.16: Assuming that the above program is a subroutine, 
you will notice that it uses registers X and Y internally and mod
ifies their contents. Assuming that the subroutine may freely use 
the memory area designated by address Tl, 1'2, T3, T4, T5, could 
you add instructions at the beginning and at the end of this pro
gram which will guarantee that, when the subroutine returns, the 
contents of registers X and Y will be the same as when the sub
routine was entered? 

Exercise 6.17: Same exercise as above, but assume that the 
memory area Tl, etc. is not available to the subroutine. (Hint: re
member that there is a built-in mechanism in every computer for 
preserving information in a chronological order). 

We have now solved common input/output problems. Let us 
consider the case of a real peripheral: the Teletype. 

Teletype Input/Output 

The Teletype is a serial device. It both sends and receives words 
of information in a serial format. Each character is encoded in an 
8-bit ASCII format (the ASCII table appears at the end of this 

233 



PROGRAMMING THE 6502 

NO 

NO 

YES 

WAIT4.5ms 

ECHO START BIT 

WAIT9.09ms 

SHIFT IN DATA BIT 

ECHO IT 

YES 

WAIT9.09ms 

OUTPUT STOP BIT 

WAIT 13.59ms 

Ag. 6-13: TTY Input with Echo 

234 



INPUT/OUTPUT TECHNIQUES 

book). In addition, every character is preceded by a "start" bit, 
and terminated by two "stop" bits. In the so-called 20-milliamp 
current loop interface, which is most frequently used, the state of 
the line is normally a "1." This is used to indicate to the processor 
that the line has not been cut. A start is a "1"-to-"O" transition. It 
indicates to the receiving device that data bits follow. The standard 
Teletype is a IO-characters-per-second device. We have just es
tablished that each character requires 11 bits. This means that 
the Teletype will transmit 110 bits per second It is said to be a 110-
baud device. We will design a program to serialize bits in from the 
Teletype at the correct speed. 

One hundred and ten bits per second implies that bits are sepa
rated by 9.09 milliseconds. This will have to be the duration of the 
delay loop to be implemented between successive bits. The format 
of a Teletype word appears in Figure 6-12. The flowchart for bit 
input appears in Figure 6-13. The program follows: 

TTYN LOA STATUS 
BPL TTYIN USUAL STATUS POLL 
JSR DELAY WAIT 
LOA TTY BIT START BIT 
STA TTY BIT ECHO BACK 
JSR DELAY 
LOX #$08 BIT COUNTER 

NEXT LOA TTYBIT SAVE INPUT 
STA TTY BIT ECHO BACK 
LSR A SAVE BIT IN CARRY 
ROL CHAR SA VE BIT IN CHAR 
JSR DELAY 
DEX NEXT BIT 
BNE NEXT 
LOA TTY BIT STOP BIT 
STA TTYBIT 
JSR DELAY 
RTS 

Rg. 6-14: Input from Teletype 

Note that this program differs slightly from the flowchart of Fig. 6-13. 

235 



PROGRAMMING THE 6502 

The program should be examined with attention. The logic is quite 
simple. The new fact is that, whenever a bit is read from the Tele
type (at address TTYBIT), it is echoed back to the Teletype. This 
is a standard feature of the Teletype. Whenever a user presses a key, 
the information is transmitted to the processor and then back to the 
printing mechanism of the Teletype. This verifies that the transmis
sion lines are working and that the processor is operating when a 
character is, indeed, printing correctly on the paper. 

MEMOl!Y +110 

A C 

COUNT!I! 

T£LETYPE 

Rg. 6-15: Teletype Input 

The first two instructions are the waiting loop. The program waits 
for the status bit to become true before it starts reading bits in. 
As usual, the status bit is assumed to come in bit position 7, 
since this position can be tested in one instruction by BPL (Branch 
on Plus-this is the sign bit). 

JSR is the subroutine jump. We use a DELAY subroutine to 
implement the 9.09 ms delay. Note that DELAY can be a delay loop, 
or can use the hardware timer, if our system has one. 

The first bit to come in is the start bit. It should be echoed to the 
Teletype, but otherwise ignored. This is done by instructions 4 and 5. 

Again, we wait for the next bit. But, this time, it is a true 
data bit, and we must save it. Since all shift instructions will 
drop a bit in the carry flag, we need two instructions to preserve 
our data bit (the X in Figure 6-15): one to drop it into C (LSR A), 

236 



INPUT/OUTPUT TECHNIQUES 

and one to preserve it into memory location CHAR (ROL). 
Beware of one problem: the "ROL" will destroy the contents of 

C. If we want to echo the data bit back, a precaution must be tak
en to preserve it before it disappears into CHAR. Finally, we echo 
the data bit (STA TTYBIT) and wait for the next one (JSR 
DELAY) until we accumulate all eight data bits (DEX). 

Whenever we decrement to zero, all 8 bits are in CHAR. We 
just have to echo the STOP bits, and we are finished. 

Exercise 6.18: Write the delay routine which results in the 9.09 
millisecond delay. (DELAY subroutine) 

ENTER ENTER 

SEND START SET BIT 
COUNTER TO 

BIT ELEVEN 

SEND DATA OUTPUT 
BITS A BIT 

DELAY 
SEND STOP 9.1 MSEC 

BIT 

EXIT 

RET 

Rg. 6-16: Teletype Output 

237 



PROGRAMMING THE 6502 

Exercise 6.19: Using the example of the program developed 
above, write a PRINTC program which will print on the Teletype 
the contents of memory location CHAR. 

Exercise 6.20: Modify the program so that it waits for a START 
bit instead of a STATUS bit. 

Printing a String of Charact.ers 

We will assume that the PRINTC routine (see Exercise 6-18) 
takes care of printing a character on our printer, display, or any 
output device. We will here print the contents of memory loca
tions START +N to START. 

We will naturally use the indexed addressing mode and the 
program is straight-forward: 

PSTRING 
NEXT 

x 

LDX 
LDA 
JSR 
DEX 
BPL 

COUNTER 

#N NUMBERS OF WORDS 
START +N 
PRINTC 

NEXT 

M£MORY 

A 

TO PRINTER 

Fig. 6-17: Print a Memory Block 

PERIPHERAL SUMMARY 

We have now described the basic programming techniques used 
to communicate with typical input/output devices. In addition to 
the data transfer, it will be necessary to condition one or more 

238 



INPUT/OUTPUT TECHNIQUES 

control registers within each 1/0 device in order to condition cor
rectly the transfer speeds, the interrupt mechanism, and the var
ious other options. The manual for each device should be con
sulted. (For more details on the specific algorithms to exchange 
information with all the usual peripherals, the reader is referred 
to our book,"C207, Microprocessor Interfacing Techniques.'') 

We have now learned to manage single devices. However, in a 
real system, all peripherals are connected to the busses, and may 
request service simultaneously. How are we going to schedule the 
processor's time? 

INPUT/OUTPUT SCHEDULING 

Since input/output requests may occur simultaneously, a 
scheduling mechanism must be implemented in every system to 
determine in which order service will be granted. Three basic 
input/output techniques are used, which can be combined. 
They are: polling, interrupt, DMA. Polling and interrupts 
will be described here. DMA is purely a hardware tech-

MEMORY 

DATA BUS 

MPU 

? 

L---------
L-------------------J? 

MPU 

INTI 

HOLD 

MPU 
I 
I L _______ _ 

Fig. 6-18: Three Methods of 1/0 Control 

INT 

INTERRUPT 

OMA 

239 



PROGRAMMING THE 6502 

nique, and as such will not be described here. (It is covered in 
the reference books C201 and C207)· 

Polling 

Conceptually, polling is the simplest method for managing multiple 
peripherals. With this strategy, the processor interrogates the devices 
connected to the buses in turn. If a device requests service, the service 
is granted. If it does not request service, the next peripheral is exam
ined. Polling is not just used for the devices, but for any device service 
routine. 

YES 

SERVICE ROUTINE 

FOR DEVICE A 

YES 

SERVICE ROUTINE 

FOR DEVICE B 

YES 

SERVICE ROUTINE 

FOR DEVICE C 

Fig. 6-19: Polling Loop Flow-chart 

As an example, if the system is equipped with a Teletype, a tape re
corder, and a CRT display, the polling routine would interrogate the 
Teletype: "Do you have a character to transmit?" It would interrogate 
the Teletype output routine, asking: "Do you have a character to send?" 
Then, assuming that the answers are negative so far, it would interro
gate the tape recorder routines, and finally the CRT display. In the case 
that only one device is connected to a system, polling will be used as 

240 



INPUT/OUTPUT TECHNIQUES 

SET READER 
ENABLE ON 

READ CHARACTER 

Fig. 6-20: Reading from a Paper-Tape Reader 

LOAD PUNCH 
OR PRINTER 

BUFFER 

TRANSMIT 
DATA 

NO 

Fig. 6-21: PrlnHng on a Punch or Printer 

241 



PROGRAMMING THE 6502 

well to determine whether it needs service. As an example, the flow
charts for reading from a paper-tape reader and for printing on a print
er appear in Figures 6-20 and 6-21. 

Example: a polling loop for devices 1, 2, 3, 4, (see Fig. 6-18): 

POLL4 LDA STATUSl SERVICE REQUEST IS BIT 7 
BMI ONE 
LDA STATUS2 DEVICE2? 
BMI TWO 
LDA STATUS3 DEVICE3? 
BMI THREE 
LDA STATUS4 DEVICE4 
BMI FOUR 
JMP POLL4 TEST AGAIN 

Bit 7 of the status register for each device is "l" when it wants 
service. When a request is sensed, this program branches to the 
device handler, at address ONE for device 1, TWO for device 2, etc. 

The advantages of polling are obvious: it is simple, does not 
require any hardware assistance, and keeps all input/output syn
chronous with the program operation. Its disadvantage is just as 
obvious: most of the processor's time is wasted looking at devices 
that do not need service. In addition, the processor might give 
service to a device too late, by wasting so much time. 

Another mechanism is, therefore, desirable which guarantees 
that the processor's time can be used to perform useful computa
tions, rather than polling devices needlessly all the time~ How
ever, let us stress that polling is used extensively whenever a 
microprocessor has nothing better to do, as it keeps the overall 
organization simple. Let us now examine the essential alterna
tive to polling: interrupts. 

Interrupts 

The concept of interrupts is illustrated in Figure 6-18. A spe
cial hardware line is available, the interrupt line, which is con
nected to a specialized pin of the microprocessor. Multiple input/ 
output devices may be connected to this interrupt line. When any 
one of them needs service, it sends a level or a pulse on this line. 
An interrupt signal is the service request from an input/output 

242 



INPUT/OUTPUT TECHNIQUES 

IRQ 

STACK PC, P 

* 
SET I 

i 

LOAD PC FROM 

(FFFE, FFFF) 

JUMP 

Fig. 6-22: Interrupt Processing 

NO 

YES IGNORE 
INTERRUPT 

243 



PROGRAMMING THE 6502 

device to the processor. Let us examine the response of the proc
essor to this interrupt. 

In any case, the processor completes the instruction that it was 
currently executing, or else this would create chaos inside the 
microprocessor. Next, the microprocessor should branch to an 
interrupt handling routine which will process the interrupt. Branching 
to such a subroutine implies that the contents of the program counter 
must be saved on the stack. An interrupt must, there/ ore, cause 
the automatic preservation of the program counter on the stack. 
In addition, the status register (P) should also be automatically 
preserved, as its contents will be alt.ered by any subsequent in
struction. Finally, if the interrupt handling routine should modify 
any internal registers, these internal registers should also be pre
served on the stack. 

After all these registers have been preserved, one can branch to 
the appropriate interrupt handling address. At the end of this 
routine, all the registers should be restored, and a special inter
rupt return should be executed so that the main program will 
resume execution. Let us examine in more detail the two inter
rupt lines of the 6502. 

6502 Interrupts 

The 6502 is equipped with two interrupt lines, IRQ and NMI. 
IRQ is the regular interrupt line, while NMI is a higher priority 
non-maskable interrupt. Let us examine their operation. 

IRQ is the level-activated interrupt. The status of the IRQ line 
will be sensed or ignored by the microprocessor depending upon 
the value of its internal flag I (interrput-mask flag). We will ini· 
tially assume that interrupts are enabled. Whenever IRQ is 
activated, the interrupt will be sensed by the microprocessor. As 
soon as the interrupt is accept.eel (upon completion of the instruc
tion currently executing), the internal I flag is automatically set. 
This will prevent the microprocessor from being interrupted 
again at a time when it is manipulating internal registers. The 
6502 then automatically preserves the contents of PC (the pro
gram counter) and P (the status register) into the stack. The 
aspect of the stack after an interrupt has been processed is illus
trated by Figure 6-23. 

Next, the 6502 will automatically fetch the content of memory 
locations "FFFE" and "FFFF." This 16-bit memory location will 

244 



INPUT/OUTPUT TECHNIQUES 

s ---11~ 

p 

PCL 

PCH 

Fig. 6-23: 6502 Stack After Interrupt 

contain the interrupt-vector. The 6502 will fetch the contents of 
this address, then branch to the specified 16-bit vector. The user is 
responsible for depositing this vectoring address at "FFFE" -
"FFFF". However, several devices may be connected to the IRQ 
line. In this case, we are branching to a single interrupt handling 
routine. How are we going to differentiate between the various 
devices? This will be studied in the next section. 

The NMI interrupt is essentially identical to IRQ except that it 

FFFA 

FFFB 

FFFC 

FFFD 

Ff FE 

Ff FF 

Fig. 6-24: Interrupt Vectors 

245 



PROGRAMMING THE 6502 

cannot be masked by the I bit. It is a higher priority interrupt, 
typically used for power failures. Its operation is otherwise iden
tical except that the processor branches automatically to the con
tents of "FFFA"-"FFFB". This is illustrated in Figure 6-24. 

The return from an interrupt is accomplished by instruction 
RTI. This instruction transfers back into the microprocessor the 
top three words of the stack which contains P and PC (the 16-bit 
program counter). The program which had been interrupted can 
then resume. The internal state of the machine is exactly identi
cal to the one at the time that the interrupt occurred. The effect 
has been to introduc~ a delay in the execution of the program. 

Prior to returning from an interrupt, the programmer is re
sponsible for clearing the interrupt that it has now serviced, and 
restoring the interrupt disable flag. In addition, should the inter
rupt handling routine modify the contents of any register, such as 
X or Y, the programmer is specifically responsible for preserving 
these registers in the stack prior to executing the interrupt han
dling routine. Otherwise, the contents of these registers will be 
modified, and when the interrupted program resumes execution, 
it will not be correct. · · · 

Assuming that the interrupt handling routin~ will use regis
ters A, X, and Y, five instructions will be necessary within the 
interrupt handler to preserve these registers. They are: 

SAVAXY PHA 
TXA 
PHA 
TYA 
PHA 

PUSH A IN THE STACK 
TRANSFER X TO A 
PUSH IT 
TRANSFER Y TO A 
PUSH IT 

Unfortunately, the 6502 may only directly push the contents of A or 
Pon the stack. As a result, preserving X and Y is time-consuming; it 
requires 4 instructi~ps. This is illustrated in Figure 6-25. 

Upon the completion of the interrupt handling routine, these 
registers must be restored and the interrupt han~iler must termi
nate with the sequence of six instructions: 

246 



INPUT/OUTPUT TECHNIQUES 

PLA PULL Y FROM STACK 
TAY RESTORE Y 
PLA PULL X 
TAX RESTORE X 
PLA RESTORE A 
RTI EXIT 

---s 

y 

x 

A 

p 

PCL 

PCH 

STACK 

Fig. 6-25: Saving all the Registers 

Exercise 6.21: Using the table indicating the number of cycles 
per instruction, in the Appendix, compute how much time will be 
lost by saving and then restoring registers A, X, and Y. 

For a graphic comparison of the polling process vs. the interrupt 
process, refer t.o Figure 6-18, where the polling process is illustrat.ecl 
on the top, and the intarupt proooss underneath. It can be seen that 
in the polling technique, the program wastes a lot of time waiting. 
Using interrupts, the program is interrupted, the interrupt is serviced, 
then the program resumes. However, the obvious disadvantage of an 
interrupt is to introduce several additional instructions at the beginning 
and at the end, resulting in a delay before the first instruction of the 
device handler can be executed. This is additional overhead. 

247 



PROGRAMMING THE 6502 

Having clarified the operation of the two interrupt lines, let us 
now consider two important problems remaining. 

1. How do we resolve the problem of multiple devices trigger
ing an interrupt at the same time? 

2. How do we resolve the problem of an interrupt occurring 
while another interrupt is being serviced? 

Multiple Devices Connected to a Single Intenupt Line 

Whenever an interrupt occurs, the processor automatically 
branches to an address contained at "FFFE-FFFF" (for an IRQ), 
or at "FFFA-FFFB" (for an NMI). Before it can do any effective 
processing, the interrupt handling routine must determine which 
device triggered the interrupt. Two methods are available to iden
tify the device, as usual: a software method and a hardware 
method. 

INT 1 POLLING 

WHICH 2 
DEVICE? 

L 
POLLING 
ROUTINE 

SERVICE 
ROUTINE 

SERVICE 
ROUTINE N 

INTERRUPT VECTORED -
3 

1--

..._ SERVICE 
ROUTINE 

I-" 

Fig. 6-26: Polled vs. Vectored Interrupt 

p 

In the software method, polling is used: the microprocessor in
t.errogates each of the devices in turn and asks them, "Did you 
trigger the interrupt?" If not, it int.errogates the next one. This 
process is illustrated in Figure 6-26. A sample program is: 

LDA STATUS I 
BMI ONE 
LDA STATUS2 
BMI TWO 

248 



INPUT/OUTPUT TECHNIQUES 

The hardware method uses additional components but provides 
the address of the interrupting device simultaneously with the 
interrupt request. The device now universally used to provide this 
facility is called a "PIC," or priority-interrupt-controller. Such a 
PIC will automatically place on the data bus the actual required 
branching address for the interrupting peripheral. When the 
6502 goes to "FFFE"-"FFFF," it will fetch this vectoring address. 
This concept is illustrated in Figure 6-26. 

In most cases, the speed of reaction to an interrupt is not cru
cial, and a polling approach is used. If response time is a primary 
consideration, a hardware approach must be used. 

IFU 

INT 

110 
INTERFACE 1 

••• 

.__ ____ ..........,ui.i,...o _____ --J INT II 

Fig. 6-27: Several Devices May Use the Same Interrupt Line 

Multiple Interrupts 

The next problem which may occur is that a new interrupt can 
be triggered during the execution of an interrupt handling 
routine. Let us examine what happens and how the stack is used 
to solve the problem. We have indicated in Chapter 2 that this 
was another essential role of the stack, and the time has come 
now to demonstrate its use. We will ref er to Figure 6-28 to illus
trate multiple interrupts. Time elapses from left to right in the 
illustration. The contents of the stack are shown at the bottom of 
the illustration. Looking at the left, at time TO, program P is in 
execution. Moving to the right, at time Tl, interrupt 11 occurs. We 
will assume that the interrupt mask was enabled, authorizing 11. 
Program P will be suspended. This is shown at the bottom of the 
illustration. The stack will contain the program counter and the 
status register of Program P, at least, plus any optional registers 
that might be saved by the interrupt handler or 11 itself. 

At time Tl, interrupt 11 starts executing until time T2. At time 
T2, interrupt 12 occurs. We will assume that interrupt 12 is con
sidered to have a higher priority than interrupt IL If it had a 

249 



PROGRAMMING THE 6502 

TIME T0 T, T, T, T. T, T. 

PROGRAM P .,___.... - - - - - - - - --I 

INTERRUPT 1, - - - - - - ----- - - - .. .--

INTERRUPT 11 

INTERRUPT 11 

I 

I 

I I 

I @ I m I 

STACK GJ G G 
T, r, T, T. T, T. 

Fig. 6-28: Stack During Interrupts 

lower priority, it would be ignored until 11 had been completied. At 
time T2, the registers for 11 are stacked, and this appears at the 
bottom of the illustration. Again, the contents of the program 
counter and P are pushed into the stack. In addition, the routine 
for 12 might decide to save an additional few registers. 12 will now 
execute to completion at time T3. 

When 12 terminates, the contents of the stack are automati
cally popped back into the 6502, and this is illustrated at the 
bottom of Figure 6-28. Automatically, interrupt 11 thus resumes 
execution. Unfortunately, at time T4, an interrupt 13 of higher 
priority occurs again. We can see at the bottom of the illustration 
that the registers for 11 are again pushed into the stack. Intsrupt 
13 executes from T4 to TS and terminates at TS. At that time, the 
contents of the stack are popped into 6502, and interrupt 11 re
sumes execution. This time it runs to completion and terminates 
at T6. At T6, the remaining registers that have been saved in the 
stack are popped into the 6502, and program P may resume execu-
tion. The reader will verify that the stack is empty at this point. 
In fact, the number of dashed lines indicating program suspen
sion indicates at the same time the number of levels there are in the 
stack. 

Exercise 6.22: If we assume that every time an interrupt occurs 
the program counter PC, the register P, and the accumulator will 
be saved, this will be a minimum of four locations. (In practice, X 

250 



INPUT/OUTPUT TECHNIQUES 

and Y may be saved as wel~ resulting in six locations usedJ.As
suming, therefore, that three registers only are saved in the stack, 
how many interrupt levels does the 6502 allow? (Remember that 
the stack is limited to 256 locations with Page 1). 

Exercise 6.23: Assuming this time that 5 registers may be pre
served in the stack, what is the maximum number of simultane
ous interrupts that can be handled? Will any other factor reduce even 
further the number of simultaneous interrupts? 

It must be stressed, however, that, in practice, microprocessor 
systems are normally connected to a small number of devices 
using interrupts. It is, therefore, unlikely that a high number of 
simultaneous interrupts will occur in such a system. 

We have now solved all the problems normally associated with 
interrupts. Their use is, in fact, simple and they should be used to 
advantage even by the novice programmer. Let us complete our 
analysis of the 6502 resources by introducing one more instruc
tion whose effect is identical to that of a synchronous interrupt: 

Break 

The BRK command in the 6502 is the equivalent of a software 
interrupt. It can be inserted in a program and results, just as in 
the case of IRQ, in the automatic preservation of PC and P, and 
an indirect branch to "FFFE "-" FFFF." This instruction can be 
used to advantage to generate programmed int.erupts during the de
bugging of a program. This will result in creating a breakpoint, halt
ing the program at a predetermined location, and branching to a 
routine which will typically allow the user to analyze the pro
gram. Since the net effect of the break and an interrupt are iden
tical after they have occurred, a means must be provided for the 
programmer to determine whether it was an interrupt or a break. 
The 650~ will set a B-flag in register P (saved in the stack) to "I" if 
it was a break and to "O" if it was an interrupt. Testing the status 
of this bit may be accomplished by the following simple program: 

BTEST PLA 
PHA 
AND #$10 
BNE BRKPRG 

READ TOP OF STACK INTO A 
WRITE IT BACK 
MASK B-BIT 
GO TO BREAK PROGRAM 

251 



PROGRAMMING THE 6502 

This test program is normally inserted at the end of the polling 
sequence which determines the nature of the device that 
triggered the interrupt. · 

Caution: A feature of the break is to preserve the contents of 
the program count.er plus 2 automatically. Since the break is only 
a 1-byt.e instruction, the programmer may sometimes have to adjust 
the contents of the program counter in the stack by using an 
incrementing or decrementing instruction in order to resume 
execution of the correct address. In particular, the break is exten
sively used during debugging by writing it over another instruc
tion in the program. If the program is reassembled prior to execu
tion, the contents of the program counter which have been saved 
will normally have to be decremented by 1. 

SUMMARY 

We have presented in this chapter the range of techniques used 
to communicate with the outside world. From elementary input/ 
output routines to more complex programs to communicate with 
actual peripherals, we have learned to develop all the usual pro
grams and have even examined the efficiency of benchmark pro
grams in the case of a parallel transfer and a parallel-to-serial 
conversion. Finally, we have learned to schedule the operation of 
multiple peripherals by using polling and interrupts. Naturally, 
many other exotic input/output devices might be connected to a 
system. With the array of techniques which have been presented 
so far, and with an understanding of the peripherals involved, it 
should be possible to solve most usual problems. 

In the next chapter, we will examine the actual characteristics 
of the input/output interface chips usually connected to a 6502. 
Then, we will consider the basic data structures that the pro
grammer may consider using. 

EXERCISES 

Exercise 6.24: A 7-segment LED display can also display digits 
other than the hex alphabet. Compute the codes for H,l,J,L,O,P,S, 
U, Y, g,h,~j,~n,o,p,r, t,u,y. 

252 



INPUT/OUTPUT TECHNIQUES 

Exercise 6.25: The flow-chart for interrupt management appears 
in Figure 6-29 below. Answer the following questions: 
a-What is done by hardware, what is done by software? 
b-What is the use of the mask? 
c-How many registers should be preserved? 
d-How is the interrupting device identified? 
e-What does the RT/ instruction do? How does it differ from 

a subroutine return? 
/-Suggest a way to handle a stack overflow situation. 
g- What is the overhead r'lost time'} introduced by the interrupt 

mechanism? 

EXECUTE 
INSTRUCTION 

SET MASK 

PRESERVE REGISTERS 
(if nocesscry) 

UNSET MASK 

IDENTIFY DEVICE 
(if nocessa 

EXECUTE ROUTING 

RESTORE REGISTERS 

RETURN 

Fig. 6-29: Interrupt Logic 

253 



7 

INPUT/OUTPUT DEVICES 

INTRODUCTION 

We have learned how to program the 6502 microprocessor in 
most usual situations. However, we should make a special men
tion of the input/output chips normally connected to the micro
processor. Because of the progress in LSI integration, new chips 
have been introduced which did not exist before. As a result, pro
gramming a system requires, naturally, first programming a mi
croprocessor itself, but also programming the input/output chips. 
In fact, it is often more difficult to remember how to program the 
various control options of an input/output chip than to program 
the microprocessor itself! This is not because the programming in 
itself is more difficult, but because each of these devices has its 
own idiosyncrasies. We are going to examine here first the most 
general input/output device, the programmable input/output chip 
(in short a "PIO"), then "improvements" over this standard PIO, 
now frequently used with the 6502: the 6520, 6530, 6522 and 
6532. The complete details are presented in reference 0302. 

The Standard PIO (6520) 

There is no "standard PIO." However, the 6520 device is essen
tially analogous in function to all similar PIOs produced by other 
manufacturers for the same purpose. The purpose of a PIO is to 
provide a multiport connection for input/output devices. (A "port " 
is simply a set of 8 input/output lines). Each PIO provides at least 

254 



INPUT/OUTPUT DEVICES 

two sets of 8-bit lines for I/O devices. Each 1/0 device needs a da'ta 
buffer in order to stabilize the contents of the data bus on output 
at least. Our PIO will, therefore, be equipped at a minimum with 
a buffer for each port. 

In addition, we have established that the microcomputer will 
use a handshaking procedure, or else interrupts to communicate 
with the 1/0 device. The PIO will also use a similar procedure to 
communicate with the peripheral. Each PIO must, therefore, be 
equipped with at least two control lines per port to implement the 
handshaking function. 

The microprocessor will also need to be able to read the status 
of each port. Each port must be equipped with one or more s'tatus 
bits. Finally, a number of options will exist within each PIO to 
configure its resources. The programmer must be able to access a 
special register within the PIO to specify the programming op
tions. This is the control register. In the case of the 6520, the 
status information is part of the control register. 

REGISTER l 
SELECT 

iRQA 
IRQB 

RSO 
RSI 

~n ~!2 ~ 
mo ~ill§;! 60~ 9z (fl _, ~g> iii~ :c _, ~ ;;1>m 
~~ ~~ ~ ~ 

CRB DDRB PDRB 

ii fi 
0-CZ _,..., 
..., c s _, 

Fig. 7-1: Typical PIO 

8 

8 

CB2 

CBI 

One essential faculty of the PIO is the fact that each line may 
be configured as either an input or an output line. The diagram of 
a PIO appears in illustration 7-1. The programmer may specify 
whether any line will be input or output. In order to program the 
direction of the lines, a data direction register is provided for each 
port. A "0" in a bit position of the data direction register specifies 
an input. A '' l '' specifies an output. 

255 



PROGRAMMING THE 6502 

It may be surprising to see that a "O" is used for input and a "I" 
for output when really "O" should correspond to Output and "I" to 
Input. This is quite deliberate: whenever power is applied to the 
system, it is of great importance that all the 1/0 lines be confi
gured as input. Otherwise, if the microcomputer is connected to 
some dangerous peripheral, it might activate it by accident. 
When a reset is applied, all registers are normally zeroed and that 
will result in configuring all input lines of the PIO as inputs. The 
connection to the microprocessor appears on the left of the illus
tration. The PIO naturally connects to the 8-bit data bus, the mi
croprocessor address bus, and the microprocessor control bus. 
The programmer will simply specify the address of any register 
that it wishes to access within the PIO. The 6520, which is com
patible with Motorola's 6820, has inherited one of its peculiari
ties: it is equipped with 6 internal registers. However, one can 
specify only one out of four registers! The way this problem is 
solved is by switching bit position 2 of the control register. When 
this bit is a "O," the corresponding data direction register may be 
selected. When it is a "!," the data register may be selected. 
Therefore, whenever the programmer wants to write data into the 
data direction register, he will first have to make sure that bit 2 
of the appropriate control register is zero, before he can select 
this register. This is somewhat awkward to program, but it is im
portant to remember in order to avoid painful difficulties. 

6 4 2 1 0 

CRA IRQAI IRQA2 CA2 CONTROL I DORA I CA I I 
• ACCESS CONTROL 

READ-ONLY READ/WRITE BY MPU 

Rg. 7-2: PIA Control Word Format 

RSI RSO CRA 2 CRB 2 REGISTER SELECTED 

0 0 I - PERIPHERAL REGISTER A 

0 0 0 - DATA DIRECTION REGISTER A 

0 I - - CONTROL REGISTER A 

I 0 - I PERIPHERAL REGISTER B 

I 0 - 0 DATA DIRECTION REGISTER B 

I I - - CONTROL REGISTER B 

Fig. 7-3: Addressing PIA Registers 

256 



INPUT /OUTPUT DEVICES 

'lb clarify the effect of the address selection on the 6520, the 
address selection table appears above. RSO and RSl are two 
regist.er-selection signals which are derived from the address bus. 
In other words, they represent two bits of the address specified by 
the programmer. CRA is the control register for port A. CRA (2) 
is bit 2 of this register. CRB is the control register for port B. 

The Internal Control Register 

The Control Register of the 6520 specifies, as we have seen, in 
bit position 2, a selection mode for the internal registers of the 
port. In addition, it provides a number of options for generating or 
sensing interrupts, or for implementing automatic handshake 
functions. The complete description of the facilities provided is 
not necessary here. Simply, the user of any practical system which 
uses the 6520 will have to refer to the data sheet showing the 
effect of setting the various bits of the control register. Whenever 
the system is initialized, the programmer will have to load the 
control register of the 6520 with the correct contents for the ex
pected application. 

~2 PAO 

• 
R~ • 

• 
6530 PA7 

Al 
• 
• PBO 

• • 
A9 • PB5/CS2 

• PB6/CS1 

RES PB7/IRQ 

vss vcc 

Fig. 7-4: 6530 Plnout 

257 



PROGRAMMING THE 6502 

The6530 

The 6530 implements a combination of four functions, RAM, 
ROM, PIO, and TIMER. The RAM is a 64x8 memory. The ROM 
is a 1Kx8 memory. The timer provides the programmer with mul
tiple interval timing facilities. The PI 0 section is essentially ana
logous to the 6520, which we have described: There are two ports, 
each with a data register and a data direction register. A uo" in a 
given bit position of the direction register specifies an input, 
while a "l" specifies an output. 

The programmable interval timer can be programmed to count 
up to 256 intervals (it has 8 bits internally). The programmer may 
specify the time period to be 1, 8, 64, or 1024 times the systan clock. 
Whenever the count is reached, the interrupt flag of the chip will be 
set to a logic "1 ". The contents of the timer are set by means of the 
data bus. The four possible time intervals must be specified on lines 
AO and Al of the address bus. 

Three pins of port B have a dual role: PB5, PB6, and PB7 may 
be used for control functions. Pin PB7, for example, may be pro
grammed as an interrupt input. 

This chip is used, in particular, on the KIM board. (Note: 
on the KIM, PB6 is not available.) 

Programming a PIO 

As an example, here is a program to use a 6520 or a 6522. 
(V\7 e assume that the control register has already been set). 

LDA #FF SET DATA DIRECTION 
STA DDRB CONFIGURE B FOR OUTPUT 
LDA #00 
STA IORB GENERATEZEROOUTPUT 

DDRB is the address of the Data Direction Register of port B for this 
PIO. IORB is the Input/Output or data register for port B; 
"FF" hexadecimal is "11111111" binary= all outputs. 

The6522 

The 6522, also called "versatile interface adapter" (VIA), is an 
improved version of the 6520. In addition to the capabilities of the 

258 



INPUT/ OUTPUT DEVICES 

Fig. 7-5: Using a PIA: Load Control Register 

Fig. 7-6: Using a PIA: Load Data Direction 

CA I 
CA 2 

PAfJ.PA7 

PSO.PB7 

CB I 
CB 2 

259 



PROGRAMMING THE 6502 

IRQA --+-------------------~ 

00-07 

260 

REID -

CONTROL 

! CHIP SELECT 

I REGISTER 
SELECT 

IROB ... +-------------------~ 

Fig. 7-7: Using a PIA: Read Status 

Fig. 7-8: Using a PIA: Read Input 

PAO-PA7 

PBO-PB7 

CB I 
CB 2 



INPUT /OUTPUT DEVICES 

6520, it provides two programmable interval timers and a serial
to-parallel, plus parallel-to-serial converter, plus input data latch
ing. The detailed hardware description of this component is be
yond the scope of this book. Simply, with the description which 
has been provided for the previous components, it should be 
simple for the programmer to familiarize himself with the ad
dressing of the internal registers of this component as well as its 
programming. This information is supplied in the manufacturer's 
data sheets. 

The6532 

The 6532 is a combination chip which includes one 128 x 8 RAM, 
a PIO with two bi;.directional ports, and a programmable interval 
timer. It is used on the SYM board, manufactured by Synertek 
Systems, which is analogous to the KIM board, manufactured 
by MOS Technology and by Rockwell. Again, the user should 
carefully examine the data sheets for this component in order to 
learn how to address and use the various internal registers. 

SUMMARY 

Unfortunately, in order to make effective use of such compo
nents, it will be necessary to understand in detail the function of 
every bit, or group of bits, within the various control registers. 
These complex new chips automate a number of procedures that 
had to be carried out by software or special logic before. In par
ticular, many of the handshaking procedures are automated with
in components such as a 6522. Also, some interrupt handling 
and detection may be internal. With the information that has 
been presented in the preceding chapter, the reader should be able 
to read the corresponding data sheets and understand what the 
functions of the various signals and registers are. Naturally, still 
new components are going to be introduced which will offer a 
hardware implementation of still more complex algorithms. 
For a comprehensive description of I/O devices and techniques, the 
reader is ref erred to the companion volume 0302. 

261 



8 

APPLICATION EXAMPLES 
INTRODUCTION 

This chapter is designed to t,est your new programming skills by 
presenting a collection of utility programs. These programs, or 
"routines,'' are frequently encountered in applications and are generally 
called "utility routines." They will require a synthesis of the knowledge 
and techniques presented so far. 

We are going to fetch characters from an 1/0 device and process 
them in various ways. But first, let us clear an area of the memory 
(this may not be necessary; each of these programs is only presented as 
a programming example). 

CLEAR A SECTION OF MEMORY 

We want to clear (zero) the contents of the memory from ad
dress BASE + 1 to address BASE + LENGTH, where 
length is less than 256. 

The program is: 

262 



ZEROM 

CLEAR 

LDX#LENGTH 
LDA#O 
STA BASE, X 
DEX 
BNECLEAR 
RTS 

APPLICATION EXAMPLES 

Note that register X is used as an index to point to the current 
location of the memory section to be zeroed. 

The accumulator A is loaded only once with the value 0 (all O's), 
then written at successive memory locations: 
BASE + LENGTH, BASE + LENGTH - 1, etc., until X dec
rements to zero. When X=O, the program returns. 

In a memory test for example, this program could be used to zero 
a block, then verify its contents. 

Exercise 8.1: Write a memory test program which will zero a 256-word 
block and verify that each location is 0. Then, it will write all l's and 
verify the contents of the block. Next, it will write 01010101 and verify 
the contents. Finally, it will write 10101010 and verify the contents. 

Let us now poll our I/ 0 devices to find which one needs service. 

POLLING 1/0 DEVICES 

We will assume that 3 1/0 devices are connected to our system. 
Their status registers are located at addresses IOSTATUSl, 
IOSTATUS2, and IOSTATUS3. 

If their status bits are in bit position 7, we will just read the status 
registers, and test their sign bits. If the status bits are anywhere else, 
we will take advantage of the BIT instruction of the 6502: 

263 



PROGRAMMING THE 6502 

TEST LDA MASK 
BIT IOSTATUSl 
BNE FOUND I 
BIT IOSTATUS2 
BNE FOUND2 
BIT IOSTATUS3 
BNE FOUND3 
(failure exit) 

The MASK will contain, for example, "00100000" if we test bit 
position 5. As a result of the BIT instruction, the Z bit of the 
st.atus flags will be set to 0 if "MASK AND IOSTATUS" is non
zero i.e. if the corresponding bit of IOSTATUS matches the one 
in MASK. The BNE instruction (branch if non-equal to zero) 
will then result in a branch to the app;ropriate FOUND routine. 

GETTING CHARACTERS IN 

Assume we have just found that a character is ready at the key
board. Let us accumulate characters in a memory area called 
buffer until we encounter a special character called SPC, whose 
code has been previously defined. 

The subroutine GETCHAR will fetch one character from the 
keyboard (see Chapter 6 for more details) and leave it in the ac
cumulator. We assume that a maximum of 256 characters will be 
fetched before an SPC character is found. 

STRING LDX 
NEXT JSR 

CMP 
BBQ 
STA 
INX 
JMP 

OUT RTS 

264 

#0 
GETCHAR 
#SPC 
OUT 
BUFFER,X 

NEXT 

INITIALIZE INDEX TO ZERO 

IS IT THE BRK CHAR? 
IF SO, FINISHED 
NO: SA VE CHAR 
INCREMENT POINTER 
GET NEXT CHAR 



APPLICATION EXAMPLES 

Exercise 8.2: Let us improve this basic routine: 
arEcho the character back t:o the device (for a Teletype, for example) 
b-Check that the input string is no longer than 256 characters 

We now have a string of characters in a memory buffer. Let us 
process them in various ways. 

TESTING A CHARACTER 

Let us determine if the character at memory location LOC is 
equal to 0, 1, or 2: 

ZOT LDA 
CMP 
BEQ 
CMP 
BEQ 
CMP 
BEQ 
JMP 

LOC 
#$00 
ZERO 
#$01 
ONE 
#$02 
TWO 
NOTFND 

We simply read the character, then use the CMP instruction to check 
its value. 

Let us run a different test now. 

BRACKET TESTING 

Let us determine if the ASH character at memory location LOC 
is a digit between 0 and 9: 

BRACK 

OUT 

LDA 
ADC 
LDA 
ORA 
CMP 
BCC 
CMP 
BEQ 
BCS 
CLC 
CLV 
RTS 

#$40 
#$40 FORCE OVERFLOW 
LOC 
#$80 SET BIT 7=1 
#$BO ASCII 0 
TOO LOW 
#$B9 ASCII 9 
OUT 9 EXACTLY 
TOOHIGH 

265 



PROGRAMMING THE 6502 

TOOLOW SEC 
CLV 
RTS 

TOOHIGH RTS 

SETCTOONE 

(C IS ONE) 

ASCII 0 is represented in hexadecimal by "BO" 
ASCII 9 is represented in hexadecimal by "B9" 

Remember that when using a CMP instruction, the carry bit will be 
set if the value of the literal that follows is less than or equal to the 
accumulator. It will be reset (0) if greater. 

If BO is greater than the character, our character is too low, and 
a branch occurs. 

We then compare it against B9. If it is less than or equal to 9, 
all is well, and we exit. Otherwise, we go to TOOHIGH. 

When we exit from this program, we want to know if the number 
is TOOLOW, TOOHIGH, or else between 0 and 9. This will be 
indicated by the flags C and V. V is not altered by CMP, whereas Z, N 
and Care. 

When returning from the subroutine, a "O"in Vindicates "too low," a 
"1" in V indicates "too high," and a "0" in C indicates a correct digit 
between 0 and 9. 

Naturally, other conventions could be used, such as loading a digit 
in the accumulator to indicate the result of the tests. 

Exercise 8.3: Simplify the above program by testing against the 
ASCII character which follows "9" instead of testing against 9 
exactly. 

Exercise 8.4: Determine if an ASCII character contained in the 
accumulator is a letter of the alphabet. 

266 



APPLICATION EXAMPLES 

When using an ASCII table, you will notice that parity is often 
used. (The example above does not use parity.) For example, the 
ASCII for "O" is "0110000," a 7-bit code. However, if we use odd 
parity,(for example we guarantee that the total number of ones 
in a word is odd), then the code becomes "10110000." An extra 
"1" is added to the left. This is "BO" in hexadecimal. Let us there
fore develop a program to generate parity. 

PARITY GENERATION 

This program will generate an even parity in bit position 7: 
PARITY LOX #$07 BIT COUNT 

NEXT 

ONE 
ZERO 

LOA #$00 
STA ONECNT 
LDA CHAR 
ROL A 
ROL A 
BCC ZERO 
INC ONECNT 
DEX 
BNE 
ROL 
ROL 
LSR 
ROR 
RTS 

NEXT 
A 
A 
ONECNT 
A 

COUNT OF I'S 
READ CHARACTER 
DISCARD BIT 7 
NEXT BIT 
IS IT Al? 

DECREMENT BIT COUNT 
LAST BIT? 
RESTORE BIT 0 
DISCARD BIT 
RIGHTMOST BIT IS PARITY 
PUT IT IN A 

Register X is used to count bits as they are shifted left from the 
accumulator. Every time that a "l" is shifted off the left of A 
(it is tested by BCC), the one-counter is incremented. When 8 
bits have shifted (the program ignores bit 7 which will be 
the parity bit), A is shifted left two more times so that bit 6 is on 
the left of A. 

The correct parity bit is the right-most bit of ONECNT; it is installed 
into the carry bit by LSR and becomes bit 7 of A. Another ROR 
A copies this bit back into position 7 of A, and we are finished. 

267 



PROGRAMMING THE 6502 

Exercise 8.5: Using the above program as an example, verify the 
parity of a word You must compute the correct parity, then com
pare it to the one expected 

CODE CONVERSION: ASCII to BCD 

Converting ASCII to BCD is very simple. We will observe that 
the hexadecimal representations of ASCII characters 0 to 9 are BO to B9 
with parity, or 30 to 39 without parity. The BCD representation is 
simply obtained by dropping the "B"; that is, by masking off the left 
nibble (4 bits): 

LDA 
AND 
STA 

CHAR 
#$OF MASK OFF LEFT NIBBLE 
BCDCHAR 

Exercise 8.6: Write a program to convert BCD to ASCII. 

Exercise 8.7: (more difficult) Write a program to convert BCD to 
binary. 

Hint: NJ N2 N1 No in BCD is (((NJ x 10) + N2) x 10 + N1) x 10 
+ No in binary. 
To multiply by 10, use a left shift (=x2), another left shift (=x4), 
an ADC (=x5), and another left shifti(=xlO). 
In full BCD notation, the first word may contain the count of 
BCD digits, the next nibble may contain the sign, and every successive 
nibble may contain a BCD digit. (We assume no decimal point .). The last 
nibble of the block may be unused. 

FIND THE LARGEST ELEMENT OF A TABLE 

The beginning address of the table is contained at memory ad
dress BASE in page zero. The first entry of the table is the num
ber of bytes it contains. This program will search for the largest 
element of the table. Its value will be left in A, and its position 
will be stored in memory location INDEX. 

268 



APPLICATION EXAMPLES 

This program uses registers A and Y, and will use indirect addressing, 
so that it can search any table anywhere in the memory. 

MAX LOY 110 THIS IS OUR INDEX TO TABLE 
LDA (BASE), Y ACCESSENTRYO=LENGTH 
TAY SAVE IT IN Y 
LOA 110 MAX VALUE INITIALIZED TO ZERO 
STA INDEX INITIALIZE INDEX TO ZERO 

LOOP CMP (BASE), Y IS CURRENT MAX ELEMENT? 
BCS NOSWITCH YES? 
LDA (BASE), Y LOAD NEW MAX 
STY INDEX LOCATION OF MAX 

NOSWITCH DEY POINT TO NEXT ELEMENT 
BNE LOOP KEEP TESTING? 
RTS FINISH IFY=O 

This program tests the Nth entry first. If it is greater than 0, it 
goes in A, and its location is remembered into INDEX. The (N-l)st 
entry is then tested, etc. 

This program works for positive integers. 

Exercise 8.8: Modify the program so that it works also for nega
tive numbers in two's complement. 

Exercise 8.9: Will this program also work for ASCII characters? 

Exercise 8.10: Write a program which will sort N numbers in as
cending order. 

Exercise 8.11: Write a program which will sort N names (B char
acters each) into alphabetical order. 

SUM OF N ELEMENTS 

This program will compute the 16-bit sum of N entries of a table. 
The starting address of the table is contained at memory address 
BASE in page zero. The first entry of the table contains the num
ber of elements N. The 16-bit sum will be left in memory locations 
SUMLO and SUMHI. If the sum should require more than 16 
bits, only the lower 16 will be kept~ (The high-order bits are said to be 
truncated.) 

269 



PROGRAMMING THE 6502 

This program will modify registers A and Y. It assumes 256 
elements maximum. 

LOA 
STA 
STA 
TAY 
LOA 
TAY 
CLC 

ADLOOP LOA 
ADC 
STA 
BCC 
INC 
CLC 

NOCARRY DEY 
BNE 
RTS 

#0 
SUM LO 
SUMHI 

(BASE), Y 

(BASE), Y 
SUMLO 
SUM LO 
NOCARRY 
SUMHI 

AD LOOP 

INITIALIZE SUM 
INITIALIZE SUM 
INITIALIZE SUM 
INITIALIZE Y TO ZERO 
GETN 
INTOY 
CLEAR CARRY FOR ADC 
GET NEXT ELEMENT 
ADD IT TO SUMLO 
SAVE RESULT 
CARRY? 
ADD IT TO SUMHI 
FOR NEXT SUM 
NEXT ELEMENT 
AGAIN IF Y NOT ZERO 

This program is straightforward and should be self-explanatory. 

Exercise 8.12: Modify this program to compute: 
a) a 24-bit sum, 
b) a 32-bit sum, 
c) to detect any overflow. 

A CHECKSUM COMPUTATION 

A checksum is a digit, or set of digits, computed from a block of 
successive charact.ers. The checksum is compui;ed at the time the 
data is stored and put at the end In order to verify the integrity 
of the data, the data is read and the checksum is recomputed and 
compared against the stored value. A discrepancy indicates an error 
or a failure. 

270 



APPLICATION EXAMPLES 

Several algorithms are used. Here, we will !xclusive-OR all bytes 
in a table of N elements, and leave the result in the accumulator. 
As usual, the base of the table is stored at the address BASE in 
page zero. The first entry of the table is its number of elements N. 
The program modifies A and Y. N must be less than 256. 
CHECKSUM LDY #0 POINT TO FIRST ENTRY 

LDA (BASE), Y GET N 
TAY STORE IT IN Y 
LDA #0 INITIALIZE CHECKSUM 

CHLOOP EOR (ADDR), Y EOR NEXT ENTRY 
DEY POINT TO NEXT 
BNE CHLOOP KEEP GOING 
RTS 

COUNT THE ZEROES 
This program will count the number of zeroes in our usual table, 
and leave it in register X. 
It modifies A,X, Y: 
ZEROES LDY #0 POINT TO FIRST ENTRY 

(ADDR), Y GET N 
STORE IT INY 

LDA 
TAY 
LDX #0 INITIALIZE NO. OF ZEROES 

ZLOOP 

NOTZ 

LDA 
BNE 
INX 
DEY 
BNE 
RTS 

(ADDR), Y GET NEXT ENTRY 
NOTZ IS IT ZERO? 

ZLOOP 

YES. COUNT IT 
POINT TO NEXT 
KEEP GOING 

Exercise 8.13: Modify this program to count: 
a-the number of stars (the character u*~') 
b-the number of letters of the alphabet 
c-the number of digits between 0 and 9 

A STRING SEARCH 

A string of characters is stored in the memory, as indicated in 
Fig. 8-1. We will search the string for the occurrence of a shorter 
one, called a template (TEMPL T), of length TPTLEN. The length 
of the original string is STRLEN, and the program will return 

271 



PROGRAMMING THE 6502 

with register X containing the location where the TEMPLT was 
found, and FF hexadecimal otherwise. The flowchart for the pro
gram is shown in Fig. 8-2. The string is first scanned for the oc
currence of the first character in TEMPLT. If this first character 
is never found, the program will exit with a failure. If this first 
character is found, the second character will be matched against 
the next one in the string. If that fails, the search is restarted for 
the first character since there might be another occurrence of this 
first character within the original string. If the first and the sec
ond one match, the search will proceed with the following charac
ters of TEMPLT in the same manner. The corresponding pro
gram is shown in. Fig. 8-3. Note that Register Xis used as the 
running pointer during the search pointing to the current element 
of string. Indexed addressing is naturally used to retrieve the 
current element of string. 

0 

SIO 
CHKPTR 

TEMPTR 
....._., 

STRING LENGTH 

'l'fMPlATE LENGTH 

XREG1SHR J 
t--' 

!SEARCH SfARf POtNltR 

S20 

STRING 

TEMPI.ATE 

SFF 

Fig: 8-1: String Search: The Memory 

272 



STRTPTR = STRTPTR 
+1 

y 

SEARCH START 
POINTER=O 

CHECK POINTER =O 

N y 

CHKPTR=O 

DONE: DONE: 
NOT FOUND FOUND 

APPLICATION EXAMPLES 

TEMPTR = STRTPTR 

TEMPTR=TEMPTR + 1 

CHKPTR =CHKPTR + 1 

Fig. 8-2: Program Flowchart: String Search 

273 



PROGRAMMING THE 6502 

LHE I LOC COIE LIN£ 

0002 0000 ;STIIIG SEAICN. 
0003 0000 ;f'l~DS LOCAUOll II Srtll& OF LENITI 'SfRlEI' 
0004 0000 ;STllRTllG AT 'STIJH' GF A THPUTE Of 
ooos 0000 ;LEIGTH 'TPTL£1' STAITll& AT 'TEllPU', MD 
0006 0000 ;REJURlfS UITH X•LOCllTIGI OF TEllPUTE 
0007 0000 ;JI STRIIG IF FOUllD, OR l•tFF IF IOT FOUQ. 
0008 0000 : 
0009 0000 STRillG • t20 : 1ST LOCllTIOI OF SJRll&. 
0010 0000 TEftPLT • '50 :tSJ LOCATIOlf OF T£11PUH. 
0011 0000 • • tlO 
0012 0010 CHICPTR •••+I 
0013 0011 T£11PTR uul 
0014 0012 STRL£1 .... 1 ;L£H8TH GF STRIHG. 
OOIS 0013 TPTLEll .... 1 ;L£1GTH OF TEftPLATE. 
0016 0014 • " 1200 
0011 0200 112 00 LDX 10 ;RESET SEARCH START POJllT[R. 
0018 0202 AS 50 lfXTPOS LDA T£11PL T : JS f'IRST ELEllEIT OF TEMP LAH ••• 
0019 0204 DS 20 CJIP STRJlf&,ll ;• CUIRUT STRllf6 ELEllENT" 
0020 0206 FO 08 IED CH£CIC ;If YES, CHECK FOR IEST OF NATCH. 
0021 0208 ES lfXTSTR Ill : llCREllEIT SEARCH ST HT COllNTEI. 
0022 0209 E4 12 CPI STRLEI ;IS IT EIUAL ro SJRJIC& LEH8TH' 
0023 0208 DO F5 11£ HYPOS ;10, CHECIC NEXT STRlllG POSITIOI. 
0024 0200 A2 FF LDX HFF ;JES, sn 'lfOJ FOUffD' IHDICATOI. 
0025 020F 60 RTS ;RETURlh llLL CHRS CHECllEt. 
0026 0210 86 " CHECIC STX TEftPTR ;LET TEllPOHRY POllTER• 
0027 0212 ;CURREIT STRllS POllTER. 
0028 0212 119 00 LllA 10 
0029 0214 es 10 STA CHICPTI ;tESEJ fEllPLAJE POINTER. 
0030 0216 £6 11 CHICLP JlfC T[flPTR ; JlfCRElfEIT TEllPIRIRr POINJEI. 
0031 0218 £6 10 INC CHICPTR ;llfCR£11ElfT TEllPUTE POHTCR. 
0032 021A A4 10 UY CHICPTR 
0033 021C C4 IJ CPY TPTLEI ;DOES TEJIPUT( POINTEl=TEllPUTE LEIOJ~ 
0034 021£ FO OC BEG FOUllD ;IF YES, TEllPUTE llATCHED. 
0035 0220 19 50 00 LDll TEllPL T, Y ;LOlll TEllPUTE ELEllEIT. 
0036 0223 A4 11 LDY TEllPTR 
0037 022S D9 20 00 CltP STRlllS, Y ;COllPllRE TO STRIIO Ctlt. 
0038 0228 DO DE llfE llXTSTR ;IF 110 llATCH, CIECI< NEXT ITIJIO am. 
0039 0:?2A FO Et\ BEG CHICLP ;IF llllTCH, CHECK NEXT CHR. 
0040 022C 60 FOUND RTS :DON£. 
0041 0220 .END 

Fig. 8-3: String Search Program 

SUMMARY 

In this chapter, we have presented common utility routines which use 
combinations of the techniques described in previous chapters. These 
routines should now allow you to start designing your own programs. 
Many of them have used a special data structure, the table. However, 
other possibilities exist for structuring data, and these will now be 
reviewed. 

274 



9 

DATA STRUCTURES 
PART I: DESIGN CONCEPTS 

INTRODUCTION 

The design of a good program involves two tasks: algorithm 
design and data structures design. In most simple programs, no 
significant data structures are involved, so the main problem that 
must be surmounted to learn programming is learning how to 
design algorithms and code them efficiently in a given machine lan
guage. This is what we have accomplished here. However, design
ing more complex programs also requires an understanding of data 
structures. Two data structures have already been used through
out the book: the table, and the stack. The purpose of this chapter 
is to present other, more general, data structures that you may 
want to use. This chapter is completely independent from the 
microprocessor, or even the computer, selected. It is theoretical 
and involves logical organization of data in the system. Specialized 
books exist on the topic of data structures, just like specialized 
books exist on the subject of efficient multiplication, division or 
other usual algorithms. This single chapter, therefore, should be con
sidered as an overview, and it will be necessarily limited to the essentials 
only. It does not claim to be exhaustive. 

Let us now review the most common data structures: 

POINTERS 

A pointer is a number which is used to designate the location of 
the actual data. Every pointer is an address. However, every ad-

275 



PROGRAMMING THE 6502 

dress is not necessarily called a pointer. An address is a pointer on
ly if it points at some type of data or at structured information. We 
have already encountered a typical pointer, the stack pointer, 
which points to the top of the stack (or usually just over the top of 
the stack). We will see that the stack is a common data structure, 
called a LIFO structure. 

As another example, when using indirect addressing, the in
direct address is always a pointer to the data that one wishes to 
retrieve. 

Exercise 9.1: Examine Figure 9-1. At address 15 in the memory, 
there is a pointer to Table T. Table T starts at address 500. What 
are the actual contents of the pointer to T? 

LISTS 

15 

16 

500 

I- POINTER TOT 

TABLE T 

Fig 9-1: An Indirection Pointer 

Almost all data structures are organized as lists of various 
kinds. 

Sequential Lists 

A sequential list, or table, or block, is probably the simplest data 
structure, and one that we have already used. Tables are normally 

276 



DATA STRUCTURES 

ordered in function of a specific criterion, such as, for example, 
alphabetical ordering, or numerical ordering. It is then easy to 
retrieve an element in a table, using, for example, indexed address
ing, as we have done. A block normally refers to a group of data 
which has definite limits but whose contents are not ordered. It 
may, for example, contain a string of characters. Or it may be a 
sector on a disk. Or it may be some logical area (called segment) of 
the memory. In such cases, it may not be easy to access a random 
element of the block. 

In order to facilitate the retrieval of blocks of information, directories 
are used. 

Directories 

A directory is a list of tables, or blocks. For example, the file 
system will normally use a directory structure. As a simple exam
ple, the master directory of the system may include a list of the 
users' names. This is illustrated in Figure 9-2. The entry for user 
"John" points to John's file directory. The file directory is a table 
which contains the names of all of John's files and their location. 
This is, again, a table of pointers. In this case, we have just de
signed a two-level directory. A flexible directory system will allow 
the inclusion of additional intermediate directories, as may be 
found convenient by the user. 

USER Dll!fCTORY 

JOHN'S 
FILE DIRECTORY 

JOHN 
JOHN'S flLf 

ALPHA 

ALPHA 

SIGMA 1- DATA 

SIGMA 

~ 

DAlA 

Fig. 9-2: A Directory Structure 

277 



PROGRAMMING THE 6502 

Linked List 

In a system there are often blocks of information which repre
sent data, or events, or other structures, which cannot be easily 
moved. If they could be easily moved, we would probably assemble 
them in a table in order to sort them or structure them. The 
problem now is that we wish to leave them where they are and 
still establish an ordering between them such as first, second, 
third, and fourth. A linked list will be used to solve this pro
blem. The concept of a linked list is illustrated by Figure 9-3. In 
the illustration, we see that a list pointer, called FIRSTBLOCK, 
points to the beginning of the first block. A dedicated location 
withiq Block l, such as, perhaps, the first or the last word of it, 
contains a pointer to Block 2, called PTRl. The process is then re-
peated for Block 2 and Block 3. Since Block 3 is the last entry in 
the list, PTR3, by convention, contains a special "nil" value, or 
else points to itself, so that the end of the list can be detected. This 
structure is economical as it requires only a few pointers (one per 
block) and prevents the user from having to physically move the 
blocks in the memory. 

:~:.1 BLOCKI 1~H &OCK2 1~H B=<3 1~p 
' 

Fig. 9-3: A Linked List 

Let us examine, for example, how a new block will be inserted. 
This is illustrated by Figure 9-4. Let us assume that the new block 
is at address NEWBLOCK, and is to be inserted between Block 1 
and Block 2. Pointer PTRI is simply changed to the value NEW
BLOCK, so that it now points to Block X. PTRX will contain the 
former value of PTRl (i.e., it will point to Block 2). The other 
pointers in the structure are left unchanged. We can see that the inser
tion of a new block has simply required updating two pointers in 
the structure. This is clearly efficient. 

Exercise 9.2: Draw a diagram showing how Block 2 would be 
removed from this structure. 

Several types of lists have been developed to facilitate specific 

278 



FIRST 

BLOCK 

NEWBLOCK-
BLOCKX 

-
BLOCK 1 a: 

:;:: BLOCK 2 

-----~ 

Fig. 9-4: Inserting a New Block 

DATA STRUCTURES 

--B-toc_K 3 _ ___._I ~ .... P 

types of access or insertions or deletions to or from the list. Let us 
examine some of the most frequently used types of linked lists: 

Queue 

A queue is formally called a FIFO, or first-in-first-out list. A 
queue is illustrated in Figure 9-5. To clarify the diagram, we can 
assume, for example, that the block on the left is a service routine 
for an output device, such as a printer. The blocks appearing on the 
right are the request blocks from various programs or routines, to 
print characters. The order in which they will be serviced is the 

SERVICE ROUTINE ~ BlOCK I 

NEXT PTR I 

I._., 

BlOCKl 

[ 
PHO 

t 
~ 

BLOCK 2 

PTR 2 1-

Fig. 9-5: A Queue 

279 



PROGRAMMING THE 6502 

order established by the waiting queue. It can be seen that the 
next event which will obtain service is Block 1, then Block 2, and finally 
Block 3. In a queue, the convention is that any new event arriving in the 
queue will be inserted at the end of it. Here it will be inserted after 
PTR3. This guarantees that the first block to have been inserted in the 
queue will be the first one to be serviced. It is quite common in a com
puter system to have waiting queues for a number of events whenever 
they must wait for a scarce resource, such as the processor or some 
input/ output device. 

Stack 

The stack structure has already been studied in detail through
out the book. It is a last-in-first-out structure (LIFO). The last ele
ment deposited on top of it is the first one to be removed. A stack 
may be implemented as a sorted block, or else it may be imple
mented as a list. Because most stacks in microprocessors are used 
for high speed events, such as subroutines and interrupts, a contin
uous block is usually allocated to the stack rather than using a 
linked list. 

Linked List vs. Block 

Similarly, the queue could be implemented as a block of reserved 
locations. The advantage of using a continuous block is fast 
retrieval and the elimination of the pointers. The disadvantage is 
that it is usually necessary to dedicate a fairly large block to ac
commodate the worst-case size of the structure. Also, it makes it 
difficult or impractical to insert or remove elements from within 
the block. Since memory is traditionally a scarce resource, blocks 
have been traditionally reserved for fixed-size structures or else 
structures requiring the maximum speed of retrieval, such as the 
stack. 

Circular List 

"Round robin" is a common name for a circular list. A circular 
list is a linked list where the last entry points back to the first one. 
This is illustrated in Figure 9-6. In the case of a circular list, a 
current-block pointer is often kept. In the case of events or pro
grams waiting for service, the current-event pointer will be moved 
by one position to the left or to the right every time. A round-robin 
usually corresponds to a structure where all blocks are assumed to 

280 



DATA STRUCTURES 

have the same priority. However, when performing a search a circular 
list may also be used as a subcase of other structures simply to facilitate 
the retrieval of the first block after the last one. 

As an example of a circular list, a polling program usually goes 
around in a round-robin fashion, interrogating all peripherals and 
then coming back to the first one. 

Lj MNIO H !YEN'2 Y " • -j ___ e_ve_NT_N _ ___.~ 
...____.____, ...._____,__t -

CURRENT EVENT 

Rg. 9-6: Round-Robin ls Circular Ust 

Trees 

Whenever a logical relationship exists between all elements of a 
structure (this is usually called a syntax), a tree structure may be 
used. A simple example of a tree structure is a descendant tree or a 
genealogical tree. This is illustrated in Figure 9-7. It can be seen 
that Smith has two children: a son, Robert, and a daughter, Jane. 
Jane, in turn, has three children: Liz, Tom and Phil. Tom, in turn 
has two more children: Max and Chris. However, Robert, on the 
left of the illustration, has no descendants. 

This is a structured tree. We have, in fact, already encountered 
an example of a simple tree in Figure 9-2. The directory structure 
is a two-level tree. Trees are used to advantage whenever elements 
may be classified according to a fixed structure. This facilitates in
sertion and retrieval. In addition, trees may establish groups of infor
mation in a structured way. Such information may be required for later 
processing, such as in a compiler or interpreter design. 

Doubly-Linked Lists 

Additional links may be established between elements of a list. 
The simplest example is the doubly-linked list. This is illustrated 
in Figure 9-8. We can see that we have the usual sequence of links 
from left to right, plus another sequence of links from right to left. 

281 



PROGRAMMING THE 6502 

Fig. 9-7: Genealogical Tree 

The goal is to allow easy retrieval of the element just before the 
one which is being processed, as well as the one just after it. This costs 
an extra pointer per block. 

•~" R I BLOCK2 I ~ I aOCK3 

Fig. 9-8: Doubly-Linked Ust 

SEARCHING AND SORTING 

Searching and sorting elements of a list depend directly on the 
type of structure which has been used for the list. Many searching 
algorithms have been developed for the most frequently used data 
structures. We have already used indexed addressing. This is pos
sible whenever the elements of a table are ordered in function of a 
known criterion. Such elements may then be retrieved by their 
numbers. 

Sequential searching refers to the linear scanning of an entire 
block. This is clearly inefficient but, for lack of a better technique, may 
have to be used whenever the elements are not ordered. 

282 



DATA STRUCTURES 

Binary, or logarithmic searching, attempts to find an element in a 
sorted list by dividing the search interval in half at every step. 
Assuming, for example, that we are searching an alphabetical list, 
one might start in the middle of a table and determine if the name 
for which we are looking is before or after this point. If it 
is after this point, we will eliminate the first half of the table and 
look at the middle element of the second half. We again compare 
this entry to the one for which we are looking, and restrict our search 
to one of the two halves, and so on. The maximum length of a 
search is then guaranteed to be log2n, where n is the number of 
e~ements in the table. 

Many other search techniques exist. 

SUMMARY 

This section was intended as only a brief presentation of typical 
data structures which may be used by a programmer. Although 
most common data structures have been rationalized in types and 
given a name, the overall organization of data in a complex system 
may use any combination ·Of them, or require the programmer to 
invent more appropriate structures. The array of possibilities is 
limited only by the imagination of the programmer. Similarly, a 
number of well-known sorting and searching techniques have been 
developed to cope with the usual data structures. A comprehensive 
description is beyond the scope of this book. The contents of this 
section were intended to stress the importance of designing appro
priate data structures for the data to be manipulated and to pro
vide the basic tools to that effect. 

283 



9 

DATA STRUCTURES 
PART II: DESIGN EXAMPLES 

INTRODUCTION 

Actual design examples will be presented here for typical data 
structures: table, linked list, sorted tree. Practical sorting, search
ing and insertion algorithms will be programmed for these struc
tures. Additional advanced techniques such as hashing and merg
ing will also be described. 

The reader interested in these advanced programming tech
niques is encouraged to analyze in detail the programs presented 
in this section. However, the beginning programmer may skip this 
section initially, and come back to it when he feels ready for it. 

A good understanding of the concepts presented in the first part 
of this chapter is necessary to follow the design examples. Also, 
the programs will use all the addressing modes of the 6502, and 
integrate many of the concepts and techniques presented in the 
previous chapters. 

Four structures will now be introduced: a simple list, an alpha
betical list, a linked list plus directory, and a tree. For each struc
ture, three programs will be developed: search, enter and delete. 

In addition, three specialized algorithms will be described separately 
at the end of the section: hashing, bubble-sort, and merging. 

284 



DATA STRUCTURES 

ENTLEN LENG TH OF ENTRY 

TABLEN NUMBER OF ENTRIES 

ENTRY 

TAB BASEi 

DATA MBYTES 

Fig. 9-9: The Table Structure 

c 
c LABEL 

c 
D 

ENTLEN 

c 
c LABEL 

c 

ENTLEN 

DATA 

[:j 
Fig 9-10: Typlcal List Entries In the Memory 

285 



PROGRAMMING THE 6502 

DATA REPRESENTATION FOR THE LIST 

Both the simple list and the alphabetic list will use a common re
presentation for each list element: 

_c __ c_..___c .....__o_.___o ~I ~~ ~-........ 1 _o ____ o__. 

--------------- ----------------~~~-----------3-byte label data 

Each element or "entry" includes a 3-byte label and an n-byte 
block of data with n between I and 253. Thus, each entry uses, at 
most, one page (256 bytes). Within each list, all elements have the 
same length (see Fig. 9-10). The programs operating on these two 
simple lists use some common variable conventions: 

ENTLEN is the length of an element. For example, if each ele
ment has 10 bytes of data, ENTLEN = 3 + 10 = 13 bytes 
T ABASE is the base of the list or table in the memory 
POINTR is a running pointer to the current element 
OBJECT is the current entry to be inserted or deleted 
T ABLEN is the number of entries 
All labels are assumed to be distinct. Changing this convention 

would require a minor change in the programs. 

A SIMPLE LIST 

The simple list is organized as a table of n elements. The 
elements are not sorted (see Fig. 9-11). 

When searching, one must scan through the list until an entry is 
found or the end of the table is reached. When inserting, new en
tries are appended to the existing ones. When an entry is deleted, 
the entries in higher memory locations, if any, will be shifted down 
to keep the table continuous. 

Searching 

A serial search technique is used. Each entry's label field is com
pared in turn to the OBJECT's label, letter by letter. 

The running pointer POINTR is initialized to the value of 
TABASE. 

The index register X is initialized to the number of entries con
tained in the list (stored at T ABLEN). 

286 



IABA.5( ELEMlNI I 

ELEMENT 2 

DATA STRUCTURES 

t LENGTH= 
ENTUN 

POCNTI! CURRENT 
ELEMENT 

ELEMENT n (TABlEN : n) 

fl!EESPAa 

OBJECT 
TO BE INSERTED 

Fig. 9-11: The Slmple List 

The search proceeds in the obvious way, and the corresponding 
flowchart is shown in Fig. 9-12. The program appears in Fig. 
9-16 at the end of this section (program "SEARCH"). 

Element Insertion 

When inserting a new element, the first available memory block 
of (ENTLEN) bytes at the end of the list is used (see Fig. 9-11). 

The program first checks that the new entry is not already in the 
list (all labels are assumed to be distinct in this example). If not, it 
increments the list length T ABLEN, and moves the OBJECT to 
the end of the list. The corresponding flowchart is shown on Fig. 
9-13. 

The program is shown on Fig. 9-16 at the end of this section. It is 
called "NEW" and resides at memory locations 0636 to 0659. 

Element Deletion 

In order to delete an element from the list, the elements follow
ing it at higher addresses are merely moved up by one element position. 
The length of the list is decremented. This is illustrated in Fig. 9-14. 

287 



PROGRAMMING THE 6502 

288 

SEARCH 

t 
COUNTER= 

NUMBER OF ENTRIES 

COUNTER = COUNTER - 1 

POINT TO NEXT ENTRY 

Fig. 9-12: Table Search Flowchart 

FAILURE EXIT 

FOUND 
(SET A TO "FF") 

FAILURE EXIT 



SAvt OlO TABLE LENGTH 

INCREMENT TABLE LENGTH 

POINT AFTER 
ENO OF TABLE 

INSERT OBJECT 

END 

DATA STRUCTURES 

">--_...Y=ES_.. EXIT 

Ag. 9-13: Table Insertion Flowchart 

The corresponding program is straightforward and appears in 
Fig. 9-16. It is called "DELETE" and resides at memory ad
dresses 0659 to 0686. The flowchart is shown in Fig. 9-15. 

Memory location TEMPTR is used as a temporary pointer point
ing to the element to be moved up. 

Index register Y is set to the length of a list element, and used to 
automate block transfers. Note that indirect indexed addressing is 
used: 

(0672) LOO PE DEY 
LDA 
STA 
CPY 
BNE 

(TEMPTR), Y 
(POINTR), Y 
110 
LOO PE 

During the transfer, POINTR always points to the "hole" in the 
list, i.e. the destination of the next block transfer. 

The Z flag is used to indicate a successful deletion upon exit. 

289 



PROGRAMMING THE 6502 

BEFORE AFTER 

0 
2 

0 
DELETE 5 MOVE 

TEMPTR 0 
MOVE 

Rg. 9-14: Deleting An Entry (Simple List) 

ALPHABETIC LIST 

The alphabetic list, or "table" unlike the previous one, keeps all 
its elements sorted in alphabetic order. This allows the use of 
faster search techniques then the linear one. A binary search is 
used here. 

Searching 

The search algorithm is a classical binary search. Let us recall 
that the technique is essentially analogous to the one used to find a 
name in a telephone book. One usually starts somewhere in the middle 
of the book, and then, depending on the entries found there, goes either 
backwards or forwards to find the desired entry. This method is fast, 
and it is reasonably simple to implement. 

The binary search flowchart is shown in Fig. 9-17, and the pro
gram is shown in Fig. 9-22. 

This list keeps the entries in alphabetical order and retrieves 
them by using a binary or "logarithmic" search. An example is 
shown in Fig. 9-18. 

290 



DATA STRUCTURES 

FIND ENTRY 

NO 
>----~OUT 

NO 

DECREMENT TABLE LENGTH 

FIND NBR OF ENTRIES 
AFTER OBJECT IN TABLE 

SHIFT ONE ENTRY UP 

DECREASE COUNT OF 
ENTRIES REMAINING 
AFTER THE ONE SHIFTED 

YES 

Fig. 9-15: Table Deletion Flow Chart 

291 



PROGRAMMING THE 6502 

Lii£ I LDC CUE LllE 

OI02 '"' TANR • tll 
OtoJ fOtO 'Ollfl • '12 
ot04 0000 fAkEI • '14 
otOS OOH 01 .. cr •us 
OIN .... EITLEI • '17 
Oto7 .... fElf'fl • UI 
Otot OffO 
ot09 .... •••• OllO °'" . 
0011 OHO AS It IHICI LO. JMASE ;INIWILIZE PlllJER 
Ol12 Hl2 IS 12 SJA '°llH 
OllJ H04 AS II LIA HIASE+t 
otl4 0 .. 6 IS IJ HA POllTl+f 
OllS 0601 A6 .. Lii 1AIL£1 :ITillE THLEI AS A IMAIMU 

°'" .... '° 29 IEI GUT ;ClllCIC Fat 0 TAIL( 
otl7 HIC AOH Elf IT LIT IO ;CO"AIE FllSf lErllRI 
otll ... It IS LIA rourcn,r 

°'" 0610 11 12 CIP IPOllTI>, f 
0020 0612 Hff HE 105001 
ot21 0614 Cl llf :co•• SECIQ LEflEIS 
0022 0615 It IS LN rouECn,r 
002J 0617 11 12 CllP rPOllfl),f 
0024 °'" .. 07 HE 106001 
0025 0611 Cl llY ;COIPME fHJll LUHRS 
0026 061C 11 IS LIA rourcn,, 
0027 061£ It 12 CIP rPOllTI>, r 
0'21 0620 FO It l[Q FOUll 
0029 0622 CA llOSOOD tEI ;SE£ IOll IAIY EITllES AIE LEFT 
OOJO 062J FO 10 JH OUT 
OtJI 0625 AS t7 LIA £1TL£1 ;HI (lfL(I ra POINTER 
OOJ2 0627 II Cl.C 
OIJJ 0621 " 12 AIC POllTI 
OOJ4 062A IS 12 STA POJITI 
OIJS 062C 90 DE ICC EITIY 
otJ6 0621 H 13 llC POllTl+I 
Ol37 0630 cc oc 06 Jlf £1TIY 
OIJI 06J3 A9,, FGUll LM ltfF ;a.EM Z FLAI IF FUD 
OIJ9 0635 60 OUT ITS 
0040 0636 
0041 0636 
0042 0636 ; 
0043 0636 20 00 06 HU JS1 SEARCH ; SEE IF OJJECT 18 TH£R£ 
ot44 0639 10 11 HE OUT£ 
Ol4S 0631 A6 14 UI TAILEI ;CIECI F'OI 0 TABLE 
004' 0611 F'O 01 IH lllEIT 
Ot47 06JF' AS 12 LIA POllTI ;l'OllfRI II IT usr £NfRr 
0041 0641 II CLC ; •• lllllT llOYE IT TO EID Of TAIU 
0049 0642 6S 17 AIC EITLEI 
otSO 0644 15 12 STA POllTI 
0051 064' 90 02 ICC llSEIT 
otS2 0648 £6 IJ llC ,OllTltl 
OIS3 064A £6 .. HUIT llC TAILH ;llCllUlllT TAil£ UMITII 
0054 064C AO 00 LDY IO ;llOVE OIJICJ TO EID Of TAtL£ 
ooss 064£ H 17 Lii EITLEI 
005' OHO II 15 LOOP' LIA rOIJECn,r 
·OOS7 06S2 " 12 STA rPOIITI>, Y 
0051 0654 ca llY 
OIS9 OHS CA DEX 

°''° 06:16 DO F'I HE LOO' 

°'" 0658 60 OUT£ ITS ;z SET IF 111\1 DOii£ 
Ol'2 °'" OIH 0659 .... 0659 

inm: JSR 9£AICI °'" 0659 20 00 06 ;F'llll IHRE IJJECT IS 

°'" 06SC FO 21 IH GUTS ;EllT IF IOT F'OIHt 
01'7 06S£ C6 14 IEC TAILEI ;KCIEllOT TAILE L£flJTH 

°'" 06'0 CA IEI ;srr 11011 llAH ENJRIE& ARE 

Fig. 9-16: Simple Ust Programs: Search, Enter, Delete 

292 



DATA STRUCTURES 

OHt 06" FO 26 HQ IOIE ; •• AFTH GIE fO IE DELETED 
0070 0663 H 12 ADHll UA POllfl ;All ElfLEI fO POJlfEI AHll 
0071 0665 18 CLC ; •• SAVI Af fEllP HOWE 
Ol72 0666 65 17 AIC ElfLH 
0073 0668 85 ,, STA TEllPTI 
0074 OHA A9 00 UA IO 
0175 066C 65 13 HC POIMfl•I ;AID CMRf JO lllGI BYTE 
0176 OHE 85 19 SfA TEllPTl•I 
0111 0670 A4 17 LIT ElfLEI 
ot71 0672 18 LODPE llEY 
007' 0671 II II LIA rTEKPTR>, f ;IHIFJ ONE ENJRY OF llEftORY DOVll 
OHO 0675 ti 12 STA CPOllfR>,Y 
Ofll 0677 co 00 CPY IO 
otl2 0679 10 F7 IKE LOOPE 
0111 0671 CA DEi ;IECREllENf ENFRr COUITER 
Oll4 067C FO 01 IEQ IGIE 
0115 067£ H II LIA TEllPTR ;IOUE TEIP TD POINfD 

°'" 0610 15 t2 SH POllfl 
otl7 0612 AS 19 LIA TEllPTl•I 
otn 0614 15 13 STA POllfR•I 
otn 0616 4C 63 06 JllP AlllEll 
ottO 0619 A9 FF DOKE LDA HFF ;CLIM Z FLM IF IT UAS ICIE 
otfl OHi 60 OUTS ITS 
ott2 061C 
Oftl one 
ott4 061C .HD 

EIROll • 0000 <OOOO> 

BYl•L taaE 

SYHDL UM.Ul 

Alllll 06'3 DELETE 0659 HIE °'" (Nfl.(N ott7 
Elf RY 060C FGUll 0631 llSHf OHA LOOP 0610 
LIOPI 0672 IEU NM IOIGOI 0622 OIJICf 0015 
CHIT ous OllfE 0651 OflTI OHi POJIH 0112 
SHICH 0600 fAIAIE 0010 fAIUI 0014 THPTR 0111 

Ell OF AllEllL Y 

Rg. 9-16: Simple Ust Programs: Search, Enter, Delete (cont.) 

293 



PROGRAMMING THE 6502 

294 

FLAGS= 0 

POINT ro TABLE BASE 

LOGICAL POSITION = INCREMENT VALUE 
=TABLE LENGTH/2 

POINT TO MIOOLE OF TABLE 

-------(ENTRY) 

INCREMENT COUNTER= INCREMENT COUNTER/2 

ADO ONE IF IT WAS OLD 

COMPARE TO ENTRY 

~ESERVE CARRY (SIGN OF COMPARISON) 
INTO COMPRES FLAG 

(NEXT) 

YES 

(LAST ONE) 

Fig. 9-17: Binary Search Flowchart 



CNlXTI 

NOT FOUND 

NOT 
FOUND 

CIA$T OMI 

NCNf. POINURS 
DOWN BY I 

YES 

I ADO 

DATA STRUCTURES 

ClOSINOW" 
COMFllS 

NOT FOUND 

''°°"'' 
UPOATE POINTERS 

MOVl POINTllS 
UPBY I 

(lNTRY) 

UPDATE POINTERS 

(ENTRY) 

INCll!MlNT v I 
OOSENOW • COMPRIS 

(ENTRY) 

Fig. 9-17: Binary Search Flowchart (cont.) 

295 



PROGRAMMING THE 6502 

The search is somewhat complicated by the need to keep track of 
several conditions. The major problem to be avoided is searching for an 
object that is not there. In such a case, the entries with the immediately 
higher and lower alphabetic values could be alternately tested forever. 
To avoid this, a flag is maintained in the program to preserve the value 
of the carry flag after an unsuccessful comparison. When the INCMNT 
value, which shows by how much the pointer will next be incremented, 
reaches a value of" 1 ", another flag called "CLOSE" is set to the value 
of the CMPRS flag. Thus, since all further increments will be "1," if 
the pointer goes past the point where the object should be, CMPRES 
will not longer equal CLOSE, and the search will terminate. This fea
ture also enables the NEW routine to determine where the logical and 
physical pointers are located, relative to where the object will go. 

Thus, if the OBJECT searched for is not in the table, and the 
running pointer is incremented by one, the CLOSE flag will be set. 
On the next pass of the routine, the result of the comparison will be 
opposite to the previous one. The two flags will no longer match, 
and the program will exit indicating "not found." 

9 
fA8ASE 

296 

.. sve·· 

AAA 

BAC 

Fil 

TES 

XYZ 

FIRST TRY 
SEARCH INTERVAL = S 

I~ 

Fig. 9-18: A Binary Search 

TES 

XYZ 

SECOND TRY 
SEARCH INTERVAL = 2 

,,~, 



DATA STRUCTURES 

The other major problem that must be dealt with is the possibili
ty of running off one end of the table when adding or subtracting 
the increment value. This is solved by performing an "add" or 
"subtract" test using the logical pointer and length value to determine 
the actual number of entries, rather than using physical pointers to 
determine their mere physical positions. 

In summary, two flags are used by the program to memorize in
formation: CMPRES and CLOSE. The CMPRES flag is used to 
preserve the fact that the carry was either "O" or " l " after the 
most recent comparison. This determines if the element under test 
was larger or smaller than the one to which it was compared. Whenever 
the carry C is "1," the entry is smaller than the object, and CMPRES 
is set to '' 1.'' Whenever the carry C is ''O,'' the entry is greater than the 
object, and CMPRES will be set to "FF." 

Also note that when the carry.is "1 ", the running pointer will point 
to the entry below the OBJECT. 

The second flag used by the program is CLOSE. This flag is set 
equal to CMPRES when the search increment INCMNT 
becomes equal to "1." It will detect the fact that the element has 
not been found if CMPRES is not equal to CLOSE the next time 
around. 

Other variables used by the program are: 
LOG POS, which indicates the logical position in the table (ele

ment number). 
INCMNT, which represents the value by which the running 

pointer will be incremented or decremented if the next comparison 
fails. 

TABLEN represents, as usual, the total length of the list. 
LOGPOS and INCMNT will be compared to TABLEN in order to 
ascertain that the limits of the list are not exceeded. 

The program called "SEARCH" is shown in Fig. 9-22. It resides 
at memory locations, 0600 to 06E3, and deserves to be studied 
with care, as it is much more complex than in the case of a linear 
search. 

An additional complication is due to the fact that the search 
interval may at times be either even or odd. When it is even, a cor· 
rection must be introduced. It cannot, for instance, point to the middle 
element of a 4-element list. 

When it is odd, a "trick" is used to point to the middle element: 
the division by 2 is accomplished by a right shift. The bit "falling 
out" into the carry after the LSR instruction will be "I" if the in-

297 



PROGRAMMING THE 6502 

terval was odd. It is merely added back to the pointer: 

(0615) DIV LSR 
ADC 
STA 

A 
#0 
LOGPOS 

DIVIDE BY TWO 
PICK UP CARRY 
NEW POINTER 

The OBJECT is then matched against the entry in the middle of 
the new search interval. If the comparison succeeds, the program 
exits. Otherwise ("NOGOOD"), the carry is set to 0 if the OB
JECT is less than the entry. Whenever the INCMNT becomes "1 ", 
the CLOSE flag (which had been initialized to "O") is then checked 
to see if it was set. If it was not, it gets set. If it was set, a check is 
run to determine whether we passed the location where the OB
JECT should have been but was not found. 

Element Insertion 

In order to insert a new element, a binary search is conducted. If 
the element is found in the table, it does not need to be inserted. 
(We assume here that all elements are distinct). If the element was 
not found in the table, it must be inserted. The value of the CMPRES 
flag after the search indicates whether this element should be inserted 
immediately before or immediately after the last element to which it 
was compared. All the elements following the new location where it is 
going to be placed are then moved down by one block position, and the 
new element is inserted. 

The insertion process is illustrated in Figure 9-19 and the corres
ponding program appears on Figure 9-22. 

The program is called ''NEW'', and resides at memory locations 
06E3 to 075E. 

Note that indirect indexed addressing is used again for block 
transfers: 

(072A) 
ANOTHR 

LDY 
DEY 
LDA 
STA 
CPY 
BNE 

Observe the same at memory location 07 50. 

298 

ENTLEN 

(POINTR), Y 
(TEMP), Y 
#0 
ANOTHR 



BEFORE AFTER 

TABASE _____.. AAA AAA 

ABC ABC 

BAT BAC 

TAR BAT 

ZAP TAR 

ZAP 
,~ 

OBJECT-l ____ s_Ac __ _ MOVE DOWN 

Fig. 9-19: Insert: "BAC" 

Element Deletion 

DATA STRUCTURES 

.,__NEW 
ELEMENT 

Similarly, in order to delete an element, a binary search is conducted 
to find the object. If the search fails, it does not need to be deleted. If 
the search succeeds, the element is deleted, and all the following ele
ments are moved up by one block position. A corresponding example is 
shown in Fig. 9-20, and the program appears in Figure 9-22. The flow
chart is shown in Fig. 9-21. 

It is called "DELETE," and resides at memory addresses 
075F to 0799. 

LINKED LIST 

The linked list is assumed to contain, as usual, the three alpha
numeric characters for the label, followed by 1 to 250 bytes of data, 
followed by a 2-byte pointer which contains the starting address of 
the next entry, and lastly followed by a I-byte marker. Whenever this 
1-byte marker is set to "l," it will prevent the insert-routine from 
substituting a new entry in the place of the existing one. 

299 



PROGRAMMING THE 6502 

Further, a directory contains a pointer to the first entry for each 
letter of the alphabet, in order to facilitate retrieval. It is assumed 
in the program that the labels are ASCII alphabetic characters. 
All pointers at the end of the list are set to a NIL value which has 
been chosen here to be equal to the table base, as this value should 
never occur within the linked list. 

The insertion and the deletion program perform the obvious pointer 
manipulations. They use the flag INDEXD to indicate if a pointer 
pointing to an object came from a previous entry in the list or 
from the directory table. The corresponding programs are shown in 
Fig. 9-27. the data structure is shown in Fig. 9-23. 

An application for this data structure would be a computerized 
address book, where each person is represented by a unique 
3-letter code (perhaps the usual initials) and the data field contains 
a simplified address, plus the telephone number (up to,,, 250 
characters). 

BEFORE AFTER 

AAA AAA 

MOVE UP 
ABC ABC 

BAC ~ BAT 

BAT TAR 

TAR ZAP 

ZAP 

,~ 

Ag. 9-20: Delete: "BAC" 

300 



NO 

DELETE 

COUNT HOW MANY 
ELEMENTS FOLLOW THE 

ONE TO BE DELETED 

RESULT = COUNTER 
LOG POS 

POINT TO NEXT ENTRY 
POINTER "' TEMP !SOURCE 1 

TRANSFER IT UP ONE BLOCK 

POINT TO NEXT ENTRY 
POINTER ca POINTER (OESTINATION1 

DECREMENT LOGPOS 

SET 2 FLAGS 

RTS 

DATA STRUCTURES 

YE!> 

Fig. 9-21: Deletion Flowchart· (Alphabetic List) 

301 



PROGRAMMING THE 6502 

Liii£ I LDC COOC Ult 

0002 0000 CLOSE • tlO 
0003 0000 CllPIES • Ill 
0004 0000 TAIASE • 112 
0005 0000 POJIJR a 114 
OON 0000 TAIL£1 • 116 
0007 0000 LO&POS • 117 
0008 0000 JllCllT • 111 
0009 0000 TEIP . '" 0010 0000 EllTLU = 118 
0011 0000 OIJECT • 11C 
0012 0000 
oon 0000 •• 1600 
0014 0600 ; 
0015 0600 A9 00 SEARCH LDA IO ;ZERO FLAGS 
OOl6 0602 IS 10 STA CLOSE 
0017 0604 85 II STA CIPRES 
0018 0606 U IZ UA THAS[ :INJTIAUZ!i POINJER 
0019 0608 85 14 STA POllTR 
0020 060A A5 IJ UA TUASE•I 
0021 060C 85 15 STA POlllTR+ I 
0021 060£ A5 16 LDA JAILU ;GET TABLE LENGJH 
002J 0610 DO OJ lllE Diii 
0024 0612 4C EO 06 JllP OUT 
0025 0615 4A DIY LSR A ;DIVIDE lT 9Y 2 
0026 0616 69 00 ADC 10 :•DD IACK II I '5 ur 
0027 0618 85 ,, STA LOGPOS :STORE AS LOGICAL POSITION 
0028 061A 85 18 STA llfCllllT ;STORE AS llfCR£11£11T VALUE 
0029 NIC A6 17 LDX LOGPOS ;llULTIPLY EllTLEll BJ LOGPOS 
0030 061( CA DEX ; •• ADDING RESULT TO POIHHR 
OOJI 061f' f'O OE BEG EllTRY 
0032 0621 A5 II LOOP lDA EllTLEll 
0033 0623 18 CLC 
0034 0624 65 14 ADC POlllTR 
0035 0626 85 14 STA POlllTR 
0036 0628 90 02 BCC LOPP 
0037 062A 

£6 " 
INC POJNTR• 1 

0038 062C CA LOPP DU 
0039 062D DO F2 811£ LOOP 
0040 062F A5 18 EllTRY LDA INtllllT ;DIVIII[ llCRDEIT VALUE Br 2 
0041 0631 4A LSR A 
0042 0632 69 00 ADC 10 
0043 0634 85 18 STA llCNHT 
0044 0636 AO 00 LDY 10 ;CDllPARE FIRST LETTERS 
0045 0638 II IC LDA IOIJECTl,Y 
0046 063A DI 14 CllP IPOlllTR), Y 
0047 06JC DO II 811E llOOOOD 
0048 063£ ca lllY ;COllPARE :!ND LETTERS 
0049 063F II IC LDA I OBJECT>, Y 
0050 0641 DI 14 CllP IPOlllTRl,Y 
0051 0643 DO OA lllE llOGOOD 
0052 0645 CB l#Y ;tOllPARE JRD !ETTERS 
0053 0646 Bl IC l.DA IOIJECTl,Y 
0054 0648 DI 14 CllP IPOJNTRI, Y 
0055 064A DO 03 811£ 1116000 
0056 064C 4C £2 06 JllP FOUNO 
0057 0641' AO FF llOGOOD LDY UH ; SET COHMRE RES UL I FLA& 
0058 0651 90 02 tee TESTS : IF' OBJ < POlllTR : C ·O 
0059 0653 AO 01 LDY II 
0060 0655 84 11 TESTS srr c11PR£S 
0061 0657 u 18 LDr 111c1111r ;IS llCR. VALUE A I" 
0062 0659 98 DEr 
0063 065A DO 10 111£ HOT 
0064 065C A5 10 LDA CLOSE ;CHECIC CLOSE rLaG H Ir uas 
0065 065E F'O 08 8£0 llHCLO ;IF CLOSE HAG 11or SEI' r.o ~o H 
0066 0660 39 SEC 
0067 0661 E5 II SPC CllPRES ; SEE JF' GAVE ~ASSE D UHfif. OIJ. 
0068 0663 fO 07 PEG NUT ; •• SHOULD 8£ BUT 1s11r 

Fig. 9-22: Afphabetlc List Programs: Binary Search, Delete, Insert 

302 



DATA STRUCTURES 

0069 0665 4C EO 06 JllP OUT 
0070 0668 AS II llHCLO LH CllPRES ;SET CLOSE FLM TO DIPRES 
0071 066A 85 10 STA CLOSE 
0072 066C 24 II IEXT JJT CIPRES 
0073 066( JO 35 Jiii SUJJT 
0074 0670 AS 16 LIA THUii ;su IF AIDJTJIOI OF HCllNT 
0075 0672 38 SEC ; •• UILL RUii PAST HD OF rAJU 
0076 067J ES 17 SIC LO&POS 
0077 0675 F'O 69 IH OUT ;CHECll TO SEE JI AT EID or rAJL[ tUEtDY 
0078 0677 E5 .. SIC JICllllT 
0079 0679 90 IA ICC TOOHI 
0080 067J A6 II LDI JICHT ; IS ALL RJGllT, lllC POJNTEI ty 
0011 0670 AS II AllDH LIA EITLH ; •• PROPER AHUllr 
0082 067F II CLC 
OOIJ 06110 65 14 ADC POINTA 
0084 0682 as 14 STA POJNTI 
0085 0684 90 02 ICC ADI 
0086 0686 E6 15 lllC POINTl+I 
0087 0688 CA ADI DEX 
0088 0619 JO F2 111£ ADDER 
0019 06H AS 17 LDA LOSPOS ; HCIEllEIT LIGICAL POSITION 
0090 06110 18 CLC 
0091 061£ 65 II ADC HCHT 
0092 06'0 15 17 STA LOGPOI 
0093 0692 4C 2F' 06 JllP HTIY 
0094 069S H 17 TOlllJ JllC LOSPOI ;IHCR. LOGICAL POSITION 
00'5 0697 AS II LDA £111LH ;11ou1 POHTER UP ON[ 'EllTRT 
0096 0699 II CLC 
0097 069A 65 14 ADC POlllTR 
0098 06'C IS 14 STA POlllTR 
OOH 06'£ 90 JS ICC HTCLO 
0100 0610 HIS JIC POlllTR+I 
0101 0612 4C 05 06 JllP S£TCLO 
0102 061S AS 17 StllIT LDA LOGPOI ;SEE IF INC llILL GO OFF IOTTOll 
OIOJ 0617 JB SEC ; •• CF TAIL£ 
0104 0619 E5 II SIC JllCHT 
OIOS 06AA F'O 17 IEQ rOOLOU 
0106 06AC 90 15 ICC TOOLOU 
0107 061£ 95 17 STA LOGPOS ;SAVE llEU LOllCAl POSITION 
0108 0610 A6 II LDll llCRIT 
0109 0612 A5 14 SUILOP LIA POlllTR ; SUITRACT PROPER HT. FROlt POINJEI 
0110 0614 JI SEC 
0111 06t:J E5 II SIC EllTUll 
0112 06'7 15 14 STA POlllTR 
OllJ 06'9 JO 02 ICS SUIO 
0114 06H C6 15 DEC POlllTR+I 
0115 06JD CA SUIO IEX 
0116 061£ DO F'2 JKE BUJLOP 
0117 06CO 4C 2F 06 JllP HTRY 
0118 06C3 "' 17 TOOLOU LDX L08POS ;SEE IF POI II ALREADY I 
0119 06C5 CA DEX 
0120 06C6 FO II HD our 
0121 06CI C6 17 DEC LOSPOI 
0122 06CA AS 14 LIA POINrA ;SUB I EITIY FIOI POINTER 
0123 06CC 38 SEC 
0124 06CD £5 II SIC EITLUf 
0125 06CF 85 14 STA POlllTR 
0126 06111 JO 02 JCS SETCLO 
0127 06113 C6 15 IEC POINTR+I 
0128 0615 A9 01 SETCLO LIA II 
0129 0617 85 II STA lllClllT 
OIJO 06D9 A5 " LDA CllPR£8 
om 06DJ 85 10 STA CLOS£ 
0132 06DD 4C 2F 06 JIP EITRY 
OIJJ 06EO A2 FF our LDll HFF ;z BET IF FOlllD 
0134 06£2 60 FOUllD RTB 
0135 06EJ 
0136 06EJ 
0137 06EJ ; 
0138 06EJ 20 00 06 •EU JSR SEARCH ;SEE IF OBJECJ IS ALREAn TllEIE 

Fig. 9-22: Alphabetic List Programs: Binary search, Delete, Insert (cont.) 

303 



PROGRAMMING THE 6502 

OIJV 06£6 FO 76 8£0 OUT£ 
0140 06£8 A5 16 lDA TAIJL£N ;CHECK FDR 0 TAllL£ 
0141 06£11 fO 62 BBi l115£RT 
0142 06EC 24 II 81 T CllPRES ; TEST LAST CO«PARE RESUl r 
0143 06EE 10 05 tPL LOSIDE 
0144 06FO C6 17 DEC L06POS ;SET LOGICAL POSH ION <;O 
0145 06f2 4C 00 07 JllP S£TUP ; •• SUll WORKS LA TEI\ 
0146 06f5 A5 It LOSIDE LOA EllTL£11 ; 5£1 POlllTEll '9DV( I/HERE 
0147 06f7 18 CLC ; •• 08JECT WILL GO 
0148 06F8 65 14 ADC POllCTR 
014' 06FA 85 14 STA POlllTR 
0150 06FC 90 02 BCC SETUP 
0151 06fE u IS JllC POlllTR+ I 
OIS2 0700 AS 16 SETUP LDA TOLEN ;S£E HOU '9AIH EHTl'IJES THERE 
015] 0702 lB SEC ; •• AR£ AFfER I/HERE OBJ. I/Ill r,o 
0154 0703 E5 17 SBC LOGPOS 
0155 0705 fO 47 ml lllSUT 
0156 0707 AA TAI 
0157 0708 AB ru 
0158 0709 88 DEY ;SEE If ALl'IEAH F'DllTIH6 10 
0159 OlOA ro oE 8£0 SETEllP ; •• LAST .EIHRY 
0160 070C AS 1 t UPLOOP LDA DTLEll ;llOVE POINTER ro lAST EHTIH 
0161 070E 18 CLC 
0162 010F 65 14 ADC PDIHTR 
0163 0711 85 14 STA POIHTR 
0164 0713 90 02 tcc sno 
0165 0715 E6 15 lllC POillTl+I 
0166 0717 88 SETO DEl 
0167 0718 DO f2 fllE UPLOOP 
0168 07111 AS 14 SEJEllP LOA POlllTR ;ADD DTLEll TO POlllTER 
Olo9 071C 18 CLC ; •• STORE AT TEllP 
1)170 071D 65 II ABC ENTLU 
0171 071F 85 19 STA TUP 
0172 0721 90 01 ICC SET I 
0113 0723 CB lllY ; f I/AS ALIEUIT 0 
QI 74 0724 98 SETI TrA 
0175 0725 19 CLC 
0176 0726 65 IS AllC POIHTAt I 
0177 0728 es IA STA TEllP+I 
0178 072A A4 II 1101/ER LDr ENrlU :SET 1 FGR SHIFT 
0179 one 98 o\NOTHR DEY 
0180 072D II 14 LDA I POlllTR I, f ;110V£ A IJJE 
0181 onr 91 19 STA ITEllPl,J 
0182 0731 co 00 CPY 10 
OISI 0733 00 F7 lllE AllOTHR 
0184 0.'35 A5 14 LDA POINTR jDECR. POlllTER AID TEllP 
0185 0737 JS SEC j •• BT EllTL£11 
0186 0738 ES 18 SBC EllTLEll 
0187 073A 85 14 STA POlllTR 
0188 07JC 80 02 8CS 111 
0199 073E C6 15 llEC POJllTll+I 
019t' 0740 CA Ill DEX 
0191 0741 DO 07 lllE S£TCllP 
019:! 0743 AS 18 LIA El1LEI ;llWE PDllHk IACK TO 
0193 0745 19 CLC ;UHERE 08J. UILL 50 
0194 0746 6:5 14 ADC POlllTR 
OIV5 0749 85 14 STA POINTR 
0196 Oi'4A 90 02 BCC lllSERT 
0197 074C u 15 JllC POJllTR+ I 
0198 074£ AO 00 INSERT LDT 10 jltDVE OBJEr T INTO TABLE 
0199 0750 A6 It LOX EllTLEll 
0200 0752 81 IC lllNER LOA IOIJECTI, 1 
0201 0754 91 I 4 STA IPOlllTRl,Y 
0202 0756 CB IIJ 
0203 07S7 CA IEX 
0204 0758 oo re BHE IHllER 
0205 075A £6 16 INC TULEll ;IHCREttENT TAIU LEHGTH 
0:?06 01SC A:? FF LDX ltFf 

Fig. 9-22: Alphobeflc Ust Programs: Binary 5earch, Delete, Insert (cont.) 

304 



DATA STRUCTURES 

0207 075E 60 OUTE ITS :z SET IF KOT DINl 
0201 075F 
0209 075F 
0210 0751 ; 
0211 07SF 20 00 06 DELETE Jll IEARCI ;an .UDI OF llBJECT II TAIU 
QZIZ 0762 DO 1:1 HE OUTS ;SEE IF· n II TICHI 
0213 0764 AS 16 LIA TAILEI ;SEE HOii HNT EN1Rl£1 ARE 
0214 0166 J8 SEC ; •• LEFT AFTER OIJ. lN TAILE 
0215 0767 ES 17 SIC LOGPOI 
0216 076' FO 2A llQ HCEI 
0217 0761 85 17 STA LOGPOI ;STORE RESULT AS A COUNTER 
0211 076D AS 11 tl&LOP LH EITLEI ; SET TEltP I ENTIY AIO•E 1 EITtY AICWE OIJ. 
0219 076F 18 CLC 
0220 0770 6S 14 AIC POllTI 
0221 0772 as " STA TEllP 
0222 0774 A9 00 LDA 10 
0223 0776 6S t:I AIC POllTl•1 
0224 0778 15 IA IH TEIP•I 
0225 077A A6 11 LH EITLEI ; IET CGUNTERI 
0226 one AO 00 LIY 10 
0227 077E 11 19 IYTE LIA CJEllPJ,Y ;IOIJI A IYJE 
0221 0710 

" 14 STA CPOllTIJ, Y 
0229 0712 ca llY ; IS II.OCH Kl\O YET? 
0230 0713 CA HI 
0231 0714 DO Fl llE ITTE 
0212 0786 AS II LDA EITLEI 
0231 0711 18 CLC 
02H 0719 6S 14 AIC POllTI 
0235 0711 15 14 STA POllTI 
0236 0111 90 02 ICC 12 
0231 071F [6 15 UIC PIIITl+I 
OZJI 0191 C6 17 D2 DEC LG&POS 
0239 0793 10 Ill HE llat.OP 
0240 0795 C6 16 DEC ER llC TABl.EI 
om 0797 A9 00 LDA 10 ;z SET IF UAI DOIE 
0242 0199 60 ours RTB 
0243 019A .ENI 

EIRQIS • 0000 <OOOO> 

SYIBIL TABl.E 

SHIOL VALIE 

All 0688 UDEt 067t ANOTKR 072C IIGLOP 0761) 
IYTE 011E CLOSE 0010 CllPRES 0011 02 0791 
DICEI 0795 DELETE 075F DIY 061:1 EITUI OtU 
EITIY 062F FDUID 06£2 llClllT 0018 lllNER 0752 
llSHT 074E LOGPOS 0017 LOOP 0621 LOPP 062C 
LDBJIE 06'5 Ill 0740 llAICCLD 0668 HYER 07211 
lf(ll 06£3 lfEXT 066C IOGOOD 064F OIJECT OIH 
OIT 06£0 OUT£ 075[ OUTS 0799 POllTR 0014 
SHICN 0600 SETO 0717 SETI 0724 SET CLO 0615 
SETEllP 071A SETUP 0700 SUIO 0611 SUllT 06115 
SU IL OP 0612 TAIASE 0012 TAILEI 0016 TEllP OOH 
TESTS 0655 TOOHI 0695 TOOLGU 06CJ UPLOOP 070C 

EID OF ASSElllL T 

Rg. 9-22: Alphabetic List Programs: Binary Search, Delete, Insert (cont.) 

305 



PROGRAMMING THE 6502 

Let us examine the structure in more detail in Fig. 9-23. 
The entry format is: 

As usual the conventions are: 

ENTLEN: total element length (in bytes) 
TABASE: address of base of list 
TAB LEN: number of entries (1 to 256) 

Here, REFBASE points to the base address of the directory, or 
"reference table." 

Each two-byte address within this directory points to the first 
occurrence of the letter to which it corresponds in the list. Thus 
each group of entries with an identical first letter in their labels ac
tually form a separate list within the whole structure. This feature 
facilitates searching and is analogous to an address book. Note 
that no data are moved during an insert or a delete. Only pointers 
are changed, as in every well-behaved linked list structure .. 

DIRECTORY 

"A" 
POINTER 

A 

POINTER A 

bd 
NIL 

"R" POINTER 

Fig. 9-23: linked List Structure 

306 



DATA STRUCTURES 

If no entry starting with a specific letter is found, or if there is no 
entry alphabetically following an existing one, their pointers will 
point to the beginning of the table(= "NIL"). At the bottom of the 
table, by convention, a value is stored such that the absolute value 
of the difference between it and "Z" is greater than the difference 
between "A" and "Z." This represents an End Of Table (EOT) 
marker. The EQT value is assumed here to occupy the same 
amount of memory as a normal entry but could be just one byte if 
desired. 

The letters are assumed here to be alphabetic letters in ASCII 
code. Changing this would require changing the constant at the 
PRETAB routine. 

The End Of Table marker is set to the value of the beginning of 
the table ("NIL"). 

By convention, the "NIL pointers," found either at the end of a 
string or within a directory location which does not point to a string, 
are set to the value of the table base to provide a unique identifica
tion. Another convention could be used. In particular, a different 
marker for EOT would result in some space savings, as no NIL 
entries need be kept for nonexisting entries. 

Insertion and deletion are performed in the usual way (see Part I 
of this chapter) by merely modifying the required pointers. The 
INDEXD flag is used to indicate if the pointer to the object is in 
the reference table or another string element. 

Searching 

The SEARCH program resides at memory locations 0600 to 
0650. In addition, it uses subroutine PRETAB at address 06F8. 

The search principle is straightforward: 

1- Get the directory entry corresponding to the letter of the 
alphabet in the first position of the OBJECT's label. 

2- Get the pointer out of the directory. Access the element. If NIL, 
the entry does not exist. 

3- If not NIL, match the element against the OBJECT. If a 
match is found, the search has succeeded. If not, get the pointer to 
the next entry down the list. 

4- Go back to 2. 
An example is shown in Fig. 9-24. 

307 



PROGRAMMING THE 6502 

L--..:A:::·POt~NT'.!,'.ER~r--®_.,.~----=AAA:::._---1 0 ~ ~lt---ANBC_ll --1 

8-POINTER ~ .• 

tFOUNOI 

t• STEPS REQUIRED I 

OBJECT~ 

Fig. 9-24: Unked Ust: A Search 

Element Insertion 

The insertion is essentially a search followed by an insertion 
once a ''NIL'' has been found. A block of storage for the new entry 
is allocated past the EOT marker by looking for an occupancy 
marker set at "available". The program is called "NEW" and 
resides at addresses 0651 to 06BD. An example is shown in Fig. 
9-25. 

BOORE 

A·POINTlll CAii czz 
11-POINltR NI\ 

C·POINTEll 

14 CBS OBJECT 

NIL 

AFTEll 

A-POINTEll czz 

11-POINltll Nil 

C-POINTER 

Fig. 9-25: Unked List: Example of Insertion 

308 



DATA STRUCTURES 

Element Deletion 

The element is deleted by setting its occupancy marker to "available" 
and adjusting the pointer text from either the directory or the 
previous element. The program is called "DELETE" and resides 
at addresses 06BE to 06F7. An example of a deletion is shown in Fig. 
9-26. 

A 
8 
c 
D 

A 
8 
c 
D 

OAF POINTlll 

.. DOC .. 

NIL 

omn 

1AFTERI 

~ 

~ 

DOC POINTER --J .. DOC .. ---L 

l Nil 

r-------
I OAF I -------" 

NOU DAI 1S NOT ERASED. BUY .. INVISIBLE"" 

Fig. 9-26: Example of Deletion (Linked List) 

] 
] 

309 



PROGRAMMING THE 6502 

Lllft I LOC con Liii 

Otl2 0000 JID(XI • tlO 
otoJ 0000 lllLOC • 111 
OI04 0000 POllJR • tlJ 
OIOS 0000 01.llCT • tlS 
ot06 OotO THP • tl7 
Of07 0000 IEFIAS • ttt 
Otol 0000 au • ttl 
Of Of 0000 TAIASE • ttl 
OllO cooo EITLEI • ttF 
0011 0000 
0012 0000 •• 1600 
Ofll 0600 . 
0014 0600 A9 01 SEARCH LDA It ;llJTIALIZE Fl.AH 
OflS 0602 H 10 STA lllEll 
Ofl6 0604 20 Fl 06 JSR PRETAI ;&ET REF. POJNJEI FOi STARJ 
0117 0607 11 11 LDA llllDLOC>,T ;PUJ IT H POJllTR 
Otla 0609 IS IJ STA POlllTR 
Otl9 0601 ca llY 
0020 060C It 11 LIA llllllLGC >, T 
0021 060£ IS 14 STA PDllTR•I 
0022 0610 AO 00 EITIT LIT 10 ;SEE IF ENTRT IS EOT VALUE 
oon 0612 II 13 LIA IPOJITR>,T 
0024 0614 C9 7C CllP lt7C 
0025 0616 fO J6 IECI IOTFll 
0026 061a It 15 LDA I OIJECT>, T ;COllPARE , usr lErURI 
0027 061A DI 13 CllP CPOIITR>,T 
002a 061C 90 JO ICC •DfFllD 
0029 061[ 10 t2 HE 1106000 
OOJO 0620 ca lllT ;COltrARE SECIMJ LUTERS 
0031 0621 JI 15 LIA COIJECTl,Y 
0032 0623 DI IJ CllP CPOJllTR>,Y 
0033 062S 90 27 JCC llOTFllO 
0034 0627 00 09 HE 110600!1 
003S 0629 ca lllY ;COllPARE fHIRt LE1TERS 
0036 062A II IS LIA I OIJECTI , Y 
0037 062C DI IJ CllP <POJllTR>,Y 
OOJB 062£ 90 1£ ICC llOTFHll 
0039 0630 fO 1£ 1£0 FOUllll 
0040 0632 AS 14 106000 UA POJllThl ;I.WE POIITI Fot POSSJBl.£ REF. 
0041 0634 85 IC STA OLOtl 
0042 0636 AS 13 LH PDlllTR 
0043 0638 85 " STA GLD 
0044 063A A4 IF LDT EITLEN ;on POIITER FROI ENTRT ANJ 
004S 06JC II IJ LIA CPOJllTU, r ; •• LOAD IT llTD POINJR 
0046 063£ AA TAX 
0047 OUF CB lllT 
ooca 0640 II 13 LDA CPOJlfTR>, Y 
0049 0642 85 14 STA P.OllfTRtl 
ooso 0644 BA TIA 
0051 0645 85 13 STA POlllTR 
OOS2 t647 A9 00 LDA 10 
0053 0649 85 10 STA INDEID ;RESET FUS 
0054 0648 4C 10 06 JllP EllTRY 
005S 064[ A9 FF llOTFllD LOA HFF 
OOS6 0650 60 FOUID RTS ;z SET IF FOOID 
0057 0651 
0058 0651 
0059 0651 . 
0060 0651 20 00 06 NEU JSR SEARCH ;IE[ IF OIJ. JS ALREADY fKER[ 
0061 0654 FO 67 1£0 OUTE 
0062 0656 AS ID LOA TAIASE ;LODll FOR UIDCCUPIED EllTIY 
0063 065a 18 CLC ; •• ILOCIC 
0064 0659 69 01 ADC II ; JUllP PAST EDT VALUE 
0065 0651 85 17 STA fEllP 
0066 0650 A9 00 LDA IO 
0067 06SF 65 IE AIC JAJASEtl 
0068 0661 85 18 STA fEllP•I 
0069 0'63 A4 IF LOY ENJLEll ;sn ' TO POINT TD DCCIWAICJ 

Fig. 9-27: linked List Program 

310 



DATA STRUCTURES 

0070 066:1 Cl JNY ; •• llARICER OF AN EITRY 
0071 0666 ca lllY 
0072 0667 A9 01 LOOP LIA II ;TEST FOR OCCUPMCY llARKER 
007J 0669 It 17 CllP <TEllPI, Y 
0074 0661 DO 16 .. E IllSERT 
0075 0660 AS 17 LDA TEllP ; IF JS USED, IOPE TEl'11 ro NEU 
0076 06'F 18 CLC ; •• EllTRY JLOCI 
0077 0670 65 IF AOC EllTLEll 
0078 0672 90 02 ICC llORE 
0079 0674 E6 18 JllC TEllP+I 
0080 0676 69 OJ llORE AIC 13 
0081 0678 85 17 STA TEllP 
0012 0'7A A9 00 UAlt 
008J 067C 65 18 AIC TEllP+I 
0084 061E 85 18 STA TEltP+I 
0085 0610 cc 67 06 JllP LOOP 
0086 OHJ 18 JllSEIT tU ;sn y BACIC TO POlllTINB ro 
0087 0614 18 llU ; •• JOP OF DATA 
0088 0615 .. LOPE DEY ;llOVE OIJECT 1118 8'AC£ 
0089 0616 It 15 LDA c OIJECTI I ' 

0090 0688 " 17 STA CTEllPl,Y 
0091 068A co 00 CPY 10 
0092 068C DO F7 HE LOPE 
OOfJ 061E A4 If UY EllTLEll ;PUT THE VALUE Of POINTR, THE 
00'4 0690 A5 IJ LDA POllTR ;EllTRY AFTER OIJECT, lllTO 
0095 0692 91 17 STA CTEllP), Y ;POINTER AREA OF DIJECT 
0096 0694 Cl INY 
0097 069S AS 14 LIA POlllTl+I 
0098 0697 91 17 STA ITEllP), Y 
0099 0699 ca lllY 
0100 069A A9 OI LDA II ;sn OCCUPANCY HARKER 
0101 069C 91 17 STA <TEllPl, Y 
0102 069E AS 10 LDA lllDEXD ;TESJ TO SEE If IEF. TABLE 
OIOJ HAO DO OJ llE SETlllX ; •• IEEOS IEAIJUIT1118 
0104 06A2 81 DEY 
OIOS 06A3 A5 18 LDA TEllP+I ;10, CHAISE PREUDIJS £NJRJ'I 
0106 06AS 91 II STA COLD>,T ; •• POUTER 
0107 06A7 81 IEY 
0108 06A8 A5 17 LDA TEllP 
0109 06AA 91 ti STA COLD>,Y 
0110 06AC 4C H 06 JllP DONE 
0111 06AF 20 n 06 IETHX Jiit PRETAB ;OET ADDRESI IF UIATS TO tE CIMGED 
0112 0612 AS 17 LDA TEllP ;LDAI ADii, af llJJ. THERE 
OllJ 0614 91 II STA CJHLOCl, Y 
0114 0616 ca lllY 
OllS 0617 AS II LDA TEllP+I 
0116 0619 fl II STA ClllDLGC>,Y 
0117 0611 A9 FF DOH LIA HFF 
0118 061D '° OUTE ITS ;l CUM IF IONE 

·0119 061£ 
0120 061E 
0121 061E 
0122 061E 20 00 06 DELETE JSI SEARCH ;an MDI llF OIJ. 
om 06C1 10 J4 HE OUTS 
0124 06CI A4 If UY EITLEI ;STORE POINTER AT EID 
0125 06CS II IJ LIA fPOlllTll,Y ; •• OF OIJECT 
0126 06C7 IS 17 STA TEllP 
0127 06ct Cl lllY 
0121 HCA II IJ LIA CPOJNJR), r 
om 06CC IS II STA TEllP+I 
OIJO 06CE Cl .. , 
om 06CF Af 00 LIA 10 ;O-EAR OCCUNICY IAIK£R 
0112 0611 91 IJ STA CPDlllJR>, Y 
OIJJ 06H AS 10 LIA JllD£XI ;BEE IF REF. TAIL£ IEEOS 
0114 061S FO 06 1£8 PRElllX ; , ,REAIJUSTlllB 
OID 0617 20 Fl 06 JSR PRETAI 
011' 061A 4C EA 06 JllP llOllEIT 
0117 06tl AS It ,_ElllX LDA OLD ;IET FOi CHAHIIIO PIEUDUI 
OIJI °'" 11 CLC ; •• EITU 

Fig. 9-27: Linked List Program (cont.) 

311 



PROGRAMMING THE 6502 

Ollt Hit 
61 " 

HC HTLH 
0140 Nl2 IS II BTA lllLOC 
0141 Nl4 ., .. LIA IO 
0142 HH 61 IC AIC GLl+I 
0141 OHi IS 12 llTA llllLOC+1 
0144 HIA as 11 IDVEIT LN TEllP ;StMNIE WIAJ IEEDI CHANGllG 
0141 HIC AOH LIT IO 
014' ... , ft II llTA UlllLGC,,T 
0147 .. ,. Cl 117 
0141 Hl'1 as 11 LIA THP+1 
014' WI fl II ITA ClllLOCl,T 
Olst 16'1 ., 00 LIA 10 
1111 Nl'7 .. GVTI ITS ;z SET IF IOI£ 
OIU 16'1 
0111 NFI 
0114 NFI ; 
0111 °'" MH PIETAI LIY IO 
0116 IUA It 11 LIA COIJECn,r 
0117 NfC II llC ;RltlllVE ASCII LEIDER FIOll 
OISI "'' If 41 

'" lt41 ; •• FJHT LETrEI IN OIJlCT 
Ollt "" .. AIL A ;llULTJPU IY 2 
0161 07to II CLC 
0161 1711 61" AIC llFIAI ; llDIX llTO RIF. TMU 
0162 0'03 8~ 11 sr11 l•DLOC 
016J 0105 " ~o LDA 10 
0164 0101 65 IA ADC '"EF"IAS•I 
0165 0709 85 n STA IHUIC•I 
0166 0701 60 tTS 
0161 010C .EllD 

ERltORS a 0000 'OOO!l 

STltBDL THLE 

STlllOL VALUE 

DELETE 061E DOH£ 0618 El TL EH 001' ENT RT out 
FDUlfl 0650 lllDUD 0010 IllDLOC 0011 IllSERT 061J 
LOOP 0667 LOPE 0685 llORE 0676 llOVEIT 06EA 
HEii 0651 1106000 0632 llOTFllD 064[ DIJECT 0015 
OLD 0011 OUTE 06110 OUTS 06f7 POJlfTR Ot1J 
PIEJlfX 06DD PRETAI 06f8 REFHS 0019 SEARCH 0610 
SETJlfX OHF TAIASE 0010 TEllP 0017 
EH Of ASSElllU 

Fig. 9-27: Linked List Program (cont.) 

312 



DATA STRUCTURES 

BINARY TREE 

We will now develop typical tree management routines. Our simple 
structure is shown in Fig. 9-28. It is a binary tree, and the nodes are 
names of persons. Names will be internally sorted by "tags" which will 
be the first three letters of every name. The memory representation of 
this tree structure is shown in Fig. 9-29. The contents of the nodes are 
shown, as well as the two links. The first link, to the left of the name, is 
the "left sibling" and the next link, to its right, is the "right sibling." 
For example, the entry for Jones contains two links: "2" and "4". This 
indicates that its left sibling is entry number 2 (Anderson), and its right 
sibling is entry number 4 (Smith). A "0" in the link field indicates no 
sibling. A left sibling's tag comes alphabetically before its parent. A 
right sibling's tag comes after. 

ALBERT 

(1) 

/JONES' 

¥ (1) ~ 
SMITH 

/C4)~ 
BROWN 

(3) 

TIMOTHY MURRAY 

(s) /C6) 
ZORK 

( 8) 
Fig. 9-28: Binary Tree 

The two main routines for tree management are the tree builder 
and the tree traverser. The element to be inserted will be placed in 
a buffer. The tree builder will insert the content of the buffer into 
the tree at the appropriate node. The tree traverser is said to 
traverse the tree recursively, and prints the contents of each of its 
nodes in alphanumeric order. The flowchart for the tree builder is 
shown in Fig. 9-30, and the flowchart for the tree traverser is shown in 
Fig. 9-31. 

313 



PROGRAMMING THE 6502 

LEFT RIGHT -------, 

2 ANDERSON 7 3 

3 BROWN 0 0 

4 SMITH 

ORDER 
OF INSERTION 

5 MURRAY 

7 ALBERT 0 0 

0 0 

Fig. 9-29: Representation In Memory 

314 



N 

DATA STRUCTURES 

y 

WORKPTR = 
RIGHTPTR OF 

CURRENT NOOE 

N 

WORK POINTER = 
START POINTER 

y 

• 

l 
A 

y 

RIGHT POINTER 
OF CURRENT 

NOOE = FREEPTR 

SET POINTERS Of 
NEW NOD£ =- O? 

FREEPTR ~ FREEPTR 
+ ENTLEN t • 

Fig. 9-30: The Tree ·Builder Flowchart 

ADO BUFFER 
CON1lN1S TO TOP 

Of THE 111& 

SET POINTERS Of 
NEW NOOE TOO 

Fl!EEPTR = FAEEPTR 
+ ENTI.EN +. 

l 
B 

315 



PROGRAMMING THE 6502 

y 

ADD SUFFER 
CONTENTS TO 
TOP Of TREE 
[POINTED TO 
BY FREEPTR] 

LEFT POINTER 
OF CURRENT NODE 

= FREEPTR 

SET POINTERS OF 
NEW NODE= 0 

FREEPTR = FREEPTR 
+ ENTLEN + 4 

RETURN 

A 

N 

B 

WORKPTR ::::: 
RIGHTPTR OF 

CURRENT NODE 

Ag. 9-30: The Tree Builder Flowchart (cont.) 

316 



DATA STRUCTURES 

N 

Ag. 9-31: Tree Traverser Flowehart 

317 



PROGRAMMING THE 6502 

Since the routine for the traversal is recursive, it does not lend itself well 
to flowchart representation. Another description of the routine in a high
level format is therefore shown in Fig. 9-32. An actual node of the tree 
is shown in Fig. 9-33. It contains data of length ENTLEN, then two 16-
bit pointers (the right pointer and the left pointer). In order to avoid a 
possible confusion, note that the representation of Fig. 9-29 has been 
simplified and that the right pointer appears to the left of the left 
pointer in the memory. The memory allocation used by this program is 
shown in Fig. 9-34, and the actual program appears in Fig. 9-37. 

The INSERT routine resides at addresses 0200 to 0282. The tag 
of the object to be inserted is compared to that of the entry. If greater, 
one moves to the right. If smaller, to the left, down by one position. 
The process is then repeated until either an empty link is found or a 
suitable "bracket" is found for the new node (i.e., one node is greater 
and the next one smaller, or vice versa). The new node is then inserted 
by merely setting the appropriate links. 

318 

PROGRAM TREETRA VERSER; 
BEGIN 

CALL SEARCH (STARTPOINTER); 
END. 

ROUTINE SEARCH (WORKPOINTER); 
BEGIN 

END. 

IF WORKPOINTER = 0 THEN RETURN; 
SEARCH [LEFTPTR (WORKPOINTER)]; 
PRINT TREE (WORKPOINTER); 
SEARCH [RIGHTPTR (WORKPTR)]; 
RETURN; 

Fig. 9-32: Tree Traversal Algorithm 



DATA STRUCTURES 

DATA: 'ENTLEN' BYTES RIGHT PTR LEFT PTR 
L 

_1 
H L 

I 
H 

{n) {n + ENTLEN + 4) 

Fig. 9-33: Data Units. or "Nodes" of Tree 

PAGEO HIGH ME.MORY 
$10 

FREPTR (LO) 

I>-
PROGRAM 

FREPTR (HI) 

$200 

WRKPTR (LO) ,, 
WRKPTR (HI) I/ 

ENTLEN 

STRTPT (LO) - $600 
I/ ---STRTPT (HI) 

$17 

- TREE ~-.. 

BUFFER 

1-------- -- ---------.. $37 TOP OF TREE 

Fig. 9-34: Memory Maps 

319 



PROGRAMMING THE 6502 

The TRAVERSE routine resides at addresses 0285 to 02D6. The 
utility routines OUT, ADD and CLRPTR reside at addresses 0207 
to 02FE (see Fig. 9-37). 

An example of a tree insertion is shown in Fig. 9-35, and an ex
ample of a tree traversal in Fig. 9-36. 

ALBERT 

INSERT--- TOM llMOIHY 

ZORK 

Fig. 9-35: Inserting an Element In the Tree 

320 



DATA STRUCTURES 

ALBERT 

ALBERT ANDERSON BROWN JONES MURRAY 

SMITH ZORK 
TIMOTHY 

Fig. 9-36: Listing the Tree 

Note on Trees 

Binary trees may be constructed and traversed in many ways. 
For example, another representation for our tree could be: 

ZORK 

Fig. 9-38: Tree in Preorder 

It would then have to be traversed in "preorder": 

1- list the root 
2- traverse left subtree 
3- traverse right subtree 

Many other techniques and conventions exist. 

321 



PROGRAMMING THE 6502 

0002 0000 ; TREE llAllAGE"EHT PRCGRAll. 
OOOJ 0000 :2 RllUTlllES1 011£, UH(N CALLED, PLACES 
0004 0000 ;THE COllTEllTS Of. THE BUFFER lllTO TH[ 
0005 0000 ;TREE; AllO THE SECOllO TtAIJERSES 
0006 0000 ; TKE TREE RECURSIUELr, PRINTING HS 
0007 0000 ;NOOE COllTEllTS IN ALPHAllUllERIC ORDER. 
0008 0000 ;llOTE1 'EllTLEll' llUST IE lllJTIALIZED 
0009 0000 :AllD 'fREPTR' llUST IE SET EOUAL JO 
0010 0000 ; 'STRTPTR' BEFORE EITHER ROUTINE JS DSUI. 
0011 0000 
0012 0000 • • tlO 
0013 0010 fREPTR uu2 ;FREE SPACE POINTER1 POINTS TO 
0014 0012 ;llEXT F'REE LOCATION IN llEllOR'I'. 
0015 0012 llRKPTR .... :! ;llORKl116 POINTER, POINTS TO CURRENT llOOE. 
0016 0014 ENTLEll .... 1 ;TREE EllTR'I' LEllGTH, Ill l'l'T£S. 
0017 0015 00 06 STRTPT .llORD UOO 
0018 0017 IUFFER .. •+20 ; 110 8UFF£R. 
0019 0028 
0020 0028 •• t200 
0021 0200 

;ROUTINE TO IUILD TREE1 ADDS OllE DUA UlllT, 0022 0200 
002J 0200 ;OR llODE, TO TREE. llUST IE CALLED 
0024 0200 ;UITH DATA UlllT TO IE ADDEll tN 'SUFFER'. 
0025 0200 
0026 0200 A5 15 lllSERT LDA STRTPT ;llORKPOIHTER 1"' FIEEPD INTER. 
0027 0202 85 12 STA llRl<PTR 
0028 0204 AS 16 LOA STRTPT+I 
0029 0206 8S 13 STA URICPTR+ I 
0030 0208 AS 10 LOA FREPTR ;IF fREEPOllTER <> 
0031 020A cs 15 CllP STRTPT ;STARTJll& LOCATION POillTER, 
0032 020C DO OD INE lllLODP ;GOTO INSERTION LOOP. 
0033 020E AS 11 LDA FREPTR+ I 
0034 0210 C5 16 CllP STRTPT+ I 
0035 0212 DO 07 lllE lllLOOP 
0036 0214 20 117 02 JSR ADD ;LOAD BUFFER INTO CURRENT POSITION. 
0037 0217 20 E4 02 JSR CLRPTR :SET POJllTERS OF CURRENT HOM TO 0, 
0038 021A 60 RTS : COllE ADDING I ST llODE, 
0039 0218 AO 00 IllLOOP LD'I' 10 ;COllPt\RE IUFFER TAG TO TAG Of CURRENT 
0040 O:!ID t9 17 00 CllPLP LDA IUFFER, 'I' ;LOCATION ... 
0041 0220 DI 12 CllP C llRKPTR >, Y 
0042 0222 90 33 8CC lESSTH ;tUfR TA& LOUO: ADD llUHER 10 
0043 0224 ;LEFT SIDE or TREE. 
0044 0224 ro 02 BEU HXT :TAGS EtlUAL, TRY NEXT CHR. IH JAG<;. 
0045 0226 80 OS ICS GRTllEO ;IUFR TAG GREATER, ADD BUH! TD 
0046 0228 ;RIGHT SIDE OF TREE. 
0047 0228 ca llXT IN'I' 
0048 0229 C9 04 CllP 14 ;3 CHRS. COllPARED' 
0049 0221 DO fO tHE UPLP ;HO, CHECK NEXT CHR. 
0050 0220 A4 14 GRTllED LDY EllTLEH :DOES 
0051 022F II 12 LDA I llRKPTR 1, y :RIGHT POINTER OF CURRElll NODE • 0 ' 
0052 om DO 15 IN[ lltllllOD ;IF NOT, KOU[ DDUll/RIGHT IH UEE. 
0053 0233 CB 111'1' 
0054 0234 II 12 l DA I llRKPTR I, T 
0055 0236 DO 10 lllE llXllHOD 
0056 0238 AS II L DA rREPTR+ I ;SET RIGHT POIHTEt OF CllRtEllT 
0057 023A 91 12 STA lllRKPTR I, Y ;llODE • FREEPOINTER. 
0058 023C 88 DEY 
0059 0230 A5 10 LOA FREPTR 
0060 023F 91 12 STA lllRKPTR I, T 
0061 0241 20 07 02 JSR ADD ;ADD tUfFEP TO Tr\EE. 
0062 0244 20 E4 O:! JSR CLRPTR ;CLEAR POlllTERS OF H£U HlJ(lE. 
0063 024' 60 RTS ;80llE, llEU RIGHT NODE Al•~H. 
0064 0248 A4 14 llXRllOD LD'I' EllTLEll ;SET llORKlllG POlllTER 
006S 024A 11 12 LDA lllRICPTlh,Y: RIGHT POlllTER OF CURRENT ~Ol•E. 
0066 024C AA TU 
0067 024D CB lllY 
0068 024£ " 12 LOA flllllCPTril,Y 
0069 0250 85 13 STA URICPTR•I 
0070 02S2 86 12 srr llRKPTR 
0071 02S4 4C II 02 JllP lllLOOP ;IR1' IEll CUIRINT 1101.l[. 

Fig. 9-37: Tree Search Programs 

322 



DATA STRUCTURES 

Ot12 0257 .. 14 LEHTI ur HTLH ;~OES LEFT POJITEI OF 
Of7J 02Sf Cl llJ ;COIHIT IOH • t ? 
Ot74 025A Cl JIJ 
Ot7S 0251 II 12 LIA fllRIPTR>,J 
ot76 0251 10 IS llE llLIDI ;IF SO, MIU( JOIN/LEFT JN TREE. 
ot77 02SF Cl llJ 
Ot71 0260 II 12 LIA fllllPTIJ,r 
ot7' 0262 •• It llE llLIOI 
otlt 02'4 AS 11 LIA FllPTl•I :nr LEFT POJlfTO f1F CUIRINT IOI£ TD 
otll 02U " 12 ITA fUIPTl>,r :POllT ro ltrl IOIE. 
0111 0261 II IU 
0013 02611 AS 10 UA FIEPTR 
Oll4 0261 " 12 srA ua1en1>, Y 
OHS 0261 20 17 02 JSI AH :HI IEU 101£ COIJENTS. 
OIH 0270 20 (4 02 JSI CUPTI ;CLEAi POllJEIS OF ID IOIE. 
0017 0213 60 ITS ;JOIE, IEll LEFT IOIE ADDEt. 
Ofll 0274 A4 14 llLHI ur EIJL[I ;sn llOllCll& POllTEI • 
otlf 0276 Cl llJ ;LEFT POllTEI OF CURIEIT lfODE. 
0090 02'17 ca llY 
0091 0278 II 12 LIA C UllCPTR>, r 
Ol92 027A AA TU 
0093 0271 Cl llJ 
0094 027C It 12 LIA CllllCPTRJ, Y 
0095 027£ 15 13 ITA llllPTI .. 

°'" 0280 " 12 ITI llUPTI 
0097 0282 CC II 02 JIP 111.00P ; TIT llf:U CURIEIT IOI!€. 
00'8 0215 

:TREE TIAfEll[I I LISTS IOBES or HEr 0099 0285 
0100 0285 ;II ALPllMVllHICAI. DllEI. 
0101 0215 :ouTPUJ IDCITHE ro IFEI IUFrER TO OUTPUT 
010~ 0285 ;IEVICE IS IEHH. 
OtOJ 0285 ; 
0104 0215 AS 15 TIVISE LIA SHTPJ ;llORICHG POIUEI (:: STAIT POIIT£R. 
OIOS 0287 85 12 SJA URKPTI 
0106 0289 A5 " LIA ITITPT•1 
0107 0281 85 13 STA UHPTl•1 
Ot08 0280 A5 13 SEAICN LDA UU'11•1 
0109 028F 

"' 12 Lii UlllPTR ;IF WIKINS POINTER 0 O, 
0110 0291 DO 07 HE OK ;CONT HUE; 
0111 0293 A4 13 UY llllPTl+I 
0112 0295 80 03 UE DK 
0113 0297 4C C6 02 JllP REJI ; EL SE, RETURI. 
0114 029A 48 OIC PIA ;PUSH UORICHG PDIITER 
011S 0291 IA TIA ;0110 suer. 
0116 029C 48 PHI\ 
0117 0298 .. 14 LDT EITLEI ;sn UORICJIG POHTER :: 
0118 029F Cl .. , ;LEFT POllJEI f1F CURREIT NODE • 
0119 02AO ca JIY 
0120 02A1 II t2 LDA CllHPTR>,Y 
0121 02A3 "" JAX 
0122 02A4 C8 JMY 
0123 02A5 II 12 UA CllRICPTR>,r 
0124 02A7 85 13 STA URKPJR+1 
0125 02A9 86 12 STX URKPTI 
0126 02AI 20 8D 02 JSR SEARCI ;SEARCH ffEU NODE, RECURSIVELY. 
0127 021\E 68 PU ;POP OLD CURRHT NODE INTO iOIKlHI POJHTEI. 
0128 02AF 85 12 STA URICPTR 
0129 0211 68 PU 
0130 0212 85 13 STA URICPTR+I 
0131 0214 20 C7 02 JSR OUT ;OUTPUT CURREIT IODE COUENTS. 
0132 0217 A4 14 LDY EllTLEI ;SET UGRKH& PDillTER • 
0133 0219 •• 12 LDA CURICPTR>, Y ;CURREllT llOtE'S IJ&HT POINTER. 
0134 0218 AA TH 
0135 021C C8 JIY 
0136 021D II 12 LDA fURICPTU, Y 
0137 021r 85 13 STA URKPJR+I 
0138 02C1 86 12 STX URICPJI 
013' 02C3 20 8D 02 JSR SEARCI ;IEARC!t NEU IODE. 
0140 02C6 60 REH RTS ;DOllE, RETURI. 

Ag. 9-3 7: Tree search Programs (cont.) 

323 



PROGRAMMING THE 6502 

0141 02C7 ; 
0142 02C7 ;IUFFER OU,TPUT RIJUTIKE. 
0143 02C7 

OUT 0144 02C7 AO 00 LDT 10 
0145 02C9 II 12 XFR LDA < URKPTR >, Y ;on CHR. FRD" CURREllT NCIDE. 
0146 02CI 99 17 00 STA IUFFER, Y ;PUT Ill SUFFER. 
0147 02CE ca JllY ;REPEAT UllTJL, •• 
0148 02CF C4 14 CPY EllTLEll ;ALL CHARACTERS XFERRED. 
0149 02DI DO F6 lllE XFR 
0150 02D3 EA HP ; lllSERT CALL TO SIBROUTlHE 
OISI 02D4 EA llOP ;llHICH OUTPUTS ..,,ER HERE. 
0152 02D5 EA llDP 
0153 02116 60 RTS ;DOllE, 
0154 02D7 

iaaUTJllE llHICH PLACES IUFFER 0155 02D7 
0156 02D7 ;CDllTEllTS Ill NEii llDDE. 
0157 02D7 

ADI 0158 02D7 AO 00 LllY 10 
0159 02D9 19 17 00 11011 LDA IUFFEI, Y ;GET Cllt. FIOI SUFFER. 
0160 02DC 91 10 STA I FREPTR >, Y ;STORE Ill MEii lllJl)[. 
1>161 02DE CB lllY ;REPEAT UllTJL, •• 
0162 02Df' C4 14 CPY EllTLEI ;ALL ClltS IF'ERRED. 
0163 02EI DO F6 lllE 11011 
0164 02E3 60 RTS ;DDllE. 
0165 02E4 

iROUTUE TO CLEAi POINTEIS OF IEI IOtE, 0166 02£4 
0167 02E4 ;AllD UPDATE FREE SPACE POlllTER, 
0168 02E4 

' 0169 02E4 A4 14 CLRPTR l?IJ EllTLEll ;SET 1Jt llfllEX TO POINT 
0170 02E6 ;TO TOP OF POllTEI LDCATIOHS. 
0171 02E6 A9 00 LllA 10 
0172 02EB A2 04 LDX 14 ;LOOP 4X TO CLEM POllTERS 
0173 02£A 91 10 CULP STA CFREPTR>,Y ;CLEAR POlllTER LOCATJOll, 
0174 02EC ca Ill\' ;POlllT TO NEXT POillTER LOCATJOll. 
0175 02ED CA DEX 
0176 02EE DO FA lllE CLRLP ;LOOP IF MOT DO.£. 
0177 02FO AS 14 LDA EllTLEll ;GET EMTRY LEltGTH, 
0178 02'2 18 CLC ;AICD AH 4 FOi POINTER SPACE. 
0119 02F3 "04 ADC 14 
0180 02f'5 65 10 ADC FREPTR ;ADD TD FREE SPACE POJllTER TO 
0181 02F7 90 02 BCC CC ;UPDATE IT. 
0182 02f'9 

E6 " lllC f'REPTR+I :TAKE CARE lrf' OfEIF'LOllS. 
0183 02f'I 85 10 cc STA FIEPTR ;RESTORE UPDATED FREE SPACE PTR. 
0184 02FD 60 RTS ;BONE. 
0185 02FE .END 

ERRORS • 0000 <0000> 
EID OF ABSERIL Y 

Ag. 9-37: Tree Search Programs (cont.) 

324 



DATA STRUCTURES 

A HASHING ALGORITHM 
A common problem when creating data structures is how to place 

identifiers within a limited amount of memory space in a sys
tematic way so that they can be retrieved easily. Unfortunately, 
unless identifiers are distinct sequential numbers (without gaps), 
they do not lend themselves to placement in the memory with
out gaps. In particular, if names were to be placed in the memo~ so 
that they could be most easily retrieved (i.e., if they were placed 
alphabetically), this would require a huge amount of memory; 
a single memory block would have to be reserved for every po~sible 
name. This is clearly not acceptable. To solve this problem, a hashing 
algorithm cari be used to allocate a unique (or almost unique) number 
to every name which has to be entered into memory. The mathematical 
function used to perform the hashing should be simple so that the algo
rithm can be fast, yet sophisticated enough to randomize the distri
bution of the possible names over the available memory space. The re
sulting number can then be used as an index to the actual location, and 
fast retrieval will be possible. Ith; for this reason that hashing is com
monly used for directives of alphabetic names. 

Since no algorithm can guarantee that two names will not hash 
into the same memory location (a "collision") a technique must be 
devised to resolve the problem of collisions. A good hashing algor
ithm will spread names evenly over the available memory space, 
and will allow efficient retrieval of their values once they have been 
stored in a table. The hashing algorithm used here is a very simple 
one, where we perform the exclusive OR of all the bytes of the key. 
A rotation is performed after every addition to improve the ran
domization. 

The technique used to resolve collisions is a simple sequential 
one. It is technically called a "sequential open addressing tech-
nique;" the next sequentially available block in the table is 
allocated to the entry. This can be compared to a pocket address 
book. Let us assume that a new entry must be entered for SMITH. 
However, the "S" page is full in our small address book. We will 
use the next sequential page ("T" here). Note that there will not 
necessarily be another collision with a new entry starting with a "T"; 
the entry for "S" may be removed ("whited out," in our comparison) 
before a "T" ever needs to be entered. 

Also note that there could be a chain of collisions. If the chain is 
long, and the table is not full, the hashing algorithm is a bad de
sign. 

325 



PROGRAMMING THE 6502 

Since it is convenient to use a power of two for the data format, 
the length of the data is eight characters; six are allocated to the 
key, and two to the data. This is a typical situation when creating, 
for example, the symbol table for an assembler. Up to six hexa
decimal symbols are allocated to the symbol, and two are allocated 
to the address it represents (2 bytes). 

When retrieving elements from the hashing table, the time re
quired by the search does not depend on the table size, but on the 
degree to which the table has been filled. Typically, keeping the 
table less than 80%full will insure a high access time (one or two 
tries). It is the responsibility of the calling routine to keep track of the 
degree of fullness of the table and prevent overflow. 

The increase of the access time versus table fullness is shown in 
Fig. 9-39. The main routines used by the program are the initialize 
subroutine (INIT), shown in Fig. 9-40; the store routine, shown in 
Fig. 9-41; the retrieve routine, shown in Fig. 9-42; and the hash routine, 
shown in Fig. 9-43. The memory allocation is shown in Fig. 9-44, 
and the program is given in Fig. 9-45. The program is intended to demon
strate all the main algorithms used in an actual hashing 
mechanism. If these programs are to be imbedded in an actual imple
mentation, it is strongly suggested that the usual housekeeping 

Ac ass 
TIME 

326 

I()()·, 

50·.ao 80' .... 

Fig. 9-39: Access Time vs. Relative Fullness 



N 

PJR "' ENTNUM • 8 

PJR=PJR+ 
TABlE STARTING 

ADDRESS 

CLEAR TABlE (PJR) 

PJR=PJR-1 

Fig. 9-40: Initialize Subroutine 

Fig. 9-41: "Store" Routine 

DATA STRUCTURES 

327 



PROGRAMMING THE 6502 

START 

HASH KEY IN BUFFER 
PUT RESULT IN INDX 

PTR = INDEX • 8 

PLACE DATA UNIT AT 
TABLE (PTR) IN BUFFER 

INDEX = INDEX - ENTNUM 

INDEX = INDEX + I 

Fig. 9-42: Retrieve Routine, "Find" 

328 



N 

CLEAR A 

Y=S 

A = (A) EXCLUSIVE 

OR TABLE [PTR + Y] 

A= A* 2 

y = y - 1 

INDEX= A 

Ag. 9-43: Hast'\ Routine 

DATA STRUCTURES 

329 



PROGRAMMING THE 6502 

functions required to prevent unexpected situations be added. In 
particular, one should guard against the possibility of a full table 
or of an incorrect key since these might cause infinite loops to oc
cur in the program. The reader is strongly encouraged to study 
this program. Not only will it demystify a hashing algorithm, but 
it will also solve an important practical problem encountered when 
designing an assembler, or any other structure where tables of 
names with their equivalent values must be kept in an efficient 
way. 

PAGE 0 HIGH MEMORY 

PROGRAM $200 

$10 

TABLE LO "'-
TABLE HI v 

INDEX 

PTR LO 

"" 
TABLE 

PTR HI v 
ENTNUM 

BUFFER .-------- ---
~-------

t-------- ---
1--------
1-------- ..... -.......,,...-~ 

~-------

~-------

Ag. 9-44: Hash Store/Retrieve: Memory Maps 

330 



Liit 1 use COH 

0002 0000 
OOOJ 0000 
0004 0000 
ooos 0000 
0006 0000 
0007 0000 
OOOI 0000 
OOOf 0000 
0010 0000 
0011 0000 
0012 0000 
0013 0000 
0014 0010 00 06 
OOIS 0012 
0016 0013 
0017 001S 
0011 0016 
OOlt OOIE 
0020 OOIE 
0021 0200 
0022 0200 
0023 0200 
0024 0200 
0025 0200 ·As 1s 
0026 0202 8S IJ 
0027 0204 20 72 02 
0021 0207 A2 00 
002' 0209 At 00 
0030 0201 64 IJ 
0031 020D 10 02 
0032 020F C6 14 
0033 0211 C6 IJ 
0034 0213 81 IJ 
0035 0215 AS 13 
0036 0217 cs 10 
0037 021f 10 EE 
0038 0211 AS 14 
003' 021D CS 11 
0040 021f 10 El 
0041 0221 60 
0042 0222 
0041 0222 
0044 0222 
0045 0222 
0046 0222 
0047 0222 
0041 0222 62 00 
004' 0224 20 '° 02 
0050 0227 20 62 02 
0051 0226 61 13 
0052 022C FOOS 
0053 022E E6 12 
0054 0230 4C 27 02 
OOS1 0233 AO 07 
0056 0235 ., 16 00 
0057 02J8 

" 13 0051 02JA 18 
005' 0231 10 Fl 
0060 0231 '° 0061 02JE 
0062 OZJE 
0063 02JE 
0064 02JE 
0065 OZIE 
0066 02JE 
0067 02K A2 00 
ONI 0240 20 fO 02 
006' 0243 20 62 02 

DATA STRUCTURES 

Liit 

iPIOIR111 Tl ITlll! .ttlEJllUI IYMGLS II 6 
iTAtLE, ACCllKI If ••1•. Ill SrfllOls 
;HE 6 Clll, 1616 2. t• MXlllJll ..... al 
:8-HTE AITI ID H ll•H II l• lMLE 
iSllHILI IE II 'ElllUll', HllAlll 61tlRESS OF 
;TAILE SllOIR.I IE II 'HILE'. IOIE TUT 
iTAIU 111111 H 1111161.IZH 1111 llUTJIE 
i •JUT' PllOI ID USE. 
i IT II Tiii IEIPllSllRllf al 11• CM.LI• 
iPIO&RAI 10 Tl EICEEI t• HILE IIZE. 

•• 110 
T AILE • UGll Hot 
1111 ··••1 
PTR .... 2 
EITIUll ••••1 
IUFFH ••••I 

•• 1200 

:&TMll• RMIS1 IF HILE. 
;llHllEI OF IAIA UllT ro IE ACCEISID. 
;POlllEI TD 1616 UllT II HllE. 
;IUIKI Gf Wllfl II TAii.i cm Ml) 
;llPOl/ DllPUT IUFFEI. 

:aounu '1111' 1 HITIALIZH TA._E 
:TO ZEROES. . 
lllT LIA EIJIUI 

SJA PTI 
JSR SIAll 
Lii 10 

CULP LIA IO 
LIY PTI 
llE IECI 
IEC PTl+I 

DECR llEC PTR 
STA CPTl,IJ 
LIA PTI 
CIP THU 
llE CULP 
LIA PTl+I 
CllP HILE+1 
llE CULP 

"' 

;lllRE I IF EmlEI IM POJllEI 
;llCIL llPU PT ... , 611 TAil£ Pl Ifni. 
:nHI I FGI IUllECT Alll£18I•. 
;KT CLHllll COllTMT 

; IF 'II <> O, DH'T DECIEIEll HI IYTE. 
;RCIElllT II ITTE OF 'OHTH. 
: tlCllRIT LO ITT£. 
;CLIM LICAlHI. 
:can IF ,OIMJD • IAIU POIMJD, 
;IF 111HOM., nEAt llllT LllCAlHI. 

iaoun• 'STORE' a Pl"'EI llfFtR cmtllTS 11 
;TAILE, 111118 11T 6 CUI. OF IUfFll Al I 
i'IEY' ro IETEll11£ IAllO AllllU II 
;ruu. 
i 
STORE LDi 10 

JSI HAIN 
CllPl1 JSI LlllT 

LDA CPTl,IJ 
IH HPTY 
JK 1111 
JKP CllPl1 

Elf PTT Llr 17 
FILL LIA IUFFEI, T 

SH CPTU,T 
IEY 

; 

IPL FILL 
ITI 

;ROUlllE 'Fiii' I 

;CUM X FOi HIDED ADUEISI•. 
;Ill IASKEI lllEX •• 
;IAH 11111 llltX IS UITlll 101188. 
;CKtCI IHI llllT ••• 
;JVIP IF EIPIT. 
; TIY IEIT UllT. 
;ClllCI FOi ICXl 11111 lllllX VIL.lit. 
;LOOP IX TO LOAI HTA UllT. 

: an CNt FtOtl """' ;ft.Kt IT 11 IW'FER. 

;XFtl IEll CIR. 
;AlllTIGtl DI•. 

iFllJS EITIY lllCllSE KIT 18 II IUFfD. 
;HTIY, UHi FOllll, JI COPIO IMJO 
;tUFFH, ALOI& lllTll 2 ITTH OF DITA. 
; 
Fiii Lii IO 

JSR lfASll 
CllP12 Jll LlllT 

;CUM X FUI llOIIECT AHIEISINI. 
;RT Ull PIOIUCl. 
;IAIE ~ IUU HIULT 18 UJTIIM Llltlll 

Ag. 9-45: Hashing Program 

331 



PROGRAMMING THE 6502 

0070 0246 AO 05 lDY 15 ;LOOP 6X TO COllPARE IUFFER TO DATA ITEM. 
0071 0248 II 13 CHKLP LDA IPTRJ,T ;GET CHR FROll TAILE. 
0072 024A D9 16 00 CllP IUFFER, T : IS 11 " IUFFER CHR? 
0073 0240 DO OE 811E JAD ; IF NOT, TRT llEXT DATA UlllT. 
0074 024F 88 DEY 
0075 0250 tO F6 JPL CHKLP ;CHECK llUT CHIS. 
0076 0252 AO 07 llATCN LDT 11 ;LOOP BX TO xrEt CHIS TO tUrFER. 
0077 0254 It 13 XfEA LDA fPTR>, T :an CHA. FROll TAILE. 
0078 0256 " 16 00 STA IUFFER, T ;STORE lN IUF'FER. 
0079 0259 88 DET 
0080 025A 10 FB BPI. XFER ;LOOP TO XFER CIRS. 
0081 025C 60 RTS :llOllE 1DATA UllT FOUND, ll BUFFER. 
0082 025D E6 t2 BAD lllC UIDX ;llOT FOUND, TRT IEXT DATA UNIT. 
0083 025F 4C 43 02 JllP CllPR2 ;YALlDATE IEU DATA UlllT INBEX. 
0084 0262 

;ROUTllfE TO NAKE SURE DATA llfDEX IS UITHlM 0085 0262 
0086 0262 ;IOUllDS SET IY HTltUll, THEii llULTIPLY IIDEX 
0087 0262 ;BT 8, AND ADD IT TO TAILE POINTER, THE 
0088 0262 ;RESULT IS PLACED IN 'PTR' AS DATA UNIT ADDRESS. 
0089 0262 

' 0090 0262 A5 12 LillIT LDA INDX :en INDEX. 
0091 0264 cs 15 TEST CllP EllTllUll ;INDEX ) NUllB[R or DAJA HEMS' 
0092 0266 90 06 ICC OK ;JUllP lF lfOT, 
0093 0268 38 SEC ;TES -
0094 0269 ES 1S SIC ENTNUll ;SUITIACT I or lTEllS UNTIL 
0095 0261 4C 64 02 JllP TEST ;JllDEX UITHIH BOUIDS, 
0096 026E 85 IJ OK STA PTR ;STORE GOOD llfDEI lN POINTER. 
0097 0270 85 12 STA lllDX ;SAYE UPDATED INDEX. 
0098 0272 A9 00 SHADD LDA 10 ;CLUR UPPEI tOINfER rOR SHJFT. 
0099 0274 85 14 STA PTRt1 
0100 0276 06 IJ ASL PTR ;SHIFT PTR 3X LEFT - flULTIPU IY 8. 
0101 0278 26 14 llOL PTll+I 
0102 027A 06 IJ ASL PTR 
0103 027C 26 14 ROL PTRtl 
0104 027E 06 13 ABL PTI 
0105 0280 26 14 AOL PTR+1 
0106 0282 18 Cl.C 
0107 0283 AS 10 LOA TAILE ;ADD POIITER AllD TABLE START 
0108 0285 6S IJ ADC PTR ;ADDRESS AND PLACE RESULT IN POIITER. 
0109 0287 8S 13 STA PTA 
0110 0289 AS 11 LOA TABLE+! 
0111 0281 6S 14 ADC PTR+I 
0112 028D 8S 14 STA PTRtl 
0113 028F 60 RTS 
0114 0290 

;ROUTJIE TO BEllERATE DATA llHlT INDEX IH TABLE OllS 0290 
0116 0290 ;IY HASHlllS 'KEY', OR CHRS 0, UIEL. 
0117 0290 

' 0118 0290 A9 00 NASH LDA 10 ;CLEAR LOCATJOI FOi INDEX. 
0119 0292 18 CLC ;PREPARE TO ADD, 
0120 0293 AO 05 LDY 15 ; LOOP 6X FOR EXCLUSIVE ORS. 
0121 029S 59 16 00 EXOR EOR IUFFER, Y :EXCLUSIVE-OR ACCUll. UITH IUFFER CHI. 
0122 0298 H ROL A ;llULTIPU ACCUll. BT 2. 
0123 0299 88 DEY ;couu IOUll CIRS. 
0124 029A 10 F9 IPL EXOR :an NEXT CHI. 
0125 029C 8S 12 STA llfDX SAYE HASH PRODUCT AS JHDU. 
0126 029E 60 RTS ;DOllE. 
0127 029F .END 

EHORS • 0000 <OOOO> 

SYllBDL TABLE 

SYllSOL VALUE 

110 O:?SD BUFFEP 0016 CHKLP 0241 CLIL' 02or 
CllPRI 02:?" CllPR:? 0243 DECA 0:!11 EllPTY 02n 
EllTllUll 0015 EXOR 0295 Fill 023S fl ND 023E 
HASH 0:!90 (NDX 0012 INIT 0200 Ll"1T v26Z 
KAT CH 02s: or. o:m PU 0013 SHADD 0271 
STORE 0 .... , TAlll£ 0010 TEST 0:!64 XHll 0254 

EID OF ASSEllJL Y 

Rg. 9-45: Hashing Program (cont.) 

332 



DATA STRUCTURES 

BUBBLE-SORT 

Bubble-sort is a sorting technique used to arrange the elements 
of a table in ascending or descending order. The bubble-sort tech
nique derives its name from the fact that the smallest element 
"bubbles up" to the top of the table. Every time it "collides" with 
a "heavier" element, it jumps over it. 

A practical example of bubble-sort is shown in Fig. 9-46. The list. 
to be sorted contains: 10, 5, 0, 2, and 100, and must be sorted in 
descending order ("0" on top). The algorithm is simple, and the 
flowchart is shown in Fig. 9-4 7. 

The top two (or bottom two) elements are compared. If the 
lower one is less ("lighter") than the top one they are exchanged. 
Otherwise, they remain the same. For practical purposes, the exchange, 
if it occurs, will be noted for future use. Then, the next pair of elements 
will be compared, etc., until all elements have been compared two by two. 

This first pass is illustrated by steps 1, 2, 3, 4, 5, and 6 in Fig. 9-47, 
going from the bottom up. (Equivalently, we would go from the top 
down.) 

If no elements have been exchanged in one pass, the sort is complete. 
If an exchange has occurred, we start all over again. 

Looking at Fig. 9-47, it can be seen that four passes are neces
sary in this example. 

The process described above is simple, and is widely used. 
One additional complication resides in the actual mechanism of 

the exchange. When exchanging A and B, one may not write: 

A=B 
B=A 

as this would result in the loss of the previous value of A. (try it on 
an example.) 

The correct solution is to use a temporary variable or location to 
preserve the value of A: 

TEMP= A 
A =B 
B =TEMP 

It works. (Again, try it on an example.) This is called a circular permu
tation., and it is the way all programs implement the exchange. The 
technique is illustrated in the flowchart of Fig. 9-47. 

333 



PROGRAMMING THE 6502 

SE ... 
~·=• 

100>2: 
NO CHANGE 

0 

EXCHANGED 

0 

~ •=• ~·=• 
100>2: 

NO CHANGE 

0 

w=::: 
2<10: 

EXCHANGED 

@ 

2>0 
NO CHANGE 

~" tE 1-2 

O< 10: 
EXCHANGED 

0 

I=::: 
2<5: 

EXCHANGED 

© 

EXCHANGED 

EXCHANGED 
END OF PASS I 

END OF PASS I 

EXCHANGED 

m=::; 
2 .>O: 

NO CHANGE 

@ 
END OF PASS 2 

Fig. 9-46: Bubble-Sort Example 

334 



DATA STRUCTURES 

0 0 0 

2 2 2 

10 10 1;;;:3 5 

5 1=4 5 1;;;:4 10 

100 1=5 100 100 

100)5: 5<10: EXCHANGED 
NO CHANGE EXCHANGED 

@ e @) 

0 0 l=I 0 

2 1=2 2 1=2 2 

5 1=3 5 5 

10 10 10 1=4 

100 100 100 1=5 

5.> 2: 2>0: 100>10: 
NO CHANGE NO CHANGE NO CHANGE 

® @ @) 
END OF PASS 3 

0 0 0 1=1 

2 2 1=2 2 1=2 

5 1=3 5 1;;;:3 5 

10 1=4 10 10 

100 100 100 

10>5: 5)2: 2)0: 
NO CHANGE NO CHANGE NO CHANGE 

e @ @ 
END 

Fig. 9-46: Bubble-Sort Example (cont.) 

335 



PROGRAMMING THE 6502 

EXCHANGED = 0 

GET NUMBER OF 
ELEMENTS N 

I= 

DECREMENT I 

READ E'(I) 

EXCHANGE E AND E': 
TEMP== E(I) 
E(I) == E'(I) 

E'(I) == TEMP 

EXCHANGED == I 

YES 

Fig. 9-47: Bubble-Sort 

336 

DONE 



DATA STRUCTURES 

The memory map corresponding to the bubble-sort program is 
shown in Fig. 9-48. In this program, every element will be an 8-bit 
positive number. The program resides at addresses 200 and follow
ing. Register X is used to memorize the fact that an exchange has 
or has not occurred, while register Y is used as the running pointer 
within the table. TAB is assumed to be the beginning address of 
the table. The actual program appears in Fig. 9-49. Indirect in
dexed addressing is used throughout for efficient accessing. Note 
how short the program is, due to the efficiency of the indirect ad
dressing mode of the 6502. 

TAllLE PTR 
0001 
i----~ 

0200 

PROGRAM 

NUMBtll n 

ELEMENT 1 

ELEMENT 2 

PTR EXCHANGED? 

CURRENT ELEMENT 

ELEMENT n 

Fig. 9-48: Bubble-Sort: Memory Map 

337 



PROGRAMMING THE 6502 

SORT,,., •• f'AGE (l001 

I.IN[ I lOC CO[I( LUE 

0002 0000 [(UULE SORT f'J.'Olii•l" 
0003 0000 
0004 0000 • • tO 
0005 0000 
0006 0000 00 06 IAB .UOl'<lo IOOI) 
0007 0002 
0008 0002 •• 12f)i) 

0009 0:?00 
0010 0:?00 A:? 00 SORT lDl 10 :SET Exr:HAHG[O' TIJ 0 
0011 0702 Al 00 LDA CTAt,X> 
0012 0204 AB TAJ ;NUllJ(R OF (L[fl[HJS IS IN Y 
0013 0205 81 00 LOOP LDA 1101, Y ;RUD ELEllENT ECll 
0014 020] 88 0£f ;DECR£11£NT NIJfltER OF ELEll[NJS ro READ. 
0015 020B fO 12 tEO f !NISH ;END If NO llORE [l(N[NTS 
0016 020A DI 00 Crtf' ITAt I, r :ro"PAl'!E TO ['Ill 
0017 020C to P BC~ LOOP ;GEJ NEU ELEllENJ IF El 11 ·E 111 
0018 020[ AA [XCH TAl ;EXCHANGE ELEll[llJS 
0019 020f 11 00 LOA 

""''· y 0020 0211 CB INY 
0021 0212 91 00 STA ITAtl,r 
0022 0214 BA JU 
0023 0215 88 flEY 
0024 0216 91 00 su cru1,r 
0025 0218 A2 01 LOI II :sn El!CHAH6Ell 10 I 
00:?6 021A DO £9 tNl LOOP ;GEJ NEXT ElENfllT 
iJ027 one BA fllllSN JU ;SHI fl UCHAH6EP ro A REG. FOR COllPARE ... 
002B 0210 DO £1 lllE SORT ;IF SO"E EXCHANGES "ADE, DO ANOTHER PASS. 
0029 021F 60 RJS 
0030 0220 .no 

URORS • 0000 <0000> 

SYlllOL TABLE 

SYHOL UALUl 

EICH 020E FINISH o:nc LOOP 020~ son 0200 

TAI 0000 
EID OF ASSElltl Y 

Fig. 9-49: Bubble-Sort Program 

338 



TEMP = TABlEI (PTIU) 

PTR I ""PfR I +I 

START 

PTRI = PTR2 "' I 

PTR3 .. 0 

DESTBl (PTR3) .. TEMP 

PTR3 = PTR3 + I 

NO 

DATA STRUCTURES 

TEMP .. TA81.E2 (PTR2) 

PTR2 .. PTR2 + I 

YES PTR3 = TABlE I (0) 
+ TABLE2(0) 

Fig. 9-50: Merge Flowchart 

339 



PROGRAMMING THE 6502 

A MERGE ALGORITHM 

Another common problem consists in merging two sets of data 
into a third one. We will assume here that two tables of data have 
been previously sorted, and we want to merge them into a third table. The 
length of each of the two original tables will be limited to 256 bytes (one 
page). The first entry of every table contains the length of the table. 
of the table. 

The algorithm for merging two tables is shown in Fig. 9-50. The 
corresponding memory organization is shown in Fig. 9_-51, and the 
program appears in Fig. 9·52. Remember to set "TABLE 1 ", 
"TABLE2," and "DESTBL" before using it. 

The algorithm itself is straightforward. Two running pointers 
PTRI and PTR2 , point to the two source tables. PTR3 points to 
the resulting table. 

PAGE 0 HIGH~Y 

SIO 
PROGRAM 

TAllU I LEN 

TAllU I DATA 

IAllU 2 LEN 

TAlllf 2 DAIA 

Fig. 9-51: Merge Memory Map 

340 



DATA STRUCTURES 

u• ILIC CCIII LI• 

ON2 '"' ;2-,.. .... 
ONJ '"' ;TMll 2 MTA TULEI PllVIClllU AlfO, 
OM4 "" ;ID .... T•• rm A lllU TUU. 
OHS tHO ;EACll IMCI TAILE CM• .. II -.... "" ;PAK 1256 HTEI) II LUITI • 
Off7 0000 ;TU FlllT REll£1T II TIC IClllC£ 
Otol "" ;TAIUI ICllT C•TAll TIE TA&E Ut5TI. 

°"' 0000 : 'PTl3' COITAlll Tiii UllTI IF ll£ 
OHi "" ;HITIHTIOI TAJU AT aim. 
0911 OOtO 
0912 '"° •• t10 
091J "" ltllll ··••2 ;PlllfTER TO IEH•I• OF DHJllATIOll TMLE. 
0914 H12 TllLEI .... 2 ;NllTEI TO SMCE TlllE I. 
0915 .... TllL£2 ··••2 ;POllTH TO IGUICE IAIU: 2. 
0916 "" PTll ··••I ;HILE 1 11111. 
ot17 IOl7 PTl2 •·••I ;IAILE 2 lmX. 
0911 NII PTl3 .... 2 ;•lllHTllM 'AILI llllEI. 

"" MIA 
0921 OflA •• 1290 
0921 12" 
ot22 12" AS 11 LM KITIL•I ;PTIJ • TMl.E3 
0923 0202 n " ITA PTIJ•I 
0924 0204 AS 10 LIA KITIL 
ot2S 0206 n 11 HA PTIJ 
ot2' 1211 ., 01 LIA ti :sn 8ICaCI TAIU POllfTEIS TO ltGllfftllO, 
ot27 120A n " STA PTll ;lllPPIU IAILE LEISTKS. 
ot21 02K n 11 HA PTl2 
Ol2f 120£ AZ 00 Lil IO ;CLEAi X FOi lllllECT MDIEISllO. 
OIJO 1210 A1 14 COllN LIA CTAILE2,U ;II JAILE 2 LEllGTH < 
Ol31 0212 cs 17 CllP PTl2 ;TAllE 2 POllYEI? 
otl2 0214 " " ICC TICTll ;IF TEI, HT ITff FRtfl TlllE 1. 
otn 0216 Al 12 LIA CTAILEl,X> ; II JAILE I LEll8TI < 
otH 0211 cs" Clll' PTll ;TARE 1 POllTERP 
0935 021A " .. ICC TICTl2 ;IF YEI, HT HTE FllNI TAIU: 2 
0916 021C 

A4 " 
LIY PTll ;HT POllTEI Fat IAILE I. 

0937 121E 11 12 LM UAILEU,Y Jllll II TO FETCI IYTE. 
09JI 0220 A4 17 LIY PTl2 ;HT Nim• FOi TAU 2, 
otJf 1222 .. 14 CIP CTAIU21,Y ;1111 IT TO FIB IYTE Tl CGINRE 
Ol40 0224 ;TO TAILE I IYTE. 
Ol41 1224 "" KC TICTll :Jr HAE 1 lfTI LEIS, TME IT. 
ot42 0226 A4 17 TICTl2 LIY PTl2 ;RT Pllmlt FIR TULE 2. 
ot4J 1221 II 14 LIA CTAILE2),Y ;KT IDT IYll rim TAIU 2. 
Ol44 022A H 17 llC PTl2 ;JICIElllT PDlml FOR TtaE 2. 
ot4S one 4C JS 12 .MP ITDIE ;IO llGIE IYrE II lllTIMTIGI IAILE. 
ot46 •m A4 " "'"' LIT PTll ;HI POlml 1 ••• 
0147 0211 II 12 LIA nuun,r JAii IJIE U 10 RT ITff. FRiii TtlLE. 
ot41 0213 H 16 llC PTll ;lllCIDEIT POllTD Fat TAILE I • 
OMf 0235 II II ITE HA CPTIJ,X> ;ITGll Im IT IOf LllCATIGI IN TtkE 3 
otH 0237 H II HC PTIJ ;IKIUllT LO Dllll TAILE 3 POilfTEI. 
otSI 023f "02 Ill CC ;IF II otDFUI, KIP 
otS2 02n H If HC PR3•1 ; llCIElfllT II GIDll TUL£ 3 PIJITER. 
OISJ 1211 Al 12 cc LIA CTAILEl,U ;JI HILE 1 LDITI llUTH 
otS4 0211' cs " Clll' PTll ;TW GI EIVM. TO POJmR 1f 
CIOSS 0241 to ct ICI COllPI ;IF TEI, 1£1 IDT ITff. 

"" 0243 ., 14 LIA UAILl2,X> ;IS TAILE 2 LEOTI &RUHR 
otS7 124S cs 17 CIP PTl2 ;TW 01 HVM. TO POllfTEI 2? 
OISI 0247 to C7 ICI CDltPI UF YES, IEf IDT ITTE. 
otSf 024f Af" Lit IO 

"'° 0241 IS If ITA PTIJ•I JCLHI PTl3 H llDEI. 

"" 0241 II CLC ;11111£ ICllE, IOU •• 
ot62 0241 Al 12 LIA CTAIUl,U ;an lAILE I m 2 LEIOTHS. 
0163 0250 

" 14 AIC CTAILE2,XI 
0064 0252 IS II STA PTIJ ;STGIE IUll IN TIRE 3 Tl"'ORAIY ronua. 
"" 0294 fO 04 ICC CCC ,;AID •• 
OOH 0256 • , 01 LJA II :ovERFLDll II ••• 
ot67 0251 IS If ITA PTIJ+I ;NI IYTE. 
0061 0251 '° CCC lfS 

°'" 0251 .END 

EllDH • 0000 <HOO> 
Ell OF AllHILY 

Fig. 9-52: Merge Program 

341 



PROGRAMMING THE 6502 

The current entries in TABLE! and TABLE2 are compared two 
at a time. The smaller one is copied into T ABLE3 and the corresponding 
running pointer is incremented. The process is repeated and terminates 
when both PTRI and PTR2 have reached the bottom of their respective 
tables. 

SUMMARY 

The basic concepts relative to common data structures, as well 
as actual implementation examples have been presented. 

Because of its powerful addressing modes, the 6502 lends itself 
well to the management of complex data structures. Its efficiency 
is demonstrated by the terseness of the programs shown. 

In addition, special techniques have been presented for hashing, 
sorting and merging, which are typical of those required to solve 
complex problems involving actual data structures. 

The beginning programmer need not concern himself yet with 
the details of data structures implementation and management. 
However, for efficient programming of non-trivial algorithms, a good 
understanding of data structures is required. The actual examples 
presented in this chapter should help the reader achieve such an under
standing and solve all the common problems encountered with reason
able data structures. 

342 



10 

PROGRAM DEVELOPMENT 

INTRODUCTION 

All the programs we have studied and developed so far have 
been developed by hand without the aid of any software or 
hardware resources. The only improvement we have used over 
straight binary coding has been the use of mnemonic symbols, 
those of the assembly language. For effective software develop
ment, it is necessary to understand the range of hardware and 
software development aids. It is the purpose of this chapter to 
present and evaluate these aids. 

BASIC PROGRAMMING CHOICES 

Three basic alternatives exist: writing a program in binary or 
hexadecimal, writing it in assembly-level language, or writing it 
in a high-level language. Let us review these alternatives. 

1. Hexadecimal Coding 

The program will normally be written using assembly lan
guage mnemonics. However, most low-cost, one-board computer 
systems do not provide an assembler. The assembler is the pro
gram which will automatically translate the mnemonics used for 
the program into the required binary codes. When no assembler is 
available, this translation from mnemonics into binary must be 
performed by hand. Binary is unpleasant to use and error-prone, 
so that hexadecimal is normally used. It has been shown in Chap-

343 



PROGRAMMING THE 6502 

ter 1 that one hexadecimal digit will represent 4 binary bits. 'l\vo 
hexadecimal digits will, therefore, be used to represent the con
tents of every byte. As an example, the table showing the 
hexadecimal equivalent of the 6502 instructions appears in the 
Appendix. 

In short, whenever the resources of the user are limited and no 
assembler is available, he will have to translate the program by 
hand into hexadecimal. This can reasonably be done for a small 
number of instructions, such as, perhaps, IO to 100. For larger 
programs, this process is tedious and error-prone, so that it tends 
not to be used. However, nearly all single-board microcomputers 
require the entry of programs in hexadecimal mode. They are not 
equipped with an assembler and are not equipped with a full 
alphanumeric keyboard, in order to limit their cost. 

In summary, hexadecimal coding is not a desirable way to enter 
a program in a computer. It is simply an economical one. The cost 
of an assembler and the required alphanumeric keyboard is 
traded-off against increased labor to enter the program in the 
memory. However, this does not change the way the program it
self is written. The program is still written in assembly-level language 
so that it can be not only meaningful, but also capable of inspection 
and examination by the human programmer. 

2. Assembly Language Programming 

Assembly-level programming covers programs that may be entered 
in hexadecmial, as well as those that may be entered in symbolic 
assembly- level form, in the system. Let us now directly examine the 
entry of a program, in its assembly language representation. An 
assembler program must be available. The assembler will read each of 
the mnemonic instructions of the program and translate it into the re
quired bit pattern using 1, 2 or 3 bytes, as specified by the encoding of 
the instructions. In addition, a good assembler will offer a number of 
additional facilities for writing the program. These will be reviewed in 
the section on the assembler below. In particular, directives are available 
which will modify the value of symbols. Symbolic addressing may be used, 
and a branch to a symbolic location may be specified. During the 

344 



PROGRAM DEVELOPMENT 

debugging phase where a user may remove instructions or add 
instructions, it will not be necessary to re-write the entire pro
gram if an extra instruction is inserted between a branch and the 

POWER OF 
THE 

LANGUAGE 

HIGH.LEVEL 

Ml~5.!£..._-

SYMBOLIC ( ASSEMBl Y-lEllEl 

HEXADECIMAL/ l 
OCTAL 

BINARY 

MACHINE-LEVEL 

Fig. 10-1: Programming Levels 

point to which it branches, as long as symbolic labels are used. 
The assembler will automatically adjust all of the labels during the 
translation process. In addition, an assembler allows the user to debug 
his/her program in symbolic form. A disassembler may be used to 
examine the contents of a memory location and reconstruct the 
assembly-level instruction that it represents. The various software re
sources normally available on a system will be reviewed below. Let us 
now examine the third alternative. 

3. High-Level Language 

A program may be written in a high-level language such as 
BASIC, APL, PASCAL, or others. Techniques for programming in 
these various languages are covered by specific books and will not 

345 



PROGRAMMING THE 6502 

be reviewed here. We will, therefore, only briefly review this mode 
of programming. A high-level language offers powerful instruc
tions which make programming much easier and faster. These 
instructions must then be translated by a complex program into 
the final binary representation that a microcomputer can execute. 
fypically, each high-level instruction will be translated into a 
large number of individual binary instructions. The program 
which performs this automatic translation is called a compil.er or 
an interpreter. A compiler will translate all the instructions of a 
program in sequence into object code. In a separate phase, the 
resulting code will then be executed. By contrast, an interpreter 
will interpret a single instruction and execute it, then 
"translate" the next one and execute it. An interpreter offers the 
advantage of interactive response, but results in low efficiency 
compared to a compiler. These topics will not be studied further 
here. Let us revert to the programming of an actual microproces
sor at the assembly-level language. 

SOFTWARE SUPPORT 

We will review here the main software facilities which are (or 
should be) available in the complete system for convenient 
software development. Some of the programs have already been intro
duced, and definitions of these will be summarized below. Definitions 
of other important programs will also be provided before we proceed. 

The assembler is the program which translates the mnemonic 
representation of instructions into their binary equivalent. It 
normally translates one symbolic instruction into one binary in
struction (which may occupy 1,2,or 3 bytes). The resulting binary 
code is called object code. It is directly executable by the mi
crocomputer. As a side effect, the assembler will also produce a 
complete symbolic listing of the program, as well as the equiva
lence tables to be used by the programmer and the symbol oc
currence list in the program. Examples will be presented later in 
this chapter. 

A compil.er is the program which translates high-level lan
guage instructions into their binary form. 

An interpreter is a program similar to a compiler. It also trans
lates high-level instructions into their binary form, but instead 

346 



PROGRAM DEVELOPMENT 

of keeping the intermediate representations, it executes the instruc
tions immediately. In fact, if often does not even generate any inter
mediate code, but rather executes the high-level instructions directly. 

A monitor is an indispensable program for using the hardware 
resources of this system. It continuously monitors the input devices 
for input and also manages the rest of the devices. As an example, 
a minimal monitor for a single-board microcomputer, equipped with 
a keyboard and with LEDs, must continuously scan the keyboard for 
user input and display the specified contents on the light-emitting
diodes. In addition, it must be capable of understanding a number of 
limited commands from the keyboard, such as START, STOP, CON
TINUE, LOAD MEMORY, and EXAMINE MEMORY. On a large 
system, the monitor is often qualified as the executive program. When 
complex file management or task scheduling is also provided, the 
overall set of facilities is called an operating system. In the case in 
which files may be resident on a disk, the operating system is quali
fied as the disk operating system, or DOS. 

An editor is the program designed to facilitate the entry and 
the modification of text or programs. It allows the user to conve
niently enter characters, append them, insert them, add lines, re
move lines, and search for characters or strings. It is an important 
resource for convenient and effective text entry. 

A debugger is a facility necessary for debugging programs. 
Typically, when a program does not work correctly, there may 
be no indication whatsoever of the cause. The programmer, there
fore, wishes to insert break-points in his program in order to sus
pend the execution of the program at specified addresses and to 
be able to examine the contents of registers or memory at these 
points. This is the primary function of a debugger. The debugger 
allows for the possibility of suspending a program, resuming 
execution, examining, displaying and modifying the contents of 
registers or memory. A good debugger will be equipped with a 
number of additional facilities, such as the possibility of examin
ing data in symbolic form, hex, binary, or other usual representa
tions, as well as entering data in this format. 

A loader, or linking loader, will place various blocks of object 

347 



PROGRAMMING THE 6502 

code at specified positions in the memory and adjust their respect
ive symbolic pointers so that they can reference each other. It is 
used to relocate programs or blocks in various memory areas. 

A simulator, or an emulator program is used to simulate the opera
tion of a device, usually the microprocessor, in its absence, when 
developing a program on a simulated processor prior to placing it 
on the actual board. Using this approach, it becomes possible to suspend 
the program, modify it, and keep it in RAM memory. The disadvantages 
of a simulator are that: 

1. It usually simulates only the processor itself, not input/ 
output devices. 

2. The execution speed is slow, and one must operate in simulated 
time. It is therefore impossible to test real-time devices, which may 
result in synchronization problems even though the logic of the 
program may be found to be correct. 

An emulator is actually a simulator in real time. It uses one 
processor to simulate another one, and simulates it in complete 
detail. 

Utility routines are essentially all of the routines that the user 
wishes the manufacturer had provided! They may include multi· 
plication, division and other arithmetic operations, block move 
routines, character tests, input/output device handlers (or "driv
ers"), and more. 

THE PROGRAM DEVELOPMENT SEQUENCE 

We will now examine a typical sequence for developing an 
assembly-level program. In order to demonstrate their value, we will 
assume that all the usual software facilities are available. If all of 
them should not be available in a particular system, it would still be 
possible to develop programs, but the convenience would be de
creased, and therefore, the amount of time necessary to debug the 
program would most likely be increased. 

348 



PROGRAM DEVELOPMENT 

The normal approach is to first design an algorithm and define 
the data structures for the problem to be solved. Next, a com
prehensive set of flow-charts is developed which represents the 
program flow. Finally, the flow-charts are translated into the as
sembly-level language for the microprocessor; this is the coding 
phase. 

Next, the program has to be entered on the computer. We will 
examine in the following section the hardware options to be used in 
this phase. 

The program is entered in RAM memory of the system under 
the control of the editor. Once a section of the program, such as a 
subroutine, has been entered, it will be tested. 

First, the assembler will be used. If the assembler does not al
ready reside in the system, it will be loaded from an external 
memory, such as a disk. Then, the program will be assembled, i.e., 
translated into a binary code. This results in the object program, 
ready to be executed. 

One does not normally expect a program to work correctly the 
first time. To verify its correct operation, a number of breakpoints 
will normally be set at crucial locations where it is easy to test 
whether the intermediate results are correct. The debugger will 
be used for this purpose. Breakpoints will be specified at selected 
locations. A "Go" command will then be issued so that program 
execution is started. The program will automatically stop at each 
of the specified breakpoints. The programmer can then verify, by 
examining the contents of the registers, or memory, that the data 
so far is correct. If it is correct, we proceed until the next break
point. Whenever we find incorrect data, an error in the program 
has been found. At this point the programmer normally refers to 
his program listing and verifies whether his coding has been cor
rect. If no error can be found in the programming, the error might 
be a logical one that refers back to the flowchart. We will 
assume here that the flow-charts have been checked by hand and 
are assumed to be reasonably correct. The error is likely to come 
from the coding. It will, therefore, be necessary to modify a sec
tion of the program. If the symbolic representation of the program 
is still in the memory, we will simply re-enter the editor and 
modify the required lines, then go through the preceding se
quence again. In some systems, the memory available may not be 

349 



PROGRAMMING THE 6502 

large enough, so that it is necessary to flush out the symbolic 
representation of the program onto a disk or cassette prior to 
executing the object code. Naturally, in such a case, one would 
have to reload the symbolic representation of the program from 
its support medium prior to entering the editor again. 

The above procedure will be repeated as long as necessary until 
the results of the program are correct. Let us stress that preven
tion is much more effective than cure. A correct design will typi
cally result very quickly in a program which runs correctly once 
the usual typing mistakes or obvious coding errors have been 
removed. However, sloppy design may result in programs which 
will take an extremely long time to be debugged. The debugging 
time is generally considered to be much longer than the actual 
design time. In short, it is always worth investing more time in 
the design in order to shorten the debugging phase. 

Although using this approach makes it possible to test the overall or
ganization of the program, it does not lend itself to testing the pro
gram in terms of real time and input/ output devices. If input/ output 
devices are to be tested, the direct solution consists of transferring the 
program onto EPROMs and installing it on the board where it can 
be watched to see whether it works or not. 

There is an even better solution, and that is the use of an in-circuit 
emulator. An in-circuit emulator uses the 6502 microprocessor (or 
any other microprocessor) to emulate a 6502 in (almost) real time. It 
emulates the 6502 physically. The emulator is equipped with a cable 
terminated by a 40-pin connector, exactly identical to the pin-out of a 
6502. This connector can be inserted on the real application board that one 
is developing. The signals generated by the emulator will be 
exactly those of the 6502, only perhaps a little slower. The essen
tial advantage is that the program under test will still reside in 
the RAM memory of the development system. It will generate the 
real signals which will communicate with the real input/output 
devices that one wishes to use. As a result, it becomes possible to 
keep developing the program using all the resources of the devel
opment system (editor, debugger, symbolic facilities, file system) 
while testing input/output in real time. 

In addition, a good emulator will provide special facilities, such 
as a trace. A trace is a recording of the last instructions or status 

350 



PROGRAM DEVELOPMENT 

of various data busses in the system prior to a breakpoint. In 
short, a trace provides the film of the events that occurred prior to 
the breakpoint or the malfunction. It may even trigger a scope at 
a specified address or upon the occurrence of a specified combina
tion of bits. Such a facility is of great value, since when an error is 
found it is usually too late. The instruction, or the data, which 
caused the error haS occured prior to the detection. The availability 
of a trace allows the user to find which segment of the program 
caused the error to occur. If the trace is not long enough, we can 
simply set an earlier breakpoint. 

ASSEM8lfR 
Oii 

BOOTSTRAP COMl'tllR 
Oii 
INTfRPRUlR 

KEYBOARD DOS 
Dlttv1!R 

tOllOR 

OISl\AY 
DlttvtR 

OR 
DlllUGGfll 
OR 
SIMUlATOR 

nv SYSTEM 

Dlt•lllR WORltSPACl 
(ANDSIACll 

CASSUTf USER 
Dltrl/lR l'ROGllAM 

COMMAND USlll 
INTfllPllHfll WORltSPACl 

UllUTY 
llOUllNIS 

fl.£M(NTAllV 
D(llUGGfll 

fllMlNTAllY 
fOtTOll 

Rg. 10-2: A Typical Memory Map 

This completes our description of the usual sequence of 
events involved in developing a program. Let us now review the 
hardware alternatives available for developing programs. 

351 



PROGRAMMING THE 6502 

THE HARDWARE ALTERNATIVES 

1. Single-Board Microcomputer 

The single-board microcomputer offers the lowest cost approach 
to program development. It is normally equipped with a hexadec
imal keyboard, some function keys, and 6 LEDs which can display 
address and data. Since it is equipped with a small amount of 
memory, no assembler is usually available. At best, it has a small 
monitor and no editing or debugging facilities, except for a very 
few commands. All programs must, therefore, be entered in hex
adecimal form. They will also be displayed in hexadecimal form on 
the LEDs. A single-board microcomputer has, in theory, the 
same hardware power as any other computer. However, because 
of its restricted memory size and keyboard, it does not support all 
the usual facilities of a larger system, and this makes program 
developmentmuch longer. The tediousness of developing programs 
in hexadecimal format makes a single-board microcomputer 
best suited for educational and training purposes where programs 
of limited length are desirable. Single-boards are probably the 
cheapest way to learn programming by doing. However, they 
cannot be used for complex program development, unless additional 
memory boards are attached and the usual software aids are made 
available. 

2. The Development System 

A development system is a microcomputer system equipped 
with a significant amount of RAM memory (32K - 48K) as well as 
the required input/output devices, such as a CRT display, a 
printer, disks, and usually a PROM programmer, as well as, 
perhaps, an in-circuit emulator. A development system is 
specifically designed to facilitate program development in an in
dustrial environment. It normally offers all, or most, of the 
software facilities that we have mentioned in the preceding sec
tion. In principle, it is the ideal software development tool. 

The limitation of a microcomputer development system is that 
it may not be capable of supporting a compiler or an interpreter. 

352 



PROGRAM DEVELOPMENT 

Fig. 10-3: SYM 1 Is a Typical Microcomputer Board 

Fig. 10-4: Rockwell System 65 Is a Development System 

353 



PROGRAMMING THE 6502 

This is because a compiler typically requires a very large amount 
of memory, often more than is available in the system. However, 
for developing programs in assembly-level language, the development 
system offers all the required facilities. Unfortunately, because 
development systems sell in relatively small numbers compared to. 
hobby computers, their cost is significantly higher. 

3. Hobby- 'fype Microcomputers 

The hobby-type microcomputer hardware is analogous to that of a 
development system. The main difference lies in the fact that the 
hobby-type microcomputer is normally not equipped with the 
sophisticated software development aids which are available on 
an industrial development system. As an example, many hobby
type microcomputers offer only elementary assemblers, minimal 
editors, minimal file systems, no facilities to attach a PROM pro
grammer, no in-circuit emulator, no powerful debugger. They rep
resent, therefore, an intermediate step between the single-board 
microcomputer and the full microprocessor development system. 
For a user who wishes to develop programs of modest complexity, 
they are probably the best compromise since they offer the advan
tage of low cost and a reasonable array of software development 
tools, even though they are quite limited as to their convenience. 

4. Time - Sharing Systems 

Several companies rent terminals that can be connected to time
sharing computer networks. These terminals share the time of the 
larger computer and benefit from all the advantages of large installa
tions. Cross assemblers are available for all microcomputers in 
virtually all commercial time-sharing systems. A cross assembler is 
simply an assembler for, say, a 6502, which resides, for example, in 
an IBM370. Formally, a cross assembler is an assembler for micro
processor X, which resides on processor Y. The nature of the com
puter being used is irrelelvant. The user still writes a program in 6502 
assembly-level language, and the cross assembler translates it into the 
appropriate binary pattern. The only diffictµty lies in the fact that this 
program cannot be executed immediately. It can be executed by a 

354 



PROGRAM DEVELOPMENT 

simulated processor, if one is available, but only if the program does 
not use any input/ output resources. Because of this drawback, there
fore, time-sharing is practical only in industrial environments. 

5. In-House Computer 

Whenever a large in-house computer is available, cross as
semblers may also be available to facilitate program devel
opment. If such a computer offers time-sharing service, this option 
is essentially analogous to the one above. If it offers only batch 
service, this is probably one of the most inconvenient methods of 
program development, since submitting programs in batch mode 
at the assembly level for a microprocessor results in a very long 
development time. 

Front Panel or No Front Panel? 

The front panel is a hardware accessory often used to facilitate 
program debugging. It has been the traditional tool for displaying the 
binary contents of a register, or of memory, conveniently. However, 
most of the functions of the control panel may now be accomplished 
from a terminal through a CRT display. The CRT, with its ability to 
display the binary value of bits, thus offers a service almost equiva
lent to the control panel. The additional advantage of using the CRT 
display is that one can switch at will from binary representation to 
hexadecimal, to symbolic, to decimal (if the appropriate conversion 
routines are available, naturally). The main disadvantage of the CRT 
is that instead of turning a knob, one must hit several keys to obtain 
the appropriate display. However, since the cost of providing a 
control panel is quite substantial, most recent microcomputers have 
abandonned this debugging tool in favor of the CRT. The value of 
the control panel, then, is often evaluated more in function of 
emotional arguments based on one's own past experience rather than 
by a rational choice. It is not indispensable. 

SUMMARY OF HARDWARE RESOURCES 

Three broad cases may be distinguished. If you have only a 
minimal budget, and if you wish to learn how to program, buy a 

355 



PROGRAMMING THE 6502 

·on&board microcomputer. Using it, you will be able to develop all 
the simple programs of this book and many more. Eventually, 
however, when you want to develop programs of more than a few 
hundred instructions, you will feel the limitations of this ap
proach. 

If you are an industrial user, you will need a full development 
system. Any solution short of the full development system will 
cause a significantly longer development time. The trade-off is 
clear: hardware resources vs. programming time. Naturally, if the 
programs to be developed are quite simple, a less expensive ap
proach may be used. However, if complex programs are to be 
developed, it is difficult to justify any hardware savings when 
buying a development system; the resultant programming costs will 
far exceed any such savings. 

For a personal computerist, a hobby-type microcomputer will 
typically offer sufficient, although minimal, facilities. Good de
velopment software is still to come for most of the hobby com
puters. The user will have to evaluate his system in view of the 
comments presented in this chapter. 

Let us now analyze in more detail the most indispensable re
source: the assembler. 

THE ASSEMBLER 

We have used assembly-level language throughout this book 
without presenting the formal syntax or definitions of assembly
level language. The time has come to present these definitions. 
An assembler is designed to provide a convenient symbolic repre
sentation of the user program, while at the same time providing a 
simple means of converting these mnemonics into their binary 
representation. 

Assembler Fields 

When typing in a program for the assembler, we have seen that 
fields are used. They are: 

The label field, optional, which may contain a symbolic address 
for the instruction that follows. 

The instruction field, which includes the opcode and any oper
ands. (A separate operand field may be distinguished.) 

The comment field, to the far right, which is optional and is 
intended to clarify the program. 

356 



PROGRAM DEVELOPMENT 

en .._ 
z 
w 

~ 
0 u 

0 
z 
<( 

°' w 
Q.. 

0 

~w 
--'O Oo ccu 
~ Q.. 
>-0 en 

...... 
w cc 
~ 

zM 
0 

XU CN 
w=> 
J: ~ 

en 
z - -

~ w 

°' 0 

~ 

Ag. 10-5: Microprocessor Programming Form 

357 



PROGRAMMING THE 6502 

Once the program has been fed to the assembler, the assembler will 
produce a listing of it. When generating a listing, the assembler will 
provide three additional fields, usually on the left of the page. An 
example appears in Fig. 10-6. On the far left is the line number. Each 
line which has been typed by the programmer is assigned a symbolic 
line number. 

The next field to the right is the actual address field, which shows 
in hexadecimal the value of the program counter which will point to 
that instruction. 

The next field to the right is the hexadecimal representation of the 
instruction. 

This shows one of the possible uses of an assembler. Even if we are 
designing programs for a single-board microcomputer which accepts 
only hexadecimal, we can still write the programs in assembly-level 
language, providing we have access to a system equipped with an as
sembler. We can then run the programs on the system, using the as
sembler. The assembler will automatically generate the correct hexa
decimal codes, which we can simply type in on our system. This 
shows, in a simple example, the value of additional software resources. 

Tables 

When the assembler translates the symbolic program into its binary 
representation, it performs two essential tasks: 

1. It translates the mnemonic instructions into their binary encoding. 
2. It translates the symbols used for constants and addresses into 
their binary representation. 

In order to facilitate program debugging, the assembler shows at 
the end of the listing each symbol used and its equivalent hexadecimal 
value. This is called the symbol table. 

Some symbol tables will not only list the symbol and its value, but 
also the line numbers where the symbol occurs, an additional facility. 

Error Messages 

During the assembly process, the assembler will detect syntax er
rors and list them as part of the final listing. Typical diagnostics in
clude: undefined symbols, label already defined, illegal op-

358 



PROGRAM DEVELOPMENT 

code, illegal address, illegal addressing mode. Many more de
tailed diagnostics are naturally desirable and usually provided. 
They vary with each assembler. 

The Assembly Language 

Opcodes have already been defined. We will define here the 
symbols, constants and operators which may be used as part of 
the assembler syntax. 

LINE t LOC COD£ LINE 

0057 0342 A9 00 LOA HOO 
0058 0344 IJ[l Ole A!l STA ACIU HURN POIH TIPIERS OF'F' 
0059 0341 8[1 Ol< AC SlA ACR:! 
0060 034A A2 20 LO>. tClffllEL IGET 10HES-OfF' DELAf CUH!ITANI 
0061 034C 20 55 03 OFF JSR DELAY IDELAY WHILE TONE IS OF'F 
0062 034F CA DEX 
0063 0350 DO FA BNE OFF 
0064 OJS;o 4C O::' 03 .JIW DIGIT 100 Mell FllR NEU DIGIT Ill PHOHE NUtt9£R 
0065 o'J:;:s I 
0066 l)J~::i HHIS lS A Slltf'&.£ DELAY ROUTINE FOR THE TONE ON ANll Uff PERl 
0067 Ol~S • 0068 0355 A9 FF IIELAY LDA tDELCOlt IGET DELAY CONSTANT 
0069 OJ:i7 38 llAlT SEC IDELAY FOR THAT LONG 
0070 OJS8 E9 01 SllC tl01 
0071 OJ:OA [10 FB llNE WAIT 
OQ7:? OJ5C 60 RTS 
0073 035D I 
0074 0350 ITHIS IS II TABLE OF TH£ CONSTANTS FOR TKE TINCE f'REOUENCIE!I 
007:S OJ:ID IFQR EACH TE.LEPHCIC£ DlGl r. 111£ CONSTAllTS ARE TWO BYTES 
0076 035(l ILONG• LOW llYTE f'lR:iT, 
00'7 035D I 
0078 03511 13 JA.l:IL.£ .an£ Sl3aS02.176••01 IJW TllHU FOR ·o· 
0078 035E 02 
0078 03SF 76 
007Q 0360 01 
0079 OJ61 CD ·llYTE tCD••02.t9E.t01 I TWO TONES FOi'< ' 1 ' 
0079 0362 O::' 
0077 036J 9£ 
0079 0364 Ol 
0080 0365 CD olYTE tCD.t02•t76•t01 I ·2· 
0080 0366 02 
0080 0367 76 
0080 0369 01 
0081 0369 cu ,flY.J.E Ulhl.O:?d!l3•l.01 I '3' 
OOBl 03611 02 
00111 03611 53 
0081 036C 01 

•4: 008:.' 0360 89 .BYTE t89.t0::'•t9Ett01 I 
0082 036E 02 
008:! 036E. 9£ 
0082 0370 Ol 
0083 0371 89 .BYTE t89•t02•t76•t0l I '5' 
00113 0372 Q2 
0083 0373 76 
0083 0374 01 
0084 OJ7::i wt JYTE.U9•ICl2•1:i.11.IOl I '6' 
0084 0376 02 
0084 0377 53 
0084 0378 .IU 
0085 0379 411 ,flYTE t48.tO:!.t9E.t01 I •7• 
0085 Ol7A O:! 
0085 '.>J7a 9E. 
0085 037C Ol 
0086 037D 41 .BYTE t48•t02.t76.t01 I '8' 
0086 1137£ "' 
LINE t LOC COllE LINE 

.0084. 037£ u. 
0086 0380 01 
0087 0381 48 .BYTE t4D•t02•tS3•101 I •9• 
.0087 0382 Q2 
0087 0383 53 
0087 0384 01 
.ooaa Dllm .ElllD 

8YllDCI. T&BLE 

&YllBCL VALllE 

ACRI 110011 ACR::? ACOD l•ELAT 03~:" DEL CON OOrf 
IHOIT 030:? NOE ND OJOA Nunf>TR oo ... v OFF' 034C 
Of.fliEI. 011.20 DH QJJC JlHlil;;L 0040 PllOlll 03Ql) 
rlCH 11005 TlLH A007 TlLL A004 T2CH AC05 
T2LH AC07 T2LL AC04 TABLE 0350 WAIT 0357 

END OF ASSE118L Y 

Fig. l 0-6: Assembler Output: An Example 

359 



PROGRAMMING THE 6502 

Symbols 

Symbols are used to represent numerical values, either data or 
addresses. Traditionally, symbols may include 6 characters, the 
first one being alphabetical. One more restriction exists: the 56 
opcodes utilized by the 6502 and the names of the registers 

i.e., A, X, Y, S, P may not be used as symbols. 

Assigning a Value to a Symbol 

Labels are special symbols whose values need not be defined 
by the programmer. They will automatically correspond to the 
line number where they appear. However, other symbols used 
for constants or memory addresses must be defined by the 
programmer prior to their use. The equal sign is used for that 
purpose, or else a special "directive." It is an instruction to the 
assembler which will not be translated into an executable state
ment; it is called an assembler directive. 

As an example, the constant ALPHA will be defined as: 

ALPHA = $AOOO 

This assigns the value "AOOO" hexadecimal to variable 
ALPHA. The assembler directives will be examined in a later 
section. 

Constants or Literals 

Constants are traditionally expressed in either decimal, hexadecimal, 
octal or binary. Except in the case of a decimal number, a prefix 
is used to differentiate between a constant and the base used to re
present a number. To load 18 into the accumulator we will simply write: 

LDA #18 (where # denotes a literal) 

A hexadecimal number will be preceded by the symbol $. 
An octal symbol will be preceded by the symbol @ 
A binary symbol will be preceded by % . 

For example, to load the value "11111111" into the ac
cumulator, we will write: 

LDA #%11111111. 

Literal ASCII characters may also be used in a literal field. In 
older assemblers, it was traditional to enclose the ASCII symbol 

360 



PROGRAM DEVELOPMENT 

in quotes. In more recent assemblers, in order to have fewer charac
ters to type in, the alphanumeric type is indicated by a single 
quote that precedes the symbol. 

For example, to load the symbol "S" in the accumulator (in 
ASCII) we will write: 

LDA#'S 

In order to be able to load the quote symbol itself, the conven
tion is: 

LDA #"' 

Exercise 10.1: Will the following two instructions load the same 
value in the accumulator: LDA #'5 and LDA #$5? 

Operators 

In order to further facilitate the writing of symbolic programs, 
assemblers allow the use of operators. At a minimum they should 
allow plus and minus so that one can specify, for example: 
LDA ADRl, and 
LDX ADRl+l 

It is important to understand that the expression ADRI + 1 will be 
computed by the assembler in order to determine what is the 
actual memory address which must be inserted as the binary 
equivalent. It will be computed at assembly-time> not at program 
execution time. 

In addition, more operators may be available, such as multiply 
and divide, a convenience when accessing tables in memory. More 
specialized operators may also be available, such as, greater 
than and less than, which truncate a 2-byte value respectively 
into its high and low byte. 

Naturally, an expression must evaluate to a positive value. 
Negative numbers are not usually used and should be expressed in a 
hexadecimal format. 

Finally, a special symbol is traditionally used to represent the 
current value of the address of the line:*. This symbol should be 
interpreted as ''current location'' (value of PC). 

Exercise 10.2: What is the difference between the following in
structions? 
LDA % 10101010 
LDA #%10101010 

361 



PROGRAMMING THE 6502 

Exercise 10.3: What is the effect of the following instruction? 
BMI * -2? 

Assembler Directives 
Directives are special orders given by the programmer to the 

assembler. Some of these orders result in the storage of values in 
symbols or in the memory. Others are used to control the execution 
or printing modes of the assembler. 

To provide a specific example, let us review here the nine as
sembler directives available on the Rockwell Development Sys
tem ("System 65"). They are: =, .BYT, .WOR, .GBY, .PAGE, 
.SKIP, .OPT, .FILE and .END. 
Equate Directive 

An equal sign is used to assign a numeric value to a symbol. For 
example: 

BASE= $1111 
* = $1234 

The effect of the first directive is to assign the value 1111 
hexadecimal to BASE. 

The effect of the second instruction is to force the line address to 
the hexadecimal value "1234." In other words, the next execut
able instruction encountered will be stored at memory location 
1234. 

Exercise 10.4: Write a directive which will cause the program to 
reside at memory location 0 and up. 

Directives to Initialize Memory 

Three directives are available for this purpose: .BYT, . WOR, .OBY . 
. BYT will assign the characters or values that follow in con

secutive memory bytes. 

Example: RESERV .BYT 'SYBEX.' 
This will result in storing the letters "SYBEX" in consecutive 

memory locations . 

. WOR is used to store 2-byte addresses in the memory, low byte 
first. 

Example: . WOR $1234, $2345 

.GBY is identical to .WOR, except that it will store a 16-bit 

362 



PROGRAM DEVELOPMENT 

value, high byte first. It is normally used for 16-bit data rather 
than 16-bit addresses. 

The next three directives are used to control the input/output: 

Input/Output Directives 

The input/output directives are: .PAGE, .SKIP, .OPT. 
PAGE causes the assembler to finish the page, i.e., move to the 

top of the next page. In addition a title may be specified for the 
page. For example: .PAGE "page title." 

SKIP is used to insert blank lines in the listing. The number of 
lines to be skipped may be specified. For example: .SKIP 3. 

OPT specifies four options: list, generate, errors, symbol. List 
will generate a list. Generate is used to print object code for 
strings with the .BYT directive. Error specifies whether error 
diagnostics should be printed. Symbol specifies whether the sym
bol table should be listed. 

The last two directives control the assembler listing format: 

.FILE and .END Directives 

In the development of a large program, several portions of the 
program will typically be written and debugged separately. At 
some point it will be necessary to assemble these files together. 
The last statement of the first file will then include the directive 
.FILE NAME/ 1, where 1 is the number of the disk unit, and 
NAME is the name of the next file. The next file may be linked, in 
tum, to more files. At the end of the last file, there will be the 
directive: .END NAME/1, which is a pointer back to the first one. 

Finally, a facility exists for inserting additional comments with 
the listing: u;" 

";" may be used to enter comments at will within a line rather 
than enter an instruction. This is an important facility if pro
grams are to be correctly documented. 

MACROS 

A macro facility is currently not available on most existing 
6502 assemblers. However, we will define a macro here and 
explain its benefits. It is hoped that a macro facility will 

363 



Ag. 10-7: AIM65 is a Board with Mini-Printer and Full Keyboard 

Fig. l 0 -8: Ohio Scientific is a Personal Microcomputer 

364 



PROGRAM DEVELOPMENT 

soon be available on most 6502 assemblers. 
A macro is simply a name assigned to a group of instructions. 

It is essentially a convenience to the programmer. For exam
ple, if a group of five instructions is used several times in a pro
gram, we could define a macro instead of always having to write 
these five instructions. As an example, we could write: 
SAVREG MACRO PHA 

TXA 
PHA 
TYA 
PHA 

ENDM 

Thereafter, we could write the name SA VREG instead of the above 
instructions. 

Any time that we write SAVREG, the five corresponding lines 
will get substituted instead of the name. An assembler equipped 
with a macro facility is called a macro assembler. When the 
macro assembler encounters SA VREG, it will perform a mere 
physical substitution of the equivalent lines. 

Macro or Subroutine? 

At this point, a macro may seem to operate in a way analogous 
to a subroutine. This is not the case. When the assembler is used 
to produce the object code, any time that a macro name is encoun
tered, it will be replaced by the actual instructions that it stands 
for. At execution time, the group of instructions will appear as 
many times as the name of the macro did. 

By contrast, a subroutine is defined only once, and then it can 
be used repeatedly: the program will jump to the subroutine ad
dress. A macro is called an assembly-time facility. A subroutine is 
an execution-time facility. Their operation is quite different. 

Macro Parameters 

Each macro may be equipped with a number of parameters. As 
an example, let us consider the following macro: 

SWAP MACRO 
LDA 
Sf A 
LDA 
Sf A 

M, N, T 
M 
T 
N 
M 

365 



PROGRAMMING THE 6502 

LDA T 
STA N 
ENDM 

This macro will result in swapping (exchanging) the contents of 
memory locations M and N. A swap between two registers, or two 
memory locations, is an operation which is not provided by the 
6502. A macro may be used to implement it. "T': in this instance, 
is simply the name for a temporary storage location required by 
the program. As an example, let us swap the contents of memory 
locations ALPHA and BETA. The instruction which does this ap
pears below: 

SWAP ALPHA, BETA, TEMP 

In this instruction, TEMP is the name of some temporary storage 
location which we know to be available and which can be used by 
the macro. The resulting expansion of the macro appears below: 

LDA ALPHA 
STA TEMP 
LDA BETA 
STA ALPHA 
LDA TEMP 
STA BETA 

The value of a macro should now be apparent: it is a tremendous 
convenience for the programmer to be able to use pseudo-instructions 
which have been defined with macros. In this way, the apparent 
instruction set of the 6502 can be expanded at will. Unfortunately, 
one must bear in mind that each macro directive will expand into what
ever number of instructions were used. A macro will, therefore, run 
more slowly than any single instruction. Because of its conven
ience for the development of any long program, a macro facility 
is highly desirable for such an application. 

Additional Macro Facilities 

Many other directives and syntactic facilities may be added to a 
simple macro facility. For instance, macros may be nested, i.e., a 
macro-call may appear within a macro definition. Using this facility, 
a macro may modify itself with a nested definition! A first call will 
produce one expansion, whereas subsequent calls will produce a 
modified expansion of the same macro. 

366 



PROGRAM DEVELOPMENT 

CONDITIONAL ASSEMBLY 

Conditional assembly is another assembler facility which is 
so far lacking on most 6502 assemblers. A conditional assem
bler facility allows the programmer to use the special instructions 
"IF," followed by an expression, then (optionally) "ELSE," and 
terminated by "ENDIF." Whenever the expression following the IF 
is true, then the instructions between the IF and the ELSE, or the IF 
and the ENDIF (if there is no ELSE), will be assembled. In the case 
in which IF followed by ELSE is used, either one of the twc blocks of 
instructions will be assembled, depending on the value of the ex
pression being tested. 

With a conditional assembler facility, the programmer can de
vise programs for a variety of cases, and then conditionally assem
ble the segments of codes required by a specific application. As 
an example, an industrial user might design programs to take 
care of any number of traffic lights at an intersection for a vari
ety of control algorithms. He/she will then receive the specifications 
from the local traffic engineer, who specifies how many traffic 
lights there should be, and which algorithms should be used. The 
programmer will then simply set parameters in his/her program, and 
assemble conditionally. The conditional assembly will result in a 
"customized" program which will retain only those routines 
which are necessary for the solution to the problem. 

Conditional assembly is, therefore, of specific value to indus
trial program generation in an environment where many options 
exist and where the programmer wishes to assemble portions of 
programs quickly and automatically in response to external para
meters. 

SUMMARY 

This chapter has presented an explanation of the techniques and the 
hardware and software tools required to develop a program, along with 
the various trade-offs and alternatives. 

These range at the hardware level from the single-board micro
computer to the full development system. At the software level 
they range from binary coding to high-level programming. You 
will have to select from these tools and techniques in accordance 
with your goals and budget. 

367 



CHAPTERll 

CONCLUSION 

We have now covered all important aspects of programming, 
including the definitions and basic concepts, the internal manipula
tions of the 6502 registers, the management of input/ output devices, 
and the characteristics of software development aids. What is the 
next step? Two views can be offered, the first one relating to the de
velopment of technology, the second one relating to the development 
of your own knowledge and skill. Let us address these two points. 

TECHNOLOGICAL DEVELOPMENT 

The progress of integration in MOS technology makes it pos
sible to implement more and more complex chips. The cost of im
plementing the processor function itself is constantly decreasing. 
The result is that many of the input/ output chips, as well as the 
peripheral-controller chips, used in a system, now incorporate a 
simple processor. This means that most LSI chips now used in the 
system are becoming programmable. An interesting conceptual 
dilemma is thus developing. In order to simplify the software de
sign task as well as to reduce the component count, the new 1/0 
chips now incorporate sophisticated programmable capabilities: 
many programmed algorithms are now integrated within the 
chip. However, as a result, the development of programs is com
plicated by the fact that all these input/ output chips are very 
different and need to be studied in detail by the programmer! 
Programming the system is no longer programming the micro-

368 



Fig . 11-1 : PET Is an Integrated Unit 

Fig. 11 -2: APPLE II uses a convenllonal TV 



PROGRAMMING THE 6502 

processor alone, but also programming all the various other chips 
attached to it. The learning time for every chip can be significant. 

Naturally, this is only an apparent dilemma. If these chips were 
not available, the complexity of the interface to be realized, as 
well as the corresponding programs, would be still greater. The 
new complexity that is introduced is that one has to program 
more than just a processor, and learn the various features of the 
different chips in a system to make effective use of them. How
ever, it is hoped that the techniques and concepts presented in 
this book should make this a reasonably easy task. 

THE NEXT SfEP 

You have now learned the basic techniques required in order to 
program simple applications on paper. This was the goal of this 
book. The next step is to actually practice. There is no substitute 
for it. It is impossible to learn programming completely on paper, 
and experience is required. You should now be in a position to 
start writing your own programs. It is hoped that this journey 
will be a pleasant one. 

For those who feel they would benefit from the guidance of addi
tional books, the companion volume to this one in the series is the 
"6502 Applications Book" (ref D302), which presents a range of 
actual applications which can be executed on a real microcompu
ter. Next is the "6502 Games Book" (ref 0402), which presents program
ming techniques for complex algorithms. A 6502 assembler, writ
ten in standard Microsoft BASIC is also available. 

370 



APPENDIX 

APPENDIX A 

HEXADECIMAL CONVERSION TABLE 

HEX 0 1 --2. 3 4 5 _6 _7_ _8_ _g A B C D E F 00 000 
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0 
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 256 4096 
2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 512 8192 
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 768 12288 
4 64 65 66 67 68 69 70 71 72 73 74 75 76 n 78 79 1024 16384 
5 80 81 82 83 84 85 88 87 88 89 90 91 92 93 94 95 1280 20480 
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 1536 24576 
7 1~1~1W1ffi1ffi1V 1IB1~1~~ 1221231~1~126~7 1792 26672 
8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 2048 32768 
9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 2304 36864 
A 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 2560 40960 
e 115 1n 11a 179 1ao 101 182 183 184 1as 186 101 188 189 190 191 2816 45056 
c 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 3072 49152 
0 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 ·3328 53248 
e 224 m 226 221 220 229 230 231 232 233 234 235 236 237 238 239 3584 57344 
F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 3840 61440 

I s 4 3 2 1 0 

HEXj DEC HEXJ DEC HEX] DEC HEX] DEC HEXl DEC HEXl DEC 
0 0 0 0 0 0 0 0 0 0 0 0 
1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1 
2 2,097, 152 2 131,072 2 8,192 2 512 2 32 2 2 
3 3, 145,728 3 196,608 3 12,288 3 768 3 48 3 3 
4 4,194,304 4 262, 144 4 16,384 4 1,024 4 64 4 4 
5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5 
6 6,291,456 6 393.216 6 24,576 6 1,536 6 96 6 6 
7 7,340,032 7 458,752 7 28,672 7 1,792 7 112 7 7 
8 8,388,608 8 524,288 8 32,768 8 2,048 8 128 8 8 
9 9,437,184 9 589,824 9 36,864 9 2,304 9 144 9 9 
A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10 
B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 11 
c 12,582,912 c 786,432 c 49,152 c 3,072 c 192 c 12 
D 13,631,488 D 851,968 D 53,248 D 3,328 D 208 D 13 
E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14 
F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15 

371 



PROGRAMMING THE 6502 

APPENDIXB 

6502 INSTRUCTIONS-ALPHABETIC 

ADC Add with carry JSR Jump to subroutine 
AND Logical AND LDA Load accumulator 
ASL Arithmetic shift left LDX Load X 
DCC Branch if carry clear LDY Load Y 
BCS Branch if carry set LSR Logical shift right 
BEQ Branch if result = 0 NOP No operation 
BIT Test bit ORA Logical OR 
BMI Branch if minus PHA Push A 
BNE Branch if not equal to 0 PHP Push P status 
BPL Branch if plus PLA Pull A 
BRK Break PLP Pull P status 
eve Branch if overflow clear ROL Rotate left 
BVS Branch if overflow set ROR Rotate right 
CLC Clear carry RTI Return from interrupt 
CLD Clear decimal flag RTS Return from subroutine 
CLI Clear interrupt disable SBC Subtract with carry 
CLV Clear overflow SEC Set carry 
CMP Compare to accumulator SED Set decimal 
CPX Compare to X SEI Set interrupt disable 
CPY Compare to Y STA Store accumulator 
DEC Decrement memory STX Store X 
DEX Decrement X STY Store Y 
DEY Decrement Y TAX 'Iransfer A to X 
EOR Exclusive OR TAY Transfer A to Y 
INC Increment memory TSX Transfer SP to X 
INX Increment X TICA Transfer X to A 
INY Increment Y TXS Transfer X to SP 
JMP Jump TYA Transfer Y to A 

372 



APPENDIX 

APPENDIXC 

BINARY LISTING OF 6502 INSTRUCTIONS 

ADC OllbbbOl JSR 00100000 
AND OOlbbbOl LOA 101bbb01 
ASL OOObbblO LOX lOlbbblO 
BCC 10010000 LOY lOlbbbOO 
BCS 10110000 LSR OlObbblO 
BEQ 11110000 NOP OlbbbllO 
BIT 0010b100 ORA OOObbbOl 
BMI 00110000 PHA 01001000 
BNE 11010000 PHP 00001000 
BPL 00010000 PLA 01101000 
BRK ()()()()()()()( PLP 00101000 
BVC 01010000 ROL OOlbbblO 
BVS 01110000 ROR OllbbblO 
CLC 00011000 RTI 01000000 
CLO 11011000 RTS 01100000 
CLI 01011000 SBC lllbbbOl 
CLV 10111000 SEC 00111000 
CMP llObbbOl SEO 11111000 
CPX lllObbOO SEI 01111000 
CPY llOObbOO STA 100bbb01 
DEC llObbllO STX lOObbllO 
DEX 11001010 STY lOObblOO 
DEY 10001000 TAX 10101010 
EOR 110bbb01 TAY 10101000 
INC lllbbllO TSX 10111010 
INX 11101000 TXA 10001010 
INY 11001000 TXS 10011010 
JMP OlbOllOO TYA 10011000 

373 



PROGRAMMING THE 6502 

APPENDIXD 

6502-INSTRUCTION SET: HEX AND TIMING 
n =number of cycles I= number of bytes 

•Ml'tED ACCUM ABSOLUTE ZERO PAGE IMMEDIATE ABS X ABS Y 

MNEMONIC OP n . OP n . OP n . OP n . OP " . OP " . OP n ' 
AOC ti) 60 4 3 65 3 2 t.9 2 2 70 4 3 79 4 3 
ANO jll w 4 3 25 3 2 29 2 2 30 4 3 39 4 3 
AS l OA 2 I Of 6 3 06 5 2 If 7 J 
ecc 121 
ecs 121 
BEO 121 
8 I T 2C ' 3 2• 3 2 
BMI 121 
B NE (~I 

e P l ·111 
e 111< 00 7 I 
eve l2l 
e vs t21 
ClC 18 2 I 
CLO 08 2 1 

Cl I 58 2 1 
cl v 88 2 I 
C MP co 4 3 cs 3 2 C9 2 2 DD 4 3 09 ' 3 
c p x EC 4 3 E4 3 2 EO 2 2 
CPY cc 4 3 C• 3 2 co 2 2 
DEC CE 6 3 C6 5 2 DE 1 3 
DEX CA 2 1 
0 E Y BB 2 1 
E O ii ti) 4D 4 J 45 3 2 49 2 2 50 4 J 59 .. 3 
INC EE 6 3 E6 5 2 FE 1 3 

IN X ea 2 I 

I 
IN Y cs 2 I 

J Ill p •C 3 3 
J s 11 20 6 3 
l DA (I) AD .. 3 A5 3 2 A9 I 2 2 BO 4 3 B9 4 3 
l DX jl) AE 4 3 A6 J 2 A2T 2 2 BE 4 3 
L DY ti) AC 4 

I 
3 A4 3 2 AO I 2 2 BC 4 3 

ls 11 4A 2 I 4E 6 3 46 5 2 
I 

5E 7 3 
NOP EA 2 I JL 0 ii A 00 4 3 05 CR; 2 2 10 ' 3 19 .. 3 
PHA 48 l I ! 

1 
I 

PH p 

l 
06 3 I 

I I Pl A 68 4 I I I 
pl p 2B 4 I I l 110 L 2A 2 I 2E 61 3 26 3E 7 J 
11011 I 6A 2 I 6E 6 I 3 66 5 

! 
2 

! 
7E 7 3 

1111 

I Iii 
•O 6 I 

• I 
11 rs 60 b I 

3 i 2 
F9 4 3 

SBC ED 3 E5 
E91 2 

2 FD 4 3 
SEC 38 2 1 
SE 0 l f8 2 I l 
SE I I 78 2 I I : 
SI A 80 , I 3 85 2 : 90 5 3 99 5 3 
SIX I SE • 3 Sb '] 

s r v 8( 4 3 114 2 
TAX AA '] I 
TAY AB 2 I 

T S X BA 2 I 

IX A BA 2 I 
I XS 9A 2 1 
I YA 98 2 I 

111 Add I ton if crossing poge boundary 

374 



(IND.XI (IND)Y Z. PAGE. X RElATlvt 

OP n I OP n I OP n I OP n 

61 6 2 71 s 2 75 .. 2 
21 6 2 31 s 2 3S .. 2 

16 6 2 
90 :z 
BO 2 

FO 2 

30 2 
DO 2 
10 2 

'° 2 
70 2 

Cl 6 2 DI s 2 DS .. 2 

06 •6 2 

<II 6 2 SI s 2 SS .. 2 
f6 6 2 

Al 6 2 81 s 2 115 .. 2 

8" .. 2 
56 6 2 

01 6 2 II s 2 IS .. 2 

36 6 2 
76 6 -1' 

El 6 2 Fl s '2 fS .. 2 

81 6 2 91 6 '2 95 • 2 

9• .. 2 

INDIRECT 

I OP n I 

2 
2 

2 

2 
2 
2 

2 
2 

6C s 3 

APPENDIX 

Z. PAGE, Y 
PROCESSOR 

STATUS CODES 

OP 

116 

96 

n I NV II D t l C MNEMONIC 

•• • • ADC 

• • AND 

• •• AS L 
llCC 
ecs 
BEQ ,,.,,.,.. • II I T 
11 MI 
8 NE 
11 P L 

' I 8 ll K 
eve 
llVS 

0 cl c 
0 _£_tD 

0 CLI 
0 CLV 

• •• C MP 

• •• CPX 

• •• CPY 

• • DEC 

• • DEX 

• • DEY 

• • E 0 R 

• • 'NC 

• • IN X 

• • IN Y 
JMP 
J s I! 

• • L DA 
.. 2 • • L 0 JC 

• • l 0 y 

0 •• l S II 
NOP 

• • O__RA 
PHA 
PHP 

• • PLA 

•••••••• pl p 

• •• RO_l 

• •• ROI! 

•••••••• II TI 
II TS 

•• •• sec 
I SEC 

I SE 0 
I SE I 

ST A .. 2 ST X 
STY 

• • TAX 

• • TAY 

• • TS X 

• • TX A 
TX S 

• • TVA 

12! Add 1 10 n ii bronch within pogo 

Add 2 to n ii bronch to onothar poga 

375 



PROGRAMMING THE 6502 

APPENDIXE 

ASCII CONVERSION TABLE 

376 

CODE CHAR 

00 NUL 
01 SOH 
02 STX 
03 ETX 
04 EOT 

05 ENQ 

06 ACK 
07 BEL 

08 BS 
09 TAB 
OA LF 

OB VT 

oc FF 
OD CR 

: 
OE so 
OF SI 
10 OLE 
11 DCl 
12 DC2 
13 DC3 
14 DC4 
15 NAK 
16 SYN 
17 ETB 
18 CAN 
19 EM 
IA SUB 
lB ESC 
IC FS 
ID GS 

lE RS 
IF us 

'space 
2single quote 

CODE CHAR 

20' 
21 I 

22 ,, 

23 II 

24 $ 

25 % 

26 & 

27 2 

28 ( 

29 ) 

2A . 
2B + 
2c2 , 

20 -
2E 
2F I 

30 0 

31 1 
32 2 

33 3 
34 4 

35 5 
36 6 
37 7 
38 8 
39 9 
3A : 

3B ; 

3C < 
30 = 

3E > 
3F ? 

>comma 

•or underline 

CODE CHAR 

40 @ 

41 A 
42 B 
43 c 
44 D 
45 E 
46 F 
47 G 

48 H 
49 I 

4A J 

4B K 

4C L 
40 M 
4E N 
4F 0 

50 p 

51 Q 

52 R 
53 s 
54 T 

55 u 
56 v 
57 w 
58 x 
59 y 

SA z 
SB [ 

SC ' 
50 ] 

SE 

"' SF• ~ 

'accent mork 

•or ALT MODE 

CODE CHAR 

60' 

61 a 

62 b 

63 c 

64 d 

65 e 

66 f 

67 g 

68 h 

69 i 

6A i 
6B k 

6C I 

60 m 

6E n 

6F 0 

70 p 

71 q 

72 r 

73 s 

74 t 

75 u 

76 v 

77 w 

78 I( 

79 y 

7A z 

7B { 
7C I 
706 } 
7E -
7F7 RUBOUT 

7or DEL 



APPENDIX 

APPENDIXF 

RELATIVE BRANCH TABLES 

FORWARD RELATIVE BRANCH 

~ 0 I 2 3 4 5 6 7 8 9 A B c D E F 

0 0 I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 
I 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 
4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 
5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 
7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 

BACKWARD RELATIVE BRANCH TABLE 

~ 0 I 2 3 4 5 6 7 8 9 A B c D E F 

8 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 

9 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 

A 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 

B 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 

c 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 

D 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 

E 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 

F 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

377 



PROGRAMMING THE 6502 

APPENDIX G: 

HEX OPCODE LISTING 

~ 0 2 3 4 5 6 7 

l!llK OllA·l,X ()l!A.lf>P ASl·lf>·P 
llPl OllA·I. Y OllA·¢1·P. X A!.L·!f>·P. X 
JSll AND-1.X BIT.ft>P ANO·lf>P RQt.lf>.p 
BMI ANO·I. Y AN0¢1·P. X RQL.lf>.P. X 

ATI EOll-1. X fOll·d>·P lSll·¢l·P 
BVC EOll-I. Y EOR·lf>·P. x lSll·fll·P. x 
RIS AOC-1.X ADC·lf>P llOll·¢l·P 
BVS AOC·I. y AOC·lf>·P. X 

SIA·I. X s1v.f1>.p SIA·¢l·P SIX·lf>P 
ace SIA·I. Y STY·lf>·P. X STA.¢l·P. X STX·4>P. Y 

lOY·IMM LDA·I. X LOX-IMM lOY.ft>.p l()A.d).p lOX·lf>·P 
ecs LOA·I. Y lOY·lf>·P, X LOA·¢l·P. X LOX·lf>·P. Y 

CPY·IMM CMP-1, x CPv.!f>.P C"w\P·¢IP OEC!f>·P 
BNE CMP·I. y CMP.¢1·P. X DEC·d>·P. X 

CPX·IMM sec-1.x CPx.lf>.p SBC·!ll·P INC·¢1·P 
BEQ SllC·I, Y SBC·lf>·P. X INC·lf>·P. X 

8 9 A B c D E F ~ 
PHP OllA·IMM ASl·A ORA ASl 0 
ac ORA, Y OllA,X ASl. x I 
PLP ANO·IMM Aa·A 811 ANO Ra 2 
SEC ANO, y ANO.X Aa,X l 

PHA EOR·IMM lSll·A JMP EOll LSI! . 
a1 EOR, Y EOR.x lSll. x $ 

PLA AOC·IMM ROR·A JMP·I AOC ROA 6 
SEI AOC. y AOC.X 7 

DEY IXA SIY STA STX 8 
IYA STA. Y TXS STA. X 9 
TAY LDA·IMM TAX LOY LOA LOX A 
CLV lOA. Y TSX LOY,X lOA. X lOX, Y 8 
INY CMP-IMM OEX CPY CMP DEC c 
ClO CMP. y CMP,X OEC. x 0 
INX S8C·IMM NOP CPX sac INC E 
SEO sec. v sec. x INC,X F 

378 



APPENDIX 

APPENDIXH: 

DECIMAL TO BCD CONVERSION 

DECIMAL BCD DEC BCD DEC BCD 

0 0000 10 00010000 90 10010000 

1 0001 11 00010001 91 10010001 

2 0010 12 00010010 92 10010010 

3 0011 13 00010011 93 10010011 
4 0100 14 00010100 94 10010100 

5 0101 15 00010101 95 10010101 
6 0110 16 00010110 96 10010110 
7 0111 17 00010111 97 10010111 

8 1000 18 00011000 98 10011000 

9 1001 19 00011001 99 10011001 

379 



PROGRAMMING THE 6502 

APPENDIX I 

EXERCISE ANSWERS 

CHAPTER I 

1.1: 252 

1.2: 100000001 

1.3: 19 + 2 = 9 remainder 1 -+ 1 
9 + 2 = 4 remainder 1 -+ 1 
4 + 2 = 2 remainder 0 -+ 0 
2 + 2 = 1 remainder 0 -+ 0 
1 + 2 = 0 remainder 1 -+ 1 
Answer: 10011 

1 x 1 = 1 
1 x 2= 2 
Ox 4= 0 
Ox 8= 0 

+ 1 x 16 = 16 

Answer: 

1.4: 0101 = 5 

380 

+ 1010 = 10 

1111=15 

1 x l = l 
l x 2 = 2 
1X4=4 

+lx8::::8 

Answer: 15 

19 



1.5: 1111 
+ 0001 

(1)0000 
Answer: No, the result does not hold in 4 bits. 

1.6: + 5 :;:: 00000101 
- 5 :;:: 10000101 

1.7: +6:;:: 00000110 
-6 = 11111001 

1.8: + 127 = 01111111 

1.9: + 128 = 10000000 
01111111 (one's complement) 

+ 1 

-128 = 10000000 (two's complement) 

1.10: Smallest: - 128 
Largest: + 127 

1.11: +20 = 00010100 
11101011 (one's complement) 

+ 1 

- iO = 11101100 (two's complement) 
00010011 (one's complement) 

+ 1 

20 = 00010100 
Answer: Yes 

1.12: 10111111 
+ 11000001 

10000000 

V:O C:l 
~CORRECT 

APPENDIX 

381 



PROGRAMMING THE 6502 

11111010 
+ 11111001 

11110011 

V:O C:l 
~CORRECT 

00010000 
+ 01000000 

01010000 

V:O C:O 
~CORRECT 

01111110 
+ 00101010 

10101000 

V: 1 C:O 
~ERROR 

1.13: No, you cannot generate an overflow when adding a positive and a 
negative number, because they will tend to cancel each other; thus, 
the result will always be within range of 1 byte. 

1.14: Largest: 32767 
Smallest: -32768 

1.15: - 8388608 

I.16: 29 = 00101001 
91 = 10010001 

1.17: 10100000 is not a valid BCD representation, because the high order 
nibble is 1010, which is unused. 

1.18: -23123 = 
~I -""'T"'""I -s --1 --""'T"'""I -2 --1 3-----1 -1 1--2 ---.--I ----.3 

= 00000101 00010010 00110001 00100011 

382 



APPENDIX 

3 I + 2 2 2 

3 I + 

24642 
?'-<~-t> - :.=l?L ::JQ ~3 1\'1;1 ) 

24u4z ---= 5 + 2 4 6 4 2 

1.20: 9999 in BCD: 24 bits (3 bytes): 

I 4 I + I 9 9 9 9 

9999 in two's complement: 14 bits(:::: 2 bytes) 

1 .21: 223 
- I = 8388607. This is 6 digits of absolute accuracy, or 6 + 

digits. 

J.22: 0 = 00 110000 
1 = JOI JOOOI 
2 = JOI JOO JO 
3 = 00110011 
4 = JOI 10100 

l.23: A = 01000001 
B = OIOOOOJO 
c = 11000011 
D = 01000100 
E = 11000101 
F = 110001 JO 

l.24: "N' = 01000001 
"T" = OJOJOlOO 
"S" = OJOIOOl I 
"X" = OJOl 1000 

5 = 001 JOlOl 
6 = 001J01JO 
7 = JOIJ0111 
8 = JOllJOOO 
9=00111001 

l.25: lOJOJOJO = AA (hexadecimal) 

383 



PROGRAMMING THE 6502 

1.26: FA= 11111010 

1.27: 01000001 = 101 (octal) 

1.28: Negative numbers represented in two's complement produce 
results that do not need to be corrected when added. 

1.29: 1024 = 10000000000 (direct binary) 
= OlOOOOOOOOO(signed binary) 
= 01000000000 (two's complement) 

1. 30: The overflow (V) flag is set when the carry out of bit 6 does not 
equal the carry out of bit 7 (exclusive OR). It should be tested after 
any addition or subtraction involving numbers represented in two's 
complement notation. 

1.31: + 16 = 010000 
+ 17 = 010001 
+ 18 = 010010 
-16 = 110000 
-17=101111 
-18 = 101110 

1.32: M = 40 
E = 45 
s = 53 
s = 53 
A= 41 
G = 47 
E = 45 

CHAPTER3 

3 .1: Left to reader. 

384 



3.2: CLC 
CLO 
LOA 
ADC 
STA 
LOA 
ADC 
STA 

3.3: CLC 
CLO 
LOA 
ADC 
STA 
LOA 
ADC 
STA 

3.4: CLO 
SEC 
LOA 
SBC 
STA 

3.5: See text. 

ADRl 
ADR2 
ADR3 
ADRl+l 
ADR2+ 1 
ADR3+ 1 

ADRl-1 
ADR2-1 
ADR3-1 
ADRl 
ADR2 
ADR3 

ADRl 
ADR2 
ADR3 

APPENDIX 

3.6: Yes, the CLC instruction only has to be executed before the 
addition. 

3.7: The only difference is that here the D flag is set, not clear, which 
will affect the way the final answer is computed. 

3.8: SEC 
SED 
LOA 
SBC 
STA 
LOA 
SBC 
STA 

ADRl 
ADR2 
ADR3 
ADRl-1 
ADR2-1 
ADR3-1 

385 



PROGRAMMING THE 6502 

3.9: 0100MPD 1 XO= 0 
x 0111 MPR 2 XO= 0 

0100 4 x 1 = 4 

0100 8 x 1 = 8 

0100 16 x 1 = 16 

0000 32 x 0 = 0 -

0011100 
28v' 

3.10: Carry will equal 1. 

3 .11: When X decrements to zero, the next instruction to be executed is 
'BNE MULT', but the branch will not occur. 

3.12: Fill table (see text). 

3.13: LOA #0 CLEAR ADDRESSES 
STA RES AD 
STA RESAD+ 1 
LOX #8 SET COUNTER 

MULT LSR MP RAD GET A MULTIPLIER BIT 
BCC NOADD TEST FORA 1 
LOA RESAD+ 1 ADD MULTIPLICAND 

TO RESULT 
CLC 
ADC MP DAD 
STA RESAD+ 1 

NOADD ROR RESAD+ 1 SHIFT RESULT RIGHT 
(RECOVERS CARRY) 

ROR RES AD 
DEX DECREMENT COUNTER 
BNE MULT TEST FOR ZERO 

This approach is faster, because the add of the partial product to 
the result is eight bits instead of sixteen. 

3 .14: 157 µsec., assuming all addresses zero page, no page crossings, and 
a lMHz clock. 

386 



3 .15: Left for reader. 

3.16: TEST LOA 
CMP 
BEQ 

$24 
#$2A 
STAR 

APPENDIX 

3.17: A subroutine requires a fixed overhead time in which to manipu
late the stack. 

3.18: In the case of both the call and the return, the same number of 
values must be transferred to/from the stack in memory. 

3.19: Yes. MULT modifies the X and A registers plus several flags. 

3.20: A subroutine may call itself if it was designed to do so. It must 
store data in the stack, though, to preserve it, as the registers will be 
reused on each call. Also, there must be a conditional statement 
that will limit the number of calls made; otherwise, the stack area 
in memory will overflow. 

3.21: Stack parameters are best for recursion. Fixed registers and mem
ory locations will be changed by each iteration of the subroutine. 
The stack can accommodate a string of parameters. 

CHAPTER4 

4.1: LOA 
AND 
STA 

4.2: No effect. 

WORD 
#%01000010 
WORD 

4.3: The final value of the accumulator would be 10101111. 

4.4: The result would always be $FF. 

4.5: No effect. 

387 



PROGRAMMING THE 6502 

CHAPTERS 

5.1: l,DX #NUMBER 
NEXT DEX 

BNE DONE 
LOA BASE,X 
STA DEST,X 
JMP NEXT 

DONE 

OR 

LOX #NUMBER 
NEXT DEX 

LOA BASE,X 
STA DEST,X 
TXA 
BNE NEXT 

5.2: BLKADD LOY #NBR-1 
NEXT CLC 

LOA PTRl,Y 
ADC PTR2,Y 
STA PTR3,Y 
DEY 
BPL NEXT 

Bytes Cycles 

2 2 
1 2 
3 4 
3 4 Repeated NBR 
3 5 times 
1 2 
2 -1 3 

15 20xNBR+l 20 Ooop total) 

388 



APPENDIX 

BLKADD LDY #NBR-1 
NEXT CLC 

LDA (LOCl),Y 
ADC (LOC2),Y 
STA (LOC3),Y 
DEY 
BPL NEXT 

Bytes Cycles 

2 2 
1 2 
2 5 
2 5 
2 6 
1 2 
2 -1 3 

12 23xNBR+ 1 23 

5.3: LDA #0 INITIALIZE SUM 
STA SUM LO 
STA SUMHI 
LDY #9 YISCOUNTER 
CLC 

ADD LP LDA BASE,Y ADD 
ADC SUM LO 
STA SUMLO 
BCC NOCARRY TRANSFER CARRY 

TO NEXT BYTE 
INC SUMHI 
CLC 

NOCARRY DEY 
BPL ADD LP 
RTS 

5.4: Yes. However, this method would be cumbersome, requiring 10 
additions. 

389 



PROGRAMMING THE 6502 

5.5: LOX 
LOY 
LOA 
STA 
INX 
DEY 
BPL 
RTS 

#0 INITIALIZE INDEX REGISTER~ 
#9 

LOOP BASE,X 
REVER,Y 

LOOP 

5.6: Left to reader. 

5. 7: Left to reader. 

CHAPTER6 

6.1: 2 + 5 x 255 - 1 = 1,276 µsec or 1.276 msec. 
The minimum possible delay is 6 µsec; therefore, 1 µsec delay is 
not possible. 

6.2: 2 + 5 x 20 - 1 = 101 
NEXT LOY #20 

DEY 
BNE NEXT 

6.3: LOX #$9C 
NEXT LOY #$7F 
LOOP DEY 

BNE LOOP 
DEX 
BNE NEXT 

Execution time = 99997 µsec or 99.997 msec. 

6.4: Cycles 
LOY #0 2 

WATCH LOA STATUS 2 
BPL WATCH 2 (FAIL) 
STA (POINTER), Y 6 
INC POINTER 5 
DEC COUNT 5 
BNE WATCH 312 

390 



APPENDIX 

The total number of cycles for the input loop, assuming that the 
status is always true, is 2 + 2 + 6 + 5 + 5 + 3 = 23, or 23 µsec with a 1 
MHz clock. This implies an input rate of 

--- = 43.35K bytes/sec 
23 µsec 

The actual difference in rates is 

- 1- - - 1- = 12.0BK bytes/sec 
18 µsec 23 µsec 

or less than 220'/o. 

6.5: 146 µsec/byte 
== 6.8K bytes/sec 

6.6: Bit 7 is used for status because it can be easily tested through the sign 
flag. Bit 0 is used for data because it can be easily shifted into the 
carry. 

6. 7: Assuming status is represented in bit 7 of a memory location, the 
BIT instruction would transfer it into the sign flag without affecting 
the accumulator. 

6.8: LDA #$00 
LOOP BIT INPUT 

BPL LOOP 
LSR INPUT 
ROL A 
BCC LOOP 
PHA 
LDA #$01 
DEC COUNT 
BNE LOOP 

Original: 146µsec/byte; 25 bytes 
New version: 149 µsec/byte; 18 bytes 

6.9: START LDA #$01 
LOOP BIT INPUT 

BPL LOOP 
LSR INPUT 

391 



PROGRAMMING THE 6502 

ROL 
BCC 
PHA 
DEC 
BNE 

6.10: LOX 
START LOA 
LOOP BIT 

BPL 
LSR 
ROL 
BCC 
STA 
INX 
DEC 
BNE 

6.11: LOX 
START LOA 
LOOP BIT 

BPL 
LSR 
ROL 
BCC 
CMP 
BEQ 
STA 
INX 
DEC 
BNE 

DONE 

6.12: SERIAL LOA 
STA 

392 

LOOP LOA 
LSR 
BCC 
LOA 

A 
LOOP 

COUNT 
START 

#0 
#$01 
INPUT 
LOOP 
INPUT 
A 
LOOP 
BASE,X 

COUNT 
START 

#0 
#$01 
INPUT 
LOOP 
INPUT 
A 
LOOP 
#$53 
DONE 
BASE,X 

COUNT 
START 

#$00 
WORD 
INPUT+l 
A 
LOOP 
INPUT 



LSR 
ROL 
BCC 
LDA 
PHA 
LDA 
STA 
DEC 
BNE 

6.13: CHARPR LDX 
LOOP LDA 
WAIT BIT 

BPL 
STA 
DEX 
BNE 

6.14: CHARPR LDX 
LOOP LDA 
WAIT BIT 

BPL 
STA 
CMP 
BEQ 
DEX 
BNE 

DONE 

6.lS: Hex 
0 

LED Code 
3F 

1 
2 
3 
4 
s 
6 
7 
8 

06 
SB 
4F 
66 
6D 
7D 
07 
FF 

A 
WORD 
LOOP 
WORD 

#$01 
WORD 
COUNT 
LOOP 

#N 
CHAR,X 
STATUS 
WAIT 
PRINTD 

LOOP 

#N 
CHAR,X 
STATUS 
WAIT 
PRINTD 
#$OD 
DONE 

LOOP 

Hex 
9 
A 
B 
c 
D 
E 
F 

LED Code 
67 
77 
7C 
39 
SE 
79 
71 

APPENDIX 

393 



PROGRAMMING THE 6502 

6.16: LEDS 

OUT 

6.17: LEDS 

OUT 

6.18: 
NEXT 
LOOP 

STX 
STY 

LDX 
LDY 
RTS 

TXA 
PHA 
TYA 
PHA 

PLA 
TAY 
PLA 
TAX 
RTS 

LDX 
LDY 
DEY 
BNE 
DEX 
BNE 

Tl 
T2 

Tl 
T2 

#$5A 
#$13 

LOOP 

NEXT 
Execution time: 9.09 msec 

6.19: PRINTC LDA #$00 
STA TTYBIT 
JSR DELAY 
LDX #$08 

NEXT ROR CHAR 
ROL A 
STA TTYBIT 
JSR DELAY 
DEX 
BNE NEXT 

394 

OUTPUT START BIT 

9.09 MSEC DELAY 
BIT COUNTER 
GET ABIT 
INTO ACCUMULATOR 
OUTPUT IT 

WORD TRANSMITTED? 



APPENDIX 

LDA #$01 YES, OUTPUT STOP BITS 
STA TTYBIT 
JSR DELAY 
STA TTYBIT 
JSR DELAY 
RTS 

6.20: TIYIN LDA TTYBIT TEST FOR START BIT 
LSR A 
BCS TTYIN 
ROL A RECOVER BIT 
STA TTY BIT OUTPUT IT 
JSR DELAY 

6.21: 26 µsec lost. 

6.22: 

6.23: 

256 locations ------- = 64 interrupts 
4 locations/interrupt 

__ 2_5_6_lo_ca_ti_on_s __ = 42 interrupts 
6 locations/interrupt 

6.24: Left for reader. 

6.25: a) Hardware senses the interrupt request, compares with the 
mask, sets mask, and preserves regiser (P,PC). Software 
unsets the mask, preserves registers (A,X, Y), identifies the 
device, executes the routine, restores registers, and returns. 

b) The mask inhibits unwanted interrupts. 

c) All registers that are changed by the interrupt routine should 
be preserved. 

d) The interrupt device is usually identifed by polling if there is 
more than one possiblity. 

395 



PROGRAMMING THE 6502 

e) The RTI instruction restores processor status while the RTS 
does not. 

O Inhibiting interrupts would allow those executing to finish 
and withdraw their addresses from the stack. 

g) The overhead is the stack manipulations and the running of 
the routine itself, both of which detract from the speed of the 
mainline program. 

CHAPTERS 

8.1: LDA 
JSR 
LDA 
JSR 
LDA 
JSR 
LDA 
JSR 
JMP 

CHECK LDX 
LOOP STA 

DEX 
BNE 

NEXT CMP 
BNE 
DEX 
BNE 
RTS 

DONE 

ERROR 

8.2: STRING LDX 

396 

NEXT JSR 
CMP 
BEQ 

#0 
CHECK 
#$FF 
CHECK 
#$55 
CHECK 
#$AA 
CHECK 
DONE 
#0 
BASE,X 

LOOP 
BASE,X 
ERROR 

NEXT 

#0 
GETCHAR 
#SPC 
OUT 



APPENDIX 

JSR SENDCHAR ECHO CHARACTER 
STA BUFFER,X 
INX 
BNE NEXT IF XIS BACK TO ZERO, 

RETURN 
OUT RTS 

8.3: 

BCC TOO LOW 
CMP #$BA 
BCS TOO HIGH 

OUT CLC 

8.4: Left to reader. 

8.5: JSR 
AND 
CMP 
RTS 

8.6: LOA 
AND 
STA 

8.7: LOA 
TAX 
AND 
STA 
TXA 
LSR 
LSR 
LSR 
LSR 
STA 
ASL 

PARITY 
#$80 MASK ALL BUT 7 BIT 
EXPECT IS PARITY THE ONE EXPECTED? 

Z FLAG HOLDS ANSWER 

BCDCHAR 
#$30 SET LEFf NIBBLE TO 3 
CHAR 

BCDCHAR 

#$OF MASK OFF HIGH NIBBLE 
BIN CHAR 

A SHIFf HIGH NIBBLE TO LOW ORDER 
A 
A 
A 
TEMP STOREX 
A XTIMES2 

397 



PROGRAMMING THE 6502 

ASL 
ADC 
ASL 
ADC 
STA 

8.8: MAX 

LOOP 

SAME 

SWITCH 

A 
TEMP 
A 
BIN CHAR 
BIN CHAR 

LOY 
STY 
LDA 
TAY 
LOA 
STA 
EOR 
BPL 
LOA 
BPL 
JMP 
LOA 
CMP 
BCS 
LOA 
STA 
STY 

NOS WITCH DEY 
BNE 
RTS 

XTIMES4 
XTIMES5 
XTIMES 10 
ADD LOW NIBBLE 
STORE BINARY RESULT 

#0 
INDEX 
(BASE),Y 

#$80 MOST NEGATIVE NUMBER 
BIG 
(BASE),Y COMPARE SIGN BITS 
SAME 
BIG IF +I - INVOLVED, 
NOSWITCH CHECK IF MAX IS POSITIVl 
SWITCH 
BIG 
(BASE),Y 
NOS WITCH 
(BASE),Y 
BIG 
INDEX 

LOOP 

8.9: Yes, the program will work on ASCII characters with a consistent 
parity bit (always 0 or 1). 

8.10: See Figure 9.49. 

8 .11 : Left for reader. 

8.12: (c) 

BCC NOCARRY 
LOA #0 

398 



ADC 

BCS 
NOCARRY DEY 

OVER 

8.13: (b) 

ZLOOP 

NOTZ 

CHAPTER9 

9.1: Address 
15 
16 

9.2: FIRST 

BNE 
CLV 
RTS 
LDA 
ADC 
RTS 

LDA 
AND 
CMP 
BCC 
CMP 
BCS 
INX 
DEY 

Contents 
()() 

05 

APPENDIX 

SUM HI INCREMENT SUMHI 
SUCH THAT CARRY 

OVER IS AFFECTED 

AD LOOP 

#$40 
#$40 FORCE OVERFLOW 

ERROR: RETURN 

(ADDR),Y 
#$7F MASK OUT PARITY BIT 
#$41 'N CHARACTER 
NOTZ 
#$5B '['CHARACTER 
NOTZ 

---• IBLOCK1IE~ IBLOCK21~W=:IBLOCK31~1 
BLOCK 

399 



PROGRAMMING THE 6502 

CHAPTER IO 

IO.I: No. LOA #'5 will load hexadecimal value 35 as a representative of 
the ASCII character "5". LOA #$5 will load the numerical value of 5 
into the accumulator. 

10.2: LOA %10101010 loads the accumulator with the contents of the 
memory location AA16• LOA #%10101010 loads the accumulator 
with the actual value AA16• 

10.3: Assuming the N flag is set, the program counter will be jumped to 
the memory location where the branch instruction starts. This will 
result in an infinite loop. 

10.4: * = 0 

400 



PROGRAMMING THE 6502 

INDEX 

A 

A 187 

abbreviations 112 
absolute 197 
absolute addressing 66, 190, 191, 195 
accumulator 41, 48, SS, I JO, 122, 133, 143, 

152, 165, 178, 182, 183, 18S, 190, 263 
ADC 62, 113 
addition S4, 59, 67 
address 39, 149, 188, 189, 191, 192, 306 
address bus 39, 44, 4S, 49 
address field 358 
addressing 188, 189 
addressing modes 188, 200 
addressing techniques 188 
algorithm 7, 8, 69, 275, 318, 320, 340 
alphabetic list 290, 301, 302, 303, 304, 305 
alphabetical order 269, 372 
alphanumeric 31 
ALU 39, 41 
AND 87, 104, 110, llS 
APL 345 
arithmetic 41, 67, 100, 103, 117 
arithmetic logical unit 39, 41 
arithmetic operation 41, 100 
arithmetic programs 54 
ASCII 31, 32, 267, 268, 360, 376 
ASL 106, 117 
assembler 55, 343, 34S, 346, 3S6, 3S8, 3S9 
assembler directives 362 
assembly level language 344, 356, 358, 359 
assembly time 361, 365 
asynchronous 216,221,228 

B 

BASIC 
basic concepts 
baud 
BCC 
BCD 

402 

16, 345 
7 

23S 
74, 109, 119 

26,27,64,65, 103,268,379 

BCD addition 
BCD flags 
BCD mode 
BCD subtraction 
BCS 

63,66 
67 

67, 108 
66 

109, 120 
benchmark 220 
BEQ 109, 121 
binary 12, 13, 14, 33, 34, 35, 36, 37, 64, 

343,346,358,361,373 
binary digit 
binary division 
binary mode 
binary representation 
binary searching 

10, 12 
86 

108 
12,33,358 

283,290,294,295, 
296,299 

binary tree structure 313, 320 

BIT 110, 122 
bit 10, 12, 33, 54, 59, 100, 122, 167, 169 
bit serial transfer 221, 223 
block 203, 204, 205, 208, 276, 277. 279, 280 
block transfer routine 203,_ 204, ~OS 
BMI 109, 123, 208 
BNE 77, 109, 124, 207, 208, 264 
bootstrap 40 
BPL 109, 125 
bracket testing 265 
branch 101, 119, 120, 121, 123, 124, 125, 

127. 128, 191, 196, 264 
196 
191 

branches 
branching 
branching point 
break 

69 
102, 108, 126, 2SI 

108,2Sl,349 
108, lll, 126, 2Sl 

333,334,335,336,337,338 
255 

break point 
BRK 
bubble sort 
buffer 
buffered 
busses 
BVC 
BVS 
byte 

41 
39 

109, 127 
109, 128 

10, 11, 27, 62 



INDEX 

c data 39,255 
data bus 39,45 

c 43 data direction register 255,256,259 
call 101 data processing 100, 103 
carry 19, 21, 22, 43, 57, 75, 109, 113, 119, 

120, 129, 173, 175, 191 data structures 275,284,300 
central processing unit 39 data transfer 67, 99, 102 
characters 31, 265, 266 data transfer rate 221 
checksum 270 data units 319 
chronological structure 47 debugger 347 
circular list 280,281 debugging 10, 347 
classes of instruction 99 DEC 139 
CLC 57,63,67, 129 decimal 12, 13, 14, 35, 36, 58, 108, 
CLO 58, 130 130, 176, 379 
clear 57, 58, 111, 119, 127, 129, 130, decimal adjust 64 

131, 132, 191 decimal mode 176 
CLI 131 decoding logic 41,45 
clock 40,45, 73 decrement 100, 103, 139, 141, 142, 'lffT, 214 
CLV 132 delay 213, 214 
CMP 110, 133 deleting 287,301,309 
code conversion 268 design examples 284 
coding 8,349 

destination 39 
collision 321 development system 352 
combination chips 41 device handler 248,348 
combinations 194 DEX 77, 141, 207 
commands 8 DEY 142,207 
comment field 55,356 direct addressing 82, 190, 191 
comparisons 106 direct binary 11, 37 
compiler 346 directive 95,360,362 
complement 14,30,54 directories 277,306 
conditional assembly 367 disassembler 345 
constants 66,360 disk operating system 347 
control bus 39 displacement 110, 189, 191 
control instructions 102, 111 
control lines 255 OMA 239 
control register 255,257 documenting 55 
control signals 51 DOS 347 
control unit 39,45 doubly linked lists 281, 282 
counter 71, 214 drivers 41 
counting 213 duration 217 
CPU 39 
CPX 111, 135 
CPY 111, 137 E 
cross assemblers 354 
crystal 40 EBCDIC 31 
current location 361 echo 234,237 

editor 347 

D element deletion 299 
element insertion 298 

D 58, 108 emulator 348,350 

403 



PROGRAMMING THE 6502 

EOR 
error messages 
executive 
execution speed 
exponent 
extended addressing 
external device 

22,87, 104, 105,143 
358,363 
347,360 

42,45,82,348 
28,29 

191 
39 

F 

fetch 44, 45, 46, 47 
fields 356 
Aro m 
file system 277 
flags 22, 102, 106, 130, 132,297 
flip-flop 42 
floating point 28, 29, 31, 100 
flow charting 8, 9, 10, 69, 86, 89, 214, 

219,223,240,273,288,289,291, 
294,301,315,316,317,339 

front panel 33, 355 

G 

generate a signal 212,363 

H 

half carry 
handshaking 
hardware concepts 
hardware delays 
hardware stack 
hashing algorithm 

65 
228,229,255,261 
38,227,239,355 

216 
48 

320,321,322,329, 
330, 331, 332 

33,34,35,343,358,361, 
371, 374, 375 

36,343,344 
345 

hexadecimal 

hexadecimal coding 
high level language 
hobby type microcomputers 

immediate addressing 
implicit addressing 
implied addressing 
improved multiplication 
INC 

404 

354 

244 
66, 190, 195 

190 
194 
82 

145,207 

incircuit emulator 350, 352 
inclusive OR 161 
increment 100, 103, 145, 147, 148 
indexed addressing 191, 197, 238 
indexed indirect addressing 198, 199, 209 
index registers 47, 191, 200, 289 
indirect addressing 193, 194, 198, 276 
indirect indexed addressing 192, 199 
indirection pointer 276 
initialization 70 
input/output 102, 211, 228, 239, 363 
input/output devices 39, 102, 211, 228, 

238,239,254,263 
input/ output instructions 111 
input ports 41 
inserting 287, 298, 308, 320 
instruction 11, 55, 112, 372, 373 
instruction field 356 
instruction register 45 
instruction set 99, 374, 375 
instruction types 67 
interface chips 40 
internal control register 190, 257 
internal organization 10, 41, 42 
interpreter 346 
interrupt 48, 102, 108, 131, 171, 177, 216, 

242,243,255 
interrupt handling routine 
interrupt levels 
interrupt-mask 

249 
251 

108, 244 
51 

245,248 
147 
148 
45 

interrupt request 
interrupt vector 
INX 
INY 
IR 
IRQ 
iteration 

J 

JMP 
JSR 
jump 

K 

K 
keyboard 
KIM 

51, 111, 244, 245 
201 

110, 149 
95, 110, 151 

95, 101, 149, 151, 200 

16,49 
264 
261 



L 

label field 
largest element 
LOA 
LOX 
LOY 
LED 
level activated 
levels 
LIFO 
light emitting diode 
line number 
linked list 

356 
268 

55,67, 152,268 
154 
156 

33,230,231 
244 
95 

47,276,280 
230 
358 

278,280,299,306 

linking loader 
308,309,310,311,312 

347 
95,322,359,378 

276,285,286,287,292,293,363 
65,66, 189, 190,360 

55, 152, 154, 156, 257, 259 
347 
73 

listing 
lists 
literal 
load 
loader 
location 
logarithmic searching 
logical 
logical operations 
long branch 
longer delays 
loops 
LSR 

M 

283,290 
41, 104, 115, 158 

41, 87, 100 
200 
215 

53, 191,240 
106, 158 

macros 363, 365, 366 
macro parameters 365 
main program 91 
mantissa 28, 29, 31 
masking 131 
master directory 277 
memory 39, 44, 45, 55, 57, 97, 122, 145, 

178, 180, 181,218,272,276,285,314 
memory mapped 1/0 102, 337, 351 
memory test 263, 319 
merge 339, 340, 341 
mnemonics 343, 358 
monitor 40, 347 
MOS Technology 261 
MPU 38, 39, 40 
multiple interrupts 248, 249 
multiple precision 59 

multiplicand 
multiplication 

N 

N 
negative 
nested 
nested calls 
next instruction 
nibble 
NMI 
nodes 

INDEX 

75, 77, 81, 83 
68,69,80,82 

non-maskable interrupt 
NOP 

43, 107, 110 
16, 17, 18,23,43 

366 
93 

43,46 
10, 27, 100 

51, 111, 244, 245 
319 

51, 244 
111, 160 

28 
28 

normalize 
normalized mantissa 

0 

object code 
octal 
oneK 
one's complement 
one-shot 
opcode 
operand 
operand field 
operating system 
operators 
ORA 
oscillator 
overflow 

overhead 

p 

p 

packed BCD 
pageO 
paging 

346 
33,34,35,36,360 

49 
17, 19 

216 
41, 189 

41,54,59,61,356 
356 
147 
361 

87, 104, 161 
40 

20,21,22,2351,107, 
127, 128, 132 

247,253 

parallel input/output chips 
parallel word transfer 
parameters 

60,244 
27,63 

49 
49,50 

40 
218,219 

365 
31,32,267 

267 
71, 72 

345 

parity 
parity generation 
partial product 
PASCAL 

405 



PROGRAMMING THE 6502 

PC 43, 244, 361 
PCH 43 
PCL 43 
PHA 163 
PHP 164 
physical address 75 
PIA 256,257,259,260 
PIC 249 
PIO 40,254,255,256,258 
PIT 213 
PLA 165 
PLP l~ 

pointers 97, 194, 275, 276, 278, 297 
polling 216, 219, 240, 247, 248, 263 
pop 48 
port 40,254,255 
positional notation 12 
positive 16, 17, 23, 269 
post indexing 192 
power failures 40 
precision 27 
pre-indexing 192 
printer 35, 229, 241, 279 
printing a string 238 
~m~ w.~ 
priority interrupt controller 249 
process control 40 
program 8, 40 
programming 7, 8, 81 
program counter 43, 45, 47, 244, 358 
program development 343, 348 
program loop 70 
programmable interval timer 213 
programming alternative 81 
programming form 357 
programming hints 67 
programming language 8, 345 
programming techniques 53 
PROM programmer 354 
pseudo instructions 58 
pull 48, 100, 165, 166 
pulse counting 216 
pulses 212, 213, 217 
push 48, 100, 163, 164 

Q 

quartz 
queue 

406 

40 
279,280 

R 

RAM 40, 41, 44, 349, 352 
Random Access Memory 40 
ROY 51 
read only memory 40, 256 
read write memory 40, 256 
recursion 96 
register 33, 39, 73, 75, 83, 96, 97, 106, 

135,154, 156, 190,247,256 
register management 53 
regular interrupt line 244 
relative addressing 191, 196 
relay 212 
representation of information 33, 35 
RES 51 
reset 
restoring method 
retrieval 
return 
Rockwell 
ROL 
ROM 
ROR 
rotate 
rotation 
routines 
round robin 
RTI 
RTS 
RW 

s 

s 
SBC 
scheduling 
scope 
searching and sorting 
search techniques 
SEC 
SEO 
SEI 
sending a character 
sensing pulses 
sequencing 

256 
86 

280,328 
90, 171, 172 

261,353 
167 

40,44 
169 

72, 77, 101, 167, 169 
77, 100 

262 
280,281 

110, 171,245,246 
95, 110, 172 

51 

47, 184, 186 
62, 173 

239 
351 
282 

283,286,290,307 
63, 175 
67, 176 

177 
229 
216 

sequential block access 
sequential lists 
sequential searching 

38,46 
200 
276 
282 



INDEX 

serial search 286 symbol table 358 
set 120, 128, 175, 176, 177 SYNC 51 
shift 71, 72, 76, 77, 100, IOI, 117, 158 synchronization 39, 102, 348 
shift operations 106 synchronous 221 
short address 189, 195,200 Synertek Systems 261 
sign 107 syntax 281 
signed binary 16, 17, 18 system architecture 38 
sign extension 100 system 65 362 
simulator 348 
simultaneous interrupts 249 
simple list 286,290 T 

single board microcomputer 344,352 
table 

6502 38, 194,350,372 191, 197,202,276,277,285,288, 

6502 peculiarities 57 289,290,291,326,358,377 

6522 258 TAX 182 

6530 257,258 TAY 183 

6532 261 teletype input-output 233,235,236,237 

skew 100 ten's complement 66 

skip 102 test and branch 102, 106, 109 

so 51 testing 8 

software stack 48 timer 216,258 

software support 346 time sharing system 354 

sort 269 trace 350,351 

source 39 transfer 182,183, 184, 185, 186, 187 

STA 67, 103, 178, 207 translation 55 

stack 47,97, 166,244,250,275,280 tree builder 313, 315, 316 

stack operations 49, 103 tree search 323,324,325 

stack overflow 253 trees 281,282,313,319,320,321,322 

standard PIO 254 tree traverser 313, 317, 318, 320 

start bit 235,236,255 truncations 25 

status flags 42 TSX 184 

status manipulation 67 two's complement 17, 18, 19, 29, 63, 

status register 244 100, 107 

stop bit 235 TXA 185 

store 103, 178, 180, 181, 327 TXS 186 

string 230, 271, 272 TYA 187 

STX 180 
STY 181 
subroutines 48,90,92,95,96, 151, u 

172, 327. 365 UART 227 
subroutine call 91, 95 unconditional jump 95 
subroutine level 95,96 underflow 24 
subroutine library 98 utility programs 262 
subtract 62, 173 utility routines 262,348 
subtraction 14, 67 
sum of n elements 269 
SYM 261 v 
symbol 360,363 versatile interface adapter 258 
symbolic label 75, 345 VIA 258 
symbolic representation 35,356 volatile 40 

407 



PROGRAMMING THE 6502 

w 
working registers 73, 195 

x 

x 47,135, 141, 147, 154, 180,182,184 
185, 186 

y 

y 47,.137, 142, 148, 156, 181, 183, 187, ']ff/ 

z 

Z 43, W1, 108, 110 
zero 43, 108, 121, 124,271 
zero page addressing 195 

408 



The SYBEX Library 

YOUR FIRST COMPUTER 
by Rodnay Zaks 264 pp., ISO illustr., Ref. 0-045 

DON'T (or How to Care for Your Computer) 
by Rodnay Zaks 222 pp., 100 illustr., Ref. 0-065 

INTERNATIONAL MICROCOMPUTER DICTIONARY 
140 pp., Ref. 0-067 

FROM CHIPS TO SYSTEMS: 
AN INTRODUCTION TO MICROPROCESSORS 

by Rodnay Zaks 558 pp., 400 illustr., Ref. 0-063 

YOUR TIMEX SINCLAIR 1000™ AND ZX81™ 
by Douglas Hergert 176 pp., illustr., Ref. 0-099 

YOUR COLOR COMPUTER 
by Doug Mosher 350 pp., illustr., Ref. 0-097 

INTRODUCTION TO WORD PROCESSING 
by Hal Glatzer 216 pp., 140illustr., Ref. 0-076 

THE FOOLPROOF GUIDE TO SCRIPSIT™ 
by Jeff Berner 225 pp., illustr., Ref. 0-098 

INTRODUCTION TO WORDSTAR™ 
by Arthur Naiman 208 pp., 30 illustr., Ref. 0-077 

MASTERING VISICALC® 
by Douglas Hergert 224 pp., illustr., Ref. 0-090 

DOING BUSINESS WITH VISICALC® 
by Stanley R. Trost 200 pp., Ref. 0-086 

DOING BUSINESS WITH SUPERCALC™ 
by Stanley R. Trost 300 pp., illustr., Ref. 0-095 

VISICALC® FOR SCIENCE AND ENGINEERING 
by Stanley R. Trost & Charles Pomernacki 225 pp., ilium., Ref. 0-096 

EXECUTIVE PLANNING WITH BASIC 
by X. T. Bui 192 pp., 19 illustr., Ref. 0-083 

BASIC FOR BUSINESS 
by Douglas Hergert 250 pp., IS illustr., Ref. 0-080 

YOUR FIRST BASIC PROGRAM 
by Rodnay Zaks 200 pp., illustr., Ref. 0-092 

FIFTY BASIC EXERCISES 
by J.P. Lamoitier 236 pp., 90 illustr., Ref. 0-056 

BASIC EXERCISES FOR THE APPLE 
by J.P. Lamoitier 230 pp., 90 illustr., Ref. 0-084 

BASIC EXERCISES FOR THE IBM PERSONAL COMPUTER 
by J.P. Lamoitier 232 pp., 90 illustr., Ref. 0-088 

INSIDE BASIC GAMES 
by Richard Mateosian 352 pp., 120 illustr., Ref. 0-055 

THE PASCAL HANDBOOK 
by Jacques Tiberghlen 492 pp., 270 illustr., Ref. 0-053 

INTRODUCTION TO PASCAL (Including UCSD Pascal™) 
by Rodnay Zaks 422 pp., 130 illustr., Ref. 0-066 

DOING BUSINESS WITH PASCAL 
by Richard Hergert & Douglas Hergert 380 pp., illustr., Ref. 0-091 



APPLE® PASCAL GAMES 
by Douglas Hergert and Joseph T. Kalash 376 pp., 40 illustr., Ref. 0-074 

CELESTIAL BASIC: Astronomy on Your Computer 
by Eric Burgess 320 pp., 65 illustr., Ref. 0-087 

PASCAL PROGRAMS FOR SCIENTISTS AND ENGINEERS 
by Alan R. Miller 378 pp., 120illustr., Ref. 0-058 

BASIC PROGRAMS FOR SCIENTISTS AND ENGINEERS 
by Alan R. Miller 326 pp., 120 illustr., Ref. 0-073 

FORTRAN PROGRAMS FOR SCIENTISTS AND ENGINEERS 
by Alan R. Miller 320 pp., 120 illustr., Ref. 0-082 

PROGRAMMING THE 6809 
by Rod nay Zaks and William Labiak 520 pp., 150 illustr., Ref. 0.078 

PROGRAMMING THE 6502 
by Rodnay Zaks 388 pp., 160 illustr., Ref. 0-046 

6502 APPLICATIONS 
by Rodnay Zaks 286 pp., 200 illustr., Ref. 0.015 

ADVANCED 6502 PROGRAMMING 
by Rodnay Zaks 292 pp., 140 illustr., Ref. 0-089 

PROGRAMMING THE Z80 
by Rodnay Zaks 626 pp., 200 illustr., Ref. 0-069 

Z80 APPLICATIONS 
by James W. Coffron 300 pp., illustr., Ref. 0-094 

PROGRAMMING THE Z8000 
by Richard Mateosian 300 pp., 124 illustr., Ref. 0.032 

THE CP /M® HANDBOOK (with MP /M™) 
by Rodnay Zaks 324 pp., 100 illustr., Ref. 0-048 

MASTERING CP /M® 
by Alan R. Miller 320 pp., Ref. 0-068 

INTRODUCTION TO THE UCSD p-SYSTEM™ 
by Charles W. Grant and Jon Butah 250 pp., IO illustr., Ref. 0-061 

A MICROPROGRAMMED APL IMPLEMENTATION 
by Rodnay Zaks 350 pp., Ref. 0-005 

THE APPLE® CONNECTION 
by James W. Coffron 228 pp., 120 illustr., Ref. 0-085 

MICROPROCESSOR INTERFACING TECHNIQUES 
by Rodnay Zaks and Austin Lesea 458 pp., 400 illustr., Ref. 0.029 

FOR A COMPLETE CATALOG 
OF OUR PUBLICATIONS 

U.S.A. 
2344 Sixth Street 
Berkeley, 
California 94710 
Tel: (800)227-8233 
Telex: 336311 

SYBEX-EUROPE 
4 Place F~lix-Ebou~ 
75583 Paris Cedex 12 
France 
Tel: 1/347-30-20 
Telex: 211801 

SYBEX-VERLAG 
Heyestr.22 
4000 Diisseldorf 12 
West Germany 
Tel: (0211)287066 
Telex: 08 588 163 



S®coMPUTERBOOKs ARE DIFFERENT. 

Here is why ... 
At SYBEX, each book is designed with you in mind. Every manuscript is 
carefully selected and supervised by our editors, who are themselves com
puter experts. Programs are thoroughly tested for accuracy by our techni
cal staff. Our computerized production department goes to great lengths 
to make sure that each book is designed as well as it is written. We publish 
the finest authors, whose technical expertise is matched by an ability to 
write clearly and to communicate effectively. 

In the pursuit of timeliness, SYBEX has achieved many publishing firsts. 
SYBEX was among the first to integrate personal computers used by 
authors and staff into the publishing process. SYBEX was the first to 
publish books on the CP/M operating system, microprocessor interfacing 
techniques, word processing, and many more topics. 

Expertise in computers and dedication to the highest quality in book pub
lishing have made SYBEX a world leader in microcomputer education. 
Translated into fourteen languages, SYBEX books have helped millions of 
people around the world to get the most from their computers. We hope 
we have helped you, too. 



Programming the 

2 
" . . . if you need to know the 6502, you may 
not be able to find a text easier to under
stand than this one." 

- CREATIVE COMPUTING 

"The style is clear and direct and the con
tents well organized . .. more importantly, 
this one (book) scores high on readability." 

-EDN 

" ... it contains sufficient material and is well 
enough organized for use as a reference 
text ... " 
"Zaks' book is solution oriented." 

-KILOBAUD 

Dr. Rodnay Zaks, president of Sybex, Inc., 
has a PhD in Computer Science from the 
University of California, Berkeley. He has 
been responsible for the design and instal
lation of computers for industrial control, 
educational and scientific applications, 
as well as business and home use. He is the 
author of numerous books on all facets of 
computers, including the best selling YOUR 
FIRST COMPUTER. 

ISBN 0-89588-135-7 


