ISSUE =3 NOVEMBER 1975

$1.50 .
(12 bits) the small systems journal

A $20 Microprocessor ?

Burn Your Own ROMs

Computer Hams ? Is This Next ?

Ins and Outs
of Volatile Memories

Computers Are

Ridiculously Simple !

Computers -

The World’s Greatest Toy!

http:CHIP$30.95

Foreground

INS AND OUTS OF VOLATILE MEMORIES 12
Hardware — Lancaster

COMPUTERS ARE RIDICULOUSLY SIMPLE 20
Principles of Operation — Wadsworth

COMPUTERS AND AMATEUR RADIO 42
Applications — Gipe

SON OF MOTOROLA (OR, THE $20CPUCHIP) 56

Chip Designs — Fylstra

Background

HEXPAWN — PROJECT IN ARTIFICIAL INTELLIGENCE . . .36
Software — Wier

NOTES ON PARALLEL OUTPUT INTERFACES 52
Hardware — Carl Helmers

MONITOR 8% — YOUR OWN PSEUDO INSTRUCTIONS64
Software — Nico

VERSATILE READ ONLY MEMORY PROGRAMMER 66

Hardware — Peter Helmers

Nucleus
FromthePublisher......................... 5, 82
Speakingof Computers 6, 90
Book Reviews. i, 11
Byter'sDigest, 46, 72,79
Clubs and Newsletters 77
Diagnosticso v v e e 78
BYTE magazine is published Letters . ..o e 84
monthly by Green Publishing,
Inc., Peterborough, New BOMB ... i 88
Hampshire 03458. , .
Subscription rates are $12 for Reader's Service oo oo i 96
one year worldwide. Two
years, $22. Three years, $30.
Second <class postage Contract
licatio endin at ontract: . . ey
‘;’:tle’rboro;g: Ngw Ham;g)shire The subscriber or material published within
03458 and’ at additional purchaser of this magazine these pages. Purchaser agrees
mailing offices Phone: agrees to the [ollowing to display this copy of BYTE
603-924-3873 Enti.re contents software conditions . .. not to to as many compuler
copyright 15;75 by Green resell this magazine for less addiclees as possible, but to
than 50% of the cover price limit their perusal to the cover

Publishing, Inc., Peterborough,
NH 03458. In case you were
wondering, last month’s cover
had pictures of several MITS
and SWTCP computer kit
boards.

not to give the magazine
away at any time in the future
.ortolendit... orrentit
or in any other way permit
anyone to become privy to the

and table of contents pages.
This agreement holds not only
for casual acquaintances, but
also for personal (friends,

blood relatives, and even wives.

@ 2cHan
¢ Hom casseTTr e
- INTERFACE
RECORDIR
%
RECORDER
=
SYSTEMS.

p.6

FIG 3 \u/.‘
CiRCUIT

UL Lok
OF koA
UECODL R

0123485789100 WRITE
ADDRESS

p. 12

p. 42
o %
02 5N
Q3.
a5 ,/
@5 Qf
N
&
OUTPYT
79 4 Q -
a ay 46 X
p. 66

COVER: See page 5.

http:Up1as10.oo
http:Uptos10.oo

Carl Helmers

The State of The Art

If there is one facet of the
small computer field which is
its most exciting, that is
probably its rapid change and
evolution unfolding before all
us users of the technology.
The fact that a magazine such
as BYTE can even exist {let
alonc get its enthusiastic
rcception) is evidence of the
considerable changes which
have occurred in the home
compuler field over the past
year or two. Any attempt
such as this to characterize
the current “state of the art”
is doomed to rapid
obsolescence. Be that as it
may, | won't let that deter
me from characterizing the
field as | see it now.

Just what is this “art’’ that
I'm talking about? When |
talk about art in this sense, |

mean the body of
tcchnological know-how
available for personal

computing plus the attitudes
and abilities of the people
who use this know-how. An
analogy or two: The state of
the art in a form such as
painting reflects both the
latest developments in the
pigmentation materials field
and the creative talents and
attitudes of the people who
use this technology for

Any attempt to specify
the state of the art in this
field is doomed to
practically instant
obsolescence . . .

expressive purposes. The state
of the art in music is a
combination of the
technology of music
production — traditional to
clectronic/digital — plus the
aesthetic and creative tastes
of the musicians and
composers who wuse the
technology. So it is as well
with computing. There is the
technological state of the art
as it exists — a transient thing
at present — together with
the creative uses to which
people such as you or | put
these wonderful technological
devices.

A Recent State of the Art . ..

A few years ago, the state
of the art in hardware was
pretty primitive - in other
words, onc had to be a really
persevering person to gel
something in computing
which worked and cost less
than $1000. To give you an
example, | got a call from
Dick Snyder of Chelmsford,
Mass., shortly after BYTE #1
came out. {See Dick’s letter
in the letters column of this
issuc.) As a result of our
conversation, | stopped at
Dick’s house on the way back
from Pecterborough onc
weekend in August and took
a look at his pre-
microcomputer home brew
computer, a really beautiful
picce of work. He had
completely designed and built
— in 1972 and 1973 — a
miniature 4bit computer
with 256 nybbles of memory
using the Data General
NOVA minicomputer as his
inspiration. He built the
machine using painstakingly
accurate soldering with a
miniature iron, sockets for
over 170 integrated circuits,

and a very compact housing.
The most unusual feature of
all was the use of water
cooling to keep his 16
7489 memory chips cool
(said water cooling consisting
of plastic bag baby bottles
filled with water and sealed
with rubber bands). Yet it
works! And — he has built up
quite an impressive array of
software for his one-of-a-kind

machine, including a very
appcaling simulation of a
priority-driven real time

operating system with three
tasks in the queue. The entire
program for this simulation is
done in 256 nybbles
{half-bytes) of memory with
the 16 instructions of his
design. The result is an
impressive changing display
of marker patterns in his
front panel lights as the
various tasks swap in and out
of cxccution. Dick Snyder’s
machine is the state of the
art, circa 1972-1973, to a

large extent — micro-
computers were not vyet
widely available to the

gencral populace of personal
computing hackers. Dick tells
me that he spent about $600
on the parts of his computer
at 1972 prices for SSI and
MSI TTL integrated circuits.

But now, in 1975 after the
first wave of 8008 computer
kit products and the rising
tide of the ‘‘first generation"
personal computer systems,
that same $600 can buy a lot
more function. In 1975 we
saw the introduction of the
MITS ALTAIR — which turns

out to be a very good
computer after initial slow
deliveries duc to

unanticipated demand — and
a host of new machines such
as Bill Godbout's PACE, the

SWTPC 6800 kit, the MITS
6800 kit and several other
systems.

The Benchmark of a Small
Computer System

In the enginecering and
software professions, it is
often common to dream up
“penchmarks” to help in the
evaluation of systems. This
term, benchmark, was
adopted by systems engineers
from its original use in the
field of geodetic surveying. A
geodetic survey benchmark is
a permanent marker set “‘out
in the field” (literally) at
known locations during the
course of the survey. If you
clamber to the top of Mt.
Chocorua in New Hampshire,
as | sometimes do, when you
get to the top you will find a
little metal plate giving
elevation, longitude and
latitude information. This is
the benchmark for the
mountain’s peak. Well, the
benchmarks used for
computer systems are a little
bit less concrete than a metal
plate on a mountaintop, but
serve the same purpose: They
provide a reference point for
comparison.

A common benchmark
which has been used in the
past to evaluate computer
systems (and compilers) is the
“standard set of programs'.
In this method of
benchmarking a system, the
potential user of the system
picks a set of ‘“typical”
applications programs and has
them implemented and
measured in operation on
several different systems. This
is a fairly quantitative and
seemingly accurate method
which is widely practiced in
the information systems

industries. The measurements
made for comparison include
“through-put” (processing
per unit time), high level
language cfficiency, memory
requirements, ctc. But this
sort of a measure is perhapsa
bit too complicated for the
home computer context. For
one thing, the applications
are known only generally.
Second, this is the type of
study which takes a large
amount of time and access to
various competitive systems.
And, if you read the trade
journals, the results are often
controversial anyway, since
each manufacturer will claim
that the benchmarks he
provides will prove his
machine better than all the
rest. Picking the “‘ideal” small
computer system still requires
a benchmark, but | suggest it
is not a particular program,
but a capability.

Capability — the Benchmark
of a Small System

We all know that in broad

terms, the benchmark
computer system, as any
computer system, must
include several major
components: a processor,
memory, a mass storage
medium, an interactive
operator's terminal and

systems software. | pick this
list in part to illustrate a
typical computer
configuration and in part to
allow programming of a
benchmark capability:

A small computer system
which meets the benchmark
standard will be able to
interactively edit a mass
storage file of input data
with operator commands,
producing a sccond mass
storage file as output. This
will be achieved in a system
costing at most $1000
initially.

The system diagram of the
benchmark computer s
shown in Fig. 1, as it is
implemented in the current
state of the art. The

SYSTEM

?

cvoon

EXPANSION

4k to

RAM

2-CHAN
CASSETTE
INTERFACE

ROM

KEYBOARD
& DISPLAY

i

APPLICATIONS
SOFTWARE
AND DATA

/

RECORDER
=

RECORDER
#2

SYSTEMS
SOFTWARE 4

OFF LINE
CASSETTE
LIBRARY

Fig. 1. The Complete Low Cost Computer System (circa September 1975). This diagram shows the major
components of a typical low cost computer system — which should total up under $1000 depending upon
manufacturer and details of design. At the time this editorial is written, several kit manufacturers meet this
functional benchmark at prices well under $1000. As time goes on the improvements of mass production
should drop the average price of such systems.

components of the system are
chosen with the editing
function in mind, since
accomplishing such an edit
capability means the machine
can be programmed for
almost any other personal
computing use. Peripherals
that enhance the function are
of course desirable and will
help to personalize your
system, but these functions
represent the bare minimum
without added cost of special
purpose peripherals.

The CPU: Which One?
In Hal Chamberlin’s article

in BYTE #1, the relative
merits of three computer
designs werc covered. In

BYTE #3, Dan Fylstra covers
a comparison of two
additional designs. There is a
large variety in the types of
CPUs available to home
brewers and kit builders —
ranging from the 8008, 8080,
6800 and 6501 8-bit micros,
to the 16-bit IMP and PACE
micros, to commercial
16-bitters such as the LSI-11

and NAKED Milli products —
and on into the
never-never-land of custom
designed microcoded MSI
computers implemented by
individuals (and also soon to
be announced in product
form by one manufacturer of
kits). There is a large element
of personal taste involved in
the preferecnce of particular

instruction sets, and there
is also the matter of
efficiency for particular

classes of programs. Whatever
the CPU you wuse, it is a
definite requirement of the
system. [guarantee you that
any one of the 8-bit or 16-bit
microprocessors currently
being packaged and sold as
kits will be adequate to pass
this benchmark test, although
you may have to write the
Editor program yourself.

RAM Memory — How Much?

The CPUs of the
conventional microprocessors
— kit or home brew

implementations — create an
output called a “data bus”

Picking your ideal
computer system requires
a benchmark — which

| suggest is not a
particular program but

a capability.

which is used for exchanging
information with everything
else in the system. The data
bus is the ‘‘spinal cord” of
the computer’s nervous
system. This bus concept
typically includes 16 bits of
buffered address lines and
several bus control
information lines as well as
the 8 or 16 bi-directional
buffered data lines. The
address space of the typical
contemporary micro-
computer’s architecture is
usually 16 bits worth or
65,536 possible memory
locations. In the usual system
most of these locations will

Continued on page 88

7

REVIEW

What To Do After You Hit
Return, or PCC’s First Book
of Computer Games.
Available from People's
Computer Company, PO Box
370, Menlo Park CA 94025
($6.95 plus 50¢ postage and
handling), or from the
Hewlett-Packard Corporation,
Mail Order Dept., PO Drawer
#20, Mountain View CA
94043 ($6.95 plus $1.50
postage and handling).

If you've managed to get
BASIC up and running on
your Altair or other home
brew computer system, why
not try it out with a few
computer games implemented
as BASIC programs? Or if
you &nd your minicomputer
or time-sharing service have
some time to spare . . .

What To Do After You Hit
Return is a book of computer
games published by the
People’s Computer Company
with the collaboration of
Hewlett-Packard Corporation.
All of the game programs are
written in HP 2000F BASIC,
and should be fairly easy to
adapt to other imple-
mentations of the BASIC

language. The book includes
listings of most of the
programs, as well as
information on how to order
machine-readable copies of
the programs (on paper tape
or magnetic tape) at
reasonable prices.

The book is nicely
organized into 10 chapters,
each dealing with a certain
“kind’' of game, such as a
word game or a hide-and-seek
gamc. The programs range
from very elementary
number-guessing games to
sophisticated business and
social sciecnce simulations
(listings of the larger
programs arc not included in
the book). | was somewhat
disappointed to find that a
listing of the very popular
““Star Trek” gamc was
omitted, although an
elaborate *'Star Trader” game
is included.

The first few pages of the
book presecnt, among other
things, a rationale for the
existence of computer games.
While this is probably an
effective way to counteract
the rigid, efficiency-minded
attitudes of some compulter
professionals, it’s really
sufficient to say the obvious,
“Games are fun”. My only
reason for hesitation in
recommending this book is
that 1| have known some
people whose work and play
revolve entirely around
computers. Therefore | would
also like to recommend at the
same time: sex, sunshine, salt

WHAT TO DO
AFTER YOU HIT
RETURN

or

P.CC.s First Book of
Computer Games

water, snow, speed (cars,
molorcycles, gliders,
skydiving, whatever you like),
yoga and music. The list
could be extended
indefinitely, of course, and
the point is simply to use the
whole of your mind and
body. Those of us who work
and play with computers
know that, for cxercising
one’s reason and imagination,
we have the greatest tools and
toys ever invented. So, having
fulfilled my duty to remind
you that one can have too
much of a good thing, | am
plcased to recommend this
book, one of several
heartening developments that
promisc to show people what

computers are really all
about.

—d.h f.
Microcomputer Design, by

Donald P. Martin, Martin
Research Ltd., 1825 S
Halsted St., Chicago [IL

60608, 1-312-829-6932. $50.

This book is terrific,
especially for the following
people:

a) Anyone doing original
circuit design with
microcomputers.

b) Anyone using the 8008
beyond simple applications.
The book is virtually an
encyclopedia on the 8008. It
also mentions 8080
differences, where relevant.
There are over 300
well-written pages filled with
pertinent technical details.

This book is an excellent
reference for the hardware
microcomputer designer.
Software is not the focal
point, although numerous
subroutines are fully listed. It
is obvious the author has
designed, debugged and used
everything about which he
writes. Whew! After reading
this book he has my utmost
professional respect.
Considering the dollar per
hour fees paid for
consultants, this book is a
bargain.

Format of the book is:

a) description of the basic
requirements and minimal
circuitry to support an 8008

b) detailed descriptions of
special topics, including: /O
port expansions beyond
manufacturer’s specifications,
adding instructions to the
8008, simultaneous input and
output with a single
instruction, bus structures,
RAMs and PROMs, a detailed
application of computer
controlled programming of
the 74S288 which appears
adaptable to the popular and
low cost 74188A/8223
PROM, a comprehensive solu-
tion for priority interrupt
hardware, UART interface,
keyboard interface, a com-
plete A/D interface design
with both single and multi-
channel, interval timers,
digital displays, etc. The last
two chapters of the book
describe four microcomputer
circuits for the 8008: a nine-
chip microcomputer, a $20
microcomputer, a seven-chip
microcomputer, and a
19-chip microcomputer.

Author Martin assumes
only that a reader has
knowledge of TTL. The book
does not repeat information
found in Intel manuals. It is
well organized and does not
try to snow. This book is
easily read and well digested,
except for the sheer quantity
of information.

Martin Research Ltd. sells
the book directly at $50 and
also is manufacturing a new
series of microcomputer
hobbyist kits. Judging by the
guality of the book they
should be excellent and
without compromise. A
comment in the recent
Micro-8 Computer User
Group Newsletter appears to
bear this up: “It's a neat little
machine . .."”

John Gilchrist
PO Box 1087
Glen Burne MD 21067

John Gilchrist is an independent
consultant with Microprocessors
Unlimited: UPoo.

1

The Ins
And Outs

Of Volatile Memories

Don Lancaster provides us with this discussion of some of
the read/write memory techniques which are available to
experimenters using readily available parts. In this background
tutorial, Don discusses memory techniques from the simple
gate flip flop to the bus-oriented RAM system using static
memory circuits. For more detailed looks at the designs of
circuits using some of the techniques in this article, readers
should turn to Don’s book, The TTL Cookbook, available
from Howard W. Sams, Indianapolis IN. The material in this
article is abstracted from Chapter 3 of Don’s forthcoming TV
Typewriter Cookbook, also to be published by Sams.

Unfortunately, there is no contents if you remove
cheap and reasonable supply power or fail to
memory system available observe any timing
today that will both restrictions it might have.
remember information One older and obvious

forever and be able to read
and write information
rapidly, cheaply, and with

non-volatile memory system,
of course, is magnetic core.
The problem with core is that

reasonable timing signals. much in the way of support
This is called the volatility circuitry (including sense
problem. amplifiers, write after

A memory is non-volatile destructive read circuits,

if it remembers forever. A
volatile memory loses its

system timing generators,
power down interrupts, etc.)

Fig. 1. Set-reset flip flops are the simplest type of read-write memory.

4011 CMOS 4001 CMOS
_O—
SET Q RESET
Q
o
RESET SET
(a) NAND gates. (b) NOR gates.

12

makes core highly impractical
for small scale TV typewriter
and microcomputer systems.

Sometimes you can gain
non-volatility with a volatile
memory by some system level
tricks, such as a power down
technique that holds a low
voltage from a battery
applied to the memory when
the main supply power goes
away. Newer CMOS RAM
memotries consume almost
negligible power in the
standby mode and lend
themselves well to this.
You can also transfer data to
some non-volatile outside
storage such as a cassette
recorder or a magnetic disc.

Read-write memory
circuits can have their
contents changed rapidly at
system timing rates. This
makes them useful for storing
characters, computer
programs, update commands,
and anything else we want to

temporarily store and
recover. Most read-write
+5
ook 40t1 CMOS
100K
+5

(c) Bounceless push-button.

by
Don Lancaster
Synergetics

memory circuits are volatile,
holding their information
only as long as supply power
remains present and so long
as any timing restrictions are
not ignored.

Read-write memories for
TVT and microcomputer use
can range from single bit
control and debouncing
circuits up through thousand
word character stores to 16k
and 32k microcomputer
memory stems. Some of the
more important memory
types include the set-reset flip
flop, the word storage latch,
the shift register, the Random

Access Memory or static
RAM, micropower RAMs,
and dynamic RAMs. Let’s
look at these in turn.

4050 CMOS

Q

Q
3 ONE SIXTH

OF CIRCUIT

SHOWN

!

(d) Hex contact conditioning.

4013 CMOS

b Q¢f—o0

O———=C

I

4027 CMOS

J Qp—0

oO——{C

K Q —0

o} J Kkcload

[0 O I | cuihee

o} [o 2 T B e |
| O T t 0O
{ | J |cHances

TYPE D FLIP FLOP

J-K FLIP FLOP

Fig. 2. Clocked flip flops only change in response to a control signal called the “‘clock’’.

The Set-Reset Flip Flop

One of the simplest
read-write storage systems is
the set-reset flip flop. It can
store only one bit of
information, and may be
built using the NOR gates of
Fig. 1(a) or the NAND gates
of Fig. 1(b). When set, the Q
output goes and stays in the
“1" condition. When reset,
the Q output goes and stays
in the ‘‘0"" state. A
complementary or Q output
is also supplied — it’s a “1”
when Q is a “0” and vice
versa. Simple setreset flip
flops have a hangup in that if
you simultaneously try to set
and reset them, they go into a
disallowed state, and the final
way they end up depends on
the last input to be released.

Fig. 1(c) shows us how to
use a setreset flip flop to
eliminate the mechanical
noise and bouncing of a
SPDT push-button or
mechanical contact. The first
instant the contact makes,
the flip flop jumps to the “1”
state and stays there till the
first instant after the switch is
completely released,
eliminating any bounce, noise
or chatter. Circuits of this
type are absolutely essential
anytime you want to enter

data from a switch or
mechanical contact into any
digital system. Fig. 1(d)

A major use of set-reset
flips flops is to debounce
switches.

shows us a simple hex contact
conditioner using one CMOS
non-inverting buffer.

The Storage Latch

Operation of a set-reset
flip flop is nearly
instantaneous. If we ftried to
cascade a bunch of them,
we’d get an unchecked wild
race, for after changing the
first one, the rest may follow
domino style. It’'s much
better to have digital circuits
change only when you want
them to and then do so on a
one-stage-at-a-time orderly
basis. To do this, we go to a
clocked flip flop, such as the
type D or JK flip flops of Fig.
2.

With these devices, the D
input or the JK inputs set up
what the flip flop is to do,
but the actual change isn’t
carried out till a certain edge
or level of the clock input
happens. With a “‘D”’ flip flop
we can clock in a “1” or
clock in a “0”, most often on
the positive edge of the clock.
We can also divide by two
with a D flop by cross
coupling the Q output to the
D input, making the logic
block change states every
clocking. With the JK flip
flop, we have the options of
clocking in a “1”, a “07,
doing absolutely nothing, or
changing each and every state
as a binary frequency
divider. For convenience in
use, most JK and D flip flops
also have extra direct set and
reset inputs; these operate
immediately and are useful
for clearing or initializing
memory states.

Word Storage

One flip flop can only
store one bit at a time. If we
use flip flops in groups, we
can store a multiple bit word
at once. In Fig. 3(a), we use
four D flops to store a 4-bit
word. Data is entered on the
leading (positive) edge of the
clock. Figs. 3(b), 3{c) and
3(d) show how we can use
larger MS! logic blocks to
store words of four, six and
eight bits in length.

A word storage latch of
this type is often handy to
“catch” an input signal on
the way by and hold it till
you can use it. For instance, a
microcomputer may output a
word for only a microsecond
or two, but your TVT circuit
may not get around to using
the word for milliseconds or

even seconds later. In this
case, you catch the
microcomputer’s output

word with a storage latch and
then keep it till you are
certain you have used it. You
then release the latch and ask
the microcomputer for a new
word through a handshaking
signal.

Another important use for
word storage is to
resynchronize data and make
sure it is valid. As an
example, suppose your
system changes words every
microsecond, but that the

One bit of memory is one set-
reset flip flop.

Fig. 3. Word storage latches
provide a handy way to keep
track of multiple bits of data.

4013 CMOS

Dlo——p Qi
c

Q
™1 @

D2o- [5) Q2

Q
¢q

Q3

D3 D Q
P’Ca

D4 D

Q Q4
)

J STORE

(a) 4-bit word using D-flops.

4042 (CMOS)
4076 (CMOS)
74174 (TTL)
DI ol ol Ql
D2 o——{P2 02 Q2
D3 D3 Q3 Q3
04 04 04 Q4
oL
STORE
I

(b) 4-bit word using MSI.

74175 (TTL)
74C175 (CMOS)

[eTI-T]

Oo=——dD2 Q2
WORD / 0——03 03‘: WORD
IN

D4 Q4 ouT

DS @5

D6 06
cL

STORE
iy
(c) 6-bit word.

4034 (CMOS)
4508 (CMOS)

WORD / o—ap WORD
IN o (OUT

Ol CL

l

(d) 8-bit word,

13

previous block that's giving
you inputs takes 900
nanoseconds or so to get
around to giving you a valid
output after Jts inputs
change. This only gives you
100 nanoseconds or so of
valid data and may change
with temperature or supply
voltage. Add a storage latch
and you can catch this output
and hold it for the entire next
microsecond. The output
data will always be one
microsecond late, but it will
always be valid and always be
locked to your system timing.
A word storage latch of this
type may be needed between
the memory and the
character generator of a TV
typewriter if very long line
lengths are in use.

Shift Registers

We can cascade a stack of
type D flip flops so that they
pass on their contents one
stage to the right each
clocking. This is called a shift
register, and Fig. 4 shows
several examples.

In Fig. 4(a), we've built a
four stage register out of type
D flip flops. Each clocking
passes data one stage to the
right. In Fig. 4(b), we've
added some enter-recirculate
logic to let us either send the
data round and round or else
change selected bits at once.
We can make the register any

length we like by adding
extra internal storage flip
flops.

A shift register is the digital
equivalent of a ““delay line” -
- your bits go in now and
come out later. An “electronic
disk memory"’ is an ex-
tremely large memory

made out of long shift
registers - and is programmed
by the computer almost
exactly like an old-fashioned
fixed head magnetic disk.

14

in Fig. 4(c), we use a MSI
integrated circuit arranged as
an 8-bit parallel-in-serial-out
shift register. Shift registers
are useful to convert dot
matrix dots to serial videco in
a TVT; they are also handy
for converting data from
parallel to serial form. Fig.
4{d) is the opposite; this is a
serial-in-parallel-out shift
register uscful to convert
serial data into parallel form.
Finally, Fig. 4(c) shows us a
1024-bit serial-in-serial-out
register, useful for storing
bulk data. Use scveral of
these side by side if larger
words are to be stored. For
instance, to store 1024 ASCII
characters, six of these could
be used side by side. They
can also be cascaded end to
end for 1024, 2048, 4096
and more bits per word.

There are lots of long MOS
shift registers available. Other
popular bil arrangements
include the hex 32-bit and
hex 40-bit shift registers, the
2518 and 2519. On the
surface, shift registers would

appear to be ideal for
character and program
storage in TV lypewriter
circuits. One of the earliest
TVTs (see September 73
Radio Electronics) made

extensive use of shift register
storage, and similar registers
are still used in many
premium computer terminals.

Today, we usually have a
far better approach to data
storage in the static random
access memories of the next
section. While these long shift
registers were the first truly
low cost semiconductor
storage and are still useful for
certain applications, they do
have problems and the RAM
techniques are often better.

Many of the early shift
registers were dynamic
devices in which you had to
keep the data moving above
some critical rate. Most early
clocking circuits required a
waveform that had to come
from a fast, high current,
noisy clock driver, swinging
17 volts or more with very
strict pulsewidth and spacing

Fig. 4. Some shift register memories. Modern RAM memory devices
tend to make shift registers obsolete except for special applications.

4013 (CMOS)
pata No—p oo o—o oo ¢ outa
¢ a) ¢ a ca
CLOCK
(a) Four stage using type D flip flops.
+ =RECIRCULATE
,7|7=ENTER TCLOCK
cL
SHIFT
REGISTER
IN ouT 0
DATA IN
4011 (CMOS)
(b) Recirculate logic.
LOAD /SHIFT
CONTROL 4021 (CMOS)
CLOCK O 74165(TTL)
CL LOAD
SERIAL INPUT O—>IN —-OO0OUTPUT
abcdefgh

T Ty

(c) Paralle!l in, serial out, 8-bit.

PARALLEL
OUTPUTS

SERIAL

INPUT O—"IN

CLR

HEEH

h

CLEAR
INPUT

4015 (CMOS)
74164 (TTL)

(d) Serial in, parallel out, 1024-bit.

CLOCK O——n——

2533 (PMOS)

REClRCULATEo———‘—’—'_]
SERIAL INPUTO———O\i_ cL 1024
IN STAGES 0UT;—-(? SERIAL QUTPUT
———0 |
L ExTernALoumPER _ _ |

(e) Serial in, serial out, 1024-bit.

Set-reset flip flops are
asynchronous—in systems
where outputs affect
inputs, use of an SR latch
can send you off to the
races—an uncontrolled

oscillation.

restrictions and any pulse
overshoot strictly forbidden.
Some earlier multiplexed
shift registers, particularly the
1402, 1403 and 1404
exhibited selective dropouts
called bit pattern sensitivity
that would change data if the
particular 1IC didn’t happen Lo
like the combination of
clocking waveforms, supply
voltage, temperature and
internal data that it happened
to have on hand.

Newer static N channel
shift registers have eliminated
most of these problems, but
they still have one key
drawback: This is simply that
you can't immediately get at
the data you want. The
memory must be clocked
around once and exactly once
to get back any bit. All the
other bits are usually between
you and the bit you are after.
With the RAMs of the next
section you can selectively
pick off any bit at any time,
rather than waiting till it
comes around. More
importantly, you can be
extremely sloppy about your
timing and addressing
between the times you are
actually using the data, and
the RAM doesn’t care. With a
shift register, one missed
timing pulse is a disaster.
Additional limitations of shift
registers as bulk storage
devices are that they often
cost more at system levels
than do RAMs and that they
are not directly
microprocessor compatible.

A bitis a bit. A word is
“n” bits contemplated
simultaneously.

Two arcas where we can
continue to see shift registers
as important TVT and
microprocessor parts are in
First In First Out or FIFO
buffer memories such as the
Fairchild 3341 (64 x 4) and
the 33512 (40 x 9) and
similar devices by AMI and
Western Digital, and in the
newly emerging charge
coupled device bulk storage
systems such as the Fairchild
CCD450 (1024 x 9) and
CCD460 (128 x 32 x 4)
devices. A FIFO gives us a
way to interface two systems
having different data rates,
while the CCD devices
promise to eventually provide
very low cost and dense bulk
storage.

Random Access Memory
(RAM)

A random access memory
or RAM differs from a shift
register in that we can get to
any memory location any
time we want. If we like, we
can address our RAM shift
register style, working with
the storage cells in sequential
order. But we don’t have to —
we can get at any cell at any
time in any order.

To do this, some external
binary address lines are
routed to internal decoder
and selector circuits. When a
memory cell is addressed, it is
available either for reading as
an output or for writing new
information into it. Most
RAMs tend to be only a
single bit wide to save on
package pins, but 4- and 8-bit
words are sometimes offered.

There are lots of RAMs
available. Bipolar types using
TTL technology are usually
fast and expensive. They
generally provide less dense

storage and fewer bits per
package. Two examples are
the 7489 arranged as 16
words of four bits each and
the 74200 arranged as 256 x
1, or 256 words of one bit
per word. Both cycle in under
50 nanoseconds.

MOS memories using
PMOS, NMOS and CMOS are
also widely available. These
are often slower and cheaper
per bit. They usually offer
more bits per package, with

up to 4096 bits being
common and 16384 just
being talked about at this
writing. Two early and

essentially obsolete examples
of MOS memory were the
1101 that was a fully static
256 x 1 device and the 1103
that was a dynamic RAM
organized 1024 x 1 that
singlehandedly toppled “king
core’”’ from the computer
world. The early 1101s ran
extremely hot with weird
supply voltages, while the
early 1103s had incredibly
complex clocking, refresh,
and timing restrictions,
besides being bit pattern
sensitive.

the best all around choice for
TVT character storage and
most smaller microcomputer
memory tasks as well. The
2102 is arranged as 1024 x 1.
It is N channel MOS and
works on a single +5 volt
supply and is fully
compatible with TTL and
CMOS logic on all pins. It is
fully static, needing no
clocks, refresh, charge pumps,
memory busy interlocks,
sense amplifiers, or similar
garbage. Economy versions of
the 2102 cycle in one
microsecond, while premium
jobs are available with 200
nanoseconds or less cycle
time. Even the slowest 2102s
are usually more than
adequate for TVT use,
although a bit slow for the
newer microprocessors.

Best of all, at this writing,
2102s cost under $5 in singles
and as low as $2 in large
quantities. While designed by
Intel, sources today include

just about everybody —
TI, Intersil, AMD, National,
Signetics, Fairchild and
Synertek.

Fig. 5 shows us the

Fig. 5. The 2102 is the ideal RAM for many TVT and microcomputer

uses.

2102 (NMOS)

[

DATA INO————

90— ———
B O————

ADDRESS © "1
SELECT 60—
LINES 50— .l
40— &
30—
20—+

| 00—

1024 X |
RAM

——ODATA OUT

WRITE O© I —LOW WRITES; HIGH READS

-—LOW ACTIVATES IC

ENABLE ©

After several generations
of much improved MOS
memories, a device called the
2102 arrived and dropped
enough in price to often be

connections to a 2102
memory. We see a data input
pin, a data output pin, 10
address lines, a write line, and
an enable line. The data in

15

and data out lines are the
same sense, meaning that a
“1” input is stored as a ‘1"
and appears as a “1” at the
output. Our 10 address lines
select one of the 1024 storage
cells by providing binary
addresses ranging from
00000-00000, 00000-00001
... through 11111-11110 and

11111-11111. We can mix up
input address lines any way
we want so long as all
packages and all input address
timing circuits agree on what
address combination goes
with what storage cell.
Jumbling the memory address
inputs sometimes helps the
circuit layout and makes such
things as efficient BCD
(Binary Coded Decimal)
rather than binary addressing
feasible.

Our chip enable controls
whether the memory will do
anything. If the chip enable is

high, the data out line
assumes a floating, high
impedance, tri-state mode,

and the write input logic is
disabled. If the chip enable is
low, the IC operates
normally. Chip enable should
stay grounded except in very
special uses. The memory will
read if the write input is high
and will write if the write

input is low.
There is one important
timing restriction on the

write input — input addresses
must be stable when the write
input is low. To write into
memory, apply input data
and an input address. After
the inputs are stable, bring
the write input low for at
least the minimum write
time. This time varies from
100 to 700 nanoseconds
depending upon the device.
Then release the write input,
letting it go high before you

Even the slowest 2101s are
usually more than adequate
for TVT use — although a bit
slow for the newer
microprocessors.

16

1IN l— 1 out
2102
FIG 3-18A
CIRCUIT
2 2102f |4 2out ADD W CE
P/ ¢
I'IN FIG 3-18A 1 ouT
3N 03 ouT 2IN CIRCUIT 20Ut
2102:< 3IN ADD W CE 30UT
41N 1V 40uT
4N 04 0UT 5 IN FIG 3-18A 5 0UT
21021 |4 6 IN CIRCUIT 6 OUT
—9 7N ADD W CE 7 OUT
— 8IN 1 ¢ 8 ouUT
51N 2102 50uT FIG 3-18A
—H CIRCUIT
— ADD W CE
6 IN f <6 0UT
2102 |4
9
] ONE LOW
TIN 2102|707 OF FOUR
- DECODER
81N ——o80uT
2102 012345678910 WRITE

0123456789 | WRITE
ADDRESS
ENABLE

(a) 1024 x 8 character store
memory.

ADDRESS

(b) 4096 x 8 microcomputer
memory.

Fig. 6. Larger 2102 memories are created by repeating the same circuit

over and over.

change the address inputs or
the data inputs. If you try to
change addresses during the
write process, certain
memory locations may get
“flashed” by in the address
decoding and could lose or
alter data. Incidentally this
write-only-when-stable rule
applies not only to 2102s — it

should be observed with
practically all RAM circuits.
For normal 2102 read
operation, make the write
input high and the chip
enable /ow.

Fig. 6 shows how we build
a 1024 x 8 memory good for
TVT character storage. Eight
2102s are simply put on the
same PC card with their
write, address and enable
lines in parallel, the latter
usually grounded. All inputs
and outputs go to Separate
pins, and this way we can
read or write 8-bit words. In
Fig. 6(b), we've combined
this circuit four times over to
get a 4096 x 8 static memory
suitable for a microprocessor
main memory and big enough
to hold a small compiler for
an elementary higher level
language. Two new address
lines are one-of-four decoded

and routed to the chip selects
of cach quarter of the
memory. One chip select is
made low and the other three
remain high, and the tri-state
outputs are shorted together
as shown. A total of 32 ICs is
needed.

When building either type
of memory card, lots of 0.1
microfarad bypassing
capacitors are recommended,
along with wide supply and

ground runs. PC layout is
usually simplest with a
double sided board and

through-the-pins lead routing.
Use plated through boards
and keep the through-the-pins
routing on the component
side if possible.

Reorganized 2102s
Sometimes shorter words
of more bits per word may be
desirable. For these
applications, some
manufacturers have reworked
the 2102 into different
organizations including 128
8-bit words and 256 4-bit
words. The Motorola and
AMI 6810 are typical 128 x 8
units in a 24-pin package. The
Signetics 2606 is a 256 x 4
version in a 16-pin package.

Since there aren't enough
pins to go around, the 2606
shares common input and
output lines and must be used
with a bidirectional data bus
system. The Intel 2101 is a
22-pin version of the same
thing with separate input and
output pins, while the 2111 is
an 18-pin memory that needs
a bidirectional input/output
system. At this writing, costs
of these devices are
considerably higher than
conventional 2102s and are
likely to stay that way since
they have larger packages and
less availability. Nevertheless,
they often save you enough
packages to be worthwhile in
smaller systems. Having only
8 address bits makes the 256
Xx 4 memories directly
compatible with 8-bit
microprocessors as well.

Micropower Static RAMs

We can also build CMOS
random access memories
similar to the 2102. CMOS
has one major advantage —
its standby power necded
when the memory is not
cycling is almost zero. This
makes CMOS memories ideal
for ‘“non-volatile” storage
where a small battery can fill
in for extremely long term
data holding, as well as safcly
handling routine power
outages. CMOS memory cells
tend to be physically larger
than NMQS ones and more

process steps are often
involved. So, CMOS
memories will probably
remain a more expensive

route, but a very attractive
one where micropower
memory is essential. Obvious

applications include
electronic checkbooks and
remote data acquisition
systems.

Typical devices are the
64-bit Motorola 4505;

256-bit devices including the
RCA 4061, Intersil 6523, and
Motorola 4532 (the latter is
arranged 64 x 4); 512-bit
versions including the Nortec
and AMI $§2222, and the Intel
5105, arranged as 1024 x 1.

Dynamic RAMs

A static RAM takes a full
memory cell for data storage.
We can get by with nothing
but a capacitor as a storage
device if we are willing to
reshuffle, move around, or
refresh the stored data more
or less continuously. This is
the principle behind the
dynamic RAM. In exchange
for cheap and dense storage,
system level restrictions in
the way of memory busy
times, refresh cycles, clock
lines, and clocking
restrictions are needed, often
combined with analog output
sense amplifiers.
Traditionally, any particular
size RAM starts out as an
impossible to use dynamic
device, upgrades itself into a
very difficult to use
‘‘quasi-static’’ device, and
then gets replaced with a
static no-hassle IC the third

time around.
Because of this, dynamic

RAMs should be avoided
entirely for all TVT and
microcomputer usage. While
there are a wide variety of yet
unstandardized 4096 x 1
dynamic RAMs on the
market, including the
Electronic Arrays 1504, Intel
2107, Standard Microsystems
4412, Tl 4030, Mostek 4096,
and the Motorola 6605, they
presently cost much more
than the equivalent storage
using 2102s and are harder to
get and harder to use. They
do have the potential
advantage of reducing
package count 4:1 in very
large memory systems where
the 4096 x 1 format can be
used, and are ideal for larger
computer memories.

Bus Organization

Any memory system has
input data lines, output data
lines, and address data lines.
It’s usually simplest to keep
these lines completely
separate, for this way there
are no timing commands
needed to separate input,
address and output signals,
and no times can occur when
one would interfere with the

Traditionally, any particular size RAM starts out as an
impossible to use dynamic device, upgrades itself into a
difficult to use ““quasi-static’’ device, and then gets
replaced with a static no-hassle IC the third time around.
Home brew computer people for the most part have to
wait for the third stage or have a talent for wrestling with
difficult hardware problems. At this writing, 1Tk memories
are in stage 3, 4k memories are in stage 2, and 16k
memories are at the beginning of stage 1.

other. This is called an
isolated bus or separate 1/O
system.

Many microcomputers
instead use bidirectional data
bus arrangements to save on
pins and interconnections.
The data bus just sits there. If
something wants to transmit,
its tri-state output is enabled.
If something wants to receive,
its input is enabled. The
signals can go either way on
the bus, but system timing
has to make certain that only
one source is transmitting and
only the receivers for that
source are responding to the
transmitted information.

We can convert an isolated
bus system into a

Fig. 7. Connecting a memory subsystem to a bidirectional input output

bidirectional bus system using
bus transceiver integrated
circuits as shown in Fig. 7.
Transceivers are built into the
2606 and 2111 (they don’t
have enough pins to do
otherwise), and may be
externally added to regular
2102 type memories. In the
case of a TV typewriter, it’s
usually desirable to keep the
display and its memory
source (either its own or the
memory of a microcomputer)
connected together; this
eliminates dropouts when the
bus is going downstream.
Thus, the display electronics
is best placed between the
memory read outputs and the
bus transceiver.

bus is required in most microcomputer applications.

DATA—»

ADDRESS

i

DATA—»

Address lines can also
share the same data bus as the
input and output data lines,
but this leads to extremely
difficult timing, particularly
in 8-bit systems. More often,
the address bus will remain
separate but will be able to
accept address
commands from several
sources. These sources could
include the TV typewriter’s
live scan timing, a cursor
address for update during
retrace, and an optional
external dominant
microcomputer control for
rapid and wholesale screen
changes.

MEMORY

IS

1 L

[

7] [V v

ot 9]

DIRECTION
CONTROL

e

12345678
BIDIRECTIONAL 170 BUS

QUAD BUS TRANSCEIVERS 3440,26510,26511,8838,ETC.
NON-INVERTING TYPES ARE ALSO AVAILABLE, SUCH AS THE 8833,ETC.

17

~3

BILL GODBOUT ELECTRONICS
BOX 2355, OAKLAND AIRPORT, CA 94614

N i c Y E DR E N B B '(J.‘r
@@@ﬂﬂ 18 BT SOHFPDYTARRB T
o.\o s0e -‘. oo T soe 0 eeey sses r
HAH B &8 5 = H N Hn H 1 \H
HYH . Tt s M g B8 H
JJ e9 . o, a& xx . aa :
THIS AD IS BEING PREPARED IN MID-AUGUST, SO WE DON'T HAVE ALL THE DETAILS NAILED DOWN
'/;——ill YET. HOWEVER, WE'VE HAD THE SYSTEM UP AND RUNNING FOR A COUPLE OF MONTHS NOW; IT'S
R SITTING INBERKELEY, EXECUTING INSTRUCTIONS AND WAITING FOR ITS CASING AND FRONT PANEL.
§====:§ OurR TARGET PRICE FOR THE KIT? UNDER $600---AND THIS INCLUDES AUDIO CASSETTE 1/0, BIT-
SERIAL INTERFACE FOR TELETYPE, EDITOR AND ASSEMBLER, 1K x 16 INTEGRAL RAM, AS WELL As —
THE KEYBOARD, READOUTS, PANEL, POWER SUPPLY, AND MORE. FINAL BIDS ON SHEET METAL WORK R"
AND THE LIKE ARE DUE IN ANY DAY NOW; AND WE'VE JUST ABOUT DECIDED ON A NAME---SO DON'T g\
SEND IN ANY MORE SUGGESTIONS! THANKS TO ALL OF YOU WHO TOOK THE TIME TO ENTER OUR ;\/
CONTEST, BY THE TIME THIS AD HITS THE NEWSSTAND, WE'LL HAVE A SYSTEM DATA PACKAGE AVAIL- ,d
ABLE AT SOME NOMINAL CcOST. WE'LL KEEP YOU POSTED; THANK YOU FOR YOUR INTEREST AND SUG- f=//
GESTIONS,

IRTECRATED CIRCUITS

DM8097 $1,20 TRI-STATE HEX BUFFER
DM8131 $2.50 6 BIT UNIFIED BUS COMPARATOR WITH HI # INPUTS AND HYSTERESIS

DM8544 $0.90 QUAD TRI-STATE SWITCH DEBOUNCER CAVE
DM8833 $1.90 QUAD TRI-STATE TRANSCEIVER WITH HYSTERESIS Irank o

DM8837 $1.85 HEX UNIFIED BUS RECEIVER WITH HYSTERESIS
DS0026 $3.00 DUAL CLOCK DRIVER
DS3608 $3.00 HEX TRI-STATE MOS TO TTL CONVERTER WITH PROGRAMMABLE INPUT CURRENT

8008 $17.95 POPULAR 8 BIT MICROPROCESSOR---IDEAL FOR PERIPHERAL CONTROL AT A BELIEVEABLE PRICE
5204 $24.50 SIMILAR TO 5203 (SEE BELOW), BUT 4K BITS WORTH OF EROM
SPECIAL! ORDERS POSTMARKED BEFORE NOVEMBER 30: 5203 2K EROM: ORGANIZE AS A 4X512 or 8X256
BIT MEMORY. FULLY PROGRAMMABLE AND ERASEABLE, COMPLETELY STATIC AND NON-VOLATILE, $9,95!
ANOTHER SPECIAL! 8 BIT MICROCOMPUTER CHIP SET: 1-8008, 8-2102s (1K STATIC RAMS) FOR $32.50

N ,
D&
%&
)5 g oY) 3) NBORO

17 Conductor, color-coded; wire width spaced for low
interlead capacitance.

3

& 15
o

oMISC.o

a
5 VOLT, 1 AMP POWER SUPPLY USES A
Téo TO-3 REGULATOR FOR A STABLE, SHORT-
> PROOF 5 VOLTS. LESS CASE, HARDWARE.
(G) Gold plated contacts (T) Bright tin ~ ------ $7.95 + 2 LBS. SHIPPING------
This is a flat, multiconductor wire, W pin T...11/51.95 14 pin G..10/51.95 2" PERMANENT MAGNET SPEAKER - IDEAL
available in multiples of 10 conduc- 16 pin G..10/$3.75 24 pin T...5/$1.95 FOR ACOUSTIC COUPLERS AND OTHER AP-
tors up to 100 conductors. Comes in 28 pin T...5/§1.95 A0 pin T...5/$2.95 PLICATIONS. THREE FOR $2.50 + 1 LB.

. LOW PROFILE SOCKETS:
20 ft. lengths only. Cost is l¢ per i . i 4000 UF, 20V MALLORY CAPACITOR FOR
conductor foot; for example, a 20 16 pin G..10/$1.95; 40 pin 6..5/$2.95 A

LOGIC POWER SUPPLIES, 0. EACH.
conductor cable 20 ft. long = $4.00 - $0.95

1888 8.8 .8.8.8.0.0.8.0 8.8 0 1 B @ @ |§ $ _95 1 0.8.0.0.2.0.0.0.0.8 6.8 .0.9.¢ 1

plus shpg

YELECTRONIC PROJECTS FOR MUSICIANS is a new book, written by my friend Craig Anderton, which | heartily endorse for all
electronic and musical types. The first four chapters tell how to identify and obtain parts, select and care for tools,
and apply basic constructlon technlques; in short, an introduction to basic electronics a 13 Radio Amateur's Handbook.
Chapter 5 contains 19 projects for musical/audio applications, and the book concludes with sections on troubleshooting
and where to find more information.

"] pelieve the book to be of equal interest to the neophyte and to more experienced electronic types., For the neophyte
with musical know how the book provides a very understandable, practical, and readable insight into the world of elec-
tronics---which can do so much to extend his or her capability. For those already versed in electronics this book opens
the door to the world of musical and electronic effects. |'m very enthused about the book and have enjoyed reading por-
tions of it during its creation; | believe it's an ideal primer for anyone interested in music/electronics regardless of
their age or experience," .

---Bill Godbout

Includes a bound in Soundsheet recording that demonstrates the sounds of the book's projects. Forward by Joe Walsh.

http:10/$3.75
http:11/$1.95

GET YOUR MITTS @@'@UU[(
ON 4 GODBOUT o B S22 S

CPP99@

© TRI-STATE BUFFERED OUT DRIVES 20 TTL LOADS FOR GOOD L". b Add $25 and
© BUS DRIVE. LOW NOISE SUSCEPTIBILITY. EXTEND FEATURE, {) 6 Z we' 11 program.
© MEMORY PROTECT, ON BOARD VOLTAGE REGULATION. PRESENTS
Add $15 and
N 1ND¥:I:égLYoQUU'AvLEITcYOMSO}T\gDéx':écTWEFLRLOMASUEHFERggUE?s?ICE 2“}{ X ‘ S]l 25 we'll program.
22 pc‘ POWER EROM BODARDS. FAST---1 MICROSECOND, 1 WAIT.
109 * y c FULL 4K NEEDS 5V & LESS THAN .5A AND ~12V @ LE?S
° _— 6 blt Z:G:TIOO MA; BOARD RUNS COOL, POWER SUPPLY DOESN'T
NO RASSLE, NO HASSLE, (ALSO ELECTRICALLY COMPATIBLE WITH OTHER 8 BIT MACHINES---RGS 008A, MARK VII, ETC)
FROM NATIONAL SEMICONDUCTOR, FORMERLY THE “SECRET MICROCOMPUTER COMPANY”:
16 BIT REAL PARALLEL MICROPROCESSOR., 40 PIN DIP--CAPABILITY FOR 45 CLASSES

OOOOOOOOOOOOOOOGOOOOOOOOOOOOOOOOOO
O 1 LPTTL LOAD TO ALTAIR AND OTHER BUSSES. PLATED-THRU
rlrlriririririririrlelelrirlelelrlrlrir e lrlrlrir Irlr o Jr lr Tr 1o 1P 16)
PUT YOUR EDITOR/ASSEMBLER OR WHATEVER IN THESE LOW
ALTAIR 8800 ONNERS, PLEASE TAKE NOTE: THE ABOVE MEMORY BOARDS ARE DIRECTLY PLUG-IN COMPATIBLE! KO JUMPERS,
4%%%%%%%%%%%%%%%%%%%
PR°°ESS'NG OF INSTRUCTIONS AND UP TO 337 INSTRUCTIONS. A POWERFUL uP --- AND IN STOCK!

A INTERFACE CHIPS SUPPLIED SO THAT EVERYTHING IS TTL COMPATIBLE,
NOW AVAILABLE: "PACE DATA PACKET''. FOR $2.50 (TO COVER PRINTING AND POST-
AGE; REFUNDABLE WITH PACE ORDER) YOU GET MANY PAGES OF DETAILED AND SPEC!-
FIC INFORMATION ON THE CHIP ITSELF, SYSTEM ORGANIZATION, SOFTWARE, ETC. NOT
OHROL JUST A DATA SHEET---A COMPLETE PACE REFERENCE PACKAGE. AN EXPERIENCED COM-

PUTER BUILDER COULD BUILD A COMPLETE SYSTEM FROM INFORMATION PROVIDED IN
THIS PACE PACKET ALONE.

OEMS PLEASE NOTE: NATIONAL IS COOPERATING WITH US SO THAT SCHOOLS, HOBBYISTS,

AND EXPERIMENTERS CAN HAVE EASY ACCESS TO THIS POWERFUL NEW 16 B1T MICROPRO-
s‘zs CESSOR FOR IMMEDIATE EVALUATION, PROTOTYPING, AND EXPERIMENTING. HOWEVER, WE

ARE NOT EQUIPPED TO HANDLE OEM ORDERS: OEMS SHOULD CONTACT THEIR LOCAL NATION-
AL DISTRIBUTOR OR NATIONAL SALES OFFICE. THANK YOU!

OUR PACE CHIPS ARE FULLY FUNCTIONAL WITH RELAXED ENVIRONMENTAL AND ELECTRICAL PARAMETERS.

WE’RE CON=
TINUIN®G OUR

2" ANNUVE@@AE’N REWEES
MICROPROCESSOR POWER SUPPLY
g@ E@ Foldback current limiting; [l I2v 2A
power up clear signal.
Thought you might like

D02 1k STATIE RAM RN ke
S[.96 wx *12v, 2

DISCOUNTS: BUY 100, TAKE 20% - BUY 1000, TAKE 30%

TERMS: ADD 50¢ TO ORDERS UNDER 5$10; ADD SHIPPING AS SHOWN. CALIFORNIANS ADD TAX. SORRY, NO COD.

TO PLACE YOUR MASTERCHARGE ®/ BANKAMERICARD® QRDERS, CALL OUR 24 HOUR ORDER LINE: (415) 357-7007.

Computers Are

RIDICULOUSLY

SIMPLE!

Did you just get hooked? Has the first reaction of

bewilderment and perplexity set in as y ou begin to explore the
ins and outs of computing? Nat Wadsworth of SCELBI
Computer Consulting — makers of an Intel 8008 based
packaged microcomputer system — provides us with this
article on fundamentals of computer operation. The article is
written with the Intel 8008 in mind as an example of a ty pical
computer, but the principles involved apply to nearly any

microcomputer you can find on the market. The material of

this article is taken from the first chapter of author
Wadsworth’s SCELBI-8H/B User’s Manual, one of the best
documentation support packages among the various kit

manufacturers.

by

Nat Wadsworth

SCELBI Computer Consulting Inc.
1322 Rear, Boston Post Road
Milford CT 06460

20

There have been numerous
examples put forth over the
years to illustrate the basic
scheme behind the operation
of computers. The scheme is
deceptively simple and
incredibly powerful. The
power comes from the speed
with which the machines can
perform the simple
operations. The fundamental
concept of the computer is
that it is a machine that is
capable of doing two
fundamental operations at
very high speed: First it is
able to obtain a piece of
information from a storage
area and perform a function
as directed by the
information it obtains; and
secondly, based on its current
status, it is able to ascertain
where to obtain the next

piece of information that will
give it further ‘‘directions.”
This fundamental concept is
the key to the operation of
all digital computers and
while it is a simple concept, it
can be built upon to arrive at
all the complex operations
computers of today can
perform. How this is done is
what this article is about,

One of the best analogies
for describing a computer’s
basic operations is to consider
a bank of boxes, similar to a
bank of Post Office mail
boxes. A piece of paper
containing ‘‘directions’’ can
be placed in each box. A
person is directed to go to the
bank of boxes, and after
starting at a given place, to
open each box, withdraw the
piece of paper and follow the

directions there-on. The
boxes are labeled in an
orderly fashion, and the
person is also told that unless
a piece of paper in a box
directs otherwise, when the
person is finished performing
the task directed, they are to
replace the paper in the box
and proceed to open the next
box. Note, however, that a
piece of paper may give
directions to alter the
sequence in which the person
is to open boxes.

Fig. 1 shows a picture of a
set of such boxes. Each box is
labeled for identification.

To present a view of a
computer’s operation, assume
a person has been told to
start at box A1l and to follow
the directions contained on
the pieces of paper in the
boxes until a piece of paper
containing the direction
“stop’’ is found in one of the
boxes. In this example the
person finds the following
“Instructions”:

In box A1l is the message:
“Take the mathematical value
of 1 and write it down on a
scratch pad.”’

Since the “instruction” in
box A1 only pertained to
some function that the
person was to perform, and
did not direct the person to
go to some specific box, then
the person will simply go on
to the next box in the row.

Box A2
information:

“Add the number 2 to any
value already present on your
scratch pad.”’

The person will at this
point perform an addition
and have a total
“accumulated” value on the
pad of scratch paper. The
accumulated value would be
3. Since there are no other
directions in box A2, the
operator would continue on
to open box A3 which has
the following message:

“Place any accumulated
mathematical value you have
on your scratch pad into box
H8."”

Thus the person would
tear the current sheet off the
“scratch pad” and place it —
containing the value “3” —
into box H8. Note, though,
that while the person was
directed to place the
accumulated value on the
scratch pad into box HS, the
person was not directed to
alter the sequence in which to
obtain new “instructions” so
the person would proceed to
open box A4 which contains
the directive:

“Take the mathematical
value of 6 and place it on
your scratch pad.”’

Going on to box AS the
person finds:

“Add 3 to the present
value on your scratch pad.”

This is obviously just a
“data word.” The operator
adds the value 6 from the
previous box to the number
3, noting the calculation on
the scratch pad and proceeds
to open box A6:

“Place any accumulated
value you have on your
scratch pad into box H7.”

The person thus would put
the value “9” on a piece of
paper (from the scratch pad)
into the designated box and
proceed to open box A7:

“Get the value presently
stored in box H8 and save the
value on your scratch pad.”

This is a simple operation
and the person proceeds to
open up box AS8:

contains the

“Fetch the value in box
H7. Subtract the value of
your scratch pad from the
value found in box H7. Leave
the result on your scratch
pad.”

When the operator has
performed this operation, the
operator will have finished
the “A” row and will then
continue obtaining
“instructions” by going to
the “B” row and opening box
B1 where more directions are
found:

“If the present value on
your scratch pad is not zero
go to box B3.”

At this time if the person
checks the scratch pad it will
be found that the value on
the scratch pad is indeed
non-zero as the last
calculation performed on the
scratch pad was to subtract
the value in box H8 from the
value in box H7. In this
example that would be:

9-3=6
Therefore the directions in
box B1 for this particular
case will tell the operator to
“jump over” box B2 and go
to box B3. For the sake of
completeness, however, box
B2 does contain an
instruction, for had the value
on the scratch pad been zero

the operator would not have
“jumped over” box B2 and
would have found the
following message inside box
B2:

“The values in box H7 and
H8 are of equal value.
STOP!™

However, for the values
used in this example, the
person would have “jumped”
to box B3 where the
following directive would be
found:

“If the present value on
your scratch pad is a
“negative number” jump to
box B5."”

Since this is not currently
the case the person will not
“JUMP” to box BS5, but will
simply continue to open box
B4 which contains:

“The value in box H7 is
larger than the value in box
H8. STOP!”

At this point the person
has completed the
“instruction sequence'’ for
this example. [t should be
noted, however, that box B5
did contain the message:

“The value in box H7 is
smaller than the value in box
HS8. STOP!”

This little example of a
person opening up boxes and
following the directions

The basic scheme behind

the operation of computers

is deceptively simple and
incredibly powerful.

One of the best analogies

for describing a computer’s

basic operations is to con-
sider a bank of boxes,
similar to a bank of Post
Office mail boxes . ..

A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8
B1 | B2 |B3 B4 |B5 |B6 | B7 | BS
Cl |C2|C3|C4|C5]|C6|CT|C8
D1 | D2 |D3 | D4 | D5 |D6 | D7 | D8
E1 | E2 |E3 |E4 |E5 |E6 | E7 | ES8
F1 | F2 |F3 | F4 |F5 |F6 | F7 | F8
Gl | G2 |G3 |G4 |G5 |G6 | GT | GS8
H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8

Fig. 1. A set of Post Office pigeon holes containing messages.

21

Fig. 2(a). The computer structure compared to the Post Office pigeon

holes.

Al [A2 | A3 [A4 | AS | AG [A7 | A8

B1 | B2 | B3 |BY [B5|B6|B7 |BS8

Cl|C2)C3 |Cd [C5]|C6)CT|CB

D1 | D2| D3 |D4 ;DS |D6|D7|D8

POST OFFICE BOXES = MEMORY

E1 | E2 | E3 |E4 |E5 | E6 | E7 | E8

Ft | F2 | F3 | F4 | F5 | F6 | F7 | F8

Gl | G2 | G3 (G4 |G5 |G6 | GT | G8

Ht | H2 | H3 | H4 | H5 | H6 | H7 | H8
CENTRAL

PERSON = PROCESSING
UNIT
PAD & PENCIL = ACCUMULATOR

contained in each one is very
similar to the concept used
by a computer. Note that
each “instruction” is very
short and specific. Also note
that the combination of all
the instructions in the
example will result in the
person being directed to solve
the problem:

Is 1 + X greater than, less
than, or equal to: 6 + Y?
For the reader can note, if
the ‘‘data words’’ contained
in boxes A2 and A5 for the
example were changed, the

22

sequence of ‘‘instructions”
would still result in the
person being told to “STOP”
at the box that contained the
correct answer. The reader
can verify this by simply
assuming that different
numbers than those used in
the example are in boxes A2
and A5 and going through the

instruction sequence until
told to “STOP.”
The example illustrates

how a carefully planned set
of directions, arranged such
that they are performed in a

precise sequence, can be used
to solve a problem even
though the “variables” (data)
in the problem may vary.
Such a set of “instructions’ is
often termed an ‘“‘algorithm”
by those in the computer
field. The example solved a
mathematical problem using
the ‘“‘algorithm,” but the
reader will find that
“algorithms™ can be devised
to solve many problems on a
computer that are not strictly
mathematical!

Any person learning a new
skill must of necessity learn
the vocabulary of the field in
order to proceed to any great
extent. You might think that
it would be easier if
everything was
plain everyday words, but the
truth of the matter is that
specialized vocabularies do

serve several useful
functions. For one thing,
they can greatly shorten the
time that it takes to
communicate ideas or
concepts. In today's

fast-moving world, that is of
significance in itself. In
addition, the limitations of
the English language often
result in a given word having
a special meaning when it is
used in the context of a
particular subject. One must
know the new meaning when
it is used in such a manner.
Fortunately, much of the
computer vocabulary is very
logically named. This s
probably due partly to the
fact that computers are of
necessity extremely
dependent on logic, and
hence many persons who
helped create the field — and
by that fact were rather
logically oriented themselves
— seem to have had the
logical sense to have named
many of the parts and
systems of computers and
computer programs, in a
logical manner.

In the text which follows,
two diagrams, Figs. 2{(a) and
2(b), are used to demonstrate
the analogy between the
person taking ‘“‘instructions”

written in’

from a group of mail boxes
and the basic operation of a
real minicomputer.

Fig. 2(a) shows the Post
Office boxes, a figure
representation of a person
who is able to “fetch” and
return the “instructions” or
“data” from and to the
boxes, and a ‘‘scratch pad”
on which the person can
make temporary calculations
when directed to do so.

In Fig. 2(b) are threc
interconnected boxes which
form a “block diagram” of a

computer. The uppermost
portion of the ‘“block
diagram” is labeled the
“memory.’”” The middle

portion is labeled the “central
processor unit’’ or “CPU” for
short. The lower part of the
diagram depicts an
“accumulator.”

The correlation between
the two pictures is extremely
simple. The ‘“Post Office
boxes” correspond to the
“memory”’ portion of a real
computer. The “memory” is
a storage place, a location
where instructions and data
can be stored for long lengths
of time. The “memory” can
be “accessed.” “Instructions”’
and/or “data” can be taken
out of memory, operated on,
and replaced. New “data’’ can
be put into the “memory.”” A
“memory "’ that can be “‘read
from” as well as “‘written
into”” is called a “read and
write memory.” A ‘‘read and
write memory” is often
referred to as 2 “RAM” as an
abbreviation. Many times it is
feasible to have a “mcmory”
that is only ‘“read from.” A

memory that is never
“written into,” but is only
used to ‘“‘read from,” s
termed a ‘‘read only

memory”’ and is abbreviated
as a ““ROM."” For the present
discussion the term
“memory” will refer to a
“read and write memory”
(“RAM”).

The figure of a person in
Fig. 2(a) corresponds to the
central processor unit in Fig.
2(b). The central processor

unit in a computer is the
section that “‘controls” the
overall operation of the
machine. The “CPU” can
receive (fetch) “instructions”
or “data” from the memory.
It is able to “interpret” the
“instructions” it fetches from
the memory. It is also able to
perform various types of
mathematical operations. It
can also “return” information
to the memory — for instance
make deposits of ““data’ into
the memory. The “CPU" also
contains control sections that
cnable it to sequentially
“access” the “‘next” location
in memory when it has
finished performing an
operation, or, if it is directed
to do so, to ‘“‘access’” the
memory at a specified
location, or to “jump’ to a
new area in memory from
which to continue fetching
“instructions.”

The pad of paper and
pencil in Fig. 2(a)
corresponds to the block
titled “accumulator ’ in Fig.
2(b). The *“accumulator’ is a
temporary ‘‘register’” or
“manipulating area’ which is
used by the CPU when it is
performing operations such as
adding two numbers. One
number or piece of
information <c¢an be
temporarily held in it while
the central processor unit
goes on to obtain additional
instructions or data from
memory. It is an electronic
“scratch pad” for the CPU.

The three fundamental
units — the memory, central
processor unit, and the
accumulator — are at the
heart of every digital
computer system. Of course,
there arc other parts which
will be added in and
explained later, but these
fundamental portions can be

used to explain the basic
operation of a digital
computer which is the

purpose of this article.

The reader should learn
the names of the basic parts
of the computer as they are
presented. Note how easy it is

to remember the portions
that have been shown. The
“remembering”’ element is a
“memory.” The portion that
does the ‘‘work”™ or
processing is simply termed
the “central processor unit,”
and the part that is used to
accumulate information
temporarily is aptly called the
“accumulator!”

The reader should now
have a conceptual view of the
concept behind a computer’s
operation and an
understanding of the
machine’s most basic
organization. It is simply a
machine that can fcich
information from a memory,
interpret the information as
an instruction or data,
perform a very small
operation, and continue on to
determine the next operation

that is to be performed. Each
operation it is capable of
doing is very tiny by itself,
but when the many
operations of a typical
“program’’ are performed in
sequence, the solutions to
very complex problems can
be obtained. It is important
to rcmember that the
computer can perform each
little operation in just a few
millionths of a second! Thus
a program that might seem
very large to a person — say
onc with many thousands of
individual instructions —
would only take a digital
computer a few thousandths
of a second to perform. The
speed with which the
computer can execute
individual instructions is what
gives the computer its
secmingly fantastic capability.

Fig. 2(b). Block diagram of a computer’s fundamental components.

MEMORY

CENTRAL
PROCESSOR
UNIT
(CPU)

ACCUMULATOR

It is now time to start
delving into the actual
physical manner in which a
computer operates. How can
a machine be constructed so
that it is able to perform the
processes of the central
processor unit? While it will
require a number of pages of
text to explain the procedure,
it is not nearly as difficult to
understand as many people
might suspect. The
complexity of a computer
when first viewed by a person
is caused by the fact that it
appears to consist of many
hundreds of parts. It becomes
much simpler when one
understands that the
hundreds of parts are really
made up from a few dozen
similar parts and they are
carefully organized into just a
few major operating portions.
The reader is already familiar
with the most fundamental

portions.
As fantastic as it may
sound at first, a digital

computer can be thought of
as really nothing more than a
highly organized collection of
“on or off” switches! Yes,
computers are constructed
from electronic devices that
can only assume one of two
possible states! The electronic
switches can be constructed
in a variety of ways. For
instance, the switch can be
made so that the voltage at a
given point is either high or
low, or current through a
device is either flowing or not
Aowing, or flowing in one
direction, and then the other
direction. But, regardless of
how the electronic switch is

constructed, its status can
always be represented as
being either “on” or “off.”

This “on” or “off’’ status can
be mathematically
symbolized most suitably by
a mathematical system based
on “‘binary”’ notation.

Some people tend to think
that computers are very
difficult to understand
because they have heard of
‘“strange’’ types of
mathematics that are often

23

As fantastic as it may
sound at first, a digital
computer can be thought
of as really nothing more
than a highly organized
collection of “on or off”

switches!

referred to in conjunction
with computers. In actuality
much of the mathematics

that are dealt with in
computer technology are
much easier to understand
and deal with than the
decimal system that the
average person is familiar
with. In the decimal

numbering system a person

must learn 10 different
symbols, and in order to
manipulate those symbols,

they must memorize a lot of
information. For instance,
look at how students are
taught to multiply. The
learning process actually
involves the student having to
memorize a rather large
number of facts. Because of
the way it is typically taught,
most students never realize
how much work they have to
go through just to learn the
multiplication tables! The
teacher does not stand up and
say, “OK, now you are going
to memorize about 100
facts.” Instead, over a period
of a few weeks or so, the
student is made to memorize
the 100 or so facts — a few at
a time. The student must
learn the value of each digit
multiplied by all the other
digits in the decimal
numbering system. The
decimal numbering system is
far more complicated for the
beginner than learning the
binary numbering system,
and the binary numbering

24

system is the one utilized by
computers at their most basic
functioning level. The reason
the computer uses the binary
system is because it is the
simplest system around and
hence the easiest one with
which to construct a
computing machine!

Readers know the word
“binary” indicates ‘“‘two.”
Computers are built up of
electronic switches that can
only have two possible states.
The switches are binary
devices. The status of the
switches can be represented
mathematically utilizing the
“binary” numbering system.
The binary numbering system
only has two digits in it!
They are zero (0) and one
(1). A switch can thus be
mathematically symbolized,
for instance, by a zero when
it is “off’’ and a one when it
is ‘‘on.” The opposite
relationship could also be
established, a one could be
used to represent a switch
being “off”’ and a zero used
to represent a switch as “on.”
It would make no difference
mathematically which
convention was used as long
as one was consistent. For the

purposes of the present
discussion, the reader can
assume that the first

convention (switch off = 0,
switch on = 1) will be used.

It should be immediately
apparent that working with a
numbering system based on

only two integers will be a lot
casier than working with onc
having 10 integer symbols. In
fact, most problems for
people learning the binary
system come about because
they tend to forget how
simple it is, and they tend to
keep going towards a decimal
solution out of habit when
they are working with the
binary system. For instance,
when one starts to add binary
numbers, as soon as the value
“1" is exceeded, a “carry’’ to
the next column must be
made. The value of the
addition of “1 + 1” in the
binary system is: 10. It is not
2! There is no such integer as
“2"” in the binary numbering
system. However, when a
person who has worked with
the decimal system for years
first starts working with the
binary system, old decimal
habits tend to get in the way.
The reader will have to
beware!

To formally introduce the
binary mathematical system
onc can start by stating that
it uses two integers, zero (0)
and one (1), and no others. A
binary number has a value
determined by the value of
the integers that make up the
number, and the position of
the digits.

In the decimal numbering
system, the reader is familiar
with the location of a digit
having a “weighted” value as
follows: A three digit number
has a value determined by the
unit value of the digit in the
right-most column plus the
value of the digit to the left
of it multiplied by 10, plus
the value of the third digit
multiplied by one hundred as
illustrated in the following
example:

THE DECIMAL NUMBER
345 1S EQUAL TO:

SUNITS = 5
PLUS(+) 4 TIMES 10 = 40
PLUS (+) 3 TIMES 100 = 300

In other words, after the
right-most column (which has

the value of the digit), cach
column to the left is given a
weighting factor which
increases as a power of the
total number of digits utilized
by the numbering system.
Note that in the above
example the 4 representing
40 units is equal to 4 times
the number of integer
symbols in the decimal
system (10) because it is
located in the second column
from the right. The number 3
representing 300 units s
equal to 3 times the number
of integer symbols in the
decimal system squared
because it is located in the
third column from the right.
This relationship of the
weighted value of the digits
based on their position can be
described in mathematical
shorthand as follows:

If the number of different
integer symbols in the
numbering system is U (for
the decimal system U=10)

and the column whose
weighted value is to be
determined is column number
M (starting with the right-
most column and counting to
the left)

and any digit is represented
by the symbol X

then the weighted value of a
digit in column M s
expressed as:

X times U raised to the power
(M-1) or XU(M-1)

The reader can easily
verify that the above formula
applies to the decimal
numbering system. However,
the above formula is a general
formula that can be used to
determine the weighted
positional value of any
numbering system. It will be
used to determine the
weighted positional values of
numbers in the binary
numbering system.

In the binary numbering
system there are just two
different integer symbols (0

and 1). Thus U in the above
formula is equal to 2. For
illustrative purposes assume
the following binary number
is to be analyzed:

101

and it is desired to determine
its value in terms of decimal
numbers. (Remember its
binary value is just 1 0 1).
Using the above formula for
the digit in the right-most
column: M is equal to 1, thus
(M-1) is equal to 0, and with
X=1:

Weighted Value = X . U(M-1)
=1.20=1

(Remember that any number
raised to the zero power is
equal to 1.) Going on to the
next digit it can be seen that
the weighted value is simply
0! Finally, the digit in the
third column from the right
has the weighted value
because of its position:

Weighted Value = X . UM-1)
=1.2031)=22=4

Then, by adding up the sum
of the weighted values
(similar to that done for the
decimal example earlier) one
can see that the decimal
equivalent of 1 0 1 binary is
5:

THE BINARY NUMBER 101

ISEQUAL TO:
T UNITS = 1
+ 0TIMES2 = 0
+ 1TIMES4 = 4
and thus 1 01 in the binary

numbering system is the same
as 5 in the decimal numbering
system.

There will be more to
learn about the binary
numbering system. However,
the brief information given
will be enough to continue on
with the discussion that this
section is primarily concerned

with — the basic operation of
a computer. Since the reader
is now aware that a computer
is composed of numerous
electronic switches and
knows that one can use a
mathematical shorthand to
represent the status of the
switches (whether they are
“on” or “off”), and is also
aware of the fundamental
concept behind a computer’s
operation, it is now possible
to proceed to show how
electronic switches can be
arranged to build a functional
computer. That is, how the
electronic switches can be
arranged and interconnected
in a fashion that will allow a
machine to “fetch” a piece of

information from a
“memory’”’ section, decode
the information so as to

determine an ‘‘instruction,”
and also determine where to
obtain the next instruction or
additional “‘data.”

To begin this part of the
discussion it will be beneficial
for the reader to picture a
group of cells (similar to the
Post Office boxes shown
earlier) arranged in orderly
rows as shown in Fig. 3. This
time, instead of each cell
holding a complete
instruction, it can be
understood that each cell

WORD #1
WORD #2
WORD #3
WORD #4
WORD #5
WORD #6
WORD #7
WORD #8

only represents part of an
instruction and that it takes a
whole row of cells to make
up an instruction.
Furthermore, each cell may
only contain the
mathematical symbol for a
one (1) or a zero (0) — or, in
other words, its contents
represent the status of an
electronic switch!

At this time a few more
computer technology
definitions will be illustrated.
in Fig. 3, each box containing
a binary T or 0 represents
what is called a “bit” of
information. While each cell
may only contain one piece
of information at a time, a
cell can actually represent
one of two possible states of
information. This is because
the cell can be in two possible
states — it either contains a
zero or a one. If one starts
assigning positional values to
the cells in a row, it can be
seen that the total number of
possible states in one row will
increase rapidly. For instance,
two cells in a row can
represent up to four states of
information. This is because
two cells side-by-side,
containing either a 0 or 1 in
each cell can have one of the
following four states at a
particular moment in time: 1

The decimal numbering
system is far more com-
plicated for the beginner
than learning the binary
numbering system, and
the binary numbering

system is the one utilized

by computers at their
most basic functioning
level.

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0

Fig. 3. An array of electronic cells, 8 bits per cell.

25

0,01,11,0r00. Three cells
in a row can represent up to
eight states of information as
the possible states of three
cells side-by-side are: 000, 0
01,010,011,100,701,
110,711 In fact, when

each cell can represent a
binary number, the total
number of states of

information that a row of
“N” cells can represent is: 2
to the Nth power, 2N, Thus, a
row of eight binary cells can
represent 2 to the eighth
(256) states of information!
That is, the combination of
the eight cells can be filled
with zeros and ones in 256
different patterns!

A group (row) of cellsin a
computer’s memory is often
referred to as a “word.” A
““‘word” in a computer’s
memory is a fixed size group
of cells that are “accessed’’ or
manipulated during one
operational cycle of the
central processing unit (CPU).

The CPU will effectively
handle all the cells in a
‘““word’’ in memory

simultaneously whenever it
processes information in the
memory. Digital computers
can have varying ‘“‘word
lengths” depending on how
they are engineered. Many
microcomputers have a
memory word size consisting
of eight cells. The number of
cells in a word, and the
number of words in a
computer's memory have a
lot to do with the machine’s

overall capability. In the
typical microcomputer
system, the memory s

available in modules — groups
of words which can be
plugged into a common set of
wires in the system. With

26

The combination of the
eight cells can be filled
with zeros and ones in
256 different patterns.

current LS| technology, a
typical module of moderate
price has 1024 bytes in an
8-bit computer system. With
the 8008 oriented design
serving as the basis for this
article, one could potentially
plug in 16 such modules for a
total of 16,384 bytes or
131,072 bits. Thus, a large
amount of information can
be “‘stored” in the computer’s
memory at any one time.

The astute reader may
have already figured out a
very special reason for

grouping cells into “words”
in memory. It was pointed
out earlier that a row of eight
cells could represent up to
256 different patterns. Now,
if each possible pattern could
be ‘“decoded” by electronic
means so that a particular
pattern could specify a
precise ‘‘instruction” for the
central processor unit, then a
large group of “instructions”
would be available for use by
the machine. That is exactly
the concept used in a digital
computer. Patterns of ones
and zeros organized into a
computer “word” are stored
in memory. The CPU is able
to examine a word in
memory and decode the
pattern contained therein to

determine the precise
operation that it is to
perform. Most micro-
computers do not decode

every one of the possible 256
patterns that can be held in a
row of eight cells as an
instruction. They have an
“instruction set” of over 100
“‘instructions’” which are
represented by different
patterns of ones and zeros in
an eight cell memory “word.”
Each pattern that represents

an ‘‘instruction” can be
decoded by the CPU and will
cause the CPU to perform a
specific function. Details of
all the functions a computer
can perform are usually
found in the manufacturer’s
documentation.

There is another ingredient
necessary for making the
machine ‘‘automatic” in
operation. That is that the
CPU must “know” where to
obtain the next “instruction”
in memory after it completes
an operation. That function is
greatly aided by having the
memory cells grouped as
“words.”” The reader should
note that in Fig. 3 each group
of cells representing a word
was labeled as: “word #1,”
“word #2,"" etc. There is a
special portion of the central
processor unit that is used to
control where the next word
containing an instruction in
memory is located. This
special part is commonly
referred to as the “‘program
counter.” One reason it was
given the name ‘‘program
counter” is because most of
the time all it does is count!
It counts memory words!
Each word in memory is
considered to have an
“address.” In Fig. 3 each
word was given an ‘‘address”
by simply designating each
word with a number. Word
#1 has an “address” of 1.
Word #2 has an address of 2,
etc. The “program counter”
portion of the CPU keeps
tabs on where the CPU
should obtain the next
instruction by maintaining an
“address” of the word in
memory that is to be
processed! About 90% of the
time all the program counter

does is “increment’’ the value
it has each time the CPU
finishes doing an operation.
Thus, if the computer were to
start executing a simple
program that began by its
performing the instruction
contained in “word #1” in
memory — the very process
of having the machine start
the program at that location
in memory would cause the
program counter to assume a
value of 1. As soon as the
CPU had performed the
function the ‘‘program
counter’’ would increment its
value to 2. The CPU would
then look at the program
counter and see that its next
instruction was located in
word #2 in memory. When
the instruction in word #2
has been processed the
“program counter” would
increment its value to 3. This
process might continue
uninterrupted until the CPU
found an instruction that told
it to “STOP.”

A sharp reader might be
starting to ask, “Why have a
program counter if each
instruction follows the
next?”’ The answer is simply
that the availability of a
“program counter” gives the
freedom of not having to
always take the instruction at
the next ‘‘address” in
memory. This is because the
contents of the ‘program
counter” can be changed
when the CPU detects an
“instruction” that directs it
to do so! This enables the
computer to be able to
“jump’’ around to different
sections in memory, and as
will become apparent later,
greatly increases the
capability of the machine.

The “‘program counter’ is
actually just a group of cells
in the CPU that may contain
either a binary zero or one.
The binary value in the row
of cells that constitute the
program counter determines
the “address” of a word in
memory. Since the number of
words in memory can be very
large, and since the program
counter must be capable of
holding the address of any
possible location in memory,
the number of cells in a row
in the program counter is
larger than the number of
cells in a word in memory. In
an 8008 oriented computer
design, for example, the
number of cells in the
program counter is 14. Since
2 to the 14th power is
16,384, the program counter
can present up to 16,384
different patterns. Each
pattern can be wused to
represent the “address’ of a
word in memory. Fig 4
illustrates what the contents
of the program counter
would look like when it
contained the address for a
specific word in memory. The
address the example displays
is “‘address 0" which can be
considered the first word in
memory. The reader should
note that an address of zero

Fig. 4. The program counter
of an 8008 based machine.

1

13 12 1 0o 9 8 7 6 5 4 3 2 1 0
(o To o oo o o]o]o]o]o]o]o]v]

can actually represent a word
in memory!

Earlier it was stated that
some ‘‘instructions” can
actually change the value of
the program counter and thus
allow a program to “jump” to
different sections in memory.
However, the reader now
knows that a word in
memory only contains eight
cells, and yet the program
counter of an 8008 based
computer contains 14 cells.
In order to change the entire
contents of the program
counter {by bringing in words
from memory), it is necessary
to use more than one
memory word! This can be
done if the program counter
is considered to actually be
two groups of cells connected
together. One group contains
cight cells, and the other six.
In order to change the
contents of the entire
program counter, one whole
eight cell word could be read
from a memory location and
placed in the right-hand
group of eight cells of the
program counter. Then
another eight cell word could
be read from memory. Since
only six more cells are needed
to finish filling the program
counter, the information in
two of the eight cells from

the sccond word brought in
from memory could be
‘““‘discarded.’”” If the
information in the two left
most cells of the word in
memory were thrown away
then the remaining six cells
would contain information
that could be placed in the
six unfilled locations in the
program counter. Most of the
common 8-bit micro-
computers use a similar
scheme of breaking an
address into two pieces when
the program counter is loaded
in a jump instruction.

In order to make it easier
for a person working with the
machine to remember
‘‘addresses” of words in
memory, a concept referred
to by computer technologists
as ‘‘paging” is utilized.
“Paging” is the arbitrary
assignment of “blocks” of
memory words into sections
that are referred to
figuratively as ‘“pages.” The
reader should realize that the
actual physical memory unit
consists of all the words in
memory — with each word
assigned a numerical address
that the machine utilizes. As
far as the machine is
concerned, the words in
memory are assigned
consecutive addresses from

There is a special portion of the central processor unit
(CPU) that is used to control where the next word
containing an instruction in memory is located — the
“program counter.” Most of the time all it does is

count!

word #0 on up to the highest
word # contained in the
memory. However, people
using computers have found
it easier to work with
addresses by arbitrarily
grouping “blocks’ of words
into pages. For example in
the Intel 8008 ‘‘pages’’ are
considered to be “blocks’ of
256 memory words. The first
memory word address in an
8008 system is at address
zero (0). Programmers could
refer to this word as word #0
on page #0. The 256th word
in memory as far as the
computer is concerned has an
address of 255. (Note: Since
the address of O is actually
assigned for the first physical
word in memory, all
succeeding words have an
address that is one less than
the physical quantity!) A
programmer could refer to
this word as word #255 on
page #0. The 257th word in
memory has an absolute
address of 256 (“n’’th word
minus one since location 0
contains a memory word) as
far as the machine is
concerned, but a programmer
could refer to that word
location as being on page #1
at location 0! Similarly, the
513th word in memory, when
the paging concept s
used, becomes word #0 on
page #2 for a programmer —
but it is just 512 as far as the
machine is concerned. Paging
at multiples of 256 is a
convenient tool when dealing

with any 8-bit micro-
computer.
The reader might have

noted a nice coincidence in
regards to the assignment of
“paging”’ in 8-bit computers.
Each ‘“‘page” refers to a

27

“block” of memory words
that contains 256 locations (0
to 255). The reader will recall
that that is exactly the
number of different patterns
that can be specified by a
group of eight binary cells,
and there are eight binary
cells in a memory “word.”
The relationship is more than
coincidental! Note that now
one has devised a convenient
way for a person to be able to
think of memory addresses
and at the same time be able
to specify a new address to
the program counter that will
still result in it containing an
“absolute’ address that the
machine can wuse. For
instance, if it was desired to
change the contents of the 14
cell program counter from an
absolute address of word #0,
say to word #511, the
following procedure could be
used: The programmer would
first specify an instruction
that the CPU would decode
as meaning ‘‘change the value
in the program counter.”
{(Such an instruction might be
a “jump’ instruction in the
instruction set.) Following
that instruction would be a
word that held the desired
value of the “low order

Fig. 6. Examples of addresses
in an 8008 based system.

28

Fig. 5. The program counter with
address 511 represented in binary

notation.

13 12 11 10

9 8 7 6

Lo fofofofofv]r]r]

5 4 3
BEE

EIENER

address” or word # within a
“page.” Since a memory
word only has eight cells,
since eight cells can only
represent 256 different
patterns, and since one of the
patterns is equivalent to a
value of zero, then the largest
number the eight cells can
represent is 255. However,
this is the largest word # that
is contained on a page. This
value can be placed in the
right-most eight cells of the
program counter. Now it is
necessary to complete the
address by getting the
contents of another word
from memory. Thus,
immediately following the
word that contained the “low
address’”’ would be another
word that contained the
“page #” of the address that

the program counter was to
contain. In this case the page
number would be 1. When
this value is placed in the left
six cells of the program
counter the program counter
would contain the pattern in
Fig. 5.

If desired, the reader can
verify by using the formula
presented previously for
determining the decimal value
of a binary number, that the
pattern presented in Fig. 5
corresponds to 511, and thus,
by using the “page #’ and
“word # on the page,”’ each
of which will fit in an eight
cell memory word, a method
has been demonstrated that
will result in the program
counter becing set to an
absolute address for a word in

PAGE #0 WORD #0
VAN
T L I L
0 0 0 0 0 0 0 0 0 0 0 0 0 0

L J

ABSOLUTE ADDRESS IN THE PROGRAM COUNTER

PAGE #0 WORD =255
f 1 I 1

0 0 0 0 0 0 1

ABSOLUTE ADDRESS IN THE PROGRAM COUNTER

PAGE =1

WORD =0

0 0 0 0 1 0

Mo 7

ABSOLUTE ADDRESS IN THE PROGRAM COUNTER

PAGE =1

WORD =1

0 0 0 0 0 0 1

ABSOLUTE ADDRESS IN THE PROGRAM COUNTER

memory. Fig. 6 provides
some examples as a summary.
By now the reader should

have a pretty good
understanding of the
concepts regarding the

organization of memory into
electrical cells which can be
in one of two possible states,
the grouping of these cells
into “words’”’ which can hold
patterns which the CPU can
recognize as specifying
particular operations, and the
operation of a ‘‘program
counter” which is able to
hold the “address’’ of a word
in memory from which the
CPU is to obtain an
instruction.

It is now time to discuss
the operation of the “‘scratch
pad” area for a computer —
the accumulator (and some

1ST PHYSICAL WORD IN
MEMORY HAS AN ABSOLUTE
ADDRESS OF: 0

256th PHYSICAL WORD IN
MEMORY HAS AN ABSOLUTE
ADDRESS OF: 255

257th PHYSICAL WORD IN
MEMORY HAS AN ABSOLUTE
ADDRESS OF: 256

258th PHYSICAL WORD IN
MEMORY HAS AN ABSOLUTE
ADDRESS OF: 257

additional ‘‘manipulating
registers” in the typical
8008 based computer).

As was pointed out earlier,
there is a section of a
computer that is used to
perform calculations in and
which can hold information
while the CPU is in the
process of “fetching’’ another
instruction from the memory.
The portion was termed an
‘‘accumulator’’ because it
could ‘‘accumulate’’
information obtained from
the CPU performing a series
of instructions until such
time as the CPU was directed
to transfer the information
elsewhere (or discard it). The
accumulator is also
considered to be the primary
“mathematical” center for
computer operations for it is
the place where additions,
subtractions, and various
other mathematically
oriented operations (such as
Boolean algebra) are generally

performed under program
control.
The concept of an

“accumulator” is not difficult
to understand and its physical
structure can be readily
explained. The actual control
of an accumulator by the
CPU can be quite complex,

PAGE #1

but these complex electronic
manipulations do not have to
be wunderstood by the
computer wuser. It is only
necessary to know the ‘‘end
results’ of the various
operations that can be
performed within an
accumulator.

The accumulator in an
Intel 8008 based machine can
be considered as a group of
eight “memory cells” similar
to a ‘“word” in memory
except that the information
in the cells can be
manipulated in many ways
that are not directly possible
in a word in memory.

Fig. 7 shows a collection
of eight binary cells
containing ones and zeros to
represent an accumulator.
The cells are numbered from
left to right starting with

“B7"” down to “B0.” The
designations refer to “bit
positions’' within the

accumulator. Note that the
right-most cell is designated

BO and the eighth cell
(left-most cell) is designated
B7. The reader should

become thoroughly familiar
with the concept of assigning
the reference of “zero’ to the
right-most bit position in a
row of cells (similar to the

WORD#2

ABSOLUTE ADDRESS IN THE PROGRAM COUNTER

PAGE =1

WORD =255

ABSOLUTE ADDRESS IN THE PROGRAM COUNTER

PAGE =2

WORD =0

ABSOLUTE ADDRESS IN THE PROGRAM COUNTER

PAGE =3

WORD =255

ABSOLUTE ADDRESS IN THE PROGRAM COUNTER

Fig. 7. The accumulator, pictured
with binary 10101010 (decimal

value 160) in its 8 bits.

B7 B6 BS5 B4

B3 B2 B1 BO

1 0 1 0

1 0 1 0

concept of assigning a
reference of zero to the first
address of a word on a page
in memory) as the convention
is frequently wused by
computer technologists. The
convention can be confusing
for the beginner who fails to
remember that the physical
quantity is one more than the
reference designation. The
convention of labeling the
first physical position as zero
makes much more sense once
the reader learns to think in
terms of the binary

The accumulator simply
holds a number-it adds

and subtracts-and ‘‘ro-

tates” its contents.

259th PHYSICAL WORD IN
MEMORY HAS AN ABSOLUTE
ADDRESS OF: 258

512th PHYSICAL WORD IN
MEMORY HAS AN ABSOLUTE
ADDRESS OF: 511

513th PHYSICAL WORD IN
MEMORY HAS AN ABSOLUTE
ADDRESS OF: 512

1024th PHYSICAL WORD IN
MEMORY HAS AN ABSOLUTE
ADDRESS OF: 1023

numbering system and
thoroughly realizes that the
‘‘zero’”” referred to so
frequently in computer work
when discussing actual
operations actually represents
a physical state (the status of
an electronic switch) and
does not necessarily imply
the mathematical notion of
“nothing.” The concept of
assigning a bit designation to
the positions of the cells
within the accumulator will
allow the reader to follow
explanations of various
accumulator operations.

One of the most
fundamental and most often
used operations of an
accumulator is for it to
simply hold a number while
the CPU obtains a second
operator. In an 8008 type of
machine the accumulator can
be “loaded” with a value
obtained from a location in
memory or one of the
“partial accumulators.” 1t can
then hold this value until it is
time to perform some other
operation with the
accumulator. (It will become
apparent later that the
accumulator of an 8008 can
also receive information from
external devices.)

Perhaps the second most
often used operation of an
accumulator is to have it
perform mathematical
operations such as addition or
subtraction with the value it
contains at the time the
function is performed and the
contents of a memory
location or one of the
“partial accumulators.” Thus
if the accumulator contained

29

Fig. 8. Adding the content of a memory word to the accumulator.

B7 B6 BS5 B4

B3 B2 B1 BO

0 0 0 0

0 1 0 1

the binary equivalent of the
decimal number 5, and an
instruction to add the
contents of a specific
memory location which
contained the binary
equivalent of the decimal
number 3 was encountered,
the accumulator would end
up with the value of 8 in

binary form as shown in Fig.
8.

Perhaps the next most
frequently used group of
operations for the

accumulator is for it to
perform ‘‘Boolean’’
mathematical operations
between itself and/or other
“‘partial accumulators’ or
words in memory. These

operations in the typical
microcomputer include the
logical ‘“‘and,” ‘“or,” and

“exclusive or’ operations.

Another important
capability of the accumulator
is its ability to “rotate” its
contents. In an 8008, as in
many micros, the contents of
the accumulator can be
rotated either to the right or
left. This capability has many
useful functions, and is one
method by which
mathematical multiplication
or division can be performed.
Fig. 9 illustrates the concept
of “‘rotating”’ the contents of
the accumulator.

30

ORIGINAL CONTENTS
OF THE ACCUMULATOR

CONTENTS OF THE
SPECIFIED WORD IN
MEMORY

FINAL RESULTS AFTER
THE ADDITION IN THE

ACCUMULATOR

The astute reader may
notice that the accumulator
rotate capability also enables
the accumulator to emulate a
“shift register’” which can be
a valuable function in many
practical applications of the
computer.

The accumulator serves
another extremely powerfu!

function. When certain
operations are performed
with the accumulator the
computer is capable of

examining the results and will
then ‘'set’” or ‘clear” a
special group of ‘“flags.”
Other instructions can then
test the status of the special
‘““flags’’ and perform
operations based on the
particular setting(s) of the
“flags.” In this manner the
machine is capable of
“modifying” its behavior
when it performs operations
depending on the results it
obtains at the time the
operation is performed!

In an 8008 based
computer, there are four
special flags which are

manipulated by the results of
operations with the
accumulator (and in several
special cases by operations
with “partial accumulators”).
These four flags are described
in detail below. Other micros
have similar condition flags.

The “carry flag” can be
considered as a one bit (cell)
extension of the accumulator
register. This flag is changed

if the contents of the
accumulator should
‘““overflow’ during an
addition operation (or
““underflow’’ during a
subtraction operation). Also,
the ‘“‘carry bit” can be

utilized as an extension of the
accumulator for certain types
of “rotate’’ commands.

The “‘sign flag” is set to a
logic state of “1” when the
most significant bit (MSB) of
the accumulator (or partial
accumulator} is a “1” after
certain types of instructions
have been performed. The
name of this flag derives from
the concept of using two’s
complement arithmetic in a
register where the MSB is
used to designate the sign of
the number in the remaining
bit positions of the register —
conventionally, a “1” in the
MSB designates the number
as a ‘‘negative” number. If
the MSB of the accumulator
(or partial accumulator) is
“0” after certain operations,
then the “sign flag” is zero
(indicating that the number
in the register is a positive
number by two’s complement
convention).

The “zero flag” is set to a

logic state of “1" if all the
bits in the accumulator (or
partial accumulator) are set
to zero after certain types of
operations have been
executed. It is set to “0" if
any one of the bits is a logic

one after these same
operations. Thus the ‘“zecro
flag” can be utilized to

determine when the value in a

particular register is zero.
The “parity flag" is set to

a “1” after certain types of

operations with the
accumulator (or partial
accumulators) when the

number of bits in the register
that are a logic one is an even
value (without regard to the
positions of the bits). The
“parity flag” is set to “0”
after these same operations if
the number of bits in the
register that are a logic one is
an odd value (1, 3, 5 or 7).
The “parity flag” can be
especially valuable when data
from external devices is being
received by the computer to
test for certain types of
“transmission errors’’ on the
information being received.

In its simplest form, a
group of switches can

be used as an input de-
vice and a group of lamps
as an output device!

In addition to the full
accumulator previously
discussed there are six other 8
bit registers in the Intel 8008
computer referred to as
‘“partial accumulators’’
because they are capable of
performing two special
functions normally associated
with an accumulator (in
addition to simply serving as
temporary storage registers),
The full accumulator will
often be abbreviated in this
manual as “ACC" or “‘register
A.” The six ‘‘partial
accumulators” will be
referred to as ‘‘registers B, C,
D,E,Hand L.”

Registers B, C, D, E, H and
L of an 8008 are all capable,
upon being directed to do so
by a specific instruction, of
either incrementing or
decrementing their contents
by one. This capability allows
them to be wused as
“counters’’ and ‘“pointers”
which are often of
tremendous value in
computer programs. What
makes them especially
valuable in 8008 architecture
is that when their contents
are incremented or
decremented the immediate
results of that register will
affect the status of the
“zero,” “sign,”’ and “parity”’
flags discussed above. Thus it
is possible for the particular
contents of these registers to
affect the operation of the
computer during the course
of a programs operation and
they can be used to “guide”
or modify a sequence of

operations based on
conditions found at the
actual time a program s

executed.

It should be noted that
registers B, C, D, E, Hand L
are capable of being
incremented and
decremented — but the full
accumulator — register A —
cannot perform those two

functions in the same
manner. (The full
accumulator can be

incremented or decremented
by any wvalue by simply
adding or subtracting the
desired value. There is not,
however, a simple increment
or decrement by one
instruction for use with the
full accumulator of an 8008!)

Two of the partial
accumulators, registers H and
L, serve an additional purpose

Fig. 9. Rotating the content of the accumulator.

B7 B6 B5 B4

B3 B2 B1 BO

ORIGINAL CONTENTS OF THE
ACCUMULATOR (EQUAL TO

RESULT WHEN THE ACCUMU-
LATOR IS ROTATED TO THE
LEFT ONE TIME (VALUE NOW

RESULT WHEN THE ACCUMU-
LATOR IS NOW ROTATED TO
THE RIGHT TWO TIMES (VALUE

NOTE THAT IF A ROTATE

in the 8008 computer CPU.
These two registers can be
used to directly “point’ to a
specific word in memory so
that the computer may
obtain or deposit information
in a different part of memory
than that in which a program
is actually being executed.
The reader should recall that
a special part of the central
processor unit (CPU) termed
the program counter is used
to tell the computer where to

It has been said that the computer is the most versatile
machine in existence and that its applications are limited
only by man'’s ability to develop programs that direct the

operation of the machine.

obtain the next instruction
while executing a program.
The program counter was
effectively a ‘“double word
length” register that could
hold the value of any possible
address in memory. The
program counter is always
used to tell the machine
where to obtain the next
instruction. However, it is
often desirable to have the
machine obtain some
information — such as a “data
word” — from a location in
memory that is not
connected with where the
next instruction to be
performed is located. This
can be accomplished by
simply loading “‘register H”
with the ‘“high address”
{page) portion of an address
in memory, then loading

RIGHT COMMAND IS DONE
AGAIN THAT THE “1"” IN
POSITION B 0 WILL APPEAR

AND THAT NOW A ROTATE
LEFT COMMAND WOULD
RESTORE THE “1” IN
POSITIONB 7BACKTOBO!

0o|lo|o]|o o1 o

DECIMAL 2)
0o|o|o]o 110]o

EQUAL 4)
o|lo0o]|o0]|o 0|0 |1

NOW EQUAL 1)
1100 o 0o |o

ATBT!l
o|lo0o|o]o o]0 |1

“register L'’ with the “low
address’’ portion of an
address in memory, and then
utilizing one of a class of
commands that will direct the
CPU to fetch information
from- or deposit information
into the location in memory
that is specified (“pointed
to”) by the “H” and “L”
register contents. This
information flow can be
from/to the location specified
in memory and any of the
CPU registers.

At this time it would be
beneficial for the reader to
study Fig. 10. Fig. 10 is an
expanded block diagram of
Fig. 2(b) and shows the units
of the computer which have
been presented in the
previous several pages.

Until now no mention has

31

been

The computer’s great versatility comes about because the
machine is capable of executing a large group of instruc-

tions in an essentially limitless

series of combinations.

made of how

information is put into or
received from a computer.
Naturally, this is a very vital
part of a computer because
the machine would be rather
useless if people could not

put
machine
calculations

into the
which
processing

information
upon
or

could be done, and receive
information back from the

m

operations(s)

when the
had been

achine

performed!

Communications between

the computer and external

devices —

whether those

devices be simple switches, or

Fig. 10. The block diagram of Fig,

for an Intel 8008 computer.

transducers, or teletype
machines, or cathode-ray-
tube display wunits, or
keyboards, or ‘‘mag-tape”
and ‘“‘disk’” systems — or
whatever, are commonly

referred to as input/output
operations and are
collectively referred to in
abbreviated form as “1/0”
transfers.

In the Intel 8008
computer designs all “1/0”
transfers are typically made
between external “I/0 ports”
(which connect to external
devices via appropriate
electronic connections) and
the full accumulator in the

. 2(b) filled in with the designations

MEMORY
0 1 0 0 0 1 0 0 WORD #1 AT PAGE 0 LOC 0
0 0 0 6 0 0 0 0 WORD #2 AT PAGE 0 LOC 1
0 0 0 0 0 0 0 1 WORD #3 AT PAGE 0 LOC 2
1 1 06 0o 0 1 1 1 *
6 0 1 1 0 0 0 1 *
1T 1 1 1 1 0 0 0 *
11 1 1 1 1 1 WORD #X AT PAGE Y LOC Z
PROGRAM COUNTER
CENTRAL AN 8008
PROCESSOR CPUWITH
UNIT PROGRAM COUNTER

AND REGISTER STATUS FLAGS

FLAGS: “C,""Z,” "S," & P

REGISTER “A"
REGISTER "B”
REGISTER “C”
REGISTER “D"
REGISTER "E"
REG "H'" & MEMORY PAGE POINTER
REG"L" & LOW ADDRESS POINTER

= FULL ACCUMULATOR

= PARTIAL ACCUMULATOR
=PARTIAL ACCUMULATOR
= PARTIAL ACCUMULATOR
= PARTIAL ACCUMULATOR
= PARTIAL ACCUMULATOR
= PARTIAL ACCUMULATOR

32

computer. This /0 structure
means that a whole group of
devices can be simultaneously
hooked up to the computer
and the computer used to
receive information from or
transmit information to a
variety of devices as directed
by a “‘program.”” A special set
of commands is used to
instruct the computer as to
which “1/0 port’ is to be
opcrated at any particular
instant. With appropriate
programming it is then
possible to have the computer
“communicate’’ with a large
variety of devices in an
essentially ““automatic” mode
— for instance receiving
information from a digital
multimeter at specified times,
then possibly performing
some averaging calculations,
and then outputting results to
a teletype machine without
human intervention. Or, in
other applications —
information from a human
opcrator can be typed into
the machine using a
typewriter-like keyboard. In
its simplest form, a group of
switches can be used as an
input device and a group of
lamps used as an output
device for the computer!

However, a more
sophisticated system used in
many applications would be
to use a teletype machine or a
combination of a keyboard
and a cathode-ray-tube (CRT)
display attached to input and
output ports to serve as the
primary means of 1/0. A
person can thus type
information on the keyboard
which will pass it into the
computer, and the computer
can display the results of its
operations on the CRT
display (which can, inci-
dentally, be made from an
ordinary oscilloscope and a
special CRT interface unit
such as that described in Jim
Hogenson’s article in BYTE
#2).

Perhaps the most
wonderful and exciting aspect
about a digital computer is its
tremendous versatility. It has
been said that the computer

is the most versatite machine
in existence and that its
applications are limited only
by man’s ability to develop
programs that direct the
operation of the machine. It
is undoubtedly one of the
best machines for allowing
man to exercise and test his
creative powers through the
development of programs
that direct the machine to
perform complex operations
that can not only control
other machines, or perform
calculations many times
faster than humanly possible,
but because it can be used to
“simulate” or “model” other

systems that it might be
impractical to build for
purely experimental
purposes. Thus man can
create a ‘“model” in a
computer program and
actually ‘“play” with the
synthetic model without

actually building the physical
device!

The computer’s great
versatility comes about
because the machine is

capable of executing a large
group of instructions in an
essentially limitless series of
combinations — these series
of instructions are stored in
the memory bank(s) of the
computer — and a new series
of instructions can be placed
in the memory bank(s)
whenever desired. In fact, the
memory bank(s) can often
hold several completely
unrelated ‘“programs” in
different sections and thus
one can have a machine that
performs totally unrelated
tasks simply by pushing a few
buttons and thereby directing
the machine to start
executing a new program in a
different section of memory!

The digital computer is
capable of providing services
to people from all walks of
life! A person need only
choose (or develop) programs
and connect external
instruments that will provide
the capabilities desired.

For instance, a scientist
might put a mathematical
calculator program into the

computer’s memory and use

the computer as a
sophisticated electronic
calculator by using a

calculator-type keyboard as
an input device and a CRT
display as an output device
on which to receive the

answers to complex
mathematical calculations
which the computer
performs. After using the

computer as a calculator for a
period of time, the scientist
might decide to utilize the
same computer to
automatically record data
from instruments during an
experiment. By simply
putting a different program
in the computer’s memory
and plugging some peripheral
measuring instruments into
the computer’s I/0 ports, the
scientist could have the
computer periodically make
measurements while he went
out to lunch and save the
results in its memory. After
lunch the scientist could have
the computer tabulate and
present the data obtained
from the experiment in
compact form. Then, by
merely putting a different
program in the memory, the
scientist could have the
computer help him set up and
arrange a ‘‘reference file” all
sorted into alphabetical order
or any manner that would
enable him to wuse the
computer to extract
information far faster than a
manually operated ““paper file
card’ system.

So the computer can be a
valuable tool for a scientist;
but, the same machine with a
different program in its
memory (and possibly
different peripheral devices)
could be used to control a
complex manufacturing
operation such as a plastic
injection molding machine. In
such a case 1/0 units that
coupled to transducers on the
injection molding machine
might be used to relay
information to the computer
on a variety of parameters
such as temperature of the

The development of computer programs can be an extremely
creative, exciting and personally rewarding pastime and
offers essentially limitless ways to exercise one’s creative

capabilities . .

plastic in the feed barrel,
amount of feed material in
the hopper and injection
barrel, available pressure to
the mold jaws and feed
barrel, vacancy or filled status
of the mold and other useful
parameters. The computer
could be programmed to
analyze this information and
send back signals to control
the operation of heaters,
pressure valves, the feed rate
of raw materials, when to
inject plastic into the mold,
when to empty the mold, and
other operations to enable
the plastic injection system to
operate in an essentially
automatic mode.

Or, a businessman could

use the samec computer
connected to an electric
typewriter, with a suitable

program in memory, to
compose, edit and then type
out ‘‘personalized form
letters’’ by directing the
computer to insert paragraphs
from a “bank of standard
paragraphs” so as to form a
personalized customer
answering system that would
handle routine inguiries in a
fraction of the time (and
cost) that it would take a
secretary to prepare such
letters. Or, the businessman
might utilize the computer to
help him control his
inventory, or speed up his
accounting operations.

However, a computer that
costs as little as the typical
micro system does not have
to be restricted to a business
or scientific environment.
The computer that can do all
the types of tasks mentioned
above can also be used to
have fun with, or to perform
valuable services, to private
individuals.

The computer can be used
as a sophisticated electronic

calculator by almost anyone.
It can be used to compose

letters {using an editor
program) by virtually anyone.
Programs that sort data

alphabetically or in various
other categories can be of
valuable service to people in
many applications. The
computer can be used to
monitor and control many
household items, serve as a
security monitoring system,
be connected to devices that
will dial telephones, and do
thousands of other tasks.

The electronic hobbyist
can be kept occupied for
years with a digital computer.
For instance, one can build a
little test instrument that
plugs into a few 1/0 ports on
the computer, then load
programs into memory that
will direct the computer to
automatically test electronic
components (such as complex
TTL integrated circuits) in a
fraction of a second!
(Businesses can do this too!)

Or a ham radio operator
can put a program into
memory that will enable the
computer to receive messages
typed in from a keyboard,
convert the messages to
Morse code, and then actuate
an oscillator via an output
port to send perfectly timed
Morse code. In addition, the
ham radio operator might use
the computer with an
appropriate program to serve
as a ‘‘contest logging aid.”

The ‘“logging aid” would
serve as an instant reference
file whereby the operator
could enter the calls of
stations as they were worked
and have the computer verify
if the contact was a duplicate.
The computer could do other
tasks too, such as record the
time of the contact by
checking an external digital
clock (or by utilizing a
program that would enable
the computer to be used as a
clock within itself)!

And, the computer can be
used to play numerous games
with, such as tic-tac-toe,
checkers, word games, card
games, and a large variety of
other types of games that one
can program a computer to
perform.

And perhaps most
important — for the student,
hobbyist, scientist,
businessman, or anyone
interested in the exciting
possibilities of its applications
— the contemporary
microcomputer offers
unlimited possibilities for the
expression of individual
creativity. For the
development of computer
programs can be an extremely
creative, exciting and
personally rewarding pastime
and offers essentially limitless
ways to exercise one’s
creative capabilities in
developing “‘algorithms’’ that
will enable the machine to
perform desired tasks!

The electronic hobbyist can be kept
occupied for years with a digital

computer.

33

": Vﬂ“ AH["”[H[S]H] in learning about microcomputers and microcomputer

programming, Scelbi Computer Consulting, Inc., has some fine publications that can give
you a real education.

The Scelbi-8B User’s Manual

is a fine introductory publication that starts by assuming that the reader has never used a computer. It explains how
a microcomputer is fundamentally organized and it’s basic principles of operation. It then provides a comprehensive
explanation of the entire instruction set used in the Scelbi-8B microcomputer. Next, there is a highly detailed
section that explains how to operate a Scelbi-8B and provides several sample machine language programs. Another
section illustrates how easy it is to connect external devices to the computer. Finally, for those interested in the
technical aspects, there is a large chapter devoted to technical information — including schematics, assembly
drawings and parts lists for the Scelbi-8B. (Some might actually construct a microcomputer from the information
available in this manual alonel!) Price? Just $14.95.

Machine Language Programming For The “8 0 0 8" (and similar microcomputers)

This manual was written to provide the reader with the detailed knowledge one needs to know in order to
successfully develop machine language programs. This information packed publication discusses and provides
numerous examples of algorithms and routines that can be immediately applied to practical problems. Coverage

includes:
*Detailed Presentation of the “8008" instruction set *Debugging Tips
*Flow Charting *Organizing Tables
*Mapping *Maximizing Memory Utilization
*Fundamental Programming Techniques: Loops, Counters, Pointers, Masks *I/O Programming, Real-time Programming
*Multiple-precision arithmetic *Programming for “PROMS”
*Floating-point package *Search and Sort Routines
*Editing and Assembling
Mathematical Operations *Creative Programming Concepts

Virtually all the techniques and routines illustrated in the manual can also be applied to other similar
microcomputers such as "8080" systems (by applicable machine code conversion). The price of this exciting new
manual is a low $19.95. (The floating-point arithmetic package presented in the publication is worth that price
alone!)

Assembler Programs For The “800 8"

Discusses a “‘minimum length’’ assembler program that can reside in 2k of memory, plus a more sophisticated version
for those who have additional memory and desire a more powerful version. Included in this manual is a thorough
explanation of the fundamental concepts of an assembler’s operation, details on how to format the “source listing,”
step-by-step analysis and presentation of subroutines, program flow charts, and assembled listings of the programs!
Price? A very reasonable $17.95.

An “8 00 8" Editor Program

Describes variations of an ““Editor’’ program that can reside in 2k of memory. Additional memory may be used to
increase the size of the text buffer. The program enables one to manipulate “text” in order to create “source
listings”’ or perform other kinds of text preparation. Includes discussion of routines, flow charts, and assembled
listing. Priced at just $14.95. Prices given are for domestic delivery at book mailing rate. Add $2.50 for each
publication if PRIORITY air service desired (U.S.) Overseas — include $6.00 for each publication for airmail service.

SPEGIAL (Expires Dec. 31, 1975)

Order all four publicalions at once, mention this BYTE ad, and save over 10%

$59.00

(Pricing, specifications, availability subject to change without notice.)
Order direct from: 1322 REAR BOSTON POST ROAD
SCELBI COMPUTER OrFT BN

MILFORD CONNECTICUT 06460
CONSULTING INC.

34

HEXPAWN

A Beginning Project

in ARTIFICIAL Intelligence

What is intelligence? Pushing aside the philosophical and
psychological questions for the moment, I can offer an
operational definition of intelligence in programs: An
“intelligent” program is one which was designed with a range
of possible circumstances in mind, rules defining successful

and unsuccessful responses to such circumstances, memory of

the history of past responses and relevant circumstances, and
an algorithm for using such past history information when
similar circumstances occur again. Robert Wier has provided an
example of a simple game application which illustrates this
definition of intelligence in programs. Does it sound too
deterministic for you? Hardly — the response is in some sense
inherent in the program and its context. But, just asin natural
life, the order and degree of the various inputs to the Al
program cannot be predicted in advance with any great
certainty. Just as each individual person is unique, each
individual run of a good AI program will tend to differ — Al
programs, like people, are good for lots of surprises.

by

Robert R. Wier

1208 Mistletoe Drive
Fort Worth TX 76110

36

Artificial intelligence. The
very words themselves are at
once frightening and
fascinating. Hal lip reading;
Colossus communicating with
Guardian in a real '‘machine
language’’; M5 taking over the
Enterprise. Yet these are still
media creations, and we are
cushioned by the comforting
buffer of a movie or TV
screen. To realize what
artificial intelligence (or Al)
is really like, you have to
create it yourself (ever have
an urge to play Franken-
stein?). HEXPAWN originally
appeared in Scientific
American (Vol. 206, No. 3, p.
138) in Martin Gardner’s
‘““Mathematical Games"’
column. It is simplicity itself.
The game board is identical
to that of the standard
two-dimensional tic-tac-toe,
and two players control three
pieces (or Xs or Os or
whatever) each. Each player’s
objective is to advance his
pieces to the opposite side of
the board, or eliminate or
block the opposition’s pieces.
Moves of each piece are the
same as the pawn in chess
(i.e, move 1 forward to a
vacant sqguare, take
diagonally).

HEXPAWN rules are very
simple: To win, attempt to
move one of your pieces to
the opponent’s side of the
board, or block him from
making any move. Moves are
those of the pawn in chess.
That is, you may move one
square forward 1to an
unoccupied square, or you
may move one square
diagonally in order to “take”
an opponent’s piece. Only
these two moves are allowed.
You may not move
diagonally without a “‘take’’;
you may not move forward
with a ‘‘take”. Fig. 1
illustrates a typical game
situation of occupied and
unoccupied squares. In this
“model” of the layout, the
computer(X) can move in
two ways which ‘“‘take” the
human pawn in the central
square (number 4). The
computer can move in one
way which will not ““take” a
human pawn.

For a complete
explanation, please refer to
the original article (every
library should carry Scientific
American, and if vyours
doesn’t, ask them why).

This version of HEXPAWN
is a game that /earns. You

may play it several times
beating the computer {which
keeps track of the board, as
well as acting as onc of the
players) with ridiculously
simple strategies. However, as
play progresses, the computer
notes its mistakes, and
eventually, after 8 to 10
games, you may only tie or
lose to the computer. The
machine has ‘“learned” how
to play the game successfully.
The method described
here to implement
HEXPAWN is strictly brute
force, and many techniques
may be used to improve both
the c¢xecution time and
storage efficiencies. But in
order to fully appreciate the
internal workings of
HEXPAWN, it is nicc to keep
it simple. Also, since this is a
self-modifying program (a
necessity in almost all Al),
programmers will recognize
that “simple is good,” since
after the code runs wild a few
times and produces strange
and wonderful results, it is
fortunate to have code which
is easy to debug.
HEXPAWN was
implemented by the author
on a 16-bit/word mini with
an assembler. In this version
it occupies 88E hex bytes, or
2190 decimal bytes, or 4218
octal bytes. It would be
possible to reduce the
memory requirement by
using two or three bits
instead of two bytes for the
board representation of the
playing pieces, but this would
requirc a lot of bit diddling
that is tedious unless you are
really tight on memory. The
minimum representation of
the three states requires a
two-bit binary number, using
three of the four possible
states of two bits. This
requires only one word of
memory. A less compact but
easier to program bit level
representation is to use three
bits, one for each state. Only
one bit would be “on’ at any
given time if the
corresponding state s
present. But on many
computers it's considerably

simpler to use two bytes so
that picces may be
represented by “X”, 0", and
(space). The storage
requirement will also vary
considerably with the nature
of the peripherals used, due
to whatcver interface
programming is necessary.
The original was implemented
with a CRT where the cursor

“w n

was ‘‘locked’’ in
synchronization with a
programmed counter

notifying the program of the
board location of the square
being referenced.

Basically, the structure of
the implementation is quite
simple. In the Scientific
American article, all possible
board configurations are
presented. Note that some are
mirror images of others, but
these are still required. These

board configurations are
hereafter referred to as
““models’’. The program
attempts to match the

current board configuration
with the models stored in
memory. When a model is
found, several courses of
action may be available. In
some cases, only one move
will be possible, thus the
computer is limited to that
move. In other cases several
moves are possible. The
computer will select one
{(whichever is first on the list)
and make the move. If a
model is not found, this is an
error situation; an illegal
move has been made on your
part, and an error message
should be output. Fig. 2is a
“macro” flowchart of this
process.

Following each model in
memory is a string of move
index bytes followed by a
hex “FF”. The “FF” is used
as a terminator for that
particular model. The bytes
between the model and the
“F” are index numbers for
possible moves — the index
references a jump table to
produce a correct move by
executing a jump.

A jump table is a very
handy device when you need
to reference several different

x| |x
3] w Fi :5
O|O]
607 8

Fig. 1. The game layout for a typical move.

INITIALIZE
MOVE

START

INDICES

{

INITIALIZE
OTHER AS g

REQUIRED

1S MOVE
POSSIBLE?

YES

NULL ADDRAESS
OF INDEX
STORED DF

PREVIOUS MOVE

EVALUATE
BOARD FOR
wIN

SEARCH FOR
MODEL MATCHING
CURRENT BOARD

15 MOVE
POSSIBLE?

EXECUTE MOVE
AND NQTE ADDRESS
OF MOVE'S INDEX

f GAME CONCEDED
BY COMPUYEH/ /HUMAN WINS! /

EVALUATE
BOARD FOR
wiIN

GAME SERIES o

GAME CONCEDED
Y HUMAN

Note that the move indices are initialized only once for each series of

games. Initialization for each game will defeat the learning process.

Fig. 2. Control flow logic for the HEXPAWN program.

37

Fig. 3. Table of All Possible Moves (Models).

BOARD POSITION MODEL

SQUARE
01
X X
X X
X X
X

EXAMPLE
oFFIG.2 X

o0 o X
ox oo

x
X X X
X X X

O 0O X X
o X

X X X
X X X X
X X X X X X
OXOXOOOXOXOXO
OXOXX XO0ODOX OO0
X O0OOxXO0O0O0 oxoooo0
=}
= o

X
o

x
oOxo0000

Key: X =

o

COMPUTER'S
POSSIBLE MOVES
{see Fig. 4)

o~

o~ =0
-

o
-
=

\J\I-bwtom—'bmﬂmf\)b-h

[82]

-
-

DWOHONIONDIOHOWNRTNWNWN = =W
- =,
= A

computer piece occupies square

0 = human’s piece occupies square
blank = square is empty

locations in your program
using numerically sequential
indices. The advantage is that
after assembly, debugging is
facilitated. If you desire to
change all the jump addresses
of a particular segment of
code, you need only change
the jump table, rather than
cach reference containing the
desired jump address. It is
also unnecessary to worry
about having to make the
code refercnced in the jump
table equal in length. All that
is taken care of in the jump
table itself in an easy and

38

consistent manner. The jump
table is particularly appealing
in that you have multiple-

level-indirect addressing
capability.

HEXPAWN learns by
removing the index which

leads to a defeat for the
computer. Thus, if a move to
square 8 results in a loss, the
index following the
appropriate model is changed
to a null character, which
eliminates the losing move. It
is easily seen that if a
particular move always leads
to a loss, it will be completely

nulled, thus allowing the
computer to “know’ several
moves ahead that it has lost
the game. As each losing
move's index is nulled, the
learning process effectively
progresses toward earlier
moves.

As noted in the original
article, this version only
penalizes the /osing move.
Also of possible consideration
is the rewarding of a winning
move, but this would
complicate our code
considerably.

For convenience’s sake let
us number the squares of the
playing board 0-8 starting in
the upper left corner,
working horizontally and
down. Let us also establish
the convention that the
human player always moves
first. This does not seem to
compel a deterministic game.
That is, either player may win
regardless of who moves first.
Now supposc that there has
occurred a particular board
configuration (Fig. 2). Note
that the “X” pieces belong to
the computer, while the “0”
picces are yours. You have
just made the preceding
move, and now the computer
must decide what to do. The
computer’s possible moves
are indicated by the dotted
lines. But how does the
computer know this? It
searches through memory
until the following bit pattern
is found (in hex):

The first 9 bytes represent
the board. Note that in
EBCDIC, E7 is an “X", D6 is
an “0”, and 40 is an ' .
Remember that these are
EBCDIC codes (my
peripherals use it}, but it
could just as easily have been
ASCII. The next three bytes
represent the indices for
possible moves as they exist
at the beginning of the game.
That is, the possible moves
are these:

02: “X" in square O moves
to square 4 taking your "'0”

“To realize what artificial
intelligence is really like,
you have to create it
yourself ... "

06: "X in square 2 moves
to square 4 taking your “0"

07: “X" in square 2 moves
to square 5

Now, either move 02 or
move 07 will result in a loss
the next move that 0"
makes (assuming that you are
trying to win) and that index
will be nulled so it cannot be
selected again in the event of
this same board
configuration. Move 06 s
correct since it removes your
piece and also blocks you
from obtaining “X’s” side of
the board. Since the
computer simply selects the
first move on its list, the first
time this board configuration
is encountered, the computer
will lose (as a result of move
02). However, after this game
the computer will select move
06, which is correct, since it
is next on the list. The
number of the index has no
particular significance; it
could be anything as long as
it denotes the displacecment
needed in the jump table to
direct the flow of control to

E740E7D6D64040D640020607F F the proper code for the move

desired. The “F” is a
terminator that signals the
end of that particular model
and move list.

We will not present the
actual code to accomplish the
HEXPAWN algorithm since
there are so many machines
of a differing nature in hobby
use. However, copies of the
author’'s LOCKHEED SUE
Minicomputer version are
available from him for $3 to
cover the most of duplication
and postage.

A few hints are in order Lo
help you avoid some of the
more obvious problems. The

EXAMPLE 1: To illustrate, assume that the following is in memory at the start:

Location (hex) Contents (hex)

Step 1. 56 {2 e—Suep 6.

58 06 If Joss store
5A 07 “00" here.
5C FF
A0 XX
Step 2. : A2 XX
A4 D2
A6 XX
A8 XX
AA XX
AC E4 Step 4.
AE EA
D2 XX

Comments

move indices after appropriate

model

beginning of jump table

address of move 02

address of move 06
address of move 07

code for move 02

The “learning” sequence is composed ol the following steps:

1. Search models until match is found.

2. Select first index of possible maves, add to location of
beginning of jump table, giving location of address ol
that move’s code — in this case, index 02 x 2 (to get even
byte boundary) + A0 = A4. If no possible move (no
non-null index) is available, concede game 1o human player.

oW

execute — in this case, location D2.
Evaluate board for win or loss.

o

Note the address of the index used — in this case “56."
. Jump using indirect addressing to the move's code and

If loss has occurred, null the focation of the last index

used — in Lhis case 56", thercby removing this move from
the machine's repertoire of responses to this particular board
configuration. IT a tie or computer win has occurred, do

nothing to the index.

EXAMPLE 2: Assume that the following is in memory efter example 1 is completed:

Location (hex) Contents
56 B ax224

62 FF

Comments

58 : @ 6x2=12 | = 2nd sclecled
60 1 |

1

1

|

|

4

AD -

1
4 AD=A4 o 00
[V D2-—,
A6 00 |
: 2((::)A+CAD A8 00 :
AA 0w
L A B4 ——

AE EA |
. . |
. |
f——_—— - — — —— J

I‘-—-DD2

beginning ol jump table
address of move |
address of move 2
address ol move 3
address of move 4
address of move 5
address of move 6
address ol move 7

code for move 2

to accomplish:

move * " tosq. 0 (blank}
move “X" Lo sq. 4

jump to continue

code fur move 6
to accomplish:
move “ "tosy. 2
move X' tusq. 4
jump to continue

Suppose move index 2 has been selected. The index 2 is multiplied by 2
{shifted left 1 bit) in order to produce an even word address, and added to
the address of the beginning of the jump table - AO — resulting in an address
of - A4 —. Allocation A4 is the address — D2 ~ of the code to accomplish
move # 02. At location D2, move 2 consists of blanking the computer's * X"
in square 0, and inserting an *X" at square 4, 1aking your *0". Since this is

a lasing move, the index 02 will be made null {replacement by 00 is good

for error checking), and move 06 will be accomplished in the same manner

next lime this board configuration occurs.

biggest hang-up with this
program is to get it running
correctly in regard to the
jump table. If a wrong index
is obtained, the program will
run off into the boondocks
and never be heard from
again. Therefore it is nice to
include checks on the validity
of the index retrieved and to
output an error message in
the event of something
strange happening. A
reasonable board may be
printed using dashes and
exclamation marks. However,
if you do this, you will have
to ‘“‘unpack’ the board as
represented in memory into a
more suitable form for 1/0. If
you don't have a CRT with

machine programmable
cursor, you can use the
numbers assigned to the

squares to indicate your
moves. Of course you’ll want
the machine to have a variety
of responses for being
blocked, losing and winning.
For debugging it is good to
output the number of the
index which is nulled after a
losing game. In this way you
may keep track of the
learning process as it
advances. Also you should be

aware that if the human
player makes some illegal
moves, no model will be

found, and a message should
be output indicating this fact.
But not a// illegal moves

Fig. 4. Table of Computer's
Moves (“X’’ Graphic).

COMPUTER'S (X’s) MOVES

MOVE INDEX #

1 0
2 0
3 1
4 1
5 1
6 2
7 2
8 3
9 3
10 4
1 4
12 4
13 5
14 5
15 —

SQUARE TO SQUARE

In a written communica-
tion, Martin Gardner points
out that the original Hexa-
pawn article is reprinted as
Chapter 8, “A Matchbox
Game-Learning Machine” in
his book The Unexpected
Hanging and Other Mathe-
matical Diversions (Simon &
Schuster, 1969). The book
version includes updates of
the drawings in the original
Scientific American article,
notes on reader reactions to
Hexapawn, and reference to
an article on the more general
game ‘“‘Extendapawn.” Our
thanks to Martin Gardner for
his assistance in supplying a
corrected version of Fig. S for
use in BYTE.

will result in an error
condition. In this case, should
the human player win, the
machine will null the last
move's index even if it is
correct. After this happens a
few times, the machine will
start making illegal moves,
acting illogically, and
generally approximating a
nervous breakdown!
Programming HEXPAWN
will painlessly (?) introduce
you to a number of
worthwhile aspects of the
logical arts. You'll see that
many segments of code (such
as the board evaluation) are

similar and are potential

COMMENTS

3

4

3

4

5

4

5

6 computer wins!

7 "

6 v

7 "

8 "

7 v

8 "

computer blocked

39

), J

0@

R|®

e dl

CIRS0)

O|®

R|®
> 1O @

~ |O

| J
@

O®
&|®

o

®
+0|®
IO
O|@®

9@

0®

O

4 4 4 4 4 4
D CIRCY [] 9 | @
O @00 [O®[C] [@C® [®Ole [@e0
ol TV 7 J| NV
4 6 6 6 6 6

<@

L]
o

o9

<00

®
N7

(=
<0 ®

¥
!

., ¢
AR

v

o
Y/

(=]
(2}

Fig. 5. The set of possible Hexapawn game situations faced by the HEXPAWN program after 2, 4 and 6 moves. (Reprinted from Chapter 8, "A
Matchbox Game-Learning Machine, " in The Unexpected Hanging and Other Mathematical Diversions by Martin Gardner.)

A BASIC Version of This
Program:

For those with systems
running the BASIC language,
a BASIC version of this
program called HEX is found
on page 122 of the third
printing of 707 Basic
Computer Games, available
for $7.50 + 50¢ postage from
Digital Equipment Corp.,
Software Distribution Center,
Maynard MA 01754.

40

candidates for subroutines.
You'll see that indirect
addressing does indeed have
some practical uses, if you
can ever get the code
debugged. You'll see thatit is
very important to try and
anticipate possible sources of
error in your code before you
run the program, and at least
tc include a mechanism to
warn you when problems
occur. (I didn’t anticipate any

problems with the jump table
and consequently spent
several hours trying to figure
out how the move indices
were coming up with such
strange values. If | had putin
some code to check them
first, this process would have
been shortened considerably.)
You'll see that some
programs are complex to such
a point that you simply
cannot sit down and write
them without thinking about

the logical design first! You'll
see why you should never,
ever write programs that are
self-modifying in nature
(except Al, naturally).

Lastly, amaze (antagonize)
your friends by sitting down
at your computer and
winning four or five games,
then inviting them to try.
When they can't, you can
smile smugly and explain how
your computer learns from its
mistakes, and so should they!

Computers
And Amateur Radio

Time-sharing by radio? Radio packet switching networks?
Program exchange meeting grounds in the high frequency
bands? Computer controlled ham radio stations? Read on . . .
Mike Gipe provides us with this article on the synthesis of
amateur radio and computer hobby activities into a combina-
tion which is more fun than the simple sum of parts. While
there are no bureaucratic restrictions on home microcomputer
systems, there are some federal regulations you must comply

with

in order to become a ham.

For

many computer

hobbyists, the two-hobby combination would be well worth
considering — despite the required ham license exam. Mike
provides several references to more detailed information for
those individuals who want to check out amateur radio.

Computer construction
and programming is the
newest hobby in the field of
electronics; ham radio is
undoubtedly the oldest. The
fascination of electronics is
certainly a good reason why
many people are interested in
both computers and ham
radio, but it is not the only
reason. The two hobbies are
complementary. The person
who spends his leisure time
on both will surely find that
one benefits the other,
making it more fun.
Computers handle
information — they receive it,
deliver it, condense it, modify
it, utilize it and sometimes
even mangle it. The versatility
of the computer is reflected
in the wide variety of
information that it is called
upon to digest. Ham radio is a
hobby dedicated to the art of
communication — the
transfer of information.
Without information, there is
no need to communicate, and

42

without communications, the
generation of information is

useless. {What good is a
computer without any 1/0?)
Obviously, computer buffs

find ways to communicate
without ham radio, and hams
have never been speechless
because they didn't have
computers. However,
marrying the two offers the
opportunity to communicate
information (of all kinds) on
a much wider scale. The
computer buff who includes
radio in his field of interest
will certainly find his hobby
more challenging and more

rewarding.
It is no surprise, therefore,
that many of BYTE’s

readers are also amateur radio
operators. Butitis likely thata
number of BYTE’s readers
are not familiar with amateur
radio. This article is an
introduction to the hobby for
these people. Hopefully, it
will also suggest some new
ideas for those who already

have discovered that ham
radio and the computer make
an excellent pair.

What is Ham Radio?

Radio amateurs arc
authorized to transmit and
receive signals with their own
radio stations. This makes it
possible to experiment with
many different means of
radio communication and to
converse with all kinds of
people from all parts of the
world. The fact that ordinary
people can make important
discoveries while pursuing a
hobby is demonstrated by a
number of amateur
accomplishments including:
transatlantic communication
at high frequencies,
moonbounce communication,
the practical use of single
sideband transmission (SSB),

and the increase of our
understanding of radio
propagation through the

atmosphere. The fact that
amateur radio is for personal

by

Michael A. Gipe WA3GAU/1
155 Bay State Road

Boston MA 02215

use is stipulated by
international agreement and
federal regulations which
enjoin any amateur from
exploiting amateur radio for
monetary purposes. Amateur
radio is a fine hobby; it's fun
and educational.

What's Happening

Amateurs have been
allotted many segments of
the radio spectrum beginning
as low as 1.8 MHz. Table |
shows the frequency bands
available. All types of
modulation can be utilized;
however, certain types are

restricted to selected
frequencies for bandwidth
and interference reasons.

Computer hobbyists will be

Ordinary people have made important discoveries in the radio
field as amateurs — and you can expect similar things to
happen in the computer field as more and more people
experiment with the technology.

relaying amateur signals great
distances around the globe.
Another device wused to
overcome the line-ofsight
distance limitation for VHF
and UHF frequencies is the
repeater. These receive signals
and retransmit them at a
different frequency. By
installing repeaters at high
places like mountaintops and
tall buildings, hams can
communicate over a wide
arca with small transmitters.
In New England, for example,
rcpeaters have made it
possible to talk with people
in several states using only a
battery-powered
walkie-talkie. By installing
radio equipment capable of
accessing a repeater in his car,
a ham can have
companionship or emergency
aid available at the touch of a
button whenever he s
driving. A number of frills are
also possible with a repeater.
Some repeaters have been set
up with a telephone line
tie-in. This telephone line can
be used to make telephone
calls from nearly anywhere.
Imagine the possibilities —
while driving to vyour
girlfriend’s apartment you
can hit a few buttons on your
mobile radio and call your
wife on the telephone to tell
her that you have to work
late!

More computer-oriented
hams are needed to push for
changes in the regulations to
facilitate the computer/radio
synthesis.

44

On To The Good Part

The real fun starts when
you add a computer. Your
microcomputer (or your mini
if you're rich) can be a very
uscful addition to the ham
radio station. {t’s a great help
in calculating orbit data for
OSCAR satellitc work. The
computer could be
programmed to figure out
when and where the satellite
will appear in the sky, ring a
bell to warn you, turn on the
transmitter and recciver, and
point the antenna in the
proper dircction! A
microcomputer can do a very
nice job translating and
generating Morse code. Along
a similar line, tcletype code
and speed conversions arc
eastly accomplished by a
microcomputer. A few
months of thought should
give you dozens of ideas for
using the computer in the
radio station.

The combination of
repeater and computer can be
powerful. One use for the
computer is to control the
repeater. Regulations require
certain controls on repeater
operations. These regulations
have undergone substantial
changes recently and may
change again, so the best way
to get the details is to contact
one of the sources mentioned
at the end of this article. The
computer can make it
possible to add many very
advanced, very fancy features
to the repeater. Services
beyond the telephone tie-in
previously mentioned are
possible. Another way to use
the computer with a repeater
is as a shared data processor.
A mini or microcomputer
could be accessed by radio
through the repeater by many

pcople. Any ham with a
teletype could have access to
a computer. Since the
possible benefits are so great,
it is incvitable that a
repcater-computer
combination will soon be in
operation.

These applications of the
computer to ham radio are
interesting, but the long
distance data communica-
tions made possible with ham
radio may turn out to be the
most valuable result of
combining the two hobbies.
For the individual computer
owner, radio communications
mcans being able to operate
the computer remotely from

a car, in the next town,
nearly anywhere. Morcover,
communication between

computers is also possible. A
large network similar to the
ARPA network could be
formed, opcning the way for
sharing programs and ideas.
Hobbyists’ cfforts in this area
will supplement current
research in radio networking.
With computers, nearly
anything is possible.

Rules & Regulations

Radio is, by its very
nature, an international
concern. Periodically,
representatives from most of
the countries of the world
meet and draw up voluntary
agreements concerning the
use of one of our valuable
resources, the radio spectrum.

Amatcur radio has its
foundation in these
agreements. It is defined,
governed and allocated
frequency space. In the
United States, the Federal

Communications Commission
(FCC) writes the rules and
regulations, consistent with

international agreement,
which govern ham operation
here. It may be of interest to
point out that hams are
regulated by law, but
computer hobbyists arc not.

The reasons for regulating
radio should be fairly
obvious.

The rules for ham radio

arc much more liberal than
those for other services.
Amateur radio is intended to
be flexible and to allow
experimentation. According
to the international
agrecment, though, hams
must be licensed. The FCC
issues licenses and also enacts
and enforces the regulations
which licensees must follow.
The FCC determines what
modes of transmission can be
used at what frequencies and
who gets to use them. Full
details about the regulations
can be found in the
publications listed at the end
of this article.

Obviously, computer buffs
find ways to communicate
without ham radio, and hams
have never been speechless

because they didn't have
computers.
Limitations

Although the rules are

designed to be flexible and
allow experimentation,
sometimes they do not keep
pace with the activities
currently underway. Some
regulations may inadvertantly
restrict some harmless
operations. Computer
applications in ham radio are
new and there arc a few
regulations which might
concern the computer
hobbyist-radio amatcur.
Although teletype
transmission is allowed on
nearly every band, the speed
and type of transmission is
restricted. Currently, only the
five bit Baudot code may be
used and the maximum rate
of transmission is 100 words

per minute (75 baud). ASCII
code is not permitted. Since
most amateur teletvpe
opcration previously was with
surplus Western Union
cquipment, this was no
problem. Now, however, it
conflicts with computer
industry standards. Until the
rules can be changed, the
microcomputer can be used
to convert from one code to
the other. One other
restriction which may be
useful information is that full
duplex operation is not
permitted. Other aspects of
the regulations may dictate
certain techniques, but in
general the computer
hobbyist should find that it is
possible to do what he wants,
somehow.

The rules can be changed
to make things easier,
however. Any petition to the
FCC will be considered. More
computer-oriented hams are
nceded to push for these
changes.

How To Get a License

What arc the details about
licenses? There are actually
two licenses issued by the
FCC. One, the opcrator’s
Yicense, permits the holder 1o
operds ., radf station.
The other 1s a permit to sct
up a station at a permanent
location. If you wish to sct
up more than one permanent
station, a station license must
be obtained for each.
However, one station license
allows you to set up one
permanent station and any
number of mobile or portable
stations. A sct of call letters
issued with the license serves
to identify thc station on the
air. The two licenses are
distinct but are actually
printed on one piece of
paper.

According to the
international agreement, a
person must demonstrate the
ability to send and receive
Morse code to get a license.
He must also demonstrate
some knowledge of
elementary radio theory and
operating techniques. The

FCC conducts examinations
for licenses. These are not
difficult to pass with a little
study, and excellent aids for
learning code and theory are
available. Sec the references
for some of these.

The license structure s
further complicated by
different classes. As an

incentive to increase skill and
knowledge, more operating
privileges are granted to those
who demonstrate greater
proficiency. Each class of
license represents a specific
set of privileges and a
correspondingly difficult
examination. There are
currently six classes but
changes may occur within the
next year. The Novice class is
the simplest. The exam is

to get started. The General
class license grants its holder
permission to operate in a
large portion of all bands and
all modes. The Conditional
class is the same as the
General but allows a different
application procedure for
special hardships. The
Advanced class grants more
frequency space reflecting the
additional technical
proficiency needed to pass
the exam. The highest class is
the Extra class which awards
all amateur privileges. It’s a
complicated system, but it
makes it easy to get started
and it rewards those who
improve their skills.
Actually getting your
license is as simple as any
bureaucratic operation. You

~ . AMATEY .
R & %ENE‘GU AM,‘,"'E;’ -
& Q\ ucEW“DIlqc,"",, 2'%/ -

o
‘\Q (’\ sﬁ‘\}:"

& -
& 1
) P
v <

- 4

License ...y guiues «

=~ available for each class of amateur

license grade. These were w...°n by the 73 staff and are
available from Radio Bookshop, fererborough NH 03458
Morse code tapes are also available geared to each license

grade.

very simple and the privileges
are few, but it is an excellent
way to get started. The
Novice class license requires a
5 word per minute Morse
code proficiency. Next is the
Technician class. This class is
designed for those who wish
to do experimental work on
VHF or UHF frequencies.
Only frequencies above 50
MHz may be used by the
Technician. The code test is
the same as for the Novice;
the theory test is the same as
the General class. The
Technician class license may
be the best way for a
computer hobbyist who
wants to work with repeaters

must fill out an application,
pay a small license fee, and
take the tests. Most tests are
conducted at local FCC field
engineering offices. More
details can be obtained by
calling the nearest office. The
number is in the phone book.

After passing the exams
and waiting the usual
bureaucratic waiting period,

50c¢

FCC

RULES ano
REGULATIONS

publshed by
I3MAGAZINE INC Prierbormgh N#s 01498

Part 95 of the FCC Rules and Regu-
lations governing amateur radio is
available from:

73 Magazine (50¢)

Although ham radio rules are
designed to be flexible and
allow experimentation,
sometimes they do not keep
pace with the activities
currently underway . ..

you should receive your
license. It is good for five
years, and may be renewed
simply by mailing in an
woolication and a check. The
fun 15 well worth the cffort.

Hepefully, this has

stimulated a little thought

about information and
. . .
communication. Whén

computers and ham radio are
teamed up, the possibilities
are limited only by the
imagination. Computer
hobbyists who are looking for
an additional challenge
should fook at ham radio.

73 Magazine

Excellent educational aids are available from:

American Radio Relay League, Inc.
Newington CT 06111

and

Peterborough NH 03458 J

45

The Digital
Feedback Loop

Sumner

| found that adjustment of
R1 and R2 pots can cause the
DACs (IC15 and 1C16) to
overheat. { believe that this is
why one of my DACs now
exhibits a slight overlap in the
digital ramp (bit 4 is off
value). | would recommend
that these pots be et at
maximum resistZhce setting,
and u; N (pitial setup the
sauld be advanced
while obscrving the respective
outpii ramp on an
oscilloscope. Decrease the
resistance setting until the
maximum height ramp
(without clipping), s
obtained. The overheating
problem occurs with severe
clipping, which happens at
the low resistance setting.

(found it necessary 1O
change IC17 to an LM318,
which has better high
frequency response for the
fast sweep rate of this ramp.
My conversion of the digital

¢-
DCw

46

S. Loomis, proprietor of Loowmis Laboratories,
Route |, Box 131A, Prairie P
of piclures represented in

oint MS 39353, provides Lhis sel
his version of the Hogenson
oscilloscope graphics display design printed in BYTE #2. Mr.
Loomis built the graphic interfac
of the PC board for
modification: he

e using a preliminary persion
the scope display, but with one
used CMOS instead of TTL integrated
circuits. The following are his comments on the scope display
as implemented in CMOS:

ICs to CMOS was also
successful, without a hitch. |
am very pleased with the low
power drain and logic swings
from rail-to-rail that result
from thic change rhe
substitution was
accomplished as follows:

1C1 becomes 74C10

1C2 becomes 74C04

1C3 becomes 74C00

1C4 becomes 74C00

IC5 uses 7408 TTL (no

74C series equivalent)

1C6 becomes 74C155
IC7-1C10 become 74C1 93

1 am going to have to change
the Z-axis op amp in my
display unit to accommodate
the high frequency drive. The
present amplifier is too slow,
and causes some smearing of
the dots as well as low
brightness on lone dots.
Everything else checks out
OK!

X &Y OUTPUTS (STAIR STEP REMPS)

Fig. 1. Staircase ramp wave forms for X and Y drives. "Thi . ture
illustrates the stepping of the X an¢ Y drive A CoLiputs auring. wweral
sweeps nf 1~ .r_ii,c"' tar

ekl Ml HOD PIAUIELIED

Fig. 2. A full raster achieved by turning on the scan and disconnecting
the Z modulation input from the scope.

X Output (Vert)

Y Output

)

- g -

:‘\‘
Ll OF RANHDOM DulH

Fig. 3. A pattern of random data acquired when the scope interface is
turned on.

.ltllll‘

Fig. 5 Mr. Loomis used an interesting trick to achieve the printout in
this illustration — he changed the main timing capacitor of the 555
oscillator to 5 microfarads and used the much slower sweep to drive an
X-Y plotter. In order to get hard copy printouts (albeit slowly) about
all one would have to add is a jury rig “intensity "’ modulation input to
raise and lower the recorder pen under control of the interface.
Refinements such as superimposed small amplitude X-Y oscillations
hand. could be used to draw small lissajous-patterns (circles or figure eights)
at each “on'"’ point of the hard copy.

Fig. 4. A pattern of horizontal dots programmed into the display by

47

http:PL�r.;,on.il
http:soflw.ue
http:inlern.11
http:displ.1y
http:Termin.11

THE
CURVE TRAGER
THAT WON'T
COLLEGT DUST.

»

The Hickok Model 440
semiconductor curve tracer is
all purpose and convenient to
use. It's the ideal instrument for
testing, evaluating, classifying
and matching all types of
transistors, FET’s and diodes.
You'll get stable, full range
dynamic displays that you can
accurately scale right from
the screen.

® Pull-out card for easy, fast
set-up and operation.

m Set-up marks for rapid set-up
of 80% of tests.

® Unique INSTA-BETA display
takes the guesswork out of
transistor and FET parameter
measurement.

m |n-or-out of circuit testing.

m A full range professional
tracer at a price you can
afford.

AT YOUR DISTRIBUTOR $16500

HICKOK

the value innovator

INSTRUMENTATION & CONTROLS DIVISION
THE HICKOK ELECTRICAL INSTRUMENT CO.
10514 Dupont Avenue « Cleveland, Ohio 44108
(216) 541-B060 « TwX: B10-421-8286

DIGITAL
PERFORMANGE

YOU GAN RELY ON.

The Hickok Model 334 DMM is
a rugged, non-temperamental,
hardworking tool that’s easy to
use and easy on your eyes.
Hickok has established a unique
reputation in digital electronics
during the past 10 years. The
Model 334 is another example
of our engineering expertise —
an economical lab quality
instrument with exceptional
durability and accuracy.

m Easy reading, green
fluorescent display

m 3% digit — auto polarity

m 26 ranges including 200 mV
AC & DC ranges

® Fast response —
2.5readings/sec

Basic Accuracies (% of reading)
DC Volts; +0.2% (2-0.5% on 200V,
1200V ranges)
AC Volts; =0.5% (+2.0% on
200 mV, 2V ranges)
OHMS; +0.5%
DC Current; =1.5%
AC Current; *+2.0%

AT YOUR DISTRIBUTOR $22900

HICKOK

the value innovator

INSTRUMENTATION & CONTROLS DIVISION
THE HICKOK ELECTRICAL INSTRUMENT CO.
10514 Dupont Avenue « Cleveland, Ohio 44108
(216} 541-8060 + TWX B10-421-8286

51

notes on parallel

by
Carl Helmers
Editor, BYTE

One way to connect an
extra output port for a
teletype or other peripheral
to your CPU is to make the
interface simulate a memory
address during the writing
operations. This method is
the one which is used for
both the input and output
functions in computers such
as the PDP-11 of DEC, or the
Motorola 6800 microcom-
puter. The method can even
be used to overlap a usable

Fig. 1. 8-bit bus output latch.

output interfaces

main memory address since
the CPU could care less
whether or not the addressed
port is connected in addition
to the proper main memory
location! The same method
can even be wused on
computers such as the Altair
8800 which split the CPU bus

into two parts and thus
complicate the interface
picture.

All of the microcomputers
| have seen to date for the

home brew computer market
operate with a degree of
parallelism at the bit level.
Whether the chip is 4-bit,
8-bit or a 16-bitter, the
concept of “parallel” data is
built in. Data is parallel in
nature if each bit has one line
assigned to it and transfers of
a group of such bits are
always made simultaneously.
Thus for example, the address
lines used to select memory
words are usually done in

BUS RECEIVERS (OPTIONAL) "BUS BOUNCE"
DO + 1 5 Lo+
D1 + 3] 4 LDl +
D2+ ol oy [LD2+| ONE-BYTE
D3+ [o] AL, [o LD3+\ LATCHED DATA TO
COMPUTER D4+ [? 151 a100) 2 LD4+ / QUTSIDE WORLD
D5+ 16 17 LD5+
D6+ 19] 22 LD6+
D7+ 20 21 LD7+
CLOCKS POWER PINS
/J7 +5V GROUND
7400 14 7
7404 14 7
74109 16 8
74100 24 7
AO +
Al +
A2 +
A3+
A4+ | ADDRESS WRITE — TO PIN NO.I FIG3
ASY —— — 1C7400
:‘75: DECODE PULSE
OE AND CONTROL
TE LOGIC
AlO+
All +
Al2+
Al3+
Ald+
AlS +
RW +
CLOCK
o+ TO 0+ FIG3

52

in memory address space

parallel in CPU designs of
practical utility. With the bus

oriented computer chips
likely to be used for
homegrown systems, it is

possible to grab data from the
busses by latching it in a
register which listens to the
bus continuously but is only
written when the proper
address is found. This article
concerns such latching of
output data and suggestions
about several applications of
the technique.

The basic idea of the bus
output is illustrated in Fig. 1.
Fig. 1 shows a set of data
lines (denoted DO+ to D7+ to
indicate a positive logic
definition) constituting an
8-bit data bus. In a 16-bit
computer, this set of lines
might be one or the other
half of the 16-bit data bus, or
the logic might be extended
to 16 bits. Connected directly
to the bus pins of the
interface | have noted a set of
“bus receivers’”’. This circuit
should be put in if necessary
to maintain consistency of
bus loading with all the other
bus interconnects. For
instance, with a tri-state 8833
circuit as the bus definer, up
to 100 high-impedance
PNP-input receivers (input
side of 8833) can be
connected to the bus. But put
a TTL load on, and the
fanout will be reduced
considerably. (For an Altair
8800, the data bus is split
into two components: in and
out. The principle of
minimizing the loading of the
Altair drivers (TTL) would
indicate use of a low power
(74Lxx) device as the bus

receiver. A non-inverting
receiver is to be preferred in
order to keep the same logical
sense of the data to be stored
in the latch.)

Following the bus receiver,
a latch is shown. The latch
illustrated with its pinouts is

the 8-bit, 24-pin package
called a 74100. Alternate
circuits for this function

include a pair of 7475s, or
even four dual master slave
flip flop packages, such as
7473s. In general, it will pay
to use the larger scale of
integration from a power-
budget standpoint. Consider
the specs for two 7475s (64
mA) versus four 7473s (80
mA). For a sixteen bit
output, all that is required is
to double the number of bits
used for the latch. The latch
is used for only one purpose
— to hold the data after it is

stored, until updated by a
later write to the same
location.

A latch is required to

buffer the output logically in
many instances of 1/0 devices.
A primary example of such a
case is an output which needs
stable data for a much longer
period than the short
CPU-cycle during which data
is stable at the output of bus
receivers. If you interface
your computer bus to one of
the Burroughs SELF-SCAN
display devices with the
memory option, for instance,
your data must be stable for a
long period of time (about 60
microseconds). This
requirement is necessitated
by the need to wait for the
shift register memory to cycle
around to the proper position

for entry of new data. If your
interface is to a digital to
analog converter (DAC)
presenting a gain control
voltage to a computerized
audio mixing panel, then you
would want the control signal
to stay stable for all time
until explicitly altered by the
CPU.

Fig. 1 is completed by the
notation of a big mostly-
blank box. Big blank boxes
with labels in them are a way
of saying ‘“here is a function,
but | haven’t told you what it
is in detail.”” In this case the
function is address decode
and control logic for grabbing
output data. | have drawn the
box with inputs indicated
from 16 bits of addressing, an
“RW+" signal and a “@+”
signal. The logic of this box
will respond to a specific
address in order to generate a
negative logic (WRITE-) pulse
which is inverted and used to
latch the data at the correct
time. The definition of the
specific address desired and
the decoding are both
considered a bit later when
Fig. 2 is discussed. The
“RW+" signal controls the
direction of the CPU’s data
transfer. If it is logic 1"
{high level) then the CPU is
attempting to read data from
the bus and no clock pulse is
allowed to reach the latch,
even if the address bits AO+
to A15+ match the desired
address. If ““RW+" is low,
then the CPU is sending data
out and a clock pulse is
allowed through the address
decode and control logic. The
clock pulse is taken from the
CPU supplied clock @+ and is

“Big blank boxes with
labels in them are a way
of saying ‘here is a
function, but | haven’t
told you what it is in
detail.” ”

“The method can even
be used to overlap a
usable main memory
address since the CPU

could care less . . .

»

53

Fig. 2. Single-address 16-bit decode with 7485. “Xn’' (n=0 to 15) is logical 1 or @ defining desire address.

54

b+

RW+

©)
-

AO+
Al +
A2+
A3+

Ad+
A5+
AB+
AT+

Ag+
A9+
AlO+
Atl+

A2+
Al3+
Al4+
AlS+

I
— VNPUT ouTl
NPUT oyt X1 +
l 2 3
¥ 9

/PULSE ONLY IF WRITE CYCLE

o 3
| i 1 X2+
IN
12] @ il X3+

M) 7485 3y 4+
INPUT
> < o7

a positive

logic
indicating that valid data is
present.
Assuming you
want to grab some data off
the bus at a specific location
when it is referenced, how

signal

actually

can you implement the
address decode and control
function? Fig. 2 is a
suggestion of one method to
accomplish this function for a

specific location at a
considerable price in
hardware: using more than

one memory location defined

el ™[X8+
© [

l1a 13
7485 | X104

15

WRITE -
PULSE

7420

POWER CONNECTIONS
+ 5V GROUND

7485 16 8
7420 14 7

in this way would rapidly
lead to a large parts count for
7485s as decoding logic. The
basic idea of Fig. 2 is to use
the 7485 comparator circuits
to check for equality between
the address lines AOQ+ to
A15+ and a set of ‘‘desired
address’ definition lines, X0+
to X15+. The comparison is
done as four groups of four
bits, and a parallel logical
product (AND) of the results
of all four bit-group
comparisons is performed by
the 7420. The comparators’

cascading input for equality is
used to enable the
comparison: the AND gate
“E” detects a CPU write
operation as the simultaneous
occurrence of the clock @+
and a low state of RW+,

A Hardware Memory
Contents Monitor
A particular application

for which single-address
decoding might be useful is as
a debugging tool based on
this circuit, used to monitor
the last content written into a
specific location. Such a
debugging tool can be built
by defining the X0+ to X15+
address lines as the outputs of
a set of four hexadecimal
switches or six octal encoded
switches, hand set from the
panel of the debugging
instrument. Then the outputs
of the latch circuit might be
routed to a set of hex or octal
LED drivers so that a display
of each number written might
be obtained. A more general
variation of the same theme
would be attainable as a bus
monitor device if the gate E
of g Fig. 2 is eliminated
entirely and the clock @+ is
simply used as the enable
condition of the comparators
(pins 3 get @+). Then the
“memory contents monitor”
always shows the contents of
the memory bus at the time it
was last used with the desired
address.

Adding a Longer Clock

It is often necessary to
obtain a clock signal which is
longer than the original
latching clock. In such cases
the longer clock must also
occur during a time when the
latched data is stable, i.e.,
after the CPU is finished with
its addressing of the output
latch. One way to generate
such a delayed longer clock is
to use the analog timing
elements called “one shots”
— such as the 74122 or
74123 circuits. In order to do
so, however, you will have to
calculate a bunch of resistor

Fig. 3. Generating a longer clock digitally.

EXTWRITE + .~
7404 7400
|[> 2
LOGIC+
| SET-RESET FLAG ! 5 15 I
FROM s i CLR __ PRE CLR __ PRE
- 3 o+ 2
WRITE- | b VIS I as—eH v o+
3 13
K- Q- K- Q-
9
iF s I
I l CLK CLK
4 \ / 12
| | J 74109
| _] DIGITAL
— SYNCHRONOUS
ONE - SHOT
_-ox
o+ 0- 0-
FROM
FIG |
and capacitor values for the illustrates how the original WRITE- pulse, but

delays, put in your nearest synchronous operation the delay is fixed and
approximations and cross produces an auxiliary pulse synchronous due to the fact
your fingers. A better way to (Q+ of flip flop B) whichis2 that the actual clock (or its
achieve a deterministic clock periods in length. This inverted e derivative) is used
system is to use entirely clock is delayed with respect to cause all state changes of
“synchronous’ logic concepts to setting the flag by the the flip flops.
and delays implemented with
gates and flip flops.

Fig. 3 and its
corresponding timing diagram

Fig. 415 a detll of ‘onc s2s LML LML LU LU

method to cue a long but
delayed clock pulse. The WRITE + M

Fig. 4. Timing: external write vs. buffer write.

basic idea is to set a flag (the
SR flip flop formed by the
two NAND sections and etoF FLac + []

labelled “flag”) when the [/0

write occurs. This flag [
Q+OF A

becomes data which will get

clocked synchronously into J_—l_
Q+OF B

flip flop A, then into flip flop
B. The output of flip flop B is
used to enable a reset pulse to WRITE+ ([B _I—]_I—T
the flag, which brings the —

: : TIME
system into a stable quiescent SEPARATION
state until the next output
WRITE- pulse occurs. The
timing diagram of Fig. 4 M = .0R

BUFFER WRITE

«+— EXTERNAL WRITE

Son of Motorola
or,the $20 CPU Chip

Would you believe

another microprocessor? You bet. The

calculator firm, MOS Technology of Norristown, Pennsylvania,
has just recently announced a new microprocessor which
combines plug in compatibility with the Motorola 6800 and a
new instruction set to come out with yet another option for

microprocessor users —

but at a price of $20 in single

quantities. Here comes the under $200 processor kit? Not
quite yet, but maybe within a year or two. (It’s already to the
point where the sheet metal and transformer iron of ¢ home
computer often cost more than all the silicon products which
. this new low on CPU prices just compounds
the problem.) It may be three to six months hefore you see
one of these new MCS6501 processors designed into a kit, so
Dan Fylistra in his article covers quite a few details of the

make it work . .

Motorola
Motorola.’

>

We thought that the “‘age
of the affordable computer”
had arrived when you could
buy a microprocessor chip for

$150. But the potent
combination of new
technology and free

enterprise has brought about
developments beyond our
wildest expectations.

So now you can buy your
microprocessor brand new, in
single quantities, for $20. The
new offering is from MOS
Technology, Inc., and is

pin-compatible, but
softwarc-incompatible with
the Motorola 6800

microprocessor. Although it
will be a while before the new
chip finds its way into
rcady-to-build kits for the
hobbyist (after all, the first
Motorola 6800 kits have just
becn announced), the news
should be of interest to
nearly cvery home brew
computer experimenter. So
here’s a comparison of the

56

6800 by

way of comparison

Motorola 6800 and the MOS
Technofogy 6500 series,
based on the information
presently available. If you
aren’t already familiar with
the Motorola microprocessor,
don’t worry — we'll cover its
major features in the course
of the comparison.

Hardware Comparison

Both the Motorola 6800
and the MOS Technology
chip are TTL-compatible
devices, operating from a
single five volt power supply.
Like carlier microcomputers,
such as the Intel 8008, 8080
and National PACE, these
processors make use of a
bidirectional data bus, to
which both memory and
input/output devices may be
connected. However there are
no special input/output
instructions in the instruction
repertoire of either the
Motorola or MOS Technology
microprocessors. Output of a

with

“Son of

character, for example, is
accomplished by storing a
value into a certain memory
location, which is in reality a
special register inside an
external 1/O interface chip,
connected to the data bus
just like any other RAM or
ROM chip.

Motorola supplies a
Peripheral Interface Adapter
(PIA) chip which connects to
the data bus for 8-bit parallel
1/0, and an Asynchronous
Communications Interface
Adapter (ACIA) for bit-serial
input/output. (The ACIA is
simply a type of UART, as
discussed in Don Lancaster’s
September article on serial
interfaces. It may be used to
connect a teletype or CRT
terminal to the micro-
computer system.) MOS
Technology plans to supply a
similar set of chips.

Most of the time, data is
being transmitted between
the microprocessor and the

by

Daniel Fylstra
Associate Editor, BY TE
25 Hancock St.
Somerville MA 02144

memory chips over the data

bus. But the processor can
also disconnect itsclf from
the bus, enabling, for

example, a data transfer to
take place directly between
an 1/O device and memory.
Both the Motorola 6800 and
the MOS Technology chip
have three-state buffers for
the eight data lines, enabling
them to disconnect from the
bus in this fashion. But the
Motorola also has three-state
buffers on its 16 address
lines, whereas the MOS
Technology chips do not.

This would be used, for
example, in a floppy disk
controller which is capable of
transferring a whole block of
many bytes of data in
response to a single command
from the CPU. The controller
would present a series of
addresses on the 16 address
lines, and data bytes on the
data lines, causing the bytes
to be stored in a scries of
locations in some RAM chip
on the bus; all this would
take place in the intervals
when the CPU itself was
disconnected from the bus.

As a practical matter,
however, small systems do
not require this kind of direct
memory access (DMA)
capability, and larger systems
with more devices on the bus
will require buffers on the

Ready or not, here | come:
6800 to 6501.

address lines to supply the
necessary power — and these
buffers may as well have
threc-state outputs.

The other major hardware
difference between the
Motorola 6800 and the MOS
Technology 6500 series is
that the MOS Technology
chip has an 8080-style Ready
line, whereas the Motorola
6800 does not. The Ready
line is used to make the
microprocessor wait for a
variable length of time before
going on with the execution
of an instruction. This feature
makes it easy to use the less
expensive memory chips,
especially for Programmable
or Erasable Read-Only
Memory (PROM or EROM)
which are not as fast as the
CPU itself. It is possible to
use such devices with the
Motorola 6800, of course, by
stretching out one of the
clock phases to as long as five
microseconds. But the
availability of the Ready line
on the MOS Technology chip
is certainly a convenience,

and allows you to use
extremely slow memories if
you wish.

The MCS6501, first in the
MOS Technology 6500 serics,
requires the same type of
external clock as the
Motorola 6800. But for $25
you can have the MCS6502,
which includes an on-the-chip
clock, driven by an external
single phasc clock or an RC
or crystal time base input. As
the manufacturer suggests, it
is probably cheaper in an
original design to use the
MCS6502 than to provide the
external logic to gencrate the
two-phase clock.

To sum up, both the
Motorola 6800 and the MOS
Technology have comparable
features with some
differences. In terms of
hardware differences, the

MOS Technology Ready line
is probably more valuable
than the three-state address
line buffers available on the
Motorola 6800.

A final hardware
advantage possessed by the
MOS Technology chip is
speed. The Motorola 6800
cycle time is one microsccond
(1 MHz clock rate), and a
typical instruction takes
about three clock cycles.
While the cycle time of the
MOS Technology chip is
nominally the same, the
company has hinted broadly
that the chip can be run at
clock rates of 2 or even 3
MHz. Of course, one would
have to use faster and more
expensive memory chips to
take advantage of this
increased speed.

In addition, certain critical
instructions take fewer cycles
on the MOS Technology chip.
An STA (store accumulator)
instruction referencing an

Table I. Functionally equivalent

instructions for both the
Motorola 6800 and MOS
Technology MCS6501

microprocessors. The mnemonics
are Motorola's. Of course, these
instructions operate on the A
accumulator only in the
MCS6501, but can address either
accumulator in the Motorola
6800. The BIT instruction (*) has
a different effect on the V and N
processor flags in the MCS6501.

ADC DEX
AND EOR
ASL INC
ASR INX
BCC JMP
BCS JSR
BEQ LDA
BIT* LDX
BMI LSR
BNE NOP
BPL ORA
BVC PSH
BVS PUL
CLC ROL
CcLl RTI
CLvV RTS
CMP SBC
CPX SEC
DEC SEI

STA

STX

TSX

TXS

arbitrary location takes 4
cycles, versus 5 for the
Motorola, and a JSR (jump to
subroutine) instruction
requires 6 cycles, as opposed
to 9 on the 6800. Conditional
branches take 4 cycles on the
Motorola microprocessor,
while they take 2 cycles if the
condition is false and 3 if it is
true on the MOS Technology
chip. Because these
instructions are so frequently
exccuted in most programs,
the 6500 series should enjoy
a performance cdge over the
Motorola 6800 even at the
same clock rate.

Software Comparison

We can treat the
instruction set architecture of
the two processors in two
stages, first considering the
facilities for manipulating
data and then dealing with
the facilities for manipulating
addresses. Both features are
important to the overall
cffectiveness of the processor
design.

Data Manipulation

The instructions for
manipulating data are quite
similar on the two processors.
There are two major
differences: First, the
Motorola 6800 has two 8-bit
accumulators, A and B, while
the MOS Technology chip has
only one accumulator, A.
Sccond, in addition to
conditional branches for
unsigned comparisons, the
Motorola 6800 has special
branch instructions for signed
comparisons, but the MOS
Technology chip does not.
(The signed comparisons treat
the two values as positive or
negative numbers in two’s
complement notation, in the
range —128 to +127. For
example, —1 is represented as
281 = 11111111, An
unsigned comparison would
treat this quantity as the
largest possible (8-bit) value,
whereas a signed comparison
would treat it as smaller than,
say, zero.)

Table | lists the
instructions which are the

We thought that the ‘‘age
of the affordable computer’
had arrived when you could
buy a microprocessor chip
for $150. But the potent
combination of new
technology and free
enterprise has brought
about developments
beyond our wildest
expectations.

samc for both processors,
while Table 11 lists
instructions on thc Motorola
6800 which must be replaced
by more than one instruction
on the 6500 series
microprocessors.

Some of the instructions
omitted on the MOS
Technology chip are merely
incidental; others are more
serious. The lack of signed
comparisons represents a real
inconvenience in many
applications. The lack of a
simple ADD instruction
means that an operation such
as A = B + C on one-byte
operands must be coded with
a “Clear Carry” (CLC) as in
this example:

CLC

LDA B
ADC C
STA A

on the MOS Technology chip.

On the other hand, a
computation such as A = B+
C — D could be coded as

CLC

LDA B
ADC C
SBC D
STA A

assuming that the inclusion of
“carry” in both operations is
indeed desired.

Less serious but still
irritating are the absence of
the ROR (rotate right), NEG
(negate) and COM

57

Table I1. Motorola 6800 instructions which have no direct equivalent in

the MCS6501.

The information in this table is taken from MOS

Technology documentation on the 6500 series.

ABA
ADD
BGE loc
BGT loc

BHI ioc
BLE ioc

BLS loc
BLT loc
BRA

BSR

CBA

CLR [ioc]
COM [loc]
DAA

DES

INS

LDS loc
NEG [loc]
ROR [loc]

SBA
SEV
STSloc
sSuB
SWI

TAB
TAP
TBA
TPA
TST
WAI
op disp, X

Motorola 6800 Instruction

[indexed addressing mode]

No B accumulator
CLC, ADC

BMI *+6, BVC loc, BVS *+4, BVS loc
BMI *+6, BVC *+6, BVS *+6, BVC *+4,

BNE loc
BCS *+4, BNE loc

BEQ loc, BMI *+6, BVS loc, BVC *+4,

BVC loc
BCS loc, BEQ loc

BM! *+6, BVS loc, BVC *+4, BVC loc

JMP

JSR

No B accumulator
LDA #0, [STA loc]

[LDA loc], EOR #$FF, [STA loc]

Replaced by SED
Use PHA

Use PLA

LDX loc, TXS

EOR #$FF, ADC #1 [or LDA #0, SBC loc]
(LDA locl, PHP, LSR, PLP, BCC *+4,
ORA #$80, [STA loc)

No B accumulator
LDA #1, LSR
TSX, STX loc
CLC, SBC

BRK saves state without transferring

control

No B accumulator
PHA, PLP

No B accumulator
PHP, PLA

BIT #0

JMP *

LDY #disp, op ®loc, Y
[indirect indexed addressing mode]

Equivalent 6500 Series Sequence

{(complement) instructions, as
well as single-byte
instructions to increment and
decrement the accumulator.
Probably the least significant
difference is the omission of
the B accumulator on the
MOS Technology chip. This is
more than made up for by
the availability of an extra
index register (see below).

All in all, the Motorola
6800 comes out ahead when
considering facilities for
manipulating data, the most
important point in its favor
being the availability of the
signed comparisons.
Generally speaking, however,
the basic instructions
available on the two
processors are quite similar.

58

Address Manipulation

The greatest architectural
differences between the two

processors lie in their
facilities for manipulating
addresses, or their

“addressing modes’” — and
here the MOS Technology
chip has much more to offer.

The two microprocessors
are the same in one respect:
both have special ‘‘short
forms” of most instructions
for referencing the first 256
bytes of memory. This is
called “direct addressing” on
the Motorola 6800, and “‘zero
page addressing’’ on the MOS
Technology chip. As an
example, the most general
LDA (load accumulator)

instruction is three bytes
long; the second and third
bytes form the effective
address {0-65535), which can
reference any byte in
memory. The short form of
the LDA instruction,
however, is two bytes long;
the second byte forms the
effective address (0-255) of a
byte in the first “page” of
memory. The “short form”
instructions generally take
one fewer clock cycle to
execute, since only two
rather than three instruction
bytes must be fetched from
memory.

The major differences
between the two processors
lie in the important area of
indexed addressing. The

Motorola 6800 has a single
16-bit index register, called
X. Essentially all instructions
have an indexed addressing
form, in which a one-byte
displacement (0-255) is added
to the address in the index
register to form the effective
address. The MOS
Technology chip, on the
other hand, has two 8-bit
index registers, called X and
Y. All of the computational
instructions have indexed
addressing forms in which
either a one- or two-byte base
address is added to the
contents of either the X or
the Y register to form the
effective address.

Which approach is the
better one? For the purpose
of accessing clements of
arrays, or tables of many
identical elements, the MOS
Technology chip comes out
way ahead. This is partly due
to the lack of certain critical
instructions on the Motorola
6800, such as an instruction
to add the contents of an
accumulator to the index
register, or even to transfer
the value in the accumulators
to the index register.

Suppose that we wish to
add the [th element of an
array, Sy, to another variable,
T. In general, the array may
be located anywhere in
memory, and the subscript |
may be the result of some
calculation done in the
accumulators. Letting S
denote the address of the
zeroth element (the base
address) of the array, and
assuming that the value of the
subscript 1 is already in the A
accumulator, consider the
instructions necessary to
accomplish this operation on
the two processors.

The biggest difference is in
the area of addressing
modes, an area where the
6500 series devices far
outshine the Motorola 6800.

On the Motorola 6800,

our first try vyields the
following:
SHI EQU S/256%256

CLR B 1

ADD A #S-SHI Calculate the

ADC B #5/256 indexed address

STA ATEMP+1

STA BTEMP

LDX TEMP d

LDA AQ, X Perform desired

ADD AT computation

STA AT J
This instruction sequence to the same problem on the
requires 19 bytes, counting MOS Technology chip:
the two-byte temporary
TEMP and assuming that
TEMP and T are located in TAX
the first 256 bytes of LDA 5, X
memory. Since the array S ADD T
could be anywhere in STA' T
memory, we were unable to
use the displacement field of This instruction sequence
an instruction with indexed requires only seven bytes.

addressing for the array base
address, and instead we had
to add the array base to the
index (in double precision),
store the result in memory,
load it into the index register,
and finally reference the
array element Sj.

We can improve on this
with the aid of a little lateral
thinking. Noticing that the
6800 is actually capable of
adding a one-byte quantity to
a two-byte address, but only
in a storage reference with
indexed addressing, we will
split up the base address into
two parts to arrive at a better
solution:

SHI EQU S/256*256
STA A TEMP+1
LDX TEMP
LDA A S-SHI, X
ADD AT
STA AT

TEMP FDB SHI

This instruction sequence
requires only 12 bytes, under
the same assumptions.

Even so, we can’t match
the simplicity of the solution

Only four bytes were needed
to reference the element Sy,
versus eight for the Motorola
6800.

How important is this
improvement? It is certainly
significant, since arrays and
tables are used so frequently
in programs of any size. On
the other hand, in many
applications it is only
necessary to reference each
element of an array in turn; it
is not necessary to access
elements randomly based on
a computed subscript. In this
case, we can obtain better
code on the Motorola 6800
by first loading the array base
address into the index
register, and then referencing
each element directly (i.e.,
with a zero indexed address
displacement), incrementing
the address in the index
register using the [NX
instruction to proceed from
element to element. We are
therefore using the 6800’s
index register to hold a
pointer or indirect address
rather than an index.

An even more important
difference between the two
microprocessors in that the
MOS Technology chip
possesses Iwo (8-bit) index

registers, X and Y, whereas
the Motorola 6800 has only
one (16-bit) index register X.
As we shall see, two index
registers are far more valuable
than two accumulators. This
is because programs
frequently manipulate two
(or more) tables, or other
indirectly addressed variables,

at the same time. As an
example, we will consider
perhaps the simplest

operation of this type, the
problem of moving a string of
bytes from one area of
storage to another. Assume
that 20 bytes, starting at the
location denoted by the
symbol FROM, are to be
moved to the area starting at
the location denoted by the

symbol TO.

On the Motorola 6800, we
can write the following
routine:

LOOP LDX FRPTRTFetch
LDA A Q, X |FROM
LDX TOPTRT move
STA AOQ,X] TO
INC FRPTR" change
INC TOPTR pointers
DEC COUNT]

BNE LOOP Test

continuation

FRPTR FDB FROM
TOPTR FDB TO
COUNT FCB 20

This routine requires 24
bytes, including the working
storage locations, and
executes in 820 clock cycles.
This routine can move up to
256 bytes.

On the MOS Technology
chip we have the following
solution:

LDX #0

LDY #0

LDA FROM, X
STA TO,Y
INX

INY

DEC COUNT
BNE LOOP

LOOP

COUNT FCB 20

Two index registers are
far more valuable than
two accumulators.

This routine requires 17
bytes, and executes in 404
clock cycles. The
improvement in speed clearly
depends on the number of
bytes to be moved; each pass
through the loop in the
Motorola 6800 routine takes
41 clock cycles, while each
pass through the loop in the
MOS Technology routine
takes 20 cycles. (The MOS
Technology routine is also
limited to moving at most
256 bytes.)

Once again the degree of
improvement is substantial,

and the improvement is
1 C]Vgs O Reset 40
2 JHalt TSC[39
3 e N.C.| 3 38
4 C]IRQ ®2[3 37
5 CJVMA DBE[36
6 LI NMI N.C.3 35
7]8A R/W [34
8 C]vee po[3 a3
9 a0 o1 32
10 . A1 D23 31
11 a2 D33 30
12] A3 D43 29
13] A4 D53 28
14] A5 06 [27
15] A6 p7[3 26
16 CA7 A15[25
17] A8 A14[24
18 [A9 A3 23
19 JaAa10 At2[22
20 A Vgg 3 21

Fig. 1. The pin assignments of the
Motorola 6800 (and by
implication, the MOS Technology
MCS6501). Vgg is ground (0
volts) and Vg is +5 volts. The A
lines are address outputs, and the
D lines are bidirectional tristate
data bus lines. For details see the
Motorola and MOS Technology
documentation of these parts.

59

7 o)
ACCA Accumulator A
7 0
ACCS8 Accumulator B
15 0
X Index Register
15 0
PC Program Counter
15 o]
SP Stack Pointer
7 0

11T [HII[N[Z|V]C Register

OQOvaerflow

Zero

Negative

Interrupt

Condition Codes

L Carry {(From Bit 7)

Half Carry

(From Bit 3)

Fig. 2. The programmer’s view of the 6800 CPU. This diagram,
excerpted from the Motorola 6800 documentation, shows the various
registers of the CPU including the processor’s condition code register.
Note the similarity to the MCS6501 in Fig. 3.

significant because this type
of problem arises so
frequently in large programs.

The MOS Technology
chip has some additional
addressing modes not
possessed by the Motorola
6800. First, there is a ‘‘short
form” for instructions with
simple indexed addressing if
the array base address is in
the first “‘page’’ (256
locations) of memory. This
feature is of somewhat

One unfortunate feature
of the MOS Technology
chip’s many addressing
modes is that they do
not apply consistently
to all instructions.

60

limited use except in very
small programs, since only a
few small arrays can actually
be placed in the first 256
locations. Of greater interest

the second byte specifies the

address of a two-byte
constant in the first page of
memory. This two-byte

constant then becomes the
“array base address,”’ and the
contents of the Y register are
added to this constant to
form the effective address.

which is too large to place in
the first page of memory, one
can trade space for time by
placing the array base address
in the first page of memory,
and then referencing elements
of the array using indirect
indexed addressing. Each
element reference takes less
space {two bytes instead of
three) but more time (five
cycles instead of four) than
would be required for
ordinary indexed addressing.

There are two other
addressing modes on the MOS
Technology chip which are
somewhat less useful. The
first is called “indexed
indirect” addressing: Here the
contents of the X register are
added to a one-byte base
address to obtain the address
of a two-byte constant in the
first page of memory. The
contents of this two-byte
constant then becomes the
effective address.
Unfortunately this addressing
mode is not available for the
JMP instruction, where it
would be most useful: It
could be used to implement a
“jump table,” or a
“computed GO TO" or
“CASE statement” in some

two other
addressing modes are used
instructions:

is the so-called ‘“indirect This addressing mode is very high-level languages.
indexed” addressing mode. useful: In a program with Finally,
Instructions with this type of many references to a
addressing are two bytes long; particular array or table with branch

15 ? 0

.

| [__________] I/O REGISTERS

15 7 0

e

Lo [o] scoumuaron

15 7 Q

.

Lo

15 7 0

B

L

15 7 Q

f

L PCH I PCL | PROGRAM COUNTER

15 7 0

STACK POINTER

PROCESSOR STATUS REGISTER, “P”

L— ZERO

CARRY (BIT 7}

INTERRUPT DISABLE
DECIMAL MODE

BREAK COMMAND
FORTHCOMING FEATURE

OVERFLOW

Sulid line Indicates currently avaslable features
Dashed ine indicates forthcoming members of family

NEGATIVE

Fig. 3. The programmer’s view of the MCS6501 CPU. This diagram,
excerpted from the MOS Technology 6500 series preliminary documen-
tation, shows the various registers of the CPU. Note the similarity to

the Motorola 6800 diagram in Fig. 2.

Table III. Instructions, addressing modes and execution times for the
Motorola 6800 processor. Execution times are in ‘‘machine cycles”
which for a 1.0 MHz clock take 1.0 microsecond aplece. This table is

excerpted from Motorola documentation on their processor.

-l k-]
g . s .
] ° & e .
S .. %z S .3 . % T 3
g o o c x 2 2 - @ 1 E x 2
T 9 E $ s & 3 = S 8 E ¢ & ¢ 3
8 ¢ Ea 5 EE g 8 g E & & EE
ABA . . 0 . . 2 e INC 2 . . 6 7 e
ADC . 2 3 4 5 . . INS 4
ADD x » 2 3 4 S5 e . INX 4
AND X e 2 3 4 5 o . JMP . . . 3 4 .
ASL 2 . » 6 7 . . JSR . . . 9 8
ASR 2 . . 6 7 e . LDA X . 2 3 4 5
BCC e 4 LDS . 3 4 5 6
BCS 0 s 4 LDX . 3 4 5 6 .
BEA « e e o e o 4 LSR 2 o o 6 7 o
BGE 4 NEG 2 e . 6 7 e
BGT e e s o e e 4 NOP e s o e e 2
BHI . .) . . . 4 ORA X . 2 3 4 5 .
BIT X e 2 3 4 5 . . PSH 4
BLE o 4 PUL e 4
BLS e« e o s s o 4 ROL 2 e o 6 7 e
BLT + 4 ROR 2 e . 6 7 e
BMI e e 4 RTI « 10
BNE 4 ATS . * o . . 5
BPL 4 SBA 2
BRA » e o o » e 4 SBC X o 2 3 4 5 o
BSA » e o o o o 8 SEC e o o o o 2
BvC e o o o o o 4 SEI e e s e e 2
BVS ¢ o o o o o 4 SEV e ¢ ¢ e o 2
CBA e 2 . STA X . e 4 5 6 .
cLC » o e o e 2 STS e e 5 6 7 e
cLi * & e o & 2 » STX e« e 5 6 7 e
CLR 2 . . 6 7 . . sus X . 2 3 4 5 @
CLv ¢ o o o s 2 e Swi e o e o e 12
CMmP X ®» 2 3 4 5 e e TAB e o o o e 2
COM 2 e e 6 7 e o TAP e s 8 o e 2
CPX ¢ 3 4 5 6 e e TBA e ¢ o e o 2
DAA ¢« o 8 e e 2 » TPA a e o o s 2
DEC 2 e e 6 7 o @ TST 2 e e 6 7 o
DES s s 8o e e 4 o TSX e o o e o 4
DEX *» e e o e 4 @ TSX e e o o o 4
EOR X e 2 3 4 5 s o WAI e s o s o 9
NOTE Interrupt hime is 12 cycles from the end of
the instruction being executed, except following
a WA instruction. Then it is 4 cycles.
‘“Relative’’ addressing, space savings is realized in
available on both the comparison to processors
Motorola and the MOS such as the Intel 8080 which

Technology processors, s
used with the conditional
branch instructions, which
are two bytes long. The
second byte of such an
instruction specifies a positive
or negative displacement in
two’s complement notation
(—128 to +127). The
destination address of the
branch is taken to be the
algebraic sum of the address
of the byte immediately
following the branch
instruction and this
displacement. Of course, this
means that it is possible to
branch directly to a location
within only a certain limited
distance from the branch
itself; but, more often than
not, the range of —128 to
+127 bytes is adequate, and a

have only three-byte branch
instructions. If necessary, a
conditional branch can
always transfer to a
three-byte unconditional JMP
instruction, which can jump
to any location in memory.
On the MOS Technology
chip, a JMP instruction can
also specify ‘‘absolute
indirect” addressing: In this
case, the second and third
bytes of the instruction
specify the address of a
two-byte constant anywhere
in memory, and the contents
of this two-byte constant
becomes the destination
address for the jump.

One unfortunate feature
of the MOS Technology
chip’s many addressing modes
is that they do not apply

Which processor comes out ahead overall? To a great
extent it depends on your point of view: Systems
programs are better on the MOS Technology machines;
applications programs would tend to come out ahead

on the Motorola 6800.

consistently to all
instructions. For example,
the binary arithmetic
instructions are available with
essentially all addressing
modes, but the unary
arithmetic instructions are
missing the Y-register and
indirect modes, and the BIT
instruction is missing several
others as well. This not only
makes programming more
difficult, since one must
constantly check to see which
instruction forms are legal,
and program around the
exceptions; it also makes the
design of an assembler or
compiler more complicated.
A compiler, in particular,
would require complex logic
to determine when it could
and could not take advantage
of the addressing modes.

In summary, the MOS
Technology chip comes out
ahead when considering
facilities to manipulate
addresses, and in many cases
the advantage realized due to
the availability of the extra
addressing modes s
substantial. The greatest
failing of the 6500 series
design is the inconsistent
availability of the addressing
modes from instruction to
instruction.

Which processor comes
out ahead overall? This is
very difficult to judge. It
depends partly on whether
the programs being executed
on the microcomputer are
“system” programs, such as
compilers, interpreters and
1/O controllers, which tend to
make heavy use of address

Table IV. Instructions, addressing modes and execution times for the
MOS Technology MCS6501 processor. Execution times are in ‘‘machine
cycles” which for a 1.0 MHz clock take 1.0 microsecond apiece. This
table is excerpted from MOS Technology documentation on their

processor.
H]

s, % ks : 5,50 xr wsl
N » 2588%.9 s s T e
Egc€ec 55328 ¢3 §jceeaiispr s
jJEgeg238Ez2 g §ECS2 2282328 F 3
<EJI&dQqEc 2 < Ef§RaqdEegizg

ADC 2 3 4 4 44 6 5° JSR 8 .

AND 234 4 4° 4 6 5° LDA 234 4 4* 4 6 5

ASL 2 . 68 6 7 . LDX 23 . 4 4 4°

BCC 2 Loy 3 4 4 4

BCS 2 LSR 2 5 6 6 7

BEQ 2 NOP .2

8T 3 4 QRA 23 4 4 4° 4 & 5

BMI 2 PHA 3

BNE 2 PHP 3

BPL 2 PLA 4

BRK PLP 4

BVC 2 ROL 2 5 6 & 7

BVS L2 RTI 6

cLC 2 RTS 6

CLD 2 SBC 2 3 4 a4 4% 4 6 5

CL) 2 SEC 2

CLV 2 SED 2

cmP 23 a 4 474" 6 5 SEI 2

CcPX 2 3 a4 STA 3 a 4 5 5 6 6

cey 3 4 . STX 3 a 4

DEC 5 6 6 7 sTY 3 4 4

DEX 2 TAX 2

DEY . 2 TAY 2

EQR 2 3 4 4 4% 4° 6 5 TSX 2

INC 5 6 6 7 TXA 2

NX . . 2 TXS 2

INY 2 TYA 2

JmP . 3 s

© Add one cycle if indexing across page boundary

** Add one cycle f branch is taken, Add one additional i branching operation crosses page boundary

61

In favor of the 6500 series
are price and speed; in
favor of the 6800 are
availability and very good
Motorola documentation.

manipulation facilities; or
application programs, which
make greater use of data
manipulation facilities. One
would expect better results in
the former case with the MOS
Technology chip, and in the
latter case with the Motorola
6800. One would also expect
the MOS Technology chip to
enjoy an advantage on large

programs, since larger
programs inevitably tend to
make wuse of tables,

subroutines with parameters,
and other forms of address
manipulation.

All in all, the Motorola
6800 comes out ahead
when considering facilities
for manipulating data . . .
but nevertheless the two
processors are quite similar.

Against these factors one
must weigh the availability of
an excellent applications
manual, proven software, and
kits for the hobbyist for the
Motorola 6800
microprocessor. At the same
time, the MOS Technology
chip’s price can’t be beat, and
its speed advantage may be
important for some purposes.

At the time that this
article is being written (late
August), the MOS
Technology chip is just a
promise: The chip should be
available for purchase at the
Western Electronics
Conference (Wescon) in San
Francisco, September 16-19.
By the time you read this, the
chip itself should be in the
hands of at least a few
hobbyists. Let's have some
letters to BYTE describing
initial experiences with the
new microprocessor! Send
your comments to the author
or to the editor of BYTE. In
the meantime, we'll be
waiting to see what new
surprises the semiconductor
houses and kit manufacturers
have in store for us. And
BYTE will try to keep you up
to date on the latest
developments in the world’s
hottest, fastest-moving hobby
— home computers!

Table V. MCS6501 microprocessor instructions, listed in alphabetical
order by mnemonics. The instructions with asterisks are similar to the
same mnemonics in the Motorola 6800 processor.

*ADC Add with Carry to Accumulator
*AND “AND" to Accumulator
*ASL shift Left One Bit (Memory or Accumulator}

*BCC
*BCS
*BEQ
*BIT
*BMmI
*BNE
*BPL
*BRK
*BVC
*BVS
*CLC
CLD
*CLI
*CcLv
*CMP
*CPX
CPY
*DEC
*DEX
DEY
*EQR

Branch on Carry Clear
Branch on Carry Set
Branch on Zero Result
Test Bits in Memory with Accurnulator
Branch on Result Minus
Branch on Result not Zero
Branch on Resutt Plus
Foree an Interrupt or Break
8ranch on Overflow Clear
Branch on Overtlow Set
Ctear Carry Flag
Clear Decimal Mode
Clear Interrupt Disable Bit
Clear Overflow Flag
Campare Memory and Accumuiator
Compare Memory and Index X
Compare Memory and Index Y
Decrement Memory by Gne
Decrement index X by One
Decrement Index Y by One
Exclusive-or Memory with Accumulator
*INC Increment Memary by One
*INX Increment X by One

INY Increment ¥ by QOne
*IMP Jump to New Location

*JSR Jump to New Location Saving Return Address
*LDA Transfer Memory to Accumulator
*LDX Transfer Memory to Index X
LDY Transfer Memory to Index Y
*LSR Shift One Bit Right {Memory or Accumulator}

NOP Do Nothing - No Operation
*@RA “OR" Memory with Accumulator
*PHA Push Accumulator on Stack
PHP Push Processor Status on Stack
*PLA Pull Accumulator from Stack
PLP Pull Processor Status from Stack
*ROL Rotate One Bit Left (Memory or Accumulator)

*RTI
*RTS
*$8C
*SEC
SED
*SEI
*STA

Return From Interrupt
Return From Subroutine
Subtract Memory and Carry from Accumulator
Set Carry Flag
Set Decimal Mode
Set Interrupt Disable Status
Store Accumulater in Memory
*STX Store index X in Memory
STY Store Index Y in Memory
TAX Transfer Accumulator to Index X
TAY Transfer Accumulator to Index Y
*TSX Transfer Stack Register to lndex X
TXA Transter Index X to Accumulatar
*TXS Transfer Index X to Stack Register
TYA Transter Index Y to Accumulator

62

‘some

More information on the
6500 series microprocessors is
available from:

MOS Technology, Inc.
Valley Forge Corporate
Center

950 Rittenhouse Rd.
Norristown PA 19401
1-215-666-7950

Information on the
Motorola 6800 micro
processor is available from
many local distributors, and
from:

Motorola Semiconductor
Products Inc.
Box 20912
Phoenix AZ 85036

GLOSSARY
BYTE’s Board of Resident Inexperts (BRI) has ruled the following
terms to be worthy of further explanation. This list is probably not
complete — readers who would like further explanation of terminology
are invited to write a letter to the editor identifying terms which need

such treatment.

8-Bit Bidirectional Bus — a “‘data
bus’ which simultaneously
transmits eight separate signals
corresponding to one byte’s
worth of information. The bi-
directional aspect means that
either tristate, open collector or
similar form of output stage is
used, so that multiple drivers can
be tied in common with only one
such driver active at any time. A
given board, CPU, output
terminal or other logic circuit can
then interface to the bus (with
addressing and master
timing control intelligence) for
both sending and receiving data.

Effective Address — whenever the
computer’s CPU addresses
memory, it must send out 16 bits
(for Motorola 6800, MCS 6501 or
other similar chips). The way in
which these 16 bits are derived
can often be a fairly elaborate
procedure, as well as a simple
absolute expression. Whatever the
method of derivation, however,
the result is a 16-bit value which
is used to address memory, called
the effective address because it is
what actually does go out to
memory regardless of the details
of the internal codes of the
program.

Instruction Repertoire — the
repertoire of a musician is the set
of all pieces he or she can play
well in concert. Well, the
repertoire of a computer — its
instructions — is the list of all the
instructions it can perform and
their definitions.

Subscript — in typical high order
languages, a means is provided to
specify elements of arrays of data.

This is done by subscripts to
indicate the “nth” element for
subscript “n”. Use of such
notation presents the problem of
calculating the effective address
of the actual data being
referenced. In the context of
evaluating a CPU, attention spent
on the problem of calculating
effective addresses from
subscripts is very fundamental.

Time Base — whenever it is
necessary to examine the relative
timing of different signals, it is
necessary to have a reference
point and a scale for making the
measurement. This is the “‘time
base” of the reference.

TTL compatible — one of the
largest families of integrated
circuits is the line of
‘‘transistor-transistor logic”
devices, TTL for short. A TTL
compatible line of some non-TTL
device can “‘drive” one or more
TTL loads if it is an output, or
can receive a TTL device’s output
if it is an input. There are various
cautions to be observed -
probably worthy of a BYTE
article — when different types of
logic are interfaced, but the
phrase “TTL compatible” usually
means that the compatible device
can be wired directly to TTL
interconnection pins safely in at
least one configuration.

Unary — this term is derived from
the Latin roots of ‘“‘oneness.” A
unary operation is an operation
which has but one operand, for
example the complement opera-
tion of a Motorola 6800 CPU.

Monitor 84 —

Your Own
Pseudo
Instructions

Monitor 8 is a program which was written by people at the
now defunct Microsystems International semiconductor opera-
tion. The program was published in the MF8008 Applications
Manual, 1974 Edition, Bulletin 80007, by Microsystems
International, Ltd., Box 3529 Station C, Ottawa, Canada, K1Y
4J1. I'm working at the problem of getting permission to
reproduce the copyrighted materials in sections C (User’s
Guide) and D (Software Listing) for the benefit of the 8008

hackers

in BYTE’s readership. Monitor 8

is a ‘systems

program’’ designed to make life easier for you by performing
various little ‘‘utility” functions like editing octal data in
memory, loading and dumping to cassette tape, copying data
from place to place in memory, translating machine codes to
mnemonics, setting and clearing break points, etc. The people
who have the applications manual of MI and use Monitor 8 are

usually enthusiastic about it ...

witness the following set of

comments sent in by Willard I. Nico concerning use and
extensions of the program as it was printed in the original

manual.

by

Willard 1. Nico

Delta t

11020 Old Katy Road, Suite 204
Houston TX 77043

64

I've fallen in love with
“Monitor 8”. The noble
effort by Programmer Tom of
Microsystems International
has made it easier and more
fun to write, edit and
manipulate programs. But the
Monitor can be even more
fun, more enjoyable and
more useful if you get inside
its little head and stir things
up a bit.

Roll Your
Instruction!
Say you've got a routine

starting at memory location
012000 that turns on the

Own Pseudo

coffee pot at 6:00 am. Before
you go to bed you type in
XQT 012000 and the
program is running. That’s
great, but if you have a |ot of
routines, you have to look up
the proper starting address if
you forget. How about just
entering COF and let Monitor
8 find it for you?

What you have done is
assign a mnemonic to your
routine and called it with a
pseudo instruction, Pl for
short.

What’s a Pseudo Instruction?

The 8008 CPU recognizes
48 basic instructions.
Counting the variations, there
are 228 in all. In mnemonic
form, LAB is an instruction
recognized by the CPU. But
you can LAC, LAD, LAE and
so on, so the basic instruction
is Lrirp and the different
combinations are variations
of that basic instruction. {r
or r2 can be any one of the
mnemonics A, B, C, D, E, L,
Hor M.)

If you come up with a
three-letter combination,
such as DLP, that is not one
of the variations recognized
by the CPU, but which will
cause something useful to
happen, it's called a pseudo
instruction. When you are
running the Monitor 8
program, DLP will cause the
current location pointer to be
printed on your output
device, and therefore it is a
PI.

So how about COF? Or
TKL (if you have the proper
output device), or EAT, SLP,
RUN? They can all be Pls if

the desired program runs
when vyou type in the
mnemonic. The only
restriction is that your

mnemonic can’t be the same

as one that is recognized by
the CPU. For example, JMP
would be a no-no.

How Do | Implement my
Own Pseudo Instructions?

I thought you would never
ask!

The first thing to do is
relocate the Five Byte Table
that now lives at 004021
through 004155. Since we are
going to add our Pls to this
table, we have to get some
room and it's now hemmed in
by the DPS Output routine
and the Three Byte Table. |
suggest you start it on a fresh
page of memory. Once you
start adding your own Pls
you will get carried away, so
leave lots of room at the end
of the Table.

(The Five Byte Table is
the pseudo instruction
command table for Monitor
8. This table contains 5-byte
groups consisting of three
bytes of pseudo instruction
name followed by a 2-byte
pseudo instruction service
routine address. There is one
5-byte group for each pseudo
instruction that Monitor 8
understands. There is a
psuedo instruction service
routine to execute each
different pseudo instruction.)

Let’'s assume that you
choose 007000 as the starting
point for your new Five Byte

Table. With the Monitor 8
running, type

CPY

004021

004155

007000
and vyour handy COPY
Routine will move the Table
for you.

Now that the Table has

been moved, we need to

change the reference to its

location in the main program.
That's easy too, thanks to
Monitor 8. Type

EDT

%

003153

000

(space)

(space)

007
and your new Table isin use.

Because of automatic

addressing between the Three
Byte Table and Five Byte
Table for the HLT, RST, INP,
OUT and 7?77 symbolic
dumps, a portion of the Five
Byte Table (004127 through
004155) will have to be left
at the old location as well as
being part of the Table at the
new location. The rest of the
old addresses (004021
through 004126) can be used
to store any new routines you
can fit in.

Add a Pseudo Instruction

Now we are ready to add a
new Pl to the Monitor 8
repertoire. Let's take the
COF program at 012000. We
add the mnemonic to the
Five Byte Table, followed by
the lower and then the higher
addresses. | think the easiest
way is with the EDT routine.
Look up the octal equivalents
for the letters C, 0 and F. We
will add the Pl to the Five
Byte Table starting where the
22?7 is and then replace the
7?7 at the end of the Table.
So type
EDT
*

007132
103 “C" (ASCII)
117 40”
106 “F”
000}
012
077 2"
077 “7”
077 “?”
Now that we have a new
Table entry, we need to
extend the number of entries
the Five Byte Table search
routine will go through
before giving up and calling it
a‘no find".

address of COF

routine

The original Table had 022
(octal) listings, so we simply
change it to 023.

EDT
*

003151
023

will take care of it nicely.

Getting Fancy

You can implement Pls for
routines that need a starting
and ending address just as
easily. Just remember to add
“200” to the high address

before recording it in the
Table. As an example,
suppose you want to add
RUN and the routine needs
to know where to run from
and to. If the RUN program
resides at 013000, your new
Table entry would be

122

125

116

000

213
When the Pl is typed in, the
Monitor will respond with a *

to ask for a starting and
ending address. Your RUN
program can then include a
call to 001023 for data at the
first and each succeeding
address and a call to 000362
each time around to
increment the current
location pointer; compare it
to the desired ending address
and return to the Monitor
when finished.

So there you have it. A
new dimension for the fine
Monitor 8 program. Give it a
try and | know you will like
it. HPY PGM.

Gremlin Chasing

The hours spent re-coding
and punching the
Microsystems [nternational
“Monitor 8" software into
my system have been
exceptionally rewarding. To
put it mildly: It's great! To
Programmer Tom, wherever
you are, thanks for an
outstanding effort.

While using the Monitor, |
found a confounding gremlin
popping up inexplicably in
my otherwise operational
programs. Several times |
tracked malfunctions down
to a code that bore no
resemblance to the one | had
originally put there.

Sound familiar? Take
heart! | have tracked the
gremlin to his lair and
herewith formulate the liberal
dose of gremlinocide that will
put him belly-up.

The problem begins with
the Clear Breakpoint (CBP)
routine beginning at 001353.
This routine is addressed by
the CBP pseudo instruction
and is also called by the Set
Breakpoint {SBP) routine.

Memory locations 013365,
013366 and 013367 are used
as a stash for the original
instruction, low address and

the Monitor 8

high address when a
breakpoint is set. Before
setting a new one, or when
clearing the breakpoint, the
instruction is replaced at the
address stashed.

The Clear Breakpoint
routine sets the H and L
pointers at the original
instruction {013365) stash
and retrieves it to the E
register. It then increments
the L pointer to the location
of the high address stash
(013367) and calls the “Set H
and L” routine, entering at
001027.

Theoretically, the high
address is 100 to indicate a
clear breakpoint. This 100 is
tested by loading the D
register with 100 at 001365
and exiting at 001370 if a
match indicates that the
breakpoint is already clear.

The problem is that the
“Set H and L” routine exits
with the current instruction
in the A register, not the H
address as the programmer
anticipated. When the
comparison is made with the
100 previously loaded into
the D register, there will
never be a match (unless the
current instruction is JFC)

and the current instruction
will be replaced with
whatever is at 013365. You
can verify this by noting the
LAM instruction at 001034
after the H and L pointers
have been set.

Since the random codes
occurring in the memory
elements at the stash location
on power-up are usually high
numbers, the instruction
mostly gets changed in a
non-existent location; but not
always. That's what made it
such a once-in-a-great-while
goof.

Of the several ways to fix
the problem, | found one that
does not require any added
programming steps and can
be implemented nicely.

Change 001365 to load
the D register with “065".
Change 001370 to RFZ. Now
when the instruction at the
location addressed by the H
and L stash is tested, nothing
will change unless the
instruction is Breakpoint
Execute call RST 060 (code
065).

Note that instructions
001372 through 001376 can
be NOP’d since they are “do
nothings.” -w.i.n.

65

A Versatile Read Only
Memory Programmer

Volatile or non-volatile? That is the question. Should vour software
be set in logical concrete, or should it be input from a mass storage
device such as audio tape every time you start up the system? For
certain small and frequently used utility software routines, dedicating a
portion of your computer’s memnory address space to PROM is a useful
technique. Peter Helmers supplics this article on a means to overcome
the most difficult hurdle of the technique — programming the PROMs

themselves.

The prime candidates for PROM memory are routines to extend
your microcomputer’s limited instruction set in software, and that
fundamental utility program — the bootstrap loader. For example, on
the next home brew computer I'll wrap up, I have in mind a 63-byte

ROM loader program which will be blown into two 8223

ROMs using

this programmer. Then when I push “load"” to restart the svstem I'll

automatically go to a loop which reads in the

Gon

¥

eal” software off an

audio tape cassette, then branches to the entry point of the software on
completion of the load. Some of the microcomputer kit manufacturers
have begun to deliver system software in ROMs using the larger mask
programmable and UV-e¢rasable PROMs. Even if you build a kit rather
than a home brew system design, vou may find this programmer useful
when adding extra subroutines to the existing software to customize

your computer.

The read only memory, or
ROM, is a versatile element in
digital electronics. In one
case, I’ve been able to replace
over three packages of
integrated circuits with a
single ROM. In addition to
this, circuits designed around
ROMs tend to be less
cluttered; the ROM virtually
forces a cleaner design. ROMs
can work wonders.

For the amateur, though,
ROMs are not always easy to
use. Mask programmed ROMs
are programmed by the
manufacturer and tend to
carry high setup charges.
Programmable read only
memories, or PROMs, are
available from electronics
distributors such as
Hamilton-Avnet or Cramer.
These distributors will also

66

program the PROMs that
they sell. However, for the
small user, the virgin PROMs
not only cost more than
surplus PROMs, but most
distributors will also charge a
one time setup charge of
from $5 to $25.

The current surplus price
for PROMs is about one third
of the current distributor
price (for an 8223 the figures
are $3 surplus vs. $8.95 new).
Thus the amateur whose
resources are limited can save
the most money by buying
surplus PROMs and then
programming them himself.

This article describes a
circuit for a PROM
programming unit for some
commonly available surplus
PROMs; the PROMs which
can be programmed are the

8223 (32 word by 8 bits), the
Schottky versions of the
8223: the 82523 and
825123, and the 82526 and
82529 (256 words by 4 bits).

The programmer programs
any of these PROMs one bit
at a time in strict accordance
to Signetics recommended
specifications. 1t is also
capable of verifying and/or
examining any bit of these
PROMs to ensure that they
have been programmed
properly (or that “surplus”
doesn’'t mean ‘‘pre-
programmed’’ — but then I've
received ‘‘new” PROMs from
distributors that have been
preprogrammed ...). From
my experience, it takes about
an hour to manually program
a PROM, and then verify each
bit. However, to avoid

by

Peter H. Helmers

Box 6297, River Station
Rochester NY 14611

mistakes, take time and work
away from disturbances.

Programming Concepts

To program a given bitina
PROM, the word address is
set up on some address
switches, and the bit within
the addressed word s
selected, using an output
selector switch. As shown in
Fig. 1, the circuitry involved
in addressing is set up in a
general manner to allow
addressing of either of the
two PROM organizations
(e.g., either 256 x 4 or 32 x
8).
Due to lack of foresight by
the PROM designers, there
are three sets of programming
procedures which are needed
for the five types of PROMs
which this programmer was
designed for. However,
conceptually, they all require

control of three PROM
parameters: the PROM
voltage (ROMVcc), fusing

current (If) and CE logic
level. What varies is the value
of these voltages and
currents, and the order in
which they are applied.

The timing can be
represented in gencral as
shown in Fig. 2. The effect of
each control signal will be
discussed separately for each
of the programming
procedures.

8223 Programming Procedure

K1 when active
corresponds to grounding
{applying a logic “'0") the CE

o
r—‘lmuawmﬂw

ROM
vCc

16 |14

Q7

Q6

Q5
FROM SIB

5Q4

Q3 sz

Q2

Ql

Qo

aovee Ce2
Al
A2
A3 rtBP*

A4
! A5
a6

bl A KR

a

Q2
82526

A7 TEI GND

QUTPUT
SELECTOR

Q3

Q3

Q4

Fig. 1.

oS

Addressing and data input configuration for a manually

controlled version of the programmer. *To be programmed.

input of the 8223. Next,
when K2 is active, a fusing
current is fed into the
selected PROM output. This

current is specified by
Signetics as the current
resulting from 12.5 volts
applied through a 3902

resistor to the PROM output.
The final step, when K3 is
active, is to raise the PROM’s
Vee (pin 16) to 12.5 volts.
(The circuits that control
these voltages will be
discussed later.)

82523/825123 Programming
Procedure

K1 when active raises the
82523's Vcc to 10 volts.
Then, when K2 is active, a
fusing current of 65 mA is
applied to the selected output
of the PROM. Finally, during
K3, the PROM’s CE input is
is grounded.

82S526/82529 Programming
Procedure

The procedure for the
82526 and 82529 PROMs is
identical to that for the

82523 and 825123 except
that the Vcc is raised to 12.5
volts, and the fusing current
is 89 mA.

Circuit Design

Basically, there are three
parts to this circuit which are
shown in Figs. 1, 3 and 4.
Fig. 3 shows the timing
sequencer which has the
responsibility of developing
the proper control signals
required for both
programming and verifying.
The control is accomplished
by using an 8223 PROM IC3
in connection with a state
counter. (This brings up the

For software design, use
of an ROM can replace
volatile RAM memory for
routines you always want

to have around.

+5

+5 +5 .5
Py R3 A
100K 4 ;] K 16 §3 ¢4 ¢5 R4
";;M mo o[v a8 ¢ o | 1K
CET
'K 2KHz CLR
R2 7 Icl nn 7 gii Ic2 Cc?s .
1K e| NESS5 3 3 74161 97\ e
2 LD GND 8
9
N) 5 Qb ac 08 ea | B
;J;u /7[7 L2 TR ERER DG
ABuF g;\OS/J-F 8223
HID>— “s3p
Hl e
82526
4 |4 o | iz [i3 ha
2 PST vCCls 6| A0 a1 a2 A3 ag |5
o Q +50—vce cE
Ica Ic3 8
4P 3 7474 8223 GND
SIA CLK a
v GND CLR IRK6 QI Q2 Q5 Q4
7 i 1 J2 I3 Ja
STOP R7
—WA—o0+5
L ca 1K
.O5uF A
;I; VCNTL F CE
U
s
V4 A 30VDC E P
FUSE 1y /HEATSINK
AC
FWB + | IC5 2
§24VAC 50PIV 7805C
i IR
/J7 3300uF
110VAC 50VDC POWER U
LED!

Fig. 3. Timing sequencer. This is the logic used to implement the timing
diagram of Fig. 4 with the program of Fig. 5.

question of *‘which came
first: the programmer or the
PROM?”) Referring to Fig. 5,
the programmer starts out in
a verify state upon powering
up or after programming a
bit. In this state, the 74161
state counter 1C2 is cleared to
zero and the counter enable

Fig. 2. ""Kontrol" signals K1, K2 and K3 — relative timing.

! 1 !
! | |
N | i E L
i | | | i
| |] 1
<2 E I
1 1
I 1 1
o——
1

flip flop, 7474 IC4, is cleared.
Despite the fact that the 555
oscillator is producing a 2
kHz square wave, the counter
is inhibited from counting
because its load input is low.

At this time, as shown in
Fig. 5, the PROM’s CE input
is held low so that the
selected output may be
examined by means of the
“OUTPUT” indicator LED
lamp.

A programming sequence
is initiated by pushing the

P/V push-button switch
momentarily into the
program (P) position. This

causes the counter enable flip
flop to be clocked high,
allowing the state counter to

67

count. The PROM IC3
controls what happens in
each state. States 1 through 4
are ‘“‘do-nothing” states to
allow the P/V switch to stop
bouncing. These states
address words 00001 through
00100 or words 10001
through 10100 of PROM IC3
depending upon the AQ input
at pin 10. States 5 through 14
are then wused for the
programming procedure’s
execution,.

What happens during
states 5 to 14 depends upon
the type of PROM being
programmed, as was discussed
above. Since the sequence of
events is the same for the

Fig. 4. Voltage and current sources.

82523 and 82526 types of
PROMs it can be
implemented in common.
Thus for these PROMs, the
AQ input of IC3 is tied low so
that the Ventl, FUSE, and CE
control lines will be
sequenced as shown in Fig. 5.
In other words, the Al
through A4 inputs of 1C3 are
sequencing through the
program in PROM storage at
words 00101 through 01110.

For the 8223 PROM, the
A0 input of IC3 is high so
that the control lines are
sequenced by the alternate
program stored in words
10101 through 11110 of IC3.

However, words 01111
and 11111 of IC3 are the

ATSINK
I < 2
30voC ice ROM vcC
+] ¢s5 7805A
RIO
;[7\ 33uF 3220
3

$3C
's2e 523 T'23

Z| z2

7.5V 5V

a. Voltage source for ROMVce.
HEATSINK
e

30VDC

FUSE

>T‘ cB
33uF
j; 3 'S26 .s‘?s

| 2

|
ce 78058

same so that the following
action is taken in state 15
(regardless of type of PROM).
In this state, the STOP
output of IC3 is low so that
the counter enable flip flop is
cleared, and the state counter
is reset to state O on the next
clock pulse. Since the load
line is held low, the state
counter will stay in this state
until 1C4 is clocked high
when another bit is to be
programmed.

Fig. 4 shows the voltage
and current sources that
generate the programming
signals detailed above. There
are two aspects to the control
of these sources: type of
PROM, and the control
signals from the state
sequencer.

The basic voltage source is
shown in Fig. 6. This circuit
can be modified by using a
transistor switch to
selectively short out the zener
diode. Thus when the zener is
shorted, the output voltage

will be 5 volts; when the
zener is not shorted, the
output will be the sum of the
zener voltage and the
regulator’s normal 5 volt
output. Referring to Fig.

4(a), the transistor switch is

SELECTOR

+5V

b. Current source for Ifrouted to PROM outputs via S2.

68

contained in 1C7a. Thus when
Ventl is low, the transistor
conducts so that the value of
ROMVce is 5 volts. When
Ventl is high the transistor
doesn’t conduct so that the
ROMVcc voltage is increased
to either 10 volts or 12.5
volts depending on which
zener is switched into the
circuit by S3c (which
depends on the type of
PROM to be programmed).

The basic current source is
shown in Fig. 7. Note that a
zener diode is required to
limit the voltage developed at
the ground pin of the
regulator. This diode is used
to protect the PROM being
programmed. Because the
zener protection voltage and

the value of the fusing
current varies for the
different PROMSs, switches

S3a and S3b select the Vp
and ¢ values required. But
the 8223 requires a current
defined by 12.5 volts
supplied through a 390 Ohm
resistor. Thus switches S3a
and S3b also switch circuit
into the voltage source
configuration discussed
above. Switch S3e then
selects the fusing current
from either the output of the
current source circuit
configuration, or from the
390 Ohm resistor required for
the 8223.

IC7b, which is controlled
by the FUSE signal, is used to
route the fusing current. If
FUSE is low, the transistor in
1C7b will conduct so that no
current is applied to the
selected PROM output. When
FUSE is high, the transistor

won't conduct so that
programming can occur.
Fig. 1 shows the

addressing circuitry for the
programmer and requires no
further comment.

Construction

The prototype (which was
designed and constructed in a
period of about 28 hours)
was built using wire wrap
techniques. All discrete
components were soldered

into DIP headers so that
wiring could be done to wire
wrap sockets for these parts
as well. The board layout that
was used is shown in Fig. &
There are two items which
should be noted. Be sure to
use heatsinks for the voltage
regulator 1Cs since they have
to dissipate a lot of power
(due to the use of a single 30
volt unregulated supply).

The front panel of the
programmer was arranged as
shown in Fig. 9. Thus most of
the switch wiring was done
on the front panel, and
interconnection to the wire
wrapped circuit board was
accomplished by using two
plugs made from DIP headers.
About 12 inches of wire was
used for these interconnects.
It is also advisable to include

several ground wires to
decrease noise.

Note that this design
requires the use of a

preprogrammed PROM (e.g.,
IC3: an 8223). This PROM
must be programmed
according to the truth table
of Fig. 10. Probably the
easiest way to get this PROM
is to take advantage of the
offers of the various surplus
PROM sellers which advertise
in BYTE and other
magazines, and have them
program this ‘‘bootstrap”
PROM. Their prices tend to
be reasonable — especially
since this is the last time
you'll have to pay to have a
PROM programmed.

Before programming your
first PROM, a single
adjustment is required. This
entails setting potentiometer
P1 so that the NE555’s clock

Fig. 5. Timing diagram of the sequencer. This is a synchronous timing
generator illustrating one use of ROM logic. The relative timing is built
into the ROM program of 8223 IC3 — with a master control of the rate

set by the clock of 555 IC1.

Pins Lo
s [1
STOP |
FOR 82523,82$26.
V CNTL l |
FUSE] I
FOR 8223:
VCNTL | |
FUSE [|

12 13 14 15 O

STOP

TE
COUNTER = O © 2 3 4 5 € 7 8 9 1011
STATES — DEBOUNCE—-F— PROGRAM SEQUENCE ——
START
VERIFY

VCNTL = 0=>ROMVCC=+5V
VCNTL =1=> ROMVCC = Tlov-szszs

frequency is 2 kHz. However,
this setting is not critical so
that if you don’t have any
means of measuring
frequency, just set the pot
near its maximum resistance
setting (so that a frequency <
2 kHz is obtained).

Operation

1. Tur on: Place the
PROM in the proper socket.
Plug the programmer into a
110 volt socket (note that
capacitors C3 and C4 are used
to initialize the programmer

Fig. 6. Voltage pedestal technique usinga 5 V regulator IC.

5V REG
30vpco———in IC

GND

ouT

V OUT=5+VZ
SR BIAS~ 2200

L%\

vZ

FUSE=1=> if=
+12.6V-
82526,8223

to state O so that no spurious

bits will be programmed).
Observe that the POWER
LED is lit up.

2. Address Setup: The
programmer verifies and/or
programs only one bit of a
PROM at a time. The word
address is set by switches
labeled AO through A7 (but
only switches AO through A4

are used for the 32x8
PROMs; switches A5 through
A7 are not electrically

FUSE=0=> it«0

VERIFY

65mA 82523
BOmMA 82526

12.5V THRU
390 OHMS
FOR 8223

connected to the socket for
these PROMs). The bit within
the addressed word is selected
by the output selector switch.
(But outputs Q4 through Q7
are not electrically connected
for the 256x4 PROM:s).

3. Verify/Program: By de-
fault (of de operator ...?),
the LED labeled OUTPUT
indicates the status of the
selected output of the ad-
dressed word. This LED is on
if the bit is a logical “1”" (e.g.,

Fig. 7. Current source implemented with a § V requlator IC,

5V REG
3ovoco———in IC
GND

ouT

PROTECTS FROM
2 VOLTAGE OVER-
SHOOTS

b3

> RX }
if ‘ 3\:/\/ P

.. BV
if RX

69

ROMs are not the
“universal’’ logic elements
that some people tend to
consider them. Used
correctly in logic designs,
they can benefit a given
design; used improperly
they can cause never
ending grievances.

>~2.4 volts), and is off if the
bit is a logical “0” {e.g., <~.8
volts). Since the PROMs for
this programmer come
{(hopefully ...} with “0”s in
every bit, programming
involves selective fusing of
“1"s in given bits. The fusing
process is accomplished by
pressing the PROGRAM/
VERIFY switch towards the
PROGRAM position, and
then releasing the switch. The
OUTPUT LED should then
be on, to verify that the bit
has been programmed. If it

doesn't fuse, a second
attempt can be made.
However PROMs have a
reputation of less than
perfect fabrication — one
brand new PROM that |

encountered required a fusing
current duration of close to 4
seconds for one output; |

Fig. 9. Front panel layout.

Fig. 8, Wire wrap board layout. *Mounted on heatsinks.

7805A* 7805B* 7805C*
ROM VCC FUSE CURRENT +5 VOLTS
BiEcRer BiSEher |
DISCRETE 75451 | NES55
COMPONENTS COMPONENTS IN |
DIP HEADER)
DISC 3 ICN|
DISCRETE 74161 INTERCONNECT
COMPONENTS PLUG FROM
FRONT PANEL
}ﬁ#éRCONNECT
7474 8223 PLUG FROM
FRONT PANEL

muncT

now use that PROM to test
out new PROM programmer
designs.

Final Thoughts

ROMs arc great devices,
and now the amateur can
easily experiment with them.
However my experience has
been that ROMs are not the
“universal” logic elements
that some people tend to
consider them. Used correctly
in logic designs, they can
benefit a given design; used
improperly they can cause
never ending grievances.

As a means to turn
software into “firmware” the
only problem with an ROM
technique is making sure your
program is debugged before
you blow those irreplaceable
fusible links inside the PROM
package.

| al vo
[XX XX IXX] N
32 x8PROMS Q2
XX XXXIXX] Y,
Q34
'
Q4
FUNCTION e &’
SELECT Qs Q6
PROM SOCKETS OUTPUT
@ SELECT
POWER QUTPUT
ADDRESS
oy P/V
A0 Al A2 A3 A4 A5 A6 AT 0"

70

Extensions and Modifications

The PROM progrannmer as
originally designed and
described in this article is set
up for a fairly tedious
hand-operated technique.
This technique is appropriate
for occasional use, but s
hardly acceptable for
extensive programming. An
extension which could easily
be made is to replace the
manual switches S1b, S2 and
S§3 with banks of surplus reed
relays driven from TTIL gates,
replace Sla with a clock pulse
derived from your computer,
and replace the address
switches with the outputs of

Fig. 10. Table of PROM bits to be ‘‘blown’ to implement the program
in IC3. A similar table should be made for each PROM which is to be
programmed for general use once the programmer has been built.

ADDRESS
Ao A4

00000 1
00001 1

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

S T " YR G G O T WU G I Gy

- el = = e wd e = = = e = =

Q1
STOP Ventl

Q2

N I QA VP (I G §

Q4 05 06 Q7 Q8
CE FUSE

1

1

1

1

1

1

1 1

1 1
1
1
1

1 1

1

1

1

1

1

1

1
3
1
9
1
1
1

The kits come in versions
oriented towards the
different microprocessors for
which Cramer has a franchise.
The presently available kits
are centered around the TI
TMS-8080, the Intel 8080A,
and the Motorola 6800
machines. Cramer plans
future products in this line
for the RCA COSMAC,
MOSTEK F8 and AMD 9080
chips. In each case, the kits
come with complete
enginecring support
documentation, information
which is likely to be of
interest to the serious
microcomputer enthusiast. In
addition to the documenta-
tion, the Kkits are said to
contain the following items:

— The microprocessor 1C
itself.

— Tk by 8 bits of RAM.

— Tk by 8 bits of ROM in
UV-erasable form, with a
pre-programmed system
monitor which provides a
software front panel
function.

— Four input and four
output ports with complete
parts requirements.

— Support circuitry
including clocks, buffering,
control, memory decode,
etc.

— Controls and displays
with enough parts for a
hexadecimal LED front
panel arrangement.

— Audio tape interface and
a cassette filled with “useful
programs.”’

It looks like a real product
for the person who builds
from the ground up. It is not
a computer kit in the
conventional sense of a
MITS, Godbout or Southwest
Tech product, but then it
doesn’t constrain you to a
fixed wiring layout and
system design either. You'll
almost certainly need a
wirewrap gun and lots of #30
wire to put this one together
— or you could buy the PC
board sets furnished by
hobby suppliers like
Southwest Technical

8800 SOFTWARE!

WE HAVE ALTAIR COMPATIBLE 8080 SOFTWARE AND FIRMWARE MODULES!

If you haven't used our Assembly Language Operating System you have been missing
a wondertul experience. We have found the ALOS Resident Editor and Assembler to be
an extremely useful and powerful program development tool. We are so sure you will be
turned on with our Software Package No. | that we are practically giving a listing away for
a mere $S3.00US. Yes, this is a source listing as well as a hexidecimal printout.

The Assembly Language Operating System gives you the ability to write programs in
8080 Assembly Language with labels, expressions and comments. The programs can then
be edited by line number, a powertul feature that makes corrections and additions very
easy. The program can be named as a file and stored at a user selected memory location
while another file is being worked on. Files can be listed by line number using the LIST
command before being assembled. The Assembler converts the Assembly Language
mnemonic codes and labels to hexidecimal op-codes at any address selected by the user
to run at any address (the run address may be different from the location in memory
where the program is placed). Assembly can be performed with or without efror
messages being printed. After assembly the program can be run using the EXECUTE
command or dumped onto cassette or paper tape using the DUMP command.

Paper tapes or cassettes of the program listing will not be available to individuals but
we have already sent paper tapes to several computer clubs around the country. We
suggest you contact one of the clubs if you want a copy of the tape or need assistance,
We will be happy to send tape copies to any bona fide “amateur™ computer club or
society, so if you are a member of such a group, please let us know of your group’s
existence by sending us a copy of its latest newsletter.

In addition we have 2 manual describing the use of the ALO System from the ground
up. This will include a complete description with examples of every command, instruc-
tions on the use of all internal routines by other programs and an overview of efficient
file generation and handling.

An even more wondertul version of the ALOS is available in firmware as part of an
8K PROM module. The expanded version allows dynamic Input/Qutput allocation, file
area management by the executive, octal and/or hex data entry, loaders for both 8800
BASIC and Intel Hex Format tapes, and many other capabilities not included in the
original Package No. 1, The basic Resident Executive-Editor-Assembler occupies about
4K of the 8K maximum capacity. So why the 8K?? Because we are leaving space for
future expansion. The first expansion is a powerful Simulator that adds-on to the basic
ALOS package.

SIMULATOR?? Yes, an Interpretive Simulator which runs 8080 programs on the
same 8080 that contains the Simulator! Not just traps and breakpoints but simulated
1/0. registers, flags, program counter and stack pointer. Any of these can be modified at
all times: plus a single step mode that displays all the registers, pointers, flags, etc., after
exccution of each instruction. This Simulator is the most powerful debugging tool for
the 8080 that we know of. Just think, you will hardly ever again have to touch the front
panel switches,

Both versions of our ALOS require 2K bytes of RAM for system internal storage and
symbol tables. In addition at least 4K more is necded to hold user files, although greater
capabilities are achieved with 8K or 12K of user space.

PTCOS !

What is PTCOS you may ask?? It stands for Processor Technology Cassette Operating
System and it means a real Operating System program based around our CDS-VII dual
Cassette Data transport System. When operating under this program you have true file
handling power ta create, delete, edit, relocate, and copy all kinds of flles (e.g. BASIC
and programs written in BASIC). PTCOS can handle multiple 1/0 devices using a special
type of file and suitable small driving routines. At last an integrated system concept for
the 8800 is a reality! PTCOS is devilishly similar in its basic operation to an FDOS and is
upward compatible with future software developments from Processor Technology.

PRICE LIST effecitve OCT. 1, 1975

KIT ASSEMBLED DELIVERY

Software package No. |
Assembly Language

Operating System $3.00
PTCOS: Processor

Technology Cassette

Operating System WRITE
ALS-8 PROM Firm-

ware module expanded

Processor Technology

Berleley,Ca.94710

(415) 549-0857

December '75

version of SP No. | $275. $325. 3 weeks

SIM-1 PROM Firm-
ware add-on to ALS-8:

Simulator section $95. $110. 3 weeks

Products. The $495 price is
essentially for the
semiconductors and
documentation alone — the
price does not include power
supply, case or any
packaging.

...CARL

The Newest Profession

‘““Computer hardware
WIZARD is being sought for
a new computer research lab
at the University of
Rochester.’”” Further
professional qualifications —

must speak 6th century
Arabic dialects, be able to
compute hexadecimally, be
able to zap gates, exorcise
memory, burn ROMs with
saltpeter and brimstone, and
other related minor skills.

Submitted by A. M. Biguity

73

ALL WE
GANTELLYOU IS
THAT MEN WHO
DON'T SMOKE
LIVE ABOUT
6 YEARS LONGER
THAN MEN WHO
DO SMOKE.

If you want someone to help you
stop smoking cigarettes,
contact your Amerlcan Cancer Society.

AMERICAN CANCER SOCIETY

* This fact taken from a research study is based on the smoker who at age 25 smokes about a pack and a half of cigarettes a day.

8800 HARDWARE'

BUILD A SMART TERMINAL INTO YOUR
ALTAIR! Your Altair
already has the intelligence, we provide the display
module. This module is not a limitied *“T'V Typewriter”
but an ultra-high speed computer terminal built into
your computer. The VDM-1 generates sixteen 64 charac-
ter lines from data stored in the K byte on-card
memory. Alphnumeric data is shown in a 7x9 dot matrix
format with a full 128 upper and lower case ASCH
character set. The VDM-I1 features ETA video output for
any standard video monitor, multiple programmable
cursors, automatic text scrolling and powerful test
editing software included FREE! Available now,

" MASS STORAGE !

We have always wanted o low cost, reliable, fast uccess
storage device using standard Phillips cassettes twe bet
vou have too). so we got to work and designed one

here it is! With the CDS-VII Cassette Duata System vou
have computer controlled access to 128K bytes of duta
within 20 seconds when using C-30 casseties. We provide
read/write clestronics and transport controller. Alair
interface, o case and power supply, and one or two
multiple motor cassette transports plus FREE driving
software! Yes, up to two cassette drives! Two drives
provide much more powerful file handling and copying
capabilities as well us, of course, (wice the storage
capucity. Data can be written and/or read asynchronous-
ly at any transfer rate up to 150 hytes/sec: at this rate
8K BASIC can be loaded in about 50 seconds! We have
also included provision for use of any read/write
clectronic plug-in section so that tapes using NI,
Computer Hobbyist or Digital Group formats may be
read at lower data rates. Available in November 1975,

4KRA Static Read/Write Memory

This 4096 word STATIC memory provides tfuster, more
reliable und less expensive operation than any currently
availuble dynamic memory system. The JKRA permils
Altair 8800 operation at absolute top speed
continuously. All RAM’s (Random Acvcess Memories)
used in the 4KRA are 91LO2A’s by Advanced Micro
Devices, the best commercial memory [1C on the market
today. 91L0O2A’s require typically 1/3 the power ol
standard 2102 or 8101 type RAM’s and cach one is
manufactured to military specification MIL STD-8823 for
extremely high reliability. These memories can be
operated from a battery backup supply in case of power
failure with very low standby power consumption. (Ask
for our technical bulletin TB-101 on power down
operation.) In short we have done everything we could
to make the best 4K memory module in the computer
lield, and because we buy in large quantity, we can make
it for a very reasonable price. Available now.

2KRO Erasable Reprogrammable
Read Only Memory Module

With this module the Altair 8800 cun use 1702A or
5203 type Erasable Reprogrammable ROM’s, The 2KRO
accepts up to eight of these 1C’s for o capacity of 2048
vight bit words. Once programmed this module will hold
its data indefinitely whether or not power is on. This
feature is extremely useful when developing software.
All necessary bus interfacing togic und regulated supplies
are provided but NOT the EPROM 1C’s. Both 1702A
and S203 PROM’s are available from other advertisers in
this magazine for well under $25. Available now.

We have Altair compatible plug-in peripherals!

3P+S Input/Output Module

Just one 3P+S card will fulfill the Input/Output needs of
most 8800 users. There are two 8-bit parallel input and
output ports with full handshaking logic. There is also a
serial I/O using 0 UART with both teletype current loop
and EIA RS-232 standard interfaces provided. The serial
data rate can be set under software control between 35
and 9600 Buaud. You can use your old model 19 TTY!
This module gives you all the electronics you need to
interface most peripheral devices with the Altair 8800,
it’s really the most useful and versatile /O we've seen
for any computer. Available now.

MB-1 Mother Board

Don’t worry any more about wiring hundreds of wires in
vour Altair to expand the mainframe. Qur single piece
1/8-inch thick, rugged mother board can be installed as
one single replacement for either three or four 88EC
Lxpander curds, so you don’t have to replace your
already installed 88EC card if you don’t want to. The
MB-1 has very heavy power and ground busses and
comes with a picee of Tlat ribhon cable for connection to
the front panel board of the 8800, a buill-in bus termi-
nator, and card guide cage for sixteen plug-in slots.
Available now,

PRICE LIST cffective Oct. 1, 1975

Item Kit Assembled Delivery

2KRO FPROM module S 50. $ 75. 3 weeks max,
AP+S 1/O module 125. 165, 3 weeks max.

JKRA-2 RAM module wy
2048 8-bit words
JKRA-4 RAM module w/
J096 8-bit words

RAM only, AMDOYILO2A
500 nsec, LOW POWER 8/540.
CDS-VIII-1 Cassette Data

System w/one transport - WRITE FOR DETAILS
CDS-VHI-2 w/two trans-

WRITE FOR DETAILLS

WRITE FOR DETAILLS

ports WRITE FOR DETAILS
MB-1 Mother board, bus
terminator, card cage 70. 3 weeks max.

VIDM-1 Video Display

module 160. 225, 3 weceks max.

3 weeks muax.

TERMS: All items postpaid if full payment accompanies
order. COD orders must include 25% deposit.
MasterCharge gladly accepted, but please send us an
order with your signature on it.

DISCOUNTS: Orders over $375 may subtract 5% orders
over $600 may subtract 1077,

2465 Fourth Street
Berkeley,Ca.94710

(415) 549-0857

. Processor Technology

75

—

Thank you!

SUNTHOINL somsany

would like to take this opportunity to say ‘““Thanks” to all our many
customers and friends for a very gratifying (and profitable) year. We've offered some outstanding
bargains; you‘ve gained the benefit of our Hi-volume purchasing power. We couldn’t offer these
state-of-the-art products at such low prices if you did not recognize them for the truly
outstanding opportunities they are. We'll continue to bring newer and better items to the
hobbyist and experimenter market just as long as you continue to respond as you have in the
past. We have big plans for our future product line. Included in our planning are kits for all of the
interface modules used in CPU to outside world applications (UARTS, Code converters,
Keyboard ROMs, PROMs, RAMs, Printer drivers, CRT modems, baudot rate generators,
counters, timers, and on and on). Watch for our announcement of new products in BYTE in the
coming months.

Now, since this is the Holiday Season, with gift lists to fill and projects to plan and get started,
here is our gift to you.

ITEM 101 — 709 Op Amp in TO-5 pkg. Brand new and unconditionally guaranteed $ 19ea

ITEM 201 — KR2376 Keyboard RAM — Brand new (Not a factory reject or floor sweeping.)
Will generate standard ASCII code (up to nine bits) with SPST Switch closure for
each alphanumeric. Completely self-contained data sheets with each unit $4.95 ea

ITEM 301 — TN4448 Silicon Diode (or equiv) T00P1V — 10 mA like a IN914 only better $.05 ea

ITEM 401 — UART COM2502/2017 in 40 pin dip pkg. Advertised elsewhere for $14.95. This is
an untested HOBBY grade chip for experimentationanduse $4.95 ea

ITEM 501 — 2N3859 equiv. Silicon NPN general purpose transistor. Used for switching, LED
driver, oscillators, amplifiers, etc. Small plastic $.10 ea

All items ppd. Please ADD $1.00 per order to cover handling costs. Orders

) A . master charge
shipped same day in most cases. $5.00 - minimum order. et

BANKAMERICARD

SUI]I} D.[“X comeany

6 KING RICHARD DRIVE, LONDONDERRY, N.H. 03053
603-434-4644

76

Clubs and Newsletters

The Evolution of the
Homebrew Computer Club

BYTE has received the
latest issue of the Homebrew
Computer Club Newsletter,
now edited by Robert
Reiling, 193 Thompson Sq.,
Mountain View CA 94043.
This club was started with a
meeting on March 5, 1975,
assembled by founders Fred
Moore and Gordon French.
Fred has been pretty much
running the show since then
via the newsletter activity.
However, Fred’s personal
plans took him to the
Washington DC area in the
middle of August so he had
to pass the ball along to
someone else in the Silicon
Valley. According to the
newsletter dated Aug. 20,
1975, the following persons
are now working on the club
and newsletter:

® Robert Reiling, editor.

® John Schulein, technical
editor.

® Tom Pittman, mailing list.
® lenny Shuster, meeting
room.

® Ray Boaz, treasurer.

The Aug. 20 issuc is nicely
done in a very professional
photo offset format. It
includes notes by John
Schulein and Tom Pittman on
the problem of audio cassette
recording standards. (See
BYTE’'s conference
announcement clsewhere in
this issue for some additional
inputs.) The issue also
includes comments by Ken
McGinnis on TV display
timing for the computer
hobbyist, and some random
data of interest compiled by
Robert Reiling. The
Homebrew Computer Club
meets every two weeks at the
Stanford Linear Accelerator
Center, wusually in the
auditorium. Ask a guard for
directions when you get
there. Extrapolating the every
two week algorithm from
known dates of Aug. 20 and
Sept. 3 gives the following
dates in October and
November: Oct. 1, 15, 29;
Nov. 12, 26. The address for
correspondence is
temporarily Robert Reiling’s
site, but arrangements are
being made for a club post
office box.

HP-65 Users Club

The HP-65 is probably the
one ‘“‘home computer” in
widest circulation by now.
This is certainly true if your
definition of ‘‘home
computer’ is something
which costs under $1000, has
programmability, uses
microcomputer technology,
has off-line storage, and some
form of interactive set of user
controls and displays.

The HP-65 Users Club is
an organization founded by
Richard }. Nelson (2541 W.
Camden Pl., Santa Ana CA
92704) and devoted to the
use of the HP-65, and other
programmable calculators.
The club publishes a
newsletter, 65 Notes, for a
nominal fee. The July 1975
issue (Volume 2 number 6) is
typical of the many issues
included in a sample packet
forwarded by Richard: a
feature on the new HP-25,
comments on the formation

of wvarious local
club chapters, several
programs, an article on

repairs and/or modifications
of the HP-65, and an article
on how one reader of 65
Notes adapted his HP-65 to a
hard copy printer. (Note: 65
Notes and the HP-25 Users
Club are in no way affiliated
with Hewlett Packard.) Here
is where to turn for a wealth

of information on
programmable hand-held
calculators.
Beta lota Tau
Richard A. Petke

announces formation of Beta
lota Tau, a new fraternity for
campus computer freaks,
knurds, hackers and assorted
hangers on. For a full
description see the letters
section of this issue. His
address:

BETA IOTA TAU

c/o Richard A. Petke

R.H.I.T. Box 520

Terre Haute IN 47803

If you want a definition of
the terms “knurd,” “hacker”
and “computer freak,” either
look into a mirror or get in
touch with Mr. Petke!

North Texas No-Name Club

The second informal
gathering of the North Texas
No-name Computer Club
took place at the Irving
Library on August 18.

Bill Fuller gave a short
introduction on what the
club’s general aims could be
and a few reasons for forming
a group. With this, each of
the 16 attendees introduced
themselves, and summarized
their computer interests and
general background.

Lannie Walker, the Ft.
Worth co-founder, brought
his Martin MK-2 to display.
Greg Walker demonstrated
operation of his TVT-II. Ric
Martin provided his TVT-I for
comparison. Also available
for a ‘“look-see” were a
Processor Technology In/Out
board, ECS modem, two
Suding cassette interfaces,
ECS digital display PC board,

and the MITS VLCT PC
boards.
With introductions

complete, a general open
forum discussion took place
until we were kicked out of
the library at 9 pm. The
“meeting’’ continued at a
local coffee shop until 11:30
pm.

A quick summary of
pertinent data obtained from
questionnaires filled out
shows:

Computer: Five Altairs, one
MK-2 and one home brew.
TVT: One TVT-1 and two

TVT-II.

Cassette interface: Three
Suding, one ECS, one
Computer Hobbyist, one
MITS.

Paper Tape: Three punches,
one reader.

Teletype: Five of various
vintage.

Since we are still
somewhat unstructured as a
formal club, interested

“byters” should contact Bill
Fuller, 2377 Dalworth 157,
Grand Prairie TX 75050,
1-214-264-0111 or Lannie
Walker, Route 1, Box 272,
Aledo TX 76008,
1-817-244-1013.

77

WORLD'S FIRST
COMPUTER STORE

wiktt

o
mmq,r‘fsﬁ

1]

STORE o

Altair User’s Group

In the words of 7he
Agency, MITS’ advertising
subsidiary, “The Altair User’s
Group is quite possibly the
largest hobbyist organization
in the world. It is both a
means of communication
among Altair users and a

method of building a
comprehensive library of
Altair programs among
other benefits, you will

receive a subscription to the
monthly publication
Computer Notes, which
contains complete update
information on Altair
hardware and software
developments, programming
tips, general computer articles
and other wuseful
information.” And that’s a
pretty fair statement, judging
from the August 75 issue of
Computer Notes.

Edited by Dave Bunnell,
the head of The Agency,
Computer Notes covers most
items of interest to Altair
users. The August edition is
headlined “WORLD’S FIRST
COMPUTER STORE,”
featuring an article on The
Computer Store, located in
West Los Angeles, which is
apparently the first retail
store solely for computers
and computer supplies
(shades of Arthur’s

78

Information Parlor). The
store sells Altairs over the
counter of course, and
functions as a genecral

computer hobbyist gathering
place and information center.
Computer Notes also features
a travelogue of the
MITS-MOBILE Altair
Caravan, which toured the
Southeast during August and
September.

In his editorial, Dave
Bunnell leads a good deal of
rumors to their proper resting
places, covering ‘“off brand
peripherals, memory cards,
etc.”’, the false rumors
concerning ‘‘less than full
spec’’ Intel 8080 chips,
softwarec agreement
technicalities, MITS’
development of a Motorola
6800 system, and delivery
complaints. Dave precedes all
this with the explanation,
“One point that has gotten us
good press in a number of
publications is that we try
and lcvel with our
customers.” From Dave’s
straightforward presentation,
| think they deserve another
“good press.”’

There are no surprises in
the rest of the newsletter,

with its “Altair Service
Dept.,” ‘“Letters to the
Editor,” ‘“‘HARDWARE,”

and “SOFTWARE" sections.
In “HARDWARE” Tom
Durston and Paul van Baalen
deliver some ACR (Audio
Cassette Recording) hardware
alignment updates, fixes for
8800 problems, some ‘“‘Boo
Boos,” various maintenance

techniques and hardware
specifications.

The ‘‘SOFTWARE"”
section contains “Software

Contest Winners Announced”
by Bill Gates; “Q & A’ on
the “Monitor, Editor and
Assembler’’ by Paul
Wasmund, the author of these
software components;
“General Software” by Paul
Allen, the director of MITS’
Software Depart.aent,
answers various questions
concerning MITS' software
performance, policies and

future plans; Monte Davidoff,
one of the authors of Altair
BASIC, illustrates the string

handling and recursive
subroutine capabilities of
BASIC in “Fun with Altair
BASIC.”

Monte does a good job of
describing thesc interesting

possibilities of BASIC, even
though such applications can
be a bit strenuous for both
the reader and the BASIC
language itself, as witnessed
by Monte’s closing comment
on factorial computation: “If

confusion still prevails, do
not worry aboutit.”
Bill Gates, in his article

“Software Hints for 8800,”
gives just that. Mentioning
some of the reasons for the
8080's power, Bill goes on to
discuss binary coded decimal
(BCD) arithmetic, giving a
sample routine for conversion
from BCD to binary. After a
short lesson on special short
branching (“‘skip”) techniques
the rcader is presented with
some neat but fairly general
stack usage tips. Bill doesn’t
waste words in his article; a
rank beginner would
probably be left far behind
by these last concise hints.

In a short review, Dave
Bunnell gives BYTE an A+
for format and an A— for
content (‘“They have
something to work for.”).
Although it sounds a little

like an ad for BYTE, Dave is
pleasantly positive in his
remarks.

I have a couple of
complaints. The format of
Computer Noles s

imaginatively done, but at
some points the text is hard
to follow — you don’t know
what to read next. [But then,
it is only fair to point out
that BYTE may suffer the
same malaise in onc or (wo
places ... Carl| Also, a lot is
assumed on the part of the
reader. | realize that any such
newsletter can’t function as a
tutorial publication (that is a
major part of BYTE's job)
but the “HARDWARE” and
“SOFTWARE"” sections would
certainly throw any real
beginner. But | judge too
harshly: Computer Notes is
truly a good bulletin for the
users of Altair equipment.

To paraphrase Dave's
closing question in his BYTE
review, is the Altair Usecr's
Group something no Altair
computer hobbyist should be
without? At this point in
time, | would have to say that
he has no choice since
membership is automatic for
Altair owners. Should the
Altair computer hobbyist be
thankful for Computer Notes
and other benefits of the
User’s Group? | would have
to say yes.

... Chris Ryland

DIAGNOSTICS

Debugging is the art of
removing bugs. Many times, bugs
in programs are only uncovered
after the program is executed —
and on larger machines ‘‘diag-
nostics’’ often tell what

BYTE
column,

#2, p.
Kluge

15, fourth
Harp. The
formula for the well
tempered scale ratios was
“squashed” a bit, and should
read:

(In(137)+ n In(2)/12)

rh=¢

happened. Well, a magazine is like
a computer program — large and
complex. Here is some centralized
documentation of known bugs in
BYTE detected in the execution
of previous issues.

BYTE #2, p. 16, first
column, Kluge Harp. The
formula for the timer interval
is incorrectly printed. It
should read:

Le, =

n time / (oh + dt pcy,)

The “#” symbol should be
deleted.

BYTE #2, p. 36 LIFE Line 2,
Fig. 3. The variable DONE is
incorrectly described.

Correct description:

DONE - the variable set
by KEYBOARD_INTER-
PRETER after a user
command to end execution.

BYTE #2, p. 38, LIFE Line
2, Fig. 6. The variables
NCMAX, NCMIN, NRMAX,
and NRMIN are incorrectly
classified as local — used only
by GENERATION, They
should have been classified as
shared with the whole
program, i.e., global.

BYTE #1, p. 54, Fig 5,
Write Your Own Assembler.
Dan Fylstra caught a bug in
his 8080 example about the
day after BYTE #1 went to
press — and several readers
(including Bill Gates of
MITS Altair BASIC fame —
see letters) caught it. The
mistake is that branch table
has 3 bytes per entry and
the example multiplies by 2
with a left shift (RLC). The
corrected code would be:

BYTE #I, p. 16. Author
James Hogenson supplies the
following correction to
information on the
RGS-008A computer:

The two LEDs not used
by the upper memory
address are not used to
indicate the second and
third bytes of a two or three
byte instruction. They
indicate the control code
which varies in a two or
three byte instruction. One
machine cycle is required
for each byte of an
instruction. The first byte
of an instruction is always
an instruction fetch cycle
indicated by control code 0.
The second and third cycles
are for data writing, reading
or for an I/O operation.
Control code | indicates an
I/O operation, control code
2 (octal) indicates a
memory data read cycle,
and control code 3 indicates
a memory data write cycle.

The power supply
produces positive 5V at 5
Amps, and —12 at 1 Amp.

“NEXT TOKEN” ROUTINE

LXI H,BRTAB

LDAX D

RLC

MOV BA

LDAX D fetch “‘n”
ADD B

rest of NEXT TOKEN

H — branch table base
get translated char from line

times 2 for branch table index ? almost
save “2n”’ in B

again . . . translated character

“3In” =“In+n”’

One final word — this is an
example of a “patch™. As
programs grow and patches
multiply the result can get
hairy. There is no pretension
that this is the optimal code
for the next token algorithm;
one of the challenges of
programming is to see how
close one can actually come
to optimal code.

DIGEST
-

Don’t Forget the Pinouts of These Memory Circuits — They 're
All Very Useful Both in Building More Memory for Kit
Products and as Memory Elements of Your Own Designs . ..

FROM SYSTEM INTERFACE
DIN

I POWER:
+5V=PIN IO
4 GND=PIN9
1K BY
6 1
5 RAM
A5 ——=—»| eg:
2602
A8 "l 2i02
9102

b= WE WRITE ENABLE
0= WRITE
1= READ

p'Z’— CE CHIP ENABLE
0= ENABLE
1= DISABLE

ADDRESS

|2(~>——THREE STATE ENABLED BY CE
D OUT

TO SYSTEM INTERFACE

Fig. 1. The 2102, alias 9102, alias 2602. This memory circuit is the
most generally useful item on the market. You will find it in graded
price ranges depending upon speed; for the 8008 and other slow
processors, the low speed and inexpensive versions with access
times up to 1 microsecond can be used. For the later generation micro-
computers such as the 8080, M6800 or MCS6501 or PACE, higher
speed versions are recommended in most cases if you want to take
advantage of full processor capability. For complete specs, see the
manufacturer’s specs. Here is a pin diagram of this memory design. To
use it, present addresses then Chip Enable should go to logic 0 (ground
level), then after the access time delay you can either read the output
data lines, or write what you've presented on the input data line. The
write operation is performed by a low-going pulse on the WE line, with
a minimum duration of from 300 to 750 nanoseconds depending upon
the speed rating of the chips you buy.

*NOTE: When talking about logic and memory, the notation K"
means 210 or 1 024, not 1 03 or 1000.

CE CHIP ENABLE
0=ENABLE
1= DISABLE POWER:

- 13 +5V=PINI4
AOT GND«PIN 8
Al ———> 15

M 256 BY |e—2—pO
A2 ——— 4 6 s <
10 8 o TO SYSTEM BU
ADDRESS A3—’9 RAM | B! | \NTERFACE
AG ——D _ »02 | (THREE STATE BUS)
a5 7 |siGNETICS .
—]
5 2606 03
A ——>
\AT—L’

O=WRITE

49
WE WRITE ENABLE
= READ

Fig. 2. The Signetics 2606 part is a variation on the static memory
concept which uses a parallel 4-bit word orientation. There is a total
capacity of 1024 bits in 256 words. For reading out of this memory,
you hold the Write Enable (WE) line at logical 1, select an appropriate
combination of address inputs, then drop the Chip Enable (CE) to
logical 0 to enable the output bus drivers. To write into the memory,
you enable the chip as if to read, but drive the data bus from a source
such as your CPU while dropping the Write Enable line to the logic 0
(ground) level for a short period (minimum 400 ns). The spec sheet for
the 2606 gives an access and cycle time of 750 ns, which means that it
is on the hairy edge of working with one of the 1 microsecond cycle
second generation microprocessor CPUs. Here is the pinout of the 2606
part.

79

JAMES ELECTRONICS

P O BOX 822 BELMONT. CALIFORNIA 94002
(418) 592-8097

DIGITAL VOLTMETER

GENERAL DESCRIPTION

$39.95 Per Kit printed circuit board

LOGIC PROBE

printed circuit board

$9.95 Per Kit

MINI POWER SUPPLIES

These puwer supphes afler small size, with a wude choiee of valtage qutputs
They aie all capahie of delivering 300mA and have dimensions of 1 x 17 ¢ 3"
The valtages matabie are *5V, 5V, 6V, -6V, 12V, - 12V. All of these unils
eastly assemble o fess than a half an hour, hecause of the bhergluss printed
cucint hoard construction. Please spectfy voltage when ocdenng

$9.95 per kit

LOW COST DIGITAL CLOCK KIT

Other companties have ufered a low cost dugtal clock kit, bus do not offer
impurtant exteas such as, punted circuit boards, power supplies cases, eic. We
ot Janmes are duing just the opposite hy offer ng a complete cloch kit 1hat
mciudes everything diwn t the line cord. This kit uses .25 FND 70 displays,

for HOURS, MINUTES, und SECONDS, n conjunction with 1he MM5314 clock
chip. The printed ciccun board 15 of high qualiy fibergtass, which ss plated, The
case 15 s G x 1% x 1 walnin case with a plexi-glass front, and is simifar 10 the ane
wmoour TV WALL Digtat clack. 1t 15 avadabie withowt the case fur $16.95.

$19.95 per kit.

ELECTRONIC ROULETTE

Complete kit
with all

i components
" case and

W transformer.

8" x 8" x 1" L)
A 56 page book on the facts | !
of Roulette included. $29 95 Per Kit

ELECTRONIC CRAPS

Complete kit
with all
@ components
case and
GhY Y ey e transformer.
I
@ £)

A 56 page book on the facts '—

of Craps included. $19.95 Per Kit

Satisfaction Guaranteed. $5.00 Min. Order. U.S. Funds.
Add $1.25 for Postage — Write for FREE 1975$ Catolog
Californio Residents — Add 6% Sales Tox

IAMES

BOX 822, BELMONT, CA. 94002
PHONE ORDERS — (415) 592-8097

ALTAIR OWNERS

CMR PRESENTS
THE MEMORY YOU’'VE BEEN
WAITING FOR

8K x 8 DYNAMIC RAM

ON ONE PLUG-IN CARD FOR

ONLY $59900 *

® FACTORY ASSEMBLED AND TESTED

¢ PLUGS INTO 8800 WITH NO MODIFICATIONS

¢ PROTECT-UNPROTECT CIRCUITRY I[INCLUDED
TO MATCH 8800

® TWO 4k BLOCKS OF DYNAMIC R.A.M.

® USER OR FACTORY ADDRESS PROGRAMMING
(SPECIFY}

e EACH CMR-8080-8k is SHIPPED WITH AN EDGE-
BOARD CONNECTOR INCLUDED.

® EXPANDER BOARDS AVAILABLE (ADDS FOUR
SLOTS TO 8800)

TEN REASONS TO CHOOSE
THE CMR MEMORY CARD

1. 300ns ACCESS TIME

2. TWICE THE MEMORY DENSITY
3. LESS $$ PER K OF MEMORY

4. DESIGNED FOR THE 8800

5. USES THE LATEST T.l. CHIPS
6. G-10 EPOXY BOARDS
7.
8.
9.
1

PLATED THROUGH HOLES.
GOLD PLATED CONNECTOR CONTACTS.
8192 WORDS OF DYNAMIC RAM

0. 90 DAY WARRANTY ON PARTS AND LABOR

*ORDERING NOTE:

FOR FACTORY PROGRAMMING. SPECIFY TWO 4k
MEMORY ADDRESS LOCATIONS FOR EACH CMR-8080-8k
MEMORY CARD ORDERED.

MAIL THIS COUPON TODAY
OENCLOSED IS CHECK OR M.O. FOR %

0C.0.D.s ACCEPTED WITH 30% DEPOsIT. TOTAL
AMOUNT $ 30% =

VA. RESIDENTS ADD 4%
® PLEASE SEND CMR-8080-8k CARD{(S)* AS
DESCRIBED ABOVE & 599.00 EA. POSTPAID
®PLEASE SEND EXPANDER BOARD(S)
(ADDS 4 SLOTS TO 8800) BOARD ONLY @ 15.00 EA,
POSTPAID TO:

NAME

ADDRESS

CITY. STATE & ZIP.

P.O. BOX 167, 1921 DOGWOOD LANE
VIENNA, VIRGINIA 22180

CMR COMPUTER MANUFACTURING CO.

83

NEVER YOU MIND

OCCUPANT
BOX BYTE
PETERBOROUGH
NIl 03458

A BIT OF NYBBLING

AT BYTES
IN A WORD
Dear Sir:
| was very delighted to
receive the first issue of
BYTE. | found all the
articles, and even the letters
interesting, absorbing, and

amusing. There are, though,
three points about which |
would appreciate some
information and clarification.

First of all, | seem to be a
bit confused about your use
of the words “word”, “byte"
and “bit”. As | understand
their usage, “word” refers to
the grouping of ‘“bytes”
which are considered to be
one memory location, and
“byte’” is a grouping of bits,
three or four depending on
whether octal or hexadecimal
is used. The article “Which
Microprocessor for You?”
seems to use the terms
‘“‘“word’’ and ‘‘byte”
interchangeably, which
confuses me about the
processor’s location
referencing ability. Who is
right, me or you?

Secondly, | have seen
information about 8-bit and
16-bit microprocessors, but
no ads about 12-bit
microprocessors. Having
gotten my programming
training on a 12-bit system
(PDP-8/L) may have made me
unduly partial to 12-bit
words, but an 8-bit system
would not allow me to cheat
and store two ASCII
characters in a location, while
16 bits seems too big for my
desires. Does anybody put
out a 12-bit microprocessor
with 4k memory?

84

Finally, | see a large
number of keyboards out on
the market; | do not see any
printers, line or teletype type.
Where are they hiding?

Thank vyou for
attention.

your

Stephen Holland
Glenview IL

Thank you for your letter,
Stephen. Precision in
description of concepts is one
of the most powerful
techniques in the human
race’s evolutionary bag of
tricks. The only hitch is
communicating what the
definitions are when there are
many different people
involved and each has a
unique past experience.
Hopefully in written
communications we can keep
the ambiguities (other than
occasional fun) to a
minimum. To clarify your
very valid complaint about
memory terms, the following
are some fairly fundamental
definitions. When you read
certain articles, such as Hal
Chamberlin’s, it turns out
that two of these definitions
are equivalent. For other
situations they may not be:

*A bit is the fundamental —
it s the unit of storage. All
other terms are described in
terms of bits. One memory
cell can hold one bit’s value
of logical zero or one.

*A byte is a grouping of bits
in the organization of
memory, usually defined ala
IBM as 8 bits. (Nybbles are
half-bytes.)

*A word is the generic and
very general term for ''n”
bits at once in a computer’s

memory. The term word is
the same as byte when
referencing an 8-bit
byte-oriented machine, but
will certainly differ for a
12-bit PDP-8 or a 16-bit
PDP-11 or some old 36-bit
Univac clunker or a 60-bit
CDC machine.
If that's not enough to
confuse the issue, some of the
early literature on machines
such as I1BM’s old STRETCH
computer referenced variable
sized bytes extending the
definition to “any group of n
bits”,

In general, though, a given
machine will have a “‘memory
address space” for direct
reference to a particular size
of ‘“‘word’. For the
byte-bangers (8080, 6800,
8008, 6501, F8, etc.) each
memory address gets you one
byte. For a PDP-8 each
address in memory gets you
one 712-bit word. And so on.

As far as 12-bit micros go,
there are none which are
generally available to
amateurs yet. There is the
CMOS PDP-8 replacement
which Intersil makes, but it is
very expensive as yet. There
is the FABRI-TEK processor
which is an MSI copy of a
PDP-8 at about $7000 for the
CPU, but again a working
system s not inexpensive,
The FABRI-TEK machine
does come with 4k built in at
the price.

Concerning printers, you
are again getting up in price.
A simple receive only
Teletype is about $200-300 if
you get to the right place at
the right time in the surplus
market. There is something
called a Creed Teletype which
| have seen some literature on
— an old 5-bit Baudot
machine which you could
probably hook up fairly

easily to Bill Godbout’s
PACE processor with its
ASClI-Baudot software.

Where are the printers hiding?
In surplus houses which don't
advertise ‘em because their
stock changes too frequently.

... Carl

Dear Carl,

| just finished reading the
first issue of BYTE, received
today. | found the articles
interesting but now realize

how little | know about
programming terms and
functions.

I’ve been in ham radio and
radio and television broadcast
engineering for well over 15
years. | understand the basics
of digital electronics and have
designed control circuits and
enjoy using digital techniques
in other types of electronic
circuitry.

I can follow the articles
until the author starts hitting
me with programming terms,
then I'm lost. Perhaps you
might try to educate such as |
with some very basic articles
on programming and those
hardware functions mostly
limited to computers. You
might also recommend some
up-to-date books on these
subjects.

I would very much like to
learn more about this field.
Perhaps I'm not the typical
reader you are publishing
BYTE for, but | suspect there
are other readers out there
with the same problems.

I’d also like to see you
insert a bingo card to make it
easier to get further
information and catalogs
from your advertisers.

Kenneth Knecht
Chicago IL

Thank you for your input,
Ken. | am indeed worried
about the problem of
acquainting the novice readers
of BYTE with the terminology
and concepts of home brew
computing. 1'm working on
getting various authors to
submit tutorials on the
concepts of programming for
people such as yourself with a
strong hardware background.
Then there is the analogous
problem from the other side —
explaining the mysteries of
hardware to software people.
For instance, a software-
oriented friend of mine

pointed out that he gotlost on
the diode matrix concept in
the keyboard article of BYTE
#1, a concept which is
probably familiar to a number
of readers with a hardware
background. As long as | am
enumerating possible
approaches to the art of home
brew computing, | shouldn’t
forget the person who has
neither hardware or software
background — the complete
novice.

The way [can find out
about what ‘the typical
reader”’ is thinking is for “the
typical reader’” to send in
comments, as you have. One
of the biggest unknowns | had
when | first came up with the
problem of editing this
magazine was figuring out in
my mind just what the
readership is: Is it a bunch of
hackers from the MIT or SR/
artificial intelligence labs?
Hardly — although | know a
few who subscribe. Is it the
group of ambitious people
who started 8008 projects
when they first came out? Yes
— but not exclusively, by a
long shot. Is it the engineer
who always wanted his own
hardware — but never heard of
software engineering? Yes —
some readers fall in that realm.
Is it the applications
programmer who gets Ricks
out of programming and
always wanted a processor of
his own? Of course — there is
more than one COBOL
programmer in the audience to
say ncthing of FORTRAN
people and PL[] people.

Is it the BASIC
fundamentalist who is lost in
his applications games and
suddenly discovers there is
more to compuling than
GOSUB and LET? Sure —and
he has a whole realm of
hardware and software to
learn about. The problem is a
tough one — but constructive
input from readers in the form
of articles and opinion is an
important key to shaping the
content of the magazine,
Introductory materials and

articles to get people
acquainted with terminology
will be in future issues — as
vou'll find to be true in this
issue as well.

... Carl

WHO IS STEPHEN B. GRAY?

Dear Sir,

Your description of the
Amateur Computer Society
(ACS) in the Clubs column of
the first issue of BYTE is
strangely constructed. Please
allow me to supply vyour
readers with further info
about the ACS along with
some history of the home
computer ‘“hobby.”

Stephen Gray organized
the ACS in 1966 to serve
everyone who is involved in
designing and building his
own home computer. The
ACS is an informal
organization, with no such
thing as officers or meetings,
since its members are widely
separated across the U.S. The
main function of ACS has
been to initiate the exchange
of ideas and equipment
among its members. This is
done by the ACS Newsletter,
which describes the plans and
accomplishments and
acquisitions of the various
members. It also lists the
sources of surplus computer
parts available for the
hobbyist. Back in the late
60’s and early 70’s there were
no kits available to buy, and
not too much surplus
computer equipment. This
meant that most home
computer builders had to
design their CPUs and 1/O
interfaces from scratch. The
ACS in those years was made
up mostly of digital circuit
and systems design engineers.
It was like the early decades
of amateur radio, when not
much commercial equipment
was available for hams to
buy.

Today there are several
hundred ACS members
representing all kinds of
careers in the electronics and
computer industries. Lots of
them have had operating
home computers for five to
eight vyears! These people
have a really wide variety of
home computers, from old
vacuum tube ones and all
discrete germanium transistor
ones to microprogrammable
LSI minis and microprocessor
based ones. Some of them
have reconditioned obsolete
models that you can't even
buy parts for anymore, with
such weird peripherals as
drum memories and
flexowriters. Others have lots
of the latest stuff, like CRT
graphics terminals, digital
cassettes, and floppy disks.
And of course lots of them
have designed their own CPU
architecture and instruction
sets to provide special
purpose capabilities that are
unmatched by anything in
the industry.

Then any article published
for one of these systems will
be quite useful to thousands
of people.

But as it is now, there is
little in the line of
construction articles and
detailed program descriptions
(with source code listings)
that could be directly used by
more than a handful of ACS
members. Therefore, Stephen
Gray does not publish such
articles in the ACS

newsletter. Instead he has
used this disparity as an
opportunity to make it a
more personal newsletter,
reporting in each issue what
various individuals have
accomplished, what

difficulties or experiences we
have written about, who of us
have information or
equipment to sell, or trade,
who needs information about
certain equipment, what new
items are available
commercially, to the home
computer market and so on.
All in all it's a very helpful

“The ACS is an informal organiza-
tion, with no such thing as officers

or meetings ..

. the main function

has been to initiate the exchange of
ideas and equipment . . .”

With such a wide variety
of approaches, design
philosophies and languages
existing in the home
computer field, each ACS
member’s computer “lives” in
its own special world, having
little in common with the
next member’s computer
{(which may be several dozen
miles away). Compare that
with tomorrow’s home
computer scene, where there
will be thousands of people
with systems built around
audio cassette mass storage,
VDTs and 6800s and 8080s.

and informative newsletter.

I feel that Mr. Gray has
done an excellent job of
bringing us home computer
builders together, and |
believe that the ACS and its
members have quite a lot to
offer to the new generation
of home computer
enthusiasts that have been
spawned by the age of the
microprocessor. | think that
the recent developments in
our field are just great and
the near future promises to
be absolutely fantastic! It all
can’t come soon enough for

85

me! Even though science
fiction writers predicted it
long ago, who knows what
the future of computing will
bring? | certainly welcome
BYTE into our field and wish
you the best in this new
computer age.
Dick Snyder
Chelmsford MA

Sirangely constructed?
Indeed! The goal of obtaining
movre information was
accomplished, Dick, although
Mr. Gray is too modest to
send it to BYTE himself. All 1
had to go on was one cryptic
letter Stephen B. Gray had
written to Wayne Green and a
file reference supplied to me
by Richard Gardner who
makes it his business to know
what’s going on where and by
whom.

[am firmly of the belief
that anyone who has macde
verifiable contributions to the
technological progress of this
extremely interesting hobby
should be recognized — as
you point out in your letter
Mr. Gray has made such a
contribution by serving as a
focal point for a group of the
pioneer home computer
hackers. To the best of my
knowledge he is the earliest
person to put together a
vehicle for communications
amongst home brew
computer people, a notable
contribution.

...Carl

The comparison of

simple subroutines for
different microcomputers
does not show the relative
merits of the machines.

86

WHICH
MICROPROCESSOR
EVALUATOR
FOR YOU?

Dear Editor,

I am pleased to see a high
quality magazine for the
computer hobbyist. In this
large and fast changing field
BYTE will be invaluable as an
educational and
informational forum.

| have spent the last three
years programming
microcomputers, most
recently writing ALTAIR
BASIC with Paul Allen and
Monte Davidoff, and hopc to

share some of what ['ve
learned with your readers.
I do have some

disagreement with statements
made in Hal Chamberlin’s
article “*Which Micro-
processor for You?" Of the
three micros, the IMP-16, the
Intel 8080 and the Intel
8008, the 8080 has the best
memory efficiency due to the
number of things that can be
done in a single 8-bit
instruction. The IMP-16 s
second best, requiring 30%
more memory bits; and the
8008 is a distant third,
requiring about twice as
much memory as the 8080.

The IMP-16 is the fastest
machine with the 8080 a
close second. The 8008 is at
least 12 times as slow as the
8080. This is because the
8008 not only has a much

slower cycle time, but it
requires many more
operations to perform an

equivalent function.

Software from MITS costs
about six times as much if
hardware is not purchased
from MITS. As long as
hardware is purchased from
MITS, MITS is willing to just
break even on the software.

The comparison of simple
subroutines for different
microcomputers does not
show the relative merits of
the machines. The best way

someonc who doesn't know a
lot about software can judge
the different microcomputers
is by seeing how large and
how fast a large program like
a BASIC interpreter or
FORTRAN compiler written
by a professional programmer
will run on the machine.
William H. Gates
President, Micro-Soft
Albuquerque NM

PS: The program on page 54
of BYTE #1 doesn’t work
since the dispatch table
entries arc three bytes long
instcad of two.

The substance of Bill
Gates' letter is that the
problem of evaluating a
compulter’s performance is a
complicated issue. Every
machine has its little
idiot-syncrasies which enable
it to outperform its
compelitor in a specific
conlext. The tesls one uses to
evaluate the machine in many
ways affect one’s results: Bill
(like myself) would tend to
evaluate a machine based
upon a complicated
“benchmark’” application or
systems program. This sort of
evaluation typically will
exercise the full range of the
CPU’s instruction set in a
real-world large program
context. Other people would
tend to evaluate not upon
that benchmark, but on the
ease of generation of machine
code which is fully optimized
by a modern compiler. The
compiler writer’s benchmark
is different from the systems
hacker’s benchmark. Then
there is the small computer
world — which is the best
computer from the home
brew hacker’s standpoint?
Probably in the current state
of the art it is the machine
which has the easiest
instruction set to deal with
given a modicum of support
in the form of assemblers
from the kit supplier.

People have been
evaluating computer
instruction sets since the first

time some disgruntled
programmer cursed at an [BM
650 (or earlier) product. And
people will continue to do so.
l'd like to see some of
BYTE'’s vreaders giving
personal evaluations of their
own experiences
programming some of the
machines which are now
available. This will produce
still another form of
benchmark.

Oh yes, regarding the
mistake on page 54 — see the
“Diagnostics” heading in the
Nucleus of the Queue, in this
issue.

... Carl

IT'S GREEK TOME . ..

Carl,

With all due respect, your
dump of computer
organizations in the last issue
of BYTE was incomplete!
(Obviously a hardware bug.)
You omitted perhaps the
biggest one of them all (at
least in potential) — Beta lota
Tau (BIT). Yes fans — that’s
right — it's here now — the
first computer science college
fraternity. Us knurds got our
(expletive deleted) together
this time. You say you never
heard of wus? That's
understandable, we're new
(and not fully established
yet). As of the present only
two chapters are emerging
from the mass of red tape (7,
9 and Cassette): the founding
chapter here at Rose-Hulman
Institute of Technology (and
software disproving grounds),

and the Beta chapter at
Michigan State. As the
probability of this

publication finding its way to
college campuses this fall
approaches one as a limit, we
would like to take this time
to rip off some advertising
space.

Are you interested in
starting a chapter of BIT at
your college or university? If
you are, then ASCIl some of
your friends. Show them this
crazy letter we're writing at
this crazy hour. Drop us a

line (RS-232 compatible) at
the address below. We'll send
you more information as we
get it ready. If nothing else
we'll help synchronize you
with the rest of the knurds at
your school (provided they
write in also). Write to:

000 * BETA IOTA TAU
001 * cfo Richard A. Petke
002 * R.H.I.T. Box 520
003 * Terre Haute IN 47803
For BIT,
R. Petke
High Order Bit
B. Copus
Chairman of the Vice
L. Passo
1/O Processor

! suppose it just had to
happen some time. I'm glad
to hear about BIT, Richard.
The very idea of BIT leads to
all manner of intricate and
exciting possibilities. Why, to
start off with, you'll need to
recruit a bunch of novices
known as '‘Least Significant
Bits'' into which

they have been indoctrinated
with their [Initialization
Writes, they can work their
way up through the ranks.
But you will have to be
selective about it — you'll
have to watch out for shifty
characters. AND in the fall
you can schedule (at high
priority) some major social
events in the BIT house
culminating in the Masked
Ball around Halloween. OR in
the spring you can have
another big social affair at
which you'll crown the
Queen of the PROM
(hopetfully shelll not get
burned). Speaking of such
matters, to be fair you had
better organize the logical
complement of your
organization. Find some
ladies to form a sorority, or
change your parameters and
get some grand scale
integration into your
organization. Keep me posted
on progress of BIT.

. Carl

—

1K 475 ns all orders shipped
STATIC RAM SIGNETICS postpaid and
$4.25 for one 2602-1 insured. Mass
$4.00 each for residents add 3%
eight sales tax
$3.75
each for 32

WHY PAY FOR BEING SMALL?

Centi-Byte is a new source of memory components

1

|(INTEL 1K 2102 RAM I

Factory prime, tested units. Factory selected for
much faster speed than units sold by others. 650
NS. These are static memories that are TTL
compatible and operate off + 5 VDC. The real
workhorse of solid state memories because they
are so easy to use. Perfect for memories because
they are so easy to use. Perfect for TV typewriters,
mini-computers, etc. With specs.
$3.95 ea. or 8 for $30

and other necessary items for the computer hardware
builder. Our function is to be a voice to the
manufacturing companies representing you, the
modest volume consumer of special purpose comr
ponents. Centi-Byte brings you this special intro-
ductory offer of fast memory chips, chips fast cnough
to run an MC6800 or 8080 at maximum speed. These
2602-1’s are new devices purchased in quantity and
fully guaranteed to manufacturer’s specifications.

Centi-Byle works by concentrating your
purchasing power into quantity buys of new
components. Let us know what you need in the way
of specialized components and subsystems for future
offerings. With your purchasing power concentrated
through us, together we will lower the cost of home
computing.

| _ﬂﬂtl Egtw
 POBOX312
BELMONT, MASS. 02178

SIGNETICS 1K P-ROM
825129. 256 x 4. Bipolar, much faster than MOS
devices. 5ONS. Tri-state outputs. TTL compatible.
Field programmable, and features on chip address
decoding. Perfect for microprogramming appli-
cations. 16 pin DIP. With spec. $2.95 ea.

8T97B
By Signetics.
Tri-State Hex Buffer
MOS and TTL Interface to Tri-State Logic.
Special $1.49

DO YOU NEED A LARGE COMMON ANODE
READOUT AT A FANTASTIC PRICE?
S.D. presents the MAN-64 by Monsanto - 40 inch
character. All LED construction - not reflective
bar type, fits 14 pin DIP. Brand new and factory
prime. Left D.P.
$1.59 ea. 6 for $7.50

MOTOROLA POWER DARLINGTON - $1.99
MJ3001 - NPN - 80 Volts - 10 Amps - HFE 6000
typ. To-3 Case. ldeal for power supplies, etc.
We include a free 723 regulator w/schematic for
power supply with purchase of the MJ3001. You
get the two key parts for a DC supply for only
$1.99. Regular catalog price for the MJ3001 is
$3.82.

LARGE SIZE LED LAMPS
Similar to MV5024. Prime factory tested units. We
include plastic mounting clips which are very hard
to come by.
Special 4 for $1

48 HOUR SERVICE
You deserve, and will get prompt shipment. On
orders not shipped in 48 HRS" a 20% cash refund
will be sent. We do not sell junk. Money back
guarantee on every item. WE PAY POSTAGE.
Orders under $10 add 75¢ handling. No C.O.D.
Texas Res. add 5% tax.

S.D. SALES CO.

\ P. 0. BOX 28810 DALLAS, TEXAS 75228

87

from page 7

be unused. In general, as
many of these locations as
you can afford should be
filled up with random access
memory chips, which,
experience has shown, people
arc always able to use up in
programs. Sooner or later you
will find yourself limited by
the constraints of small
memory! For the benchmark
system, the minimum random
access memory should be 4k
(4096) 8-bit bytes or 2k
16-bit words. A preferable
number is 8k bytes or 4k
16-bit words.

ROM Systems Software?

How do | get my first
programs into memory after
turning on power? The
answer to this question is the
method of “bootstrapping”
or “initial program loading”
(IPL) which is used by a
computer. Early in the
minicomputer game,
technology of computing was
at a state where the principal
bootstrapping method was a
set of front panel switches
which addressed memory
locations and allowed the
programmer to put in short
programs by hand.

With the advent of the
new high density ROM
integrated circuits, it is now
possible to provide the
convenience of an
automatically bootstrapped
system through systems
software which is cast into
the concrete form of an ROM
device.

Many of the kit suppliers |
have talked to are either
currently supplying or
intending to add this ROM
systems software feature.
Initially, the programs which

Experience has shown

that sooner or later you'll
feel constrained by any

size of memory — the

greed of many programmers
for more memory is
unbounded!

88

are “built-in” tend to be
fairly standard ‘control
panel’”’ type routines which

use a terminal (Teletype or
television typewriter) for a
set of simple commands.
Later — with inputs from
users regarding desirability —
you can expect to find
prepackaged assemblers and
high level language
compilers/interpreters
occupying major portions of
the address space available in
typical microcomputers. This
will make the systems
software feature even more
versatile.

Keyboard and Displays?

But of course. The
interactive nature of an editor
capability cannot be realized
with a mere control panel.
The same thing goes for most
of the more interesting
applications of the small
computer. You will need a
character-oriented display
device and a typewriter style
input — whether these bec a
TV typewriter or an old
Baudot coded Tecletype
clunker is up to you. The
typical programs will be
controlled by keyboard
commands and will produce
outputs back to the display.

Cassette Tape Interfaces —
Mass Storage Without Mass
Dollars

Mass storage is a definite

must item for the small
computer system. But
traditional industry

peripherals tend to be
expensive, starting at the low
end with digital cassette
drives and floppy disks at
about $500-$800, and
working upwards. The
solution is to adopt an audio
recording method which uses
inexpensive ($50) cassette
recorders and appropriate
interfaces. This allows you to
perform the editing
benchmark function while
keeping the total system cost
low. I'll have more to say on
this subject later in this
editorial. A minimum of two
such tapes is required for a

decent editor, because one
must be set to ‘‘read’’ old
data, and the second must be

set to ‘‘write” new edited
data resulting from vyour
changes. Three is a more
desirable number still if you
want to do ‘‘sort/merge”
applications, but two will
suffice for the editing
benchmark.

Suppose Your Budget s
Limited — Can It be Done in
Stages?

What | have just described
is the minimum necessary
equipment for a fully
functional implementation of
the small computer
benchmark capability,
cditing. Modularity rules in
the computer world,
however, so you can easily
start out with less function
and work up to the
benchmark capability in time.
You'll also probably end up
exceeding this benchmark of

hardware/software capability
after a while; modularity docs
not stop at this level of
function. The basic place to
start is with a CPU — it'll not
be much more than a blinking
light box without periphcrals,
but that’s enough to show
that ‘it works ' Then, you
can add on the interactive
keyboard/display of some
sort, along with memory
(presumably the ROM
software came with the CPU).
Finally, you can add on the
tape interfaces and additional
memory in order to arrive at
the full benchmark
capability. From then on,
you can enhance the system
with new peripherals and
more memory until you end
up with a very capable system
which can run full BASIC, a
decent systems programming
language compiler, and all the
games, practical applications
and amusements you can
dream up for the computer.

BYTE’s Ongoing Monitor Box (B.O.M.B.)

BYTE would like to know how readers evaluate the efforts of
the authors whose blood, sweat, twisted typewriter keys, smoking
ICs and esoteric software abstractions are reflected in these pages.
BYTE will pay a $50 bonus to the author who receives the most
points in this survey each month. The following rules apply:

1. Articles you like most get 10 points, articles you like least get
0 (or negative) points — with intermediate values according to
your personal scale of preferences.

2. Use the numbers 0 to 10 for your ratings, integers only.

3. Be honest. Can all the articles really be ‘0" or *“10"'? Try to
give a preference scale with different values for each author.

4. No ballot box stuffing: only one entry per reader!

Fill out your ratings, and return it as promptly as possible along
with your reader service requests and survey answers. Do you like an
author’s approach to writing in BY TE? Let him know by giving him
acrack at the bonus through your vote.

Page
Article

12 Lancaster: Ins and Quts . . .

20 Wadsworth: Computers Are . . .

36 Wier: Hexpawn . ..

42 Gipe: Computers . . .

52 C. Helmers: Notes . . .
56 Fylstra: Son of Motorola
64 Nico: Monitor 8% .. .

66 P. Helmers: Versatile ROM .

LIKED

LEAST BEST

10
10
10
10
10
10
10
10

OO0 O0OCOoOO0OO0OC0C
- e =l b 3 o .
NNMNNNRNNMNNORN
WWwwWwwwwww
H A DDA
a0 aon
[l o> RN R B B e B B o))
NN N N NN NN
00 00 00 0000000 W
[Calii e B (o U (o IV e B (o R (o]

5% OFF ON ORDERS OVER $50.00
10% OFF ON ORDERS OVER $100.00
15% OFF ON ORDERS OVER $250.00

TTL

7dl02
74L03
74104
74106
74L10
74L20
74130
74L42

74H01
74H04
74H08
74H10
74H1t
74H20

8092
8095
sn
a3
8130

')JOI

40154

74C00
74C02
74C04
74C08
7aCie
74C20
74C42
TIC73

$

149

S .

7400 $ 14
7401 .16
7402 A5
7403 .16
7404 19
7405 .19
7406 .35
7407 .35
7408 .18
7409 19
7410 16
7411 25
7413 .55
7416 35
7417 .35
7420 .16
7422 .26
7423 29
7425 27
7426 .26
7427 .29
7430 .20
7432 .23
7437 35
7438 35
7440 a7
7441 98
7442 77
7443 .87
7444 .87
7445 .89
7446 .93
7447 .89
7448 1.04
7450 a7

.15
25
.25
.25
.25
33
.33
149

.25
.25
.25
.25
.25
25

8000 SERIES
8091 $.53

.53
125

80
143
1.97
233
279

9000 SERIES
002

35
1.03

CMOS

40004 5 .26
w0014 25
40024 .25
4006A 135
40074 .26
4008A 179
10094 .57
1104 54
f01A 29
w0124 25
40134 45
034 149

7451
7453
7454
7460
7464
7465
7470
7472
7473
7474
7475
7476
7483
7485
7486
7489
74%0
7491
7492
7493
7494
7495
74%
74100
74105
74107
1
74122
74123
74125
74126
74141
74145
74150
74151
74153

LOW POWER TTL

74L51
74155
74L71
74172
74173
74174
74178
74L85
74186

HIGH SPEED TTL

74H21
74H22
74H30
74H40
74H50
74H52
74H53

8214
8220
8230
8520
8551
8552
8554
8g1o

9309
9312

4016A
4017A
4D20A
HO01A
4022A
40214
A024A
4025A
4027A
4028A
4030A
4035A
40424
4049A

74C74
74C76
74C107
74C13
73C154
74C157
74C160
74C161

a7
A7
a7
a7
35
.35
.30
.30
.35
.35
57
.39
79
110
40
2,48
.59
.97
71
.60
9
79
79

1.04
1.04
97
79
99

25
.39

49
79
1.25
69

$1.49
1.49
.19
1.16
1.39
2.19
2.1%
69

$.79
79

74154~ 1.25
74155 1,07
74156 1.07
74157 99
74158 1.79
74160 1.39
74161 1.25
74162 149
74163 1.39
74164 1.59
74165 1.59
74166 1.49
74170 230
74173 1.49
74174 1.62
74175 1.39
74176 .89
4177 .54
74180 90
74181 2,98
74182 .79
74184 2.29
74185 2.9
74187 5.95
74190 135
74191 135
74192 1.25
74193 119
74194 125
74195 89
74196 1.25
74197 .89
74198 1.79
74199 1.79
74200 5.90

75190
74191
74193
74195
74198
74L164
74L165

74H55
74H60
74H61
74H62
74H72
74H74
74H76

8811
8812
8822

Lk
8836
8880
8263

9601
9602

4050A
A066A
4068A
4069A
4071A
4072A
4073A
4075A
4078A
4081A
4082A
4528A
4585A

74C162
73C163
74C164
74C173
74C195
80C95

80C97

$1.49
145
1.69
1.69
2,79
2.79
2.79

$2.93
2.66
2.66
2.61
2.66
135
113

NOVEMBER
SPECIALS

CALCULATOR CHIPS
5738 8 digit multiplexed — five function — chain

operation 2 key y — floating decimal
— independent constant — interfaces with
led with only digit driver — 9 V batt. oper. 24
PIN L $3.95

5739 9 digit — 4 function — chain operation — 9V
banary operation — 16 sec turn-offi 22 PIN
............................. $3.95

CLOCK CHIP
5311 6 digit multiplexed — 50-60 Hz — BCD and 7
seg out — fast, slow set 12-24 Hr — 28 PIN DIP

.................................. $3.88
TIMERS
555 Multipurpose timer 8 PIN DIP $.69
556A Dual 555 14 DIP $1.29

MEMORIES
1101 256 bit RAM MOS $ 1.50
103 1024 bit RAM MOS 3.95
1702A 2048 bit slatic PROM UV eras. 17.95
2102 1024 bit static RAM 4.25
5203 2048 bit UV eras PROM 17.95
5260 1024 bit RAM 2.49
5261 1024 bit RAM 2.69
5262 2048 bit RAM 5.95
7489 64 bit ROM TTL 2.48
8223 Programmable ROM 3.69
256 bit RAM tri-state 5.90

CALCULATOR &

CLOCK CHIPS

12 DIG 4 funct fix dec

Same as 5001 exc biry pwr

12 DIG 4 funct w/mem
MMS5725 8 DIG 4 funct chain & dec
MM5736 18 pin 6 DIG 4 funct
MM5738 8 DIG § funcl K & mem
MMS739 9 DIG 4 funct (blry sur)
MMS5311 28 pin BCD 6 dig mux
MMS5312 24 pin 1 pps BCD 4 dig mux
MM5313 28 pin 1 pps BCD 6 dig mux
MMSI14 24 pin 6 dig mux
MM5316 40 pin alarm 4 dig

Red TO 18
Axial leads
Jumbo Vis. Red (Red Dome)
Jumbeo Vis. Red (Clear Dome}
Infra red dili. dome

Red 7 seg. 270"

Red alpha num .32”

Red 7 seq. .198"”

Green 7 seg, .270"

6" high solid seq.

Red 7 seq. .270”

Red 7 seg. .127" siraight pins
Yellow 7 seq. .270"

6" high spaced seq.

Opto-iso transistor

MULTIPLE DISPLAYS
3 digit .12” red led 12 pin
fits 1C skt,
HP5082 5 digit .11 ted magn. lens
7405 com. cath
HP5082 4 digit .11 LED magn,
7414 lens comm. cath,
FNA37 9 digit 7 seg led RH dec clr.
magn. lens 4.95
§P-425-09 9 digit .25" neon direct inter-
face with MOS/LS1, 180 VDC, 7 seg1.79

SHIFT REGISTERS
MM5013 1024 bit accum. dynamic mDIP $1.75
MMS5016 500/512 bit dynamic mDIP 1.59

Canada and Mexico within 3 days from

California residents add sales tax.

TIL (DIP) VOLTAGE REGULATORS MEMORIES

. 7493 § . .

7432 § .19 91§ .49 209K b 100 1103 $1.29

7448 89 74107 .33 5203 12.95
340T-5V TO-220 $1.00

7475 45 74121 35 T o by 5260 99

74% .49 %01 .75 - - $1 5262 3.19

Satisfaction guaranteed. Shipment will be made via first class mail in U.S.,

shipping and handling for orders under $25.00. Minimum order $5.00.

INTERNATIONAL ELECTRONICS UNLIMITED
P.O. BOX 1708/ MONTEREY, CA. 93940 USA
PHONE (408) 659-3171

POCKET CALCULATOR KIT

5 function plus constant —
addressable memory with
individual recall — 8 digit
display plus overflow —
battery saver — uses standard
or rechargeable batteries — all
necessary parts in ready to
assemble form — instructions

included
CALC KIT (WITH BATTERIES) $12.95
BATTERIES ONLY (DISPOSABLE) SET $2.00

9 DIGIT LED DISPLAY FNA 37

On multiplexed substrate, comm.
thode compatable with all 8 digit
calculator chips, 7 segment right hand
decimal, red with clear magnifying lens,
.12” character, 1to 4 MA, 1.8 Vlyp 2%" x
" x 3% high oL $3.95

Data sheets on request
With order add $.30 for items less than $1.00 ea.

LINEAR CIRCUITS

300 Pos V Reg (super 723) TO-5

301 Hi Perf Op Amp mDIP TO-5 29
302 Volt follower T0-5 .53
304 Neg V Reg T0-5 80
365 Pos ¥V Reg T0-5 al
307 Op AMP (super 741} mDIP TO-5 .26
308 Micro Pwr Op Amp mDIP TO-5 .89
309% 5V 1A regulator T0-3 135
310 V Follower Op Amp mDIP 1.07
m Hi perf ¥ Comp mDIP TO-5 95
319 Hi Speed Dual Comp o 113
320 Neg Reg5.2, 12, 15 10-3 119
322 Precision Timer []]4 1.70
324 Quad Op Amp DIP 1.52
339 Quad Comparator oir 1.58
30K Pos Vreg (5V, 6V, BV,

12V, 15V, 18V, 24V) TO-3 1.69
3407 Pos V reg (5V, 6V, 8V,

12V, 15V, 18V, 24V) TO-220 1.49
372 AF-IF Strip deteclor [2]] 4 293
373 AM/FM/SSB Stirip [o]14 53
376 P V Reg mDIP 2.42
377 2w Stereo amp DiP 1.16
380 2w Audio Amp ow 113
380-8 .6w Audio Amp mDIP 1.52
381 Lo Noise Dual preamp pIp 152
382 Lo Noise Dual preamp DIP 7
550 Prec V Reg [»114 89
555 Timer mDIP B9
356A Dual 555 Timer DiP 1.49
560 Phase Locked Loop DIP 2.48
562 Fhase Ltocked Loop otp 2.48
565 Phase Locked Loop DIP TO-5 2.38
566 Function Gen mDIP TO-5 2.25
567 Tone Decoder mDIP 2.66
709 Operational AMPL TO-5 or DIP .26
710 Hi Speed Volt Comp Dw 35
7 Dual Difference Compar DI 26
723 V Reg pIp 62
739 Dual Hi Pert Op Amp DIe 1.07
741 Comp Op AMP mDIP TO-5 32
747 Dual 741 Op Amp DIP or TO-5 7
748 Freq Adj 741 mDIP .35
1304 FM Mulpx Sterco Demaod DIP 107
1307 M Mulpx Stereo Demod DIP 74
1458 Dual Comp Op Amp mDIP 62
1800 Stereo multiplexer DIP 2.48
LH2111 Dual LM 211 V Comp DIf 170
3900 Quad Amplifier Dip .35
7524 Core Mem Sense AMPL DIp Al
8038 Voltage contr. osc. DIP 4.25
8863 9 DIG Led Cath Drvr [»]]4 2.25
75150 Dual Line Driver Dip 175
75451 Dual Perepheral Driver mDIP .35
75452 Dual Peripheral Driver mDIP .35
75433 {351) Dual Periph Driver mDIP .35
75391 Quac Seq Driver for LED DIP 71
75492 Hex Digit driver Dip .80

receipt of order. Add $.50 to cover

Carl Helmers

| just described what |
think is a reasonablc version
of the state of the art in small
systems computing at the low
end in price. Now, what can
you expect out of the
suppliecr of small systems
products <> that you can
implement the benchmark
capability? W for one
thing, sooncr or later every
supplier will want to
demonstrate this type of
system with an cditing
capability. Note with care
that | did not :xcify oneiota
of detail about the actual
cditor programs themselves
which implement the
capability. I've hardly limited
the software people (or lack
of same) at the kit companies
to a particular imple-
mentation. There will be
plenty of room for variations
on the basic editor concept
from supplier to supplier, in
terms of meeting the
benchmark requirement.

The only supplier of kit
computers who comes close
to dcmonstrating the under
$1000 benchmark to my
satisfaction is Scelbi
Computer Consulting in
Milford, Conn. Their 8008
oriented systecm has
reasonably priced software
listed in their catalog for a
tape cditor program, and the
peripherals/memory products
they list [ook sufficient for
this capability. {MITS: | get

Standardization is a must
for the growth of this
industry — both for the
users of the equipment
and the manufacturers.

20

the impression that from
your prices and available
printed data, your library of

programs is oriented to the
larger systems which
implement your BASIC

interpreter. This puts them
out of the class of under
$1000 computer systems,
although your new 6800
system may be in the small
computer benchmark
classification of this
editorial.)

As manufacturers send me
evidence (documentation,
systems summaries, program
listings, etc.) for the small
systems benchmark
capability, I'll report on them
cither in the editorials of
BYTE or in review articles
commissioned for that
purpose. Readers can help
prod the software
departments (or lack of same)
at the wvarious kit
manufacturers by writing
them to urge demonstration
of both the benchmark
capability and to wurge
“bundling” of that valuable
systems software — the editor
— as part of the package of
ittms which comes with the
computer.

Comments on Kit
Documentation: An Open
Letter to Manufacturers
What should readers
cxpect from a kit
manufacturer? BYTE s
certainly looking into the

various kit products with the
reviewers' soldering irons,
pens and typewriters in hand,
sO we can present a critical
evaluation of the ease (or lack
thereof) of assembly of the
products. Just so you won’t
have it sprung on you
without warning, | thought a

few comments on assembly
manual standards for
reviewing kits might help, and
it will give our readers an idea
of what to look for when
they buy these products. For
starters, let’s concentrate on
the first documents the kit
builder has to come across —
the system’s assembly and
hardware checkout
documentation.
Manufacturers, be on your
guard here! Microcomputers
are complicated pieces of
cquipment which cannot
lolerate mistakes in assembly
if the result is to be a
functional wunit. Further,
since there is a finite
possibility of bad intcgrated
circuits getting through your
quality control procedures (if
any), you had best make sure
you can count upon your
customers to diagnose any
problems which might arise.
While you can assume an
above average intelligence on
the part of your customers —
the readers of BYTE — you
cannot assume a complete
familiarity with all the details
of your system. The burden
of clear and understandable
presentation lies upon your
shoulders. The days of the
two page description of some

digital logic circuit being
passed off as an assembly
manual are over when it
comes (o microcomputers.

Kit computer builders do not
need the Heathkit overKkill
approach to assembly
procedures, but they do need
more than a skeleton of a
manual. There is a balanced
middle ground between the
extreme of minute detail on
one hand, and a bare circuit
diagram with parts list on the
other. Here are some of my

thoughts on
assembly
document might contain.

what
and

a good
checkout

System Summary: A
description of the overall
design of your product, and
wherc the particular unit
being assembled fits into
that design.

Complete Schematics: The
need for these goes without
saying.

Parts Lists: Spcecify wt
you think you ship, and
stick to it as closely as
possible. The user can check
it off and pick up errors.

Recommended Assembly
Sequences: Give a irly
detailed sequence of
assembly, more than “stuff
PC boards,” ‘‘solder” then

‘““checkout.’”” As a
manufacturer vou should
assemble the at ast

once yourself while taking
notes on paper or magnetic
tape. In any given
mechanical and electrical
assembly design, there is
bound to be an optimal
sequence of steps — being
close to it you should be

able to give a good
approximation of the
optimum. The assembly
sequence should be
specified with sufficient
detail — pict 35 where
necessary — so that an
intelligent rcader can

reproduce it.

Checkout Sequences And
Self-Test: Thought should
be given to the scquence of
procedures neceded to verify
the operation of the kit
once it is assembled. Do not
under any circumstances
leave vyour checkout
procedures to a strictly
“nominal” course. | can
predict that sooner or later
some of your customers »

find common glitches in
assembly. Give a few side
branches in the checkout
procedures for commonly
occurring problems. “Ah,”
you protest, “but | don't

&W 7400NTIL &» JAMES NOVEMBER SPECIALS MICROPROCESSOR COMPONENTS "\
DIODES T ! cL
SNZIoON 16 SN7ssIN 27 SNIISING 125 WA SV 1 A 0 non 6 TL LINEAR 15100 oo &ECD:‘,:'C' CHIS,;S-_'V 8008 — 1 9 95 2102 — $2 9 5
0N 16 SNInIN 21 SNTAISIN 135 W02 N0 1A 12310 14T s 53 i0q1 585 h L
SNIH02N 2 SNTiBIN REl SNZABIN 1 2% INAODZ 200V L) Amp 1551 0B 1480 a8 H\\'vJIJN 6 Bupet 205 ceus RAM'S
SK1SUIN 16 SN7I99A 2 SNZAI5IN 121 NAGRT SO0V 1 Amp 15 ST 0 Auu 280 um 3 531N 6 Dugut 285 4008 £l CPU 51005 1101 756x) Stan § 229
SNZISR 2t SNTIBON 27 SKIGTHEN 130 INATIE Setih sy 155 Ducoster 43 MMS3IGN 6 Oqe Alwm 395 080 &l Sope BINE 119 45 noz Thal o Dyome 29
ShraGsN 7 SNITION A6 SNIATSIN 130 Counre 7o MUSIZSN B Dwid Fum 198 R e s e fne S e
SN7aBEN b smaaim oW SNIZIGEN 175 TRANSISTORS : 19100 MWSZIBN 6 Dt i Fum 395 [VA o e
SNIAUIN SNIATIN G db SNIVIBIN 145 FNZF0TAPNP Swtiung 6 S1 00 o ("‘“‘" i V18 MMLISEN B Dun S Fum 495 PROM'S 1389 o i
SNIA0RN SNILSN b SN/TIGIN 19 INZ222ANPN Swittng 6 S1 00 30“’! peRing S 26 Awg RIBBON CABLE 8224 3248 Prom 1 B0 Tt 795
SNTA0UN SNTI/SN B SNTIGIN 165 INIY0I WPN Awp Fsing LMI0IK BV A TO 2 B Uk timmum 190 10h S0 Kk T Wi phes oot S
SNZVION SNIVIGN ar SNZAIGEN 164 2N3906 PNE Amp 8100 T — 9)_ 7K E Pram 14 4% £599 Itixd 344
ST ShIEON 5D suTiten 110 94 1Pt RE s3ioy OYNAMICSHIFT REGISTERS F o T M s g el i
SNJGIN SNIABIN 178 SNIAIBIN 550 INDISL N Fer 68100 : 16 Cond Bn 19 |‘|: 2001 ?:s;sn gy 5532'.’:0 ﬂ' k ;3
grr:;]:m z;;;x;;N : :'7, 2:\;7/1;;(2];: l;inu CI0GB1 36 AmnSCR - 75100 320 md 18910t 1.69 h. 2583 1K SSH T 3300 241 79:
s 4 SN/ i}
SN BN N i SNAITIN 110 PARTS SURVEY HP-5082-7300 Zi QLg% Stal AN D Aepsconent b 2107 1
Shi4 N 5 350 SNIIITIN 195 i read the letter from Robert Briner in .ﬁ a0 bes Coent D 385
;1:’,13'.' ;‘”}5;{? 32'9' 22;‘:;3'\\: 'g:—; the June issue of R-E about his problem |;gﬁrna{]znn Vector General Purpose Logic CARD Board 1495
SN it on Sy s | of obtaining parts overseas for projects. Dt e i) ot *Very Hugh Nnuse (mmunity * Holds 12 ea. 14 psn DIPS
SN7A23Y 5074923 22 sn7a1en 105 | | now have nine months experience with st Oty § tons (BCL sn. 10 2 agch, 44 i Edge Cannection
SN 475N SNIIIN 87 SNIAIRIN 35y i i <5, st
NSy sy b AN 33; several firms and received all the parts | iy S $5.95 THE KILOBYTE RAM CARD Per Kit $49.95
i n2tasy 0 SRTHRIY 230 ordered. The time it took to receive the Complrte tKx8 Memory * High Noise Immunity Componenis
o Stk INiatasn 5320 | Parts varied from firm to firm. Here is a 1P 5082 130% 495 “Single Sv supply *500NS Access Time B K includes sockets, ICS &
SH/I0N SNISI0ON 125 snrste/n gou | lst of my experiences with the firms. + eveaan ol 7300 e Buard
; Sram Supaiam 150 | James Belmont, GA 7-10 days 1% x1%" XFMERS P.C. Mount FREE With cach $75 order of Micioptogessor campunents,
Straaen %”7_.”7” i N7t 150 Electronics oot were desgnd lon chch sy . $12.00 ge1 9 one year subsctpiion to BYTE the magazne far
o SHTA12 : e e » >
SNTI39A SNIIZIN 1 Oh Shraindn 140 | Poly Paks Lynnfietd, MA 2-3 weeks appiicatins, 110Vac prmary G60Hz Value computer PHREAKS FREE FREE FREE
8131290 6 SNZSI04N 1439 (getling better} | secondaes 810vace
SN SNITIZEN 81 sn/igsy 100 | International Monterey, CA 2~3 weeks 0ama 50007 S EXAR cs
W s S 1 | Hestronies RIS KIT '
SMIAAIN SNANGIN 1 1n SNI319IN 100 nlimite & gas dustharge dapt 5
SNTAAAN SN/A198N 2.25 | Southwest San Antonio, TX 3-4 weeks e XR-2206KA SPECIAL $17.95
Striien sn7i19sy 225 | Technical SPECIAL $.99 Includes menabthic funcuon generator IC, PC board, and assembly
SNIIAGN 100 sn7a200n 700 [Products msteuction manual
SNIaAIN (R0 SN7a2510 250 | Meshna tynnfield, MA 2-3 weeks 5
SN7448N 250 sN74783 00 | Electronics 1/16 VECTOR BOARD | XR-2206KB SPECIAL $27.95
SN/ ABON SNIMbﬂN 10 SN7a7RBN 600 | Delta Lynnfield, MA 3-4 weeks PP:mm Same as XR 2206KA above and inchudes extermal components
Diccount for 100 Combuned 7400's Electronics R 01" Hole Spacing for P bawrd
YT CMOS o | Sofdstate Somerville, WA 3-4 weeks prenoue | e o TIMERS STEREO DECODERS
coaum n 'v‘ 730208 oy ; : o [XR-655CP SPECIAL S .68 XR-1310P 83.20
£0400? b 040 65 YT 5 Howard W, Indianapolis, IN 7 weeks ‘ 169P. XR-320P 1.55 XR-1310EP 320
COANME o COiNss 185 ucim s | Sams&Co 169741 967 XR-556CP 1.85 XR-1800P
H [{POXY LLASS | 169P44 062C1 3.20
cnatioy 7% c 245 jaczan oo | Altap Dallas, TX 1--1¥2 months mmu}..‘u[XR-2556CP 3.20
coa009 I C 130 e 115 | Electronics XR-2240CP SPECIAL 325 'WAVEFORM GENERATORS
[Tt o WIETLE 150 200N 300 All the times are from the day | wrote XR-205 8.40
e ; 28! Jw 200 | the letter untl | received the parts. PHASE tOCKED LOOPS XR-2206CP SPECIAL 4.49
4017 Y SCI0H. 125 . -
coanns 4 cosmg 19 nivt 240 | M. K. BERKHOUDT ;: %:g Eég *F-2207C8 38
03016 " [AVHIID 19 250151 10 | Rotterdam (23) xn'ssmp ,'95 MISCELLANEQUS
con Vay a1 298 AT 214 | Holland Reprinted From Radio & Electromis i) XR-2211CP 6.70
N - More o b st g T00H capan b . .
foii oy 298 BE 32 September 1975 oy XR-2567CP SPECIAL 299 xp.35 379
N . b ! " i .
coanz0 1 LU0 375 e 325 OT Sues vt amd the b ol the Prist
cm02 cutnig 175 MCIE? 300 DPST e .
04 . . Bt ot gt e *
Cui023 " CDing 45 1ACI6Y 325 S e¢|a| Request *
COANZE 1 coans a5 NCU3 G0 C&KROCKER SWITCH | oot tint i sve bt a ,“.4p q es ed "em 5
03075 ” : 5 20093 279 They are rared at 125 Vor @ 54, | 2 Q1 18 Stbers 10T 354 Bu REAU o Trck ¥ ey 3595 NATA/ S300 w7 5195
04027 .,q 30 s 278 They are excellent i application | £ 7 <t Pt g § bl but ate O O SO
cosnze ot ncn b gl 1s ch ot Borogomputer ||| e bl e st LTI DVt G Aw a0 wm i
CO/ i : 20C sputer 1 Chup Su 2
fnaon o TN i Panel Switthes notracbat - COMPLETE KIT. $l 7 Q8 | CAN Suner CMQS On Amu 139 ey zgg gagé iég
. : ’ MCI16BLT A D .95 2524 5.00 HHRD 1.3%
};::g[ﬂ: x';!ug LIN EAR mﬂ-‘?ﬁ f?,? Dim: 171" x %" $0.69 *SLECIO £334) FIFG 895 %21 5q0 1301 500
LG o 130 5
LS 5/ (MIIIN 125 LMIA1AN b5 DISP — —
B o Lo e Ui B evor cmSc:"}AY LEDS w DISCRETE LEDS ZENERS—DIODES—RECTIFIERS
UMIBON 139 LMIAgEN 95 i
S il] mANT Com Ane, zm $1.95 v 1 Rt Y5100 TYPE VOLTS W PRICE TYPE VOLTS W PRICE
e % RO 95 MAN 2 §x7 Matx 300 1, i Rt § a0 NG 33 400m 4100 INSDAZ 700PIV 1 AMP 10
R e 3ae | MAN3 Gom. Cath 125 m av o R beton INTSIA B} 400w 4100 (NAODA A00PIV | AMP 10
P i 1%) MANA Com Camn 187 195 Sy Geeen T el a0 INTS2 6 400m 4°100 IN3600 SO 200m 610D
AN e 5| MANZ Com anmo 30 150 Syt Vel L st IN7EY 62 a00m 8100 INA1AB 5 0m 15100
Hen NEATIH wraey en | DL33 Com Cam 125 195 WAl Do 45100 IN154 R A00m A1 00 INAISE 35 10m 170000
LaA30 3 NE 100 L3405t 50 L INGGSB 15 a00m 4100 NI 56 V 28
Lt 100 NERJT 60D tsksin 185 | OLT47 Com. Ano. 625 1.95 S Bl s BSHW Ws737 §6 So0m B WU 62w 2%
M30ECH 100 NESA y HCHR58Y p ,
AT new LFEI)‘i?’gN 0 ICSOLDERTAIL LOW PROFILE (TIN) SOCKETS 5228 67 500m 8 INATIE 6B lw b
LMIDSK 125 NESH3 250 LM752BN 270 1A R [Ea 20 s ton :33535’. 75 ;gg::v‘ ;g :.’Img B@ }2 §§
t";:?'f" ! :I;nl ’:EQ‘EZ: ;g ll;:;“:l’N ?;P Bon sn w i Jian 33 a1 36 INABE 7% W BI00 INATAL 15 n 28
AN " M MISISN 1 2% 14 g 20 1 13 e 15 i a3 INABE 150 Tmo B100 IN1183 S0PIV 35 AMP 160
o e |22 aesflu . s:z 16 pon 72 n » S [4 2 INABSA 180 1m 5100 N1184 100PIV ISAMP 17D
T ; AN TR 185w 2 M 27 A0 63 62 &1 INIODL SOPIV § AMP 08 M1IBE Z00PIV 35 AMP T80
:‘m 'I‘ (;t: xggglv 1123 ;:::;Jm 3!3 77 pan I] N INADD? 1DOPIV) AMP 1 IN118B 400 PIV 35 AMP 300
B ¢RE} #
K41 amien ¥ 15a41CN 39 SDLDERTAIL STANUARD iGOLD) 44PS ADS TRANSISTORS
0K R [RANIRLS 29 H4%iCN 39 e S0 2 K Jipnm s [LW S ALE L2530 15tas
P/ PR Y [QAFLILLY 2 1539 1LN 79 B o a2)q "Hum 10 140 40 7A £156S 300
LMIZOK 19 115 (KRN ” 1509208 89 160 1 i 12 3 por HRYS 110 126 7[“”‘ PUISEY 3 Stun
LAIZIKS 1080 LR K] 154CH g9 T8 g 57 W =- g Vi 15 xS Taaiun e S
LMIZAN 180 LKI23R 54 RCA LINEAR INZARIA ﬁ::‘,ig,?
ay 1 VI 55 CAIDIT 170 WIRE WRAP SOCKETS {GOLD} LEVEL «3 p mime
WK 894 CaTIIN 100 CAJU?2 71 10 e ERLY i W Zipm SR Ha Ah mim
LUABIK 12145 LN 124 CA3N3G 225 M kil it 5 28 pon 110 124 1 INZU06A N34
LETANK 1%)39 LMZAICH 3100 CA303Y 135 i Ry 47 il Mp 1y 145 150 Tanla Iy
341K 24 1 95 LI/AICN 3100 CAMME 115 i " Gh 2 Wom 17y 145 110 s 2n3u02
[BT] CAJUSY 236 s A
59 e 3908
LMA0Ta L 175 X 2! CA30G0 280 e pheinss
w1 v CANRD R 50 PCS. RESISTOR ASSORTMENTS $1.75 PER ASST. risaz 7ams
Ui L s n o Cazoes 160 100K 17 UHIS 15 OH 18 BRRY 22 OK1 e s Ll ISR
AT 221 1% LLIAEN 39 CA3086 59 AN 17
1o LN A CA30RY 329 ASST 5ea 27000 STUHN 3Y 0N 2 OHY B 0N 1VAWATT S 50 PLS
b (MIMAN 118 CA3D9Y B 2h GEONL 67 OHLT IG5 OHAY 120 OB 150 (hint CAPACITOR CORNER)
1 (R RICY R] LA3123 185 ASST 2 5ea TROOIS 220 QR T OHCT 330N 196 pn 1/4 WATTS SOPCS ﬁ- 50 VOLT CERAMIC DISC CAPACITORS -
GELL N (AL L T LA3GOG 1 TS TIOML SUIOKHS W86 DML HO0 OHAL 1K 19 1049 50100 181049 w900
ASST 3 Ses Vo TOE Rk 226 pn 1AWATT . 1oyl 05 0 03 o1 05 3 035
DATA HANDBOOKS noo sows W m W o®on
13K TN GIK GER ik ATpl 04 1] 03 ol [ER T 035
7400 Purout & Duscription of 5600/7400 1CS §2.95 ASST.4 Sea [3 IS 1ok 15K e VAWATTS 50PCS et i 0 03 472 06 05 03
CMOS Puout & Duscription of 4000 Series IS~ §2.95 1 MUk TRV O YRR " A S
ASST 5 Ses AGK WK P K oor 1VaWATT S 50PCS Ar0wr o o 038 ! 20 07%
LINEAR Pi-out & Funcuanal Descrsption of " ‘ 100 VOLT MYLAR FILM CAPACITDRS
Luear Circurts $2.86 140K WWOK 220K 2JOK 430K
- ; Ry g 0imt 12 10 o7 az2mt 13 08
ASST 6 5es 190K HOE SN EROE B2 14 WATT 6°. S0 PCS. w2z 12 10 o aImi 21 7 13
' POWE SUPPLY RD Al 151 1AM 2Mm 0047mt 12 An 07 Imf 2123 17
6 WER LY CcO S.... ASST. 7 bes 2m ey 1 CYial VEWA(T S 50 PCS, 0)mt 12 u 07 22mi 1327 22
2 CONDUCTORS SPECIAL : " 0, ul;;w TANT]ALUMS lSDLID) cnvncnnns
h_ — . K Y) 2 7
‘ 3/$1.00 PRIME asTe e o e s S495 assT 15 36V 28 b 17 BN o »
INTEGRATED vor o v 22 5V 78 2 1 33 %y 22 7
Asst s 7m oo i wsi T $995 ASST 3535V 28 FA] 7 17 v 312 2 7
THUMBWHEEL SWITCHES CIRCUIT . ey 2 1 BE g5V 36 31 7
" 3 w2 w0 A N o ase G835V 2 3 1 By B
ASSORTMENTS "' % o o o sz s oS 5195 4551 10 wBv % 23 " W B]
AsST AT 70 Gy mess £1095 ASST MINIATURE ALUMINUM ELECTROLYTIC CAPACITORS
wal Lead Radial Lead
a3 10 37025 18
a0 togminr - 1 vncmp Satisfaction Guaranteed. $5.00 Min. Order. U.S. Funds. HEEREE M ‘;g {g I
M b 11183 20550 California Residents — Add 6% Sales Tax 6 o1 | 22 16 1t
0P b 5F Write for FREE 1975F Catalog — Data Sheets .25¢ each 13 1 50 16 1
. art o - N 15 1 12 a1 6 15 13
"% o1 i1 a5 13
P %™ % = 1@ 220 18 47 50 16w
- s 918 10 15 1 a2
SOAICS 38 Rar Mans) Amemady 7812701 I:. Faiws 1u the il Aav 1 Tatiows 25 21 1 w 25 15]
PR LR TR 2 20 18 W 5 15 14
e 3328 K 00 M2
2 1 2% 100 [CRE I
E OX 822, BELMONT, CA. 94002 ogom o omoxow o
3 T o, | 13 9 27 1 s 3% 30
55 80 45 220 % 22 N
S, B e s e i b v PHON E ORDERS — (415) 592-8097 T N

http:l!i1Sl.OO

know what the problems
arc!” Well, why not
institute an in-house contest
among your engineers called
BUGDEBUG: Have one
fellow go to a prototype
and intentionally introduce

a bug, then have his
compatriot — without
advance knowledge — get

that machine and figure out
what is wrong while taking
notes on his methods of
deducing the error.

Use of the Computer as a
Debugging Tool: Above all,
concentrate on getting the
CPU up first in your
procedures, so that it can be
used as a debugging tool by
the fellow who has no
oscilloscope. Think about
the computer as a debugger,

and burn some hardware
debugging routines into
your ROMs.

1 5 1 15 1 1 @ TNVAVAY

plans, P/C hoards, preassembled
and tested board or finished
units . . . take your choice. Our

JH E5 P P P o sionens 4§ 4

P.0. BOX 4204
MOUNTAIN VIEW, CA 94040

| present these thoughts as
a constructive input to all
manufacturers — and as
information for readers to use
in the evaluation of your
products. | predict that the
manufacturers who do the
best job documenting their
kits will be the ones who
prosper the most in the long
run.

Standardization

As | mentioned in
describing the small systems
benchmark, the idea of a
home computer system is
best implemented with
modularity. This brings up
the question of
standardization of interfaces,
since one of the most obvious
areas of modularity is in the
choice of peripheral devices
for a system. What arc

standards, and whom do they
serve?

Assemble your own electronic
Ping-Pong unit that clips onto
any TV set. It's easy. Complete

designs include challenging ball
play, a computer-contral paddle
for automatic play, special sound
etfects and even on-screen scoring!

Build the basic unit for ahout $40.

Send $1.00 {refundable) for sche-
matic diagram and info pack of
P/C hoards, kits, finished units
and accessories.

-------J

L--------

92

BYTE will editorially
support any equipment
that meets industry
standards, however those
standards are defined.

A standard is an agreement
— de facto or by explicit
choice of participants — upon
a common set of parameters
for some aspect of
technology. In the home
computer field, the de facto
standard of character data is
adopted without question
from the computer industry
at large — ASCIl (Baudot
Teletype interfaces wuse
obsolete equipment and are
viewed as an exception to be
specially programmed). There
is, however, a strong need for
additional standardization in
two areas, one of which I'll
talk about in some detail
now. These are the areas of
peripheral interconnection to

processors and the audio
cassctte data interchange
standard. Work upon the
interface standardization

problem has already begun
under the leadership of Bill
Godbout in Oakland, Calif.
Bill has been in and around
the computer industry for a
long time (he worked for |BM
when |BM was anything but a
giant in the field) and
appreciates well the shot in
the arm competition can give
the development of a new
area. By having plug
standards, we can avoid
arbitrary restrictiuns on entry
into the field, thereby
expanding the choices users
have and giving incentives to
the innovative and creative
producers of personal
computing products. With a
peripheral standard for the
industry, the inventor of “El
Neato Peripheral #367" only
has to worry about one
interface, and can enhance
the value of Bill Godbout’s
computer systems, as well as
Sphere, MITS, SWTPC, RGS,
Scelbi and vyet unheard of
products.

In California, there already
have been several informal

\
standards meetings among

industry representatives,
according to Bill in a phone
conversation recently ... a
trend which we at BYTE
want to see continuing.

As a step in a sccond
direction — audio cassette
standards — BYTE is

sponsoring an audio cassettce
standardization conferenice
on November 7 and 8 in
Kansas City, Kansas (sec the
announcement in this issue).
The purpose of this
conference is to act as an
information exchange among
the various manufacturers
and wusers, and to hear
arguments on the relative
merits of various systems for
audio recording of digital
data. The main argument in
favor of the audio standard
concept — whatever
technically competent system
or systems are chosen — is so
that the various users of small
computers can freely
communicate with one
another by passing data tapes
back and forth. We need a
universal audio standard so
that Joe Smyly in Podunk
Hollow, Kentucky, can
record his thoughts on tape
and send them to his friend
Fred Oberheimer in San
Francisco, where Fred can
display the message on his
own computer’s data screens
or hard copy outputs.

Once a standard has been
agreed upon you may be surc
that BYTE will do all it can
to encourage manufacturers
to adhere to this standard and
to publish articles explaining
the systems involved, the

hardware which will work
with it, and softwarc
involved. Should some
alternatives be proposed

which seem of value, BYTE
will encourage their
investigation and evaluation.
But once a standard has been
set, it will takc some
powerful improvements to
warrant basic changes.

Car! Helmers
Editor, BYTE

———m

7-Segment Readout
12-PIN DIP

Dale Trimmer

25K Trimmer

PRINTED CIRCUIT BOARD TYPE

many applications.

EACH $1.00 10 FOR $8.95

5001 Calculator

40-Pin calculator chip will add, sub-
tract, multiply, and divide. 12-digit
display and calculate. Chain calcula-
tions. True credit balance sign out-
put. Automatic over-flow indication.
Fixed decimal point at 1, 2, 3, or 4.
Leading zero suppression. Complete
data supplied with chip.

CHIP AND DATA........ ONLY $2.49

DATA ONLY {(Refundable)... $1.00
5002 LOW POWER CHIP AND DATA $12.95

3-Amp Power Silicon Rectifiers

PRV PRICE PRY
100...... $.10
200...... 15
400...... .18
600...... .23

1200.....
1500.....

MARKED EPOXY AXIAL PACKAGE

PRICE

.50
.65

High Quality PCB
Mounting IC Sockets

8-PIN, 14-Pin, 16-Pin and 24-Pin PCB
mounting ONLY--no wire wrap sockets.

.22
.26
.30
.75

.25

DIDDE ARRAY 10-1N914 silicon
signal diodes in one package.
leads spaced.l"; no common connec-

20

Three digits with right-hand decimal)) EACH §$.20 10 FOR $1.50 2
Plugs into DIP sockets -12 turn trimpots which plug
Similar to (LITRONIX) DL337 into a DIP socket Rectifiers
Magnified digit approximately .1" -3k and 200K VARO FULL-WAVE BRIDGE
Cathode for each digit . s 1;a55 :p;ced 3% 2
t' - . .
Seg:‘::::i:;e paratlel for mitiple Each $.65 10 for $4.9¢ vsea7 2A oov $1.10
5-10 MA per segment MR810 Rectifier 50V 1A $.10
EACH $1.75 4 (12 DIGITS) $6.00 1000 MHz Counter -
- 11C05 Fairchild 16Kz Divide By Four| Special 811: Hex Inverter
RCA Numitron -DC to 1000 MHz operation TTL DIP Hex Inverter; pin interchangeable with SN
$ 5.00 -AC or OC coupled 7404. Parts are brand new and branded Signetics
EACH..........t. . -Voltage compgnsated and marked "811."
. -TTL or ECL power supply EACH $.16 011 e
SPE]C)I;L(.Z(;]:;)R $20.00 -50 ohm drive output paTa 10 FOR 1.50 81
-Lead compatible with Plessy SP613 SHEET 100 FOR 14.00 _\f VYT
-True and complement ECL outputs SupPLIED 1000 FOR 110.00 \J 1
-14 pin DIP
MOS MEMORY 2102-2 -Data and application notes 1 AMP RECTIFIER
Each $49.95
1024 Bit Fully Decoded Static MOS $ EACH § .15
Random Access Memory LED’S IN400O7 1KV PRV
B SALE 10 for $1.00
-fast access 650ns —_——rey
-fully TTL compatible MV50 Red Emitting $.20
-n channel silicon gate 10-4 MA @ 2V 10 FOR $1.25
-single 5 volt supply N sl MAN4 7-Segment, 0-9 plus letters.
-tri-state output Right-hand decimal : :
-1024 by 1 bit M ight-hand decimal point. Snaps in 14-
chin emable input V5024 Red T0-18 $.35 pin DIP socket or Molex. IC voltage re-
p p . High Dome . 10 FOR $2.95 quirements. Ideal for desk or pocket
-no clocks or refreshing C“ calculators'
required 5‘(u :
Brand New Factory Parts MV10B Visible Red $.30 EACH $1.20 10 OR MORE $1.00 EACH
16 PIN DIP Each %4.00 5-7 MA @ 2V 10 FOR $2.50
8 for $27.95 CMOS CD-2 Counter Kit
] This kit provides a highly sophisticated display
POWCI’ Sul)ply SPECIAL' CD4001 $.45 CD4023 $.45] section module for clocks, counters, or other nu-
723 DIP variable regulator chip 1-40V, | cp400? .45 74020 .65 | merical display needs. The unit is .8" wide and
+ or - output @150 MA 10A with exter- | cp4o11 .45 74C160 3.2514 3/8" long. A single 5-volt power source powers
nal pass transistor--with diagrams for | cp4012 .45 both the ICs and the dispiay tube. It can attain

typical count rates of up to 30 MHz and also has
a lamp test, causing all 7 segments to light. Kit
includes a 2-sided (with plated thru holes) fiber-
glass printed circuit board, a 7490, a 7475, a
7447, a DR2010 RCA Numitron display tube, complete
instructions, and enough MOLEX pins for the ICs...
NOTE: boards can be supplied in a single panel of
up to 10 digits (with al1 interconnects); there-
fore, when ordering, please specify whether you
want them insingle panels or inonemultiple
digit board. Not specifying will result in ship-
ping delay.

COMPLETE KIT ONLY $10.95
FULLY-ASSEMBLED

0. /C
$15.00 ¥ m y

All 1C's are new and fully tested. Leads
are plated with gold or solder. Orders
for $5.00 or more will be shipped prepad

Add 5 .5> feor handling and postage for
smaller orders: residents of Califormia
add sales tax. IC orders are shipped
within 0 workdays--kits are shipped with-
1 10 Jdays of receipt of order. $10.00
minimum on C.0.DL s,

Mail orders to:
P.0. Rox 41778
Sacramento, CA
95R41

Monev back auarantee on all
L aqoods. Send for free flyer.

TWX = 910-367-3521
Phone (916) 334-2161

tions. UNIT IS 1
m EACH... 3 .25 T =
4 i 10 FOR $2.25| Boards supplied separately @ $2.50 per digit.
7400 .20 T4H51 .25 LI NEARS
74H00 .30 7453 .20
;20(1,1 %g ;222,‘ gg NES55 Precision timer...............ccoveinn .90
wor - Ties B NES60 Phase Tock 100p DIP.......oooeoeonss 2.95
;2% 32 7460 '16 NES61 Phase Tock loop DIP.........ccvvvune. 3.00
7404 .25 24L71 .25 NES65 Phase Tock 100p eevevvnnnnn, 2.95
72HOA '30 7472 ',‘0 NES66 Function generator TO-5.............. 3.50
7405 .30 74L72 .60 NE567 Tone decoder TO-5....ccvvvvvearennnn. 3.50
7406 .40 7473 .35 709 Popular Op Amp DIP........ceevnenn... .40
7408 .30 74073 .75 710 Voltage comparator DIP............... .60
74H08 .30 7474 .45 711 Dual comparator DIP.................. .45
7410 '20 74H74 .75 723 Precision voltage regulator DIP...... 1.00
7413 '75 7475 .80 741 Op amp TO-5/MINI DIP................. .45
O A T 748 0p AMP TO-5......oevuneeenisenaeses B0
0 7480 50 CA3018 2 Isolated transistors and a Darling-
;2:%8 'go 7483 '70 ton-connected transistor pair...... 1.00
74H22 .30 ;Zgg f'gg CA3045 5 NPN transistor array............... 1.00
Ty A J4e2 les [MI00 Positive DC requlator TO-5........... 1.00
74L30 .30 7493 1.00 LM105 Voltage regulator.................... 1.25
7440 .20 7495 .65 LM302 Op Amp voltage follower TO-5......... 1.25
74440 .30 74195 1.00 LM308 0p AMP T0-5. . cuvuurninerenannenennnne 2.00
7442 1.00 74107 .35 LM309H 5V 200 MA power supply TO-5.......... 1.00
7447 1.50 74145 1.25 LM309K 5V 1A power supply module TO-3....... 1.00
7450 .20 74180 1.00 LM311 Comparator Mini..................... 1.75
24450 .30 74193 1.50 LM370 AGC amplifier.............coooen.... 1.75
7451 .20 74195 .65 LM380 2-Watt Audio Amp..................... 1.75
) LM1595 4-Quadrant multiplier................ 1.70
7400 Series DIP | MC15367T 0p Ampocoeeiiiiii 1.35

94

	Cover
	In the Queue
	Foreground
	INS AND OUTS OF VOLATILE MEMORIES
	COMPUTERS ARE RIDICULOUSLY SIMPLE
	COMPUTERS AND AMATEUR RADIO
	SON OF MOTOROLA (OR, THE $20 CPU CHIP)

	Background
	HEXPAWN - PROJECT IN ARTIFICIAL INTELLIGENCE
	NOTES ON PARALLEL OUTPUT I NTER FACES
	MONITOR 81/2 - YOUR OWN PSEUDO INSTRUCTIONS
	VERSATILE READ ONLY MEMORY PROGRAMMER

	Nucleus
	From the Publisher
	Speaking of Computers
	Book Reviews
	Byter's Digest
	Clubs and Newsletters
	Diagnostics
	Letters
	BOMB
	Reader's Service

	Back Cover

