DECEMBER 1975 $1.50

the small systems journal

What is a Character?

Assembling an Altair

bl
)|
V“

Haw b\ \ N\ 3 \ ~— 1" f“"':‘ ‘:'\\ | .‘,‘ ‘ Wt y "'\- .
|\\‘\h ol l\ R | N \ \ \.'.\‘.,\. . , / 7 I-Oglc Testers Galnre
) | \ \ \ \.\\,\1 ‘\J \ y 5 AN \4‘\

\ Nl W NG

; \
At
Dt s ui

el

s

Foreground

POWERLESSICTESTCLIP

Test Equipment — Baker — Errico

LIFELine3

Applications — Helmers
BUILD A 6800 SYSTEM WITH THIS KIT
Hardware Review — Kay

CAN YOUR COMPUTER TELL TIME?

Applications — Hogenson

PHOTOGRAPHIC NOTES ON PROTOTYPE CONSTRUCTION

Hardware — Helmers

Background

THE SOFTWARE VACUUM

Opinion — Ryland

LOGIC PROBES — HARDWARE BUG CHASERS

Tools — Burr

WHAT ISACHARACTER? ot

Fundamentals — Peshka

FLIPFLOPSEXPOSED

Hardware — Browning
READ ONLY MEMORY TECHNOLOGY
Hardware — Lancaster

THE HP-65: WORLD'S SMALLEST COMPUTER

Systems — Nelson

ASSEMBLING AN ALTAIRB8800

Hardware — Zarrella

Nucleus
InThisBYTE
What This Country Needs
BOMB
Diagnostics
BYTE magazine is published Word Hunt
monthly by Green Publishing,
Inc., Peterborough, New Clubs, Newsletters
Hampshire 03458. Subscription
rates are $12 for one year Letters
worldwide. Two years, $22. Three .
years, $30. Second class postage Book Reviews
application pending at The BYTE Questionnaire

Peterborough, New Hampshire

03458 and at additional mailing Reader’s Service
offices. Phone: 603-924-3873.

Entire contents copyright 1975

by Green Publishing, Inc,

Peterborough NH 03458. Address

editorial correspondence to

Editor, BYTE, Peterborough NH

03458.

BYTE'sBits..........

.94

.......... 30

W\ "Zé

&

oD,

-

~N

00 . T R e W S

b N B e e

In the Christmas BYTE you'll find the following morsels:

To quote an ancient philospher, ‘nature abhors a
vacuum.” Chris Ryland’s Opinion: The Software Vacuum
describes a void in the personal use computer marketplace.
Will nature in the form of profit motive come in and fill the
software vacuum? Only time will tell . . .

Strange things sometimes occur in the electronic pathways
of a computer. Putting on your detective hat may occasionally
be required — in which case Alex. F. Burr’s review Logic
Probes — Hardware Bug Chasers will give you valuable
information on several commercial products which can help
debug your designs.

On the same theme but in the foreground this time, Robert
Baker and John Errico have provided an article on a fairly
sophisticated Powerless IC Test Clip which you can construct
for $20 or so in parts, For the do-it-yourselfer, this design
results in 16 little binary voltmeters which can be clamped
onto an integrated circuit to examine the logic levels at each
pin.

What is a Character? You can find out by reading Manfred
Peshka’s tutorial on some of the basic concepts of program-
ming and information systems work. Old hands at the
programming arts will find this to be an interesting review, and
readers new to programming will find it necessary background
material.

After an interruption, the LIFE Line series continues this
month with the third instaliment. In LIFE Line 3 you'll find
the beginning of information on the interactive commands
which are decoded by the program.

The Flip Flop is an important element in designs used with
computer chips and peripherals. William E. Browning has
provided this article to introduce the less experienced readers
to this fundamental building block.

4

In This BUTE

Read Only Memory Technology can be used in situations
ranging from clever logic and interface design to storage of
systems programs in a computer. In his article on the subject
in this issue, Don Lancaster gives some background informa-
tion about ROM applications and several suggestions con-
cerning their use as design elements,

What is The World’'s Smallest Computer System? Well, at
this time it looks like the HP-65 pocket-size programmable
calculator might qualify for the title. Find out why by turning
to Richard Nelson’s article on the subject.

The last BYTE featured a comparison of the Motorola 6800
CPU chip with a new contender from MOS Technology. In this
issue, Gary Kay of Southwest Technical Products Corporation
presents some information on the Motorola 6800 package his
firm is supplying. What SWTPC has done is to take the
standard parts, combine them with an attractive case, power
supply and PC boards — and put the result into a package as a
kit for readers to build.

What is it like to build an Altair computer kit? In his First
Person Report: Assembling an Altair, John Zarrella describes
his experience with the MITS product, from his decision to
purchase, through assembly and hardware debugging.

Computers are fundamentally synchronous machines —
they beat to the tune of a periodic clock. With program timing
loops, a computer can be made to count the beats of its clock.
You can find out how to do this by reading Jim Hogenson's
article Can Your Computer Tell Time?

When assembling complicated logic systems, one of the best
methods for new and experimental work is use of solderless
wire wrap interconnection. Some pointers on prototype
assembly are found in Photographic Notes on Prototype
Construction.

And on the cover, artist Robert Tinney illustrates the
impact of these new toys upon traditional relationships.

ANB HOPE THAT '76 WILL BE YAUR
-z BEST YEAR EVER G-

1R you are inte toyiul Glnkering as swellll
26 NeaVY COMPUter stuss - you might Iike

BIGGER DIGITS. ..
i WE HAVE A SUCCESSOR @ E}@@k @ ®° .
glive your eyes a
nn Al OISR O e “Elatronic Projects
3/10" displays "CHEAP CLOCK KIT"!

for Musicians”

BY CRAIG ANDERTON $6.95 shpg

AN IDEAL BOOK FOR PEOPLE INTO

MUSICAL ELECTRONICS...contains 4 chapters for be-
ginners on practical electronics, so that even
complete novices can create working devices. The
book then describes 19 projects suitable for any
level of experience, such as a ring modulator,
preamp, mixer, battery eliminator, miniamp, bass
fuzz, compressor, § 12 more. Also has sections on
troubleshooting, finding more informa-

tion, a forward by guitarist Joe

g'fls RE g
for anyother electronics enthusiast you

know. Scope our FLYER 't'or more toys

BRIGHTER DIGITS... ¥
segment and driver
transistors included

MORE RELIABLE DIGITS...
sockets included for
IC and for readouts

THE RIGHT NUMBER OF DIGITS...
6 digits for hours, minutes,
and seconds. Use as 12 or 24
hour clock, 50/60 Hz

AND NOT JUST THE DIGITS...
We include all parts you need < N
to make a working clock, in- @ l A
cluding the PC board, trans- Y -

former, all components. You
supply the case and hardware

=R0M BCARD SPEOIAL OFFER

4K X 8 PRE-PROGRAMMED FOR 8080 S225

By special arrangement with a software house (meaning we pay them royalties), we've got 4K by 8 EROM boards
pre-programmed with 8080 assembler, editor, and executive routines. It's still the same price as one of
our stock 4K X 8 EROM board kits; we save enough on the programming (by doing lots of EROMs at a time) to
absorb the software royalty so that you don't have to. And since these boards are EROM rather than mask,
you can easily make changes in the program if desired. Speaking of changes: although these routines work
out really well, we recognize the possibility that some bugs could pop up, or we may discover improvements
as time goes on. That is why we're including 2 updates (at no extra cost) to purchasers of our board,
should corrections or patches develop. Any changes you desire beyond that are available at a very nominal
charge. We use our 8K x 8 EROM board as the basis---so it's expandable!

Toy~s | * BIGGER & BETTER * Toy~ |
PACE 16 bat
chip set $195

0 8
"PACE 15 gy CPU 4eDS8E08 10800

[leDVIBE87 S2e2I02 (AK BYTES OF RAM)
2eMMBS204! (IK BYTE OF ROM) [eRAGE DATA PAGKET

THIS CHIP SET GETS YOU INTO PACE THE EASY WAY --- INCLUDES ALL INTERFACE CHIPS FOR PACE TO SPEAK TTL, AS WELL
AS RANDOM ACCESS MEMORY AND 1K BYTE OF EROM, AT A MONEY-SAVING PRICE. IF YOU DON'T NEED MEMORY, YOU CAN GET
PACE & INTERFACE ICS FOR $125. IN EITHER CASE, WE GIVE YOU A PACE DATA PACKET SO YOU CAN START RIGHT IN!

DATA PACKET $2.50

SINCE WE STARTED ADVERTISING AND SHIPPING PACE MICROPROCESSORS, WE'VE HAD A LOT OF RESPONSES AND QUESTIONS.,
IN FACT, WE'VE GOTTEN SO MANY QUESTIONS THAT IF WE SPENT ALL OUR TIME ANSWERING THEM ON A ONE-TO-ONE BASIS,
WE WOULDN'T HAVE ANY TIME LEFT TO TAKE CARE OF BUSINESS. S0, WE GENERATED A COMPLETE PACE DATA PACKET----
MORE THAN 80 PAGES OF DETAILED AND SPECIFIC INFORMATION ON THE CHIP ITSELF, SOFTWARE, SYSTEM ORGANIZATION,
AND MORE. ALSO INCLUDES AN 11 By 17 INCH FOLDOUT LOGIC PRINT OF How TO MAKE THE PACE 1nTo A CPU BOARD THAT
speaks TTL. THE cosT 1s $2.50, REFUNDABLE WITH A PACE ORDER, TO COVER THE COST OF PRINTING AND SHIPPING,

4K KX 8 RAM K T»owon$109.22

Note the lower price; we didn't think you'd mind. THIS KIT IS DIRECTLY PLUG-IN COMPATIBLE WITH THE ALTAIR
8800: NO JUMPERS, NO RASSLE. Also electrically compatible with other 8 bit machines.

With this kit you get sockets for all ICs, industrial-quality plated-through board, lots of bypassing, five
voltage regulators to share the power load (less thermal problems, more reliability), typical 500 ns access
time @ 25°C, and buffered addresses and outputs (no input presents more than 1 low power TTL load; output
can drive 20 standard TTL loads). Requires 5V @ 1A at 25°C. Comes with assembly hints and logic print of
the RAM board. Like Bill says, "it's the whole ball of wax'".

ERCK BOARD KITS
B X B 83522 cnreovucrony rracer aom suo avo werc smosman 17 ros vou

4|< x 6 6 ZOO ADD $25 AND WE'LL PROGRAM IT FOR YOQOU
ZK x 6 6 1 25 ADD $15 AND WE'LL PROGRAM IT FOR YOU

NOW YOU CAN STUFF UP TO 8K WORTH OF YOUR FAVORITE SOFTWARE ON A BDARD; OR, HAVE US DO THE PROGRAMMING FOR

YOU. LIKE THE RAM KIT MENTIONED ABOVE, THIS BOARD IS DIRECTLY PLUG-IN ALTAIR 8800 COMPATIBLE. INCLUDES:

SOCKETS, BYPASSING, INDUSTRIAL-QUALITY PLATED-THROUGH BOARD, BUFFERED ADDRESSES AND QUTPUTS, ON BOARD REG-
ULATION. LOW POWER CONSUMPTION; FULL 8K REQUIRES ONE-HALF AMP @ SV AND 150 MA @ -12V. FILE PROTECT FEA-

TURE INCLUDES LINE RECEIVER WITH REAL HYSTERESIS TO PREVENT FALSE TRIGGERS DUE TO NOISE. EXPANDABLE---1F

YOU BUY DUR 2K BOARD AND WANT TO MOVE ON TO BIGGER AND BETTER THINGS (LIKE OUR 8K BY 8), ALL YOU NEED ARE

SOME MORE SOCKETS AND EROMS. YOUR BOARD DOESN'T BECOME OBSOLETE AS YOUR SYSTEM EXPANDS.

THERE'S VMIORE.. WE HAVE

READOUTS, LEDS, TRANSISTORS, FETS, LINEAR I1CS, TTL, CMOS, MEMORIES, HARD-TO-FIND INTERFACE CHIPS, RESISTORS,
CAPACITORS (ELECTROLYTIC--MYLAR--POLYSTYRENE--DISC), THE HOBBYWRAP TOOL, THE VECTOR WIRE PENCIL, VECTORBOARD
AND PC BOARD, DIODES, INDUCTORS, A WHOLE BATCH OF POWER SUPPLY KITS, A COUPLE CLOCK KITS, OUR 12 VOLT 8 AMP
HEAVYWEIGHT BENCH SUPPLY, MUSICIAN/AUDIO KITS, DIP SWITCHES, RIBBON CABLE, SPECTRA-STRIP, ROM PROGRAMMING
SERVICE, ALL DIFFERENT KINDS OF SOCKETS...SEND FOR OUR NEW WINTER FLYER AND GET THE FULL BTORY.

B YOU MAY PLACE MASTERCHARGE® OR BANKAMERTCARD® ORDERS BY CALLING, 24 HOURS A DAY,
(415) 357-7007
TERMS: ADD 50¢ TO ORDERS UNDER $10. ADD SHIPPING WHERE INDICATED; OTHERWISE,
B

BILL GODBOUT ELECTRONICS ITEMS SHIPPED POSTPATID. CAL RES ADD TAX. NO COD---IT'S TOO MUCH PAPERWORK!
OX 2355, OAKLAND AIRPORT, CA 94614

does not require a large
amount of software
intelligence on the part of
receiving and sending
computers. |t does not matter
whether such a link is in the
form of tape cassettes sent in
the mail or a direct RS-232
connection when all the
neighborhood hackers get
together for a multiprocessor
powwow and computerized
crap game. ASCII and binary
numbers can be shuffled back
and forth with the assurance
that, at this data level of
coding, the information will
be understood by both
parties.

The communication
represented by binary
numbers or ASCIl encoded
data is not at all what might
be called true understanding
between the two computers
involved. Sending data is a
first step, but it is by no
means the ultimate. The
significance of the
communication at this level
must be determined by the
human beings who
manipulate the data being
sent. There is no direct way

of affecting the
understanding — the
programming — of the

computer which is dutifully
receiving the ASCII or binary
data in this simple fashion.

Simple transmission of
data across a parallel-serial-
parallel or parallel-parallel
interface enables the users of
the computers to talk to one
another, but the computers
which carry out the exchange
“couldn’t care less.” The
computer in this type of an
exchange is simply serving as
a ‘‘dumb’’ transmission
channel.

BASIC is an adequate
language — but it has its
drawbacks.

Borrowing again from the
analogy to human beings, this
data level communication
between computers might be
compared to the non-verbal
emotional forms of
interpersonal exchange.
Common languages and
verbal understanding are not
required for humans to
exchange emotional states,
using music, facial gestures

and other body motions
which are inherent in the
nature of the beast. But to
exchange knowledge and

practical data humans must
speak a common language; it
is not an accident that verbal
activity and the tools of
language are so much a part
of the dominant species on
this planet. If merely sending
data represents a low level of
communications intelligence
between computers, what
does it mean to transmit a
higher level of intelligence?

Program Level Intelligence

To transmit data between
computers is the first step
toward a higher level of
communications among
diverse types of computers.
Every computer on the
market can handle 7-bit
ASCIl and other forms of
information encoded into
8-bit bytes. (Of course, it
may be easier to program
ASCII data manipulations on

YOU FOOL — THAT'S
AN UNIMPLEMENTED
OP CODE!

some machines than on
others.) Having a computer
which can easily be

programmed (possibly with
no human intervention) as a
result of an ASCI| exchange
with a computer of a
different internal architecture
is the essence of this next
level of intelligence in
intercomputer communica-
tions. In such program level
exchanges the computers are
speaking to each other in the
form of abstract program
representations which can be
automatically translated into
specific machine language
representations for execution.

In the previous analogy,
this is like human beings
exchanging information and
thought in a commonly
understood language — for
example, English. Each
person who understands the
language has incorporated
within his mind a
“translator’” which creates an
internal understanding based
upon what was heard. The
result of this translation —
which must be consciously
performed — is an
understanding of the message
which can be used as a basis
for further thoughts.
Emotional data is a much
more directly perceived input
{although it may of course be
colored by thoughts). But
verbal inputs require

cogitation and analysis before

they can be wused and
integrated.
The Goal: Exchange of
Programs

The goal of program level
interchange between
computers is thus the ability
to communicate
understandable and
potentially executable
programs between computers
of different design. When this
goal is achieved it will be
possible for a reader in one
corner of the technological
world — for instance an 8080
user — to develop a neat little
utility program which can be
sent to a friend in another
corner of the technological
world who has just completed
a different processor such as a

PACE machine. Since the
program is recorded and
communicated using the

program level techniques, the
recipient need only read the
ASCIl representation from
the communications channel
and process this data with a
suitable “translator” in order
to obtain a new executable

program for a different
machine design.
This program level of

exchange is a well known
technique which has been

developed very thoroughly
over the past 15 years after
computer science left its

formative years of the 1950's.
It is the technique of high
level languages and compilers.
The language is the machine
independent notation for the
programs which are to be
exchanged. The compiler is
the computer program which
carries out the translation.
(Variations on this technigue
of course exist; for instance
some languages like BASIC
and FOCAL rarely have
compilers, but typically use
‘““interpreters” instead to
compile, then execute
statements one by one.) In
the computer world at large,
of course, there is no
unanimity about choices of
languages — and there no

doubt will be considerable
variation in program
representation philosophies in
this personal microcomputer
field. Be that as it may,
exchanges at the program
level arc needed and
computer languages/com-
pilers arec the technique for
accomplishing such exchanges
with minimum machine
dependence.

So that’s the story behind
the need for a good 8-bit high
order language. The home
brew computing field is much
more cxtensive than the
confines of just one computer
architecture, and the
technological problem of
passing 8-bit bytes all over
the place is not at all
impossible. The need is there,
but can it be satisfied?

What Exists Now?

What currently exists in
the way of high level
languages for the field of
home brew computers is
limited. Currently available is
only one language — BASIC
— which to a certain extent
satisfies the need for a good
language. BASIC now exists
for the MITS Altair, and will
soon be offered by several
other manufacturers. As such
it is the only high level
language which both exists
and will (hopefully) run the
same programs on any one of
these small computer
systems. As a high level
language, BASIC is adequate
but it has a few drawbacks:

— Descriptive names of
variables are impossible with
single character identifiers.
— Only a primitive
GOSUB/RETURN facility
exists for subroutine
linkage, and parameter
passing is not built into the
language.

— The language BASIC is
interpretatively executed,
which means that each
statement is ‘““compiled on
the fly” and executed
whenever it is encountered.

(Pre-scanning of programs

and reduction of the source

text is somctimes done,
however.) An interpreter is
necessarily slower than an
equivalent compiler’s object
code.

— BASIC is missing the
more advanced software
tools such as the
I[F-THEN-ELSE construct,
and statement grouping
constructs, like the PL/1
DO ... END block.

— Only line numbers may
be used to label places in
the program.

Now don't make the mistake
of concluding from this
criticism that BASIC is
useless. Far from it. Any high
level language which works
as well as BASIC is better
than none at all in the
majority of programming
circumstances. This is because
for most problems the minute

details of execution are
unimportant, provided that
certain functional building

blocks of software (provided
by the higher order language)
are available to usc.

The BASIC language has
been used as a tool for
initially teaching computer
programming concepts, and
has done so from its
inception in the early 1960’s
at Dartmouth. There are also
innumerable tutorial books
about BASIC, due to its
widespread use in the
educational field. It is
certainly the case that in
most implementations BASIC
is a quick and conversational
way to write simple programs
at a terminal. The criticisms
have to do with features in
contemporary computer
language technology which
are not present in BASIC, but
which are extremely useful
when writing programs.

An Alternative to BASIC
Criticism without giving an
alternative is an empty
activity. The purpose of
criticism is to find a way to a
better approach. So what
language exists, can be
dreamed up, or adapted to
the small systems context —

and provides a better
alternative to BASIC? At
present there is one language
which was cxpressly designed
for systems programming and
applications programming for
microprocessors. This
language is called PL/M,
which is a registered
trademark of the Intel
Corporation. The origins of
PL/M can be traced back to a
book published in 1970 by
three compiler specialists, W.
M. McKeeman, J. J. Horning
and D. B. Wortman called A
Compiler Generator

{Prentice-Hall, Englewood
Cliffs NJ).

XPL is a subset of the IBM
language PL/1. The XPL

subset is designed to
eliminate many extraneous
bells and whistles from PL/1,
retaining only those features
most needed for writing
compiler programs: Simple
character string and binary
data, manipulations of such

In most programming
circumstances, any high
level language is better
than no high level
language at all.

data, and a block structured
procedure oriented language.
Another design criterion of
XPL is that it had to be a
simple language so that its
compilers could easily
generate efficient object
programs without burning up
incredible amounts of
computer time. The authors
of the language and the book
describing it succeeded well,
producing a powerful
language design system which
has been used in a number of
large projects.

Now, as it turns out, the
features which are in XPL are
in many respects the features

Page

No. Article

12 Ryland: Software Vacuum
20 Burr: Logic Probes

26 Baker-Errico: Test Clip
30 Peshka: Characters

48 Helmers: LIFE Line 3

58 Browning: Flip Flops

70 Nelson: HP-65

72 Kay: Build a 6800

78 Zarrella: Altair 8800
82 Hogenson: Tell Time
94 Helmers: Photo Notes

BDM B: syTE's Ongoing Monitor Box

BYTE would like to know how readers evaluate the efforts of
the authors whose blood, sweat, twisted typewriter keys, smoking
ICs and esoteric software abstractions are reflected in these pages.
BYTE will pay a $50 bonus to the author who receives the most
points in this survey each month. The following rules apply:

1. Articles you like most get 10 points, articles you like least get
0 (or negative) points — with intermediate values according to
your personal scale of preferences.

2. Use the numbers 0 to 10 for your ratings, integers only.

3. Be honest. Can all the articles really be 0 or 10? Try to give a
preference scale with different values for each author.

4. No ballot box stuffing: Only one entry per reader!

Fill out your ratings, and return it as promptly as possible along
with your reader service requests and survey answers. Do you like an
author’s approach to writing in BYTE? Let him know by giving him
a crack at the bonus through your vote.

64 Lancaster: ROM Technology

LIKED

-
m
7
=

BEST

10
10
10
10
10
10
10
10
10
10
10
10

-

CO0OO000CO0OO0O0O0O0O0O
- et)) ol omd) e o wd el

NNNMNNMNNNNMNNNNN
WhWwWwwwwwwwww
S L LD LELLELELDLML
gooaaooaauoanono,
OO OOD
NN N NSNNNSNSNNSN
0 00 00 0000000 WwW
O WO WIWIWIWIWOIWIWY W

PL/M is becoming an

industry standard
language: The
computer language

equivalent of a ‘‘black
box’ integrated circuit.
BYTE would like to see
a PL/M compiler
adapted to the home
brew computer

context.

which are desirable for a
programming language used
with microcomputers for
both applications and systems
programming. XPL is not too
far removed from assembly
language and becomes very
handy as a way to generate
large programs without
getting bogged down in
details. This fact makes XPL
a language of far more utility
than a mere compiler writing
tool.

When the time came for
Intel to commission a high

order language for
programming of their
microcomputers, the XPL

language and compiler had

been proven in several years
of practical use by several
compiler writing
organizations. Its practicality
as a systems programming
tool no doubt resulted in the
use of XPL as a model for the
new PL/M language. PL/M is
effectively an adaptation of
XPL to the context of a
microcomputer with 8-bit
data quanta and 16-bit
addressing. The result is a
language which looks very
much like XPL — with a few

keyword substitutions and
additional features. This
resemblance is sufficiently

close that at least one version
of PL/M has been
implemented simply by
modifying a working XPL
compiler, although Intel’s
original was implemented in
FORTRAN.

PL/M as a language
possesses many desirable
attributes which are not
found in BASIC. Thesc
attributes include the
PL/1-like statements and
statement groups, long
descriptive names for
variables and labels, block
structure, and subroutine

linkages with parameters. As

DIAGNOSTICS: Documentation

BYTEs.

BYTE #2, p. 54, Fig. 3.
An inverter (e.g., 1/6 7404,
or 1/4 7400) should be
inserted between the CE
inputs of the 7489 circuits

of bugs in previous

and the 7400 which drives
them in the original drawing.
Thanks to Martin E. Haring,
Edison NJ and several other
readers for pointing this out.

Dan Clarke (105 Fir
Court, Fredericton NB,
Canada E3A 2E9) notes that
the originate modem transmit
frequency definitions (Fig. 14
and text of ‘‘Serial Inter-
face”), page 35, BYTE #I1,

Mode Data
Originate Mark
Originate Space
Answer Mark
Answer Space

10

Transmit Freq.

are incorrect. Using the
Motorola M6800 Micro-
processor Applications
Manual page 3-32 as a source
of data, the following table
should correct the matter:

Receive Freq.

1270 Hz 2225 Hz
1070 Hz 2025 Hz
2225 Hz 1270 Hz
2025 Hz 1070 Hz

a systems programming
language for microcomputers,
the PL/M language adopts
some of the features of an
absolute assembler — there
are location counters for
program code and data which
can be set during a
compilation. To top it all off,
the PL/M language is a
relatively simple one which
can potentially be
self-compiled upon a small
{but not minimal) home brew
system.

At the time of this writing,
PL/M is fast on its way to
becoming an industry
standard. It is definitely a
language which has the
potential for adaptation to
the software requirements of
the more advanced
programmers in BYTE’s
readership — yet at the same
time it is simple cnough for
the novice to understand. At
the present time, however,
only cross compilers — large
programs running on big
machines — are available for
PL/M. Therc are PL/M
versions currently in the
works or producing code for
the 8080, the 6800 and
PACE microcomputers — but
all arc cross compilers. These
cross compiler versions are
widcly used via time sharing
nctworks by a variety of
industrial and commercial
users of microprocessors. This
acceptance indicates that
PL/M is a language which is
likely to be around for some
time.

A Call For Compilers

So PL/M is the tool which
the industrial and commercial
world uses for efficient code
generation with a high level
language for microprocessors.
Will this technology be made
available in the home brew
computer markets? Yes. One
reason for writing this
editorial is to point out the
existence of PL/M and direct
a few BYTE readers to
appropriate sources of
information. In future issues,
BYTE will be getting into

Information Sources

PL/M:

8008 and 8080 PL/M
Programming Manual,
MCS-451-0275-10K

Intel Corporation

3065 Bowers Ave., Santa
Clara CA 95051

This describes 8008/8080
PL/M as originated by Intel.

PL/M6800:

PL/M6800 Programmers
Reference and PL/M6800
Language Specification

Intermetrics, Inc.

701 Concord Ave.

Cambridge MA 02138

These manuals describe
the version of PL/M being
marketed for the 6800 pro-
cessor.

As this issuc goes to press,
National Semiconductor has
announced a version of PL/M
called “PL/M+" for the PACE
system. Further details will
be provided by BYTE as they
become available.

more of the details of PL/M
as a language. Until then, the
accompanying list of
information sources will have
to suffice.

A second reason for this
editorial is to serve as a call
for compilers. What is needed
is a compiler for PL/M or a
similar language which will
run on a typical 16K (RAM)
8-bit microcomputer using as
many as three serial 1/O
devices for multiple passes
through the data of a source
program. Ultimately there
should be one such
self-compiler program for
each of the major
microcomputer chip
architectures. The compilers
should be written with
system design flexibility in
mind (in other words,
modularity throughout and
isolation of hardware-
dependent portions to
specific modules). Who will
be the first person, club or
firm to provide such a
self-compiler? ®

Opinion:

The Software Vacuum

by

Chris Ryland

25 Follen St.
Cambridge MA 02138

There is a software
vacuum. That fact has
become increasingly clear in
the past few months.

Take a look at the
situation. At the time this is
written there’'s only one

company (MITS) offering a
proprietary software product
(BASIC) aimed directly at the
microcomputer hobbyists.
It's true that the People’s
Computer Company (PCC),
the MITS Altair User's
Group, and a handful of
other user groups offer access
to growing libraries of
applications programs. Some
microsystem manufacturcrs
also supply ‘“‘bare bones”
system software with their
machines, but the user is
lucky if thesc bones consist
of as much as a rather bare
monitor, editor and
asscmbler. Such software is
just as important to a serious
hobbyist’'s system as the
hardware. So when | say
there is a software vacuum, |
mean there is an absence of
commercially developed and
marketed larger scale
software products.

But why should this
matter to me, as a hobbyist?

12

What do | mcan by
larger-scale, and why should
the hobbyist market be
invaded by commercial

software vendors? In answer,
let mc give a concrete
example. Suppose | want to
writc a ‘‘desk calculator”
program for my system. I'd
like it to include all the
scientific functions of a
powerful calculator, such as
sine, cosine, tangent, arcsine,
the hyperbolic functions, ctc.
I would feel competent to
design and write the uscr
interface (e.g., keyboard
input) sections of the
calculator, but whcen it comes

to cven the floating-point
arithmetic (let alone the
scientific) functions, I'm

totally fost. What do | do?
Give up? Scour the different
user groups software
offerings, piecing together
little routines from herc and
there? Take a course in
applied numerical analysis
and learn enough theory to

do all the programming
myself? No. Ideally, I'd
browsc through several
software catalogs from

commercial vendors, picking
out the best math package for
my nceds. It would be
relatively inexpensive,
because of competition
among the various vendors.
And since the time | save by

buying the package
commercially is substantial,
I'd consider it to be a
largcer-scale product

(physically small though it
may be). Finally, and most
important, is the assurance of
quality that | get — the
programs that | buy should
be backed up by a
guarantec; if they don't
work correctly, | can have the
problem fixed by someone
who’s an cxpert at that sort
of thing. In fact, any
problems discovered by other
customers of the supplicr will
be automatically corrected
and rcported to me.

I'm not pointing out
anything surprising, though.
What /s surprising is that this
lack of software is no one's
fault. Why? The reasons will
become clear as we examine
the basis and effects of the
vacuum more carefully.

The most obvious
cxplanation for the software
vacuum is the newness of our
ficid. It's very easy to draw a
parallel to the very early days
of “real” computers, when
cvery manufacturer was
scrambling to produce
hardware. The importance of
software wasn't recognized,
and it was simply left behind

in the dust. Since then,
however, software has
become the major

... I'd like to browse
through several
software catalogs

picking out the best
package for my needs.

component, in cost, size, and
complexity, of any large
computer system, since
nothing can be done without
it.

The parallel is completed
by noting that, now, the big

‘“scramble’ in micro-
computers is to get out the
hardware. People do

sometimes learn from history,
though. Microsystem
suppliers have realized that
naked machines are close to
useless, and many are offering
at least the bare bones system
software mentioned earlicr.
The problem here is that
many of us want to use our
home or business system for
something (e.g., as a powerful
desk calculator) and don't
necessarily want to do all the
programming ourselves.

This situation is eased, for
example, by the availability
of a BASIC system from one
major supplier. Unfortunate-
ly, for the “from scratch”
hobbyist, the difficulty still
remains, since software like
BASIC is much more
expensive as a stand-alone
product (and is usually out of
the price range of most of
us). Again, since the average
hobbyist would be lost when
faced with the task of
constructing his own BASIC
system, he’s thereby
automatically cut out of the

Suppose you could
make working Xerox
copies of CPU chips,
how long would chip
manufacturers be
around?

Hobbyists can help
generate commercial
interest in producing

software.

14

legacy of widely-available
BASIC programs.
Now why can’t we throw

“the blame on the CPU chip

manufacturers? Becausec,
clearly, their proper market is
the OEMs (Original
Equipment Manufacturers),
and thus their main concern
regarding software is to
provide their OEM customers
with developmental systems
of hard and software, leaving
the hobbyist nearly
completely, if not
intentionally, out of the
picture.

What about the other
potential suppliers of
software? Look at the
situation of a typical software
house, or vendor. They must
ask, “What kind of hobbyist
market exists? How big is it,
and how can it be reached?
What kind of return on
investment can be expected
from a venture in this area?”
These are tough questions for
a company whose existence
depends on successful
marketing of software
products, even though the
answers might scem obvious
to us. But keep in mind that
the existence of BYTE is
among the first indicators of
a widespread hobbyist
interest in computing, and
we’re only a few months old.

Furthermore, there’s the
problem of proprietary
programs, a problem hard to
appreciate from the
hobbyist’s point of view. |t
stems from the softness of
software: Hardware can only
be physically in one place at
one time, but software,
because its copying cost is
(relatively) so low, can
virtually be in many places at
once. For example, an
institutional computer
installation signs a
proprietary contract when it
buys a program product.
Such contracts typically
restrict use of the software to
one computer system or
customer site. This is one of
the major reasons the
institution is not likely to

lend or sell such a product to
other installations. But a
hobbyist, even though he
might sign a similar contract,
is much more likely to help
out a friend by swapping a
program for others, or by
lending a copy to someone
else. And this is deadly
poison for any sort of
commercial market. To take a
concrete, if absurd,
illustration, suppose you
could make working Xerox
copies of CPU chips — how
long would the chip
manufacturers be around?
Another simple fact of
proprictary-program life is
that such programs cost a lot
to dcvelop and market.
Unless the market is large,
this means high prices, which
a big computer installation
can usually justify, but which
an individual just can’t
afford. It’s truc that there's a
difference in scale between
large and micro system
software, but both, in their
own spheres, arc costly to
commercially develop and
maintain. So, the software
vendors may simply not have
been able, even if willing, to
enter the microcomputer
softwarc market.
Continuing with our
search for potential software
suppliers, we arrive at the
grass roots level: The home
experimenter who's
developed a good product
with long hours and minimal
tools. Why can't he go it
alone? Well, he's usually
operating on a small budget
and thus can't mount any
sort of larger marketing,
packaging, or shipping effort.
True, you might say, but
couldn’t he sell his product
locally, at a neighborhood
level? Yes, he could, but then
he’s not reaching the majority
of people who are interested
in his product, namely, us.
Besides, how <can he
commercially support any
product on even a medium
scale, when such support
might involve, aside from all
the developmental and

promotional work and
expense, handling dozcns of
trouble reports in a single
week? He’d no longer be a
hobbyist, but a full time
one-man software house, and
that puts him out of the grass
roots class.

So, with our scarch ended,
and no culprit in sight, what
can be done about the
software vacuum?

First of all, those of us in
the personal computing field
who have professional
contacts can urge existing and
potential software vendors to
look hard at the hobbyist
markets. When the number of
potential users of a package is
multiplied by the profit
margins to be expected, such
software vendors should be
economically wviable.
Whenever there is a demand
for a product, a free market
will tend to fill that demand.
It will be interesting to sce
what the market produces in

system software for small
computers.
Second, hobbyists can

help generate commercial
interest in this vital area in
several ways. One is to make
the software vacuum a topic

for discussion at local
computer club meetings.
Another is to organize

software trading posts in the
newsletters which are very
much a part of the hobby.
Still another is to write
manufacturers urging
advanced software products
to match the extremely high
level of today's hardware
technology. If you feel
eloquent, write a letter to the
editor of BYTE on the
subject.

The first step in filling a
need is identifying that the
need exists. Hopefully these
thoughts will start some
BYTE readers off in a
direction which will lead to
commercially marketed mass
produced software which can
be plugged into one of the
several microprocessor
architectures which are on
the market. =

YTE'S

ITS

The Secret of Unraveling Wire Wrap Boards

A lot of home brew
computer people are
obtaining surplus printed

circuit cards and back planes
that have been wire wrapped.
In order to wuse the
components from such
boards the wires must be
carefully pulled off the
wrapping posts. Without a
special tool it is difficult to
remove wire while preserving
the integrity of the delicate

much easier, made from items
normally found around a well
equipped workshop. The
tool, shown in Fig. 1, is
constructed from a paper clip
and a drapery hook. Simply
follow the instructions.

1. Obtain a standard
paper clip, an Exacto knife
holder, and a thin sharp
pick of sorts, such as a
drapery hook.

2. Bend the paper clip

5. Place the paper clip bit

Fig. 1. A homebuilt tool to loosen

tool

wrapping posts. Since many and drapery hook as shown. onto the wire wrap post and and remove wire wrapped
BYTE readers do not have 3. Place the paper clip in slip it down until the end of ~ connections.

the commercial dewrapping the Exacto blade holder. the paper clip is just past

tools, removal of wire is for Now vyou are ready to the wire.

them a nasty and time dewrap. 6. Rotate the blade b

consuming job at best. 4. Using the pick, flick holder in the direction R};chard J. Lerseth

which unravels the wire
until the entire wire is loose.

the wire from the post at
least an eighth of an inch.

| have devised a simple
which makes this task

8245 Mediterranean Way
Sacramento CA 95826

USE OUR HARDWARE ASSEMBLERS)/

SAVE TIME AND FRUSTRATION WITH THESE CONVENIENT PRINTED CIRCUITS O

4096-BYTE MEMORY MATRIX MACRO CARD

Have you ever wanted to construct a memory matrix as part of a system?? The tedious part is the interconnection of all the address and
data bus pins! The CDA-1.1 memory matrix is a general purpose memory prototyping card for the 2102/2602/9102 pinout static RAM
chips. This PC card is 8'x10" with 70 pin edge connector, gold plated for reliability. The memory matrix occupies about 60% of
available area with all lines brought out to pads for wire-wrap pins and has plated-through holes. The other 40% has 24 16-pin socket
positions and a general purpose area which can hold 12 16-pin sockets, or 4 24-pin sockets, or 2 40-pin sockets. Add a custom wired
controller to interface this board’s memory matrix to any computer, or use the prewired matrix as the basis for a dedicated 4K by 8
memory in a custom system. Think of the time you save!!
GENERAL PURPOSE PROTOTYPING CARD

The CDA-2.1 general purpose 8''x10"” prototyping card comes predrilled for use in construction of custom circuits. This board
accommodates 16-pin sockets plus has a general area for 16-pin sockets or 24 or 40 pin sockets. The 70-pin edge connector is gold-plated
for reliability and the pins are brought to pads for wire-wrap post insertion. The socket side has a solid ground plane to minimize noise
problems; busses on the wiring side allow short jumper connections for power and ground. A whole system may be constructed in
modules with these boards.

DIGITAL GRAPHIC DISPLAY OSCILLOSCOPE INTERFACE, CDA-3.1

James Hogenson (see the October issue of BYTE magazine) designed a 64x64 bit-matrix graphics display for oscilloscope. This design
permits use of your scope as a display for ping-pong, LIFE, or other games with your system. The CDA 3.1 card provides all the printed
wiring needed to assemble the graphics display device down to the TTL Z-axis output as described in October 1975 BYTE. To complete
the display you merely add components to this double sided card with plated-through holes.

For info: CIRCLE READERS’ SERVICE NUMBER — or, send your order using the coupon below:

FROM:
NAME

Y ES g Please rush me the boards ordered below:

D4096-BYTE MEMORY MATRIX PROTOTYPING

CARD at $39.95
GENERAL PURPOSE PROTOTYPING CARD AT

$29.95

ADDRESS

DIGITAL OSCILLOSCOPE GRAPHIC DISPLAY
CARD AT $29.95

CELDAT DESIGN ASSOCIATES

P.O. BOX 752
AMHERST, N.H. 03031

Please allow four weeks for delivery — you must be fully satisfied or your money will be cheerfully refunded.

D I've enclosed a check or money order for
$_____ ___ Foreign orders {except Canada) please
add $2 postage per card.

17

HI-SPEED
STATIC RAM 2602-1 475ns

Manufactured by Signetics, 2102 pinout
$4.25 for 1/$4.00 each for 8/$3.75 each for 32
WHY PAY FOR BEING SMALL?

Centi-Byte is a new source of memory components
and other necessary items for the computer hardware
builder. Centi-Byte's function is to be a voice to the
manufacturing companies representing you, the modest
volume consumer of special purpose components. Centi-
Byte brings you this special introductory offer of fast
memory chips, chips fast enough to run an MCG6800,
MCS6501 or 8080 computer at maximum speed. These
2602-1's are new devices purchased in quantity and fully
guaranteed to manufacturer’s specifications.

Centi-Byte works by concentrating your purchasing
power into quantity buys of new components. Let me
know what you need in the way of specialized com-
ponents and subsystems for future offerings. With your
purchasing power concentrated through Centi-Byte we’ll
help lower the cost of home computing.

All orders are shipped postpaid and insured. Massachusetts
residents add 3% sales tax.

t
:

%

Bedia-Fantann

Carl M. Mikkelsen, Proprietor, P.O. Box 312, Belmont MA 02178

Hidden in the matrix are 96 words and abbreviations associated with
computers in one way or another. Find a word, circle it or color it in,
and cross it off the list. Words may be forward, backwards, up, down,
or diagonal, and are always in a straight line, never skipping letters.
However, some letters are used more than once. After circling all the
words on the list, the unused letters {14 total) will spell out a secret
message. Beware: Some buzzwords occur in the matrix, but are not on
the list!

>

@

= O

Good luck and good hunting . . . it may take a while!
ACCUMULATOR CHIP FOCAL
ADD (not in address) CLOCK FORMAT
ADDRESS COBOL FORTRAN
ALPHANUMERIC COUNTER GATE
AND DATA GLOBAL
APL DEBUG HALT
ASCII DESTINATION INPUT
ASSEMBLER DEVICE INSTRUCTION
ASYNCHRONOUS DIAGNQOSTIC INTERFACE
BASIC DIODE INTERRUPT
BATCH DISK JUMP
BAUD DISPLAY LED
BCD DTL LINK
BET ECL LIST
BINARY EXECUTE LITERAL
BOOLEAN EXIT LOAD
BRANCH FALSE LOCATION
BUFFER FETCH LOG
BYTE FILE LOOP
CHECKSUM FLAG LSI

18

MATRICES
MEMORY
MHZ
MICROCODE

MICROPROCESSOR

MNEMON!C
MOs
OCTAL
PCB
PERIPHERAL
PLOT
POINTER
PRIORITY
PROGRAM
PROM
QUEUE

RAM (not in program)

READ
RECORD
ROL

WORD HUNT
BETEC F
RTRAN R
AT AER R
NXPDL T
CEXETI U
HTRAN M
TIONC K
EMEGA 0
ALGLDO A
AMOTA L
ICRGOP 0
Al SLB F
ATSPA A
Z SRBS L
HOETTI S
MNCNC E
UGOAL A
LARRD S
CI1IDYRB 0
EDOCDO C
ERICC Y
SOURCE
STACK
STATUS
STORAGE
SUBROUTINE
SUBSYSTEM
SYNTAX
TABLE

TRANSMITTER
TRAP

TTL

VCC

VECTOR
VERIFY

WIRE

WORD

Logic Probes -
Hardware Bug Chasers

by

Alex. F, Burr

Physics Dept. Box 3D

New Mexico State University
Las Cruces NM 88003

While an oscilloscope or
voltmeter can be used with
digital circuits, a logic
probe is much less
expensive if built from an
appropriate kit.

20

Digital logic, whether used
in an 8080 microprocessor or
as the TTL chips that can be
used to make a processor, is,
at least in theory, clean and
simple because only two
states are possible. Any point
in even the most complicated
circuit is either HIGH or
LOW. However this very
simplicity encourages the
design of large and
complicated circuits. While
the chance of anything going
wrong at any one point is
small, the accumulated
chances of many points
means that sooner or later the
experimenter is going to have

to hunt for sources of
trouble.

In the case of analog
circuits, when trouble
develops, you get out the

oscilloscope or voltmeter and
start looking for places which
have waveforms or voltages
not mecting the
specifications. These
instruments can be used to
troubleshoot digital circuits
too. The oscilloscope is
particularly useful if you have
timing problems, but usually

they give you too much
information and may just
confuse the issue. The

voltmeter may tell you that
the voltage on pin 8 is 3.9
but, because most IC failures
show up as a node stuck
cither HIGH or LOW, really
all you nced to know is that
on pin 8 there is a HIGH.
That single bit (literally) of
information can be obtained
with an instrument a lot
smaller and less complicated
than a voltmeter.

That instrument is the
logic probe. In its simplest
form it is just a state
indicator with a sharp point.

N O W

SEE PULSE STREAMS

—-Lr—
SEE
SINGLE-SHOT
RESPONSES

INTERNAL
SHORT—— — —

When the point is placed on
any pin of an IC, the probe
will indicate whether a LOW
or a HIGH is present at that
point. And with digital logic
that is wusually all the
information you need.

Logic probes can detect a
surprising number of
different defective
conditions. Fig. 1 illustrates
some of the uses to which a
probe can be put. Of course,
just as voltmeters come with
a variety of capabilities and
prices, so do logic probes.

I
SEE PULSE STREAMS

SEE OPEN CIRCUITS
[_.-OPEN BOND

SOLDER
_ BRIDGE

SEE STUCK
Lows

g 1
SEE LOW REP RATE
HIGHS AND LOWS

RN py
SEE SINGLE-SHOT RESPONSES

Fig. 1. Some of the uses of logic probes and the malfunctions which

they can detect.

“Nodes” are places in a
circuit — such as the pin of
an I1C — where you might
want to test the logic level
using the probe.

capability brought into play
by a small switch near the tip.
When the pulse storage
feature is on, a short pulse
(either HIGH or LOW) is
stretched so that it turns on
the appropriate LED to full
brightness even if it is as short
as 50 nanoseconds. Square
and sine waves appearing at a
tested node will cause both
LEDs to have equal
brightness.

The main difficulty noted
with this probe is with the
green LED. It is somewhat
dimmer than the red LED
and the lens diffuses the spot
of light generated less well so
that in bright room light it is
sometimes hard to tell
whether or not the green
LED is lit. This fact would
make the determination of
the duty cycle of a chain of
pulses by a brightness
comparison between the
LEDs much more difficult
than the instruction booklet

suggests.

Even the E and L
Laboratories probes are
expensive ($35 and $25);
although they are more
convenient than, and

certainly in the same price

(]
—

ol 1 D2
O] Le™
DIS-I
3 il I
TO GROUND CLIPO———¢
7 e‘[é_lt; 3]z
ICI —_]
g s Yot 2Nz ia
TO 5V CLIP 0—
$R2
RI
TO PROBE TIP Ql

TO GROUND CLIP

Fig. 2. Circuit diagram for the James logic probe kit.

22

range as, a good voltmeter.
Nothing, however, can beat
the cost effectiveness of two
probe kits which have been
fairly widely advertised.

Logic Probe Kits

One of these Kkits s
manufactured by Chesapeake
Digital Devices. This kit

allows one to easily construct
a probe which uses red, green
and yellow LEDs to signal the
presence of logic levels in
digital circuits.

The kit goes together in a
very short time with the aid
of very complete assembly
instructions. The whole probe
fits into a well constructed
case, a little over six inches
long and slightly less than one
inch in diameter. There are
only three resistors, three
LEDs, one transistor, and a
74500 integrated circuit to
solder onto the clearly
marked printed circuit board.

In operation the green
LED is brightly lit on a LOW,
the red LED is brightly lit on
a logic HIGH, while the
yellow LED lights on an open
circuit or a level between a
true HIGH or LOW. A slow
pulsing condition will be
indicated by alternate
flashing of the red and green
LEDs. A fast pulsing
condition will be indicated by
the simultaneous activation
of the red and green LEDs.
The dividing line between
these last two conditions is
about 20 Hz, depending on
the eye of the user.

The biggest difficulty with
the kit was the circuit board.
The copper leads had not
been tinned and were
oxidized, making them a bit
difficult to solder; especially
if the builder was concerned
that he not use so much heat
for so long as to damage the
components. The clear plastic
tube into which the circuit
board with its LEDs slide did
crack on assembly and the
green LED was open but
these difficulties were easily
remedied and the result was a

handy logic probe at a price
significantly less than any
assembled probe.

A Unique Probe

A particularly inexpensive
kit is the one sold by James
Electronics for $9.95
including postage and case. It
is unique in that it uses a
MAN 3 seven segment
readout which gives a 1 for a
HIGH a 0 for a LOW andaP
for a pulse train — all thisina
compact package measuring
five inches long and one inch
in diameter.

The circuit diagram for
this intriguing probe is given
in Fig. 2. The 2N2222 input
transistor drives the chip,
IC1, which in turn causes the
appropriate segments of the
MAN 3 to light. The chip was
custom made for__James
Electronics by National
Semiconductor and contains
a proprietary circuit _which
was laid down by a $500
master mask.

The kit comes in a very
impressive package which was
carefully designed to protect
the contents from rough
handling by the U.S. Postal
Service. The parts, which
include the case and a custom
glass epoxy printed circuit
board, are of high quality and
are not your usual cheap
imports. Because most of the
parts are in the 14-pin chip
which is the heart of the
probe, the kit goes together
quickly and easily for the
experienced builder (about
one hour to solder all the
parts to the board). There are
no explicit devices for
overload or reverse voltage
protection. The probe draws
65 mA from any convenient
5 V point on the circuit
under test.

The inexperienced builder

is going to have trouble
because the complete
assembly instructions say,

“Assemble the Logic Probe
according to the schematic
diagram and board layout
shown below.” The end. One
has to have pretty sharp eyes

the logic states visible at a
glance. The clip is, in effect,
16 binary voltmeters. When
used with some means of
pulsing a complicated circuit
slowly, sequential logic states
like shift registers come alive
— each state change s
immediately visible.

The most popular clips are
made by Hewlett Packard and
Circuit Specialties.
Unfortunately they have one
big drawback — price. They
cost from $75 to $85 each
and will not be discussed
further here.

Summary

Table 1 summarizes all the
information that has been
given here and presents some
new facts about each of the
logic probes discussed. By
scanning this table you ought
to be able to determine which
probes have the features you
need and the ones you can
afford. The following
comments are based on
personal experience with each

of these probes, but that
expericnce has been rather
limited.

The Hewlett Packard
probe is obviously the best. It
should be; it certainly costs
significantly more. 1t will
work under a wide range of
conditions and it is carefully
made. For the extra money
you get wide frequency
range, tight specifications,
and vastly superior handling
of pulse trains. The
construction is first class and
includes such extras as a
compact BNC plug on the
power cable (which, of
course, is not so good if your
breadboarding system does
not have a BNC jack to
supply that power).

The E and L probes (340
and 320) are imported from
Japan. They are very well
constructed and have the
little extras like plastic
carrying cases and different
probe tips that the better
Japanese manufacturers like
to include with their

products. The 320 is a better
logic probe than the 340. It is
less expensive and it handles
pulse trains and logic levels in
a better and morc revealing
way. Of course, it does not
have the pulse generating
capabilities of the 340.

The professional logic
designer will want to get onc
of these three probes. They
may be a bit expensive for
the serious hobbyist. In that
case one of the two Kits
would be satisfactory.

Both kits went together
easily and rapidly. The CDD
kit is much more revealing
about the state of the logic
under test and has superior
assembly instructions. The
James kit has better quality
parts and is cheaper.

In any case the serious
worker in digital logic and
computers, whether a
professional or a serious
hobbyist, will find one of
these probes a valued
addition to his collection of
test equipment. ®

Table 1. Characteristics of logic probes.

Probe

Operating
Voltage

Current

Frequency
Response

Input Impedance
Min. pulse width
Levels OPEN
HIGH
LOw
Size

Qvervoltage
protection

Price

HP 10525T! 3402

5+10% VvV 5+10% V

60 mA 100 mA

50 MHz5 12 MHz

>25 k2 50 k$2

10 m56 50 ms

half intensity no Iights7

on >230.2 V red >1.5V
+0.2 .

off <0.8 _0.4V no lights

6" x 0.5" dia. 6.6 x 0.6 dia.

excellent reasonable

$65 $358

3202 cop? James?
5+ 10% V 5+10% V 5V
80 mA 40 mA 65 mA
12 MHz
100-600 k§2
50 ms Seell
no Iights9 yeIIow10
red >2.4V red >2.5V 1207V
green <0.7 V green <1V 0<0.7 vV
6.6" x 0.6" dia. 6" x 1" dia. 5x 1" dia.
reasonable none none
$25 $1512 $1012

Notes:

1Hewlett Packard, Palo Alto CA 94304,

2E and L Instruments Inc., 61 First St., Derby CT 06418.

3Chesapeake Digital Devices, Inc., Box 341, Havre de Grace MD 21078.
4James Electronics, Box 822, Belmont CA 84002.

SPulse trains faster than 10 Hz cause the lamp to flash at a 10 Hz rate.

6Pulses between 10 ms and 0.05 seconds are stretched to 0.05 seconds.

24

TShort pulses indicated by green LED,

8Single pulse generator contained in probe.

9Switchable pulse stretcher for short pulses.

10vellow LED is also lit if voltage is between HIGH and LOW.
11indjcator reads P for pulse trains > 20 Hz.

12K price.

The diode arrays are
14-pin dip packages and were
chosen to make the test clip
more compact. To cut down
the cost, 16 general purpose
silicon diodes may be used in
place of cach diode array IC.
The transistors used to drive
the LEDs may be any NPN
transistor capable of handling
the LED current. Any small
size. LED may be used;
however, the 1k resistance
value may have to be
changed. Choose a value
which gives about 2 mA
current through the LED; this
should give sufficient
brightness without loading
down the circuit supply.

Construction is very
simple and parts layout is not
critical. Use a small piece of
0.1"" grid perforated board
bolted to each side of the 1C
clip to mount components

on. Try to keep the overall
physical size of the boards as
small as possible to make the
finished test clip easier to
handle. The LEDs should be
mounted along the top edge
of the perforated boards so
they are visible from above
the clip when it is attached to
an IC. | would suggest
wrapping a small piece of
dark tape or using a short
piece of dark tubing around
each LED to improve
visibility of the finished LED
display. One of the TID125
diode arrays is mounted on
each piece of perforated
board along with the
associated resistors and
transistors, positioned
wherever convenient.
Remember to run two wires
between the two perforated
boards to connect the Vcc
and ground outputs of the

TIDI25 DIODE ARRAY

diode arrays together. These
wires should be stranded to
withstand the movement of
opening and closing the test
clip when in use.

Using the test clip is the
simplest part of all. Just clip
it over the desired IC. Don't
worry about how to position
the test clip on the IC; pin 1
may be at either end and the
test clip will stil work
properly. With the test clip
installed on an IC package the
LEDs will indicate the logic
level of each pin:

ON = Logic 1 (HIGH) or Vcc

pin
OFF = Logic 0 (LOW) or
ground pin

On 14-pin ICs disregard the
two pins not attached.

Who said building an IC
test probe is hard? m

- T T - T === I,
| *——»
| I cC
| |
| |
[|
| |
|
| g
o »GND
—_——_ 2 3 5 7) S i TIZ
i |
| 2o i
| 3 O -
:A4°| -
IQ 5C| O
|} 60 ®
1B 7 0q
la 80
_|9CI
:"100I o
ke *
| 812 0
|&I30' TS
I<tl40I . 4
I |5cI
16 O
| |
] |

TIDI25 DIODE ARRAY

ONE LED DRIVER
CIRCUIT REQUIRED FOR
EACH PIN

VC C

2K

GND

2N3904
OR
EQUIV.

MV5054 —2
OR
EQUIV. LED

ALL RESISTORS = I/8 WATT

CONNECT ALL V

TOGETHER & ALL
PINS TOGETHER

PINS
GND

Fig. 1. Powerless IC Test Clip.

27

8800 HARDWARE'

BUILD A SMART TERMINAL INTO YOUR
ALTAIR! Your Altair
already has the intelligence, we provide the display
module. This module is not a limitied “TV Typewriter”
but an ultra-high speed computer terminal buiit into
your computer, The VDM-1 generates sixteen 64 charac-
ter lines from data stored in the 1K byte on-card
memory. Alphnumeric data is shown in a 7x9 dot matrix
format with a full 128 upper and lower case ASCII
character set. The VDM-1 features EIA video output for
any standard video monitor, multiple programmable
cursors, automatic text scrolling and powerful test
editing software included FREE! Available now.

'' MASS STORAGE !!

We have always wanted a low cost, reliable, fast access
storage device using standard Phillips cassettes (we bet
you have too), so we got to work and designed one

here it is! With the CDS-VIII Cassette Data System you
have computer controlled access to 128K bytes of data
within 20 secconds when using C-30 casscttes. We provide
read/write clectronics and transport controller. Altair
interface, a case and power supply, and one or two
multiple motor cassetie transports plus FREL driving
software! Yes, up to two cassette drives! Two drives
provide much more powerful file handling and copying
capabilities as well as, of course, twice the storage
capacity. Data can be written and/or read asynchronous-
ly at any transfer rate up to 150 bytes/sec: at this rate
8K BASIC can be loaded in about 50 seconds! We have
also included provision for use of any read/wrile
electronic plug-in section so that tapes using 1T,
Computer Hobbyist or Digital Group formats may be
read at lower data rates. Available in November 1975,

4KRA Static Read/Write Memory

This 4096 word STATIC memory provides faster, more
reliable and less expensive operation than any currently
available dynamic memory system. The 4KRA permits
Altair 8800 operation at absolute top speed
continuously. All RAM’s (Random Access Memories)
used in the 4KRA are 91L02A’s by Advanced Micro
Devices, the best commercial memory [C on the market
today. 91L02A’s require typically 1/3 the power of
standard 2102 or 8101 type RAM’s and cach one is
manufactured to military specification MIL STD-883 for
extremely high reliability. These memories can be
operated from a battery backup supply in case of power
failure with very low standby power consumption. (Ask
for our technical bulletin TB-101 on power down
operation.) In short we have done everything we could
to make the best 4K memory module in the computer
field, and because we buy in large quantity, we can make
it for a very recasonable price. Available now.

2KRO Erasable Reprogrammable
Read Only Memory Module

With this module the Altair 8800 can use 1702A or
5203 type Erasable Reprogrammable ROM’s. The 2KRO
accepts up to eight of these I1C’s for a capacity of 2048
cight bit words. Once programmed this module will hold
its data indefinitely whether or not power is on. This
feature is extremely useful when developing software.
All necessary bus interfacing logic and regulated supplies
are provided but NOT the EPROM IC’s. Both 1702A
and 5203 PROM’s are available from other advertisers in
this magazine for well under §25. Available now.

We have Altair compatible plug-in peripherals!

3P+S Input/Qutput Module

Just one 3P+S card will fulfill the Input/OQutput needs of
most 8800 users. There are two 8-bit parallel input and
output ports with full handshaking logic. There is also a
serial 1/O using a UART with both teletype current loop
and EIA RS-232 standard interfaces provided. The scrial
data rate can be set under software control between 35
and 9600 Baud. You can use your oid model 19 TTY!
This module gives you all the electronics you need to
interface most peripheral devices with the Altair 8300,
it’s really the most useful and versatile [/O we’ve seen
for any computer. Available now.

MB-1 Mother Board

Don’t worry any more about wiring hundreds of wires in
your Altair to expand the mainframe. Qur single piece
1/&-inch thick, rugged mother board can be installed as
one single replacement for either three or four 88EC
Lxpander cards, so you don’t have to replace your
alrcady installed 88EC card if you don’t want to. The
MB-1 has very heavy power and ground busses and
comes with a picce of flat ribbon cable for connection to
the front punel board of the 8800, a built-in bus termi-
nator, and card puide cage for sixteen plug-in slots,
Available now.

PRICE LIST effective Oct. 1, 1975

Ttem Kit Assembled Delivery

2KRO EPROM module S 50. % 75,
3P+S [/O module 125. 165.
4KRA-2 RAM module w/
2048 8-bit words
4KRA-4 RAM module w/
4096 8-bit words

RAM only, AMDYILO2A
500 nsec, LOW POWER
CDS-VIII-1 Cassette Data
System w/one transport
CDS-VIII-2 w/two trans-

3 weeks max.
3 weeks max,

WRITE FOR DETAILS
WRITE IFOR DETAILS
8/%40. -

3 weeks max.

WRITE FOR DETAILS

ports WRITE FOR DIETAILS

MB-1 Mother board, bus

lerminator, card cage 70. - 3 weeks max.
VDM-1 Video Display

module 160. 225, 3 weeks max.

TERMS: All items postpaid if full payment accompanies
order. COD orders must include 25% deposit.
MasterCharge gladly accepted, but please send us an
order with your signature on it,

DISCOUNTS: Orders over $375 may subtract 5%:; orders
over $600 may subtract 10%.

| Processor Technology
2465 Fourth Street
Berkeley,Ca.94710

{415) 549 0857

8800 SOFTWARE!

WE HAVE ALTAIR COMPATIBLE 8080 SOFTWARE AND FIRMWARE MODULES!

If you haven’t used our Assembly Language Operating System you have been missing
a wonderful experience, We have found the ALGOS Resident Editor and Assembler to be
an extremely useful and powerful program development tool. We are so sure you will be
turned on with our Software Package No. 1 that we are practically giving a listing away for
a mere $3.00US. Yes, this is a source listing as well as a hexidecimal printout.

The Assembly Language Operating System gives you the ability to write programs in
8080 Assembly Language with labels, expressions and comments. The programs can then
be edited by line number, a powerful feature that makes corrections and additions very
easy. The program can be named as a file and stored at a user selected memory location
while another file is being worked on. Files can be listed by line number using the LIST
command before being assembled. The Assembler converts the Assembly Language
mnemonic codes and labels to hexidecimal op-codes at any address selected by the user
to run at any address (the run address may be different from the location in memory
where the program is placed). Assembly can be performed with or without error
messages being printed. After assembly the program can be run using the EXECUTE
command or dumped onto cassette or paper tape using the DUMP command.

Paper tapes or cassettes of the program listing will not be available to individuals but
we have already sent paper tapes to several computer clubs around the country. We
suggest you contact one of the clubs if you want a copy of the tape or need assistance.
We will be happy to send tape copies to any bona fide “amateur” computer club or
society, so if you are a member of such a group, please let us know of your group’s
existence by sending us a copy of its latest newsletter.

In addition we have a manual describing the use of the ALO System from the ground
up. This will include a complete description with examples of every command, instruc-
tions on the use of all internal routines by other programs and an overview of efficient
file generation and handling.

An even more wonderful version of the ALOS is available in firmware as part of an
8K PROM module. The expanded version allows dynamic Input/Output allocation, file
area management by the executive, octal and/or hex data entry, loaders for both 8800
BASIC and Intel Hex Format tapes, and many other capabilities not included in the
original Package No. 1, The basic Resident Executive-Editor-Assembler occupies about
4K of the 8K maximum capacity. So why the 8K?? Because we are leaving space for
future expansion. The first expansion is a powerful Simulator that adds-on to the basic
ALOS package.

SIMULATOR?? Yes, an Interpretive Simulator which runs 8080 programs on the
same 8080 that contains the Simulator! Not just traps and breakpoints but simulated
1/0, registers, flags, program counter and stack pointer. Any of these can be modified at
all times; plus a single step mode that displays all the registers, pointers, flags, etc., after
execution of each instruction. This Simulator is the most powerful debugging tool for
the 8080 that we know of. Just think, you will hardly ever again have to touch the front
panel switches.

Both versions of our ALOS require 2K bytes of RAM for system internal storage and
symbol tables. In addition at least 4K more is needed to hold user files, although greater
capabilities are achieved with 8K or 12K of user space.

PTCOS!

What is PTCOS you may ask?? 1t stands for Processor Technology Cassette Operating
System and it means a real Operating System program based around our CDS-VII1 dual
Cassette Data transport System. When operating under this program you have true file
handling power to create, delete, edit, relocate, and copy all kinds of files (e.g. BASIC
and programs written in BASIC). PTCOS can handle multiple 1/0O devices using a special
type of file and suitable small driving routines. At last an integrated system concept for
the 8800 is a reality! PTCOS is devilishly similar in its basic operation to an FDOS and is
upward compatible with future software developments from Processor Technology.

PRICE LIST effecitve OCT. 1, 1975

Software package No. | Processor Technology
Assembly Language F ll SI I
3 weeks max. 2465
PTCOS: Processor
Technology Cussette
ALS-8 PROM Firm- (415) 549-0857
ware module expanded
SIM-1 PROM Firm-
ware add-on to ALS-8:

KIT ASSEMBLED DELIVERY
Operating System $3.00 -
Berkeley,Ca.94710
Operating System WRITI: December *75
version of SP No. 1 $27S. $325. 3 weeks
Simulator section $95. $110. 3 weeks

What is a Character?

by
Manfred Peshka
Peterborough NH 03458

A character is a unit of
information used in a com-
munication between a sender
and a receiver. Senders and
receivers may be either
people or machines, or a mix
of the two. A character may
be represented in different
forms: People use mostly
graphics, such as the letters of
the alphabet, the digits or
occasionally the Roman
numerals, and the punctua-
tion and special symbols
which are so familiar to us.
Machines process a set of
electric pulses in a period of
time which normally repre-
sents a character. This time
period differs in length for
different devices; it is longer

30

for slow devices (terminals,
card readers, printers) than
for fast devices (tape and disk
drives), and is generally the
shortest for the computer
arithmetic and logical unit.
Parenthetically it should
be noted that some machines
can recognize graphics, draw-
ings, and even objects (units
providing information) in a
landscape. The discussion of
these machines, however, is
reserved to a future article,
and their cost is far beyond
that of the amateur and
hobbyist at the present time.

Symbolic Representation of
Alternatives

What is the minimum
number of information ele-
ments, characters, or basic
symbols needed to express an
alternative? Probably the
most common symbol is the
indicator light which tells us
that a system is in a specific
state as opposed to its
“usual’ state. Let’s consider

for a moment the sign “Fire
Trucks Entering on Blinking
Red Light.” This sign indi-
cates the possibility of two
specific states: The “usual”
state prevails when fire trucks
are either on a call or waiting
in the garage; in this situation
the light is off. The alterna-
tive consists of an emergency
when the light is blinking to
inform people that trucks are
about to enter the street, or
just have entered and are
rushing to the fire. Thereafter
the light is again turned off.
The light is pulsing for a
period of time which nor-
mally represents this
particular situation or “unit
of information,” say, about
20 seconds.

The indicator light
actually represents the
simplest character or basic
symbol providing a unit of
information. It is binary
telling you that a given situa-
tion either prevails or not.
Similarly, the door bell, the

telephone bell, the oil
pressure light on your car,
etc.,, are binary symbols.
Binary means nothing else
but a characteristic, property,
or condition of a system in
which there are but two alter-
natives. Besides indicator
lights, bells, etc., binary
symbols can take on graphic
forms such as yes or no, true
or false, 1 or 0, to name a few
only. For a machine, the
form is either the absence or
presence of a certain elec-
trical energy level at a period
of time of specific duration.
While the duration of
signaling or ‘“marking” in the
case of the oil indicator light
may be variable depending on
engine rotation, pressure,
temperature, etc., it is
constant for computing
machines. It may be a
1/110th or 1/300th of a
second for a slow terminal, or
a billionth of a second for a
computer central processing
unit.

Binary and Ternary Symbol
Sets

We have seen that one
binary character suffices to
indicate two distinct states.
On the other hand, an
elevator is in one of three
states: It is idle, or it is going
up, or it is going down.
Naturally one binary symbol
is not enough to represent
three states. Two lights may
be used as follows: The left
light may signal upward
motion when illuminated,
and the right light may signal
downward motion. No
upward or downward motion
is indicated when the
corresponding light is turned
off. Let's represent the two
possible states of the
indicator lights by the
graphics 1 of on and O for
off. The following three
characters then express the
three possible states:

00 | oo] idle
01 [oe] down

Note that a character, that is,
the unit of information, is
represented by two bits or
binary digits. We now have
used a two-bit character code
to symbolically represent the
states of the system
consisting of the elevator and
its two lights.

An entirely different way
to represent three distinct
states symbolically s
accomplished by increasing
the number of basic symbols
from two to three. Let’s use
the graphic 2 to indicate
upward movement. Instead of
the left and right indicator
lights, such conditions may
be indicated by a panel
displaying the terms idle,
down, or up as follows:

0 | IDLE] neither down
nor up

1 [DOWN] down

2| UP | up

This time we used a code
consisting of ternary digits 1o
symbolically represent the
three states of the elevator
and its indicator panel.
Ternary means that a
characteristic, property, or
condition of a system can
prevail in one of three
alternatives.

Note that the unit of
information, or in other
words, the character, has
been coded in the first case
by two binary digits, and in
the second instance by one
ternary digit. One can
conceptualize a character as a
distinguishing mark indicating
a specific state of a system.
Characters are ‘‘marks of
distinction” which may be
represented in different
graphic forms which have
equivalent value:

Binary Ternary Implementation
00 0 [oo ||IDLE]
01 1 [o#: | [DOWN]
10 2 [#0] UP |

The two bit code permits a
fourth alternative, namely 11.
In actuality, this situation
represents a contradiction
since the elevator cannot
move up and down at the
same time. However, this
character may be used to
signal a defect, such as the
elevator being stuck between
two floors, or it may simply
be out of operation. The
ternary code cannot signal
this condition unless an
additional basic symbol is
being used; let's assume that
an additional panel indicates
a defect when illuminated,
and the code representing this
situation consists of a binary
digit concatenated with a
ternary digit as follows:

10 [DEFECT] [IDLE]
00 | | [IDLE]
o1 |] [DOWN |
02 | | [upP]

In this situation, the
character or information unit
is represented by one binary
and one ternary digit. 1t is a
mixed code, principally
similar to those found on
license plates consisting of
letters and decimal digits.

In this situation, two of
the six possible characters
remain unused, namely 11
and 12. At least, let’s hope
that they remain unused
because 11 would mean that
a defective elevator is in
downward motion.

Enumerating Alternatives

The number of alternatives
which need to be considered
in a given system determines
the coding requirements. The
more alternatives need to be
communicated, the more
“marks of distinction’ are
required. We have seen the
two basic ways to accomplish
this: Increase the number of
distinguishing graphics in the
character set, or concatenate
graphics from the same or
from different sets of basic
symbols to form strings.

Obviously there is some
upper limit to the number of
distinguishing marks available
to people. Humans have a
limit of what they can
comfortably memorize in
terms of numbers of basic
symbols when there is no
specific meaning attached to
them. Consequently there
comes a point when graphics
are being concatenated to
form symbol strings which
represent words. The string
3-D stands for the word
which we pronounce ‘thre-'dé
and which obviously means
“the three-dimensional form
or a picture produced in it”
{Webster’s Seventh New
Collegiate Dictionary 1965:
page 920). We wuse the

decimal digits 0, 1, 2, ..., 9
to represent numbers, the
letters a, b, ¢, ..., z, A, B,

31

32

.., Z to represent the
alphabet for words; special
symbols and punctuation
marks are concatenated with
digits and letters to form even
longer strings to represent
expressions which inform
people about one specific
alternative out of, say, a
million possibilities. We form
mathematical expressions
(x*+x—3, etc.) and word
expressions (i.e., sentences)
and a combination of the
two: “Yesterday it rained in
Peterborough for two hours.”

The basic unit of
information is the basic
graphic symbol or character:
The space on the paper, the
special marks (+ — <, ; etc.),
the letters, and the decimal
digits, and, which is not
immediately obvious, certain
functions like the bell on the
typewriter which signals the
approach of the right margin,
the backspace, the margin
release, the carrier return, the
line feed adjustment, etc. The
latter group is called
functions or control
characters. In the computer
and communications field
many more functions are
encountered than there are
on the typewriter. These will
be discussed in detail further
on.

The number of graphics
available for marking one out
of many possible states of a
system is referred to by the
name base. Digits are used to
represent numbers; since
people generally wuse ten
distinct digits, the number
system is called a decimal
system. The base of this
system is 10. In the previous
section the binary number
system and the ternary
system were used. Their bases
are two and three,
respectively.

Using any one of these
systems, it is possible to mark
any number of alternatives. If
the number of alternatives
exceeds the base (i.e., the
number of distinct graphics in
the set) one or more
additional graphics are used.

Table 1. Equivalence of Selected Graphics.

Binary Ternary Octal
0 0 0
1 1 1
10 2 2
11 10 3
100 11 4
101 12 5
110 20 6
111 21 7
1000 22 10
1001 100 1
1010 101 12
1011 102 13
1100 110 14
1101 111 15
1110 112 16
1111 120 17
b= 2 3 8
g= 4 3 2
a=16 27 64

As an example, let’s assume
that we desired to mark any
one of sixteen alternatives. If
we used the letters to mark
these possibilities, as is often
found in term papers and
legal documents to mark
paragraphs and sections, one
graphic for each alternative
would suffice. As a matter of
fact, out of the 52 available
letters only sixteen would be
used. Thirty-six graphics
would not be used. Two
decimal graphics are required
to express sixteen options,
leaving 84 pairs unused.
Three ternary graphics
encompass these sixteen
possibilities leaving eleven
triplets unused. A quadruplet
of binary graphics generates
exactly sixteen possibilities.

In general, by using ‘g
graphics of a set with base ‘b’,
the maximum number of
alternatives ‘a’ is determined
by multiplying ‘b’ with itself
for ‘g’ times, or in other
words, a=b8. Table 1
summarizes this rule by
enumerating all possible
arrangements of binary,
ternary, octal (base 8),
decimal, and hexadecimal
(base 16) graphics for the
first sixteen values or
alternatives.

To illustrate the rule to
calculate the maximum
number of alternatives, the
hexadecimal system requires

Decimal Hexadecimal

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9
10 A
1 B
12 C
13 D
14 E
15 F
10 16
2 1
100 16

only one graphic (g=1) for a
maximum of sixteen
alternatives (a=16) because its
base equals sixteen (b=16).
Note, however, that the
largest wvalue or number
equals fifteen which s
represented by the graphic F
because enumeration began
with the magnitude zero.

The maximum value is
always one less than the
number ‘a’ because these
systems start counting with
zero. Assuming two
hexadecimal graphics (g=2),
256 distinct alternatives can
be identified (a=16%). The
largest value, however, is
equal to 255 (a—1) because
the first value is zero. The
hexadecimal string FF
identifies the same magnitude
as the decimal string 255 or
the bit string 11111111,

It is easy to change from
one coding system to
another, especially from
binary to hexadecimal and
back, by means of Table 1.
The choice of the
hexadecimal graphics A to F
was arbitrary and is of great
help to people. Machines
represent all characters as
binary pulses within a given
time period. Bit strings,
therefore, can become very
large and difficult to
remember. Imagine the bit
string 10001111011100.
How much easier it is to

remember the hexadecimal
string 23DC instead (you may
wish to verify the translation
starting with the right four
bits). Any other distinct
graphics instead of A to F
could have been used; for
example ! @ # < % >,
However, try to remember
these in this order, and try to
pronounce 23<# instead of
the above 23DC.

How to Identify Character
Sets

Given the possibility of
switching from one
representation to another, the
guestion of <code
identification must be dealt
with., Assume the graphic
representation 3-D. s it a
word of the English language?
Or is it an arithmetic
expression? If it is an
arithmetic expression, which
number system has been
employed? Assume another
representation such as 11,
Which number system has
been employed and what
magnitude is represented?
You may wish to consult
Table 1 and calculate the
magnitude for each number
system.

In order to avoid
confusion, graphics other
than decimal digits, letters,
and the special symbols are
identified explicitly. The
string 11 therefore means
eleven in the decimal number
system, and 3-D is part of the
English language. If a ternary
string was meant, one needs
to say so in some
unambiguous manner. This
can be accomplished through
a textual declaration such as
“All following digits are
ternary digits” or, ‘“The
ternary number 11 has a
value of 4" where according
to our convention the graphic
4 is understood to be a
decimal digit.

A different way to
identify strings is by
appending to the string the
base. In the mathematical and
computing literature different
methods have been

employed. In the
mathematical literature, this
is accomplished by a separate
graphic which is appended to
the digit string: 112 is a
binary number with a value
of three, while 118 is an octal
number representing nine,
and 1116 is a hexadecimal
number representing 17. The
subscripted graphic represents
the base, and it is omitted
whenever the base is ten. This
convention also avoids the
confusion about 3-D. This
string is an expression of the
English language, whereas
3-D16 equals 3-13 or —A1se
which is a numeric expression
resulting in a number.

In the computing
literature, different ways have
been found to identify bit or
hexadecimal strings. These
ways depend on the
manufacturer and on the
computing language
employed. In American
National Standard (ANS)
Fortran, a predominately
mathematical language
{(which is to be distinguished
from Basic Fortran), digit
strings are recognized as
decimal numbers. Bit strings
are not allowed, and non-digit
strings as used for headlines,
table headings, etc., are
preceded by one or more
digits and the capital letter H;
for example, 4H3.14 means
the four characters 3.14
which differ in their internal
representation from the
magnitude 3.14. The constant
4 prior to the H indicates the
length of the string; it is four
symbols long.

In ALGOL 60 which is an
internationally standardized
mathematical language, digit
strings are recognized as
decimal numbers, and
character strings for table
headings, etc., are enclosed in
so-called string brackets as
shown in the example: °
The wife stated that her
husband told her ‘our
daughter complained ‘the
teacher is giving me trouble’”’.
Note that it is possible to
have strings within strings,
each of which is enclosed by

the single quotes pair.

In Programming Language
One (PL/I), as devised by
IBM, digit strings are
recognized as decimal
numbers unless they are
appended by the letter B.
11B equals 112 and has a
value of 3. Since the internal
representation of binary
numbers differs from codes,
this language also permits
explicit bit and character
strings such as ‘11'B which
does not necessarily have a
value of 3 but could mean,
for example, that the elevator
is out of order. Alphanumeric
character strings are also
permitted and recognized
whenever they are enclosed in
single quotes: ‘THIS IS A
“STRING’’, ISN'T IT?.
Similar distinctions exist also
in ALGOL 60 and will be
discussed in a future article.

You might have noted that
the character constants in
Fortran were preceded by the
length indicator and an
identifying character H. In
the systems using quotes or
string brackets, the length is
determined by the number of
positions occupied between
the brackets. Many assembler
languages combine these two
methods. The string is
enclosed in quotes, and it is
preceded by a single letter
indicating the base. B‘11’ is
equal to 11B or ‘11’B and has
a value of 3 when it is used as
a number in integer
arithmetic. X‘11’ equals 1116
or 17 and is a hexadecimai
string.

The distinction between
binary numbers and bit
strings is a rather fine one and
will be discussed in a future
article. The computer
represents all information as
strings of bits and
manipulates these strings
according to their type in
certain groupings of bits. The
basic group is called a
machine word and consists of
one or more bits. These bit
groups have an equivalent
code value which can be
represented graphically in
several different ways.

33

Function Abbreviations

We have discussed earlier
various functions of the
typewriter. Computer
terminals and communica-
tions equipment use many
more function characters
than the common typewriter
does. In the various codes,
these functions correspond to
certain bit strings. The
functions are indicated in the
code tables on the following
pages by abbreviations.
Therefore, in Table 2 a
dictionary of these
abbreviations is presented.

The more frequently

encountered terminal
function codes {as opposed to

transmission functions) are
marked with an asterisk.
The Baudot Five-Bit

Telegraphy Code

An operator depressing the
telegraph key causes current
to flow through a wire. The
current actuates an
electromagnet at the receiving
end which produces a
“click”. The timing between
the clicks represents either a
dot or a dash, and
telegraphers yesterday, and
hams today, are skilled in

Fig. 1. The word BYTE in Baudot Code.

"MARKING" !

"SPACING" o]

LU

b= LETS —»f — B —l

ISTART sToP!
k¢ ONE CHARACTER—{

— | |e—— 5 ——={ L5 |-
OR

Table 2. Function Abbreviations.

TIME UNITS L.42

ACK Affirmative Acknowledgement
BEL, BELL Bell or other audible signal
BS Backspace

BYP By Pass

CAN Cancel

CcC Cursor Control

CR Carriage Return

CuU1 Customer Use 1

cu 2 Customer Use 2

cu3 Customer Use 3

DCO Device Control 0.

DC 1 Device Control 1

DC2 Device Control 2

DC3 Device Control 3

DC 4 Device Control 4 {stop)
DEL Delete

DLE Data Link Escape

DS Digit Select

EM End of Medium

ENQ Enquiry

EOA End of Address

EOB End of Block

EOM End of Message

EOT End of Transmission

ERR Error

ESC Escape

ETB End of Transmission Block
ETX End of Text

FE Format Effector

FF Form Feed

FIGS* Figures Shift

FS Information File Separator
GS Infarmation Group Separator
HT Horizontal Tabulation
IDLE Null

IFS Interchange File Separator
1GS Interchange Group Separator
1L Idle

34

translating these “dots” and
“dashes” into graphics.

Transmission speed was
mostly dependent on the
telegraphers’ skills. The term
““baud rate” means the
frequency at which the dots
recurred in a second, with
every dash counting twice as
long as a dot.

In the automatic
teletypewriter the key was
replaced by a distributor
which sends a fixed number
of pulses for each character
entered on a keyboard.
Latches at the other end
actuated a printing device.

f— Y —

e—T —=

UL L

The term “marking” was used
to indicate the flow of
current, and the line was
“spacing” when the current
was off. Marking and spacing
can be related to binary
digits. In Table 3, a mark is
indicated by the bit 1, and a
space by the bit 0. In
addition to the five bits of
the code, a space occurred
prior to transmission, and a
longer mark (1.5 or 1.42
times the usual mark time)
terminated the code. Fig. 1
shows the timing of marks
and spaces of the string
BYTE:

— E —

UL

IRS Interchange Record Separator
ITB Intermediate Text Block
1US Interchange Unit Separator
LC Lower Case

LETS Letters Shift

LF Line Feed

NAK Negative Acknowledgement
NL New Line

NUL Null, or all zeros

PF Punch Off

PN Punch On

PRE Prefix

RES Restore

RS Record Separator (Reader Stop)
RU Areyou...?

RVI Reverse Interrupt

Sp—-S7 Separator Information

SI Shift In

SK Skip {(punched card)

SM Set Mode

SMM Start of Manual Message
SO Shift Off or Shift Out

SOH Start of Heading

SOM Start of Message

SOs Start of Significance

sP Space

STX Start of Text

SUB Start of Special Sequence
SYN Synchronous Idle

™ Tape Mark

TTD Temporary Text Delay

uc Upper Case

us Information Unit Separator
VT Vertical Tabuiation

VTAB Vertical Tabulation

WACK Wait Before Transmitting Positive Acknowledgement
WRU Who are you?

Prior to transmission of
the letter B, the code LETS
must be sent in order to set
the receiving equipment into
letter shift mode. The reason
for this convention is to make
it possible to transmit more
than 32 symbols with five
bits (g=5, b=2, a=32). After
all, there are already 26
uppercase letters and ten
digits; then there is need for
punctuation and special
symbols, and function
characters to control the
printer. Once the operator
intends to send a numeric
character, the FIGS code is
sent prior to the numeric
string. In addition to the
numeric characters, several
other characters were sent in
figures shift mode. Depending
on the equipment used,
various different graphics
were assigned to the same bit
strings. Table 3 indicates the
assignments for four different
keyboards; the first column
shows the International
Telegraph Alphabet No. 2 of
the Comite Consultatif
I nternational Telegraphique
et Telephonique (CCITT); the
second column shows the
commercial teletype
keyboard as used in the
United States, the third
column presents the fractions
keyboard of the American
Telephone and Telegraph
Company (ATT); the fourth
column shows the weather
bureau keyboard. All four
different keyboards are
shown here because used
equipment from different
sources may be available to
you which you might want to
modify so that all keycaps
correspond to the commercial
keyboard.

Binary Coded Decimal (BCD)
Transmission Code

The term ‘“binary coded
decimal” derives from the
method of coding decimal
digits. The bit string with
value 9 is 1001, and the value
10 is expressed by adding an
additional four bits, namely,
00010000. The bit string

Table 3. Five-level Baudot Code for Four Selected Keyboards.

BIT
CODE
1 1
1 0
0o 1
1 0
1
1
0o 1
0o o
0o 1
1 1
1 1
0 1
0o o
0o o
0 o
o 1

1
0o 1
1 0
o o0
1 1
0 1
1 1
1 0
1 0
1 0
0o o

1 1
1 1
0 o
0o o
0o 1

- =

c =

- - OO =

o o 0O == O =2 0 0 0O = 0 o =

-

- © O O

Y

—y

o o ©

Upper
.::“;
@
Lower E E
Case O S
A —_ —
B ? ?
C
D a‘ﬁ‘h;)ou? $
E 3 3
F !
G &
H #
1 8 8
J Bell Bell
K ((
L))
M
N . .
(0] 9 9
P ¢} 0
Q 1 1
R 4 4
S .
T 5 5
V] 7 7
\ = :
W 2 2
X / /
Y 6 6
z + "
Blank

Letters shift
Figures shift
Space

Carriage return

Line feed

Case

1/2
3/4

7/8

N O — / | © \\ o @— Weather

t

/

+ O ~ N B8 - 9 ©vw @ -

N g - —

36

Table 4. Seven-bit American Standard Code for Information Interchange.

Bits 7, 6. 5 000 001 010 01t 100 101 110 111
Bits
4 3 2 1 o Hex 0 | o 1 2 3 4 5 6 7
0 0 0 0 NUL |DLE]SP | © @ P ' p
0 0 0 1 1 SOH |DC it 4 A Q a q
0 0 1 0 2 sTx |pbcz |- 2 B R b v
0 0 1 1 3 ETX [DC3 | # 3 C S c s
0 1] 0 4 EOT |Dc4 {3 4 D T d t
0 1 0 1 5 ENQ [NAK | % 5 E u e u
0 1 1 0 6 ACK [SYN | & 6 F Y f v
0 i 1 1 7 BEL |ETB 7 G W | g w
1 0 0 0 8 Bs |can]i(8 H X h x
1 0 0 1 9 HT |em | 9 ! Y i y
1 0 1 0 A LF |sus }* J z j
] 0 1 1 B VT |[esc |+ ; K [k i
1 1 0 0 C FF |Fs |, < L \ | |
1 1 0 1 D CR |Gs |- = M] m }
1 1 1 0 E SO RS > N |[T14A] n ~
i 1 1 1 F st |us |/ ? o |l__]o DEL

tFor IBM 370, the left of the two symbols is generally displayed. See Table 2 for explanation of

function abbreviations.

Table 5. Six-bit Binary Coded Decimal Transmission Code.

Bits
1,2
Bits 3, 4,5,6 00 01 10 11

0000 SOH & -]
0001 A J / 1
0010 B K S 2
0011 C L T 3
0100 D M u 4
0101 E N v 5
0110 F 0 W 6
0111 G P X 7
1000 H Q Y 8
1001 I R z 9
1010 STX SPACE ESC SYN
1011 . $))
1100 < * % @
1101 BEL us ENQ NAK
1110 suB EOT ETX EM
111 ETB DLE HT DEL

01011001 therefore has a
value of 59, and 99 is
expressed as 10011001. This
method differs from the bit
coding shown in Table 1.

The binary coded decimal
(BCD) transmission code has
been widely used by IBM and
other manufacturers to
transmit uppercase letters,
digits, and special symbols in
a six-bit code. It is a subset of
the USASCII code; however,
it is not a national standard.
The bit strings are shown in
Table 5.

The American Standard Code
for Information Interchange
(ASCIHI)

Throughout the decades,
many different data
transmission codes were
developed, and designers
today often find good reasons
to develop their own codes.
The need for standardized
transmission codes, however,
has increased tremendously
because more and more
machines dial-up other
machines via the public
networks. The American
Standards Association has
standardized a seven bit code
for communications. It
contains upper and lower-case
letters, and a large number of
device and transmission
control characters. An eighth
bit may be added for parity.
The term parity implies that
the number of bits should
add up to an even number
(for even parity) or to an odd
number for odd parity. The
purpose is to check to some
degree for a loss of bits
during transmission. Assume
that a device transmits in

even parity; uppercase B
consists of two marks and
five spaces, therefore, no
eighth bit is transmitted;

uppercase T consists of three
marks and four spaces, and an
eighth mark is sent to make
the number of marks even.
Fig. 2 shows the string BYTE
in even parity transmission.
The code is shown in Table 4.
Bit 1 is transmitted first. You
may also want to refer to
Table 2 in order to
understand the meaning of
the abbreviations.

Extended Binary Coded
Decimal Interchange Code
(EBCDIC)

The Extended Binary
Coded Decimal Interchange
Code is essentially the
previously mentioned Binary
Coded Decimal code
extended by two bits to form
an eight-bit code. A total of
256 codes are possible (b=2,
g=8, a=256) and because of
its length of eight bits, it is
often more easily expressed
in hexadecimal notation by
means of a string of two
hexadecimal digits. Table 6
shows both notations, the bit
pattern and the hexadecimal
notation. The digit 9, for
example, is expressed as the
bit string 11111001, or as the
hexadecimal string F9.

The code is often used to
transmit the eight-bit bytes of
computers. [t originated
about a decade ago when 1BM
introduced the System 360.

The terms ‘“EBCDIC",
“byte”, and ‘‘hexadecimal
digits 0, ..., F” were
developed at that time.

Today these terms are widely

Fig. 2. The word BYTE in Even-parity USASCII.

"MARKING" |]

"SPACING" O

START

le—— B
ONE CHARACTER

Y ——

ARITY

[+8

ONE CHARACTER

accepted and used by many
computer manufacturers. The
code is also widely accepted;
however, it is not a national
standard.

Conclusions

A character is a unit of
information which can be
represented in various forms,
such as in graphic form, or as
a bit string. Since bit strings
can be rather lengthy and
therefore difficult to
remember, we discussed the
abbreviated representation of
the string by means of the
hexadecimal graphics. The
relationship between the bit

string representations of
characters and the
hexadecimal graphics is

independent of the code since
it is based on an intrinsic
numerical order, namely that
of counting from zero by one
to infinity.

On the other hand, bit
strings may be represented by
graphics in an entirely
different manner depending
on the code used. For that
purpose we looked at the
predominant five-, six-, seven-
and eight-bit codes presently
in use. We did not discuss
various other but less
important codes because of
space limitations. Depending
on the code utilized, the same
graphic represents entirely
different bit strings as shown
in Table 7.

The first character in the
Baudot code is the letters
shift. Note the similarity
between the last three codes
which holds only for
uppercase letters and digits.

STOP
TOP

— T —

PARITY
s

START
START

ONE CHARACTER

__*J‘___
ONE CHARACTER—»{

o

E —==Z%i £ |

PARITY
STOP

Table 6. Eight-bit Extended Binary Coded Decimal Interchange Code.

Table 7. Transmission of the String BYTE in selected codes (excluding

start, stop) and parity bits).

To conclude this tutorial,
let me say this in EBCDIC

(without
parity bits):
D5 85
40 A6
93 40
83 A4
95 A4
99 A2

start,

Al
85
84
A2
94
4B

stop

A3
7D
89
A2
82

and

6B
93
A2
40
85

11111 10011 10101 00001 10000
000010 101000 100011 000101

0100001 1001101 0010101 1010001

Plus Sign
Logical OR

Ampersand

Exclamation Point

Dollar Sign
Asterisk

Right Parenthesis
Semicolon

Logical NOT

N Bits 0, 1 00 01 10 11

\ Bits 2, 3| 00 01 10 11 00 01 10 1 00 01 10 11 00 01 10 11
ex 0 0 1 2 3 4 5 6 7 8 9 A B Cc D E F

Bits Hex

4,5,6,7
0000 |0 NUL DLE DS SP & - 0
0001 |1 SOH DC1 8SO0S / a i A J 1
0010 |2 STX DC2 FS SYN b k s B K S 2
00113 ETX T™ c I t C L T 3
0100 |4 PF RES BYP PN d m u D M U 4
0101 |5 HT NL LF RS e n v E N \% 5
0110|6 LC BS ETB UC f o w F (e} W 6
0111 |7 DEL IL ESC EOT g p X G P X 7
1000 {8 CAN h q y H Q Y 8
1001 |9 EM i r z [} R z 9
1010 |A SMM CC SM ¢ ! r— ——————— - - - — = —-]
1011 |8 vT CUl CU? cu3 . $, # | Special Graphic Characters
1100 |C FF IFS pca < * % @ ¢ Cent Sign - Minus Sign, Hyphen
1101 |D CR IGS ENQ NAK {) -) | Period, Decimal Point / Slash
1110 |E SO IRS ACK + ; > = | < Less-than Sign , Comma
1M |F S s BEL sus | ? " | ¢ Left Parenthesis % Percent

Underscore, Break
Character

Greater-than Sign
Question Mark
Colon

Number Sign

At Sign

Prime, Apostrophe
Equal Sign

Quotation Mark

L See Table 2 for explanation of function abbreviations.

11000010 11101000 11100011 11000101

Baudot

BCD Transmission Code
USASCII (see Note 1)

EBCDIC

Note 1. In memory, the sequence of bits on the IBM 360 and 370 is
reversed. The left bit shown becomes the right bit, etc., as shown:

1000010 1011001 1010100 1000101

BASIC language was chosen for the Altair 8800 because it is the easiest
language to learn and because it can be used for an infinite number of
applications. Literally hundreds of thousands of BASIC programs have
been written and are in the public domain. These programs include ac-
counting programs, business programs, scientific programs, educational
programs, game programs, engineering programs, and much more.

Altair BASIC is an interactive language. This means that you get im-
mediate answers and you can use your Altair as a super programmable
calculator as well as for writing complicated programs.

8K BASIC Features

Altair 8K BASIC leaves approximately 2K bytes in an 8K Altair for
programming which can also be increased by deleting the math functions.
This BASIC is the same as the 4K BASIC only with 4 additional
statements (ON GOTO, ON .. GOSUB, OUT, DEF]. 1 ad-
ditional command [CONT] and 8 additional functions [COS, LOG,
EXP. TAN, ATN, INP, FRE, POS]. Other additional features include multi-
dimensioned arrays for both strings and numbers, AND. OR. NOT

" ’ve seen and used other BASICs, but bute-for-byte, Altair
is the most powerful BASIC I've seen. I'm particularly im-
pressed with the n-dimensional arrays (and for strings
too!), machine level 1/O, and machine language ‘function’
features. The level of your documentation is, for me,
though the high point. Sections for those who know
nothing and sections for those who know a lot, plus sec-
tions that ‘normal’ people can read and understand. "™

J. Scott Willidms
Bellingham, Washington

Altair BASIC was written as efficiently as possible to allow for the max-
imum number of features in the minimum amount of memory. You can
order one of three Altair BASICs: 4K BASIC-designed to run in an Altair
8800 with as little as 4K of memory, 8K BASIC, or EXTENDED BASIC
(12K). Each of these BASICs allows you to have muitiple statements per
line (a memory saving feature), and each of them is capable of executing
700 floating point additions per second!

The 8K BASIC and EXTENDED BASIC have multi-dimensioned
arrays for both strings and numbers. This is particularly useful for
applications requiring lists of names or numbers such as accounting
programs, inventory programs, mailing lists, etc.

The 8K BASIC and EXTENDED BASIC also have an OUT and cor-
responding INP statement that allows you to use your Altair 8800 control
low speed devices such as drill presses, lathes, stepping motors, model
trains, model airplanes, alarms, heating systems, home entertainment
systems, etc.

Altair BASIC comes with complete documentation including a copy of
“My Computer Likes Me When | Speak in BASIC" by Bob Albrecht, a
beginner's BASIC text.

Never before has such a powerful BASIC language been
marketed at such low prices!

4K BASIC Features

Altair 4K BASIC leaves apporimxately 750 bytes in a 4K Altair for
programming which can be increased by deleting the math functions. This
powerful BASIC has 16 statements [IF . THEN, GOTO. GOSUB,
RETURN, FOR, NEXT, READ, INPUT, END, DATA, LET, DIM, REM,
RESTOR, PRINT, and STOP] in addition to 4 commands [LIST, RUN,
CLEAR. SCRATCH] and 6 functions [RND, SQR, SIN, ABS, INT and
SGN]. Other features include: direct execution of any statement except
INPUT; an " " symbol that deletes a whole line and a "« "that deletes
the last character: two-character error code and line number printed when
error occurs; Control C which is used to interrupt a program: maximum
line number of 65,535; and all results calculated to at least six
decimal digits of precision.

operators that can be used in IF statements or forumlas, strings with a
maximum length of 255 characters, string concatenation (A$ = B$) and
the following string functions: LEN. ASC, CHARS$. RIGHTS$. LEFTS.
MID$. STR$. and VAL.

EXTENDED BASIC

Alair EXTENDED BASIC is the same as 8K BASIC with the addition
of double precision arithmetic, PRINT USING and disk file 1/O. A
minimum of 12K memory is required to support EXTENDED BASIC.

Other Altair 8800 software includes a Disk Operating System.
assembler, text editor, and system monitor. Altair users also have access to
the Altair Library. which contains a large number of useful programs.

SOFTWARE PRICES:

AltairdKBASIC ... $150

Purchasers of an Altair 8800, 4K of Altair memory,

and an Altair I/Oboard $ 60
Altair 8KBASIC $200

Purchasers of an Altair 8800, 8K of Altair memory,

and an Altair[/Oboard .. $ 75
Altair Extended BASIC ... $350

Purchasers of an Altair 8800, 12K of Altair memory,

and an AltairI/OBoardel $150
Altair PACKAGE ONE (assembler, text editor,

system monitor) ... $175

Purchasers of an Altair 8800, 8K of Altair memory,

and an AltairI/Oboard $ 30
Altair Disk Operating Systemc.cooooeeeeeeeenn. $500

Purchasers of an Altair 8800, 12K of Altair memory,

Altair I/O and Altair FloppyDisk $150

Note: When ordering software, specify paper tape or
cassette tape.

LIFE Line 3

by
Carl Helmers
Editor, BYTE

Program design is a process which can be approached in a
haphazard manner — or by a systematic exploration of what is
needed to achieve the desired end. LIFE Line 2 in BYTE #2
began the systematic exploration of the Tree of LIFE by
presenting information on the overall program design of LIFE,
as well as the details of the GENERATION algorithm used to
carry one generation of LIFE into the next.

LIFE Line 3 continues the development of LIFE by a
discussion of the KEYBOARD INTERPRETER procedure.
This procedure monitors the “‘user inputs” of a keyboard, and
uses the command keystrokes detected to dictate what LIFE
will do. As in the exploration of the GENERATION
algorithm, the presentation starts at the top and works
downward.

Fig. 1. Data concepts for LIFE program and graphics control. The
variables XCOL, YROW, N and ENTRY are 8-bit ‘software registers”
maintained as variables in the LIFE program.

INCREMENT/DECREMENT Y
INPUTS FROM MOVECURS
ROUTINE

/N

DEFAULT N= O AT START ===

r——b

*Y" COMMAND

DISPLAY SCREEN IMAGE
Al /
,7/ LIFEBITS ARRAY s

fo0m=<

Y CURSOR
POSITION

s
X CURSOR
POSITION

GENERATION COUNT

OF KEYBOARD INTERPRETER

!
DEFAULT ROUTINE ASCII NUMER!C-/

DATA DEFINES ENTRY

48

g XCOL |lem——e—— INCREMENT/DECREMENT X
INPUTS FROM MOVECURS
1 ROUTINE
LSEN"COMMAND x"commanp
—
ENTRY
ENTRY | REGISTER

SPECIAL LIFE CONTROL
PANEL AND ASCII
KEYBOARD

L

Much of the challenge and
fun of the LIFE application is
the fact that it is best
implemented with some form
of interactive graphics. In the
partition of the application
presented in LIFE Line 2,
one of the major pieces of the
program is the KEYBOARD
_INTERPRETER with its
interactive graphics concepts.
A good place to start the
discussion of the
KEYBOARD_INTER-
PRETER is the software
block diagram of the
interactive graphics system of
LIFE.

A Software Block Diagram?

Yes! Strange as it may
sound to hardware types, the
ebb and flow of data in a
program can be depicted in
block diagrams. While Fig. 1
looks very much like an
ordinary hardware block
diagram of some system, it is
descriptive of the p/an of data
flow in a program rather than
actual wires. Fig. 1 is the
programming equivalent in
every respect of the hardware
block diagram of some
dedicated interactive graphics
system. By retaining the
system in software, LIFE is
inherently more flexible than
any hard-wired system could
be. This block diagram
illustrates the potential flow
of data in LIFE as controlled
through the KEYBOARD_
INTERPRETER and its

subroutines. Data flows and
changes in response to the
several input commands
defined for the program.

As was pointed out in
LIFE Line 1, the
fundamental tool of an
interactive graphics
application is a cursor which
illustrates where the program
thinks attention should be
placed. This cursor is flashed
on and off on the screen, and
can be moved through
appropriate commands of the
user sent via a keyboard. The
cursor concept is
implemented in the LIFE
program application by
means of two ‘‘global”
variables called XCOL and
YROW. These are both 8-bit
bytes of data. But since the
maximum dimension value in
either the X or Y directions
of the display is 63 (i.e., 6
bits) only the low order 6 bits
have significance for cursor
control. At any point in time
during the execution of
LIFE, the variables YROW
and XCOL retain the location
of the cursor for
KEYBOARD_INTER-
PRETER's use.

Fig. 1 also shows arrows
directed from XCOL and
YROW to intersecting dotted
lines in the LIFEBITS array.
These two numbers together
have 12 bits of significance.
This is sufficient to uniquely
specify one of the 4096 bits
in the array using the utility

subroutines LGET and LPUT
to reference and change
LIFEBITS, respectively.
These routines are left to a
later LIFE Line for their
details.

A ‘‘ghost copy” of
LIFEBITS is also shown in
back of the main copy in the
drawing to emphasize the
following point: Each bit of
the internal LIFEBITS array
maps directiy into a
corresponding bit in the
refresh memory of the CRT
display subsystem. This is an
example of a common theme
throughout the use and abuse
of computer systems:
Software systems map into
corresponding hardware —
and vice versa. This mapping
is of course one to one, and is
carried out by the DISPLAY
subroutine whenever the
internal data is changed. As
with LGET and LPUT,
DISPLAY is left to a future
LIFE Line for its details.

What Does it Take to Move
the Cursor?

Since the cursor position is
maintained by the values of
XCOL and YROW, the
movement of the cursor is
simplicity at its essence: To
move the cursor, all you have
to do is change the value of
XCOL, YROW or both! The
interactive graphics portion
of KEYBOARD_INTER-
PRETER has as its primary
concern the various ways of

Fig. 2. An overall view of the KEYBOARD_INTERPRETER. Thisisa
flow chart of the control algorithm for the LIFE application’s
KEYBOARD_INTERPRETER routine. Fig. 3 shows the same informa-
tion in the form of a procedure-oriented language.

5.

KEVBOARD
INTERPRETER

|

OLDKEY = NULL
GO = FALSE

DO UNTIL 8

OLDKEY = NULL

TIMEQUT =
LONGTIMEWAIT

PN

s
PR

o~
\

[
/

CALL
CURBLINK

t

A
Loop actively blinks
the cursor while waiting
for non-null key code . . .
{This branch is not taken
in case of repoated key.)

READ
KEYBOARD

CALL
DECODE

|

CALL
REPEATWAIT
(TIMEQUT)

TIMEOUT =
SHORTIMEWAIT

N

*/

Time out betwesn

starts

15.
YES
NO
K)

OLDKEY = KEY

RETURN
TO LIFE

out equei to LONGTIMEWAIT,
set toa SHORTIMEWAIT after
the second time delay.

49

The simultaneous advantage
and disadvantage of the
multiple conditional test
method of decoding: It

is a plodding (but straight-
forward) approach which
squanders memory resources.

changing the values of these
two crucial variables — while
possibly leaving a trail of
changed data points in
LIFEBITS. Fig. 1 illustrates
several of these changes —
— To move the cursor up,
Y ROW is incremented.

— To move the cursor
down, YROW is
decremented.

— To move the cursor left,

XCOL is decremented.

— To move the cursor right,

XCOL is incremented.

— To completely redefine

the column of the cursor,

the ENTRY register is

transferred to XCOL.

— To completely redefine

the row of the cursor, the

ENTRY register s

transferred to YROW.
KEYBOARD_INTER-
PRETER performs these

50

actions at the whim of the
user via commands entered at
the keyboards of the system
— with the flashing cursor
mark on the screen showing
the results.

The ENTRY Register

In order to provide a
means of entering 8-bit
integers into the program for
control purposes, the
software of KEYBOARD_
INTERPRETER maintains a
numeric input area called
ENTRY. Whenever an ASCII
character is sent to the
program which cannot be
decoded by DECODE’s
COMMAND table, the last
resort is to call DEFAULT. In
DEFAULT, the recover
assumption is to interpret the
unknown command as a
numeric digit (0 to 9) and
push it into ENTRY. A
routine in DEFAULT
performs a BCD to binary
conversion of the ASCII
character after it has been
trimmed to the range 0 to 9.
Later, when the user wants to
define XCOL, YROW or N,
the commands X, Y and N
respectively are used to
transfer ENTRY to onc of
the other registers, after
which ENTRY is set to O in
preparation for re-use. It is
important to emphasize that
ENTRY is a binary number.
When deccimal digits are
entered by the user, the input
routines convert the digits
into the appropriate binary
number and decimally shift
the significance of the
previous value.

The N Register

In LIFE Line 2, the LIFE
program given in Fig. 3
references a variable called N.
This N is used to control the
number of times
GENERATION is called. N,
like XCOL and YROW, is a
“software register’” in the
LIFE program which may be
set by a user command. The
“N” command is what is used
to transfer the ENTRY value
to N for use in controlling the

Fig. 3. The KEYBOARD _INTERPRETLR routine's overall flow,
expressed in a procedure-oriented language. Note that the interpreta-
tion of the DO WHILLE" differs from a **DO UNTIL” — the former has
its test prior to execution of the loop statements, and the latter has its
test at the end of the loop. Nesting of the DO groups is indicated by the
indentation of lines.

1 KEYBOARD_INTERPRETER-

2 PROCEDURE:

3 OLDKEY NuULL,

4 GO FALSE,

5 DO UNTIL GO = TRUE: /" LOOP UNTIL DONE WITH INPUTS */

6 DO WHILE NOTREADY{KEYBOARD} - TRUE;

7 CALL CURBLINK; /* THIS LITTLE LOOP WAITS */

8 OLDKEY NULL; /* FOR A KEYSTROKE AND BLINKS */
9 TIMEQUT LONGWAIT, /* THE CURSOR ALL THE WHILE */
10 END:

1" KEY - INPUT{KEYBOARDI}; /* WHEN READY, READ KEYBOARD
12 CALL DECODE; /* EXECUTE COMMAND */

13 CALL REPEATWAIT(TIMEOUT); /* DON'T LOOK TOO SOON '/

14 IF KEY = OLOKEY THEN /* SHORT DELAY AFTER FIRST */
15 TIMEQUT SHORTIMEWALT; /* TWO OPERATIONS DONE -

16 OLDKEY = KEY:

17 END:

18 CLOSE KEYBOARD INTERPRETER:

Subroutines Referenced by AEYBOARD _INTERPRETER:

NOTREADY = a function subroutine (also referenced by INPUT)
which is uscd to control an idle loop. It returns FALSE as its value if
the selected device (in this case, KEYBOARD) is ready for input, and it
returns TRUE as its value otherwise.

CURBLINK = a subroutine which “blinks” the cursor on for a fixed
period of time. followed by a fixed period of “oft”’ time. Since it must
be called cach time a single blink is required, this implements the
“active control” feature mentioned in LIIFE Line 1.

INPUT = a tunction subroutine which returns the current input data
value for the sclected device (in this case, KEYBOARD). INPUT has its
own wait loop referencing NOTREADY — which for KEYBOARD
INTERPRETLR is redundant, but is not redundant in general.

DECODE = the major subroutine of KEYBOARD _INTERPRETER.
This routine analyzes KEY based upon tables and the previous inputs to
the program from the operator. Using this analysis it will sclect the
appropriate subroutine to execute. These “command subroutines” will
in turn aftect LIFE program data and the course of the LIFE program’s
execution.

REPEATWAIT = a subroutine designed to call CURBLINK a number of

times specified by TIMEOUT. This implements a delay between
multiple responses to the same key held down continuously.

Data (8-bit bytes) used locally by KEYBOARD INTER-
PRETER:

OLDKEY = 8-bit valuc of the last previous keystroke.

NULL = 8-bit value of a null key pattern as rcad from the keyboard.
TIMEOUT = 8-bit valuc of the current repeat key time delay.
SHORTIMEWAIT = the timeout paramcter used after the first delay in
a multiple input of the same key. This specifics the rate of rapid motion
of the cursor under manual control.

LONGTIMEWAIT = the value of the timecout parameter used for the
first delay following a key entry. A longer wait is required at first to
avoid false duplication of keystrokes for hecavy-handed players of the
game.

Data (8-bit bytes) used by ANEYBOARD INTERPRETER and

shared with the whole program. See Table II for explanations.

GO, DONE, TRUE, FALSE, KEYBOARD, COMMAND, KEY

o

extent of the next run. Since

this application uses 8-bit
data, the Ilimit is 255
generations of LIFE at
present.

Figuring Out What the User
Said

The KEYBOARD_
INTERPRETER routine
serves the function of
controlling the input of
information to these software
register and to the
LIFEBITS grid. The routine
itself is a loop which executes
over and over until the user is
ready to run the
GENERATION algorithm for
one or more generations. The
K EYBOARD
INTERPRETER terminates
for one cycle of LIFE when
the user inputs a “G" control

command which s
interpreted semantically as
“GO generate N generations’.
The flow chart of the
KEYBOARD_INTER-
PRETER logic is illustrated in
Fig. 2, with the equivalent
procedure-oriented language
version shown in Fig. 3 as a
detailed reference. In Fig. 2,
line numbers are provided for
comparison to Fig. 3.
Execution of the
KEYBOARD_INTER-
PRETER begins with some
initialization statements. The
values of GO and OLDKEY
are set at the start of
execution (lines 3 and 4).
These values will be changed
during execution of the
KEYBOARD_INTER-
PRETER based upon input
data. OLDKEY is used to

detect duplications of
keyboard input which occur
when a key is held down for
continuous operations. After
a given KEY is held down
continuously for two
operations, the repetition
goes into a high speed mode
with SHORTIMEWAIT
controlling the delay between
operations. GO is the control
variable which is used to
govern whether or not the
loop is to continue — it is
initialized to FALSE and will
be changed to TRUE when

the “G” user command is
decoded.

Programs Are the Willing
Servants of the Noble User?

Interaction of
programmed computers with
human beings is often a

waiting game. This waiting
game is aptly illustrated in
the loop which checks for
user input keystrokes at lines
6 to 10 of the KEYBOARD
_INTERPRETER routine.
The function NOTREADY
(KEYBOARD) is a notational
convention used to indicate a
test for the keyboard ready
condition. Like a ready and
willing servant, the computer
program keeps marking time
in this loop until the user —
you or | — has given it a
character to digest. Two
statements are included in
this loop for the purpose of
coordinating multiple
keystroke conditions: Setting
OLDKEY = NULL is used to
re-establish a null history if
the program ever has to wait
(it never waits when keys are

Table I. ASCII Command encoding for the LIFE application. This is an initial specification of the command codes used to control the
KEYBOARD_INTERPRETER routine’s effect. The command table locations go up by three as in Fig. 4. No addresses for the command
subroutines are given yet — these will be filled in when the program is compiled for your computer. Command table locations and command
characters are given as hexadecimal numbers.

Command Table = Command
Location Character
00 XX
03 47
06 49
09 53
ocC 52
oF 58
12 59
15 4E
18 43
1B 45

ASCII
Key

27? DEFAULT

Command
Subroutine

G RUN

| INITIALIZE

S SAVELIFE

R RESTORELIFE
X SETXLOC

Y SETYLOC

N SETNGEN

Cc CLEARS

E LIFEDONE

Meaning of the Command (its ‘‘semantics’’}

The first table position is the ""default’’ routine position, which is called

when no other matching key is found in the table search.

The "run’ command which sets a flag called GO in order to end the

KEYBOARD_INTERPRETER and have LIFE call the GENERATION

routine.

The “initialize” command to set up the screen with predetermined

patterns selected by additional keystrokes.

The "'save’’ command to dump the current screen content onto a

waiting audio cassette or other mass storage device.

by "'S".

XCOL.

YROW.

The "restore’” command to recover a screen pattern previously saved

The “’set X’ command to explicitly set the horizontal cursor location,

The “set Y command to explicitly set the vertical cursor location,

The “set N’ command to explicitly set the generation count for

subsequent execution with the "G’ command.

The “clear screen’”’ command to wipe out all data and place the cursor

at the center. CLEARS requires confirmation with a second S key

stroke to avoid accidental clears.

The “done’’ command is an E followed by an L (for End Life.) The

second character confirmation is checked by LIFEDONE.

Note that the ASCII characters 0 to 9 are used to define the “‘current input”™ maintained by software in ENTRY. ENTRY may then be
transferred to N, XCOL, or YROW by the N, X and Y commands respectively.

51

held down continuously).
TIMEOUT = LONGTIME-
WAIT re-establishes a longish
debounce period between key
interpretations following a
series of continuous inputs.
The program of course thinks
that if a key is not ready
upon restarting the main loop
at line 6 it could not possibly
be a repeat. While idling and
waiting for your interactive
whims, the computer
program is not completely
devoid of useful work. 1t calls
CURBLINK once each time
around the wait loop in order
to flash the cursor actively on
the screen.

Finally, after some time of
unspecified duration, vyou
make up your mind to input
a key. This has one major
effect upon the program: The
next time around the loop at
the test of the WHILE
condition, a result of FALSE
ends the loop. Execution
then flows from the DO
WHILE (line 6) to line 11
where the KEY is read from
the waiting keyboard device
by a subroutine called
INPUT.

With KEY defined,
DECODE is the next item on
the agenda. DECODE is one
of the major subroutines of
KEYBOARD_INTER-
PRETER, a routine which
takes KEY and compares it to
a COMMAND table. The
result of the COMMAND
table search is execution of a
“command subroutine” if a
match is made, or execution
of a DEFAULT routine if no
match to KEY is found.
Upon return to
KEYBOARD_INTER-
PRETER (all subroutines by
nature return to the caller
except in very rare cases), the
flow of control reaches the
REPEATWAIT call using the
current value of TIMEOUT.

During normal execution
of single isolated commands,

52

the TIMEOUT wvalue is
LONGTIMEWAIT — which
might be chosen to be from
0.1 to 0.5 seconds. This
TIMEOUT sets the minimum
time between the first 3
keystrokes of a repeated
sequence. But, after two long
delays have been executed,
the match of OLDKEY =
KEY is detected at line 14
and TIMEOUT is changed to
SHORTIMEWAIT allowing a
speedy repeated motion case.
SHORTIMEWAIT might be
chosen in the 0.05 to 0.1
second range for rapid
motion. The values of these
two motion control constants
are left unchosen for now,
and can be figured out as
binary integers to be used in
REPEATWAIT when details
of the CPU and
REPEATWAIT routine are
filled in. Note that if fast
operation is desired
immediately after the second
operation of a repeated
sequence, then line 13 of Fig.
3 should be moved to a
location between lines 15 and
16.

In order to control the
repeat logic, the statement
OLDKEY=KEY is executed
at line 16 so that the last
input will be retained for
comparison purposes the next
time around.

The KEYBOARD_
INTERPRETER routine
finishes up with the CLOSE
statement of LIFE line 18,
which stands for the end of
the routine and return to its
caller. There is one and only
one caller of this routine, the
LIFE program itself,
illustrated in Fig. 3 of LIFE
Line #2.

It’s All in DECODE of the
LIFE Program

When giving the details of
the KEYBOARD_INTER-
PRETER logic, the principle

While idling and waiting
for your interactive whims,
the computer is not com-
pletely devoid of useful
work. It calls CURBLINK
once each time around the
wait loop in order to
seductively flash its cursor
on the screen.

Fig. 4. Decoding by multiple conditional tests. This method of
decoding keystrokes and activating routines in software is most
efficient when a small number of possible commands is involved

START

CALL

FIG.5
G ROUTINE

DETAIL

|

CALL
H ROUTINE

J)

CALL
? ROUTINE

CALL
? ROUTINE

—
R

CALL
DEFAULT

“NONE OF
THE ABOVE"”

N

Fig. 5. Typical code for a single conditional test in the scheme of Fig. 4.
The example here is using Motorola 6800 system mnemonics. This
example assumes accumulator A is set up with the character being

decoded.

of keeping the program
design locally simple results
in a CALL DECODE at line
12. Whenever some
subroutine is left unspecified
except for its inputs (KEY
for DECODE) and its outputs
{2 command subroutine’s
execution), sooner or later
the details must be filled in.
In designing a2 DECODE
algorithm to fill in this set of
dctails, there are numerous
alternatives. For high order
language aficionados,
something called a
‘“‘computed GO TO”
(FORTRAN) or “DO CASE”
(PL/1 family languages such
as XPL or PL/M) would
suffice following a table
search. However, for this
particular application, a
slightly lower level approach

is justified to conserve
memory.
Two major alternatives

come to mind as possible
ways to map an input KEY
value into the execution of a
selected subroutine. The
simplest (least elaborate)
“straightforward’ approach is

the method of multiple
conditional tests. This s
illustrated schematically in

Fig. 4's flow chart, and in a
concrete form in Fig. 5's
example of a segment of the
typical conditional test. In
this approach, each possible
command code is tested in

turn by the routine.
Eventually, all the explicit
possibilities will have been

exhausted if no match is
found. Then, if “none of the
above’ match the KEY input,
a DEFAULT routine is called.
The main advantage of this
approach is also its
disadvantage: It is a plodding
and straightforward approach
which squanders memory.
While the code’s intent is

obvious, it requires — in the
example of Fig. 5 — a total of
8 bytes per test.

There should be a better
way — comparisons and
branches are repeated in this
method. The segment of
generated code and its
corresponding procedure-
oriented language version in
Fig. 5 shows four instructions
which are repeated over and
over but with varying data
(the character being
compared and the address of
the subroutine). Why not put
the instructions in only once
and tabulate the variable
data? There might be a saving
of memory if this table driven
approach is used instead.

Fig. 6 illustrates the
concept of an alternative
structure, the ‘“command
table,”” which will result in a
lower memory requirement

once the number of
commands to be tested
exceeds some break even

point. In this concept, the
changing data for each test is
stored in the table, and the
program to go along with it
uses a looping technique to
scan that table. The changing
data for tests comprises:
— The command character.
This is the keyboard code
which is matched against
the actual KEY input.
— The command
subroutine. This is the
address of the subroutine
which will be called if KEY
matches the corresponding
command character.
The table is organized in
3-byte groups consisting of a
command character followed
by its subroutine address.
Note that on first inspection,
this form of DECODE
requires only 3 bytes of
storage per test versus the 8
bytes in the example of Fig.

Bytes

- W N

8 =

This is the “generated code™ of the following statements in the
procedure-oriented language used for LIFE Line examples:

IF KEY =
DO; /* HAVE MADE A MATCH */

Mnemonic
CMPA#'G
BNE *+4

JSR GROUTINE

RTS

‘G’ THEN

Total number of bytes per test.

CALL GROUTINE;

RETURN; /* FROM DECODE COMPLETELY */

END;

Comment
Compare A to literal
Branch around JSR and RTS
Call the G subroutine

Return from decoder rather than
continue the testing

Relative
Address

3n

3n+1

3nt2

3(n+1)

3in+1) +1

3in+1}+2

Content

UNUSED

Default Address

Address of "G"
Command Subroutine

Address of “H"
Command Subroutine

Fig. 6. The Command Table
Concept. By storing the character
(keystroke) being decoded,
followed by the address of its
routine, only three bytes need be
used for each routine which could
be decoded. Allowing for the
overhead of a longer decode
algorithm (specified once), the
command table method will prove
more compact when the number
of commands get larger than four
or five.

53

Fig. 7. The Command Table DECODE routine specified in a procedure

oriented language.

1 DECODE:

2 PROCEDURE; /* TO FIGURE QUT WHAT USER SAID */

3 /* COME HERE WITH THE KEY TO THE COMMAND */

4 DO FOR | =3 TO LENGTH{COMMAND) BY 3; /* SCAN TABLE */

5 IF KEY = COMMAND({{) THEN

6 DO, /* WOWI!! | GOT A MATCH | GOT A MATCH! */

7 t=1141,/" POINT TO ADDRESS ENTRY */

8 CALL CALLX{COMMAND(I};

3 /- NOTATION FOR CALL OF SUBROUTINE, INDEXED */
10 RETURN;

1 /* THIS FORCES EXIT FROM DECODE */

12 END;

13 /* ONLY GET HERE IF NO MATCH IN TABLE */

14 CALL CALLX{COMMAND({1}};/* CALL DEFAULT FROM TABLE "/
15 END;

16 CLOSE DECODE;

Data (8-bit bytes) used locally by DECODE':

I = temporary used for loop control and indexing.

Data (8-bit bytes) used by DECODE but shared with the
whole program. For details see Table 1I.

COMMAND, KEY

Subroutines referenced by DECODE:

DECODE does not use any ‘“real” subroutines, but does use the
following two notational conventions which look like subroutines.

LENGTH(COMMAND) stands for the length (in bytes) of the
COMMAND table. When you know what it is, you put in the value.

CALLX(X) is used to denote using the two bytes starting at the
address X as the address of a subroutine to be called. This is an
indexed subroutine call eftectively. For a Motorola 6800 CPU, this
would be pertormed by an LDX instruction indexed off the
COMMAND table position, followed by a JSR instruction with the

indexed addressing mode.

5. For a 10 command table,
this would be a 50 byte
saving at first inspection.
However, the 50-byte figure
does not take into account
the longer looping routine
required to scan the table and
indirectly jump when a match
is found. But for 10
commands (the number
found in Table 1) this 50 byte
saving potential goes a long
way. | expect the actual
DECODE routine of the table
driven variety to be

54

considerably less than 50
bytes in length when it is
generated for the 6800
system instruction set used as
the straw-man in Fig. 5. I'll
leave the final conclusion on
that to a later LIFE Line.
There is an additional
advantage to be obtained
from the table driven
method. This is an advantage
which concerns some of the
finer points of programming:
The table driven method
results in “pure code” in

which potentially variable
data is completely segregated
off in the table. This achieves
an often desirable end of
separating data from
instructions. In the multiple
conditional test version, the
data of the DECODE is
embedded right in the
instruction stream, both as
the literal value of the
character being tested and as
the address of the routine
being selected. If | want to
modify the multiple
conditional test version, |
must certainly recompile or

(a pain in small

addition to the

memory
approach.

DECODE is shown in
procedure-oriented

reassemble the whole routine
systems
work). In contrast, to modify
the table driven version, |
only have to alter the table
itself, and the variable which
specifies the table’s length.
But this is a minor point in
major
conservation
argument for the table driven

The actual algorithm for
language

in Fig. 7. The scan of the
table is a DO FOR loop with

Notes on Notation:

Concerning Indentation: The listings of procedures for
the LIFE program make use of an indentation
convention (o help show the structure of the routines.
The significance of the indentation is that it shows the
opening and closing of various local software
constructions and in so doing helps convey the meaning
of the program to human readers. Note how the
statements from line 7 to line 11 of DECODE in Fig. 7
are indented one level compared to the DO (line 6) and
END (line 12) statements. This indentation shows that
lines 7 to 11 are puart of the DO .. . END construction
which is exccuted if the test on line S gives a true result.

The notation ““/*” followed by arbitary remarks and
then a “*/” is the “comments’ convention used in these
examples. This convention is stolen from the PLJI
family of languages.

Concerning names of variables: With each procedure
specified in LIFE Line, data is separated into two
categories: Local data is used only within the procedure
question. Loucal data may have a name which duplicates
names used in other procedures, but is always qualified
by its local nature. Thus “I” in GENERATION (Fig. 6,
LIFE Line 2) is a different data location in memory than
the “I” in DECODE (Fig. 7, LIFE Line 3). Data
shared with the rest of the program, which is often
called global data in programming terminology, is in
contrast defined universally for LIFE. Global data is
summarized for LIFE in Table II. Thus whenever KEY is
referenced (as in KEYBOARD_INTERPRETER or in
MOVECURS) the same data is intended, since these have
been classified as shared or global in the notes
accompanying the program listings.

the index, I, running from 3
(the first entry is reserved for
the default) to the length of
the table by 3. When a match

This is shown notationally in
a general purpose form with
reference to the command
table, but in generating the

actual programs of LIFE are
generated for a particular
computer in a future LIFE
Line. For now, Table | serves

Does Anyone Know What

code for the statement of line
14, a simple call to
DEFAULT might be
substituted. (If the generality
of the DECODE routine is to
be preserved for possible use
with other command tablcs,
this optimization would not
be possible.)

What about data for the
COMMAND table? Table !
provides a preliminary answer
to this question by giving a
list of command table entrics
including relative location,
the corresponding character
code, the ASCIl key which
invokes the command, the
name of the subroutine and a
verbal description of the
subroutine. This table will be
used as the basis for creating
a detailed data table when the

is found, the 16-bit address in
the table is used for an
indirect subroutine call (lines
7 and 8). For a Motorola
6800 system, this would be
accomplished by an indexed
JSR instruction after loading -
the index register from the
table. When the selected
command subroutine returns
to DECODE (as would any
well structured subroutine in
the same circumstance), the
RETURN statement is
exccuted causing an exit from
DECODE and resumption of
the KEYBOARDL_
INTERPRETER at the calling
point. If no match is found,
the loop eventually runs out
and line 14 of Fig 7 is
rcached, where the
DEFAULT routine is called.

to list the arcas which remain
to be covered ‘in the
discussion of the
KEYBOARD_INTER-

PRETER and all its
subroutines. the name of Robert T.

LIFE Line 4 will continue ~ Wainwright's LIFELINE

the presentation of the Newsletter, published
KEYBOARD_INTER- through 1973. Thanks to
PRETER portion of the LIFE ~ Bob Albrecht of People’s
program. To fill out the Computer Co. for sending
remaining portion of the Tree S his copy of LIFELINE's
of LIFE, the next installment last issue. Does anyone
includes the integration of KnNoWw where ,M r.
graphics control commands ~ Wainwright is now (he’s no
into the KEYBOARD longer at the address given
INTERPRETER and the first 0¥ Charles A. Dunning Jr.
hardware details of LIFE — a in the Letters column),

Happened to Robert T.
Wainwright?

This series of articles
inadvertantly duplicated

simple circuit which 2and is LIFELINE stil
combines an ASCII keyboard being published?

input with the special

purpose controls for an

interactive cursor. @

Table II. Global Data. Data which is shared by an entire program or application is often called ‘“/global”. The word global is used to indicate the
widespread effects of such data in the program's execution. Many procedures will alter and change such data. This table summarizes the global data
variables of the LIFE application as used in procedures given in LIFE Lines #2 and #3.

COMMAND = the table of commands interpreted by DECODE,
containing the ASCII codes of command keys and the addresses of the
appropriate command subroutine. The format of this table is tllustrated
in Fig. 6. The information content, in preliminary form, is tfound in
Table I.

DONE = the variable used to control continued exccution of the main
LIFE routine (se¢ LIFE Line #2, Fig. 3).

ENTRY = the entry register used to receive numeric ASCII digits, after
weighting the previous value in a BCD fashion. While the entry to
ENTRY of new digits is done in a BCD manner (multiplying by 10 then
adding the digit’s value) the content of ENTRY is a binary number of
8-bit precision with values 0 to 255 and is thus not itself BCD. (BCD =
“binary coded decimal.”)

FALSE = the value 0 (00 hex, 000 octal, 00000000 binary). This
name is used to indicate the softwuare cquivalent of a hardware gate

input wired to logical zero.

GO = the flag (value is TRUE or FALSE) which controls continued
execution of KEYBOARD_INTERPRETER.

KEY = the 8-bit data area which receives keyboard inputs.

KEYBOARD = the logical unit number of the keyboard 1/O device.
This is a bit pattern which specifies the device one is talking to.

LIFEBITS = the object of the whole exercise — an array of 64 by 64
bits stored as 64 by 8 bytes.

N = the variable used to control the number of generations to be
evolved by LIFLE before returning to KEYBOARD_INTERPRETER

graphics control.

NCMAX = current maximum column index of live cells.

NCMIN = current minimum column index of live cells.

NCOLMAX = maximum column index of live cells for active area
optimization.

NCOLMIN = minimum column index of live cells for active area

optimization.

NROWMAX = maximum row index of live cells for active area
optimization.
NROWMIN = minimum row index of live cells for active area

optimization.

NRMAX = current maximum row index of live cells.

NRMIN = current minimum row index of live cells.

TEMP = 2 by 8 array of bytes containing two 64-bit rows of cells.
THAT = previous line copy index to TEMP used in GENERATION (see

LIFE Line #2, Fig. 6). THAT should always have a value of 1 or 0,
opposite of THIS.

THIS = current line copy index to TEMP used in GENERATION (sec
LIFE Line #2, V'ig. 6). THIS should always have a value of 0 or 1.

TRUE = the value “255” (FF hex, 377 octal, 11111111 binary). This
name is used to indicate the software equivalent of a hardware gate
input wired to logical one.

XCoL = in the horizontal (column)
direction.

the current cursor position

YROW = the current cursor position in the vertical (row) direction,

55

Flip Flops

by

William E. Browning
516 N. 95th E. Ave.
Tulsa OK 74155

58

One of the important
building blocks in working
with transistor-transistor logic
is the flip flop. It is important
to understand this building
block if you desire to use it in
projects of your own.

The two most common
types of flip flops are known
as the JK flip flop and the D
flip flop.

JK Flip Flop

The JK flip flop has four
or five inputs and one or two
outputs. The input pins are
labeled J, K, CLOCK,
CLEAR and PRESET, and
the output pins are labeled Q
and Q which is often
pronounced as ““Q bar” or
“not Q. A typical block
diagram of a JK flip flop is
shown in Fig. 1.

The outputs (Q and Q) can
be in one of two states: High
(logic 1) or low (logic 0). In
general, if the Q output is
high then the Q output is
low, and vice-versa, if the Q
output is low then the Q
output is high. We will often
refer to the Q output only
since we know that Q will be
the opposite. So if we say

that the output is high it
means that Q is high and Q is
low. However, this is not
always so; on some flip flops
you may find a Q output
only, and, as you will see
further below, both outputs
may be high or low under
specific conditions.

Asynchronous Inputs

Now that we know about
the output states, let’s discuss
the inputs to give us the
desired outputs. The PRESET
and CLEAR pins are known
as asynchronous inputs.
Asynchronous means that
these inputs do not depend

0

Exposed

upon the timing derived from
the clock pulses.

With almost all flip flops a
low PRESET will take Q to
high, and a low CLEAR will
take the Q to high. With both
PRESET and CLEAR low
both Q and Q will be high.
This is the only time when Q
and Q are not opposite from
each other. If both PRESET
and CLEAR are high, then
the control of the output is
given to the J, K and CLOCK
inputs. The relationship
between the asynchronous
inputs and the output is
shown in the truth table of
Fig. 2.

—_J

(INPUTS)

—]CLOCK

—Jk

CLEAR

PRESET

(QUTPUTS)

a—

Fig. 1. The JK flip flop block diagram.

PRESET CLEAR Q Q
L L H H
L H H L
H L L H
H H NC CHANGE

Fig. 2. Truth table of a JK flip
flop responding to preset and
clear.

Synchronous Inputs

The | and K inputs are
synchronous inputs.
Synchronous means that they
depend on the CLOCK for
operation.

For most JK flip flops a
simple set of rules apply to
the synchronous inputs, but
not all flip flops are standard.
There are several variations
on the timing when the chip
accepts inputs and when the
output changes.

The most
input-output relation s
known as the rising-edge
triggered flip flop. The
rising-edge triggered flip flop
derives its name from the fact
that it changes its output
states only when the CLOCK
level rises from low to high.
Of course, the output states
depend on the configuration
of the } and K inputs. Fig. 3
illustrates the changes of the
Q pin depending on the levels
on the] and K pins: When
both J and K are low, Q does
not change; when both are
high, Q changes into its
opposite state; with | being

common

low, and K being high, Q
assumes a low level, and when
J is high, but K is low, Q will
take on a high level.
Remember, though, that this
change can happen only if the
CLOCK input rises from low
to high, and, as was shown in
conjunction with Fig. 2,
when both PRESET and
CLEAR are high.

The less frequent type of
input-output relation is
known as the falling-edge
triggered flip flop. This flip
flop resembles the first,
except that the output
changes to the condition
selected by the] and K
inputs when the CLOCK level
falls from high to low.
Everything else remains the
same.

It is easy to change the
operation of a falling-edge
triggered flip flop to that of a
rising-edge triggered flip flop.
All that needs to be done is
to invert the input to the
CLOCK. The inverter shown
in Fig. 4 changes a high level
to a low level, and vice versa;
a rising-edge triggered flip
flop can be changed to a

th ty + I
J K Q
L L Q
L H L
H L H
H H Q

Fig. 3. Truth table of a JK flip
flop for synchronous (clocked)
operation.

CLEAR

CLOCK

—k Q—
PRESET

9

INVERTER

Fig. 4. Inverting the clock input
converts rising edge-triggergd
operation into negative edge-

triggered operation and vice versa.

OUTPUT OUTPUT QUTPUT
[CHANGES [CHANGES iCHANGES
CLOCK | I
PULSE I_I lql
INPUT NEW_INPUT NEW INPUT
ACCEPTED ACCEPTED ACCEPTED
Fig. 5. Timing of a negative clock
pulse master/slave flip flop.
INPUT NEW INPUT NEW INPUT
ACCEPTED ACCEPTED ACCEPTED
CLOCK
GhPg [[] []

tOUTPUT t-OUTPUT \-OUTPUT

CHANGES

Fig. 6. Timing of a positive clock
pulse master/slave flip flop.

falling-edge triggered flip
flop, and vice versa, by means
of the inverter.

A third type of input is
known as the negative clock
pulse master/slave flip flop.
With this flip flop the inputs
are applied to the | and K
pins when CLOCK goes low
and change their outputs
after the rising edge of the
clock pulse (see Fig. 5).

The clock pulses should be
made as short as possible and
the time between clock pulses

CHANGES CHANGES

as long as possible. This will
increase immunity fo
alternating current noise and
accommodate all ripple delay
between clock pulses.

A fourth type of input is
the positive clock pulse
master/slave flip flop. This
flip flop accepts inputs when
CLOCK goes high and
changes output when CLOCK
goces low (sce Fig. 6). The
pulses should be made as
short as possible for the
above mentioned reasons.

59

+5

Vee PRESET CLOCK K K K Q
||4 13 12 1" 10 9 8
—
o)
P
K Q
——cLocK
J Q
c
v
1 2 3 4 5 6 Tf
NC. CLEAR J J J Q GND

Fig. 7. Pinout of the 7472 IC, a positive clock pulse master/slave flip
flop. (Top view)

+5V

Vee PRESET CLOCK K2 Kl K ¥ Q
h4 3 12 [l 10 Igﬁ 8
o)
P
En ik
CLOCK
) J Q
C
= Y
! 2 3 4 5 6 |7
NC. CLEAR Ji J2 J¥% Q GND

Fig. 8. Pinout of the 7470 IC, a positive edge triggered flip flop. (Top
view))

Ja Q, Q, GND Kg Qg Qp
14 13 12 i 10 lo 8
[<] (=]

—CLOCK

| 2 3 |4 |5 6 7

CLOCK, CLEAR, K, Ve

+5v

CLOCK, CLEARg Jg

Fig. 9. Pinout of the 7473 IC, a dual positive clock pulse master/slave
flip flop. (Top view)

60

Variations on the Four Flip
Flops

Onc of the confusing
aspects with flip flops is that
they differ in the logic
controlling the] and K
inputs. Some have AND/OR
logic circuits accepting several

distinct inputs, and others
have an inverter before the J
or K inputs.

If we look at some

diagrams of flip flop IGCs,
their operation will be easier
to understand.

The 7472 in Fig. 7 is a
single JK flip flop of the
positive pulse master/slave
type.

The 7472 uses gates on the
}J and K inputs. In order to
get a high level on the) input
of the flip flop a high on all
three J inputs of the IC (pins
3, 4 and 5) and the clock (pin
12) is required. In a similar
manner, a high on the K
input of the flip flop is
obtained with a high on all
three K pins {(pins 9, 10 and
11) and the ciock of the IC.

If you have only one |
input, connect all three | pins
together, or connect two of
the] inputs to high, and use
the remaining input for the
data input. The same holds
true for the K inputs,

The 7470, shown in Fig. 8,
is a single JK flip flop of the
positive-edge triggered type.

The 7470 has identical
gates and inverters on the |
and K inputs. For example,
to get a high level on the }
input of the flip flop a high
on J1 and]2 (pins 3 and 4)
and a low on J* (pin 5) must
be received. A low level on
pin 5 is inverted to a high on
the input to the gate.

If you do not need |* or
K*, connect them to ground.
1f you do not need J1,]2, K1
or K2 connect them to high.

The 7473 IC is a dual JK
flip flop of the positive pulse
master/slave type. Fig. 9
shows that this IC does not
use gating on the) and K
inputs.

The two flip flops operate

separately from each other
having only the +5 volt Vcc
and ground in common with
each other. You may also
have noticed that Vcc is on
pin 4 and ground on pin 11.
This is not the same as on
most 7400 ICs which have
Vce on pin 14 and ground on

pin 7. So check your
connections before you apply
power,

There are no PRESET

inputs to the chip, in order to
allow a 14 pin package.

If you do nced the
PRESET on a dual JK flip
flop, use the 7476 available in
a 16 pin package. It is shown
in Fig. 10. It has independent
CLEAR and PRESET pins,
whereas in the 74H78 of Fig.
11 the CLOCK and PRESET
pins, respectively, are
connected. The 74H78 comes
in a 14 pin package.

In many circuits the same
clock operates many flip
flops and several flip flops are
cleared at the same time. The
74H78 is well suited for these
needs because it saves on the
number of external
connections, saves on the size
of the IC package, and the
number of pins.

D Flip Flop

Let's make one small
modification to the JK flip
flop: An inverter connects
the K input to the | input as
shown in Fig. 12.

If] is high then K will be
low, and if | is low, K will be
high. Since there is only one
synchronous input instead of
the two, let's call it the data
input or D input.

Some flip flops have this
modification built into an IC
and are referred to as D flip
flops. A typical block
diagram of a D flip flop is
shown in Fig. 13.

The truth table of the D
flip flop is shown in Fig. 14.
Remember that the PRESET
and CLEAR must be high, as
discussed in connection with
Fig. 2. The truth table for
asynchronous inputs applies
also to the D flip flop.

Ka Q, Qp GND Kg Qg Qg Jg
16 ||5 ||4 ||3 12 It 10 9
o [=] [=] [«]
L_‘ a0 (8] X a. e [+% 5 ob—
g S
D (8] X X [$] -
b L
| 2 3 4 |5 6 7 8
CLOCK, PRESET, CLEAR, Ja Vee
+5

Fig. 10. Pinout of the 7476 IC, a
having both PRESET and CLEAR.

dual flip flop similar to the 7473 but
(Top view)

Scveral 1Cs employ the D
flip flop. One of these is the
7474 dual D flip flop. Since
only one pin is needed for
data entry to each flip flop
both preset and clear
capability can be provided in
a 14 pin package. The
diagram of the 7474 is shown
in Fig. 15.

The 7475 IC uses a D flip
flop which is called a latch
because the CLEAR and
PRESET pins are absent. The

CLOCKg PRESET, CLEARg reduction in pins has been

carried one step further by
combining two CLOCK pins
cach. Therefore it is possible
to put four latches on onc 16
pin IC; the 7475 quad latch is
shown in Fig. 16.

This short introduction to
flip flops, latches and
integrated circuits should
help your understanding of
this building block. With a
thorough understanding of
these circuits, you will be
well on your way to designing
your own cquipment.

+5 +V5v CLEARy DATA, CLOCK, PRESET; Qg Qg
Voe PRESET CLEAR .= J_~ PRESET_ CLOCK _ K_ e
14 13 2 1 i0 5 B 14 13 2 1 10 9 B
— ;
c P
L g L xr = DATA Q CLOCK @
S S
LO a [) j© o ap-
~ 12 I 7 CLOCK Q| DATA @
P c
[I'z l‘i 3 3 l'r 1 2 3 4 5 6 7
Ka Qa Qa Ja Qg Qg GND CLEAR, DATA, CLOCK, PRESET, Q, aQ, GND

Fig. 11. And still another combination - the pinout of the 74H78 has
14 pins with common CLEAR and CLOCK, and separate PRESET pins.

c

? J Q
CLOCK

K Q
P

Fig. 12, Making a "D’ flip flop

8

CLEAR
D Q

LOCK Q@
PRESET

Fig. 13. The block diagram of a D

out of a “JK" with an inverter. flip flop.
(Top view)
th tot+!
D Q
H
L

Fig. 14. Truth
flop.

table of a D flip

Fig. 15. The pinout of the 7474 dual D flip flop. (Top view)

— CLOCK —

Q Qg Qg A88B GND Qc Qc Qp

16 15 14 ||3 ll2 1 10 9
1 | L L L
Q Q Q Q Q Q Q Q
8 s 5
5] 0 D o a3 D D 5

[
| 1 2 3 4 |5 6 7 |e
Q, D, Dg CLOCK _ Vee D¢ Op Qp
+5V

Fig. 16. Pinout of the 7475 latch (or register) circuits. (Top view)

61

” vﬂ" AH[INI[H[SI[" in learning about microcomputers and microcomputer

programming, Scelbi Computer Consulting, Inc., has some fine publications that can give
you a real education.

The Scelbi-8B User’s Manual

is a fine introductory publication that starts by assuming that the reader has never used a computer. It explains how
a microcomputer is fundamentally organized and it’s basic principles of operation. It then provides a comprehensive
explanation of the entire instruction set used in the Scelbi-8B microcomputer. Next, there is a highly detailed
section that explains how to operate a Scelbi-83 and provides several sample machine language programs. Another
section illustrates how easy it is to connect external devices to the computer. Finally, for those interested in the
technical aspects, there is a large chapter devoted to technical information — including schematics, assembly
drawings and parts lists for the Scelbi-8B. (Some might actually construct a microcomputer from the information
available in this manual alone!} Price? Just $14.95

Machine Language Programming For The “8 0 0 8" (and similar microcomputers)

This manual was written to provide the reader with the detailed knowledge one needs to know in order to
successfully develop machine language programs. This information packed publication discusses and provides
numerous examples of algorithms and routines that can be immediately applied to practical problems. Coverage

includes:
*Detailed Presentation of the ‘“8008"" instruction set *Debugging Tips
*Flow Charting *Qrganizing Tables
*Mapping *Maximizing Memory Utilization
*Fundamental Programming Techniques: Loops, Counters, Pointers, Masks *1/0 Programming, Real-time Programming
*Multiple-precision arithmetic *Programming for “PROMS”
*Floating-point package *Search and Sort Routines
*Editing and Assembling) .
Mathematical Operations *Creative Programming Concepts

Virtually all the techniques and routines illustrated in the manual can also be applied to othe_r'similar
microcomputers such as ‘8080 systems (by applicable machine code conversion). The price of this exciting new
manual is a low $19.95. (The floating-point arithmetic package presented in the publication is worth that price
alone!)

Assembler Programs For The “800 8"

Discusses a ““minimum length” assembler program that can reside in 2k of memory, plus a more sophisticated version
for those who have additional memory and desire a more powerful version. Included in this manual is a thorough
explanation of the fundamental concepts of an assembler’s operation, details on how to format the “source listing,”’
step-by-step analysis and presentation of subroutines, program flow charts, and assembled listings of the programs!
Price? A very reasonable $17.95.

An “8 00 8” Editor Program

Describes variations of an 'Editor’’ program that can reside in 2k of memory. Additional memory may be used to
increase the size of the text buffer. The program enables one to manipulate “‘text’” in order to create “‘source
listings” or perform other kinds of text preparation. Includes discussion of routines, flow charts, and assembled
listing. Priced at just $14.95. Prices given are for domestic delivery at book mailing rate. Add $2.50 for each
publication if PRIORITY air service desired (U.S.) Overseas — include $6.00 for each publication for airmail service.

SPEGIAL— (Expires Dec. 31, 1975)

Order all four publications at once, mention this BYTE ad, and save over 10%

539.00

(Pricing, specifications, availability subject to change without notice.)

Order direct from: 1322 REAR BOSTON POST ROAD
SCELBI COMPUTER P5F7ON

MILFORD CONNECTICUT 06460
C(ONSULTING INC.

64

Read

Only

Memory Technology

by
Don Lancaster
Synergetics

Kead Only Meinories are a useful element of the hardware
of microcomputer systems. This month, Don Lancaster pro-
vides inforimation on Read Only Memories — ua tutorial article
taken from Chapter 3 of his forthcoming book, TV Typewriter
Cookbook, to be published by Howard W. Sams, Indianapolis,

Indiuna.

Low cost and compact
memory components are the
key to simple and reasonable
TV typewriter and
microcomputer systems.
Today there are many [Cs
available that will cram

-thousands or more bits of

storage in a single package at
costs of a fraction of a cent
per bit. The problem is to
pick the memory components
that are the cheapest, the
easiest to use, and the ones
with the fewest unpleasant
surprises.

What does memory do for
us? Well, it remembers. If it
remembers extremely well it
can be used as a fixed logic

Fig. 1.

Read Only Memories

(ROMs) are non-volatile and used
typically for programming of
“firm" microcomputer software,
for fixed lookup tables, or for
code conversions.

element or to store an
often-used software routine.

An important example of
this is the character generator
memory that converts our
ASCIl code into a group of
dot patterns suitable for
video use. The same type of
memory might be used to
change the keyboard switch
closures and shift
combinations into selected
ASCIl codes. We also use
permanent memory for code
conversions such as going
from ASCIIl to SELECTRIC,
and permanent memory s
usually used to store the
program and control
commands for an external

microprocessor or
minicomputer system.

This particular type of
memory is called a read only
memory, or ROM. Once
taught, it does the same thing
forever, even if supply power
is repeatedly applied and
removed. There are several
ways this memory type can
be taught. One is to use a
factory programmed mask at
the time of manufacture.
Another is to use some field
programming technique such
as melting internal silicon or
metallic fuses. This is handy
whenever you are doing a
special, low volume code or
program, or whenever you

Y
INPUT 70 Rom |— % oOuTPUT
WORD = = WoRD
SELECT e————»| - o

— —
OUTPUT
ENABLE

aren’t sure what you are
doing is really what you want
to end up with. Such pro-
grammuahle read only
memories (PROMs) allow
customizing for special pur-
poses. Some of the more
cxpensive programmable read
only memorics can be bulk-
crased through cxposure to
ultraviolet light or X-rays;
these erasable read only
memories {EROMs) can be
re-programmed in the event
of an crror.

Most rcad only memories

can also be called code
converters or table lookup
devices, and are usually

organized as shown in Fig. 1.
Each ROM is a fixed logic
block that has scveral inputs
and scveral outputs. For cach
and cvery possible input
address combination of ones
and zeros, some unique
combination of output ones
and zcros will result. There
doesn't have to be any
rational rclationship between
these two code words. Either
you or the manufacturer
deccides what these
combinations are going to be
at the time the ROM is
programmed. A ROM is
completely universal; it's
inhcrently set up to provide
all possible combinations of
inputjoutput word
arrangements. When you
program your ROM, vyou
limit these all possible
combinations to a single
specific word exchange that
you want.

One popular smaller ROM
arrangement is called a 32 x 8
ROM. This means you can
program 32 eight bit words.
Since 32 words can be
represented with binary
combinations on five linges,
this particular ROM has five
input lines and eight output
lines. This type of ROM has
256 possible memory
locations. At cach and every
location, we have the option
of permanently or
semi-permanently placing a
one or a zero. This leaves us
with 2256 possible programs
we can teach our ROM, an

incredibly large number. The
only thing that changes with
a particular program is where
you put the ones and zeros.
All the rest of the circuit
stays the same.

ROMs work by decoding
cach and cvery possible input
state into a onc-of-n code and
then recombining certain
sclected combinations of
decodings into output words
using OR circuits. Which
combinations you usc picks
what the output word is
going to be.

There arc several ways to
program a ROM. It can be
done at the factory where
metal jJumpers arc provided or
omiticd to the tune of holes
of no holes in a mask.
Factory programming is
cheap but must be done with
a high volume product that
has one internal code that
lots of users can agrec to use.
Dot matrix character
generators, some keyboard
encoders, trig lookup tables
for calculators and so on are
typical factory programmed
ROMs. Fiecld programmable
ROMs arc programmed by
the user, or by a distributor
or someone else who is set up
to do programming. A
programmable ROM arrives
from the factory either all
ones or all zeros, depending
on the type. You then do
something to change the bits
you want to suit your code.
In one type of ROM, fusable
links are melted. These links
arc made of a metal such as
nichrome, or of a
semiconductor such as
silicon. These techniques are
most commonly used on
bipolar or TTL-like ROMs.
These ROMs are usually fast
and relatively small. Another
type of programming injects
large voltage pulses that
avalanche charge storage
areas, electret style. This type
of programming is used on
MOS read only memorics.
They are usually slower but
have more bits available per
package.

Some premium ROMs are
reprogrammable. In one type,

you tlake off an opaque lid
and bultk erase the chip with
strong ultraviolet light. A
second 1ype can have ones or
zcros sclectively and more or
fess permanently written into
it. Reprogrammable ROMs
cost more but can be used
over. More important, if you
makc a programming mistake,
you can reuse the same chip,
correcting the crror later on.

We can also classify ROMs
as gencral purposc devices
and dedicated ones. A general
purposc ROM can be made
into whatever you like and
used for just about anything,
such as for code conversion,
or to store programs for a
microcomputer or
microprocessor. Dedicated
ROMs are usually part of a
larger integrated circuit and
have very specific uscs.
Typical examples arc in a dot
matrix character gencrator,
the word converter in a
premium keyboard encoder,
and the program storage in
many calculator integrated
circuits.

Let’s sce how ROMs work
and what devices are available
by looking at two important

Fig. 2. Removing redundant
information from the 7-segment
calculator display code.

(a) Segment callouts.

(b) Numerals with segments
“c"” and ‘'‘d"’ missing are still

identifiable.

“If you do a PROM
design and end up with
a ridiculous number of
bits, you can almost
always go through a
rethinking and
reduction process that
will minimize things a
bunch.”

.

1
]
|
Loaw

o

65

“Even with bulk erasable PROMs, a mistake on bit
#1874 of a 2k PROM can be enough to ruin your whole
day.”

Fig. 3. ROM-organized logic to convert 7segment calculator code to Fig. 4. Single IC 7segment code converter uses 32 x 8 read only

BCD or ASCII code. memory.
(a) Circuit using 32 x 8 ROM.
4 LINE TO S 8256
/16 DECODERS RLUTRINLERINERINER S a ROM
7-SEGMENT * 45,4 (CMOS) 3333 33sS %:;::q, 3338 $3%3 100K o
INPUTS | i 110G 7 SEGMENT bo—]__' o2 BCD
0o \ o " INPUT co 2 o4 OUTRUT
b o 2 —(7 I
do 4
€ O(NC) 4 L_o VALID
d O(NC) 8 eo—’ 8 — NC KP
e O i en NC
f o—ol T[E1 fO——I 6 NC
5
90 15 (0) g 0——’
INVERTER
\ 0 (b) Programming.
1], (3)
L, INPUT NUMERAL OUTPUT
1 (2)
L_l'_fn 5)a) g f e b a kp8 4 2 1
N o 00000 - 00000
s (8) 00001 - 0 0 00
i . 00010 1 10 0 01
OR L1l S Ll
Rres 000 11 7 101 11
+ + 00100 — 000O00O0
/J; l 1 1 00101 - 00O0OO
64 32 18 8 4 2 00110 - 00000
ASCII OR BCD OUTPUTS o0 1 11 _ 000GO0OO
01 000 - 00000
01 0 01 - 00 0 O0O
i 01010 — 00 0O00O0
uses for ROMs — a seven bar prac.tlc.ally every ROMA 0101 1 _ 000000
to ASCII converter that can application, a little bit of
be used to tie a calculator rethinking can usually 01100 - 000O0O
into a TV typewriter or drastically cut down the size 01101 - 000O00O
microcomputer; and an and cost of the ROM we’ll 01110 - 00000 O
ASCH to SELECTRIC code need. For instance, Fig. 2 011 11 0 10000
converter that lets us drive a shows how we can simply
Selectric typewriter. ignore the botlom and : 8 g g (1) - g 8 g 8 g
bottom right segments (*‘c” -
Seven Segment Converter and d"") of the segment code 10010 N 00000
. . - 10011 3 100 1 1
Many calculator chips and still have ten distinct and
output only a seven segment identifiable characters. This 10100 _ 0000 O
code that Is not dlrgctly cuts us down to 32 words, 1010 1 _ 000O0O
compatible with getting usby with five inputs, 10110 — 000O00O
microcomputer software and one fourth the size of the 1701 11 2 10010
unless it is changed to a ROM we started with.
Binary Coded Decimal (BCD) Fig. 3 shows us how we t1 000 - 00000
or ASCIl coding. While might build our own 1T1001 5 10101
several conversion ICs exist, “pseudo-ROM’" wusing some : : g : ? 3 : ? (1) g ?
at this writing, they are CMOS gates and dccoders.
nel%her cheap nor readﬂy While you would.r’arcly yvanl 11100 _ 60000
angabIe. Can we do the job to go th1§ route, it’s useful to 1110 1 6 1701 1 0
with a read only memory? look at since it shows us how 171110 _ 00000
At first glance, it would the real ROMs work inside. 11 1 11 8 1100 0

scem that we'd need a ROM You might occasionally use a
with seven inputs or 27 =128 circuit like this to verify
words minimum. But, with programs and truth tables

66

since il is casy to change.

Our five input lincs
(ignoring the redundant ¢ and
d segments) arc decoded to a
one-high-out-of-32 code. For
cach and cvery possible input
combination, onc and only
onc of the horizontal rails
goes to a ''1”; the rest stay
low. The OR gates on the
output re-encode this into a
1-2-4-8 Binary Coded
Decimal code. We decide
what our OR gates do by
where we put the dot
conncctions between the
horizontal and vertical rails.
To get from BCD to ASCII,
we can simply tack a hard
wired 011 in front of the
BCD word.

While we could dream up a
possibly simpler “logical
minimum” circuit to do the
same job, this particular
circuit has a unique advantage
— if our OR gates are “wide”
cnough, it will convert ANY
five bit input word into ANY
four bit output word, with no
change in hardware. All that
changes is the positions of the
dots. This is the beauty of the
read only memory — only a
single integrated circuit is
necded to do an incredible
variety of specialized jobs,
depending only on how you
program it.

Fig. 4 shows how we take
a stock 32 x 8, 256 bit
Programmable Read Only
Memory, or PROM, and do
thc whole job with one
integrated circuit. Since we
have extra outputs left over,
we can use one for a ‘“‘valid
keypressed” output that can
tell the difference between a
zero code and no key pressed.
The remaining three outputs
can be used for detecting a
“9" output or for other
housckeeping that’s handy
when you demultiplex the
scanning digit outputs of the
calculator IC. To program the
ROM, the truth table of Fig.
4(b) is entered into the
integrated circuit, selectively
putting ones and zeros as
necded.

MANUFACTURER

AMERICAN MICRO DEVICES

HARRIS SEMICONDUCTOR

FAIRCHILD

INTEL

INTERSIL

MONOLITHIC MEMORIES

NATIONAL

NITRON

SIGNETICS

TEXAS INSTRUMENTS

Fig. 5. Some commercially available programmable ROMs.

Working With PROMs

Fig. 5 is a listing of some
currently available PROMs.
Where two numbers are
shown, one is usually an open
collector output, the other
tri-state. At this writing,
PROMs cost from §5
upwards, with surplus
versions (unused) starting
at $3. Bipolar PROMs are
based on a TTL technology,
usually work off a single +5
volt supply, and are rather
fast, typically 50 to 70
nanoseconds access time.
MOS PROMs often take two
power supplies (+5 and —12
usually) and are slower,
typically having a one
microsecond access time.
MOS PROMs are often
cheaper per bit and many
MOS types are bulk erasable
by exposure to strong ultra-
violet light. A few ultra-fast
ECL PROMs also exist, but
are reserved for special uses
and are expensive.

Two good choices for
home brew computing are the
32 x 8 bipolar PROM such as
the Intersil 5600 or the
Signetics 8223; and the 256 x

PART BITS ORG. TYPE ERASABLE?
27508, 09 256 32x8 BIPOLAR NO
271810, 1 1024 256x4 BIPOLAR NO
1702 2048 256x8 MOS YES
1256 256 256x1 BIPOLAR NO
8256 256 32x8 BIPOLAR NO
0512 512 64x8 BIPOLAR NO
1024 1024 256x4 BIPOLAR NO
2048 2048 512x4 BIPOLAR NO
341 256 32x8 BIPOLAR NO
93416,26 1024 256x4 BIPOLAR NO
93436.46 2048 512x4 BIPOLAR NO
3601 1024 256x4 BIPOLAR NO
3602,22 2048 512x4 BIPOLAR NO
1702 2048 256x8 MOS YES
3604,24 4096 §12x8 8IPOLAR NO
2704 4096 512x8 MOS YES
2708 8192 1024x8 MOS YES
5600,10 256 32x8 BIPOLAR NO
5603,23 1024 256x4 BIPOLAR NO
5604,24 2048 256x8 BIPOLAR NO
6330,31 256 32x8 BIPOLAR NO
6300.00 1024 256x4 BIPOLAR NO
6305,06 2048 512x4 BIPOLAR NO
634041 4096 512x8 BIPOLAR . NO
B8573,74 1024 256x4 BIPOLAR NO
5202,03 2048 256x8 MOS YES
5204 4096 512x8 MOS YES
7002 1024 512x2 MOS YES
7002 1024 1024x1 MOS YES
8223 256 32x8 BIPOLAR NO
82125,29 1024 256x4 BIPOLAR NO
82130,31 2048 256x8 BIPOLAR NO
82115 4096 512x8 BIPOLAR NO
74188 256 32x8 BIPOLAR NO
74186 512 64x8 BIPOLAR NO
74287 1024 256x4 BIPOLAR NO
8 erasable MOS PROM,

including the Intel 1702 and
its second sources.

While you can program
your own PROM with
nothing but a power supply
and a meter, the ‘‘zero
defects” nature of this work
and its “up the wall” aspects
turn the job into quite a
hassle. Even with bulk
erasable PROMs, a mistake on
bit #1874 of a 2k PROM can
be enough to ruin your whole
day. Instead of this, you can
buy programming services at
very low cost from many
electronic distributors, as well
as from surplus and computer
hobby supply houses.
Programming machines that
simplify the job a bunch are
available for several hundred
dollars. [Once you have a
microcomputer system up
and running, it is quite
possible to construct an ROM
programming peripheral for
the purposc of permanently
burning in your software.
Local computer clubs might
consider building the ROM
burner peripheral and related
softwarec as an attraction of
membership . . .cth]

A quarter's worth of
gating can cut the size
of a ROM in half.

When vyou design your
own PROM circuit, be
absolutely sure your truth
table is correct before you
order any programming. The
program service will only
guarantee that what you sent
in is what you get back, and
nothing more. They have no
way of second guessing what
you really wanted.

If you do a PROM design
and end up with a ridiculous
number of bits, you can
almost always go through a
rethinking and reduction
process that will minimize
things a bunch. Leaving off
the two redundant segments
of a seven bar code is one
obvious example. Other
possibilities are to put simple
logic outside the PROM, for

67

Fig. 6. ASCII to SELECTRIC interface using PROM.

ASCII
INPUTS
al O— ROTATE |
az 0————|__|__ 64x8 | ROTATE 2
e30—__——] PROM —_—l l—o ROTATE 2A | ga|
4
Q | O ROTATES OUTPUTS
a5 o—— anD TILT I
a6 O . TILT 2
07 O— SHIFT
KP)
AND
LoweR CASE LOGIC KP TO SPACE
SOLENOID
NOR AND
gpﬁT'ONA'— KP TO RETURN
CrNG SOLENOID
CTRL
LOGIC AND
NOR
KP TO PRINT
SOLENOID
L BALL SOLENOIDS

often a gate or two can
significantly reduce the
PROM size. Bypassing control
commands around a PROM is
onec way to do this.
Sometimes symmetry and
mirror techniques can be
used, particularly when
working with trig waveforms,
music waveshapes, and other
data tables that have some
sort of symmetry. In PROM
microcomputer programs,
sneaky programming tricks
can often drastically cut the
number of steps needed;
extensive use of subroutines
is one route to this end.

In code converter and
table lookup applications you
usually address your PROM
in a random fashion and you
have no way of knowing what
is going to be needed next.
There are other ways to
address ROMs that open up
other types of applications.
For instance, if you
sequentially clock the PROM,
changing the address one bit
al a time at a constant rate,
you can generate an output
sinewave or a musical timbre
waveform. The clocking rate
will select the output
frequency, and you can get a
symmetrical output by using

68

ENABLE

an up down counter driving
the address inputs. Another
possibility is to let the
PROM's output set the next
input address to the PROM,
or at least influence it. Some
outside latch or storage is
nceded to prevent an
unchecked wild race, but this
is easily added.

This particular technique
is called microprogramming,
and is, of course, the key to
calculator and micro-
computer operation. Even
without a CPU, a PROM plus
additional logic can be used
as a programmable controller.
Loops and branches are easily
added by external gating and
using extra PROM inputs.
Several additional details on
PROM and ROM design
appeared in the February,
1974, Radio Electronics.

A ROM or PROM can be
used to change ASCII coded

signals into SELECTRIC
outputs suitable for the hard
copy techniques output if
you have a converted
Selectric typewriter. While a
few 1Cs are commercially
available to do this job {such
as the Fairchild 3512 and the
National 4230), at this
writing, it’s much cheaper
and simpler to program your
own PROM. You can also add
custom features of your own,
such as converting the ASCII
command into a capital

“E" and so on.
Fig. 6 shows us a circuit

that only needs 512 bits
worth of ROM and a few
gates to do the onc-way

conversion for us. The PROM
basically works with the
ASCIl 6 bit code of upper
case alphabets, numbers and
punctuation. It converts thesc
ASCIl commands into the
seven Selectric shift, rotate

Fig. 7. Listing of ASCII inputs (octal) and Selectric outputs for the PROM:s in Fig. 6.

ASCII
INPUT CHARACTER
100 @
101 A
102 B
103 C
104 D
105 E
106 F
107 G
110 H
1M f
112 3
113 K
114 L
1158 M
1186 N
17 0
120 P
121 Q
122 R
123 S
124 T
125 v)
126 A
127 w
130 X
131 Y
132 z
133 |
134 \
135 }
136 A
137 .
ASCII
6 5 4 3 21
0 1 0 10

SELECTRIC ASCII SELECTRIC
OUTPUT INPUT CHARACTER OUTPUT
166 040 SPACE 200
134 041 | 177
140 042 » 125
154 043 # 176
155 044 $ 171
145 045 % 135
116 046 & 175
117 047 ' 025
141 050 (160
124 051) 161
107 052 . 174
144 053 + 108
151 054 014
137 055 - 000
146 056 . 026
131 057 ! o1
105 060 4} 061
104 061 1 077
135 062 2 066
121 063 3 076
147 064 4 o7
156 065 5 065
136 066 6 064
120 067 7 075
157 070 8 074
101 o7] 060
167 072 : 115
M 073 : 015
164 074 < 027
m 075 = 006
145 076 > 127
100 077 ? m
SELECTRIC READING
sPSH T2T1RS R2A R2R1 BITS OCTAL
u &rL 1.0 1 110 BINARY
u 1 5 6 OCTAL

and tilt ball commands. The
program appcars in Fig. 7.
We've shown it in octal
coding to make it more
compaclt.

Most of the characters are
dircctly converted from
ASCIl to their SELECTRIC
cquivalents. ASCII < and >
become the Selectric 1/2 and
1/4 respectively, the ASCII

. becomes the Selectric ¢,
and opening and closing
brackets are disallowed and
produce question marks.
Ascit becomes a
capital “E" 1o indicate
exponentiation, particularly
when using the BASIC
language on a microcomputer
output display.

The cighth output of our
PROM is used to detect an
ASCII space and break it out
of the code, for a Sclectric
space is a machine command,
and an ASCIl space is a
printing character. If a space
is detected, the keypressed
output is diverted to the
spacc solenoid and the ball
moving solenoids are
disabled.

Il a lower case alphabet is
provided, the input logic on
bits a6 and a7 detects lower
casc and converts it to its
equivalent upper case ASCII
six bit input code and at the
same time forces the shift
output line to the lower case
low state. This is a good
example of how a quarter’s
worth of gating can cut the

size of a ROM in half.
Another Selectric machine

command we need is areturn
command to move the ball
back to the beginning of a
line. This command can be
detected with the lower left
NOR gate (Fig. 6) and used
to divert the keypressed
output to the carriage return
solenoid, at the same time
disabling the ball-moving
solenoids. If there should be
any other control commands
which are to be ignored by
the typewriter, carriage
return detection logic
(OPTIONAL CR GATING in
Fig. 6) can be added to
distinguish carriage returns

Fig. 8. Full function ASCII to SELECTRIC code converter uses larger

PROM.
— 0 ROTATE |)
ASCII ————O ROTATE 2
INPUT ————O ROTATE 2A | BALL
ol ———O ROTATES)OUTPUTS
a2 o———|_.l—. —O TILTI
a3 o0—_ —3] TILT2
0a 256x8 SHIFT
O————%1 PROM :
o5 o— —3] o
06 00— — L0 SPACE
a7 I L5 ReTURN
INDEX
100 L——0 TAB MACHINE
.001 j: L & BACKSPACE| OUTPUTS
INVERT ————0 BELL
R AND Il & seare
KP O— 4
| o KP TO PRINT
AND SOLENOID
L o KP TO MACHINE
SOLENOIDS
BALL SOLENOIDS
ENABLE

GOES TO"1"ON PRINTABLE CHARACTER; -~

“0" ON MACHINE COMMAND

from the added control
commands.

You can build this ASCII
to Selectric interface using a
single 64 x 8 PROM or a pair
of 32 x 8 PROMs with
parallel outputs selected by
the chip enable inputs. Using
two ICs is sometimes less
expensive than one larger
PROM because the smaller
PROMs are more widely

available as surplus. Fig. 5

lists several typical PROM
parts.
All Selectric functions

including bell, tab, backspace
and index are accommodated
in the circuit of Fig. 8. It
takes a PROM of four times
the size, provides more
functions, and is a simpler
circuit than the one shown in
Fig. 6. The eighth PROM
output is used to decide
whether the ASCII code is a

printed character or a
machine command (which
might be ignored). This

eighth output line feeds back
to the PROM'’s eighth input
line via the resistor-capacitor
time delay circuit. When bits
1 to 7 of the PROM input
reprcsent a printable
character, the eighth bit
output line switches to a high

level which enables printing.

The ball output codes are
the same as in the simpler
circuit, but their solenoids
must be disabled when the
machine command codes are
received. When a character is
to be printed, the keypressed
pulse (KP in Fig. 8) isrouted
by the upper AND gate
(enabled by the logical one
output of the PROM’s eighth
bit) to the print solenoids;
the ball solenoid enable is
also taken from the eighth

will enable the corresponding
machine control solenoid’s
driver — resulting in one of
the machine control actions
such as a tab. As an example,
suppose a horizontal tab
function (HT in ASCII) is
presented to the PROM: The
PROM decodes a machine
command, inhibits ball
solenoids and the print
solenoid, presents a decoded
logical one level to the tab
solenoid driver, enabling it,
and routes the keypressed

PROM bit. The result is signal (KP) to the other tab
movement of the ball solenoid driver input -—
combined with a print stroke. resulting in a tab action.

If, however, a machine Since the PROM is to be set
command is presented to the up for only six (or seven)
PROM at the ASCII inputs, legitimate machine
the eighth bit of the PROM commands, any unwanted

output goes low and disables
both the ball solenoids and
the gate which would route
KP to the print solenoid. This
bit is inverted by the inverter
to present a logical one level
to the lower AND gate in the
figure. This enables the
keypressed pulse (KP) to go
to the machine solenoids.
Any legitimate command
code will result in selection of
one of the machine outputs
in Fig. 8. The
selected machine output line

ASCIIl machine control codes
will be ignored.

In this article, we've seen
some background
information on ROM
technology and several of the
many uses to which ROMs
can be put in microcomputer
and logic systems. These are
by no means the only uses of
ROMs. The uses of ROM
technology are for the most
part limited only by your
own imagination. =

69

Build A 6800 System
With This Kit

If you are one of the many

people getting ready to
purchase one of the
reasonably priced
microprocessor system Kkits

on the market today, you
might ask yourself whether or
not you will be able to start
entering programs once you
get it all put together. Of
course you can always load
programs and data through
the front panel programmer’s
console, but most individuals
aware of the front panel’s
slow speed and difficult
readability prefer to use a

Teletype or low cost video
terminal such as the TV
Typewriter |l (February 1975,
Radio Elecironics) for data
and program input/output.
This is all well and good
except that in order to attach
a terminal, you’ll have to
purchase an interface for
your computer if it is not
supplied with the basic
system. In fact you will
generally need a separate
interface for each 1/O
(input/output) device
connected to your computer.
This can run your system

by

Gary Kay

Southwest Technical Products Corp.
219 W. Rhapsody

San Antonio TX 78216

investment up considerably
since such interfaces typically
cost between $75 and $150
each, and there are more
surprises yet to come,

So now you've got your
computer, with interface,
attached to your terminal;
you're ready to sit down,
power up and start typing in
your program, right? Well,
not quite. You see, in order
to be able to use the terminal
for either entering programs
or getting data in and out of
the computer you must have
a program resident or loaded

Fig. 1. Block diagram of the SWTPC 6800 system. The address allocations of the elements of the system are

noted inside the blocks.

6800

CPU,

CLOCK & BUFFERS

MIKBUG MIKBUG 2K BYTE
ROM RAM RAM
EQQOO0-E1FF A000-AO07F 0000-1FFF

CONTROL
INTERFACE
8004-8007

72

USER
TERMINAL
(TTY OR RS-232)

into memory telling the
processor how and what to
do. Without this software
(program), you can pound on
the keyboard all you want
and the computer won't do
anything. Computers are no
smarter than their
programming lets them be
and without programming
they’re not very smart at all.
How do you get this software
into memory? Well, vyou
could load it in from paper or
cassette tape, that is if you
have a paper tape reader or
cassette tape interface
(another sizable investment)
or you could enter it directly
from the programmer’s
¢onsole. The problem here is
two fold. Software to give the
terminal reasonable system
control will probably be
around 500 words in length.
This is far too long to enter
from the programmer’s
console especially when you
consider it has to be
re-entered every time the
system is powered up or after
a wayward program
overwrites any of its allocated
area of memory. The second
problem is that few if any of
the manufacturers supply a
listing, paper tape or cassette
tape of such a program to
begin with. Their terminal

control routines are
contained within
editor/assembler and higher

f /J\ FFFF
~ ’T
MINIBUG /
TEST PATTERN
(NOT USED) _J
_______ EIFF
MIKBUG
ROM
EQ00
o~)
AOTF
MIKBUG
RAM
ADOO
—~L o~
170 PORT 80IF
NO.7 80IC
170 PORT 80IB
NO.6 8018
170 PORT 80I7
NO.5 8014
170 PORT 8013
NO.4 8010
170 PORT 800F
NO.3 800C
170 PORT 8008
NO.2 8008
170 PORT 8007
NO.| CONTRL
INTERFACE 8004
170 PORT 8003
NO. O 8000
4K MEMORY 7FFF
NO.7 7000
4K MEMORY 6FFF
NO.6 6000
4K MEMORY SFFF
NO.5 5000
4K MEMORY 4FFF
NO. 4 4000
4K MEMORY 3FFF
NO.3 3000
4 K MEMORY 2FFF
NO.2 2000
4K MEMORY \FFF
NO. | 1000
4K MEMORY OFFF
NO. 0 0000
Fig. 2. SWTPC 6800

Microprocessor System memory
map. The 64K address space of a
6800 CPU is divided up into the
seqments shown here. The first
32K locations are available for
user read-write memory. The
second 32K is devoted to 1/O port
assignments and the requirements
of the MIKBUG program supplied
by Motorola.

74

carriage return, line feed and
then prints a * on the
terminal at which time you
may enter various single
character control commands
such as M for memory
examine/change, L for load
from tape, P for punch or list,
R for examine registers or G
for go to and execute a
loaded program. A program
debug routine can also be
implemented by using the
software interrupt (SWI)
instruction as a “breakpoint”
which forces a jump from
your program to the
operating system to allow
you to examine the contents
of memory and/or the CPU
registers. All data entered or

displayed through the
terminal is in convenient
hexadecimal (base 16)

notation. This means you can
type in a2 command to load
address location A00O1g with
9E1g instead of setting 24
console switches to an
address of 1010 0000 0000
0000 with data of 1001 1110
as must be done with the
conventional programmer’s
console. Since the operating
system is stored in ROM, it
consumes no user RAM
memory, in fact, it actually
gives the user a little extra.
There is a 128-word scratch
pad memory utilized by the
operating system for storing
various addresses and data,
but there are more than 54
locations within this 6810
RAM memory which are
totally unassigned plus a
46-word deep push-down
stack. All of this memory is
in addition to the 2,048
words (expandable to 4,096
words) contained on the
standard memory board.

Since the terminal
mini-operating system
provide the wuser with
complete system control,
there is no need for the
conventional programmer’s
console. Take note also that
once system control is turned
over to vyour program, the
control terminal is totally
available for your program

and

input/output. In fact, since
the character input/output
subroutines are already stored
within the operating system
ROM, they can be used by
your programs simply by
loading or storing the
characters to be handled in
the proper register and
executing a jump to
subroutine (JSR).

The Motorola MC6800
microprocessor chip is the
element around which this
entire system is built. It is an
8-bit parallel processor with
eight bidirectional data lines
and 16 address lines giving it
an addressing capability of up
to 65,536 words. There is no
distinction between memory
and /O addressing on this
system, therefore, all
input/output data transfers
are handled just as are the
memory transfers. This means
the 1/O interfaces must have
their own allocated memory
addresses where neither ROM
or RAM memory may be
located. This may at first
seem to be a disadvantage
until you realize that all
memory handling instructions
are usable for the interface
data handling as well, thus
eliminating the need for
special data 1/O instructions.
The memory assignments for
this system have to be made
as shown in Fig. 2. User RAM
may be located anywhere in
the lower 32K (000016 to
80001¢) addresses with the
upper 32K addresses reserved
for the operating system
ROM, RAM and interface
boards.

There are six
internal to the MC6800
microprocessor element
which consist of the program
counter, stack pointer, index
register, accumulator A,
accumulator B and condition
code register. The stack
pointer is a 16-bit register
used to store the address of
the push-down stack which is
located in RAM memory
external to the MC6800
microprocessor element. The
push-down stack itself is used

registers

to store the program counter
and/or processor data during
branch to subroutine (BSR),
jump to subroutine (JSR),
push (PHS) or interrupt
routines. The index register is
a 16-bit register generally
used as an address pointer for
many processor instructions.

There are 72 basic
instructions for the 6800
microprocessor system (Fig.
3) with most of the 72
utilizing several of the scven

possible addressing modes:
Accumulator, implied,
relative, direct, immediate,
extended and indexed.

® Accumulator — In
accumulator addressing,
either accumulator A or
accumulator B must be
specified.

® /mplied — In implied
addressing the instruction
code itself specifies the
operand (stack pointer,
index register, etc.).

® Relative — Relative
addressing is used for the
branch instructions and
indicates the value
contained in the word of
memory immediately
following the instruction
code added to the program
counter +2 with the result
then loaded back into the
program counter. Positive
data (bit 7 = 0) generates
forward jumps up to 129
words from the branch
instruction while negative
data (bit 7 = 1) generates
backward jumps up to 125

words from the branch
instruction.

® Djirect — In direct
addressing, the value
contained in the word of
memory immediately

following instruction code is
an actual memory address
within the first 256 words
of memory (00001 to
00FF) which contains the
operand of the instruction.
This mode typically saves
one CPU cycle of execution
when compared to extended
addressing.

® /mmediate — In
immediate addressing, the

value contained in the word,
or in some cases two words
of memory, immediately
following the instruction
code is the operand of the
instruction.

® Fxtended — In
extended addressing, the
two words of memory
immediately following the
instruction code contain the
address of the memory
location which contains the
operand of the instruction.

® /ndexed — In indexed
addressing, the value
contained in the word of

memory, immediately
following the instruction
code, is temporarily added
to the contents of the index
register generating a new
address where the operand
of the instruction is located.
The jump is positive only,
going from 0 to 255 words
and the actual contents of
the index register are not
changed.

Also provided on the main
proccssor board is an
MC14411 baud rate generator
which uses an external
1.8432 MHz crystal and
internal oscillator and divide
chain to generate serial
interface clocks for baud
rates of 110, 150, 300, 600
and 1200 baud. Also derived
from this circuit is the 921.6
kHz clock wused by the
MC6800 microprocessor
clement. It is first, however,
fed into a gating circuit
gencrating two non-
overlapping, 50% duty cycle,
complementary clock signals

¢1 and 2.

Mother Board (MP-B)

The Mother Board (coded
MP-B) is a 9 x 14" double
sided, plated-through hole
circuit board onto which all
of the various processor
boards are plugged. Provisions
have been made for one
Microprocessor/System
Board, up to four 4,096 word
random access memory
boards plus two unused slots.
This allows the system to be
expanded to 16,384 words of

memory. For those
demanding even more
memory, the 50-line system
information bus may be
paralleled onto another
mother board with separate
power supply expanding the
system to a maximum of

32,768 words of random
access memory.
The Mother Board also

provides the line buffering
and address decoding for up
to eight interface boards.
Although one of the eight
must be the serial terminal,
control interface, the other
seven may be any
combination of parallel or
serial interfaces the user may
choose to have. For those
demanding even more
interfacing capability, the
50-line system information
bus may be paralleled onto
another mother board with
separate power supply
expanding the interfacing
capability to one terminal,
control interface plus any
combination of up to 15
serial or parallel interfaces.

The following is a brief
description of each of the 50
lines on the system
information bus:

The A0 — A15 lines
carry address bits O through
15 respectively, forming a
16-bit address which is used
to define either a memory
location or interface
address.

The BUS AVAILABLE
line goes high ac
knowledging a processor
halt, meaning the processor
has stopped and that the

system information bus is
available for external
control.

The DO — D7 lines carry
inverted data bits O through
7 respectively, forming 8-bit
data words which are
exchanged between the
various boards within the
system.

The GND line
system’s common
supply ground point.

is the
power

Fig. 3. The 6800 microprocessor’s instruction set. This is a list of the
mnemonics available. A more complete explanation of the basic
operations of the processor is found in Motorola's programming manual
for the 6800 which is part of the SWTPC documentation package.

BNE
BPL
BRA
BSR
BVC
BVS
CBA
CLC
CLI
CLR
CLV
CMP
COM
CPX
DAA
DEC
DES
DEX
EOR
INC
INS
INX
JMP
JSR
LDA
LDS
LOX
LSR
NEG
NOP
ORA
PSH
PUL
ROL
ROR
RTI
RTS
SBA
SBC
SEC
SEI
SEV
STA
STS
STX
suB
SWI
TAB
TAP

TBA
TPA

TST
TSX

XS

WAI

ADD ACCUMULATORS

ADD WITH CARRY

ADD

LoGIicaL AND

ARITHMETIC SHIFT LEFT
ARITHMETIC SHIFT RIGHT
BRANCH 1F CARRY CLEAR
BRANCH IF CARRY SET
BRANCH IF EQuAL TO ZEROD
BRANCH IF GREATER OR EQUAL ZERO
BRANCH IF GREATER THAN ZERO
BRANCH IF HIGHER

BiT TEST

BRANCH IF LESS OR EQuUAL
BRANCH IF LOWER OR SAME
BRANCH IF LESS THAN ZERO
BRANCH IF MINUS

BRANCH IF NOT EQuAL TO ZEROD
BRANCH IF PLUS

BRANCH ALWAYS

BRANCH TO SUBROUTINE
BRANCH IF OVERFLOW CLEAR
BRANCH IF OVERFLOW SET
COMPARE ACCUMULATORS
CLEAR CARRY

CLEAR INTERRUPT Mask
CLEAR

CLEAR OVERFLOW

COMPARE

COMPLEMENT

COMPARE INDEX REGISTER
DECIMAL ADJUST

DECREMENT

DECREMENT STACK POINTER
DECREMENT INDEX REGISTER
ExcLusive OR

INCREMENT

INCREMENT STACK POINTER
INCREMENT INDEX REGISTER
Jump

JUMP TO SUBROUTINE

LOAD ACCUMULATOR

LOAD STACK POINTER

LoAD INDEX REGISTER
LOGICAL SHIFT RIGHT
NEGATE

No OPERATION

INCLUSIVE OR ACCUMULATOR
PusH DaTA

PuLL DATA

ROTATE LEFT

ROTATE RIGHT

RETURN FROM INTERRUPT
RETURN FROM SUBROUTINE
SUBTRACT ACCUMULATORS
SUBTRACT WITH CARRY

SET CARRY

SET INTERRUPT MASK

SET OVERFLOW

STORE ACCUMULATOR

STORE STACK REGISTER
STORE INDEX REGISTER
SUBTRACT

SOFTWARE INTERRUPT
TRANSFER ACCUMULATORS
TRANSFER ACCUMULATORS TO
CONDITION CODE REG.
TRANSFER ACCUMULATORS
TRANSFER CONDITION CODE REG.
TO ACCUMULATOR

TEST

TRANSFER STACK POINTER TO
INDEX REGISTER

TRANSFER INDEX REGISTER TO
STACK POINTER

WAIT FOR INTERRUPT

75

First Person Report:

by

John Zarrella

90-9 Wakelee Rd.
Waterbury CT 06705

I decided | would have
to opt for a kit . . . this
would enable me to get
on line quickly.

78

Assembling an
Altair 8800

My adventure with
microprocessors began rather
late in the hobby game, at the
end of 1974. It was about
this time, or so it seemed to
me, that micros became the
topic of conversation in
anything related to
computers and automation.
With the IMP-16, the 8080,
8008, 4004, etc., it became
clear that this was what the
computer market was waiting
for. However, it was the
article on the MITS Altair in
the January 1975 issue of
Popular Electronics which
finally did it. Although
inaccurate and vague, it

certainly decided me — | was
definitely going to own a
micro. The next few months
saw hurried mailings of
information requests to any
company which produced a
product even remotely
connected with a
microprocessor. |
immediately got out my
checkbook, and mailed all my
hard earned dollars to every

newsletter that was
published, in my frantic
search for the ‘‘right”
processor.

The results were both

rewarding and disappointing.
| found that there were some

Fig. 1. The schematic diagram of power supply circuitry, showing

additional protection diodes.

+8V
(UNREG) 7~ pATBOS
cll
;E 35uF ICTES
6V
R46
330
+l6V 2w
(UNREG)
1.5KEI5
R45
2200
-6V 2W
(UNREG)

+5V

(REG)
j:CIZ ;J:SCI ISCZO
AuF
16V

+12V
(REG)

DI Cl0 c7
12v 35uF AuF
16V 16V

-5V
(REG)

Cc9o cs
35uF ApF
16V 16V

fantastic processors, but since
my hardware background is
not all that hot, | decided
that | would have to opt for a
kit with one of the most
powerful micros | could find.
| figured that this would
enable me to get on line
quickly, learn enough
hardware to keep up with the
state-of-the-art, and permit
me to evaluate new micros as
they came out, so | could
build my ‘“dream machine”
when the right parts became
available.

I decided to build the
Altair 8800. Although the
instruction set looked rather
impressive, what convinced
me was seeing a process
control system which used
the 8080; | was truly
impressed with its capability.

The Order

After calling in my order
to MITS, | waited nearly
seven weeks for delivery.
MITS did make it within the
advertised 60-day delivery
time. All was not roses for
those seven weeks, however;
it seems that either MITS or
BankAmericard got their
signals crossed and couldn't
get a credit authorization
(they both eventually

declined to accept
responsibility). You can
imagine what it was like

getting a call during dinner,
explaining that my unit was

Can YOUR

Com

uter

Tell Time?

Loops are the basic
time delay elements.
Then there are loops

within loops, loops
within loops within
loops and so on ad
infinitum,

Can your computer tell
time? O.K. Now take away
the LSI clock chip, pocket
watch, grandfather clock, or
whatever else you managed to
interface together. Can your
computer still tell time? You
bet it can!

It is a readily accepted fact
that almost any type of
hardware logic device can be
imitated or simulated by
computer software. That can
also include timing devices if
you wish.

We will examine a few
methods and considerations
for software timing, then
apply what we’ve learned in
making a novel ‘‘software
only” clock which will keep
time as well as any
conventional clock.

The most efficient method
{efficient referring to
memory space used) to

82

produce a time dclay is the
use of a loop. This loop is
basically very simple, as
shown by Fig. 1. By including
NOPs or other non-functional
time wasters in the loop, the
loop can be significantly
stretched.

An 8008 is being used in
the examples in this article,
but the principles hold for
any computer. Only the
numerical values will change.

The loop represented by
Fig. 1 for an 8008 would be a
simple three instructions (six
bytes) long.

LBI

wgh] LOAD DELAY
bCB DECREMENT "X"
JFZ

L JUMP BACK

H UNLESS X = 0

The value of “x" loaded
into the B register will be the
main factor in varying the
time delay provided by this
loop. Calculating the exact

time period is done by
tabulation of instruction
execution times. These

examples will be based on the
8008 instruction execution
times with the clock running
at exactly 500 kHz.

by

James Hogenson
Box 295

Halstad MN 56548

OPTIONAL
"NOP“
TIME

f— — — —p

Fig. 1. The idea of a timing loop,
or how to make a CPU waste time

productively.

To calculate the time for
this loop, assume the value of
“x’" to be 1 so no part of the
loop is repeated. Add up the
number of microseconds
required by each instruction.

LBI = 32 Us
DCB = 20 US
JFZ = 36 _US

88 US

Now go back to determine
how many microseconds each
repetition of the loop will
produce. The LBI instruction
is not repeated. Do not count
any unrepeated instructions
in this second tabulation.

DCB = 20 US
JFZ = _44 US
64 US

Note the different

execution times for the JFZ
instruction. For the 8008, the
execution time of conditional

instructions depends upon
the condition. If the
condition results in a true

branch, the instruction takes
the longer of the two
execution times. The false
branch is the shorter time.
The time formula for this
loop is
64X + 24 = N

FROM MAIN
PROGRAM

l

SET VALUE
OF
REGISTER

DECREMENT

REGISTER

RETURN
TO MAIN
PROGRAM

“x” being the value loaded
into B and “n” being the
total execution time in
microseconds. The unreduced
formulais

(X - 1164 + 88 = N
Since 64 us are added for
each repetition, we must
multiply 64 by one less than
the value of “x.”

255 is the largest possible
value of “x” since we are
limited to an 8-bit word.
Therefore, the maximum
time delay that can be
provided by this foop s
16344 us. This loop can be
stretched by placing a NOP
instruction {op code 300)
before the DCB, and
re-routing the jump.

LBI SET VALUE OF '"x"
LIV)
X
NOP ABSORB EXTRA 20 US
DCB DECREMENT "x"
JFZ JUMP BACK TO NOP
L UNLESS X = 0
H

If desired, more than one
NOP may be inserted. Each
NOP will add another 20x
microsedonds. The maximum
time with one NOP is 21444
us, the NOP adding 5100 us.

If a timing loop is to be
used a number of times at

various points in a program, it
may be desirable to rewrite
the loop as a called
subroutine. The basic
flowchart remains unchanged;
only the method of
implementing it changes.

(MAIN
PROGRAM)
CAL CALL
L TIME
H LOOP
(TIME
LOOP)
LBI SET VALUE OF "x"
et
DCe DECREMENT "Xx"
RTZ RETURN IF "x" =
JMP
L JUMP BACK TO DCB
H

Tabulation will show that
the basic loop is good for 116
us with each repetition
adding 76 us. The reduced
formula is

76X + 40 = N

This loop is a little more
complex. Although the CAL
instruction which calls the
loop is not a part of the loop
itself, the execution time of
the CAL instruction is a part
of the time period produced.
We, therefore, must add 44 us
for the CAL.

As done before, we assume
the value of “x” to be 1 for
the first tabulation. The RTZ
will be a true branch, so we
stop adding there. An RTZ
true branch will take 20 us,
while an RTZ false branch
will take 12 us.

Each repetition will add
12 us for the RTZ, 44 us for
the JMP, and 20 us for the
DCB instruction. The
unreduced formula is

(X - 1)76 + 116 = N

NOPs placed before the
DCB instruction will have the
same effect as in the first
loop, an additional 20x us per
NOP.

The maximum time period
produced by this second loop
with one NOP is 24520 us.
The minimum time period
without any NOPs is 116 us.
Anything under 116 us can

be more efficiently
implemented with straight
NOPs than with a loop,

should such a need arise.

If a time period much
longer than 24000 us is
needed, modify the time loop
to make a double loop as
shown in Fig. 2. Make an
identical loop, but rather

BEGIN
LooP

than using a NOI.3 for more SET VALUE
time, insert an entire loop. OF Y
CAL (TIME LOQP)
[
H
SET VALUE
OF X
(TIME LOOP)
LCI SET VALUE OF "v"
g
A NOP
LBI SET VALUE OF "x" DECR)!:;MENT
g
8 NOP
DCB DECREMENT "X"
JFZ
L JUMP BACK TO DCB
H IF "x" = 0 NO S?%S
DCC DECREMENT "Y P
RTZ RETURN IF "vy" 0
JMP YES
L JUMP TO LBI
H
DECRsMENT
Time calculations for
multiple loops become
somewhat more complex, but
again the same principle is NO
used.
The inside loop used here
is the YES

same loop first
calculated at the beginning of
this article. When calculating
the main loop, the inside loop
is treated as one combined
unit of value. The tabulation
will look like this:

MAIN LOOP:

CAL = 44 US
LCcI = 32 Uus
INSIDE
LOOP = (64X + 24) US
DCC = 20 US
RTZ = 20 US
(64X + 140) US
EACH REPETITION DR
TRUE BRANCH WILL ADD:
RTZ = 12 US
JMP = 44 US
INSIDE
LOOP = (64X + 24) US
DCC = 20 _uUs
(64X + 100) US

The formula, unreduced,
would be

64X + 140 +

(Y-1)(64X + 100) = N
Reducing the formula
gives us

64XY + 100X + 40 = N

RETURN

Fig. 2. Getting fancy. By nesting one timing loop
within an outer loop, much longer delays can be

obtained. Two parameters ‘‘x

i, 11

and ‘‘y’' are re-

quired to completely specify this loop. In a 16-bit
machine, of course, the same result (here intended
for an 8-bit 8008) can be obtained without nested
loops since the 16-bitter can count much higher.

The maximum time delay
provided by this loop would
be 4187140 us. A NOP
inserted at location “a” will
add 20y us. A NOP at “b"”
will add 20xy us. The use of
both NOPs will boost our
maximum time to 5492740
us, or over 5 seconds.

The purpose of developing
formulas is to determine the
values of the registers needed
to obtain a specified time
period. For purposes of
illustrating an example, let us
assume we want exactly 5000
us to pass between point A
and point B of a program. We

would place a CAL
instruction between point A
and point B which would call
the time loop. The shorter
loop will be sufficient for this
application, so the equation
will now be

76X + 40 = 5000

Working the equation will
give a value of 65.23615 . ..
for “x.” A fractional value
will not fit in any single
register of the CPU. To find
out what to do now, multiply
65 by 76, add 40, and
subtract the result from
5000. We find the difference

83

is 20 us. This is very simple to
take care of. Insert a NOP
instruction at any point in
the routine where it will not
be repeated. Before the LBI
instruction would do fine.
Now, with 65 (decimal
notation) loaded into the B
register, exactly 5000 us will
pass between points A and B
of our main program.

values and try again, but in
this case, the value of “x”
cannot be changed. The
alternative is to use the
shorter loop to clean up the
leftovers. After calling one
loop, call the other loop.
Then go on with the main
program. Solving the short
loop equation comes out ata
nice even 174,

Finding an exact time 76X + 40 = 13264
period using the longer loop What looked like a real
involves a certain amount of oddball turned out to be
trial and error. To find an perfect!
approximate value of ‘'x” The formulas and all such
(using no NOPs) use this may seem like a lot of
formula: monkey business just to

% = %) _1.s waste time. Speed /s the

Assign an arbitrary value
to 'y,” replace “n” with the
required time period.

Now, assume a time period
of cxactly 505904 wus is
needed. (This time period will
be used later.) There is one
stipulation in this case which
will be explained in greater
detail later. The value of “x"
must be 255. Solving the

formula equation for *y”’

(64)(255)Y +
100Y + 40 = 505904

gives ''y"" a value of 30.8078.
30 must be used for “y.” The
total time of the loop is then
492640 us, 13264 us short of
the required time. In most
cases, you would re-assign

purpose of computers, but
there are times when they
must be slowed down.

The primary application of
time loops is in 1/O interface.
If a computer is to monitor a
data input which is to be read
once every 10 ms, there are
two alternatives for timing.
The hardware of the device
being monitored may include
a timing device and a flag to
indicate when the device is
ready. The computer enters a
loop which monitors the flag
until the device is ready, then
reads the data. The other
alternative is to use the
software time loop, and omit
the extra hardware.

An interesting application
along this line is a completely
software ‘‘fabricated”
keyboard debounce system.
This method will not work in
an interrupt type of input
system, but for many small
scale systems, this method is
ideal.

Rather than connecting
the keypressed line of the
keyboard to some debounce,
timer and latch circuitry,
connect it to the eighth bit of
the parallel data input on the
computer. The loop used will
test the eighth bit for the
keypressed state. When a
keypressed is sensed, a time
loop of 16344 us is executed,
then the data input is
accepted. The loop then
branches back to the main
program to takc care of the
new data. When the program
comes back to the input loop,
the keypressed line is first
tested to be sure no keys are
being pressed. After all keys
have been released, the loop
will wait for the next
keypressed state. This
procedure will prevent more
than one data entry from
each keystroke.

When | first tried this
keyboard debounce method
over five months ago, | was so
pleased with it that I'm still

Fig. 3. Software can be used to debounce a keyboard — simply loop
around for a long enough time to ensure that keys have stabilized. The
loop is started as soon as the ‘‘any key pressed" (keypressed) line
indicates any non-null bit pattern.

077115 = 101 1IN
116 = 002 RLC TEST INPUT FOR KEYPRESSED,
117 = 100 JFC WAIT UNTIL CONDITION IS
120 = 115 L SATISFIED
121 = 007 H
122 = 101 1IN
123 = 002 RLC TEST INPUT FOR KEYPRESSED,
124 = 140 JTC WAIT UNTIL CONDITION IS
125 = 122 L SATISFIED
126 = 007 H
127 = 026 LCI
130 = 377 "2585" EXECUTE
131 = 021 DCC TIME
132 = 110 JFZ DELAY
133 = 131 L
134 = 007 H
135 = 101 1IN ACCEPT INPUT OF DATA
136 = 104 JMP
137 =1 L JUMP TO MAIN PROGRAM
140 = H H (MAY BE REPLACED WITH A

84

RETURN INSTRUCTION.)

INCREMENT
TIME
COUNT

INITIATE
TIME
CYCLE

Fig. 4. The digital clock program
looks simple at this level: Incre-
ment the time count, update the
display, then initiate a time cycle
such that the entire loop takes
exactly one second!

using the method for all data
entry to my microcomputer.
Not once has it missed some
data, or given me false or
duplicated data. And it was
so easy to implement!

Time loops may also be
used in output applications. |
have an SWTPC TV
typewriter, but | am not
using the special computer
interface board. | found that
a simple time loop does the
job well enough and fast
enough.

Since we've done our
homework, now we can play.
An interesting and novel
application of time loops is a
completely software
“fabricated” clock. The clock
program presented here will
have three major functions
(see Fig. 4).

The clock will display
hours, minutes and seconds.
The “‘increment time count”
segment of the program is
responsible for computing the
next time reading in
sequence. |t must consist of
more than a straight counting
sequence since time is not
expressed in straight decimal
format.

The ‘‘update display”
segment is responsible for
producing the newly

computed time at an output
device.

After the first two
segments have been executed,

v v
FRCVARY
oL .

85

Fig. 5. Ah, but the simplicity of Fig. 4 — as this figure reveals — hides a lot of low level detail. Here is the flow chart of the clock's operations.

dAne i— _ —
_ J 1yvd 11910
37949 S3LANIW Of _
o Luvd AN LINIW3IUINI
31n93x3 ! _
t 11910
s3éth
AVIdSIQ
4.148vd | 73 vaan _
ON
g
_| - = _ _ IN3WLsaray
a2l 11919 ¥NOH _ UVILINI $3A
_ R LN3W3HONI _ _
_ . OL INIW1SNray IN3WLSNray Li9l@
3IWIL INIL HNOH 1i9/d
3LVILING ILVILING ¥v31o SILANIW
_ LINIW3HONI
ON ﬁ
_ 11910
SGNO0D3S
S3A 11910 ¥NOH _ Ol ¥V31D _
BR : _
A _ || in3nLsnrav 9> L191a _
c [ILVILINI 53X SANOJ3S
1=11910 _ 01 Sl
_ 8 Lyvd
3 Lyvd _ 1191d
—_— SAN0J3S Ol
_ LINIWIHONI
11910
Li9la _ SANO23S
SYNOH T ERE)
LINIWINONI _ _
11910 _ LN3Wlsnrav < 0l> _
S3LANIW Ol INIL 11910
Y319 _ ILVILINI S3A SANOD3S S) —
n. | |
LINIWLSNrav 9> 11910 11910
N SILNNIW _ SANOD3S _
_ 31VILINI RS LINIWINONI
a Luvd _ _ v Luvd ~ _

8008 Timing Quick Reference Guide

us INSTRUCTION
20 INCREMENT INDEX REGISTER
20 DECREMENT INDEX REGISTER
20 ROTATE ACCUMULATOR
12720 CONDITIONAL RETURN*
36/44 CONDITIONAL JUMP*
36744 CONDITIONAL CALL*
20 UNCONDITIONAL RETURN
44 UNCONDITIONAL JUMP
44 UNCONDITIONAL CALL
20 RESTART
32 LOAD DATA IMMEDIATE
(INTO INDEX REGISTER)
36 LOAD DATA IMMEDIATE
(INTO MEMORY REGISTER)
32 ALU IMMEDIATE
20 ALU REGISTER
32 ALU MEMORY REGISTER
24 QUTPUT
32 INPUT
20 LOAD DATA - REGISTER(OP CODE 3--)
32 LOAD DATA - MEM. & REG. (OP CODE 3-7 OR 37-)

Here is a quick reference table for execution times of all instructions
in the 8008 repertoire. Such a reference table can be easily made for
any CPU. Simply multiply the number of machine states required
for the execution of each type of instruction by the time required
per machine state. AT 500 kHz, the 8008 takes four us per machine
state. An unconditional jump instruction requires 11 states in the
8008 , therefore 44 us. Do not confuse machine states with machine
cycles. The same jump instruction requires three machine cycles.

*Conditional instructions: Execution time depends upon condition.
If condition causes true branch, the execution time is longer. If the
condition causes a false branch (if condition is not satisfied), the

execution time is shorter.

the ‘‘time cycle” segment
makes up the difference so
that the entire program takes
exactly one second per pass.
Writing a clock program isn’t
hard, but making it take
exactly one second per pass
definitely adds to the
challenge. The major
consideration is that branches
from conditional instructions
must be balanced in such a
way that the program will
take exactly the same
execution time regardless of
the combination of
conditions and branches.
That's where all the time
loops come in, and that’s
where lots of fun comes in!

The program can best be
described in the form of a
flowchart, Fig. 5. The
program listing in Fig. 6 is
divided according to the
flowchart divisions shown by
dashed lines. The op codes
are for 8008 systems. The
mnemonics and op codes can
be easily translated into 8080
format. However, all timing
considerations must be
recalculated for wuse with
anything other than an 8008
running at exactly 500 kHz.

86

When time balancing a
segment of a program, it is
best to work from the
bottom and go up. The time
adjustment in part A of the
flowchart must compensate
for parts B, C, D and E, so
before that time period can
be calculated, the execution
time of the other parts must
be calculated.

Some of the time
adjustments in part E do not
use a time loop. The short
time adjustments there (in
part E} are more conveniently
implemented with a
cofnbination of other time
consuming instructions which
will not change the function
of the program.

To determine the time
adjustment needed in one
branch, tabulate the total
execution time of the longer
branch. Add or subtract 8 us
{(depending upon which
branch is the true branch) to
compensate for the difference
in conditional jump
instructions.

The same time loop will be

used several times, yet the
time periods will vary. This

can be accommodated when
using the short loop by
placing the LBI instruction
and loading the value of “x"
before the loop is called. The
location of the LBI
instruction will have no effect
on the overall time period
produced.

Occasionally a time loop
will not come out evenly. For
example, another 12 us may
be needed. This will not be
accommodated in the loop,
so the only alternative is to
use a NOP instruction. But
the only instruction which
will absorb just 12 us is an
unsatisfied conditional return
instruction. Using such an
instruction could result in
trouble if wused alone.

However, if an AND
instruction can be used
without affecting the

program functions, the AND
instruction will insure that
the conditional return (RTC)
will not be satisfied. To keep
the program in balance when
balancing the time, insert a
NOP in the opposite branch
to offset the AND
instruction, and the net
difference will be 12 us.

Fiowchart parts F and G
need not be included in the
time balancing considerations
of A, B, C, D and E. The
program returns to a common
point before executing parts
F and G, so those parts are
not offsetting anything.

The output loop as given
in the listing will provide an
ASCIl output for a TV
typewriter. A sufficient time
loop is provided between
each individual output
operation. The output loop
may be easily modified for
use with other devices. For
use with Teletype, a line feed
command must be added to
the output characters. (Only
a carriage return is used with
a TVT.) For use with an LED
display, deleting the ORI
instruction at location
04/257 will leave a straight
binary (also BCD equivalent,
since vales do not exceed 9)
output. Keep in mind,

however, that modifying any
part of the program will also
require modifying the timing
elements involved.

The execution time of the
complete ‘‘increment time
count’’ segment plus the
‘‘update display” segment
totals 494096 us. Subtract
that time from one second to
find the time required of the
timing cycle. The required
time is 505904 us. The values
for this loop have already
been worked out in a
previous example.

The reason the value of
“x" cannot be conveniently
changed in the long loop in
this case is that the loop is
called and used from two
locations in the program. The
value of “x” cannot be
changed for one application
without affecting the other.
If the loop were modified to
load B from another register
which remained constant,
both values would become
variables which could be
easily assigned values from
any point in the program.
This would also include
recalculating the time
formula of the loop.

Your clock should now be
ready to run. (Oh, by the
way, there is one little
drawback: Your computer
can’t be used for anything
else while it’s keeping time,
unless, of course, you really
want to go to extremes with
the calculating! This program
is strictly a novelty!) When
you are ready to start your
clock, load the correct time
plus a couple of minutes into
memory locations 04/000
through 04/005. When the
loaded time comes, start the
computer. Jump into the
program at 04/006.

The time kept by the
computer will only be as
accurate as the frequency of
the clock driving the CPU,
The oscillator must be set at
exactly 500 kHz. Although
this is difficult to do, any
percentage of error in fre-
quency will be directly
reflected by the time kept. ®

Fig. 6. And finally, the lowest level of detail of all: A “‘pseudo
assembly” listing of the program for the digital clock as implemented
for an 8008 computer. Of course, those readers who have an 8080, a

6501, a 6800 or PACE will have to do a little bit of thinking to adapt Taelren
Fig. 4 and Fig. 5 to the alternative microcomputer CPU designs. Toesne
%6 s
TROUR Les S0 = XXX 10 MOUR DIGIT REGISTER ;oa,:::
HOUR:N e/ 21 = xxx HOUR DIGIT REGISTER U04/16S
TMINIGGGrs 502 = XXX 10 MINUTE REGISTER 004/166
MIN:DOG/DO3 = XXX MINUTE REGISTER anas167
THEC:0N4/7004 = XXX 10 SECOND REGISTER HNoss170
o sECH 067605 = xxx SECOND REGISTER Noas 7y
N >
START:004/006 = 056 LHI LOAD L/H wWIThH ég:;:;;
004,007 004 HI{SEC) ADDRESS OF SECONDS 004174
O 004/010 = 066 LLI DIGIT REGISTER 006,175
0N4s011 = 005 L ISEC) 04,176
004vsal2 LAM INCREMENT SECONDS GYENM: 104,177
004s013 AD1 CIGIT Geaszno
G06s014 | Gous2al
0064/015 cPl DECISION: JUMP IF 006/ 202
004/016 "io™ SECONDS DIGIT IS NOT qgh/zn;
004rs017 JFC LESS THAN 10O DL 204
004020 036 L “ e
064,021 = 906 m GTENS Dl s
LU0asN22 - 375 LMa RETURN SECONDS DIGIT TO 115 REGISTER noaszuT
N04s023 = 370 LMaA REPEAT INSTRUCTION FOR MORE TIME e 210
004/024 = 016 LBI W04r21t
004,025 = 017 15 SET VALUE DOF "x" ubas 2l
004/226 = 106 cCaL CALL TIME LDOP TO COMPENSLATE NON: 004723
Vet - 267 N
noasndn - 004 H TLOOF 83:;;:2
006,031 = 300 NOP NEED A LITTLE MORE TIME 004s 16
woes 032 300 NOP 0064017
0047013 = 104 JUMP FINISHED THIS CYCLE 004/220
Gn4es 036 = 275 22
EOTPIREE fne M DIsPL gg::;;?
QTEH tdsas V36 DTS LAl 006/s273
Shas 030 - nng o Mot CLEAR SECONDS DIGIT REGISTER Vs 224
nhAs et 370 LMA 004s225
0G4/N4T = 061 DCL 004/226
004/042 = 3107 LaM INCREMENT 00urazaT
904/043 5 004 ADL 10 SECONDS DIGIT a06s230
due/lah = 001 et 0Gars 23}
T T T~ RESHOOR: 006/23p
0047045 = 074 CPI DECISION: JUMP [F 604/233
004/046 = 006 6 10 SECONDS DIGIT IS NOT D04/ 234
no4asn47 = 100 JFC LESS THAN 6 004s235
0047050 063 L 006
004/051 nos H GOMIN 024:233
004s082 370 LMa RETURN 10 SEC. DIGIT TO REGISTER 004s2a0
004/053 016 LBI 004s241
004/054 015 Mi3" SET VALUE OF "x" 004242
Og:;gzz = 106 CAL CALL TIME LOOP 0047243
o = 247 L “ws 264
006/057 = 004 K TLooP 22:.:;:‘::
0047060 = 104 JMP FINISHED THIS CYCLE 006/246
0047061 = 275 L - T = =
0047062 004 H DISPL TLDOP: 004/247
GOMIN: 0047063 076 LM CLEAR 10 SEC. DIGIT REGISTER 004s250
0047064 ooo0 “o" {LAT, LMA ARE USED INSTEAD OF LMI 00“/25.‘
004/065 061 DCL WHERE TIMING WORKS OUT BET ER THAT wav,) 004252
0047066 307 LAM INCREMENT 0047253
0047067 004 ADI MINUTES DIGIT
0047370 = oo1 "1* QUTL: 004,256
_______ 004s257
004/071 = 074 CPI DECISION: JUMP IF 004/260
004/072 otz "io0” MINUTES DIGIT IS NOT 004/261
0047073 100 JFC LESS THAN 10 0047262
004/074 = 110 L 006/263
0047075 = 004 H GTENM 0047264
004/076 = 370 LMA RETURN MINUTES DIGIT TO REGISTER 0047265
004,077 = 016 LBI 004/266
004,100 = 012 "10" SET VALUE OF "x" 004/267
0047101 106 CAL CALL TIME LODOP 0047270
004/102 247 L 004s271
0047103 = 004 TLooR 004s272
0047104 3117 LBM NEED AN EXTRA 12 US. 0047273
0C4/105 104 JMP (LBM - 32 uUS, OTHER 20 US DALANCED BY NOP) 0047274
004/106 = 275 L]__—DISPL T DISRL004/275
0047107 = 004 H 0047276
GTENM: 004/110 = 300 NOP 20 US BALANCE @ 004s277
004/111 = 006 LAI 004/300
004/112 000 “o" CLEAR MINUTES REGISTER 0047301
0047113 370 LMaA 0047302
004/114 061 DCL 0047303
00647115 = 307 LaM INCREMENT 0047304
0047116 = 004 ADI 10 MINUTES DIGIT 0047305
0047117 = 001 "yt 004s306
= T 5047307
@ 0047120 = 074 CP1 DECISION: JUMP 1F @ 0047310
004121 oce e 10 MINUTES DIGIT IS NOT 0047311
004s122 100 JFC LESS THAN 6 004/312
004/123 137 L I - 004/313
004/ 126 = 004 H GOHOUR 004/314
0047125 370 LMA RETURN 10 MIN. DIGIT TO REGISTER 0047315
0047126 016 LB} 0047316
0047127 007 7" SET VALUE DF "x" 0047317
0047130 106 CAL CALL TIME LODP 0047320
0047131 247 L 004s321
004/ 132 = 004 H TLoor 004s322
004/ 133 300 NOP KEEPING THE TIME IN BALANCE - — —_004s323
004/ 134 106 JMP FINISHED THIS CYCLE LTIME: 004/ 324
004/ 335 275 L - 004/ 325
004/)36 = 004 H DISPL LTIM1: 004/ 326
GOHOUR I 004/ 137 006 LAl 004/327
004/ 140 ocoo "o" CLEAR 10 MINUTES REGISTER 004/330
004/ 141 370 LMA 0047331
004/ 142 061 DCL 0047332
004/ 143 307 LAM INCREMENT 004,233
004/ 144 00a ADI HOURS DIGIT 004/ 334
004/ 145 ool 1" 0047335
004/ 148 370 LMA PUT THE HOURS DIGIT BACK FOR THE 0047336
T Tooazia7 oeL TIME BEING. 004/END
@ 004,150 LAM
004/151 074 CPI DECISION: JUMP IF
0047152 oor 1" 10 HOUR DIGIT = }

150
213
204
260
307
074
o12
120
177
004
307
307
307
307
307
300
300
104
275
004
006
200
37¢
061
307
004
001
370
300
106
275
004
Né60
307
074
003
100
232
004
016
ao2
106
2a7
004
104
275
naa
0o
001
370
061
006
000
370
261
043
043
104
275
004

011
053
104
247
606

307
064
060
121
026
00s
106
324
004
031
0s3
060
104
256
004
036
006
066
000
106
256
004
006
015
121
026
036
106
324
004
016
255
106
247
004
104
006
004
0lé
377
011
110
326
004
021
053
104
324
004
SET

WAIT UNTIL THE RIGHT TIME,
AT 04/006.

IN

INSTRUCTION

2

-

DECI=I"%: JUME [F
HOUR OIGIT 1S NOT
LESS Tran 10

GTENH
NEED "**A NOP IS ADDED YO BOTH BRANCHES
T0 TO BALANCE THE TRUE BRANCH FROM
WASTE 067153, A BETTER FLACE FOR THE NOP
200 vs WOULD HAVE BEEN 04,156, 8UT wnd
To WANTS YD REWRITE HALF A PROGRAM TO
BALANCE SAVE ONE MEMORY LOCATION?
BRANCH
NOW LET'S GET QUT'A HERE

DISPL

CLEAR HOUR DIG!T REGISTER

INCREMENT
10 HOUR DIGIT

RETURN

CYCLE FINISHED

10 HR. DIGIT TO REGISTER

L r_—n
W ISPL

OECISION:
HOUR DIGIT
LESS THAN 3

JUMP 1F
IS NOT

L
H RESHOUR

a1 =)
RTZ

SET VALUE OF
CALL TIME (LOOP

x

TLOOP
JUMP TO 004/275/036
DISPL

RESET HOUR DIGIT TO 1

CLEAR 10 HOUR DIGIT REGISTER

THAT'S NOT AN ERROR)
THE NET DIFFERENCE
us.,

{(YES, 241 = 241
FOR TIME BALANCING.
BETWEEN BRANCHES FROM 04/153 WAS 24
2 X RTC = 24 US. THE NDB IS BALANCED
BY THE NOP'S MENTIONED
2
D1sPe IN THE NOTE *°*

SHORT TIMING LOOP

L |‘—’7Loop
H,

OUTPUT SUBROUTINE STARTS
GENERATE ASCI] CHARACTER

PRINT CHARACTER

SET VALUE OF Y
CALL LONG TIME LOOP

L.]_—.L”ME
H

ARE WE OONE PRINTING?
CONTINUE IF NOT

DUTL

SET UP COUNT - DISPLAY ROUTINE

SET UP ADDRESS

DUTPUT ROUTINE

v ouTL
"

DUTPUT CARRIAGE RETURN COMMAND

SET VALUE OF Y
CALL LONG TIME LOOP

L
M
" *LTIME

LBI

75

CAL

SET VALUE OF "x
CALL SHORT TIME LQODP

L I—’n.oop
H

JMP

JUMP BACK TO THE BEGINNING AND RECYCLE

L TART
H

LBl

Nagg"

SET VALUE DF "X

DECREMENT "X
JUMP BACK TO DECREMENT AGAIN

L LTIM]
H 1F "x" DOESN'T EQuaL “o"

THE TIME A MINUTE OR TwO

DECREMENT v
GO BACK TO PROGRAM
REPEAT LOOP

LTIME

IF ¥ = 0

THE PROGRAM 1S STOPPED BY LODADING A

INTERRUPT FROM THE FRONT PANEL.

87

IN ADVANCE AT LOCATIONS 04/005,
AND START THE PROGRAM BY JUMPING
HALT

THE
CURVE TRAGER
THAT WON'T
COLLECT DUST.

wpsr 4

The Hickok Model 440
semiconductor curve tracer is
all purpose and convenient to
use. It’s the ideal instrument for
testing, evaluating, classifying
and matching all types of
transistors, FET’s and diodes.
You'll get stable, full range
dynamic displays that you can
accurately scale right from
the screen.

m Pull-out card for easy, fast
set-up and operation.

m Set-up marks for rapid set-up
of 80% of tests.

® Unique INSTA-BETA display
takes the guesswork out of
transistor and FET parameter
measurement.

® |n-or-out of circuit testing.

m A full range professional
tracer at a price you can
afford.

AT YOUR DISTRIBUTOR $16500

HICKOK

the value innovator

INSTRUMENTATION & CONTROLS DIVISION
THE HICKOK ELECTRICAL INSTRUMENT CO.
10514 Dupont Avenue « Cleveland, Ohio 44108
(216) 541-8060 +« TWX: 810-421-8286

ALTAIR OWNERS

CMR PRESENTS
THE MEMORY YOU'VE BEEN
WAITING FOR

8K x8 DYNAMIC RAM

ON ONE PLUG-IN CARD FOR

ONLY $59900 *

® FACTORY ASSEMBLED AND TESTED

® PLUGS INTO 8800 WITH NO MODIFICATIONS

® PROTECT-UNPROTECT CIRCUITRY INCLUDED
TO MATCH 8800

® TWO 4k BLOCKS OF DYNAMIC R.A.M.

® USER OR FACTORY ADDRESS PROGRAMMING
(SPECIFY)

® EACH CMR-8080-8k is SHIPPED WITH AN EDGE-
BOARD CONNECTOR INCLUDED.

e EXPANDER BOARDS AVAILABLE (ADDS FOUR
SLOTS TO 8800)

TEN REASONS TO CHOOSE
THE CMR MEMORY CARD

1. 300ns ACCESS TIME

2. TWICE THE MEMORY DENSITY

3. LESS$$ PER K OF MEMORY

4. DESIGNED FOR THE 8800

5. USES THE LATEST T.I. CHIPS

6. G-10 EPOXY BOARDS

7. PLATED THROUGH HOLES.

8. GOLD PLATED CONNECTOR CONTACTS.

9. 8192 WORDS OF DYNAMIC RAM

10. 90 DAY WARRANTY ON PARTS AND LABOR

*ORDERING NOTE:

FOR FACTORY PROGRAMMING. SPECIFY TWwWO 4k
MEMORY ADDRESS LOCATIONS FOR EACH CMR-8080-8k
MEMORY CARD ORDERED.

MAIL THIS COUPON TODAY

LIENCLOSED IS CHECK OR M.O. FOR $
0cC.0.D. s ACCEPTED WITH 30% DEPOSIT. TOTAL
AMOUNT $ 30% =

VA. RESIDENTS ADD 4%
® PLLEASE SEND CMR-8080-8k CARD(S)* AS
DESCRIBED ABOVE @ 599.00 EA. POSTPAID
®PLEASE SEND EXPANDER BOARD(S)
{ADDS 4 SLOTS TO 8800) BOARD ONLY @ 15.00 EA.
POSTPAID TO:

NAME

ADDRESS

CITY, STATE & ZIP.

CMR COMPUTER MANUFACTURING CO.

P.O. BOX 167, 1921 DOGWOOD LANE
VIENNA, VIRGINIA 22180

97

YTE’S

What You Can Do With an Oscilloscope Graphics Display

Sumner Loomis, Route 1, Box 131, Prairie Point MS
39353, supplies us with some additional illustrations of what
can be done with the oscilioscope graphics display unit he
built based upon the design of Jim Hogenson in BYTE #2. The
barking poodle is self-explanatory. The second picture is a

histogram of some experimental data which is being displayed
by the graphics output device.

BARITNG POODLE

16K MEMORY KIT
LESS THAN 5.5¢/WORD

16,384 8-BIT WORDS ON
ON ONE CARD WITH PIGGY-BACK ONLY

$895.00

® PLUG DIRECTLY INTO 8800

e | OW POWER: + 8 TO +10V, LESS THAN 600 mA
+15 TO +18V, LESS THAN 100 mA
—15TO-18V, LESS THAN 30 mA

® TOP 4K WITH PROTECT-UNPROTECT

® USES LOW POWER SCHOTTKY TTL

® MEMORY CHIPS SOCKET MOUNTED

® 50/50 GOLD-PLATED EDGE CONTACTS

® EPOXY BOARDS WITH PLATED THRU HOLES

¢ JUMPER PROGRAM 16K ADDRESS SLOT

® 8080 HOME BREW COMPATIBLE

© 420nS ACCESS DYNAMIC RAM

® NOT A FLAKE

INTRODUCTORY SPECIAL ON ORDERS
RECEIVED BEFORE 1/1/76
0@ Take $50 Discount ®® Take Free 50/50 Edge Connector
®® Pay No Shipping Charges

WRITE TO DAVE (K6LKL) at

n“]ln“"lns *SPECIFY KIT 16KMDY

*CALIF. RES. ADD SALES TAX
P.0. Box 9160, *MASTER CHARGE — OK
Stockton CA 95208 *BANKAMERICARD — OK

98

Course in Virginia
A course entitled “Digital
Electronics for Automation
and Instrumentation’’ will be
given at Virginia Polytechnic

Institute and State
University, Blacksburg VA,
on Dec. 7-12, 1975.

Instructors are David G.
Larsen, Dr. Peter R. Rony,
Jonathan A. Titus and Dr.
Frank A. Settle |Jr. The
course uses Bugbooks [, 11
and /1] as text (see review of
Bugbook 11l on page 108).
The course is an ‘“in-depth
laboratory/lecture course
[which] provides hands-on
experience with the wiring of
digital circuits of modest
complexity involving popular
and inexpensive TTL
integrated circuit chips ..."”
Enrollment is limited to 24
persons, $325 to members of
the American Chemical
Society, $360 to
non-members. To register or
obtain additional
information, contact Harold

Walsh at the Education Dept.,
American Chemical Society,

1155 16th St., N.W.,
Washington DC 20036
(phone 1-202-872-4600).

Technical questions about the
course can be answered by
calling Mr. Larsen at
1-703-951-6478 or Dr. Rony
at 1-703-951-6756.

Out of Context . . .

A. M. Biguity provides
BYTE with the following
note which he found in the
Fairchild Semiconductor
34000 Isoplanar CMOS Data
Book, page 2-8:

““Individuals and tools
should be grounded before
coming in contact with
34000 devices . . ."”

“The trend is to stay upwards
compatible with all previous
bugs.”
Prof. Niklaus Wirth in a
1972 compiler
construction course at
Stanford University.

Eric Stewarl

“Ihave always wanled lo diaw
fo a magazine, but fm only
12 years okd. Your magazine
has, kads drawing for 1t and |
s, Thes 15 my brg brosk . "

Clubs and Newsletters

San Diego Club Activities
The San Diego Computing
Society (for lack of a more
permanent name) sent BYTE
a copy of an August 1975
newsletter. The newsletter
included information on club
activities as well as a lengthy
and wide-ranging comparison
of wvarious alternatives for
microprocessor users, written
by member Dr. Michael
Hayes. The article covered
possible choices from existing
uP evaluation kits to the
LSI-11. News of club
activities included a
scheduled meeting with

speakers from Processor
Technology 1Inc. to
demonstrate their products
which included the new
TV-Dazzler color television

graphics display device. For
information on the San Diego
Computing Society, write:

Gary Mitchell

Box 35

Chula Vista CA 92012
Membership dues (which
bring the newsletter to your
mailbox) are $2.50.

100

Southern Florida Club?
Roberto R. Denis (11080
N.W. 39 St., Coral Springs FL
33065) inquires about club
activity in southern Florida.
He's interested in contacting
persons and starting a club.

Denver Amateur Computer
Society

George Mensik, proprietor
of Gateway Electronics in
Denver, called BYTE as #4
goes to press. He reports a
large and active Denver Ama-
teur Computer Society exists
{over 100 members) with
interest in computer
activities. The DACS
meetings include talks by
industry people as well as
tutorial sessions and special
interest gatherings. George's
store also serves as a general
meeting ground for the
Denver area.

You can find out about
the DACS by contacting
George at Gateway Elec-
tronics, 2839 W. 44th Ave.,
Denver CO 80211 (phone
1-303-458-5444).

News from the Southern
California Computer Society
The September 1975 issue
of Intertuce, the SCCS’s lively
newsletter, arrived as BYTE
#1 was being assembled in
late September. The SCCS
people have put together an
excellent and informative
club letter — running 15
pages in the Vol. 1 No. 1
issue, just for September. In
addition to reports on club
business matters, the major
portion of the letter concerns
information and background
data of general interest. The
newsletter is sent to
members. To become a
member, send $10 annual
dues plus your complete
name, address, zip and
telephone information to:

Southern California
Compuler Society

PO Box 987

South Pasadena CA 91030

In phonc conversation with
Hal Lashlee of SCCS
(1-213-682-3108) BYTE
lcarned a few details of the
group purchase of Digital
Equipment Corporation
LSI-11 computer equipment.

The basic deal is that the
SCCS will pool individual
orders for the DEC

cquipment to obtain quantity
discounts at the 50-, 100- and
possibly 200-level price
breaks. Orders will be made
initially on the assumption of
50-guantity purchases, at the
following prices for
cquipment:

LSI-IT CPU (4K x 16
memory, PDP-11/40
instruction set), $653.

LA-36 DECWriter (30 CPS
terminal), $1480.

The SCCS is in the process of
securing a fidelity bond for
the offer, and, according to
Hal, has made arrangements
for MasterCharge and
BankAmericard payment for
orders. A fee for the service —
intended as a contribution to
the club’s activities — is set at
a minimum 2% of the order
value. Larger contributions

INIERFACE

UPDATE 2

Zearmmong

are of course solicited to help
pay for the club’s operation.

It also looks as if the SCCS
will be starting the first active
LSI-11 computer users group
as a result of this purchase

activity.
If you’re interested, Hal
says that inquiries

accompanied by a large self
addressed stamped envelope

should be sent to the
Southern California
Computer Society at the

address above.

New England Computer Club

An organizational meeting
of the New England
Computer Club has been
scheduled for Nov. 5, 1975.
A tentative meeting place,
arranged by Ted Poulos of
Brookline MA, is at the
Jarrell-Ashe plant, Waltham
MA. Boston and southern
New Hampshire area
computer hackers who want
to be on the mailing list for
future meetings should send
their name and address
information on an index card
or IBM card to:

New England Computer Club
c/o BYTE Magazine
Peterborough NH 03458

Chicago uP Users Group

The Chicago Area
Microcomputer Users Group
met for the first time in
September, with about 30
attending. For latest
information, contact Bill
Precht, 1102 S. Edson,

Lombard IL 60148.

MC 14412 UNIVERSAL MODEM CHIP
MC14412 contains a complete FSK modu-
lator and de-modulator compatible with
foreign and USA communications. (0 — 600
8PS)

FEATURES:

® On chip crystal oscillator

@® Echo suppressor disable tone generator

® QOriginate and answer modes

® Simplex, half-duplex, and full duplex

operation

® On chip Sine Wave

® Modem self test mode

® Selectable data rates: 0 — 200

0 - 300
0—-600
® Single supply
VDD = 4.75t0 15 V DC -FL suffix
VDD =4.75t06 V DC-VL suffix
TYPICAL APPLICATIONS:

®Stand alone — low speed modems

® Built-in low speed modems

® Remote terminals, accoustical couplers

MC14412FLc.cou.. 28.99
MC14412VL ... 21.74
6Gpagesofdata60
LED Mounting Hardware
{Specify bezel color)
1750-04 (4 readout) $ 7.00

1750-06 (6 readout)

1750-08 (8 readout)

Screen available in red, amber or neutral color
2102-1 MEMORY

1K fully encoded fast (500ns) MOS RAM.

New factory prime parts . . . $4.15, 10/$39.00

MC14411 Bit Rate Generator. Single chip for
generating selectable frequencies for equip-
ment in data communications such as TTY,
printers, CRT's or microprocessors. Generates
14 different standard bit rates which are
multiplied under external control to 1X, 8X,
16X or 64X initial value. Built-in crystal
oscillator circuit. Operates from single +5V
supply.

MC14411P with specs $22.40
Output Rates (Hz)

X684 X168 X8 X1
6144k 163.6 k 768k 9600
460.B k 116.2k 67.6 k 7200
307.2k 76.8k 384k 4800
2304k 57.6 k 288k 3600
163.6 k 384k 18.2 k 2400
115.2k 28.8 k 14.4 k 1800
76.8 k 19.2k 9600 1200
384k 9600 4800 600

19.2% 4800 2400 300

128k 3200 1600 200

9600 2400 1200 150
8613.2 2153.3 1076.6 134.5
70355 1758.8 879.4 109.9

4800 1200 600 75
9216k 9216k 9216k 921.6 k
1.843M 1.843M 1.843M 1.843M

Clock Chip. The MM5318 is an excellent
choice for TOD clock all by itself. The display
interface has externally selectable character.
This allows for outputting one digit at a time
to the BCD or 7 seg busses under external
control. Useful for computer real time clocks,
TV display, serial character transmission. With
specs.

MM5318 Clock Chip

RECEIVER
TRANSMITTER

UART-1013A is an ideal device for driving
computer peripherals such as teletypes &
video terminals. NEW, factory fresh parts.
Made by General Instruments. Full specs.
New low price!

URT-1013A $10.95, 2/$19.95

National MM5740AAE. Complete keyboard
interface system capable of encoding 90 single
pole single throw switch closures into 9-bit
ASCIl code. Silicon gate technology and is
TTL input compatible. Has N Key rollover,
one character data storage, repeate function,
capacitor key bounce masking, with spec
sheet.

MM5740AAEN

INTERSIL 8038CC
Precision Waveform Generator/Voltage Con-
trolled Oscillator.

Wide Frequency Range of Operation 0:001
Hz to 1.5 MHz
Variable Duty Cycle
#11C8038 . . . with specs

........... 1% to 99%
........... $3.95

7 SEGMENT DECODE/DRIVER/LATCH

Fairchild 9374 TTL/MSI is a 7 segment
decoder driver incorporating input latches and
output circuits to directly drive common
anode LED displays. Constant current 15 mA
sink eliminates need for matching resistors.
Automatic zero blanking. Transparent latches.
Pin compatible with SN7447.

FDL-9374

TV CLOCK CHIP SET. Display time of day
directly on your TV screen. MM5318 and
MM5841 1Cs form the basis for video display
clock. 5318 keeps time of day (4 or 6 digit)
and 5841 provides display video signals with
sync derived directly from your set. Makes
most interesting way to tell time of day
during TV hours.

MM5841/MM5318 Set with specs

-

IC SOCKETS. o HIGHEST QUALITY!
PC Mount . .. Solder Tail

... %2080

Skt-0802...8pin. .. 25¢, 10/$2.25
Skt-1402. .. 14 pin. .. 26¢, 10/$2.40
Skt-1602. .. 16 pin . .. 30¢, 10/$2.70
-Skt-1802. .. 18 pin . . . 45¢, 10/$4.25
Skt-2202 . .. 22 pin . .. 60¢, 10/$5.50
Skt-2402 . .. 24 pin . . . 65¢, 10/$6.00
Skt-4002 . .. 40 pin . .. $1.25, 10/$11.00

Wire Wrap :l'ails
Skt-1400. .. 14 pin . ..
Skt-1600. .. 16 pin . ..

49¢,10/$4.50
55¢, 10/$5.00

EXAR!

XR-320 Precision timer $1.55
XR-2240 Prog. Counter/timer 4.80
XR-210 FSK Demodulator PLL 5.20
XR-205 Waveform Generator 8.40
XR-2206 Function Generator 5.50
XR-2207 VCO 3.85

EXAR XR-2206KA Function Gen Kit,
Includes monolithic function generator IC, PC
board, parts list and assembly instruction
manual e $19.95

PRECISION LAB QUALITY REGULATOR
MC1466L chip can be used to build a high
quality voltage and current adjustable power
supply. Available output current limited only
by the supply and the number of pass
transistors. Floating type regulator aliows
voltage variation from O to 250V! .01% line
and load regulation.
MC1466L w/specs

DUAL * 15V TRACKING REGULATOR
MC1468L 14 pin DIP Package.
FEATURES:
*Output current to 100 mA v
*Line and load reg. .06%
*External adj 8 to 20V
*Remote sensing
MC1468L w/specs

T0-92 VOLTAGE REGULATORS

If your project needs only 100 mA or less, use
these tiny plastic regulators right on your PC
board. Same size as a plastic transistor. Save
space and $. Last 2 digits denote voltage
(positive).

LM78L05, LM78L12, LM78L15. 85¢

1/2A Regulator. Fairchild 78MGT2C positive
and 79MGT2C negative regulators are adjust-
able from 5V to 30V with only 2 external
resistors. Only 1 resistor for +5V (+.2V) from
the 78 MGT2C. Comes in 8 pin minidip
package format with heat tabs for attaching
to PC board or heat sink. Easily connected for
* tracking supplies.

78MGT2C (pos) or 79MGT2 (neg) $2

5V, 3A T0-3 Regulator. Fairchild SH323KC
monolithic regulator in TO-3 power package.
Use it with the same ease of installation as the
famous 309K (same pin arrangement). Take
care of those heavy current requirements
without separate regulator/pass transistor
combinations.

SH323K3 5V, 3A $9.95

MINIATURE ROCKER DIP SWITCHES

Dual in-line SPST switch arrays for P.C.
mounting. Spring loaded sliding ball contact
system for positive, tease proof contact.
Comes in contact arrangements from 4 to 10
per pack. Fits standard DIP sockets. Last two
digits of stock #indicate number of switches.

DIS-768B04 $3.10
DIS-76B06 $3.50
DIS-76B07 $3.75
DIS76B08 $3.95
DIS-76B10 $4.35

;T ; tnl - tek, |nC. P.O. BOX 14204, DEPT 7 PHOENIX, ARIZONA 85063

T

4

101

THE 6 000 SERIES
COMPUTER FAMILY

OHIO SCIENTIFIC INSTRUMENTS IS NOW OFFERING A COMPLETE
LINE OF PIN COMPATABLE BUS ORIENTED 8BIT 1Mhz MICROPROCESSORS
AND SUPPORT CHIPS BY MOTOROLA, AMI, MOS TECHNOLOGY AND OTHERS.

EACH MICROPROCESSOR COMES COMPLETE WITH SUPERBOARD:

A COMPLETE MINICOMPUTER P.C. BOARD (DOUBLE SIDED EPOXY)

WHICH ACCEPTS ANY 6000 SERIES PROCESSOR, SYSTEM CLOCK,

2- 1702 TYPE ROMS, 1K X 8 RAM (2102 TYPE), 1 PIA, 1 ACIA, CURRENT
LOOP AND PARALLEL INTERFACES AND HAS BUS EXPANSION CAPABILITIES.

9900
49°°

54°°

6800AND SUPERBOARD~ *THE TOP OF THE LINE"

6 5 0] AND SUPERBOARD- DIFFERENT INSTRUCTION
SET, BUT JUST AS FAST

6 50 2AND SUPERBOARD- A 6501 WITH INTERNAL
CLOCK

ALSO AVAILABLE-
SYSTEM MONITOR ROMS, PROMS, RAM, PIAs, ACIAs, UARTs,
AND BUS TRANSCEIVERS
RAM- ROM MEMORY EXPANDER BOARD
SUPER I/0 BOARD CONTAINING CASSETTE INTERFACE; X,Y DISPLAY
AND A/D CONVERTER.

COMING SOON-
VIDEQ GRAPHICS BOARD
FIRMWARE BASIC BOARD (USES ROM AND CALCULATOR CHIP)

ALL CHIPS ARE FULL SPEC. INDUSTRIAL QUALITY COMPLETE WITH PACTORY
SPEC, SHEETS, SUPERBOARD, AND OUR OWN APPLICATION SCHEMATICS
AND NOTES.

CALL (216)~-653-6484 OR WRITE TODAY FOR OUR FLYER AND OUR NEW
APPLICATIONS NOTE "THE 6000 SERIES BUS."

OHIO SCIENTIFIC INSTRUMENTS

51

£.0. BOX 374, HUDSON, OHIO 44236

n 4 I I I B .
computarized

[Assemble your own electronic
Ping-Pong unit that connects

to any TV. It's easy!

Complete plans, p/c boards,

preassembled & finished units.

Our designs inctude challenging
game action, a computer-

@20 control paddle sound effects

& on-screen scoring. Exciting!

Build the basic unit for about
$40 in common components.

Send $27.50 for ‘Superset’”
p/c board (with aligned horiz.
& vert. oscillators) & plans . . .
or .. .send $1.00 {refundable)
for circuit diagram & info
packet of p/c boards, plans,
accessories & completed units.

visilIEX

MOUNTAIN VIEW, CA 94040

$1 for schematic diagram & info
pack (refundable on purchase),

=

L--------

102

NEVER YOU MIND

OCCUPANT
BOX BYTE
PETERBOROUGH!
NH 03458

BIT COLLECTING

Editor,

First let me congratulate
you and your staff on an
extremely interesting and
informative first issue. It is
definitely the best first issue
of a magazine that [have ever
read. [, like thousands of
others, decided on
subscribing to BYTE after
collecting a few bits of
information concerning what
you intended to publish. I
was very pleased to see that
you managed to get all the
bits together to form a
BYTE! I believe that while
the MITS people have set the
standard for ‘“‘the affordable
computer,” the BYTE people
are now setting the standard
of how to educate people in
using it!

I was particularly
interested in the comments of
one reader regarding the
playing of games between
computers. 1 intend to
develop a CHESS program for
my Altair 8800, probably in
MITS 8k BASIC language. I
would like to correspond
with all the people out there
who share the same interest.
While on this topic, I should
say that I would like to see
some competitions between
small computers classified
according to core size,
instruction set, cost or
whatever else will encourage
people to pack the most
efficiency and genius into the
lowest cost system.

In closing, I must make
one final observation. I
noticed in Don Lancaster’s
article on ‘‘Serial Interface,”
p. 35 [BYTE #l1], that the
originate modem tx and
answer modem rx frequencies
do not agree as is necessary

for proper operation. The
answer modem receive
frequencies should be 1070
Hz space and 1270 Hz mark.
Incidentally, I thought the
article by Don was of his
usual high calibre and should
serve as an example for others
to follow.

Dan Clarke

105 Fir Court
Fredericton NB
Canada E3A 2E9

DOWN ON EARTH?
Editor, BYTE:

1 ordered my subscription
to BYTE when the first ad
was printed in 73 Magazine
last summer. The first book [
got was #2 (October 1975).
Where is my #1? Please send
it.

I have a good
understanding of analog and
logical circuitry — i.e., gates,
counters, shift registers,
radio, TV and machine
control. But —

The only down on earth
articles from which I got the
full meaning in issue 2 were
“Television Interface” (best

by far), “Quick Test of
Keyboards,’ and
“Asynchronitis.”

Please — I want to

understand 8008 and 8080.
What’s inside, relating to the
logic I know? When are they
called for? And what must be
used with them?

Most articles start in the
process of program
development — much too late
for the beginner. It seems
many cute words add to the
snow: Like byte, Basic, life,

architecture, kluge??,
algorithm, subroutines,
language — various,

5% OFF ON ORDERS OVER $50.00
10% OFF ON ORDERS OVER $100.00
15% OFF ON ORDERS OVER $250.00

DECEMBER SPECIALS

TTL 9 DIGIT LED DISPLAY FNA 37 LINEAR
TTL 451 17 74154 125 ;2:; $ 23 On multiplexed substrate, comm. ca- ;:3 s s:;g
7400 § 14 7453 17 74155 107 7489 199 thode comp.alable with all_ 8 digit 565 1.49
7401 .16 7454 .17 74156 1.07 74153 69 (.llc.ulalov (hIp.S, 7 segment ‘nght hand 739 39
7402 15 7460 .17 74157 .99 24193 '99 decimal, red with clear magnifying lens, 75491 '59
7403 .16 7464 .35 74158 1.79 : .12” character, Tto 4 MA, 1.8 V typ 2%’ x -
7404 .19 7465 .35 74160 1.39 W/ high Lo oL $3.95
7405 19 7470 30 74161 1.25 CLOCK
7406 .35 7472 .30 74162 1.49 CIRCUITS
7407 35 7473 35 74163 139 MEMORIES NINE DIGIT SPERRY 5311 $3.95
7408 .18 7474 .35 74164 1.59 1702A $14.95 GAS DISCHARGE DISPLAY 5312 2.95
7409 .19 7475 .57 74165 1.59 2101 2.95 SP-425-09 1.25” x 3” overall — .25” digits — connects 5314 3.95
;:“17 ;g 747§ ;3 74166 1-;9 2102-1 3.25 to 18 led edge connector — hivoltage — prime quality
o 7483 . 74170 2.30 e $1.49
7013 .55 7485 110 74173 149 2102-2 325 CALCULATOR
7416 .35 7486 .40 74174 1.62 5203 12.95 CHIPS
7417 35 7489 248 74175 1.39 5260 .99 DVM CHIP 4 DIGIT 5001 $1.49
7420 .16 7490 .59 74176 .89 5261 99 MM5330 — P channel device provides all logic for 42 5002 1.98
7422 26 7491 .97 74177 .84 5262 2.95 digit digital volt meter 16 pin DIP with data $14.95 5005 2.49
7423 .29 7492 .71 74180 .90
7425 .27 7493 .60 74181 2.98
7426 .26 7494 94 74182 .79 Y
;:;7) 53 ;232 ;g ;::g‘; ggg NEW ITEM — EXCLUSIVE WITH IEU Data sheets on request, With order add
2432 :23 74100 1:30 74187 5:95 RESISTOR ASSORTMENTS $.30 for items less than $1.00 ea.
T TN e SUPPLIED WITH CONVENIENT STORAGE UNIT *,
7430 A7 74121 42 74192 1.25 DESIGNED FOR EXPERIMENTERS, TECHNICIANS AND SCHOOLS
7441 .98 74122 45 74193 1.19
7442 77 74123 .85 74194 1.25 RS 1-25 $89.50
7443 .87 74125 .54 74195 .89 AN ASSORTMENT OF B T N LINEAR CIRCUITS
7444 .87 74126 .63 7419 1.25 173731 :‘S:'Ssll?gid P TS S S SRR N S 300 Pos V Reg (super 723) TO-5 § .71
7445 .89 74141 1.04 74197 .89 51 OHMS TO 5.6M OHMS T T - SN SN 301 Hi Perf Op Amp mDIP TO-5 29
7446 .93 74145 1.04 74198 1.79 s Y P @ o« € €~ @ % 302 Volt (ollower TO-5 .53
7447 89 74150 .97 74199 1.79 QUANTITIES DETERMINED n e ‘ < 304 Neg V Reg T0-5 80
7448 104 74151 79 74200 5.90 BY TYPICAL USAGE €2 - @- Q. 86 BLC 305 PosVReg TO-S 7
7450 17 74153 .99 . s WATT 5% @t €A @R /I @ &L Q€ 307 Op AMP (super 741) mDIP TO-5 .26
. : CARBON FILM P REREOEGCRERE 6 & 308 Mciro Pwr Op Amp mDIP YO-5 .89
NPT AN LN T SN TN N 309K 5V 1A regulator TO-3 135
LOW POWER TTL + $1.00 SHIPPING L@ C-0- 6 @ € €L 1oy Follower Op Amp mp o
s N i perl omp m B
7400 $.25 74151 §$.29 75190 $1.49 & HANDLING S @E& K- € & € @ 4 319 Hi Speed Dual Comp DIP 113
7al02 .25 74185 .33 74191 145 SHIPPING VIA UPS OR RN T SR TN 320 Neg Reg 5.2, 12, 15 TO-3 119
74L03 25 7471 25 74193 1.69 PARCEL POST . 322 Precision Timer DIP 170
7al04 .25 74172 39 7495 169 SN 324 Quad Op Amp DIP 152
7ilth .25 7473 49 7398 279 339 Quad Comparator DIP 1.58
710 25 7473 49 74lles 279 | REPLACEMENTS IMMEDIATELY pg 5. 55 §414.50 RS 3-50 $69.50 30K Pos Vreg {5V, 6V, 8Y, 12V,
74033 AR 79 74LI6S 279 AVAILABLE AT LOW COST |\ ASSORTMENT OF AN ASSORTMENT OF 15V, 18Y, 24¥) T0-3 169
74L30 33 7485 125 BY MAIL FROM IEU 340T Pos V reg (5V, 6V, 8V, 12V,
74042 149 7486 69 4000 RESISTORS 2000 RESISTORS 15V, 18V, 24V) TO-220 149
100 EACH OF 40 50 EACH OF 40 372 AF-IF Strip detector DIP 293
’ STANDARD VALUES STANDARD VALUES 7 AM/FM/SSB Strip DIP .53
HIGH SPEED TTL ‘ ." 1 OHM TO 3.3M OHM 1 OHM TO 3.3M OHMS 376 Pos V Reg mDIP 242
QUALITY - RELIABILITY 13 WATT 5% 1 WATT 5% 377 2w Sler?o amp DIP 1.16
J4HOD § 25 74H21 .25 T4HS5 § .25 CARBON FILM CARBON FILM 380 2w Audio Amp DIP 113
701 25 TaH22 25 74Hel 25 380-8 6w Audio Amp mDIP 152
74HOS .25 74HI0 .25 74H61 25 381 Lo No!se Dual preamp DIP 1.52
74HO8 .25 74H40 25 74H62 .25 LED's 32 Lo Noise D“[::PP"“'“P oip n
74HI0 25 74H50 25 74H72 39 MV10B Red TO 18 s 2 MEMORIES 50 rec V Reg .
74HUI .25 74H52 25 74H74 39 ; 555~ Timer mDIP 89
MV50 Axial leads 18 $56A Dual 555 Timer DIP 1.49
74H20 25 74HS3 .25 74H76 .49 MVS020 Jumbeo Vis, Red 101 256 bit RAM MOS $ 150 Dal 555 Timer O1F b
{Red Dome) 2 1103 1024 bit RAM MOS 3.95 x e Lok oop Dip o
8000 SERIES Jumbo Vis. Red 7024 2046 bit static PROM Phase Locked Loop DIP TO-5 2.38
(Clear Dome) 22 UV eras. 17.95 ﬁ ¥ ase occe ogrP 10-5 - 2'25
8091 § .53 B214 $149 8B11 § .59 ME4 Infra red diff. dome 54 | 21022 1024 it static RAM 425 T P 268
8092 .53 8220 149 8612 .8Y MAN? Red 7 seg. .270” 219 5203 2048 bit UV eras PROM 17.95 708 Operational AMP TO-5 or DIP .26
8095 125 B230 219 8622 219 MAN2 Red alpha num .32 439 5260 1024 bit RAM 249 10 H speed Volt Comp DIP 35
8121 B0 8520 116 8830 219 MAN4 Red 7 seg. .190” 1.95 5261 1024 bit RAM 269 71 Dusl Difference Compar DIP 26
8123 143 8551 139 8831 219 MANS Green 7 seg. .270" 345 5262 2048 bit RAM 5.95 723 VReg DIP P 6
8130 197 8352 219 B8l .25 MANG6 6" high solid seg. 425 7489 64 bit ROM TTL 248 739 Dual Hi Perf Op Amp DIP 107
8200 233 8554 219 BEB0 119 MAN7 Red 7 seg. .270” 119 8223 Programmable ROM 3.69 741 Comp Op Amppmm’; 10-5 2
8210 279 8810 .69 ggf;g 322 MAN3 :l'e;ii 7hiepgi.".s127" » 74200 256 bit RAM tri-state 5.90 747 741 Dual Op Amp DIP or TO-5 .71
. raigl . j .
MANS Yellow 7 seg. .270" 3.45 1504 :ﬁ“@.ﬂ;ﬁ'&ﬂzymm b 10
9000 SERIES mé’:}“’ g lhls'?osr::les(i’sl:ers. 32? 1307 FM Mulpx Stereo Demod DIP .74
O~ 1 B
9002 §.35 9309 $.79 %01 S .89 P CALCULATOR & 1458 Dual Comp Op Amp mDIP 62
; ereo multiplexer DIP 2.48
9301 103 9312 79 9602 79 CLOCK CHIPS LH2111 Dual IM 217V Comp DIP 170
MULTIPLE DISPLAYS 01 ZDIGaunctfindec 5249 0 500 Quad Amplies DIP 3
v Dmreign]I GE gy | T o s w7
CMOS uowa 56 sosoa 50 Hpisez 5 digit 11 led magn. lens MMS725 8 DIG 4 funct chain & dec 198 8364 9 DIG Led Cath Drr DIP 225
H000A § .26 40I7A 119 4066A .89 7405 com. cath 349 MMS736 18 pin 6 DIG 4 funct a5 75150 Dual Line Driver DIP 175
W0IA 25 4020A 149 4068A 44 HP5082 4 digit .17 LED magn. MMS738 B D‘:I(':I $ funct K‘:"r:nem 535 75451 Dual Perepheral Driver mDIP 35
10024 .25 4021A 139 4065A .43 7414 lens comm. cath. 3.2 MMS739 9 DIC 4 funct (bt 533 75452 Dual Peripheral Driver mDIP 35
e . I FNA37 9 digit 7 seg led RK G 4 funct (btry sur) 75453 (351) Dual Periph Driver mDIP 35
H006A 135 0RA 110 4071A 2% e \ 4.95 MM5311 28 pin BCD 6 dig mux 445 !
4007A 26 H23A 25 4072A 35 ec clr. magn. lens J MM5312 24 pin 1 pps BCD 75491 Quad .Se.q D.nver for LED DIP 71
J00BA 179 4029A B9 4073A 39 SP-425-09 9 digit .25" neon direct id 395 75492 Hex Digit driver DIP 80
. . g mux X
W09A .57 40254 25 4075A .39 ";::’J‘l')‘c? ";‘“‘ MOs/Ls1, ” MMS313 28 pin 1 pps BCD
J010A 58 JU2PA .59 307BA .39 1 » 7 seg 3 6 dig mux 445
4011A .29 J028A 98 J081A 26 MMS5314 24 pin 6 dig mux 445
4012A .25 4030A B2 J082A 35 MM in al 4 di 5.39
JNIA 45 40054 127 A te0 || SMIFT REGISTERS 5316 40 pin alarm 4 dig
HHA 149 0424 147 45854 210)) i‘
0154 149 4049A .59 MMS5013 1024 bit accum. dynamic
MMS016 ’5“0'3;;‘2 bit d ic mDIP S:;: Satisfaction guaranteed. Shipment will be made via first class mail in US.,
. . It dynamic m - Canada and Mexico within 3 days from receipt of order. Add $.50 to cover
;:ggg $ %z ;:g;: S:l]): ;:2::; S%.Zz $15-4025 QUAD 25 bit .5 shipping and handling for orders under $25.00. Minimum order $5.00.
24C04 :“ 74C107 ‘:]3 74C164 2:“ * California residents add sales tax.
74C08 .68 TICI5T 2.61 74C173 2,61
e 35 mcims s saces 26 I DTL INTERNATIONAL ELECTRONICS UNLIMITED
74C20 .35 74C157 176 80C95 135 . P.O. BOX 1708/ MONTEREY, CA. 93940 USA
74C42 161 74C160 248 80CY7 1.13 g;g $:: 33: :; 3:2 PHONE 408 659 3171
74C73 104 T4CI61 293 : 946 5 963 () -

936 15

4

PAPER TAPE READER

iy

TELETERMINAL

reqder 30

ONLY

$295
(kit)

DIRECTLY COMPATIBLE WITH ALTAIR
8800 PARALLEL INTERFACE BOARD

FEATURES:

0 to 300 character per second bi-directional
reading speeds.

® Single b volt, 2 amp power requirement.

® Reads any one inch, 8 level paper tape.

@ Reads any tape material with less than 60%
transmissivity (oiled yellow paper).

® Stepper motor drive - one moving part.

® Spring loaded line filament lamp with
15,000 hour life.

® Self-cleaning read head.

® TTL interface, mates with most micro
computers.

e Mounts in 4-3/8"H x 4-1/4"W panel cutout
extends 2-1/2” behind and in front of
the panel.

PRICES:

® Fly Reader 30 Kit {only main PC $295
board requires assembly)

® Fly Reader 30 (assembled and tested) $365

e Optional fan fold trays (200
capacity) mounted on 19"Wx7"'H
rack panel $110

® Optional 19"Wx5-1/4""H rack panel
mounting $ 25

e Optional 5/8 level tape gate for
reading both 5 and 8 level tapes $ 25

TERMS:

® Net 30 days for rated firms.
® Cash with order or master charge plus $3

@

shipping for individuals within continental
U.S.A.

12 CAMBRIDGE STREET
BURLINGTOGN, MASSACHUSETTS 01803

5‘17/272-8504

TELETERMINAL CORPORATION

106

comparison can be made. For
example, Popular Electronics
came out with their HIT
cassette interface, the
Computer Hobbyist has
another, the Southern
California Computer Society
has one and so does MITS. 1
understand that the Digital
Group in Denver has a tape
transport. Which is best?

Can | run MITS BASIC in
any other mini? Does anyone
make a mini [can run
Datapoint software in?

1 realize that this is quite
an undertaking but think of
the thousands of hours that
will be saved if this
information is available. You
have made a good start with
“Which Microprocessor for
You?”

As you probably guessed I
am an application man and
over the years have developed
quite a Fortran subroutine
library. This makes it easy to
write a program - just call,
call, call! I hope to provide
some useful articles later after
I get my Altair up to being a
workhorse instead of just a
toy.

William D. Roch
Woodland Hills CA

ON LIFE
AND
LIFELINE

Dear Sirs:

The first issue of BYTE is
excellent. BYTE looks as if it
is going to be exactly what
(in my opinion at least) a
computer hobbyist magazine
ought to be.

Just one slight correction;
the inventor of the game of
LIFE is John Horton
Conway, a professor of
mathematics at Cambridge
University (England), not
Charles Conway as reported.
LIFE was first widely
publicized in the October
1970 issue of Scientific
American and according to
Martin Gardner in the
November 1971 issue of that
periodical (page 121), a
newsletter called LIFELINE
was started in 1971 by
Robert T. Wainright, 1280
Edcris Rd., Yorktown
Heights NY 10598. .However,
I never subscribed to the

newsletter and have no idea
whether it is still going or
not. Perhaps one of your
other readers will be more
informative . . .

Charles A. Dunning Jr.
Sterling Heights MI

1 AND 1
EQUALS 27
BYTE:
An article in issue #2

prompts me to write about
something: Have just started
reading up on computers and
associated equipment. One
item 1 read was about AND
gates and OR gates, and their
logic. In my opinion they are
designated incorrectly.
Remember in grade school,
when you had the arithmetic
problem 1+ 1 =27

Most of us said “1 and 1
equals 2.”” In other words the
+ sign (plus sign) stood for
and.

Now in Boolean logic they
say that the + sign means OR.
And the » means AND.

Would have been much
better to have the + sign
mean AND, and the - sign
mean OR (the - sign looks
more like the 0 or OR filled
in than a plus sign), but it’s
too late to change this
system, because it’s been in
use too long.

But maybe it’s not too late
to change the system used on
page 43 of issue #2 of BYTE.
This shows LED bit pattern:
0-LED on; 8-LED off. To me,
the filled in zero looks more
like an LED that is on, and it
seems a Dbetter illustration
would be: 8-LED on; 0-LED
off.

The ASCII code for A
would then look like this: @
000 0080 with the filled-in
circles indicating the punched
out holes.

BYTE looks great. Keep it
up!

James C. Madsen
Fresno CA

The AND function is
“logical product,” the OR
function is “logical sum.”
The symbols are of course
merely the usual product und
sum symbols of mathematics.
The way it is said in grade
school is colloquial but,
unfortunately, not true.

KEYBOARD KIT

This very unusual key-
board kit is made by Micro
Switch. It has a set of
switches & space bar in a

: modular frame, plus 42
molded double-shot keys in red, white, or blue. There are 8 control
keys in addition to letters, numbers, & many symbols. The switches
are arranged in 4 rows, but are easily removed or moved to other
positions. This makes for a very versatile keyboard, since any number
and type of key can be arranged in any pattern to suit your own needs.
Any type of encoding can be wired. Finished size is 9%’ x 3% x 2".

STOCK NO. B6015 Keyboard Kit 2% 1bs. $19.95 ea, 2/35.00

VOLTAGE REGULATORS

B9013

B5169 is a board containing 3 15 volt high current regulators

with 0.1% regulation. 2 of the regulators are rated @ 3 Amps.,
and the other @ 6.0 amps. The current in each regulator may

be doubled with the regulation going to 0.5%.All 3 regulators
are short circuit proof, an= 2 have electronic crowbar protect-
ion. Brand new, in factory boxes. With data.

STOCK NO.B5169 $11.95 ea. 2/21.00

B9013 is a triple regulator with £12 volt regulation @ 200 ma.,
and the third regulator is a tracking regulator. It may be set
between 0 and 5 volts @ 500 ma. With data.

STOCK NO. B9013 $5.95 each, 2/10.00

B4481 is a VOLTAGE REGULATOR IC, type M1568. Itis
designed to provide balanced + and — output voltages at currents
to 100 ma. each. It is set internally for £15 volts but may be
externally adjusted between 8 and 20 volts (tracking). Packaged
in a 14 pin plastic DIP. With data.

STOCK NO. B4481 +15 volt regulator DIP $1.50 ea, 4/5.00

KEYTOPS & SWITCHES
TO MAKE YOUR OWN KEYBOARD

We have a large selection of KEYTOPS and SWITCHES, made by
RAYTHEON CO. The keytops come in black, grey and white,
with contrasting legends. The switches mate with the tops, and are
magnetic reed switches. The following combinations are available:

COMPUTER DATA INPUT KEYBOARDS

B5283

BEFNIIDEIINEE

L. R REREE D
B5199

ASCIl encoded keyboard. In its own enclosure. Originaly used in
SANDERS ASSOCIATES 720 Terminal System. In like new
condition. Usefull for any project requiring an ASCIl encoded
keyboard. 50 Alpha Numeric keys plus 11 computer symbols
STOCK NO.B5283 keyboard $35.00 2/65.00
MICRO—-SWITCH (Honeywell) 8 bit binary coded board. 56 keys,
alpha - meric and computer symbols Built in TTL decoder. New
in factory cartons. A beautiful keyboard.

STOCK NO.B5199 Microswitch keyboard. $45.00 2/80.00

54 key typewriter set, keys only, black K9276 2.95
654 key typewriter set, keys only, grey K9278 2.95
54 key TTY set, no symbals white K9279 2.95
54 key TTY set, with symbols white K9282 2.95
54 key set, keys & switches black K9288 30.00
64 key set, keys & switches grey K9290 30.00
54 TTY set, no symbals keys & Sw, White K3291 30.00
54 TTY set, with symbols, keys & Sw. whiteK9291 30.00
11 Key Numeric set. Keys only Black K9283 1.50
11 Key Numeric set, Keys only Grey K9284 1.50
11 Key Numeric set, Keys only White K9295 1.50
12 Key numeric set, Keys only white K9286 1.50
11 Key Num.set, keys & switches Black K9293 7.00
11 Key Num. set, keys & switchesGrey K9294 7.00
11 Key Num. set, keys & switchesWhite K9295 7.00
12 Key Num. set, keys & switcheswhite K9296 7.50
Blank key 1% keys wide white K9297A 3/.25
Blank key 2 keys wide white K92978B 3/.2%
K9297A with switch white K9298A 3/2.00
K92978 with switch white K92988 3/2.00
TRANSFORMERS

Cuinputer projects need power supplies. Finding the right power
wransformer can be a problem. We have one of the largest and
most diversified stocks of power transformers in the country.
Below we list some representative items in our inventory. Our

catalog, free on request lists many more.

3 Ibs.
6 [b.

36 V.60 1.0 AL, & 6.3V e 200 ma.
70V. 1.5 A ct, & 6.3 V @ 500 ma.
S0OV.@20A.ct, &6.3V@15A, 8% Ib.
50 V. @15 A_ct, & 6.3V @500 ma. 6 Ib.
26 V.@ 1.0 A. ct. 6.3 V. @ 500 ma. 3 Ib.
38 V.@ 1.5 A, ct. & 6.0 V.@ 500 ma. 2 ib.
350 V. @35 ma. ct. & 6.3 V.@2.7 A2lb.
70V.@15A. ct. &86,3VE@15A, 7Lb.
35V.@6.0Ct. & 10V.@ 10.0 A. 6.0 Lb,

640r32V.@8.0A.ct. & 18 V.@ 8.0 Act. 101b. B9905 11.95

BY313
B9314
B9315
B9316
89318
89319
B9321
B9322
B9906

3.50 2/6.00
6.502/12.00
9.95 2/19.00
6.50 2/12.00
3.75 2/7.00
6.95 2/13.00
3.50 2/6.00
6.75 2/13.00
8.95 ea.

COMPUTER GRADE ELECTROLYTICS
We carry a good selection of capacitors of all types, dipped micas,
ceramic disks, mica trimmers, tantalums, silvered micas, tubulars,
small electrolytics, high voltage, etc. Listed below are a few of our

large computer grade electrolytic capacitors.

VOLT MFD STOCK PRICE

10v 40,000 B2026 2.00 each, 6/11.00

10v 90,000 B2495 3.00 each, 3/8.00

10v 160,000 B2515 3.25each, 4/12.00

15v 110,000 B2352 3.50 each, 3/9.00

25v 32,000 B2492 3.00 each, 4/10.00

35v 40,000 B2255 3.50 each, 3/9.00

50v 10,000 B2493 3.25 each, 4/12.00

75v 6,000 B2450 3.50 each, 4/12.00

200v 500 B2345 2.50 each, 4/9.00

OP AMPS

TYPE DESCRIPTION CASE STOCK PRICE
709 Hi Performance TO-5 B4301 .50 5/2.00
4709 Dual! 709 DIP 85301 1.00 6/5.00
741 Hi Performance DIP B4316 .65 5/3.00
747 Dual 741 DIP 84317 1.25 5/5.00
741 Hi Performance Mini DIP B4345 .65 5/3.00
747CT Dual 741 TO-5 B3111 1.25 5/5.00
1458 Dual 741 Mini DIP B3112 1.25 65/5.00

A DELTA ELECTRONICS CO.

BOX 1, LYNN, MASSACHUSETTS 01903
Phone (617) 388.4705

MINIMUM ORDER $5.00. include sufficient postage, excess
refunded. Send for new 88 page Catalog 15, bigger than ever.

BANKAMERICARD and MASTERCHARGE
b now accepted, minimum charge $15.00. Please

el include all numbers.

Phone orders accepted.

&=

109

To get further information on the products advertised in this
issue of BYTE merely tear, rip, or snip out this advertiser index,
fill out the data at the bottom of the page, mark the appropriate
boxes, and send the works to BYTE, Peterborough NH 03458.
Readers get extra Brownie Points for sending for information
since this encourages advertisers to keep using BYTE — which in
turn brings you a bigger BYTE.

ADVERTISER INDEX

OoocoOO0o0DDoO0OO0DO0OO0Oo0DO0oOQODO0OO0D0DO0OO0DD0DO0O00000C0O0CO0OO000O

American Cancer Society 91
ACM 15

A. P. Products 2
BYTE Subscriptions 95
BYTE Retail Sales 110
Bytronics 39

Celdat 17

Centi-Byte 18

CMR 97
Comp-Sultants 110
Continental Speciaities 81
Delta Electronics 109
Dutronics 98
Godbout 6,7

Hickok 97,99

lasis 56, 57

IEEE 19

Int'} Elec. Unltd. 103
Intron 104

James 105, 99

Martin Research 16
Meshna 111

Micro Digital 77
Mikra D 104

MITS CIV, 40-47
Ohio Scientific 102
Processor Tech. 28, 29
RGS 25

Scelbi 62, 63 .
Southwest Tech ClIII
Sphere 11, 13
Suntronix 107
Teleterminal 106
Tri-Tek 101

Visulex 102
Windjammer 92, 93

Messages for the editor:

Reader’s Service
BYTE

DECEMBER 1975

Green Publishing Inc.

Peterborough NH 03458

Please print or type.

Name

BYTE acquired via
0 Subscription
O Newsstand
O Stolen

Address

City

BYTE is dedicated to the needs of its readership.
In order to better gauge matters of editorial policy
and content, as well as to give our advertisers some
“hard facts,”” we publish this questionnaire. In this
month’s list are a few more questions of editorial
interest:

What applications do you have in mind for your
own personal computer system?

Do you presently have a computer?

If you own or use a personal computer system,
what is its CPU chip or main frame computer
design?

Have you had any “on the job" training using
computers as a tool for some purpose?

Do you know what a computer language is? Would
you list the computer languages (if any) which you
know?

These questions are a short form “letter to the
editor.” If you have additional comments, don't
hesitate to write! Send completed questionnaires
to BYTE, Dept. Q, Peterborough NH 03458.

Classified Ads Available for Individuals and Clubs

Readers who have
equipment to buy, sell or swap
should send in a clearly typed or
printed notice to that effect.
Insertions should be limited to
approximately 100 words or

computer users only.
Commercial advertisers should
contact Bill Edwards, BYTE
advertising manager, for the
latest rate card and terms.
Individual/club classifieds will

State Zip less. Advertisements for this

Coupon expires in 60 days . . .

112

feature can be accepted from
individuals or bona-fide clubs of

Feel free to photocopy this page if you wish to keep your BYTE intact.

be printed free on a space-avail-
able basis in the earliest possible
issue of BYTE.

	Cover
	In the Queue
	Foreground
	POWERLESS IC TEST CLIP
	LIFE Line 3
	BUILD A 6800 SYSTEM WITH THIS KIT
	CAN YOUR COMPUTER TELL TIME?
	PHOTOGRAPHIC NOTES ON PROTOTYPE CONSTRUCTION

	Background
	THE SOFTWARE VACUUM
	LOGIC PROBES - HARDWARE BUG CHASERS
	WHAT IS A CHARACTER ?
	FLIP FLOPS EXPOSED
	READ ONLY MEMORY TECHNOLOGY
	THE HP-65: WORLD'S SMALLEST COMPUTER
	ASSEMBLING AN ALTAIR 8800

	Nucleus
	In This BYTE
	What This Country Needs
	BOMB
	Diagnostics
	BYTE 's Bits
	Word Hunt
	Clubs and Newsletters
	Letters
	Book Reviews
	The BYTE Questionnaire
	Reader's Service

	Back Cover

