ISSUE NUMBER 10 JUNE 1976 $1.50

PRINTED IN USA the small systems journal

n‘, l
]‘ . ""Nm i) i

I

The Game of LIFE Played in Color

In the Queue

A

BUTE +#10

JUNE 1976

staff

-— o
Foreground
16 BUILD A TELEVISION DISPLAY PUBLISHERS
Hardware — Gantt Virginia Peschke
40 BUILDING AN M6800 MICROCOMPUTER Manfred Pesch ke
Hardware — Abbott EDITOR
48 STRIKE A MATCH Carl T Helmers, Jr
Applications Software — Hansford GENERAL MANAGER
66 INTERACT WITH AN ELM Manfred Peschke
Software — Gable PRODUCTION MANAGER
Judith Havey
Background PRODUCTION ASSISTANT
Elizabeth Alpaugh
8 A SMALL BUSINESS ACCOUNTING SYSTEM CIRCULATION
Applications — Lehman Deborah R Luhrs
22 PROGRAMMING FOR THE BEGINNER PUBLISHERS ASSISTANTS
Software — Herman ghe'ly'NH”’d
28 A HIGH SCHOOL COMPUTER SYSTEM arol Nyland
Revi Lett Deena Zealy
eview — -€ ADVERTISING
32 SYSTEMS APPROACH TO A PERSONAL MICROPROCESSOR Elizabeth Alpaugh
System Design — Suding Virginia Peschke
58 “CHIP"” OFF THE OLDE PDP 8/E—PART 2 TYPOGRAPHY
Hardware — Nelson Custom Marketing Resources, Inc
76 AN INTRODUCTION TO ADDRESSING METHODS Goodway Graphics
Hardware — Zarrella Mary Lavoie
82 SCELBAL Taimi Woodward
Product Description — Wadsworth -Arnold PHOTOGRAPHY
Ed Crabtree
Custom Marketing Resources, Inc
ART
Nucleus Bili Morelio
2 In This BYTE PRINTING
4 Toward a Parallel Interface Standard $_:5th Mar;e"':ggew“":es' Inc
e George Banta Company
5 Call for Papers ASSOCIATES
6 About the Cover Bob Baker
14, 73, Dan Fylstra
81, 95, 96, Don Lancaster
98,100,110 What's New? Harold A Mauch
36 The Albuquerque Happenings Chris Ryland
52 Letters
64 Compqnents and Parts (Puzzle) BYTE rmagazine is published
87 Classified Ads monthly by BYTE Publica-
88 Book Reviews fons, Ine. 70 Maln st Peter
90 Clubs, Newsletters 03458. Subscription rates are
94 Programming Quickies 512 fs?gu"s“‘es;gzef‘rﬂ‘:’r:fdﬂfr‘::
104 Software Bug of the Month $t301; Stgc;md cl:;s ;)Iostaiﬁ paid
’ a eterbor [-
104 BYTE's Bugs Shire 03458 and at additional
106 Systems of Note 210852-132572]?';f;_‘,ci's' P}txont(se
- - n e €
112 BOMB copysight 1976 BYTE Publica:
112 Reader’s Service tions, Inc, Peterborough NH

03458. Address editorial cor-
respondence to Editor, BYTE,
70 Main St, Peterborough NH
03458,

Towarc

Articles Policy

BYTE is continually seek-
ing quality manuscripts writ-
ten by individuals who are
applying personal systems, or
who have knowledge which
will prove useful to our read-
ers, Manuscripts should have
double spaced typewritten
texts with wide margins, Num-
bering sequences should be
maintained separately for fig-
ures, tables, photos and list-
ings, Figures and tables should
be provided on separate sheets
of paper. Photos of technical
subjects should be taken with
uniform lighting, sharp focus
and should be supplied in the
form of clear glossy black and
white prints (if you do not
have access to quality photog-
raphy, items to be photo-
graphed can be shipped to us
in many cases). Computer list-
ings should be supplied using
the darkest ribbons possible
on new (not recycled) blank
white computer forms or bond
paper. Where possible, we
would like authors to supply a
short statement about their
background and experience.

Articles which are accepted
are typically acknowledged
with a binder check 4 to 8
weeks after receipt. Honorari-
ums for articles are based
upon the technical quality and
suitability for BYTE’s reader-
ship and are typically $15 to
$30 per typeset magazine
page. We recommend that au-
thors record their name and
address information redun-
dantly on materials submitted,
and that a return envelope
with postage be supplied in
the event the article is not
accepted, H :

PERSONAL COMPUTING '76
Consumer Trade Fair

Atlantic City NJ

Personal Computing '76 will be the first
large industry wide show for the personal
computing field. It is being sponsored by the
Southern Counties Amateur Radio Associa-
tion of New Jersey, and will be held August
28 and 29 1976 at the Shelburne Hotel and
convention center on the Boardwalk at
Atlantic City. For information on exhibit
space and the show in general, contact:

John H Dilks 111, chairman
Personal Computing '76
503 W New Jersey Av
Somers Point NJ 08244

Phone: (609) 927-6950.

® For reservations, contact:
Shelburne Hotel/Motel
Boardwalk & Michigan Av
PO Box 1138
Atlantic City N) 08404
® Manufacturers who provide products
for the personal computing market-
place are invited to attend.
® A series of seminars on subjects related
to small computer systems is being

arranged.

® The show will be almost entirely
devoted to computers and related
products.

® Admission to the general public will be
$7.50 at the door, $5 if ordered in
advance by individuals. Additional dis-
counts are possible for group pur-
chases by clubs, companies and other
organizations.

a Parallel Interface Standard

The idea of a parallel interface standard
which encourages interesting combinations
of peripherals and processors from different
manufacturers is one which in my opinion
should be pursued to help foster the growth
of the personal computing marketplace, a
growth which will provide a wider range of
options for both wusers and suppliers of
products.

The User’s Eye View

The need of a parallel interface standard
from the user’s point of view is readily
perceived. The parallel interface standard
will be the personal computing equivalent of
what exists in the audio equipment industry:

a widely manufactured, readily available
physical interconnection with logically and
electrically compatible signal definitions.
The plug of choice in the audio field is the
RCA style phono plug universally used to
interconnect low level audio signals via
shielded cables. This enables the purchaser
of brand X turntable to plug it into a brand
Y receiver using shielded cables of brand Z.

The ideal for the parallel interface defini-
tion in personal computing is similar. What is
needed is a definition which will allow the
owner of brand X processor to plug his
system physically, logically and clectronical-
ly into a brand Y music synthesizer or brand

Editorial By Carl Helmers

Q graphics display, using brand Z cable
assemblies. The interface definition to be
created will at a minimum guarantee hard-
ware compatibility. The applications soft-
ware compatibility can be provided by the
peripherals manufacturer in the form of
simple relocatable routines with common
functional documentation and detail code
generation for the various microprocessor
instruction sets.

The user will see a much more highly
desirable product if it contains provision for
the standard interface, since he or she will
then be able to interface a wide variety of
specialized applications and systems oriented
peripherals without the necessity of per-
forming the systems engineering equivalent
of reinventing the wheel at the interface
level.

The Manufacturer’s Eye View

The manufacturer of a product for the
personal computing field has as a goal the
maximization of sales, and hopefully as a
result, the maximization of profits. This is a
simplistic economic analysis which ignores
the existence of specialized counter exam-
ples, but it is generally valid in most cases.

Continued on page 112

Call for Papers

PERSONAL COMPUTING 76 — Technical Session on Standards

As part of the Personal Computing '76
convention August 28—29, Atlantic City NJ,
BYTE magazine will coordinate a technical
session on areas of standardization for the
personal computing field. The purpose of
defining standards is to provide a consistent
and workable set of specifications for inter-
faces between different equipment which
permit combined operation as a system.
Standards are in the interest of manufactur-
ers who will find wider markets as a result,
and standards are in the interest of users
who wilt benefit from a wider choice of
compatible options.

The following technical areas are identi-
fied at this point in time:

Audio Cassette Standard

A provisional interchange standard for
audio media was defined by a working
meeting sponsored by BYTE magazine in
November 1975. This standard will be re-
viewed, and the idea of a higher performance
audio media standard should also be consid-
ered.

Parallel Interface Standard

The proposal here is to define a parallel
interface standard for the connection of
peripherals to central processors. The stan-
dard should specify logical interface, electri-
cal interface and possibly a set of preferred
physical plug and receptacle designs.

Software Interface Standard

The proposal here is to define several
byte sequential media independent record
formats for data involved in interchange
between systems. This standard will prove

useful to the development of software mar-
kets, and could be incorporated into the
firmware of operating systems and loaders
supplied with processors.

Arrangements

Individuals and firms wishing to partici-
pate in the discussions should send written
position papers on their area of interest to:

Carl Helmers

Editor, BYTE

70 Main St

Peterborough NH 03458
Attention: Technical Standards

Papers should be neatly typed camera ready
copy which will be used as is to create a
proceedings booklet to be distributed at the
technical session. It is suggested that draw-
ings be done using ink or felt tip pen, and
that film ribbon be used for typewritten
copy.

The standardization categories of audio
media, parallel interface definitions, and
software data formats should not be viewed
as exclusive. ldentification of additional
areas where standards are appropriate will
also help the growth of the personal comput-
ing field.

It is expected that positions and propos-
als presented at the Personal Computing 76
show will be used as a starting point for the
second annual BYTE magazine symposium
on standards to be held later in the fall.
Questions regarding standards activities and
coordination of this session should be direct-
ed to Carl Helmers at BYTE at the above
address, or phone (603) 924-7217.8

] (.
| M

’ Rt R

Ll
Fl
) n

Ii

Photo 1: Here is a black
and white reproduction of
a single frame of a wine
pouring animation se-
quence created by Steve
Dompier using his Dazzle-
mation program. The
colors of the original re-
produce as shades of gray-
ness in this black and
white picture.

About the Cover

[This short account is
based upon materials supplied
by Harry Garland of Crom-
memco. ... CH]

Imagine being able to look inside your
computer memory, actually being able to see
the individual bits. With this sort of X ray
vision your computer memory could also
serve as your -computer display. Messages
could be spelled out by lighting some bits
and darkening others. Games could be
played with clusters of bits forming game
pieces and markers, Space War might be
played with miniature rocket ship patterns
zooming in, out and around the visible
region of memory address space. The key
element of hardware required to actually
achieve this imagined result is a memory
module which has provisions to map its
contents onto a television screen. This is
precisely what Cromemco has done in
creating its TV Dazzler product, the results
of which were used to create this month’s
cover,

The TV Dazzler hardware features two
modes of operation providing high resolu-
tion and low resolution generation of a
television picture. Through software selec-
tion the TV Dazzler can be programmed
either as a 128 x 128 point black and white
display, or as a 64 x 64 point colored
display. The points of the display grid are
tiny square regions on the screen which map
into segments of the 2 K byte memory of
the TV Dazzler module.

In the high resolution ‘'bit mapped”
mode, TV Dazzler uses its 2 K byte memory
as a means of storing 214 = 16,382 bits
required to generate a unique “‘on” or “of "
value for each location of a 128 x 128 grid.
This high resolution black and white mode is
very effective for alphanumeric displays and
detailed computer controlled images.

In the low resolution “nybble mapped”
mode, TV Dazzler uses its 2 K byte memory
as a means of storing 212 = 4096 four bit
nybbles of data needed to generate a color
display on a 64 x 64 grid. Each nybble
determines the color and intensity of the
corresponding picture element on the grid.
The most significant bit sets either high or
low intensity, and the next three bits inde-
pendently select the blue, green and red
channels of the color TV signal.

Like a metaphorical beachball, (see Janu-
ary 1976 BYTE editorial), the Dazzler pro-
vides the hardware for an incredible variety
of applications. This variety is realized
through the software for games and other
purposes developed by people who buy and
use this type of peripheral. One particular
application of the peripheral is a program
called Dazzlemation which was written by
Steve Dompier. The purpose of Dazzlema-
tion is to record an animated sequence of
TV frames in color, then play these back. In
order to make such a sequence, Dazzlema-
tion is used to color in the appropriate
regions of single frames which are stored in
memory. Steve’s standard demonstration se-
quence shows a carafe of red wine being
poured into a wine glass. One frame of the
carafe sequence is illustrated by photo 1.
This is just one of an endless variety of
computer generated animated displays which
is made possible by programs like
Dazzlemation.

A second application of the Dazzlemation
hardware was used to generate the pattern
which forms the main portion of the cover.
This is a program called Dazzler-LIFE which
was written by Ed Hall. John Conway’s

A Small Business Accounting System

The least sophisticated
form of bookkeeping is
single entry accounting; it
is not, however, generally
suitable for preparing fi-
nancial statements for
banks, investing brothers-
in-law, and so forth.

Double entry bookkeeping
has the advantage of incor-
porating redundancy and
error checking techniques.
It is the most common
form of business
accounting.

Or, How Your Microcomputer Can Take the Worry Out of Tax Time

John A Lehman
716 Hutchins #2
Ann Arbor MI 48103

Here’s an outline of an accounting system
suitable for small business use on a micro-
computer, It is designed for a small, inexpen-
sive system having a central processor, Tele-
type 10, one or preferably two cassette tapes
for storage, and a high level language facility
such as BASIC. [t could probably be written
in assembly language, but at a price of
inconvenience, The system is designed to be
used by an individual proprietorship (one
man business) or a small partnership. While
perhaps suitable as a bookkeeping system for
a small corporation, it is not intended to
produce the sort of reports which various
regulatory agencies may require of one. It is
designed to keep books, produce tax returns
(either Form 1040 schedule C for pro-
prietorships or Form 1065 for partnerships),
produce balance sheets which may be re-
quired either for management information
or for the information of banks and other
outside investors, and to be adaptable for
check reconciliation, cash budgets, pro
forma balance sheets and the like. Its use
requires about the same amount of time and
effort as keeping a journal would normally,
with the added advantage that the entries are
pretty much self checking. All other reports
are produced by the programs which would
be used. I'll try to describe the system in
enough detail so that anyone who is skilled
in BASIC and knows a little about account-
ing could write a program to do all of the
above.

First, however, it might be a good idea to
take a quick look at accounting systems and
what they’re used for.

Of the various systems available, the

8

simplest is the single entry system. A check
book is a good example; each time money
goes in or out, a notation is made of the
date, the amount, and any comments on
sources, uses, etc. This sort of system is
obviously very simple to keep, and has the
additional advantage of being accepted by
the IRS for preparing tax returns. However,
it has a number of disadvantages. The first is
that it is not self checking, as anyone who
has ever tried to balance a checkbook can
testify. Also, while capable of producing an
“income statement” (the generic term for
what a tax return amounts to}, it is not
suitable for the preparation of other finan-
cial statements that may be required by
banks, investing brothers-in-law and so forth.
These disadvantages make a single entry
accounting system unsuitable for the system
under discussion here.

Double Entry Accounting

The other major accounting system is the
double entry system. It was invented about
600 years ago, and came into widespread use
because it was self checking. It is also quite a
bit more complicated than a single entry
system, The basic idea behind the double
entry system is that each transaction has two
parts: where money comes from and where
it goes. So each transaction is entered twice,
each time in a different account. The mech-
anism behind this is the idea of debits
(DR) and credits (CR). Very briefly, a debit
represents an addition to something which
you have (an asset) or to an expense. A
credit represents a subtraction from one of
these. On the other hand, a debit represents
a subtraction from something which you
owe or from a revenue, while a credit
represents an addition 1o one of these. All of
which can be very confusing.

As a quick example, suppose you pay

$100 on your BankAmericard and receive
$150 for some service which you performed.
You would debit accounts payable (sub-
tracting from what you owe) for $100, and
credit cash (subtracting from something you
have) for $100. Then you would debit cash
(adding to something you have) for $150,
and credit income or revenue (adding to
revenue) for $150. The self checking feature
is provided by the fact that debits must
always equal credits. It would probably be a
good idea to look through a beginning
accounting book to get more examples to
help explain accounting techniques. I've
listed some at the end of the article.

Besides being self checking, a double
entry system has the advantage of being able
to churn out all sorts of reports on what s
going on in the business in question. The
IRS approves of it; and in fact, large
companies have no choice — they hagve to
use it. Now that we've described the major
accounting systems, let’s get on to what they
do and how they can be used in a computer-
ized system.

The purpose of any accounting system is
to provide information (another purpose is
to provide employment for accountants, of
course). This information is of use to various
pcople. The owner of a business uses it to
see how well he’s doing, and more impor-
tant, where he's not doing so well. Another
important user is your friendly local IRS
agent; anyone in business is required to
produce accounting reports to the Internal
Revenue Service’s specifications. Banks and
other investors also are likely to be quite
interested in this sort of information, espe-
cially when their services are requested for
loans rather than for deposits. Corporations
are also required to provide statements to
various government agencies, but we’re not
going to be concerned with that here.

The basic statements and reports were
mentioned earlier. The first is the balance
sheet such as the one shown in figure 1.
This represents the financial state of the
company at a particular time. The left hand
side (in the US at least) represents assets, or
what the firm has. The right hand side
represents liabilities and equities. (Liabilities
and Equities is accounting terminology for
where the stuff on the left came from.)
Liabilities are amounts owed; equities are
amounts contributed or earned by the own-
er(s). The second statement is the income
statement. As was mentioned above, a tax
return is a species of income statement. This
shows what happened over a period of time.
Other statements, such as the cash budget
and the pro forma balance sheet, show what
may happen in the future. These are the

ASSETS: LIABILITIES:
Cash 1000 Payables 2000
Receivables 2000 Notes from bank 1000
Equipment 4000
- EQUITY:
Total 7000 Proprietor QO_Q

Total 7000

Figure 1: The Balance Sheet. This document shows the current financial state
of a business operation. It is used by businesses large and small, and is one of
the end products of the automated accounting system,

EXPENSES (Debit to add, Credit to ASSETS (Debit to add, Credit to
subtract) subtract)
Return & Allowances RTN Cash CSH
Depreciation* DEP Receivables RBL
Business Taxes™* TAX Inventory INV
Rent RNT Prepaid expenses PPD
Repairs* RPR Supplies SUP
Salaries & Wages SAL Equipment EQT
Insurance INS Investments VS
Professional fees PRF : Misc. ETC
Commissions COM
Amortization* AMT LIABILITIES & EQUITY (Credit to add,
Pension/Profit sharing PEN debit to subtract)
Interest ©ONT
Bad Debts BDB Payables PBL
Depletion DPL Notes’ NOT
Other (specify if common, eg: MIS Long Term Payables LTP
Fuel FUL Proprietor PRP
Electricity PWR Drawing DRW
Telephone FON
Cost of Goods Sold which CGS REVENUES (Credit to add, Debit to

includes subtract)
Purchases PUR
Materials/supplies MAT Gross Receipts RCP
Other costs OTR Other Revenue REV
Labor {used for or directly

related to
Production — does not include

money paid to you) LAB

*1tems for which the IRS requires supplementary schedules or statements

Figure 2: Account Files Example. When the double entry accounting system
is designed, one of the first steps is to create a list of accounts and their
corresponding mnemonic codes. The mnemonic codes are used internally by
the computer in order to save memory space. If you are lavish with memory,
texts of the long names could be looked up in a table when you generate
reports.

statements which our system is going to be
able to churn out. Now, having got an
overview of what we're trying to do, let's
take a look at our data base requirements.
The first thing we are going to need here
is a set of names for our accounts. This is a
“chart of accounts’ to use the jargon of the
accounting trade. A small system such as
ours will need about 35 of these, selected for
the most part to make our output match

INPUT FROM

DAlLY
ACTIVITY

JOURNAL
EDIT
PROGRAM

TAX
RETURN
PROGRAM

LEDGER
EDIT
PROGRAM

{

DETAILED
LEDGER
REPORT

BALANCE
SHEET
PROGRAM

!

INCOME
STATEMENT
(TAX RE-

BALANCE
SHEET
REPORT

Figure 3: An Accounting
System Flow Chart. This is
a software system [low
chart which identifies the
major program com-
ponents of an accounting
system. The representation
assumes that tape files will
be used to maintain mass
storage on your personal
system, floppy disks with
sequential access file orga-
nizations could be used as
well,

MaNuaL
FORECAST
INPUTS

FORECAST
PROGRAM

CASH PRO FORMA
BUDGET BALANCE

SHEET

what the IRS requires. In order 1o save
memory space in the programs, cach of these
accounts is also given a thrce letter mne-
monic code. Two letters would be possible,
but some easc of use would be sacrificed.
Figure 2 gives a sample list of accounts and
mnemonics, broken down by classification.
A brief explanation of some of the accounts
might be in order. Returns and Allowances is
for goods which are returned lor one reason
or another. [ts purposc is to reduce the
amount in gross receipts while keeping the
amount of returns separate. The category
SAL includes only those wages paid which
are not included in cost of goods sold (CGS).
This would involve such things as clerical

10

help. INT is interest paid, not received. BDB
{bad debts) is used if we want to use the
specific charge off method of accounting for
such unfortunate happenings. The IRS also
allows use of another method, called the
reserve method, but it is more complicated.
DPL (depletion) is used for things like oil
wells and mines. DEP (depreciation) is used
for equipment, machines and the like, while
AMT (amortization) is used to charge part of
the cost of such things as organization
expense, capitalized research and develop-
ment and so forth. Some of these things can
be listed as assets when the money is first
spent, and the cost spread over several
periods. For details see the IRS books listed
al the end of the article. Cost of goods sold
(CGS) is the total of the costs incurred to
get something ready for sale; the breakdown
is listed below it. Cash (CSH) is mostly
checking account balances. Receivables
(RBL) are what customers owe you on
account. Payables (PBL) are what you owe
on account. Proprietor (PRP) is what you
put into the business and what it has earned
so far. Drawing (DRW) is the account you
use to take money out of the business for
personal uses, Notes (NOT) is money bor-
rowed from banks and other lenders. The
rest should be pretty much self explanatory.
These 35 or so accounts are the data files
which we're going to be working from; all of
the information we put into the system goes
into them and all of the output uses them as
building blocks. Now, having taken care of
all of the groundwork, we are ready to start
running information through the system.

Reference to the system flow chart of
figure 3 shows that the journal is the first
thing we produce. It’s shown being produced
on tape, since that way we can use it to
produce all of the other reports without
having to type in any more material, at least
until we come to the forecasts. Also, by
writing our journal entrics onto tape as soon
as they’re checked by the editing program,
we save much memory space, since we need
keep only a little bit of data in memory at
any given time. So, in this automated sys
tem, the journal is the only file we really
have to manipulate on a day by day basis.
To use it, first we enter the date. Then we
enter each transaction through the checking
program which makes sure we have two
entries for each amount and that the num-
bers we give the machine match. A sample of
a possible format is given as figure 4. We
debit the power expense account (re-
member, we debit an expense when we want
to add to it) for $58, and enter the comment
that this is for the month of March. Then we
credit cash (to decrease it), but reverse the

numbers. The program sees that the debits
do not equal the credits, and fires off an
error message, prompting us to enter a
correction. Note here that we include the
check number; this is very important when it
comes time to reconcile our records with
what the bank statement says. Also, the
editing program should provide the ability to
debit and credit unequal numbers of ac-
counts so long as the totals are equal. If this
would be too much of a demand on memo-
ry, amounts can be split up before entry.
Going on, the OK indicates that the entries
check, and at this point they should be
written onto the tape. Entries for the journal
can come from cash register tapes, bills, etc.
Up through this point our system is about as
much work as a manual system, but from
here on in things get much easier.

The next item on the system flow chart is
the ledger. This is a set of files which puts all
of the journal entries for each account
together. In our system, there are two types:
summary and detailed. In a more advanced
system, all of the ledgers would be detailed,
but this would require much more memory
than most small systems would have avail-
able. Basically, what we do at this point is
have the program read the journal entries
one by one and keep a running count of the
amount for each of the different-accounts in
use. Beginning balances may be read in
either via the Teletype or via a separate
ledger tape. The ending balances should be
printed on the Teletype if the user wishes to
see what they are, but they should also be
saved on tape for use in preparing the rest of
the statements. Detailed ledgers will require
a separate run for each one desired; they
might be run on a weekly or monthly basis.
The most important one is the cash ledger,
since this will provide a record of every
check written and every deposit made to the
checking account by date and number. This
should make balancing one's checkbook a
fairly simple task. The one thing to be
careful of in this program is to be sure that
the rules for addition and subtraction of
debits and credits are carefuily written into

the program. Otherwise all that will come
out is garbage.

Once we have the ledger, it's fairly easy
to see how the balance sheet is generated. A
look back at figure 1 will show that there are
only about a dozen of the ledger accounts
which have to be put together. All of the
asset accounts are added together, and the
sum is listed at the bottom of the column as
total. Subtracting the sum of the liabilities
from the sum of the assets leaves what is left
for the owner. If the amount in the drawing
account is set beforehand, that leaves only
the Proprietor (PRP) account to be
“plugged,” which is to say, given whatever
value is necessary to make the two columns
come out equal. So, if the assets total
$7000, the liabilities total $3000 and there
are $500 in the drawing account, that leaves
7000—3000—500=3500 for PRP. The only
other detail is that the program should either
write the date at the top, or it should be
filled in by hand. A balance sheet may be
prepared at any time; it will often be
required for getting a loan from a bank.
Besides being run on paper, it should be run
onto tape for use in preparing forecasts.

Probably the most important report
which our system will prepare is the income
statement. This is a report which shows what
has happened over a period; usually a year,
but often prepared on a quarterly or a
monthly basis. Its importance arises not so
much from the fact that people like to see
how much money they’ve made as from the
fact that the government is quite interested
in this information — so they can take their
cut, of course. The system being illustrated
produces an income statement patterned

The balance sheet is a
snapshot of the current
status of the business.

A mass storage file comes
in handy for business ac-
counting, since much of
the work involved is ac-
complished by reviewing
the same data with dif-
ferent criteria to produce
reports.

Figure 4: An Example of the Interactive Dialog with the fournal Edit
Program. The purpose of this program is to filter your own manual inputs
looking for certain known discrepancies which can be detected by the double
entry bookkeeping method. In this example, upper case letters are the
computer output to a Teletype (or video terminal) and the lower case letters
indicate manual keyboard inputs taken from daily activity records such as

receipts, checks written, etc.

cr

OK

Interactive program for journal entries might read:

ENTER NAME OF ACCOUNT DEBITED,AMOUNT,AND COMMENTS SEPARATED BY COMMAS:
pwr,58,march

ENTER ACCOUNT CREDITED AMOUNT,AND COMMENTS SEPARATED BY COMMAS:
csh,85,check 346
DEBITS DO NOT EQUAL CREDITS—ENTER IF DR OR CR TO BE CHANGED:

ENTER ACCOUNT CREDITED,AMOUNT,AND COMMENTS SEPARATED BY COMMAS:
csh,58,check 346

ENTER NAME OF ACCOUNT DEBITED AMOUNT,AND COMMENTS SEPARATED BY COMMAS:

iam done
OK GOODBYE

11

¢ Profit or (Loss) From B s or Profession
) (50t Fropn

Buctsarnpe. lomt Yomares,

Toio + tear

Figure 5: The object of
much of this program ac-
tivity is filling out [RS
Schedule C for your small
business.

after Form 1040 Schedule C (figure 5), but
could produce Form 1065 for partnerships
with minor changes. As is fairly obvious to
those who can wade their way through the
governmentese, what we have to do here is
state all income and then subtract expenses.
The accounts which we have been working
with will do this on what is called an accrual
basis, which is to say future expenses and
revenues are included if they are certain and
we know how much money is involved. For
example, if we have charge customers, we
include what they are scheduled to pay us in
revenues, For a small business it is often
better to file a tax return on the cash basis in
which only cash in is considered revenue and
cash out is considered expense. This system
can prepare cash basis returns too; one must
eliminate receivables, payables, prepaid ex-
penses and materials and supplies not yet
part of cost of goods sold. The effect of all
of these should be taken out of the revenue
and expense accounts too,

That’s the basic system. Using this system
alone would be a pretty respectable account-
ing setup for a small business. But as long as
we’re using a personal microcomputer, we
might think of adding a few bells and
whistles. These would pretty much depend
on individual wants. We could have the
computer automatically calculate FICA de-
ductions when payroll expense is debited.
We might also have the machine figure our
depreciation and amortization schedules for

GLOSSARY

Accrual: Including payments and receipts in the
future.

Check reconciliation: Accounting buzzword for
balancing a checkbook.

Credit {CR): An addition to the righthand side of
the balance sheet or to income.

Debit (DR): An addition to the lefthand side of
the balance sheet or to an expense.

Journal: The accounting equivalent of a check
register.

Ledger: Book or file which contains the totals
from the journal broken down by categories.

Payables: Amounts which will have to be paid in
the future.

Pro forma: Buzzword used to describe reports
which show how things might be or might have
been rather than what they are.

Proprietorship: A one man business; one owner.
Receivables: Amounts which are not yet on hand

in cash but which will definitely be coming in in
the near future.

12

us. For this we would need (for each item or
class of items) initial value, estimated life
and age. For tax purposes we would want to
get our annual depreciation by taking two
divided by the life of the object and multi-
plying the total times the remaining value. In
more symbolic form:

(2/total life)* (initial — depreciation).

This would give us the depreciation to date
and the amount for this year, both of which
are needed for the flip side of the tax form.
We could also do forecasting with the
system. For this we would want an inter-
active program which would ask for esti-
mated expenses and receipts in ail the
different categories for x number of months.
Then we would prepare a (pro forma)
balance sheet for the end of the period if our
predictions were correct, so that we could
see where things would stand if the predic-
tions came true. It could also prepare a
month by month schedule to show whether
the firm would have enough on hand to
meet projected outflows. This is called a
cash budget, and is quite a handy thing to
have since it enables you to forecast cash
shortages far enough in advance to do
something about them, and also to compare
the results of different courses of action..

And there’s the system. While not very
fancy from either an accountant’s or a
system designer’s point of view, it ought to
be enough to handle much of the record-
keeping for those firms on the other end of
the spectrum from GM, IBM and ITT. [t
might be too that the availability of a few
business oriented systems like this will help
increase the sales of microcomputers and
bring the prices down even more through
mass production.®

REFERENCES

1. Accounting Essentials, Margolis, Wiley and Sons
1972.

2. Efementary Accounting, College Outline Series
#39.

3. Management Accounting, Anthony and Reece,
Irwin, Ing, 1975 (Note: this is a college
accounting textbook — heavy reading).

4. Recordkeeping for a Small Business, IRS #583,
1976.

5. Tax Guide for Small Business, IRS #334, 1976
(complete handbook).

6. Tax Information on Accounting Periods and
Methods, \RS #5638, 1975.

The last three are available free from any |IRS
office.

Build a Television Display

C W Gantt Jr
6 Fieldpoint Rd
Aurora IL 60538

As a small system expands and becomes
more sophisticated, the limiting factor is
often the speed of input and output (10). In
addition to becing noisy, mcchanical, and
paper consuming, thc slow clacking of a
TTY may account for a large percentage of
system time. Among thc alternatives, the
display of characters on a standard TV sct is
among the simplest and most economical
methods.

This TV display (TVD) is designed 1o
take data from 512 bytes of memory and
convert it into a video signal with 16 lines of
32 characters. This can be uscd to feed a
black and white or color TV. The data in the
TVD memaory is in a six bit ASCII subsetl
and is updated by the CPU to create the
desired display. The processor addresses the
TVD memory just as it does any other
portion of memory and can actually cxccute
instructions from the TVD memory if so
programmed. Of course, some provisions

FIRST LINE, SECOND FRAME

FIRST LINE,
FIRST FRAME —
HORIZONTAL —
RETRACE _
\ —~
. T—%orzontaL
-— ~ SYN
a . P STARTS
VERTICAL
RE TRACE T\ - 2
> . e T HORIZONTAL
— SYNC
VERTICAL STARTS
swe S
2TARTS SIMPLIFIED INTERLACED RASTER SCAN

Figure 1: This shows how the electron beam is moved during an interlaced

scan in a television monitor. The dashed lines are quick retrace motions which

are normally invisible. The solid lines are periods during which the display

presents video information controlling brightness on the tube face.

16

must be made to prevent the CPU and TVD
from simultaneously accessing the TVD
memory (more about this below).

As designed, the TVD is strictly a display
device with the central processor of your
system doing all housekeeping (entering
characters, ctc). This approach simplifies the
hardware at the expense of extra software,
but also allows the user to take advantage of
the flexibility offered by software data
manipulation and formatting.

At present one TVD is up and running in
my system, but the memory and central
processor interfaces are incomplete. The
remainder of this article therefore empha-
sizes the TVD design and only offers some
basic ideas on interfacing to processors.
Although simple items such as the power
supply and oscillators have been omitted,
the information furnished should be suffi-
cient for the more cxperienced readers to
assemble a working version. The straight
forward TVD design allows easy modifica-
tion to meet individual system requirements.

Television Raster Scanning

Before going too deeply into operation of
the TVD, a review of the basic television
scanning system will clarify some terms with
which pure digital designers may not be
familiar.

A television picture is formed by scanning
an electron beam across the face of the
picture tube. A TV line is one sweep of the
clectron beam from the left of the picture
tubc to the right (as viewed from the front
of the set) and is initiated by the horizontal
sync (see figure 1). The horizontal sync
pulse causes termination of a line, horizontal
retrace of the electron beam back to the left
side of the screen, and the start of a new
line. During the time of retrace the beam is
blanked so that the retrace will not be seen.
The time allotted for each complete line
(including retrace) is 63.5 microseconds. Of
this about 16% is taken by retrace, leaving
53.5 us of usable line. Video information in
the form of avoltage fed to the picture tube

8l

£ vl pOvL 9LDI - - o s 06v. 8D
8 :13 S9ivL SLOH - M L 1 48 VIS 7 Ae]]
Izl 0L vZ EISZ w10 - S pL 1ZivL 9D1
1 - 8 O0ZESWW ELDI - - ot s o6vL SO
- -8 oL E6LbL ZLOI - L bL wObL ¥D1
- -8 oL EBLBL LLDI - -8 9L E6LYL EDI I bINID €191
- - pL 00bL OLDI - - 8 9L ZBIvL 2D LAO 44 ANVI8-0
. B 1 [Z6vL 621 . L vt LZLPL DI 031VIN00OW (93533 — _9NDINYI8
AZL- AS OND AG+ 8dAL oN AZL- AS- OND AS+ 8dAL ‘on 3LISOdWOD
s1nany pazesbajuj 103 suonsauuo) Ajddng Jamog vi6 ANYIE =]
NI 3N =
26164 ‘201 o o5 &5 & +
~ F - o 0
n_t WOuS MO¥ H . M . o €dl 99121 3LISOIWOD
ol \._W uw_ _mn!_we_ NTdNld Nid Nid Nig
M 0 N o b fo b b
13173 N ; 2 [_ra N L 34 2 ¥ ¥ IC
§1o1 & 3 Bl A S 1 N Qa @ 0221%
[aims a b =12 v fe-ealviva S B 8 A W A R
110 el L He 8 fgs£0 [Wvd ¥0109 s %19
\ 3 N 91 FX-va gL
] 19 Y L2 Lg zefca A 1353¥ S 2
2z S 8 22 €19 136 110 WA AW Z o oove o cove
H Hls I CRE v I a8l
C cige 901 21 IED
1 i3l 2dL LOHS 3INO
JL _ M
avol S+ ZHNZ
3NIT 03G1A 30 ON3= | m o 2
X e} oH I o
WVH OL $S3HAQV]
WyH 0L ————
t8 28 18 08
ss3udav HILNNOD » # » »
Q ¥ILIVHVYHD PR O - S THWG (e
L s 2 J¢ a 2 8 Vv a v
ﬁw _u v an HVYD S o] 3 e [%2019
5 2! €BibL 00bL ¥ 631 %IDv 06vL NN Ol
£6ivs — 1 oot 8 9 Ll 831 M19V
20l - 4 3 ¥3LNNOD 10G oi vl
1 a8 v ik v 3 a0 0 8 v 20121 3291 72
e ot [si S+ i fe Jor i sl .
by . . €V 2V Iv OV _
e ol LD W3W 8 v 2 |
19 S~
WIN sng ss3saav
WILSAS
31Y9 &
Lsung
2INId €101 40709
b > IVAV AHOW3W=0
) ASNG AHOWINW=I
LD WIW WvYd QL $S3¥Qav
786 7@ 98 ¢8> M
1ig 16 & f21 0 Jm hm_ ww m—ml o¥ LIBIHNI=0 m_mﬂ__won_u_
—o \n_Q 3AING sz go8]V S+ 409 12 J¢ 219 2 E S NoH
R A T TR L¥3A 1 oeve 8% S AL 7 a9 8 vy, 0
39vd —1 ¢61vL] e v !
310 991 S < [SO v JL dvd €31 dn) gL L. 28ive 121t
9dl 1 ol 11Nid ,_\” NG G L9 2 8 v [T ZIlPY° 201 dfe 510 191 T 4
) clal v. GREEENE ! — - 5
Y’i PHII muwwﬁmw_ & 4 oV sv STV 4_ \dlL L v
.
L 2 3 v gz HILOVHWHD) s L™ 550
v_ wEO.ner 2 | 9 ¢ S+ & 0 FOIwnumZZO
. &< L - o
3 ELN] N
9vd 40 dot sna ss3uaav 0301A
590G W3LSAS L8VIS yog
S+ G+

Z a4nbiH

131 104 Hboy

JO41U0D pUD A11IN2413 U01JDIaLab 35Dq Bwif] 3i] JO S[IDIaP Saphjaul wpabpip sty Abidsiq AL 3yl Jo wpibbi(] 241DWAYIS

0/51na,

“& ainbyy ul AJpn3dastiod umouys synd.s Alowaw ayl jo Buliim pajIplap SIwo 1] uolpiaualb Avjdsip u

that the TVD generates two identical inter-
laced frames to make a complete picture.

The result is that each character is actually
14 lines high.

Sync Generator

The MM5320 sync generator chip, IC13,
uses a single 2.0 MHz input to produce all
the sync and blanking signals needed for a
525 line interlaced raster. The same logic
could be wired using TTL but would require
considerably more hardware and probably
cost just as much. (The 5320 runs $4.95 ppd
from NEXUS Trading Co, Box 3357, San
Leandro CA 94578.) The only disadvantage
Qund thus far with the 5320 is that it
prefers a square wave 2 MHz source. To this
end the 100 nanoseconds pulse from the
7490 “D” output is squared using two 7400
sections of IC10 as a oneshot.

Line Generation

Horizontal drive (coincident with hori-
zontal sync) from the 5320 triggers a 74121
oneshot, IC1, to delay the start of each line
and establish the left hand margin on the
screen. The output of the oneshot serves
three purposes:

1. Triggers the 74192 row counter, [C2,

2. Resets the 74193 character counters,
IC11 and IC12.

3. Inhibits the dot counter, 1C9, until the
start of the line.

When the line oneshot output pulse ends,
the dot counter starts counting at 5 MHz. It
resets itself every seventh count to allow for
the five dots of the character plus a two dot
space between characters. When the dot
counter resets, it also loads the next charac-
ter into the 74165 shift register, IC15. (The
very first character of each line is all zeros
since the 74165 is not loaded until the dot
counter resets the first time.) The 74165
shifts out the two dot space and the five dot
character at a 5 MHz rate. As each character
is loaded, the 74193 character counter incre-
ments by one to change the address for the
RAM 1o the next character. When the 32nd
load pulse occurs, the 5 MHz input to the
dot counter is inhibited using the “B”
output of the second 74193 character
counter. The 74165 continues to shift out
the 32nd (last) character and then shifts out
a steady zero. When the character counters
are reset at the start of the next line, the
process repeats itself.

Line Counter

The 74192, 1C2, counts each video line dis-
played. It counts to 10 for the seven lines of
character information plus a three line space.

BIT (DOT)
3 2 |

\\\\\\\ \\\: 000!
&\ @ 10001

5 DOT WIDE BY 7 DOT
HIGH CHARACTER

n

w

-3

o

[

~

The “A”, “B’’, and "“C" outputs control the
row inputs to the 2513 character generator
chip. The first video line is all zeros since the
row input to the 2513 is zero. Lines 9 and
10 are blankeéd using output “D” of the
74192, resulting in a total of three lines
blanked. At the end of each complete line of
characters, the 74193 line counter, IC3,
increments by one until, at the end of the
16th line, a carry pulse is produced. This
carry pulse resets the 7490, IC5, and signi-
fies the end of a page. Output “A” of the
7490 is used to inhibit the 7492 dot counter
and prevent the first line from being
repeated at the bottom of the page.

Page Control

The 7490, IC5, stays reset until the top
of the next page. Output “A’’ can be used to
tell the memory control circuits that the
TVD is not using the memory so that any
required updates may be made by the CPU.
Output “A’ also inhibits the ‘B Clock”
input via the 7410. The “D’’ output inhibits
the line oneshot.

When a vertical drive pulse (coincident
with vertical sync) triggers the 74121 page
oneshot, 1C6, the TV set syncs to the top of
the next frame. The page oneshot delays the
start of the first line to establish the top
margin. At the end of the oneshot’s output,
IC5, bit “A” is clocked to a one. This tells
the memory control that the TVD needs to
resume control of the memory address and
also enables the 1C5 “B Clock” input via the
7410, 1C7. The “B” section of the IC5 then
proceeds to count color burst gate pulses to
give the memory time to complete any
access already in progress. The color burst
gate was used only because it was convenient
and occurs at the same rate as the horizontal
drive — the horizontal drive could be used at
the expense of a buffer since the 5320 can

19

Figure 3: An example of a
dot matrix pattern gen-
erated by the television
display.

ADDRESS BUS
"

9 LINESy SELECT
DE CODE
TV
DISPLAY
? Loap
READ / WRITE
DATA ADDRESS
FROM Jo AVAILABLE MEM MEMORY cPU
RAM WM READ/WRITE | CTL
READY
6 ORE LINESS| 9 LINES SELECT
512X 6{O0R 8)
RAM
CONTROL
i INTERFACES
TRIZSTATE B LINES
BUFFER
UFFE DATA BUS

Figure 4: System Diagram. This figure details how the TV display fits into a
central processor’s memory address space. The low order 9 lines of address go
directly to the line and character counters of the TVD; the memory array is
addressed by the outputs of the counters, which are connected logically to
the address bus when the load line demands central processor access. The high
order bijts of the processor’s address are decoded separately and are used to
enable processor access if the TV display portion of address space is
referenced.

only drive one TTL load per output. When
output “C" of the IC5 goes high, the line
counters are reset. When output “D” goes
high the ‘B clock” is inhibited via [C7b, and
the line oneshot is enabled. This allows the
first line to start.

Composite Video Generation

The video and sync are independently
adjusted and then added to produce com-
posite video. This can be piped directly into
a set (be sure not to touch a hot chassis!) or
used to modulate a low power RF source. A
signal generator works fine for tests. (See
“Television Interface” by Don Lancaster,
page 20, October 1975 BYTE, for a
thorough discussion of the various tricks to
improve the interface.)

Memory Interface

Figure 4 illustrates how the TVD fits into
a larger system. It is intended that the
address outputs of the 74193 character and
line counters (IC3 and IC11) be hard wired
to the address lines of a 512 or 1 K by 6
static random access memory using 2102s or
similar parts. The data outputs of low order
6 bits of this memory are the ASCII charac-
ter select inputs to the 2513 character
generator, 1C14, and can be gated back to
your system’s data bus if you want the CPU
to be able to read from the RAM. (Of
course, a 512 by 8 memory would be needed
if the CPU is to be able to use the RAM for
other tasks.) The data inputs of the RAM tie

20

to the data bus to allow the CPU to write
into the RAM.

To avoid breaking up the picture on the
display during access, the memory control
logic must use the ‘“A” output of IC5 to tell
when the CPU can use the RAM and when it
must signal a busy to the CPU at the start of
a page. There is more than ample time
between the “A” output and the line
counter reset to finish any access in progress.
To use this feature, the memory busy line
must be wired to your processor’s “memory
ready”’ line (possibly through an inverter if
the logic of your particular compuies -
quires it). This method will work well for
any processor, like the 8008 or 8080, which
allows unlimited “memory busy” delays.
However, for dynamic processors such as the
6800, the maximum processor delay time of
about 5us dictates use of an alternative
approach. One simple approach is to ignore
the effect of memory access on the display.
The result will be a short glitch in the
display corresponding to each computer
access. The nature of the glitch will be a
resetting of the line and character counters
to a new location, causing a scrambling of
the display for the remainder of the current
frame. A second approach is to wire the
memory ready line into a single bit input
port which can be tested as a status flag: If
the line indicates a retrace, then the memory
access software for the display will allow an
update to occur.

The CPU addresses the RAM through the
character and line counters (IC3 and IC11)
by tying their data inputs to the system
address bus and using the load control of pin
11. The 74193s can also be used as tem-
porary storage for the address in a system
with a common address and data bus. Note
that the TVD does not interfere with CPU
access to the remainder of the system'’s
memory at any time and only delays the
CPU by one of the techniques discussed
above if it tries to access the TVD RAM
while a page is being displayed. The CPU has
the entire vertical retrace to make updates at
once every 16.67 milliseconds.

Lacking a memory for my initial testing,
the 2513 data inputs were temporarily tied
to the 74193 address outputs (2513 PIN 17
to character counter PIN 3, etc) to display
the complete 2513 repertoire every two lines
as in photo 1. The 74193 load lines must
also be connected to a “‘one.”

Modifications and Adjustments

1. There is one known bug so far and no
doubt more will show up when the TVD is
integrated into a system. The 7490 can, on
power up, hang in state with both the “C"’

Programming for the Beginner
A Structured Start

Ronald T Herman
Simpson Rd

RFD 1 Box 125
Windham NH 03087

A program can be viewed
as an edifice built from the
bricks of SEQUENCE
blocks, and the mortar of
IFTHENELSE, DOW-
HILE, DOUNTIL and
SELECT blocks.

For a number of years now the field of
computer programming has been moving
from the realm of a black art to an organized
and systematic process. A number of pro-
gramming techniques have evolved during
this change. This article will present the
basics of a technique known as structured,
top down programming. in the process of
applying these techniques in my own work,
it occurred to me that the basic concepts
could be useful to those just learning to
program, not to mention the veteran hackers
in the crowd. [f learned at an early stage,
these techniques can lead to more rapid and
sound development of one’s programming
skills.

A structured approach to program devel-
opment has among its virtues the following
points:

e It allows the novice programmer to get
acquainted with programming logic
without having to be concerned with a
specific machine or programming lan-
guage. |t allows him to grasp the flow
of a program without worrying about
bits and bytes.

e Followed correctly, structuring can
lead to a program that is relatively free
from logical errors the first time it is
coded and relatively easy to debug
once itis run on the machine.

e Pseudo code, a byproduct of struc-
turing, allows a means of exchanging
program ideas with others, regardless
of the machine with which they might
be familiar.

22

e Pseudo code provides a convenient
alternative to flow charts that can be
incorporated into a program listing as
comments for future reference and
explanation.

This process of getting things done in an
organized fashion has its drawbacks. How-
ever, most of these seem to be psychological.
Properly applied structured technology
tends to minimize one of the facets of
programming that has attracted many in the
past: the chance to see how cleverly and
concisely one can write a software routine.
This seems to have been replaced by the
challenge of trying to write a routine in a
straightforward manner and at the same time
trying to rigidly follow a set of fairly simple
rules.

What will be presented in this article are
some of the basic building blocks of struc-
tured programming and an example illus-
trating the design of a simple program using
these blocks.

The Building Blocks of Structure

So much for the sales pitch. What then is
structuring? Some number of years ago it
was shown that a program could be built
from a set of simple building blocks all
having the property of one input and one
output. While not everyone agrees on what
composes this set of building blocks, the one
in, one out property is common to all.
Presented here are a few of the most
common examples that should cover most
situations.

The SEQUENCE Block

Probably the simplest (and most trivial)
unit of structure is the SEQUENCE. This is
illustrated in figure 1 and is nothing more
than one process performed after another.

The IFTHENELSE Block

One of the powers of a computing ma-
chine is to make a decision based on a set of
conditions and take a specific action as a
result of that decision. This capability is
represented as the [FTHENELSE block
shown in figure 2. In the figure, “p” is an
expression or some set of conditions. In a
checking account, for example, one adds
deposits and subtracts checks written. An
IFTHENELSE statement of this fact would
appear as follows:

IF (transaction 1s a deposit) THEN

(add amount of transaction to balance)
ELSE (subtract amount of transaction from balance)
ENDIF

Here is our first example of writing a
program step in a machine independent
“pseudo code.” The format of pseudo code
is mostly a matter of taste. The punctuation
is optional, but the indentation is necessary
for readability where many complex
IFTHENELSE decisions are grouped to-
gether. Some people use asterisks (*) instead
of colons (:) to mark margins and some omit
the parentheses around descriptive phrases.
The ENDIF helps clarify the limit of opera-
tions within a more complex statement.
Each statement line represents a process to
be performed or a condition to be tested.
The statement or condition preferably
should not be continued on another line.

The DOWHILE Block

The decision making capability of com-
puters, combined with the ability to change
the order in which instructions are executed,
provides an even more powerful feature —
the ability to repeat a calculation or series of
operations many times. This capability is
represented in the DOWHILE building block
shown in figure 3. The DOWHILE is just a
special application of the IFTHENELSE
given earlier. In a DOWHILE block, a proc-
ess is done as long as a set of conditions “‘p”’
is true. Note that the condition is tested first
before the process is performed. Suppose
you have 10 transactions to update into
your checking account, some checks written
and some deposits. In pseudo code this
becomes:

{set counter to number of transactions)
DO WHILE (count is non zero)
(process the transaction)
H {decrement the count)
ENDDO

Note that the DOWHILE is terminated by an
ENDDO. The “{process transaction)” state-
ment could be the IFTHENELSE given
above. If combined, the result would be as
follows:
(set counter to number of transactions)
DO WHILE (count is non zero)

IF (transaction is a deposit) THEN

(add amount of transaction to balance)
ELSE (subtract amount of transaction from balance)
ENDIF

: (decrement the count)
ENDDO

The DOUNTIL Block

The DOUNTIL block is shown in figure
4. It differs from the DOWHILE only
because the condition “‘p" is tested after the
process is performed. This can simplify the
writing of machine code from pseudo code.
Suppose one wanted to read characters from
a keyboard until a carriage return is en-
countered. It could be done with a
DOWHILE by saving the last character read
as follows:

(clear last character read)

DO WHILE (last character not a carriage return)
{get a character from the keyboard)

H {save character in last character read)

ENDDO

SEQUENCE
PROCESS
A
PROCESS
8
IFTHENELSE
STRUCTURE

PROCESS

PROCESS
A B

|]

Y
A

23

Using structured program-
ming concepts, many
logical errors and bugs can
be caught at an early stage
in the design process.

Figure 1. The SE-
QUENCE structure is a
series of self contained
processing steps which are
executed one after anoth-
et. Flow in this diagram
begins at the top and pro-
ceeds down the diagram.
The number of steps de-
fined in a SEQUENCE
block is arbitrary; the
example here shows two
steps, A and B. In this
article’s figures, the nota-
tion BEGIN and END is
used to mark the well de-
fined extrance and exit
points of the structures
depicted. (NOTE: Proces-
ses A and B may be more
complex combinations of
the building blocks in all
of these figures.)

Figure 2: The |FTHEN-
ELSE structure is a con-
ditional test and two alter-
native SEQUENCE struc-
tures. The THEN alter-
native is executed if the
condition, P, is found to
be true. In this illustration,
the THEN alternative is
shown as a one step SE-
QUENCE structure called
B. The ELSE alternative is
executed if the condition
/s found to be false. In this
illustration, the ELSE al-
ternative is shown as a one
step SEQUENCE structure
called A.

]

PROCESS
A

Figure 3: The DOWHILE structure is a
looping form which repeats a specified SE-
QUENCE structure over and over again as
long as a condition, P, is true. DOWHILE
tests the condition prior to executing the
SEQUENCE structure for the first time.
Thus in this example, the SEQUENCE struc-
ture A could be executed 0, 1, 2... N
times, depending upon how soon the condi-
tion P becomes false as a result of A's work,

DOWHILE <)
STRUCTURE BEGIN
Y
DOUNTIL sEoN
STRUCTURE
\
PROCESS
A

Figure 5: The SELECT
structure is a more com-
prehensive version of the
IFTHENELSE concept; it
allows data to be tested
for multiple cases. The re-
sult is the picking of one
of “N” cases. In this exanr
ple, N is 3, so there are
three SEQUENCE struc-
tures which might be exe-
cuted depending upon the
case determination.

Figure 4: The DOUNTIL structure is anolh-
er looping form which repeats a specified
SEQUENCE structure over and over again
until the condition, P, is true. DOUNTIL, in
contrast to DOWHILE, tests the condition
after executing the SEQUENCE structure.
Thus in this example, the SEQUENCE struc-
ture A could be executed 1, 2, 3. .. N times
depending upon how soon the condition P
becomes true as a result of A’s work,

SELECT
STRUCTURE

BEGIN

———— "

2 | DETERMINE |
. CASE |

CASE | PRO%ESS

PROCESS
B

CASE 2

Y.

CASE 3 PROCESS ‘

C -

24

This would require an extra instruction or
two when translated into machine code,
since the “last character read” must first be
initialized to contain something other than a
carriage return. Implemented as a DOUNTIL
it is simply:

DO UNTIL {character read is a carriage return)
: (get a character from the keyboard)
ENDDO

The SELECT Block

Sometimes it is necessary to select one of
many possible processes based on some
quantity that may take on any number of
values. Suppose, in addition to updating
your checking account balance, you decided
to keep a tally of money spent on each of
several budget items such as food, medical,
car, electric and so forth. This could be done
with a string of IFTHENELSES s as follows on
the next page. Two possible methods are
shown but both are somewhat awkward to
follow. ‘

IF (check was written to super market) THEN
¢ (add amount to food total)
ELSE
IF (check was written to doctor) THEN
(add amount to medical total)
ELSE
H IF (check written to auto repair shop) THEN
(add amount to car total)
ELSE
IF (check written ro electric company) THEN
: (add amount to electric total)
ENDIF
ENDIF
H ENDIF
ENDIF

Alternate method:

IF (check written to super market) THEN
{add amount to food total)

ENDIF

IF (check written to doctor) THEN
(add amount to medical total)

ENDIF

IF (check written to auto repair shop) THEN
(add amount to car total)

ENDIF

IF (check written to electric company) THEN
{add amount to electric total)

ENDIF

A more concise and meaningful way to
describe this process is with the SELECT
block shown in figure 5. Note that although
there arec many paths through the block,
there is only one entrance and only one exit.
Our bookkeeping example now becomes:

SELECT (based on who check written to)
: CASE (written to super market)
(add amount te food total)
CASE (written to doctor)
{add amount to medical total)
CASE (written to auto repair shop)
(add amount to car total)
CASE (written to electric company)
H H (add amount to electric total)
ENDSELECT

These then are the building blocks of a
structured program. Others could be in-
vented, but these should suffice for most
situations. In any case, each should exhibit
onc entry point and one exit point. It should
be noted that none of the building blocks

transfer control (jump) into another, never
to return. This so called GOTO is a definite
“no no” in structured programming. All
processes are either done in line or are called
as subroutines that are presented elsewhere.
Frequent jumping around in a program
results in a maze of paths that becomes
difficult to follow and even more difficult to
deal with in the event that a change in one is
necessary.

Building From the Top Down

Earlier when the subject of structure was
intraduced, the term “‘top down’' was used.
If you wanted to build a computer, you
could start by getting the processor, then
some memory and |0 devices and a power
supply. Then you would have to try to
determine how to connect all the parts
together. On the other hand, you could start
by deciding what the specifications for the
machine are to be, such as word length and
speed, what the 10 ports look like and what
controls and devices are to be attached.
From there the problem is to select or design
the components and parts to do the job.

So it is with software. In the past the
tendency has been to first develop the pieces
like Teletype handlers, tape read/write sub-
routines and others. Then the pieces would
be fitted together into a functioning module,
hopefully without having to make any major
changes to the pieces already developed. The
experience of many people in the profes-
sional software field has indicated that this is
not an efficient way to design a software
module. Instead the approach is to start at a
high level of abstraction to describe the basic
function to be performed. From there each
unit of this description is broken into more
detailed modules. Once designed, the pro-
gram is coded and debugged a piece at a time
starting at the topmost level. Subordinate
levels of code are temporarily replaced by
dummy “stubs’ which do nothing. Then as
each level is coded and incorporated into the
program, any problems that develop usually
can be isolated to the modules just added.

As an example of this approach and the
use of pseudo code, let us design a simple
editor program. This editor reads a. line of
text from an input device (paper tape reader
or magnetic tape recorder). The line is saved
in memory and displayed on a video monitor
or typed on a Teletype printer. A limited
number of responses from the input key-
board allow changes, deletions, and inscr-
tions to be made. Upon completion, the linc
is written to the output device (punch or
another magnetic tape recorder). The proc-
ess continues until the end of tape is reached
on the input device. Changes and inscrtions
are made by typing the character on the

Teletype directly below the input line.
Inserts are indicated by terminating the line
with a carriage return (CR) and changes by a
line feed (LF). The Teletype carriage or
video display cursor is positioned using a
“Control P" character (holding the CON-
TROL key down while striking the “P”
key). This is not a sophisticated editor, but
should serve as a good example of how to
use the techniques described.

The topmost abstraction level of the
editor program can be described in pseudo
code as follows:

DO UNTIL (end of input tape)

{get line from input and type on printer)

(get response line from keyboard, store and echo it)

IF (only CR or LF entered) THEN

: (do nothing)

ELSE

IF (last character is LF) THEN

(do character changes and output line)

ELSE (do character {nserts and output line)

ENDIF

ENDIF
ENDDO

This then is our edilor in its most abstract
form. Note that an input line is dcleted by
entering only a carriage return or line feed.
Now let us refine the description by de-
scribing each process identified above.
Getting a line from the input device
requires turning on the input device, reading

characters, and storing them until a line feed -

or carriage return has been recognized. The
stored line is terminated with a zero (null)
character so that the end of the line is more
easily recognized later.

(set input line pointer to first address of line)

(turn on input device)

DO UNTIL (a LF or CR is read)
{get character from device)
(store character @ input line pointer)
(advance input line pointer one position)
(send character to printer)

ENDDO

(clear a character at the pointer address)

(turn off input device)

Likewise getting the response from the
keyboard is similar except that Control P
characters are echoed as spaces on the
Teletype printer.

(set keyboard line pointer to flrst address of line)
DO UNTIL (LF or CR {s typed)

(get character from keyboard)

IF (character {s not a LF or CR) THEN

B {store character @ keyboard line pointer)

(advance keyboard line pointer)

IF (character is not Contrul P) THEN
{echo the character on printer)

ELSE {echo a space)

H ENDIF

ENDIF
ENDDO
{clear a byte @ keyboard line pointer)

Character replaces and inserts are done by
using the Control P characters on the key-
board to indicate where the changes are to
be madc. For cach Control P character in the
responsc, an input line character is sent to
the output. When a character other than
Control P is encountered, it is cither inserted
into the output or replaces a character about

25

For a number of years, the
field of computer program-
ming has been moving
from the realm of a black
art to an organized and
systematic process.

“Top down structured
programming” is a verit-
able buzzword in the data
processing and computer
science fields.

Structured programming is
a systematic way of think-
ing about processes, the
result of which is a well
designed and under-
standable program specif-
ication.

This article concerns or-
ganizing and planning a
program, which is ex-
pressed in a structured
“‘pseudo code.” The next
step after the plan is
created is to translate the
pseudo code into the de-
tailed machine code of
your personal computer.

to be outputted depcnding on the last
character from the keyboard (line feed or
carriage return). Thus the replace operation
becomes:

(set input line polnter to start of input line)
(set keyboard line pointer to start of keyboard line)
(turn on output device)
DO UNTIL (end of keyboard line)
(get keyboard line character @ keyboard 1ipe pointer)
IF (character ls Control P) THEN

(get character @ Inout line pointer and send te output)

(echo character on teletype printer)
ELSE (send the keyboard character to the output)
: (echo the keyboard character on printer)
ENDIF
(advance keyboard line pointer)
B {advance Input line pointer)
ENDDO
(put out rest of characters in input line)
(turn off output device)

Note that the resulting output is echoed on
the Teletype to enable verification of the
opcration.

The insert operation is given below:

(set Input llne polnter to start of input line)
(set keyboard line puinter to start of kevboard line)
(turn on output device)
DO UNTIL (end of keyboard line)
(pet keyboard character @ keyboard lfue pointer)
I¥ (character is a Control P) THEN
{transfer character ¢ input lioe pointer to output)
B {echo character on teletype printer)
ELSE
DUWHILE (keyboard character is not Control P)
(send keyboard character te output)
(cclio keyboard character on printer)
(advance keyboard tine pointer)
ENDDU
IF (NOT END OF KEYBOARD LINE) THEN
: (transfer character @ {nput line pointer ro output)
: (echo character on teletype printer)
ENDIF
ENDIF
ENDDO
(put out rest of input line characters)
(turn off output device)

The routine that “puts out the rest of the
input line characters' is:

DO UNTIL (input line pointer points to a null)
(get character @ input line pointer)
IF (character fs not a null) THEN

(put character to output device) .

(echo character on printer)

H (advance input line pointer)
ENDIF

ENDDOQ

Finally the routines to get a character
from the input device and keyboard in this
simple system are identical except for the
address of the device referenced.

DO UNTIL (input device ready flag is on)
: (get input device ready flag)

ENDDO

(get character from device data port)

The character output and type routines arc
likewise the same.

DO UNTIL (output device ready flag ls on)
H (get output device ready flag)

ENDDO

(send character to output device data port)

We have now arrived at such a level of
detail that the code could be written with-
out much difficulty from the pseudo code
on an almost one for one basis. Each module
except for the top level description could
and probably would be written as a separate

26

subroutine. Note that each module can be
read starting on the first line and ending on
the last. No transfers are made out of any
module to another without returning to the
line following. Modules should be kept short
{no more than a page) so that they can be
read without constantly flipping pages back
and forth.

Conclusion

What has been presented in this article is
a description of a systematic approach to
program design and a means of describing it
so that almost any individual should be able
to understand it. The resulting program
when coded will have been well thought out
and may even have been reviewed and
partially debugged by other individuals not
intimately familiar with the machine upon
which it will ultimately be executed.

Much discussion has occurred about
standards for data exchange between various
computer hobbyists. On a higher level, the
pscudo code approach makes possible a
standard way to exchange program ideas. In
fact, higher level languages have been de-
veloped that, at least in part, rescmblc the
pseudo code language used here. Using this
approach, programs might be writlen to
convert pseudo code into machine instruc-
tions for the 8080, 6800, 6502 or other
CPUs as they become available. All hobby-
ists could then share programs in a higher
level language, ecach doing the necessary
conversion on his own machine.

There are a number of references on the
subject of structured programming. The idea
has been discussed extensively in computer
science circles in recent years, to the point
that “structured programming’ has become
a buzz word in the business. This writer is
familiar with the two texts given in the
bibliography. The IBM text is excellent for
beginners and those new to the concepts,
while the McGowan and Kelly text is a more
rigorous and mathematical presentation.m

BIBLIOGRAPHY

International Business Machines Corp, Structured
Programming Independent Study Program, Pough-
keepsie NY, 1974,

McGowan, Clement L and Kelly, John R, Top
Down Structured Programming Techniques, Petro-
celli/Charter, New York, 1975.

A High School Computer System

We needed hard copy and
a high level language

Homebuilt minicomputers
such as the Altair 8800
offer an economical but
efficient alternative to
more expensive options.

In late May of 1975, John F Kennedy
High School in Somers NY suddenly had to
face a computational crisis. For the previous
two years, the school had been given com-
puting time gratis by the local Board of
Cooperative Educational Services; our only
expenses were the purchase of an acoustic
coupler, and the telephone connection costs.
But that May we werc abruptly informed
that the service would no longer be available.

The problem was that there were three
courses that made use of the computer
already scheduled for the following school
year: an interdisciplinary course, a full year
calculus course, and a course in BASIC
language programming. Since it was too late
to design new courses and drop these, the
school began to search for an inexpensive
computing system. Besides low cost, we
needed a system with a powerful, high level
conversational language (either BASIC or
APL) with the ability to store programs in
some form such as paper tape or audio
cassette. The terminal had to provide hard-
copy and come with a paper tape reader, if
necessary.

Examining the Alternatives

The first possibility was purchasing com-
puting time on a time sharing basis from a
major corporation. This would have cost the
school over $3000 per year, and was there-
fore rejected as being too expensive.

The second alternative was to purchase a
self contained computing system, such as the
IBM 5100 or the Wang 2200. Although they
would have filled most of our requirements,
their high initial costs ($9000 and $5400
respectively) made them again too cxpensive
for our small private high school’s tight
budget.

The third and most probable choice was

28

Christopher Lett
Mac Gregor Dr
Mahopac NY 10541

to buy a minicomputer with BASIC software
and rent a teletypewriter to interface with it.
Since a system of this type met our require-
ments at an absolute minimum cost, it was
decided that this was the way to go. Now
there was another important decision to
make: What minicomputer system should
the school purchase?

That summer, MITS Inc was running a
sale on its Altair 8800 computer. What it
offered was the Altair 8800 computer, two
4 K dynamic memory boards, an interface
board, and, most importantly, their 8 K
version of BASIC on paper tape, all for only
$995. This meant that the system would pay
for itself in less than a year, as compared
with the next -most expensive alternative.
Table 1 shows the breakdown of costs we
estimated during the summer of 1975,

The Teletype Model 33 ASR was selected
for usc as the terminal for several recasons: It
provides hardcopy output, it has a paper
tape punch and reader, it does not nced a
telephone connection; and we knew from
previous experience that it is rugged and
reliable, with maintenance, as needed,
recadily available under the leasing
agreement.

Assembling the Altair

A check for $995 was subsequently
mailed off to MITS in New Mexico, and we
waited for the kit to come . ..and waited
... and waited. After almost two months of
patience, the kit arrived at the school in late
October. Since my father and | were charged
with actually building the thing, | had to
bring the kit (data bus and all) home with
me on the school bus (which was an experi-
ence in itself)!

The assembly manual for the Altair was

‘somewhat disappointing in its handling of

Our high school suddenly
faced a computational
crisis: With computer
courses all scheduled, we
lost access to a ‘‘free” time

| had to bring the kit (data
bus and all) home with me
on the school bus (which
was an experience in
itself)!

sharing service.

errata information. When MITS makes a
change in one of the kits, it throws a pile of
modification and errata shects into the front
of the manual. While the information is
complete, this makes it hard to keep up with
the changes that have been made. A better
solution might have been to issue replace-
ment ‘“‘change pages” to be substituted for
uncorrected originals. Another minor dis-
appointment was the fact that not all the
bugs had been caught by MITS. One such
uncorrected mistake was the fact that the
“+” and ‘“-" signs on the power supply’s
bridge rectifier did not line up with the
corresponding signs printed on the board
itself. My father and | ended up having to
trace the proper connections on the sche-
matic to sce what the correct alignment was.
| belicve that anyone who was unfamiliar
with working from a schematic would have
some trouble understanding how to orient
that rectificr.

Other small problems included nuts,
bolts, and screws that always seemed to be
the wrong size for the job, and a shortage of
terminal lugs.

Working nights and weekends, my father
and | completed construction within two
weeks. Powering up the kit for the first time,
we discovered that the only defective part
was one LED on the front display panel. The
only thing left to assemble was the serial 10
board. This time the assembly instructions
were clear enough, but the theory of opera-
tion manual was somewhat sketchy.

One thing that MITS failed to mention
was how to program the Altair to talk to a
Teletype! You would think that they would
mention that the interface must be sct for 8
data bits, no parity bit, two stop bits, and
device addresses 000 and 001, right? Wrong!
This information was not mentioned in the
documentation. Apparently MITS cannot
tell you how to interface the Altair with any
specific terminal because they have no way
of knowing what kind of device you would
be using in the first place. It is fortunate that
we had read Don Lancaster’s article on serial
interfaces in the September 1975 BYTE. My

Table 1: Comparison of Two Year Computing Costs.

SYSTEM

IBMSI100
Wang 2200

Commercial timesharing

Phone line cost — $150 per month
Computing costs — $100 per month
Terminal with dialup — $87 per manth

Altair Package it

MITS Altair plus software — $995
Teletype Model 33 ASR — $60 per maonth

recommendation on this point would be a
set of examples showing several typical
cases.

Up and Running

Finally, after a long delay in obtaining
the Teletype (not purchased from MITS, but
feased from RCA in New Jersey), the system
was fully operational. We have been using it
continuously cver since.

MITS is to be congratulated for their
excellent software. Their version of BASIC is
superior to most others that we have en-
countered, and it uses only 6 K of memory,
allowing us to write programs of con-
siderable length (about 100 lines).

The Altair is kept powered up con-
tinuously from Monday morning to Friday
afternoon to save wear and tear on the paper
tape with the BASIC software; also, it would
be too inconvenient to key in the bootstrap
program and wait the 12 or so minutes it
takes to load BASIC every day.

The security of the system is important
because the Altair and the Teletype are both
kept out in the same classroom. Because the
computer is not very large and thus easy to
steal, special precautions had to be taken.
The Altair is attached to the cabinet by
three screws through the bottom of its case;
it is positioned close to the rear of the
cabinet so the top of its case cannot be
removed with a regular screwdriver. Also, a
Plexiglas shield was placed over the bottom

29

TOTAL COST

MITS is to be con-
gratulated for their excel-
lent software.

A Systems Approach

Even a casual glance through the BYTE,
Radio Electronics, Popular Electronics, etc,
advertisements and articles reveals a growing
proliferation of microprocessor integrated
circuits and completed units. Which of these
is right for you? Here are some ideas to bear
in mind while making your choice.

Why do you want a processor at all?
Reasons vary greatly. Many find themselves
intrigued by the “computer environment’’
around us, and the microprocessor has be-
come a low cost entry point into
“computers.”’

Several amateur computer newsletters
list reasons for individuals becoming interest-
ed in microprocessors. Hams see them as a
working piece of equipment for their radio
station. Hobbyists see them as process con-
trollers; everything from lawn sprinkler con-
trollers to robots. Mathematical types find
them usable to run BASIC, FORTRAN,
APL, etc, for problem solving.

What are your future plans wilh micro-
processors? This may become a very opcen
question. However, some reflection in this
regard may prevent you from making an
initial, very expensive, mistake. If you only

32

to a Personal Microprocessor

Dr Robert Suding

Research Director for Digital Group Inc
PO Box 6528

Denver CO 80206

have a casual curiosity, don’t spend a for-
tune. A definite growth plan indicates a need
for more careful analysis.

Investment

Microprocessor kits vary from $100 to
several thousand dollars. The lowest cost
units are excellent for satisfying curiosity
about microprocessing in general, or will
allow machine code manipulations. Several
thousand dollar systems are often designed
for and purchased by businessmen and pro-
fessionals for applications such as payroll
accounting, text editing or name file
maintenance. The most frequent non busi-
ness personal system investment is probably
in the $500 to $1500 range.

Change

If there is one constant that is already
evident in this ficld, it is constant change.
You are about to invest (or already have
invested) a significant amount of money in a
microprocessor system. Unless your curios
ity is easily satisfied, the chosen system
should be able to easily adapt itself to

of easily plugable boards can represent a
major cost savings if they represent inde-
pendency at the board level.

Quality

Of course everybody has it. Don’t you
read the advertisements? However, look
beyond the surface for key items, or your
long run investment will make you wish that
you had. Here are some mechanical and
electrical considerations of packaging:

® PC Boards — Double sided epoxy,
plated, with plated through holes.

® Connectors — Gold plated fingers.

® [Cs — Factory Prime, not temperature

fallouts, etc.

® Conservative access speeds. Every IC
socketed.

® Small Parts — Close tolerances where
needed.

® Power Supplies — Conservatively

rated, overcurrent, overtemperature,
and overvoltage protected.

System Architectural Variations

There are a number of approaches to
small system microprocessor design. Each is
satisfactory for certain people, certain
applications.

® Joggle Switches and Bit Lamps: The
first hobbyist oriented microprocessor
designs, and many present systems, are
based on switches and lamps. If the
system is limited to this, programs are
small; or it takes long periods to enter
longer programs, and are very suscep-
tible to entry error. The user is forced
to think at the micro level, bit by bit.
if the intention of the user is to gain
intimate logic knowledge of the micro-
processor only, this system design is
very cost effective.

® Numeric Keyboard and 7 Segment
Readout: The ease of entry of this
type of system allows a substantial
gain in programming system complex-
ity. However, the user is still at the
logical data operation level. In addi-
tion, the programmer is restricted to
viewing only a single byte at a time,
making operator effort for analysis
proportionally high.

® TJeletype or Similar Hardcopy Devices:
These systems represent the next level
of improvement, offering some signifi-
cant advantages. They usually have
some form of monitor in a ROM
which allows the operator to type in
code and helps isolate him from errors.
The total program may be listed or

34

printed on hardcopy. In addition,
paper tape is usually available to pro-
vide an economical media for program
storage and exchange.

There are some trade-offs, however,
New hardcopy machines cost $71,000
up. Being mechanical devices, they
require significant precision main-
tenance. The inputfoutput speed is
usually about ten characters per
second; a dump of 1K takes about
two minutes, and creates a great deal
of irritating noise. In addition, paper
tape is a damage prone and bulky
medium.

Several integrated circuit manu-
facturers offer TTeletype-oriented
“evaluation boards.” If only required
for evaluation, ok; but they offer
almost zero chance for either updating
or extending. Both memory and 10 are
typically very CPU dependent, and if
memory buffering is not used, supple-
mental memory and 1O may be unus-
able.

® Video and Cassette: The latest stress
has been the movement to using a TV
set as an output display, a full alpha-
numeric keyboard for input, and an
audio cassette for program storage and
exchange. Video-based systems pro-
vide full user to system interaction at
minimal cost. A complete video dis-
play and cassette based system will
cost less than a hardcopy device alone.
The speed of system response is prac-
tically instantaneous. Operations may
be performed in almost complete
silence (a major advantage to the
hausfrau)! Reliability is enhanced as
electromechanical mechanisms are
limited to the keyboard and cassette
recorder. Data media storage density is
much higher; you can store the data
from almost a mile of paper tape on a
single C-90 audio cassette.

Conclusion

Serious hobbyists should carefully con-
sider design alternatives and growth plans
before ordering or building a micropro-
cessor. Ease of operation, reasonable cost,
and relative freedom from total obsolescence
should be prime considerations.

In the following months, a detailed series
of Digital Group hardware designs will be
presented for your use. Next month will
feature the low cost Digital Group cassette
interface circuit which design provides data
rates as high as 1100 baud, and may also be
used as a ham RTTY terminal unit or as
a telephone modem.m

A DIFFERENT
KIND OF STORE

Remember the blank stares you got when you
asked your local all-purpose electronics store about
microcomputers? Not to worry. Now there's a
place just for you — a store that specializes in
microcomputers.

The Computer Store distributes the MITS line of
Altair microcomputers (both kits and assembled
systems), but you can also get tools and instru-
ments; books and manuals; logic, memory and
processor chips and boards; components such as
power supplies and keyboards; a wide range of
peripherals; and software. And when The Com-
puter Store sells you a kit, you can walk out with
it and start assembling it the same day.

But the people at The Computer Store do more
than just sell. Like you, they are hobbyists and ex-
perimenters with a sincere interest in this most
exciting technology. Do you have a hardware

problem? You'll find a complete diagnostic labo-
ratory on the premises, as wefl as a full inventory
of IC chips. Need software? The people at The
Computer Store maintain a blueprint library and
provide copying services. Supplies? Where most
vendors stock only the “big ticket”” items like
disks, The Computer Store also carries printer
paper and ribbons, paper tape and cards, and mag
cartridges and cassettes. Also at The Computer
Store: seminars and lectures {A BASIC course
features hands-on computer time), manufacturers’
literature, magazines, and a pleasant place to meet
and rap with computer enthusiasts like yourself.

Whether you’re an experienced kit builder or
just interested in learning more about the fascin-
ating world of microcomputers, The Computer
Store would like to make your acquaintance. We
believe computers are for people! Help us to make
it happen!

A sampling of what you’ll find this month at The Computer Store

e MITS/ALTAIR 8800
with 8K Dynamic Memory (Kit)
$829.00 postpaid

® 3M Data Cartridge
IBM 5100, HP 9830 Compatible
$100.00 Package of 5, postpaid

® BASIC for Self Study
by Albrecht, Finkel & Brown
$3.95 postpaid

® Weller Model SP23K
Soldering lron Kit
$8.95 postpaid

o Lear Siegler CRT Display
ADM/3 — 960 character

$995.00
F.O.B. Burlington

® 20K byte DOS/BASIC ALTAIR SYSTEM e
Dual Floppy Disks, CRT,
Line Printer (80 columns, 110 cps),

PROM Hardware Loader

{Mass. residents add 5% sales tax)

30 day delivery
$9,395.00 postpaid

Prices and Specifications are subject to change without notice.

he Computer Store,Inc.

120 CAMBRIDGE STREET, BURLINGTON, MASSACHUSETTS 01803 (617) 272-8770

demonstration contest. Judges were Les
Solomon, technical editor of Popular Elec-
tronics, Larry Steckler, editor of Radio
Electronics, Theodor Nelson, author of
Computer Lib/Dream Machines, and BYTE
editor Helmers.

Don Alexander of Columbus OH was
named grand prize winner in the demonstra-
tion contest with his computer-controlled
amateur radio Teletype station. The home
buili system consisted of an Altair 8800
with 8 K of memory, an ASCII keyboard, a
video display, Baudot Teletype and standard
transmitter and receiver.

In addition to building the hardware, Mr
Alexander developed his own software and
wrote the assembler and editor for the
system. The program he demonstrated at the
Convention was written for receiving and
transmitting messages in a radio Teletype
contest. The Altair 8800 kept track of most
of the radio Teletype contest “house-
keeping,”” such as: ASCllI/Baudot transla-
tion, crosschecking calls for duplication,
sending the time and message number of a
transmission along with lines of text that are
generated by command from the keyboard.
After every exchange, a log entry was
printed on the Teletype, keeping a hard
copy record of all exchanges. A complete
Altair floppy disk system was awarded to Mr
Alexander for his winning entry.

A tie for second place resulted in MITS
awarding two Altair 88008s: one to Randy
Miller of Tempe AZ for his computer chess
demonstration; and one to Wirt and Valerie
Atmar of Las Cruces NM for their speech
synthesizer.

Third prize, an Altair 16 K static memory
card, went to Danny Kleinman, Steve
Grumette and Mike Gilbert of Los Angeles
CA for their backgammon game, written in
Altair BASIC and played on a Cromemco
TV Dazzler.

The winners were announced March 28
1976 at the Altair awards banquet. Grand
prize winners in MITS' vyearly software
contest were also named at the banquet;
James Gerow of Houston TX won first place
for the best program, and Lee M Eastburn of
Langdon ND took the top prize in the
subroutine category.

Throughout the weekend Altair users
from 46 states and seven foreign countries
took part in seminars presented by MITS
engineers and software developers. A group
of guest speakers, including Ted Nelson,
author of Computer Lib, David Ahl of
Creative Computing, and Carl Helmers of
BYTE, led a Saturday night discussion of
what the future holds for computers in
general and for hobbyists in particular.®

37

IMSAI

announces
a unique
4K RAM
board

for just
$139.

Nobody has a 4K RAM board
that gives you so much for your
money. It’s fully compatible with
the Altair 8800.

Through the front panel
or under software control, you
can write protect or unprotect
any 1K group of RAM’s. Also
under software control you can
check the status of any 4K RAM
board in 1K blocks to determine
whether it’s protected or not. The
board has LED’s that clearly show
you the memory protect status
of each 1K block and which
block is active. And there’s a
circuit provided that will let you
prevent the loss of data in the
memory if there’s a power failure.
This low power board has a
guaranteed 450 ns cycle time—
no wait cycle required. There’s
nothing like the IMSAI 4K RAM
board around.

Dealer inquiries invited.

VIS

IMS Associates, Inc.

I IMS Associates, Inc. Dept. B6 I

14860 Wicks Boulevard
San Leandro, CA 94577
(415) 483-2093

Order Your IMSAI 4K RAM Board For
Only $139. Use BankAmericard,
Master Charge, personal check or
money order.

O Send — 4K RAM boards today.
[0 Charge to my credit card.

O BAC No
O MC No.

Signature

Name
Address
City/State/Zip

—— — — —— — — —— — —

Building an

‘M6800 Microcomputer

Early in the introduction of the Motorola
6800 system, an “Evaluation Kit” of seven
family chips was made available, This kit
contains 'the microprocessor, a read only
memory preprogrammed with a system
monitor called MIKBUG, two 128 by 8 bit
random access memories, two peripheral
interface adaptors and an asynchronous
communications interface adaptor. These
chips are all M6800 family.- members, in-
tended to work together and demonstrate a
typical minimum microcomputer system. At
this writing the kit cost is about $150.

Because a number of these kits were and
still are being purchased by hobbyists, | Felt
a few notes on my own experiences in
getting one up and running might be helpful.

Construction

System layout and design was de-
liberately kept simple without compromising
quality. Most components are on three
Vector Inc 4066-5 wire wrap cards. These
are extremely versatile plug-in boards having
good power distribution and an excellent
ground plane. The first card (see figure 1)

40

Bob Abbott
Route 4, Box 583
Evergreen CO 80439

Photos by Sheldon Luper

contains the processor circuit, system clock
module (Motorola MC6871A), MIKBUG
ROM, and the system reset circuit. Also
included was a socket for a 512 byte
erasable programmable read only memory
for my own firmware. | decided to include a
total of six programmable random access
memory integrated circuits to total 768
bytes, of which 74 bytes are dedicated to
MIKBUG. These are mounted on their own
card, connected as shown in figure 2. A third
card (figure 3) is for input and output. It
includes the two peripheral interface adap-
tors, the asynchronous communications in-
terface adaptor, a bit rate generator, an
MC14536 programmable timer used for
MIKBUG and the RS-232 serial interface
buffers.

All boards were wire wrapped using #30
gauge Kynar insulated wire and a modified
wrap which includes one turn of insulation
on each wrap for mechanical durability. Wire
wrap was selected for this system in lieu of
printed circuit boards because of the ease of
changing connections., Total wrapping time
for the three boards was about 10 hours.

(474

no3
.24._.‘5_25 D m

. * . T
| 9N71d HIOQVIH NO S3L3IUDSIQ “13s3y 3
_ Thbd
“ .@oo_ M @ g4

Jawis gasn ‘a¥v08 ANNONY ATTVH3EIN
SERM S LI1DvdV

HLO8 ONIMO] M_wz%&rwm%i_ahmw

-7V 341¥-000V

OL NOILVDIOTIV

@h_ _ u_m ® sovL A

ond
Y3AV3IH NO

SL1l IINVHI 1T1IM 2 g
©)] N pIV SO | " _ o _ . 1
$31340810 ; ONIAING HILYIANI | 4 ﬁ ELo3 LW L% oo
HOLVINO3 @7) 4mez 99 T'@ NV IWIL Y LV NI

39VII0A a399n07d 38 NV

. 3NO AINO*39NVY
4/ $S3IHAAY IWYS

M M
0
a@ g
5

3
wﬂwmﬂwmu . @.il_u.T@ 8 lasas |[°
+ @) . 2
I ze 3ONIS: uhoz O @ =1 %
9 ASz @470 34734 m“ 891 _
112 _ u n”v N m ﬁu
_ J G 8] 4mre] @. ® L o T @ ®
: | Qoral Q| | o9z g T
_ A2I- 2i+ T)))wl. LH9 S >
OA | ¥ Owa8| || & e 0% ®
As2 @4701
2’ | oI~ ' / v @
ﬁ - e \ J/ S+ .|I|°\°.|J.
| ININOILIONDD HIMOd 9N17d ¥3AVIH NO K e
—{san 2 S3L3¥DSIQ 0L ¥3438 |, HOLIMS 13530
no- | SHIGWIN 4310810 - _
+4413-0003 i vl i
s d3ivooMv vl 8v AHAM _ Ol Nid 3INVIdNOVE S3LYDIANI —01] :3L1ON Y]
Be>—757 I :
9a av - - = 14 SOov. 621
B>, z 9v E| 01t ‘bl 965 80l Va7 vail
PE>——7—=s0 i O <9 2 ¢ - - HOZEWT £ DI -0yl —557<0d)
] Wou3 S R b1 020%Z 99l v
] vosz Uiy v <t | - - - vl 8006, GOl B TN S
[pe> ta o] <7 M <39 H/Y 2,
3N 2 - 6l v2 v0L2 DI Z b
BE>——a—20 Y evg—sy—<&9 | 2 2= 21 Z-I0C89WOW €21
EE>——"—1a IvE———<04 - - - PX 89N
] —Tv |- - - zzu'02 VIZBOW 2Dl aion culoul |
ee>——g—oo ovfe——sr—<2Z] 8 00BN 131 s 1 eH b,
6[°" aon 39A 8 G 2o 21+ OND Ace JaAL 2 3 @z
m@ vNA_ C— SNid ¥IMOd—
8-S
8X2IS WOMd WOLSND [— .
2+ S+ * " H04 mzo;uuzon.ul_A VHASAS VIASAS 00899
191
_ YAA
* AYOW3IW
9NEXMIW HO3 SNOILIINNOD @ | _ A 2hvnA
VIZB9OW
eSO < SOWN[ET 3Ama £|'°
_ =0 ._Nke» b . SOWN
L1z 2 -
Jano 189 —sv——<EH 291 sowN[zr—Fama 1E)°°
osofs—m—<ed | S e T SOWN e
=6V | QINGAH %2012 9t
« 4413-0003 | a
Q3LvI0TY G+ Be>—7g43]¢
B>—5—]4¢ _ E>—5g 3|00
[B>—55—{20 | 55 52 ¢
PE>—— MM | 55 62]%¢
>—— wou BE>—go¢] 80
>—g——]<0 ONENIN | sd1c%¢
B>—57—]2¢ 3 | T 1a
> 2-10£89WOW %1 5>
o oo B T | i o3
N S T
3]
v [
S+ _ G+

| a4nbry

‘($21) 4011U0W 21DUIB}[D UD YIIM Pauiupiboid 1/ Z ja1u] up 10 (€D1) WOY DAGNIN 24l 494112 J0) S194I0S pup

‘901 40 o1Boj Bupunoqap 13521 ‘D] YobIaLab §20)2 2y ‘D] Y0SSa0.4d Byl 21D SJUBUOAWIOD JOfDW Y[PIDT) JOSSBD0LY

ing the output of the valid memory address
(VMA) buffer showed considerable noise
from the system phase two clock which was
riding on the VMA signal. This clock line
was being gated with buffered VMA in the

same package,

a 74H08,

and there was

apparently coupling to the other gates. The
result was a fair amount of noise on these
gate outputs and on the processor’s address

line A15.

This situation was possibly aggravated by
the fact that the 6800 processor is only
specified to drive one standard TTL load
plus 130 pF of capacitive loading, and the
load on A15 was near the maximum, In any
case | replaced the 74H08 with a CMQOS
74C08, and noted an immediate and drama-
tic improvement in the condition of the
system. The noise disappeared and every-
thing then worked without further trouble.

MIKBUG

The system monitor comes with an En-
gineering Note #100 which describes the
operation of the program and includes a
complete assembly listing. This program
provides the following functions:

Load memory from keyboard or tape.
Examine and change memory.

Load to tape.
Print the contents of selected memory.
Examine and change the processor’s

registers.
Go to user p

rogram,

Evaluate a maskable interrupt.
Evaluate a non-maskable interrupt.
Set a breakpoint in the user program.

The MIKBUG Note does not mention a
couple of critical points. First, in order to

Figure 2: Memory Card. The connections for memory are illustrated in this diagram. Six MC6810L-1 memory chips are used to
implement a total of 768 bytes of memory. The present design does not decode all address bits, so use of large amounts of
memory expansion will require some additional decoding logic in the chip select lines.

+5
17§,
MC6BI0L -1
ALLOCATED
®_AQ_2$_ AOOO-AO7F ‘E_DL@
[Fo>—Al—-22 DL 3§
A2 21 4 D <56)
E8>—<—= | so0r EsS A2
Ge>—~A3 20| ViNpy 5 D3
A4 19 DATA 6 D4 @15]
AS BUS 705 5
Eo>—A6 17 8_D6 7§
a2 e s o7 >3
A 10} 5o,

@ :m i2| Cso- Csa- |l uMAG2:
E>—A5 3]s, Rw Jl&_R¥
GND CS5-

T B

1€20 249*°

MCE8IOL-|

ALLOCATED
@M 0i00-0I7F ‘
[Fo>—AL_22 3Dl
‘ ADDRESS ‘
. A3 20 INPUTS 5 D3
Ea>—2a 9] oatal |6__ D4 3
A5 18 BUS | [7 bs ,\33:]
Go>—AB 17 8 06 =g
o SR
Ee>—22—cso+
oAb 12)cc,. co34 |l3YMACZ 1
@Al 14)cc, rwlse_BW T3

GND CS5-

+5
icis $a
MC6810L-
ALLOCATED
2280 23} 0600-007F (}2—DBO 7y
o e
ADDRESS
EE> A3 20 INPUTS 5 D3
Ee>— 3 DATA <34
Bus | PR <5
>4 18 705
Eo>—As 17 8 D6 .:E
AT —Llcsi- 9 07 57
csz_
Ba>A3 14]ccs cssfRyMACE o
A5 150 ies. Rw [&_BW 7
GND cso+ +s
P e
1Ic2l p44*3
MC6BI0L-|
ALLOCATED
:? ZZ 0180-0IFF ———<§ gcl’ 4d
A2 2] 4 D2 35)
ADDRESS
. A3 20) \INPUTS S D3 <34
A4 19 paTA [6_ D4
> apvamm— A5 g BUS —@7 05
B> A6 |7 8 D6 ‘
m) a7 iolteo. s 07 g
CS3+
cSi- csq_‘ﬁlma:@
AI5 cso- RwliE RW
GND CS5-

I 15 +5 15
|_z_l POWER CONDITIONING | | l
[>
E Ci6

OlpF

OluF

Oly.F BYPASS AT EACH MEMORY IC'S PIN 24

+5
I1CI19 24
MCE8IOL-I
ALLOCATED
A0 __23 1~ 0080-00FF ~2—DBO 37
- At 22 4} D .
s 02 5
[fe>—A3 20 ADORESS 5 03 =5
Gas_Ad 19 patag s 0a o
Eo>—AS5 18 7 05 35
63> 6 17 8 D6 ‘E
. A7 10 SO+ 9 D7 .
Fo>—Aa8 11]cq
BEa>—A2 12 lcsa- cs3+fli ¥MAOZ g
[aa>A5 14] e, rw Jle RW
GND___ CS5-
[IE
c22__ 44 *d
MCE8I0L-|
ALLOCATED
A0 23
F>—22 221 5500-027F r P—22—<40)
o—AlL_22 3 DL
} 4 p2
ge>—A2_214 | nporess | L2 <59
e>—a3 20] ViNpUTS 5 03 o
[E>—Ad 19 %ﬁg‘\ 6 Da
E>>—A5 18 705 55
Eoo :3 17 8 D: 5]
B> TH s o7 =g
e >4« cse-
A9 10)id0, cgs- |2 YMAOZ
15 14 fcoq. Rw e BW 3
GND cS5-

Figure 3: Peripherals Card, The system includes two PIAs and one ACIA mounted on the peripherals. The PIA at addresses
8008-8008 is a general purpose 10 port brought out to the PIA chassis connector via the two ribbon cables which plug into J1

o
T~
S
o
%)
w N [T BN
S y BIRIEIE el
S LYY VIOY
S sivvwa| eilvviov] 2dodlsalbalealza]iglog "31907 LD313S dIHD OLNI H3LNI OL IJAVH GINOM IV HINOMHL IV SLi8 SSIVAAY *VIOV
S p 40 300230 TIN4 V ¥O4:S10373S dIHO OLNI HILNI OL IAVH 1V aINOM GIY HONOYBHL 2V
2 o elol |l ol ol 2| il oz 2lzz e | S118 SS3¥AAV 'SVId 40 300330 TIN4 V ¥04 ‘300930 A1IN4 LON 34V STVHIHLINI :3LON
) s — 7 99 _
I D 1 LA] sne vLva X X AWYS 40 SLIT443 WOANYY
O N3 ¥l GNY SLNIISNVYHL 3SION
< 26 ol 3LYNINIT3 OL 30110V8d
© B>——g—-ou 0009 'SHOLIOV4V) SSVdA
= 1108 -0108 GILVYD0TIV 2! £2 AlddNS HIMOd 3710°<=619
- VIOV 0S890W " NH\P —— " —— —
23 12 NSO { — . < v_
S S €101 s a s | ZHW2Ev8)) AOI
R I 2 o+ Tl 93WI S TVISAY) amm ario| 3o Filey IFLITE BFLLNT
S 8 @ 2 xy XL e nyg xT
S 5 oll w13+ <<
R m_ g} ¢2 2 E] N 0¢
3 ‘ <3
S - G+ 00€ o
S 6% 3N
< m XHYIOV 2191 22 Y. /AW
z
1SN As2 ®4m01 <7]
] 8] NE)
NN S+
S ZHOObZ <3
S S c 1obl 2 88%IOW 9131 v
5 S I bl 68¢10W Gi | zl+ R.,
8 S| 9E€STIONW I D! AG2 @4701
3 | 21 0¢89 OW €1l @ 213 <
Q oy SSAlg 2l 92 UpbIIW 2101 <0l
oS %0l s I 02 02893W 1121 $
Q ory IS 1 o2 0289 OW 0191 _
D2 Nt 19 @
S TN 7 AZi— AZI+OND AG+ SNINOILIANOD
H3IMOd
QS 10 57 SNOILJ3INNOD ¥3MOd 3
= £ 9ESH10N a | 2008-008 S3SSIVAAY
=5 vIol 4 8 L¥od il
v & T
s 3 uoouum € 1] & W 584 0l 5T T0 <
o & 3] G+ & @ T84 11 7z 50 <&
= 2 SEI] @ © <0¢
=S g 88 ol 28d el 82 &Q
S 3 sng | ez va Wer B sne) fes—a—<8]
S 3 o 5 m@ viva o] T84 Shel o
S w» ot €0 Aﬁ. @ @ ved vil) o ot 0 <&
3 M AG+ e Z2da <5 & © S8d Sl 1
S < <&
S 5 L 1® O 584 o1 LD
Q 1008-b00e g7 —<H 8008-8008 “gr—oq—Y
2 3 Q3Lv20TY 484 4 €€ 0d
~ S AG+ Ta5—sr| | 93LvooTw
SQ -1353Yr—Tsesy <] FER) & -1363¥ el
X 3 XLVIOV vid 0289 W -80¥1 =
M = 88b| [e < Zvo mmg &ﬂxx_ T T
S 3 o 2¢2 98d 12 L] V3 0% Y.
X = e L ERCILE] 3 Vi & 38N [<G
S onvaot ® O % E] 6l 085 <&l OO ovd 8| 22
S5 68b1 ® ® 4y 88% [ID Zao 7 G VAA % W S DS 05 gvvwA <&l
SIS J Yvd 9
m S () ® r—osov=m oev UL OO TVd S 28—y
= 5 @ e Z1vd 6 @ ® I A (T <389
S W @ Q, ®@ @ Va € oo T <ol
oA/n: S W N NI OnEIA 228 OSH[5F ov ® O ova 2|/ OS¥lgr—ov <&L
- W >n+mj6a oTo1 Y3 v 180d
s 2 SLHOd vI§3S g+ G+ cs R
- T
N S
—~®
T}
S S

45

PLA

CHASSIS
DIP PLUGS CONNECTOR
CABLE
'60 M [pac ,
MY 3
5|PA2 a
Hot| lenolHoT alPA3 6
.|Paa 6
POWER olpas 0
TO
COZRKCQOM FILTER e I PAS 12
(OPTIONAL) a|PAT aa
T gl CAl N
s1 5 olcaz o
RESET s2) 1| CND 7
PUSHBUT TON KEYSWITCH 1alenn !
° ON-OFF D
12 5
FUSE I/2A
+5
14 23
) NEON PILOT leo 22
LAMP ASSEMBLY
»|PBI o
alpB2 20
JPB3 8
T0 e _|p2 5}EB2 16
l J2 ¢ J2B5 ‘4
—1212a PBE
12 5 POWER-ONE 7 13
5] 24 HTAA-I6W 5|87 5
o les p
TO J3 10 FEB2 19
TO BACKPLANE POWER L P3 ‘lmp
BUSES 4131211 5 3 7 6 13 | i0 9 |PLUG
A 5 =Y g
fo Y (ol (=] Q =
NATATANAATEATAIR | |2 R E 5[i3
[] ol Y 4 1] =R o4 A HEH
L ERISIES > > [[6]3 Sm) caBLe
o (=] (&) ~N =
|9 |« 22 o |0 fjwlx o
-12 o Q + |+ |l non
vDC 22 B oo
+12V0C 3z ~oN
+5VDC I 54 1011 53 2 1467 9 | 1213 | SERIAL CHASSIS
GND RS 232 L0 CONNECTOR

Figure 4: Power Supply, Interconnection Cables and Reset Switch,

jump to the user’s program it is first neces-
sary to print the contents of the processor
registers, then change the program counter
to the address of thc target program. Sec-
ondly, nothing is mentioned in that note
regarding how to set a breakpoint into the
target program. To do this, simply open the
memory location at which you wish the
breakpoint to occur and note the data.
Change this location to a 3F, code for a
software interrupt instruction (SWI). Now,
jumping to the target program with the
breakpoint “trap” will cause return to
MIKBUG at the SWI! instruction. When the
program executes the SWI, the computer
pushes the contents of CPU registers into the
stack; MIKBUG prints the contents of these
registers and resumes normal control.

Summary

This microcomputer was constructed
with an absolute minimum of time or
expense. Troubleshooting and bringing the
system up was straightforward, requiring
minimal effort.

a6

| feel the project’s cost could be held
under $250 with some prudent shopping.
For the hobbyist on a limited budget, this
approach might be the way to go. The
addition of a TV typewriter produced a real
operating computer system complete and
lacking only somewhat in the area of ran-
dom access memory space. Even so, there is
plenty of memory for the average beginner.
There is a considerable effort involved in
writing and hand assembling programs long
enough to fill all the available programmable
memory. By the time the user reaches that
stage of expertise he could start using his
EROM to compensate for lack of program-
mable memory. In any case random access
memory can be added with due attention to
address decoding details as program require-
ments grow.

| hope these notes are of some aid to
those hobbyists already owning or con-
sidering the purchase of the Motorola
M6800 Evaluation Kit. I'm sure you will
find this system as interesting Lo construct
and use as | did.m

Strike a MATCH

Phillip L Hansford
6841 Haywood St
Tujunga CA 91042

Although this article is written from the
standpoint of a MITS Altair computer, what
is said here is also applicable to other
systems. The original idea was simple: Using
only a basic Altair (which started with 256
words of memory) and no peripherals, build
a program which would match penpals ac-
cording to age, vocation, and interests. It
was originally experimental, written just to
see if it could be done. But the program has
proved so practical that we have been using
it continually for our penpal club. The
original program has been expanded to select
compatible penpals from more than 200
choices. It has application wherever it is
necessary to match data. In the version
described here, a simple executive program
can select the matching program as well as
several other programs located elsewhere in
memory. The executive reads the Altair
sense switches for its inputs.

Tuble 1: For the penpal multching, a code number js determined by age,
vocation, and other factors as shown here.

LANGUAGE

1T INTERESTS
AGE ——1 l’_[:”l_‘i VOCATION

111 11 1

The four bit pairs are written as a number from 0 to 3. Each bit pair specifies one of

four possibilities.

Bit
Pattern Number
00 0
01 1
10 2
11 3

Age

under 23
24-29
30-35
over 35

Language Interests Vocation
English stamps professional
Spanish travel worker
French arts student
Multilingual other other

This shows an example of how selection might be made. The actual categories in use now

vary somewhat from this.

48

Penpals

Each penpal has an octal file number, and
an octal code number which specifies several
characteristics such as age, vocation and
interests. Therefore, two words of memory
are required for each person. The original
version of the program gave usa capacity of
80 people; but when we added additional
memory, the table area was expanded to
hold 208 people. You could add even more
memory to the program if desired, but in
our use we did not need it; and the file
numbers are 8 bit octal which limited us to
255 non zero names. (For uniqueness, file
numbers should not be used more than
once.) For this program, file numbers cannot
be zero (which is interpreted as no answer);
and interest code numbers can be neither
zero (space), nor 377 (the stop byte).

Since there are presently no peripherals in
the system, the information must be entered
on the sense switches and read out in the
Altair memory display (LEDs). Input output
devices would make it easier Lo use the
program, but would also require additional
hardware and software. In practice, when we
have a penpal to match against other pen-
pals, we first determine the type of person
he wants to write. This information is
converted into a series of 4 digits using table
1 and the resulting 8 bit number is entered
on the sense switches once the program has
been started. When the program is run, the
computer reads the sense switches, then
searches its memory table until a match is
found. The search is begun on the first odd
address in the file, and even addresses are
skipped. This is because the file and code
numbers are adjacent in the memory. The
file number is at an even address and the
code number is at an odd address. If a match
is found, the program decrements its address
pointer to the even address and moves the

file number to the next available output
location. [t restores its pointer to the odd
address and then increments the pointer
twice to the next odd address and compares
once again. If a match is not found, it
increments the pointer twice to access the
next record. The sequence continues until a
377 stop byte is found, which indicates that
the end of the data table has been reached.
At that point the program then jumps to a
loop near the output addresses. The com-
puter can then be stopped. The entire
operation of the program takes the pro-
verbial wink of an eye. The examine next
switch is then used several times until the
first output address is reached and the
answer read on the panel LEDs. The next
answer is available at the following address
(depress examine next again) and so on. A

zero in the output memory location means
there are no more answers (or that there
never were any).

The whole program is fairly simple, but
we had to add a few touches of finesse
before it would work properly. The output
list of matches has ten locations allocated at
the top of the 512 word region occupied by
the program. This is adequate for our use;
but if you anticipate more than ten answers
at one time, you should modify the program

to expand this space. The previous answers

Listing 1: The MATCH program specified in symbolic assembly language
form, with absolute code for the program, starting at location 002/000 in
memory address space. The notation A(X) is used to indicate the address of
X. DS is used as a pseudo operation for reserving storage. DB is a pseudo
operation used o indicate definition of constant bytes.

Intelese

Octal Address Octal Code Label Op Operands Commentary
002/000 041 364 003 MATCH LXI H,A (OUTPUT) point to output area;
002/003 042 056 002 SHLD POINTER save pointer address;
002/006 257 CLRLOOP: XRA A clear accumulator;
002/007 167 MoV M, A move zero to memory;
002/010 043 INX H increment memory pointer;
002/011 175 MOV AL test low order of memory
002/012 376 377 CP1 377 against highest value;
002/014 302 006 002 JNZ CLRLOOP if not equal then continue;
002/017 066 307 MVI M, 307 place restart code in memory;
002/021 062 054 002 STA CALLBUFF set call buffer to 377;
002/024 000 NOP left over NOP;
002/025 061 000 001 LXI SP,A (STACK) initialize stack pointer;
002/030 041 055 002 LX1 H,A {INBUF} point to input buffer;
002/033 333 377 IN SENSW read sense switches;
002/035 167 MOV M,A save in input buffer;
002/036 021 115 002 LXI D,A (TABLE +1) point to first odd data entry;
002/041 257 XRA A clear accumulator;
002/042 276 cmP M is table code equal zero?
002/043 304 060 002 CNZ MATCHER if not then perform all tests;
002/046 303 360 003 JMP DONELOOP terminate the program;
002/051 000 000 000 DUMMY: DB 0,0,0 unused space;
002/054 000 CALLBUFF: DB 0 call buffer for executive;
002/055 000 INBUF: DB 0 input buffer area;
002/056 000 000 POINTER: DB 0,0 output pointer;
002/060 106 MATCHER: MOV B,M B := INBUF;
002/061 032 REMATCH: LDAX D A := TABLE [current-odd byte] ;
002/062 376 377 CPI 377 is odd byte stop character?
002/064 310 RZ if so then return to caller;
002/065 270 CMP B is odd byte equal match byte?
002/066 312 076 002 Jz ITMATCHZ if so then go process match;
002/071 023 NEXTREC: INX D D := D+ 1; [point to the
002/072 023 INX (0] D :=D + 1;next table entry]
002/073 303 061 002 JMP REMATCH go retry with next entry;
002/076 033 ITMATCHZ: DCX D point to name number of record;
002/077 052 056 002 LHLD POINTER point H,L to output;
002/102 032 LDAX D A := TABLE [current even byte] ;
002/103 167 MOV M,A M(POINTER) := A;
002/104 043 INX H POINTER :=POINTER +1;
002/105 042 056 002 SHLD POINTER save POINTER in memory;
002/110 023 INX D point to odd byte again;
002/111 303 071 002 JMP NEXTREC go handle next record;
002/114 TABLE: DS 416D reserve 416 bytes storage;
003/356 000 377 DB 0,377 end of data area is set;
003/360 373 DONELOOP El enable interrupts;
003/361 303 360 003 JMP DONELOOP and commence endless loop;
003/364 OUTPUT DS 12 reserve 12 bytes storage
003/376 000 DONERST NOP NOP shows no answer;
003/377 307 RST 0 program restarts when incremented by hand;

49

also must be cleared each time the program
is run. The first 24 bytes of the program
were added to perform this initialization and
some other housekeeping operations. A zero
on the sense switch inputs is supposed to
give no output from the program. We ac-
complish the test for this condition by
placing the search and match in a subroutine
and calling it if, and only if, the sense
switches are not zero.

Expanding the Altair

The program shown in listing 1 is a final
version of this MATCH program application
which we concocted after a total of 1024
programmable RAM words was implemented
on our Altair. This allowed us to make the
data table accomodate 208 names with the
program and data located at addresses
002/000 to 003/377. The lower 512 bytes
of the memory were devoted to a simple

Listing 2: An EXECUTIV program for a minimal system. This shows a
simple little program which is accessed via the Aux 2 switch interrupt and is
used to read the sense switches and test for a particular program
identification code. A flag called CALLBUFF (located in MATCH) is
referenced to determine whether data input or a program selection is desired.

Intelese
Octal Address Octal Code Label Op Operands
000/000 000 MSTART: NOP
000/001 303 000 002 JMP MATCH
000/004
to } this area is open for arbitrary programming use;
000/067
000/070 333 377 EXECUTIV: IN SENSW
000/072 006 377 MVI B,377
000/074 016 377 OTLOOP: MVI C,377
000/076 015 ITLOOP: DCR C
000/077 302 076 000 JNZ ITLOOP
000/102 005 DCR B
000/103 302 074 000 JNZ OTLOQOP
000/106 107 MOV B,A
000/107 072 054 002 LDA CALLBUFF
000/112 267 ORA A
000/113 170 MoV A,B
000/114 310 RZ
*000/115 376 xxx CPI P1
**000/117 312 yyy vyyy Jz PROG1
*000/122 376 xxx CP! P2
**000/124 312 yyy vyy Jz PROG2
*000/127 376 xxx CPI P3
**000/131 312 yyy vyyy Jz PROG3
000/134 267 ORA A
**000/135 302 yvy yyy JNZ PROG4
000/140 307 RST
Notes:

*

executive program used to select which
program to run, and space for other pro-
grams. The original matching program had
an occasional bug: If you forgot to reset it
before running, it might not jump to the
output loop (the stack would overflow).
Also, as mentioned earlier, more than ten
matches was not acceptable and could con-
ceivably cause additional bugs.

To overcome all this, the initial stack
address was moved to location 000/377.
Remember that with the additional memory,
the match program was now moved to
002/000 through 003/377. Although the
stack is allocated to addresses lower than
000/377, the stack pointer is initialized at
001/000, since the first location is ignored
by stack operations. For ordinary uses, |
allow at least 20 words for the stack. An
enable interrupt was added near the end of
the program (003/360) to coordinate system
operation. An original halt at the end of

Commentary

this blanks display when stopped;
RST O gets execution to MATCH;

A :=sense switches;

B :=377 [timing loop constant] ;
C := 377 [timing loop constant] ;
C:=C—-1;

if C NE 0 then repeat inner loop;
B :=B-—-1;

if B NE 0 then repeat outer loop;

B := A [save sense switch input] ;

A := CALLBUFF [continue if O else restart] ;
test A and set flags;

A := B [flags are unaffected] ;

if zero then return to program;

is program 1 symbol present?

if so then go to that program;

is program 2 symbol present?

if so then go to that program;

is program 3 symbol present?

if so then go to that program;

is MATCH program symbol present (0)?
if not then go to program 4;

otherwise call MATCH with restart;

"xxx" should be replaced with an arbitrary bit pattern. This becomes the symbol which identifies the given program, which

will be input from the sense switches and matched in this iittle executive program,

** “yyy yyy'’ should be replaced by the address {low order first) of the program being accessed.

Any program which is to have provision for a restart should clear CALLBUFF and then issue an RST 7 to enter the executive.
The executive will then read the sense switches as an input to the program and return with the input in the accumuiator, instead
of choosing another program.

The timing loop used to delay approximately 0.75 seconds is programmed according to the technique described by James

Hogenson in "“Can Your Computer Tell Time?'’, page 82, BYTE December 1975.

50

Figure 1: A hardware modification to the
Altair 8800 which allows the Aux 2 switch
to generate an interrupt. This modification is
used to coordinate operation of the simple
executive and inputs to the MATCH pro-

AUX 2
CENTER

UPPER CONTACT
FOR DOWN POSITION

gram described in this article.

processing was changed to an RST 0, so you
can run the program from an output loca-
tion where threre is no answer if you like,
rather than resetting the program. For the
configuration shown in listing 1, the high
address of the output list is the same
throughout, so some provisions to change
this at 002/017 through 002/024 were made
into no-ops without affecting performance.
{t was then possible to insert instructions at
002/017 and 002/020 to load a 307 (RST 0)
at the logical end of program execution.
Since the no-op before it (at 003/376) was
automatically cleared by the initialization
part of the program, this meant that up to
12 answers could be accommodated and that
if the program was reset, it would properly
operate the next time. Note that if more
than 10 answers occur, it is necessary to
keep careful track of them so as to not
mistake the restart as an answer. More than
12 answers will overflow the memory and be
ignored in this configuration. If you have
memory beyond 003/377, then the answers
will keep on going unless you add a provi-
sion to limit their number. This is easily
accomplished in about four bytes, but much
of the program (and jump addresses) must
be relocated to do this. A flag called
CALLBUFF (002/054) was initialized to all
ones using bytes 002/021 — 002/023, per-
mitting system versatility, since the execu-
tive tests for it before selecting a new
function. Space is available at 002/024 and
002/051 — 002/053 to accommodate pro-
gram changes, or two additional data pairs
may be added to the data table. (We didn't
need to do either of these, so the available
space is left for future changes.) The final
form of the program is shown in listing 1.

The executive program shown in listing 2
drives our system, It makes use of an
interrupt switch which was added to the
Altair on the second auxiliary switch (see
figure 1). This interrupt function is easily
accomplished by running a jumper from the
center terminal on the Aux 2 switch to
ground (a convenient point is the center

RESET SWITCH
CENTER POINT

terminal on the reset switch) and another
wire from the upper contact on the Aux 2
switch {for down position) down flat against
the board and across to backplane pin #73
(PINT) on the mother board. Use the unused
hole at the end of the mother board op-
posite the other wire connections. Be sure
you locate the correct hole! This change will
cause a program which has enabled inter-
rupts to restart at 000/070 when the Aux 2
switch is depressed.

Although the executive program is very
small and straightforward, it is effective and
can direct the computer to any of five
distinct locations (including the matching
program). To operate in the executive con-
figuration, run from address 000/000. The
executive will automatically jump to the
matching program and remain in the output
loop until stopped or interrupted. To run a
different program in the system, the appro-
priate code is now placed on the sense
switches and the interrupt (Aux 2) de-
pressed. There will be a delay of about 0.75
second, to give you time to release the
switch, followed by the selected program.
When the system is first run through the
matching program, it initializes CALLBUFF
to all ones. The executive tests this location
to ensure this condition before it selects a
new program. If all zeros are present at the
call buffer, the executive will instead return
to the previous (interrupted) program. Thus
data can be input into a program (it will
appear in the A register) with the sense
switches and interrupt; just clear CALL-
BUFF (002/054) in your program. Also
allow for the use of AB, and C registers by
the executive. Be sure that each program
either resets the stack pointer or returns to
the matching program at its completion.
Otherwise the stack might get too large and
overflow. Actually, this is all a lot easier
than it might sound. A plain Altair computer
is an exciting device and machine language
can be easy to use. A small executive
organizes it all together. What we have here
is the beginning of a true system of hardware
and software.m

51

PINT
NO.73 ON
MOTHER
BOARD

Letters

Establishing BYTE Com-
mittees of Correspondence

To encourage corre-
spondence among readers,
beginning with letters re-
ceived after May 1 1976,
BYTE will print the name
and full address of each
published letter’s author.
If you do not wish your
address to be printed,
mark it ‘“do not print my
full address” or the logical
equivalent.

T T
‘{"(|1'r{ ,’Jj,u‘

DERR SRS
-

LI

HIGH LEVEL LANGUAGES

First let me congratulate you on such a
fine magazine. | receive many different
magazines and | like yours the most.

I would also like to congratulate you on
trying to produce some standards in the
hobbyist field.

| have noticed your disappointment in
any high fevel languages offered for com-
puter hobbyists and this brings me to write
to you. | would like to get hobbyists’ ideas
of what would be a good high level language.
I'm not guaranteeing anything, but if | can
compile a list of what other hobbyists are
looking for in a high level language, we
{computer hobbyists) might be able to write
our own standard language.

Of course, | have my own ideas and with
all the different machines available, | think
the only way a person could do it is to draw
an extensive flow chart and let each person
implement it on his machine.

The flow chart could cover a wide variety
of things and if your system doesn’t have
some of the hardware necessary, then you
would have to implement that portion.

Anyway, it's an idea and | would like to
hear from hobbyists on what they think the
high level language should be able to do.-

Robert Sikes
Rt 5Box 174
Biloxi MS 39532

IRAN INTO YOUR MAGAZINE
THE OTHER DAY

As APO 09205 is in the mountains of
Iran, | was not able to visit my local book
store and purchase the previous issues of
BYTE. If at all possible | would like to
purchase issues #1 1o #4, one copy of each.

Donald N Wagman
USAFE DET-5 ETU-3
Box 1600

APO New York 09205

52

WOULD-BE AUTHORS, TAKE NOTE

You may have many readers, who, like
myself, have a good background in RF
communications, digital logic, industrial elec-
tronics and test equipment. These are
mostly of a hardware nature and when |
look through BYTE some of the programing
articles hardly resemble English. That's fine
for those “in the know,” but you need a
series to take the hardware fans by the hand
and lead them to software.

The equipment advertised in BYTE hasa
strong appeal to a hardware man who is not
scared of chips, boards, interface gadgets and
power supplies. The question is: After it's
built, what then? | can’t talk to it!

| think your readers and particularly your
advertising customers would benefit from
mass conversion of hardware people to the
point that they would buy an Altair oy
SWTPC job with no fear that the fun would
end with the last solder connection.

Think it over; the vast majority of elec-
tronics people are “hardware’ at present;
there is a fortune to be made!

Gordon D Stewart
Thompson, Manitoba
Canada

BYTE article SNOBOLs

| enjoy your magazine a lot, and espe-
cially liked the February issue article on
processing algebraic expressions. Maurer’s
article was so interesting that | tried it out in
a high level language (SNOBOL) and it
worked great! My next step is an assembly
language implementation for my M6800 and
MCS6502 processors. | would recally appre-
ciate a similar approach on “hashing’ or
symbol table lookup.

Don Peters
Nashua NH

ANY AUDIO WILL WORK

As a present (or past) subscriber to
several well known electronics magazines,
and the receiver of five free-bee trade maga-
zines (electronics) and three free-bee com-
puter magazines, | was overjoyed to sec the
birth of BYTE. It has definitely filled a void!

My reason for writing this letter (besides
patting you and your associates on the back)
is to find out additional info on the BYTE
standard for magnetic recording as it applies
to reel-to-reel recording. | presently have a
Teac tape deck which is capable of recording
at 3-3/4 ips and 7-1/2 ips only. Needless to
say, all the talk in the world about 1-7/8 ips

doesn’t do me any good. | know that with
higher speed | can get better throughput and
better frequency response, but the exact
way to adapt articles like Don Lancaster’s
“BIT BOFFER"” and Harold Mauch’s “Digi-
tal Data on Cassette Recorders” eludes me. |
presently am trying to get a used TTY
working and when | finish that, | intend to
implement an MOS Technology 6502 micro-
processor system. At this point | will want
to implement some means of mass storage;
and considering that the only available de-
vice | have is the Teac tape deck ... Well,
you get the idea.

James T Lareau
Parsippany N

The standard defined in BYTE’s February
and March issues as a result of the meeting
we sponsored last fall might also have been
named the ‘“audio information exchange’
standard. The two articles describe a way to
generate and interpret audio wave forms.
Any recording medium — such as your
TEAC tape deck — which can faithfully
reproduce the audio frequencies in the band-
width of an inexpensive cassette deck could
also be used with equipment bujflt to the
standard. Besides reel to reel tape, other
media potentially usable include telephone
channels, radio transmission of voice grade
information, and phonograph records.

PORNOGRAPH RECORDS

When first your magazine | did see

| had no idea of what the contents could be.

A cover of blue titled BYTE

to me implied articles perverted authors
would write.

Amidst other periodicals like Kill, Stab, and
Maim

BYTE is a much needed change.

To cut this short and save some time

| would like to subscribe for three years
time.

And please, kind sirs, charge this to Bank-
Americard No. XXXX XXX XXX XXX

because | haven’t had money since | can
remember.

In closing, one last request

please send all back issues you possess!

Steve R Burns
Ypsilanti Ml

SAGE ADVICE

| would like to let anyone who is exper-
imenting with building his own computer
system or microprocessor know that | would
like to communicate with him, swap ideas,
software and hardware.

I am currently building up two micropro-

If you want a microcomputer
with all of these standard features cos

* 8080 MPU (The one
with growing soft-
ware support)

¢ 1024 Byte ROM
(With maximum ca-
pacity of 4K Bytes)
* 1024 Byte RAM
(With maximum
capacity of 2K
Bytes)

. TTY Serial /0

» EIA Serial /O

* 3 parallel 1/O's

* ASCll/Baudot
terminal com- :

patibility with TTY machines or video units
« Monitor having load, dump, display, insert
and go functions

» Complete with card
connectors
* « Comprehensive

3 User's Manual, plus

Intel 8080 User's
Manual
* Completely
factory assembled
and tested —not
a kit
* Optional ac-
cessories: Key-
board/video
display, audio
cassette modem
interface, power supply, ROM programmer
and attractive cabinetry...plus more options
to follow. The HAL MCEM-8080. $375

...then let us send you our card.

HAL Communications Corp. has
been a leader in digital communi-
cations for over half a decade.
The MCEM-8080 microcomputer
shows just how far this leadership
has taken us...and how far it

can take you in your applications.
That's why we'd like to send
you our card—one PC
board that we feel is the
best-valued, most complete

Al

microcomputer you can buy. For
details on the MCEM-8080, write
today. We'll also include compre-
hensive information on the HAL
DS-3000 KSR microprocessor-
based terminal, the terminal that
gives you multi-code compati-
bility, flexibility for future
changes, editing, and a
convenient, large video
display format.

HAL Communications Corp.
Box 365,807 E. Green Street, Urbana, Illinois 61801
Telephone (217) 367-7373

53

cessors using an Intel 8080 and a Motorola
6800. | would also like to swap or sell (for
storage and shipping costs) an IBM line
printer, card reader and tape drive that came
off the famous SAGE Air Defense com-
puters the US Air Force operates. | bought
the machines when the Air Force closed its
SAGE Air Base in New York. | also have
some large scale computing facilities avail-
able which may be of interest to experi-
menters.

Milton Goodman

Techno cadimum Data Corp
101 Park Av, Suite 707

New York NY 10017

I THINK YOU BLEW YOUR COVER!

The cover of your December issue was a
giant step in the wrong direction in terms of
getting home computers accepted by the
non-participating percent of the household.
The gift recipient pictured is keeping the rest
of the family away, the little girl behind him
looks upset or worried (note the eyebrows)
and the ever so attractively depicted wife
could kill Santa with that look. Santa
doesn’t seem very confident. . . .

You should have considered the two-
edged aspect of humor before giving a
computer-wary family a blueprint in negative
reactions this Christmas. Once the first good
natured reaction to the cartoon drifts away,
the shopper’s buying power may not be used
to purchase that ultimate toy.

I might note here that | think the
CONTENTS of your magazine are first rate.
The articles are interesting, well chosen, and
well written. Topics are relevant to what’s
going on. On the whole, your magazine
stands out, mercifully, in the oceans of
newsletter material available, as a focal point
of small systems information.

B L Donelan
San Diego CA

So far, yours is the only comment, one
way or the other, on the subject of cover
materials, Any others?

DISDAIN

What can | say to my wife after | tell her
I want to “invest” our savings into a
minicomputer and she says “What do you
want with a computer?” with complete
disdain. | need a short concise reply that
justifies the expenditure as well as forever
silences her on the matter. Hurry!

Charles Hurlocker
Seattle WA 98105

’

It's an “‘automated busywork eliminator.’

54

UTILIZING SPECIAL CASES

Looking at the code for the 6800 cater-
pillar program (BYTE, March 1976, page 90)
reminded me of some rules of thumb for the
Motorola device:

1. The X and S registers (if not in use at
the moment) are very handy for mov-
ing 16 bit fields around.

2. When using instructions which do not
have direct addressing, space can often
be saved by clearing X and using in-
dexed addressing.

3. The CLR instruction often wastes
space. Clearing A, B or X and then
storing is usually better.

Applying these rules and one dirty trick
gives the following version of the program:

1000 CE 3F 00 CATERPLR LDX #$3F00

1003 DF 12 STX R2
1005 DF 11 STX Ri1
1007 DF 10 STX RO
1009 OD SEC

100A CE 03 FF NEWMOVE LDX =$03FF

100D 09 WAITLOOP DEX

100E 26 FD BNE WAITLOOP
1010 66 13 ROR R3X

1012 66 12 ROR R2 X

1014 66 11 ROR R1,X

1016 66 10 ROR RO X

1018 DE 10 LDX RO

10TA FF 01 4cC STX LAMPO
101D DE 12 LDX R2

101F FF 01 4E STX LAMP2
1022 20 E6 BRA NEWMOVE

This version requires only 36 bytes versus
the original 54.

One other very minor point. Since we are
shifting a 7 bit caterpillar along the lights,
the original program could be modified to
eliminate the SEC instruction. Simply make
the first instruction LDAA #$7F, putting all
7 bits in RO. It would then not be necessary
to clear the carry bit because of the CLR
instructions (which always clear C).

No doubt shorter versions of this program
will be devised. My purpose in writing was to
give a little boost to the X and S registers.
Of course, a good discussion of the S register
qua stack pointer could fill a small book.

George E Beine
President, Gnomon, Inc
Cincinnati OH

PS When is Motorola going to take a firm
stand on the NOP? As one example of
their vacillation, compare pages 3-2, 3-3
and 3-4 with page A-44 in their M6800
Microprocessor Programming Manual
{second edition).

Excellent! Optimization is the art of re-
ducing the memory required by a program,
or the execution time required, or both.
Optimization can be one of the most inter-
esting challenges, especially when the task

Part 2

“Chip” Off the Olde PDP 8/E.

The Intersil IM6I0O0

In part 1, Bob Nelson discussed the attractiveness of a
PDP-8-like computer, general features of the IM6100 chip,
the timing and pinouts of the IM6100 and the instruction
set used by this PDP-8 compatible microcomputer. In the
second installment, he continues the flow of information
on this 12 bit microcomputer.

Robert Nelson When using programmed 10 transfers, one
Chief Engineer must live with a delay waiting for the usually
PCM Inc

slow peripheral device to get ready to receive
or transmit data. Often this requires the CPU
to traverse a “‘waiting loop” thousands of
times between transfers. Interrupt-initiated
transfers eliminate this wasted time by
allowing the peripheral device to initiate
each data transfer, rather than the program.
Between individual transfers the CPU is free
to go about its business executing the main
program. This is accomplished by isolating
the 10 handling routines from the mainline
program and using the interrupt systcm to
ensure that these routines are entered only
when an 10 device-ready flag is set, indi-
cating that the device is actually ready to
perform the next data transfer.

The interrupt system allows certain exter-
nal conditions to interrupt the computer
program by driving the INTREQ line (pin 8)
to the IM6100 low. If no higher priority
requests (such as a DMA request, or control
panel interrupt request) are outstanding and
the interrupt system is enabled, the IM6100
grants the device interrupt at the end of the
current instruction. After an interrupt has
been granted, the interrupt enable flip flop
in the 6100 is reset so that no more
interrupts are acknowledged until the inter-
rupt system is enabled, usually by an instruc-
tion in the interrupt handling routine.

When the 6100 grants an interrupt, it sets
the INTGNT line (pin 39) to a high level,

180 Thorup Ln
San Ramon CA 94583

58

then (so it doesn’t lose track of where it was
in the main program, while servicing the
interrupt) deposits the current state of the
program counter in location 0 of main
memory. This deposited address is known as
the “return address.”” Then the 6100 fetches
an instruction from octal location 0001.
This is usually a JMP (direct, or indirect as
required) to the start of the interrupt service
routine. The last instruction in this routine
must be an indirect JMP through location 0,
which returns the CPU to the main program
at the same point where it left at the time of
the interrupt.

The 6100 does not provide, in its hard-
ware, for nested interrupts (that is, a higher
priority interrupt of a lower priority inter-
rupt routine); but, of course, a software
stack can be programmed which will provide
for any degree of nesting desired.

Direct Memory Access

Interrupt transfers use the interrupt sys-
tem to service several peripheral devices
simultaneously, on an intermittent basis,
permitting computational operations to be
performed concurrently with the data 1O
operations. Both programmed data transfers
and interrupt initiated transfers use the
accumulator as a buffer, or temporary
storage space, for all data transfers. Since
data may be transferred only between the
accumulator and the peripheral, only one 12

[‘PROGRAM COUNTER 1
OO0 OO0 OO0OO0O O OO0 MD"lC)"”L“GS
o
(o] [} 2 3 4 5 6 8 9 10 1"
LINK O O O o O O O O O O O O
0 LINK RO IIFF IEFF st rlo) Lpara Fio
\FETCH RUN—— CONT
I——SWITCH REGISTER 1 G D
s T I PP & @@ AT
XTAL CLK
@
SNGL CLK
@ ® ® ® ® ® ® ©
TIMER EXAM DEC LOAD LOAD LOAD BIN RESET
PC MEM FLDS BOOT
®
KEY:

O-LED LAMP #-TOGGLE SWITCH

¥ -TOGGLE SWITCH (MOMENTARY)

Figure 1: One example of an IM6100 control panel. This panel is designed to perform the
functions of the PDP-8/E control panel. The actual logic of the control panel is performed in
software of a control panel service routine contained in a special control panel memory.
Bootstrap loaders and terminal monitor programs could also be implemented in the same
fashion, completely transparent to the normal PDP-8/E mode of operation.

bit word at a time may be transferred. Direct
memory access (DMA), on the other hand,
transfers variable size blocks of data between
high speed peripherals and the memory with
a minimum amount of program control
required by the IM6100.

Direct memory access, sometimes also
called “data break” in DEC literature, is the
preferred form of data transfer for use with
high speed storage devices, such as magnetic
disk or tape units. The DMA mechanism
transfers data directly between memory and
peripheral devices. The IM6100 is involved
only in setting up the transfer; the transfers
take place with no processor intervention, on
a cycle stealing basis. This means that main
program execution will be suspended for an
integral number of machine cycles while the
DMA request is serviced. The DMA transfer
rate is limited only by the speed of the
memory and the data transfer characteristics
of the peripheral device.

The device generates a DMA request
when it is ready to transfer data, by asserting
the DMARERQ line, pin 4, low. The IM6100
grants the request by setting a high level
output on the DMAGNT line, pin 3, at the
end of the current instruction. The 6100
suspends any further instruction fetches
until the DMAREQ line is returned high.
The data lines (DX) are put in the high
impedance state, and all select lines stay
high. The device which generated the DMA
request must provide the address and the

necessary control signals to memory to
effect the data transfer,

Control Panel Features

A unique feature of the IM6100 is its
provision for control panel interrupts. Due
to the limited number of pins available, a
microprocessor requires some sort of soft-
ware implementation of its front panel
controls and indicators. This is necessary
because one does not have constant, or real
time, access to the state of the accumulator
and other internal registers and operations
being performed inside. This usually requires
that a portion of main memory be parti-
tioned off for storage of an interrupt routine
which updates the state of the front panel
indicators or performs an operation called
for by a front panel control. This routine is
executed whenever a control panel interrupt
is generated, as, for example, by some
control switch, or an automatic timer,

Partitioning off main memory like this is,
at best, an aesthetic nuisance. In the case of
a machine that would handle, without modi-
fication, the software of an existing mini-
computer, the partitioning becomes more of
a headache since the interrupt routine may
sit in some of the same memory space that
the minicomputer software requires. The
result may be that the interrupt routine
could get inadvertently overwritten, or could
interfere with operation of the mini’s
software.

59

The IM6100 architecture
has no hardware provisions
for nested interrupts; how-
ever, a software stack can
be implemented if desired.

Programmed 10 transfers a
word at a time; direct
memory access 10 sets up
a special hardwired con-
troller to take over the
memory bus for transfer
of blocks of data without
CPU intervention.

In the IM6100 the software implementa-
tion of the control panel need not use any
part of the main memory. The control panel
communicates with the 6100 through the
CPREQ line, pin 5. A control panel interrupt
request is functionally similar to a normal
device interrupt request, but with some
important differences. The control panel
request is granted cven if the machine is in
the HALT state. The CPU is forced into the
RUN state for the duration of the control
panel routine, then reverts back to its
original state at the end of the routine. Once
a control panel request is granted, the
IM6100 will not recognize any device inter-
rupt or DMA request until the control panel
routine has finished execution.

When a control pancl request is granted,
at the end of the current instruction, the
program counter is automatically stored in
location 0 of a separate control panel
memory. The 6100 then resumes operation
at octal location 7777 of this separate
memory. The control pancl memory is
organized with programmablc memory in its
lower pages and read only memory in the
higher pages. The control panel service
routine is stored in the higher pages in the
non volatile ROM, with a starting address of
7777. The latter location always contains a
JMP instruction which starts the actual
routine at a lower address, for example,
octal 7400. The programmable memory in
the lower pages is used as scratchpad space.

A control panel flip flop (CNTRL FF),
which is internal to the IM6100, is set when
a control panel request is granted. As long as
the control panel flip flop is set, CPSEL (pin
38) becomes the active select line for
memory references. This distinguishes the
control panel memory from main memory.
However, during the execute phase of in-
directly addressed AND, TAD, ISZ and DCA
instructions, the MEMSEL line (pin 37) is
made active. The instruction is fetched from
the control panel memory, but the operand
address for an indirectly addressed AND,
TAD, ISZ or DCA refers first to the control
panel memory for a pointer, which in turn
points to a location in main memory. A
main memory location may, therefore, be
examined or changed under front panel
control by indirectly addressed TAD and
DCA instructions. Every location in the
main memory is thereby accessible to the
control panel routine.

At the end of the control panel interrupt
routine is an indirect JMP (through control
panel memory location 0), which returns
CPU operation to the main program. A
return address was deposited in control
panel memory location 0 at the beginning of

60

the control panel service routine, but this
address may be changed by action of a front
panel control operating in conjunction with
a portion of the control panel service
routine. Thus a “load program counter”
switch might be interpreted by the control
panel service routine to copy the state of an
array of 12 switches (the switch register),
into control panel memory location 0, which
sets up the main program to start at the new
address. The IM6100 provides for the inclu-
sion of the switch register on the front
pancl, with a special select line. When a OSR
instruction (OR the switch register with the
accumulator contents, and leave the result in
the accumulator) is executed, the SWSEL
line (pin 31) goes low at T2. This line allows
the switch register to directly drive the data
lines during the “read” portion of the cycle.

The designer may also make use of the
control panel fcatures to implement boot-
strap loaders in the control panel memory,
so that these routines will not consume main
memory space. Programs can be loaded by
indirect DCA instructions: the indirect
address developed in the control pancl
service routine points to a main memory
location which is to be loaded.

Control Panel Example

It is quite casy to build a front panel for
the IM6100 that provides nearly every func-
tion of the PDP-8/E control panel. For the
would be constructor, one possible layout
for such a panel is shown in figure 1. The
software routine required to make all these
controls and indicators work requires less
than 128 words of 12 bit ROM. This section
describes the use of software which
simulates the PDP-8/E control pancl
functions.

The program counter display is an array
of 12 LEDs, segregated into four 3 bit
(octal) digits. This display shows the current
state of the IM6100’s internal program
counter. The program counter can be loaded
from the switch register by raising the
LOAD PC switch, and can be decremented
by raising the DEC PC switch. Thesc opera-
tions are carried out by the control pancl
service routine software.

The 12 LEDs just below the program
counter display are called the display lamps
and show the data selected by the rotary
switch to their right. With the rotary switch
in the MD (memory data) position, these
LEDs show the content of the memory
location whose address is indicated by the
program counter display. With the rotary
switch in the AC, MQ or FLAGS positions,
the display lamps show the state of the 6100
accumulator, MQ register or flag bits,

respectively. The flag bits displayed arc
indicated below their respective LEDs. These
include the state of the 6100 Link flip flop
(LED 0), whether an interrupt is currently
being requested by an external device (LED
2), whether interrupts are being inhibited by
the extended address module (LED 3),
whether interrupts are enabled by the 6100
itself (LED 4), and the currently selected
instruction field and data field, 3 bits each.

The EXAM switch when raised causes the
data in the display lamps to be updated, and
increments the 6100 program counter. This
makes it possible to examine a series of
sequential memory locations by loading the
first address into the program counter with
the LOAD PC switch. Then each time the
EXAM switch is raised the address of the
next memory location is displayed in the
program counter; and, if the rotary switch is
in the MD position, the content of that
location is shown in the display lamps.

The LOAD MEM switch commands the
control panel service software to load the
switch register into the memory location
indicated by the program counter. The
LOAD MEM switch also increments the
program counter after the load, so it is
unnecessary to load the address for cach
subsequent location.

The LOAD FLDS switch is used to load
the desired instruction field and data field
from switch register bits 6 to 8 and 9 to 11,
respectively, into the extended memory
address module. If the rotary switch is in the
FLAGS position, these new flag bits will be
shown in the display lamps immediately
after the load.

The BIN BOOT switch is used to load a
binary format paper or magnetic tape (such
as one produced by the DEC PAL [l or
MACRO-8 assemblers) into main memory.
The routine for accomplishing this load can
be written to fit in another 128 words of
control panel service memory. Thus, with
programming stored in three | K (256 x 4)
PROMs, one can have a front pancl more
powerful than that on the PDP-8/E itsclf,
since the latter does not have a built in
bootstrapping capability.

The TIMER switch, when in the “‘up”
position, turns on an oscillator which runs at
about 25 Hz. This oscillator causes a control
pancl interrupt to be generated every 40 ms,
for the purpose of updating the displays on
the panel when the machine is running.

The RUN, LINK, IFETCH and XTA
famps show the state of the respective lines
on the IM6100 chip.

The RUN/HALT, and CONT/SNGL INST
switches are closely associated. When the
RUN/HALT switch is in the HALT position,

the machine is halted. In this state raising
the CONT/SNGL INST switch will cause the
machine to execute one (the next) instruc-
tion and again halt. This provides a very
convenient single instruction operation
mode for program debugging. When the
RUN/HALT switch is put into the run
position, thc machine is enabled to enter the
RUN mode. It will begin running when the
CONT/SNGL INST switch is raised.

The XTAL CLK/SNGL CLK function is
implemented with a pair of switches. When
the upper switch is in the XTAL CLK
position, the CPU runs off the internal
crystal controlled clock oscillator. When this
switch is in the SNGL CLK position, the
machinc is in the single clock mode: each
time the lower switch is raised, a single clock
pulse is gencrated. This provides a capability
to step an instruction through its various
phases. This capability and the singlc instruc-
tion mode described above are made possible
by the static naturc of the registers in the
IM6100 chip.

Support Devices

In addition to producing the IM6100,
Intersil is also offering several other CMOS
devices intended to support processor and
computer designs built around the 6100.
These include a 1T K x 12 bit mask pro-
grammed ROM (IM6312), 256 x 1 bit RAMs
(IM6523/6524), 1K x 1 bit RAMs
(IM6508/6518), a 256 x 4 bit programmable
random access memory {IM6561), a parallel
interface element (IM6101), and a UART
(IM6402/6403).

The CMOS 1024 word ROM, since it is
mask programmed, is aimed at volume
production controller applications, and is
not well suited to onc-of-a-kind hobbyist
systems. [t does have a unique feature
worthy of mention here, however. In many
programming applications, it is very con-
venient to have ROM space and pro-

_grammable memory space interleaved in

memory, say three pages of ROM followed
by a page of RAM, for example. The
IM6312 contains 8 pages (1024 words) of
memory and any 2 page block may be
designated, in the mask programming opera-
tion at manufacture, to be dedicated to
RAM space. Then when any word in this 2
page block is addressed, a RAM enable pin
on the 6312 is activated which turns on
RAM chips located next to the ROM. These
RAM chips can share addressing space with
the ROM, und an additional latch and
decoder for RAM addressing are eliminated.
Operation of this kind creates the illusion of
a programmable area in the read only
memory region of address space.

61

The IM6100 is designed to
use a software front panel
driver; provision is made
for a separate 4 K word
control panel memory. A
periodic control panel
interrupt switches from
main memory to control
panel memory and initi-
ates control panel
software.

Interrupt initiated trans-

fers
loops.

eliminate

timing

The paralle! interface element, IM6101,
provides addressing, interrupt logic and con-
trol for interfacing the IM6100 to a variety
of peripherals such as keyboards, UARTs,
specialized memory, etc. It is designed to
eliminate a large part of the random logic

found in many device interfaces. The 6101

has sense lines that constantly monitor the
status of the peripheral device to which it is
interfaced. When the device indicates a ready
condition, the 6101 generates an interrupt
to the 6100, which initiates a data transfer.
Several IM6101s may be daisy chained to
form an interrupt priority hierarchy, with
the highest priority devices at one end and
the lowest priority devices at the other.
When the 6101 generates an interrupt to the
6100, it also provides the address of the
initial location in the interrupt service
routine, thus creating a vectored interrupt
system. The IM6101 also contains several
other features too lengthy to discuss here;
the manufacturer’s data sheet for the chip
gives complete details,

The CMOS UART, IM6402 or IM6403, is
identical to the PMOS UARTs that have
been available for some time, except for
some unique features. First, its CMOS con-
struction allows it to be clocked as fast as
3.2 MHz, which is 10 times faster than the
PMOS units. And of course CMOS con-
struction means very low power consump-
tion. Second, the IM6403 version provides
an on-chip crystal oscillator and divider
chain for bit rate generation. With a
commonly available color television crystal
at 3.5795 MHz, the baud rate becomes
109.2 Hz, which is just fine for a Teletype
interface.

The CMOS RAMs are static devices, but
are presently too expensive for general pur-
pose hobby use; the 1 K x 1 bit devices at
this writing still cost over $8 each. However,
the day is not far off when they will cost
compete with N channel RAMs like the
2102. They are superior to the N channel
devices, in that they draw only milliamps at
five volts when operating, and just micro-
amps when idling. They also contain an
on-chip address latch, which minimizes the
necessary interface logic. A nonvolatile pro-
grammable memory can be constructed
using a handful of these chips with a small
on-board Nicad battery to keep them
powered up when system power is removed.

Reliable rumor has it that Intersil is
working on another support chip (or chips),
that will contain several useful functions.
The chip will contain all the logic necessary
to extend the main memory from 4K to
32 K words, eliminating nearly all the TTL
logic now required to implement an
extended address element module. It will

62

also provide DMA port fogic, a real time
clock and a 4 K dynamic RAM interface. It
may also contain the PDP-8 user flag logic,
to add time sharing capability to the
IM6100.

Conclusion

When contemplating the construction or
purchase of a small computer for home
applications, the amateur computer user
should very carefully consider the question
of software availability for the completed
machine. Computer manufacturers typically
will tell you that in any new computer
design, hardware development is only about
20% of the job. The other 80% of the effort
is involved in software development. This
consideration makes the 1IM6100 ideal for
the hobbyist, since a lot of the software you
will need is available from an outside source
already written, debugged and documented
over the decade or so in which PDP-8s have
been available.

The commercial version of the 6100
(IM6100C) is well within an individual's
budget in single quantities. It can be
purchased from any [ntersil distributor. The
IM6100C has a maximum clock frequency
of 3.3 MHz (18% slower than the industrial
version, which costs about $100), and a
maximum operating temperature of 50°C,
but in all other respects is identical to the
more expensive versions.

The reader interested in building his own
machine around the IM6100 should contact
Intersil and request copies of the application
notes on the chip. These describe typical
circuitry that can be used to produce a full
blown minicomputer very similar to the
PDP-8/E. Given the past history of this
market place, it should not be long before
IM6100 based kits are available to ease
construction of inexpensive PDP-8/E com-
patible machines.m

More information about
the particular control
panel design discussed in
this article may be
obtained by writing the
author at 4700A 35th Av,
Oakland CA 94169 and
enclosing a self-addressed
stamped envelope.

Components and Parts

Instructions for this type puzzle are
extremely simple; just take the words from
the list and fill them into the blocks, one
letter per block. The number of blocks
indicate the number of letters in each word.
Take your time; you may have to do a little
searching to make ail the words fit into the

puzzle.

Robert Baker
34 White Pine Dr
Littleton MA 01460

6 Letter Words

Puzzle Time, page 84, May BYTE
ANSWER: This is but one of several pos-
sible solutions to the puzzle. However, the

sum for any given row or column = 3857 =
601g.

E4A1M< >
DOXw2Z2
Iszsorw
Coo0o7T~—
maAapE«<

11 Letter Words

FILTER 9 Letter Words TRANSFORMER
Lo werory meine U
ggfx 2\/0\/?-:55:{ gg“ﬁgg‘?gg 12 Letter Words
3 Letter Words coIL 5L Word TOROID INSULATOR ELECTROLYTIC
etter Words 8L w
l;é‘?‘ S?EE CHOKE 7 Letter Words - HE:"-tr:NZrds I;ESWTSSE:;{L 13 Letter Words
LED FUSE DIODE BATTERY INDUCTOR ?Esg:_S/%OR POTENTIOMETER
R
EILL_JJ ﬁﬁgg ll\:{AIIEEI/Es g:egﬁi EESYFS?ég b 14 Letter Words
POT LAMP SCREW DISPLAY RHEQSTAT 10 Letter Words MICROPROCESSOR
SCh ruse TRIAC TRINMER TANTALUM THEmMieron 15 Letter Words
VCO UART ZENER VIDICON VARACTOR TRANSISTOR PHOTOTRANSISTOR
| HREEEEEREN
L[] HHH o
— SR
HEEE [T1T171 [[=
u (1117 - 1 a
1 [TT1 T O [T
— —
1 [| B
:H 3 O 0
— — — —
[TTT] [l
| I
L HEREN 1 O T 6 O B A O
S—— L S e
[T T 1] = L1
-
HERE | [|
1 [] - Hom |
[M[1[c[r]o[P[r]o[cTE]S]S[0]rR] B
L] [|
O OO 0 O B
- |
[L] []
L l | L g
. | l HERR

64

Interact with an ELM

G H Gable
419 Jackson St
Grand Ledge MI 48837

The fundamental interface between the
user and the hardware of a computer system
is the system software. It runs the gamut
from a dozen or so bytes of a bootstrap
loader on a microcomputer to the multi-
million word operating system of a large
general purpose computer system. In fact,
the microcomputer system can be made to
do much of what the general purpose com-
puter does with appropriaic versions of
systems software. Onc of the most signif-
icant differences between the big computer
and the microcomputer is that the large
computers typically operate on multiple
bytes of information and often provide
extended arithmetic and logical operations.
Minicomputers and microcomputers can
emulate these extended operations with soft-
ware; the main difference is speed. The
typical large computer might cxecute its
built in instructions 1000 times faster than a
microcomputer’s software emulation. How-
ever, all the features of a large computer
system can be implemented in the software
of a microcomputer system. This includes
assemblers, compilers, text editors, time-
sharing and multiprogramming, disk opera-
ting systems, virtual memory, utilities, and
of course applications programs. In addition,
the powerful hardware of a big computer
can be emulated with software. The prin-
cipal hardwarc requirements, other than a
general purpose instruction sct, are access Lo
the program counler, an interrupt structure
and possibly direct memory access by the
peripheral equipment. Program counter ac-
cess and interrupt processing is available in

66

most microprocessors; direct memory access
is often implemented by peripheral device
controllers using the system bus.

For microcomputers, the system software
can be divided into two major segments: the
operating system of monitor and a utility
library of functions which extend the in-
struction set. The utility library is a set of
subroutines written to redefine and expand
the operations the computer can perform. It
can range from a simple set of number
conversion and formatting routines up to the
complexity of a complete floating point
mathematical package.

Monitors

The monitor program, sometimes called
the executive program or operating system,
is the program which the computer executes
when it is not running some other program.
The monitor’s primary purpose is to decide
what the system is to do next. Sophisticated
monitors typically implement disk operating
systems, time sharing and multi-
programming. They call loaders, assemblers
and compilers, handle input and output, and
process user requests. In short, the monitor
program is “the brains” of the system. In
some very large systems, such as the Control
Data Corporation’s CDC-6500, the monitor
program even has its own processor, separate
from the central processors. The central
processors are merely slaves to the monitor
processor in such a multiprocessor system.

For a beginning, let’'s examine a very
simple monitor program. If you have a
microcomputer which needs system soft-

ware, this might be just the ticket to get you
on the system. This monitor design will let
you load and execute programs and edit the
contents of memory. From such a basic
monitor, more sophisticated software can be
developed to upgrade the system to what-
ever level you desire.

ELM

Every routine should have a name, espe-
cially a system routine. Thus | call this the
Eloquent Little Monitor, or ELM. ELM is
designed to have a Teletype or a cathode ray
tube (CRT) terminal such as a TV typewriter
as its control console. A CRT running at
1200 baud makes a wonderful control con-
sole due to the brisk speed at which mes-
sages are transmitted. ELM implements four
commands in its simplest version: LOAD
which will load a program into memory
beginning at a specified location; LIST
which lists the content of selected memory
locations; MODIFY which will modify the
contents of selected memory locations, and
GO which starts execution of a program at a
specified location. My version of ELM fea-
tures decimal addresses and allows input line
editing.

Many processors begin execution at a
fixed location at power-on or system reset.
Some processors begin execution at a hard-
ware programmed address which might be
set by switches. Wherever the processor
begins its execution, the implementation of
ELM assumes that ELM will be the program
which receives control as a matter of course.
For the purposes of this article, we'll assume
that ELM is located at the low end of
memory address space. Following ELM
comes the first available address (FAA) of
user programmable memory, then the last
available address (LAA). This memory or-
ganization for a typical monitor residing at
the low end of address space is shown in
figure 1. Other allocation schemes are of
course possible. It is also desirable to have
the monitor in a read only memory so that,
when the computer is first switched on, the
CPU will immediately begin execution of the
monitor. With such a firmware monitor,
your programs will not be able to destroy
the monitor program itself. In addition to
the address space for the monitor, the
allocation shown in figure 1 includes 80
bytes of programmable RAM for use as data
storage.

Using ELM

First, let’s look at the monitor from the
user's point of view at the terminal. When
the system is switched on, the Teletype or

display will print “OK-"". Any time the

ELM Monitor Program

(store in ROM or write
protected memory)

Decimal Multiplier M (2 bytes)
Buffer Pointer P (1 byte)
Address Parameter P1 (2 bytes)
Address Parameter P2 (2 bytes)
Accumulator ACC (2 bytes)
Parameter Count F {1 byte)
FAA-[-— = first available address
User memory area
LAA=~|=-= = last available address

Line Buffer LB {70 RAM bytes}

Figure 1: Memory Allocations for a Typical
Monitor Program. This map assumes that the
ELM monitor program resides at the low end
of memory address space, and that program-
mable random access memory begins at the

address of the line buffer.

monitor is waiting for a command it will
print the same message.

If you want to enter a program starting at
location 123, type “LOAD,123” then a
carriage return to end the line. The ELM
program will respond with the message
“123="" on the next line. ELM now expects
you to type a string of hexadecimal charac-
ters grouped two per byte, with a single
space between each group. See figure 2 for
examples of this format. You can enter up
to 22 double character hexadecimal codes
on a line. The line is terminated with a
carriage return. After the carriage return,
these codes are entered into memory begin-
ning at the address 123 in this example.
Then the address waiting to be loaded will
be printed at the beginning of the next line
so that more hexadecimal codes can be
entered. This process is repeated until you
type the word “END’’ at the beginning of a
line. After ending the load routine, the last
loaded address is printed followed by the
“OK-—"" message which indicates that ELM is

67

1104=
1112=
1117=
ERRER
1119=
112¢€=

11C4=
1124=

GK-

@K- LOAL. 1104

LAST ALCRESS L@ALEL ll28=

@X- LIST.11C4~-1128

BXN\MBLIFCY, 11
MODIFY, 1112

1112= C4

1112= 0¢

@K- LIST,1111-1113
1111= SA C€ SC

BK- GO, 1024--+1C4

H1 BYTERS

12 72 51 C3 €9 01 €3 S5A
04 SC S4 12 43-8
49 2C4z 59 54

42 59 54 S3 20 2C
END

12 7E 51 €3 €9 01 €3 5A 04 SC°54 1z 48 49 20 42 59 S4 45 53
20 2C SA 00 0O

Figure 2: Sample Printout of an ELM Interactive Sequence. This listing
shows ELM at work. Note the use of the Teletype back arrow (underscore
character) to delete mistakes and one instance of a cancelled line. This listing
illustrates use of ELM to load and execute a simple program which types out
“HI BYTERS” and returns to ELM,

back in the command mode again. If the
starting address is omitted or is less than the
first available address (FAA) then FAA is
assumed.

If you want to list the contents of
memory locations 123 to 456, the command
“LIST,123-456" will start the listing, print-
ing 20 hexadecimal codes per line. If the
address range is omitted, listing begins at the
first available address (FAA) and continues
until the last available address (LAA) or an
end of program mark. Figure 2 illustrates the
output format of a listing.

If you want to modify memory contents
at locations 123 to 130, the command
“MODIFY, 123—130" will first list the old
contents of these locations, then it will enter
the load routine to print “123=" as if you
were loading these locations, Modified codes
may then be entered, Lo be stored beginning
at 123.

Finally, if you want to start executing the
program at location 123, the command
“G0O,123” puts 123 into the program coun-
ter and begins execution of your program,
Again, if the address is omitled, execution
starts at the first available address, FAA.

It is certainly easy to make typing errors,
especially for me. Thus | implemented ELM
with a line buffer and two special line
editing characters. The underscore (ASCII
back arrow, hexadecimal 5F) effectively

68

removes the preceding character typed, two
underscores remove the preceding two char-
acters, etc. The control X character (ASCII
cancel code, hexadecimal 18) cancels the
whole line. Several reverse slashes (ASCII,
hexadecimal 5C) are printed on the can-
celled line and a line feed is generated as
shown in figure 2.

Architecture

Now that the monitor design is set, let’s
look at the architecture of the program
needed to implement ELM. Figure 3 shows
the logic for the whole monitor. After the
power on restart, ““OK—"" is printed as the
ELM input request message, then the system
idles while waiting for input. Figure 4 shows
the logic of the subroutine INPUT, which
reads each character and puts it into the line
buffer. If the terminal is running in the full
duplex mode, the character should be
echoed back to the printer. The buffer
pointer, P, shows where to put the next
character in the buffer. The editing char-
acters are implemented as shown. An ASCII
carriage return code (hexadecimal 0D) ends
the input sequence. The test for carriage
return is done after storing the input
character since the load routine expects a
carriage return as an end of line character.

In figure 3, the parameter decoding and
error checking logic is shown as a box and an
error test with a note attached. This logic is
expanded in more detail in figure 5. The
parameter decoding logic has a structure that
enforces a non ambiguous syntax on the
command line. The command is examined
by means of a command list. This list is a
table which is sequentially searched, match-
ing the command in the buffer with each
possible command in the table. The result is
used to determine the proper branch. An
error message is printed if the command is
not found in the table.

The LOAD subroutine is shown in figure
6. The logic consists of an outer loop for
each line of input, and an inner loop which
scans the line, loading memory from left to
right in ascending address order. The LOAD
routine checks the syntax for double char-
acter hexadecimal codes separated by
blanks. If a syntax error is found, loading
stops, an error message is printed, and the
next address to be loaded is printed on the
next line. A variable number of hexadecimal
codes from 1 to 22 may be entered on each
line. The initial address (P1) is incremented
during the loading routine.

Note that after loading is completed and
control returns to the main routine, an end
of program mark is inserted into memory. In
my version of ELM, the code for a jump to

address zero is loaded into the next three
bytes as an end of program mark. This
convention allows normal termination of a
user program by running off the end and
branching to the starting address of the
monitor at location 0.

The LIST routine is shown in figure 7.
This routine simply prints out the hexa-
decimal codes found at locations specified
by the input parameters. This listing is done
20 bytes per line. Note that LIST stores the

[ENTER ELM|
| AT POWER |
| ON OR |
| RESTART |

- —— =
| P IS LINE BUFFER |
| _) POINTER. START |
| SCAN AT ZERO
—

—=

i me -

ELM IS ELM INPUT
| WAITING REQUEST
[For iNPUT |
L

CALL
INPUT
DECODE
COMMAND
LINE
[ttt 1
| SEE DETAIL |

OF
| FIGURE 5 |

]

-

TESTS
| |

OMMAN EXAMINE
1G2ANEYY -4 commanD

TABLE !

INSERT END
OF PROGRAM
MARK

__1

CALL
LOAD

SET UP

JUMP TO PI
ADDRESS

l"“‘_‘L_—' r——i——\
| ERROR ! I EnTER I
: BRANCH lggvaRAM |
L _ 1 (RN

Pi=MAXP —>‘}
] NO
YES
P>MAXP
2
STORE
CHARACTER
LINE BUFF-
ER AT P
==
| CARRIAGE !
Pi=P+l; —-—j RETURN |
L

RETURN

Figure 4: The Input Subroutine Specified as
a Flow Chart. The main purpose of INPUT is
to read one line of input, terminated by a
carriage return. INPUT implements the line
editing functions of character delete and line
delete. When the carriage return code is
detected, the line buffer LB is filled from
position O to position P.

Figure 3: The ELM Program Specified as a

Flow

Chart. The main logic of the Eloquent

Little Monitor is shown in this diagram.
Flow begins at the top left and proceeds
down the diagram. Normal operation of

ELM
ELM

involves a closed loop, returning to the
input request message printed near the

top of the diagram, If the GO command is
carried oul, execution leaves ELM and pro-
ceeds to the selected address.

69

Figure 5: Parameter De-
coding Logic Details. Fig-
ure 3 contains a box
labelled Decode Command
Line and a conditional test
labelled Errors, with a
note referencing figure 5.
This figure contains the
details of the logic needed
to decode a command line
into two parameters and a
command. There are two
possible exits from this
logic. An error exit to ter-
minal (1) occurs if an error
is detected; an error free
exit to terminal (2) occurs
If no errors are detected.

initial vaiue of parameter P1 in the accumu-
lator ACC during its operation. Then P1 is
restored after the listing is completed. This
allows LOAD to be called after LIST during
a MODIFY sequence, so that both LOAD
and LIST reference the same starting
address.

In my version of ELM, addresses are
handled as decimal numbers. This is re-
flected in the input numeric conversion logic
(see figure 5) and in the creation of an
output conversion subroutine: Both LOAD

and LIST call a subroutine DECIMAL which
prints the decimal addresses at the beginning
of lines in messages. DECIMAL simply con-
verts the first address parameter, P1, into
five ASCIl numeric characters, and prints
them followed by an ASCIH “=" character
and a blank. | put decimal address conver-
sion into ELM out of personal preference.
The decimal conversions may be omitted
and hexadecimal or octal address parameters
could also be used. There is already a binary
to ASCII hexadecimal routine implicit in the

-
1

PARAMETER DECODE_]

- Locic,pETAIL OF |

| FIGURE 3
L

Fi=0; { NOTE : VARIABLES Bl
| F=FLAG |
M = DECIMAL MULTIPLIER]
| ACC3 DECIMAL VALUE ACCUMULATOR
| P:LINE POSITION :
Mi=1; i LB=LINE BUFFER
ACC:=0; PI,P2 = POINTERS
[Aot 2
i o A
PleP-1;
EXAMINE
M:=M*10; CHARACTER
LB (P)
r———"
| ERROR |
LBRANCHI
ACC:=ACCH+ YES NO
M*LB (P); 'A' TO'Z' Fe0 Fel YES |
° ° °
f NO YES NO
LB(P): = YES {EEE&%TEQEEW
LB(P)-0"; oo Pli-Faa; IBRANCH |
| r L _
] NO
e |
INP D
ﬂbbdgklc | J - TES F:=0 vES < ACC: =LAA
|CONVERSION [~ > > LLesLas
LLOGIC N g ! ?
NO NO YES
[ErROR _] NO o
BRANCH ! ,
SRATLE P
Ve Fiai;
YES | ERROR | P2::ACC,
| BRANCH |
L____J
YES
F=2
K -
: A
NO
ACC2FAA ACCi=FAA;
2
YES
r;ARAMETERSAREEXAMINEDAND;
DECODED IN REVERSE CHARACTER |
Fim2; L?RDER]
Plisacc;, |V ——————

70

LIST function. For input, the parameter
decoding routine can be simplified some-
what by using hexadecimal parameters.

Expansions

There are several obvious expansions to
ELM which should be easy to implement.
You may even want to incorporate them
into your own version of ELM right from
the start. If you have an ASR Teletype (with
paper tape reader and punch), you may want
to add the following commands: LOADPT
and PUNCH. Your Teletype should be able
to receive the rubout character {ASCII de-
lete, hexadecimal FF) but not transmit as is

the normal configuration. LOADPT would
operate the same way as LOAD except that
there is no printing needed. The format of
the tape would be lines of hexadecimal
codes with a carriage return and two or more
delete characters at the end of each line.
You can skip the blanks between bytes to
save tape if you like. When the processor
sees the carriage return, it begins loading
memory from the line buffer. The two
delete characters give the computer time to
load the line, so that by the time the next
real character comes along the computer is
ready for it. Instead of the word “END’’ at
the end of the input, you might want to use

LOAD
Fiso0,
ACC:=0,
ey] Coomo "
LOAD Fe] ILB(P) | NO ERROR |
MESSAGE I e | I vaLip k- MESSAGE |
—_{NEWLINE | | oo | ! !
|CORRENT | - LRESTART |
CURRENT
I I YES
(ADDRESS |
(CALL DECIMAL) CONVERT
caLL LB (P)
P ASCII TO
T BINARY
YES NO
Pi:0;
li_S—FTL—(LE(F),;ﬂl
ACCi= MEANS =
ACCBFOg: | [SHIFTLB(P) | [BEC HEES
8F0g; L _|oFe;AcC
ACC:» [LEFT FOUR L 116
ACCILB(P); | |BINARY acclsaL
(PLACES | 14);
l === q
LB mem(p) | | OMLY ONE | 1 prupy
(Peiz N = P Swosvte | [Fitls
? ACC; | ACCUMULA-
TOR 15 USED
l |INTHIS |
LROUTINE
PLsPI+I;
Pi=P+l,
®
———— 1
LAST | | BLANK MUST BE
ADDRESS —_—— Pi=P+l; JSEI;’_»wEAéI'SR i
|
MESSAGE | |RouTINE | | HEXADECIMAL |
FOR ONE | Lcobes |
LLNE
(RETURN)
—
—_—L
[Lppye |
| CARRIAGE | e
LRETURN | ILLEGAL |
— . CHARAC- |
| TER |
i L

S .

{_BACK FOR |
{ MORE :
I

| I |

TRESTART |

| LOAD |

| ROUTINE |

|
'___l_.___‘
I TRY [
I aGAIN !

Figure 6: The LOAD Sub-
routine Specified uas u
Flow Chart. The purpose
of LOAD is to sel the
contents of user program-
mable .memory beginning
at u location specified by
the user. The routine con-
tinues indefinitely until
the characters “END’ be-
gin a line of input.

Figure 7: The LIST Sub-

routine Specified as ua

Flow Chart. The purpose
of LIST is to dump the
contents of memory, for-
matted as ASCl! encoded
hexadecimal digits. The
dump routine types the
address first on each line,
then follows with 20
groups of two hexadecimal
digits.

the ASCIl end of tape character (hexa-
decimal 04). The PUNCH routine would
operate like LIST, without the addresses. [t
should punch the tape in exactly the same
format read by LOADPT. If you are not
using blanks between bytes in the tape
format, you can get 34 hexadecimal codes
on a line followed by a carriage return and
the two delete characters. The last character
punched might be the end of tape code or
the END convention, depending upon your
own preferences.

If you have a serial tape drive at a
different 10 port, you may want LOADMT
and SAVEMT commands. These could be
exactly like LOADPT and PUNCH except
for the 10 port address. Most tape interfaces

ACC:=Pi;

- | i |

| MEM (PL) | [skiPTO |

. i NEW LINE |
MARK PRINT

| END MARK Y | CURRENT |

LADORESS |

(CALL DECIMAL)

-
| MEM(PITO |
ASCII HEX |
| AND PRINT |

PlisPl+|
Fi=F-l

CARRIAGE
RETURN

Pli= ACC;

RETURN

72

are set up to use the null code (hexadecimal
00) instead of the delete code to give blank
spacing. You may also want to implement
absolute binary versions of SAVEMT and
LOADMT to allow higher speed and elim-
inate conversions.

Philosophy

With this article, I’ve given you enough
information on the design of a monitor to
enable you to write the code for your own
machine. After a few days of coding and
debugging, you should be ready to go to the
local computer store and have your ROMs
zapped with a mighty ELM. The whole
monitor could be put in and initially de-
bugged via front panel switches; however,
this is a tedious process at best. Once you
have ELM installed, you can use this tool to
help build software and programs on your
own machine to your heart’s content.

Even though ELM is a fairly simple
monitor as monitors go, it can be further
simplified and condensed. As mentioned
before, the decimal conversions can be
omitted. The syntax checking can be re-
duced, the printing of addresses at the
beginning of lines might be omitted, and the
commands could be reduced to single letter
codes. None of these simplifications will
reduce the basic functions of the monitor;
however, these features add a sharp dimen-

‘sion of utility and a touch of class to your

monitor.

In many years of designing systems and
studying human interaction with computers,
I've found that people (ie: users, be they
systems engineers or airline ticket clerks)
think most efficiently in words and decimal
numbers. Addresses are a sequential stream of
numbers and we have all been taught since
childhood to think of streams of numbers in
decimal base. Only computer nuts, putting
on airs, pretend 1o be able to think in octal
or hex. Likewise, we communicate with each
other in words. The computer is capable of
communicating with us in our own language,
so let it. An instruction such as LOAD
STARTING AT 489 is much easier to learn
and more efficiently used than L,01E9. The
latter, however, is easier to implement in the
computer. ELM compromises with
LOAD,489; retaining the keyword and the
decimal address. My basic philosophy is: Let
the machine do the things it is good ul. ILis
good at base conversions and word recogni-
tion. It can convert binary to decimal and
back again in the twinkling of an eye; we
can’t. Remember, you will probably want to
usc your monitor for along time; the extra
effort in its construction will be well worth
the frustration.m

A Perfect Balance...
in the World of
Computers

® For the Layman

® For the
Experienced

® For the
Professional

A
MONTHLY
PUBLICATION

e If you've been

looking for a * Have you been alone as a
publication that Y F0E home computerist?
personally addresses you RS E) o Have you wanted to learn more
¢ That understands the real life / about home computing?

problems of home computer support ¢ Do you want to buy your equipment

* A publication that communicates your and parts at group rates?

expression & feelings world wide
THEN STOP LOOKING —
YOU'VE JUST FOUND IT.

INTERFACE — $1.50 per copy at your
local electronics or computer store —
if he doesn’t have it, tell him to get it.

* Do you want help in solving your
computing problems?

THEN JOIN THE SOUTHERN
CALIFORNIA COMPUTER SOCIETY

THE SUPER BENEFIT

JOIN THE SOUTHERN CALIFORNIA COMPUTER SOCIETY
AND RECEIVE “INTERFACE” FREE.

DEAR BYTE READER: | s R
Our purpose is to support the home computerist. To : SOUTHERN CALIFORNIA COMPUTER SOCIETY
accomplish this we want to reach as far and wide as : P.0.BOX 3123 LOS ANGELES, CALIF. 90051

the postal service will allow. It makes no difference : NAME

if you grow potatoes in Idaho, manufacture cars in . ADDRESS

Detroit, chase cows and oil wells in Texas, or simply :

enjoy retirement in Florida. You are invited to . OTY

become a member of SCCS, a reader of INTERFACE : STATE ZIP

and a member of th'at rap1q1y growing community : HOME PHONE (\

of people who are discovering home computing. :

ART CHILDS BUSINESS PHONE () -

Editor — INTERFACE ! DUES: $10.00/YEAR PLEASE PRINT PLAINLY

MAKE CHECK PAYABLE TO: SOUTHERN CALIFORNIA COMPUTER SOCIETY

An Introduction to Addressing Methods

John Zarrella EFFECTIVE
ADDRESS
90-9 Wakelee Rd {LOCATION) MEMORY CELLS
Waterbury CT 06705 00000000
00000001
00000010
0000001 |
00000100
00000101
00000110
000001 |1
00001000
00001001
00001010
00001011
Figure 1: Memory Addresses. The effective 29991100
address s the object of memory address cooon 1o
calculations. It identifies a location in mem- : &
ory address space for the particular cell Lol
involved in some operation. NEEEEER
|| MICROPROCESSOR CHIP 8 SUPPORT LOGIC 1
e e ey |
| 1 conTroL UNIT 1 |
l I SEQUENCING I —»| ALU/ I
| : | REGISTERS I
[: b } |
ADDRESS INSTRUCTION
{ | COMPUTATIONS (] DECODE “1 I
e |
ADDRESS DATA
BUS BUS
Figure 2: A Typical Sys Moemory -1
tem Arrangement. The SUBSYSTEM 4§ ¢ |
central processor with its | ADDRESS |
internal elements defines | DECODE :
the data bus and an ad- I I
dress bus. The address bus I |
is used by the memory n
subsystem to decode a par- L ——————_ 1

ticular location in the
memory array which will
be connected to the data
bus.

76

An address is an identifier which de-
scribes the location of a particular piece of
information within a computer’s memory
system. This information, when presented to
the central processing unit for use in a
computation, is usually referred to as an
operand. In all microprocessor systems and
in most other computer systems, an address
is a binary number which is decoded to
reference one computer word of information
somewhere in the memory subsystem. Fig-
ure 1 illustrates how unique addresses are
typically associated with memory cells,

It is interesting to note that this identifier
need not be a number. There are some
experimental computer systems in which
memory locations are actually referenced by
name or a combination of a name and a
numeric index during execution. In these
systems, there is hardware which translates
the name directly into the location of an
appropriate memory cell or group of cells.

In a similar manner, when writing pro-
grams in either assembly language or a higher
level language such as FORTRAN, a pro-
grammer uses names to reference infor-
mation. In this case, however, the names are
generally mapped into numeric addresses by
the language processing program and are not
actually implemented in hardware as named
references.

Instruction Cycles

Figure 2 illustrates typical intercon-
nections among the control unit, arithmetic
and logic unit (ALU), registers and memory
subsystems of a general purpose processor. A
brief review of the typical instruction fetch
and execute cycle of such a CPU will be
useful for the discussion which follows. The
instruction fetch begins when the control

unit requests the next instruction by trans-
mitting its address to the memory subsystem
via the address bus. The current instruction
address is usually maintained in a register
called the program counter (or PC), and is
updated to point to the next instruction
when the current instruction is completed.

The information returned is treated as an
instruction which specifies what function is
to be performed by the processor. This
instruction is analyzed in the instruction
decode section of the processor. The execute
portion of the instruction cycle then per-
forms the functions which are specified by
the decoded instruction.

Most instructions require data operands
from the memory subsystem before execu-
tion can be completed. Thus a memory
address must be created and sent to mem-
ory. This address is created using informa-
tion contained in the decoded instruction in
conjunction with information contained in
various registers of the processor. The pro-
cess of determining a data address is called
address formation or address computation
and is performed by the address computa-
tion section of the central processor. The
result of address calculation is called an
effective address.

A number of address formation capabil-
ities are provided in the various designs of
computers which are available. The typical
contemporary microprocessor only provides
a portion of the address calculation options
to be described below. However, each mode,
when available, can be utilized advantageous-
ly by the programmer. An understanding of
addressing modes is useful when evaluating
the instruction set of a computer. In order
to clearly define the variety of addressing
methods, an analogy will be used in the
following discussion.

Immediate Addressing

In many ways memory addressing may be
likened to the postal system. Imagine that
you are writing a book on atomic physics
and that Dr] Smith is to be a consultant. He
currently lives in a small apartment complex
called Apple Valley at 15 Grove St. There
are five apartments at this location, each of
which has its own street number—from 15
{manager) to 19. The mailboxes are arranged
as shown in figure 3.

While researching the book, you attempt
many of the necessary calculations yourself.
These calculations involve multiplication,
addition, transcendental functions and so
on. Many times in these calculations you use
fixed numeric factors, such as 18, which
approximates 272, In doing this, you are
treating 18 as a simple integer constant for
the purposes of the approximation. In com-

puter addressing terminology, this constant
might be referenced with what is called
immediate addressing by simply putting the
number in a field of the computer instruc-
tion which follows the operation code. Here
the effective address of the data is derived
from the current program counter, and the
actual instruction contains no addressing
information.

Direct Addressing

Many times when performing calcula-
tions, you find that the results obtained are
perplexing and need explanation. Therefore,
you decide to ask your consultant for help.
Since Dr Smith does not believe in tele-
phones, you must send him a note, ad-
dressed to:

Dr J Smith
18 Grove St

In this case, the value of 18 is being used
as an address. When delivering the letter, the
mailman uses this address to determine
where the letter belongs on Grove St. In its
computer form, addressing with a single
number such as 18 is called direct addressing
or absolute addressing. In a computer, this
number forms the address field which fol-
lows the instruction code in the program.
This address field contains all the informa-
tion needed by the memory subsystem in
order to reference the required information,
in the same manner that 18 Grove St
contains all the information needed to locate
Dr Smith on Grove St.

Note the contrast of this use of 18 as an
address with its previous use as a constant.
The number 18 which follows the instruc-
tion code is the same in either case; the
intended use differs according to the instruc-
tion being executed. To know whether to
use a number following the instruction code
as an address or as a constant, its context
must be known. In the typical computer,
this is accomplished by building a special set
of instructions called immediate instructions
which use the number following the instruc-
tion code as a constant. A second set of
instruction codes will be devoted to the
absolute addressing mode, in which the field
following the instruction code is an address.
In general, for each possible addressing
mode, a set of instructions exists which uses

Figure 3: The concept of T
19

a memory address can be
likened to that of a post ¢

An effective address is the
goal of address calculation
technigues.

The problem of computing
a result often reduces to
the problem of organizing
the reference of operands
in memory through ad-
dressing techniques.

T T T T
18 17 16 5

SMITH AMES|JONES

]

office address.

77

|

An absolute or direct ad-
dress specifies an operand
location as a fixed number
embedded in the instruc-
tion sequence.

Use of registers for address
components enables one
to employ base and index
address concepts.

that mode and interprets the information
following the instruction code according to
that mode.

Addressing With Registers

Suppose that you did not know Dr
Smith’s street address and sent the letter
anyway. When the letter is received at the
post office, the postmaster, knowing Dr
Smith very well, would have to tell the
postman: ‘I can’t remember Dr Smith’s
address, but he lives in Apple Valley apart-
ments at 15 Grove St and his mailbox is the
fourth from the right in front of the
complex.” This specifies Dr Smith’s address
relative to a base address, 15 Grove St. In a
computer, such a base address might typical-
ly be stored in an index (or general purpose)
register as shown in figure 4. The displace-
ment or address modifier in this case would
be 3, which added to 15 gives the actual
address of 18 Grove St. A computer with
this single register indexed addressing meth-
od carries out the same form of calculation
to produce the effective address: It adds the
displacement or modifier field to the con-
tents of the index register identified in the
instruction.

DECODED INSTRUCTION

705 HAAY NN NN

INDEX OR
GENERAL PURPOSE

INDEX REGISTER BANK
REGISTER
1D

ADDRESS
MODIFIER OR
DISPLACEMENT

s IAD,
+ VALUE
i‘\ ADDITION
EFFECTIVE
ADDRESS

Figure 4: Indexed Addressing. One common
mode of addressing is called indexed address-
ing, in which an index register specifies one
numeric value which is added to an address
maodifier to produce the effective address. If
the index register contains a base address
value, then the modifier specifies a displace-
ment or offset which is added o the base, if
the index register contains an offset or
displacement, then the modifier field is
interpreted as a base address. In either case
the result is an effective address.

In the most general case, the index
register may contain either an actual base
address such as the first address of a table of
values, or a displacement value. The cor-
responding contents of the modifier would
be a displacement value or a base address,
respectively. In some presently existing

78

microprocessor designs, the index register is
not large enough to contain a full base
address. For instance, this occurs if the
microprocessor uses a 16 bit address space
and contains only an 8 bit index register.
This case would require using the index
register to contain a displacement with the
base address becoming the instruction’s
modifier field.

Other options which sometimes occur
include the choice of a second register as a
component of effective address generation.
In such cases, the instruction specifies one
register which is intended as a base register,
and a second register which is intended as an
index register, as shown in figure 5. This
form of double register addressing is some-
times combined with a modifier field as
shown in figure 5. At this time, however, the
microcomputers commonly available do not
have such a powerful addressing mode.

One of the advantages of using a base
register as well as an index register is that the
base register can be used to locate a segment
of memory, while the index register is used
to access various places in that segment
according to the program. Since all address-
ing is specified relative to the base register,
relocating the program or data being ref-
erenced can be accomplished without modi-
fying any code except the instructions which
load the base register. The example of figure
6 shows the case of a computer which
specifies a jump instruction effective address
as the sum of a base register (register 0) and
a displacement. Loading the same binary
code at location 100 or 1125 is possible,
provided the base register is initialized at the
start of the program. The problem of reloca-
tion thus consists of redefining the constant
which will be loaded into register O at the
start of the program.

Program Counter Relative Addressing

Program counter relative addressing is
very similar to indexed addressing except
that the base address is implicitly specified
using the program counter. [n a typical
machine which allows program counter
relative addressing for data as well as pro-
gram control purposes, the instruction con-
tains a modifier relative to the current
contents of the program counter as shown in
figure 7. In some microcomputers, such as
the 6800, program counter relative address-
ing is only allowed for branch instructions,
and is specified relative to the next address
following the end of the current instruction.

In terms of the postal analogy, this
corresponds to the mailman coming upon a
letter with no street address as he is working
along his route. He therefore calls the
postmaster and explains his dilemma. Since

DECODED INSTRUCTION

Figure 5: Combining Two Index Registers.

ZZ\X\\\Z. 7 A more general address calculation uses one
BASE OR INDEX INDEX OR BN o B
GENERAL PURPOSE BASE REGISTER GENERAL PURPOSE register das a base register, a second register as
REGISTER BANK A NUMBER REGISTER BANK an index register, and a modifier. The
%7 effective address is then the sum of lhe
TR e _/ / values found in the iwo registers and the
- MODIFIER —- value of the modifier. The order of calcula-
— tion and detailed significance of the registers
BASE % depends upon the processor design which
ADDRESS ; : ;
VALUE NDEX uses this type of address calculation.
VALUE
l ADDITION
EFFECTIVE
ADDRESS
BASE
a. REGISTER 0
100 [SETREG 0: 100 J¢—
Figure 6: A base register scheme allows 101
convenient relocation of code. In this exam- 102 JUMP TO ADDRESS 2
. 103 | JMP 0,2
ple, the targe! address of a |MP (jump) 104
instruction is specified as a buse uaddress 105
register and a displacement. The value of the 106
107

displucement is shown das two words from
the start of a block of memory in which the
program resides. With the base register
loaded to the starting address, il does not
matter where the block is located. At (a)ilis
located at octal address 100; at (b) the block
is locuted at address 1125. With base ud-
dressing schemes, the first operation on
entry to a program or block of code is lo
establish the value in the base register, us
illustrated in these examples.

there is only one phone booth on the route,
the postmaster gives him directions, such as:
“Walk down the street directly in front of
you and deliver the letter to the fourth
mailbox in the apartment complex.” Note
that the base address is implicitly specified
since the postmaster knows the location of
the phone booth.

Indirect Addressing

To illustrate still another method of
addressing, assume that Dr Smith recently
had a post office box, #35. Since then he
changed his mind and asked to have all his
mail forwarded to his Grove St address. In
order to remember the change when mail
comes Lo the old address, the postmaster
might mark Dr Smith’s Grove St address on
box 35. Then, when the mailman attempts
to insert a letter for box 35 into that box, he
sees the note that tells him to forward the
letter to 18 Grove St. Thus, the box is not
the final destination of the letter; in fact, it
contains only an address to which the letter
is 1o be forwarded. We call this method of
locating the effective address (18 Grove St)

BASE
bD. SAME PROGRAM,RELOCATED REGISTER O
1125
112s |SET RO« 1125
Hae
nav JUMP TO ADDRESS 2
1130 [JMP 0,2 PLUS REGISTER O
1131
132
1133
1134

DECODED INSTRUCTION

vz § AN PROGRAM COUNTER
PC -
RELATIVE
ADDRESS
PC
VALUE VALUE
+ apoition
EFFECTIVE
ADDRESS

indirect addressing. Figure 8 illustrates how
the effective address is used to retrieve a
second cffective address in the computer
form of indirect addressing. In the simplest
form of indirect addressing, only one such
level of indirection is involved.

We could easily extend this notion to
multiple levels. In the postal analogy,
imagine that Dr Smith moves out of 18
Grove St. The change of address order to the
post office would result in a note to the
postman on the 18 Grove St route, giving
the new address of Dr Smith. Then, if a

79

Figure 7: Program Coun-
ter Relative Addressing.
Some computers provide a
means to address memory
in terms of an address dis-
placement relative to the
current program counier
value. The instruction con-
tains the displacement
which the processor adds
in the current program
counter value for this type
of eflfective address
calculution.

DECODED INSTRUCTION

% y.)

FIRST EFFECTIVE
ADDRESS

_

MAIN
MEMORY

Figure 8: Indirect Ad-
dressing. In this form of
— addressing, the first effec-
tive address developed is
used to address memory to
N find a pointer which will

become the final effective
- address used for the

SECOND {INDIRECT)
EFFECTIVE ADDRESS

instruction.

EFFECTIVE ADDRESS
CALCULATION

START

ADDR ! =
modifier;
B!=0;
1.0,

—— 3
| INDEX [
ISPECIFIED r
L
I:=INDEX
REGISTER
CONTENTS
0
i BASE |
:SPEOFmo r ?
[
B.: BASE
REGISTER
CONTENTS
EA:=
ADDR+B+T;
mT—=—7
l'iNDIRECT ! NO
:ADDRESS
S |
ADDR:=
MEM (EA);
8::0;
1:-0; (END)
EA HAS EFFECTIVE
ADORESS

Figure 9: A General Address Compultation
Algorithm, This flow chart shows u typical
address calculation algorithm ol a modern
general purpose computer. The typical
microcompu ter design circa early 1976 does
not employ such a powerful addressing
dlgorithm, but future improvements in chip
designs should yield addressing techniques
which approach the power of a good general
purpose computer’s addressing.

80

letter came to the original post office box 35
address, the postman would look up the 18
Grove St address, At the 18 Grove St
address, the postman would in turn find the
pointer to a new address for Dr Smith. The
letter in this case would reach Dr Smith after
two levels of indirection. This might happen
a number of times if Dr Smith has a habit of
frequently moving. In a microprocessor, the
current chip designs offer only a very limited
version of this mode, if indirect addressing is
permitted at all. In minicomputers and large
scale systems, indirect addressing is often
allowed to continue to an indefinitely large
number of levels.

General Address Evaluation Algorithm

Indirect addressing is often combined
with the other addressing modes in com-
puters which feature the most powerful
cffective address calculations. For instance,
the indexed addressing mode might be used
to develop the effective address for the first
indirect address in a chain of indirect ad-
dresses. Once the chained indirect address
lookup is begun, the processor might con-
tinue through multiple levels of indirection
until a chain termination condition is de-
tected. A gencral address evaluation algo-
rithm which combines base register, index
register and the possibility of indirection is
shown in figure 9. Such an algorithm is
typical of a good minicomputer, but is only
partially implemented for most presently
available microcomputer chip designs.

Summary

These methods of addressing are usually
referred to as the addressing modes of the
computer. To recap, the typically available
modes are:

1. Immediate Addressing, in which
the data being referenced forms a part
of the actual instruction.

2. Direct or Absolute Addressing, in
which the address of the operand is
actually given as part of the instruc-
tion.

3. Indexed Addressing, in which one
or more registers are specified, pos-
sibly including a modifier field. The
effective address is a sum of the
contents of the addressing registers
and the modifier.

4. PC Relative Addressing, in which
the program counter acts as a base
address with an offset specified by the
instruction.

5. Indirect Addressing, in which one
of the other modes develops an effec-
tive address at which a pointer to data
will be found.m

Lowell Institute School - MIT

Boston arca residents should check out
the Lowell Institute School, affiliated with
Massachusctts Institute of Technology, an
evening school with professional instruction
in arcas of modern technology, which now
includes microprocessors.

The Lowell Institute School was estab-
lished at MIT in 1903 to provide instruction
in technical subjects for residents of the
Boston arca. Today the School continucs
this tradition by offering subjects in the
arcas of modern technology which are not
readily available at other cvening institu-
tions. Instruction level is geared to the
practicing technician who has an associate
degree or cquivalent expericnce.

For information, contact:

Lowell Institute

MIT Room 5-118
Cambridge MA 02139
phonc (617) 253-4895

A new course in the Spring 1976 catalog
is “Introduction to Microprocessors,” with
hands on lecture and laboratory sessions
dealing with available microprocessors, pro-
gramming of ROMs, assemblers, debugging
aids, interfacing technigues, AD conversion.
Students design an interface and generate
software for a device of their own choosing.

Of Course, of Course. . .

A firm called Creative Computer, 1901
Old Middlefield Way, Suite 4, Mountain
View CA 94043, has come out with a
“complete microcomputer software course
designed to meet the needs of hardware
designers who are learning software.” Ac-
cording 1o the press relcase, the course
contains 10 self teaching lessons with addi-
tional sections on computer architecture,
operation and software systems. “Through-
out the course, emphasis is placed on under-
standing the hardware/software relationships
that must be considered when designing a
microprocessor based digital system.” The
course is $49.95 FOB Mountain View,
distributed in a five part sequence. Delivery
is quoted 30 days ARO for the first module
of the sequence. For more information
phone {415) 961-5240.m

FREE! HARDWARE MULTIPLY/DIVIDE

FREE, one GNAT 8008 Hardware Multiply/Divide Module
to run on your Altair, Intel MDS or GNAT 8080 Micro-
processor System. The 8005 operates at 5 usec, compared to
250—400 wsec using software multiply/divide. The 8005
Module is in the GNAT 8080 Microprocessor Series.

We will award a free 8005 Module for the best func-
tional, documented applications program using the 8005
Module, Examples of such programs include new applica-
tions, or modification of interpreters and compilers to run
BASIC or Fortran using the 8005 Module. Duplicate prizes
will be awarded at our discretion,

Sound fun? it is! To enter, send us a postcard or call and
request contest details and product information.

If you don't want to write the program, you can still plug
the GNAT 8005 Module into your microprocessar system
and get § usec multiply/divides for only $225. Be sure to
specify for the Altair, Intel MDS or GNAT 8080 Micro-
processor System, and include your check for $225 per
module. We will’also send you a copy of the winning pro-
gram and the name of the author after the contest ends.

GNAT computers

8869 Balboa, Unit C
San Diego, California 92123 (714) 560-0433

ALTAIR 8800
OWNERS

Is your ALTAIR:

* Slow to start up . . .

* Writing all 0’s or 1's into memory . . .
* Producing the wrong STATUS . ..

¥ Having troubles running BASIC . . .

Then your Altair may have CPU Clock problems.
PARASITIC ENGINEERING now offers

a permanent fix-kit for the Altair 8800 CPU
Clock; for only $15.

Send now for our FREE brochure detailing
what this kit can do for your ALTAIR.
Better yet, see for yourself. Send for your
kit TODAY.

only $15.

Kit is shipped postpaid anywhere in the
United States. Kit includes complete
instructions and all parts necessary to get
‘Cookbook Clock Pulses.”

PARASITIC ENGINEERING

{ PO BOX 6314 ALBANY CA 94706

81

Product Description:

Nat Wadsworth
Mark Arnold

SCELBAL

Here is a new product description of the SCELBAL language, supplied by
its authors, Nat Wadsworth and Mark Arnold of Scelbi Computer Consulting,
Inc, 1322 Rear—Boston Post Rd, Milford CT 06460. Scelbi’s philosophy of
software provides an excellent model of a fully supported product: The firm
supplies a completely documented package including user level documenta-
tion, detailed listing and program design information. By providing such
comp/ez‘e detail, this type of product becomes an excellent package for both
the novice and advanced programmer. The novice can begin with the user
level documentation, using the package; the advanced programmer can use
the detail design information to customize and enhance the package (o suit
personal tastes. . ..CH

The goal of about 90 percent of small
systems owners appears to be the achicve-
ment of a system with some form of 1O and
enough memory to support a high level
language. In assembling a system with a high
level language capability there are a number
of alternative paths. One common approach
is to purchase a complete system from a
single source with thc high level language
capability either bundled or as an extra cost
option. However, when sole source pur-
chases are made,- there is no room for
shopping around to find the best buy in
peripherals, memory, software, etc. The
alternative of integrating a system from
subsystem components is attractive when
hardware prices are totalled up, but where
can one go to acquire the software needed
for the custom system? One answer is to
treat the software as another type of sub-
system component and seek an independent
supplier of high level language capability
appropriate for the custom system.

When seeking a software package, one of
the most important criteria is full documen-
tation of the design at both the user level
and the systems programming level. A large
program without a detailed program logic
description and listing can be likened to a
complicated electronic device without a
schematic or logic diagram.This is cspecially
so for complicated systems programming
packages such as interpreters, compilers,
assemblers, monitors, etc. Installing such a
program in a custom system virtually re-
quires modifications of some form to fit the
hardware details. But attempting to modify

82

or enhance a complex program is a risky,
frustrating and often downright impossible
task without the detailed documentation.

SCELBAL — A Higher Level Language
for 8008/8080 Systems

Few “canned” programs can be tailored
to have all the features desired by all the
possible potential users. To attempt to do so
would result in programs requiring more
memory than users could afford. The answer
to this problem is, of course, to supply
programs in such a manner that they can be
readily modified and altered by their own-
ers. This means, simply, that the detailed
source listing for the program must be made
available to the purchaser. Assisting the
program owner by also providing detailed
comments with the listing, a general over-
view of the program’s organization and
operation, and general flow charts can
further enhance the value of the program to
the owner. With this information available,
the program’s owner can safely proceed to
tailor the capabilities of the program to serve
his or her particular interests and
requirements.

This is the approach Scelbi Computer
Consulting, Inc, has taken in presenting its
new higher leve! language for 8008/8080
machines. The language has been given the
name SCELBAL for SCientific ELementary
BAsic Language. As the reader can easily
surmisc from the title, it is similar in
capabilities to the highly popular BASIC
language. SCELBAL was specifically

developed to be able to run on 8008 based
microcomputers, It is believed to be the first
such higher level language to be made
generally available that is capable of running
in a system equipped with the ubiguitous
8008 processor. The program can of course
also be run on systems using the more
powerful 8080 processor though it is not as
memory efficient as it could have been if the
program had forsaken 8008 capability.

The language was developed to operate in
an interpretive mode [See Ted Nelson’s
“The Magic of Computer Languages”, April
BYTE, page 24]. This means that the entire
language processing program resides in mem-
ory at one time along with the program
written in the higher level language that is to
be executed. When the interpreter is given
the RUN command, it immediately proceeds
to interpret each line of the higher level
language program and perform the necessary
calculations and functions. This differs from
a compiler which would first convert the
higher level language source listing to
machine code, then later execute the
machine code.

A compiler oriented high level language
generally is cumbersome to run on a smali
system that lacks reliable high speed bulk
memory storage facilities. For instance, if
the program had been designed as a com-
piler, the following steps would have been
necessary in order to execute a higher level
language program:

® First one would have to load a text
editor program into the computer and
create the desired higher level language
version of a program as a source
listing.

® A copy of the source listing would
then have to be saved on an external
memory medium.

® Next, a portion of the high level
language system, the actual compiler,
would have to be loaded into memory.
When it was resident, one would pro-
duce the desired machine code version
of the higher level language statements
by having the compiler process the
source listing several times (much as an
assembler program would process the
mnemonic listing when programming
in machine language). The machine
code produced would have to be
stored on an external memory device
at this stage.

® Finally, the run time portion of the
high level language system would have
to be loaded into the computer along
with the machine code produced by
the compiler.

® The higher level language program
would then finally be ready to run.

An error in the original source coding for the
program cannot be detected until run time.
In that event you would have to go all the
way back to the text editor program to
correct the higher level language source
listing and start the process over again. While
the compilation process causes no great
trouble with huge systems and plenty of
high speed mass storage, it can be incon-
venient compared to interpreters in small
systems.

What's in the SCELBAL Program

Developing a high level language as an
interpreter eliminates the requirement for
the constant use of an external bulk memory
device in order to get a program from the
concept to execution stage. An interpreter is
definitely a much more practical high level
language concept for the small systems user.
The entire interpreter program resides in
memory at one time. An area is set aside in
memory to hold the higher level program.
An executive portion of the program allows
the user to enter the higher level language
listing directly into the area where it will be
operated on when the program is executed.
The executive of the SCELBAL interpreter
for example provides for the user entering a
program from a manual input device such as
a keyboard. Or, if the user desires to run a
program that has been developed previously,
a LOAD command will direct the program
to read in a program from an external bulk
memory device such as a magnetic tape
peripheral.

SCELBAL has been designed so that it
can operate in a calculator mode or operate
in a stored program mode. In the calculator
mode, each statement is executed imme-
diately after it is entered by the input
device. In this mode, the program is ideal for
solving simple formulas when the user only
needs to obtain a few values.

When operating in the stored program
mode, the interpreter will follow an entire
series of instructions as directed by the
higher level program. To enter a program
that will be operated on as a stored program,
the operator simply assigns a line number at
the beginning of each statement.

Executive Commands

The executive portion of the package
allows the user to edit a program at any
time. Lines may be deleted and new lines
entered anywhere in the program. If the
operator makes a clerical error while enter-

83

ing a line, a special erase code may be used
to effectively backspace within a line and
then re-enter the correct characters. Further-
more, the executive checks for various types
of syntax errors as statements are entered,
and will display a two character error code
to the programmer when such errors are
detected.

The executive portion of SCELBAL has
five major commands available to the oper-
ator:

® SCR (for SCRatch) effectively clears
out any previous program stored in the
program buffer along with any variable
values.

® LIST causes the present contents of
the program buffer to be displayed for
review or to make a copy for record
keeping if a printing device is in use.

® RUN causes the higher level language
program stored in the program buffer
to be executed by the interpreter.

® SAVE. This command directs the pro-
gram to save a copy of the program
stored in the program buffer on the
user’s external bulk storage device. A
program saved in this manner can later
be restored for execution by using the
following command.

® LOAD. This command causes the pro-
gram to read in a copy of a program
from an external device that was pre-
viously written using the above SAVE
command.

SCELBAL Statements

A higher level language program is made
up of statements that direct the machine to
perform selected types of operations. The
SCELBAL language can execute 12 different
types of statements. In addition, the END
statement is used to signify the end of a
program:

® The REM (for REMarks) statement
indicates a comments line which is
ignored as far as program execution is
concerned. Information on’a remarks
line is intended only for the use of
programmers and is used to document
a program.

® The LET statement is used to set a
variable equal to a numerical value,
another variable, or an expression. For
instance the statement:

LET X = (Y*Y + 2*%Y — 5)*(Z + 3)
would mean that the variable X was to
be given the value of the expression on
the right hand side of the equal sign.

® The IF combined with the THEN
statement allows the programmer to
have the program make decisions.

84

SCELBAL will allow more than one
condition to be expressed in the state-
ment. Thus:

IF X<=YTHENLL
states that if X is less than or equal to
Y then the programisto go directly to
line number LL. Otherwise, the pro-
gram is to continue on to the next
statement in the program.
GOTO directs the program to jump
immediately to a specified line num-
ber. The GOTO statement is used to
skip over a block of instructions in a
multiple segment or subroutined
program.
The FOR, NEXT and STEP statements
allow the programmer to form pro-
gram loops. For example, the series of
statements:

FORX=1TO10

LET Z=X*X+2¥X +5

NEXT X

would resuit in Z being calculated for
all the integer values of X from 1 to
10. While SCELBAL does not require
the insertion of a STEP statement in a
FOR — NEXT loop, a STEP value may
be defined. The implied STEP value is
always 1. However, it may be altered
to be an integer value other than 1 by
following the FOR range statement by
the STEP statement and a parenthesis
containing the STEP size. Thus:

FOR X =1TO 10 STEP (2)
would result in X assuming values of 1,
3,5 7 and 9 as the FOR — NEXT
loop was traversed.
GOSUB is used to direct the program
to execute a statement or group of
statements as a subroutine. The state-
ment is used by designating the line
number in the program where sub-
routine execution is to begin.
The RETURN statement is used to
indicate the end of a subroutine. When
a RETURN statement is encountered,
the program will return to the next
statement immediately following the
GOSUB statement which directed the
program to the subroutine. SCELBAL
permits multiple nesting of sub-
routines in a program.
DIM (for DIMension) is used to
specify the formation of a one dimen-
sional array in a program. Up to four
such arrays having a total of up to 64
entries are permitted in a program
when running SCELBAL. The
statement:

DIM K(20)
sets up space for an array containing
20 entries. (Array size must be

designated by a numerical value, not a
variable.) The DIM is an optional
statement that may be left out of the
program to provide additional program
storage space in systems having limited
memory.

e [NPUT is used to cause the program to
wait for an operator to INPUT infor-
mation to the program. After the
information has been received, opera-
tion of the program automatically
continues.

e PRINT is used to output information
from the program. Using the PRINT
statement the user may direct the
program to display the value of vari-
ables, expressions, or any information
such as messages. The PRINT state-
ment allows for multiple mixed output
on a single line, and the option of
providing a carriage return and line
feed after outputting information or
suppressing that function. For
instance, the statement:

PRINT ‘X IS EQUAL TO: ;X
would result in the program first print-
ing the message “X IS EQUAL TO:”
and then the value of the variable X on
the same line. After the value of the
variable had been displayed, a carriage
return and line feed combination
would be issued. To suppress the
printing of the carriage return and line
feed the programmer would merely
include another semicolon at the end
of the statement. A comma in a
PRINT statement will direct the out-
put to start at the next tab point in a
line. A special function may also be
called upon to direct the output to
begin at a specified position in a line
to allow for neat formatting.

The power of the language is further
enhanced by the inclusion of seven functions
that may be used in statements. The seven
functions available in SCELBAL are:

® INT returns the integer value of the
expression, variable, or number re-
quested as the argument. This is the
greatest integer number less than or
equal to the argument.

® SGN returns the sign of the variable,
number, or expression. If the value is
greater than zero, the value +1.0 is
returned. If the value is less than zero,
the value -1.0 is returned. The value O
is returned when the expression or
variable is zero.

® ABS returns the absolute value (un-
signed magnitude) of the variable or
expression identified as the argument
of the function.

® SQR returns the square root of the
expression, variable, or number. ‘

® RND produces a semi pseudo random
number in the range of 0 to 0.99. This
function is particularly useful to have
available for games programs.

® CHR is the character function. [t may
be used in a PRINT statement and will
cause the ASCIl character cor-
responding to the decimal value of the
argument to be displayed. (A reverse
function is available for the INPUT
statement which will return the deci-
mal value of a character when it is
inputted.)

® TAB may also be used in a PRINT
statement to direct the display device
to space over to the column number
specified in the argument. This func-
tion allows the programmer to format
the output into neat columns.

SCELBAL Background Information

User defined variables are limited to one
or two characters. A variable must begin
with a letter of the alphabet. Limiting
variables to a maximum of two characters
helps conserve memory space. Up to 20
different variables may be defined in a single
program.

SCELBAL allows the use of fixed and
floating point notation. A minimum of 23
binary bits are used in the mantissa portion
of all calculations allowing for calculations
with six to seven significant decimal digitsof
precision. The exponent range is from plus
to minus the 38th power. Numbers may be
inputted in either fixed or floating point
notation. Output from the program is auto-
matically selected to be either fixed or
floating point, depending on the size of the
number that is to be displayed.

The package, without the optional DIM
statement, is designed to run in 8 K bytes of
memory in an 8008 or 8080 system with
approximately 1250 bytes for program
storage. With this amount of storage avail-
able, surprisingly complex programs can be
executed. The program authors have success-
fully loaded and run such games as Lunar
Landing in this configuration by reducing
the number of messages issued to the player.

The DIM statement requires approx-
imately 750 bytes of memory. It is recom-
mended that users desiring to include the
DIM capability have more than the mini-

85

BOOK REVIEWS

Computer Chess by Monroe Newborn, Aca-
demic Press, Inc, New York, 1975 §$15.
(Published under the auspices of the Associa-
tion for Computing Machinery Inc.)

“My microcomputer swiftly checkmated
the incredibly big machine,” Tom said
rookingly.

Impossible? A look at the second ap-
pendix of Computer Chess shows that sever-
al of the older US computers and two newer
foreign ones used to run chess programs had
less memory than would a fully developed
personal micro. In the first US championship
(1970), a mini using a 4 K program of 18 bit
words (roughly equivalent to 9 K of 8 bit
words) came in second. Also, the typical
chess program can be split into three parts
for opening, middle and end games, with
only one atl a time in the working memory.

However, combine all the memory you
can install with this book, and you'll still be
a long way from the first move. The book
has several useful flow charts, but no part of
any program ready to load in any language.
Nor, it appears, is any complete program
readily available, but a more thorough
checking of the many references given might
turn up one with a full listing. Of the chess
programs mentioned, it seems that none
exists in BASIC; but two arc in FORTRAN
IV, one is in ALGOL and one is in PL/T,
version IV. More are written in assembler
languages as these are more flexible. But
assembler language is not as easily translated
from one machine to another.

Although this book is not written with
the computer hobbyist in mind, it is more
than a pleasant diversion for diletlante
dreamers. But it will no more teach you how
to program than it will teach you how to
~ play chess well. In 200 pages, how could it?
It is less likely to encourage your half-vast
plans than to sober you with the difficulty,
even enormity, of the task. It has taken
skilled programmers several months, full
time, at the least, to writc a chess program,
and about a year more to test, analyze and
debug it. And if you expect it to play really
well, at master level, the author predicts the

88

need for 15 years (eight more than anyone
has done to date) of intensive collaboration
between an excellent programmer and a very
good player. For all its speed and accuracy,
the computer is not likely to play better
chess than its programmer. Today’s top
programs have come a long way, and can
give the ordinary player a good game. But so
far, no program is able to improve itself by
learning from its failures.

Those failures are in themselves amusing,
and they are difficult to debug. The book
describes one chess program which, knowing
for seven moves that it could win in one or
two moves, simply did not bother to do so,
letting the opposing program squirm free
and win.

Thirty-eight annotated games, said to be
all the important ones through the first
world computer chess championship in
1974, occupy the bulk of the book. They
range from mercilessly short to painfully
fong. For many games, the time per move
and number of possible moves considered at
each turn is given. A historical chapter
explains the essential aspects of game theo-
ry: the mini-max algorithm and the alpha-
beta algorithm, and Shannon’s type A and
type B strategies. Later, the program
OSTRICH, developed by the author and
George Arnold, is described in considerable
detail. An introductory chapter also states
the author’s conclusions. He sees a new era
in chess emerging, in which the game or
challenge will be in programming computers
to play.

This reviewer drew other conclusions.
Although some chess programming has been
intended to simulate human thinking or help
understand it better, the way most programs
play is by considering vast numbers of
possible moves, something we do not do,
unless quite subconsciously. As the author
says, there have been no new fundamental
breakthroughs in chess programming. If such
a breakthrough could reduce these vast
numbers, it would certainly help put the
micros across the board. Meanwhile, if you
are not a hotshot programmer, don’t rush to
buy more memory so your micro can start

Clubs and Newsletters

The New York Amateur Computer Club

This club, organized by Bob Schwartz,
meets on the second Thursday of each
month at Manhattan Community College,
799 Seventh Av, Room 605, 6 to 9:30 PM.
From 6 to 7:30 is the time for demos by
companies and club members, and a trading
period. At 8 the meeting has speakers on
topics of interest to the members. In March
the club cansidered the new organizational
by laws and set up committecs. In April,
“we will approve the by laws and get down
to business.”

Allen Yoricks is conducting a class for
members who want to study and obtain
their amateur radio licenses. The aim is to
use ham radio to communicate with other
computers in distant parts of the world. In a
reverse twist, the members of a Brooklyn
Ham Radio Club want to learn about com-
puters for the same purpose. They want to
do computer time sharing across the world
via a satellite!

For further information, contact Stanley
Veit of the Computer Mart, 314 Fifth Ay,
New York NY 10001, (212) 279-1048.

Anchorage Alaska

Ronald | Finger, 3417 E 65th Av, An-
chorage AK 99502, reports an active and
very informal computer/amateur radio
fraternity in Anchorage. While he has his
doubts about whether the rugged indivi-
dualists who inhabit his city would get
together to create anything so formal as a
club, he’s agreed to point the way into the
network of contacts in the Anchorage area.
His phone number is (907) 344-6503.

Triad Amateur Computer Society

The Triad Amateur Computer Society
meets monthly in the Greensboro and
Winston-Salem areas of North Carolina. Con-
tact Doug Drye at (919) 373-0040 in
Greensboro, or Andy Pitts (919) 765-1277
in Winston-Salem for details.

90

Montreal Club?

I've been waiting for an announcement
concerning a Canadian computer user’s so-
ciety. Not having seen any up to now in
your Clubs and Newsletters section, 1 pro-
pose that interested persons in Canada con-
tact me so we can set one up. | would be
ready to coordinate such an effort. | am an
electronic engineer and am presently study-
ing for an MBA at McGill University. | have
built a CT1024 TV terminal and am present-
ly building up a 6501 based microprocessor
system.

Leslie Zoltan

4100 Kindersley St #22
Montreal, Quebec

(514) 733-8890

Rochester NY Club Activities

Peter Helmers reports on the creation of a
microcomputer club for the Rochester NY
area. An interest meeting April 1 at the
University of Rochester drew 36 persons
after arrangements were made by an ad hoc
steering committee. Meetings are to be held
every four weeks, with newsletter subscrip-
tion dues set at $2 per year. Affiliation with
the SCCS is being considered. For further
information, contact:

University of Rochester
Computing Center

727 Elmwood Av
Rochester NY 14620

Att: Microcomputer Club of Rochester

Long Island Computer Association

Gerald S Harrison sent in a note about
the latest activities of the LICA:

“A word about the club.... Fri-
day night [February 20 1976] was our
first open general meeting at our per-
manent meeting location. We were
thrilled at the turnout, approximately
80 people, many heavily into com-
puters. Thirty-four of the group work
with computers, 35 know computer
languages and at least 20 of the group
I would rate as professional software
types. Fifteen members have ma-
chines, one even brought down an
IMSAI 8080; it looks great. Motorola
demonstrated a 6800 and gave a talk
about it.

For future reference, meetings will
be held on the third Friday of the
month at 8 PM at the New York
Institute of Technology, Building 500.
We will endeavor to reschedule meet-
ings that fall on holidays.”

Along with Gerald’s letter came a copy of

The Stack, Volume 0 Number 0. This is the
first issue of the LICA’s official newsletter,
edited by Morris Balamut, PO Box 864,
Jamaica NY 11431. For individuals desiring
the latest LICA information, call Gerald
Harrison at (516) 938-6769 (evenings) or
Ken Kaplan at (516) 781-9859 (7:30 PM to
3:30 AM).

Ventura County Club

Doug Penrod of Santa Barbara CA sent in
a note mentioning the existence of a new
club for Ventura County, California, which
met in Oxnard for the first time January 24,
Present were Ward Spaniol (president) and
Art Childs (/nterface editor) of the SCCS.
Forty people were present at the first
meeting, including ten 8080 users {mostly
Altairs, one or two IMSAIs and some home
brewers). Many of the people who showed
up were also amateur radio operators. For
information on the Ventura County Club,
contact Eric Strohbehn, 4409 Vineyard,
Oxnard CA 93030.

ON LINE

D H Beetle’s ON LINE — Hardware &
Software Exchange is progressing towards its
goal as a “buy and sell forum for the
computer hobbyist.” The latest issue re-
ceived at BYTE was Volume 1, Issue 03,
with five pages of commercial and non-
commercial classified advertisements. Sub-
scriptions are $1 for four issues, $3.75 for
18 issues or $7 for 36 issues (higher rates for
foreign surface and airmail delivery classes).
Contact ON LINE, D H Beetle, Publisher,
24695 Santa Cruz Hwy, Los Gatos CA
95030.

MIKE Users Group

James W Farschon, 3949 Mt Everest Blvd,
San Diego CA 92111, sent BYTE a small
sampling of the MIKE 2 INFORMATION
PACKET Number One which according to
his form letter contains 60 pages of software
listings useful to 8008 owners.

“Our real hope is that his info
packet will provide the impetus for the
formation of an active national MIKE
user organization. Some of my ideas
on the organization and activities of
such a group are contained in the
Preface’ of the packet.

Contributors to the first packet include
Mark A Condic I, Eric Schott, Jim
Farschon, Tom Kasper and Jim Tucker. The
purpose of the MIKE Users Group is dissemi-
nation of MIKE information to hobbyist
clubs and publications, publication of
further INFORMATION PACKETS with
user contributions, and group projects such

as system configuration, software develop-
ment, etc.

Information in the first information
packet includes the following titles (partial
list):

Theory of 10 Interfaces (Condic)

CREED Parallel Input Interface (Condic)

MIKE 2Hardware Push Pop Stack (Schott)

Super NIM Game (Farschon)

Keyboard Monitor Program (Tucker)

The MIKE 2 INFORMATION PACKET
Number One is available for $5 from Jim
Farschon.

Indianapolis Club?

Keith A Pieper, 54 Sherry Ln, Browns-
burg IN 46112, would like to contact
individuals interested in forming a computer
club in the Indianapolis IN area,

New England Computer Society

The organization of the New England
Computer Society is settling down onto a
regular basis. At an executive committee
meeting March 10, volunteers for editing of
the society’s newsletter were present and
duly appointed. Editor is Bob Tripp, 8
Fourth Ln, South Chelmsford MA 01824.
He can be reached by phone at (617)
275-8300 (days) or (617) 256-3649 (eve-
nings). Assistant editors are Calvin Moerrs,

‘pneq QO¢

*£3TTTqRpUadap uf

21BPWTIITN 243 3INSSE 03 U[-UINg inoy g% ® Juranp paisal ATInJ ST pue pieoghay

91qeIT31 AJ[eu013dadoxs ue SuTRIUOD -IJV PITqUasse ATaiaTdwod ayy
00%$:£uo Teutmiad]

*ONI WM3L-O0¥DIK Aq ‘I-L1OJV ‘Teurmaad] IJyD 9TqeplojIv 24yl

&y 04 zmcH 3 MO

$$21Nn31B33 YOoTym Juswadserdaa adL3aral 93a7dmod e ST I-I)V

-£3171qeded @/ Teri@s yifm siossadoad 19Yyio TTE pue °s,gd °s,0088 °S,0808
:103TuUoOm UOTINTOSa1 YSTY YI[m [eufmia]

10 QIT1 3O se3jex elep 3[qelI9I[3S pue ¢10sand ‘8UI'[’[OJDS—01!\E Y3iTM SaulT 97 Kq

*S,0089 03 UOTIIBUUOD 3II3IATP SMOTTE AITTTqT3Iedwod HzEz-S¥

w
—t
=~
]
g foa)
~
BS
o X . L1
>R 1
B ow Sy w
~ & =
W L3 =
N § w
ind
Iy o))
"
w

0
-

LTTE9

2]
(nd
I
o
[=1
e
(7]
=
(s}

=
=
- B]
o o
(o}
=) [
o 93
s o=
o B
W
o
~N =z
@]

Rockford Research Inc, 140% Mt Auburn
St, Cambridge MA 02138, (617) 876-6776
and Jeff Siegel, (617) 667-3111, extension
3195 (days), or (603) 635-7404 (evenings).

The NECS mailing address is PO Box 198,
Bedford MA 01730, and meetings are held
on the first Wednesday of the month at the
cafeteria, Building C, of the Mitre Corpora-
tion, Bedford MA (junction of Routes 3 and
62).

News of CACHE

The Volume 1 Number 2 issue of the
CACHE Newsletter (PO Box 36, Vernon
Hills IL 60061) described happenings in the
Chicago area. Technical information in the
newsletter included a short note about the
Zilog Z80 ‘‘super 8080" chip, a set of
software notes by Ward Christensen, and a
“Basic Computer Hobbyist's Library’’ listing
with short descriptions of several books.
Tentatively scheduled future meeting topics
listed in this issue included:

May Meeting: Ted Nelson, author of
Computer Lib/Dream Machines, giving
a talk.

June Meeting: Computer Fest — come
sell/buy/swap equipment and
information.

For current information contact CACHE
at its mailing address or call William T Precht
at 620-1671.

ACGN] News

The March issue of the ACGN/ News,
Volume 2 Number 3, carried a report of the
February 20 meeting which included demon-
stration of a Southwest Technical Products
6800 processor owned by the Union County
Technical Institute, and a presentation of
the TV Dazzler peripheral (see “About the
Cover,” page 6) given by Tom Kirk and
Roger Amidon, using an IMSAI-8080 pro-
cessor and a color TV monitor loaned by
Union College.

The 8080 Sub Group of ACGN] is
handled by Dennis Dupre, who can be
reached at (201) 688-9254. It meets sepa-
rately to exchange information among own-
ers of 8080 based systems.

" The address of ACGN] is:
Sol Libes, ACGN]
Union County Technical [nstitute
1776 Raritan Rd
Scotch Plains NJ 07076
Membership dues are $2.

Philadelphia Activities

Richard Moberg, Philadelphia PA, sent in
two items for this department:

\

“1. We are starting a computer society in

92

the Philadelphia area for amateurs,
students, professionals, etc, for the
purpose of information exchange and
education in all aspects of computers.
Interested individuals should contact
me at 404 S Quince St, Philadelphia
PA 19147, or call (215) 923-3299
{evenings).

“2. 1 am working on several applications
of microcomputers in medicine and
would like to hear from others doing
the same or with ideas for applica-
tions. Please contact me at Dept of
Neurosurgery, Jefferson Medical Col-
lege, Philadelphia PA 19107, (215)
829-6744.” '

Peoria Activities?

James Hull, 502 Joliet Rd, Marquette
Heights 1L 61554, is interested in starting a
club in the Peoria IL area. Interested parties
should drop him a line.

News of DACS

The Volume 1 Number 5 issue of the
Denver Amateur Computer Society News-
letter reported on recent activities in that
city. Scheduled for the March 17 meeting
was a talk by Dr Robert Suding entitled
“Comparative Hardware and Software Ana-
tysis of 8080 versus 6800 versus 6500,” with
a demonstration of all three processors to
illustrate concepts of program transfer-
ability.

The DACS Newsletter also announced the
activities which will be jointly sponsored by
DACS and the ARRL at the American Radio
Relay lLeague’s amateur radio convention in
July. The two concurrent technical sessions
scheduled for Friday July 16 will have
microprocessors as the primary theme:

Introduction to Microprocessors for

Beginners (Grand and Junior Ball-
rooms, Hilton Hotel, downtown
Denver).

2 PM: Demonstration of Microproces-
sors in Amateur Radio Applica-
tions

3 PM: What is a Microprocessor?

4 PM: What is so Hard about Hard-
ware, and is Software Really
Soft?

Microprocessor Topics — Advanced (As-
sembly Rooms 2 and 3, same hotel).

2 PM: Putting Your Microprocessor to
Work in Your Amateur Station

3 PM: Comparative Analysis of Micro-
processor Architecture

4 PM: Advanced Software

The evening session, 7 PM to 11 PM in
Assembly Rooms 2 and 3 of the Hilton, will
be devoted to further informal discussions of

microprocessor topics and demonstrations,
conducted by the speakers at the afternoon
sessions.

Early reservations are recommended for
accommodations. Advanced registration for
the three day program is $4 until June 30,
$5 after June 30. Registration forms are
available from DACS or ARRL. Contact
DACS at PO Box 6338, Denver CO 80206.

ARRL Atlantic Division Convention

The Bicentennial Amateur Radio Con-
vention of the ARRL Atlantic Division will
be held July 23-25 1976 at the Ben Franklin
Hotel in Philadelphia. According to Harry
Brown, WA3NGK, one of the coordinators
of technical sessions at the convention, there
will be a stress upon digital electronics and
the use of small processors for amateur radio
applications. Interested parties should con-
tact the ARRL for details about the show.

LUMP is All Together

The LUMP (Louisville Area Users of
Microprocessors) computer club has been
formed in Louisville KY. Anyone interested
in club activities in the Lousville area is
invited to attend biweekly meetings. Mem-
bership circa March 15 1976 was approxi-
mately 30. Members are working with 6800,
6502, 8008, 8080, PACE and LSI-11 de-
signs; at least one 8080 or 8008 multipro-
cessor system is in the works, and a club
system is being built using a 6502 chip.
Contact either of the following individuals
for further information:

Steve Roberts, Cybertronics, PO Box
18065, Louisville KY 40218

Andy Ehalt, 115 Edgemont Dr, New
Albany IN 47150

Tampa FL Activities

Donald A Marsh sends word of the
Microcomputer Society of Florida which has
48 members meeting in the vicinity of
Tampa FL.

“The club is interested in hardware
and software of all microcomputers and
everyone in Florida is invited to join.
Chapters are being formed in Jackson-
ville, Miami and Orlando. We have an
active group of progressive people with
discussions on microcomputer topics
presented by specialists in the field,”
For further information, contact Donald at
5405-B, Southern Comfort Blvd, Tampa FL
33614.

Chicago Ham Hackers Take Note

Robert C Nutting, K9TXS, would like to
get together with radio amateurs in the
north and northwest sections of greater
Chicago IL, persons who are also into
computers. His address is 6641 Palma Ln,
Morton Grove 1L 60053,

Northwest Computer Club

The Northwest Computer Club has mush-
roomed from a meeting at the house of Bob
Wallace January 12 into a full fledged club
which meets at 7 PM the first and third
Tuesdays of each month, usually at the
Pacific Science Center.

NCC Newsletter editor is Bob Wallace.
Volume 1 Number 1 contained a short
account of the club’s history through its
March meeting schedule, a list of members’
names and addresses and interests, and some
technical comments about graphics stan-
dards. Also present were several “short and
sweet” 8080 routines supplied by Bob
Wallace.

NCC Newsletter address is PO Box 5304,
Seattle WA 98105. Club address is North-
west Computer Club, Pacific Science Center
Foundation, 200 2nd Av N, Seattle WA
98109.

Computer Hobbyist Group — North Texas

The March issue of the CHG-NT News-
letter, Volume 2 Number 3, had a lot of
technical information as part of its seven
sheets of reduced Xerographic copy. Sum-
mary of the February 21 meeting reported a
presentation by John Lawrence on “Micro-
computer Applications to Amateur Radio.”
john demonstrated two Model 28 Teletype
machines in interactive operation. Ralph
Tenny provided an excellent review of the
MOS Technology Microcomputer Hand-
books, and Bill Fuller provided some notes
on “Spiraglyphics” (or the problem of fi-
guring out what is the obscure significance
of markings on surplus parts). Bill also
provided some observations on wiring and
construction techniques, inspired by John
Lawrence's impeccable point to point sol-
dering techniques. Also published was a
“Universal Code Chart for Data Communica-
tions” supplied courtesy of Atlantic
Research Corporation, a manufacturer of
data communications equipment.

Mailing address for the CHG-NT is c/o
Bill Fuller, 2377 Dalworth 157, Grand Prai-
rie TX 75050.

93

Programming Quickies:

Do you ever spend a spare moment
creating a little program or subroutine to
explore some of the possibilities of your
computer? Write down a symbolic and abso-
lute listing in the language of your computer
plus a short paragraph describing the pro-
gram and its purpose. Then send the result
to Quickies, BYTE, 70 Main St Peter-
borough NH 03458. Each Programming
Quickie published will earn its originator
$20 worth of fame and fortune.

JITTER

Gordon M Speer
SATCOMDET Box 9
FBPO Norfolk VA 23953

Here is a little blinking lights application
program which works with Altair 8800A
hardware. The display is a single bit seen in
the front panel address lights A8 to A15,
constantly moving left or right in a random
walk. The program was written by reader
Gordon M Speer after he found that one of
the CPU registers will show up in the address
lights when delay loops are run on his Altair
8800. All numbers in this listing are
octal....CH

000/000
000/002
000/003
000/006
000/007
000/012
000/015
000/016
000/017
000/020
000/023
000/026
000/027
000/032
000/033
000/034
000/035
000/037
000/040
000/041

006
015
302
025
302
315
273
137
170
312
362
017
303
007
107
173
346
117
127
303

020
002 000

002 000
100 000

033 000
032 000

033 000

XXX

002 000

JITTER:
JBDELAY:

ROTATEA:
RECYCLE:

MVI B,020
DCR C
JNZ JUBDELAY
DCR D

JNZ IBDELAY
CALL RND
CMP E

MOV EA

MOV A,B

Jz RECYCLE
JP ROTATEA
RRC
JMP
RLC
MOV
MOV
ANI
MOV
MOV
JMP

RECYCLE

B,A
AE
XXX
CA
DA
JBDELAY

Delay loop allows register B
to show up in Altair 8800 address
lines AB to A15;

Generate random number in A;

Is A EQE?

Move A to E always;

Move B to A always;

1f A EQ E then continue;

If a GT E then rotate A left;

Else rotate A right;

And continue;

Rotate A left;

Set up for next pass;

Mask to alter delay length;

RND: This is an 8080 version of the random number generator published in 7he Computer

Hobbyist, Volume 1, Number 5, as an 8008 program.

000/100
000/103
000/105
000/106
000/107
000/110
000/111
000/112
000/113
000/114
000/115
000/116
000/117
000/120
000/121
000/122
000/123
000/124
000/125
000/126
000/127
000/130
000/131
000/132
000/133
000/134
000/135
000/136
000/137
000/142

000/143

041

016
176
007
007
007
256
027
027
055
055
055
176
027

167
054
176
027
167
054
176
027
167
054
176
027
167
016
303
311

XXX

146 000
010

106 000

XXX XXX

RNDLOOP:

XXX

LXlI H,000146
MVI C,010
MOV AM
RLC
RLC
RLC
XRA
RAL
RAL
DCR L
DCR L
DCR L
MOV A
RAL
MOV M
INR L
MOV A
RAL
MOV M
INR L
MOV A
RAL
MOV M
INR L
MOV A
RAL
MOV M
DCR C
JNZ R
RET

M
A
M
A
M
A
M
A

NDLOOP

Load H,L with pseudo random code address;
[Changed from B in original]

Pseudo random number “‘seed’’ (must not be zero).

924

What’s New?

Trekking Through Outer Space

Trek CompetitionTM is the name of a
contest using the Trek 75TM game which is
being made available via time sharing to
interested computer hobbyists who have
standard telephone modem equipment.
Unfortunately, the press release arrived after
BYTE’s deadline, so the April 12-16 date of
the first competition which is sponsored by
GRW Systems Inc of Mountain View CA is
of historical interest only.

Trek 75TM is a program written by
William K Char which presents an advanced
battle simulation game based on the TV
series “Star Trek.” The Trek Competition
had an entry fee of $5 with the bulk of this
money (75%) earmarked for prizes. 40% of
the total entry fees becomes first prize, 25%
becomes second prize, and 10% becomes the
third prize. The press rclease indicated that
the competition would be repeated at a later
date. For information send an SASE (self
addressed, stamped envelope) to:

Trek CompetitionTM
2580 Westford Way
Mountain View CA 94040m

/ ALTAIR 8800 AND IMSAI
&, PENDENT READ/WRITE) ~OR MASS STORAGE.

SMART!

4‘

“s

$79.95
This kit is

a basic 4K by

8 RAM board (no
buffers---just stor-ve
age) . Plug-in com-
patible with JOLT mi-
crocomputer systems,
or any others using a
bi - directional data
buss scheme.

This kit is simple,
inexpensive, and easy
to build and apply.
Sockets included for
"all ICs. Connects to
your system with a 3M
style, flat cable 40
pin connector (not
included with klt)

SLICE

¢~

4K by 8 at the
right prlcel

bo EXPANDS TO 4K)

¢
"n\
. TTL SUPPORT ICs
OPTIONS:

SOFTWARE IS AVAILABLE

PHASE RECORDING METHOD (SEE FEBRUARY '76 BYTE).
INCLUDES ITS OWN SOFTWARE AND DATA BUFFERS (512 BYTES
OF ROM AND 512 BYTES OF RAM) SO YOU CAN GET GOING AS SOON
AS YOU CONNECT POWER.
STARTING ADDRESS YOU'D LIKE FOR THE 1K MEMORY

BOARD, SOCKETS, AND PLUG-IN COMPATIBILITY.

'T CASSETTE_INTERY

offer them 2o you."

¢ ROPROCESSOR BGy;

8080 BASED MICROCOMPUTER SYSTEM ON A BOARD, %
*512 BYTES OF RAM

THIS KIT GIVES YDOU LOTS--—NAMELY:
(EXPANDABLE TO 1K; JUST ADD ICs) *s512 BYTES OF ROM (ALSO

MIKRA-D 16K STATIC RAM
ALTAIR/IMSAI Plug-in Compatible

— 16K BYTES of static 500ns. memory
ALTAIR/IMSAI Microcomputer.

— YOUR processor runs at full speed.
— PLUGS directly into ALTAIR/IMSAI machine.

— START with 4K — expand to 16K IN ONE SLOT using
our expansion kit.

— ALLOWS maximum possible 8080 memory (64K bytes)
in 4 slots.

for your

— MIL-SPEC
technology.

— MEMORY protect feature. Buffered inputs.
— SOLVES DMA problem caused by Dynamic memories.

tested memory chips use low-power

PRICES
MD-2046-4 $159.00 MD-2046-12 $395.00
MD-2046-8 $275.00 MD-2046-16 $495.00
Expansion Kit $120.00

AUTOMATIC 1702A PROM PROGRAMMER

MD-2044

RS 232 compatible interface. Use with any computer serial

output. Programs 1702A in 2 minutes. Complete

self-contained unit. Simple software routine allows you to

read or program 1702A completely under software control.
Kit—$149.50

Assembled—$169.50

MIKRA-D
INCORFPORATED

Mikra-DeP.0. Box 403+Holliston, Mass. 01746Tel. 617-881-3111

TALK TO 3 CASSETTE MACHINES (THANKS TO INDE-
UsSES THE INDUSTRY STANDARD BI-

THIS KIT IS 1

Q-

(4

Q g
O ~

' TMS8080 $27.95
#’ 2502 UmT $3.75 6

WE PAY POSTAGE--no CODs--Cal res

add tax. Guarantee: full refund

if not satisfied.
even a % page ad can't tell
too much,
service card, or send us an SASE [}
for full product descriptions.

OWNERS

WHEN YOU ORDER, TELL US WHAT

AND WE'LL TAKE IT FROM THERE. PARTS,

'BOX 6194

cﬂeat&n
thebe products and 1'm happy to be able to

I have a tremendous amount of fun COMING 2ND QUARTER --- 16K

byte ALTAIR 8800 compati-
lee memory, for under 1/3
cent per bit. 3 RD
QUARTER: SC/MP mi-

crocomputer

- system

-~- George Morrow

*DATA AND ADDRESS BUFFERS *XTAL CLOCK ‘ALL
*16 KEY KEYBOARD AND NINE 7 SEGMENT READOUTS.

CASSETTE INTERFACE (ADD $30), EDITOR/ASSEMBLER (ADD $99),
RS-232/TTY INTERFACE (ADD $20).

COST-EFFECTIVE AND PROVEN - PLUS, MUCH
THROUGH OTHER SOURCES. LESS POWER SUPPLY (+5, +12).

By the way -- il

so circle the reader[Ei

BILL GODBOUT ELECTRONICS
OX 2355, OAKLAND AIRPORT, CA 94614

HORELy

FOR SALE

We added more capacity to our
warehouse. Look at these:
TANTALUM CAPACITORS

2.2 uF @ 20V

2.7 uF @ 20V

3.3 uF @ 15V

4.7 uf @ 10V

22 uF @

33 uF @

39 uF @ 1ov.

47 uF @ 6V

ELECTROLYTIC CAPACITORS

10 uF, 250V, axial

12 uF, 250V, i

100 uF, 10V, axial

100 uF, 35V, PCmount. ...

100 vF, 50V, PCmount. ...

220 uF, 25V, PCmount....

250 uF, 25V, axial

2000 uF, 30V, PC mount... .
4000 uF, 20V, MalloryPFP 1/$0.
10000 uF, 10V, axial.... 1/$1.

MYLAR CAPACITORS
Cut and formed for PC inser-
tion. High-Q and STABLE.

5.0 uF, 100V, 10%
10 uF, 100V, 10%

DISC CERAMIC CAPACITORS
Small, low voltage types. Some
may have leads cut and formed
for PC insertion.

POLYSTYRENE CAPACITORS

Cut and formed for PC inser-
tion. ACCURATE: 5% or better.
100 $1.00
150

180

220

270

390

470

560

680

820

910 p

1000

1200

1500

1800

2000

2200

3300

3900

WIRE WRAP SOCKETS

3 level, gold plated: use with
our Hobbywrap tool, other wire
wrap tools, or Wire Pencil.

RESISTORS
e 21.70;

15.30. Values

AUV WWNN
B 00OV L ~I N 00 W N

* * *

SELECTED SEMICONDUCTORS
We stock too many

tells all, though.

DIGITAL STUFF

8093 Quad 3 state buf

8094 Same, but 0 gives hiZ.
8095 Nonlnv 3 st buf

8096 Inv 8095 NOR enable.
8097 Noninv 4-2 3 st buf. .
8098 Inv 4-2 3 state buf .
8131 6 bit buss comp hiZ in
8202
8233
8234
8242
8250
8251
8266
8267
8270
8271
8544
8831
8833
8835
8837

2 in 4 bit mux

2in4 bit mux

Quad 3 st trscvr
Quad 3 st trscvr
Hex buss drv

.50,
.$0.

C

100 of any ONE val-
1000 of any ONE val-
available:

56K

68K

82K

100K
120K
150K
180K
220K
270K
330K
390K
470K
560K
680K
820K
1.0M
1.2M
1.5M
1.8M

* (Jﬂv[‘
different
parts to list here---our flyer

.63
$0.63
$0.63
$O.63
63
63

10 bit buf register. ..

2in 4bitmux (inv)..
Quad exclusive NOR..
Binary to oct decode.
BCD to dec decode....g

4bit shift register.
4 bit shift register.
Quad switch debounc.
Quad 3 state drvr...

$
DS0026 Dual clock drv....

L

DS3608 Hex MOS/TTL cnvrt.
INEARS

311 minidip comparator...

316 hi 2 in op amp

318 FAST op amp

339 quad comparator
340/5T plastic 5V %A reg
(also 6, 8,12, 15, 18, 24V)
340/5K metal SV 1A
340/8K metal 8V 1A
340/12K metal 12V 1A
340/15K metal 15V 1A

340/18K metal 18V 1lA.....
373 AM/FM/SSB IF/detect..

380M minidip 2W power amp

540 audio power driver...

565 phase locked loop..
567 tone decoder PLL

725 instrumentation amp..

1556M premium op amp
8038 VCO sine/sq/tri
LOW POWER SCHOTTKY

741800
T4LS04
741808
741810
74LS820
741842

Hex inverter
Quad 2 in AND

.BCD to dec decode

Quad 2 in NAND... .S

Triple 3 in NAND..
Dual 4 in NAND....

7418138 1 of 8 decode....

7415168 Dec U/D entr

7418169 Binary U/D cntr..
-$

7415175 Quad latch

COMPUTER ORIENTED KITS

ALL OUR COMPUTER KITS INCLUDE
INSTRUCTIONS, DOUBLE SIDED PG
BOARD, QUALITY PARTS...AND WE
STAND BEHIND THEM.
'"ECONORAM" .
4K x 8 RAM board, with buffers,
onboard regulation, low power,
high speed, ALTAIR compatible.
""ECONOROM"' $159.95
4K x 8 EROM board for storing
software. Buffers, regulation,
expandable, ALTAIR compatible.
"8080 SOFTWARE BOARD"..$159.95
Same as our ECONOROM, but with
editor / assembler/monltor rou-
tines pre-programmed.
"4K x 8 NAKED RAM"
No buffers or regulation, just
cost-effective memory. Compa-
tible with JOLT systems.
"'CPU POWER SUPPLY KIT"..$44.95
Designed to give power to your
processor. Compatible (same
size card etc.) with JOLT sys-
tems. +5V @ 5A, crowbar over-
vdltage protection, +12V @ %A,
-12V @ %A, plus negative bias
supply. Everything except the
line cord included.

* * * *® *

MICROPROCESSORS & CHIP SETS
8008 i $17.50
8080 Powerful 8 bit CPU $29.95
PACE 16 bit CPU........$125.00
8008 CHIP SET: 1-8008, 8-2102s
2.50
8080
1-5204 EROM 59.95
PACE CHIP SET #1: PACE IC plus
all support ICs $125.00
PACE CHIP SET #2: PACE IC plus
support ICs, 32 - 2102, 4-5204,
and PACE data packet...$195.00

)
)
Q
)

\
Ljoo‘l'q‘ ‘\ o
Oa
>3
Q

CHIP SET:

?‘\\
>

1-8080, 8-2102s’

MEMORY INTEGRATED CIRCUITS
1702A 2K EROM

2102 i

2112

2501

5202

5203

5204

5600

5610 Open col outputs....$2.
7489 64 bit scratch pad..$§2.
93410 bipolar 256 bit RAM .$2.

* ¥* * % %

EROM PROGRAMMING SERVICES
We can program your 5203, 5204,
or other ROM ICs for $7. 50 per
piece or $35 for 10 pieces.
Call our 24 hr hot line to re-
quest hexadecimal coding form.

$9.95
Stable, short proof. Add 2 1lbs
shipping.

HALF AMP SUPPLY KITS $7.95
Short proof. Specify 5, 6, §,
or 12V. Add 2 lbs shipping.
+15V SUPPLY $9.95
150 ma per side. Dual tracking
regulator. Add 2 lbs shipping.
EXPERIMENTER'S SUPPLY...$10.95
Provides dual tracking, vari-
able, regulated voltages from
%V to over +18V. Add 2 1lbs
shipping.

12v, 8A SUPPLY KIT $22.50
New and improved. Current lim-
its at 13 Amps; also .05V regu-
lation or better; adjustable
output 11-14V; RF proof: short
circuit protected; more. Add
shipping for 7 lbs.

Universal Prototype

Boord $]995 +1 1b shp

Here is an uncommitted circuit board

that plugs right into your 8800.

gnd lines already in, provisions for 3 regulators,
and 1 heat sink included also.
high quality products---this board is no exception.

Has Vee &

VECTOR is known for

HOBBYWRAP TOOL

Wire wrapping equipment at the
right price. You get the tool
(rechargeable ---no cords in
tight places), bit, charger,
nicads, and instructions.

PRE-PUNCHED VECTORBOARD..$8.95
Pre - punched with holes on .1"
centers. 8% x17 inches, 1/16"
thick epoxy glass base. Add 1
1b shipping per board.
ok % ok %

TERMS :
ted;
call (415) 357-7007,

Add 50¢ to orders under $10.
otherwise items are postpaid. Bankamericard®/Mastercharge®
24 hours a day.

VECTOR WIRING PENCIL

As reviewed in Radio-Electron-
ics, Popular Electronics, etc.
Eliminates cutting and strip-
ping; makes 1interconnections
between parts in 1/3 the time.
Comes with tool, installed wire
bobbin, extra wire bobbin, and
instructions. +11b. shp.
WIRE PENCIL REPLACEMENT WIRE
3/$2.40. Specify color choice:
red, green, blue, clear.

* % * * *
Add postage where indica-

Californians add tax.

OUR FLYER HAS THE STORY ON LOTS OF OTHER PARTS AND KITS, AS WELL
AS FLASHY ARTWORK, AN ORDER BLANK YOU CAN CUT OUT AND SEND IN,
VARIOUS PICTURES, GOBS OF DIFFERENT TYPEFACES, BORDERS, HALFTONE

ARTWORK, AND MOST IMPORTANT OF ALL..
.SEND FOR OUR FLYER..

SEND FOR OUR FLYER..

.COMPETITIVE PRICING.
.SEND FOR OUR FLYER...

MC14412 UNIVERSAL MODEM CHIP
MC14412 contains a pl FSK modulator and d d
ulator compotible with foreign and USA communications.
(0-600 BPS)
FEATURES:
.On chip erystal oscillator
. Echo suppressor disable tone generator
.Originate ond answer modes
.Simplex, half-duplex, and full duplex operation
.On chip sine wave
.Modem self test mode
.Selectable data rates: 0-200
0-300
0-600

.Single supply
VDD=4.75 to 15VDC - FL suffix
VDD=4.75 to 6 VDC - VL suffix
TYPICAL APPLICATIONS:
Stand alone - low speed modems
.Built - in low speed modems
.Remote terminals, occoustic couplers

MCTA412FL. cie i iiiiiiieieieiiinaesen.. $28,99
MCI4412VL........ . $21.74
6 poges of data....ovevnnennns P .60
Crystal for the above......$4.95
Cryweat *
a Re 3
11 n Tsiout
—>—1 0
—)%T. (3 Te Car ;— Moaulatar
——>—{Echo
w [T T T
To | Moae
Oata Temon § ——>——— Tyue Contron
toupmont —2 Lo o
———5T Totephane
_______ - Network
-—(—Y Rx Data 1
5 A Cor [Dumooutator
_)T Rx Dot Rate
—>—Reset

MCT14411 BIT RATE GENERATOR,
Single chip for generating selectoble frequencies for equip-
ment in data communications such os TTY, printers, CRT s
or microprocessors, Generates 14 different standard bit
rotes which are multiplied under external control to 11X,
8X, 16X or 64X initial valve. Operates from single +5
volt supply. MCTH41T..iiieiiiiiiininneanse.. $11.98
4 pages of data........ veres 40
Crystal for the above..iviiiieiireierraceieiess. 54,95

12y
MULTPLEXER =

'
o

=0 l——
aeSET AUt 1T
w1 OMARED CPAEG
INTHEQ
o s |
Seaion |
i
!
H
!
P !
1
!
!
!

e = PLA DUTPYT LATCHE —— - -
: S

ALU AND REG
TRANSFER LOGIC

crvsTAL

XTA X1H X1C ”
DMAGNT %P CO
WTGHT crer
FETCH

DATAS AU

5] Twva ano
B STatE CNTRL

" s ’

i

w

MEMORY AND

DEVICE entay | 12
XMAR DEVSEL

SWSEL MEMSEL

crsEn

warr

IM6100 CPU. Intersils' 12 bit CMOS CPU chip is the
‘microprocessor which recognizes the famous PDPB/E instrucs
tion set, Single power supply, 4-7V@ 400uA. $52.50
Full dota packet. ..e.ervevsnemnearorsocanasseeesss$4.00

TELETYPE CODE CONVERSION CHIP
MM5220BL converts 5 level Baudot into 8 level ASCIl. Use

this chip to make your old TTY talk to your new computer.
MM5220BL....... e

Specs for the above.......

MOS TIME BASE KIT,

Only 1" X 1.5, Input 5 to 15 VDC, output is 60HZ
square wave for portable or mobile clocks. PC board is
drilled! MTBK-60HZ....... trereseseaenaa.. $5.88

n\:__gé_“ \
o
\

78HO5 Voltage regulator. Fairchild 5V, 5A, TO-3 reg-
ulator. Toke care of those heavy current requirments with-
out separote regulator/pass tronsistor combinations, Use it
with the same ease of instalation os the 309K(same pin
arrangement). vene.owith specs....y, wenas $11,25.

LM317 Voltage Regulator. 1.5A, 3 terminal| adjustable
regulator in TO-3 case. Adjusts from +1.2V to +37V.
Complete overlood protection. 1% load regulation,
.01%/V line regulation. No need to stock ossorted reg-
ulators - just stock resistors...... teers 54,99

Specs for the above.. ceress W70

B KS BY NATIONAL SEMICONDUCTOR
B'IACIIA'I'ALO.OCOVHS TTL, DTL, Tri-State, etc, $3.95
LINEA Covers amplifiers, pre-amps, op-amps, .. $3.95

LINEAR APPLICATIONS. Dozens of application notes and
technical briefs covering the use of op-amps, regulators,
phase locked loops and audio omps................ $3.25
CMOS Gates, Flip Flops, registers, functional blocks $3
YOLTAGE REGULATORS. A must for anyone making a
power supply. Complete theory including transformers,
filters, heat sinks, regulators, etc............ vee.. $3.00
MEMORY. Information on MOS and Bipolar memories!
RAMS, ROMS, PROMS and decoders/encoders.. ... $3.95
INTERFACE. Covers peripheral drivers, level translators,
line driver/receivers, memory and clock drivers, sense amps
display driver and opto-couplers....... Lo $3.95
(Outside U.S,, add postoge for 1,5lbs)

DATA BOOKS FROM FAIRCHILD.

uA Linecr. 776 pages of data and applications for Fair-
child linear 1Cs. Great valve......... cerieie.. 8425
MOS/CMOS/ aMOS/pMOS/CCD. Data and applications on
MOS and charge coupled devices including preliminary date
on new ond future offerings. Want to know about 16K

charge coupled line addressable memories?.........$3.95

hSN7549]....digif driver..veveiencacancnns

IMPLENNY

Says

If you've got Ants in your plants
trying to dig up o real
components bargain -~ Try Tri-Tek

RGA
GOLD CHIP

Linear Integrated Circuits

Brand new process by RCA in which the aluminum metalization
has been replaced by gold. The chip is then hermetically seal-
ed. What this means to you is unprecedented reliability and
uniformity. Plostic parts that meet mil specs! !

Tri-Tek is proud to ba the first to bring this new level of
performance to you at SURPLUS PRICES. Why buy regrades ??

CAZ01A. .Improved, general purpose op-amp,8 pin dip..59%¢
CA307...Super 741 op~amp. 8 pin dipeseeseansssss. 52¢
CA324,..Compensated quad op-amp, 14 pin dip.....$1.80
CA339A.. Low offset quad comparator. 14 pin dip...$1.59
CA741C. . Famous general purpose op-amp, 8 pin dip.. 45¢
CA747C. . General purpose dual op-amp, 14 pin dip... 82¢
CA748C, . Externolly compensated 741, 8 pin dip.......49¢
CA1458. .General purpose dual op-amp. 8 pin dip.....69¢
CA3401..Quad single supply (5-18V) op amp. 14 pin.. 89¢

Another super buy from RCA. CA555 timer. 8 pin dip., 59¢

INTEL Data Catalog. Contains latest information on all the
famous INTEL micro-processor ond memories...... .. s. . $4.00

IMPROVED Performance version of the famous 8080, 8 bit
micro processor. 8080A.....ciiniiiiiiiiieianaess...$34,95

eneene 5%¢
ceveves 99¢

SN75492, .. . digit driver..eeeveeeeervenaee

UART AY5-1013A An ideal device for driving computer
peripherals such as teletypes & video terminals. .. .89.45

PRECISION TO-92 plastic regulator. LM340AZ, available in
+5 or +15 Volts. Improvement over the 78L05, same size.100mA.
LM340AZ-5 or LM340AZ-15.. ceer...51.10

NSL4944 LED. Current regulated, universal diffused-lens
red LED lamp. A GoAsP solid-state high intensity LED
encapsulated in a plastic package containing a current reg-
ulating IC that provides constant intensity over a wide volt-
age range. 2 to 18V, AC or DC. Use for indicator lamps,
optical coupling, battery charging circuits, logic probes,
almest any place you need o lamp. Long life, wide angle.
No series resistor needed. Typical 13mA forward current.
NSL4944., .. .,. .with panel mounting clip.ccsacesa.. 89¢

D-A CONVERTER BY ZELTEX

8 bit precision hybrid circuit for use in controllers, timers,
volt meters, etc. Molded plastic package with P,C. pins,
Super buy on this better than usual subsystem. ZELTEX

model ZD430. DAC-430...c00cveinnnnnnn Lol 34,95
NEW BOOKI!!I "An Introduction to Microcomputers"

This is the book which Fairchild Semiconductor Company
called ".....the best darned introduction to the industry
to date." Covers everything from basic concepts to o re-
view of real microcomputers, IMC-001........ ve...58.00

TRI-TEK, INC.

6522 NORTH 43R aVENUE,
glendale, arizona 85301
PhoneE 602 - 931-6949

electronic components,

——

We pay shipping on all orders over $10 US, $15 foreign in US funds. Orders
under $10, pleose add $1 handling. Please add insuronce. Master Charge
and Bank Ameiica cards welcome, {$20 minimum) Telephone orders may be
placed 11AM to 5PM daily, Mon thru Fri. Call 602-931-4528, Check reader
service cord or send stamp for our latest flyers packed with new and surplus

W Douglas Maurer

University Library Room 634
George Washington University
Washington DC 20052

Software Bug of the Month |

Professor Floyd’s Bug

This bug is often used by Prof Robert W
Floyd, of the Computer Science Department
at Stanford University, to illustrate his
theory of the proof of correctness of
programs,

We are given an array A, let us say given
by the FORTRAN language stalement
DIMENSION A(100). The elements of A are
assumed to be stored in ascending order by
value. Thus if | <, then A(l) < A(]), for all
I and J from 1 through 100. We are trying to
find an clement X in this table by the

YIE'S

UGS

Here lies documenta-
tion of known bugs de-
tected in previous editions
of BYTE . ..

Apologies to author Roger Frank: The
caption to listing 3, page 72, BYTE May
1976, should read

“A successive approximation conversion,
specified as a symbolic assembly language
program for the Motorola 6800 processor.
Note that for fast processors or slow opera-
tional amplifiers (such as the 741), a delay
loop should be inserted between lines 4 and
5 of this program to allow the output to
settle.”’

Mr Frank had independently created his
routine several months before publication of
Motorola's application note on conversion
technigues. ... CH

My Dear Aunt Sally’s Migraine

The example of table 2 in “My Dear Aunt
Sally’* (page 24, February 1976 BYTE)
contains an error in the application of
precedence rules. The last six lines of the
table should read:

Input Stack Output
* +1(/*
G +1{/* G
) +1 *
end of string /
1
+

This error was detected by Roger Fritz of
Davenport | A among others.

In) Bradley Flippin's *“The SR-52: An-
other World’s Smallest,”” April 1976, page
38: The expression given ncar the top of the
second column has a single character crror
which completely changes the value com-
puted. The error is due to a translation of a
division sign into an addition sign. The
correct expression is;
6x(9+(Bx {12+ (3x (8x (2 x (6= (6x (6+2N)))))
This crror was detected by Abijah Reed of
Polaroid Corporation, Cambridge MA.m

104

method of repeatedly dividing the table in
half.

Figure 1 shows how the method is sup-
posed to work. We have three indices, 1, |,
and K. The index | is supposed to be
halfway between | and K. By testing X
against A(J), we can see whether X is
between [and) or between | and K. If X is
less than A(J), then X is between | and J;
otherwise it is between | and K.

Initially, we set | =1 and K =100, so we
are searching the whole table. At each stage,
we divide the table in half, and set the new |
and K to be the beginning and the end,
respectively, of the new table (either the
first half or the second half of the old table).

When the table size gets down to 1, the
algorithm stops, since we can now test a

1
| new I {if X<A (J))
J o b _{newK(ifX<A(J))

new I (if X > A (J))
K new K (if X>A (J))
100

Figure 1: A sketch of the array A in which a
particular value, X, is being sought.

single element only. The FORTRAN expres-
sion of this program is as follows, assuming
that, if X is in the table, we go to statement
number 4, and otherwise we continue with
the next statement in sequence:

=1
K =100

1T J=0+K)/2
IF (X.GT.A(J)) GO TO 2
K:
GO TO 3

2 1=

3 IF(INE.K)GOTO 1
IF (X.EQ.A(1)) GO TO 4

When this program is tried out, it works
intermittently. Sometimes it finds the quan-
tity X in the table, and sometimes it goes
into an endless loop, even when X is in the
table.

Can you find the bug?

SOLUTION IN NEXT MONTH’S BYTE

S.D. SALES CO.

P. 0. BOX 28810 DALLAS, TEXAS 75228

ALARM CLOCK KIT SIX DIGIT LED

Thousands of hobbyists have bought and built our original clock kit
and were completely satisfied. But we have received many requests
for an alarm clock kit with the same value and quality that you have
come to expect from S.D. So, here it is!

THE KIT INCLUDES:
1 Mostek 50252 Alarm Clock Chip
6 Hewlett Packard .30 in. common cathode readouts.
15 NPN Driver Transistors
1 Etched and Drilled P.C. Board set
1 Step Down Transformer
2 Switches for time set
2 Slide Switches for alarm set and enable
1 Filter Cap
4 |IN4002 Rectifiers
1 IN914 Diode
1 .01 Disc Cap
5 Resistors
1 Speaker for alarm
1 LED lamp for PM indicator.

516,50

(COMPLETE KIT)

Why pay MORE MONEY for our competitor's clock that has LESS
DIGITS that are SMALLER in size?

Piease take note that we use only first run parts in our kits and
include ALL the necessary parts. Not like some of our competitors
who use retested readouts and chips or who may not even include
switches in their kits.

2102 1K RAM’s - 8 FOR $12.95
New units —————— We bought a load on a super
deal, hence this fantastic price.

Units tested for 500NS Speed.

MOTOROLA RTL IC'S
Brand new, factory prime. Hard to find, but still
used in a variety of projects. (See the RTL Cook-
book by Howard W. Sams.)

MC724P-59¢ MC780P-89c MC791P-69¢c
MC725P-59¢ MC785P-49¢c MC792P-59¢
MC764P-49c MC787P-89c¢ MC799P-59¢
MC767P-69¢ MC788P-49¢ MC8704P-89c¢
MC771P-49c MC789P-59¢ MC9709P-69c¢
MC775P-89¢c MC790P-89c MC9760P-68c¢

3 DIGIT LED ARRAY — 75c [

MV-50 TYPE LED's m

by LITRONIX by LITRONIX
10 for $1 DL33MMB. 3 MAN-3 Size Readouts in one
Factory Prime! package. These are factory prime, nul

ratested rejects as sold by others.
compare this price! 75c 3 for $2.

SALE ON CUT LEAD SEMICONDUCTORS
Leads were cut for PCB insertion. Still very useable.

IN914/1N4148 100/%2
1N40021 Amp100PIV.................. 40/$1
1N4745A16VIW Zener 20/%1
EN2222 NPN Transistor. 25/%1 GI;‘LUP;EEI
EN2907 PNP Transistor................. 25/31 soME ARE
2N3904 NPN Driver Xstr. 25/$1 HOUSE #
2N3392 GE Pre-amp Xstr. 25181
C103Y SCR. 800OMA. 60V. 10/$1
SLIDE SWITCH ASSORTMENT
Our best seller. Includes miniature and standard N
sizes, single and multi-position units. All pew, ol

first quality, name brand switches. Try one pack-

P
age and you'll reorder more. Special — 12 for $1 7

60 Hz. Crystal Time Base
FOR DIGITAL CLOCKS $5 95

S. D. SALES EXCLUSIVE! :
and at an

The kit you have been waiting for is here NOW,
unbelievable price! Thanks to S.D. Sales you can turn that digital
clock of yours into a superbly accurate, DC operated, time piece.

KIT FEATURES:
. 60 Hz output with accuracy comparable to a digital watch.

Directly interfaces with all MOS clock chips. a 5\0-0
Super low power consumption (1.5 Ma typ.) ,‘\NO)3

Uses latest MOS 17 stage divider IC. e
Eliminates forever the problem of AC line glitches.

Perfect for cars, boats, campers, or even for portable
clocks at ham field days.

Small size, can be used in existing enclosures.

Tmoow>

G.

Kit includes crystal, divider IC, P.C. Board plus all other necessary
parts and specs.

ssortment)

DISC CAP ASSORTMENT
PC leads. At least 10 different
values. Includes .001, .01, .05,

plus other standard values.

60 FOR $1

UPRIGHT ELECTROLYTIC CAPS
47 mfd 35 V-10/$1 68 mfd 25V-8/$1
Brand new by Sprague. PC leads.

RESISTOR ASSORTMENT
1/4 W 5% and 10% . PC leads.
A good mix of values. 200/$2

Ty

% 1000 MFD FILTER CAPS

Rated 35 WVDC. Upright style with P.C. leads.
Most popular value for hobbylsts, Compare at up

FAIRCHILD BIG LED READOUTS
Abig .50 inch easy to

to $1.19 each from franchise type electronic parts
. Now In sither anode
oor common cathode. Take your pick. Super low current drain, only 5§ MA per

stores.S.D. Special 4 for §1
segment typical.

YOUR
FND - 510 Common Anode CHOICE
FND - 503 Common Cathode §1 .50 ea. 6 for $7.50

DUAL 741C (5558) OP AMPS
Mini dip. New house numbered units
by RAYTHEON.

4 FOR $1

FET'S BY TEXAS INSTRUMENTS — SPECIAL 5 for $1
‘clmszis b:n wl'(:hE?n intemal house number. TO-92 plastic case. N. Channel,
unction type

We do not sell junk. Money back

ORDERS OVER $15 CHOOSE
$1 FREE MERCHANDISE

S. D. SALES CO.

P.0O. BOX 28810
DALLAS, TEXAS 75228

guarantee on every Item. No C.0.D.
Texas Res. add 5% tax. Postage
rates went up 30%! Please add 5%
of your total order to help cover
shipping.

ORDERS UNDER $10
ADD 75c HANDLING.

SOLID
STATE
SALES

Features
Value

SPECIAL PURPOSE
TRANSISTORS

INTEGRATED CIRCUITS
HARDWARE

+
P.C. SOCKETS

SILICON POWER
RECTIFIERS

ZENERS
TRIACS

SCRS

LIGHT EMITTING
DIODES

SPECIAL
PURCHASE
ITEMS

WE HAVE AVAILABLE

USED IBM SELECTRIC
731 INPUT/OUTPUT
TYPEWRITERS,

WITH MANUALS FOR
$350.00

ALSO AVAILABLE USED
KLEINSCHMIDT M-311
PRINTERS

THEY POINT AT THE
RATE OF

120 CHARACTERS/SECOND.

$450.00

VIDEO CAMERA KIT

A UNIQUE ALL sOLID STATE CAMERA KIT
FEATURING A . ..

100 x 100 BIT

SELF SCANNING CHARGED
COUPLED DEVICE

INCLUDES THE FOLLOWING

UNIQUE FEATURES .
FOUND IN FAR MORE
EXPENSIVE CAMERAS
IF AVAILABLE

© LOW VOLTAGE SUPPLY (Rt
BATTERIES) + 5 AND + 15 VOLTS
SENSITIVE TO WNFRA RED AS
WELL AS VISIBLE LIGHT
HAY BE USED FOR IR
SURVEILLANCE WITH A% 1R
LIGHT SOURCE
EXCELLENT FOR STAGDARD
SURVEILLANCE WORK BECAUSE
OF TS LIGHTREIGHT 44D
0N
ALk CoueOrEnTS WOLNTCD
O TWO PARALL
SINGLE SIDED aonuue Torat
WEIGHT UNDER 2
MAY BE WIRED BY PERSON
VITH SOME TECHNICAL
EXPERIENCE I11 45 HAS

SUPER UNBELIEVABLE

o °225.%°

MAY BE USED
WITH AMATEUR
RADIO FOR VIDEQ

USED FOR CHARAC-
TER RECOGNITION
FOR COMPUTERS
WITH EXTERNAL
CIRCUITS

MAY BE USED IN
A VACUUM, UN-
DER WATER, HIGH
ALTITUDE, AND
IN MAGNETIC
ENVIRONMENT
BECAUSE THERE
IS NO HIGH
VOLTAGE OR
MAGNETIC
DEFLECTION

WE SUPPLY ALL
SEMICONDUCTORS,
BOARDS, DATA SHEETS,
DIAGRAMS, RESISTORS
AND CAPACITORS

SORRY, WE DO NOT SUPPLY
THE CASE, BATTERIES

(OR SUPPLY} THE LENS
{NOT SUPPLIED} DEPENDS
UPON THE USE

ADO $2.00 PO TAGT AND HANDL 1N,

SR B0 DR AL e
it

F8 MICROPROCESSOR KIT

WE'VE GOT THE F8 MICROPROCESSOR KIT, ONE
OF THE MOST ADVANCED MCU SYSTEMS ON THE
MARKET TODAY FOR ONLY

$159.00

This three chip microprocessor system has the fallowing advantages
1) Driven by a +6 and +12 vaft power supply.
2) Two 1/0 ports an the CPU chup, und ROM, makng 32 bidrectan .
3} 64 bytes of last RAM scratchpad built into the CPU o
4) Abuilt in clock generator and power-0n reset burt o he CPU chip.
A programmable internal timer bulll into the ROM clup,
s) 60% of the instructions are 1 b
7] TTL /O compatibility.
B) Consumes less than 300muw of power per chip,
9) Alocal interrupt with automatic adress vector.
10] Expondable 10 64K bytes (2102.1's) of memory.
11) 20 mil loop and RS — 232 included.
The F8 Kit has enough parts and
Brog-ams up 16 1K byie, and 16 debud thase programs.

We supply:
-3850 CPU
- 3851 A FAIR-BUG programmed storage unit, provides the programmer with
all its 1/O subrouting, and aliows the programmar ta display or alter memory.
and register contents via a telptype terminal
- 3853 Static memory interface
8-2102
Plus CMOS gates and butfers, PC card. instruction manuals, programming quide,
and time sharing guide.

4K MEMORY KIT $159.00

Memory Board: Our uninue memory card features

1) 8 bit bidirectional port. outputs butfered

2] On hoard decoding for any four of 64 pages.

3) Address buffered.

4 4K bytes of 21021 static RAM's.

) No on board regulation to cause heat problems.

The memory card, like our other computer cards, has a 44 jun qotd plated edge
(156 spacing). This feature makes the system completely stackable 10 sove space,
service problems, and hard wiring. 1t will also allow plugn capabtity fos our
other cards when they become avaiable.

EXPANDER BOARD

This board will expand 1he memary capability to 16 kiloby1es with full butiering,
Inaividual power terminals far each memory card aru avsilable. This system can be
expanded to the full 64 kiloby1es of memory by plugging uther xpander cards into
this ane with the 44 pin cannector aptions.

To the best of aur knowledge, ours 1s the only ki an the marke1 designed tor easy
expansion to full memory capability.

EXPANDER KIT WITH ONE EDGE CONNECTOR $59.00 Exira 44 Pin Connectors

INTEL 8080 CPU $29.50
8008 8 BIT MICRO PROCESSING CHIP
{with Data Book) $19,
2102-1 1024 BT RAM , |

5202A UV PROM

MMS5203 UV PROM

1702A UV PROM

5204-4K PROM . 5}
MINIATURE M MULTI TURN TRIM POTS
100, 500, 5K, 10K, 25K, 50K, 100K, 200K
S,.]S each .3/$2.00
MU

3010 style 3/16"x5/8"x1-1/4";
1K, 10K, 50K ohms

TO-18, 200V 1A

4-1/2"" x6-1/2" SINGLE SIDED EPOXY
BOARD 1/16" thick, unetched

$.50 ca.

VECTOR BOARD 1" SPACING
4.5"x6.5" SHEET

4 WATT IR LASER DIODE

2N 5460 P FET

2N 5457 N FET

2N 4891 UJT.

TS 43 UJT

ER 900 TRIGGER DIODES
2N 6028 PROG. UJT

VERIPAX PC BOARD
This board is a 116" single sided paper epuxy
board, 4%"x6%:" DRILLED and ETCHED
which will hold up te 21 single 14 pin IC's
or 8, 16, or LS| DIP IC's with busses for
power supply connectar, $5.25

MV 5691 YELLOW-GREEN
BIPOLAR LED

MT-2 PHOTO TRANS . . .

RED, YELLOW, GREEN OR
AMBER LARGE LED's .ea. $ 20

14 PIN DIP SOCKETS$.35

16 PIN DIP SOCKETS

MOLEX PINS

.$ 60

100/$1 00
1000/38.00
.S 30

REGULATED MODULAR
POWER SUPPLIES
+- 15 VDC AT 100ma
. $27.95
5VDC AT 1A. 116VAC INPUT .

§ N SOLAR CELLS 2% diameter
.5V at 500 ma._ 6/$27.50
E

7 POLE 1 THRO
ROTARY SWITCH

Terms: FOB Cambridge, Mass.
Send Check or Money Order.
Include Postage, Minimum
Order $5.00, CPD’S $20.00

TRANSISTOR SPECIALS
$

2N3585 NPN Si TO-66
2N3772 NPN 8i TO-3
2N4901 PNP Si TO-3

2N5086 PNP Si TO-92 .
2N4898 PNP TO-66. . .

2N4D4 PNP GE TO-5

2N3919 NPN Si TO-3RF 5§ 1. 60

CIMOS (DIODE CLAMPED)
74C02- .30 4016~ GO 4035-1.75
74C01- 30 401/ 1.30
4001 - 30 4018-1.

4002- .30 4019-
60 4022 1.
30 4023- .
40241,

MPSA 12 NPN Si TO92, K .60 4025
$

2N3767 NPN Si TO-66 .

2N2222 NPN Si TO-18
2N3055 NPN S TO-3

2N3904 NPN S TO-92
2N3906 PNP Si TO-92

2N5296 NPN Si TO-220
2NB109 PNP Si TO-220,

2N3866 NPN Si TO-6
2N3638 NPN Si TO-6

2N6517 NPN TO-92 Si .

22UF 35V 5/8$1.00

A7UF 35V 5/$1.00
5/$1.00
b

7 LEVEL Diode Array

Tape Readers

NATIONAL MOS DE‘VICES

MM1402

MM1403 320
MM1404-2.50
MMS013 7.75
MM5016-3.50
MM5017-4.75
MMS5055-4.00
MM5056 4,00

TTL IC SERIES

.30
18
18
18
18
22
22
36

ALCOMINIATURE TOGGLE SWITCHES
$1.

MTA 106 SPOT .
MTA 206 DPDT .

SOLID STATE SALES

P.0. BOX 748

.30 4027 .

.30 4028 1.

50 4029-1. 4081
4015-1.40 4030~ !

LED READOUTS

B6.8UF 35V 3/31
33UF 26V S .
30UF 6V 5/81.
150UF 20V $

To TINEAR 266 Xi 87T SELF
SCANNING CHARGED CDUPLED
DEVISE

SANKEN AUDIO POWER AMPS
E7-4.00 | Si1010G 10 WATTS
§i 1020 G 20 WATTS
MMWSB 495 | i 1050 G 50 WATTS
LINEAR CIRCUITS
LM 309K 5V 1A REGULATOR . .
723 — 40 + 40VV REGULATOR .
301/748-Hi Per, Op. Amp.
32075, 12, 15, OR 24V
NEGATIVE REG.
7414 or 741C OP AMP,
709¢ OPER. AMP.

MM5210—1.95
MM5260-2.95

CA 3047 Hi Pef, Op. Am
3407 S, 6, 8,12,15,
REG. T0-220
101 OPER, AMP. HI PERFORM
LM 308 Oper. Amp., Low Power .
747 — DUAL 741
556 —~ DUAL TIMER
537 — PRECISION OP, AMP, |
540-70W POWER DRIVE . . .
LM 3900 — QUAD OP. AMP
LM 324 — QUAD 741
560 ~ PHASE LOCK LOOP
561 — PHASE LOCK LOOP
565 - PHASE LOCK LCOP
566 FUNCTION GEN
567 - TONE DECODER . .
LM 1310N FM STEREQ DEMOD
8038 IC VOLTAGE CONT. OSC.
LM 370 — AGC SQUELCH AMP.
555 — 2us — 2 HR. TIMER. . .
553 QUAD TIMER
FCD 810 OPTO-ISOLATOR
1458 DUAL OP AMP.
LM 380 — 2W AUDIO AMP. .
LM 377 — 2W Stereo Audio Amp.
LM 381 - STEREQ PREAMP, B
LM 382 — DUAL AUDIO PREAMP |
LM 311 — Hi PER. COMPARATOR .
LM 319 — Dual H: Speed Comp. . . .
9 — QUAD COMPARATOR

80

Send 25¢ for our n{u;nlog featuriny
Transistors and Rectifiers
145 Hampshire St., Cambridge, Mass.

WE SHIP OVER 95%
OF OUR ORDERS THE
DAY WE RECEIVE THEM

SOMERVILLE, MASS. 02143 TEL. (617) 547-4005

BUTE

To get further information on the products advertised in BYTE, fill out the reader
service card with your name and address. Then circle the appropriate numbers for the

reader
service

advertisers you select from this list, Add a 9 cent stamp to the card, then drop it in the
mail. Not only do you gain information, but our advertisers are encouraged to use the

marketplace provided by BYTE. This

helps us bring you a bigger BYTE.

A70 American Microprocessor 65 A38 Intelligent Systems 63
BYTE's Books 102 A15 James 99, 109
BYTE Subscriptions 86 A18 Meshna 111

A83 Computer Mart of NY 65 A71 Micro Peripheral 87

A76 Computer Store 35 A77 Micro-Term 75

A84 Computer Systemcenter 65 Ab7 Mikos 75

A87 Creative Computing 63 A20 Mikra-D 95]

A41 Cromemco 1 * MITS 31, 39, CIV

A85 Custom Design Services 65 A62 Morrow 95

A7 Delta 101 A22 National Multiplex 15

A78 Digital Group 13 AB3 Parasitic 81

A8 Dutronics 73 A23 Polymorphic Systems 55

A79 Economy Co 73 A24 Processor Technology 56, 57

A74 Gnat Computers 81 A26 Scelbi 47

A9 Godbout 97 A27 S D Sales 105

AB69 HAL Communications 53 A59 Solid State Sales 107

A12 IMS 37,Clll A29 Southwest Technical Products CIl

A86 Info-Tech 33 A30 Sphere 27

AB0 Interface 74 A32 Tri Tek 103

*Reader service inquiries not sol

licited. Correspond directly with company.

BOMB: e

YTE's Ongoing Monitor Box

BYTE would like to know how readers evaluate the efforts of the authors
whose blood, sweat, twisted typewriter keys, smoking ICs and esoteric software
abstractions are reflected in these pages. BYTE will pay a $50 bonus to the author
who receives the most points in this survey each month.

Page
No. Article

8 Lehman: Small Business Accounti
16 Gantt: Build a Television Display

22 Herman: Programming for the Beginner

28 Lett: High School Computer System

32 Suding: Systems Approach to a Personal uP
40 Abbott: Building an M6800 Microcomputer

48 Hansford: Strike a MATCH

58 Nelson: ““Chip’’ Off the Olde PDP
66 Gable: Interact With an ELM

76 Zarrella: Introduction to Addressi
82 Wadsworth: SCELBAL

LIKED
LEAST BEST
10
10
10
10
10
10
10
10
10
10
10

N

ng System

8/E, Part 2

ng Methods

00 0000 0 o0 oo
- et et m e e e e e e -
N NN NNNMNNNDNN

W W W W wwwwwwww
S L H DA DHAELEELLEL N
[I TS G I B B R B I S B)
- I I I < B - B - I - 2T - I - I - I -1}
NN N N NN N N NN
00 0 00 OO O 0 ® 0 0 W W
O W W W WO WY OO

March BOMB Winner

Winner of the $50 prize for the most
popular article in the March 1976 BYTE is
Jack Hemenway’s “The COMPLEAT Tape
Cassette Interface.” A close second was Don
Lancaster’s ‘“‘Build the BIT BOFFER.” in
third place was William Manly’s “Magnetic
Recording for Computers.” The deadline for
receipt of June BOMB evaluations is July 16,
1976.m

Continued from page 4

Given this goal of maximizing sales, what
better way to do that than to maximize the
utility of the product to its users by engi-
neering it to possess the greatest generality?
For the main frame kit manufacturers, this
means that providing the standards capabili-
ty allows the customer to interface a wide
range of specialized applications oriented
peripherals with a minimum of trouble. For
the peripherals manufacturer, this allows the
product to be sold to the owners of all the
central processors which provide the stan-
dard interface, thus ensuring the widest
possible market.

The Standard — A Summary

As the goal of parallel interface standards
activities, there are three major technical
points to consider:

Logical Definitions: The standard
should define the data, control and
addressing lines which are part of the
interface. This definition would also
include recommended sequences for
such common operations as input data
transfer, output data transfer, inter-
rupt handshaking, etc.
Electronic Definitions: The standard
should specify the physical parameters
of the interface: logic level voltages,
drive capacity, etc.
Physical Definitions: The logical defi-
nitions should be associated with the
pinouts of one or more ‘‘recommend-
ed” connectors. Connector choices
specified in the standard will help
make it a more usable definition by
limiting the number of possible alter-
natives.
An important point to remember is that the
purpose of the standard is to create a
definition which is widely publicized and
can be used as a reference point by engineers
and users of the equipment. With a standard,
variations from its definition can be fully
documented without ambiguity. (I owe this
point to Calvin Moerrs of Rockford Re-
search Inc in conversation at the March 1976
New England Computer Society meeting.)

To help encourage work on standards for
the personal computing field, BYTE is or-
ganizing a technical session to be held at the
Personal Computing '76 show in Atlantic
City NJ August 28 and 29. A full page
description of the standards session activity
is found on page 5 of this issue. The parallel
interface standard activities will form one of
three areas of technical discussion identified
at the time of this writing (March 26
1976).m

Feel free to photocopy this or any other page if you wish to keep your BYTE intact.

12

	Cover

	In the Queue
	Foreground
	Build a Television Display
	Building an M6S00 Microcomputer
	Strike a MATCH
	Interact with an ELM

	Background
	A Small Business Accounting System
	Programming for the Beginner: A Structured Start
	A High School Computer System
	A Systems Approach to a Personal Microprocessor
	"Chip" Off the aide PDP 8/E: The Intersil IM6100 Part 2

	An Introduction to Addressing Methods
	SCELBAL

	Nucleus
	In This BYTE

	Toward a Parallel Interface Standard
	Call for Papers
	About the Cover
	What's New?
	The Albuquerque Happenings
	Letters
	Components and Parts
	Classif.ied Ads
	BOOK REVIEWS
	Clubs, Newsletters
	Programming Quickies: Jitter

	Software Bug of the Month
	BYTE's Bugs
	Systems of Note
	BOMB
	Reader's Service

	Back cover

