SEPTEMBER 1976

PRINTED IN USA

[\
o “49:\

A\

v
P
2
2
%ol
D 3

_ It}
.‘.~7...,5/,'l'1”1’m =

iy,

Come One, Come Alll

Editorial by Carl Helmers

Articles Policy

BYTE is continually seek-
ing quality manuscripts writ-
ten by individuals who are
applying personal systems, or
who have knowledge which
will prove useful to our read-
ers, Manuscripts should have
double spaced typewritten
texts with wide margins, Num-
bering sequences should be
maintained separately for fig-
ures, tables, photos and list-
ings, Figures and tables should
be provided on separate sheets
of paper, Photos of technical
subjects should be taken with
uniform lighting, sharp focus
and should be supplied in the
form of clear glossy black and
white prints (if you do not
have access to quality photog-
raphy, items to be photo-
graphed can be shipped to us
in many cases). Computer list-
ings should be supplied using
the darkest ribbons possible
on new (not recycled) blank
white computer forms or bond
paper. Where possible, we
would like authors to supply a
short statement about their
background and experience.

Articles which are accepted
are typically acknowledged
with a binder check 4 to 8
weeks after receipt. Honorari-
ums for articles are based
upon the technical quality and
suitability for BYTE’s reader-
ship and are typically $15 to
$30 per typeset magazine
page. We recommend that au-
thors record their name and
address information redun-
dantly on materials submitted,
and that a return envelope
with postage be supplied in
the event the article is not
accepted,

NCC 1976

BYTE shared a booth with David Ahl’s
Creative Computing at the 1976 NCC show
June 7-10 in New York. For those who are
not familiar with the computing trade, NCC
is the big trade show sponsored by AFIPS
(American Federation of Information Pro-
cessing Societies) and attended by large
numbers of people in the traditional data
processing world. It features a strong techno-
logical information program with lecturers
on numerous topics, as well as one of the
most complete trade shows with booths
manned by every major manufacturer and
vendor in the computer industry.

This year’s floor show was in the New
York Coliseum, and the technical presenta-
tions were held in the New York Hilton and
Americana Hotels. | attended a technical
session on personal computing on Tuesday
morning June 8 in the Americana Hotel.
Speakers at this session included Stephen B
Gray, Ted Nelson, and Dr Alfred Bork. The
theme of Ted Nelson's talk was the idea of
the computer becoming a home appliance, a
necessity in the home in the same way that a
lot of technological innovations have be-
come ‘‘necessities.” Computer Lib becomes
a reality. To an audience of very sym-
pathetic professionals, Ted emphasized the
concept of the computer and its use as a
“way of life,” in the same sense that talking
is a way of life. For those initiated into the
art of computing, the truth of this view is
quite evident. Ted also made great argu-
ments for eliminating the term “microcom-
puter” — what we're all building, buying or
using is not micro in any sense of the word,
but simply an inexpensive computer of the
general purpose variety. (Eliminating that
term also gets rid of an ambiguity with

respect to microprogramming.) Ted made a
strong case of comparison between the
traditional “cuckoo” computer center con-
cept and the medieval church with its
priesthood and obscure Latin language. Per-
sonal computing as practiced by large num-
bers of people will help end the con-
centration of apparent power in the “in”
group of programmers and technicians, just
as the enlightenment and renaissance in
Europe brought about a much wider under-
standing beginning in the 14th century. (See
a forthcoming article by Dave Fylstra and
Mike Wilbur for some further commentary
on the subject.)

Ted also introduced his concept of the
perfect computer store, when he started
talking about the “‘itty bitty machine corpo-
ration” whose first computer store is to
open soon in Evanston IL. He intends to
become the McDonald’s of computing. By
way of formal legalisms, he entered several
terms into interstate commerce, a first step
toward obtaining a legally protected trade-
mark: “FUNTRAN” is the itty bitty
machine corporation’s extensible function
translation language, providing word proces-
sing, planning and figuring. “‘Simulatrix’’ is
his name for a proposed library of games
with educational and recreational values
combined, a library to be maintained with
royalties to authors. Interactive art works
itty bitty machine corporation is to sell
under the “Lady Lovelace” trade name (not
a porn film, but the name of the world’s first
programmer), and the itty bitty machine
corporation’s first hardware product is to be
called the ‘‘heaven eleven,” an LSI-11 with
an Altair compatible bus for peripherals.
(For the upper crust, there is “heaven on
wheels,” a van to be equipped with a
“heaven eleven.”) [All the quoted words in

ASCI1/Graphics Programmable, Multi-mode, Video Interface

MERLIN IS HERE!

Have you been trying to decide whether to spend your hard
earned money on a fancy graphics display, or on an ASCII,
alphanumeric {perhaps limited graphics) video interface? Now
there is a third alternative! Get both with MERLIN the
MiniTerm magician who can display your Altair or IMSAI|
memory in either format, or both. Of course MERLIN is plug-in
compatible with both computers, and provides standard
composite video output.

MERLIN has a 64 character generator chip to display ASCII
coded data from your memory as 40 characters by 20 lines. And
by a twist of magic (software control of a mode latch),
MERLIN’s hardware free format “memory saver’” mode starts a
new line after every carriage return. Change mode again and each
point on the screen: 100 vertical by 80 or 160 horizontal, is
controlled by a separate memory bit. Want both? Top ’n’ lines
can be ASCII data, the rest is displayed as graphics.

Software control of ASCII/Graphics mode is just the beginning.
Think of same of the crazy (as well as useful) things that can be
done with software control of: video polarity (black/white),
carriage returns {blanked/displayed), control characters (blank-
ed/video inverted), and cursor (on/off).

By the magic of DMA, MERLIN is super fast! Up to sixty
completely different screens every second makes possible a
whole new world of computer fun: computer animation/

Worried about connecting your keyboard? Just plug it into

MERLIN's keyboard |/0 connector. Perhaps you think MERLIN
is all magic and no smarts. NOT SO! Sockets and decoding for
4K ROM or 2K {2708) EPROM and our optional ROM software
makes MERLIN the smartest video interface available. Our basic
ROM (MBI*) contains all these keyboard editing functions for
both fixed and free format modes:

-Cursor Up, Down, Right, Left, and ‘Home’
-Delete Character or to ‘End-of-Memory’
-Auto and Manual Scroll
-insert and Replace Modes
4 Slave Cursor Operations
-6 User Defined Functions
and MONITOR routines:
-HEX Dump and HEX Input
-ASCII Text Input
Set Memory Display Area
Set Display Mode
-Examine/Modify CPU Program Registers
-Examine/Modify Memory
-Memory Fill
-Execute User Program with Automatic Breakpoints

Our extended function ROM (MEI*) } contains more editing
functions, including a search routine, more MONITOR
commands and graphics subroutines. MERLIN’s Basic Intelli-
gence comes with scratch pad RAM memory for monitor use.

With a lot of magic, we at MiniTerm are able to offer this fun
and exciting interface for the low price of only $249. All prepaid
orders received before November 1, 1976 will receive free the
MBI ROM, regularly sold separately at $34.95.

A User Manual, including hardware and software details is
available for $8.00 (deductible from MERLIN order). Order now
and receive a free listing of LIFE which runs in 1.2K including
800 bytes for the display.

Prices subject to change without notice. Mass, residents piease
add 5% sales tax.

A

l \Mlm'l'orm Associates
. ... 4
Box 268, Bedford, Mass. 01730

*MBI - MERLIN’s Basic Intelligence
MEI - MERLIN's Expanded Intelligence

this paragraph are claimed as trademarks of
itty bitty machine corporation.] 1t will be
interesting to see what comes out of
Evanston in the coming months. Ted closed
his talk with the following very quotable
passage: ‘‘Using a computer should always
be easier than not usingit.”

NCC is a hectic affair, and unfortunately
I had to miss several of the other interesting
technical sessions in order to work the
booth. In the afternoon of June 8, David
Ahl had organized a lengthy session on
related topics.

But the 1976 NCC in New York is merely
a taste of things to come. In the planning
stages, under the overall guidance of chair-
person Dr Portia Isaacson, is the 1977 NCC,
which will be held in Dallas TX at about the
same time next year. Portia is an enthusiastic
personal computing user, and is a member of
the North Texas Computer Hobbyist Group
in the Dallas-Fort Worth area. Her enthu-
siasm for the concept that ‘“‘personal com-
puting is an idea whose time has come” will
be reflected in the 1977 NCC program. One
major interest area theme is scheduled to be
that of the individual and computing. This
will be reflected in the technical sessions, in
programming and system design contests for
amateurs and enthusiasts, and special exhi-
bits. The show will be a major event on any
small computer person’s travel calendar for
1977.

On a Subject Nearer in Time,
There is Personal Computing '76

As | write this month’s editorial, the final
preparations for the Personal Computing '76
show are being completed by John Dilks and
Dave Jones, who are the principal persons
responsible for the event. The list of exhib-
itors who signed up for booths as of June is
shown in this month’s advertisement for the
show. The technical program will include
numerous detailed seminars by computer
users and manufacturers’ representatives
alike.

I’ll be giving an opening talk at the start
of the show, and other speakers will include
Steven B Gray, founder of the original
Amateur Computer Society, and Ted Nelson,
author of Computer Lib/Dream Machines. |
expect that, like the earlier and very success-
ful shows at Trenton (Amateur Computer
Group of NJ) and Cleveland (Midwest Affili-
ation of Computer Clubs) this year, the
Personal Computing '76 show will be like a
gigantic computer club meeting and will give
ample opportunity for various manufac-
turers and vendors to meet potential users,

Continued on page 126

Letters

It's about time somebody
jumped in with a word or
two in favor of sanity and
rationality in programming

style.

7 ”!l fi(!rjf‘ I)’!L'."!J: :

STRUCTURE’S WHERE IT’S AT!

In regard to Ronald Herman’s article
[page 22, June 1976 BYTE] on “Program-
ming for the Beginner:” Right On!! | for one
am fed up with articles and letters of the
“my code is two bytes shorter than yours”
variety. It’s about time somebody jumped in
with a word or two in favor of sanity and
rationality in programming style. While the
techniques Mr Herman presents are by no
means new, their acceptance among pro-
grammers of smaller systems is shall we say
not as widespread as one might wish. This is
detrimental not only to the individual prac-
titioner of the ‘“dirty tricks” school of
programming, but to the home computing
community as a whole, for such practices
can severely restrict the utility and share-
ability of the software produced, and
thereby work to defeat the purpose of
hobbyist software interchange standards.

| think that to a large extent it is up to
such people as the editors of BYTE to
encourage neophyte programmers to develop
structured, top-down programming practices
rather than bit-pinching, memory-grudging
trickery. Novices in particular should be
warned that code of the latter type can be
nearly impossible to debug, and just try and
understand it a year from now! Since you,
the editors, have been pushing for standard-
ization of various sorts, | think that it would
not be too unreasonable for you to exercise
a little discretion as to what sort of program-
ming style is advocated in the articles and
letters you select for publication. | might
also suggest that software-related articles
include metalanguage descriptions of the
algorithms involved, similar to Mr Herman’s
pseudo code.

For those old-timers already past the
point of no return, by all means don’t let me
interfere with your work. If the “quick and
dirty” approach to coding is your bag, then

12

go right ahead. Just don’t ask me to debug it
for you, and please, please don't tempt
neophytes down your primrose path.

Gregory P Kusnick
3532 Ramona
Palo Alto CA 94306

P.S. In case you haven't figured this out yet,
all my BOMB points for this month go to
Ronald Herman.

We're all for structured programming, just
surprised at how long it took for someone to
write an article on the subject. Ron
Herman'’s article shows a very useful tech-
nique for organizing one’s programming
thoughts. Let it be known: Articles which
use a pseudo code representation for pro-
grams are highly desirable. Of course, in the
cases where what might be called a “dirty
trick” is required, we can always partition
the problem so that the tricks are off
isolated in some subroutine.

DISPLAY WANTED

| recently picked up the May and June
issues of BYTE at the “Rochester Hamfest”
at Rochester NY. | was very impressed with
BYTE as it appears to be an excellent
magazine for the ‘“‘computer hobbyist” or
“ham RTTY operator,”

| would like to see an article on a 72
character per line TV display which would
then be compatible with Teletype line
lengths such as the model 32 and 335, etc.

Vincent R Staffo
Rochester NY

ATTENTION HAMS!
REQUEST FOR A HAM NETWORK

| am a ‘“‘charter subscriber” to BYTE and
have been in and around the radio/
electronics business for quite a while, since
1941 in fact. | have an Amateur Extra Class
license and operate all bands, SSB, CW and
RTTY. | am also CE for a St Louis direc-
tional AM and stereo FM station (20 years).

It seems to me that the opportunities in
the microprocessor field are virtually
unlimited but also that the pitfalls are of the
same order. | also believe that a large
number of your readers must also be hams
and RTTYers. | would like to see BYTE
magazine promote a net type of operation
on the ham bands to promote the exchange
of information regarding microprocessor
systems and peripherals. A few minutes of

Continued on page 93

Are you the proud author of a piece of hobbyist
software? If so, you are in the same class as the
author of a novel, a play or any other kind of salable

writing.

Are You an Author?

Softlifting is a white collar
(no gun) crime which is
easy to commit and hard
1o detect.

Calvin N Mooers
Rackford Research Inc
140 1/2 Mt Auburn St
Cambridge MA 02138

Are you the proud author of a piece of
hobbyist software? If so, you are in the same
class as the author of a novel, a play or any
other kind of salable writing. If your soft-
ware is good, and other people want it, it
could be worth something to you. Dollars!
Money!

This is the first of several articles in
BYTE describing details of an owner’s rights
in computer software. It is written from the
hobbyist and software writer’s standpoint.
While | am not a lawyer with a formal legal
degree, | have some practical credentials for
discussing these matters. | have 30 years
experience in studying this topic and in
advising my lawyers concerning my own
patent, trademark and software copyright
problems. | have previously written on this
subject as it concerns the professional data
processing markets (in particular see my
article ‘““Computer Software and Copyright”
in the March 1975 issue of the ACM
Computing Surveys). Any lawyers or indi-
viduals who read my views on the subject
and have comments to make are invited to
respond in writing to me or via the BYTE
letters column.

Maybe you are not yet an author, but
only a user of personal computing software.
Then you, like everyone eise, need more and
better software in order to use and enjoy
your computer. Yet where are the suppliers?

16

Why do some of the potential suppliers seem
to be holding back?

There is a partial answer to this question.
You undoubtedly know that a few bad
apples are rapidly giving all computer hobby-
ists a very bad name. For example, it now
appears that more copies of Altair's BASIC
have been pirated than have been legally
sold. (See the letter by Bill Gates on page 3
of the February 1976 edition of MITS
Computer Notes, the March April 1976 issue
of People’s Computer Company and widely
published elsewhere in newsletters and club
bulletins.)

Software piracy is a white collar (no gun)
type of crime. It is easy to commit and hard
to detect. As a crime it is in the same class as
shoplifting, or the use of a “blue box™ ona
telephone to make illegal freebie worldwide
telephone calls. Software piracy is a crime
ethically because it extracts creativity and
effort from the author(s) of software against
their will and thereby robs them of their
property. It is a crime legally to the extent
that existing legal mechanisms are available
for the protection of software by owners
who desire some form of recompense
through sales.

As a software user who has come by his
or her software honestly, what can you do
with your software? What can you not do?
From my experience talking to many
people, | have concluded that very few
persons really know what they can do and
cannot do within the present legal defini-
tions. There is much misinformation and
little real knowledge. One target of this
article is you who are software users.

Furthermore, it is you — the great
majority of honest users — who will by your

A Note of Interest

The concern with protection of software creations is by no means con-
fined to the personal computing field. At about the time this article was being
edited, a survey entitled “‘Development of an International System for Legal
Protection of Computer Programs’ by Oliver R Smoot appeared in the April
1976 edition of Communications of the ACM, page 171 of the volume 19
number 4 issue. The content of the report was an informal account of a
recent (June 1975) meeting of an international committee named the Advi-
sory Group of Non-Governmental Experts on the Protection of Computer
Programs, held under the auspices of the World Intellectual Property Organ-
ization in Geneva, Switzerland. . . CH

peer pressure provide the most effective way
for putting a stop to the bad apples who
steal software. [f the software piracy threat
can be stopped, more and better software on
the market will be the result.

Methods of Protection

So you are an author, and you have this
great little piece of hobby software (or
business software). It is so new, it is still a
secret between you and your computer.
Even your best friend hasn’t been provided
with a copy. It is all yours.

(We presume that this software was
created in your own basement, and not on
your company’s time or computer. We pre-
sume that your business arrangement with
your employer allows you to hold ownership
in your own out-of-hours software creations.
(Maybe you had better dig out that copy of
your employment contract, and read the
fine print on this matter.) We also presume
that your creation wasn't copied from some-
one else’s copyrighted software or
documentation.)

For the moment this new software is all
yours, and you legally and completely own
it. The courts will back you up to the hilt.
So much for the good news.

Now for the bad news. Exactly what is it
that your own? Should you try to protect
your new software? If so, how? How can
you take your software out of your base-
ment without losing your ownership? If you
can find a buyer, what is it that you really
sell? What steps (patent, trademark, copy-
right, trade secret, or other method) should
you take to protect your new property?

The easiest way out is for you to give
your software away, thereby forfeiting
ownership. You won’t have any problems as
an owner. For some kinds of hobby soft-
ware, this is the preferred course. After all, a

hobby is mainly for the fun of the thing, and
you don’t really expect to make any money.

But what if you really did put in an awful
lot of time, and worked up some documen-
tation, got all the bugs out, and have
something that you think others would
really like to pay some money for. What
then?

If you can find a buyer for your software,
someone who is willing to purchase all rights
to your software, sight-unseen, for some nice
round number, then your worries are also
completely over. The buyer can worry about
protecting it, and selling it. However, most
buyers will want to examine the goods
before buying, so you are back to where we
began: [f you want to sell your software
creations, how do you protect your prop-
erty before and after the sale? Thus we get
down to basics.

Secrecy

If you don’t let your software out of
your basement, and you don’t let anyone
else see or have access to it, even by data
line, and you tell no one about it, then you
are probably completely protected (barring a
computer-oriented burglary). This is the
method of protection by secrecy. It is
completely effective. The best people do it:
IBM is reputed to have many more secret
developments filed away in their labs than
all they have ever published or marketed.

Can the “idea” of your new software be
protected? The answer is clearly ‘“No,”
particularly if the software is to be marketed
to a number of customers. Forget it.

Patent

Can the new software be patented? This
method of software protection might seem
to be a hopeful way, since a patent protects
the processes or devices used to carry out an

17

When you create or pur-
chase software, exactly
what is it that you own?

The easiest way out of
software protection prob-
lems is for you to give
your software away,
thereby forfeiting owner-
ship. This is guaranteed to
cure any problems you
may have as an owner, For
some kinds of software
this is the preferred
course, After all, a hobby
is mainly for the fun of
the thing and you don’t
really expect to make any
money.

In my estimation, the best
tool we have is copyright,
which is the same legal
tool used by all other
authors — authors of
novels, plays, and all other
kinds of creative written
works.

With software, trade secret protection is not likely.
You simply cannot sell copies of the secret and keep

the secret at the same time.

inventive new idea. In practice, the answer is
again “No.”" There are two reasons. The first
is that your software is almost certainly not
sufficiently original in concept to be patent-
able. The second is that during the past ten
years the courts — including the Supreme
Court — have had as much trouble in
agreeing about how to deal with software
patents as they have had with the equally
intriguing topic of pornography (What is it?
Should it be allowed?). Finally, getting a
patent will cost you an arm and a leg (more
than $1000), and will take a minimum of
two to three years (if ever) to get. Again,
forget it. Let the big corporations fight this
battle.

Trade Secret

If you are going to sell your software to
more than one customer for hobby com-
puter use, you can also forget the ‘‘trade
secret’’ method of protection. This method
works for large companies if it is a manufac-
turing process or formula that can be kept
behind locked doors (like the formula for
Coca Cola). But with software, you simply
cannot sell copies of the secret, and keep the
secret at the same time.

Trademarks

Trademarks are another fascinating legal
device for your protection as an entre-
peneur. Trademark laws protect your use of
a special mark (your trademark) on your
goods or services. The purpose of your
trademark on your software is to inform the
buying public that the goods or services so
marked and sold are manufactured or pro-
vided by you, and not by someone else. If
you are interested in the game of software
selling, you should seriously consider using a
trademark (or service mark) to help protect
you from unfair imitators, since there are
legal sanctions to prevent them from using
your mark. However, useful as it is, a
trademark cannot be used to protect the
software itself from theft.

Copyright

How can your new sofiware be sold, and
still be protected from “soft-lifting” (equiva-
lent to “shoplifting” in another context)?
How can it be protected from the pirates? In
my estimation, the best Lool we have is
copyright, which is the same legal tool used

18

by all other authors — authors of novels,
plays, and other kinds of creative written
works.

Copyright is unbelievably swift and
cheap. What you do is to place the magic
incantation “Copyright 1976 | Jones” (if
your name is } Jones) at the top of the first
page or title page of your software listing,
and then give a copy so marked to a friend.
You now have a copyright!

It is like magic. The very instant that you
place your program, or listing, or tape, or
documentation on sale or put it into distri-
bution with this notice on it you become the
proud owner of a US copyright in the
software so marked.

You do not need to file papers anywhere
to obtain your legal copyright protection!
(However, more about this topic later, and
about filing a copyright claim in the US
Copyright Office.)

However, if you first distribute any
copies of your softwarc without this copy-
right notice, then you have lost your rights
forever. By first distributing your software
without a copyright notice, you thereby tell
the world that you renounce your owner-
ship, and that anyone thereafter may copy
your software at any time with no need for
permission.

It is best if the notice ““Copyright 1976 |
Jones” (with the correct name and date) is
placed in a comment line at the head of the
program. It should also be stamped or
handwritten on all tapes and boxes contain-
ing cards or tapes for thc software. It is
important that it be placed on the title page
of all documentation. All copies, what-
soever, going out should bear your copyright
notice.

What Copyright Means

A copyright means that no one, without
your permission, is legally authorized to
make copies of your copyrighted software.
In the language of the law, you now have:

“the exclusive right to print, reprint,
publish, copy, and vend the copy-
righted work; to translate the work
into other languages or dialects, or to
make any other version thereof...”

Since one can’t run a computer without first
using a copy of the software to make a data
pattern inside the computer, you can begin
to see how copyright can protect you.

The best way to explain what this
language of the copyright law means is to
describe what you as the purchaser of the
software can and cannot do with copy-
righted software if you wish to stay within
the law,

After you have bought the copyrighted
software, you may read your copy, throw it
away, re-sell it, give it to a friend, memorize
it, burn it — or do just about anything except
to ‘‘make a copy.” You own the paper it is
written on, you own this particular copy of
a program; but you don’t have the legal right
to make further copies! This is what copy-
right is all about.

Of course, computers were not with us in
1909 when the current copyright law was
written. But even back in 1909 they had
“high technology’ for the time— linotypes
and high speed printing presses. Our present
computers are merely another form of high
technology machines, and they also use and
produce printed material. The copyright law
applies to computers too.

Making a computer listing is both making
a “copy” and “printing” or ‘reprinting”
copies of a program in the language of the
copyright law. Giving a listing to a buddy is
“publishing,”” even if no money is involved
in the act. Selling the listing, say for 50¢, is
“vending” a copy. Unless you have permis-
sion, in one way or another, from the
copyright owner, doing any of these things is
called an *“infringement” of the copyright.

If you have a copyrighted program listing
in 8080 language, and you convert it to
6800 language, this, in my opinion, is also an
instance of ‘“‘translating the work into
another language or dialect.” Taking the
program and making major changes in it is,
in my opinion, an instance of ‘‘making
another version thereof.” Again if you have
not been authorized to do so, these actions
would also be infringements,

It is evident that when you buy some
software for running in your computer, you
must be allowed to do a number of things
that might otherwise be forbidden by the
copyright laws. Thus when you buy copy-
righted software you should get from the
seller, either as a definite written statement,
or more usually as an implied understanding
between the software seller and yourself, a
clear indication of what things you can do
with your purchased software.

The major computer manufacturers seem
to take particular pains to make these
matters very clear. For example, they tell
you that you can copy the software into
your computer (they may even specify the
serial number of the computer) for purposes
of running the computer. They may also

20

permit you to make a limited number of
copies of the listing, but only for purposes
of your own study and maintenance. They
will often tell you that you are not author-
ized to furnish copies of the software,
listing, or documentation to any other per-
son. To maintain their control, they may
even retain ownership of the physical
listings, tapes, and documentation.

These generally-authorized actions per-
mitted with copyrighted software are now
usually understood by the sellers and buyers
of software in the data processing field at
large. Therefore if you as a buyer have any
intent of making a wider use of the software,
you should be sure to get your license or sale
agreement to specify all the actions that you
wish to be permitted.

Copyright, What You Can’t Do

A person has bought some software. What
can he or she do, and what can’t he or she
do with it? What are the penalties?

The wusual understanding between the
seller and the buyer of the software is that
the person buying the software is allowed to
copy the software into his computer to
make it run, that he or she is allowed to
make a limited number of private copies for
safety back-up or maintenance, but that the
buyer shall not furnish copies of any kind to
any other person,

To go beyond these authorized limita-
tions, and to do other things (make and
distribute other copies, other versions, or
translations) with such purchased software,
is wrong. It is not a city ordinance or state
law that is broken. It is a Federal law duly
passed by Congress. It is called “copyright
infringement.”

Three things can happen to a copyright
infringer:

First. The infringer may get a guilty
conscience, but otherwise get away with an
illegal act. As with shoplifting, which is also
difficult to detect, this is the usual outcome.
However if enough people in the hobby field
go in for “soft-lifting,” the software pro-
ducers might get the message, and stop
making software available to hobbyists. In
the hobby field, and for good reason, this is
already beginning to happen in at least one
well known case.

Second. If the software owner finds out
about the infringer’s illegal acts, the infringer
may be in for big trouble, especially if the
owner feels sufficiently damaged by the
illegal activities. The software owner may
decide that there has been so much infringe-
ment that it is now time to “give those guys
a lesson’ and to make an example of one of

the infringers. This could lead to a lot of
rancor, and you certainly wouldn’t want
that to happen to you!

More about the third possibility later.

Getting Caught Can Be
Bad News!

Scenario: A US marshal appears at the
infringer’s door. (Copyright is a federal law,
so it goes to a federal court which uses
federal marshals to convey its ‘“greeting.”)
The marshal carries a legal paper called a
“‘complaint.” The infringer has now ‘‘had
it.”" Like it or not, he must accept the
complaint. A full legal response to it is
required within 20 days. Whatever the
infringer does now could cost plenty of
money, time, and grief. Also bad publicity if
he or she was chosen to be an example.

Probably the best thing an infringer can
do at this stage is to make peace — but fast
— with the owner of the infringed copyright.
All the other alternatives have high risk and
cost. Trying to fight the case (assuming a
real “‘softlifter” is involved) will cost buckets
of money for legal fees, whether the suit is
won or lost. To not fight, or to default on
the complaint, means the infringer will
receive an automatic default judgment which
could cost a minimum of $250 for each
alleged instance of copyright infringement.

In cases of infringement, the copyright
law provides for mandatory damages to be
paid to the awner which “shall not be less
than $250 nor more than $5,000” for each
act of infringement. Each time a copy had
been run off for a friend would probably
constitute a separate act of infringement.
The fact that no money was involved in the
deal does not excuse the infringement.
Neither is ignorance of the law an acceptable
excuse.

Profits and Prison

What about the guy who knew the
software was copyrighted, but still made and
sold copies of the software hoping to make a
tidy profit? Maybe he wanted to buy some
super disk system with his ill-gotten gains.
When he copies wilfully and sells the stolen
copyrighted software, it is a federal crime
(yes, | said criminal). The newspapers
recently had accounts of the FBI going after
a nationwide audio-tape bootlegging ring.
Audio tape bootlegging is a similar kind of
copyright infringement.

Although a hobby computer program
pirate would probably have to go large scale
before the software owner could get the
reluctant federal authorities to move, it
could happen. The law provides that if a
copyright infringement is wilful and for

22

profit, the convicted infringer ‘‘shall be
punished by imprisonment for not exceeding
onc year or by a fine of not less than $100
or more than $1,000, or both, in the
discretion of the court "

The Effects of Software Piracy

But what if the software owners don’t
take the legal sanctions route. What then?
After all, it is terribly expensive for them to
do so. What we can expect to happen — and
now is happening — is that software pro-
ducers will shun the hobby software field.
Already the bad apples in the hobby field
have produced a devastating impact. Bill
Gates, producer of the Altair BASIC, in his
“Open Letter to Hobbyists” mentioned
earlier, tells of his sad experience.

According to Bill, he and two associates
produced the Altair BASIC, investing three
man years and burning up $40,000 in
computer time. It was to be sold on commis-
sion through MITS for use with Altair
computers. Gates now finds that many of
the “‘users’ he talks to praise his BASIC very
highly, but few of them can admit that they
bought the copy they use. He says, ‘“As most
of the hobbyists must be aware, most of you
steal your software.” He is bitter, and says
that the return for his group was less than $2
an hour for the great amount of time they
put into the programming, debugging, and
documentation required to make a first class
package. He continues, “We have written
6800 BASIC, and are writing 8080 APL and
6800 APL, but there is very little incentive
to make this software available to
hobbyists.”

The software people | have talked to
agree with him. This means that prudent
software producers will begin to sell com-
plex packages only to commercial and busi-
ness buyers, since such buyers would be less
likely to break the law. This means that soon
only the hardware and kit manufacturers
will be willing to supply hobbyist systems
software. If so, hobby equipment prices
must rise to absorb the cost of the bundled
software. Another result will be that the
hobbyist will be severely limited in choice of
software. Hobby systems will be limited
mainly to what the manufacturer wants to
produce.

The hobbyists can do a lot to clean up
this situation. They can first learn what the
owner’s rights are in his software. They can
expose the bad apples who are peddling
stolen property. They can exclude bad
apples from hobby meetings until they
change their ways. The pressure from one’s
“peers’” can be very powerful if it is properly
applied.m

HowFarCanYouGo

Find out-by adding 8080 compatible

3P+S Input/Output Module

Our 3P +5 is a simple inexpensive answer
fo handling a variety of peripheral devices.
It has two 8-bit parallel I/O ports, with full
handshalking logic. Plus, it has a serial I/O
port, with a dafa rate range from 35 to
Q600 Baud. Simultaneously handle a paper
fape reader, a keyboard, a TV terminal, a
fape punch, and a telephone coupler!
Available with premium grade low-profile
IC sockets, $149. Owner's Manual, $4.95¥

ALS-8 Assembly
Operating Systemn

Just turn on the switch, and instantly you
have the power to write, edif, assemble,
de-bug, and run your own programs.

The ALS-8 is the most useful soffware
development tool available today. Optional
firmware includes SIM-1, an interpretive
simulafor, that simulates programs without
running them in real fime. Thus, errors
encountered during festing do not endanger
your entire system. The TXT-2 firmmware adds
fhe dimension of text editing. Insert, delete,
move entire lines or single characters, and
much morel ALS-8 (assembled only), $425.
SIM-1, $95. TXT-2, $95.

VDM Video Display Module
If you're setting up just the system you really
want, don't fall short by limiting its com-
municating ability. The VDM-1 is an ultra-
high speed video output device. Its 16 display
lines have 64 characters each, upper and
lower case. 1024 bytes of random access
memory are on the card. it scrolls up or
down, even to 2000 lines per minute! Any
combination of the 1024 cursors can be
displayed as black-on-whifte or vice versa.
Free terminal mode software is included,

along with premium grade, low-profile
IC sockets. $199. Owner's Manual, $4.95%

8KRA Static MemoryModule

We now offer a low-power static memory
module, with a full 8192 bytes of memory.

It has an exclusive KSET™ address selection
DIP swiftch, so you can conveniently set
address boundaries in increments of 1K.

Our low-power RAM’s typically require one-
third less power than those commonly used
by our competitors. They'll even retain
memory for 4-5 hours when powered by
fwo "D" flashlight cells. On-board recharging
circuitry and battery connectors make if
possible to protect your dafa against sudden
power loss. Each RAM has ifs own IC socket,
too, for easier assembly and repair. $295.
Owner's Manual, $4.95%

2KRO EPROM Module
The 2KRO Read Only Memory will accept
up fto eight 1702A or 5203 EPROM’s (not
included), providing 2048 eight-bit words
of non-volatile storage for monitor,
executive, loader and other programs.
Programming services available from your
dealer or write us for details. $65.
Owner's Manual, $4.95%

4KRA Static Module
The 4KRA (4096 bytes) was our first stafic
memory module. It's still very popular, and
uses the same low-power static RAM's as the
8KRA. Plus, we've added a DIP switch, and
every RAM now has its own premium grade,
low profile IC socket. On-board recharging
circvitry (with batfery backup) makes it
possible to retain memory for 8-10 hours
during power failure. $159.
Owner's Manual, $4.95%

MB-1 MotherBoard
QOur single piece Mother Board for the Altair 8800
gives you 16-card capacity in one single installation.
Available with 12 (MB-12) or 16 (MB-1) slofs. $70.
(Discontinued; limited to stock on hand.)

WireWrapBoard
Do your own wire wrap profotyping with the WWDB

Wire Wrap Board. Up to 62 16-pin sockets or various
combinations of 14, 16, 24 and 40-pin sockets. $40.

EXB Extender Board

The EXB Extender Board allows accessibility in servicing
any 8080-compatible module. $35.

*Fully descriptive Owner's Manual available
separately. Price refundable with purchase of kit.

Build This Mathematical

Part |: Hardware

Why Use a Calculator?

The small computer system designers and
computer hobbyists have a wide variety of 8
bit, 12 and 16 bit microprocessors to choose
among for their design problems. Most of
these units are capable of performing binary
fixed point arithmetic. However, there are
many applications which require floating
point arithmetic operations with greater
precision and extended mathematical func-
tions. Sophisticated software routines or
complicated hardware must usually be de-
veloped and debugged in order to achieve
these goals. However, without undue compli-
cation the floating point arithmetic func-

Figure 1: Mathematical Function Unit System Block Diagram. The Mathe-
matical Function Unit accepts inputs from the computer at the left, simulates
keystroke inputs to the calculator, and decodes BCD outputs which can be
read by the computer. The result of connecting this peripheral to your
microprocessor is a multiprocessor computer system, for the calculator chip is
nothing but a form of microcomputer which comes with a fixed program load
needed to perform mathematical and arithmetic operations.

Function Unit

R Scott Guthrie
1374 Franchere Pl
Sunnyvale CA 94087

tions can be achieved through the use of the
existing hardware found in calculator chips.

The more sophisticated calculator chips
are capable of trigonometric, logarithmic
and other special functions as well as the
standard add, subtract, multiply and divide
capabilities and can be easily interfaced to
microcomputer systems.

My objective with this project was to
develop a method of interfacing a calculator
chip to a microcomputer, thus relieving the
problems of writing the software for arith-
metic and mathematical operations. This
two part article describes how you can
combine the calculator’s hardware with a
conventional 8 bit microcomputer. The re-
sult is a multiprocessor system: the micro-
computer and its ROM programmed calcu-
lator slave.

Hardware

The Mathematical Function Unit is built
of standard TTL, MOS, and CMOS logic
components, and uses TTL compatible input

y§

X TOGGLE LINE DIGIT o DIGIT
TIMING COUNT ® SELECTOR READY LINE -
Y IN/OUT LINE - $OR
1 T LATCH CONTROL
FROM B8O
SoreoTER! Lcs 470 16 MOS 7 SEG | g 78| TO
PORT c4 ~| DECODER v|soLio - T|TECHNOLOGY B —oB2| COMPUTER
INPUT STATE INC BCo L 083/ INPUT
= CODE SwiTcH S PORT
o2] l NET- i —
LATCH L 4 WORK MPS 7529-
oS! | 270 4 N 103 P P —or
oCO | ® pecopEr) s,0. 5. o5
o o)
CALCULATOR DECODERS
anee DATA LINES CHIP
LATCHES

CONTROL LINES
~—» DIRECTION OF SIGNAL

26

Figure 2: Memory formats of the Mathematical Function Unit data. When transferring data
from the calculator to the microprocessor’s main memory, one byte at a time is read, starting
with the algebraic sign. A natural way to store the coded numbers read is in the form of 12
bytes in ascending order in the address space of your computer. Each byte’s low order nybble is
a BCD number in the magnitude positions (Xs or Ys in the figure). The high order portion of
each byte contains the content of the decimal point, sign and overflow bit lines at the time the
byte is read from the calculator. For output to the Mathematical Function Unit, the low order
bits of a byte are used to drive the 6 key selection lines CO to C5.

3 | X X X X | X X , X | + I Y \ Y I Contents
4] 1 2 3 4 6 7 8 9 A B Address offset
N — —

(hexadecimal)
‘_ Magnitude of exponent

Sign of exponent

Magnitude of number

Algebraic sigh of number

and output lines. Although not shown in the
schematic diagrams, my version included an
internal power supply, so the connections to
the microcomputer are limited to signal and
ground lincs. Any 8, 12, or 16 bit machine’s
input and output ports can potentially be
used with this interface.

The basic operations of the Mathematical
Function Unit consist of the input of a code
to be interpreted as a “function desired,”
the processing or calculating required to
perform that “function,” the decoding and
output of the result, and the internal timing
needed for control.

The functional block diagram of figure 1
shows how these sections are related, and
provides a basic knowledge of the internal
operation of the Mathematical Function
Unit.

Input Section

The input to the Mathematical Function
Unit from an external device such as a
microprocessor consists of 8 lines from an
output port of that device. These lines are
labeled X, Y, Cq, Cq, Cy, C3, C4 and Cs.
The input section stores the new data
supplied, and decodes this to the “function
desired.” See table 1 for a complete list of
the functions and their codes. The function
is applied to the calculator chip in the form
of the correct *‘pushed button.” (Since this
is all done electronically, the pushing of
buttons is simulated using solid state
switches, and no push buttons really exist.)

The X line is used to distinguish new data
from old. As this line is raised from logic
level 0 to 1, the data on lines Cq to Cs is

Byte Format: Calculator Outputs

R 0 P S B3 . B2 . B1 . BO Wired to MFU pin
7 6 5 4 3 2 1 4]
N p— P 4
~N"
BCD digit
Sign bit

Decimal point bit

Overflow bit

Ready Bit

Byte Format: Calculator Inputs

C5 C4 €3 cCc2 <1 C0 Wired to MFU pin

7 6 5 4q 3 2 1 0
Nm— — - ~" i
| Calculator function code
{see table 1)
Calculator Control
ACKNOWLEDGEMENTS

I would like to thank J C
Hertsch of MOS Technology,
Inc, for his assistance by sup-
plying information and dona-
ting the calculator chip used in
this project, which was carried
out under the auspices of
California Polytechnic State
University, San Luis Obispo.

27

Figure 3: Schematic Diagram of the Mathematical Function Unit. A total of 25 integrated circuits is required to accomplish the
floating point and mathematical functions of a scientific calculator.

INPUTS FROM

from the controlling device to the MFU
input circuitry. A unique combination of 0
and 1 levels on these lines at input time is
taken as a “‘key pressed” code. It may be

28

COMPUTER READY READY
| RS
| 20K
I 5y Rol IOTUFJF:JOT
| 10K TRIM 7402
| /4w)
I 3)28)0
| +5Vv
| T ﬁ 162 [14 |° 12
4] 1519% A 1c10 8 QAR
l 2 JLR :‘3 28 la 7492 2
2TTL EI|> Q s RO ROp ool®
LOADS ICIA
1 74123 ls 17
| A
|] i1 Ji3jia]is
| sy +5V J, R3 . ; %DC A
| 10 Rg 10K, 174W 0
t - 20K P 12 17
— 20] 74130
qcos |7 [lo 21]lo
g| Tai23 Q B —_— g2l whe
= le 1~ IcIB 23
TITL vﬁ'>1 T 00| " 6 T eour i
LOADS I 12 CLRG A oy ;
12 |e 2
Je 3 =
| '°- — [— s
" MM3610 b 1ICIS
7402 2o .16 10K I/BW RESISTORS 12 Z‘& el
f O A K e SIS TOR SECTIONS 10 SEE NOTE!
| { { 18
P 13 14 ! ‘l)j Yo
C5¢ 2{, EN QA L e |90 ‘\\ 375 Bl 1B 19)v1
I ~ c K
: 3 R I CT R T KX 10K 3) °Iet 201y,
ca 8 2 |-
o8 2o 1€7,8,9 1CH ? 1 2ilys
| c»—“{ EN IC3 /#5 7406 LLELTR [uPslggs-
| 7475 16 SECTIONS s 103
c3 & Qc 0 20 D Yo I SEE NOTE | 2 64-—1
2t E:: - 2 : ¢ 1] Hoi
LOAD 3 .
PER czd} 1o aof>—24¢ 4 iz }¢ °re alo.
LINE
C o4
| ';4?54 . g ! 2103
| s lumseie O}
¢l dl>—2A EN ga|= 221 o} 1 10104
Tavs H g 0 = "
CO¢ 3‘5 asll® 23 A il 13 s é-.* D3
— c | 12} pe
! — o
— €13 m 131o7 sp |24
Mmscis 0104 wl
Gl G2 sB 3
Ins ['s 3 3 L L1 P ol P
‘C
¢ é‘ (k] 09 SE 27
2
¢ | 16 DIo :: ’2'2_25
s 9 Ton so|
Integrated Circuit Summacy for Figure 3 MMS6i6 O Mo | |
= Type Pine +5V +7.5V GND 32331 3333 %1 55 3
ic1 74123 16 16 8 77 Rio-21 R22-29 m
IC2 7402 14 14 7 4.7K, /8 4.TK, I78W
IC3 7475 16 5 12
ICA 7475 16 5 12
IC5 74155 16 16 8
1IC6 74154 24 24 12
G ue w ok
I
1S90 Jaxe wou 2| accepted as new information, and gated into noted that 64 total combinations are pos-
111 Mmsere " 1“7 | the input buffer. After this data has been sible with these 6 input lines; however, on!
1612 MMS616 N w7 P ! nd 1 1he) ’
e s I # 1| accepted, the data on the C lines is ignored 40 combinations are used, with the other 24
1 vmsew 8 1 ¥ 8 until the next X line transition from 0 to 1. codes being invalid. These C lines are not
O e sty 8 P o The Y line is used to determine whether used during the output state of the Mathe-
120 705 a4 8 | aninput or an output of information is to be matical Function Unit, when Y is low.
ic22 7400 e 7| performed by the Mathematical Function p e
1C23 7400 1 14 7 -
1G24 7402 14 14 7 | Unit. A logic 1 on this line indicates an input rocessing Section
1C25 7410 14 14 7 . . . - . . - . .
ez 100 @ 1w 1| operation, while a logic O indicates that an The processing of the required function is
128 MMS610 e 1 16 8 | output of information is to occur. done by a large scale integration single chip,
IC30 7475 % 5 12 Input lines Cgq through Cs are used to 40 key scientific calculator array, (MPS
convey the codes for the different functions 7529-103) made by MOS Technology, Inc.

This calculator chip has roughly the same set
of available functions as some of the more
sophisticated non programmable hand held
calculators on the market today. When used

http:IJ:::cIJ:::ca:r:a:r:'..J1

READY

in the Mathematical Function Unit with the
proper hardware and software, your micro-
processor system can outperform the best of
them.

Some of the operating features of the
MPS 7529-103 calculator chip include:

® Number entry in floating point or
scientific notation.

® Automatic selection of correct nota-
tion for result (scientific or floating
point).

® Algebraic problem entry.

® Two levels of parenthesis.

® Full chain calculation with any func-
tion sequence.

The functional features include:

® Basic arithmetic {(+—,*,/)

J +53v cq 6.8pF +5V
[a 15V
Rre
3lia |is 20K lo0K
TRIM
23cLr
iC19A R31
L 7e2s |is e
g Q | i7aw
L 20a
cla
13 7402 J;slo;,r 7400 !,642(;:
il
QUTPUTS TO
o COMPUTER
= |
L s 4] 2e8 & |
ic218 26A
7404 _2] 7400 R READY
3 4
D ,
13 [
2 EN |
QA 0 OVERFLOW
s o8 P———¢P DECIMAL POINT
1c29 |
7475 |
> |
) |
1"
——<::|s SIGN
9_¢3°
7400 !
238 & |
4 .
Bl
LR, P
, 7400 \ i
€30
7 SECTIONS E 23 Jod 3] 25a o2 nne 7475 I
(SEE NOTE 1) IL 7404 [
— - I 10 |
[] D b |
L4 en :
€27 9, . . .
lcze o 26¢ [4 Qc B3
|

Note 1: The pin connections for buffers using 7406 and MM5610 integrated circuits
are not shown in detail on the diagram. They are shown in terms of “a’’ (input) and “b"’
{output) pins. The connections are as follows:

7406, six sections per package MM5610, six sections per package
Section “a” pin “b" pin Section “a” pin b pin

A 1 2 A 3 2

B 3 4 B 5 4

(o 5 6 c 7 6

D 9 8 D 9 10

E 11 10 E 1 12

F 13 12 F 14 15

29

<[]

LATCH
INPUT
DATA

SET
NOT
READY

KEY PRESSED
LINE

KEY RELEASED
LINE

—

NPUT TO MFU

(ONE KEY ONLY)

STATE IRRELEVANT

STATE IRRELEVANT

ACTIVE LOW

SET
READY

MFU
BUSY

T0 TI T2 T3 Ta Tt

Figure 4: Mathematical Function Unit input timing sequence. This diagram
shows typical relative timing of several signals during an input operation:
® T is the time of an X line transition from O to 1.
® 7 is 1.5 us after Tp. The data must be stable from T until after T7.
® T, is 300 ps after T(y. At this time, the ready flip flop is reset.
® 73 is 50 ms after T(. At this time, key pressed is reset, key released
is set.
® 74 is 100 ms after T). At this time, key released is reset.
® T¢ is the delay until the calculator is again ready. The actual time
interval depends upon the calculator function selected.

.

Y

OUTPUT FROM MFU
(ONE DIGIT ONLY)

STATE IRRELEVANT

LOW ALWAYS

LATCH

INPUT
DATA

SET
NOT
READY

KEY PRESSED

HIGH ALWAYS —DATA IGNORED

INACTIVE

LINE

KEY RELEASED

INACTIVE

LINE
SET
READY

MFU
BUSY

TO TI T2 TF

Figure 5: Mathematical Function Unit output timing sequence. This diagram
shows typical relative timing of several signals during an output operation:
® 7 is the time of an X line transition from O to 1.
® T is shown to indicate that no data latch pulse occurs in this mode.
® 7, is 300 us after Ty. At this time, the ready flip flop is reset.
® T is the delay until the calculator is ready again, the maximum time
before a digit is available in the output buffers.

30

® Trig functions (sine, cosine, tangent)

® Inverse trig functions (arc sine, arc
cosine, arc tangent)

® | ogarithms (Ln, Log)

® Anti-logarithms (eX, and 10%X)

® Exponentiation (YX)

® Factorials (N!)

® Convenience Functions (1/X, X2,X/3-(,
Pi)

® Full feature memory (store, recall,
sum)

® Exchange operation (X ¢ Y)

® Degree or radian selection for trig
functions

® Automatic error detection

° Ch;aring operations (clear entry, clear
all

The calculation range includes positive or
negative numbers with absolute values be-
tween 1X10~99 and 9.999999X10%%. Any
number in this range may be entered and all
results must fall within this range or an
overflow will be indicated.

The output format of the calculator chip
consists of 12 digit positions organized as
shown in figure 2. Each output digit oc-
cupies one byte of memory when the micro-
processor reads information from the Mathe-
matical Function Unit,

The expected decimal point will be indi-
cated in one of the digit locations 1 through
8, and a decimal point will be indicated in
digit location O if the calculator chip’s
degree radian mode has been set to the
radian mode.

Output Section

The output section of the Mathematical
Function Unit is connected to the control-
ling processor through 8 output lines to an 8
bit input port. The output section is respon-
sible for the decoding of the data supplied
by the calculator chip after the required
actions have been completed. The output
section also generates the correct sequence
for information presented to the controlling
computer.

A handshaking signal is provided by the
ready (R) line. This line is at a logic 1 level
when the Mathematical Function Unit is not
performing any input output or calculation
operations. This line is used as a signal to the
controlling computer as to the status of the
slave. The ready line could be used to
generate an interrupt upon completion of
the calculations, or it could be connected
directly to an input port line which would
be polled until the Mathematical Function
Unit has set it high indicating completion of
its tasks.

The other 7 lines are data lines to the
controlling computer and contain the infor-
mation normally seen on the display of a
calculator. The B lines contain one BCD
digit of the normally displayed number,
while the 0 (overflow), S (sign), P (decimal
point) lines contain other necessary informa-

Table 1. Hexadecimal Codes for the Mathematical Function Unit operations.
The low order six bits of an 8 bit byte determine the function presented to
the Mathematical Function Unit according to this table. On hand calculators,
these functions correspond to the mnemonics of the keytops. A simple
“program” for the calculator would be a string of bytes sent one by one with
meaningful selection of these operation codes, followed by reading the
outputs, formatting them and displaying them on a TV typewriter or

tion. Teletype.

The unit is designed to output one digit
per request, where a request consists of a Hex Code Function
tranSIthn from a loglc 0 toalon lnpu_t X 00 Zero (0)
line whllg input Y line is held at a lf)g.lc_O 01 One (1)
level. This means that only one digit is 02 Two (2)
transferred at a time, slowing down the 03 Three (3)
maximum speed of the system. This greatly 04 Four (4)

. s e . 05 Five (5}
simplifies both the supporting hardware and 06 Six (6)
software handling of the 12 digits of the 07 Seven (7)
“displayed” number which is sent to the 08 Eight (8)
computer. 09 Nine (9)

These 12 digits are generally loaded into gg‘ g;:p:;i”;g:t';re
the controll_ing computer's main memory in 10 Decimal Point
12 sequential locations. This leads to the 11 Add
question of using a direct memory access 12 Subtract
operation to transfer this data. Due to the 13 'B"}"_EE'V

VI
small am_OLfnt of data (12 bytes), the calcu- 15 Y to the X power
lator chip’s slow speed, and the added 18 Equals
hardware required, using direct memory 17 Left Parenthesis
access for the loading of the generated 18 Right Parenthesis
information would probably not be 19 Pl (3.1415927)

.. 1A Change Sign
efficient. 1B Enter Exponent

The overflow line is high (logic 1) if the 20 Sine
digit displayed exceeds the capacity of the g; _Cr:;g;t
cz_il(':ulator. f:hip. The.sign line is'high. if the 23 Natural Log (In)
digit position contains a negative sign, at 24 Log {base 10)
which time the B lines are invalid. The 25 Square Root
decimal point line is high if a decimal point g? l:zzall Fl\rnom Memory
accompanies the digit on the BCD lines, and 58 Swapn;(W?:?lo;y
positionally goes to the right of the di.git: . 29 Degree — Radians

The output of the calculator chip is in 2A Store in Memory
seven segment notation and the decoding of 28 Clear Entry — Clear All
+this to the MFU’s output format of BCD is g? ;</2X Inverse
done by ICs 20b, 21c and e, 22b and c, 23, 32 10%

24, 25, and 26¢, as shown in the schematic 33 eX
diagram of figure 3. This decoder circuit 34 N! Factorial
Rl o LED R3 a c13
<3 e T3 RIRIRIAM -|c 19 G (1]
5\ ﬁz)"RZ g 56702 : 27
L X c5 EE,_ _ 1c 8 I]C“ cl12 04
$C5 - o i
¢l fic Ic P ¢
— e [EE]) L
¢c2 ic ic -
clo ic] Bt
$ci |ic o 8 z 30| B2
¢co |* 6 e—oc7 £9 83
. N [c | Ic 17
e €
- L 10

31

{All other Hex codes are invalid)

Figure 6: Parts placement
in the author’s prototype
of the Mathematical Func-
tion Unit. The unit was
constructed on a piece of
Vector P pattern Vector-
board (.1 inch grid, 2.54
mm grid) as depicted in
photo 1, with this layout.

slow human controller; however, all of these
delay times do not necessarily hold true
when interfacing with a much faster control-
ling device, such as a2 microcomputer. This
requires that a timing network be imple-
mented to insure that the calculator chip
receives the proper signals in the proper
sequence, with the proper delays.

The ‘“key pressed” delay is provided by
monostable multivibrator, IC Ib, and is
adjustable by R6. When this 40 to 50 ms
delay is completed, IC 19a, also a mono-
stable multivibrator, is triggered as a “key
released’’ delay providing the system with a
short delay between key pressings. These
two delays form the minimum time required
for the Mathematical Function Unit to
become ready for the next sequence; how-
ever, for some of the more time consuming
functions such as the trigonometric, factorial
and logarithmic functions, the calculator
would not be finished after the two delays
had passed. To insure calculations are com-
pleted before setting the Mathematical Func-
tion Unit state to ‘““Ready,” both delays
must be completed and a decimal point be
sensed by the output circuitry. Since a
decimal point is the only character present
in all output displays, and is not present
until all calculations are complete, sensing
the decimal point indicates end of calcula-
tion. (The gates used for detection of the
decimal include 20a, 21a and b, 22a and d,
and 26a and b in figure 3.) When these
requirements are met, a condition is placed
on the ready flip flop, setting it to the
“Ready” state. The timing signals for the
input sequence are shown in figure 4.

The length of the delay between T4 and
T¢ (of input routine; see figure 4) will
depend on how the calculator chip’s internal
scan timing coincides with the surrounding
hardware. For the 7529-103 calculator chip
used in this project, this delay will not
exceed 3.3 ms after the calculations or
required actions are complete.

Output Timing Sequence

The output sequence is specified by
placing a logic 0 level on the Y input line.
This low level inhibits the operation of the
key pressed and key released delays which
are not needed for output. The X line
transitions are used to clock a counter, IC
10, which with IC 17 selects the next digit
to be placed in the output buffers. This digit
is decoded as previously mentioned, and
latched in the buffers while the ready flip
flop is set to “‘Ready.”

The next digit is found by pulsing the X
line again while keeping the Y line low. The

Y line must be kept low during the entire
output procedure since a high state on this
line resets the counter, which will then point
to the first digit again.

A pictorial description of the output
timing signals is shown as figure 5.

The length of the delay between T and
Tf will depend on how the calculator chip’s
internal scan timing coincides with the
surrounding hardware. This delay will not
exceed 3.3 ms for the calculator chip used in
this project.

TTL — MOS — TTL Interface

The power requirements for the Mathe-
matical Function Unit are 5 volts at approx-
imately 0.5 Amps, and 7.5 volts at close to
200 mA. The 5 volt supply is used for all
TTL gates, and the 7.5 volts is used to
operate the MOS calculator chip. The signal
levels are buffered and adjusted from the
TTL input levels to 7.5 volts through the
open collector, high voltage output inverters
ICs 7, 8 and 9, using 10 k ohm pull-up
resistors in the two resistor packs connected
to the 7.5 volt supply.

These higher voltage signals are applied to
the switch matrix made from CMOS Quad
Bilateral Switches (ICs 11-14) operating at
that higher voltage. The signals are then
directly compatible with the calculator chip
used.

The signals coming from the calculator
chip to the output circuitry are buffered to
the 5 volt level through the use of CMOS
Hex Non-inverting Buffers, ICs 15, 16, 27
and 28.

Construction

The Mathematical Function Unit is con-
structed on an 11 by 4 inch (27.94 by 10.16
cm) piece of Vectorboard with all wiring
done point to point. A parts placement
diagram with all of the visible parts, with
numbers referencing figure 3, is found in
figure 6. The two 24 pin multiplexors and
the 28 pin MOS Calculator Chip are placed
in sockets. Photo 1 shows the hardware
mounted in its case; refer to figure 6 to
identify components.

The main component board is bolted in a
13 by 5 by 3 inch (33.02 by 12.7 by 7.62
¢m) aluminum chassis with a piece of clear
plexiglas on the top. Contained also in this
chassis are the simple 5 volt and 7.5 volt
power supplies for the unit, with the 5 volt
regulator, power switch and the 10 data line
connector mounted on the rear of the box.
The “Ready” indicator is mounted on the
front panel, indicating the state of the
Mathematical Function Unit.m

33

In part 2 of his article,
which will be published
next month, you'll find
details of the software
needed to drive this calcu-
lator interface from an
Intel 8080 based computer
systemCH

New. The complete
microprocessor learning system.
Ready -to-use. Economical. User-paced.

Introducing three new add-ons for TI’s basic
Microprogrammer Learning Module.

Microprocessors. Now they’re sim-
pler to understand, easier to cope
with, because of TI’s complete new
microprocessor learning system.

It’s modular...consists of four,
portable components: the basic
LCM 1001 Microprogrammer
Learning Module and three new
add-ons: Controller. Memory. And
Input/Output.

It’s a down-to-fundamentals
system for getting “hands on” ex-
perience with microprocessors. It
focuses your attention on learning
microprocessor concepts—not on
individual products. You progress
from module to module in a logical
sequence.

Each module is self-contained.
Complete and ready-to-use. No kits
to assemble. Nothing to build. Each
has its own battery/charger power
system. Each has its own instruc-
tion manual.

Microprogrammer Module

This is the one you start with. The
basic building block (LCM-1001). It
demonstrates the most fundamen-
tal level of microprocessor opera-
tion: Single-clock-step microin-
struction. It contains a 4-bit static
parallel processor with manual
switch inputs, VLED monitors, and
pushbutton manual clock. A 40-pin
socket lets you link up with the
controller. $119.95%

Controller Module

Add the LCM-1002 Controller
Module. Progress from micro to
macro level programming. Learn
instruction set development and
microcomputer architecture. Use
the Controller with RAM or addi-
tional program memory—12 basic
instructions are programmed into
the PROM (which may be rede-
fined). Using these, write your own
programs. Or, expand the instruc-
tion set and customize the system
to your needs using the blank loca-
tions you define yourself. $189.95*

i, 1976 Texas Instruments Incorporated
13500 North Central Expressway
Dallas. Texas

Memory Module

Add an LCM-1003 Memory Mod-
ule to the Controller. Now you’re
into fully automated digital system
operation. The read/write memory
is configured as a 1K word by 12-bit
structure, for both data and pro-
gram storage. Switches are pro-
vided for manual loading. The
memory automatically increments
the address. This feature spares
you the tedium of ¢ycling the
entire memory when loading or
changing memory. $189.95*

Input/Output Module

With the final module, you're in
contact with the outside world.
There are four 4-bit input ports
and four 4-bit output ports with
buffers fordata transfer synchron-
ization. Operate the ports inde-
pendently, or in conjunction with
each other. For example, two ports
can recognize an 8-bit code ap-
proach. $109.95*

Building-block System.

This approach to microprocessor
self-instruction is sensible and
economical—add another module
when you're ready to learn more.

To order your Microprocessor
Learning Modules, call your near-
est TI distributor. Use the coupon
to get a detailed brochure.

To: Texas Instruments Incorporated

Mail checks and money orders to: P.0. Box 3640. M/S 84. Dallas. Texas 75285
Postage paid. Add state and local taxes where applicable. t [7

Mail company purchase orders to: P.0. Box 5012, M/S 84, Dallas, Texas 75222

Postage and taxes will be added to your invoice.
Please send me

Copies of Software Design for Microprocessors @ $12.95°" ea.

New, authoritative
book on microprocessor
software design.
Only $12.95.*

A working knowledge of micro-
processor software is essential.
Acquiring such knowledge is
now simplified with Software
Design for Microprocessors.

Helps you fully understand
basic microprocessor machine
code and assembly language.
Suitable for non-technical pro-
fessionals as well as the techni-
cally trained.

In 500 pages are the graphs,
tables and data needed to learn
the language, special terms, and
the underlying concepts that
lead to understanding the com-
plex facets of microprocessor
software. The text concludes
with four fully-worked examples
for “real world” situations.

Use the coupon below to order
your copy.

* Manufacturer's suggested fist price.
Subject to change without notice.

LEARNING
CENTER

lenclose check moneyorderfor$

Name

Title

Firm

Address

City

State Zip

“*Subject to change without notice

VAL, AZ, CA.CO. CT, FL, GA, IA, IL, IN, KY, MA, MD, MI, MN, MO, NC. NJ. NM, NY, OH, PA, TN, TX, UT, VA, WA, W,

INCORPORATED

r
|
|
|
|
|
: — more information on the Tl Microprocessor Learning Modules.
|
|
|
|
|
|
|
(
|
|

TEXAS INSTRUMENTS

61002

http:1L~1J{z.cd
mailto:Microprocessors@$12.95

Randomize Your Programming

Raobert Grappel
148 Wood St
Lexington MA 02173

Computers are supposed to produce pre-
dictable results; when a program acts un-
predictably, it is usually time for head-
scratching and debugging. There are times,
however, when unpredictability is exactly
what the programmer wants. A class of
examples is the simulation of games with a
chance element. How can a computer
simulate a coin toss or the throw of a die or
the picking of a card? In each of these cases,
the application requires a value within set
limits which is unpredictable in its sequence.

As a second class of examples, suppose
one wants to test a program or piece of
hardware with random data. How can a
microcomputer generate the appropriate
numbers? In this case, it would be nice to be
able to repeat the sequence of values at will,

so that any errors that are found can be
repeatedly tested.

This article describes simple programs
which can provide the capability of generat-
ing appropriate sequences. The programs
are written for the Motorola 6800 processor,
but are simple enough that conversion to
other instruction sets should pose no major
problem.

Pseudorandom Sequences

To be precise, the programs described in
this article generate “pseudorandom’ se-
quences. These are sequences which give
each value in the range of the sequence
(except the value 0, which will be discussed
later) exactly once before the sequence
repeats. Given the starting value, the se-

Listing 1: The “"RANDOM?” subroutine specified in the symbolic assembly language of the
Motorola 6800 processor, along with hexadecimal machine code. The origin was set arbitrarily
to address 1000 for this assembly, but any other address could be used without change since all
branches use relative addressing and data is passed to RANDOM via a pointer in the index

register.
Line Addr Hex Code Label Op
1 1000 A6 00 RANDOM LDAA
2 1002 26 01 BNE
3 1004 4C INCA
4 1005 16 NOTO TAB
5 1006 C4 8E ANDB
6 1008 27 06 BEQ
7 100A 58 SHIFT ASLB
8 100B 24 FD BCC
9 100D 5D TSTB
10 100E 27 04 BEQ
11 1010 48 SKIP ASLA
12 1011 A7 00 STAA
13 1013 39 RTS
14 1014 48 EXOR ASLA
15 1015 4C INCA
16 1016 A7 00 STAA
17 1018 39 RTS

36

Operand Commentary

0,X load A from random byte source;
NOTO if random byte not zero then proceed;

else force non zero state A = 1;
begin exclusive OR procedure;

#$8E mask out feedback bits;
SKIP if no feedback then exit without setting bit;

loop to find a set feedback bit;

SHIFT if not set then reiterate;

is there more than one feedback bit?

EXOR if not then shift in a new bit;

shift without setting bit;

0,X restore pseudorandom value to argument;

return to the caller;
shift and set bit;
increment pseudorandom number value;

0,X restore pseudorandom value to argument;

return to the caller;

quence is fixed. If the sequence is long

Table 1: Properties of Pseudorandom Generators.

enough, however, the result is an apparently Stages Period Feedback Bits Mask
random sequence. For example, the se- 2 3 1,2 03
quence based on four bit values is: 3 7 23 06
4 15 3,4 oc
1,2,4,9,3,6,13,10,5,11,7,15,14,128 5 31 3.5 14
. 6 63 5,6 30
This looks random when only two or three 7 127 6.7 60
values are considered. A longer sequence can 8 255 2,3.4.8 8E
be chosen and only a portion of each value 9 511 59 0110
used. This will heighten the apparent ran- 10 1023 710 0240
1 2047 9,11 0500
domness of the sequence. 12 4095 210,11,12 0E02
Pseudorandom sequences are usually gen- 13 8191 1,11,12,13 1001
erated in hardware through the use of a shift :g ;g{-’;gg 541 ?51 314 238(2)
register and feedback from certain stages of 16 55535 11131416 8400

the register through an exclusive OR gate to
the beginning of the register. This hardware
configuration is easily simulated in software,
and such a program is shown as the sub-
routine RANDOM found in listing 1. The
origin of the subroutine was chosen to be
hexadecimal 1000 for no especially strong
reason. Any other origin would work as well
since all branches within RANDOM use
relative addressing. RANDOM generates
eight bit values, and the sequence is 255
values in length. It is designed to be called
with the address of a byte in which the
random value is to be generated located in
the index register. If the same sequence is
desired every time, this byte should be
initialized to a fixed value such as zero. If
the byte is not initialized, the sequence will
be based on prior memory content and
therefore unpredictable.

Random Logic

RANDOM begins by loading an accumu-
lator with the present value of the random
byte accessed via the index register of the

6800. The value zero is illegal here, because
the sequence will not set any bits in the byte
if all bits ever go to zero simultaneously.
This case is eliminated by the increment
instruction, line 3, which sets the byte to 1
if it ever gets to be zero. The accumulator is
being used as an eight bit shift register. The
appropriate feedback loop must be
simulated. This is done by the instructions
between NOTO and SKIP. The feedback
loop is an exclusive OR function of certain
bits. The AND instruction chooses the bits
to be exclusive ORed. The exclusive OR
function is true, if and only if exactly one of
its inputs is true. Hence, if the AND leaves
no bits set, the exclusive OR is false. If at
least one bit is set, the SHIFT loop is
entered. This loop shifts the feedback bits
left until one has moved out of the left of
the accumulator and into the carry flag. The
contents of the accumulator are again tested.
If the bit that was shifted to the carry was

Listing 2: Using the RANDOM routine to generate a 16 bit pseudorandom number. This
extension is obtained by calling RANDOM once for each byte of a 16 bit number, The origin
used here is arbitrarily chosen as hexadecimal 2000.

Line Addr Hex Code Label Op Operand Commentary
1 2000 00 00 RAND2 RMB 2 reserve two bytes for 16 bit key;
2 2002 CE 20 00 RND16BIT LDX #RAND2 point index at 16 bit random number;
3 2005 BD 10 oOC JSR RANDOM calculate high order 8 bit part;
4 2008 A6 00 LDAA 0,X get high order part to A;
5 200A 08 INX point to low order part of 16 bit number;
6 2008 85 01 BITA #1 should carry be propagated down?
7 200D 27 03 BEQ RETRND if not then skip low order randomizer;
8 200F BD 10 00 JSR RANDOM calculate low order 8 bit part;
9 2012 39 RETRND RTS return with new 16 bit number in RAND2;

37

Listing 3: The “DICE” program specified in the symboljc assembly language of the Motorola
6800 processor, along with hexadecimal machine code. This subprogram is written to exercise

the pseudorandom number generator,

print the results (or display them) using the OUTHR

subroutine of the Motorola MIKBUG program. After output, the INEEE subroutine is called to
wait for a keyboard response before generating another “roll.”” An arbitrary starting address is
used, 2000 hexadecimal, and RANDOM is assumed to start at address 1000 hexadecimal.

Line Addr Hex Code Label Op
1 2000 00 DIE RMB
2 2001 CE 20 00 DICE LDX
3 2004 BD 10 00 ROLL JSR
4 2007 A6 00 LDAA
5 2009 84 OF ANDA
6 200B 81 02 CMPA
7 200D 2D F5 BLT
8 200F 81 0C CMPA
9 201 2E F1 BGT
10 2013 A6 00 LDAA
11 2015 BD EO 6B JSR
12 2018 BD E1 AC JSR
13 201B 20 E4 BRA

the only bit set, then the test for zero is
passed and the exclusive OR is true. Other-
wise, there was more than one bit set in the
feedback loop and the exclusive OR is false.
If the exclusive OR test was false, then the
contents of the accumulator are shifted left
once and the low order bit is left zero. If the
test was true, then the accumulator is shifted
and the low order bit is made one. The
accumulator is restored into the random
byte and the subroutine returns to the
program which called it.

By changing the feedback connections,
pseudorandom generators of varying periods
and value size can be made. Table 1 shows
the feedback points for generators of lengths
2 to 16. The number of stages is the number
of bits in the shift register, which determines
the maximum value the pseudorandom num-
ber will be. The period of the sequence (the
number of values generated before the se-
quence repeats) is given by the formula
2n—1, where n is the number of stages.
RANDOM can generate sequences cor-
responding to generators of 2 to 8 stages,
simply by changing the mask value of the
AND instruction (line 5 in listing 1) to pick
out the proper bits to exclusive OR. The
appropriate masks are given in table 1.

Longer Sequences

The eight bit accumulator of the 6800
processor limits RANDOM to eight stages. A
more complex program could be written to
directly generate longer sequences, and for
those who wish to write such programs, the
table gives the masks for up to 16 bit
generators. There is another way to generate
longer pseudorandom sequences, and that is
to generate them in smaller sections.
RAND?2 shows a simple way to generate 16

38

Operand Commentary

1 one byte for pseudorandom number seed;
#DIE point index at the random number value;
RANDOM go define next random digit;

0,X move random digit 1o A;

#$OF force low order value 0 to 15;

#2 is digit less than 2?

ROLL if so then roll again;

#12 is digit greater than 12?

ROLL if so then roll again;

0,X move random digit to A for output;
OUTHR display using MIKBUG Rev 9 OUTHR
INEEE operator response via MIKBUG Rev 9 INEEE
DICE then restart the program

bit sequences using RANDOM twice (see
listing 2). The high order byte is generated
by RANDOM directly. If the byte is even
{which will be the case half of the time), the
low order byte is unchanged by this call. If
the byte is odd, then the low order byte is
changed by another call to RANDOM.
Longer sequences yet can be generated by
extension of the ideas in RAND2,

Rolling the Die

An example of a practical use for
RANDOM is shown in the little test program
DICE. This program, given in listing 3,
simulates the tossing of a pair of dice. It uses
RANDOM to generate pseudorandom values
between 2 and 12. RANDOM generates an
eight bit value which is truncated to the low
order four bits by an AND masking opera-
tion. If this value is not between 2 and 12,
the process is repeated. It should be clear
how to modify DICE to simulate one
die . .. or two dice, or the flipping of a coin.
In general, the longer the pseudorandom
sequence in use, the more apparently
random the values returned by these rou-
tines will be. Eight bits should be quite
adequate for many games of chance.
Thorough testing of programs or hardware
might profit from a longer sequence.

Now, generation of nearly random values
should no longer be a problem. This
should ease the job of programmers trying to
simulate games of chance, and help in other
areas of simulation, statistical work, and
testing. These are just about the simplest
programs which can perform the necessary
tasks. Try them. And, when your computer
gives you unpredictable results, you don’t
have to look for the bug. It's your program-
mable ‘“‘randomness’’ generator!®

A BASIC Star Trek Trainer

10 REM SHIP 1 1S ENTERPRISE, SHIP 2 1S KLINGON BATTLECRUISER.
20 REM EACH VESSEL REPRESENTED BY 7 NUMBERS N THE STATE ARRAY S.

Listing 1: The text of the
Star Trek Trainer, speci-
fied in BASIC for a Data
General NOVA. For users
of other BASIC defini-
tions, modifications will
be required, depending
upon the specification of
your particular
implementation.

30 REM §(1, } 1S FORWARD PHASOR,1=0OPERATIVE,0 INOP

40 REM S{2,) REAR PHASOR: 1 OP, 0 INOP.
60 REM S(3,) PHOTON TORP.;:S(4,) WARP DRIVE.

60 REM S(5,) IS DEFLECTOR SHIELD EFFECTIVENESS. 1. TOTALLY EFFECTIVE, O
70 REM MEANS SHIELDS GONE. S{7,) IS DAMAGE COEFFICIENT , A MEASURE OF
80 REM TOTAL SUSTAINED DAMAGE .S(6, } IS IMPULE ENGINES STATUS.

90 DIM S[7 2]

100 REM INITIALIZE VARIABLES

110 FOR =1 TO 2

120 FOR J=1TO 6

130 LET S[J,1] =1

140 NEXT J

150 LET S[7,1]1=0

160 NEXT |

170 REM GEN RANGE AND BRNG

180 PRINT “ENTER STARDATE"

190 INPUT A

200 LET A2=_ABSI(A/1000)

210 LET R=1017*RND{A2)

220 LET B=180*RND(A2)

230 LET I=1

240 REM ODD MOVES ENTERPRISE'S, EVEN KLINGNON
250 PRINT "KLINGON APPROACHING"

260 PRINT "R="R"KM. BEARING="B" DEG.”
270 PRINT "COMMAND"

280 INPUT C

290 PRINT C

300 LET I=1

310 LET J=2

320 LET H=0

330 GOSUB C OF 790920,1040, 1140, 1180, 1250, 1310
340 GOTO 1360

350 REM KLING. MOVE SELECTION

360 LET 1=2

370 REM CHECK KLINGON PHASOR STATUS
380 LET W=S[1,1] +5(2,1]

390 LET J=1

400 IF S[3,1]1=1 AND R>3E+06 AND B< 100 THEN 710
410 IF W>0 AND R<3E+06 THEN 540

420 IF W#0 THEN 480

430 REM ATTEMPT TO BREAK CONTACT

440 PRINT “"KLINGON ATTEMPTS TO BREAK CONTACT"

450 LET C=5

460 GOSUB 1180

470 GOTO 1920

480 PRINT “KLINGON MANEUVERING TO ATTACK""
490 LET C=4

500 GOSUB 1140

510 LET B=0

520 LET H=0

530 GOTC 1920

540 PRINT “KLINGON FIRES PHASOR""
550 LET C=1

560 |F B<90 THEN 640

570 IF 5(2,1] =0 THEN 600

580 GOSUB 920

590 GOTO 1360

600 LET B=B-90

610 GOSUB 790

620 LET B=B+80

630 GOTO 1360

640 IF S[1,1]1=0 THEN 670

650 GOSUB 790

660 GOTO 1360

670 LET B=B+90

680 GOSUB 920

690 LET B=B-90

700 GOTO 1360

710 PRINT “KLINGON FIRES PHOTON TORPEDO"
720 LET C=3

730 LET B2=B

740 LET B=40

750 GOSUB 1040

760 LET B=B2

770 GOTO 1360

780 REM FIRE FWD PHASORS

790 LET H=0

800 IF S(1,1]] #0 THEN 830

810 PRINT "FWD PHASORS INOP"”
820 1F I=1 THEN 260

830 LET R1=1-0.2*(R/1E+06)

840 LET B1=(90-B)/90

850 IF B1<0 OR R>5E+06 THEN 900
860 REM GEN RANDOM NUMBER IN INTERVALO TO 1
870 IF R1<RND{1) THEN 900

880 LET H=1

890 LET P=4

900 RETURN

910 REM REAR PHASOR

920 IF S[2,1] #0 THEN 960

930 PRINT “REAR PHASORS INGP"

940 REM
950 IF I=1 THEN 260
960 LET H=0

40

Gerald H Herd
742 Valley Dr
Pensacola FL 32503

While complex Star Trek and Space War
games, complete with space warps, fleets of
enemy ships, and starbases currently exist,
they generally require a sophisticated system
to support them. For the microcomputer
hobbyist who does not have the resources of

‘Star Fleet at his disposal for the purchase of

hardware, the following short version of Star
Trek is offered.

The program was developed in BASIC on
a NOVA 1200 minicomputer and emulates a
Star Trek game | originally encountered on
the Univac 1108 system at Georgia Tech.
The program requires about 2200 16 bit
words in its current form, although consider-
able savings of memory are possible by
simply deleting the remarks. While lacking
many of the trappings of larger games, the
BASIC Star Trek Trainer offers the follow-
ing advantages:

1) A choice of weapons, phasor banks or
photon torpedoes, each turn.

2) Maneuvering commands.

3) Deflector shields which weaken as the
number of hits on each craft increases.

Listing 1: 970 LET R1=1-0.2*R*1E-06
980 REM RANGE BEARING CHECK
990 IF R>6E+06 OR B<90 THEN 1030
1000 IF R1<RND(1) THEN 1030
1010 LET H=1
1020 LET P=2
1030 RETURN
1040 LET H=0
1050 IF S[3,1] #0 THEN 1080
1060 PRINT “PHOTON TORPEDO INOP"
1070 IF I=1 THEN 260
1080 IF R<2E+06 OR B>90 THEN 1130
1090 LET R2=(1-B/90)*{1-2*R/1E+08)
1100 IF R2<AND(1) THEN 1130
1110 LET H=t
1120 LET P=8
1130 RETURN
1140 LET R=R*(1-0.5°5(4,i]}
1150 LET B=0
1160 LET H=0
1170 RETURN
1180 LET R=R*(1+5[4,1} +0.05°S(6,1]}
1190 IF R>1E+08 THEN 1230
1200 PRINT “CONTACT NOT BROKEN"
1210 LET H=0
1220 RETURN
1230 PRINT “"CONTACT LOST"
1240 STOP
1250 PRINT “SELF DESTRUCT ACTIVATED"

4) Warp and impulse drive engines, the 1280 FOR IS0 TO 1 STEP 1
i i 1280 NEXT I
status of which are taken into accoupt X T sooM*
to compute the incremental changes in 1300 STOP
rang between turns. 10 PN MESSAE EOOMALIGON 1 | ACCEPTYOumsummenDen
5) Evasive maneuvering to escape out of I Ol B O S AR FLEET COMMAND™
sensor range and end the game in a 1350 STOP
1360 LET J=3—1
draw. 1370 IF C>3 THEN 1920
1380 REM DAMAGE ASSESSMENT
The player, as captain of the Enterprise, I b0 THEN, 1440
alternates moves with the K”ngon battle- }:;g 385%1%2SSTRUCTIVE POWER OF WEAPQON. D= INCRE T
. = .D=1 MENTAL DAMAGE N i
cruiser. After a readout of the range and 1430 REM TO A MAX VALUE OF 2, MAGE DONE. LiMIT
bearing to the enemy vessel, the player is 1480 Loy Bere1-S(5.41)
queried for his command. After each move 1960 1F D <= 2 THEN 1480
‘the player receives a status report of the 1480 LET S(7,J] =5[7,J] +D
Enterprise or the Klingon. 1o LET 2 ety oo
Each ship is armed with a forward twin :g;g geﬁ‘o?ﬁ"césg%us 70 KLINGON
phasor bank, a single rear phasor, and a 1530 PRINT "SCANNER REPORT KLINGON"
forward firing photon torpedo tube. These T T e DESTROYED"
i i 1560 STOP
weapons have relat!ve destructive powers of 1o oy DAMAGE TO ENTERPRISE
4, 2 and 8 respectively. The probability of 1580 PRINT “ENTERPRISE DAMAGE RPT"
. > 1
achieving a hit with the phasors is given by }2?.3 'LFE$ ZE,THEN 1610
(“ne 830) 1610 GOTO 2 OF 1620,1640,1850,1730,1730,1780,1780,1780,1830,1830
. 1620 PRINT "ENTERPRISE DESTROYED""
1630 STOP
Py =1 — R/(5E06) where 1640 PRINT “WEAPON SYST, DESTROYED"

1650 PRINT “WARP DRIVE DESTROYED"
1660 PRINT “MAJOR STRUCTURAL DAMAGE"
1670 PRINT “SHIELDS BUCKLING™

. s ; 1680 LET S[1,] =0
R is the range in kllorpqters b_etween ships. 1690 LET 812731 =0
For ranges over 5 million kilometers the 1700 LET S[3.4] =0
| =
phasors are useless. The forward phasors 1;;3 5518‘?52‘0"
; 1730 PRINT "PHASORS DESTROYED"
may be used for bearings 0 to 90 degrees, 1740 PRINT "MINOR DAMAGE AMIDSHIPS"
the rear phasors for bearings 90 to 180 1750 PRINT “SHIELDS WEAKENING”
q - 1760 LET ${1,J] =5[2,J1 =0
egrees. The photon torpedo tube may be 1770 GOTO 1920
; 1780 PRINT "FOREWARD PHASORS DESTROYED"
use.d for targets bfaarlng 0 to 90 (?egrees for 1790 PRINT “MINGR DAMAGE AMIDSHIPS”
which the range is at least 2 million kilo- 1800 PRINT “SHIELDS WEAKENING”
- e 1810 LET §(1,J1=0
meters. The probability of a hit is given by 1820 GOTO 1920
(“ne 1090) 1830 PRINT “SHIEL.DS HOLDING NO DAMAGE"
: 1840 GOTO 1920

p 1 B/90) * 1850 PRINT “"WEAPONS SYST. DEACTIVATED"
= — — 1860 PRINT “DILITHIUM CRYSTALS OVERHEATING"
H (/) (1 2R/1 EOS)' 1870 LET S(1,J] =0
1880 LET S{3,4] =0
1890 LET S(3,J] =0

While the phasors are range dependent, the 1900 GOTO 1920
. . . 1910 REM NEW RANGE,BEARING
photon torpedo is almost entirely bearing 1920 LET R3=0.5(S(4,1] +3[4, 21)+o 05°(5(6,11+516,2))
1930 LET R=R+R3*(RND(1)—0.5)* 1E+06
depI;:ndent. 1940 LET R-ABS(R) am
i i i 1950 LET B=ABS(B—150+20° (RND{1))
oth ships have qptlons for maneuvering 1960 1F B180 THEN 2000
to attack and trying to break contact. 1970 LET I1=J
Maneuvering to attack halves the range and 18988 5515',35'; 260,360
brings the bearing to zero. This command gg?gégigjgggtsso—a)
appears most useful when used to close in on 2020 END

41

SUMMARY OF INSTRUCTIONS FOR THE GAME

The player will engage a Klingon battle cruiser and will alternate moves with the
Klingon,

When the prompting message “’STARDATE?'’ appears, enter any random number to
initialize the game, This is a seed for the pseudorandom number generator, and using a
different number each game prevents repetition of the same battles,

Enter the command after the prompting message “COMMAND" appears. Select
commands from the following list:

Command 1 fires forward phasors, of which there are two.

Command 2 fires the rear phasor,

Command 3 fires the photon torpedo, The photon torpedo fires forward. The
minimum photon torpedo range is 5 million kilometers,

Command 4 means “maneuver to attack.” The bearing to the target Klingon and
the range are reduced.

Command 5 means ‘“attempt to break contact” by using the warp drive. If the
range goes greater than 100 million kilometers, contact is lost and the game ends,

Command 6 is the suicide command, the end game maneuver used to prevent
capture by Klingons,

Command 7 is surrender to the Klingons,

The relative strength of a photon torpedo is 8, the relative strength of the rear Phasors is
2, and the relative strength of the forward phasors is 4.

Listing 2: A sample run of this version of Star Trek.

ENTER STARDATE
6091.1
KLINGON APPROACHING
R= 3849000 KM.
COMMAND
3
MISS
KLINGON FIRES PHOTON TORPEDO
MISS
R= 3661890 KM.
COMMAND
4
KLINGON FIRES PHASOR
HIT
ENTERPRISE DAMAGE RPT
SHIELDS HOLDING NO DAMAGE
R= 2021835 KM. BEARING= 15.44 DEG.
COMMAND
3
HIT
SCANNER REPORT KLINGON
SHIELDS HOLDING NO DAMAGE
KLINGON FIRES PHASOR
HIT
ENTERPRISE DAMAGE RPT
SHIELDS HOLDING NO DAMAGE
R= 1658325 KM. BEARING= 8.48 DEG.
COMMAND
3
MISS
KLINGON FIRES PHASOR
HIT
ENTERPRISE DAMAGE RPT
SHIELDS HOLDING NO DAMAGE
R= 2092815 KM. BEARING= 10.48 DEG.
COMMAND
3
HIT
SCANNER REPORT KLINGON
FOREWARD PHASORS DESTROYED
MINOR DAMAGE AMIDSHIPS
SHIELDS WEAKENING
KLINGON FIRES PHASOR
MISS
R= 2266905 KM.

BEARING= 69.282 DEG.

BEARING= 56.722 DEG.

BEARING= 13.12 DEG.

42

a fleeing or crippled foe. Attempting to
break contact opens the range. (Along about
the time your weapon systems are de-
activated, your shields are half gone and the
Klingon is closing in, it is time to get it in
gear and haul for Alpha Centauri.) The game
ends in a draw when the range exceeds 100
million kilometers.

Damage assessments are provided any
time a vessel is hit by a phasor or photon
torpedo. The amount of damage done de-
pends on the relative strength of the weapon
(8 for a photon torpedo, 4 or 2 for phasors)
as well as the effectiveness of the deflector
shields. The amount of damage done is
computed and added to the cumulative
damage, and the deflector shield effective-
ness is reduced.

Two other commands, surrender and self-
destruct, are included for defeatists.

The program is written in a version of
BASIC which permits GOSUB. . .OF... and
GOTO. ..OF... statements, and may re-
quire minor reprogramming for other BASIC
languages. The random number function,
RND (X) generates a random variable with
uniform distribution in a range (0,1). The
argument X, when negative, is used as the
random number seed; when positive the
argument is ignored and an internal seed is
used by the generator. By entering a
“stardate” at the beginning of each game, a
unique pseudo-random number series is gen-
erated for that game.

The Enterprise and the Klingon use the
same routines for command processing.
Lines 780 — 1030 determine if a phasor shot
produced a hit or a miss. Lines 1040 — 1130
process a photon torpedo command.
Maneuvering to attack is handled in lines
1140 — 1170, while attempting to break
contact transfers control to lines
1180 — 1240. The damage assessment
routine in lines 1380 — 1890 prints out the
scanner reports or damage control reports.
At the end of each move the subroutine in
lines 1910 — 2000 is called to change the
range and bearing.

The computer selects the Klingon's move
in lines 350 — 770. Presently the Klingon is
programmed to be somewhat aggressive. For
novice Star Trek players the Klingon wins
about 75 percent of the first several dozen
games.®

press STEP to execute each instruction in
turn. The address of the next instruction wili
then be displayed. The contents of any
register can be examined (READ REG) or
changed {LOAD REG) as you step through
your program. DECR ADDR will allow you
to back up the program counter one byte at
a time.

When you are confident the program is
fully debugged, enter the start address and
press RUN to execute it. If things do not go
as planned, press STOP to halt the program
and display the address of the next instruc-
tion. Registers and memory can then be
examined.

Larger segments of programs, or long
loops that would take all day to single step
through, can be run by temporarily patching
in the HALT instruction where traps are
desired. After starting the program with the
RUN key, the PROGRAM HALT indicator
will light when you reach the HALT instruc-
tion. Then simply press STOP to display the
next program address and enable all of the
other panel functions.

The 8080+ control panel uses a combina-
tion of hardware and software, but its
operation is transparent to the user’s pro-
gram, If the user’s program should end up in
the illegal combination of disabled interrupts
and program halt, the panel RESET key will
restore operation without it being necessary
to turn the power off.

It is hard to believe without experiencing
it how easily a program can be keyed in and
debugged using the MSC 8080+ control
panel. It makes an expert out of a novice in
minutes.

Hardware Configuration

One unusual aspect of the MSC unit is the
absence of edge connectors on the boards.
All connections between the control panel,
processor board, and optional memory
boards are through 26 conductor ribbon
cables and matching connectors. The boards
can be physically stacked in endless com-
binations using #4-40 X 1 inch threaded
spacers, or can be mounted in Augat 8170
series frames. As the components of the
system are intended to be a part of the user’s
industrial hardware, no cabinets or power
supplies are furnished.

The control panel, processor, and
dynamic programmable memory boards are
all 7 1/2 inches by 13 1/2 inches (19.05 X
34.29 c¢m). The CMOS programmable mem-
ory is slightly smaller on the long dimension
but has compatible hole patterns for the
spacers or frame mounting.

Currently available options include the

processor board without programmable
memory, and no EROMs installed in the
four sockets; a dynamic programmable
memory board with room for 32 KB; and a
nonvolatile 4 KB CMOS static program-
mable memory board with built in NiCad
batterics which arc kept charged during
normal operation. In the works, according to
MSC, is a compatible EROM board with
pre-loaded software including a text editor
and assembler.

A User Comments on the MSC 8080+

For years | had been waiting for the price
of some old worn out mini to come within
reach of a meager hobbyist budget, but
before that could occur the age of micropro-
cessors was upon us. | didn’t feel that | had
the time to spare to put together a system
from a handful of parts, so | watched the
“processor on a board” market develop with
much interest. Prices were still high, but
falling rapidly, when the Altair explosion
occurred. | was instantly tempted by the
first Altair ad, but since | had no TTY or
other terminal to go with it the investment
required for any sort of useful configuration
was still several kilobucks. And there were
all those rows of lights and switches! 1 had
too many of those to contend with while
earning a paycheck; | resolved that any
system | had at home would have minimal
blinking lights! So | watched, and waited,
and collected specifications sheets, and com-
pared instruction sets.

I think too little has been said about the
relative merits of micros and minis when
comparing instruction sets. It is not enough
to have bunches of instructions and memory
addressing methods. It is not enough to have
all kinds of tricks to conserve memory. To
be truly useful a machine must have a set of
instructions that are easy to learn, easy to
remember, easy to use, and suited to the
task at hand. A calculator will beat any
micro at number crunching, but is lost as a
controller. (How long must we wait for the
micro-controlling-a-calculator chip?)

Having worked with machines from big
IBM size to hand held calculators, | had a
pretty good idea of what | wanted for a
home controller, game player, and ac-
counting system. The Intel 8008 didn’t quite
make it, but when | saw the instruction set
of the Intel 8080, | flipped! All that
simplified CALLing and RETurning, PUSH-
ing and POPping, and decimal adjust too!

So now | knew my system would use the
8080. | started trying to design a “smart”
control/display panel. From the day | saw
the first Altair ad til | found what | wanted

47

For more information on
the MSC 8080+ contact:
Monolithic Systems Corp, 14
Inverness Dr E, Englewood CO
80110. Their phone number is
(303) 770-7400.

How to Do a Number of Conversions

James Brown Perhaps one of the more difficult tasks on
2518 Finley St #636 any small computer is the conversion from
Irving TX 75062 numeric characters to a form usable by the

machine and back again. That is, given some
type of input output device (Teletype or TV

Table 1: Hexadecimal Codes of Selected ASCIl Characters (high order bit typewriter) connected to your computer, it

assumed zero) would be desirable to have the capability of
entering a string of numeric characters (con-
Hexadecimal ASCIl Hexadecimal ASCHI Hexadecimal ASCII secutive digits) through the keyboard. The
Code Character Code Character Code Character computer would then perform somce opera-
tion on that number. Finally, the result of
00 NUL g? ? 3? f’: that computation is displayed back on the
0A line feed 32 5 42 8 I0 device. Since the computer’s natural
. 33 3 43 c language is N bit binary (i.e., ones and
oD car. ret. 34 4 44 D zeros), how can such a string be converted?
: 35 g 22 E An example of the problem is: How do |
20 space g? 7 P G convert the three character decimal string
o8 + 38 8 ‘196’ into the binary integer equivalent 1100
2C , 39 9 0100 (or octal 204, or hexadecimal C4)?
20 - 3A : Converting a decimal (base 10) number
§E ; into binary can be a long and involved
operation. Let us work our way into decimal
conversion by considering what would be
Listing Ta: The BIN Rou-
tine Specified for an 8080. Aol
. a g . el.
,Th/s /IStII?g, as _a// the list Addr, Code Label Op. Operand Commentary
ings of this article, shows _—
the symbolic code and ab- 0000 06 00 BIN: MV B,O ANSWER :=0;
solute machine code for an Note 1 0002 CD xx xx BINLOOP: CALL GET A := INPUT |character|;
8080 version of the rou- 0005 FE 30 CPI 0’ is ALT'0"?
4 Th te fer t 0007 D8 RC if so then return;
/ne. Ihe noies reier to 0008 FE 32 cPl 2" is ALT 22
absolute addresses which 000A DO RNC if not then return;
must be adjusted when re- 000B 1F RAR CARRY := Ay;
locating the code to some 838C 78 g/lov A,B A = ANSWER;

: . D 17 AL rotate carry into A;
addressé’;,\’femzy a;,d'e,;s, 0O00E D8 RC overflow: if CARRY =1 then return;
space. | reaas the 000F 47 MOV B, A ANSWER := A;
and ‘0’ characters of an Note2 0010 C3 xx xx JMP BINLOOP reiterate for next bit;

ASCIll encoded binary
str/'ng, /eaw‘ng up to 8 bits Note 1: address of GET should replace *“'xx xx’’.
of input in B. Note 2: “xx xx" should be the address of BINLOOP.

50

necessary to do the following conversions in
order of increasing complexity:

1. Binary character strings (ASCIl1 Q or 1)
to or from unsigned 8 bit integers.

2. Octal character strings (ASCII O to 7)
to or from unsigned 8 bit integers.

3. Hexadecimal character strings (ASCII
0 to 9, A to F) to or from unsigned 16
bit integers.

4, Signed dccimal character strings
(ASCII 0 to 9, +, —) to or from signed
16 bit integers.

Before we start, let us examine what the
computer sees when a character is read from
the keyboard, assuming that the keyboard
speaks ASCI1. Examining table 1, notice that
each character is assigned a unique binary
value. Not only are the numeric characters O
thru 9 grouped together; but, if the Ieft hand
four bits werc dropped, therc would be a
direct correspondence to the binary equival-
ents of 0 thru 9. As shown below, this is a
fairly simple task:

Algorithm:
‘ASCII char’ (AND) (0000 1111) = result
Examples
‘0': (0011 0000) (AND) (0000 1111) =
0000 0000
“1": (0011 0001) (AND) (0000 1111) =
0000 0001
‘9’; (0011 1001) (AND) (0000 1111) =
0000 1001

In each case, the result is a binary number in
the low order of the byte after the AND
operation has masked the high order bits.

Binary Conversions

Converting the ASCII character codes for
1 and 0 into a true binary value is perhaps
the simplest to actually implement, and is a
good starting point in understanding how
number conversions work. All of the other

Rel.
Addr. Code Label Op.
0000 0E 08 BOT: MV
0002 78 BOTLOOP: MOV
0003 07 RLC
0004 47 MOV
0005 3E 18 MVI
0007 17 RAL
Note 1 0008 CD xx xx CALL
000B oD DCR
Note2 000C C2 xx XX INZ
000F Cc9 RET

Note 1: address of PUT should replace "'xx xx’’.
Note 2: "“xx xx’* should be the address of BOTLOOP.

routines follow the basic plan presented
here.

In the preceding, zapping the left four
bits to get a binary value has one fatal flaw;
it only works for one character. In develop-
ing something to handle a two character
string such as ‘10°, it might as well accept
ASCII strings with any length, as long as the
result can be contained in eight bits (an
arbitrary choice).

The simplest way of doing this is to
perform the conversion one character at a
time as they arc cntered and develop the
result as each character of the string {1’ or
‘0’) is processed. Clearly the first step is to
read the character and convert it into the
binary value 1 or 0, using the masking
technique shown carlier.

Since most computers have some type of
shift instruction (sec note 1), this is an
cffective way of moving the new bit into the
result which is being calculated. Specifically,
we must shift the result left one bit and then
OR the new converted value to it. This is
mathematically equivalent to multiplying by
2 and adding. For example, the four char-
acter binary string ‘1011’ is entcred and
converted to the binary number 1011, This
is cquivalent to the expression:

1#2340%22+7 %2147 %20=17
(basc 10)

and could be accomplished by the following
sequence:

1. answer: =0

2. INPUT character

3. character: = character (AND) 01 {hex)
4. answer: =answer (SHIFT LEFT) 1

5. answer: =answer (OR) character

6. GOTO 2.

If those four characters were all | wanted
to enter, | now neced to tell the computer to
stop looping, since there is a possibility of
entering as many as eight characters. The

Operand Commentary
cC,8 CNT :=8;
A, B A := ANSWER;
CARRY := A5, rotate A Left;
B, A ANSWER := A;
A, 18H A :=b’'00011000';
rotate A left; AO = CARRY;
PUT QUTPUT := A;
C CNT :=CNT —1;
BOTLOOP if CNT NE O then repeat;

else return;

51

Listing 1b: The BOT Rou-
tine Specified for an 8080.
This routine writes out a
string of 8 binary encoded
ASCII digits, taken from
the B register,

Figure 1a: The BIN Rou-
tine Flowchart, This rou-
tine treats successive
ASCII ‘0’ and ‘1’ charac-
ters of input as the digits
of a binary string. The
digits are shifted into
ANSWER until an illegal

character or overflow re- shifts out the bits one by gor.
turns control. In the 8080 one. In the 8080 code of
code of listing 1a, AN- listing 16, ANSWER is sup-
i i BIN: BEGIN lied by register B.
SWER is register B. - piiea oy reg B CNT =8,
ANSWER!=
0,
. N i
BOTLOOP: BY ONE | CARRY FlaG |
POSITION | I |
BINLOOP: [
Als
'00011000';
rlL—LEG:L—_} ROTATE lr_FeEs_UL_Tl_s___1
CHARACTER i CARRY LEFT ASCII'O' ORI’ |
| TERMINATES | INTO & ltooti0000 OR |
(STRING _ _| toorooon |
BIT OF A
INTO
CNT:»
ANSWER CNTAT,
BTN
CHARACTE!
ves Y "TERMINATES}
(STRING__
NO
Rel.
Addr. Code Label Op. Operand Commentary
0000 0600 OIN: MVI B,0 ANSWER := 0;
Note1 0002 CD xx xx OINLOOP: CALL GET A := INPUT [character];
0005 FE 30 CPI ‘0’ is A LT ‘07
0007 D8 RC if so then return;
0008 FE 38 CPI| ‘8 is ALT ‘8?7
000A DO RNC if not then return;
0008 E607 ANI 7 A = A & b'00000111’ [mask low order];
000D 4F MOV C.A C:=A;
000E 78 MOV A, B A := ANSWER;
000F 07 RLC rotate A left three
L. 0010 D8 RC bit positions
Listing 2a: The OIN Rou- 0011 07 RLC and check for
tine Specified for an 8080. 0012 D8 RC overflow into
This routine accepts an in- 0013 0; g'éc CA:‘RY after
: 0014 D each operation;
put string of ASCII octal 0015 B1 ORA C A = A OR ANSWER;
characters and collects the 0016 47 MOV B A ANSWER := A
results in ANSWER (CPU Note2 0017 C3 xx xx JMP OINLOOP reiterate for next digit;

register B). Conversion
ends with invalid char-
acters or an overflow.

Figure 1b: The BOT Rou-
tine Flowchart. BOT is a
binary output routine
which writes an 8 digit
ASCII binary string con-
verted from ANSWER,
The digits are printed high
order first in a loop which

Note 1: address of GET should replace “xx xx’’.

Note 2: ““xx xx’’ should be the address of OINLOOP,

52

simplest way of doing this is to have the
routine recognize some sort of delimiter (ie:
some character other than ‘0’ or ‘1’).
Looking, once again, at table 1, the char-
acters space, period, comma, carriage return,
line feed, are all less than the character ‘0’,
when considered as binary values. This con-
dition is rather handy, since the same set of
machine instructions could recognize a
variety of delimiters without rewriting if |
want to change what delimeter means. Look-
ing further, if the special characters between
the 1 and A are excluded as delimiters, the
following pair of tests checks for both
delimiters and invalid characters.

e |f the character is less than a ‘0’ then
finished.

® |f the character is greater than a ‘1’
then illegal character.

There is one further consideration that
this routine should take into account. The
routine should check for a string of char-
acters whose value would exceed the maxi-
mum value which could be contained in
8 bits (anything over 255 decimal). Notice
that the routine really cannot count the
number of characters entered since nine
zeros and a one are still the value one, even
though 10 characters were processed. Most
computers have something called a carry bit
or overflow flag. During a shift left this carry
bit usually receives the most significant bit
from the register being shifted. Thus, as soon
as the carry bit becomes a one, then the
result has overflowed 8 bits; and the number
being entered is too big. Figure 1a shows the
detailed flow of the binary input procedure;
listing 1a shows the 8080 assembly code of
this procedure.

Output is simply the reverse process but
has error checking omitted. Since the input
was left to right, the output should be the
same. (It is extremely frustrating to enter
the character string ‘1100’ and have the
string ‘0011’ printed out.) Fortunately most
computers have a rotate left instruction
(note 1). If 1| choose to always print
8 characters per 8 bit vatue (after all, the
computer is working, not me), the output
routine should perform the following steps:

1. value = value (ROTATE LEFT) 1

2. character = value (AND) 1

3. character = character (OR) ‘0’ (ASCII
character code for ‘0" is hex 30)

4. OUTPUT character

5. GOTON1.

Figure 1b contains the flow diagram for
this procedure, and listing Ib shows typical
code for an 8080 computer.

Octal Conversions

For octal input from strings with ASCII
characters ‘0’ thru ‘7’, the binary input
routine can be used with some modifica-
tions. As shown in figure 2a, the illegal
character check now looks for something
greater than a ‘7’, the shift left is now three
bits instead of one, and the mask used on
the character during the logical AND opera-
tion is now an octal 7.

The octal output routine was a bit of a
problem because the value is an 8 bit
quantity. Hence, the routine must process
the first two bits, then the next three, then
the next three, left to right, as indicated on
the flow chart. In my implementation, the
8080 had a rotate which would flow through
the carry flag. Thus the bits as they are

Rel.
Addr, Code Label Op. Operand Commentary
0000 OEO03 OO0T: MVI C,3 CNT :=3;
0002 AF XRA A Clear A; Clear CARRY;
0003 78 MOV A,B A = ANSWER;
Note 1 0004 C3 xx xx JMP OOTSKIP skip around POP first time;
0007 F1 OOTLOOP: POP PSW restore (A, flags);
ooo8 17 OOTSKIiP: RAL rotate A left
0009 17 RAL by three
o0cA 17 RAL bit positions;
000B F5 PUSH PSW save {A, flags);
000C E607 ANI 7 A := A &b’00000111’
[mask low order];
000E F6 30 ORI ‘0’ A := A OR b’00110000’
|add hexadecimal 30]};
Note2 0010 CD xx xx CALL PUT OUTPUT = A;
0013 0D DCR o] CNT :=CNT —1;
Note 3 0014 C2 xx xx JNZ OOTLOOP if CNT NE O then repeat;
0017 F1 POP PSW flush garbage from stack;
0018 Cc9 RET return to caller;

Note 1: “xx xx'’ should be the address of OOTSKIP.
Note 2: address of PUT should replace “"xx xx’".
Note 3: “xx xx’’ should be the address of OOTLOOP.

53

Listing 2b: The 0OOT
Routine Specified for an
8080. This routine con-
verts the contents of AN-
SWER (CPU register B)
into a 3 digit ASCI| string
of octal characters, trans-
ferring the result to the
output device during the
conversion.

OIN:

OINLOOP:

Figure 2a: The OIN Rou-
tine Flowchart, OIN is the
octal version of an input
routine; its logic is an ex-
tension of the simpler BIN
routine. OIN treats suc-
cessive characters from
ASCIl ‘0’ to ‘7’ as octal
digits which are shifted
into ANSWER. The rou-
tine accepts input until an
illegal octal character or
overflow occurs. In the
8080 code of listing 2a,
ANSWER is register B.

OOTLOOP! |AI=STACK;

BEGIN 0O0T: BEGIN
CNT:= 3;
ANSWER:=0 CARRY:= 0,
A =ANSWER;
————— -
I OXX IN LOW !
lORDER :
(FIRST TIME
| (FiRST Tive)
ClLeeaL 1
lILLEGAL
| cHARACTER !
TERMINATES :
(STRING OOTSKIP:
—————— —
| MASK THE 3 |
Ci=AB7, :LOWORDER {
TS
LS J
SHIFT
ANSWER
LEFT 3BITS
[OVERFLOW |
v 1
ESpY | TERMINATES |
TRIN |
LSTRING
NO
ANSWER!=
ANSWER OR
C;

‘ RETURN)

handled are shown below, after the value is
loaded into the A register and carry reset to

z€ro,

Carry A Register

0 bb bbb bbb
RAL : b bb bbb bb0
RAL : b bb bbb bOb
RAL : b bb bbb Obb

At this point carry and the A register are
saved and a character put out. Processing
then continues at the first rotate, after the
saved information is restored. The A register
plus carry, in effect, operates as if the

machine has a 9 bit register,

Hexadecimal

Input and output of hexadecimals em-
ploys logic similar to the preceding routines,

with the following differences:

1. ASCII ‘O’ through ‘9’ and ‘A’ through

‘F’ are legal numbers.

54

i

ROTATE A
LEFT 3
POSITIONS

STACKI=A;

|

Al=ABT,
Ais A OR'O'

155

CNT.=CNT-I

Txxx IN Low]
L XXX IN LOW |
IORDER(an,
L3rd TIME)

YES

CNT NE O
)

NO

CLEAN UP
STACK

RETURN

i

Figure 2b: The OOT Rou-
tine Flowchart, OOT is the
octal version of an output
routine for character string
conversion, Its logic is
complicated by the fact
that 8 bits is not an even
multiple of 3 bits. Thus
there is a special case
which treats the carry flag
as a ninth bit for the first
(high order) output digit.
Then the basic logic con-
sists of shifting 3 places,
extracting 3 bits and crea-
ting an ASCIl character
from ‘0’ to ‘7’ This rou-
tine in its 8080 implemen-
tation uses the stack as a
temporary data area, as
shown in listing 2b.

Rel.

Addr. Code Label Op. Operand

0000 210000 XIN: LX1 H,0
Note 1T 0003 CD xx xx XINLOOP: CALL GET

0006 FE 30 CPI ‘0’

0008 D8 RC

0009 FE 3A CPI
Note2 000B DA xx xx Jc XINSHIFT

000E FE M CPI ‘A’

0010 D8 RC

0011 FE 47 CPI ‘G’

0013 DO RNC

0014 C609 ADI 9

0016 E60F XINSHIFT: ANI 15

0018 29 DAD H

0019 D8 RC

001A 29 DAD H

0018 D8 RC

001C 29 DAD H

001D D8 RC

O01E 29 DAD H

001F D8 RC

0020 B5 ORA L

0021 6F MOV L,A
Note 3 0022 C3 xx xx JMP XINLOOP
Note 1: address of GET should replace “xx xx"".
Note 2: “xx xx“* should be the address of XINSHIFT,
Note 3: “xx xx'’ should be the address of XINLOOP.

Rel.

Addr. Code Label Op. Operand

0000 OEO04 XOT: MVI cC, 4

0002 AF XOTLOOP: XRA A

0003 29 DAD H

0004 17 RAL

0005 29 DAD H

0006 17 RAL

0007 29 DAD H

0008 17 RAL

0009 29 DAD H

000A 17 RAL

000B FE OA CPI 10
Note 1 000D DA xx xx JC XOTASCIH

0010 C607 ADI 7

0012 C6 30 XOTASCIHI ADI ‘0’
Note2 0014 CD xx xx CALL PUT

0017 OD DCR Cc
Note3 0018 C2 xx xx JNZ XOTLOOP

0018 C9 RET

Note 1: “xx xx"’ should be the address of XOTASCII.
Note 2: address of PUT should replace ““xx xx"’.
Note 3: ““xx xx'’ should be the address of XOTLOOP,

2.
3.

The shift left is now four bits.

On input if the character is ASCIl ‘A’
through ‘F’, then a binary 9 is added
to generate a correct value in the low
order 4 bits which are then masked as
usual:

ASCIl A = hexadecimal 41 + 09 = 4A
(and) OF = 0A

. On output if a 4 bit binary value is

greater than a 9, then a 7 is added to
the value. The conversion is then

Commentary

ANSWER :=0;
A := INPUT |[character];
is ALT '0°?
if so then return;
is ALT “:" [numerics]?
if so then go shift it in;
is A LT ‘A’?
if so then return;
is A LT ‘G’ [alphabetic A to F{?
if not then return;
A := A+ 9 [convert to hexadecimal |;
A = A &b'00001111' [mask low order] ;
shift ANSWER register pair
left four bit
positions using
double byte addition
and test each
operation for
an overflow error
return condition;
A = A OR L [add new code to lower order];
restore low order to ANSWER;
reiterate for next nybble;

Commentary

CNT :=4;
CARRY :=0; A :=0 [clear A, CARRY|;
Shift four bits of ANSWER

into A using

two byte addition

with CARRY

receiving each

bit from the high

order due to overflow;

is A LT 10 [test for numeric digit]?

if so then go form ASCII character code;
if not then A := A + 7 [adjust to alphal;
A = A+ 0" [convert to ASCII code];
OUTPUT := A;

CNT :=CNT - 1;

if CNT NE O then repeat;

else return to caller;

completed by adding hexadecimal 30,
the ASCII code for 0 (zero),
For example:

00 + 30 = 30o0r ASCII ‘O’
09 + 30 = 390r ASC|I ‘9’
0A + 07 = 11 + 30 = 41 or ASCII ‘A’
OF + 07 = 16 + 30 = 46 or ASCHl ‘F’

The software of 16 bit upsigned hexa-

decimal

input and output conversion is

55

Listing 3a: The XIN Rou-
tine Specified for an 8080.
This rouline accepts an in-
put string of ASCII hexa-
decimal characters and col-
lects Lhe results as a 16 bit
number in ANSWER (CPU
register pair H and L).

Listing 3b: The XOT
Routine Specified for an
8080. This routine con-
verts the contents of AN-
SWER (CPU register pair
H and L) into a 4 digit
ASCI!I string of hexadeci-
mal characters, transfer-
ring the results to the out-
put device with PUT.

Figure 3a: The XIN Rou-
tine Flowchart. XIN is the
hexadecimal version of the
input algorithm, with the
extension of accepting
716 bit values. The XIN
routine tests for the valid-
ity of the hexadecimal dig-
its, then converts the low
order bits to a binary ver-
sion of the digit. This
value is then shifted into
the ANSWER being pre-
pared. In the 8080 version
of this routine (listing 3a),
ANSWER becomes the HL.
index register pair, and the
8080’s double precision
addition operation is uti-
lized. Conversion termi-
nates with an invalid
character or when over-
flow occurs,

ANSWER =

XINLOOP! R
[ILLEGAL |
| CHARACTER
| TERMINATES,
—— INPUT
}_VALID _; [
INUMERIC |
LCHARACTER)

/

OllecaL |

HEXADECI- |
| MAL CHARAC|
| TER TERMIN- |
(ATES INPUT |
(A0JusT Low]

Al=A+9; | ORDER OF |
| VALID HEX- |
| ADECIMAL |
| ALPHABETIC
| CHARACTER |

XINSHIFT ! -
Mwasi Low |
.) ORDER 4

Al A &OF; LBITS J|

SHIFT

ANSWER

LEFT 4

8ITS

@ = "

NO
ANSWER:=
ANSWER OR

A;
‘ RETURN ,

shown in listings 3a and 3b as implemented
for an 8080 computer. The flow charts of
figures 3a and 3b outline the logic for
adaptation to other computers. When this
was implemented, an arbitrary choice was
made to use 16 bit values instead of 8 bit.
This can lead to some inconvenience on an
8 bit microprocessor without 16 bit opera-
tions. However, certain instructions were

56

XOT. BEGIN

CNT:= 4,

-

SHIFT 4 HIGH
ORDER BITS
OF ANSWER
INTO A

A<IO N YES
°
NO

AxA+7

XOTLOOP:!

XOTASCII Yeg

AlsA+'0',

CNT =
CNT-1;

RETURN

Figure 3b: The XOT Routine Flowchart.
XOT converts a 16 bit quantity in ANSWER
into a series of ASCIl hexadecimal char-
acters, starting with the high order digit. The
logic shifts out 4 bits at a lime into the
accumulator, adjusts the value if alphabetic
codes are present then prints the ASCII
version obtained by adding ‘0’ to the value.
Four digits are created and printed prior to
return,

available on the 8080 to perform double
register operations (two 8 bit registers
treated as a single unit). The 8080 DAD
instruction performs 16 bit addition on the
(H,L) register pair using another specified
register pair. When the 8080 instruction
DAD H is encountered, the value in (H,L) is
doubled, thus in effect shifting that pair of
registers left one bit.. For input shifting, it

Rel.

Addr. Code Label Op.
0000 21 0000 DIN: LXI
0003 010000 LXI
Note . 0006 CD xx xx CALL
0009 FE2B CPI
Note 2 0Q000B CA xx xx Jz
000E FE 2D CPI
Note3 0010 C2 xx xx JNZ
0013 0D DCR
0014 41 DINSIGN: MOV
Note 1 0015 CD xx xx CALL
0018 FE 30 DINNUMB: CPI
00tA D8 RC
001B FE 3A CPI
001D DO RNC
0O01E EBOF ANI
0020 4F MOV
0021 78 MOV
0022 0609 MVI
0024 54 MOV
0025 5D MoV
0026 17 RAL
Note 4 0027 D2 xx xx JNC
002A AF XRA
0028 91 sus
002C 4F MOV
002D 7C MOV
002E 17 RAL
Note5 002F DA xx xx Jc
0032 06 MVI
Note 6 0033 C3 xx xx JMP
0036 19 DINMPYN: DAD
0037 DO RNC
0038 05 DCR
Note5 0039 C2 xx xx JNZ
003C 05 DINEGATE DCR
003D 09 DAD
Note2 O003E C3 xx xx JvpP
0041 19 DINMPYP DAD
0042 D8 RC
0043 05 DCR
Note 4 0044 C2 xx xx IJNZ
0047 09 DAD
Note2 0046 C3 xx xx JMP

Note 1: address of GET should replace *“‘xx xx"’.
Note 2: “’xx xx’’ should be the address of DINSIGN.
Note 3: “xx xx"* should be the address of DINNUMB.

was a simple matter of performing four of
these and then using an OR to the low order
8 bits from the value generated as a result of
step 3 above. Output necessitated four
groups of DAD H and RAL operations to
shift a bit into carry, then rotate it into the
A register before step 4 was performed (see
listing 3b).

Decimal Integer Conversions

Purely out of habit, | choose to use
leading minus sign to indicate negative,
ASCIl ‘=, with ‘+’ or nothing to indicate
positive integers. Again | felt that a 16 bit
routine would be more useful than an 8 bit
one, allowing two’s complement binary

VALUE := A [save input, low order] ;

Listing 4a: The DIN Rou-

Operand Commentary tine Specified for an 8080.
H.0 ANSWER = 0: This rout/n'e conve.rts an
B,0 SIGN := 0: NSIGN :=0: ASCII decimal string of
GET A := INPUT [character] ; the form ‘SXXXXX’ into a
‘E;—I'NSIGN f? A =h'+'? A signed 16 bit quantity in

if so then go save sign ANSWER (fhe CPU’s H
— is A="'-"7 . .
DINNUMB if not then go to numeric tests; and L register pa/r). The
o SIGN := —1; ‘S’ can be either '+’ ‘=’ or
B,C * NSIGN := SIGN; a null string (); the ‘X’
GET A := INPUT [character] ; can be a decimal digit ‘0’
‘0’ is ALT'0?) 0’ i

if so then return [not numeric]| ; to 9" or a null string.
= is A LT "7 (Thus a successful conver-

if not then return [not numeric] ; sion can involve from 1 to
15 ;= A & b’'00001111° [mask low order] ;

6 characters.) Conversion
is terminated by an over-

C, A
Q,lg é,\i-r ':\LS;G;N' flow or an invalid char-
D, H MULTPLR := ANSWER [high order]; acter.
E, L MULTPLR := ANSWER [low order] ;
is SIGN positive? [uses copy in Al ;
DINMPYP if not then go to positive multiply;
A A :=0;CARRY :=0;
C A = A — VALUE [negate VALUE] ;
C A C := A [save negated value] ;
A, H A = ANSWER [high order];
is ANSWER negative?
DINMPYN if so then proceed [not first time];
B,0 CNT := 0 [so sign extension at DINEGATE works] ;
DINEGATE first time add VALUE to ANSWER [initialized to zero];
D ANSWER := ANSWER + MULTPLR [both are negative] ;
if no overflow then return;
B CNT :=CNT —1;
DINMPYN if CNT NE O then reiterate;
B CNT :=CNT — 1 [now CNT := —1];
=] ANSWER := ANSWER + (— VALUE) [16 bit ops] ;
DINSIGN reiterate with next numeric character;
D ANSWER := ANSWER + MULTPLR;
if CARRY := 1 then return [overflow] ;
B CNT :=CNT -1;
DINMPYP if CNT NE O then reiterate;
B ANSWER := ANSWER + VALUE;
DINSIGN reiterate with next numeric character;

Note 4: “xx xx'’ should he the address of DINMPYP.
Note 5: “xx xx'’ should be the address of DINMPYN.,
Note 6: “xx xx’* should be the address of DINEGATE.

values for 32767 to —32768 instead of 127
to —128 (sce note 2).

Input was fairly straightforward, as
shown by listing 4a and figure 4a. If the first
character read is a ‘', set the minus flag.
Then for all numbers read, if the minus flag
is set, the value is negated. The developing
answer is multiplied by 10 and the new value
read added to it. The implementation shown
performs multiplication by repeated addi-
tion for simplicity, although a hardware
multiply instruction would certainly im-
prove performance if it were available.

Decimal output, unfortunately, could not

Text continued on page 60

57

NO

DOTPRNT: L

Note 1

lote 2

Note 3

Note 4

Note 5

Note 6

Note 7
Note 3

Note 2

NO
YALUE~O
F)

YES
NON-
2ERQ:0
H

YES

A.x
VALUE OR'Q;
NONZERO= 0

DOTBYPA:

NO
TEMP:«1
P

YES

RETURN)

Rel.
Addr.

0000

0003
0004
0006
0007

0008

0008
000C
000D
000E
000F
0010
0011

0012
0014
0017

0018
0019
001A
001B
001C
001D
001F
0020
0021

0022
0023
0024
0025
0028
0029

002C
002D
002E
002F
0032
0033
0036
0038

003A
003D
003E
0040

0043
0044

0045
0047

0049

0048
004D

Code

11 Xx XX
D5
EO 01

CD xx xx
78

FE 01
C2 xx XX
D1

c9

10 27

E8 03
64 00
0A 00
0100

————
i BRANCqu
| TO |
| DOTPOSIT |(

Label

DOT:

DOTPOSIT:

DOTDIVID:

DOTOUT:

DOTPRNT:

DOTBYPA:

TENSTABL:

TENSTABLE:
LOCATION

0
2
4
6
8

NOTE:

{NTEL FORMAT IN LISTING 4b REQUIRES LOW
ORDER HEXADECIMAL BYTE AT FIRST (LOW)

Op.

LXI
PUSH
MVI
MOV
RAL
JNC
MOV
CMA
MOV
MoV
CMA
MOV
INX
MVI
CALL
XTHL
MOV
INX
MoV
INX
XTHL
MV
MOV
SUB
MOV
MOV
SBB
MOV

INR
JMP
DAD
XRA
ORA
JNZ
ORA
IJNZ
ORI
MV
CALL
MOV
CPI
JNZ
POP
RET
DW
DwW
DW
DW

ADDRESS.

58

Operand
, TENSTABL

1
JH

>000

DOTPOSIT
A L

> r
>

>

> IoIm Up»IX
ITx r° z =2 3

A
OTOUT

OTDIVID

®P>PO00®WQUI0COPrPPmMPD

DOTPRNT

O

DOTBYPA
Y

c,0

PUT

A E

1
DOTPOSIT
D

10000
1000
100
10

1

VALUE (DECIMAL)

10 000
1 000
100
10

I

Commentary

POINTER :=addr (TENSTABL);
STACK :=POINTER;
NONZERO :=1;

A = ANSWER;

is ANSWER negative?

if not then go to positive routine;

} ANSWER := ~ANSWER — 1 [low order] ;

} ANSWER := —ANSWER — 1 [high order] ;

ANSWER := (—ANSWER —1) +1;

A :='~'" [ASCI| leading minus] ;
OUTPUT := A [display minus sign] ;
exchange POINTER and ANSWER;
TEMP := M{POINTER) [low order] ;
POINTER := POINTER +1;

TEMP := M{POINTER) [high order] ;
POINTER := POINTER +1;
exchange ANSWER and POINTER;
VALUE :=0;

} ANSWER := ANSWER — TEMP [low order] ;

} ANSWER := ANSWER — TEMP [high order] ;

if ANSWER LT O then go put character;
VALUE = VALUE + 1;
reiterate, counting in VALUE;
ANSWER := ANSWER + TEMP;
A :=0;CARRY :=0;
is VALUE = 0?
if not then go print it;
is NONZERO = 0 [teading zero test] ;
if not then bypass leading zero print;
A := A OR ‘0O’ [convert VALUE to ASClI]};
NONZERO := 0 [reset zero flag] ;
OUTPUT := A [display ASCII digit] ;
A := TEMP [low order] ;
is TEMP =1 [low order] ?
if not then reiterate;
else flush stack
and return;

define constants for the
decimal division routine
(note: low order at low
memory address for 8080);

(HEX)
2710
03E8
0064
000A
000! Listing 4b: The DOT
Routine Specified for an
8080. This routine con-
verts the signed two's com-
plement number in AN-
SWER (register pair H and
L) into an ASCII signed
decimal string with leading
zero suppression. The re-
sult is sent to the output
device during the conver-
sion.

DIN:

BEGIN

ANSWER:=0;
SIGN!= 0,
NSIGN:= O;

DOT.

BEGIN

NOTE:

POINTER: =
addr (TEN-
STABL);
NONZERO:=1,

ANSWER =
-ANSWER;

POINTER3 16 BITS
ANSWER %16 8ITS
TEMPZ 16 BITS

SIGN=~1;

DINSIGN: Vg

DINNUMB: |

A=
INPUT;

< RETURN ’

VALUE =

| WITH BINARY
A&IS, w

!
LOOOOIIII

ANSWER. = r_thcu»/un. LEFT SHIFT]

ANSWER *10 | THEN ADD; USE DIF-
+ VALUE; | FERENT LOGIC FOR
| LAND - ALGEBRAIC

l_SIGNS

Figure 4a: The DIN Routine Flowchart.

@ poTtpPosIT: Y _

DOTDIVID: 1L

TEMP;=MEm| |
(POINTER);
POINTER -

POINTER+1;

|

VALUE=0;

="

16 BIT |

|OPERATIONS!
[J

ANSWER. =«
ANSWER-
TEMP;

No

YES

ANSWER =
ANSWER +
TEMP

Figure 4b: The DOT Routine Flowchart.
decimal equivalent of the shifting used
in the base 2" output routines is division by
base of 10. This routine also includes
leading zero suppression and logic to print a
digit. Division is performed by repeated
subtraction using values stored in TEN-

The
the

sign

VALUE: =

VALUE+1;

—
| WENT TOO |
| FAR,SO RE- }
1

| STORE VALUE |

With decimal arithmetic values, the shifting
involved is no longer an integer multiple of
one bit, The DIN routine uses the decimal
version of binary shifting: multiplying the
value by the base of the number system,
then adding in the new low order value, DIN
also includes sign decoding logic for the
ASCIl '+’ and ‘=’ characters. In the 8080
version of DIN, the result is a signed two’s
complement number in ANSWER, a 16 bit
quantity in the HL index register pair,

59

STABL. In the 8080 version of listing 4b,
the ANSWER to be output is a 16 bit signed
two’s complement number in the HL. index

register pair.

Text continued from page 57

be made quite so simple, primarily because
there really exists no decimal (base 10) left
shift. This left two alternatives, either re-
petitively divide by 10 stacking the re-
mainders, or -perform a succession of pseudo
divisions by subtracting appropriate con-
stants. The latter technique was chosen due
to the complexity of multi register division.
The code of such a routine for an 8080 is
shown in listing 4b, and the corresponding
flow chart is figure 4b.

The output routine checks the initial
value to determine if it is negative, and if so,
output the ASCII character ‘—’, If the value
is negative, it is negated (making it
positive) so that positive and negative num-
bers can be handled the same way. A table
containing powers of 10 (10,000; 1,000;
100; 10; 1) was then utilized to perform
pseudo divisions by successive subtraction.
This is outlined in the flow diagram in figure
4b, For the 8080 implementation, there is
no 16 bit subtraction, hence a multiple
precision subtract operation is coded.

The handling of signed numbers is op-
tional, as well as the zero suppression. They
were included because it is easier to take
them out than to try to divine where they go
and how to do it.

Many microprocessors have an instruction
which maintains decimal numbers. Given the
8 bit quantity hexadecimal 79, assume a
hexadecimal 02 is added to it, giving the
hexadecimal value 7b. This instruction then
can be used to adjust this result back to two
decimal digits, 4 bits each. The value then
would appear as hexadecimal 81, which can
be thought of as adding the decimal numbers
79 + 2, giving 81. If computations are to be
made in this packed decimal mode, then the

Assumptions

The assumptions for the procedures of

this article are:

1. An input and output subroutine
exists (GET and PUT) which pre-
serve CPU registers except A.

2. The conversion process is itself a
subroutine.

3. The conversion process need not
save any registers.

4. Validating characters is done
(though not necessary).

5. Overflow checking is done (again
not necessary and in some instances
not desirable).

6. All values are treated as unsigned
integers (except the decimal rou-
tines).

7. Non significant leading zeros are
not required on input.

8. Leading zeros are printed on output
(except for decimal).

hexadecimal routine presented could be used
to input and output these values,

In conclusion, these routines are not
presented as the final answer in number
conversions, In order to implement any or
all of these routines on your own personal
computer, the flow diagrams may be more
useful than the sample 8080 implementa-
tion, That implementation is targeted for
Intel’s 8080 microprocessor, one of the most
widely used hobby computers at the time of
this writing. All the routines made full use of
certain special features and strange quirks of
the 8080 microprocessor. Whatever your
particular machine, the time spent in under-
standing these routines should save you a
few headaches in your next program. ®

Note 1:

During a left shift, as the high order bit
leaves the register, it enters the carry bit and
the vacated low order bit receives a zero.

For example:Before : Carry=0 A=1001 0111

After : Carry=1 A=0010 1110

During a rotate left, as a bit leaves the high
order bit position, that value is shifted into the
vacated low order bit position. On the Intel
8080, two types of rotate are available:

1. RRL rotate accumulator copying

swapped bit to carry.
before: Carry=0 A=1001 0111
after: Carry=1 A=00101111

2. RAL : rotate accumulator thru carry

before: Carry=0 A=1001 0111
after: Carry=1 A=00101110

On computers with a rotate through the
carry bit, new bits can be shifted into the
accumulator while old bits are shifted out.

NOTES

Note 2:

Two's complement arithmetic uses the high
order bit of a value to indicate sign; 1 is
negative and O is positive. A negative value is
formed by complementing all bits of the value
(1 to 0 and 0 to 1) and adding one. Thus, the
largest positive value for a 16 bit guantity is a
hexadecimal 7FFF, and the smallest negative
value is a hexadecimal 8000, or decimal 32767
to —32768. The 8 bit values are 7F to 80 or
127 to —128.

For example: given the value 1, create the
value —1.

0000 0001 =1 Start with 1
1111 1110 Complement all 16 bits
+1 Add 1

11111111 = -1 Giving the value —1.

60

The Circuit for Z-80s

proach to microprocessors which | described
in the June 1976 BYTE |page 32| is
reflected in the design of this central pro-

Dr Robert Suding

Research Director, The Digital Group inc
PO Box 6528

Denver CO 80206

The microprocessor integrated circuit is
the real engine for your system. Now you
can replace that old engine with a real power
house, the new Z-80 (the Z-80 was de-
scribed in Burt Hashizume’s Microprocessor
Update on page 34 of August 1976 BYTE).
After initially reading about this integrated
circuit in early ’76, | just had to get one to
see how many of the blurbs were true (I give
sales advertisements a 1% credibility on the
first pass).

Aside from a few typos, promised sup-
port chips that didn’t show, and several
mistakes in the software documentation, it
was fabulous. The software flexibility added
by this chip was a great addition to the
8080/6502/6800 Digital Group stable. The
relative branch was very helpful for machine
language programming, and the ability to
test, set, and clear individual bits in a byte
has opened a new world of control applica-
tions. | saw a 20% savings in memory
requirements even though | was still new to
much of the Z-80’s special software.

The Z-80’s hardware made good sense
too. Getting rid of the 18 MHz crystal
requirement of the 8224/8080 system and
using a 2.5 MHz crystal with a simple single
phase TTL clock made me happy. The
interrupt and DMA system has some neat
features. Sure gonna be hard to justify using
the old 8080/6502 or 6800 CPU boards any
more, thought I, as | set out to design the
circuit for Z-80s.

The circuit for Z-80s presented in this
article is the actual wiring used in the Digital
Group’s Z-80 processor card. Not too un-
believably, we would just love to sell you the
whole system. The circuit is being published
in complete detail for your information,
whether you choose to purchase it as part of
your system, or use it as a starting point for
your own custom design. The systems ap-

62

cessor circuit.

This Z-80 circuit is shown in figures 1 and
2. In figure 1 you’ll find the central pro-
cessor integrated circuit (1C43, a Z-80 made
by Zilog or second source Mostek), and
miscellaneous drivers, decoders and gates. In
figure 2 you’ll find the wiring of 2 K bytes
of programmable memory along with a 256
byte 1702A erasable read only memory
which can be used to store the bootstrap
programs for your system,

Full direct memory access (DMA) is used
in this design. What’s DMA to you? Well for
one thing, DMA permits hand loading of the
memory from a front panel which is com-
pletely independent of a particular proces-
sor. It permits future processor upgrading by
replacing a single board. High speed data
devices, such as some tape, disk, and video
systems which may operate too fast for most
processors, can directly load memory using
DMA. Finally, for the truly gigantic among
you, multiple processors can share common
memory with the addition of control logic.

Buffering is included on this processor
board design to permit driving a full memory
system (64 K bytes) and up to 256 IO ports.
Miscellaneous logical functions such as
power on reset and single stepping are
provided.

The EROM bootstrap provides a con-
venient way to initialize the system at power
on, by using a low cost cassette [page 46,
July 1976 BYTE]. We use an EROM in the
design in order to allow customized
initialization by sophisticated users able to
program their own EROMs. Circuitry to
inhibit EROM selection is included in order
to permit full use of “0 page” programmable
memory for user software.

Two K bytes of programmable random
access memory give sufficient storage for a
small operating system. The Digital Group
Z-80 system includes a cassette which loads
this area of programmable memory with a
system monitor which permits reading and

writing other cassettes, keyboard entry of
data and programs, and TV display of
memory data, all 14 registers, indices, and
flags (in octal or hexadecimal).

The system used to interface this pro-
cessor to memory and 10 exemplifies the
“processor independence” ideal mentioned
in my article in the June BYTE. Two sets of
16 address lines are brought out from each
Digital Group processor card. The 16 lines
labeled “‘memory address” in figure 1 lead to
the memory boards; the 16 lines labeled
“port address” in figure 2 go to the 10 port
selecting card(s). Similarly, memory data to
and from the processor is separated, as is the
peripheral [0 data to and from the pro-
cessor.

The Z-80 DMA read, write and 10 lines
are brought to decoding logic to derive your
universal control lines, ie: memory read
(MRD), memory write (MWR), 10 read
(IORD), and 10 write (IOWR).

The major objective of processor inde-
pendency is supported by providing this
common set of 32 address lines, 32 data
lines, and 4 control lines for each processor.
It is the responsibility of the processor board
1o provide the logical derivation of these 68
lines. The complete list of backplane con-
nections for the system includes all 68 logic
lines and is summarized in table 1. The rest
of the system is interfaced to this common
68 line system. Processor interchange is thus
particularly simple: It is achieved by
plugging in a different processor card.

Z-80 Processor Circuit

The logic of this Digital Group Z-80
processor circuit may be logically divided
into six interrelated sections. They are the
processor itself and immediate ‘“house-
keeping” logic, run control, DMA, interrupt,
buffering, and memory. The processor and
immediate housekeeping consists of the
Z-80, a 7400 single phase crystal controlled
clock generator, and decoders for read,
write, memory and 10 operations. These are
all found in figure 1.

A power on reset function is provided by
IC38d, one section of a 4010 CMOS buffer,
An external switch is attached to the back-
plane assembly for a remote ‘‘reset and go”
operation after power has been applied.

When inserting large integrated circuits into sockets,
avoid uneven stresses. In extreme cases of uneven
insertion pressure, it is possible to crack the case of a
24 or 40 pin integrated circuit, rendering it useless.

A 7442, 1C48, decodes 10 states of the
processor: memory reading, memory
writing, input port reading, and output port
writing. Each of these signals occurs at the
proper time as determined by the processor.

Run control logic permits single stepping
through a program if a front panel readout is
provided for viewing the resulting instruc-
tion sequencing. In addition, wait states for
slow external memory and the EROM access
delay are provided. The wait line input of
the Z-80 is utilized to control execution. A
feature of this Z-80 circuit is the ability to
jumper sclect cither “‘single step” or ‘“‘step
on instruction.” The jumpering for “single
steps’” permits stepping within an instruction
cycle in the same manner as the 8080. “Step
on instruction” will display only the first
byte of each single or multibyte instruction.
Normal processor running mode is unaf-
fected by which stepping mode is selected.

Two sections of a 7402, 1C28a and
IC28b, arc used as a run latch. When the step
switch is activated, the run latch is reset, and
the one shot (74123, 1C37b) fires a 50 ms
pulse to debounce the switch. The resultant
pulse is held in a 7474 latch section,
IC29a, for a very short time until synchro-
nized by the Z-80 and acknowledged
through the sccond oneshot section of 1C37,
The 7402 NOR gate 1C28c¢ passes either the
continuous run or the step pulse depending
on the mode selected. 1C28d will then drop
the ready linc if either no run command
exists (continous or step), or the “‘wait”
command line goes high. If no “single step”
operation is to be used, pin 43 of the
backplane is tied to +5 V externally.

Direct Memory Access

The Z-80 has built-in features for direct
memory access. The DMA logic supporting
the processor consists of sections of [C44,
1C29 and 1C49. DMA is designed as an
external request for control of memory and
the granting of this request as soon as the
processor can safely suspend its operations
without losing current data. A DMA request
is entered whenever either pin 8 or 9 of
1C44c¢ goes high. This will set a latch, 1C29b,
bringing down the Z-80’s bus request line.

Text continued on page 68

63

Contrary to some grape-
vine rumors, you can't
simply unplug your 8080
integrated circuit and plug
in a Z-80. A glance at
figure 1 and comparison of
1C43’s Z-80 pinouts with
an 8080 specification will
shoot that rumor down.
Once you have a Z-80
wired, however, the in-
struction set is a superset
of the 8080 instruction set
which provides a better
general purpose processing
architecture.

Figure 1: The central processor of the Z-80 circuit. See also figure 2 for the balance of the logic found in the Digital Group Z-80
central processor card. This figure contains the processor integrated circuit, IC43, and ancilliary logic of the system clock, buffers,
run control, interrupts and direct memory access control. A summary of back plane connections is found in table 1 accompanying

DMAG RFSH MRQ MWR MRD I0RD IO WR DMA END DMARQ NMI
BACKPLANE [ar 5 v % y N-O-RESET BUTTON | 3
PINS — : | o—— ===} ;
OSCILLATOR ' RESET :
v
2 Y ! BACKPLANE|
| ASSEMBLY
4 RESISTORS | I o S 12470 470
2.2K +5V 7] PROCESSOR
CARD
[_
= R7 SR6 741502 ‘
=25 22K 3220 b
> Mrz 5 oMA SELECT
b —ZP CRYSTALT,) JuMper \/ MoDE
o Cl8 3RS pOWER ON DMA| CONTROL
l 9
Ic32 22uF] 100K RESET
8T97 CLK
9 pre |2 +5V 74
) 1C29b
2.2M L7474
8 12 2.2K
%00 &)
7400 7400
6
4 |7 5 |2 9
STAT o] v @ INTACK
DMA 12 ATE DECODE 13 ‘E@ 8 INTACK
icas RIO 741502 JUMPER
GRANT 7442 390 4d4 [13] 7440
6 X INSTRUCTION
+5V 4 15 13 I0RQ 12 1" M Wi STEP F
[7440 — — .
_ MRQ MRQ /°—C
ua 5 LORD SINGLE STEP
MRD
NOT
23 28 {I9 20 |21 |22 6 27 26 25 |17 16 A
BA RFSH MRQ IORQ RD WD [} Mi RESET BUSRQ NMI INT Z
1C43 Z-80 CENTRAL PROCESSING UNIT
WATT |—
24
~ PROCESSOR ADDRESS BUS — — PROCESSOR DATA BUS —————
A0 Al A2 A3 A4 A5 A6 A7 AB A9 AI0O All AI2 AIZ Al4 Al DO DI D2 D3 D4 D5 D6 D7
30 |31 [32 [33 [34 [35 [3¢ [37 [38 [39 [a0 [2 |3 |4 s 14 5 [tz [sc |7 o o |13
DMA GRANT
WIRED TO: DO
i o
32-15 D2
311 D3
31-15 D4
30-| D5
30-15 D6
47- LSB MSB D7
47-15 —L27
32! LOCAL
41-15 DATA
8US
O=CPU CONTROL
I=DMA CONTROL LSB MSB
IC41 Ical 141 1C42 Ic42 1c42 Icar 1car 130 1IC30 1C30 IC31
8Te7 8797 aTe7 8To7 8797 8T97 8Te7 8797 aTo7 8797 8197 8T97
2 4 6 14 12 10 2 4 3] 14 12 10 2 4 6 14 2 4 [} |4 |2 10 2 4
DMA GRANT “‘-7_%” " ,7 X" :d x‘b . xb n . _%,7 §u7 . -~ _:7 DMA x,,7 b < _‘7_:,&_?74’7_‘» DMA
3 5 7 s Z Z 3 Ys Y7 Yz Y Yo Yz Ys Y7 YisCRANT Yz Y5 Y2 Yis Yu Jo Yz [sCRANT
+5V [+5V [+5V [+8v [+5V [+5v |+5v [+Bv |[+8V [+5V |+5V |+5V |+5V [+5V [+5V |+5V +5V |+5V |+5V |+5V [+5V |+5V |+5V {+5V
A A A A
24 RESISTORS ——
2.2K
[[L [q < q L < q L 4 4 < [
A0 Al A2 A3 A4 A5 A6 A7 AB AS A0 All Al2 AI3 Al4 AIS MOO MOl MO2 MO3 MO4 MOS5 MO6 MO?
MEMORY ADDRESS MEMORY OUTPUTS

64

this article. The complete list of power connections for both figures 1 and 2 is found in table 2. This schematic was redrawn to fit
the constraints of the magazine page. A complete schematic in its original form, drawn on one page, is included with the
documentation of the Digital Group Z-80 central processor kit,

srop/sn:p,,sv +5V GND -2y
!]
I i
i | |F.F I,.;F
| e
H
L _BACKPLANE B

PROCESSOR
470 470

@

b OiuF Ve ss OluF v
TO+5V POWER TO -12V
2 SUPPLY CONDITIONING SUPPLY
+5v POINTS POINTS
RS O (FI16.2) 13
ci7 47 +5v _ ic27 c
22uF K 2 INTACK |, 7442 sle
b 12 i5
c7 6 7 1 7 6 5 4 3 2 [oA
OluF IC37b PRE 7474) 7 6 5 4 3 2 I
10]5 74123 4|5 3 |c29a |
A CLK o CLR[]
R4
2.2M 3470 /J79 ‘ B e it e B P P e e
: 16 15 14 13 612 I 10 94,
RUN_CONTROL LOGIC : ACKNOWLEDGE INTERRUPT REQUEST :
R3 4+5v L1 2 KT 5 6 7 gl
22K 8 v I
RESISTORS
i5 |3 2.2k—|p +5v
2 lo D +5V
1C37a 5v
@C“ Ml 218 74123 Q|4] T ' g§ 5 +5V
6
74L502 10RD A 5 3 D +5V sy
p— | 4 4 D
MRD 3 - 0
2.2K UNNUMBERED RESISTORS > H
L IN 16 PIN DIP *RESISTOR PACKS"] l?,
f UNNUMBERED RESISTORS
| . ic Ic34 Ic34
2 IN 8 PIN SIP “RESISTOR PACKS 74‘,?5 '73?255 74125 74125
2 5 12 9 2 5 12 9
'_&o74b|3d7|0: 1 So7 457 13 % |oc7
3 6 " 8 3 6 " 8
(FIG.2)
470 IC21 PING AR a
RESISTORS
IORD 2.2K +5V
| 4
DO AAA
oW
ERINN
ST
DWW
B VW
eV
D7__an.
ca) c3) 132 132 €39 I€39 1C45 €45 7403 7403 7403 7403
74125 74125 74125 74125
3797 8To7 8Te7 8To7
N N D R . 3 6 H 8 3 6 1
5 14 12 10 2 4 [14 3 6 " 8 3 3 7] 8
| 4 Jé[iz Lo o8] 4 JsTi3 N[0
b
NI ARRRRRAR | (2 (5] () (2] () (3) (%
T3 315 T |13 2 |5 [z | J2 |5 2 |]2 Jals] izl [|z fals 3] iz 0
4] b b] p) IORD -
-— +5v [+5v [+5v [+5v [+5v Jesv [+5v |45V
8 DIODES
IN9I4 8
(OPTIONAL RESISTORS
PROTECT- 2.2K
ION)
OAOAARR AOOANDLAD
0 POl PO2 PO3 PO4 PO5 POS POT MIO MII MI2 MI3 MI4 MI5 MI§ MI7 PIO PII PI2 PI3 P4 PI5 P& PI7

PERIPHERAL OUTPUTS

MEMORY INPUTS

65

PERIPHERAL INPUTS

Table 1: A Generalized Processor Independent Bus Structure, This table lists connector pin identification, signal name, DMA
access properties, primary signal direction relative to the processor card, and description. This is the bus definition used in the

Digital Group systems.

DMA Inor DMA Inor
Pin Name G? Out? Description Pin Name G? Out? Description
1 - — - +5 V power bus A — — - +5 V power bus
2 — — - System ground bus B — — — System ground bus
3 — - — Spare voltage bus o - — — Spare voltage bus
4 - - - —5 V power bus (not used by D — — - —5 V power bus {not used by
Z-80) Z-80)
5 MI7 IN E P17 IN)
6 MI6 IN F PI6 IN
7 MIS IN H PI15 IN
8 Mil4 IN Input data from memory J P14 IN >- Input data from peripherals
9 MI3 IN K PI3 IN
10 MI2 IN L PI2 IN
11 M IN M P IN
12 MIO IN N PID IN
13 MO7 G OUT Y P PO7 G OUT 7
14 MO6 G ouT R PO6 G ouT
156 MO5 G ouT S PO5 G ouT
16 MOQ4 G ouT >~ Output data to memory T PO4 G ouT Output data to peripherals
17 MO3 G ouT U PO3 G ouT
18 MO2 G ouT Vv PO2 G ouT
19 MO1 G ouT W PO1 G ouT
20 MO0 G outJ X POO G out
21 MRD- G ouT Memory read data strobe Y IORD- ouT Peripheral read data strobe
22 A0 ¢] OUT) 2 PAD G OuUT Y
23 A1l G ouT AA PA1 G ouT
24 A2 G ouT AB PA2 G ouT
25 A3 G ouT AC PA3 G ouT ?- Peripheral address, low order,
26 A4 G ouT AD PA4 G ouT identical to AQ through A7 in
27 Ab G ouT AE PAD G ouT Z-80 processor.
28 A6 G ouT AF PA6 G ouT
29 A7 G ouT } Memory address lines AH PA7 G ouT J
30 A8 G ouT AJ PAS8 ouT
31 A9 G ouT AK PA9 ouT
32 A10 G ouT AL PA10 ouT
33 A1l1 G ouT AM PA11 ouT Peripheral address, high order,
34 A12 G ouT AN PA12 ouT wired to ground (logical 0) in
35 A13 G ouT AP PA13 ouT Z-80 processor.
36 A14 G ouT AR PA14 ouT
37 A15 G ouT _J AS PA15 ouT
38 MWR- G ouT Memory write data strobe AT IOWR- ouT Peripheral write data strobe
39 RFSH- G ouT Refresh line {(Z2-80) for dynamic AU IRQ- IN Interrupt request line
memories
40 DMARQ IN DMA Request #1 AV ouT Cassette bootstrap: Data output
41 DMAG ouT DMA Grant AW * ouT QOutput port 1 bit 0
42 DMAEND IN DMA end signal AX ¥ IN Cassette bootstrap; Data input
43 RUN IN Run if logic 1, stop or step if 0 AY IN Input port 1 bit 0
44 STEP IN Stop if 0 and RUN = 0;single step AZ NMI- IN Non maskable interrupt input
each 1 pulse.
45 WRQ- IN Wait request, from external slow BA ROMDIS IN Bootstrap ROM disable
memories
46 MRQ- G ouT Memory request BB DMARQ IN DMA Request #2
47 RESET- IN Reset signal BC — — - unused
48 ROMCE- ouT ROM on processor board is BD * ouT Valid memory address (6800,
enabled; do not decode page 0. 6502 systems)
49 — - — +12 V power bus BE — — - +12 V power bus
50 - — — —12 V power bus BF — — — —12 V power bus
NOTES:
“G" in the "DMA G?” column indicates that

the signal is in a high impedance state when the
DMAG signal is logical 1. This means that the line
in guestion can be driven by an alternate three
state driver during a DMA operation. If the signal is
not disabled by DMAG, then this column is blank.

In the “Name’’ column, if the name is followed
by a minus sign as in “MRD-"’, then the signal is
active low. This is indicated in the logic diagram by
a bar over the name in question.

An '*" in the name column indicates a signal
which is not defined by the processor circuit of
figures 1 and 2 in this article.

“In or Out?"’ is relative to the central processor
card.

Figure 2: The Digital Group Z-80 processor card also includes this memory
subsystem. Memory banks 0 and 1 are programmable user memory typically
decoded to addresses at split octal locations 000/000 to 007/377, hexa-
decimal 0000 to O7FF. The programmable jumpers [A13, JAl4 and JA15 in
this diagram are used to pick the base address for these memory banks, and
allow the lower two | K blocks of any of the eight 8 K blocks in the Z-80’s
64 K memory address space. The read only memory, 1C20, is enabled during
bootstrap. During bootstrap, since the ROM addresses overlap the pro-
grammable memory addresses at locations 0 to 377 octal (0 to FF hexa-
decimal) the ROMCE line is used to disable any programmable memory ref-
erences to page 0. After bootstrapping the programmable memory exclusive
of page 0, the ROM becomes invisible to the system when the ROMDIS line is
in a high state. (This line should be controlled by a manual switch,)——

66

POVL

£€21

POLL
£€21

SR

€Iv 145 Siv

g9 9

rObL
v221

pOvL m“.w

veo

[o]

300230 0 39v4g

Q- 378vSIA WOy

NOILVH¥3d0O TVIWHON HO3

1+ 378YSI0 WOH
‘dVH1SL008 ¥04 310N

siawoy [ve T

IEEEEE

e ,

ogve |92

AG+

~ e

AHOWIW M2

SH3IdNNr
NOILVI01

Q0HV08B Ndd

a [

300730 g
378VYN3
dIHD 2

SX2078 JLAB Ml
Q3SNNN ¥0d SITBVYNI dIHD

?lemlvl”lj-

~
<
o
<

SY btV £V

ovd
1vd

€Vd

vvd

SVd

9vd

LARRA

NOILINIZ3Q
S$s3iyaav
1¥0d 01

ivd
8vd

ARA

<v] oIvd
<wv] 11vd
<] 2Ivd
<av] €1vd
<av] b1vd
<3V] Sivd

SSjHMN

<5] 1m0

—< o] 91N

—<Z] sIn

—F] vin

—<5] eIn

<o) zZIm

1y ot 6| 8| 4} 8 §

<li} 1w

i

4G 90 Sa $0 €0 20 1Q

H30V0T dVH1S1008

3oW0Y [E>— 3

oum [¢

£

AS+

48 1v4
LOHS3INO 1IvM

tev [}
121pL
1251

3 HLIM GIWWVHOOHd
4 8 X952

(¥314V3N3HL Q3HONII
‘ONIGVOT dVH1S1008
N3HM 0378¥N3)

WOH3
dvyls1008
v2oL!
02l

0a

£1X £X 214121912161 21 p1 21€1 2/21 20N 210
33 1no viva

SI'x
prx

8x

|v

428/200-000/ %00
(1v120)

2091 £ X
9191 2191 9

SV

53553800V |

yagv

144

[~}
AYIdAL #1D1 01D o'x

gV

X

2v

2012 8 X Ml

v

I ¥Nv8 AHOW3W 1"

3

91| b2

1X32 LX3D LNIY

n 0ol 6
HE Y
2d

mi
A

{rotd)

X

s B o
4o
I} ey

ov

47
€2

f

NI Y1vO

111 bl

1nwarn

8y
iv
9v
sv
v
€V

2v
K]
ov

<Z'] oin

X €x gl22rg2rgearyare 2z 21 21o,

w ..u, 100 ¥1vQ
(dAL) IINId'9DI=n'9
(dAL)ZNId'S, 211V 2'X

310N
221 €21

92 2O
€I 101

|£2£/£00-000/000
(Iv120)
$3s$3yACY
AVIIdAL

2ole 8 X Mi
O MNVE AHJOWIW

NI Y1vQ

$21 071 HOGV

(crx T 6V
¥ X f——cos] 8V
o xp———<ez) LV
X <3Z] 9v
9 X p—-<Z] sV
X -3 vv
¥ X f————c7] &V
X p———<7] 2V
Ix 2] v

<& ov

\9I'x

UL 109 GG Iy IIE 12 It 110

AZI-

—<22] oon

<] 1om

3] zom

—<1] son

.:«; M
ZINId PBZDI
A6-

—<31] row

L. X74}
it

—~<&1] son

14

—<v] som

1] Lomw

67

One way to test out a
newly constructed circuit
(not necessarily the best
way) is the traditional
“smoke test”: Turn on
power and see if the
circuit burns up. A far
better method is to do a
little thinking and careful
inspection first.

Text continued from page 63

When the Z-80 is finished with any needed
housekeeping, it issues the bus acknowledge
signal, granting the request. Further Z-80
operations are suspended and the various
buffers, 1C31, 1C32, IC33, 1C41, IC42 and
IC47, go to a high impedance state, and the
external circuitry making the request is
allowed full control over memory using the
backplane bus.

DMA request and grant is ended by any
of three methods. A reset operation will
always end any current DMA operation. A
jumper at pin 9 of IC29b allows selecting
one of the other two DMA ending opera-
tions. If the jumper is connected from pin 9
to pin 10 of IC29b, then the DMA operation
will be ended whenever both DMA request
lines return low. If the jumper is connected
from pin 9 of IC29b to the line labeled DMA
end, then a latched DMA operation results.
One or more positive going pulses at either
DMA Request line will initiate DMA. One or
more positive going pulses at the DMA end
line will end the DMA.

Interrupts

The Z-80 has extended interrupt process-
ing capabilities, and sufficient hardware is
included on the Digital Group Z-80 board to
support the three Z-80 interrupt modes.
Mode 0 is the same as the 8080A, generally
considered as the eight restart instructions
which are placed on the data bus upon an
interrupt acknowledge signal from the pro-
cessor. Mode 1 is an automatic interrupt to
address 000070. Mode 2 is an extremely
powerful vectored interrupt system which is
new with the Z-80. A new register, called the
| register, is used as a high order portion of
the vector address. When an interrupt is
encountered and acknowledged, the data
placed on the data bus becomes the low
order portion of the interrupt vector ad-
dress. Interrupt processing thus starts at an
arbitrary 16 bit address formed from the |
register and a variable input. Another inter-
rupt system provided by the Z-80 is called
non maskable interrupt (NMI). This inter-
rupt will occur anytime the Z-80's pin 17 is
brought low, and is intended for highest
priority operations like responding to a
power failure before the power supply
capacitors bleed down,

IC50, 1C44, 1C36, 1C35, IC34 and IC27
provide the needed interrupt processing
interfaces. The 74125s of 1C34 and IC35
provide three state buffering for the inter-
rupt address vectoring required by Z-80
interrupt modes 0 and 2. The 7442, 1C27,

68

produces an interrupt honored acknowledge-
ment signal (if required) for use in mode 0.
The INT input at the Z-80 pin 16 will be
forced low whenever any interrupt input,
except NMI, is brought low. Interrupts are
interfaced using a 16 pin DIP socket.

Buffering

The Digital Group processor circuits are
designed to drive a full complement of
memory and |O. In addition, the processors
are designed to operate under direct memory
access as mentioned previously, and three
state buffers permit isolating the processor
card from its own (see figure 2) and auxil-
iary memory.

Sections of 8T97s 1C41, 1C42 and 1C47
provide buffered address outputs from the
Z-80 processor with each section capable of
each driving 30 standard TTL loads. These
drivers handle both memory and 10 port
addressing. DMA grant is connected to these
drivers so that when a DMA is in process, the
external device is given full control of the
address lines since the processor’s drivers are
in a high impedance state.

The 8T97 sections used for data output,
IC31 and IC32, provide the ability to drive
as many as seven Digital Group 10 boards
(28 ports) without further buffering.

Data input to the processor is placed onto
the internal bidirectional bus by two types
of circuits. A pair of 74125s provides a three
state noninverted buffering of memory input
from a backplane bus (pins 5 to 12) which
has noninverted data. A pair of open col-
lector 7403s, 1C40 and [C46, provide an
inverted open collector drive of the same
bus, a requirement since the Digital Group
peripherals put data onto the backplane in
inverted form. Notice, however, that the pin
connections of the 7403 are compatible with
the 74126 circuit, so if you desire to use this
design with noninverting peripherals simply
replace the 7403s with 74126s to change the
sense of the data on the outputs of the
receivers.

Memory (see figure 2) in this Z-80 proc-
essor circuit is of two types, EROM and
programmable memory. The EROM is a
single chip preprogrammed by the Digital
Group to simplify system operation of
our kits. If you roll your own software, a
customized bootstrap EROM could also be
used. When power is applied to the system, a
“power on reset” function results, which
starts the processor running at address
000 000. [C29 and IC25 decode the lowest
256 bytes of memory, resulting in a EROM
chip enable condition. The EROM proceeds
through its programming to clear the screen,
display a message, initialize some program-

Table 2: Power connections for the Z-80
processor circuit shown in figures 1 and 2.
Note that I1C8 and 1C9, ICI8 and ICT9 are
omitted from the numbering sequence.

Number Type +5V GND -9V
1CO 2102 10 9 —
IC1 2102 10 9 —
1C2 2102 10 9 —
1C3 2102 10 9 —
1C4 2102 10 9 —
1C5 2102 10 9 —
1C6 2102 10 9 —
1C7 2102 10 9 —
1IC10 2102 10 9 —
1C11 2102 10 9 —
1C12 2102 10 9 —
1C13 2102 10 9 —
1C14 2102 10 9 —
1C15 2102 10 9 —
1C16 2102 10 9 —
1C17 2102 10 9 —
1C20 1702A 12,13, — 16,24

15,22,
23

1C21 74121 14 7 —
1C22 7400 14 7 —
1C23 7442 16 8 —
1C24 7404 14 7 -
1C25 7420 14 7 -
1C26 7430 14 7 —
1C27 7442 16 8 —
1C28 7402 14 7 -
1C29 7474 14 7 -
1C30 8T97 16 8 —
1C31 8797 16 8 -
1C32 8T97 16 8 —
1C33 7404 14 7 —
1C34 74125 14 7 -
1C35 74125 14 7 -
1C36 7430 14 7 -
1C37 74123 16 8 -
1C38 4010 16,1 8 —
1C39 74125 14 7 —
1C40 7403 14 7 -
1C41 8T97 16 8 —
1C42 8197 16 8 —
1C43 2-80 11 29 —
1C44 74LS02 14 7 -
1C45 74125 14 7 -
1C46 7403 14 7 —
1C47 8T97 16 8 —
1C48 7442 16 8 —
1C49 7440 14 7 —
1C50 7400 14 7 —
800 ns

Figure 3: Central processor clock timing
waveform. To verify the frequency of oscil-
lation with a calibrated oscilloscope, mea-
sure the total time interval for two cycles of
the clock waveform. This interval should be
800 ns if the correct crystal is used and it is
oscillating at its fundamental frequency. A
frequency counter would show 2.5 MHz as
the frequency.

70

power. Another way is to insert only one or
two integrated circuits at a time, function by
function, and test as you go. The Digital
Group has found a compromise which seems
to work best when building kits, namely to
plug in all but most critical or expensive
integrated circuits, then test. This approach
is optimal when using printed circuit wiring
since the probability of a disastrous wiring
error is in general low, assuming a fully
debugged printed circuit board. Then if OK
so far, plug them in and go ahead.

So, proceeding with this approach, insert
all integrated circuits except the Z-80, the
1702A, and the 2102s. Note that all inte-
grated circuits except 2102s in the Digital
Group Z-80 board have their keyway or dot
indicating the pin 1 end oriented away from
the connector.

Measure the resistance at the backplane
voltage supply pins again. In particular, note
the lower resistance value between back-
plane pins 1 and 2. Reverse the ohmmeter
and remeasure. A shorted reading now indi-
cates a bad integrated circuit, and near equal
readings indicate a reversed integrated circuit
somewhere. Now insert the crystal into its
holder. In our Digital Group kits this is done
by snapping in the body of the crystal
(gently), then pushing forward to contact
the pins.

Before inserting the processor card into
its backplane connector, measure the volt-
ages at the connector. A single wrong voltage
may cost you a board’s worth of ICs.

Measure these backplane pins against
ground:

Pin 1 — +5V 5%
Pin 2 — 0V
Pin50 — =12V £10%

(The backplane pin 1 end is marked on the
Digital Group Z-80 processor card. If you
use a homebrew assembly, use the equivalent
tést before proceeding.)

Make a final inspection of the processor.
Check for shorts between components on
the top and lines running underneath. In kit
systems, look for any solder bridges. Check
the proper pin 1 orientation of all your
integrated circuits. If you use the printed
circuit, sight down the rows of pins for
missing solder points. Missed solder points
typically seem to occur at the end pins of
integrated circuit sockets, and one side of
resistors or capacitors.

After all this preliminary checking you
can insert the processor board into its
connector.

Apply power to the system and again
measure voltages at the processor card as
noted previously.

Checking Your Waveforms

Connect a calibrated triggered sweep
oscilloscope to pin 6 of the 7400 IC50b. Set
the triggering to occur on the positive edge,
and the sweep setting to 100 ns per division.
Look for a two cycle time of 800 ns seconds
as shown in figure 3. If your oscilloscope
does not sweep as fast as 100 ns/div, then a
slower sweep can be used; but be absolutely
sure that the two cycle time is exactly 800
nanoseconds as shown in figure 3.

A frequency counter may also be at-
tached to pin 6 of IC50b. The desired
frequency is 2.5 MHz. Any appreciable error
indicates either a defective crystal, a bad
7400, or an overtone oscillation {one way to
correct this last case is by using 74L00 for
1C50).

Measure the voltage at the following pins
(before expensive integrated circuits have
been inserted). Correct any discrepancy.

Z-80 (1C43} : pin29=0V
pin11=+45V

D pins24&16=-9V
pins 12,13, 15, 22

1702A (1C20)

and 23=+5V
Any 2102 RAM: pin9=0V
pin 10=+5V

Carefully insert the Z-80, the 1702A, and
the 2102s. With the large Z-80 and 1702
circuits, insertion should be done evenly
without allowing excessive stress. Packages
have been known to crack into two parts
during insertion. Make sure that pin]
(indicated by either a dot or a 1 on these
circuits) is properly oriented. Recheck the
processor circuit asembly for orientation,
lead shorts, solder shorts, and missing solder
joints. Think courageous thoughts. Plug in
the processor board. Bravely turn on power.

Using the Z-80 Processor Card

Several operational systems structures
(see my June 1976 BYTE article) are con-
sistent with this processor circuit design.
This Z-80 circuit can be used with a minimal
amount of additional hardware (a PIA and
UART, a Teletype machine, and a suitably
programmed EROM) as if it were an “evalu-
ation board” that maintains system de-
pendency so that different processor
integrated circuits may be compared.

Preferably, this board becomes the key
component in a much larger general purpose
system. A special EROM is provided in the
Digital Group Z-80 kit which interfaces this
Z-80 board to our audio cassette and TV
based system structure. A cassette of pro-
gramming is provided with our kit version,
which loads programmable memory with an

S.T.M. SYSTEMS

Presents
BABY!

A complete microcomputer in an attache case.

The unit uses the MCS 6502 8 Bit Microprocessor.

Up to 4K RAM fully buffered * Slot for 4K ROM
(2708 type)

DMA, Video Interface (composite video) sixteen 32
character lines.

Audio cassette Interface (data rate approximately 1200
BPS load & dump).

1/0 ports with 1 PIA 6820, 6520 type.

Typewriter type 63 key keyboard, {upper and lower
case plus Greek with control key).

Power supply 120 VAC to 5 volt 3 amp fully regulated.
Speaker, two (2) LEDs, DMA, 60 Hz real time clock,
video on and off keyboard and audio cassette dump
and load format all under program control.

The first 200 systems sold will have a frosted Plexiglas
case! Standard unit will have molded plastic case,
Plexiglas case will become an option.

Audio cassette tape supplied with dump program, text
editor, games of Shooting Stars, Life and Ticktack Toe,
Music Program (self generated computer music and
user generated from keyboard).

*Basic unit with 2K RAM and 512 Byte bootstrap
loader and monitor in firmware (PROM) ... $ 850.00
UnitwithdKRAM $1000.00
Remember it's not a kit, it's fully tested and ready to
go. Just plug BABY! in hook up your video monitor,
load your auto cassette with the programs we supply
and you're off and running.

Optional Video Monitor................. $150.00

Be the first person on your block to have this unique,
completely portable system.

ORDER TODAY::
S. T. M. SYSTEMS
"~ P.O. Box 248
Mont Vernon, N.H, 03057

Not a Kit Fully Tested

O BankAmericard Exp. Ocashier's Check
] Master Charge No. OMoney Order

Personal Check (allow 6—8 weeks for personal check to clear.)
Delivery 60 to 90 days after Receipt Of Order

Name

Address
City State Zip

Ask for our OEM discounts on customized version,

P R S - G e b R S 5B R D e e e e e .

operating system for reading and writing
cassettes, and building and displaying
programs.

Conclusion

The Z-80 is a neat chip to use. Contrary
to some grapevine rumors, you can't simply
unplug your 8080 integrated circuit and plug
in the Z-80; but it is an architecturally
simple chip to design with. | hope this design
excites you as much as the Z-80 excited me,
Enjoy.®

71

TDL IS PROUD TO ANNOUNCE THE REVOLUTIONARY Z-80 CPU CARD,
AN ALTAIR/IMSAI COMPATIBLE CPU CARD FEATURING THE POWERFUL
Z-80 uP PRODUCED BY ZILOG INCORPORATED. WHAT’'S SO REVOLUTION-
ARY ABOUT THE Z-80? A LOOK AT THE FOLLOWING COMPARISONS

WILL SHOWYOU:

As you can see, the Z-80 is a very
powerful and fast uP - in fact its a NEXT
generation microprocessor. And its
available to you in a totally compatible
format, NOW. Just unplug your current
CPU card, plug in the Z-80 CPU, load
a program, and you're up and running -
with a NEXT generation uP. The power
and versatility of the Z-80 is unequalled
in the uP field, and it opens the door to
tremendous developments in the state of
the art. More powerful, faster, and less
memory consuming versions of your
current 8080 software are just a part of
the possibilities the Z-80 provides. (TDL's
own 8-K BASIC for the Z-80 will be
available in September.)

Each Z-80 CPU kit comes complete with:

® Prime commercial quality boards, IC
sockets etc.

® easy to follow instructions

e Zilog's Z-80 Manual

® Schematics

* An easy to understand and apply user’s

guide

¢ TDL's Z-MONITOR on paper tape (soon
to be available in deluxe PROM version)

® And membership in the Z-80 user's
group.

Move up to the Z-80. Only $269.

THE FASTEST RAM? The high speed
capability of the Z-80 demands an extra-
fast RAM to back it up, and TDL's new
Z8K RAM board fills the bill. The 28K is
an 8K by 8 static RAM with the fastest
access time in personal computing - 215ns.
Its the only RAM in personal computing
fast enough to let the Z-80 run at full
speed with no wait states. If that isn't
enough, it alsc happens to be one of the
lowest powered RAMs around as well.
Only 150 ma typical current load on the
5V supply. That makes the Z8K run cool
-and perfect for battery standby opera-
tion as well. Other so-called “low power”
4K RAM boards can't compete with these
specs. Its the perfect match for the Z-80,
and its features and low cost make it a
perfect match for ANY uP. (It’s fully Altair
gus compatible of course...) Price: Only
295

WHAT ABOUT QUALITY? All TDL
products share one thing in common -
exceptionally high quality. The quality
starts with engineering that is dedicated
to keep your system state of the art at the
lowest possible cost. Consider also the
“Qual Division” whose ONLY purpose is

Comparison of the Zilog Z-80, Intel 8080, and Motorola 6800CPU chips
280 8080 6800

NUMBER OF:

Instructions 158* 78 72

Internal Registers 17 7 6

Addressing Modes 10 7 8
Voltage Required +5 +5,-5,+12 +5
Standard Clock Rate DC-3MHz 0.5-2MHz 0.1-1MHz
Clock Phases 1 2 2
Clock Voltage 4.2 8.4 4.8
DynamicRAM refresh and timing signals

without slowing down CPU or

requiring additional circuitry Yes No No
Single instruction memory to memory and

memory to |/O BLOCK TRANSFERS Yes No No
Single instruction SET, RESET, or TEST

of any bit in accumulator, any

general purpose register, or any

external memory location Yes No No
Single instruction BLOCK SEARCH of

any desired length of external

memory for any 8-bit character Yes No No
Non-Maskable Interrupt and TTL

compatible inputs Yes No Yes
Internal sync of inputs and direct

strobe of outputs Yes No No
* Includes all 78 machine code instructions of the 8080A and is therefore capable

of running any standard 8080A software without modification.
ADDITIONAL FEATURES OF THE Z-80:
* Up to 500% more throughput than the 8080A
® Requires 25% to 50% less memory space than the B8080A CPU
e Three modes of fast interrupt response plus a non-maskable interrupt
¢ Outperforms any other microcomputer in 4- 8-, 16-bit applications

to keep TDL's products the best in the
industry. And our products use only the

finest boards available, prime components,

sockets for all ICs, gold plated edge
contacts and other earmarks of a
commercial grade product. And its backed
by a solid 90 day guarantee on parts and
materials.

SAVE MONEY NOW Order both a Z-80
CPU card, and one or more Z8K RAM
boards before September 1st, 1976, and
you can deduct 10% on the total cost. Act
now while this special offer lasts. (Does

TDL/

not apply to COD orders.)

HOW TO ORDER Just send check or
money order, or use your BankAmericard
or Mastercharge, and your orders will be
shipped to you postpaid within 30 days.
COD orders must be accompanied by a
25% deposit. Your credit card order must
include the serial # of the card, expiration
date, and your order must be sngned New
Jersey residents add 5% state sales tax.
For more information, send for our free
catalog.

Dealer Inquiries Invited

(609) 392-7070 TECHNICAL DESIGN LABS INC.
342 COLUMBUS AVENUE
72 TRENTON, NEW JERSEY 08629

YTE’S

1B

Attention: Southern California Readers,
Educators

Here is a bulletin board listing of a new
course which is probably worth taking if
you're a novice, or emulating if you're an
instructor.

The prospect of a computer in every
home, shop and classroom is no idle “‘cam-
paign promise’’ to one professor at Cali-
fornia State University, Long Beach.

“If you can’t buy one, build one,” is one
of several approaches taken in three com-
puter courses to be offered on Saturdays
beginning September 4 through the CSULB
School of Education. All three courses are
designed for non-technical people: teachers,
librarians, businesspeople; hobbyists or
homemakers.

The instructor, Richard C McLaughlin,
associate professor of instructional media,
says that “some years ago, as a junior high
school science teacher, | realized that my
role in life was not developing future scien-
tists but rather promoting an appreciation of
science and technology among our entire
population.” His background includes a
bachelor’s degree cum laude in physics from
the State University of New York at Albany
and a PhD in instructional communications
from Syracuse University. He has recently
been active in the Southern California Com-
puter Society, the California Educational
Computing Consortium and the North
Orange County Computer Club.

While some attention will be paid to
traditional computers and minicomputers in
these courses, by far the greatest emphasis
will be placed upon low cost general purpose
computers. These are now available as do-it-

yourself kits (about $1000) or already as-
sembled and waiting to be plugged in. Prof
McLaughlin's courses can be of greal use to
people having little or no background in
computer technology but willing to learn.
The purpose of the courses will be to
acquire a functional understanding of com-
puters resulting in practical applications. The
first five Saturdays will constitute a course
on the building of a microcomputer. No
actual construction will be required, but the
class should be of immense value to anyone
using a microcomputer (or a larger mini-
computer) or planning to build one from a

it.

The second course of five Saturdays will
cover programming any type of computer
(large timesharing service, minicomputer or
personal computer system) in the conversa-
tional BASIC language now used in many
schools and businesses throughout the
nation.

The last five Saturdays will be devoted to
a course on using computer terminals and
setting up work stations tailored to the end
user’s special needs, be they in the class-
room, library, shop or home.

The three courses begin on September 4,
October 9 and November 13, running from
8:30 AM to 2:30 PM. Each course is worth
two credil units and may be taken inde-
pendently according to the student’s own
needs. Classes are open to all high school
graduates, college students and adults. Per-
sons not formally admitted to CSULB may
enroll at $66 per course through the Office
of Continuing Education, 1250 Bellflower
Blvd, Long Beach CA 90840. Telephone:
(213) 498-5561.m

Microcomputer Interfacing Workshop

September 23, 24, 25, 1976, a three-day
workshop based on the popular 8080 micro-
processor, sponsored by the VPl and SU
Extension Division of the Continuing Educa-
tion Center in Blacksburg VA, will include
many hours of experience in programming
and interface construction with over 12
operating microcomputers for participant
use. For more information contact Dr Norris
Bell, VPl and SU Continuing Education
Center, Blacksburg VA 24061, (703)
951-6328.m

Functional Specification:
Altair Bus Driver

A question which has recurred in several
letters is “How do | interface my simple 8
bit bidirectional bus to an Altair compatible
peripheral?”’ What is needed is an article
which defines the signals of the Altair back
plane and gives an interface plan and design
for making an Altair compatible extension
bus to an arbitrary 8 bit processor such as
the 6800, 6502, 8080, Z-80, 2650, etc. Such
an article must include a table of pinouts,
power and logic requirements, photographs
of a prototype and a rough description of
the processor and system in which it is
used.m

73

Video Terminal Interface: Connects

to standard TV monitor or modified
receiver to display 16 lines of 32 or 64
characters, Characters are formed in

a 7 x 9 matrix for easy readability. Char-
acter set includes 128 upper and lower
case ASCII characters and 64 graphic
characters for plotting on a 48 x 64

(48 x 128 with memory option) array.
An 8-bit input port is provided for the
keyboard. Characters are stored in the
onboard memory, which may be read
out of or written in to by the computer.
Cursor control, text editing, and graph-
ics software is included. $185 (32

char.) kit. $210 (64 char.) kit.

Poly 1/0 Idea Board: This will save
you a lot of time in making prototype
circuits. I/O port address is selectable
with dip switch, and inputs

and outputs are fully buffered. $55 kit.

Analog Interface: Good for interfacing
your computer to an analog world. Ten
bits of resolution in and out. $145 for one
channel and $195 for two channels (kit).

Ask about how to get a free POLY I/O
Idea Board or Analog Board.

8K RAM on a single board. Connection
for battery backup. $300 kit.

Special Offer

Video Terminal Interface
(32 character) and 8K RAM, $450kit.
Expires - September 30th, 1976.

You've probably been hearing about the
POLY 88 microcomputer system that
uses keyboard and video. We don’t have
the space here to describe all the fea-
tures. See it at your local computer store.
Support your local computer store.

All prices and specifications subject to change

without notice. Prices are USA only. Calif. residents
add 6% sales tax. All non-paid orders add 5% USA

shipping, handling, and insurance. (Outside USA add
10%) Bankamericard and Master Charge accepted.

PolyMorphic
Systems

737 S. Kellogg, Goleta, CA 93017
(805) 967-2351

Microprocessor Update:

SC/MP Fills a Gap

Robert Baker
15 Windsor Dr
Atco NJ 08004

Figure 1: Internal block
diagram of the National
Semiconductor SC/MP. In
addition to a fairly typical
8 bit bus oriented proc-
essor design, the SC/MP
includes some features
intended for ultra low cost
system designs. These
include three program-
mable output flags, a serial
input and output port, and
two sense inputs, one of
which can be used for
interrupts. This is one of
the reasons it is possible to
make an inexpensive mini-
mal system such as the
$99 kit shown in photo 1.

The new National Semiconductor micro-
processor SC/MP, commonly called SCAMP,
was designed to fill a gap between clumsy 4
bit microprocessors and the currently avail-
able 8 bit microprocessors. According to the
manufacturer, it is simple to use, requiring
very few support chips for a basic system
and is upgradable as the need arises. Only a
single +10 to +14 V power supply is needed
for the 40 pin dual inline processor .chip. A
block diagram of the processor chip is shown

Microprocessor

The processor provides simple interfacing
with an & bit data bus that has TTL or
CMOS compatible options. There are four
serial data output ports and three serial data
input ports along with two sense inputs for
simple 10 hardware. Three software con-
trolled, user accessible output control flags
may be used as needed for these direct
control output applications. A separate bus

in figure 1. access control provides Direct Memory
S N
| 4MSB MULTIPLEXED -
ADDRESS 12-
| <] LATCHED
| ADDRESS
| OUTPUT
ADDRESS |
CRYSTAL [C>—{ 0sCILLATOR
a TIMING
OR TIMING | — PROGRAM I
CAPACITOR [wmmmf CENERATOR COUNTER cair
| POINTER | REGISTERS
r >t POINTER
i3 |REQUEST Pomrinz I
g§ ENABLE IN—— [>—p l
@ < [ENABLE OUT— >t o 8US TRANSFER, |
T ol > controL
© | STROBE e o N ACCUMULATOR
| WRITE DATAL _[>q—
< | STROBE <] SERIAL
7 | READ DATA o DATA IN
& [sTrROBE |
START/STOP —[> EXTENSION | seriaL
RESET o> _p-< "] DATA OUT
i1] SENSE A/
INTERRUPT
| SENSE B
vss [> INSTRUCTION H_STATUS l
I DECODE —
b = C——p<JFLAGO
& CONTROL © |
ves [> GATING & exl .2 —p-<_JFLAG |
FUNCTION s El& > JFLAG2
CONTROL I —uw el
E0¢ 153 |
| 4-BIT x 1 contrOL
l 10 STATUS ALU I OUTPUTS
l INSTRUCTION
| REGISTER
l BUFFER |

y

Table 1. SC/MP instruc-
tion summary (Typical
execution time, 2 us per
microcycle).

Double-byte instructions:

Execution
time in
microcycles

Single-byte instructions:

Execution
time in
microcycles

Memory Reference Load 18 Extension Register
Store 18
AND 18
OR 18
EXCLUSIVE OR 18
Decimal ADD 23
ADD 19
Complement and ADD 20 Pointer Register Move
Transfer Jump 11
Jump if positive 9,11
jﬂmg Ifzero 3:” Shift, Rotate, Serial 1/0
Memory increment/
Decrement Increment and load 22
Decrement and load 22
Immediate Load 10 Miscellaneous
AND 10
OR 10
EXCLUSIVE OR 10
Decimal ADD 15
ADD 11
Complement and ADD 12
Miscellaneous Delay 3to
132,096

Figure 3: The SC/MP “sec-
ond level” system is illus-
trated by this diagram.
Here, the use of additional
CMOS integrated circuits
provides more serial inputs
and outputs for use in a
dedicated control situ-
ation.

(ISP-8A/543) and buffering (such as the
ISP-8A/551) 1o the processor. This
expanded system, as shown in figure 4,
provides a full capability system which can
now address up to 64 K bytes of memory.
There is a complete collection of hard-
ware and software support for the SC/MP
system including a debug system, application
cards, assembler, editor, system diagnostics,
cross assembler, and application routines.
The National Semiconductor users group,
COMPUTE, is also available to SC/MP users

CRYSTAL OR
CLOCK TIMING CAPACITOR

Load AC from extension

AND extension

OR extension

EXCLUSIVE or extension
Decimal ADD extension

ADD extension

Complement and ADD extension

pury

OOUIMOOUIUING U N0 O~N=00D00

Exchange pointer low
Exchange pointer high
Exchange pointer with PC

Serial 1/0

Shift right

Shift right with link
Rotate right

Rotate right with link

Halt

Exchange AC and extension
Clear carry/link

Set carry/link

Disable interrupts

Enable interrupts

Copy status to AC

Copy AC to status

No operation

o
4

as well as their software library which makes
programs available for the cost of
reproduction.

In Conclusion

The SC/MP processor is approximately an
order of magnitude slower than other 8 bit
processors such as the 6800, 8080, Z-80 or
6502. For example, the SC/MP addition
time for an 8 bit quantity in memory is 19
microcycles or 38 us at its rated speed, as
opposed Lo the 4 processor cycles or 4 us

ADDRESS STROBE

WRITE STROBE

12-BIT LATCHED ;T;h:‘ggy' v
ADDRESS BUS"
SM/MP (ROM/PROM/RAM?
CPU CHIP READ STROBE

!

_ B-BIT DATA BUS

f—————————— DATA SYNC

CMOS HEX-D
SENSE A/INTERRUPT FLIP-FLOP L . DELAY
| SENSE A /INTE MM74CIT4 | FOUR LATCHED
=" CONTROL FLAGS
SENSE B (RELAYS,INDICATORS,ETC)
SERIAL IN . R
8 CHANNEL MUX T BT ERIAL
CONTROL OUTPUTS MM74CI51 : {FROM TRANSDUCERS,
le————————— SWITCHES, ETC.)
SERIAL OUT
| L EIGHT SERIAL
I-OF -8 DEMUX : OUTPUTS
MM74ca2 (PULSE SOLENOIDS,
CONTINUE / RESET/ | i = FIRE SCRS,ETC.)
START sTOP

78

http:however,.in

Chapter 3

MACHINE LANGUAGE

PROGRAMMING FOR THE “8008”
and similar microcomputers

FUNDAMENTAL PROGRAMMING SKILLS

Before one can effectively develop machine
language programs for a computer, one must
be thoroughly familiar with the instruction
set for the machine. [t is assumed for the re-
mainder of this manual that the reader has
studied the detailed information for the in-
struction set of the 8008 CPU which was
provided in the first chapter. The programmer
should become intimately familiar with the
mnemonics (pronounced kneemonics) for
each type of instruction. Mnemonics are
easily remembered symbolic representations
of machine language instructions. They are far
easier to work with than the actual numeric
codes used by the computer when the pro-
grammer is developing a program. While the
programmer will develop programs and think
in terms of the mnemonics, the programmer
must eventually convert the mnemonics to
the machine codes used by the computer.
This, however, is almost purely a look-up
procedure. In fact, as will be seen shortly,
this task can actually be performed by the
computer through the use of an ASSEMBLER
program.

Machine language programmers should also
be familiar with manipulating numbers in
binary and octal form. It is assumed that

readers are familiar with representing numbers
as binary values. However, there may be a few
readers who are not used to the convention of
representing binary numbers by their octal
equivalents. The technique is quite simple.
It consists merely of grouping binary digits
into groups of three and representing their
value as an octal number. The octal num-
bering system only uses the digits 0 through
7. This is exactly the range that a group of
three binary digits can represent. The octal
numbering system makes it a lot easier to
manipulate binary numbers. For instance,
most people find it considerably more con-
venient to remember a three digit octal num-
ber such as 104 than the binary equivalent
01000100. An octal number is easily ex-
panded to a binary number by simply placing
the octal value in binary form using three
binary digits.

The information in an eight bit binary re-
gister can be readily converted to an octal
number by grouping the bits into groups of
three starting with the least significant bits.
The two most significant bits in the register
which form the last group will only be able to
represent the octal numbers 0 to 3. The dia-
gram below illustrates the convention,

EIGHT CELL REGISTER

e 3k 3 ok o ok ok S ok 3k 3k 3k ok Sk ok ok ok 3 ok ok ok ok ok ok 3k oK K ok ok ok 3k ok ok ok ok ek ok ok ok ok kK Kok sk ok

* * + *
o * 0 * 1 % 0 *
* * + *

* t * * *
* 0 + 1 * 0 * 0 *
* + * * *

Kk o ok o ok ok ok e ok ok ok ok ke ok sk sk ok ok sk sk ok ok ok ok ok sk ok sk ok sk ok Kok ok ok ok R kR kK

CONVERTING AN 8 BIT REGISTER FROM BINARY TO OCTAL NUMBERS

.

84

BYTE Reprint

Note in the diagram how an imaginary ad-
ditional binary digit with a value of zero was
assigned to the left of the most significant bit
so that the octal convention for the two most
significant bits could be maintained.

A table illustrating the relationship
between the binary and octal systems is
provided for reference below.

BINARY
PATTERN

REPRESENTATIVE
OCTAL NO.

000
001
010
011
100
101
110
111

SO W= O

A person who desires to develop machine
language programs for computers should
become familiar with standard conventions
used when dealing with closed registers
(groups of binary cells of fixed length such as
a memory word or CPU register). One very
simple point to remember is that when a
group of cells in a register is in the all ones
condition:

11111111

and a count of 1 is added to the register, the
register goes to the value:

00000000

Or, if a count of: 10 (binary) was added to a
register that contained all ones, the new value
in the register would be as shown:

11111111
+00 000010

00000001

Similarly, going the opposite way, if one sub-
tracts a number such as 100 (binary) from a

Reprinted from MACHINE LANGUAGE
PROGRAMMING FOR THE ‘8008 (and
similar microcomputers).

Author: Nat Wadsworth
Copyright 1975

Copyright 1976 — Revised
Scelbi Computer Consulting Inc
With the permission of the
copyright owner.

register that contains some lesser value, such
as 010 (binary), the register would contain
the result shown below:

00000010
00000100

11111110

It may be noted that if one uses all the bits
in a fixed length register, one may represent
mathematical values with an absolute magni-
tude from zero to the quantity two to the
Nth power, minus one (0 to (2**N - 1))
where N is the number of bits in the register.
If all the bits in a register are used to
represent the magnitude of a number, and it is
also desired to represent the magnitude as
being either positive or negative in sign, then
some additional means must be available to
record the sign of the magnitude. Generally,
this would require using another register or
memory location solely for the purpose of
keeping track of the sign of a number.

In many applications it is desirable to es-
tablish a convention that will allow one to
manipulate positive and negative numbers
without having to use an additional register
to maintain the sign of a number. One way
this may be done is to simply assign the most
significant bit in a register to be a sign in-
dicator. The remaining bits represent the
magnitude of the number regardless of
whether it is positive or negative. When this is
done, the magnitude range for an N cell re-
gister becomes 0 to (2**(N-1))-1 rather than
0 to (2**N) - 1. The convention normally
used is that if the most significant bit in the
register is a one then the number represented
by the remaining bits is negative in sign. If
the MSB is zero, then the remaining bits
specify the magnitude of a positive number.
This convention allows computer
programmers to manipulate mathematical
quantities in a fashion that makes it easy for
the computer to keep track of the sign of a
number. Some examples of binary numbers in
an eight bit register are shown next.

BINARY
REPRESENTATION OCTAL DECIMAL

00001000 010 + 8
10001000 210 - 8
01111111 1717 +127
11111111 371 - 127
00000001 001 + 1
10000001 201 -1

While the signed bit convention allows the
sign of a number to be stored in the same re-

gister (or word) as the magnitude, simply
using the signed bit convention alone can still
be a somewhat clumsy method to use in a
computer. This is because of the method in
which a computer mathematically adds the
contents of two binary registers in the accum-
ulator. Suppose, for example, that a computer
was to add together positive and negative
numbers that were stored in registers in the
signed bit format.

00001000
10001000

(+ 8 decimal)
PLUS (- 8 decimal)

EQUAL 10 010 000 (ThisisnotO!)

The result of the operation illustrated
would not be what the programmer intended!
In order for the operation to be performed
correctly, it is necessary to establish a method
for processing the negative number called the
two’'s complement convention. In the two’s
complement convention, a negative number is
represented by complementing what the value
for a positive number would be (comple-
menting is the process of replacing bits
that are ‘0’ with a ‘1, and those that are ‘1’
with a 0) and then adding the value one (1) to
the complemented value. As an example, the
number minus eight (-8) decimal would be
derived from the number plus eight (+8) by
the following operations.

00001000 (Original + 8)
11110111 (Complemented)
00000001 (now add +1)

11111000 (2's complement

form of - 8)

Some examples of numbers expressed in
two’s complement notation with the signed
bit convention are shown below.

BINARY
REPRESENTATION OCTAL DECIMAL
00001000 010 + 8
11111000 370 - 8
01111111 177 +127
10000001 201 - 127
00000001 001 + 1
11111111 371 -1
00000000 000 + 0
10000000 200 - 128

Note that when using the two’s comple-
ment method, one may still use the conven-

85

tion of having the MSB in the register estab-
lish the sign. If the MSB = 1, as in the above
illustration, the number is assumed to be
negative. Since the number is in the two’s
complement form, the computer can readily
add a positive and a negative number and
come up with a result that is readily inter-
preted. Look!

00001 000 (+8decimal)
ADD 111110060 (-8decas2’scomp)

00 000 000 (Correct answer = 0)

Another established convention in handling
numbers with a computer is to assume that ‘0’
is a positive value. Because of this convention,
the magnitude of the largest negative number
that can be represented in a fixed length re-
gister is one more than that possible for a
positive number.

The various means of storing and mani-
pulating the signs of numbers as just dis-
cussed have advantages and drawbacks, and
the method used depends on the specific
application. However, for most user’s, the
two's complement signed bit convention will
be the most convenient, most often used,
method. The prospective machine language
programmer should make sure that the con-
vention is well understood.

Another area that the machine language
programmer must have a thorough knowledge
of is the conversion of numbers between the
decimal numbering system that most people
work with on a daily basis, and the binary and
octal numbering system utilized by computer
technologists. Programmers working with
microcomputers will generally find the octal
numbering system most convenient. Because
the conversion from octal to binary is simply
a matter of grouping binary bits into groups
of three as discussed at the start of this
chapter, it is easier to remember octal codes
than long strings of binary digits. However,
most people are used to thinking in decimal
terms, which the computer does not use at
the machine language level. Thus, it is nec-
essary for programmers to be able to convert
back and forth between the various num-
bering systems as programs are developed.

The conversion process that is generally the
most troublesome for people to learn is from
decimal to binary, or decimal to octal (and
vice-versa)! It is usually a bit easier for people
to learn to convert from decimal to octal, and
then use the simple octal to binary expansion
technique, than to convert directly from
decimal to binary. The easier method will be
presented here. It is assumed that the reader
is already familiar with going from octal to
binary (and vice-versa). Only the conversions
between decimal and octal (and the reverse)
will be presented at this point.

A decimal number may be converted to its
octal equivalent by the following technique:

Divide the decimal number by 8. Record
the remainder (note that is the RE-
MAINDER!!) as the least significant digit
of the octal number being derived. Take the
quotient just obtained and use it as the new
dividend. Divide the new dividend by 8.
The remainder from this operation becomes

the next significant digit of the octal number.
The quotient is again used as the new divi-
dend. The process is continued until the quo-
tient becomes ‘0.” The number obtained from
placing all the remainders (from each division)
in increasing significant order (first remainder

ORIGINAL NUMBER 1234
LAST QUOTIENT BECOMES
NEW DIVIDEND 154
LAST QUOTIENT BECOMES
NEW DIVIDEND 19
LAST QUOTIENT BECOMES
NEW DIVIDEND 2

Thus the octal equivalent of 1234 decimal is:

as the least significant digit, last remainder as
the most significant digit) is the octal number
equivalent of the original decimal. The
process is illustrated below for clarity.

The octal equivalent of 1234 decimal is:

/8 = 154 2

/ 8 = 19 2.

)8 = 2 3

/ 8 = -2
2322

The above method is quite easy and
straightforward. Since a majority of the time
the user will be interested in conversions of
decimal numbers less than 255 (the maximum
decimal number that can be expressed in an

ORIGINAL NUMBER 255
LAST QUOTIENT BECOMES
NEW DIVIDEND 31
LAST QUOTIENT BECOMES
NEW DIVIDEND 3

Thus the octal equivalent of 255 is:

eight bit register) only a few divisions are
necessary:

The octal equivalent of 255 decimal is:

QUOTIENT REMAINDER

/| 8 = 31 7

/| 8 = 3 1

/| 8 = 3
3717

For numbers less than 63 decimal (and
such numbers are used frequently to set
counters in loop routines) the above method
reduces to one division with the remainder
being the LSD and the quotient the MSD.

ORIGINAL NUMBER 63
LAST QUOTIENT BECOMES
NEW DIVIDEND 7

Thus the octal equivalent of 63 is:

This is a feat most programmers have little
difficulty doing in their head!

The octal equivalent of 63 decimal is:

Going from octal to decimal is quite easy
too. The process consists of simply multi-
plying each octal digit by the number 8 raised
to its positional (weighted) power, and then
adding up the total of each product for all

the octal digits:
2322 Octal =
..... 2 X (8*¥0) = (2X1) = 2
MEMORY TOTAL
.2 X (8*1) = (2X8) = 16 WORDS WORDS
THIS THIS
A X (8*2) = (3 X 64) = 192 INSTR. ROUTINE
2 X (8*%3) = (2 X 512) = 1024 2 2
B — 2 4
Thus the decimal equivalend of 2322 Octalis: 1234 2 6
1 7
1 8
Besides the basic mathematical skills in- 1 9
volved with using octal and binary numbers, 1 10
there are some practical bookkeeping consid-
erations that machine language programmers
must learn to deal with as they develop pro-

86

grams. These bookkeeping matters have to do
with memory usage and ailocation.

As the reader who has read chapter one in
this manual knaows, each type of instruction
used in the 8008 CPU requires one, two, or
three words of memory. As a general rule,
simple register to register or register to
memory commands require but one memory
word. Immediate type commands require two
memory locations (the instruction code
followed immediately by the data or oper-
and). Jump or call instructions require three
words of memory storage. One word for the
instruction code and two more words for the
address of the location specified by the in-
struction. The fact that different types of in-
structions require different amounts of
memory is important to the programmer.

As programmers write a program it is often
necessary for them to keep tabs on how many
words of memory the actual operating por-
tion of the program will require (in addition
to controlling the areas in memory that will
be used for data storage). One reason for
maintaining a count of the number of
memory words a program requires is simply
to ensure that the program will fit into the
available memory space.

Often a program that is a little too long to
be stored in an available amount of memory
when first developed can be rewritten, after
some thought, to fit in the available space.
Generally, the trade-off between writing com-
pact programs versus not-so-compact routines
is simply the programmer’s development time.
Hastily constructed programs tend to require
more memory storage area because the pro-
grammer does not take the time to consider
memory conserving instruction combinations.

However, even if one is not concerned
about conserving the amount of memory used
by a particular program, one still often needs
to know how much space a group of in-
structions will consume in memory. This is
0 that one can tell where another program
might be placed without interfering with a
previous program.

For these reasons, programmers often find
it advantageous to develop the habit of
writing down the number of memory words
utilized by each instruction as they write the
mnemonic sequences for a routine. Addition-
ally, it is often desirable to maintain a column
showing the total number of words required
for storage of a routine. An example of a
work sheet with this practice being followed
is illustrated here:

MNEMONICS COMMENTS

LAl 000 Place 000 in accumulator

L.HI 001 Set Register Hto 1

LLI 150 And Regis L to 150

ADM Add the contents of memory
INL Locations 150 & 151 on page 1
ADM Adding second number to first
RET End of subroutine

In the example the total number of words
used in column was kept using decimal num-
bers. Many programmers prefer to maintain
this column using octal numbers because of
the direct correlation between the total num-
ber of words used, and the actual memory
addresses used by the 8008.

The example just presented can be used to
introduce another consideration during pro-
gram development. That is memory alloca-
tion. One must distinguish between program
sorage areas in memory, and areas used to

hold data that is operated on by the program.
Note that the sample subroutine was designed
to have the computer add the contents of
memory locations 150 and 151 on page O1.
Thus, those two locations must be reserved
for data. One must ensure that those
specific memory locations are not inadver-
tantly used for some other purpose. In a
typical program, one may have many lo-
cations in memory assigned for holding or
manipulating data. It is important that one
maintain some sort of system of recording
where one plans to store blocks of data and

PG | LOC MACHINE CODE LABELS MNEMONICS COMMENTS
01 | 000 ADD, Add no’s @ 150 & 151
01 | o010

01 | 020

01 | 030

01 | 040

01 | 050

01 | 060

01 } 070

01 | 100

01 110

01 | 120

01 | 130

01 | 140

01 150 Number storage

01 151 Number storage

01 | 152

01 1563

01 | 154

01 155

01 156

01 157

01 | 160

01 | 170

01 | 200

PROGRAM DEVELOPMENT WORK SHEET

PG | LOC | MACHINE CODE LABELS MNEMONICS COMMENTS
01 | 000 | 006 | 00O ADD, LAI 000 Set ACC = 000
01 | 002 | 056 | 001 LHI 001 Set pntr PG =1
01 | 004 | 066 | 150 LLI 150 Set pntr LOC =150
01 | 006 | 207 ADM Add 1’st no. to ACC
01 007 060 INL Adv pntr to 2'nd no.
01 | 010 | 207 ADM Add 2'nd no. to 1'st
01 | 011 | o007 RET Exit subroutine

87

MEMORY USAGE MAP

where various operating routines will reside
as a program is developed. This can be readily
accomplished by setting up and using memeory
usage maps (often commonly referred to as
core maps). An example of a memory usage
map being started for the subroutine just dis-
cussed is shown.

The same type of form may also be used as
a program development sheet as shown here .
One may observe that the form provides for
memory addresses, the actual octal values
of the machine codes, labels and mnemonics
used by the programmer, and additional in-
formation.

Memory usage maps are extremely valuable
for keeping large programs organized as they
are developed, or for displaying the locations
of a variety of different programs that one
might desire to have residing in memory at
the same time. It is suggested that the person
intending to do even a moderate amount of
machine language programming make up a
supply of such forms (using a ditto or mimeo-
graph machine) to have on hand.

There are some important factors about
machine language programming that should
be pointed out as they have considerable im-
pact on the total efficiency and speed at
which one can develop such programs and get
them operating correctly. The factors relate
to one simple fact. People developing machine
language programs (especially beginners) are
very prone to making programming mistakes!
Regardless of how carefully one proceeds, it
always seems that any fair sized program
needs to be revised before a properly
operating program is achieved. The impact
that changes in a program have on the de-
velopment (or redevelopment) effort vary
according to where in the program such
changes must be made. The reason for the
seriousness of the problem is because program
changes generally result in the addresses of
the instructions in memory being altered.
Remember, if an instruction is added, or de-

MEMORY

PAGE LOC CONTENTS
01 000 006
01 001 000
01 002 056
01 003 001
01 004 066
01 005 150
01 006 207
01 007 060
01 010 207
01 011 066
**01 012 160
** 01 013 370
** 01 014 007

leted, then all the remaining instructions in
the routine being altered must be moved to
different locations! This can have multiplying
effects if the instructions that are moved are
referred to by other routines (such as call and
jump commands) because then the addresses
referred to by those types of commands must
be altered too! To illustrate the situation, a
change will be made to the sample program
presented several pages ago. Suppose it was
decided that the subroutine should place the
result of the addition calculation in a word in
memory before exiting the subroutine,
instead of simply having the result in the ac-
cumulator. The original program, for
example, could have been residing in the
locations shown on the program development
work sheet on the previous page. Changing
the program would result in it occupying the
following memory locations:

MNEMONICS COMMENTS
LAl 000 Place 000 in accumulator
LHI 001 Set Reg Hto 1
LLI 150 Set Reg L to 150
ADM Add contents of memory

INL Locations 150 & 151

ADM Add 2nd to 1st
LLI 160 Set Reg L to 160
LMA Save answer @ 160
RET End of subroutine

The ** locations denote the additional
memory locations required by the modified
subroutine. If the programmer had already
developed a routine that resided in locations
012, 013, or 014, the change would require
that it be moved!

If one was using a program development
work sheet, one would have had to erase the
original RET instruction at the end of the
routine and then written in the two new
commands, and added the RET instruction
at the end. The effects would not be too de-
vestating since the change was inserted at the
end of the subroutine. But, suppose a similar
change was necessary at the start of a sub-

routine that had 50 instructions in it? The
programmer would have to do a lot of
erasing!

The effects of changes in program source
listings was recognized early as a problem in
developing programs. Because of this people
developed programs called EDITORS that
would enable the computer to assist people in
the task of creating and manipulating source
listings for programs. An EDITOR is a
program that will allow a person to use a com-
puter as a text buffer. Source listings may be
entered from a keyboard or other input
device and stored in the computer’s memory.
Information that is placed in the text buffer is
kept in an organized fashion, usually by lines
of text. An Editor program generally has a
variety of commands available to the operator
to allow the information stored in the text
buffer to be manipulated. For instance, lines
of information in the text buffer may be

added, deleted, moved about or inserted
before other lines, and so forth. Naturally, the
information in the buffer can be displayed to
the operator on an output device such as a
cathode ray tube (CRT) or electromechan-
ical printing mechanism. Using this type of
program, a programmer can rapidly create a
source listing and modify it as necessary.
When a permanent copy is desired, the
contents of the text buffer may be punched
on paper tape or written on a magnetic
tape cassette. It turns out that the copy
placed on paper tape or a cassette can often
be further processed by another program to
be discussed shortly which is termed an

88

ASSEMBLER program. However, an
important reason for making a copy of the
text buffer on paper tape or magnetic cassette
tape is because if it is ever necessary to make
changes to the source listing, then the old
listing can be quickly reloaded back into the
computer. Changes may then be rapidly made
using the Editor program, and a new clean
listing obtained in a fraction of the time that
might be required to erase and rewrite a large
number of lines using pencil and paper.

Relatively small programs can be developed
using manual methods. That is, by writing the
source listings with pencil and paper. But,
anyone that is planning on doing extensive
program development work should obtain an
Editor program in order to substantually
increase their overall program development
efficiency. Besides, an Editor program can be
put to a lot of good uses besides just making
up source listings! Such as enabling one to
edit correspondence or prepare writien
documents that are nice and neat in a fraction
of the time required by conventional
methods.

Changes in source listings naturally result in
changes to the machine codes (which the
mnemonics simply symbolize). Even more
important, the addresses associated with
instructions often must be changed due to
additions or deletions of words of machine
code. For instance, in the example routine
being used in this section, memory address
PAGE 01 LOCATION 011 originally
contained the code for a RET (RETURN) in-
struction which is 007. When the subroutine
was changed by adding several more
instructions (so the answer could be stored in
a memory location), the RET instruction was
shifted down to the address PAGE 01
LOCATION 014. The address where it
formerly resided was changed to hold the
code for the first part of the LLI 160
instruction which is 066. Had changes been
made earlier in the routine, then many more
memory locations would need to be assigned
different machine codes. However, the
changes caused by adding on to the sample
program previously discussed are not as far
reaching as the one presented on the follow-
ing page. There the changes result in the
addresses of subroutines referred to by other
routines being changed, so that it is then
necessary to go back and modify the machine
codes in all of the routines that refer to the
subroutine that was changed!

MEMORY
PAGE LOC CONTENTS MNEMONICS COMMENTS
00 000 026 OVER, LCI 100 Load reg C with 100
00 001 100
00 002 106 CAL NEWONE Call a new subroutine
00 003 013
00 004 000
00 005 106 CAL LOAD And then another
00 006 023
00 007 000
00 010 104 JMP OVER Jump back & repeat
00 011 000
00 012 000
00 013 056 NEWONE, LHI 000 Load reg H with zeroes
00 014 000
00 015 066 LLI 200 And L with 200
00 016 200
00 017 3117 LBM Fetch mem contents to B
00 020 010 INB Increment the value in B
00 021 371 LMB Place B back into memory
00 022 007 RET End of subroutine

MEMORY

PAGE LOC CONTENTS MNEMONICS COMMENTS
00 023 056 LOAD, LHI 003 Set H to PG 03
00 024 003
00 025 361 LLB Place register B into L
00 026 370 LMA Place ACC into memory
00 0217 021 DeEC Decrement value in reg C
00 030 013 RFZ Return if C is not zero
00 031 000 HLT Halt when C = zero

Suppose it was decided to insert a single
word instruction right after the LCI 100 com-
mand in the above program. The new program
would appear as shown next.

MEMORY
PAGE LOC CONTENTS MNEMO
00 000 026 OVER,
00 001 100
00 002 250
* 00 003 106
* 00 004 ** 014
* 00 005 000
* 00 006 106
* 00 007 ** 024
* 00 010 000
* 00 011 104
* 00 012 000
* 00 013 000
* 00 014 056
* 00 015 000
* 00 016 066
* 00 017 200
* 00 020 317
* 00 021 010
* 00 022 371
* 00 023 007
* 00 024 056 LOAD,
* 00 025 003
* 00 026 361
* 00 027 370
* 00 030 021
* 00 031 013
* 00 032 000

NICS COMMENTS

LCI 100 Load reg C with 100
XRA Clear the accumulator
CAL NEWONE Call a new subroutine
CAL LOAD And then another
JMP OVER Jump back and repeat

NEWONE, LHI 000

Load Reg H with zeroes

LLI 200 And L with 200

LBM Fetch mem contents to B
INB Increment the value in B
LMB Place B back into memory
RET Exit subroutine

LHI 003 Set H to PAGE 03

LLB Place reg B into L

LMA Place ACC into memory
DCC Decrement value in reg C
RFZ Return if C is not zero
HLT Halt when C is zero

Note in the illustration how not only the
addresses of all the instructions beyond
location 002 (denoted by the *) change, but
even more important, that parts of the in-
structions themselves (the address portion
of the CAL instructions, denoted by the **)
must now be altered. The essential point
being made here is that if the starting address
of a routine or subroutine that is referred to
by any other part of the program is changed,
then each and every reference to that routine
must be located and the address portion
corrected! This can be an extremely formi-
dable, time consuming, tedious, and down
right frustrating task if all the references must
be found and corrected by manual means in a
large program!

Early computer technologists soon became
disgusted with making such program correc-
tions by hand methods after learning that it
was almost impossible to develop large pro-
grams without making a few errors. They
went to work on finding a method to ease the
task of making such corrections and came up
with a type of program called an ASSEM-
BLER that could utilize the computer it-
self to perform such exacting tasks.
ASSEMBLER programs are types of programs
that are able to process source listings when
they have been written in mnemonic (sym-

bolic) form and translate them into the
OBJECT code (actual machine language code)
that is utilized directly by the computer. An
ASSEMBLER also keeps track of assigning
the proper addresses to references to rout-
ines and subroutines. This is accomplished
through a process initiated by the program-
mer assigning LABELS to routines in the
source listing. One may now see that the
combination of an Editor and an Assembler
program can greatly ease the task of de-
veloping machine language programs over
that of the purely manual method. The use

MNEMONIC

LHI 001
LLI 000

AGAIN, LMI 000
INL

JFZ AGAIN

HLT

89

of such programs is aimost mandatory when
programs become large because the manual
method becomes highly unwieldy. A primary
reason that an Editor and Assembler are so
useful is because if a mistake is made in the
program, one can use the relatively quick
method of utilizing the Editor program to
revise the source listing. Then, one may use
the Assembler program to reprocess the
corrected source listing and produce a new
version of the machine code assigned to new
addresses if appropriate.

For quite small programs, say less than
100 instructions, the use of Editor and
Assembler programs are not mandatory.
In fact, even if one uses these aids for small
programs, one should know how to manually

convert mnemonic listings to object code.
This is because it may occasionally be de-
sirable to make minor program changes
(patches) without having to go through
the process of using an Editor and Assem-
bler. This is particularly true when one
is DEBUGGING large programs and wants
to ascertain whether a minor correction will
correct a problem. The process of convert-
ing from a mnemonic listing to actual mach-
ine code is not difficult in concept. Many
readers will have discerned the process from
the examples already provided. However, for
any who are in doubt, the process will be
explained for the sake of clarity.

Suppose a person desired to produce a
small program that would set the contents
of all the words in PAGE 01 of memory to
000. The programmer would first develop
the algorithm and write it down as a mne-
monic (source) listing. Such an algorithm
might appear as follows.

COMMENTS

Set the high address register to PAGE 01.
Set the low address register to the first
location on the page assigned by reg. H.
Load the contents of the memory location
specified by registers H & L to 000.
Advance register L to the next memory
location (but do not change the page).

If the value of register L is not 000

after it has been incremented then JUMP
back to the part of the program denoted by
the label AGAIN and repeat the process.
If the value of register L is 000, then have
the computer stop as the program is done!

To convert the source listing to machine
(object) code the programmer must first
decide where the program is to reside in
memory. In this particular case it would
certainly not be wise to place the program
anywhere on PAGE 01 as the program would
self-destruct! The program could safely be
placed anywhere else. For the sake of demon-
stration it will be assumed that it is to reside
on PAGE 02 starting at LOCATION 100. To
convert the source listing to machine code the
programmer would simply make a list of the
addresses to be occupied by the program.
Then the programmer would simply look up
the machine code corresponding to the
mnemonic for each instruction and place this
number next to the address in which it
will reside. (The machine code for each
mnemonic used by the ‘8008’ CPU is
provided in Chapter ONE of this manual.)

Since some instructions are location
dependent in that they require the actual
address of referenced routines, it is often
necessary to assign the machine code in two
processes. The first process consist of
assigning the machine codes to specific
memory addresses wherever possible. When
the machine code requires an address that
has not yet been determined, the memory
location is left blank. The second process
consists of going back and filling in any blanks
once the addresses of referenced routines have
been determined. In the example being used
for illustration, only one process is required
because the address specified by the label
AGAIN is defined before the label (address) is
referenced by the JFZ instruction. The
sample program when converted to
machine language code would appear as
shown next.

ORIGINAL MEMORY MEMORY
MNEMONIC ADDRESS CONTENTS COMMENTS
LHI 001 02 100 056 Machine code for LHI mnemonic
02 101 001 Immediate part of LHI mnemonic
LLI 000 02 102 066 Machine code for LLI mnemonic
02 103 000 Immediate part of LLI mnemonic
AGAIN, LMI 000 02 104 076 Machine code for LMI mnemonic
Note that the label AGAIN now
defines an address of LOCATION
104 on PAGE 02
02 105 000 Immediate part of LMI mnemonic
INL 02 106 060 Increment low address here
JFZ AGAIN 02 107 110 Machine code for JFZ mnemonic
02 110 104 Low address portion of the CONDI-
TIONAL JUMP instruction as
defined by label AGAIN above
02 111 002 PAGE address portion of the
CONDITIONAL JUMP instruction
defined by label AGAIN
HLT 02 112 3717 Alternately, the code 000 or 001

could have been used here as the
machine code for a HALT command

Once the program has been put in machine
language form the actual machine code may
be placed in the assigned locations in mem-
ory. The programmer may then proceed to
verify the algorithm’s validity. For small
programs such as the example just illustrated
the machine code can simply be loaded into
the correct memory locations using manual
methods typically provided on microcom-
puter systems. Such small programs can then
be easily checked out by stepping through
the program one instruction at a time.

If the program is relatively large then a
special loader program which is typically
provided with an ASSEMBLER program
could be used to load in the machine code.

Checking out and DEBUGGING large
programs can sometimes be difficult if a
few simple rules are not followed. A good
rule of thumb is to first test out each sub-
routine independently. One may choose to
STEP through a subroutine, or else to place
HALT instructions at the end of each sub-

routine. Then one may verify that data was
manipulated properly by a particular sub-
routine before going on to the next section
in a program. The use of strategically located
HALT instructions in a program initially
being tried out is an important technique
for the programmer to remember. When a
HALT is encountered the user may check the
contents of memory locations and examine
the contents of CPU registers to determine
if they contain the proper values at that
point in the program. (Using the manual
operator controls and indicator lamps typi-
cally- provided with microcomputer develop-
ment systems.) If all is well at a check point
then the programmer may replace the
HALT instruction with the actual in-
struction for that point. One may then
continue checking the operation of
the program after making certain that
any registers that were altered by the
examination procedure (typically
registers H and L in an ‘8008' system)
have been reset to the desired values
if they will effect operation of the
program as it continues!

20

It is often helpful to use a utility pro-
gram known as a MEMORY DUMP pro-
gram to check the contents of memory
locations when testing a new program.
A memory dump program is a small utility
program that will allow the contents of
areas in memory to be displayed on an
output device. Naturally, the memory dump
program must reside in an area of memory
outside that being used by the program
being checked. By using this type of pro-
gram the operator may readily verify the
contents of memory locations before and
after specific operations occur to see if
their contents are as expected. A memory
dump program is also a valuable aid in
determining whether a program has been
properly loaded or that a portion of a
program is still intact after a program
under test has gone errant.

One will find that having flow charts
and memory maps at hand during the
DEBUGGING process is also very help-
ful. They serve as a refresher on where
routines are supposed to be in memory
and what the routines are supposed to
be doing.

If minor corrections are necessary or
desired, then one may often make program
corrections, or PATCHES as they are com-
monly referred to by software people, to
see if the corrections believed appropriate
will work as planned. An easy way to make
a PATCH to a program is to replace a CALL
or JUMP instruction with a CALL to a new
subroutine that contains the desired cor-
rections (plus the original CALL or JUMP
instruction if necessary). If a CALL or
JUMP instruction is not available in the
vicinity of the area where a correction must
be made then one can replace three words
of instructions with a CALL patch provided
that one is very careful not to split up a
multi-word instruction. If this cannot be
avoided, then the remaining portion of
a split-up multi-word instruction must be
replaced with a NO-OPERATION instruc-
tion such as a LAA command (in an ‘8008’
system). One must also make certain that
the instructions displaced by the inserted
CALL instruction are placed in the patch-
ing subroutine (provided that they are not
being removed purposely). An example
of several patches being made to the small
example program previously discussed will
be illustrated next.

Suppose, in the example just presented,
that the operator decided not to clear (set
to 000) all the words in PAGE 01 of mem-
ory, but rather to only clear the locations
000 to 177 (octal) on the page. The pro-
gram could be modified by replacing the
JFZ AGAIN instruction which started at
LOCATION 107 on PAGE 02 with the
command CAL 000 003 (CALL the sub-
routine starting at LOCATION 000 on
PAGE 03 which will be the PATCH).
Now at LOCATION 000 on PAGE 03
one could put:

MEMORY MEMORY
MNEMONIC ADDRESS CONTENTS
LAI 200 03 000 006
03 001 200
CPL 03 002 276
JFZ AGAIN 03 003 110
03 004 104
03 005 002
RET 03 006 007

COMMENTS

Put value 200 into the ACC
Note value of 200 used because
contents of register L has

been incremented

Compare contents of the ACC
with the contents of register L
If accumulator and L do not
match then continue with the
original program

End of PATCH subroutine

Suppose instead of filling every word on
PAGE 01 with zeroes the programmer de-
cided to fill every other other word? A patch
could be made by replacing the LMI 000

MEMORY MEMORY
MNEMONIC ADDRESS CONTENTS
LMI 000 03 000 076
03 001 000
INL 03 002 060
INL 03 003 060
RET 03 004 007

command at LOCATION 106 on PAGE 02
and again inserting a CAL 000 003 command
to a patch subroutine that might appear as
illustrated below.

COMMENTS

Keep the LMI instruction

as part of the PATCH

Keep original increment L
And add another increment
L to skip every other word
Exit from PATCH subroutine

Finally, to illustrate a patch that splits a
multi-word command, consider a hypo-
thetical case where the programmer decided
that prior to doing the clearing routine, it
would be important to save the contents
of register H before setting it to PAGE 01.
If a three word CALL command is placed
starting at LOCATION 100 on PAGE 02 in
the original routine to serve as a PATCH, it
may be observed that the second half of the
LLI 000 instruction would cause a problem
when the program returned from the patch.

MEMORY MEMORY

MNEMONIC ADDRESS CONTENTS
LEH 03 000 345
LHI 001 03 001 056
03 002 001
LLI 000 03 003 066
03 004 000
RET 03 Q05 007

(The value of 000 at LOCATION 103 on
PAGE 02 in the example program would be
interpreted as a HLT command by the com-
puter when it returned from the patch sub-
routine.) In order to avoid this problem the
programmer could place a LAA (effectively a
NO-OPERATION command) at LOCATION
103 on PAGE 02 after placing the patch
command CAL 000 003 instruction beginning
at LOCATION 100 on PAGE 02. The actual
patch subroutine might appear as shown
below.

COMMENTS

Save register H in register E
Now set register H to point
to PAGE 01

And set the low address
pointer to LOCATION 000
End of PATCH subroutine

In the balance of this manual numerous
techniques for developing machine language
programs will be presented and discussed.
Many of the examples used will be presented
as subroutines that the reader may use when
developing customized programs. It is im-
portant for the new programmer to learn
to think of programs in terms of routines
or subroutines and then learn to combine
subroutines into larger programs. This prac-
tice makes it easier for the programmer to
initially develop programs. It is generally
much easier to create small algorithms and
then combine them, in the form of sub-
routines, into larger programs. Remember,
subroutines are sequences of instructions
that can be CALLED by other parts of a
program. They are terminated by RETURN
or CONDITIONAL RETURN commands.
It is also wise when developing programs to
leave some room in memory between sub-
routines so that patches can be inserted
or routines lengthened without having to
rearrange the contents of a large amount of
memory. Finally, while speaking of sub-
routines, it will be pointed out that the
user would be wise to keep a note book
of subroutines that the individual develops
in order to build up a reference library
of pertinent routines. It takes time to think
up and check out algorithms, It is very easy
to forget just how one had solved a par-
ticular problem six months after one init-
ially accomplished the task. Save your
accrued efforts. The more routines you
have to utilize, the more valuable your
machine becomes. The power of the machine
is all determined by WHAT YOU PUT IN ITS
MEMORY!

1. First, the programmer should clearly define and write down on paper exactly

what the program is to accomplish.
Next, flow charts to aid in the complex task of writing the mnemonic (source)
listings are prepared. They should be as detailed as necessary for the program-

mer’s level of experience and ability.

Memory maps should be used to distribute and keep track of program storage

-areas and data manipulating regions in available memory.

Using the flow charts and memory maps as guides, the actual source listings of
the algorithms are written using the symbolic representations of the instructions.
An Editor program is frequently used to good advantage at this point.

The mnemonic source listings are converted into the actual machine language
numerical codes assigned to specific addresses in memory. An Assembler pro-
gram makes this task quite easy and should be used for large programs.

The prepared machine code is loaded into the appropriate addresses in the
computer’s memory and operation of the program is verified. Often the initial
check out is done using the STEP mode of operation, or by exercising indivi-
dual subroutines. The judicial use of inserted HALT instructions at key loca-
tions will often be of value during the initial testing phase.

If the program is not performing as intended then problem areas must be iso-
lated. Program PATCHES may be utilized to make minor corrections. If serious

problems are found it may be necessary to return to step no. 3, or step no. 1! #

91

Classified Ads for Individuals and Clubs

Readers who have equip-
ment, software or other items
to buy, sell or swap should
send in a clearly typed notice
to that effect. To be consider-
ed for publication, an adver-
tisement should be clearly
non-commercial, typed double
spaced on plain white paper,
and include complete narme
and address information,
These notices are free of
charge and will be printed one
time only on a space available
basis. Insertions should be lim-
ited to 100 words or less.
Notices can be accepted from
individuals or bona fide com-
puter users clubs only, We can
engage in no correspondence
on these and your confirma-
tion of placement is appear-
ance in an issue of BYTE.B

FOR SALE: DEC tape controller model 552 for
TU-B5 tape drive, two units available, best offer.
Edmund Wong 660-44th Av, San Francisco CA
94121 {415) 221-3492,

FOR SALE: $500 takes all, or: MIL Mod 8 — CPU,
TTY board, buffer, 2 K PROM board, 2 K RAM
board, input, output, 4 K ROM/PROM/RAM
board, 2 K Monitor-8 ROM, etc, socketed ICs,
$300; Digital Group cassette interface, $20; Creed
TTY- $100; TVT-1 & KBD-1 $120. $500 takes all
the above. Altair 8800 new kit, unassembled &
untouched $400. Richard F Schultz, 611 N Dex-
ter, Lansing M1 48910, (517) 393-9438.

FOR SALE: Intel CPU system. Asking $1,200 or ?
Worth over $5,000. CPU Intel 8008 8 bit parallel
8 K RAM memory 2102 type, expandable in 16 K
units, 2K PROM memory 1702 type SYSCOR
dual digital tape cassettes, IBM selectric printer/
keyboard model 735, RS232 ASCIl 1200 baud
modem with cables, 4 heavy duty power supplies.
The above rack mounted in or mounted on 30" X
48" X 29" work station table. Software and BASIC
available. Call Dave Trimble at (305) 273-9783
after 5 PM or write POB 20401, Orlando FL
32814,

FOR SALE: Digital cassette recorder made by
National Multipiex Corp. Same one advertised in
BYTE for $149.95. Like new, less than 10 hours
use. First cashier's check or maney order for $100
takes it postpaid in original carton. Charles Packer,
801 Pocahontas Pl, Hampton VA 23661, (804)
722-1364.

FOR SALE: 5262 2 K RAMS — $2 each, misc core
stacks — $1/Kbyte, PC card edge connectors, 0.156
contact spacing: 1 side X 22 — 154, 2 side X 43 —
$2, 2 side X 58 — $2.50. Have box full of each
item — S Wiebking, 919D Magellan Cir, Dallas TX
75218, (214) 328-4035.

FOR SALE: Modem, Model B83A Tele-Data
{Singer), 0-300 Baud, Full Duplex, RS-232-B to
Bell 103 Series, synchronous or asynchronous,
audio and DC loop-back tests, instruction book,
like new, Herb Lyon, 2620 Vernon Dr, Greenville
TX 75401, {214) 455-3225,

FOR SALE: 1 Tally 311 paper tape system. Unit
consists of 1200 baud paper tape reader, 1200
baud paper tape punch, power supply, and control
and interface logic for RS232 interface. All parts
are mounted in a 5 foot high enciosed 19 inch
rack. Maintenance manual, extender board and
oiling kit are also included. | also have some
assorted teletype equipment. Asking $300 for the
Tally 311 system. Call J Foley at (603) 893-1033
or write to him at 3 Salem St, Salem NH 03079.

FOR SALE: One new Processor Technology
VDM-1 display board for ALTAIR (unassembled)
$150; two new Tl ASCII keyboards {64 key), $35
each; J Georgoulis, 504 Ft Drum Dr, Austin TX
78745.

FOR SALE: PORTACOM portable computer ter-
minal, has RS-232C and built-in acoustic coupler,
10 char/sec, $995. Steve Heffner, 106 So Main St,
Pennington NJ 08534, (609) 737-2314 or
924-7086.

WANTED: Teletype Model UPE 800 punch for
ASR 33. Quote price and availability in letter. Also
need 6800 text editor, assembler, linker. AR
Dickinson, 3520 D Pan American NE, Albuquer-
que NM 87107,

FOR SALE: Model 15 TTY, works good. $95 plus
shipping. Contact C Ascolillo, 892-6130 or POB
1264, Portland ME 04062.

One inch computer tape at bargain prices! Scotch
861 and 871 on 3600’ reels in original boxes. List
price $38, my price $6/reet plus postage. Jim Stitt,
311 N Marshall Rd, Middieton OH 45042.

WANTED: 8008 data book & info — will pay. Did
anybody else build a C-MOD 8080 System? 1'd like
to hear from you. | need some info on driving core
memory also. FOR SALE: | have 5 extra brand
new B008-1 CPUs at $14 each to speed up your
system or make a smart terminal. Compact core
memory planes 64 X 64 (4 K X 1} at $5. Money
order please. Steve Kelley, 9506 Peach St, OQakland
CA 94603.

IMSA| 8080. Assembled and tested by professional
EE. 22 slot mother board and all software rights.
(RAM, etc, also available) $850 or offer {reg price
$983 + handling and tax). Also, one in box: $600
{reg price $651 + handling and tax). Swap for CRT
terminal or other goodies. Contact: Richard Lyon,
265 W Portola Av, Los Altos CA 94022, (415)
941-8159.

WANTED: Maintenance manual for IBM Selectric
Model 72. Also looking for printing robot of same.
Charles Gelsinger, 4000 Camino Val, Albuquerque
NM 87105.

FOR SALE: Computer systems for sale fully
assembled and tested equipment for less than
similar kit systems. Basic system includes 8080
computer, extended basic software, cassette inter-
face and drive, and much more. For information
contact: Glenn Barnas, B5 Strong St, Wallington
NJ 07057, {201} 471-5741.

FOR SALE: Data set — Western Electric Model
205B data set and power supply. Will trade or sell
for best offer over $20. Harvey A Sugar, 4301 57th
Av #1, Bladensburg MD 20710.

I need manuals, schematics, etc, for Kieinschmit
Teletypewriter and reperforator, Army surplus
models no. TT 178 & TT 119A/FG. Any help will
be appreciated. Please write Philip Wershba, POB
1194, Goleta CA 93017 or call (805) 685-1931. If
my wife answers, hang up.

92

FOR SALE: Sphere System 2, assembled and
running. Keyboard, CRT with video and cabinet,
4K RAM, 2 PlAs (1 port used by KBD), Serial
interface including 2 ACIAs, Modem, 2 KC cas-
settes. Sell for my (kit) cost: $1187. FOB. Tom
Pappas, 8321 £ Rose Ln, Scottsdale AZ 85253,
(602) 991-9376.

FOR SALE OR ?: Altair 1 K static RAM board
assembled with 256 words. Will take cash or trade
for 1702As or ? Make offer. Any reasonable offer
accepted. Bill Henry, POB 323, Santee CA 92071,

HELP! | got in over my head. Must seli ALTAIR
8800, 8 K dynamic memory, 88-2510 (serial {0},
ACR interface, SWTP TVT-Il w/serial 10, KYBD3,
custom case, computer controlled cursor, modified
TV, 8 K BASIC lon tape). All equipment assem-
bled and operating. $1500 or any reasonable offer.
Donald Bleeden, 661 S Cloverdale #3, Los Angeles
CA 90036, (213} 936-1260.

CORE MEMORY PLANES FOR SALE. Two 4K
X 16, 1 usec core memory with matrix diodes.
Brand new surplus in original packing with QC and
warranty stickers intact. Documentation included.
Best offer over $50 each plus postage. Ted Becker,
317 158th St SE, Bothell WA 98011 (206)
743-1321.

IMSAL 8080 For Sale: New completely assembied
8080 system. Includes, 12 K RAM, two serial 10
ports, cassette recorder interface, eight levels of
priority interrupts, and clock board. Only $2,450
or highest bid. Also ASR-33 Teletype terminal in
super condition. just $875. John Whitney, 2406
Haisley Dr, Ann Arbor M! 48103 (313) 662-2530.

FOR SALE: Burroughs C-3660 programmable cal-
culator with memory and magnetic card reader.
Good condition. Best offer over $500. If no reply
to your letter, unit has been sold. Tom French,
909 Society Av, Albany GA 31701.

FOR SALE: System 21 Data management station
(VIATRON) as advertised in BYTE March 1976
page 87. This unit works very good and is new
status. All modes of operation are in good con-
dition. Complete with instruction manual and
schematics. $400. You pay shipping; if no reply to
your letter, unit has been sold. Tom French, 909
Society Av, Albany GA 31701,

FOR SALE: Honeywell high speed line printer
(132 characters per line) in excellent condition,
complete with Honeyweil interface. $800. Call
George Coy, RFD 1, Milton VT 05468, {802)
893-2154.

FOR SALE: MITS Aitair 6806 microprocessor kit.
Complete documentation; parts still in original
packages. First check for $400 to clear takes it.
Wife threatening divorce! Paul Goyer, 1351 W
Touhy, Chicago |IL 60626. {312) 465-4128 eves.

Before sending your classified
ad to BYTE, read it over. Did
you include your name, ad-
dress, phone number (with
area code) in the text of the
ad? BYTE has received several
ads with incomplete phone
numbers or missing addresses.

I had visions of having to
write programs via the
keyboard forever and
that’s a long time.

When we are as dependent
on the computer as we are
now on our electrical dis-
tribution network, that is
when we will have to
worry about being under
the control of a computer
dictatorship.

the micro experts this funny result. 1 knew
something was wrong but what?

After a half hour of diddling with the
keys | tried my 5 plus 5 again and this time |
got A as | should. | added FF to FF and
got FE as | should. Whatever was wrong
fixed itself. | had to shut down for the night.

The next day | went through the same
agony. The processor acted ‘‘queer” for
about a half an hour then magically was OK.
Ah hah, I've got a thermal problem |
thought. So | let it cool down for a few
minutes by turning it off. When | powered
up the problem was back. Now to wait until
it gets to that magic temperature where it
fixes itself. Well an hour went by and it
didn’t fix itself. So | started poking the keys
again and bingo — it started working cor-
rectly. | was in a state of confusion — had
visions of sending the thing back after only
two days.

| started reading the Programming Man-
ual. Then | discovered the processor had a
decimal mode and | knew exactly what had
happened. When | turn my processor on, the
flip flop for decimal mode comes up in that
mode rather than the binary mode. 1 quickly
included a CLD instruction at the front of
my program and now it clears the decimal
mode and does the math in the binary.

Next | tried their program to make notes
on a speaker controlled by seven switches. It
worked the first time — a beautiful sound.

Then [tried to make a tape recording of
the addition program. The recording process
went fine. Then | tried to play back. When
you have success the display relights. |
couldn’t get that display to relight to save
me.

Back to the manuals. | read and read.
Then | recalled 12 V. | had forgotten the
12 V supply in my hurry to get results. You
need 12 V to run the 565 PPL for playback.
The next day | got hold of a nice little 12 V
supply and checked it, for 50 mA load con-
ditions. It was 11.6 V and had about 5 mV
ripple. Just right. My problems are over.
| hooked it up and went through the
record-playback procedure. Nothing. | did it
about a dozen times checking and recheck-
ing the procedure. | must have reread that
section of the User Manual a dozen times.
But no luck. Nuts.

Well the processor works anyway and
that’s the main thing. | tried to write my
first program — to multiply two 8 bit
numbers and get a 16 bit answer. | learned
what “immediate’” means the hard way. Also
| learned what “relative branch’” means the
hard way. The single step mode was real
handy for debugging my program. | even
figured out how | could get the answer to

94

appear where the 4 address digits normally
appear. Hurray!

Meanwhile | tried for several days to get a
fix on my recording problem. | tried my
Roberts $200 reel job at 7% inches per
second with no luck. | began checking the
waveshapes of the tones because they
sounded low frequency to me — not the
3700 and 2400 Hz they were to be. |
managed to sync scope just right to measure
the tones and they were on the money. It
must be the playback circuit. | traced the
signal all through it and it was just as it was
supposed to be right up to the PB7 port
where it enters the interface chip.

| began reading some more. This time |
looked at and studied the software listing for
the KIM Monitor since | had mastered a few
of the op codes, and the Texas Instrument
Learning Center lectures told us last year it’s
“like reading a newspaper.” Well it’s not like
that yet for me but it’'s coming. | was
amazed at all the subroutines. But the great
thing is the liberal use of comments. | hope
that future contributors of programs to
BYTE are as definitive. Then it hit me.

Apparently, to initialize the processor
you must have to hit the ST stop key. This is
an interrupt command and for it to work
properly you must have a special vector set
up at location 17FA and 17FB, namely
1C00. | had read this before and knew you
needed it for the single step mode but |
never connected it to the ST key nor the ST
key to the initialization of the processor.

Well | now tried my recording procedures
after entering 1C00 at the vector location,
and after hitting the ST key a few times and
guess what — she worked. That was today
and it made my day Il tell you. | had
visions of having to write programs via the
keyboard forever and that’s a long time.
Now the tape recorder part works — even on
my $25 cassette. In fact my cassette works
better than the big reel job. | suspect old
tape on the reel job. | tried recording from
0000 to 01CO0, that’s 432 bytes; and it takes
about a minute. Playback was perfect twice
in a row. The block record has an 1D number
and you can look for it or not. Also you can
relocate the data anywhere in proper mem-
ory. Real neat.

Someday | hope to get a TTY or TVT
going with this system. But for now, I'm
looking for an application for demonstration
in classroom. BYTE has been very good to
date. Keep up the good work.

George L Thompson

Associate Professor, EE

Rochester Institute of Technology
One Lomb Memorial Dr
Rochester NY 14623

CANADIAN SUPPLIERS

In reply to your reader Atwood’s letter in
the June issue of BYTE, here are three
young companies, all with what [believe to
be good products:

(1) 6800 based mini:
Mini-Peripherals Inc
2615 Blackwell St, Unit 112
Ottawa CANADA

(2) 6800 based intelligent dual floppy

disk:

Dynalogic Corp
141 Bentley Av
Ottawa CANADA

(3) CRT terminals to 19,200 Baud:
Cybernex Ltd
2595 Blackwell St, Unit 111
Ottawa CANADA

In addition, Mini-Peripherals manufac-
tures a dual floppy DMA add-on for 6800

systems.
Norman | McKay, P Eng

Mini-Peripherals Inc
2615 Blackwell St, Unit 112
Ottawa CANADA

ON POWER TO COMPUTERS

“Could a Computer Take Over?” and Mr
Carrick have approached the problem of a
computer dictatorship from the narrow
viewpoint of an engineer. Since when has
intelligence been the criterion in determining
who will rule? Power has always, and will
always, go to those who control the institu-
tions upon which a civilization is dependent.
While the argument goes on whether a
computer will ever have enough information
capacity or reliability to become a world
dictator we are using computers to do more
and more jobs; ie: traffic control, financial
transactions, production line control, etc.
When we are as dependent on the computer
as we are now on our electrical distribution
network, that is when we will have to worry
about being under the control of a computer
dictatorship. No central master computer
will be needed, just a total dependence on a
computer network. How will the computer
rule? That depends on us.

Gordon R Morrison
33 Maple St
Glastonbury CT 06033

Subscribers: We Need That Label

When corresponding with BYTE about
subscriptions, please enclose your LATEST
mailing label OR copy exactly the code at
the top of the label and include zip code.®

MERRIMAC PROCESSOR SYSTEMS
ANNOUNCES THE CRTV

A complete low cost Teletype ®Model 33 KSR
replacement using a standard TV as the
monitor. Complete, whether purchased as a
kit or assembled.

(1) Full cursor controls - clear, home, cursor
up, down, left, right.

(2) Infinite scrolling.
(3) Selectable data rate to 600 baud.
(4) Half/full duplex; local mode.

(5) ““Break’” function allows entering many
debug routines.

(6) Model 33 keyboard with added cursor
functions, clear, and home keys.

(7) Housed in attractive enclosure,

Completely assembled and tested . . . $495.00
Complete kit0veueuna.. $355.00

For Complete Information write —

Merrimac Processor Systems
P.O. Box 76
Chester, New Hampshire 03036

ALTAIR 8800 OWNERS

We recently received the following letter:

RUN
APRIL 26,1976
GENTLEMEN:

1 JUST WANTED TO TELL YOU THAT 1 THIM{ YOUR CLCCK FIX-IT KIT IS
REALLY GREAT! 1 WAS HAVING TROUBLE RUNNIMAG BASIC AND AFTER
INSTALLING YOUR KIT FOUR OF &Y hITS BCARDS THAT WEREN'T RULNING
CAME BACK TO LIFE AND NOW ARE HELPING HE TO WRITE THIS LETTER
ON THE COMPUTER. ENCLGSED 1S5 AMGTHER GRDER FCR A CLOCK WiT.
TAIS 1S FOR THE SECOND ALTAIR ThAT I'Ali KOW IN THE PROCESS

OF BUILDING.

ABALN EANY THANRS FOR S5UCh A FILi FRODUCT.

SINCERELY
LLOYT L. SilITH

How well does your Altair run?
A Clock Fix Kit is only $15 postpaid.

PARASITIC ENGINEERING

PO BOX 6314 ALBANY CA 94706

a5

Clubs and Newsletters

KC Thruput

The Kansas City computer enthusiasts
have gotten together to form the “Computer
Network of Kansas City” as a result of a
BYTE mention in these columns [May 1976,
page 57]. The first meeting in May led to a
fairly quick organization and a three page
newsletter. The meeting algorithm was set as
“the second Sunday of each month at 7 PM”
and meetings for the time being are held at
the Midwest Research Institute Library on
Volker Blvd near the University of Kansas
City. For further information contact Earl
Day, president, at 4929315, Harold
Schwartz, vice president, at 371-2616, or
George Scheil, secretary, at 363-0814. The
newsletter comments by Earl Day closed on
the following interesting note

Shakespearean Logic

South Florida Activities

The latest issue of the newsletter //O put
out by the South Florida Computer Group,
dated June 1976, contained eight pages
numbered in binary.

The group has split into two chapters
based on geography. The Miami chapter
meetings are held at 7:30 PM on the first
Monday of each month, currently (June
1976) at the Paps Institute, 1155 NW 14th
St, Miami FL. Contact Jim Whitmore,
685-1218, or John Lynn, 271-2805, for
more information. The Fort Lauderdale
chapter meetings are held at 7:30 PM on the

98

second Thursday of each month at the
Florida Power and Light Building, 501 So
Andrews Av, Fort Lauderdale FL. Contact
Terry Williamson, 752-8395, Lee Hinman,
974-1457, or George Fugate, 522-5358.

Austin TX Club?

RD McCoy, 3501-B Clawson Rd, Austin
TX 78704, writes that he is interested in the
prospect of meeting other microcomputer
enthusiasts in the Austin TX area. He can be
reached by phone at 443-0971.

People’s Computer Company —
Cromemco Contest

Cromemco, maker of the TV Dazzler, and
People's Computer Company, POB 310,
Menlo Park CA 94025, have gotten together
to sponsor a contest with prizes as follows:

First prize: $500 certificate for Cro-
memco hardware.

Second prize: $250 certificate for Cro-
memco hardware.

Third prizes: 10 certificates for $35 in
Cromemco hardware.

Honorable Mentions: 16 copies of What
To Do After You Hit Return.

The object of the contest is to develop a
program resulting in a new and interesting
display using the Cromemco TV Dazzler.
Write to PCC for rules, but the deadline is
September 30, so you'll have to hurry.

El Paso Computer Group

There is a club now in El Paso TX, as
evidenced by the version O revision 1 issue of
the £/ Paso Computer Group Quasi Annual
Newsletter. The club address is El Paso
Computer Group, 9716 Saigon Dr, El Paso
TX 79925. Current membership is six
according to the one page newsletter sheet
dated May 1976. A major activity has been
designing several club-produced PC boards
for the Altair 8800: a vectored interrupt
board with real time clock, an extender
board for the 100 pin connector, and a
conversion board to allow an SWTPC TVTII
to talk directly to a Processor Technology
3P+S board. Prices on boards are $20, $12
and $2 respectively, and are available from
the club.

Microcomputer Society of Florida

Sandy Meltzer, president of the Micro-
computer Society of Florida, sent a progress
report on his group’s activities. The Tampa
Bay chapter meets at Marsh Data Systems on
the first and third Saturdays of each month
at 2 PM, and presently has over 100 mem-
bers. The Naples chapter is being organized

by Dr George Haller, 1500 Galleon Dr,
Naples FL 33940. The group puts out a
newsletter and can be reached by contacting
Sandy at Marsh Data Systems, 5405B
Southern Comfort Blvd, Tampa FL 33614,
or by attending one of the Tampa Bay
chapter’s meetings.

Texas A&M University
Microcomputer Club

Robert R Wier, secretary, sent word of
this club’s formation. Meetings started in
April of this year, and the club has grown to
about 55 members with varying back-
grounds: from freshman students to senior
faculty, from systems analysts to art majors.
The meetings are held each Wednesday
during the semester at 8 PM in room 333B
of the Zachry Engineering Center. Dr
Charles Adams is coordinating the activity
and may be reached in the evenings at {713)
823-0877. Meetings usually consist of about
an hour of general discussion followed by a
program or meetings of several smaller
groups with specific interests. Currently
there are interest groups in the implemen-
tation of BASIC, implementation of APL,
computer games, and specific user groups for
various types of microprocessors.

Robert extends his invitation to anyone
passing through College Station TX to stop
by at a meeting. The campus is located 100
miles northwest of Houston on state High-
way 6. The mailing address is: Texas A&M
University Microcomputer Club, POB M-9,
College Station TX 77844.

The Carolina Computer and
Radio Amateur Association

BYTE received issues 1 and 2 of the “Bits
and Dits” newsletter of the CCARAA. This
group mixes amateur radio with computing
in the form of automated repeater work,
talks on logic design and programming,
AMSAT operating activities, and applica-
tions of computers to amateur radio station
activities. For further information contact
Boyd S Miner, K4KEP, at the Association’s
mailing address, POB 341, Laurens SC
29360.

Get RICHC Quick?

Roger C Garrett, 16 Grinnell St, James-
town RI 02835, wrote a letter noting the
formation of the Rhode Island Computer
Hobbyist Club. He and members of the club
would like to hear from other computer
enthusiasts in Rhode Island who would be
interested in the prospect. At present, two
members are assembling Altairs and two are
building home brews based on the MOS

100

Technology 6502. Roger also reports that he
is working on a FORTRAN cross assembler
for the 6502 and would like to hear from
other 6502 hackers for the purposes of
exchanging ideas and programs.

MAPLE Leaves

For small systems enthusiasts interested
in the APL language, there is an active group
of people beginning the ‘‘Microprocessor
APL Enthusiasts.” They have started a publi-
cation, the MAPLE [eaves newsletter. On
the principle that ‘‘n heads are better than
1” when it comes to creating APL software
for home computers, the group is interested
in promoting APL interpreters in a manner
similar to the way Tiny BASIC has evolved,

To find out what's up, contact John
Sikorski, president of MAPLE, or Ruth Low,
newsletter editor of MAPLE Leaves, for
information on this grass roots APL aware-
ness project

MAPLE Leaves
Box 574 NUMS
Chicago 1. 60611

An Item of Interest

All 6800 owners who have purchased the
SWTPC 6800 computer were treated to an
excellent issue number 1 (June 1976) of the
newsletter which is being sent free to all
SWTPC 6800 Computer System owners, as
well as to computer hobbyist clubs and
publications. {If your club or publication did
not get a copy, then it's probably because
SWTPC did not know about you, so write
and ask for one. Southwest Technical Pro-
ducts is located at 219 W Rhapsody, San
Antonio TX 78216. Ask for the SWTPC
6800 Computer Newsletter, number 1, June
1976). The newsletter contains some very
interesting information, which is sum-
marized here:

® Some editorial copy concerning
“SWTPC’s attitude on software.”
Basically, the attitude is one of
“bundling” systems software into the
price of the computer itself and
charging the amount necessary for
covering expenses of program duplica-
tion and handling. The explicit policy
is stated:
“None of the programs available
from SWTPC are proprietary.
Where available, you may either
purchase a tape and instruction
manual from us or copy them from
a friend. We don’t care.”
® An announcement of the SWTPC 6800
Editor/Assembler. This is being made

available for $14.95 in either paper
tape or ‘‘Kansas City Standard” [see
March 1976 BYTE| magnetic tape
form. The assembler requires 8 K
bytes of memory to run, and is as-
sembled to work with SWTPC systems.
There is no memory purchasc require-
ment. Specify which form you would
like (paper tape or magnetic tape
casselte) when you order.

A list of game programs and prices for
a commented assembled source listing.
All the games except onc entitled
“Space Voyage” will run in a 2K
SWTPC 6800 (or any 6800 system
with MIKBUG and 2 K of memory).
Package deals for three different selec-
tions from the list are also available.
Documentation of known SWTPC
6800 problems and bugs. The state-
ment in the newsletter is: “We are
happy to say that after having deliv-
ered the SWTPC 6800 system for over
five months now, we have run across
no problems on the system. There are,
however, some mistakes in the MP-M
and MP-MX instructions on some of
the earlier kits....” |The statement

Clubs and Newsletters Directory

As a summary of the current state of local, regional, and national
organizations, special interest groups, and periodicals of interest to
personal computing people, BYTE will publish a directory in a
forthcoming issue. We would appreciate it if each such organization
would provide a summary of applicable information in the following

list:

The deadline for the directory information is September 15 1976. If
you wish to be certain that the latest information about your club,
newsletter or organization is available, be sure to send this information

to

Name of organization [eg: Silicon Hollow Computer Coven].
Mailing address [eg: PO Box 31, Silicon Hollow, Transylvania

00000] .

Meeting location [eg: Third stump past the 11th sinkhole on the
old Silicon Hollow game trail] .

Meeting algorithm {eg: "‘First Tuesday after the second Wednes-
day before the first full moon of leap years”].

Name of newsletter or publication [eg: Silicon Boule].

Contact person [eg: Witch Hazel].

Contact phone number.
Dues or subscription fees.

Special interests [eg: Computer applications: the automated

swamp].
Other comments.

BYTE

Clubs & Newsletters Directory

70 Main St
Peterborough NH 03458

102

of the first sentence is confirmed by
what we've heard to date at BYTE,
For example, Sol Libes of the ACGN/
in conversation May 1 pointed out
that of several systems purchased by
members in NJ, nearly all were as-
sembled in short order and worked on
initial power up. |

Documentation of additional clock
rates for use with the MP-S serial
interface board of the system. With
this documentation, it is possible to
run the terminal with your SWTPC
6800 at rates of up to 9600 baud,
since nearly every standard data rate is
available from the clock circuit in the
system.

Detailed technical information
abounds: modifications of a previously
published Tic Tac Toe game, modify-
ing the 6800 for 220 VAC operation,
modifying the CT-1024 for European
television (625 line, 50 Hz) operation,
the complete documentation of the
BLKJAK-1 program, uscd to play the
well known game at your terminal (no
assembly listing, just a SF8 byte long
hexadecimal dump), a memory dump
program (assembly listing), etc.

The crowning glory of the whole
newsletter is the complete documenta-
tion of the “Linc Numbering Editor
and Microbasic Interpreter.” These are
provided as complete user documenta-
tion plus fully assembled source
listings. The editor program was
written by Robert H Uiterwyk, and
uscs the MIKBUG ROM for utility
subroutines. The assembly of the
cditor results in a module requiring
hexadecimal 524 bytes, and is as-
sembled with an origin at location
0020 in memory address space. The
Microbasic is written by Robert H
Uiterwyk and Bill Turner. It features
the following language features:

Line numbers are 16 bit integers (1
to 65535)
Line editing is built into the system
along with the following
commands:
NEW clears the program space
LIST lists varying amounts of
the BASIC program
SIZE prints bytes used and bytes
remaining exclusive of variables
RUN executes a BASIC program
immediate execution of un-
numbered statements

The BASIC subset implemented
includes:

16 bit signed integer arithmetic
Variable names A to Z with
subscripting
No string variables
DIM statements: two dimensions
maximum, 255 is largest dimen-
sion
Simple arithmetic expressions
with multiply and divide
LET
relational tests and IF statement
GOTOn
GOSUB n
"RETURN
FOR ...NEXT
PRINT
INPUT
The entire symbolic assembly listing of
Microbasic is given, so that customiza-

AT LAST
A HARD COPY TERMINAL AT AN AFFORDABLE PRICE.
® For personal computing. system applications, or remote 1/0.

* The model iSi-12111 uses a 6800 microprocessor.

e Has "Kansas City" cassette interface.

. . . ® The model iSi-12111 emulates a Teletype® with paper tape
tion is well within the realm of pos- reader and punch. but at either 100 or 300 BAUD and with both
sibility. The memory requirements of RS-232 and 20 MA current loop I/0.
this program are hexadecimal C82 (or ¢ Quiet (Non impact printing)
decimal 3202) bytes, and the origin is ¢ $995 assembled (not a kit)
hexadecimal location 0020 in memory * Small (fits into a standard brief case).
address space. e iSi, providing custom instrumentation for 17 years
je]
The entire contents of this excellent ® Please write for details These will be sold on a first ordered first

delivered basis.

newsletter from SWTPC take up 50 pages. It
is highly recommended reading, both for
BASIC hackers and as a source of useful
information.m

INSTRUMENTATION SERVICES INC.

837 WINNETKA AVENUE NORTH, MINNEARPOLIS. MN S5427
PHONE (812) S4a-BEM8 * TELEX 28-0101

Gome

103

Beie! Dscription

2 L0 Trytoh the mystery ackpot
C wevou Piny acey ducey with the computer Ha Try 10 remove all the pegs from 3 board
D amaw Computer conslructs a maze HMRABL Govern the ancient citystate ol Sumetia
"E ANIMAL Computer guesses ammals and lgarns new HOCKEY Ice Hockey vs Comell
ones from you HORSES Off-teack betting on a horse race
AWARI Ancient game of totating beans in pits HURKLE Find the Hurkle biding on 2 10 x 10 grud
BAGLES Guess a mysiery 3-tigit number by logic KINEMA Dnltin simgle kinematics
BANNER Prints any message on a large banner KING. Govetn a modern island kingdom wisely
BASBAL Baseball game LETTER Guess a mystery lelter - comquter
BASKET Basketball game gives you clues.
BATNUM Matchwits 1n a batile 0! numbers vs LFE John Comway's Game of Lile
the computer LFE-2 Competitive game ol lile (2 or moe
BATTLE Decode a matoix 1o iocate enemy players|
battleship uraz Children’s titerature quiz
BINGD Computet pirnits your card and calis MATHDT Chutdren’s anthmenie doll ysing
the numbers pictures of dice
BLKJAC Blackjack (very comprehensive), Las MNOPLY Monopoly lot 2 playets
Vegas rules MGwmP Locate § Mugwumps hidingona 10x 10
BLKJAK Biackjatk {standard game) gud
BOAT Destroy a gunboal from your submarine NICOMA Computer guesses number you think af
BOMBER Fly World War § bombing missions NIM Chunese game of Nim
BOUNCE Plot a bouncing batl NUMBER Silly number matching game
BowL Bowling ai the neighbiarhood lanes 1CHECK Chail ke
BUUNG Jround Oiympc bowng match CH g g game o temove checkers
BUG Roll dice vs the compuler 1o draw 3 bug ORBIT 1 b J
BuLCOW Guess a mystery 5-digil number vs U';:!:,;I‘: "hng geranden enemy
BILEYE rhl"- t:"ﬂ'w't' mzZa Deliver puzas successfully
ow daits POETRY Computer comy 1y in 4-part
BuLL You're the matados in a chamgionship h"rjnov'vy: poses postry &b
bullfight POET Compute ca dom poet
BUNNY Comguter drawang of the Playboy bunny POKER Poker 9:;m POses fandom poetry
BUZWD Compose your speeches with the lztest WBIC 3 dimensional hicac-toe
buzewords QUEEN Move o single chess queen vs the
CALNOR Calendat to: any year computer
CAN-AM Drive aGroup 7 cat in 3 Can-Am road race REVRSE Order 2 senes of numbers by reversing
Camguter imitates a cashier ROCKET Land an Apollo capsute on the maon
CHECKR Gamme of checkers ROCKTI Lunar Iancing rom 500 feet [wath piat)
CHEMST Dilute kiyptocyanc acd to make 1t ROCKT2 Very comorehensive tunar fanding
harmiess ROCKSP Game of rock, scrssors, paper
CHIEF Silly anthmelrc ol ROWLET European ioulefte table
CHOMP Eat a cookie aveiding the paison prece RUSROV Russian roulene
2 or more ptayers| SALVD Destroy an enemy leet of ships
cviw Fught the Conl War SALVOH Destioy 4 enemy ouposis
CRAPS Play craps {dicel, Las Vegas style SLOTS Slot machine {one-arm bandit}
CuBE Negotiate a 3.0 cube avaiding hidden SNOQPY Pictures of Snoopy
landmines SPACWH Comprehenstve game of spacewar
DIAMND Punts 1-page diamond patteins SPLAT Open a parachute at the last passitle
OicE Summanzes dice ralls moment
H DIGHTS Computet Inies (0 guess digils you STARS Guess a mystery number — stars give
101 BASIC Computer Games is the most popular e s 0 o
i - 00GS Penny arcade dog race STOCK Stock market simulation
bOOk Of comPUter games in the WOr‘d. Every pro EVEN Take obects ram a pile — try to enc with SYNONM Word synoaym dnitl
H an even numbet TARGET Destroy a target in 30 space —
gram in the book has been thoroughly tested and B Semenmber e s o
1 1c41 - N s play ol t0g Plots {am:lies of curves— looks 3.
appears with a complete listing, sample run, and de O Somlagcgame. changesion ppin
F . H . of Xs to Os TICTAC Tictac-loe
scri ptIVE write up. A “ you neEd add Is a BAS'C FOGTAL Prolessional fuolball {very comprehensivet TOWER :nms o Hanai puzle
H ’ FOTBAL High Schoo! football TRAIN 1me-speed-distance quiz
speaking computer and you’re set to go. b i Schoa) oot e man TRP Tiapa mten rombor - computer gwes
GOLF Goll game — choose your clubs and swing youclyes
GOMOKO Ancient board game of logic and strategy 2IMICH Game of 23 raiches — iry nol to take
1 i GUESS Guess a mystery numbes — computer the last one
101 BASIC Computer Games. Edited by David H. e you cloes UGLY Sl pablepiot of anugty woman
1 GUNNER Fue a cannon at a stationary 1arget WAR Caid game of war
Ahl. 248 pages. 8%x11 paperbound. $7.50 plus 75¢ DRy ue s cannon a2 statonan Wiz
1 H HANG Hangtman word guessing game KDAY Facts abou! your birthday
postage and handling ($8.25 total) from Creative oy omaranwad gessng game WoRe s abou v ot
H . H psychiatnst YAHTZE Dice game of Yahtzee
Computing, P.O. Box 789-M, Morristown, NJ 07960. - Herapawmoame 008 BASC progammers nhmare

A Flameless

Jonathan Bondy
16 W Lancaster Av
Ardmore PA 19333

ALUMINUM

C CHANNEL
L, PC

i

SOLDERING IRON
HEATING ELEMENT

Figure 1: A short section of aluminum C
channel attached to the soldering iron heat-
ing element provides the method of simul-
taneously heating all the pins of a 14 or 16
pin integrated circuit flamelessly. The solder-
ing iron should preferably have a 25 W or
greater heating element to provide adequate
heat to all the IC pins.

EXTERNALLY
THREADED

SOLDERING IRON

SOLDERING IRON

INTERNALLY
THREADED

Ralph Droms
30 N Waterloo Rd
Devon PA 19333

BOARD

DIP
IC CHIP

INTERNALLY

! i.——THREADED (cuT

WITH SELF-TAPPING
SCREW)

MACHINE SCREW
<+——— (THRU HOLE
IN TiP)

Figure 2: Depending upon
the type of soldering iron
element, one of these two
methods can be used to
attach the C channel sec-
tion to the element.

104

IC Recycling Trick

Recently, some computer boards became
available to us at a reasonable price (free).
Having stacked them up in a couple of
boxes, we decided that storing just the
integrated circuits rather than the boards
would make much more sense, so we investi-
gated techniques for depopulating the
boards. An article in a previous issue of
BYTE suggested the use of a blowtorch to
heat the pins of the chips. Discovering that
the cheapest propane torch kit we could find
($15 at today’s prices) would have pur-
chased a sizable number of surplus chips, we
pressed on in search of a more inexpensive
device. The final product was a standard
soldering iron (which we already had) with a
specially designed tip.

A trip to the local hardware store pro-
duced a six foot (1.83 m) length of
aluminum C channel for about $2. Cutting
off a piece the length of a 16 pin IC chip
provided us with a tip that can heat all the
pins on a standard 14 or 16 pin dual inline
package simultaneously, as shown in figure
1. We found that our two soldering irons
employed two different methods of attach-
ing the tip to the heating element: Either the
tip was internally threaded and the iron
externally threaded, or vice versa. Dupli-
cating both kinds of threading (external and
internal) was accomplished by use of two
screws which duplicated the thread sizes on
the two irons. One was a self tapping screw
which cut internal threads in a hole drilled
through the aluminum piece; and the other
was inserted into the internally threaded
iron through the hole drilled in the tip.
Figure 2 illustrates the two assembly
methods.

The resulting iron-tip combination al-
lowed us to depopulate a 15 chip board in
approximately 10 minutes (with less than
1% breakage single handed and 0% when one
of us heats and one pulls). Our only problem
is that we have a 5 feet 11 inch (1.8 m) sec-
tion of aluminum C channel left over, so we
will make available a do it yourself “kit”
consisting of an undrilled 2 inch (5.08 cm)
piece of C channel for only 50 cents
(shipping and handling included). Send to
Ralph Droms.®

Its allright here

B Prompt service

% In-depth inventories
I ELECTRONICS for INDUSTRY
LOW, LOW PRICES!

el.eCTr ONICS oo

Offices & Warehause: 10 Alics Street, Binghamton, New York 13904 - Tel.:607-723-3111

SAVE

SAVE

Electrolytic Capacitors

MINIATURE LAMPS

INCANDESCENT LAMPS

CHICAGO MINIATURE LAMPS #387
SAME AS #327 EXCEPT LONGER LIFE
.04 amps. Bulb Style T-1-3/4

28 volts.

Mid-Flange Base.

BRAND NEW BOXED,

per box. 40,000 pcs in stock.
PRICE SCHEDULE
40¢ each

1-99 ..

100 - up ..

g

100

35¢ ea.

IComputer Grade l:anauuur
MALLORY st sﬁ ﬁ!

CG (STANDARD) 85°C Supplied with PVC Insulating Sleeve

Quan. Mfd. vdc Size Each
10000 1100 35 1~25/64 x 2-11/64 $.75
25000 100 350 1-25/64 x 2-11/64 .50
10000 80 400 1-25/64 x 2-11/64 .60

POTTER SUB-MINIATURE

NION INDICATING GLOW LAMPS

wire terminals.
25,000 pcs in stock. Mfd by G.E. Co.
l10¢ each up to 1000 pecs.
each.

1000 pecs &

up 7¢

o
NE-2 neon lamps, with dropping resistor
to operate directly from 115 VAC.
Nominal Watts - 1/17.

T-2 Clear Bulb,

& BRAUMFIELD GENERAL-

RELAYS PURPOSE

TYPE KH 5505 (Identical to KHU17D1l1)
COIL: 24vdc, 650 ohms.
CONTACTS: 4PDT, 3amps at 30vdc or 120 vac

Small rugged DC relay with clear poly-
carbonate dust cover. Contacts are gold
flashed silver.

INDICATOR LIGHTS

BRITE OLO INCANDESCINT LAMPS

BRITE-GLO Incandescent Lamps
Ultraminiaturized Series,

low cost indicator lamp.
Mobile Equipment,

Versatile,

for Stero Amplifiers,
Instrumentation, Computer and Display
Panels, Etc,

High temperature, T 1-3/4 lamps - Metal

Base - Wire Terminals.
creases light output and protects lamp
from damage.

41, 685 pcs - 6.3 volts,

leads.

40,263 pcs
leads.

SALE

- 6.3 volts,

DISCOUNT SCHEDULE

1 - 99
100-499
500-999

1000-

up

=

100,000 hr.life
Ideal

Metal base in-

75 ma, 8" wire
200 ma, 13" wire
25¢ ea.
20¢ ea.
15¢ ea. SALE
12¢ ea.

Mounts by solder terminals or 3-48 stud
5/16" long. Also mounts as plug-in

—~7g
TUBULAR, HIGH RELIABILITY
f N\
SRk -
N
/ —
QUAN. MFD VDC EACH | QUAN. MFD. VDC EACH
600 100 3 .30 1055 30 350 $1.00
375 250 3 .35 246 40 350 1.14
298 500 6 $1.00 967 4 450 .98
299 1000 & 1.00 400 10 450 1.07
571 1200 6 1.02 529 15 450 1.07
375 1500 6 1.10 453 20 450 1.14
313 2000 6 1.11
597 100 12 .60 | METALLIZED PAPER FILM.
4000 50 15 .30
26,000 200 15 .30 QUAN MFD vDC EACH
416 1500 15 1l.10 899 1 100 $.35
350 2000 15 1.10 437 .33 100 .40
2500 10 25 .25 400 1.0 100 .45
1161 2000 25 1.40 1360 .22 150 .40
2600 10 50 .40 820 .022 200 .35
1000 500 50 .80 4200 .033 200 .35
825 100 50 .95 400 .1 200 .40
1099 150 50 -90 771 1.0 200 .40
6349 250 50 .98 417 1.5 200 .40
1942 300 50 1.07 1100 .001 400 .35
10,500 60 150 .70 1100 .0022 400 .40
520 80 150 .90 1600 .022 400 .45
290 300 150 1.00 565 .047 400 .50
476 40 200 1.00 4000 -022 600 .25
409 Loo 250 1.39 389 .05 600 .30
284 200 250 1.50 500 .1 600 .30
255 5 350 .90 600 .2 600 .30
281 10 350 .90 717 .25 600 .30
20,000 4 250 .35 30,000 .01 100 .15
339 8 250 .70 1000 .047 100 .20
400 16 250 .60 291 .22 400 .30

6500 pc in stock, BRAND NEW, while they
last at this price. $1.25 each

LAMINATED PHENOLIC
PLASTIC PANELS

BRAND NEW PHENOLIC SHEETS

Grade LE- Natural

Type - FBE, Mil Spec: 15035, .062" thick

Needed by all experimenters, amateurs and

radio men for insulating parts - terminal

strips - building sets or for research

& development, etc.

Stock # 560 - 6" x 6" x .062" 42¢ each

561 - 6" x 12" x .062 82¢ each

" # 563 - 12" x 12" x .062 $1.58 ea

" # 564 - Full sheets 38" x 47" x .062"
$13.00 each.

HIGH POWER DUMMY LOAD

Mfg. Eastern Microwave. #10-1254...RF Coaxial Load Re-
sistor utilizing water flow to cool and provide a load
resistance of 50 ohms for inputs from DC to 4000 MHz.
Maximum power input is 1000 watts. Requires a flow of
.218 GPM min. per 100 watts of input power; 100 psi
pressure. Compression fittings on water line inlet and
outlet for copper tubing supply lines. Has a Flange
type coaxial fitting, friction type, 13/16" I.D. with
2-1/4" flange. Completely shielded unit of machined
aluminum. Size: 1-5/8" diameter by 5-3/8" long.
Shipping weight, 2 lbs.

5,000 pes in stock, NEW BOXED........$14.95 each......

BRAND NEW QUALITY SHEETS

High-Speed Reset Counter

BARGAINS PRIECISION —==—
—e=— RESISTORS
-

Type RA
ety 1 a1

w08 e 1pecitnd
e acruion smd

These
8 o g w

Tay s0a of e ganvention

T b moiing wesct ey are

Gmpietvly protectsd a3 Viicons toeied Surpaise MILR M

BRAND NEW — FINEST QUALITY

WATTS PRICE
Each

QUAN MFR

10,686 T.I.

3,000 Ele
29,000
75,000
35,000
7000
3000
5700
7900
7200
6600
1800
1000

[
o

e

O H 03 e
LR EEE X RCRSE

TOL.
(3)
1
ctra 1
c 1
. 1
1
1
ctra 1
ctra 1
c 1
c 1
[1
[« 1
c 1

OHMS

191
191
243

1/8
1/8
1/8
1/8
174
172
172
172
172
1/8
1/8
1/8
178

Veeder-Root
4 FIGURE COUNTER MANUAL RESET ’
1AV 1ISVAC

VEEDER ROOT 177604

HSVAC (Rectilier suppliedy. Basic
counter s H13YDC, & walts 4 figure,

Cherry Electrical Products .
—~
These switches are postage AT
stamp sized precision swit-
ches which feature long op-
erating life & high electrical capacity for their size
5 amp, 1/4 HP, 125-250 vac, SPDT, quick dis-connect

terminals. 2,000 pes in stock without lever..75¢ each

2,400 pcs in stock with extended roller lever. 95¢ ea

black on white background. Push button s 93
set. Dims 1.7 87 width 1.1 8" hgh
x 212" deep.

LIGHTED $2.95 Fach
PUSHBUTTON SWITCHES

Unit can be used on 6 v
Yy, or in series for 12 volt
/ LSPST, mom, PC board gold

Zplated pins for wiring or
g-easy installation.

10,000 pcs in stock

MEr: Grayhill widely used on computers, machine tools,
Switch Co. office” machines, guidance cantrol and a
2% x 1k" x 14" wide variety of applications.

Gomputer Grade Capacitors

PHONE ORDERS
607 723 3111

QUAN. MFD.

350 30000
494 &6D000
10l6 25000
527 40000
353 15000
869 15500
277 40000
3l6 74000
375 15000
267 14000
600 10000
529 12500

VOLTS

5
5
6
7
10
10
10
10
12
13
15
16

Instant off-the-shelf 1 o

delivery.
SIZE PRICE EA
1-3/8 x 4-3/16 $1.50
3" x 4-1/2" 1.50
2-1/16" x 4-9/16" 1.50
2" x 5" 1.50
2" x 4-1/8" 1.25
2" x 4-7/16" 1.25
3" x 4-1/2% 1.70
3" x 4-3/4% 2.00
2" x 4-1/2" 1.25
2" x 4-3/8" 1.25
2-1/16" x 4-1/2" 1.25
2" x 4-1/8B" 1.25

)
A3

QUAN. MFD. VOLTS SIZE PRICE EA
252 115600 18 2" x 4-172" $1.25
628 11000 19 2" x 4-1/2" 1.25
1014 8200 25 1-3/8" x 3-1/8" 1.70
10706 1100 35 1-25/64" x 2-11/64" 1.00
4200 750 60 1" % 3-172" .75
792 1500 80 2" x 4-1/2" 1.30
478 450 100 1-7/16" x 2-9/16" 1.00
337 400 100 1-7/16" x 2-1/2" 1.00
200 500 150 2-1/16" x 2-3/8" 1.00
500 750 200 1-1/72" x 4" 1.00
23436 100 350 1-25/64" x 2-11/64" .75
11800 80 400 1-25/64" x 2-11/64" .75

. EENERAL@ ELECTRIC PLAIN POIL TANTALUMS +125° €

TANTALUM CAPACITORS
SPRAGUE

NY.

TYPE 109D
TUBULAR SINTERED-ANODE TANTALEX CAPACITOR
#109D147X9060T2
1620 pcs - 140 uf *10% - 60wdc $2.00 ca.

PLAIN FOIL TANTALUMS +123° €
CENERALEELECTRIC fodlioh it e
EL!II“—’DI.’III![B
3,000 pcs CL3LBELBOMPE, 18af - J5vdc 65¢ each
300 pes CL31BESSOMPE, 55uf - 15vde 85¢ each
non-polarized CL32/33
900 pcs CL33BLO2OMNE, 2.0uf - 75vde $1.00 each

All Orders F.O.B.
Binghamton,

NY State Residents
please add sales tax

Minimum Order $5.00

/MTPH ULTRA TANTALUM

MALLORY e g

10,550 pcs MTP685MO20PID, 6.8uf - 20vde 55¢ each
2,100 pcs MIPLOGMO3OPLA, 10uf - 30vde 75¢ each
1,028 pcs MIP3I36MOLOPLA, 33uf - lO0vde 65¢ each

. TAS SOLID ELECTHOLYTE TANTALUM CAPACITORS
MALLORY

4996 pcs, 4.7uf- :10%, 6vdc, TAS4A7SKO06PLA 35¢ ea
394 pecs, .47uf t 10%, 6vdc, TAS474K006P1A 38¢ ea
1430 pcs, 47uf + 10%, 6vdc, TAS476KO06PIC 40¢ ea
326 pes, 220uf + 208, 6vdc, TAS227MOC6PIG $1.20 ea
285 pcs, 5.6uf + 108, 1lOvdc, TASS65K010P1IC 40¢ ea
4574 pcs, 10uf $10%, 10vdc, TASLO6KOLOPIC 40¢ ea
900 pcs, 15uf +20%, 10vdc, TAS1S6MO1OPIC 40¢ ea
8B7 pcs, .068uf :10%, 20wdc, TAS683K020P1A 51¢ ea
152 pes, 2.2uf * 20%, 20wvde, Sprague 40¢ ea
1457 pcs, .47uf $10%, 35vdc, TAS474KO35P1A 51¢ ea

[t
Address

365 pcs G.E. 40uf,+20%, 50vdc, 1259C
Type: 2K105AR6M. $1.75 each
1168 pcs SPRAGUE, 40uf, $20%, 50wdc, 125°C

BRIGAR ELECTRONICS publishes a monthly flyer
If you want to be placed on our active mail

list,send us your Name

Type: 220D00SA3M. $1.75 each

http:TANTAI.EX

A Es o P. 0. BOX 28810
- - L - DALLAS, TEXAS 75228

TOUCHTONE KEYBOARD
Up YouR ToucTote Kere

By Controls Research. High quality long life switches
with keytops. For encoders, combination locks, etc.

21L02-1 1K LOW POWER
500NS STATIC RAM

TIME IS OF THE ESSENCE

And so is power. Not only are our RAM’s
faster than a speeding bullet but they are now
very low power. We are pleased to offer prime,
new 21L02—1 low power and super fast RAM's.
Allows you to STRETCH your power supply
farther and at the same time keep the WAIT

12 switches and tops, including 0 thru 9. Switch

contacts are independent, allows hook-up to any matrix.
light off. Keytops easily removed.

8 for $17.50 2$f26?5$ 5s.3to

4K LOW POWER RAM BOARD KIT

Imsai and Altair 8080 plug in compatible. Uses low power
static 21L02—1 500 ns. RAM’s. Fully buffered, drastically

reduced power consumption, on board regulated, all sockets $ 8 9 9 5
and parts included. Premium quality plated thru PC Board. [|

THE WHOLE WORKS

Call your BANK AMERICARD or MASTER CHARGE
order in on our
CONTINENTAL UNITED STATES TOLL FREE WATTS:

1-800-527-3460

TEXAS RESIDENTS CALL COLLECT:
WE HOWOR
K i 214/271-0022
(i)
Please call between 8:30 AM and 6:00 PM C.S.T. — Monday
1 M 0 R E T. M E through Friday. You may also call to check stock or just ask a
question. However, only B.A.C. and M.C. orders will be accepted.

We do not ship C.0.D. (See terms of sale on other page.)

S.D. SALES CO.

P. 0. BOX 28810 DALLAS, TEXAS 75228

ALARM CLOCKKIT SIX DIGIT LED

Thousands of hobbyists have bought and built our original clock kit
and were completely satisfied. But we have received many requests
for an alarm clock kit with the same value and quality that you have
come to expect from S.D. So, here it is!

THE KIT INCLUDES:

1 Mostek 50252 Alarm Clock Chip
Hewlett Packard .30 in. common cathode readouts.

NPN Driver Transistors
$9.95

Switches for time set

Slide Switches for alarm set and enable
PCB - 3.00
XFMR - 1.50

Filter Cap

IN4002 Rectifiers

IN914 Diode

.01 Disc Cap

Resistors

Speaker for alarm

LED lamp for PM indicator.

—h
—_a = aAa—LONOO

MOTOROLA POWER DARLINGTON — $1.99

N STOC
Like MJ3001. NPN 80 V ‘IOA HFE 6000 TYP. TO-3 case.
We include a free 723C vol(. reg. wi(h schematic for a power supply.

SPECIAL — $1.99

MOTOROLA RTL IC’S
Brand new, factory prime. Hard to find, but still
used in a variety of projects. (See the RTL Cook-
book by Howard W. Sams.)

MC724P-59¢ MC780P-89¢ MC791P-69c¢
MC725P-59¢ MC785P-49c¢ MC792P-59¢
MC764P-49c MC787P-89c¢ MC799P-59¢
MC767P-69¢ MC788P-49¢ MC9704P-89c
MC771P-48¢ MC789P-59c MC9709P-69¢
MC775pP-89¢c MC790P-89c MC9760P-68c

Py

3 DIGIT LED ARRAY — 75¢

MV-50 TYPE LED's

by LITRONIX by LITRONIX
10 for $1 DL33IMMB. 3 MAN-3 Size Readouts in one
Factory Prime! package. These are factory prime, not

retested rejects as s0ld by others.
compare this price! 75¢ 3 for $2.

SALE ON CUT LEAD SEMICONDUCTORS
Leads were cut for PCB insertion. Still very useable.

60 Hz. Crystal Time Base

FOR DIGITAL CLOCKS $5 95

S. D. SALES EXCLUSIVE!
KIT FEATURES:

. €0 Hz output with accuracy comparable to a digital watch.
Directly interfaces with all MOS clock.chips. a 5\0-0
Super low power consumption (1.5 Ma typ.) 1\80 €0

Uses latest MOS 17 stage divider IC. ')
Eliminates forever the problem of AC line glitches.

Perfect for cars, boats, campers, or even for portable
clocks at ham field days.

G. Small size, can be used in existing enclosures.

TmMoow>

Kit includes crystal, divider IC, P.C. Board plus all other necessary
parts and specs.

INO14/1N4148 100/82
1N4002 1 Amp 100PIV. 40/81
1N4745A16VIW 2Zener 20/81
EN2222 NPN Transistor................., 25/%1 ﬁl;‘l'ugsg
EN2907 PNP Transistor................. 25/81 goME ARE
2N3904 NPN Driver Xstr. 25/81 "HousE #
2N3392 GE Pre-amp Xstr. 25181
C103Y SCR.BOOMA.60V. 10/$1
SLIDE SWITCH ASSORTMENT
Our best selier. Includes miniature and slandiard <
sizes, single and multi-position units. All now gﬁ

first quality, name brand switches. Try one
and you'll reorder more. Special —
{Assortment)

12 Ior 31

DISC CAP ASSORTMENT
PC leads. At least 10 different
values. Includes .001, .01, .05,

plus other standard values.

60 FOR $1

UPRIGHT ELECTROLYTIC CAPS
47 mfd 35 V-10/$1 68 mfd 25V-8/$1
Brand new by Sprague. PC leads.

RESISTOR ASSORTMENT om—

1/4W 5% and 10%. PC leads.
A good mix of values. 200/$2

1000 MFD FILTER CAPS
Rated 35 WVOC. u,mm style with P.C. i
lor hobb!

MOS 4 DIGIT COUNTER I C

All in one 28 PIN DIP. 4 Decade counters, latches, MUX circuits, display decoders, etc.
Features; 5VDC operation, 25 MW power consumption, BOTH 7 segment and BCD outputs.
Perfect for DVM's, frequency meters, tach's, etc. Can be cascaded for more digits. #5002 -
$8.95.

Most popular value up
to $1.19 each from trmehln type electronic parts
stores,S.D. Special 4 for $1

FAIRCHILD BIG LED READOUTS

A big .50 inch easy to read . Now In sither anode .
or common cathode, Take your pick. Super low curment drain, only 5 MA per
segment typlcal.

8008-1 MICRO PROCESSOR

New Units. High speed 8008. Almost twice as fast as units sold by others. Still a very versatile
and widely used MPU. No data book, only pinout data included at this price. $12.50
LIMITED QTY.

YOUR
FND - 510 Common Anode CHOICE
FND - 503 Common Cathode $1.50 ea. 6 for $7.50

DUAL 741C (5558) OP AMPS
Mini dip. New house numbered units
by RAYTHEON.

4 FOR $1

1101 A RAM IC
256 X 1 BITS. Perfect for 8008 or small systems such as tetephone dials that do not require a
lot of memory. Special 59¢c. 8 FOR $4.

FEY'S BY TEXAS INSTRUMENTS — SPECIAL 5 for 31
#T1S-75 but with an intermal house number. TO-92 plastic case. N.

| Junction type FET
S. D. SALES CO.

C& K MINI TOGGLE SWITCH
#7103 SUB MINI SPDT Center OFF. Special - 99c.
TTL INTEGRATED CIRCUITS

19¢ 7476 — 35c 74153 — 75¢
19¢ 7480 —~ 49c 74154 — 1.00

7400 —
7402 —

7430 -~ 18c
7432 — 34c

Texas Res. add 5% tax. Posiage
rates went up 30%! Please add 5%
of your total order to help cover

shipping.
ORDERS UNDER $10
ADD 75¢c HANDLING. - -

We do not sell junk. Money back
P.0. BOX 28810

on every item. No C.0.D.
DALLAS, TEXAS 75228

T K —

7437 39c
7438 39¢

29¢ 7483 - 95¢ 74157 - 75¢

aac 7485 — 95¢c 74161 - 95¢

19¢ 7440 19¢ 7486 45c 74164 — 1.10
7447 — 85c

74004~ -
7490 — 65¢ 74165 - 1.10
29c 9448 _ gsc _

74504 —
7604 —
7406 —
7408 —
7410 -
7411 —
7413 —
7420 —

o 7492 — 75¢ 74174 — 95¢

7451 19¢ 7495 — 75¢ 74181 — 2,50
19¢ 7453 - 19¢ 7496 — 89c 74191 - 1.25
29¢ 7473 39¢ 74121 — 38c 74192 — 1.25
50c 7474 — 35c¢ 74123 — 65c 74193 - 1.00
19¢ 7475 ~ 69c 74141 — 75¢ 74195 — 69c¢

E N R A O A

ORDERS OVER $15 CHOOSE
$1 FREE MERCHANDISE

FOREIGN ORDERS MUST BE PAID IN U,S. FUNDS

What is AMSAT?

AMSAT is the name of one of the most exotic technical activities
practiced by amateur radio operators: building and orbiting communications
satellites. The Radio Amateur Satellite Corporation is a joint project of
amateur radio groups all over the world. The practice is fo design and build
small satellites which can be carried “piggyback’ on a NASA launching of
other satellites. These “OSCAR” (Orbiting Satellite Carrying Amateur Radio)
vehicles contain facilities for receiving and retransmitting messages originating
from amateur radio stations around the world. To find out about AMSAT,
contact AMSAT at PO Box 27, Washington DC 20044.

AMSAT 8080 Standard Debug Monitor:

AMS80 Version 2

Richard C Allen WSSXD
4648 Spruce St
Bellaire TX 77401

Joe Kasser G3ZC2Z
11532 Stewart Ln
Silver Spring MD 20904

Table 1: List of AMS80 monitor commands.

A Address: examine/change the contents of a
memory address location.

Examine current location.

LF Examine next location (LF = line feed
character).

Examine previous location {minus sign).

D Dump an area of memory on the Teletype.

F Fill a block of memory with a constant.

G Go to (and start executing from) a memory
location.

M Move a block of memory.

X Set up an execution address.

J Restore all registers, then jump to {and start
executing from) a memory location.

R Examine/change the contents of the
registers. Follow R with mnemonic of a
particular register if desired.

P Punch the contents of memory on paper
tape via the Teletype in Intel hexadecimal
format.

E Punch an end of file mark on the tape.

L Load a paper tape (previously punched in

Intel hexadecimal format) into memory.
N Punch 100 nulls on the paper tape.

CR Terminate sequence of commands (CR =
carriage return character).

108

This monitor or debug package resides in
low memory in an 8080 system. It is
designed as a minimum system debug
package.

The source code (see listing 1) contains a
large number of comments, explaining in
detail what is being done in each routine, so
it is not discussed in great detail, but just
summarized in a few words.

The monitor contains interrupt vectors,
utility subroutines and a command sequence
which allows the contents of memory loca-
tions and the 8080 registers to be examined
or changed. Commands are listed in table 1.
The utility routines are also available for
incorporation in user programs.

Changes to memory and registers are
made through the system console which
might be a Teletype or CRT terminal. As
presented, the monitor includes a listing of
the Teletype routines used to drive the
system for which it was configured. These
routines will have to be changed to conform
to the hardware of a particular user system.

Utility Subroutines

The utility subroutines are located within
the monitor. A jump table is used to
interface these routines to the user pro-
grams. This jump table is located at hexa-
decimal location 40. This jump indirect
technique adds a very small overhead to the
total execution time of a user program,
which in practice is hardly ever noticed. It
also ensures that in the event of later
versions of the monitor being used in a
system, programs already developed will still
run. This is because when the monitor is
changed (to improve it, to add a function
such as a cassette interface driver, or just to

eliminate a bug) the actual locations of the
subroutines may change, but the location of
the jump table will not.

For example, a user routine calculating
and printing out spacecraft orbits will use
the instruction CALL @TYPE in many
places. If that user then gets a later version
of the monitor in which the location of the
TYPE routine has changed, the program will
still run, because the location of @TYPE has
not changed, but the jump instruction at
that location calls the new position of
TYPE. If @TYPE had not been used as an
interface to the user program, the user
would have had to reassemble his program so
that his CALL TYPE instructions would
locate the subroutine in the new location.

The following utility routines are
available:
TYPE types an ASCII character from the
A register.

GETCH gets a character from the Tele-
type (or terminal) to the A register.
CHIN gets a character from the Teletype,
echoes it to the Teletype, strips off the
parity bit, and ends with the character

in the A register.

MSG prints an ASCIl message on the
Teletype; the message must end with a
FF (all ones). The message address is
passed in the H and L registers of the
8080 processor.

CRET types a carriage return/line feed on
the Teletype.

SPACE types a space character.

THXN types the 4 low order bits of the A
register as a hexadecimal ASCII
character.

THXB types the contents of the A
register in as a two digit ASCII hexa-
decimal representation.

THXW types the contents of the HL
register pair in as a four digit ASCII
hexadecimal representation.

GHXN gets a hexadecimal nybble to the
A register (1 keystroke).

GHXB gets a hexadecimal byte from the
Teletype to the A register (2 key-
strokes).

GHXW gets a hexadecimal 2 byte address
to the HL register pair (4 keystrokes).

STORE stores a byte of data in memory,
with check.

NEGDE negates the contents of the DE
register pair.

PWAIT types “PAUSE” and waits for
any character from the keyboard.

OK? types “OK?”, and waits as in
PWAIT. A space character means go
ahead or OK; any other character
causes an abort and a return to the
monitor.

Interrupt Handling

The monitor provides for seven interrupts
as well as the initial reset. Each interrupt
service routine must be told where the
service routine is located in upper memory.
The addresses of these routines are stored in
a vector table located in programmable
memory. These vectors are located and
loaded into the HL register pair by the
service routines after which the proper
branch is executed. The monitor does not
reset the 8080 interrupt disable flag or any
external interrupt status ports. These opera-
tions must be part of the user interrupt
service routines. The service routines do not
change the contents of any of the 8080
registers, so that they are available and can
be saved by the user as needed.

10 Routines

The monitor is written so that any
Teletype 10 routines can be used as long as
they are located at GETCH and TYPE. The
print and punch routines also operate the
Teletype, and include automatic turn on and

Listing 1: The complete
AMS80 monitor listing.
This is a photo reproduc-
tion of an assembly of the
monitor, version 2.0.

TITLE 'AMS80 - AmSAT STANDARD 8080 MUNITUR, Vv2.0'

AMSBO -~
VERSION 1.0, 09NOVTS
RICHARD C. ALLEN, W55XD

4648 SPRUCE STREET
BELLAIRE, TEXAS 77401

L A R N

MODIFIED VERSION OF AMS80 Vi.0

3 JOE XASSER GJZC<
11532 STEWART LANE
SILVER SPRING, MARYLAND 20904

TELs 301-622-2194

SATELLITES.

D I I e i S Uy

AMSAT STANDARD B080 MUNITUR

THIS MONITOR IS A MINIMUM BOBO SYSTEM MONITOR
FOR USE BY AMSAT MEMBERS. IT PROVIDES THE BASIC
STRUCTURE NECCESSARY FOR 8080 DEBUG AND ALSO A
STANDARD BASE FOR AMSAT MEMBERS USING THE 8080.

TH1S STANDARD BASE WwiLl ALLOW PROGRAMS
TO BE USED BY ALL AMSAT MEMBERS AND AID IN THE
TRANSMISS108 OF PROGRAM MATERIALS VIA THE OSCAR

THE ROUTINE ALLOWS FOR MEMORY EXAMINE AND MODIFIY,
USER INTERRUPT/RST VECTORS. AND VARIOUS

TELETYPE SUPPORT ROUTINES TO LOAD AND DUMP MEMORY
IN A STANDARD FORMAT (SAME AS THE INTEL FORMAT).

H
) DEFINE THE SYSTEM MEMORY PARAMETERS

H

0000 ROM EQU O
ocoo RAM EQU OCOOH
0Do0 STACK EQU RAM+256

JSTART OF READ-ONLY=-MEMORY
3START OF READ-®RITE MEMORY

3TOP OF MONITOR STACK

3 AND END OF MONITOR RAM

3 DEFINE TTY CONTROL CHARS
3

3CARRIAGE RETURN

3 TAPE OFF COMMAND

Text continued

3PUNCH OFF COMMAND

000D CR EQU ODH

000A LF EQU 0AH JLINE FEED

007F RBO EQU 7FH JRUB-OUT

0014 TOFF EQU 14aH

ools TON EQU 1I8H JTAPE ON COMMAND
0013 XOFF EQU 13H

o011 XON ZQU 11H

109

3PUNEH ON COMMAND

on page 122

http:SATEl.LI

3]
3 START OF SYSTEM } BEGIN MONITOR
[

0000 ORG ROM
EXEC1 JMALN ENTRY INTO EXEC-80 BEGINI
0000 22120C SHLD SVHL 3SAVE HL 0070 21)D0C LXl H,THMPA 3SET PSEUDO
0003 C37000 JMP BEGIN 3 AND BEGIN 0073 3600 MVI M,0 } CARRY TO O
0006 7105 D ENDROM JPAD BYTES ONLY 0075 D27A00 JNC $+5 3 NO CARRY ON INPUT
0078 3601 MVE M. JPSEUDO CY T0 |
H 007a Kt POP H JPOP CALL ADDRESS IF ANY
5 DEFINE USER INTERRUPT/SUBROUTINE VECTORS 007B 220E0C SHLD SVPC 3 AND SAVE PC
) 007E 2)FEFF LXl H,-2 JFETCH SP
0081 39 DAD SP 3 ADJUSTING FOR POP
UINT MACRO VECT 0082 22100C SHLD SVSP 3SAVE USER STACK POINTER
PUSH H JSAVE HL 0085 311A0C LXl SP,SVA+l 3SET SP FOR REGISTER SAVE
LHLD VECT 3 FETCH USER VECTOR 0088 FS PUSH PSW JSAVE A»PSW
XTHL JPUT ONTO STACK RESTURING HL 0089 C5 PUSH B 3SAVE BC
RET J1GO TO USER PROC 008A DS PUSH D JSAVE DE
Dw 0 IPRD 0088 21180C LXI HsSVF JPOINT TO SAVED PSB
ENDM 00BE 7E MOV A,M 3 ALD FETCHIT
0C8F E6FE ‘ ANI OFEH JZERO CY
RS1t UINT RSTI 3RST 1 0091 a7 MOV BsA 3 AND SAVE
0008 ES PUSH H 3SAVE HL 0092 3a1D0C LDA THMPA 3GET INPUT SAVED CY
0009 2A000C LHLD RST1 3 FETCH USER VECTOR 0095 BO ORA B } AND INSERT
000C E3 XTHL 3PUT ONTO STACK RESTORING HL 0096 77 KOV M,A SRESTORE PSB ®ITH OK CY
000D C9 RET 3GV TO USER PHUC 0097 310000 LXI SP;STACK 3SET SP TO EXEC STACK AREA
000E 0000 Dw O 1PAD 009A 31EAOA LX] H.MO 3TYPE ENTRY
009D CD18O1 CALL MSG) MESSAGE
RS21 UINT RST2 SRST 2
0010 ES PUSH H }SAVE HL 4
0011 2A020C LHLD RST2 5 FETCH USER VECTOR 3 NEXT MONITOR COMMAND
0014 E3 XTHL 3PUT UNTU STACK RESTORING HL 3
0015 C9 RET GO TO USER PROC
0016 0000 oW 0 JPAD 00A0 31000D NEXTt LXI SP,STACK JRESTORE SP
00A3 2iF904 LXI H,M1 ITYPE
R531 UINT RST3 JRST 3 00A6 CD1BO1 CALL MSG } PROMPTER
0018 ES PUSH H 3SAVE HL 00A% CDOGO1 CALL CHIN JGET COMMAND CHAR
0019 2A040C LHLD RSTJ 3 FETCH USER VEC!ux 00AC &7 MOV B.A 3 AND SAVE COMMAND
001C EJ XTHL JPUT ONTO STACk RETTORING HI 3
001D €9 RET 36U TO USER PROC 3 SEARCH OPERATION TABLE FOR COMMAND
001E 0000 Ds 0 §PAD 3
0CAD 21CFO0 LXI H,OPTAB 3FETCH TABLE VECTOR
RSa1 UINT RST4 IRST 4
0020 ES5 PUSH B JSAVE HL 0080 7E SRCHI MOV A,M 3GET TABLE COMMAND BYTE
0021 2A060C LHLD RS5T4 4 FETCH USER VECTOR 0081 FEFF CPI -1 JCHECK FOR END OF TABLE
0024 E3 XTHL 3JPUT ONTO STACK RESTORING HL 00B3 CACO00 JZ ILLEG IMUST BE ILLEGAL INPUT
00es C9 RET 31GO TO USER PROC 00B6 BS caP B JCOMPARE TO INPUT
0026 0000 DV O JPAD 00B7 CAC900 JZ FNDCM $FOUND COMMAND
008A 23 INX H JBUMP TO
RSS1 UINT RSTS JIRST 5 00BB 23 INX H 3 NEXT
0088 ES PUSH H }SAVE HL 008C 23 INX H 3 COMMAND
0029 2A080C LHLD RSTS 3 FETCH USER VECTOR 00BD C3B0O0C JMP SRCH JAND CONTINUE
002C EJ XTHL JPUT ONTO STACK RESTORING HL
008D C9 RET)JGO TO USER PROC 3
002E 0000 bw 0 IPAD 3 UNDEFINED COMMAND, TYPE ERROR MESSAGE
i
RS63 VINT RST6 JRST &
0030 ES PUSH H JSAVE HL 00CO 210005 ILLEG: LXI «H.»Me 3 UNDEFINED
0031 2A0A0C LHLD RST6) FETCH USER VECTOR 00C3 CDIBO! CALL MSG J MESSAGE
0034 E3 XTHL JPUT ONTO STACK RESTORING HL 00C¢ C3A000 JHP NEXT }TRY AGAIN
0035 C9 RET IG0 TU USER PROC
0036 0000 De 0 JPAD 3
3 FOUND COMMAND, NOW FETCK ADDRESS AND EXECUTE COMMAND
RS7: UINT RST? JRST 7 f}
0038 ES5 PUSH H JSAVE HL
0039 2A0COC LHLD RST? 3 FETCH USER VECTOR 00C9 23 FNDCM1 INX H IBUMP TO LOW ADDRESS BYTE
003C EJ XTHL PUT ONTO STACK RESTORING HL 00CA SE MOV E,M i AND FETCH IT
003D C9 RET GO0 TO USER PROC 00c8 23 INX H 3GET MIGH
003E 0000 Dw 0 IPAD 00CC 56 MOV D, M 3 ADDRESS BYTE
00CD EB XCHG JADDRESS TO HL
00CE E9 PCHL 3 GOTO COMMAND PROCESSOR
3
3 MONITOR SUPPORT SUBROUTINE VECTORS]
3 OPERATION DECODE/DISPATCH TABLE
JUSER UTILITY BUBROUTINES 3
00CF al OPTAB1 DB ‘A°* 3 COMMAND
s 00D0 C101 Dw GETAD 5 TO GET ADDRESS
H THE FOLLOWING SET OF JUMPS ARE PRUVIDED SO
3 USER PROGRAMS CAN REFERENCE COMMON ENTRY POINTS 00De 0D D8 CR 3COMMAND
3 TO THE VARIOUS ROUTINES. THESE LOCATIONS WwILL 00D3 A000 D NEXT } EFFECTIVE NOP
3 REMAIN CONSTANT WHILE THE ACTUAL LOCATION OF EACH
5 ROUTINE MAY CHANGE FROM ONE REVISION LEVEL TO THE 00DS 2E DB ‘.’ ;COMMAND
: NEXT. 0006 DIOI Db LOCAT J TO EXAMINE CURRENT LOCATION
3 THE CALLING SEQUENCE FOR EACH SUBROUTINE 00D8 OA DB LF 3 COMMAND
3 REMAINS THE SAME AS DEFINED IN THE LISTING, WITH 00D9 F601 D¥ NXLOC J TO EXAMINE NEXT LOCATION
3 ONLY A SLIGHT EXECUTION TIME OVERKEAD FOR THE
3 EXTRA JMP. 000B 2D DB *-" 3 COMMAND
H 00DC 0CO02 DV LSTLC)} TO EXAMINE PREVIOUS LOCATION
0040 €35705 @TYPE: JMP TYPE JTYPE A CHARACTER FROM ‘A° O00DE a4 DB ‘D’ $ COMMAND
0043 C36605 @GETCH: JMP GETCH JGET CHAR TO A (NQ ECHO) 00DF 1DO2 Dw DUMP 3 TO DUMP MEMORY AREA
0046 C30001 OCHINt JMP CHIN JGET CHAR TO 'A' WITH ECHO
3} ¢ PARITY SET OFF) OQE! 46 DB ‘F* 3 COMMAND
004% C31B01 eMSG: JMP MSG JTYPE MSG» POINTER IN HL 00E2 CBRO2 D FILL } TO FILL MEMORY
3 (MSG TERMINATED BY OFFH >
004C C32Doi WCRET: JMP CRET JITYPE CR, LF, RUB-0UT 00E4 47 DB 'G" 3JCOMMAND
00A4F C33A01 @SPACEt JMP SPACE JTYPE A SPACE 00ES 7C02 Dw GOTO 3 TO GOTO MEMORY LOCATION
0052 C34F01 @THXAN: JMP THXN 3TYPE B3-BO OF "A’ IN HEX
- 3 ¢ ONE ASCLI CHARACTEK > 00E?7 &D DR *M* 3 COMMAND
0055 €34201 OTHXB:t JMP THXB STYPE *A* IN ASCII-HEX 2 CH 00E8 ACO2 Dw MOVE } IO MOVE AREA OF MEMORY
0058 C36001 ®THXwW: JMP THXW JTYPE "HL® IN ASCII-HEX 4 CH
0058 CI6BO1 ®GHXN1 JMP GHXN 3GET HEX NIBBLE TU B3-BO ‘A’ O00EA 58 DB *X°* 3 COMMAND
O0SE C38201 @GHXBt JMP GHXB JGET HEX BYTE FROM TTYL > ‘A* OCER 8402 Dv GETXA } TO GET XEQ ADDRESS
0061 CI9S0% @GHXWI JMP GHXb 3GET HEX WORD TO HL
0064 C3BOOI @STORE: JmP STORE JSTORE A BYTE M,A ®ITH CHECK O0ED aA b *u* 3 COMMAND
0067 C31302 ONEGDE: JMP NEGDE INEGATE THE DE REGISTER Q0EE a202 Dw JuUMP 5 TO JUMP TO MENORY LOCATION
006A C30C04 OPWAIT: JMP PRALT FTYPE 'PAUSE' AND WALT FOR
i AN7 CHARACTER ON TTYI 00FD S2 DB °R* JCOMMAND
006D C3BEO2 @OK7: JMP OK? JTYPE * OK? ' AND wAIT FOR 00F) F202 D REGEX 3 REGISTER EXAMINE
3 SPACE IF OKs OIHERS eILL
3 PRINT ABURT MS5G AND RETURN 00F3 S0 DB *P' 5 COMMAND
5 TO MONITOH. 00Fa A003 D PUNCH 3 PUNCH MEMORY

110

Creative Computing

Magazine

A bi-monthly 88-page magazine for students,
hobbyists, and anyone curious about computers.
Fiction, articles, humor about computers,
cybernetics, careers, building info., etc. Emphasis
on games, puzzles, and projects. Contemporary,
non-technical approach. Subscription. $8.00 pp.

Games & Puzzles Issue of

Creative Computing

88 pages of games and puzzles for pocket
calculators, computers, and humans. "Beating the
Game,” “"Computer Chess," “Hunting a Wumpus
inaCave,"” building your own computer, reviews of
24 games, books, and much more! $1.50 pp.

Futures Issue of Greative Computing

Artificial Intelligence (Bertram Raphael, Herbert
Dryfus, etc.), Extraterrestrial Intelligence (lsaac
Asimov, Martin Harwit, etc.}, microprocessors,
videodiscs as an ultimate computer input device, 4
new games, and more. 88 big pages! $1.50 pp.

Artist and Gomputer

A high-quality, 4-color book edited by Ruth Leavitt
which displays the work of 35 internationally-
known computer artists. Each artist describes his
or her work in non-technical terms. 140 il-
lustrations. $4.95.

ISN'T 1T TIME YoU
ORDERED SOME

CREATIVE
CURIPUTING
aTUHF!!

TODAY !

The Best of Creative Computing
A 328-page book featuring stories by Isaac Asimov
and others; articles on cybernetics, robots,
computer crime, privacy; computer games such as
Star Trek, Rabbit Chase, Magic Square, Madlib,
and 14 more; super computer graphics; cartoons,
reviews; poetry; and more! $8.95,

Creative Computing T-Shirt

Albert Einstein portrait produced by Blocpix™
process. Scarlet trim, black design. Available in
adult sizes: S, M, L, XL. $4.00 pp.

Mr. Spock Gomputer Image
Big 17x22" computer scannerimage. Heavy stock.
Comes in strong mailing tube. $1.50 pp.
Star Trek People Computer Images

Six 8%2x11 computer images on heavy stock of
Kirk, Spock, McCoy, Scott, Chekov, and Uhura,
$1.50 pp.

101 BASIC Computer Games

A collection of 101 games in BASIC, each one with
a complete listing, sample run, and write -up. 256
pages. $7.50.

Morristown, N.J.07960, U.S.A.

]
Please send me the following: 1
Item) Price :
1

]

]

1

]

]

]

]

]

1

!

1

]

]

Shipping (books only) $1.00 1

All orders outside U.S.A. add $1.00

New Jersey residents add 5% sales tax :
Total 1

(OCash, check, M.O. enclosed :
OCharge my Bankcard (minimum charge $15) :
[OBankAmericard [OMaster Charge :

[

Acct. No.]

]

I

Expiration date. Mo. Yr.]

)

1

Name :
[}

Address :
]

!

]

.)
City :
}

State Zip :
R .]
Greative Computing, P.0. Box 789-M, !
1

1

1

DOIT NOW...
SUBSCRIBE TO BYTE

Many issues of BYTE are already completely sold
out. Don’t take a chance of missing any of the terrific
articles planned for future issues. Subscribe today. Use
the pullout postcard in this issue or the form below.

Please allow six weeks for processing.

{Artwork of this doodle supplied by Richard Lerseth)

I'd Rather BYTE than BARK . ..

e s et = - - - ————— - - — A - D SR D A - = = == —— - —-— - - -]

E Name i

i
i Address §
; City State Zip §
i O Bill me O Bill MC BAC # Exp. Date E
:: BYTE 70 Main Street Peterborough, NH 03458 §
! o

11

00Fé&
00F7

o0or9
O0FA

00FC
00FD

QOFF

0100
olo2
0105
o108
010A
0108
0l0E
010F
o118
0113
0l14
0118
o117
olla

o118
ot1C
01D
OLiIE
0180
0183
0li86
0187

0124
o1ap
012C

al8p
012EF
0131
0134
0135

0136

013A
0138
013D
Olao
0141

as
1804

4ac
6804

4E
SD0A

FF

F$

ES

"
FEFF
CA2A01
CDS70S
a3
Clipol

| 43
F1
c9

ES
213601
cDiBO!Y
El

c9

ODOATFFF

rs
JEQ0
CD5705

c9

DB ‘E’ 3COMMAND

D¥ PEND 5 PUNCH END-OF-FILE
DB ‘L* §COMMAND

DW LOAD 3 LOAD MEMORY

DB 'N° 5 COMMAND

D¥ NULL 3} PUNCH NULLS

DB -1 JEND OF TABLE CODE

]
3 CHIN - ROUTINE TO INPUT ONE CHARACTER,
3 STRIP OFF PARITY, AND ECHO 1F ABOVE
3 A SPACE (l.E., NOT CR» LFs, ETCs)
3
J CALLING SEQUENCE .
3
) CALL CHIN JCHARACTER IN
3 von JRETURAN AFTER ECHO STARTED
3 JWITH CHAR +ANDe TFH 1IN ‘A‘
3
CHINY MVl A,-1i JISET ECHO
STA ECHO 3} FLAG ON
CHINNt CALL GETCH JOET CHARACTER
ANl TFH SSTRIP PARITY
PUSH PSW JSAVE DATA
LDA ECHO 3 AND CHECK
ANA A J} ECHO FLAG
JNZ 3¢5 JECHO SET
POP PSW JECHO NOT SET
RET 3 SO RETUAN
POP PSW SRESTORE DATA AND ECHO
cP1 * * JCHECK FOR CONTROL
CNC TYPE JITYPE IF »= SPACE
RET JRETURN
3
} MESSAGE PRINT ROUTINE
H
3 CALLING SEQUENCE «»»
)
3 LXI HsADRESS JADDRESS OF MESSAGE
3 CALL NS8 JCALL ROUTINE
’ Yy JRETURN HERE AFTER LAST CHAR
3 3 INITIATED, ALL REGISTERS
H J PRESERVED
3
nses PUSH PSW JSAVE PS¥
PUSH H 3SAVE HL
MNXT HOV AN JGET A CHARACTER
CPI -1 JCHECK FOR 377Q70FFH/~-1 TERWNTR
JZ MDONE $FOUND THEI TERMINATOR
CALL TYPE 3TYPE THE CHARACTER
INX H $BUMP MEM VECTOR
JMP MNXT 3 AND CONTINUE
MDONE: POP H JRESTORE HL
POP PSW 3 AND PSW
RET JEXIT TO CALLER

3
3 ROUTINE TO TYPE CR,

LF, RBO
]
3 CALLING SEQUENCE e+«
]
] CALL CRET
3 ces JRETURN HERE WITH ALL
3 JREGISTERS PRESEKRVED
]
CRET1 PUSH H 3 SAVE HL
LXI H,CRMSQ JADDRESS OF CRLFRBO MSG
CALL MSG JTYPE IT
POP H JRESTORE HL
RET 3 AND RETURN
CRMSGY DB CRsLF»RBO.,-1
3
3 ROUTINE TO TYPE ONE SPACE
3
3 CALLING SEQUENCE a..
3
3 CALL SPACE
H “ee JRETURN HERE
3
3 ALL REGISTERS PRESERVED
3
SPACEs PUSH PSW 3SAVE A,PSB
Nyl A, 3GET A SPACE
CALL TYPE 3 AND DO IT
POP PSW 3RESTORE PSVW
RET JAND RETURN

3 .
3 ROUTINE TO TYPE VALUE IN 'A°' IN HEX ON TTY

3
CALLING SEQUENCE s«

]

3

3 LDA DATA JDATA BYTE IN °‘A°
H CALL THXB JTYPE IN HEX

3 “on JRETURN HERE

3

3

ALL REGS PRESERVED

112

gl42
0143
0144
0145
0146
o147
0l4A
OlaB
Ol4E

014F
0150
0158
0154
0157
0159
0158
015E
O1SF

0160
036l
0168
0165
o166
0169
ol16a

0168

016K
0170
o1
01173
0176
o178
0179
0178
017C
017D
017F
0181

oi18g
01835
0186
0187
o188
o189
018A
0188
018C
018F
(334
0193
0194

FS
OF
OF
oF
OF
CDaFO1

CD4aFoO1
ce

FS
E6OF
FEOA
DAS5901
ce0?
C630
CDS705
Fl

ce

CD6BOY
D8
cs
o7
07
07
a7
a7
cDeao1
DA9301
80
ci
c9

THXB3

e e e

PUSH PSW 3SAVE AsPSB

RRC JSHIFT

RRC 3 TO

RRC J LEFT

RRC 3 NIBBLE

CALL THXN 3 TYPE HEX NIBBLE
POP PSw JRESTORE DATA

CALL THXN JTYPE RIGHT NIBBLE
RET 3 AND EXIT

ROUTINE TO TYPE ONE ASCI!I CHARACTER REPRESENTING
BITS 3-0 OF 'A* IN HEX

CALLING SEQUENCE s«

H
3 LDA DATA JDATA NIBBLE IN BITS 3-0
H CALL THXN JTYPE NIBBLE IN HEX
] ves JRETURNS HERE
H
5 ALL REGS PRESERVED, AND CONTENTS OF °'A*' BITS 7-4
3 ARE NOT SIGNIFICANT AND ARE 1GNORED-.
3
THXN? PUSH PSW 3SAVE PSW
ANI OFH JISOLATE NIBBLE B3»B0
CPL 10 JSEE IF > 9
JC 8¢5 JNIBBLE <= 9
ADI 7 JADJUST ALPHA CHAR
ADL *0* J ADD IN ASCII O
CALL TYPE JAND TYPE THE NIBBLE
POP P5W JRESTORE PSW
RET 3 AND RETURN
H
3 ROUTINE TO TYPE A WORD IN HEX
3
3 LHLD WORD JWORD IN HL
] CALL THxW JTYPE IT IN HEX
] ces JRETURN HERE
3
3 ALL REGISTERS PRESERVED
3
THXWs PUSH PSW JSAVE PSVW
MOV ALH JGET HIGH BYTE
CALL THXB J AND TYPE IT
MOV ALL JGET LOW BYTE
CALL THXB 3 AND TYPE IT
POP PSW JRESTORE PSWw
RET 5 AND RETURN
3
3 ROUTINE TO GET ONE HEX CHARACTER FROM TTY
)
3 CALLING SEQUENCE +..
3
3 CALL GHXN JGET HEX NIBBLE
s JC NONHX JICY SET IF NON MEX
3 oo JHEX NIBBLE IN ‘A’ BJ3-BO
3
J IF THE CHARACTER ENTERED IS 0 TO 9 OR A TO F THEN
3 *A' WILL BE SET TO THE BINARY VALUE 0 TO F AND
3 THE CARRY WILL BE RESET.
3
3} IF THE CHARACTER ENTERED IS NOT A VALID HEX DIGIT
3 THEN THE *A' REGISTER WwILL CONTAIN THE ASCII CHAR
3 AND THE CARRY WILL BE SET TO A 1.
H
3 ALL REGISTERS EXCEPT PSW PRESERVED
]
GHXNS CALL CHINN JGET CHARACTER IN
JCCHINN IN CASE NOT ECHO)
cePl o’ JRETUAN IF
RC 5 < '0°
CPI "1’ JSEE IF NUMERIC
JC GHX! JCHAR IS 0 TO 9
CPI °*A* JSEE IF A TO ¥
RC JCHAR *3* TO * *
CPI *G" JSEE IF > °‘F*
(o] 1] JINVERT CY SENSE
RC JCHAR » °F'
sul 7 JCHAR I5 A TO F S0 ADJUST
GHX1s sul ‘o’ 3ADJUST TO BINARY
RET } AND EXIT
3
J ROUTINE TO GET ONE HEX BYTE FROM TTY!
3
3} CALLING SEQUENCE ...
3
3 CALL GHXB JGET HEX BYTE
3 JC NONHX JSAME AS GHXNs NON-HEX INPUT
3 vos JHEX BYTE IN ‘A’
3
5 ALL REGS EXCEPT P5¥W PRESERVED, CY SET AS IN GHXN
3

GHXB 1t

CALL GHXN JGET LEFT NIBBLE
RC JLEAVE IF NON-HEX
PUSH B JSAVE BC

RLC JSHIFT

RLC 310

RLC 3 LEFT

RLC 3 NIBBLE

MOV B,A JAND SAVE IN B)
CALL GHXN 3JGET RIGHT NIBBLE
JC Sea JUMP IF NON-HEX
ADD B JADD IN LEFT NIBBLE
POP B 3RESTORE BC

RET JAND EXIT

0195
0196
0197
0198
oI9B
a19cC
019F
0140
01Al
0lAg

0143
01A6
01A7
01AA
01AB
01AC
O1AD

OlAE
O1AF

oicC1
oica
01C7

211205
cDiBO¢
El

CD6001
CJIA000

CD3A0)
Ccb9s01
D2D001

ROUTINE TO GET A HEX WORD FROM TTYI

CALLING SEQUENCE e«

CALL GHXW JGET HEX WORD TO HL
JC NONHX 3NON-HEX IF CY SET
cee 30K, WORD IN HL

IF INPUT VALUE IS VALID HEX THEN VALUE SILL BE IN HL
WITH ALL OTHER REGISTERS PRESERVED AND CY RST

IF INPUT 1S INVALID, HL wILL BE PARTIALLY MODIFIED
AND CY WILL BE SET AND °A‘ WILL HAVE THE
ILLEGAL NON-HEX CHARACTER.

F O e e

GHXW1 STC 3SET AND
(o110) CLEAR CY
PUSH PSW 3SAVE STATUS
CALL GHXB JGET HIGH HEX BYTE
MOV HoA JAND SET TO H
JNC GHX2 sJuMP IF VALID
POP PSW JRESTORE STATUS
MOV AsH JISET A TO BAD CHARACTER
STC JSET CY
RET 3} AND EXIT
GHX21 CALL GHXB JGET LOW HEX BYTE
MOV L,A 5 AND SET TO L
JNC GHX3 3JMP IF VALID
POP P3W JINVALID, RESTORE STATUS
MOV AsL 3SET A TO BAD CHAR
STC) SET CARRY
RET 3 AND RETURN
GHXJ31 POP PSW JALL OK
RET 3 SO RET WITH HL SET TO WORD
3
3 ROUTINE TO STORE A BYTE 1IN MEMORY WITH READ-BACK CHK
3
: CALLING SEQUENCE e««»
3 e JADDRESS IN HL
3 e JDATA IN °A°*
3 CALL STORE JSTORE THE BYTE
3 see JRETURNN HERE IF 0K
3
3 aLL REGISTERS PRESERVED
3
} IF READ-BACK CHECK FAILS, AND APPROPRIATE ERROR
) MESSAGE WILL BE TYPED, AND CONTROL RETURNED TO
3} THE MOMITOR.
3
STOREs MOV M,A JSTORE THE BYTE
CHMP M JREAD-BACK CHECK
RZ JLEAVE IF OK
PUSH H JERROR, SAVE VECTOR
LX1 H,Ma4 JTYPE ERROR
CALL M5@G 1 MESSAGE
POP H JRESYORE VECTOR
CALL THXW J} AND TYPE ADDRESS
JMP NEXT JAND RETURN TO EXEC

MEMORY EXAMINEZMODIFY ROUTINES

THE FOLLOWING ROUTINES HANDLE MEMORY EXAMINES

AND MODIFIES. THE ADDRESS OF THE MEMORY LOCATION
CURRENTLY BEING ACCESSED IS IN °'ADR*. TO INITIALISE
'ADR', THE MONITOR COMMAND 'A°' 1S USED.

s A 1834
wILL SET THE 'ADR' TO THE VALUE 1234 (HEX)

THE ROUTINE WILL THEN RETURN THE CARRIAGE,
TYPE VALUE OF °‘ADR® AND I1T°S CONTENTS 1N HEX,»
AND WAIT FOR ONE OF THL FOLLOWING INPUTSS

A VAL1ID HEX BYTE TO REPLACE THE VALUK TYPED
IN WHICH CASE THE ROUTINE WILL
'STORE® THE BYTE, INCREMENT ‘ADR‘» AND
DO THE NEXT AWDRESS.

A LINE-FEED WILL CAUSE THE NEXT ADDRESS T0 BE
ACCESSED WITH-OUT MODIFYING THE CURRENT ONE

A CARRIAGE-RETUAN VWILL RETURN CONTROL TO THE
MONITOR.

MINUS SIGN WILL CAUSE THE 'ADR' TO BE
DECREMENTED BY ONEK.

>

THE LF AND *~' MAY BE ENTERED AS A
MONITOR CONMAND ALSO AND VWILL PERFORM THE SANME
FUNCTION.

IN ADDITION, THE COMMAND ‘'.* FROM THE
MONITOR WILL CAUSE THE CONTENTS OF THE CURRENT
ADR TO BE TYPED AS IF THE COMMAND °"A' WITH
*ADR®' HAD BEEN ENTERLD.

e e Ba e be e e e be b e e be b behe bt Be s Setm b e Betn Mo tm e e ket be be e b be W

GETAD? JFROM COMMAND ‘A*
CALL SPACE JTYPE A SPACE
CALL GHXW 3 AND GET ‘ADR'
JNC GTAL JJUMP IF VALID

01CA
aicL

0100

0103
01D6
01Db9
01DC
Q1DF
01EO0
0lE3
OlE6
O1E9
O1EC
O1EF
01F0
01F3

OLF6
O1F9
01FA

O1FD
O1FF
0802
0804
0207
0209

080C
00F
0210

0213
0214
0gls
oele
0e17
oais
ogl1e
0glA
0218
02ic

021D
oego

oeg3

ogeé
oe29
oesac
oReF
0238
0833
0236
0239
023a
083C
0R3F

114

210E05
C3C300

221B0C

CcD2Do1
2a180C
CD6001
€D3A01
7E

CDa2ot
CD3A01
copseot
DAFDOI
CDBOO !
TE

€D3A01
CDa201

8A1BOC
23
C3D001

FEOD
CAADOO
FEOA
CAF&01)
FE2D
C2CAO1L

2A1BOC
8B
C3D001

CD9503
CD9503

cDi3oe

cDeDol
CD600 1}
CD3A01
Cbaaol
TE
CDag01
CDA402
™
E6OF
CAB602
C32Foe

ILLCH1 LXI H,M3 JILLEGAL INPUT
JMP ILLEG+3 3 MESSAGE AND BACK TO
3 MONITOR.
GTAlt SHLD ADR JSAVE °'ADR'
LOCATs: 3FROM COMMAND *.' ALSO
CALL CRET JRETURN CARRIAGE
LHLD ADR JFETCH 'ADR'’
CALL THXW 5 AND PRINT IT
CALL SPACE JSPACE
MOV A,M JFETCH CONTENTS
CALL THX8B } AND TYPE
CALL SPACE } SPACE
CALL aHXB 3 AND GET DATA UR COMMAND
JC NONHX INON-HEX INPUT
CALL STORE JSTORE THE NEW VALUE
MOV A.M 3 AND
CALL SPACE 3 ECHO
CALL THXB H VALUE
NXLOC3 3 FROM COMMAND ‘LF* ALSO
LHLD ADR JACCESS
INX H 3 NEXT
JMP GTAl JAND CONTINUE
NONHX3 CPI CR 31F CR
JZ NEXT 3 RETURN TO MONITOR
CP1 LF JIF LF
JZ NXLOC 3 ACCESS NEXT 'ADR'
cP1 *=* JIF - ACCESS LAST
JNZ ILLCH JNOT CR, LF, OR - SO ILLEGAL
LSTLCs: 31 FROM COMMAND '-' ALSO
LHLD ADR SDECREMENT
DCX H 3 °‘ADR*
JMP GTAL JAND CONTINUE
3
3 ROUTINE TO NEGATE THE DE REGISTER
3
3 CALLING SEQUENCE s.e
3
3 see 3VALVE IN DE
3 CALL NEGDE JNEGATE DE
3 see JRETURN HERE WITH DE= -DE
H
NEGDE$ PUSH PSW 1SAVE PS5V
MOV A,D JFETCH D
CMA JCOMPELEMENT
MOV DsA 3AND RESTORE
MOV ALE JFETCH E
CMA 3 COMPLEMENT
MOV E,A 3 AND RESTORE
INX D JADD ONE TO D
POP PSW JRESTORE PSVW
RET JAND EXIT
3
3 ROUTINE TO DUMP A BLOCK OF MEMORY TO TTY
]
3 THIS ROUTINE WILL DUMP A BLOCK OF MEMORY
3 ON THE TTY, 16 BYTES PER LINE WITH THE ADDRESS
5 AT THE START OF EACH LINE.
3
3 THE FOLLOWING MONITOR COMMAND 1S5 USED1
3
3 % D XXXX YYYY
3
3 WILL CAUSE THE CONTENTS OF MEMORY LOCATIONS
3 XXXX TO YYYY TO BE PRINTED. XXXX AND YYYY MUST
3 BOTH BE VALID FOUR DIGIT HEX ADDRESSES AND IF
3} XXXX >® YYYY ONLY LOCATION XXXX WILL BE PRINTED.
H
3 AFTER THE FIRST LINE, ALL LINES WILL START WITH AN
3 ADDRESS THAT IS AN EVEN MULTIPLE OF 16.
3
3
DUMP 1 JFROM COMMAND 'D°’
CALL PUJ 3GET HEX ADDRESS
CALL PU3 3 GET ANOTHER

.- v ne

FROM ADDRESS IN HL, TO ADDRESS IN DE

CALL NEGDE JNEGATE DE FOR END CHECK
DMRET: CALL CRET JRETURN CARRIAGE
CALL THXW STYPE VECTOR ADDRESS
CALL SPACE
DMNXTt CALL SPACE JSPACE
MOV AsM JGET DATA
CALL THXB 3 AND DISPLAY
CALL LAST JCHECK FOR ALL DONE
MOV AL JCHECK FOR MOD 16
ANI 15) ADDRESS
JZ DMRET JNEW LINE IF MOD 16
JMP DMNXT 3 CONTINUE IF NOT

L I

JUMP -~ ROUTINE TO TRANSFER CONTROL

THIS ROUTINE VILL ACCEPT AN ADDRESS FROM TTYI
AND THEN RESTORE ALL REGISTERS TO THE STATE AS
SAVED IN RAM ON ENTRY TO THE MONITOR AND TRANSFER
CONTROL TO THE ADDRESS ENTERED.

ss J 1234

0gag
0245
[12 1.]
0248
024D
0es0
ogs3
02356
0858
0258
0R5E
(512
0g64
0867
0869
086c
08/6r
og70
071
og72
0875
0276
o279

087C
oa7r
0880
[:3:1 k]

oesa
0887
ogss
0288

0fBE
ogar
0890
0893
096
0299
089C
029E
0RAlL
0g8ag
02A3

02A4
08AS
08A6
082Aa9
02AA
03AB

CD3AOY
Cb9501}
pR6108
FEOD
ceseoe
£AOEDC
CasEoR
FEQA
C2CAO01
2A200C
CD&001
cD8EOg2
321 E0C
32C3
321D0OC
31140C
D1

c1

F1
2A100C
F9
2A180C
C31p0C

CD9503

]
CD8EDZ2
E9

CD9503
EB

22200C
C3A000

FS

| £
214605
CD1BO1
214D05
CDo001
FE20

ES
19
DAADOO
El

co

JUMP TO LOCATION 1234H
IN ADDITION TWO OTHER MODES ARE POSSIBLE.

THE COMMAND
»s J (CR)

WILL CAUSE THE ADDRESS SAVED AS A RESWT OF
A RST O TO BE USED FOR THE EXECUTION ADDRESS.
INSERTING A RST O IN A PROGRAM AS A BREAKPOINT
WILL CAUSE THE ENTIRE MACHINE STATE TO BE SAVED
AND THE J (CR) WILL RETURN YOU TO THE POINT AFTER
THE RST O«
OF COURSE, IF THE RST 0 REPLACED PART OF AN

INSTRUCTION YOU MUST REPLACE THE RST 0 AND
MODIFY THE ADDRESS WITH °*RP=' 50 THAT YOU WILL GET
BACK INTO THE PBOGRAM AT THE PROPER PLACE.

ALSO

THE COMMAND
% J (LF)

WILL CAUSE THE ADDRESS ENTERED WITH THE 'X°
COMMAND TO BE USED AS IF 1T WERE TYPED I[N«

THE CARRIAGE RETURN AND LINE FEED RESPONSES WILL
CAUSE THE ADDRESS TO BE TYPED FOR VERFIFICATION AND
AFTER THE ADDRESS THE °OK?' PROMPT WILL REQUIRE A
SPACE REPLY FOR EXECUTION 10 PROCEED. OTHERWISE
THE OPERATION WILL BE ABORTED.

e he b e br e Be T MW Be by e b S ke %e e b ba br be %e Bu We be ba e Ne %o be be e

JUMP s JCOMMAND ‘V°
CALL SPACE 3 SPACE
CALL GHXW 3GET ADDRESS
JNC JMPJ JHEX ADDRESS ENTERED
CP! CR JSEE IF CR RESPONSE
JNZ JMPl 3 NO, GO CHECK FOR LF
LHLD SVPC JGET SAVED PC VALUE
JMP JMP2 3 AND GO PROCESS
JMP L3 CP1 LF JCHECK FOR LF RESPONSE
JNZ ILLCH 5 ALL OTHERS ILLEGAL
LHLD XEQAD 3GET XEQ ADDRESS FROM 'X°
JHPE1 CALL THXW 3TYPE ADDRESS
JMP I CALL OK? 10K?
SHLD GOGOet 3SET UP FINAL JuMP
NVI A,0C3H)} JMP COMMAND
STA GOGO 3 TO RAM
LX1 SP,SVE JRESTORE REGS
POP D) T0
POP B 3 VALUES
POP PSW H IN RAM
LHLD SV3P J SAVED SP
SPHL 3SET NEW SP
LHLD SVHL JAND HL
JHP G0GO 3 AND EXECUTE
3
3 COMMAND *G*' - DIRECT GOTO ADDRESS
3
GOTOt CALL PU3 3 GET HEX ADDRESS
XCHG 5 TO HL
CALL OK? 3VFY
PCHL 3 THEN JMP ADR
H
5} COMMAND °X* - SET EXECUTION ADDRESS FOR 'J*
3
GETXA1 CALL PU3 JGET HEX ADDRESS
XCHG JTO HL
SHLD XEQAD JSAVE IT
JHP NEXT } AND BACK TO NEXT

3 OK? - ROUTINE TO VERIFY OPERATION

3
CALLING SEQUENCE «..

H
3
3 CALL OK? JVERIFY
H e JRETURN HERE IF SPACE
3 JABORY IF NOT
3
J ALL RESBISTERS PRESERVED
3
OK?s PUSH PSW JSAVE PSVW
PUSH H J AND HL
LXI H.m7 JADR OF °‘0OK?' MSG
CALL MSG JPRINT IT
LXI H,M8 SPOSSIBLE ABORT
CALL CHIN JQET ANSWER
cpPI * 3 SPACE?
JlNZ ILLEG+3 JNO, GO ABORT
POP H JRESTORE HL
POP PSW 3 AND PSw
RET 3 AND LEAVE

3
3 ROUTINE TO CHECK FOR LAST OPERATION 1IN

3 DUMP. FILL, MOVE, ETC.
3
LASTs PUSH H 3 SAVE MEM VECTOR
DAD D 3 ADD NEGATIVE END ADDRESS
JC NEXT JDONE IF CARRY
POP H JRESTORE VECTOR
INX H 3BUNP AND
RET 3 EXIT

O2AC
08AF
0280
0£B3
0886
0eB7
0888
02BB
02BE
0aBF
08CO
0£Cc3
08Ca
02Cs5
ogcs

08CB
08CE
[+3-1:])
08D4
oen?
08DA
08DD
08E0
08L3
08E6

02E9
02ED
02F1

osre
0BFS
02F?
08FA
02FB
O8FD
0300
0301
0304
0306
0309
030A
0308
030D
0310
o3t
0314
0317
0318
0319

116

CD9503
DS

CDh9503
CD9503

EJ
CcD1302
CD8ED2

£3
CDBOCI
23
| %]
CDA4O2
C3BED2

CD?503
CD9503
cb1308
CDaA0!

CD8gol

DACAO]

CDSEOZ
CDBOO1
CDA4O2
C3E002

A1464243
4445484C
00

FES3
CAJEO3
47

21 E902
11100C
7E

AT
CACAO1L

COMMAND *M® -~ MOVE MEMORY BLOCK

FORMAT
es M XXXX YYYY ZZZZ OKX?

wILL MOVE THE BLOCK OF MEMORY STARTING AT

XXXX AND ENDING AT AND INCLUDING YYYY TO THE
BLOCK STARTING AT ZZZZ.
veeas THE FOLLOWING RESTRICTIONS APPLY! eesnss

EITHER ZZZL <= XXXX

OR Zziz > YYYY

THE ROUTINE MOVES BYTES IN ASCENDING MEMORY ORDER
S0 1F THE HEX ADDRESS VALUES DO NOT SATISFY
THE ABOVE RULES, MOVED DATA WILL OVERWRITE DATA TO

L T o N S U A U,

BE MOVED.
MOVE!L CALL PU3 JBET XXXX
PUSH D JSAVE 0N STACK
CALL PU3 JGET YYYY TO DE
CALL PU3 JGET ZZZZ TO DEs YYYY TO HL
XCHG JDE=Y, HL®Z, TOP=X
XTHL JDE®Y, TOPsZ, HL=X
CALL NEGDE JDE=-Y, TOPsZ, HLeX
CALL OK?
MOVI1a MOV AN JGET THRU X
XTHL JHL=Z, TOP=X
CALL STORE SCHECKED STORE
INX H IBUNP Z
XTHL JRESTORE
CALL LAST JCHECK FOR END
JHP MOVI) AND CONTINUE
3
3 COMMAND °*F* =~ FILL A BLOCK OF MEMORY WITH VALUE
3
3 FORMAT
3
3 »s F XXXX YYYY VV OK?
]
H VILL CAUSE MEMORY LOCATIONS XXXX THRU YYYY
3 INCLUSIVE TO BE SET TO THE VALUE VV (HEX).
3
FILL: CALL PU3 JDE=X
CALL PUJ JDEeY, HLeX
CALL NEGDE }DE=-~Y
CALL SPACE
CALL dHXB JBET VV => A"
JC ILLCH JRUST BE VALID HEX
CALL OK?
FILL1s CALL STORE *3STUFF IT
CALL LAST 3 CHECK IT
JMP FILL1 J AND CONTINUE IT

REGISTER EXAMINEZMODIFY ROUTINE

THE MONITOR COMMAND ‘R* FOLLOWED BY A SINGLE
CHARACTER WILL CAUSE TRE ENTRY SAVED
CONTENTS OF THAT REGISTER TO BE PRINTED AND A

MODIFICATION ACCEPTED. IF THE 'R' IS FOLLOWED BY
A CR THEN ALL OF THE REGISTERS WILL BE PRINTED.
RA = ACC

RF - FLAGS, PSB

RB - B

RC - C

RD -~ D

RE - L

RH - H

RL - L

RS - SP

RP - PROGRAM COUNTER IF MONITOR °‘CALLED'

R(CR) =~ PRINT ALL REGISTERS

REGISTERS S AND P VILL BE PRINTED AS 4 HEX DIQITS
AND MODIFICATIONS TO THEM MUST BE 4 DIGITS ALSO.

e B Mt Mabu b Me B W te W b e b e he S e e e e e e

RXLSTs DB ‘AFBCDEHL',0 JREGISTER LIST
REGEX1 3 FROM COMMAND °‘R*

CALL CHIN JGET REGISTER ID

CPI CR JCHECK FOR CR

JZ REXAL JDO ALL IF CR

PUSH Psw 3SAVE 1D

MVI A, °s=° JTYPE

CALL TYPE]

POP PSW JRESTORE 1D

LXI D.SVPC JADDRESS OF PC

CPI ‘'pP* JSKE IF

JZ Axe JPRINT PC

INX D JPOINT TO

INX D 3 SP

CPI *S8° JCHECK S

JZ RX2] DO SP

M0V B.,A 3SAVE 1D

LXI H,RXLST JLEIST VECTOR

LX1 D,SvA JADDRESS OF 'A' STORAGE
RX03 NOV AsN JGET TABLE ID

ANA A SCHECK FOR END

JZ ILLCH 3NOY IN TABLE

mailto:epfiWMDfr@re~(~9~sPQQof.gm
http:MtU.teAc.ha11.9e

031C
031D
0320
0381
o3ee

0388
0386
0389
033C
038F
033g
0333
0336
0338
0338

033E
033r
0340
0341
0342
0343
0346
0349
03aC
03aF
0350
0351
0358
0383

0356
0359
03sC
03sE
0361

0368
0365
0368
0368
036C
036D
0370
0373
0374
037%
0376
0379

037C
037
0381
0384
0387
0389
038C
038F
039e

0393
0398
0398
039k
039F

03A0
03A3
0346
03a9
03AB

03AE
03AF
0381
038g

B8
CAB503
83
18
c31703

1A
€Dazo1
CD3A0}
cpB201l
DA3603
18
C3A000
FEOD
CAAQOO
C3CAO0L

EB
SE
23
56
m
CD600!
CD3AO1
CD9501
DA3603
>}
7%
2]

73
€3A000

CD3A0}
CD5705
3EID
CDS705
ce

CbeDol
11190C
215908
7E
A?
CA7C03
CDS603
1A
1B
83
CDh4go1
Ca6803

3ESO

CD5603
2a0%0C
CDb6001
3JES3

CD5603
8A100C
€be001
C3A000

CDb3a01
CD9501
DACAOL
EB
ce

CD9sS03
CD95023
€DOCo4]
k3 AR}

CD5705

m
cél10
aF
7c

JCHECK INPUT ID

CHP B
JZ RX} JFOUND IT
INX H JNEXT TBL
bcx D JINEXT REG
JMP RX0 3CONTINUE
RX1t LDAX D JGET THE RGE
CALL THXB 3} AND PRINT IT
}SPACE
g:tt gﬁﬁg: JAND WAIT FOR REQUEST
JC RX1A JINON-HEX SO SEE IF CR
STAX D $STORE INPUT IN RG
JMP NEXT JAND BACK TO MONITOR
RX1A1 CPl CR JICR OK
JZ NEXT JBACK TO MON
JMP ILLCH JOTHERS ILLEGAL
RX21 XCHG JRG ADR TO HL
MOV EoM JGET LOwW S OR P
INX H JBUMP VECTOR
MOV Do JGET HIGH S QR P
XCHG JRG VAL TO HL
CALL THXW }TYPE WORD
CALL SPACE ISPACE
CALL GHXW JAND GET REQUEST
JC RXlA 31F NON-HEX
XCHG 3RSTORE RAM VECTOR FOR RG
MOV N.D JSTORE HIGH S OR P
DEX H 31BUMP VECTOR DOWN
MOV ML,E JSTORE LOW S OR P
JMP NEXT JBACK TO MON
RXTSEt CALL SPACE JSPACE
CALL TYPE 5 TYPE ID
MVl A, 'm=’ } THEN
CALL TYPE 3 -
RET 3} AND RETURN
REXALS CALL CRET JRETURN CARRIAGE FOR ALL REGS
LXl D,SVA 3JADDRESS OF ‘A’
LX! H,RXLST 31D LIST
RXAll MOV A-M JGET 1D
ANA A JCHECK FOR LAST
JZ RXA2) DONE SINGLES
CALL RXTSE JYYPE SPACEs 1Ds AND =
LDAX D JGET RES
DCX D JBUNP RG PNTR
INX R 3} AND LIST PNTR
CALL THXB JTYPE REGISTER
JMP RXA1 J} AND CONTINUE
RXAR1 MVL A, 'P* D0 PC
CALL RXTSE }SPs 1D» =
LHLD SVPC 3 GET PC
CALL THXW 3 AND PRINT
MVI A,°*S* 5 DO spP
CALL RXTSE 35P,1Ds e
LHLD SVsSP JGET 5P
CALL THXW JAND PRINT
JMP NEXT JBACK Y0 MON
PUds CALL SPACE JSPACE
CALL anXw JGET HEX WORD
JC ILLCH 31F BAD
XCHG JSAVE TO DE
RET 3 AND RETURN

e e b e he Yo e be t Be Be W M be e bt W e W e S e e

ROUTINES TO PUNCH OR LOAD MEMORY ON TTY

THESE ROUTINES WORK WITH DATA IN THE INTEL
BINARY FORMAT. THE FORMAT CONSISTS OF A RECORD
HEADER, UP TO 16 BYTES OF DATA» AND

A RECORD CHECKSUM.

RECORD FORMAT

HEADER CHARACTER '1'
HEX-ASCI11 BYTE COUNT.
HEX-ASCII LOAD ADDRESS»
HEX-ASCI! RECORD TYPE,

TW0 CHARACTERS

FOUR CHARACTERS HHLL

TWO0 CHARACTERS 00 FOR DATA
0l FOR EOF

DATA BYTES IN HEX-ASCI!, Tw0 CHARACTERS EACH

HEX-ASCI1 CHECKSUM, TwO CHARACTERS

THE CHECKSUM 1S CALCULATED SUCH THAT THE
SUM OF ALL OF YHE TW0O CHARACTER BYTE FIELDS
VILL BE ZERO.

THE EOF RECORD MAY CONTAIN AN EXECUTION ADDRESS

IN THE LOAD ADDRESS FIELD. THE LOAD ROUTINE WILL
TRANSFER CONTROL TO TH1S ADDRESS AFTER READING THE

TAPE IF THE ADDRESS 15 NON-ZERO.

PUNCH3 5COMMAND ‘P’
CALL PU3 JGET FROM ADDRESS
CALL PU3 JGET TO ADDRESS
CALL PWAIT JTYPE PROMPT AND WAIT
MVI A, XON JSTART
CALL TYPE } THE PUNCH

)
3
H

PNO 3

HL HAS LOw ADDRESS, DE HAS Hl1GH ADDRESS

MOV AsL
ADI 16
MOV C,A
MOV AsH

0383
0385
0386
0387
0388
0389
03BA
0388
0J3BE
03co
03C3
03C4
03C6
03C7
03CA
03CB
03cC
G3CE
03D}

03p3
03D6
03Dp7
03DA
0308
03DE
03DF
03E2
03EJ
03E6
03E?
03E8
0J3EB
03EC
O3EF
03F0
03F1

Q3F4
0JFS

03F8
0J3FB
03FC
03FD

OJFE
0401

0403
0406
0409

040C
040D
0410
0313
0ala
oa1?

0418
0alp
QalE
0421

0424
0426
0429
04a2C
042E
043]

0434
0ale
0aj9
043a
0438
04JE
0aJF
0442

0aq3
0446
V448
0448
044C

044D

0450
0452
0453
0456
0457
045A

045D
0460
0462
0465

118

CEOO
a7

7B

91

4F

7A

98
DAC303
JE10
C3C603
19
cél11
B7
CAFEO3
DS

SF
1600
cp2po1
3E3A
CD5705

1B
CDFB803J
7Cc
CDF803
7D
CDF803
AF
CDFg03
TE
23
CDF803

1D
C2E603
AF

92
CDF803
o1}
C3AE03

Cpa201t
82
S7
c9

cD2po1
3EI3

CD5705
CD6605S
C3A000

ES
212A05
CD1B0O1
El
CD6605
c9

CD3A01
CD9501
D22904
210000
FEOD
cacaol
CDOCO4
JELL
€D5705
cD2Dpo1
3JE3A
CcDsS705
AF

57
CDF803

QE64
AF
CD5705
ob
€25304
C3FECJ

cDOCoa
3E1L

CcDS705
C35004

ACl O

MOV B:A
MOV ALE
suB ¢
MOV CsA
MOV AsD
SBB B
Jc PNL JRACD LENGTH = 16
MUL As16
JMP PN2
PNLY MOV AsC JLAST RECORD
ADI 17
PN21 ORA A
JZ PDONE
PUSH D 3SAVE HIGH
MOV E,A $ ELENGTH
MUL D,0 JCLREAR CHECKSUM
CALL CRET 3PUNCH CRsLF,RB0
MUL As'1* SPUNCH HDR
CALL TYPE
MOV AJE
CALL PBYTE SPUNCH LENGTH
MOV AsH
CALL PBYTE
MOV AsL
CALL PBYTE
XRA A
CALL PBYTE 3PUNCH RECORD TYPE
PN31t MOV AsM 3GET DATA
INX H
CALL PBYTE
DER E 3DECR CNT
JNZ PN3 3CONTINUE
XRA A 3CALCULATE
SuB D 3 CHECKSUM
CALL PBYTE JAND PUNCH IT
POP D SRESTORE HIGH ADDRESS
JMP PNO 3AND CONTINUE
PBYTE1 CALL THXB
ADD D 3ADD TO SUM
MOV Ds»A
RET
PDONE: CALL CRET
MVI A, XOFF 3PUNCH
CALL TYPE 3 OFF
CALL GETCH JWAIT FOR GO-AHEAD
JHMP NEXT 3BACK TO MON

H
3} ROUTINE TO TYPE 'PAUSE' MESSAGE
AND WAIT FOR TTYI GO-AHEAD

H
H

PWAIT: PUSH H JSAVE H
LXI H.MS 3PROMPT
CALL MSG 3 MESSAGE
POP H
CALL GETCH JWAlT FOR GO-AHEAD
RET 3 AND THEN LEAVE

3
J ROUTINE TO PUNCH
3

EOF RECORD
PEND: CALL SPACE
CALL GHXW 3 GET ADDRESS OR CR
JNC PENDI } ADDRESS
LXI H,0 JSET O ADDRESS
CPI CR JCHECK FOR CR REPLY
JNZ ILLCH 3 OTHERS ILLEGAL
PENDLt CALL PWAIT JPROMPT PAUSE
MVL A, XON $PUNCH
CALL TYPE 3 ON
CALL CRET JCRsLF,RBO
MYL As"1*
CALL TYPE JITYPE HDR
XRA A
MOV D,A JZERO CHECKSUM
CALL PBYTE 3AND OUTPUT ZERO LENGTH
MOV AsH
CALL PBYTE JEXECUTION
MOV ALL
CALL PBYTE i ADDRESS
MVI A, JRCD TYPE
CALL PBYTE
XRA A
SUB D JCALCULATE CHECKSUM
CALL PBYTE 5 AND PUNCH IT
i
3 PUNCH NULLS
3
NULLST MVI C,100 3100 NULLS
XRA A
CALL TYPE
DCR C
JNZ $-4 3CONTINUE
JMP PDONE 3 DONE
NULL: 3 COMMAND °*N*
CALL PWwAIT JPROPMT PAUSE
MVL A, XON i PUNCH
CALL TYPE i ON
JMP NULLS GO DO IT
5 ROUTINE TU LUAD HEX-ASCII TAPE
LoAD: 3COMMAND 'L

'IIIII N N N BN N N N N B B N K N BN BN BN BN N B N | II.

World’s Lowest
IC Prices

r----------------

7L

7400 14
7402 14
7404 16
7410 14
7420 14
7427 25
7438 25
7440 14
7445 45
7447 65
7450 14
7451 14
7473 22
7474 23
7493 50
7495 49
74107 29
74116 100
74123 50
74150 60
SCHOTTKY
74502 25
74S37 40
74585 200
745139 150
745140 50
745153 250
HIGH SPEED
74H00 20
74H01 20
74H04 20
74H10 20
74H11 20
74H40 20

74151
74157
74160
74161
74163
74165
74173
74174
74175
74177
74180
74181
74191
74192
74193
74198
9602

9300

9312

745172
748175
745181
745197
745257

74H51
74H52
74H74
74H103
74H106

60
60
75
75
75

80

75
70
80

70
70

50
75
70

350
150
350
150
150

20
20
40
50
50

74LS00
74L502
74LS10
74LS73
74LS75
74LS151
74LS153
74LS157
74LS163
CMOS
4001
4002
4006
4007
4008
4011
4012
4013
4015
4016
4019
4020
4021
4023
4024
4025
LINEARS
NES555V
NES556A
741V
1458V
566V
567V
540L

25
25
25
40
.50
85
95
1.50
1.50

16
16
90
16
70
16
16
35
80
35
70
90
95
16
75
20

43
90
30
52
125
135
200

LOW POWER SCHOTTKY

74LS164 1.50
74L5174 1.50
74LS175 1.50
74LS193 1.50
74LS251 1.50
7415253 1.50
7415257 1.50
7415258 1.50

4027 .40
4028 .60
4030 .35
4040 .95
4042 60
4043 75
4044 .70
4049 .38
4050 .38
4066 .65
4068 .35
4069 16
4071 16
4073 16
4075 16
4516 .85
4585 85
RAMS

2102 150
PROMS

82523 S123 195

Order Mimimum $10 00 Add $1 00 shipping and handiing charge per order Calfornia residents add 6°o
sales tax All orders shipped promptly

Order the famous lasis 6 volume Programmed Learning Course ‘*Microcomputer Design
is a Snap™ for $99.50 and receive a special $10.00 credit on any group of IC’s.

Satisfaction 100°. guaranteed.

ELTRON

(C.0.D. Orders: Phone (day or night) 408/354-1448

113

PO Box 2542 B
Sunnyvale, CA 94087

0468 CD3A0! CALL SPACE

0468 CD9501 CALL GHXW JGET BIAS OR CR 3 LDA CHAR SCHARACTER IN 'A°* REGISTER
046E D27904 JNC LDQ 3BIAS ADRESS ENTERED 3 caLL IYPE JTYPE IT
0471 210000 LXI Hs0 1B1AS O I avee JRETURN HERE
0474 FEOD CPI CR SCHECK FOR CR
0476 CECAO1L JNZ ILLCH JOTHERS N+Go
0479 ES LDGs PUSH H JSAVE BIAS
047a AF XRA A JKILL 0557 F5 TYPE) PUSH PSW 3SAVE CONTENTS OF ‘A’
0478 321A0C STA ECHO 3 TTYO ECKRO 05S& DHOI] 1 JINPUT FTY STATUS
047E 3Elg MVI A, TON 3 TAPE 055A E604 ANI 4 JTEST FOR BUSY
0480 CDS70S CALL TYPE 3 oN 055C €25805 JUNZ TYPE*l ;1F BUSY, KEEP TRYING
0483 EI LDO1 :g;HHH ;::; gé;:ons 05SF Fl POP PSW JRETRIEVE THE DATA
0484 ES
0485 CDDCO4 CALL RIX JGET INPUT ggg? ;? ggﬁ“ PS¥ :2:2Pi2257;2 :f?;"
0488 0634 MVl Ba's’ ;
0484 50 su8 B JCHHCK FOR RCD MARK 0564 Fi Por Psv IRESTORE war
048B C28304 JUNZ LDO 0565 C9 RET
O4BE 57 :2:LD;¢' :2:$“ﬁt::55K5U" JTHIS ROUTINE WORKS IN MY SYSTEM
048F CDE204 E
g4sr CoEROA caLL B L AT e JBUT MAY NOT WORK IN YOURS
0495 SF MOV EsA 3SAVE LENGTH
0496 CDE204 CALL BYTE 3GET HIGH ADDRESS
0499 FS PUSH PSW¥ } AND SAVE SROUTINE TO GET A CHARACTER FROM THE TTY
049A CDE204 CALL BYTE JGET LOV ADDRESS
049D C1 POP B JFETCH MSBYTE JCALLING SEQUENCE
049E 4F MOV CsA 1BC HAS ADDRESS
049F C5 PUSH B JSAVE VECT B CALL GETCH $GET CHARACTER
04A0 E3 XTHL 3 TO HL 3 ceens 3JRETURN HERE WITH CHARACTER
04Al g22820C SHLD BLKAD 3 SAVE BLOCK ADDRESS 3 IN ‘A’
04A4 E3 XTHL 1 IN CASE OF ERROR
04as C1 POP B JRESTORE
04A6 09 DAD B JADD TO BI1AS JALL REGISTERS PRESERVED EXCEPT ‘A’ WHICH
04A7 CDE204 CALL BYTE }GET TYPE JCONTAINS THE INPUT CHARACTER
04AA CDE204 LDI11 CALL BYTE JGET DATA
04AD CDBOO! CALL STORE SJAND STORE IT 0566 DBO1 GETCH: IN 1 JINPUT TTY STATUS
0480 23 INX H 0568 E601 AN 1 JTEST FOR READY
04B1 1D DCR E 056A C26605 JNZ GETCH JKEEP TRYING IF NOT READY
04B8 C2AACA JNZ LDI 3CONTINUE 056D DBOO IN 0 J6ET THE CHARACTER
04BS CDE204 CALL BYTE JGET CHECKSUM 056F 2F cma 3PROCESS IT
04B8 CAB304 JZ LDO JCONTINUE 0570 C9 RET
04BB 213205 LXI H.M6 SCHEKSUM ERROR
OABE CDIBO1 CALL MSG) msa JTHIS ROUTINE WORKS IN MY SYSTEM BUT MAY NOT
04Cl 2A280C LHLD BLKAD 1ADDRESS OF THIS BLOCK JWORK IN YOURS
04C4 CD6001 CALL THXW } FOR REFERENCE
04C7 C3A000 JHP NEXT JAND EXIT
04CA CDEO4 LD2t CALL BYTE JGET MSB OF XEGAD 0571 ENDROM EQU § SBOUNDARY MARKER
04CD 67 MOV HsA
0A4CE CDE204 CALL BYTE
04Dl 6F MOV LsA 3
04D2 B4 ORA H
04D3 3El4 MVI A, TOFF 3 TAPE RDR 5 SYSTEM RAM AREA DEFINITIONS
04D5 CDS705 CALL TYPE 3 OFF 3
04D8 CAADOD JZ NEXT IMON IF NO XEQAD
04DB E9 PCHL 1G0 TO ROUTINE 0s71 ORG RAM
04DC CD660S RIX1 CALL GETCH 3
04DF E67F ANI TFH) USER RESTART VECTORS 1 - 7
04E1 C9 RET 3
0coo RSTis DS 2
04E2 CD8201 BYTE: CALL GHXB JGET TWO CHARS 0co2 RST2t DS 2
04ES aF MOV CsA 0coa AST3t DS 2
D4ES B2 ADD D 0C06 RSTa: DS 2
04ET 57 MOV DsA 6cos RSTS1 DS 2
04E8 79 MOV AsC 0COA RST61 DS 2
04E9 C9 RET ococ RST7t DS 2
1333338

H

; MONITOR REGISTER SAVE AREA
3 H
3 SYSTEM MESSAGES
H

OAEA ODOAOA4L MO DB CR.LF,LF, "AMS80 V2.0°',LF,-1 SVPC1
O4EE aD533830 O0COE SVPCLT DS 1 3}SAVED PC LOW
04F2 2056328E OCOF SUPCH: DS 1 JSAVED PC H1GH
04F6 300AFF
04F9 ODOATF2A M1t DB CR,LF,RBO, 'ss *,-] SVSP1
04FD 2A20FF ocio SVSPL: DS 1 3SAVED SP LOW
0500 20495320 M2 DB * IS UNDEFINED',~1 ocil SUSPH) DS 1 $SAVED SP HIGH
0504 554E4445 SVHL1
0508 46494EA4S
050C 44FF oci12 SVLt DS 1 JSAVED L
0S0E 203F3FFF M3 DB ' ?71's-1 oc13 SVH1 DS 1 JSAVED H
0512 180DOATF Mat OB TOFF,CR,LF.RBO, 'MEM WAITE ERROR AT *,-1
0516 4Da5aD20 ocla SVE1 DS 1 3SAVED E
051A 57524954 ocis SUDL DS 1 3SAVED D
0S1E 45204552 0c16 sSvCt DS 1 3SAVED C
0522 S24F5220 oc17 SuB1 DS 1 JSAVED B
0526 4l 5420FF oc18 SVF1t DS 1 JSAVED PSB, FLAGS
oc19 SVAt DS 1 3 SAVED ACC
0524 20504155 M58 DB ' PAUSE ‘»-1
052E 534520FF
0532 14204348 M6 DB TOFF, * CHKSM ERR, BLOCK ‘,-|
0536 4B534D20
053A 4552528C oClA ECHO: DS 1 3CHIN ECHO FLAG, <>Q0=ECHO
0S3E 20424CAF ;=0 = NO ECHO
0542 434BLOFF
0546 20204F4B M7t DB * OK? ‘»-} ociB ADR1 Ds 2 3 EXAMINE/MODI FY ADDRESS
054A 3F20FF
054D 2041424F M8 DB * ABORTED! *,-) TMPAS JTEMP STORAGE LOCATIONS
0551 52544544 ocip GOGO: DS 3 3'JUMP' STORAGE
0555 21FF
oc20 XEQAD:s DS 2 3'X* EXECUTION ADDRESS
JSYSTEM 1/0 ROUTINES ocz2 BLKAD3 DS 2 3°'L* BLOCK ADDRESS
3USER 1S TO PATCH HIS OWN TELETYPE
JROUTINES HERE 0cz4 00 NOP JPROGRAM BOUNDARY MARKER
JROUTINE TO TYPE A CHARACTER 0000 o END

3CALLING SEQUENCE

120

http:i303.~--1.503.0o
http:15/Sl.OO
http:1000-.20
http:100/Sl.OO
http:4076-1.20
http:4013-.30
http:4028-1.00
http:4077-.35
http:4024-.80
http:4007-.22
http:4022-1.00
http:4006-1.20
http:4049-.so
http:4002-.22
http:403S-1.18
http:74C02-.25

turn off instructions to the machine. These
routines will be different for other users
because of the hardware in the interface.
This listing incorporates the routines used on
the development system as an example only.

Text continued from page 109

Modifications to the Monitor

This monitor was assembled to reside in
low memory. Thus when the system is first
turned on, the power reset circuit will put it
into the monitor. A large area of ROM in

low memory has been saved for future
expansion. This expansion area will include
drivers for high speed paper tape devices and
for a cassette interface.

Summary

Although presented as an AMSAT users
monitor, its use is by no means limited to
AMSAT members. Anybody who has an
8080 system will be able to use, modify or
otherwise operate upon this software.®

The “sign on” message is printed wher-
ever the monitor is initiated. A command is
entered to examine the contents of memory
location 1234. It contains the number 42.
The number 01 is typed in, the monitor
echoes the 01, and then a line feed character
is typed in, advising the monitor to examine
the next location. Locations 1235 through
1237 are examined and changed in the same
manner. At 1238 the sequence is terminated.

The contents of memory locations 1234
through 1238 are then examined without
changes. Then at 1238, the address pointer is

Listing 2: An example of
use of the AMS80
monitor.

(All numbers are in
hexadecimal notation.)

Note: The program

AMS8@ V2.0 Signonmessage " expects a new command

after printing asterisks.

**" A | 234 Examine Memory Location 234
1234 42 @1 @1 Change Contents

1235 @1 @2 o2

1236 CD @3 @3

1237 A4 @4 B4

1238 @2

*% A 1234 Examine without changing contents
1234 21
1235 B2
1236 23
1237 84
1238 22 -
1237 @4
*% D 1234 1238

1234 @1 02 @3 @4 @2
*% F 1234 1238 76
*x D 1234 1238
1234 76 76 76 76 76 Displayit

«¥ [1308 1304

1300 F1 11 @E ©C FE Display another area

x%x M 1234 1238 1302 O0K? Move block

«*% D 1300 1304

13008 76 76 76 76 76 Verify that data was moved

*% M 1342 1234 1345 O0K? ABORTELD! Aborted function

*4% R Examine registers

A=0¢ F=46 B=@l C=0D D=00@ E=03 H=00 L=C3 P=3CD2 S=2FE2
*% RA=0B 12 Change accumulator [A]

*% RA=12

**x RA=12 00 Change it back

% R Examine registers
A=Q@@ F=46 B=0@D C=0D DU=00® E=03 H=00 L=C3 P=3CL2 S=2FE
*x P 1243 1248 PAUSE

:061243803AQ1CD9521D235 Punch tape

Back up one location

Display block
OK? Fill memory area with constant

*% E PAUSE
: 0OBOABALIFF Punch end of file mark

% X 380@ Set up location of Intel Monitor
x%x J 3880 O0K? Gotoit
86808 V3.8 Program executing

122

backed up by the “ — " command to
examine the contents of location 1237.

The block of memory from 1234 to 1238
is then displayed.

A command is then entered to fill each
location within the block of memory from
1234 to 1238 with the number 76 (the 8080
HLT instruction). After entering parameters,
the computer asks “OK?". If a ‘‘space”
character is typed, the fill command is
executed. The contents of the block of
memory are then displayed and sure enough
the 76s have been entered.

Next the contents of the block of mem-
ory locations from 1300 to 1304 are dis-
played. After this command to move the
contents of memory locations 1234 to 1238
to a block starting at location 1300 js given.
The monitor again asks “OK?” so you can
verify addresses, after which depressing the
“space” key causes the move command to
be executed. The contents of memory loca-
tions 1300 to 1304 are then displayed to
verify the execution of the move command.
If @ move command (or other command of
this type) is then entered incorrectly, it can
be aborted by depressing the “CR” key after
the query “"OK?”,

The contents of the registers are exam-
ined using the “R” command. The contents
of the accumulator are changed using the
“RA” command after which all registers are
again examined using “R ",

A punch command is then entered and a
“PAUSE” is typed out by the monitor.
When the tape punch is deemed to be ready,
typing a “‘space” character causes the com-
mand to execute and punch the tape as
instructed. The program then pauses, and
When the tape punch is deemed to be off,
execution continues after another ‘‘space’’
character is depressed. An end of file mark is
then punched in a similar manner.

Finally an execution address of 3800 is
set up with “X”’ and the program is entered
with a /" command. The program starting
at memory location 3800 begins executing,
printing out the message 8080V 3.0”
which ends this example. w

MC14412 UNIVERSAL MODEM CHIP

MC14412 contains a complete FSK modulator and de-mod-
ulator compatible with foreign ond USA communications.
(0-600 BPS)
FEATURES:

.On chip crystal oscillator

.Echo suppressor disable tone generator

.Originote and answer modes

_Simplex, half-duplex, ond full duplex operation

.On chip sine wave

.Modem self test mode

.Selectable data rates: 0-200

0-300
0-600
.Single supply
VDD=4.75 to 15VDC - FL suffix
VDD=4.75 to 6 VDC - VL suffix

TYPICAL APPLICATIONS:

.Stand alone - low speed modems

Built - in low speed modems

.Remote terminals, accoustic couplers

o I] N $28.99
MC14412VL....... . $21.74
6 pages of data, .60

Crystal for the above...... $4.95
Crontal =
a Re 3
v [own e
NI
e LIV N
—_—>Tr E Ta Car Mogulator
13
——3>———{Echa
w |TT T T T T T
To > Meen
YD ST Contror
Fqupment hd
a —)—:‘ TTLD To
—3—A ST Terephone
________ Network
’
——€—Rx Data 1
G Rx Car p—€: Demogulator
~———>——{Rx Bata Rure
5
—>—{RArsot

MC14411 BIT RATE GENERATOR.
Single chip for generating selectable frequencies for equip~
ment in data communicotions such as TTY, printers, CRT s
or microprocessors, Generates 14 different standard bit

rates which are multiplied under external control to 1X,

8X, 16X or 64X initial volue, Operates from single +5

volt supply. MCI4411. . .iiinicninnnniiennnns $11.98

4 pages of dota..v.viieerviiaaiiiaanans .. 40 78H05 Voltage regulator.
Crystal for the above...couur.. eraereraraneaans $4.95 ulator.

Take core of those heovy current requirments with-
out separate regulator/pass transistor combinations. Use it
with the some eose of instalation as the 309K(same

LMPAENNY

Suys

GET YOUR HIGHER EDUCATION AT

GOOD OLD TTI* WITH THE LATEST

IN DATA BOOKS AND MANUALS
*Tri-Tek, Inc.

RGA
GOLD CHIP

Linear Integrated Circuits

Brand new process by RCA in which the aluminum metalization
has been replaced by gold. The chip is then hermetically seal-
ed. What this means to you is unprecedented reliaobility ond
uniformity. Plastic parts thot meet mil specs !

Tri-Tek is proud to be the first to bring this new level of
performance to you ot SURPLUS PRICES. Why buy regrades??

CAS30TA. . Improved,general purpose op-amp,8 pin dip..59%¢
CA307...Super 741 op-amp. 8 pin dip.s.eeeinenionen 52¢
CA324...Compensated quad op-amp, 14 pin dip..... $1.80
CA33%A.. Low offset quad comparator, 14 pin dip...$1.59
CA741C. . Famous general purpose op-omp, 8 pin dip.. 45¢
CA747C. . General purpose dual op-amp, 14 pin dip... 8

CA748C. .Externally compensated 741, 8 pin dip....... 49¢
CA1458. . General purpose dual op-amp. 8 pin dip.....
CA3401. .Quad single supply (5-18V) op omp. 14 pin..

Anather super buy from RCA. CA555 timer. 8 pin dip. 59¢
NEW NATIONAL BOOKS!
AUDIO HANDBOOK contains detailed discussions,
including complete design particulars, covering many
areas of audio with real world design examples.,.$3.25
SPECIAL FUNCTIONS DATA BOOK contains detailed
information Tfor specifying and applying special amplifiers,

Fairchild 5V, 5A, TO-3 reg-

FLUID LEVEL DETECTOR LMI830 is used to compare exter- M oo "0 with, SPECS.rrrnrsreenis .25)] boffes. clocl; drivers, analog switches and D/A-A/D

nol probe to probe resistance with o reference resistor. Use converter products..o.iuiieiiiiiiiiiiiiiai, $3.25
as water leve! detector or with any polar fluid. Smoke —
level detector can be made by substituting a photo cell ULTRASONIC TRANSCEIVER, LM1812 is a special 1.C,

for the fluid probes...etc. LMI830...52.99. Specs -60 conteining o 12W ultrasonic transmitter, selective receiver,
_ noise rejection circuitry, display driver and keyed modulator.
PRECISION REFERENCE DIODE. LM399? is a temperature- Use in sonars, burglar alarms, liquid level control, direction
stabilized morolithic zener and buffer. Internal heater L

stabilizes output to ,0002%/°C. Buffer reduces zener im-
pedance to .5 ohm. Use in lob standards and calibrators.
Initial break down tolerance is 2%.

LM317 Voltoge Regulator.
regulator in TO-3 case.

Adjusts from +1.2V to +37V,
Complete overload protection.

control for model submarines, etc.

1.5A, 3 tarminal adjustable] LMIBIZ. i iiiii $9.15.

Specs and apps.... 60¢

1% load regulation,

PRECISION REFERENCE AMP

LM399H. o oivii i $5.95, Specs for LM399H. .60¢ .01%/V line regulation. No need fo stock assorted reg- W | H0070-1H provides o precise 10.0 volts for use in BCD A
_ vlatars - just stock resistors......... Creeaeenesa 54,99 to D converters or meter calibrators. Typical initial occuracy
4 DIGIT COUNTER. MM74C926 is a 4 digit counter with Specs for the above... TR ERFRE .70 is .3% (L .03V). Comes in TO-5 con.

7 segment output. Carry output for cascading and intermal] LHOO070-1H. . oo vvnivnnnnnne, with specs..cvvveeinie, $5.35
display select allows outputting of counter or set of BAéA BOOIES BY NATIONAL SEMICONDUCTOR _
internal latches, 3 to 6V operation. Great for clocks, DIGITAL. Covers TTL, DTL, Tri-State, etc.95

event and frequency counters. LINEAR., Covers amplifiers, pre-omps, op-omps, .. $3.95 M TV CAMERA SYNC GENERATOR. MM5320N I.C. generates

.................... LINEAR APPLICATIONS

MM74C926 = with spec sheet

FOUR QUADRANT MULTIPLIER., MC1495L provides
output as a linear product of two analog input. Use
for frequency doubler, balanced modutar/demodulator,
electronics gains control .

MO9S L. i e
6 pages of specs.. ...,
9 pages of applications.

CMOS Gotes, Flip Flops,
VOLTAGE REGULATORS.

$5.50
..60

MEMORY. Information on

INTERFACE.

TELETYPE CODE CONVERSION CHIP
MMS5220BL converts 5 level Baudot into 8 level ASCII. Use

Dozens of aoplication notes and
technical briefs covering the use of op-omps, regulators,
phase locked loops and oudic amps

power supply. Complete theory including transformers,
filters, heat sinks, regulators, etc

RAMS, ROMS, PROMS ond decoders/encoders
Covers peripheral drivers, level translators,
line driver/receivers, memory and clock drivers, sense amps
disploy driver and opto-coupler:
{Outside U.S., add postage for 1,5ibs}

all sync signals for T,V, comers Even color!l.

$18.80..iuvirnnnnnn Specs $1.00

33.25
registers, functional blocks $3
A must for anyone making a

T.V. CLOCK CHIP SET. MM5318/5841 two chip set forms
basis for time of day display on your TV screen, Interesting
and convenient way to keep time.

MMS5318/5841 Set $22.45......

MOS ond Bipolor memories:
$3.95

D-A CONVERTER BY ZELTEX

8 bit precision hybrid circuit for use in controllers, timers,
volt meters, etc. Molded plastic package with P.C. pins.
Super buy on this better than usua! subsystem. ZELTEX

$3.95

this chip to make your old TTY talk to your new computer,

MM5220BL. .0 eeeiiiiaaisei i iceeniaes «. $18.00
Specs for the above........cvviiiiannannn.s

MOS TIME BASE KIT,

Only 1" X 1.5". lnput 5 to 15 VDC, output is 60HZ

square wave for portable or mobile clocks. PC board is

drilled! MTBK-60HZ. ..o ivrenieniinnenns $5.88

model ZD430. DAC-430.....cviiivennnerans $4.95
DATA BOOKS FROM FAIRCHILD,
UA Linear. 776 pages of data and applications for Fair-
child lineor 1Cs. Great value.....o.ovvvueennan $4.25 NEW BOOKI!!! "An Introduction to Microcomputers”
MOS/CMOS/ nMOS/pMOS/CCD. Data and applications onll This is the book which Fairchild Semiconductor Company
MOS and charge coupled devices including preliminary datafl called "..... the best dorned introduction to the industry
on new and future offerings. Want to know about 16K to dote.” Covers everything from basic concepts to a re-
charge coupled line oddressable memories?......... $3.95 viaw of real microcomputers. IMC-001............. 8.00

TRI-TEK, INC.

6522 NORTh 43RV avenue,
GLenodale, ar1Zona 85301
phone 602 - 931-6949

We pay shipping on al! orders over $10 US, $15 foreign in US funds. Orders
under 510, please add $1 handling. Please odd insurance, Master Charge
and Bonk America cords welcome, (520 minimum} Telephone orders may be
placed 11AM to 5PM daily, Mon thru Fri. Call 602-931-4528, Check reader
service card or send stamp for our lotest flyers packed with new and surplus
electronic components,

http:VDD=4.75

http:100/1.49-1000/12.00

http:2/$25.00

BUTE

readenr
service

To get further information on the products advertised in BYTE, fill out the reader
service card with your name and address. Then circle the appropriate numbers for the
advertisers you select from this list. Add a 9 cent stamp to the card, then drop it in the
mail. Not only do you gain information, but our advertisers are encouraged to use the
marketplace provided by BYTE. This helps us bring you a bigger BYTE.

A116 Action Audio Electronics 101
A 70 American Microprocessors 99
A107 Audio Design Electronics 97
A111 Brigar 105

A120 Burkeshire 93

>P>P>PPr>rr>r
©0
~

BYTE's Books 80
BYTE's Poster 124
BYTE's Subs 111
BYTE’s T-Shirts 126
Cambion 99

CFR Associates 99
Computer Mart of NY 99
Creative Computing 103, 111
Cromemco 1

Data Domain 81

Delta 115

Digital Group 7
Economy Co 49

Eitron 119

Godbout 117

HAL Communications 61
IMS 13, 83

A113 Instrumentation Services 103
*A123 Integrated Computer System 97
A117 Intet 14,15, 23

A118 Intersil 39

A 15 James 113,125

A122 John Anthony Television 101

A 90 Logical Services 101

A 94
A 18
A 93
A
A119
A 57
A112
22
40
64
50
63
85
23
24
110
26
27
59
29
30
99
96
82
A 32
A115

>>Pr>>>>>PPPP>»>D>DP

Merrimac 95

Meshna 127

Micon 97

Microcomputer Applications 101
Micro Peripherals 101
Midwest Scientific inst 48
Mikos 93

MiniTerm 8

MITSCIV, 2,3, 21

National Multiplex 79

Ohio Scientific Inst 75
Oliver Audio Engineering 99
Osborn and Associates inc 43
Parasitic Engineering 49, 95
Per Com Data 69
Polymorphic Systems 73
Processor Tech 24, 25

PTI 97

Scelbi 19

SD Sales 106, 107

Solid State Sales 121
Southwest Tech CIlI

Sphere ClH

STM Systems 71

Synchro Sound 99
Technical Design Labs72
Texas Instruments 34, 35
Tri Tek 123

Wilcox 101

*Reader service inquiries not solicited. Correspond directly with company.

BOMB

BYTE’s
Ongoing

Monitor
Box

June BOMB Results

Winner of the BOMB bonus for the June issue was Bob Abbott, for his article
“Building an M6800 Microcomputer.” The three runners-up were Dr Suding’s ‘“‘Systems
Approach to a Personal Microprocessor,” G H Gable’s “Interact with an ELM,”
“Programming for the Beginner” by Ron Herman.

Feedback is what keeps a linear amplifier in line. Like a linear amplifier, BY TE can use a bit
of feedback. The BOMB analysis is done once a month to provide encouragement to authors
and some formal feedback on how readers appreciate articles. BYTE pays the winning author a
$50 bonus, so you can encourage the authors you like by voting your preferences. Remember
that with few exceptions BYTE authors are just readers who have sat down at their typewriters
to tell a story about what they've done or what they know about some aspect of this

technology.

PAGE

ARTICLE

16 Mooers: Are You an Author?

26 Guthrie: Mathematical Function Unit—Part 1

36 Grappel: Randomize Your Programming
40 Herd: BASIC Star Trek Trainer
44 Barbier: MSC 8080+ Microcomputer

50 Brown: How to Do a Number of Conversions
62 Suding: The Circuit for Z-80s
76 Baker: SC/MP Fills a Gap
84 Wadsworth: “8008" Programming—Chapter 3
108 Allen-Kasser: AMSAT 8080 Standard Debug Monitor

128

LIKED
LEAST BEST
0123456788910
012345678910
012345678910
012345678910
012345678910
012345678910
012345678910
012345678910
012345678910
012345678910

	Cover
	In the Queue
	Foreground
	BUILD THIS MATHEMATICAL FUNCTION UNIT-Part 1
	RANDOMIZE YOUR PROGRAMMING
	A BASIC STAR TREK TRAINER
	HOW TO DO A NUMBER OF CONVERSIONS
	THE CIRCUIT FOR Z-80s
	A FLAMELESS IC RECYCLING TRICK
	AMSAT 8080 STANDARD DEBUG MONITOR: AMS80 VERSION 2

	Background
	ARE YOU AN AUTHOR?
	THE MSC 8080+ MICROPROCESSOR AS A PERSONAL SYSTEM
	MICROPROCESSOR UPDATE: SC/MP FILLS A GAP
	MACHINE LANGUAGE PROGRAMMING FOR THE "8008"-Chapter 3

	Nucleus
	In This BYTE
	Come One, Come All!
	Letters
	Software Bug of the Month 4
	BYTE's Bits
	What's New?
	Classified Ads
	Clubs, Newsletters
	Programming Quickies
	BOMB
	Reader's Service

	Back cover

