OCTOBER 1977 VOLUME 2, Number 10 $2.00 in USA

bUlk

the small systems journal

e v ~7 2
o N
g .
] — - i
i :
v £
5 -~

\ A ‘ .
Mg L /
Ao w # /
- w -
-4 4 L
- - 2 a o
'
-~ = -
- ’ | -
o & 5 < 2
poap, - P R = . kx \.\
\ £ . ! / L7, }
. - 4 \ | / 2
& o,) 574 | ® X wJ .A«_‘(f/

S
A/ \,~
| e |
- P
PA o e S
s 'y \°x
w
£ - i
i - A
i 7 &
3 ' A |
\'«: o g
\ NS
<5 gl
J ,

One whole subset of the personal
computing world is provided by the
users and manufacturers of program-
mable calculators. All the problems
of creating applications software
which wusers must solve on bigger
machines are present, and often in-
tensified by lack of scale, in these
smallest of personal computers.
William B Jenkins gives some useful
infarmation on the general process
of creating an application program,
and the specific problems of doing
it on an SR-52 programmable cal-
culater, in his article entitled How
to Write an Application Program.

One of the conveniences of the
6800, 6502 and similar micropro-
cessors is a relative branch method
which allows one to construct position
independent code which can be re-
located by simply moving the pro-
grams involved. But these forms are
typically limited to a 1 byte displace-
ment, a limitation which Robert
Borrmann shows how to overcome in
the 6800 case by using appropriate
stack manipulationsand “long branch”
subroutines, Read his article Relocat-
ability and the Long Branch in this
issue.

Looking for a different type of
board game to play on your com-
puter? How about the current game
fad Othello (known as Reversi in
England)? In Othello, a New Ancient
Game Richard O Duda provides a
short article with details for this
game of skill and tactics.

This month, Mike Wimble con-
cludes his 3 part series about an APL
interpreter with An APL Interpreter
for Microcomputers, Part 3: Mathe-
matical Processing. With this segment,
the functional design of interpreter is
completed. Watch future issues for
results of the Great APL Interpreter
Contest inspired by Mike's article.

At first glance a simulator designed
1o run on the computer it is simulating
may not scem very useful. Kin-man
Chung feels differently for he wrote
one. His article, An 8080 Simulator,
describes one such program and gives
ideas on how it can be put to good
use.

page 86

For those who tire of the many
versions of the Star Trek game, there
are many much more interesting and
interactive graphics games to consider.
In his article, How to Implement
Space War, Dave Kruglinski provides
readers with a version of the classic
graphics game, Space War, which was
originated in the early 1960s by
students at MIT, and has taken an
amazingly long time to be documented
in versions for personal computers.
Dave's 8080 version is complete with
orbiting space ships, spiraling torpe-
does and dynamic effects implemented
with limited resolution point plotting
graphic display.

Is your computer cold? Add some
vitamin C for a new high in resistance
to frustration and rude language. Turn
to J Gregory Madden's C: A Language
for Microprocessors?, a description
of an excellent structured program-
ming language which could be adapted
to microprocessor use from its origins
on large PDP-11s with the Unix oper-
ating system.

Do you use cassettes as your prin-
cipal mass storage medium? Then you
will benefit from Wayne D Smith’s
discussion of Fundamentals of Sequen-
tial File Processing when it comes time
to write software using such media.

Want to get involved in pitch gener-
ation for computer music synthesis?
Thomas Schneider explains several
approaches you might consider in his
article, Simple Approaches to Com-
puter Music Synthesis.

Using flowcharts toga r the logic
for a program does not mesh with the
current trend of structured program-
ming. One technique that is directed
towards the structured program
approach is the use of Warnier-Orr
diagrams. Use of these diagrams, as
described by David Higgins in his
article Structured Program Design, will
result accurate, well structured pro-
grams that will work correctly the first
time they are executed.

The home computer has many uses
besides number crunching and game
playing. One of these uses, discussed
by David Holladay in Computer
Information Arrangement, is an in-
formation retrieval system. This type
of system could be used to make your
own dictionary type reference, help
keep track of your files with cross
reference, or simply make a personal
version of the SchAwann Catalog for
your record collection,

Sensible automobile owners have
long had the habit of recording mi-
leage and gasoline filling figures at
each visit to the service station. In this
issue John P Bauernschub explains
how to Analyze Your Car's Gas
Economy with Your Computer in a
short article presenting a complete
BASIC program for this application.

Are you looking for a stimulating
thought game to play with your com-
puter? The game of Ma: mind as
described by W Lloyd Milligan in his
article of that name will force you to
think in a very logical manner if you
want to have a chance at winning.

FULL SCREEN
POINT REFRESH

BYTE ADDRESS

n+

=3
+

32,768
AYTES

TOTAL

9 2 3 3 3 =3 3 3 3 3 3
+

By Carl Helmers

TABLE
I
|
1
I
S\ NN
AALY
] o 1] 1 A1 L]
|
|
|
| AN | 1/
I AN
HARDWARE
MAPPING T

Figure I: The color dis-
play technique which is
conceptually simplest and
most versatife is the di-
rectly refreshed brute
force technique of assig-
ning “n" bits to each
picture element. For a per-
sonal computing context,
where conventional TV
monitors are used, and

byte addressable memory
is involved, use of four bits
for each point gives 16
color levels per picture
element. For a full 256
by 256 element matrix
of cofor, @ memory re-
guirement of 32,768 bytes

COLOR MONITOR

This commentary on the possibilities of
color imagery and display was inspired by a
fantastic image processing system which was
surely witnessed by many of the 36,000
people who thronged to the National Com-
puter Conference in Dallas TX this past
June. The system in question is produced
by a company called Comtal, located in
Pasadena CA. It is referenced variously as
the Mode! 8000-S and *Vision One” in the
literature | picked up at the site of the
demonstration in thc main exhibit area of
the conference.

This Vision One system is not exactly
a personal computing product. Its price tag
in the $70,000 range makes it a candidate
for laboratory or institutional use, but

must be satisfied,

hardly a peripheral for the individual of
ardinary means. Its characteristics include a
built in LSI-1T computer with extensive
software, direct refresh raster graphics hard-
ware with 512 by 512 8 bit picture ments
{ie: 262,144 bytes in its serial CCD refresh
memory), and a hard surface disk drive. One
of the prime practical applications of this
system s its use by the Jet Propulsion Lab-
oratory of Pasadena as the analysis and en-
hancement processor for the color photos
returned from the Viking Jlanders on the
planet Mays. But 1t artistic personal
use attrit es of such a color display are
immense, as was demonstrated by |

Continued on page 42

See Sol here...

ALABAMA

ICP, Computerland
1550 Montgomery Hwy.
Birmingham, AL 35226
{205) 978-0707

ARIZONA

Byte Shop Tempe
813 N. Scottsdale Rd.
Tempe, AZ 85281
(602) 894-1129

Byte Shop Phoenix
12654 N. 281h Dr.
Phoenix, AZ 85029
(602) 942-7300

Byle Shop Tucson
2612 E. Broadway
Tucson, AZ 85716
{602) 327-4579

CALIFORNIA

The Byte Shop

1514 University Ave.
Berkeley, CA 94703
(415) 845-6366

Computer Center

1913 Harbor Blvd.
Costa Mesa, CA 92627
(714) 646-0221

DCI Compuler Systems
4670 N. El Capitan
Fresno, CA 93711

{209) 266-9566

Bits 'N Bytes

679 5. State College Blvd.
Fullerton. CA 92631

(714) 879-8386

The Byte Shop

16508 Hawthorne Blvd.
L.awndale, CA 90260
{213) 371-2421

Opamp/Computer
1033 N. Sycamore Ave.
Los Angeles, CA 90038
(213) 934-3566

The Computer Mart
624 West Katella =10
Orange, CA 92667
{714) 633-1222

Byte Shop

496 South Lake Ave.
Pasadena, CA 91101
(213) 684-3311

Micro-Computer
Applicalion Systems
2322 Capitol Avenue
Sacramento, CA 95816
(916) 443-4944

The Computer Store

of San Francisco

1093 Mission Street

San Francisco, CA 94103
{415} 431-0640

Byte Shop

321 Pacific Ave,

San Francisco, CA 94111
(415) 421-8686

Circle 355 on inquiry card.

The Byte Shop
2626 Union Avenue
San Jose, CA 95124
(408) 377-4685

The Computer Room
124H Blossom Hill Rd.
San Jose, CA 95123
(408) 226-8383

The Byte Shop

509 Francisco Blvd.
San Rafael, CA 94901
(415) 457-9311

The Byte Shop

3400 El Camino Real
Santa Clara, CA 95051
(408) 249-4221

Recreational Computer
Centers

1324 South Mary Ave.
Sunnyvale, CA 94087
(408) 735-7480

Computer Components
5848 Sepulveda Blvd.
Van Nuys, CA 91411
(213) 786-7411

The Byte Shop

2989 North Main St.
Walnut Creek, CA 94596
(415) 933-6252

Byte Shop

14300 Beach Blvd.
Westminster, CA 92683
(714) 894-9131

COLORADO

Byte Shop

2040 30th 5t
Boulder, CO 80301
(303) 449-6233

Byte Shop

3464 3. Acoma St.
Englewood, CO 80110
(303) 761-6232

FLORIDA

Byte Shop of Miami
7825 Bird Road
Miami, FL 33155
{305) 264-2983

Microcomputer
Systems Inc.

144 So. Dale Mabry Hwy.

Tampa, FL 33609
{813) 879-4301

GEORGIA

Atlanta Computer Mart
5091-8 Buford Hwy.
Atlanta, GA 30340
{404) 455-0647

ILLINOIS

Champaign Computer
Company

318 N. Neil Street
Champaign, IL 61820
(217) 358-5883

itty bitty machine co.
1316 Chicago Ave.
Evanston, IL 60201
(312) 328-6800

itty bitty machine co.
42 West Roosevelt
Lombard. IL 60148
(312) 620-5808

INDIANA

The Data Domain
406 So. College Ave,
Bloomington, IN 47401
(812) 334-3607

The Byte Shop

5947 East 82nd St.
Indianapolis, IN 46250
(317) 842-2983

Computers Uniimited
7724 East 89th Street
tndianapolis, IN 46256
(317) B49-6505

The Data Domain
7027 N. Michigan Rd.
Indianapolis, IN 46268
(317) 251-3139

IOWA

The Computer Store
of Davenport

616 West 351h Street
Davenport, |1A 52806
{319) 386-3334

KENTUCKY

The Data Domain
3028 Hunsinger Lane
Louisville, KY 40220
(502) 456-5242

MICHIGAN

The Computer Store
of Ann Arbor

310 East Washington
Ann Arbor, Ml 48104
(313) 995-7616

Computer Mart

of Royal Oak

1800 W. 14 Mile Rd.
Royal Oak, MI 48073
(313) 576-0900

General Computer Store
2011 Livernois
Troy, M1 48084
(313) 362-0022

MINNESOTA

Computer Depot, Inc.
3515 W. 70th St.
Minneapoiis, MN 55435
(612) 927-5601

NEW JERSEY

Hoboken Computer Works
No. 20 Hudson Place
Hoboken, NJ 07030

(201) 420-1644

The Computer Mart
of New Jersey

501 Route 27
Iselin, NJ 08830
{201) 283-0600

NEW YORK

The Computer Mart

of Long Island

2072 Front Street

East Meadow, L.I. NY 11554
(516) 794-0510

The Computer Shoppe
444 Middle Country Rd.
Middle Island, NY 11953
(516) 732-4446

The Computer Mart
of New York

118 Madison Ave.
New York, NY 10001
(212) 686-7923

The Computer Corner
200 Hamilton Ave.
White Plains, NY 10601
(914) 949-3282

OHIO

Computer Mart of Dayton
2665 S. Dixie Ave.
Dayton, OH 45409

(513) 296-1248

OREGON

Byte Shop Computer Store
3482 SW Cedar Hills Bivd.
Beaverton, OR 97005

(503) 644-2686

The Real QOregon
Computer Co.

205 West 10th Ave,
Eugene, OR 97401
(503) 484-1040

Byte Shop Computer Store
2033 SW 4th Ave.
Portland, OR 97201

{503) 223-3496

PENNSYLVANIA

Byte Shop of
Delaware Valley
1045 Lancaster Pike
Bryn Mawr, PA 19010
(215) 525-7712

RHODE ISLAND

Computer Power, Inc,
M24 Airport Mall
1800 Post Rd.
Warwick, Rl 02886
(401) 738-4477

TEXAS

Computer World
926 N. Collins
Arlington, TX 76011
(817) 469-1502

Byte Shop

3211 Fondren
Houston, TX 77063
(713) 977-0664

Computertex

2300 Richmond Ave.
Houston, TX 77006
(713) 526-3456

Interactive Computers
7646%2 Dashwood Rd.
Houston, TX 77038
(713) 772-5257

Neighborhood Computer
Store

=20 Terrace Shopping Center
4902 - 34th Street

Lubbock, TX 79410

(808) 743-2787

The Micro Store

634 So. Central
Expressway
Richardson, TX 75080
(214) 231-1096

VIRGINIA

The Computer Systems
Store

1984 Chain Bridge Rd.
McLean, VA 22101
(703) 821-8333

Media Reactions Inc.
11303 South Shore Dr.
Reston. VA 22080
(703) 471-9330

The Home Computer Center
2927 Virginia Beach Blvd.
Virginia Beach, VA 23452
(804) 340-1977

WASHINGTON

Byte Shop Computer Store
14701 N.E. 20th Ave,
Bellevue, WA 98007

{206) 746-0651

The Retail Computer Store
410 N.E. 72nd

Seattle, WA 98115

(206) 524-4101

WISCONSIN

Madison Computer Store
1910 Monroe St.
Madison, WI 53711

(608) 255-5552

The Milwaukee
Computer Store
6918 W. North Ave.
Milwaukee, W1 53213
(414) 259-9140

CANADA

Trintronics

160 Elgin St.

Place Bell Canada
Ctlawa, Ontario K2P 2C4
(613) 236-7767

First Canadian

Computer Store Lid.

44 Eglinton Ave. West
Toronto, Ontario M4R 1A1
{416) 482-8080

The Computer Place

186 Queen St. West
Toronto. Ontario M5V 121
(416) 598-0262

Pacific Computer Store
4509-11 Rupert St.
Vancouver, B.C. V5R 2J4
{604) 438-3282

Processor

elieRs

A CMOS LOGIC PROBE

This is in response to Tom Kryst's
letter in the July 1977 BYTE, page 148,
expressing a need for a low cost CMOS
logic probe. | was faced with a similar
requirement while working on a software
development system for the RCA 1802
CMOS microprocessor. Not being a
persen who belleves in reinventing the
wheel, | borrowed Kurt Christner's TTL
design from the January 1977 BYTE,
page 82, adding a CMOS inverting buffer
at the front end, as shown below. Please
note that a CD4069 inverter may not be
substituted tor the more cxpensive
CD4049, as the current sinking capa-

[Fa3) 176
04048 7405
IiNPUT

POWER CONNECTIONS
+SY|GND

1cl F405 | 14
Icz | 9602 | 18
1C3 CDAgas| |

® @~

bility of the latter device is necessary.
| hope this modification may prove
useful to some of your readers,

Frank A Weissig
343 NW 8th St, Apt 3
Corvallis OR 97330

{LEVEL)

ce
~du F
E A T
L AR ‘
r),
' T¥aia
IN3I
4 'C2o ?
1F2
9602 s
E V4 R4 J
—— -7 3300
Dl e
VLED-2
EDGED

*| added this resistor to Mr Christner’s
design because there's something about
an OC gate without a pull up that makes
me Nervous.

KUDOS FOR THE LD-14

I"d like to make a few comments
about one of your advertisers, namely
Logic Design Inc of Laramic WY. |
purchased their LD 14 Tuworial Training
Compulter which was wrilten up in Jan-
vary 1977 BYTE. Although | have not
linished wire wrapping the unit, | am
confident that | am getting my $1200°s
worth, One (hing that has impressed me
aboul the company is the quick rcsponse
to a problem | was having one evening
because of a gross error on my part.
Some of the wires melted together as the
result of tying VCC to ground. | became
a little nervous that maybe | damaged
something, so | wrote to complain aboul
their tailure to give any guarantees that
their product is idiot proof.

Within three days | received a very
courteous and apologetic phone call
from the company with an open invita-
tion to call them collect in the event |
experienced further difficulty. With this
kind of response it would seem likely
that they intend to back up their com-
mitment to guality support as stated in
their advertisement.

To a second party, my finished pro-
duct may not appear to go beyond the
Intercept |r offered by Intersil, based on
their IMG100 chip, whith goes for
around $450 with 1 K of programmable
memory. This compared to the $1200
| have spent may be called to question
when considering only the physical
result. The difference, as | see it, is thal
| will have acquired an undgrsianding ol
the POP-8 computer that | ’would never

have been able to by simply program-
ming a prewired version. Beyond this,
when I'm finished wire wrapping the
PDP-8, | can unplug it from the logic
designer front panel, give it a 5 V supply,
and use the designer for my own crea-
tions.

For anyone interested in learning
some of the state of the art do's and
dont's of logic design, | will give this
product a strong recommendation.
Alsa, | would be interested in making
contact with others who are building,
or have completed, the LD 14 computer.

Phil Winninghoff
815 Plata Rd
Arroyo Grande CA 93420

ASIMOV’'S PERSONAL COMPUTER
ANTICIPATION, CIRCA 1950

In his article, "Why aren’t there any
Altairs on Arcturus 112" {April 1977
BYTE), H Melton states that, "l can

|

SWTP 6800 OWNERS-WE HAVE A CASSETTE i/0 FOR YOU!

The CIS-30+ allows you to record and playback|data using an
ordinary cassette recorder at 30, 60 or 120 Bytes/Sec.! No Hassle!
Your terminal connects to the CIS-30+ which plugs into either the

Control {MP-C} or Serial {MP-S) Interface of your SWTP 6800
Computer. The CIS-30+ uses the self clocking 'Kans:is City'/Biphase
Standard. The CIS-30+ is the FASTEST, MOST RELIABLE CAS-
SETTE /0 you can buy for your SWTP 6800 Computer.

PerCom has a Cassette 1/0 for your computer!
Call or Write for complete specification's

RafE TERMINAL

icn LOCAL AUTQ

? o A o AN
1700 e on
PEROOM

Kit — $69.95*
Assembled — $89.95*
{manual included)

* plus 5% f/shipping

PERCOM

PerCom -

PerCom Data Co.

P.O. Box 40598 . Gosrland, Texas 75042 « {214] 276-1968

[
‘peripherals For personal camputing’

[]
BAKANEN CAND
]

TEXAS AESIDENTS ADD 5% SALES TAX

]
J

1

remember only one old story that
used pocket calculators. . . ."” As an avid
SF fan, and as an even more avid calcu-
later (HP) freak, | must beg to differ
with Mr Melton. In the Foundation
Trilogy, by lsaac Asimov, one finds the
following passage:

Seldon removed his calculator
pad from the pouch at his
belt. . . .lts grey, glossy finish was
slightly worn by use. Seldon's
nimble fingers. . .played over the
hard plastic that rimmed it. Red
symbofs glowed out from the
grey.

How many of us have not performed
the act just described? And the Founda-
tion Trilogy was, | believe, written in the
early 1950s. | must, however, agree with
the general tone of the article: most of
us {including SF writers) are just not
able to predict the rate of technological
progress.

W Gray Mansfield
5042 Guava Av
La Mesa CA 92041

PRINTING BARS ON SELECTRICS?

| see you're printing optical code. Is
it possible to get an IBM ball (or keys)
which prints letters and code simultane-
ously? If yes, where are they available?

Rob Loring

Twin Oaks Commmunity
Rt 4, Box 169

Louisa VA 23093

Yes, but it's expensive. Custom
tooling is available from several sources
for 1BM style balls; thus, while one could
design a bar code font, it would not be a
project undertaken lightly.

LIGHTING THROUGH THE PAPER?

The idea of distributing software
through PAPERBYTES is great. Why
don’t you publish PAPERBYTES on one
side of a page only, leaving the other
side blank? Light could then be shone
from underneath the paper to illuminate
the coded material.

This technique would greatly sim-
plify the optical system needed for the
bar code reader. It would eliminate the
light source and lens in the reader
{wand) and reduce specular reflection
problems that cause errors.

| plan on trying this approach soon.
Do you or your readers have any sugges-
tions?

Andrew A Modla
108 Clemens Ct
Lansdale PA 19446

The main problem with the approach
of backlighting is that it leaves one
whole side of the paper blank, something
wihich is less than optimal when it comes
to publishing information in books and
magazines on expensive paper.

PRINTING QUOTES ON AN HP9830
IN BASIC

As a user of Hewlett-Packard’s 9830
BASIC machine, | have discovered one
of its [very fcw) shining features. The
BASIC interpreter has a slatement pair
WRITE and FORMAT, which FOR-
TRAN uscrs will recognize. This is a
rather little known facl, as HP burles it
in an obscure portion of their manual.

in order te get quates oul of it,
something like this would be written:

10 FORMAT 38
20 WRITE {i5,10) 34, "HELLO", 34

where 15 is the device code of the main
printer. The output looks like this:

“HELLO™

What goes on is that B lormatl will
convert the decimal number given it
{constant, variable, or whalever) and
output it directly as ASCII; the guote
mark is 34 in ASCil. This can also be
used to print nonkeyboard characters;
square brackets, reverse slashes, and so
on.

The other way to do this reguires the
Advanced 10 ROM, as HP sells their
software as plug in black {or gray) boxes.
The QUTPUT statement allows you to
use a string as an output device.
Example:

10 FORMAT B
20 QUTPUT (A$,10) 34,
30 PRINT A%

with the result:

"

So, all you users of the HP9830, now
you can print quotes and cther goodies.
This almost makes up for the crudity of
HP's strings.

John Woods WB7EEL
6541 126th Av SE
Bellevue WA 98006

AS SALES EXPAND, SAFETY
ASPECTS MUST BE IMPROVED

While experimenters look for the
fastest, most powerful, least expensive
micracomputer, they seldom look (lor
the safest. FFrom looking at ads for
hobby computers, | learn that only OS)
advertises their power supply as being
listed by Undcrwriters Laboratories Inc.
Some small computers have 117 VAC
conductors that are exposcd when the
lid is off (as | learned one day by acci-
dent — no injury, just minar cquipment
damage); the same machines don't have
fuses in the unregulated low voltage
high current lines. Just wait until you've
welded a probe te a power trace o find
out how much you need that item. It's
an industrial standard to avoid exposed
high voltages whenever possible, and |
see No reason to have an exposed, noisy

Continued on page 32

12

Rated(G)

Great Locations

Now Open:

020 Unversity Drve N W

Huntswille, AL
[205]539-1200

MN74 San Pablo Ave

El Cermto, CA 94
[415) B526-6622
22634 Foothill B

530

Ve

Howward, CA 94542

[-M51538-8.80

&30 _a Ceneqe Bivd

inglewood, CA
[13) 7768180

SRR

2AHM Vic Fabncante

Mission Vieyo,
[744) 7701234

A5 Convoy ™

1) BEN 012

.

it Fremont Stre

A Q2675

reet

i Diego CA Q21

et

San Francisco, CA RA05

(1151 5461592

171 Thousand
Thousand Daks
AR5 FEA

1Ly First Strze

Caaks Blvd Sute 105

CAS

t

Tushn A G2ARAD

M3} EAL-N5A2

St kast Pand Pond
Arington Heights. L 60004

312} 255-6488

5 No Milwaukee Ave

Mires _&LAdE
7.

3 987571

=1a-B Lyndon Lone
Ny

LCusvlie, v Y G222

(5C2)2h-85 ¢
140465 Fredenck
Lockwlle, MD 2t
30N QAB-TATA

2 DNe Hart Street
PACrTstOwn, N
LM B3e- 4077

Road
1655

175960

1612 iagara Falls Sivd

Euffalo, NY 14451
[76) B36-65M1

D

25 Elmura Road

fthaca, NY 14850

|67 2774

A 150 Westherner Roaa

Houston, Tx 770
| 743) Q77-1Q0Q

Opening Soon:

Son Jose, CA
akiawn, L
Cetroit. M

o
o/

srend Rapicds. M

INewshuc, hNH
Aushn, TX

Franchise Opportunities
Avallable—Contact:

E.E.Faber, Presi
Computeriand

ident
Corp.

Computerland’

1922 Republic Ave
San Leandro, CA Q4577

(415) 895-9363

Circle 356 on inquiry card.

Photo 1: SR-52 programmable calculator.

op codes for a high level language inter-
preter, with cach key performing a set of
fairly complex operations. The 5SR-52
provides several categories of key functions.
It has the conventional arithmetic functions:
+, —, X, ¥; and a4 set of memory functions
that allow you to manipulate the 20 avail-
able memory areas. These functions include
STORE, RCL (recall), SUM, PROD (prod-
uct), and EXC (exchange). Trigonometric
functions, Sin, Cos, Tan and other standard
functions such as x2, yX, and 1/x are also
included. An important set of keys are those
that allow the SR-52 program to make
decisions. These can perform tests on
program data in order to determine what the
next program step might be. The SR-52 is
shown in photo 1.

The SR-52 has a maximum of 224
program steps. To program the machine,
you simply take the list of key sequences
and push the buttons in that sequence until
you are done. This is a little oversimplified,
but it really isn’t much more than that.
If your program has been properly designed,
the SR-52 will be able to do all of the finger
crunching work when you put in the data.
When you are satisfied with the program,
you can save it on a magnetic card for
future use.

Zeroing In

What we have done up to this point
has given us a logical approach to the pro-
gram solution of our problem, and an overall

notion of how the SR-52 can do the job
for us. Now we have to get a little closer
to the SR-52 to know exactly how to trans-
late our flowchart to key sequences.

Our program should be easy for a non-
technical person to use. This means that
entering the data should use very few steps.
The program should do most of the work
until the problem (invoice) is complete. To
help accomplish this, the program will
be written to use the optional SR-52 printer
as a recorded output. The printer, shown in
photo 2, in addition to providing a hard
copy output, actually makes program devel-
opment easier. By printing desired results
as they occur we can avoid using too many
of our precious 224 program steps to store
and then later recall results. In some cases,
programs that would be too long, more
than 224 steps, without the printer can be
handled on the SR-52, Additionally, since
the printer can be operated under program
control, some limited data formatting can
be accomplished. Last of all, the printer
allows the user to verify the accuracy of
the data input.

Invoice Program Development

In the invoice problem we are working
on, we can see from the initial flowchart
that we are going to use several basic SR-52
functions. These are data storing, recalling,
multiplying, subtracting, adding and
printing.

We will now expand our initial flowchart

Photo 2. Printer attachment for SR-52.

Figure 2: Expanded flow-
chart for invoice program
includes net priced items.
The actual programming
steps for the SR-52 are
also noted within the
boxes. The circled num-
bers indicate the order
in which the program was
writtenr and refer buck
fo the text.

HOUSEKEEPING

CMS, CLR FIX 2,

HLT

“C"-- DISCOUNT

5TC 03, PRT,
PAP, HLT

l

"D"-- SHIPPING

STO 04,
HLT

"A" -~ QUANTITY

FIX O, STO O, PRT,
FIX 2, HLT

[

“B"--LIST PRICE

5TO 02,
FPRT

l

TATXYBT= LINE TOTAL

RCL A, X, B,
FRT, SUM {8, HLT

NO

A'--GRAND TOTAL LIST ITEMSxDISCOUNT=NET

(RCL 9, PRY, X, {1-C)),PRT,-RCL 19,

=,*/- PRT,PAP, STO (9, HLT

NET NO

YES

AT-- QUANTITY

FIX O, STO Ot, PRT,
FIX 2, HLY

"E"--NET PRICE

STO 05,
PRT

|

“A°XTE® = LINE TOTAL

RCL A, X,8,+,PRT,

SUM 19, HLT

B --NET PRICE TOTAL + SHIPPING - INVOICE TOTAL

PAP,RLCL I9,PRT,+ RCLD,PRT, « PRT, PAP PAP,

pap

START OVER

RST

to include the actual steps we will ask the
SR-52 to do for us. In this expanded flow-
chart we have added the second category
of merchandise we want to price. One olher
design consideration that we want to include
is the manner in which we will have the
user input the data. The SR-52 has a set of
five buttons that arc labeled A, B, C, D and
E. These same buttons can be set for a
second use which adds five more functions
labeled A", B', C', D' and E’. These buttons
are called "user defined keys.” Depending
on the way you write the program, a given
user button will do whatever you want.
For our use, we will want to use these but-
tons to define to the program what our
data means. Table 1 shows the definition
we have given to these keys for this program,
Looking at the work the SR-52 does when a
user defined key is pushed gives you an idea
of the power of the machine.

To get the invoice data into the program,
the user keys in the numbers on the key-
board and presses the appropriate user
defined key.

Now, we can expand our initial flow-
chart to what we see in figure 2. The num-
bers in circles adjacent to various boxes
are the order in which we will write the
program seqguence. We will refer to these
numbers in the following discussion of
the new flowchart.

1. This is some of the housekeeping
that any program should have. [t
assures you that the initial condi-
tion of the calculator or computer
is what you expect it to be. Here we
want to CLR (clear}, CMs (clear data
memories), FIX 2 (fix the decimal
point of the computations to two
places) and HLT (halt). We want the
machine to stop and wait for us to
input data.

2. In this step we are going to define
key C to mean discount. We arc
going to STO (store} it in data mem-
ory location 03, print what we en-
tered, advance thc paper one line
and HLT again.

3. Key D is defined to be the shipping
amount of the order; it is stored in
data memory 04. We then halt. We
could have printed this value, but |
chose not to because it will be used
at the end of the program where,
if it is the wrong amount, not much
harm is done.

4, Key A is the quantity of merchan-

Continued on page 152

Robert J Borrmann PhD

Associate Professor of Electrical Engineering
Manhattan College

Riverdale NY 10471

A position independent relocatable pro-
gram is a program that can be moved to any
convenient place within your memory space,
and executed without any changes. One of
the very nice things about the Motorola
6800 instruction set is the relative addressing
mode used in its branch (BRA) and branch
to subroutine (BSR) instructions; instruc-
tions using this addressing mode are inher-
ently relocatable without patching.

To illustrate relative addressing consider
the 6800 instruction: 20 35 (hexadecimal).
Hexadecimal 20 is the code for the branch
(BRA) instruction, so 20 35 means jump to
the address that is hexadecimal 35 bytes
beyond the instruction which follows this
branch instruction. Thus, if a program ini-
tially occupies hexadecimal locations 0080
to 0200, and includes at location 0100 the
above branch instruction, this causes the
processor upon encountering it to jump to
location 0137. If the program is now copied
from its original location 0080 to 0200 into
a new location 1580 to 1700, the branch
instruction (now at tocation 1600) will
correctly cause the processor, upon encoun-
tering it, to jump to location 1637.

Relocatability and the Long Branch

Unfortunately, the 6800's branch instruc-
tions allow only one byte to be used as the
relative displacement. This allows a maxi-
mum branching range of only hexadecimal
+7F (+ 127 decimal) to hexadecimal —80
(—128 decimal) bytes. What do you do if
you have need for longer-range branching, as
is the case in larger programs? If you use the
jump (JMP) or jump to subroutine {JSR)
instructions, which include absolute address
references, the program is no longer relocat-
able without modification. It loses the posi-
tion independence feature which makes a
generalized program read only memory
possible.

One solution to the problem of writing
large relocatable programs is provided by the
long branch (LONGBR)} and long branch to
subroutine {LONGBS) subroutines described
here. Although the listings show starting
addresses of 278E and 276B respectively,
both routines are completely independent of
memory address space location. They can be
used in two ways.

The first way is to incorporate both
routines into your own system monitor,
which presumably occupies a fixed location
in your memory space. This is the way | use
them. Then, to execute a long branch within
a program you are developing anywhere in
memory, you simply execute a jump to
subroutine LONGBR, and follow the JSR
LONGBR instruction by a 2 byte adder
which indicates how many bytes ahead or

Listing 1: A symbolic assembly lanquage and object code representation of the long relative
branch calculation routines for the 6800 processor. The addresses for the routines are picked
based on the author’s systems software. Since the routines are entirely position independent,
they can be relocated without any modification, provided the code does not overlap the tem-
porary storage area for the index register (XSTOR), which is referenced absolutely. The boxes
at the right of the commentary in the listing signify the contents of the stack area. The blue
color identifies contents based on values present on entry to the routine, and the red color iden-
tifies contents computed during the operation of the routine.

26

http:addrll.Ss

behind you want o branch. For example, il
you want Lo long branch from location 0100
to 0345, vou would need the following
code:

0100 BD 27 8k
0103 02 42

JSR LONGBR
FDB $0242

The target address is compuled by adding
the offset {hexadecimal 0242 (o the address
of the byte following the JSR instruction
{hexadecimal 0103):

0242
0103

0345

To exccule a long branch Lo subroutine the
procedure is similar except that you jump 1o
subroutine LONGRBS instead of LONGEBR.
For example, if your program is al hexa-
decimal Tocation 0240 and you want 10
branch to a subroutine that is located a1
0050, you would need the following code:

0240 BD 27 6B JSR LONGBS
0243 FE (D FDB $ FEOD

where as usual the target address 0050 is the
sum of the offset (FEOD) and the address
of the byte following ihe JSR instruction
{0243}, Upon encountering the JSR LONG-
BS instruction at 0240, the processor would
go to LONGBS for some massaging of
data on the stack, and from there would go
1o your subroutine at 0050. Upon entering
the subroutine at 0050, it will have the same
values of accumulators A and B, and index
registerand stack pointer, as it had when
encountering the JSR LONGBS instruction
at 0240. The condition flags would in
general be different, however. Upon return-
ing from your subroutine, execulion would
resume with the instruction at location
0245,

When relocating o program using JSR
LONGBR or JSR LONGBS instructions you
would, ol course, leave such instruclions
unchanged {assuming that your monitor
incorporating the LONGBR and LONGBS
routines was not itself being relocated). 11
the location ol cach long branch or long
branch to subroutine call is being changed
by the same amount as the targetl addresses,
the program will wark the same in the new
location, just as was the case with ordinary
relative branches.

The second way to use the LONGBR and
LONGBS routines is to build them into the
long program you are writing. While
LONGBR and LONGBS arc themselves re-
locatable, there remains the problem of

28

branching to these subroutines from all
locations within the program that will re-
quire long branching. This branching can be
accomplished by installing 'stepping stones’
thoughout your program which allows any
location within your program to branch
from “stone” to “stone,” and thereby
finally get to thesc subroutines,

To illusirate, supposc a program occupics
memory locations 0200-04CF, including
LONGBS a1 0200 and LONGBR at 0223,
Then the stepping stones might be:

027E 20 80 LBS1 BRA LONGBS
0280 20 Al LBR1 BRA L.LONGBR

02FC20 80

LBS2 BRA LBSI
02FE 20 80 LBR2 BRA LBRI
037A20 80 LBS3 BRA LBS2
037C 20 80 LBR3 BRA LBR2
03F8 20 80 LBS4 BRA LBS3
03FA20 80 LBR4 BRA LBR3
0476 20 8¢ LBSS5 BRA LBS4

0478 20 80 LBR5 BRA LBR4

To cxccuwle a long branch from anyplace
within the program, simply execute a branch
1o subroutine (BSR) to the previous LBRn
stepping stone. To cxecute a long branch to
subrouting, simply execute a BSR 1o the
previous LBSn stepping stone. These
branches are then completely relocatable,
{Of course this technique of stepping stones
can be used directly just as well, without
LONGBS or LONGBR; but one chain of
stones has to be devoted to cach branch
target. If more than two subroutines |or
branch targets] must be used, less code will
be reguired if LONGBS [or LONGBR] is
used.)

How [t Works

The operation of the LONGBS sub-
routine can be understood by a study of the
program listing and comments shown in
figure 1. The entries at the extreme right of
the listing show the contents of the stack

region of memory at the conclusion of each
step, which changes the stack contents or
the pointers (index register X or stack
pointer S) used to keep track of position
within the stack.

To help understand the operation of the
program let us consider an example in which
the processor encounters the following in-
struction scgquence:

0736 BD 27 6B SR LONGBS
0739 FC 1A FDB $FCIA
C73B 86 02 LDA A #3502

in ecxecuting the JSR instruction at 0736,
the processor places the address 0739 (which
would ordinarily be the return address) onto
the stack, and jumps to 276B. However,
0739 as used here is not the actual return
address, since it is the location of the 2 byte
oftset which will be used to form the actual
target address. Thus, 0739 is more properly
called the ‘“would-be” return address
(WBRA}. Upon entering the subroutine
LONGBS, then, the stack looks as follows:

sSp

(07} 139}

where SP with the arrow denotes the posi-
tion in the stack being pointed to by the
stack pointer, WBRAH is the high order byte
of WBRA, WBRAL is the low order byte of
WBRA, and OLD denoles stack contents
before executing the JSR LONGBS instruc-
tion; these “old” contents of the stack will
not be disturbed.

The first line of subroutine LONGBS
stores the values of X away for later
retrieval. | happened to usc low core loca-
tion 0020 to 0021 for this purpose, but
any available programmable memory loca-
tion can be used instead. {You may prefer to
use a spare 2 byte location in the program-
mable memory devolted to MIKBUG in
many systems.) The next six lines of code
transfer to 1X the burden of keeping track of
our stack location, while the stack pointer
itself is used 1o copy the would-be return
address into two additional stack locations.
Since we arc fooling with the stack
poirter, it is necessary o prevent interrupts
from occurring at this time. The SEI (set
interrupt mask) locks out the maskable
interrupts until further notice. We now have
the following stack picture:

I

on (39) {07) (39)

The next three lines (2775-2777) correct the
would-be return address 1o the actual return
address 073B:

IX

(07) (39) (07) (3B)

In line 2779 the stack pointer is returned to
its usual role of keeping track of position in
the stack. Since accumulator A is to be used
for some data manipulation in subsequent
instructions, its original value (the value it
had when JSR LONGBS was execuled) is
stashed away on the stack for later retrieval.
After executing this instruction at PSHA the
stack appearance is:

Bl

)

(07) (39) {07) (38)

The next ten lines {2778 10 2787) cause the
would-be return address WBRA to be in-
creased by the value of the 2 byte adder; the
result is the target address, denoted by
LBAH (long branch address high order byte)
and LBAL (long branch address low order
byie).
The appearance of the stack now is:

sP

(03) (53} (07) (3B)

The orginal values of accumulator A and of
index register 1X are now retricved, inter-
rupts are reenabled, and the processor jumps
to 0353 by executing the RTS (return from
subroutine instruction). Notice that because
of the manipulation of the stack during
subroutine LONGBS, the processor does not
return to the program scction which called
it; instead it jumps to the target address
(0353 in this case), because the effect of
executing the RTS instruction is to place
into the program counter the 2 byte address
pulled from the top of the stack.

When the subroutine which begins at
0353 has been finished, the processor exe-
cutes the RTS instruction which ends it, and
this returns the processor to the actual
return address 073B.

The operation of the long branch routine
LONGBR is similar, cxcept that the RAH
and RAL bytes are not needed or wanted.

us, the initial part of LONGBS which
duplicated the value of WBRA on the stack
is bypassed.m

29

Bagusges

Forum Defining LIL, a

- Little

Interpretive
Language

LOW MEMORY
INTERPRETER
S
CODE
W
DATA SOFTWARE STACK
707,
REFERENCE
TABLE
HIGH MEMORY

Figure 1: How memory is arranged in the LIL language.

code
C8 (hex)

<RADL
RADH
<RADL
RADH

= control byte

reference address of

descriptor of COUNT

reference address of

descriptor of numerical constant 1

OAR affset to address of routine '+’
OAR offset to address of routine “"INTO"’
RADL reference address of

RADH descriptor of COUNT

QAR offset to address of routine **;"*

refarence table
DATA data for numerical constant 1
L—» DES descriptor for numerical constant 1 (integer 1 byte)

DADH data address
| :DADL for COUNT
L = DES descriptor of variable COUNT ({say integer 3 bytes)

software stack
L DATA

DATA] data for COUNT
DATA

1 0
Listing 1: Linkages for the
source statement COUNT
+] INTO COUNT; in the
LiL language.

/
COUNT 1 4

30

Jack Cluff
34.57 73rd 5t

Jackson He ts NY 11372

It is with great interest that | read the dis-
cussion by Donald] Stavely in the April
1977 Technical Forum. Mr Stavely has
articulated a concept in which | have been
greatly interested for the past scveral
months, and in which | have invested a cer-
tain amount of work.

LIL, Little Interpretive Language, is a
pseudocompiling language whose compiled
code could be run on any microcomputer
which has a LIL loader and a | . inter-
preter. LIL is still in a state of flux, but may
be spoken of in general terms. It is to consist
of three separate programs: the compiler,
the loader and the interpreter.

The compiler is to accept character key-
board input and build three structures: the
symbol table (to be discarded at the comple-
tion of compilation) which contains the
names of objects, the reference table whi
contains descriptors of objects and the
memory addresses at which those objects
may be found, and the compiled code which
contains 2 byte descriptor addresses and 1
byte offsets to a table of function rou es
used by the interpreter.

The loader is to load reference tables and
code into the proper areas of memory
processing by the interpreter, and is to
modify all initial linkages established by
the compiler so as to agree with the new
positions of reference tables and code.

The interpreter is to interpret only
addresses of descriptors and offsets to
function routines. The interpreter is to
allocate memory for data storage on a
software stack; the hardware stack is to
be used for data manipulation such as
arithmetic functions.

The linkage for the source statement:

COUNT +1 INTO COUNT;

can be represented as jn listing 1.

Control bytes serve the useful purpose
of defining which of the following units
of code are address pairs and which are sing-
ular offsets. The control byte in the previous
example links to the code as follows:

1 0 X X (X = don't care)

\ N
l‘lNTO" COUNT l(;”

Continued on page 181

Continued from page 12

and hazardeus 117 VAC power trace
running long distances on a power board.
The big boys have their equipment
tested and listed by UL. It's a nccessity
if they expect commercial sales. If per-
sonal computer manufacturers want the
kind of mass market you've been pre-
dicting in BYTE, they will have to
follow suit. This stuff moves in interstate
commerce, and if vendors sell a shock
or fire hazard to some naive user, they
can expect to be spanked by the Feds,
something that tends to be a corporate
hurt, and will damage this fledgling part
of the computer industry. All the manu-
facturers who haven't, should clean up
their acts before the [eds force some-
thing distasteful on them.

William R Hamblen
946 Evans Rd
Nashville TN 37204

A NEW SUBSCRIBER COMMENTS

How long have you been publishing
BYTE? Are any back issues available, or
reprints of articles in back issues? Do
you publish an index to previous issues?

Could you recommend a book, or
books, that are readily available, or list
their sources on microcomputer soft
and hardware, particularly software
{from machine language level to high
level programming languages)?

Daniel Owen Jenkins V{11
Box 201 RD#1 Clinton Grv
Weare NH 03281

We huave been publishing since Sep-
tember 1975. No buck issues are avuail-
able; however, The Best of BYTE Vol-
ume | gr £12.95 contains most of the
editorigi materials from issues 1 to 12.
An index is available for Volume |: send
a self-addressed stamped envelope.

FASTER MULTIPLY?

PRODUCTS NEEDED

The following are some things we
think are neceded in this field:

1. A real time clock-calendar board
for the S-100 bus with an 10 port and
recharging circuit which would display
time, date and day of week on video
monitor or other peripheral. Calendar
would be at least 200 year. Would accept
input to start clock or reset it, such as a
60 H/ line signal, or a time signal from
WWV, or a manual signal. Could be pro-
grammed (EPROM) to exhibit holidays
and special dates or times, or emit a
signal to initiate some action at a present
time and date. Would be designed to be
highly resistant to transients in power
supply. Would have 12 hour AM-PM or
24 hour switch scelectable option, and a
local standard time or daylight savings
time or Greenwich time switch selection
feature.

2. An ASCIH-EBCDIC converter
board for the S-100 bus.

3. A generalized converter board for
the S-100 bus, under software control,
which could enable the user to readily
recode keyboards, printers, and video
displays with no more than a few key-
strokes. Could be used as an ASCII-
EBCDIC converter, or could convert
a keyboard from a standard QWERTY
keyboard into a Dvorak Standard Key-
board with a single command, or con-
vert an ASCIH into an APL or other
special character set keyboard.

4. A convention to standardize
the bus for the coming 9900 family of
16 bit processors before different buses
proliferate.

5. A directory or clearinghouse of
resources in this field, so that persons
wishing to contact others doing or able
to do things of a certain kind could
do so.

Jon D Roland

Micro Mart

1015 Navarro

San Antonio TX 78205

ENTRY: A=multiplier; E=multiplicand

ENTRY: A, E, C=unchanged; B, D =0; HL=product

Commentary
Set B register for count

Address Op Operand Label Mnemonic
006000 006 010 MVIB 010
006002 041 000 000 LX1t H 000000
006005 124 MOV D, H
0060086 007 LOOP RLC
006007 322 013 006 JNC SKIP
006012 031 DAD D
006013 005 SKIP DCRB
006014 310 R2
006015 051 DADH
006016 303 006 D06 JMP LOOP

Clear product registers

Also clear D

Rotate left

Skip on zero bit

If nonzero, add multiplier
Check counter

Exit if last time

Arithmetic left shift of product
Repeat

The quick and simple 1x1 byte multi-
plication routine of Christopher Glaeser
{July 1977 BYTE, page 142) can be
made cven quicker and simpler by shift-
ing the A register Jeft instead of right.
Using the RLC command instead of
RAR preserves the value in the A regis-
ter. The E register is also not altered.
Thus, both multiplier and multiplicand

are unchanged upon exit from the sub-
routine. This is an advantage in mani-
pulating arrays, etc.
See box for register status.
The whole thing occupies only 16
by tes.
Leonard Morgenstern
POB 81
Rheem Valley CA 94570

32

COMMENTS ON SELECTRIC 1O
INTERFACING

As onc who has designed an interface
for both input and output between a
Selectric 731 and my Z-80 system, { was
interested to read Dan Fylstra's article
“Interfacing the |BM Selectric Keyboard
Printer,” June 1977 BYTE, page 46. Duan
is to be complimented on a very good
technical description, especially when
compared with the naive and olten just
plain inaccurate information which has
been published recently on this subject.

There arc scveral supplementary
points which may be of interest 1o
BYTE readers:

1. Dan gives an excellent de-
scription of the differences between a
BCD and Correspondence coded 731 or
735. But there are three distinct versions
of the Sclectric which have been thought
suitable tor use with a compulter and the
differences between them are also worth
noting:

a) The office Selectric is a
light duty mechanism in the same
sense in which the term is used
for the Teletype Model 33. It
won't 1ail ior a long time bul the
office Selectric is less rugeed
mechanically than Lhe "heavy
duty” mechanisms designed lor
use as computer 1O devices. In
my opinion, little reason oxists
to attempt to convert an oifice
Selectric for computer use since
a mechanism designed specifically
lor that purpose is available at a
comparable price.

b) The heavy duty Sclectric
10 mechanism was marketed by
IBM in two basic lorms. The
Selectric 10 mechanism itself
{without any magnets, swilches,
wiring harness or cowvers) was
made available to original equip-
ment manutacturers {OEMs) 1o
be incorporated into non-1BM ter-
minals such as the Dura, luwl,
Anderson Jacobson, Duael, el
The designation for these mech-
anisms was 745 {15 inch carriage},
They are often marked SER
(meaning special engineering re-
quest) to denote modilications
made by IBM at the manufac-
turing firm's request. These OEMs
installed their own magncls,
swilches and interface electronics
to achicve their own individuat
productls. Many of these are now
available on the surplus market.
I have also seen some of these 1O
mechanisms which have been par-
tially outfitted with [BM magnets
for use as outpul printers only.
Where OEM mechanisms bhave
been used in a non-IBM product,
IBM will service the Selectric
mechanism only and not the mag-
nets, switches or electronics.

c) The second basic lorm of
the heavy-duty Selectric 1O mech-
anism is the one which (BM out-
fitted for use as an clectronically
driven 10Q device by installing f1s

own magnets and switches. These
are the Models 73, 731 and 735
{hereafter *73X") which are out
of production in this country; I’'m
told that they are still produced
in Europe. The 73Xs were used as
the 360 console device, in MTSTs
{with some wiring modifications)
and were available to those who
wanted a complete unit {less
interface electronics) which 1BM
would service. Current mainten-
ance agreement rates for 73Xs are
about $150 a year. The 73Xs
came in three flavors: BCD, Cor-
respondence and MTST.

2. In considering which of the
three kinds of Selectrics to use with a
personal computer, the most important
issue is feedback. Each time a character
is sent to a Selectric mechanism {either
by cnergizing magnets or by pressing a
key), the cycle clutch is released: at the
end of the print cycle, this clutch reen-
gages to halt the cycle shaft after 180«
of rotation. If a substantial volume of
printing is to be done on a Selectric, the
wear on this clutch becomes a serious
praoblem. The only satisfactory solution
is to send the next character at a time
during the print cycle when the current
character has been “processed’ by the
mechanism but before the cycle ciutch
has reengaged. IBM calls this the "“closed
joop" mode of operation. Characters
which are sent to the Selectric during
this 3 ms window operate the mech-
anism in its so-called "‘repeat cycle” in
which the cycle clutch does not reengage
and the maximum character speed is ob-
tained. The timing required to operate in
this way must be derived from switches
which sensc the state of ratation of the
cycle shaft, the operational shaft and
several other mechanism states such as
whether a carriage return or tab opera-
tion has been completed. The time
interval between successive characters
or machine operations depends on many
factors and is not constant. A different
interval is required not only for each
character and each machine operation,
but these intervals vary with the age and
condition of the individual mechanism.
There are two consequences of driv-
ing a Selectric mechanism without this
feedback system: the speed of output
is considerably reduced, in most cases
below 10 characters per second because
worst case timing delays must be intro-
duced after each character or machine
operation; and wear on the mechanism
increases in proportion to the volume of
oulput. On these points, IBM comments:
Feedback contacts are timed
o permit initiation of a "next
cycle'' prior to the end of the
“current cycle.”’ This avoids com-
pletely stopping the muachine
between cycles and insures opti-
mum hordware longevity by re-
ducing the frequency of engage-
ment and disengagement (under
full power) of the 10 mechanical
clutches. . . .maximum speed,

reliability and longevity is pos-
sible only with [the closed loop]
made of oaperation. . . .the 10
should receive commands relative
to machine degrees |of shaft rota-
tion|. Reliable operation CAN-
NOT |emphasis in original] be
guaranteed when an OPEN L OOP
mode of operation is employed.

. .occasional loss of a machine
cycle is inherent in an open loop
mode of operation. (Service
Manual: Selectric |O Typewriter,
IBM Form # 241-5737-0, July
1973).

3. There is a great deal of confu-
sion concerning the existence of a
“print’’ magnet. Some OEMs have in-
stalled a magnet with this function, but
the 73Xs don’t have one. Dan correctly
states that the cycle clutch is released
whenever any of the magnet armatures
is pulled down. But he then states ‘‘the
trip mechanism is connected to a seventh
magnet called ‘check’.” He should have
said '‘also connected.” The rule for 73Xs
is that whenever any of the seven mag-
nets is energized, a print cycle will occur.
Energizing only the ‘“‘check’ magnet will
initiate a print cycle without rotate or
tilt, printing the home position charac-
ters.

4. The only piece of serious mis-
information in Dan’s article concerns his
untested suggestion for closed loop oper-
ation. It's close but “no cigar’? Dan
suggests generating a debounced TTL
level signal from the switches connected
between a and x (normally closed) and b
and x {normally open) on the 50 pin
plug. The switches connected in series
this way are C2,C3, C4,C5 and C6. Dan
correctly states that the magnets should
be deenergized when the NO side makes
and that the next character or machine
operation should be initiated when the
NC side remakes. But the carriage return
and tab interlock contacts, which signal
the longer (and variable) times required
to complete those operations, have
been left out of the chain! The correct
procedure is to connect a to d externally
(at the 50 pin plug) and use Y instead
as the NC side. In addition, the figure 9
description of a debouncing circuit
should not ignore the IBM specified cur-
rent through the switches (10 mA @ 10
V minimum) which keeps the contacts
clean.

5. Those who attempt the input
side of 73X interfacing should know that
there is one aspect of the IBM specifica-
tions which should not be followed (all
else should definitely be respected). 1BM
specifies sampling of the character trans-
mit contacts on the making of the nor-
mally open side of C1. This works fine
when sampling means using the signals
to switch relays (eg: in the console of
the MTST unit), Typical closing time for
these relays is 10 ms and, since C1 gates
the common voltage onto the transmit
contacts for only 15 ms, it is important
o begin switching the relays at the
carliest possible time. Furthermore, con-
tact bounce is not important in that

34

TI Distributors

ALABAMA: Huatsville, Hall-Mark/Hontswlle | 205) BA7-8700

ARIZONA: Phoenix, Kierulll Efectromcs (B02) 243-4101. H
Weatherford (602} 272-7144, Tempe, G 5 Marshal 1602
960-6181

CALIFORNIA: Anaheim, R V Weatherlord (714) 633-9633, Canoga
Park, G. 5. Marshall (213) 999-5001, Et Monle, 6 § Marstiall (213)
686-0141, EI Segqunda, Tt Supply {213) 973-2571, Glendale. A ¥
Weatherford (213} 849-3451, Galela, RPS, tnc. {805} 964-6823,
irvine, Cramer/Los Angefes (714} 979-3000. (213) 7748300 G S
Marshall {714} 556-6400. Los Angeles, Kierullf Eleckonics {2134
685-5511, RPS, Inc (213) 74B-1271 Mounlain View, Time Elec-
tronics (408) 965-8000. Palo Alla, Kierulf! Electronics {415%) 968-
6292, Pomona, R V Weatheriord {714) 623-1261: San Diego.
Cramer/San Diego (714) 565-1881. Kiernlll Electronics (714) 278
2112 G S Marshall (714y 278-6350 RPS Inc (14) 292-5611
R. v Weatherford (714) 278-7400, Sunnyvaie, Crame/San Fran-
cisco {408) 739-3010, G S Marshall (408} 732-1100 T Supply
(408} 732-5555, Tarrance, Time Electronics (2131 320-0880. Wood-
land Hills, JACO (213) B64-4560

COLORADO: Denver, Cramer/Denver 1303) 7582100, Kierulil Elec-
tromes {3031 371-6500. Englewood, RV Weatherford 1303)
761-5432

CONMECTICUT: Ramden, Arrow Etecteorucs (203 248-3801, Horth
Haven. CramerfConnecticut {203) 239-5641, Orange. Migrays
Connecticut (203} 795-0714

FLOAIDA: Clearwaler, Diptermat/Southiand (8131 443-d4514. FI
Lauderdale, Arrow Electromics 13051 776-7730. Hall-Mark/Miarm
{305) 971-9280. Hollywood, Cramer/Hollywood 1305 923-8181
Oriando, Cramer/Orlando (305} 894-1511. Hall-Mark/Orlando (3051
855-4020, Winler Pack. Milgray Electionics (305) B47-5747

GEQORGIA: Narcross, CrameriAtlanta (404 448-9050

ILLINOIS: Arlinglon Heights, TI Supply (312) 640-2964: Elk Grove,
Hall-MarksChicago (312} 437-8800: KierulM Electranics {3121 640-
0200, Chicage. Newark Electronics (312) 638-4411_ ML Prospect,
Cramer/Chicago (312} 593-8230

INDIANA: Ft. Wayne, Fi Wayne Eleciromics 1219) 423-3422,
Indianapolis, Graham € leciromes (317} 634-8202

10WA: Cedar Rapids, Decco (319) 165-7551
KANSAS: Shawnee Mission. Hall-Mark/®ansas City {313} 88B-4747

MASSACHUSETTS: Bilterica. Kerulll Electronics (617) 667-8311,
Newton, Cramer/Newlan (617) 963-7700_ Waltham, T1 Supply 1617}
890-0510, Woburn, Arrow Electromics {687} 933-8130

MARYLAND: Ballimore, Arrow Eleciranics (202 737-3700 Hall-
Mark/Balt:mare 1201} 796-9300. Columbia, Techmico (301} 461-
2200. Gaithersburg. Cramer/Washington 1301y 948-0110, XizruMl
Elﬁeg;%glgs {307} 348-0250 HyaNsville, Migray/Washington {301y

MICHIGAN: Detroit, Newark Electromcs (3131 967-0600. Wyoming,
Newark Electronics (616) 241-6681

MINNESOTA: Bloominglon. Arrow Eiectioncs (B12] B88-5522,
Edina, Cramer/Minnesola (812) 839-7811

MISSAURI: Earth City, Mall-Mark/51 Lows (314} 291-5350 Kansas
City, LCOMP-Kansas City (B818) 220-2400, $I. Lowis. LCQMP-
St Louws (314) §47-5505

NEW HAMPSRHIRE: Manchesler, Ariow Eleckonics {603) B68-6968

NEW JERSEY: Camden, General Radio Supply (609) 954-8560);
Cherry Hilt, Cramer/Pennsylvania (215) 923-5950. {609) 424-5993;
Milgray/Delaware Valley (609} 424-1300, (215} 228-2000; Clark,
Ti Supply (201) 382-6400, Clilton, Wilshtre Electronics (201] 340-
1900; Little Falls, Cramer/New Jersey (201) 785-4300; Moares-
lown, Asrow Electronics {609) 235-1900, Rulherlard, Keerulf
Electronics (201) 935-2120; Saddiebraok, Arrow Eleciromics 1204)
7975800

NEW MEXICO: Albuquerque, Cramer/New Mexice (505} 243-4566

NEW YDRK: Easl Syracuse. Cramer/Syracuse (315 437-6671.
Endwell, Wilsture Electraimes (8074 754.1570. Farmingdale, Arpw
Etectromcs (516 694-6800, Hicksville, Kierulll Elecironics {516}
433-5530. Fishkill, Arrow Eleciromics (9141 896-7530. Freeporl.
Milgray Electronics (5161 $46-6000, (2041 432-4300. Hauppauge,
CramerlLon% Island (516) 231-5600. JACO (518) 273-1234
Rochester, Cramer/Rochester {716) 275-0200, Rochestar Radio
Supply (716} 454- 7800, Walshire Electronics (716} 442-9560
NORTH CARDLINA: Raleigh, Hall-Mark/Rateigh (9191 832-4465,
Winslon-Salem, Cramer/Winston-Salem {919) 725-8711

QHIQ: Cleveland, Arrgw Electiomcs (216) 464-2000. Cramers
Cleveland (216} 248-8400. Columbus, Hall-Marnk/Ohio (614} 846-
1882, Daylon, ESCO Electronics (513) 226-1133; Keltering. Arow
Electromes (513) 253-9176

OKLAHOMA: Tulsa, Hatl-Maik/Tulsa (918) B35-8438. Ti Supply
(918} 582-8272

PENNSYLVANIA: Hunting Valley, Hail-Mark/P hia {215)
355-7300

TEXAS: Austin, Hall-MarkiAushin 1512) 837-2814 Dallas, Hall Mark/
Dallas (214) 231-6111_ T Supply {214) 238-6821. Houslon, Harnsor
Equipment (713) B52-4700, TI Supply 1713y 776-651F R ¥
Weathertord (713) 688- 7406

UTAH: Sall Lake Cily, DiptornalfAltatand 801y $86-7227. Slandard
Supply (801} 486-3371

VIAGINIA: Aganake, Technica {703) 563-4975

WASHINGTON: Sealtle, Atmac/Stroum Etectromcs {206} 763-2300.
Cramer/Sealite (206) 575-0907; Kierulfl Elecironics {206} 575-4420

WISCONSIN: Gak Creek. Arrow Elecironics (414} 7546600, West
Allis, Hail-Mark/Mdwaukee {414) 476-1270

CANADA: Calgary, Cam Gard Supply 1403) 287-0520, Downsview,
CESCO Electromcs (d16) 661-0220, Zenlromes [(416) 635-2822
Edmonten. Cam Gard Supply (403) 426-1805; Halilax, Cam Gard
Supply {302 454-8561; Kamloops. Cam Gard Supply 1604} 372
3338 Moncton. Cam Gard Supply (506) B855-2200. Montreal,
CESCO Etectramics (514} 735-551%. Fulure Electronics {514) 735-
57735, Zenlromcs (514 735-5361, Dttawa, CESCO Etectromcs 1613)
729-5118, Future Electromics (613) 232-7757, Zentronecs (613}
238-64%1, Quebec Cily, CESCO Electramies (418) 524-4641, Aegina,
Cam Gard Supply (306) 525-1317_ Aexdale, Fulure Elecirgnics (416}
677-7820, Saskalven, Cam Gard Supply (306) 652-6424. Van-
coyver, Cam Gard Supply (604} 291-1441. Winnipeg. Cam Gard
Supply (204) 786-8481

Circte 362 on inguiry card,

http:Electron.cs

http:OMPUTALKj.ID

slatic artistic possibilities in several color
renditions using a Cromemco TV-Dazzler
and custom peripherals created by Thomas
Dwyer and Leon Sweer. (The Dazzler
is a first attempt at the personal color organ,
a 64 by 64 element display with a limited
range of eight colors and “off.”) The rendi-
tions which she illustrated are examples
of the static representations of visual art
which are possible merely using the color
display as the eguivalent of the traditional
artist’s media of oil or acrylic and canvas.

This use of the color display as a medium
of static visual artwork is a necessary first
step toward exploring the practical conse-
quences of high resolution color display
technology. With use of appropriate inex-
pensive mass storage devices, libraries of high
resolution images can be conceived. (A full
size floppy can hold about 500 K bytes of
information with contemporary ‘‘double
density’ recording technology, or a total
of about 16 unencoded pictures with a 256
by 256 grid of 4 bit color picture elements.)
In this mode of operation, the artistic user
paints a picture on the display using 4 joy-
stick or equivalent cursor control plus
additional finger manipulated controls
to select color, move patterns about with
software, repeat patterns, etc. The key
here is composition of a color image which
is perceived statically. This is the mode of
operation of the Project Solo Cybernetic
Crayon mentioned earlier, and of the
Cromemco Dazzler when it is used with a
joystick.

Effective artistic use of this new form of
visual imagery creation requires development
of interactive software customized to the
creator’s tastes. The display by itself is not
enough to make the facility complete, for
it only becomes useful with the software
equivalents of paint brushes and motion
of the artist’s arm. Distribution or copies
of this form of the art can be done photo-
graphically, since the static image is what
counts. In this sense, there is nothing start-
ling or new about use of a color display and
its computer backup for static images.

Art Forms Impossible Without
Computer Controlled Imagery

Once the artist or experimenter {the two
words are actually equivalent) learns to
create a visual art work with computer aid
the next step is to use the mechanism of the
computer to produce effects which would
previously have been difficult or impossible
to achieve. Motion and change of images
according to rules and techniques chosen by

46

the artist are a part of the very act of com-
position in this new medium of dynamic
visual art.

Here, we are talking about a dynamic and
moving art form, the use of programming in
a manner which can be directly perceived
and understood by all viewers simply by
observing it, just as music can be appreciated
by anyone simply by listening. This is the
true excitement of color imagery as an art
form. The only visual antecedents are the
use of film technology and chaoreography;
but unlike much film and choreographic
imagery, it is not constrained to images
of human forms, since the display is
general purpose and subject to various forms
of abstractions and harmonies previously
impossible with visual imagery. The key to
this new art form is the time dependent
algorithmic transformation of elements
of the picture according to the artist's
plan and implementation.

The time ordered nature of algorithmic
visual arts which come from this source
make a combination of the display imagery
with music inevitable. If evolution of visual
form with abstract or specific images is
considered as a criterion, an artistic ante-
cedent of this combination is found in the
first experiments of Walt Disney in the form
of the movie called Fantasia. (For those
unfamiliar with that movie, it was a com-
bination of classical music with cartoon
technology which resulted in a feature
length film.)

A later example of this combination of
visual patterns with musical patterns is
represented in the work of John Whitney
over the past decade or so, using computers
with photographic technology to make
high resolution computer generated films
which are synchronized to music. He gave
an excellent taste of what can be done in
his demonstration films and talks at the
Personal Computing 76 show in 1976, and
at the First West Coast Computer Faire this
year. (He is continuing his work with equip-
ment which has much in common with con-
temporary personal computing technology.)
A major tenet of John Whitney’s concept
of dynamic visual arts is the idea of visual
analogs to the harmonies and melodic
evolutions in the musical forms. With the
visual processors we can achieve with today’'s
technology, it is possible for many more
individuals to begin experimentation with
dynamic progressions of forms of sensation
which include both visual and aural com-
ponents. The coming of the high resolution,
yet not inordinately expensive, color
graphic display opens up the wider use of
this art form.

The end of

Kit=Kits.

The end of bad solder joints, heat damaged
components and sick IC’s. Introducing the
Semikit. tem1, a16KRA Memory Board, *369.

Lets face it. Loading and
soldering PC Boards is not much
fun for the kit builder. Even
more important, it’s the place
where most of the trouble gets
introduced. The real fun and
education comes in running and
testing boards.

Now the Semikit with
fully tested IC's.

At the price of a kit, Processor
Technology Corporation intro-
duces the Semikit. It’s a fully
stuffed. assembled and wave
soldered PC Board loaded with
1C’s that have gone through Q.C.
and final checkout (a first in
the industry).

We leave you the fun of
testing with our fully documented
set of instructions. We do the
production tasks of loading, wave
soldering and inspecting the
boards. You do the more interest-
ing and time consuming chore
ol testing and burning-in
the boards.

The result is one sweet deal

for both of us. You get a board
where the primary causes of
damage (poor solder joints, excess
solder and bad IC%) are virtually
eliminated. You get a board of
highest professional quality.

And we get the business!

The 16KRA Memory

Board's at your dealer now.

Your Processor Technology
dealer has the first Semikit, a
16KRA Memory Board, in stock
and ready to go right now. You
can take it home tonight for
$369 as a Semikit or for $399
fully assembled, tested and
burned-in.

You'll have a 16,384 byte
memory with a better price per-
formance ratio than anything
on the market today. Now you can
afford to add quality, high
density memory to your system
for remarkably little. And you
can add enough to solve complex
computing problems right in
the main frame.

The memory features invisible

refresh. Theres no waiting while
the CPU is running. Worst case
access time is 400 nsec. Each
4,096 word block i1s independently
addressable for maximum sys-
tem flexibility. Power is typically
5 watts, the same as most single
4K memory modules. Back-up
power connection is built-in.

Other Semi's are coming
your way.

The 16KRA Memory is
Processor first step in adding
more fun, capability and reli-
ability to your computer system
at lower cost. Other modules are
on the way to your dealer now.
Come on down today.

Or you may contact us
directly. Please address Processor
Technology Corporation, Box B,
7100 Johnson Industrial Drive,
Pleasanton, California 94566.
Phone (415) 829-2600.

Processoriechyotogy

Circle 355 on inquiry card,

Techaicsl

Porum

Michael W J Carmichael
Hanns Cottage, High St
Broughton, Hampshira

$021 BAE

GREAT BRITAIN

Figure 1:

More on Inexpensive Plotters

I was intrigued by the proposal to make
“the world's least expensive plotter” at the
end of Robert D Grappel's intcresting article
{("Give Your Micro Some Muscles,” March
1977 BYTE, page 35). Eliminating the con-
ventional XY carriage mechanism and using
mode! aircraft servos looks like a good start.

May | put forward a somewhat different
mechanical arrangement which avoids the
two problems you describe in connection
with your design, viz the weight of servo 2
sitting on the end of servo 1 arm, and the
complexity of the trigonometrical equations
requiring solution?

In figure 1 may be seen my alternative
set-up in which the two servos are both
fixed to ground and arranged concentrically.
The inputs 8 and ®, rotations about the
common pivot O, control the XY position
of the pen. The moving links comprise a
4 bar linkage which has been dimensioned to
approximately satisfy the following con-
ditions:

® When OA is fixed the point P traces
a straight line locus.

58

® When produced this line passes
through point O.

® The velocity ratio between the
angular displacement of the link
OC and the rectilinear displacement
of the point P is constant.

The upshot of 2 this is that we now, in
place of an XY plotter, have an R8 plotter!
The radial distance of P from the origin O
is proportional to the ar : between the
links OA and OC (@ + @®). The polar angle is
simply proportional to the angular displace-
ment & of link OA. It Is now a straight-
forward matter to express X and Y in terms
of § and &,

The professional may quibble about geo-
metric distortion, but the homebrew man
will discover an acceptable working range. |
now confess that | have not actu: - built
such a plotter myself. | am hoping someone
else will be good enough to pursue the idea
for me!

By the way | do enjoy your publication;
it is most readable.m

The suggestion you make is very attrac-
tive, especially when you consider the nice-
ness of having the servos on concentric
shafts. It is not clear, however, what the
optimal geomelry is for such a plotter. In
figures 2a, 2b and 2c we did a paper and
pencil exercise to look at a particilar geo-
metry chosen by trial and error among
about three different extremes. In this
geometry, we used a symmetrical quad-
rifateral for which dimensions of X and 2X
were used, with the extension arm lo the
drawing point P located at a distance X
from point B. (Subscript notation on the
poinis is used to identify cases.)

In figure 2a, we've drawn this geometry
in w case which looks very promising.
For three different values of the angular
parameter corresponding to ® in figure 1,
the construction produces an apparently
straight line with 0 held fixed at some
value. However, in cases of figure 26 and
Ze, with 0 changed in either direction from
its value in figure 2a, there is an apparetit

(a)

WD LW

e o o » 9 o ® o D

e o o o o o s o 1

o ¢ » o o o s o)

* MOe ¢ o O

» ONe o o M

e ¢ * 0o 0o ¢ o o 'Y

Othello, a New Ancient Game

Othello is a 2 person board game based
on the 100 year old game of Reversi. It
resembles GO, but is much faster paced
and easier to learn. If you are not already
an Othello buff, this program will both
teach you the game and provide an enter-
taining addition to your games library.

The game is normally played on an 8
by 8 checkerboard with picces that are
black on one side and white on the other.
The game begins with four pieces making a
checkerboard pattern in the center of the
board as shown in figure 1. When it is your
turn, you try to convert a run of your op-
ponent’s pieces, vertical, horizontal or
diagonal, to your color. You can do this if
you placc your piece so that each end of the
run is bounded by pieces of your color. Part
of the action comes from the fact that you
must either make such a conversion or
forfeit your turn. The game is over after
60 moves or when both players must forfeit
their moves.

(b)

[I)

® * o o 0 o ¢ & X
VN AD W o

OMAXHM XXX XD
=2 5 3 B 5 & & N
OXOMXUXXXO
COO0OOXXOXUDT
OHOXOXHXAWM™
=2 - 2 5 2 & I A
OXXAX KM XD
HHXOOOCOOOX

Figure 1: These two example boards show the Othello game board at the
beginning and end of a typical game. The game is always initialized to the
configuration in figure 1a. Figure 1b shows the board at the end of a typical
game. This game was played to completion with 60 moves. The computer
was soundfy beaten having only 20 pieces to the human player’s 44.

60

Richard O Duda
590 Vine St
Menlo Park CA 94025

The program has two strategics it can
deploy against you, cne elementary and the
other simple. If losing to a cemputer would
be too great a blow o your self-esteem,
request the elementary strategy. After your
confidence is Ffairly securc, you can risk a
no holds barred encounter. Eventually you
will tire of your prowess, and will want Lo
modify the program Lo improve its play.
Hopefully, the comments in the program
will make its operation transparent and will
invite modifications.

A few words about modifications that
may be required to play at all. A random
tie breaking strategy is used to provide
variety, but it is not essential. If your BASIC
does not provide random numbers, you can
delete lines 1310 and 1320 with no
significant change in performance.

At the outset the program asks if you
want it to pause before making its move.
This pause is most helpful with a display
terminal, since it keeps the output from
flashing by too quickly. The output of the
board is done by the last subroutine in the
program. 1t requires the ability to display
at least 11 lines of 19 characters, and you
will probably want to modify the program
if your TVT cannot handle the 26 lines of
32 characters needed to sce two boards and
some accompanying output simullaneously.

Of course, if you use a relatively slow
hard copy printer with this program, il will
take a long time to type out all the boards.
The obvious solution is to suppress this
printout except on request, and use an
actual board to record the positions of
pieces for your own use.

Good luck, and remember: Othello
was so0 named because it is a game of drama-
tic reversals.

Listing 1, continued:

s REM FND OF SCAN LOGP

O PG NEXT T

nyEnn NEXT I

GYLAL FEM COULL WE DG OANYTHINGY
nANTL FF BT . 0 THEN OTUAQ

Caupn jES K

AR

Ao PRINT ML OHAVE TC FORFEIT MY MOVE®
Lamne fE R = 1 THEN 2190

nann 7oz 1
nrang 4o T 1éan
nrATG HEM MARE THE MOVE
By
PYELG “1 WILL MCVE TO "
fer s,

. w

n rdoat)

s
pruye
e 0| 1
f1ERR GOSUR 28
¥ ol + 1

r Hi = H1 - £1
nEan BT 2 K.)

ATEGE O PRINT "THAT GIVES ME '
fIhIN FRINT 213

PURYD FRINT " CF YOUR PIECES®
DR REM PRINT OUT BOARD

[N B Y

[N T FOR OEND LF O GAME

NN ¥y = THEN 2'40

RN = th THEN 790

N Fi RITMAN®Y MOVE

ninga

naTHn

nrran "YOUR MGVE -~ [ROW, COLJ "y
ryegr [& 4

LY.L YF T 4 4 THEN 1720

C1Te 1F 1 » B THEN 1320

176N TF 1 «x O THEN 1920

1700 BRINT "ARE YNU FORFEITING YOUR TURN (Y OF M)
DAL IRPUY XS

HITENTE XE e MY S OTHEN 1T 10

nIYGn JF Z o= Y THEN Z3YG0

: C
(J3 = ¥& THEN 1490

1

1

1

1

! :

1 CHECK 1¥ BLANK

SIEEEJF BT .0y = 0 THEN t61u

ThRE PRINT "EORAY, TEAT SOUARE 138 CCCUPIEDR; TRY AGATN®
VRSO GR T 1 TED

1400 REM CHECK FOR LEGAL HNEIGHFCR

1970 ISUR 2870

e ¥ F1 = 3 THEN 1870

I FRINT T"HORKY, YOU ARE NOT NEXT TO GNE OF ®Y PIEC
aslin PHRINT “TRY AGAIRT

PALES RGO TT TR0

CEECKE IF LEGAL PUM

cbon
» 0 THEN 7200
'SCRRY, THAT DOESN'T FLANK A HOW, TRY AGAIN"

nsoeenr PRINT
1e
FVERYTHING LEGAL; MAKE HUMAN'S WMOVE

TTHAT SIVES Yo U ",

1
apaRn PRINT Y OOF MY PIECES™
nZaveE o=
aroki GUSUR Z820
DI0GO 11 = M1 o+ 51 o4 1
reanc o ol I

IR I A BT .

V2SN RER PRINT OUT BOARD

NZ10 GUGSUR 23100

Vi REM O TEST FUOR END OF GAME
Ar1s0IF OV = 0 TEEN 2160

L2140 TF N1 o= f4 THEN 2190

GOOTO 0N0

FEM END OF GAME WRAPUF
FRINT

FHINT "YOU HRVE "

FEIHT K1,

PEINT " PIECES AKD 1 HAVE "
PRIN [S

PRINT " PIECEE -- ",
I¥ HY = ©1 THEN 2250
E ¥ CV THEN 2210
FRINT "SORRY, I WO
HOT3 Z2EN

FRINT "a TIE ¢

N THAT ONE.Y

62

nz=a0
czunn

=

eoyar
02y
fzuLD
arnsn

RIS
fneuyn
nshnn
noEnn
fiadsnn
fiaean
naaxp
LRI
C2nhn

nzfnd
DEEID
apRpe
HIER RN
[AFR ORI
nzhen
I
neeyo
npRHn

nEnoe
QrEnan
5l

FGOR
aXOIn
03020
hENET
aznhn
cicse
0%060
03070
0060
Qipnp

PFINT
GCOTn
FRINT
qo T
PRINT
G T
TRINT
FRINT
FRINT
IuPUT
IF X%
iFoX$
PRINT
BTOGF
HEX
HEM
HEM
REM
REM
FOR 31
FoR 01
TF A{1
HEXT J
HEXT T
FEM

F1 o= 0
EETURHN
HEY
F1o=
RETURN
REM
FE
RER
HEM
AEM
HEM
HEM
REM
W

S
FOF ¥
if 1
Jhoz]
1h = 1
e J
=
LR

o

irou o«

PHINT
PHINT
FOR I
PAINT
FDOR J
PRINT
PRINT
NEXT]
PHINT
NEXT 1
PRINT
RETURN
END =

ZRO0
"YOU WON '™

PR

» 0 THEN 2760
o

UL R A B
"THAT WAS & "
< VP OTHEN 2h90
« 25 THEN 2u70
€ 29 THEN 2450
< &3 THEN 20470
"PERFECT GAME."
an
"WALKAWAY."
2er0

"FIGHT.

2500

"HOT GAME "
2500

VSQUEAKER 1t

;?D YOU WANT TO PLAY ANCTHER GAME (Y CR N. v

= "YU OTHEN TOU
<> UN® O THEN &520
“THANKS FOR PLAYING."

SUBRCUTINE TEST-FOR-PROPER-NEIGHEQR

AESUMED:

1,J LOCATES b PLANK SQUARE
YOU HQPE TO SEE AN ADJACENT T2

P

T
+11,d4J1) = T2 THEN 2710
T

1

KOG Tz FOUND; FAILUBE

SUCCESS

ZUPROUTINE SCORE-AND-UFLATE

FERUMES:
{

{1.JY I& A TENTATIVE PLACE FOR &4 FPIECE
ANT RUNS OF T2 = -TT,
I¥ I 15 TRUE (1), MARK THCSE RUNS AS T1'S.
(T2'S CHLY)

RETUEN SUM OF ALL RUNE

MaIN PRCOGRAM CONTAINS THE FCLLOWING ARBAYYN:
Q

Th: [N
Jb 1 i o -1

= 1 to @

Wik}

HOED

v 1

+ Jf

B.db) <> TZ TREN 2070

LOCOF THROUGH THE KUN

oy

+ !
+« I4
+ J5
by b
T
Jair
Co. e
* 1 THEN 2070
UPDATE BOARD

T1 THEN

2470
6 THEN 107

2

"o

= 0 10O 53
€y = T
& o+ 15
6+ 45
1

SUBRUUTINE PRINT-BOARD

C o EF G H"

@

1 TR

1 TO R

LTI

DECACT,J)+ 0),

-1

1
a

1
1

(=

=11}

IN 51,

T1.
TERMINATEL BY & T1.

http:75,000.00

I
1
i
1
1
]
I
!)
!]
' FETCH '
1]
]
R 2
l’ __________ 1
' {
{ PREPARE B
| EXECUTE !
! 1
- 2
| it 1
1 1
; |
| RESTORE |
‘ 1
' |
| -
oot ETTE e)
:]
' |
! IBUFFER |
i I
R
| Sntinl Bl
))
]]
| CLEANUP :
]]
e J
F--TT== === 1
| 1
1)
H SAVE |
! |
! '
| U -

Figure [: Basic flowchart for the simulator. Each of the square blocks

START

‘

RECOGNIZE
AND
CATEGORIZE
INSTRUCTION

l

MOVE

INSTRUCTION
TO INSTRUC-
TION BUFFER

YES

SET UP
QPERATING
ENVIRONMENT
THEN EXECUTE

YES

TYPE
| OR 4

RESTORE
VALUES OF
HARDWARE
REGISTERS

EXECUTE
INSTRUCTION
IN BUFFER

YES

RESTORE
CORRECT
PC VALUES

SAVE VALUES
OFf HARDWARE
REGISTERS

‘ RETURN ’

constitutes a separate subroutine.

An 8080 Simulator

FORMAL SIMULATION
OF INSTRUCTIONS
IMPOSSIBLE TO
DIRECTLY EXECUTE
CORRECTLY

70

A simulator can be very usclul to the
personal computing experimenter {or a
number of reasons. The idca of a simulalor is
to perfectly duplicate the operation of a
certain computing system using the instruc-
tion set of another computer. For example,
suppose you have an 8080 program which
you want to run on your 6800 system rather
than completely write a new program. Since
the simulator acts functionally like an 8080
processor to interpret the 8080 object code
bit patterns, its hardware registers and pro-
gram counter, it is possible for the 6800
system to run the 8080 program. Another
attraction of a simulator is that in soliware
it is possible to achieve a number of de-
bugging and checkout functions as a part of
the simulator itsclf, since the machine being
run is always under total software control.
When a simulator for machine X is run on
machine X, thesc attractions can justily the
use of the simulator.

A simulator usually has two drawbacks
however: memory requirements and speed
reduction. The speed reduction drawback is
usually the more objectionable feature, al-
though a fairly complex simulator can casily
take up 8 K to 16 K bytes of memory space,
depending on the complexity of the com-
puter system being simulated. It is not
unusual that thousands of instructions are
exccuted before the functions of a single
instruction can be simulated. This means
that the simulator runs at a speed thousands
of times slower than the actual compulter
does, which may be a difficulty in some
cases.

Writing a simulator is a straightforward
process as its functions are more or less
well-defined by the documentation of the
computer being simufated. All it has to do is
to recognize the machine instruction, carry
out its function, and record its effects. Of
course you will have to keep track of the

Kin-man Chung
2114-204 S Orchard St
Urbana 1L 61801

values of various registers, stack pointer,
program counter, etc.

If, however, the computer being simu-
lated is written on the same computer doing
the simulation, eg: an 8080 simulator on an
8080 microcomputer or a Z-80 simulator on
a Z-80, then a lot of work can be simpli-
fied. As a matter of fact, | have discovered a
very neat trick for writing such a simulator
that greatly reduces the program length and
increases its speed. An 8080 simulator was
written on my 8080 computer which uses
about 350 bytes of memory. Using the
simulator, a quite sophisticated debugging
program was also written using another | K
bytes of memory.

General Description

In a simulator the hardware registers,
such as the program counter, stack pointer,
index registers, conditional flags, etc, have to
be simulated by memory locations. The
instructions have to be recognized and exe-
culed, and the memory locations simulating
the hardware registers have to be updated
accordingly. Take as an example the INR A,
increment accumulator, instruction in the
8080. The value 1 is added to the location
simulating the accumulator, and the loca-
tions simulating conditional flags are up-
dated according to whether the carry, sign
bit, ctc, are affected. This has to be done for
all the instructions in the instruction set,
using soltware. A major portion of the
simulator program is actually “wasted”
doing this kind of work. In my 8080
simulator, | still have to use memory loca-
tions Lo simulate hardware registers, but | do
not simulate the instructions at all. How can
this be done? The idea is actually quite
simple. Instead of simulating the process of
cach instruction by claborate software, | let
the computer actually execute the instruc-
tion. Since the computer is simulating a

computer whose language it speaks, this
can always be done. Of course before we
can do this, we¢ have to fetch the instruction
to be simulated into an instruction buffer, a
under simulator control.
Under the correct operating environment,
the simulater should remain in control right
after executing the instruction in the instruc-
tion buffer. The various parts of the routine
that simulate a single instruction cycle are
illustrated in figure 1.

For those instructions that do not change
the values of the program counter abruptly,
there is no problem. After actually executing
the instruction in the instruction buffer, the
instruction next to it is the next instruction
to be exccuted. The only problem which
occurs is when there is a jump or call
instruction. If this type instruction is ac-
twally executed in the instruction buffer,
control would be forced to go to whatever
location is specified in Lhe instruction. The
trick used is to change the call or jump
operand of the instruction to a location
under simulator control. The original address
must be stored someplace, of course; more

section that is

aboul this later.

There are five types of instruction that

Listing 1: The 8080 assembler listing for the 8080 simulator.

;*** 8080 SIMULATOR ROUTINE ***

SIM: LHLD
MOV

CALL
LHLD
XCHG
LHLD
0AD

SHLD

:Gli FETCH LE R 4
MV

X1
DCX
MOV

NXT:

ral

PC

AM
RECOGN
NBYTE

PC

D
PC

0.4
B,IBUFF+2

H
A

;. Get the value of PC.

; Load the instruction into acc.

; Call the recognizer.

; Get number of byte and

;load it into (D,E).

; Get the value of PC again

;and add these 2 num to get the next PC.
: Store it back at PC.

; Reg D, which keeps track of # byte to fill the

;inst buff, is initially set to 4.

- (B,C) is set to the last byte of inst buff,

; (H,L) points to the last byte of the inst in user prog.
; Fetch the instruction from user program.

Listing 1, continued:

STAX
DCX
DCR
DCR
JNZ
XBA
NXT2: DCR
JZ
STAX
DCX
Jmp

B ; and store at the inst buffer.

B ; starting from the last byte.

D

E : Rem: E contains the number of bytes of the inst.
NXT : Repeat until all bytes of the inst are moved.
A ; Set A=0, the NOP inst.

D : Decrement D.

PREPARE : M inst buffer is filled, quit.

B :else fill the rest of the inst buffer

B s with NOP inst

NXT2 ; until all done.

;*** PREPARE ***

PREPARE: LDA
DCR
JNZ

LHLD
SHLD
RET
NOT1: DCR
JNZ

LHLD
SHLD
LX1
SHLD
JMP
NOTZ: DCR
INZ

LHLD
SHLD
LXI
SHLD
JMP
NOT3: DCR
JNZ

LHLD
XCHG
LHLD
DCX
MOV
DCX
MOV
SHLD

LDA
ANI
MoV
XRA
MOV
SHLD
RET
LDSTK: LX)
DAD
SHLD
LHLD
SPHL
DCR
INZ

LXxI
PUSH

TYPE : Now check type of inst for special preparation.

;*** RESTORE ***

RESTORE: LHLD
MOV
MOV
LHLD
XCHG
LHLD
PUSH
POP
LHLD

A
NOT1 . 1f it is not a type 1 inst, goto NOT1.
: Type 1 — PCHL inst.
HL
PC ;. PC is loaded with the value of HL.
; Return.
A
NOT2 cifitis not a type 2 inst, goto NOT2.
: Type 2 — CALL and Ccond inst.
IBUFF+1; ; The operand of the call inst in the inst buffer
JCAD ;is temporarily store at JCAD
H,CAPT ; and the address CAPT is put
IBUFF+1 ; into the instruction.
LDSTK ; Goto LDSTK directly.
A
NOT3 ;1f it is not a type 3 inst, goto NOT3.
; Type 3 — JMP and Jcond inst.
IBUFF+1 ; Similar to type 2 inst.
JCAD
H,JPPT ;except JPPT is used instead of CAPT.
IBUFF+1
LDSTK
A
LDSTK ; If itis not a type 4 inst, goto LDSTK.
:Type 4 — RST inst.
FC : The next 8 inst push the value of PCinto userstack:
; Set {D,E)} to PC value.
USESTK ; Load address of user stack.
H
M, D ; Move high value of PC.
H
M,E : Move low value of PC.
USESTK ; Update user stack pointer value.
; The next 6 inst set PC to its correct value.
IBUFF+2 : ACC now contains the RST inst.
70 ; The higher 2 and the lower 3 bits are stripped.
LA : Set L = low address.
A ; high address is zero.
H,A ; Set H = high address.
PC ;store {H, L) at PC.
: Return.
H,0 : Store the simulator stack pointer value.
sp
STACK ; at location STACK,
USESTK : and set the stack pointer to the value stored
; at USESTK, which contains user stack pointer value.
A
RESTORE ;i itis not a type 5inst, goto RESTORE.
; Type 5 — RET and Rcond inst.
H,REPT
H ; The address REPT is forced onto the stack.
BC : Restore values of reg B and C from loc BC.
Cc.L
B.H
DE ; Restore values of reg D and E from loc DE.
Sw ; Restore values of acc and PSW from loc SW.
H
PSW
HL ; Finally, restore values of reg H and L from loc HL.

;" ** INSTRUCTION BUFFER ***

IBUFF: DB

;I-** SAUE LR

SAVE: SHLD
PUSH
POP

0,0,0 ; The 3 bytes of inst in the inst buffer are executed.
HL ; Values of reg H and L are saved at HL.

PSW ; Values of ace and PSW are saved at SW.

H

72

need special preparation and clean up work.
These are:

1) PCHL,

2} CALL and call
execution,

3) JMP and
execution,

4) RST,

5) RET and return conditional.

with conditional

jump with conditional

Detailed Description

The size of the instruction buffer is set to
hold one¢ instruction. It is a2 3 byte memory
location for an 8080. If the instruction to be
simulated is less than three bytes, the bufler
is filled with NOP instructions. A 2 byte
memory location, which we call PC, is
used as a pointer into the user program
to be simulated. 1t always points to the
first byte of the next instruction to be
simulated. Memory locations arc used for
storing the stack pointer, accumulator, pro-
gram status word and the other six 8080
registers. Since the value of the actual 8080
stack pointer is shared by the simulator and
the user program, variables STACK and
USESTK are used to store the simulator and
user program slack pointer values during
alternate use.

Below is a detailed description of cach of
the modules in the simulator routine. The
program is listed in listing 1, and should be
read in conjunction with the text.

Recognizer

The recognizer routine determines the
number of bytes used by the instruction and
the type of instruction to be executed. This
is done by the use of a table {TBL). Each
entry in the table consists of four bytes,
which we call by, b2, b3 and bgq. The
algorithm wused is (using a BASIC-like
statement):

IF {{{inst AND bq) XOR bo)=0)
THEN number-of-byte=bs,
type-of-instruction=by4

AND and XOR are the logical AND and
exclusive OR operations to be carried out bit
by bit. The logical operation for cach of the
entries in the table is checked until one is
found to satisfy the logical condition. If no
entry satisfies the logical condition, we
assurme the instruction is a Ltype 6, 2 1 byte
instruction. This method has the advantage
over a table of 256 entries in that il saves
spacc and processing time. The box at the
end of this article gives examples of how it
works.

The simulator starts by loading the value
of the instruction's address and calling the

http:WW-100-$20.00
http:board-$1,055.00
http:klts-$255.00
http:memory-$290.00
http:GP-100-$20.00

Listing 1, continued:

SHLD Sw
HCHG s Values of reg D and E are saved at DE.
SHLD DE
MoV H,B : Values of reg B and C are saved at BC.
Moy LC
SHLD BC
LbA TYPE ; Load TYPE into acc.
CPI 5 slsita type 5 inst?
JWNZ STSTK : Skip the next inst if not.
POP H : Clean the garbage from the stack.
STSTK: LXi H.0 : Store the user stack pointer value
DAD 5P
SHLD USESTK ; at lacation USESTK,
LHLD STACK : and set the stack painter back to the value
SPHL ;at STACK.
RET : Return,
(**Y CLEAN UP ***
CAPT: POP H ; For Type 2 inst, clean up the garbage an the stack
LHLD PC ;and load correct return address anto
PUSH H ; the stack.
JPPT: LHLD JCAD ; For Type 2 and 3 inst, load correct execution address
SHLD PC ; previous stored at JCAD and store at PC.
JMP STSTK : Resume processing at STSTK.
REPT: POP H : For Type 5 inst, the correct return address is on the
: top of the stack
SHLD PC ;which is popped and stored at PC.
JMP STSTK ; Resume processing at STSTK.
;*** THE RECOGNIZER SUBROUTINE ***
RECOGM: LX! H,TBL-2 ; Load the starting address of the table minus 2.
. : Rem: acc contains the inst to be simulated.
MOV CA It is termporarily stored at C.
AGAIN: MOV AC ; The inst is restored from reg C.
INX H
INX H :{H,L) points to the 1st byte of entry in the table.
MOV BM ; Get AND mask.
ANA B : Perform AND operation.
JZ BYTE1 : If result is 0; either NOP inst or end of table.
I H
MOV BM ; Get XOR mask.
XRA B ; Perform XOR with B.
INX H
JNZ AGAIN ; If result is O then the inst is not recognized yet.
MOV AM ; else get and
STA MBYTE :store number of byte of the instruction.
IM X H
MOV AM ; Also get
STA TYPE ;and store type of instruction,
RET » Return.
BYTE1: MVI A ; This is a 1 byte inst.
STA NBYTE ;Store 1into MBYTE,
MWV AB ; This is also a type B inst.
STA TYPE : Store 6 into TYPE.
RET ; Return.
;T VARIABLE AND DATA ***
NBYTE: DW : Mumber of byte of the instruction.
TYPE: DB : Type of instruction. ’
PC: DwW ; Program counter for the user program.
STACK: DWW : Simulator stack pointer.
USESTK: DW ; User program stack pointer.,
SwWe ow ; Lser program accumulator and status word.
BC: Dw ; User program 8 and C registars,
DE: DwW ; User program D and E registers.
HL: Dw ; User program H and L registers.
JCAD: Dw ; Yemporary storage for Type 2 and 3 inst.
: The table used in the recognizer consisted of entries of 4 bytes each.
;Byte 3: AND mask Byte 2: XOR mask
;Byte 3: Number of inst bytes Byte 4: Type of inst.
TBL: DB 377.361,1,1 ; PCHL inst

OB 377,315,3,2 :CALL inst

DB 307.304,3,2 :Ccond inst

pB 37730333 ; JMP inst

B 307,302,3,3 ;Jeond inst

DB 307,207,144 BST inst

DB 377,311,1,5 :RET inst

DB 307,300,1,56 ; Reond inst

DB 317,001,3,6 ;LXlinst

DB 347,042.3,6 ;8TA and LDA inst
DB 367,323,2,6 ;1IN and QUT inst
0B 307,006,26 :MYIinst

[]3) 307,306,286 ;2 byte acc arith inst
B 0 s end of the table

74

recognizer. The recognizer should return the
correct values for NBYTE (number of bytes)
and TYPE (type of instruction). The value
of PC is then updated tentatively, by adding
NBYTE to PC, We say *‘tentatively” becausc
it may be altered later if the instruction
happens to be a type 1 to type 5.

Fetch

The instruction is then moved from the
user program to the 3 byte locations in the
instruction buffer. The loop NXT moves Lhe
instruction, while the loop NXT2 fills the
instruction buffer with NOP instructions to
take care of short instructions.

Preparation

The first five types of instructions have to
be specially processed before the instructicn
in the instruction buffer is executed. Type 1
and type 4 instructions actually bypass the
instruction buffer.

Type 1: PCHL

The content of PC is set to the value
stored at HL.

Type 2: CALL and Conditional Call

A CALL or conditional call instruc-
tion, a CZ ADDR for example, is changed
to a CZ CAPT instruction, where CAPT is
the starting address of a routine that
takes care of the preparation for CALL
and conditional call instructions. The
original address ADDR is stored at JCAD
for further processing at CAPT. When the
instruction in the instruction buffer is
executed, and in our example, il the zero
flag is not set, the next sequential instruc-
tion is executed. If however the zero flag
is set, then it would branch to location
CAPT instead of the original location
ADDR. Either way we are in control.

Type 3: JMP and Conditional Jump

A JMP or conditional jump instruc-
tion is treated similarly to a CALL in-
struction, except that |PPT is used in-
stead of CAPT.

Type 4: RST

These instructions are simulated by
first lcading the value of PC into loca-
tions indicated by USESTK-1 and
USESTK-2, and decreasing the value of
USESTK by 2. This simulates the push
stack operation. PC is then set to its
correct value. The low PC value is de-
coded by using an AND operation. The
high PC value is zero.

Before starting preparation work for

OPGw— SVAL {SV)
SYe-SV -1
OPD = SVAL {5V}

OPG: RIGHT ARGUMENT ADDRESS
OPD = LEFT ARGUMENT ADDRESS

CODE

>100

:
a7

:
88

RESHAPE FIGURE 40

89

*

YES, B0TH ARGUMENTS ARE SAME DIMENSION

DIOPG +1)
0

NO; BOTH ARGUMENTS ARE MATRICES

Ze-0PG+ 2
X 0PD+ 2
Yo |
Y

* NOT IMPLEMENTED
IN THIS VERSION

BOTH ARGUMENTS ARE
SCALARS (TO FIGURE 37)

OF THE APL INTERPRETER

Yie— Yi®*D(Z)
Ze 741
X X+
Yo Y+ |

Z=—0OPG
Xe—0OPD

Z2=— OPD
X+— OPG

DLOPG +1)
0 Le— FALSE

DIOPD+))
=0
S

DYAD. _

Ze— 0PG
X<e— OPD
L < TRUE

Interpretation of Dyadic Operators

Any routine designed for the interpre-
tation of dyadic operators must, in contrast
to monadic operators, be able to handle a
myriad of possibilities. Not only are there
the special cases of inner and outer products,
but iota, reshape and concatenate operators
must be specially handled. Furthermore,
the nonspecial cases may have scalar argu-
ments, nonscalar arguments of the same
size and shape, or a scalar argument and a
nonscalar argument. Each case requires
some exlra processing.

Figure 35 begins the description of
dyadic operator interpretation. Two pointers
are popped from stack SVAL. OPG points
to the right argument of the dyadic operator
and OPD points to the left argument. Next,
the various processing method requirements
are determined as described above. Inner
and outer product interpreters as well as
IOTA and CATENATE interpreters were
not implemented in this version of the APL
interpreter and will not be described here.
The special processing then continues at one
of the following blocks: RESHAPE, SCAL,
SAMERANK and DIFRANK.

Figure 35: Interpretation
of dyadic operators.

DYuun. vrenmivn «PPLIED TO ARGUMENTS
WITH NON CONFORMABLE RANGES

"IGURE 38

IGURE
39

Z rumvia su annal

X POINTS TO SCALAR

PLIED TO ARGUMENTS

WITH NON CONFORMABLE RANGES

IGURE
38

Z Fuinis (v annaf
X POINTS TO SCALAR

79

http:FOREIGN-$10.00
http:CANADA-$4.00
http:U.S.-$3.00

Photo 1: This is the video
display at the start of ¢
Space War game. The two
spaceships are in their nor-
mal starting positions and
accelerating slowly towards
the sun, The sun image is
14 units across and cen-
tered on the screen, but its
gravitational field per-
megtes all of space in its
vicinity (table 4).

How to Implement Space War

Dave ¥ruglinski
3256 Portage Bay Pl E
Seattle WA 98102

You say you'd love to go and play
“Pong,” “Tank’ or "Shoot ‘em’ down at
the corner tavern but they won't let you in
because you're not old enough? Or maybe
you learned to play Space War back in
college on a turbocharged PDP 911/S mega-
computer and you don’t think your poor
microcomputer could keep up? Or perhaps
you hate BASIC but can’t think of a good
reason to mess with S0 pages of assembly
language. Even if you don't fit into any of
the above categories, merely reading this
article will sufficiently disturb your mental
equilibrium to start you on your way to
being a Space War freak, making all other
problems fade into insignificance,

Yes, it's true, despite what false impres-
sions you may have held. You can play
Space War on your micro: real Space War
with gravity and torpedoes and thrust and
explosions and hyperspace, all right there
in front of your eyes on the screen. No
message slowly banging out on the Teletype
“THE KLINGONS ARE APPROACHING,”
but your own spaceship orbiting the sun,
able to change direclion, accelerate and fire
at the enemy. There’s even a score to keep

86

track of how many times you've been hit,
“Hold it!" you say, after pouring over the
listings. "“This doesn’t conform to ANSI 74
Space War Standards. Alpha Centauri isn't
at coordinates 137, 245 like it's supposed to
be.” Relax, just change the program to suit
your taste.

It should be apparent by now that you
need more than just a “‘naked micro" to do
the job, but what you do need is not too
unreasonable. Table 1 lists the equipment |
found necessary to implement a quite
realistic Space War game which is the subject
of this article.

If you don't like the part about using an
oscilloscope with its small screen, don't
knock it if you haven't tried it. You just
have to sit close. Besides, you can move
up to a bigger display later. A vector graph-
ics system would be an improvement, allow-
ing more odds and ends on the screen before
flicker sets in. The ideal, however, is a raster
scan TV monitor system with resolution
close to 256 by 256; anything less is just too
coarse. Thomas R Buschbach’s article in
the November 1976 BYTE [“Add This
Graphics Display to Your System,” page 32f

Photo 2: Here the larger
of the two ships is accelera-
ting lowards the lower
right of the screen. This
information is relayed
visually by the trall that is
seen in back of the space-
ship. The small dot which
is positioned at roughly
equal distances from both
ships is a torpedo which
has just been fired by the
srmuiller spaceship.

(or Using Your Oscilloscope as a Telescope)

should be helpful here. Bear in mind that if
you go the refresh memory raster scan route
you will have to think about crasing things,
not a problem with the analog refresh
approach.

Meanwhile, back to the software. To start
with, BASIC is out because it's far too slow.
What's in is 5.5 K bytes of programs and
tables, all in assembly language. “What'’s the

secret?’” you say. “Why has Space War only
been seen on expensive systems up to now?"’
The answer is a special added ingredient
called TLU. TLU stands for Table LookUp
and eliminates the need for all multiplica-
tions and divisions, making your program
run ten times faster. Together with simple
difference equations you can use table
lookups to generate gravity for pretty

TACTICAL MATERIEL NEEDED

e An 8080 type microcomputer with
8 K of memory and a way to load pro-
grams. An Altair 8800 or eguivalent will
do fine. An assembler and text editor will be
necessary if you want to modify the pro-
gram conveniently,

® A general purpose DC oscilloscope
with X input. Bandwidth isn’t too impor-
tant, but it must be DC. The bigger the
screen the beiter. You can get one surplus
for about $100, and they're handy for
other things, too. A raster scan continuously
refreshed point display can also be used
with appropriate modifications of graphic
generation and object motion routines.

s A 2 channel digital to analog con-

vertor. This device converts two bytes of
digital data to two analog signals with a
resolution of 1/256 (3.9x1072). It is the
interface between the microcomputer and
the oscilloscope, capable of displaying dots
at any of 65538 locations on the screen in
a 256 by 258 grid. The clreuit is quite
straightforward. The “Beer Budget Graphics
Interface’” described in MNovember 1976
BYTE, page 26, will do fine. You could
even skip the second latch on the Y strobe.

e Two or more hand held boxes, each
with four push buttons. The two boxes
together look like one memory byte or
input port and are read by the program to
determine what the player wants to do.

¢ Software functioning as described in
this article.

87

Table 1: Basic facilities
needed to implement Space
War on a microprocessor.

system, a way to organize the code into
modules for ease of understanding, modi-
fication and debugging. But first some
preliminaries.

The Game of Space War

As the game starts you will see a sun in
the center of the screen, two scores of zero
at the bottom, and two spaceships al oppo-
site corners. You and your opponent cach
have a ship. Each ship is uniquely identifiable
and is moving slowly towards the sun. Photo
1 shows the screen at the beginning of the
game as | implemented it.

Each player has a hand held box as shown
schematically in figure 1. The functions of
the buttons are as follows:

CCW: The player’s ship rotates counter-
clockwise as long as this button is held down.
Rotation increments are 45° and the rate is
about one rotation every 5 seconds.

CW: Same as a CCW except rotalion is
clockwise.

FIRE: A torpedo is fired from the
player's ship when this button is depressed.
The torpedo always originates from the
front of the spaceship and travels in the

Photo 3: The larger of the two spaceships has been hit und destroyed. It hod
fired a torpedo just before it was hit.

respectable orbits for your spaceships and same direction the ship is pointing. [ts
torpedoes. Another thing, after subtracting initial velocity is constant relative to the
2 K for the gravity table you have 3.5 K of ship’s. Each ship at any one time has only
program lo manage. This translates to 55 onc active torpedo at its disposal and thus
pages of assembly listing with macros can't firc a second until the first has hit a
expanded (more on macros later). To do spaceship, hit the sun, hit the screen edye, or
this and not go crazy you have to have a timed out.

CPU INPUT PORT

OOOQQ??O

’_____ ————

| +5v —} | +5y :

| > Py

| O | | PULLUP RESISTORS
[W YW | MAY BE OMITTED

| VW 1 Ig.-.-. | DEPENDING ON INPUT
| w— AR { PORT USED

t WA— A !

e L

cw ccw FIRE ACC

I+
»
o4
O
i
m
(&)
O
£
O
z

Figure [: The pluyer control boxes consist of eight switches, four per player, which define duta far ane input port to the micro-
processor. The pullup resistors boxed by u dashed line may be omitted, depending on details of your input port.

88

ACC: Acceleration is applied to the
player's ship as long as this button is held
down. The acceleration is applied in the
same direction the ship is pointed and is
indicated visually by an exhaust trail at the
rear of the ship.

The object of the game is to get your
spaceship into a stable orbit around the sun
and then shoot down the enemy. You have
to, of course, watch out for the enemy
shooting you down; and you have to be care-
ful not to fall into the sun. If either of these
two calamities should befall you, your ship
will explode, your score will be incremented,
points count against you, and a new space-
ship will be delivered 1o the starting position.

You have a rather interesting option
when the going gets tough. You can enter
hyperspace by holding down both the CCW
and CW buttons at the same time. Your ship
disappeais, then reappcars at some random
position with a random velocity. This hap-
pens nol without risk; however, there is a
definite probability, increasing as the game
progresses, that your ship will explode when
it comes back.

A word about orbits: both spaceships and
torpedoes conform to Kepler's laws, travel-
ing in elliptical orbits around the central sun,
with revolution periods averaging about 15
scconds. [n general, the further away from
the sun the ship is, the slower it moves.
Thus, if a ship is in a long elliptical orbit the
cffect will be a litile like “‘crack the whip'"
the ship zips quickly arcund the back of the
sun, then drifts slowly out into space, then
back again. Torpedoes, usually moving faster
than spaceships, are less affected by gravity
and usually escape to the edge of the screen
where Lhey disappear. If they get close to
the sun their trajectorics may be bent as
much as 90°. Due to limitations of the
numerical method, the ships and torpedoes
may not come closer than seven units
{screen is 256 units wide) to the center of
the screen. Thus the sun's radius is defined
to be seven units and anything coming that
close is destroyed. A spaceship which starts
anywhere on the screen with zero velocity
will move radially inward to the sun and be
zapped,

Photos 1 to 5 show some scenes from a
typical Space War game, Some are snapshots
and two are time exposures showing the
motion ol spaceships and torpedoes,

Software — General

Many of the technigues discussed here
apply not only to Space War but also to
other video games, display systems and real
time applications. The only assumption
made is that you know what an assembler

Photo 4: A time expostre showing the two ships in orbit and a near miss of
u torpedo. The inner spaceship fired at the outer orbiting spaceship. Notice
how the gravity effects of the sun curve the orbits of ships and torpedo.

llll‘ l...l

Photo 5: A very long time exposure showing the maneuvering of the two
spaceships. Notice that Kepler’s faws of motion are being followed, and the
spuceship that is closer (o the sun is orbiting faster than the spaceship that
Is farther away, since it has only iraveled a portion of one revolution while
the inner ship has completely circled the sun, These gravity effects encourage
redi time tactics and use of strategy in pluying the game.

89

DISPLAY
EXECUTIVE PROCESSOR
D 1
| SPACE WAR |
| APPLICATIONS i
| MODULE |
DISPATCH
| TABLE |
: I
} |
| |
i |
| |
OBJECT DISPLAY

I BLOCKS PROGRAMS FILE |
|' |

|
|
1 |
l |
| NUMERALS |
| 0-9 !
| |
| |
- N i
! |
| |
| |
I MOVE ACCELERATE RANDOM |
' :
I

SYSTEM FUNCTIONS MODULE
- - - _
GRAVITY
TABLE

Figure 2: Block diagram of the software for Space War. The rectangles
represent programs and the squares represent data. This general type of setup
can be used in many other games besides Space War.

does and can read 8080 assembly language.

Since relocatable assemblers and loaders
aren’t generally available for microcom-
puters yet, chances are you will have to
make the most out of the absolute variety.
It is very useful to avoid having the entire
4 K of program in one source module. By

90

breaking the code up into modules you
generally need only to edit and assemble a
portion of the entire program to make a
correction or enhancement. Linkage be-
tween modules is made through a few fixed
locations in low memory (0 to 80 hexa-
decimal). There are two categories
of modules: system and application. System
modules exist to support a variety of ap-
plication modules. The application module
in this case is the Space War vidco game. The
systems modules needed here include:
graphics display processor, interrupt
handlers and real time executive, system
functions. The applications module is a
collection of programs and data related
specifically to the game. Let’s ook at each
of these modules in detail, while referring to
the block diagram in figure 2.

Display Processor

In order to have a video game you have to
be able to put pictures on the screen, Still
pictures are a good place to start;it’s easy to
make parts of them move later. With the
digital to analog converter and XY oscillo-
scope hardware configuration of the "Beer
Budget Graphics Interface” /by Peter Nefson,
in November 1976 BYTE, page 26}, it
is necessary to paint the picturc one dot at a
time and also to continuously refresh any
image put on the screen a minimum of
20 times a second. This suggests a loop con-
sisting of a sequence of dot producing in-
structions executed over and over again. it
would be very cumbersome, though, to have
to write a new assembly language program
every time you want a new picture. What
about a single program which cycles through
a table of XY coordinates? This is better,
except it takes a lot of dots to draw a line
or spaceship, and it's difficult to move
something when you have to move all the
dots together. A better solution is an inter-
pretive “language” which you can use to
describe pictures. A display file written in
this language is interpreted by a special
program called the display processor in order
to provide the proper sequence of XY
coordinates to paint the picture.

Understanding the display processor
requires you to visualize the beam which
defines a point on the face of the oscillo-
scope at position X,Y. A dot can be dis-
played at the beam position or at points
relative to the beam position. This is very
useful because you can define a spaceship,
for instance, as a series of dots relative to
the beam coordinates. To move the space-
ship you merely move the starting beam
position. Rather than define a series of
dots individually, why not specify a vector

or row of dots? This can be done neatly in graphics language by studying the nine

one byte where you specify both the length commands shown in figure 3. Figure 3 also
and direction of the vector. Let's say that shows the layouts of the graphics com-
you have defined your spaceship, but that mands. In my assembler the mnemonics
you want to display it more than once on along with the arguments are put right into
the screen. Just as in any other computer a program and the assembler produces
program you use a subroutine. The sub- the object code by means of macros. (A
routine in this case contains a series of macro is a way of telling the assembler to
relative vector commands and is called from substitute a group of instructions for a
several places in the display program, just given symbol.) All the macros are definced
after beam positioning commands. at the start of the program with dummy
You can pick up the details of the arguments. The real arguments are sub-
Hexadecimal Assembler
Op Code Layout Macro Form Meaning
00 0000 0O0O0OCO0 MBEAM x.y The beam is moved from its previous position to the
X coordinate new coordinates x,y where x and vy are between [

and 255. This command does not cause a dot 1o be

Y coordinate R A .
displayed, but s used as a setup for following

commands.
02 ag000CO0O0°1TO0 MDISP x,y Same as MBEAM except a dot is displayed at x.y.
X coordinate
¥ coordinate
04 00000100 LVEC x,y A "long vector’ is drawn from the previous beam

position to the new coordinates x,y. The new beam
position is now x,y.

X coordinate
Y coordinate

06 o000 O01T10 SVEC The relative vector is called the short vector to dis-
E I length]OI'FI dretn SV length, drctn tinguish it from the absolute long vector. The list is
SVF length, drctn a sequence of length and direction pairs where the
SVE length, drctn length is O to 7 dots and the direction is specified by
SVEF length, drctn a number from O to 7 where 0 is straight up, 1 is 45°
E = escape in a counterclockwise direction, 2 is 80° counter-
O/F = beam on/off clockwise, etc.
08 Q0001000 PARAM s,0 This command alters the effect of all following

SVEC commands until the next PARAM statement.
It is possible to change both scale (s} and orientation
(o) of all foliowing short vectors, If scaleis setto 1,
far example, all short vectors would be twice as long
as they would have been if scale were 0. If orienta-
tion is set to 2 instead of 0, all short vectors appear
rotated 90° clockwise. Thus a figure drawn entirely
In short vectors can be enlarged and rotated by
changing ocne command.

Isclel I orent

04 00001010 JUMP addr Interpreter control is transferred to the command at
address addr.

low order address
high order address

Qc 00001100 JUMPS addr Interpreter control is transferred to the command at
address addr and the address of the command fol-
lowing the JUMPS statement is saved. This is the
graphics subroutine call,

low order address

high order address

0E [0 000111 DI RETS Return from the subroutine entered by JUMPS
command. Subroutines may be nested.

10 [0 001000 Ol EXEC Control is transferred to the executive so that the
proper applications programs are executed. When
these are finished, control is returned to the graphics
interpreter command following the EXEC command.

Figure 3: The nine graphic commands used by the display processor showing the op code, related mnemonic, memory ulloca-
tion, and meaning for each command. These instructions and related programs can be used to implement a wide variety of
animated video applications.

91

Entry Byte

1 s}
1

2,3

4.5

2]
1

2.3

4.5

Data Functon
1 look at last bit of TIME only
0 execute on even TIME only

object block 1 starting address
ship fly program starting address

1 ook at last bit of TIME only

1 execute on odd TIME only
object block 2 starting address
ship fly program starting address

Table 2: This table design will allow the updating of the positions of two
spaceships on alternating cycles. Byte 1 determines whether the updating
takes place on an odd or even cycle. If it is set to zero, as in entry 1, updating
will occur on an even cycle. If byte 1 s set to 1, as in entry 2, updating will

occur on an odd cycle,

Bytes
{Hexadecimal Offsets)

0,1

Function

X {n), present x coordinate with 16 bits, 0 at screen center.
X {n—1), previous x coordinate.

X acceleration,

¥ {n), present y coordinate,

Y {n—1), previous y coordinate.

Y acceleration.

pointer to MBEAM instruction display file.

Tuble 3: A list of object parameters which are found at the head of an object
block and used by the object move function. These coordinates are con-
tinuously updated as the program progresses.,

stituted when the macro is actually used.

Now that you can describe a picture with
a concise list of graphics commands you
should be able to see how easy it is to
animate the picture. All it takes is some
other program in the system to periodically
change parts of the display file. For ex-
ample, if the MBEAM command preceding
a spaceship subroutine call is given a label
through the assembler, then the X and Y
coordinates can be updated, causing the ship
to move. To destroy the ship, replace the
spaceship subroutine address with the
explosion subroutine address.

See listing 1 for the display processor,
and listing 2 for numeral subroutines 0 to 9.

Executive Program

The Space War program was originally
designed to work with a real time clock
producing 20 interrupts a second. It was
discovered later that the update and refresh
cycle was stable enough to make the clock
unnecessary. This reduced the hardware
requirements for the game. To reiterate,
Space War runs on a 50 ms cycle. The first
15 ms are used to update positions of space-
ships, test buttons, compute scores, etc. The
remaining 35 ms are used to refresh the dis-
play, that is, process the display file from
one EXEC command to the next, The
executive:

92

® determines what update tasks are to
be done.

® dispatches a control to these tasks,

® increments a variable called TIME.

A few words on tasks and dispatching are
in order here, The applications module
consists of a number of independent pro-
grams, each with a distinct function which
is described in detail in the next section.
When each of these programs runs, it
references an object. For example, the ship
fly program has to run once for ship 1 and
again for ship 2. The combination of a pro-
gram and a particular object is called a task,
There are three pieces of information
necessary to specify a task:

® frequency and phase at which the task
is executed.

® address of the object block containing
all parameters relating to a specific
object .,

® starting address of the program.

The dispatch table (table 2) in the applica-
tions module is a list of all the tasks. Each
task has a 6 byte entry having the format:

byte 0: Mask which is logically ANDed
with TIME and compared with
the value in byte 1.

byte 7: Execution time. When this
matches the masked value of
TIME the task is executed.

bytes 2,3 Address of the object block
for this task. It is passed to
the program in register pair
BC.

bytes 4,5: Address of the program to be
called by the executive.

If, for example, you want to update the
position of each of two spaceships on
alternating cycles, you set up two entries
as in table 2.

Most of the task schedules are set up just
once when you assemble the applications
program. However, it is possible to dynami-
cally schedule one task from another, That
scheduled task runs ‘“right now' if both
the mask and time bytes are set to zero.
It runs “n cycles from now" if the mask is
all T and the time is TIME+n. The dynami-
cally scheduled task will, however, have
to later deschedule itself by setting the mask
to 0 and time to 1.

Now for a few words on how programs
interface with object blocks. Normally a
program references a number of fixed
memory locations using direct addressing.
This works fine, for example, if you have
one program flying one spaceship. For two
spaceships you could write two programs,

Table 4: The 1024 by 2 byte gravity table used by the ucceleration lfookup function. Notice the maximum dcceleration vultes
of 999 in the upper left of the tuble which correspond to the position of the sun. The tuble can be rotated around its uxis of
symmetry (o cover the entire screen in a minimum amount of memory. Lines drawn in the table illustrate several contours of
roughty equal gravitational acceleration.

but this would be a pain in the asteroid.
How about grouping all the variables to-
gether and defining a data layout common
to all spaceships? The data includes co-
ordinates, the address of the MBEAM
instruction in the display file, orientation
and about a million flag bits fu bit of
hyperbole . . .[. The program knows which
object block it's working with because it
started out with the block start address in an
index register, in this case the BC register
pair of the 8080. All memory references
then go through this index register. Don't let
the fact that the 8080 microprocessor
doesn’t have real index registers bother you,
you simply use assembler macros Lo invent
your own indexed instructions as follows:

LOADX reg,offset: Loads data from object
block relative location “offset” into
register “reg.”’

STORX reg,offsei: As above bul stores.

LDBLX offset: Loads data from object
block relative locations “offsel” and
“offset” + 1 into registers L and H
respectively.

SDBLX offset: As above but stores.

Listing 3 shows the cxecutive program

and interrupt handlers.

System Functions

System functions are general purpose
subroutines common to a number of appli-

2 1)

cations programs. These include object
move, acceleration look up, random number
and a system call program whi links with
calling programs. To call one of the func-
tions you invoke the macro SCALL n
where n is 0 for move, 1 for acceleration
and 2 for random number routine. This
macro generates the code RST 7, DB n
causing transfer of control through memory
location 38 hexadecimal.

Looking at the first function, object
move, you find a function fundamental
to all video games. The function depends
on a fixed layout of object coardinales al
the head of the object block as shown in
tabte 3. Calling object move up tes ese
coordinates according to the following
formulas:

X({n+1) = X(n) + X(n) — X{n—1) + Xacc
X(n 1)=X(n)
X(n) =X(n+l}

The samc equations are used for Y.

The XY coordinates of the MBEAM
command are updated with the new higher
order values of X(n) and Y(n). It is im-
portant to note that the X and Y bytes in
the MBEAM command are referenced to
the lower left of the screen, but the 2 byle
coordinates carried in the object block are
referenced to the screen center.

These equations of motion represent
what the math jocks call second order dii-

ference ecquations. Note the absence of
multiplicalions and divisions. You can
consider the difference between X(n)} and
X{n—1) to represent the X velocity of the
object, and the corresponding Y difference
to be the Y velocity. If you set both ac-
celerations to zero and initialize the other
coordinates appropriately, your object
moves in a straight line with a constant
velocity. If Y acceleration is a negative
constant, the object falls in a parabolic
trajectory like a thrown stone.

The object move function is sufficient
for most video games, but not for Space
War. For orbiting objects the accelerations
are neither zerc nor constant. Each point
on the screen has unique values of X and Y
acceleration. The acceleration lookup func-
tion finds these values for you, using the
X{n] and Y({n) coordinates, so that when
you alternately call it and the object move
function, your spaceship or torpedo zips
neatly around its orbit.

First generation Space War systems would
calculate the accelerations each time they
moved Lheir objects according to the fol-
lowing formulas:

Xace = cX/R3 and Yace = ¢Y/R3

where ¢ is a constant and R = #[X2 + Y2),

This reguires a total of five multiplications,
two divisions and one square rootl extrac-
tion for each update, clearly impossible
for most of taday's microprocessors.

Acceleration lookup, the heart of the
Space War system, uses a 1 K by 2 byte table
to find these accelerations, taking advantage
of symmetry.

The third function, random number,
returns an 8 bit pseudorandom number in
the accumulator. This number is derived
from a common shift register feedback
scheme and has a repetition period of 255.

Listings of all system functions are shown
in listing 4.

Gravity Table

Table 4 shows the | K by 2 byte gravity
table used by the acceleration lookup func-
tion. The values were calculated by a
FORTRAN program running on a larger
computer. The table entries represent the
absolute wvalue of X acceleration in one
guadrant. Y accclerations are found simply
by transposing the indices. Because halving
the distance from the sun causes the ac-
celeration to increase by a factor of 4, the
table can be magnified to produce more ac-
curate vatues closer in. By proper shifting
of indices and output values, the same
table can be made to cover index ranges
0to 16, 16 10 32, 32 10 64 and 64 to 128.

Thus the maximum value of 999 applics
only inside the sun.

Space War Applications Module

This module, occupying about 2 K bytes
of user program memory, specifically
defines the game of Space War. It is com-
posed of constants, macro definitions,
system linkages, the dispatch table, object
blocks and programs. It interfaces with all
the system modules described earlier. All
programs execute once for each related
object unless otherwise specified. Listing 5,
the applications module, is divided into
several sections which are described in a
separate box entitled A Guide to the
Space War Applications Module.”

Installation of Space War in Your System

The following steps might make it easier
for you to get Space War up and running on
an 8080 system:

® Make sure that your graphics output
and button input work the way you think
they do. Write short test programs if
necessary.

e Modify the display processor module
so it communicates with your particular
graphics interface. The SHLD XYOUT
instructions of the assembly listings are
the ones you will want to look at carefully.

e Modify the ship fly and rotate pro-
grams in the applications module so that
they read your buttons properly.

® Modify the keyboard handler (execu-
tive module) to accept interrupts from your
keyboard. If you don't have keyboard
interrupts you can periodically read your
keyboard in the rotate program.

® Assemble all programs and load in
the following order: display processor,
executive, numerals, applications, system
functions and gravity table.

® Temporarily eliminate the EXEC com-
mand in the display file, then start execution
at hexadecimal location 100. This tests the
display file and the display processor
module, the correct result being a still
picture which should make sense.

® Restore the EXEC command and
deschedule all but the first task in the dis-
patch table, then start at 100 again. The
system should remain in the still picture
mode because not enough tasks have been
enabled to support object motion.

e Enable tasks one at a time, thereby
testing cach. If the program bombs you will
know exactly where to look.

® Fasten securely all loose objects in
your computer room in anticipation of
the large unruly crowds which will soon
gather.

95

Listing 1, continued:

suB o ;DEL X IN A
JC PLUSX
MV c,2
PLUSX: RLC
MVl Hy & aLe
Lxl 4, TASLE 3 I SCAEMENT TABLE RLC
OAL i : aL "oV M, A
SHLL Tueet Hee FMENT PUIMTER ANT AFBH
JmE MLUOF 3 GET ABQTHER LUSTRUCTIOR mov LyA L. 0. XINC
; JUMP TO A KREW LOCATION IN DISPLAY FILE nov [
JUMk LHLD PNTR ANl 5
14X H XRA <
MoV A M $1 ST HALF OF ADLRESS MoV H, A s H, 0, XIHT
Inx H SHLD YINC
MoV W, M ;248D HALF OF ADDRESS H
mov L,A nov 3,0 $X IN 3C (H, 00
SHLD PNTR $ 3TOYE N INSTRUCTIGN POINTER mv] c,9
JMP MLOOP mov 0, E 1Y IN DE (H.0,7
: JUMP TO SUBROUTIAE MVl E,2
JUMPS: LHLD PHTR MVl A,22H ;32 POINTS IN VECT
inx H .
MoV oom LLOOP: LHLD YIKC
1NX H DAD
mov B, M NEW ADDRESS 14 AC XCHG s NEW Y IN DE
INX H LHLD X1uC
PUSH X (STURE OLD POLRTER 1IN STACK DAD i1
"oV H, 3 MoV By H $NEJ4 X IN 3C
Moy L, C MOV o, L
SHLD PNTR 3 AYDTESS 1IN INSTRUCTION POIKTFR MOV L, 0 $XY I8 HL (H.C.}
Jmp MLOOP SHLD XYOUT $WRITE TO CRT
s GETURN FROM GUIROUTINE DCR A
RETS: POP [+ E3T040 PGIHTER FRUM STACK JNZ LLOOP
GHLD PHTH :
Jing MLOOP XCHG s RESTORE XY TO DE
s SHORT VECTOR MUOJE Jmp MLooP
SVEC: LHLD PRTH s CURMENT [NSTIH INUER : TRANSFER CONTROL TO EXECUTIVE
LNX K EXEC: LHLD PNTR ;3UMP POINTER
NEXT: MUV B AHOHT YECTOH 1AUSTRUCTION 10% Y
1Nx H SHLD PNTR
SHLu PNIR 3 AESTORE POIKTER Myl H,B2H s 3EAM TO SCREEN CENTER
Mov Ay mvl L, B8H
aMl T PMASKE DIMECTION BTG SHLD YYourt
Moy <, A JOUFFSET 1N © RST <XFER TO LOC |84
A0V Ay 3 TORIG 1N3T 14 A JMP MLOOP s NEXT INSTRUCTION
vl g4, & P ZERD 14 3 3 SYNCHRONIZE WITH REAL~TIME CLOCK
LELD INCHPT ¢ INCREMENT POLNTER SYNG: LMLD PHTR :BUMP POINTER
oap E] ;s ADL GIRECTO8 OFFSET INY H
MoV a,m ¥ [NCREMENT SHLO PNTR
1834 H mvi H,82H 3 3EAM TO SCREEN CEHTER
Iy H nvi L,88
nov C,m ¥ [NCREMENT SHLD XYOUuT
XCHG Y OIN HL Lxl H, TIME
MoV E R soitalaal 1NSTR MoV AN tOLD TIME [N A
ARl T2H ¢ LERGTH 3§18 SLOOP: CMP M sOLD = NEW?
BRC JZ 5L.00P s YES - KEEP TRYING
[iC Jnp mLOOP $NO - NEXT 14STR
R 3 TABLE FOR VECTOR ORIENTATION AND SCALING
RRC TEHIFT RIGHT & TABLE: DB 4]
nov dy A R IE] 2
K143 Ay E 1US1G L [NET? DB 2
AN 5H TUNAOFF OTT DB 2
Jnz FLOOM T UMPOLF T OFET Pol:] 2
SHL2 iyout ;1nITIAL BOT T gmf DB -2
NLOOP: MOV 4,8 +¥ IRCREMENT D3 -2
ADD H b8 -2
Hoy My A oL}]
MoV A, € D8 2
ADD L DB 2
MOV Lya sNEW XY 1N UL pa 2
SHLD RYOUT WHITE TO CRT ki) 4
bOCR DB -2
JNE NLUOP ;LOOP IF WOT DBOKE b3 =2
Jup CKESC $+ CHECK "ESCARPE™] -2
FLOOP: MOV A, B ;X IHCREMENT DB 4
ADD H FARD TO X D9 3
nov Hy A DB 3
mov A, C ;Y LMCREMENT bB 3
ADD L $ ALD TO ¥ Do e
MoV L. & TNEW XY IN ML D3 -3
0oCcr o D3 -3
JNZ FLOOP s LOOP IF NOT DONKE DS -3
CKESC: MOV AE s ORIGINAL INSTRUCTION D3 8
XCHG XY TO DE D3 3
RLC s SET CARRY 1F "ESCAPE™ 03 3
JC MLOOP sMALN LOOP [F 50 03 3
LHLD PHTR 03]
JMp NEXT s GET MORE DATA [F NUT D3 -3
; LONG VECTOR MODE b3 -3
LVEC: LHLD PNTR DB -3
Inx K DB]
mov 3,m $NEW ¥ POS 08 4
184% H 08 4
nov A, M T REW ¥ POS 1] 4
1% H DB <]
SHLD PRTH }:] -4
: DB -4
Myl C,O0FBH SPECIAL MNASK FOR - D3 -4
5u8 E JDEL ¥ 1IN A DB]
JC PLUSY s TEST SIGH DF DeL D8 4
Myt C,@ sSPECLAL MASK FOR + bl:] 4
PLUSY: "ue pa 4
RLC 0B @
RLC sDIVIDE 3% 32 DB =4
MoV Hy A $SAVE I8 H Dy -4
AND 2FgH $SAVE I1ST 5 8178 ol -4
MoV LA sL. 0. YInC 03 [
MoV AgH ; RESTORE s THE FOLLOWING ARE STQRAGE CELLS WOT TO 3E [N PRGW
an| TH $ SAVE LAST & NiTS ; WORK1NG STORAGE
XRa c P XO% SPECIAL MASK PRTR: Dw 2 sPOINTER TO NEXT INSIR
MoV H, A $H. 0, YINC XINC: Dw 4 {LVEC ONLY
SHLU YING ; STQRE YING: Dw e $LVEC ONLY
H INCPT: DW] s POIHTER TO INCREMENT IN TAHLE
Moy A, B 1% POS END
MV] C,BF8H AFAd

98

Listing 2: Numeral display module con-
tains the graphics dot code to draw the
numerals 0 thru 9.

; NUMERALS MDDULE

; COPYRIGHT 1576 0. KRLOGLINSKI
i

4

1L0DAD BODRESS

4S5 TRT Eud 468 H

LVED NACRO Y.
ng 4
i X
03 Y

S

[y
GUELD MACRQ
BE] g
FR T
Y Teatiy il
b {LEN SHL A

Tt Sa, Ul
0% {LI% UKL 4) Dh 2R
sv Lan, Ll

AL UP CLCN SHL 4) e 2w

MACAU LaB,uln
25 D CR CLEN ShL 43 Lr 9K
Sitbrs
PARRE MACHD BUL, 08X
34 a
ni 04t LR C53L GAL a4y
B b
Jure mATAD AlDE
on ¢l
Tea ATUR
FERamM
JUnBS MAGRO ADUR
D 2 CH
nw ADDR

UNE: SWEC

4
3
SVYF [
4

[SI-E

Twot SVELS

THREE: 3SVEC

FOUR:

FIVE:

A
<

SEVEN:

ELiEKT:

RINE:

12

e D e
e N RA &N

N s s
N> A S N

ISR SRR Sy 4
SN B T

[SEEF PR
™A M L ;TED

100

Listing 3: The interrupt handler and exe-
cutive module covers the real time clock,
keyboard scan routines, and dispatches
object blocks on correct execution times.

$

INTERRUZT HAMDLEXS & EVECUTIVE MOJULL
COPYRIGHT 1976 D, KalU'GLIHSK]

ae g [} e e e s an eews

[RER] i
YS L
$iss i LR H
STRT Ewy 3ueH TLDAD ADUKESS
ADR EGU 42H s ADDRESS OF # TAGHS
FOLLOWED 3¥ DISFATIHK TaiLE
Kpara EQuU 16 H T K3RD OINT anus
CINTA £Qu 1BH $RTC BWT AODR
XINTC £Qy @rFClel ¢ ¥3RD 1uT COMROL mRDDR
KDCOT EGU 44H P KEYI0ARY DECODER ADUF
TIME EqU 3FH
ORG KINTA P KEY3O0ARD FUTCARUPT
Jmp KIENT sHADLER ADDR
CRA CINTA s PTC YRTERRUPT
JmP CENT $ CLOCK HANDLER
ORG TIME
i @
oRG hpv o)
Dw LERIIA] $OUMMY ¥3 DECOSEHR
ARG ESTRT

PUSH H 1TAVE ALL TEGR
Lxi H, TIME
1an B FNCAEMENT TIME

El JENASLE 1STERRUPT
Cabl EXECUTIVE
;

Pop H #ESTORE REGS

rop 2

POP 8

PoP PSY

RET $RETUAN TO GRAPHICS

[

BEAC CHAR/CLEAR

Lx1
PUSH + SAVE FETURN ADDH®
LHLD s KEY30ARD DECODER
PCHL $SIMULATED "CAabL!
HRTN: POP H

1]

a

PSY

ATN TO [BRTERRUPTED PGM

:
a
T
¢
H : TOP DF DISPATCH TABLE
D,5
£LOOP: MOV B, M
ANA B 1KASK TLME FOR TASK
INX H
cHp u : COMPAKE OBJECT TIRME
Jnz NOTEQ ;OISPATCH IF EGQUAL
PUSH 3 $SAVE BC (TINE & #)
INX H
“oy c, M
I3 H
Moy B, M 1 OBJECT BLOCK aDDR IN BC
INX H
Moy]
1NX H
Moy oM :PROGRAM ADDR IN DE
18X H
PUSH H $SAVE HL (POINTER IN LIST
LX1 H, ERTH
PUSH H :SAVE RETURN ADDRESS
XCHG :PROGRAM ADDRESS IN HL
PCHL ; JUMP T PROGRAM ¢ CALL)
ERTN: POP H : RESTORE POINTER
PGP B i PESTORE BC
LX1 B,
dmp ENDL : CONTIRUE SCANHING TABLE
NOTEQ: DAD [Lz HL+S
ENDL: DCR c : DECREMENT TASK CAT
Jnz ELOOP ;TEST NEXT TASK
RET {RETURN TO HANDLER
;
KBDUM: EEI : DUMMY K3 DECODER
D

TIx

Listing 4. The system function module takes
care of all system calls, acceleration lookups,

3
and random number generation. CALL MoVl i UPDATE X
CALL novi $ UPDATE ¥
LDAX B t INST PNTR IR DE
MoV E, A
[NX B
$ LDAX a
[oy D, A
: SYSTEM FUNGTIONS MODULE INX D 1X COORD ADDRESS
i COPYRIGHT 1976 D. KRUGLINSKI FapP] jORIG BC (TOP OF LIST)
: SYSIEM CALL, MOVE, ACCELERATION, RaNDOM LOADX &,! (M) H.O
: ADI apH tZERO AT SCREEN CENTER
WSTRT EQU BCPBH ; LOAL ADDRESS STAX [tX COORD
s INX D 1Y COORD ADDR
: LOADX A, 7 TYUCN) H.O,
: ADI 80H :ZERD AT SCREEN CENTER
: STaX o 1Y COORD
: RET
¢ : UPDATE EITHER X OR ¥
MOVIt PUSH B $SAVE BC FOR X(W)
LDAX 8 i%(W) To DE
mov E, A
X 3
LDax]
mov D, A
18X 3 $-X(N-1) TO HL
LDax 8 AND DE TO NEW X%(N-1}
; LOAD HL INDEXED (BC: BASE) cMA
LDBLX MACRO OFSET MoV L, A
PUSH D mov A E
Lxl M, OFSET STAX 8
DAD B 16X B
MoV E,M LDAX B
INx H cMa
MoV D, M MoV H, &
%CHG MoV 4,0
PopP D STAX 8
ENDM INX H
3 STORE HL INDEXED (BC:BASE) DAD o 1 HL+ DE+DE TO MWL
SDBLX MACRD OFSET DAD D
PUSH D 10X B ;XaCC To DE
XCHG LDAX B
L1 H, OFSET nov E, A
DAD) INX 8
mov M, E LDAX 8
INX H MoV D, A
mov M, D DAD D $HL+XACC TO HL
FOP POP [} $BC FOR X(#)
ENDM MoV AL tHL TO NEW X(N)
; LOAD REG ISDEXED (BC:=BASE) STAX D
: KL DESTROYED INX D
LOADX MACRO REG, OFSET Mov Ay H
Lxl Hy OFSET STAX b
DAD B INX] ¢SETUP FOR NEXT BYTE
mov REG, M
ENDM
; STORE REG INDEXED (BCzBASE)
{ HL DESTROYED
STORX MACRO REG, OFSET
Lx1 H, OFSET
DAD 8
mov M, REG :
ENDM ATAB £Qu
3 XN SET
ORG 38H :RST 7 ADDRESS XACC SET
JMP SYSCL YH SET
QRG MSTRT {LOAD ADDRESS YACC SET BAH
: 3 ADJUST X & Y FOR TABLE LOOKUP & SET SHIFT COUNT
: ACGEL: MVl .3
: STA SHCNT jSET"SHIFT COUNT (6 SHIFTS)
: LDBLX XN I % VALLE
: nov AJH
: s STA HOXN §SAVE H.0, X
s H cPl)
INX H JP PosX 3 ABS VALUE X
PUSH H s RETURN ADDRESS COMHL
bex H ;CALL # ADDRESS POSXt XCHG ;IN DE
PUSH D i SAVE DE LDBLX YH 1Y VALUE
mov E,M mov Ay H
Myt D, ;CALL # 14 DE 5Ta HOYN tSAVE H. 0, ¥
Lx1 M, CALT3 ;CALL TA3LE BASE cPl1 ¢
DAD D JP POSY 1 ABS VALUE OF ¥
DAD] 3 ADD # COMHL
Moy E M POSY: MOV AH s IN HL
X H ORA D ;COMBINE H.0. X & ¥
MOV DM CcPl aBH
XCHG s ADDR IN ML JP GETAD +JUMP IF » OR = 4@H
PoOP] ; RESTORE DE DAD H :DOUBLE Y IN HL
PCHL 1 JUMP TO SUBROUTINE XCHG
CALTB: DW MOVE DAD H ;DOUBLE X IN DE
DW ACCEL XCHG
DV RAND L0A SHCNT
DW [OCR A
STA SHCNT ; DECREMEMT SHIFT COUNT
AR AR AR AR AR AR R R R R R R R RS] JNZ POSY ;LOCP IF > @

H IR AR AR EREARER] K
GENERAL PURPOSE MOVE FUNCTION i COMPUTE XACC TABLE OFFSET FROM X & Y (IN DE)
ASSUMES FIRST 03JECT BLOCK LOCATIONS AS FOLLOWS: GETAD: MOV A, D tH. 0, X
X(N) RRC
RRC
XCN=1) RRC
RRC { ROTATE RIGHT 4
X ACCELERATION nov
ANL
Y{ N} mov
mov
YON-1) ANL
nov
Y ACCELERATION MoV
RRC
INSTR ANI 3
ORA E
SCALL 2 MoV E

iH. 0. TABLE OFFSET

»mMO®poIm

POINTER TO ° MBEAM'

COEPYRAANL SN —@

CALL: X 3L.0. TABLE OFFSET

102

Listing 4, continued':

PUSH o DEAVE UFFRET FOR LATER
CALL HET?Y sGMT AZC WAULE

H MAKE XACC SIG8 ACGREF wIIH =¥ COORM
LOA Hox TH. G VALUE

Cr1 a s TEET 16
NI xMIns
COmIL QF - ZOMP KACT

XnIws: DALY XACH TTORE 1N L ILK
H COMPUTE YACTD TAULE OFFSET FUOM Yanq OFFSFT

PaFP Nl DYACC UFFTIT 1h ML
nuv o, L
s
RHC
kif=
»ov £,0
anl TH
nov o, A iU, TAGLL OFFEET
nov Ay F
ant OLCH
Moy £, 0
MoV Ay L
ANl vogn
URA H
RLC
RLC
RLC
ORA E
MoV E, & sL.W. DFFEET
CALL RETRV 1 GLT YACC VALUE
H MAKE YACC SIGN AGREE WiTH -¥ J0UAD
LbDa HOoYN
CcPI ?
M ¥YMI NS
COomMHL
YMINS: SDILX YAaGe SSTOHE yalC [N 0. OLK
RET P YETUAN TO CALLLNG PRUGRAY
: SUSROUTINE TO RESTCGHE ACC JALUE FROM TAYLE TO ML
s AND ADJUST ACC 8Y SHIFT couu
H INPUT: OFFSET IR DE
RETRV: LX] H,aTA1 3 TAILE IASE
DAD D T ADS OFFSET
MoV E, ™
inx W
Mov Dy ;bata ty DE
PUSH 9
LOA SHENT ARV SKHIEFT COUNT BN 3
Moy d, 8
CPL 2
JT EXIT WIFT COU%T=2
H SHIFT DE RIGHT 2 [ea|)
oV a, D
RRC
RRC
mov Dy A
mov AE
RRC
RRC
PUSH PSW t SAVE CARRY FUR ROUNBING
ANIT IFR
ORA D
mov [
My I D, ¢
H DECREMENT 2 TFST SKIFT coud
LOUP: bI% i
Jz lQUND 1 DORE FHIFTING
H SHIFT & WIGHT 2 {Uu-d)
rOoP PSW 1TANE STACK
oy A E
nrC
RHC
PUSH PSW TR
atl SFH
oy A
Jup Loop
20UND: POP A" $OPETOTT CAWTY FRUIT LAST TFT
MoV A r PL.0. ACe
All o TN
mouv .4 HEEE EU
Xtz NCHOG S Ih ML
PoP [s oSTORL 140Dy SLL

Kanp: o Lx! H, KKD

%oV At

axl 8EH FUSACH Masy, TLERR DaRmY

JPE CLEA% UH FEEDJAZY 31T

cne T ZRHRY OIF COK TAUE
SLEAR: MOV At FESTORE Wb

RAL SHIFT [N Catily

Moy My A D1 FErORY

RET

& voRaLLE
R @ Y owaruc
Df 2 SHIFT ouwt
3N

104

Listing 5: The applications module, which is
specified for a particular program, is des-
cribed in detail on page 96.

PRI

cuky 6

APPLICAT] sl
1276 U, AbLnLiusy]

drFVER

7 i

les s LURATION GF

R P TOLLSIILL [
¥ T ACCELESATIL

ic H Tlebald

INEH 3 FELATENE WrLOOI T
A THYPEHSFALE EvVIT [Lav

7 Ak $RTHEEDS EIOT

BUAPHICE MACROS
TAEN MACHO

D4y
ot}
ol ke
UM
NpISP MACRD Y,V
o z
i X
o] Y
ENL4
Lwie MACHU K, Y
bz "
X3 L3
D' Y
ENDE
SVEL MACRY
D3 &
ENDY
5V MAUHC LEK, 017
23 DIR DR (LEW 5HL =2
Enbi
SYUF MACRO LEny LIR
D QIR % (LEN SHL &) QR 2R
ENDr
nvE MACRG LEN,UIR
D3 DIR OR CLEY SWL 4 DR 3ZH
E4UM
SVEF MACRU LEW, DIN
DA 21# OR CLEM SHL &) JR =2w
£HOM

PARAM MACRA SCL, GRA
1

i) 8
e 07!t OF (SCL 5HL)
Fuin

UHHP MACHD AL
01 €AH
Dw ADD.
EHDN

JUmPS MACRO ADUH
04 ¢lH
oW AdDn
ENDN

H

RETS MACKRY
o)) CEH
ENDA

EXEC MACRO
D3 (T3]
ENDM

: ENTRY MACRO FOR DISPATCH TABLE
ENTRY MACRO MASK, TI%E, 03J, PROG

b3 MASK
k] TImME
Dw [N
Iw PROG
ENDM
s SYSTEM CALL MACRO
SCALL MACRO mopy
Rs1 7
I monN
ENDHM

; MACRO TO CREATE 12-3YTE COQRDIRATE SLX
COURD MACHO Klby Y2, XAC, YN, YM, YAC

DJ4 b4

bw Lq

Ow XAl

Dw Yu

Dw Y

oW YAC

ENDM

MACHO TO LOAD REG INDEXED (BCzHASZE}
DESTROYS HL
QADX MACRQ REG, CFSET

[ERTRTN

Listing 5, continued

Lx1 H, UFSET
DAD B

noY REG, M
EHDM

{ MACRO TO STORE REG LNDEXED (3C:BASE)
H DESTROY¥S WL

STORX MACRD REG, OFSET

Lxl H, OFSET
DAD 3

Moy M, REG
ENDM

MACRD TO LOAD 2 d¥TES FROM OFSET
INTO HL {BC=9aSE ADRS)
LOBLY MACRD OFSET

PUSH 0

L¥1 H, GFSET
gap 9

noy E, M
IHY. H

MoV [
KOHG

Pay 2

Exnm

; MACRO [0 STORE & SYFES [QFSET
1 FROM OHE (0= AASE Al
SO4LY MACRO OFSET

PUSH]

KLHG

Lxl Hy OFSET

LLETH u

iy My B

Ly il

MOV e Lt

PO]

E#l
sMACRG 10 TAKE a4SOL0Te WALUR GF A
ans MACRO

CH1 2

JP FOS LD o A

Chmi § COMPLEMENT &
FUS:

Edtil

rumMs

Ui
4 T s ULSFLAY FILF
v

¢ TARLS » L1ST

D CTTI
3 BLSPATGH TAILE
PeNTls EHTHY &, SN0, (51T
(ENT2: ENTRY 2,0, M, Eni
ENTIY a1, 810, 55Tl
EHTRY &, 1, 5HZ ,55Tal
E&THY
ENTRY o,
EATHY 28,801, 3FLY
EHTRY 2,9, HUE, YFLY
SENTI: EMTIRY 4,1,5H1, FIKE
GERTZ: EATRY &, 1, 5H2, FINE
ENTRY \ 501, SCOHE

ENTRY #FH,%, 5CE, SCOAT
E4TRY TH,2, 811, 10T
ESTRY TH,6, SHZ, K0T

BH1F yvazCl

SHI: L) SR
Gu ™ #sinm |
p SEA LT FOuETH
CHDRE VRO R, ARV T
Ju T T ke
b L RYLANLTAZERD
H S,
™ i SHIPS LEFLO
I PLULMI+L 1 SHIP (e
b} PENTI 1oAY POINTEN
ud GENED FEre ENTRY
w 51 DLLos
% S H Dald HUTIGR MASK
U3 vl H e MASH
51 L4aH LW MASKE
Ly [l H
[S H
e Fy
Dl -] sAUTTON ALDRESS
o HEH DHYPERSPALE MASK
o3 @ sHYPERSPACE FLAG
Js1H b DlHITIAL ORLERTATLUM
na I ACE PRTE TO 11T P63
< coukh @ &
Lw 38

106

BU2:

5C12

sCa:

Coafn

EFREH, TUPEH, & =SPEE M, =6PRIH, P
IE
FE¥YH2Z+1
3HIPE
PSLUR2+)
POLHE+]
PENTE
GEUTZ
e

1&H
22N
4 H
Y¥' H

a

2
SADR|
BCIH
é

4
1IENT2

H TORPEDD D8JECT ALOUCKS
COuKL
e

9,8,2,2,0,6 ;D¥YN COURDS
BPDSL PHTR TU MOISP THSER
5Th TO NEXT TORPEDU

@ 3 AL WARY SCORE WnlL
SCIL+1 315T BIGIT

SCIE+L 12HD DIGET

3

SC2Ll+1

5022+

WORKING STORAGE LOCATIOR

ORS AV

FROS|
PULRL:
FEXH]
PSS!

Wos2:

AHEPI

SHIkL:

EXPLO:

bl

MY CAMR
PARAM
Junes
JUMP S
MIEAN
FARAMN
JUMPS
JUnPs
MEEAM
MBEMT
PakaN
Nig LA
JUNMFS
JUNFS
M3 EaNn
JUHF 5
JUmes
Junp

SVLC
GYF
Sy

SVF

RETS

LTS
JVF
5y
SW
et
SUF
SVF
SYF
54
al
SUf
RETS
SYED
5
5V
5
Sy
SWF
SVF
SWF
aW
SV
SVE
RES

H,2@H :IUN

ALl
BONH, |
HULL
NULL
START

[y T N S
Rl — T m A s M

PRI PRI E MDY E P e
L S I AECIT N

M b MY T e P
[Ty R

d
=

S LH ih O g L g G
MBI s s w

http:l'!:Y.HI

Listing 5, continued:

EXHST: SVECD
sy T4
SVEF 7,3
RETS
H
3 kekwrwxsdwd PAQLRANG wwksvursrdkdk
R R R AR R A R R AR R R R R E]
H I9ITIALIZATION PROGRAM
: SCHEDULED AT START & BY CTL C
P ITEEINRAASIIIFIRIIRLIITIIOIGTIDOIIRINGRLIGILLCL
SCPRT SET 2fiH
IEPNT B5ET 39H
PEFNT RET 244
IHIT: LDALY SCPNT s GET SCORE ALDN
ST M, e +TERD SUORE
LD3LY PEPNT iGET ADLR OF SHIP ST
INX H HLEh
k1 e P SCHED SU[P START
LDELX TEPNT s ADUR OF [N[Y EMTRY
[Elh4 H
M M, | + DESCHED SELF

HFLAG SET REY PHYPESSPACD FLAG
JTORKT SET 34H PANITOAL ORIEMTATION
; SELECT ACCORJENG TU HFLAG
SSTHT: LOALX A, HFLAG

cEl o

JEE HYPR

3 CASE-=~H=d-~NORMAL START--M0T H¥PERSPACE

CRLL STRT HIP LUGT, DESCHED
CaLL HEGIU RENT:-@, STANT POS
HET

HYPR: JH HIEST

3 CASE--M=1--HYPERSPACE AETUkY~-NQ DESEROY
CalL START

CALL IWCORY 3 hANDON COORDINATES
ALT
3 CASE--H:-1--4YPERSPACE RITUn%--DESTROY

HDEST: roall LUSTHY
CALL HCORD 3 PA4L Couens
RET
: EMUSELECY
STHT: LOBLY, PLPY TRORMAL SEaT
KOUA $SHIP SArE Aadl Lh pDE
LOBLY FCPNT 1 onkL 1IN HL
Moy My E TUHIP S -s OALL
1497 HI
oy My o
LhiLx PEPNT Poroat
=yl M 4
e Y
Myt oyl P BESTHIS SILF
EF
SESH: LOASK A TORRT 3 SET DRIENTATION
ST04% A, BUFHT
L% I, STURS 3 5Ta.0T FO0ED
naL 3 ALZE 1YW HL
LTS 0,12 2 OOYTES 1O MOVE
FYLUPL Y Ay M orR0e BISIT 2poins
5TAY 2 ;o TOoGvR CooRne
[E5:4 H
Lar 4
DEKH [}
JSHE FXLOF
RET
BCORD: SCaLL @ PAANDON G¥TE LN A
STORY A, ¥e+] tH, O, ¥ CODRD
STORY A, XN
sCaly 2
STORY A, VH+L 180D, 1 20680
STORY n, vum
ScaLL 2
ST08% n, vy thetd W {WELRILTY
ToALL
§Ta%v i, XNM
SiTaLL

FI0RY A, ¥H
neaLl %
ity YRR

“TOoRY

MW CFAN MYPERSPACF FLER

AN ET H
A SET 5H
¥ SET 2H
THY 3ET 3H
KACE SET GaH
YACT SET £ AH
INPNT SET EClt
N3FNT SET BEH

108

RCNT SET 18H ; TORPEIDOQ TIMEOUT
FIPNT SET 26H
ACCH SET 2hH
FIREM SET 23H
cud SET 2CH
CCWM SET 20
HYFEM SET 32H tHYPERSFACE MAEY
Ll SET 2EH
ANPNT SET 3AH
ACON| EQU (S*ACONYAT
SFLY: SCaLpl L] s MOWE SHIP/AERPLD
SCALL 1 1 ACCELERATE
1 TEST HUTTONS OWLY IF NOT 1# HYPERSPACE
LoADX fiy HFLAG
cRl 2
RNE
3 CHECK LF ACC BUTTON O
LD3LX BAPHT DAUTTON ALTe
MoV By M s UTTON WORT
LUAL A, BCC% 1 A0S MAtK
AHA D
L¥i Uy SULL E¥EAUST
Az KHET Wl ACCELERATICN
Ay D,¢
LUADKE ELURIRT
L£1 H, KATA S
T M
Lt}] L4 OALC Algk FUg DHER
oY L, M HEA Satvi W + 8
Tux H
MoV Uy $RADD M0,
LbaLy ¥ACC P ADS TO DitfulvAL
Bal 1+
SpDaL~ AACT
3 GANMF LOGIT FUR YaCC
Yl [T)
Lunirg E, OMERT
L¥l H, YTk
Dap)
Dab [
M0W]
Lar H
oD o, m
R YALC
nan il
SldLe T
Lxl 11, ZEMET 7
WHST: LBILY EXPAT H E¥YHANETA 2100
AGN M ¥ H Lix FILE
1 H
R]
v TEST [F ¥ nlal ECGE
TTSE:r LAWY A, Rl
418
Lel LIeT
i SwaPY s wRE
v TEST [F ¥ WES«@ EobGE
LUARKE A, ¥IN
a5
Zel LiMtr
[N SWiry H]
3 aHIf RIT Suwy
LUAUE 1y Kot |
1]
] SUN HEIPS P A S P ¥ HH
JP 4TST
LUADE A, v
Ik
CRl sUR o0, Y o« FUN ATUS
Jr EAER]
TALL BeTHY
L1391
» TEQ] ¥oR CLOSE TORPEODS
N15T: Loany D, 001 pidl ¥ BRTONF U]
Loasy E,DCeT MO v T0S UF FHIr
PU3H 4 P IAME SRIP SLE PruTh
L% 1, 3UL tFERST TORPEDOD BL K AOTL
FLOGK: Ay El PHL -> 42
Mgy b
Lony FoaTow Ly
Pl a IRsST FoR To¥0
Jd2 MET L THEXT TOWPEDD
SRIGT: LAY 4, 80v] 20 ¥ PUS LF TowvELn
RIIK 0
A5
UFI EOSLY
J& NE LY P HCT SLEED ZHDUGH
bIBA T A, 0C+7 Al Y POS UF TOSPLUD
SUd £ PRUAT SHER POR
#35
cel EPALK
4t HER ;L0010 CLUS ENOLGH
HXIDL: LDHELX P T E TURPEDD PNTI
sU5 4
e 3 2
UNE FLoap D HO
Lmp L
JNE FLOUP iLowoT T
Py] ;EAND STALK
RET :30TH HEL ZERLD
H1T: LBaLx 1uPKT + TORPEDBG POTTION
vl M0 PMSESY JRSTR { Brans)
vl 4,2 s AELEASE TRAPEOD
STORY A, RCHT
PO L] P AESTLAE STRlP LW
ChLL TSTAY
RET

1 SUBRQUTINE TO INCREMEMT SCCRE, SCHED
;5 SHIP START AMD REPLACE SHIP wlIH ZXPLOS1DH
3 ALSO0 USER [W HYPERSFACE PRUCESSIRG

DSTRY:

LELY
Moy
148
ThA

SCPRT $ "ESTORL SCORE ADDE
L : [NCREMENT SCONE
A

0 IT
WITH 16 BITS

DO IT BETTER

With the language that is best suited for your application: Business programming in
COBOL, Scientific and Engineering in FORTRAN 1V, Educational in BASIC, and
Systems Implementation in our MACRO ASSEMBLER.

With hardware that will grow with your application, and protect vour software in-
vestment.

DO IT FASTER

With extensive support and utility programs to speed development of your applica-
tions soltware., These include a Disketlte Operating System, Relocatable Linking
Loader, Load Module Library Editor, Symbolic Debugger, and Text Editors.

With a 16 bit processor that includes hardware multiply and divide, real-time clock,
and peripherals like single or dual diskette subsystems with integral DMA con-
troller.

DO IT WITH A MicroNOVA-
BPI

If you are serious about computing. call or write
today. BPI Inc., 2205 East Broadway. Suite 6.
Tucson, Arizona 85719 1602) 326-6975

® NOVA 11 & registered trademark of Data Ganersl Corporation, Southboro, Massachuselts Citcle 392 on ingery carel.

Listing 5, continued:

MoV M, A
+ SCHED SHIP START
LD3LX PEPNT JCHIP ENTRY ALDR
MV M, =1 TMASK T -t
LDA TIME
ADI INTVL
INX H
MoV M, 4 s TIME+ INTVAL TO PL ST
5 REPLACE SHIP WITH EXPLOSION
LI D, eXPLO ;EXPLO SU3
LD3LX PCPNT $SUS CALL
mov M, E
InNx H
MoV ", D
HET
i
SWAPX: LDBLX XN s SWAP X COORJS
XCHG
LD3LX XN
SDBLX XN
YCHG
SDBLX XNM
RET
SAAPY: LDBLX Y : SWAP Y COORDS
XCHEG
LDBLX M
SDBLX YN
XCHG
SDRLX YNM
RET
H
i ACCELERATION TABLE
YaTRY: DU [
Du ACONI
YATAd: Dw ACON
w ACON!
D a
D ~ACUNI
D -ACON
O = 4CONL
Da <
Dw ACONI

Jer e ae e

;s JEST IF X MNEAR SCREEN EDGE

LOADA A, DI+ i ¥ PYS OF TOREELN
A3S 45 VALLE GOF 7
crl Lintr UITECT LIWIT
JP 3LANK s NEA4 EDGE JF + 0 2
1257 IF Yy WEAR EDGE
LOADX A, U7 AL Y Pof UF TURPLLO
A3
L LimMIT
JP 3Lank 3 NOT NEAN ZLGE
i TDRPEDD MIT Sum
LOADY AL XN
a3s5
crl suN
it sETH IF NOT
LOADY A, vl
A35
cPl SuUN
RP 1 ETURN [F 40T
ALANK: LDILX INPNT i MBEAN/MULSK INST
(301 Med s MNEAL
ha's! A0
STORY. A HCHT ; ELEALT TURPEDG
RET
: H H :
H E H
] i iis :
GEP 5 26H
RCOW EuU EPSLN® | 42 H
T EQu (59 VLON) /7
FIRE: LD3LX GEPNT $OISKHATCH TasLE ENTRY FOR SHIP
INX H
MVl 0 s DESCHEDULE SELF
LOADX A, CRENT
aDD A : DOUBLE ORIEHTATION
MoV LA SSAVE FOR LATER
b H,8
SHLD 0RSAvV
LDBLY FdPNT :PNTH IO IST TORPEDO ->HL
PUSH 3 $SAVE SHIP 9LOCK BASE
i FIND FREE TORPEDD
Moy n, K $HL -> 3C
MoV c,L
LCADX A RCHI ;TEST FOR CLAIMEU TORPEULD
CPI @
Jz SHOLT $NOT CLALIMED
POP 3 P SANE STACK

RET s N0 FREE TORPEDOS
; SHOOT A TORPEDRG

SHOOT: LD3LX ITHPNT $UNSLAVK TORPEDC
Myl M, 2 tMul1set
Mvi A, RMAX ET TIMEQUT COUMTER
STIRX Ay RCNT ¢ TO CLALIM TORPEDD
PoOP H 1 SHIP 03J BLK [N HL
Ml 0,1 19 AYTES TO MOVE
XLOOP: MOV Ay M YIE F40M SHIP COQRDS
STAX 8 ; INTO TORPEDO COORDS
IN% H THEXT AYTE

110

[HK Jd
ace D ;s DECREMENT CNTH
JHZ XLoop ¢+ NCGT DORNE YET
Lxl H, =16
nad 3 s HESTORE TORPEDD BLK
nov a4, 4
MoV Cel
s COMPUTE [RITIAL TORPEDO COORDINATES
¢ X(H-1) & Y{N-1) ARE SHIP'S + COLLISIOM RAD
s KUNJ & YCR) ARE SRIP'S + VELOCITY + COLL ®AD
LHLD ORSAV
LXl 0, X¥TA3 X VELOCITY TABLE
DAD 3}
MoV E, M TRVEL IN DE
INX K
nov Dot
LDBLY XN
DAD D 3 ADD VEL+COLL TO XN
SpOLX X
LHLD ORSAV
Lxi Dy XRTAQ ; COLL RAD THRALE
0aD D
Mo E, M
INX H
MoV o, m
LDSLX XhH
DAD D 1 ADD COLL TO XCh=-i}
SD3LX AAM
H
LHLD ORSAV
LX1 D, YVTAB
DAD b
Mo E,M
18X H
MoV 0,
LDBLX YN
DAD D $ADD VEL+CUOLL TOU YN
$b3LX N
LHLD ORSAV
LXI D, YRTAB
Dap D
oy E M
INX H
mov D, M
LDBLX ¥YNM
DAD 3 ADD COLL TO YO(H-11
SDBLX TAM
RET
3 COLLISION RADIYUS TABLES
XRTAS: DV [}
0w TCON
¥YRTA3: DV RCON
] REON
ow @
D4 =RCOK
0w =RCON
Dw ~RCOH
0w e
Dw RCON
H H, U, VELUCLIY + LULL HAU [ALLEYS
Xviaz: Ow &
Dw VCONI+ SCON
YVTAR: DV VCON+ICON
fh VCONL+ ACON
au ¢
0 ~VCON| -RCON
Ow ~VCON-RTOY
v ~VYCUNI -RCON
D 4]
ow VCONL+ HCON
: PIiIITIIIAsIIINIIINITING
H
3
B
s
g
s5C 1 SCORE VALUE
3 9IGHT DIGIT
1.2
: I4DEX OF SUB: IN HL

$SUIH ALUR IN DE

sPNTA TO DLGLT
$SUSe Aadd% I% DISPL FILF

ACORE VALUT

SLIFT DIGLT
DAUSTIFY & oz

NuxS

AU

L, 4

E, %

K

U,

5516

4 E

H

My U SLEFT DAG IS DISPL FILE

P PETUTN

they're

The new VALUE-STANDARD in personal
computing systems! Heathkit computers
give you the power and performance to
go wherever your imagination and pro-
gramming prowess take you. They're de-
signed to get you up and running fast,
interface with 1/0 devices easily and
quickly, accept additional memory and
/0 devices, store and retrieve data with
speed and accuracy, respond to your re-
quests with lightning speed. They offer
complete mass storage capabilities, power
and reliability for any programming appli-
cation, and they’re priced low enough to
give you real VALUE for your computer
dollar! We've told you they're the ones
you've been waiting for — here's why!

These Heathkit computer products are
“total system’ designs with powerful sys-
tem software already included in the pur-
chase price. They're the ones you need
to get up and running fast. And they're
backed by superior documentation in-
cluding easy-to-follow step-by-step as-
sembly and operations manuals, and
service support from the Heath Com-
pany, the world’s largest and most experi-
enced manufacturer of electronic kits.

NEW H8 8-Bit Digital Computer. This 8-
bit computer based on the famous 8080A
microprocessor features a Heathkit ex-
clusive “intelligent’ front panel with octal
data entry and control, 9-digit readout, a
built-in bootstrap for one-button program
loading, and a heavy-duty power supply
with power enough for plenty of memory
and interface expansion capability. It's
easier and faster to use than other per-
sonal computers and it's priced low
enough for any budget.

NEW H11 16-bit Digital Computer. The
most sophisticated and versatile personal

here!

the new HEATHKIT low-cost
personal computing systems

computer available today — brought to
you by Heath Company and Digital Equip-
ment Corporation, the world leader in
minicomputer systems. Powerful features
include DEC's 16-bit LSI-11 CPU, 4096 x
16 read/write MOS memory expandabie
to 20K (32K potentiai), pricrity interrupt,
DMA operation and more. PDP-11 systems
software for fast and efficient operation
is included!

NEW H9 Video Terminal. A full ASCI) ter-
minal featuring a bright 12” CRT, long and
short-form display, full 80-character lines,
all standard serial interfacing, plus a fully
wired and tested control board. Has au-
toscrolling, futl-page or line-erase modes,
a transmit page function and a plot mode
for simple curves and graphs.

NEW H10 Paper Tape Reader/Punch.
Complete mass storage peripheral uses
low-cost paper tape. Features solid-state
reader with stepper motor drive, totally
independent punch and reader and a copy
mode for fast, easy tape duplication.
Reads up to 50 characters per second,
punches up to 10 characters per second.

Other Heathkit computer products in-
clude a cassette recorder/player and tape
for mass storage, LA36 DEC Writer 1l key-
board printer terminal, serial and parallel
interfaces, soflware, memory expansion
and 1/0 cards, and a complete library of
the latest computer books. The Heath
User's Group (HUG) provides a newslet-
ter, software library and lots more to help
you get the greatest potential from your
Heathkit computer products. We've got
everything you need to make Heath your
personal computing headquarters, send
for your FREE catalog today!

mailto:lll:srj;T.f@i�J

ONE RECORD

NAME: JOHN DOE
B FIL% OF ADDRESS 504 MAIN ST
RELATED
RECORDS CITY. URBANA
STATE- 1LLINDIS
ZIP. 6I801
LABEL DATA - ’ADDiﬁoNAL DUMMY
RECORD IRG RECORD IRG - DATA RECORDS RECORD
7 NI TN A N
—
w
W=
Q34w
25%
o=z p
SrvasQ &
888525 % a
= \/\ a
o o
"IRG" = INTER-RECORD GAP o g a
T, W ow 4
Bk, b :
baatde b
xZaonn w
NEER’
DATA I\TEMS

DATA
ITEMS

Figure 1: Relationship between files, records and data items in a sequential file,

Mature of Sequential Files

Figure 1 indicates the basic relationship
between the components of a file oriented
data processing system. In this type of
system, information is arranged in sets or
collections called files. The information
within a file is usually related by the type of
data contained in the file. For example, a
small business might maintain separate files
for employee records, customer accounts
and stock inventory.

Files are then subdivided into smaller
units called records. There is a single record
for each entity within the file, In the case of
the files mentioned above, there would be a
record for each employee in the employec
file, a record for each customer in the
customer file, and a record for each stock
item in the inventory file.

A record is simply a collection of related
data items. In any file processing system, the
user specifies the data items that constitute a
record. For example, the records in a Christ-
mas card list file would probably contain
five data items. Thesc items would be: name,
address, cily, state and zip code. These items
are related within a single record in that they
all pertain to the same individual., A collec-
tion of these records, whether on magnetic
tape, magnetic disk, or in an address book,
constitutes a file.

Files which are stored on magnetic tape
are called sequential files because the records
in such a filc are stored one after the other
on the recording medium. One of the major
disadvantages of this storage type is the
sequential arrangement of files. In order to
obtain the information stored in the Nth
record in such a file, the preceding N-1
records must be bypassed. Without tape
position indicators, this means that the
preceding N-1 records must be processed at
normal tape read speed before the Nth
record can be read.

A second, related problem concerns iden-
tifying individual records. Since many rec-
ords may be read before the desired record is
reached, some provision must be made for
determining when the correct record has
been found. In practice, this problem is
usually overcome by providing each record
in the file with a separate data item that can
be used to identify that particular record.
This identification must, of course, be
unique lor each record in the file.

Many types of records already contain
data items which may be used for identifica-
tion purposes. An employee file, for exam-
ple, would probably contain a social security
number in cach record. This number is
unique for cach employee, and could be
used for record identification. In other cases,
an additional data item would have to be

115

added to the record solely for purposes of
identification. In the Christmas card list
mentioned earlier, a sixth data item would
have to be added in order to provide for
record identification. For practical reasans,
alphabetic data items, such as names, are
seldom used for record identification,

While the records within a file do not
necessarily have to be arranged in any special
order, the search for a specific record is
greatly facilitated if the records are stored in
some orderly fashion. Sequential tape rec-
ords are usually arranged in numerical order
based on the identification number. In fact,
this numerical ordering of records is a crucial
requirement if efficient sequential file pro-
cessing is to be possible. All the algorithms
involved in processing sequential files are
predicated upon this ordering.

The actual order of the records is im-
material. The records may be arranged in
either ascending or descending order, depen-
ding on the preference of the user. Since
ascending usually seems more natural to
people, this arrangement will be assumed in
the discussion which follows.

The sequential ordering of records has a
large impact upon the speed with which a
file can be processed. Suppose, for example,
it becomes necessary lo look up the ad-
dresses from five records in the Christmas
card file mentioned above. If the records are
unordered, each search must begin at the
first record and search until the desired
record is found. After listing this record, the
tape must be rewound, and the search for
the next record initiated from the beginning
of the file. With this strategy the average
number of records which must be read in
order to find a specific record is one half the
number of records in the file. Finding five
records would require, on the average, read-
ing 2.5 times the number of records in the
entire file. In the worst case, it could require
reading almost five times the number of
records in the file.

tf, on the other hand, the file is arranged
in numerical order, the process is greatly
simplified. In order Lo take advantage of the
sequential ordering of the file, the numbers
of the records to be found are also entered
in sequential order. When this procedure is
followed, processing time can be greatly
reduced. After the first record is read and
processed, the second search can begin with-
out rewinding the tape. Since the second
record has a higher number than the first
one, that record must follow the first record.
This means that the maximum number of
records which must be read in order to
process all five addresses cannot exceed the

116

number of records in the file. This represents
a considerable savings over the unsorted
case.

Note, however, that the number of rec-
ords read does not vary greatly regardlicss of
the number of addresses to be found. That
is, it requires about the same tape read time
to process one record (average: one half the
file length) as it does to process all the
records in the file (full file length). This
leads to the obvious conclusion that the type
of files which are best suited to sequential
starage are those in which a high percentage
of the records are processed during each
computer run. The number of records proc-
essed in a single run, divided by the number
of records in the file, is called the activity
ratio. As this value approaches one, process-
ing efficiency approaches its maximum. A
Christmas card list in which all records are
listed for printing address labels has an
activity ratio of 1.0. In this instance, scquen-
tial files offer a very efficient type of
auxiliary storage.

Updating

As outlined in the preceding section, the
processing of a sequential file does not differ
greatly from the processing of any other
type of file. The major differences appear
when it becomes necessary to update, or
change, the information which is stored in a
sequential file. Updating may become neces-
sary for any of several reasons. In some
cases, data items may become inaccurate, as
when a member of the Christmas card list
moves. In other cases, it may become neces-
sary to add or delete entire records from the
file, as when a new employee is hired or an
old one retires.

Due to the nature of magnetic tape
drives, it is virtually impossible to position
the tape head over a specific data item
within a record. In fact, it is almost as
difficult to position the tape head at the
beginning of a specific record, since the
record must pass the tape head before it can
be read and identified. The process of adding
new records in the correct sequential posi-
tion presents additional difficulties. Inserting
such records will necessitate moving all
subsequent records down in the file. Minor
errors in tape head position can result in
erroneous or unreadable data.

To overcome these, and other, diffi-
culties, the technique of using two tape units
is employed. Instead of trying to change the
information in the old file, a completely new
file is created. This new file contains all the
data and records from the old file that
remain valid, plus any corrections, additions

remain intact even in the event that the
updating program goes awry. If the user
follows the practice of always maintaining
the most recent version of the data, he or
she will never be further than one update
away from a current file.

Hardware Requirements

Assuming that a microprocessor already
has a cassette lape interface, the implemen-
tation of a sequential file processing system
requires very little hardware. As mentioned
above, two cassette tapce recorders are
required, onc for input, reading files, and
one for output, writing files. The micro-
processor tape input and output circuils are
connected to the appropriate tape unit, as
shown in figure 2. Even when a single circuit
is used for both input and output, no
problem arises, since only one cassette will
actually be operating at any given time.

The cassettes can, of course, be operated
manually if desired, but software control is
easily implemented. Two latched bits of an
outpul port arc used to provide tape motor
control, These output signals are used to
activate the tape motors through opto-coup-
lers (Radio Shack #276-1628, Texas Instru-
ments TIL 111, or equivalent) and a single
transistor.

The opto-couplers are used to prevent
any polarity or voltage problems which
might arise from direct interconnection of
the microprocessor and tape motor circuits.
In many cassettes, the positive terminal of
the tapc unit will be connected to the
microprocessor ground terminal through the
microphone and earphone cables. This ar-
rangement would prohibit direct intercon-
nection of the two circuits. Even when the
electronics of a specific cassette would per-
mit dircct interconnection, the couplers are
still worthwhile. Using the couplers will
allow changing recorders at a later date
without regard to the voltage or circuit
ground polarity.

The only critical part of the circuit is the
polarity of the transistor. The polarity of the
remotc jack should be checked before com-
pleting the wiring. Almost any NPN tran-
sistor will work, provided it can handlc the
current required by the tape motor. The
current requirement for a specific tape
motor is easily determined by connecting an
ammeter across the remote jack with the
tape in the play or record position. There is
a fairly high current surge as the motor
starts, but this is of short duration. A steady
state current of 50 10 100 mA is about
average.

The inverters and LEDs shown in figure 2

120

arc optional. The indicator LEDs have
proven to be very useful, since they are the
only way to determine whether a tape unit is
on or off {short of looking at the cassetic).
They can also provide a measure of amuse-
ment when a long tape program is running.

The operation of this interface system is
quite straightforward. In order to process a
tape file, the user first insures that the
appropriate motor control is off. The cas-
sette tape is then loaded and the tapc
function control is set for play or record as
required. If a tape is to be recorded, it must
be advanced past any leader on the casseite.

After the tape is loaded and the tape
control is set, program execution can begin,
The functions of reading or writing the tape
are then under software control. If a lape
record is to be read, the applicable motor
control is turned on by writing a 1 in the
appropriate bit of the output port. Normal
tape input routines are then used to read the
record. When the record has been read, the
tape motor is turned off. For writing a
record, the motor control is turned on, and
normal tape dump routines are used to write
the record on tape. A software delay is
necessary in this case in order to allow the
tape motor to come up to speed before
recording begins. A second or two is usuully
sufficient.

Buffer Storage and Label Records

Processing sequential tapes requires that a
certain amount of memory be aliocated for
storing the records as they are read or
prepared for writing. This area is called a
buffer, and is used to store the record
currently being processed. The amount of
memory required is minimal, since there is
normally only one record in memory at .
time. In one special case, when new records
are being added to an existing file, storage
for two records will be required. In all other
cases, a single record length buffer is sulfi-
cient. Records are read into the buffer and
then processed. Records may be wrilten
from the buffer onto a new file or to an
appropriate output device as desired. For
generalized tape handling system, enough
memory should be allocated 1o provide lor
twice the length of the largest tape record
that will be processed. Not all of this arca
will be used by cvery program, but it should
be provided in order to keep the system as
general as possible,

In a sequential file processing system, o
number of cassette lapes are required for
storing the records of various files, More
than one file may be stored on a single
cassette, if desired, but this will result in

slower operation unless the files are very
short.

Each file will contain two distinct types
of records. All the records except the first
are the data records that contain the actual
file information. The first record in cach file
is a special type ol record called the label, or
header, record. This record should have
exactly the same format on all files. The
label record contains general information
about the file itself. [t does not contain data,
and hence does not need an identification
number. It is always Lhe first physicai record
on the tape.

The purpose of the label record is to
provide all the information which is required
in order to process the file. Since this
information changes from File to file, the
obvious place in which to store it is in the
file itself. Thercfore, the first record in every
tape file is dedicated to the label record.

The label record may be as simple or as
elaborate as the user wishes (o make it. Al a
minimum, however, it shouid contain:

® The file name or other identification.

® The dale created {due to updating,
several files of he same name may
exist).

e The length of a data record.

In a more elaborate system, the label record
could also contain:

® The number and type of data items.

® A description of all data items and
their type {(ie: binary, BCD, ASCII,
etc).

® A security code {access can be denied
withoul knowledge of this code).

All the remaining records on the tape are
data records. The length and format of these
records will vary from file Lo file depending
on the amount and type of data in the file.
The number of data records in a file will also
vary.

Any program which processes tape files
of this type must first read the label record.
The information contained in the label
record is then used to set variables that
tailor the program for reading and processing
the data recards from that specific file. This
procedure allows a single generalized pro-
gram to process files of various Lypes and
tengths.

Utility Programs

In order o supporl Lhe processing of
sequential files, threc general purpose utility
programs are required. An optional fourth
program may be provided if the user wishes
a separate program for duplicating existing

122

files. Running an update program without
entering any changes will accomplish the
same thing, however,

The first utility program is one which
creates tape files from auxiliary’input. This
program performs many of the functions of
a text editor. Data is entered via the key-
board, and is stored in the buffer until all
the required data items have been entered.
A sophisticated file creation program can be
designed to query the user for data items
one at a time until the record is complete.
When all the data items have been entered,
the record is written on the file. The process
is repeated until the file is complete.

The file creation program must insure
that the label record is written on the new
file before any data is entered. As with the
data records, the program can be designed
so as to query the user for this information
prior to writing the label record.

It may be desirable to provide the tape
creation program with information about
the number, length and type, ie: character,
binary or binary coded decimal (BCD) of
data in each data item. Information about
the type of data would be used primarily
for error checking, but could also be used to
allow data packing. Packing of numeric data
would allow two hexadecimal or binary
coded decimal digits to be recorded as a
single byte. This would require additional
program complexity in converting from
ASCI! input to a packed format. This com-
plexity may be warranted in cases where
the packed format would facilitate arithmetic
manipulation of the data directly from the
tape file. Conversion back to ASCIl would
be required when listing the file.

As the data records are created, the user
must supply the record identification num-
ber for each record. The user must insure
that these are entered in the proper
numerical sequence. In order to provide for
the addition of new records at a later date,
an initial file should have records numbered
in increments of about 100.

The second required utility program is
one which makes a hard copy listing of the
data stored in a file. The label record may or
may nol be printed, depending on uscr
preference. The simplest type program
would perform an unformatted dump of the
data exactly as it is read from the tape. A
more elaborate program could separate the
various data items into different positions
or lines on the page. This type of program
would allow printing the data in the form
of a customer statement, a check or an
address label.

By far the most complex of the utility
programs is the update program. This pro-

START

READ
LABEL
RECORD
READ
KEYBOARD
D (KDY
4 T
READ OLD
TAPE RECORD
(T
WRITE TAPE
RECORD TO KID>TID
NEW FILE
UNCHANGED
/ERROR QuUT OF
SEQUENCE
READ NEW
RECCRD FROM
KEYBOARD
WRITE 9999 WRITE NEW
RECORD ON RECOED %O
NEW FILE NEW FILE
STOP
READ NEXT
KEYBOARD
tb
ENTER
CHANGES
FROM
KEYBOARD
WRITE
CORRECTED
RECORD TO
NEW FILE

Figure 3: Sequential file updating algorithm allows the copying of records,
deleting of old records, inserting of new records, and modifications of old
records. This is a very generally applicable method, usable whenever serial
format records are being processed.

gram is used for the correction of erroneous
data in existing records, and also for adding
records to or deleting records from the file.
The logic for this program, which is shown
in figure 3, is based on Lhe assumption that
the records in the file are arranged in as-
cending order, based on the record identifica-
tion number. It is also assumed that the

124

identification numbers of the records 1o be
changed, added or deleted are also entered
in this order.

The crux of the update program lies in
the comparison of the keyboard entered
identification number and the identification
number from the tape record just read.
When the tape 1D is less than the keyboard
ID, this indicates that the tape record just
read is not to be changed. This record is
copied to the new file exactly as it existed
on the old file.

When the tape ID is equal to the key-
board 1D, the tape record just read is one
which is to be either changed or deleted. A
keyboard entry determines which action is
to be taken. If the record is to be changed,
the new data items are entered from the
keyboard into the buffer area, directly over
the data that was read from the old tape
file. When the changes have been completed,
the corrected buffer is written onto the new
file.

If a record is to be deleted, the program
simply ignores the current tape record, and
reads the next record into the buffer. The
deleted record, therefore, does not appear
on the new file.

When the tape ID is greater than the
keyboard ID, this means that the program
was unable to find a record ID on the old
file which matched the keyboard 1D. There-
fore, the keyboard 1D represents either a
new record, or a typing error. When a new
record is to be added, this record is entered
into the second buffer area in memory. The
use of this second buffer is nccessary in
order to prevent overwriting the last tape
record read, which is currently stored in the
first buffer. After the new record is entered,
it is written to the new file from the second
buffer. The added record now appears in
proper sequence on the new file, while the
last record read from the old file has been
preserved. Processing then continues with
the input of another keyboard |1D number.

Whenever sequential files are processed,
there is always a minor problem concerned
with determining when the end of a tape
file has been reached. In the program shown
in figure 3, the old programmer’s trick of
using a dummy record with an ID number of
all 9s is used to indicate the end of usable
data in the tape file. The same code is used
to signal the end of data entry from the
keyboard. When this technigue is used, the
user must remember to provide this dummy
record at the time a new file is created.

Examples

There are many instances in which the
sequential file processing system outlined

OSBORNE & ASSOCIATES, INC.

The World Leaders In Microprocessor Books

Many books on microprocessors and their use are now on the market, and most of them have names that sound alike. But
Osborne & Associates’ books have dominated this market since 1975, when our first bock appeared. With rave reviews from
all over the worid — with more than five hundred university text adoptions, our bocks are all best sellers. In fact, “An In-
troduction To Microcomputers: Volume | — Basic Concepts™ now holds the world's record in sales volume for any textbook

sold for a profit.

If you want information on microprocessors, begin with the Osborne books.

{ 7] A . h - For the micrecompuler user, a sevies of books provide h
An Introduction An !n troduction To M 'cr?c Dn:'- NP Coneman complete programs, wntten in BASIC. All these books are
To Microcomputers puters: Volume 0 — The Beginner's o by Lon Poale and Mary Borchars.
Book™ By A-am QOsbeorne. ““Some Common Baslc Programs’ 200 pages.
This is the book for the absolute baginner. B;Z';:jl ﬂff cﬁsf‘?fgcwmi"g — in Basic”. 400
Assuming that you know nothing about pages Book No 22002 $12.50 ‘
computers, math or science of any kind, this "“#Accounts Paysble and Accounts Aacaivable™
book explains what computers are all about Boock No. 23002 $12.50 Awailable Mowverber 30,
—_ ; : 1977
The Baginner's Bogk and ci; \tfal:es yolu ;gothe point where you Qaneral Ledger System”
can read Volume I. ages. ’
| Iy Adum f¥shorne Book No: 6001 $7 58 9 J Bgo?lt Mo 24002 $12.50 Availabla Docember 31,
L : . L 1977 J
N —
. . BOBOA ""8080A and BOB5 Assembly Language
‘“An Introduction To Microcom- .
. Programmin By Lance Leventhal,
puters: Volume | — Basic Con- AND 8085 9 g Y
cepts’”” By Adarm Oshorme. ASSEMBLY This book is for the assembly language pro-
. X . grammer or student; it explains assambly
The vlmr!d 5 best selling texthook. This bc‘.n::lr|| LANGUAGE language programming for the 8080A and
ax‘plalns_ clearly, conceptg cemmeon 1o a PROGRAMMING | B085 microcomputers. The book contains
microcomputers, yet specific to none. 350 numerous examples. 400 pages
pages. Book No. 31003 $7.50 Available
Baok No.: 2001 $7.50 BY LANCE LEVENTHAL | October 31, 1977
7 -
**An Introduction To Microcom- } Tha “Programming For Logic Dasign™ series of books show h
puters: volume |l — Some Real Pro- how to use microprecessors in a8 digital logic environment.
ducts” (Revised June 1977) By Adam ;3::0 P;;gramminn For Logic Design™ By Adam
QOsborne, Susanna Jacobson and Jerry sbarne. pages.
Kane. Book No.: 4001 £7.50
This book describes ewvery common 8800 Programming For Lagic Design’™ By Adam
microprocessor and all of their support 2:::';: .3‘5’20""9“ 4750
devices. Information is new and clearly writ- .) o .
ten. Only data sheets are copied from o::ﬂ?ﬂ:;ﬁ’;rs:‘;::;:;b:;ﬂm Dosign By Adam
manufacturers. 1200 pages. Book No: 7001 $7.50 [Avadablo Novembar 30,
Book No.: 3001 $15.00 L 19771
o -
OSBORNE & ASSOCIATES, INC. P.0. BOX 2036 BERKELEY, CA 94702 DEPT. |
{ TITLE UNIT PRICE | QUANTITY) \anic/cOMPANY
Volume 0 — The Beginner's Book { #6001} $7.50 ea. A
Volums | — Basic Concaepts { #2001} $7.50 ea.
Yolume | — Sorlne Real Products { #3001} $15.00 oa. ADDRESS
revised 1977
8080 Programming For Logic Design [#4001) $7.50 ea. CITY, STATE AND ZiP
6800 Programming For Logic Design (#5001} $7.50 ea. TELEPHONE
B8080A /8085 Assembly Language Programming $7.50
{ #31003) o4 ea. Please check one space below:
Some Comman BASIC Programs { #21002) $7.50 ea. 4th Class Mail Dslivery {3-4 weeks within the U.S.A)
LPavroII With Cast Accounting | #22002) $12.50 ea. y | have included $.50 per book for U.P.S. {allow 10 days)
We will anly invoice for purchase orders of avar 10 baoks, I have included $1.50 per book for special rush shipment by air.
Shipping charges for bulk orders to be arranged. I have included $.50 per book foreign surface mail.
O Chack ot Money Order enclosed (Calif. residents include sales tax) ¥ hava included $3.00 per book for foraign airmail.
; . | raquire information on consignments, discounts and distributors
| will be using these books for outside tha U.S.A
L o J

Circle 389 on inquiry card.

an hour or so, the tape unit is constantly
being turned on and off. The probability
of the capstan stopping in exactly the same
position after cach tape operation is quite
small, Therefore, even when the capstan
remains engaged for long periods of time,
the exact positicn of the capstan is changing
every few minutes.

Additionally, the capstan must be dis-
engaged in order to remove the tape at the
end of the program run. Since the tapes
would normally be removed after processing,
this would seem to preclude leaving the
capsian engaged in the same position for
a prolonged duration. For those people who
are absentminded, the file processing pro-
grams could include a reminder to disengage
the capstans after processing is complete.

The second argument against audio cas-
settes is their somewhat less than 100%
reliability. Occasionally, a record will be
written onto a file which cannot be read
back. Even with good equipment, this can
sometimes happen. In the file processing
system described above, this presents only a
minor problem, since it will seldom affect
more than one or two records. If a record is
unreadable, all the other records remain
usable. Therefore, the tape update program
can be used to add the unreadable record to
a new file. Since the unrcadable record does
not ‘'seem'’ to be on the old file, the process
is treated as the addition of a new record by
the update program. Even if several such
records must be added the problem is of
minor proportions, and represents more of
a nuisance than a catastrophe.

Summary

It is readily admitted that sequential files
are not a substitute for random access files.
There are, however, many applications in
which the disadvantages of sequential files
can be minimized. In these instances, a
substantial amount of file handling can be
performed with very satisfactory results. In
cases where disk files are not available,
sequential files may be the only means of
providing facilities for processing large
volumes of data. Even in systems where
disk files are available, the judicious use
of sequential files can assist in conserving the
more expensive disk storage facilities.

The software required to support a se-
guential file system is considerably less
complex than that required by a disk file
processing system, and the hardware costs
are mimmal. All in all, sequential files can
provide a great deal of data processing
capability at about one tenth the cost of a
single disk storage device.m

|
|
!
I
I
I
[
|
|
|
!
|
|
|
I
|
|
|
|
|
I
|
I
I
]
]
|
I
|
I
]
[
I
!
|
|
|
|
|
|
|
|
|
[
|
|
|
|
|
I
|
[
|
I
|
|
[
I
|
|
|
l
i
I
|
I
I
|
|
|
!
]
|
|

As Computer Enierprise_s—i
Enters Their Second Year:|

d
We thank you tor your pa}lrr?rrjas.gsnat‘?‘e
i e Wi
ou continue to sav e
rv‘vocf:?d'ys finest hardware and sonwa;‘ein 2l
us nght now at 315-637-6208 10 9
the super deals below!

Brand New Products —

Low, Low Prices. Save!
0
List Pri:;
IMSAI VIO Model B,

Video Kit $275 $225
IMSAI 16K Dynamic

RAM Kit $449 $382
IMSAI 32K Dynamic

RAM Kit $749 $637
Cromemco 16K Dynamic

RAM Kit $495 $421

Vector Graphic
VECTOR 1+ $659 $560

|
|
|
|
|
|
|
|
|
|
|
!
[
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#
Low-Priced ltems You |
May Have Missed: i
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

)

|

|

|

|

|

|

|

|

{

|

|

|

|

|

|

List Our Price

North Star Micro Disk System $ 699.00 $ 599
Cromemco Bytesaver Kit $ 145.00 $ 1N
Cromemco Dazzler Kit $ 215.00 $ 193
Cromemco Z2 Kit $ 595.00 $ 535
Seals 250ns RAM Kit $ 295.00 $ 240
Seals 8080 Wire Wrap Board $ 37.50 $ 2
Our Own Extendar Board
with Connector § 30.00 $ 12
IMSAI RAM 4A-4 Kit $ 139.00 $ 115
RAM 4A-A Socket Set $ 2200 $ 10
Compucotor 8001 $2750.00 $2475
Polymorphic VTI/64 $ 21000 $ 189
Vector Graphic 500ns
8K RAM Assm. $ 265.00 $ 225
Vector Graphic Prom/RAM Kit $ 8900 $ 80
TDL ZPU Kit $ 269.00 § 242

Shipping charges: $10 per CPU on larger units; $1.50
per kit. $2.00 min. per order.

Delivery is stock to 30 days on most items. Shipment is
immediate for payment by cashier's check. money or-
der or charge card. Allow 3 weeks for personal checks
to clear. N.Y. State residents add approp. sales tax.
Availability. prices and specs may change without
notice.

Fayetteville, New York 13066
P.O.Box 71

Write or Call for
COMPUTER ENTERPRISES’
DISCOUNT CATALOG!

127 Circle 400 on inquiry card.

mnemonic Crep description

BS
NL
cR
HT
add

backspace
newline
carriage return
tab

octal byte
tackstash

Into the Briny Deep

What's C made of? Let’s take a look at
some of the basic constructs of the language
to see what makes it tick.

Each section of the C program consists
of what we will call a function, something
like a FORTRAN function, Even the main
program is a function with the name main.
The format is as follows:

main() {
statemenis

Arguments may be passed to a function by
placing them between the parentheses in the
definition and references to the function. C
uses a call by value technique, rather than
call by address for function arguments. This
means that if a function changes the value of
an argument variable, it does so only for that
particutar function call. How is this done?
All variables in a function are stored on the
stack rather than being assigned fixed loca-
tions. This means that storage space for
variables is only allocated while they are
being used, and is freed when control returns
from a function. There are of course
methods for changing the value of variables
in the calling function during execution of
the called function, but these methods are
explicit exceptions to the call by value rule,
Any C function can be used as a subpro-
gram as well as its possible use as a main
program. The example used main as a name,
but as in many languages, there is a freedom
to pick and choose descriptive names for C
functions.

Variables are the usual: integer, character,
floating point and double precision floating
point. C variables are declared as in
FORTRAN by a statement of the form:

type varl, var2, ;

Where type may be: int, char, float or
double. Variables may be made to stick
around (ie: storage is allocated permanently
rather than temporarily using the stack) if
the word static is included before tyvpe in
the declaration. Then the value will not
change between function cails unless
explicitly modified. Normally, variables
are dynamically allocated space on entry to
a function.

All variables must be declared in C, and
declarations must precede executable state-
ments. Statements are ended with a semi-
colon {;) to indicate to the compiler what is
the logical end of a statement.

132

10in C

10 is done with basically two system
supplied functions called getchar and
putchar. Each gets or puts one character
from standard input or output; getchar is
normally used by equating a variable of type
char to it:

¢ = getchar ();

The variable ¢ will have the ASCII value of
the next character available from the input
file; putchar is normally used by giving it the
variable to print:

putchar (c);

The ASCII value of ¢ would be output to
the output file. The argument to putchar
could be a single ASCII character:
putchar (‘a’);

in which case the character “a" will be out-
put to the output file.

printf is another useful built-in function,
similar to the FORTRAN WRITE and
FORMAT statements. It actually calls
putchar to do the 10. Its arguments are a
string of characters in quotes, followed by
the variables to be printed. In the string,
format specifiers consist of a percent sign
followed by an optional field size, followed
by a letter indicating the format to output
as: d for a decimal number, o for an octal
number, h for a hex number, s faor an ASCI]
string and ¢ for a single character:
printf(
“The value of c is: %d"
<)

If the new line is desired, it must be speci-
fied by putting a “\n' in the string at the
appropriate point:

printf(
“The string is %s, and the value of a is %d.\n"
string,a);

This inserts a carriage return and line feed
when the “\n’ is scanned during execution.

Special Characters

A note is in order before we go on about
special characters in C. How does one
represent a carriage return or a tab, or a line
feed, etc? In general, anytime you want a
special character, it can be generated by a
backslash followed by a single nonnumeric
character. New line is \n’, tab is ‘\t’, end of
file is "\0’ {equivalent to 0). Also any ASCII
character can be formed with a backslash
and a 3 digit number: \040 is a space,
etc. This enables all characters to be avail-
able for relational tests and use in com-
putation.

SOFTWARE = TSC

TEXT EDITING SYSTEM: This 6800 editor is
unlike any other micro editor. As well as the usual
features, it also includes: content oriented cornmands,
local and global commands. block move and copy,
append and overlay features, as well as very com-
prehensive string manipulators, 5K

SL68-24 MANUAL & SOURCE LISTING $23.50
CT68-7 OPTIONAL CASSETTE $6.95
PT686 OPTIONAL PAPER TAPE $8.00

TEXT PROCESSING SYSTEM: A great
companion to the TSC editor. The processor will
allow convenient paragraphing, right hand justifica-
tion, paging, titling, and general text formating. 4K

SL68-29 MANUAL & SOURCE LISTING $32.00
CT68-9 OPTIONAL CASSETTE $6.95

TSC 6800 ARITHMETIC ROUTINES
SOAP: A very fast, 4 byte binary, floating point package. Includes

integer and conversion routines as well.

SL68-25

digits of precision.
SL684

SCIENTIFIC FUNCTIONS: Requires SL68-4 and provides all
scientific functions including SIN, TAN, LOG, LN, HYPSIN, and others.
$10.00

SL68-20

DIAGNOSTICS FOR 6800:

No system is complete without a set of
diagnostic programs. Includes 5 memory
tests, serial |/O tests, parallel /O tests, plus

cthers.
SL68-23 SOURCE LISTING $10.00

MICRO BASIC PLUS: The best
small BASIC available for 6800. Injust 34

TSC MNEMONIC ASSEMBLER: Another 6800 resident assem-
bler?> Yes! But this one is many times faster than others due to a very
efficient symbol handler. All the standard motorola options included as well
as psuedo ops. It is very modular making it quite easy to adapt to most
systems. 5K

SL68-26 MANUAL & SOURCE LISTING $23.50
CT68-8 OPTIONAL CASSETTE $6.95
PT689 OPTIONAL PAPER TAPE $8.00

DISASSEMBLER FOR 6800: Now one that is reasonably priced
and includes the source listing!

SL68-27 MANUAL & SOURCE LISTING $9.00
PT68-7 OPTIONAL PAPER TAPE $4.00

SPACE VOYAGE: A full blown
Star Trek program written in 8080 and
6800 assembler language. Runs
much faster than similar BASIC ver-
sions and requires about 1/5 of the
memory! Each game is different as
you try to save the federation using
your phasers, photon torpedoes, and

$10.00 hields. Searching out th i
FLOATING POINT PACKAGE: A BCD math package with 9 pieies. Searching oul the menacing

Klingons is accomplished using the
short and long range scanners as well
$6.50 as moving about by firing the warp
engines. Beware of sudden attacks,
space storms, supemovas, and other
unexpected events. This game is very
addicting! 4K

SL68-5 6800 SOURCE

LISTING $12.00
CT68-1 OPTIONAL

CASSETTE $6.95
SL80-9 8080 SOURCE

LISTING $12.00
PT80-1 OPTIONAL PAPER

TAPE $7.00

K. a complete interpreter including GOSUB,
IF THEN, FOR NEXT, DIM, ON GOTO and
GOSUB, READ DATA, plus the functions
RND, SPC. TAB, EXP, and ABS. Five full
digit integer math is supported.

SL68-19 MANUAL & SOURCE

LISTING $15.95
CTe85 OPTIONAL

CASSETTE $6.95
PT685 OPTIONAL PAPER

TAPE $6.00

6800 MULTI-USER SYSTEM!

Now you can have 4 simultaneous users, all running BASIC, and in-
dependently! Give your micro the power of a large mainframe. Applica
tions include: a great educational tool, small business applications such as
multi station inventory systern, industrial computer power expanding the
personal computer system,. . .etc. The system is presently available only
for the SWTPC 6800 computer system and will support cassettes, floppy
discs, and a printer. For complete details of the multi-user system, write for
our 4 page brochure,

MUB-68 $129.95

ALL SOFTWARE CONTAINS: Complete commented source listing, users manual with
complete instructions, printed hex dump, sorted symbol table, and sample cutput.

PROGRAM-OF-THE-MONTH CLUB.™ $2.00 for a one year membership. Mo obligations!

HOW TO ORDER: Al orders should include check or money order. Add 3% for postage and $1.00 for
handling for orders under $10.00. Send 25¢ for complete TSC software catalog.

Circle 403 on inquiry card.

TECHNICAL SYSTEMS CONSULTANTS, INC.
Box 2574 W. Lafayette, IN. 47906

The If Statement
The C if statement is of the format:

if (expression) staternent

where staterment may be any C statement,
and expression may be any statement which
has a value. The expression is true if its value
is nonzero.

C relational operatars may be selected from the following list:

S
& &

equal to = not equal 1o

greater than < less than

greater than or equal to <= less than or equal Lo
lugical and Il logical or

U Jogical not

Relational operators may be combined in
any way, along with parentheses, to produce
an expression,

The statement portion of the if may be
any valid C statement, or combination of
statements. The stalement may be made
arbitrarily complicated by enclosing a set
of statements in braces, . These braces
are similar to the BEGIN and END state-
ments of several other languages.

The if may be associated with an else
statement, which may also have an
arbitrarily complex statement following it
Multiple elses can be used to construct logic
that branches one of several ways:

if (expression) statement
else if {expression) statement
else if (expression) statement

While Statement

The whife statement sets up a loop,
whase general format is:

while (expression) statement

The expression is evaluated and if its value
is true {not zero) does the statement and
then starts again. The sfatement may of
course be arbitrarily complex as in the if
statement. Note that the statement is exe-
cuted zero times if expression initially evalu-
ates to zero.

Arithmetic

Arithmetic statements use the wusual
operators: +, —, * and | along with % which
is the remainder {or "‘mod'’ operator in
other languages). The syntax is a variable
fallowed by an egual sign followed by an
expression using the above operators, Mul-
tiple equivalences may occur on one line,
an ecopomy of notation which can be use-
ful.

134

a:b:czd:25*2f{c+’]);

One interesting feature is that when a
variable is set equal to itself plus something,
the statement may be abbreviated:

a=a+ 5;isequivalent to:
a=+5;

Note that no space follows the equal sign in
this form. In general the statement may be
arbitrarily complex; however, note that onc
cannot assume a parenthesis, etc, in front
of the implied variable.

Another very interesting feature is that
any time a variable is used, it may have a
prefix or a suffix of ++ or ——. The ++
means increment, the — means decrement.
If used as a prefix, the operation is done
before the variable is used; if used as a suffix
the operation is done after the variable is
used.

These features help make C the supreme
pleasure it is to use. They do however have a
detracting feature: one must be wary when
composing a statement lest it do something
unintended!

Note that an if or while statement’s
expression may be asimple equivalence or it
may contain calls to other functions! This
can result in some of the cleanest, nicest
code you have ever seen. It does sometimes
take a minute to fathom the meaning of a
statement, however, and it is easy to forget
the double eguals in an if test, resulting in an
equivalence!

An o example, ey write 4 program Lo cenment
o file it lewer case:

main{ }!
char ¢;
while{{c = getcharl }} | = ".0'}}
if{"A' <= ¢ && ¢ <="2') pulchar {c + 'a* 'A');
else putchar {c);

The program gets a character and assigns
its value to the variable ¢. If the character is
not zero (end of file, ie: \0) it executes the if
statement. This checks to see if the character
is upper case, and if so, converts it to lower
case and outputs it. Otherwise it is already in
lower case, and is cutput as is. The program
continues with the next iteration of the
while.

The Case and Switch Statements:

Another terribly useful C statement
group contains the case and switch state-
ments. They are used to replace tests of mul-
tiple options with if statements like:

iffc==""...
elseif(c=="b") ...
eise

The format of a is:

switch (variable) {

case ‘a’
statements,
break;

case ‘b":
stgtemenis,;
break;

default;
statements;

The case statements label the various actions
wanted ; default is done if none of the other
cases are satisfied. The default statement is
optional, The break statement causes execu-
tion to continue with the next statement
following the switch group. The break state-
ments are optional, and if not used, execu-
tion falls through to the next case condition,
which is often useful.

break may also be used with for and
while statements, causing an immediate exit
from the loop. (A continue statement may
also be used to cause the next iteration of
the loop to be started, in a for or while
statement.)

Arrays

Arrays in C may be multidimensional
and are subscripted by using square brackets.
Array indexes begin at zero. Typical array
declaralions are:

int x[10];

int xy[10]]20] ;
This example creates an array x, with ten
elements, and an array xy with 200

elements. Subscripts can be arbitrary integer
expressions.

Character Arrays {C Strings)

Character arrays in C are strings of
ASCII characters terminated by a zero byte.
This rnakes string handling simple. For
example, when printing a character string
using the printf format %s, printf prints the
characlers until it finds a zero byte.

Other Statements of Interest

The for statement is a generalized while
of the format:

for (initivlization; expression;
increment) statement

where a typical example might be:

for(i=0; array[i] = getchar(); i++);

136

which copies characters from the input
file into array, until getchar finds a zero
byte. The for is usually used when a variable
must be initialized before it is used and then
modified in a reguiar way each time the loop
is reiterated.

Structures, Pointers, Painters to Pointers,
Pointers to . ..

Briefly, a structure in C is a grouping of
data declared as follows:

struct j,
varfable declarations

initiaglization section
} structure—name;

where the initialization section is opticnal. A
structure member is referred to by:

structure—narme.member

where member is one of the variable
declarations of the declaration. Structures
may be made to be arrays by following the
structure—name with the array size in
brackets. Note that the whole structure can
be passed as an argument to a function, a
feature most useful when complicated link-
ages are required.

Pointers are another way to refer to a
member of a structure. Pointers in C are
declared by preceding the variable name in
the declaration with one or two {or more if
you're 2 masochist) asterisks. One * means
the wvariable is used as a pointer to some-
thing, two *s mean the variable is used as a
pointer to a pointer {typically a pointer to
an array of pointers). The address of a vari-
able can be had in an expression by using the
unary operator & in front of the variable.
Pointers are usually used Lo “‘walk™ along
arrays efficiently. In fact, an array name
represents the address of the =zeroth
element of the array, so it cannot be used on
the left side of an expression, since you can't
change the address of something by assigning
to it.

The Crux of the Matter

It is difficuit to learn much about a
language by reading about it; | have only
briefly skimmed the most important features
of C in an effort to enable those who are
not familiar with the language and are
looking for a better high level language to
gain some insight inta it. It seems to fake a
bit of working with the fanguage in order to
be able to experience and understand the
full power of it and to be able to effectively
utilize that power.

All of this is of no use to microprocessor
users unless it can be implemented on a
microprocessor. € was designed with the
PDP 11/45 hardware directly in mind, and i1
takes advantage of the indexed addressing
mode and the increment and decrement
instructions. It turns oul that most C state-
ments result in about three machine code
instructions!

The power of this language becomes more
apparent with several notes. The Unix
operating system was originally written in
assembly language. During the summer of
1973, it was rewritten in C. A number of
features were added including multipro-
gramming and the ability to share reentrant
code among several user programs. The size
of the new system was daboul ocne third
greater than the assembly language version.
The programmers “considered this increase
in size quite acceptable.’’ Several benchmark
programs written to compare the Digital
Equipment Corporation's |AS operating
system BASIC and FORTRAN with the
Unix C language gave results which placed
C roughly ten times faster than FORTRAN
and more than 15 times faster than the
BASIC.

Why not PL/1?

I don’t wish to put down PL/{l, since it
certainly is a useful language and has its
place; however, | would like to make a few
comments in closing.

Special characters are fine and fun, but
create all kinds of problems when trying Lo
implement them; for example, few terminals
have many of the special symbals resulting
in all kinds of weird escape sequences Lo get
them. Unfortunately many keyboards in use
are not even full ASCIl. Hardware to do 5
by 7 matrix printing tends ncver to get built
by the builder and most of the special sym-
bols have no ASC!H value. (On a personal
note: | have mel with the most amazing
resistance to the idea of expanding ASCI!
to eight bits. People will ncarly resort to
physical violence against the idea. But why
not? Most machines use cight bits anyway,
and parity [how often is it really used?] can
be implemented vertically insiead of
horizontally. Greek characters secem 1o be
the rage [though how often have you used
them?] so why not implement 256 char-
acters? | can see the mail now. . .)

Mr Skye notes that he will update
PL/SKYE as one might a dictionary. Have
you looked at the size of the Random
House Dictionary lately? |t is all very well to
intend that it won't be too big, but doing it
is very much the question. What is too big?
That depends on your system. As memory

138

prices go down, too will the “big"” threshold
continue 1o go up and up. At this time, Loo
big for a disk operating system seems 1o be
about 16 10 32 K with perhaps four or five
overlays {and that is very big), while on a
Lape system, too big is 16 K and that is very
small if the program is to be in core, too.

What to do, what to do... Well, you
probably shouldn’t be running a high level
language with a tape operating system uniess
it is 4 block oriented system (like the Digital
Group Phi Deck system when implemented
like a disk). So, perhaps we could set a limit
al between 16 to 24 K for the compiler
itself, leaving room for several 512 byte
blocks for 10 in a 20 to 32 K system.

As for writing the compiler in its own
language, that is the only way to go.

Relocatable code is a must; and with
index registers it becomes very simple. Here
is where the processor becomes important.
We really need a processor with indexed and
relative addressing modes. That looks like
the Z-80 processor (scream, rant, rave. . .).
That does not however mean that it could
not be implemented on a 6800, 6502, S080,
Micro-NOVA or whatever. Actually it wurns
out to be relatively easy to rewrite the code
generation portion of a compiler 1o run on
another machine, though at some expense
in speed. {Can you imagine C on a Turing
machine?)

107? Yes, 10 should be completely device
independent, But that should be the
concern of the operating system. Simply
write your operating system in C, making
it device independent. Actually, it is best to
design the [Q routines to be function (sub-
routine) calls in the compiler code, so the
user can change it to suit his or her needs.

This brings up an interesting point. How
does one distribute the code? It can't be in
C source code; one can't run that. | hate
binary object code since it is so machine and
device dependent. Well, everyone should
have an assembler for their machine, so why
not have the compiler {or at least a version)
generate machine source code. The 0O
sections of this can be modified if necessary
using a text editor, assembled with the users’
assembler and then it's ready to run. It
turns out that it's not quite that simple, if
you think about it or try it, but it’s close.
From then on, the compiler can compile
itself when changes are made.

This has been just an introduclory com-
mentary on the virtues of whal | consider an
excellent language which should be
adaptable to the range and scope ol personal
microprocessor based systems. As for when
and if versions for the microprocessor user
will appear, alt | can do is close with the
statement “‘wait and C.”'m

Thomas G Schnaider
706 Amherst SE
Albuquerque NM 87106

Simple Approaches

to Computer Music Synthesis

In order to produce a musical output, we
must al least create a pitch output under
control, This is but a starting point, since
more complicated waveform and envelope
generation is also useful in music.

The block diagram of a basic note and
octave synthesis system is shown in figure 1.
The top octave generator produces a square
wave whose frequency (pitch) is determined
by data sent out on the computer’s data bus.
Since the output of the top octave generator
is a square wave, it can easily be divided by
digital circuitry. Each time we divide the
frequency by two, we end up with a note
whose pitch is one oclave lower than the
input frequency. By using an ordinary TTL

COMPUTER

DATA QUT BUS

| Tor
‘> OCTAVE
GENERATOR

SQUARE WAVE
QUTPUT
FQ

QCTAVE
SELECTOR

————> r0: 2!

l—————» Fp~ 20

Figure 1. Block diagram of a pitch synthesis subsystem for use in electronic
music experiments under compuler control. The lop octave genergtor
produces g repetitive digital waveform sefected under computer control from
one of 12 well tempered pitches, This in turn drives octave generation logic
consisting of a chain of toggles dividing frequency by two al each stage, and a
sefector to pick which of the octave related frequencies appear in the output,

140

data selector as an octave selector, we can
generate a musical scale covering many
octaves, and we can also produce more than
one pitch at a time, although these extra
outputs will always be octave related to one
another. The octave sclector can also be
controlled by data sent out on the com-
puter's data bus, giving us more flexibility.

The octave selector can be easily imple-
mented using an n-stage divider and scveral
NAND gates. However, there arec secveral
methods of generating the top octave. We
need 12 notes to produce a 1 octave
chromatic scale. These notes must be ac-
curate in frequency and drift free in order to
produce a true chromatic or “equally
tempered” scale useful in music.

One way of synthesizing the top octave is
to use a digital to analog (D/A) converter
controlling an oscillator. An 8 bit converter
limits both resolution and range so that we
cannot produce an acceptably accurate
chromatic scale. If we use a converter of 10
bits or more, resolution and range are
suitable, but such units are expensive and
require stable voltage controlled oscillators
for this type of application. This method of
pitch generation is shown in figure 1. The
one nice feature of the digital to analog con-
verter method is that we have a continuously
variable output frequency. This permits
nifty frequency sweeping effects (known as
“portamento” or ‘‘glide’ effects to the
musician}.

To save money we can construct a rather
crude digital to analog converter which, in
conjunction with the voliage controlled

341

'Shq (001-S) 41011y 3yl 404 pipd buidA10304d asodind [piauab b U0 P31oNIISUOD G UDD 11N2412 SiYy ["Sayd1id Jo

uol1p12Uab JO POYIaW UOISIaNUOD BO[pUD 0] [p3iBIp 3]GDUNT 241 10 D1BO] W0[133]95 AIUBNDALY PUD 3IDJIdIUI SNQ JDIY UY g 24nbl4

ALTAIR BUS Powar Connections
ERFACE IC m
INT N 74102 +5v Numbaer Type 45V GND
i 74102 14 7
1a5) souT[> 1c2 74104 1a 7
R 1C3 74130 14 7
— < Ica 74L75 5 12
(77) PWR ALL
> ALL POTENTIO- o TaLs . "
ll)’l\l%IiES gFETERS < FREQUENCY 1c7 74197 14 7
\ \ b CONTROL ic8 74154 24 12
‘I—H——'\,X:—‘ VOLTAGE
| 2 VOLTAGE TO
(79) A0 [>—-2a FREQUENCY
CONVERSION
ics
3 a 74154
(80) Al [>— 2B
|
(8 A2 [>—2]2c>08 2
23
3 A
3BH A3 > 2 20>t 4 s 22|y
5
I 10 &1 13 =E
(30) A4 ul 74e30
20
12 D
(29) a5 [>— 131 25 >0!2
1c2 0
74104 9 NOTE: THE 741 OPERATIONAL AMPLIFIERS
| HAVE +5V CONNECTED TO PIN 7
(82) as [> ol < i AND -I5V TO PIN 4 IN A MINI-DIP
(83) A?D PACKAGE.
M IE < i TUNING
RESISTORS
J4 Gl G2
L '23 CERE +5V
y - I A
»| ENB ENB | o q
(36) b0 [_>——=0D Q q
3% 01 [>—o0 ¢ b 20f® 7 L 13 3)4 ol
a L LOAD CLR C A B D
(88) 02 [> &30 7 30f> cxi I8
89 03 [>—ao ° agf® 1er
74197 6
cLk2
QD QC QB QA
i2 [2 [9 |5
4 13 P +5V
2 E;"QB N 16 HIGH OCTAVE s 6D Yoo o »—«I/:(/v—[r
(38) D& [> iD 1Q 12
3 7 15
(39) 05 [> 20 o 4 20 | 8 o 22K
40 06 [> S 5 L sqf2 | —9@0—~\M—0
(901 07 [|ap 5 402 LOW_OCTAVE
5 . 22K AuF
6] 68 »Hl——-{ > AUDIO QUTPUT
7805 -
(1,511 DT—lN OUTTQ—H—>+SV 2 | 2.2K
+ ' | ' 3| 6A
GND -i_ _i_ -1_ADDITIONAL ——DD—WW_
I0uF ApF 273
" 3 n /':‘ ,‘Ir\ ,T\'lf‘-F 1C6
(50,100} GROUND 7401

Table 1: Octal and hexa-
decimul representations of
note selections, in the low
order bits, for these pitch
generation circuits.

Octal Hexadecimal

Note Code Code
[000 00
C# 001 01

D 002 02
D# 003 03

E 004 04

F 005 05
Fa 006 06
G 007 07
G# 010 08
A on 09
A# 012 0A
8 013 0B

oscillator, will produce the 12 notes required
for the full top octave. This method is shown
in detail in figure 2. By using surplus 10 turn
trimpots and the voltage controlled oscilla-
tor, we can construct an inexpensive top
octave generator, However, this method has
its disadvantages: tuning the trimpots is a
critical operation, and once the pots are
tuned, they can easily detune themselves
because of vibration or temperature vari-
ations. My present synthesizer uses this
method and needs to be retuned about every
two months or so,

A good alternate method of generating
the top octave is to use an integrated circuit
top octave gencrator such as the MOSTEK
MK50240P. This chip can be had for under
$10 and is second-sourced by General In-
strument Corporation as the AY-3-0215.

There are several advantages to be had by
using this chip. The chip nominally requires
a 2.000240 MHz reference frequency which
is approximated by the central processor
clock’s circuitry of most Altair (S-100) bus
systems. (The frequency is not exactly
2.000240 MHz, but will be close enough
for this application.) This chip eliminates
both the voltage controlled oscillator and
digital to analog converter, and therefore
puts an end to stability and tuning complica-
tions. The MK50240P generates the top 13
notes of the well-tempered music scale with
an accuracy better than can be determined
by the best musician.

Hardware Considerations for
Two Working Circuits

The circuit used for the pitch generator,
using the tunable digital to analog converter
with an Altair bus is shown in figure 2. Bus
timing and address decoding are performed
by I1C1, IC2, and IC3. IC4 and ICS latch and
hold data sent to the board on the data out
bus. IC8 is a 4 to 16 decoder with active tow
outputs. These outputs select which 10 turn
trimpot is selected as the bottom leg of the
voltage divider whose top leg is resistor R.
These trimpots should all have a value about

142

5 R. The voltage produced by this divider is
connected to the input of the voltage con-
trolled oscillator. The output of the voltage
controlled oscillator is divided by IC7. The
outputs of counter IC7 are gated onto the
output bus by 1C6, the gquad open collector
NAND gates. IC8 and the voltage controlled
oscillator comprise the top octave generator
and 1C6 and IC7 comprise the octave
sclector.

The circuit using the MK50240P for top
oclave generation is shown in figure 3. The
board address, bus timing and latch circuitry
are identical to the circuit of figure 2. The
octave sclector is also identical to the one in
figure 2. The MK50240P, 1C6, is a (2 V
device and requires input signal conditioning
and output buffering. The 2N2222 transistor
and associated resistors bring the TTL level
clock signal from the bus up to the 12V
level required by the MKS50240P. The out-
puts of this chip are buffered by IC7 and
1C8 before going to IC9 which is the data
selector and multiplexer. The MK50240P
generates all the notes in the top octave
simultaneously and 1C9 selecls any one ol
these outputs depending on what data is
present at the outputs of 1IC4. The output of
IC9 is then connected to the two chips
(IC10 and IC11) comprising the uctave
selector. An additional voitage regulator, a
7812, has been provided to supply the 12V
needed for the MK50240P. Note that for
additional music channels, additional copies
of the note selector IC9 and octave selector
can be driven off the buffered outputs of the
MK50240P.

A word of caution: the audic output of
the circuits in figures 2 and 3 swings about
2V peak to peak and should be attenuated
with a potentiometer before you plug it into
your stereo system or amplifier.

Software Considerations

From a software point of view, the
circuits of figures 2 and 3 are identical. Both
circuits have an 10 device address of 300
octal. Outputting the proper data to 8080
port 300 octal will cause the synthesizer 1o
audibly produce the note and octave(s)
represented by that data.

The synthesizer can be considered as
having two input nybbles, each nybbic con-
taining four bits. The least significant nybble
determines what note is to be selected and
the most significant nybble determines what
onc of four possible octave(s) is o be
selected. One byte contains all the in-
formation necessary to set up any nole and
octave(s).

Bear in mind that the synthesizer will
continue to produce the note and octave(s)

*12V +5Y
ar0Q K 144
2n2222 2
. 1300 [14 B Y 20
(49} ELx 253 1> 3
13 a# a .
3600 268 5L'> 2o
opa 24 2 Y 22| o
"G
L- E12
TOR OGTAVE 3oL SF s[>y 10 2 ea 18
GEN CHIR] | EI3
) N KR iz Je: .
. | { Ere
1451 s0uT (> 5 Fr 1aNUs 2 15
318 1> £6 €15
s
s 6 STROBE
an FER[C> MK50240P
8 f 5 2 3 ”
358 > 33
[N\ a NOTE
379 1> £4 SELECTOR
YTy LA 'lr>5 es
] 2
19y 80 azef> 2 g{>'° ez e
It 74009 72150
4 ca III 2 i
451 1> El
1 “ 6 T NS 8 I
1801w [> 28 aTe o w
[14:]
A B C D
| % 13 il
81r a2 2 5
2
\ 3| raLso
4
(31 as[>] g 5
/ 2
3
th
307 a4 10 " o
12
2o as[>——— 'Y ¢ 12 s |3 Ia W n l,
Losb €A ¢ 4 8 o |
CLKI
LIsqlv]
Talgr el
(g2 AB[> Le
g _cc g8 QA 5y
83 4T[> 2 [z |5 |5 &
1.3
[4
4 TI}
(M
14 -2 4
ENABLE > AUDIO
e pa[>—3Hw wof® : ouTPUY
351 01[}—320 2gp2 2
6 ca 0 22¢
188) D2 >—-30 30 A B
3
7
189 03[>—an a0
P
4 22k
a 3 | "B
BCGE
4] Ewaell |
1381 pa(_>—n 0
s B
391 ps[>—2Hao 20l j o 22k
6 s) gf 1e
10t oe_>—— 30 3Q
?
1o 07[>—Hao a2
1
2 2k
IZI 1o 13
, 7805 3
{1,51) IN ouy l L 4 »- + +4HV
+ v H
T‘OPF GiIZD T " ;?: ;#: Powar Coanections
i
, . é - e
tso.coy [> @ d & Lnb Humber Tupe Sy | GND |12y | a2y
10uF 1w L] ?
Le (e s icz LG 4 7
N 1'2 1 i3 74030 W)
ThD ‘P‘F c4 FaL7R 5 12
(' 3 iy 1CH 4L70 13 12
N ¢ > €6 MK 802009 4 '
7812 1t co4010 1 8 1%
108 cCOa010 1 8 16
[[a] 74150 24 12
ic1o 14147 19 7
TSR 7T N)

Figure 3: The complete circuit for an equivalent of figure 2,

<y

antwlog converter method uses u voltuge controlied oscillutor with d diode resisiance selection of pitch.

143

which wses the top oclave generator chip
interfave. This method uses the top octave generator and a note sefector o drive the octave selection logic,

with an Altair bus
while the digitdl to

-8UGH <
PROGRAM

GAMES TURNS
(1,9) 1.4

END GAME

< COMPUTER'S TURN

GET FLAYER'S NAME
ASK IF PLAYER WANTS INSTRUCTIONS

YES

on PRINT GAME INSTRUCTIONS
BEGIN
PROGRAM

NO

10,11 {SK"’

~
BEGIN GAME INITIALIZE BUG PARTS

PLAYER'S TURN {we figure 2

see ligure 2

N

END TURMN see tigure 3
A

Figure 1: The Warnier-Orr
diagram showing the basic
structure of the BUG pro-
gram.

END PROGRAM

-

{GET NEW PLAYER'S NAME

Structured Program Design

David A Higgins

Langston, Kiteh and Associates Inc
715 E 8th St

Topeka KS 66607

In the world of electronics, no experi-
menter in bhis right mind would build a cir-
cuit by throwing a few parts together with
some wire and some hope, then attaching a
line cord and plugging it in to see if it works.
Not only are you likely to destroy some
very expensive parts, but il is also a good
way to get fried, or at leasl gel a new hairdo.

Yet, after all the trouble that a serious
microcomputer hobbyist will take to insure
that his circuit is put together correctly be-
fore he ever turns it on, he will invariably
try to program his new compuler by using
a technigue analogous to the one above,
That is why his programs almost never
run right the first time, if indeed they ever
manage to run right at ail. [t is also why
many microcomputer buffs stay up until
odd hours of the night drinking coffee by
the gallon in an effort to find that one
little bug.

146

But there is hope. I'm sure that nearly
everyone involved with computers has heard
something about structured programming in
one form or another. It is not really a new
technique, having been preached about for
many vyears. However, the tools and meth-
odologies available to design programs have
changed radically over the years.

In the beginning there were flowcharts,
which looked like five-dimensional octopt
or the corporate structure of a conglom-
erate. Despite the absence of a consistent
approach that would enable everyone to
design a program using flowcharts, those
programmers who did bother to work out
their problem with a flowchart first usually
scemed 10 have more luck in getting pro-
grams Lo run sooner and better than
programmers who did not.

Structuring Tools

The development of mathematics would
surely have been stymied if Roman numerals
had been retained as our number system. In
much the same manner, the science of
structured program design would have been
mired down if only flowcharts had been

available for developing programs. It is not rBEGmTuRN ROLL THE DIE

that calculus is impossible with Roman
numerals, it’s just that it's extremely dif-
ficult, Thus, over the years, a number of ROLL 1+
design and doclimentation Lools were devel- X1
oped 1o betler enable a programmer to {
understand the problem before going out to
do battle with the program.

TOP-DOWN or GOTO-less programming, O] HAfo',“rECK {SK'P

~

PLAYER ALREADY HAS A BODY
(0.1 SKIP

©

PLAYER ALREADY HAS A BODY
(0,1}

GIVE PLAYER A 80DY

~—M

deveioped by Dijkstra and others, was HAS BODY

probably the first major attempt to solve the to.n O
design versus coding problem. Djkstra simply ROLL 2" @ HAS NECK GIVE PLAYER A NECK
observed that the more GOTOs that were in on

a program, the less likely it was 1o run W {sm

correctly. Djkstra called such programs

/_H

design dficionados was to climinate the
GOTOs in their programming. Although

TOP-DOWN programming was a big advance- HO'T'E 3

HAS HEAD
(LAY}

2ANTENNA '\NTENNA GIVE PLAYER AN ANTENNA

“spaghetli bow!” programs, because if you ® LIAS HEAD
drew a line from each GOTO in the program .1 {SK"’
to its destination, you ended up with 4 mess A ©)
that looked like a bowl of spaghetti. He '
i . ROLL 3" HAS HEAD GIVE PLAYER A HEAD
showed how any program could be written o ®
with just a few simple flow structures mASNECK
without any GOTOs. His techniques pro- TURN 0.1 {SK”’
duced simple, readable code that was easy
L .) ® 2 ANTENNA
1o test and maintain. So, the big push among (0.1} {SKIP

©) .1
ment over {lowcharting, it was just that: P
. . . HAS HEAD
programming. It was a technique for coding (0.1) {SK'P
a program, nol necessarily designing it
Another technique, IBM's HIPO (and ® i {smp
later HIPO-DB) entered the design field HAS BODY 0
almost by chance, being primarily a docu- to.1 —_—
@ HAS TAlIL GIVE PLAYER A TAIL
. . [{+A))
for program design. The major drawback to !
HIPO techniques, besides the fact that they
was their tendency to produce 50 pages of O HAS(g‘L)EGS {
documentation for a 3 page program.

F—A_'\r—)\-“\

mentation tool that was also being used ROLL = "5
HAS BODY
(0,1) {SKIP
did not work well for designing a program,

SKIP

HAS BODY
(0,1}
Warnier-Orr Diagrams — A New Approach ROLL - 6" o “As(g LeGs {cwe PLAYER 1 LEG
(0.1

Within the last four years a new tech-
nigue for program design has evolved from \
the work of Jcan-Dominque Warnier (pro-
nounced warn'-yay) in France, and Kenneth
T Orr of Langston, Kitch and Associates in
Topeka KS. The technique has foundations
in set theory and Boolean algebra, and holds
much promisc for program design appli-
cations, Warnier-Orr diagrams, as we have
called them here in the United States, allow
programmers (o design faster than ever
before, to code programs with little or no
effort, and produce programs that usually
run correctly the first time. The approach
is not limited to small programs. Nothing
will make a believer out of someone quicker
than a 20 page COBOL program which runs

—

HAS BODY
0,1 SKip

Figure 2: Diagrum of the logic for the PLAYER and COMPUTER TURNS
routines of the BUG progrum.

does not matter what programming language
you code it in! At Langston, Kitch and Asso-
ciates, people have used the technique
to program in COBOL, PL/l, ALGOL,
FORTRAN, BASIC, RPGIl and assembler
languages. It works equally well for all of
them.

Warnier-Orr Diagram

correctly the first time. The Warnier-Orr The simplest way to learn about Warnier-
technique stresses design over coding and Orr diagrams is to see examples of them.
contends that ance a problem is designed, it Warnier-Orr diagrams are very easy to learn

147

If the player rolls a 4, we first find the instructions to follow for a roll of 4 and check to
see if the player has a BUG head. If he does, we then check to see whether or not the

player afready has two antennae. . . .

and use; however, be forewarned that this is
a technique that is sometimes deceptively
simple, but not as trivial as it often seems.
Let’s consider the relatively simple game
of BUG. In this game the computer rolls a
die, once for itself and once for its oppo-
nent. Each number of the die corresponds to

HAS EITHER PLAYER COMPLETED A BUG

(-COMPUTER WINS {DISPLAY

{0,3) “TWINT

YES (0,1) 4 @

END TURN ﬁ OPPONENT WINS DISPLAY
(0] “YOUWIN"
® kDECLAHE END OF GAME
NG (0.1) GO ON TO NEXT TURN
.

Figure 3: Warnier-Orr diagram for the ending of a turn or a gurne,

Ltisting T: A structured BASIC program that was written using the Warnier-
Orr diagrams of figures | thru 3. This code execuled correctly the first time
even though it was the author’s first attempt at writing u BASIC program.

10

330

REM BUG PROGRAM

REM BEGIN PROGRAM

DIM HEAD(2), BODY(2), LEGS(2), TAIL{2), ANTE(2), NECK(2), CNT(2)
GOSUB 120

REM GAMES (1,G)

LET EPGM=0

GOSUB 200

IF EPGM=0 THEN GOTO 70

REM END PROGRAM

STOP

REM BEGIN PROGRAM SUBROUTINE
PRINT 'ENTER YOUR FIRST NAME’
{NPUT :NAMES

PRINT ‘DO YOU WANT AN EXPLANATION OF THE RULES; ENTER YES
OR NO.’

INPUT ANSS

LET TEST = SCOMP ("YES' ANS$)

IF TEST = 0 THEN GOSUB 1200 ELSE ;
RETURN

REM GAMES SUBROUTINE

REM BEGIN GAME

GOsuUB 290

REM TURNS (1,T)
LET EGAM =0
GOSUB 390

IF EGAM =0 THEN 230
REM END GAME

GOSUB 1150

RETURN

REM BEGIN GAME SUBROUTINE
LET BODY!{1}, BODY{2) =0
LET CNT(1), CNT(2) =0
LET NECK{1), NECK(2) =0
LET HEAD{1), HEAD(2} =0
LET ANTE({1), ANTE(2}) =0
LET TAIL{1), TAIL(2I =0

148

a part of the BUG's anatomy: 1 = BODY,
2 = NECK, 3 = HEAD, 4 = ANTENNAE,
5=TAIL, and 6 = LEGS. The object of the
game is to finish your bug before the com-
puter finishes its bug. Other rules: you must
have a body before you can have legs, a neck
or a tail; you must have a neck before you
can have a head, and you must have z head
before you can have antennae. One body,
one neck, one head, one tail, six legs and
two antennae are needed to complete a bug.
Figure 1 is a Warnier-Orr diagram showing
the basic structure of the BUG program.

The Warnier-Orr diagram is read left to
right, top to bottom, just like conventional
English text. The brackets enclose logically
related operations, the largest of which is the
program itself, The BUG program is com-
posed of three logical sections:

® The BEGIN PROGRAM section,
where the player’s name is requested
and there is an explanation of the
game rules. Note that the + symbol
between the modules YES and NO
denotes the exclusive OR function,
meaning that one or the other but not
both of the modules will be per-
formed. Observe also that this is re-
flected in the number of times that
each module may be performed: O if
the condition is false and 1 if the
condition is true.

® The process section, GAMES, where
the playing of the game actually takes
place. The {1,g) denotes Lhat the sec-
tion is to be performed at least once,
and possibly many (g} times.

® The END PROGRAM section, which
in this case is empty, but which
usually contains things such as the
closing of files, the goodbye message,
ctc.

The rest of the brackets decompose in a
similar fashion. The GAMES procedure
breaks down into the beginning of the game,
(BEGIN GAME), the turns that each player
takes (TURNS), and the end of Lhe game
(END GAME).

Notice that logically there are things that
only happen at the beginning of Lthe program
and things that only happen during the play-
ing of the game itself. The Warnicr-Orr di-
agrams allow you to see very easily jusl
where and when a particular event must Lake

Listing 1, continued:

340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560

570
580

590
600

610
620

830
B840

650
660
670
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890

200

910
920
930
940
950
960
870
980
290
1000
1010
1020

1030
1040
1050
1080
1070
1080
1090
1100

LET LEGS(1), LEGS(2) = 0

RETURN

REM TURNS SUBROUTINE

REM PLAYERS TURN

REM LET PLAYER START TURN

PRINT ‘HIT RETURN TO ROLL DIE’

INPUT A

LET PLAY =1

GOSUB 520

KREM COMPUTERS TURN

LET PLAY =2

GOsSUB 520

REM END TURN

GOSUB 1080

RETURN

REM TURN SUBROUTINE

REM PLAY=1PLAYERS TURN—PLAY=2;COMPUTERS TURN
REM ROLL DIE

LET ROLL = FIX@ ({{(RND (0})) *6.0)} + 1

PRINT : “ROLL ISA *, ROLL

IF ROLL = 1 THEN IF BODY (PLAY) #1 THEN GOSUB 690 ELSE ; ELSE ;
IF ROLL=1 THEN 650

{FROLL =2 THEN IF BODY (PLAY) =1 THEN IF NECK (PLAY} #1
THEN GOSUB 760

IF ROLL=2 THEN 650

(FROLL = 3THEN |F BODY (PLAY) =1 THEN IF NECK (PLAY) =1
THEN IF HEAD (PLAY) #1 THEN GOSUB 820

iF ROLL=3 THEN 650

{F ROLL =4 THEN IF HEAD (PLAY) =1 THEN IF ANTE (PLAY) # 2
THEN GOSUB 880

IF ROLL=4 THEN 650

IF ROLL =5 THEN IF BODY (PLAY) =1 THEN IF TAIL (PLAY) #1
THEN GOSURB 940

|IF ROLL=56 THEN 8650

IF ROLL =6 THEN IF BODY (PLAY) =1 THEN IF LEGS(PLAY)
#6 THEN GOSUB 1000

LETA=3

RETURN

REM BODY SUBROUTINE

IF PLAY =1 THEN PRINT : NAMES, "' 'S BUG HAS A BODY"
IFPLAY =2 THEN PRINT : “COMPUTER'S BUG HAS A BODY"
LET CNT {PLAY} =1

LET BODY (PLAY) =1

RETURN

REM NECK SUBROUTINE

{F PLAY =1 THEN PRINT : NAMES, ' 'S BUG HAS A NECK"
IFPLAY =2 THEN PRINT : “COMPUTER’S BUG HAS A NECK*
LET CNT {PLAY) = CNT (PLAY) +1

LET MECK (PLAY]} =1

RETURN

REM HEAD SUBROUTINE

{F PLAY =1 THEN PRINT : NAMES, " 'S BUG HAS A BODY"”
IF PLAY = 2 THEN PRINT : “"COMPUTER'S BUG HAS A BODY"
LET CNT {PLAY) = CNT (PLAY) +1

LET HEAD IPLAY) =1

RETURN

REM ANTENNAE SUBROUTINE

LET ANTE(PLAY) = ANTE(PLAY) +1

IF PLAY =1 THEN PRINT : NAMES, 'S BUG HAS *,

ANTE {1), " ANTENNAE."

IFPLAY =2 THEN PRINT : “"COMPUTER'S BUG HAS """ ANTE (2),
" ANTENNAE.”

LET CNT {PLAY} = CNT (PLAY) +1

RETURN

REM TAIL SUBROUTINE

IF PLAY = 1 THEN PRINT : NAMES$, ©* 'S BUG HAS A TA(L"

IF PLAY = 2 THEN PRINT : "COMPUTER'S BUG HAS A TAIL"
LET CNT (PLAY) = CNT (PLAY) +1

LET TAIL (PLAY) =1

RETURN

REM LEGS SUBROUTINE

LET LEGSIPLAY) = LEGS(PLAY) +1

IF PLAY =1 THEN PRINT : NAMES$, " * S BUG HAS ", LEGS (1), '* LEGS."”
IF PLAY =2 THEN PRINT : "COMPUTER'S BUG HAS ", LEGS (2),
“LEGS."”

LET CNT {PLAY) = CNT {PLAY) +1

RETURN

REM END TURN SUBROUTINE

IF CNT {1} =12 THEN 1090

IF CNT (2} =12 THEN 1110

GOTO 1130

PRINT : NAMES, 'S BUG IS FINISHED' YOU WIN"'

GOTO 1120

150

place. After examining figure 1 carefully to
make sure that you understand how the
diagrams work, move on to the explanation
of the PLAYER and COMPUTER TURNS
section shown in figure 2.

In figure 2, we have represented the logic
for each of the players’ turns during the
game. At the beginning of each turn, the die
is rolled to determine the part af the BUG's
body that the player may receive. Whatever
the roll, we then have a logical path to
follow. Again, please note that the presence
of the @ between each of the possible
rolls denotes mutual exclusion, ie: only one
of the paths may be selected. This partic-
ular structure is known as a case statement,

If the player rolls a 4, we first find the
instructions to follow for a roll of 4 and
check to see if the player has a BUG head.
If he does, we then check to see whether or
not the player already has two antennae.
If he does, then we do nothing. If he does
not have two antennae yet, we give him
one antenna. If he does not have a BUG
head, then again we do nothing. In a similar
fashion, all of the possible rolls and their
associated procedures are explained. Now
let’s move on to the Warnier-Orr diagram for
the end of the turn, which is shown in ligure
3.

If either player has won the game at the
end of a turn, the computer declares the
winner and ends the game. If ncither player
has won, the computer does nothing and
cycles through for another turn,

Structured Programming

Having fully understood the problem,
coding the BUG program is a simple and
straightforward process. For this particular
example | coded the program shown in list-
ing 1 in a version of BASIC.

As you can see, each bracket of the
original Warnier-Orr diagram roughly corre-
sponds to a subroutine in the finished code:
the process GAMES, for instance, becomes
the subroutine at line number 180 which is
called repeatedly by the branch at line 80
until EPGM equals 1, indicating that no
more games are to be played; the process
BEGIN PROGRAM is handled by the sub-
routine at line 110, and so forth,
The resultant code is:

® casy to read and understand
® easy to change and maintain
® already documented

® |ogically correct.

It is also a program that will run correctly
the first time, barring unforeseen syntax
errors for those of us who can't type or
spell. All of this is possible because the

Continued from page 20

dise purchased. We temporarily FIX
0 to print the quantity as a nondeci-
mal integer and make reading the
tape easier. We store the guantity
in data memory 01, print, restore
the SR-52 to FIX 2 and HLT.

5. Key B is the list price of the product.
It is stored in data memory 02 and
printed. This time we did not use a
HLT instruction, and we will see
why in the next step.

6, Without a HLT in step 5, the SR-52
program counter autematically moves
down to the next step. |t encounters
the command to multiply AxB, or
more cxactly that data we stored in
memory 01 times the data we stored
in memory 02, We print this result
and then sum the result into data
memory 19. Since we cleared the
SR-52 memories in our initial house-
keeping instruction, we know that
the initial content of data memory
19 is zero, After all this we HLT.

At this point in our flowchart we are
at a manual or human decision point as
shown by the diamond. If we have more
merchandise to price, we can go back and
put in the next quantity A and price B. We
would do this until we were done. Then
we would go to the A’ button. In our
flowchart this is labeled as step 9. Putting
A' near the end of the program may appear
te be out of seguence, but the SR-52
doesn’t care. It will automatically go looking
for A’ program instructions whenever that
button is pushed. My programming style
says Lhat | like to finish defining the basic
user defined key functions beforc gelting
involved in the detailed program steps. Since
we haven't defined key E yet, that will be
the next step. Incidentally, claiming a pro-
gramming style as a reason for doing some-
thing is an easy way of avoiding a lot of
“no win® programming arguments. If it's a
matter of taste, who can complain?

Since the flowchart represents the actual
sequence the user follows, we see that the
A’ button is pushed te complete and print
the totaling and discount of the list price
merchandise. The details of Lhis block will
be discussed below. At this point we are
only concerned with what we do next. The
diamond again indicates a manua! decision,
Do we have any nel price items on this
invoice? If so, we will go to A again, This
time, button A will be associated with

152

quantities of the net price items. If there
are no net price items we wiil push builon
B’. This will compicte the invoice compu-
tation. At this point in the flowchart we
define button E.

7. Key E is the net price of the merchan-
dise. We will store this price in data
memory 05 and print the price. Again
as in step 5, since we don't have a
HLT instruction, the SR-52 will
automatically proceed to step 8.

8. This step will multiply AxE, or the
quantity in data memory 01 times the
net price in data memory 05. The re-
sult is printed and summed into dala
memory 19, Incidentally, the previous
value of data memory 19 is stored
with the net price computation
that resulted when button A' was
pushed. The diamond after this block
is another manual decision. |f there
are more nel price items go back lo
A; otherwise go on to B

9. This block, at first glance, appears
to be complex. But it really isn'L
1L provides the following instructions:
RCL19 Recall the list price

amount that was summed

into data memory 19 and
print (PRT} the amount.

1-C Multiply the list price

total by 1-C, the dis-
count that was inputted,
and stored originally with
key C. Print the dollar
amount of the discount.

—RCL 19 Subtract the list price

amount from the dis-
count; ‘“+f=": change the
sign since the result is a
negative number and print
the result. This is the net
price of the merchandise.

Pap Advance the paper one

line for format clarity,

Store total net price in

data memory 19 and HLT.

5TO 19

Mot so bad, was it?
10. We now define the program instruc-
tions for the B’ button:

Pap One line of paper advance,
RCL 19 Recall and print the total
order net price that has
been summed in previous

steps into data memory Listing 1: Program listing for the SR-52 invoice program. The program js
19, broken into sections corresponding to the flowchart of figure 2.

+RCL D Recall, add and print the
shipping costs.
PRT= Total the entire order and L ‘
pl‘int. o ,:n:¢
Pap, Pap, Advance the paper three C o .
Pap lines. ronrG { T jiad
11. RST Resets the program counter © wr o
back to 000. This pro- (;w‘
gram address is the first arscouar o -
one we used in our house- @ 2 .
keeping steps. The pro- Lo
gram will automatically - o e)
execute those housekeep- — } o pruc .
ing instructions and then @ ° DigG ANT ac
HLT. The SR-52 is now Lo X
ready for a new invoice P ® '
routine. o
QUANTIEY 51D "CL
@ s '
The revised flowchart is now complete o
and at the same time we have defined vir- A :
tually every program instruction step. The _— -
lotal development of this program has been “ s e
a very straightforward translation of what sst 570 "
we want to accomplish into precise terms e l; -
understandable to our computer, - e
The last programming step is to set the e ace
SR-52 1o receive program instructions. A e l ! 0
key marked LRN (learn) is provided for 'y TotaL nes
this. Several other programming keys are - o o
also provided which dramatically simplify J,Tm 045 81
putting a new program into the machine. Foe 046 46
At this point we will only need the LRN iro g:; .‘.2 b
button. With the SR-52 in the LRN mode, e " bag 92 o
we begin with the first instruction which @ TroopeL i @) [omeser
is CMs (clear memories). We push that o 053 92
o 054 00

button on the keyboard. The program
counter moves Lo 001 and we push the CLR
button. The SR-52 stores the clear instruc-
tion and the program counter moves to 002,
We continue pushing the buttons that we
defined in our program until we reach the
last instruction which is RST. Our program
is now stored in the machine. We take the
5R-52 out of the learn mode by pressing
the LRN button again. The program counter
is manually reset to 000. Listing 1 shows the
entire program list.

We are now ready for the critical test.
The RUN button is pressed and, if the dis-
play is not flashing, there is a good chance
that our program might work. We test it by
putting in a sample calculation. If it does
work, our tape printout would look like
listing 2. If there are problems, the printer
will be a great help in finding the bug.

The first thing that can be done is to ask
for a list of the program steps. This output
list can be compared to the work sheet we
used to enter the program. Analyzing the
program list shown in listing 1 is made easier
if we mark each program address line with

the key function name, [/n listing 1 this is
done with typeset notations, but in SR-52
practice this would be done with handwrit-
ten notations ...CHJ} In addition to doing
this, groups of instructions should be
bracketed so that they can be related to the
flowchart in figure 2. The first three digits
in the program list are the program counter
address. The next two digits are the op code
or the key codes for the SR-52 keyboard.
{f the program doesn’t work, you may have
omitted an instruction. The SR-52 provides
an easy way Lo get to the point of omission
so that we can insert the proper instruc-
tion. In a similar way, an incorrect instruc-
tion can be omitted.

The most painful debugging problem is
where your program logic just isp't right.
The printer will allow you to trace and print
the steps the program actually is following
as it attempts to solve the problem. (In
our case, calculate the invoice.) If vou are
not too far off, the SR-52 has the facilities

153

QUSCOUNT 0Len FET

1

QUANTITY
LIST PRICE
LINE TUTAL 2T,
QUANTITY

UST PAICE

LINT TGTAL
GUANTITY

LIST PHICE 5. 63

UNETOTAL (9], 45 FET

tora LT 22, 04 FRT
ascamt L ET. 06 PFT
FRT

WETTOTAL {75, 53

QUANTITY 13, FET
NET PRICE gl FRT
uNgTotae T, Se FET

SHIPRING o
[ATION TXL S Bt]

L TOTAC MET LR E, L

Listing 2: Sample printout
of the invoice program.

Computer Information Arrangement

[X: I A A (I

S E,F,G

Ko M,N,0

o ML / 8

R ——

P,Q,R
10
TEXT ST
I
VYWXIZ RN Neeeeed —<
12
MEMORY
BUFFER
13
4
15
S
6
INPUT MASTER
CASSETTE FILE

TAPE

Figure 1: This is a basic diagram showing the input arrangement for the in-
formation retrieval system, The text is entered from a keyboard into a buffer
grea, and sorted alphabetically. In the example the three text strings start
with S, D and K. When a certain buffer area is filled the information it
contains is dumped to an input cassette tape. The information on the tape is
sorted in olphabetical order. When any one tape is filled, or an updated
master file is desired, the input tape is added to the master file.

156

David Holladay
225 Lakelawn Pl
Madison W) 53703

An examination of the small system com-
puter field might lead the observer to take a
limited view of the potential uses of small
systems, This is unfortunate, because a com-
puter, even a small one, can do more than
play games or make lights blink.

One general application of computers is
the information retrieval system. A classic
goal of information retrieval is the con-
struction of a system that absorbs the con-
tents of books and can answer questions
concerning the information contained in
them. This goal has been unapproachable in
even the largest of computer systems. The
best approach is to put the burden of intelli-
gence on the user’s shoulders and make use
of the computer’s bookeeping ability. This
reduces the program to a large scale sorting
system tailored to a microcomputer’s capa-
bilities.

Small systems have limitations in memory
size, data transfer rates and throughput. To
cope with these limitations, | propose a mass
information handling system called the Com-
puter Information Arrangement, or CIA.
The basic hardware required for this system
includes a processor, 8 to 16 K bytes of
programmable memory, keyboard, TV inter-
face and several casselte interfaces with a
data rate of at least 300 bps. One cassette
drive has to be controllable by the computer
in a manner beyond that of simple motor
control.

The main storage memory for the huge
data base is magnetic tape. Tape isslow and
serial, meaning that only the information
physically located near the tape head can be
dealt with. However, it is cheap. For the
moment, our data base will be a dictionary,
ie: a list of definitions sorted alphabetically

by keyword. If the dictionary is closely
packed on the tape, it will be difficult to
add to it without shifting half of the data
base. ft would be more logical to spread
out the entries on the whole tape to avoid
later space problems. Unless the tape is
getting full, the proper position of an entry
is solely a function of keyword.

If entrics are to be added in an efficient
manner, close attention must be paid to
differing data rates. A human can type two
to five characters (bytes) per second, while a
computer can take things on or off tape
much faster. The typical personal computer
can internally manipulate at least 250,000
bytes per second when programmed with an
assembler. A video display can depict about
1,000 characters at a time, and can refresh
itself 30 or 60 times a second, depending on
the way the display handles the interlace.
It will be the objective of the CIA system to
put information onto the cassette tape in
sorted order as fast as the user can type in
the unsorted data, The user can therefore
type the definition of ‘“best” and of
“machine” into our imaginary dictionary,
and the computer will place both in their
proper places on the tape.

A large part of main memory (at least 4 K
bytes) is used as a buffer. As new data is
typed in, it is added to the buffer and sorted
on keyword. This sorting can be done by
rearranging the data in the buffer in se-
quential order. An alternative is to keep
items in unsorted order and maintain two
pointers for each item, one pointing to the
lacation of the item which is next in sorted
order, the other pointing to the previous
item in sorted order. The second system
eliminates unnecessary searching in memory,
but involves longer and trickier program-
ming.

As the memory buffer accumulates data,
it is important to keep track of how it is
filling up. The alphabet is divided into
eight sections for accounting purposes. The
first section may be for words starting with
A or B, etc. Eight counters keep track of
how many bytes are taken up in the buffer
by different ranges of the alphabet. When
one counter exceeds certain limits, the
cassette is moved to the region of tape
corresponding to that range of the alphabet.
Next, the data held in the buffer is trans-
ferred onto the tape in the proper location.
Obviously the data would then be erased
from the memory buffer to make room for
more data. The end result is a cassette tape
containing sorted information which
generated at the same rate that the user

158

is typing in the unsorted data (see figure 1).
If the data is sorted as fast as it can be put
in, what would be the advantage of greater
throughput? The system works just as fast
as it has to.

Notice how general the system is. 1t can
be used to make huge mailing lists, keep
track of books in a library, and so on. It
has two principle limitations in addition to
speed, size and the simple nature of the data
that it can handle.

What can you do when you fill up a
cassette? (It may take a while, since it is
possible to fit as many as 500,000 characters
on a digital cassette tape.) You could main-
tain a master set of 26 tapes, one for each
letter of the alphabet. Once your tape is full,
it would be merged with the master file, an
unwieldy process at best. This procedure
would mean putting master tape #1 in one
cassette machine, vyour input cassette in
another, and starting the merging program.
After a while, the computer could signal that
it had put all of the A entries onto master
tape #1. Then you would take out 1ape #1,
replace it with tape #2, and so on, up to
tape #26. This process would happen rarely
(or as often as you would require an up-to-
date master file). But imagine how much
data your system could hold, A friend of
mine pointed out that if you were mechani-
cally inclined, you could automate cassette
manipulation. It would be a cross between a
jukebox and large scale automated mass
memory with media manipulation
mechanisms, An automatic multimegabyte
memory system for a few thousand dollars
would be most impressive.

The question of data bases is a bit tricky.
Data can be abstract, highly interrelated, and
difficult to categorize. Your data will be
interrelated in ways that the data base
cannot show or represent. There are two
approaches to follow. One way is to design
very abstract data structures that show
relationships inherently. The other is to
maintain the simple dictionary alphabetic
system, and add several cross-reference
pointers. An example would be ‘‘Kennedy,
Jackie: see Onassis, Jackie.” By pursuing
all the pointers listed under a keyword, and
checking out all the pointers listed there, a
tree structure is developed. A multi-cassette
data system implies a significant amount of
tape manipulation, unless you have built the
jukebox system.

Although a pointer system is a bit crude,
it can be handled automatically. The
following example illustrates a typical
entry. The original data entry: "Beethoven,

Ludwig van, Symphony Number 3 (The
Eroica)” would be filed under ''Beethoven,
Ludwig van”. If the user wants to generate
the cross reference pointer ‘“Eroica
Symphony, sce Beethoven, Ludwig van',
a special character could be lyped before
“Beethoven, Ludwig van” which the
program would recognize. The program
could then add “Eroica Symphony, sec
Beethoven, Ludwig van” to the text buffer.
This would insure that the pointer and the
data match, eliminating a problem with
typographical errors.

Later, if it is necessary to eliminate the
entry, you would know that the cross-
reference pointer is also in memory because
of the existance of the special character.
Other special functions can be implemented
by special characters, such as labeling the
data source of facilitating tabular data. This
is left as an exercise for the reader. The
power of this information handling system is
limited mainly by the size of programs that
can be stored in memory, and by the speed
of the tape recorder.

The Computer Information Arrangement
needs five scparate programs to work
properly. Note that it is not necessary for
more than one Lo be in memory at any time.
Program 1, the input program, is the biggest
and most difficult. [t accepts characters
from the keyboard, edits them, adds the
cross-reference, puts them in the buffer,
recognizes when the tape machine is idle
or part of the alphabet range is getting full
in the buffer, and spreads the data on the
input cassette by means of a linear hashing
formula, It may be necessary for the tape
recorder to be controlled by a separate
microprocessor and 1 K bytes of program-
mable memory shared by both processors,
because of timing considerations. The
second one is the merge program, which
merges the input tape with the master set
of cassettes. The third program, called the
clean up, goes through tapes, ‘“‘unbunches’
data, and straightens out any local area that
gets “out of sort.” The fourth program is the
display program. The user can tell it to
display the Richard Nixon file, whereupon
it will display all the references and pointers
that are filed under the keyword Nixon,
Richard. The last program does a crucial,
but easily forgotten job: altering or deleting
outdated or incorrect data from the input
tape or from a master tape.

The ClIA is a general computer informa-
tion arrangement, an answer machine, or a
list maker. Put in randomly ordered data
and it comes out neat and organized. The
arrangement has many applications: small

business, journalism, research, or help for
folks who have trouble organizing things.
This is the type of program which will sel!
small systems to the world. »

GLOSSARY

Alphabet range: part of the contiguous alphabet
used to decide where to store alphabetically
sorted data.

Buffer: section of random access memory used to
temporarily store data until enough is collected to
pass on.

Cross reference: a notation to look elsewhere in
the data base for more information,

Data base: collection of information and the
system used to organize it for use by a computer
program,

Entry: A block of data that stays together during
the sorting routine. The end of an entry is recog-
nized by a special termination character,

File: Set of entries with the same keyword.

Input tape: cassette that accepts the sorted data.
For larger data bases it must be merged with the
master tapes.

Keyword: Word in an entry used to sort the entire
entry into the data base.

Master tapes: Set of cassettes that make up the
entire data base. Each cassette covers a portion of
the alphabet range.

RELAY/OPTO-ISOLATOR
CONTROL DOARD ($ {17)

This board is a natural for controlling
audio systems, time lopse photogrophy
experiments, model troins, robot de-
vices. or any application where you
need o number of intelligent switches. 8
reed relays respond to an 8 bit word
from your computes: 8 opto-isolators ac-
cept an 8 bit word from the cutside
world and send it back to your machine
for further control purposes. Incudes
detailed instructions and appliccuons
notes.

500 WATT CONTROL MODULE ($10)

Intedaces your Relay Control Board with power loads such as
photofloods and motors. This module is about the same size
as a plug-in wall ransformer and plugs inte any wall oudet:
on the bock is a femole AC socket that accepts AC loads up
to 500 Watts. Two isolated contol wires troil bock to your
computer. allowing easy remote operation ond keeping AC
lines out of your machine.

All kits are 5-100 Altair/IMSAl compatible. Available by mail (ship-
ped postpaid in the USA from stock: Californians add sales tox) or ot
many fine computer stores. Dealer inquires Invited.

MULLEN COMPUTER BOARDS

BOX 6214, HAYWARD, CA 94545

“'Products that make your computer useful”

ﬂi\

159 Cirele 412 on inquiry card.

http:COHTP.OL
http:COHTP.OL

ersonal Computing Expo

will come to New York!
P CE PERSONAL COMPUTING EXPO

NEW YORK COLISEUM, OCTOBER 28, 29, 70, 1977

1t's a brand new show (in the world's biggest economic
center) specifically for manutacturers, buyers and
those providing services to the personal computing
enthusiast. For the first time, this booming field will
have a New York Coliseum showcase. It is planned as
the largest public show of its type and will attract ot-
tendance from the huge population areas of Boston,
Washington, Philadelphia and Baltimore.

New York is the world's communications focal point,
the cne place that will put personal computing in a
significant spotlight. New York is surrounded in depth

"’ Personal Computing: An idea whose time has come! ''*

by people whe work in the computer field, by com-
puter learning centers, universities, personal com-
puting clubs and thousands of others whose lives are
affected by computers.

More than 100,000 poid subscribers of BYTE magazine
will be urged to view the exciting exhibits and to at-
tend the BYTE-sponsored lectures. Circle the dates:
October 28, 29, 30 — and make your plans now to be
there when Personal Computing Expo comes to New
York!

Tutorials by the IEEE
Computer Society,
Mid-Eastern Area

Personal Computing Expo is also joined by the In-
stitute of Electrical and Electronics Engineers Com-
puter Society, Mid-Eastern Area Commitiee, whose
experienced staff is presenting six doy-long
tutorials at a modest charge. If inconvenient for
you to attend a tutorial during the show, simply
sign up for follow-up tutoriats on weekends ofter
the show.

Whereas the lectures will provide you with in-
formation, the tutorials will teach important skills
enabling you to use your own computer at home or
at work.

TUITION:

The tuition fee for the tutorial program in-

cludes a one-day admission to the
Personal Computing Expo.

Cne Two Three

Tutorial Tutorinls Tutoricls
Students {with ID) $30 $50 $75
IEEE Members $40 $70 $100
Non-Members 550 $90 $125
Tuition includes hand-out material, in-

cluding text and/or hand-ocut materials.
Participants will also receive a certificate
of participation.

REGISTRATION:

In order to provide an interactive, learning environ-
ment between the participants and the lecturers,
the number of registrants is limited. Registration is
accepted on a first-come, tirst served basis. Early
registration is therefore suggested. Cancellations
received before September 15, 1977 will receive a
full refund.

To register, maoke your check poyable to the IEEE
COMPUTER SOCIETY, and mail to:

Daniel R. McGlynn, Ph.D.

Tutorial Program Chairman

IEEE Computer Society

329 - 84th Street

Brooklyn, N.Y. 11209

FOR FURTHER INFORMATION:

on the technical content of the tutorials, technical
background suggested to derive maximum benefit
from the program, or information on the IEEE Com-
puter Society, call

Cary Ringel

Chapter Chairman

IEEE Computer Society (212) 460-4600

TIME AND LOCATION:

The tutorials will be held from 10 AM to 5 PM on
Friday and Saturday, and from noon to 5 PM on Sun-
day in the New York Coliseum, at a location to be
announced and posted. Participation in the
tutorials also includes a one-day admission to the
exhibition area and other lecture programs.

EXPO TICKETS:
Will be sent to tutorial registrants about three or
four weeks prior to the show.

DAILY TUTORIALS AND
SPONSORED LECTURES

The Smali Systems Journa?

\

Exciting lectures
sponsored by

The Small Systems Journal

Personal Computing Expo is endorsed by BYTE magazine, whose staff has contacted prominent speakers
for an exciting series of lectures.

Visitors will be aoble to ottend these meetings free of charge. The lectures will not conflict with each
other eliminating the worrysome choice among several equol?y important topics. In addition, they will be
repeated on the next day 1o give you a second chance if you missed a topic.
Lectures are typically 30 minutes, often with demonstrations ond an adcﬁ?ionol 15 minutes for questions.

Portia Isaacson Ph.D. ... Saturday 11 AM and Sunday 12 Noon
Co-owner of the Micro Store, a personal computer store, in Richardson Texas actively engoged for 12
years in the computing field in industry and at universities.
Member of the ACM and IEEE, and chairman of the 1977 National Computer Conference.
Author of many articles in professional journals and magazines.
Received a Ph.D. in Computer Science from the Southern Methodist University.
1. Paersonal Computing: An ldea Whose Time Has Come
A review of what has happened sc far in the personal computing field, and an outlook into future
developments, including those in the computer assisted home. Slide demonstration,

Sol Libes . . . Friday 6 PM and Saturday 10 AM
President of the Amateur Computer Group of New Jersey
Teacher of electronics and computer programming at a community college
Author of 10 books (working on the 11th) and several hundred magazine articles in electronics and com-
utin
Eeceiged an award for “The Outstanding Amateur Computer Hobbyist of 1976 in Atlantic City by Personal
Computing 1976 show, and BYTE.
2. How to Get Started
A discussion of typical home computer systems and their essential hardware and software components.
John H. Dilks Il ... Saturday 1 PM and Sunday 2 PM
President of Personal Computing Inc. and tradefoir director of the Personal Computing shows in Atlantic
City in 1976 and 1977,
Experience with various computer systems since 1962.
Employed by Western Electric Co. Inc., division of the Bell System.
Member of the Amateur Computer Group of New Jersey and of the Philadelphia Area Computer Society.
Teaches microcomputer courses in an adult evening program at a vocational school.
3. Innovative and Unusual Computer Applications for the Home.
Discussion of "far-out” applications of microcomputers ond electronic technology for home use, such as a
child locator and warning device, a home security system, etc. Slide demonstration.
Robert S. Jones. .. Friday 7 PM and Saturday 2 PM
Publisher of Interface Age Magazine
Pricr experience in sales and marketing for the semiconductor industry, including Intel, National
Semiconductor and Analog Devices Inc.
4. Personal Computing for the Business Man
Evaluating business applications for micro computers, including slides showing selected applications.
Louis E. Frenzel . .. Saturday 3 PM and Sunday 3 PM
Director of Computer Products at Heath Company, involved in the planning of new computer products.
Prior to Heath, with McGraw Hill in product planning and design of educational electronic kits.
Prior experience including computer engineering for eight years
Author of several books, home study courses and numerous magazine articles in electronics and com-
uters.
seceived a BS in electronics from the University of Houston and a MEd from the University of Maryland
5. How to Build Personal Computer Kits
Tips for successful kit construction. Benefits of kit products for the personal computer user. Including
slides showing selected computer kits.
Carl Helmers. .. Friday 9 PM and Saturday 4 PM
Editor-in-Chief and co-founder of BYTE magazine.
Obtained computing experience as a personal way to accomplish artistic and technological goals in
music.
Graduated in 1970 with a BS in Physics from the University of Rochester, NY.
Worked for several yeors at Intermetrics, Inc. in Cambridge, Massachusetts on the NASA Space Shuttle
Project.
Pric|>r to working with BYTE, publication of a small computer newsletter on a part-time basis.

(6. Computers and Music

How to create music with computers. Problems of performing electronic music, music under computer
program control and computer music in conjunction with traditional instruments. Illustrations and ex-

amples from personal experience.

Europe.

students in these schools.
7. Microcomputers in Education

puters on students.

cessing systems.

play music. Slide and tape demonstration.

years,

Jack L. Davies. .. Friday 8 PM and Saturday 5 PM

President of Pan Atlantic Computer Systems GmbH, a distributor of various micro computer systems in

Extensive experience in using minicomputers and microcomputers in the US
Military Schools in Europe. Designed and developed numerous games and educational programs for

Discussion of the many possibilities of using microcomputer systems in schools. Effect of personal com-

David Fylstra. .. Saturday 6 PM and Sunday 5 PM

Member of the research staff of the Telecommunications Sciences Center at Stanford Research Institute
for more than two years. Specialized in microcomputer software and computer simulation of speech pro-

Graduated in 1974 with a BA in English and Psychology, Stanford University, Phi Beta Kappa.
Active in the research on communication systems and devices for the deaf.
8. Speech Analysis and Synthesis for the Amateur
Using the personal computer as a device to analyze the acoustical foundations of speech and to formulate
rules for the control of the speech synthesizer.
Max Mathews Ph.D. ... Saturday 7 PM and Sunday 4 PM
Director of Acoustical and Behavioral Research, Bell Labs
Author of The Technology of Computer Music, and numerous articles.
Scientific Advisor to the Institute for Research and Coordination of Acoustics and Music (IRCAM)
Dr. Mathews is often regarded as the "Father of Computer Music”
9. Pure Digital and Real Time Music Synthesis
The use cf the digital computer as a musical instrument with which composers and performers create and

Carl L. Holder . . . Saturday 8 PM and Sunday 6 PM

Director of Product Management, Planning and Communications at Information Terminals Corp. for five

Prior experience, including Memorex Corp., in the area of magnetic media development and testing.

10. Present and Future Storage Devices
Survey and discussion of current devices and media, including latest technological developments like the
charge coupled devices and magnetic bubble memories. Costs, advantages and disadvantages of these
devices for the personal computer user. Accompanied by slides.

\ /
- DAILY TUTORIALS ™

with microprocessor systems.
BASIC COURSES

1. Development of Microcomputer Systems for

Business Use . .. Friday 10AM to 5PM

Sy Roiner, Citibonk, N A,

— system design concepts

— economic efficacy of microcomputers versus large centralized
computer systems

— distributed processing definitions

— advontages and problem areos

— network design and architecture

— data communicotions aspects

— cose study: design of a stand-alone workstation for dato en-
try and retrieval

2. Development of Microcomputer Systems for
Home Use ... Saturday 10AM to 5PM

Cary Ringel, Con Edison

— survey of simple microcomputer control systems for home use

— selection of hardwore: IC’s, boards, kits, development
systems

— progromming ond software aids

— interfacing: A/D and D’ A conversion

— examples: design of o home control system; microcomputers
for a music synthesizer; computer TV gomes

— cose study: use of the Motorola 6800 in design of a microcom-
puter system

3. Survey and Comparison of Microprocessors

.+« Sunday Noon to 5PM

Donald Lewis. Standard Microsystems Inc and other speakers

— definitions and distinctions between ALU-chips, controllers,
microprocessors. microcomputers

- current applications

— microprocessor architectures (bit-slice. 4-bit, 8-bit. 16-bit.
minicomputer-type)

— vendor survey

\ — performance evaluation and criteria for selection

There will be two tutorials offered each day, one aimed at those participants who have
little or no experience with microprocessors, and the other for those already experienced

INTERMEDIATE/ADVANCED COURSES

4. Microprocessor Interfacing . .. Friday 10AM to 5PM

Donald Lewis. Standard Microsystems Inc.

— interface components (peripheral interface chips, UARTS,
etc.)

— interfoce standords {IEEE 488, RE 232C. $-100, etc.)

— interfacing to keyboards

— interfacing to casette and floppy disk drives

— intertacing to disploy devices

— cose study: how to design o CRT terminol

5. Microprocessor Programming and Software

... Saturday 10AM to 5PM

Donald Lewis, Standard Microsystems Inc

— software design: flow-charting, setting breakpoints,
documentation, efc.

— assembly language tor the Intel 8080, 8085, Z-80, Motorola
6800

— instruction types and addressing techniques

— use of the stack

— interrupt handling and direct memory access (DMA)

— software development oids

— high level longuages for microcomputers

6. Technology Analysis and Forecast of Future
Microprocessor Structures ... Sunday Noon to 5PM

Daniel R. McGlynn, U.S. Philips Corp.

and Will Mathys, MOS Technology Inc.

— emergence of specialized computational elements (SCE) -

— architectural evolution (stack processors. recontfigurable or-
chitectures, multi-level logic)

— resource management techniques

— software evolution (nano-programming. extensible instruc-
tion sets, structured pragramming madules, very-high-level

longuages)

— evolution of semiconductor technology of micraprocessors

— microprocessor architecture at the chip level

— case studies: design of MOS Technology's new 8-bit and 16-bil

processors /

Personal Computing Expo to be
produced by
H.A. Bruno & Associates

H.A. Bruno & Associates, Inc., has been prominent in
the exposition and promotion fields since 1923. Highly
skilled in the production and promotion of consumer
and trode shows, the company currently promotes the
American Energy Expo, the National Boat Show, Auto
Expo/New York. Promotion assistance also is current-
ly rendered to the National Computer Conference
and the Triennial [IFIPS Congress in
Toranto.

The show producer has promoted successful shows in
the New York Coliseumn every year since the building
opened in 1957. Staff personnel are thoroughly
familior with the building, its services, management
and labor.

Interesting, educational exhibits
of Personal Micro Computers

The lectures and tutorials are not just theory! You will
be able 10 see a multitude of micro computers. Try out
various demonstrations: fascinating games, even in
color: small business applications; computer produced
speech; music; color graphics; ond many more. Micro
computers are not only small and portable, also you
will need only a "micro budget” to be able to take
them home.

Show Hours and Admission

Personal Computing Expo hours are as follows:

Friday, Oct. 28 — Noon to 10 p.m.

Sot. Oct. 29 — 10a.m. to 10 p.m.

Sunday, Oc¢t. 30 — Noon to 7 p.m.

General Admission: $5.00 (includes free BYTE lec-
tures) per day.

Two-doy Tickets: $9.00 (advance sale only)

Three-day tickets: $13.00 (advance sale only)

General Information

You may tind it advantageous to purchase two or
three-day admission tickets in advance. These are
availble by mail only, no later than Qctober 10,
1977.Use coupon below.

Group rates (10 or more persons) qualify for $1.00
off regular prices. Arrangements must be made by
mail prior to October 10, 1977.

Special arrangements have been made if you
desire to stay overnight. Our headquarters hotel,
the Barbizon-Plaza, is located on Central Park
South, two blocks from Columbus Circle. Single
rooms available at $34.00 per night; $40.00 double,
plus tax. There's a weekend plan: $22.95 daily, plus
tax per person, double occupancy . . . includes
breaktast (brunch on Sunday) and meal gratuities.
Children under 14 in same room with parents, free.

For hotel reservations and information, call toll
free (800) 223-5493. From New York State cail (800)
223-5963.

For those traveling to New York by air, American
Airlines offers a convenient service through ar-
rangement with Personal Computing Expo. For in-
formation, call toll free (800) 433-1790. In Texas the
number is (800) 792-1150. From the West Coast,
round trip fare via American is only $227.00.

20,000 persons are expected to attend and view the
more than 200 exhibits by personal computer
manutfacturers and retailers.

Personal Computing Expo will occupy the 4th floor
of the New York Coliseum. It is located on 59th
Street and Columbus Circle — the geographical
center of New York City. Garage parking in the
building is available.

For answers to any questions pertaining to your at-
tendance at Personal Computing Expo, contact the
Show Manager, Ralph lanuzzi, at Area Code
212/753-4920.

Advance sale of tickets available . .. Three days *13
Two days *9. .. General Admission *5
MAIL THIS CONVENIENT ORDER FORM NOW!

(S S S N S N N N S SO SN S N SN S S N S S SN S S A N S S . S
Personal Computing Expo admission is $5.00 per day. Advance reservation eliminates
waiting in line. Order advance tickets with this coupon. Admission ticket includes access I
to exhibits, lectures and tutorials.

Please send me advance registration tickets for three days, Oc- I
tober 28-29-30. Total cost $13.00 per person.

Please send me advance tickets for two days, October and I
October ______. Cost is $9.00 per person. l
Please send me advance tickets for one day, October . Cost
is $5.00 per person. I
Make all checks payable to PERSONAL COMPUTING EXPO, and mail to: l
Personal Computing Expo, 78 East 56th Street, New York, N.Y. 10022. I
Name Amount enclosed $.
Address i
City State Zip

Circle 414 on inquiry card.

After you have entered your last data and S THE BETTER BUG TRAP .
are prompted for miles and gallons, enter a
zero for each and your computer will tell DEBUG
you how many miles you drove, how many
gallons were used, and your average miles AND
per gallon. This miles per gallon figure is
computed using the total gallons and miles
driven and not an average of each previously CDNGUER
comp\:\ted miles per gal|0r!. Altair/IMSAIl compatible board catches program bugs and
This program was written for a SWTPC provides timing for real-time applications.
6800 and will run with e’ther 4 K 0': 8 K Four hardware breakpoint addresses. Software breakpoints
BASIC. Its output was designed to fit the only possible at instructions in RAM. Better Bug Trap
SwTPC CT-1024 video screen and will breakpoints can be in ROM or RAM, and at data or
therefore appear squeezed on a wider screen instructions in memory, input/output channels, or stack
or printer. This can be adjusted by changing locations.
the spacing of the column headings in line Board can stop CPU or interrupt CPU at a breakpoint.
700 and the tabs in fine 320. The statement Real-time functions: watchdog tin.er, real-time clock (for
PRINT CHRS$ (] 6); CHR$ (22); in lines 450, time of day clock), interval timer.
520 and 690 are the computer cursor Sophisticated timesharing made possible!
commands (home up, erase to end of frame) Unique interrupt structure: generates a CALL instruction to
for the CT-1024 TVT and should be changed your subroutine anywhere in memory, not a RST!
or left out if some other terminal is utilized. Addressed as memory. All parameters set easily by software.
Also, all REM statements can be left out at All this and more for about the price of a real-time clock
the risk of losing some documentation value. board, but nothing else does the job of the Better Bug Trap.
Carry this idea forward in your computer $160, assembled and tested. 2 manuals plus software. 90 day
to help keep track of the performance of warranty. Shipped UPS. Delivery from stock.
your car.® - -
Icrontes .
Listing 1: The BASIC program for analysis gg’éEzs\;"' 123 WEST 3RD ST., SUITE 8
of automobile mileage data. This program is L ILLE, NC 27834 o (919) 758-7757
written for the SwTPC 6800 system’s 4 K
or 8 K BASIC interpreters, and can easily be

adapted to any interpreter which imple- e o
ments a minimum of decimal arithmetic and WEIneEn [Lcen i
string output operations for formatting. This e IR
program is not recommended for use with

HREE 2208
JE LT ORER SALLOMN

AT 1] ExsE Al SAC O, FORT

“tiny" j £EE” EHETHATE dASt o EL
tiny " BASIC interpreters. e
HE Iy I =% 0F 12 MALE. ENTEF S0e

[T

MESATIVE MUMEES FOF THE '«€0T

Szah, [IENTN ANt v f0% 00 THED JdilL

PR Wil =R AN Emob JUT TRE RREVION ENTE
o Zn FRINT O SROM THE SEenl TOTAL,

i Rz ERRRIae T NenTE RAl Mt UEASE TO Il Ide FYTER ton”

e S R ol b, ReERMT HUthe R oty READ, 1T TTART. L.

Clot REN HeG[_ yarT THEOT MILERSE BEFOFE THE FIELT

[ETOR - A N | 018 @ TIO% ol -0Z 0 v=]e 3 CRMD ORI HATE s

CLAn T . e T

wiTe 1T Aa-1 30 0F S - CET Meo=U

Wle s 3T wEa 3D0F oS B E FRINT MR 1m iU HE R Zz 08

nlTh el T=w TREITCES LX) MILEAGE SALl MILE! esT

EETEELS T2 S R ulte SET e

Lo TUE AT T h EERINT CMILERSE LED . TeAN 08 S0l

o LEF] ZLGNIR LETECTI1 nr SRy CERE IO 3

IR I G T ST I PR nTdn 3JTO 1T

'
'
LR A £ TN NI FRIMT AL O T RS RREATER THAN o
'
‘

e - Wome AT oo
FEAD.
ey
PAITEITITN. - €0 -ty "
AALN TTIMETAT TN THROT IILERDE GEFORE TRE FIFIT
s RLRCHALEL L AUl

"l E L1 tHLED R LY

'-YH['.I_:':?'-TF!F‘|'<‘:'-1'A'-Yr'11 PES R

oS s Ol E~EOel FROM TATAL 1= N
L T4 e Te Al it 1 MICERGE 1D "

e o ETERRTAE T
v "

YT TR
[RETTY] s

el g SterpTe Ted 141 137 fuL 4
that 2T ML=ME-o HM3T 0en

e n IS T ~n Teetl MIn AU DFDVE e IOFET TN

B3 OGED mmolaTLieens T b B3, 7 LONS OF GA:

T E B B P R-R FOF AN SUEFRSE 05

pdwe EEINT OO DR S MR T 1o.7o NILED FEF GALLON

NATa FEUNT TE0 RELLLND D€ el

Wheo TEIAT O FOS 5 4UEERGE OF —

Whan SEENT EXCOM1F CER RALLGH =

167

http:JllP�.IT
http:11:...EM
http:TMf;�.25

http:h:i~Sf'ONf.ir
http:l"\Ef-r.:FSHE'.11

RUN
HM2 19-FER-77 BASIC VO1B-02

MASTER MIND CODERREARER

PLEASE BE PATIENT. SOMETIMES I TAKE A FEW MINUTES ON HY MOVE

WHICH VERSIDW (1 OR 2} 71

MY MOVE FOR ROW 1 TS

YELLOW RED YELLOW GREEN
HOW HANY HLACK PEGS 71

HOW HMANY WHITE PEGS 71

MY MOVE FOR ROW 2 IS

RED RED RED YELLDW

HOW MANY BLACK PEGS 70
HOW HMANY WHITE FEGS 71§

MY MOVE FOR ROW 3 IS

BLUE GREEN YELLOW ELUE

HOW MANY BLACK FEGS 7?0

HOW HANY WHITE FPEGS 72

#Y MOVE FOR ROW 4 IS

GREEN YELLDW GREEN GREEN
HOW HAMY BLACK PEGS 7

HOW MAHY WHITE PEGS 71

MY HMOVE FOR ROW 5§ I8

YELLOW BLACK GREEN BLACK
HOW MANY BLACK FEGS 7?3

MY HOVE FOR ROW & IS

YELLOW BLACK GREEN WHITE
HOW HMANY BLACK FEGS 74

THANKS FOR THE GAME

ANOTHER GAME 7N

STOP AT LINE 900

READY

Listing 4: Sample run of BASIC Mastermind
Codebreaker. Values in response to the
queries “HOW MANY BLACK PEGS?” and
“HOW MANY WHITE PEGS?” are typed
by the player and correspond to correct
colors in correct positions and correct
colors in wrong positions in program’s try.

strategy used by the program is main
strength calculation involving little concep-
tual sophistication, it is nevertheless a
powerfully effective strategy. Indeed it
might be said that the BASIC Codebreaker
program is a Mastermind Master.

After you have played against both of the
programs you may want to link the two
programs together so they play against each
other. It would be interesting to watch the
computer’s strategy against itself.

Mastermind is marketed in several forms.
MiniMastermind is identical to Mastermind
except that only six rows are permitted for
completing a game. The programs are easily
adapted to play any version by altering
index variables, subscripts, etc. It is recom-
mended that a playing set be used when
playing against the computer, as the game is
somewhat difficult to play in your head.
However, paper and pencil can be used if
no playing set is available. Interesting com-
puter games usually require long and com-
plex programs. Mastermind is a logical and
challenging game which can be programmed
in a small system with minimum memory
and a simple version of BASIC.m

Circle 415 an inguiry card.

Special 5% Discount during October with this ad

Get the Best in
Business Data
Processing Systems

Accounting, Inventory, General Ledger,
Timesharing Applications

Also a complete line of personal computers
and peripherals, including:
e Processor Technology e CROMEMCO

e IMSAI ® North Star

e Digital Group e TEI

® Compucolor ¢ DTC

* TDL ¢ Books/Magazines

HARDWARE/SOFTWARE SUPPORT

Our experienced staff is ready to help you
configure the best system to suit your needs

MAIL ORDERS WELCOME
(We accept MasterCharge/BankAmericard)

THE COMPUTER RO

124 H Blossom Hill Road ® San Jose, CA 95123
(408) 226-8383

i Qudio

PO BOX 91 ITHACA, N.Y. 14850 (607) 273-3271

OUR PRICES

REVEALED

Z-80 CPU $35.00
2708/16 EPROM $25.00
PROTOBOARD $25.00
8k STATIC RAM $25.00

16/64 k DYNAMIC
RAM $35.00

mlks(ADD $2.00 SMIPPING PtA ORDER CI I I PS

Z-80 2 mHz $25.00

4 mHz $35.00
2708 EPROM 450ns $20.00
21102-1 RAM 450 ns $1.30

21F02-1 RAM 250 ns $1.50 l
s AL _J

171 Circle 416 on inquiry card.

Program Structure

The BASIC Mastermind Codemaker Listing 2: Example of play against BASIC Mastermind Codemaker. The

shown in listing 1 requires only 2 K bytes text gives an analysis of the moves.
for the source code including remarks. RND

and INT {random number and integer) are i

the only special functions used; no string - Vx gab ot BRsie vor o
functions are needed. This program can be ma i TER minh e

easily modified to run under a version of MMLGI LRELON L

BASIC that does not support string variables *

by substituting numbers for the color o

abbreviations. The secret row of colored P Mot AMD 1 WRTTE FEGS DN ROW 0

pegs is sct up by a call to the random num- L TR Rau

ber generator in line 290. Note that for ver- e

fik

sion 1 games, R=6 and for version 2, R=7 e i o o
WBET L BLATE AND b WHITE FEGY N KOW

permitting the assignment of empty Spaces. TR T b R
Black peg responses (exacl correspon- o
dences) are counted from lines 490 to 510, o
and white peg responses (correct color, o Gy e nRl 0 UHLTE FERS N WO
wrong position) are counted from lines j,"
512 to 555. o

An example of play against the computer YOI G1 L AL AND & WNETE FEGE U RO 4
program is given in listing 2. The first row G TR TR s
of input is a guess. The second row is T
designed Lo test whether there are any re- LT A AN WML TE FEDS ON ROW D
peated colors from the first try in the SOURCHOTEE bR R
secret code. The codemaker’'s response o
tells us that one of the colors in the first o
try is repeated. In row 3 we hypothesize OMGRATN ATTONA Y YOI AU FEOREN THE COTE TN & KOS
that BLue is the correct color in row 2 ANOTHER GAME - 1 YES- N KU PR
and that Orange is the repeated color from KEAnY

row 1. The codemaker’s response constitutes
a stroke of luck for us as we learn that
BRown is the correct color on row 2 and
that Red and Orange can be eliminated from
row 1. In row 4 we hypothesize that Green
is the correct color in the first row, but

Listing 3: Text of BASIC Mastermind Codebreaker. Minor modifications may
be required for other versions of BASIC.

. M2 19-FER-77 -02
alas, we are mistaken. Now only two " B-77 BASIC vo1R-0
arrangements are possible. We have a 50% 10 REM MASTER MIND |CODERREAKER®
H H H 30 RANDONIZE
chance of getting it on row 5, but fate is O vs(on s
cruel. 4% DIN AS(S) v E$(3),C8(3),N8(3)
- . 50 REM INITIALIZATION
After playing the Codebreaker half of 40 FOR J=0 T0 &
. . 70 READ As(.))
the Mastermind game you will learn how B8O NEXT J
tO get 1he mOSt information out Of each ‘9800:-\;? Lgsg » *BLUE® »"GREEN®+*YELLOW® » "RLACKR® » "WHITE®» * SFACE
move. | leave these discoveries to the 10 LET e
reader. 130 LET L3=0
140 PRINT °MASTER MIND CODEERREAKER®
Alter lrying to break the codes pro- 145 PRINT °FLEASE RE PATIENT, SOHETIMES 1 TAKE A FEW MINUTES ON MY MOVE"
150 FRINT *WHICH VERSION (1 OR 2) *3
duced by the computer our next step 160 INPUT
. . . 170 LET V=u4+5
will of course be to get ecven with it and 180 REM ASSIGN COLORS AT RANDOW FOR ROW 1
[H H 190 FOR J=0 TD 3
see how good it is at breaking codes. 200 LET R$(0+J)=A8CINTCVARNDC)))
i 230 NEXT 2
The Mastermind C_odebreaker program ahe hEn START MAIN PLAY OF GAME MERE
attempts to decode input codes. A word 230 REM I 1S THE ROW COUNTER
of warning; the Codebreaker program is 245 PRINT
250 PRINT *HY MOVE FOR ROW*I+1® IS*®
an excellent player. 260 FRINT R8$CI+0) Rk$(Ir1) (RCTo DI IRECT 3}

169

270
2B
290
300
30T

390
400

a5g

470
HFQ
700
T
720
730
740
250
-1
70
TR
R0
BOO
#10
R20
A3D
Ha0
H45
850
:1.1¢
B0
BAJ
B#}
o0
Pil
0
230
240
P50
b1
P70
90
990
1000
1010
1020
1030
it40
1050
1070
1080
1090
1100
1110
2000

Listing 3, contiriued:

FRINT “HOW HANY BLACK FEGS “i
INPUT S{1+0}
IF S(I¢0)<>a THEN 320
FRINT °THANKS FOR THE GAME®
FRINT
GO TO 874
IF S{1,0)<>3 THEW 3&0
LET SiIrl3=05\KEH IF 3 HLACKS THEHW O WHITES
B0 TO 380
FRINT *HOW MANY WHITE FEGS *i
INPUT SiIrl)
REM GENERATE HYFOTHESIS
FOR I0=L0 TO V-1
FOR Ii=L1 TO V-1
FOR I2=L2 TG ¥-1
FOR 13=L3 TO w-1
LET D${d)=A{T07
LET Ust1X=ns{I1}
LET D$i2r=A%{13}
LET D${3)=asiT3)
REM CHECK alL ROWS FROM FIKRST TD CURKENT FOR COMSISTENCY
FOR R=C 70 T
FOR J=0 TO 3
LET CstJ)=K%iRed)
LET B${Jy=D%i}
NEXT J
REM USE RON EVAL DATION SUBROUTTINE T CHFCK CAONSLISTENCY OF
REM HYFOTHESIS AGAINST EACH ROW
LET M=CMLET H-0
GOSURF F10
REM CHECK FDR AGREEMENT OF FLACK & WHITE COUNT
IF NS-S(R.0) THEW 700
IF M7»B{Rrl} THEN 700
NEXT R
REH HAKE SURE THAT HYFOTHFSIS ROW DOESNT DUF[ICATE ROW 1
LET Z=0
FOR =00 TN 3
TIF E$(0e 1Y 7-D% {1y THEM &40
LET ZI=2+1
HEXT J
IF =4 THEN 700
Gl TO 830
NEXT T3
NEXT TZ
HEXT T1
NEXT I
FRINT "1 HAVE REACHEDL AW IMFARSE [N MY THINKTHG®
FRINT "COm N Y HAVE MADE AN ERRORT
GO I 870
IET 1 0=10
LET 11=I1
LET L2=12
LET 1 3=13+1
REM DO NOT RECHECK ELIMINATED FOSSIBILITIES
REH ASRTGH NFXT ROW
FOR .J=0 TO 3
LFT R&{T+1r.l)=D%i.])
HEXT I
NEXT T
PRINT "1 AH STHHFED -- YU WIH®
FRINT "AMOTHER GAME °4
INFUT R%
TF Fs="Y* THEN 150
STOF
REM SUBKAUTIHE TN EVALIATE RESPONSE
REH COUNT BLACKS FIRST
FOR N1=0 10 3
IF Gty B${JLY THEN 940
LET N=N+t1
NEXT .J1
REM HOW COUNT WHTITES
FOR Ji=0 70 3
FOR J42=0 T0O 3
IF J1=a2 THEHW 1080
TF C${Jt¥-R${.1L) THEN 1080
TF C$0.U2r=F%{.12} THEW 1080
IF C$4J1) - B9La2) THEM 1080
LET HM=M$1
LET H${J23)=*X"NREH DUMMY WRONG UALUE
GO TQ 1070
HEXT U2
NEXT %
RETURN
STOF
END

READY

Strategy

Two simple rules determine the Code-
brezker program’s strategy: row 1 is a ran-
dom try ({all possible arrangements are
equally probable); each subsequent row is
an arrangement which cannot be disproven
on the basis of previous results, When
playing Mastermind the human player
may try an arrangement which is known

170

to be incorrect In order to obtain specific
information; this kind of strategy is not
used by the BASIC program.

Program Structure

The BASIC Mastermind Codebreaker
shown in listing 3 requires less than 3 K
bytes for the source code, including remarks.
RND and INT are the only special functions
used. Play begins with a call to the random
number generator for row 1 at line 200.

After the program types a row it requests
feedback information about the try. The
number of correct colors in correct positions
is requested at line 270. If there are two or
fewer black pegs for the try, the program
asks for the number of correct colors in
incorrect positions at line 360.

After receiving this information the pro-
gram constructs a table of all possible
arrangements, one row at a time (lines 390
to 730). Each row is internally hypothesized
to be the hidden code and the question is
asked: "How many black pegs and how
many white pegs would have been awarded
to each try from the first to the current row
if the hypothesis were true?” These values
are calculated internally by the subroutine
at lines 910 to 1100. This is the same sub-
routine used by the Codemaker program,.
If there is a discrepancy between the cal-
culated value and the actual value awarded
for any row, the current hypaothesis is re-
jected and the next row in the table is con-
structed. The variables LO, L1, L2 and L3
mark the program's place in the table of
possible arrangements belween tries so
that rejected arrangements are not con-
sidered again.

Since row 1 is constructed randomly and
therefare occupies an unknown position in
the table, it is necessary to check each try to
ascertain that it does not duplicate the first
row. This check is conducted from lines 610
to 670. If the program exhausts ten tries
without breaking the code, it prints the
message at line 860. | would be interested
to hear if this ever happens.

When evaluating the program’s try it is
necessary to count black and white pegs
carefully. If you make a mistake counting
the number of exact or inexact correspon-
dences, the program may exhaust the fable
of all possible arrangements without finding
a possibly valid try. In this event, the mes-
sage at lines 740 to 750 is printed.

Summary

An example of the computer’s play is
given in listing 4. Note that although the

http:40.00-$60.00

http:lfo.,.lo

http:nu111be.rs
http:exponP.nt
http:Grapr.cs

telecommunications equipment supplied
by GTE Sylvgniq with a number of
different video terminals and printers.,
It is afl pretty standard communications
equipment, although the size of the GTE
equipment case in the hall (a full height
19 inch rack cabinet) suggests a dedi-
cuted minicomputer as the local satellite
of a netwaork. Based on this abservation,
it should in principle be technologically
feasible for you to hang onto u Slock
market wire and accumulate data vig an
R5-232 port and modem as it is gener-
ated day by day. There is also a whole
fiost of stock market analysis firms,
many of whom may offer sorne form of
machine readable data as g by-product.
Consult the advertisements in the Wall
Street Journal or Barron's. /f any readers
can help by providing specifics in answer
to Mr Larson's request, please write so
that we can make the data avaflable.
Onice the source of data is better de-
tailed, it is possible to make some more
specific comments.

As for why you don't see any adver-
tisernents for data sources, perhaps it is
because none thouqht of selling the data
before. Perhaps your letter will help
create g market.®

WHERE DO | START?

I am currently a college student ¢n-
rolled at a community college. | have
several issues of your magazine and have
been reading about all the small systems
of computers. | am very interested in
owning and operating a small computer
system cxcept for one thing: how much
do | need to know to sect one up? Speci-
fically, how much digital electronics,
electronic assembly, computer science
and programming knowledge do | need?
Assuming | need a lot of this type of
knowledge, how long might it take me
to master it so | can set up my system?

| intend to use my compulter lor

games, mathematical modeling, digital
to analog devices and simulation. |
would love 1o set up a4 sysiem to do all
these things, bul 1 don't want to wait
until | have a bachelor's degree in com-
puter science Lo do it. | would greatly
appreciate any guidance you could give
me on whal kind ol knowledge or ex-
perience | would need in order to set up
a workable system.

John Graffio
1094 Quail Creek Rd
Fallbrook CA 92028

The mindimum 'set up’ time for a
persangl camputer, by fur, iy through
purchase of an Tapplionce’” computer
which comes ready to use, in the same
manner ds u stereo receiver comes ready
to use. {n this cotegory are the latest
cafeutators {such as the brilliont new
SR-59 from Texus fostruments with its
printer and ROM \oftware attachments),
or true general pupose compulters such
as the Apple-lf, Commodore PET 2001,
or Noval 760. Al of these come com-
plete und assembled, 1 vou want Rits,
thase products range it complexity from
simple periphergfs to complete systems.
Kits noaturalfy take more time to get
into operation und debuy. Kits such as
the Heathlit computer products assume
o initiad lamiliurity with electronics,
and provide tutorial materials to get the
user inte opergtion.

CONVERSIONS?

As a newcomer to the field of com-
puters, | am just beginning to understand
the hardware, bul my soflware problems
still exist en masse. While thinking hexa-
decimal is nice, ! have been brought up
thinking in a base !0 numeral system
{whatever that is?). 1 know not whether
this is an extremely simple and trivial or
a vastly complex question, bur tell me,

how does ane get all those rows of s
and Os into groups of four BCD bits? |
can understand actually counting up to

the number with a high lIrequency
counter {eight 7490s in BCD farmat
paralleled by eight 7490s in binary

format driven by a 10 MH~ clock), some
complex software method that applies
lables, or even successively subtracting
out exponents of 10. But | ligure some
genius, somewhere, has as algorithm. Can
you help me?

Whit Smith
606 Brookwood Ln
Goldsboro NC 27530

Conversion of a binary riumber 1o 4
decimal number wos presented in some
detgil for the 8080 processor in on
article entitled “*How to Do a Number of
Conversions” by fames Brown on page
50 of our September 1976 issue of
BYTE. There is no magical short cut
with most processors: yvou compare the
integer successively with values of 10
raised to varfous powers {stored in u
table of binary numbers) and derive
each digit of the converted BCD number
from the binary by successive subtrac-
tion of the appropriate power aof 10 {or
division if you have such on vour pro-
cessor). Conversion of the BCD form to
an external ASCIl representation is
easier, and can be done by adding the
hexadecimal constant 30 to vach & bit
BCD digit value, giving an 8 bit ASCH
value from hexadecimal 30 to 38, which
prints as the character values 7 to 9
respectively. Converting BCD inputs or
ASCH inputs to binagry internal forms
is fairly simple as well: for each sticces-
sive digit entered, multiply the previous
entry sum by 10 (edd the old value to
the sum ten times tor g less than optimaf
brute force technique), then add the new
entry (carefully limited to values trom
0 to 9) to the previous entry sum giving
the new entry sum.m

APPLE II'’s

Computer
Playground

6789 Westminster Ave.
Westminster, CA 92683

714-898-8330

Phone

Available at

Demonstrations
Rentals

Games

Color Graphics
Repair and Service

Also see the KIM-1 svstem

Circle 442 on inquiry card.

Microcomputer

systems, penpherals, custom
programs for business, service,
sound counsel on equipment
selection.

We stack IMSAI, ICOM,
Technical Design Labs, Vector
Graphics. Heuristics, and other
iines, and provide business
packages and engineering
design.

Microtex, Inc.
Microcomputer specialists
(713) 780-7477 /9305-0 Harwin
Houston, Texas 77036

| RDITEPESVEIRTIVISY

iT's A GREAT BIG COMPUTER WORLD
But You Only Need

+THE COMPUTER CORNER

Fy

»
-

P 850L A New Dawn Is Here! -
- emsAl 8080

> *POLY - 88

> *TDL 2:80

> & Memories & 10 Boards

>

- ®Computer Book Service

i ® Magnetic Topes & Disks

e ® Fuil Ling of Magazines

. ® Brain Games & Puzzles

4 *\Workshops & Club intormation
-

Visit THE COMPUTER CORNER for

e
- all your computer needs Stap in and
»- browse you'll hke our personal service.
»— THE COMPUTER CORNER

White Popm Mall Uoper wevel
4) Hartdian Avenue
- Whte Prams b York 10601
- Tel (G141 WHY DATA
e Ample Paing

‘dfaskadkidkddbadaiiiasd

T06 Ueily & Saturriay
10-9 Yhursay

«

L

Circle 443 on inguiry card.
186

Circle 444 on inquiry card.

http:IVAl:l.LI
http:AIHtA:l.lT

http:f,Uum.im
http:Acc111,.ey
http:00of<.ll
http:c.a1u.1n

http:iCIO~P.t1
http:s'or.ig.ci
http:l\.111Si,.tl
http:LM:::IOC.AH
http:7511)!.iN
http:lllll".lm
http:7�i1�-.JO
http:7JL$0.IN
http:7<1L~J'.MI
http:i'-IS11.i1
http:7�11S.2N
http:comere1.il

http:�lcctric.11
http:progrnr.im

Classified Ads

FOR SALE: Assembled SwTPC CT-1024 TvT2
with computer controlled cursor, less power
supply, $200. Assembled SwTPRC TVT CT-L
board, $15, Assemnbled IMS UCRI cassette inter-
face, $40, Tarbell cassette tapes of 2 K MINOL
2,2 {a Tiny BASIC) or 8K EMPL 1.0 la micro
APL for the 80BQ), 510 fuser's manual meluded}.
Erik Mueller, 36 Homestead Ln, Fooseveft NJ
08555. 1609) 448-2605.

FOR SALE: BwTPC CT-1024 with ASCI key-
board, memory board, power supply, and paraliel
interface for $150. KIM-1 with homemade power
supply S$200. Mike-2 8008 computer with com-
marcial power supply, 2 K of RAM and 2 K of
ROM for $200, Alan Feldman, 1114 Cameron Av,
LaCrosse Wi 54601, (608) 7821921

FOR SALE: KIM 1 (MOSI computer board
mounted in cabinet with built in power supplies.
Excelient condition, $220. Roger Cox, 4327 N
Chestnut, =18, Colorado Springs CO 80907,

WANTED TOQ BUY: Hewlett-Packard 98304
calculator, 4 K word memory preferred. Also,
matrix ROM, strings ROM, mass memory RO,
and 98664 or 98714 printer. Consclidated Papers
Ing, POB 50, Wisconsin Rapids Wl 54494, Agn:
Purchasing Dept.

FOR SALE: NATIONAL SC/MP LCDS Develop-
mertt System, Used once. Perlect condition, an
ariginal Yactory carton. Inclurles CPU card, LCDS,
all manvals, S400. 8 C Devine, 31 Cresiview Dr,
Waesierly RI 02891, (401) B96-7718.

FOR SALE- Several naw 12V stepping ragtors,
with specs lor $25. (Haydon part #9504 112
05001}, These are normally sold for $49 in single
guantities, Applications for stepping mMoOIoes
include robats, printers, XY plotters, NC machines,
parisialtic pumps, etc. Wahesh K Shah, 4240
Clarendon, 263, Chicago IL 60613, :

WANTED Contaclt wiih persans who have a
seripus persaonal intarest i wsing & microcompuler
for stock and comminclity macker invesument pur-
pases, |1 covanance is more than just another word
to you, send o briel note of your desires, guali-
lications and market experience/involvement to
J Williams, 2415 Ansdel Cr, Reston W A& 22081, An
association +s being formed.

G500- 1 have just bought an ECD Corporatian
MicroMind [hased on e 8500 rmicroprocessor
family) and would ke to got o touch with other
peopie who hawve cecently bought this system to
exchange notes, problems, solbware, eic. | would
appreciate anyone wha wishes to fand this includes
any G500 family users, 1eob gettung n ouch wilh
me to excharge addresses and, hapelully, informa-
1ion. Gregg Winams, 3439 Sourhern, =7, Memphis
TH 38111,

FOR 3ALE: Five MITS 4 K dynamic memory
boards. All i working order and run BASIC. $90
each. 1 ACR, working, $B5. One ALTAIR 8800a.
Has all power modifications including large capac-
itor, 14 edge conneclors i mother board. $500.
Danny L Quinton, POB 23496, Emary University,
Allanta GA 30322,

NEW EPROM PROGRAMMER
for 2708’s and 2716’s

The new iow cost PP-2708M18 PROM programmer from OAE is the only
programmer with all these features:
¢ No complex interface to wire, Just plug the programmer into
a 2708 memory socket and clip one wire 10 the "wail”" buss!
¢ Driving software is short and simple!

¢ 10 turn cermet trimmers for precision voltage and puise width

ad|ustment’

* DC to DC switching regulator
* Ancdized extruded aluminum case for table 1op opearation
s Zerc Insertion force socket
* 2 programmiers for the price of 1
Programs both the popular 2708 (1024xB) and the new TMS 2716 (2048x8)

EPROM's!?

The OAE PP-2708/16 module turns your computer into a powerful full
feature PROM programmer. QAE's exclusive interfacing technigue makes
it a snap: simply plug the PP-2708/18 into a 2708 read only sockel, A shorl
software routine sends dala over the address lines to program the PROM.
SAVE $50.00. For a limited time we are selling the assembled,
tested and aligned unit at the kit price! Only $249.00*

"Let us know whoss PROM's you are using and we wlli align our programmer lor
optimum dale retenlion and longest PROM lifa.

2 Alao available is our Model PP-2716 programmer tor [ntel's unique 2716 EPROM. Same

LOW PRICE.

nclude $3.50 lor domeslic shipping and handling. Callfornia residants inglude 6% tax,

* SPECIAL *

TMS 2708’8 AT COST
ONLY $19.95 EACH

Circle 457 on inquiry card.

NEW LOCATION!

OAE

Oliver Audio Engineering, Inc.
676 West Wilson Avenue
Glendale, CA 91203

{213) 240-0080

194

PROM PROGRAMMING: From Hex or QOctal
listing: 2708s (516}, 1702As (35} From Hewx/
Octal paper tape: 2708s 1$81, 170245 (341, You
supply the PROM. 48 hour turnaround, Quantity
discount: 1 1w 3 PROMs 0%, 4 ta 7 PROMs 10%,
£ w11 PROMs 15%, 12 or more 20%. They can
all be different, | also have a few 1702A: a1 56
gach, HS Corbin, 11704 bsen Dr, Rockville MO
20852, (301) BB1-7571.

FOR SALE: Honeywsll keypunch keyboard
{reed-switched keys). WNo enclosure or electronics,
$20. Richard Sims, 64 Chariesgate E Apt 75,
Boston MaA 02215,

FOR SALE: 1 absolutely hwand new IMSA| BOBO
system. 12 K memory. Also brand new 33 ASR
and Panasonic t@pe recorder, All working and
totally unused. Call woll free (BOO) 221-2628 or
write Bernarg Home, 375 Park Av, NMew York NY
10022,

FOR SALE: Computer Automalien 218 mini,
complete and working with 8 K core, 16 bit
processor, 1TY Zoma controller, and miscellaneous
electronics Interfaced 1o Or Suding 1100 bhaud
cassette, software included: assembler, editar,
debug, looders, plus muscellanecus diagnostics.
May consider trade up or down, Rich Adamson,
1517 Lucis, Fairmont MM 56031, {507} 235.6321.

FOR SALE: 3M OC300A date cartridges which
work in the 1B 5100, TEKRONIX, DEC and
similar eguipment at a club price of $18 per dala
cartridge plus the cost ol postage, 1BM 5100 Users
Group, ¢fo HITS Ing, 5541 Parliament Or, Suiwe
104, Virginia Beach WA 23462, 18041 490.0154.

FOR SALE. Computer software 1o prinl signs.
Print lpng horizantal signs in large block letters.
Qutput leuers are 100 print characters high by
50 print lines wide and are printed with charac-
ters ol that letter. Complele program saurce
text listimg and instructions, Program is writien
in PL/ and is 517 statements long. Send only
517 cents plus 33 cents bar mailing. David Sligar,
7091 Pickway Dr, Ciacinnatt OH 45238,

WAMNTED: Copies of book Computer! by J A Titus
as published circa 1974 by Radio-Elecironics Maga-
zing. Alsa any other literature on 8008 micropro-
processor circuits, printed circuits lay outs, etc. A C
Acton, PGB 31, ividiand k) 48640,

WANTED: BYTE issues November 1975 and
April, May 1976. Will pay almost any price foa
well meserved comies. Send price and condition
information to Chris Sutter, RR 2 Box 370,
Caollinsville 1L 62234, (618} 344-6552

WANTED: | have a Dwgtal POP-8fm computer, and
would tike to buy any or all of the lollowing op-
tions: MMB-E 4 K core $200, MMB-E/} 8 K cora
400, MP8-E memory poarity $200, KLB-E serizl
interface $150, DKS-EA line clock $100, DKB-EC
prog clock $150, KEB-E extended arithmetic unit
$150, | am wiling to bargain. T J Miles, 3920
Saanich Rd, Wictoria BC CANADA WVBX-1YB.
(604} 479-1752,

FOR SALE: SwTPC PR-AG alphanumeric printar
Unit is assembled, tested, and adiusted. Used ning
months without problems. All documentation and
four rolls of paper tape prowded, S350, Also one
TWT1 with vwo pages of memory, keyboard,
UART cassette tape 10, comguter contrgd snter-
face. All comained fn case. All documentation
included, $200. Call or write Gary L Dickrnan,
POB 41, Coiby KS BY701 (9331 462.3439 atrer
6 PN CST.

FOR SALE: BASIC language program al
Monopoly. Takes care ol all bookkeeping and
property detail tar this popular board game. Flay
Monopoly between friands, Make deals and bank-
rupt your epponents. Runs in 22 K of programma-
ble memory, Written in Data General's 12K
BASIC. Oocumentation 3B, paper tapg 312
Charles A Lovell, 4837 Clybourn Ay, N
Hollywood CA 91601,

FOR SALE: Teletype Model 32 ASA, complaie,
in good condition, 300 plus shipping, BYTE
issues 14, 15, 16 for 53 each. Paul Enright, 24600
Waolani, Honolulu H| 86817,

MICROCOMPUTER

- DYNAMIC RAMS MISC OTHER SHIFT REGISTERS USRT

SUPPORT DEVICES 414D (16P) 5.50 COMPONENTS DYNAMIC $-2350

8212 4.00 1103 (16P) 1.50 NHDO25CN 1.75 T409AN 300 | IM-6403

8216 . 21078 (22P) 4.50 N8T20 4.00 2505K 3'00 TR-1602A (WD)

8224 6.00 21078-4 ({22p) 4.00 NB26 325 .

8228 9.25 | TMS4050 (18P) 450 | NgTe7 1.45 (SHIFT REGISTERS UARTS

8238 8.20 TMS4060 (22P) 4.50 74367 1.00 STATIC AY5.1013

8251 12.00 4096 (16P) 5.50 DMB09S 1.00 m— -1013

8253 28.00 MM5262 (22P) 3.00 1488 195 2509K 1.83 AY5-1014A

8265 12.00 MM5270 (18P) 5.00 1489 195 25188 3'95

8259 22.00 3 : CHARACTER
D-3207A 2.50 TMS3002 1.00 EEE—

6800 SUPPORT STATIC RAMS C-3404 3.95 TMS3192 3.95 GENERATORS

5810P 6.00 31L01 P-34084A 6.75 MM5058 2.00 2513

6820P 8.00 9IL1A . P-4201 4.95 - 2613

£828P 9.60 91L12A) MM-5320 7.50 FIFO 3257

£834P 21.95 11014 . MM-5369 2.00 3341A 6.75 MCMB571

6850P 12.00 2101 , gmg:g? 3-00 2812-D 11.95 MCME571A

6852P 17.00 2102 (10S) . : 50 MCME572

6860P 15.00 2102-1 (5.00NS} DM-8831 2.50 KEYBOARD CHIPS MCM6581

6862P 18.00 2M1A-4 DM-8833 2.50 AYS.2376 14.95

il 270 211284 ' DM-8835 2.50 AY5.3600 14.95

280 25018 SN74L5367 1.00 TV GAME CHIPS WAVEFORM
Z80 3107 SN740L5388 1.00 T_M—SIQSS—SG- GENERATOR
SUPPQRT DEVICES *4200A (250NS) ! ames:O 95 8038

3881 1595 | 4100 (200NS) MICROPROCESSOR'S AYSS-8500 (6 Games) MC4024

3882 15.95 4804 F-8 19.95 10.95 566

F-8 SUPPORT DEVICES 5101 Z-80 36.95

74C89 z-80A 49.95 PROM'S
3851 14.95 745201

CDP1802DC 29.50 17024 5.0 440
3852 1495 91L02A AM290 1 22.95 1702AL 7‘08 2524
FLOPPY 7489 6502 24.95 2704 20.00 6834-1
FLOPPY 8225 680G 24.95

2708 24.00 825238

DISC CONTROLLER 8599 80081 8.75 2716 75.00 8251298
PD372D 65.00 82509 8080A 15.85 3601 4.50 82238
1771 69.95 | "Limited supply. 8080B 16.95 5203A0 7.00

00 Assembled & Teste

8K STATIC RAM BOARD
JADE ZBO KIT 250ns. 209.95
350ns. 19995

—with PROVISIONS for
ONBOARD 2708 and POWER ON JUMP 45*0“5- 189.95

WILL WORK WITH NO FRONT PANEL
FULL DOCUMENTATION
FULLY BUFFERED
° Y S100 DESIGN
ADEQUATELY BYPASSED
LOW POWER SCHOTTKY SUPPORT IC'S

« Etectronics for the Hobbyist and Experimenter 1 6 9 9 5
o 5351 WEST 144th STREET 250“8- .
- LAWNDALE, CALIFORNIA 90260
(213) 679-3313 350ns 149.95
a
Discounts available at QEM quantities. Add $1.25 4 5 0“ s 1 3 9 95
- []

far shipping. Califorma residents add 6% sales tax.

Circle 458 on inquiry card.

http:111.w1.ft
http:MP6!i.11
http:N/AY�l�8500�1chlp-$13.95
http:SH704.IN

http:l'tl<C1.r.ti

PDR-27 GEIGER COUNTER

Just released by the US Navy San Diego. They appear to be in excellent
condition and come in fitted aluminum carrying case not shown. Batteries
easily obtained except for 1.5 mercury cells which you can substitute with
external AA cells, 4 ranges from 0.5 to 500 mr/hr, detects beta & gamma
rays. Visual indication and if phonesa are purchased, audio as well. With
no facilities to test, we are selling “as is’’ visually OK, with schematic.

Phones $5.00 Inst. Book $5.00 PDR-27 $35.00

TOUCH TONE ENCODER KIT $12.95

Simply solder the chip to the PC board on back of the touch pad. It’s done.
Add 9 volt battery, small speaker, and you have touch tone audio output.
We provide specs and instructions. SP-149-B $12.95

IR VIEWER $199.00 COMPLETE

Custom made with manufacturers guarantee. Complete with built-in
light source. Permits viewing in total darkness. Operates from 6 volt
lantern battery. Great for scientific experimentation, viewing birds,
animals, ciminal detection, just plain snooping. (We cannot ship to

Calif. residents. SPL-21 $199.00

WIRE WRAP WIRE
TEFZEL blue #30 Reg. price
$13.28/100 ft. Our price 100 ft $2.00;
500 ft $7.50.

SPECTRA FLAT TWIST
50 conductor, 28 gauge, 7 strands/
conductor made by Spectra. Two con-
ductors are paired & twisted and the flat
[| ribbon made up of 25 pairs to give total
of 50 conductor. May be peeled off in

MULTI COLORED SPECTRA WIRE

pairs if desired. Made twisted to cut down Footage 10 50 100’
on ‘‘cross talk.” |deal for sandwiching PC 8 Cond. #24 $2.50 9.00 15.00
boards allowing flexibility and working 12 22 3.00 11.00 18.00
on both sides of the boards. Cost orig- 14 22 350 13.00 21.00
inally $13.00/ft 24 " #24 5.00 20.00 30.00
SP-324-A $1.00/ft. 10 t/$9.00 29 22 7.50 28.00 45.00
SP-234-A $1.00 ft 50 cond. 10 1/$9.00 Great savings as these are about 1/4
' SP-234.B .90 ft 32 cond. 10 t/$8.00 book prices. All fresh & new.
TOUCHTONE ENCODER CHIP CHARACTER GENERATOR CHIP
Compatible with Bell system, no crystal required. Ideal Memory is 512x5 produces 64 five by seven ASCII
for repeaters & w/specs. $6.00 characters. New matenal w/data $6.00

Please add shipping cost on abave. Minimum order 810

FREE CATALOG SP-9 NOW READY

P.O. Box 62, E. Lynn, Massachusetts 01904
—

199 Circle 460 on inquiry card.

http:ft/$8.00
http:ft/$9.00
http:ft/$9.00

http:Microcornput.cr

S.D. SALES CO. P.0. BOX 28810 -B DALLAS, TEXAS 75228

* Imsai - Altair "A”

Compatible Kits »

Dealer inquiries welcome on these items:

Z-80 CPU BOARD

From the same people wha brought you 1he S89.95 AK RAM KIT. We were not the hiest
1o introduce an bmsadAbtan companble 2 80 Card, ot we do leel 1hat ours has the hest
design and guality for 1he lowast pree! The advance fratures al the 2-80 such as an
expanded 1 of ¥SA imstructions, 80B0A soltware compatibilily, and aperation fiom a
singfle SVODC supply, wre all wall known. What makes our card dvllerent 1s the extra care we
1otk 1 hardwares design The CPU card will always stop on an M1 state. We also
generate TRUE SYNC an card, ta iasure that the rest of our system functions proparly .
Crynimic memory relrast and NMI are bought out for your use. Bebeve 1t or not, not all
ol uor competiton, have gone 1o the extrs trouble of dong this. As always this kit includes
Wl parts, oMl socheds, and complote mstructions for ease of assemhbly. Because of our past
wxpronce with owr 4K W1 we suggest that you order early. All orders will e vnpped on
a stner st come faira served basos. Kt includes Zslog Manual and all garts K shipped

with 2 MHZ crystals
Z-80 Chlp & Manual ~ $49.95; Add $5.00 for 2 80A
Z-80 Manual — $7.50 Separately.

Complete kit - $149.

4K LOW POWER RAM

IMSAI AND ALTAIR 8080 PLUG IN COMPATIBLE. USES LOW
POWER STATIC 21L02 — 1 500ns. RAM’'s. FULLY BUFFERED,
DRASTICALLY REDUCED POWER CONSUMPTION, ON BOARD
REGULATED, ALL SOCKETS AND PARTS INCLUDED. QUAL-
ITY PLATED THROUGH PC BOARD. For 250 ns RAM's add $10.

THE WHOLE $89.95

WORKS kit

NEW! DESIGN CONSOLETTE KIT - $89.95

S0 Sabes omnounces the inespensive was to heat the wire weap jungle Our fatest Kit gives vour 124 solderless quick connect terminab, eneugh

For erght 16 pin WS and provides 30 1 8 conmon buss matrin. Has regulated #53VDC and +/
Aba inwludes o pube genesnor sariable from 10hy 1o 30mhbz and 01 sec
Voand hardwire, case naot available,

inehides all parts, socketss Trant panel mcasares 7007G8!

ISVDC allat 1 AMP. Voltage segulation at 1000,
to 100 nane seconds. Generator output is +3V. Lo kit farm only and

CAR/BOAT KIT

$34.95
Music to qoumn Eans!

v
9% availabibe a1 $6.95 pach.
- FYLS OF TExAS

DAME FIGHT S0ONG
AWAY

MUSICAL HORN

Pusical Hor kit T car bt ar bome, Plays any tune from Mazart 1o Led Zeppelm.
Change wunes o seconds complute solud state slactionics Standard or eustom tunes
iYou supply the sheet music
tavonte tune | One wong supplied with angmal ordes. Standard tunes avadabln- DIXIE
ON WISCONSIN - YANKEE DOODLE DANDY - NOTRE

PINK PANTHER
- NEVLR ON SUNDAY
Starthiid 2 wnch 8 otun speaker supphircd, Powver horn available for carfboat ket

HOME KIT

$26.90

Kt includes speaker which operates
from your door bell. When daor hell
1 pushed your favorite tune s played.
Car/boat kil includes sposkar wiuch
operates Mom cacfhon(horn nng.
Allow 4 weeks delivery an both Kkits.

we supply slecirones far your

AGGIE WAR SONG - ANCHORS
HRIDGE OVER RIVER QU!I - CANDY MAN-

We made a

Limited Quantity!
$9.95 kit

the hbassle — avod the 53141

6 DIGIT ALARM CLOCK

tantashic kit even better Redesigned to take advantage af the Latest advances i IG technology .
50250 super clock chip. singte | © segmant drnver, SCR digt drvers. Greatly sumphilied construction. Mere reliabile and easier to buskd, Kit inctudes ath
necessary paity fexeepr casel For PG board arde 53 (0 AL XFMR add 51 50 Do not confuse wath Non-Alarm kits seld by sur campantan! Ehrronaie

KIT

Features: Litromix Dual %' displays, Mostek

NEW! WITH JUMBO LED READOQUTS!

POWER . P.C.LEAD DISC CAP
S ASORRRET | e | W | 1 Ton
o Ao s 100792, | Merom | B s
e iy rsty 1 nneds A e 13 valust Suoviall maon? m alus wther slandaod
CLAROSTAT wintues
4/$1.00 | 12/$1.00 | 75¢ ea. | 200/$2. | 40/$1. | 5/$1.00 |50/$1.00

AMD-1702A

* Speciall

% | FACTORY PRIME!

3.579545
MHZ Time
Base Crystal
$1.25

Huge Facdoy Furchase

FACTORY PRIME UNITS! BRAND NEW!

21L02-1

1.5 Micro-Seconds Access Time.

10/9$40. $4.95 ea.

28 PIN SOCKETS
3 for $1.00

11.000 MFD Not anly are our RAM'S Iaster than a speeding boliet but they
S0WVDC ;v‘alggm{ \Lerv '3“ puwa:j gVo avanlnasF:d“':“u ol:\an prime new
ow Power an uper Fast] I
Computer Grade Cap STRETCH vour power snnplvplarlhersnnd at I;n w-:;‘:m:’::m:
§$3.00 each the waa light off!
S 500ns 8/$12.9
16 V Mallory n S 1 . 5
Electrotytic
5 for §1.00 250ns 8/%$15.95

MK50397-$8.95

o .
ceMoVERER IC's from XEROX Wwh.C
15 T B0 K D! 1402 A Shift Regulator — 50c S im0 voc 981108 e Berlas o davk +a0un Hmers. chess tamers o1 ooy timens apRlahom,
AL\’TL ZpeC MHO025CN — 55¢ Supplied with data sheet and apphicatians.
7400 9¢ 7430 9 7493 206¢ .
7402 9¢ 7490 9¢ 74121 22 M DI | D wn
7404 9c 7437 10¢ 74123 32c W,WSES h6 g t dUp/ |OF DC?Eljntedr
- - - u il o t V¢ 1 v
R I
B - toadabi, e 18gistes h k] u o 0
%UA{{ Mo o 7474 i6c 74193 35c oeeilsvar, CAMIOS compauble. laadig 610 anking. 1Mu‘2":5.7!‘.".'&5337'.‘2..’2‘?.'&"“ ermal sen
. 416 13 7475 2ic 8233 35¢
7420 G¢ 7480 16¢ Intel — 1302 - 45¢ $12.95
CALL N = YOUR BANK- Texas Residents Call Coltect: TERMS: NO COD'S. TEXAS RESIDENTS
AMLRICARD = OR — MASTER . ADD 5% SALES TAX. ADD 5%
HARGE ORDER IN ON ¢ i y i
CHAR R N OUR 214/271-0022 OF ORDER FOR POSTAGE &

CONTINENTAL UNITED STATES
TOLL FREE WATTS LINE:

i 1-B00-527-3460

-

HANDLING. ORDERS UNDER
$10.00 ADD 75¢c. FOREIGN
ORDERS - U5, FUNDS ONLY!

Money Back
Guanantee!

Orders over $15. - Choose $1. FREE MERCHANDISE!

Circle 462 on inguiry card.

http:Analyl.Cr

http:M195-loll.SH
http:417J-1.10

To wet turther infarmation on e peaducls ddvectised i BYTE, (il vut the reader
service card with vaur name and address. Then circle the appropriare numbees tor e
advertisers you select from this list. Add a 8 cent stump 1o Mhe cord, then drop it in the
myil, Nop oniv do vou quin information, but aur advertisers are encouraged o use the
mgtkeipface provided by 8YTHE. This helps us bring vou a bigger BY TF

Resder Senvice

Fieader Reader Reader
Sarvice Page Service Page Service Page
Number Number Number Number Number Number
441 AAA Chicago Computer Center p. 185 360 Extensys p. 31 354 PERCOMP 78p.5
382 Alpha Digital p. 82 419 Floto, Charlesp. 177 387 Peripheral Vision p. 99
454 Ancrona pp. 188, 189 456 Godbout p. 193 420 Perri-White Assoc p. 178
391 Anderson Jacobson p. 107 * Hayden Books p. 135 361 Per-Sci p. 69
357 Appie pp. 14, 15, 16 394 Heath pp. 112, 113 * Personal Computing Expo pp. 162-165
378 Artec Electronics p. 73 389 Heuristics p. 103 * PolyMorphic Systems p. 7
446 AVTAR Systems p. 187 372 Information Terminals p. 51 355 Processor Tech pp. 8, 9,10, 52, 53
383 BITS pp. 83, 144,151, 175,176 371 Integral Data Systems p. 49 368 Quantronics p. 45
392 BPIp.109 439 Intelligent Business Machines p. 185 * Radio Shack of Fart Worth p. 43
409 Byte Shop East p. 155 417 International Data Systems p. 172 406 RHS Marketing p. 139
451 Byte Shop of Miami p. 187 435 I0Rp. 185 430 Rotundra Cybernetics p. 184

* BYTE Subscription p. 93 416 1thaca Audiop. 171 377 Scelbi Computer Consulting p. 121
374 Canada Systems p. 59 458 Jade p. 195 * Scientific Research pp. 44, 63
388 CMC Marketing Corp p. 101 352 James Electronics Cover |V 462 5 D Sales p. 203
398 Compumart Inc p. 123 459 James Electronics pp. 196, 197 376 Seals Electronics p. 67
363 Computalker p. 36 395 John Fluke Mfgp. 117 381 Smoke Signal Broadcasting p. 81
433 Computer Age p. 185 453 JVR Computer Store p. 187 427 Software Exchange p. 182
444 Computer Corner p. 186 407 Kent-Moore p. 145 375 Software Records p. 61
452 Computer Creations p. 187 460 Meshna p. 199 447 The Software Store p. 187
449 Computer Depot p. 187 380 MicroAids p. 80 364 Solid State Music p. 37
400 Computer Enterprises p. 127 414 Micronics p. 167 463 Solid State Sales p. 205
356 Computerland pp. 12, 13 397 Micro Peripherals p. 33 445 Sunny Computer Store p. 187
431 Computer Martof NH p. 184 390 Micropolis p. 105 3650 SWTPC Cover !
442 Computer Playground p. 186 369 Microware Systems Corp p. 47 429 Sybexp. 183
415 Computer Room p. 171 443 Microtex Inc p. 186 401 Synchro Sound pp. 128, 129
437 Computer Systerns Store p. 185 465 Mikos p. 207 448 Szerlip Enterprises p. 187
353 Cromemcopp. 1, 2 408 MiniTerm p. 149 426 Tarbell Electronics p. 181
379 Databytep. 75 461 Morrow's Micro Stuff p. 201 373 Technical Design Labs p. 57
423 Data Searchp. 179 421 mpip. 178 403 Technical System Consultants p. 133
396 Digita) Group p. 119 411 MSip. 1587 402 Technice Incp. 131
410 Digital Micro Systems p. 165 412 Mullen Electronic Boards p. 169 388 TElp. 101
438 Disc 3 p. 185 413 National Multiplex p. 161 362 Texas Instruments pp. 34, 35
455 DRC p. 191 359 North Star Computer pp. 21, 77 358 TLFp.17
381 ECD Cover Il 384 Objective Design p. 85 466 Urban Instruments p. 207
450 Economy Terminals p. 187 365 Ohio Scientific pp. 38, 39, 40, 41 393 Vectar Electranies p. 111
386 E & L Instruments p. 97 457 Oliver Audio Electronics p. 194 386 Vector Graphic p. 85
432 EDP Professionals p. 184 399 Osborne & Associates p. 125 422 Vectronp. 179
436 Electravalue p. 185 434 OQuter Products p. 185 424 Worldwide p. 180
464 Electrolabs p. 206 428 PAIA Engineering p. 182 405 Ximediap. 137
425 Electronic Control Technology p. 180 418 Parasitic Engineering pp. 174, 181 370 Xybek p. 47
440 Electronic Discount Sales p. 186 * Per Com Data pp. 11, 173

“Reuder service tnguitics not solicited Caerespond directly with compuny.

BIME

BY 11 Cageing Monits Eox

ARTICLE PAGE
NUMBER ARTICLE NUMBER
1 Jankins: How to Write an Application Program 18
2 Borrmann: Rslocatability and the Long Branch 26
3 Duda: Othello, A New Anciant Game 60
4 Wimble: An APL Interpreter for Microcomputers, Part 3 64
§ Chung: An B080 Simulator 70
6 Kruglinski: How to implement Space War 86
7 Smith: Fundamentals of Sequential File Processing 114
8 Madden: C: A Language for Microprocessors? 130
9 Schneider: Simple Approaches to Computer Music Synthesis 140
10 Higgins: Structured Program Design 146
" Holladay: Computer Information Arrangement 156
12 Bauerschnub: Analyze Your Car’s Gas Economy with Your Computer 166
13 Milligan: Mastermind 168

208

July BOMBworks

The results of the July 1977 BOMB
voting found the winner to be James R
Boddie's 'Speech Recognition for a Personal
Computer System,”’ page 64. James' article
placed first in the voting by BYTE readers,
at a distance of 1.75 standard deviations
above the mean vote for 14 articles in the
July voting. Second piace was a tie between
W Douglas Maurer's ""How to Pick Up a

Dropped Bit,”

page 72, and Robert

Grappel's “Give Your Micro a Megabyte,”

page 78.

Bonus checks of $100, $50 and

$50 were sent to authors Boddie, Maurer
and Grappel respectively.®

IT's TH' BACKLOG
THAT USUALLY GETS YA'...

sEN
&
WERE OUT OF OUR MINDS !

OUR MICROMIND COMPUTOR HAS MET
WITH SUCH CONSUMER ENTHUSIASM
THAT WE RE BUSY PARING DOWN

A SIX MONTH PILE OF ORDERS....

PLEASE BE PATIENT.... ITLL BE WORTH IT/
FOR INFORMATION ON MICROMIND CALL (6/7)66/-4400

ECD CORP
196 BROADWAY, CAMBRIDGE
MASS. 02139

INNOVATIONS IN ELECTRONICS

MicroMind

%’...m/

Circle 361 on inguiry card.

ATTENTION DEALERS:

Announcing

electronic components

- One -Stop Component Center

*0ver 200 quality items in-
. cluding integrated circuits,
;* resistors, diodes, transis-
‘! tors, capacitors, connect-
ors, switches, sockets,
LEDs and Data Books
covering all JIM-PAK®

=Store display racks avail-

* Direct mail program avail-
able from list of active
electronic buyers in dealers’
area.

*National advertising cam-
paign in leading electronics
magazines to include list
of qualifying dealers

= Nationally known manu-
facturers’ products at prices
every dealer can afford

* Guaranteed products

Component Center

A component line of proven
sellers developed for the
independent dealer. Ideal for
computer shops, school
stores, electronic dealers,
hobby shops, or any location

items. where there is a potential
* Immediate delivery on all market for electronic sales.
orders

A product line which sup-

able plies most of your needs
=Stock rotation and return from one distributor with a
policy reputation for fast and

efficient service. Attractive
and compact display racks
make initial installation of
the JIM-PAK® line easy. .

Your customers deserve the
best. Now you can profitahly
retail name brand compon-
ents at competitive prices.
Be the first in your area to
announce and sell the JIM-

»Standard industry part ot PAK® line. Write or. call
numbers today.
T FOR MORE INFORMATION AND PRICING SCHEDULE CONTACT:
im-pak

, a division of James Electronics, 1021 Howard Avenue, San Carlos, California 94070, (415) 592-8097

ercle 352 on inquiry card.

	Cover
	In the Queue
	Foreground
	RELOCATABILITY AND THE LONG BRANCH
	AN APL INTERPRETER FOR MICROCOMPUTERS, Part 3
	HOW TO IMPLEMENT SPACE WAR
	ANALYZE YOUR CAR'S GAS ECONOMY WITH YOUR COMPUTER

	Background
	HOW TO WRITE AN APPLICATION PROGRAM
	OTHELLO, A NEW ANCIENT GAME
	AN 8080 SIMULATOR
	FUNDAMENTALS OF SEQUENTIAL FILE PROCESSING
	C: A LANGUAGE FOR MICROPROCESSORS?
	SIMPLE APPROACHES TO COMPUTER MUSIC SYNTHESIS
	STRUCTURED PROGRAM DESIGN
	COMPUTER INFORMATION ARRANGEMENT
	MASTERMIND

	Nudeus
	In This BYTE
	The Colorful Future of Personal Computing
	Letters
	About the Cover ...and Some More of the Same
	Languages Forum : Defining LIL, a Little Interpretive Language
	Commodore's New PET Computer
	The NCC : A Dallas Delight
	Technical Forum: More on Inexpensive Plotters
	Book Reviews
	BYTE's Bits
	BYTE's Bugs
	Clubs, Newsletters
	Ask BYTE
	What's New?
	Classified Ads
	BOMB
	Reader Service

	Back cover

