\AUGU T 1978 ¥ R8

BUTE =

gthe small systems journal

18

August 1978 D 8YTE Publications Inc

angular array of buoys numbered with the
binomial expansion coefficients. These co-
efficients are '‘Pascal’s Triangle’ as any high
school algebra student will have learned.
Pascal’s Triangle on the cover is of course
embedded in a matrix of the waters of the
FORTRAN Ocean of computer languages,
named after the pioneering widely used
high level language FORTRAN, and its
descendents FORTRAN I, FORTRAN 1V,
WATFOR, WATFIV and even the mildly
reformed RATFOR.

A prominent island graces the bottom of
the picture, the Isle of BAL with its rocky
and desolate surface. Note the great JCL
barrier reef which surrounds the Isle of Bal
and borders the Straights of COBOL along
the bottom edge of the picture. These
dangerous and unstructured reefs have sunk
more than onc ship on their treacherous
shoals, including the good ship SS OS of all
encompassing (360 degree) fame. (Much
commercial traffic is seen in the sea lanes of
the Straights of COBOL.)

In the lower right part of the picture
where the Straights of COBOL meet the
main body of the FORTRAN Occan, we sce
a curious fog bank {imagining a view from
the deck of a ship in the waters). It is said
that this fog bank is always present, hiding
the exotic and mysterious jungles of LISP.
While unseen by normal mortals, our gods’
eye view of the picture shows the brilliant
tropical algorithms, the fabulous nodes
growing on trees like in some Eldorado
ol programming. But who can sce brilliance
through a fog bank?

Travelling upward {in the picture)
through heavy scas we come to the pinnacle,
a snow white island rising like an ivory tower
out of the surrounding shark infested waters.
Here we find the fantastic kingdom of small
talk, where great and magical things happen.
But alas, just as the impenetrable fog bank
around the jungles of LISP hide it from our
viecw, the craggy aloofness of the kingdom
of small talk keeps it out of the mainstream
of things.

Turning our attention to the lower left
part of the picture, we see the famous
Floating Point separating the FORTRAN
Ocean mainstream from the interactive
and weed filled Sea of BASIC.

To all the relative disorder and chaos of
the waters of the FORTRAN Occan and
its adjacent coastal features, the smooth,
calm infinity of Pascal’s Triangle provides a
brilliant contrast. We note vessels ranging
from the commercial {reighters to pleasure
boats to the rafts of hobbyists to the
military fighting ships heading for the calm
waters of Pascal’s Triangle.

To complete the mythology, we find
within Pascal’s Triangle numerous examples

of ships enjoying the smooth sailing and
untroubled waters.

Is this an adequate picture? Computer
languages are like philosophies in many re-
spects, which is to say that the reasons for
an enthusiasm are often hard to attribute to
anything other than aesthetlic grounds.
But as in philosophies and religions, con-
versions do occur from lime (o time.
Very often in today's microcomputer world,
we find the case of the engineer or systers
programmer who has been using an as-
sembler (if anything at all) as the first and
only software develupment tool. Such a
person will often discover BASIC, FOR-
TRAN, APL, COBOL ({yes, even people
with engineering backgrounds sometimes
sec COBOL as a first high level language)
or language X. When language X is dis-
covered, the advantages of the high level
language techinigue often become confused
with the specific example—and the enthu-
siasm which comes with the powerful elixir
ol automated programming aids turns that
person into an X language convert with an
almost religious fervor.

As the new convert proceeds 1o use the
language, he or she also discovers its in-
adequacies in detail errors. And the X fan-
guage devotec starts inventing this or that
perfect extension, a new superset of X,
which is cndowed with cven better pro-
pertics. This particular inventivencss syn-
drome is most pronounced in compiler
implementars since they are in a position
to “do something about” the older language
by ad hoc implementing personally meaning-
ful extensions when putting a new compiler
up.

What has resulted, viewing from the big
picture, is a range of languages, cach reflect-
ing the context of the group of imple-
mentors who are responsible for its creation.
Pascal in this global context must be viewed
as but another step in that natural scquence
of human events.

I personally like Pascal as a method of
expressing programs, because ol a number
of arguments supported by my own prior
experience using languages including macro-
assemblers, BASIC, FORTRAN, PL/I,
HAL/S, JOVIAL, XPL and a bit of PLL/M.

As a potential user, try a few programs,
see if you like the style of cxpression in-
volved, and il the price is right, that may be
the system for you. If you like the argu-
ments presented for Pascal in this issue and
by examples in issues to come, by all means
express your interest to manufacturers. This
isslie is a conscious attempt Lo communicate
some of the flavor of Pascal with a spirit of
fun and an understanding that even Pascal
may not be the be all and end all of com-
puter languages.®

Cucle 7 an nguiry carcl. —=

PDP-1I

Figure 5 Bl
computer s)
system whic
with the mo
using FM de
The FM tra
binury data
frequency ¢
versa.

32 August 1978 % BYTE Publications Ine

This type of sonar system is really a
minimal one. Dopgpler shift detection could
also be accomplished fairly casily to allow
determination of speed ol a moving obstacle,
Echo amplitude analysis would also be worth
investigating sincce it would help solve the
problem of echo frame overlap; such overlap
exists when an eccho from the previous
sounding returns late, after bouncing off a
far away object, resulting in two echos for
the current frame. The strongest of the two
(or more) echos should be taken as the true
one. The Tee Toddler's system triggers a
9 ms oneshot on the first echo thereby
ignoring all secondary echos.

Radio Data Links

An encoder transforms parallel bits into
serial tones to be transmitted over a fre-
quency modulated channel. One channel
is from the Tee Toddler car to the PDP-11
computer at 96 MHz. The other channel is
from the PDP-11 computer to the car at
450 MHz. The serial data encoder and
wransmitter at the PDP-11 base siation are
essentially identical o the car's versions
except for the number of bits per word of
data. A two-tone modulation system s
used. This means that each binary state is
encoded into one of two differemt lreguen-
cies for transmission. At the modulator a

CAR
CONTROLS
R AND

I SENSQORS

logical 1 is represented by a 2500 Hz signal
and a logical O is represented by a 1900 Hz
signal,

The receiver and data decoder accepts the
string of audio tc from the FM receiver,
decodes them into 1s and Os using phase
locked loops and converts back tu a parallel
data format. While our prototy did not
use standard circuitry, a standard asynchro-
nous serial communications discipline such
as that provided by a UART or ACIA would
work well in this application.

Power Sources

The power for most circuits is derived
froma 12V 4.5 Amp-Hour GeLi cell recharge-
able battery. The battery was drilled and
tapped at 8 V to power a 5V regulator for
the TTL circuits and for t Z-80 micro-
computer. The steering servos required
their own set of four penlight batteries {also
rechargeable), and the 1702 read only mem-
ory holding the Z-80 program required a
separated —9 V supply, derived from threc
parallel transistor radio batteries. This power
supply system is capable of running the car
for several hours before any recharging is
necessary.

Computer Control

As has been mentioned, the car is con-

trolled by two separate computers. The com-
munication paths between the computers
and the car are shown in the system diagram
of figure 5. In actuality, only one of the
compulers can communicate with the car at
a time. This is the case for several reasons.
First, therc are only three control inputs to
the car to make it operate. These are the
speed, direction and steering controls. Since
these inputs can originate at either com-
puter, a multiplexing scheme had to be used.
Second, only the PDP-11 actually makes
decisions based on sensor information
from the car. The Z-80's control of the car's
movements is more like a reflex action, in
that it performs a canned routine when
invoked by the car’s sensors. Last, the func-
Ltions are separated to facilitate the transition
to a total on board control system, since the
PDP-11 can be replaced casily by another on
board microcomputer.

The motivation behind this configuration
is based on several criteria. Since part of the
system was going to be standing alone, some
of the major considerations were power
consumption, various power supply require-
ments and ease of operation, With all these
considered, it was decided that a Z-80 with
its single 5V power supply requirement and
single phase clock was a logical candidate.
The 16 bit PDP-11 was used because it could
do computations at a greater speed than the
8 bit Z-80.

The on board microprocessor has several
functions associated with the control of the
car. One function is to supervise all data and
control channels to and from the car. In
other words, it has the responsibility of
deciding whether the PDP-11 or the Z-80 is
going to control the movements of the car
and which of the two computers is going to
reccive the information from the car's sensors.
The routing of these different channels of
information is accomplished by the use of
data sclectors. The Z-B0 controls the data
selectors such that the information is routed
to the correct device at the correct time.
Information coming in to the car to control
its movements comes from either the
PDP-11 or the microprocessor. It comes
from the PDP-11, over the radio link, if the
car's sensors indicate one of the following
conditions:

® The car has reached the source light.

® An object has been detected by the
sonar system on either the left or the
right,

& The car has spotted the source light.

The PDP-11 then analyzes these condi-
tions according to the hierarchy of impor-
tance, as is shown in the decision tree of
algorithm 1, and then communicates to the

STOP CAR,
YES RECEIVE
AT LIGHT MOVEMENT
2 VECTORS
FROM Z-80
OBJECT
DETECTED “SES
YES
CONTINUE ADJUST CAR
PRESENT PATH
COURSE ACCORDINGLY
3

Algorithn |: The buse computer’s executive program in outfine form. This
decision tree is executed in the PDP-11 each time a car sensor word is recefved,
If uny of the tests results in an affirmative answer, the program executes @
routine designed for that specific state. Each routine takes into account
past information of where the light was spotted. The sonar detection routines
also take into account any objects which have recently been passed. These
things are considered so that the car proceeds in the direction of the light
and does not collide with any objects while moving in reverse. There is no
specific wuy to stop the system except by interrupting the PDP-11 and issuing
a control word to the car to stop it.

car the appropriate movement corrections
to make. Control information to the car
originates from the Z-80 when one of the
following car sensor conditions arises:

® Contact with an object has been
indicated on either the left or right
side by the front bumper.

® The car has lost sight of the source
light.

The microcomputer controls the movements
of the car if either condition is met and then
gives control back to the PDP-11 when it
has finished its corresponding task.

Another function of the on board micro-
computer is to store all movement vectors
associated with the car's path, These vectors
indicate the steering angle, the direction of
travel and the length of travel of the car.
Therefore, when the car changes direction or
steering angle, a vector is stored in memory
which correlates to how far the car traveled
at the previous sctting. Thus, when the
task of finding the light is accomplished,
the on board memory contains all the
different moves the car made to reach

August 1978 ©BYTE Publications Inc 33

GET THE .OW DOWN BEFORE YOU BUY

This new book presents an objective look at the top 24 micro systems sold

throughout the world.

- discusses the Pros and Cons of each system in No Uncertain Terms and takes a
straightforward look at the micro computer industry as it relates to YOU.

Written especially for the layman in a language he can understand. Profit from the

mistakes of others.

Includes hundreds of references.

Tabie of Contents

Introduction

Don’t get hung up on the chips

Which category do you fit into

Now — About the Hardware

Peripherials that plug in?

What? No Software!

Helpful Suggestions before spending money
Addresses

©NOOR LN =

$4.50 per Volume BANKAMERICARD
Volume discounts available

P.O. Box 490099-B
Key Biscayne, Florida 33149

Phone Orders Call 800-327-6543

Add $1 handling, all domestic shipments
sent U.P.S. except APO and P.0. Box
which go parcel post. Foreign orders add
$4 for air shipment and make payable in
U.S. funds.

BYTE August 1978

37

Microcomputer Functions

The on board Z-80 computer provides the
reflexes and signal control for the whole
system. In the event that the car hits a thin
object which is not detected by the sonar,
a reflex action is invoked, much like a human
response lo a given stimulus. The various
reflex actions this computer controls are:
loss of sight of the light and touch stimulus
from either sides of the bumper. To initiate
a microcomputer routine for either the
reflex actions or the control functions, onc
of the following interrupt inputs must
become aclive:

® A signal from the front bumper.

® A signal indicating loss of the source
light.

® A course change.

® A request to dump the movement
vectors.

All these signals are ORd together, thus
enabling any one of them to initiate an inter-
rupt. When the Z-80 is interrupted it interro-
gates an external buffer to determine which
condition caused the interrupt. The program
{see algorithm 2) then cks each bit, one
at a time, to determine which one is active.
if more than one is active, it only processes
the first one checked which is active. If none
of the lines is active, then the program
defaults to the dump line being active. Upon
determining which stimulus is active the pro-
gram executes a specific routine for that
particular interrupt.

The bumper right and bumper left routines
are essentially the same except for the steer-
ing positions being reversed. If contact is
detected with the right side of the bumper,
the Z-80 receives an interrupt and the car
automatically backs up. Figure 7 illustrates
the bumper reflex. The direction in which it
backs up depends on the direction it was
travelling when it collided with the object.
If the steering was set to the right, then
it must have previously detected the source
light to the right (see right illustration in
figure 7). Then, in order to maintain this
general direction, the car backs up with the
steering set to the left. After backing up for
a certain time the car sets the steering to the
right and proceeds forward past the object
and toward the light. Although this setting
is not a direct heading toward the light it is
in the general direction and it has avoided
the object.

If the direction of travel was to the left,
(left illustration, figure 7) then the car backs
up with the steering to the right and then
proceeds forward with the steering set to
the center. All steering actions would simply
be reversed for a contact on the left. There-

POSITION A
{LIGHT OBSCURED
BY OBSTACLE]

POSITION E

POSITION C

Figure 8: This diagram illustrates the Z-80
reflex for the case in which the car has lost
sight of the fight at position A. The Z-80
instructs the car to do a reverse S turn. First
it adjtists the steering to begin the turn and
travel to position B. Then it adjusts the
steering to have a center of curvature to the
left and continues reverse travel to position
C. At the end of the path, the steering
is again set to the dppropriate position for a
course towards the light and the car resumes
forward travel without its goal beingo. ired
by the obstacle.

fare it is easy to see that all the reactions to
the stimuli are preprogrammed and always
net the same result, thus they exhibit a
reflex action,

The other reflex action is quite similar
(see figure 8). If the car is travelling in any
direction and loses sight of the source light,
then apparently what has happened is that
an object has come between the car and the
light, thus obscuring Lhe car’s “vision’ as at
position A in figure 8. Although the car
knows the object is there, it cannot detect

OBSTACLE

August 1978 © BYTE Publicatiens Inc

41

We're looking
foran
endangered

species.

We're looking for the
rare bird who doesn't have his
or her head in the sand.

We're looking for a few free
spirits to help us build Sol
small computer systems in one
of America’s loveliest areas,
the Amador Valley, about 30
minutes southeast of

San Francisco.

Only three years old,
Processor Technology Corpor-
ation is a pioneer in the
microcomputer business. We
build the best small
computer systems there are
and will continue to do so.
Our plan calls for new and
even better systems.

We need a few really
good people to help us meet
the plan. We're building
a tight-knit group of original
thinkers who can help us
developnew hardware andsoft-
ware and bring these products
to market. Our thinkers better
be doers, too. Our doers have
complete project responsibility
from definition to pilot
production.

We have, of course, most
of the usual benefits. We're
working on the unusual. Even
more important than the
benefits is the opportunity for

you to be you and to see the

tangible results of your efforts.
The future of computing

is personal computing, and we

hope it's your future. too.
Right now we have

openings for:

Engineers for
Design, Project
Leadership, and
Product Test

Technicians for
R & D, Marketing
Support, and
Production

Senior Technical
Writer/Editor

For immediate and
confidential consideration,
stop by, phone or send
your resume to our Personnel
Department. We interview
and receive calls between 1 and
5 PM daily.

ProcessorTechnology

Processor Technology Corporation
7100 Johnson Industrial Drive
Pleasanton, CA 94566. (415) 829-2600.

48 August 1378 © BYTE Publications Inc

Circle 305 on inquiry card.

Blubs aad

Newsletiers

Conducted by Laura Hanson

The Alliance OH Microcomputer Club

The Alliance Microcamputer Club is
a recently formed organization located
in Alliance OH. According to Gary S
Fix, president, the wroup's wodls are
*“to provide individuals in the Alliance
area with the opporunity to share
interests and cxperiences in exploring
microcomputers as a hobby, Lareer,
social activity or curiosity.' Neetings
are hetd an the Tirst Tuesday ol vach
month at 7 PM. For further intormation
dbout this new club, contact Guary at
38835 Norwoad Av, Alliance O 11601,
or call him at (216) 823-89%6.

SC/MP and SC/MP-Il Users Group

Tom Bohon ot Omaha NB has in-
formed us of a SC/MP and SCINP-)
Users Group which has been formed.
Members may take advantage ol a
library of both sottware and hardware
information avaitable on a cust basis.
In addition, a bibliography ot SC/NMP
articles, advertising, programniing hints,
etc, is available o mcombers for the
reproduction cost. The construction
ol a homebrew system based on the
SC/MP-11 s also in the planning.

No dues or fees arc involved., How-
ever, in order to receive the monthly
newsletter, send a selt-addressed stamped
envelope to Tom Bohon, 22135-A Walker
Dr, Omaha NB 68123

North Orange County Computer Club

According to Gury § Dickinson, the
North Orange Computer Club is alive
and well in Southern California. The
correct mailing address is POB 3603,
Qrange CA 926535 and the phone num-
ber is {714} 998-8080.

KIM-1 Users Group

Anyone ingrested in forming o KiM-1
Users Group in the San Fernando Valley
area of California should wiite Jim
Zuber, 20224 Cohasset #16, Cancga
Park CA 91306, or call (213) 341-1614.

COSMAC-1802 Users Group

We bhave been notified by Patrick
Kelly that a COSMAC-1802 Users Group
is being formed for the purpose of
corrgsponding, exchanging software and
ideas and possibly publishing a news-
letter. Membership is free and individuals

Continued on page 142

54

Augus 1978 & BYTE Publications In¢

Let

r:=1X, Y, S U}J

a:=|A B D

x '= memory reference

¢ ;= constant value
X long relative, short relative. direct
*x long & short relative indirect
Sx immediate byte
*$x extended
**3x extended indirect
c(r) +4, £7, £15 bit indexing
*clr) +7 and £15 bit indirect indexing
(ri+ Auto Increment by { or 2
- Auto Decrement by 1 or 2
*ir)+ Indirect Auto Increment by 2
*(r1 Indirect Auto Decrement by 2
afr} Accumulator Indexing

*afr) Indirect Accumulator Indexing

Table 1: A summuary of the Motorola
MCG6809 addressing modes.

fied with the beginning ol the storage
associdted with the array a.

Beyond the actual code shown here,
however, the most important insight to be
gained from all ol this is the sheer bulk of
code that such a simple construct would
generate (and itis not even reentrant at that),
Imagine how large the object code sive
would be for even a reasonably shart Pascl
program.

Implementing threaded codue is somewhat
difficult on these madhines because they
require 16 bit memory pointers, an efficient
mechanism for indirect addressing, and some
method of maementing such o pointer 1o
the neat 16 bit pointer. At least one of the
above criteria is so troublesome an both the
Motorolr 6800 and the Intel SO8O that the
threaded code becomes unwieldy. Thus, for
these machines one has little choice but 1o
interprel or write in assembler, This suggests
that the interpieters themselves must be
implemented in assemibly Language.

The above discussion is an attempt to
dandlysze the reasons why programs written
for 8 bit mictocomputers have traditionally
been interpreted o writlen meoassembly o)
machine code, rather than being compiled
into “true’ code Irom a high level language.

16 Bit Microcomputers

Previously, the only alternative 1o the
8 bit architecture was that of the 16 bi
microcomputer. Examples of such machines
include the TIY90/4 and the DEC LSI-T1.
While the considerable costs of these proc-
exsors tend 1o make them impractical for
nmany - computer - expetimenters, Jand for
those applications in which many processors

dre required, it is instructive o consider
what propertics set these muchines apart
from their 8 bit counterparts with respect 1o
cade generation. In fact, it can be shown
that, given a machine of sufficient sophisti-
cation, it should be possible Tor a compiler
to do as good a job as an assembler program-
mer vis-d-vis machine resource utilization,

There are two main virtues of these 16 bit
machines. In the first place, these machines
have complete 16 bit instruction repertoires
including hardware multiplication, division,
and fong shifts. Aswell, the 16 bit processors
tend to have @ good complement of addres-
sing modes such as indexing, stach upcera-
tions, automatic increment and decrement
ot pointers, and so on, (Here, as clsewhere in
this article, the descriptive terms may seem
fuszy. Good complernent does not admit of
a precise medaning. With real machines, one
ustally loses clever addressing modes, lTor
plenty of general purpase registers, and one
must balance the benefits somehow, The
linal judgment will usually be that of the
person wiiting the compiler.) With these
attributes, iU is a fairly straightforward task
to construct a compiler for a high level
language stuch as Pascal.

8 and 16 Bit Hybrids

The current trend in 8 bit microprocessor
technology is towards o« hybrid combination
8 and 16 bit machine. Essentially, these
processors are capable ol 16 bit operations
while retaining 8 bit data paths throughout
the processor architecture. A prime example
ol such a hybrid is the Motorola 6809,
which is due for formal product reledse luter
this year. Table 1 gives a summuary ol the
basic addressing capabilitics of the Motorola
G680Y, expressed in a hypothetical assembler
syntax which removes from the user the
burden of understanding all of the details of
the actual hardware addressing modes.,

What advantages do these machines have
over thetr pure 8 bit predecessors? In partic-
ubar, these machines now have at least one
accumulator for performing addition, sub-
traction, shitting and comparisan operations
on 16 bit data. A second leature ol these
muchines s the 16 bit memory pointer,
which, combined with the ability 10 auto-
muatically increment and decrement such
pointers, provides a very general memory
accessing capability. 1o addition, common
high level language features such as stack
trames and display pointers become quite
casy with the general index and stack
registers of the MG80S. 1t is apparent Lhat
the Motorola 6809 i particularly well-
endowed with addressing maodes which
tend to lacilitate code generation loi high
level languages.

400 kHz frequency. This is internally
divided down to a 100 kHz SYNC signal
which forms the basic time period of the
processor, National calls this 10 us period a
microcycle. All instruction times are e¢x-
pressed in microcycles.

A pinout and block diagram are shown in
figure 1. The MM57109 receives instructions
and data via input lines | thru lg. Timing of
an instruction or data fetch operation is
shown in figure 2. Note that the RDY
output goes high to signal that input is
required. Iy thru lg may change only when
the RDY line is high. Processing begins when
it returns to a logic *'0,"" 8 microcycles later.
The MM57109 can be halted when the RDY
line is high by applying a logic “1" to the
HOLD input before or at the rising edge of
RDY. If HOLD goes high after RDY does,
the processor will not stop until the next
RDY pulse. Stopping the processor can
allow more Lime for an external device to
prepare data or an instruction. The
MM57109 cannot be halied during execu-
tion of an instruction. For 2 word opera-
Lions, the RDY line will go high twice, once
for cach fetch. The ISEL output is used
during such operations to indicate when the
Processor is expectling an instruction; it will
go low when data is expected. This is useful
if the data and instructions are coming from
two different sources.

DOq thru DOy are used to output data
during an QUT operation. The number of
digits and format depend on parameters set
by software, especially the SMDC and
TOGM instructions. The RW output is
strobed low, once for ecach digit. Note in
figure 3 that the MM57109 issues a second
RDY pulse during the QUT operation. This
is for external memory control and can be
ignored if the processor is being used as a
microcomputer peripheral.

The digit address lines, DAy thru DAy,
and the digit address strobe, DAS, are used
to provide address information when the
MMS7109 is configured as a stand alone
processor with its own memory. Typically,
the digit address lines would provide the
lower four bits of address with the upper
four bits coming from an external read only
memory.

Reference Source:

The source of the information used to design this circult for the
MM57109 is the National Semiconductor publication, MM57109
MOS/LSI Number Oriented Microprocessor, copyright 1977 by Nation-
al Semiconductor Corporation, published in March 1977. The publj-
cation number of this 24 page booklet is IM-B50M37. National Semi-
conductor Corporation is located at 2900 Semiconductor Dr, Santa
Clara CA 95051, and the MM57109 is available from electronics distri-
butors who handle National Semiconductor’s product line.

—.’ |‘—a,‘ CYCLES
|
INSTRUCTION
[~ IS EXECUTED] RDY
)
1
HOLO
(o)
1
Y- Tg
0

L[)ATA MAY CHANGE, —f
NEW OPCODE MAY BE INTRODUCED

Figure 2: Instruction fetch and hold timing diagram. The RDY line goes high
when the data is ready. If the HOLD line is also high RDY will remain high,
When the HOLD line goes low, the RDY line will follow and the instruction
will be executed. Adapted from figure 8c on page 10 of National Semicon-
ductor Corporation's documentation, IM-B50M37 (March 1977).

nexT o
SECOND RDY PULSE -
| v ¢ STRUCTION
RDY

0

‘ "OUT" CODE
- le DON'T CARE /

o) _

|
DOI-D06 / X X \

0

|

Figure 3: Timing diagram of an OUT instruction. The second RDY pulse can
be ignored if the processor is being used as a peripheral to a computer.

August 1478 BYTE Publications Inc a5

Table 1. The 70 command
instruction set for the
MMS7109. The commands
are broken into seven
different classes: digit
entry, data moves, math
functions, clearing opera-
tions, branch functions,
10 and mode control.
Reproduced courtesy of
National Semiconductor
Corpaoration.

66 Auguit 1978 © BYTE Publicalions inc

The POR input is used to reset the
processor after power is first applied. Fol-
lowing a 2 microcycle, or greater, positive
pulse on this line, the MM57109 will issue
three RDY signals. The first two should be
ignored; processing begins following the
third one.

The remaining outputs are all controlled
by software. F1 and F may be set or pulsed
by the SF or PF instructions. The ERROR
line indicates an illegal operation or overflow

and BR responds to a jump or branch
operation with a pulse to 0."”

Instruction Set

Table 1 details the MM57109's 70
instructions. This number is achieved with
only a 6 bit word through the use of the
INV instruction, octal 40, which gives
double service to some of the other op
codes. The instruction set provides a com-
plete set of scientific calculator operaticons in

CLASS | SUBCLASS | MNEMONIC* “J:;-:’ FULL NAME DESCRIPTION
Digit 0 00 0 Mantissa or expanent digits. On first digit (d)
Entry 1 (13} 1 the followingoceurs: 2 =+ T

2 02 2 Yy—+-2

3 03 3 XY

4 04 4 d =X

5 05 5 See description of number entry on page 11.

8 06 6

7 07 7

8 10 8

9 n 9

Dp 12 Decimal Paint Digits that follow will be mantissa fraction.

EE 13 Enter Exponent Digits that foilow will be expanent,

Ccs 14 Change Sign Change sign of exponant or mantisss,

Xm = X mantissa
Xe = X exponent
CS5 causes —Xm —+ Xm or —Xe — Xe depending
on whether or not an EE instruction was
executed after last number entry initiation.

PI 15 Constant 3.1415827 =+ X, stack not pushad.

EN 41 Enter Terminates digit entry and pushes the stack.
The argument entered will be in X and Y.

2-+T
Y—+2
X=Y

NOP 77 No Operation Do nothing instruction that will terminate digit
entry.

HALT 17 Halt External hardware detects HALT op code and
generates HOLD = 1. Processor waits for HOLD
= 0 before continuing. HALT acts as a NOP and
may be inserted betweaen digit entry instructions
since it does not terminate digit entry.

Move ROLL 43 Roll Roll Stack. X
77N
T Y
N/
POP 56 Pop Pop Stack.
Y- X
Z-+Y
T2
o-T
XEY 60 X exchange Y Exchange X and Y.
X—Y
XEM 33 X exchange M Exchange X with memory.
XM
MS 34 Memory Store Store X in Memory.
XM
MR 35 Memory Recall Recall Memaory inta X,
M- X

LSH 36 Left Shift Xm X mantissa is left shifted while leaving decimal
point in same position. Former most significant
digit is saved in link digit. Least significant digit
is zera.

RSH 37 Right Shift Xm X mantissa is right shifted while leaving decimal
point in same position. Link digit, which is
normally zero except aftar a left shift, is shifted
into the mast significant digit. Least significant
digit is lost.

Table 1, continued.

68

August 19780 BYTE Publications inc

microprocessor operations, HALT and NOP,
but with a difference. HALT, by itsclf, only
acts as a NOP; it does not stop the machine.
It is designed to be detected with external
hardware that will generatc a HOLD signal
to halt the processor.

The number of microcycles required 1o
execute an instruction may vary from a few
hundred to many thousands as shown in
table 2. Speaking generally, the complex
operations such as trigonometric and loga-

rithmic functions take the greatest time. As
a bench mark, the floating point addition
time is 2200 microcycles, or 22 ms. However
the floating point add time might not make
a very rcliable benchmark since it varies over
a wide range (22 ms, typical, to 66 ms, worst
case) depending on the numbers involved.
Figure 4 shows how easy it is to interface
the MMS7109 to your system. Most of the
required pins are TTL compatible. The POR
and HOLD inputs, however, must have a

CLASS

SUBCLASS

MNEMONIC®

OCTAL OP
CODE

FULL NAME

DESCRIPTION

Branch

170

1o

1/Q

Mode
Control

Count

Multi-digit

Single-digit

Flags

IBNZ

DBNZ

IN®

ouT*

AIN

SF1
PF1

sF2
PF2
PRW1

PRW2

TOGM

SMDC*

INV

3

32

27

26

47
50

51
52
76

76

42

30

40

Increment memory
and branch it
M=£0

Decrement
memory and
branch if M# 0
Multidigit

input 1o X

Multidigit output
from X

Asynchronous
Input

Set Flag 1
Pulse Flag 1

Set Flag 2
Pulse Flag 2
Pulse R/W 1

Pulse R/W 2

Toggle Mode

Set Mantissa

Digit Count
Inverse Mode

M+ 1~ M If M=0, skip second instruction
word. Otherwise, branch to address specified
by second instruction word.

M- 17—~ M If M=0, skip second instruction
word. Otherwise, branch to address specified
by second instruction word.

The processor supplies a 4-bit digit address
{DA4—DA1) accompanied by a digit address
strobe (DAS) for each digit to he input, The
high arder address for the number to be input
would typically come from the second [nstruc-
tion word, The digit is input an D4—01, using
ISEL = 0 to select digit data instead of in-
structions, The aumber of digits to b iaput
depends on the calculation made (scientific
notation or floating point) and the mantissa
digit count (See Data Formats and Instruction
Timing). Data to be input is stored in X and the
stack is pushed (X = Y = 2 =+ T). At the con-
clusion of the input, DA4—DAY = 0.

Addressing and number of digits is identical to
IN instruction. Each time a new digit address is
supplied, the processor places the digit to be
output on DO4—DO1 and pulses the R/W line
active low, At the conclusion of output, DO4—
DO1 = 0 and DA4—-DA1 = D.

A single digit is read into the processar on D4—
D1, ISEL = 0 is used by external hardware to
select the digit instead of instruction. It will not
read the digit until ADR = 0 {ISEL = O selects
ADR instead of |g), indicating data valid. F2 is
pulsed active low to acknowledges data just read.
Set F1 high, i.e. F1=1.

F1 15 pulsed active high. It F1 is already high,
this resuits in it being set low.

Set F2 high, i.e. F2 = 1.

F2 is pulsed active high. If F2 is already high,
this results in it being set low.

Generates R/W active low pulse which may be
used as a strobe or to clock extra instruction
bits into a flip-flop or register.

Identical to PRW1 instruction. Advantage may
be taken of the fact that the last 2 bits of the
PRW1 op code are 10 and the last 2 bits of the
PRW2 op code are 01. Either of these bits can be
clocked into a Hip-flop using the R/W pulse.
Change mode from floating point to scientific
notation or vice-versa, depending on present
mode. The mode affects only the IN ang OUT
instructions. Internal calculations are always in
8-digit scientific notation.

Mantissa digit count is set ta the contents of the
second instruction word (=1 to B).

Set inverse mode for trig or memary function
instruction that will immediately follow. inverse
mode is for next instruction anty.

EXECUTION EXECUTION EXECUTION EXECUTION
INSTRUCTION TIME TIME INSTRUCTION TIME TIME
MNEMONIC | IMICROCYCLES) | (MICROCYCLES)| MNEMONIC |(MICROCYCLES) | IMICROCYCLES!)
{AVERAGE) (WORST-CASE {AVERAGE) {WORST CASE
WVALUES) VALUES!}
0-9 238 ourt 583
or 152 IN 195
EE 151 SF1 163
cs 156 PF1 185
H 1312 5F2 fix]
HALT 134 PF2 185
AN 284 PRW 130
T 208 PRYWZ2 130
T% D 278 SIN 56200 95900
TXLTO 187 €os 56200 15900
TXF 217 TAN 35000 47600
TERR 191 INV SIN 54000 93900
Mp 1806 INV C0S 51000 43500
IBNZ 2314 1NV TAN 30200 92900
DBNZ 2314 N 24800 g200u
5MDC 163 LOG 30700 92600
XEWM 812 EX 30800 43900
M5 B39 19X 27300 GB64HUG
MA 1385 i F200 G600
LSH 168 Iy NV 1700 5000
REH 173 M M=)
NV 186 x 3200 22700
EN 552 INV % (M 2700 21400
TOGM 157 . 7800 22300
AOLL 905 NV (M) 7300 21100
ECLA 163 11X 4500 22800
POP 448 ¥X 55400 95500
MCLR 734 SQRT 7000 36700
XEY BS2 5Q 3000 21900
NOP 122 OTR, RTD 9600 41700

Tuble 2. Execution times for command set. The execution time is measured
in microcycles which are defined as being 10 us long. Reproduced courtesy of
National Semiconductor Corporation.

IN/OUT Instructions (a) Mode = Scientific Notation

DAG—DAT IN: D4 D3 D2 D1
B oUT: DO4 DO3 DO2 DOY
] Most significant exponent digit
1 Least sigmificant exponent digit
2 Sm 0 a Se
3 Not used
4 Most significant mantissa digit (Decimal point follows this digitl
MDC +3 Least significant mantissa digit
INfOUT tnstructions (b) Mode = Floating Point
DA4-DA1 DP POS fN: D4 b3 b2 o
- ouT: DO4 DOo3 Do2 DO1
2 Sm 0 0 0
3 OP POS
4 1 Most significant Mantissa Digit = 0-9
5 10 .
MDC + 3 12~ MDC Least significant Mantissa Digit = 0-9

Table 3: The data format for floating point and scientific notation input and
output. MDC stands for mantissa digit count which is set by the SMDC
instruction. 1t is initiaify set to 8. Sm is the sign of the mantissa; it is O for
positive and 1 for negative numbers. Se is the sign of the exponent which is
set to O, for positive, in the floating point mode. DP POS is the decimal point
position indicator which is a value in the range from 117 to 12-MDC, which
indicates a digit, as given by the DP POS column in the table. The decimal
point is focated to the right of this digit.

70 August 1978 ©BYTE Publications Inc

voltage swing from —4V to +5V. Fortu-
nately, this is easily achieved with an LM339
comparator which makes a finc TTL to MOS
level shifter and is widely available. The BR
and RW lincs arc the only required outputs
that cannot drive TTL directly. CMOS in-
verters and flip flops are used to latch pulses
from these lines anyway, but in this case
they also provide buffering.

The 2.2 k pull down resistors to Vpp
from the ERROR, RDY and DO lines
assume the use of a bipolar (TTL) input
port. If your input port lines use high
impedance MOS receivers, then these re-
sistors should be replaced by 15 K resistors
to ground, OV,

It is worth mentioning that in this circuit
there are a number of outputs of the
MM57109 that are completely unused. This
is because the MMS7109 is a very versatile
device that can be configured in several
different ways. In this application the com-
puter performs many of the functions of the
unused pins.

The simple program detailed in listing 1 is
designed to allow you to become familiar
with the MM57109 by giving it one instruc-
tion at a time and single stepping its opera-
tion. A number of useful subroutines are
included that may be applied to larger
applications programs. After each colon
prompt character is displayed you are ex-
pected to supply a two digit octal number
corresponding to the instruction you wish to
exccute. If it is a 2 word instruction, the
second word is entered after the next colon.
Whenever the OUT instruction, octal 26, is
used, the computer goes to a routine that
reads the data into a buffer and then dumps
it to the display “as is.”” This way, the effect
that different instructions have on the dis-
play format shown in table 3 can be seen.
Before requesting an instruction, the com-
puter polls the ERROR and BR lines and
outputs an “E" or “B," respectively, if these
lines are active. Once the ERROR line is set
it must be cleared with the ECLR instruc-
tion, but the BR line is reset automatically
by the program.

When the program is first entered at 0200
it initializes the processor by outputting a
POR pulse and ignoring the first two RDY
pulses before halting on the third. Halting
for instruction input is done by bringing the
HOLD line high. When an instruction is first
moved to the output port, the HOLD line is
left high. It is brought down on a separate
command so that the data on [y thru lg is
fully stable before HOLD starts to change.
The computer senses when it is time for a
new instruction by monitoring the RDY line

the electric pencil I1”

The Electric Pencil II is a Character Oriented

Word Processing System. This means that text is
entered as a string of continuous characters and
is manipulated as such. This allows the user
enormous freedom and ease in the movement and
handling of text. Since line endings are never
delineated, any number of characters, words,
lines or paragraphs may be inserted or deleted
anywhere in the text, The entirety of the text
shifts and opens up or closes as needed in full

© 1978 Michae! Shrayer

As text is typed in and the end of a screen
line is reached, a partially completed word is
shifted to the beginning of the following line.
Whenever text is inserted or deleted, existing
text is pushed down or pulled up in a wrap
around fashion. Everything appears on the video
display screen as it occurs which eliminates any
guesswork. Text may be reviewed at will by
variable speed scrolling both in the forward and
reverse directions. By using the search or the

view of the user. The typing of carriage returns
as well as word hyphenation is not regquired
since lines of text are formatted automatically.

search and replace function, any string of
characters may be located and/or replaced with
any other string of characters as desired.

When text is printed, The Electric Pencil II automatically inserts carriage returns where they
are needed. Numerous combinations of line length, page length, line spacing and page spacing allow
for any form to be handled. Character spacing, BOLD FACE, multicolumn as well as bidirectional
printing are included in the Diablo versions. Right justification gives right-hand margins that are
even. Pages may be numbered as well as titled. This entire page (excepting the large titles and
logo) was printed by the Diablo version of The Electric Pencil II in one pass.

Now on CP'M

You've probably seen
The Electric Pencil in
action by now. It's the
most powerful 8080/Z80

NEW FEATURES: !!! CP/M Compatible !!! Disk Operating System
Supports Four Disk Drives !!! Simple File Management !!! Quick and Easy
Disk Storage and Retriewval !!! Dynamic Print Formatting f!! Multicolumn
Printing !!! Print Value Chaining !!! Page-at-a-time Scrolling !!! New
Bidirectional Multispeed Scrolling Controls !!! New Subsystem with
Print Value Scoreboard !!! Automatic Word and Record Number Tally !!!
Cassette Backup Capability !!! Full Margin Control !!! End-of-Page

character oriented word Control !!! Non-Printing Text Commenting !!! Line and Paragraph
processor on the market Indentation !!! Centering !!! Underlining !!! BOLD FACE !!!

today. Michael Shrayer is
now proud to present the W I
new Electric Pencil II.

HAVE WE GOT A VERSION FOR YOU ?

The Electric Pencil II operates with any B0O80/Z80 based microcomputer that supports a CP/M disk
system and uses a Imsai VIO, Processor Technology VDM-1, Polymorphic VTI, Solid State Music VB-1B,
Vector Graphic Flashwriter or any similar memory mapped video interface. Specify when using CP/M
that has been modified for Micropolis or North Star disk systems as follows: For North Star add
suffix A to version number, for Micropolis add suffix B to version number, e.g. SS-IIA, DV-IIB.

D E S C R E E N v I D E O ! ¢!
Available to Imsai VIO video users for a huge 80x24 character screen !!

vers. Video Printer Price
SS-11 SOL TTY or similar $225.
SP-I1I VFI TTY or similar $225. m MICHAEL SHRAYER SOFTWARE
SV-1I VDM TTY or similar $225. 1253 Vista Superba Drive
SI-11 VIO TTY or similar $250. Glendale, CA 91205
DS-I1 SOL Diablo 1610/20 $275. ss (213) 956-1593
DP-1I1 VTI Diablo 1610/20 $275.
DV-11 VDM Diablo 1610/20 $275.
DI-II VIO Diablo 1610/20 $300.
The Electric Pencil I is still available for non CP/M users:
- Vers. Video Printer Cassette Disk Drive Price
coming
1 S5 SOL TTY or similar CuTS -— $100.
attract‘ons SP YT1L TIY or similar Tarbell -— $100.
L. sv VDM TTY or similar Tarbell ——— $100.
Sort & Merge Utility !!! SSN 80L TTY or similar CuTS North Star $125.
SPN VTI TTY or similar Tarbell North Star $125.
The NEC printer package !!! SVN VDM TTY or similar Tarbell North Star $125.
DS SOL Diablo 1610/20 CUTS - $150.
The HELIOS Electric Pencil 11! DP VYTI Diablo 161G/20 Tarbell -— $150.
DV VDM Diablo 1610/20 Tarbell —-_— $150.
Pencil to CP/M file conversion !1! DSN SOL Diablo 1610/20 CUTS North Star $175.
DPN VTI Diablo 1610/20 Tarbell North Star $175.
CP/M to Pencil file conversion !!! DVN VDM Diable 1610/20 Tarbell North Star $175.

Demand a demo from your dealer!

Circle 316 on inquiry card. BYTE August 1978 71

L 14
IC3A
_3‘ -
POWER TAQLE LM339
NUMBER TYPE +5v | GND | -av 1]y
el 74C04 14 7 o] e38 3
ic2 | cpaoi3 t4 7 Loy puulel i
1c3 LM339 3 12
1ca MM57109 15 2l
Ic5 LM340T-50 47K
] 5K
MSB
7 9 T
6 HOLD _ POR
5 2] P
a4 S 15
OUTPUT "
PORT 3 14
2 : 13
(12
0 i
LsSB
ICID
R iC4
STROBE I [> MM57103
4 ‘2 RODY
2 2k
IC2A Ra—o ICIF
i 12 13 o]
< &
a4y Q S o< RW
19K
CD40I3
74C04
S| Ms8 c2B glo .
DIGOUT 13 8 1 1 23| —
6 Q S < 8R
M IEE] °<
ICIE 15K
INPUT 4
PORT 3
2
) 2 error
°JTss Zlg 004
51003
s
o ble]
0SC
1. " > < 7
POWER CIRCUIT 23sss22¢m
LM340T-50 u
1cS
+8v [>——IN ouT +5V RM
GND | 100 pF
/717 ; 91V, W ZENER 3+
74C04
3320
1/2W CIA 1cB ICIC
-16v [o>——aw < L -4y
2 4 6
T = frsasss Lase
\uF
; N

W

Figure 4: Schematic diagram for interfacing the processor to a computer. The STROBE signal can be any software controffed
output pulse with a width varying from 200 ns to 50 us. The rise and fall times are noncritical. All unused inputs in the circuit
should be grounded to prevent floating voltage problems. Alf resistors are 0.25 W unless otherwise specified. All resistances ure
megsured in ohms.

72 August 1978 5 BYTL Fublications Inc

Listing 1: An 8080 familiarization program
for the MM57109 which allows the user to
execute single commands and observe the
resufts. The program will output a prompi-
ing cofon after which the operator can
input the command to be observed in its
octal format.

with the input port. if you have a spare
interruptl, however, you can conncct it to
the RDY linc to free the computer from the
task of polling the input port while the
MM57109 is executing an instruction.

DIGOUT is monitored by the computer
when processing the MMS57109's OUT in-
struction. It goes high to signify the presence
of a digit on DOy thru DOy4 and must be
reset by the computer after the digit is read
in. When reading in digits, the computer will
also monitor the RDY line to tell when the
instruction is completed.

It should be noted that this program was
written for my personal 8080 system and
uses memory mapped 10, ic: my O ports
arc addressed as memory locations. [f you
have a system which uses the 8080 10 ports,
you will want to substitute IN and OUT
instructions for LDA and STA,
respectively.m

The KIM to S-IOO‘bus
Interface/Motherboard

J ¢ Combines the power of the 6502 with the flexibility of

| the S-100 bus

® Ataches to any unmodified KIM

* Complete interface logic and fully buffered motherboard
in one unil

® On-board regulation of power for KIM

Eight slots of 5-100 compatibility for additional RAM,
Video and /O boards, PROM Prograrmmers, Speech
pProcessors . . .

® Indudes all parts, sockets for ICs. one 100 pin connector,
and full Assernbly/Operating documentation

* Kit $125, Assembled $165

¢ All units shipped from stock

FORETHOUGHT PRODUCTS

P.O. Box 386-F
Coburg, OR 97401 &

= _ bl

N I

74 August 1978 © BY TE Publications inc Circle 140 on inquiry card.

ISOFTWARE LISTING FOR MNM%$7109 MICROPROCESSOR DRIVER/DEMONSTRATOR
IVRITTEN FOR AM 8080 BY P HELSON

0R00 3IE BY WV A,BF FS5ET POR=1,HOLD=s(
0BOR 32 01 80 STA 1700 FINSTRUCTION = NOP
0205 0K 0a WYl C.04 SSHORT TIMING VALUE
0207 0D LoopP BCRC 170 TIME POR

0808 C2 07 08 JMZ LOOP JPULSE

0gOR 79 MOV A.C ICLR A

080C 32 01 80 STA 1/04) JSET MOLDs POR=0Q

0R0F CD &F o2
oklg CD 8F OR
OR15S Fé6 40 HEXT

CALL NXTRDY J¥AIT FOR RDY PULSE

CALL NXTRDY JwAIT FOR ADY PULSET

OR{ a0 J5ET HOLD=i S50 3T109

oet7T 32 01 A0 STA 1700 }STOPS ON MEXT RDY

0f1A CD 8F 08 CALL NXTRDY JRETURNS WITH 57109 HALTXD
081D 3A Ol B0 NEXT+ LDa 17001 JREAD BR.ERROR

o800 17 RAL

oeeld 17 RAL 1BR YO CARRY

ogee 17 RAL

aeeld 3 04 80 STA 17004 ICLR F.F.'5 VITH STROBE
oRes A7 MOV B.A ITENP STORE ACC
0pe? DR BF OFf JNC ERROR?) IF MO BRANCH

OBEA JE A2 KVl A,ap SASCILI B

oeeC €D 10 01} CALL QUTCHR JCHARACTER DISPLAY
08eF 78 ERROR? MOV A:B JRETRIEVE ACC

0830 17 RAL JERROR TO CARRY
0231 DE 39 o2 JNC FETCH 1IN NO ERROR

0834 3K A4S MVI A.45 IaSCII E

0236 CD 10 0) CALL OUTCHR JCHARACTER DISPLAY
0839 3L 3A FETCH MVI A.3A JASCLI 1

0838 CD 10 0
O2IE CD 9K Of
0841 CD AEK o2

CALL OGUTCHR JCHARACTER DISPLAY
CALL OCTIN JGET INSTRUCTION CODE
CALL INSTRCTIGIVE 57109 OPCODE

0f44 FT 16 CPI 16 $0UT CODE
0846 CA aC o2 JL ourt JWAS 1T AN OUT OP
0849 C3 15 o2 JHP NEXT 11F MOT, NEXT INSTRUCTION

} OUT READS IN CORRECT # OF DIGITS, STOPPING BY SENSING RDY AND
ITHEN DUMPS BUFFER TO DISPLAY IN HEX/BCD

o2aCc g1 OC 03 OUT LXI K 3TOP OF BUFFEA LOCATION

OR4F 3A 0} 80 NOTYET LDA 1/001 JGET INPUT

oese 17 RAL JROTATE

0853 17 RAL JDIGOUT INTO CARRY

08%4 02 AF 02 JNC MOTYET 3DISOUT=0?

0257 1 F NXTDIG RAR JRESTORE DIGIT

0258 1IF RAR JLOCATION IN ACC.

0ese 77 MOV MLA JPUT [N BUFFER

0254 20 DCR L JIDCR POINTER

023B 32 04 80 STA 1/0¢a JRESET DIGOUT F-¥.

ORSE 3E &0 MVUI A,AQ0 JNOW THAT WE ARE OAST QUT*S END
0260 3g 01 STA 17041 PADY,SET HOLD=l TO STOF AT END OF OUT
0BR63 3A 01 BO AGAIN LDA 17001 JGET INPUT

0R66 17 RAL JROTATE RDY 1HTQ CARARY

0R67 DA 7} Of JC DISPLAY J1F DONE. G0 TO DISPLAY

oe6A 17 RAL
086B D2 63 OR JHC AGAIN
O26E CJ $7 OR

JTROTATE DIGOUT INTO CARRY
JNO DIG1T READY?Y

JuP JSTORE DIGIT.,GET NEXT ONE
D1SPLAY MVI A,0C

071 3E OC JCALCULATE DISIT

0273 95 SuUBL JCOUNT(QC POINTER VALUE}
0274 AF LISTING MOV C.A ISTORE COUNT IN REBISYER C
0e27S 21 0C 03 LX!I H JBUFFER LOCATION

0278 7TE MOV A:M JQET 15T DIGIY

OR79 E6 OF AN1 OF JGET LOVER & BITS

oe7B FE 0A CP1 0OA

027D DA B2 0B JC "0-9™ JDON,T CHANGE I¥ 0-9

0280 Cé6 07 AD] 07 JCONVERT A-F

oese C6 30 “0-9"
0284 CD 10 Ol

ADl 30 JCONVERT ALL TO ASClI
CALL OUTCHR 3DISPLAY CHARACTER

0g87 2D DCR L JDECR POINTER

0eg8s8 oD DCR C }DECR COUNT

0289 cg 78 Of JNZ MORE JDMORE DIGITS TO DLISPLAY
0esc C3 ID og JHP NEXTe SDA MEXT INSTRUCTION

INXTRDY WAITS FOR A POSITIVE TRANSITION ON THE RDY LINE AND THEN
SRETURNS

086F 3A 0‘ BO MXTHDY LDA [/0#1
0R98 17 RAL

0R93 DA BF OB JC NXTRDY
0296 JA 01 60 NOTRDY LDA [/0¢1
0R99 17 RAL

Oe9A D8 e

0298 €3 96 02

1 GET [NPUT
JROTATE RDY [NTD CARRY

3IGET INPUT

JROTATE RDY INTO CARRY
J1F CARRY 15 KIGBH.RETURNH
JNF NOTRDY JOTHERWISE TAY AGAIN

JI0CTIN RECEIVES B DIGITS (1T ASSUMES NUMERIC [NPUT) AND CONVERTS
3T0 A 6 BIT VALUE IN ACC REPHESENTING A B OCTAL DIGLT INSYRUCTION
ICODE FOR THE 57109+ AN INTERRUPT DRIVEN KEYBOARD IS ASSUMED.BUT
JTHE 3 BYTE FORMAT (El1.HLT.NOP) LEAVES ROOM FOR A CALL [NSTRUCTION
ITO THE USER’S INPUT SUBROUTINE IF THIS I5 NOT THE CASE

ogeL re El 10ET

029F 76 HLT IBYTE

0e0A 00 WoP FINPUT

ORAl £6 07 ANI 07 JNASK FOR LOVWER 3 BITS
ORA3 17 RAL INOVE

OLAA 17 RAL IDEBIT UP 3

02A% 17 RAL IPOSITIONS

ORAS A7 MOV B.A JTEMP STORE ACC

ORA7 FB £l JaET

ORAB 76 HLY IBYTE

0RA9 00 HOP JINFUT

08AA E6 07 AN 07 IMASK FOR LOWER 3 BITS
08AC BO ORA B JICOMBINE DIGITS

ORAD C9 RET JCRETURNDY

JINSTRCT PUTS INSTRUCTION CODE ON [] TO 16 VHILE LEAVING HOLD HIGH.
JIT THEM SETS HOLD 1O D.

ORAE Fé a0 INSTRCT ORL 40 JHOLD=t ¥ITH OPCODE
0280 & 01 80O STA 1/001 I0UTPUT IT

0EB) E& 3F ANl JF IMXB=1 OF HOLD = O
0eBs g 01 BO STA 1/0#) SOUTPUT IT

OfEB C9? RET 3 CRETURNY

@ rersonal

" |€ Computing -
718

76

PERSONAL COMPUTING COLLEGE
Has the industry’s leading speakers
participating

Dr. John W. Mauchly, Co-inventor of ENIAC

Rabert W. Bemer, The father of ASCl!

Or. Adam Osborne, Author, of Oshorne & Associates

Robert S. Jones, Publisher & Editor-in-chief, INTERFACE AGE MAGAZINE
Carl Warren, Semor Editor, INTERFACE AGE MAGAZINE

Walter Banks, Author, University of Waterloo

Dr. Christopher A. Titus, Author of the BUGBOOKS

Carl T. Helmers, Jr., Editor-in-chief, BYTE MAGAZINE
Christopher P. Morgan, Senior Editor, BYTE MAGAZINE

Blaise W. Liffick, Senior Editor. BYTE MAGAZINE

Dr. Robert Suding, of The Digital Group

Chod Harris, of the Amencal Radio Relay League

David H. Ahl, Publisher, CREATIVE COMPUTING MAGAZINE
Merl Miller, Author, Publisher dilithum Press/Mairix

Bill Langenes, Associate Editor, COMPUTER RETAILING

Jim Warren, West Coast Computer Fawe

Sol Libes, President, Amateur Computer Group of New Jersey
Richard Moberg, President. Philadelphia Area Computer Souely
Richard A. Kuzmack, President, Chesapeake Microcomputer Club
Rodnay Zaks, Author. Publisher, SYBEX Inc

Howard A. Chamberlin, Jr. (Hal), Author, Inventor, Micro Technology Unlimrted

Larry Steckler, Editor. Radio-Electronics Magazine

Tod Loofhourrow, Student and Author for Interface Age Magazme
and Hayden Book Co

many-many more

80 hours of free seminars
on subjects such as:

e Building your own robot

« Personal computing applications
for the home

« The microcomputer controlled
solar energy home

« Business applications

« Educational uses

+ Understanding softwear

« Ham radio applications

« Designing your own
microcomputer system

« Everything you wanted to know
about floppies

¢ Softwear copywriting and
trademarks

|
SPECIAL at our show:

e The unveiling of a new,
complete, easy-to-learn high
level language for micro-
computers.

+ A complete series of seminars
aimed at the small business
man presented by the
INTERFACE AGE speaking team.

o Computer music.

THE AMAZING MICRO-MOUSE MAZE CONTEST

Official East Coast Runoffs being held Fri., Sat.,
Sun. at the show. Sponsored by IEEE Spectrum.

A contest of self-contained microcomputer

controlled mice designed to negotiate a complex
maze.

PHILADELPHIA CIVIC CENTER

August 25. 26. 27th at the Philadelphia Civic Center

BYTE August 1978

Circle 302 on inquiry card.

THE 1st FULL DAY INDUSTRY TRADE SHOW AUG. 24th

. Personal LARGEST SHOW EVER HELD!

300 BOOTHS

€ Computing A

DEALERS — RETAILERS
78 INDUSTRY REPRESENTATIVES
EXHIBITOR GUESTS
PHILADELPHIA

Personal Computing and Small Business Computer Show

PHILADELPHIA CIVIC CENTER 2 27, 1078

@ A Full Day To See Your Suppliers, Dealers, Distributors
TE“ FO“ ® New Products and New Manufacturers
£ “EG\S ® Plus Three Additional Days
R ® Aug. 25th-27th, Personal Computing Show

, BE A SPEAKER
” AT ONE OF THE SEMINARS

BEING PLANNED FOR

DEALERS AND RETAILERS
AT OUR
PERSONAL COMPUTING COLLEGE ™

PRE REGISTRATION INCLUDES:

@ Distinctive Badge for Admission to Aug. 24th Trade Show

@ Special Seminars and Meetings

@ Admission to Personal Computing Show Aug. 25th-27th

@ Hotel and Philadelphia Information Package

@ Newsletter See our ad on page 151.

I D Send ____Dealer-Retailer COMPANY NAME
| Registrations at $15.00 each NAME

D Send Exhibitor information STREET

Amount Enclosed § CITY STATE 2P
PHONE

Please include your business card Send To:

or Letterhead. PERSONAL COMPUTING Inc.
Rt. 1 Box 242 & Mays Landing, N. J. 08330 ® 609—653-1188 BYTE

L __

Circle 302 on inquiry card. BYTE August 1978 77

Stephen R Alpert
Worcester Polytechnic Institute
Worcester MA 01609

PASCAL forces the user

to think logically and
plan out the program,

Most PASCAL users con-
sider programs better if

78

they have fewer labels.

August 1978 © BY TE Publications Inc

PASCAL

A Structurally Strong Language

Pcople should be able to communicate
their ideas to a computer in a language that
people understand; not simply in a language
they know. Additionally, it the computer
can be made 1o understand the same Language
easily, all the more reason 1o consider its
use. Such 4 language is PASCAL. This lun-
guage, perhaps more than any other com-
mon language, is the easiost to understand
and more importantly, dlows a4 straight-
forward presentation of most algorithms.
Although many languages also make this
claim, few have the overwhelming and
energelic support from collegiate computer
scicnce departments. Let's consider some
of the language Teatures of PASCAL .

This language is cquipped with a precise
syntactical description that defines both
how programs may be constructed and
how PASCAL compilers should function,
There is a required form for programs,
statements within - programs, and data
opcrated upon by programs. At first glance,
a naive user may rebel at this apparent lack
of Treedom: (eg: BASIC allows o dimension
statement virtually anywhere in a progiram).
One soon learns that this structure admits
very general programs and in no way limits
the programmer in exercising his talents, On
the contrary, it forces the wuser to think
togically and plan out the program.

A program written in PASCAL may
utilize the free format form ol programs that
15 conducive to structured programming,
Unlike line woriented source languages,
PASCAL allows extra spaces, labs and car-
riage controls to be inserted anywhere with-
out significance except in the middle of
identifiers or character strings. Comments
may be inserted wherever spaces may be
inserted and are delimited by (. #)
A program is made up of two parts, a
heading and a block. The heading contains
the name of the program and lists its param-
eters, The puarameters are somewhat im-
plementation dependent but normally

specify the names of file pointers from
which the default input is received and 1o
which output is sent. A typical heading is

program parser {input, output)

A block consists of six separate scgments or
sections of a program. All but the last part
are optional. These are:

Label declaration seclion

Constant declaration section

Type declaratlion section

Variable declaration section

Procedure and function declaration
section

® Stitement section

Labels in PASCAL identify statements
to which control may be transferred. Labels
are numeric; more specifically, unsigned
integers. Not cvery statement requires a
label. In fact, most PASCAL users consider
programs better if they have fewer labels,
At first glance, these declarations might
seem a nuisance, but they force the user
to think about the entire program bclore
sitting down at a terminal.

The constant declarations allow a user to
create synonyms for constants used in the
program. Thus

pi=3.141592;
e=2.7182818;

const

defines the constants “pi'" and “‘e'" for use
throughout the program. Clearly, it no
longer is necessary to type 3.141592 in the
several places required by a program. Addi-
tionally, one may name character strings
as well

const title~'matrix inversion program v(Q1’;

The type declaration section allows creation

of user defined named data types. This
will be discussed in some detail later. PASCAL
has four predefined data types: integer, real,
Boolean, and character. Most versions of
BASIC support the first three- types and

Arrays may be multi-

dimensional and include

arrays of arrays.

Items of different types
may be aggregated into a
single entity that can be

80

stored as one logical
unit.

Avgust 1978 & BYTE Publicatians Inc

strings. Data of type character is very con-
venient in a microprocessor environment
since a byte is the basic unit of memory.

The variable declaration section requires
the naming of all identifiers that will be used
as variables within this block. FORTRAN,
BASIC, APL, and LISP do not adhere to this
convention. Again PASCAL forces the user
to think about what he wants Lo say before
he says it. A sample variable declaration
section might be

var X,y integer;
cost:real;
flag:boolean;

PASCAL’s design allows the user to combine
the utility of type declarations and variable
declarations into data forms that would
shame BASIC and FORTRAN. We have
already scen PASCAL’s predefined scalar
variable types above. These are actually
known as simple types.

Another simple type is the subrange type.
Often a variable in a program may be ex-
pected to take on values only from asubrange
of a simple type, say integers. For example

var asiz:1.,100;

B

meaning “asiz” will be an integer whose
values should lie between 1 and 100. Note
that the compiler might choose to store
“asiz'” as a byte rather than a word if it was
efficient enough to do so. Alternatively, if
several variables are of the same range, a
type statement could have been used

type 1siz=1..100;
var asiz, bsiz, f1:isiz;

Another simple type is the symbolic
scalar type. This {cature permits identifiers
to be used in place of a sequence of integers,
greatly enhancing the readability of the
program. Suppose a program needed to
represent the months of the year as a vari-
able associated with some billing informa-
tion. The approach in BAS!C would be to
use the sequence 1, 2,...,12. PASCAL
could use the subrange type 1. .12 or better

type
months = (jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, dec);
var bilimonth,duemonth:months

In the statement section of a program,
“billmonth” may be assigned one of the
symbolic scalars from “months’ or tested to
sce how its value compares with ‘‘due-
month.” There are several functions avail-
able that operate on symbolic scalars, for
example, ord(billmonth) would vyield a
number between 0 and 17 indicating the
position of that month in the list “months.”

Simple types are part of a more general
data description called a type, Types include

pointers which are used when dynamic data
storage is referenced, file pointers which are
used to reference secondary data storage,
and arrays which are used with vector data
storage. An example of an array decliara-
tion is

var cost: array [months] of real;

Notice that this array will be indexed, or
subscripted, by ‘“months.” In gencral,
arrays may be indexed by any simple types,
may be multidimensional, and may be of
any type, including arrays of arrays.

Two additional types set PASCAL in a
class by itself; these notions allow powerfu!
algorithm descriptions. The set type allows
user manipulation of sets. Consider

var special: set of months;

The union, intersection, and sct difference
operators as well as relational operators may
be applied to sets. A variable of scalar
type may be tested for membership in a set
of the same scalar type, lor example

if billmonth in special then. . .

The last type is the record type. Items of
different types may be aggregated into a
single entity that can be stored as one logical
unit, for example as one element of an
array.

type
customer = record

name:array {1..20] of char;
bal,bal30:real;
datedue:daterec

end;

record
day:1..31;
mo:months;
year:integer

end;

daterec =

var
database: array[1..100] of customar;

To reference fields of a record, the record
name followed by a period, followed by the
field name is used. Hence the over 30 day
balance of customer 12 is '‘database|12].
bal30" and the day of the due date of the
current bill of customer 27 is “‘database[27] .
datedue.day.” The full impact of record
types cannot be explained in this short
article; they must be used to be appreciated.
One advantage of records is that items may
be logically grouped together rather than
stored in parallel arrays.

Procedure and function definitions would
follow next in a program. They may be
recursive and permit parameter passing in a
style somewhat similar to ALGOL. Because
of the position in a program of these declara-
tions, procedures and functions may
reference globally any wvariables or types
defined in the main program. The body of a

BUSINESS SOFTWARE FOR MICROCOMPUTERS

IS HERE — AT LAST

Osborne & Associates is publishing its business systems in book form. These
systems represent five years of development and testing by O&A programmers,
and the books include another year’s worth of extensive and detailed documenta-
tion.

What systems are we sclling?

1. PAYROLL WITH COST ACCOUNTING — available now, on display at
your local computer store.

2. ACCOUNTS PAYABLE AND ACCOUNTS RECEIVABLE — should be
published by July 30.

3. GENERAL LEDGER — will follow A/P AND A/R. probably published in
September.

Each book sells for $15, and includes source listings in Wang BASIC, program
and system documentation, and user’s manual. Each is a complcte package by it-
self, or all three may be implemented together to form a complete system with
interdependent files.

And if Wang BASIC won't work, or you don't know programming, or you'd
rather not key in thousands of words of source code”, take a look at the list of
consultants who have adopted O&A programs, converted them (o run on many
popular systems, and are waiting to hear from you.

*Wang listings availuble rom Osborne & Associates on cassctte or hard disk

GOOD NEWS FOR CONSULTANTS, COMPUTER STORES AND SYSTEMS
HOUSES

Osborne & Associales is converting its business systems from Wang BASIC — us it was originally
published — to CP/M C-BASIC, which runs on most floppy disk-bused microcomputer systems.
The disks lor each book sell for $250. Once you buy the floppy disk you can copy it, resell it, change
it or use it. We place no restriction on the magnetic surface; we copyright only the printed word in
our baoks.

We will only sell the CP/M muagnetic surface o consultants, computer stores and svstems houses.
Osborne & Associates prefers to write and sell books, not customize the programs or answer the
end user’s questions. PAYROLL should be available on CP/M in July — call us for cxact
availability and more policy information

IT you are an end user, write or call us. We will put you in touch with vour closest dealer.

BASIC Business Program Conversions

Alphia-Micra system:

Svotl Brim. President

COMPUTER SYSTEMS FOR RUSINESS, INC

AU i vvenue, Las Vepas, NV 89100
Digital {iroup sastem:

lohn Musgrose

MUSGRON FNUGINEFRING

4T Kondietrer Drove, Houston TY " Thdn
Mits 4.1 BASIC:

Willum K Hanes

ANACOM GENER AL CORPOR ATHON

Pholh Fast Ak Avenne Fullerion, ¢ 4 963t

Microsnft dink BASIC:
han Kinerel
GNAT COMPUTERS
RO Canvay Street
San Diega O3 0211

Wane BASIC an flopps dish:
Riwchard M semour
ATEANTIC CONMPUTING AND UCDNSUL TING
Pt Sparrow Road
Chesapeahe A 2318

Yectur Geraphic, Polymorphic. Southwest,
Cramemco and Noval syslems:
EoAllen Whednn Peesident
COMPUTAL L CORPORAON
27K South Harhor Hivg
Sanle Ana O 9270

C-BASIC with CP/V disk. and Wang
BASIC on cassette or hard disk:
Sary Borchers
OSBORNE & ASSOCTATES NG
[*¢1 Box 2i3n
Berkeley OOy 947?

Dee (BDP-11):
Cireunes DleReosa
MICRO-BAST ASSOCIATIS
AT W indwaed W 2204
Calumbus, OHF 3N

MICROFILE:
Clirence Mallon
CONMPUTER FLECTRONIC MODUS INC
IR S Milwaubee Aveniue Suie X6
Wheelme, [T (0t

Fexas Instruments yiSeunii
MONS Technology 6502:
Davad Mhichae! Myers
TUEIP ASSOCTA TS
PO Bos |
Tlughessitle MUy Hied?

PG I AP NI IO TII RN INIORTINOs RPN E000000000 0000000000000 0 00000080 00CCEInictisoseesosrsneserasotossnsucesenosNaanseeses

These prices effective July 1, 1978. PRICE | QTY AMT (1'(\ OSBORNE & ASSOCIATES, INC. {415) 548-2805
6007 Voluma 0 — The Beginner's Book $ 7.95 P.0. Box 2036 DEPT.IMNM TWX 910-366-7277
— r R , .
glume ¢ Feginners] Berkeley, California 94702
2001 Voluma | — Basic Concepts $ 8.50
NAME
3001A Volume || — Some Real Products $£15.00
R) ADDRESS
4001 80BO Programming for Logic Design $ B850 ADDRESS
5001 6B00 Pragramming for Logic Design $ 8.50 Ty
3 . [
7001 280 Programmung for Logic Design % 8.50 STATE ap HONE
SHIPPING CHARGES: Shipping for large orders to be arranged.
31003 B0B0A /8085 Assembly Language Programming $ 850
- =] All tareign orders, $3.00 per book, for air shipment
32003 6800 Assembly Language Programming 5 850] 4th class $0.35 per book (allow 3-4 weeks wittin USA. nat applicable to
21002 Some Common BASIC Programs $ 8.50 discounted orders)
O $0.75 per book, UPS (allow 10 days!) in the US.
22002 Payrall With Cast Accounting $15.00 O $1.50 per book, special rush shipment by air in the U.5.
23002 Accounts Payable and Accounts Receivable $15.00 Please send information on:
] 0 Becoming an O&A dealer
- 6%2%, SF Bay Area residents only TOTAL O School dscounts
- 6%, California residents outside SF Bay Area Sales Tax a List of foreign distrbutors
. (Calif residents only) .
Paymant by check or maney order Shioping Ch *This book is scheduled to be published during 1978
must be enclosed for orders of 1DpIng Lharges i o N)
10 books or less Please notify me when it i5 available:
r .
o0Ks o TOTAL AMOUNT ENCLOSED O 24002 General Ledger ro
Circle 293 on inquiry card. BYTE August 15978 81

procedure or function is identical to the
body of a program; hence, procedures may
be defined within procedures, and so on.
Any variables defined within procedures or
functions are considered local to the pro-
cedure and are unique to each invocation of
the procedure. The sample program in
listing 1 has several examples.

The statement portion of a program is
called a “compound.” A compound is a
sequence of the keyword begin, any num-
ber of statements separated by semicolons,

Listing 1: The Polish "compiler’ listing. Notice that PASCAL does not con-
strict the format of the program line. Indentation allows the program blocks
to be easily separated from each other and makes the program easier to read.

82

PROGRAM PRARSECINPUT. OUTPUT),
t*PROGRAM PARSES SIMPLE ARITHMETIC EXPRESSIONS
INTO THEIR KESPECTIVE FOLISH CODE IT DuES
THE PROFER T%¥PE CONYERSIONS MHECESSARY FOR
REAL RAHD INTEGER EXPRES5IOHS RACCORDING TO
THE FORTRAN CONVENTION
REAL A-H., 0-2Z
INTEGER I-N
YARIABLES ARE ONE LETTER LOMGw»
LABEL 99, <(#»FOR ERROR RESTART=>
CONST
DONTCARE=""7", (*MARKERS FOR CODE GENERATGOR=+)
MAXPC=1808, ¢(+MAXIMUM CODE SFRCE=>
TYFE
CODESPRCE=1 MAXPC., <(*ADDRESS SPRACE=)
ATTR=(NONE. INT.REA}, (#ATTRIBUTES OF OPCOLE> AND EXPRESSIONS+
LEXTY=¢RDDOP, MULOP. LPAREN, RPAREN. IDENT. ECL
(+THESE LEXEMES FOR INFUY ASSUME A NON-HOSTILE USER+:
INSTRUCT ION=RECORD
OPC CHRAR: (*DFCODE#*>
ITYPE RTTR, <»0OPCODE TYPE+>
ADR CHAR (+NAME OF IDENT+»
END;
YRR
CODE: RRRAYLCODESFACE] OF INSTRUCTION, (#WHERE CODE GOES%)
PC CDDESPACE; <(»PC OF CURRENT INSTRUCTION=#)>
GATTR: ATTR. (*GLOBAL TYFE OF EXPRESSIONS#)
CH CHRR: (»CURRENT INPUT CHRRACTER=+>
CHTYPE RTTR., <(*CURRENT CHARACTER ATTRIBUTE IF IDENT+)
LEX LEXTY. (#LEXEME OF CURRENT INPUT#)»
BFR PRCKEC ARRAY[1 B8@1 OF CHAR, (»INPUT BUFFERw%)
BF INTEGER; <»CHARRACTER BUFFER POINTER»)
PROCEDURE SCAN, (+PROCESS NEXT INPUT CHARACTERw)
BEGIN
REPEAT
BPF: =BP+1,
CH =BFR(BP]
UNTIL CHN- “;
(*WORRY RBOUT END OF LINE=)
IF ORD(CH>=8
THEN LEX: =EDL

ELSE
IF CH IN LA 2]
THEMN
BEGIN
LEX: =IDENT:
IF CH IN £°I° “N"]
THEM CHTYPE. =INY
ELSE CHTYPE =RER
END
ELSE
CASE CH OF

¢ LEX. =LPRREN.
‘37 LEX. =RPRAREN.
‘47, 7=7 LEX: =ADDOP:
W, /7 LEX: =MULOP
END
END (*DF SCRN+3;
PROCEDURE ERROR:
BEGIN
WRITELMN(- - .BPF+1i, 7T ERROR"), (+COMPENSATE FOR USER PROMPT*)
GOTO 99
END (»QF ERROR+);

August 1978 @ BYTE Publications inc

and the keyword end. The program ends
with a period. Each of the statements with-
in a compound may be one of a varicty of
different kinds of statements. Assignments,
like

database[i+k] .bal:=total

are the most common statements, PASCAL
supports a large number of control state-
ments which give the language its structure.

PASCAL has a looping control similar
to that of standard BASIC but the step or
increment may be only +1 or —1. The for
statement causes a single statement, which
could be quite complex, to be executed
some number, including zero, times. For
example

forind. =1 to 100 do
begin
due:=1.006 *database|ind] .bal;
database[ind] .bal: =0.0;
sum:=sum+due;
database(ind] .bal30:=
1.006° databaselind] bal30+due
end

This segment shifts the balance 30 days,
adds some interest charge and accumulales
a sum of the recently aged balances. If in
a for statement, the increment were to be
—1, then the keyword downto would re-
place the keyword to.

PASCAL supports both simple condi-
tional and full conditional statements; that
is

if <condition>- then <statement>-
and

if <condition:» then <statement.-
else -statement>:

Any “dangling else, an else which follows a
sequence of “if . .. thenif ... then..."
is paired with the inncrmost if.

When working with records, partial ad-
dressing can be done by using the “‘with”
statement. This allows the fields of a record
to be referenced as variables. The previous
example then becomes

for ind:=1 to 100 do
with database(ind] do

begin
due:=1.006"bal;
bal:=0.0;
sum:=sum-+due;
bal30:=1.006 *bal 30+due

end

Three additional control statements are
the while, repeat, and case statements. The
while statement allows a given statement
to be executed as long as some Boolean
expression is true (the condition is tested
first).

while <condition> do < statement->

The repeat statement ailows one or more

Listing I, continued:

PROCEDURE GENCODECF CHRR. I ATTR. RA:CHAR),
BEGIM PC. =FC+1,
IF PCO>MARXPC
THEN BEGIN WRITELNY OQVERFLOUW >, ERROR END.
WITH CODECLFC) DO f+THDEX INSTRUCTION+#)
BEGIN OFPC =F: IT¥FE =I,RADR =A END
END ¢«0F GENCODE+).
PROCEDURE LISTCODE.
“AR LPC CODESPHCE-
BEGIN
FOR LPC. =1 TQ PC DO
WITH CODECLLPC3 DO BEGIN (+INDEX INSTRUCTION«>
CHASE OPC OF
“+ "WRITEC RDD 2.
= WRITEC ‘SUB’ .,
"R WRITEC REG
cwt WRITEC/MUL
‘rY WRITEC DIV,
“F° MWRITECFLORT "».
‘P’ WRITEL PUSH"» END.

WHILE LEXsRDODOF OO

BEGIN
LATTR: =GATTR, LOP =CH.
AXPC =PC+1l, <+SAYE ADDR QF NEXT INSTRUCTION*>
SCAN, TERM.
FIXUPCAXPC, LOP. LATTR

END

END (#0F EXFPR#»>,
BEGIN <¢»0F MAIN PROGRAM4+ .
WHILE TRUE DO (#INFINITE LOOP+>
BEGIN
97 REPERT
WRITEC >>7>. < +PROMPY LUISER=#Y
BP =0; #«GET INPUT LINE+»
WHILE NOT ECQLN DO
BEGIN
BP =BP+1, RERDI{BFRIBF1)
END.

READLN (*RESET EOL INDICATOR«>

UNTIL BP#1. <»GET A NON-EMFPTY LINE+:

BFRIBP) =CHR(O)>. .+« {NULL> FOR EOLw>

PC: =@.BF =06: (+SCAN FROM THE BEGINNING* !

IF oPCH'F~ SCAN.
THEN EXPR. (#DOES ALL THE WORK+)
BEGIN IF LE¥=EOL THEN LISTCODE ELSE ERROR
IF ITYPE=INT THEN WRITEC'I’> ELSE WRITEC‘R’) END
END. END
IF OPC='P’ THEN WRITELN:<CHR¢11B>. ADR> ELSE WRITELN
END «+0F WITH AND FOR+>
END (+OF LISTCODE#):
PROCEDURE FIXUP(AX CODESPACE. <+PC OF FIX LOCATION OF OPERAND . -
LOP CHAR, {«CURRENT OPERATOR) statements to be executed until a condition
LATTR ATTR>. {+ATTRIBUTE OF OFERAND 2%> becomes true (the condition is tested last}.
“AF TPC CODESPACE.
BEGIN
IF GATTRALATTR (+TYFES DON'T RGREE+) repeat <staternent. {: L
THEN <statement>—} until <condition>>
BEGIN X)
IF GATTR=INT (+FLOAT OFERAND 2+) The brackets denote a portion thal may
THEN BEGIN GENCODEC 'F . NONE. DONTCAREY, GRTTR i . .
ELSE (~HRVE T0 FLURT OFERAND 1. MOVE CODE UP+) occur zero of more times; for example
BEGIN
IF FPC=MAXPC THEN BEGIN WRITELH¢ OYERFLOW- . EEROR END. ind:=0;
FOR TPC =PC DOWNTO AX DO CODELTPC+11. =CUDELTFC. repeat;
FLC =PC+1, <«TOOK ANOTHEF WORDe) ind:=ind+1
Enp o OFE STET FLOAT OPERANE A until (database[ind] .bal>>100.0} or
END. (ind=100)

GENCODECLOP. GRTTR: DONTCARE> («GENERATE OFPERATION+)
EN[(#DF FIXUP»»
FROCELURE EXPR. (#HERE IS ALL THE MORK#+)>
VAR
LGP CHAR, (#CURRENT ADDOP4»
LATTR ATTR, C+«RTTRIBUTE OF QFEFAND 2w)

AAPC CODESPACE. (+WHERE FLOAT OF OFERAND 1 GOES. IF NEEDED«»

FROGCEDURE TEPRM.
WHR
LOP CHAR; C«CURRENT MULOP+»
LATTR ATTR. («ATTRIBUTE OF OFERAND 2%)

RAXPC- CODESPRCE: ¢ +WHERE FLORT OF QOPERRRD 1 GOES. IF NEEDED#

PROCEDURE FRCTOR.

BEGIM
IF LEX=IDENT <»IDENTIFIER=*>
THEN
BEGIN
GRATTR =CHTYPE;
GENCODEC “P’, GRTTR, CH> .
SCAN
END
ELSE
IF LEX=LPAREN
THEN
BEGIN

SCAN,; EXPR;
IF LEX=RPRAREN THEN SCAN ELSE ERROR
END
ELSE ERROR (#JUNK INPUT#*)
END (%OF FRCTORw®),"
BEGIN ¢(»0OF TERM%>
FRACTOR;
WHILE LEX=MULOP DO
BEGIN
LRTTR: =GATTR: LOP - =CH,
AXPC: =PC+1; (*SAVE RADDR OF NEXT INSTRUCTION=)
SCAN. FARCTOR:
FIXUPCAXPC. LOP. LATTRY
END
ENC (»0OF TERM»;
BEGIN (%0OF EXPR#*>
IF LEX=RDDOP <(+LERDING SIGN+*>
THEN
BEGIN
LOP =CH.; SCAN: TERM.
IF LOP='-- THEN GENCODEZ @, GATTR., DONYCRRE>
END
ELSE TERM

84 August 1578 © BYTE Publicatiens Inc

This will find the first customer whose
balance is greater than $100, if one exists.

The case statement consists of an ex-
pression, known as the selector, and a list
of statements, each labelled by one or more
constants of the type of the selector. The
statements whose constant is equal to the
current value of the selector is executed.
Some versions of PASCAL admit subranges
for labels and an else or otherwise clause
within a case statement.

case database|ind] .datedue.mo of
jan,feb,may: <statement 1>
mar,jun,jul: <statement 2>-;
oct,dec: “Istatement 3
end

Statement | will be executed if the due
month is January, February, or May, and so
on. Notice that no stalement is execuled
if the month is April, August, September,
or November. Of course, the nesting of such
control statements is permissible and allows
much more complex control structures to
be implemented.

The reset and rewrite statements initialize
input and output channels, respectively.
Some versions of PASCAL do not require
these for the default channels input and
output. The 10 commands are designed at
two levels. To move primitive dala to and
from 1O devices or files use the commands

Racketsor
Racquets? | =

Software systems from
TSC serve — whether

or pleasure. TSC's
software is designed
for business and
industrial uses as well \f%¢
as for recreation. Off V2
the job or at work, TSC ’
soltware serves
your needs.

Assembly Language Prograrﬂé
(Includes Source Listings)

With Object Code Cassette
SL68-5C 6800 Space Voyage .
SL68-24C 6800 Text Editing System $30.45
SL&8-26C 6800 Mnemonic

Assembler 53045
SL68-29C 6800 Text Processing
System S38.95
To Order: Include 3% postage, $1.00
With Object Code Paper Tape handling on orders under 510.00, and
SL68-24P 6800 Text Editing Systern 531.50 Indiana residents add 4% sales tax.
SL68-26P 6800 Mnemonic Check your dealer!
Assembler S31.50
SL68-29P 6800 Text Processing]
System $40.00 TSC Monthly Feature:
SL80-10P 8080 Text Editing System 537.50 8080 Mnemonic Assembler
SL8O-11P 8080 Text Processmg This s the most complete resident non macro
System 54100 assembzler available tor the 8080 and the com-
mete source fisting s included The assembier is
Cassettes are in the Kansas City Standard tally Intel compatible except for logical expression
apwrators Al standard pseudo-ops are supported
IOFmGT. MOHY other programs dare phas features such as paging. hthnag spacing.
available. Send 25¢ for a complete lisling suppression sorted symbol table. [ntel
catc[log. format tape genaralion, hex or octal outpuat
deaimal line numbers auto held (ormatiing. hex
el octal or binary constants and mere
Technical Systems 55K of RAM s recquired beginning at 1000 hex.
plus scurce and symbol table space An object
@ CO"SUItantS Inc code paper tape 1n Intel ASCH formal is available

Z)
2 NN W L oltte, Indiana 47506 SL80-12 8080 Mnemonic Assembler $25.00

317-493-5465 SLB0-12P Assembler with paper tape $34.00
Specialists in Software & Hardware for Industry & the Hobbyist

Circle 370 on inguiry card. BYTE August 1978

85

EXPR

TERM -
TERM
TERM
—_— FACTOR o
FACTOR
FACTOR
o RIABLE }

AN -

EXPR

Figure 1! Syntux diagrams for generation ol valid expressions. The diagram
“expr' is entered from the felt und calls term. Jerm calls “tactor” which muay
cult expr, efc. This model assumes thut the only operations are addition,
subtruction, muitiplication and division.

An expression is an op-
tional sign, a term, fol-
lowed by any number of
addition or subtraction

86

operators and terms.

August 1978 2BYTE Publicanons Inc

put or get respectively. To input or output
an entire line or set of data we use read,
readln, write, and writeln which are similar
to FORTRAN 10 commands. Formatting, is
done within the commands themselves. The
read command will only input the necessary
information {even il it must read several

lines) while readin additionally discards
the remainder of the current input line. The
output commands, write and writeln,

operate in an analogous fashion for output.
A significant example 1s now in order.,
Consider the problem of compiling an
arithmetic expression. o greatly simplify
the problem, assume all variables are one
letter in length, no constants will appear,
and the only ovpuerators will be +, 7 and
[To make the problem interesung, asstime
that variables lettered o h and o 7z we
ol type real and the rest are of Lype integer,
This is the same as the implicit types tor
FORTRAN. The program will produce
code for a “stack machine.”™ That s, the
eperators are applicd only o operands
already on the stack and the result will
replace the operands on the stack. One task
is the recognition of correct expressions.

This may be done by several methods in-
cluding precedence tables, LALR{T) parsers,
and recursive descent. The latter will be used
since it is the technigque employed within
most PASCAL compilers. Recursive descent
compilation utilizes a set of recursive proce-
dures 1o recognize its input, with no back-
tracking. To understand the algorithm,
consider the series of “syntax diagrams"”
i figure |,

Tar generate a valid expression, for ex-
ample, ane enters the diagram from the feit,
selects an arbitrary path through the dia-
gram, and exits to the right. Any box -
countered is to be treated like a subroutine
or procedure call, A circle or hox with
rounded edges is o be the current input
item, An expression is thus an optionadl
sign, a term, {ollowed by any number {in-
cluding zero) of addition or subtraction
operators and terms, Similarly, one can
define o term, These definitions build in
the normal precedence of operators and
correctly handle a unary minus. Notice that
<expr> will call <term>, <term> will
call <tactor> and maybe <factor> will
call <expr> again. This would occur when-
ever parentheses were encountered.

A second task to accomplish is 1o proper-
Iy handle the necessary type conversion of
intermediate results, Many textbooks reler
ta this problem when discussing syntax
dirccted translation but few illustrate
Sreal” solutions, As an example {using the
above assumptions) consider

J+ KX

It is not known that this expression must
have a real vdlue untl the X is seen. The
recursive descent phase, independent of
type conversion might translate this to

PUSH J
PUSH K
PUSH X
MUL
ADD

for its equivalent Polish Notation:] K X * +,
However, what is really required is

PUSHI J
FLOAT
PUSHI K
FLOAT
PUSHR X
MULR
ADDR

{canvert the top of the stack]

where the operators have either "R or 1"
suffixed to indicate a real or integer opera-
tor, respectively. The suffix for the PUSH
instruction is known as soon as the variable
name is scen. The types for the arithmelic
operators and the insertion ol the FLOAT
instructions must be added somewhat alter
both operands have been scen; in other

SrALE
FUSHF
FLISHF
ADDR
»eAST
PUSHR 2]
FUSHI I
FLOAT
CIVE
D A
FUSHI I
FUSHI J
oIWI
ToJer X
FUSHI J
FLOAT
PUSHI K
FLOAT
PUSHR ¥
MULR
ADDR
ST I I-CK+My 2 PN
PUSHI I
FPUSHI J
MULI
FLOAT
FUSHR ®
PUSHI ™
FLOAT
ADOF:
SuBR
FUSHR P
PUSHI N
FLOAT
RLOR
LIVR
SrA+E

t+ ERROR
RAN{B+T

t EFROR

m 3

>2I12+B
T ERROR
521

1 ERROR

Listing 2: Sample program execution. After outpulting a prompt the pro-
gram waits for an expression to be input. 1t thea lists oll of the instructions
thut would be generated for a compiler code.

as

Avgust 19783 BY TE Publications Ing

words, a fixup must be done. As one dlter-
native, this may be accomplished by gener-
ating code in memory and keeping track of
the type awribute of cach operand and the
addresses of where the last instruction for
that operand was stored. 1T a type conver-
sion is required on the first operand (of 4
binary operator), all code beyond the saved
address is simply moved up one location and
a FLOAT instruction is imseried. [f o4 type
conversion is required for the second
operand, a FLOAT instruction is added as
the last instruction in the evaluition of the
second operand. fIn this paragraph and re-
maining text of the article, words it upper
case refer to listing { ... RGAC/

The program in listing 1 is a solution to
the expression evaluation problem. (1 is a
direct implementation of the methods
suggested. The main portion ol the program
is trividal; it asks for a line ol input, calls
procedure EXPR o parse the line, lists the
output if there is no error, and repeats the
process,

The type statements are important and
quite varied. See that the constant MAXPC
defines the maximuin address space and is
used in the declaration of the subrange

type CODESPACLE. The variables ATTR
and LEXTY are symbolic scalar types and
INSTRUCTION is a record type.

The variable CODE s an array of insirue-
tions. This is where the “compiled” code
will reside. The type attribute of the second
operand of an operation is stored in GATTR
which is global to all the program’s
procedures.

The procedure SCAN picks
next character(s), ignoring spaces and
determines the correct token and type il
tois a4 wvariable, Note the use ol the case
statement and - the sequential
conditionals.

The procedure ERROR outpuls a fine
with an upward pointing arrow 1o indicate
where the error oceurred.

The procedures GENCODL and LIST-
CODE are responsible tor encoding 1he
instructions into the code array and decod-
ing the code array for output respectivels .
The with statements simplify both the
PASCAL and compiled codes.

Any discrepancy intypes of operands
is resolved by FIXUP which inserts the code
fur the operator itselt. Inoa full compiler,
FIXUP would afso worty about stiings amd
other data types and issue the appropridle
error messages when needed,

EXPR does most of the work, together
with the procedures TERM and FACTOR,
They fupction exactly as described above,
They are quite simple in appearance but
function correctly as the sample runs illus
trate. The symbolic scalars ADDOP and
MULLOP are quite usctul in this design,

When properly segmented, any progian
should be similarly constructed and as cuaswy
to read or modity. A lot may be gained from
using a4 top down design, Given ahe time,
anyone could stretch this program inte g
full compiler whose output was a similar
Polish code, and altermmatively encode this
program into thewr favorite assembly fan-
guage. All the hard work has redlly been
done in expressing the algorithm o solve
the problem.

I heartily recommend that anyone
seriously interested in PASCAL in partic-
ular and good programming style in aeocral
obtain = the two books
bibliography .m

up the

nested

listed in the

BIBLIOGRAPHY

& Jensen, Kathleen and Wirth, Niktaus, Pascal:
User Manual and Report, Springer Study
Edition (2nd Edition], Springer-Verlay,
176 Fifth Av, New York NY 10010, 1975.

® Wirth, Niklaus, Algorithms + Data Strucitures =
Pragrams, Prentice-Hall, Englewood Cliffs NJ
07632, 1976.

Figure 1: Aguatint etching of the Automaton Exhibition held at Gothic Hall in London in 1836. Various automata
are shown. the one at the far right is evidently Jacquet-Droz’s writing and drawing automaton now in the collection
of the Franklin Institute in Philadelphia (see “Philadelphia’s 172 Year Old Android'’ by Charles F Penniman, page
90 in this issue). The figure is shown dressed as a boy, but women’s clothes were substituted when the unit was
rebuilt in 1936 at the Institute. Exhibitions like this were relatively common in the 19th century. Engraving cour-
tesy Charles F Penniman.

actions,) We can tlic shoelaces behind our
hacks, a thing we never practiced or learned.
Even extreme situations, like 1ying shoeliaces
while wearing mitiens or hanging by the
knees from a trapeze, do not begin Lo strain
the capacities of our interior computing
mechdanism, The required actions have been
“frozen™ into our brains. Not only are they
refractory to disarrangement (they endure
a5 long as we live) but they are also flexible
ecnough 1o permit our adapting them (o
novel circumstances. We all possess within
us many thousands of such unitary chunks
ot learned behavior, now fully automatized
and playable on command.

This is the part-behavior, smooth, contin-
uous and automatic, that was being imitated
by mechanicians. It requires substantial
storage of program to duplicate. From our
vantage point program storage is the most
important {eature these machines possessed.
Consequently, many very beautiful mech-
anisms (the display pieces of Carl Faberge,
jeweler to the Imperial Russian Court;
4 wide range of novelties such as sooth-
sayers, magicians and other conjurers,
acrobats and ropewalkers, agile harlequins
and jugglers, automatic confectioners and
wine stewards, and a great many more dis-
play mechanisms) are not mentioned here
hecause they had little stored programming.

Walking and Running Machines

Early walking and running automata
were represented only by dolls and toys.
They were essentially trivial, programmed
devices for they always very ingeniously
arranged an apparent walking action (only
a simple repetitive motion). The walk
lacked directionality, nor was there pro-
vision Tor walking on other than smooth
surfaces. 11 would be difficult to design a
machine to walk in the same sense that
people do: that is, the weight of the trunk is
for a moment supported by one leg alone
while the other leg is being drawn forward
for a next step. Walking is in fact organized
falling, with the mobile extremity brought
forward just in time to forestall disaster,
When you stop to recall that every known
mechanical man actually rolls on wheels,
and that at least three wheels are always
cmployed to define the plane, you gain a
new respect for human locomotion and a
valuable perspective on the limitations of
mechanisms that undertake to imitate it.

Speaking Machines
As far as | can discover, no programmadble

device uttering words, or their approxima-
tions, was c¢ver known before the late

How can one describe

machines so marvelously

devised and tutored in

their tasks that they rival

the actions of human
beings?

August 1978 BYTE Publications bng

a7

Note:

A complete biblio-
graphy for this part of
"“Antique Mechanical Com-
puters” will appear with
“Part 3: Human and
Machine Action and the
Torres Chess Automaton”
in September 1978 BYTE.

T06 August 19789 BYTE Publications Inc

the praise their performances evoked. None
survives.

Maelzel invented and displayed, beginning
in 1804, the Panharmonicon, a compound
musical mechanism which produced the
sounds of flutes, trumpets, drums, cymbals
and triangle, and plucked strings, a menage
then called Turkish music and much favored
by the public. This machine was followed
by his Orchestrion, imitating the sound of
the military band (which had become popu-
lar during the French Revolution}. An
improved Panharmonicon, with clarinets,
violins, and violas added, was so well re-
ceived that Maelzel commissioned music
from Dussek, Pleyel, Weigl, and even
Beethoven, whose “Wellingten's Victory,”
opus 91, employing the Automaton Trum-
peter as well as the orchestra, had its pre-
micre on December 8 18713, in Vienna.
These devices were the first of the pro-
grammable multiple instrument machines
so popular 75 years later,

A Combination Automaton by Maillardet

It was known that Maillardet, constant
collaborator with the Jacquet-Droz and
Leschot organization, had constructed a
writing and drawing automaton about 1811,
which was cxhibited in London in 1815,
and was owned by several persons until
1833 when it was sent to St Petersburg
where it disappeared.

Long ago a resident of Philadelphia men-
tioned to a staff member of Lhe Franklin
Institute that his family owned an auto-
maton that drew pictures and wrote poems,
He supposed it to be Maelzel's work. When
the owner's house was destroyed by fire,
reducing the automaton to a “mass of
cams and wheels,” the museum acquired
it, but it took immense patience and care
on the part of the muscum restorer, Charles
Roberts, to make the machine completely
whole. 1n the restoration process the sex of
the automaton was changed. When the time
came to sample the machine’s program, it
was found to be Maillardet’s missing auto-
maton (see photo 3 in this article and
Charles Penniman’s article, "Philadelphia’s
172 Year Old Android"” in this issue, page
90).

The machine is about 30 inches {76 cm)
high, and represents a child {originally a
little boy, as alluded to in one verse, and in
an 1812 encyclopedia article} kneeling
before a desk and holding, since restoration,
not a brush but a pen. The mechanism is
in the base and consists of a common shaft
holding about 60 cams, each one 6 inches

(15 cm) in diameter, The whole is driven by
a pair of powerful spring motors, Three
triplets of cams are devoted to each of the
seven productions of the automaton, except
that the depth cams are minimally em-
ployed. The follower arms, one for each
dimension of the drawing, are jewelled
and move from pair to pair of cams in the
course of one machine cycle (one drawing).
The automaton cxecutes its seven produc-
tions rapidly, completing one in 7 to 8
minutes. This would appear to explain
Maillardet's need to skeletonize the 60
programming cams: they turn rather swiftly
(about 3 mm of linear motion per second)
and at changeover they must be brought
quickly to a halt, then accclerated Lo work-
ing speed again. Storing all information on
three pairs of large cams per production
would have made grinding the cam faces
much easier, and would have minimized the
effects of wear compared to a small cam,
Shifting 1o a new program is done by simply
stiding the common shaft laterally to set
up a new triplet of cams.

Maillardet evidently took it as his task 1o
produce a machine that worked on its pro-
ductions rapidly and casually, perhaps
in the manner of a person inspired. The
sketches are marked more by fluency of
line than by precision, but they are very
sophisticated, as a glance at the ship sketch
will show (sec page 91). The poelry is inter-
esting and is done more in the manner of a
design with scriptwriting than writing in
script {see figure 2).

In terms of brute force memory storage,
if cach of the points 1 mm apart on an 89 by
120 mm paper is to be stored, 10,680 points
would be required. But discriminating be-
tween points with an error of no more than
1 mm requires £ 0.5 mm precision, resull-
ing in 42,720 points that must be stored on
the three triplets of cams. But this is the
amount of point storage required for onc
production. There are seven of them, so the
total storage capacity within the machine is
42,720 x 7 = 299,040 points (with £0.5 mm
precision). This figure, the digital equivalent
of the analog storage, begins to make the
impressive forest of cams seem more useful.

All of the above speaks about the /nfor-
mation capacity (in terms of a grid of
points) necessary to encode the designs and
script that our automata can produce by
analog means. The great majority of those
digital data would not be employed in a
display, just as an automaton will not in-
scribe marks on, say, more than 2 percent
of the area of paper available to it. There is
a lot of wasted (unused) space in any charac-

IN NEW YORK! FREE SEMINARS

Personal & Business Small Computer Show offers the following:

INTRODUCTORY

Intragucbon 1o small Business Systems
Intertdacing to the Real Worlg
Iroduction o BASIC

Hardware!So twareSystems T tar

SOFTWARE

Data Bases & File Handhng

Inroduction (o CPIM

Irrroduchon 1o PASCAL

nlreduction to APL

5BS A New Data Base Manager Language and Operating Svstein a Soltwarr
Breakinrpugn that Gives Minicomputer Power 1o a Micro— lar Busimuess
Apphcations trom Computer Mart of New Jersey

SMALL BUSINESS APPLICATIONS

Text Ea.ing/Word Processing
Genera LeagenAce nis Recevabie & Payable
Maning Lists

RECREATIONAL APPLICATIONS

Ratamtie s

Muisie

Ceamipuiut Gt

Arl Giraphics & Avmat-on
HOUSEHOLD APPLICATIONS
Hudgel Managomen!

frewesstenient Aoy s

PROFESSIONAL APPLICATIONS

Pithient & Chirnt Billing

EDUCATIONAL APPLICATIONS

Ligghi Ian araptnes
Sl 0N & © g

All senunars run about 50 mins. and are scheduled twice Write tor daify and hourly schedules special holelrates etc Lectures subject to change

IN NEW YORK! AVAILABLE TUTORIALS

{EEE COMPUTER SOCIETY

Tulorials are offered by the IEEE Computer Society in conjunction with
the show. Each lutorial costs as follows: members, $45; non-members.
$50, and students, $35.

For further information on the technical background required, the can-
tenl of the tulorials, or the IEEE, write to Dr. Daniel R. McGlynn, 71 N.
Moger Ave., M1 Kisco, N.Y. 10549

S TUTORIALS BY SYBEX

Mhictooomiputer Setectinn Sep! e
fatrajo M opeoge Sors Sept
Programinng Microprecessors Sept 16
Liesigning a Micro System— Sept 168
“Intertac g Techmgues -Sept 17
*Prerequisite — Intro to MICIoprocessors

A Gl TOTondl s T0n SO Tree T, LosT s 3020 S 30ty G o el M
B ach gl O 0D A e geveton 1 U

wrltye Frlvteer me coupns bor gdvance t okt

iy Saow tchetns Nerde Yo

(M vegistcaton And more Setals wiile 10 SyBesy 2000 Movia Berkeooy oA
AP TEL £ HER-H23

GENERAL ATTENDANCE INFORMATION

The show will occupy the fourth floor ot the New York Goliseum located
al 59th 51. & Columbus Circle. There is a parking garage in the building
and the site is served by many subway lines and buses.

Visitors from out of town may obtain special hotel rates from our head-
quarters hotel, the Barbizon Plaza, just two blocks trom the show.
Singles $44, doubles $52. ldentify yourself as attending the show and

tBEAST boIHSIAEET
NEW YORK,N Y 10022

PERSONAL & BUSINESS SMALL COMPUTER SHOW

reyuuot thooo rates

Admission o lhe show al the door is $5.00 per day, per persan. Discount
lickets for groups of ten or more available in advance only by mail at $4
per person per day. Enclose check or money order for all ticket orders
payable to Personal & Business Small Computer Show. For turther inlor-
maton call {212) 753-4920.

SHOW HOURS

2 -
Sept 16 wamig8pm
Sep! 1¥—noontlo7pm

New Turk Colizeum

Sept. 15-17, 1978

BYTF Augwst 1978 109

Circle 143 on inquiry card.

by agreement of the International Whaling Commission.

non-profit education and conservation organization dedicated

SAVE THE WHALE

The world’s best computer may be inside a Sperm Whale’s head.
The Sperm Whale has the largest brain of any creature that has ever existed
on our planet. The brain of this 18-meter marine mammal weighs up to 9 kilograms.
It uses echo-location to find giant squid at ocean depths of over 1,000 meters.
More than 13,000 sperm whales are scheduled to be slaughtered this year

The CONNECTICUT CETACEAN SOCIETY is a small, totally volunteer,

to seeking the abolition of all whale killing. Any

CCS, P.O. Box 145, Wethersfield, CT 06109.

There are two mountain peaks
of evolution on planet earth
on the land, homo sapiens-
human beings; in the sea,
cetaceans- whales, doiphins,
and porpoises.

Dteazing by e
P Sraete

concerned citizen can help our efforts by sending
name and address and a $10 or more contribution to :

Spring into Season
with a BYTE T-shirt

o — e . e e o e s e e e e e e e e

At last! No more wardrobe crises! BYTE T-shirts are here!
Now you have the perfect garb for computer club meetings,
Altair Conventions, playing Shooting Stars and computer
chess. (A pair of trousers from your own closet is suggested
as an addition to the BYTE T-shirt. BITS can’t do every-
thing for you.)

BYTE T-shirts are of top quality 100% cotton or cotton-
polyester. The original design, by artist Judy Lee Rehling, is
silk-screened in red on white shirts with blue trim on collars
and sleeves, or on blue heather shirts.

' Dial charge card orders toll free 1-800-258-5477.
70 Main St.
Peterborough NH 03458

I

|

: Please send me: ___extralarge ___ blue heather

| — large — white with blue trim

| __ medium and red letters

| — small T-shirts @ $5.50 cach

| (includes postage and
Total enclosed $ handling}.

i Bill MasterCharge No Exp. Date

| Bill BankAmericard No Exp. Date

| Name

| Address

| City State Zip

| Signature

|

|

In unusual cases, processing may exceed 30 days.
Prices shown are subject to change without notice.

Circle 38 on inquiry card.

BYTE August 1978 111

ROLL
(0.1)

ROLL
[LRE

[OLL
e

TURN

ROLL
1011

ROLL
[{SR N

HOLL
(0.1}

~

differences such as the replacement ol the
brace by the symbols begin and end? Are we
really asked to belicve that this onc Lo one
correspondence belween the problem and
the program does nothing lo simplily the
programming task? On the contrary, it
simplifies matters cnormously.
Considerations of space prevent me from
giving the rival BASIC and PASCAL versions
in full. Another striking example is pre-
sented in figure 1 and listings 1 and 2,
which show the Warnier-Orr diagram for the
“turn” subprogram, Higgins' coding of the
subprogram in BASIC, and the PASCAL

~
BEGIN TURN ROLL THE DIE

PLAYER ALREADY HAS A BODY kP
011
o
PLAYER ALREADY HAS & BODY {GIVE PLAYER A BODY
HAS NECK SKIP
(g1
(" HAS BODY @
(.11
e ,< Q HAS NECK {muE PLAYER A NEUK
1AS BOOY
SKIP
_ (0.4 {:
HAS HEAD
[1:4
(1 {SK
?’HAS NECK O
(0.1}
g < @ HAS HEAD {GIVE PLAYER A HEAD
HAS NECK {smp
(0.1)
(.
2 ANTENNA
.11 {SKlP
HAS HEAD C)
(0.1 N
- 2 M"gf:““" {GlVE PLAYER AN ANTENNA
HAS HEAD
41 SKIP
HMAS TAIL
I
0.1 {SK
HAS BODY
0.1 O
. HAS TAIL {GIVE PLAYEW A TAIL
’ O
HAS BODY)
.11 {S"'P
HAS 6 LEGS
0,41 {:SKW

HAS BODY

n

¢ O
HAS BODY

0.1

O

HAS G (#6,5
e

{SKIP

{(_iEVE PLAYER 1 LEG

Figure 1: Warnier-Orr diugram for subprogram “turn’ of e bug program.
This is clear, but note how much bulkier it is than the PASCAL progrum in
listing 2. The Warnier-Orr diagram won't even run on 4 compiier,

112 August 1978 € BYTE Publications Inc

equivalent. Higgins calls his BASIC coding
“simple and straightforward.” Tastes differ
but that is a phrase 1 would have reserved
lor the PASCAL version. Higgins has had to
fake truly structured programming in a
language which fights his efforts every step
of the way, and the results are tortured
and confusing. In contrast, the PASCAL
coding is, once again, a nedarly perlect
reflection of the Warnier-Orr diagram, so
much so, in fact, that most PASCAL users
will probably feel, as | do, that the diagrams
are a uscless intermediary step, less clear
and bulkier than the program itself. The
intent of the PASCAL program segment is
so transparent that in my opinion it could
almost be understood by a complete pro-
gramming novice.

Before leaving the topic of program struc-
ture, we should perhaps remark that PASCAL
subprograms {procedures and functions)
bear names, not numbers, virtually elimina-
ting the need for the comments which
pepper any well documented BASIC listing,
Furthermore, because PASCAL subprograms
can have parameters, the programmer is
encouraged 1o use a single subprogram for
a single task. Higgins has wrillen separate
subprograms for each body part, whereas
for a PASCAL user it is virwally impossible
lo resist the temptation of passing the
arrays body, neck, head, cic, o a single
procedure “‘give’’ as parameters,

Algorithm Expression

Program structure alone does not explain
the relative clarity of the PASCAL listing
in listing 2. We may also use that listing to
illustrate the tools which PASCAL provides
for expressing digorithms,

Logical operators: PASCAL providcs the
logical operators (and, or, and not) which
are so painfully lacking in BASIC and with-
oul which expressing an algorithm is so
clumsy. The use of the operator and in the
turn subprogram is a good cxample; or the
rcader may want to cxpress “if {(x=1) or
{{y>2)and(z=3)) then. . . in BASIC.

Conditional statements: PASCAL's if
structure groups statements with the condi-
tions Tor their execution. The if statement is
of the form:

if<expression>
then<statement_ 1>
else<{statement_ 2>

The expression is evaluated as being cither
true or false. If it is true statcment | is
performed; otherwise statement 2 is per-
formed. Suppose the expression is: X=1.
In English the if statement translates to:

if X equals 1 then perform state-
ment 1; clse perform statement 2.

PASCAL offers a very flexible case state-
ment which is remotely related to the com-
puted GOTO statement to be found in some
BASICs. It is much more powerful because,
among other things, selector values need
nut be contiguous, and actions are grouped
with the conditions for their execution.
A good example of the case statement's
clarity is to be found in the procedure
“urn,” where the action taken depends
on the valuc of roll.

Repetitive statements: BASIC provides
only one repelitive control struciure: the
FOR statement. But there are innumerable
situations where we do not know ahead of
time how many times a given action is o
be repeated. In such cases BASIC users have
two choices. One is Lo set up a dummy
FOR statement with a jump out of it when
a certain condition i met: whence the
ubiquitous “FOR [=]1 TO 9999 statements
in BASIC programming. This is bad because
it seriously disguises the intention of the
algorithm. One’s natural expectation is for
such a loop to be exccuted 9999 times, but
that is not the case. The othur solution is
for the programmer to fake an appropriate
control structure with GOTOs or condi-
tional jumps. That is what Higgins has done
in his program to express the fact that the
computer and the human take turns until
the game is over:

210 REM TURNS (1,T)

220 LETEGAM =0

230 GOSUB 390

240 IF EGAM = 0 THEN 230
250 REM END GAME

260 GOSUB 1150

This is no doubt the best one can do in
BASIC, but just consider how much more
elegant the PASCAL version is:

repeat turns until endofgame

This is 1ypical of the way in which
PASCAL's control structures make al-
gorithm expression a source ol joy rather
than a contortionist exercise. In addition to
the repeat statement, PASCAL offers a
while statement for the case when an action
is o be repeated as fong as a condition is
true.

Data Definition

Now that we have scen how much easier
it is to express what one wants done to data
in PASCAL than in BASIC, let us turn to
the wonderful data types which PASCAL
makes available for manipulation. Data typoes
are the programmer’s buffer between his
abstract formulation of an algorithm and the
messy realm of bit level details where that
digorithm will eventualiy be executed.
PASCAL makes defining new types a trivial

tash. Once o new data type is defined, it
is i cffect indistinguishable from a pre-
defined type and may be used in any way a
predefined type may be. We leave BASIC
behind at this point, since that language
has no tacilities tor creating new types.

The bug program was oo simple to
provide oxamples of data structuring, so
we shall have to turn clsewhere. Being a
birdwatcher, | shall replace the traditional
“Christmas card fist™ example by a bird data
bank. I can do no more than skim the sur-
fuce, so I ask the reader’s indulgence if some
of the listings are not fully explained. |
am not trying o teach PASCAL, but merely
to spark intuitions,

PASCAL distinguishes between simple
and stiuctured types. Let us examine edch
inwrn,

Simple types: These are the basic build-
ing blocks of which any structured type,
no mdatter how complex, is ultimately com-
posed. In addition to integer, real, and
character types, PASCAL offers two addi-
tiondl simple types which as far as I'm con-
cerned come close to exhausting the simple
types necded inoa general purpose language.
The first s the defined scalar type, and is
detined by simply listing the values which
a4 variable of the new type may take on.

490 REM TURN SUBROUTINE

500 REMPLAY=|:PLAYERS TURN PLAY=2:.COMPUTERS TURN

510 REM ROLL DIE
520 LET ROLL - FIX@{{(RND{0})*6.0))+1
530 PRINT "ROLL IS A" ROLL

540 IF ROLL =1 THEN {F BODY(PLAY):=1 THEN GOSUB 690 ELSE.ELSE;

550 IF ROLL 1 THEN 650

560 IF ROLL = 2 THEN IF BODY(PLAY) = 1 THEN IF NECK(FLAY)=]1 THEN GOSUB 760

570 IF ROLL~-2 THEN 650

580 [F ROLL 3 THEN IF BODY(PLAY) 1 THEN IF NECK{PLAY)"1

THEN IF HEAD(PLAY)=1 THEN GOSUB 820
590 IF ROLL-3 THEN 650

600 IF ROLL = 4 THEN IF HEAD(PLAY)=1 THEN IF ANTE{PLAY)=2

THEN GOSUB 880
610 IF ROLL 4 THEN 650

620 IF ROLL = 5 THEN IF BODY(PLAY)=1 THEN IF TAIL{PLAY) =1 THEN GOSUE 940

630 IF ROLL 5 THEN 650

640 [F ROLL 6 THEN IF BODY(PLAY)=1 THEN IF LEGS(PLAY) =6 THEN GOSUB 1000

650 LET A=3
660 RETURN

Listing 1: BASIC listing for Warnier-Orr diagram in figure 1. This is the best
one can do in BASIC, but is still a far cry from the clarity of the PASCAL

listing.
procedure turn;
begin roll:= trunc{random (1) *6}+1; writein{‘roll is &' ,roll};
case toll of
1: if{body [player] #1)then give(body);
2: if(body [player] =1)andineck|player] #1) then give(neck);
3: if{neck(player]) =1)andihead{player] +1) then give(head};
4. if(head[player] =1)and(ante[player] #2} then givelante);
5 if(body [player] =1)and{tail{player] ¥ 1) then giveltail};
6: if(body(player] =1land(iegs{player] v 6} then givellegs)
end
end;
Listing 2: The PASCAL listing equivalent to listing 1. Note the clear affinity

between the listing und the Warnier-Orr diagram. Notice that arruys are in-

dexed using square brackelts.

August 1978 i BYTE Publicatons lnc

113

Suppose | need a data type for the various
habitats in which a bird may appear. In
PASCAL | write:

type h = (ocean,rivers,fields,suburbs,forests,
mountains)

A variable of type h may take on any of
the values listed. This means that while
programming | may continue to think in
terms of habitats, and am not forced W
descend from that abstract level and think
in integers, as | would have to do in BASIC.
This also makes for virtually self-explanatory
programs, Compare “IF HABITAT=3
THEN. .." with the much more transparent
"if habitat=fields then...."”

The second simple data type is the
Boolean, and is extremely useful in pro-
gramming since one is constantly control-
ling program flow with Boolean expressions.
Boolcan variables take on the values true
and false. Languages without such variables
must make do with integers, which muddies
things since one’s natural expectation is for
integers to count something. The PASCAL
user may simply write "if good then...”,
which is the way we think; the BASIC
programmer must write "1F GOOD = |
THEN. .., which is alien to the way we
think,

A large part of PASCAL's elegance comes

114

NORTH STAR BASIC PROGRAMS

HUNDREDS SOLD, EACH SYSTEM COMPLETE ON DISKLTTE
READY TO RUN. WORD PROCESSING, NORTH STAR TUTO-
RIAL [, NORTH STAR TUTORIAL Il {TEACHES NORTH STAR
BASIC), ACCOUNTS PAYABLE, ACCOUNTS RECEIVABLE,
PAYROLL, GENERAL LEDGER, MEDICAL-PROFESSIONAL,
BILLING, SALES WITH SALES ANALYSIS AND GROSS PRO-
FIT, INVENTORY, HISTOGRAM GENERATOR, COMPUTER
CHESS, MAILING LABELS. $35.00 each.

SOFTWARE LOCATER (LOCATE, INDEX-FREE SOFTWARE),
CHECKBOOK BALANCING, BOWLING-GOLF HANDICAPPER,
COIN COLLECTION INVENTORY, IMPORTANT DOCUMENT
LOCATER, BUDGET PLANNER, GAME DISK. $25.00 cach.

IQ TESTER, COMPUTER MEMORY DIAGNOSTIC PERSONAL
FINANCE, BUSINESS FINANCE, BIORHYTHM GENERATOR,
DIET PLANNER, CRYTOGRAPHIC ENCODER, MATH TUTOR,
ASORT UTILITY. $15.00 each.

EQUIPMENT REQUIRED, SINGLE DRIVE, 8K FREE MEMORY,
PRINTER OPTIONAL.

TRS-80 LEVEL)} & Il (ON CASSETTE) STOCK MARKET ANALYSIS,
GRAPHICS, TREND LINE ANALYSIS, BUSINESS APPLICATIONS. $15.00.

BLANK DISKETTES $3.80 (WUNDER TEN ORDERED, ADD $2.00 FOR
SHIPPING: OVER TEN SHIPPED POSTPAID).

CPM COMPATIBLE BASIC PROGRAM LISTINGS ALSO AVAILABLE.

SOF TWARE

DEPT. 11 P. 0. BOX 2528
ORANGE, CA 92669

August 1978 @ BYTE Publications Inc

Circle 6 on inquiry card.

from the fact that in most contexts these
simple or scalar types may be used indif-
ferently. Thus for example the type h as
defined above could be used as Uhe index
variable in a for statement:

for habitat := ocean to mountains do

or in a case statement, or as the index type
of an array:

if foundin [fields] then

Furthermore, functions may return any
scalar type: we have already seen the func-
tion “endofgame” which returns a Boolean
value,

Structured types: In addition to the
simple types, PASCAL offers five different
structuring methods: arrays, records, sets,
files, and pointers. These different methods
may be combined in virtually limitless
ways. One may have files of arrays, pointers
to records, arrays of sets, pointers to files
of arrays of records, and so on, This extreme
flexibility of data structuring methods is
onc of PASCAL's most exciting features.
The type array should be familiar, but let
us look bricfly at the other four structured
lypes.

Sets: Each bird in my hypothetical dala
bank has associated with it a set of habitats
in which the bird may be found. Having
defined the type h as above, all | need to do
o set up a variable habitats which will be a
set of different habitats is to write:

var habitats: set of h

When constructing the entry for the robin,
I will write:

habitats := [fields,suburbs)

thus assigning to the robin the set of habitats
containing the two clements ficlds and
suburbs. When going on a trip to the moun-
tains, | can test whether mountains are in a
given bird's set of habitats by the following
simple test:

if mountains in habitats then

Imagine trying to do this in BASIC. PASCAL
provides a variely of set operators which
allow set manipulation in all its generality.

Records: Let us imagine that each entry
in my data bank will contain the bird's
name, its length, and a set of habitats where
it may be found. The entry cannot be an
array, since components of arrays must all
be of the same lype. The appropriate data
type is the record, defined in PASCAL as
follows:

type bird = record
name: string;

length: real;
habitats: set of b
end

Everythi
wanted to

you've ever
ow about

microcomputers in

ONE complete book
for only $10.95

The ultimate book
about microcomputers.
Written by experts

.. SCELBI and BYTE. Over

400 pages. A collector’s item,

featuring The Basics

-—

from the first 16 issues of BYTE and SCELB/I’s
classic library of books. Your microcomputer
bookshelf is incomplete without this priceless edition.

ou can't buy information
Y organized like this any-
where. This is the book
that everyone who is into micro-
computers needs for reference,
for ideas, for clues to problem
solving. It is a truly authorita-
tive text, featuring easy-to-read,
easy-to-understand articles by
more than 50 recognized pro-
fessional authors, who know and
love microcomputers from the
ground up. Logical and com-
plete, it features many glos-
saries, and is illuminated with
profuse illustrations and photo-
graphs.

The Scelbi/BYTE Primer is
divided into four logical sec-
tions, that take you from point
“0" through building and pro-
gramming your own computer. ..
step-by-step-by-step.

What can you do with a micro-
computer? Checkbook balanc-
ing. Recipe converting and food
inventory. Heating and air condi-
tioning control. Home and busi-
ness security and management.
Playing the ponies. Analysis of
the stock market. Maintaining
massive data banks. Self-instruc-
tion. Toys and games. Small
business accounting and inven-
tory. And lots, lots more.

Circle 322 on inquiry card.

How does a microcomputer do
it? Lots of “how to"” theory. In-
troducing you to microcomputer
operation. 6800, 6502, Z80 CPU
chip capabilities. RAM and ROM
memories. Addressing methods.

THE
SGHE/EUTE
PRITIEN

Over 400 pages. Selected articles
from BYTE and SCELBI books,
Profusely illustrated. Many
photographs. $10.95, plus $1
shipping and handling.

How to control peripherals.
Transmission of information to
and from computers. Magnetic
recording devices for bulk stor-
age. Analog to digital conver-
sion. How a computer can talk.
Other I/0 techniques. And more.

Order your copy today!

SCELBI COMPUTER
COMNSULTING INC. BITS
Post Office Box 133 PP STN | 70 Main Street
Dept. B Pelerborough, NH
Milford, CT 06460 03458

1 800 258B-5477

Prices shown far North American customers,
Master Charge. Postal and bank Money
Orders prelerred. Personal checks delay
shipping up lo 4 waeks. Pricing, specifica-
tigns, availabdily subject te change wilhout
nolice.

Over 400 pages. Full 872" x 11" size.

All about building a micro-
computer system. Over 12 com-
plete construction articles. Flip-
flops. LED devices. Recycling
used ICs. Modular construction.
Making your own p.c. boards.
Prototype board construction.
Make your own logic probes.
Construction plans for 6800 and
Z80 computers. Building plans
for 1/0s — TV and CRT displays,
cassette interfaces, etc. Mathe-
matics functions. ROM program-
mer. Plus much, much more.

How to program a micro-
computer. Programming for the
beginner. Assembling programs
by hand. Monitoring programs.
Number conversions. Game of
Hexpawn. Design your own as-
sembler. Lots more.

And that’s only the beginning!
Others have spent millions ac-
quiring the type of microcom-
puter information found within
the 400 pages of The Scelbi/
BYTE Primer. But, it costs you
only $10.95, plus $1 for postage
and handling, complete! You
know the quality of Scelbi and
BYTE. This is your assurance of
excellence throughout this MUST
text. Order your copy today! And,
get one for a friend!

BYTE August 1978 115

1186

narme
length
habitats

renext

name

habitats
Fenext

H

s

‘ name
/

i length
" habitats
\ [next

\

f

name
length
habitats

§
=
¢

f

length
habitats

L+ NBX L

.

August 1978 &2 BYTE Publications Inc

This is a simple and logical way of grouping
data of different types into o meaningful
whole. Given variables robin and redbreast
of type bird, 4 simple assignment statement
will set one equal to the other:

robin ;= redbreast

To test whether a robin is more than 20 cm
long, we would have:

if robin.iength.-20 then

and so on, These are simple examples, but
they suffice 1o illustrate the flexibility of
the record type.

Files: Now et us suppose that | have
600 entries of type bird in my data bank,
and want 1o muake a list of all the birds
whose length s greater than 20 em, It s
pointless and wasteful 1o keep all 600
records ino memory for such a4 task; alt |
redlly necd is to store them in mass slorage
and read them in one at a time. In PASCAL
what | do iy declare ¢ file of records as
follows:

var fb: file of bird

Now, supposing the lile to have been writien,
all | need 1o perform the task is:

reset{fb) ;
repeat if {b! length.-20

then writeln(fb’ .name} ; getifb)
until eof{fh)

Reset positions the file at its beginning; get
advances it one record; bt iy the buffer
variable containing the current record; and
the writeln statement prints the bird’s name.
The Boolean tunction cof tests tor the end
of the file,

Pointers: Finally, let us suppose that |
wish to update the data bank by deleting o
bird. It is of course possible to do this by
storing all the records in an array, but this
is clumsy and inctficient, since all the
records following the deleted 1ecord would
have to be shifted one position, List prog-
essing provides o much better solution. The
records are hinked togetier into o list by
inserting a pointer field “next” into cach
record. Each record will then “point” o
the record following it in the list, Deleting

Figure 2: A linked list of records of lype
“bird with addition of the pointer field
“next.” Deleting the third record is u simple
ARGt n AN Gt cla

by the dotted line.,

St

a record becomes the simple matter of
changing a single pointer value as illustrated
in figure 2. Given the pointer “current”
pointing to the item just before the one Lo
be deleted, the following simple statement
will do the trick:

currenti . next := current! nexti.next

Adding a new record s only slightly more
complicdied.

Lot me repeatl that these simple examples
dare not meant o do more than provide a
brief glimpse of the marvels of PASCALS
struciured types. For full explanations
the reader is referred to the texts in the
bibliography.

Conclusion

Rapid though it has been, | hope that this
survey of PASCAL will have brought oul
some of the features which make it vastly
superior to BASIC. BASIC offers an ab-
solutely minimal set of fedtures and expects
yvou either to devise makeshift solutions or
to design a new version of the language
when they are inadequate. No wonder thuere
ate so many different versions of BASIC.
PASCAL otfers a somewhat wider selection
of featurcs, but avoids the pitfall of trying
include every feature known to humanity.
PASCAL is a4 simple and streamlined
language: the PASCAL Report defining
the language is & mere 32 pages long. Yel
PASCAL's designers seem Lo have chosen
just those features which the user needs 1o
expand the language when the need ariscs,
s that it is o genuinely general-purpose
language suited to o wide varicty ol prob-
lems. 1t is this combination of simplicity
and power which seems 1o me 10 make
PASCAL the natural choice for o standard
MICrOPIrocessor language s

BIBLIOGRAPHY

® PASCAL: User Manual und Reporl. Kathleen
Jensen and Niklaus Wirth, Springer Study
Edition (2nd edition), Springer-Verlag, 175
Fifth Av, New York 10010.

o Micraprocessor Problem Solving Using PAS-
CAL, Ken Bowles, Springer-Verlag, New York,
1977.

& PASCAL News, Andy Mickel, University
Computr Crnavme 227 E-necorental Fnn,
200 Sk Ui _a
Minneapolis MN 55455,

el u Mt s,

BUY FROM THE BIGGEST

10 DAY RETURN PRIVILEGE
BlLLY ARCADE | sec no nccq for a $20+ k,“ {eg: I?ickles
_ ROYTRON .mc'! Trout FVM-(M mer.monecl. in the
:'_ to TINY BASIC ok ROM: 543 53 article) when a 5.20 resistor will do. |
’ 8 LEVEL ™ et ?usrmn'a;::?::fjs converted my Philco 9 inch black and
B e $299.95 :E:ED‘E‘JAP‘LENCH white TV set by providing a jack at the
PREGRAMS ON CARTRIDGE . PR . . base of the first video amplitivi tran-
R Rt i, TS0 sistor and by increasing the value of the
emitter resistor of that stage by 100
ohms to prevent overloading trom my
KIM/TVT-6 interface. The resulting
picture is excellent.

Continued from page 10

AT UM s 00D ALY
. . B $r500

aL1Om I R ELy SRS

=3 o Cass R Lewart
Kl M-1 o e i 12 Georjean Dr
: Emte | y \/ Holmdel N 07733
A : :) ASCIL INTERFACE FOR TC-71
EXPAND YOUR M SYSTEM ¥ : T MOWE It is u matter of haviny v product
murketed with colierent step by step
nstructions for u spedific product, White

N
your method no dowubr works, yow

o S Do . — I OCkwe” probubly have the benetit ot persanag!
3':":;' ""‘m::" AI M85 experience which gives you the con-
) N fidence to proceed. . .CH

WITAD 1LTW oWl R ey

new! s'l 29‘50 o , TRS-80 INTERFACES WANTED
Asdu -
rrmibo‘f.v:«:.oln;lz:lpu» I would like to receive intormation
formanca n real tme 5 and schematics on intertacing a Texas
- -] ! Instruments 59 calculator and PC-T00A
- printer to 4 Radio Shack TRS-80 or
VIM-1 L information on where | can obtain «
@ From Synertek $269.00 board for this use.

I would appreciate hearing from any

INTEGRAL DATA @ \'.'\,\h RS GRI ASCIi of your readers who have done this or

IP-125 - KEYBOAHD may know someonc who has. Any help
IMPACT Table-top ; ¥ will be appreciated.

I am also interested in a S-100 bus
adaptor tor the TRS-80.

PRINTER Datel/Selectric
IR Terminals

A A
MOW onwy §743 when purchased Llos from $398 [T eco s
yin coueucalon 1 peT vim " ; . Tom Swalenberg

541 Barnett Rd
Columbus OH 43213

-
<"» Incluges Disk & 190t Ports standaid fer-

(mh anlandes satement 1o $12¢ ASOFTWARE EXCHANGE?

repeioie) 2C aapncheoneus 1 O

B pamn 12 me o+ toing Pl eIy PROGRAMMER
3

mulgle avd cal

“" o eERp e ! : . At Coloma (M1) High School we have
H e S0 HOW 3298 4 computer center, Inour center we have
— eight difrerent mic;r»ocompulvr systems

TELETYPE ’ PLOTTER plus a 3M Model 5500 test scorer, These

: e St k systems use lour ditferent BASICs as
wooet 43 B Books A

well as a number ot ditfcrent ways ol
Haie e v

TELEPRINTER e s storing programs, The BASICs we uwe
MXIEVERTER dre;

vk T (Y

[1. PolyMorphic extended version
) A00

LEAR-SIEGLER e a0 I e 2. IMSAI CPM system BASIC-E ver-
THE PET - reme sion 1.33

CONNECTION ADM-3 e, 3. Altair 8 K BASIC version 4

VIDEO TERMINAL " A 4. North Star BASIC

e
oW §7 s onye
Jovt kay chorg i Which card? [T T I

: had E o 1. Poly 88 Byte Base cassette
» 10 day return privilege . recording system

[

The storage systems we use are:

L e A

* 90 day limited warranty R, 2. IMSAI dual floppy disk sysiem
. Huwo|sl. sl‘uclllng products in per- with CPM
sanal computing ST 3. Tarbell cassette recording system
MCAULSUMALLAS Outstanding values 4. North Star minifloppy disk sysiem
RAMS §-100 « All items fully assemblad and lested [N 5. Standard paper tape
s . uniess otherwise stated. : oo

e Send for our catalog for more detailed e A We teel that it is neceysary 1o setup a

product information. software library between schools using

NCE/com uMart . ’ : : 1 i o n_wi\.rowmpulur equipment. This would
- give schools a4 chance to exchange pro-

1250 Ngrth #ain Strest, Deparlmenl BYBB ruwire v a coires a00 4r it o grams and ideas, and to help other
PO Box 8610 Ann Arbor, Michigan 48107

120 August 1978 ©BYTE Publications Inc Circle 283 an inquiry card.

122

August 1978 £ BYTE Publications Inc

Pascal versus COBOL

Where Pascal Gets Down to Business

Ken Bowles

Institute for information Systems
Univarsity of California San Diego
Mail Cods C-021

La Jolla CA 92093

With a few important extensions, Pascal
can be an extremely powerful tool for writ-
ing interactive business application programs
on microcomputers and minicomputers,
Pascal provides data structuring facilities
generally superior to those of COBOL, and
its control constructs allow a systematic
and modular approach to program design
that reduces development effort and im-
proves reliability compared with BASIC or
FORTRAN., The extensions needed make
it easy lo write interactive programs, use
random access (floppy) disk files, handle
business arithmetic, and recover from error
situations,

A Case Study

In this article we will illustrate the use of
Pascal tor a program application ane might
find, with variations, in many small busi-
nesses. More general descriptions of the
language are contained clsewhere in BYTE
and in many published introductory text-
books.

The business we have in mind keeps
records of information about transactions
wilth its customers, and also records con-
taining descriptive information about the
people with whom it deals. The descriptive
records might apply to clients of a law firm,
patients of a medical or dental clinic, sup-
pliers of a hardware store with a4 large and
diverse stock, houses currently listed by a
real estate {irm, users of hardware and soft-
ware products handled by a computer store,
and so on. The transaction records would
describe orders for goods to be sold, de-
liveries, invoices sent, payments, requests
for information, promotional literature sent,
customer property sent out for repairs,

medical tests ordered, etc. Typically each

record in the file of descriptive records
would correspond to many transaction
records. Depending upon circumstances,

the transaction records might be stored in-
termingled with the descriptive records (just
as in the shoe boxes that some small busi-
nesses now use} or in a separate disk file,
They might be stored on the same floppy
disk if the files are small, or they might be
stored on different disks. In any event, we
assume that the number of items in the de-
scriptive file is so large that manual proc-
essing of the transactions information repre-
sents a significant cost to the business for
record keeping. We also assume that the
business is small enough that it cannol
afford to have its own full time data proc-
essing department.

We now consider how Pascal programs
written for a small computer might help in
the operations of a hypothetical small busi-
ness, the Zyx Gizmo Store. With many com-
peting manufacturers producing gizmos, it
is necessary for Zyx to keep track of many
different sizes, shapes, qualitics and special-
ized forms of gizmos. Marcover, the buyer
can start with a basic model, later adding
modules to obtain a larger and more sophis-
ticated gizmo. Girmos require periodic
maintenance and corrective repairs. Zyx
sltocks some replacement parts which are
installed in customer’s gizmos by the Zyx
repair department or sold to users who do
their own repair work., Some replacement
parts are too expensive to stock locally, and
Zyx must order them from regional distribu-
tors when needed. Gizmos are ¢complicated
enough Lo use that many users reguire text-
books or short training courses Lo under-
stand how to use them. Zyx sells the text-
books and runs periodic training seminars
for which users pay a small fee. Both the
training and repair problems are made con-
plex by the rate at which the technology of
manufacturing gizmos is advancing, as new
models are introduced by the manufacturers
each year. While the similarity of the gizmo
to the microcomputer is casily recognized

by many readers, the gizmo model could
apply equally well to technology based de-
vices being sold in many fields today.

We can assume that Zyx is large enough
to employ several salespeople, repair people,
and at least one full time administrative
assistant in addition to the owner of the
company. In general, when a situation arises
requiring communication with a customer,
any one of these people may have occasion
to refer to the filed records on previous
transactions involving that customer. If the
customer telephones to request advice about
an apparently malfunctioning gizmo, the
responding Zyx employee usually needs
information about the make, model, size
and other details describing the customer’s
gizmo. If a customer asks Zyx to order an
additional module from a national distribu-
tor, he or she may call Zyx to inquire about
the fate of the order before delivery is ac-
tually completed. If a manufacturer of
modules for gizmos introduces a new line
of devices, Zyx may wish to save on promo-
tion costs by contacting only customers
known to be using gizmos compatible with
that manufacturer’s devices. For these and
many other reasons, designated employecs
of Zyx should have ready access to records
on the customer’s dealings with the firm.
These records make it possible for Zyx to
render a personalized service that probably
is the main reason why customers come
to the Zyx store for their gizmos rather
than to a national or regional distribution
company.

Of course now that low cost microcom-
puters have become moderately powerful,
it is possible, in principle, for Zyx to main-
tain its descriptive and transaction records
on customers in a floppy disk or small hard
disk system. ldeally, the cost of adding a
microcomputer to a small business operation
is only a fraction of the value received, both
in labor costs and in improved customer
relations. Moreover, the company could
use the microcomputer for maintaining its
accounting records, sending bills, keeping
track of inventory and so on. We say ideally
because the effort to write a suite of pro-
grams to access and maintain the necessary
files can be quite substantial if the program-
ming is done in BASIC or FORTRAN (or
assembly language). Using Pascal the effort
should be very much less than the equivalent
effort using BASIC or FORTRAN.

Since COBOL is becoming available
on microcomputers, some comments on
COBOL versus Pascal are appropriate. Here
the principal issue has more to do with the
operating system, within which business pro-
grams written in the language will run, than
with the language comparison. Given reason-

EB

Circle 384 on incuiry card.

Enjoy an easy way
to program faster,
with fewer errors

Save time, save moneg. have more fun when you write programs n BASIC
on gur new combination Program Coding/CRT Layout Sheets. We engineered
this new programming aid specifically to help people like yoursell with pro-
grams in BASIC lor personal and small business computers,

i you're using another coding form now, you'll really enjoy the improve-
ments we've designed for you into 78C1. If you use legal pads or the backs
of old envelopes to write your BASIC programs, our new form will give you
a taste of the ease professional programmers enjoy. Our formal coding shest
helps keep your thinking linear, and makes it easier to remember details
like spacing and punctuation.

8 Unique advantages

1. Gives you 2 form uses for the price of one. When display layout and
line folding points aren't critical, use 78C1's full 28 line x 80 column grid
area for regular program steps. Then for interactive or instructional sections,
to plan display layouts simply keep your characters within the appropriate
CRT indicater lines, and you'll automatically know where every character
will show on your CRT screen.

2. Gives you 4 extra coding lines on every sheet. Full 28 line x 80 col-
umn coding capacity saves you 14 sheets out of every 100, compared to
24-line forms. 86 sheets hold more program steps than 100 sheets of any
24:-line form, yel we offer full-size 6mm x 3mm grid blocks to give you com-
{ortable wriling room and visual space between lines.

3. Works with your CRT display, no matter what brand you own. Equipped
for both 16 line x 64 column and 24 line x 80 column display formats, 78C1
is compatible with your video terminal.

4. Surface-engineered to take both pen & pencil without blotching. Spe-
cial paper base is pure enough for critical magnetic ink character readers,
although you'll probably never use it that way. We use it to give you crisp,
sharp characters whether you wrile with pencil or plastic-tip pens, Specific
pen and pencil suggestions for best results are inside each package.

5. tyecomfortable soft blue prid. All grid rulings, tints, and division
rules are reproduced in a shade of blue easy on your eyes, even after hours
ol confinuous programming,

6. Bright white sheet makes your characters easy to read. Heavy 22-
?ounddbnllianl white cpaque paper gives your writing contrast, makes 1t easy
o read.

7. 82 x 11 size saves you money. . .fits standard binders, folders, &
files. We designed 78C] to serve professional programmers, hobbyists, and
small business people economically. We engineered it to not only save time
and reduce bugs, but also to fit standard binding and storage supplies. You
can store it in common 3-ring notebooks, file it in regular “letter size™ files,
bind it in standard school-supply report covers.

8. Your choice of looseleaf style or 50-sheet pads. Both are 3:-hole punch-
ed. Snap looseleaf style sheets into a 3-ring binder, begin writing, and auto-
matically you'll keep your whole program together in proper order. Or if
you prefer, use our 50-sheel pads and np off each page as you complete
it, for later filing. The choice is yours.

Try a pack today

Ask your local computer store for a package of Stirling/Bekdorf 78C1
today. Il they don't have it yel, use the coupon below to get yourself a
trial supply right now.

YES. Rush me the guanlity of 78C] BASIC Coding/CRT Layout Sheets
{ have indicated below:

Logseleal Pads
)00 = 36 05 + $1.50 .ﬂlﬁg £ two 50-sht pads $6 35 « $150 shpg
71500 = $24 10 + $2 B3 shpg (T 1en 50 sht pads $26 89 + $2 8% shpg

ClEnciosed is my checkfor$
[OCharge to: O Master Charge; [DVisa Card =

Signalure

Dealer inquiries welcome

Name
Address
City State lip

Stirling/Bekdorf

4407 Parkwood O San Antonio, TX 78218 0(512) 824-5643

August 19780 BYTE Publications Inc

123

extends this concept by associating Lype
interactive with interactive devices. Type
interactive 15 the same as type fext excepl
that the buffer variable is loaded from the
external device before the value in the buffer
variable is moved to the program variable.
In more explicit lerms:

var fid: interactive;

.

get(fid);
x:=fid

where the last two lines represent read(td,).

UCSD Pascal extends the idea of types
text and interactive by allowing a4 string
to be handled with minimum fuss. On
read(fid,strg) (or just read(strq), when re-
ferring 1o the standard system file input),
one types characters at a video display key-
board with cach character appearing im-
medidately on the screen. If o character is
mistyped it can be crased from the screen
and the input buffer by pressing the back-
space key. I one wants 1o erase the entire
input buffer tor a clean start (with all typed
characters wiped off the screen), one presses
the delete or rubout key. The read operation
is terminated when return is pressed, where-

upon one can determine the number of

characters actually input into the wvariable
strg by using the built-in string function
length(strg). On oulpul, the write statement
determines how many characters to send
from a string variable using the length field
associated with that variable. For example,

write(‘*Hello There');
and

strg .= ‘Hello There’;

write(strg);

would both produce the same 2 word mes-
sage on the output device. As in Standard
Pascal, the width of the field of characters
sent from the write statement can be con-
trotled as follows:

write(strg: width)

Disk Input and Output

One of the main reasons for using a disk
file is to allow rapid random access to any
selected record in the file. Access Lo a floppy
disk record takes roughly 0.25 seconds,
whereas access to a record on a lape casselte
or cartridge can take many seconds or more

128

MICROCOMPUTER

DIGITAL ELECTRONICS
SHORT COURSE WEEK

Assembly Language Programming and Interfacing for the 8080, 8085,

and the Z80 Microprocessor /$350

Instructor:
Trenton State College

Programming in Basic for the Microcomputer Owner /$300

Instructor:
Department of Trenton State College

Microcomputer Digital Logic Circuits /$300

Instructor:
Technology Program at Trenton State College

College credit can be arranged. On-campus housing and meals are
available. For information, contact: Division of Continuing and
Adult Education, Trenton State College, Hillwood Lakes, P.O.
Box 240, Trenton, New Jersey 08626.

Telephone: {609)-771-2255

Dr. Allen Katz, Chairperson of the Engineering Technology Department of

Dr. Edward Conjura, Associate Chairperson of the Mathematical Sciences

Dr. Alois Riederer, Coordinator of the Electronics Engineering

Trenton State
College

Aug. 21-25, 1978

Auvgust 1978 1 BYTE Publicanions Inc

Cirele 379 on inguiry card.

than a minute. Interactive business process-
ing usually requires files to be maintained
on an external medium like disk or tape be-
cause the main memory of a microcomputer
or minicomputer is usually not large enough
to contain a complete file at one time. Ran-
dom access is almost mandatory in most
cases 1o avoid long waiting times for the
people using the computer.

For example, the Zyx company might
have a4 database of customer records in a file
feust declared as follows:

feusi: Hle of customer;

within the variable declarations of a Pascal
program. When a customer arrives 1o ask for
information, a Zyx staff member wants im-
mediate access Lo the record associated with
that customer in the disk file. Standard
Pascal provides no way to reach the cus-
tomer's record without sequentially reading
many olher records: usually starting at the
beginning of the file. UCSD Pascal allows
one Lo position the record number pointer
of the file using the built-in seek statement,
for example:

seek(Fcust, recnumber)

Following cxecution of this statement, the
standard procedure call get(fcust) would load

the selected record numbered recnumber
into the buffer variable of the fcust file.
Contents of the buffer could then be altered
directly or moved o other variables in the
pragram. gef causes the record number
pointer associaled with the file to be ad-
vanced Lo the next record in sequence. If
you want lo change the contents of the
buffer variable and then return the changed
contents Lo Lhe disk record numbered
recnitimber using pult(fcust), you would first
have Lo call seek again. The get and put pro-
cedures of Stundard Pascal are designed with
sequential tape files in mind, and they can
also be used for sequential reading of disk
files. Use of the seek procedure as described
allows random access 1o disk files with mini-
mum alteration of the standard language.
Several aspects of disk file handling are
very important {or simplifying the task of
the business application programmer, though
not specified as part of the Pascal language.
For example, standard floppy disk media are
usually partitioned into sectors of 128 bytes
each. In some operating systems, such as the
Digital Equipment RT11 operating system,
a file is made lo appear as partitioned into
physical records of 512 bytes called blocks
(UCSD Pascal system uses this convention).
Typically, Lhe record layoul a programmer
wants to use (such as customer in our ex-

IN‘I‘RODIICING COMPU-KIT
A W\\\\

INQUIRIES INVITED

Circle 384 on inguiry card.

Finally, the one tool kit designed especially for home
computers. From assembling kits to servicing existing
equipment, this set of tools is the most comprehensive of its
kind on the market.

This fine kit includes such tools as: wire wrapping tool,
snap ring pliers, sérewdrivers, nutdrivers, soldering iron, and
much more. Al of the tools are top quality, manufactured by
such companies as: Xcelite, Weller, Utica, and Proto. The
Compu-Kit® is available with or without a Triplet 310 V.O.M.
Compu-Kit $159.00
Compu-Kit with V.O.M $214.00

Compu-Kit Division
Video Spectrum Industries

P.O, Box 20847 Daollas, Texos 75220
Phone: 214/358-1414

To order — send check or money order, or charge

to your Master Charge or Visa card.

O I've enclosed check or money order in the
- amount of $

O Master Charge O Visa
%\ [Account N[u%bg]r (?u7 di |ts[) T
/‘,
/\ Inter Bank Number D:D:]

Signature

August 1978 © BYTE Publications Inc

129

ample) does not result in a neat fit with the
sector or block size demanded by the oper-
ating system. This means that a logical rec-
ord associated with a record type declaration
in Pascal may occasionally be split between
two physical records on the disk. The oper-
ating system should allow the Pascal pro-
grammer to get a record from the disk or
put a record to the disk without concern for
this complication. The system should main-
tain a directory of disk files so that the pro-
grammer need not be concerned with the
actual location of a file on the disk, but only
with the number of a logical record counting
from the beginning of the file.

The programmer of a business applica-
tions program package needs to have a
simple way Lo cause a program to call for
changes in the library of disk files main-
tained by the program. For example, an
obsolete copy of a master file might be re-
moved from the directory, or its directory
name changed. The UCSD Pascal system pro-
vides these and other facilities to make disk
file handling as painless as possible on a
small machine.

Keeping Track of Categories of Data

One of the common problems in business
programming is identifying people or things
with certain groupings or categories in order
to simplify the handling of data on those
people or things. For example, the Zyx com-
pany might want Lo characterize some cus-
tomers as primarily oriented to gizmos made

type
manuf = (able, baker, charlie, davis, edwards, jones, smith, none);
customer =
racord
name: string[30] ;
chargesunpaid: integer[8:2] ;
equipment: set of manuf;
telephone:
record
areacode: integer;
prefix: integer,
extension: integer
end;
address:
record
street: string{40],
citystate: string{40],
zip: integer(5]
end
end {customer };

var
x,y: real;
i: integer,
supplier: manuf;
inrec, outrec: customer,

Listing 2: An expansion of the Pascal code in listing 1 iflustrating the use of
sets. The type manuf has been added, which can be associated with a variable
allowed to assume only the values enumerated in the declaration. For ex-
ample, the new variable supplier, of type manuf, may take on the value of
any of the items in the manuf list such as able or davis, but no others outside
the type.

130 Auguest 1978 @ BYTE Publications Inc

by certain manufacturers, such as the Able,
Baker, Charlie, Davis, Edwards, Jones and
Smith companies. Within the product lines
of these companies, Zyx might also want to
have ready access to a record showing which
selection of all the possible gizmo modules
a customer might have. Thus, when a cus-
tomer makes an inquiry or a manufacturer
brings out a new type of module, Zyx staff
members could reduce the effort in knowing
how to deal with the customer. For ex-
ample, a printed promotional brochure
might be sent only to the customers asso-
ciated with an appropriate combination of
categories.

In virtwally any programming language,
this problem can generally be solved by stor-
ing descriptive strings as additional fields of
the customer record. However, the strings
can take up far more space than one would
like (particularly on a minifloppy disk!}, and
they are awkward to use when you are sim-
ply searching through a file for records cor-
responding to a particular combination of
categories. For example, we might want to
search the file to identify all customers who
own gizmos made by the Able, Jones and
Smith companies who also have a particular
type of add-on module. {If you are having
trouble relating to gizmos, how about 5-100
bus microcomputers with a minimum of
16 K bytes of memory?)

To solve the space problems in storing
categories information, a standard technique
in traditional programming languages in-
volves deciding on a set of codes to represent
the various categories., In our simple exam-
ple enumerating the gizmo manufacturers,
we might store a single letter representing
each manufacturer, such as A for Able, B for
Baker, and so on. But how do we store the
information that a particular customer is
associated with two or more of these codes?
Without a complex indexing mechanism, a
random access disk file virtually requires
that all logical records be of the same size.
Do we provide an array for storing these
codes? How long does the array nced Lo be
Lo account for all possible combinations of
codes for our customers? Are we willing to
put up with inaccurate data on a few cus-
tomers in order to save large amounts of file
space for the great majority of customers?
How do we write a scarch program 1o go
through the file quickly to find all the cus-
tomers associated with a specific combina-
tion of categories? The reader might well
pause at this point to consider how to ac-
complish these tasks with his or her favorite
programming language.

The Pascal facilitics for handling scts are
designed to make program solutions for
problems like these as painless as possible.

The WCSD Pascai sys-
tem was described in the
May 1978 BYTE, page 46.
Interested readers can re-
ceive a copy of the soft-
ware for a $200 subscrip-
tion fee, which includes
the software manual. The
manual alone is available
for $15 postpaid. Order
fram: Insutute for Infor-
mation Systems, UCSD,
mailcode C-021, La JolHa
CA 92083, (714) 452-
4256. Checks should be
made payable to the
Regents of the University
of California.

Manufacturers Known to
Carry UCSD Pascal at Press
Tims

Terak Corporation
14425 N Scottsdale Rd
Suite 100

Scottsdale AZ 85260

Northwest Micro Systems
121 E Eleventh Av
Eugene OR 97401

Altos Computer Systems
2378B Walsh Av
Santa Clara CA 95050

Prices on all these sys-
temms are in the $5000 to
$8000 range for the total
package purchased new by
individuals at retail. For
this one gets a high level
language system for per-
sonal use which is often
far superior to the run-of-
the-mill traditional time-
shared minicomputer or
maxicomputer. Rumor
{but no confirmation yet)
has it that UCSD Pasca!
will shortly be available
on the Heathkit H-11 and
other high end personal
computing systems.

132 August 1978 < BYTE Publieations [nc

program to be written more simply and
occupy less space. They also make the oper-
ations undertaken by the program more
obvious o anyone versed in Pascal, thus
making a complex program more casily
maintainable and bug free.

There's a Lot More

It is not possible Lo present a4 comprehen-
sive view of how one uses a language for
complex business programming within a
short article. For example, we have nol de-
scribed the use of Pascal swbrunge variables,
which allow a programmer Lo stale that 4
variable 1s permitted to contain only certain
declared values, If an attempt is made 10
assign to the variable a value outside the de-
clared range, the program cither terminates
abnormally or {if Pascal is cxtended in a
simple way) the programmer may provide
recovery block in which carrective medsures
may be taken, Data validation is one of the
most common problems in business ddta
processing. At UCSD, we feel that the addi-
tion of 4 simple recovery block mechanism
is essential to allow reduction in program
complexity for handling the many excep-
tional circumstances that show up in busi-
ness datla, withoutl unneccessdry imlerruplion
of processing,

A Note on Pascal Extensions

Though Pascal does seem to require a fow
extensions o muake business application pro-
gramming truly practical, the language pro-
vides an extremely powerful base from
which to work. One of the strengths of
Pascal, according to the intentions of is
designer, is that it aliers all this power in a
remarkably simple and self-consistent form.
The necessary extensions can be made in
ways that generally retain this consistency
s0 as 1o he relatively obvious to the program-
mer. We feel that Pascal is by Lar the best
language available Tor adaptation Lo inter-
active business processing on small machines.
We would be happy to send Turther informa-
tion about how we use the language for
busingss or real ime applivations to anyone
who writes 1o us.

The questions of whether standard
Pascal should be extended, and how, are
currently being debated ntensely in the
international Pascal Users Group. Lach
special interest community ol Pascal users
has its own list ol extensions considered
essential to make the language a practical
tool for developing software products in that
community. [Evena the question of what
extensions dre essential iy bemg debated,
since it is possible to use the Lacilities of the

standard Pascal language 1o create a library
of routines to handle the user's special
problems in most cases. In general, an imple-
mentor should consider extending the
language only in cases where the result will
be simpler and more reliable or cfficient
programs.

This article discusses extensions that the
author feels are essential for business appli-
cations. Other communitics with very strong
interests in Pascal work with real time appli-
cations, development of system software
such as operating systems and compilers,
interactive systems such as computer assisted
instruction, scientific computations, and so
on. Of course these communities do overlap
substantially. If the essential extensions
needed by all these communities were added
to the standard Pascal language, the simpli-
city and self-consistency that make the
language so important would probably be
destroyed. Therefore, it is very unlikely that
an eventual formal standard for the Pascal
language will include any but the most
widely needed cextensions currently under
discussion.

This situation leaves many Pascal advo-
cates very much worried that there will be
no cffective standards for the extended
linguage Teatures needed by the special
interest communities. There has been
discussion within the Pascal Users Group
about the possibility of encouraging develap-
ment of common interest supersets of the
language tor specialized uses. ldeally, lan-
suage standardization s a process which
should procecd slowly giving attention to
the ideas of all experts who wish to be
heard. In practice, the use of Pascal is
growing so fast throughout the computer
industry that close coordination of the
extensions made by many implementors
has become virtually impossible. We at
UCSD have sct ourselves the limited goal
of sceking coordination and cooperation
on Pascal cextensions for system program-
ming (including those for business and real
time applications) among ¢ number ol
industrial firms that seem most active in use
ol the language, particularly as regards small
computers. | or reasons associated with their
own proprietary interests, these firms will
generally be able to cooperate on only some
ol the most widely used language extensions
within their specidl interest communities. A
Pascal language extensions workshop was
held at UCSD in July of this year primarily
1o help bring about this coordination. We
intend to continue working as closely as
paossible with the international Pascal Users
Group, and to take guidance from the PUG
leadership on extension issucs whenever
practical.m

conlemporary high level languages such as
Pascal and its relatives allow the programmer
Lo use meaning{ul names based on the appli-
calion being programmed.)

Finally, BASIC as implemented in most
cases sufters from the lack of a compact
externally available machine independent
version ot the compiled form of a program.
This is an important requirement for the
soltware publisher, since executable code
must always be supplied in some machine
readable representation, and compactness of
represenlation is important if the inconven-
ience of relatively slow input techniques is
not to discourage the user.

For the reasons just summarized, BASIC
is not the ultimate form in which programs
are best published. But if BASIC is not the
personal computing representation which
minimizes the N-representation problem,
then what is a better choice?

Enter Pascal

My own personal interest in Pascal came
about for reasons which | summarized in the
December 1977 BYTE, page 6, in an essay
entitled "'Is Pascal the Next BASIC?" In
this issuc several excellent articles including
thuse by Ken Bowles, Chip Weems and Allan
Schwartz provide further rationale by way
of tutorial argument and example.

This personal viewpoint with respect to
Pascal is that of a4 wser of a4 personal com-
puler system who wants to convenjently and
quickly implement applications and systems
software projects ranging trom the sublime
to the ridiculous. In the sublime category, |
include systems software as an art form in
itself. | also include writing systems software
for my pet projects in musical applications

ol computers, sophisticaled games, and
some cxperiments in the exploration of
artificial intelligence concepts. In the
ridiculous category, | include such mundanc
tasks as trivial games, income tax calcula-
tions, personal mailing lists of friends and
relations, etc, The point about Pascal 1o be
madc here is Lthat it is a language well adaptled
to the ulility of computing, whatever your
personal definition of utility is, In the range
of applications | expect that the Pascal
approach to structured, sclf-documenting,
machine independent code will suffice with
only an extremely rare necessity to resort to
ad hoc kluges in the name of time or memory
space efficiency.

From general reading | knew that a Pascal
compiler was available and easily transferable
to new machines through the use of the
technique of "P-code” intermediate language
representations. This availability throughout
the academic world was one of the reasons
for the spread of Pascal, for it is one thing to
extemporize about the virtues of a represen-
tation and another thing to be able to
actually write and examine the properties of
code in that representation. Since the
original Pascal compilers from Jensen and
Wirth et al in Zurich were written in Pascal,
producing a P-code inltermediate language
outpul tile, the task ol making the compiler
run on a totally new machine architecture
was reduced to a relatively simple task of
wriling an emulator for the hypothetical
“P-machine’” which exccutes “'P-code’ as its
machine language.

What | did not know at the time of my
edarlier comments in these pages is the extent
to which that P-code technology had already
been applied Lo small computer systems, in

A/BASIC® 6800 COMPILER

MICROWARE'S new A/BASIC compiler can break the software bottleneck in your M6800 system.
A/BASIC compiles BASIC source programs to fast. memory-efficient machine lanquage programs.
A/BASIC is a cost-effective alternative to slow interpreters or complex assemblers at a price you can afford.

«sNOW AVAILABLE FOR DISK BASED AND CASSETTE SYSTEMSe»
e COMPILED PROGRAMS RUN MUCH FASTER THAN INTERPRETERS
* GENERATES PURE M6800 CODE — NO RUN-TIME PACKAGE REQUIRED
* PROGRAMMER HAS COMPLETE CONTROL OF MEMORY ALLOCATION

» SUPPORTS LOGICAL, REAL TIME, AND EXTENDED STRING OPERATIONS

A/BASIC V1. 0OC 8K CASSETTE-ORIENTED VERSION'® on K.C. CASSETTE
*(Cassette version requires RT/68MX)
A/BASIC V1.0D 12K DISK EXTENDED (MINIFLOPPY —Specify 3.5.B. or SWTPC)

BANKAMERICARD @ MASTERCHARGE

We'd like to tell you more about A/BASIC and other advanced M6800 products.
Write or call today for compliete information and our free catalog.

MICROWARE" SYSTEMS CORPORATION

P.O, BOX 954 » DES MOINES, IOWA 50304 » (515) 265-6121

Prodeaark R e

Circle 240 on inquiry card. August 1978 © BY TE Publications tnc 137

138

August 1978 @ BYTE Fublications Inc

BETTER

BASIC
FOR SOL

Introducing G/2 Extended
Basic for Processor Tech-
nology’s SOL computer
series. The best Basic you
can buy.

Developed by Micro-
soft}" the industry leader in
microprocessor languages,
and fully debugged and
field-proved, this 15.5K pro-
gram offers such outstanding
features as string arrays,
16-digit accuracy, fully
descriptive error messages,
automatic line numbering
and renumbering in selected
increments, long variable
names, trace function for
easy debugging, and many
other superior capabilities.

G/2 Extended Basic can
read tapes wnitten in PT’s 5K
and Exiended Basic. This
allows you to use all your pre-
viously developed programs.

Available now on cassette
tape with full documentation.
At your dealer, or write for
information.

THEREASON

YOU BOUGHT ‘I
YOUR COMPUTER. e

BiI GRT Corporation
Consumer Computer Group
1286 N. Lawrence Station Road
Sunnyvale, Califomia 94086
(408) 734-2910

Circle 149 on inquiry card.

particular through the work of the people at
the University of California at San Diego
(UCSD). The UCSD Pascal project has
created a necarly machine independent low
cost operating system which includes Pascal
as the principal high level language, all the
usual disk filing system features, support of
high resolution bit map graphics including
user definable font storage for the character
set, an advanced cursor oriented text editor,
and interactive compilation and editing
features. All the systems software in this
package is written in Pascal with the ex-
ception of the P-code interpreter and asso-
ciated detail hooks to the hardware.

The hardware dependent core has already
been implemented and is readily available
for LSI-11, 8080, Z-80 and 8085 processors.
(The cost is only $200 for individual orders,
with UCSD quoting a $10 royalty per copy
to manufacturers distributing systems in the
highest volumes.) At this writing, in the
small computer arcna, three systems are
available which come with UCSD Pascal
as a key feature: an LSI-11 system packaged
by Terak Corp and heavily used at UCSD,
an 8085 processor in a elegant wood finish
package with dual floppy drives manu-
factured by Northwest Microcomputer
Systems, and a compact Z-80 system with
dual floppy disks manufactured by Altos
Computer Systems. Individual users who
have 8080 floppy disk systems with the
CP/M operating system and enough main
memory get a floppy disk to bootstrap
UCSD Pascal.

A Serendipitous Result

The nature of the implementation of
Pascal compilers, and the UCSD Pascal in
particular, leads to an important byproduct:
by simply using the UCSD Pascal compiler
as the mode of expression of applications
programs to be published, it is possible to
provide a compact, machine independent
representation of programs which greatly
simplifies the N-representation problem for
the independent software distribution house,
The intent of discussing this serendipitous
result in print at all is to show the way in
which such independent software houses can
indeed solve one of the thornier issues and
provide their customers with programs
which are compiled once yet will run on any
one of a number of personal computer
systems.

What do we have which already exists in
a form which can be readily adapted to a
number of small computers? We have the
work at UCSD which has produced P-code
interpreter based systems for LSI-11 and the
family of microprocessors inspired by the
8080 (8080, 8085, Z-80). By the end of the

Some Notes About Pascal. . .

As this issue was beiny prepared, d
number of interesting bits of information
became available:

® Ken Bowles reports that one associute
of the UCSD Pascal project is using the
microcomputer bused Pascal which the
project has created in order (o write u
P-code optimizer in Pascul. The
writing ol an optimizer program is 1ot
in dtself purticularly noteworthy, but
the fuct that this optimizer s heig
written for Puscal compiler output of d
Cray-1 computer shows ample evidenice
of the relative muchine independence
of Pascal techniques. Here we find ihe
LSH17 based Terak machines at UCSD
(typically a Tully loaded L5117 wit
keybourd, bit map yraphics, one
foppy drive) being used to write,
debug and check out progyrams tor one
of the world’s lurgest und tustest com-
puters, the Crayv-1. (How tast? Fust
enough so that light speed propagation
limits in the wires become u nontrivial

consideration in the physical desiyn of

the muchine.) Yet the Cray-l wuses «
dialect ol Pascal for systems program-
ming, and even has a FORTRAN
compiler which uses P-code us its juter-
mediate language.

® We note that even the US Detense
Depurtment likes Pascal as u replace-
menit for such monstrositics us
JOVIAL, Two contracts for turther
fanguage design eflorts o the *‘Steef-
man’' phase of the search for u
“DOD-1"" langyuage definition have just
been annowunced, with lntermetrics i
and Honeywell-Bull being finalists in a
language desiyn competition bused on
prefiminary proposals. Much of the
content of this lunguage definition is
expecied to be inspired by Pascal, cven
if it is not a proper superset ol the
lanyuage.

® from the industrial side, Texas tstru-
ments Inc has a version of Puscal
which is supported ftor the 990 series
of minicomputers, where supported”
meuns that it is available tor use with
their disk systems, marketity people
are pushing it at seminars tor 990
svstem users, and a comprehensive
manual describing the systent s
available. The 990 series of minicom-
puters of course includes the micro-
computer version of the processor,

whtich is the TMS-9900, und is one of
te fogicul choices for a serious home-
brewer or designer of o custom micro-
computer system which must use a fair
amount of complicated software. The
990 version of Pascal is probably a
littte (oo eapensive for the individual
to purchuse, but it represents a very
yood imvestment for a commercial user.

® [inally, us we went Lo press with this
jsshe i mid-May, o stundards confer-
ence, calted by Ken Bowles, was
schoeduled for mid-July at San Diego.
Attendonce was expected from the
worfdwide Pascal community, as well
as representatives of major industrial
concerns, with the intent ot defining a
sel ol Ustandard’ extensions o the
Pascal language ol the Jensen-Wirth
repord. We o expect to have some
contmends inod future issue about the
mujar points covered i thal standards
certterence. (OF course, the reason for
stundurds must be properly under-
stomd: o lunguage standard provides a
referonce so that any impleimenter can
flay wsers about how his particular
system deviates from the standard.
This philosophy is seen throughout
commpriter technology in areus as
tiverse as character sets for terminals
antd FORTRAN IV compilers which
ase the ANSE standurd model. A Pascal
standards consensus already exists in
the fensen-Wirth report published by
Springer-Verlag, and the purpose of
the conterence is to define an exten-
sions sed thuat covers the superset of
the original language necessarv to
crhonce the practicality ot the lan-
guierge it read wortd sittations.)

Puscal is ote of the most exciting devel-
opments with respect Lo personal computing
we fie seend (0 orecent veuars. The small
cemmpueter is finafly getting to v point where
the protessionally oriented individual can
attord fat the price of o typicel new auto-
mahile) v compater with some ol the most
advanced soltware development character-
istics possible in today’s computers. [ust as
a crank starter can getl the engine going on
an awtomobite, BASIC and assembly lan-
guuge can indeed be used to program com-
puters. But if one really wunts to use an
wetomobite convenjenthy, an jynition switch
arred electric starter wre now considered
essentil, The moral of this Nittle simile is
that Pascal fs the electric starter of the
compuies worfd.®

August 1978 22BYTE Publications Inc

141

Designing Structured Programs

Structured programming is an attempt to modernize software develop-
ment and to reduce the side effects that divert so much programmer
time from actual programming. The use of structured languages like
Pascal promotes good programming techniques.

Chip Weems

Dept of Computer Science
Oregon State University
Corvallis OR 97331

In the carly days of the computer indus-
try, the most cxpensive part of owning a
computer was the machine itself. O all he
components in such a machine, the memory
bank was the most costly because of the
number of parts it contdined. Early compu-
ter memaories were thus small: 16 K bytes
was considered large and 64 K bytes could
only be found in supercomputers. All of
this meant that programs had to take advan-
tage of what little space was available.

On the other hand, programs had to be
written to run as quickly as possible in
order to make the most efficient use of the
large computers. Of course these two gouls
almost always contradicted each other,
which led to the concept of the specd
versus space tradeoff. Programmers were
prized for the ability to write wicky, cffi-
cient code which took advantage of special
idiosyncrasies in the machine. Supercoders
were in vogue.

Fortunately, hardware evolved and be-
came less expensive, Large memories and
high speed became common features ol most
systems. Suddenly people discovered that
speed and space were no longer important.
In fact the roles had reversed and hardware
had become the least expensive part of
owning a computer,

The costliest part of owning a compulter
today is programming it. With the advent
of less expensive hardware, the emphasis
has shifted from speed versus space to a new
tradeoff: programmer cost versus machine
cost. The new goal is to make the most
efficient use of a programmer’s time, and

program ecfficiency has become less impor-
lant — it's easier to add more hardware.

There are some important observations
that should be made concerning modern
programming. First, the majority of the cost
involved with a particular program centers
on maintenance and revision rather than
inital development. For example, an average
program may take three working months to
wrile but can have a lifetime of up to ten
years or more, during which dozens of
changes may be needed. These can easily
add up o several years of labor,

It is also interesting to note that the
largest portion of the time spent in revising a
program is ticd up in analysis of the existing
cade by the revising programmer. This is the
time needed for the programmer to break
into a piece of code.

Even in the development phase, the largest
portion of time is not usually spent on
designing or coding, but on debugging.
The actual programming takes up very little
of a programmer’s time in comparison to all
of these other program side effects.

Unfortunately, although hardware has
evolved rapidly, software techniques have
not followed suit 1o the same degree, since
the first high level languages were intro-
duced. Witness that two of the most popular
languages in use today, FORTRAN and
COBOL, are relics of the late 1950s.

Structured programming is an attempt
Lo modernize software development and to
reduce the side effects that divert so much
programmer time from actual programming.
The main thrust of structured programming
is to shift the emphasis of the development
phase to careful design in order to reduce
debugging time and increase program organ-
ization, In addition, special coding tech-
niques make programs casier to revise. The
use of structured languages, such as Pascal,
makes programs more reliable by permitting

August 1978 T BYTE Publications Ing

143

nature. The implementation phase, however,
uses mostly the bottom-up approach,

Analysis of any problem is most logically
done in a top-down manner. No onc would
try 1o solve a word problem in algebra by
taking a group of mathematical symbols
and uying to fit them together in the hope
that an appropriate formula will appear.
Such a formula would probably solve only
a few special cascs or, if it were general,
would probably contain several extrancous
terms, Even so, this is exactly what happens
when people write programs in a bottom-up
style, starting out by writing code and not
considering the overall design until later.

Our first rule in structured programming
thus is: sit down at the beginning and analyzc
the problem in a top-down manner. Break
it down into smaller portions so that the
overall organization remains clearly visible,

This is the guiding philosophy of the
entire design process, the end result of which
is a properly coded program. The major
techniques used here arc stepwise refine-
mient and stepwise decomposition. It should
also be noted that this process is nol purely
top-down in actual use. The cxperienced
programmer knows what is possible and
what is not. Such a pragrammer employs a
form of look-ahead along with the 1op-down
techniques in order to avoid impossible
designs. Possible coding schemes are con-
stantly being considered while the design
is under development, Properly used, this
technique can be a valuable evaluation tool
and can greatly speed up the design process.
The imporiant point is that such a pro-
grammer should not get so involved in
coding that the top-down approach is com-
pletely abandoned.

Implementation is best done through
bottom-up techniques. Going back to the
algebra problem, we can see that, once we
have a well written formula, it would be
illogical to try to plug in all of the numbers
and do all the computations at once. The
best approach is to start with single com-
pulations, verifying cach one, and build on
them until a solution is obtained.

Once the design is completed, the inde-
pendent, bottom level program modules are
implemented and tested first. Higher level
routines are built using these subroutines
until the program is cventually constructed
and the final verification takes place.

Surprisingly, careful design and imple-
mentation in this form does not take consid-
erably more time than program development
using the older approaches. Some restraint
on the part of the programmer is needed,
but once the results are seen, it's hard to
imagine why anyone would want to con-
tinue using the old, unorganized methods.

Circle 79 on inquiry card.
BUSINESS PROGRAMS FOR

TRS-80

BN CASNE T, KLADY 1Y RUS

FOR LEVEL-1 JK.

AFUSCTION UALCULATOR: One punch ol CLOAD transforms vour TRS-R0 inte s
posetiul prmtag caleubatar Kues fotals on 3 codumeos Gdnplay ed o s taneody Tahes
spiedre ool ete, at the toach of g ey, Data can be rotated from columin to column ta
anplement a Lieand Tatal ingGion, o Tor storage. Scrolls antomatieally NERD

LOAN PAYMENT COMPUTATION tInstallment and Mortgage Losns) Analy zes principle
el rnterest wllocation Computes pavinents regused 1o amottize, otv Tlus s o fuldl
professioia foed, Tar wse by csorow allacers, boan oificerns, ol . 1498

CASH FLOW PREDETTION. Monthly fong and short term projections {ram grast
history $14.93

FOR LEVEL It, 4K:
DECIMAL-OCTAL-HEX CONVERSIONS AND ARITHMETIC: Go from any base to any
ather 4 Furction Catcufator in Ocrat and HEX | . . $17.95

LOAN PAYMENT COMPUTATION FOR LEWVEL-11: Same as above but wih the
aumber crunching capabilny of Level 10 . P Lo R 1Y

CASH FLOW PREDICTION FOR LEVEL-ll: Same as above but handles larger

amaunts Lo R e .. . 81785
LEYEL-) PROGRAMMER REFERENCE CARDo..oS1.2s
ROM ERROR CHMECK TAPE, LEVEL-l 8395

Write hor cataday of Telb Bustness Programe for the TRS-80 Ours are senus, practical. easy
1 s

CUSTOM SOPTWARLE. Woe will write, patch, bak or modify programs to your
speviticatnm

Al pragrams accompanied by detailed, clearly-written instructions,
CONTRACT SERVICES ASS0CIATES

Anilwnn, CA 92804
0¥ ARS 01 PROESSIONAT STRVICE

EREG W Browdway (7141 6354053

1976/1977 Cover Price *

and handling
Back Issues for sale

LL61/946)

113

The followintg iz:ue evailable:

= 76 77 £
= July March E
= Augus! May H
g Octone June H
= Novemo - July £
g Decznibny August E
= September =
= October H
- g November £
@ = December H
ol = * Cover price for all issues thru August 1977]
4 = is $1.50 plus $.25 postage and handling g
g = ($3.50 total foreign). September '77 thru =
E December '77 issues are $2.00 plus $.50 E
£ postage and handling ($4.00 total foreign). z
o Mhunenasunst s HHIINHNHHININE
¢
> Send requests to. BYTE Magazine

70 Main St
Peterborough NH 03458
Aun: Back Issues

August 1978 THBYTE Publicatians Inc

145

too much information in a large program,
the human mind can't absorb it afl at once.
£ven though the resulting program may run,
its own author probably coufdn’t explain the
whole thing and certainly would not be able
1o guarantee it to be error free.

How many levels are needed in the devel-
opment of a program? This depends on the
size and complexity of the program, but in
general a minimum of four levels is required.
These levels are the goal, specification,
pseudocode and code levels.

When vou decide to write a program, the
first thing you should do is write down the
goal you have in mind for that program. If
you can’t write the goal in words, you prob-
ably don’t have a clear enough picture of
what you want to do in order to wrile a
program.

Once you've written the goal, step back
and take an objective view. Is it too broad,
too grandiose, too narrow, too simple?
Writing, “This program will be used to bal-
ance my checkbook,” is one thing, but,
“A program to keep track of cash flow
through the entire household,” is a com-
pletely different matter. The first could be
written for a programmable calculator, the
second involves establishing a complete data
base system.

A great deal of frustration and disap-
pointment could be saved just by writing out
the goal and examining it. For a roulette
game, 2 well written goal might read as
follows.

“This program will simulate the game of
roulette as plaved by Monte Carlo rules. It
will permit up to five players to bet at one
time and will use a free form input scheme
to simplify the betting process.”

In the first sentence, the main goal has
been specified and some secondary points
have been put down. Note that the goal is
not oo specific, since the details are sup-
poscd to be held off until the specification
level. As stated, this program is reasonably
difficult, but not impossible.

After a satisfactory goal is set, then
comes the specification, which is broken
into three parts: input, output, and strategy.
Most good programmers have at least once
made a statement something like, "'If you've
got a complete description of what comes
into and what goes out of a program, the
rest is just adding what runs in between.”

Writing a program is, regrettably, not that
simple, but it would be much more difficult
to wrile it without knowledge of just how
the input data will look or what the output
is supposed to be. The specification level
provides this and permits us to jot down
some rough ideas about how the processing
will take place. Table 1 is one possible

example for the roulette program,

Obwiously, this is not a complete descrip-
tion of the 10, but it is reasonably good. If
we were actually writing this program, the
specification would be more detailed and
several examples would be included. Similar
items that can appear in the 1O description
are card layout Torms, disk file formats,
record descriptions and so on., If this were a
subroutine, our 1O specifications would also
describe the parameters passed to and from
the calling routine.

The strategy is important here, since this
is really the second level of the process
refinement. Note that there are no system or
language dependent statements in the
strategy. We should be able 1o take any task
from the specification level of a program
description and implement it on any system
{with enough resources) without having to
change the way we have written it.

Once again, step back and examine what
has been done. s the strategy oo detailed,
is there enough detail, is it dependent on
special system or language features, is it oo
complex? The last item is important: if the
answer i yes, the problem has not been
properly decomposed. We must go back to
the decomposition and reexamine how we

Input:

Initial number of players: integer between one and five inclusive.

Player names: string truncated at 15 characters.

Yes/mo answers. strings truncated to one character.

Bets: string up ta 72 characters long of form: integer number bet value on bet
keywords, All extranecus words and symbols are ignored. Instead of a bet, the
special keywords gust and pass may be input.

Bet keywords: numbers separated by commas.
12H, 12, 121 {dozens)
12A, 12B, 12C {columns)
low, high {thalfs)
odd, even
rect, black

Qutput:
Number of players question,
Playtrs name requests.
Instructions needed question.
(nstructions.
Bel requests.
Results and winnings statements.
Bet error messages.
Goodbye message.

Strategy:

After the startup seguence, go into a loop to input the bets., Process each bet by
scanning through the suing looking for quit, pass, or digit. Set the quit or pass
flags if mither is found and go get the next bet. If a digit, continue picking up digits
and converting to decimal until on is seen, then scan for keywords. Once the com-
plete bet is processed, check for validity. Either accept the bet or print an error
message. Select the random winning number, determine who won or lost and print
the results, checking quit and pass {lags for special action. Restart input loop if any
players remaimn, else stop.

Fable 1. This is the rough sketch of the roulette game which will be used to
develop the program. The rough sketch should define what the input and
outptit of the program are going to be and the general workings of the pro-
grant. It should be very general and give an overall view of the project.

August 1978 7 BYTE Publications tnc 147

have divided the processing. (Betier to back-
track at this stage than after we have gone
turther and found the problems to be
unmanageable.)

In the next phase of refinement we try to
get even more specilic. On large programs,
which may neced more than Tour levels, the
extra levels may dppear al this point. Any
program Lhat requires muktiple pscudocode
levels has probably been improperly decom-
posed. A well formed program seldom needs

Begin program.
Ask how many players.
For as many players as there are,
Get each player's name.
Ask if instructions are needed.
If yes, output the instructions.
While there are still any players left,
For as many players as there are,
Repeat until a valid bet is obtained:
Get the player's bet.
Scan the bet.
Check bert for validity.
Determine the winning number.
Far as many players as there are,
If player quit, process the guit
|f player passed, process the pass,
If player bet,

Oetermine whether player won or lost.

Process this accordingly.
End program.

Listing 1. Pseudocode for roulette program. This level of design is used to
roughly determine what the program should be doing. 1t should not con-
cern itself with the low level aspects of the program.

begin (*program*}
askhawrmnany (players),
for player - = 1 to (*as many ") players ("as there are”} do
getname {(*of*) player, (*into™) playeriist];
askif (yes) (*instructions are needed*|;
if yes then printinstructions.
playersleft : = true;
while (*there are still any *) playersieft do
begin (*betting®)
for player - = 1 to (*as many *) players | *are there are”) do
repeat
getbet ((*of*) player, { *in") plaverdist);
scanbet (("of*) player, ("in*] playeriist);
checkbet ({*of *) player, {*in"} playerlist,
{*to see if*) valid);
until valid {(*bet is obtained"};
determine (winningnumberl,;
for player . = 1 to {(“as many*| players { "as there are*} do
begin {*processing results*}
if quit ({*by) player, (*0f ") piayerfist)
then processquit {{ by ") player, ["ol") playeriist,
(*updating®) players, {*and*} plaversieft};
if pass ({(*by*) player, {*of ") playeriist}
then processpass ({*by ") player, {"of*) playerfist),
if bet ({"by) player, (*of] playertist)
then processbet (("by*) player, V"ot * | playeriist,
(“using™! winningnumber}
end {*processing results”®}
end (*betting*)
end. (“program*)

Note: The delimiters (*and*) are used in this listing to indicate comments. Although
the Pascal defined symbols are { and } , most output devices do not have these symbals
available. Therefore the parentheses and asterisks are substituted.

Listing 2: Pascal program for the roulette game. This is the main program
which calls many other subprograms to perform the fow level Jogic. Notice
the similarity between this program and the pseudocode of listing 1.

148 August 1978 © BYTE Publications Inc

more than the usual four levels of refine-
ment. Al this level we may add some system
dependent features but we should still try to
avoid language dependencies. Qur pseudo-
code description should thus use a wade
range ol constructs freely, since we can al-
ways break thesc down into whatever con-
structs our chosen language actually has.
Using a wide variety of powerful constructs
permits us to think and design more freely,
frec of the worries of particular fanguage
forms.

Many people use a form of ALGOL 1o
write their pseudocode, because the block
structure of ALGOL lends itsell nicely 1o
structured pseudocoding. AL times, this
ALGOL type language looks more like 4
version of Pascal, especially if the program-
mer is accustomed to Pascal. But the dit-
ferences are minor because the two lan-
guages are similar and a good pscudocuder
tries Lo eliminate language dependencies
anyway,

The pseudocode tor our rouletle game
looks something like listing 1, This is still
at a fairly high level, but is much closer to
being a program than the strategy was. The
pscudocode shown uses indentation o indi-
cate blocks rather than begin and end pairs
as in Pascal. This provides a graphical repre-
sentation of the structure of the program.
When indented properly, good pseudocode
can be used in place of flowcharts, and is
often more easily understood.

A good rule to follow when writing
pseudocode 15 to make it understandable 1o
almost anyone, including nonprogrammers,
If you can convince someone that they're
going to run a roulette table for people bet-
ting vid Teletype, they will probably have na
difficulty in understanding the rouletie pro-
gram pscudocode. This is an important test.
If another person can successfully interpret
your pseudocode and, using it, play the part
of the computer without running into pro-
blems (bugs), then it is well written.

When the pseudocode for a module is
completed, it is a relatively simple matter to
flesh it out by adding the right words and
proper punctuation for whatever language is
being used.

Converting our pseudocode o Pascal, for
example, would produce something like
listing 2.

This is indeed a high level Pascal program.
It takes advantage of the ways in which
Pascal permits procedures, functions,
Booleans and comments to be used, in order
to produce actual code that is not much
lower than pseudocode. Most of the work
done in this program is by procedures and
functions defined elservhere. This is 4 sign ot
good decomposition.

152

Augint 1978 2. BY TE Publicatrons Ine

parameters; N other words, minimal con-
nectivity. Obviously this requires that the
modules be hroken down so that cach

provides one simple, dedicated function,
Now we're ready for o further look at
cohesiveness.

The relationships, which processes inter-
nal 1o & module can have with respect to
the module and with cach other, have been
broken down into six classes. These are
listed in order
strongest.

ol wedhest relationship Lo

® Coincidental.

Logical.

Temporal {or time-wise).
Communicational,
Sequential.

Functional.

We can see from ow discussion of con-
nectivity that it is highly desirable to com-
pose modules such that all ol the internal
processes dre ditectly related o the specific
function of the module. Such processes are
tunctionally iMustrated in
figue 7.

refated, as

M/

ma
M2 M3

M5

Figure 7. Classes of relutions. The strongest
form of cohesiveness is the tunctional re-
lation wherein every process s integrally
involved in providing the overdll function
of the module.

With reeard 1o cohesiveness, then, the
higher the fevel the better. We should atiempt
1o design modules such that their internal
processes are s stronuly related as possible,
Now let's examine the weaker classes of
relationships,

Coincidentally related processes, shown
in figure 8, are totally unrelated except for
the tact that they teside in the same module,
This is the weakest form of relation, and any
module composed in this way should be
broken apart into sepdrate processes,

Logically related processes, shown in
figure 9, have no redl relation o cach
other except that they perform similar fune-
tions and thus get grouped together to form
a module, Onge again, this should be broken
down into smaller modules.

Processes which are temporally related,

iy
<]

o]
: -]

Figure 8: Classes of relations. Coincidental
refation is shown here, in which separate
processes are uireflated except that they
reside in the sume module.

L
E

E

R3

E

Figure 9: Classes of relations. Shown here is
logical refation, in which processes are
yrouped together because they have simiitar
functions.

1 ‘ J2 J3

\ J4a J5

Figure 10: Classes of refations. {n o temporaf
(time) refation the similar processes can
exectte in any order, effectively in paraifel,

as in figure 10, are almost identical 1o
those which are logically related except that,
in addition, they can all be executed al ope
time. A common c¢xample is the initializa-
tion routine found in many programs, Much
of what is considercd to be initialization
by many people could actually be done
much later in the program and could be
distributed among the modules.

Processes related by communication are
those which have been grouped into a single
module because they share data in some
way, as seen in figure 11, This is a stronger

parameters. The result is a4 program com-
posed of plug-in modules that act like black
boxes. Such a program is relatively casy
to change, because cach function has been
carefully isolated. Modification then becomnes
primarily a matter of module plugging, and
the effects of any new bugs will be con-
fined 10 a relatively small portion of the
program. Recall that casy program modifi-
cation and the reduction of side effects
were two ol the major tasks we were
trying to accomplish through structured
programming.

Finally, we can list those decompaosition
heuristics which were mentioned earlier
and many of which should be apparent
by now.

One good technique for determining
whether a module is sufficiently cohesive
is to write a sentence describing its purpose.
If the sentence has 1o be a compound
sentence, the module is probably doing
more than one thing. Usually this will
be obvious just by looking at the sentence.
Incidentally, this can become the goal state-
ment for use in the refinement process.

Carefully examine modules which result
in fewer than five or more than 100 source
statements of code. This often indicates
improper decomposition.

Avoid initialization modules wherever
possible. These reduce the black box qualities
of many modules.

MROJECTILE
HLIGHT

I

GE”
DaTA

Figure 13: A module structure chart for a simple program which calculates

E

|4

MAX] MM
HEIGKHT

IV
DAT A

TIME "0
MAXIMUM
HEIGHT

|

B

SGULRE
FUNCTIGN

o [

SINE
FUNCTION

the greatest heighit reached by a projectife and the time it takes to get there.

i

Initial velocity, angle

2. Initial velocity, angle Maximum height
3. Maximum height, time to maximum height | - -+ -0
4. Initial velocity, angle Time to maximum height
B. Initial velocity or sine of angle Square of input
B. Angle Sine of input
7. Angle Sine of input
154 Augist 1978 < BYTE Publications tnc

Examine vour design for duplicate
functions. After eliminating these, if any
duplicate code remains, it is probably
needed.

Watch out for modules which are called
by or which call a large number of other
modules. This often indicates some problem
in the decomposition.

Modules that perform similar functions
probably contain duplicate subfunctions.
If these common funclions can be isolated,
the differences can often be incorporated
into the calling routines.

Don’t hesitate to over-decompose a
madule. It will be easy to recombine func-
tions later, but it may require a major re-
write if further decomposition is found to
be necessary after the design has proceeded.

There is one area in which structured
programming truly shines: documentation,
If we've done our design properly, there
isn't any need for additional documentation.

This may sound a bit outlandish, but
consider what our refinements have really
produced. The goal statement makes a very
fine program abstract; the specification level
provides us with a complete technical
description, and properly indented pseudo-
code can take the place of the program
flowchart. By appropriately including parts
of the pseudocode in the code, as in the
roulette example, we end up with a well-
commented program. Little else is needed
except a chart of the modules and their
connections, as in figure 13, but this we
would have to do anyway in order to aid our
decomposition. Once we've finished the
design, we've also finished the documenta-
tion and we have a running program.

Structured programming is a collection
of techniques that help us organize pro-
gram development by reducing it to a series
of manageable steps. The end result is a well
formed, documented program which is easy
to understand and to maintain. In today's
busy world, the time and effort that can
be saved by practicing structured tech-
niques is of immeasurable value.®

REFERENCES

1. Stevens, W P; Myers, G J; Constantine, L L;
*Structured Design,”” {BM Systems Journal
1974, number 2, pages 115 thru 138,

2. MeClure, C L; "Top-Down, Beottom-Up, and
Structured Programming,”” {EEE Transactions
on Software Engineering, volume SE-1, number
4, December 1975, pages 397 thru 403,

3. Wirth, Niklaus; “Program Development by
Stepwise Refinement,” Communications of
the ACM, volume 14, number 4, April 1971,
pages 221 thru 227,

COMPUTER

INTERFACE
:) 4 BIT
X ADORESS
N 8 BIT
) > ADDRESS
120 Hr LATCH
CSCILLATOR _ j 4 giT
> Y ADDRESS
1CH 1€9,10
A
£ I DATA READY
¥ AND Y COMMUNICATION
Caggrrjsﬁsg INTERRUPTION AND SCAN
LOGIC RESET LOGIC READY
< T ACKNOWLEDGE
€2,3.4.6 % casn iC3.01,8
L 1 L
ANALDG SIGNAL
DRIVER SWITCH CONDITIONER OPTIONAL
12 Q' 32 [+5 VOLTS WHEN AUDIO DATA
LEDS PHOTO LIGHT PATH IS READY
SENSORS INTERRUPTED)
IC12,13,14,15 IC16,17,i8,19 Ic7.8 Ic1, 20

Figure 1: Block diagram of the noncontuct scanning digitizer. Two rows of 16 pairs of LEDs and phototransistors are pluced
opposite each other in front of a video display. When the user breaks the infrared light beams with a finger or other obiect, a
signal is sent to the computer giving the coordinates of the poit in question.

160

August 1978 & BYTE Publications Inc

paper in which position coordinates could be
transiated into usable relationships. | refer to
it as a touch panel or touch scanner for lack
of a better word.

Build Your Own Touch Panel

The touch panel is an claborate infrared
scanner. There are 32 pairs of infrared light
emitting diode (LED) wvansmitlers and re-
ceivers mounted dround the perimeter of the
screen. There are 16 on the X {or horizontal)
axis and 16 on the Y [or vertical) axis, The
resolution of such a device is therefore 16 by
16, and there are 256 individual points.
Photo 2 shows this grid system.

Figure | is the block diagram of the sys-
tem, and Tigure 2 shows the detailed sche-
matics of the system. The noncontact digi-
tizer is basically a hardware stepping circuit
that wrns on cach transmitter/receiver pair
sequentially and checks 1o see il anything
{like a finger or a pencil) is blocking the
beam. The transmitters and reccivers are on
opposite sides ol the board, as illustrated in
figure 3. The Jower left corner is position
{0,0) in a Cartesian coordinate system. The
upper right is location (15,15},

The hardware first turns on the pair Dy
and Qp and then sequences down the line

along the horizontal (X) axis to Dy5 and
Q5. Only one pair is energized at any one
time. If any of the beams within these 16
pairs is obstructed, the 4 bit binary code for
that location is loaded into [C9. The scan
continues in the Y direction in a similar
manner and the 4 bit Y position is loaded
into IC10. If the hardware senses that some-
thing is obstructing an X and Y beam within
one scan around the perimeter, it sets a data
ready flag and stops the scanner.

The data presented to the computer is an
8 bit word representing a 4 bit X coordinate
and a 4 bit Y coordinate. These lines are
simply tied to a parallel input port, in the
same manner as all the other devices | de-
sign. The data ready bit can be read cither
as a single bit input on another paort, or as
a control line on a more intelligent inter-
face. When the program senses that the
data ready is high, it reads the scanner data
and momentarily pulses the ready recset line
low to start the scan cycle again.

Use a Picture Frame

The heart of the system is the LEDs and
phototransistors shown in photo 3. The de-
vice on the left is a General Electric LED 56
and the photodarlington detector used with

«ov 5

HORIZONTAL D16- D31 VERTICAL DO-015 I
470 AoBC $arq
016 TYPICAL O U TYPICAL DO’
K roR B (| FUR B |
i 2 XU
| pi7 —o Cia o2 ‘
3 1445 TA4 5 3
| 0B —4 v |
4 Y
| o9 — L o3 |
N 5
‘ Dzo_i. & 5 o A l—— D4 !
‘ : 4 a 5 I
| oz — B 8 — 05
7 13 ? - P
023’ | b2z — < B2 C — ue ”’
2 12 9 |
l}—-@—l——g‘ s B 53 51 0 b
D24 rymical TYPICAL 03’
’ foas |) FOR B8 {
| pz2s — ics 1013 — 09 I
5 7445 3 |
| 3 raay — 00
' D26 — ; |
) D27 — —— D1 |
15 S
‘ Des — 4 i A — D12 1
q 14 1Y
1‘ peg — 8 8 —— 013 ‘
13 7
D31 | D30 — c 2 ¢ L 5 015’
”
9 12 12 9
@ ‘ 3 —<Jsa se [>—»o ‘ @
HORIZONTAL Q16 -Q3) VERTICAL QO0-QIS
TYPICAL TYPICAL
@6 rprg 3 3 L1 . 3 FOR B o
(AT (=19}
) 4 [
| Qr? 4] 1 ° o i
A [ae 2 c8 Lié LY ' ~
| B a8 a0s) 2 !
| a9 — L° 03 |
) i
[020 — 2 B I L — a4 :
| o o 5
| 0z — H 1 s = a5 |
? E] 9 2
[022 — — Q6 ‘ .
023 ,, R 6 a 1 9
it ——G 53 le—— S
” b y b
lezd Vezd
~ TyFILAL TYPICAL
©29 roww 3 e £ 3 Fom g Q8
8]
I B 4 |
| 23y — — Q9 |
I g 1T 15
g ‘ EE— ‘_c‘(: 4051 @ro ‘ h
! AL 2 |
oy — Q |
1
2 b— a2 |
i i LS |
5] E — 013 |
e i L N |
@3 B n - 4 [Gs
e f—<] 5 w2 T>— un
- |a 7 8
b A) ~
77 7

Figure 2a: LED driver and optical receiver circuitry for the noncontact digitizer. Each transmitter/receiver pair (consisting of an
LED and phototransistor) is activated sequentially via lines A, B and C. DO and QO are turned on first, and the sequence con-
tinues down the horizontal axis to D15 and Q15. If any of the beams is broken, the 4 bit binary code for that location is loaded
into 1CO fsee figure 2b). The scan continues in the Y direction and the 4 bit Y position is loaded into IC10. Any obstruction
causes the data ready flag to be set and the scanner to be halted.

August 1978 ©BYTE Publications Ine 161

162

August 1978 DBYTE Publicalions Inc

3 NL E D ¢ B & COMPUTER
U INTERFACE
SIGNALS
10 |9 4 2 'G—l{} BO
ica | 7a08 ica | 7408 3 % al
Ic9 !
X ADCRESS
6 7475 [] |
e C S
| B2
’ _g——|D B3
ica |
7404
|
3! T |
' |
' |
l | M 16 |
| : —|L—> B4
ica : | 3 5 | o
7404 IC10 -
| | 6 7475 10 | Y ADDRESS
| | ———{—> 86
I | 7 9 [
| | =
| el | 7408
7400 | 13 13 [|
|
I ' I ice Y} J: [|
1
{ |
' [
‘I) Q 5—'D DATA READY
|
! 1c3 |
! 7474 |
|
|
f Lo [>— e aB—— cmre |
c
i Iy
ACKNOWLEDGE
@ = AND READY RESET
Figure 2b: Interface cir- Notes on figure 2
CW[.QI I?O.f‘ the noncontact 1. All capacitors are 25 V ceramics unless otherwise specified.
digitizer. Data p@.ﬁcﬁnt@d 2. All resistors are Y% W 5 percent unless otherwise specified.
to the computer is in the 3. /777 denotes signal ground.
form of an 8 bit word 4, 1Cs 16 thru 19 are CMOS devices and should be handled carefully.
represenling a 4bit X 5. Additional LEDs on prototype unit are for testing purposes only.
coordinate and a 4 bit Y 6. QO thru Q31: GE LEDS56 infrared emitter.
) J DO thru D31: GE L14F 2 photodarlington infrared detector.
coordinate. These lines are
tied to the parallel input
port of the computer.
IC Type 5V Gnd
1 7400 14 7
2 7493 5 10
3 7474 14 7
4 7404 14 7
5 74155 16 8
6 74123 16 8
7 LM311 8 1
8 7408 14 7
9 7475 5 12
10 7475 5 12
11 7400 14 7
12 744% 16 8
13 7445 16 8
14 7445 16 8
15 7445 16 8
16 CD4051 18 8
17 CcD4051 16 8
18 CcD4051 16 8
19 CD4051 16 8
20 74121 14 7

Table 1. Power wiring table for the noncontact digitizer,

mw
(&)
=}
mi
m

D000

Yl
71
3
1K 2200
ﬁ)—*\Nv——qr—W\r—{l 12 g |a [n !
A g
7400 . 7400 B ¢ D c4 12 . . 8 5 > s
3 [ez Py 74155 Te)
cTRL [>—3 <! s ' 7493 A " >
14 I] 3 __ i >53
DSC = 120H2 & ¢ ¢ 8
130a 'Z—Dsa,
2 |3
!—o 15 14
+5y 777 + |—/i
'»F 56K O1uF 2.2k .
— ——
6 7 14 15
10 _ _
1c6 Q 6 Q
74123 5 74123 13
/;;—9 0 Q >0

AN . 4 4 +5Y

2N 3304 22K

sic [>4

> e

SENSITIVITY Vrsd

Figure 2c: Address decoder and phototransistor signal conditioning circuitry for the noncontact digitizer. 1C2 is a counter driven
by the oscilfator at upper left. When a phototransistor is activated, the SIG line goes high, activating line NL, which stores the
4 bit address of the interrupted beam (see figure 2b). The scanner is finally halted via the CTRL line. The computer then reads
the coordinates and reactivates the scanner,

+5V } .
An industrial grade alpha-
" numeric terminal, incor-
33K M . +5v porating touch panel input,
2uF 4 ﬁ“[.is being (r\anufactured. For
v information contact:
) 22? 220 1000 General Digital Corp
10 I b had 700 Burnside Av
3 East Hartford CT 06108
2 1020 L) el 2 V| oon (203) 289-7391
74121 cl »—C ic1 22222
CTRL 4 ol IO‘ 12
=IKH
8
SPEAKER
+5v
i I * 5v
+
t00u? O luf *A FEW O IxF CAPACITORS

SHOULD BE PLACED ARQUND
THE BOARD BETWEEN +5V
AND THE GND &5 BYPASS

CaPACITORS

Figure 2d: Optional audio data ready signal circtiit, which causes an audible beep on a speaker
whenever a pair of beams is obstructed and sets the data ready signal.

August 1978 £ BYTE Publications Ine 163

Edwin E Hastings
18 Churchill Rd
Marblehead MA 01945

JACPOT

Listing 1. The JACPOT game, written in BASIC. [We delect a small amount
of bias in the symbols for a winning combination, which can of course be re-
defined arbitrarily to suit the user’s fancy. . .CH|

Many states are now working to legalize
gambling, but why wait for the bureaucratic
process when you can start a casino on your
own computer {for fun of course) with the
JACPOT program. JACPOT is a simulation
of a slot machine written in BASIC, with

MLruT 10 MAY-//7 0 MU BASIC/RT- 11 V0O1-01

REM LW YRIGHT 1977 RBY EIWIN F. HASTINGS

20 RANDUNLZE
20 IRIND C 1 EASE CNTER THL AMOUNT OF MONEY® bets limited only by the constraints of your
40 PRINT ® U WISH 1D FLAY WITH ¢ .
Do THIOT S machine. You can lose all your money and
w1l &0 THEMN 80 .
ENETIR T then lose it again!
L0 IRIHT FLEASE ENIERK A FOSITIVE NUMRCE.® N 60 10 50
YO PRINT
FRINT * BO YO WANT INSTRUCTIUNS(Y M) *;
LET A1 LHRECEYSA))
I0AT "8t THEN 310 N IF A4 Y THEN 100
I InT
CRIN BANDIT--~A SIMULATED St 0T MACIINE®
[EHIE FLAY UNTIL YDU OR THE BANN ARE BRONG
FRINT * WIHNTNG CUMBINATIONS ARE AS 7O LOWS . * A
FRINT VNTH
[N 300 B 8080 8080 I'aYs Ve .
FRINT * 9080 1BM PR FAYS D) 10 THIH 9<0
FRINT * £08C BOZO 1HM raYs KHB N T B i\ RETURN
PRIGT * 8020 BOBG 8OLO ravs Y0 1 X - THEN 100
FRINYC LUO0 HHO0 4200 EAYS TOUC PREHT *IBH \ RETURN
FRINT * GLGL &LOT LLOY FAYS 1010 11 £ o THEN 1030
FRING - 28U 2 o0 Z-00 FAYS LO20 FRINT “DISh 5 N RETL
CRIHD Y JAD CARD CALT FayYe 1o 1E XD 7 THEN 1000
[ESTANN TACE TAFL TaFL 1 AYS Lida N PTARE - fL UkH
FRiNY - LIS DISH U1SK FAYS DusiLe 1850 11 XD ¢ dl N i)
PRIMT " je Uyl I1EM 1BH SR " Febeg PICTHT "L N AN TN
Frint - REC DEC DEl TARES 1T AlLL® (R0 I N LR O
rRit o8l ML L B0 T bt
[N TER I WHEN A OUESTION MAKK 1S PRINTE I RESEFONDC WITH THE" Ly b4 THEY
TRINT Ot BUMRCR OF REFEATED FLAYS YOU WISIE T mMARE,* : RLTHRN
It * AOLOMMAPAND THE SIZE OF YOUR BFT,IF 7O WISH® [T
ITRINT TO ST REFORC vy BREAN THE LANKS O YO G BRUOKE e © LI20 v WETHRN
PRLNT INFUT A "0 WHEN YOUR BETS ARE ASKRED IR [/ TR The L0
PRINT N FRINT a0 LLTYE CRas0
LET P! OIWNTCL.B5%2) N LET £1-2 I Loove 3 GHL 10
LET C1 v v LET C2 © 11 PO AN "L
IF w2 O THEN 516 PG R T
T B1 0 THEN 14C0 [T W R
GU FO 48O LU0 DE AT Te THERC 12A0 N 3 AT 10 THEN 1240 N IF A3 10 THEN (700
PRI ® YOUR BETS RLEASE*S v ENFUT C1,104 Poan AL L THEM : Aat
FRIMNT t COTHEN D]
Yout oo THEN 1F CA0 THEN 1670 ' toTHb Al
IF L4 0 THEN 400 POTIRR
CLT L2 o
G0 U Lo i
[T THE BANDIT HAS 4001, YOU HAUT 41 SWEE ATH0R0AT LITH heee
'R KD SRLOG1O0AY N LET D P Iasca)
GO TU 420 oo
LEF £0 1 0= N 1ET B0 WL T 5
LLT oLz e R R o N S RS T
Gosur 7au FER S LOLL 572900+ Gl TNOinEe
LET AL xz DOTHEN 0L
sSouul Ja RI-BLECARES)~ LT B L (AR 9
CET s N BrOCROUELL CHLCH-TOU E 0SBkl b N G0 TO 1540
GOSUE ISR RANTI LEE FL P Ui
LET A2 TR D SILLH fOU LOSE BHECA N GBL Ty 1580
if At THEN 600 % LLT A1 A2 T
IF AT 9 THEN 410 N LET A Al v Tu
A2 Y THEN 620 \ LFT A3=A < 42
[P CA1XAT) E1 THEN 540 At AT THEd aasy
LET A2 AX N LET AL AD e bt .
1T AL A THEN 6690 L ot n) THEN tAn0 o N P TR Yay
00 iU t1fo I B A R R L A R LU
11 A A3 THIN 720 N IF AL D THLN 680 VAL FRINT DR AR EASH]
LD TO 11RO AL 6 T 1580
1 AL TN 11eo PAse L) aRl
LLT Ll B (Z#4) N LET 114204y Tavoe e oy o
ERINT *WIH 4 504C4 TAHG LM
GO Tn 390 L0 BT IR T ACKEUT * FUHR RO S CHE S 7)
ib AI- 1 TUHFN 1IBO Lo e o YOU BRONS DI BARE»7OU N IW HAVE 2973,
GUOTN 10 [T R TR PLLANE T LAWL @I T e
LLE X2 LA ST TR PO 7
VLU X1 ENTs 1O000RINE L)) DA LN ST INTLD e
“u JF KD LS THEN TS0 IS4G LTt LT B ow
6L XD rul4 theN D0 HON NI SR L BONUS TIHE Y3 WIN "32° DOLLARG. *
CuD oA L Y1o THEH 23 JOIETV I B EE ST COart p#enrs of et CHET1)
SYC ab L 2.0 THEN H9Q 1570 FOk oL 109 PRINT HE AT I
MO0 JE XL 6548 THEN 700 1Lnn Bttt -0 THEN 1170
Sl 1 Xt aLed THEN 710 PLF00F U 0 THIN 1600
SO0 1 X1 LBT4 THEN 920 1age 0 T 390
D50 1F AL AH1E THEN $30 o rhint
240 IF X1 A0%4 THLN 940 Palo tivrne - YOO KD ALL [IONE s NO CREDIT ALLOWEDR. "
G50 .1 X1 340 THEN %50 1a30 F R ST A L RINT S REXT LS
oy GU 10 %40 FOA0 LELNT T00 DU WANT TO FLAY AGALNCY NI*
FFA AR 2 XTt! Fatm BT TS I E8YS(4))
H4B6 LA LE YD TP OLHEN 410 N IF YB O CN' FHEN 1450
G La 7y EriD
20U
KENDY

166

August 1978 © BYTE Publications Inc

Listing 2: A sample run of JACPOT,

SJACEDRT 10-MAY- 27 MU BASIC/RT-1] V0L -0l
FLEASE EWTLR THE AMOUNT OF MONEY
¥OU WISH TO £LAY WilH ¥ 1000

i8] YUU WANT INSTRUCTIONS(Y-MN)Y
BEANDIT=- -~A SIMULATED SLOT MACHINE
FLAY UNTEL ¥DU OR THE EBANKR ARE BROKC
WINHIKHG COMBINATIONS ARKE AS FOLL OWS.

#OB0 BOBO TTR? FaYs

8080 IbBM wEEy FAYS

8080 BHBO [&M FAYS

2080 EBOBO 8080 FAYS

4BOO HA00 6800 FAYS

5L,02 &LOIT S50V FAYS

4-BO 7-820 Z-80 FAYS

CAaRD CaRb Chklr FAYS

TAFE TAFE TAFE FAYS 12831
NIBK DIGK DISh FAYS 2Lé6t1
[84 I[BM IBM SUFRISE

nEC DIC LREC TARDS 1T ALt

WM A QUESTLON MARK 15 PRINTCLRESTONIE WITH THE
NUHMUER UF KEFEATED FLAYS YOU WISH 1U MAKL.

A COMMAY AN THE SIZE OF YDOUR BET.IE YOU WisH

0 STOF BEFORE YOO BREAN THL

THFUT A 70,07 WHEN YOUR RETS ARE AUKNCD PR,

THF RAMDTT HAS $ 1B49 »YUOU HINVE ¢ 1000

YOUR BETS FLLASE? $0s10

TakE &L02 WANL
BOBO aeed L uo WIN 4 00
daBd ALDT BOSY
SE0I Sl00 4800
CARD UoRG BOBY)
CAKD BOGL BOLD
HEHE AR 4500
00 10BO LBOU WIN 3 20
rAFE Nagn 4BO0
500 S Be TArL

T BANDIT HAS 3 1209 »YOU HAVE & Y40

YIUR BETE THEASL™ 10,20
A8O00 ARG ABDO WM 3 140
AG0N ABOG 4U00
nlhu Hely Tarm
B0 OOBG G080
T-BO NOBR an07
AT02 0 IO Buko
HL07T ALNT sRdY
ner ST02 0 TARD WIN 4200 WITH I
TAFE BOBG Z-8w
HOBG 1108¢ nOBO Wi LR

The main object of JACPOT is to play
until you or the house go broke. The win-
ning cambinations poy off in ratios of from
2:1 10 256:1 and more. In more than 1600
bets my payoff ratio has varied from 2:1 1o
64:1.

In JACPOT there are different ways to
win and lose. The lirst way to win is to hit
a winning combination. The second is to hil
a DEC in a combination. DEC pays off 10:1.

Table 1: A list of the major variables used in
JACPOT and their functions,

Variable Function

B1 The house's money.

(9] The number of bets.

c4 The size of the bets.

P1 The player’s money {during the game}.
X1 Determines the combinations.

X2 Prints the combinations.

Z The player’s money {start of game).

BANKL (TR YOU GO HEORL

ThE BAHDLL MG B 16aY 7O HAVE + 1189
TOUL BT PLLASEY Lue 200

Lo HEFHY

L S

BI04 oy

A0 R RIS KTV NN C I S W PR T R T VA B 151

HOAD wiM BT

UiHIG # .

e AL S M I k3] ol

ABDT WML I b BINLBLE Z1LEH-YOD (OS5 1

TOHTE NE L BUNL v NI ChEDET ALLBWED.

Doe v Wedll 10 FEAY ST INGY N Y

RIS

Riviv

WIHEH @ ST anR MAKKE T5 I RINTL B LS ORI WITH Tt

MR R At

nOROHMAe NN BIE 5120 D1 YOUR B 1.0
[0 STUE DLl v @#RF b THIE
THIHT A 00 WHITW YIDUR BETS ok ASKLD

TEIT EANBTT Hni 5 184% 318 HAVE 3 1000

TN BOTS CLEASEY 110%

WANG fs00 Al SILLH YUY LUSE 3 10
SOAG MEOe YoUD WIN 20

S0HT &TOD HOBO

TARL NGUD WAMG

3080 NG00 WBOO WEN 10

[FRILMY O DIGEO WM $ L0 WITH DFD
SBOG TIGRG HOHO

B0 Ab0s Dk WIH 00 WITH EC
U R2En WAk

20Ul ALOD2 Uik

FaFE AGREG &ope

THE BANDT HAN 2 17284 Y HAVE $ 1065

TN 1130 B LEASE™T L0 1O

WAt akowg LI*H SOCH-YDIr 1 0SC 31 20
LALE AEOD ROAD

POER HGGD LM WIn A0

ol NggEe a0

Lalie Hoag 000

ST I B B

BOGO UCRG BODG WIN boAag

D HGEG sHOG WIN 20

a0 neno Bugon Wi 1oAa0

AL UgaG g

THL DANDETD HAL % 1764 » YU HAVE 4+ 1080

FITUE RTTS PLLASLY Qe

Lty

The way to lose money is to hit a ZILCH,
which causes you to lose up to 8:1.

The program (see listing 1) was wrillen
on a Digital Equipment Corporation PDP-11,
but can be easily madified for most BASIC
interpreters. In lines 110 and 1650, the
statement LET. . =CHR${SYS(4)) gives an
automatic carriage return after the variable is
inputted; this line can be replaced with an
INPUT statement. Lines 870 to 960 look
repetlitive but they serve to determine
the combinations. The backslashes in some
fines are used Lo separate two or more lings,
They are replaced by colons in some BASIC
packages. In lines 1490 and 1560 the CHRS
(7) is wsed to ring the bell. The RAN-
DOMIZE statement in line 20 is used to
actlivale the random number generator. In
some BASICs only the RND in line 750
is nceded.

| hope that you have a good time running
this program. If you have any questions or
commenls about this program, please write
to me.m

REFEATIID FEATS rOU WISH 70 #Akt .
YUU Wivy
BARP Ul YOU GU BROKE .

PR,

August 1978 © BYTE Publications Inc

167

Pascal versus BASIC:

Atlan M Schwartz
114-2 Nimitz Dr
Waest Lafayette IN 47906

An Exercise

Introduction

Pascal is one ol the newest high level
languages on the personal compuling scenv,
Pascal has been accepted W1 many universi-
ties for several years. 11 0s being used more
and more in industry outside ol cducation,
and has just receatly been introduced in
microcomputers, Why is there s much
enthusiasm about Pascal?

Pascal is a general puepose language, the
product ol the long evolution of computer
languages. 1t has a simple but chegant syntax
and has been implemented in both large
systems (CDC 6U00, [8M 360 and 370,
Burroughs 6700, cic} and microcomputers
(LSI-11, 8080, 8085 and 7-80),

Historical Background

Just as computer hardware has been
continuously cvolving during the past 25
years, 50 too have computer software
requirements. Originally, computers were
employed to work on mathematical tasks
such as solving ballistics problems, or gen-
erating tables of logarithms, Later it became
economically feasible to use computers lor
data processing or working with voluminous
amounts of data such as census data or bank
statements. Recently wo have scen com-
puters participate in various cuslomized,
dedicated applications iike the conuol of

About the Author

meI’OpfOCQSSOI'.

Allan Schwartz is currently studying computer science at Purdue
University and researching the applications of microcomputers to
programming methodology. Previously,
Nielsen Engineering and Research Inc at NASA Ames Research Center
as a systems programmer. He owns an MC6800 based microcomputer
systemm and js developing a Pascal P-machine emulator for the 6800

Mr Schwartz worked for

168 August 1978 € BYTE Publications Ine

trafiic lights, mictowave ovens and auto-
mobile ignitions.

We have scen a variety ol applications
and langudge requirements lead 1o an evolu-
tion ol computer languages. “Programming’”
originally entailed the translation ot simple
dlgorithms into machine code and bit by bit
loading of the computer’s memory via the
Iront pancel. Later, assembly languages were
used, Tollowed by equation or tarmula trans-
litors such as TORTRAN, When it was dis-
covered that computing involved mostly
computing decisions and repetition, the lan-
guage ALGOL (1/7.GOrithmic £anguage) was
designed to express algorithms more clearly
and conveniently. The need tor a language 1o
structure and represent all of the data and
files in business data processing applications
was tilled by COBOL. Today we have
Pascal, which has flexible data representa-
tions, sufficient flow of control statements
to represent algorithms, and a clear, simple
syntax making it a favorite for a varietly
ol applications. Pascal is the result of several
evolutionary steps in the history of com-
puter languages.

Why is Pascal so appealing? First, it isan
expressive language. It has several control
structures that make the coding of algo-
rithms very natural. Second, Pascal has
flexible data representation.

Expression of Algorithms in Pascal

Figure 1 presents an algorithm 1o com-
pute the greatest common divisor {(GCD)
of X and Y. The greatest common divisar
of the integers X and Y is the largest integer
that will divide evenly into both X and Y.
Note that three assertions are stated in the
flowchart. The first, a necessary pre-
condition, states that X and Y must be
positive integers. The second is a loop
invariant such that, when control passes
through that path in the flowchart, the
GCD(X, Y) is equal to the GCD(A, B), The

third, a post condition, states that A is equal
to B, which is cqua!l to the result, the
GCD{X, Y},

Il we can prove these thiee points are
true, then the algorithm s correct - that s,
it will compute the greatest common divisos
of X and Y, The loop invariance is casily
proved, becduse if B is greater than A the
GCDM{A,B) cquals GCD(A, B-A) (a morc
rigorous proof is posed as an exercise in
Wirth's book {sce hibliography}). The post
condition s dlso casy 1o prove, because the
path to this exit is taken only when A
equals B, and then the GCD(A, A) certainly
equals AL

We are now reassured that il the precon-
dition s true, the algorithm will compute
the desired result. Now, how do we code
this algorithm into our favorite programming
Language? Before we answer that question,
let™s look at the clements of the towchart,
The Ilowchart in figure 1, and indeed any
computable algorithm, is made up ot three
clements: seguvence, sefection and repeltition.,
Sequences are represented in the flowchart
by rectangular boxes such as:

H e X
Bae Y

Note that this Howchait element has one
entry {the arrow going in} and one exit. [/n
BY LS wse of Howcharts, u top to bottom
flow of cantrol is ussimed with drrows used
for exceptions; in this article we make a
stylistic exception, using extra arrows (o
emphasize flow. . .CH|

The second flowchart element s selec-
tion, Selection is represented by:

TRUE FALSE

{ANY FLOWCHART
ELEMENT)

(ANY FLOWCHART
ELEMENT)

T

A selection flowchart element requires al
feast two or three boxes; however, it always
has one entry and one exil.

AwX
B -

AeAO-B

T

EX)7 }

Figure 1: A\n algorithm to calculate the greatest common divisor {GCD) ol
nvo integers. (The greatest conunon divisor of two integers is the largest
integer that wifl divide evenly into the two integers.)

The third Howchart element is repetition,
It is represented by

FALSE

TRUE

(ANY FLOWCHART
ELEMENT)

I
—

This torm of repetition dis called a4 “while
loop,” because while the decision is true,
the clement is repeated. Again, this clement
has one entry and one exit.

These flowchart clements have been
transtated directly into Pascal statements

August 1978 ¢:BYTE Publicavons I

B2

(sce listing 1). Note (hat the scquence
element:

O e X
By

is translated into the two Pascal assignments.

¢=x b =y

Now some of the syntax details of Pascal
become evident. The assignment operator
is =, which is different from the FOR-
TRAN or BASIC “="in that the = oper-

SeCGlEI*0IE2

POINT® 5

QD05 *+—6/5
Cary ERAQR
WIN ROUTINE

Figure 2: Flowchart for a portion of the dice game "‘craps.” The five IF tests
can be implemented in Pascal with one case statenent.

Metavariables

Bracketed symbols such as (‘< statement >') all call metalin-
guistic variables (or metavariables) or syntactic units. They represent a
class of possible language elements. They are nanterminal symbols; that
is, the symbol “< statement >'' itself will not appear in a Pascal pro-
gram. It represents a set of legal symbols thal can appeaer in its plice
in the program. Nonterminal symbols are bracketed by < "and > "
and are printed in italics to distinguish them from terminal symbols
such as for = if do. Terminal symbols are usuafly printed in heuvy
type if the symbol is a language key word, and appear exgctly us they
would in the Pascal program.

170 August 1978 OBYTE Publications Inc

ator in Pascal is used for assignment only,
while the = in BASIC and FORTRAN is
used as both the assignment operator and
the cquals sign. Statements are separated
by semicolons, and any number of stale-
ments may be typed on one line. If the
above sequence were a subelement of a
selection clement, it would be brackeled
by begin and end heywords. For exampic:

if (x>0) and (v>0) ther
begin ¢« .=x; O =y
end

Any number of elements combined into one
sequence element by begin and end brackets
forms a compound statement,

The selection Mowchart element is trans-
fated into the Pascal if statement:

ifu>b thenu =u—b
clse b :=b—u

And the repetition flowchart eclement is
transtated into the Pascal while statement:

while ¢ <> b do <lstatement >

The cexpression <statement> is called a
metwvariable, For an explanation, sce the
accompanying text box. Notice, though,
that the metavariable <statement > in the
greatest common divisor while clause is an if
statement.

FALSE

TRUE

—

The real power in Pascal’s algorithm descrip-
tive capability lies in this sort of nesting.
For example, any clement can occur as a
subclement of the while or if statement.
These are called structured statements,
and they can be nested to any depth.

Look again al the greatest common
divisor (GCD) function in listing 1. Note
that the routine consists of a heading and
a variable declaration statement lollowed
by one compound statement, bracketed
by begin and end. FFunctions and proce-

dures in Pascal can be thought ot as named
statements with local variables. They always
have one entry and one exit, and therefore,
a call is flowcharted as a scquence clement
such as:

:

caLL

Ze-GCD{X,Y) OR INITIALIZE

Pascal has a second selection statement
called the case statement. This statement
is & concise representation of the special
case of nested if stalements. An example
of this is the “craps firsi roll” algorithm
uscd to implement the dice game called
craps. A pair of dice can obviously have
only one summed value from 2 to 12 on any
given throw, making this an ideal use for the
case statement (sce figure 2). The five nested
decisions can be represented with the follow-
ing Pascal case statement;

s =die !l +die 2;
case s of
2,3 12:
craps;
4,10
begin point : =s; odds : = 2/]
end;
5 9.
begin point : =s; odds : = 3/2
end;
6,8
begin point : =s; odds : = 6/5
end;
7,11 win
end {of case stalcmcnl}

Of course, this could be represented using if
statements; however, the case statement is
much more concise and clear. When the
decisions in a group of nested if statements
are mutually exclusive, that is, if any once
being true implics that the rest are false,
then a case statement is probably the ap-
propriate representation.

Pascal allows two other torms of repeti-
tion: the repeat statement and the for
statement. The repeat statement:

repeat
<any statement >
until <cendition>

is represented by:

fahy FLOWCHART
ELEMENT)

(CONDI-
T1IONAL)Y

2

FALGE

Repetitions can always be expressed as
either repeat statements or while statements.
However, onc form usually sounds better.
For example:

repeat shoot craps

until broke or out ol time
15 equivalent to

shoot crups;

while not hroke

and not out of time

do shoot craps

The for statement:
for <yur>:=

<init val > 1o <finul val>
<any stutement >

is represented by:

{VAR)=— (INIT VAL)

{FINAL vAL)

{ANY FLOWCHART
ELEMENT)

!

INCREMENT {vaR)

]
—

August 1978 L BYTE Pyblications Inc

m

Notice that again tiere is ane entry and one
exit for this Howcehart element,

Another clement we might see in o How-
chart is an arnow coming uul of 4 subele-
ment, perhaps to @ different page ol the

function ged(ix,y: integer). integer:

var a,b: integer, {x,v -0 }
hegin
a:=x;, b=y,
whilea - bdo §GCDIX.Y) - GCDIA,B)
ifa~bthena.=a b
else fr:= b—a,
fGCDtX,Y] = A - B}
ged =3
end

Listing 1: Pascal Tunction to cafculute the greates! commaon divisor of (wo
ftegers.,

Listing 2: BASIC subroutine to compuaie the greotest common divisor of

1w integers.

100 LET A-X
110 LET B=Y
120 IF A-B THEMN 190

130 REM . .GCDIX,Y} = GCDIA B}
140 IF A. BTHEN 170

150 LET B=B-A

160 GO TO 18D

170 LFT A=a B

180 GO TO120
190 REM...GCDIX,¥YI=A=B
200 RETURN

INTEGER FUNCTION GCDIX,Y)
INTEGER A B, X Y
A X
B-Y
120 IF {(ALEQ.BY GO TO 190
C ... GCDIX, Y1 - GCDIAB)
IF (A.GT.B1 GO TO170
B=-EB-A
GO TO 180
170 A-4 B
180 CONTINUE
GO TO 120

C .. .GCOIX,YI=A -8B
190 RETURN
END

Listing 3: FORIRAN tunction to compute the greatesi conrmon divisor of
two inlegers.

Pascal’s Namesake

Blaise Pascal (1623-1662), one of the foremost famous French
mathematicians, developed the Puscal theorem of projeciive geom-
etry at the age of 16, One year later he sturted developing a calculat-
ing muachine. He completed the first operating model in 1642 and
built 50 more during the next ten years. In 1654 he produced two
papers establishing the foundations of integral culcufus und of prob-
ubility theory .

172

August 1978 5 BYTE Publications Inc

Nowchart. This exit from the normal flow
ol exccution is the only use of the Pascal
goto statement. Indeed, very few Pascal
procedures need goto sltatements to ex-
press the algorithm. Goto statements can
{og the otherwise clear logic of a routine.

A final element that might be Tound in
flowcharts is an assertion and commentary
such as:

r-—--— -1
— =4 GLh{x) ZaIe g

The Pascal greatest commaon divisor (GCD)
function has all ot these elements in an
appropridate place in the source code. Pascal
allows comments, delimited with braces,

and } , 1o be fieely inserted any-
where a blank can be inserted.

We can conclude that for cach Pascal
language statement there is a corresponding
Mowchart element, and vice versa, Therefore,
one could easily Howchart any algorithm
just from its Pascal listing. Compuare the
Pascal program in listing 1 to the FORTRAN
and BASIC programs in listings 2 and 3.
lhey arc fundamentally identical, but all
ol the statement numbers and GOTOs in
the FORTRAN and BASIC versions obscure
the logic. You might maintain that, for so
simple an example, there is no advantage tor
Pascal. One could flowchart the greatest
common divisor {(GCD) algorithm just Irom
the BASIC listing. Of course you could, but
how about flowcharting that 1200 line
FORTRAN headache you wrote g year ago
that has returned to haunt you?

Data Representation in Pascal

Pascal has several flexible forms of data
representation. A variable can be defined as
a scalar {single value) or a structured type.
The different scalar types arc: real, integer,
character, Boolcan, and user defined or
cnumerated. The structured types include
arrays, records, sets and files.

Uscrs can define their own scalar types by
cnumeration. For example, in a raffic
control program, there might be a variable
called signalcolor which has a value of
yellow, green or red. Or, in a microwave
oven program, there might be a variable
called temp which represents the cooking
level specified. These concepts are repre-
sented by the following Pascal declarations:

type color = (red,yellow,green);
cooking level = (warm,defrost,simmer,
roast,reheat,
maxpower);
var signalcolor: color;
temp . cookinglevel;

in thisexample the type declaration describes
the user defined types and the var declara-
tion specifies variable names and their
associated type.

Another innovation in Pascal is the ability
1o specify a subrange of a scalar type. For
example, if the variable count is to be an
integer between 1 and 10, the declaration
would be:

var count: 1. .70,

To further demonstrate these features, a
BASIC program that would benefit from
Pascal data representation is next explored.

Mastermind Codebreaker Example

The Mastermind codebreaker algorithm |
have chosen for this exercise was presented
by WL Milligan in the October 1977 BYTE,
pages 168 thru 171. His BASIC version is
reproduced in listing 4. A Pascal translation
is presented here in listing 5. Let us compare
the two.

The first 13 lines of the Pascal version
correspond to fines 10 to 45 in the BASIC
version. These are the type declarations and
the global variable declarations. These global
variables can be referenced from within any
procedure. The type declarations define new
variable types such as:

type colors = (colorless, red, blue,
brown, green, yellow,
orange, space);

row = array /1. .4/ of colors,
eval = record
black, white: 0. .4
end;

This means that a variable of type colors has
a value equal to one of these enumerated
items. A variable of type row is an array of
four cofors. The type evul represents a code-
maker's response to a guessed row. What
does this represent in the game? This re-
sponse is the number of exact color and
position matches (black key pegs) and the
number of out of position color matches
{white key pegs). The codemaker responds
with between 0 and 4 black and white key
pegs. The type ewa/ in the Pascal version
accurately models this: a record consisting

WoFR LT

coER O T g

Fag
e
P40
@2
RHO
FR
1
[ERY

100
103
10v4
105
107
g
107
110
ti1

200

REH BASTFR HIMD "CODEBREAKER®
REM CODER IN RT-11 BASIC
RANDOMT ZE

TIM RB(PaA0a5iFe1)

DIH AS{AaY BS (31 0831 D813

REM IN]TTALEZATION

FOR =0 TD &

READ asi.0)

NEXT)

TATA *KED® v *ALUE " "GREEN"« "YELL QW™ » "RLACK "+ "WHITE *» *SFACE*
LET 0=

LET L1-Q

LET i.0=0

LET 1150

FRINT *HASTFR HINE COHEBRFARER®

5 FRINT 'FLEASE BE FATIENT. SOMETIMES [TANE A FEW MINUTES ON MY

FRINT *WHICH VERSIOW (1 OR D) °5
INFUT W

LET U=W5

KEM ARSIGN COLORS AT RANDDM FR ROW 1
FOR -0 100 3

LEY R&40, 20=Nn9CINT(VRRRDCD)

NEXT)

RFR STaRT MATH FLAY OF GAME HERE

REM T IS5 THE KW COUNTER

FOR T=0 1N ¢

5 FRINT

FRINT "My M FOR ROW*T#E* 15°
FRINT RS0 [a00 il) eR30Ts, D eR3 (T3
FRINT *HIW HAMY BL ACK FEGS ‘i
INEUT S{T+01

1F Sl A TN 370

FRINT *THAMKS FOR THE OGAMEY
FRINT

GO TN 270

1F Sils03 5 OTHEN 360

LET Sulstr=dnklii [3 BLACKS THER ¢ WHITES
GO TO 380

FRINT 'INIW HANMY WHITE FEDBRS *J
INFLIT SiTeld

REM GENERATE HYFOTHESIS

FOR 108 TO W

FOR T 48 T v |

FOR J12-% 2 T -1

FOR 1323 70O W1

LET [dqny=ad T

LET Dsit1=asilLy

LET B4{T1=a8110)

LET Pgifi=atr s

Dt REM KHECK AE1 RINWS FROM FIRST TO DURKENT FNR CONSISTENCY

FOR K- T T

FOE -0 10 4

LET s 17=RéLhs |+

LEt ME: 1v=Dga 1)

NEWT 1

RF# IISF FOW TWAL AT IAK SUBRGIITENE TH TRECKR OANETSTENDY OF

d REH BYFTIIHES S AGATMSET Larh kol
T LET MOONLET H-O

GOSIE Y16

FEM UHER B PGEEFHENT OF dd Dk K WHETTT FOUNT
T R Nkt THEN S0

IF M SiRsetd IHEH Tt

HE e« @

KM MALT SIHRE FLAT sk G T
[N

SIS T AT

IF Rgites 10 [iba 00 THEE <20
CET O e

Ak DIE KT Dol TrnTE RiTW

COME AT

TF 7 4 THFw THd
[TUR R 2

HEcr 14

NE£1 1,

YNFRL (1
GOHET [0

FRIMS 0 aaeh b it §e ahe TR A T MY THRINE THG

I L R e O T TR A U B Py LN S o B € SOy YT R 1]

ar oo
LET a0 Ta
LET 11 11
[N BT

TLRET o A

KEM DO NOT wE 0L BLTMIRATEE FRSSTRILETIRES
KEM ORSTHH HE T ki

SR Lo T4

LFT e lele Lo T4y 10

OHWEXT

BRECT
FRiMl BRI

oAl Wi
IAME -

TRk 10w

TF hs " THEN 170

STOF

SEM OCSURRLCET THE D105 DT R e DEE
REM 1 OUNT Bl s o L TRST

Listing -i:

[F v By Lo THEN Pan
CET o dle]

NFxT I

[S TSP [TR R I

FOR IL 0 TR

Frk 1> o T
GOIF L T THL M Lo
O TF 10 vl bty Lo THIE X LMo
SOO0F Tau i mRE LT T gy
OO0F Uiy B4 THEN 1080
O 1FD M My
O LET Dal gl *atuRFM TIMRY WRITHG VALLF -
OGO To 1aen fo, a
O NE®T

o oHETT 1

@ WETEIRH

O SPs

o EnD

qgur'’s
written in

Mastermind).

in listing 5,

August 1978 ~ BYTE Publications Inc

HOVE™

Codebreaker
portion ot W [loyd Milli-
Mastermine
BASIC,
program uappeared origin-
ally in the October 1977
BYTE, puges 169 und 170
(see page 176 of this issue
description
Compare
this with the Pascal version

173

Listing 5: Pascal version of the Mastermind BASIC program in listing 4.

program wmioupul.ontpul)

label 570

type cafnrs

var

(eedorless, ved, blue, hrown, geeen, qeflaw, aranp, spaec),

e array [/.. /] of colurs,
cral - record
Wleek, sebiite, 11,4

end:
veafuntawms, arvay | 1. 10] of eral;
e array {1..10]) of row;
e array [rolors| of packed array |, 4] of char
rrfor array |o.. 7| of colurs;

redrose, powe, | First hy pothesis checked

! Last hypothesix formed
strsion. 02 Illll.l'l‘nlui‘_' Qe nge. SN
corou 1 b ek char

furst, P

procedure vnitialization,

var o cofurs, 4 14,
hegin wamdpreen| = TGREEN
= 'RED o omaee getlose] = Y ELLOW!
satnef bl ‘BLUE % wawdorawg) = "ORANGIE"
wirse|[byronn| = '"BROWN "0 wameefspned] = "SPACE -
for ¢ = eolurfess to spuec do

coloord(el] = ¢
for . = {to 4 do

redron]] = red;
last o= redyan:

writelpt” MASTERMIND CODEBREAKER:

matine] rodd |

I

wrdelut” PLEASE BE PATIENT, SOMETIMES | TAKE A FEW'):
writelnt” MINUTES ON MY MOVE. WEHICH VERSION (1 or 2%

vead foersion);
mawcolar = colu rersion+s];
I Assign colors at random for row 1}
for » .= 1 to} do
rows| 0] o= eolor truneffrevsion+ 31 randaond i i+ [} |
end | Of Initialization Routine Vo

procedure checheansistaney thypothesis. previcusraw: vow:

174

var o ecall;

label fom
var il b
begin

{ Count blacks first }

vhlack = 0

for i = 1 1o} do

if hupothesis(j1] = preciowsrowst) then
ev.black = eblack + 1
{ Now count whites }

cowhite =
for jI = 1 to 4 do
bhegin
N for y2 = 1 to do
if (1% 12) and
thypothesisljt] = previousrow 1 and
(hypothesisj2] & precionsroe])2]) and
(hypothesidj1) = precionsran]j2]) then
begin
cachite ;= eachite v 1
{ Dummy wrong value h
preciousron{yj2] = colorfess;
goto 1040 { Exit J2 loop
end;
1ngo;
end

end | Of Check Consistancy Procedure |

August 1978 © BY TE Publications Ing

of 1wo components, black and white, each
an integer between 0 and 4.

The variable version represents the wver-
sion number, either 1 or 2. The 10 possible
rows of code pegs in the game are recorded
in the Pascal structure declared as:

var rows. array [1..70] of row;

Note that the careful selection of data
representation makes the program much
more clear and concise. The ability 1o deal
with structures as a whole instead of jusl
their elements tends to tighten up the logic
of the program. For example, thc BASIC
lines:

820 REM ASSIGN NEXT ROW
830 FOR |=0 TO 3

840 LET R$(1+1,])=Ds()}

845 NEXT |

are functionally equivalent to the Pascal
assignment:

rowsfi+1] .= hyp {assign next r'ow}
Also, the BASIC lines:

610 REM MAKE SURE THAT
HYPOTHESIS ROW DOESN'T
DUPLICATE ROW 1

620 LET Z=0

630 FOR J=0 TO 3

640 IF R$(0,))<>Ds$(J) THEN 660

650 LET Z=Z+1

660 NEXT |

670 IF Z=4 THEN 700

690 GO TO 820

are functionally equivalent to the Pascal
slalement:

if Ayp <> rows[1/ then goto 820

Mi Milligan’s BASIC version is well
written and well structured. [t contains three
key routines: initialization (lines 50 to 210});
generate hypothesis (lines 380 to 845); and
evaluate response (lines 910 to 1100). How-
ever, due to the inexpressiveness of BASIC,
it takes careful study, even of this well-
written BASIC program, to recognize its
structure. On the other hand, looking at the
Pascal version of the same algorithm, the
expressiveness of the language shows the
structure at a glance. Similarly, the use of
meaningful variable names and Pascal record
structures makes the data representation
readable. Table 1 describes which variables
in the Pascal version are used in the same

context as variables in the BASIC version.,

As careful as you are when coding BASIC,
bugs arc bound to creep in. For example, in
the BASIC version (listing 4), lines 610
thru 690 are unnccessary. Additionally,
there is no path through lines 770 to 810.
Coding errors rarely creep into Pascal
programs because the compiler enforces
vartable declarations and type agrecment.,
For example, evaluations[5] :=rows[5] is
illegal because they are not type-compatible.
Also ¢ := brown-red is illegal because arith-
metic is undefined for our user defined
colors typc. And, version ;=3 s illegal
hecause the value 3 is outside the legal range
tor version.

Other Pascal Attributes

We have looked at some of the note-
worthy features in Pascal. There are also the
powerful features of block structured scope
of names, recursion and dynamic allocation
of storage. Pascal is known as a very “‘safe"
language because it optionally has extensive
compile and run time type checking including
type compatability, subrange bounds and

BIBLIOGRAPHY

Introductory books on Pascal:

Bowles, K L, Microcomputer Problem Solving
With Pascal, Springer-Verlag, New York, 1977.

Grogono, P, Programming in Pascal, Addison-
Woesley, Reading MA, 1978.

Schneider, G et al, An Introduction to Pro-
gramming and Problem Solving With Pascal,
Wiley, New York, 1973.

Wirth, N, Systematic Programming — An Intro-
duction, Prentice-Hall, Englewood Cliffs NJ,
1973.

Other books:

Dahi, O J, Dijkstra, E W and Hoare, C A R,
Structured Programming, Academic Press, New
York, 1972.

Jensen, K and Wirth, N, Pascal User Manual
and Report (second edition), Springer-Verlag,
New York, 1976.

Wirth, N, Algorithms + Data Structures = Pro-
grams, Prentice-Hall, Englewood Cliffs NJ,
1976.

The Pascal Newsletter is published quarterly by
the Pasca Users Group for $4 per year. Contact
Andy Mickel, University of Minnesota Computer
Center, 227 Exp Engr, University of Minnesota,
Minneapolis MN 55455,

function formhagpotheosis Boalonn,
label st
var ot b o
PTIST
f‘ll[’i et
sl e,
ceable . Booloan,

. /)
begin ¢ formang Hypothesis |

ceahle o e,

for 1 foast] £] to meaeolor do

for «2 = dust] 2| to mocealor do

for «i - tast]] to maaeolor do

for «; fast] v] to marseolir do

begin
fer st eeed e,
Buplt) o od bapl 2] o 02 bgpda) - s hapls) o= s
v Uheek all rows <o fur for consistuney
TS
repealt
’ e

cheekeopsistaweythyp rows(vlocal 1)
until tosdp = ovalaatioustel) or (e = 0,
ifeealt cralaations] r| then
Mike sure that hypothesis doesn’t dupheate row 1;
iT 1t hasn't then we have a viable hyvpothesis !
il oy = voes| 1] then goto v 20,
¢ Otherwise, keep scarching NFEXT idi3.i2.41 }
end:
cothfl - _I‘lrf.\'r,
s il eihdi then
begin Do not recheek chminated possibilities)
fist = e

v Nu viable hypothesis left)

ronesl v)| hgp [Assign next row |
end
¢lse begin
wreteln (T HAVE REACHED AN IMPASSE. ');
wrdeln (CCOULD YOU HAVE MADE AN ERROR”)

end;
Sovoadhypottasos = vl ‘ Return with function value }
end ‘ Of Form Hypothesis Procedure

begin | Mastermind Codebreaker
repeal
crrdeerfee:
{ Start main play of game here |
for ! Lo v do
begin
writeln, write ('MY MOVE FOR R()\\".il 2.
for s - { to; do
write (uan{ rosesi g1 S weriteln,
weiteln CHOW MANY BLACK PEGS?”);
road feralaations (] dack),
if voraduationsti L hlack -) then
hegin
writetn (THANKS FOR THE GAME'). goto 71
end:
if coefaatsons])l baek = 2 then
coaleations| fowhite =0
clse begin
aweitele (C HOW MANY WHITE PEGSY):
read feealnations| i) ochite)
end:
if not formhypothesis then goto ~ 70
end;
writetn (1T AM STUMPED —— YOU WIN!)
N7 repeat

et C ANOTHER GAME?) read (ch)
until fefi = "Y' or teh = 'N')
until & = "N’
end | Of Main Program !

August 1978 @ BYTE Pubfications Inc

175

PLETE SATISFACTION 1S OUR GUARANTEE YOUR COMPLETE SATISFACTION IS OUR GUARANTEE YOUR COMPLETE SATISFACTION
Huge Discounts!

HOBBY WORLD ELEGTRONICS

Savines up to 20«
kits Fur comple

1ajor brand 1C parts and ¢
C histings write tor aur ¢

uter

SOLID STATE uﬂlélTS
ATE M
SHRGFC: Boards VB1B VIDEO INTERFACE
8080 CPU : C Kit 129.95
12-Slot Mother) Bare Board 25.95

o RIBMtodutlgtoa g’\’l._;l gl:_%nverts Video
ITHACA AUDIO $100 P.C. Boards roinals, complate Kt
8K RAM
Z-80 CPU

terminals, complate Kit 8.95
28:00 NEYLERON, CYSERCOM DIv OF SSM
wi
2708/2716 EPROM Vector Jump Kit B5.00
Boards (New) 28.00 OB-1 Vector Jump & Prototype
W ot Kit 49.00

104 3559/0 Kit 25.9
SONFESTER B music 13995
Kit with
R Software 145.00
MB7 16K STATIC RAM MT-1 15-Slot Mother

Bo oar 39.95
(Continued)
8080 Machine Languages XBB-; EXTENDER BOARD

Robo AT vou e Doorstep 838 ssgﬁsoao MONIT0R7VI
47.00

BEGINNERS BOOKS ON 5.1702A

Bare Board 25.9
MBS BK/16 K EPROM

USES 2708's

Kit Less EPROMs 75.95

The Basic Workbook
Programmin Provarbs
Discoverin,
COBOL wn St la
Advanced B,

74L300
74L502
F4L S04
7aLs0a
FaLs10
740514
74320
74L521
F4L522
74L$30
741532
741,837
74L538
7aL%42
74L547
r4L%49
74L873
741374
741875
741376
7403586
741 590
F4L592
141593
74L5109
74t 3112 .
T4L5113
74L5114
7413125 .
TFALS 126

74L$00 TTL

7403138
74L$139
7408151
7403153
7405154 1.
74L8157 |
7415160
74LS16] .
7405162 .
7415163
74L5164 .
7418174 .
743175
7415190
74L$191
7408192
7403196 .
7405197
7aL3221 1.
74L3257
7408258
7413266
7403283
7405365
7403366
7403367

Standard Dictlonary of Computers 16

& Information Processin
Game Playing with Computers
Game Playing with BASIC
Minicomputers
Microprocessors
Digital Experiments
)!gnal Signal Analysis
[%rtal Troubleshootin
110 CMOS Digjtal IC rcects
400 |deas tor Design. Vo ume 2
Analysis and Design of

Digital Circuits and

Computer Systems
Telephone Accessories

You Can Build
Basic Electronic Switching for

Telephone Systems
Basic Carrier Telephony

SUPPORT DEVICES

€820 8.00
6850 8.00
8212 3.45
8214 8.00
8216 3.75
8224 3.50

1702A
2708
2716TI

3.75
11.50
22,50

Beginning BASIC
g Home Computer Be, mners
j Glossary and Gui
Basic BASIC
Introduction to BASIC
Home Computers: 210 Questions
and Answers
Volume 2: Softw;

Mucroprocessor Basics

Home Computers 210 Questions
and Answers
Volume 1; Hardware

Understandlng Integrated
Circuits

Semiconductor Circuit Elements

Fundamentals and Applications
of Digital Logic Circuits

miniature Solder Tail
Male 3.00

Female 3.50

100 PIN EDGE CONNECTOR,
Imsai spacmg 3.50 (New)

21102 450ns 1.25
21L02 250ns l 60
2114
MICROPROCESSOR
808B0A 11.50
y 2-80 24.95
Z-80A 34.95
6800 16.50

8228 6.25%
B226 3.85
8238

7aLs132 .
811598 .77

O Send your complete catalog, §
quickly.]
0 Please send me the followingl
items | have listed below:

Qty. Stock No.

§716 W. Manchester Ave.
Suite #5
Los Angeles, CA 90045

TELEPHONE ORDERS:
Call (213) 641-4200

Esp. Date

1978
IC MASTER

* Over 40,000
IC's listed.

* Over 2,000
pages.

Retail Value

$55.00

Price

*» Updated every
90 days.

0 Cash
QO coo

Charge My

|

Owmc.
0 aac (visa)

%
N s
Mame

Address.

City.

Your Price

$39.99

Satisfaction 100% Guaranteed § Check catalogue for more

. . . listings on linears, voltage
o, [] M
State Sgl'g;’ 'T';'f Residents Add 6% regulators, resistor books,

Note: Minimum Order $10.00, 5% Discount over $100.00 on 1.Cs only. | IC sockets and more.

'S DUR GUARANTEE YOUR COMPLETE SATISFACTION IS QUR GUARANTEE YOUR COMPLETE SATISFACTION IS QUR GUARANTE

8

Postage/Handling‘

Zip.

NO S NOILDV4SILVS 313TdW0I HNOA JILINVHVNAD HNO S1 NOILDVLHSIWNS 313T1dWOD HNOA IILNYHVYNO 8NO S| NOILOVLSILVS Fi3TdW0D 4NOA FILNYHYND HNO Si

=
Q
&)
o
2
o
>
w
wl
'—
Z
<
o
<<
2
L&)
o
2
Q
4
=
Q
-
o
<
u.
w
5
L]
wh
[
wh
pout
a
=
o}
O
44
32
o]
>
Ll
<]
[
Z
<L
14
<
2
¥
1
=2
Q
o
Z
Q
[
O
<
LI
o
<
wr
[3%)
'—
wl
]
o
=
Q
(8]
x
=
jo
>
Lt
t
-
Z
<
1
<
2
]
o
2
O
w
z
o
b—
[
<
7
wn
T
W
w
-
Ll
-
oL
=
Q
Q
o
2
O
-

m o

Cucte VA0 ane gy o, 179

EY 11 Agasr 10T

Circle 25 on ipquiry card.

ATWOOD ENTERPRISES

|
KITS | DID YOU
4K RAM Available assembled and tested $89.95. KNow e o o

BIG SALE

1 each board:

Digital 1/Q
Eprom programming

8K Eprom Board (without 2716's}

REGULAR PRICE

$139.85
PROM PROGRAMMING c.....,.:.; AUGUST ONLY

7 serial ports, fully software controlled. $1 00'00

To 500 baud. Extra zero insertion force sockets $5.00

MOTH ER BOA RD MAKE CHECK OR MONEY ORDER PAYABLE TO:

8 SLOT 44 PIN BUS Kathryn Atwood Enterprises
50 Pin Edge Connector P.O. Box 5203, Orange, CA 92667

Mother Board $20.00 ea Discounts available at OEM quantities. For orders less than $25 total, add $1.25
Connectors 250ea for shipping. California residents add 6% sates tax. Estimated shipping time 2
Card guides for above $10.00 per set. days ARO with money order. For checks allow 7 days for check to clear.

Beckian Enterprises All Prime Quality — New Parts Only — Satistaction Guaranteed

EDGE CARD CONNECTORS: CGOLD PLATED. 25 PIN DB TYPE SUBMINTATURE CONNECTORS.

BODY: Non brtile, solvent resistant, high temperature G. E. Velox. The finest elec- CANNON" Gold Plated. The Best You Csn Buy.

::z:l,_q properties available CONTACTS- Bifurcated Phosphor Bronze., Gold over DB250 Mate Plug $2.60 e, 5 pes.

DB25S Female Socket $3.70 ea. 5 pes.

. . DB 51212-1 Hood. (Grey) $1.00 ea. S pes.
ALTATR TYPL: Conact Ctes. .125: Row Spacing, .140 DB 51226-1A Hood. (Black} $1.10 ea. 5 ocs.
50/100 Dip Solder $4.C0 ea. 5 pes. D 20418-2 Hardware Set $0.80 ea. 5 pes.

TMSAT TYPE: Contact Curs. 125 Row Spacing, .250 SAVE: BUY A COMPLETE SET.
50/300 Dip Solder $4.26 en. 5 pes . Complete Set includes: 1 pc. DB25P: | pc. DA2SS:
S0M00 Wire Wreap [Turn) $4.25 ea. 5 pes. 1 pc. Hood of your choice Gray or Biack.

13 Turnt . 1 Set $6.50 ea. 5 Sets $6.25 en. ‘
14541 Card Guides 25 pec parr 10 IMSAI Prices
Note Also good for CROMEMCO Note- For D 20418-2 Hardware Set, add $0.75 &s

OTHER CONNECTORS AVATLABLE 2708 - PRIME 8080A - PRIME

130" Centact Ctrs: 140" Row Spacing. (480 ns) $9.40 a.

$14.00 ea.
15/30 Solder Eyelet $2.30ea. 5 pes. $£2.10
22044 Dup Soider $2.75ea. 5 pes. $2.40 es. 1.C. SOCKETS: DIP SOLDER
22/44 Wire Wrap {3 Tura) $2.50 es. 5 pes. $2.20
40180 Whrs Wrap (3 Turn) $4.00 ea. 5 pes. $3.70

Low Profila,
14 pin. & 16 pin. $0.16 ea.

Nete: Wime Waap Spacdng &8 200" (Row Spacing) HEAT SHRINK TUBING

158" Contact Ctes: 140" Row Spacng. 178" Shrinks 10 11167 1.0. $0.35 per .

18/36 Dip Satder $2.25ea. 5 pes. . CABLE TIES
22/84 Dip Solder $2.50 ea. 5 pes. . T
1530 Wire \:m: (3 Turn) $200 o 5 x . 3% and 5% $0.03 ea.
nop) . WRITE FOR LARGER QUANTITY DISCOUNTS
LI56" Contact Ctad: (200" Row Spacdng. =
22{44 Wire Wrap 13 Turns) $2.80¢a. 5 pes. MRM
36172 Whre Wrap 13 Turns) $4.00 e S pes

15730 Dip Sofder $190 63, 2 pes. MINTHUN ORDER: $10.00: Add $1.00 fon
18/36 Dip Solder $1.95es. 5 pes. . shipping. Onders over $25.00, we pay
3672 Dio Solder $4.00 ea. 5 pes. - the shdpping. Calif. Resdidents add 6%
43786 Dip Sotder {6800} $4.90 ep. S pes. X Tax. NO C.0.D. SHIPMENTS.

{WE ARE YQUR CONNECTOR SPECIALISTS.
IF VOU DO NOT SEE THE CONNECTOR HERE THAT Onder From: ’ ;
YOU NEED, PLEASE WRITE US. 1IN MOST CIRCUMSTANCES, BeCklan Enterprlses

WE CAN SUPPLY 1T T VOU. P.O. Box 3089 Simi, Calif. 93063

180 August 1978 @ BYTE Publicanans Inc Circle 30 on inquiry card.

FOR ALL

21L02 {350ns) 1

CUSTO
7024

6502

MERS EXCEPT CALIF,

2708 (450ns)

21102 {250ns)

Z—B0A

CALL TOLL FREE

800-421-5809

4116 _{200ns)

Static Rams E-PROM Microprocessor E-PROM Static Rams M 2z 16K Dyn. Ram
120 @ $1.00 ea. | $4.75 ea. 5 8 PT00 e0. | 8 @$9.00ea. | 100 @31.25ca. | 56 ¥3500 on. | 25 8 $100 on| 8 @ $24.00 a.
780 8224-4 410D {200ns) | TMS 4044 2200A (200ns) | 7415367 7415368 2513 (5)
Microprocessar Cik.Gen.&Dvr. | Static Ram (250ns) Static Rams Hex Buffer Hex Inverter Character Gen,
5 @ $20.00 ea. 75 @ $3.75 ea.! 100 @ $9.50 ea. 1 25 7 $10.00 ea.| 100 @ .70¢ ea.] 100 ® .7G¢ ea.] & @ $9.00 ea.
) . R ECRANS, HA . .
MICROCOMPUTER COMPON JADE THE PROM SETTER

MICROPROCESSOR'S
Fi

ZBO A
COPIADRCOD
7550
nM?=90I

Ainga(memra &3

a
-
=3
o
-
P

EVICES

g
r=]
=3
@1
[=3
=
-
(=
=
-

-

DL U ey e o O e O e

g it mama 2

FLOPPY DISC CONTADLLER
nne

iTriem
KEYBOARD CHIPS
13,75
1118

54.95
57.5%

3
- -
oo

e B U s e T Dy O

°

- T s s e

M__H__
Lownos

[
n

280 DEVICES
K 17

Aas
ELTH 12.9%

CHARACTER GENERATORS
6.7§

UPPORT

Zzrn
nnplfes
F3ooo
AR
%
£3
24
S
e
frér]

'
H
MEMES 14
MEMES 1S
WAVEFORM GE
2038

MCeD24
566

2]

meooo
PP BB
[t irevird

=z

RATOR

—riie
indein
Qul::m

STATIC RAMS

116 17-63
1.50

o
=5
Y
@
+a

Copsooosascor
Ll WS SR BER W ea) e

SRERIRERE
SUrLis LpURRn

-
vk 4

Q4

---_
g3agzzIL
Serpegee s
ob
s
:

R RV e T - L Tt

A AR MRS Latenh A
DUROR R PSS EOLOND N

e
A P et o o A S e e e e 2

®wDDRD—3»0 DLV DOWmwOITNLY
CASASOONoD S0AC AGODRESSDNE

DTN T M e A T R
a3

=
NED i SR B

[y
k)

n

et

b3

-

MISC. OTHER COMPONENT

TU-4

Conwvert Ty

N T20 sel 1o
m;g Video Monitor
NeTds KIT . $8.95
MNE TR
811595
el
i JADE 8080A KIT
SH “Z $100.00 xi7
izl 10 Bart aoaro $30.00
83242 10.
03245
cyiod .
giga f
s MEMORY PLUS
#‘l\'ﬁ‘ JSG;I . for KIM-1
o - 8K RAM (21102
oMt 8K EPROM
DMEB3E . ASSEMBLED & TESTED
T T $245.00
MK50250 {s! i

KiM-—-1

ASSEMBLED & TESTED $245.00

MODEM

8§0-103 A Serial 1/O and FSK modem
for professional and hobby communi-
cations.

*Completely compatible with your
IMSAI{, ALTAIR, SOL, or other $-100
microcomputers,

*Designed for use on the dial phone
or TWX networks, or 2-wire dedicated
ines, meets all FCC regulations when
used with a CBT coupler.

*All digital modulation and demodu-
tation with on board crystal clock and
precision filter mean that NO ADJUST
MENTS ARE REQUIRED.

+*Bejl 103 standard frequencies
*Automated dial (pulsed) and answer
*Qriginate and answer mode

*110 or 300 BPS speed select
«Complete self test capability
*Character length, stop bit, and parity
;th day warranty and full documen-
ation.

PRICES: .
Bare Board & Manual
Assembled (48hr burn) $279.95
JG-DCA Kit $159.95

full ASCH

PROFESSIONAL KEYBOARDS
* Full 128 Character ASCII
* Tri-Mode MOS Encoding
* MOS DTL TTL Compatable Output
* Twao-key Rollover

$49.95

* Level and Pulse Strobe MODEL
* Shift and Alpha Lock 756
* Sglectable parity (56 keys)

* Positive or Negative Logic.
PRICING INFORMATION

Mode} 756 (assembled) $59.95
Mode) 256 K (kit) 249.95
Model 702 enclosure 29.95
Mode) 710 Numeric Pad §9.95
Model 756 MF Mtg.Frame 8.95
MOTHER BOARD's - S-100 STYLE

13 slot with front panel siot

BARE BOARD $35.00
KIT $80,00
22 Slov $149.95
Assembled & Tested
CONNECTORS
DB-25P $2.25 DB-255 $3.25
COVER $1.50
44 Pin-PC & EYE $1.95
44 Pin - WW $2.50
86 Pin - (6800} PC $5.00
86 Pin - ([COSMAC ELF) PC $5.00
100 Pin - {Attair) PC $4.50
100 Pir - {Imsai) WW $4.25
100 Pin - (IMSALI) PC $3.26

Circle 195 an inquiry card.

~ wath PROVISIONS for KIT
ONBOARD 2708 and POWE R ON JUMP

$135-00 EA. MK
$149.95 EA. o
BARE BOARD $35.00

JADE VIDEO
INTERFACE KIT

FEATURES $99.95
$-100 Bus compatible '
32 or 64 Characters per line - 16 lines
Graphics (128 x 48 matrix)
Parallel /s compositive video
On board low-power memory
Powerful software included for cursor,
home, EOL, Scroil Graphics Character
Upper case, lower case and Greek.
Black-on-white & White-on-black.

JADE PARALLEL/SERIAL
INTERFACE KIT
$124.95 KIT
* 5-100

* 2 Serial interfaces with RS232 inter-
interfaces or 1 Kansas City cassette
interface.

* Gerial interfaces are crystal controlled

* Gelectable baud rates.

* Cassette works up to 1200 baud.

*] parallel port.

STATIC RAM BOARDS
ASSEMBLED & TESTED

8K
Ram 8 (250ns)

$169.95
Ram 8B (450ns) $139.95
250ns KIT Mem-1 $169.95
450ns KIT Mem-1 $125.00
Bare Board $25.00
6800 Adapter for
S$-100 system for
Mem-| only KIT $12.95
16K Uses 2114L
Ram 16 (250ns) $375.00
Ram 168 (450ns) $325.00
32K
JG-32K (250ns) $875.00
JG-32KB (450ns) $775.00
450ns KIT $675.00

DYNAMIC RAM BOARD

by S. D. Computer Products

On boaid refresh 1s provided with no
walt states or cycle stealing required.
+8VDC 400MA DC, +18VDC 400MA
and -18VDC 30MA DC.

EXPANDABLE 32K (uses 4115) 200ns
8K Kit $151.00 24K Kit $367.00
16K Kit $259.00 32K Kit $425.00
EXPANDABLE 64K {uses 4116) 200ns
16K Kit $281.00 48K Kit $757.00
32K Kit $519,00 64K Kit $995.00

16K STATIC BOARD

with memory management can be used

with Alpha Micro or Cromenco
ystems,

RAM 65(250ns) $350.00
RAM 658 (450ns) $390.00

COMPUTER MAINFRAME

Includes: $295.00
Power Supply +8v at 18amps

+16v at 2 amps
Mother Board 12 slots with
connectors Assembled & Tested
Has Whisper Quite Fan & AC line fitler
Cabinet size 77H x 19"W x 22" D

WRITE & READ
EPROM
1702A - 2708 - 2716 - 5204 - 6334

+Plugs directly into your ALTAIR,
IMSA) computer.

*includes main module board and
external EPROM socket unit.

*The EPROM socket unit is connecled
to the computer through a2 25 pin
connector.

*Programming is accomplished by the
computer. .

*Just read in the program to be written
on the EPROM into your processor
and let the computer do_the rest,

*Use socket unit to read EPROM's
contents into your computer.

KIT $210.00
ASSEMBLED 375.00
S-100 Power Supply with Cabinet

Power supply +8v at 18 amps

+.16v at 2 amps
Has connector for Power_gutput s
MODEL UPS=600 size 5" Hx8 'Wx6%"

PRICE $149.95

E-PROM BOARDS

MR-8 (8K uses 2708) KIT $99.50
with 1K RAM

MR-16T {16K uses 2716} KIT $99.50
with 1K RAM

MM-16 (16K uses 2708) $99.00

RAM/N/ROM (16K uses
any E-PROMI} KIT $1172.00
JG-8/16 (uses 2708 or
KIT $59.95

2716)
BARE BOARD $30.00

EXPANDABLE E-PROM - S.D.Sales
16K or 32K EPROM $49.95 without
EPROM

Allows you to use either 2708's for
16K of Eprom or 2716"s for 32K of
EPROM.

FLOPPY DISC INTERFACE

JADE Floppy Disc (Tarbell Board)
KIT $175.00 ea.

S.D. Sales Versa Floppy Kit
149.00 ea.

MODEL 801R Shugart with
Disc Cabinet

Inciudes Cabinet, Disc. Drive, Power
Supply, Cable, Fan & Data Cable.

Has AC line filter.

Cabinet size 10”"H x 10”W x 16"D
MODEL OM 2700-S $835.00 ea

oA ITIE

Computer Products

RETAIL STORE HOURS Manday Fruby, 9-17
SHurday T 5

Ouscounts avislabbe 31 OER yuantines ADD 51 60

under W e lor smpginyg Caliinring rosictents add

6% sl ton

NEW CATALOG NOW AVAILABLE

AMERICAN

EXPRESS Cards
> Welcome

BYTE August 1978 187

Binary Synchronous or Synchronous
Data Link Control Chip

A synchronous receiver and trans-
mitter c¢hip that can handle either
binary synchronous (BiSync) or syn-
chronous data link control (SDLC)
protocols in microcomputer systems
is available from NEC Microcomputers
Ing, Five Militia Dr, Lexington MA
02173. This uPD379 is an N channe!
MOS device that is packaged in a 42 pin
ceramic dual in line package. The part
operates at 800 K bps, The uPD379 can

operate in full or half duplex mode, is
directly TTL” compatible, has three state
data outputs, has a programmable syn-
chronous word (character), contains de-
tection and rejection of flag, abort and
idle patterns, has zero insertion and re-
jection, and an indication of overrun and
underrun crrors, The operation mode,
data rate and synchronous character of
the uPD379 can be changed through the
use of external control. The uPD379 is
priced at $16 in quantities over 100.=
Cucle 627 on snquiry card.

186

Auto Answer Modem

U5 UOROVI(Y O

. 0.0

e

The USR-320 is a hardwire, asyn-
chronous, auto answer modem that op-
erates in half and full duplex modes at
data rates of up to 300 bps. The design
uses integrated circuits, crystal con-
trolled digital receiver and transmitter
frequencies, and computer designed ac-
tive filters, The unit comes with power
supply and is housed in the desktop case
shown. Connection to voice grade tele-
phone lines is via a standard CBS-1001F
Data Access Arrangement (DAA), The
USR-320 is available with an EIA
R5232C interface, a 20 mA current loop
interface or both, The USR-330 with
RS$232C interface is priced at $185;
with 20 mA current loop interface $185;
and with RS232C and 20 mA current
{oop interfaces $195. Contact US
Rabotics Inc, POB 5502, Chicago L
60680.x

Cowrcle 628 on inquiry card.

Attention Surplus PDP-8 Owners

An LED conversion kit for the
PDP-8/E and PDP-8/L minicomputers
is now available from Scientific Test
Systems, POB 741, Wallingford CT
06492, The Kits are available to enable
replacement of standard incandescent
lamps used in the PDP-8/E and PDP-8/L
with [ight emitting diodes, to eliminate
the problem of burned oul bulbs, The
kits are complete with a set of direct
replacement LEDs and instructions for
modification of the front panel controf
board circuitry. The conversion kit
for the PDP-8/E is priced at $39.95 and
$69.95 for the PDP-8/L conversion kit,®

Circle 629 on inquiry card.,

August 1978 © BYTE Publications Inc

Factory Tested
Used Modems to Cut Data
Communication Costs

The availability of used 1CC modems
at prices significantly lower than new
has been announced by the Special Offer
Division of Racal-Milgo Inc, 8600 NW
41st S5t, Miami FL 33166. According to
the company, these modems have been
factary tested, and are covered by the
same warranty as new equipment. This
includes one year for purchased units,
and for the full term of units under
lease. The used equipment available
includes both medium and high speed
modems, operating at data rates of 2000
bps, 2400 bps, 3600 bps, 4800 bps,
7200 bps, 9600 bps and 19.2 K bps.
Current information on used modems
and related equipment is available from
the company.»

Circte B30 on inqunity card.

Choice of Speeds in
New Acoustic Coupler

The Model AC-312 Acoustic Coupler
from Digicom Data Products Inc, 1440
Koll Cir, Suite 108, San Jose CA 95112,
offers interchangeable high and low
speed capability, field convertible from
300 bps to 1200 bps, using CMOS elec-
tronics. The unit accomplishes terminal
to computer communication over dial
telephone lines. It is Bell 202 half duplex
compatible when configured for 1200
bps operation, or Bell 103 compatible at
300 bps configuration. The two in one
concept permits users the flexibility of
using the same desk styled enclosure for
either 300 or 1200 bps operation by
field-installing the relevant coupler elec-
tronic board. Model AC-312 also has
Western Electric compatible 5 bps re-
verse channel capability. The AC-312
single unit is $495 (1200 bps), Model
AC-312 (300 bps) is $245, The Bell com-
patible 202 eiectronic board for ficld
upgrading to 1200 bps is $370. The 103
series 300 bps board replacement is
$150.=

Cirele 631 on inquiry card.

New Mode! 88-Modem

The Model 88-Modem provides com-
munications over either the switched
telephone network or private lines at any
software selected bps rates between 66
and 600 bps. The modem is fully com-
patible with Bell System type 103A
modems and provides either half or full
duplex operation. It is S-100 bus com-
patible and includes a serial 1O port and
an originate or answer mode modem on
one board, Features implemented in
hardware include pulse code dialing in
originate mode, automatic break and dis-
connect, and dial tone detection. The
modem includes an 8 pole transmit and
8 pole receiver filter, self-test electronics,
dial tone detection, filter as well as error
detection electronics including parity,
overrun, etc. The dial tone detection cir-
cuit allows the dial tone to be positively
identified prior to auto dialing of origi-
nate calls, Extensive software is included
with the 88-Modem including patches
far MITS BASIC and North Star DOS
version 3. The modem is available in kit
or assembled form from International
Data Systems Inc, 400 N Washington St,
Suite 200, Falls Church VA 22046.=

Circle 632 on inguiry card.

bx &4

DIODES/ZENERS SOCKETS/BRIDGES TRANSISTORS, LEDS, etc.
1ND14 100v 10mA .05 8-pin pcb .20 ww .35 gmggg?] E;E {2N2222 Plastic .10} :g
1N4NDS 600v 1A .08 14-pin pcb 20 ww .40 . .
IN4GO7 1000 1A 15 16pin pcb 20 ww 40 N304 RPN (Flastc - Unmarked) 110
1N4148 75v 10mA .05 18-pin pch .25 ww .75 2N 3054 NPN .35
1N4733 5.1v 1 W Zener .25 22pin pcb .35 ww .95 %_’:'310255 ';'g';’ 1 AI_ 60v gg
1N753A 6.2v 500 mW Zener .25 24-pin pcb .35 ww .95 arlington .
IN758A 10v " .25 28-pin pcb 45 ww 1.2 'B.ELE.)7%tlean‘ R_fgé:éelaar',_ :?;;lf??om-ancde 1 ;g
1N7S9A 12v o .25 40-pin pch .50 ww 1.25 MAN';%‘ o '77 seg com-anoge :ged) : ;%g
" - AN seg com-anade (Orange .
Naoans }iz ” P Molex pins .01 To-3 Sockets .25 MANSzA ;seg com_an‘ohdedw‘ggvr, 2s
i . seg com-cathode .
IN5245B 15v " .25 ;SA:" ngge 1282 prv 1255 FND359 7 s6g comcathode Red) 1.25
mp Bridge -prv .
C MOS - T T L -
4000 15 7400 .10 7473 25 74176 .85 74472 35 745133 40
4001 15 7401 .15 7474 .30 74180 .55 74H101 .75 745140 .55
4002 .20 7402 15 7475 .35 74181 2.25 74H103 .55 745151 .30
4004 3.95 7403 .15 7476 .40 74182 .75 74H106 95 745153 .35
4006 .95 7404 .10 7480 .55 74190 1.25 745157 .75
4007 .20 7405 .25 7481 .75 7419 895 74100 .25 745158 30
4008 .75 7406 .25 7483 .75 74192 .75 741.02 .20 745194 1.05
4009 .35 7407 .55 7485 .55 74193 .85 74103 25 745257 18123 1.05
4010 .35 7408 15 7486 .25 74194 95 74L04 .30
4011 .20 7409 .15 7489 1.05 74195 85 74L10 20 741500 .20
4012 .20 7410 .15 7490 45 74196 95 74120 .35 741501 .20
4013 .40 7411 .25 7491 .70 74197 95 74130 45 741502 .20
4014 .75 7412 .25 7492 .45 74198 1.45 74L47 1.95 741.504 .20
4015 .75 7413 .25 7493 .35 74221 1.00 74L51 45 741505 .25
4016 .35 7414 .78 7494 .75 74367 .75 74L55 .65 741808 .25
4017 .75 7416 .25 7495 .60 74172 .45 741509 .25
4018 .75 7417 40 7496 .80 756108A .35 74L73 40 74LS510 .25
4019 .35 7420 .15 74100 1.15 75491 .60 74L74 .45 741511 .25
4020 .85 7426 .25 74107 .25 75492 b0 74L75 .65 741520 .20
4021 75 7427 .25 74121 .35 74L93 .55 74LS21 .25
4022 75 7430 15 74122 b5 741123 .85 741522 .25
4023 20 7432 .20 74123 .35 74H00 .15 741532 .25
4024 75 7437 .20 74125 .45 74H01 .20 74500 .35 741537 25
4025 20 7438 .20 74126 .35 74H04 .20 74502 .35 74L538 .35
4026 1.85 7440 .20 74132 .75 74H05 .20 74503 .25 741540 .30
4027 .36 7441 1.15 74141 .80 74H08 .35 74504 .25 741542 .65
4028 75 7442 .45 74150 .85 74H10 .35 74505 35 74L851 .35
4030 .35 7443 45 74151 .65 74H11 .25 74508 35 74L574 .35
4033 1.50 7444 .45 74153 75 74H15 .45 74510 35 741.586 35
4034 2.45 7445 .65 74154 .95 74H20 25 74511 .35 741590 .5h
4035 .75 7446 .70 74156 .70 74H21 .25 74520 .25 74L593 .5b
4040 15 7447 .70 74157 .65 74H22 .40 74540 .20 74L5107 40
4041 .69 7448 .50 74161 .55 74H30 .20 74550 .20 7415123 1.00
4042 .65 7450 .25 74163 .85 74H40 .25 74551 .25 74L5151 b
4043 .50 7451 .25 74164 .60 74H50 25 74564 .15 74L5153 .75
4044 .65 7453 .20 74165 1.10 74H51 25 74574 35 7415157 75
4046 1.25 7454 .25 74166 1.25 74H52 15 745112 .60 74LS164 1.00
4049 .45 7460 40 74175 .80 74H53J .25 745114 .65 7415193 .85
4050 .45 7470 .45 74H55 .20 " 7418367 75
4066 b5 7472 .40 7415368 65
4069/74C04 .25
4071 .25 MCT2 .95 LINEARS, REGULATORS, etc.
4081 .30 8038 3.95 LM320T5 1.65 LM340K15 1.25 LM723 40
4082 .30 LM201 .75 LM320T7T12 1.65 LM340K18 1.25 LM725N 2,50
MC 14409 14.50 LM301 .45 LM320T15 1.65 LM340K24 1.25 LM739 1.50
MC 14419 4.85 LM308 (mini) .95 LM324N 1.25 78L05 .76 LM74118-14).25
4511 .95 LM309H .65 LM339 .75 78L12 .75 LM747 1.10
74C151 1.0 LM309K (320«-5185 7805 (34075} 95 78L15 .75 LM1307 1.25
LM310 .85 LM340T12 .95 78M05 75 LM1458 .65
9000 SERIES LM311Dminy .75 LM340T15 .95 LM373 2.95 LM39800 .50
0301 .85 95H03 1.10 LM318 (iny 1.75 LM340T18 .95 LM380 (s-14 Pit) .95 LM75451 .65
0309 .35 9601 30 LM320K5(7905}1.66 LM340T24 .95 LM709 (8,14 PNy 25 NES55 .35
0122 65 9602 45 LM320K12 1.65 LM340K12 1.25 LM711 45 NE556 .85
MICRO'S, RAMS, CPU'S, NESES o
E-PROMS NTEG CIRCUITS UNLIM NESST 36
745188 1.00 8214 8.95 I TE RATED IR I NLI ITED
17024 4.50 8224 3.25
MM5314 3.00 8228 6.00 7888 Clairemont Mesa Boulevard, San Diego, California 92111 SPECIAL
MM5316 3.50 8251 8.50 N i
21021 145 | 8255 10.50 (714) 278-4394 (Calif. Res) DISCOUNTS
210201 175 | 8T13 150 All orders shipped prepaid No minimum Total Order Deduct
134 850 | 8T23 1.50 Open accounts invited COD orders accepted $35- 899 10%
TR16028 1.95 8T24 2.00
TMS 4044- 9.95 8797 1.00 Discounts available at OEM Quantities California Residents add 6% Sales Tax $100 - $300 15%
21078-4 4.95 Al IC's Prime/Guaranteed. All orders shipped same day received. $301-$1000 20%
gg?g ggg ggapm ggg 24 Hour Toll Free Phone 1-800-854-2211 American Express / Bank Americard / Visa / MasterCharge

Circle 180 on inguiry card.

BYTE August 1978

193

COMDUITELL DERIPHERAL X 3=
3 PALTS WOLKSHOD <

POLY PAKS INTRODUCES THE FIRST MAGAZINE RETAIL STORE

POLY PAKS SPECIAL
BUY 515 Take O /b
WO

DISCOUNT

_WORTH ™ piscount.
BUY $100 Takezﬁ%

WORTH DISCOUNT
FROM THI

FOR THE ELECTRONIC MAIL-ORDER HOBBYIST!

MICROPROCESSORS!
MEMORIES! SUPPOR

Order by Cat. No. 853459 and type

Cat. Ho. 835001 Kit
Cal No. 888002 Wired $49.95
Outputa standard 7 bit ASCIL: interiaces with mostatasaiemn o oda
rd e-amembied ento PC board, 2 hey rolluver. F]cclmmc . g‘f;‘p“r‘:egs;':.gurr.]no“'
und carrisge return. 4 mudes Normal, control, shift, * 64 k2

® 1000 ochms par voit

1% precision, movements
dicde protected agalmst
burnout. Measures DC vells
0-15-160~1000; AC voila
U 16.150-1000; DC ourrent

-1860ma; realntance X1000
§emlu\lly 1600 ohms/voll
AC-DC. Uses penlite call,
nol included, Sixe 2% x

3l x L¥®. Wt 6 ozs.
Cat. No. 383021

nhll onntrn! Additionsl mnclumlaunbrul! neal by uer, o6, - o Enc :;m OO OO0 OO T T X L O,

2B A
mu. Negative or lu\-c Ia le, Jumper netzcuhlc.
F:lcu:{vr test !ul::e . J1x] dlul ay Lh (-I ASCIL cwde ® I"‘""“' with ALTAIR,
Complete kit. nathing else ln buy‘ Size: li xbiel h’-l 3 lha IMSAL, and more!

HEXADECIMAL MICROPROCESSOR .

TN L)

oo000oaD

ey rallover. Has KE“OARD KIT!

20 keyn, 16 encoded, dexternsiio
be mlmed by user, Outvul 4 bil Wi, 2 ibe.

i‘o‘i‘i::x"co’,“n'gﬁ’e”r"’ip'::&':a AND CONTROL 3 49

Jus+ BRIDGE RECTIFIERS'

§ AMP
PW (num) (uuz‘sc) (nuun (I.luﬂ)
$1.0! $120

- et H
] 1.19 129 198 K
29 140 179 a
90 149 198 .
118 198 238 H
128 228 f

250
Orer by Cot. No. Ampernge and Voltage

FENTuRE: nedsxdulfpllju o Nl blnany/heandecimal outpat plus sirotel | I O IOOUOCCCEOCEOC000

lhe - Hewl tpruved dasl

12VDC. Complets kil! Nou'nng Cot. No. 855008 Hexadscimal Kit $34.95
olse to buy! With instructlens. Cut. Mo. BES010 Hexadecimsl Wired$39.95

iu:ui =11

e

------------A-.
25BE22AK

chobaNNEEY

w
5N
M
ol
SN
EY)
]
j L)
SN
SN
AN
&N
)
SN
SN
k]
M
an
SN
o
SW
N
N
3N
3N
SNTH!
5N
SN74
BN
M
L 1,]
[
L3
E 3
SN
N
N7

[ais[ejeln[a]a]afals]ein]sis]|a[als]|ajala(a]alalale]ula]a]a]a]aTa]n]n]a]u]a]a]s]
[1

0

a

(u]

0

%]

0

|}
o
a
0
[u}
[s]
Q
a
(]
2]
]
5]
o
o
o
[5)
5]
2]
[s]
9]
1]
[v]
5]
a
O
o
a
o
a
o
5]

1

ri

e

Xxx<z<<cnd
L3
B

e

e

G s

SSEEEREs

2283
CERC

et e 3 o bt b b e

£

x
AR ANTVAANY

-
Bt

Arirdiriririridrinirink A Aoioi ok Ak

[n[a]s[win]uislnlainlulalaialnie]n]s]

e parepapene

By

1

aluminum b

nd Computers. 118

QOrder By Cat. Mo, .
Order 8y Cat. Ho. .l!“? & Type No. i F-Mos ‘523;0'1 T.le Mo, su PPL' Es {e?rulalurlind I:’m‘c’t?eu::llnl;.:
k.

® 1 Amp each voltage! Fils eamly intu gndget beaxex or

oL

;i'

sa'u

00 5 .25
1 25

bi“mlibl:“ r:qn ru ¢ Warhoardpre-asas oete PG bowrdt ' M'x'lNJ MATCH Iew as s 16.88

Cat. No. Sale P;‘ycnu-p instructiona. (Inctudes

A new concept (n pawer aupiply
design. Choase fram any one of

PowER four popalar tive and
negntive mm[hlmmnuu Usen

cabinet of your own design
2 Amps totsil Eouy to assemhle with step

baned, transfortmers, line

W2
M

curd, capacitory. rectifiems, heat

. oy oy
s lzlatyd
FEPE

ainks and h'warg), Compheto kit

anoo
EE?E::

188
003 +15 l! 19.88 nothing clse to buy Wi 10 lhe

23
23
AN

K]
5 110
18 AS
1T 120

1.20
019 33
iy

3
2

Nnoo 0

00C00000andoo DDDD‘S‘

ECAPACITORS} o]
I

Order by Cat. No. 2,000
8851132 and valuel 2 24,000

lllllllllllll.llll‘:-bllll

]
1 COMPUTER M wy e s
! “GRADE 1% @ e

03.000

o

000 3 EE
.III..IIIIIII--I.I.....IIII-

RRERESIUBRRERERE YL

DDDDUDDUDDDDDDDDUDDDD

OIoooooosonnananoool

lalalnlnintlaloin s bodn
o
[rirle]

434433344

125
21 125
3l 125

S§2EEEERERREEEEEERRS

£

gEdE

S333bbliuhikiikichbhbibbh
ncluauanunmmnnnnununnunucn

i b s
i

Robhbbhhhbbbbhhbbboibbbrbrnnn®

000000000

o
o
L
»
L
L
o
o
L

12 AMP SOAMP 250 AMP
POLY PAKS “CHIPS"” AWAY Th¢ (RRETIT) (vRIN) (HA3EES)

DISCRETE Lsn's 6 for $1.19
SILICON POWER et sacn o 5 88
5300 433 | STUD RECTIFIERS! | ' Diumso 347 no a8

W AN AAAA AN | Drder by Cat Mo, Amperage snd voltage. OMEDIUM 24" g‘.:
OMICRO 21" o g

Simflar to
V!

(YO-18) a as; Miicro Greene XC3006

IC AND CRYSTAL PRICES! 38 130 6.50
Ordar by Cat. No. 954048 snd Typa No i-';. }-gg 1.50
.7' 223 10350
s 11.50

e Aok frdedrdoded deidededrd ok d-dokoindeie oickedok

“RED" LED READOUTS'
aslowss 204 gae

2

t, No.
B JA277
0. 19
27

-
b4

1
Dister %% || PIP SWITCHES
038 Vit C e 1 .
GR2278-139 BCO a 6k a0 S5 35 @'
3 P

a3
as

BXRIITEST ASC 83 38e0 ‘8
11e8000 | Frescaler Q 233027 4 o

U 3871 a 1.29

OMC14410
MK2002P

,ObopOOGEOn

‘ouch I'u:'g‘c &
"'%:"...5..“:"”“’— 22 ||eeco to.rosiTiON BCD
i Dvia B 25 || THUMBWHEEL SWITCH

1-2-4-84 BCD cacoding!

edrk dhdrdodoiriobr ek ek

(F coded for K, L coded for $4.

18244
B8 225¢

*
MAI i
MAN-1 1.00
33 AN-72 equal® i 4
le 3
$1.00
3 s *
FN *
E §

‘*Common Anade “*Common Csthode
Tositionn Inbeled 0-7, F, L. 3 for Arirdedrfedrke dededririciode dri deleinirioirdoiricir ko Aok doie kol

a0 Spm N st ¥ 21 Whita numerals on B

aoo0ogsonooaonn
:

983824

o

Wi h o R a1 ik backmeound. Feco 800 O GIANT SALE! MICRO-MINI Cat. No. Contacts Sala
o Yax Liex Vet TOGGLE SWITCHES 085403¢ SPOT 31208
High Power 723 Voit Reg _ it 3 | .
V2 Ll Cat. No. $1.49 s 30, 128VAC contacts or better 835085 SPDT* 139

ot “Center off

COMPUTER GRAPHICS 2 tor 38. IC SOCKETS

OO O OO OO OO0OO A OO T L

“JOYS“CW i3 54- aslow 88 11¢ .. XX

o Fouwr 200K ,.w Wt ® Low profle, soidec tall.
® Chrome handle and nch] Cat. Dlo. nmu at. No. Description

o

MOTHERBOARD
EDOE CONNECTOR

Y s s ananaBEE

AT THIN PRICES

RIBBON CABLE

® Ultra-flat! & 28 AWG!
e Siagle color! indened?!

Order by Cat. No. §83939 and conducters

OO OO0 N OONOOC0000O0

6 plna (53 ench alde).

b-. with IMSAI & ALTAIRL
0.125" pin cirs, goldpiniod
pen

goonpocoo
anme

B ota.Cat. Wo. A&3IVET

aass SPECTRA-TWIST * Txisted sars of sutgntty
53302 40 ol LS 99 g’;{%" O Cat. No. 833680 48 cond. 2 ft. $1.98

10 AMP POWER TAB SCR'S, H § TRANSFORMER
TRIACS, QUADRACS! coy e ™o 145

SCR'S | 8S1730 o 100 459
Onder by Cat. Mo. nuc 881448 0200 .88
and Voltage QUADRACS nuw

110VAC Primaries Sabe
Output V. Awmps Each
bonmn Metal encaned $1. !l
Qpen frame 42.4%
aoomn Open frame $1.98

1N4000 Epoxy Rectifiers

» Minlstursl = 1.8 Aampl
Order by Cat. No. and Type Ma. cﬂlll:‘l:: c CATHQLOG
omputer Componm,

.“ .' 1 v 80 fovd Ovar 400 Assartments!
Qes137e N4002 Digital Clocks, DPM's,
08s237¢ N and Stopwatcheal
0852380 N4004 . HI-F| Stearucs-Spaakers

Solar Energy! SemPal

Tast Equinment!
Flbar O tltl Plus Mora ' Moral

€ COPYRIGHT 1978 - POLY PAKS INC

Circle 303 on inquiry card.

Add postage Rated: net 30
t Wakefield, Masa. (617) 24.: 3829
Retall: 16-18 Del Carmine St.. Wakefield,

MINIMUM ORDER — $6.00

POLY PAKS

C.O.D.'s MAY
BE Prionar| LYNNFIELD, MA.

BYTE August 1978 203

IBM® Selectric-Based
I/0 Writers
Excellent Hobby Printers

Series 72/731 All Solenoids
Heavy Duty Original Documentation
81," Platten While Supply Lasts

$249.95
WORKING &
CLEANED

Circle 353 en inquiry card.

SUPER SALE

These terminals are from a large airline reservation
system. They are heavy duty and were under continuous
maintenance. The units have been in storage. We make
every effort to ensure that all essential parts are included.
Most work when plugged in. No warranties are given or
implied.

Conversion Kits.

1. Conversion instructons, P C board for printer only using soft-
ware approach $

2. 1/0 kit makes the unit into a conversational terminal. Instruc-
tions, P C board, components for a parallel or RS232 interface.
Will work with any IBM terminal $249.95
3. Completely converted unit and assembled interface for 1/0 us-
ing kit $999.95

Card reader by HP with RS232 interface $299.95
Printec line printers, parallel interface $1500.00
Honeywell 516 & 316 mini's, make offer. Cables, used 11
conductor, 100 ft with connectors $9.98
Electronic parts and circuit boards 1/4 Ib bag $4.99

Check, Money Order, Cash. Persanal checks require 3
weeks to clear. No COD's. Units shipped UPS or PP
collect. Prices Net FOB Tulsa

SUPER SURPLUS SALES
P.0. BOX 45944 TULSA, OK 74145 1-918-622-1058

u Accesa/Cycis Times 500 naec mas
o 250 mw Typical Operating Power

= Segarste Qata in and Date Oul

o TTL Companibia 1/0

" Thres State Outpuls

« Data Bus Compebbie 170 Functlon

® 4Ky Drganabion

2 Repiaces 4 1024x1 Siahe RAMS

= Completsly Stalic —~No Clocka or Ratresh

® 18P0 Pacikege

4304 STATIC, TTL INOUT 102434 N-M03 RAM
GENERAL
DESCRIPTION
Part Number 4804
m K semuon-
ductos random
RECEAS Memary
organized a1 1024 4 bil worde H i Jully alatc ang
Aaddy 0o Clock o reloash pulses 10/squares &

wungle Sval powar supply #nc e iy TTL com.
palish on input 8nd outpul hnes Tha 4804 i

na LT
eackage

FEATURES
" Singht 5V Power Supply
® 1Knd Organzation
® Replacun 4 102421 Sintc RAMY
Camplatsly SI&he —NO Clocks or Agtresh
= 18 Fun Paciaga
» Accmaa/Cycle Timee 300 nsec mas
= 250 o Typical Operating Power
« Comman 10 Bus
= TTL Compatibie 1 /O
= Threa Sints Duipuls

4801 or 4804 4K RAM's

38,95 6/360.00

[]

4801 STATIC, TTL L OUT 409621 H-405 RAM
QENERAL “n
DESCNIFTION .

Fan Npmbes 4801 .
e B 4K semicon. o
ducior randam T
MECHES Mamary
crgerized 55 4008 it words (1 Tully stahc end
neds nociock o/ ralresh puliss it isquires &
angle - 5 voll power qupply and 3 lully TTL com-
eabhin o nput Bnd oulpul tinge The 4801
na 18 pin dust {
poachage
FEATURES
» Singte - 5V Powesr Supply
16/%100.00
a

* am gae st n‘vmv-\mw"-\'-w—uu
* £OD MO apo mem B Bn

4 Any soressresnce el demeetied
[Ty b

| CiE e IR 118 HLE orbe) e e 3
b=t

® Avii e LD L ERANS W Rt ML .
* Ry retumde mil g iy (Pen. med G epidherL fond

B Vs Chiin, ity i, credit ww fowl 30 aave 18
4tied Vi o, Schumpi S mmpn) o

¥ IRITER

2808 North 2Tih Avenue
Phoends, Asizons 85021
16021 9959352

10 AMP REGULATORS
78P05

GENERAL DESCAWPTION ~ The LATEPOS (8 8 3-40rminsl POstive $ ¥ hybrid reguision
capadie of dehvenng 10 A Tims device 18 wriually DIowowt prool and contains afl tha
Prolection Isatures inherent 18 MONOHIMC reguUIsIon BuUCh 88 INterNal Sho-Circusl
Cutrant lmaling end tharmal-owericad protecthon The 4 AT8P05 u packaged in a
hermaticelly sealed TO-J provaing 50 W a1 25°C case The hybnd conmsts of 8
manohthic Control Chip dnwing & ruQped Mesa transistor

Yho hgh Sutpul current 1 achieved through rew desgn lechriIque wIThout sacrticing

of the The same process i
.ﬂ\ploy'd in ihe construction of the 10 A nmulo +d YOG he same high reliability
obtaned in the , AT8H0S § A regulator

[XXX REN]
o
*
<
é
i
t
<
»
5
s
»

R} POWER RECHARGEABLE CELL
Brond new Gotes gelied slectrolyte leod-acid energy call. 2 Volts, 5
Amp Hourl Mokae high powsr tond-by supply for portable geor or

compute .
GGC0208, .. vuiiveniineiiiiaenioansssinanins $5.35, 4/527,00

MULTI-CHAMNNEL 8 BIT A/D CONVERTER

Fairchilds' new & channal onalog-to digital converter hos o lot gaing
for it. Full wcale correction copabilities, rotiometric conversion and
wide input dynamic ronge.

Micro-procensor compotible, it combines the multiplexer, decoder ond
sampla-and-hold functions with canverter to save board spoce ond
eliminate external parts, tt provides B bit, + § LS8 convension in 300
uSec focturing outo-zero and dynamic range oll the way to ground,
UAST0B in ldpinplastic DIP.ootn i 37.951

UL SN b (emanany okl 0) NOCh 07 40

TR SN s wew m e JLgi R I i T
My

-h yee srmw,
o vt TATE T swmy e Noghp g

T WS By wm ke sy sAn o LR
o

Tl Il e, e
n

"y tscser :uu'
A A b g T Ty

_ ond pins are solder plated copper.
12 inch {5.08mM) fox stondard P, C, mounting. 10Ame

' vs. np e
TN L B bek a8 i nloh e

Connts ar
R AT

4 408 Mg ria] #rlMa1e anE
-

reference

. Digetal counter wilh period 9ing
(nsures rmanimom lalse response

 16.pin package for hugh system des uty

11 Single supply 5 Volrs: 10%

i Qutput i either 4 bul banary code or dual 2 b-l
row/calumn code

" Lalched putpuly

DESCRIPTION

The MKS102 1 3 monohithic itegrated circunt
fabricated uning the complementary symmetry MOS
ICMOS) process. Uung an inexpanaive 1578545 MHz
lelevision colorburst crycial for refecence, the
MK5102 detects and decodes the B slandwu DTMF

used In
meni of onty & singls supply snd Kty ¢ INILrUCLON in &
18-pin package make the MKS10Z el lor appir-
CANONE reguifing Mimimum Lze snd extecnal parts
count.

disling. The require

OETECYION FREQUENCY
Low Group (g

Hogh Group 1y

Fow t
Row 2 -
Row 3 -
Row 4 -

97 Ht
TIOH?

Catumn 1 = 1208 Hy
Cotumn 2« 1238 H:
BS2 Wy
B He

Calymn 3 » 1427 HY
Colymn 4 = 1833 H2

P. C. BOARD TERMIMAL STRIP

Halded body enclaes postive screw activoted clamp
which will accomodate wire sizes 14-30 AWG., Contocts
fins are on , 00

roting, Compare our prices before you buy . -

o
T5-2504 K4
T5-2508
Ts-2512

4 pole
8 pole
12 pale

1.49 il

2,19 |[l|‘l

u
INTEGRATED TONE RECEIVER
MK5102(N)-5
FEATURES
C Detects alt 16 standsrd DTMF digits
0 Aequires minimum external parts count for
minimum 1y3tem coat
3 Uses expensive J 579545 MH1 crystal lor
|

Circte 3871 on inquiry card.

BYTE August 1978 205

Reader Senvice

To ger further information on the products advertised in BY TE, fill aut the reader service card with your name and address. Then circie the

approprigte numbers for the advertisers you selecr from the list. Add o 13 cent stamp 1o the card, then drap il in the mall. Nor anly do yeu
gain informatian, but aur advertisers are encouraged to wse the marketplace pravided by BY TE. This helps us bring you ¢ bigger BYTE.

Inguiry No. Page No. Inquiry No. Page No. Inquiry Na. Page No.
1 AAA Chicago Computer Center 155 110 Dynabyte 83 298 PAIA Electronics 105
' A-A-A-A Computer How's 196 115 Electrolabs 183 292 PanaVise 119
4 Administrative Systems 107 120 Electronic Control Technology 158 288 PCE Electronics 182
& AJA Software 114 125 Electronic Systems 189 299 Pentech Inc 182
7 ALTOS Computer Systems 19 130 Electronics Warehouse 191 301 PerCom Data 46
8 American Digital Development 180 132 EMM/CMP 118 266 PerSci 87
8 Anderson Jacobson 133 136 EMM/Semi Inc 1568 267 Pers & Small Business Cmptr Show 108, 109
10 Anderson Jacobson 75 133 Entelek 196 268 Personal Computing Co 196
12 AP Products 126 140 Forethought Products 74 302 Personal Computing ‘78 76, 77
11 Apparat Inc 196 142 Functional Automation 190 289 Pet Shack Software House 204
14 Apple Computer 14 148 GRT Corporation 31 312 Pharmassist 196
15 Apple Computer 15 149 GRT Corporation 138, 139 303 Poly Paks 203
* Art-by-Computer 163 153 Hamilton Logic Systems 182 304 Priority | 201
20 Artec Electronics 79 156 Hazeltine Corp 34, 36 305 Praocessor Technology 8,9, 10, 48
17 ATV Research 182 160 Heath Company 17 306 PRS Corp 55
256 Atwwood Enterprises 180 170 Hobby World 179 307 AQuest Electronics 188
18 Axiom b 171 Home Computer Centre 196 308 Rondure Co 197
18 Base 11 67 172 IEE Corporation 204 311 S$-100107
30 Beckian Enterprises 180 175 IMSAI 11 310 Scelbi 39
31 Bit Basement 182 178 Innotronics 157 322 Scelbi/BYTE Primer 115
29 BITSB1 179 Integrand 131 * Scientific Research 37, 59
32 BITS93 180 Integrated Circuits Unlimited 193 309 S & D Computer Technology 204
33 8ITS 95 183 International Data Sciences 167 313 Seattle Computer Products 100
34 BITS 99 185 International Data Systems 98 316 Michael Shrayer Software 71
35 BITS 103 193 J & E Electronics 186 317 Silver Spur 204
38 BITS 11 195 Jade Company 181 320 Smoke Signal Broadcasting 73
37 Bootstrap Enterprises 89 200 Jameco Electronics 194, 195 330 Software Records 153
36 Buss 155 201 Jim-Pak Cli) 335 Solid State Music 47
* BYTE Back Issues 145 203 Kalin Associates 190 240 Solid State Sales 207
* BYTE Bound Volumes 28 207 LMN Electronics 197 350 Southwest Technical Products CIi
+ * BYTE Wats Line 144 215 Logical Services 62 354 Stirling Bekdorf 123
39 California Industrial 185 217 Manchester Equipment 182 351 Structured Systems Group 13
40 Canada Systems 135 219 Marinchip Systemns 140 353 Super Surplus Sales 205
43 Capital Equipment Brokers 134 223 Micro-Madness 204 356 Synchro Sound 44, 45
45 Central Data 43 240 Microware 137 360 Tarbell Electronics 51
B0 Centronics 63 247 Mikos 199 370 Technical Systems Consultants BS
51 Chrislin Industries 190 250 Mini Micro Mart 142 372 Technico 101
62 Computer Age 196 265 mpi 149 371 Teletek 53
64 Computer Components 204 273 National Digital Diagnostic 190 377 Transition Enterprises 182
65 Computer Corner 204 275 National Multiplex 69 376 TransNet Corp 60
73 Computer Enterprises 124 280 Netronics 121 379 Trenton State College 128
71 Computer Factory 144 283 Newman Computer Exchange 120 381 Tri-Tek 205
75 Computeriand 49 285 North Star Computer 27, CIV 383 Uitra Violet Products 125
74 Computer Mart of MA 190 286 Northwest Microcomputing Sys 7 386 US Robotics 182
76 Computer Mart of NJ 146 287 Northwest Microcomputing Sys 127 384 Video Spectrum Industries 129
76 Computer Mart of PA 146 290 Ohio Scientific Instrument 20-23 378 Vamp 182
77 Computer Pantry 204 291 Oliver Advanced Engineering 125 387 Wameco 183
79 Contract Services Associates 145 293 Osborne & Associates 81 143 Whates 111
80 Cromemco 1, 2 * Owens Associates 204 393 Wintek 142
91 Digital Pathways 134 294 Pacific Digital 135 395 Waorldwide Electronics 196
95 Digital Research (CA) 146 296 Pacific Office Systems 199 400 Xitex 136
100 Digital Research {TX) 187 297 Page Digital 188
*Correspond directly with company.
B6OMB-~
EYTE's Dngoing Monitor Box
Article No. ARTICLE PAGE BOMB’s Vacation
1 Allen-Rossetti: On Building a Light-Seeking Robot Mechanism 24
2 Forsyth-Howard: Compilation and Pascal on Microprocessors 50 The Bomb Analysis for May 1978 BYTE
3 Nelson: Microprocessor Update: The Numbar Crunching Processor 64 found Mark Gottlieb’s “Hidden Line Sub-
4 Alpart: Pascal: A Structurally Strong Language 78 routines for Three-Dimensional Plotting,”
5 Penniman: Philadelphia’s 179 Year Old Android 20 page 49, receiving the highest score, with
6 Williams: Antique Machanical Computers, Part 2 96 T
; Murdic. 1 Larry Weinsteins "“A Programmable Char-
undie: In Praise of Pascal 110 . "
8 Bowles: Pascal versus COBOL 122 acter (_Senerator, Part 1: Han:dware, page 79,
9 Weems: Designing Structured Programs 143 receiving second place. Since our pocket
10 Ciarcia: Let Your Fingers Do the Talking 156 calculator’s batteries had run down and the
1 Hastings: JACPOT 166 charger got misplaced, we'll omit the statis-
12 Schwartz: Pascal versus BASIC 168 tical analysis this month. . .CHm
208 August 1978 © BYTE Publications Inc

Look To The North Star HORIZON Computer.

HORIZON™ _ a complete, high-performance microprocessor
system with integrated floppy disk memory. HORIZON is
attractive, professionally engineered, and ideal for business,
educational and personal applicaticns.

To begin programming in extended BASIC, merely add a CRT
or hard-copy terminal. HORIZON-1 includes a Z80A processor,
16K RAM, minifloppy™ disk and 12-slot S-100 motherboard
with serial terminal interface — all standard equipment.

WHAT ABOUT PERFORMANCE?

The ZBOA processor operates at 4MHZ — double the power of
the 8080. And our 16K RAM board lets the Z80A execute at
full speed. HORIZON can load or save a 10K byte disk program
in less than 2 seconds. Each diskette can store 90K bytes.

AND SOFTWARE, TOO

HORIZON includes the North Star Disk Operating System and
full extended BASIC on diskette ready at power-on. Our BASIC,
now in widespread use, has everything desired in a BASIC, in-
cluding sequential and random disk files, formatted output, a
powerful line editor, strings, machine language CALL and more.

NoRTH ST2AR

EXPAND YOUR HORIZON

Also available — Hardware floating point board (FPB); addi-
tional 16K memory boards with parity option. Add a second
disk drive and you have HORIZON-2. Economical serial and
parallel 1/O ports may be installed on the motherboard. Many

widely available S-100 bus peripheral boards can be added to
HORIZON.

QUALITY AT THE RIGHT PRICE

HORIZON processor board, RAM, FPB and MICRO DISK SYS-
TEM can be bought separately for either Z80 or 8080 S-100 bus
systerms.
HORIZON-1 $1599 kit; $1899 assembled.
HORIZON-2 $1999 kit; $2349 assembled.

16K RAM —$399 kit; $459 assembled; Parity option $39 kit; $59
assembled. FPB $259 kit; $359 assembled. Z80 board $199 kit;
$259 assembled. Prices subject to change. HORIZON offered
in choice of wood or blue metal cover at no extra charge.

Write for free color catalogue or visit your local computer store.

* CoMPUTERS

2547 Ninth Street + Berkeley, California 94710 - (415) 549-0858

Circle 285 on inquiry card.

	Cover

	In the Queue

	Foreground
	Compilation and Pascal on the New Microprocessors
	PASCAL: A Structurally Strong Language
	Designing Structured Programs
	LET YOUR FINGERS DO THE TALKING : Add a Noncontact Touch Scanner

	Background
	On Building a Light-Seeking Robot Mechanism
	The Number Crunching Processor
	Philadelphia's 179 Year Old Android
	Antique Mechanical Computers Part 2: 18th and 19th Century Mechanical Marvels
	In Praise of PASCAL
	Pascal versus COBOL: Where Pascal Gets Down to Business
	JACPOT
	Pascal verus BASIC: An Exercise

	Nucleus
	In This BYTE

	A Vision of an Industry
	Letters

	Technical Forum: A Letter Exchange: Extending S-100 Bus?
	About the Cover
	Languages Forum: A Homebrew Pascal Compiler

	Clubs and Newsletters

	BYTE's Bugs

	Consistency - or a Lack Thereof ... Notes
	A Proposed Pascal Compiler
	Event Queue

	Whats New?

	Unclassifed Ads

	BOMB
	Reader Service

	Back cover

