

Alos Computer Systems
2378-B Wailsh Avenue
Santa Clara, CA 95050

Apple Computer
10260 Bandley Dr.
Cuperting, CA 95014

Digital Microsystems Inc.
(Formerly Digital Systems)
4448 Pisdmont Ave.
Ookland, CA 94611

Mfg. Corporafion

148480 WiCks Bhvdl,
San Leondro, A 94577

Industrial Micro Systems
4633 West Katelia. Sulte L
Orange. CA 92667

North Star Computer
2547 9th Street
Berkelay, CA 94710

Percom Data
318 Barmnes
Gariand, TX 75042

Polymorphic Sysiems
460 Ward Dr.
Santa Barbara, CA 93111

Problem Solver Systems
20834 Lassen Stroet
Chatsworth, CA 91311

Processor Applications Limited
2801 E. Valley View Avenue
West Covina, CA 91792

SD Sales
3401 W Kingsley
Garland, TX 75040

Smoke Signal Broadcosting
6304 Yuccao
Hollywoed, CA 90028

Technico In¢.
9130 Red Branch Road
Coiumbia, MD 21045

Texas Eectronic Instruments
5636 Ethernidge
Houston, TX 77087

Thinker Toys
1201 10th Street
Berkeley, CA 24710

Vista Computer Company
2807 Oregon Court
Torrance, CA 90503

]

Shugart

August 197¢ £ BYTE Publications Inc

Returning to the Tower of Babel,
or... Some Notes About LISP,
Languages and Other Topics...

by Carl Helmers

This is the August issue of BYTE, It is also the third consecutive year that
we've chosen to have a computer language as an issue content theme —a choice
which is reflected in a number of articles, as well as the cover painting by Ken
Lodding.

In the past two years, the August issues have had themes of APL (1977} and
Pascal (1978). This year, we continue the August emphasis on languages with
a special issue devoted to the language LISP. An experiment in editorial policy
is also reflected in this issue. John Allen was responsible for the solicitation and
technical reviewing of the articles concerning LISP in this issue, truly function-
ing in the capacity of "Guest Editor” of BYTE. John has been involved with
computation research involving LISP for some time, and he is in touch with
many of the members of the artificial intelligence community. Some of his
comments on LISP appeared in the March 1979 issue of BYTE in the form of a
guest editorial. As a result of his earlier writings about LISP as an appropriate
tool of expression for personal computing, we asked him to take charge of the
LISP oriented technical content of this issue and several issues to follow,
Readers will find a wealth of information as a result of John's efforts.

By making LISP a feature of this issue of BYTE, we are emphasizing the
history of LISP's utility in artificial intelligence and computation research, The
language is derived from the work of John McCarthy in the early 1960's. LISP
will have its place in personal computing, alongside a number of other styles of
expression. For lack of appropriate systems software, | have not personally
used LISP to any extent, but [believe that I have the beginnings of an abstract
appreciation of its potential, This perspective comes from personal contact
with individuals who use LISP regularly, as well as reading which includes the
articles in this issue as collected by John Allen.

In a recent (May 24 1979) conversation with Gary Kildall on the occasion of
the fifth IEEE Computer Society Asilomar Conference on Microcomputing, I
mentioned the LISP issue. Gary has a background in computer systems soft-
ware work with special emphasis on small scale computer systems of the kind
used by BYTE readers. He is the first implementor of the PL/M compilers for
Intel's 8080 microprocessors, and he and his firm, Digital Research, are
responsible for one of the most widely used 8080 and Z-80 oriented software
products, the CP/M operating system, | learned some interesting points from
Gary about LISP and its significance to the use of computers, viewpoints
which are worth repeating for readers.

Gary made the statement that LISP is basically his preferred language. He
explained that LISP has a certain natural elegance, but that people often tend
to write FORTRAN or BASIC-like sequential “PRQOGs" as opposed to the im-
plicitly parallel and recursive tree structures natural to LISP. He emphasized
that this is a mistake. LISP represents a different point of view from which to
analyze problems.

Text continued on page 154

Letiens

Puzziing Rotation
Explained

Ken Barbier poses a question in
“Puzzling Rotation” (May 1979 BYTE,
page 216} which is intimately related to
my comments on periodic decimal ex-
pansions in that same issue (page 210},

Any number N which has a repeating,
periodic decimal expansion of 1/N with
maximum period length {N —1) gives
rise to a rmagic number X =
INTH{1/N)*10(N ~1)). As he pointed
out, any multiple of X such as KX X
{with K less than N) contains the same
digits as does X, but cyclically rotated.
N=7 is the only example in base 10
arithmetic less than 10; larger values of
N are, for example, 17 (yielding
X=0588235294117647} and 19 {which
gives X=052631578947368421). In base
8, some interesting numbers are given by
N=5 {X=1463, base 8} and N=11 (base
10) (X =0564272135 base 8); in base 15,
a magic X is 124936DCAS5BS.

I have not been able to find any magic
numbers in base 4, base 16, or base 64;
perhaps some reader can prove that
none exists for bases which are powers
of 4.

If the length of the repetition period
of 1/N is shorter than the maximum,
then the magic number X generated by
the above algorithm will still re-appear
with digits cyclically permuted, but
other numbers aiso appear in the course
of the multiplication, Try,
for example, N=13, X=076923, in base
10.

For some insight into why these
numbers are magic, you might want to
try calculating by hand, long-division-
style, some examples like 1/7, 2/7, 3/7,
etc. According to E T Bell's biographical
book Men of Mathematics {page 225),
one of the greatest mathematicians of all
time, Carl Friedrich Gauss, worked out
the decimal expansicns of 1/N for all N
up to 1000 while he was a teen-ager.
{And in the 1790’s, he didn't have a
hame computer!} The results of his
calcufations inspired him to discover and
prove one of the most beautiful
theorems of number theory, “"quadratic
reciprocity,” Playing games with
numbets is still a fine route to
inspiration. Good luck!

ivilark Zimmermann
Caltech 130-32
Pasadena CA 91125

a August 1979 BYTE [Mublicanwens Inc

More Puzzling

Regarding “An Added Attraction
{Machine Language Puzzler May 1979
BYTE, page 209), | would like to share
a twist on the problem of adding two 8
bit values in registers B and C and my
solution.

First, let me admit that when I glanced
through the puzzle rules, I mistakenly
assumed that all subtraction operations,
as well as the addition operations, were
prohibited in the solution. The reason 1
made this slip is that the problem now
becomes a little harder (something akin
to the business of muiltiplying using
addition instructions only}.

Anyway, my first brute force attempt
at this different problem required 12
bytes:

XRA A
.LOCPYT INR A
OCR B
JNZ L
LOOP2 INR A
DCR A

JNZ
HLT

This works by initializing a counter
using the byte-saving exclusive-or opera-
tion. The counter is then incremented
once tor each lime that register B must
be decremented, until the register
reaches zero. Repeating this sequence
using register C results with the sum in
the accumulator. Of course, this
approach ignores overtlow detection, as
did the ariginal sclutions published in
BYTE.

Being dissatisfied with the above, |
noticed a much simpler solution in 7
bytes:

MOV AR

LOOP INR A
DCR C
JINZ LOOP
HLT

[nterestingly, this is only 2 bytes more
than the optimum solution presented in
the Puzzler, where subtraction is
permitted.

Steve Duerksen
Microcomputer Consultant
15 Dearborn St

Wellesley MA 02181

Attention: Gamblers

A newsletter is being started tor com-
puter enthusiasts interested in analyzing
gambling systems, the Stock and Futures
Markets, etc. The Hrst issue will be
priced at $1 and those interested should
indicate preference for form, content,
and subscription rate. Contact Michael
R Downing, c/o Joe Computer, 22713
Ventura Blvd, Suite F, Woodland Hills
CA 91364 1

Computerland’

Huntsvilla, AL 12051 539 1200

Phoenix, AZ 1602 956-5727
Lirtle Rack, AR {6011 224-a508
Belmont, i {415) 595-4232
Dublin, CA {415) 828-280930
Eil Cernito, CA 1415} 233-5010
Hayward, CA 1415) £38-8080
Lawndale, CA [23¥3) 371.-7144
Los Aligs, CA 14156 941-8154
Los Angeles, CA 1213} 776-8080
Marin, CA [415) 453-1767
Patadens, CA (2131 4492205

Call Durectory Intgrmanon
1714) 73017
1714} B86-6828

Sacramento, CA
Saddleback Valley, CA
San Bernardino, CA

San Dvego, CA {714) 560.9912
San Diego East, TA 1714} 464-5650
San Francisco, CA {415) 646 1582
San Jose, CA 1408} 253-8080

1805 82819149
1707) 528-1775
1805] 495-3584
{714} 5440542
1415} g35-6502
13031 574-4150

Santa Mana, CA
Sama Rosa, CA
Thousand Craks, CA
Tustin, CA

Wainut Creek, CA
LColorado Springs, CO

Denver, CO (303} 759-46585
Fawdigid, CT 1203) 2559252
Harrford, CT Call Dhrectory Information
Mewark, DE {202) 738-9656
Boca Ratan, FL 1306) 368-1122
F1. Lauderdale, FL {3051 5E6-G776
Jacksonwille, FL 19041 731-2471
Arfanta, GA 1404) 853-0406

1808) 521-B002
13127 2556488

Honolulu, H!
Arlington Hewghts, (L

Downers Grove, (L 13120 964 7362
Mundelen, [L {3121 8491200
Nules, |L 13121 967114
Oak Lawn, IL 13121 422-8080
Pegria, 1L 1309) 6886252
Indianapels, 1N Call Chrectory informauon
Owvertand Park, KS 19131 492-8882

15021 4258208
16171 7356252
{3011 948 7676
(616) 842-2931
{313) 552-9000

Louiswlie, KY
Boston, MA
Rockwille, MD
Grand Rapwds, Mt
Rachester, M1

Sauthfield, M1 {313 356-8111
Bloomington, MN {612) 884-1474
Hopkins, MN Call Directory lniormatign
Spoingheld, MO {417] 8837085
&1, Lows, MO Call Directory Indormation
Mashua, NH {603! 889-5238

{609 795-5900
1201] 845-9303
1201) 538-4077

Cherry Hitl, N
Bregea County, NJ
Mornsrown, J

Buffalo, MY 1716) Bi6-E6511
Ithaca, MY 1607 277 4588
MNassau County, NY 1516) 742-2262
Chatlolwe, NC 17041 536-8500

1216} 4611200
Call Cerperony [nloemanon
1614] BB 2215
Call Durectory Inlormation

Cleyeland E ast, OH
Clevidand West, OH
Columibus, CH

Okiahoina City, OK

Poritand, OR 1503] 620-6170
Harrisburg, PA [#717] 7631116
Paan, PA Call Directory inlomauon
Austin, TX (5121 4525701
Dratlas, TX 1214} 363-2223

111219770909
[713} ABB-8153

South Woest Houston, TX
Houston Bay Ares, TX

Zal Lake Coy, UT [BO1) 164-4416
Tyson's Carners, VA 1703) 593.0424
Bellevue, WA 12061 746 2070
Frederal Way, WA 1206 BIB-9363
Tacoma, WA {206) 581 D328
Madsan, Wi 1508 273 2020
Mrtwankes, ¥ 1414} 466-8950
INTERNATIONAL

Adelarde, Australia 22 35083
Brisbane, Australia 072279777
Melbourne, Ausiiaha 6255
Perth, Sustralia Call Direclary Infonmation
Sydney, NSW Sostrabia 29-3783
Brussels, Belgium 1021 511-34 a5

(416) 6325722

Call Dureerory Informanon
1416) 485-6 700

12041 772 9519

5B-36-66

Burhngegn, Canada
{algary, Alberra Canada
Turonio, Canaua
Winmpeg, Canada
Marnla, Prdippines

Cirgle 75 on (nquiry card.

http:11.34.45

John Allen
Signetics
811 E Acques Ave
Mail Stop 38
Sunnyvale CA 94086

LISP is a higher level machine language.

LISP is simple and difficult, elegant and ad hoc; it is a
beautiful blend of foresight and fortuity. LISP is a pro-
gramming language, often characterized as a special pur-
pose list-processing language. But LISP is no more a
special purpose programming language than mathematics
is a special purpose language for floating-point computa-
tions. Just as there's more to mathematics than the
accounting and bookkeeping properties present in
"general purpose” programming languages, there's much
more to LISP than “just another programming language.”

The best description of the LISP programming lan-
guage is that it is a frigh level machine langunge. That is,
it shares many of the facets of contemporary machine
language —the necessity for attention to detail and the
freedom to manipulate the machine’s data and programs
without restriction— yet LISP is high level in that the
language contains the expressive power and convenience
of traditional high level languages. The contradiction is
resolvable: a LISP machine is just a higher level machine
whose data items are organized ditferently from the
binary bit patterns of most machines, and the LISP pro-
gramming language is the assembly language for this
machine,

LISP Data Structures

Before introducing the constructs of the language, we
must discuss the data items of the language, In a tradi-
tional language we would find numeric constants. In
LISP, the analogous constants are called atoms, An atom
is either a numeral or a literal atom —a string of upper
case alphanumeric characters such that the first character
in the string is an alphabetic character, For example,
ABC123, 12, and NIL are atoms, but 1A2 and (A B) are
not,

LISP also has composite constants called lists. Lists are
built out of atoms and other lists as follows:

® Any atom or list can be an element of a list,
® Given any collection e,, ..., e, of list elements, then
(e, ... e,) is also a list.

So, (A B)isalist; asis (A B CJ, and (A 1 (ABC 23)}). The

About the Author

John Allen. our guest editor for this special LISP theme issue. is thy
ruthor of the book Anatomy of LISP and currently product engineer at
Signetics Corporation. He is also founder of The LISP Company, an
organization to produce LISP related products.

10 August 1979 ¢ BYTE Publications Inc

last example is a list of three elements; its third element is
also a list — of two elements: the atom ABC and the
numeral 23

Atoms and lists are the basic LISP data structures.
However, a robust production version of LISP includes
many more data objects including arrays, arbitrary preci-
sion numbers, strings, and representation of functions as
data objects. Regardless of the scope of the data represen-
tations in a specific LISP implementation, it is a fund-
amental property that all data objects are "first class ob-
jects,” constructible, testable and available without
restriction. This uniform behavior of data is a property
shared by few other languages.

First

We need some operations on these data structures. Just
as we should have a subtraction operation in arithmetic
machines te decompose numbers, we have LISP instruc-
tions to decompose lists. One such operation is first; it ex-
tracts the first element of a list. For example:

firstftA B C)] gives: A

This example is written in LISP's external syntax called
meta-LISP or M-LISP; it is an instance of prefix notation,
The programming language, the internal notation, is
called S-expression LISP or 5-LISP. Initially, we will pre-
sent algorithms in M-LISP since it is closer to traditional
programming notation. However, since S-LISP is our
machine language we will insist on developing facility
with that notation,

In a traditional architecture, both instructions and data
are stored in memory. The processor usually has com-
plete freedom to manipulate any of these objects as either
data or instructions. An object accessed by the instruc-
tion counter is interpreted as an instruction; other ac-
cesses to items usually imply a data interpretation. One
goal is the representation of LISP instructions as data
items in the LISP machine such that the processing unit of
the LISP machine will have equal flexibility in inter-
preting the encoded information. An object may some-
times play the role of program, and sometimes of data.

To represent program as data we must specify a
translation of each M-LISP instruction into a list
representation:

External Notation
< vperation> [< operand > ,; ... ; <operand >,/

List Notation
(< operation> "< operand > ,!... <operand>.,")

Circle 255 on inGuiry Card. e

What makes the Microtek Printer
so different? Nothing!

EXCEPT....

$750 (with parallel interface)

» 80 or 120 columns (software selectable) * Vertical Format Unit

¢ Plain paper s O6-character ASCIl (upper and lower case)

¢ Pin Feed * Forms width continuously adjustable between

* Double width printing 4.5 inches and 9.5 inches (including sprocket

®» 125 characters per second, 70 lines per minute margins)

nominal throughput * Parallel (Centronics type} interface standard.
* 9x7 Matrix {80 columns/line), 7x7 Matrix (120 Serial (RS5-232) and IEEE-488 interfaces
columns/tine) available

'_____-_-—--__———-- —————— N S SN SN S S SIS S S S S S S — 1
: To: MICROTEK, Inc., 7844 Convoy Court, San Diego, California 92111 {714) 278-0633 :
| O Send me moreinformation. i
| O Send me a printer with: I
| O Parallel interface » $750. O Serialinterface « $835. O |(EEE-488interface + $895 I
: 2 Check or Money Order enclased. {0 Charge my VISA card. 0 Charge my Master Charge card. :
| — |
l name (please print} card number l
| — |
I address cardholder's signature |
I - - S |
I city state zip exp date l
: phone I
| Add $15.00 for packaging & shipping. Deater inquiries invited. Catifornia residents add 6% sales tax. I

Circle 209 on inguiry card. BYTE Augpast 1979 15

1 Laubsch, G Fischer, and H D Bocker
Institute for Information
University of Stuttgart
Stuttgart, GERMANY

Future Computer Culture

There is sufficient evidence that personal computer
systems will become as powerful as today's computer
systems used in artificial intelligence research. Within the
artificial intelligence community people are concerned
about possible uses of computers in an evolving com-
puter culture. The basic goals of artificial intelligence are
to:

® synthesize systems that behave intelligently;
® understand intelligence in terms of computational
concepts.

The human needs a personal computer system will one
day help to satisfy cover the range of playing, learning,
recreation, artistic creation, and personal assistance to
expand one's own memory and reasoning power. Using a
computer to build an intelligent tutor and an educational
environment that stimulates learning by discovery (ie:
through simulation, exploratory problem solving) are of
central importance to artificial intelligence. Although
canned software for educational applications will be
widely available there remains a need for programming
to tailor the system to the user’s individual needs and
requirements.

Qur notion of what programming is all about will
drastically change: it will cover a wide range of possible
relationships between man and machine where a person
creates and manipulates dynamic information structures
according to personal tasks and taste. Program writing,
in the historical sense of writing individual statements, is
just one aspect of using a computer and will become less
relevant, if not obsolete, compared to the understanding
and modification of prefabricated software components,

LISP Based Systems

Historically, LISP has been used as the basic tool of ar-
tificial intelligence since the computational ideas embed-
ded in it, together with the program development system
built around the language, lend themselves most natural-
ly to the design of complex systems.

The design of LISP systems has been guided by an em-

18 Aupust 1979 7 BYTE Publications Inc

phasis on supporting the user to solve complex, ill-
structured, poorly understood problems at already early
stages {eg: problem formulation, approximations to the
final solution, support of debugging and program modi-
fication}, rather than only the fina) step of coding a well
understood problem or an already known algorithm in a
given programming language. Program constructs and
programming methodology in the LISP culture were par-
ticularly concerned with cognitive efficiency (ie; to make
programs understandable by humans). It was one of the
gratifying results of this work that these programs, with
the help of program transformation systems, can also be
proved correct and run efficiently,

Designing a Personal Information System

Suppose you want to design a personal notebook con-
taining people’s names, addresses, interests, programs
they use, messages you are sending them, appointments
you make with them, etc. Such a system will consist of
frequently changing information structures. As a per-
sonal information system it should model and extend that
information system in our head. By using the system, we
will feel the need for new features that should be incor-
porated (ie: an easy to learn command language or an in-
structional help Facility to introduce a new user), A more
advanced version of the system should be able to perform
simple deductions. For instance, if we tell the system at
some point of time, "My friend Jim has moved to San
Francisco” and later ask it to, “List all friends in Cali-
fornia,” Jim should be incleded in the set. Eventually this
system could “grow up” to become a personal assistant,

We will show that the computational ideas of LISP, as
developed in the artificial intelligence community, are
particularly well-suited for this kind of application.

Basic Computational Ideas

We list those ideas which are relevant to the design of
complex programs and transcend the capabilities of other
languages and systems. In almost all interesting educa-
tional applications of computers, complex programs will
be involved:

® [ncremental design. E Sandewall feels that inter-
active middie-out programming (besides top-down
and bottom-up approaches) is a natural way to
build a complex system in a process of structured
growth. We construct a simple version of the
system, try it out, identify our misunderstandings
and debug it. This knowledge, and our critique, will
lead to modified specifications, and a new cycle of
exploratory programming begins, Since LISP sys-
tems are incremental, old modules may be modified
and new building blocks can be added with an im-
mediate effect, The compilation of fully debugged
code is available as an optional feature,

® Complex dynamic data-structures. Most informa-
tion processing models and problems to be solved
with the computer will deal with complex dynamic
structures like lists, trees, nets, property lists, etc,
and will not be based only on numbers and strings,
In our above example, the information associated
with a person could be represented in a natural way
as the linked structure in figure 1. It should be easy
to include new attributes or provide for a business
as well as a home address,

We define data structures abstractly through
functions: constructors to build a datum; selectors
to extract an attribute, and predicates to examine
the type of a data structure. Including other
representations, such as graphics, is easy since most
LISP systems contain a higher level assembly
language that gives access to the machine level,

Data-program equivalence. A typical strategy to
attack problems in artificial intelligence is to define
layers of languages, each suited to a particular
level of abstraction {eg: <user interface
language> — < interim language 1> — ... —LISP}).
The definition of LISP itself, as stated by John

List All Friends in California User Input
NLL Translation
{FOR ALL X IN (GET/FILE FRIENDS)
{IF (GETISTATE X):CALIFORNIA Evaluation
THEN {PRINTOUT {GET/NAME X))}
U

List of Systam Qutput
Addresses,

Table 1: A typical problem approach may be to take a user com-
mand and translate it into program instructions. These program
instructions are thew executed by the computer, This is an exam-
ple of taking a high level user language and converting it into
efficient machine language.

McCarthy, provides a good model for this ap-
proach, since most of a LISP system is itself written
in LISP, except for a handful of primitive functions.
For example, the user's command is translated into
a program and then evaluated as in table 1,

LISP facilitates this approach since the Function
EVAL lets the user evaluate any data as a program!
The inverse is also true; it is quite easy to write pro-
grams which manipulate other programs as if they
were data.

® Pattern matching and data driven programming.
The system should respond to situations where the
order in which certain actions are to be taken is not
specified in advance. Furthermore, in many situa-
tions it will be impractical to specify a question
literally: we might have to leave slots open which
can be filled in by the system, using the knowledge
contained in its data base. [n our example, many
other types of requests are possible, To translate
them, patterns to decompose and recompose them
can be defined.

NAME _— — —_ —_
FIRST LAST
NAME NAME
-
ADDRESS —_— —_ —_— —_— e
STREET CITY ZIP
(S
INTERESTS |—‘ LISk Cal —1 CHESS — ey

Figure 1: An example of a linked list. This form of linked list is called a singly linked list. In a singly linked list, the user can only
maove in one direction, forward in the direction of the arrow. In a doubly linked list, the user can retrace the steps taken to arrive at

the present location,

August 1979 ¥ BYTE Publicatons Inc 19

TRADITIONAL APPROACH LOGO APPROACH

// \\ / Y_

L

Figure 2: Two different approaches to bridging the gap between natural language and the formal symbols of programming
languages are represented. The traditional approach links everything closely with mathematics and uses mathematics as the bridge,
Int the authors’ approach, the LOGO language is used as the bridge since it can be used to develop reasoning pawers without having
to become involved with the language of mathematics.

cept of an interpreter, list processing and those
mentioned above can be naturally integrated into
interesting projects, caused no difficulties for
students to understand, and can be considered as
powerful in the sense that they are widely appli-
cable {even in problem solving situations without
the computer),

Graphic devices, music box, etc, provide strong
motivational support, excellent entry points to ex-
plore the world of computation because eatly suc-
cess is possible and interaction with the machine is
based on observable and intuitively understandable
events.

® Qur experiences, especially with young students,
indicate that programming in LOGO may serve as a
bridge between natural language communication
and reasoning and the formal and abstract symbols
and reasoning in mathematics and programming
languages. The findings differ greatly from the
traditional approaches where computer scientists
try to keep things linked as closely as possible to
mathematics, assuming that mathematics could
serve as a bridge to programming {which we all
know is questionable because most people are more
alienated by mathematics than attracted). Figure 2
illustrates the two different approaches.

Qur findings can at least be partly explained by
the cleanliness by which the basic computational

ideas are embodied in LISP/LOGO.

medium to test one’s own understanding of con-
cepts and of poorly understood systems (ie: if we
really understand something, we can write a com-
puter program that will do it).

® Group projects are easy to realize since the program

development system supports the organization of
modules as building blocks. In our example of a
personal information system, one person could
write the module to translate inputs into an internal
representation, another person may write a deduc-
tive component and a third person could deal with
the problem of how to answer requests or questions
from the user,

® Qur programming methodology differed in an

essential way from other approaches. Procedures,
including parameters and recursion as basic control
structures, were introduced long before the concept
of a variable was mentioned. These two aspects are
not independent of each other. They basically intro-
duce the learner te “pure LISP” (ie: a version of
LISP without variables}) and avoid the problems
associated with side-effects and global variables.

® Our empirical evidence indicates that learning other

programming languages (eg: BASIC, Pascal) after
having learned LOGQC was easy because constructs
in these languages could be easily mapped into
known concepts, whereas this statement does not
hold in the other direction,

@ Clur programming environment stimulates learning Intelligent Computer Assisted Instruction
by discovery. New concepts are discovered by solv- Despite our belief that the most important impact of
ing a problem through incremental writing and computers for educational applications will be the active
debugging of programs. The computer serves as a independent use described in the previous section {the

22 August 1979 % BYTE Publications Inc

student teaches the computer), we do not overlook the
rich potential of using intelligent programs to teach the
student certain subjects, to involve and tutor him in game
playing situations, and to diagnose his difficulties.

The traditional computer aided instruction was
modelled on a reduced view of learning: present a
stimulus item to the learner, receive a response and give a
reinforcement. More advanced programs select the
material to be presented according to how well the stu-
dent is doing, or give him a possibility to select the parti-
cular topic he wants to study or practice. From a more
comprehensive view of learning, it is essential to diagnose
the learner’s cognitive development and support him
through a tutor who is himself an expert in the problem
and can infer the conceptual difficulties this learner may
encounter, A prototype is the Buggy program written by
artificial intelligence researchers] Brown and R Burton,
which goes far beyond traditional computer aided in-
struction programs by integrating artificial intelligence
techniques and cognitive theories about learning,
teaching and debugging.

Buggy relies on the basic pedagogical assumption,
which was verified through extensive empirical findings,
that students give wrong and arbitrary answers in only a
few cases but tend, rather, to answer a different question
or compute a result according to a different algorithm.
They behave, in many cases, with absolute consistency
with respect to their own theories. To provide real help,
the teachers have to deduce the underlying misunderstan-
ding (ie: the deep structure} from scarce observations on
the surface. Buggy is a program which does this for sim-
ple arithmetic skills. The knowledge to draw an inductive
inference is stored in a diagnostic model, which tries to
capture possible deviations from the correct way of doing
the task,

Another example that uses a diagnostic model is the
Wumpus advisor (called Wusor I1), which teaches in-
ference strategies in the Wumpus game created by
Gregory Yob, The program teaches the knowledge of an
expert player by tailoring its advice and explanations to
its current estimation of the player's knowledge. These
programs may serve as prototypes of intelligent tutoring
programs to teach the playing of games.

A different approach in intelligent computer aided in-
struction does not include an expert tutor, but is guided
by the philosophy of creating a simulated environment
which the user is free to explore at will, The discovery of
this environment leads to the acquisition of new skills
and knowledge. Prototypes of such systems are: Scholar,
a question answering system to learn about geography in
a mixed initiative dialogue (Carbonell}; Sophie, a system
to teach electronic trouble-shooting (Brown, Burton,
Bell); and the Logic program developed zt Stanford (Sup-
pes). What makes these programs appear to behave in-
telligently is the fact that the knowledge they teach is us-
ed by these systems in many ways to carry out dialogues
(for an overview see Laubsch).

A crucial component of friendly, intelligent, computer
aided instruction systems is natural language (eg: the
Sophie system). Rapid advances in artificial intelligence
make it seem likely that natural language interfaces will
be available for many applications of interest to the
general public,

24 August 1879 - BYTE Publications Inc

It is not possible to explain the details of these pro-
grams here down to an implementation level, because
these systems are large and complex as compared to cur-
rent standards. The historical evidence may suffice to
show that all these systems have been implemented in
large sophisticated LISP systems (eg: InterLISP} which
have matured over more than a decade to support the
development of systems of this size,

Conclusions

LISP remains a tool in artificial intelligence and educa-
tional research, even though it has contributed greatly to
our understanding of computational issues and their
relevance to intelligent behavior.

We do not want to give the impression that all inter-
esting uses of computers are centered around LISP. Some
of the most innovative work was done by the Learning
Research Group at Xerox Research Center in their
development of the Dynabook and the Smalltalk
language.

The real issues remain and pose many research pro-
blems for the years to come: to create cognitive theories;
to create a science of intelligence, and to apply it suc-
cessfully to the problems of education.m

Bibliography

1. BOCKER, H D, and FISCHER, @G. interaktives Froblemipsen mit
Computerhiffe: Problemaufgaben, Forschungsgruppe CUU,
Darmstadt, 1978.

2. BROWN, J S, BURTON, R R, and BELL, A G, ""Sophie: A Step
Toward Creating a Reactive Learning Environment,” interna-
tional Journal of Man-Machine Studies. volume 7, 1975, pages
675 thru 696.

3. BROWN, J, and BURTON., R, "“Diagnastic Models for Procadural
Bugs in Basic Mathematical Skills,”” Cognitive Science, volume
2, 1978, pages 155 thru 181

4. CARBONELL. J R. A in CAlL An Arlificial Approach to
Computer-aided Instruction,” [EEE Transactions on Man-
Machine Systerns. volume MMS-II, number 4, 1970.

5 CARR, B, WUSOR i: A Computer Aided instruction Program
with Student Modelling Capabilities, Al-Memo 417, MIT Artiticial
Intelligence Lab, Cambridge MA, 1977,

€. FISCHER, G, ""Das Losen komplexer Problemaufgaten durch
naive Benutzer mil Hilfe des interaktiven Programmierens,”
Forschungsgruppe CUU, Darmstadt, 1977.

7. FEUERZEIG, W (editor), Programming Languages as a Concep-
tual Framework for Teaching Mathematics, BBN Report
Number 2165, Cambridge MA, 1871

8. General Turtle Corporation, 120 Boulevard Industriel, Boucher-
ville Quebec, 348 2X2 CANADA,

8. KAY. A “Microelectronics and the Personal Compuler,' Scien-
tific American, September 1877, pages 231 thru 244,

10, LAUBSCH. J. “Arificial Inelligence Methoden im CUU," K
Brunnsiein et al {editors), Lecture Notes in Computer Science,
volume 17, Springer Veriag, Berlin, 1974, pages 385 thru 393.

11. MeCARTHY, J, A Micromanual for LISP—not the Whole
Truth,”" SIGPLAN Notices, volume 13, number 8, August 1978,
pages 215 thru 2186,

12. PAPERT, &, "'Uses of Technology to Enhance Education." Logo
Memo 8, MIT Artiticial Intelligence Lab, Carmbridge MA, 1873,

13. SANDEWALL. E, “Programming in the Inleractive Environment
The LISP Experience,”” ACM Computing Survey, volume 10,
number 1, 1978, pages 35 thru 72,

14, SUPPES, P, SMITH, R. and BEARD, M, University Level Com-
puter assisted Instruction at Stanford, TR number 265, IMSS,
Stanford University, Stanford CA, 1875,

15. WINSTON, P, Artificiai Intelligence, Addison Wesley, Reading
MA, 1977

16, YOB. G, "Hunt the Wumpus,” Creative Computing, September
and Qctober. 1975, pages 51 thru 54,

There are basically three ways of implementing typed
pointers.

Contiguous Partitions

Free storage is divided into a number of areas called
partitions which consist of contiguous memory cells {ie:
bytes or words), Each partition is allowed to contain only
data belonging to the same type (also referred to as the
type of the partition, see tigure 1). A one-to-one corres-
pondence between partitions and data types is implicitly
established by the implementation of the data structure
manipulating primitives. The type T of an cbject is ob-
tained by comparing its address A with the boundaries of
the partitions.

This technique has been adopted by the PDP-10 imple-
mentation of LISP 1.6 and some early versions of
MacLISP. In fact it {s particularly suited to those com-
puters in which typed pointers are not allowed to contain
an explicit representation of T without a considerable
waste of space. As an example, one word in the PDP-10 is
36 bits long and may contain exactly two addresses. If
one half word were reserved for representing T, several
bits would remain unused.

Contiguous partitions may be disadvantageous when
the partition associated with a type T becemes full and
the allocation of a new object of type T is requested. The
garbage collector may then fail to recover sufficient space
for allocating the new object, even though other parti-
tions are nearly empty. This drawback may be eliminated
by enlarging the overpopulated partition and contracting
the underpopulated ones. A compacting garbage collec-
tor with additional phases is required for this purpose.
After the compaction phase, the boundaries of the parti-
tion are redefined, data is moved to fit the new boun-

Pi P2 P3
(T | (T2) | (T3)

e Pn
(Tn)

Figure 1. Contiguous partitions: a pointer to an object of type
T2.

28 August 1979 HYTE Publiuateons Lre

daries and all pointers to moved data are updated accord-
ingly.

Paged Partitions

Free storage is divided into pages of equal length
(usually a power of 2, eg: 1 or 2 K bytes or 256 or 512
words). A page is referred to as busy or free, according to
whether or not it currently contains data. Like conti-
guous partitions, each busy page may contain only data
belonging to the same type, further referred to as the type
of the page. The correspondence (usually many-to-one}
between busy pages and their respective types is dyna-
mically realized by a type table, which also keeps track of
the Free pages (see Figure 2),

The type T of an object located at address A may be
retrieved by accessing the type table using the most signi-
ficant bits of A as an index (this is possible if the page
length is a power of 2). When a object of type T is to be
allocated and no more space is available in pages of type
T, a new free page is used and its type is set to T, Thus,
the partition associated with a given type is distributed
over several pages. The garbage collector compacts all
data of a given type into as few pages as possible.

This technique, which has been developed as an alter-
native to contiguous partition for the same class of com-
puter architectures, has been empleyed in the PDP-10 im-
plementation of INTERLISP and recent versions of
MacLISP (as described by G Steele in Data Representa-
tiorn in MacLISP),

As for the efficiency, paged partitions and contiguous
partitions with variable boundaries are comparable; the
necessity of accessing the type table may lead to a slower
type checking, but the garbage collector need not recom-
pute boundaries and move data accordingly. A nice pro-
perty of this technique is its compatibility and smooth in-
teraction with timesharing operating systems that have
paged virtual memories. In fact, the page table used by
the operating system and the type table may be easily
combined.

Paged Partiions with Tagged Pointers
This technique is identical to the preceding one, except

Pl p2 P3 Pa PS | eee | Pn

aws—d

Figure 2: Paged partitions: a pointer to an object of type T2

P P2 | P3 Pa | P5 | ess | Pn
f 3
-

Tl T2 T3

LA N J
Figure 3: Paged partitions wure wuggea punmers: pointer to an
object of the type T2 and the representation of the integer 347.

- | [| ‘

ruY e

FuE > sF ue

Figure 4: Storage representation of an object created by MK-

FOO.
(- :l: :I

[1 r 1
L L.
(rUED (FuEy

FLU \l‘l.l:)

Figure 5: Storage representation of an object created by
MK=FQQ.

for the fact that all pointers to an object also contain an
explicit representation of its type T (see figure 3),
Tagged pointers have been adopted in Magmal ISP and
the IBM version of InterLISP. They are convenient in
computers whose word size exceeds the address length by
a few bits, which may comfortably contain the represen-
tation of T type, As an example, a typed pointer < T, A>
may be represented with a full word in the IBM
System /370 by reserving 24 bits for A and the remaining
8 bits for T. It is interesting to note that the LISP machine
(described by A Bawden, et al, in the LISP Machine Pro-
gress Report) implements typed pointers in this way.
Tagged pointers allow for a quick retrieval of the type
of an object. Moreover, short constants such as char-
acters, small integers, etc, may be directly represented in
the address part of a typed pointer (see figure 3). The type
T identifies them as immediate data not to be manipu-
lated as pointers {note that no private pages are needed to
store immediate data). The main drawback of this techni-
que is that information is somehow duplicated: in fact, a

30 August 197% © BYTE Publications Inc

type table is still needed by the garbage collector during
the compaction phase.

How To Get Rid of Most Terminating NILs

LISP (unlike ALGOL 68 and Pascal} does not contain
primitives for declaring new data types. However, 5
expressions are an effective tool allowing the user to pro-
gram new data types explicitly.

As an example, consider a record class named FOO
whose instances contain the fields FIE, FOE, and FUE.
The data type FOO may be programmed in LISP using
proper lists (ie: lists ending with NIL) as follows:

(DEFINE MK-FOO (FIE FOE FUE)

(LIST ' FOQ FIE FOE FUE))
(DEFINE I5-FOO (X)) {(EQ {(CAR X) ' FOO)
(DEFINE FIE-OF (X} (CADR X))
(DEFINE FOE-OF (X} (CADDR X))
(DEFINE FUE-OF (X) (CADDDR X))

The storage representation of an object of type FOQ is
shown in figure 4, It is immediately evident that this
representation is space consuming: in fact, the last cell
may be eliminated, and the pointer turned into a pointer
to < FUE> (see figure 5}). To this purpose, MK-FOQO and
the other functions may be redefined as follows:

(DEFINE MK=FOQO (FIE FOE FUE)

(CONS * FOO (CONS FIE (CONS FOE FUE))))
(DEFINE 15=FOO (X) (EQ (CAR X) ' FOQ))
(DEFINE FIE =OF {X) (CADR X))

(DEFINE FOE=QF (X) (CADDR X))
(DEFINE FUE=OF {(X) (CDDDR X))

Unfortunately, when the structures created by
MK =FQQ are printed by the standard output routines of
LISP {eg: for debugging purposes), their readability
decreases considerably. For instance, (MK-FOO 1 2 (MK-
FOOQ 3 4 5)) is printed as (FOO 1 2 (FOO 3 4 5)}, whereas
{(MK=FOQ 1 2 (MK=FQQ 3 4 5)} yields {FOO 1 2 FOO
3 4 . 5), thus introducing an irritating extra dot while
omitting one pair of significant parentheses,

It is possible to both maintain the clean formalism of
proper lists, and represent them efficiently (as indicated
in figure 5) by introducing the concept of NULLCDR
cells, To this purpose an additional bit, B, is associated
with each typed pointer, thus yielding a triple
<T,B,A>. When B is clear, <T,B A> represents a
typed pointer as usual. When B is set, <T,BA>
represents a LISP cell whose CDR is NIL {ie: a NULLCDR
cell) and whose CAR has type T and is located at address
A. NIL must be used explicitly in only a very few cases
(see figure 6).

With the introduction of NULLCDR cells, only proper

lists are allowed in Lambdino. This fact has several con-
sequences:

® Space is not only saved in the implementa-
tion of user defined data structures, but also
in the list representation of interpreted func-
tions. Most lists in purely applicative pro-
grams contain less than 3 or 4 elements,
hence the introduction of NULLCDR cells
allows a save of 25 to 33% in space.

® The absence of the LISP dot notation slightly
simplifies the [/O {(input/output} routines,

® The time required by CONS for checking the
type of its second argument is largely com-
pensated by the time saved using NULL (or,
better, NULLCDR) instead of NLISTP as a
predicate for terminating recursions. Also,
the functions CAR, CDR and NULLCDR
need not make a storage access when their
argument is a NULLCDR cell. This may lead
to a significant save of time. As an example,
the function:

(DEFINE EVLIS (X A)
(COND ({NULL X} NIL}
(T (CON5 (EVAL {(CAR X) A)
(EVLIS (CDR X) A

may be written more efficiently as:

(DEFINE EVLIS (X A)
(COND ((NULL X) NIL)
(T (EVLIS1 X A

(DEFINE EVLIS1 (X A)
(CONS (EVAL (CAR X) A)
{COND ((NULLCDR X} NIL)
(T (EVLIS1 (CDR X) ApW)

This improved version saves some storage accesses and
one recursive call to (and return from) EVLIS,

RPLACA and RPLACD (if they are implemented at
alll) generate an error when applied to NULLCDR cells,

Standard garbage collectors (including the Schorr-
Waite algorithm) are unaffected by the presence of
NULLCDR cells (pointers having the NULLCDR bit set
are treated exactly as usual pointers).

Lambdino Design Issues

The Lambdinc storage management system is a mix-
ture of contiguous partitions and tagged pointers with
NULLCDR bits. More precisely, the free storage is di-
vided into two variable partitions FIXLEN and VARLEN
{see figure 7),

FIXLEN may contain only fixed length data (ie: data
whose memory occupation depends only on their type).
There are three FIXLEN data types in Lambdino, namely
atoms, cells and interpreted closures. They are records
with two fields with the following characteristics:

® Atoms have a TOPVAL field which may be
any datum {(eg: a function definition) and a
PNAME field, which must be a string {pro-
perty list lovers will be allowed to use this
field for holding property lists in special ver-

o T | T 1 T 1 T o T

— Tt T
Figure 6: Tagged pointers with NULLCDR bit: the example
represents (A ((B) C)) and ((A)).

1N

VARLEN FIXLEN

VARALL FIXALL

Figure 7: Overall organization of the free storage in the Lamb-
dino storage management system,

b3 b2 ol b0 ADDRESS

Figure 8: Tagged pointers in the Lambdino storage management
system.

sions of Lambdino).

@ Cells have a CAR field which may be any
datum and a CDR field which must be a list,
though possibly empty.

® Interpreted closures have a FUN field which
must contain a LAMBDA and an ENV field
which contains an ALIST (they are similar to
FUNARG objects in LISP).

VARLEN is reserved for variable length data, ie: data
which must contain explicit information on their memory
occupation. There are three variable length data types in
Lambdino, namely strings, compiled functions and com-
piled closures:

® Strings are mainly used for representing
atom print-names,

® Compiled functions are binary code produc-
ed by the Lambdino compiler.

® Compiled closures contain a pointer to a
compiled function (which corresponds to the
FUN field of interpreted closures) and
pointers to the values of its free variables
(they correspond to the ENV field of inter-
preted closures).

A new datum is allocated by moving FIXALL to the left
or VARALL to the right according to whether it is a
FIXLEN or a VARLEN datum. When FIXALL and
VARALL collide, a standard compacting garbage collec-
tor is invoked to contract VARLEN to the left and FIX-
LEN to the right, The common length of FIXLEN data

August 1979 © BYTE Publications Jnc 31

TAG| |TAG 2| ADDRESS | ADDRESS 2

le— 1 BYTE —ole——— 4 BYTES ——

Figure 9: Representation of a cell in the Zilog Z-80 Development
System.

TAG| | ADDRESS | TAG 2 | ADDRESS 2

le— 4 BYTES —ole—— 4 BYTES — !

Figure 10: Representation of a cell in the IBM System 370.

allows the garbage collector to operate properly during
the compaction phase without knowing the type of the
objects. This guarantees an optimal use of the limited
memory of the host microcomputer.

Data are referenced by a special kind of tagged pointers
(see figure 8). The tag consists of four bits:

® b3 is used during the mark phase of the gar-
bage collector.

® b2 is the NULLCDR bit: when it is set, the
tagged pointer represents a NULLCDR cell.

® bl and b0 are used together with A to deter-
mine the type of a datum.

The datum type is determined by bits bl and b0 as
follows:

® When either bl or b0 is set, A is interpreted
as the address of a fixed or variable length
datum, according to whether A points into
FIXLEN or VARLEN. In this case the three
possible configurations of b1 and b0 are suf-
ficient to cover the three types of FIXLEN
and VARLEN data, respectively.

® When bl and b0 are both clear, A is to be in-
terpreted as an integer number. Integers con-
stitute the seventh data type of Lambdino
and are always represented as immediate
data.

Implementation Details

Our inplementation of Lambdino is supported by an
abstract stack machine SM which contains the following
primitives, in addition to standard arithmetic and control
routines (we assume that A is a nonnegative Lambdino
integer, V a nonnegative Lambdino integer less than 256,
P an arbitrary Lambdino tagged pointer).

(GETBYTE A) returns an integer representing the con-
tents of the byte located at address A.

(PUTBYTE A V) stores V into the byte located at ad-
dress A.

(GETCHAR) reads the next character from the input

32 August 1979 © BYTE Publications Inc

stream and returns its integer representation.

(PUTCHAR V) writes the character represented by V
into the output stream.

(GETTYPE P) returns the integer representation of the
tag of P.

(PUTTYPE P V) returns a new pointer having tag V
and the same address part as P.

The Lambdino storage management system, which is
entirely written in terms of these primitives, contains
parameters to define the size of addresses and to specify
whether or not two tags have to be packed into one byte.
When bootstrapping the system on a Zilog Z-80 Develop-
ment System, 16 bits for the representation of addresses
and the packed version of tags are recommended (see
figure 9), while 24 bit addresses and unpacked tags
should be used on an IBM System/370 (see figure 10).

Concluding Remarks

We have developed an experimental implementation of
Lambdino written in Lambdino itself. It includes a
Lambdino interpreter, an interpreter for the stack
machine SM and a compiler which translates Lambdino
functions into SM programs. All these Lambdino func-
tions have been debugged using a simple Lambdino inter-
preter written in MagmaLISP. As all functions of the
system eventually call the previously defined primitives,
the system can be (and will be soon) bootstrapped by
compiling it to the machine code of SM using it own com-
piler, and by macroexpanding the resulting code to the
machine language of the host computer. ll

BIBLIOGRAPHY

1. Allen, J, Anatomy of LISP, McGraw-Hill, 1978.

2. Bawden, A, Greenblatt, R, Holloway, J, Knight, T, Moon, D,
Weinreb, D, LISP Machine Progress Report, Memo Number 444,
Laboratory for Artificial Intelligence, Massachusetts Institute of
Technology, 1977.

3. IBM System/370 Model 168 Theory of Operation, Form Numbers
SY22-6931/2/3/4/5/6, 1BM Corporation, Poughkeepsie NY, 1974.

4. Landin, P, "The Mechanical Evaluation of Expressions,” Com-
puter Journal, volume 6, number 4, 1964, pages 308 thru 320.

5. Montangero, C, Pacini, G, Turini, F, **‘MAGMA-LISP: a Machine
Language, for Artificial Intelligence,” Proceedings of the Fourth
International Joint Conference on Artificial Intelligence, Tbilisi,
1975, pages 556 thru 561.

6. Moon, D, MacLISP Reference Manual, Laboratory for Computer
Science, Massachusetts Institute of Technology, 1974.

7. Quam, L, Diffie, W, Stanford LISP 1.6 Manual, Artificial Intel-
ligence Laboratory, Stanford University, 1972.

8. Reynolds, J, ‘"Definitional Interpreters for Higher-Order
Programming Languages,’’ Proceedings of the ACM National
Convention, 1972, pages 717 thru 740.

9. Steele, G, "'Data Representation in MacLISP,"” Memo Number
420, Laboratory for Artificial Intelligence, Massachusetts Insti-
tute of Technology, 1977.

10. Sussman, G, Steele, G, ‘SCHEME: an Interpreter for Extended
LAMBDA Calculus,” Memo Number 349, Laboratory for Arti-
ficial Intelligence, Massachusetts Institute of Technology, 1975.

11. Teitelman, W, INTERLISP Reference Manual, Xerox Palo Alto
Research Center, 1975.

12. Urmi, J, INTERLISP/370 Reference Manual, Department of
Mathematics, Linkoeping University, 1976.

13. Z-80 Development System Hardware User’s Manual, Zilog In-
corporated, Cupertino CA, 1977.

William A Kornfeld
MIT Artificial Intelligence Laboratory
545 Technology 5q
Cambridge MA (2139

LISP was first developed for use in artificial intelligence
research, the branch of computer science concerned with
understanding the nature of intelligent activity by
simulating it on a computer, LISP has proved so suc-
cessful that it is the only high level language currently
supported at the MIT Artificial Intelligence Laboratory.
Much of its success is due to its syntax and data structures
which make it a convenient base upon which to imple-
ment very high level special purpose languages.

One very important class of these high level languages
is the so-called pattern-directed invocation languages.
They made their first appearance in about 1970 with the
Planner system at MIT. Since then, dozens of these
languages have been built at sites around the world with
different sets of features. The basic concepts involved can
be traced back to the work of such logicians and
philosophers as Frege, Russell, and Carnap in the earlier
part of this century. They were concerned with represen-
ting and manipulating facts about the world. They began
with atomic facts and described methods that could be
used to deduce new facts from old. Pattern-directed invo-
cation languages treat facts, represented as LISP lists, as
elementary data types and usually collect them together
into one or more data bases. Procedures can be written to
derive new facts {or to decide if it is possible to derive a
given fact) from those already in the data base.

In this article we will be mostly concerned with the
basic concepts involved in pattern-directed invocation
languages. Toward the end, a brief summary is given of
some of the more advanced ideas that have found their
way into these languages, Special attention is given to the
problem of implementing these languages in a LISP
system. Much of this implementation is surprisingly

About the Author:

William Kornfeld is @ graduate student at the MIT Artificial Intelli-
gence Laboratory. He is currently doing research in the semantics of
pattern-directed invocation and extensions of these ideas to parallel
processing.

k! August 1979 & BYTE Publications Inc

straightforward, once the basic concepts of LISP are
understood. In fact, the task of implementing a system
almost identical to the one described here was given to
students in a beginning programming course at MIT. The
students had had only a few weeks experience with LISP,
and a total programming experience of a couple of
months, but they had little problem with the assignment,

Retrieval of Information by Pattern

Suppose we wanted to represent the knowledge, inside
of our computer, that Lena is the mother of Paul. This
sentence contains three important items; the two people,
Lena and Paul, and the relationship — one being the
mother of the other. This fact can be represented using
the data structures of LISP as a list with three elements.
We are free to choose any arrangement of the items in the
list; placing the relation {mother-of) in the first, second,
or third position of the list. I prefer to keep to the LISP
{and mathematical) conventions of putting the relation-
ship first, and having the arguments follow. This fact will
be represented as:

(MOTHER-OF LENA PAUL)

We could have many such facts similarly represented by
list structure inside of our machine. Some examples are:

(MOTHER-OF LENA FAY)
(WIFE-OF LENA SAM)
(MOTHER-OF FAY ROBERT)
(MOTHER-OF FAY ARLENE}
(FEMALE LENA)
(FEMALE FAY)
(MALE ROBERT)
(MALE SAM)

We call each of these facts an assertion. Assertions are
pieces of arbitrary list structure (as far as the LISP inter-
preter is concerned), So that they may be used in our pro-

assertion is in the data base. To check for the existence of
this particular assertion, we would execute:

(RETRIEVE * (MOTHER-OF FAY ROBERT))

One of the nice features of LISP is that it is so easily
extensible. It is possible to build languages on top of the
basic LISP system that deal with higher level concepts as
if they were primitives. The functions ADD, REMOVE,
and RETRIEVE are three operations in a language we are
building to manipulate assertions. So far, the language is
very simple. The function RETRIEVE, for example, can
only ask about specific assertions.

There are many more interesting questions that we
would like the system to be able to answer, such as “Who
is the mother of Robert?” In terms of these assertions this
question could be answered by finding an assertion that
has three elements, the first and third being the atoms
MOTHER-OF and ROBERT, and the second element
being anything at all. One way of saying this to the
machine is by using a pattern such as:

(MOTHER-OF 7 ROBERT)

where the 7s represent place holders, meaning that we
will take anything in their positions.

One function, RETRIEVE, is modified to go down the
list of assertions in our data base and compare the pattern
with the individual assertions. If an assertion and a pat-
tern match, the assertion will be returned as the value of
RETRIEVE. Matching means that atoms in corresponding
positions are the same, except for 7s in the pattern that re-
quire only that something be in the corresponding posi-
tion in the assertion. Using our data base, the pattern
given above will only match one assertion:

(MOTHER-OF FAY ROBERT)

By taking the second element of this list we will have
found the mother of Robert. In general, more than one
assertion in the data base can match a given pattern; it
just happens that a person has only one mother, so we
would not expect more than one assertion to tell us the
mother of Robert. Suppose our question is “Who are the
children of Fay?" We can make a pattern that represents
this question by specifying a MOTHER-OF assertion
with FAY in the mother position, and a 7 in the child
position:

(MOTHER-OF FAY ?)
The function RETRIEVE actually returns a list of all the
assertions that match the given pattern so that it can

accomodate the case where there is more than one match.
Evaluation of the form:

(RETRIEVE * (MOTHER-OF FAY 7))
should return:

((MOTHER-OF FAY ROBERT)
(MOTHER-OF FAY ARLENE))

38 August 1979 © BYTE Publications Inc

and can be further analyzed by a LISP function to extract
the names of Fay’s children.

The examples of assertions presented thus far have
been in the form of a list of atoms. Assertions can be arbi-
trary pieces of list structure. The use of nested lists is an
important tool for representing the structure inherent in
the knowledge being represented. For example, we may
wish to represent facts about the courses students have
taken at a university. There might be one assertion for
each student for each term he or she is registered. A pos-
sible record would be:

(COURSES BARBARA (SPRING 1978)
(PHYSICS-2
ALGEBRAIC-TOPOLOGY
AESTHETICS))

The first element of the list designates it as a record of
courses taken by a given student for a given term. This
assertion expresses the fact that Barbara was registerd for
the Spring term of 1978 and took three courses: Physics
II, Algebraic Topology, and Aesthetics. With records of
this kind and our pattern matcher we can ask various
kinds of questions and have RETRIEVE return the list of
assertions that pertain to the problem. Here are some
examples:

“Who was registered for courses in 1976?"
(RETRIEVE (COURSES 17 (7 1976) 7))

“What courses did Sam take during his college career?”
(RETRIEVE " (COURSES SAM 1 7))

“What courses did Barbara take in Spring of 1978?"
(RETRIEVE “ (COURSES BARBARA (SPRING 1978)?))

There are certain questions that the simple pattern mat-
cher we have described cannot address, such as “Who
was registered for Algebraic Topology in the Spring of
19787". More sophisticated schemes for pattern matching
will be described later. A simple pattern matcher that can
handle 7’s in patterns is very easy to write using the recur-
sive control structures of LISP. It is described in the
“Discrimination Networks” textbox.

Simple Deductions

There are a number of facts that are not explicitly con-
tained in the data base of family relations described
above that people can easily deduce. We might want to
be able to answer the question “Who is the grandmother
of Robert?”. This question is posed to the system by the
function call:

(RETRIEVE * (GRANDMOTHER-OF 7 ROBERT))

The data base contains no explicit GRANDMOTHER-
OF assertions, so the function RETRIEVE, as defined thus
far, would fail. The data base does contain enough facts
that it is capable of answering this question. Looking at
the assertions given earlier it is obvious that the answer is
Lena. How do we arrive at this? First we find a

Text continued on page 42

Text continued from page 38:
MOTHER-OF or FATHER-OF assertion that gives a
parent for Robert. Here we end up with:

(MOTHER-OF FAY ROBERT)

Then we take that parent (eg: FAY) and find a MOTHER-
OF assertion with that parent in the child position,
giving:

(MOTHER-OF LENA FAY)

The individual in the mother position of that assertion
is the desired grandmother. To incorporate this kind of
knowledge in the system, the language is augmented with
procedures that explain how to derive certain facts if they
are not in the data base. There are two GRAND-
MOTHER-OF derivation procedures; one that checks for
mothers of fathers, and one that checks for mothers of
mothers. They might be expressed as:

(TO-DERIVE (GRANDMOTHER-OF X 7Y)
- (FIND (MOTHER-OF 7Z Y))
(FIND (MOTHER-OF X Z)))

(TO-DERIVE (GRANDMOTHER-OF X 7Y)
(FIND (FATHER-OF ?Z Y))
(FIND (MOTHER-OF X Z)))

The first procedure looks for the mother of the person
in the third slot (eg: the grandchild), and then her
mother; the second procedure for the father of that per-
son, and then his mother. We have added a little more
complexity to the simple patterns described earlier. These
patterns have wvariables associated with the question
marks. The first pattern in these procedures expresses, in
effect, what the procedure can do. It says “If you want to
determine if someone is the grandmother of someone
else, try the following.” In order for the rest of the pro-

cedure to know who these people are, it must bind the
names to variables. RETRIEVE has to be extended again.
In addition to checking the data base for already known
facts, it checks a library of procedures for those whose
patterns match the request, trying them one at a time.
When we execute the RETRIEVE function, trying to find
the grandmother of Robert, the pattern:

(GRANDMOTHER-OF ? ROBERT)

is matched against the head pattern in the TO-DERIVE
construct:

(GRANDMOTHER-OF X 7Y)

The match is successful. Y will get the value ROBERT,
and X the value 7 (really no value at all, just a place
holder). The first line causes the system to find an asser-
tion that has MOTHER-OF in the first position and
ROBERT, the value of Y, in the last line. Whatever is
found in the second position is assigned to the variable Z.
For our particular data base, the assertion:

(MOTHER-OF FAY ROBERT)

will be found and Z will get the value FAY. When the
next line is executed, a MOTHER-OF assertion is looked
for with FAY in the third position, and anything at all in
the middle. (Remember X has the value 7.) The assertion
it will find is:

(MOTHER-OF LENA FAY)
What we have just done is derived the fact:

(GRANDMOTHER-OF LENA ROBERT)

Here is a procedure to determine whether or not one in-
dividual is the uncle of another:

WIERG),
WO RIS

had one of them returned for repalr. Price: $99.

you can plug any of Motorola’s 40 or 24-pin interface chips.

now; we'll let you know when we are ready to ship.

the video people.

WE'RE NOT JUST THE VIDEO PEOPLE

It's true we buiit our reputation on high precision video digitizers, but that's not all we offer.

Take B-08 for example, a 2708 EPROM Programmer for the SWTPC 6800. All programming voltages are generated on board and controlled by a

safety switch with an LED Indicator. An industrlal quality Textool socket and extend

retrieval. The source Ilstlnf of U2708, our utmtgsto test, burn verify and copy EPROMS is Included.
ol

1f you're programming EPROMS a lot, you might take a look at our PROM System Board. PSB-08 features space for up to eight 2708 EPROMs
and 1K of high-speed scratchpad RAM. The EPROMs are dip-switch addressable for convenience. An exclusive /O select option permits the
user to move the 1/0 locations In memory to any block in EPROM and expand to 56K bytes of contiguous user RAM. Price: $118.95

UIO is another of ou;‘popular 8800 products; It's just the \hlng for custom Intertaces. UIO has space for a 40-pin wire wrap socket into which
The data and control lines are connected to the approrrlnto edge connector pins
with all other bus connectlons brought out to a 16-pin socket pad. Build circuits In half the time with UiO. Price: $24.95
One of our most exciting new products Is a home controller system. i1t won't cost several hundred dollars and you won't need any electrical
englneerlnF experience to use it. By mid-summer we will have units available for the S-50, S$-100, TRS-80 and Apple computers. Don’t write us
e

Of course we still make video gear. The DS-80 for S-100 computers and the DS-88 for 6800 machines are in stock. Our first production run for
the Apple wiil be avallable In early July. So even though we think video is one of the most creative areas opening up for micros, we're not Just

P.0. BOX 1110 DEL MAR, CA 82014 714-756-2687

boar helght allow effortiess EPROM Insertion and
-08 was our first product and we’ve never

42 August 1979 © BYTE Publications Inc

Circle 231 on inquiry card.

uter
Professionals

A maijor division of a Fortune 50 company has
several openings in its Software Department.
These openings are a result of expansion
within our modern Midwest facility. We are
currently seeking professionals in the areas
of programming, systems analysis, computer
design, software engineering and computer
system engineering. A background or
knowledge or interest in any of the following
areas may qualify you to become a member
of our industry-leading team:

Mini Computers
Micro Processors
Real-time Control Systems
Performance Modeling
Operating Systems
Queuing Theory
Structured Software Design
Large Systems Development
Custom Software Design
Software Utilities
Hardware/Software Trade-Offs
Data Base Management

~ Software Maintenance

¢ Distributive Processing
Language Development

This is an excellent opportunity for you to join
a company using state-of-the-art technology
in a total system development environment.

Our benefit package including group in-

surance, company paid dental plan, tuition
aid, liberal vacation and holiday schedules,
stock-option plan, relocation plan, etc. . . .is
among the best in the industry, and the salary
structure we have to offer is an incentive for
you to explore our opportunities.

Qur working environment is conducive to pro-
fessional growth and it is geared to the results
oriented individual. Candidates interested in
any of these exciting areas, please rush a
resume to:

Dept. R W 0801
500 N. Michigan Ave., Suite 544
Chicago IL 60611

Equal Opportunity Employer M/F

August 1979 © BYTE Publications Inc

The system chains backwards through
facts until it finds some simple ones it
knows.

(TO-DERIVE (UNCLE-OF X 7Y)
(FIND (SIBLING ?Z X))
(FIND (CHILD-OF Y Z)))

“To show one person is the uncle of another, find a per-
son that is a sibling of the first and a parent of the
second.”

This procedure would work if we had SIBLING and
CHILD-OF assertions in the data base. Since we don't,
we must specify procedures that can determine these
things from the information that is in the data base:

(TO-DERIVE (SIBLING X 7Y)
(FIND (MOTHER-OF 1Z X))
(FIND (MOTHER-OF Z Y)))

“To determine if one person is the sibling of another, see
if they have the same mother.” .
(TO-DERIVE (CHILD-OF 7X ?7Y)

(FIND (MOTHER-OF Y X)))

“To determine if one person is the child of another, see if
the second is known to be the mother of the first.”

(TO-DERIVE (CHILD-OF X 7Y)
(FIND (FATHER-OF Y X)))

“To determine if one person is the child of another, see if
the second is known to be the father of the first.”

There are now two different procedures for deciding
CHILD-OF relations as was the case with the earlier
GRANDMOTHER-OF relation. If the system doesn't
already have the answer to the question in its data base, it
will try one, and if that fails, it will try the other.

Our set of assertions does not happen to contain
FATHER-OF assertions, so they too should be specified
by procedures. We do have MOTHER-OF and
HUSBAND-OF assertions. These are sufficient:

(TO-DERIVE (FATHER-OF 17X 1Y)
(FIND (MOTHER-OF 72 Y))
(FIND (HUSBAND-OF X Z)))

“To determine if one person is the father of another see if
the second person’s mother is the husband of the first.”

The control used by this system is often referred to as
backward chaining. Determining if someone is the uncle
of someone else may result in attempts to determine
CHILD-OF relations that may then result in determining
FATHER-OF and then HUSBAND-OF relations. The sys-

tem chains backward through facts until it finds some
simple ones that it knows.

The TO-DERIVE procedures are similar in concept to
subroutines in many other computer languages. The dif-
ference is that subroutines are usually called by name. If 1
want to compute a cosine I call the subroutine COS. Pro-
cedures in these languages are invoked by a pattern that
indicates what they can accomplish. The procedure that
determines if one person is the uncle of another has no
name; it indicates by its pattern (UNCLE-OF 7X ?7Y) that
it is capable of determining whether or not one person is
the uncle of another. This distinction is an important one.
As shown, more than one procedure may have the same
pattern. This will not disturb the system. It will try one,
and if that fails, it will try others until it finds one that
works. One TO-DERIVE procedure can serve several
purposes. The UNCLE-OF procedure is capable of
answering three different kinds of questions:

“Is Harold the uncle of Robert?"”
“"Who are the nephews of Harold?"
“Who are the uncles of Robert?”

Better Pattern Matchers

The ease with which concepts can be expressed in the
language depends significantly on the sophistication of
the pattern matcher. The pattern matcher described so far
is of the simplest kind. Many things we would like to say
are difficult or impossible to do with it. There is no such
thing as an “ideal pattern matcher.” One can always
come up with more sophisticated ways to create patterns.
This section is devoted to discussing two fairly well
known extensions known as unpack and multisets.

Earlier we were concerned with a data base of asser-
tions representing information about students taking
courses at a school. The assertions were of the form:

(COURSES BARBARA (SPRING 1978)
(PHYSICS-2
ALGEBRAIC-TOPOLOGY
AESTHETICS))

and it was impossible to phrase questions of the form
Who took Algebraic Topology in the Spring of 19787
The reason that this is impossible to indicate is that the
atom ALGEBRAIC-TOPOLOGY can occur as any ele-
ment of a list with zero or more atoms in this list, before
and after it. The problem can be dealt with by the intro-
duction of the unpack operator. This operator,
represented by an exclamation point !, is placed before
the question mark variable. A ? without a | matches ex-
actly one object. A 17 combination will match zero or
more objects. Here are some examples of patterns:

(FOO 17 BAR) matches any list that begins with the atom
FOOQO and ends with the atom BAR:

(FOO BLATZ BAR)
(FOO TOM LARRY BAR)
(FOO BAR)
(FOO 17) matches any list with FOO as the first element:

46 August 1979 © BYTE Publications Inc

(FOO)
(FOO BAR)
(FOO BAR BLATZ)

(7 17 FOO 17) matches any list that contains the atom
FOO as the second or later member:

(XYZ FOO)
(XYZ ABC FOO TOM LARRY)

With the unpack operator the question “Who took
Algebraic Topology in the Spring of 19787 can be phra-
sed;

(RETRIEVE ' (COURSES 7 (SPRING 1978)
(1TALGEBRAIC-TOPOLOGY 17)))

Of course, if we were using the unpack operator inside
TO DERIVE procedures, the 17 would be followed by a
variable that gets bound to what it matches, just as the ?
variables.

Another question we cannot ask with the simple pat-
tern matcher is “Who took Algebraic Topology and
Aesthetics in the Spring of 19787” We cannot ask this
question because whenever we have a list there is an in-
trinsic order to its elements. To be sure of covering all
cases we would need two patterns:

(COURSES 7 (SPRING 1978)
(17 ALGEBRAIC-TOPOLOGY 1?
AESTHETICS 1?))

as well as:

(COURSES ? (SPRING 1978)
(17 AESTHETICS 7
ALGEBRAIC-TOPOLOGY 7))

If there were three courses then six different patterns
would be necessary. We need a more general solution. To
handle the case where matches should be made regardless
of the order of the elements, multisets are introduced. A
multiset will be denoted by curly brackets { and }. A
multiset is said to match a list if each of its elements
match a corresponding element of the list (?s and !7s are
allowed). Here are some examples of multisets:

{A B C} will match any list containing exactly the three
elements A, B, C:

(ABQ)

(CAB)

(BC A)

{A B 7} will match any three element list containing A
and B:
(BCA)
(BAR A B)
(A X B)

{A B 11} will match any list containing A and B:

(B A)
XBYZAYV)

{B B 17} will match any list containing two or more
occurrence of B:
(XB AB)
(B W S FOO B BAR)

The question “Who took Algebraic Topology and
Aesthestics in the Spring of 19787” can now be phrased:

(RETRIEVE * (COURSES 7 (SPRING 1978)
{ALGEBRAIC-TOPOLOGY
AESTHETICS 1?})

History

The basic concepts of pattern-directed invocation
originated in the PhD thesis of Carl Hewitt at MIT in
1969. The original Planner language that was the subject
of his thesis was never implemented. A cut down version
of Planner, roughly equivalent to our language with
ADD, REMOVE, and RETRIEVE, was implemented in
1970 and called Microplanner.

Microplanner was used as a tool in subsequent research
in artificial intelligence at MIT. The best known system
to make use of Microplanner was the SHRDLU program
of Terry Winograd. SHRDLU was a program about a
simulated world consisting of a table, variously colored
toy blocks, and a box. A person could type in English
language questions and imperatives to which the system
would take an appropriate action, such as: “What blocks
are in the box?"” or “Pick up the big red block.” Assertions
were used to store knowledge about the current state of
the world, such as:

Main/Frames ... $200
Main/Frames ... $200

» 14 Basic Modeis Available

* Assembied & Tested

¢ Power Supply:
8v@15A, t 16v@3A

* 15 Slot Motherboard
[connectors optional)

e Card cage & guides

* Fan, line cord, fuse, power
& reset switches, EMI filter

» Bv@30A, t 16v@10A v —
option on some models 1 B

mounted
from $200

8" Floppy Main/Fframe
(includes power tor drives
and mainframe] from $365

Write or call for our
brochure which includes our
application note:
‘Building Cheap Computers’

INTEGRAND

8474 Ave. 296 » Visalia, CA 93277 « (209) 733-9288
We accept BankAmericard/Visa and MasterCharge

48 August 1979 © BYTE Publications Inc Circle 177 on inquiry card.

(IN PYRAMID BOX)

Procedures implemented simple reasoning involved
with answering questions and constructing plans to carry
out commands. Microplanner proved to be quite limited
in its capabilities and spawned several immediate suc-
cessors that embodied sophisticated improvements.

QA4, developed by Rulifson and associates at the
Stanford Research Institute, introduced the notion of
multiple contexts. Contexts are a way of having more
than one data base inside the machine, each representing
a different aspect of the problem at hand. One context
might model (ie: contain assertions pertaining to) the
state of the world at some point of time in the past, while
another might model the current state of the world.
Another common use of the context mechanism is to
reason about hypothetical worlds, collections of asser-
tions similar but not identical to the current one. A
hypothetical world might represent what would happen
if the machine took some action.

Conniver, developed by Sussman at MIT, introduced
certain notions of control structure that seemed lacking in
the original Microplanner. The system has a data base of

facts and procedures that are capable of deducing facts

that are not explicitly in the data base. When a call is
made to RETRIEVE, it is entirely up to the system to
choose which procedures to try, and in what order to try
them. The simple minded scheme picks one procedure
and tries it. If this does not work it picks another. There
is no way in Microplanner that a program can have con-
trol over the order in which procedures are chosen. Con-
niver supplies facilities that allow the program to have
access to possible choices and then order or otherwise
process them.

AMORD, developed by deKleer and associates at
MIT, keeps a trace, by means of justifications, of how
each fact in the data base was derived. If a fact is deter-
mined to be no longer valid, all facts that derived from it,
as determined from the justifications, are automatically
removed by the system. This facility allows a program to
conveniently change certain premises and automatically
update the rest of the data base to reflect this change.

ETHER, developed by the author, allows the program
writer to let many operations in the program be done in
parallel. The program can maintain conflicting world
models (ie: collections of assertions) that can be reasoned
about concurrently.

A General Information Storing Tool

These languages have been developed explicitly as arti-
ficial intelligence research tools. We have not discussed in
any detail the issues involved in modeling a situation in
the world and reasoning about it. The examples given are
meant to suggest the possibilities for pattern directed in-
vocation as a more general tool for storing facts. The
need to store facts (ie: to create data bases) comes up in
all sorts of situations. As computation becomes cheaper,
more and more stores of information will move from
paper to electronic storage media. There are, of course,
more efficient ways to store information than by
representing them in list structure in a LISP environment.
The disadvantage of some loss of efficiency seems to be
far outweighed by the increased flexibility in accessing
the information.m

Figure 1: A simple time-hase generator for an interrupt-driven real-time clock.

tems use a combination of these two
methods. A clock circuit, such as that
in figure 1, provides a time “tick” to
the processor's nonmaskable inter-
rupt line. This can be every &0th,
10th, or 1 second, as suggested in this
schematic, When the computer ack-
nowledges the interrupt, it first saves
all registers from the program it was
executing, and then services the real-
time interrupt. Frequently the First
action is to increment an internal
counter which keeps track of elapsed
time. Usually it will be a value equi-
valent to the total number of clock
ticks, whether in seconds or milli-
seconds. Once this regular interval
has been established, it is easy for the
computer to scan all status flags from
real-time devices. The addition of
more real-time activities for the pro-
cessor does not entail multiplying the
number of interrupt lines, but rather
it simply entails placing another
status flag on the list of those to be
checked on each clock tick.

The choice of a totally interrupt-
driven real-time system, a combina
tion scan and interrupt type, or a
total scanning system is dependent
upon the quantity of real-time opera-
tions and their frequency. An inter-
rupt-driven system can process infor-
mation Faster than the same system
configured for real-time scanning.

Real Time Applications for
Personal Computers

So far | have emphasized the
system attributes, but nowhere have |
discussed applications, particularly

personal computing applications.
Clock divisions down to milliseconds
sound great and make interval timing
extremely accurate, but I doubt that
the majority of home computerists
would want something that complex
to integrate into their system, If my
mail is any indication of this, they
would prefer the design of a real-time
clock which can be directly applied in
home control applications, Automa-
tically turning on the percolator at
6:45 AM would be far more stimu-
lating than a high-speed data acquisi-
tion system which few would need.

e g

na d

ey 1
3 (offee Ferk
4 Water Softerer
5 Qutside Lights

£ Thermastat Dn
7. Bedroom TV
8. Gehumidifier
FRECENT TIME

HAH

GRELH

Build a Real-Time Clock
Essentially, the kind of real-time
system which might appeal to per-
sonal computer users is one with a
resolution of perhaps 1 minute rather
than 1 ms. It should be read directly
in hours and minutes like a 4- or
6-digit clock and not just total counts.
A direct benefit of low reselution is
reduced overhead. The computer
does not have to acknowledge the
clock update or scan status flags as
often. It may not seem like much of a
time savings, considering instruction
execution speeds of 1 us. However,

LRCTIATIOG PRLSENT STRTE
elg N

3B

e

B4

733

53

90

188

—73 Hours 47 Minutes—-

FHEE

Photo 2: A typical application of a real-time clock. This display is from vy rompnter-

controlled security systemn,

August 1972 - BYTE Publicavens Inc 51

Figure 7: Flowchart of the program given
in listing 1.

clock program in continuous display
mode and adjust the clock as I read it.
If a battery back-up capability is add-
ed, the 2 TTL automatic set gates
should be disconnected. When the
computer is powered up, random
data can appear on bits by and b,,
accidently causing it to enter the set
mode. This is not a problem on the
input. While a 4-digit, 24-hour clock
is quite enough in my application {an
example is shown in photo 2}, there
are those who need a second designa-
tion, Substituting an MMS5311, the s,

START

*DESIGNATES LOGIC
BOXES WHICH MAY
GEQUIRE INTERNAL
TIME DELAYS DEPENDING
UPON PROGRAM
EXECUTION SPEED

DESIGNATE DESIRED
PRESET TIME

H = MQURS
M:MINUTES

|

TURN ON 5LO0W .

SPEED SET

|

READ MINUTES

e ————— —
| 1S DESIRED PRESET 1 YES LET DESIGNATED
GREATER THAN —- » PRESET H BE

LCURRENT READING | HeH=1
NO
1 |
- !
READ HOURS
t1s cumment |
N
b READING EQUAL b—— » o TorN N
| YO PRESET M
L i
YES
READ MINUTES
| s cumrent |
NO
: READING EQUAL |- — — oW BT
L _TO PRESET M]

YES

Figure 8. Flowchart for the automatic

reset routine.

and s, digit-enable line can be added
as 2 more parallel input bits and
treated exactly as the present circuit,
or binary encoded to reduce input
bits, as shown in figure 5b. This
method will require a slight software
change but should be an equally
viable approach. The present pro-
gram in listing 1 executes in approxi-
mately 50 ms when used with Micro
Com 8 K Zapple BASIC, but it works
equally well with a machine language
routine.

Whatever your final configuration,

I am sure you will tind that accurately
timed control outputs are a definite
advantage on any system. And there
is no reason for the hardware of any
interface to constrain the operator’s
choice of software interaction if it is
not dictated by the frequency of
events themselves. m

Next month the topic of "Clarcin's Cir-
cuit Cellar” will be various foystick inter-
faces.

August 1979« BYTE Mublicalions Ine 59

~ 1sunns, i-line computing service available via
local phone lines in 25 major metropolitan areas,
ltis available from 6 p.m. to 5 a.m., local time, daily
as well as all day on weekends and most holidays.

MicroNET service is provided by the Personal Com-
puting Division of CompuServe Incorporated, one
of the nation’s leading time sharing computer serv-
ice companies. We are a multi-million dollar com-
pany serving many Fortune 500 companies and
large government agencies for the last ten years.

« FIAGUCAal personal programs

» Ability 1o communicate with other small computer
uestrs

* Opportunity 10 buy and sell sofiware through the net-
work.

+ Time-saving business applications

» Educational aids

+ Essy-lto-use programming tanguages

* Advanced programming and diagnostic tools

*« Games (Including many multi-player mind-bogglers)

tne rInimum requirement IS a 1erminal witn com-
munications interface and a telephone. However,

the full capabilities of the MicroNET service will be
realized by using a microcomputer with modem
interface and a modem set for originate’” mode at
300 BAUD.

By using our equipment during off-peak hours, we
can keep our rates extremely reasonable, There is
a one-time charge of $9.00 to sign up. Then you will
be billed (via Master Charge or Visa cards only) at
the rate of $5.00 per hour. Minimum charge per
access is $1.00 for up to 12 minutes of computer
time.

Yes, up 1o 54,000 bytes of on-line file storage for up
to seven days between accesses. For your protec-
tion, we will disconnect automatically if your per-
sanal computer is left unattended for 15 minutes.

wooda. 2ena In we coupon. You'll receive more de-
tailed information and an application. When you re-
turn the application, including your Master Charge
or Visa number (because we bill electronically to
help keep the price low), we'll send your user iden-
tification number and password, user guide, and
local phone number so you can put the power of
our large system to work for your small computer.

C T . 0

| CompuServe |
| Personal Computing Divislon |
s
Send me information on MicroNET.
l |
N
l A::Inr:ss I
[City/State/Zip I
YicrolE]
N e e vy

Cities with local phone service access: Akron, Atlanta, Chicago, Cincinnati,
Cleveland, Columbus, Dallas, Dayton, Denver, Detroit, Houston, Indianapolis, Los
Angeles, Louisville, Memphis, West Caldwell {NJ), New York, Philadelphia, Pitts-
burgh, San Francisco, Stamford (CT}, St. Louis, Toledo, Tucson, Washington D.C.

Circle 46 on inguiry card,

BYTE August 1979 65

Part 3: A Comparison of the Brain

In parts 1 and 2 we have shown
how a neurclogical model called the
Cerebellar Model Arithmetic Com-
puter (CMAC) can compute func-
tions, recognize patterns, and decom-
pose goals. We have also shown how
a crosscoupled hierarchy of CMACs
(see figure 1) can memorize trajec-
tories, generate goal directed pur-
posive behavior, and store an internal
model of the external world in the
form of predicted sensory data. In
this third article we will attempt to
show how this structure and its capa-
bilities can give rise to perceptual and
cognitive phenomena.

The fact that the mathematical
details of the CMAC model were
derived from the cerebellum, a por-
tion of the brain particularly regular
in structure and hence uniquely
suitable for detailed neuro-
physiological analysis, does not mean
that the results are inapplicable to
other regions of the brain as well. The
basic structure of a large output cell
(sometimes called a principal, relay,
or projection neuron) served by a
cluster of local interneurons is quite
typical throughout the brain. Such

About the Author:

Dr James 5 Albus worked for NASA from
1957 to 1972 designing optical and electronic
subsystems for over 15 sparecraft. and for one
year managed the NASA Artificial Intelligence
Program. Since 1973 he has been with the Na-
tonal Bureau of Standards where he has re-
ceived several awards for his work in advanced
computer control systems for industrial robots,
He has written a survey article on robot
systems for the February 1967 issue of Scien-
tific American and his Cerebellar Model
Arithmetic Computer won the Industrial
Research Magazine IR-100 award as one of the
100 most significant new products of 1975,

66 August 1979 & BYTE Publications [nc

and our Model

James Albus
Project Manager
United States Dept of Commerce
National Bureau of Standards
Washington DC 20234

clusters commonly receive input from
a large number of nonspecific neural
fibers similar to the mossy fibers in
the cerebellum. In many instances
they also receive specific inputs which
are more or less analogous to climb-
ing fibers. As we might expect, there
are many differences in size and shape
of the corresponding cell types from
one region of the brain to another.
These reflect differences in types of
computations being performed and
information being processed, as well
as differences in the evolutionary
history of various regions in the
brain. Nevertheless, there are clear
regularities in organization and
similarities in Ffunction from one
region to another, This suggests that,
at least to a first approximation, the
basic processes are similar.

The implication is that the general
model of information processing
defined by CMAC (the concept of a
set of principal neurons together with
their associated interneurons trans-
forming an input vector S into an out-
put vector P in accordance with a
mathematically definable relationship
H) may be useful in analyzing the
properties of many different cortical
regions and subcortical nuclei. This is
particularly true since the accuracy,
resolution, rate of learning, and
degree of generalization of the
CMAC H function can be chosen to
mimic the neuronal characteristics of
different areas in the brain.

Hierarchical Contro}

The idea that the central nervous
system, which generates behavior in
biological organisms, is hierarchically
structured is an old one, dating back
considerably more than a century,
The analogy is often made to a
military command structure, wherein
many hundreds of operational units
and thousands, even millions of in-
dividual soldiers are coordinated in
the execution of complex tasks or
goals. In this analogy each computing
center in the behavior-generating
hierarchy is like a military command
post, receiving commands from
immediate superiors and issuing se-
quences of subcommands which
carry out those commands to subar-
dinates,

Feedback is provided to each level
by a sensory-processing hierarchy
which ascends parallel to the
behavior-generating hierarchy, and
which operates on a data stream
derived from sensory units which
monitor the external environment as
well as from lower level command
centers which report on the progress
being made in carrying out their sub-
commands, Feedback is processed at
many levels in this ascending hierar-
chy by intelligence analysis centers
that extract data relevant to the com-
mand and control functions being
performed by the behavior-gener-
ating module at that level,

Each of these intelligence analysis
centers makes predictions based on
the results expected (ie: casualties,
rewards, sensory data patterns) as a
consequence of actions currently be-
ing taken. The intelligence centers
then interpret the sensory data they
receive in the context of these predic-
tions. For example, in military in-

Circle 99 on inquiry card.

When you
want to
makea

. _good

impression,

NGLLLE
SRACAEIAR

@
ADaisy.
Diablo invented the Daisy Wheel.
Which is why today, more people

ick one of over 100 different Diablo
F)aisy Wheels when they want print
quality at its finest.
So, the next time you want to
make a good impression, pick our daisy
and you're sure to look your best.

Diablo Systems
XEROX

Diabld® and Xerox are registered trademarks of
XEROX CORPORATION.

74 August 1979 © BYTE Publications Inc

exist in registration at several dif-
ferent levels of the visual information
processing hierarchy so as to make
possible the extremely sophisticated
visual recognition tasks which our
brains routinely perform. These dif-
ferent types of images interact,
sometimes reinforcing each other so
as to confirm a recognition, and
sometimes contradicting each other
so as to reject one possible interpre-
tation of the visual input in favor of
another,

Crosscoupling

Cross links from the descending
hierarchies of motor-generating
modules provide the many different
levels of contextual and predictive in-
formation required at various stages
of the pattern recognition or sensory
analysis process. In the visual hierar-
chy, as well as in all other sensory-
processing hierarchies, context vari-
ables R; may define expected values of
the E; vectors. This implies that the
addresses P; and X; have stored data
from previous experiences when what
is currently recalled as R; was ex-
perienced as E;. In this case the recall-
ed context R; is essentially a stored
image, or map, which is accessed by
an associative address created by the
behavior-generating hierarchy being
in a state more or less similar to that
which existed when the remembered
experience (ie: the map) was stored.

This implies that the sensory data
processing hierarchy is a multilevel
map (or template) matching process,
and that in order to generate these
maps the behavior-generating side of
the crosscoupled hierarchy must be
put into a state (or pulled along a tra-
jectory) similar to that which existed
when the template was recorded.

When this occurs, the interaction
around the loop formed by the G;, H;,
and M; modules at each level is
similar to a phase-lock loop, or a
relaxation process. The data E; enters
the module G; which recognizes it to
be in a certain class Q; with perhaps
an error of F;. The recognition Qj trig-
gers an appropriate goal decomposi-
tion (or subgoal selection) function in
the H; 4+ (or higher) modules which
generates a command (or hypothesis)
C;. This command, modified by the
error F;, generates a subcommand (or
subhypothesis) P; and hence a
predicted data vector R;. The predic-
tion R; may confirm the preliminary
recognition Q; and pull the context P;

into a more exact prediction via the
feedback loop involving F;. Alter-
natively the prediction R; may cause
G; to alter or abandon the recognition
Q; in favor of another recognition

Q'

Loops and Rhythms

Obviously such looping interac-
tions involve timing and phase rela-
tionships which may themselves have
information content. Many sensory
data patterns, especially in the
auditory, visual, and kinesthetic
pathways, are time dependent and in-
volve some form of rhythmic or har-
monic temporal patterns as well as
spatial relationships. For example,
activities such as walking, running,
dancing, singing, speaking, and ges-
turing all have a distinctly rhythmic
and sometimes strictly periodic
character.

As was discussed in part 1 of this
series, temporal patterns at various
levels correspond to trajectories with
different time rates of change, and
hence (assuming approximately the
same information content stored as
trajectories at each level) different
periods or complete rhythmical pat-
terns. For example, at the lowest level
of the auditory system, brain cells are
excited by mechanical and electrical
stimuli with frequencies ranging from
about 20 Hz to 20,000 Hz. These sen-
sory inputs thus have periodicities
from 0.00005 to 0.05 seconds.

The highest frequency a nerve axon
can transmit is about 500 Hz, but the
brain handles higher frequencies in a
manner somewhat reminiscent of the
cerebellum’s encoding of precise posi-
tion. It encodes pieces of information
about the phase of a wavefront on a
number of different fibers. This
means that by knowing which fibers
are firing in which combinations at
which instants, one can compute not
only what is the fundamental pitch of
the temporal pattern but what are all
of its overtones. Thus, the CMAC G
function at the lowest level (or really
the loop comprised of the lowest level
G, H, and M modules) can compute
the Fourier transform, or the autocor-
relation function, and presumably
even the Bessel function describing
the modes of vibration of the cochlear
membrane,

Assume for example, that the G, H,
and M modules in figure 6 constitute
a phase-lock loop such that the input
PATTERN is a signal f(t) and the

Figure 6. A phase-lock loop consisting of a G, H, and M module, If the H and M
modules produce a set of signals with nearly the same periodicity as the incoming signal
E, the G function can compute a phase error signal F which pulls the R prediction into
lock with the E observation. The G module can then also compute an autocorrelation

function which gives a perception of pitch.

PREDICTION is another signal
f{t—7). If the processing module G
computes the product of the PAT-
TERN « PREDICTION, then the out-
put NAMEis £ (t}» £({t — 7). When r
corresponds to 1/4 of the period of
the input f(t), a low pass filter applied
to the output will produce a phase
ERROR signal which, when applied
to the H module, can enable the
PREDICTION signal f{t—7) to track
and lock on to the input PATTERN
Ft), If the loop consists of a
multiplicity of pathways with dif-
ferent delays (r > 0), the output,
when processed through low pass
filters, will produce an autocorre-
lation function:

T
by = 1T g | KO - - dt
It

such that:
Qi = 1)
Q= Gy{T2)
Q= .
Qe = Gyl7e)
where:
0< Tl<72 PR <T],

It has been shown that such an

76 August 1979 © BYTE Publicatians lac

autocorrelation function produces a

perception of pitch which is in good

agreement with psychophysical data.

In figure é the presence of an output

on element q; would correspond to

the perception of pitch at a frequency
1

T

Music and Language

Figure 7 suggests how a hierarchy
of phase-lock loops might interact to
recognize the variety of periodicities
which provide the information con-
tent in spoken language and music,
The coefficients that g; obtained from
the lowest level loop form the input
{together with other variables) to the
second level.

If we assume that the sensory input
to the first level consists of a pattern
rich in information, such as music or
speech, then as time progresses the
trajectory of the input vector to the
second level will also contain many
periodicities. The principal difference
from the standpoint of information
theory is that the periodicity is now
on the order of 0.05 seconds to 0.5
seconds. The trajectory input to the
second level can, of course, be sub-
jected to a quite similar mathematical
analysis as were the trajectories of
hair cell distortions and cochlear elec-
trical stimulation which were input to
the first level,

The principal difference is that at
the second level and higher, informa-

tion can be encoded for neural trans-
mission by pulse-frequency rather
than pulse-phase modulation, Also,
some of the mechanisms by which
time integrals are computed may be
different, Nevertheless, processing by
a CMAC G function can transform
sections of the input trajectory into
output vectors so as, in effect, to give
them names. Characteristic patterns,
or periodicities, at the second level
are named notes, when the sensory
stimulus is music. Where the stimulus
is spoken language, they may be
called phonemes.

The output of the second level
forms part of the input to the third.
The G function at the third level com-
putes the names of strings of
phonemes which it calls words, or
strings of notes which it calls tunes.
The G function at the fourth level
computes names of strings of words
which it calls sentences (or ideas),
strings of tunes which it calls musical
passages, etc. In music, the pattern in
which the different periodicities
match up as multiples and sub-
muitiples (ie: the beat, notes, various
voices, melodies, and chord se-
quences) comprise the inner struc-
ture, harmony, or “meaning.” The
ability of the semsory processing-
generating hierarchy of the listener to
lock on to the periodicities and har-
monies at many different levels {and
hence many different periodic inter-
vals) is the ability to “appreciate” or
“understand” the music.

Similarly in speech the ability of
the audio-processing hierarchy to
lock on to periodicities at each level,
and to detect or recognize and pass on
to the next level the information bear-
ing modulations or deviations in
those periodicities, constitutes the
ability to “understand” what is
spoken. If the audio system locks on
only at the first level, it detects
phonetic sounds but not words. If it
locks on the first two levels but no
higher, it detects words but not mean-
ingful phrases. If, however, the audio
hierarchy locks on at the third,
fourth, fifth, and higher levels, there
is excited in the mind of the listener
many of the same trajectories and se-
quences of interrelated and harmon-
ious patterns (ie: goals, hypotheses,
sensory experiences) as exist in the
mind of the speaker.

This gives the speaker the ability to
transmit messages and, even more
important, to manipulate the mind of

http:feedback.to

changed for about 5 millennia until
the early Bronze Age when cities and
city-states became the most advanced
social organizations, and commerce
grew into a large scale and complex
enterprise. Then the requirements for
more efficient accounting procedures
led to the pictorial listing of tokens by
writing on tablets — an early form of
double-entry bookkeeping.

Once skill in this form of writing
became widespread and commonly
practiced, only a few additional sym-
bols and some rules of syntax were re-
quired to express decrees, record
dates, and relate accounts of signifi-
cant events.

Thus, the language skill of writing

evolved in small increments over
many generations from the goal
directed manipulation of physical ob-
jects; first the objects themselves,
then token objects, and finally images
or symbols representing the tokens.
The meaning of the symbols, as well
as the rules of syntax, were obvious
to anyone having an everyday fami-
liarity with the manipulation rules for
tokens. These in turn mimicked the
rules for manipulation of the objects
of merchandise. The manipulation of
symbols in written language is a form
of goal-seeking behavior which
evolved from, and remains similar to,
the manipulation of physical objects.

Skill in writing, as any other com-

64KB MICROPROCESSOR
MEMORIES

® S-100 - $750.00
® LSI-$750.00

§ § *

Cl1-S100 64K x 8

K annnnunn
HILLITI T

C1-8080 64K x 8

Tested and burned-in. Full year warranty.

: Chrislin Industries, Inc.

Computer Products Division
31352 Via Colinas ® Westlake Village, CA 91361 e 213-991-2254

78 August 1979 © BYTE Publications Inc

® SBC 80/10 - $750.00
® 6800 - $750.00

CI1-S100 — 64K x 8 on a single board.
Piugs directly into the IMSAI, MITS,
TDL, SOL and most other S-100 Bus
computers. No wait states even with
Z80 at 4Mhz. Addressable in 4K in-
crements. Power requirement 6 watts.
Price $750.00.

Ci-1103 — 8K words to 32K words in a
single option slot. Plugs directly into
LSI 11, LSt 11/2, H11 & PDP 1103.
Addressable in 2K increments up to
128K. 8K x 16 $390.00. 32K x 16 $750.00
qty. one.

C1-6800 — 16KB to 64KB on a single
board. Plugs directly into Motorola’s
EXORcisor and compatible with the
evaluation modules. Addressable in
4K increments up to 64K. 16KB $390.00.
64KB $750.00.

Cl1-8080 — 16KB to 64KB on single
board. Plugs directly into Intel's MDS
800 and SBC 80/10. Addressable in
4K increments up to 64K. 16KB $390.00.
64KB $750.00

Circle 47 on inquiry card.

plex goal-seeking activity, is acquired
through painstaking training, endless
practice, and numerous corrections of
mistakes by a teacher. It is learned in
stages, the lowest level primitives
first (forming letters), then strings of
primitives (words), then strings of
strings (sentences), and so on. Only
when the rules of spelling, grammar,
and composition are more or less
mastered can the scribe express or en-
code a thought (ie: a high level trajec-
tory) into a string of written symbols.

Speech

The origin of speech is much less
certain since it dates from an earlier
period. In fact, if we include the
sounds of whales, animals, birds, and
even insects as a form of speech,
spoken language predates the origin
of humanity itself. Surely any be-
havior pattern which communicates a
threat, signals submission, expresses
fear or acceptance, is a form of lan-
guage whether it be audible speech or
sign language, whether it be express-
ed by a mouse or a human. By this
definition, some speech is very simple
— a single facial expression, gesture,
chirp, growl, or squeak for each emo-
tional state encoded or intent express-
ed. Throughout the animal kingdom
however, there exists a great variety
of modes of expression and many dif-
ferent levels of complexity. Clearly
sounds such as the growls, whines,
barks, and howls of the wolf express
an extremely complex variety of
social communications. One can easi-
ly feel caught up in a primitive com-
munity sing-along when listening to a
recording of a wolf-pack chorus.

As we ascend the ladder of be-
havioral complexity, we find a cor-
responding increase in the ability to
communicate complex messages. In
most cases this appears to be not so
much an increased vocal capacity as
an increased complexity of deep
structure underlying overt behavior.
This implies that the ability to speak
derives, first of all, from having
something to say (ie: from having in-
ternal trajectories of sufficient com-
plexity that to attach facial expres-
sions, gestures, and audible sounds to
them results in complex and subtle
messages).

Primitive Human Speech

The most ancient forms of human
speech that survive today are the
tribal dances of the few remaining

Softwace
with [Manual
Marual/ Alone

DIGITAL RESEARCH

O CP/M* FDOS — Diskette Operating Systerm complate with
Text Editor, Assembler, Oebugger, File Manager and system
utilities. Available for wide variety of disk systems (ncluding
North Star, Helios I, Micropolis, iCOM {all systems) and Altair.
Supports cornputers such as Sorcerer, Horizon, Sal System I,
Versatile. Altair BR00, COMPAL-80, DYNABYTE DB&/2, and
iCOM Attache. Specﬂ'y desired configuration susxszs

O MAC — 8080 Macro Assembler. Full Intel macro definitions.
Pseudo Ops include APC, AP, REPT, TITLE, PAGE, and
MACLIB, Z-80 (ibrary included. Produces Intel absolute hex
output plus symbals file for use by SID (see below) $100/$15

O SID — 8080 symbolic debugger. Full trace, pass count and
broak-paint pro&rham tasting system with back-trace and histo-
gram utilities. en usad with MAC, provides full s ’gmboilc
display of memory labels and equated values 5815

[TEX - Text tormatter to create paginated, page-numbered
and justified copy from sourca text files, directable gds: ar

dala from disk while user executes another program from the
COMBOIE .. o i $50/%1

MICROSOFT

Ul Disk Extended BASIC — Version 5, ANSI compatible with
lang variable names, WHILE/WEND, chalnlng varable Iangt;l
fileracordsl $300/%

[J BASIC Compll mpatible with Version 5
Microsoft interpre + faster execution. Pro-
duces standard h binary output. Includes
Macro-80. Also fir I-80 or COBOL-80 code
modules $350/%25

0 FORTRAN-80 — ANSI '66 (except for COMPLEX) plus
many extensions. Includes relocatable object complier, linking
loader, library with manager. Also includes MAGH O- S8
DBIOW) . .. 25,

{1 COBOL-BO — ANSI ‘74 Relocatable object output, Format
same as FORTRAN-80 and MACURO-B0 modules. Complete
ISAM, interactive ACCEPT/DISPLAY, COPY, EXTEND

... $625/525

(0 MACRO-B0 — B0B0/Z80 Macro Assembler. intsl and Zilog
mnemaonics supported. Relocatable linkable outpul, Loader,
Library Manager and Cross Reference List utilities lnsl‘ru‘dsd

.. 135

0 EDIT-80 — Very fast random access text aditor for text with or
without ling numbers. Global and intra-ine commands sup-
ported. File compare utifity included, 389/%315

XITAN (software requires Z80** CPU)

[0 Z-TEL — Text editing lan rJﬁuage. Exprossion evaluation itera-
tion and conditional branching ability. Registers available for
text and commands. Macro command strings can be saved op
diskforre-use $69/520

[ASM Macro Assembler — Mnemanics per intel with 2-80 ex-
tensions. Magro capabilities with absolute Intel hex or relocat-
able inkable output madules. New version 3 with added
features $89/

O LINKER — Link-edits and loads ASM madules .. $88/$20

J Z-BUG debugger — Trace, break-point tester. Supports dec-
imal, octal and hex modes. Dissassemblar to ASM mremonic
sat. Emulation technlque permits full tracing and broak- gj:mcnt
supportthrough ROM 0 L.

PRI s 15
[} DESPOOL — Program to permit simultaneous printing ot
U TOP Text Dutput Processor — Craates page—numbarad us-
fified documents from source taxtfiles, .. £
(P s 3 trade name of Dhgital Reseatch

**281s a trademark of Zlog, nc
**Good urtd August 31,1979

EFFECTIVE JUNE 19, 1979

EYTE August 1979

Software
th { Manual
Manual{ Aone

L] A4 package incudes Z-TEL, ASM, LINKER, Z-BUG, TOP
$299/540

EIDOS SYSTEMS

O KISS — Keyed Index Sequential Search. Offers complate
Multi-Keyed Index Sequential and Direct Access file manage-
ment. Includes buiit-in wtility functions for 16 or 32 bit arithme-
tic, stringfinteger conversion and string compare. Delivered as
a relocatable linkable module in Microsoft format for use with
FORTRAN-80 or COBOL-80,etc., .. $535/523

00 KBASIC — Microsoft Disk Extended BASIC with all KISS
lacilities, integrated by implemsntation of nine additional com-
mands in language. Package includes KISS. REL as descrbed
above, and a sample mail list program, 59949/545

MICROPRO

O Super-Sort | — Son, merge, exwact utilty as absolute
exacutable program or linkable module in Microsoft format,
Sorts fixed or variable records with data in binary, 8CD,
Packed Decimal, EBCDIC, ASCI, !Ioatrn% fixed point. expo-
nential, field justified, eic. etc. Even vanable number of hialds
perrecord! ... e $250/$25

....................................... $150/$25

D Word-Mastsr Text Editor — Ins one mode has super-set of
CP/M's ED commands mdmm%agwbal searching and replac-
ing. forward and backwards in file. in video madse, providas full
screen aditor for users with serial addressabla-cursgf m;al

... 1 5

Word-Ster — Menu driven visual word processing sys-
tern for use with standard terminals. Text tormatting performed
on screen. Facilities for text paginate, page number, justify,
center, ungerscore ang PRINT. Edit facilities include global
search and replace, read/wnte o other text files, block move,
etc. Requires CRT terminal with addressable cursor position-
ing. Word-Master users may upgrade for $395'°° . $495/$258

SOFTWARE SYSTEMS

O CBASIC-2 Disk Extended BASIC — Non-interactive BASIC
with Pseudo—code compiler and runtime interpreter. Supports
full file control chalnlng lnteger and extended precnswn var-
iables ele. .- . . S90/515

STRUCTURED SYSTEMS GROUP

O General @ — Intaractive and flexible system providing
proof and repor! outputs. Customization of COA created inter-
actively. Multiple branch accounting centers. Exterisive check-
ing porformed at data entry for proof, COA correciness ete.
Journal entries may be batched prior to pesting. Closing pro-
cedure autornatically backs up input files. All repons ean be
tailored as necessary. Requirgs CBASIC $899/$2S

O Accounts Receivabla — Open item systerm with cutput for
internal aged reports and customer-oriented statement and bill-
ing purposes. On-Lina Enquiry permits information for Cus-
tomer Service and Credit artments. Interface to Genaral
Ledger prowded it both systerns used. Requlres CBASIC

..3699/$2%

a Accuunts Payahle — Providas aged statements of ac-
counts by vendor with check writing for selected invoices. Can
be used alone or with General Ledqer andfer with NAD. Re-
quires CBASIC . o . .$699/528%

] NAD Name and Address selaction systam — inferactive mail
list creation and maintenance program with output as full re-
Foms with reference data or restricted information for mail

bels. Transter system for extraction and transfer of selected
records to create naw files. Requires CBASIC $STH/S20

http:break-poi.nt

Part 3: A Closer Look at Human Behavior

In part 1 of this series, | demonstra-
ted that the concept of behavior is not
as clear as certain people would in-
dicate. The patterns that we call
behavior result from the convergence
of many influences, only a part of
which can be attributed to the organ-
ism that we say is behaving. Yet the
behaving organism varies its own
actions so that when the influence of
these actions is added to all that is un-
predictable, the result is recognizable
as patterns of behavior,

In part 2 we observed that a control
system controls its input, not its out-
put. It acts on its environment to
make its own sensory or perceptual
signal match a reference signal re-
ceived from elsewhere, and to auto-
matically counteract the effects of
disturbances. It does not have to
sense the cause of the disturbance: it
senses the quantity it is controlling,
and reacts to deviations of that quan-
tity (or the signal representing it)
from a reference level that is set by
the reference signal.

The reference signal acts just as an
intention ought to act. It specifies
some state of affairs that is to be
achieved, and serves as a target to-
ward which action always urges the
perception of the controlled variable,
Under normal circumstances the con-
trol systern can make its perceptual
signal track a changing reference sig-
nal, and still oppose the effects of
disturbances.

There are two main rules of thumb:

About the Author

William T Powers has been exploring the
meaning of control theory for studies of huntan
nature since 1953. He spent a number of years
{te 1960) in medical physics, and then ancther
13 (to 1975} as Chief Systems Engineer for the
Department aof Astronomy at Northwestern
University. His accuprtion has been designing
electronic, optical, and mechanical systems for
science.

94 August 1979 © BYTE Publications [nc

William T Powers
1138 Whitfield Rd
Northbrook IL 60062

® The reference signal reaching a
good control system controls the
perceptual signal in that system.

® The actions of the control system
vary so as to oppose the effects of
disturbances, even if the reference
signal remains constant,

Let's see how this control system
model applies to one small human
subsystem: a spinal reflex arc (reflex
just means “turned back on itself”).
This will lead to some concepts that
will be of use to the designers of
rabots.

The Tendon Reflex

In the early 19th century, Sir
Charles Bell established the fact that
sensory nerves are separate from
motor nerves, and described the “cir-
cle of nerves” found in a spinal reflex.
A sensory nerve that is part of a
spinal reflex arc (we will talk about
one that is stimulated by the stret-
ching of a tendon) sends its signal to
the spinal cord, and the same cell that
receives this signal emits a motor
signal that reaches a muscle. When
the muscle contracts, it has physical
effects that stimulate the same sen-
sory nerve. These are closed loops;
the effects of sensory nerves that are
stimulated by muscle action affect the
same muscle action,

In all such loops that have been
discovered, the sense of the feedback
is negative. This is true of the tendon
reflex. If signals from cells in the
spinal cord cause a muscie to con-
tract, the resulting stretch of the ten-
don stimulates sensors clustered
around the tendon. The signals from
these sensors reach the same cells in
the spinal cord to inhibit their firing,

Apparently the materials are pre-
sent for a control system, but before
we discuss this, a digression is
necessary.

All or None or Some

One of the most unfortunate ac-
cidents to occur in neurology was the
discovery that signals in nerves are
carried by impulses, The effect was as
if the discoverers of electricity had
discovered the electron before they
kad formulated laws of current flow,
and thus developed the whole theory
of electricity on the basis of collisions
between one electron and another
electron. As soon as there were in-
struments to detect nerve signals it
was known that the amplitude of an
impulse generated by a nerve cell was
independent of the source; there was
a trigger effect, so that either an im-
pulse was generated, or it was not.

As a result, almost all neurological
research has focused on single im-
pulses. The "all-or-none” principle
became so firmly entrenched that by
the time digital computers arrived on
the scene, most people were led off
the track. “Aha,” they said, “if a
nerve-cell has a threshold that is just
high enough, 2 impulses will have to
reach it simultaneously to fire it:
behold, an AND gate!” Since inhibi-
tion (an impulse tending to reduce the
sensitivity of a nerve cell to an im-
pulse arriving by a different path) can
occur, we clearly have the NOT
operator, and with the addition of
OR (a nerve cell that can be fired by
an impulse from any of several
paths), we have all of the ingredients
for a generalized logic circuit.

There is no longer sufficient reason
to believe that the nervous system
works in this way, Those who tried to
analyze nerve nets as logic devices
had to make a lot of assumptions,
such as synchronism er clocking, that
are incompatible with experimental
facts, This more modern under-

Figure and listing numbering continued
from part 2.

Figure 13: Figure 13a is the standard control-system diagram we have been using in this
series. Figure 13b is a spinal reflex arc. FNI is the input function; P, the perceptual
signal; C, the comparator; R, the reference signal; E, the error signal; FNO, the output
function; O, the output quantity; FNF, the feedback function; I, the input quantity;
FND, the disturbance function; and D; the disturbing quantity. Roots are bundles of
nerve fibers entering or leaving the spinal cord. An actua! spinal reflex arc may involve
several hundred systems like the one in figure 13b, with as many motor cells all
operating in parallel. Thus, a signal is a bundle of signals that carry similar information.

{a)

AL ¢

96 Augusl 1979 & BYTE Publications Inc

Level-1 Control System

Figure 13b is a schematic diagram
of the tendon reflex, Figure 13a is the
diagram of a general control system
that 1 have already shown and dis-
cussed earlier. Figure 13a has an input
function FNI, a perceptual signal P, a
comparator C, a reference signal R,
an error signal E, an output quantity
O, a feedback function FNF and an
input quantity [completing a closed
loop. Entering this loop at the same
point as the input quantity are the ef-
fects of a disturbing quantity D, af-
fected by the disturbance function
FND,

Figure 13b contains the same com-
ponents in the same relationships.
The input function is a sensor which
emits a signal P, the frequency of
which depends continuously on the
amount of stretch I of the tendon at
the end of the muscle. This signal P
travels to the spinal cord, and the
local branch enters an inverter which
is specialized to produce inhibitory
effects on any neuron it reaches (these
actually exist in the spinal cord as
Renshaw cells). This inverted copy of
the perceptual signal reaches the cell
body of a motor neuron C, which
also receives an excitatory input from
a pathway descending from centers
that are higher in the nervous system
(the reference signal R).

The signal emitted by this motor
neuron represents the excess of excita-
tion over inhibition, and thus rep-
resents the difference between the
reference and (inverted} perceptual
signal: it is clearly the error signal E,
The error signal enters the muscle,
where it is converted into an average
shortening of the contractile fibers in
the muscle FNO. The output quantity
O is the net stretch of the connective
tissue that links the individual con-
tractile fibers together. The feedback
function FNF consists of the mech-
anical relationships that sum all these
individual little forces into one force
that will tend to stretch the tendon.

I have shown the disturbance as a
string that pulls directly on the ten-
don. It is rather hard to disturb the
tendon control system without dis-
secting the organism, a procedure
that always leaves one wondering
whether or not this is the original
system, The reflex that is tested with
a hammer just under the kneecap is a
difterent one, a muscle-length control

terfere with control, but would make
the model very complicated. In simu-
lating a control organization, it is
always the simulation of the environ-
ment that creates complexities. The
geometric interactions between the
muscles are properties of the world in
which these control systems live, not
of the control systems proper.

There will be 3 level-1 control
systems, 1 for each muscle. Each will
sense the force being generated by its
own muscle. Each will have a loop
gain of 10, and a slowing factor of
0.07 (see part 2 for discussion of these
properties).

There will also be 3 level-2 control
systems. One will use the 3 muscles to
control a force in the X direction (left
and right), another will control a
force in the Y direction (up and
down), and the third will control the
sum of the 3 forces, this sum cor-
responding to what physiologists call
“muscle tone.” We will see why there
is such a thing as muscle tone (the
steady mutually cancelling tension
that is always there in muscles). Each
level-2 control system will have a

loop gain of 50, and a slowing factor
of 0.01.

I hope that this arrangement looks
a little amazing. Here we have 3
muscles spaced at roughly 120-degree
intervals around a common point. No
one muscle pulls in either the X or the
Y direction. To pull in the X direc-
tion, all 3 muscles must alter their
tensions. To pull in the Y direction,
all 3 must alter their tensions. To
vary the muscle tone all 3 must once
more alter their tensions. We will be
able to set reference values for these 3
variables at the same time, throw in a
disturbance of arbitrary size and
direction to boot, and there will be no
interference among the systems that
cannot be easily taken care of. Each
level-2 force-controlling system will
be able to keep its perceptual signal
matched to any reference signal,
while the others do the same thing at
the same time,.

It may add interest to know that
the outputs from the level-2 systems
to the level-1 systems will not be ac-
curately weighted: the only choice
will be whether or not a given level-2

Interactive Computer
Graphics Software.

For Microsoft and DEC* Fortran

DEVIRTIDNS

102 August 1979 © BYTE Publications Inc

Circle 53 on inquiry card.

output reaches a given level-1 com-
parator after multiplication by 1, 0,
or —1, All 3 level-2 outputs will
reach and be added together in all 3
level-1 comparators. The neat separa-
tion of X, Y, and tone control is not
accomplished by carefully balancing
the amount of output sent to each
level-1 system. Only the crudest ad-
justment has to be made on the out-
put side, essentially the choice bet-
ween positive and negative feedback,
with negative always being chosen.

We now come to what is perhaps
the most fundamental concept of this
theory of brain function. The organ-
ization which determines that an X
vector, a Y vector, and a tone or
scalar force will be controlled is
found in the input functions, not in
the output functions. The organiza-
tion of behavior is determined by the
perceptual, not the motor organiza-
tion of the brain. By the time we
finish this installment you will see ex-
actly how that happens.

Setting Up the Model

Let us start by looking at a typical
control system of unspecified level in
a hierarchy of control systems. This
system will receive multiple input
signals from lower-level systems and
multiple reference signals from
higher-level systems. It will emit just
1 output signal (we will assume that
the only need for an explicit output
function is to provide error amplifica-
tion and to smooth; otherwise the er-
ror signal could be used directly as
the output signal). Figure 14 shows
this typical system.

Perceptual Inputs from
Lower Levels

The input function will now be a
little too complicated to be repre-
sented as a BASIC function since we
need a set of weighting factors so that
each input can be assigned a weight
before summing all of the inputs
together. The easiest way to deal with
weighting factors for a generalized
system is to use a matrix that contains
all of the factors for all of the levels.
For the input function we designate
the matrix as S (for sensory) and
write it as:

S(L,].K),
where: L = level
J = system at that level

K = weight of Kth signal
from level L—1.

TO HIGHER LEVELS

A

FROM HIGHER LEVELS

M-MATRIX

/TN

S-MATRIX

FROM LOWER LEVELS

z (R=Z)
C
E
FNO
o]

y

TO LOWER LEVELS

Figure 14: A typical control system in the middle of a hierarchy of control systems. This
system receives multiple reference signals, given a positive or a negative sign by an
appropriate entry in the M matrix (no other weighting). The sum of these reference
signals is the effective reference signal. The system also receives multiple input signals
which are copies of perceptual signals in lower-order systems. These signals are given
quantitative weightings by the S matrix and summed in the input function FNI of the
system to create this system’s perceptual signal P. A duplicate of the perceptual signal

travels upward to higher-level systems.

The perceptual signal is subtracted from the effective reference signal (or vice versa),
and the remainder is emitted by the comparator C as the error signal. The error signal is
amplified and smoothed by the output function FNO with the result being emitted to

lower-level systems as the output signal O.

The perceptual signal for this Jth
system at the Lth level will be
designated P(L,]J). The perceptual
signal can thus be written as the sum
of contributions (weighted) from
some set of lower-level systems, a
weighting of O in the S matrix mean-
ing absence of a connection:

N{L-1)—-1

PL) =)

K=0

S(L,J,K) X P(L—1,K)

where N(L—1) is the number of
systems in the next lower level.

Reference Inputs from
Higher Levels

A similar operation is performed to
calculate the net reference signal
R(L.]). A matrix M(L,],K) is used to
select a connection factor (1, 0, or
—1) for each output of a higher-level
system; the net reference signal is the
sum of all the outputs of the higher-
level systems, each multiplied by its
appropriate factor. A 0, of course,
means no connection.

The M matrix is filled by looking at
the sign of the corresponding entry in
the S matrix for the next higher level.

NEW! Internal
Power Supply!
Plus External
Access . ..

The Best of
Both Worlds

Looking for multi-purpose PET* expansion?
The Betsi S-100 Interface/Motherboard has
a new inboard power supply, for the best of
both worlds.

Qutside the PET, the versatile Betsi inter-
face provides four S-100 slots for instant plug-in
expansion. The availability of S-100 boards
puts a wide range of applications within easy
reach of a PET /Betsi system.

The new Betsi Power Supply mounts inside
PET, eliminating excess clutter. It takes only
minutes to install, plugs into PET's existing
connectors, and even turns on and off with
your PET!

Betsi features:

¢ Dynamic Memory Controller for use of S.D.
Systems “Expandoram” board. (Get full 32K
PET expansion on a single S-100 card!)
Direct plug-in connection to PET. No
additional cables or backplanes required.
Accepts nearly, all S-100 boards, including
memory 1/0, speech processors and more.

® On-board sockets for 8K of PROM firmware
(no extra hardware needed).

The new Betsi Power Supply makes a PET/
Betsi system easier than ever to use. With prices
worth a second look, you can afford to have
multi-purpose PET expansion now!

BETSIINTERFACE/MOTHERBOARD-KIT

With all components, one 100 pin connector, and

complete assembly and operating instructions
$119

BETSI INTERFACE/MOTHERBOARD
ASSEMBLED & TESTED

With four 100 pin connectors, complete
assembly and operating instructions, 6-month
warranty $165

BETSI POWER SUPPLY - ASSEMBLED
& TESTED $34

See Betsi and its new power supply at your local
dealer or write directly to:

FORETHOUGHT
PRODUCTS

87070 Dukhobar Road #F
Eugene, Oregon 97402
(503) 485-8575

ORDERS NORMALLY SHIPPED WITHIN
24 HOURS/VISA, MASTERCHARGE.
ACCEPTED

August 1979 © BYTE Publications Inc 103

To understand how this correspon-
dence is figured, think of the second
index in the matrix as the destination
of the signal, and the third index as
the source.

Suppose that we wanted to fill in
the M matrix for 1 level of systems.
An entry will be —1 if the corres-
ponding S matrix entry of the next
higher level is negative, 0 if the S
matrix entry is 0, and 1 if the S matrix
entry is positive. But which is the en-
try in the S matrix for level L+1 cor-
responding to M(L,J,K)?

The answer is simple: M(L,],K)
corresponds to S(L+1,K,J). The
source and destination indices are
simply interchanged. If a higher-level
system gives a negative weight (of
any amount) to the perceptual signal
from a given lower-level system, it
sends a copy of its output to the com-
parator of the same lower-level
system with a negative (inhibitory)
sign. A negative connection factor
means that the output of this higher-
level system will subtract from the
contributions of other higher-level
systems to the lower-level net
reference signal.

Thus, once the S matrix for the
next higher level has been filled in, we
can calculate the entries in the M
matrix:

M(L,],K) = SGN (S(L+1,K,]))

where SGN is the Sign
function that generates the
appropriate 1, 0, or —1.

You may choose to skip these pro-
cedures and simply spell out each
connection one at a time. My thought
in using a general solution is not
merely to save lines of program, but
to point the way toward expanding
the simulation both horizontally (ad-
ding more systems at each level) and
vertically (adding more levels).

The reference signal for level L,
system], is found by summing over
the outputs of all systems of level
L+1, multiplying the output from
each higher-level system by the ap-
propriate connection factor from the
M matrix:

NL+1)—1

RL)=Y

K=0

M(L,J,K) X O(L+1,K)

f

for Pascal.

They’re in process control. In
data base management. In educa-
tion, research and communica-
tions. Running on LSI-11's, PDP-
11/70's and everything in be-
tween. RSTS/E, RT11,RSX or IAS —
it makes no difference, they praise
our Pascal.

Because they ail have one thing
in common. A desire to get more
from their PDP-11 than another
language — or another Pascal —
can provide.

We've captured the elegance of
Pascal in a real world compiler. it
converses directly in machine lan-
guage, giving remarkable execu-
tion speed and efficient memory
use. It features straight-forward

Oregon

minicomputer

Software .

2340 SW Canyon Road
Portland, Oregon 97201
(503) 226-7760

TWX 910-464-4779

-

Discover why
hundreds of PDP-11 users
have turned to us

PDP-11,LSI-11, PDP-11/70, RSTS/E, RT11, RSX, and !AS are trademarks of Digital Equipment Corporation

~

™

program structure,
uncluttered syntax,
and other advantages of
full standard Pascal.

But there’s more, in the form of
real-time extensions. 15 digit (dou-
ble precision) arithmetic. In-line as-
sembly code. [/O hardware ac-
cess. FORTRAN interface. Direct-
access files. Overlays. Plus others.
There’s even an interactive sym-
bolic debugger.

Reliability? Introduced in 1975,
we’re at over 400 sites now. We
guarantee stated performance and
provide 1 year of follow-up sup-
port. Give us a call; we have a
demo library, manuals, and bench-
mark, ready for your inspection.

Distributors:

Australla: Sydney; Network Computer Services,
2903677

Canada; Vancouver; Valley Software,

{604) 524-9741

England; Stafford; Hourds Computing Ltd,
0785 44221

Japan; Tokyo; Rikei Corporation, 03-345-1411

J

104 August 1979 © BYTE Publications Inc

Circle 293 on inquiry card.

To complete this general model we
need only calculate the error signal E
and the output signal O. The required
slowing factor and the error sensitiv-
ity are put in the output function.

E(LJ) = R(L]J) — P(L,])

OL,)) = OL,) + K(L) x
(G(L)x EL,)) —
O(,])
where K(L) is the slowing fac-
tor for all systems of level L
(see part 2), and G(L) is the
error sensitivity for all systems
of level L.

Top and Bottom of the Model

We do not have a complete control
system at the top of this hierarchy
where we will be injecting reference
signals for the highest complete level.
Therefore we designate those signals
as (in this case) O(3,I), output signals
from 3 imaginary level-3 systems (us)
indexed by I = 0 (X force), 1 (Y
force), or 2 (tone). The M matrix for
level 2 is set up so that M(2,1,1)is 1, |
running from O to 2; this establishes
connections from each level-3 output
to 1 corresponding level-2 reference
input. All other entries are left at 0
(my North Star BASIC zeros arrays
when they are first dimensioned).

At the bottom, the output signals
O(1,1) are supposed to create muscle
tensions that affect 3 input quantities;
the amount of stretch in the tendon
attached to each muscle. To avoid
treating a special case, we will
designate these input quantities as
“level 0 perceptual signals,” P(0,I).
The value of each input quantity is
found by adding the magnitude of the
corresponding output to the compo-
nent of a disturbance that acts along
the length of the associated muscle.
The value of the input quantity P(0,1)
represents the net stretch in a tendon
created by the muscle contraction and
this component of the disturbance as
they act together.

The level-1 S matrix simply con-
nects each input quantity, multiplied
by 1, to its respective input function,
Thus, we set S(0,ILI) =1, for] = 0,
1, and 2. All other entries in this
matrix are 0.

The geometry of the muscles is ad-
justable. Since setting up this
geometry is the opening phase of the
BASIC program, we will take a quick
run through this program and discuss
the muscle setup. See figure 15 to help

TRS-80 BOUTIQUE

LN X
' 3o

~ Q1

N, ducing

“WORDP II”

The TRS-80 Word
Processing System
that really does the job!

If you've been looking for a true word
processing capability for your TRS-
80...STOP'WORDP llisit!

WORDP Il allows you to enter, edit,
and print various amounts of text
(with right margin justification) in one
program. The EDIT program permits
addition, insertion, and deletion of
whole lines and characters within
lines. The TYPESET program fills and
right justifies paragraphs auto-
matically.

Other features include: indent,
center, right justify non-paragraph
text, count and label pages by
number or without headings, and
lots more.

SPECIAL INTRODUCTORY PRICE

$75.00

Send $1 for operating manual - see
what the system will/will not do before
you buy!

DEALER INQUIRIES INVITED

(714) 774-1270
AJA SOFTWARE

P.O. Box 2528 e Orange. CA92669

Improve TRS~80
performance
with new DOSt

Enjoy the wizardry of your TRS-80 to its fullest: maximize and
expand all of its magical capabilities with the new DOS+. Just look at
the capabilities you can evoke.

Modifications. corrections, and enhancements to Rad:o Shack's
TRSDOS 2.1.

® A Basic REFerence command for variables and numbers.

® A super-fast machine language RENUM program execu-
table under BASIC.

® Abuiltin kevboard-debounce routine.

® A print screen option under DOS or BASIC to your hne printer.
Simply press JKL keys.

® New copy commands for backup. allows you to copy from drive
to drive keeping the same filespec.

@ Execution of DOS commands while in BASIC.

® New BASIC scrolling and invocation commands and more.

® Apparat’'s own SUPERZAP, a Hex dump utility to examine or
or modify disk or memory locations.

¢ Modified EDITOR ASSEMBLER with Disk I/0 and new cross
reference feature.

® A super-fast machine language DISASSEMBLER program.

® A LOAD MODULE for transferring machine tapes 10 disk.

® Faster disk access.

® Level | ROM relocated in Level Il RAM

@ The capability of storing anc retnieving Level | programs on Disk.

® Animproved DISKDUMP program.

® A DIRCHECK program to test a directory & list/display the
contents in alphabetical order with extensions.

You don't have to pull a rabbit out of a hat . .. Send $99 for the

Apparat/MTI New DOS++ (on diskette). See all the magic unfold

betore your eyes

INTRODUCTORY SPECIAL
NEW DOS+ and the very Best of Apparat’s disk utility programs
$99.00 (a $250.00 value).

To order your diskette of tricks, write or call one of our dealers

Apparat Inc., 6000 E. Evans Ave., Bidg 2, Denver, CO 80222,
303-758-7275

Microcomputer Technology Inc., 2080 S. Grand Ave.,
Santa Ana, CA 92705, 714-979-9923

COMPUTER DEALER CO-OP
5082 SHIRLEY DRIVE, LA PALMA, CA 90623

(714) 979-9925

Circle 50 on inquiry card.

BYTE August 1979

105

Circle 161 on inquiry card.

LO@K

TO HAY DEN

FOR YOUR
LANGUAGE
NEEDS...

New! APL: An Introduction (Peelle)
This workbook /textbook offers a
problem-solving approach to
learning computer programming
INAPLL#5122-0, $8.50

COBOL WITH STYLE: Pro-
gramming Proverbs (Chmura &
L.edgard) Covers structured
COBOL. programming, and how

to use the top-down approach with
COBOL.. #5781-4,. S6.95

Nett! FORTRAN WITH STYLE:
Programming Proverbs ([L_cdgard
& Chmura) Programiming style
guide that conforms to the new
FORTRAN 77. #5682-6, SG.O5

New!'Z-80 AND 8080 ASSEMBLY
LANGUAGE PROGRAMMING
(Spracklen) An extensive introduc:
tory look at assembly language
programming for the 8080 and Z-80
Processors. #5167-0, S7.95

New!' PASCAL WITHSTYLE:
Programming Proverbs (l.edgard
& Nagin) A stvile guide specially
written for PASCAL. users and how
to use the top- down approach with
PASCAL. #5124-7, $6.95

New! BASIC FROM THE GROUND
UP (Simon) Explores computers
and the BASIC language in a
simple direct way, without relying
on a heavy mathematical back-
ground. #5760- 1, $8.95

Available at your
local computer
store!

[{l Hayden Book
Company, Inc.

50 Essex Street,
Rochelle Park, NJ 07662

106 August 1979 © BYTE Publications Inc

visualize how everything works.
Figure 16 is the same system, more
closely representing the organization
of the brain.

The Simulator

Muscle angles. After the dimension
statements and the statements that set
slowing factors and error sensitivities
for each level have been called, the
program calls a subroutine that asks
for the angle at which each of the 3
muscles is to be set (in degrees). You
can use 30, 150, and 270 degrees (for
equal spacing). There is nothing to
prevent the choice of any angles you
like, although you should draw a
diagram to determine the effect on the
system. It is hard to create a force in a
direction in which there is no compo-
nent of force from any muscle.

Sensory weightings. Lines 9 to 15
organize the perceptions of this sys-
tem, and thus organize its behavior.
For values of I from 0 to 2, all 3 levels
of sensory matrix are set up. You can
now see how X and Y forces are sens-
ed. The weights for level 2, system 0,
correspond to the cosine of the angle
between the positive X axis and the
angle of each muscle. Those for level
2, system 1, correspond to the sine of
the same angles. Each input function
is weighting the perceptual signals
from the muscles according to the
component of force that is aligned
with the direction being sensed. The
tone system, level 2, system 2 adds
the signals together to yield a total-
force signal.

Motor weightings. Lines 19 to 23
use the already entered values of the S
matrices to create the connection
matrix M. The sign function selects
the sign that will preserve negative
feedback.

Highest-level reference signals. In

line 24, the program calls a sub-
routine that asks for 3 reference
signals: one designating the amount
of X force, another designating the
amount of Y force, and a third des-
ignating the sum of forces, or muscle
tone. Positive or negative numbers
are allowed. A real nervous system
cannot handle negative frequencies,
but the same effect can be created by
suitable use of inverters so that one
(positive) frequency means a positive
quantity and another (also positive)
frequency means a negative quantity.
In reality there would be 6 systems of
level 2 in this 4-quadrant system.

I have set up level 1 to behave
realistically like a muscle control
system; neither negative signals nor
negative forces can be produced.

Disturbance. At line 25, the pro-
gram calls a subroutine which asks
for the amount and direction of a
constant disturbance. A disturbance
might be created by seizing the place
where the 3 muscles join, moving it,
and holding it in the new position.
Despite the fact that the control
systems are neither detecting nor con-
trolling position, arbitrary movement
of this junction in space will stretch or
relax the muscles, creating changes of
force due to the spring constants of
the muscles. Therefore it is rea-
sonable to suppose that a force distur-
bance can be created, one which pro-
jects into the direction of each muscle
according to the cosine of the angle
between the disturbance vector and
the axis of the muscle.

Calculating the behavior. Lines 29
through 37 call a subroutine that ac-
tually does the calculation of signals
in all 6 control systems. You will
notice 3 nested FOR-NEXT loops.
The outer 2 loops cause the lower-

Text continued on page 111

Figure 15: The 2-level hierarchy simulated in this article. Three level-1 systems each
control the amount of tension in 1 muscle, as represented by the 3 level-1 perceptual
signals. Copies of these 3 perceptual signals reach all 3 level-2 systems, where they are
weighted and summed so as to represent the X component of muscle force (P(2,0)), the
Y component of muscle force (P(2,1)), and total muscle force or muscle tone (P(2,2)).

Each second level system sends an amplified and smoothed version of its error signal
as an output signal to all 3 lower-level systems. Each output signal splits into 3 identical
branches, 1 for each level-1 system. When a branch reaches a level-1 comparator, it
may be connected directly or through an inverter before being summed with other
reference inputs. There is no other weighting of output signals. If necessary, an inverter
is used to preserve negative feedback for a particular path.

Each level-1 system amplifies and smooths its error signal to make an output signal

reaching just 1 muscle.

A higher-level system determines the reference signals for X, Y, and total force. These
are specified by the operator of the simulator. All systems correct their own errors

simultaneously.

X Y T
0(3, 0 0(3, 1) 0(3,2)
M200 M20t M202 M210 M211 M212 mM220 M221 mM222
\f'm +|rR(2,1) R(z.‘z)/ LEVEL
2
s C < c < c
P(2, @) P(2, 1) P(2,2)
£(2,9) E(2,1) €(2,2)
z f(Gz, K2} z (G2, K2} z f(Gz,Kz)
/ 0(2,0) / \ o(2,1) \ 0(2,2)
5200 s201 $202 s210 s2i1 s212 s220 s221 s222
, J
\. . _/
Y
\ -
Y
J
[1) r))
MI00 MI! MI02 MO Mitl MII2 mi20 Mi21 mi122
\ Al.ﬂ) RO1L1) /R(I,Z)
LEVEL
¢ d c /
P, @) PLLI P(,2)
E(1, @) E(L D) E(1,2)
z f(G), K{) z (G, K;} z f(G'.K‘)
/ ot1, e} oL, n \ 01,2
siee S101 s102 sio s si2 $120 s121 si22
-
l
~— O
\\ °
A0
[Al \
{ X
\ A2
-A3
0 .)
MUSCLES
LEVEL 0"
o J

August 1979 © BYTE Publications Inc

107

http:KC2)=.01

http:11099.00

Listing 4: A sample session with the simulator in listing 3. When the simulator is in-
itialized, the user is allowed to set up several values: the 3 muscle angles, the reference
signals, and the disturbance magnitude and angle. For each iteration the values for level
1 and level 2 are output in the following form. First the reference signal for the par-
ticular muscle is printed. The perceptual signal is printed on the next line, just to the left
of the reference signal, and the output signal is printed to the right. This is repeated for

every muscle.

RUN

MUSCLE ANGLES:

#1\ 30 #2\ 150 #
REFERENCE SIGKALS:
X: =30 Y: 40 TON
DISTURBANCE:
MAGNITUDE: 0O ANGL

ITERATION # 1

3\ 270

E: 175

E: O

REFERENCE

LEVEL 2 PERCEPTUAL SIGNAL OUTPUT
-30.00 SIGNAL 40.00 SIGNAL 175.00
-18.19 -20.76 38.50 20,55 187.25 80.50
LEVEL 1
80.29 121.81 39.19
74,52 73.35 109.52 110,46 37.83 36.14
ITERATION # 2 =mm—cme—mmmem oo emeeee o
LEVEL 2
=30.00 40.00 175.00
-32.12 -19.13 45.65 10,29 163.72 61.33
LEVEL 1
52.49 90.75 31.91
47.36 47.64 82.67 82.54 27.25 28.61
ITERATION # 3 ==cce-—e——-erccemcnccac—na—o
LEVEL 2
-30.00 40,00 175.00
-29.56 -18.68 37.28 12.56 177.48 67.63
LEVEL 1
61.51 98.87 36.40
55.96 55.93 89.92 89.89 33,67 33.22
ITERATION # &4 <—ecececececccccccccmccccea—o
LEVEL 2
-30.00 40,00 175.00
-29.54 -18.83 40.19 12.57 172.81 65.13
LEVEL 1
58.87 96.52 33,73
53.51 53.52 87.72 87.74 30,57 30.64
DISTURBAMNCE:
MAGHITUDE: 40 AMNGLE: 135
ITERATION # 1 m=m———mmmmmmmmmmmmm e o
LEVEL 2
-30.00 40,00 175.00
~72.05 2.40 82.15 -8.75 173.67 65.75
LEVEL 1
59.40 54,60 76.90
52.56 63.30 63,87 16.98 57.11 93.27
Listing 4 continued on page 114
112 August 1979 © BYTE Publications Inc

Data listing subroutine. This
subroutine is called after every com-
plete iteration of both levels. It prints
only the perceptual signal, reference
signal, and output signal from the 3
systems at each level.

Running the Program

After the RUN command is given,
the program asks for all adjustable
parameters and then does 5 itera-
tions, printing out the values of all
signals each time. It then issues a
prompting message, the answer to
which determines what happens next.
The C command means do 5 more
iterations. The P command causes the
sensory and motor matrices to be
printed out. To get an idea of the time
scale on which human level-1 and
level-2 systems work, imagine that
each iteration takes about 1/20 of a
second. (If you are looking for mental
exercise, you might adapt the plotter
from part 2 to show the variables in
this simulation.)

What the Simulator Shows

There has always been a problem
in conventional models of the brain
that have to do with coordinated ac-
tions. The standard description is that
something high in the brain thinks of
a general command like “push!” and
sends the equivalent signals down-
ward toward lower systems. Those
lower systems receive the general
commands, and elaborate on them,
turning them into more detailed com-
mands at every step. At the lowest
level, all of the detailed commands
converge into the final common
pathway, the relatively few channels
running from the spinal cord to the
muscles. There, at last, the neural
signals are turned into tensions that
create motions that create behavior,

The problem that nobody has ever
been able to figure out is how a sim-
ple general command gets turned into
specific commands that will have ef-
fects that satisfy the general com-
mand. Unfortunately, neurology is
full of sentences that sound like ex-
planations but are really restatements
of the effect that is to be explained.
When such sentences are uttered,
they create the impression that the
problem has been solved and needs
no further investigation.

The simulator described here
shows a different way for commands
to get turned into actions. The com-
mand that specifies an X force doesn’t

Circle 54 on inguiry card.

114

Control
System

Software

August 1979

(5~ ‘/2) (s 1L
(s - 5)%s - 50) (s - 100)

BYTE l"ublications Inc

Listing 4 continued from page 112:

ITERATION # 2

LEVEL 2
-30.00 40.00 175.00
-12.87 -16.21 21.01 20.17 180.28 62.52
LEVEL 1
66.48 98.91 26.14
59.89 69.94 $0.08 54.02 25.92 50.56
ITERATION # 3 ==m—mmmmmmmmommmmmeomm oo
LEVEL 2
-30.00 40.00 175.00
-31.36 -17.12 49.55 10.51 167.41 64.63
LEVEL 1
58.02 92.26 37.01
52.07 62.22 87.97 48.88 29.19 58.92
ITERATION # & ==—m—mmmmmm o —omoomoo oo
LEVEL 2
-30.00 40.00 175.00
-29.97 -16.26 37.42 11.18 175.04 66.18
LEVEL 1
61.10 93.62 38.75
56,44 64.92 88.54 49.97 32.97 61.01
ITERATION # 5 =—mommmmmmcmmmmmcmmomoooo o
LEVEL 2
-30.00 40,00 175.00
-29.55 -18.39 39.587 11.75 173.88 64.95
LEVEL 1
60.31 93.10 36.81
53.94 64.25 88.17 49.52 30.93 50.18

simply get partitioned among the
muscles. It is a request for a percep-
tion, not a command to act. The
system receiving this request per-
ceives the X force through a con-
vergent, not a divergent network. A
divergent network cannot be treated
as a function; a convergent network
can. When the perceived X force
matches the reference X force, the
cause of the perception must be in one
of the states that will, in fact, create
that component of force in the X
direction. There is an infinity of dit-
terent muscle tensions that could
create the same component of force.
It I were not also specitying 2 other
functions of force, there would be no
way to predict the exact muscle ten-
sions that would exist when the X
control system experienced zero
error.

Since we are specifying 3 functions
of 3 variables, and setting reference
levels for the value of each function,

there is only one state of the muscles
that will allow zero error in all 3
systems at once. What we have done,
in fact, is set up an analog computer
for the simultaneous solution of 3
equations in 3 variables.

This simulator shows that the
reference signals for the lower-level
systems do not correspond to any one
output from a higher-level system.
Nevertheless, the perceptual signal
sensed by each higher-level system
matches the corresponding reterence
signal. The higher systems each sense
a different function of the set of
lower-level perceptual signals. In-
dependent control is possible only
because the functions represent in-
dependent dimensions of variation ot
the lower-level world.

In the environment of this 2-level
system, there is no such thing as X
torce, Y torce, or tone. There are
simply 3 tendons in various states of
tension. | have created the idea of

Design of Digital Sstems - six volumes

ADVANCED COURSE
DESIGN OF DIGITAL SYSTEMS

Six large-format volumes — each 11% x 84",

CONTENTS

The contents of Design of Digital Sys-
tems include:

Book 1: Octal, hexadecimal and binary
number systems; representation of nega-
tive numbers; complementary systems;
binary multiplication and division.

Book 2: OR and AND functions; logic
gates; NOT, exclusive-OR, NAND, NOR and
exclusive - NOR functions; multiple input
gates; truth tables; DeMorgan’s Laws;
canonical forms; logic conventions; Kar-
naugh mapping; three-state and wired
logic.

Book 3: Half adders and full adders; sub-
tractors; serial and parallel adders; pro-
cessors and arithmetic logic units (ALUs);
multiplication and division systems.

Book 4; Flip-flops; shift registers;
asynchronous counters; ring, Johnson and
exclusive-OR feedback counter; random
access memories (RAMs); read-only
memories (ROMs).

Book 5: Structure of calculators; key-
board encoding; decoding display data;
register systems; control unit; program
ROM; address decoding; instruction sets;
instruction decoding; control program
structure.

Book 6: Central processing unit (CPU);
memory organization; character represen-
tation; program storage; address modes;
input/output systems; program interrupts;
interrupt priorities programming; assem-
blers; executive programs, operating
systems, and time-sharing.

OUR CUSTOMERS

Design of Digital Systems has been
bought by more than half the 50 largest
corporations in America, and by Motorola,
Intel, DEC, National Semiconductor, Fair-
child, General Instrument, Hewlett-
Packard, Heath Co., M.L.T., NASA, Smith-
sonian Institute, Bell Telephone Labs. And
many, many more, as well as corporations
and individuals in over 50 countries.

BASIC COURSE

Digital Computer Logic & Electronics

CONTENTS

Digital Computer Logic and Electronics
is designed for the beginner. No mathe-
matical knowledge other than simple arith-
metic is assumed, though you should have
an aptitude for logical thought. It consists
of 4 volumes — each 11%2" x 84" — and
serves as an introduction to the subject of
digital electronics.

Contents include: Binary, octal and
decimal number systems; conversion be-
tween number systems; AND, OR, NOR
and NAND gates and inverters; Boolean
algebra and truth tables; DeMorgan's
Laws; design of logical circuits using NOR
gates; R-S and J-K flip-flops; binary
counters, shift registers and half-adders.

Designing
Digital Systems

Two programmed learning courses:
hardware and software; theory
and application.

NO RISK GUARANTEE

There’s absolutely no risk to you. If
you're not completely satisfied with your
courses, simply return them to GFN within
30 days. We'll send you a full refund, plus
return postage.-

TAX DEDUCTIBLE

In most cases, the full cost of GFN's
courses can be a tax deductible expense.

PHONE ORDERS - FREE
To order by phone, call (603) 224-5580
with your credit card information. it won’t
cost you a dime, because we’li deduct the
cost of your call from the price of the
courses you order.

TO ORDER BY MAIL

You may use the order form below if you
wish, but you don’t need to. Just send your
check or money order (payable to GFN In-
dustries, Inc.) to the address below. If you
don't use the order form, make sure your
address is on your check or the envelope,
and write “DDS” (Desug of Digital Sys-
tems). “DCLE” (Digital Computer Logic &
Electronics), or “both” (both courses) on
your check.

There are no extras — no sales tax. And
we pay all shipping costs.

We also accept company purchase
orders.

AIR MAIL

The prices shown include surface mail
postage anywhere in the world. Air mail
postage costs an extra $10 for both
courses (10 volumes).

DISCOUNTS

Call or write for details of educational
and quality discounts, and for dealer costs.

SAVE $5

If you order both courses, you save $5.
Order at no obligation today.

GFN iIndustries, Inc.

Bldg. 7-20 «
203 Loudon Road Order free by phone ___ sets of Design of Digital Systems $1995 $__
g%nggg& * No sales tax —__ sets of Digital Computer Logic & Electronics.......... $14.95
o — setsofbothcourses................................. $29.90
* No shipping charges
Enclosed is check/money order (payable to GFN Industries, Inc.) fortotal $
Money-back guarantee NAME
Call (603) 224-5580 to * Tax deductible ADDRESS

order by phone - free.

* Save $5

7 days, 24 hours

Circle 143 on inquiry card.

Please send me

To: GFN Industries, Inc., Bldg. 7-20, 203 Loudon Road, Concord, NH 03301

BYTE August 1979 115

these 3 forces, by designing input
functions that will sense them. I could
have made one system that would
sense force along a set of curved lines
representing direction, and another
that would sense force along a dif-
ferent set of curved lines crossing the
first set; a coordinate system without
any straight lines in it. This would
result if the sensors were nonlinear, as
we know they are. It would have
made no difference, except for the
fact that there would not have been a
simple label like X force to assign as a
meaning for the perceptual signals. It
would still be possible to specify 3
reference signals and thus set the 3
perceptual signals to specific values,
thereby creating a specific state of
tension in all 3 tendons that would
automatically resist disturbances.
The way in which the external situa-
tion is represented is almost im-
material, as long as 3 reasonably in-
dependent perceptual functions are
created. There is no coordinate
system in the outside world. The
behaving system makes up one of its
own.

If there were sensors on each mus-
cle to detect muscle length as well as
force, we could add 3 more control
systems at level 1, and 3 more in-
dependent aspects of the external
world to control at level 2. In fact,
there are muscle-length sensors, and |
am working on several models that
take them into account.

If you now imagine 500 to 800
muscles involved with at least twice
as many level-1 control systems
(length and force surely; rate of
change highly likely), you will begin
to perceive the richness of the world in
which level-2 systems exist. Add to
this the millions of sensors for heat,
cold, vibration, joint angle, light,
sound, taste, smell, hunger, pain, ill-
ness, angular acceleration, joint com-
pression, and so on, and you might
begin to glimpse the complexity of the
real system we are modeling. Since
perceptions that arise from sources
other than direct effects of muscles
exist in large numbers, there can
clearly be far more level-2 systems
than level-1 systems, although the
number of level-2 systems that can

Bowling

Bookkeeper:

Tested in Actual League Use
for Two Seasons

116 August 1979 - BYTE Publications Inc

Circle 56 on inquiry card.

act independently at the same time is
limited by the total number of com-
parators available at level 1.

Perhaps you can now see why this
approach to a model of a human be-
ing (rudimentary is it is at this point)
has some powerful implications for
the building of robots. I suggest a for-
mal distinction between a robot (an
imitation of a living system) and an
automaton (a device which automati-
cally produces complex actions). An
automaton is designed to create pre-
selected movements; a robot is
designed to control preselected per-
ceptions (its own). In order for an
automaton to produce precise and
repeatable behavior, it must be built
so strongly that normal disturbances
cannot alter its movements, or it must
be protected from disturbances that
might interfere with its movements.
In order for a robot to create, for
itself, precise and repeatable percep-
tions (and thus precise and repeatable
consequences of behavior), it need
only perceive precisely, have a
sufficiently high error sensitivity, and
be capable of producing forces as
large as the largest disturbances that
might reasonably occur.

There is much more that can be
said about the general relationship of
one level of control to another, but
this installment has raised enough
points to ponder. To prepare for part
4, you should run this simulator and
observe what happens to all of the
variables in it. Try keeping the distur-
bance constant in magnitude and
rotating its angle; try altering the
muscle angles; change line 3 to use
different error sensitivities (G(x)) and
slowing factors (K{(x)). Use the C
command for longer iterations, and
convince yourself that a steady state
has really been reached. See what
happens if the muscle tone isn't set
high enough (there is a very good
reason for muscle tone control). Do a
series of iterations with slowly chang-
ing reference signals, and plot muscle
tension against each reference signal.
Get the feel of this small extract of the
whole human hierarchy because in
part 4 we will widen the field of view
to include everything, and we will
begin to look at some experiments
with human subjects. These ex-
periments will be noninvasive,
nondestructive — more like video
games than science — but far more
useful than the games. ®

TRS-80
AT LAST! HIGH-QUALITY SOFTWARE
AT MASS-PRODUCTION PRICES.

WORD PROCESSOR DOS & 16K $39
Be selective! Avoid ‘'word processor’ converted from
another system. It is hard to load (an object program),
and the worst is you cannot store your text file in disk.
Our WORD-III is the first word processor specifically
designed for TRS-80 that uses disk storage for text.
Written in BASIC. No special hardware, no text size
limit. Use for letters, manuals & reports.

MAILING LIST DOS & 16K $35
It lets you maintain data base and produce reports &
labels sorted in any field. 500 labels/disk. Random
access. 2-digit selection code used.

INVENTORY DOS & 16K $39
While others use inefficient sequential file, we use 9-
digit alphanumeric key for fast on-line random access.
Record has key, description, level, safety level, order
amt., unit cost & price, annual usage, location and
vendor code. Reports give order info, performance
summary, etc.

KEY RANDOM-ACCESS UTIL DOS & 16K $19
Lets you access a record by specifying a key. Features
hashing, blocking, buffering technique, auto | /0 error
retry, etc.

DISKETTE DATA BASE DOS & 32K $49
You can use it to maintain a data base & produce
reports without any programming. Define fields, type,
screen & report formats on-line. Almost use up all 32K.

ACCOUNT manage client accounts & account
receivable. Remark fields for general use. Automatic
billing & transaction recording. 32K req. DOS $59.

SORT & LINKED-LIST ACCESS UTIL Lev. Il
Unlimited # of sort-keys. All data type. Link & unlink a
record in a list. 4K. $10 each or $16 both.

CASSETTE WORD PROCESSOR
Level | or Il cassette software:

Lev. Il & 16K $29

data base manager, inventory 16K $20 each
check balance & stock security 4K $10 each
or $15 both

Our competitors offer $99 cassette word processor,
$90 sequential ‘on-memory’ inventory, inflexible mail
system that does not produce report, 16K data base.
Compare all these basic features first. If still not
convinced, send $1 and 2 self-addressed stamped
envelopes.

MICRO ARCHITECT
96 Dothan St.
Arlington, MA 02174

118 August 1979 © BYTE Publications Inc Circle 214 on inquiry card.

Text continued from page 16:

Conditional Expressions

Clearly, the meaningful use of predicates and
recognizers requires the existence of language constructs
to modify the program flow. Such constructs are called
control structures. One basic control unit in LISP is called
the conditional expression. In M-LISP it is written:

[<pi>—<e;>;<p,>—<e;>; ...t~ <e,>]

The meaning of such a conditional expression is as
follows:

Each <p;> is a predicate; the <e,>s are arbitrary
LISP expressions. We evaluate the <p,>s from left
to right, finding the first which evaluates to true.
The value of the conditional expression is the value
of the corresponding <e;>. If none of the <p,> s
are true, then the value of the conditional is <e,> .
Notice that this last case is really forced upon us
since the last predicate is the constant ¢. It is com-
mon to read t used in this context as “otherwise.”

We extend our M-LISP to S-LISP mapping to include this
new construct, mapping it to:

(COND (< predicate,>T <expression,>7)
(< predicate,>7 < expression,>T)

(T < expression,>T))

The evaluation of a conditional expression is different
from the technique we have used in previous LISP in-
structions. Previously we have insisted that we evaluate
all of the operands in an instruction. In the conditional
expression, we evaluate the minimal part of the condi-
tional which gives us a true predicate; then we evaluate
the corresponding expression.

For example: (COND ((ATOM 'A) 'FOO) (T 1)) gives
value FOO, since (ATOM ‘A) gives T, (COND ((ATOM

"(A)) 'FOO) (T 1)) gives value 1 since (ATOM ’(A))
gives NIL.

We have introduced all the instruments in the LISP or-
chestra. Now it's time to make some music.

The Factorial Function
Our first example is the venerable LISP program to
compute the factorial function:

lifnisO
n! =nXn-1)! if n#0

We want to convert this description into a LISP
algorithm. The “if” structure can be converted into a con-
ditional expression, and we can name the new operation
fact. We assume our LISP machine has such a multiplica-
tion operation named times; we also assume the existence
of a simple subtract-by-one function, subl. Here's the
body of a factorial algorithm in M-LISP:

[eq[n;0]—1;
t— times[n;fact{subl[n]]]]

Notice the occurrence of the function name fact in the

since EQUAL is to encode a predicate and T and NIL are
our representations of the truth values t and f. Note too
that we depend on the order dependence of the condi-
tional evaluation; we won't test the (NULL Y) expression
unless (NULL X) is true. We won't get to the “...?" condi-
tion unless (NULL X) is false.

We can still have x non-empty, and y empty; let’s take
care of that:

(DEF EQUAL (X Y)
(COND ((NULL X)(COND ((NULL Y) T)
(T NIL))
((NULL Y) NIL)
.2)

Now the “...?" has been reduced to the case that both
lists are non-empty, and we can massage the pieces with
FIRST and REST. We look at the FIRST pieces; if they're
equal, then our decision on the equality of the original
lists depends on the equality of the remainders (or RESTs)
of the lists, If the FIRSTs are not equal, then we can stop
immediately with a false indication. This analysis yields
two cases: if the first elements are atomic, then use EQ to
check their equality; otherwise use EQUAL itself on the
first elements. Here we go:

(DEF EQUAL (X Y)
(COND ((NULL X)(COND ((NULL Y) T)
(T NIL))
((NULL Y) NIL)
((ATOM (FIRST X))
(COND ((ATOM (FIRST Y)XEQ X Y))
(T NIL)))

((ATOM Y) NIL)
((EQUAL (FIRST X)(FIRST Y))
(EQUAL (REST X)(REST Y)))
(T NIL))))

Reverse
So far our examples have been either numerical or

predicates. Predicates only require traversing existing
lists; we will certainly want to write algorithms which
build new lists. Consider the problem of writing a LISP
algorithm to reverse a list x. There is a simple, informal
computation: take elements from the front of x and put
them onto the front of a new list y. Initially, y should be
() and the process should terminate when x is empty.

For example, reversal of the list (A B C) would produce
the sequence:

X Y
(ABC) ()
(BC) (A)

(o (BA)
() (CBA)

The reverse function will build the new list by con-
catenating the elements onto the second argument of
rev’:

reverse[x] < =rev’[x;()]
rev’[x;y] < =[null[x]—y;
t—rev ' [rest[x];
concatlfirst{x];y]]]

Since y was initialized to () we are assured that the
resulting construct will be a list.

We leave it to the reader to translate this algorithm into
S-LISP.

Summary

Those of you who have already heard about LISP pro-
gramming know that LISP’s two major characteristics
are: lots of parentheses, and strange function names like
car, cdr, and cadadr. By now you should at least under-
stand why the parentheses are used, if not totally under-
stand why the representation is a benefit rather than a
curse,

LISP’s second characteristic is definitely a blemish.
More to the point, it’s a commentary on the state of LISP

‘BODY °“PERIPHERALS

Silk Screen Printed Sepia on Quality White Cotton/Poly T-Shirts
TO ORDER: PRINT Your Name, Address, Zip, Styies and Sizes Desired

(S,M,L.XL) on a Sheet of Paper. Include $6.95 Per Shirt.
(Three for $18.00) Out of U.S.A. Send $8.00 US Currency
International Money Order (or Each Shirt.

Our Shirts are Made in America and Do Not Shrink!
Custom Designs Available for Your Club - Dealer Inquiries Welcomed.

120 August 1979 © BYTE Publications Inc

BODY PERIPHERALS P. O. Box 945 Chanute, Kansas 66720

Circle 33 on inquiry card.

— -

DP SYSTEMS
SEMINARS

OF EXCELLENCE

LOCAL | PERFORMANCE
NETWORKS n EVALUATION
~ P 4

-
-

DISTRIBUTED

-
", RESOURCE
t

SHARING

1 ~

-
- ~
CCAPACITY | COMPUTER | QUEUEING ~

CAIME | NETWORKS

SIX DYNAMIC 3-DAY SEMINARS
BY THESE EXPERTS

DENNING

PERFORMANCE EVALUATION
WASHINGTON, D.C. @ OCTOBER 3-5, 1979

FARBER=JENSEN

DISTRIBUTED COMPUTER ARCHITECTURE
WASHINGTON, D.C. m OCTOBER 8-10, 1979

ANDREWS=
STOCKHAMsSAWCHUCK

DIGITAL IMAGE PROCESSING
WASHINGTON, D.C. m OCTOBER 24-26, 1979

BUZEN~*
DENNING=ARTIS

CAPACITY PLANNING
WASHINGTON, D.C. @ NOVEMBER 13-15, 1979

PARKER=ABBOTT

FIGHTING COMPUTER CRIME
SAN FRANCISCO = NOVEMBER 28-30, 1979

KLEINROCK

QUEUEING SYSTEMS
CHICAGO = NOVEMBER 28-30, 1979

T T TR AT
Tomn T D AR e
R s TS

P.0. BOX 49765, LOS ANGELES, CA.90049 (213) 476-9747;L

122

August 1979 © BYTE Publications Inc Circle 364 on inquiry card.

programming, rather than the language. When we ex-
amine the very low level representation of LISP opera-
tions, we see that the primitive selection operations of
LISP data structure can be described as selecting either
the left or right branch of a binary graph. Car and cdr are
these selection functions, and cadadr is an abbreviation
for a composition of these operations. Since all LISP data
structures (in our simple subset, remember) must ulti-
mately be representable as combinations of atoms and
binary graphs, then all algorithms must ultimately be ex-
pressible as manipulations of graph structure involving
car, cdr, and a function to construct new graphs, cons.

Most LISP programs are constructed in just such a
fashion. The result is unsatisfactory from at least two
views. First, the programs become almost totally unread-
able. Instead of couching the data structure abstractly in
terms of the concept ,recognizer: is__dog[x]; selectors:
left _eyelx], tail{x],...; and constructor(s):
make__dog[x;:...x,]—, the programmer performs the
transformation mentally and gives us eq[cadr(x];
DOG],cadaddr{x], and cons[x; cons[z;y]...], which
borders on gibberish. Neither the programmer nor a
reader has much chance of remembering what is going
on.

An equally serious problem is that this style of pro-
gramming deeply intertwines conception and implemen-
tation. Given that a new representation of “dog-ness” is
required, the programmer must search out all areas of
program which use the arcane encoding and replace them
very carefully.

Essentially there are two solutions to this problem.
One solution is to require the programmer to spell out de-
tailed rules for data structuring a la Pascal. Of course
there’s no reason to suppose that the programmer’s abili-
ty to remain abstract will survive any better here. Indeed
since Pascal really supplies “abstract storage structures”
rather than “abstract data structures,” along with the re-
quisite verbiage of a typed language, there are reasons to
believe that the programming process will suffer in the
long run. The alternative is to supply the programmers
with an exceptional programming tool and an under-
standing of abstraction, modularity and the power of
their tool. It may be naive to believe that programmers
can be self-disciplined, but the alternatives are not at all
attractive,

The other LISP articles in this issue explore detailed ex-
amples of LISP applications. Throughout these articles a
recurrent theme is the delicate balance between realistic
abstraction and overspecification. One of the real
wonders of LISP is that it allows you to work with ideas.

Traditionally, all LISP implementation problems have
been dealt with in software. An exciting alternative is to
build LISP machines in hardware, thereby raising the
programming floor to a much more acceptable machine
level than previously available. Several very healthy pro-
jects exist, from re-microcoded machines, through
specially constructed hardware, to experiments with very
large scale integration LISP devices. For those readers
who are interested in more details, several of these efforts
will be documented in an issue of the IEEE Transaction on
Computers later in 1979. It is clear to me that LISP is only
beginning to have an impact upon the computing com-
munity. @

soun 0. OWENS ASSOCIATES, inc.

12 SCHUBERT STREET (new address)
STATEN ISLAND, NEW YORK 10305

WE ARE KNOWN FOR OUR PROMPT, COURTEOUS SERVICE
TELETYPE MODEL 43

4320 AAA (TTL INErface)vvivir it ettt eiieeannanearonns $985

4320 AAK (RS232 interface)c.ciininniiiiiiireieiiiniiianinannas $1,085

with transformer to operate on 50Hz, 220v, installed inside cabinet add $50
We stock paper and ribbon for the Teletype Model 43

DEC LA 34

Low cost, convenient desk-top design. Feels and operates like a typewriter. 128 ASCI!
character set. Switch selectable 110 and 300 baud rates. 30 cps. Adjustable character
widths and line spacing. Attractive 9 x 7 dot matrix. Includes RS232 interface $1,159

HAZELTINE

1500 (assembled ONtY) ... e e $945
L2310 $1,085
B =700 P $1,425
with 50Hz, 220v current adaptation oo, add $100
also available with Danish, German or French charactersets add $60
INTERTUBE SUPER BRAIN iiia.. $2,885

DUAL Z80, dual floppy, double density, 64K RAM 4Mhz., CP/M, FORTRAN, COBOL,
BASIC, Assembler Language. Contained in intertube II.

INTERTUBE H ... $800
Smart terminal for intelligent users. Switch selectable 50 Hz option at no extra cost. With
220v transformer. Installed i add $100

MARINCHIP SYSTEMS M9900 CPU — s-100 COMPATIBLE

Network operating system, PASCAL, Extended precision commercial BASIC, FORTH,
META and applications package. Complete kit and DISCEX software $550
ASSEMDIEA ottt $700
We configure systems to meet your budget and your needs. Hard Disk interface (with
software) available.

IMS MEMORY, 16K Fully static, 250 n$cocveienernenerennnn. $346
TE! S-100 MAINFRAMES

12 SI0t — MO 112 i i it ittt et e e e s $433
22 IOt MO 122 ittt i it e e e e et b e $528

These mainframes are completely assembled, tested and contain everything required
for plug-in operation.

KONAN HARD DISK CONTROLLERc...coiiennt. $1,550
S$-100 compatible, plugs into S-100 mainframe. Controls 1-4 disk drives.
FUJITSU HARD DISK ... i e $5,700

50 megabytes of unformatted data in a single, removable cartridge.

IMS 5000 SERIES, COMPLETE Z80 SYSTEMc.coccnnne. $2,170
2 1/0 ports, 1K EPROM bootstrap loader, double density, dual 5 1/4 inch disks. S-100, 12
siot mainframe. A new rising star! No waiting.

PER SCI! FLOPPY DISK DRIVES

299 DUAL DISK, 2 S0 .. evittineet ittt et i i, $1,495
277 DUAL DISK, Single Sidedoveuneirnteie e eieeieeiinannnn, $1,210
1170 CONTROLLER, Single/Double Densityc.coeverveiniiuannnns $1,015
2142 CABINET & POWER SUPPLY fOF 277 ..uiiniiiieiieiiiiiieenennn, $300
2149 CABINET & POWER SUPPLY fOr299ovuiriininiiinieraeinnannes $390
MODEM: THE CAT from Novation $190

Originate/Answer. 300 baud.

TO ORDER: We ship within 24 hours after receipt of certified check, money order or
cashiers check. Credit cards: add 4%. Personal checks: atlow ten days. $12 shipping for
terminals. $3 for memories, and modem. New York residents include sales tax.
— WE EXPORT TO ALL COUNTRIES —
— OVERSEAS CALLERS USE (212) 448-6298 ONLY —

Joun 0. OWENS ASSOCIATES, inc.
12 SCHUBERT STREET (new address)
STATEN ISLAND, NEW YORK 10305
— DAY, EVENING, WEEKEND, HOLIDAY CALLS WELCOME!—
WE HAVE NO READER INQUIRY NUMBER, PLEASE CALL OR WRITE.

(212) 448-6283 (212)448-6298

126 August 1979 © BYTE Publications Inc

Techaicsl Forum

Permutation
Bibliography

Eduardo Kellerman
IBM
Endicott NY 13760

In the article “Solving the Eight Queens
Problem” (October 1978 BYTE, page 122)
Terry Smith asked readers for information
on algorithms for generating permutations.
In April 1975, | compiled the following
bibliography on the subject (I have not
updated it since then). I think some readers
may find it useful.

| Generation of Permutations

Mark B Welis, “Generation of Permutations
by Transposition,” Mathematics of Compu-
tation, volume 15, 1961.

Frank Harary, “Permutations with Restrict-
ed Position,” Mathematics of Computation,
volume 16, 1962.

J R Howell, “Generation of Permutations
by Addition,” Mathematics of Computation,
volume 16, 1962.

Selmer M Johnson, ““Generation of Permu-
tations by Adjacent Transposition,” Math-
ematics of Computation, volume XVII,
number 83, July 1963.

D H Lehmer, “The Machine Tools of Com-
binatorics” in Applied Combinatorial Math-
ematics, edited by E F Beckenbach, John
Wiley and Sons Inc, New York.

G G Langdon Jr, “An Algorithm for Gen-
erating Permutations,” Communications of
the ACM, volume 10, number 5, May 1967.

M Renaud and S Regnier, ‘“Programme de
Permutations,” Revue Francaise d’ Informa-
tique et de Recherche Operationell, May-
June 1967.

D Pager, “A Number System for the Per-
mutations,” Communications of the ACM,
volume 13, number 3, March 1970.

Techaical Forum

TI Has Faster Solutions

Marvin A Larson, 345 Birchwood Dr, Moraga CA 94556

Before reading Mr Arp's article, “The Power of the
HP-67 Programmable Calculator, Part 2" (April 1979
BYTE, page 176), I was under the impression that the
Hewlett-Packard HP-67 and the Texas Instruments TI59
programmable calculators were about equal in function,
utility, and calculating power. Both are “top of the line”
although the HP-67 costs about 70% more than the T159.

The procedures used by Mr Arp in writing his simul-
taneous equations program can be applied, with minor
reprogramming, to the TIS9. The resulting program
would then be capable of solving 29 simultaneous equa-
tions in 29 unknowns, as opposed to 9 equations in 9
unknowns with the HP-67.

The T159 can use up to 100 data storage registers, com-
pared to 26 registers for the HP-67. It can read/write data
from/to magnetic cards in banks of 30 values. Each card
can thus contain the 29 coefficients and one constant term
for one complete row of the solution array.

The Library Module supplied with the TI59 contains a
program for solving simultaneous equations which will
solve up to 8 equations with 8 unknowns, as compared to
4 equations with 4 unknowns for the HP-67.

Mr Arp did not tell us how much time is required to
solve the set of 9 equations given in his listing 4 (page
186), or the resultant accuracy of the solution. It appears
to involve one hundred or more read/write operations
from/to magnetic cards, a considerable amount of exter-
nal manual bookkeeping to keep track of the cards, hand
copying of coefficients, and the like. My guess is that
solution time is about 90 minutes, provided the wrong
card does not slip in. With regards to accuracy, Mr Arp
gives his solution results with 6 digit values, but does not
state the closure error on back substitution in the
original equations.

For comparison, I tried the library program in the

TI59. To reduce the problem to eight equations instead of
nine, I deleted cell 9 in figure 1 (page 180). This has the ef-
fect of deleting the ninth coefficient of the first eight equa-
tions and the entire ninth equation of table 1 (page 180).

This was my first experience with using the TI59 to
solve simultaneous equations, so I read the instructions
carefully. Then | timed the operation. From the beginning
at the start of data entry, to the end after all eight
unknowns had been copied down, the procedure took
just 13 minutes.

All answers came out as 10 digit numbers. On back
substitution all equations closed out with a maximum
error of 4.6E—9 and a mean absolute error of 2.2E—9.
Most of the functions and operations on Mr Arp’s “wish
list” are already available on the TI59. He would be well
advised to check out the TI59.

Incidentally, Texas Instruments software isn't always
quite as good as its hardware. The TI59 has sufficient
computing capacity to solve 10 simultaneous equations in
10 unknowns with the program entered from magnetic
cards, and 11 equations in 11 unknowns with the pro-
gram resident in a library module. This is with a full set
of equations with non-zero values for all coefficients.

— — — nms———

6809 Commentaries,
Continued...
Don’t Be So Superficial!

Jim Howell, 5472 Playa Del Rey, San Jose CA 95123

I would like to correct some statements made by David
Kemp concerning the 6809 microprocessor in “Compare
New Microprocessors Carefully” (Technical Forum, May
1979 BYTE, page 213).

The 6809 has several more 16 bit instructions than
those mentioned by Mr Kemp (ADDD, SUBD, and
CMPD). The CMPX, CMPY, CMPS, and CMPU instruc-
tions compare the X, Y, S, or U register with (up to) 16
bits of data. The ABX instruction adds B (8 bits, unsign-
ed) to X (16 bits) putting the 16 bit result into X.

Cm

c KIM ANALOG

INPUT

Analog to Digital Conversion Systom for the KIM Computer

PETMOD

Give the KIM the abilitw to senser
measures and control the world around
1t with DAM SYSTEMS modules. Just slud
the KIMSET1 into the KIM to et 146
channels of analog inputl. Screw
terminals are erovided for each channel
s0 wou can hooK ur Jodsticksse
whatever asrrofriate sensors wou have.

Each of the 16 analog inrulss in
the ranse of 0 to S5.12 voltss is
converted to a decimal nusber betuween 0
and 255 (20 millivolits Fer count),
Conversion time is 100 microsconds,

K1MMOD erovides one user rort
as well as a DAM SYSTEMS rort. '

Softuware is srovided.

TRS G MoD
TRS-80 INTERFACE

MO TEEE 00, R8-232
NFACE MODULE INTERFACE MODULE

128 August 1979 © BYTE Publications Inc

=i '
[

KIMSET 1

1-AlM181 = 16 ANALOG INPUTS . 8 BITS - 100 MICROSEC

. KIM ADAPTER - 1 USER PORT -
1 DAM SYSTEMS PORT

1-CABLE A24 - 24 INCH INTERCONNECT CABLE

1= MANMOD!

1- KIMMOD

- MANIFOLD MODULE - SCREW TERMINALS
FOR INPUTS, REFERENCE, GROUND

1-POW! - POWER MODULE
KIMSET1g for 110 VAC § 288
KIMSET1e for 230 VAC 9298

Ordar direct or contact your local computer stors.

CONNECTICUT microCOMPUTER, Inc.
POCONO ROAD
BROOKFIELD CONNECTICUT 06804

TEL: (203) 775-9659 TWX: TLX: 7104560052

VISA AND M/C ACCEPTED - SEND ACCOUNT NUMBER, EXPIRATION DATE AND SIGN ORDER.
ADD 93 PER ORDER FOR SHIPPING A& MANDLING - FOREIGN ORDERS ADD 10% FOR AIR POSTAGE

Circle 78 on inquiry card.

http:deci-.al
http:t.er�ina.ls

Circle 211 on inquiry card.

)

MAGSAMM

KEYED FILE MANAGEMENT

Put data at your fingertips...easily accessed, displayed and
updated by key. Designed to meet all of your data management
needs. MAGSAM™ allows you to quickly implement sophisticated
keyed file structures through simple CBASIC statements.
Standard MAGSAM™ features include record retrieval with random
by key, sequential by key, and generic ("wild card”) search, and
complete compatibility with all CBASIC file facilities. Each
MAGSAM™ Package includes the MAGSAM™ file manager,
MAGSAMX™ tutorial program, MAGSAMD™ file dump utility, User
Guide, Reference Card, and one year update service.

Select the version of MAGSAM™ that meets your requirements. All
versions of MAGSAM™ are completely upward compatible and
may be upgraded at any time for the price difference.

* MAGSAM III'™" — Most advanced version. Multiple Key support
(any number of keys), and Record and Key Deletion with automatic

reclamation of disk space., $145¢
* MAGSAM I — Single Key support with full Delete

capability $991
e MAGSAM I™ — Entry level version. Single Key support without
Delete capability. $75¢
e User Guide only - comprehensive tutorial and reference
ManUal. $15

Available for 8" soft sector, Micropolis, and TRS-80 disk formats.
Requires CP/M"* or derivative and CBASIC. Distributed as CBASIC
subroutines in source form.

Visa and Masterchagre welcome. Dealer and OEM inquiries

invited.
MICRO APPLICATIONS GROUP
7300 CALDUS AVENUE

m‘ ‘E VAN NUYS, CA 91406

\ * Trademark of Digital Research t Single stte hicense /

and how they could have been implemented on the pro-
cessors being compared is an excellent way to make a fair
comparison (not just one or two projects, but several).
The real test is laying out $30 K for a couple of develop-
ment systems and actually doing it, but....

The procedure which [have outlined is more of a study
than a comparison. It takes a long time, and a concen-
trated effort to be fair right up to the end.

Although I disagree with most of Mr Kemp's article, I
take special issue with the light regard he appears to have
concerning the multitude of various addressing modes of-
fered by the '09. The difference between having and not
having just one of these modes can very easily alter the
entire design of a software package, making the execution
times of even most instructions seem like trivia compared
to what can be saved. Being able to write recursive, posi-
tion independent code with the ‘09 should also weigh
heavily in any comparison being attempted with the '09.

There is another point I would like to clarify. Mr Kemp
states that “many 6809 instructions require 4 bytes to
specify.” Many readers may have gone away thinking
“most,” rather than “a few,” since no further explanation
followed. Motorola says that they chose these 4 byte in-
structions as some of the lesser used op codes, and I find
that these 4 byte instructions occur about once per page
of assembly listing (typically 50 lines of code). The vast
majority are 2 bytes.

I have been designing with the 6809 (a real part) since
mid-March 1979. The reason: it is the most powerful 8 bit
MOS microprocessor. And | do not work for Motorola. m

Turning progralnmers into composers!

sIOOO

The BYTE Book of

EDITED By,
P \\ CHRISTOPHER B MORGAN

Buy this book at your favorite computer

bookstore or order direct from BY TE BOOKS.
Add 6¢ per book to cover
postage and handling.

130 August 1979 © BYTE Publications Inc

For the first time hard-to-obtain computer
music has been collected into one con-
venient, easy-to-read book. The BYTE
Book of Computer Music combines the
best from past issues of BYTE magazine
along with exciting new material.

This fascinating book, edited by
Christopher P. Morgan, includes articles
discussing four-part melodies, a practical
music interface tutorial, electronic organ
chips, and a remarkable program that
creates random music based on land

terrain maps.
$10.00

ISBN 0-931718-11-2

A IERE

70 Main St., Peterborough, NH 03458

Circle-36 on inguiry card.

Announcement | The first eight Personal
’rograms™ from Aladdin Automation are
vaiting for you now at your neighborhood
~omputer retailer or direct from Aladdin.

Now you can get your full share of Aladdin
nagic in every one of these Personal
rograms® :

ath-Ter-Mind® A delghtful,

educational learming experience

for your pre-school child. Watch
he smile on your child’s face as a correct
nswer makes the mathematician smile on the
creen before you. A nursery song also serves
s a reward for learning elementary addition
nd subtraction. With Aladdin’s Math-Ter-
Aind® your child’'s pathway to learning will be
un-filled . . . for both of you. Math-Ter-Mind®.
he first release from the Aladdin Education®
eries. (nursery song currently avatlabie only
n Apple II® program)

unar Lander In a controlled

descent, you're just seconds away

from your first landing on the cold,
orbidding surface of the moon. As you
avigate your delicate spacecraft downward to
he safety of Moonbase, you must be ever
vatchful of the dangers rising to meet you with
ach passing moment: a fuel level fast
pproaching zero. deadly meteor showers that
ome from any direction, at any time; sheer-
aced rock cliffs and rough terrain. choosing
he correct landing pattern and rate of descent.
\laddin’s Lunar Lander. Your chance to reach
ut and touch the stars . . . without leaving the
afety and comfort of your own chair. The first
elease from the Aladdin Simulation® Series.

raps All eyes in the casino are

on you. The dice are in your

hands. Lady Luck sits at your
shoulder, whispering . . . ""Just one more time.
Try your luck just one more time.”” You throw

. and watch the dice tumbling on the

screen. With Aladdin’s Craps you play against
the computer, so it's awfully tough to win. But
when you do. it's an experience you re likely
never to forget. Craps. An exciting, heart-
pounding Personal Program®. The first release
from the Aladdin Las Vegas® Series.

astermind A challenging game

of intrigue. centuries old, that will

give you full chance to test your
powers of logic, deduction and reason. And
test them you will, as you try and solve the
computer’s puzzle, using clues as they're
provided one-by-one. You control the degree of
difficulty in this classic Personal Program® that
offers one simple, yet all-consuming challenge:
beat the Mastermind in a direct, one-on-one
battle of wits. Aladdin’s Mastermind. The first
release from the Aladdin Oid Favorites® Series.

ic-Tac-Toe Five different levels

of difficulty allow a person of any

age or skill to take part in this
relaxing. enjoyable game that can act as a
learming tool, as well. Level I, for example, is
suitable for children and is excellent also for
teaching simple mathematics. The computer
plays just about perfectly at Level V. Just
about, that is, so go ahead and take your best
shot. See if you can beat the computer in this
traditional favorite of young and old alike.
Tic-Tac-Toe. Another first release from the
Aladdin Old Favorites® Series.

ungle Island® Shipwrecked in a

raging storm at sea, miraculously

you survive only to find yourself

stranded on a seemingly deserted jungle

istand. Without food, water or supplies of any
kind, you begin to try and find your way to
safety. The computer will be your eyes and
ears as you explore your jungle island and all
the mysteries and dangers that lie in wait for
you. Jungle Island® A captivating first
release from the Aladdin Adventure® Series.

tix" Aladdin’s Stix® can be

played with 2 to 5 piles of sticks

and between 1 and 19 sticks in
each pile. The object: to be the one to pick up
the last stick. Sounds simple? Yes, but you're
playing against the computer. Take heart,
though. because you can control the degree of
difficulty in this update of the ancient game of
Nim Sux™. Another first release from the
Aladdin Old Favorites™ Series.

uper Pro Football® Here's your

chance to be more than just an

armchair quarterback. With
Aladdin’s Super Pro Football™ you can replay
any Super Bowl game, from the first, between
Green Bay and Oakland, to last year's classic
victory by Pittsburgh over Dallas. For once you
can turn back the clock and go for that one big
play that made the difference between victory
and defeat in pro football's biggest game of all.
Super Pro Football®. The first exciting release
from the Aladdin Super Pro® Series.

Visit your neighborhood computer retailer or
contact Aladdin direct to get your full share of
the magic in Announcement |, the first eight
Personal Programs®™ from Aladdin Automation.

Aath-Ter-Mind® Lunar Lander Craps

Mastermind

Super Pro Football®

Velcome to the All-New World of
\laddin. And Get Ready to
Aake Your Own Magic

opyright 1978 by Aladdin Automation

Circle 3 on inquiry card.

Design and copy by Campbell Marsh Graphic Communications

BYTE August 1979 131

The Design of an M6800
LISP Interpreter

S Tucker Taft
Harvard University Science Center
1 Oxford St
Cambridge MA 02138

The primary data structure is the list.

Anyone exposed to small computer systems has used a
language interpreter of some sort, and certainly may
have thought about implementing their own interpreter.
Unhappily, implementing an interpreter for a complete
version of most computer languages is a difficult and
time-consuming job, unsuitable for a part-time personal
computer enthusiast. The language LISP provides a uni-
que opportunity in this respect. The foundation for a
very complete interpreter can be programmed by a single
person in several months of part-time effort. As a bonus,
the resulting interpreter provides the user with a high
level language in which to express algorithms.

The Language

From the user’s point of view, the primary data struc-
ture in LISP is the list. Every element of a list is either an
atom or another list. An atom is a primitive named ob-
ject, the name being an arbitrary string of characters:

ABC is an atom,

135 is an atom.

(ABC 135) is a list of two elements, both atoms.
((ABC 135) XYZ) is a list of two elements, the first
of which is a list, the second is an atom.

(() is a list of two elements, both being lists of
zero elements. A list of zero elements, the null list, is
identified with the atom NIL.

The feature of the language LISP which makes it at the
same time a uniquely interesting language, and relatively

About the Author

Tucker Taft first programmed a computer in 9th grade. He spent the
following summers at various programming jobs until he graduated
fromHarvard in 1975 with a degree in chemistry. Since his graduation,
Tucker has spent two years as the full-time systems programmer for
Harvard's Student Timesharing System, combined with teaching some
introductory computer courses at Harvard.

Tucker is now starting a microcomputer software consulting business
based on a multilanguage compiler being written in LISP. In what is left
of his free time, he is found on a squash or tennis court, in a Cambridge
coffee shop, in a bookstore, or in a Chinese restaurant.

132 August 1979 © BYTE Publications Inc

easy to implement, is that all program elements are
represented using these same kinds of objects: atoms and
list. Constants, variables, expressions, conditionals, even
function definitions are all represented using only atoms
and lists.

A value is associated with each atom, allowing atoms
to represent program variables and constants, A sym-
bolic atom, like XYZ, would represent a variable. A
numeric atom, like 237, would represent a constant.

Operations on variables and constants, like addition,
or a function call, are represented by list expressions:

(ADD 2 5) would represent the expression 2 + 5.
(SIN (MUL 2 Y)) would represent the expression
sin(2y).

Conditionals, loops, and function definitions are also
represented by list expressions, as illustrated by this
recursive function implementing Euclid’s greatest com-
mon divisor algorithm:

(DEF GCD (LAMBDA (X Y)
(COND
((GREATER X Y) (GCD (SUB X Y) Y))
((GREATER Y X) (GCD X (SUB Y X)))
(T X)
)
)

This would be equivalent to the Pascal program:

function gcd(x,y:integer):integer
begin
if x>y then gcd := ged(x—y, y)
else
if y> x then gcd : = ged(x, y—x)
else
ged 1= x
end.

An important difference to note in the above com-
parison is that no explicit assignment to a function return
value is made in LISP, whereas in Pascal one must ex-
plicitly say gecd := ... to specify the return value. In
Pascal, and most other procedural languages, a distinc-
tion is made between program statements and expres-
sions. In such languages some program statement must be

(the atom ORANGE), would go through the structure
and do the replacement, using itself recursively to do the
replacement in all sublists of the list structure:

(DEF REPLACE (LAMBDA (STRUC OLD NEW)
(COND
((EQ STRUC OLD) NEW)
((ATOM STRUC) STRUC)
(T (CONS
(REPLACE (CAR STRUC) OLD NEW)
(REPLACE (CDR STRUC) OLD NEW)
)
)
)

Notice how the first two lines of the COND allow for
the possibility that the input data structure is simply an
atom (which may or may not be equal to the atom to be
replaced). In addition, notice that the entire body of this
function definition is a single COND, just as it was in the
GCD example given above. This is frequently true in
LISP programs. Finally, notice how the function simply
passes the buck to recursive calls on itself if the STRUC
argument is not an atom, CONSing together the results
of the two inner calls. The reader is encouraged to go
through an example of the execution of this function
when the argument OLD is the atom APPLE, the argu-
ment NEW is the atom ORANGE, and the argument
STRUC is the list structure:

(AN (APPLE A DAY) KEEPS (THE (APPLE MAN)
BUSY))

The result should be:
(AN (ORANGE A DAY) KEEPS (THE (ORANGE
MAN) BUSY))

If STRUC were:
(PEAR BANANA . APPLE)

the result should be:
(PEAR BANANA . ORANGE)

Other kinds of list-manipulating programs which are
relatively easy to write in LISP, but very difficult in more
conventional languages, include formula manipulation
programs which might take in the list representation for a
function (eg: (SIN (MUL 2 X))), and return the list
representation for its derivative according to the rules of
the calculus (eg: (MUL 2 (COS (MUL 2 X)))).

The author’s system is being used for the development
of a compiler/interpreter system which generates the list
representation for a program written in a programming
language, and then either interprets it directly, or
generates the list of machine language statements to im-
plement the program on a particular microcomputer.
LISP makes such an undertaking quite straightforward
(although not trivial, unfortunately!).

LISP Interpreter

Because programs are data objects (list structures) in
LISP, the same routines used to read and print data ob-
jects may be used to read and print programs. Further-
more user functions, like a general list editor, can be used
also to edit programs. This uniformity vastly simplifies
the task of writing an interpreter for LISP. Only three
basic modules need be produced: READ, EVAL, and

136 August 1979 © BYTE Publications Inc

PRINT . READ accepts a LISP list expression from the
terminal, in full parenthesized notation, and builds the
internal representation of the list, sometimes called a
forum. EVAL takes a form as its single argument, and
evaluates the form according to the LISP convention that
the first element of such a list specifies the function, with
the rest of the list as arguments.

The result of EVAL is another form. (The term form is
sometimes reserved for LISP expressions which are legal
input to EVAL. The term S-expression covers all types of
lists, whether or not the first element is a legal function
name. Within this paper, form will be used to refer to the
internal representation of any type of LISP expression.)

PRINT takes a form as its argument, and types it on
the terminal in fully parenthesized form. The top level
loop of the LISP interpreter simply prompts the user for
input (—> is the LISP prompt), READ:s in the users in-
put, EVALSs the resulting form, and PRINTS the result of
EVAL. In a conventional high level language syntax, this
would be:

while frue do begin
patom(“—>");

form := read();
form := eval(form);
print(form)

end.

or in M6800 assembly language:
BIGLUP LDX PRMPAT get prompt atom

JSR PATOM print the atom

JSR READ read the form typed in
* result now in M6800 x-register

JSR EVAL eval the form
* result of EVAL back in x-register

JSR PRINT print the form

BRA BIGLUP and loop around

PATOM is a subroutine, also called by PRINT, when a
form is known to be an atom. In an assembly language
implementation, it would be very convenient to pass
forms in the M6800 index (X) register. This register is 16
bits long, so it requires that forms be only 16 bits. Some
representation must be chosen for all LISP objects so that
a single 16 bit number may uniquely specify any ar-
bitrary object. Dotted pairs are used to represent lists.
Dotted pairs hold two forms, a CAR and a CDR, so they
must be 32 bit objects. A natural choice is to allocate 4
consecutive M6800 memory bytes for dotted pairs, and
specify dotted pairs by the address of their first byte. This
means that any two different dotted pairs will be easily
differentiated by the forms that specify them.

This still leaves the problem of deciding on an internal
representation for atoms, including symbolic atoms,
numeric atoms, and NIL. In the author’s LISP system
only two items of information are needed for each sym-
bolic atom, the string of characters which are the print
name of the atom, and the value currently associated
with the atom (which is an arbitrary form), Again a 4
byte representation is chosen, with the first two bytes
used as a memory address pointing to the first character
of the print name, and the third and fourth bytes used to
hold the value (a form) of the atom. Now the address of

Text continued on page 140

PET / TRS-80/ APPLE: Personal Software brings you the finest!

MICRO
CHESS

The Industry’s First
Gold Cassette
Over 50,000 Sold

MICROCHESS is the industry's best selling computer game. And
no wonder—because MICROCHESS gives you more than just a
chessplaying program: A convenient, foolproof set of commands
and error checks ... complete instructions in a5'2" by 82" booklet ...
a cassette that's guaranteed to load, with disk versions coming
soon ... and several levels of difficulty to challenge you not just
once, but time after time. It's available through well over three
hundred computer stores and many mail order sources ... always

TIME TREK by Brad Templeton for 8K PETs and Joshua Lavinsky
for 4K Level | and Il TRS-80s adds a dramatic new dimension to the
classic Star Trek type strategy game: REAL TIME ACTION! You'll
need fast reflexes as well as sharp wits to win in this constantly
changing game. Be prepared—the Klingons will fire at you as you
move, and will move themselves at the same time, even from
quadrant to quadrant—but with practice you can change course
and speed, aim and fire in one smooth motion, as fast as you can
press the keys. Steer under power around obstacles—evade enemy

TIME
TREK

A Tour De Force
In Real Time Action
Strategy Games

originating from Personal Software. What's more, every Personal
Software product is selected to give you these same benefits of
easy availability, reliable cassettes, readable documentation, a
carefully thought out user interface ... and most important,
continuing challenge and enjoyment, not just once but time after
time. If you haven't already, order your own gold cassette:
MICROCHESS, by Peter Jennings, for 8K PETs, 16K APPLESs, and
4K Level land I TRS-80Scivviennennn.... $19.95
ORI HIT

THE ENTERPRISE WS BEEN IESTROYED
THE FEDERATION WILL BE CONQUERED YOUR SCDRE 1S 8

CARE TO PLAY RGRIN

shots as they come towards you—lower your shields just long
enough to fire your phasers, betting that you can get them back up
in time! With nine levels of difficulty, this challenging game is easy
to learn, yet takes most users months of play to master. ADD
SOUND EFFECTS with a simple two-wire hookup to any audio
amplifier; the TRS-80 also produces sound effects directly through
the keyboard case, to accompany spectacular graphics
explosions! You won't want to miss this memorable version of a
favorite computergame.............c.ciiiiiiiiiin... $14.95

VT
Y
L

BLOCKADE by Ken Anderson for 4K
Level | and Il TRS-80s is a real time
action game for two players, with high
speed graphics in machine language.
Each player uses four keys to control
the direction of a moving wall. Try to
force your opponent into a collision
without running into a wall yourselft A
strategy game at lower speeds,
BLOCKADE turns into a tense game of
reflexes and coordination at faster
rates. Play on a flat or spherical course
at any of ten different speeds. You can
hear SOUND EFFECTS through a
nearby AM radio—expect some

GRAPHICS PACKAGE by Dan Fylstra
for 8K PETs includes programs for the
most common ‘practical’ graphics
applications: PLOTTER graphs both
functions and data to a resolution of 80
by 50 points, with automatic scaling
and labeling of the axes; BARPLOT
produces horizontal and vertical,
segmented and labeled bar graphs;
LETTER displays messages in large
block letters, using any alphanumeric
or special character on the PET
keyboard; and DOODLER can be used
to create arbitrary screen patterns and
save them on cassette or in a BASIC
Programvevvnrneernnnns $14.95

ELECTRIC PAINTBRUSH by Ken
Anderson for 4K Level | and || TRS-80s:
Create dazzling real time graphics
displays at speeds far beyond BASIC,
by writing ‘programs’ consisting of
simple graphics commands for a
machine language interpreter.
Commands let you draw lines, turn
corners, change white to black, repeat
previous steps, or call other programs.
The ELECTRIC PAINTBRUSH manual
shows you how to create a variety of
fascinating artistic patterns including
the one pictured. Show your friends
some special effects they've never
seen on a TV screen'......... $14.95

WHERE TO GET IT: Look for the PERSONAL SOFTWARE™ djsplay rack at your local computer store. If you can’t find the product you
want, you can order direct with your VISA/Master Charge card by dialing 1-800-325-6400 roll free (24 hours, 7 days; in Missouri, dial
1-800-342-6600). If you have questions, please call 408-745-7841. Or you can mail your order to the address below.

Personal Software™
592 Weddell Drive
Sunnyvale, Calif. 94086

138 BYTE August 1979 Circle 302 on inquiry card.

Look for Personal Software™ products at the dealer nearest you!

ALABAMA

BYTE SHOP

Huntsville, AL 35805
COMPUTERLAND

Huntsville, AL 35805

CPU, INC

Montgomery, AL 36104

THE LOGIC STORE

Opetika, AL 36801

ALASKA

ALPHA ELECTRONICS
Anchorage, AK 99503
ARIZONA

MILLET'S TV & RADID

Mesa, AZ 85204

PERSONAL COMPUTER PLACE
Mesa, AZ 85202
COMPUTERLAND OF PHOENIX
Phoenix, AZ 85016
COMPUTER SHOWROOM
Tucson, AZ 85710
ARKANSAS
COMPUTERLAND

Little Rock, AR 72212
DATACOPE

Uittle Rock, AR 72204
CALIFORNIA

JAY-KERN ELECTRONICS
Bakersfietd, CA 93305

BYTE SHOP

Burbank, CA 91506

SILVER SPUR

Chino, CA 91710

BYTE SHOP Of SACRAMENTO
Citrus Heights, CA 95610
COAST COMPUTER CENTER
Costa Mesa, CA 92627
CAPITOL COMPUTER SYSTEMS
Davis, CA 95616
COMPUTERLAND SAN DIEGO EAST
El Cajon, CA 92020
COMPUTERLAND OF EL CERRITO
El Cerrito, CA 94530
COMPUTERWARE

Encinitas, CA 92024
BUSINESS ENHANCEMENT
COMPUSERVICE

Escondido. CA 92027
CHANNEL DATA SYSTEMS
Goleta, CA 93017

RAINBOW COMPUTING
Granada Hitls, CA 91344
JADE COMPUTER PRODUCTS
Hawthorne, CA 90250

BYTE SHOP OF HAYWARD
Hayward, CA 94541
COMPUTERLAND OF HAYWARD
Hayward, CA 94541
COMPUTERLAND OF WEST LA
tnglewood, CA 90302
PROFESSIONAL COMPUTER STORE
La Crescenta, CA 91214
COMPUTER COMPONENTS

OF SOUTH BAY

Lawndale, CA 90260
COMPUTERLAND OF SOUTH BAY
Lawndale, CA 90260

A-VIDD ELECTRONICS

Long Beach, CA 90815
COMPUTERLAND

Los Altos, CA 94022

BYTE SHOP

Mountain View, CA 34040
HOBBY WORLD ELECTRONICS
Northnidge, CA 91324
COMPUTERS-MADE -EASY
Palmdale, CA 93550

BYTE SHOP OF PLACENTIA
Placentia, CA 92670
COMPUTER CENTER
Riverside, CA 92503

CAPITOL COMPUTER SYSTEMS
Sacramento, CA 95821
COMPUTERLAND

San Bernardino, CA 52404
COMPUTER AGE INC

San Diego, CA 92111
COMPUTERLAND OF SAN DIEGO
San Diego, CA 92111
COMPUTER MERCHANT

San Diego, CA 92115
COMPUTERLAND OF

SAN FRANCISCO

San Francisco, CA 94105
VIDEQ GAMES & COMPUTERS
San Francisco, CA 94118
VILLAGE ELECTRONICS

San Francisco, CA 94121
COMPUTERLAND OF SAN JOSE
San Jose, CA 95129
COMPUTERLAND (Central}
San Leandro. CA 94577

BYTE SHOP

San Luis Obispo, CA 93401
MARIN COMPUTER CENTER
San Ratael, CA 94903
ADVANCED COMPUTER PRODUCTS
Santa Ana, CA 92705
COMPUTER CITY

Santa Ana, CA 92704

BYTE SHOP

Santa Clara, CA 95051
COMPUTER FORUM

Santa Fe Springs, CA 90670

Circle 302 on inquiry card.

THE COMPUTER STORE
Santa Monica, CA 90401
SANTA ROSA COMPUTER CENTER
Santa Rosa, CA 95404
BYTE SHOP

Suisun, CA 94585
COMPUTERS PLUS
Sunnyvale, CA 94087

BYTE SHOP OF TARZANA
Tarzana, CA 91356
COMPUTERLAND OF
THOUSAND OAKS

Thousand Oaks, CA 91360
SMALL SYSTEM SOFTWARE
Thousand Oaks, CA 91360
COMPUTER COMPONENTS
Van Nuys, CA 91411
COMPUTERLAND

Walnut Creek, CA 94598
BYTE SHOP

Westminster, CA 92683
COMPUTER COMPONENTS OF
ORANGE COUNTY
Westminster, CA 92683
COLORADO

BYTE SHOP

Boulder, €O 80301
COMPUTERLAND

Colorado Springs, CO 80917
AMPTEC

Denver, CO 80216
COMPUTERLAND

Denver, CO 80222

BYTE SHOP

Englewood, CO 80110
MICRO WORLD ELECTRONIX
Lakewood, CO 80226
CONNECTICUT
COMPUTERLAND OF FAIRFIELD
Fairheld, CT 06430

JRV COMPUTER STORE
Hamden, CT 06518

THE COMPUTER STORE
Hartford, CT 06103
COMPUTER LAB

New London, CT 06320
THE COMPUTER STORE
Windsor Locks, CT 06096
WASHINGTON D.C.
COMPUTER CABLEVISION
Washington, D.C 20007
FLORIDA
COMPUTERLAND

Boca Raton, Ft 33432

THE COMPUTER STORE
Bradenton, FL 33505

THE COMPUTER STORE
Clearwater, fL 33516
TRANS-DATA CORP

Coral Gabies. FL 32134
UCATAN

Destin, FL 32541

BYTE SHOP

Fort Lauderdale. FL 33334
COMPUTERLAND

Fort Lauderdale, FL 33308
COMPUTERS FOR YOU

Fort Lauderdaie, Ft 33312
DATA MOVERS

Fort Meyers, FL 33901
SOUND IDEAS BYTE SHOPPE
Gainesville, FL 32601
FOCUS SCIENTIFIC ENTERPRISES
Miami, FL 33132

GRICE ELECTRONICS
Pensacola, FL 32589
COMPUTER AGE

Pompano Beach, Fi 33062
PAPERBACK BOOKSMITH
Sarasota, FL 33581

AMF ELECTRONICS

Tampa, FL 33612

MICRO COMPUTER SYSTEMS
Tampa, FL 33609
COMPUTER CENTER OF
PALM BEACHES

West Palm Beach, FL 33409
GEORGIA

ADVANCE COMPUTER TECHNOLOGIES

Atlanta, GA 30328
COMPUSHOP

Atlanta, GA 30342
DATAMART

Atlanta, GA 30305

THE LOGIC STORE

Columbus, GA 31906
COMPUTERLAND OF ATLANTA
Smyrna, GA 30080

HAWAI

COMPUTERLAND

Honotulu, HI 96813
MICROCOMPUTER SYSTEMS
Honolulu, HI 96813

RADIO SHACK {Dealer)

Uhue, HI 96766

IDAHO

NORTHWEST COMPUTER CENTER
Boise, 10 83704

ILLINOIS

COMPUTERLAND OF
ARLINGTON HEIGHTS
Ariington Heights, (L 03904
FARNSWORTH COMPUTER CENTER
Aurora, 1L 60505

KAPPEL'S COMPUTER STORE
Bellevilte, IL 62220
0OW-COM

Carbondale, IL 62901
BYTE SHOP

Champaign, IL 61820

THE ELEKTRIK KEYBOARD
Chicago, IL 60614
EMMANUEL B. GARCIA JR
AND ASSOCIATES

Chicago, IL 60613
PERSONAL COMPUTER
Chicago. IL 60611

VIDEO ODYSSEY

Deerfield, IL 60015
COMPUTERLAND

Downers Grove, IL 60515
COMPUTER STATION
Granite City, IL 62040
ORCUTT BUSINESS MACHINES
La Salle, It 61301

ILLINI MICROCOMPUTERS
Naperville, IL 60540
COMPUTERLAND OF NILES
Niles, IL 60648
COMPUTERLAND

Oak Lawn, IL 60453

BIES SYSTEMS

Qak Park, IL 60302
COMPUTERLAND OF PEORIA
Peoria, IL 61614

WALLACE ELECTRONICS
Peoria, L 61614

DATA DOMAIN
Schaumburg, IL 60195
INDIANA

DATA DOMAIN OF FORT WAYNE
Fort Wayne, IN 46805
HOME COMPUTER CENTER
Indianapobs, IN 46220
PUBLIC COMPUTING
Latayette, IN 47904
COMPUTER CENTER

So. Bend, IN 46637
1OWA

SYNCHRONIZED SYSTEMS
Des Moines, 1A 50310
COMPUTER SHOP
Spencer, 1A 51301

THE COMPUTER CENTER
Waterloo, 1A 50701
KANSAS

THE COMPUTER ROOM
Overland Park, KS 66212
PERSONAL COMPUTER CENTER
Overland Park, KS 66206
COMPUTER SYSTEMS DESIGN
Wichita, KS 67214
KENTUCKY

BARNEY MILLER'S INC
Lexmgton, KY 40507
LOUISIANA

COMPUTER SHOPPE
Metaire, LA 70002
MARYLAND
COMPUTERLAND

Rockville, MD 20855
COMPUTER WORKSHOP
Rockville, MD 20852
COMPUTERS £1C

Towson, MD 21204
COMPUTERS UNLIMITED
Towson, MD 21204
MASSACHUSETTS
THE COMPUTER STORE
Burlington, MA 01803

THE COMPUTER STORE
Cambridge, MA 02139
CPU SHOP

Charlestown, MA 02129
MAD HATTER SOFTWARE
Dracut, MA 01826

NEW ENGLAND ELECTRONICS
Needham, MA 02194
MICHIGAN

NEWMAN COMPUTER EXCHANGE
Ann Arbor, M1 48104

NEW DIMENSIONS IN COMPUTING
East Lansing, M| 48823
COMPUTER HOUSE DIV.
Jackson, M1 49202
COMPUTERLAND OF
GRAND RAPIDS

Kentwood, MI 49508
COMPUTRONIX

Midiand, M) 48640
COMPUTER MART

Clawson, MI 48017

TRI CITY COMPUTER MART
Saginaw, Ml 48603
COMPUTERLAND
Southtield, M! 48034
LEVEL FOUR PRODUCTIONS
Westland, MI 48185
MINNESOTA
COMPUTERLAND
Bioomington, MN 55431
ZIM COMPUTERS INC.
Brookiyn Center, MN 55429
MINN. MICRO SYSTEMS
Minneapohs, MN 5° 54
MISSISSIPPY

OXFORD SOFTWAR 0.
Quxford, MS 38655

MISSOURI

FORSYTHE COMPUTERS
Clayton, MO 63105
COMPUTER COUNTRY
Florissant, MO 63031
FUTUREWORLD, INC.

§t. Louis, MO 63131
GREATEST GRAPHICS
Springfreld, MO 65804
NEBRASKA

OMAHA COMPUTER STORE
Omaha, NE 68127
NEVADA

CENTURY 23

Las Vegas, NV 83102
HOME COMPUTERS

Las Vegas, NV 89109
NEW HAMPSHIRE
TRS-80 SOFTWARE EXCHANGE
Milford, NH 03055
COMPUTERLAND OF NASHUA
Nashua, NH 03060

8ITS, INC.

Peterborough, NH 03458
NEW JERSEY
COMPUTER LAB OF NJ
Budd Lake, NJ 07828
COMPUTER EMPORIUM
Cherry Hill, NJ 08002
COMPUTER MART OF NJ
iselin, NJ 08830

MSM ELECTRONICS
Medtord, NJ 08055
COMPUTERLAND
Morristown, NJ 07960
COMPUTERLAND

Paramus, NJ 07652
COMPUTER NOOK

Pine Brook, NJ 07058
COMPUTER CORNER
Pompton Lakes, NJ 07442
COMPUTER ENCOUNTER
Princetan, NJ 08540
TYPTRONIC COMPUTER STORE
Ramsey, NJ 07446
STONEKENGE COMPUTER CO.
Summnt, NJ 07901

NEW YORK
COMPUTERLAND

Buffalo, NY 14150
COMPUTERLAND

Carle Place, NY 11514
COMPUTER SHOP OF SYRACUSE
De Witt, NY 13214

THE COMPUTER TREE
Endwell, NY 13760
COMPUTERWORLD INC
Great Neck, NY 11021
LONG ISLAND COMPUTER
GENERAL STORE
Lynbrook, NY 11563
COMPUTER MICROSYSTEMS
Manhasset, NY 11030
COMPUTER SHOPPE
Middle Island, NY 11953
ARISTO-CRAFT

New York, NY 10001

THE COMPUTER FACTORY
New York, NY 10017
COMPUTER MART OF NEW YORK
New York, NY 10016
DATEL SYSTEMS

New York, NY 10036
AUTOMATIC SYSTEMS
Poughkeepste, NY 12603
COMPUTER HOUSE
Rochester, NY 14609

THE COMPUTER STORE
Rochester, NY 14618
HOME COMPUTER CENTER
Rochester, NY 14607

THE COMPUTER CORNER
White Plains, NY 10601
READOUT COMPUTER STORE
Willamswille, NY 14221

' NORTH CAROLINA

BYTE SHOP

Charlotte, NC 28212
COMPUTERLAND
Charlotte, NC 28205
COMPUTER ROOM
Charlotte, NC 28203
FUTUREWORLD

Durham, NC 27707

BYTE SHOP

Greensboro, NC 27401
MICROCOMPUTER SERVICES
Hickory, NC 28601

BYTE SHOP OF RALEIGH
Raleigh, NC 27605
OHI0

BASIC COMPUTER SHOP
Akron, OH 44314
INDUCTIVE COMPONENTS
Ametia, OH 45102
CINCINNATI COMPUTER STORE
Cincinnati, OH 45246
21ST CENTURY SHOP
Cincinnati, OH 45202
DIGITAL DESIGN
Cincinnati, OH 45202
CYBER SHOP

Columbes, OH 43227

MICRO MIN! COMPUTER WORLD
Columbus, OH 43213
COMPUTER SOLUTIONS

Dayton, OH 45409

DAYTON COMPUTER MART
Dayton, OH 45409

ASTRO VIDEO ELECTRONICS
Lancaster, OH 43130
COMPUTERLAND OF CLEVELAND
Mayfield Heights, OH 44121
RADIO SHACK {Dealer)

St. Clawrsville, OH 43950
OKLAHOMA

HIGH TECHNOLOGY

Okiahoma City, OK 73106
MICROLITHICS

Okiahoma City, OK 73127

HIGH TECHNOLOGY

Tusa, OK 74129

GON
THE COMPUTER STORE
Corvallis, OR 97330
CAMERA AND COMPUTER
EMPORIUM
Portiand, OR 97205
COMPUTERLAND OF PORTLAND
Tigart, OR 97223
PENNSYLVANIA
BYTE SHOP
Bryn Mawr, PA 19010
PERSONAL COMPUTER CENTER
Frazer, PA 19355
COMPUTER AID
Latrobe, PA 15650
THE COMPUTER WORKSHOP
Murrysvilie, PA 15668
A B COMPUTERS
Montgomeryville, PA 18936
MICROTRONIX
Philadelphia, PA 19106
COMPUTER HOUSE
Pittsburgh, PA 15220
SOUTH CAROLINA
DATA MART
Greenville, SC 29607
TENNESSEE
MICROCOMPUTER STORE
Knoxville, TN 37919
COMPUTER LABS OF MEMPHIS
Memphis, TN 38117
DOC'S COMPUTER SHOP
Nashville, TN 37211
TEXAS
COMPUTER POST
Ariington, TX 76011
COMPUTERLAND OF AUSTIN
Austin, TX 78757
COMPUTERS ‘N THINGS
Austin, TX 78731
MICRO COMPUTER SHOPPE
Corpus Chrish, TX 78411
MICROSYSTEMS SERVICES INC
Corpus Christ, TX 78411
COMPUSHOP
Dallas, TX 75243
COMPUTER IMAGINEERING
Dallas, TX 75234
COMPUTERLAND
Dallas, TX 75231
KA ELECTRONICS SALES
Daitas, TX 75247
COMPUTER TERMINAL
El Paso, TX 79901
RAM MICRO SYSTEMS
Fort Worth, TX 76116
COMPUTERCRAFT
Houston, TX 77063

COMPUTERLAND OF HOUSTON BAY

Houston, TX 77058
INTERACTIVE COMPUTERS
Houston, TX 77036
NEIGHBORHOOD COMPUTER
Lubbock, TX 79401
COMPUTER PATCH OF SANTA FE
Odessa, TX 79762
COMPUSHOP

Richardson, TX 75080

THE COMPUTER SHOP

San Antonio, TX 78216
COMPUTER SOLUTIONS

San Antonio, TX 78229

MICRO MART

San Antonio, TX 78205
WICHITA COMPUTER SYSTEMS
Wichita Falls, TX 76301
UTAH

ADP SYSTEMS

Logan, UT 84321

TRI-POWER ELECTRONICS
Murray, UT 84017

COMPUTER SPECIALISTS
Ogden, UT 84402

COMPUTER CONCEPTS GROUP
Salt Lake City. UT 84109
COMPUTERLAND OF SALT LAKE
Salt Lake City, UT 84111

THE HI-FI SHOP

Satt Lake Crty, UT 84117
VERMONT

COMPUTERMART

Essex Junction, VT 05452
VIRGINIA

COMPUTER HARDWARE STORE
Alexandria, VA 22314

COMPUTERS PLUS
Alexandria, VA 22304

COW. INC

Blacksburg, VA 24060

HOME COMPUTER CENTER
Newport News, VA 23606
COMPUTER TECHNIQUES
Richmond, VA 23235

THE COMPUTER PLACE
Roanoke, VA 24015
COMPUTER WORKSHOP
Springhetd, VA 22151
COMPUTERLAND

Vienna, VA 22180

HOME COMPUTER CENTER
Virginia Beach, VA 23452
WASHINGTON
COMPUTERLAND

Bellevue, WA 98007

OMEGA NORTHWEST
Beilevue, WA 98004
COMPUTERLAND OF SOUTH
KING COUNTY

Federal Way, WA 98003

YE OLDE COMPUTER SHOPPE
Richiand, WA 99352

THE COMPUTER SHOPPE
Seattle, WA 98115

EMPIRE ELECTRONICS
Seattle, WA 98166
PERSONAL COMPUTERS
Spokane, WA 99202
COMPUTERLAND

Tacoma, WA 98499
WISCONSIN

BYTE SHOP OF MILWAUKEE
Greenfield, Wl 53227
COMPUTERLAND

Madison, W1 53711

MADISON COMPUTER STORE
Madison, W! 53711
COMPUTERLAND

Miiwaukee, W) 53222

FOX VALLEY

COMPUTER STORE

Neenha, Wl 54356
WYOMING

COMPUTER CONCEPTS
Cheyenne, WY 82001
AUSTRALIA

ELECTRONIC CONCEPTS PTY. LTD
COMPUTERLAND

Sydney, N.S.W.

CANADA

COMPUSHOP

Calgary, Aiberta T2N 2A4
THE COMPUTER SHOP
Calgary. Aiberta 121 4T9
ORTHON COMPUTERS
Edmonton, Aiberta TSN 3N3
TiB MICROSYSTEMS
Edmonton, Alberta TSM OH9
CONTI ELECTRONICS
Vancouver, BC. VSW 224
COMPUTER CITY

Winnepeg, Manitoba R3P OHB
COMPUTERLAND

Winnepeg. Manitoba R3G OM3
INTERACTIVE COMPUTER SYSTEMS
Frederickton, New Brunswick
MINICOMP SYSTEMS

Hahtax, Nova Scotia B3K 2G1
KOBETEK SYSTEMS

Wottviile, Nova Scotia BOP 1X0
COMPUTERLAND

Burlington, Ontario
LYNTRONICS

Downsview. Ontario M2) 2W6
COMPUTER CIRCUITS
London, Ontario N6A 342
COMPUMART

Ottawa, Ontario K2A 1)2
COMPUTER INNOVATIONS
Ottawa, Ontario K18 4A8
RICHVALE TELECOMMUNICATIONS
Richmond Hill. Ontario

THE COMPUTER CENTRE
Sarnia, Ontaric N7T 184
COMPUTER MART

Toronto. Ontario M4G 3B5S
THE COMPUTER PLACE
Toronto. Ontario M5V 121
COMPUTER SPECIALIST
Toronto, Ontario M3K 1E7
HOME COMPUTER CENTRE
Toronto, Ontario M2M 3W2
HOUSE OF COMPUTERS
Toronto, Ontano

MARKETRON

Toranto, Ontario
MICRO-WARE

Toronto, Ontario MAE 212
COMPUCENTRE

Montreal, Quebec H1J 124
FUTUR BYTE

Montreal, Quebec H3B 3C9
CUSTOM COMPUTING SERVICES
Saskatoon. Saskatchewan S7K 285
DIGITAL SERVICE

Saskatoon, Saskatchewan S7J 3A9
PUERTO RICO
MICROCOMPUTER STORE

Rio Predras, PR 00921

BYTE August 1979 139

Text continued from page 136
this 4 byte object can specify the atom uniquely from all
other atoms and from all other dotted pairs.

Unfortunately this does not provide a simple way of
distinguishing atoms from dotted pairs, when just given
the form. Several solutions to this problem are possible.
One is to restrict dotted pairs to a certain part of
memory, then the address would determine whether the
form specified an atom or a dotted pair. A second
method is to add an additional byte to both dotted pairs
and atoms which simply contains a type specifier, say 1
for dotted pairs and 2 for atoms. This method makes
future expansion of types simple, but is somewhat
wasteful in terms of space. The third method, the one
chosen for the author’s system, is to align all dotted pairs
and atoms on 4 byte boundaries, that is, with addresses
which are a multiple of four. This means that the low
order two bits of the address are expected to always be
zero, and hence may be used to encode type information.
In the author’s system, dotted pairs are specified by forms
with both bits zero, and symbolic atoms by 01 in the
lower two bits. One of the bits is still unused, but will
become very handy when garbage collection methods are
discussed below.

With numeric atoms, their name determines their
value, and hence only their name (or their value) need be
specified by a form. On the author’s M6800 system only
hexadecimal memory addresses 0000 thru 7FFF were ac-
cessible for storage of dotted pairs and atoms, meaning
that the high order bit of forms specifying either of these
was always zero. A representation for numeric atoms
was chosen to be a form with the high order bit set, 14
bits of numeric value, and one bit left for garbage collec-
tion.

A special representation for the NIL atom is used both
because the value of NIL is, like numeric atoms, required
always to be the atom itself, and because it is used univer-
sally to represent the end of a list. The form chosen to
specify NIL is simply the value zero. In fact any form
with the high order byte zero is treated like NIL to
simplify the test for NIL in certain cases. This means that
the 256 byte page starting at zero is not usable for storing
atoms or dotted pairs, but this restriction causes no pro-
blem at all, since both are allocated starting at the highest
address available, and the allocator runs into program
long before it reaches page zero.

When writing a LISP interpreter, the implementor
must decide relatively early on how forms will specify all
types of LISP objects. Unfortunately, it may not be until
well into the implementation that the implementor
discovers that certain choices were inefficient or incon-
venient.

One important requirement affecting this decision not
yet mentioned is the need to implement the LISP EQ func-
tion. This function takes two arbitrary forms, and
returns the atom T or the atom NIL depending on
whether the forms specify the same dotted pair, or
whether the forms specify the same atom. Whenever an
atom is input by READ, it must return the form specify-
ing that atom to the caller. Whenever the same symbolic
atom name is typed, READ must return the same form,
ie: a pointer to the same 4 byte cell. This is accomplished
by retaining a linked list of all defined symbolic atoms
(called the OBLIST).

140 August 1979 'S BYTE Publications Inc

Before allocating a new 4 byte cell for an atom, READ
scans the OBLIST for an atom of the given print name. If
found, READ returns a form specifying that pre-exisiting
atom. (Otherwise it must copy the name into some area
used for storing names, allocate a 4 byte cell, initialize the
left cell to point to the name, and the right cell to NIL,
and return a form specifying the new atom.) This method
guarantees that two forms specify the same symbolic
atom if and only if they have the same address.

In some implementations of numeric atoms, this same
rule cannot be guaranteed. In such systems, numeric
atoms are simply allocated an appropriately large cell to
store their numeric value (and hence allowing numeric
atoms greater than 14 bits), a new cell being allocated
every time a new number is generated (which happens at
every ADD, MUL, etc). In these systems it would be im-
practical to scan a list like the OBLIST every time any
arithmetic calculation is done, and so the LISP function
EQ may not rely on the rule that unequal forms indicate
unequal atoms. In such systems, EQ must look at the
contents of the cell specified by a numeric atom form,
and make the comparison that way. In systems like the
author’s, EQ simply compares the forms themselves, no
matter what type of atom the form may specify.

The choices made in representing the various types of
LISP objects can be summarized in the high level
language (Pascal-like) data structure specification in
listing 1.

type lisptype =
(dtprtype, symatmtype, numatmtype, nilatmtype);
dipr =
record
car: form,
cdr: form
end;
symatm =
record
name: 1array {0..n] of char,
value: form
end;
form=
packed record
gcbit: boolean,
case objtype: lisptype of

dtprtype: (dtprform: tatpr),
symatmtype: (symatmform. tsymatm);
numatmtype: (numatmform: — 5000..4999);
nilatmtype: ()

end.

Listing 1: A Pascal data structure specification that could be
used to represent various types of LISP objects.

READ Function

READ is the basic input routine for the LISP inter-
preter. READ accepts a fully parenthesized expression
from the terminal, and builds up the internal representa-
tion, allocating new dotted pairs and atoms as necessary.
If the expression is a list, READ returns a form specifying
the first dotted pair of the constructed list. If the expres-
sion typed in is simply an atom, READ returns a form
specifying the atom.

The logic of the READ routine is straightforward
because the syntax of LISP expressions is so simple.
READ calls a function RATOM to return the next input
atom. RATOM actually does the work of allocating new
4 byte cells for symbolic atoms (when necessary) as ex-

Circle 352 on inquiry card.

“Programming.” Whether in Arabic or English, can sometimes be as
confusing as learning a foreign language.

With this in mind, Structured Analysis Systems developed
SP80, an innovative concept providing structured programming
capabilities within assembly language.

Designed specifically for the 8080/Z80 systems, SP80 can
be used with most macro assemblers; TDL, Cromemco Z80,
Microsoft, or Digital Research.

Statements include:

@ [teration; LOOP-EXITIF, REPEAT-UNTIL, WHILE-ENDWHILE, DO
® Conditional; IF-ELSE-ENDIF

® Case analysis; SELECT-CASE-CASE-CASE-ENDCASE

Specific capabilities:
® Conjunction/Disjunction; AND, OR
® Unsigned relations; EQ, NE, LT, LE, GT, GE

® Signed relations; SLE, SLT, SGE, SGT
® Conditions; CARRY, NZ,
PLUS, Etc.
® 780 or 8080 code
generation
SP80’s manual
includes; functional
source hstmgs of up
to two macro

libraries, macro syntax (with examples), and
detailed sample SP80 program.

Send $50 for CPM diskette and manual, or $25 for manual alone. (add $5
overseas and $2 Canadian postage) to: Structured Analysis Systems

Post Box 2745

Reston, Va. 22091/ 703-860-8794

Please specify only up to two assemblers for which to receive documentation.
Also available in Macro-11 for the LSI-11 and PDP-11.
Laminated SP80 reference cards available at $5 each.

plained above. RATOM returns a form specifying the
atom typed. If this atom is anything but the atom “(”
READ simply returns the atom as its result. If the atom
returned by RATOM is “(”, READ calls itself recursively
until it gets the atom “)”, meanwhile stringing the forms
returned together as the CARs on a linked list of dotted
pairs. This could be written as in listing 2.

In the LISP functions we are assuming that the atoms
LPAREN and RPAREN were initialized to point to the
atoms with print names “(” and “)” respectively. Notice
that in the LISP version, READ accomplishes the loop of
the machine code version with recursion in READL. The
routines LSTINI, LSTADD, and LSTEND used in the
assembly language version build up a linked list of dotted
pairs, using two pointers on a stack, one to the first dot-
ted pair, one to the dotted pair at the current end of the
linked list. The pointers are on a stack so that READ may
call itself recursively. The stack is actually a linked list
itself. The linked-list stack is manipulated with the
routines in listing 3. With these routines it is straight-
forward to implement LSTINI, LSTADD, and LSTEND
for use in READ. These routines are shown in listing 4.

The primitive function RATOM turns out to be the
real workhorse of READ. It is stuck with the job of ac-
cepting characters one at a time from the terminal, and
building them up into an atom. RATOM must distin-
guish symbolic atoms from numeric atoms, and build up
the corresponding forms. Atoms are in general separated
by spaces, tabs, or carriage returns. However a few
special characters always form single-character atoms

Text continued on page 145

PTDOS + CBSort = FAST!, FAST!,

FAST!

CBSort IS NOW AVAILABLE FOR PTDOS® — HELIOS® SYSTEMS

SPEED AND COMPATABILITY CBSort is fully compatible
with the incredible power of PTDOS. CBSort, written in

8080 Assembler, coupled with the power of PTDOS buf-
fering produces lightning speed sorts.

FLEXIBLE YET EFFICIENT CBSort can sort any file with a
fixed record length of up to 4095 bytes. CBSort sorts up
to 5 fields of any length, up to the length of the record.
Each field can start on any byte of the record and each
field can be ordered in ascending or descending se-
quence. The file can be fully described in the calling
parameters or based on the TYPE parameter standard
defaults for that type can be assumed. CBSort is a logical
byte sort so that any bit convention, ASCII, EBCDIC,
BCD, Packed Decimal or binary can be sorted in ascend-
ing or descending order.

EASE OF INTERFACING CBSort works well either as a
stand alone sort or with production and turnkey sys-
tems. Special linking programs are included with
CBSort to allow insertion into a stream of programs.
CBSort is compatible with Extended Disk Basic, FOR-

TRAN, Pascal or any other language available on the
HELIOS system.

PRACTICAL CBSort can really sort a full disk because it
does not require extra space on your disks for merge
and work files as other sorts do. CBSort sorts files so
you do not have to contend with the overhead of mem-
ory consuming indexed tags in order to get sequential
data. CBSort is practical for the micros and not a trans-
plant from the gluttonous dinosaurs.

EXTRACTION CBSort has the ability to extract from the
main file and create a sorted secondary file that contains
only the selected fields and a pointer to the main file.
This can be extremely useful when using a binary search
technique for field verification, for quick file summari-
zation or further field extraction.

EASY TO USE The User's Manual describes in detail the
features and operation of CBSort and contains many
examples of its use. CBSort does extensive error check-
ing and produces clear runtime error diagnostics.

CBSort on PTDOS data disk with User’s Manual $75.00

©PTDOS and HELIOS are registered trademarks of Processor Technology

(€BS)Computer Bookkeeping Services, Inc.

1446 Leimert Blvd. « Oakland, CA 94619 » (415) 531-7427

Micro Division

142 August 1979 © BYTE Publications Inc

Circle 49 on inquiry card.

‘Is1] paxjuy ayy *J9quted ur¥sq ST uaniyas pue Jjo deod Xd0d dkl

‘ ‘ i9juted pud 3S17 340usy pue jjyo ded XdCd HSP QNALST

Jo pua juaund ayy v awd pazjop ayj 03 auo ‘uvd pajop 1siyf mwt 03 auo AuEm v :o. s4aquiod B31ey 4T 1911 JO i1ed Dataep aciT) 01 159u3cd m;:um_ h

oy Buisn sipd payop Jo