
d e v e l o p
T h e  A p p l e  T e c h n i c a l  J o u r n a l

COLOR SUITE:

REALISTIC COLOR
FOR REAL-WORLD
APPLICATIONS

ALL ABOUT THE
PALETTE MANAGER

BRAVING
ONSCREEN
GWORLDS

ALSO:

THE PERILS OF
POSTSCRIPT

COMPATIBILITY:
RULES OF THE
ROAD

DEBUGGING
DECLARATION
ROMS

APPLE II
DEVELOPMENT
DYNAMO

 
Premier  Issue  January  1990



__________________________________________________________________________________________________ 

RESOURCES

Apple provides a wealth of information, products, and services to assist developers.  The Apple
Programmers and Developers Association (APDA) provides access to development tools to
anyone who wants them.  Qualified commercial and non-commercial developers may gain
access to additional information and services through the Apple Partners and Associates
programs.  These programs are administered by Apple’s Developer Programs organization.  In
addition to automatically becoming APDA subscribers, Partners and Associates also have access
to the information and services provided by Apple’s Developer Services organization.

APDA
APDA is an Apple-operated worldwide mail-order distribution service for developers.  Serving
as the sole source for non-retail development products created by Apple, APDA also offers an
extensive selection of key third-party development tools, languages, and technical books.

All Apple computer users worldwide are eligible to participate in APDA.  In addition to
commercial developers, APDA’s customers include in-house corporate developers, university
professors and students, value-added resellers, and hobbyists.  You do not need to be an Apple
Partner or Associate to participate in APDA.   Contact APDA at (800) 282-2732 (U.S.), or (408)
562-3910, or 20525 Mariani Ave., M/S 33G, Cupertino, CA 95014.

Apple Associates Program
The Apple Associates Program is a program designed to assist noncommercial developers by
providing them with technical information and resources on a regular basis.

Apple Partners Program
The Apple Partners Program is Apple’s major developer support program.  This program
provides access—for U.S.-based developers—to marketing and technical information, to
answers to development questions, and to the annual Worldwide Developers’ Conference.
Apple Partners can also purchase, directly from Apple at special prices, a limited number of
Apple systems for development purposes.  Contact Developer Programs at (408) 974-4897; or
20525 Mariani Ave, M/S 75-2C, Cupertino, CA, 95014 for information or an application kit for
either the Associates or the Partners program.  Non-U.S. developers should contact the Apple
office in their country for information about the developer programs they offer.

Apple Developer University
Apple Developer University is committed to teaching you skills that will help you create
superior software products—whether you’ve just started programming in the Macintosh
environment or whether you’re an expert.  Our hands-on teaching approach offers you the most
direct and responsive means of acquiring up-to-date development skills.  And you can be
confident that the programming languages, tools, and platforms taught at Apple Developer
University are chosen because they are integral to Apple’s direction for the future.  Contact
the registrar at (408) 974-6215 to reserve your place or request a current catalog.  You can also
AppleLink Developer University at DEVUNIV.

Apple, the Apple logo, Apple IIGS, AppleLink, A/UX, IIGS, HyperCard, LaserWriter, Mac, Macintosh, MPW, ProDOS, and SANE are
registered trademarks of Apple Computer, Inc.

APDA, APW, Finder, GS/Bug, MacroMaker, MultiFinder and QuickDraw are trademarks of Apple Computer, Inc.

Unix is a registered trademark of AT&T.  PostScript is a registered trademark of Adobe Systems, Incorporated.  Motorola is a
registered trademark of Motorola Corporation.  Helvetica is a registered trademark of Linotype Company.

Nu Bus is a trademark of Texas Instruments, Inc.  Fast Font is a trademark of International Business Machines Corporation.



CONTENTS Realistic Color for Real-World Applications  Extensions to the Macintosh
graphics system software and how to use them.  4

All About the Palette Manager  The what, why, and how of the Palette Manager
and how it works with 32-Bit QuickDraw.  22

Braving Offscreen Worlds  Use the new offscreen calls to set up and to
maintain your offscreen world.  28

The Perils of Postscript  Mixing the models: Postscript and QuickDraw; tricks
for the mix.  41

Compatibility: Rules of the Road  An overview of the most critical System 7.0
compatibility issues.  50

Debugging Declaration ROMs  Everything you need to know to build and to
debug a NuBus declaration ROM.  75

Apple II Development Dynamo  Produce fast, small, readable, reliable Apple II
assembly-language code quickly and conveniently using Dynamo.  93

Apple II Q & A  Questions and answers compiled by the Apple II Developer
Technical Support group.  101

Macintosh Q & A  Questions and answers compiled by the Macintosh Developer
Technical Support group.  103

Index  106

________________________________________________________________________________________ 1
E D I T O R I A L

Editor in chief’s clothing  Louella Pizzuti

Developmental Editor  Carol Westberg

Editorial Assistant  Susan Marsland

Code Tester  Charlie Springer

Manager, Dev. Press David Krathwohl

A R T  &  P R O D U C T I O N

Designer  Joss Parsey

Technical Illustrator  Cleo Huggins

Production  Creative Communications Center

Printer  Craftsman Press

Circulation Management  Dee Kiamy

CONTENTS  January 1990



Now that you’re holding the first issue of develop, Apple’s quarterly technical
journal, you may want to know how and why it got to you.  As a company,
Apple tries to support third-party developers as much as possible: in addition to
the tools and system software our engineers write to make your lives easier,
we’ve got an entire department (the Apple Developer Group) of more than 300
people whose jobs consist of trying to help you be successful.  We do that by
lobbying for software and hardware changes that will make your development
job easier and more productive, and by publishing marketing and technical
information.  Enter develop.

This journal is intended to lead you into other reference materials like Inside
Macintosh and the Apple IIGS Reference Manual; it doesn’t try to replace or reword
these books, it complements them and helps you figure out which sections you
may need to study more carefully.  Each article includes the author’s photo and a
biography.  This should help you understand the minds behind the madness (as
well as help you spot these folks at trade shows).

I like to think of develop as very heavily commented sample code.   The text that
surrounds the code explains and clarifies what the code does and why.  We want
you to understand and to use the code freely, so we’ve included a CD that
contains the entire journal as well as applications built from the code in the
articles.  This should make it easier for you to find what you’re looking for, and
for you to copy the code you’d like to use.  Each quarter we’ll include the past
issues and code, so if you’ve got one develop CD, you’ve got them all (as long as
it’s the most recent one).

Because we want the code to demonstrate what the text explains, you won’t see
the latest breaking news here.  What you will see is code that solves real
problems in ways that we’ll strive to keep compatible in the future.  All of the
questions and answers (and many of the articles) come from the Apple
Developer Technical Support group, so you know they’re more than just
theoretical exercises.  They’re questions or problems that real people have
struggled with; hopefully publishing them here will help you solve your own
problems before you lose too much sleep.

_________________________________________________________________________________________2 S P I R I T  G U I D E ST E C H N I C A L  R E V I E W E R S
Pete Alexander John Harvey
Brian Bechtel Dave McGary
Rick Blair Jean-Charles Mourey
Rob Dearborn Andy Shebanow
Matt Deatherage Jim Straus
Chris Derossi Larry Rosenstein
Tim Enwell Dave Weiner
Dave Fung Gregg Williams
Naresh Gupta Jon Zap

Margery Cantor

Lou Tomafsky

d e v e l o p January 1990



Just as the programming problems you face are many and varied, so too are the
articles in this issue.  Our color suite includes Bruce Leak talking about the
changes he made to 32-Bit QuickDraw, Dave van Brink discussing the new and
improved Palette Manager, and Guillermo Ortiz saving you time (and
compatibility headaches) by explaining the new offscreen calls.  Our other
articles run the gamut from Dave Radcliffe’s compilation of compatibility
strategies, to Eric Soldan describing his new 8-bit development system, to Mark
Baumwell explaining exactly how to build and debug a declaration ROM, and
finally to Scott “Zz” Zimmerman giving the scoop on how to mix PostScript and
QuickDraw for a happy tomorrow.

If you’re a Certified developer, Partner or Associate, you’ll be getting develop
every quarter as a part of your developer package.  If you are not in one of the
above programs, you can subscribe to develop using the envelope and order
form in the back of the journal.

If you like develop, I’d love to hear about it, and if you don’t like it, I’d like to
change it.  So let me know what you think.  What you like, what you hate, and
what you’d like to see more of.  I’ll listen and respond, and together we can make
develop evolve into the journal we’ve all been waiting for.

Louella Pizzuti

Editor

________________________________________________________________________________________ 3S U B S C R I P T I O N  I N F OC O M M E N T S

Send all letters and comments about develop Send all subscription enquiries to:

develop
Apple Computer, Inc.
P.O. box 3721
Escondido, CA 92025  U.S.A.

directly to the editor:
Louella Pizzuti
20525 Mariani Ave M/S 75-3B
Cupertino, CA 95014   U.S.A.
AppleLink:  Pizzuti1

EDITORIAL  January 1990



4 ___________________________________________________________________________________ 

d e v e l o p January 1990

REALISTIC

COLOR FOR

REAL-WORLD

APPLICATIONS

BRUCE LEAK, our local pixel dealer, is one of
our famous convertible-driving, shorts-wearing
maniacal-laughing system software engineers.
He has a MSEE from Stanford University and
trained for this job at Sandcastles and Microsoft.
Now he spends his nights and weekends changing
how you see the world on your Macintosh (32-Bit
QuickDraw is his

32-Bit QuickDraw, the new extension to the Macintosh graphics
system software, enables the manipulation of 16- and 32-bit color
data.  This article gives details on the new offscreen pixMap
support, the improved Palette Manager, color to grayscale
conversion through luminosity mapping, and advanced
dithering from 16 and 32 bits per pixel to lower bit depths.



5__________________________________________________________________________________ 

REALISTIC COLOR FOR REAL-WORLD APPLICATIONS  January 1990

On the Macintosh, Apple’s graphics software (QD) lets a programmer work
with a high-level graphics model that is independent of the physical display
device.  This gives Apple the option to take advantage of new features and
technologies without requiring application developers to rewrite their code.

32-Bit QuickDraw extends QuickDraw to encompass the full range of
displayable color.  Although today’s monitors are typically capable of
showing a full spectrum of color or grays, it is the video card and system
software of a computer that control the number of colors or shades of gray on the
screen.  A 1-bit video card allows 2 colors or shades (typically black and
white), 2 bits gives 4, 4 bits gives 16, 8 bits gives 256, and 24 bits gives over 16
million colors.

Color QuickDraw always supported the description of nearly unlimited colors
(248) but constrained images and screens to any 256 of the expressible colors.  32-
Bit QuickDraw significantly increases the standard number of colors available
for an application while maintaining speed and affordability.

32-Bit QuickDraw—which carries 24 bits of color information—consists of
three files:

• a General cdev that works more effectively with the system, whether the
other pieces are installed or not

• a Monitors cdev extended for 32-bit addressed video cards .

• a 32-Bit QuickDraw Init file, which contains the new QuickDraw software

NEW FUNCTIONALITY IN 32-BIT QUICKDRAW

This is the laundry list of 32-Bit QuickDraw features.  They are listed in
relative order of importance, but some may be more important to you, depending
on whether you’ve thought about them before.

Support for 32-bit-per-pixel graphics  The pixel data has 8 bits each in red,
green, and blue and an 8-bit alpha channel.  Only 24 of the 32 bits per pixel are
used by QuickDraw.  24 bits per pixel—over 16 million colors—gives you pretty
much the maximum number of colors the eye can distinguish.  When the display
mode of the graphics system supports this much color, you don’t have to restrict
the application or user to a particular set or palette.
Support for 16-bit-per-pixel graphics (1 alpha-5-5-5)   The pixel data has 5
bits each in red, green, and blue and a 1-bit alpha channel.  16 bits per pixel—or
over 32,000 colors—is considered by many to be sufficient for high-quality
graphics.  Because 16 bits per pixel requires less memory than 32 bits per pixel,
displays can use less expensive hardware.

specialty),  and his days on the soccer field. If you
have any questions (about anything) feel free to tcall
him tat home. tHe’s tat t(408) 767-1739. •

At the time of this writing, 32-Bit QuickDraw was
installable as a set of files that could be dragged
into the latest system folder.  32-Bit QuickDraw
will be integrated into Apple’s System 7.0. •



6 ___________________________________________________________________________________ 

d e v e l o p January 1990

Dithering of 32- and 16-bit images to lower color resolutions—1, 2, 4,
and 8  Color dithering is similar to creating a color that looks like orange by
placing red and yellow pixels close together.  If the display is limited to a
certain number of colors, the Macintosh can take images rich in color
information and produce a close match at lower color resolutions, giving the
appearance of more color by combining the limited number of colors in an
effective manner.

Gray-level representation with luminosity  In grayscale mode, QuickDraw
will map a color to its nearest luminance value or lightness.  This produces
superior images, even with 16 gray levels.  It’s hard to imagine how good this
can be without seeing it, so we’ll show you just how great it is in these next two
pictures:

32-Bit QuickDraw takes an additional 100K of
RAM, so we recommend you use it with at least
two MB of memory.  32-Bit QuickDraw also
requires Color QuickDraw, which is present on the
SE/30 or Macintosh II family computers. •



7__________________________________________________________________________________ 

REALISTIC COLOR FOR REAL-WORLD APPLICATIONS  January 1990

An improved Palette Manager  The Palette Manager now allows application
developers to have more control over their color environment by improving
multiple monitors support, supporting a highlight color as one of four colors in
2-bit mode, setting up a true grayscale look-up table on monochrome devices,
and restoring the color environment when an application quits.  The new Palette
Manager also directly supports color table animation of pixel images in a
device-independent manner (see “All About the Palette Manager” in this issue
for details).



8 ___________________________________________________________________________________ 

d e v e l o p January 1990

New offscreen support  These new routines can isolate developers from
device dependencies by extending offscreen pixMap support.  Developers
typically use offscreen support to buffer drawing for fast, seamless updates to
the screen.  Offscreen imaging is also convenient for custom rendering algorithms
that assume a particular frame buffer configuration—since requiring a
particular video display mode is not a user-friendly solution

Improved graphics performance in all bit modes   32-Bit QuickDraw
provides performance improvements in region-clipped pattern fills and bit
blits, such as updating the desktop pattern or resizing a window.

Improved rescaling of images to smaller sizes   When 32-bit-per-pixel
images are resized to smaller sizes, pixels are combined using an averaging
technique to yield recognizable thumbnail-sized images—an important
improvement for the postage stamp market.

New routine to get regions from bitmaps   Getting a bitmap from a region is
easy—just paint the region.  The new routine BitmapToRgn provides the
inverse transformation.

Alpha channel movement   32-Bit QuickDraw supports routines that use up to
24 bits of color.  The additional 8 bits of information are typically used by
application developers as an alpha channel or transparency mask.  QuickDraw
now moves the extra 8 bits around without adding functionality.  Note that
alpha channel memory may not actually be present on the video card.

The new Monitors cdev   The new cdev improves the Monitors interface and
adds advanced features.  Now developers can easily modify the cdev through
a standard programming interface.

Support for color PostScript printing  Apple’s new LaserWriter 6.0 driver
now offers a standard mechanism for printing the high-quality color that 32-
Bit QuickDraw provides.

Color Picker changes   Most of the changes to the Color Picker are related to
the user interface.  In the former version of the Color Picker, if the where
parameter was set to (0, 0), then the dialog was centered on the main device.
For obvious reasons, this method did not work well if the main device was not a
color device.  In the new Color Picker, if you want the dialog centered on the
best device—that is, the device with the highest bit depth, regardless of color
support—then you must pass   (–1, –1) as the where parameter.

Compression for file formats  32-bit and 16-bit data are normally compressed
when they are in PICT files so that storage on disk takes significantly less
space than the original data.



9__________________________________________________________________________________ 

REALISTIC COLOR FOR REAL-WORLD APPLICATIONS  January 1990

Support for very large frame buffers  Video cards that require more than 1
MB of memory, such as a 1280 x 1024 x 8-bit deep card, now work in a standard
way with the system.

Changes in rowbyte restrictions  32-Bit QuickDraw relaxes the restriction
that rowbytes be less than $2000.  However, the new limit of $3FFE may still
be a problem with large pixel maps at 32 bits per pixel.  Early releases of the
32-Bit QuickDraw documentation incorrectly reported that rowbytes had a
limit of $8000.

Not to mention, as you always expected...  32-Bit QuickDraw has
implications for several familiar aspects of working with the Macintosh.
PICT, the Macintosh graphics resource and file format, has been extended to
support 16-bit and 32-bit data.  The transfer modes that allow QuickDraw to
blend different bitmaps and combine their colors interactively in different
ways have been extended so that they work at, and between, all bit depths.
Because images of any depth can be displayed at any depth, you have ultimate
flexibility to respond to the requirements of the task at hand.  Colors are
mapped to an appropriate match when increasing or decreasing color depth of
the display.

WHAT YOU CAN DO WITH IT

To begin with, you can’t use 32-Bit QuickDraw features if you don’t know
they’re installed.  To check for 32-Bit QuickDraw, your application should
ensure that Color QuickDraw is present on the machine by calling
SysEnvirons.  Then, since 32-Bit QuickDraw internally uses trap number
$AB03, check to see if this trap is available by comparing its trap address
with that of the standard unimplemented trap $A89F.  If the two are the same,
trap $AB03 is unavailable, and 32-Bit QuickDraw is not present.

You can use the following MPW C code fragment to test for Color QuickDraw
and 32-Bit QuickDraw.   If either test fails, tell the user.

#define QD32Trap 0xAB03
#define UnImplTrap 0xA89F
#define False 0
#define True 1
PutUpInformativeMessage()
{

 printf("\n 32-Bit QuickDraw is not implemented.");
}



1 0 ___________________________________________________________________________________ 

d e v e l o p January 1990

QD32Exists()
{

short error;
Boolean result = False;   /*  Assume not there  */
SysEnvRec theWorld;

error = SysEnvirons (2, &theWorld);

if (theWorld.hasColorQD)
result = (NGetTrapAddress (QD32Trap, ToolTrap) !=

   NGetTrapAddress (UnImplTrap, ToolTrap));

return result;
}

main()
{

Boolean QD32IsImplemented;

QD32IsImplemented = QD32Exists();
if (!QD32IsImplemented)

PutUpInformativeMessage();
}

Direct pixMaps  32-Bit QuickDraw supports two new pixel formats,
corresponding to 32-bit pixels and 16-bit pixels.  In each case, the pixel’s color is
specified by the pixel value directly.  The pixel value is not an index into a
color look-up table.  In a pixMap, this is specified by setting the pixelType
field to RGBDirect = 16.

Before 32-Bit QuickDraw, when each pixel was a single value representing an
index into a color table, the cmpCount field was always equal to 1.  With
RGBDirect pixels, each pixel contains three components, one each for the
intensities of red, green, and blue; therefore, cmpCount should be set to 3.

31 24 23 16 15 8 7 0

Red Green Blue

pixelType = 16; {RGBDirect}
pixelSize = 32; {Must be a power of 2}
cmpCount = 3; {Three components: Red, Green, Blue}
cmpSize = 8; {8 bits for each component}
pmVersion = 0; {Must be set for future compatibility}
pmTable {Handle to color table with 1 entry}



1 1__________________________________________________________________________________ 

REALISTIC COLOR FOR REAL-WORLD APPLICATIONS  January 1990

ctSeed = 24; {CmpCount * CmpSize}
ctFlags = 0; {No special flags}
ctSize = 0; {Zero based count of entries}
ctTable = {Space for one color spec}

15 14 10 4 0

Red Green Blue

9 5

pixelType = 16; {RGBDirect}
pixelSize = 16; {Must be a power of 2}
cmpCount = 3; {Red, Green, Blue
cmpSize = 5; {5 bits for each component}
pmVersion = 0; {Must be set for future compatibility}
pmTable {Handle to color table with 1 entry}

ctSeed = 15; {CmpCount * CmpSize}
ctFlags = 0; {No special flags}
ctSize = 0; {Zero based count of entries}

Since the Window Manager, as well as many applications, examines the ctSeed
of screen pixMaps, the pmTable field for a direct device pixel map should
always contain a valid handle with a color table header.  For consistency, the
ctSeed should be equal to cmpCount * cmpSize—although you can have the
seed equal a unique value.  If the seed value is the same across devices, then
window moves will copy an image with CopyBits; otherwise, the Window
Manager will generate an update event.  The ctFlags and ctSize values
should be set to zero.

PixPats  In addition to the standard 8 x 8 foreground/background QuickDraw
pattern filling we have all come to know and love, Color QuickDraw supports
drawing objects with tiled pixel images or pixPats (short for pixel patterns).
Although pixPats actually contain a pixMap that is capable of describing a
pixel image of any size and depth, only bit depths 1 through 8 and dimensions
that are a power of two are supported.  Since pixPats contain color
information, the grafPort’s foreground and background colors are ignored
when drawing with pixel patterns.  Future versions of Color QuickDraw will
support 16- and 32-bit pixel patterns.

Color QuickDraw expands a pixPat to the depth of the target device before
drawing.  Make sure that enough memory is available for the expanded
pattern.  The current 32-Bit QuickDraw limits the volume (area times depth) of
an expanded pixPat to less than 64K.  Hence a 128 x 128 pixPat (16K @ 8 bits
deep) will work at 8 bits per pixel but draw incorrectly when rendered at 32 bits



1 2 ___________________________________________________________________________________ 

d e v e l o p January 1990

per pixel.  A 64 x 128 pixPat (32K @ 32 bits deep) will work at any depth.

Another type of pixPat, the RGB pattern, is completely described by a single
RGB Color.  When drawing an object with an RGB pattern, Color QuickDraw
computes an ordered dither matrix that most accurately represents the RGB
Color on each screen it intersects.  Since dithering is not performed on 32-bit-
per-pixel devices, there is never any penalty for using makeRGBPat to
approximate a desired color.

Drawing in color   When an application requests the drawing of one of the 248
expressible colors, Color QuickDraw finds the closest or best color available on
TheGDevice.  In general, this is done by the Color Manager routine
Color2Index(), more appropriately called Color2Pixel.  On indexed
display devices, Color2Index() uses the device’s inverse table to find the
best match.  For direct devices, Color2Index() truncates each color
component to the cmpSize of the device.  When the destination device’s color
table only contains shades of gray, Color2Index() matches the luminance of
the requested color to the closest gray on the device.  Luminance mapping gives
superior-looking images on grayscale displays.

While most of Color QuickDraw will find the best color regardless of inverse
table resolution, CopyBits from a direct pixMap to an indexed device cannot
distinguish between two colors that do not differ in the high itabRes bits of
any component.  Fortunately, the default itabRes is four and the standard 8-
bit color table does not contain any colors that are not differentiated by the
high four bits of each component.  Future versions of 32-Bit QuickDraw may be
able to find these “hidden colors” (for more information on hidden colors, see
Inside Macintosh, volume V, page 138).

32-bit addressing  In 24-bit addressing mode, there are 16 MB of address
space, 6 of which are reserved for NuBus slots at only 1 MB per slot.  Since most
16- and 32-bit-per-pixel video cards, as well as some very large 8-bit ones,
require more than the 1 MB of address space per slot, the CPU must access these
cards in 32-bit addressing mode.  32-Bit QuickDraw performs all drawing
operations in 32-bit addressing mode.  The base address of a screen is assumed to
be a valid 32-bit address, while all other pixMap base addresses are treated
as 24-bit addresses.  Currently, 32-Bit QuickDraw cannot determine whether a
nonscreen base address is a valid 32-bit address.  When setting up a pixMap,
make sure to initialize the pmVersion field to zero and use StripAddress
on dereferenced handles installed as bitmap or pixMap base addresses.



1 3__________________________________________________________________________________ 

REALISTIC COLOR FOR REAL-WORLD APPLICATIONS  January 1990

OFFSCREEN GRAPHICS ENVIRONMENTS

With Color QuickDraw, pixel images are transferred using data from
TheGDevice to determine the destination color information.  Consequently,
whenever copying to an offscreen pixel map with characteristics differing from
TheGDevice—usually the main screen—it is necessary to create an
appropriate offscreen GDevice and set it as the current GDevice before the
copy.  If an offscreen pixel map is only copied from, then no offscreen GDevice
is needed, since Color QuickDraw obtains the source color information from the
source pixel map.

When creating an offscreen GDevice, setting up the gdPMap properly is not
enough.  GDevices associated with direct pixel maps must have a gdType of
directType (=2).  Attaching direct pixMaps to indexed devices often
yields rather blue results.

As many developers have learned, offscreen drawing environments can be used
to do wonderful things.  For instance, you can do window content buffering for
snappy flicker-free updates, or, of more interest to programmers, you can isolate
the application from the current video display mode.  The fastest CopyBits
transfers occur when the source and destination pixMaps have the same depth,
color table, and long word alignment.  32-Bit QuickDraw simplifies the
programmer’s model with a set of routines for creating and manipulating
graphics environments or GWorlds.  To ensure future compatibility and
developer sanity, use of the new routines is highly recommended.

Using the new routines, text can be antialiasedwith a clever use of offscreen
drawing environments.  When shrinking 32-bit-per-pixel images, 32-Bit
QuickDraw uses an averaging technique that can yield antialiased text.  You
can do this by first copying the background image where the text is to be placed
to an offscreen 32-bit deep buffer that is 2 or 4 times bigger than ultimately
desired.  Next, image the text at the same enlargement into the offscreen buffer.
Finally, copy the entire offscreen back to the desired destination, shrinking
down by the scale factor.  A scale factor of 2 will provide 4 levels of blend
between the text and the background, and a scale factor of 4 will provide 16
levels of blend.



1 4 ___________________________________________________________________________________ 

d e v e l o p January 1990



1 5__________________________________________________________________________________ 

REALISTIC COLOR FOR REAL-WORLD APPLICATIONS  January 1990

These illustrations show two ways of drawing text; the usual way draws text on
top of a given background at the final size. Now 32-Bit QuickDraw allows for
anti-aliasing text to be obtained by first drawing both the background and the
text magnified (4x magnification in the example) and then using CopyBits to
display the result at the desired size. The illustration above shows the
contents of the framed rectangle magnified four times to show the difference in
the resulting text

The following sample code in THINK C creates a 32-bit-per-pixel offscreen
graphics environment, draws an exciting bull’s eye image into it, and displays
it on the screen using dithering.



1 6 ___________________________________________________________________________________ 

d e v e l o p January 1990



1 7__________________________________________________________________________________ 

REALISTIC COLOR FOR REAL-WORLD APPLICATIONS  January 1990

/*************************************************************
*
* Better Bull’s eye
* Code fragments for creating and drawing to a 32-bit-per-pixel
* offscreen graphics world.
* Written in THINK C.
* DVB 8-8-89
*
*************************************************************/
static Rect dOffBounds = {0,0,256,256};
static GWorldPtr gMyOffG;
MakeMyOffscreen()
  /*
  * Create a 32-bit offscreen GWorld with a gray ramp
  * and some stylish concentric circles.
  */
{

GDHandle oldGD;
GWorldPtr oldGW;
HSVColor hsvc;
RGBColor rgbc;
long x;
Rect r;
GetGWorld(&oldGW,&oldGD); /*  Save the current graphics state */
if NewGWorld(&gMyOffG,32,&dOffBounds,nil,nil,0)
/*  Was it successful?  */

PutUpErrorMessageAndExit();
/*  Just bail; Could try a smaller one  */

LockPixels(gMyOffG->portPixMap); 
/*  Must lock ’em before drawing there  */
SetGWorld(gMyOffG,nil);
/*  Start drawing here  */
for(x = 0; x<dOffBounds.right; x++)
/*  Do a gray ramp from left to right  */

{
rgbc.red = rgbc.green = rgbc.blue = x * 65535 / (dOffBounds.right - 1);
RGBForeColor(&rgbc);
MoveTo(x,0);
LineTo(x,dOffBounds.bottom);
}



1 8 ___________________________________________________________________________________ 

d e v e l o p January 1990

r = dOffBounds;
/*  Copy the full bounds rectangle  */
hsvc.value = 65535;
/*  Value and Saturation at full:  */
hsvc.saturation = 65535;
/*  We’ll use bright colors only  */
for (x = dOffBounds.right/2; x; x--)
/*  Draw a series of concentric ovals  */

{
hsvc.hue = x * 131070/(dOffBounds.right - 1);
/*  Step the hue as we get smaller  */
HSV2RGB(&hsvc,&rgbc);
/*  Get an RGB color  */
RGBForeColor(&rgbc);
/*  Set that as the foreground color  */
FrameOval(&r);
/*  Draw the oval  */
InsetRect(&r,1,1);
/*  Step down to the next oval  */
}

SetGWorld(oldGW,oldGD);
/*  Go back to old graphics state  */
UnLockPixels(gMyOffG->portPixMap); 
/*  Let ’em float around for a while  */
}

  /*
  * Update the current grafport (presumably a window)
  * with the contents of the gMyOffG GWorld.
  */
UpdateMyWindow()

{
LockPixels(gMyOffG->portPixMap); 
/*  Must lock ’em before drawing to it  */
/*  Fit it to the window with dithering  */
CopyBits(&gMyOffG->portPixMap, &thePort->portBits, &dOffBounds,
&thePort->portRect, ditherCopy,  0);
UnLockPixels(gMyOffG->portPixMap); 
/*  Let ’em float around for a while  */
}



1 9__________________________________________________________________________________ 

REALISTIC COLOR FOR REAL-WORLD APPLICATIONS  January 1990

ADVANTAGES OF BITMAPTOREGION

BitmapToRegion lets you use most of QuickDraw’s region-oriented calls on
bitmaps by converting the bitmaps into regions.  Though this call was
previously available through Software Licensing, BitmapToRegion was
added to the 32-Bit QuickDraw package in the interest of seeing it more widely
used.  This call is particularly good for converting bitmaps to regions when you
need to clip to a bitmap or drag its outline.  One application is using a bitmap to
mask a color image and apply a transfer mode.  This allows you to call the more
powerful CopyBits with a region clip instead of CopyMask with a bitmap
clip.  A CopyMask operation, for example, would not be recorded into a picture
and does not support transfer modes.

An example of a call done with CopyMask would be:

CopyMask (srcPixMap, maskBitmap, destPixMap, srcRect,
maskRect, destRect)

Instead, you could use:

BitmapToRegion (maskRegion,maskBitmap)

/*  Region must have been created previously with NewRgn  */
CopyBits (srcPixMap, destPixMap,srcRect,destRect,mode,maskRegion)

Another use for BitmapToRegion would be in creating a patterned paint
bucket fill for a bitmap.

BitmapToRegion (maskRegion,myBitmap);
PenPat (myPattern); /*  or PenPixPat (mypixPat)  */
PaintRegion(maskRegion);

Alternatively, to change the color of a bitmap, you could use:

BitmapToRegion (maskRegion,myBitmap);
RGBForeColor (mycolor);
PaintRegion(maskRegion);

You could drag the outline of a bitmap around by calling:

BitmapToRegion (maskRegion,mybitmap);
DragGrayRegion (maskRegion, startPt, etc...);

Finally, you could test a mouse point, or whatever, for intersection with a
bitmap with:



2 0 ___________________________________________________________________________________ 

d e v e l o p January 1990

BitmapToRegion (maskRegion,mybitmap);
PtInRgn (pt,maskRegion);

THE 72 DPI PIXMAP BARRIER

Actually, there never was a 72 dpi pixMap barrier.  Rather, the proper usage
of pixMap resolution has not been well described.  In the past, applications
have accepted pixMaps of a given number of rows and columns and assumed
that they were generated on 72 dpi devices.  These pixMaps were then copied
around at a 72 dpi resolution and printed out at a 72 dpi resolution, leaving the
impression that QuickDraw could not handle pixMaps of different densities.
The advent of frame grabbers and scanners renders this method of pixMap
handling obsolete.  Now, many pixMaps have a higher resolution than 72 dpi.
In fact, a user expects such a pixMap to display an approximation of the
information on a 72 dpi display, but print on a higher-resolution device to the
best of its ability.

When recording pictures that contain pixMaps, make sure to set the hRes and
vRes fields of the pixMap record to the native resolution of the image.  When
importing pictures, obtain pixMap information from the StdBits bottleneck
procedure, not by imaging the picture into its picFrame.

CUSTOM COLOR SEARCH PROCEDURES

The following 32-Bit QuickDraw lore describes the May ’89 release and is
subject to change in future 32-Bit QuickDraw versions.

When pixel images are transferred to a different depth, the destination color
information is obtained from TheGDevice.  Custom Color Search Procedures, or
Search Procs for short, associated with a GDevice provide a mechanism for
customizing QuickDraw’s color matching algorithms.  When the source image is
32 or 16 bits per pixel, 32-Bit QuickDraw calls the Search Proc associated with
the destination GDevice for each source pixel.  Since 32-Bit QuickDraw
always accesses direct pixel maps in 32-bit addressing mode, and since direct
pixMap image translation is performed at draw time, don’t be surprised if your
custom Color Search Procedure gets called in 32-bit addressing mode.  Color
Search Procedures should call StripAddress on dereferenced handles and
SwapMMUMode if toolbox access such as Color2Index is required (for more
information on 32-bit addressing and SwapMMUMode, see Inside Macintosh,
volume V, page 592).

Also, for direct pixel source images, the application’s global pointer in register
A5 may not be valid on entry to custom Color Search Procedures.  If your Color
Search Procedure accesses global data structures referenced from register A5
(including thePort), it must first save and later restore the A5 contents (see
Technical Notes #180 and #208).



2 1__________________________________________________________________________________ 

REALISTIC COLOR FOR REAL-WORLD APPLICATIONS  January 1990

In the current version of 32-Bit QuickDraw, custom Color Search Procedures are
ignored when transferring 32-bit or 16-bit images to a device of identical
depth—this is subject to change in future releases.  Since dithering techniques
need to accurately maintain colorspace distance, 32-Bit QuickDraw refuses to
dither direct pixMaps when a custom Search Procedure is present.  A printer-
driver developer should not rely on this functionality.  To prevent a picture
from dithering, intercept the StdBits bottleneck routine, and remap the
transfer mode to srcCopy.

CopyBits error codes  QuickDraw uses stack space for work buffers.  For
complex operations such as depth conversion, dithering, or image resizing, stack
space may not be enough.  In such situations, Color QuickDraw simply skips the
operation.  In this case, 32-Bit QuickDraw will request temporary memory from
MultiFinder.  If that is still not enough, or if MultiFinder is not present, 32-Bit
QuickDraw returns

QDErr = -149 /*  Insufficient stack  */

This value can be obtained by calling QDError(), which will reset QDErr to
zero.  One recourse for the application is to divide the operation—for example,
divide the image into left and right halves—and try again.

Region creation error codes   While recording drawing operations into an
open region, it is possible that the resulting region description will overflow
the current 64K limit.  Should this happen, 32-Bit QuickDraw will return

#define rgnOverflowErr -147  /*  Region overflow  */

Since the resulting region is potentially corrupt, closeRgn will return an
empty region if it detects QDErr has been set to -147.

32-Bit QuickDraw’s offscreen bitmaps, luminosity mapping, and advanced
dithering automatically do work that would have required sophisticated and
lengthy code from a developer.  The new Palette Manager unloads much of the
color management burden from your application.  When all this is combined
with the ability to display such broad ranges of color, we can see that 32-Bit
QuickDraw represents a tremendous programming effort.

32-Bit QuickDraw may be redistributed by
developers that have a standard licensing
agreement with Apple.  Information on the
agreement is available from the Software Licensing
group (AppleLink: SW.LICENSE) at Apple.  Further
documentation on 32-Bit QuickDraw is available
from APDA.  32-Bit QuickDraw has been made
available to

customers through all Apple dealers, licensed user
groups, and licensed bulletin boards, and will be
incorporated in System 7.0. •



2 2 ___________________________________________________________________________________ 

d e v e l o p January 1990

ALL ABOUT THE

PALETTE

MANAGER

DAVID VAN BRINK, graphics software engineer,
graduated from the University of California-Irvine
in 1986 with a BSICS (you figure it out!) degree.
After working in southern California for
MegaGraphics, he moved north to work for Apple.
Despite the fact that sleeping on the job is his
professed favorite part of working here, he does
seem to find time to write some awesome
software.  When he’s not

One of the goals of QuickDraw is to isolate the application from the
specific graphic display devices it is running on. The Palette Manager
lets multiple applications share screen space and color allocation in a
fair and orderly fashion.

The Palette Manager has been enhanced in 32-Bit QuickDraw to support new color
usages.  When applications use the Palette Manager to establish and maintain a
specific color environment, the Palette Manager juggles numerous factors in honoring
a request.  It must consider, for example, the limits of the available display
hardware and the presence of other applications requesting color environments.  On
a multiple-screen system, the Palette Manager will keep track of the colors for
each screen.  Also, the Palette Manager provides an extra level of indirection in
drawing colors, which serves as a color naming or numbering system.

UNDERSTANDING THE PALETTE MANAGER

A palette is a data structure attached to a window using the SetPalette system
call or other means.  The palette, which contains a list of colors, each with a usage
value and a tolerance value, lets the system know what colors that window needs.
When colors are changed, the Palette Manager makes sure that windows, the menu
bar, and the desktop are redrawn as needed with the new colors.

The Palette Manager calls should be used any time you might be tempted to call the
Color Manager routines SetEntries or RestoreEntries.  These calls modify the
color environment directly, without letting the system decide which colors would
be best to change.  Also, they operate on a single screen. SetEntries or
RestoreEntries should only be called by programs that have no intention of
sharing the screen—programs like lava-lamp screen-savers and programs that will
never, ever run under MultiFinder.  Most commercial software does not fall in this
category and absolutely should not call SetEntries and RestoreEntries. Use
the Palette Manager to modify the color environment to get a better application
with less work.



2 3__________________________________________________________________________________ 

ALL ABOUT THE PALETTE MANAGER  January 1990

Suppose we are writing a program to display PICTs on a four or more bit-depth
screen.  The built-in color table for four bits ('clut' ID 4, in ROM resources) contains a
smattering of different colors. If the PICT we wish to display contains only shades
of red, we’d want to have as many shades of red as possible (14 on a four-bit screen)
in the screen’s 'clut'.  There are actually 16 different colors available, but 2 of them,
black and white, are never changed. This guarantees that menus, windows, and
other such things that are always black on the Macintosh will be visible in their
intended colors.

To get some shades of red on the screen, we create a palette with 14 entries, each
with a different shade of red in it.  We set the usage of each entry to pmTolerant.
When the palette’s window is activated, the Palette Manager will look for shades
of red that are within a certain range, or within tolerance, of each palette entry.  If
an index in the screen’s 'clut' is already within range of one of the entries, then the
Palette Manager will use that index. If not, the Palette Manager will steal an
index in the order specified by its color arbitration rules and change it to the
requested color.

Here is how we generate the sample palette:
FUNCTION Make14RedPalette: PaletteHandle;
VAR

i: LONGINT;
ph: PaletteHandle;
c: RGBColor;

BEGIN
ph := NewPalette(14,NIL,pmTolerant,4000);

(* should check for NIL result *)
c.green := 0;
c.blue := 0;
FOR i:=0 TO 13
DO
BEGIN

(* range red component from 1/14 to 14/14 *)
(* i is a longint, and so can safely be multiplied by 65535 *)

c.red := (i+1)*65535 DIV 14;
SetEntryColor(ph,i,c);

END;
Make14RedPalette := ph;

END;

sleeping his days away at Apple, he dabbles in
computer-aided music and writes his own music
sequencing software.  Other activities he enjoys:
recreating Philip K. Dick scenarios with friends;
watching Star Trek while eating Kraft® Macaroni
And Cheese; and encouraging his parrot named
“12” to teach his rat “X“ to talk. And always
remember....•

Color Arbitration  Color look-up table ('clut')
displays, like the Macintosh II Video Card, have a
certain number of colors available at each bit-depth.
Different applications, and different documents
within an application, use the colors in different
ways. For example, a full-color digitized photograph
isn’t usually meant to be displayed in various tones
of brown. If there aren’t enough



2 4 ___________________________________________________________________________________ 

d e v e l o p January 1990

Next, we might attach it to our window:

myPalette := Make14RedPalette;
SetPalette(myWindow,myPalette);

Whenever this window is brought to the front, the Palette Manager will attempt to
provide 14 shades of red, ranging from RGB(4681,0,0) to RGB(65535,0,0).  We might
consider RGB(0,0,0), black, which is always available, to be a 15th shade of red.
To draw in these colors, we just make the normal Color QuickDraw calls (like
RGBForeColor), and we’ll automatically get the closest shade of red available.
If, after setting up this palette, we try to draw in nonred colors, the results will not
be pretty.  With black, white, and 14 shades of red, the available options for a
good match to green, for example, are severely limited.

In the preceding example, we assumed the PICT uses shades of red.  This is
generally hard to determine, unless we generate the PICT in the first place. Since
the PICT is in reds, we might want to load the palette from a resource with
GetNewPalette rather than compute it in code.  Or, we might happen to have a
color table with the colors we need.   In that case, we could have passed it to
NewPalette, instead of nil in the example, or to CTab2Palette, if we already
had a palette allocated.

We’ve just described how a program can ensure that a set of colors is available for a
specific graphic display.  The well-mannered programmer may be thinking, “Gee,
that’s swell, but how do I give those colors back when I’m done?” The answer is,
don’t even try.  Any other window that needs colors to look good will have its own
palette attached, and therefore get the colors it needs.  Also, each time a program
quits, the Palette Manager restores the color environment to a well-balanced state
in terms of color distribution.

SELECTING THE RIGHT COLOR SET

Different types of screens often require different color sets to best display the same
image.  Grayscale screens default to having a range of gray tones from black to
white, which is an excellent range for drawing most images.  A grayscale screen
should usually be left with its default color table.

Here is the sample routine modified to provide 14 shades of red on a four-bit color
screen, 254 shades on an eight-bit color screen, and no color requests at all on two-bit
or grayscale screens:

colors to go around, the Palette Manager arbitrates.
When a window with a palette comes to the front,
the Palette Manager inspects the window’s palette
and tries to modify the screen’s color table to best
satisfy the palette.  (If a window without a palette
comes to the front, no change occurs.)  When
another window is activated and comes to the front,
the Palette

Manager inspects its palette and modifies the
colors, taking colors used by previous windows
last. •



2 5__________________________________________________________________________________ 

ALL ABOUT THE PALETTE MANAGER  January 1990

FUNCTION MakeRedPalette: PaletteHandle;
VAR

i: LONGINT;
ph: PaletteHandle;
c: RGBColor;

BEGIN
ph := NewPalette(14+254,NIL,0,0);

(* should check for NIL result *)
c.green := 0;
c.blue := 0;

(* Make fourteen reds that are inhibited on all *)
(* screens except four-bit color *)

FOR i:=0 TO 13
DO
BEGIN

(* range red component from 1/14 to 14/14 *)
(* i is a longint, and so can safely be multiplied by 65535 *)

c.red := (i+1)*65535 DIV 14;
SetEntryColor(ph,i,c);
SetEntryUsage(ph,i,pmTolerant+pmInhibitC2+

pmInhibitG2+pmInhibitG4+

pmInhibitC8+pmInhibitG8,4000);
END;

(* Make 254 reds that are inhibited on all *)
(* screens except eight-bit color *)

FOR i:=0 TO 253
DO
BEGIN

(* range red component from 1/254 to 254/254 *)
(* i is a longint, and so can safely be multiplied by 65535 *)

c.red := (i+1)*65535 DIV 254;
SetEntryColor(ph,14+i,c);
SetEntryUsage(ph,14+i,pmTolerant+pmInhibitC2+

pmInhibitG2+pmInhibitG4+

pmInhibitC4+pmInhibitG8,0);
END;
MakeRedPalette := ph;

END;



2 6 ___________________________________________________________________________________ 

d e v e l o p January 1990

MORE WAYS OF REQUESTING COLOR
So far, we’ve seen how to request a set of colors from the Palette Manager. The
examples use colors with usage combinations of pmTolerant, and various inhibit
bits.  Other ways to request colors are explained in Inside Macintosh, volume V,
page 154.  In addition, combinations of pmExplicit and pmTolerant or
pmAnimated are now supported.  Here are some examples of different usages.

SetEntryUsage(ph,1,.pmCourteous;,0);

The color is courteous, activating the palette will never cause a change in a screen’s
color table. This is useful only for “naming” the color, in this case to 1.
PmForeColor(1) and PmBackColor(1) are two ways to use this color.

SetEntryUsage(ph,2,.i.pmTolerant;,10000);

The color is tolerant, activating the palette will ensure that some index in the
screen’s color table is within 10000 in each RGB component from palette entry 2.

SetEntryUsage(ph,3,.i.pmAnimated;,0);

The color is animated, activating the palette will reserve an index from the
screen’s color table to be owned by this palette (if the screen is indexed).  If the color
is changed with AnimateEntry then any previous drawing done with that entry
will change.

SetEntryUsage(ph,4,.i.pmExplicit;,0);

The color is explicit, any drawing done with this entry will draw in device index 4,
because this entry is the 4th color in the palette.  This is mostly useful for
monitoring the color environment.

SetEntryUsage(ph,5,pmExplicit+pmTolerant,0);

The color is both explicit and tolerant.  Activating the palette will ensure that
device index 5 exactly matches the palette’s color 5 (because the tolerance here is
0).

SetEntryUsage(ph,6,pmExplicit+pmAnimated,0);

The color is both explicit and animated.  Activating the palette will reserve screen
index 6 for this palette’s use.  The color may be modified with AnimateEntry and
AnimatePalette.

SetEntryUsage(ph,7,pmAnimated+pmInhibitC8+pmInhibitG8,0);

The color is animated on any screen other than an 8-bit color or an 8-bit gray-scale
device. On those devices, the color behaves as a courteous color.



2 7__________________________________________________________________________________ 

ALL ABOUT THE PALETTE MANAGER  January 1990

DRAWING WITH PALETTE COLORS

After the palette has been set up, there are several ways to draw with the colors in
the palette.  In addition to PmForeColor and PmBackColor, a pixMap or
pixPat color table may be specified to point to palette entries. To do this, set bit 14
in the ctFlags field of the color table (ctFlags is called transindex in older
equate files).  Then set the desired palette entry numbers in the value field of each
colorSpec.  The color table is then assumed to be sequential, as device tables are
(colorSpec 0 refers to pixel value 0 in the pixMap or pixPat; color value 1 refers
to pixel value 1, and so on).

This code retrieves a copy of the desktop pattern (system resource 'ppat' 16) and
modifies its fields to refer to sequential palette entries.

myPP: PixPatHandle;
myCT: CTabHandle;
myPP := GetPixPat(16);
(* Gets the system color desktop pattern *)
myCT := myPP^^.patMap^^.pmTable

FOR j := 0 TO myCT^^.ctSize
(* Set .value field equal to position for each element *)
DO

myCT^^.ctTable[j].value := j;
myCT^^.ctFlags := BitOr(myCT^^.ctFlags,$4000);
(* .ctFlags aka .transindex *)

Drawing the unmodified ppat 16 would produce it exactly as it appears on the
desktop. After the modification, drawing with myPP would produce the same
pattern with the colors replaced by palette colors.

One use for this might be to draw a pixMap with all animated colors, and then let
the user adjust color, brightness, and contrast with slider controls. The color changes
would be performed with AnimatePalette calls.

ACCESSING NEW COLOR LOOK-UP TABLES

Several new 'clut's have been defined for 32-Bit QuickDraw and may be accessed
with the GetCTable routine. As before, 'clut' IDs 1, 2, 4, and 8 are the standard
color tables for those depths. A gray ramp for each depth can be requested using the
depth plus 32.  'Clut' IDs for gray ramps with depths 1,2,4, and 8 are 33, 34, 36, and
40 respectively.

'clut's 2 and 4 are modified to include the highlight color and may be accessed as
the depth plus 64.

'clut's may not exist as actual resources; the
GetCTable routine may synthesize them when
they are requested. If there is a 'clut'  resource with
the specified ID, however, GetCTable will load
that resource and return a detached handle to it. So
to dispose of the handle, you should call
DisposCTable rather than release resource. •



2 8 ___________________________________________________________________________________ 

d e v e l o p January 1990

BRAVING

OFFSCREEN

WORLDS

GUILLERMO ORTIZ graduated from college with
a BSEE, but this event took place so long ago and
so far away that he gave up trying to remember
when and where.  He is truly the Apple veteran
among the bunch of authors in this issue, having
successfully emerged as a pretty nice guy from
six years at Apple--four as an Apple II Pascal
“expert” and two working on Color QuickDraw, the
Palette Manager, and the

No one disputes the benefits of using offscreen environments to prepare
and keep the contents of windows.  The only problem is that creating
such environments—from a simple pixMap to a more complicated
GDevice—can be rather difficult. 32-Bit QuickDraw includes a set of
calls that allows an application to create offscreen worlds easily and
effectively. This article describes those calls and provides details on how
to use them.

Until now, creating and maintaining offscreen devices or ports has been complicated
and confusing at best.  As part of 32-Bit QuickDraw, Apple’s engineering team has
included a set of calls that makes creating and maintaining offscreen devices and
ports a real breeze.  Using the offscreen graphics environment, QuickDraw can
maintain the data alignment necessary to improve the performance of CopyBits
when you use it to display onscreen the contents of the offscreen buffer.

Also, applications using the offscreen world support from QuickDraw are more
likely to benefit from future enhancements to QuickDraw than programs doing their
own offscreen management.  This can save you a lot of time down the road.

The offscreen world offers a few more benefits:

• The system takes care of all the messy details involved in creating the offscreen
GDevice.  You don’t need to bother asking “What flags should I set?” or “What
is the refNum for an offscreen device?”

• You can tailor the offscreen port according to your specifications rather than
being restricted to screenBits.bounds.  Because the visRgn comes set to the
right dimensions, you won’t need to change anything.

• The pixMap associated with the offscreen world comes back from the call
complete and ready to use.  You won’t have to lose sleep wondering if you set the
correct value for rowBytes or if your baseAddress pointer has less memory
than it should because the compiler didn’t do the multiplication using Longs.

Think of the GWorld structure as an extension to the CGrafPort structure,
containing the port information along with the device data and some extra state



2 9__________________________________________________________________________________ 

BRAVING OFFSCREEN WORLDS  January 1990

information.  In most cases, a GWorldPtr can be used interchangeably with a
CGrafPtr, which makes converting applications quite easy.  At this point,
however, Apple is keeping the structure of an offscreen graphics world private to
allow for further expansion.

For instance, in the following section of Developer Technical Support’s sample
program FracApp, the new calls were implemented without changing the
document’s data structure at all.  This example illustrates the difference the new
set of calls can make when creating offscreen environments.

A LOOK AT THE NEW CALLS

Let’s use a section of the sample program FracApp to illustrate the difference this
new set of calls can make when creating offscreen environments.  The procedure
TFracAppDocument.BuildOffWorld creates a new device and its accompanying
structures for each document.  Here is the original code, with comments shortened,
followed by the equivalent code using the new calls:

PROCEDURE  TFracAppDocument.BuildOffWorld (sizeOfDoc: Rect);
VAR oldPerm: Boolean;

dummy: Boolean;
docW, docH: LongInt;
fi: FailInfo;
currDevice: GDHandle;
currPort: GrafPtr;
Erry: OSErr;

PROCEDURE DeathBuildOff (error: OSErr; message: LONGINT);
{Error handler}

BEGIN
oldPerm := PermAllocation (oldPerm);
{ Set memory back to previous. }

SetGDevice (currDevice);
{ Set device back to main, just in case. }
SetPort (currPort);

END;

like.  He attributes surviving the 32-bit QuickDraw
project to being in good shape from running and
playing tennis with good friends. His curriculum
vitae is entitled, “My Life As An Elvis
Impersonator.”  Although he profusely denies ever
having written that line, there’s a trail of sequins
leading to his office.  ’Fess up, Guillermo. •

All Apple developers (Associates and Partners)
received FracApp with their monthly mailings.  It is
also available on develop, the CD, and through
APDA on the DTS sample code disks.•



3 0 ___________________________________________________________________________________ 

d e v e l o p January 1990

BEGIN
currDevice := GetGDevice; { save current for error handling. }
GetPort(currPort);

oldPerm := PermAllocation (TRUE);

CatchFailures(fi, DeathBuildOff); { any failures, must be cleaned up. }

{ Let's set up the size of the rectangle we are using for the document. }
docW := sizeOfDoc.right - sizeOfDoc.left;
docH := sizeOfDoc.bottom - sizeOfDoc.top;

{ Now try to set up the offscreen bitMap (color). }
fBigBuff := NewPtr (docW * docH);
FailMemError; { couldn't get it we die. }

{ OK, now we get wacko.  We need to create our own gDevice, }

fDrawingDevice := NewGDevice (0, -1); { -1 means unphysical device.  }
FailNIL (fDrawingDevice); { If we failed, error out. }

{ Now init all the fields in the gDevice Record, since it comes uninitialized. }
HLock ( Handle(fDrawingDevice) );
WITH  fDrawingDevice^^  DO  BEGIN

gdId := 0; { no ID for search & complement procs }
gdType := clutType; { color table type fer sure. }

DisposCTable (gdPMap^^.pmTable);{ kill the stub that is there. }
gdPMap^^.pmTable := gOurColors;{ make a copy of our global color table. }
Erry := HandToHand (Handle(gdPMap^^.pmTable));
FailOSErr (Erry); { if not possible, blow out. }

{ build a new iTable for this device }
MakeITable (gdPMap^^.pmTable, gdITable, 3);
FailOSErr (QDError);{ no memory, we can leave here. }



3 1__________________________________________________________________________________ 

BRAVING OFFSCREEN WORLDS  January 1990

gdResPref := 3;{ preferred resolution in table. }
gdSearchProc := NIL; { no search proc. }
gdCompProc := NIL; { no complement proc. }
{ Set the gdFlags }
gdFlags := 2**0 + 2**10 + 2**14 + 2**15; { set each bit we need. }

{ Now set up the fields in the offscreen PixMap }
gdPMap^^.baseAddr := fBigBuff; { The base address is our buffer. }
gdPMap^^.bounds := sizeOfDoc; { bounding rectangle to our device. }

gdPMap^^.rowBytes := docW + $8000;
gdPMap^^.pixelSize := 8;
gdPMap^^.cmpCount := 1;
gdPMap^^.cmpSize := 8;

gdRect := sizeOfDoc;{ the bounding rectangle for gDevice, too. }
END; { With fDrawingDevice }

HUnLock ( Handle(fDrawingDevice) );

{ Yow, that was rough.}
SetGDevice (fDrawingDevice);

fDrawingPort := CGrafPtr( NewPtr (SizeOf (CGrafPort)) ); { addr CPort record. }
FailNil (fDrawingPort); { didn’t get it, means we die. }

{ Now the world is created }
dummy := PermAllocation (FALSE);

OpenCPort (fDrawingPort); { make a new port offscreen. }
FailNoReserve; { Make reserve, die if we can’t }

{ QuickDraw is most obnoxious about making a port that is bigger than the screen,
so we need to modify the visRgn to make it as big as our full page document }
RectRgn(fDrawingPort^.visRgn, sizeOfDoc);

fDrawingPort^.portRect := sizeOfDoc;

{ OK, we have a nice new color port that is offscreen. }
Success (fi);



3 2 ___________________________________________________________________________________ 

d e v e l o p January 1990

oldPerm := PermAllocation (oldPerm);

{ Now we have the offscreen PixMap, we need to initialize it to white. }
SetPort (GrafPtr(fDrawingPort));
EraseRect (sizeOfDoc); { clear the bits. }

SetGDevice (currDevice);
SetPort (currPort);

END; { BuildOffWorld }

Now let’s see what the equivalent code looks like when we use the calls provided by 32-Bit QuickDraw and
its offscreen support:

PROCEDURE TFracAppDocument.BuildOffWorld(sizeOfDoc:RECT);
VAR oldPerm :Boolean;

fi :FailInfo;
currDev :GDHandle;
currPort :CGrafPtr;
erry :QDErr;

PROCEDURE DeathBuildOff (error: OSErr; message:LONGINT);

BEGIN
oldPerm := PermAllocation(oldPerm);
SetGWorld (currPort,  currDev);

END;

BEGIN  (*myBuildOffWorld*)
GetGWorld(currPort,  currDev);
CatchFailures(fi, DeathDocument);
Erry := NewGWorld(fDrawingPort, 8, sizeOfDoc, gOurColors, NIL, GWorldFlags(0)); 
FailOSErr(Erry);

SetGWorld (fDrawingPort,  NIL);

IF ( NOT LockPixels(fDrawingPort^.portPixMap) ) THEN
FailOSErr(QDError);

EraseRect(FDrawingPort^.portRect);

UnlockPixels (fDrawingPort^.portPixMap);

SetGWorld (currPort,  currDev);
END {myBuildOffWorld};



3 3__________________________________________________________________________________ 

BRAVING OFFSCREEN WORLDS  January 1990

CALLS YOU CAN’T DO WITHOUT

The new routines simplify the code and help prevent the typical errors you make
having to initialize all those special fields.  It only makes sense to make your work
easier if you can.  Here are the calls in the order they appear in the sample code:.

PROCEDURE GetGWorld(VAR port:CGrafPtr; VAR gdh:GDHandle)

This call takes the place of two standard calls, GetPort and GetGDevice.  It
saves the current settings for later restoration and works for offscreen worlds as well
as old-style ports..
• port is set to the current port, which can be a GrafPtr, a
CGrafPtr, or a GWorldPtr.

• gdh returns the current device..

FUNCTION NewGWorld(VAR offscreenWorld: GWorldPtr; pixelDepth:
INTEGER; boundsRect: Rect; cTable:CTabHandle;
aGDevice: GDHandle; flags: GWorldFlags): QDErr;

This is the call that does the work.  If the function returns noErr, then
offscreenWorld contains a pointer to the newly created offscreen environment.  If
the function does not return noErr, then something didn’t work.  Most likely the
Memory Manager couldn’t allocate enough memory for all the structures.  In that
case, your program has to decide what to do next, such as draw to the window’s
port, sacrificing speed, features, or both.

Possible error returns other than noErr are cDepthErr (no such depth is possible),
paramErr (illegal parameter), plus any Memory Manager or QuickDraw errors.

• pixelDepth must be 1, 2, 4, 8, 16, or 32 bits per pixel.  With one exception, other
values will make the call return cDepthErr.  pixelDepth can be 0, as
described later in this article.

• boundsRect is used to calculate the offscreen pixMap’s size and coordinate
system.  It is also used to set portRect, pixMap bounds, gdRect, and the port’s
visRgn.

• When it is provided, cTable is copied and the copy is used for the offscreen
pixMap.  If cTable is nil, then the system uses the default table for the
desired depth.



3 4 ___________________________________________________________________________________ 

d e v e l o p January 1990

NewGWorld(offscreenGWorld, pixelDepth, boundsRect, cTable, aGDevice, flags);

On entry offscreenGWorld should point to nothing
On exit offscreenGWorld is your new GWorld

Flags can be one of ...
0 pixels not purgeable, create a new device
pixPurge pixels are purgeable, check LockPixel’s return value
NoNewDevice pixelDepth and cTable are from aGDevice
pixPurge and NoNewDevice

If pixelDepth is 0 ... optimize for CopyBits speed
boundsRect holds a global rectangle corresponding to a window
cTable is ignored uses cTable from boundsRect’s deepest screen device
aGDevice is ignored

If  pixelDepth is 1,2,4,8,16, or 32 optimize for offscreen data depth
boundsRect is a rectangle in local coordinates
if  cTable is nil

NewGWorld uses default color table for given pixelDepth
else

NewGWorld  attaches a copy of your cTable to your new GWorld
if  NoNewDevice flag is passed (see flags)

aGDevice is used to create your new GWorld (aGDevice should not be a screen device)
else

aGDevice is ignored J.Z.

• When aGDevice is not nil and the noNewDevice flag is set, no new offscreen
device is created.  This is the case when you want to create an offscreen port but
do not need the offscreen device.  In our example, aGDevice is always nil
because we want to keep a separate environment for each document being drawn,
which requires a unique color table and inverse table, implying the need for
individual devices.

This is useful when, for example, an application has several offscreen worlds
with similar characteristics, such as depth or color table.  It is possible to
allocate only one GWorld with an offscreen device and to use that offscreen
device as a GDevice for all the other GWorlds.  Be sure to avoid using one of
the screen devices as a GDevice.  If the user changes the characteristics of a
screen device via the Control Panel, your offscreen world will become invalid.



3 5__________________________________________________________________________________ 

BRAVING OFFSCREEN WORLDS  January 1990

Note that aGDevice is used to create the offscreen graphics world only when
noNewDevice is set and its pixelDepth is not 0.  In any other instance,
aGDevice should be set to nil.

If pixelDepth is 0, boundsRect is used to find the deepest device that
intersects the rectangle.  Taken in global screen coordinates, the depth, color
table, and inverse table of this device are used to set up the offscreen
environment.

• The flags parameter gives some control to the application for the creation of the
new offscreen graphics environment.  Currently the possible values are a
combination of pixPurge and noNewDevice.

If pixPurge is set, the offscreen buffer is created as a purgeable block.  The
effects of noNewDevice are the same, as discussed earlier.

FUNCTION GetGWorldDevice(offscreenWorld: GWorldPtr):GDHandle;

This call returns the GDevice associated with offscreenWorld, normally the
offscreen device created with NewGWorld.  If noNewDevice was used, however,
the device returned will be the device passed to NewGWorld or UpdateGWorld.

PROCEDURE SetGWorld (port: CGrafPtr; gdh: GDHandle);

This call replaces SetPort and SetGDevice.  If port is a GrafPtr or a
CGrafPtr, then the current port is set to port and the current device is set to gdh.
If port is a GWorldPtr, then the current port is set to port and the current device
is set to the device attached to the offscreen graphics world..

As a rule of thumb, when you use the offscreen support provided with 32-Bit
QuickDraw, you should use GetGWorld instead of GetPort and GetGDevice, and
SetGWorld instead of SetPort and SetGDevice.  Both calls are safe to use
within the old-style environment and ensure proper behavior in the new.

WHERE IS THE CATCH?
When using the offscreen world environment, you have to make sure that the
pixMap is actually available and locked when you draw to or from an offscreen
graphics world.  This is why you must bracket any drawing action with
LockPixels and UnlockPixels.

In our example, to anchor the offscreen pixMap, we need to call LockPixels just
before calling EraseRect.  When we are done, a call to UnlockPixels releases
the buffer.  These two calls are the only extra work offscreen support in 32-Bit
QuickDraw demands.



3 6 ___________________________________________________________________________________ 

d e v e l o p January 1990

FUNCTION LockPixels (pm: PixMapHandle):Boolean;

Call this function prior to any drawing operation to or from the offscreen
environment.  A false value returned means the offscreen pixMap has been purged.
A LockPixels result of false tells the application to either recreate the offscreen
pixMap, using UpdateGWorld in the process, or draw directly to the target
window.

PROCEDURE UnlockPixels (pm: PixMapHandle);

When you finish drawing, you should call UnlockPixels.  Just remember that all
that is locked should be unlocked.  Otherwise, strange things may happen..

ONE MORE CALL YOU’LL NEED

FUNCTION UpdateGWorld (VAR offscreenGWorld: GWorldPtr;
pixelDepth: INTEGER; boundsRect: Rect; cTable:
CTabHandle; aGDevice: GDHandle; flags: GWorldFlags):
GWorldFlags;

This call reconstructs the offscreen environment according to the new boundsRect,
cTable, and pixelDepth.  These parameters work in large part the same way
they do in NewGWorld.

When pixelDepth is 0, the device list is parsed again to find the deepest device
intersecting boundsRect taken in global coordinates.  If aGDevice is not nil,
then pixelDepth and cTable are ignored and the fields from aGDevice are used
offscreen.  If the offscreen buffer has been purged, UpdateGWorld allocates a new
one.

When necessary, the application can simply call UpdateGWorld to change the
offscreen environment without having to recreate the offscreen image from scratch.
This is the case, for example, when the user selects a different depth or the color
table is modified somehow.

Keeping the offscreen world parallel to the conditions used to display the images
to the user guarantees that when CopyBits is called to update a window, the
operation will be performed at the highest speed.

The controlling parameter flags can take the following values:.

• []  I know what I am doing—don’t update the pixels for me.

• [clipPix]  If boundsRect is smaller than the current boundsRect, the bottom
and right edges pixels are clipped out.  If boundsRect is larger, the bottom and
right edges are filled with the background color.



3 7__________________________________________________________________________________ 

BRAVING OFFSCREEN WORLDS  January 1990

• [stretchPix]  If boundsRect is smaller, the image is reduced to the new size.
If the rectangle is larger, the offscreen image is enlarged to fit the new area.

• [clipPix, ditherPix] and [stretchPix, ditherPix]  These provide error
diffusion when necessary in addition to clipping or stretching.

UpdateGWorld(offscreenGWorld, pixelDepth, boundsRect, cTable, aGDevice, flags);

On entry offscreenGWorld is your old GWorld
On exit offscreenGWorld is your new GWorld the pointer may or may not be the same

Flags can be one of ...
0 pixels not updated
clipPix preserves pixels it can, puts background in new areas
stretchPix stretches pixels to fit from old to new pixmap
clipPix and ditherPix plus the pixels are dithered if necessary
stretchPix and ditherPix

! If aGDevice is not nil then the pixelDepth and cTable you supply are overridden by the pixelDepth
and cTable of aGDevice.

If  pixelDepth is 0
boundsRect is a global rectangle typically corresponds to the associated window
cTable is ignored uses cTable from boundsRect’s deepest screen device
aGDevice is nil watch out for side effects if not nil!

If pixelDepth is 1,2,4,8,16, or 32
boundsRect is a rectangle in local coordinates if different from old boundsRect then pixmap, etc

are updated appropriately
if cTable is nil

uses default color table for given pixelDepth and updates pixmap if different
else

new (?) color table used to update your pixmap
aGDevice is nil or the device to determine your cTable and pixel depth J.Z.

Now if boundsRect is new but the same size, UpdateGWorld  realigns the
pixMap for best performance.  With a new pixelDepth,  the pixels are scaled to
the new depth.  If cTable is new as well, the pixels are mapped to the new colors.

Even for our engineers, some miracles are just too difficult.  If the pixMap has been
purged, it is reallocated, but the old contents are lost.

When UpdateGWorld returns, check its result, which will be of the GWorldflags
variety.  If gwFlagErr is set, that means the call was unsuccessful.  The offscreen
world has not changed, and some correcting action is required.  The errors might be
cDepthErr (no such depth is possible), paramErr (illegal parameters), and any



3 8 ___________________________________________________________________________________ 

d e v e l o p January 1990

Memory Manager or QuickDraw errors..

If the call was successful, the rest of the flags can be interpreted as follows:

mapPix Color mapping was necessary..
newDepth Depth is new.
alignPix Pixels were realigned for best results..
newRowBytes RowBytes changed.
reallocPix pixMap was reallocated..
clipPix Clipping was used..
stretchPix Stretching was used..
ditherPix Dithering was used.

SOME BONUS CALLS....

PROCEDURE DisposeGWorld (offscreenGWorld: GWorldPtr)

Make this call only when you are one hundred percent sure you don’t need
offscreenGWorld any more, and you want to release the memory it uses..

PROCEDURE AllowPurgePixels (pm: PixMapHandle);

This call makes the given pixMap purgeable. .

PROCEDURE NoPurgePixels (pm: PixMapHandle);

This one makes the pixMap nonpurgeable. .

FUNCTION GetPixelsState (pm: PixMapHandle): GWorldflags;

Make this call to find out the condition of the flags pixelsPurgeable and
pixelsLocked.  When you want to make temporary changes, you can use this call
in conjunction with SetPixelsState to save and later restore the state of the
flags.

PROCEDURE SetPixelsState (pm: PixMapHandle; state:
GWorldFlags);

This call sets the state of the pixelsPurgeable and pixelsLocked flags.

FUNCTION GetPixBaseAddr (pm: PixMapHandle): Ptr;

Since the offscreen world is yours, you will probably feel the urge to mess with it
directly.  GetPixBaseAddr is the call you need. It returns the 32-bit address of
the start of the offscreen buffer associated with the given pixMap.  The address is
valid until any call that moves memory around is made.  If you make such a call,
you must call GetPixBaseAddr again.  If the offscreen pixMap has been



3 9__________________________________________________________________________________ 

BRAVING OFFSCREEN WORLDS  January 1990

purged, the call returns nil.

FUNCTION NewScreenBuffer (globalRect: Rect; purgeable:
BOOLEAN; VAR gdh: GDHandle; VAR offscreenPixMap:
PixMapHandle): QDErr;

This call creates a pixMap using the color table and depth of the deepest device
intersected by globalRect.  It is useful when the offscreen buffer is used to keep a
copy of a portion of a window.  Normally, applications don’t need to make this call.

If the call is successful, gdh is a handle to the deepest device and offscreen
pixMap points to the new pixMap.  Note that if the screen device returned in gdh is
changed by the user in monitors, the offscreen pixMap becomes invalid.

Errors are noErr (everything is okay), cNoMemErr (couldn’t get all the memory
needed), paramErr (illegal parameters), and any Memory Manager or QD errors. ;

PROCEDURE DisposeScreenBuffer (offscreenPixMap: PixMapHandle);

You made it, so call this procedure to dispose of it.

CALLS TO AVOID DISASTER

Even though all the books, Technical Notes, and documents that describe how to
program the Macintosh talk about the things you shouldn’t do and the data fields
you are not supposed to mess with, not everyone can resist temptation.  That’s why
32-Bit QuickDraw includes a set of calls that allows you to tell the system you
have modified some forbidden structure, and it should try to accommodate to your
designs.  The calls are: .

PROCEDURE CTabChanged (ctab: CTabHandle)

This call says “Yes, I know I shouldn’t mess with a color table directly, but I did it
and I want to come clean.”  Use SetEntries, or even better let the Palette
Manager maintain the color table for you.

PROCEDURE PixPatChanged (ppat: PixPatHandle);

Use this call to say “I admit I modified the fields of a PixPat directly.  Please fix
the resulting mess for me.” When the modifications include changing the contents of
the color table pointed to by PixPat.patMap^^.pmTable, you should also call
CTabChanged.

PenPixPat and BackPixPat are a better way to install new patterns.

PROCEDURE PortChanged (port: GrafPtr);

You should not modify any of the port structures directly.  But if you cannot control



4 0 ___________________________________________________________________________________ 

d e v e l o p January 1990

yourself, use this call to let QuickDraw know what you’ve done.

If you modify either the pixPat or the color table associated with the port, you
need to call PixPatChanged and CTabChanged.

PROCEDURE GDeviceChanged (gdh: GDHandle);

The best practice is to stay away from the fields of any GDevice.  But if you do
change something, make this call so the system can rectify any problems.  If you
change the data of the color table in the device’s pixMap, you must also call
CTabChanged.



4 1__________________________________________________________________________________ 

THE PERILS OF POSTSCRIPT  January 1990

THE PERILS

OF POSTSCRIPT

SCOTT “ZZ” ZIMMERMAN is a DTS printing
guru.  (He’s particularly impressed with the
strictly enforced dress code at Apple.)  In his
spare time he sails, scuba dives for lobsters,
and plays the piano, guitar, and saxophone.  His
doorway is adorned by a melted gummy rat, a
good luck charm from his Intel days. At home,
atop his monitor is perched a rare Asian black

Letting your application rather than the LaserWriter driver convert
QuickDraw commands into PostScript is simple in most cases, yet when
you use direct PostScript to print documents, subtle interactions
between the QuickDraw and PostScript imaging models can cause
problems.  This article will help you in two important areas: using a
font from PostScript while selecting it using QuickDraw and
preserving your PostScript state while using QuickDraw to select fonts.

When selecting a PostScript font from QuickDraw, an application first calls
GetFNum (see Inside Macintosh, volume I, page 223 [IM I-223]) to get the Font
Family ID for a particular font.  It then calls TextFont (IM I-171) to actually
select it.  The name passed to GetFNum is the name of the font as seen in the Font
menu (for example, Helvetica).

In PostScript, fonts are selected by name using the findfont (see PostScript
Language Reference Manual, page 156 [PLRM 156]) and setfont (PLRM 215)
operators.  If the application attempts to select a font named Helvetica®,
however, it will find that this font doesn’t exist.  This is because the LaserWriter
performs a special operation on the font called encoding.  Font encoding is the
process of mapping missing characters into another font.

For example, a character like ø may not exist in the standard Helvetica font.  In
order to provide that character, the LaserWriter driver will modify the Helvetica
font, inserting a reference to the ø character in the Symbol font.  Once this is done,
the font is no longer standard Helvetica, so it is renamed.  The actual name is
something like |_____Helvetica, but this naming convention is not standard and
could change in the future.



4 2 ___________________________________________________________________________________ 

d e v e l o p January 1990

    

Application GetFNum(FontName)

QuickDraw

Font Family ID

TextFont

(Font Family ID)

Font Manager

So if you don’t know the font’s name, how can you select it?  Simple, let QuickDraw
do it.  When you select a font via TextFont and then use it via one of the
QuickDraw text drawing routines (such as DrawChar or DrawString [IM I-172]),
the LaserWriter driver handles the complex task of selecting an appropriate font
on the PostScript device.  This includes downloading and encoding the font if
necessary.  Using QuickDraw to select the font not only saves you a lot of work, but
also improves compatibility.  The process of font downloading and character
encoding could change in the future, and if your application does it internally, it
will have to be revised.  If you use QuickDraw to download the font, your
application will be immune to changes in the font downloading mechanism.

PICK A FONT, ANY FONT

Now let’s look at the code to actually select a font.  The following procedure will
select a font for any device, QuickDraw or PostScript:

PROCEDURE SetFont;(fontName: Str255; fontSize: INTEGER; fontStyle:
Style);

VAR
theFontID:  INTEGER;
thePenLoc:  Point;

BEGIN
GetFNum(fontName, theFontID); (* Get the font ID. *)
TextFont(theFontID); (* Set it *)
TextSize(fontSize); (* Set the size *)
TextFace(fontStyle); (* ...and the style. *)
GetPen(thePenLoc); (* Save the current pen position. *)
DrawChar(' '); (* Draw a space so the font gets downloaded.*)
MoveTo(thePenLoc.h, thePenLoc.v); (* Restore original pen *)

(* position. *)
END;

scorpion (behind glass, we hope).  His other cuddly
pets include two geckos and an iguana. •



4 3__________________________________________________________________________________ 

THE PERILS OF POSTSCRIPT  January 1990

There are two important things to note in the SetFont procedure above.  First, the
procedure uses the GetFNum trap to get the Font ID.  This is essential to make sure
that you get the correct font.  (See Technical Note #191, Font Names for more
information.)  Second, the SetFont procedure calls DrawChar to draw a space.
This is required to force the font selection on PostScript devices, since the TextFont
call only changes the txFont field of the GrafPort.  By actually using the font
(via DrawChar) the LaserWriter driver’s StdText GrafProc is called, and
selects the font on the printer.  Subsequent calls to the PostScript show (PLRM 222)
operator will use this font.  Since DrawChar will change the pen position, it is
saved (via GetPen [IM I-169]) and restored (via MoveTo [IM I-170]).

ON WITH THE SHOW

Now that we have a font selected, we need to actually draw something with it.  For
now, as an example, let’s say that we want to draw some text with the show
operator.  We’ll send our PostScript using the following procedure.  Although
convenient for sending PostScript in our example, this method is very inefficient
and should not be used in an application.   Here’s the code:

PROCEDURE SendPostScript(theComment: Str255);
VAR

PSCommand : Str255;
CommandHdl : Handle;
CRString : Str255;
theError : OSErr;

BEGIN
CRString := ' ';
CRString[1] := CHR(13);
PSCommand := theComment;
PSCommand := CONCAT(PSCommand, CRString);
theError := PtrToHand(POINTER(ORD(@PSCommand) + 1), 
CommandHdl,LENGTH(PSCommand));
if theError <> noErr THEN BEGIN

(* Handle the error! *)
END;
PicComment(PostScriptHandle,

LENGTH(PSCommand), CommandHdl);
DisposHandle(CommandHdl);

END;



4 4 ___________________________________________________________________________________ 

d e v e l o p January 1990

The procedure simply takes a string of text, adds a carriage return at the end of it,
and converts it into a handle.  The handle is then passed to the
PostScriptHandle picture comment, which actually sends it to the printer.  Since
this procedure created the handle, the procedure also disposes of it.  Again, this is
not how a normal application would do it, but it keeps things nice and localized for
this example.  So now that we can send PostScript, consider the following:

SetFont('Helvetica', 14, [bold]);
PicComment(PostScriptBegin, 0, NIL);

(********************************************)
(*** QuickDraw representation of graphic. ***)
(********************************************)

(* These calls are only executed by QuickDraw *)
(* (i.e. non-PostScript) devices. *)

MoveTo(50, 50);
DrawString('This is some gray text.');
PenPat(ltGray);
MoveTo(100, 100);
LineTo(300, 300);
(*********************************************)
(*** PostScript representation of graphic. ***)
(*********************************************)

(* These calls will only be executed by PostScript devices.*)
SendPostScript('50 50 moveto (This is some gray text.) show');
SendPostScript('.10 setgray');
SendPostScript('100 100 moveto 300 300 lineto stroke');

PicComment(PostScriptEnd, 0, NIL);

In this fragment, the call to SetFont sets the PostScript currentfont to be
Helvetica.  The PostScriptBegin comment is used to suppress QuickDraw calls
on PostScript devices, and vice versa.  When the LaserWriter sees
PostScriptBegin, it ignores all QuickDraw drawing calls, and just executes
picture comments.  When a PostScriptEnd is received, the LaserWriter will once
again interpret QuickDraw calls.  The LaserWriter driver will ignore the
QuickDraw representation, and begin executing the SendPostScript calls.  The
first one draws a string of text, the second one changes the default gray level of the
printer from 100% black to 10% black using the setgray (PLRM 216) operator, and
the third one draws a diagonal line using the new gray level.  Note that the
QuickDraw representation for a gray level is handled by using PenPat (IM I-170).



4 5__________________________________________________________________________________ 

THE PERILS OF POSTSCRIPT  January 1990

SAVE THE POSTSCRIPT STATE

The fragment we just looked at illustrates a good method for sending both
QuickDraw and PostScript.  It also demonstrates a new problem.  When the
PostScriptBegin comment is sent, the LaserWriter driver performs a PostScript
gsave (PLRM 166) operation.  This saves the current graphics state required for
QuickDraw printing.  The application can then do what it needs to the state
without having to worry about side effects on the QuickDraw environment.  When
the LaserWriter driver receives a PostScriptEnd comment, it performs a
grestore (PLRM 165) operation to restore the QuickDraw state.  Normally this is
exactly what you would want.  But there are cases when an application may want
to execute some QuickDraw commands without losing the PostScript state is has
setup.

For example, the above code fragment set the gray level of the printer to 10%.  At
the time we did the PostScriptEnd comment, the gray level was restored to
100%.   If we then want to change the font size, and redraw the text, we would have
to resend the setgray operator.  It would look like this:

(* Change the font size.*)
SetFont('Helvetica', 24, [bold]);
PicComment(PostScriptBegin, 0, NIL);

(********************************************)
(*** QuickDraw representation of graphic. ***)
(********************************************)
(* These calls are only executed by QuickDraw *)
(* (i.e. non-PostScript) devices.*)
(* The QuickDraw state is unaffected, so there’s *)
(* no need to call PenPat again. *)
MoveTo(250, 50);
LineTo(750, 50);

(*********************************************)
(*** PostScript representation of graphic. ***)
(*********************************************)
(* These calls only executed by PostScript devices. *)
(* Since the PostScript state was cleared, we need *)
(* to resend the setgray operator. *)
SendPostScript('.10 setgray');
SendPostScript('250 50 moveto 750 50 lineto');

PicComment(PostScriptEnd, 0, NIL);



4 6 ___________________________________________________________________________________ 

d e v e l o p January 1990

Although resending the setgray operator isn’t difficult, an application may have
set a lot more attributes.  To avoid the overhead of resending this state, a new
comment may be used.  This comment is #196—PostScriptBeginNoSave.

When PostScriptBeginNoSave is used with PostScriptEnd, the gsave and
grestore operations are not performed.  This means that the application is
completely responsible for the graphics state of the printer.  If you are doing all of
your imaging via PostScript this is not a problem.  If you plan on mixing PostScript
and QuickDraw, you must be very careful.  Changes to attributes like line width
and the transformation matrix will have a significant effect on QuickDraw
drawing operations.  If the comment is used for the above example, the code will
look like this:

(* Now illustrate the use of the PostScriptBeginNoSave  *)
(* PicComment. *)
PicComment(PostScriptBeginNoSave, 0, NIL);

PenPat(ltGray);
SendPostScript('.10 setgray');

PicComment(PostScriptEnd, 0, NIL);

(* At this point, the gray level of the device is 10% black *)
(* Now draw something using this state. *)
(* Draw a light gray line using QuickDraw. *)
MoveTo(50, 400);
Line(100, 100);

(* At this point, the gray level is still 10%, so we must *)
(* reset it  to black. *)
PicComment(PostScriptBeginNoSave, 0, NIL);

PenPat(black); (* Reset QuickDraw gray level. *)
SendPostScript('1.0 setgray'); (* Reset PostScript gray*)

    (* level. *)
PicComment(PostScriptEnd, 0, NIL);

Note that instead of sending PostScriptBegin as the first operation, we now
send PostScriptBeginNoSave.  We then change the gray level to light gray in
the QuickDraw world, and 10% black for PostScript.  Since we used
PostScriptBeginNoSave, sending PostScriptEnd does not effect the state of
the printer (i.e. the gray level remains at 10%).  Now we want to draw something
with the new state.  We first send the PostScriptBegin comment, which saves
the state we set up, as well as disabling the QuickDraw calls on PostScript devices.



4 7__________________________________________________________________________________ 

THE PERILS OF POSTSCRIPT  January 1990

We then send a QuickDraw representation of  the line, followed by
PostScriptEnd.  On QuickDraw devices, the line will be drawn  using the ltGray
pen pattern.  On PostScript devices, the line will be drawn using 10% black.  After
the line has been drawn, we need to reset the state of the device for subsequent
drawing operations.  This is done by once again sending the
PostScriptBeginNoSave comment, followed by the commands to reset the gray
level, as well as any other attributes of the printer.

In summary, we have looked at two ways of avoiding the perils of PostScript.  The
first was how to use a font from PostScript while choosing it using QuickDraw.  The
supported method for this was demonstrated by the SetFont procedure.  The
second was how to preserve your PostScript state while still using QuickDraw to
select fonts.



5 0 ___________________________________________________________________________________ 

d e v e l o p January 1990

COMPATIBILITY:

RULES OF

THE ROAD

DAVE RADCLIFFE, “Technical Sherpa,” has
been with Apple about a year and a half, putting his
chemistry degree from Washington University to
work in A/UX® and MPW™  technical support.
Actually, he discovered his true calling while
working with the computers in the UCLA
chemistry research labs.  When asked how he’s
changing the world one person at a

Apple’s System Software Version 7.0 provides the most important
test of compatibility since the introduction of the Macintosh II.  This
article should help you prepare for the release of System 7.0.  For an
overview of the most critical compatibility issues and how to
address them, read on.
If you’ve already read too many stuffy articles full of dire warnings about
compatibility, you’ve probably decided this one will be best suited for lining the
bottom of your filing cabinet.  But before doing that, consider the case of Johnny
Appledweeb.

Ace Macintosh programmer for Cliff Grazer Enterprises, Johnny is currently putting
in the long hours to get a spread-processor-terminal-graphics-emulator out the
door.  He doesn’t have time to read an article like this because Cliff Grazer, his
boss and President of CGE, is all over his case.  Four months ago, the company began
accepting prepayment from customers who can’t wait for Johnny’s program to reach
their local stores.  Those customers are now beating down the doors.

Although Cliff is desperate to get the product out, he has required certain levels of
performance.  The application must be kept under the 1megabyte limit, for
example, and must keep up at 19.2 kbaud through the modem port.  Finally, at the
last minute, legal decides to require copy protection.  Once the application ships,
reviews are excellent, customers are happy, and sales are good.  Cliff is ecstatic and
gives Johnny a big raise.  Johnny has time to relax a bit and maybe even catch up on
some reading.  But this article doesn’t interest him because he’s a crack
programmer, and his application works fine.  Bottom of the filing cabinet time.

Six months later, Johnny comes back from his well-earned vacation to find that
Apple has introduced new machines and released a new version of the system
software.  Cliff’s hopping mad because of reports of compatibility problems and
complaints from angry customers.  As Johnny begins to look into the problems, he has
a vague recollection of some article he saw on compatibility.  He rummages around,
finds the article, and quickly discovers it addresses his problems.  But it’s too late
for the customers.  They don’t understand compatibility, but they do understand
that the application they have been using every day no longer works.  Cliff doesn’t



5 1__________________________________________________________________________________ 

COMPATIBILITY: RULES OF THE ROAD January 1990

really understand compatibility either.  What he understands is he now has the
expense of shipping updated versions to keep his customers happy.

Johnny might have saved himself and others a lot of trouble if he’d spent a few
minutes with this article right away.  Sure, it probably would have meant a delay
in the first release of the  application, but it might also have made a second release
unnecessary.  Johnny’s a good programmer, and he’s aware of almost everything in
this article, but if a single sentence had helped avoid problems, the article would
have been worth Johnny’s time.

It may be worth your time as well to check out the compatibility of your current
application’s features with System 7.0.  The road gets a little dry and dusty from
here on, so grab a cold one and we’ll get down to business.  This article focuses on
specific areas of Macintosh programming where compatibility might trip you up
today or in the future.  It isn’t meant to be a guide to Macintosh programming, so if
you need additional information on a topic, such as implementation details, refer to
Inside Macintosh, volumes I-V, and the Macintosh Technical Notes.

DEFENSIVE PROGRAMMING

Murphy was clearly a computer engineer.  If anything can go wrong with your
application, it will, as most of us learn the hard way.  Once you recognize that users
always stress your program in ways you never thought possible, you acquire
defensive programming habits.

TESTING
Always test return values for possible errors because you never know when some
unusual situation will arise.  Assume that data structures will change.  The Memory
Manager is an example of a manager whose data structures are changing, as
described later in this article.  Avoid any portion of a data structure marked
“Unused”—its use is reserved for Apple.

MEMORY ALLOCATION
If you treat the Memory Manager with a little courtesy and respect, your
application will live a long and happy life.  Keep in mind the strengths as well as
the limitations of the Memory Manager and listen to what it tells you.  Believe it
when it returns a nil handle to tell you of memory allocation failure.  Every
application’s memory needs are different, and as you design your application, think
about how memory you allocate will be used.  A little planning can ease the
Memory Manager’s task by reducing the number of Memory Manager calls and
minimizing fragmentation and thrashing.

You should ask yourself a few simple questions about the memory you allocate in
the heap.  Is this memory you will need frequently?  Rather than frequently
allocating and releasing the memory, wouldn’t it be better to allocate it once at the
start of your

time, Dave replied, “home-brewed beer.”  In
addition to home concoctions, he’s into hiking,
backpacking, and photography.  •



5 2 ___________________________________________________________________________________ 

d e v e l o p January 1990

application; if it is a handle, move it high in the heap with MoveHHi; and
simply reuse it when necessary?

Is it memory that shouldn’t move?  If so, consider the use of NewPtr instead.

Is this a large block of memory used for a very short period of time?  Judicious use of
MultiFinder temporary memory can satisfy such needs and reduce overall heap
usage, allowing you to shrink your MultiFinder size partition.

Is this memory you are willing to let the Memory Manager dispose of at its
discretion, such as for a resource?  Then you should consider making it purgeable.
But if you’ve made it purgeable, be sure to check for empty handles.

Once you have your application working, be sure to stress test your use of the
Memory Manager.  You can do this by using your debugger to force heap scrambling
and purging.  You can also simulate low memory conditions by running your
application in a small MultiFinder partition.

32-BIT CLEANLINESS

Another way to treat the Memory Manager with kindness and respect is to practice
32-bit cleanliness.  Being 32-bit clean may be the single most important
compatibility issue facing developers.  To understand what 32-bit cleanliness
means, let’s take a closer look at Macintosh memory management.  The Memory
Manager maintains free-form memory structures called heap zones.  It allocates
memory blocks of various sizes within these zones to satisfy memory allocation
requests by the system and applications.  Occasionally, heaps will become full or
fragmented and the Memory Manager will need to rearrange or purge blocks in a
zone to create enough contiguous space to satisfy a memory allocation request.  To
minimize confusion that could occur when blocks are rearranged, the Memory
Manager uses indirect references called handles to refer to relocatable blocks in the
heap.

The Memory Manager maintains a series of master pointers referring to blocks in
memory.  A handle is a pointer to a master pointer, as shown in the following
illustrations.



5 3__________________________________________________________________________________ 

COMPATIBILITY: RULES OF THE ROAD January 1990

Handle 1

Handle 2

Master Pointer

$ 0 0 0 0 1 0 0 0

$ 0 0 0 0 1 0 0 0

Heap Block

$ 0 0 0 0 1 0 0 0

$ 0 0 0 2 0 0 0 0

$ 0 0 0 2 0 0 0 0

In the example in the first illustration, two independent handles refer to the same
heap block at address $20000 via the master pointer at address $1000.  Only the
master pointer should be referring to the heap block.  Now, suppose the system
needs to relocate the heap block to address $30000.  The second illustration shows
the state of the system after relocating the block.



5 4 ___________________________________________________________________________________ 

d e v e l o p January 1990

Handle 1

Handle 2

Master Pointer

$ 0 0 0 0 1 0 0 0

$ 0 0 0 0 1 0 0 0

Heap Block

$ 0 0 0 0 1 0 0 0

$ 0 0 0 3 0 0 0 0

$ 0 0 0 3 0 0 0 0

The master pointer is now correctly set to point to the new block.  The master pointer
is the only thing the Memory Manager had to update.  The original handles 1 and 2
still correctly refer to the heap block because they refer to the master pointer,
which has the correct location of the heap block.

The classic Macintosh has what is referred to as a 24-bit memory management
system.  To the hardware, only the lower 24 bits of a 32-bit address are significant.
The upper 8 bits are always ignored in a hardware address reference.  The Memory
Manager maintains certain information about heap blocks, such as whether they
are locked in memory and cannot be moved or whether they can be purged from
memory to free up space in the heap.  The original Macintosh Memory Manager
took advantage of the unused upper 8 bits of the address in a master pointer to
maintain flags about heap blocks.  The illustration shows the master pointer
structure of the 24-bit Memory Manager.



5 5__________________________________________________________________________________ 

COMPATIBILITY: RULES OF THE ROAD January 1990

 

31 30 29 28 27 26 25 24 2223 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Lo

ck
 B

it
Pu

rg
e B

it
Re

so
ur

ce
 B

it

Re
se

rve
d 

Bit
s

24
-Bi

t A
dd

re
ss

AVOIDING COMMON PROBLEMS

The most common violation of 32-bit cleanliness involves direct manipulation of
Memory Manager flags.  In a 32-bit system, all 32 bits of an address are valid, and
in the case of a master pointer, the flags bits are stored elsewhere.  The system
provides traps for setting and cleaning these flags: HLock/HUnlock,
HPurge/HNoPurge and HSetRBit/HClrRBit.  There are also traps for getting
and setting all the flags at once: HGetState and HSetState.  Some applications
have taken advantage of knowledge of the master pointer structure to set and clear
the flag bits directly.  Setting flag bits directly on a 32-bit system means you are not
changing the flags, but changing the address itself, and suddenly your master
pointer is pointing to a completely different location in memory.

The issue of 32-bit cleanliness is not limited to proper use of master pointer flags.
Every address reference must assume all 32-bits are valid.  If you have used any of
the upper 8 bits of pointers or handles for anything other than part of an address,
you must find an alternate representation for that information.

Two other places you can be bitten by 32-bit violations are in window definition
functions (WDEFs) and control definition functions (CDEFs).  The original
Macintosh Window Manager stored the window variation code in the upper 8 bits
of the handle to the window definition procedure.  If you are using custom WDEFs
and need to access the window variation code, use the GetWVariant trap.
Similarly, use GetCVariant to retrieve the variant control value for a control that
was formerly stored in the high bits of the control defproc handle.

Using pre-System 7.0 software, including A/UX 1.1, it is impossible to write a
strictly clean CDEF.  The problem with custom CDEFs is that the calcCRgns
message uses the high bit of the region handle as a flag.  Inside Macintosh, volume
I, page 331 incorrectly advises you to “clear the high byte (not just the high bit) of
the region handle before attempting to update the region.”  Rather, you should
clear only the high bit (not the high byte).  This makes the reasonable assumption,
given the current system software, that the handle represents only a 31-bit address
and clearing the high bit is not harmful.



5 6 ___________________________________________________________________________________ 

d e v e l o p January 1990

With System 7.0, the Control Manager has a new way of telling your CDEF to
calculate control regions.  Two new messages have been defined, calcCntlRgn and
calcThumbRgn, with values of 10 and 11 respectively.  With a 32-bit Memory
Manager in operation, the Control Manager, which previously would have used
calcCRgns, will now use one of the new messages.  With a 24-bit Memory Manager
operating, calcCRgns will still be used, so you must continue to support that
method.

CREATING VALID HANDLES
Just as the master pointer structure will change in System 7.0, other Memory
Manager structures will be subject to change.  As a precaution, you should not access
Memory Manager data structures directly or attempt to “walk the heap” yourself.

Since a handle is a pointer to a pointer, it is possible for an application to create a
handle itself, a so-called fake handle.  If you pass a fake handle to any Memory
Manager routine, the Memory Manager will assume it is a valid handle under its
control and may try to relocate or dispose of it.  You should never pass a fake handle
to any Macintosh trap, because you never know when that trap may itself call the
Memory Manager.

Prior to System 7.0, handles allocated with MFTempNewHandle trap were not true
handles and could not be passed, directly or indirectly, to Memory Manager traps.
They were to be treated as fake handles.  Under System 7.0, this is no longer true;
the Memory Manager knows how to manage such memory.

Remember that MultiFinder temporary memory is just that, temporary.  It should
be allocated, used, and released as quickly as possible, preferably within one event
loop cycle.  With System 7.0, you can use the HPurge Memory Manager trap to mark
handles as purgeable.  You can continue to use the memory as long as MultiFinder
does not need it for another application.  But be sure to check for empty handles to
ascertain if your memory has been purged.

USING STRIPADDRESS
One of the keys to 32-bit cleanliness is proper use of the StripAddress trap.
StripAddress is necessary because handle flags in master pointers can create
dirty address references.  When a 24-bit Memory Manager is operating,
StripAddress  clears the high byte of the address, and returns a clean address.
The operation of StripAddress is simple enough.  What is not always so clear is
when use of StripAddress is necessary or even appropriate.



5 7__________________________________________________________________________________ 

COMPATIBILITY: RULES OF THE ROAD January 1990

To understand the operation of StripAddress, consider, again, the second
illustration.  Imagine that a 24-bit Memory Manager is in operation and you’ve
called HLock to lock the handle.  The value of the master pointer will now be
$80030000 because HLock has set the lock bit in the master pointer as indicated in
the third illustration.  In normal operation, you never need to concern yourself with
that high byte because the hardware ignores it.  In other words, the hardware
quietly strips the address for you.  But suppose you are writing a driver that needs
to access a NuBus board.  To do that, you need to switch the hardware to 32-bit
addressing mode using SwapMMUMode.  Now, suddenly, the hardware is no
longer ignoring that high byte, so to access the address properly you first need
to call StripAddress to clean up the address.

Another situation in which StripAddress is necessary is comparing master
pointers.  In the previous example, comparing the value of the master pointer before
and after calling HLock would lead you to conclude the master pointer is now
pointing to a different block because the comparison looks at all 32 bits.  To be sure
you are comparing the relevant portions, namely the addresses, call
StripAddress before comparing master pointers.

If a 32-bit Memory Manager is in operation, StripAddress will return the address
unchanged, because all 32 bits of the address are valid.  If you have used
StripAddress correctly, you need never worry whether a 24-bit or 32-bit Memory
Manager is operating, because StripAddress does the right thing.

Finally, do you need to call StripAddress on other addresses, such as handles?
No, because there should be no extraneous bits set in the high byte of handles.  If
you are using the high byte of handles for your own purposes, go directly to the
beginning of this section on 32-bit cleanliness.  Do not pass Go; do not collect $200.

FILE ACCESS
Use the File Manager for all your file access.  Avoid assumptions about the
underlying file and directory structure.  Not only has the Macintosh file system
changed in the past, but you might not even be accessing a Macintosh volume.
Foreign file systems such as DOS, ProDOS®, High Sierra ISO 9660, and Unix are
all supported.  If your application is running under A/UX, there may be no
Macintosh volumes.  These file system differences create many subtle problems.  For
example, Unix filenames are case-sensitive, whereas Macintosh names are not.
Unix uses '/' as a pathname delimiter, while Macintosh uses ':'.  Different file
systems may have different restrictions on the length of filenames.  Always use
SFGetFile and SFPutFile.  Not only will this ensure maximum compatibility
across file systems, but it will be comforting to your users that your application
looks and behaves like other Macintosh applications.



5 8 ___________________________________________________________________________________ 

d e v e l o p January 1990

/* This is an example of saving a print record into a resource file.  Saving the */

/* print record in document resource files provides a method of retaining the */
/* user setting from the last print job. For example, if a user elects to print a */
/* document using landscape orientation, that information is stored in the print */
/* record. If the record is saved with the document, the orientation information */
/* will be available for the next time the document is printed.  When the 'Page */
/* Setup' dialog is presented, the user’s choices from the last time the document */
/* was printed will be displayed as defaults.  This provides a convenient, device */
/* independent method for saving print job information. */
/* NOTE: Information from the Page Setup dialog is saved into the print record. */
/* Information from the Print dialog (i.e. # of copies, page range...) is */
/* considered to be per job information, and is not saved.  This method */
/* will not allow you to provide new defaults for the PrJobDialog. */
/* */
/* Version When Who What */
/* 1.0 7/18/89 Zz First release. */
/* */

PRINTING

Apple is working to make printing easier for Macintosh programmers in the near
future.  Meanwhile, we can offer some help in two areas that often cause problems
when printing: handling print records and using PostScript.

HANDLING PRINT RECORDS
Some applications set fields in the print record to change the default settings of
items in the print dialogs.  Rather than modify these fields, applications should
just save the print record after the user has configured it.  The best method for
saving the record is to save it as a resource in your document’s resource fork.  Since a
valid handle already points to the print record, creating a resource is easy:



5 9__________________________________________________________________________________ 

COMPATIBILITY: RULES OF THE ROAD January 1990

#include <Values.h>
#include <Types.h>
#include <Resources.h>
#include <QuickDraw.h>
#include <Fonts.h>
#include <Events.h>
#include <Windows.h>
#include <Menus.h>
#include <TextEdit.h>
#include <Dialogs.h>
#include <Desk.h>
#include <ToolUtils.h>
#include <Memory.h>
#include <SegLoad.h>
#include <Files.h>
#include <OSUtils.h>
#include <OSEvents.h>
#include <DiskInit.h>
#include <Packages.h>
#include <Printing.h>
#include <Traps.h>

/* POPT = Print OPTions.  This type can be anything */
/* but to avoid confusion with Printing Manager */
/* resources, the following types should NOT be */
/* used: PREC, PDEF, & POST... */
#define gPRResType 'POPT'

/* This can also be any value.  Since there should */
/* only be one print record per document, the ID is */
/* a constant. */
#define gPRResID 128

/* Resource name. */
#define gPRResName "\pPrint Record"

/* Define the globals for this program... */
THPrint gPrintRecordHdl;
short gTargetResFile;



6 0 ___________________________________________________________________________________ 

d e v e l o p January 1990

/* ReportError */
/* */
/* This procedure is responsible for reporting an error to the user.  This is */
/* done by first converting the error code passed in theError into a message */
/* that  can be displayed for the user.  See Technical Note #161, "When to call */
/* PrOpen and PrClose". */
void ReportError(theError)
OSErr theError;
{

/* Real programs handle errors by displayed comprehensible error messages. */
/* This is NOT a real program... */
if (theError != noErr)

SysBeep(10);
}

/* InitializePrintRecord */
/* */
/* This procedure is responsible for initializing a newly created print record. */
/* It begins by calling PrintDefault to fill in default values, and then presents */
/* the standard 'Page Setup' dialog allowing the user to specify page setup */
/* options.  The modified print record is then returned. */
void InitializePrintRecord(thePrintRecord)
THPrint thePrintRecord;
{

Boolean ignored;

PrOpen();
if (PrError() == noErr) {

PrintDefault(thePrintRecord);
ignored = PrStlDialog(thePrintRecord);

}
PrClose();

}
/* SavePrintRecord */
/* */
/*  This procedure is responsible for saving a print record into a resource file. */
/* On entry, the print record should be initialized, and the resource file should */
/* be open with permission to write. */



6 1__________________________________________________________________________________ 

COMPATIBILITY: RULES OF THE ROAD January 1990

void SavePrintRecord(thePrintRecord, theResFile)
THPrint thePrintRecord;
short theResFile;
{

short currentResFile;
Handle existingResHdl;
Handle newResHdl;
OSErr theError;

/* First save the currently selected resource file (before calling UseResFile).*/
currentResFile = CurResFile();

/* Now select the target resource file. */
UseResFile(theResFile);
theError = ResError();
if (theError == noErr) {

existingResHdl = GetResource(gPRResType, gPRResID);
if (existingResHdl != NULL) {

/* There is already a print record resource in this file, so we need to */
/* delete it before adding the new one. */

RmveResource(existingResHdl);
theError = ResError();
if (theError == noErr) {
/* If the resource was successfully removed, dispose of its memory */
/* and update the resource file. */

DisposHandle(existingResHdl);
UpdateResFile(theResFile);

}
}
if (theError == noErr) {
/* Okay, now we have successfully opened the file, and deleted any */
/* previously saved print record resources.  Finally we can add the new */
/* one... */
/* Since the Resource Manager is going to keep the handle we pass it, */
/* we need to make a copy before calling AddResource.  We’ll let the */
/* system do it for us by calling HandToHand. */



6 2 ___________________________________________________________________________________ 

d e v e l o p January 1990

newResHdl = (Handle)thePrintRecord;
theError = HandToHand(&newResHdl);
if (theError == noErr) {

AddResource(newResHdl, gPRResType, gPRResID, gPRResName);
theError = ResError();
if (theError == noErr)

UpdateResFile(theResFile);
theError = ResError();

}
}

}
if (theError != noErr)

ReportError(theError);

/* Be polite and restore the original resource file to the top of the chain. */
UseResFile(currentResFile);

}

/* GetPrintRecord */
/* */
/*  This function is responsible for loading a resource containing a valid print */
/* record.  On entry theResFile should be open with permission to read. */
THPrint GetPrintRecord(theResFile)
short theResFile;
{

short currentResFile;
Handle theResource;
OSErr theError;
currentResFile = CurResFile();
UseResFile(theResFile);
theError = ResError();
if (theError == noErr) {

theResource = GetResource(gPRResType, gPRResID);
theError = ResError();



6 3__________________________________________________________________________________ 

COMPATIBILITY: RULES OF THE ROAD January 1990

if (theError == noErr) {
PrOpen();
theError = PrError();
if (theError == noErr) {

if (PrValidate((THPrint)theResource)) ;
}
PrClose();

}
}
if (theError != noErr)

ReportError(theError);
UseResFile(currentResFile);
return((THPrint)theResource);

}
/* TestPrintRecord */
/* */
/*  This procedure is used to test a print record.  It will print a line of text */
/* using the options specified in thePrintRecord passed.  On exit, a line of text */
/* will have been printed. */
void TestPrintRecord(thePrintRecord)
THPrint thePrintRecord;
{

GrafPtr currentPort;
TPPrPort thePMPort;
OSErr theError;
TPrStatus thePMStatus;
GetPort(&currentPort);
PrOpen();
if (PrError() == noErr) {

if (PrJobDialog(thePrintRecord)) {
thePMPort = PrOpenDoc(thePrintRecord, NULL, NULL);
if (PrError() == noErr) {

PrOpenPage(thePMPort, NULL);
if (PrError() == noErr) {

SetPort(&thePMPort->gPort);

MoveTo(100, 100);
DrawString("\pThis is a test...");



6 4 ___________________________________________________________________________________ 

d e v e l o p January 1990

}
PrClosePage(thePMPort);

}
PrCloseDoc(thePMPort);
if (((*thePrintRecord)->prJob.bJDocLoop == bSpoolLoop) && (PrError() == noErr))

PrPicFile(thePrintRecord, NULL, NULL, NULL, &thePMStatus);
}

}
theError = PrError(); /* Any errors? */
PrClose(); /* Close the Printing Manager before attempting */

/* to report the error. */
if (theError != noErr) /* If there was an error during printing...*/

ReportError(theError);  /* ...report the error to the user. */
SetPort(currentPort);

}
main()
{

InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(NULL);
InitCursor();

/* Get the ID of our resource file.  Since we were just opened, the */
/* CurResFile() will be ours.  In a real application, the resource file ID */
/* would be the ID of your application’s document file. */
gTargetResFile = CurResFile();

/* Create a valid print record */
gPrintRecordHdl = (THPrint)NewHandle(sizeof(TPrint));
if (gPrintRecordHdl != NULL) {

/* Okay, we got a print record, now initialize it. */
InitializePrintRecord(gPrintRecordHdl);



6 5__________________________________________________________________________________ 

COMPATIBILITY: RULES OF THE ROAD January 1990

/* Now save the print record into the resource file. */
SavePrintRecord(gPrintRecordHdl, gTargetResFile);

/* Now that it’s saved, kill it off.  We’ll restore it by  */
/* calling GetPrintRecord. */
DisposHandle((Handle)gPrintRecordHdl);
gPrintRecordHdl = NULL;

/* Now get the print record from the file.  Since the */
/* record will be loaded as a resource handle anyway, let  */
/* GetPrintRecord allocate the handle. */
gPrintRecordHdl = GetPrintRecord(gTargetResFile);
if (gPrintRecordHdl != NULL) {

/* Now use the print record to see if the information we */
/* saved was preserved... */
TestPrintRecord(gPrintRecordHdl);

} else
ReportError(MemError());

} else
ReportError(MemError());

/* Kill the print record (if it was created) and go home... */
if (gPrintRecordHdl != NULL)

DisposHandle((Handle)gPrintRecordHdl);
}

There are several points to remember when using this technique.  Use a resource
type not used by the Printing Manager so it doesn’t become confused.  Types to avoid
include 'PREC', 'PDEF' and 'POST'.  Remember that lowercase resource types are
reserved for use by Apple.  You also should not make assumptions about the size of
the record.  Use GetHandleSize if you really need to know.  This allows for the
record to grow in size in the future.  Finally, when rereading the record from your
document, be sure to pass it to PrValidate before using it in case the user has
changed printers or print drivers since last printing the document.

USING POSTSCRIPT
Some applications prefer to bypass QuickDraw and print using PostScript instead.
This often results in poor or nonexistent support for printers such as the ImageWriter
and LaserWriter II SC.  It also means relying on a method for determining which
printer is in use, such as checking the wDev field in the TPrStl record.



6 6 ___________________________________________________________________________________ 

d e v e l o p January 1990

One method for printing PostScript without relying on the type of printer being used
is using the TextIsPostScript PicComment:

PicComment (PostScriptBegin, 0, NIL);
PicComment (TextIsPostScript, 0, NIL);
DrawString (ThePostScript);
PicComment (PostScriptEnd, 0, NIL);

The problem with this technique is that because non-PostScript printers ignore the
TextIsPostScript PicComment, DrawString, which is a QuickDraw procedure,
literally sends ThePostScript to the printer, resulting in garbage being printed.
A better technique is using the PostScriptHandle PicComment.  Because this
comment is only understood by PostScript drivers, it avoids the QuickDraw/
PostScript interaction just described:

PicComment (PostScriptBegin, 0, NIL);
PicComment (PostScriptHandle, GetHandleSize (ThePostScript),

ThePostScript);
PicComment (PostScriptEnd, 0, NIL);

Further problems occur with applications that never print using QuickDraw but
only use PostScript.  Some versions of the LaserWriter® driver assume that if they
see no QuickDraw, nothing was printed on the page and no output occurs.  This can be
avoided by embedding some nonprinting QuickDraw in your code.  Immediately
after calling PrOpenPage, issue the following calls:

PenSize (0,0);
MoveTo (10, 10);
Line (0,0);
PenSize (1,1);

This technique also solves a problem with background printing.  In this case, the
Printing Manager starts off each page with an empty default clipping region.
Without seeing any valid QuickDraw calls, this region is never altered and your
nice PostScript output is clipped entirely off the page.  For more details on printing,
see the article on “The Perils of PostScript” in this issue.

FONTS

System 7.0 will introduce an alternate way of dealing with fonts.  While this new
technology won’t cause problems for most applications, you should be aware of a
few issues.  Any application that allows user font selection will be affected by the
new outline font technology.  The most obvious feature is that any size font is now
available.  That means a list of point sizes in a menu is no longer sufficient.  If you
currently combine font selection and font size selection in a dialog box, be sure to
include an editable field that allows the user to type in any point size.  If you now



6 7__________________________________________________________________________________ 

COMPATIBILITY: RULES OF THE ROAD January 1990

have a list of common sizes in a menu, include an “Other…” menu item that
displays a similar dialog box with an editable field.

Since Apple introduced the LaserWriter, there has been a problem about where to
get font metrics.  The most compatible method is simply to call FontMetrics and
read the metrics from the width table.  For one reason or another, however,
applications have seen fit to read metrics directly from the 'FOND' resource.  The
addition of outline fonts adds another layer of complexity.  Outline fonts will store
metric information in the 'sfnt'.  Accessing metrics in the 'FOND' could give invalid
data.  If you are currently accessing the 'FOND' directly, you will have to revise to
take advantage of 'sfnt's.

INTERNATIONAL SUPPORT

You can greatly expand the market for your product if you do not make assumptions
about your user’s language.  Following a few simple rules can make your application
much easier to localize.  Don’t simply assume, like many C programmers, that a
character is one byte.  Using the C routine strcmp, for example, to sort strings can
give completely wrong results in languages other than English.  Use IUCompStr
instead.  Determine the local conventions for decimal point, thousands separator,
list separator, and time cycle from the appropriate international resource when
performing input and output.  Script Manager 2.0 routines, if available, can make
this even easier by doing the right thing for you automatically.  For example, the
Str2Format routine can take input in one language and convert it to a canonical
form that can be used by Format2Str to output the string for a user in a completely
different country.

LOWER-LEVEL ISSUES

Higher-level issues, such as the ones just discussed, are likely to affect all
applications.  But a lot of code that gets written needs to work at a lower level—
either accessing memory in strange ways or depending on tricks in assembly
language, for example.  The remainder of this article will take a look at some of
those issues.

LOW MEMORY GLOBALS
Applications should avoid reliance on low-memory globals.  In particular,
undocumented low-memory globals must be avoided since they are most likely to
change.  But even dependence on well-known globals can be avoided.  For example,
the TickCount trap returns the same value as the low memory global Ticks.
TickCount is supported under A/UX, while Ticks is not, so use of the trap
guarantees compatibility.  In general, if a trap is available, always use it.  And if a
glue routine is available, you should use it as well.  Then if a change is necessary,
you need only update your development system and recompile to implement the
change.  For the same reason, use of glue routines is also good advice for assembly-
language programming.



6 8 ___________________________________________________________________________________ 

d e v e l o p January 1990

There is an exception to this rule.  The Journaling Driver (see IM I-261) patches key
Event Manager traps : GetMouse, Button, GetKeys, and TickCount.  The
Journaling Driver is now used exclusively by MacroMaker™, and unfortunately the
driver’s patches are not reentrant.  This means you cannot safely use these traps in
interrupt or VBL code.  If you experience strange system hangs only when
MacroMaker is installed, this is probably the cause and your code should instead
reference the appropriate low-memory globals for the information you need.

SELF-MODIFYING CODE
Applications that use self-modifying code can present serious compatibility issues.
There are two kinds of self-modifying code.  The first kind involves actually
changing machine instructions on the fly.  Such code, popular in copy protection
schemes, crashes and burns on Macintoshes that use an instruction cache.  For
example, after a sequence of instructions has been executed and cached by the
Macintosh II, some code comes along, modifies the original instructions, and tries to
execute them again.  But the CPU says, “Ah ha!  I already know what these
instructions are” and tries to execute the cached instructions, which is not what the
programmer originally intended.  Fortunately, the Macintosh II and natural
selection have made such self-modifying code virtually extinct.

A second, subtler form of self-modifying code keeps variables in the code segment
itself.  A typical example is the use of DC.W or DC.L directives to allocate variables
in the same segment as the actual code.  Such code avoids the earlier problem
because it is not actually modifying instructions.  The catch is that future operating
systems may make 'CODE' segments read-only, and when that code tries to write to
its variables, it will fail.  Of course, read-only use of such data, such as storing
string constants within code segments, is valid.  It’s fine to do this when no
alternative is available.  You won’t crash in the foreseeable future.

A variety of small tasks, such as VBL tasks and completion routines, run
asynchronously on the Macintosh.  Because they are executed asynchronously, they
cannot be assured that register A5, which by convention points to the application’s
global variables, is valid when they are called.  A common technique used in this
case was to store a copy of A5 in with the code so these routines could use the saved
value to access global variables.

It’s possible to avoid such self-modifying code, as the following MPW sample code
illustrates.  The trick here is that in creating a VBL task you must pass a record
describing the task to the system.  When the VBL task is invoked, the system sets
up register A0 to point to the start of this record.  While the record itself does not
contain storage for A5, it’s simple to embed the VBL task record into a larger record,
or in this case a C struct, that does have room for A5, or anything else you deem
important, such as a handle.  An inline function called at the start of the VBL task
converts A0 into a pointer to the record.  Then the task can access anything it needs.



6 9__________________________________________________________________________________ 

COMPATIBILITY: RULES OF THE ROAD January 1990

#include <Events.h>
#include <OSEvents.h>
#include <OSUtils.h>
#include <Dialogs.h>
#include <Packages.h>
#include <Retrace.h>
#include <Traps.h>

#define INTERVAL 6
#define rInfoDialog 140
#define rStatTextItem 1

/*
 *  These are globals which will be referenced from our VBL Task
 */
long gCounter; /* Counter incremented each time our VBL gets called */

/*
 *  Define a struct to keep track of what we need.  Put theVBLTask into the
 *  struct first because its address will be passed to our VBL task in A0
 */
struct VBLRec {

VBLTask theVBLTask; /* the VBL task itself */
long VBLA5; /* saved CurrentA5 where we can find it */

};
typedef struct VBLRec VBLRec, *VBLRecPtr;

/*
 * GetVBLRec returns the address of the VBLRec associated with our VBL task.
 *  This works because on entry into the VBL task, A0 points to the theVBLTask
 *  field in the VBLRec record, which is the first field in the record and
 *  is the address we return.  Note that this method works whether the VBLRec
 *  is allocated globally, in the heap (as long as the record is locked in
 *  memory) or if it is allocated on the stack as is the case in this example.
 *  In the latter case this is OK as long as the procedure which installed the
 *  task does not exit while the task is running.  This trick allows us to get
 *  to the saved A5, but it could also be used to get to anything we wanted to
 *  store in the record.
  */



7 0 ___________________________________________________________________________________ 

d e v e l o p January 1990

VBLRecPtr GetVBLRec ()
= 0x2008; /* MOVE.L A0,D0 */

/*
 *  DoVBL is called only by StartVBL ()
 */
void DoVBL (VRP)
VBLRecPtr VRP;
{

gCounter++; /* Show we can set a global */
VRP->theVBLTask.vblCount = INTERVAL; /* Set ourselves to run again */

}

/*
 *  This is the actual VBL task code.  It uses GetVBLRec to get our VBL record
 *  and properly set up A5.  Having done that, it calls DoVBL to increment a
 *  global counter and sets itself to run again.  Because of the vagaries of
 *  MPW C 3.0 optimization, it calls a separate routine to actually access
 *  global variables.  See Tech Note #208 - "Setting and Restoring A5" for the
 *  reasons for this, as well as for a description of SetA5.
 */
void StartVBL ()

{
long curA5;
VBLRecPtr recPtr;

recPtr = GetVBLRec (); /* First get our record */
curA5 = SetA5 (recPtr->VBLA5); /* Get the saved A5 */

/* Now we can access globals */
DoVBL (recPtr); /* Call another routine to do actual work */

(void) SetA5 (curA5); /* Restore old A5 */
}



7 1__________________________________________________________________________________ 

COMPATIBILITY: RULES OF THE ROAD January 1990

/*
 *  InstallVBL creates a dialog just to demonstrate that the global variable
 *  is being updated by the VBL Task.  Before installing the VBL, we store
 *  our A5 in the actual VBL Task record, using SetCurrentA5 described in
 *  Tech Note #208.  We’ll run the VBL, showing the counter being incremented,
 *  until the mouse button is clicked.  Then we remove the VBL Task, close the
 *  dialog, and remove the mouse down events to prevent the application from
 *  being inadvertently switched by MultiFinder.
 */
void InstallCVBL ()
{

VBLRec theVBLRec;
DialogPtr infoDPtr;
DialogRecord infoDStorage;
Str255 numStr;
OSErr theErr;
Handle theItemHandle;
short theItemType;
Rect theRect;

gCounter = 0; /* Initialize our global counter */
infoDPtr = GetNewDialog (rInfoDialog, (Ptr) &infoDStorage, (WindowPtr) -1);
DrawDialog (infoDPtr);
GetDItem (infoDPtr, rStatTextItem, &theItemType, &theItemHandle, &theRect);

/*
 *  Store the current value of A5 in the MyA5 field.  For more
 *  information on SetCurrentA5, see Tech Note #208 - "Setting and
 *  Restoring A5".
 */
theVBLRec.VBLA5 = SetCurrentA5 ();
/* Set the address of our routine */
theVBLRec.theVBLTask.vblAddr = (VBLProcPtr) StartVBL;
theVBLRec.theVBLTask.vblCount = INTERVAL; /* Frequency of task, in ticks */
theVBLRec.theVBLTask.qType = vType;   /* qElement is a VBL task */
theVBLRec.theVBLTask.vblPhase = 0;



7 2 ___________________________________________________________________________________ 

d e v e l o p January 1990

/* Now install the VBL task */
theErr = VInstall ((QElemPtr)&theVBLRec.theVBLTask);

if (!theErr) {
do {

NumToString (gCounter, numStr);
SetIText (theItemHandle, numStr);

} while (!Button ());
theErr = VRemove ((QElemPtr)&theVBLRec.theVBLTask);

/* Remove it when done */
}

/* Finish up */
CloseDialog (infoDPtr); /* Get rid of our dialog */
FlushEvents (mDownMask, 0); /* Flush all mouse down events */

}

PRIVILEGED INSTRUCTIONS
Under the current Macintosh operating system, the CPU operates in the supervisor
state and applications are allowed to use any and all 680x0 instructions, with the
lone exception of the Test And Set (TAS) instruction, which is not supported by the
hardware.  The A/UX operating system forces applications to run in the user state,
and applications that use privileged instructions reserved for the supervisor state
will fail.  Examples of such instructions are MOVE, ANDI, and EORI instructions with
the status register (SR) as either the source or the destination.  Typically, these
instructions are used to alter the condition code register (CCR), which is the low
byte of the SR.  Using these instructions with the CCR as the source or destination
instead of the SR will accomplish the same thing without causing your application
grief.  Certain floating point instructions such as FSAVE and FRESTORE are also
privileged and should be avoided.  As we mentioned, A/UX does not allow the use
of privileged instructions and is a good test of compatibility in this case.

DIRECT HARDWARE ACCESS
If you think you need direct access to hardware, let Apple know.  It may be
acceptable on other personal computers to access hardware directly, but it is
decidedly anti-social on the Macintosh and absolutely verboten under operating
systems with multi-user protection like A/UX.  Beware of schemes for copy
protection or performance enhancement that rely on direct hardware access.
Macintosh hardware has changed in the past, and it will change in the future.
Each new machine may mean yet another revision of your application.



7 3__________________________________________________________________________________ 

COMPATIBILITY: RULES OF THE ROAD January 1990

TRAP PATCHING
Trap patching is very useful for overriding or enhancing system trap handling.  It is
used by the system, for example, to correct errors in the Macintosh ROM.  Many
applications also use it to provide additional functionality.  Because it is very
difficult to anticipate all the possible side effects of your patch, maintaining
compatibility is difficult, too.  Before writing a patch, you should decide if it’s
absolutely essential.  Often the results you need can be achieved without the patch.

Suppose, for example, you decide to patch ExitToShell.  This may sound like an
excellent way for your program to get one last chance at closing files or doing
whatever other cleanup is necessary before exiting.  Whether ExitToShell is
called in response to a user’s Quit command or because of some fatal error condition,
your patch would always have a chance to clean up.  But rather than having
ExitToShells all over your code, you could achieve the same result by calling a
single, common exit routine that performed the cleanup and then called
ExitToShell.

If you absolutely must trap patch, here are some general guidelines.  Don’t make
assumptions about the format of the trap dispatch table.  In particular, don’t try to
read or write entries in the trap dispatch table directly—use GetTrapAddress
and SetTrapAddress instead.  If your patch only applies to your application,
install it in your application heap.  Otherwise, install it in the system heap.
Application heap patches will be swapped out by MultiFinder when your
application is switched out.  Because system heap patches will apply to all
applications that use the trap, use them only when absolutely necessary.

You cannot assume that a valid A5 world exists when your patch is invoked.
Register A5 points to the base of an application’s global variables, and A5 world
refers to an application’s global address space.  MultiFinder maintains different A5
worlds for each running application.  Your patch cannot assume when it is called
that  A5 points to your application’s global variables.  If it needs access to global
variables, you must save a copy of A5 before installing your patch.  Then the patch
needs to preserve the current value of A5, set the saved value, and restore the
original A5 on exit.  (See Technical Note #208.)  Your patch should avoid use of the
Memory Manager if the trap could be invoked at interrupt time or if memory could
move during your patch.

Finally, you must not tail patch.  In a normal patch, your code completes its task
and then invokes the standard trap code to complete the patch.  In a tail patch,
your code regains control after the standard trap code completes.  The problem with
this technique is that many of the ROM patches are themselves tail patches, and
they rely on knowledge of the caller to accomplish their task.  If the ROM patch
expects to be called from a ROM address, but is instead called by your patch code, it
can become confused.   If you JSR to invoke the standard trap code, then you are tail
patching.  The correct way is to JMP to the starting address of the code.



7 4 ___________________________________________________________________________________ 

d e v e l o p January 1990

IN CONCLUSION

It may be useful to know that Apple’s implementation of Unix, A/UX, offers a major
test for compatibility with System 7.0.  A/UX provides a very different
environment for Macintosh applications, but applications that follow the
compatibility guidelines work without alteration under A/UX.  If your application
works correctly under A/UX, it stands a very good chance of working correctly under
System 7.0.

If you’ve gotten this far, you are likely to avoid Johnny Appledweeb’s fate.  You
obviously are seriously concerned for your customers and willing to go that extra
step to minimize future compatibility problems.  It may seem at times that Apple
goes out of its way to stretch its own rules, but that is not the case.  It is simply
impossible to foresee all future hardware and software changes.  Incompatibility is
unfortunately an ongoing battle.  Your part of that battle goes beyond this article
and requires you to keep abreast of changes as Apple announces them.



7 5__________________________________________________________________________________ 

DEBUGGING DECLARATION ROMS  January 1990

DEBUGGING

DECLARATION

ROMS

MARK BAUMWELL is a low-level O/S
sort of guy.  He started with Apple in 1981
after a stint with Zilog as a test engineer.
After three years in the Lisa division, Mark
made the move to Macintosh DTS where
he has fulfilled his lifelong dream of being
a firefighter.  He professes to be “outdoorsy,” and
getting an airplane pilot’s license is his

Through system software, the Macintosh can read the declaration
ROMs in NuBus and pseudo-NuBus slots, like those in the
Macintosh SE/30.  This article tells you what you must know about
NuBus addressing and the structure of correct declaration ROMs to
successfully debug the ROM.  It walks you through the structure of
an example declaration ROM and gives common errors and
strategies for debugging declaration ROMs.
The Slot Manager’s flexibility in providing a layer between the hardware and
higher-level software benefits developers and customers alike.  Users can
easily expand the Macintosh II family and the Macintosh SE/30 with
additional hardware that goes in slots.  The Macintosh card architecture lets
them plug new cards into the Macintosh without worrying about using the right
slot, setting dip switches, or running system configuration software.  As a
developer, you may need to know more about the architecture that makes this
self-configuring environment possible.

THE SLOT MANAGER AND DECLARATION ROMS

Part of the Macintosh operating system, the Slot Manager can find the ROM on
each expansion card installed in a system and identify the card’s special
capabilities.  It makes use of predefined data structures called slot Resources
(sResources) to initialize and configure a card and report the card’s location.
Each card installed in a Macintosh expansion slot needs a declaration ROM,
also known as a configuration ROM, with information for using the card’s
hardware.  The expansion hardware could be as simple as a memory card that
needs to publish its address ranges or as complicated as a video card with
initialization code, a driver, and declaration data.

In addition to letting the system determine what hardware is available, the
Slot Manager frees applications from being dependent on a particular type of
hardware.  In other words, the Slot Manager helps insulate an application
from the hardware by being able to locate underlying, intermediate driver
software that will know about and talk to the specific hardware.  The
application can be free of the details and need only deal with higher-level
functions.  The degree of insulation depends on the software and data structures
in the declaration ROM.



7 6 ___________________________________________________________________________________ 

d e v e l o p January 1990

The Slot Manager:

• locates and lists the cards with declaration ROMs.

• defines a uniform structure for information in the declaration ROM and a set of
library routines to access the information.

• includes routines to allow host applications to transparently access information
in the ROMs without regard to NuBus or byte lanes.

• allows ROM initialization code to run on the host CPU during the host’s startup
sequence.

• allows cards to have drivers from their declaration ROMs loaded into the host
CPU.

• initializes and manipulates the parameter RAM on the host CPU for the card
during startup.

When applications are insulated from particular hardware implementations, they
don’t have to be revised for each new version of a vendor’s board, or even for
compatible boards made by competitors.  Besides reducing maintenance work for the
developer, information hiding of this sort saves wear and tear on customers.

Suppose a customer owns an application and a card and happens to buy another
board, from the same or a different vendor, with even slightly different hardware.
The difference might be a change in address or meaning of some register or memory
location.  The customer has to mix and match applications or drivers or INITs to
boards.  This is not very Macintosh-like, and the board manufacturer is sure to be
savaged by the customers and the press.  Matching various card-specific versions of
software and different revisions of hardware can be a headache for distributors and
dealers.  Including card-specific software on each card’s ROM in a universally
accessible structure greatly simplifies installation and maintenance.

USING SRESOURCES
Don’t confuse sResources on expansion cards with standard Macintosh resources.
The small s indicates a slot resource as opposed to a real Macintosh resource.
Although related conceptually, sResources are different and may contain
anything from code to data—for example, icons, special fonts, or vendor-defined
data.  In fact, feel free to substitute “data structure” for “sResource” as you read.

Each card has one special sResource called a board sResource and usually one
additional sResource for each function the card can perform, although additional
supporting sResources are possible.  An sResource affiliated with a function is
called a functional sResource  and gives information about that particular

current passion.  He claims that nothing we
could say would sully his reputation more
than it has already been.  We tried, but
Apple Legal wouldn’t approve it.  Would
you fly with this guy? •



7 7__________________________________________________________________________________ 

DEBUGGING DECLARATION ROMS  January 1990

function, usually to high-level applications interested in accessing the function.

Most cards perform only one function.  For example, a modem card might perform
only a modem function, a video card might just do video, and so on.  These cards
would have only one functional sResource , along with the required board
sResource.  However, it is possible to build a multifunction expansion card—a card
with a parallel, serial, and modem port, for example.  In this case, the card’s
declaration ROM would have three functional sResources —one each for the
card’s functions.  In addition to other, optional sResources, it would also have the
required board sResource.

A high-level program may need to be able to find and use certain kinds of hardware
in the Macintosh slots.  For example, QuickDraw works with video cards made by
different vendors.  QuickDraw finds each video card by looking for the card’s
functional sResource that says it can do QuickDraw-compatible video.

AN EXAMPLE DECLARATION ROM

As far as the Slot Manager is concerned, at the startup scan of the cards a valid
declaration ROM must have proper structures for the format block, sResource
directory, and the board sResource .  If any of these structures is in error, the Slot
Manager marks the slot as empty, and no Slot Manager calls to that slot will work.
Though other sResources or data structures may have errors, the Slot Manager
doesn’t check them at startup.  These errors will show up during later calls to the
Slot Manager by applications, INITs, drivers, and so forth.

We will look at these key structures in an example declaration ROM and will
discuss some common errors developers make.   The sample skeleton ROM has the
required board sResource and one functional sResource.

The ROM can be divided into four major structures: the sResource directory,
functional sResource , board sResource , and format block, as shown in the
illustration.  Let’s  look at these structures in more detail.



7 8 ___________________________________________________________________________________ 

d e v e l o p January 1990

sResource directory

functional sResource

board sResrource

format block

board sResource

functional sResource

sRsrc_Type

sRsrc_Type

sRsrc_Name

sRsrc_Name

Driver Dir

HW Dev ID

Minor Base

Minor Length

BoardId

Primary Init

Vendor Info

Dir Offset

Length

CRC

RevisionLevel

Format

TestPattern

Reserved

ByteLanes

Category

Category

cType
DrvrSW

DrvrHW

cType
DrvrSW

DrvrHW
C String

Long

Vendor ID
Rev Level

Part Number

C String
C String
C String

C String

Long

sDriverDir driver size
Driver code

Rev CPU Reserved
Driver header/code



7 9__________________________________________________________________________________ 

DEBUGGING DECLARATION ROMS  January 1990

THE SRESOURCE DIRECTORY
The source code begins with some includes and equates, followed by the sResource
directory.  A directory is a list of the sResources in the ROM.  In the example, we
have two sResources, the required board sResource and one functional sResourc.
The directory looks like this:
_sRsrcDir OSLstEntry sRsrcBoard,_sRsrcBoard

;References Board sResource.
OSLstEntry sRsrcFun,_sRsrcFun

;References functional sResource.
DatLstEntry endOfList,0

;End of the list.

The OSLstEntry and DatLstEntry items are assembler macros, defined in the
MPW ROMEqu.a file.  These macros make creating declaration ROMs easier, since
most declaration ROM structures fall into two different formats:

• an ID byte followed by three bytes representing a 24-bit offset or

• an ID byte followed by a 24-bit data value

A directory contains both of these formats.  The first format is used for all
sResource entries in a directory.  Each sResource entry consists of one byte
containing the sResource identification number, and three bytes containing the
offset to the sResource itself.

The offset list entry (OSLstEntry) macro is used to conveniently calculate and fill
in these types of entries.  It takes two arguments:  the ID byte and a label
designating the destination.  The macro puts the first argument as is into the high
byte, calculates the 24-bit signed offset value to the destination label, and puts it
into the next three bytes.  In our example, the first entry of the directory looks like
this:

_sRsrcDir  OSLstEntry  sRsrcBoard,_sRsrcBoard ;References Board
 ;sResource.

The _sRsrcDir label designates the start of the directory.  This label is needed
because the offset to the directory will be calculated later.  The first argument of
the macro, sRsrcBoard, is equated to 1 (in the equates near the top of the source
code file), and so a $01 will be put into the first byte.  The second argument,
_sRsrcBoard, is the label designating the start of the board sResource.  The
macro calculates the offset from the present point in the macro to the label and puts
the resultant offset in the next three bytes.  The _sRsrcBoard structure is $000C
bytes away from the directory entry, so the offset is $000C.  Putting them together,
the complete directory entry for the board sResource looks like this in
hexadecimal:

$01000C



8 0 ___________________________________________________________________________________ 

d e v e l o p January 1990

A similar calculation for the functional sResource is done with the offset from
the directory to the _sRsrcFun label.

The second format is used in many places in declaration ROMs.    It is commonly used
for the end-of-list entry, which marks the end of the list of directories and
sResources.  This entry always has an ID byte value of $FF followed by three
bytes of zero.  It can also be used to hold small pieces of data that fit into three
bytes or less.

It is convenient to use the data list entry (DatLstEntry) macro for these types of
entries.  DatLstEntry is similar to OSLstEntry but simpler.  It takes two
arguments: the ID byte and the desired data value.  It puts the first argument into
the high byte and the data value into the next three bytes.

SRESOURCES  IN GENERAL
Before looking at our example sResources, let’s examine the structure of
sResources in general.  Every sResource includes an sRsrc_Type entry whose
fields identify the sResource.  Applications and drivers use the sRsrc_Type
entry of each sResource to identify it and the function it performs.

The sRsrc_Type entry is comprised of an ID byte (always a $01), followed by an
offset to the sResource type format.  For this discussion, we will only look at the
Apple defined format for the type format entry, indicated by the leading bit being
a zero, since virtually all developers use it.

The  sResource type format is a 64-bit value, separated into four fields of 16 bits
each.  The entry looks like this:

0 Category cType DrvrSW DrvrHW

The type format fields have constant, fixed values for the board sResource, so
let’s look at the values for the more general case of functional sResources.  The
type format is hierarchical in nature, and the four fields can be considered to be
“nested” under each other, with the Category being at the top of the hierarchy.
While some of the fields have been predefined, new values can be and often are
defined to suit developers’ products.

A board can perform broad categories of possible functions, which are represented
by the Category field of the type format.  Within each Category are subset types
that are represented by the cType value.  Nested farther in the hierarchy are
subset software driver identifiers (the DrvrSW value).  Finally, under each DrvrSW



8 1__________________________________________________________________________________ 

DEBUGGING DECLARATION ROMS  January 1990

entry, there are hardware identifiers (the DrvrHW value).  The hierarchical
relationship looks like:

Category
cType

DrvrSW
DrvrHW

A given Category can have multiple cType interfaces for it, and each of those
cTypes can have its own nested, underlying software interfaces.  Many different
pieces of hardware can belong to a given software architecture.  Equates for many
categories have been already defined, such as Display, Network, Communication,
and CPU.  Further, subtypes for some of these common categories have been defined,
as well as software interfaces to go with some subtypes.

Let’s see how this works with a common family of cards: video cards.  A category
for display functions has been defined (CatDisplay EQU $0001).  Under it, a
subtype for video displays has been defined (TypVideo EQU $0000).  Since Apple
has defined a driver and firmware interface for video display cards that are
QuickDraw compatible, there is a software driver definition as well (DrSWApple
EQU $0001).  Now let’s say a developer wants to make a QuickDraw-compatible
video card — the Amalgamated VaporWare Widget video board.  The developer
gets a hardware identifier from Developer Technical Support—let’s say DTS
assigns the developer DrHwWidget EQU $4321—and creates a functional
sResource with an sRsrc_Type of

CatDisplay EQU $0001
TypVideo EQU $0000
DrSwApple EQU $0001
DrHwWidget EQU $4321

or in the complete type format:

0001000000014321

Now QuickDraw will recognize the card, because it looks for type formats that
match CatDisplay/TypVideo/DrSwApple.  During the search, QuickDraw will
only look for a match down to its software architecture level and will mask off the
hardware identifier.  It does not care about the hardware identifier, because it
knows the driver will deal with the underlying hardware.  Notice that even
though the first three entries in the type format will be the same for all
QuickDraw-compatible video cards, the different hardware identifiers will make
the entries unique.  This is useful for the driver of the Widget card, which very
much cares about the underlying hardware.  It will want to locate the card and will
do so by doing a match of the whole type format, including the hardware
identifier.



8 2 ___________________________________________________________________________________ 

d e v e l o p January 1990

Developers can take advantage of this if they want to have applications use their
software/hardware architecture.  By publishing the software interface and type
format values, a developer can make a board that others can write applications for.

Besides the sRsrc_Type entry, sResources must also have a name entry
(sRsrc_Name), which contains an ID byte (always $02), followed by an offset to a
null-terminated string (a C string).  In addition to these, the board sResource
must have a board ID value (BoardId).  All other entries defined for sResources
and the board sResource are optional.  .

Now, let’s take a look at the two sResources in detail.

THE BOARD SRESOURCE
Like the directory entries, our board sResource uses the macros we discussed earlier
to calculate and fill in the various entries.  Labels such as sRsrcType and
sRsrcName are defined in the MPW ROMEqu. a file.  Others, such as the board ID,
are in the declaration ROM source code.  The first part of our board sResource
looks like this:

;=============================================================
; The Board sResource
;=============================================================
_sRsrcBoard OSLstEntry sRsrcType,_BoardType

;References Rsrc_Type entry
OSLstEntry sRsrcName,_BoardName

;References Rsrc_Name entry
DatLstEntry boardId,TheBoardId

;boardId **ASSIGNED BY MACDTS**
OSLstEntry primaryInit,_sPInitRec

;Refs Primary init record.
OSLstEntry vendorInfo,_VendorInfo

;References Vendor info list.
DatLstEntry endOfList,0

;End of the list.

The _sRsrcType entry for the board sResource points to the board sResource
type format.  The type format is always the same for the board sResource—
that’s how the board sResource is identified.  The type format for the board
sResource always has this definition: .

_BoardType DC.W CatBoard ;ALWAYS $0001 for bd sResource
DC.W TypBoard ;ALWAYS $0000 for bd sResource
DC.W DrSwBoard ;ALWAYS $0000 for bd sResource
DC.W DrHwBoard ;ALWAYS $0000 for bd sResource



8 3__________________________________________________________________________________ 

DEBUGGING DECLARATION ROMS  January 1990

Put together into the full 64 bits, it looks like this:

$0001000000000000

The _sRsrcName entry points to the name string (a C string), which should be
the official product name of the board:

_BoardName DC.L 'OFFICIAL PRODUCT NAME'
;The name of the Board - should be official product name

(At the beginning of the source code, there is a STRING C directive, to
automatically generate c strings.)

After the name comes the required board ID,  which, being a 16-bit value, can be
filled in using a DatLstEntry macro.  Board IDs are assigned by Macintosh DTS.
To get  board ID, contact Macintosh DTS with the following information:

• the company name and address (mailing and electronic addresses, if possible)

• the name of the person in the company responsible for the board (and a phone
number, if possible)

• the functions the board will perform

• the official product name for the board (or a code name)

• whether or not the board will have a software driver other than one that has
been predefined (like Apple’s video driver)

• whether or not the driver will be in ROM

DTS will assign the board ID and any necessary functional sResource information.
This information goes into a database, which is kept strictly confidential.  There is
a HyperCard® stack on the Developer Services CD and on AppleLink that makes
sending in this information easier.

Next, the board sResource contains an entry for the primary initialization code.
We have defined one, but it is in a separate file called PrimaryInit.a, which is
referenced with an INCLUDE directive:
;-------------------------------------------------------------

; Primary Init Record (if needed)
;-------------------------------------------------------------
_sPInitRec DC.L _EndsPInitRec-_sPInitRec

;physical Block Size
INCLUDE 'PrimaryInit.a'

;Primary Init Code
_EndsPInitRec EQU * ;End of block



8 4 ___________________________________________________________________________________ 

d e v e l o p January 1990

STRING C ;Restore to 'c' string type.

The following is optional vendor data.  It is up to the developer to decide what, if
anything, goes in the VendorInfo entries.  This example shows the way Apple
typically uses the vendor information entries.

;-------------------------------------------------------------

; Vendor Information record
;-------------------------------------------------------------
_VendorInfo OSLstEntry VendorId,_VendorId ;References 

;the Vendor 
;Id.
OSLstEntry RevLevel,_RevLevel ;References 

;the Revision 
;Level.
OSLstEntry PartNum,_PartNum ;References 

;the Part 
;Number.
DatLstEntry endOfList,0 ;End of the 

;list.
_VendorId DC.L 'COMPANY NAME' ;The Vendor 

;Id.  Most 
;vendors use

;company name
_RevLevel DC.L 'Release-1.0' ;The Revision 

;Level
_PartNum DC.L '12-3456' ;The Part 

;Number

THE FUNCTIONAL SRESOURCE
In our example, our card has only one function, so our ROM has just one functional
sResource.  For this example, we have defined a nonexistent set of Category,
subtype, software, and driver identifiers, which normally would be replaced by the
ones assigned by DTS.  The functional sResource entry looks like this:

;=============================================================
; The Functional sResource
;=============================================================
_sRsrcFun OSLstEntry sRsrcType,_FunType

;References sRsrc_Type
OSLstEntry sRsrcName,_FunName

;References sRsrc_Name
OSLstEntry sRsrcDrvrDir,_FunDrvrDir

;References sResource driver dir



8 5__________________________________________________________________________________ 

DEBUGGING DECLARATION ROMS  January 1990

DatLstEntry sRsrcHWDevId,1
;The hardware device Id.

OSLstEntry MinorBaseOS,_MinorBase
;References Minor Base Offset.

OSLstEntry MinorLength,_MinorLength
;References Minor Base Length.

DatLstEntry endOfList,0
;End of the list.

The type format for our fictional function looks like this:

_FunType DC.W CatExCat ;<Category>
DC.W TypExTyp ;<Type>
DC.W DrSwExSw ;<DrSw>
DC.W DrHwExHw ;<DrHw>

The sRsrc_Names for functional sResources follow a convention of concatenating
the equates for the sRsrc_Type but stripping off the prefixes and separating the
type format fields by underscore characters.  Since our type is
CatExCat/TypExType/DrSwExSw/DrHwExHw, the sRsrc_Name becomes:

_FunName DC.L 'ExCat_ExType_ExSW_ExHW'

The driver directory identifies the type of driver and the driver itself.  In the
example, the driver is compatible with the Macintosh OS but contains Motorola
68020 code. The driver itself is in a separate file and is referenced by an INCLUDE
directive.

;-------------------------------------------------------------
; Driver directory (if there’s an on-board driver)
;-------------------------------------------------------------
_FunDrvrDir OSLstEntry sMacOS68020,_sMacOS68020

;References Macintosh-OS
;68020 driver.

DatLstEntry endOfList,0
;End of the list.
;Driver-1 (68020).

_sMacOS68020 DC.L _End020Drvr-_sMacOS68020
;The physical Block Size

INCLUDE 'NameofDrvrSrcCodeFile.a'
;The  driver code

_End020Drvr EQU *
;The end of the driver.



8 6 ___________________________________________________________________________________ 

d e v e l o p January 1990

STRING C

The hardware device ID field (HWDevID) is optional and defined by the vendor.  It
can be used to indicate that an sResource is associated with a particular piece of
hardware.  This would be used in the case of cards that had multiple “hardware
areas”—say, multifunction cards—that could be considered to be separate
hardware devices.  The field could be used to group certain sResources with the
various devices.  In this case, the functional sResources would have different
HWDevID values depending on which hardware device on the card they describe.

For example, you have a card with two serial ports, which you label port 1 and port
2.  You have three functional sResources—an asynchronous serial sResource, a
MIDI sResource, and a network sResource.  Let’s say the async serial
sResource is assigned to port 1.  It is assigned HWDevID=1.  Now let’s say the
network sResource can only be used with port 2.  It is assigned HWDevID=2.
Similarly, the MIDI sResource can only be used on port 1.  It will also be assigned
HWDevID=1.  Now, by looking at the HWDevID fields, a driver or card software can
tell which piece of hardware it is using in case different hardware on the card has
different characteristics it must handle.  If an sResource does not describe a
hardware device, then the HWDevID field may be omitted.

The MajorBaseOS, MinorBaseOS, MajorLength, and MinorLength fields
describe  where the hardware area starts and how large it is.   For example, a video
sResource might have the MinorBaseOS be an offset to the starting address of
the video frame buffer.  The MinorLength field would tell how large it is.  Other
cards might use the MinorBaseOS to indicate where its hardware control registers
are.

Use Major vs. Minor depending whether you want to reference the area using super
slot space or NuBus slot space addresses.

In the example, let’s say this function has some RAM memory in NuBus slot space
that we would like to reference:

_MinorBase DC.L defMinorBase ;RAM Offset
_MinorLength DC.L defMinorLength ;RAM length



8 7__________________________________________________________________________________ 

DEBUGGING DECLARATION ROMS  January 1990

THE FORMAT BLOCK
Declaration ROMs are recognized by the presence of the ROM’s format block,
which occupies the highest address of the ROM’s slot address space.   This is our
example format block:

ORG ROMSize-FHeaderRec.fhBlockSize
;+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
; Format Block
;+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

DC.L (_sRsrcDir-*)**$00FFFFFF
;Offset to sResource directory

DC.L ROMSize
;Length of declaration data

DC.L 0
;CRC-can be patched by MPW crc tool

DC.B romRevision
;Revision level

DC.B AppleFormat
;Format

DC.L TestPattern
;Test pattern

DC.B 0
;Reserved byte (must be zero)

DC.B $E1
;ByteLanes: 1110 0001 (bytelane 0)

ENDP
END

The first entry calculates the offset to the beginning of the directory, using the
directory label.  This must be a signed 24-bit value.

The ROM size, revision level, format, test pattern, and reserved values are
declared in the source and in the included MPW ROMEqu.a file.  The CRC value
can be generated and patched in by utilities such as MPW tools.  Apple supplies two
MPW tools on the Developer Services CD and AppleLink called Data and CRC.
Data takes the assembled source code file, strips off the CODE 0 resource, and puts
the CODE 1 segment (now the actual ROM image) into a data file.  This will be
convenient for later downloading to a ROM burner.  The CRC tool takes the ROM
image, calculates the CRC value, and inserts it into the proper place.

The last field in the block is the ByteLanes field, a signature byte that identifies
which of the four NuBus byte lanes the ROM image appears on.  The Slot Manager
attempts to read a valid value in each of the four byte lanes at the end of the slot
space.  If the Slot Manager is unable to read a valid field, then an error is posted for
this slot.  If a valid ByteLanes value is read, this information is used to confirm a



8 8 ___________________________________________________________________________________ 

d e v e l o p January 1990

special test pattern, and perform a ROM validity check.  If all verification passes,
then the system can utilize the offset to the sResource directory.  Note that the
Slot Manager attempts to read the format block in both the 1 MB and 16 MB NuBus
slot spaces.  If any of these verification checks fails, the slot is marked as empty or
invalid, and all Slot Manager calls to that slot will return errors.

POTENTIAL PROBLEMS

Now that we’ve covered the source code to the example ROM, let’s look at some
common problems developers experience.  When trying to assemble the source code,
if one or more of the arguments to the OSLstEntry or DatLstEntry macro is
incorrectly defined or just left out, you will get an assembler error in the middle of
the macro, and the assembler will complain with the error message:

Invalid arithmetic operation on relocatable id

This message was generated as a result of the assembler’s inability to resolve one of
the two arguments to the macro.  If you get this error, check both arguments and
make sure the labels are correctly defined.  The first argument must be equated to
something in your source or the development system include files, and the second
argument must be a label that exists in the source code.  Please be aware that some
of the predefined equates (in the assembler include files) changed from MPW 2.0 to
3.0.  For instance, to improve readability, some IDs had the underscores in the
middle removed (Cat_Board became CatBoard in a directory, for example).

Another error can arise from a bug in the macro defined up to and including MPW
version 3.0.  Most declaration ROM sources are arranged in a sequence like ours:  the
directory comes first in the source code (and so is lowest in memory), followed by the
sResources, and finally the format block, which is at the very end of the source
listing.

Structures referenced by sResources are usually defined after the sResources.
That is, usually things are referenced in a forward manner and come later in the
source code.

Laying out the sResources this way, the macro works fine.  However, if you want
to have the macro calculate a negative offset to a structure, to reference something
that comes earlier in the source code, you may run into trouble.  The following macro
definition:

MACRO
OSLstEntry &Id,&Offset
DC.L (&Id<<24)+&Offset-*
ENDM



8 9__________________________________________________________________________________ 

DEBUGGING DECLARATION ROMS  January 1990

can be fixed by changing it to:

MACRO
OSLstEntry &Id,&Offset
DC.L (&Id<<24) ++ ((&Offset-*) ** $00FFFFFF)
ENDM

This correctly masks off the high byte of the 24-bit offset and thus allows the full
range of positive as well as negative offsets to structures.

Often, the source code to the ROM will build, but because of errors in the
declaration ROM data structures, the Slot Manager will fail to recognize the ROM,
or will generate errors while looking at certain structures.  When this happens,
looking at the error generated and manually disassembling the ROM will usually
find the error.  This requires understanding how the ROM appears from a debugger.

DISSEMBLING THE ROM
Declaration ROMs often occupy only one or two of the four NuBus byte lanes,
meaning you have to translate your assembly listing by hand.  This is because the
assembler generates the listing as though the ROM occupies all four byte lanes
(that is, as though it would reside in RAM).  To translate from the ROM listing to
the actual physical addresses the ROM occupies requires knowledge of byte lanes,
which are often misunderstood.

The NuBus bus width is 32 bits, or, very importantly, four bytes.  Think of each
group of four bytes as a chunk.  A chunk on the NuBus would look like this:

3 2 1 0Byte Number

Bit Number 31 30 29 28 27 26 25 24 22 21 20 19 18 17 1623 14 13 12 11 10 9 815 7 6 5 4 3 2 1 0

The four bytes of each chunk are identified by the byte number as shown in the
illustration.  Byte number 3 on the NuBus side—the most significant—contains
NuBus address  and data bits 31-24, byte number 2 contains A/D bits 23-16, byte
number 1 contains A/D bits 15-8, and byte number 0—the least significant—contains
A/D bits 7-0.  Bytes whose address modulo 4 equals 0 are carried on byte number 0,
those whose address equals 1 are carried on byte number 1, whose address equals 2
are carried on byte number 2, and whose address equals 3 are carried on byte number
3.

This address-to-byte-number mapping is conveniently set up for an Intel-type
processor, which carries the most significant bits on a higher numbered address.
The Macintosh uses a Motorola type processor, which has the most significant bits
on a lower numbered address.  In order to preserve consistency of byte addressing,
Apple does byte swapping from the NuBus to the Motorola 680x0 CPU.



9 0 ___________________________________________________________________________________ 

d e v e l o p January 1990

To see this more clearly, let’s expand the byte lanes diagram from the address
space chapter of Designing Cards and Drivers for the Macintosh Family.

    

3 2 1 0

$0003 $0002 $0001 $0000Physical 
Address

Byte 
Number

Bit 
Number

3 2 1 0

31-24 23-16 15-8 7-0

$0007 $0006 $0005 $0004

1 2 3

$0000 $0001 $0002 $0003

0 1 2 3

31-24 23-16 15-8 7-0

$0004 $0005 $0006 $0007Physical
Address

Byte 
Number

Bit 
Number

NuBus Side

Macintosh 680x0 Side

NuBus AD Lines

MC680x0 Lines

31-24 23-16

31-24 23-16

15-8 7-0

7-015-8

BYTE LANE 3

BYTE LAN
E 2 BY

TE
 L

AN
E 

1

BYTE 
LA

NE 0
BYTE LANE 3

BYTE LAN
E 2 BY

TE
 L

AN
E 

1

BYTE 
LA

NE 0

0

The diagram looks quite complicated.  Fortunately, once you understand the key
concepts, it’s not.  The addressing of bytes within a chunk is in reverse order on the
NuBus and 680x0 sides.  However, the address range of a chunk is the same when
viewed from the NuBus or 680x0 side.  The hardware interface between the CPU on
the motherboard swaps the bytes of a chunk when going to and from the NuBus.

Now that we understand the byte and address translation between our CPU and the
NuBus, let’s look at part of our assembled ROM listing.  The best place to start is at
the format block at the “top” or highest physical address of the ROM, since this is
where the Slot Manager starts looking at startup time to find valid declaration
ROMs.  Assembled, the format block looks like:



9 1__________________________________________________________________________________ 

DEBUGGING DECLARATION ROMS  January 1990

00FEC ;+++++++++++++++++++++++++++++++++++++++++++++++++
00FEC ; Format/Header Block
00FEC ;+++++++++++++++++++++++++++++++++++++++++++++++++
00FEC 00FF F014 DC.L (_sRsrcDir-*)**$00FFFFFF

;Offset to sResource directory
00FF0 0000 1000 DC.L ROMSize

;Length of declaration data
00FF4 0000 0000 DC.L 0

;CRC-can be patched by MPW crc tool
00FF8 01 DC.B romRevision

;Revision level
00FF9 01 DC.B AppleFormat

;Format
00FFA 5A93 2BC7 DC.L TestPattern ;Test pattern
00FFE 00 DC.B 0

;Reserved byte (must be zero)
00FFF E1 DC.B $E1

;ByteLanes: 1110 0001 (byte lane 0)
01000

The Slot Manager will start scanning from the highest address, looking for a
ByteLanes value.  From there, it will look for confirmation of the ByteLanes
value by looking for the reserved values, the test pattern, proper format, and
revision values, down to the CRC calculation.  If there is a problem with the
ByteLanes value or the way the card has been built, this Slot Manager check will
fail.  At this point, you should load up a debugger and look at the format block.
Assuming the board is in slot $B, the above format block (residing on byte lane 3)
might look like this in memory (as seen from MacsBug):

  00BFFFB0  0000 0000 FF00 0000  F000 0000 1400 0000  ••••••••••••••••
  00BFFFC0  0000 0000 0000 0000  1000 0000 0000 0000  •••••••• •••••••
  00BFFFD0  9D00 0000 8600 0000  3400 0000 FE00 0000  ••••••••4•••••••
  00BFFFE0  0100 0000 0100 0000  5A00 0000 9300 0000  ••••••••Z•••••••
  00BFFFF0  2B00 0000 C700 0000  0000 0000 E100 0000  +•••••••••••••••

The lowest address is at the upper left, and the highest address is at the lower
right, with increasing addresses going from left to right.  Note that the MacsBug
listing shows an example CRC value ($9D8634FE) that was calculated and patched
in after the ROM was assembled.



9 2 ___________________________________________________________________________________ 

d e v e l o p January 1990

SLOT MANAGER ERRORS
During evaluation at startup or in response to application/driver Slot Manager
calls, a number of errors can be returned by the Slot Manager.  Often this is due to an
incorrect ByteLanes value or bad sResources.  The error returned usually helps
to narrow down the problem.  You can look at the error, then manually track
through sResources in the ROM.  This requires disassembling and “playing Slot
Manager” much as we did above.  Drawing a diagram like the one in the front of
the article with the addresses and values can often help.  However, please note
that many Slot Manager calls make other Slot Manager calls, and the error
returned may reflect an error returned by one of those calls.

If an error or crash occurs in the ROM before a debugger is loaded (during the
primary initialization routine, for example), you can defer the driver or primary
initialization until after the boot process has begun and a debugger has been
loaded.  Do this by first making stubs for the driver and/or primary initialization,
or deleting them entirely.  Then run them from a high-level application, which can
have the primary initialization or drivers in the application or possibly in
separate files.

In order to keep the driver from being loaded until after the boot, you might have to
temporarily change the functional sResource’s type format.  This is needed in the
case of video boards, for example, since the startup code looks specially for video
boards, runs their primary INITs, and opens the drivers.  In this case, change the
sRsrc_Type to something other than CatDisplay, TypVideo, DrSwApple so
that the start code won’t identify the video display function.  Changing
CatDisplay to CatNonsense EQU $0000 would do the trick.

SUMMARY

Declaration ROMs store system-recognizable structures as well as vendor-specific
data.  Debugging declaration ROMs is complicated by the fact that the declaration
ROM sits on the other side of the Nubus, and you have to translate the information
you get.  But using the techniques discussed in this article should make building,
interpreting, and debugging declaration ROMS a little easier.



9 3__________________________________________________________________________________ 

THE APPLE II DEVELOPMENT DYNAMO  January 1990

THE APPLE II

DEVELOPMENT

DYNAMO

ERIC SOLDAN, Apple II DTS engineer,
specializes in Toolboxes, printing, and making
trouble.  He’s been with Apple since 8/8/88, a day
he claims the Chinese think is an extremely good
day (“eight”pronounced in Chinese means
“prosperity”).  At the University of Missouri-Rolla,
he studied math and computer science, with a
minor in beer.  When he’s not making trouble, he’s
tending his own enterprise,

The new Dynamo 8-bit Development Package from DTS makes
developing software for the Apple II family easier and faster.  This
article highlights the capabilities of the package and describes how it
meets developers’ needs.  Dynamo includes a run-time module with
a macro interface and an Apple II application loader.  It offers
routines for handling strings, variables, arrays, and integer math.

Because of the speed and memory limitations of 8-bit Apple IIs, Apple’s
opinion that assembly language is the best choice for development has not
changed over the years.  Assembly language, however, places a heavy burden
on the developer.

The more popular high-level languages depend on a processor being able to
handle a large stack as part of its instruction set.  Because the 6502 doesn’t
support a large stack, high-level languages on the Apple II generally
implement their stacks in software and pay a considerable penalty in speed and
memory.

Given the disadvantage of a processor not specifically designed with high-
level languages in mind, the authors of the available Apple II languages have
done an admirable job.  These languages are very useful for many applications.
Programs that require lots of speed and memory, however, can’t afford the
overhead of a high-level language.

WHAT DO YOU REALLY NEED?

As a developer, you don’t need a specific high-level language or a particular
tool set.  You do need what successful languages and tool sets were designed for:
to provide help in meeting fundamental development objectives.  Developers
need to produce code:

• that is fast

• that takes the least amount of development time



9 4 ___________________________________________________________________________________ 

d e v e l o p January 1990

• that consumes the least memory

• that is easy to read

• that is reliable

How well does assembly language meet these needs?  Assembly produces the
fastest code possible.   This is especially important on the Apple II, where your
code may be running at one megahertz, and every cycle counts.

It is difficult to write good assembly language code quickly.  All the
housekeeping demands painstaking attention to detail and carefully
constructed code.

For code compactness, assembly language is excellent.  It is actually difficult to
develop assembly code that consumes as much memory as a good compiler.

Assembly language is hard to read.  If you need to understand the code a year
from now, you had better provide very good comments and plenty of them.  Also,
you may not be the only one who will need to understand your code.

Assembly is not well known for bug-free code production.  You build the ifs,
loops and data constructs yourself from assembly language statements.  There is
no compiler to check your syntax.

After pondering developers’ needs, DTS implemented a new environment for
Apple II assembly language to help make 8-bit development easier and faster,
called Dynamo.  The core of Dynamo is a small library of run-time routines.
Dynamo has macro definitions that generate very short code fragments that use
the library routines.  Given that the library is all assembly language, and the
macros generate the minimum code necessary to interface to the library, the
code stays small and fast.  Dynamo handles things that are usually cumbersome
in assembly language—namely variable, string,  and array management, as
well as integer math.  The macros add a high-level flavor to the environment,
and you get speedy development of readable and dependable code.  Let’s take a
closer look at how the different aspects of Dynamo work.

MANAGING VARIABLES

In developing Dynamo, it was important to look at typical operations within a
program.  We studied how long it took to code these in assembly, how big the
code was, and how long the code took to execute.  One such operation is assigning
a value to a variable.  Some examples (in Pascal) look like this:

aardvark := buffalo;
cat := 1000;
dog := elephant * fish / goat + 12345;

Educational Software Systems, a business he
shares with his wife.  Other interests include
racquet sports, chess, and piano. •

For this development environment, variables
are two-byte integers.  There is no support for
floating point.  For that, you could use SANE or
various other solutions. •



9 5__________________________________________________________________________________ 

THE APPLE II DEVELOPMENT DYNAMO  January 1990

If you had a collection of run-time routines to do the real work, the main line of
code would just do things like determine what happens to which variables.  We
looked at several ideas and started coming up with assembly code that looked
like the following:

ldx #aardvark ;load pointer to aardvark
ldy #buffalo ;load pointer to buffalo
jsr varcpy ;move buffalo to aardvark (16 bits)

The x-register is loaded with a constant (from 0 to 254) that represents the
variable aardvark.  The y-register is loaded with a constant that represents
the variable buffalo.  These constants are like pointers; they are offsets into a
variable table.  Then we call a routine to copy the value of the 16-bit variable
buffalo to the 16-bit variable aardvark.  The routine looks like this:

varcpy lda varspace,y ;move low 8 bits
sta varspace,x
lda varspace+1,y ;move high 8 bits
sta varspace+1,x
rts

Varspace is some location in memory where the integer variables reside.  Since
we are indexing into it with a 1-byte index, the maximum size of this space is
256 bytes, and since integers take 2 bytes, the maximum number of variables is
128.  This 128 variable limit may seem small, but a typical program just doesn’t
have that many simple variables.

Now, by using a macro to become part of the interface, this can become:

_varcpy aardvark,buffalo

This means “copy the value of the variable buffalo to the variable aardvark.”
It isn't Pascal, but it isn’t trying to be.

Remember that the variable names represent 8-bit numbers.  They are declared
by equating them to values from 0 to 254.  Don’t mistake the variable names for
addresses.  Saying:

temp equ 30
lda #27
sta temp
lda #00
sta temp+1

will store the number 27 in zero page location 30, something you don’t want to do.
The _varcpy routine takes the argument temp as an index into the variable
table

Dynamo MPW requires a Macintosh that can run
the Macintosh Programmer’s Workshop (MPW)
and an 8-bit Apple II or Apple IIGS with a 3.5" drive.
You’ll also need MPW, MPW IIGS Tools, MPW
IIGS Assembler, and ProDOS with the Dynamo
package. •



9 6 ___________________________________________________________________________________ 

d e v e l o p January 1990

that starts at varspace.  To explicitly store 27 in variable temp without using
the Dynamo routines, you would say:

temp equ 30
lda #27
sta varspace+temp ;set low byte to 27
lda #00
sta varspace+temp+1 ;and high byte to zero

As long as you use the Dynamo interface to deal with variables, you can treat
them as if the name refers to the value.

Now, does this code meet our five objectives?

It isn’t as fast as it could be.  The fastest code would be:

lda buffalo
sta aardvark
lda buffalo+1
sta aardvark+1

This code, although faster, takes more memory.  If we were copying an integer
from one place in zero-page to another, the fast code would be 8 bytes.  If we
were copying an integer not in zero-page, it would be 12 bytes.  The slower way
would be only 7 bytes.  The _varcpy routine takes up some space, but it is in
memory only once so it doesn’t really count.

Although we lost some speed, the code got smaller.  It also became easier to
read and faster to write and to debug.  A good compromise, given that it is more
readable, and is inherently more reliable.

Using these routines and macros, some sample code that assigns some variables,
adds, multiplies, and divides looks like this:

aardvark equ 0 ;declare 16-bit variables
buffalo equ 2
cat equ 4
dog equ 6
elephant equ 8
fish equ 10
goat equ 12

_varcpy aardvark,buffalo ;aardvark := buffalo
_set cat,#1000 ;cat := 1000
_varcpy dog,elephant ;dog := elephant
_mulvar ,fish ;dog := dog*fish
_divvar goat ;goat := goat/dog



9 7__________________________________________________________________________________ 

THE APPLE II DEVELOPMENT DYNAMO  January 1990

_add ,#12345 ;goat := goat+12345

Notice that dog doesn’t have to be mentioned on the _mulvar line.  All the
Dynamo library routines preserve the x-register, so the x-register still has the
constant for dog in it.  If there is no destination variable, _mulvar generates
code that leaves the x-register alone.

MANAGING ARRAYS

We typically store large blocks of data in arrays, which is why the 128 simple
variable limit is not so bad.  Arrays are a little trickier than variables, and a
pointer-based system works best.  When you calculate a base pointer to a row,
the row elements will be in linear order from there on in memory.  So, for a two-
dimensional array, tell Dynamo what row to work with, and treat that row as
if it were a one-dimensional array.  The array routines are good for up to four
dimensions.  Increasing this is rather easy, but the overhead goes up slightly
for each dimension you add.

Here’s code for a four-dimensional array:

_array #$4000,w,#3,#4,#5,#6 ;activate array at $4000
_index #1,#3,#4
_getw value1,#3 ;value1 := array[1,3,4,3]
_putw value2,#5 ;array[1,3,4,5] := value2

The _array macro defines the size of the array elements, the number of
elements in each dimension, and the location of the array.  This example has a
four-dimensional array whose dimensions are 3 x 4 x 5 x 6.  The array starts at
address $4000, and the element size is a word.  _array is an assembly-time
macro and does its calculating at assembly-time.  This means the arguments
must be constants like literals or equates.  If the first argument had an * instead
of a #, it would be used as the address of a pointer to the base address.  _index
is a run-time macro and can use literals or variables.

The _index macro indexes into the array, up to but not including the final
subscript or index.  The _index macro is used to calculate a pointer to a row of
data.  Once this is done, access to the row is as if the array were linear, and you
can make multiple accesses to the array.  Since the address of the row does not
have to be recalculated, the last subscript is simply used as an index into the
row of data.

This example uses the _getw macro to get a word element of the row and place
the value into a variable.  Element #3 (from zero) of the row is moved to the
variable value1.  Finally, the value of the variable value2 is placed in
element #5 of the row.

_getb and _putb work with byte elements, and _vgetb, _vgetw, _vputb, and



9 8 ___________________________________________________________________________________ 

d e v e l o p January 1990

_vputw use a variable as an index instead of a constant:

You can also use a variable value when calculating an index to a row of the
array—for example, to get an element from the array stuff[] and save it in
thing.  For you C dudes, this looks like:

thing = stuff[color][size][3][weight];

Using Dynamo and the macro interface, this is:

_array #stuff,w,#5,#6,#7,#8 ;activate array “stuff”
_vindex color,size
_index ,,#3
_vgetw thing,weight

You can mix variable and constant subscripts, as long as you remember the
commas as place holders on the second line.  Also, if the first index hasn’t
changed, you don’t need to mention it.

There can be only one active array at a time, and _array sets the active array.
Instead of putting code in-line to activate an array, you can define simple
routines to set active arrays.

jsr mat1 ;set mat1 active
_vindex row ;set pointer to rowth row
_vgetw thing,column ;thing := mat1[row,col]
jsr mat2 ;set mat2 active
_vindex row ;set pointer to rowth row
_vputw thing,column ;mat2[row,col] := thing
rts

mat1loc equ $1000 ;storage for mat1
mat2loc equ $1080 ;storage for mat2
mat1 _array #mat1loc,w,#8,#8

rts
mat2 _array #mat2loc,w,#8,#8

rts

The # in #mat1loc and #mat2loc means use the value of mat1loc and
mat2loc as base addresses for the arrays.  If the #s are replaced with *s, you
get another level of indirection, and the contents of mat1loc and mat2loc
would be used as the array location instead.

All of these tricks add up to very efficient and flexible array access in assembly
language.



9 9__________________________________________________________________________________ 

THE APPLE II DEVELOPMENT DYNAMO  January 1990

MANAGING STRINGS
String management works much like variable management.  The x-register
holds the constant representing the destination string.  You can perform
operations on a destination string, like copying another string into it, reading
string data into it, appending another string, appending some portion of a
string, printing the string, and so forth.  Just like the variable management
routines, the x-register is always preserved.  Of course, all of these functions are
done with macros for readability.

PUTTING IT ALL TOGETHER
These simple things make programming in assembly language immensely
easier.  The only cost is some loss of speed.  If a particular routine needs to be as
fast as possible, you can still write it in straight assembly code.  After all, you
are using an assembler.

The Dynamo runtime library is very small.  A breakdown of the various routine
types is as follows:

initialization & char output routines: 154

integer variables & intmath routines: 787

random generator routines: 139

string handling/output routines: 505

read data (ints & strings) routines: 77

multi-dimension array handling: 358

TOTAL 2020

These values apply only if you use all the routines in a particular area.  The
linker only includes what you use.

The new MPW IIgs Cross-Development System is another step toward a better
development environment.  It is the most powerful development environment
available for the Apple II and IIgs.  Having the most powerful system is
important.  Developers are the ultimate power users.  Developers spend an
incredible amount of time using computers.  The less time they spend editing
code and waiting for assemblies, the more time they have for real development
work.  MPW lets you keep several windows of source code open at the same
time.  And since the Mac is not used to test the software, you don’t have to boot
out of your development environment every time you test your program.  You can
look at main code and subroutines or data structures while your program is
running on your Apple II.  Also,



100 ___________________________________________________________________________________ 

d e v e l o p January 1990

the speed of the system reduces development time.  There is nothing wrong with
developing Apple II software on an Apple II.  It just takes longer.  If you can
afford a Mac and the MPW IIGS Cross-Development System, you should really
consider developing with it.  It should pay for itself very quickly in terms of
development time dollars.

One last statement:  Dynamo was not difficult to develop, so if it isn’t perfect
for your development needs, develop your own macro interface.  Just remember,
you can keep memory use down and speed up by working in assembly language.

The source code and user’s manual for Dynamo
are included on develop, the CD and the Apple II
source code disks from APDA. •



101__________________________________________________________________________________ 

APPLE II Q& A January 1990

Apple II Q&A

Q
How can I get back to my
program from the Init version
of GSBug?

A
The new version of GSBug, available
from APDA in a beta version, comes
with an Init file which installs the
debugger to be present in the back-
ground, invocable with the keystrokes
control-command-option-Escape.  The
command to quit the application
version of GSBug (“Q”) does not work
from the Init version; the correct
command is “R” (for “resume”).  If you
break on a tool call, be sure to take tool
breaks out before doing any tracing if
you hope to not die a different horrible
death than the one your application
would normally have given you.

Q
I’ve heard about a version of
SANE for eight-bit Apple II
computers, but I can’t find it
anywhere.  Is it still sold?

A
SANE is considered part of the System
Software and is distributed by Apple’s
Software Licensing group.  You may
contact them at (408) 974-4667 or
through AppleLink address
SW.LICENSE.  Although older
versions of SANE were sold as part of
Apple’s old “WorkBench” series, the
current version should be obtained from
Software Licensing.  Even if you own an
older copy of SANE you wish to use in
your program, it still must be licensed
from Software Licensing before
distributing it. SANE is built in to all
IIgs and Macintosh computers.

Q
What file type should I use for
my program’s files?

A
Apple II Developer Technical Support
assigns file type and auxiliary type
combinations to developers by request.
Apple II DTS must assign file types
and auxiliary types, rather than
arbitrate as Macintosh DTS does,
since the range of Apple II file types
is much more limited.  Please refer to
“About Apple II File Type Notes”
(included on CD or available from
APDA) for information on how to
submit a request for an assignment, as
well as for a complete listing of all
currently assigned file type and
auxiliary type assignments.

Q
What is “FASTFONT” and
how can I use it?

A
FASTFONT is a new disk file for
System Software 5.0.  It contains a
pre-shifted version of the ROM font,
Shaston 8.  QuickDraw will load
FASTFONT from the Fonts directory
at QDStartUp time (if present) and
use it for greatly increased text
drawing speed.  Currently, the System
does not support different or multiple
FastFonts, and no special work is
needed by the application to take
advantage of the present capability.



102 ___________________________________________________________________________________ 

d e v e l o p January 1990

Q
What is ExpressLoad and how
do I use it?

A
ExpressLoad works with the System
Loader to load specially prepared (or
“Expressed”) files much faster than the
System Loader does.  Files may be
prepared to work with ExpressLoad by
using the APW tool “Express”, the
MPW IIgs tool “ExpressIIgs”, or a
linker that can automatically create
Expressed files.  If your file is not
Expressed, it will work just fine with
System Software 5.0; it just won’t load
as fast as Expressed files will.
Similarly, Expressed files will load
properly when ExpressLoad is not
present.  There are, however, some
considerations that should be made
when working with Expressed files.
These are detailed in the Apple IIgs
Technical Note “ExpressLoad
Philosophy”.

Q
My program uses option-key
equivalents for certain
functions, and they no longer
work under System Software
5.0.  How come?

A
(This is the kind of specific question
with lots of details that DTS really
likes.)  System Software 5.0 includes a
new key translation feature very
similar to that found on the Macintosh.
The feature allows special characters
to be typed by pressing option-key
keystokes.  (For example, the ƒ
character can be generated by typing
option-f.)  This will interfere with
programs that already use

option-key equivalents.  Your program
will not get the keydown event for
option-f; you’ll get an unmodified
keydown event for the ASCII code for
“ƒ”.  This feature may be controlled
through new Event Manager calls, and
may also be deactivated by using the
“Translation” option of the
“Alphabet” CDev in the Control
Panel NDA.

Q
I noticed the Finder is now
using application-specific
strings for the “kind” of a file.
How can I use this capability?

A
The Finder on System Software 5.0
uses a new data structure known as a
File Type Descriptor to allow a string
to be matched with a particular file
type and auxiliary type.  Like icon
files, multiple File Type Descriptor
files may be used, so strings may be
“added” to the Finder’s vocabulary.
Details on the data structure and the
Finder’s implementation are in Apple
II File Type Note for File Type $42.



103__________________________________________________________________________________ 

MACINTOSH Q& A January 1990

Macintosh Q&A

QQQQ
I’m drawing into a large
offscreen bitmap (PixMap), but
anything drawn outside the
640 by 480 pixel screen area
doesn’t get written to the
PixMap. Why not?

AAAA
When you create a new port with
OpenPort or OpenCPort the visRgn is
initialized to the rectangular region
defined by screenBits.bounds
(IM I:163). If your port has a large
portRect, any drawing will be clipped
to the visRgn and you will lose any
drawing outside of the
screenBits.bounds rectangle.
To correct this set the visRgn of the
port to coincide with your port’s
portRect after creating the port.
Also note that OpenPort initializes
the clipRgn to a wide-open
rectangular region (-32768, -32768,
32767, 32767). Some operations
(i.e.OpenPicture) can fail with this
setup, so you should try setting
clipRgn to a smaller rectangle.clipRgn
to a wide-open rectangular region (-
32768, -32768, 32767, 32767). Some
operations (i.e.OpenPicture) can fail
with this setup, so you should try
setting clipRgn to a smaller rectangle.

QQQQ
What is Printing Manager
error –8133?

AAAA
Printing Manager error -8133 occurs
when the PostScript interpreter of the
LaserWriter (or any other PostScript
printer) generates a PostScript error.

A description of the PostScript command
that caused the error will be displayed
in the status window. This error often
occurs when an application is sending
PostScript directly to the printer, and
that PostScript contains an error. To
debug this kind a problem, you should
look at the PostScript generated by the
driver. To do this, hold down the
Command-F key right after clicking
okay in the Print dialog. A file named
PostScript0 will be created in the
current directory.

QQQQ
I'm confused about the changes
to FPRead in AFP version 2.0.
How do I use the NewLine
mask?

AAAA
The difference between AFP 1.1 and AFP
2.0 as far as the NewLine Mask is
concerned is that, in AFP 1.1 the only
legal values of Newline Mask are $00
and $FF, whereas in AFP 2.0, all values
of Newline  Mask are allowed. The
Newline Mask is logically ANDed
with a copy of each byte read. If the
result matches the Newline char, the
read terminates. The Newline character
is returned as the last byte of data that
was read from the fork.

QQQQ
How do I implement file range
locking?

AAAA
HFS doesn’t provide for file-range
locking. AppleShare has additional
structures to implement locking, but
there is no way for you to implement
locking with HFS. We are working on
this limitation.



104 ___________________________________________________________________________________ 

d e v e l o p January 1990

QQQQ
Why does enabling fractional font
widths with FractEnable(TRUE)
disable Font Substitution?

AAAA
When you call FractEnable(TRUE), you are
telling the Printing Manager that you
always want to use the fractional width
information in the FOND resource of a font.
This fractional information is specified for a
1 point font, and can be scaled for any
desired size. When you tell the Printing
Manager to use this width information, the
normal font width information (stored in the
ROM of the LaserWriter) is ignored. Font
Substitution provides the ability to
substitute high quality PostScript fonts for
fonts that have no PostScript equivalent.
For example, a document laid out in Geneva
will be printed with Helvetica if Font
Substitution is enabled. When this
substitution occurs, the Printing Manager
makes adjustments to the intercharacter
spacing of the line to make the printed
Helvetica version match the width of the
Geneva version displayed on the screen.
When you enable fractional font widths for
a document that uses Geneva, the Printing
Manager is being told to print Helvetica
characters on the printer using fractional
widths from the Geneva screen font. If the
Printing Manager placed the Helvetica
characters using the fractional widths,
formatting problems could occur. For
example, some of the Helvetica characters
may be wider than their Geneva
equivalents, causing character collisions. To
avoid this problem, the LaserWriter driver
disables the Font Substitution option when
fractional fonts ar enabled. This way,
WYSIWYG s maintained. If you want to use
fractional fonts, then you should format your
document using fonts that have PostScript
versions available on the LaserWriter.

QQQQ
Inside Mac says that there is a
3K limit on CopyBits.  Is this
still true?

AAAA
The CopyBits limit is obsolete; there
is no longer a 3K limit.  The limit
depends on the amount of RAM in your
system.  CopyBits tries to use the stack
to do all of the copying.  In most cases
CopyBits is able to copy entire screen
shots at one time. You might run into
problems if you don’t have enough
stack to hold two times the rowBytes
of your source, but even in this case
CopyBits will attempt to find the
memory it needs.

QQQQ
How do I order an MCP card
and software?  What do I get
when I order it?

AAAA
You can order the Macintosh
Coprocessor Platform (MCP) card and
software through Apple Software
Licensing.  The card comes with the
MCP platform and software which
contains the appropriate libraries and
header files.  On the card is the 68000,
ROM (256K), RAM (512K), and the
NuBus Logic to drive the card in both
master and slave modes.  There is also
blank space on the board, left there for
your communications hardware.  Basic
documentation is also included.



105__________________________________________________________________________________ 

MACINTOSH Q& A January 1990

QQQQ
Can I get a list of all board IDs?

AAAA
No—that information is confidential.
MacDTS registers board ID and functional
sResource equates so developers don’t use
equates that are already in use, but they
can’t distribute the list because the
database contains information on
unreleased products.
However, even if the list could be
distributed, any program that depended
on the information in it would be obsolete
as soon as a new board came out.
It is recommended you use the Slot
Manager’s ability to find certain cards or
functions.  That way, you only need to
write your code once, and it will work
with newer boards.  That’s why
QuickDraw can find video cards years
after it was frozen in ROM.  It does so by
calling the Slot Manager and looking for
boards that perform the QuickDraw
compatible video function.

QQQQ
How do you catch a penguin?

AAAA

Before we answer that question, perhaps a
little biology is in order.  Penguins, by
necessity, must be both water and air
tight, or they would freeze their little
bergies off in the Antarctic seas.  Well,
that’s a problem if you happen to be warm
blooded, because there’s really no

way to sweat (since penguins don’t
have hands, they were never able to
invent Gor-tex®).  To handle this
problem, they have capillaries in
their feet that swell when warm and
act as a radiator.
So, to catch a penguin, all you have to
do is chase it across the ice.  The
running will heat the penguin, which
in turn, will heat the penguin’s feet.
Once the penguin gets hot enough, he
will stick to the ice (what scientists
call “the tongue to the sled effect”).
All you have to do then is walk over
and pick them up.
PLEASE NOTE:
When picking a penguin up we can’t
overemphasize how critical it is to
use slightly warm water to thaw the
feet first.  Penguin podiatrists are
expensive, and very hard to find.

QQQQ
I’d like to write James Brown
in jail. Where do I write to?

AAAA
You can write the Godfather of Soul
at :
  James Brown, prisoner ID #155413
  Broad Rivers Correctional Institute
  4460 Broad Rivers Road
  Columbia, SC  29210
Brown is serving concurrent six year
and six year & 3 month terms for a
wild, two-state car chase which
happened September 24, 1988. He
won’t be eligible for parole until 1992.



106 ___________________________________________________________________________________ 

d e v e l o p January 1990

INDEX

#
32-Bit QuickDraw 4
16-bit-per-pixel graphics 5
32-bit addressing 12
32-Bit Cleanliness 52
32-Bit QuickDraw Init 5
32-Bit QuickDraw 28
32-bit-per-pixel  5
72 DPI 20

A
A/UX 67, 72, 74
A5 20, 7 3
aGDevice 34, 36
alignPix 38
AllowPurgePixels 38
alpha channel movement   8
antialiased 1 3
Apple II 93
arrays 97
assembler error 88

B
baseAddress 28
bitmaps 21
BitmapToRegion 19
BitmapToRgn 8
board sResource 76, 82
BoardId 82
boundsRect 33, 36
byte lanes 89
byte swapping 89
ByteLanes 87

C
C string 82
CatBoard 82, 88
CatDisplay 81
Category 80
CDEFs 55
cDepthErr 38
CGrafPort 29
CGrafPtr 29
clipping 37
clipPix  36, 37, 3 8
cmpCount 10, 11

cmpSize 11
cNoMemErr 39
color arbitration 23
color picker 8
Color QuickDraw 5, 12
Color Search Procedures 20, 21
color table 34
color table animation 7
Color2Index 12, 20
Color2Pixel 12
compatibility 50
compression  8
configuration ROM 75
Control Manager 56
Control Panel 34
control regions 56
CopyBits 12, 13, 19, 2 8
CopyMask 19
CRC 87
CTabChanged 39
cTable 33, 36
ctFlags 11
ctSize 11
cType 80

D
data 8 7
data list entry 80
DatLstEntry 80
declaration ROM 75
Developer Technical Support 81
Direct Hardware Access  72
direct pixMaps  10
directType 13
DisposeGWorld 38
DisposeScreenBuffer 39
dithering 6, 15, 21
ditherPix 37, 3 8
DrHwBoard 82
Driver directory 85
DrSWApple 81
DrSwBoard 82
DrvrHW 81
DrvrSW 80
Dynamo 94



107__________________________________________________________________________________ 

INDEX  January 1990

E
end-of-list entry 80
error codes  21

F
fake handle 56
File Manager 57
flags 35 , 3 6
Fonts  66
format block 87
FracApp 29
functional sResource 76, 84

G
GDevice 13,28, 35
GDeviceChanged 40
GDHandle 35
gdType 13
General cdev 5
GetGDevice 33, 35
GetGWorld 33, 35
GetGWorldDevice 35
GetPixBaseAddr 38
GetPixelsState 38
GetPort 33, 35
gray-level 6
grayscale 6
gummy rat 41
gwFlagErr 37
GWorld 29
GWorldflags 37
GWorldPtr 29

H
hardware device ID 86
hardware identifier 81
hidden colors 12
hRes 20
HWDevID 86

I-J-K
Improved graphics 8
Insufficient stack 21
International Support 67
itabRes 12
Journaling Driver 68

L
LaserWriter 41
LockPixels 35, 36
low memory globals 67
luminosity  6
luminosity mapping 21

M
macro 79
MacroMaker 68
macsBug listing 91
MajorBaseOS 86
MajorLength 86
makeRGBPat 12
mapPix 38
memory allocation 51
Memory Manager 51
MinorBaseOS 86
MinorLength 86
Monitors 5
Monitors cdev   8
MultiFinder temporary memory 56

N
newDepth 38
NewGWorld 33, 35
newRowBytes 38
NewScreenBuffer 39
noErr 39
noNewDevice 34, 35
NoPurgePixels 38
NuBus slot space 86
null-terminated 82

O
offscreen 8
offscreen devices 28
offscreenWorld 33, 35
offset list entry 79
OSLstEntry 79

P
paint bucket 19
palette 2 2
Palette Manager 7, 22



108 ___________________________________________________________________________________ 

d e v e l o p January 1990

paramErr 38, 39
PICT 9
pixelDepth 33, 36
pixelsLocked 38
pixelsPurgeable 38
pixMap 4 , 11 , 12 , 20 , 28 , 3 5
PixPatChanged 39
PixPats  11
pixPurge 35
pmAnimated 26
pmCourteous 26
pmExplicit 26
pmTable 11
pmTolerant 26
pmVersion 12
PortChanged 39
PostScript 8, 41, 65
PostScriptBegin 44
primary init record 83
primary initialization 83
Print Records 58
printer driver 21
printing 58
privileged instructions  72

Q
QDErr 21
QuickDraw 5

R
reallocPix 38
region overflow 21
regions from bitmaps 8
rescaling of images 8
reserved 87
rgnOverflowErr 21
ROM size 87
ROMEqu 82
rowbytes 9, 28

S
screenBits.bounds 28
Search Procs 20
self-modifying code 68
SetFont 42
SetGDevice 35

SetGWorld 35
SetPixelsState 3 8
SetPort 35
slot Resources 75
srcCopy 21
sResource directory 79
sResources 75, 76
sRsrc_Name 82
sRsrc_Type 80
StdBits 2 1
stretching 37
stretchPix 37, 38
string management 99
StripAddress 12, 20, 56
SwapMMUMode 20
SysEnvirons 9

T
tail patch 7 3
test pattern 87
TextFont 42
TheGDevice 12, 13, 20
thumbnail 8
TickCount 67
ticks 67
transparency mask 8
trap patching  73
TypBoard 82
type format 80
TypVideo 81

U-V-W
UnlockPixels 35, 36
UpdateGWorld 35, 36, 37
VBL tasks 68
vendor information 84
visRgn 28
vRes 20
WDEFs 55


