
d e v e l o p
T h e A p p l e T e c h n i c a l J o u r n a l

USING C++ OBJECTS
IN A HANDLE-BASED
WORLD

USING OBJECTS
SAFELY IN OBJECT
PASCAL

THE SECRET LIFE
OF THE MEMORY
MANAGER

SPEED YOUR
SOFTWARE
DEVELOPMENT WITH
MACAPP

MACINTOSH Q & A

HOW TO DESIGN AN
OBJECT-BASED
APPLICATION

UNOFFICIAL C++
STYLE GUIDE

DEMYSTIFYING THE
GS/OS CACHE

APPLE II Q & A

Issue 2 April 1990

© 1990 Apple Computer, Inc. All rights reserved.

Apple, the Apple logo, MacApp, Macintosh, and MPW are registered trademarks of Apple
Computer, Inc.

E D I T O R I A L
Editor in Chief’s Clothing Louella Pizzuti

Developmental Editors Lorraine Anderson

and Carol Westberg

Editorial Assistant Susan Marsland

Editorial Assistant Lenore Zelony

Manager, Developer Press David Krathwohl

A R T & P R O D U C T I O N
Design/Art Direction Joss Parsey

Technical Illustration Cleo Huggins

Production Bruce Potterton

Printer Craftsman Press

Film Preparation FilmCraft

Photographer Ralph Portillo

Circulation Management Dee Kiamy

Online Production Cassi Carpenter

S P E C I A L T H A N K S
Mark Kieling

T E C H N I C A L R E V I E W E R S
Tim Enwall Don Loomis
Craig Prouse John Harvey
Jon Zap Jerry Godes
Gregg Williams Dennis Gibbs
Jim Straus Matt Deatherage
Andy Shebanow Richard Clark
Larry Rosenstein Mary Chan
Lew Rollins Bob Campbell
Rob Neville Jeremy Bornstein
P. Nagarajan Rick Blair
Robin Myers Brian Bechtel
Bob Martin Pete Alexander

C O V E R
Illustrator Cleo Huggins

In spite of 4 years at R.I.S.D. and 10 years of
experience (including an MS indigital
typography from Stanford), Cleo still creates.
Of course, she's got the perfect environment at
home: a parrot that talks and a boyfriend that
doesn't. If she runs into any ancient Egyptions
(and she might), she's ready with an 800-
character hieroglyphic font she created for the
Mac. Pretty cool. One thing, though: she
laughs at Louella's jokes (sometimes she even
thinks they're funny).

Using C++ Objects in a Handle-Based World Avoiding headaches when
you use C++ objects in the Macintosh world. 118

Using Objects Safely in Object Pascal Guidelines to take the worry out of
using objects so you can relax and enjoy their advantages. 129

The Secret Life of the Memory Manager Memory Manager behavior and
how it affects your applications. 140

Speed Your Software Development with MacApp Let MacApp take care
of the user so you can focus on writing—and reusing–—code. 155

Macintosh Q & A Questions and answers compiled by the Macintosh Developer
Technical Support group. 176

How to Design an Object-Based Application A step-by-step two-phase
process for designing an object-bases application. 178

Unofficial C++ Style Guide How to harness C++’s power without getting
tripped up by some of its less savory features. 204

Demystifying the GS/OS Cache Taking the mystery and confusion out of
caching algorithms. 233

Apple II Q & A Questions and answers compiled by the Apple II Developer
Technical Support group. 243

Index 247

Content

CONTENTS April 1990

113

Dear Readers,

Wow! Your response to the first issue of develop was overwhelming! You sent
almost two hundred letters and Links telling me what you liked, what you’d like
changed, and what articles you’d like to see. I’ve published (and answered) a
representative sampling in the Letters section and will continue to let you know
what happens with your suggestions. Article-specific questions are answered (by the
original authors) in the Macintosh Q & A section.

This issue of develop revolves around object programming. If you’ve been reading
much of what’s been coming out of Apple lately, you will have noticed quite a push
toward object programming. Apple has invested years of R & D in object
programming and we’re working to get you to take advantage of the work we’ve done.

Unless you’re already an object-based programmer, this issue probably won’t solve
any problems you’re struggling with right now. I’m hoping, however, that it helps to
convince you that object programming can save you time and effort in the long run
and that it’s worth the investment it will take to learn about a new environment.
Not only will object programming help you to write and to maintain today’s
applications, but it will also help to prepare you for tomorrow’s system software.

Providing you with code and ideas that serve you well when new products come out
is one of my top priorities, so look past today and into tomorrow and use the code
and ideas we give you.

Keep those cards and letters coming!

Louella Pizzuti
Editor

LOUELLA PIZZUTI

d e v e l o p April 1990

114

A a

B
b

C c

D d
F

G

H

I

J

K

M

N

O

P

Q

U

V

W

X

Y

Z
g

h

i

j

k

l

m

n

o

p q

r

s

tu
v

w

x

y

z

k

h

t

i

W

B

L
E

T

T

E
RS

t

s
Y

Z

s

o
u

q
F

Y

u
r

k

iBZ s

t

l

X

v

Y
i

y

o
I

THE GOOD

Wow!
—Jim Russell

We just received the first issue of
develop. It is just what we need. In
fact, it couldn’t come at a better time.
Anyway, please continue to do it—we
need it! Great idea, great layout, great
topics, etc....
—Daniel Tapie

Thanks a lot for the complimentary
first issue of develop. It makes me feel
healthy with the funny introduction of
the authors, wealthy with its luxury,
and happy for your name is nicer than
ever on the first page.
—Philippe

I believe you have a winner here!
develop has helped me in just the first
10 minutes. I needed help with the
Palette Manager and I found it here!

Might I suggest that the CD-ROM
envelope be perforated? This would
allow easy removal of the packet and
alleviate the “now I have the CD-
ROM out, but the packet is still in the
way when I flip through the pages”
syndrome.
—Bryan Carter

Fantastic idea!!! Keep up the good
work. This first issue was FULL of
good, timely, and useful advice (code).
Thanks for your efforts to help
developers.
—Ken Duncan

Excellent magazine! I really enjoyed
the articles, source code examples,

backgrounds on the authors, etc. I
predict that develop will establish a
new standard of excellence in technical
support literature. But please find a
better font for the source code listings;
the font is so faint that I found myself
suffering from eye strain after a short
while.
—Ken Friedenbach

What a fantastic idea! The graphic
design in develop is so good that it
almost distracts from the content.
Keep up the good work and please
send the next issue (this one was
stolen…).
—Jean-Michel Karr

THE BAD
develop has NOTHING to offer an
Apple II owner/developer. Apple no
longer has my respect as the founder of
the home computing and friendly
interfaces. I do not want a Mac and
the way I feel at this moment I would
not have a Mac if you gave it to me.
Yes, I am angry!
—R. L. Woodworth

The outstanding quality of the premier
issue of develop was overshadowed by
its content. It would have been
appropriate in a premier issue to
devote approximately equal space to
BOTH Apple lines of computers.
Apple II support in develop would
surely help Apple and encourage those
who acknowledge the IIs as very
respectable computers. May the Apple
II and Macintosh lines BOTH enjoy
continued and increasing success in
their respective markets!
—Steven Gozdziewski

LETTERS

LETTERS April 1990

115
COMMENTS We welcome timely letters to the
editor, especially from readers wishing to react to
articles that we publish in develop. Letters should
be addressed to Louella Pizzuti; 20525 Mariani
Ave. M/S 75-3B; Cupertino, CA 95014
(AppleLink Pizzuti1). All letters should include
name and company name as well as address
and phone number. Letters may be excerpted or
edited for clarity and space.

SUBSCRIPTION INFORMATION Please
address all subscription (and subscription-related)
enquiries to:

develop
Apple Computer, Inc.
P.O. Box 531
Mt. Morris, IL 61054 USA
AppleLink: DEV.SUBS

A a

B
b

C c

D d
F

G

H

I

J

K

M

N

O

P

Q

U

V

W

X

Y

Z
g

h

i

j

k

l

m

n

o

p q

r

s

tu
v

w

x

y

z

k

h

t

i

W

B

L
E

T

T

E
RS

t

s
Y

Z

s

o
u

q
F

Y

u
r

k

iBZ s

t

l

X

v

Y
i

y

o
I

Like other commodities, develop is
influenced by the laws of supply and
demand. I publish articles based on what I
have and on what I believe the development
community needs. There is a definite need
for Apple II information, and develop
will continue to be a forum in which to
meet that need, but the mix of Apple II and
Macintosh articles will continue to reflect
the mix of developers and their needs (and
available articles), rather than an absolute
50-50 balance.
—Louella

The situation on technical information
has just gotten worse with develop.
We now have Inside Macintosh,
Technical Notes, the Q & A stack,
develop, and many other documents
available through APDA. All of these
have information not found anywhere
else. It is a total nightmare when I
want to find all the information on a
particular topic. I really, really,
REALLY would like ALL Macintosh
technical information in one regularly
updated reference. Get rid of all the
others.
—Tim Fredenburg

Would you settle for having all of the
pivotal information in one place (like a
CD-ROM disc, for example), and for
working toward an indexing scheme that
would let you find out all of the documents
(and pieces of sample code) that related to
your topic of interest? We believe that the
documents deserve (and need) to have lives
of their own to address the needs of the
folks who don’t want to know absolutely
everything about everything, but we also
believe that an intelligent indexer would
simplify things immensely. This issue’s
CD-ROM disc contains much of the
information you’d like to see combined,

and the next issue will have our first crack
at the intelligent indexer. All comments
and suggestions welcome.
—Louella

I’m curious to find out WHY Apple
decided to go with a CD-ROM disc. I
understand that the disc holds gobs of
data (which I would imagine goes
mostly unused every issue); however, I
wonder HOW MANY of the Mac and
Apple II developers actually own a
CD-ROM drive. Apple may be trying
to encourage developers to utilize this
technology, but at the moment it looks
like they are just flapping their wings in
the breeze. I’ve got a great idea!
Everyone who can’t use the CD-ROM
disc should mail it back to Apple. A
small, silent protest. :-)
—Lynda

The CD-ROM gives us room to archive
all of the old issues of develop (which
allows us to update and to correct mistakes
every quarter), to publish code that would
never fit in our hundred-some pages, and
to explore what can be done when space is
not a problem. This issue of develop, the
disc includes not only develop and all of
its associated code, but also SpInside
Macintosh (a HyperCard stack-based
version of Inside Macintosh volumes I-V),
the Macintosh Technical Notes stack, and
the Macintosh DTS Q & A stack, and of
course, the ever-popular audio track.
—Louella

THE UNCLASSIFIABLE
Egad! I received my developer’s
package this noontime and found
develop included in the package. While
I haven’t had quite the time I wanted to
examine the material, I did notice two
serious technical errors. To whit:

d e v e l o p April 1990

116

A a

B
b

C c

D d
F

G

H

I

J

K

M

N

O

P

Q

U

V

W

X

Y

Z
g

h

i

j

k

l

m

n

o

p q

r

s

tu
v

w

x

y

z

k

h

t

i

W

B

L
E

T

T

E
RS

t

s
Y

Z

s

o
u

q
F

Y

u
r

k

iBZ s

t

l

X

v

Y
i

y

o
I

1. Louella, you’ve got to be under
forty! That pale gray print for the
listings is—at least to my forty+ eyes,
well nigh invisible. Please take pity on
us old codgers and not blind us!

2. Catching penguins is far easier than
you suggest. When I was stationed at
McMurdo Sound a few decades ago,
we simply recorded the sound of the
local pod of Orcas and set up large
speakers on three sides of a square.
When we turned the recordings on,
the poor pennies thought their mortal
enemies were coming ashore and
accordingly raced out of danger—right
into our nets!

This boiled the bejabbers out of the
biologists, but made our day! Ever see
a penguin race?
—Robert Smith

I’m afraid I’m guilty on both counts: I am
under forty (although I hope the code in
this issue is easier on your eyes), and I did
not fully test all of the questions and
answers. In the future, I’ll try to convince
management that testing penguin-
catching techniques is worth the trip. I’m
sure your letter will help.
—Louella

I noticed on page 2 that two “Spirit
Guides” were listed. While trying to
figure out what these might be, I
thought of three possibilities:
continuity editors (insure that each
article adheres to a common theme);
channelers or spiritists (as in New Age,
religion, occult); or testers of wines or
vineyards. So, now that I’ve had my
guesses, could you tell me what the real
answer is and what relation they have
to your magazine? Or is it all just a

joke to see who REALLY reads your
journal?
—Rex Bontrager

Margery and Lou both contributed
immensely to actually getting develop
into print; without the two of them, it
would probably still be a bunch of
manuscript pages sitting in my office and
I’d still be thinking that printing was the
opposite of cursive. As for the heading,
they both make me smile and so does
calling them Spirit Guides. (And it is
good to see who’s actually reading the
masthead.)
—Louella

QUESTIONS
I like develop. It’s cool. But what’s the
deal with the code contained therein
(on CD-ROM)? Can we use it? Can
we distribute it? Both of those (at least
the first) would seem to be the intent
of develop. But the lawyer’s funfest at
the back would seem to say otherwise.
I wondered about this before I saw the
article in MacWeek, but now I’m really
confused. Is use of code contained on
the CD-ROM as limited as seems to be
implied by the CD-ROM container’s
text? Or what?
—Robert

You can freely use, copy, and distribute the
code that’s included in develop. Many
thanks to Teri Drenker in Apple’s software
licensing group for this issue’s revised
licensing agreement.
—Louella

LETTERS April 1990

117

Although C++ is a powerful and flexible language, its image of the world
inside your computer was shaped by operating systems that were a bit
more “traditional” than the Macintosh’s. As a result, C++ routines that
work fine for MPW tools can cause severe problems when used in a
Macintosh application. But there are ways around these problems. This
article describes a technique that allows you to use normal C++ objects in
your Macintosh applications without undue discomfort.

Using C++ objects in the handle-based world of the Macintosh Memory Manager
can get pretty tricky at times. The Apple extension to C++ that solves the memory
allocation problems you’re bound to run into can create other headaches for you if
you need to use one or more of several important C++ features in your program. In
this article, you’ll learn about the memory allocation problems you can expect to
encounter when you create objects in C++. You’ll also learn how to get around these
problems while still retaining the use of important C++ features, by creating a
special class PtrObject. You’ll see a sample program that uses PtrObject, and
you’ll learn how to implement the class.

PROBLEMS WITH MEMORY ALLOCATION
FOR OBJECTS IN C++
In C++, objects are created dynamically with the new operator, and disposed of with
the delete operator when you’ve finished with them, like this:

TMyObject* aMyObjectRef;
aMyObjectRef = new TMyObject; // Create a TMyObject object.
aMyObject->AReallyCoolRoutine(); // Do something useful...
delete aMyObject; // Delete the object.

USING C++

OBJECTS IN A

HANDLE-

BASED

WORLD

ANDY SHEBANOW

d e v e l o p April 1990

ANDY SHEBANOW, a DTS engineer, wrote
this article for the best of reasons: “The beer
people had their say in the last issue, and it’s
about time the Mountain Dew people spoke up.”
His highly developed personal skills have earned
him the affectionate nickname “The Shebanator.”
After working for a medical imaging company,
he joined Apple twenty-odd months ago. It’s been
so long since he was outside that he’s forgotten

what his hobbies are; he vaguely remembers
something about driving cars at excessive and/or
illegal speeds.•

118

When you use these operators, C++ transforms them into calls to operator new and
operator delete. The default versions of operator new and operator delete
provided in the C++ library use the C Standard Library routines malloc and free,
respectively, to allocate and deallocate the memory needed to store the object.
(Actually, the calloc routine is called to allocate the memory, but calloc just turns
around and calls malloc to do the real work.)

These routines work fine for MPW tools, but they can cause the following severe
problems when used in a Macintosh application:

•Heap fragmentation. Nonrelocatable memory for your objects can
be allocated in the middle of your heap, preventing the Mac’s
Memory Manager from compacting memory properly.

•Heap space permanently wasted. Because calloc and free manage
their own list of free memory blocks and never return unused
space to the Mac’s Memory Manager, if you create a lot of C++
objects your program can run out of memory and crash even
though you have plenty of free memory available. (See the sidebar
“Everything You Didn’t Want to Know About malloc and free”
for more information on malloc internals.)

Fortunately, you can override the default versions of operator new and operator
delete in your own classes to get explicit control over memory allocation. To help
you do this, Apple extended C++ to include a predefined base class called
HandleObject. If classes you define inherit from HandleObject, the Mac’s
NewHandle and DisposHandle traps are called instead of the default operator
new and operator delete routines.

While this solves the memory problems just mentioned, it also precludes the use of
several important C++ features. Here is a partial list of the restrictions that apply
when classes you define inherit from HandleObject:

•It is an error to declare global variables, local variables, arrays,
members, or parameters of handle-based classes (rather than
pointers to them).

• Multiple inheritance cannot be used with handle-based classes.
•Handle-based objects can be created only by the new operator.

The only use of a dereferenced handle-based class pointer (for
example, *x) is to refer to a field in the class (for example, *x.y
or x->y).

• It is not possible to allocate an array of handle-based objects—for
example, new->MyObjects[10].

As you can see, there are quite a few useful things you can’t do in C++ if you use
HandleObject. Most programs should be able to live with these restrictions, but if
your program needs to use multiple inheritance or arrays of objects, a different solu-
tion is called for.

USING C++ OBJECTS IN A HANDLE-BASED WORLD April 1990

119
Consult the MPW C++ Reference, available
from APDA as part of the MPW C++ package,
for a full list of restrictions on C++ features in
effect when classes you define inherit from
HandleObject.•

EVERYTHING YOU DIDN’T WANT TO KNOW
ABOUT MALLOC AND FREE
Why do the malloc and free routines wreak so much havoc in a Macintosh application? The main reason is that
these routines were originally written for UNIX systems, which have no built-in memory allocation facilities. So these
library routines ended up doing everything themselves, including free list management.

This isn’t all bad, since these routines are simpler and faster than their Macintosh Memory Manager equivalents, but
they can cause the severe problems listed earlier in this article for a Macintosh application. The worst part is that these
problems can occur even if your application doesn’t call malloc directly. In many situations, C++ calls malloc for
you, as do many of the other routines in the standard library.

Here’s how it all works (in MPW, at least):

When you request some memory from malloc, it rounds the size up to the nearest power of 2 (8-byte minimum, ID
checked at the door). If you ask for more than 2048 bytes, malloc just calls NewPtr to allocate the memory, and
DisposPtr to get rid of it. Otherwise, malloc checks its internal free list looking for blocks of the specified size. If it
doesn’t find any blocks of that size, it allocates a chunk of memory with NewPtr big enough to hold 2K worth of
blocks (plus 2 bytes overhead per block), and adds the new blocks to the free list for that size. It then returns you the
first block off of the free list.

When you dispose of memory with the free routine, it looks at the block header to determine which free list to put the
block in, and inserts it into the list (sorted by block address to allow for more intelligent freestore management in the
future). Here’s what a small free list looks like:

8-Byte Blocks

16-Byte Blocks

32-Byte Blocks

64-Byte Blocks

128-Byte Blocks

256-Byte Blocks

512-Byte Blocks

1024-Byte Blocks

2048-Byte Blocks

d e v e l o p April 1990

120

THE SOLUTION: CREATING A SPECIAL CLASS PTROBJECT
The solution to memory allocation problems when you can’t use HandleObject is
to create a special class PtrObject analogous to the HandleObject class. This class
overrides both operator new and operator delete, so that real Memory Manager
pointers are used instead of the pointers returned by the default operator new.
PtrObject also supports the allocation of objects into a separate heap, which fur-
ther reduces memory fragmentation.

The method functions of the class PtrObject are as follows:

AllocHeap This function creates a separate heap. All descendants of class
PtrObject created after calling this function will use this
heap. If you do not call this function in your program, the
default (application) heap will be used.

DisposeHeap This function disposes of the heap allocated by a previous call
to AllocHeap. You should call this function before quitting
your application. Any PtrObjects created inside the heap will
be invalid, so make sure that you aren’t using any of those
objects anymore (neither operator delete nor the destructor
for these objects will be called).

MPW (and other Mac development systems) provides versions of these routines to make life easier for people who are
porting code from UNIX systems (or MS-DOS, OS/2, etc.). However, since the malloc routine calls NewPtr rather
indiscrimately, it can cause blocks to be allocated in very inconvenient places inside your heap, and once these blocks
have been allocated, they are never disposed of.

In just one possible scenario, the user opens a large document with your program SuperOOPWrite and creates 1000
standard C++ objects (each allocated by malloc) to represent the elements of the document, each about 100 bytes
long. malloc asks NewPtr to create 63 blocks of memory (about 2K each), and you have about 100K less free
memory than you used to. Now the user closes the document, and you dutifully dispose of all of your objects. Guess
what? You still have 100K less memory available to you as far as the Mac’s Memory Manager is concerned, your
heap is chock full of 2K nonrelocatable blocks, and you don’t have any way to preflight memory for the next time the
user wants to open a document.

By the way, if this algorithm sounds familiar to you, it’s because the MPW code is based on a public domain version of
malloc written by Chris Kingsley.

USING C++ OBJECTS IN A HANDLE-BASED WORLD April 1990

121

FreeMemory This function returns the amount of free space in the
PtrObject heap, as returned by the trap FreeMem. If no
separate heap exists, this function will return the amount of
free memory in the default (application) heap.

MaxMemory This function returns the size of the largest free block in
the PtrObject heap, as returned by the trap MaxMem. If no
separate heap exists, this function will return the amount of
free memory in the default (application) heap.

operator new This function is called by the C++ compiler to allocate memory
for PtrObjects. You never need to call it directly.

operator delete This function is called by the C++ compiler to deallocate memory
used by PtrObjects. You never need to call it directly.

Here is the class declaration for PtrObject, which would normally be found in the
header file PtrObject.h.

class PtrObject {
public:

static OSErr AllocHeap(size_t heapSize);
// Create a heap heapSize bytes long to allocate
// objects in.

static void DisposeHeap();
// Free up the heap allocated by a previous call
// to AllocHeap.

static long FreeMemory();
// Return the total amount of free space in the heap.

static Size MaxMemory();
// Return the size of the largest free block in the heap.

void* operator new(size_t size);
void operator delete(void* p);
// These are our special allocation and
// deallocation operators.

private:
static THz fZone;
// Our private zone pointer.

};

d e v e l o p April 1990

122

Notice that the AllocHeap, DisposeHeap, FreeMemory, and MaxMemory calls are
all static member functions, and that the fZone variable is a static data member. In C++,
static members are shared across all instances of a class. You should use static mem-
bers in place of global variables and functions whenever possible, since they have
limited scope (which means fewer name conflicts) and they are logically tied to the
class in which they are declared (which means more readable source code). To call a
static member function, the syntax is

ClassName::StaticFunctionName(/* parameters, if any */);

A SAMPLE PROGRAM USING PTROBJECT
Now that you’ve seen the interface to the PtrObject class, here is a small sample
application that uses it. This program isn’t very useful—all it does is define a sub-
class of PtrObject, create an instance of that object, and call one of its methods.

The first thing we have to do is the standard setup for a Macintosh application,
which in this case means including all of the needed header files for the Macintosh
Toolbox and the C Standard Library:

// TestPtrObject.cp
#include <Types.h>
#include <QuickDraw.h>
#include <Fonts.h>
#include <SegLoad.h>
#include <Events.h>
#include <Windows.h>
#include <Menus.h>
#include <TextEdit.h>
#include <Dialogs.h>
#include <Memory.h>
#include <OSUtils.h>
#include <stdio.h>
#include <string.h>
#include <stddef.h>

Next we include the header file for the PtrObject class (just shown), and define a
new class TLout that is derived from it:

#include "PtrObject.h"

// A small class that contains some data and a constructor,
// but spends all of its time on street corners cadging
// cigarettes instead of doing useful work.

USING C++ OBJECTS IN A HANDLE-BASED WORLD April 1990

123

class TLout : public PtrObject {
public:

TLout() { DoCadge(); }; // Our constructor.
virtual void DoCadge(); // A rude member function.

private:
char fArray[256];

};

void TLout::DoCadge()
{

strcpy(fArray,"Hey buddy, spare a cig?");
}

That’s all it takes to define a class with the correct memory management behavior. Here is the main
program, which uses our newly defined TLout class:

void InitToolbox(); // Forward declaration.

main()
{

// We need this much space to store the objects
// we’re going to initialize - in this case, 16KBytes.
const size_t kDefaultHeapSize = 0x4000;

InitToolbox(); // Initialize Mac Toolbox (ho hum).

// Create a heap for PtrObjects to live in.
OSErr heapErr = PtrObject::AllocHeap(kDefaultHeapSize);

// If we got an error, quit - this isn’t a real
// application, so we don’t need error handling, right?
if (heapErr != noErr)

ExitToShell();

// Create an object - will go in separate heap automatically.
TLout* aLout = new TLout; // Do that voodoo that TLouts do…
if (aLout != nil)
{

aLout->DoCadge();
delete aLout; // Delete our object now that we have finished with it.

}

// Dispose of the heap.
PtrObject::DisposeHeap();
ExitToShell();

}

One important thing needs to be pointed out here: you need to call PtrObject::AllocHeap as early in
your program as possible, or the newly created heap may fragment your application heap.

d e v e l o p April 1990

124

Finally, just for completeness, here’s the implementation of the InitToolbox routine, which makes sure
that all of the necessary pieces of the Mac Toolbox are initialized:

void InitToolbox()

{
// Standard Macintosh initialization.

InitGraf((Ptr) &qd.thePort);

InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(nil);
InitCursor();
MaxApplZone();

}

THE SAMPLE PROGRAM’S MAKEFILE
TestPtrObject.make
by Andrew Shebanow (with some help from the CreateMake script)

OBJECTS = ∂
PtrObject.cp.o ∂
TestPtrObject.cp.o

SymOptions = -sym on
CPlusOptions = {SymOptions}

{OBJECTS} ƒƒ PtrObject.h

TestPtrObject ƒƒ {OBJECTS}
Link -w {SymOptions} -mf {OBJECTS} ∂

"{CLibraries}"CSANELib.o ∂
"{CLibraries}"Math.o ∂
"{CLibraries}"CPlusLib.o ∂
"{CLibraries}"StdCLib.o ∂
"{CLibraries}"CInterface.o ∂
"{CLibraries}"CRuntime.o ∂
"{Libraries}"Interface.o ∂
-o TestPtrObject

PtrObject.cp.o ƒ PtrObject.cp PtrObject.h
TestPtrObject.cp.o ƒ TestPtrObject.cp PtrObject.h

USING C++ OBJECTS IN A HANDLE-BASED WORLD April 1990

125

IMPLEMENTING PTROBJECT
Now that we’ve seen how to use class PtrObject, we need to implement it. We must first include all the necessary
header files and allocate our static member data:

// PtrObject.cp
#include <Memory.h>
#include <Errors.h>
#include <stdio.h>
#include <stddef.h>
#include "PtrObject.h"

// Static data members actually need to be declared outside of the class
// definition in order to have space allocated.
THz PtrObject::fZone = nil;

Next we have the AllocHeap function.

OSErr PtrObject::AllocHeap(size_t heapSize)
{

// By default, the heap gets kNumDfltMasters master pointers. A small number,
// but it shouldn’t matter, since we will only be allocating Ptrs in this heap,
// and Ptrs don’t use master pointers.
const short kNumDfltMasters = 16;

// This magic number from Inside Mac, vol. II, chapter 1, is the amount of space
// required for the zone header and trailer, and the master pointer block. We add
// this to the requested heap size to compensate.
const size_t kZoneOverhead = 64 + 8 + (sizeof(long) * kNumDfltMasters);

heapSize += kZoneOverhead; // Factor in overhead.

// Allocate space for the zone.
Ptr zonePtr = NewPtr(heapSize);
if (!zonePtr) // if alloc fails, return error

return MemError(); // Get a pointer to the end of the heap.

Ptr limitPtr = (Ptr) (((ptrdiff_t) zonePtr) + heapSize);

// Initialize the zone.
InitZone(nil, kNumDfltMasters, limitPtr, zonePtr);

// Save the zone pointer in our static class variable.
fZone = (THz) zonePtr;
return noErr;

}

The DisposeHeap member function is much simpler. It just checks to see if we allocated a zone in the past, and if
so, it disposes of the heap’s memory. This will destroy any objects that were allocated inside the heap, which could
be dangerous, so be careful when you call this routine.

d e v e l o p April 1990

126

void PtrObject::DisposeHeap()
{

// If zone actually exists, dispose of it.
if (fZone)
{

DisposPtr((Ptr) fZone);
fZone = nil;

}
}

Next we have the FreeMemory and MaxMemory functions. We’ll show them together, since they are almost
identical. The only thing of note here is the way we switch in our special heap if it exists.

long PtrObject::FreeMemory()
{

THz savedZone;
// Before we can return the amount of free
// memory, we need to switch to the correct zone.

if (fZone)
{

savedZone = GetZone(); // Save current zone.
SetZone(fZone); // Make our zone current.

}

long free = FreeMem(); // Get total free space.

if (fZone)
SetZone(savedZone); // Restore previous zone.

return free;
}

Size PtrObject::MaxMemory()
{

THz savedZone;
// Before we can return the maximum block size,
// we need to switch to the correct zone.

if (fZone)
{

savedZone = GetZone(); // Save current zone.
SetZone(fZone); // Make our zone current.

}

Size tSize; // We know the heap can’t grow,
// but we have to have a temp
// variable to satisfy the Toolbox.

Size max = MaxMem(&tSize); // Get size of biggest block.
if (fZone)
SetZone(savedZone); // Restore previous zone.

return max;
}

USING C++ OBJECTS IN A HANDLE-BASED WORLD April 1990

127

Now we get to the heart of the class, the operator new function. Like the FreeMemory call, operator new
switches to our private heap before it actually allocates memory, and restores the previous heap when it is done.
The actual memory allocation is done by a call to everyone’s favorite Macintosh trap, NewPtr.

void* PtrObject::operator new(size_t size)
{

THz savedZone;

// before we can allocate memory, we need to switch to the correct zone
if (fZone)
{

savedZone = GetZone(); // Save current zone.
SetZone(fZone); // Make our zone current.

}
Ptr p = NewPtr(size); // Allocate memory for object.
if (fZone)
SetZone(savedZone); // Restore previous zone.

return p;
}

Last, we have the operator delete function. All it does is dispose of the memory occupied by the object. We don’t
need to swap in the private heap here, since the Memory Manager keeps track of the heap that the pointer belongs
to for us.

void PtrObject::operator delete(void* p)
{

DisposPtr((Ptr) p); // This works regardless of the zone
// the pointer was allocated in.

}

That’s all there is to the PtrObject class. If you wish to explore the stranger side of C++ (multiple inheritance
and so on), you should use it, since it allows your creations to live in the complicated world of the Macintosh
Memory Manager.

d e v e l o p April 1990

128

In Object Pascal, objects are just like handles in that they refer to
relocatable blocks of memory. To use objects safely, the programmer
needs to recognize that the Macintosh Memory Manager can move
the block of memory referred to by an object or handle, although only
at well-defined times. This article gives guidelines for the safe use of
objects in Object Pascal.

The simplicity and elegance of Object Pascal’s syntax is a two-edged sword. On the
one hand, it makes Object Pascal feel like a natural extension to Pascal; on the other,
it can lull a programmer into a false sense of security. For although the syntax of
Object Pascal treats objects as though they were statically allocated, the fact is that
in Object Pascal, objects are always allocated as relocatable blocks (handles, in the
vernacular) in the application heap. Thus, when you write Object Pascal programs
for the Macintosh, you must be eternally aware that objects are handles, and
program accordingly. This article tells you how to do that with MPW Pascal and
TML Pascal, two compilers that can be used with MacApp in the MPW
environment. In addition, it gives some tips for using handles outside the context of
objects.

HOW OBJECT PASCAL IMPLEMENTS OBJECTS:
A CAUTIONARY TALE
To get an idea of how Object Pascal implements objects, let’s compare the code
fragments in Figure 1. Each column of code accomplishes the same thing: the
definition and use of a data structure representing a graphical shape. The only
difference is that the left column is implemented with objects, while the right
column is implemented with handles. The code in these two columns is very
similar, and a comparison of the two reveals what goes on behind the scenes.

CURT BIANCHI

USING OBJECTS SAFELY IN OBJECT PASCAL April 1990

129CURT BIANCHI, displaced Lakers fan, has
never met a taco he didn’t like. He’s been at
Apple more than three years, where he first
worked on MacApp and now concentrates on
future system software. This southern California
native (he asks you not to hold that against him)
earned a BSICS in 1981 from the University of
California-Irvine, followed by stints at Link
Systems and Monogram Software, and self-

employment doing software odd jobs, including
working on computer dating software. His
hobbies include music, photographing trains,
avoiding serious injury on the basketball court,
and rooting for the Lakers from afar.•

USING

OBJECTS

SAFELY IN

OBJECT

PASCAL

The first thing to observe is that any variable of an object type is actually a reference to
an object. That is, the variable is a handle that refers to a block of memory containing
the object’s data. Thus, in the left column the value of the variable aShape is a handle.
It contains the address of a master pointer that in turn points to the object’s data. The
size of the variable aShape is four bytes—the size of an address and not the size of the
object itself. This is very much the same as the right column, in which the variable
aShape is explicitly declared to be a handle. In fact, the only difference between the
two is that the object version of TShape has an implicit field containing the object’s
class ID, located just before the first declared field. The class ID is an integer value
that allows the object’s type to be identified at run time.

Line 14 of each column shows how a TShape data structure is created. Since
handles must be dynamically allocated in the heap, it follows that objects must be
dynamically allocated as well. This is the purpose of the call to NEW in the left
column. Note that NEW works completely differently for objects and for other kinds

1 TYPE
2 TShape = OBJECT (TObject)
3 fBounds: Rect;
4 fColor: RGBColor;
5 END;
6
7
8
9 VAR
10 aShape: TShape;
11 sameShape, copiedShape: TShape;
12
13 BEGIN
14 NEW(aShape);
15 FailNIL(aShape);
16
17 aShape.fBounds := gZeroRect;
18 aShape.fColor := gRGBBlack;
19
20 sameShape := aShape;
21
22 copiedShape := TShape(aShape.Clone);
23
24 FailNIL(copiedShape);
25
26 END;

1 TYPE
2 TShapeHdl = ^TShapePtr;
3 TShapePtr = ^TShape;
4 TShape = RECORD
5 fBounds: Rect;
6 fColor: RGBColor;
7 END;
8
9 VAR
10 aShape: TShapeHdl;
11 sameShape, copiedShape: TShapeHdl;
12
13 BEGIN
14 aShape := TShapeHdl(NewHandle(SIZEOF(TShape)));
15 FailNIL(aShape);
16
17 aShape^^.fBounds := gZeroRect;
18 aShape^^.fColor := gRGBBlack;
19
20 sameShape := aShape;
21
22 copiedShape := aShape;
23 FailOSErr(HandToHand(Handle(copiedShape)));
24 FailNIL(copiedShape);
25
26 END;

Figure 1.
A Comparison of Code Implemented with Objects (Left Column) vs. Handles (Right Column)

d e v e l o p April 1990

130

of memory allocation. For objects, NEW generates a call to the internal library
procedure %_OBNEW, which, aside from some debugging details, simply calls
NewHandle, just like the handle-based code on the right does.

The call to FailNIL in line 15 detects the case where allocation of the object or
handle fails. FailNIL is part of MacApp’s failure-handling library and will be
discussed in greater detail later.

Lines 17 and 18 reference fields of aShape. In the object code, the syntax leads you
to believe that no handle dereferencing takes place, but of course we know better.
What the Pascal compiler does is to implicitly dereference the handle for you. In
other words, it does the very same thing as the code in the right column does
explicitly.

Line 20 assigns one object reference to another, causing both aShape and sameShape
to refer to the same object. Line 22 (plus 23 in the right column) produces another
shape whose contents are exactly the same as aShape. In the object case, the Clone
method is used to produce a copy of the object referenced by aShape; copiedShape
is assigned a reference to the newly created object. Clone is implemented by calling
the Toolbox routine HandToHand, as is used in the right column. (FailOSErr is a
MacApp routine that checks the result of HandToHand.) Since copying an object (or
a handle) requires a memory allocation for the new object, FailNIL is used to
ensure that the copy succeeded.

The moral of this story is that you have to be very careful about how you use
objects. For example, you must remember that every time you refer to a field of an
object, you’re really dereferencing a handle. If you’re not careful, you’re likely to
wind up with a corrupt heap.

A PRIMER ON HANDLES AND THEIR PITFALLS
Handles have some interesting properties. If you’ve done
any serious programming on the Macintosh (and I don’t
mean HyperTalk), then you know what I mean. If not, then
(1) you’ve been spared the sorrows of a corrupt heap,
and (2) you ought to get How to Write Macintosh
Software, 2nd ed., by Scott Knaster (Hayden Books,
1988). Chapters 2 and 3 tell you all you need to know
about handles. In the meantime, I’ll give you a thumbnail
description.

In the heap, relocatable blocks of memory are referenced
by double indirection, as shown in Figure 2. The first
pointer (called the handle) points to a nonrelocatable
pointer (called the master pointer), which in turn points to
a block of memory. The Memory Manager can move the
block of memory, and when this happens the address in
the master pointer is changed to the block’s new address.

USING OBJECTS SAFELY IN OBJECT PASCAL April 1990

131

PRACTICING SAFE OBJECT USAGE
Because the Memory Manager moves blocks of memory only at certain well-defined
times, it’s possible to come up with reliable guidelines for safe object usage. Keep
these guidelines firmly in mind anytime you program in Object Pascal:

Figure 2.
A Handle to a Relocatable Block

This doesn’t create a problem as long as you access the
block via the handle. However, at times it’s necessary or
desirable for the sake of efficiency to dereference the
handle—that is, make a copy of the block’s master
pointer, and then use that pointer to access the block by
single indirection. And even this isn’t a problem—as long
as the block of memory doesn’t move.

Well, we have bad news: it’s bound to move at some
point, when the Memory Manager needs to compact the
heap. When this happens, the master pointer itself is
correctly updated, but your copy of it is left dangling.

Now for the good news: relocatable blocks of memory
only move at certain well-defined times. Thus, the key to
dereferencing handles is knowing when the blocks of
memory they point to may move.

Oh, and one more bit of bad news: the Memory Manager
has no garbage collection. This means you’re responsible
for disposing of handles when you’ve finished with them,
and making sure you don’t leave any dangling pointers.

Relocatable
block

Master pointer

Heap

Handle

d e v e l o p April 1990

132

1. Don’t pass fields of objects as parameters to any routine unless you know it’s safe.

In Pascal, when a routine is called, each parameter is passed by value or by address.
Passing a parameter by value pushes a copy of the parameter’s value onto the stack.
Passing a parameter by address pushes the parameter’s address onto the stack.
(This should immediately trigger a handle alert in your head.) Passing the value of
an object field is no problem. But passing the address of an object field on the stack
is a potentially unsafe situation. That’s because the address points to a memory
location within an object—in other words, the object is dereferenced. If the object
should happen to get relocated, the address won’t point into the object anymore.

Because there’s no way to predict what the address points to after memory relocation,
and hence no way to predict the effect of using the address, all manner of strange
things can occur. Making this type of bug extra difficult to track down is the fact that
passing parameters unsafely works most of the time—it only fails when the heap is so
full that the Memory Manager must relocate memory to satisfy a request. You do not
want these kinds of bugs in your program.

Fortunately, Object Pascal programmers have a big advantage over their
conventional colleagues: the compiler actually tells you when a field of an object
is used in a potentially unsafe way. This occurs for VAR parameters, which by
definition are passed by address, and for non-VAR parameters whose size is greater
than four bytes. The latter case is because the compiler actually passes such
parameters by address, expecting the called routine to use the address to make a
local copy of the data.

If you stop to think about it, this error message is a really nice feature. Especially
when compared to what the compiler does when any other handle is unsafely
dereferenced, which is nothing. Nada. Zip. Even the most experienced and
handle-cognizant of programmers occasionally writes code that unsafely
dereferences a handle.

Let’s look at an example. Consider the following definitions:

TYPE
TShape = OBJECT (TObject)

fBounds: Rect;
fColor: RGBColor;
END;

VAR
aShape: TShape;

USING OBJECTS SAFELY IN OBJECT PASCAL April 1990

133

Attempting to compile the line

OffsetRect(aShape.fBounds, 10, 20);
results in the following error:

OffsetRect(aShape.fBounds, 10, 20);
?
pascal - Error 815 Unsafe use of an object field as a var
or > 4 byte parameter

In other words, this line of code has dereferenced the object’s handle at a time
when the object may move while it is dereferenced. In this case, the address of the
field fBounds is computed and passed to OffsetRect. If aShape were to move
before OffsetRect used it, then the computed address wouldn’t point at
fBounds anymore. Bombs away! Maybe the message ought to read “Error 815
You are about to commit yourself to spending an indeterminant number of days
working with Macsbug. Please reconsider.”

A simple way of avoiding the error is to avoid using the field as a parameter.
Instead, use a temporary variable:

VAR
r: Rect;

r := aShape.fBounds;
OffsetRect(r, 10, 20);
aShape.fBounds := r;

While this construct is guaranteed to be safe, it could be rather onerous if you
had to do this every time you wanted to use an object field as a parameter.
Actually, it turns out that many cases can easily be identified as safe because the
routine being called doesn’t trigger memory relocation. But how do you know
when it’s safe? Mostly, you need to know what causes objects to move.

Memory relocation can be triggered if (a) the called routine is in a different
segment from the caller, since loading a segment may trigger memory relocation;
(b) the called routine calls a ROM routine that triggers relocation; or (c) the
called routine calls another routine that fits the criteria of (a) or (b). In the case of
OffsetRect, it’s in ROM so it won’t require a segment load, and it is a ROM
routine that doesn’t move memory. (I know that because it isn’t listed in Appendix
A of the Inside Macintosh XRef.)

When you do know it’s safe (as with OffsetRect), you can turn off the compiler’s
parameter checking, effectively telling the compiler to keep quiet because you
know what you’re doing. Do this by using the $H compiler directive:

d e v e l o p April 1990

134

{$Push}{$H-}
OffsetRect(aShape.fBounds, 10, 20);
{$Pop}

The first line turns off parameter checking. $Push saves the state of the compiler
directives; $H- tells the compiler not to check parameters for unsafe usage. In the
second line the object field is used as a parameter. Because $H- was issued, no
compiler error is generated. The third line uses $Pop to restore the state of the
directives at the time the last $Push was issued.

The trick, of course, is in knowing when to use $H and when to use a copy of the
object field instead. Based on the three causes of memory relocation, it’s possible
to identify the conditions in which you should avoid passing the field of an object
as a parameter.

Don’t pass a field of an object as a VAR parameter, or a field greater than four bytes
in size, in these circumstances:

a. When the called routine is listed in Appendix A of the Inside Macintosh XRef.

Appendix A lists routines defined in Inside Macintosh, volumes I-V, that may
trigger memory relocation. These include all system-defined routines, such as
those in ROM and in packages. Any routine defined in Inside Macintosh,
volumes I-V, that does not appear in Appendix A will not trigger memory
relocation. (A similar appendix appears in each Inside Macintosh book, but only
applies to that book. So use the appendix in the XRef because it applies to all
five volumes.)

b. When the called routine is in a different, nonresident segment from the code
generating the call.

Calling a routine in another segment may require loading it into memory,
potentially triggering memory relocation. If the called routine is in the same
segment as the caller, then the segment must already be in memory and you’re
safe. If the called routine is in a different segment from the caller, you’re still
safe if the called routine’s segment is a resident.

Resident segments are defined by MacApp® to be segments that are loaded
into memory when the program starts up, and that stay in memory throughout
the life of the program. Thus calling a routine in a resident segment never
requires loading it into memory. If you know a routine is in a resident
segment, you can call it without worrying about a segment load relocating
memory. If you’re not sure a routine is in a resident segment, play it safe.

c. When the called routine is in the same segment as the caller, but the called

USING OBJECTS SAFELY IN OBJECT PASCAL April 1990

135

routine indirectly causes segment loads by calling routines in other,
nonresident segments. If you don’t know whether a routine does this, then play
it safe.

d. When the called routine calls ROM routines that may trigger memory
relocation. Again, if you’re not sure, play it safe.

2. Don’t pass a field of an object or handle as the parameter to NEW.

The parameter to NEW is a VAR parameter, and since NEW calls NewHandle, it most
definitely may trigger memory relocation. Unfortunately, MPW Pascal compilers
before version 3.1 didn’t generate an error for NEW when you passed an object field as
the parameter, and TML Pascal version 3.0 still doesn’t. So be careful.

Note that MacApp contains functions that allocate objects as well. The Clone
method copies an object, returning a reference to the copy as its result.
NewObjectByClassName and NewObjectByClassId create new objects. Because
of the way the compiler generates code for functions, it is safe to assign a function
result to the field of an object.

3. Call FailNIL after every attempt to create an object, copy an object, or create a
handle or pointer.

FailNIL, defined in MacApp’s UFailure unit, has a single parameter—a
reference to an object, handle, or pointer. If that reference is NIL then FailNIL
signals failure, essentially causing the application to back out of what it was doing
and resume processing events. Calling FailNIL is how you verify that a memory
allocation request actually succeeded. It works because the Memory Manager
returns NIL if there isn’t enough memory to satisfy a memory allocation. Since
heaps have a finite amount of space, the potential exists that any allocation request
can fail. So check each and every request just to make sure. Failure to heed this
advice leads to bus errors and address errors when your program tries to
dereference NIL handles.

Be aware that this description of FailNIL just scratches the surface of MacApp’s
failure-handling facilities. The MacApp technical manuals go into greater detail
than space permits in this article.

4. Remember to free objects when you’ve finished with them, but only when you’ve
finished with them!

The Macintosh doesn’t have automatic garbage collection, so you’re responsible
for freeing (disposing of) any objects you create. Failing to free objects when
you’ve finished with them leads to a heap that slowly fills up with garbage,
eventually suffocating the application.

d e v e l o p April 1990

136

Keep in mind that when you free an object, any references to it are no longer
valid and should be set to NIL. Nasty things happen if you use references to
objects that no longer exist. If you’re lucky, the MacApp debugger will stop your
program the first time you refer to a nonexistent object. But sometimes even the
MacApp debugger gets fooled. This happens if the memory occupied by the freed
object hasn’t yet been written over, or even worse, if another object or handle was
allocated using the same master pointer as the object that was freed. (Try
debugging that sometime!)

5. If necessary, ensure that an object doesn’t move by locking it.

Sometimes it really makes life easier to ensure that an object won’t be moved no
matter what happens. Objects, like handles, can be locked. In fact, MacApp
provides a method for this purpose. It’s called Lock and it’s defined in TObject so
it can be used on any object. Lock takes a Boolean value as its only parameter,
which when true “locks” the object’s location in memory, and when false makes the
object relocatable again. Lock returns a Boolean result that indicates whether the
object was locked when Lock was called. This is handy because you can lock an
object, do what you need to do, then restore the object’s lock state to what it was before:

VAR
wasLocked: BOOLEAN;

BEGIN
wasLocked := anObject.Lock(TRUE);
{do what you need to do}
wasLocked := anObject.Lock(wasLocked);

END;

If you’re not using MacApp, you can lock an object by casting it to be a handle
and using HLock and HUnlock, the Memory Manager routines for locking and
unlocking handles:

HLock(Handle(anObject));
{ Do what you need to do. }
HUnlock(Handle(anObject));

Keep in mind that it’s unwise to lock objects (or handles) for long periods of time.
Nonrelocatable objects cause heap fragmentation, which reduces the effectiveness
of the heap. (For further details, see Richard Clark’s article “The Secret Life of
the Memory Manager” in this issue.)

USING OBJECTS SAFELY IN OBJECT PASCAL April 1990

137

PRACTICING SAFE HANDLE USAGE
Even in an object-based program, it’s occasionally necessary to use handles instead of
objects. While handle usage is subject to the same guidelines just described for objects,
there are some additional wrinkles:

1. Don’t count on the compiler to tell you when a handle’s field is used unsafely.

Unlike for fields of objects, the compiler doesn’t produce an error when passing a
field of a handle by address. All of the same problems with using fields of objects
apply to fields of handles, but since the compiler offers no help in detecting
unsafe uses, it’s completely up to you to ensure that you use fields of handles
safely. Chalk one up for objects.

2. Beware of WITH statements that dereference handles. For example:

TYPE
TShapeHdl = ^TShapePtr;
TShapePtr = ^TShape;
TShape = RECORD

fBounds: Rect;
fColor: RGBColor;
END;

VAR
aShape: TShapeHdl;

BEGIN
aShape := NewHandle(SIZEOF(TShape));
FailNIL(aShape);

WITH aShape^^ DO
BEGIN
fBounds := gZeroRect;
fColor := gRGBBlack;
END;

END;

Not only does the WITH statement simplify the Pascal text, it also lets the compiler
perform code optimizations. Specifically, it stores the address from aShape^^ in a
register so that it can be reused throughout the scope of the WITH without being
recomputed. As you might imagine, any operation that triggers memory relocation
within the scope of the WITH will invalidate the address contained in the register.
Bad news.

By the way, using WITH statements on objects is okay! The compiler recognizes
that the WITH is dereferencing an object and makes sure safe code is generated.
Objects 2, handles 0.

d e v e l o p April 1990

138

3. Don’t assign a function result to a field of a handle unless you know the calling
function won’t trigger memory relocation.

For example, using the shape definitions given above, this is a potentially unsafe
use of a handle field:

aShape^^.fBounds := FunctionThatReturnsARect;

The problem is that the Pascal compiler dereferences the handle aShape before
calling the function. Thus, a function that triggers memory relocation or is in
another segment will invalidate the address obtained by dereferencing the handle.

Once again, this type of usage is okay for objects. As for WITH statements, the
compiler recognizes when a function result is assigned to an object field and
ensures that safe code is generated.

IN CONCLUSION
In conclusion, you can avoid the pitfalls in writing Object Pascal programs, by
understanding how objects work and by using the guidelines described in this article.
Then instead of having to spend undue time debugging, you can relax and enjoy the
advantages of object-based programming.

USING OBJECTS SAFELY IN OBJECT PASCAL April 1990

139

The Macintosh Memory Manager has changed in some subtle ways
since it was documented in Inside Macintosh. This, combined with the
difficulty of observing what the Memory Manager actually does, has
led to a general misunderstanding of how the Memory Manager works.
This article first discusses some common myths about the Memory
Manager, then describes some ways to avoid memory-related errors and
control fragmentation without sacrificing execution speed.

Few parts of the Macintosh operating system raise as many questions as the Memory
Manager. Since the contents of RAM change dynamically, it’s hard to really examine
the Memory Manager’s behavior. This, combined with the unusual concept of
relocatable blocks and the fact that the Memory Manager is used by most of the
operating system, has left many Macintosh programmers confused about the behavior
of the Memory Manager and, more important, about the impact of this behavior on
their applications.

MYTHS ABOUT THE MEMORY MANAGER
Several myths have grown up around the Memory Manager, serving to increase the
confusion about its real behavior. Three of the most prevalent—but mistaken—
beliefs are that (1) the Memory Manager will move and delete blocks, and otherwise
mangle the heap, at random; (2) using nonrelocatable blocks will cause serious heap
fragmentation; and (3) if you use Virtual Memory you don’t need to worry about the
Memory Manager. We’ll demolish each of these myths in turn.

THE SECRET

LIFE OF THE

MEMORY

MANAGER

RICHARD CLARK

d e v e l o p April 1990

RICHARD “TIGGER” CLARK wears brightly
colored clothes, writes odd graffiti, tells horrible
puns, and is amazingly graceful when running
for the bus. He earned a BS in social science
(which he says is a hybrid psychology/computer
science degree) from the University of California-
Irvine in 1985. When he’s not teaching at
Developer U, you can find him stunt-kite flying
(sometimes indoors), mountain climbing

(sometimes indoors), or collecting Disney
memorabilia. An avid reader, he has totally
worn out his copy of Winnie the
Pooh in Latin. In his time he has been a Valley
Boy, a Macintosh repairman, a software
developer, King Henry VIII’s head steward, a
Renaissance bishop, and probably a few other
things he won’t tell us about. But hey, he’s from
southern California. •

140

MYTH 1: THE MEMORY MANAGER WILL MOVE AND DELETE BLOCKS,
AND OTHERWISE MANGLE THE HEAP, AT RANDOM
This simply isn’t so. The Memory Manager is in fact quite predictable. It only
moves blocks under these circumstances:

• When your application calls a routine that allocates new blocks
or enlarges existing ones, when you request that blocks be moved,
or when your application calls a routine that in turn calls a ROM
routine that may trigger block relocation. Appendix A of the
Inside Macintosh XRef lists all routines defined in Inside Macintosh
that may cause blocks to move.

• When the called routine is in a different segment from the code
that makes the call, or when the called routine is in the same
segment as the caller, but the called routine calls a routine or
routines in a different segment. If a called routine lies in a
different code segment, the Segment Loader may need to call
the code segment in from disk and/or move it to the top of the
heap. Either of these actions can cause blocks to move.

MYTH 2: USING NONRELOCATABLE BLOCKS WILL CAUSE
SERIOUS MEMORY FRAGMENTATION
This is a half-truth at best. The Memory Manager actually does a good job of allo-
cating nonrelocatable blocks, but can fragment the heap when these blocks are
deallocated and new ones allocated. Similar problems can happen when you start
locking relocatable blocks.

This myth actually has a basis in reality, as the earliest versions of the Memory
Manager did a poor job of allocating nonrelocatable blocks. Before the 128K ROMs
(introduced with the Macintosh 512Ke and Macintosh Plus), the Memory Manager
would not move a relocatable block around a nonrelocatable block in its quest to
allocate a new nonrelocatable block. This made the heap into a patchwork of
relocatable and nonrelocatable blocks, and caused general fragmentation problems,
as illustrated in Figure 1.

THE SECRET LIFE OF THE MEMORY MANAGER April 1990

141

Figure 1.
Fragmentation of Free Space

But that has long since changed, as NewPtr will now move a relocatable block
around a nonrelocatable block when allocating memory. This tends to partition the
heap into two active areas, with all of the nonrelocatable blocks at the bottom of the
heap, and the relocatable blocks located immediately above. (See the sidebar “How
the Memory Manager Allocates Heap Space” for further details.)

HOW THE MEMORY MANAGER ALLOCATES HEAP SPACE
The Memory Manager uses two basic techniques to
create space for blocks on the heap: compaction and
reservation. It uses compaction to create space for new
relocatable blocks, and reservation to create space for
new nonrelocatable blocks.

When your application (or the operating system) calls
NewHandle to allocate a new relocatable block, the

Memory Manager first looks for a large enough space to
hold a block of the requested size. If a large enough
space is found (and it need not be a perfect fit), the block
is allocated. If there is not enough free space to satisfy the
request, compaction takes place—relocatable blocks are
moved downward (toward low memory) to make space
for the new block.

d e v e l o p April 1990

1 4 2

As a rule, the Memory Manager allocates new relocatable
blocks as low in the heap as possible without compaction.
If the heap must be compacted, the Memory Manager
begins with the lowest blocks and gradually works its way
upward until it has created a large enough free space to
accommodate the new relocatable block or until the entire
heap has been compacted.

On the other hand, when your application (or the
operating system) calls NewPtr to allocate a new
nonrelocatable block, the Memory Manager calls
ResrvMem to create an empty space at the bottom of the
heap for the new nonrelocatable block. This technique is
known as reservation (after the call), although you won’t

find this term anywhere in Inside Macintosh.

The Memory Manager always allocates nonrelocatable
blocks as low as possible on the heap, even if it means
that other blocks have to be moved. In the case shown in
Figure 2, the Memory Manager has to move a
relocatable block twice when the user allocates two
nonrelocatable blocks. Note that each time the 4KB
relocatable block is moved, it leaves a 4KB space behind.
This is a result of the way the Memory Manager reserves
memory. It first moves the block upward into the first free
area above its former position large enough to hold it,
then uses the old space for the new block.

4KB

4KB

4KB

3KB 3KB

3KB

Heap with one
relocatable block

After the call
NewPtr (3072)

After another call to
NewPtr (3072)

During the call
NewPtr(3072)

1

1 1

1

2

2

3

4KB

key
Relocatable Nonrelocatable 1 KB intervalsLocked relocatable

Figure 2.
The Effect of Allocating Nonrelocatable Blocks

In summary, allocating a new nonrelocatable block is
likely to move other (relocatable) blocks upward, while

allocating a new relocatable block may cause
compaction, which moves relocatable blocks downward.

THE SECRET LIFE OF THE MEMORY MANAGER April 1990

143

On the other hand, for all of the improvements in allocation of nonrelocatable blocks,
there is still a problem with deallocation of these blocks. Since the Memory Manager
uses a “find the first free block that fulfills the request” strategy (as opposed to “find a
block that fits the request exactly”), if you allocate a subsequent block that is smaller
than the block you just deleted, the heap will become fragmented and the amount of
usable memory will likely decrease, as illustrated in Figure 3.

Figure 3.
The Effect of Deallocating and Reallocating a Nonrelocatable Block

Locking too many relocatable blocks can cause the same kind of fragmentation
problems as deallocating and reallocating nonrelocatable blocks. A well-trained
programmer uses the call MoveHHi to move a relocatable block to the top of the heap
before locking it. This has the effect of partitioning the heap into four areas, as shown
in Figure 4. The idea of using MoveHHi is to keep the contiguous free space as large as
possible. However, MoveHHi will only move a block upward until it meets either a
nonrelocatable block or a locked relocatable block. Unlike NewPtr (and ResrvMem),
MoveHHi will not move a relocatable block around one that is not relocatable.

Even if you succeed in moving a relocatable block to the top of the heap, your
problems are far from over. Unlocking or deleting locked blocks can also cause
fragmentation, unless they are unlocked beginning with the lowest locked block. In

3KB

Heap with three
nonrelocatable blocks

After disposing
of block 2

After NewPtr (2048)

3KB

3KB

3KB

3KB

3KB

3KB

2KB

3

2

1

3

1

3

1

4

key

Relocatable

Nonrelocatable

1 KB intervals

Locked relocatable

d e v e l o p April 1990

144

the case illustrated in Figure 4, unlocking and deleting blocks in the middle of the
locked area has resulted in heap fragmentation. The relocatable blocks thus trapped
in the middle won’t be moved until the locked block below them is unlocked.

Figure 4.
The Effect of Unlocking Locked Blocks

MYTH 3: IF YOU USE VIRTUAL MEMORY, YOU DON’T NEED TO WORRY
ABOUT THE MEMORY MANAGER
Many people believe that the wide availability of Vi rtual Memory will remove the
need for careful memory management. Wrong! The Vi rtual Memory system is based
on a series of “pages” of memory that can be swapped to and from the disk, rather
than on individual blocks of memory. If you fragment RAM, you also “fragment” the
contents of the swap file and gain nothing. In fact, Vi rtual Memory makes care f u l
m e m o ry management even more critical, for two reasons. First, fragmenting the swap
file will degrade system perf o rmance worse than fragmenting physical memory will,
since disk access speeds are obviously slower than the RAM access speed. Second, the
combination of Vi rtual Memory and MultiFinder encourages users to run more
p rograms at the same time than they used to, and users often reduce the part i t i o n
sizes of their applications to squeeze in “one more pro g r a m . ”

THE SECRET LIFE OF THE MEMORY MANAGER April 1990

1 4 5

THE EXPERT’S GUIDE TO MEMORY MANAGEMENT
Now you know that the Memory Manager moves blocks of memory only at certain
well-defined times; that nonrelocatable blocks can be allocated without causing
serious fragmentation in the heap, although deallocation and reallocation of these
blocks, and locking too many relocatable blocks, can cause problems; and that use of
Virtual Memory makes careful memory management even more important. It’s time
to put this knowledge into action. In this section, you’ll learn how you can work
cooperatively with the Memory Manager to increase the efficiency and robustness of
your applications.

TO AVOID DANGLING POINTERS
As every programmer learns early on, the gravest side effect of the Memory
Manager’s penchant for moving blocks of memory is the peril of dangling pointers.
(For a refresher on how these come about, see the sidebar entitled “A Primer on
Handles and Their Pitfalls” in Curt Bianchi’s article “Using Objects Safely in Object
Pascal” in this issue.) And the best defense against having to spend hours—or
days—debugging errors caused by dangling pointers is to anticipate situations in
which block movement might occur, and if it does occur, will throw a monkey
wrench into the works. In these situations, much grief can be saved by using a
temporary local or global variable to store a duplicate of the relocatable block.
(Note, though, that this trick only works properly if the block can stand on its
own—that is, it’s not part of a linked list.)

Some of the situations that might get you into trouble are well documented, such as
the use of the WITH statement in Pascal. Other dangerous situations are less
obvious, so we’ll explore them here.

ABOUT LOCAL AND GLOBAL VARIABLES
While in this article we’re primarily interested in information stored on the heap, there are actually three places you
can store information in memory: in a relocatable or nonrelocatable block on the heap, in a local variable, or in a
global variable. In terms of storage efficiency, relocatable blocks are your best bet. But if you need to store information
in an area that will not move, you can use local or global variables.

Local variables are allocated on the machine’s stack, and only exist as long as the enclosing procedure is running.
Global variables are stored in a special block above the top of the application’s stack and heap, and exist as long
as the program is running. Both of these areas share one disadvantage: limited space. You can only allocate 32KB of
global variables, and the maximum available stack space typically varies between 8KB and 24KB, depending on the
machine, the operating system version, and whether or not the application has requested a larger stack when launched.

d e v e l o p April 1990

146

Be careful when evaluating expressions. There are times when evaluating a
seemingly innocent expression might have serious side effects. For example, look at
the following code:

TYPE
windowInfoHdl = ^windowInfoPtr;
windowInfoPtr = ^windowInfo;
windowInfo = RECORD
aControlHdl: ControlHandle;
aWindowPtr: WindowPtr;
END;

VAR
myHandle : windowInfoHdl;

BEGIN
myHandle := windowInfoHdl(

NewHandle(sizeof(windowInfo)));
{ The next 2 statements have problems. }
myHandle^^.aWindowPtr := GetNewWindow(1000, NIL, WindowPtr(-1));
myHandle^^.aControlHdl := GetNewControl(1000, myHandle^^.aWindowPtr);
END;

In Pascal, the above statements would probably cause a run-time error. The
problem is in the expression "myHandle^^.something :=" as the compiler
evaluates expressions from left to right and calculates the address on the left side of
the assignment statement before making the toolbox call. When GetNewWindow is
called, myHandle^^ is moved (we passed in NII to force a call to NewPtr) and the
address on the left-hand side is no longer valid! This means that the returned
WindowPtr will be written into the wrong area of memory, and the program will
probably crash.

While both statements suffer from the same basic problem, the first one is more likely
to cause a crash than the second one and is therefore easier to debug. Why is this?

The statement containing GetNewWindow will make a call to NewPtr to allocate a
nonrelocatable block at the bottom of the heap, forcing relocatable blocks upward in
the process. The other statement, containing GetNewControl, allocates a
relocatable block, which usually appears above the existing blocks, with block
movement happening only if a compaction is required.

While this problem occurs most frequently in Pascal, C programs are not immune.
Most C compilers on the Macintosh evaluate the right-hand side of an assignment
before the left-hand side—which avoids this problem entirely—but the order of
evaluation is not guaranteed by the ANSI standard.

THE SECRET LIFE OF THE MEMORY MANAGER April 1990

147

This problem can be solved easily by using a temporary variable. The following code
avoids the problem:

VAR
myHandle: windowInfoHdl;
aWindowPtr: WindowPtr; { This is allocated on the }

{ stack, so it won’t move. }
aControlHandle: ControlHandle; { Also on the stack. }

BEGIN
myHandle := windowInfoHdl(NewHandle(sizeof(windowInfo)));

{ Copy the result into a temporary variable, then copy }
{ that into the relocatable block. }
aWindowPtr := GetNewWindow(1000, NIL, WindowPtr(-1));
myHandle^^.aWindowPtr := aWindowPtr;

aControlHandle := GetNewControl(1000, aWindowPtr);
myHandle^^.aControlHdl := aControlHandle;
END;

Be careful when using callback routines. When you pass pointers to your
routines, say as a ROM callback routine, and your routines are in multiple segments,
you need to be careful.

The following code is fine now, but we’ll soon edit it to demonstrate the problem:

{$S Main }
PROCEDURE MyCallback(ctl: ControlHandle; part: INTEGER);
{ This represents a callback routine used for continuous }
{ tracking in controls. }
BEGIN
{ Do whatever you need to do. }
END;

PROCEDURE HandleMyControl(theControl: ControlHandle;
pt: Point);

BEGIN
part := TrackControl(theControl, pt, @MyCallback);
END;

The expression @MyCallback pushes the address of the callback routine onto the
stack before calling TrackControl. If the two routines are in the same segment, as
in the preceding example, all is fine. The segment is locked in memory when
@MyCallback is both evaluated and used; therefore, the address is valid. If the two
routines are in different segments, this also works, as the compiler takes the address
of the jump table entry for MyCallback.

d e v e l o p April 1990

148

In some cases, and especially in C, you may choose to set up a table of procedure
addresses. But if you store the address of the routine into a variable, strange things
may happen. Take a look at the following code:

{ ————————————————————————————— }
{ For an example, we’ll place the addresses of two control }
{ tracking routines into an array, then use them. }

VAR
gCallbackArray: ARRAY [1..2] OF ProcPtr;

{ ————————————————————————————— }
{$S Segment1 }

PROCEDURE MyVScrollCallback(theControl: ControlHandle;
part: INTEGER);

BEGIN
{ This will get called if our control is a vertical }
{ scrollbar. }
END;

PROCEDURE MyVScrollCallback(theControl: ControlHandle;
part: INTEGER);

BEGIN
{ This will get called if our control is a horizontal }
{ scrollbar. }
END;

PROCEDURE InitCallbackArray;
{ Fill in the addresses in the global “Callback” array. }
BEGIN
{ Problem: Since we’re in the same segment, these aren’t }
{ addresses of the jump table entries, but are absolute }
{ locations in RAM! If the segment moves (i.e., if }
{ UnloadSeg is called), the addresses will be invalid. }
gCallbackArray[1] := @MyVScrollCallback;
gCallbackArray[2] := @MyHScrollCallback;
END;
END.

{ ————————————————————————————— }
{$S Main }

PROCEDURE HandleAScrollbar(theControl: ControlHandle;
pt: Point);

{ We’ll call this if the user clicks in our scrollbar (except }
{ if she clicks in the thumb, which uses a different kind of }
{ callback.) If it’s a vertical scrollbar, use one callback; }
{ if horizontal, use the other. }

THE SECRET LIFE OF THE MEMORY MANAGER April 1990

149

VAR
part: INTEGER;
theCallback: ProcPtr;
isVertical: Boolean;
aRect: Rect;
cntlWidth: INTEGER;

BEGIN
aRect := theControl^^.cntrlRect;
cntlWidth := aRect.right - aRect.left;
isVertical := cntlWidth = 16;
IF isVertical THEN
part := TrackControl(theControl, pt, gCallbackArray[1])
ELSE
part := TrackControl(theControl, pt, gCallbackArray[2])
{ The TrackControl calls will probably crash if }
{ Segment1 has been unloaded since the table was built. }
{ You’ll have a wonderful time trying to find the bug! }
END;

When setting up a table of such procedure addresses, or even a single global
variable, you should do one of the following things: (1) make sure that the setup
procedure is in a different segment from the procedures being called, thus insuring
that you get the address of a jump table entry; (2) keep everything in one segment
and never unload it; or (3) always load the segment and build the table before using
any of the addresses (and make sure that the segment doesn’t get unloaded in the
meantime).

Be careful when passing parameters. Another problem area occurs when you
pass parameters to routines that allocate or move memory. Can you spot the
problem in the following code?

PROCEDURE ValidateControl(theControl: ControlHandle);
BEGIN
ValidRect(theControl^^.contrlRect);
END;

ValidRect receives the address of a rectangle, which is pushed onto the stack before
the trap is called. The problem is that before ValidRect uses the rectangle’s
address, it often allocates memory of its own, which can cause theControl^^ to
move and therefore invalidate the rectangle’s address.

This problem happens when you pass (1) any parameter larger than four bytes, or
(2) any VAR parameter. Again, the solution requires a temporary variable:

PROCEDURE ValidateControl(theControl: ControlHandle);
VAR
r : Rect; { r is stack-based, so it doesn’t move. }

d e v e l o p April 1990

150

BEGIN
r := theControl^^.contrlRect;
ValidRect(r);
END;

Pascal compilers often avoid this problem for user-defined functions by making a
local copy of non-VAR parameters that are passed by address. The ROM doesn’t
make such a copy, so you need to be careful. This is discussed at length by Scott
Knaster in How to Write Macintosh Software, 2nd ed. (Hayden Books, 1988).

TO CONTROL HEAP FRAGMENTATION
As you will recall, heap fragmentation can be caused by (1) deallocating and
reallocating nonrelocatable blocks, and (2) locking too many relocatable blocks.
To keep heap fragmentation under control, follow a few simple rules.

Use nonrelocatable blocks sparingly. To avoid the potential problems that
deallocation and reallocation of nonrelocatable blocks can cause, you should
theoretically use relocatable blocks for everything. However, in practice, there are
areas where you must use nonrelocatable blocks, such as for GrafPorts and
WindowRecords. In light of this reality, here are three suggestions to help you
control fragmentation.

First, remember that you should not choose to use nonrelocatable blocks lightly.
Use them only when the Macintosh operating system requires them, or when you
can demonstrate a severe performance penalty for using relocatable blocks.

Second, avoid allocating nonrelocatable blocks unless they will never be deleted. If
you know about such blocks ahead of time, then you can allocate them at program
start-up. This works well if you’ll have a single large “image buffer” or the like, or a
limit on the number of available windows. In these cases, allocating your large fixed
blocks at start-up time will avoid potential fragmentation problems.

Third, if you must allocate and deallocate nonrelocatable blocks on demand, you can
add some additional memory management code of your own. When you want to
deallocate a block of RAM, you can add it to a linked list of free blocks (that you
maintain), and then check this list for a free block of the exact size you need each time
you want to allocate a new block. Of course, this works best if the range of block sizes
you support is limited, and you still have to decide what to do if the block you want
doesn’t fit any of the free blocks exactly. If you have to allocate a large number of
nonrelocatable blocks, or have other special needs, you should consider allocating a
large block of memory and doing your own memory management within that.
Donald Knuth’s book The Art of Computer Programming, volume 2, 2nd ed. (Addison-
Wesley, 1973) contains a useful overview of memory management techniques under
the heading “Dynamic Storage Allocation” (pp. 435-55 and 460-61).

THE SECRET LIFE OF THE MEMORY MANAGER April 1990

151

Note that this strategy of reusing nonrelocatable blocks works best under the 128K
ROM (and later) Memory Manager, since that version does the best job of allocating
nonrelocatable blocks. If you plan to write software under the 64K ROMs
(Macintosh 128K or 512K), you should consult Scott Knaster’s How to Write
Macintosh Software, which describes a strategy that does a better job with the old
Memory Manager than this strategy does.

Lock selectively and consider alternatives. Fear of dangling pointers often
drives new programmers to lock down everything in sight, quickly fragmenting the
heap and impeding the application’s performance. More experienced programmers
try to avoid locking relocatable blocks, preferring instead to predict when the
Memory Manager will move blocks of memory and then only locking a relocatable
block if they must. If done infrequently, locking has a negligible impact on your
application.

If you must lock a relocatable block, you should unlock it as soon as possible.
This will lessen the probability of another block being moved in underneath (by
MoveHHi) and locked. Also, if you move and lock several blocks together, you should
unlock all of them together, or at least in the reverse of the order in which they were
moved high. This will help ensure that the free area is kept together in the heap.

As an alternative to locking relocatable blocks, consider using temporary variables.
We’ve already seen the use of temporary variables for such small items as window
pointers and rectangles, but this approach can also be used for entire structures.
Using temporary variables can simplify your code by removing the need for HLock
and HUnlock calls. For example, many programs use a window’s reference constant
(RefCon) field to hold a handle to a data structure. Programs that do so look
something like this:

TYPE
windowInfoHdl = ^windowInfoPtr;
windowInfoPtr = ^windowInfo;
windowInfo = RECORD
rectArray: ARRAY [1..10] OF Rect;
END;

PROCEDURE UpdateWindow(wp: WindowPtr);
{ The window’s RefCon contains a handle to the data structure
shown }
{ above. The rectArray field contains an array of rectangles that
}
{ we want to draw. }

VAR
myHandle: windowInfoHdl;
count: INTEGER;

BEGIN

d e v e l o p April 1990

152

{ Get the window information, then lock the block so that it }
{ doesn’t move while drawing the rectangles. }
myHandle := windowInfoHdl(GetWRefCon(wp));
MoveHHi(Handle(myHandle));
HLock(Handle(myHandle));

BeginUpdate(wp);
FOR count := 1 TO 10 DO
{ Working with the heap-based window information, draw each }
{ rectangle. }
FrameRect(myHandle^^.rectArray[count]);
EndUpdate(wp);
HUnlock(Handle(myHandle));
END;

Notice that we had to perform several type casts, and use MoveHHi, HLock, and
HUnlock. Now, let’s see how this would look using a temporary variable:

{ Type declarations omitted for brevity. }

PROCEDURE GetWindowInfo (wp: WindowPtr; VAR info: windowInfo);
{ Utility routine to make a copy (usually stack-based) of our }
{ window information structure. }
VAR
myHandle: windowInfoHdl;

BEGIN
{ First, do a little error checking. }
IF (wp <> NIL) THEN BEGIN
myHandle := windowInfoHdl(GetWRefCon(wp));
{ You can incorporate extra error checking here. For example, }
{ this is a good place to compare the handle’s size to the }
{ window information structure’s size, or to verify that the }
{ contents of the block are legal values. }
{ }
{ Next, go ahead and copy the contents of the relocatable }
{ block to the specified location. We don’t have to lock }
{ things down, since BlockMove won’t cause compaction. }
BlockMove(Ptr(myHandle^), @info, sizeof(windowInfo));
END;
END;

PROCEDURE UpdateWindow(wp: WindowPtr);
VAR
info: windowInfo; { This storage is on the stack, therefore it }

{ won’t move. }

THE SECRET LIFE OF THE MEMORY MANAGER April 1990

153

BEGIN
GetWindowInfo(wp, info); { Get a copy of the window information.
}
BeginUpdate(wp);
FOR count := 1 TO 10 DO
{ Working with the stack-based copy of the window information, }
{ draw each rectangle. }
FrameRect(info.rectArray[count]);
EndUpdate(wp);
END;

This approach has two major advantages: safety and code simplification. If you have
one central routine that gets the window information (and another similar one to set
it), you can add quite a bit of error checking and catch a large number of potential
errors. Speed shouldn’t be a problem, as the single BlockMove operation is generally
faster than the corresponding MoveHHi since the latter may need to move an old
relocatable block out of the way first.

Of course, you have to be extremely careful when using this technique, as it is easy to
exceed the stack size limit when using recursive or heavily nested procedures. If you
have a series of nested procedures that all use the window information structure, you
can get the structure in the topmost procedure and pass the block down as aVAR
parameter (pass-by-address in C) so that an extra copy of the data structure isn’t made.

FINAL WORDS OF ADVICE
In this article, we’ve taken a quick look inside the Memory Manager, but we have
not been able to cover everything. If you want to have a fuller understanding of
Macintosh memory management, there are a few things you can do. First, reread
chapter 3 of Inside Macintosh, volume I, and chapter 1 of Inside Macintosh, volume II.
Next, take a look at Scott Knaster’s How to Write Macintosh Software, mentioned
earlier, which has an excellent discussion of memory management. (In fact, I
recommend the book highly to anybody who wants a better understanding of
developing and debugging Macintosh software.) Finally, examine the Memory
Manager’s behavior in real-life situations. develop, the disc, contains the source
and object code for the Heap Demo application, which sets up a small heap
independent of the main application heap and allows you to manipulate handles and
pointers in that environment. If you do these things, you’ll be well on the way to
mastering the Memory Manager.

d e v e l o p April 1990

154

Using MacApp, Apple’s object-based application framework, saves time
and effort for programmers, and results in an application with the
authentic Macintosh look and feel. Developing a Macintosh application
can become a simple matter of selecting and integrating functionally
specific routines with MacApp and letting MacApp take care of the user
interface and other standard application behavior, as this article shows.

Wouldn’t it be nice if you could develop a Macintosh application using previously
existing routines? Think of the time and effort you could save if you were able to
integrate functionally specific routines from an application you’d written for another
platform. Or if you were able to obtain such routines from a public source and use
them in your Macintosh application. Or if you could develop such routines yourself,
in a language of your choice, and then use them in multiple applications.

And wouldn’t it be nice if you had available to you libraries of routines that did the
tedious work of creating the interface Macintosh users have come to expect? You
wouldn’t have to spend time and effort making sure your application did all the
things a well-behaved Macintosh application should do.

Dream no more. MacApp makes all of this possible.

INTRODUCING MACAPP

MacApp is an application framework—a skeletal structure for a program that must
be fleshed out before it is useful. The bones of this skeletal structure are the MacApp
libraries, which handle standard application behavior such as initialization; accessing
documents; managing user interface components, such as windows, buttons,
scrollbars, and text; managing memory; and handling user input. You flesh out this
skeleton by adding functionally specific routines and application-specific code.
Figure 1 shows how these pieces fit together.

SPEED YOUR

SOFTWARE

DEVELOPMENT

WITH MACAPP

CHRIS KNEPPER

CHRIS KNEPPER is this issue’s token beer
connoisseur. He’s proud that he has never drunk
a Mountain Dew in his life, and never plans to.
He received a BSEE/CS from Stanford in 1984,
and since then has worked in a Dickensian
industrial sweat shop (he won’t say exactly why
or where) and at a small Macintosh consulting
firm. Since he came to Apple in 1986, he has
done a variety of jobs including software testing,

developer technical support, and work for Apple
Integrated Systems—all the while consuming
record amounts of coffee. When he’s not
hanging out at local breweries, he’s reading,
cycling, rooting for the San Francisco Giants, or
playing his favorite sport. What is it? Hint—he’s
been saving his pennies for his dream vanity
plate:TNSNE1. . . •

155

SPEED YOUR SOFTWARE DEVELOPMENT WITH MACAPP April 1990

Figure 1.
How MacApp Relates to Your Application

Because of Apple’s commitment to MacApp, the MacApp libraries have been
maintained and have matured over time. This has produced libraries that are both
versatile, having been used in many applications to address a variety of needs, and
robust, because they’ve been tested and debugged in hundreds of applications and on
a wide variety of Macintosh configurations. You can use the code as is or modify
pieces that don’t meet your needs exactly.

The MacApp libraries are written in Object Pascal, and are distributed via APDA
along with interfaces in Object Pascal and C++. Also, p1 Modula-2, Version 4.1, an
object language based on Modula-2 now available from the MacApp Developer’s
Association is fully compatible with MacApp 2.0 and includes interfaces to the
MacApp libraries. MPW allows you to develop in Object Pascal, C, C++,
FORTRAN, and Modula-2 and still get the benefits of MacApp.

"Main" Routine

The portion of the application supplied to you
as the expandable application framework.

Subroutine Subroutine Subroutine Subroutine

The portion of the application you wrote.

Subroutine

MACAPP, its manuals, and other useful books on
MacApp and object programming are available
from APDA. •

d e v e l o p April 1990

156

WHAT MACAPP CAN DO FOR YOU

MacApp can speed your application development process and help you create more
robust applications for the Macintosh. Specifically, MacApp manages the user interface,
handles events, implements memory management services, manages printing services,
provides basic debugging services, and gives you high-level access to code via Mouser.
In addition, when you use MacApp, a number of support organizations and class
libraries are available to you. We’ll take a closer look at each of these benefits.

Manages the user interface. Macintosh users are a demanding audience, having
grown accustomed to the Macintosh’s distinctive look and feel. Apple has explicitly
defined the elements of this look and feel in its Human Interface Guidelines,
available from APDA. If your application is to succeed, it must conform to these
guidelines. The most significant benefit of using MacApp as your application
framework is that it provides for all aspects of Apple’s Human Interface Guidelines.
MacApp handles user interaction, creates draggable, resizable windows, supports
pull-down menus, and provides default behavior for a number of contingencies.

Furthermore, MacApp ships with a tool called ViewEdit that enables you to
graphically manipulate and edit the user interface aspects of your software, such as
the location, size, and text of buttons and scrollable lists. Creating a dialog box with
various controls becomes a simple matter of sketching out these items much as you
would sketch a drawing with MacDraw. Figure 2 shows the ViewEdit editing
window from the DemoDialogs example that comes with MacApp, offering the
programmer the chance to edit the Save As dialog.

Figure 2.
Editing the Save As Dialog in the ViewEdit Window

Note that whatever work you do with MacApp
and Object Pascal is restricted to the Macintosh,
because Apple’s implementation of Object Pascal
has not been endorsed by other vendors on other
platforms. If you want to eventually use your code
on another platform, consider coding in C++, as
C++ compilers are available on other platforms.
Of course, you will need to be careful how you
structure your application as it develops on the

Macintosh (and vice versa) to ensure
compatibility across hardware platforms. •

157

SPEED YOUR SOFTWARE DEVELOPMENT WITH MACAPP April 1990

Handles events. User interaction produces events that an application gets through
the Main Event Loop. Programming this code from scratch is both time-consuming
and difficult. MacApp frees you from this requirement, managing the extensive code
to handle events and dispatching them accordingly.

Implements memory management services. The most difficult part of Macintosh
programming, as veteran Macintosh programmers will attest, is careful memory
management. Memory management services are fully implemented in MacApp, along
with support for failure notification and a simple but elegant mechanism for recovering
from failure conditions, such as a memory allocation failure in low-memory situations.

Manages printing services. Most Macintosh applications require some degree of
printing services. Writing good printing code is difficult and demanding. MacApp
makes the job of providing printing capabilities in an application easy, freeing most
developers from the necessity of writing even a single line of printing code. MacApp’s
generalized printing model correctly manages most printing needs. It provides support
for monochrome and color printing and for the print dialog boxes, and provides a
default notification when the application is busy printing.

Provides basic debugging services. Debugging is always a chore. But MacApp
eases this chore by supplying a built-in debugger that provides basic debugging
services, such as a notification each time a code segment is loaded, and a built-in
inspector that allows you to inspect your objects dynamically. Also, SADE 1.1, Apple’s
standard debugging environment and an excellent debugging tool, supports source
code debugging of MacApp applications.

Gives you high-level access to code via Mouser. MacApp ships with a tool called
Mouser that allows you to access both the MacApp libraries and your source code by
class, method, and field. For details, see the sidebar “About Mouser” by Mary
Boetcher, author of Mouser.

Makes support organizations available to you. When you program for the
Macintosh, you can turn to a number of organizations for support. The MacApp
Developer’s Association (MADA) provides regular newsletters, source code disks, and
MacApp tools for developers. Also, a large developer group address on AppleLink
called MacApp.Tech$ provides quick answers to technical questions. Many of MacApp’s
current and former engineers appear on this group address to answer questions.

Makes class libraries available to you. Last but not least, if you program with
MacApp, you can use existing class libraries from a variety of sources. MacApp comes
bundled with five fully functional demo applications in Object Pascal and three in
C++. Code can be copied and pasted from these examples into your application.
MADA maintains a catalog of powerful classes that are available for purchase, such as
an offscreen-imaging unit to improve graphics rendering, a database unit to integrate
database capabilities into your application, and several more.

d e v e l o p April 1990

158

ABOUT MOUSER by Mary “Mouser Woman” Boetcher

Mouser is a browser, a program for viewing and editing source code files.

The difference between a browser and an editor is that
the browser “knows” something about the structure of the
language and/or development system the code is written in.

Mouser knows about the structure of Object Pascal and
C++ programs, and can use this information to allow you

to quickly navigate among the classes and methods of a
program. The leftmost pane of the browser window
displays a list of the program’s classes. Clicking on a
class name brings up lists of the class’s methods and
fields. You can then click on a method or field name to
see its source code.

Figure 3
Mouser Provides High-level Access to code

You can get a list of
• all the methods that reference a particular string
• all the methods with a particular name
• all the fields or methods of a class, including those

of its superclasses

You can also find out
• which segment a method is in
• which source file a method or class definition is in

very useful for MacApp!)
• the inherited form of a method
• the source code for some selected text

Mouser provides a number of commands for getting information about your program.

159

SPEED YOUR SOFTWARE DEVELOPMENT WITH MACAPP April 1990

MACAPP’S FLEXIBILITY
What if there’s something your application needs to do slightly differently from the
MacApp libraries? The fact that these libraries are written in an object-based
language (Object Pascal) means that you can easily modify the pieces of the libraries
that don’t exactly meet your needs. (If you’re not familiar with object programming,
and words like object, class, subclass, superclass, method, and inheritance mean nothing to
you, you might want to consult the section entitled “Basic Concepts of the Object-
Based Approach” in Brian Wilkerson’s article “How to Design an Object-Based
Application” in this issue for help in understanding the next couple of paragraphs.)

Suppose, for example, you want to add a Preferences item to the standard File menu
supported by MacApp. In MacApp, the TApplication.DoMenuCommand method
(or member function, in C++ terminology) handles the standard menu items (those
creating a new document, opening a document, quitting the application, and so on).
In your subclass TMyApplication of the MacApp class TApplication, you define
a method that will override the inherited DoMenuCommand method to handle the
case where the user selects Preferences from the File menu. If the item the user
selects from the File menu is not Preferences, then your method simply calls the
inherited version of the method so TApplication can handle the menu selection.

The following simple method allocates a Preferences command object if Preferences is
chosen from the File menu, and otherwise calls the inherited version of the method:

FUNCTION TMyApplication.DoMenuCommand(aCmdNumber: CmdNumber):
TCommand; OVERRIDE;

VAR
aPreferencesCommand: TPreferencesCommand;

BEGIN
DoMenuCommand := NIL;
CASE aCmdNumber OF

cPreferences:
BEGIN
New(aPreferencesCommand);
FailNil(aPreferencesCommand);

aPreferencesCommand.IPreferencesCommand(aCmdNumber);
DoMenuCommand := aPreferencesCommand;
END;

OTHERWISE
DoMenuCommand := INHERITED

DoMenuCommand(aCmdNumber);
END; { CASE aCmdNumber }
END; { TMyApplication.DoMenuCommand }

Note that for this example to work, you would also have to add the Preferences
item to the cmnu resource of the application, and override DoSetupMenus in
TMyApplication to enable the menu item.

You can contact MADA at P.O. Box 23; Everett,
WA; 98206; phone (206) 252-6946; AppleLink
address MADA. To join the AppleLink group
address MacApp.Tech$, contact AppleLink
address MacApp.Admin. •

d e v e l o p April 1990

160

WHAT IT TAKES TO USE MACAPP

While MacApp will save you time and effort in the long run, you must invest time
and effort up front to learn how to use it. If you are new to the Macintosh, you face
two steep learning curves: first learning the Macintosh (the Toolbox, operating
system, and user interface) and then learning MacApp. Learning MacApp also
requires learning object programming.

But don’t let this discourage you. Apple Developer University offers excellent
introductory courses on the Macintosh programming environment and on MacApp.
These courses make the learning process easier and provide programming labs in
which you can immediately apply what you learn. Furthermore, using Mouser to
browse the MacApp classes can help speed your learning. Finally, the MacApp
example applications are a rich source of ideas and examples of how to implement a
wide variety of features. And by the end of this article, if you read the next section
carefully and try the exercise I lead you through, you will already have some
familiarity with MacApp.

NOW, AN EXAMPLE
Now that you know what MacApp can do for you, and what you must do for
MacApp, let’s look at an example of how you might use MacApp to develop an
application that integrates previously existing routines.

Say we want to develop a database package for the Macintosh based on an
application we’ve developed for another platform. The application has many
capabilities that we can reuse (such as b-tree creation and management, graphing,
searching, and sorting) and some capabilities that we should not use (such as window
management and data entry screens). In this example we’ll focus on reusing the
graphing capability.

The source code for the graphing capability is in two files of graphics routines
written in C. We’ve been careful in the design of our graphics routines, ensuring
that they make no assumptions about their environment, such as graphics
parameters or hardware attributes. For example, the routines avoid drawing and
instead have an interface that describes what should be drawn. This lets the
application that uses the routines determine how the drawing should occur.

We start, then, with our graphics routines. We will create a class that encapsulates
the services offered by these routines. Then, you will learn step by step how to
seamlessly integrate this code into a MacApp sample application, using MPW.

START WITH YOUR ROUTINES
Our graphics routines reside in a set of two files: Graph.h, which contains the
interfaces to the routines, and Graph.c, which contains the source to the graphics
routines. You’ll find a complete listing of these files on develop, the disc.

161

SPEED YOUR SOFTWARE DEVELOPMENT WITH MACAPP April 1990

For this example, these files reside on the Macintosh. In your case, the files you
want to use may reside on another platform. To transfer your files to the Macintosh,
you should consider either a disk transfer or a file transfer. A disk transfer, to
transfer the files from another disk, is best accomplished with a utility such as Apple
File Exchange. A file transfer is best accomplished with either a terminal emulator,
to download the file using standard file transfer protocols, or a file server, such as
AppleShare, to access the other platform over AppleTalk and transfer the files.

Now I’ll point out selected features of our files Graph.h and Graph.c.

The header file Graph.h contains some type and constant declarations, including
the following:

#define kMaxPoints 20 /* Maximum number of points we support. */

This file also contains some type definitions, like these:

typedef enum {kBar, kStackedBar, kPie, kLine} GraphType; /* These are the kinds of graphs
that the graph routines support; only the bar graph is implemented for this example. */
typedef GraphValue GData[kMaxPoints-1]; /* Zero-based array of points. */
typedef struct {
GraphType thisGraph; /* Type of graph it is. */
short numPoints; /* Number of points in this graph. */
short top;
short left;
short bottom;
short right; /* The graph's rectangle with respect */

/*to which our graph is computed. */
short graphYMax; /* The graph's maximum Y coord value. */
short graphYMin; /* the graph's minimum Y coord value. */

/* Use these to scale the graph. */
GData graphItems; /* The data points in the graph. */

} GraphStruct, *GraphStructPtr;

Finally, Graph.h also contains some function declarations, such as:

GraphStructPtr DoGraphInit(GraphType whichGraphType);
void DoGraphSetGraphRect(short top, short left, short bottom, short right, GraphStructPtr
graphStorage);
void DoGraphSetPoint(short which, short value, GraphStructPtr graphStorage);

The actual routines are implemented in Graph.c. Here’s a sample from this file:

GraphStructPtr DoGraphInit(GraphType whichGraphType)
{

GraphStructPtr graphStorage = 0;
short counter;
GraphValue aGraphValue;

d e v e l o p April 1990

162

if (!(graphStorage = (GraphStructPtr) malloc(sizeof (GraphStruct))))
return 0; /* Error... */

switch (whichGraphType) {
case kBar:

graphStorage->numPoints = graphStorage->top = graphStorage->left =
graphStorage->bottom = graphStorage->right =
graphStorage->graphYMax = graphStorage->graphYMin = 0;
for (counter = 0; counter GRAPHITEMS[COUNTER];

aGraphValue.whichOne = aGraphValue.value =
aGraphValue.top = aGraphValue.left =
aGraphValue.right = aGraphValue.bottom = 0;

}
break;

case kStackedBar:
case kPie:
case kLine:

/* These are unsupported in this version. */
break;

}
return graphStorage;

}

CREATE A CLASS TO ENCAPSULATE SERVICES
We next encapsulate the services of our graphics routines in a C++ class. To do this
requires changes to our header. We modify our header files by surrounding our
function declarations with the extern "C" directive as follows:

#ifdef __cplusplus

extern "C" {
#endif
// Function declarations go here, for example:
GraphStructPtr DoGraphInit(short graphType);
// and so on.
#ifdef __cplusplus
}
#endif

This ensures that when CFront, the C++ preprocessor, reads in this header, it won’t
mangle the names of our C routines.

Next we create a “wrapper object” for these routines. In essence, this is a class that
can be used to define objects that provide all the services of the graph routines. This
class can then be used in a MacApp application. Such a class can be defined in
Object Pascal or C++. In this example, we’ll create a class in C++ that provides the
services of the graph routines.

To create the C++ wrapper object—TGraph—for our graph routines, we make two
new files: UGraph.h and UGraph.cp (following MacApp’s naming convention). The

163

SPEED YOUR SOFTWARE DEVELOPMENT WITH MACAPP April 1990

first file contains the class definition, and the second contains the class
implementation. See develop, the disk, for a complete listing of these two files.

Creating these files is a three-step procedure, as follows:

1. After putting our copyright notices at the top of these two files, we put in
UGraph.h the following basic structure:

#ifndef __UGRAPH__
#define __UGRAPH__
// • Auto-Include the requirements for this unit's interface.
#ifndef __UMacApp__
#include "UMacApp.h"
#endif
#include "Graph.h"
// The interface to this class goes here.
#endif

This allows the MPW C++ compiler to perform at its best by only making it do
the work to include this unit’s interface (and the requirements for this unit’s
interface) when it’s not already included.

2. Next, we create the definition for TGraph and put the definition in UGraph.h.

To do this, we must choose which class TGraph will descend from. Since graphs
are things that are drawn on the screen and are viewed, we decide to make the
graph class descend from MacApp’s TView class. Ideally, we would create a
generalized base class for a graph, such as TGraph descended from TView, and
then create specialized subclasses of TGraph for the various kinds of graphs. A
bar graph—TBarGraph—would descend from TGraph; a line chart—
TLineGraph—would descend from TGraph; and so on. However, to keep this
example simple, we’ll make the bar graph class descend directly
from TView.

d e v e l o p April 1990

164

Here’s the class definition we come up with:

class TGraph : public TView {
public:

virtual pascal void IRes(TDocument *itsDocument, TView *itsSuperView,
Ptr *itsParams);

// Initialize the graph view from its resource template.
virtual pascal void SetGraphRect(Rect graphRect);
// Initialize the graph data structure to be the size of this view.
virtual pascal void SetPoint(short which, long value);
// Set a point to a value.
virtual pascal short GetNumPoints();
// Return the number of points in the graph.
virtual pascal void ComputeBars(Boolean redraw);
// The graph library computes each of the bars for this graph
// and if redraw is TRUE forces the view to redraw itself.
virtual pascal void GetCoordinateRange(Rect *coordRange);
// Return min & max Y coordinates, and min & max X coordinates,
// useful for labeling the axes of the graph.
virtual pascal void Draw(Rect *area);
// Draw the graph.

virtual pascal void Free(void);
// Free the data allocated by this class.

private:
GraphStructPtr fData;

};

There are several things to note about this wrapper object.

First, note that the class functions don’t map one-to-one with the graph routines.
Rather, there is an attempt to abstract from the routines various services available
for this class. For example, instead of retrieving the maximum value of a point on
the Y-axis with a call to the routine DoGraphGetYMax, we abstract from this
routine the notion of retrieving the range of values on both axes (useful in setting
up labels on the axes), and implement the class member function
GetCoordinateRange, which retrieves the range of values on the X- and Y-axes
and returns the result in a Rect.

Also note that instead of retrieving a specific bar by calling the routine
DoGraphGetBar, we attempt to hide that activity behind the class member function
Draw, which simply draws the graph, iterating over all bars in the bar graph.

165

SPEED YOUR SOFTWARE DEVELOPMENT WITH MACAPP April 1990

And note that since this class descends directly from TView, three member
functions in this class definition override TView’s member functions: IRes,
which initializes the view and calls the graph routine to allocate and initialize the
graph data structure; Draw, which does the work of drawing the graph; and Free,
which calls the graph routines to dispose of the graph data structure.

3. Finally, we create the file UGraph.cp, which contains the implementation of the
class TGraph in C++. The first thing to add here (after the copyright notice) is an
#include so that the header file is included:

#ifndef __UGRAPH__
#include "UGraph.h"
#endif

This ensures that the TGraph implementation “sees” its class definition, as well as
any other necessary definitions. We then list the implementation of the TGraph
class in the body of the file UGraph.cp. The TGraph::IRes member function
implemented in this file might look something like this:

pascal void

TGraph::IRes(TDocument *itsDocument, TView *itsSuperView, Ptr
*itsParams)

{
GraphStructPtr aGraphStructPtr;
Rect aRect;

inherited::IRes(itsDocument, itsSuperView, itsParams);
aGraphStructPtr = DoGraphInit(kBar);
fData = aGraphStructPtr;
aRect = gZeroRect;
if (Focus())

GetQDExtent(&aRect);
SetGraphRect(aRect);

}

This member function initializes the TView object by calling its inherited IRes
member function and then initializes the graph routines by calling
DoGraphInit. This view object then attempts to get information about its
graphics environment and lets the routines set up various values for this
environment.

d e v e l o p April 1990

166

INTEGRATE THE CLASS INTO AN APPLICATION
At this point, we have a C++ class that encapsulates the services offered by our graphics
routines. To see how you can use this C++ class in a MacApp application, try the
following exercise. In this exercise, you’ll modify the C++ version of the DemoDialogs
sample application that comes with MacApp 2.0, by adding a bar graph to the Monthly
Values Dialog. All the files you need are on develop, the disc.

Figure 4.
The Monthly Values Dialog Before Modification

1. Put the following files in the DemoDialogs folder: Graph.h, Graph.c, UGraph.h,
UGraph.cp. Use MPW to set this folder as the current directory.

2. Open the file DemoDialogs.r and locate the Monthly Values Dialog resource
description:

resource 'view' (cMonthlyDialog, purgeable) {
{
...
}

};

167

SPEED YOUR SOFTWARE DEVELOPMENT WITH MACAPP April 1990

3. Increase the width of the DialogView from 500 to 600 as follows:

'SCLR', 'DLOG', { 0, 0 }, { 1000, 600 },

4. Add to the end of this resource description (that is, inside the second-to-last
right curly brace) the following description:

;
'DLOG', 'graf', { 25, 300 }, { 300, 300 },

sizeFixed, sizeFixed, shown, disabled,
View { "TGraph" }

This puts a TGraph view in the Monthly Values Dialog and ensures that the
TGraph object is allocated and initialized via its IRes member function when
the dialog is created.

5. To make sure that the DemoDialogs headers know about your graph routines,
add the following line at the end of the list of #include files at the top of the
file UDemoDialogs.h:

#include "UGraph.h"

6. Since your graph view is a subview of the Monthly Values Dialog, modify that
class so that the graph recomputes and redraws whenever a new monthly value
is typed in. To do this, modify the file UDemoDialogs.h by adding the
following to the TMonthlyDialog class:

virtual pascal Boolean DeselectCurrentEditText(void);

7. Then add the implementation for this member function to the file
UDemoDialogs.cp:

d e v e l o p April 1990

168

pascal Boolean

TMonthlyDialog::DeselectCurrentEditText(void)

{
TGraph *aGraph;
TNumberText *theNumberText;

aGraph = (TGraph *) FindSubView('graf');
for (short which = 0; which fIdentifier == gMonthIDs[which]) {

theNumberText = (TNumberText *) FindSubView(gMonthIDs[which]);
if (theNumberText)

aGraph->SetPoint(which+1, theNumberText->GetValue());
aGraph->ComputeBars(kRedraw);
break;

}
}
return inherited::DeselectCurrentEditText();

}

8. Next, to prevent the linker from stripping the TGraph class, modify
TTestApplication::ITestApplication to include the following variable:

TGraph *aGraph;

and to allocate this variable within the gDeadStripSuppression section at
the end of this function:

if (gDeadStripSuppression) {
...
aGraph = new TGraph;

}

9. Then, so that the graph points are set up as the Monthly Values are set up,
modify TMonthlyDialog::StuffValues as follows:

pascal void
TMonthlyDialog::StuffValues()

{
TGraph *aGraph;
TNumberText *aNumberText;

aGraph = (TGraph *) FindSubView('graf');
for (short i = 0; i
SetValue(gMonthlyValues[i], kDontRedraw);
aGraph->SetPoint(i+1, gMonthlyValues[i]);

}
aGraph->ComputeBars(kDontRedraw);

}

169

SPEED YOUR SOFTWARE DEVELOPMENT WITH MACAPP APRIL 1990

10. Finally, so that the graph unit and the file of graph routines are built when this
example is built, add the following lines to the end of the file DemoDialogs
MAMake:

OtherLinkFiles = ∂
"{CLibraries}"StdCLib.o ∂
"{ObjApp}UGraph.cp.o" ∂
"{ObjApp}Graph.c.o"

"{ObjApp}Graph.c.o" ƒ ∂
"{SrcApp}Graph.c" ∂
"{SrcApp}Graph.h"

{MAEcho} {EchoOptions} "Compiling: Graph.c"
{MAC} "{SrcApp}Graph.c" ∂

-i "{SrcApp}" ∂
-i "{CIncludes}" ∂
-i "{MACIncludes}" ∂
-o "{ObjApp}Graph.c.o" ∂
{COptions} ∂
{OtherCOptions}

"{ObjApp}UGraph.cp.o" ƒ ∂
"{SrcApp}UGraph.h" ∂
"{SrcApp}Graph.h" ∂
{MacAppIntf}

11. Compile DemoDialogs and run it. You will see your graph class at work calling your
graph routines and drawing the graph in the Monthly Values Dialog.

Figure 5. The Monthly Values Dialog After Modification

d e v e l o p April 1990

170

SUMMARY
You’ve learned that using MacApp as your framework in developing a Macintosh
application not only enables you to reuse your functionally specific code routines, but
also saves you time and effort by providing standard application behavior. You’ve also
learned that because the MacApp libraries are written in an object-based language
(Object Pascal), you can easily modify the pieces that don’t meet your needs. You’ve
watched as we’ve created a class to encapsulate the functionality of an existing group
of routines, and you’ve gone through the process of integrating this class into a
MacApp sample application. Now you’re ready to integrate some of your own code
into the MacApp sample application on develop, the disc. With the help of MacApp,
you’ll soon be reusing your code in Macintosh applications that present users with the
interface they know and love.

171

SPEED YOUR SOFTWARE DEVELOPMENT WITH MACAPP April 1990

DEVELOP,

THE DISC:

FEATURED

ARTISTS

RAND & ROBYN MILLER

We're professionals. We're entrepreneurs. We quit our real jobs.
We have our own company. It's called Cyan.

Cyan.

What a cool name. We thought of that name ourselves. It doesn't really mean
anything to us personally, but man, is that a cool name or what?

We also have Macs. Our Macs are cool too. We do things on our Macs we used to
only dream about. We do graphics; we do animation; we do code; we do music. Some
people call those things multimedia, and we'll call it that too if it makes us sound
more professional.

Cyan actually started out by creating some Desktop Worlds (hey, we coined that
one). The first one was the Manhole, and after that came Cosmic Osmo. We
decided to make Cosmic Osmo bigger and better, and we ended up with something so
big that we could either fit it on 179 floppies or on one CD-ROM. We picked the
CD-ROM.

So that leads to our point. This CD-ROM has got a few of the songs we did for our
CD-ROM version of Cosmic Osmo. We used our Macs. We also used some awesome
equipment and software to help our Macs get the job done. First we discovered
MIDI. We composed and sequenced the songs using Master Tracks Pro. We used a
Yamaha Clavinova as our MIDI keyboard, and got a whole slew of incredible
sounds out of a little MIDI module called th Roland U-110. We completed all the
songs, stuck 'em on a diskette and headed for Hidden Forest Studios in Longview,
Texas (in the legendary Pine-woods area of deep East Texas).

Now it just so happens that Hidden Forest Studios has Macs too. So we stuck our
diskette into their Macs, and suddenly we had a whole studio at our disposal. We
clicked here and double-clicked there and moved sounds from one module to another
until things sounded tight. With the addition of some live instruments our studio
work was complete.

 174
Dancing Beetle
(© 1989 by Cyan)
written and sequenced by Robyn Miller
saxophone: Kyle Stroud
piano solo: Gary Boren

Cosmic Osmo Blues (Rock Version)
(© 1989 by Shep Lovick, Robyn Miller, Rand Miller)
written and sequenced by Shep Lovick

saxophone: Kyle Stroud
horn arrangement and horn synths: Gary Boren

Frozen Jam
(© 1989 by Cyan)
written and sequenced by Robyn Miller
saxophone: Kyle Stroud

all songs produced by Gary Boren and Robyn Miller

d e v e l o p April 1990

We sampled the completed music into our Cosmis Osmo stack using Farallon's
MacRecorder and coded things appropriately. Now, when you tune the radio that
you just built on the fourth floor of the science planet, you might just hear the
flighty rifts of Dancing Beetle. Or when you climb to the highest tower of Queen
Osmorella's castle on the urban planet you'll hear the echoing chords of Tower
Mist. In addition, the songs are included on audio tracks of the Cosmic Osmo CD-
ROM (so you can crank 'em out on your mega-stereo in the den).

Cyan is Robyn Miller and Rand Miller (we're brothers). Cyan is located in
Spokane, Washington (capitol of the legendary Inland Empired of the Pacific
Northwest). AppleLink us any time at CYAN.

 175

DEVELOP, THE DISC: FEATURED ARTISTS April 1990

Q
How do I get the new GWorld calls
into my life and my applications?
Can I use them on a Macintosh
Plus? Where are they documented?

A
The new GWorld routines are available
only under 32 QD, this in itself
implies Color QuickDraw Macintoshes
(Macintosh II and such) since 32 QD
can only run when Color QuickDraw is
present; at the moment the calls are
documented in the 32-Bit QuickDraw
release notes which are available
through APDA. A future release of
Inside Macintosh will surely document
the new set of calls.
If you want to implement offscreen
BitMaps and would like to have access
to offscreen routines for non color
Macintoshes, you may want to check
the sample program OffScreen from
the Developer Technical Support
Sample Collection. OffScreen
exemplifies the use of the OffScreen
Unit which implements the same
type of calls for QuickDraw machines
(Macintosh Plus, SE and Portable) and
Color QuickDraw Macintoshes not
running
with 32 QD installed.

Q
Dave, I read your article on
compatibility and gotta say it carries
the most real info with the least
frosting of any System 7.0 article
I’ve seen. I have a couple of questions
related to files and low memory
globals:

1) On p.57 you say “use SFGetFile
and SFPutFile” I assume that
includes SFPGetFile and
SFPPutFile.

2) On p.67 you say “avoid reliance
on low-memory globals.” I’m using
a SFPGetFile to specify a directory
instead of a file and am faking it
out by sending a cancel (thru my
dialog hook) when my Use Directory
button is hit. Since the
SFReply.vRefNum is invalid for a
cancel, I’m using the SFSaveDisk
(and perhaps the CurDiskStore for
something else later) low-memory
global. Are these safe? If not, is there
any better way to do this to avoid
using those globals?

A
1) True.

2) If use of a low memory global is
unavoidable, well, it’s unavoidable.
SFSaveDisk is a good example. But if
alternatives exist, you should use them.
Apple is not going to eliminate low
memory globals overnight (that would
kill just about every application out
there), but the day may come when
you will no longer be able to access
them directly. (Why might this have
to change? Well, one problem with
shared low memory is it makes fully
protected address spaces for
applications a very difficult
proposition.)

Q
How can I allocate offscreen pixmaps
in MultiFinder memory?

Macintosh Q&A

___176

d e v e l o p April 1990

A
Version 1.2 of 32-Bit QuickDraw
(which is available on the System 6.0.5
disks) has been updated to let you
allocate offscreen pixmaps in
MultiFinder memory.

Q
How can I tell which directory my
application is in?

A
GetVol returns the default volume.
When an application is started, the
default volume is set to the directory
that contains the application. If the
application calls GetVol before
changing the default volume, it will
have the directory for the folder
containing the application.

Q
How do I find the size of a volume?

A
To find the size of a volume, call
PBHGetVInfo. The size is the
product of the number of allocation
blocks and the allocation block size.
(ioVNmAlBlks * ioVAlBlkSiz) It is
important to remember - especially in
Pascal - that ioVNmAlBlks is an
UNSIGNED quantity. If you don't
take that into account, you often get
negative results.

See page IV-130 and IV-123-124 of
Inside Macintosh for more details.

Q
I’m writing an application where
I’d like to keep track of file locations
after a reboot. What should I use in
addition to the file name?

A

You need to save the name of the
volume, the DirID, and the name of
the file. Don’t save the vrefnum from
SFGetFile. The vrefnum that you get
from SFGetFile is actually (under
HFS) a working directory reference
number, and will change when the
working directory is closed (e.g. when
you turn your machine off).

You use PBGetWDInfo (Inside
Macintosh, page IV-159) to get the
volume name (in ioNamePtr) and
DirId (in ioWDDirID). To get the
ioVRefNum given the name of the
volume, the DirID, and the name of
the file, use PBOpenWD (Inside
Macintosh, page IV-158).

__ 177

MACINTOSH Q& A April 1990

The object-based approach promises to make software easier to
reuse, refine, test, maintain, and extend. But simply implementing
an application in an object-based language does not guarantee these
benefits. They can only be achieved if the implementation is based on
a sound object-based design. This article presents a process for creating
such a design.

As every programmer knows, software applications are becoming increasingly
complex, and as a result, increasingly expensive to build and maintain. The good
news is that if you are willing to spend the time to carefully develop an object-based
design for your software, implementation can proceed smoothly and quickly, and the
resulting software will be relatively easy to reuse, refine, test, maintain, and extend.
This article gives an overview of the object-based approach and then describes step
by step a two-phase process for designing an object-based application.

BASIC CONCEPTS OF THE OBJECT-BASED APPROACH
Programmers familiar with non-object-based languages are used to dividing
information into two distinct kinds: functions and data. Procedural programming,
based on this division of information, focuses on how to accomplish the goals of the
program. It begins by identifying the high-level tasks that need to be performed, and
then decomposing each task into smaller tasks until the level of the language
statement is reached. Procedural programming concerns itself almost immediately
with the implementation of the program: the steps that compose each function, and
the particulars of the data to be operated upon.

By contrast, the focus of the object-based approach is more abstract. It asks first
about the intention of the program: asking what, not how. It views the programming
process as one of modeling the world. It begins by identifying the things inhabiting

HOW TO

DESIGN AN

OBJECT-

BASED

APPLICATION

BRIAN WILKERSON

d e v e l o p April 1990

BRIAN WILKERSON is an object-oriented
systems specialist for Instantiations, Inc., a
consulting firm in Portland, Oregon. He
studied computer science at the University
of Alberta. After receiving his degree, he
worked for Tektronix prior to joining his
current company. Brian has developed a
course about object-oriented design at
Instantiations, and has also co-authored a

book entitled Designing Object-Oriented
Software, to be published this spring by
Prentice-Hall. When he’s not writing or
working, he enjoys day hiking and
attending jazz concerts. •

178

the part of the world being modeled, and the behavior of those things, both as
individuals and with respect to the other things in the world.

The object-based approach uses abstraction to manage the complexity inherent in
real-world problems. An abstraction is a simplified picture of the world, arrived at
by generalizing about details. The object-based approach relies on abstraction
mechanisms such as encapsulation, information hiding, polymorphism, and
inheritance.

ENCAPSULATION
Encapsulation is the enclosing of a number of separate related things within a single
physical or conceptual capsule. For example, a telephone number encapsulates
individual digits at a higher, abstract level at which the numbers form a single entity.
When you think of your telephone number, you don’t think of it as seven separate
digits. You think of it as a single unit that happens, almost incidentally, to be
composed of seven digits.

INFORMATION HIDING
Encapsulation makes complexity more manageable, but it doesn’t reduce the amount
of visible detail. Information hiding takes encapsulation a step further, reducing
complexity by hiding some or all of the things that have been encapsulated. For
example, when you use a compact disc player, you don’t generally think of all the
electrical and mechanical components within it. You don’t need to know how it
works. What’s important is what it does: it plays the music you want to hear.

OBJECTS
An object is an encapsulation of data and the functions that manipulate that data.
But more than that, an object hides the data and possibly some of the functions,
revealing only those functions that need to be made available to other objects. The
set of visible functions defined by an object is referred to as the behavior of the
object.

The data and functions that are hidden within an object define the implementation of
that object. That is, they define how that object does what it does. The behavior of an
object defines what the object does. In keeping with the abstract nature of the object-
based approach, object-based design focuses exclusively on the behavior of objects.

The object-based approach views a program as a collection of objects that interact
with other objects to accomplish the goals of the program. Objects interact with
other objects by sending those objects messages requesting that a publicly visible
function be executed. A message specifies the name of the function being requested
and the arguments required by the receiver of the message to execute the function.

HOW TO DESIGN AN OBJECT-BASED APPLICATION April 1990

179

POLYMORPHISM
Polymorphism is an abstraction mechanism by which two or more different kinds of
objects can respond to the same message, each in its own way. This means that an
object can send a message to another without knowing how the receiver will respond,
or what other messages the receiver might also understand. The sending object just
needs to know that many different kinds of objects can be defined to respond to the
message being sent and that the receiver is one of those.

CLASSES
A class is a specification of the behavior of an arbitrary number of similar objects.
Objects that share the same behavior are said to belong to the same class. The objects
that belong to a class are referred to as instances of that class. The process of
dynamically creating objects is known as instantiating a class.

Classes are another abstraction mechanism. They allow us to focus on the kinds of
objects in an application rather than on the individual objects.

Throughout the remainder of this article, when we refer to some aspect of a class,
we mean the definition of that aspect of the instances of the class. For example,
when we refer to the behavior of a class, we mean the definition of the behavior of
the instances of that class. The meaning should be clear from context.

INHERITANCE
Inheritance is an abstraction mechanism by which new classes can be derived from
existing ones, thereby “inheriting” both data and functions. The inheritor (called a
subclass) reuses the code that it inherits from its superclass. Again, in the design
phase, we are only interested in the inheritance of behavior.

THE CLIENT-SERVER MODEL
The model we use for our object-based design views the world as a system of objects
collaborating to perform the work required of them: the client-server model.

The client-server model is a description of the interaction between two entities: the
client and the server. A client makes requests of the server to perform services. A
server provides a set of services upon request.

The ways in which the client can interact with the server are described by a contract:
a description of the requests that can be made of the server by the client. Both must
fulfill the contract: the client by making only those requests it specifies, and the
server by correctly responding to those requests.

In an object-based design, both client and server are objects. Any object can act as
either a client or a server at any given time. The design focuses on the contract
between clients and servers by asking (1) what actions each object is responsible for,
and (2) what information each object shares.

d e v e l o p April 1990

180

THE BENEFITS OF OBJECT-BASED DESIGN
If you spend a meaningful amount of time on carefully developing an object-based
design for your software, implementation can proceed more smoothly and quickly
than it would for a traditional procedural program. The resulting software can also
be easier to test, maintain, refine, and extend.

An object-based design can improve implementation by encapsulating pieces of the
program into components that can be implemented without considering the
interactions with the rest of the system. If an interface between components then
seems wrong for some reason, the system can be changed at just that one point;
other parts of the system are not affected.

A careful design can also make it easier to test the application. Classes can be isolated
and tested one at a time. An error can more easily be traced to a specific class. Classes
can be shown to function before being plugged into the rest of the system.

Similarly, the rigorous specification of the interfaces between classes allows testers
to more easily spot discrepancies between the output of one component and the
input required to another. Such a careful specification of the interfaces requires a
complete understanding of the responsibilities of each component. Holes in the
system—places where a responsibility was omitted by the specification, or stated
ambiguously, or made part of the wrong class—can more easily be spotted and filled.

After the application has been implemented, it’s also easier to maintain. Encapsulation
and information hiding rigidly constrain the patterns of communication within the
application, so that they can be understood more easily. This makes it easier to
determine where a problem lies and where any ramifications may appear after you fix
the problem. In this way, you can guard against the notorious problem of one bug fix
introducing other bugs.

A system that can be understood can also be refined and extended. If the interfaces
between classes have been rigorously controlled, new portions of the system can be
created to use the same interfaces, but to do different things with them. You can also
add new classes that respond to old requests in ways appropriate to the new system
of which they are now a part. Functionality can thereby be increased at far less cost.

In sum, object-based design enables us to build classes that can be depended upon
to behave in certain ways, and to know what state results from that behavior. Such
classes can be reused in every application that can make use of this behavior and
knowledge. With careful thought, you can construct classes that will be useful to
many applications.

HOW TO DESIGN AN OBJECT-BASED APPLICATION April 1990

181

A TWO-PHASE PROCESS FOR
DESIGNING AN APPLICATION
The remainder of this article describes a process for creating object-based designs.
The result of this process, an object-based design, consists of a structure of classes
modeling the problem, a description of the public behavior of those classes—their
responsibilities, and a description of the patterns of communication among the
classes.

The design process we use has two phases:

1. An initial exploration of the possibilities, which produces a preliminary design.
2. A rigorous analysis of the preliminary design.

Both of these phases play critical roles in the object-based design process.

The exploratory phase of object-based design concentrates on identifying the
classes, assigning responsibilities to those classes, and determining which other
classes collaborate with them to fulfill those responsibilities. At this stage of the
engineering process, very little effort has been invested in any specific design. It is
therefore relatively cheap to play with the possibilities, trying out various ways to
configure your system. A little time spent exploring at this point can lead to a lot of
time and effort saved later, as it will be easier to reuse parts of the design, or to
refine and extend it.

The results of exploration, however, must be carefully pruned and edited. No one
can count on getting it right the first time. The preliminary design must be critically
examined, to maximize both encapsulation and inheritance. Only in this way can the
use of object-based design fulfill its promise of producing software that is easy to
reuse, refine, test, maintain, and extend.

To illustrate the design process described here, we’ll use the example of a
spreadsheet program, the specification for which appears in the sidebar. This
example is too simple to be a true application, but for the purposes of this article it
will give you a feeling for how to use the design process.

d e v e l o p April 1990

182

THE SPREADSHEET SPECIFICATION
The spreadsheet program is an application that allows
users to create and edit electronic spreadsheets.

Users can create new spreadsheets. Existing spreadsheets
can be opened from and saved to files.

The Spreadsheet
A spreadsheet is a collection of cells arranged in rows
and columns.

Rows and columns consist of cells and have names. The
name of a column is the letter C followed by the ordinal
position of that column. The name of a row is the letter R
followed by the ordinal position of that row.

Each cell has a name and a value. The name of a cell is
the concatenation of the name of the cell’s column and the
name of the cell’s row, in either order.

There are three different types of cells: numeric, text, and
expression.

Numeric cells contain numeric values. The user can
specify the format in which the value of a numeric cell is
displayed. There are four different formats:

• integer (no decimal point)
• monetary (two places after the decimal point,

preceded by a dollar sign)
• real (one or more places after the decimal point)
• scientific (as a value between zero and one, and

an exponent)

Text cells contain arbitrary text, except that the first
character cannot be an equal sign. The text can be
formatted to be left aligned, centered, right aligned,
or fully justified.

Expression cells contain a formula, but display the value
of the formula. Formulas are entered as text, using the
syntax defined by the following syntax definition:

<formula> ::= ‘=’ <expression>
<expression> ::= [<expression> ‘,’]
<simple expression>
<simple expression> ::= [<simple
expression> <additive operator>] <term>
<term> ::= [<term> <multiplicative
operator>] <factor>
<factor> ::= <constant> | <cell name> |
‘(’ <expression> ‘)’
<constant> ::= <number> | <text>
<additive operator> ::= ‘+’ | ‘-’
<multiplicative operator> ::= ‘*’ | ‘/’

Arguments to additive and multiplicative operators must
be numeric. The result is a number. Arguments to the
comma operator (text concatenation) may be either text or
numbers, the numbers being converted to a textual
representation in the latter case. The result is text.

The value of an expression cell can be formatted either as
numeric cells or text cells, depending on the type of the result.

Operations
Users must be able to select rectangular groups of cells,
from individual cells to the entire spreadsheet, including
rows and columns. Selected cells can be cut, copied, and
pasted. At least one cell must be selected at all times.

If one or more complete rows or columns are selected and
cut, the rows or columns are removed from the
spreadsheet. If one or more rows or columns are pasted,
they are inserted to the left of or above the topmost
selected row or column, respectively.

If a portion of some rows and columns is cut, the values in
those cells are removed, but the empty cells remain. If
such a portion is pasted, the values of the same shape of
cells are replaced with the values of the cells, with the
upper leftmost cell in the paste buffer being aligned with
the upper leftmost cell of the selected cells.

Users must have the ability to edit the values in individual
cells, and to force recomputation of the values shown in
expression cells.

HOW TO DESIGN AN OBJECT-BASED APPLICATION April 1990

183

THE EXPLORATORY PHASE
The exploratory phase of object-based design consists of three steps:

1. Finding the classes.
2. Assigning responsibilities to them.
3. Determining the collaborations required to fulfill those responsibilities.

Let’s look at each of these steps individually.

FINDING CLASSES
Choosing the classes of objects that make up your application is a key part of
modeling it. The classes should define the essence of your application; they should
emphasize the important aspects, and discard irrelevancies.

Generate candidate classes. When you start your design, you frequently have
nothing more than a specification outlining the functionality envisioned for the
system as a whole. If that’s all you have, that’s what you start with. Begin by reading
the specification until you are familiar with it. Now reread the specification, taking
note of every noun or noun phrase in the document. These are your candidate
classes.

The following list results from doing this with the spreadsheet specification:

spreadsheet program
application
user
electronic spreadsheet
new spreadsheet
existing spreadsheet
files
spreadsheet
cell
row
column
name
ordinal position
value
numeric cell
numeric value
format
integer format

decimal point
monetary format
dollar sign
real format
scientific format
zero
one
exponent
text cell
arbitrary text
first character
equal sign
text
left-aligned text
centered text
right-aligned text
justified text
expression cell

formula
expression
simple expression
additive operator
term
multiplicative operator
factor
constant
cell name
number
argument
comma operator
textual representation
type
rectangular group of cells
individual cell
entire spreadsheet
selected cell

d e v e l o p April 1990

184

Choose classes from candidates. Once you have a list of possible classes, you
must decide which of them will become part of the model you are designing. The
following guidelines are useful in choosing which noun phrases represent classes and
which are spurious.

• Model physical objects, such as windows on the display or print-
ers on the network. The cells of a spreadsheet can be thought of
in this way, so we tentatively create the class Cell.

• If more than one word is used for the same concept, choose the
one that is most meaningful in terms of the rest of the system.

For example, “application” really means “the spreadsheet program” in this
context. The phrase that best describes the meaning is kept, while the rest
are discarded. In some cases, none of the phases is appropriate, so a new one
must be created.

Our list is full of such synonyms and naming problems. Following is a list of
the words with synonyms. The words that remain candidates are followed
by the synonyms we have rejected, indented below them.

In addition, one more naming problem exists. Rows and columns are just
rectangular groups of cells. The general concept capturing this commonality
is “cell group.”

• Be wary of adjective-noun phrases. An adjective-noun combina-
tion can mean a different kind of object, a different use of the
same object, or it could be utterly irrelevant. Ask if the object rep-
resented by the noun behaves differently when the adjective is
applied to it. If the use of the adjective signals that the behavior of
the object is different, then make a new class.

• Model categories of objects. Such categories represent abstract
superclasses, and should therefore be modeled. “Expression” and
“value” are examples of abstract superclasses; there are several dif-
ferent kinds of each in the spreadsheet.

spreadsheet
electronic spreadsheet
new spreadsheet
existing spreadsheet
entire spreadsheet

cell
numeric cell
text cell
expression cell

name
cell name

value
numeric value

text
arbitrary text
textual representation

cell group
rectangular group of cells
individual cell
selected cells

HOW TO DESIGN AN OBJECT-BASED APPLICATION April 1990

185

• Model known interfaces to the outside world, such as physical
devices, a windowing system, or the operating system, as fully as
your initial understanding allows. The interface to the outside
world in this case is represented by the noun “file,” which
becomes a candidate class

.
Don’t model things outside the application. Our list includes a variety of
things obviously outside the bounds of the system, such as “user,” “first
character,” and “type.”

• Model the values of attributes of objects, but not the attributes
themselves. For example, each cell has a name. The name is an
attribute whose value is a string of characters. Therefore, the class
String should be created, but there will be no class called Name; it
will be an attribute of the class Cell. The following table contains
the phrases representing attributes, the class(es) of objects having
that attribute, and the class(es) of the value of the attribute.

How should formats be represented? The format controls the way in which
the value is displayed. This kind of control is usually handled by either
sending different messages to a class, or sending the same message to
different classes. The former is preferred in this case because the format can
change independent of the value. The format, therefore, should be the
message with which the value is displayed (or an encoding of it if the target
language does not support messages as objects). We can therefore discard all
of the noun phrases representing types of formats, which were the following:

Attribute Phrase Defining Classes Value Classes

name

value

format

decimal point

exponent

argument

Cell

Cell

Cell

Number

Real Format

Expression

String

Number, Text, Expression

?

none

none

Expression

d e v e l o p April 1990

186

We replace the phrases describing the syntactic representation of expressions,
given below, with classes representing the semantic structure of expressions.

Record classes. When you have identified the first, tentative list of classes, they
need to be recorded. For each class, take a 4” x 6” index card, and write the class
name at the top of the card. You should use index cards to record classes because
they are compact, easy to manipulate, and easy to modify or discard. Each index
card will eventually contain the kinds of information indicated in Figure 1.

Figure 1.
Contents of Each Index Card

Some classes will be missing and others will be eliminated later, but don’t worry.
Your design will go through many stages on its way to completion, and you will have
ample opportunity to revise.

integer format
monetary format
real format

scientific format
left-aligned text
centered text

right-aligned text
justified text

formula
expression
comma operator

simple expression
additive operator
term

multiplicative operator
factor
constant

Class: name of class

list of superclasses

list of subclasses
Responsibilities: Collaborations:

(Abstract or Concrete)

Subclasses:

Superclasses:

HOW TO DESIGN AN OBJECT-BASED APPLICATION April 1990

187

The final list of candidate classes is as follows:

ASSIGNING RESPONSIBILITIES
You have now found the classes in your system. Next you must decide what behavior
each of them is going to be responsible for.

Responsibilities include two key items:

• the information other classes can ask for from a class
• the actions a class can perform

Responsibilities are meant to convey a sense of the purpose of a class and its place in
the system. As you seek to identify responsibilities, use the conceptual model of the
client-server contract. The contract between two classes represents the list of
services one class can request of another. A service can be either the performance of
some action or the return of some information. If an object provides a service, that is
one of its responsibilities. All of the services listed in a particular contract are the
responsibilities of the server for that contract.

Find responsibilities. To find responsibilities, return to the specification. This
time, take note of all the verbs. Use your judgment to determine if each represents
an action that some class within the system must perform. Also use the work you just
performed when you identified classes. The fact that you identified a class indicates
that you saw a need for it to fulfill at least one responsibility. The name you chose
for that class probably suggests that responsibility, and possibly others.
From the specification, we can derive the following candidate responsibilities:

Binary Expression
Cell
Cell Group
Cell Reference
Expression

Computed Value
Constant Expression
Expression
File
Numeric Value

Spreadsheet
Textual Value
Value

open from a file
save to a file
maintain a collection of
cells
cell have names
cell have values
rows have names
rows have cells
columns have names

columns have cells
specify cell format
numbers convert to text
users select rectangular
groups of cells
cut selected cells
copy selected cells
paste cells
remove rows

remove columns
insert rows
insert columns
remove values of cells
replace values of cells
edit values of cells
recompute values of cells

d e v e l o p April 1990

188

Assign responsibilities to classes. Once you have listed a number of candidate
responsibilities for the classes in your application, you can go about assigning each
responsibility to the appropriate class.
The following guidelines can prove useful as you seek to apportion the
responsibilities to each class.

• Distribute system intelligence as evenly as possible. A system can
be thought of as having a certain amount of intelligence, such
intelligence being what the system knows and what actions it can
perform. Within any system, some classes of objects can be
viewed as being relatively “smart,” while others seem less so.
Distributing the intelligence embodied within your system among
a variety of classes allows each class to know about relatively
fewer things, thus producing a more flexible system, and one that
is easier to modify.

• Keep behavior with related information, if any. If a class is
responsible for knowing certain information, it is logical also to
assign it the responsibility of performing any operations necessary
upon that information. Conversely, if a class requires certain
information in order to perform some operation for which it is
responsible, it is logical (other things being equal) to assign it the
responsibility for maintaining the information as well.

• Keep information about one thing in one place. In general, the
responsibility for knowing specific information should not be
shared. Sharing information implies a duplication that could lead
to inconsistency.

• Share responsibilities among related objects. Occasionally, you
may discover that a certain responsibility seems to be several
responsibilities, or a compound responsibility, that is best divided
or shared among two or more classes.

We now assign the responsibilities from the spreadsheet program.

open from a file
save to a file
It isn’t clear which class to assign these responsibilities to. The closest candidate we
have now is Spreadsheet itself, but it should be used to represent just the
spreadsheet, not the full set of editing capabilities implied by the system. We
therefore want a class that represents the application itself. Let’s call this class
Spreadsheet Editor, and assign these responsibilities to it.

HOW TO DESIGN AN OBJECT-BASED APPLICATION April 1990

189

maintain a collection of cells
This is clearly a responsibility of the class Spreadsheet. After all, that is the class that
must maintain the collection; therefore, it should have the responsibility for
maintaining the information as well.

cells have names
cells have values
By the same token, the responsibility for maintaining this information belongs to the
class Cell.

rows have cells
columns have cells
The responsibility for maintaining this information belongs to the class Cell Group.
However, because rows and columns are merely different groupings of cells, we
might wish to rephrase this responsibility more generally, stating that the class Cell
Group knows which cells it contains.

At this point, we might notice that the responsibilities of Spreadsheet and the
responsibilities of Cell Group are very similar; they both maintain information about
the cells they contain. We should view Spreadsheet as being composed of a group of
cells, rather than maintaining a collection of individual cells. The responsibility of
the class Spreadsheet is to know the group of cells of which it is composed. The
responsibility of the clas Cell Group need not change.

rows have names
columns have names
Names of rows and columns appear merely by way of explaining how cells get
named. Cells must maintain their names, as we mentioned above, but row and
column names are irrelevant, and do not need to be maintained by any class. There
is no responsibility for maintaining this information.

specify cell forma
This is actually a compound responsibility. The Spreadsheet Editor allows the user
to specify the cell format, but the Cell must maintain its format thereafter.

numbers convert to text
The responsibility for performing this conversion belongs to the class
Numeric Value.

d e v e l o p April 1990

190

users select rectangular groups of cells
cut selected cells
copy selected cells
paste cells
remove rows
remove columns
insert rows
insert columns
remove values of cells
replace values of cells
edit values of cells
The responsibility for receiving user input belongs to the class Spreadsheet Editor.
Many of these responsibilities imply that other classes must perform other
operations as well. We shall return to this point later, when we discuss
collaborations.

recompute values of cells
This is also a compound responsibility. The Spreadsheet Editor allows the user to
request that the values be recomputed, but the Expression must perform the actual
computation.

Record responsibilities. As you assign responsibilities to specific classes, record
them on the card for that class, under the class name, on the left edge.

DETERMINING COLLABORATIONS
A collaboration is a request made of one object by another. It is the embodiment of
the requests specified in the client-server contract. A single collaboration flows in
one direction—from the client to the server. Every collaboration is associated with a
single responsibility. It fulfills, or contributes to the fulfillment of, that
responsibility.

Collaborations are important because the pattern of collaborations within your
application reveals how control and information will flow during execution.
Identifying collaborations between classes allows you to identify paths of
communication between classes. Finding such paths will ultimately allow you to
identify subsystems of collaborating classes. Finding such subsystems is one way in
which you will later be able to further abstract your application.

Identify collaborations. To identify collaborations, ask the following questions for
each responsibility of each class:

• Is the class capable of fulfilling this responsibility itself?
• If not, what is needed?
• From what other class can it acquire what it needs?

HOW TO DESIGN AN OBJECT-BASED APPLICATION April 1990

191

Let’s look at each of the responsibilities assigned to the classes in the spreadsheet
application. In general, responsibilities to maintain information require no collabo-
rations. Unless they are an exception, we will not discuss such responsibilities.

Expression:
compute values
This generic operation requires no collaborations. However, subclasses of the class
Expression require collaborations in order to fulfill their specific responsibilities, as
described later.

Binary Expression:
compute values
This operation requires a collaboration with the expressions representing the argu-
ments to the binary operator. These expressions may be a member of any subclass of
the class Expression. We therefore record a collaboration with the class Expression.

Cell Reference Expression:
compute values
This operation requires a collaboration with the cell being referenced, an instance of
the class Cell.

Numeric Value:
convert to text
This operation occurs during the computation of expressions. It requires no
collaborations.

Spreadsheet Editor:
open from a file
save to a file
Clearly, this involves a collaboration with the class File.

allow user to specify cell format
This responsibility involves a collaboration with the class Cell so that the format will
be remembered.

d e v e l o p April 1990

192

users select rectangular groups of cells
cut selected cells
copy selected cells
paste cells
remove rows
remove columns
insert rows
insert columns
remove values of cells
replace values of cells
edit values of cells
allow user to request to recompute values of cells
The Spreadsheet Editor is responsible for interpreting user input. It must then
inform the spreadsheet that it has changed, requiring a collaboration with the class
Spreadsheet. Responsibilities that alter cells or groups of cells must similarly
collaborate with the classes Cell or Cell Group.

Record collaborations. Record these classes as collaborations on the card for that
class directly opposite the responsibility the collaboration supports. Check to see
that a corresponding responsibility exists for every collaboration you record.
Remember, however, that a collaboration might be with a subclass, but the
responsibility might be recorded on the superclass card instead.

Design walk-throughs. As you make these design decisions, it’s important for you to be
able to determine their implications. For this purpose, you should walk through your
system after each step. Choose a set of typical inputs to your system, and hand-simulate its
behavior, given these inputs. In this way, you can more easily determine the implications
of your decisions. Feel free to revise previous decisions as you go, and walk through your
new configuration. The point of this stage of your design process is, after all, to explore as
many different possibilities as seems reasonable. Walk-throughs can help you determine
the implications of these various possibilities.

Let’s look at what happens when a cell is asked for its value. Cells maintain their val-
ues indirectly by storing an instance of a subclass of class Value. Therefore, cells
must retrieve their values when requested by sending a message to a Value. The
Value may represent the value directly, as with a number or text, or it may know the
expression by which the value can be computed. In the latter case, the Value must
ask the expression to evaluate itself.

Expressions evaluate themselves differently depending on which type of expression
they are. Constant Expressions evaluate themselves by returning the constant they
represent. Cell Reference Expressions evaluate themselves by asking for the value of
the cell they reference. Binary Expressions evaluate themselves by applying their
operator to the values of their two arguments. So far, it seems the system works the
way it was intended to.

HOW TO DESIGN AN OBJECT-BASED APPLICATION April 1990

193

THE ANALYSIS PHASE
The analysis phase of object-based design also consists of three steps:

1. Building optimal inheritance hierarchies.
2. Streamlining the collaborations between classes.
3. Defining the signatures for each responsibility.

Let’s look at each of these steps individually.

BUILDING HIERARCHIES
A carefully considered and crafted inheritance hierarchy provides the maximum
amount of reusable code. Carefully assigning responsibilities ensures that the
resulting hierarchies of classes are easily reused, maintained, and extended.

Record existing hierarchies. First, examine the present class hierarchies in the
design. Draw hierarchy graphs of your application. The hierarchy graph is rather
simple. Classes are represented by rectangles, labeled with the class names.
Inheritance is indicated by a line from superclass to subclass, and by position on the
page—superclasses are above their subclasses.

Analyze the responsibilities assigned to each class to determine whether each class is
abstract or concrete.

• Abstract classes are designed to be inherited. Instances of abstract
classes are never created as the system executes.

• Concrete classes are designed to be instantiated. They are
designed primarily so that their instances may be generally useful,
and secondarily so that they may also be usefully inherited.

Go through your inheritance hierarchies, labeling each class as abstract or concrete
on the cards and by filling in the upper-left corner of hierarchy graphs for abstract
classes. If you have trouble deciding whether a given class is abstract or concrete,
think about your working system. Will an instance of this class be used during
execution? If so, the class is concrete.

d e v e l o p April 1990

194

Our spreadsheet program includes two abstract classes: Expression and Value.
All other classes in this design are concrete. The hierarchy graphs for hierarchies
containing more than one class appear as shown in Figure 2.

Figure 2.
Hierarchy Graphs for Our Abstract Classes

Restructure hierarchies. Because our spreadsheet example is so small, there is
nothing we can show you here to exemplify optimizing the hierarchy. Nevertheless,
the following guidelines can help you build better hierarchies:

• When you have determined how many abstract classes are
presently in your design, speculate on abstract classes that might
encapsulate behavior that could be reused by existing and future
subclasses. In general, the more abstract classes an application has,
the more code in the application can be reused. Therefore, define
as many abstract classes as seems reasonable to capture the
abstractions present in your design, or that you reasonably
suspect you might have future use for.

• Factor responsibilities as high as possible in the hierarchy. If a set
of classes all support the same set of responsibilities, all the classes
should inherit those responsibilities from a common superclass.
If a common superclass does not exist, create one, and move the
common responsibilities to it. After all, such a class is demonstrably
useful—you have already shown that the responsibilities will be
inherited by some classes.

• Factor implementation details as low as possible in the hierarchy.
If a superclass supports its responsibilities in only the most generic
possible way, (providing only templates, as it were, for the desired
behavior), then implementation details cannot impede a new
subclass from inheriting those responsibilities. Each subclass is free
to implement the responsibilities in the way most appropriate for it.
This can include subclasses unforeseen by the original design.

• Ensure that each class encapsulates a single integral set of
responsibilities. Each class should have a single, overarching
purpose; each class should serve one main function in the
system of which it is a part.

Numeric
Value

Computed
Value

Textual
Value

Value

Constant
Expression

Cell Reference
Expression

Binary
Expression

Expression

HOW TO DESIGN AN OBJECT-BASED APPLICATION April 1990

195

These observations of what enhances or detracts from the reusability of a class lead
to the principle that the appropriate use of inheritance is to model a type hierarchy:
every class should be a particular kind of its superclasses. Subclasses should add
responsibilities to their superclasses; they should not cancel inherited responsibilities,
or override them to become errors, or no behavior at all.

When you have modified your design, redo your graphs and cards to correspond to
the new state of your design. Then recheck your system. For each responsibility,
make sure there is a corresponding collaboration, and vice versa. Once again, walk
through the design to ensure that every object is still communicating with the rest
of the system in the appropriate manner.

Group responsibilities into contracts. Once the responsibilities have been
properly factored in the hierarchies, they need to be grouped into the contracts
supported by each class. This is usually straightforward because classes usually
support a small and cohesive set of responsibilities. If the responsibilities of a class
are not cohesive, it should have more than one contract. Not all responsibilities will
be public behavior for the class. Only public behavior should be grouped into
contracts. Number the contracts so that they can be referenced.

Here are the contracts for the classes in the spreadsheet design:

Cell
1. Maintain the value and format
2. Compute the value

Cell Group
3. Know the cells contained in the group

Expression
4. Compute the value of the expression

File
5. Input and output to disk

Spreadsheet
6. Know the group of cells within it

Value
7. Compute the value represented

d e v e l o p April 1990

196

STREAMLINING COLLABORATIONS
We are now going to streamline the collaborations between classes—each communi-
cation path that can occur as information and execution flows through the system.
We analyze these collaborations to attain an overall perspective, to identify natural
ways to divide responsibilities between groups of classes, and thereby to
simplify the various ways in which communication can flow. Simplifying the potential
communication flow simplifies the application: the application becomes easier for
others to understand, maintain, reuse, refine, and extend.

Earlier, we discussed performing a walk-through of your system, trying out various
scenarios, simulating the results of various typical inputs. Each such scenario brings
to light one possible path along which information and control can flow.

To do a good job of analyzing collaborations between objects, you must first collect an
exhaustive description of all the paths along which control and information can flow.
You can then analyze the collaborations between classes in order to simplify them.

A collaborations graph is a tool for accomplishing this analysis. A collaborations
graph allows you to examine the collaborations between classes in graphical form,
so that you can better identify areas of unnecessary complexity or other design flaws.
Collaborations graphs represent four distinct elements: classes, subsystems, contracts,
and collaborations.

Classes are shown as labeled rectangles. Subsystems are shown by drawing a
rounded rectangle around the classes that comprise them. Contracts are shown as
small semicircles inside the edges of the class or subsystem to which they belong.
Draw one semicircle per contract, labeled by the contract number. Collaborations
between classes or subsystems are represented by an arrow from the client to a
contract supported by the server. If two objects both collaborate with a class by
means of the same contract, draw the arrows to the same semicircle. Otherwise,
draw the arrows to different semicircles.

In addition, collaborations graphs show superclass/subclass relationships, such as that
between the class Value and the specific kinds of values, or between Expression and
the different kinds of expressions. A superclass represents the contracts supported by
all of its subclasses; because of polymorphism, we can focus on the abstract contract.
We need not consider whether the superclass, or one of its subclasses, will be the
object actually providing the service during execution. This is represented in the
collaborations graph by nesting subclasses within the bounds of their superclasses.

HOW TO DESIGN AN OBJECT-BASED APPLICATION April 1990

197

Figure 3 shows the collaborations graph of the spreadsheet application as we have so
far designed it.

Figure 3.
Initial Collaborations Graph for Our Spreadsheet Program

The goal of this step in the design process is to simplify the patterns of collabora-
tion. Without such simplification, the communication paths could flow from nearly
any class to any other, with only the slenderest of justifications and no coherent
structuring. Such anarchic flow leads to spaghetti code—the same problem that
eliminating “go to” statements was designed to avoid.

Because such applications are impossible to maintain or sensibly modify, we aim
to simplify the patterns of collaboration. Successfully doing so translates into a
simplification of the graph. The technique we will use, at least in part, is to work
backward: we shall simplify the graph in order to simplify the collaborations. What
criteria should you use to accomplish this simplification?

Spreadsheet
Editor

File

Cell
Group

Spreadsheet

Cell

Numeric
Value

Computed
Value

Textual
Value

Binary
Expression

Cell Reference
Expression

Constant
Expression

Expression

Value

Spreadsheet Program5

6

3

1

2

4

7

d e v e l o p April 1990

198

• Minimize the number of different contracts supported by
each class and subsystem. Too many contracts for one class or
subsystem can be a sign that too much of the application’s
intelligence is concentrated in that class or subsystem.

• Each contract supported by a subsystem should be handled
by only one class or subsystem. If the contract representing the
external interface of a subsystem mediates direct collaborations
with two or more classes, it can be a sign that a level of indirection
is missing, or that the contract is really two or more contracts.

• Minimize the number of classes and subsystems within a
subsystem that are collaborated with by classes or subsystems
outside the subsystem. Otherwise, your subsystem does not truly
encapsulate its component entities. It does not provide the
desired level of abstraction.

Three basic mechanisms can be used to simplify your graph, and hence to streamline
the collaborations between your classes and subsystems.

• Build clean subsystems by centralizing communications to a
subsystem or introducing an intermediary to a subsystem.

• Coalesce classes whose responsibilities overlap.
• Split classes with too many contracts.

Our spreadsheet application can be cleanly divided into two large pieces: the editing
capabilities and the structure being edited. For this reason, it makes sense to create a
subsystem representing the structure of a spreadsheet, which we will call the
Spreadsheet Subsystem. The Spreadsheet Subsystem is responsible for creating
spreadsheets, and maintaining their structure.

It may well be that the Spreadsheet Editor is itself really a subsystem rather than a
single class, but in the interests of simplicity let’s presume that it is a class.

Having created the Spreadsheet Subsystem, we need to clean up the way in
which the Spreadsheet Editor collaborates with it. In particular, the Spreadsheet
Editor should not collaborate with so many of the classes inside the subsystem. We
can simplify the paths of collaboration by forcing all accesses to other classes to go
through the Spreadsheet. This implies that Spreadsheets must be able to understand
and pass along all messages to the cells or cell groups that compose them.
Spreadsheets therefore now collaborate with Cell Groups, which in turn collaborate
with Cells. Two new collaborations therefore appear in the graph.

HOW TO DESIGN AN OBJECT-BASED APPLICATION April 1990

199

This set of changes results in the graph of the application shown in Figure 4.

Figure 4.
Simplified Collaborations Graph for Our Spreadsheet Program

The collaborations within the Spreadsheet Subsystem would then look like Figure 5.

Figure 5.
Collaborations Graph for the Spreadhseet Subsystem

Spreadsheet
Editor

File

Spreadsheet Program

Spreadsheet
Subsystem

53

Cell
Group

Spreadsheet

Cell

Numeric
Value

Computed
Value

Textual
Value

Binary
Expression

Cell Reference
Expression

Constant
Expression

Expression

Value

Spreadsheet Subsystem

3

1

2

6

7

4

6

d e v e l o p April 1990

200

DEFINING SIGNATURES

Once the responsibilities have been assigned to classes, and changes are unlikely,
the final stage of the design process is to refine the responsibilities into protocols.
A protocol is a set of messages to which an object will respond.

The goal of this part of the process is to make the classes in your application,
particularly their instances, as generally useful as possible. This is accomplished
in two ways:

• Maximize polymorphism. Polymorphism, as you recall, is the abil-
ity of instances of different classes to respond to the same message,
each in its own appropriate way. Polymorphism has already been
maximized by moving responsibilities as high in the hierarchy as
they can reasonably go. By moving a responsibility from a class to
its superclass, you increase the number of classes that can support
that responsibility, and hence respond to that message.

Polymorphism can also be maximized by carefully selecting mes-
sage names, so that it makes sense for instances of many classes to
respond to messages by those names. Use a single message name
for each conceptual operation, wherever in the system it is found.
Likewise, associate a single conceptual operation with each
message name.

• Make the protocol as generally useful as possible. Instances will
be more reusable if the protocols used to make requests of them
have been designed in anticipation of as many different uses as
possible. Think about what might change if the system were
modified or extended. Think about what related systems might
wish to use.

First, define the most general message, one that allows clients to supply all possibly
required parameters. Next, provide reasonable default behavior for as many parameters
as possible. Finally, analyze how each client uses (or is likely in the future to use) this
general message. From that analysis, define a useful set of messages that allows clients
to specify only some of the parameters, while relying on the defaults for the others.

List the contracts of each class or subsystem in your application, and turn each contract into
a set of signatures. Each contract will have one or several messages associated with it. Name
these messages thoughtfully, bearing in mind the considerations just described. Along with the
message names, specify the types of all arguments required, and the type of object returned by
the method, if any.

HOW TO DESIGN AN OBJECT-BASED APPLICATION April 1990

201

Here is an example set of signatures for the class Spreadsheet:

Class: Spreadsheet

6. Know the group of cells within it
cells() returns Cell Group
cells(Cell Group) returns void
row(Integer) returns Cell Group
column(Integer) returns Cell Group
rows(Integer, Integer) returns Cell Group
columns(Integer, Integer) returns Cell Group
rowsAndColumns(Integer, Integer, Integer, Integer) returns Cell Group
positionOfCell(Cell) returns String
cellAt(Integer, Integer) returns Cell
cellNamed(String) returns Cell

You are now ready to write a formal specification for each class. The specification will
state the name of the class and its overall purpose, whether it is abstract or concrete,
its position in its inheritance hierarchy and the collaborations graph, and its contracts
and their associated signatures. Each signature should be followed by a description of
the behavior captured by the signature. In addition, include any notes on special
implementation considerations, such as algorithms, behavioral constraints, or error
conditions.

As a result of this design process, you now have one or more collaborations graphs,
one or more hierarchy graphs, a specification for each class, and a set of formal
contracts for each class.

You are now ready to implement your application.

CONCLUSION
The result of this process is a design based on objects. The responsibilities of each
object become messages to which the object will respond by providing the services
requested. Collaborations represent classes from which an object must request
operations or information in order to fulfill its own responsibilities.

The design therefore supports the basic concepts of object-based technology—it
encapsulates operations and information within objects, it hides details of the state of
an object, and it uses inheritance to incrementally refine the definitions of objects,
maximizing the amount of reusable code.

Classes and subsystems can be tested before they are connected to the entire
application. Because the paths of communication are mapped out and rigorously
controlled, maintenance can be performed without risking unpredictable side-
effects. Finally, because the software has been designed from the start with future

d e v e l o p April 1990

202

extensions in mind, functionality can be added to the application with a minimum
of difficulty.

Applications implemented from such a design can therefore reap the benefits of
object-based technology.

FURTHER READING ON OBJECT-BASED DESIGN
Beck, Kent, and Ward Cunningham, “A Laboratory for Teaching object-based Thinking,” OOPSLA’89 Conference
Proceedings, SIGPLAN Notices, October 1989, pp. 1-6.

Cox, Brad, “Message/Object Programming: An Evolutionary Change in Programming Technology,”
IEEE Software, January 1984, pp. 50-61.

Halbert, Daniel, and Patrick O’Brien, “Using Types and Inheritance inobject-based Languages,”
IEEE Software, September 1987, pp. 71-79.

Johnson, Ralph, and Brian Foote, “Designing Reusable Classes,” Journal of object-based Programming,
June/July 1988, pp. 22-35.

LaLonde, Wilf, “Designing Families of Data Types Using Exemplars,” ACM Transactions on Programming Languages
and Systems, April 1989, pp. 212-248.

Meyer, Bertrand, “Reusability: The Case for object-based Design,” IEEE Software, March 1987, pp. 50-64.

Snyder, Alan, “Encapsulation and Inheritance in object-based Programming Languages,” OOPSLA’86 Conference
Proceedings, SIGPLAN Notices, November 1986, pp. 38-45.

Wirfs-Brock, Allen, and Brian Wilkerson, “Variables Limit Reusability,” Journal of object-based Programming,
May/June 1989, pp. 34-40.

Wirfs-Brock, Rebecca, and Brian Wilkerson, “object-based Design: A Responsibility-Driven Approach,”
OOPSLA’89 Conference Proceedings, SIGPLAN Notices, October 1989, pp. 71-76.

HOW TO DESIGN AN OBJECT-BASED APPLICATION April 1990

203

C++ is fast emerging as the premier object-based language of the
1990s. Its expressive power combined with its down-and-dirty C
heritage makes it a natural choice for writing Macintosh applications.
But beware: all is not sweetness and light. Harnessing C++’s power
without getting tripped up by some of its less savory features isn’t all
that easy. Here are guidelines that make it easier to write, debug, and
change C++ programs.

When we first started using C++ several years ago, we learned the hard way—by trial
and error—a lot of what we’re about to tell you. After thousands of hours of C++
programming, we’ve formed strong opinions about the best way to use C++. In this
unofficial style guide we tell you which features to use and which ones to avoid.
Following our techniques will lead to programs that are easier to write, debug, and
change. You may not agree with all of our guidelines—some are more a matter of
taste than of science—but we hope you’ll find them useful and enlightening.

PART 1: STYLE
In this part you’ll find fairly simple advice on formatting source files. Even if you
prefer to use a different style in your own work, you may be interested to see how we
handle these standard matters of style.

SOURCE FILE CONVENTIONS
Use the following conventions to keep your source files easy to read, easy to use, and
legally protected.

Include a copyright notice. To protect your intellectual property rights, include
the following line at the front of every file you create:

// Copyright © 1990 ~~~Your name or company~~~. All rights
reserved.

UNOFFICIAL

C++ STYLE

GUIDE

DAVID GOLDSMITH
JACK PALEVICH

d e v e l o p April 1990

DAVID GOLDSMITH has been at Apple for four
years, and now focuses his energies on future
system software. He has also worked on
MacApp and the Macintosh Toolbox (during the
inception of System 6.0). He received an MA in
physics from Harvard in 1980, and since has
worked for Wang, Mosaic Technologies, and as
a contractor for Lotus. For him, the thrill of the job
is “making computers available to people whose

lives don’t revolve around computers.” His main
interest outside the office is his family, with its
new member, eight-month-old Jane. He also
enjoys reading and listening to classical music. •

“HackerJack” Palevich is our local meerkat
handler (look that one up in National
Geographic!). He has a degree in computer
science from MIT, where his “Thesis of Terror”

204

You can make the © by typing Option-g. The “All rights reserved” is specifically for
our foreign friends. (We bet you thought all you had to say was “Copyright.” Ha!)
In addition, any binary files you ship should contain a copyright notice somewhere.

If you modify a file in more than one calendar year, you must list every year in which
you modified it. For example,

// Copyright © 1988-1990 ~~~Your name or company~~~. All rights
reserved.

Add helpful comments. We won’t go into a lengthy discussion of comment style
here. We’ll only say it’s good to have them. Also, comments that describe something
subtle about the source are more helpful than comments like assign a to b.

Be careful about omitting argument names in function prototypes. It’s OK to
omit dummy argument names in function prototypes, but only if the meaning is
clear without them. It’s almost always necessary to include argument names when
you have more than one argument of the same type, as it’s impossible to figure out
which one is which otherwise.

double cosine(double angle); // Prototype with argument name.
double cosine(double); // Reasonable omission of arg.
name.
TPoint::TPoint(short h, short v); // Easy to understand.
TPoint::TPoint(short, short); // Impossible to figure out.

If you are getting compiler warnings of the form “warning: foo not used” where foo
is an argument to a function, leaving the argument name out of the function header
for the function’s implementation will stop the warning. Whether or not an
argument name appears in the function’s declaration has no bearing on the warning.

void f(short foo, long bar); // Prototype.
void f(short /* foo */, long bar) // Implementation.

{
bar = 7;
}

Put only related classes in one file. To keep your class definitions under control
and to make life easier for those trying to decipher them, follow the lead of the
MPW {CIncludes} files. Limit each header file to a single class definition or a set of
related class definitions. MPW C has always followed this convention, for example
Windows.h, Controls.h versus Toolbox.h.

On the implementation side, put only one class implementation in a given source file
(classes private to the implementation of the class may be declared and implemented

UNOFFICIAL C++ STYLE GUIDE April 1990

205was a prelude to his video game days at Atari.
Two years at Apple have landed him in video
conferencing and screen sharing. As the son of
an American diplomat, he’s lived in some pretty
interesting places (Berlin, Poland, Laos, Greece,
Maryland, and Cupertino). He didn’t buy an
Apple II in the eleventh grade, and has regretted
it since. His interests include filmmaking,
animation, and aerobics. He claims to be

halfway a nerd, but only his wife knows for sure.
He also likes to tell stories, so we’re not sure that
any of this is really true. •

in the same source file). Name the file after the class, but without the initial T—for
example, put the class TMyView in MyView.c.

Make it easy to use your header files. Trying to figure out whether you’ve
included all the necessary antecedents for a header file is a pain. To save your clients
this pain, enclose the definitions in your header with code that looks like the
following:

#ifndef __MYCLASS__
#define __MYCLASS__
#include "prerequisite1.h"
#include "prerequisite2.h"
… definitions for MyClass
#endif

Now you can include your header’s prerequisites without caring whether they’ve
already been included elsewhere (assuming that everyone follows this convention).
The name of the preprocessor variable should be all upper case and consist of the
file name (without .h) surrounded by two underlines on either side.

To speed up compilation, you can even do this in your files that use foo.h:

#ifndef __FOO__
#include "foo.h"
#endif

which skips the overhead of reading and parsing foo.h.

Store files in Projector. As soon as a file is published for use by others (for example,
you stick it on a file server so others can use it), you should start storing it in
Projector. Projector is part of MPW 3.0. It consists of a collection of built-in MPW
commands and windows that help programmers (both individuals and teams) control
and account for changes to all the files (documentation, source, applications, and so
forth) associated with a software project. This lets you recreate old versions if
necessary, and makes sure things don’t get lost.

Since the whole point of using Projector is to make it easier for those who follow
you in the great chain of software being, please use the features that will make their
lives easier. Try to maintain a proper set of versions (for example, don’t remove your
file from Projector and then add it again—that loses all the revisions), and use the
comment features when you check things in and out.

NAMING CONVENTIONS
To make C++ even more readable, you should adopt a consistent set of naming
conventions. Here at Apple we use the following conventions:

d e v e l o p April 1990

This is an enhanced version of an internal,
informal Apple style guide written by David
Goldsmith. Jack Palevich edited the original
document to bring it into its current form. The
opinions expressed in this document are David’s
and/or Jack’s. They are not necessarily those of
Apple Computer, Incorporated. This work is
Copyright © 1989-1990 Apple Computer, Inc. .
All rights reserved. •

206

Type names All type names begin with a capital letter. In addition, class names
begin with a T for base classes, and an M for mix-in classes. See “Multiple
Inheritance” in Part 2. Examples: Boolean, TView, MAdjustable. Never use C
types directly; see below.

Member names Member names should begin with an f, for “field.” Member
function names need only begin with a capital letter. Examples: fVisible, Draw.

Global names Names of global variables (including static members of classes)
should begin with a g. Examples: gApplication, TGame::gPlayingField.

Local and parameter names Names of local variables and function arguments
should begin with a word whose initial letter is lower case. Examples: i, thePort,
aRegion.

Constant names Names of constants should begin with a k. Example:
kSaveDialogResID.

Abbreviations It’s best to avoid abbreviations, especially ad hoc ones. Inconsistent
use of abbreviations makes it hard for clients to remember the correct name of a
function or variable. Abbreviations are OK as long as they are consistent and
universal. For example, don’t use VisibleRegion some places and VisRgn others;
use one or the other throughout.

Multiple-word names In any name that contains more than one word, the first
word should follow the convention for the type of the name, and subsequent words
should immediately follow, with the first letter of each word capitalized. Do not use
underscores in names. Here are multiple-word examples of each type:

TSortedList class name
fSubViews data member of class
DrawContents function member of class
gDeviceList global or static data member
theCurrentSize local or parameter
kMaxStringLength constant

Names with global scope Any name with global scope (for example, class names,
typedefs, constants, globals) should have a distinctive and unique name. This will help
avoid name conflicts. Names like Short and Number are fairly nondescript and likely
to wind up conflicting with identifiers from other header files accidentally (this is a
big problem with MPW and the ROM interfaces today). Better in these cases would
be kShortLived (to follow our advice on constant names) or StringLength (more
descriptive of the function). When you name something with global scope, think
about the fact that it’s in a global name space and someone may have to figure out
what it is without context. Use more specific names rather than more general ones.

UNOFFICIAL C++ STYLE GUIDE April 1990

207

C++ relieves this problem somewhat by adding enumerations with class scope and
static members. Enumerations declared inside classes are accessible using
qualification, as in

class TFoo {
public:

enum {kFred, kBarney};
…
};

i = TFoo::kFred;

This lets you put constants associated with different classes into different name
spaces, somewhat like when C changed a few years back so that structure members
from different structs were in different name spaces.

Static members let you put ordinary functions and global variables associated with a
class into the scope of the class. For example:

class TView {
public:

static void Initialize();
static const TView kWhizzyView;
static const long kMagicNumber;

…
};
TView::Initialize();
…TView::kWhizzyView…
i = TView::kMagicNumber;

Putting such global functions and variables into the scope of the class helps avoid
name collisions. In fact, we frown on the use of ordinary globals: most global
functions and variables should be static members of some class. The same with
constants; they should be made members of an enumeration inside a class, if
possible. Of course, global variables that are not constants of the sort shown above
shouldn’t be public at all; instead, access should be through static or normal member
functions:

class TFoo {
public:

static Boolean gWhoopeeFlag; // BAD!
}
TFoo::gWhoopeeFlag = TRUE; // BAD!

d e v e l o p April 1990

208

THE PREPROCESSOR
One of the most powerful features of the C and C++ languages is the C
preprocessor.

Don’t use it.

Except for include files and conditional compilation, C++ has features that supersede
most of the techniques that used the preprocessor. Sometimes you need to use the
preprocessor to accomplish things you can’t with C++, but far less often than with
straight C.

Use const for constants. Don’t use #define for symbolic constants. Instead, C++
defines the const storage class. As with #define symbols, these are evaluated at
compile time. Unlike #define symbols, they follow the C scope rules and have
types associated with them. You can also use enums. For example:

#define kGreen 1 // No no
const int kGreen = 1; // Better
enum Color {kRed, kGreen, kBlue}; // Best

This prevents a host of problems. With #define symbols, for example, if you
accidentally redefine a name, the compiler will silently change the meaning of your
program. With const or enums, you’ll get an error message. Even better, with enums
you can put the identifiers in the scope of an enclosing class; see “Naming
Conventions,” earlier. As an extra bonus, each enumeration defined is treated as a
separate type for purposes of type checking (much like the way scalars are handled in
Pascal).

Unlike in ANSI C, objects in C++ that are declared const and initialized with
compile-time expressions are themselves compile-time constants (but only if they
are of integral type). Thus, they can be used as case labels and such.

Use enum for a set of constants. If your constants define a related set, don’t
use separate const definitions. Instead, make your constants an enumerated type.
For example:

// Bleah.
const int kRed = 0;
const int kBlue = 1;
const in kGreen = 2;
// Allll Riiiight!
enum ColorComponent {kRed, kBlue, kGreen};

This causes ColorComponent to become a distinct type that is type-checked by the
compiler. Values of type ColorComponent will be automatically converted to int as
needed, but integers cannot be changed to ColorComponents without a cast. If you
need to assign particular numerical values, you can do that too:

UNOFFICIAL C++ STYLE GUIDE April 1990

209

enum ColorComponent {kRed = 0x10, kGreenk = 0x20, kBlue = 0x40};

Where possible, the type declaration should occur within the scope of a class. Then,
references to the constants outside of the class’s member functions must be qualified:

class TColor {
public:

ColorComponent enum {kRed, kGreen, kBlue};
...
}
foo = TColor::kRed;

Note that the enum type name is not local to the class; only the actual constants.
The enum type name should not be qualified.

Use inline for macro functions. Function macros are another source of fun
problems in C programs, like this classic example:

#define SQUARE(x) ((x)*(x))
SQUARE(y++);

C++ allows functions to be declared inline (see also “Inline Functions” in Part 2),
which completely obviates the need for function macros. Like const, inline functions
follow the C++ scope rules and allow argument type-checking. Both member
functions and nonmember functions can be declared inline. So the preceding
example becomes

inline int Square(int x)
{

return x*x;
};
Square(y++);

which does the right thing, and is actually more efficient than the macro version (as
well as being correct).

Use the preprocessor only in these cases. As stated earlier, the preprocessor is
necessary for #include files, and preprocessor symbols are necessary for
conditional compilation.

USE OF CONST
Both ANSI C and C++ add a new modifier to declarations, const. You use this
modifier to declare that the specified object cannot be changed. The compiler can
then optimize code, and also warn you if you do something that doesn’t match the
declaration. Here are some examples of const declarations:

const int *foo;

d e v e l o p April 1990

210

This is a modifiable pointer to constant integers. foo can be changed, but what it
points to cannot be.

int *const foo;

This is a constant pointer to modifiable integers. The pointer cannot be changed
(once initialized), but the integers it points to can be changed at will.

const int *const foo;

This is a constant pointer to a constant integer. Neither the pointer nor the integer
it points to can be changed.

Note that const objects can be assigned to non-const objects (thereby making a
copy), and the modifiable copy can of course be changed. However, pointers to const
objects cannot be assigned to pointers to non-const objects, although the converse is
allowed. Both of these assignments are legal:

(const int *) = (int *);
(int *) = (int *const);

Both of these assignments are illegal:

(int *) = (const int *);
(int *const) = (int *);

When const is used in an argument list, it means that the argument will not be
modified. This is especially useful when you want to pass an argument by reference,
but you don’t want the argument to be modified. For example:

void BlockMove(const void* source, void* destination, size_t
length);

Here we are explicitly stating that the source data will not be modified, but that the
destination data will be modified. (Of course, if the length is 0, then the destination
won’t actually be modified.)

All of these rules apply to class objects as well; you can declare something (const
TView *). There used to be a hole in the language, however: you could call any
member function of an object using a const pointer to it, and that member function
could modify the object (since there was no way to declare which member functions
modify the object). For example, this was legal:

const TView *aView;
…
aView->ModifySomething();

UNOFFICIAL C++ STYLE GUIDE April 1990

211

To plug this hole, member functions that will be called for const objects must now
be declared const; see the 1985-1989 paper discussed in the sidebar “Background
Reading” for details. The syntax looks like this:

class TFoo {
public:

void Bar1() const;
void Bar2();

};
…
const TFoo *fp;
fp->Bar1(); // legal
fp->Bar2(); // illegal (actually, just a warning for now)

Note that inside a const member function, the pointer has type const TFoo *, so
you really can’t change the object. You could cast the pointer to be just a TFoo *, but
then you may be surprising your clients. Even though you think that your change to
the object is not externally visible (that is, it doesn’t change the state of the object as
far as clients are concerned—one example is an internal cache), it can have an impact.
If your object is being used by an interrupt routine that “reads” it, your client may
assume that it’s OK to call a const member function, since he or she thinks the object
isn’t going to change. However, if the internal state of the object changes anyway,
access by multiple “readers” will cause its state to become corrupted.

Another example is an object placed in ROM. The client thinks it’s all right to call a
const member function of the object, and then gets a bus error because the
attempted write access fails.

The bottom line is that if you attempt to cast your this pointer to a non-const
version inside a const member function, you had better think through the
implications of this for your clients, and you had better document it.

PART 2: USING LANGUAGE FEATURES
In this part you’ll find advice on using particular features of the C++ language. The
topics are arranged roughly in order of increasing difficulty.

GLOBAL VARIABLES (!)
Static class members are the same as global variables (actually, better).
Static class members do have one major advantage over regular globals: scope.
Regular globals (that is, static extern variables) have global scope. That means
there are potential name collisions with globals from any other include file the
developer may use. Static class members, however, have full scoping: they’re qualified
by the name of their class, and don’t conflict with any identifier outside the class.
They can also be protected. If you were going to have a simple global, consider a
static member instead.

d e v e l o p April 1990

212

Be careful about static initialization. If you design a class that depends on
some other facility in its constructor, be careful about order dependencies in static
initialization. The order in which static constructors (that is, the constructors of
objects with static storage class) get called is undefined. You cannot count on one
object being initialized before another. Therefore, if you have such a dependency,
you must either document that your class cannot be used for static objects, or you
must use “lazy evaluation” to defer the dependency until later.

INLINE FUNCTIONS
We mentioned inline functions under “The Preprocessor,” earlier. Never use them.
Well, hardly ever. The main reason is that they get compiled into your caller’s code.
This makes them a tad difficult to override. Also, you have to ship their source code
to everyone. There are, however, a few times when it’s OK to use them.

Use an inline function if it expands to call to something else. If your inline
function just calls something else that isn’t inline, that’s fine, as long as the other
function has identical semantics. An example: You might have a class that defines a
virtual function IsEqual, which compares two objects for equality. It also has an
inline definition for operator ==, as a notational convenience. Since operator==
just turns around and calls the IsEqual function, it’s OK for it to be inline and not
virtual. This does not apply if your function just happens to have a one-line
implementation.

Use an inline function if efficiency is very, very important and you’ll never
change it. Of course, the other time it’s OK to use inline is if efficiency is extremely
important. Note that code size may increase due to duplication of code. You may
actually decrease system performance by making something inline, since you’re increasing
the amount of code that must fit in memory. Also, once a function is more than a
couple of lines long, the function call overhead is a very small fraction of the total
time, and you are not buying much by making it inline.

An example is addition for a complex number type; here, the efficiency consideration
together with the low probability of a future change makes an inline implementation
a good idea. The complex number implementation shipped with C++ makes addition
and subtraction inlines (fairly short), but makes multiplication and division regular
functions (they are longer, so the overhead for a call is less important and the code
size issue is more important).

If you don’t know (that is, God has told you in person) that your implementation must be inline,
don’t make it inline. Build it normally and then measure the performance. Experience has shown
again and again that programmers spend lots of time optimizing code that hardly ever gets
executed, while totally missing the real bottlenecks. The empirical approach is much more
reliable. Experience has also shown that a better algorithm or smarter data structures will buy
you a lot more performance than code tweaking.

UNOFFICIAL C++ STYLE GUIDE April 1990

213

Don’t write inlines in declarations. C++ has two ways of declaring an inline
member function (of course). One is to declare the member function normally and
then supply an inline function definition later in the same header file. The other is
to write the function definition directly in the class declaration. Never use this latter
form; always declare the function normally and then put an inline definition at the
end of the file. That way, it’s much easier to change between inline and regular
implementations of a function, and it’s no less efficient. The fact that something is
inline should not be made obvious in the class declaration, since clients may start
counting on it.

class TFoo {
public:

int TweedleDee() { return 1; }; // Bad!
int TweedleDum(); // Good!

};

inline int TFoo::TweedleDum()
{

return 2;
};

UNSPECIFIED AND DEFAULT ARGUMENTS
It’s possible to partially circumvent the strong type checking C++ imposes on
function arguments. You should avoid doing this if at all possible.

Don’t use unspecified arguments. C++, like ANSI C, allows you to cling to C’s
wild and woolly past, by declaring functions that take unspecified numbers and types
of arguments, the classic example being

void printf(char *, ...);

This is a cheesy leftover from the Cretaceous era. There are very few functions
indeed that need to have an interface like this. If you want to be able to omit
arguments, for example, you can use default arguments or function overloading
(both defined below). Unspecified arguments come from hell.

Do use default arguments, but cautiously. A better technique than unspecified
arguments is default arguments. You can specify default values for arguments that
are only used sometimes. This is especially handy in constructors. For example,

TView::TView(TVPoint itsSize, TVPoint itsLocation, TView
*itsSuperView = NIL);

which can be called either with three arguments or with two. This can help you
avoid that agonizing decision as to whether to include an option or not. However, be
sparing; clearly, long strings of defaults can make it hard to figure out what’s going
on. Furthermore, you can only leave off arguments at the end, not the middle, so if

d e v e l o p April 1990

214

you have ten defaults and someone wants to specify the last one, they must specify
the preceding nine as well. This sort of defeats the idea. Having more than two
default arguments is a bad idea, and even two is questionable.

Also remember that for both default arguments and function overloading, having
too many versions of the same function decreases the safety provided by type
checking, and makes it more likely that you will accidentally call a different version
from the one you intended to call.

FUNCTION NAME OVERLOADING
C++ also lets you overload function names, by letting two functions (member or
nonmember) have the same name as long as the types of their arguments differ. This
feature is useful when you want to have different versions of the same function; they
should all be related. For example, you may want to have a constructor that takes
lots of options, as well as one that is simple to use. Also, you may want to make
functions that take different types. Examples include:

Rectangle::Rectangle(Point leftTop, Point rightBottom)
Rectangle::Rectangle(short top, short left, short bottom, short
right)
void TPort::MoveTo(short, short)
void TPort::MoveTo(Point)
TComplex TComplex::Add(TComplex)
TComplex TComplex::Add(int)

This can be very useful but also can cause problems.

Don’t unintentionally use the wrong argument type. The biggest problem is
the unintentional use of the wrong argument type when overloading, which defines
a new function. If TView has a member function

TView::Print(const TPrintRecord *)

and you define a subclass where, intending to override this function, you declare

TMyView::Print(const TStdPrintRecord *)

or

TMyView::Print(TPrintRecord *)

or even

TMyView::print(const TPrintRecord *)

because you forgot the type of the original argument (or misspelled the name), C++
assumes you don’t want to overload the original function and simply declares it as a

UNOFFICIAL C++ STYLE GUIDE April 1990

215

new function. You have not overridden the original; it’s still available. The latest
version of CFront will warn you about the first two cases, but not the last.

Also remember that, as mentioned earlier, the more variants a function has, the
easier it is to call the wrong one unintentionally because the arguments you supply
just happen to match another variant.

Watch your overrides. If you have an overloaded member function (whether
virtual or not), and you override it in a derived class, then your override hides all
overloaded variants of that member function, not just the one you overrode. Thus, if
you want to override an overloaded member function, you must override all of the
overloaded variants. C++ treats the overloaded function as a single entity; the scope
resolution rule for C++ is to find the first class that has any function with that name
defined, then look for a match based on argument type. The C++ team at AT&T
believes this is the correct rule; their reasoning is that an overloaded set of functions
is really just one function with a bunch of variants, and that you should not be
naming functions with the same name unless they are really the same function.

An example that illustrates this behavior follows:

class A {
public:

void Foo(long);
void Foo(double);

};

class B: public A {
public:

void Foo(double);
};

B bar;
bar.Foo(2);

The call actually winds up calling B::Foo(double) after coercing the integer
argument to double.

On a positive note, CFront will warn you if you override some but not all of a set of
overloaded member functions. For details, see the 1985-1989 paper discussed in the
“Background Reading” sidebar, and the reference manual.

Don’t abuse function overloading. Function overloading can be abused.
Functions should not have the same name unless they basically perform the same
operation, as in the preceding examples. If that is the case, then having the functions
identically named can be a great help in reducing the number of things a
programmer must remember.

d e v e l o p April 1990

216

OPERATOR OVERLOADING
Another fun C++ feature is the ability to define operators for your own classes. If
you define a fixed-point data type, C++ lets you define the standard arithmetic
operators for it, which makes code a lot easier to read.

Use operator overloading only where appropriate and clear. Operator
overloading also has tremendous potential for abuse. Defining the + operator for
fixed-point numbers helps clarify code. Defining it as set union is also fairly clear.
Defining => to mean “send a message” is crazy. Operator redefinition only helps
when the new function is similar to the standard meaning of the operator; otherwise,
it just confuses people. An example is C++’s streams facility, which redefines < and
> as output and input operators. This confuses a lot of people.

If you like, use functional syntax to call a base class’s operator. C++
occasionally delivers a pleasant surprise. One example is the syntax for calling
overloaded operators. Of course, you can use the usual inline operator syntax; that’s
why C++ has operator overloading. The surprise is that you can also use functional
syntax, which is sometimes essential, especially for calling a base class operator. Here
is an example of a subclass operator using the base class’s operator:

const TWindow& TWindow::operator=(const TView &v)
{

this->TView::operator=(v);
return *this;

}

(The explicit this-> is actually unnecessary here but was included for clarity.) In
this example, TWindow has a base class TView, and we want to be able to assign a
TView to a TWindow by just copying the TView part and leaving the rest of
TWindow alone. To do this, we want to use TView’s assignment operator. The
functional notation here is the only way to do it. The pleasant surprise was that this
notation is allowed.

TYPE COERCION
Use type coercion selectively. Like so many C++ features, type coercion can
either clarify or obfuscate your code. If a type coercion seems “natural,” like the
coercion between reals and integers, then providing a coercion function seems like a
good idea. If the coercion is unusual or nonsensical, then the existence of a coercion
function can make it very hard to figure out what’s going on. In the latter case, you
should define a conversion function that must be called explicitly.

In general, coercion operators are useful in a way similar to operator overloading,
and the same guidelines make sense.

Define type coercion rules for C++ to use. C++ will automatically coerce one
type to another, but only if there is a direct way of doing so. In other words, if a

UNOFFICIAL C++ STYLE GUIDE April 1990

217

coercion is defined from type A to type B, C++ will use it automatically where
appropriate. It will not concatenate coercion operators if there is not a direct
coercion. So even though a coercion may be defined from type A to type B, and type
B to type C, C++ will not automatically coercion type A to type C (you can do it
explicitly via casts, though).

There are two ways of defining type coercions for C++ to use: constructors and type
coercion operators. They are appropriate under different circumstances. Note that
since all coercion operators must be member functions of some class, it is not
possible to define a coercion from one nonclass type to another nonclass type. Also
note that if more than one function is defined to perform the same coercion, they
cannot be used implicitly or via a cast, since an ambiguity exists as to which to call.
They can still be invoked explicitly.

If you have a constructor with a prototype that looks like any of the following:

TargetClass::TargetClass(SourceType)
TargetClass::TargetClass(SourceType &)
TargetClass::TargetClass(const SourceType &)

then C++ will use it to convert from SourceType to TargetClass where
appropriate. This form is useful when (1) the target type is a class (it can’t be used
for a primitive target type), and (2) the author of the target type wants to provide a
coercion. If either of these conditions don’t hold, you can use the second form of
type coercion.

If the source type is a class, you can define a member operator function to perform
the coercion. These operators have prototypes that look like

SourceClass::operator TargetType()

TargetType may be either a primitive type or a class. It need not be the name of a
type; it can be any type specifier (as long as it does not contain array of [] or
function () forms. Those must be handled via a typedef). This form is appropriate
when the target type is not a class, or the source code for the target type is not
available (that is, the coercion is being provided by someone else).

ENCAPSULATION AND DATA-HIDING
Make explicit use of public, private, protected. C++ thoughtfully allows you to
leave out the private keyword in several places. Don’t: it decreases C++’s well-known
clarity. Class definitions should always explicitly state the visibility of their members
and/or base classes. Write it like this:

d e v e l o p April 1990

218

class TFoo: public TBar, private MBaz {
public:

public members;

protected:
protected members;

private:
private members;

};

Your public interface should come before your protected interface, and since your
private interface is only necessary to make the compiler happy, it should be last.

Use no public or protected members that aren’t functions. Always make all
member variables private. (It’s OK to make functions protected or public. In fact,
classes that don’t are very boring.) You can provide access functions to get and set
your variables if you want (although you should think about exporting a more
abstract interface instead). If you’re really concerned with performance, you can
make those functions inline (but see “Inline Functions,” earlier). Remember, don’t
compromise for the sake of performance until you have numbers to base your decision
on!

Understand what “protected” really means. What the “protected” access mode
means is not completely clear from Bjarne’s various books and papers, so we will
attempt to clarify the issue.

When a member of a class is declared protected, to clients of the class it is as if the
member were private. Subclasses, however, can access the member as if it were
declared private to them. This means that a subclass can access the member, but
only as one of its own private fields. Specifically, it cannot access a protected field of
its parent class via a pointer to the parent class, only via a pointer to itself (or a
descendant). Here are some examples:

class A {
protected:

void Bar();
};

class B: public A {
void Foo();

};

class C: public B {
…
};

void B::Foo()

UNOFFICIAL C++ STYLE GUIDE April 1990

219

{
A *pa;
B *pb;
C *pc;

pa->Bar(); // Illegal: A::Bar() is "private"
Bar(); // OK: "this" is of type B*
pb->Bar(); // Also OK
pc->Bar(); // Also OK

};

Protect constructors for abstract base classes. It’s frequently useful to have a
class that is not meant to be instantiated as an actual object, but only to be used as a
base class for other classes. Examples include classes such as TApplication or
TView. Such classes are called abstract base classes. If you want to enforce this status,
you can make it impossible to instantiate such a class by making all of its
constructors protected. In that case, the object cannot be created by itself, but only
as part of a derived class.

In addition, there is a way to declare a member function abstract (that is, to require
that it be overridden in descendants); this is called a pure virtual function. A class with
such a member function cannot be instantiated, nor can any descendant class, unless
all such functions are overridden. The syntax for this is as follows:

class Foo {
public:

virtual void Bar() = 0;
};

You can also declare some (but not all) of the constructors for a class protected if you
want those constructors to be used only by derived classes. The class can still be
instantiated using the constructors that are public.

As a shortcut, declare private base classes. When you declare a base class
private in C++, the derived class inherits all of its members as private members. This
means that the derived class is not considered a subtype of the base class, even
though it is a subclass. You cannot pass a pointer to an object of the derived class
when a pointer to the base is expected. This lets you inherit the behavior of a class
without inheriting its type signature.

Since the derived class is not a subtype, it doesn’t have an “is-a” relationship with the
base class. Why not just make it a member, then? This is what you would normally
do. However, if you need to reexport most of the functionality of the base class, you
would have to write wrapper functions in your derived class that turned around and
called the member class functions. Instead, you can use this slimy shortcut.

d e v e l o p April 1990

220

By making the class a private base class, you don’t inherit the type signature, but you
do inherit the functionality, which can be made selectively visible without having to
write wrapper functions. If A is a private base class of B, and B wants to make
A::Foo() visible, then write the following in the declaration of B:

…
public:

void A::Foo();

which makes Foo() visible to clients of B.

Use friends sparingly. Friend classes and functions are another C++ feature.
Needless to say, they are a breach in the safety of types and in the integrity of the
data abstraction provided by classes. If you have friends, you’re probably doing
something wrong (like taking frequent showers).

About the only time this feature should be used is when implementing binary
operators that can’t be member functions. Another circumstance is a set of tightly
related classes (an example from Bjarne’s book is matrices and vectors). Generally,
however, avoid friend classes and functions.

Hide implementation classes by declaring them incomplete. Sometimes a
public class (one that you export to clients) must refer to a class that is only used in
your implementation. How do you avoid exposing the implementation class? If the
only reference is a pointer, then you can declare the implementation class as an
incomplete class:

class TImplementation;

class TInterface {
...
private:

TImplementation *fHidden;
};

This also works if your member functions have arguments of type TImplementation
* or TImplementation &. If you have actual TImplementation objects as fields,
though, you must include the full declaration of TImplementation.

UNOFFICIAL C++ STYLE GUIDE April 1990

221

Don’t expose yourself. The most important thing to remember is not to expose
your implementation to either your clients or your subclasses (which are really just
another kind of client). If you do so, you are tying the hands of those who must
enhance your code.

It is very important to make sure that your class acts like a black box. The interface
you export to clients and subclasses should reflect precisely what they need to know
and nothing more. You should ask yourself, for every member function you export
(remember, you’re not exporting any data members, right?), “Does my client (or
subclass) really need to know this, or could I recast the interface to reveal less?”

If you find that the interface to your class consists mostly of functions to get and set
your private data members, you should ask yourself whether your object is really
defining an abstract enough interface. The key is to think about the abstraction that
your object represents and how clients view and use that abstraction, not how it is
implemented. This is possibly the hardest thing to do in object-based design, but is
also one of the biggest advantages and has the biggest long-term payoff.

See Alan Snyder’s paper. For an excellent discussion of the issues involved in
data abstraction, encapsulation, and typing, see Alan Snyder’s paper “Encapsulation
and Inheritance in object-based Programming Languages” in the 1986 OOPSLA
proceedings.

VIRTUAL FUNCTIONS
(Almost) all member functions should be virtual. Virtual functions are pretty
inexpensive. Because of this, any class that is intended to be used in a polymorphic
fashion (that is, a pointer to a subclass may be passed where a pointer to the class is
expected) should have all of its functions virtual. It’s hard to guess in advance which
functions may be overridden in the future (although private functions can’t be, and
so need not be virtual).

You should only use nonvirtual functions where you are very sure that the class (or
this particular aspect of it) will never have a subclass. An example is a fixed-point data
type, which is self-contained, or a graphics point, or other similar classes.

The assignment operator is also a special case. Assignment isn’t inherited like other
operators. If you do not define an assignment operator, one is automatically defined
for you; it consists of calls to the assignment operators of all of your base classes and
members (this is discussed in the 1985-1989 paper mentioned in the sidebar
“Background Reading”). It’s OK to make your assignment operator virtual, but it’s
only useful under rather specialized circumstances. A virtual function call will be
generated for a virtual assignment operator only when the left-hand side of an
assignment is a reference or a dereferenced pointer.

d e v e l o p April 1990

222

(Almost) all destructors should be virtual. What the !@&#%! is a virtual
destructor, you ask? And well you might, because this is actually something you
should never have had to worry about. What do you think happens here?

class A {
~A();

};

class B: A {
~B();

};

A *foo = new B;
delete foo;

B::~B gets called, then A::~A, right? Wrong! Only A::~A gets called! Isn’t that
special? For the right thing to happen, you must declare your destructors virtual.
For example,

virtual ~A();
virtual ~B();

If you do this, the right destructors will get called. Needless to say, any class that has
a virtual member function, inherits one, or is used in a polymorphic fashion must
have its destructor declared virtual, or horrible things will happen.

Be careful when you call virtual functions in constructors and destructors.
If you call a virtual function from a constructor, be aware that the version of the
function that corresponds to the constructor will be called, not the version that
would normally be called. For example, if A has a method foo, B is a subclass of A,
and B overrides foo, a call to foo from A’s constructor calls A::foo, not B::foo.
A call to foo from B’s constructor does call B::foo. This is sufficiently confusing
that it is best not to call a virtual function from a constructor at all. Naturally, this
only applies to virtual functions of the object whose constructor is running; virtual
functions of other objects (including those of the same class) are perfectly fine
(unless they in turn call one of your virtual functions).

If you think about it, it doesn’t make sense to call virtual functions from constructors
and destructors. Since base class constructors are called before derived class
constructors, and base class destructors are called after derived class destructors, the
object is in a partially valid state. If a virtual function overridden in a derived class is
called from the base class constructor, it may access derived class features that have
not been initialized. Similarly, if it is called from the destructor, it may access
features that have already been destroyed.

UNOFFICIAL C++ STYLE GUIDE April 1990

223

Use virtual functions the right way. If you are coming from the non-object-based
programming world, a word about use of virtual functions might be in order. Virtual
functions should be used whenever you want to have more than one implementation
of the same abstract class. They allow the system to defer the decision on which
function to execute until run time.

The right way to use virtual functions is to structure them around well-defined
abstractions. If someone is to override a virtual function, they must have a clear
definition of what the function does, even if they only call the inherited version after
a little bit of processing.

The wrong way to use virtual functions is via a “come-from” mechanism like some
Macintosh trap patches. Don’t override a virtual function because “I know it’s called
from over here with these parameters.” Needless to say, this wreaks havoc with the
data abstractions that are one of the major benefits of object-based programming.
This is why the function must have a definition that is clear in terms of the object it
belongs to, without any reference to its possible callers. If you override a function,
the override must make sense in terms of the definition of the function itself.

MULTIPLE INHERITANCE
Multiple inheritance is a fairly new feature in object-based languages. To understand
it better, look at Figure 1. In the single inheritance class hierarchy on the left, each
class has only one parent. By contrast, in the multiple inheritance class hierarchy on
the right, a class can have more than one parent. Note, for instance, that TAirplane
inherits from both MFlyingObject and MVehicle.

Figure 1.
Single Inheritance vs. Multiple Inheritance

Use in a controlled fashion. With multiple inheritance, there is great potential for
designing a confusing class hierarchy that resembles a spaghetti bowl. Here are some
guidelines for use of multiple inheritance.

TObject

TView TList

TWindowTControl TSortedList

TPictureTButton

MFlyingObject MVehicle

TBird TAirplane TCar

d e v e l o p April 1990

224

We start by artificially partitioning classes into two categories: base classes and
mix-in classes. To distinguish the two, base class names begin with T (for example,
TView), and mix-in class names begin with M (for example, MEditable). Base
classes represent fundamental functional objects (like a car); mix-ins represent
optional functionality (like power steering).

The first guideline is: A class can inherit from zero or one base classes, plus zero or
more mix-in classes. If a class does not inherit from a base class, it probably should
be a mix-in class (though not always, especially if it is at the root of a hierarchy).

The second guideline is: A class that inherits from a base class is itself a base class; it
cannot be a mix-in class. Mix-in classes can only inherit from other mix-in classes.

The net effect of these two rules is that the base classes form a conventional,
tree-structured inheritance hierarchy rather than an arbitrary acyclic graph. This
makes the base class hierarchy much easier to understand. Mix-ins then become
add-in “options” that do not fundamentally alter the inheritance hierarchy.

Like all guidelines, this one is not meant to be hard and fast. Multiple inheritance
can and should be used in other ways as well if it makes sense. The fundamental
thing to keep in mind is that people (including programmers) are better at
understanding regular structures than arbitrary acyclic graphs.

As part of multiple inheritance, C++ contains a new feature called virtual base classes.
The trouble is, if both B and C are subclasses of A, and D has both B and C as base
classes, then D will have two A’s if A is not virtual, but only one A if it is. This is a
very confusing situation, and no matter which alternative you choose, programmers
will have a hard time understanding it. To avoid getting into a situation like this,
follow the preceding guidelines for use of multiple inheritance. And incidentally,
using virtual bases presents another problem: once you have a pointer to a virtual
base, there’s no way to convert it back into a pointer to its enclosing class.

It’s OK to have multiple occurrences of a base. Sometimes the same base class
(it should be a mix–in) will occur more than once as an ancestor of a class. It doesn’t
hurt to have a base class twice (aside from wasting space because of multiple pointers
to the virtual function table) and if you need to cast back from the base class pointer
to something else you may not have a choice, but it’s really only useful to have a base
class twice if data members are associated with it.

UNOFFICIAL C++ STYLE GUIDE April 1990

225

PART 3: DESIGN ISSUES

In this part you’ll find a discussion of general problems of programming in C++.

WORKING IN A VALUE-BASED LANGUAGE
C++ has a different object model from Object Pascal or Smalltalk. The most
fundamental difference is that whereas Object Pascal and Smalltalk are reference
based (that is, like Lisp, assignment means copying a pointer), C++ is value based. By
this we mean that classes in C++ are treated just like primitive types, whereas in
Object Pascal objects are treated very differently from primitive types. This is actually
a benefit, since all types in a C++ program are handled in the same style, as opposed
to the multiple styles in Object Pascal. (Smalltalk, like C++, is also self-consistent.)
There are some implications for your C++ programming style, however.

Don’t use pointers unless you mean it. Pointers should be used in C++ in the
same way you would use them in plain C or plain Pascal; that is, when you really
want multiple references to the same object, or a dynamic data structure. If you
really just want to pass something by reference to avoid copying, then you can use a
reference rather than a pointer (see below). In fact, you can even pass a class by value
if the copying overhead isn’t too high and you don’t care about polymorphism (for
example, the class has no virtual functions).

Don’t allocate storage unless you must. In a reference-based language like
Object Pascal or Smalltalk, all objects must be heap allocated. In C++, it’s better to
treat values the same way you would in C. For example, instead of defining a Clone
operator, overload the assignment operator; instead of allocating and returning an
object, have the caller pass one in by reference and set it. This allows your classes to
be treated just like primitive types, and in the same style. In general, leave storage
allocation up to the class client.

By doing so, you can make use of one of C++’s unique features: the ability to have
automatic and static objects, and objects as members of classes. No matter how
clever or efficient a storage allocator we have, it can never be as fast as allocating an
object on the stack, or as part of another object. If an object can be local to a
function, there is no storage allocation overhead. Many objects have very localized
scope and do not need to be allocated on the heap.

There is one exception to the rule about allocating an object and returning a
pointer: you must do this when the type of the returned object may vary. Anytime a
function must choose what type of object to return, the function must allocate the
object, not the caller.

It’s still all right for the caller to allocate storage even when the type of object being
passed in may vary, since references, like pointers, can be used polymorphically (that
is, you can specify a TSubFoo& to an argument of type TFoo&). The key question is

d e v e l o p April 1990

226

whether the caller or the function must determine the type. In the former case, leave
allocation to the client; in the latter, the function must allocate the object on the
heap and return it.

Summary: pretend everything is a primitive. In summary, you should design
your classes so that using them is just like using a primitive type in C. This will let
the client use them in a style that is “natural” for C. In cases where you wish to avoid
copying, pass arguments by reference. Use pointers only when you want a truly
dynamic data structure, or when polymorphism demands it (note that references
allow for polymorphism also, since they are really just a different kind of pointer).

UNOFFICIAL C++ STYLE GUIDE April 1990

227

BACKGROUND READING
Bring yourself up to date. You’ve just finished
reading Bjarne Stroustrup’s book The C++ Programming
Language (Prentice-Hall, 1987) and you’re feeling pretty
smug. You’ve finally got C++ nailed.

Wrong.

You still have one more reference to read: the paper “The
Evolution of C++: 1985 to 1989.” This paper is included
with the AT&T C++ Selected Readings manual, which is
available in conjunction with MPW C++.

At least one statement made in earlier versions of the
paper (which were titled “The Evolution of C++: 1985 to
1987”) is wrong. The order of execution of base class
and member constructors and destructors is determined by
their declaration order, not by the order in which calls are
made to such constructors in your constructor’s header.
This is a change to the language that was made after the
1985-1987 paper was written; see the 1985-1989
version for a full discussion.

Other books that give a good discussion of features that
are new in C++ 2.0 are The C++ Primer by Lippman
(Addison-Wesley, 1989) and The C++ Answer Book by
Hansen (Addison-Wesley, 1990). The latter book not only
discusses 2.0 but also gives solutions to all of the
problems in Stroustrup’s book.

Finally, look for Bjarne’s own updated manual, The
Annotated C++ Reference Manual (with Ellis, Addison-
Wesley) to be published later this year.

Read up on ANSI C. If you were whelped on good ole
Kernighan and Ritchie C, you may have a few surprises in
store for you. There have been several changes to the
language as part of the ANSI standardization process. If
you learned C a while back, it might be a good idea to
brush up on ANSI C. We highly recommend the second
edition of Kernighan and Ritchie (The C Programming
Language , Prentice-Hall, 1989), which has appendixes
that detail the differences between the original language
and the ANSI version. Another good book is C: A
Reference Manual, 2nd ed., by Harbison and Steele
(Prentice-Hall, 1987). For purists, the ANSI C draft and
rationale are available from ANSI itself (Draft Proposed
American National Standard for Information
Systems—Programming Language C, 1988, ANSI Doc
No X3J11/88-159).

Study object-based design. Doing a good job of
object-based software design requires more than just
learning an object-based language. The whole point of
object-based languages is to permit a different approach
to software design. This approach takes time and energy
to learn. Without spending that time and energy, it’s not
possible to gain the full benefits of the approach.

That’s why you should read Abstraction and Specification
in Program Development by Liskov (McGraw-Hill, 1987)
and Object-Oriented Software Construction by Meyer
(Prentice-Hall, 1988). The first book does not discuss object-
based design per se, but it does cover the topic of data
abstraction, an important component of object-based
design, very well. The second book is a little pedantic in

POINTERS VERSUS REFERENCES
C++ provides two very similar mechanisms for passing references to entities. One is
the familiar pointer from classic C; the other is a new concept, the reference.
Pointers are declared as follows:

TFoo *fooPtr;

But references are declared like this:

TFoo &fooRef;

A pointer must be dereferenced to access what it points to, but a reference can be
used as is, and acts as a synonym for the object it refers to, both for fetching and
storing. This makes it similar to other highly refined mechanisms, such as
FORTRAN’s equivalence statement (or VAR parameters in Pascal). The entity to
which a reference refers may only be set when the reference is created; in this
respect it is somewhat like a const pointer that gets a virtual * put in front of it
wherever it is used, and puts a virtual & in front of the expression from which it is
initialized. Here are two illustrative examples:

void Bump(int *ip)
{

*ip += 1;

places, but has many, many good suggestions and ideas
in it. Reading both is hard work (especially since both are
based on obscure languages), but will help you a great
deal.

One example of an issue that Object-Oriented Software
Construction covers quite well is the question of whether
to use a class as a base (inherit from it) or a member
(include it as a field). As Bertrand Meyer notes, the
distinction is whether the new class can act as an instance
of its base class (that is, it “is-a” object of that type) or
uses an instance of the class (it “has-a” object of that
type). For example, an automobile “is-a” vehicle, but it
“has-a” engine. For good discussions of this and other
issues, read the book (this particular discussion starts
on page 333).

Brian Wilkerson’s “How to Design an Object-Based
Application,” in this issue of develop, is a good
language-independent introduction to object-based
design. You should find the design techniques presented
in his article useful in your own work.

Taking the time to learn how to design with objects may
be painful (after all, we’re all working as hard as we can
already), but it can make a big difference in the quality of
the system when it’s done. Every extra minute you take to
improve the design now will pay off in easier
maintenance and enhancements later.

d e v e l o p April 1990

228

}
Bump(&j);

void BumpR(int &i)
{

i += 1;
}
BumpR(j);

There are certain circumstances where references are mandatory—for example,
overloading the assignment operator. In other cases, either a pointer or a reference
can be used. The question is, which should be used when?

References should be used when a parameter is to be passed “by reference,” as in
Pascal. This means that the called function is going to forget about the argument as
soon as it returns. A regular reference should be used if you are going to modify the
argument (TFoo &), and a const reference should be used if you are not going to
modify it but don’t want the overhead of call by value (const TFoo &).

Pointers should be used when the function you are calling is going to retain a
reference (an alias) to the object you are passing in, such as when you are
constructing a dynamic data structure. An example is putting an object into a
MacApp TList: the TList retains a pointer to your copy of the object. The explicit
use of pointers lets the reader know that aliasing is occurring.

By using pointers and references appropriately, you can increase the readability of
your code by giving the reader hints as to what is going on.

PORTABILITY
Don’t make assumptions. The Macintosh is the best personal computer in the
world, but there are times when you’ll want to run your code on a different machine.
For example, you might have access to a CRAY or a VAX. Don’t make assumptions
that are only valid for the 680x0 family of processors. For example:

• Don’t assume that int and long are the same size.
• Don’t assume that longs, floats, doubles, or long doubles

can be at any even address.
• Don’t assume you know the memory layout of a data type.
• Especially don’t assume you know how structs or classes are laid

out in memory, or that they can be written to a data file as is.
• Don’t assume pointers and integers are interchangeable. Use
void * if you want an untyped pointer, not char *.

• Don’t assume you know how the calling conventions are
implemented, or indeed any detail of the language
implementation or run time.

UNOFFICIAL C++ STYLE GUIDE April 1990

229

ANSI specifies the following about C’s built in types. This is all you can safely assume:

• unsigned chars can hold at least 0 to 255. They may hold
more.

• signed chars can hold –127 to +127. They may hold more.
• chars may be either unsigned chars or signed chars. You

can’t assume either. Therefore, don’t use char unless you don’t
care about sign extension.

• shorts can hold at least –32,767 to 32,767 (signed) or 0
to 65,535 (unsigned).

• longs can hold at least –2,147,483,647 to 2,147,483,647
(signed) or 0 to 4,294,967,295 (unsigned).

• ints can hold at least –32,767 to 32,767 (signed) or 0 to
65,535 (unsigned). In other words, ints cannot be counted on
to hold any more than a short. int is an appropriate type to use if
a short would be big enough but you would like to use the
processor’s “natural” word size to improve efficiency (on some
machines, a 32-bit operation is more efficient than a 16-bit
operation because there is no need to do masking). If you need
something larger than a short can hold, you must specify long.

If you need exact information, you can use the symbols defined in limits.h. or float.h.
Remember, though, that the values of these symbols can change from processor to
processor or compiler to compiler, within the limits just defined (for more information,
see the ANSI C specification).

It’s very easy to write nonportable code, and it takes some vigilance to avoid it. It’s
well worth the effort, however, the first time you port to a different processor, or try
to use a different compiler.

Pick a canonical format for messages and data files. Remember that AppleTalk
networks connect to non-Apple computers such as the Intel-8x86 based MS-DOS
machines. Thus, if you write or read any data in a context where it might go to or
come from a different CPU, you have to worry about formats. Such situations include
reading or writing disk files, or sending data over a network (or even over NuBus).
The other CPU might even have a different byte order! The only solution to this
problem is to pick a canonical format for your messages or data files.

Just because you have a canonical format doesn’t mean you must pay a big overhead
every time you access your data. An alternative is to perform the translation to or
from canonical format at a predetermined time. For example, outline fonts might
have a certain canonical format, which may not be convenient for a particular
processor to deal with. However, they can certainly be converted to a convenient
local format when the font is installed.

d e v e l o p April 1990

230

Don’t use (gasp!) naked C types. Another way to make your life miserable is to
use primitive C data types in your declarations. This is a bad idea, since if the
implementation ever changes you have to do a lot of editing by hand. It’s much
better to declare a type (via class definition or typedef) that represents the abstract
concept you want to represent, then phrase your declarations that way. This lets you
change your implementation by simply editing the original type definition. Think of
these types as giving your data physical units, like kilograms or meters/second. This
prevents you from accidentally assigning a length to a variable with type Kilogram,
catching more errors at compile time.

So instead of

long time;
short mouseX;
char *menuName;

use (for example)

typedef long TimeStamp;
typedef short Coordinate;
class TString { … };
.
.
.
TimeStamp time;
Coordinate mouseX;
TString menuName;

It’s OK to use a raw C type under certain circumstances, such as when the quantity is
machine dependent, or when it can be characterized as (for example) a small integer.
Otherwise, though, it’s best to give yourself flexibility down the road.

Two ANSI C header files, StdDef.h and Limits.h, contain useful definitions. Here
are two of the more useful ones:

size_t

The type returned by the built-in C sizeof function. This is useful for representing
the sizes of things.

ptrdiff_t

A type that can represent the difference between any two pointers.

UNOFFICIAL C++ STYLE GUIDE April 1990

231

The astute reader has noticed that these names do not conform to our guidelines. In
the interest of clarity, however, we deem it better to use the names as defined by the
ANSI C committee.

Another item worthy of note: if a data type is unsigned, declare it unsigned; this
helps avoid nasty bugs down the road.

ERROR REPORTING
Returned error codes are (ironically) a very error-prone technique. MacApp’s
standard is to use exceptions: a structured technique for reporting exceptions back to
a function’s callers.

Unfortunately, the exception scheme does not handle an important case: an
exception that occurs in a constructor. Handling this properly requires compiler
support, since any base class and/or member constructors that have already been
called must have their corresponding destructors called; only the compiler can know
this. Until we get an official C++ exception scheme, you must handle this problem
on a case-by-case basis.

Signaling an exception in a destructor is not a good idea, since any destructive
behavior that has already taken place probably cannot be reversed. Don’t do it.

CONCLUSION
We’ve covered a lot of ground in this article. Don’t feel bad if you didn’t understand
every point we tried to make. It took us years of working with objects before we
figured out what virtual base classes were good for! As you use C++ in your own work,
think about the rules we’ve laid down and see if they aren’t applicable to your own
situation. Come back and read these guidelines every so often, just to refresh your
memory. And finally, don’t be shy about formulating some guidelines of your own!

d e v e l o p April 1990

232

GS/OS has given Apple IIgs users an important capability: caching.
To the newly initiated, the mysteries of the GS/OS cache may still seem
profound. This article clarifies the basics of the caching algorithm and
offers useful pointers for working safely and efficiently.

In the past couple of years, the Apple IIgs system software has grown by leaps and
bounds. With the introduction of thousands of new features and capabilities, one
very important one often goes unnoticed. GS/OS is the first Apple II operating
system of any kind to provide a comprehensive caching implementation.

Although the cache is an important part of GS/OS, its purpose and nature are
sometimes misunderstood. Some people create huge caches in the hope that
peripherals will start behaving like RAM disks. Others set the cache size to zero
because they think it’s wasting time and memory. Some developers mistakenly
believe their program has absolute control over caching, which is only true if they’re
writing device drivers. This article reaches into the murky depths of your IIgs’s
memory and allows you to examine the cache in the light you would normally use,
say, to read develop by.

CACHE FUNDAMENTALS
L e t ’s start at the beginning, with the basics. What’s a cache? How is it managed? How
big is it? How does the GS/OS cache differ from that of the Macintosh? Read on.

WHAT’S A CACHE?
A cache is a part of memory in which the operating system can keep a spare copy
of information read from and written to a device, in an attempt to decrease disk
access time.

Many people use RAM disks to decrease disk access time. Because the operating
system doesn’t actually have to physically manipulate any media to access inform a t i o n
on a RAM disk, the information is saved and retrieved at a very nice clip, exceeded
only by the speed at which the operating system can read information already in main
m e m o ry. In a caching algorithm, that is exactly what happens.

M ATT DEAT H E R A G E

DEMYSTIFYING

THE GS/OS

CACHE

DEMYSTIFYING THE GS/OS CACHE April 1990

2 3 3
M ATT DEAT H E R A G E says, “You always want
what you can’t get,” and the thing he wants most
is sleep. This desire probably started in his
college days while studying industrial engineering
at the University of Oklahoma. In his far too
many waking hours he’s an Apple II DTS
e n g i n e e r, a self-proclaimed nonhard w a re person.
“Eat lots of toast” is his motto and the ideal to
which he aspires (thanks to his friend Robert

T h u rman). When he’s not gobbling toast or
snoozing, he can be found writing music (on the
Apple IIGS, naturally) or playing the piano, the
clarinet, or the bass clarinet. He isn’t married, as
far as he can tell. •

When information is read from a device, the operating system reads from the
physical media and returns the information to the caller who asked for it.
Additionally, the operating system keeps a spare copy of the information in the
cache. The next time a caller requests information, the operating system first looks
in the cache to see if it already has it from a previous media access. If it’s there, the
operating system simply moves the data into the caller’s buffer, completing the call
without having to actually read anything from disk.

Information to be written can also be cached. The operating system writes the
information to the disk and also writes it to the cache. This method, called a write-
through cache, ensures that the information in the cache is never more recent than
the information on the disk. GS/OS uses a write-through cache except in one special
situation—during a write-deferral session.

THE CACHE MANAGER AND WHAT IT CACHES
In GS/OS, several distinct managers handle different parts of the operating system
or environment. Many of these managers (the Loader and the Device Manager, for
example) are familiar to application and driver authors. Another, more obscure
manager takes care of the cache; plainly enough, it’s called the Cache Manager. The
Cache Manager handles the storage of the cache and all requests involving it.

The GS/OS Cache Manager only caches one thing: blocks. Blocks are what both
generated and loaded drivers read from block devices. They can be traditional
ProDOS-sized 512-byte blocks from traditional ProDOS devices; they can be 512-
byte blocks from nontraditional ProDOS devices, such as network volumes or
nondisk devices; or they can be odd-sized blocks from odd peripherals. If you had a
GS/OS loaded driver to read 981-byte blocks from a 20-gigahertz, 35-terabyte RAM
disk hooked to your Apple IIgs through a slot-based card, GS/OS could cache those
blocks. (Whether or not any file system translators in the system could use the
device is another story.) The Cache Manager does not cache anything having to
do with printers, modems, or other character devices.

THE SIZE OF THE CACHE
The size of the cache is determined by a battery RAM (BRAM) parameter. When
the Cache Manager is initialized as part of the GS/OS boot process, it retrieves this
value from the battery backed-up RAM and adjusts so that the given value is taken as
the maximum size to which the cache can grow. The BRAM parameter is currently
number $81 and represents the cache size in 32K increments (a value of 2 would
indicate 64K). You should know that the location and interpretation of the cache size
parameter are not guaranteed at this point, and relying on the location or
interpretation of the parameter might get you into trouble. When they are

d e v e l o p April 1990

234

guaranteed, Apple II Developer Technical Support will release a Technical Note
detailing this point, or the GS/OS Reference will be revised to document it.

The size of the cache is not an exact number but an exact maximum, and it is that
only when nonzero. If the user has set the cache size to nonzero, that value (which
will always be an increment of 32K) is the maximum cache size. If the user has set the
cache size to zero, GS/OS allocates a 16K cache for system purposes—so that system
components such as file system translators (FSTs) and drivers (both generated and
loaded) can take advantage of the speed increase the cache provides. There is no way
to completely turn off caching under GS/OS.

When the cache is initialized, it is empty and has zero size. As blocks are added to it,
it grows as necessary to accommodate the increased use until the maximum size is
reached. If no one ever asks for blocks to be cached, the cache remains empty and
occupies no memory.

WHAT HAPPENS WHEN THE CACHE IS FULL
Having a maximum cache size implies that there can be a problem — what happens
when nothing else can be written to the cache because there is no room in cache
memory for more information? How does GS/OS behave when there’s no room in
the Cache Inn?

The operating system, through the cache algorithm, has a few options for
handling the possibility that the cache will be full. The most obvious option is for
the algorithm to shrug its bit-encoded shoulders and say, “Well, the cache is full, so
nothing else will be written to it.” Information that comes knocking at the door
thereafter is written to disk only and read from disk each time it’s needed.

Most caching algorithms, including the one used by GS/OS, are a little bolder. They
attempt to identify which blocks in the cache have actually been used and to keep those
blocks in the cache, simultaneously removing from the cache the blocks that have not
been used. The rationale for this is that if a block hasn’t been read from the cache in a
long time, it’s probable that no one’s going to want to read it again for a while, and the
cache can be better used by a new block. For example, when GS/OS is booted, the file
START.GS.OS is read from the disk. Suppose, for the sake of argument, that this file’s
information was placed in the cache. This file isn’t likely to be read again by the
operating system or by any application unless GS/OS has to be reloaded, which under
version 5.0 and later never happens. This file could, therefore, be sitting in the cache,
taking up valuable cache space that subsequently can’t be used by directory blocks,
bitmap blocks, or even program files that will be needed repeatedly, such as the Finder
or APW commands. The strategy used by most caching algorithms tries to keep space
in the cache free for use by directory blocks, bitmap blocks, and program files that will
be needed repeatedly.

DEMYSTIFYING THE GS/OS CACHE April 1990

235

One popular caching algorithm keeps all the blocks in a chain with the most-
recently used block at the beginning of the chain and the block not used for the
longest time at the end. When there’s no more room in the cache, the blocks at the
end of the chain are removed, making room for new blocks. This algorithm,
straightforwardly called a least-recently used (LRU) caching algorithm, is what
GS/OS uses.

Some blocks, however, can’t be kicked out of the cache by the LRU algorithm.
These are the blocks placed in the cache by a write-deferral session. When such a
session is in progress, some or all of the information written to files is write-
deferred, which means GS/OS keeps the information around in the cache instead of
taking the time to write it all to physical media. This is accomplished in different
ways for different file systems; each file system translator behaves in the way it can
achieve the best performance during a session. For example, the ProDOS FST
writes actual data to the disk but not system-level information such as directories or
bitmap blocks.

If any write-deferred blocks are in the cache, the Cache Manager will not purge
them to make room for new blocks until they have been written to disk. If the cache
fills up with nonpurgeable blocks and another nonpurgeable block must be added, a
feature known as AutoFlush, which was new to System Software 5.0, takes over,
stops the session, and flushes all write-deferred blocks to disk so that new ones can
be added. This has the effect of breaking a session into lots of mini-sessions, each
exactly long enough to get the best possible use from the cache.

Blocks in the cache can also be deleted from it by another method besides the LRU
algorithm. If a driver detects a disk-switched condition, which normally means that
an on-line volume has been taken off-line, it makes the SET_DISKSW.System Service
call, which enables the file system translators to remove all blocks belonging to the
switched disk from the cache so that no blocks are in the cache for volumes that
aren’t currently on-line. This ensures that no one accidentally reads from the device
and gets an old block from the cache, or that no blocks are in the cache for volumes
that aren’t currently on-line.

DIFFERENCES FROM THE MACINTOSH
The GS/OS Cache Manager is different from the caching implementation on the
Macintosh in two important ways. The first difference is in the way memory is
allocated. On the Macintosh, if the user sets the disk cache size to 128K, a 128K
block of memory stays allocated for the disk cache unless someone resizes the cache.
Under GS/OS, memory for cached blocks is allocated as needed up to the maximum
set by the user. The other difference between GS/OS and Macintosh is in the size of
the blocks that can be cached. The GS/OS cache can handle a block of any size; if a
device deals in 2048-byte blocks—as some CD-ROM discs do—GS/OS will cache a
2048-byte block. The Macintosh Cache Manager, on the other hand, can only cache
512-byte blocks.

d e v e l o p April 1990

236

HOW APPLICATIONS REQUEST TO USE THE CACHE
Applications—or desk accessories, inits, or anyone who makes GS/OS system
calls—request to use the cache through cache-related parameters to the system calls.
Specifically, applications can ask that data read from files be cached by using the
cachePriority field of class one (and only class one) Read and Write calls.

CACHING CAN BE REQUESTED BY CLASS ONE CALLS
An application requests caching by setting the cachePriority field in the GS/OS
parameter block of Read and Write calls. (These are the only two GS/OS system
calls with this field in the parameter block. The system calls DRead and DWrite
do not have a cachePriority field, as the Device Manager always disables
caching of blocks read or written through these calls.)

A value of $0000 for the word-length parameter in the cachePriority field is the
norm (and the default if this parameter is omitted) and indicates that blocks involved
in this call should not be cached. A value of $0001 identifies the blocks involved as
candidates for caching. Only a value of $0001 in this field will cause files read at the
application level to be considered for caching.

The fact that a caching request has been made by an application doesn’t mean that it
will be fulfilled. Applications do not call the Cache Manager; other system components
do. Those components (file system translators and drivers) may deny the request when
it doesn’t make sense or is dangerous for the file’s blocks to be cached.

CACHING CANNOT BE REQUESTED BY CLASS ZERO CALLS
Applications written using class zero calls (including older ProDOS 16 applications)
cannot request that their files be placed in the cache. To make such a request, the
application must be changed to use class one calls. At first this seems a little harsh
and arbitrary, but it’s quite the opposite.

GS/OS could treat class zero file calls one of two ways—it could automatically cache
everything, or automatically cache nothing. If it cached everything, reading any file
larger than the maximum cache size would flush all the cached blocks, no matter
how frequently they were used. This would force them all to be reread from disk the
next time they were needed. Such a method is normally a grand waste of time, since
most files on the Apple IIgs are typically read once. Most programs still follow the
old Apple II method of “read the file, modify it, and write it back,” and writing such
files to the cache only serves to slow things down while the flushed blocks are reread
from disk. Better methods for file manipulation exist these days, but the system was
designed for maximum performance using the methods of the time.

An application knows best which files it will be reading from disk often enough to
benefit from caching. Such decisions are often reached after long performance
studies of cached reads vs. purgeable handles in memory. For more pointers on
application-level caching, see GS/OS Technical Note #3, Pointers on Caching.

DEMYSTIFYING THE GS/OS CACHE April 1990

237

WRITE-DEFERRAL SESSIONS AND THE CACHE
Applications can also speed up disk-intensive operations through the use of write-
deferral sessions. An application begins such a session by giving the GS/OS system
call BeginSession. This places all subsequent writes in a mode where some or all
of the blocks written to disk are placed only in the cache and not on the media.

Deferred blocks are then written to the media when the EndSession call is made.
If the EndSession call is not made or if it’s made before the files being written to
are closed, some of the blocks for the files written may be on the disk while others
are in the cache only. This damages disks in most file systems as fast as fingerprints
on the media. Be sure to always issue EndSession calls on every exit path after a
BeginSession call to prevent blocks written from being only in the cache and not
on the disk. And be sure to close all open files before calling EndSession, since the
operating system can get caught with write-deferred blocks in open files if the
session is ended and the disk is ejected before the files are closed.

HOW CACHE REQUESTS ARE FULFILLED
GS/OS attempts to make sure that although an application can cache blocks if it so
chooses, by default the most intelligent use possible of the caching capabilities will
be made. It does this by filtering out possibly bogus requests for caching at several
levels. When an application makes a request to use the cache, the request is filtered
through drivers and/or file system translators. These agents of the Cache Manager
evaluate requests to make sure that the most intelligent possible use of the caching
capability is made. If an application’s request to use the cache is found to be valid,
one of these system components calls a System Service routine to add blocks to the
cache.

THE SYSTEM SERVICE CALLS
The ultimate caching authority is at the System Service call level. System Service
calls are used by drivers and file system translators to access the routines that act on
cache requests. These calls are available only to drivers and file system translators;
they are not available to applications. System Service calls are accessed through
vectors in the $01/FC00 page and are described in the GS/OS Reference, volume 2,
chapter 12.

The following four System Service calls—to add blocks, find blocks in the cache,
move blocks in and out of the cache, and remove all purgeable blocks in the cache
belonging to a switched disk—are the only calls that can be made by drivers. Other
cache-related System Service calls enable the system to delete blocks and volumes
from the cache, but these are not documented in the GS/OS Reference and can only
be used by file system translators and other Apple-supplied system components.

CACHE_ADD_BLK ($01/FC08) is the System Service call for a routine that adds
blocks to the cache. This call takes several parameters on GS/OS direct page (which
is available to drivers and file system translators but not to applications), including

d e v e l o p April 1990

238

information to identify the block by volume, device number, size and block number,
and whether or not a write-deferral session is in progress. The Cache Manager is
called, and it adds the block to the cache with no filtering. If necessary, the entire
purgeable cache (the cache size minus all nonpurgeable write-deferred blocks) will
be purged to add the block. The call will return with an error if a block could not be
added to the cache, most likely because the entire purgeable cache was smaller than
the block to be cached.

CACHE_FIND_BLK ($01/FC04) is the System Service call for a routine that finds
blocks in the cache. It will search the cache for a specified block, returning a pointer
to it if it is found. The cache can be searched by device number, so a device driver
can find all blocks it has cached, or by volume ID, so that a file system translator can
find all blocks it has cached (when a write-deferral session is in progress).

MOVE_INFO is the System Service call for a memory-moving routine. This routine is
called by drivers and file system translators to move data in and out of the cache.

SET_DISKSW is the System Service call for a routine that kicks out all purgeable
blocks in the cache belonging to a switched disk. If SET_DISKSW is called while a
write-deferral session is in progress involving closed files on that device, GS/OS puts
up a dialog box warning that the disk was prematurely ejected and that the disk’s
structure may be damaged.

There are two main parts of GS/OS that can use these System Service calls —
drivers and file system translators.

THE ROLE PLAYED BY DRIVERS
Drivers filter cache requests passed on from the application and file system
translator levels. With every Driver_Read and Driver_Write command a driver
gets from an application, it is passed instructions to take one of three possible
caching actions:

• If the cachePriority word (on GS/OS direct page) is $0000,
the block being read or written should not be cached.

• If cachePriority is nonzero with the high bit clear
($0001—$7FFF), the block should be cached as a normal,
purgeable block.

• If cachePriority has the high bit set ($8000-$FFFF), the block
should be cached as a deferred nonpurgeable block. This means a
write-deferral session is in progress. In this case, which is only
valid for Driver_Write calls (there are no read-deferral sessions
in GS/OS), the driver should write the requested block only to
the cache and not to the physical media. The end of the session
will result in the driver being called again to write all the cached
blocks to the physical media.

DEMYSTIFYING THE GS/OS CACHE April 1990

239

There are instances, such as identifying volumes, in which a file system translator
might wish to force a read from physical media rather than from the cache (if the
block is in it). In these cases, the FST ID number on GS/OS direct page has the
high bit set, telling drivers not to read the block from the cache.

A driver is not obligated to cache blocks when requested to, but instead can decide
to disable caching completely or selectively. In some cases, the driver should refuse
to cache any blocks. For example, this would be appropriate if the driver is for a
device that cannot identify a disk-switched condition with any degree of reliability,
as with a 5.25” disk. Since the driver can’t call SET_DISKSW until it notices the disk
has been switched—which could be well after the fact—a block in the cache for such
a device might not be deleted when it should be, and thus the driver should refuse to
cache any blocks in the first place. Or for example, if a driver can actually read from
the media faster than a block can be returned from the cache, it should refuse to
cache blocks.

THE ROLE PLAYED BY FILE SYSTEM TRANSLATORS
File system translators can initiate cache requests themselves, and can filter cache
requests passed on from the application level.

When a file is opened and read or written, not all of the requests to a driver for
information from the physical media are requests for data blocks from the file in
question. Many of the read and write requests are for directories, file-system-specific
data structures—such as key blocks and index blocks in ProDOS—and bitmap
blocks. File system translators need these data structures repeatedly during file
operations, and may ask that the blocks involved be cached. The ProDOS FST does
this, caching all blocks it reads and writes that aren’t passed on to the application. If
the caching can be done, the file system translator gets much faster response time
the next time it needs those blocks. On ProDOS disks, the caching of the volume
directory and volume bitmap give tremendous speed increases since every file
opening causes a read of the volume directory, and every write operation causes a
read and write of the volume bitmap.

The file system translator may also cause caching of a different variety. When a
write-deferral session is enabled, the file system translator changes the
cachePriority field it passes to the drivers so that blocks are marked as write-
deferred. This places them in the cache in a nonpurgeable state but not on the disk.
The ProDOS FST asks that all of its ProDOS-specific directory, index, and bitmap
blocks be placed in the cache write-deferred, but that all pure data blocks go straight
out to disk without caching. This enables most devices to write data to contiguous
areas of the disk, so that the head doesn’t need to move back and forth writing
directories and index blocks and updating bitmaps. All of that is done in one burst at
the end of the session. Other file system translators may use the cache during
sessions in ways that make sense for that particular file system. For example, the
AppleShare FST handles caching in a completely different way, not involving the

d e v e l o p April 1990

240

GS/OS cache at all, since the media could change on the server from another
workstation. Most file system translators, however, use the GS/OS cache in ways
similar to the way the ProDOS FST uses it.

A file system translator can deny an application’s caching request if it interferes with
optimal system performance. For example, caching a ProDOS file being copied to a
ProDOS disk during a session would slow things down, since cached file blocks
would be continually removed from a full cache to make room for more write-
deferred system blocks from the ProDOS FST. Write-deferral sessions are usually
used to copy large numbers of files or create them from memory. In either case, the
files in question aren’t likely to be read again, so the ProDOS FST eliminates
possible overhead by denying requests to cache files during write-deferral sessions.

RESETTING THE CACHE FROM THE APPLICATION
Only one application-level call acts only on the cache—the ResetCache call (class
one only, call number $2026). This call forces the cache to be reinitialized, purging
all blocks that are in it and resizing if necessary. Do not issue this call while a write-
deferral session is in progress; you can use SessionStatus to see if a write-deferral
session is currently active.

If you’re writing a utility program and suspect that an file system translator has
cached something you don’t really want around, calling ResetCache will ensure the
cache is flushed. The cache is also resized from the battery RAM parameter. As
discussed earlier, this parameter is currently $81 and represents the cache size in
32K increments, but this is not guaranteed. ResetCache is called by the RAM
CDev to change the size of the cache.

To make the call, simply issue it with a parameter block pointer to a word of $0000.
There are no parameters.

WHERE TO GO FROM HERE
This article has described the basics of the GS/OS cache, and has given you an idea
of how an application requests caching and how such a request is fulfilled (or not
fulfilled, if the request turns out not to be in the best interests of the system).

If you want to experiment with the effects of GS/OS calls that request caching, play
around with these calls in the Exerciser that comes on the GSBug disk. That’s why it’s
there. It’s come a long way from the ProDOS 16 Exerciser. It makes all the calls (inline
or stack-based, any class, with the exception of ResetCache), lists all devices, and
catalogs directories to 255 levels. It also lets you choose any number of parameters for
any class one call, except ResetCache, and allows you to modify memory through a
built-in editor—you can visit the Monitor and return if you so choose. (Incidentally,
the new calls for System Software 5.0 are coming in a revision soon.)

DEMYSTIFYING THE GS/OS CACHE April 1990

241

As always, help to Apple Partners on all matters, including GS/OS, is available on
AppleLink and MCIMail from Apple II Developer Technical Support at the address
AIIDTS. (Macintosh developers can contact Macintosh Developer Technical
Support at AppleLink address MACDTS or MCIMail address MACTECH.) If
you’re not an Apple Partner, you can often get help from knowledgeable
programmers on third-party online services, usually in the “Developers” or
“Development” forum.

d e v e l o p April 1990

242

Q
I’m having trouble detecting clicks on
picture and static text controls, even
though I’m doing exactly what the
Apple IIgs Toolbox Reference,
Volume 3 says to do.

A
There is an error in the Toolbox
Reference regarding static text and
picture controls. The definition
procedures for these control types do not
include code to test for clicks within the
control rectangle; therefore, routines like
TestControl will always return FALSE.
If you want to test for mouse clicks
within a static text or picture control,
retrieve the control rectangle from the
control record and use a routine like
PtInRect.

Q
How can I put extended controls in a
dialog?

A
The Dialog Manager does not support
the new extended controls, and probably
will not be revised to do so. Inserting
extended controls as user items generally
won’t work because the Dialog Manager
will insert an invisible custom control
over your extended control, preventing
FindControl from finding it. If you want
a pop-up menu in a dialog, you can
create a user item with code that
contains a non-control pop-up menu.
When you get a hit on the item, call
PopUpMenuSelect to handle the
selection of a menu item. You must
handle the drawing of the menu title,
selected item and drop-shadowed
rectangle yourself.

Q
Can my DA have a resource fork?

A
A new desk accessory may use the
Resource Manager if it requires System
Software 5.0 or later, as the Resource
Manager will always be present.
However, New Desk Accessory (NDA)
authors must be aware that any
application doing a Close with reference
number zero will close the NDA’s
resource fork. The IIgs Finder™ can do
this under some circumstances.
Changing the file level will not solve this
problem, as the level belongs to the
current application and should not be
permanently changed by desk
accessories.

Classic Desk Accessories may also have
resource forks. The same warnings
apply, and the author must also be aware
that the Resource Manager is not
available to the CDA when the current
operating system is ProDOS 8.

Q
How do I use TaskMasterDA?

A
TaskMasterDA is a call provided in
System Software 5.0 and later so that
new desk accessory authors may use the
features of TaskMaster even when the
current application doesn’t use
TaskMaster. The Desk Manager will
pass an event record to the NDA, which
should then copy it into an extended task
record. TaskMasterDA will return
values in the extended task record and
will use values passed in that record, so
be sure that the non-input fields are

Apple II Q&A

__
243

APPLE II Q& A April 1990

zeroed before your first call to
TaskMasterDA. The parameters to the
call are listed in Volume 3 of the Apple
IIgs Toolbox Reference.

Q
How come AppleTalk won’t use the
modem port on my ROM 01 IIgs?

A
If Slot 1 is set to “Your Card” in the
Control Panel on a ROM 01 IIgs,
AppleTalk will always use the printer
port. AppleTalk will only use the
modem port if Slot 1 is set to “Printer
Port”. This means that if you have a
physical peripheral in slot 1 (such as a
hard drive), AppleTalk will always use
the printer port. ROM 3 IIgs machines
require Slot 1 or Slot 2 to be set to
“AppleTalk” to determine the network
port, eliminating this confusion.

Q
What is the format of the IIgs Finder
Data Files? There is no File Type
Note describing the format.

A
The format of Finder data files is
internal to the Finder. It is version-
dependent and the information in the
files can’t be reliably used at this point,
so the file format is not available.

Q
How can I control the speed of the
Apple IIc Plus?

A
Firmware routines exist to allow the
programming of the accelerator in the
Apple IIc Plus. These routines are
documented in the Apple IIc Technical
Reference, Second Edition available
from APDA. Apple encourages all
developers with products that run on the
Apple IIc to replace previous IIc
documentation with this book.

Q
How can I get the Print Manager to
print to the parallel card I choose
when more than one is in my system?

A
The port driver provided with the
system (the file Parallel.Card) searches
for a card with which it can
communicate in the PrDevIsItSafe
routine, as documented in Apple IIgs
Technical Note #36. The search routine
scans upward starting with slot one,
stopping when it finds a suitable card.
The driver will always print to the card
in the lower-numbered slot; it has no
facilities to let the user choose among all
suitable interfaces.

Q
How come the Memory Manager
says I can’t allocate a 300K handle
when the Control Panel shows I have
312K free?

244

d e v e l o p April 1990

A
Just because there’s 312K free doesn’t
mean that 300K of it is in one
allocatable block. Memory may be
fragmented so that small amounts of
memory are available througout the
memory map. Several public-domain
and shareware utilities are available to
show you exactly what memory is free
and what is allocated. The ROM
contains a Classic Desk Accessory to
show memory allocation; the CDA
may be installed by executing the “#”
command from the system monitor
prompt.

Q
How can I use the “extra” keys on
the Apple Extended Keyboard on my
IIgs? What values do they return?

A
The following chart shows what the
“extra” keys and other extended keys
of the Apple Extended Keyboard
return on the Apple IIgs. All of the
keys turn on bit 4 of the Modifier Key
register at $C025 (see page 124 of the
Apple IIgs Hardware Reference) to
distinguish these keys from the
“regular” keys.

Key ASCII char
F1 z
F2 x
F3 c
F4 v
F5 ` ($E0)
F6 a
F7 b
F8 d

Key ASCII char
F9 e
F10 m
F11 g
F12 o
F13 i
F14 k
F15 q
help r
home s
page up t
page down u
end w
del |X> y

Q
Can I tell if a TextEdit record has
changed?

A
TextEdit maintains a “dirty flag” in
bit six ($40) of the flags field (not the
moreFlags or the textFlags fields).
This bit is cleared when a TextEdit
record is created and is set when the
TextEdit record is changed. The flags
field is byte $0010 in the TextEdit
record (or the control record if using
TextEdit controls).

Apple II Q&A

245

APPLE II Q& A April 1990

Q
When I'm juggling, everything
starts out fine and then I find that
I'm throwing everything forward.
What's wrong?

A
What you are doing is called "joggling,"
it's good for your cardio-vascular
system, but not so great for your
juggling. Joggling is usually caused by
throwing your second object a little
late. Since you've given yourself less
time to throw, you're using an
abbreviated arm motion and you're
forcing the object forward. To get
back to juggling, try to make all of your
throws just a tad higher (and make sure
you initiate all tosses when the object
being causht is at it's apex).

Q
How can I stop getting junk mail
sent to my house?

A
Americans receive about 2 million tons
of junk mail a year, about 44% of
which is thrown out unopened. To
keep your name from being sold to
large mailing- list companies, write:

Mail Preference Service
Direct Marketing Association
11West 42nd Street
P.O. Box 3861
New York, NY 10017

__
246

d e v e l o p April 1990

bitmaps 21
#define 209 BitmapToRegion 19
$H 134 BitmapToRgn 8
%_OBNEW 131 block deallocation 144, 151

INDEX
This is a cumulative
index; all entries for
articles in this issue
are in red and all
entries for articles
in previous issues
are in black. The
first issue ran from
pages 1-112, and
this issue runs from
pages 113-256

32-bit addressing 12 board sResource 76 , 82
32-Bit cleanliness 52 BoardId 82
32-Bit QuickDraw Init 5 boundsRect 33 , 36
32-Bit QuickDraw 4, 28 bowl, spaghetti 224
16-bit-per-pixel 5 browser 159
32-bit-per-pixel 5 byte lanes 89
6502 93 byte swapping 89
680x0 229 ByteLanes 87
72 DPI 20

C
A C 156
A/UX 67 , 72 , 74 C preprocessor 209
A5 20 , 73 C string 82
abstract base classes 220 C++ 118, 156, 163
access functions 219 C++ object model 226
aGDevice 34 , 36 Cache Manager 234
alignPix 38 cachePriority 237
AllowPurgePixels 38 CACHE_ADD_BLK 238
alpha channel movement 8 CACHE_FIND_BLK 239
AnimatePalette 27 caching 233
ANSI C 209, 214, 227, 230, 231 call by value 229
antecedents 206 callback routine 148
antialiased 13 casts 218
APDA 156 CatBoard 82 , 88
Apple Developer University CatDisplay 81
 161 Category 80
Apple II 93 CDEFs 55
Apple IIGS 233 cDepthErr 38
AppleLink 158 CFront 163
argument names, dummy 205 CGrafPort 29
arrays 97 CGrafPtr 29
assembler error 88 class 180
assignment operator 222, 226 class declaration 214
assignment statements 147 class, black box 222
AutoFlush 236 classes, mix-in 207, 225
automatic objects 226 client-server model 180

B
clipping 37
clipPix 36 , 37 , 38

base classes 207, 225, 227 clone 131
baseAddress 28 cmpCount 10 , 11
batteryRAM 241 cmpSize 11
BeginSession 238 cNoMemErr 39

__ 247

INDEX January 1990

code, self-modifying 68 data abstraction 222
collaboration 191, 197 data list entry 80
collaborations graph 197 database unit 158
color arbitration 23 DatLstEntry 80
color picker 8 debugging 158
Color QuickDraw 5, 12 declaration ROM 75
Color Search Procedures 20 , 21 default arguments 214
color table 34 Developer Technical Support 81
color table animation 7 Direct Hardware Access 72
Color2Index 12 , 20 direct pixMaps 10
Color2Pixel 12 directType 13
colors, hidden 12 DisposeGWorld 38
comments 205 DisposeScreenBuffer 39
compaction 142 dithering 6, 15 , 21
compatibility 50 ditherPix 37 , 38
compiler warnings 205 DRead 237
complex number 213 DrHwBoard 82
compression 8 driver directory 85
configuration ROM 75 driver, generated 235
const 209, 210 driver, loaded 235
const member function 212 Driver_Read 239
const pointer 228 Driver_Write 239
const reference 229 DrSWApple 81
constants 207, 208 DrSwBoard 82
constructors 214, 218 DrvrHW 81
constructors protected 220 DrvrSW 80
contract 180 DWrite 237
Control Manager 56 Dynamo 94
Control Panel 34

Econtrol regions 56
conversion function 217 encapsulation 179, 222
CopyBits 12 , 13 , 19 , 28 end-of-list entry 80
CopyMask 19 EndSession 238
Copyright notice 204 enumerations 208
CRAY 229 enums 209
CRC 87 error codes
CTab2Palette 24 Copy Bits 21
CTabChanged 39 region creation 21
cTable 33 , 36 exceptions 232
ctFlags 11

FctSize 11
cType 80 FailNIL 131

D
FailOSErr 131
fake handle 56

dangling pointers 146 File Manager 57
data 87 file system translators 235

___248

d e v e l o p April 1990

filename 206
Hflags 35 , 36

float.h. 230 handle 130
fonts 66 HandleObject 119
format block 87 HandToHand 131
FORTRAN 156, 228 hardware device ID 86
FracApp 29 hardware identifier 81
fragmentation 141, 144, 151 header file 205, 207
free 120 heap 226
friend classes 221 Heap Demo 154
friend functions 221 heap fragmentation 119
FST ID 240 hierarchy graph 194
function overloading 215, 216 highlight color 27
function prototypes 205 HLock 137
functional sResource 76 , 84 hRes 20
functional syntax 217 HSV2RGB 18

G
Human Interface Guidelines 157
HUnlock 137

GDevice 13 ,28 , 35 HWDevID 86
GDeviceChanged 40

I-J-KGDHandle 35
gdType 13 implementation classes 221
General cdev 5 information-hiding 179
GetCTable 27 inheritance 180
GetGDevice 33 , 35 inline functions 210, 213
GetGWorld 33 , 35 Inside Macintosh 135
GetGWorldDevice 35 Inside Macintosh XRef 134
GetNewPalette 24 insufficient stack 21
GetPixBaseAddr 38 International Support 67
GetPixelsState 38 interrupt routine 212
GetPort 33 , 35 itabRes 12
globals 208 Journaling Driver 68
global scope 207 jump table 148
global variables 207, 212

Lglobals, low-memory 67
graphics, improved 8 LaserWriter 41
gray-level 6 limits.h. 230, 231
grayscale 6 Lock 137
grayscale screen 24 LockPixels 35 , 36
GS/OS 233 luminance 6
GS/OS direct page 240 luminosity 6
gwFlagErr 37 luminosity mapping 21
GWorld 29

MGWorldflags 37
GWorldPtr 29 MacApp 129, 155, 229, 232

MacApp Developer's Association 156, 158

__ 249

INDEX April 1990

MacApp.Tech$ 158 NuBus slot space 86
macro 79

OMacroMaker 68
macsBug listing 91 object 179, 212
Main Event Loop 158 Object Pascal 129, 156, 226
MajorBaseOS 86 object-based design 155, 222, 227
MajorLength 86 objects, handle-based 119
makeRGBPat 12 offscreen 8
malloc 120 offscreen devices 28
mapPix 38 offscreen imaging 158
member constructors 227 offscreenWorld 33 , 35
member names 207 offscreenGDevice 13
member operator function 218 offset list entry 79
memory allocation 51 , 118 operating system 161
memory management 158 operator delete 119
Memory Manager 51 , 118, 131 operator new 119
MinorBaseOS 86 operator overloading 217
MinorLength 86 OSLstEntry 79
Modula-2 156 outline fonts 230
Monitors 5

PMonitors cdev 8
Mouser 158 paint bucket 19
MoveHHI 144, 152 palette 22
MOVE_INFO 239 Palette Manager 7, 22
MPW Pascal 129 paramErr 38 , 39
MPW (CIncludes) files 205 Pascal 129
MS-DOS 230 pass by reference 211, 226
MultiFinder 145 PICT 9
MultiFinder temporary memory 56 pixelDepth 33 , 36
multipler inheritance 119, 224 pixelsLocked 38

N
pixelsPurgeable 38
PixelType 11

naming conventions 206 pixMap 4, 11 , 12 , 20 , 28 , 35
newDepth 38 pixMap resolution 20
NewGWorld 33 , 35 PixPatChanged 39
NewHandle 131, 142 PixPats 11
NewObjectByClassId 136 pixPurge 35
NewObjectByClassName 136 pmAnimated 26
NewPalette 24 pmCourteous 26
newRowBytes 38 pmExplicit 26
NewPtr 142, 147 pmExplicit+pmAnimated 26
NewScreenBuffer 39 pmExplicit+pmTolerant 26
noErr 39 pmTable 11
noNewDevice 34 , 35 pmTolerant 26
NoPurgePixels 38 pmVersion 12
NuBus 230 polymorphism 180, 227

___250

d e v e l o p April 1990

PortChanged 39 separate heap 121
PostScript 8, 41 , 65 SessionStatus 241
PostScriptBegin 44 SET_DISKSW 236
primary init record 83 SetEntries 22
primary initialization 83 SetEntryUsage 26
Print Records 58 SetFont 42
printer driver 21 SetGDevice 35
printing 58 , 158 SetGWorld 35
private 218 SetPixelsState 38
private base classes 220 SetPort 35
privileged instructions 72 single inheritance 224
procedure address 149 slot Resources 75
Projector 206 Smalltalk 226
protected interface 219 srcCopy 21
protocol 201 sResource directory 79
PtrObject 118 sResources 75 , 76
public interface 219 sRsrc_Name 82
pure virtual function 220 sRsrc_Type 80

Q
static class members 212
static data member 123

QDErr 21 static initialization 213
QuickDraw 5 static member functions 123

R
static members 208, 212
static objects 226

rat, gummy 41 StdBits 21
reallocPix 38 StdDef.h 231
references 228 storage allocation 226
region creation error codes 21 stretching 37
region overflow 21 stretchPix 37 , 38
regions from bitmaps 8 string management 99
rescaling of images 8 string, null-terminated 82
reservation 142 StripAddress 12 , 20 , 56
reserved 87 SwapMMUMode 20
ResetCache 241 SysEnvirons 9
responsibilities 188 System Service call 238
RestoreEntries 22

TrgnOverflowErr 21
ROM size 87 tail patch 73
ROMEqu 82 test pattern 87
rowbytes 9, 28 text, antialiased 21

S
TextFont 42
TheGDevice 12 , 13 , 20

SADE 1.1 158 thumbnail 8
screenBits.bounds 28 TickCount 67
Search Procs 20 ticks 67
segmentation 148 TML Pascal 129

__ 251

INDEX April 1990

TObject 137
to NEW 130
Toolbox 161
transparency mask 8
trap patching 73 , 224
TypBoard 82
type checking 215
type coercion 217
typedef 231
type format 80
typing 222
TypVideo 81

U-V-W
UnloadSeg 149
UnlockPixels 35 , 36
unspecified arguments 214
UpdateGWorld 35 , 36 , 37
user interface 155, 161
VAR(parameter) 150, 228
variables, local and global 207
variables, temporary 152
VAX 229
VBL tasks 68
vendor information 84
versions 206
ViewEdit 157
virtual base classes 225
virtual destructor 223
virtual functions 222
 in constructors 223
Virtual Memory 145
visRgn 28
vRes 20
WDEFs 55
write-deferral session 236
write-through cache 234

X-Y-Z
surprised?

___252

d e v e l o p April 1990

