
d e v e l o p
T h e A p p l e T e c h n i c a l J o u r n a l

WRITING A
DEVICE DRIVER
IN C++

POLYMORPHIC CODE
RESOURCES IN C++

SYSTEM 7.0 SNEAKS

MACINTOSH Q & A

DEVELOPER
ESSENTIALS: ISSUE 4

APPLE II Q & A

THE MACINTOSH
NUBUS CARD
AND A/ROSE

PERILS OF
POSTSCRIPT II

APPLE IIGS
PRINTER DRIVERS

I ssue 4 October 1990
Apple Computer, Inc.

© 1990 Apple Computer, Inc. All rights reserved.

Apple, the Apple logo, Apple IIGS, AppleLink, AppleShare, AppleTalk, APDAlog, A/UX, GS/OS,
ImageWriter, LaserWriter, Mac, Macintosh, MacDFT, MPW, MultiFinder, and TokenTalk are registered
trademarks of Apple Computer, Inc. AppleEvents, APW, A/ROSE, Finder, MacAPPC, Macintosh
Coprocessor Platform, and QuickDraw are trademarks of Apple Computer, Inc. IBM is a registered
trademark of International Business Machines Corporation. PostScript is a registered trademark of
Adobe Systems Incorporated. NuBus is a trademark of Texas Instruments.

E D I T O R I A L
Editor in Chief’s Clothing Louella Pizzuti

Technical Buckstopper Dave Johnson

Managing Editor Carol Westberg

Production Editor Toni Haskell

Developmental Editors Lorraine Anderson,

Ann Cullen, Geta Carlson

Editorial Assistant Lenore Zelony

Indexer Ira Kleinberg

Manager, Developer Press David Krathwohl

A R T & P R O D U C T I O N
Design/Art Direction Joss Parsey

Technical Illustration J. Goldstein

Production Bruce Potterton

Printing Craftsman Press

Film Preparation FilmCraft

Photographer Ralph Portillo

Circulation Management Dee Kiamy

Online Production Cassi Carpenter

R E V I E W B O A R D
Pete “Luke” Alexander
Tim “Sweetpea” Enwall
Larry “Cat Couch” Rosenstein
Andy “The Shebanator” Shebanow

S P E C I A L T H A N K S
Matt Deatherage

Cleo Huggins and Hal Rucker
created the cover with help from
timekeepers past and present. Cover
photograph by Ralph Portillo.

d e v e l o p, The Apple Technical
Journal, is a quarterly publication
of Developer Press.

Writing a Device Driver in C++ (What? In C++?) by Tim Enwall
How to capitalize on the advantages of a higher level language and avoid some of the
pitfalls you may encounter if you write a driver in C++, including a complete
example of a device driver in C++. 376

Polymorphic Code Resources in C++ by Patrick C. Beard A method of
implementing polymorphism in stand-alone C++ code resources, illustrated by a
window definition function that uses polymorphism. 400

System 7.0 Sneaks Answers from Apple Computer. 413

Macintosh Q & A Answers from the Macintosh DTS group. 417

Developer Essentials: Issue 4 The latest disc containing essential tools
for developers. 420

Apple II Q & A Answers from the Apple II DTS group. 422

Inside the Macintosh Coprocessor Platform and A/ROSE by Joseph
Maurer An introduction to the basics of the Macintosh NuBus card and A/ROSE
(the Apple Real-time Operating System Environment). Includes a close look at
interprocess communication in A/ROSE and how the TokenTalk card uses A/ROSE,
plus some samples of A/ROSE programming. 424

The Perils of PostScript—The Sequel by Scott “Zz” Zimmerman
A description of some gotchas that can occur when you use PostScript dictionaries
in applications, and ways to work around them. 446

Driving to Print: An Apple IIGS Printer Driver by Matt Deatherage
An explanation of the mysteries of the printer driver: what it does, how it does it,
and how to write one. A sample printer driver is provided. 454

Index 478

CONTENTS

CONTENTS October 1990

373

Dear Readers,

I just got back from sabbatical and it was great: I left and could hardly remember
that I had ever worked for Apple, and now that I’m back I can hardly remember that
I ever left. It’s good, I think, to be fully where you are as you linger.

Upon my return, I wasn’t quite sure how, in my advanced state of equilibrium, I was
going to find a way for drivers and clock parts to live together in a logical editorial.
So I decided to throw logic out the window and to stick with what I know: taking an
analogy and stretching it. Here goes.

Clock parts are carefully crafted according to well-defined rules. Along with
following the rules, creativity and craftsmanship are brought to bear, so some clocks
are more pleasing, better functioning, and longer lasting than others. This is how it
is with drivers, too. Respect for the rules, creativity, and craftsmanship combine to
make a driver tick.

Clock parts as a group (or a watch) keep track of the moment-by-moment passage of
time, freeing us to focus our attention on things more riveting. Similarly, a system-
level driver lets your application focus on things more interesting (and useful) than
hardware-specific details.

So much for the analogy. In this issue, Matt provides thorough coverage of the
printer driver: what it does, how it does it, and how to write one for the Apple IIGS
Zz tells even more about what your application can do with PostScript code to avoid
perils posed by the LaserWriter driver. And if you decide to write your own driver,
you can follow the legions before you and launch into assembly language, or you can
follow Tim’s lead and try C++.

On another topic, Scott A. Williams writes:

“On page 126, I believe that the AllocHeap method call to InitZone should
have calls to GetZone and SetZone around it, like this:

THz savedZone = GetZone ();
InitZone(nil, kNumDfltMasters, limitPtr, zonePtr);
SetZone(savedZone);

d e v e l o p October 1990

COMMENTS
We welcome timely letters to the editor, especially
from readers wishing to react to articles that we
publish in develop. Letters should be addressed to
Louella Pizzuti, 20525 Mariani Ave., M/S 75-3B,
Cupertino, CA 95014 (AppleLink Pizzuti1).
All letters should include name and company

name as well as address and phone number.
Letters may be excerpted or edited for clarity (or
to make them look like they say what we wish
they did). •

374

“Inside Macintosh, volume II, page 29, says, ‘InitZone creates a new heap zone,
initializes its header and trailer, and makes it the current zone.’ It’s the ‘makes it
the current zone’ part that’s the problem. Without the calls to GetZone and
SetZone, any handles or pointers created after a call to the AllocHeap method
would be allocated in the new heap created expressly for holding PtrObjects
and not in the application heap where they belong.”

Well, when Scott wrote he was right, and now he’s sporting a fine new develop shirt.
When you write, you will too.

Louella Pizzuti
Editor

EDITORIAL October 1990

375SUBSCRIPTION INFORMATION
Use the order form on the last page of the journal
to subscribe to develop. Please address all
subscription (and subscription-related) inquiries to
develop, Apple Computer, Inc.,P.O. Box 531,
Mt. Morris, IL 61054, (AppleLink Dev.Subs). •

BACK ISSUES
Back issues of develop are available through
APDA (see inside back cover for APDA
information), and are, of course, there for the
browsing on each CD. •

TIM ENWALL

Most developers write device drivers in assembly language, rarely
considering a higher level, object-based language such as C++ for such
a job. This article describes some of the advantages of higher level
languages over assembly and warns of some of the gotchas you may
encounter if you write a driver in C++. An example of a device driver
written in C++ follows a brief discussion of drivers in general.

When you think of writing a device driver, your first reaction may be, “But I haven’t
brushed up on assembly language in some time.” After taking a deep breath, you
think of another approach: “Why can’t I use a high-level language?” You can. One
such language is C++.

In comparison with standard C, C++ offers some definite advantages, including ease
of maintenance, portability, and reusability. You can encapsulate data and functions
into classes, giving future coders an easier job of maintaining and enhancing what
you’ve done. And you can take advantage of most (but not all) of the powerful
features of C++ when you write stand-alone code.

You will run into a few gotchas, including the fact that polymorphism is available
only if you do some extra work (for a definition of polymorphism, seedevelop,
Issue 2, page 180). Because the virtual tables (vTables) reside in the jump-table
segment, a stand-alone code resource can’t get at the vTables directly (more on this
topic later). You also have to deal with factors such as how parameters are passed to
methods, how methods are called, how you return to the Device Manager, how you
compile and link the DRVR resource, and how the DRVR resource is installed when
the machine starts up. We’ll tackle some of these obstacles as we work through the
sample device driver presented later in this article.

WRITING A

DEVICE

DRIVER IN

C++ (WHAT?

IN C++?)

d e v e l o p October 1990

TIM ENWALL, DTS engineer, is a four-year
Apple veteran. He’s done stints in Technical
Resources and data base applications, and has
answered the A/UX® hotline. Now his primary
job purportedly revolves around IBM connectivity
(although no one ever seems to ask him about it).

The rest of his time is spent with networking and
lower-level device managers. A Rocky Mountain
native, he came to Cal Berkeley for an EE/CS
degree. He likes bike riding, cooking, playing
softball, and long talks with friends. Two Burmese
cats—Bella and GBU (for the Good, the Bad, and
the Ugly, pronounced “Boo”)—guard him during
his off hours. Two favorite books have helped

376

WHY C++?
When someone suggests writing a device driver in anything other than assembly
language, the common reaction is, “But you’re talking to a device! Why would you
want to use C++?”

For communication with devices, assembly language admittedly gets the job done in
minimal time, with maximum efficiency. But if you’re writing something where code
maintenance, portability, and high-level language functionality are just as important
as speed and efficiency, a higher level language is preferable.

Not all device drivers actually communicate with physical devices. Many device
drivers have more esoteric functions, such as interapplication communication, as
in the sample driver in this article. (In fact, DAs are of resource type DRVR and
behave exactly the same way device drivers behave. DAs are even created the same
way.) For these kinds of device drivers, C++ is a great language to use because you
can take advantage of all the features of a high-level language, plus most of the
object-based features of C++. Finally, device drivers have some nice features that
make them appealing for general usage:

• They can remain in the system heap, providing a common
interface for any application to easily call and use.

• They get periodic time (if other applications are not hogging the CPU).

Good examples of nondevice drivers are the .MPP (AppleTalk®) driver and the .IPC
(A/ROSE™ interprocess communication) driver. Both these drivers provide pretty
high-level functionality, but neither directly manipulates a device as such (except for
the very low-level AppleTalk manipulations of communication ports). Of course, if
you were writing code to communicate quickly and efficiently to a modem, for
example, assembly language might be the better choice, depending on your need for
efficiency and timing. For the purposes of this article, any reference to a device
driver includes both types of drivers.

Clearly, higher level languages have a place, but what about object-based languages?
Object-based languages provide a great framework for encapsulation of data and
functions and hence increase the ease of maintenance and portability (if used
elegantly). One question still remains: Why C++?

Notables such as Bjarne Stroustrup and Stanley Lippman have pointed out some of
the advantages C++ offers over conventional high-level languages. C++ offers great
extensions, such as operator and function overloading, to standard C. C++ is much
more strongly type checked than C, so it saves us programmers from ourselves.
C++ classes offer a way to encapsulate data—and functions that operate on the
data—within one unit. You can make different elements and functions “private” to
objects of only one class or “public” to objects of every type. The private and public
nature of data and member functions allows you to accomplish real encapsulation.

WRITING A DEVICE DRIVER IN C++ (WHAT? IN C++?) October 1990

377shape his outlook: Light in August by William
Faulkner and Native Son by Richard Wright. But
don’t let his serious side fool you. Watch out
when he’s sitting across a poker table from you:
he was brought up on cards, and he’s out to get
that BMW 3.0CSi with a sunroof. Will you be the
one to provide the down payment? •

SOME LIMITATIONS
As noted, one valuable feature of C++, polymorphism, is not readily available when
you write a device driver in C++. Other limitations involve working with assembly
language, possible speed sacrifices, work-arounds for intersegment calls, and
mangled procedure names.

POLYMORPHISM
Because a device driver is a stand-alone code resource, there is no “global” space or
jump table. C++’s virtual function tables (vTables), which are the means to the
polymorphism end, live in an application’s global space. The loss of virtual tables is a
limitation of stand-alone code, not a limitation of C++. Patrick Beard’s article,
“Polymorphic Code Resources in C++” (this issue), shows one way to work around
this limitation. The work-around takes some extra work and is dependent on the
current implementation of CFront, which may make future compatibility a problem.
In the interests of clarity and compatibility, I have chosen not to use polymorphism
for the example in this article.

ASSEMBLY-LANGUAGE MUCK
Another difficulty is that we have to get our hands assembly-language dirty. The
Device Manager is going to call the device driver with a few registers pointing to
certain structures, and we’ll have to put those on the stack so the C++ routines can
get to them. Specifically, A0 points to the parameter block that is being passed, and

C++ Assembly Language
Pros Portable Fast

Reusable Efficient
Easy to maintain Compact
Object-based design Direct access to CPU
High-level language features
Data encapsulation

Cons Three separate source files, Not portable
multiple compiles Hard to maintain

Speed inefficient Lacking high-level language
Polymorphism difficult features such as loops

in stand-alone code and IF-THEN-ELSE

COMPARING C++ AND ASSEMBLY LANGUAGE

d e v e l o p October 1990

378

A1 has a handle to the Device Control Entry for the driver. Having to do some
assembler work is a limitation of the operating system; the toolbox doesn’t push the
parameters onto the stack (now if there were glue to do that—).

These registers must somehow make their way onto the stack as parameters to our
routines because procedures take their parameters off the stack. When we’ve
finished, we also have to deal with jumping to jIODone or plain RTSing,
depending on the circumstances. For the simple driver shown in the example, we
will in reality almost always jump via jIODone when finished with our routines.
But, for drivers that wish to allow more than one operation at a time, the Prime,
Control, and Status calls must return via an RTS to signal the Device
Manager that the request has not been completed. The driver’s routines should jump
to jIODone only when the request is complete.

We must also decide whether or not to call a C++ method directly from the assembly
language “glue.” If we call the method directly, we have to put the “this” pointer on
the stack because it’s passed implicitly to all object methods. We also have to use the
“mangled” name generated by the compiler and used by the linker. (If you haven’t
had the opportunity to see mangled names, you’ll find they’re a joy to figure out
without the help of our friend Mr. Unmangle.) So, if we choose to call extern C
functions, as the example does, we run into yet another level of “indirection” before
we get to the real meat of the matter.

SPEED
Some might say we sacrifice speed as well as efficiency—and they’re correct. In
general, compilers can’t generate optimally speed-efficient code. They can come
close, but nothing even approaches how the human mind tackles some tricky
machine-level issues. Thus, we’re at the mercy of the compiler—the loss of speed is
the result of the compiler’s inefficiency.

You’ll probably find the sample driver presented in this article pretty inefficient. But the
trade-off is acceptable because speed isn’t important in this case, and you can use all the
features of an object-based language. In fact, in most instances you can limit assembly
language to a few routines, which must be tightly coded, and use C++ for the rest.

MANGLED IDENTIFIERS
If you’re familiar with C++, you’ve undoubtedly seen the visions of unreadability
created by CFront. But, if you’re still unfamiliar with C++ in practice, here’s an
explanation. CFront is simply a preprocessor that creates C code, which is passed to
the C compiler. So CFront has to somehow take a function of the form

TDriver::iacOpen(ParmBlkPtr aParmBlkPtr)

and create a C function name the C compiler can understand. The problem is that
when the linker complains, it will use the mangled name, which is hard to decipher.

WRITING A DEVICE DRIVER IN C++ (WHAT? IN C++?) October 1990

379

Here’s how it looks:

from MPW Shell document
unmangle iacOpen__7TDriverFP13ParamBlockRec
Unmangled symbol: TDriver::iacOpen(ParamBlockRec*)

It’s clear why these names are referred to as mangled and unmangled. Fortunately,
the unmangle tool provided with MPW allows you to derive the unmangled name
from the mangled.

A SAMPLE C++ DRIVER
The sample driver that follows illustrates some of the issues involved in writing a
device driver in general, and specifically in C++. The code is in the folder labeled
C++ Driver on the Developer Essentials disc.

INTERAPPLICATION COMMUNICATION
The sample driver performs one basic function—interapplication communication
(IAC)—under System 6. Under System 7 the services of this sample driver aren’t
necessary because IAC is built into the system. But the concepts presented here are
still sound, and the driver works as well under System 7 as it does under System 6.
The driver is installed at Init time with code that walks through the unit table
looking for a slot.

CLASS STRUCTURE
The classes are fairly straightforward, serving as an example of how to use C++ to
encapsulate data with methods without getting into some gnarly class hierarchies
that would only obfuscate the point (and that aren’t yet possible with stand-alone
code). Two classes suffice: TDriver and TMessage. TDriver handles all the
driving; it responds to each control and status call defined and handles opening and
closing the driver. It keeps two simple data structures—an array of application names
that have registered and an array of TMessage pointers that need to be received.
TMessage handles the messages—who they’re from, who they’re addressed to, and
what the message is. I think you’ll find the declarations easy reading.

from TDriver.h
class TDriver: public HandleObject {
public:

// Constructor and destructor.
TDriver();
~TDriver();

d e v e l o p October 1990

380

/* Generic driver routines. These are the only public interfaces we
* show to the world. */
OSErr iacOpen(ParmBlkPtr oParmBlock);
OSErr iacPrime(ParmBlkPtr pParmBlock);
OSErr iacControl(ParmBlkPtr cntlParmBlock);
OSErr iacStatus(ParmBlkPtr sParmBlock);
OSErr iacClose(ParmBlkPtr cParmBlock);

private:
// Control Routines.
/* RegisterApp takes the string in iacRecord.appName and finds a slot
* in the array for the name (hence it "registers" the application).
* SendMessage sends a message from one application to another (as
* specified by the iacRecord fields).
* ReceiveMessage puts the message string into the iacRecord.msgString
* field if there’s a message for the requesting application.
* UnregisterApp removes the application’s name from the array (hence
* the application is "unregistered"). */
short RegisterApp(IACRecord *anIACPtr);
short SendMessage(IACRecord *anIACPtr);
short ReceiveMessage(IACRecord*anIACPtr);
short UnregisterApp(IACRecord *anIACPtr);

// Status Routines
/* WhosThere returns the signature of other applications that
* have registered.
* AnyMessagesForMe returns the number of messages waiting for the
* requesting application in iacRecord.actualCount. */
void WhosThere(IACRecord *anIACPtr);
Boolean AnyMessagesForMe(IACRecord *anIACPtr);

// Message array handling routines.
/* GetMessage gets the TMessPtr in fMessageArray[signature].
* SetMessage sets the pointer in fMessageArray[signature] to
* aMsgPtr. */
TMessPtr GetMessage(short signature);
void SetMessage(short index, TMessPtr aMsgPtr);

// AppName array handling routines.
/* GetAppName gets the application name in fAppNameArray[signature].
* SetAppName sets the application in fAppNameArray[signature]
* to anAppName. */
char *GetAppName(short signature);
void SetAppName(short signature, char *anAppName);

WRITING A DEVICE DRIVER IN C++ (WHAT? IN C++?) October 1990

381

/* We keep an array of applications that can register with the
* driver. I’ve arbitrarily set this at 16. We also keep an array
* of TMessage pointers to be passed around. This is also arbitrarily
* set at 16. In the future, I’d probably implement this as a list of
* messages. */
char fAppNameArray[kMaxApps] [255];
TMessPtr fMessageArray[kMaxMessages];

};

from TMessage.h
class TMessage {
public:

/* Constructor and destructor. Constructor will build the message
* with the appropriate data members passed in. */
TMessage(char *message, short senderSig, short receiverSig);
~TMessage();

/* Two Boolean functions that simply query the message to see
* if the message is destined for the signature of the
* Requestor. Nice example of function overloading�in the
* one case I just wanted to return true or false; in the other
* case I wanted to return who the message was from and the actual
* message string. This is also nice because we have only one
* public member function returning any private information. */

Boolean IsMessageForMe(short sigOfRequestor);
Boolean IsMessageForMe(short sigOfRequestor, short *senderSig,

char *messageString);

private:
/* GetSenderSig returns fSenderSig.
* SetSenderSig sets fSenderSig to signature. */
short GetSenderSig();
void SetSenderSig(short signature);

/* GetReceiverSig returns fReceiverSig.
* SetReceiverSig sets fReceiverSig to signature. */
short GetReceiverSig();
void SetReceiverSig(short signature);

/* GetMessageString returns fMessageString.
* SetMessageString sets fMessageString to msgString. */
char *GetMessageString();
void SetMessageString(char *msgString);

d e v e l o p October 1990

382

// Private data members. Again, we keep storage for the string here.
short fSenderSig;
short fReceiverSig;
char fMessageString[255];

};

The only remaining structure worthy of note is the IACRecord structure.
This structure is passed in the csParam field of the parameter block pointers
passed to the driver. Essentially the IACRecord structure contains all the
control information, or returns all the status information, the application needs to
communicate—the signatures of the sender and receiver, the message and
application name strings, and a couple of other control fields.

from IACHeaders.h
struct IACRecord {

// Signature number of application sending/receiving.
short mySignature;

// Signature of app that’s either sent a message or
// of app to which the current app is sending.
short partnerSig;

// Index to cycle through the apps that have registered.
short indexForWhosThere;

// Nonzero if messages there for recipient.
short actualCount;

// Message string being sent or received.
char* messageString;

// String to register as.
char *appName;

};

REGISTERING WITH THE DRIVER
To use the driver, an application registers itself with the driver, thus signifying that
the application is able to receive and send messages. The driver returns a unique
signature for the application to use throughout the communication session. A
second (or third, or fourth) application also registers and communicates with other
applications by sending and receiving messages using the correct signature. When
an application is finished, it simply unregisters itself. Here are four of the methods
that do most of the work:

WRITING A DEVICE DRIVER IN C++ (WHAT? IN C++?) October 1990

383

from TDriver.cp
/*********************************Comment**
* TDriver::RegisterApp looks to see if there's an open "slot". If so, it sets
* the new AppName for that "slot" and returns the "slot" as the signature. If it
* couldn't find any open "slots" then it returns the kNoMore error.
*********************************End Comment***********************************/

short
TDriver::RegisterApp(IACRecord *anIACPtr)
{
short i = 0;
short canDo = kNoMore;

while ((i < kMaxApps) && (canDo == kNoMore))
{
if((this->GetAppName(i))[0] == kZeroChar)

{
canDo = kNoErr;
anIACPtr->mySignature = i;
this->SetAppName(i,anIACPtr->appName);
}

i++;
}

return (canDo);
} // TDriver::RegisterApp

/*********************************Comment**
* TDriver::SendMessage has to instantiate a new message object. It also has to
* remember that message for later when someone tries to receive it. To remember
* it, the TDriver object places it in the message pointer array. If it couldn't
* find an open "slot" in the array, it returns the error kMsgMemErr, meaning it
* has no memory to store the pointer to the message and hence the message didn't
* get sent. Since the TDriver object is creating a new TMessage, it will destroy
* the TMessage when the time comes.
*********************************End Comment***********************************/

short
TDriver::SendMessage(IACRecord *anIACPtr)
{
TMessPtr aMsgPtr;
short canDo = kNoMore;
short i = 0;

aMsgPtr = new TMessage(anIACPtr->messageString, anIACPtr->mySignature,
anIACPtr->partnerSig);

d e v e l o p October 1990

384

if(aMsgPtr)
{
while ((i < kMaxMessages) && (canDo == kNoMore))

{
if(this->GetMessage(i) == nil)

{
this->SetMessage(i, aMsgPtr);
canDo = kNoErr;
}

i++;
}

if (canDo == kNoMore)
delete aMsgPtr;

} // if aMsgPtr
else

canDo = kMsgMemErr;
return (canDo);
} // TDriver::SendMessage

/**********************************Comment***********************************
* TDriver::ReceiveMessage finds any messages for the application whose
* signature is mySignature. It first checks to see if there are any
* messages. If so, it gets the message and asks the TMessage object to
* return the message string. Then it copies the message string to the
* calling application’s message buffer, puts the sender’s signature in
* "partnerSig", and puts the sender’s application name in appName.
* It then sets the "slot" in the message array to nil and disposes of the
* TMessage object. If there were messages, it returns the kYesMessagesForMe
* value; otherwise it returns kNoMore.
**********************************End Comment******************************/
short
TDriver::ReceiveMessage(IACRecord *anIACPtr)
{
TMessPtr aMsgPtr;
short sender;
char *bufP = nil;

if(this->AnyMessagesForMe(anIACPtr))
{
aMsgPtr = this->GetMessage(anIACPtr->actualCount);
(void) aMsgPtr->IsMessageForMe(anIACPtr->mySignature,&sender,bufP);
anIACPtr->partnerSig = sender;
tseStrCpy(anIACPtr->messageString,bufP);
tseStrCpy(anIACPtr->appName, this->GetAppName(anIACPtr->partnerSig));
this->SetMessage(anIACPtr->actualCount,nil);

WRITING A DEVICE DRIVER IN C++ (WHAT? IN C++?) October 1990

385

delete aMsgPtr;
return (kYesMessagesForMe);
}

else
return(kNoMore);

} // TDriver::ReceiveMessage

/************************Comment***************************
* TDriver::UnregisterApp receives all the messages for the
* application that is unregistering. Those messages will
* just get thrown away. So, all the messages destined for
* it are disposed of, and then it sets the name to ’\0’ so
* others can play.
***********************End Comment***********************/
short
TDriver::UnregisterApp(IACRecord *anIACPtr)
{
char zeroChar = kZeroChar;

// Gotta delete those suckers.
while (this->ReceiveMessage(anIACPtr) == kYesMessagesForMe)

;
// Zero the name so others can play.
this->SetAppName(anIACPtr->mySignature,&zeroChar);
return (kNoErr);
} // TDriver::UnregisterApp

ASSEMBLY WRAPPED AROUND EXTERN “C”, WRAPPED AROUND C++
When you open the C++ Driver folder (Developer Essentials disc), you see many
source files, including the files DriverGlue.a and DriverWrapper.cp.
The assembly glue performs three main functions:

• Pushing the appropriate registers onto the stack.
• Returning to the Device Manager in the proper manner.
• Setting up the DRVR resource with the appropriate routine offsets

in the offset fields.

The first two functions were covered earlier, but the third deserves some
further note.

If you just glance at the MPW® manual, creating the DRVR resource seems like a
breeze. There’s an entire section on it, right? Wrong. The section on building DRVRs
is a good excursion into how to compile and link a DA (how they got to be DRVRs
we’ll never know), but only serves to mislead when it comes to “real” DRVR resources.

d e v e l o p October 1990

386

MPW provides a great run-time library for DAs called DRVRRuntime.o, and it also
provides a resource template that rez can use to create the final DRVR resource.
The DRVW resource template included in MPWTypes.r even provides a nice
programming description of the DRVR resource, but falls short when you
delve into specifying the routine offsets every “device driver” needs to its
Open/Prime/Control/Status/Close routines. The DRVRRuntime.o
library simply provides jump statements to the appropriate pc-relative address for
the DRVROpen, DRVRPrime, DRVRControl, DRVRStatus, and DRVRClose
routines. Hence, the offsets are only 4 bytes apart, and right there the DRVR is
hosed because the Device Manager has no way to jump to, say, the device driver’s
control routine.

For example, say an Open routine is 48 bytes long. If you use the DRVW
template, the DCE header will contain 0 as the offset for the Open routine, 4 as
the offset for the Prime routine, 8 as the offset for the Control routine, and so
on. When the Device Manager goes to call the Control routine, it will jump 8
bytes into the Open routine and start executing there—not what you had intended.
The only recourse is to use DriverGlue.a as an entry point and define the offsets at
the beginning of the assembly file (calculating the offsets appropriately). So much
for having rez help out; maybe the assembler will be more helpful.

The “main” procedure, created to compensate for rez’s ineffectiveness,
looks like this:

from DriverGlue.a
HEADERDEF PROC EXPORT

IMPORT TSEPrime
IMPORT TSEOpen
IMPORT TSEControl
IMPORT TSEStatus
IMPORT TSEClose

TSEStartHdr DC.W $5F00 ; Turn the proper bits on
; dNeedLock<6>, dNeedGoodbye<4)
; dReadEnable<3>, dWritEnable<2>
; dCtlEnable<1>, dStatEnable<0>

DC.W $12C ; 5 seconds of delay (if dNeedTime = True)
DC.W 0 ; DRVREMask (for DAs only)
DC.W 0 ; DRVRMenu (for DAs only)
DC.W TSEOpen-TSEStartHdr ; Offset to open routine.
DC.W TSEPrime-TSEStartHdr ; Offset to prime routine.
DC.W TSEControl-TSEStartHdr ; Offset to control routine.
DC.W TSEStatus-TSEStartHdr ; Offset to Status routine.
DC.W TSEClose-TSEStartHdr ; Offset to Close routine.

WRITING A DEVICE DRIVER IN C++ (WHAT? IN C++?) October 1990

387

DC.B '.TimDriver'; Driver name.
ALIGN 4 ; Align to next long word.
ENDP

It would be ideal to jump straight from the assembly language glue to the C++
TDriver methods and let the object do the work. Unfortunately, it’s not that easy.
First, we would have to allocate the TDriver object’s space and put it into the
dCtlHandle slot in the DCE. Second, we would have to do additional work in the
glue code because each method implicitly expects that a pointer to the “this” object
(the this pointer) will be passed on the stack. We would also have to stuff the
dCtlStorage field into the “this” pointer address register.

The assembler isn’t smart enough to figure out a directive like JMP
TDRIVER::IACOpen. We could use the mangled name of the method and import
that name at the start of the glue code, but all that seems a little too much for our
assembly-naive minds. Apparently, then, the assembler isn’t of much help either.

Instead, we’ll resort to calling regular global C++ functions. We’ll declare the
functions as extern “C” functions so the compiler won’t mangle the names, but will
still compile them as regular C++ functions (because C++ is backward compatible
with regular C). We end up with the following:

from DriverGlue.a
***************************** TSEOpen ***************************************
* This routine (and all like it below) performs three basic functions:
* 1. Pushing the parameter block (A0) and the pointer to the DCE (A1)
* on the stack.
* 2. Testing to see whether the immediate bit was set in the trap word and,
* if so, RTSing.
* 3. Testing the result in D0. If it’s 1, the operation hasn’t completed
* yet so we just want to RTS. If it’s NOT 1, then we’ll jump through
* jIODone.
* I put the standard procedure header in just so you’d see another example of
* it in use. I found Sample.a to be most helpful in much of what I did here.

TSEOpen PROC EXPORT ; Any source file can use this routine.

StackFrame RECORD{A6Link},DECR ; Build a stack frame record.
Result1 DS.W 1 ; Function’s result returned to caller.
ParamBegin EQU * ; Start parameters after this point.
ParamSize EQU ParamBegin-*; Size of all the passed parameters.
RetAddr DS.L 1 ; Placeholder for return address.
A6LinkDS.L 1 ; Placeholder for A6 link.

d e v e l o p October 1990

388

LocalSize EQU * ; Size of all the local variables.
ENDR ; End of record definition.

WITH StackFrame ; Cover our local stack frame.
LINK A6,#LocalSize ; Allocate our local stack frame.

MOVEM.L D1-D3/A0-A4,-(A7) ; Save registers (V1.1A).
MOVE.LA1,-(A7) ; Put address of DCE onto stack.
MOVE.LA0,-(A7) ; Put address of ParamBlock onto stack.
JSR TSDRVROpen ; Call our routine.
ADDQ.W#$8,A7 ; Take off A0 and A1 we pushed.

ADDA.L #ParamSize,SP ; Strip all the caller’s parameters.
MOVEM.L (A7)+,D1-D3/A0-A4 ; Restore registers (V1.1A).
SWAP D0 ; Save result in MostSig Word.
MOVE.WioTrap(A0),D0 ; Move ioTrap into register to test.
SWAP D0 ; Back again.
BTST #(noQueueBit+16), D0 ;Test the bit.
BNE.S OpenRTS ; If Z = 0, then noQueueBit.

; Set � branch.
CMP.W #$1,D0 ; Compare result with 1.
BEQ.S OpenRTS ; Not equal to zero so RTS.
UNLK A6 ; Destroy the link.
MOVE.LjIODone,-(A7) ; Put jIODone on the stack.
RTS ; Return to the caller.

OpenRTS UNLK A6 ; Destroy the link.
RTS ; Return to the caller.
DbgInfo TSEOpen ; This name will appear in the debugger.
ENDP ; End of procedure.

These global functions will do only some minor work that amounts to getting a
pointer to the driver and calling the appropriate method. The Open routine does
have to instantiate the object and install it into the dCtlHandle field of the DCE
for subsequent retrieval. And the Close routine has to reverse these effects and
dispose of the memory allocated by the Open procedure. All in all, however, the
code is straightforward and, again, easy to follow.

WRITING A DEVICE DRIVER IN C++ (WHAT? IN C++?) October 1990

389

from DriverWrapper.cp
/********************************Comment*************************************
* TSDRVROpen is called by the assembly TSEOpen routine. It in turn will simply
* turn around and call the TDriver::IACOpen method after some setup. This
* routine must instantiate the TDriver object. We’ll be good heap users and move
* the object (handle) hi. If we get an error, we’ll return MemErr, mostly for
* debugging purposes. Declared as extern "C" in DriverWrapper.h
*******************************End Comment********************************/

OSErr
TSDRVROpen(ParmBlkPtr oParmBlock,DCtlPtr tsDCEPtr)
{
TDrvrPtr aDrvrPtr;
OSErr err;

// Create TDriver object.
aDrvrPtr = new(TDriver);

// Make dCtlStorage point to it.
tsDCEPtr->dCtlStorage = (Handle) aDrvrPtr;
if(tsDCEPtr->dCtlStorage)

{
MoveHHi(tsDCEPtr->dCtlStorage);
HLock(tsDCEPtr->dCtlStorage);
aDrvrPtr = (TDrvrPtr) tsDCEPtr->dCtlStorage;
err = aDrvrPtr->iacOpen(oParmBlock);// Call the iacOpen() method.
HUnlock(tsDCEPtr->dCtlStorage);
return(err);
}

else
return MemError();

}

/*********************************Comment**********************************
* TSDRVRControl is called by the assembly TSEControl routine. It in turn
* simply turns around and calls the TDriver::IACControl method after locking
* the object. This essentially just locks the handle whose master pointer
* points to the object and then calls the appropriate method. When done,
* TSDRVRControl unlocks the handle.
********************************End Comment********************************/
OSErr
TSDRVRControl(ParmBlkPtr cntlParmBlock,DCtlPtr tsDCEPtr)
{
TDrvrPtr aDrvrPtr;
OSErr err;

d e v e l o p October 1990

390

HLock(tsDCEPtr->dCtlStorage); // Lock the storage handle.
aDrvrPtr = (TDrvrPtr) tsDCEPtr->dCtlStorage; // Object pointer = master

// pointer.
err = aDrvrPtr->iacControl(cntlParmBlock);// Call the iacControl() method.
HUnlock(tsDCEPtr->dCtlStorage); // Unlock the handle.
return(err);
}

We now have three “kinds” of source files: (1) the assembly language glue, (2) the
global C++ functions declared as extern “C” so the names will be normal (our driver
“wrapper” functions), and (3) the C++ object methods. Having an assembly routine
call a global C++ function, which calls a C++ method, seems like quite a hassle, but
avoiding having to do the whole thing in assembly language is well worth the effort,
especially with our friend Mr. Linker to put everything together.

CREATING THE DRVR RESOURCE ITSELF
The linker handles the entire task of creating the DRVR resource in the driver
resource file. Here, again, there are some caveats about usage. First, you need to
make sure that the first elements in a DRVR are the flags and offsets, so the first
procedure in the assembly language file just defines these with DC.W instructions.
Second, you have to tell the linker where the first procedure is, so you specify the

C++ code

Assembly language

Extern "C" code

C++ code

Extern "C" code

Assembly language

Mr. Linker

WRITING A DEVICE DRIVER IN C++ (WHAT? IN C++?) October 1990

391

Figure 1
Using the Linker to Create the DRVR Resource

name with the -m option (in this case -m HeaderDef). Third, you have to give
the DRVR resource the name you want the resource to have, so you use the -sn
option to define this. Finally, you want to specify the resource attributes at link time,
so you specify the DRVR resource as being locked, in the system heap, and
preloaded. The link line looks like this:

from iacDriver.make
Link -rt DRVR=75 -m HEADERDEF -sn "Main=.TimDriver" ¶

-c ’TSEN ’ -t ’DRVR’ ¶
-ra ".TimDriver"=resSysHeap,resLocked,resPreLoad ¶
{CPOBJECTS} ¶
"{Libraries}Interface.o" ¶
-o iacDriver.DRVR

Sometimes the compiler (or CFront) does things behind your back that are
completely frustrating, even if you’re a careful programmer. The first time I tried
to link the driver together, the linker complained that data initialization code had
not been called. I knew there was no “data initialization” code being called because
I had compiled a stand-alone code resource. I scratched my head because I knew I
didn’t have any globals anywhere in my code. Then I remembered, “Oh yeah, the
compiler puts string constants in the global segment.” The MPW manual explains
the -b option, and eventually that option worked to solve the problem. I say
“eventually” because I ran into another case where the compiler helped me out
without my knowing.

Definitions for new and delete are included in the CPlusLib.o library. In this
case, CFront calls these functions for every constructor. Even if you define your own
new and delete functions, the linker still will include the CPlusLib.o versions of
the functions in the global segment. The linker then still thinks it has global data
that hasn’t been initialized.

The solution to the problem is to define your own external “C” functions (an
indicator to the compiler to use regular C calling conventions, but still part of your
C++ code) with the mangled names for new and delete. You’ll have to declare
the functions as returning a void pointer or handle. The declarations look like this:

from iacGlobalNewDel.cp
/* unmangle __nw__FUi
* Unmangled symbol: operator new(unsigned int)
* We return a void * because new returns a pointer. */
void *__nw__FUi(unsigned int size)

d e v e l o p October 1990

As an alternative to defining your own
external “C” functions, you could use the A5

global library routines described in Technical
Note #256, Stand-Alone Code, ad nauseam. You
could then use globals as well as the default code
for new and delete.•

392

/* unmangle __dl__FPv
* Unmangled symbol: operator delete(void *)
* We return void just for clarity. */
void __dl__FPv(void *obj)

/* unmangle __nw__12HandleObjectSFUi
* Unmangled symbol: static HandleObject::operator new(unsigned int)
* We return a void ** because this version of new should return
* a handle. */
void **__nw__12HandleObjectSFUi(unsigned int size)

/* unmangle __dl__12HandleObjectSFPPv
* Unmangled symbol: static HandleObject::operator delete(void **) */
void __dl__12HandleObjectSFPPv(void **aHandle)

You have to use the mangled names because that’s how they were compiled into the
CPlusLib.o library. Fortunately, you can now eliminate the CPlusLib.o library from
your list of libraries. Once past these two global obstacles—string constants placed
in the global segment and new/delete operators called from constructors—the
linker passes the sample code through with flying colors.

BUILDING THE 'INIT' TO INSTALL THE DRIVER
Now that the DRVR resource and code are finished, how do you use it? The first
order of business is to install the driver into the UnitTable. The listing for the code
that does the installation appears on the next page. This code opens the resource file
where the DRVR resides, looks for an open “slot” in the UnitTable starting from
the rear of the UnitTable, opens the resource, changes the resource ID to match the
UnitTable slot, calls OpenDriver, detaches the resource, and changes the DRVR
resource ID back to what it was before beginning. The few steps that need
explanation are finding the slot in the UnitTable, calling DetachResource, and
calling OpenDriver.

Why do you have to find an open slot in the UnitTable? You want to make sure the
driver gets installed. If there’s a resource ID conflict (and hence a slot conflict in the
UnitTable), you can’t be sure whether the driver will clobber the existing one or
won’t get installed at all. Thus, you could rely on just calling OpenDriver with
the DRVR resource ID, but that wouldn’t be very cooperative of you. So you look
for an open slot, which boils down to looking for a nil address in the UnitTable,
starting at the back of the UnitTable where open slots are most likely to exist (the
system uses up slots at the beginning of the UnitTable). If the contents of the
address are nil, you can install the driver into that slot.

WRITING A DEVICE DRIVER IN C++ (WHAT? IN C++?) October 1990

393

from installDriver.c
short
lookForSlotInUnitTable()
{
short slot;
Ptr theBass;
long *theVoidPtr;
Boolean foundSlot = false;

/* Set up variables based on contents of low-memory global
* locations. DTS tells people not to rely on low-memory
* globals, but we really need these two low-memory
* globals to do our work. So, there is a compatibility
* risk we have to be aware of. */

slot = *((short *)(UnitNtryCnt)) - 1;
theBass = (Ptr) (*((long *) (UTableBase)));

// We step back to 48 because 0-47 are taken.
while(slot>48 && !foundSlot)

{
theVoidPtr = (long *)(theBass + (4L * slot));

if(*theVoidPtr == nil)
foundSlot = true;

slot -= 1;
}

slot += 1;
if(!foundSlot)
slot = 0;

return slot;
}

Why do you call DetachResource? Inside Macintosh, volume V, page 121, says,
“DetachResource is also useful in the unusual case that you don’t want a
resource to be released when a resource file is closed.” The example is such a case.
When the Init is loaded and executed by the Init 31 mechanism, the resource file in
which the Init resides is opened. When the Init has been executed, the resource file
is closed, and the Resource Manager goes around and cleans up any of the resources
in the resource map that are known to be allocated. DetachResource replaces
the handle in the resource map with nil, so the Resource Manager thinks it doesn’t
have to clean up that handle.

d e v e l o p October 1990

Thanks to Pete Helme for the
installDriver.c code. •

394

Why do you call OpenDriver instead of _DrvrInstall? Essentially that’s
because OpenDriver does the correct thing and _DrvrInstall doesn’t.
When you call _DrvrInstall with a handle to the driver, _DrvrInstall
does most of the work, but it forgets to put the handle to the driver into the
dCtlDriver field of the DCE and effectively makes the driver unreachable.
_OpenDriver has no such problem, and it works correctly. Alternatively, you
could use _DrvrInstall and then put the handle to the driver into the DCE.
The installation code looks like this:

from installDriver.c
void
changeDRVRSlot(short slot)
{
Handle theDRVR;
short err, refNum;
char *name, DRVRname[256];
short DRVRid;
ResType DRVRType;

name = "\p.TimDriver";

if(slot != 0) {
theDRVR = GetNamedResource(’DRVR’, name);
GetResInfo(theDRVR, &DRVRid, &DRVRType, &DRVRname);
SetResInfo(theDRVR, slot, 0L);

err = OpenDriver(name, &refNum);
if(err == noErr)

{
/* Detach the resources from the resource map. */
DetachResource(theDRVR);

}
/* Restores the previous resource attributes so they don’t change
* from start-up to start-up. We just want the in-memory copy to
* have a different ID�not our resource in the file. */
theDRVR = GetNamedResource(’DRVR’, name);
SetResInfo(theDRVR, DRVRid, nil);
}

}

WRITING A DEVICE DRIVER IN C++ (WHAT? IN C++?) October 1990

395

This code needs to be compiled with the -b option as well because it’s a stand-
alone code resource like the DRVR, and you have to have everything in one
resource. For the example, we chose to make the installation code an Init so that the
driver will install at system start-up time and so that any application can access it.
You also must make sure that the resource has the resource attribute resLocked.
The Init must be locked at start-up time in case anything in the Init code moves
memory. If anything in the Init does move memory, you come back to some random
place in the system heap because the Init resource has been moved. This is a
particularly painful (and time-consuming) gotcha.

PUTTING IT ALL TOGETHER
The final goal is to have one file that contains all the necessary resources. At this
point you have all the code resources you need: the Init and the DRVR. You may
need one additional resource, depending on how large the driver is and how much
of the system heap you need. If you need more than 16K, you have to create the
sysz resource and put that in the file. Fortunately, the sysz resource is simple
to define; it looks like this:

from iacDriver.r
include "iacDriver.DRVR"; /* Include the DRVR resource. */
include "installDriver"; /* Include the INIT resource. */

type ’sysz’ { /* This is the type definition. */
longint; /* Size requested (see IM V, page 352).*/

};

resource ’sysz’ (0,"",0) { /* This is the declaration. */
0x00008000 /* 32 * 1024 bytes for sysz resource. */

};

Now that you have all the components, you let rez do the work of moving the
Init and DRVR resources into one file. Fortunately you can include resources from
other resource files with the “include” directive (see chapter 11, page 309, in the
MPW manual for a discussion of rez).

from iacDriver.make
rez iacDriver.r -c TSEN -t INIT -a -o iacDriver

d e v e l o p October 1990

396

CALLING THE DRIVER FROM AN APPLICATION
The example also includes several routines you might run from a client application
to use the sample driver. Developer Essentials contains two sample applications that
use these routines to register and send or receive messages. (Don’t get your hopes
up, though. This is just Sample.c modified, so the light will turn off and on via
control from a second application.)

DESIGN DECISIONS
Now that you’ve learned about this “device driver” in particular, and more about
drivers in general, we can discuss some of the trade-offs required.

WHAT TO DO WITH JIODONE, AND WHEN
Most of the time, the device driver should jump to jIODone so the Device
Manager will handle the housekeeping tasks of marking the driver as “unbusy” and
calling the completion routine. However, a few exceptions are noted throughout the
chapter on the Device Manager (Inside Macintosh, volume II, chapter 6). You don’t
want to jump to jIODone (just RTSing instead) in these situations:

• When an operation you started is not yet complete (that is, an
operation that will interrupt you when it is complete).

• When you get a KillIO request.
• When you get called immediately (that is, bit #9, the
noQueueBit, is set in the ioTrap word and calls usually look
like _Read, IMMED).

Speaking of the immediate bit, you’ll find that most drivers don’t guard against
reentrancy. This is a problem when callers try to make Immediate calls to the
driver. If you don’t want people making Immediate calls to the driver, you have
to specify in the documentation that callers may not call this device driver
immediately; otherwise, the results will be indeterminate. On the other hand, if you
do want to allow Immediate calls, one simple way to guard against most types of
reentrancy problems is to set some flag within the driver and then either (1) return
without performing the immediate action requested or (2) save the state of the other
operation, perform the Immediate call, and return. In either event, remember to
return via an RTS for all Immediate calls.

WRITING A DEVICE DRIVER IN C++ (WHAT? IN C++?) October 1990

397

MULTIPLE OUTSTANDING REQUESTS
You may want a driver to be able to handle many _Read and _Write requests at
the same time, and not one at a time. This driver can handle only one request at a
time. If no messages are waiting when requested, for example, the caller is told there
are no messages. In many cases, however, you want to keep that request around until
there is a message. To handle this case, you have to do some more work. Essentially,
you have to dequeue the request from the Device Manager’s queue, queue it up in
some internal list of your own, and then satisfy the requests when they are finished.
You have to perform the functionality of jIODone yourself as well, because you’ll
be handling the operations yourself. You’re also operating behind the Device
Manager’s back to some extent because you’re dequeueing requests from the I/O
queue yourself.

_READ AND _WRITE OR _CONTROL OPERATIONS
If you use _Read and _Write, you can’t pass in csParam. The trade-off we
made in the example was that csParam would point to a structure that gave us
more control over, and a more elegant solution to, sending and receiving messages to
and from the proper place. If you use _Read/_Write, you have to format the
ioBuffer to contain all the information for the messages, and that means encoding
the sender and receiver signatures in with the actual message. One disadvantage of
this trade-off is that the method may fail in the future in the world of virtual memory.
Virtual memory watches the _Read and _Write traps and makes sure the
memory addressed by ioBuffer stays in physical memory, but it neglects to do the
same for csParam. Hence, the IACRecord structure (and pointers within that
structure) may or may not be in physical RAM at the time of the call. If this happens
at interrupt time and a page fault occurs, you’re completely hosed.

TMESSAGE OBJECTS
Finally, the sample driver isn’t very space friendly. The TMessage objects are
allocated by NewPtrSys, and hence will fill up the system heap with locked
pointers. The good news is that TMessage objects probably don’t live for very long.
The bad news is that the heap may still become fragmented. So, another design
decision you could make would be to derive from HandleObject and take into
consideration dereferences of handles. You may want to try that as an exercise.

d e v e l o p October 1990

For More Information
Inside Macintosh, volume II, chapter 6, “The
Device Manager.”
Stanley Lippman: The C++ Primer, Addison-
Wesley, 1989.
Bjarne Stroustrup: The C++ Programming
Language, Addison-Wesley, 1987. •

398

SUMMING UP
To summarize: C++ can be used to write a device driver that operates under some
basic restrictions. We successfully built a couple of stand-alone classes that can be
modified and kept up separately. The classes present a clear definition of roles and
hide data as cleanly as possible. We chose not to use polymorphism in the code,
although we certainly could have done so—with a little extra work and the
possibility of future incompatibilities (again, see “Polymorphic Code Resources in
C++,” by Patrick Beard, in this issue).

Because of limitations of the operating system and development system, we have to
incorporate some assembly language, and some global C++ functions, into whatever
we write. We discussed some of the design trade-offs you must inevitably make and
went into some depth on several of the trickier aspects of writing a device
driver—what to do with jIODone, how to use the assembler to best advantage,
compiling and linking the stand-alone code so it does the right thing, creating an
Init that installs the driver at system start-up time, and using rez to create the
eventual resource file.

C++ allows you to encapsulate data with functions, thus making it easier to maintain
code and port the code to other platforms. Some nifty language features, such as
function overloading and strong type checking, come with C++. If you’re writing a
device driver that doesn’t depend on speed and efficiency, C++ is a good choice of
languages.

WRITING A DEVICE DRIVER IN C++ (WHAT? IN C++?) October 1990

399
Thanks to Our Technical Reviewers
Brian Bechtel and Jack Palevich •

The C++ programming language supports data abstraction and object
programming. Until now, using C++ to its full capacity in stand-alone
code has not been possible. This article demonstrates how you can take
advantage of two important features of C++, inheritance and
polymorphism, in stand-alone code. An example shows how to write a
window definition function using polymorphism.

In object programming, polymorphism gives programmers a way to solve problems by
beginning with the general and proceeding to the specific. This process is similar to
top-down programming, in which the programmer writes the skeleton of a program to
establish the overall structure and then fills in the details later. Polymorphism differs
from top-down programming, however, in that it produces designs that are reusable
outside the context of the original structure. The attractiveness of reusable code is one
of the reasons object programming is catching on.

The shape hierarchy shown in Figure 1 is one of the most frequently cited examples
of polymorphism.

Figure 1
Shape Hierarchy

Shape

Ellipse

Circle

Polygon

Rectangle

Square

POLYMORPHIC

CODE

RESOURCES

IN C++

PATRICK C. BEARD

d e v e l o p October 1990

PATRICK BEARD of Berkeley Systems, Inc., is a
totally rad dude, living in a world somewhere
between hard-core physics and fantasy. He
prepared for this lifestyle by getting a B.S.M.E. at
the University of California, Berkeley. He claims
native Californian status, although he’s from
Illinois. A programming addict who relishes
treading the very edge of what’s possible,

Pat dreams of writing his own programming
language so he can really express himself.
Meanwhile, he has written screen-savers and
sundry compiler hacks, and has helped develop
a Macintosh talking interface for the blind. He’s a
jazz musician (looking for a rhythm section—any
takers?), a snow skier, snowboarder, and

400

The most general concept is the shape; all objects in the hierarchy inherit attributes
from the shape. Area, perimeter, centroid, and color are attributes common to all
shapes. Notice that the hierarchy proceeds from the general to the specific:

• Polygons are shapes with a discrete number of sides.
• Rectangles are polygons that have four sides and all right angles;

squares are rectangles having all equal sides.
• Ellipses are shapes that have a certain mathematical description;

circles are ellipses whose widths equal their heights.

In C++, concepts are represented as classes. The more abstract the concept, the
higher in the inheritance hierarchy the concept resides. Two key C++ features
support polymorphism: inheritance and virtual member functions. We can use these
to develop more concretely specified shapes and ask questions of any shape about its
area, perimeter, or centroid.

The virtual functions provide a protocol for working with shapes. Here is an
example of the shape hierarchy as it could be represented in C++:

class Shape {
public:

virtual float area(); // Area of the shape.
virtual float perimeter(); // Its perimeter.
virtual Point centroid(); // Its centroid.

};

class Ellipse : public Shape {
public:

virtual float area(); // Area of the shape.
virtual float perimeter(); // Its perimeter.
virtual Point centroid(); // Its centroid.

private:
Point center; // Center of ellipse.
float height; // How high.
float width; // How wide.

};

class Circle : public Ellipse {
public:

virtual float area(); // Area of the shape.
virtual float perimeter(); // Its perimeter.
virtual Point centroid(); // Its centroid.

};

POLYMORPHIC CODE RESOURCES IN C++ October 1990

401skateboarder, whose motto in life is “Stop and
breathe from time to time.” He never puts
anything away, fearing an inability to find stuff
when he needs it; the piles are growing at an
alarming rate. However, he swears his brain is
organized and that he knows where everything
is, except Tech Note #31. •

In this implementation, a circle is an ellipse with the additional constraint that its
width and height must be equal.

Once an object of a type derived from Shape has been instantiated, it can be
manipulated with general code that knows only about shapes. The benefit is that,
having written and debugged this general code, you can add more kinds of shapes
without having to alter the general code. This eliminates many potential errors.

IMPLEMENTATION IN MPW C++
MPW C++ is a language translator that translates C++ to C. Programs are compiled
by first being translated to C, after which the MPW C compiler takes over and
compiles the C to object code.

IMPLEMENTATION OF VIRTUAL FUNCTIONS
As noted, polymorphism is accomplished by using inheritance and virtual member
functions. How does the C++ compiler decide which function should be called when
an instance of unknown type is used? In the current release of MPW C++, every
instance of an object in an inheritance hierarchy has a hidden data member, which is
a pointer to a virtual function table. Each member function is known to be at a
particular offset in the table. The member functions for the different classes in an
inheritance chain are stored in different tables. The table pointed to is determined at
the time of object creation. (See the sidebar called “Layout of Objects and Their
Virtual Functions in Memory.”)

So far, nothing in the implementation of virtual functions seems to preclude their
use in nonapplication contexts. Once an object is instantiated, the code needed to
call a virtual function can be executed from any context, including stand-alone code
resources. However, MPW C++ does not currently support a mechanism to allocate
storage for, or to initialize, the virtual function tables in nonapplication contexts.

CODE RESOURCE SUPPORT FOR POLYMORPHISM
As noted above, virtual function tables are required for polymorphism in C++. To
support virtual function tables in stand-alone code, two issues must be resolved:

• How to allocate the virtual function tables.
• How to initialize the virtual function tables.

402

d e v e l o p October 1990

For a typical class such as class foo, how does the
compiler generate code to call the proper virtual function
at run time? The following class and diagram show how
this is accomplished.

As shown by the figure, an instance of class foo has
three data members. Two of the members, member1 and
member2, are part of the class definition, while a third
member we’ll call pVTable is a hidden member
automatically created by the compiler. pVTable is a
pointer to a table of function pointers (also automatically
generated by the compiler) that holds pointers to all the
functions in the class that are declared virtual. The code
that is generated to call a virtual function is therefore
something like this:

// Code written in C++:
myFoo->method1();
/* Becomes this code in C: */
(*myFoo->pVTable[0])();

This is the memory layout for a virtual function table used
in single inheritance. For multiple inheritance, the
structures used are more complicated.

pVTable

member1

member2

method1 ()

method2 ()

class foo {
public:
 virtual void method1 ();
 virtual void method2();
private:
 int member1;
 int member2;
};

LAYOUT OF OBJECTS AND THEIR VIRTUAL FUNCTIONS IN MEMORY

Figure 2
Calling Virtual Functions at Run Time

POLYMORPHIC CODE RESOURCES IN C++ October 1990

403

GLOBAL VARIABLES IN CODE RESOURCES
In MPW C++, virtual function tables live in C global variable space. Unfortunately,
the MPW languages do not support the use of global variables in stand-alone code.
However, Technical Note #256, Stand-Alone Code,ad nauseam, shows how to add
support for global variables in standalone code resources. In simple terms, this involves
allocating storage for the globals, initializing the globals, and arranging for the proper
value to be placed in machine register A5. These functions can be neatly expressed as a
class in C++. The following class, called A5World, provides these services.

class A5World {

public:
A5World(); // Constructor sets up world.
~A5World(); // Destructor destroys it.

// Main functions: Enter(), Leave().
void Enter(); // Go into our world.
void Leave(); // Restore old A5 context.

// Error reporting.
OSErr Error() { return error; }

private:
OSErr error;// The last error that occurred.
long worldSize; // How big our globals are.
Ptr ourA5; // The storage for the globals.
Ptr oldA5; // Old A5.

};

To use globals, a code resource written in C++ merely creates an instance of an
A5World object. Here is an example:

// Hello_A5World.cp
// Simple code resource that uses global variables.

#include "A5World.h"

// Array of characters in a global.
char global_string[256];

d e v e l o p October 1990

404

void main()
{

// Temporarily create global space.
A5World ourWorld;

// Check for errors.
if(ourWorld.Error() != noErr)

return;

// We got it; let’s go inside our global space.
ourWorld.Enter();

// Use our global variable.
strcpy(global_string, "Hi there!");
debugstr(global_string);

// Time to go home now.
ourWorld.Leave();

// The destructor automatically deallocates
// our global space.

}

The full implementation of class A5World appears on the Developer Essentials disc
(Poly. in Code Resources folder). By itself, this is a useful piece of code.

INITIALIZING THE VIRTUAL FUNCTION TABLES
As noted, MPW C++ is implemented as a language translator (called CFront) that
translates C++ to C. As you might guess, classes are implemented as structs in C,
and member functions are just ordinary C functions. As also noted, the virtual
function tables are implemented as global variables. We have solved the problem of
having globals in stand-alone code, so the remaining issue is how to initialize these
tables with the proper pointers to the member functions.

The initialization of a global variable with a pointer to a function is not supported in
stand-alone code written in MPW languages. This initialization is normally done by
the linker, which creates a jump table, and the current version of the MPW Linker
will not generate jump tables for stand-alone code. Therefore, the only way to
initialize global variables with pointers to code is manually at run time.

POLYMORPHIC CODE RESOURCES IN C++ October 1990

405

To understand the solution to this problem, let’s take a look at what CFront does
when it sees a hierarchy of classes with virtual functions. Here is a simple hierarchy
of two classes, Base and Derived:

class Base {
public:

Base();
virtual void Method();

};

class Derived : public Base {
public:

Derived();
virtual void Method();

};

When MPW C++ sees these class definitions, it emits the following C to allocate
and initialize the virtual function tables:

struct __mptr __vtbl__7Derived[]={0,0,0,
0,0,(__vptp)Method__7DerivedFv,0,0,0};
struct __mptr *__ptbl__7Derived=__vtbl__7Derived;
struct __mptr __vtbl__4Base[]={0,0,0,
0,0,(__vptp)Method__4BaseFv,0,0,0};
struct __mptr *__ptbl__4Base=__vtbl__4Base;

The variables __vtbl__4Base[] and __vtbl__7Derived[] are the virtual
function tables for the classes Base and Derived. To support polymorphism in
stand-alone code, this code must be split into two parts: a declaration part and an
initialization part. The initialization part is simply a C function that initializes the
tables. The following code shows how the tables might be transformed for use in
stand-alone code:

struct __mptr __vtbl__7Derived[3];
struct __mptr *__ptbl__7Derived;
struct __mptr __vtbl__4Base[3];
struct __mptr *__ptbl__4Base;

void init_vtbls(void)
{

__vtbl__7Derived[1].d = 0;
__vtbl__7Derived[1].i = 0;

d e v e l o p October 1990

406

__vtbl__7Derived[1].f = (__vptp)Method__7DerivedFv;
__ptbl__7Derived=__vtbl__7Derived;

__vtbl__4Base[1].d = 0;
__vtbl__4Base[1].i = 0;
__vtbl__4Base[1].f = (__vptp)Method__4BaseFv;
__ptbl__4Base=__vtbl__4Base;

}

What we end up with is a declaration of global variables and a simple C function
that must be called before the virtual functions are called. The code transformation
shown is easy to implement. The Developer Essentials disc contains a simple MPW
Shell script and two MPW tools that perform this function. The script is called
ProcessVTables, and the tools are called FixTables and FilterTables.

COMBINING THE CONCEPTS
What remains is to combine the concepts of allocating global variables and
initializing virtual function tables into a single construct. The following code, class
VirtualWorld, based on class A5World, provides these two services.

class VirtualWorld : public Relocatable {
public:

// Constructor sets up world.
VirtualWorld(Boolean worldFloats);
// Destructor destroys it.
~VirtualWorld();

// Main functions; Enter sets A5 to point to
// our world.

// Go into our world.
void Enter();
// Restore old A5 context.
void Leave();

// Error reporting.
OSErr Result() { return error; }

private:
// The last error that occurred.
OSErr error;
// Whether we have to call the vtable init.
Boolean codeFloats;
// How big our globals are.
long worldSize;

POLYMORPHIC CODE RESOURCES IN C++ October 1990

407

// The storage for the virtual world.
Ptr ourA5;
// Old A5.
Ptr oldA5;

};

The constructor for class VirtualWorld requires one parameter,
worldFloats, a Boolean value that tells whether or not the code resource floats
between calls. This flag is used to decide whether or not the virtual function tables
need reinitializing on every call to the code resource. Code resources such as WDEFs
do float, and can even be purged, so this flag is essential. If worldFloats is false,
the virtual function tables are initialized once in the constructor. This initialization
is performed by calling the function init_vtables(), shown earlier.

The Enter() and Leave() member functions set up and restore the A5 global
space, respectively. If the member variable codeFloats is true, Enter() calls
the init_vtables() each time.

As in the A5World class, the Error() member function reports error
conditions, which should be checked before assuming the world is set up correctly.

HANDLE-BASED CLASSES
The C++ default storage strategy is to create objects as
pointers. As we all know, using pointers to allocate
storage on the Macintosh makes memory management a
lot less efficient. The ability to store data in relocatable
blocks allows the Macintosh to use more of its memory
since relocatable blocks can be shuffled around to make
space.

Luckily, Apple has extended C++ in a way that allows us
to take advantage of the Macintosh Memory Manager by
adding the built-in class HandleObject. The only
restrictions placed on handle-based objects is that they
can be used only for single-inheritance hierarchies. Most
object programming tasks, however, can be handled
using single inheritance.

To make handle-based objects easier to work with, here
is class Relocatable, a class derived from
HandleObject. Class Relocatable provides
functions for manipulating handle-based objects without
the hassle of all those casts.

class Relocatable : HandleObject {
protected:

void Lock() {HLock((Handle)this);}
void Unlock() {HUnlock((Handle)this);}
void MoveHigh() {

MoveHHi((Handle)this);}
SignedByte GetState() {

return HGetState((Handle)this);}
void SetState(SignedByte flags) {

HSetState((Handle)this, flags);}
};

d e v e l o p October 1990

408

EXAMPLE: AN ICONIFIABLE WINDOW DEFINITION
To show off this really cool technique, I have written one of everybody’s favorite
code resources, a window definition function, or WDEF, that uses polymorphism.
The example demonstrates how to define a base class for windows that is easy to
inherit from—so you can add a feature to a window while leaving the original
window code untouched.

CLASS WINDOWDEFINITION
Class WindowDefinition forms the template for all other window definitions.
Here is its interface:

class WindowDefinition : public Relocatable {
public:

// Initialize window.
virtual void New(WindowPeek theWindow)

{ itsWindow = theWindow; }
// Destroy window.
virtual void Dispose() {}

// Compute all relevant regions.
virtual void CalcRgns() {}
// Draw the frame of the window.
virtual void DrawFrame() {}
// Draw the goaway box (toggle state).
virtual void DrawGoAwayBox() {}
// Draw window’s grow icon.
virtual void DrawGIcon() {}
// Draw grow image of window.
virtual void DrawGrowImage(Rect& growRect) {}
// Do hit testing.
virtual long Hit(Point& whereHit)
{ return wNoHit; }

protected:
// Window we are keeping track of.
WindowPeek itsWindow;

};

WindowDefinition uses methods to respond to all the messages to which a
WDEF is expected to respond. All the methods are just placeholders here, as
WindowDefinition is an abstract base class.

Class WindowDefinition’s superclass, Relocatable, provides services to all
handle-based classes, such as locking this, moving it high, and unlocking it. This
class makes the casts to type Handle that are normally necessary and makes
dealing with handle-based classes pleasant—and safer.

POLYMORPHIC CODE RESOURCES IN C++ October 1990

409

CLASS WINDOWFRAME
The next class to look at is WindowFrame. WindowFrame implements a basic
window that can be resized, moved, and shown in highlighted or unhighlighted state.

class WindowFrame : public WindowDefinition {
public:

virtual void New(WindowPeek theWindow);
virtual void Dispose();
virtual void CalcRgns();
virtual void DrawFrame();
virtual void DrawGrowImage(Rect& growRect);
virtual long Hit(Point& whereHit);

Window

Iconified window

Figure 3
Class WindowFrame’s Window on the Desktop

d e v e l o p October 1990

410

private:
// Border between content and structure
// boundaries.
RgnHandle itsBorderRgn;

};

The code that makes this window work is included in the full source example on the
Developer Essentials disc.

CLASS ICONWDEF
To implement a window that is iconifiable, we can derive from the class
WindowFrame, and modify its behavior, without having to rewrite the code that
implements the window. All an icon has to do is respond to clicks and be dragged
around. So, the class IconWDef just has to worry about keeping track of whether
the window is iconified or not, and lets the WindowFrame part take care of being
a window. Here is the interface to class IconWDef.

class IconWindowDef : public WindowFrame {
public:

// Window methods.
virtual void New(WindowPeek theWindow);
// We have different regions when iconified.
virtual void CalcRgns();
// We draw an icon if in the iconified state.
virtual void DrawFrame();
virtual long Hit(Point& whereHit);

private:
// State of our window.
Boolean iconified;
// If we’ve ever been iconified.
Boolean everIconified;
// Flag that says we want to change our state.
Boolean requestingStateChange;
// How many times CalcRgns has been called.
short calcRgnsCount;
// Place to hit to iconify window.
Rect iconifyRect;
// Where to put when iconified.
Point iconifiedLocation;

};

The decision about when to iconify the window is made in the IconWDef’s Hit()
method. In the current implementation, if the window’s zoom box is hit with the
Option key held down, the window toggles between being an icon and being a window.

POLYMORPHIC CODE RESOURCES IN C++ October 1990

411

SUMMARY
This article has shown how to use polymorphism—the combination of inheritance
and run-time binding of functions to objects—in the context of stand-alone code
resources. Issues that had to be resolved were how to provide support for globals in
stand-alone code and how to arrange for the initialization of virtual function tables.

Although the code for the example shows how to use polymorphism for window
definition functions, you can use the same technique to write any type of code
resource: menu definitions, list definitions, control definitions, and even drivers.

ROOM FOR IMPROVEMENT
The code could be improved in two ways:

• By using handles to allocate the A5 globals and passing in a
parameter to tell VirtualWorld that the data can float.

• By removing the QuickDraw-specific code and placing it in a
subclass of VirtualWorld.

CAVEATS
A couple of words of warning are in order. The tools that process the virtual
function tables depend on the way CFront generates the tables. If AT&T or Apple
ever decides to change the way these tables are generated (probably unlikely), the
tools described in the example will probably break. However, it would not be
difficult to modify the tools if changes were made.

Classes inherited from class PascalObject are not supported by the techniques
described in this article. This is because these classes do not implement run-time
binding using virtual function tables. This is not a problem since PascalObjects
were intended only for use with MacApp, and (for now) MacApp can be used only
for applications.

Look at the code on Developer Essentials for more information, and good luck!

d e v e l o p October 1990

Thanks to Our Technical Reviewers
Herman Camarena, Jack Palevich •

412

A

Q
Q

A
SYSTEM 7.0 SNEAKS October 1990

413

For those who missed the Q & A
session on System 7.0 at the May 1990
Apple Worldwide Developers’
Conference, here’s a sampling of what
went on.

Q
It would be nice to have Apple Events that
could get a list of valid Apple Events from
an application. Is that going to be
available?

A
There are Apple Events to do that
kind of thing already, and if you
discussed the issue on AppleLink®

you’d find that out right away. That’s a
hint. Get it?—ED.

Q
Can I drop Control Panel device files into
the Apple menu folder and launch them
directly from the Apple menu?

A
The short answer is yes. The more
complete answer is this: Anything you
could double-click from the Finder™
can be dropped into the Apple menu
folder and launched from the Apple
menu.

Q
My corporation has billions and billions of
zones. We need a larger zone-name
selection area in the Chooser. A list with
the first few characters isn’t good enough.
Can this be fixed?

A
This is one of those things that used to
be “an important future direction,” so
we did something about it. And now
it’s fixed in System 7.0.

Q
In many cases, you have the same
application in different versions with the
same creator. It would be nice if you could
double-click a document and consistently
turn on the oldest version, or the latest
version, instead of just the one you last
copied. Is this possible?

A
Not only is that possible, but—except
for what looks like a small bug—it’s
already implemented and in the version
of System 7.0 you have.

Q
You said earlier that a driver would lock
down a completion routine. I just wondered
how a piece of software could lock down
code that’s of unknown extent and possibly
discontiguous.

A
You must have misunderstood. The
Device Manager takes care of holding
down the parameter block and also
takes care of not calling the completion
routine until paging is safe, so the
completion routine itself doesn’t have
to be held down. Neither does any of
the data it touches. The driver doesn’t
have to do anything. It’s all handled by
the Device Manager.

SYSTEM 7.0

SNEAKS

All information is provided “AS IS”
and without any warranty, express, implied or
otherwise, regarding its accuracy or
performance. APPLE SHALL NOT BE LIABLE FOR
ANY DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO,
DAMAGES FOR LOSS OF REVENUE, LOSS OF
PROFITS, BUSINESS INTERRUPTION, LOSS OF
INFORMATION OR DATA, AND THE LIKE)

ARISING OUT OF THE USE OF OR INABILITY
TO USE THE INFORMATION EVEN IF APPLE
HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. •

A

Q
Q

A
d e v e l o p October 1990

414

Q
But how does the Device Manager know that
the completion routine is going to be around?

A
It doesn’t. The Device Manager defers
calling the completion routine until
paging is safe.

Q
What limit is there, if any, on the number
of published and subscribed items allowed
for an application?

A
For a particular document, the
maximum number is the maximum
number of open files available, and, for
an application, the maximum is limited
by disk space.

Q
Are there changes or do you have plans for
changes to the way applications are
allocated memory under the omnipresent
MultiFinder®? For instance, is there a
way to dynamically grow their memory? I
find that I have sort of a “normal” size for
an application. And then, once in a while,
I switch to Finder to give the application
the entire memory.

A
If you’re developing an application, you
can use temporary memory and
eliminate most of the need to do this.
We’re certainly investigating models
that won’t require the somewhat stilted
setting of partition size that we have
today.

Q
Dear Miss Manners: Will the operating
system have the capability of launching a
hidden application? An example is when
you want to have one application launch
another, send it some high-level events to
potentially select some text, copy to the
Clipboard, and then quit the application,
without having the application show up
and do all that in front of the user.

A
At first glance, this looks like an
application-level thing, and a product
could be designed this way. We’re not
planning to support this type of thing
directly in the OS.

Q
Would it be feasible to keep Help resources
in a separate file? If opened from within the
application, these resources should appear in
the regular Resource Search Path.

A
That’s absolutely right. If you keep the
file open and in the path when you call
the Help Manager, you can keep the
Help in a separate file.

QA
SYSTEM 7.0 SNEAKS October 1990

415

A

Q
Q

A

Q
Is there a lot of authentication for high-
level events, or should applications that
need password protection implement the
events themselves through the PPC toolbox
in high-level events?

A
We have authentication built into all
the interapplication communication
stuff, through the Users and Groups
portion of the Control Panel.

Q
This one’s addressed to the Macintosh gods
and goddesses. Using high-level events, is
there a mechanism for bringing a
background application to the front? If not,
is there any way for the application to
bring itself to the front?

A
The simple answer is, the Process
Manager now has calls for doing this.
In terms of user interface, though, it’s
probably a very bad idea to spring an
application on the user from the
background. He or she could be
initializing a disk, or something!

Q
What is the Apple definition of
32-bit clean?

A
This is one of our favorite questions.
What 32-bit clean refers to is an
application that doesn’t contain
anything to prevent it from running on
a system with a 32-bit memory
manager. The application can’t contain

any code that relies specifically on 24-
bit stuff. Examples are masking the
high bit, treating addresses as signed
addresses, or using some specific old
calls in low-memory globals whose
accessibility is intrinsically limited to
24-bit addressing. The idea is explained
in a lot of detail in Technical Note
#212, so that’s the Apple definition of
32-bit clean: Tech Note #212.

Q
Will System 7.0 run on a Macintosh
512K enhanced (“512Ke”) with third-
party memory, a SCSI upgrade, and
2 MB of memory?

A
We hope so! There are thousands of us
who have those! And our plan is that
it’ll work on those configurations.
There’s nothing we’re doing to prevent
that.

Q
Can a Macintosh boot off the network?

A
Current Macintosh computers don’t
support network booting (that is,
booting off a file server), mostly
because the ROM code doesn’t know
to look out on the network for boot
devices. In the future, you’ll see
network-bootable Macintoshes,
though. It’s going to take a little bit of
time, but you’ll see those.

d e v e l o p October 1990

416

A

Q
Q

A

Q
Can a user lock out his or her disk from
network access, high-level events, and so
on, for a set time (during data acquisition,
for example)?

A
There is a user interface to turn off all
Apple Events, but not for a set time.
You turn it on and off in the network
setup Control Panel. And there’s a
programmatic interface to shut down
file sharing if it’s currently running.

Q
Is FileShare simply a personal
AppleShare® server? Could you please
compare and contrast the capabilities of
AppleShare and FileShare?

A
The guts of FileShare is really a
personal server. FileShare provides all
the same call support as any
AppleShare server, so the inner
workings are the same. However, a lot
of the tuning, a lot of the performance,
and a lot of the upper limits have been
lowered. FileShare is intended only for
two or three people. It’s much simpler,
and provides more personal services,
than the big, full-blown dedicated
server.

Q
If System 7.0 has a real font size and
width—for example, if the width of the letter
is 8.5 pixels—is the width rounded to 8?

A
Font sizing is the same as before
System 7.0. It’s affected by the Set
Fract Enable call in the Font Manager,
and there’s also a fractional pen
position in color QuickDraw, so that
the rounding works properly over
multiple characters, rather than over a
single character. This hasn’t changed.

Q
Is the Database Access Manager intended
to provide a vendor-independent interface
for database packages?

A
The Database Access Manager is really
intended to provide a vendor-
independent interface to data. You
could use it to talk to Macintosh
databases, or whatever.

Q
Whatever happened to the Foreign File
System Manager? Last year, we talked
about being able to use ProDOS and
MS-DOS volumes on the desktop.

A
The unfortunate answer is that the
Foreign File System Manager didn’t
make our schedule for System 7.0,
but we’re working on it for a
subsequent release.

MACINTOSH Q & A October 1990

417

A

Q
Q

A

Q
I am confused about the service routines
and data areas passed in the _ADBOp call.
What does it all mean?

A
That ’s a good question. The ADBOp
call looks like this:

FUNCTION ADBOp (data:Ptr;
compRout:ProcPtr;
buffer:Ptr;
commandNum:INTEGER) :
oserr;

data is a pointer to the “optional data
area.” This area is provided for the use
of the service routine (if needed).

compRout is a pointer to the
completion or service routine to be
called when the _ADBOp command
has been completed. It has the same
meaning as the service routine passed
to the _SetADBInfo call.

buffer is a pointer to a Pascal string,
which may contain 0 to 8 bytes of
information. These are the 2 to 8 bytes
that a particular register of an ADB
device is capable of sending and
receiving.

commandNum is an integer that
describes the command to be sent over
the bus.

There is some confusion over the way
the completion routines are called
from _ADBOp. You can call these
routines in one of three ways,
depending on what you want to do:

If you do not wish to have a
completion routine called, as in a
Listen command, pass a NIL pointer
to _ADBOp.

If you wish to call the routine already
in use by the system for that address (as
installed by _SetADBInfo), call
_GetADBInfo before calling _ADBOp,
and pass the routine pointer returned
by _GetADBInfo to _ADBOp.

If you wish to provide your own
completion routine and data area for
the _ADBOp call, simply pass your
own pointers to the _ADBOp call.

Remember, there should rarely be a
reason to call _ADBOp. Most cases are
handled by the system’s polling and
service request mechanism. In the cases
where you must call _ADBOp, don’t
do it in a polling fashion, but as a
mechanism for telling the device
something (for example, telling the
device to change modes or, in the case
of the extended keyboard, to turn an
LED on or off).

Q
The AppleTalk spec claims a data rate of
230.4 kbaud, which should require a
3.6864 MHz input to the SCC, but
RTxCB on the Macintosh carries a 3.672
MHz clock. How does the AppleTalk
driver reconcile this discrepancy and what
frequency should I use?

A
The SCC contains a phase-locked loop
that can lock on and synchronize with
AppleTalk transmissions whose clock

These questions and answers are
compiled by the Macintosh Developer Technical
Support group. •

MACINTOSH

Q & A

A

Q
Q

A
d e v e l o p October 1990

418

rates are not exactly to specifications,
so everything is fine as long as both
ends of the communication are using
approximately the same clock
frequency. If you are designing your
own AppleTalk hardware from scratch,
it’s easiest to use a 3.6864 MHz
oscillator and a Z8530. This has been
tested and works just fine.

Q
When I fill in the fields of MPW’s Name
Binding Protocol (NBP) EntityName
structure, AppleTalk doesn’t recognize the
entity, even though I know it’s out there.
What’s going on?

A
The real definition of EntityName is
three PACKED strings of any length
(32 is just an example). No offsets for
Asm are specified since each string
address must be calculated by adding
the length byte to the last string ptr. In
Pascal, string(32) will be 34 bytes long
(fields never start on an odd byte unless
they are only 1 byte long). So correct-
looking interfaces for Pascal and C will
be generated, but they won’t be the
same, which is OK since they aren’t
used.

The point here is that you should
never try to access the fields of the
EntityName field directly. The only
reason the type is defined at all is so
that you can allocate EntityName
variables that will hold the largest
possible EntityName. To fill in an
EntityName record, you should call
the NBPSetEntity routine.

Q
How do I determine which language is in
use on the system?

A
Every language has a corresponding
KCHR resource. Inside Macintosh,
volume I, page 499, lists the currently
defined country codes, which are the
resource IDs of the KCHR resources.

To find out which KCHR is in use, call
the Script Manager function GetScript
with the verb smScriptKeys. This call
returns the ID of the KCHR resource
in use (not the ID of the KEYC
resource, as stated in Inside Macintosh,
volume V, page 312).

Here’s a bit of C code that determines
which KCHR is being used:

#include <script.h>
...

kchrID = GetScript(smRoman,
smScriptKeys);

kchrID will be 1 when booted in
French, 2 when booted in British
English, and so on.

Q
When I use DeleteRevision to remove old
revisions from my Projector database, the
actual size of the ProjectorDB file doesn’t
decrease much. How can I make the file
smaller?

A
Projector does not currently compact
files. What it does is mark the areas of
the database that are now free and put

MACINTOSH Q & A October 1990

419

A

Q
Q

A

them into a free page list. This
effectively puts holes into your
database, holes that are subsequently
filled up when you add more revisions.

Your database will get smaller only if
the free pages are at the end of the file;
then Projector will shrink the file.
However, there is very little you can do
about controlling this situation. If you
absolutely must have a smaller database,
then all you can do is check everything
out, orphan the files, and create a new
database. The disadvantage of this
method is that you lose all your
revisions and revision comments.

The Projector team is aware of the
need to compact the database. The
team is currently studying the
feasibility of adding such a function.

Q
How does MultiFinder decide the starting
order when you set multiple applications to
start up under MultiFinder with Set
Startup? Is there any way to control the
order?

A
Here’s the lowdown on MultiFinder
application startup procedures.

From the Finder, launch, in order,
application A, application B, and then
application C. Switch to the Finder,
choose Set Startup, and select Open
Applications and DAs. The launch
order is now application C, then

application B, then application A.
Regardless of the type of view from the
Finder, the startup order is from top to
bottom, respectively.

If you’re really interested, the Finder
Startup file in the System Folder
contains the applications and files to be
launched and the order in which they
should be launched. This file contains a
'fndr' ID = 0 resource that stores the
applications and their pathnames. The
applications are launched in the order
in which they are listed. You can use
ResEdit to view the resource and see
the filenames, the VRefNums, and the
volume names of the startup
applications. You can also tell the
number of startup applications by the
number at the beginning of the
resource (that is, 0000 0001 means one
item).

Remember, however, that this infor-
mation is valid only for pre–System 7.0
MultiFinder environments.

Here’s the latest Developer Essentials disc. In addition to develop and
related code, on this issue of the disc you’ll find tools and information we
think every developer should have. These pages highlight what’s on the
disc, but once you start browsing, you’ll also find a few surprises.

To use the disc, you need a CD-ROM drive and the appropriate cables and
conectors. Refer to your CD-ROM drive’s owner’s manual for detailed
information about connecting the drive to your particular machine.

For a Macintosh, you need at least 1 MB of memory, System 4.1 or
later, and Finder 5.4 or later. In addition, you need to copy the Apple
CD-ROM INIT that comes with the CD drive startup disks into your
System Folder. For an Apple II, your SCSI card must have Rev C or
later ROM. With ProDOS, no special setup is required. If you use
GS/OS, you must use the Installer on System Disk 4.0 or later to install
the CD-ROM driver on your startup volume.

DEVELOPER ESSENTIALS: ISSUE 4

Scott Converse, Corey Vian, Cleo
Huggins, and Mary Skinner put
develop in electronic form. Read
more about the Electronic Media
Group below.

The allegedly 27-year-old Jack
Hodgson, product manager of
Developer Essentials, produced
and directed corporate videos in
Boston, ran a small computer-book
publishing company, did some
free-lance programming,
and founded the Boston Computer
Society’s Mac Users Group. His
next big life goals are to buy his
own plane and to learn to play his
piano well enough to cut loose in
Dave Szetela’s Excellent Annual
WWDC Moofamania Jam
Sessions (caution: unofficial title).

d e v e l o p October 1990

SCOTT CONVERSE is the group’s Electronic
Media Mogul and leader. A true on-line addict,
he makes a living cruising the electronic
highways and getting information to as many
people as possible by using computers. Scott also
loves sci-fi (particularly cyberpunk), reads books
on design, and plays music on any of six full-
blown, wall-shaking stereo systems in his house.
When not cruising the electronic highways, he’s
racing radio-controlled cars. Would you ride the
fiber optic byways with this guy? •

COREY VIAN takes the Zen approach to most
things. He has an interdisciplinary B.A. in art and
math from Maharishi International University.
(Really! It’s in Iowa.) An eleven-month Apple
veteran (two years and eleven months if you count
his prior consulting), he’s now doing information
interface design. An avid meditation practitioner,
he also flies airplanes, builds cabinetry, windsurfs,
snow skis, practices aikido, and composes R&R
music—and he claims he isn’t busy. •

420

develop
You’ve read the articles, you’ve bought
the arguments, and now it’s time to write
your own code. The idea is that you
don’t have to waste your time typing the
example programs—just mount this
handy CD-ROM, then copy and paste.
We’ve included develop as well as the
code from each of the articles to help
you avoid typos. So, browse around, take
what you need, and save the rest for a
rainy day. Each new issue of Developer
Essentials will archive all of the back
issues of the journal and the code. So
look forward to one-stop searching
coming soon to a CD-ROM near you.

International System Software
Developer Essentials includes all the latest
international versions of Macintosh
system software as well as the latest U.S.
versions of GS/OS and ProDOS, all in
DiskCopy image format. (You must have
a Macintosh to run DiskCopy and create
floppy disks from these images.)

International HyperCard
Need the latest version of HyperCard?
Look no further. Developer Essentials
includes the latest international versions
of this “software erector set” in
DiskCopy image format.

DTS Technical Notes
and Sample Code
All Apple II and Macintosh Technical
Notes and Sample Code programs are
included for your reference. Be sure to
check here for the latest and greatest
development information and Developer
Technical Support programming tips
and techniques.

Macintosh Technical Notes Stack
This HyperCard stack incorporates all
of the latest Macintosh Technical Notes
into a single on-line source, which is
cross-referenced with SpInside Macintosh,
Q & A Stack, and the Human Interface
Notes Stack.

Macintosh Q & A Stack
Got a tough development question? Try
the Q & A Stack, which is a collection
of the most frequently asked questions
DTS receives from developers.
Organized by subject, this stack answers
the questions within and includes
cross-references to SpInside Macintosh and
the Macintosh Technical Notes Stack.

SpInside Macintosh
Of course the most essential of all
documentation for Macintosh
developers is Inside Macintosh, so
Developer Essentials offers you SpInside
Macintosh, an on-line version of volumes
I-V. SpInside Macintosh combines all five
volumes into a single, searchable
electronic form that is cross-referenced
with the Macintosh Technical Notes
Stack, Q & A Stack, and Human
Interface Notes Stack.

Now you know about some of the
headliners in Developer Essentials, but you
should take some time to browse the
disc and see what else you might
discover. We’ll be adding more as
Developer Essentials evolves, and we hope
you agree that these are tools no
developer should be without.

DEVELOPER ESSENTIALS: ISSUE 4 October 1990

421
CLEO HUGGINS studied graphic design at the
Rhode Island School of Design, taught design
and semiotics at the Portland School of Art in
Maine, and created the music typeface “Sonata”
when she worked at Adobe. She received an
M.S. in digital typography from Stanford
University, and plays electric violin. Cleo always
knew the computer would be a good place to
combine her interests; she joined Apple to help
refine the use of typography and design (and
maybe even music) in our CDs. •

MARY SKINNER collects the input, supervises
testing, processes the feedback, and is the
group’s systems administrator (thank goodness
Mary is a HyperCard fanatic). She’s a native
Iowan born in New York City. Her B.A. degrees
in physics and Russian from the University of
Iowa landed her as an Air Force lieutenant at
Johnson Space Center from 1980 to 1984. Now
an independent consultant, she likes to play with
the computer, read sci-fi, and listen to the nonsoft
side of rock and roll.•

Q
A

Q
Q

A
These questions and answers are
compiled by the Apple II Developer Technical
Support group. •

APPLE II

Q & A

d e v e l o p October 1990

422

Q
How can I force text-page-two shadowing
on the Apple IIGS?

A
Most uses for text-page-two shadowing
come from older, 8-bit applications
that use text page two. On the Apple
IIGS, a Monitor ROM routine at $F962
(TEXT2COPY) toggles shadowing of
text page two, through hardware on
ROM 3 and through software on older
machines. (A heartbeat task copies the
bank $00 screen to the bank $E1
screen for software shadowing.)

TEXT2COPY is only a toggle—it can’t
tell you the current state of shadowing.
To see if shadowing is currently enabled
(the user may have enabled it manually
with the Alternate Display Mode desk
accessory), try storing a character in the
bank $00 text-page-two screen, waiting
more than 1/60th of a second and
seeing if the character has been copied
to bank $E1.

Q
Some of the toolbox calls I make crash
when executed with GSBug active, but
behave normally when GSBug isn’t
present. How come?

A
GSBug is intolerant of toolbox calls
made in 8-bit mode. Although the
Apple IIGS Toolbox Reference (pages 1–2)
clearly states that all toolbox calls must
be made in full native mode, the
current tool dispatcher protects you by
beginning with a REP #$30 instruction.
GSBug does not. Be sure to make all
toolbox calls in full native mode.

Q
If I try to select a file in an SFPutFile
dialog box and the file already exists,
clicking Save produces no action if I’ve
entered ProDOS 8 since rebooting. Why?

A
The System Software 5.0.2 Resource
Manager does not restart correctly on
return from ProDOS 8. It doesn’t
correctly add the system resource file
into the search path. When Standard
File detects that you’re trying to save
over an existing file, it calls
ErrorWindow to display a dialog box
with the warning, “That file already
exists,” and the choice to replace or
cancel. ErrorWindow fails because the
system resource file is not open and the
AlertWindow template can’t be loaded.
Standard File treats an error in the
ErrorWindow call as if you’d clicked
Cancel in the “That file already exists”
dialog box. The net effect is that
nothing at all happens. This is
corrected in System Software 5.0.3.

A

Q
Q

AQA
APPLE II Q & A October 1990

423

Q
Why do Apple IIGS fonts look tall and
skinny, as if they were made out of rubber
and stretched too far in one direction?
They look OK when I print using the
“vertical condensed” option.

A
Nearly all the Apple IIGS fonts were
originally designed for other systems,
usually the Macintosh. Font definitions
for the Apple IIGS and other systems
are nearly identical. Macintosh pixels
are square; the width-to-height ratio of
a pixel is 1:1. Apple IIGS pixels are
much taller than they are wide (the
ratio for Apple IIGS 640 mode is about
5:12). When a font designed for
square pixels is displayed on a system
with pixels of a different shape, the
characters look stretched. This is what
happens on the Apple IIGS.

Apple could have changed the font
strike for a more pleasing look at Apple
IIGS resolutions, but for legal reasons
such a change would require renaming
the fonts. Times wouldn’t be Times
anymore, Helvetica wouldn’t be
Helvetica, and so on. The fonts would
look the same, but the names would
have to be different. In the tradeoff
between appearance and well
recognized font names, Apple chose to
keep the familiar names and font strikes.

To compensate for the stretched fonts,
all of Apple’s printer drivers include a
“vertically condensed” printer option.
Selecting this option causes the printer
drivers to print with double the
screen’s vertical resolution. Doubling
the vertical resolution effectively makes
the pixel aspect ratio about 10:12, or
5:6, which is close enough to square
that the fonts look the way we expect
them to.

Some fonts are designed for the Apple
IIGS aspect ratio of 5:12. Such fonts are
identified in their font family numbers
by having the high bit set.

JOSEPH MAURER

The Macintosh® Coprocessor Platform™ provides a foundation for
connectivity products such as the Serial NB Card, the TokenTalk NB
Card, and the Coax-Twinax Card. Its operating system is A/ROSE,
the Apple Real-time Operating System Environment. This article
introduces you to the Macintosh Coprocessor Platform and A/ROSE,
and gives you a taste of what is involved in developing a connectivity
product on this foundation.

The Macintosh Coprocessor Platform and A/ROSE together provide a hardware
and software foundation for developers who want to create NuBus™ add-on cards
for the Macintosh II family of computers. The developer’s guide that comes with the
kit is a hefty 400-page tome. If you’re curious about how NuBus cards are built but
not curious enough to tackle the developer’s guide, read on. This article gives you an
overview of the origins of the Macintosh Coprocessor Platform, its architecture, and
details of its real-time, multitasking, message-based operating system, A/ROSE. It
shows you some A/ROSE code. And it shows you how to experiment with some
A/ROSE applications included on the Developer Essentials disc.

HOW IT ALL BEGAN
When development of various networking and communications products for the
Macintosh II started at Apple, around 1987, it became obvious that the Macintosh
Operating System didn’t meet these products’ needs for processing power and
operating system capability. After all, the Macintosh OS was designed for human
interaction rather than for connectivity to mainframe computers. It is not real-time
(interrupts can be disabled for longer than is acceptable for fast interrupt-driven
input/output), and it aims to provide a pleasant and efficient graphic user interface,
rather than processor-intensive I/O handling.

INSIDE THE

MACINTOSH

COPROCESSOR

PLATFORM

AND A/ROSE

d e v e l o p October 1990

JOSEPH MAURER, an 18-month Apple
veteran, studied mathematics and theoretical
physics at universities in Munich and Nice. Since
then he’s led a varied but somewhat theoretical
life, which has included being a ballet school
piano player, bicycle racer (champion of lower
Bavaria!), math researcher, mountain climber,
university professor, and Apple European
technical support and training guru (you can

decide for yourself if that one’s theoretical or not).
All in all, Joseph is basically a man of numbers:
he has one wife, two Macintosh computers, three
bicycles, and four children. He says he wants
more Macs and more racing bikes (the ones he
has are “slowing down”), but refuses to comment
on wanting more wives and/or children. •

424

The solution was to make an “intelligent” NuBus card, with its own 68000
processor, its own working space in RAM, and its own basic operating system
services; and to design this card not only as a basis for Apple’s own products, but also
as a tool for NuBus expansion card developers. The result was the Macintosh
Coprocessor Platform. Its operating system, A/ROSE, was designed to respond to
the needs of connectivity products, complement the capabilities of the Mac OS, and
yet be generic enough to become the foundation for a new breed of message-based,
distributed software architectures. The work on A/ROSE started in August 1987,
and the first version was operational by February 1988.

Today, developers can build on this platform in designing products for
communications and networking, data acquisition, signal processing, or any other
heavy-duty processing. Time-consuming and/or time-critical tasks can be offloaded
from the main logic board to a dedicated processor on the NuBus card. This
increases the overall computational speed, of course, and allows for faster response
times in the foreground applications. Moreover, unlike the standard Mac OS,
A/ROSE provides the real-time and multitasking capabilities required for handling
multiple communications protocols.

Nevertheless, A/ROSE on a Macintosh Coprocessor Platform still depends on the
Mac OS (and its limitations—see Technical Note #221) for transferring large
amounts of data across the NuBus through a driver to a Macintosh application. This
means that ample data buffering (and careful error handling) should be provided on
the card if the project requires high-performance data transfers. As you’ll see in the
next section, the card provides plenty of room for large buffers.

THE MACINTOSH COPROCESSOR PLATFORM UP CLOSE
The most prominent feature of the Macintosh Coprocessor Platform card is all the
empty space on it, inviting hardware developers to heat up their soldering irons and
to put plenty of advanced hardware on it. A complete master-slave NuBus interface
comes for free, implemented by means of two chunky Texas Instruments ASICs
(application-specific integrated circuits), 2441 and 2425. This interface manages to
give the on-board MC68000 access to the whole 32-bit NuBus address space (by
means of an address extension register). Conversely, the 24-bit address space of the
local MC68000 can be accessed directly from across the NuBus. Custom hardware
on the card can be enabled to take over the 68000 bus and even go to the NuBus,
but A/ROSE tasks usually take care of servicing chips on the board, and
communicate with the higher levels of the software design.

INSIDE THE MACINTOSH COPROCESSOR PLATFORM AND A/ROSE October 1990

425

Figure 1
The Macintosh Coprocessor Platform Card

Figure 2
Memory Map of the Macintosh Coprocessor Platform With A/ROSE Running

$C00000–$C0000A Card registers

$A00000–$BFFFFF

$400000–$9FFFFF

$000000–$3FFFFF

NuBus “window”

Interface logic

RAM (std – $07FFFF)

$F00000–$FFFFFF

$E00000–$EFFFFF

ROM (std $FF0000–)

Test ROM (off card)

d e v e l o p October 1990

426

2441 2425
EPROMEPROM

MC68000

DRAM

The MC68000 on the Macintosh Coprocessor Platform card runs at 10 MHz (the
NuBus clock speed) without wait states. Standard 512K of dynamic RAM is
expandable up to 4M. Two 32K EPROMs contain the declaration ROM code
needed to make the SlotManager happy, plus some pieces of code to help the
MC68000 out of a Reset and to provide low-level diagnostic routines. The card also
carries a programmable timer, used by A/ROSE for scheduling time-sliced tasks.

A/ROSE UP CLOSE

A/ROSE is a minimal, multitasking, distributed, message-based operating system.
Here’s what this means, in real terms:

It’s minimal: The module that provides basic A/ROSE functionality, the A/ROSE
kernel, fits into 6K; and a complete standard configuration of A/ROSE on a NuBus
card amounts to only 23K of code and takes up only about 48K of buffer space. This
leaves more than 400K for your code on a standard 512K RAM card. Still, as you
will see, A/ROSE is a strong software platform to build on.

It’s multitasking: A/ROSE does pre-emptive multitasking, with round-robin task
scheduling (taking 32 priority levels into account).

It’s real-time: A/ROSE offers 110 microseconds context switch time, with 20
microseconds of latency (guaranteed interrupt response time).

It’s distributed and message-based: The A/ROSE software can be present on
several cards, and it is completely autonomous and independent on each card. Tasks
defined by users and by A/ROSE communicate with each other, even across the
NuBus to other slots or the Mac® OS, by means of messages. These messages can
carry pointers to data buffers along with them. Thousands of such messages can be
passed per second (fastest from task to task within a card, and slower, of course,
between different slots).

The A/ROSE kernel is responsible for task scheduling, interprocess communication,
and memory management. The calls that correspond to these responsibilities are
shown in Table 1. The standard configuration also includes utilities for bookkeeping
and timer services. These utility functions are carried out by the A/ROSE managers:
the Name Manager, the InterCard Communication Manager, the Remote System
Manager, the Echo Manager, the Timer Library, the Trace Manager, and the Print
Manager.

INSIDE THE MACINTOSH COPROCESSOR PLATFORM AND A/ROSE October 1990

427

The A/ROSE architecture, shown in Figure 3, is completed by A/ROSE Prep, a
version of A/ROSE that runs on the main CPU under the Macintosh Operating
System and that is necessary to establish communication between the Mac OS and
A/ROSE. The A/ROSE Prep file has the file type INIT, and contains among its
numerous resources a DRVR named .IPC (for interprocess communication), and an
INIT that executes at INIT31 time and basically installs and opens the .IPC driver.
The .IPC driver takes care of the communication of Mac OS processes with
A/ROSE tasks. Nothing can be downloaded to the Macintosh Coprocessor Platform
if the A/ROSE Prep file is not in the System Folder: it contains card-dependent
information needed for the download routines to succeed.

The programming interface to the .IPC driver (described in the A/ROSE header
files arose.h, os.h, managers.h, iccmDefs.h, ipcGDefs.h, and provided through the
library IPCGlue.o) mimics that of A/ROSE itself as closely as possible, providing
the look and feel of A/ROSE even if there is no A/ROSE around. More practically
speaking, with the A/ROSE Prep file in your System Folder, you can do a lot of
interesting A/ROSE experiments even without a Macintosh Coprocessor Platform.
For your convenience, the A/ROSE Prep file is included in the A/ROSE folder on
the accompanying Developer Essentials disc.

Table 1
The Ten A/ROSE Primitives

Name Description
AROSEFreeMem() Frees a block of memory1

FreeMsg() Frees a message buffer1

AROSEGetMem() Allocates a block of memory1

GetMsg() Allocates a message buffer1

Receive() Receives a message2

Reschedule() Changes a task’s scheduling mode
Send() Sends a message1

SpI() Sets the hardware priority level
StartTask() Initiates a task
StopTask() Stops a task

Notes:
1. Implemented in A/ROSE Prep with the same parameters.
2. Implemented in A/ROSE Prep with a supplementary parameter.

d e v e l o p October 1990

428

Figure 3
The Architecture of A/ROSE

WHAT’S THIS ABOUT MESSAGES AND TASKS?
Interprocess communication in A/ROSE takes place by means of messages passed
back and forth between tasks. A typical example consists of a client/server relationship
between A/ROSE program modules, as illustrated in Figure 4 on the next page.

The client task needs to know that the required server task exists; thus, the server
task is initialized before the client task. Next, the client task issues a GetMsg()
call to request a message buffer from a preallocated pool of message buffers that is
maintained by A/ROSE and the size of which is specified by the user. After the
message is filled with addressing information, command codes, and parameters, it is
sent to the server task. At this point, the sending task loses rights to the message
buffer, and should not use it again until it comes back through a Receive() call.
On the other side, the server task usually sits in an infinite loop, waiting for
messages requesting a service, handling these requests, and sending replies.

Remote
System

Manager

A/ROSE
kernel

Echo
Manager

Name
Manager

InterCard
Communication

Manager

User
task 1

User
task 2

User
task 3

Remote
System

Manager

A/ROSE
kernel

User
task 1

User
task 2

User
task 3

Echo
Manager

Name
Manager

User
task 4

A/ROSE
Prep

Echo
Manager

Name
Manager

Macintosh
process

Macintosh

NuBus card 1

NuBus card 2

Macintosh
Operating System

InterCard
Communication

Manager

INSIDE THE MACINTOSH COPROCESSOR PLATFORM AND A/ROSE October 1990

429

Figure 4
How Interprocess Communication Takes Place in A/ROSE

After receiving the reply, the client task can reuse the message buffer for subsequent
requests, or release the buffer by means of a FreeMsg() call and go ahead with other
business.

A message provides up to 24 bytes of user data, and is fixed length and
asynchronous. If the data to be sent does not fit into the message proper, then it can
be put anywhere in the sender’s memory and the address and size of the data area
can be passed in the message.

Initialize
client task

GetMsg

Send

Free to do
something else

Receive

Use results

FreeMsg

Formulate request

Send

Receive

Handle request

Initialize
server task

?

d e v e l o p October 1990

430

Each message is identified by a message ID and a message code. The message code
is defined by agreement between the sender and the receiver. A convention followed
in A/ROSE is for outgoing messages to use an even-numbered code and for replies
to those messages to set the code to the next odd number.

The structure of an A/ROSE message is shown in Figure 5.

Figure 5
The Structure of an A/ROSE Message (54 Bytes)

mId

mCode
mStatus
mPriority

mFrom

mTo

mSData

mOData

mDataSize

mDataPtr

mNext

INSIDE THE MACINTOSH COPROCESSOR PLATFORM AND A/ROSE October 1990

431

In C, the messsage structure is declared as follows:

struct mMessage {
struct mMessage *mNext; /* Used to chain messages internally. */
long mId; /* Unique identifier for a message. */
short mCode; /* User-defined message code. */
short mStatus; /* Message return status. */
unsigned short mPriority; /* Range is 0 (low) to 31 (high). */
tid_type mFrom; /* Task ID of task sending message. */
tid_type mTo; /* Task ID of task to which msg. is sent. */
unsigned long mSData[3]; /* Used for sender’s private information. */
unsigned long mOData[3]; /* Used by receiver to send data back. */
long mDataSize; /* Size of data to which mDataPtr points. */
char *mDataPtr; /* Pointer to variable length data. */

};

Tasks in A/ROSE accept and reply to messages. A task is identified to A/ROSE by a
task ID, which is a 32-bit field of type tid_type. Each task also has an associated
name and type that is readable by humans. This is very close to the NameBinding
protocol of AppleTalk in spirit and implementation.

Tasks are started with a call to the A/ROSE StartTask() primitive. Tasks have
one of 32 priority levels, with level 31 as the highest priority and level 0 as the
lowest. Tasks run either in slice mode or in run-to-block mode. In slice mode, a task
runs for one major tick (about 50 milliseconds), and then relinquishes control of the
CPU to a task of higher or equal priority, if one is available. In run-to-block mode, a
task runs until it is blocked or until it completes. A task becomes blocked if it issues a
Receive() call for a message that is not available. New tasks are scheduled for
execution in the order of priority; a task is run only if no eligible tasks of higher
priority are waiting.

by Anumele Raja

TokenTalk® is a typical application that runs under
A/ROSE on an intelligent NuBus card. The following is
a brief description of the TokenTalk hardware and how
TokenTalk uses A/ROSE.

THE HARDWARE AND SOFTWARE
The TokenTalk NB card is the intelligent NuBus card that
implements the Token Ring interface. The card consists of

a 68000 processor and a Token Ring interface chip set
made by Texas Instruments. The card’s foundation is the
Macintosh Coprocessor Platform. Besides TokenTalk, the
card can also run MacAPPC™, MacDFT®, and MacSMB
file transfer programs.

The Token Ring interface chip set is controlled by a
program called Logical Link Control (LLC) that also

TOKENTALK AND A/ROSE

d e v e l o p October 1990

432

implements the Token Ring protocol. LLC runs as a task
under A/ROSE.

TokenTalk itself is an A/ROSE task that serves as the
interface between programs running on the Macintosh
and the LLC task. This task can be replaced by another
task to implement other protocols like SNA.

THE DOWNLOAD PROCESS
When the user selects the TokenTalk device on the
Network control panel, a resource file called TokenTalk
Prep is loaded into the Macintosh and executed.
TokenTalk Prep first finds a TokenTalk card, downloads
A/ROSE if it is not already running on the card, and
downloads the LLC task onto the card. The TokenTalk
part of the AppleTalk device driver downloads the card
part of the TokenTalk task by using TokenTalk Prep
utilities, and starts the task.

Sound complicated? Let’s take the operation sequence at
a slower pace.

On the Macintosh side of TokenTalk, the operation
sequence is as follows:

1. The user selects TokenTalk on the Network
control panel.

2. The TokenTalk Prep file is loaded and started.
3. TokenTalk Prep makes sure that A/ROSE Prep is

running on the Macintosh, and searches for a TokenTalk
card by calling the NewFindcard() routine. If a
TokenTalk card is found, TokenTalk Prep checks to see if
A/ROSE is already running on that card by looking for
a Name Manager. If A/ROSE is not running, TokenTalk
Prep downloads onto the card a version of A/ROSE
that includes the Name Manager, the InterCard
Communication Manager, the Remote System
Manager, and the Echo Manager. It then does a
Lookup_Task() to find the LLC task. This task
controls the Token Ring interface chip set and handles
interrupts. If the LLC task is not found, it downloads the
LLC task using the DynamicDownload() call.

4. The Network CDev then talks to the TokenTalk driver to
activate TokenTalk. The TokenTalk driver, which resides
on the Macintosh, is the interface between AppleTalk
and the TokenTalk card. It operates by sending control
commands and data to the TokenTalk task on the card
and receiving status information and data.

5. The TokenTalk driver downloads the TokenTalk task to
the NuBus card.

On the TokenTalk card side of TokenTalk, the operation
sequence is as follows:

1. When the LLC task is started up, it registers itself with
the object name LLC and the type name TokenTalk
NB by calling the Register_Task() routine. It
then calls the Receive() primitive and waits for
messages. In the current implementation, the
Receive() is issued with a timeout parameter. The
LLC task runs under run-to-block mode.

2. When the TokenTalk task is started up, it registers
itself with the object name Token Talk 1 and the type
name TokenTalk NB by calling the
Register_Task() routine. The TokenTalk task
searches for the LLC task by doing a
Lookup_Task(). It then waits for messages from
the Macintosh to start an operation. When requests
are received from the Macintosh, the TokenTalk task
sends commands to the LLC task to carry out the
various operations. The TokenTalk task does not
control any hardware by itself.

3. Data is transferred from the Token Ring interface to
the memory and vice versa by a direct memory
access (DMA) mechanism built into the interface chip
set. An interrupt is generated by the DMA device at
the completion of a data transfer.

Both the LLC task and the TokenTalk task run with a
priority of 30 and allocate a stack of 2048 bytes. No
heap space is allocated by these tasks. TokenTalk Prep
uses the start parameter block to pass information to the
LLC task. This information specifies the TokenTalk
address for the node.

INSIDE THE MACINTOSH COPROCESSOR PLATFORM AND A/ROSE October 1990

433

THE A/ROSE MANAGERS
A manager in A/ROSE is just another task, which does its job in accepting and
replying to messages with predefined message codes. As mentioned earlier, the
A/ROSE managers are the Name Manager, the InterCard Communication
Manager, the Remote System Manager, the Echo Manager, the Timer Library, the
Trace Manager, and the Print Manager. The first four are discussed in greater detail
here. Use of the Name Manager and the InterCard Communication Manager is
demonstrated in the sample program ShowTasks and in “Building a Download File,”
later in this article.

THE NAME MANAGER
The Name Manager maintains a cross-reference between task IDs and their
associated name and type. User tasks can register themselves with the Name
Manager by specifying an object name and an object type, and then other tasks that
need to refer to this task can look up the task by name and type by calling the
A/ROSE Lookup_Task() utility. Conversely, for a given task ID, the Name
Manager brings back the object name and object type if you send it a message with
mCode = NM_LOOKUP_NAME.

The Name Manager also provides notification services. These services include
signaling when a NuBus card is shut down or started up, checking to see if a task is
present or not, and signaling when a task terminates.

THE INTERCARD COMMUNICATION MANAGER
The InterCard Communication Manager (ICCM) enables user tasks to
communicate with tasks on other NuBus cards or on the main logic board. There
are only three message codes a user task may send to the ICCM: ICC_GETCARDS,
ICC_DETACH, and ICC_ATTACH.

ICC_GETCARDS returns a long integer for each of the sixteen possible NuBus slots.
A positive number represents the task ID of the Name Manager running under
A/ROSE on a Macintosh Coprocessor Platform card. For slot = 0, this is the task ID
of the Name Manager incorporated in A/ROSE Prep, under the Macintosh OS.
The task ID of a Name Manager is required to look up specific tasks on any card on
the NuBus.

The message codes ICC_DETACH and ICC_ATTACH are provided for NuBus
cards that get power from a source other than the NuBus, so that when the power to
the Macintosh main logic board is turned off, the NuBus card continues to function.
With these message codes, you can delink the NuBus card from the outside world,
thus preventing access over the NuBus.

d e v e l o p October 1990

434

THE REMOTE SYSTEM MANAGER
The Remote System Manager running on a NuBus card enables tasks running on
any other NuBus card or the main processor to execute certain A/ROSE primitives
remotely. The A/ROSE primitives A/ROSEGetMem(), A/ROSEFreeMem(),
StartTask(), and StopTask() are supported, enabling tasks to be downloaded,
started, and stopped dynamically. The Remote System Manager registers itself with
the Name Manager with the name RSM and the type RSM.

THE ECHO MANAGER
The Echo Manager echoes all messages sent to it. This can be very useful in the
initial stages of testing A/ROSE applications.

DOWNLOADING TO THE CARD
All code running on a NuBus card is downloaded to the card’s memory from the
main logic board. Code can be downloaded statically or dynamically, to one or
multiple cards.

In static downloading, the user builds the entire memory image of the application to
be run on the card by linking the code with A/ROSE object files. The main program
is user code; it calls osinit() to initialize A/ROSE and osstart() to start
the operating system. Before starting the operating system, the main program must
start all the necessary managers and user tasks. The memory image is downloaded
onto the NuBus card using the static downloading facility, which halts the card,
downloads the code, and starts the card again.

In dynamic downloading, the user downloads a generic version of A/ROSE onto a
NuBus card by invoking StartAROSE(). Once the A/ROSE kernel and requisite
managers are up and running, the user can download tasks using the dynamic
downloading facility.

A/ROSE provides a number of ways to download the code. The MPW tool
Download takes the pathname of a file as parameter, and tries to download it to
every Macintosh Coprocessor Platform card it finds (if used without the optional
slot parameter). This is convenient during the development cycle under MPW.
Another possibility is to use the Macintosh application ndld. Finally, you can use the
NewDownload() routine directly from within your own application. (See the
sidebar on the next page for a description of Download and ndld.)

INSIDE THE MACINTOSH COPROCESSOR PLATFORM AND A/ROSE October 1990

435

SOME SAMPLES OF A/ROSE PROGRAMMING
You’ll find some samples of A/ROSE programming in the A/ROSE folder on the
Developer Essentials disc. You can run these applications under MultiFinder after
booting with A/ROSE Prep in the System Folder. With the exception of the
downloading operation, all these applications will run whether or not your machine
has a Macintosh Coprocessor Platform card installed.

by Anumele Raja

The following Macintosh utilities, included on the
A/ROSE distribution disks, facilitate development of
A/ROSE programs on the Macintosh:

Print Manager (nprm) is a Macintosh application that
enables users to display information from a task running
on a Macintosh Coprocessor Platform card. It registers
itself with A/ROSE by the object name Print Manager
and the type name Print Manager. Strings to be printed
are sent to the Print Manager by the printf routine
supplied with the A/ROSE release. The first time printf is
called, it looks for the Print Manager and finds its Task
ID. Subsequently, it sends all print strings as messages to
the Print Manager, which puts up a window and
displays the strings it receives. Users can display
diagnostic messages using printf. Print Manager features
can also be implemented in a user’s program.

Dumpcard is an MPW tool that dumps the status of
A/ROSE tasks running on any NuBus card. Available
options display the memory blocks, the messages
waiting to be received by a task, and the task control
blocks of all tasks running under A/ROSE. If the card
stops for any reason, like a bus error, the user can get a
trace of the stack to find the calling sequence that
caused the exception. In addition, the user can request
disassembly of instructions around the break point.

Download application (ndld) is a Macintosh
application used to download A/ROSE and/or
A/ROSE tasks onto a specified card or cards either
statically or dynamically. The file selection is done
through a standard Get File dialog box.

Download is an MPW tool that downloads A/ROSE
and/or A/ROSE tasks onto a specified card or cards
either statically or dynamically. It is useful when the user
wishes to download code from a shell script.

NuBug is a debugging application used to debug
A/ROSE programs running on a card. NuBug looks and
works like MacsBug. All MacsBug commands that are
not specific to the Mac OS are supported by NuBug. In
addition, NuBug provides commands specific to
A/ROSE, dealing with task status, task names, and
such. NuBug is a multiwindow application that brings
up as many windows as there are NuBus cards capable
of running A/ROSE. Because NuBug is implemented in
C++, it can be enhanced very easily.

Users can look forward to a new, we hope official,
version of NuBug very soon. The current release of
NuBug has not been tested formally and is not
supported by Apple. Still, programmers find it so
helpful that they don’t seem to mind if they encounter
a few glitches.

UTILITIES THAT MAKE IT EASIER TO DEVELOP
A/ROSE PROGRAMS ON THE MACINTOSH

d e v e l o p October 1990

436

You can take a closer look at the complete source code on the Developer Essentials
disc. I’ll show and discuss some fragments of it here.

TASKSAMPLE AND CLIENTAPPLI
The TaskSample application opens a window and waits for A/ROSE messages. The
ClientAppli application looks for a server named myTaskName and sends a message on
each button-click. The server TaskSample simply returns each message it receives to the
sender, and ClientAppli displays the number of messages it has sent and received.

To experiment with producing alerts or error messages, launch both applications,
then quit TaskSample and continue sending messages to it; restart it again and
continue; or hit Command-Q immediately after the Send button, so that
ClientAppli has gone by the time TaskSample sends the reply.

If you run the applications, you will notice a certain delay in messages being passed
back and forth. This has to do with the SleepTime value (selected in the SleepTime
menu), which is passed to the WaitNextEvent() call under MultiFinder. In the
two sample programs, the A/ROSE Prep Send() and Receive() services are
called only once at each tour through the event loop. Depending on the SleepTime
value, the background application more or less slows down, and this explains the
delay observed on the screen.

SHOWTASKS
ShowTasks is a tool that shows all the A/ROSE tasks that are “visible” in the
machine (there might be “invisible” A/ROSE tasks, too). It goes through all sixteen
NuBus slots, looks for all visible tasks, and displays them by task identifier, object
name, and object type. Sample output of this program might look like the following
(which reflects the situation where TaskSample and ClientAppli are running):

slot = $0 :
00000003: name "echo manager", type "echo manager"
00000004: name "myTaskName", type "myTaskType"
00000005: name "ClientApp", type "ClientType"

This indicates that there are no A/ROSE tasks running on a NuBus card at this
time; slot $0 represents the good old main logic board where the A/ROSE Prep
driver does its best to make us believe that there is an instance of A/ROSE.

Now let’s look at some of the source code. For the sake of clarity in the following
fragments, error handling is completely suppressed. Needless to say, nobody should
ever try to compile this sort of code! The source code on the CD gives a more
realistic idea of A/ROSE programming.

INSIDE THE MACINTOSH COPROCESSOR PLATFORM AND A/ROSE October 1990

437

Here are the outlines of main() and the two basic subroutines AskICCM() and
NameLookup(), with explanatory text following the code:

static tid_type cards[16]; // Place for 4 bytes per slot.
main()
{

short slot, index;
tid_type tid;

(void) OpenQueue(nil); // Set up a message queue for me.
AskICCM(); // Request Name Manager TID for each slot, store in cards[].
for (slot=0; slot<16; slot++) {

if (cards[slot] > 0) { // Name Manager TID is OK.
printf("\nSlot = $%X :\n",slot);
index = 0;
while (tid = Lookup_Task("=", "=", cards[slot], &index))
// Ask Name Manager for info about registered tasks.
NameLookup(cards[slot], tid);

}
}
CloseQueue(); // Be nice with A/ROSE Prep.

} // End main().

void AskICCM()
{

mMessage *m;

m = GetMsg();

m->mTo = GetICCTID();
m->mCode = ICC_GETCARDS;
m->mDataPtr = (char *) cards;
m->mDataSize = sizeof (tid_type) * 16;
Send(m);
m = Receive(OS_MATCH_ALL, OS_MATCH_ALL, ICC_GETCARDS+1,

OS_NO_TIMEOUT, 0);
// SlotInfo is now in cards[0..15] (if nothing failed!).
FreeMsg(m);

} // End AskICCM().

d e v e l o p October 1990

438

#define bufferSize 512
void NameLookup(tid_type ntid, tid_type tid)
// ntid = Name Manager TID.
// tid = ID of the task for which we request the name.
{

struct pb_lookup_name *lnam_ptr; // (See text.)
char buffer[bufferSize];
mMessage *m;

m = GetMsg();
m->mTo = ntid;
m->mCode = NM_LOOKUP_NAME;
m->mDataPtr = buffer;
m->mDataSize = bufferSize;
lnam_ptr = (pb_lookup_name *) &buffer;
lnam_ptr->lnm_index = 0;
lnam_ptr->lnm_tid = tid;
lnam_ptr->lnm_RAsize = bufferSize -

(sizeof(pb_lookup_name) - sizeof(ra_lnm));
Send(m);
m = Receive (OS_MATCH_ALL, OS_MATCH_ALL, NM_LOOKUP_NAME+1,

OS_NO_TIMEOUT, nil);
DisplayTaskInfo(lnam_ptr); // Lots of silly string handling.
FreeMsg(m);

} // End NameLookup().

The OpenQueue() call is needed to make use of the A/ROSE Prep services; it
takes a procedure pointer as parameter. If a procedure is specified, it gets called
repeatedly during a blocking Receive() request, which avoids blocking the
machine during waiting. In our case, we don’t use blocking receives, and don’t need
this feature. By the way, OpenQueue() returns a task identifier that will be ours
for the rest of the process.

We have to deal with the InterCard Communication Manager, in AskICCM(), and
the Name Manager, indirectly in Lookup_Task() and directly in
NameLookup(). First, we want to ask the InterCard Communication Manager
what it knows about the sixteen NuBus slots. Naturally, we send a message.

INSIDE THE MACINTOSH COPROCESSOR PLATFORM AND A/ROSE October 1990

439

The local variable m is declared as a pointer to the struct mMessage (note the
spelling, in order to distinguish it from the message field in an EventRecord).
The GetMsg() call, one of the ten A/ROSE primitives, is in this case an A/ROSE
Prep service. GetMsg() returns a pointer to this message structure, which has
already been partially initialized: mId is a statistically unique identification number
for the particular message, and mFrom has already been filled in with the sender’s
task ID (the number returned by OpenQueue(), or by the utility GetTID()).

We need to identify the addressee in the mTo field and we need to specify mCode
= ICC_GETCARDS (this constant is defined in the include file managers.h) in order
to request information about Macintosh Coprocessor Platform cards in the machine.
On receiving a message with this mCode, the ICCM expects in mDataPtr a
pointer to 64 bytes (according to mDataSize), and fills the array cards[0..15] of
tid_type for each slot with a value

• <0, if there is no Macintosh Coprocessor Platform card at all,
or no ICCM

• =0, if there is an ICCM but no Namer Manager
• >0, if there is an ICCM and a Name Manager; the value is the Name

Manager’s TID

The rest is easy: For each Name Manager TID, a repeated call to
Lookup_Task() returns successively all identifiers of tasks that registered
correctly with the Name Manager. The variable index is initially set to zero and
then passed by address; it is an internal value that must be passed back to A/ROSE
unchanged on subsequent calls to Lookup_Task(). This call is an example of an
A/ROSE utility call, which hides the underlying mechanism of sending a message
with a specific mCode and mDataPtr to a manager, and getting the result back
through a Receive() call.

Sending a message now to the Name Manager in the current slot with mCode =
NM_LOOKUP_NAME and with mDataPtr pointing to an appropriate buffer, brings
back the object name and type name of the task, which is finally displayed.

BUILDING A DOWNLOAD FILE
To download code to a NuBus card, you have to build a code resource. I will
reproduce and discuss the required code (file osmain.c) in a simplified form here.

d e v e l o p October 1990

440

main ()
{

struct ST_PB stpb, *pb; // Start parameter block.

// Init OS with cMaxMsg messages and cStackOS stack.
osinit (cMaxMsg, cOSStack);

pb = &stpb;

StartNameServer(pb); // The Name Manager.
StartICCManager(pb); // You guess it!
StartmyTask(pb); // And our sample task.
// Start all other required managers and tasks.

// Start operating system.
osstart (TICK_MIN_MAJ, TICKS_PS);
// Should never get here!

} // Main().

void StartmyTask(struct ST_PB *pb)
{

pb->CodeSegment = 0;
pb->DataSegment = 0;
pb->StartParmSegment = 0;
pb->InitRegs.A_Registers [5] = GetgCommon() -> gInitA5;
pb->ParentTID = GetTID();
pb->stack = 4096;
pb->heap = 0;
pb->priority = 10;
pb->InitRegs.PC = myTask; // Entry point of myTask.
if (StartTask (pb) == 0)// If the task does not get started,

illegal (); // go debugging.
}

The routines StartNameServer(pb) and StartICCManager(pb) are quite
similar (except for slight variations in some parameters and the priority level) to
StartmyTask(pb).

INSIDE THE MACINTOSH COPROCESSOR PLATFORM AND A/ROSE October 1990

441

So this is the code that will be downloaded to the card. The calls osinit() and
osstart() are only meaningful in this context of an initial load of the card. The
first call takes two parameters whose default values are cMaxMsg = 500
(maximum number of available message buffers) and cOSStack = 4096 (size of
OS stack). In many cases, the cMaxMsg value in particular can be safely
diminished, which allows optimization of memory usage on the card. The second
call, osstart (TICK_MIN_MAJ, TICKS_PS) launches A/ROSE, with default
values for the number of time-slicing ticks per second, and for a subdivision of major
ticks into minor ticks.

In between these two calls, all other required tasks need to be initialized by means of
their start parameter block; the required minimum consists of the Name Manager
task (the linker finds its code under the name name_server in the library OS.o),
and the InterCard Communication Manager task (again, its code is in OS.o). In our
example, we added our own myTask, whose source code file is compiled separately
(compare this with the routine TaskProcessing() in the TaskSample
program):

staticchar my_object_name [] = "myTaskName";
staticchar my_type_name [] = "myTaskType";

void myTask()
// All it does at this point is to register with the Name Manager
// (in order to be recognized by possible clients looking for it)
// and then just send back the messages it receives.
{

mMessage *m;

if (!Register_Task (my_object_name, my_type_name, Machine_Visible))
illegal (); // Go debugging: something mysterious happened.

while(1) // Forever !
{
m = Receive(OS_MATCH_ALL, OS_MATCH_ALL, OS_MATCH_ALL, OS_NO_TIMEOUT);
if (m) {

if (m->mStatus != 0) { // What happened? A real program would
FreeMsg(m); // investigate but we’ll just get rid of it

} // here.

d e v e l o p October 1990

442

else {
switch (m->mCode) {
case DUMMYCODE:

// Is there something to do with this message?
break;

// Handle here all the message codes you specified in your design.

default:
m->mCode |= 0x8000; // Unrecognized message code;
m->mStatus = OS_UNKNOWN_MESSAGE;

// defined in "managers.h."
break;

} // Switch.

// Send message back.
SwapTID(m); // Swap mFrom and mTo fields.
m->mCode++; // Response is one greater, by convention.
Send (m);
} // Message status was OK.

} // There was a message.
} // While.

} // End myTask().

Finally, we need to put everything together. The following MPW shell commands
do the trick. Adopting the convention on the A/ROSE distribution disks, we’ll use
the filename Start for what we will download. I recommend defining the MPW shell
variables AROSE, AROSEBin, and AROSEIncl in a UserStartup file, which holds
the corresponding folder pathnames.

C osmain.c -i "{AROSEIncl}"
C myTask.c -i "{AROSEIncl}"
Link -t ’DMRP’ -c ’RWM ’ ¶

-o start ¶
osmain.c.o ¶
myTask.c.o ¶
"{AROSEBin}"OS.o ¶
"{AROSEBin}"osglue.o

INSIDE THE MACINTOSH COPROCESSOR PLATFORM AND A/ROSE October 1990

443

Finally, we need to download the file to the available Macintosh Coprocessor
Platform cards in your machine, by means of the Download tool:

"{AROSE}Downloader:Download" start

The tool should reply with

Segment of size 00000040 is downloaded
Segment of size 00000054 is downloaded
Segment of size 00004D44 is downloaded

Now it’s time to come back to our tool ShowTasks:

showtasks

slot = $0 :
$00000003: name "echo manager", type "echo manager"

slot = $D :
$0D000001: name "name manager", type "name manager"
$0D000003: name "myTaskName", type "myTaskType"

. . . and to go ahead and send messages to myTask on a Macintosh Coprocessor
Platform card. To try this, launch ClientAppli again, but this time without the
TaskSample application running. ClientAppli now finds the “server” named
myTaskName in its slot, and messages sent to it are returned as expected.

A MANDELBROT SETS EXERCISE
The downloaded file in the Macintosh Coprocessor Platform card works, but it gets
boring fast: our server task is quite lazy, and doesn’t do anything besides echoing our
messages. For a more interesting programming exercise, open the MCPMB folder.
The program you’ll find there computes Mandelbrot (MB) sets in parallel
processing, involving as many Macintosh Coprocessor Platform cards as you can put
into your machine.

For each line to be computed, a message is sent to an MBTask, carrying along the
required parameters and a pointer to where the line fits into the bitmap. The
MBTask allocates a local buffer each time (for pedagogical reasons, I didn’t optimize
the design too much) and sends the computed data back over the NuBus by means
of a NetCopy() call. Have a look at the source code on the CD, play with it, and let
me know what you did to improve on the error handling and some other flaws in it.

d e v e l o p October 1990

444

THAT’S ALL, FOLKS . . .

This article has given you an idea of how to find your way around the Macintosh
Coprocessor Platform and A/ROSE. You now know something about the origins,
architecture, and implementation of this generic hardware and software foundation,
and have seen some samples of A/ROSE programming. If you want to go on from
here, the APDAlog® contains everything you need to know to order the complete
Macintosh Coprocessor Platform Developer’s Kit, or the A/ROSE Software Kit, or
just the Macintosh Coprocessor Platform Developer’s Guide.

INSIDE THE MACINTOSH COPROCESSOR PLATFORM AND A/ROSE October 1990

445
Thanks to Our Technical Reviewers
Ned Buratovich, Dave Comstock, Chris Deighan,
Ken Siemers, Steve Wang.
A special thanks to Anumele D. Raja. •

SCOTT “ZZ” ZIMMERMAN

Developers are discovering the advantages of using PostScript®

dictionaries in applications, but along with the advantages come some
perils. One peril awaits if you download a dictionary using
PostScriptHandle. Another can trip you up after downloading a
dictionary if you then download a font using the SetFont procedure I
described in develop, Issue 1. How to avoid these perils? Read on to
learn some tricks for dicts in picts.

More and more developers are beginning to use direct PostScript code in their
applications. In my “Perils of PostScript” article in develop, Issue 1, I addressed a
couple of problems that arise when you use PostScript code to print documents. In
this sequel, we’ll look at some problems you will encounter if you attempt to use
PostScript dictionaries in your applications.

ABOUT POSTSCRIPT DICTIONARIES
A PostScript dictionary is a collection of predefined variables and/or procedures.
Using a PostScript dictionary can significantly reduce the size of the PostScript code
generated by your application and make it more efficient. For instance, consider a
large PostScript file in which the operator currentpoint is used frequently. You
can define in your dictionary a PostScript procedure called cp that makes a call to
the currentpoint operator. You can then replace currentpoint with cp
throughout the file, thus reducing its size. Similarly, by defining a PostScript
procedure to represent a series of operators, you can express a compound operation
much more efficiently. And storing procedures in a dictionary that you create can also
prevent you from inadvertently redefining something that has already been defined.

One great example of a PostScript dictionary is the one used by the LaserWriter®

driver, variously called LaserPrep (after the file it resides in, at least until System 7),
AppleDict (the Apple name for it), and good ol’ md (the PostScript name for it, and
the one I prefer to use). The LaserWriter driver generally uses one or more md

THE PERILS OF

POSTSCRIPT—

THE SEQUEL

d e v e l o p October 1990

SCOTT “ZZ” ZIMMERMAN is a DTS
printing guru. After two and a half years at Apple
he says he’s particularly impressed with the
strictly enforced dress code. In his spare time he
sails, scuba dives for lobsters, and plays the
piano, guitar, and saxophone. Zz has a penchant
for pets. His doorway is adorned by a melted

gummy rat, a good luck charm left over from his
Intel days. At home, atop his monitor is perched
a rare Asian black scorpion (behind glass, we
hope). His other cuddly pets include two geckos
and a lovable iguana. •

446

routines to perform a particular QuickDraw operation. (See the sidebar on the next
page for a review of how the LaserWriter driver works.) For example, a call to the
QuickDraw CopyBits routine is translated by the driver into a call to the db or
cdb operators stored in md. As another example, during font downloading the
LaserWriter driver uses bn and bu, both stored in md, to call save and
restore (bn calls save and bu calls restore).

If you want to record a piece of PostScript code that references procedures
contained in a dictionary, you must also record the dictionary. I describe how to
download a dictionary, and how to avoid the pitfalls involved, in the next section.

Once your dictionary has been downloaded, you should be able to continue to
reference it until the end of the job. But alas, this is not so, at least until the new
printing architecture ships sometime after System 7. Under the current architecture,
font downloading interferes with PostScript dictionaries. I discuss this problem and
how to get around it under “The Perils of Font Downloading.”

THE PERILS OF DICTIONARY DOWNLOADING
One of the easiest methods for downloading a PostScript dictionary is by using the
PostScriptHandle picture comment. You can use this comment to download
directly to the LaserWriter a block of PostScript code stored in a handle. (See
Technical Note #91, Optimizing for the LaserWriter—PicComments, for more
information.) When you use the PostScriptHandle comment, you must insert
the PostScriptBegin and PostScriptEnd picture comments around the
block of PostScript code you are trying to download, like this:

PicComment(PostScriptBegin, 0, NIL);
(**)
(*** Your PostScript representation of document goes here.***)
(**)

PicComment(PostScriptHandle, size, handle);
(***)
(*** Your QuickDraw representation of document goes here.***)
(***)

PicComment(PostScriptEnd, 0, NIL);

As described in my first article, the PostScriptBegin/End comments are
markers that ensure that the right piece of code will execute on the right device.
When the LaserWriter driver sees PostScriptBegin, it ignores all QuickDraw
drawing calls and just executes picture comments. When a PostScriptEnd is
received, the LaserWriter driver will once again interpret QuickDraw calls. So when
printing to a LaserWriter printer, only the picture comments are executed, while the
QuickDraw code between PostScriptBegin and PostScriptEnd is ignored.

THE PERILS OF POSTSCRIPT—THE SEQUEL October 1990

447
The definitive references on the PostScript
language are the PostScript Language Reference
Manual (Addison-Wesley, 1985, available from
APDA—#T0182LL/A), the PostScript Language
Tutorial and Cookbook (Addison-Wesley, 1985),
and PostScript Language Program Design
(Addison-Wesley, 1988). •

The LaserWriter driver is a complex piece of software
that handles communications between an application
and the LaserWriter printer. To print a document, the
application opens the Printing Manager, which in turn
loads and initializes the LaserWriter driver. The
application then makes standard QuickDraw calls
similar to those used to render the document on the
screen. The LaserWriter driver intercepts these calls and
converts them into the equivalent PostScript code for
rendering the document on the LaserWriter printer.
(See Figure 1.)

In some cases, one QuickDraw operation translates into
one PostScript operation, but more frequently, the
QuickDraw operation translates into several PostScript
operations. To abbreviate these operations, the
LaserWriter driver stores them as procedures in a
PostScript dictionary.

When the LaserWriter driver first connects to the
LaserWriter printer, it checks to see if its dictionary exists
and if the version of the dictionary matches the version
of the driver being used. If not, it downloads the correct

dictionary before proceeding. (This is
what the message “initializing
printer” means when you print for the
first time after turning on the printer.)

Once the correct dictionary is in
place, the job of translation becomes
much easier. Each QuickDraw
operation now becomes one line of
PostScript code, referencing a
procedure defined by the dictionary.
Complex QuickDraw operations (like
font downloading) still require many
lines of PostScript code, but in
general, the translation is one for
one. Since the QuickDraw code is
translated rather than rendered, the
LaserWriter driver doesn’t need to
spool the data to disk. Instead, each
operation is translated and sent to
the printer as it is received.

Move To (10, 10);

Line To (10, 20);

10 10 gm

10 20 xlin

LaserWriter driver turns it
into these md calls

LaserWriter prints output

LaserWriter
driver

Application sends these
QuickDraw callsApplication

d e v e l o p October 1990

448

A REVIEW OF HOW THE LASERWRITER DRIVER WORKS

Figure 1
How the LaserWriter Driver Works

But PostScriptBegin and PostScriptEnd also save and restore at least
part of the state of the device, which can cause problems for your dictionary. To
avoid this, you should use the picture comment PostScriptBeginNoSave
(comment kind = 196) to prevent the save and restore from occurring, like this:

(***)
(*** Your definition of the dictionary goes here.***)
(***)

PicComment(PostScriptBeginNoSave, 0, NIL);
PicComment(PostScriptHandle, dictsize, dicthandle);

PicComment(PostScriptEnd, 0, NIL);
(**********************************)
(*** Now you send the document. ***)
(**********************************)

PicComment(PostScriptBegin, 0 NIL);
(**)
(*** Your PostScript representation of document goes here.***)
(**)

PicComment(PostScriptHandle, size, handle);
(***)
(*** Your QuickDraw representation of document goes here.***)
(***)

PicComment(PostScriptEnd, 0, NIL);

If you don’t need to export your dictionary into picture files, you can get the
LaserWriter driver to auto-download your dictionary by keeping the dictionary
code in a PREC(103) resource. After the LaserWriter has saved its state, it does a
blind GetResource (that is, from any open resource file) on PREC(103). If one
is found, it is downloaded to the printer after the md dictionary, and before the job.
You can use this method of downloading for dictionaries that are used only to
contain state information about the current job. (When a graphic is copied onto the
clipboard, only the state information, not the entire dictionary, is required for the
code to execute.)

However, use of the PREC(103) resource does have some limitations. It only works
at print time, and there can be only one. That is, the LaserWriter driver does not
attempt to download all the PREC(103) resources in all the open resource files. The
first one it finds wins. (This method of downloading dictionaries is documented in
Technical Note #192, Surprises in LaserWriter 5.2 and Newer.)

THE PERILS OF POSTSCRIPT—THE SEQUEL October 1990

449

THE PERILS OF FONT DOWNLOADING
In my “Perils of PostScript” article in Issue 1 of develop, I showed a small
procedure called SetFont that downloaded a font using QuickDraw, while
maintaining the ability to reference that font using PostScript. The problem with
that method is that the process of font downloading executes the PostScript
restore operator. This operator restores the state of the printer to a state that
was saved before your dictionary was defined. Because of this, any reference to your
dictionary is lost.

Another way to understand what happens in this case is to look at what the
LaserWriter driver does during printing. At the start of a print job, the LaserWriter
driver configures the LaserWriter’s graphics state to look more like QuickDraw.
This includes moving the origin (0,0) from the bottom left (PostScript style) to the
top left (QuickDraw style), and setting the default resolution to 72 dpi. After the
driver has configured the printer, it performs a save, which saves the complete state
of the device. The driver then begins downloading the rest of the job, containing the
PostScript code generated by the LaserWriter as well as any additional PostScript
code sent by the application.

The LaserWriter driver fully restores the state of the device, by executing the
PostScript restore operator, before downloading a font. During font
downloading, the characters of the font are actually defined, sometimes using
normal PostScript drawing operators. Because of this, the LaserWriter driver
restores the state of the printer before defining the characters. Once the characters
have been defined, the state is saved again. This way, the LaserWriter driver can
assume it knows the state of the device. Since the state saved by the LaserWriter
driver does not contain any of the symbols defined by the application, all of them are
lost after any attempt to download a font.

WHICH WAY OUT?
Now that we understand the problem, let’s discuss potential solutions. The
restore operator affects everything that has changed except two areas: some of
the PostScript stacks (specifically the operand, dict, and execution stacks), and the
contents of PostScript strings. This suggests that to save small units of information,
you can simply push them onto the stack, or convert them and store them as
PostScript strings.

Unfortunately, it’s not quite that easy.

PostScript makes a distinction between simple and composite objects. Simple
objects (like numerical values and booleans) contain their value within the object.
Composite objects (like strings, procedures, and dictionaries) contain only a pointer
to the real data, which is stored elsewhere in PostScript Virtual Memory. Simple
objects on the stack are indeed preserved across a restore, but if there are
composite objects on the stack that are new (that is, newer than the state being

d e v e l o p October 1990

450

restored), an invalidrestore error is generated. If your dictionary only
contains simple objects, then you can indeed push each of the variables defined in
the dictionary onto the stack separately and rebuild the dictionary after the
restore. The overhead here is obviously enormous, though, and most useful
dictionaries contain procedures and/or strings, rendering this technique useless.

In the case of strings being preserved across a restore, let me quote from the
PostScript Language Reference Manual, p. 44: “In the current PostScript design,
restore actually does not undo changes made to the elements of strings. We
consider this behavior to be a defect, and do not recommend that PostScript
programs take advantage of it.” Beyond this easily ignored admonishment, though,
is another problem. The strings in question must be preexisting: strings you create
just before the restore will, of course, be destroyed by the restore, or, if
they are on the stack, will cause an error. You could probably find some scratch
strings in one of the standard dictionaries to use, but this is not recommended, for
obvious reasons.

AN END TO BN AND BU
Another way to solve the problem would be to redefine save and restore to
not do anything. This way, font downloading would not cause the state to be
restored. This would make the application developer responsible for preserving the
state, which is easily done using other PostScript operators. But unfortunately, the
definitions of save and restore cannot be changed without exiting the server
loop. That is, you cannot override their definitions from within a job. Because of
this, you have to fall back on plan B: override the operators that call save and
restore. In the case of font downloading, these operators are bn and bu, as
mentioned earlier.

This method is the most widely used solution to our problem, has the fewest
limitations, and is the method recommended here. Please note, however, that
tinkering with md operators outside of this specific use is strongly discouraged. (See
the sidebar on the next page.)

The main job of bu and bn is to preserve the state of the PostScript device. As
long as your PostScript code preserves the state, these calls aren’t even required. In
the fragment that follows, we first create our own dictionary, called mydict, with
room for ten symbols, although we don’t define them all. Next we define killbu.
killbu is responsible for first saving the old definition of the bu routine, and
then setting its value to the empty procedure ({}), which does nothing. The original
definition of bu is simply pushed onto the stack. Next we write a routine
restorebu, to restore the definition of bu when we are through. This routine is
responsible for popping the original value off the stack and storing it back into the
bu symbol; it assumes that the definition of bu is on the top of the stack. Then we
define two similar routines, killbn and restorebn, which take care of the bn

THE PERILS OF POSTSCRIPT—THE SEQUEL October 1990

451

operator. Finally, we define a fun little routine to call to make sure our dictionary is
actually being preserved after font downloading. We call this one titleshow. So
now we have a dictionary, all ready to use.

SendPostScript('/mydict 10 dict def');
SendPostScript('mydict begin');
SendPostScript('/killbu {//md /bu get //md /bu {} put} def');
SendPostScript('/restorebu {//md exch /bu exch put} def');
SendPostScript('/killbn {//md /bn get //md /bn {} put} def');
SendPostScript('/restorebn {//md exch /bn exch put} def');
SendPostScript('/titleshow {dup gsave');
SendPostScript('currentscreen 3 -1 roll pop 120 3 1 roll setscreen');
SendPostScript('.5 setgray show grestore true charpath gsave');
SendPostScript('1 setlinewidth 0 setgray stroke grestore');
SendPostScript('.5 setlinewidth 1 setgray stroke }def');
SendPostScript('end');

d e v e l o p October 1990

452

Many developers have started to call md routines from
within the PostScript code generated by their applications.
This is dangerous, for a number of reasons.

The first is that the md dictionary is defined and maintained
by the LaserWriter driver. This means that it is always
subject to change, and code that depends on the md
dictionary must be version dependent. This is possible, but
far from elegant.

Another problem with using md operators is that they
may not work the same way on all devices. Remember
that the LaserWriter driver is used to drive a lot more
devices than just an Apple LaserWriter.

Use of md operators has already led to compatibility
problems with major applications, and most developers
have realized the danger in using them. The easiest way
to avoid problems with these routines is to not call them.

If you really need the functionality of a particular md
operator, simply redefine it in your own dictionary.
Using tools like LaserTalk (formerly from Emerald City
Software, now from Adobe), you can “disassemble” md
operators back to their PostScript primitives. You can
then redefine them using a different name in your own
dictionary. Now you have a routine that does exactly
what the md routine did, but you remain in control of its
definition. Most of the md operators are very small, so
the storage penalty of redefining them in your own
dictionary is minimal.

Now that I’ve warned you, I’m going to show you how
to tinker with two operators stored in md: bn and bu. All
routines, including these two, are subject to change; by
special arrangement with engineering, bn and bu will
change in a compatible way, but this is not true for any
of the other routines defined in md. This article shows a
specific use of bn and bu, and checks for their existence
before attempting to access them. This is not meant to
endorse other uses of these or any other md routines.

WARNING: CALLING MD ROUTINES MAY BE HAZARDOUS TO YOUR CODE

Okay, now that we have the routines for killing bu and bn, we need to call them.
It’s very important at this point to check for their existence before attempting to
alter their definitions. This is because, as mentioned earlier, the new printing
architecture that will ship sometime after System 7 will handle font downloading
differently. The bu and bn operators will no longer exist; in fact, it’s not clear
that the md dictionary will still exist. The following PostScript commands check for
the existence of both the dictionary and the symbol. If they don’t exist, our code
assumes it is running under the new printing architecture, and does nothing to
insulate the dictionary. The code fragment executes fine on LaserWriter drivers up
to and including System 7.0. It has also been tested in both foreground and
background. Considering the future of bn and bu, it is very likely that this code
will continue to work even under the new printing architecture. Here, then, is the
code to check for and kill bn and bu:

SendPostScript('mydict begin');
SendPostScript('//md /bu known {killbu} if');
SendPostScript('//md /bn known {killbn} if');
SendPostScript('end');

Pretty straightforward: if the routine exists, call the correct routine to kill it. The
most important thing to note here is the order of the routines. Since killbu and
killbn push things onto the stack, restorebu and restorebn must be
called in opposite order to get the correct results. So after the job is finished, we call:

SendPostScript('mydict begin');
SendPostScript('//md /bn known {restorebn} if');
SendPostScript('//md /bu known {restorebu} if');
SendPostScript('end');

TO SUM IT ALL UP
PostScript dictionaries are useful because they can significantly reduce the size of
the PostScript code generated by your application, and can be exported into
pictures. Perhaps the easiest way to record PostScript into a picture is by using the
PostScriptHandle picture comment. In this case, remember to use the
PostScript BeginNoSave comment to prevent PostScriptBegin and
PostScriptEnd from saving and restoring at least part of the state of the device,
which can cause problems for your dictionary. To prevent font downloading from
interfering with your PostScript dictionaries, you can override bn and bu, the
PostScript operators that call save and restore. Outside of this solution, you
should absolutely avoid using md operators.

The code included in the Perils of PS II folder on the Developer Essentials disc is
basically the same code that has been shown here, rolled into an application shell
that opens and initializes the Printing Manager. Also included is the definition of
the SendPostScript procedure referenced in this article.

THE PERILS OF POSTSCRIPT—THE SEQUEL October 1990

453
Thanks to Our Technical Reviewers
Pete “Luke” Alexander, Jay Patel, David Williams •

 454
MATT DEATHERAGE used to think he was a
cynic, but two and a half years in Developer
Technical Support for the Apple II has made him
doubt even that. His perpetual quest for sleep
has been interrupted by his new responsibility for
the ProDOS partition on the Developer CD and
Developer Essentials disc, as well as by his
resuming the role of DTS technical lead for Apple
IIGS system software. It would be enough to

make his head spin, he says, “if my head were jointed
that way.” His musical pursuits continue with work on
an album, The Fruited Computer Follies of 1990, which
will never be released as all of the songs on it are
entirely unsuitable for polite company. He’s currently
conspiring with Robert Thurman to withhold the
definition of “PPG.” •

d e v e l o p October 1990

DRIVING TO

PRINT: AN

APPLE IIGS

PRINTER

DRIVER

MATT DEATHERAGE

Do you have a printer that would print awesome text and graphics
if only someone would write a driver for it? Have you looked at the
driver specifications and become hopelessly confused? If you want
to give your Apple IIGS some expanded printing capabilities, don’t
put this issue down until you’ve read this article!

In theory, printer drivers seem like a great solution. All you have to do is drop a
printer driver file in your Drivers folder, and all of a sudden you’ll be able to create
dazzling text and graphics from whatever desktop application and on whatever
kind of printer you happen to use with your Apple IIGS. No more writing to printer
manufacturers or waiting for application upgrades to support your printer.

Unfortunately, the reality isn’t quite as nifty as the theory. Even though Apple
released printer driver specifications in early 1988 (just before System Disk 3.2),
only a few third-party printer drivers have surfaced. The specifications are
complex and sometimes confusing, and they have not always been accurate. Most of
all, printer drivers are intrinsically complicated and difficult to develop. The
driver has to do all of the work in getting images printed, with no imaging help
from the Print Manager.

This article explains the mysteries of the printer driver: what it does, how it does
it, and how to write one. To illustrate the concepts, we’ve provided a sample
printer driver called Picter. Picter takes the image to be printed and saves it to your
boot disk as a QuickDraw II picture file. Picter allows you to literally print a
graphic document to disk. Much of Picter’s structure and code is directly applicable
to any printer driver. What’s more, the dialog routines in Picter, which are very
similar to those in the new ImageWriter and ImageWriter LQ drivers released
with System Software 5.0.3, will enable you to be consistent and stylish in your user
interface. You will find Picter in the IIgs Printer Driver folder on the Developer
Essentials disc.

 455

DRIVING TO PRINT: AN APPLE IIGS PRINTER DRIVER October 1990

HOW PRINTING WORKS
Printing from a desktop application appears to be a black box. You make some Print
Manager calls and voila!—there’s a piece of paper with a printed image of what
you drew. The Print Manager uses some serious magic to turn your image into ink on
paper, but that’s all hidden from the application.

So now that we know what we’re getting into, let’s briefly review how applications
print through the Print Manager.

WHAT THE APPLICATION SEES
In the Apple IIGS desktop environment, documents are kept in windows, which are
extended versions of the QuickDraw II drawing environment—the Grafport. The
features defined by the Grafport include where drawing will and will not occur,
what size pen will be used to draw lines and other objects, what method will be
used to draw them, what colors and patterns will be used with the objects drawn,
what style, size, font, and colors will be used for text drawing, and where the image
resides in memory.

The model for printing is quite similar to drawing in a window. Instead of drawing
into a window Grafport, your application draws into a printing Grafport,
which defines the drawing environment for a single page. The clipping and visible
regions (the clipRgn and visRgn) are set to the rectangular area of the page,
for example.

An application prints by drawing into a printing Grafport, which it obtains by
opening a printing document with the Print Manager call PrOpenDoc. The Print
Manager responds by returning a printing Grafport in which the material to be
printed should be drawn. The printing Grafport is initialized at the beginning
of each new page (signified by PrOpenPage). The application then draws the
page, closes it (with PrClosePage), and repeats this sequence until all pages
have been printed. The application then closes the document (with PrCloseDoc)
and prints any images the driver may have spooled with PrPicFile. The
sequence of calls starting with PrOpenDoc and ending with PrPicFile is
referred to as the print loop, since the middle calls (PrOpenPage and
PrClosePage) are repeated once for each page to be printed. Note that
PrPicFile should always end the print loop.

HOW IT REALLY WORKS
If the Print Manager does all this for the application, as the Apple IIGS Toolbox
Reference says it does, where does a printer driver fit in?

To understand how printer drivers work, you first need to realize that the preceding
description of how applications print is exaggerated. Everything listed above as done
by the Print Manager is really done by the currently selected printer driver.
Although the calls are Print Manager calls, the only action the Print Manager takes
on these calls is to make sure the printer driver is available and to dispatch the calls
to the driver. The application model says this work is done by the Print Manager to

 456

d e v e l o p October 1990

prevent application dependency on any particular driver. From the application’s
point of view, the Print Manager’s role in printing allows the application to be
independent of any particular driver. But in reality, your printer driver will
handle all the work associated with several of these “Print Manager” calls.

While at first it might seem like a cop-out by Apple to require the printer driver to
handle all the work in the print loop, this strategy actually makes a lot of sense.
The printer driver must ultimately transform images into ink on paper, so for
maximum flexibility Apple has given the printer driver control over the entire
imaging process, from the opening of a document to the printing of spooled images.
Since no one but the printer driver author knows what user-selectable features the
driver will support, the printer driver should be responsible for the style and job
dialog boxes through which these features will be chosen. And because the printer
driver knows how to best handle internal errors, it’s a good idea to make it
responsible for returning and accepting error codes from the application.

Although the printer driver has to handle all the imaging, the Print Manager does
provide a lot of support for other parts of the printing process. One of the tasks the
Print Manager supports is communication—once an image has been converted into
printer codes, the codes have to be sent to the printer. The Print Manager keeps
track of a different kind of driver—the port driver—that handles this
communication with the printer through the internal ports of the Apple IIGS (or
through the slot-based peripherals). The port driver essentially relieves the
printer driver of the work of communicating with the printer. All the printer driver
has to do is ask the port driver to read or write data to the printer, and the port
driver handles all the details. The Print Manager also keeps track of which
printer and port drivers the user has chosen with the Control Panel desk accessory.

Figure 1 shows the relationship of the printer driver and the port driver to the
Print Manager. The Print Manager handles some duties alone while passing others
directly through to the printer or port driver.

THE PRINT RECORD
Since the printer driver does all the interesting imaging work, it has to have some
way to exchange vital information with the application. Applications need to
know the size of the pages to be printed so that they can paginate properly. They
may need to know the vertical sizing factors so that better resolution graphics can
be printed when higher resolutions are available. Or they may need to know the
resolution of the printer for precise printing chores. This information is
communicated through a data structure known as the print record. The print record
is associated with every document to be printed, and it is the only way the printer
driver can keep these parameters associated with a document.

 457

DRIVING TO PRINT: AN APPLE IIGS PRINTER DRIVER October 1990

PrDefault
PrValidate
PrStlDialog
PrJobDialog
PrPixelMap
PrOpenDoc
PrCloseDoc
PrOpenPage
PrClosePage
PrPicFile
PrReserved
PrError
PrSetError
GetDeviceName
PrGetPrinterSpecs
PrDriverVer
PrGetPgOrientation

PMBootInit
PMStartUp
PMShutDown
PMVersion
PMReset
PMStatus
PrChoosePrinter
PrGetZoneName
PrGetPrinterDvrName
PrGetPortDvrName
PrGetUserName
PrGetNetworkName
PMUnloadDriver
PMLoadDriver
PrGetDocName
PrSetDocName

PrDevPrChanged
PrDevStartUp
PrDevShutDown
PrDevOpen
PrDevRead
PrDevWrite
PrDevClose
PrDevStatus
PrDevAsyncRead
PrDevWriteBackground
PrPortVer
PrDevIsItSafe

Print Manager

Printer Driver Port Driver

Figure 1
Print Manager Calls

Figure 2, on the next page, shows the print record in fully documented detail. Notice
that some fields are marked simply as reserved—that means reserved for Apple.
Using these fields is a really good way to make your application not print with
other drivers or to make your driver not work with future system software.

The print record contains all the parameters associated with a printing job. It
includes not only the page and paper sizes and the resolution of the printer and
other hardware parameters, but also the values selected by the user in the Page
Setup and Print dialog boxes, which are presented by the printer driver. The print
record contains all the information necessary to print a document the same way as
many times as necessary.

 458

d e v e l o p October 1990

prVersion

iDev

iVRes

iHRes

wDev

res1

res2

res3

feed

paperType

crWidth/vSizing

reduction

InternB

bjDocLoop
fFromUsr

pIdleProc

prInfoPT

rPage

rPaper

Word—version number of printer driver

Word—printer type

Word—vertical resolution of printer

Word—horizontal resolution of printer

Four words—RECT defining page rectangle

Four words—RECT defining paper rectangle

Word—output quality information

Word—reserved for Apple

Word—reserved for Apple

Word—reserved for Apple

Word—type of paper feeding

Word—type of paper
Word—carriage width for all iDev but $0003 and $8003
vertical size for iDev $0003 and $8003
Word—percent reduction for iDev $0003 and$8003, else reserved
Word—reserved for Apple

14 bytes—reserved for Apple

24 bytes—reserved for Apple

Word—first page to print
Word—last page to print
Word—number of copies
Byte—0=immediate mode, 128=deferred
Byte—reserved for Apple

Long—pointer to background procedure

Long—pointer to pathname for spool file

Word—spool file volume reference number (don’t use)
Word—low byte: spool file version number
Word—high byte: reserved

38 bytes—reserved for printer drivers

Word—reserved for Apple

$00

$02

$04

$06

$08

$10

$18

$1A

$1C

$1E

$20

$22

$24

$26

$28

$56
$57

$58

prInfo

prStd

prJob

$2a

prXInfo

iFstPage
iLstPage
iCopies

$38

$50
$52
$54

pFileName

iFileVol
bjFileVers
bJobX

printX

iReserved

$5C

$60
$62
$63

$67

$8A

Figure 2
The Expanded Print Record

 459

DRIVING TO PRINT: AN APPLE IIGS PRINTER DRIVER October 1990

PRINTING MODES
In addition to being concerned about what to print, you must be concerned about the
way in which it’s printed. There are two modes for printing. The differences
between these modes amount to two different models for printing.

Immediate mode. When you print in immediate mode, every page is printed as it’s
defined. The driver does not store an image of the page before it sends it to the
printer. This strategy can limit the driver’s options when printing a page. To see
how, you first have to understand how immediate mode works.

When QuickDraw performs a graphic operation, it calls a standard set of low-level
routines to do it—the QuickDraw bottleneck procedures. A pointer to them exists in
every GrafPort’s grafProcs field, where a value of 0 means that QuickDraw
should use the standard procedures. This is briefly mentioned in Technical Note
#35, but it is covered in great detail in the note just preceding it: Apple IIGS

Technical Note #34, Low-Level QuickDraw II Routines.

To print in immediate mode, you install your own set of bottleneck procedures into
the printing GrafPort. When the application draws any object into the printing
GrafPort, QuickDraw calls your bottleneck routines to actually image that object.

Because immediate mode printing responds to object-drawing commands sent by
QuickDraw, immediate mode printing works best for target devices that handle
similar objects. For example, the LaserWriter has built-in PostScript code that can
image objects in much the same way QuickDraw does. The LaserWriter driver
installs bottleneck procedures that convert QuickDraw objects into PostScript objects
and sends them immediately to the LaserWriter, printing the page when the page
is closed with PrClosePage.

Unfortunately, most printers do not handle graphic objects. The graphics
capabilities of most printers are of the “print a dot of this color at this location”
variety. To print images to these devices, a driver has to convert the images into
printer codes that place the dots where they need to go. Doing this properly
requires waiting until all objects are drawn on the page before sending any codes to
the printer. If you try to image and print each QuickDraw object as it’s drawn,
you’ll get the wrong results when the application draws white pixels on top of
previously colored pixels. (You will also have to move the paper backward and
forward enough to inspire demonic possession stories.)

Because of this limitation, many dot-matrix printers ignore graphic objects when
printing in immediate mode, transforming only text drawing into simple ASCII text
printing using the printer’s built-in font. Since this is not what you see on the screen,
immediate mode printing is often referred to as draft mode, even though immediate
mode printing can be of excellent quality on the right target device.

 460

d e v e l o p October 1990

SOME THINGS TO KNOW ABOUT PRINT RECORD FIELDS

Volume 1 of the Apple IIGS Toolbox Reference does a
good job explaining most of the fields in the print
record, but it contains some incomplete information.
One such omission occurs in the Reference’s description
of the iDev field. The iDev field identifies the kind of
printer. The Reference lists two values for this
field—ImageWriter and LaserWriter—which leads to
problem code in applications such as the following:

if PrintRecord.iDev = 1 then
{It's an ImageWriter}

else
{It's a LaserWriter}

endif

In reality, there are at least six defined values for iDev:

$0001 ImageWriter
$0002 ImageWriter LQ
$0003 LaserWriter
$0004 Epson
$8001 Generic dot matrix printer
$8003 Generic laser printer

The $8001 and $8003 iDev values are provided for
generic compatibility. If a driver has an iDev of $8001,
it interprets the style subrecord of the printer record as is
documented for the ImageWriter driver. If the iDev is

$8003, it interprets the style subrecord as it would for
the LaserWriter driver.

Unfortunately, because this is the only device
identification field present in the print record, there is no
way to uniquely identify printers assigned to these
values. For instance, suppose you have two printers
with printer drivers in your system—the GlopJet and the
ImageStamper. Both drivers use an iDev of $8001.
Applications are encouraged to save print records with
documents so that the user’s print settings are
maintained across sessions. If you open a document
with a print record created by the GlopJet driver but
your currently selected printer is the ImageStamper, the
ImageStamper driver will be passed the print record and
asked to validate it. The ImageStamper driver looks at
iDev and sees $8001, and it has no other way to know
that this print record is not an ImageStamper record.

Drivers with unique iDev values don’t have this
problem. For example, the LaserWriter driver knows that
if the iDev value isn’t $0003, it’s not a LaserWriter
print record and should be filled with default values.

Apple’s Developer Technical Support group will assign
new iDev values to printer driver authors if neither the
$8001 or $8003 interpretation of the style subrecord is
suitable, but you must be aware that some applications

Deferred printing. Since immediate mode printing is not suitable for graphics on
many printers, most printing jobs will be deferred. In deferred or spool mode,
everything that is drawn is captured to be printed later. Text is imaged together
with graphics to return as accurate a reproduction of the document as possible.

How the printer driver captures the image is entirely discretionary. If you like, you
can attach a pixel map large enough for the entire page to the printing GrafPort
and let the application draw the page into the pixel map. This method would give
you a premade pixel map, waiting for you to transform it into printer codes and send
it out. At screen resolution, however, a full U.S. letter-sized page would take just

 461

DRIVING TO PRINT: AN APPLE IIGS PRINTER DRIVER October 1990

will not work with other formats of style subrecords. It’s
better for compatibility purposes to support one of the
existing style subrecord formats if possible.

For instance, some applications don’t like to let the user
choose items that don’t work very well. If an application
doesn’t print very well without color, it might do
something unfortunate like set the “color” bit in the
wDev field before starting the printing loop. If the driver
doesn’t support color printing, it will catch this error in
the PrValidate routine and may reinitialize the print
record with default values. If the driver author is lucky,
the application will first check the iDev field to make
sure that the “color” bit is supported in the style
subrecord. If you’re really lucky, the application will call
PrGetPrinterSpecs and keep out of the print
record altogether. Many applications just blast the bit.

WHAT DRIVERS AND APPLICATIONS
SHOULD DO
To keep your handling of the print record kosher, there
are a few things you should keep in mind.

First of all, since print records are associated with
printing jobs, it would be nice to keep all parameters that
go with a printing job in the print record. But since a field
is either defined or reserved, it’s not clear where you can
put a new parameter. If your printer has 14 different
internal fonts and you want the user to choose one of
them, where can you put that information?

Apple has set aside the 38 bytes in the print record
labeled printX for printer driver use. Nonstandard
parameters and values can go there. This area is left
to the discretion of the printer driver. It will always
remain a miscellaneous storage area, no matter what
Apple does with it in drivers it develops, and its
interpretation will not depend on the iDev field. In
other words, if the LaserWriter driver stores a parameter
there, drivers with $8003 iDev values are not
expected to do the same.

Applications absolutely must not tamper with the
printX subrecord nor try to interpret any items in
there. Applications have most of memory for
parameters, while printer drivers only get these 38 bytes
in the print record. Applications, keep out.

It’s also important that neither drivers nor applications
alter the print record fields marked reserved for Apple—
in particular the prInfoPT and prXInfo
subrecords. Older versions of Apple’s drivers stored a
private copy of the prInfo subrecord in prInfoPT
(PT stands for “private”). Discovering this fact, some
applications used this copy instead of the original. Since
this feature was never documented, however, relying on
it is likely to make your application not work with other
drivers. As for the prXInfo subrecord, it may be
defined in the future for the storage of parameters
between spooling and printing (between PrCloseDoc
and PrPicFile).

over 56K of contiguous memory. That’s per page—a 20-page document would require
20 such blocks.

For this reason, most printer drivers (including Picter and Apple’s drivers) use
QuickDraw pictures to capture the images. Pictures are an encoded history of the
QuickDraw calls used to create an image. When you play back a picture using the
QuickDraw auxiliary call DrawPicture, QuickDraw does all the drawing
necessary to recreate the image. Instead of taking 32K to store a screen-sized
rectangle filled with a given pattern, a picture stores the same information in the
few bytes that encode the pattern, the rectangle size, and the “paint” command.

 462

d e v e l o p October 1990

Because pictures contain recorded QuickDraw II objects, they can be redrawn at
different resolutions or in different proportions with excellent results. If you call
DrawPicture with a destination rectangle of a different size than the one the
picture was recorded with, QuickDraw’s picture algorithms are capable of
changing the sizes and proportions of every object in a picture to match the changed
destination rectangle.

This intelligent scaling behavior makes pictures perfect for the needs of most
printer drivers. Since most printers are capable of screen resolution that is better
than that of the Apple IIGS (80 pixels per inch horizontally by 36 pixels per inch in
640 mode), some kind of scaling will be necessary to create screen resolution images
at the proper size regardless of resolution changes. For example, to achieve an
image of the proper size when your target device supports 160 dpi horizontally by
72 dpi vertically, you’ll need two printer pixels in each direction to represent one
screen pixel.

Simply magnifying each screen pixel to be the appropriate number of printer pixels
gives the image the right size, but the resolution is still the same as the screen’s. To
get better resolution, QuickDraw’s picture algorithms are a good choice. For our
sample target device that supports 160 dpi horizontally by 72 dpi vertically, your
driver could call DrawPicture to image the stored page-picture in a rectangle
twice as large as was used to record the picture. QuickDraw will then draw all the
objects in the picture at twice their original resolution. Your driver can translate
the resulting pixel map into printer codes at one screen pixel per printer pixel. The
end result is a printed image with the same physical size as the original screen
image but with a resolution twice as great.

Take a look at Figure 3. In Figure 3a, we show a circle and the letter A drawn at
screen resolution. In Figure 3b, the same image is magnified, pixel by pixel, to about
twice its normal size. It doesn’t look any better, just bigger. However, if we have
these objects in a picture, we can use DrawPicture to draw them at twice their
normal size. The picture algorithm redraws the objects with increased resolution
instead of simply magnifying existing pixels. The increased resolution allows
QuickDraw to draw a much smoother circle (since the screen has the same
resolution, but the circle has twice the radius) and a smoother-looking A since we
use a 16 point font instead of an 8 point font. (Rather than drawing the font recorded
in the picture and scaling the image, QuickDraw calls the Font Manager to get the
best available font for the destination. Requesting a larger font size often returns a
custom-designed font strike from disk, making a marked improvement in the
appearance of text at higher resolutions.) The results of the picture scaling are
shown in Figure 3c. Figure 3d shows Figure 3c scaled down to actual size.

 463

DRIVING TO PRINT: AN APPLE IIGS PRINTER DRIVER October 1990

Figure 3
A Demonstration of Picture Scaling vs. Magnification

Of course, if you want to draw objects at three times their normal size, you probably
won’t be able to draw an entire page at once. You can, however, draw them into a
printing GrafPort with the clipping region set to a small rectangle of the
picture. If you divide the page into ten such “bands,” you only need one-tenth the
memory the entire page would need. You just have to call DrawPicture ten times
to complete printing for the page.

This technique is referred to as banding and is done by most printer drivers in
deferred mode to work even in low-memory conditions. To image a full 8 1/2 by
11-inch page at three times resolution would require 506K per page (56K at normal
resolution magnified by three horizontally and by three vertically), but dividing it
into 20 bands requires only 25K per band—and the band buffer is reusable. Dividing
it into 51 bands requires under 10K per band. Since applications are instructed not to
call PrPicFile if a 10K buffer isn’t available (see Volume 1 of the Apple IIGS

Toolbox Reference, pages 15–30), you can always use a 10K buffer and you may be
able to use a much larger one if memory is available. You’ll have to divide it into
102 bands if vertical condensed mode is selected, since that doubles the vertical
resolution.

The drawback to this method is that it’s slow. QuickDraw can’t know before
interpreting the stored picture operations which ones will be clipped out and which
will actually be drawn, so it spends a lot of time drawing the 50/51sts of the page
that don’t show up each time. If there are a lot of fonts on the page, the Font
Manager spends time installing versions of them three times larger than the
original, which in turn takes a lot of memory and makes things even slower.
Generally, the more memory you can use for the band buffer, the faster printing will
go. The fastest method would be to get the entire page imaged at once, but that’s not
always feasible.

 464

d e v e l o p October 1990

WHAT YOU’LL NEED
The printer driver author has to create a set of routines that can accurately
reproduce a graphic image on the printer or other reproduction device—FAX
modem, graphic language device, and so on. Besides this article, you’ll need
information from a range of sources to write a good driver.

• Apple IIGS Technical Notes #35 and #36. Technical Note #35
is the only document that completely and authoritatively defines
what each printer driver routine must do, as well as the structure
for printer drivers. There have been mistakes in this note in the
past. Since few developers have written printer drivers, we
haven’t gotten much feedback. This article was written using the
September 1990 revision of the note, as well as corrections to the
March 1990 version.
Technical Note #36, Port Driver Specifications, is the complete
specification for port drivers, listing the parameters for each
call. The calls are made through the Tool Locator.

• Apple IIGS Toolbox Reference series, published by Addison-
Wesley. The Print Manager and its data structures are defined
in Volume 1; necessary QuickDraw routines are in Volume 2; and
corrections and new calls to all the tools are in Volume 3. The
beta drafts of any of these books are not good enough.

• Knowledge of your target printing device. If you can write a
routine (in a desk accessory, perhaps) that can print a pixel map
(like the entire screen), you have a good start for some of the
imaging routines you’ll need in your driver.

• Familiarity with QuickDraw. Since printing occurs when the
application draws into a printing GrafPort, you have to be
able to manipulate GrafPorts and their clipping components.
To print in deferred mode, you have to be able to store images
and reproduce parts of them for translation to printer codes.

• Knowledge of the Print Manager architecture. In addition to
the 17 calls your driver will handle, you should be familiar with
the other Print Manager and port driver calls so that you can use
them to your advantage.

THE PHYSICAL STRUCTURE
There is a standard physical structure for printer drivers to follow so that the Print
Manager can perform its dispatching properly.

 465

DRIVING TO PRINT: AN APPLE IIGS PRINTER DRIVER October 1990

COMPATIBILITY WITH APPLE’S DRIVERS

Apple’s printer drivers have dominated the print driver
development environment. This dominance has
discouraged the creation of third-party drivers, which
has in turn made a bad situation worse. Since there are
few drivers other than Apple’s to test with, applications
tend to do unsavory things with drivers because they’re
expedient. Since applications do unsavory things,
developers who want their drivers to be backward-
compatible with applications tend to disassemble the
Apple drivers to figure out what to do. Since everyone
does unsavory things, the system winds up in an
unusable and unmaintainable state because no one
wants to rock the boat.

THE IMAGEWRITER DRIVER
Of all Apple’s drivers, the old (pre-5.0.3) ImageWriter
driver has caused the most headaches. The main
problem with this driver is that it’s a hybrid. Long ago,
the structure of the Print Manager was quite different
from what it is today. The Print Manager had “high-level
drivers” and “low-level drivers.” High-level drivers would
communicate with the application, and low-level drivers
would do the actual imaging or communication tasks.
You will still see evidence of these things in some
printing discussions. The giveaway is usually the
abbreviations HLD for high-level driver and LLD for low-
level driver.

When the Print Manager architecture was changed to its
current design, the ImageWriter driver was converted—
not rewritten as it should have been. The conversion
created a lot of source files and put nearly every routine
in a place where you wouldn’t expect to find it. As new
features were added, the entire thing became more and
more unwieldy, until at last Ben Koning broke from the
beast by creating a new, vastly improved ImageWriter
driver for System Software 5.0.3 (with some imaging
routines by Apple IIGS graphics wizard Jason Harper).

The Print Manager has a few features in it for the
questionable use of the old ImageWriter driver. These

have never been documented and now that the old
ImageWriter driver is going away, these features may
go away as well. If you have ever disassembled the
driver (not kosher according to the license agreement
anyway), you may have discovered some of these less-
than-desirable programming practices:

• The ImageWriter driver used the value in the
accumulator at entry time as a direct-page
register.

• The ImageWriter driver tended to print correctly
when print record fields were set to totally invalid
parameters.

• Sometimes the ImageWriter driver played loose
with the parameters. It was known to work
acceptably when printGrafPortPtrs were
passed where print record handles were
expected.

WALKING A THIN LINE
All of this leads to the question of how you will write
your driver: will you create your driver strictly by the
book, or will you program defensively in an attempt to
work with those who broke the rules? If you use only
the defined print record fields and stay clear of
undocumented structures, your driver will work fine
with future versions of the Print Manager and most
applications. On the other hand, if you don’t support
the unorthodox use of the print record, your driver is
less likely to work with some of the bigger and more
widely used Apple IIGS applications.

The scariest thing about continuing to support these
structures is that it gives application authors no reason
to stop using them. For practical reasons, it may be
impossible to avoid using some of these undocumented
structures. Keep in mind, however, that the less of this
you can get away with, the better off everyone will be in
the long run.

 466

d e v e l o p October 1990

A printer driver begins with two zero bytes and a count of the number of routines the
driver supports. The Print Manager will transform the call number into a
precomputed index for a four-byte per entry jump table, and put this index in the X
register. Thus an indirect indexed jump, jmp(driverTable,X), will call the
routine.

Note that each jump table entry is four bytes long, but a jmp(driverTable,X)
instruction will only use the low word of each entry. This requires all your entry
points to be in the same segment. To get around this, you can have a short entry
segment that JSLs to routines in other segments. If you like, you can rewrite the
entry code to use all four bytes of the address instead of the low two. Just remember
to preserve the X register, as it’s your only indication of which routine to call.

The entry point for the driver is at the fifth byte (just after the function count).
Note that before September 1990, Technical Note #35 always had the table entries
for PrPixelMap and PrDriverVer backward, and that
PrGetPgOrientation was misspelled in the note. Also, the count of routines
should be 17. A correct driver header looks like this:

DriverStart START

dc i2'0' ; identifying word
dc i2'(ListEnd-PrDriverList)/4' ; count

EntryPoint jmp (PrDriverList,x)

PrDriverList dc a4'PrDefault'
dc a4'PrValidate'
dc a4'PrStlDialog'
dc a4'PrJobDialog'
dc a4'PrDriverVer'
dc a4'PrOpenDoc'
dc a4'PrCloseDoc'
dc a4'PrOpenPage'
dc a4'PrClosePage'
dc a4'PrPicFile'
dc a4'InvalidRoutine'
dc a4'PrError'
dc a4'PrSetError'
dc a4'GetDeviceName'
dc a4'PrPixelMap'
dc a4'PrGetPrinterSpecs'
dc a4'PrGetPgOrientation'

ListEnd anop

 467

DRIVING TO PRINT: AN APPLE IIGS PRINTER DRIVER October 1990

On entry to each routine, the stack looks just as it would for a Toolbox call. There
are two RTL addresses, then any parameters, and finally any result spaces. The
Print Manager dispatches to printer driver routines without adding any
information to the stack, so you can imagine that the Tool Locator dispatches
directly to your driver routine when a printer driver call is made.

Your entry code must be reentrant. Because the Print Manager will call some of your
routines when you make port driver calls (like GetDeviceName when a port
driver is first loaded), be sure you have no reentrancy problems.

The physical structure of printer drivers is the only constant thing about them. You
can implement the rest of the driver in any way you choose, using resources,
dynamic segments, and even multiple files. When you consider using other
components like these, however, keep in mind that loading any of them may
require users to insert the boot disk. Even if you make your resources have the
preload attribute, most resources used by the system, like window and control
templates, are released when the Toolbox is done with them. Marking them
preload means the user won’t have to insert the disk to use those resources the
first time, but once they’re released they’re very likely to go away. You can get
around this by loading the resources yourself and passing them to the Toolbox as
handles instead of as resources—in which case preload resources work very well
indeed.

THE LOGICAL STRUCTURE
In addition to the physical structure, there is a standard logical structure that
printer drivers should follow so that printing actions are consistent from printer to
printer. The driver consists of three functional parts: calls that do the printing
loop, routines to maintain and access the print record, and other stuff—the few
routines that don’t fit either of the other categories.

PRINT LOOP ROUTINES
The printing routines will be called by the application to make printing happen.
The application just opens a document, opens some pages, draws, closes the pages
and the document, and when PrPicFile is called, printing just kind of happens.
The printer driver is what makes it happen.

Although the printing routines are described fairly well in Technical Note #35, the
following summary highlights the most important points about using these
routines.

PrOpenDoc. PrOpenDoc is the beginning of the regular print loop. This is where
you create (if necessary) and initialize the printing GrafPort for the
application to draw pages into. You should also make sure to validate the print
record, since it contains the settings you must use to image this document. If you want
a “Preparing data” dialog box, this is the place to display it. Before you exit
PrOpenDoc, you should have allocated most of the resources you’ll need to print
(memory, disk space, and so on).

 468

d e v e l o p October 1990

PrOpenPage. PrOpenPage is the application’s way of telling you “I’m going to
draw into this Grafport to image the next page.” You get to initialize the
Grafport to be ready for printing, including setting the clipping regions to the size
of the page rectangle (or the rectangle passed to PrOpenDoc, if there is one), and
to make the printing Grafport the current one, saving the old port. If you’re
printing in immediate mode, you should install your bottleneck procedures in the
Grafport here with the QuickDraw II call SetGrafProcs.

PrClosePage. PrClosePage undoes whatever it was that PrOpenPage did.
Close the picture for this page here (or eject the page if you are printing in
immediate mode). Be sure to restore the old Grafport (from PrOpenPage) before
returning.

PrCloseDoc. PrCloseDoc similarly undoes what PrOpenDoc did. If
PrOpenDoc allocated a new printing Grafport, PrCloseDoc must dispose of it
(after making sure it’s closed so you don’t orphan any region handles). You should
close the printing Grafport with the QuickDraw II call ClosePort. (It’s not a
port driver call, no matter what Note #35 says). You should also erase the dialog
box you drew in PrOpenDoc, presuming you drew one.

PrPicFile. PrPicFile does nothing if you’re in immediate mode, but it does
nearly everything if you’re in deferred mode. Given the model of recording pages in
pictures, the instructions described in Note #35 are pretty good—they lead you
through the process one step at a time.

There’s one very important part of most printer drivers that’s not covered by the
note—imaging. The process of turning pixel images into printer codes is so dependent
on the target device that neither this article nor the note can tell you
how to do it. However, there are a few strategies that apply to all printer drivers:

• Doing fewer DrawPicture calls makes printing faster. The best
way to do this is to use as large a band buffer as you can.
Remember that MaxBlock doesn’t reveal how much memory
could be available after purging and out-of-memory routines, so
just ask the Memory Manager for what you want, and ask for
something smaller if you don’t get it. Also remember to leave at
least 16K available for the Toolbox and GS/OS : don’t use all the
available memory. See the Apple II Technical Notes for more
memory management strategies.

• The conversion of pixels to printer codes will occupy most of your
driver’s executing time, so make it as efficient as possible. You
should handle large areas of white space quickly by optimizing
your conversion routines to scan for similarly colored areas as fast
as possible.

 469

DRIVING TO PRINT: AN APPLE IIGS PRINTER DRIVER October 1990

• If your target device supports any kind of compaction or data
compression, use it. Examples of compression include printer
commands to “print this pattern 400 times” instead of sending
“print this pattern” 400 times. Tests during Apple’s development
of IIGS printer drivers have shown that even on a full page of text,
the compression rate is always more than 50 percent.

• If you have any control over the port drivers, try to make them as
fast as possible. Send data through the port driver in large chunks
to let the port driver work as fast as possible. For a 300 dpi target
device, there may be as much as one megabyte of data necessary to
print all the pixels on an 8 1/2 by 11-inch page. Compaction will
help here as well.

The status record is a method the application has of communicating with your
printer driver, since printing can take such a long time. The job subrecord contains a
pointer to a procedure to be called during idle time—that is, the time between
pages, bands, or copies. If you’re passed nil for the StatusRecPtr, it’s
probably easier for you to allocate a status record yourself and update it as if it
were provided by the application.

Be sure to dispose of everything you’ve allocated during printing before leaving
PrPicFile. Although the application should make all the print loop calls in
order, if an error occurs inside one of the calls (or if the application calls
PrSetError), the rest of the print loop must handle it gracefully and still
deallocate all allocated resources at the end of PrPicFile.

PrPixelMap. PrPixelMap takes an arbitrary pixel map and prints it. You’re
passed a QuickDraw locInfo structure (the pixel map defining portion of a
Grafport), a rectangle enclosing the portion of the Grafport to print, and a flag
indicating whether to use color. PrPixelMap is a quick and dirty way to print
graphics without going through the print loop.

Your imaging code should have a routine to print an arbitrary pixel map anyway,
and PrPixelMap can just call it. Alternatively, as suggested by Technical Note
#35, you can allocate a new print record, make a picture that contains just the pixel
map, and call your normal deferred printing routines.

PRINT RECORD METRICS ROUTINES
The print record metrics routines set and get values in the print record. The print
record is the only way your driver can communicate with the application about
printing parameters, making it vitally important that the print record be correct.
Only you know if the values in the print record make sense, so you get to check it for
consistency. You also get to present the most logical option choices to the user, since
no one else knows what they are. In addition, there’s a new call for System
Software 5.0 and later that lets you return the page orientation so that
applications don’t have to go reading the print record.

 470

d e v e l o p October 1990

PrDefault. This routine copies the default print record into the supplied handle.
The default print record’s contents will vary depending on the current screen
resolution. Be sure not to set the handle size on this handle. Some applications keep
extra stuff beyond the end of the record. This isn’t kosher, but leaving the print
record handle size unchanged is an easy work-around to a potential problem.

PrValidate. PrValidate checks a supplied print record for consistency. If any of
the values are inconsistent or invalid, you should correct them. If the supplied print
record isn’t a print record from your driver, you should fill it with the default
values.

PrStlDialog. PrStlDialog is responsible for the dialog box the user sees after
choosing the Page Setup command in the File menu. You should initialize the
controls in the dialog box based on the print record and save all the changes from
the dialog box in the print record (if the OK button was pressed, of course).

PrJobDialog. PrJobDialog is responsible for the Print dialog box. As with the
Page Setup dialog box, no one but your driver knows the best options and their
default choices for your printer. PrJobDialog should initialize the iCopies
field in the job subrecord to 1, iFstPage (the first page to be printed) to 1, and
iLstPage (the last page to be printed) to the largest value your driver allows. By
setting these values, you ensure that one copy of each page is printed if the user
does not change these items. That’s how the human interface should work.

PrGetPgOrientation. PrGetPgOrientation returns a 0 for portrait (small side
on top) mode and a 1 for landscape (sideways) mode. No one cares where you store
this in your print record, just return it here. For print records with iDev values
$8001 and $8003, you must store this information in the wDev field.

MISCELLANEOUS DRIVER SUPPORT
There are a few routines involving port driver communication, printer
identification, and internal functions that you get to provide as well.

PrError. You maintain an internal error code for your printer driver. This is so that
if PrOpenDoc returns an error, you can look at the error code and do nothing for
the rest of the print loop. PrError simply returns your internal error status.

PrSetError. PrSetError sets your internal error status to the supplied value.
This call allows an application to clear an error state if it was able to resolve a
specific problem.

 471

DRIVING TO PRINT: AN APPLE IIGS PRINTER DRIVER October 1990

GetDeviceName. GetDeviceName is also known as PrChanged—it’s called by the
Print Manager when your driver is first loaded. This routine takes the AppleTalk
Name Binding Protocol or NBP-format name of your target device and passes it to
the port driver routine PrDevPrChanged. This allows the network port driver to
communicate with your target device over the network. If you don’t have a
network-compatible target device, pass nil to PrDevPrChanged. An example of an
NBP-type name can be found in Picter.

PrDriverVer. PrDriverVer returns your driver’s version number, so that
applications can scope out your driver for features. If you document features that are
available in a given version of your driver, this is how other code can find out if
that version is here or not.

PrGetPrinterSpecs. PrGetPrinterSpecs tells the caller things about your driver
without forcing any monkeying around with the print record. Your driver gets to
return its iDev value identifying the kind of printer or style subrecord and the
characteristics of the target device. Currently, the only defined characteristic is
whether or not you’re color capable. This stuff is defined for all existing iDev
drivers, but it’s good to keep people out of the print record anyway.

OUR SAMPLE DRIVER, PICTER
Picter is a very simple driver. It creates QuickDraw pictures of all the pages and
saves them as picture files in the *:System:Drivers directory. (Picture files have
the file type $C1, auxiliary type $0001.) The first file is named screen.a, and the
last letter is incremented for each additional file until a pathname syntax error
occurs.

Picter does not support many print record options. It prints only in color, portrait
mode, full size. Picter has an iDev of $8001, so it interprets the style subrecord as
the ImageWriter driver does. If someone sets a bit in the print record to an invalid
value, Picter’s PrValidate routine corrects it.

Picter is intended to be a working sample that shows the structure and content of a
printer driver. It is a learning tool, not a release-quality utility. No printer driver
with this many interface holes should see the light of day as a finished software
product.

Picter is written in APW/ORCA assembly and uses the Make utility by 360
Microsystems for source code file management. If you don’t have the Make utility,
you can look in the make file to see the commands to build each of the components
and the link order.

 472

d e v e l o p October 1990

ABOUT BEN’S DIALOG BOX ROUTINES

Included with our sample printer driver are some dialog
box routines from Ben Koning, the guy behind the new
ImageWriter and ImageWriter LQ drivers. Ben has
spent a lot of time creating drivers that are more
powerful, faster, and easier to maintain so we can add
more features in the future. Our thanks to Ben for
sharing his routines, which have been slightly modified
for use in this driver. If you ever see Ben around, buy
him something really expensive—like a house, or a few
cars, or a hot dog at the average trade show.

By using these routines, you can easily make your style,
job, and status dialog boxes appear like those in Apple’s
printer drivers. Users will be less confused, everything
will seem to fit together better, and the world will be a
happier place.

There are two types of dialog boxes in these
routines—status dialog boxes and interactive dialog
boxes. The status routines make it very easy to keep
the user informed during the printing process. There are
three status dialog routines—one to display the empty
dialog box, one to show a message in this box, and
one to close the box:

• StartStatusMessage draws a small, blank
dialog box centered on the screen, regardless of
the mode (320 or 640).

• StatusMessage takes a pointer to a Pascal
string in a direct-page location and displays that
string centered in the status dialog box.

• FinishStatusMessage closes the dialog
box and removes it from the screen.

Call StartStatusMessage at the beginning
of PrPicFile, and every time you do
something different, call StatusMessage with
a descriptive string. Several descriptive strings
are included as examples of what the new
ImageWriter driver does. Call
FinishStatusMessage before returning to
the caller.

There are also two other specific dialog routines that
our sample driver does not use.
StatusMesgFeedPrompt fills the status dialog
box with the string “Insert sheet for page: XXXXX”,
where you pass the page number necessary as an
integer on direct page. NotCorrectDevDialog
displays a small box with a Cancel button that
indicates that this is not your target device.

StatusMesgFeedPrompt must be called
between StartStatusMessage and
FinishStatusMessage, but
NotCorrectDevDialog can be called at
any time.

The style and job dialog boxes are largely defined by
the controls in them. ConductStyleDialog and
ConductJobDialog each have predefined
templates linked in as data. This way, you can avoid
the disk-insertion problems that resources and
dynamic segments entail. The item IDs are equated to
match values in the print record. Picter shows how
you can write the standard metrics routines to use
Ben’s dialog box routines.

THE WORLD ROUTINES
To ensure that our driver has a consistent environment, Picter includes a few
environmental routines around every call and some at the main entry point.

 473

DRIVING TO PRINT: AN APPLE IIGS PRINTER DRIVER October 1990

Our entry point is the short, indirect jump, as we saw when we looked at the
driver’s physical structure earlier. This is acceptable because all of our entry points
are in the same segment. Before making the jump, we call the environmental routine
MakeOurWorld.

Because there are no printer driver startup and shutdown calls, some people have
wondered how printer drivers can obtain direct-page space and release it.
MakeOurWorld is a way to do this. It relies on the fact that when printer drivers
are unloaded, they are not marked as restartable. Every time the driver is
reloaded, we get a fresh copy of the driver from disk. So we link in a storage word
of zeros, allocate our direct-page space, and store the address of this space in the
zero word. Then on every entry, we just check that word. If it’s zero, we were just
loaded from disk, so we go get the direct-page space again. If the word isn’t zero,
it’s our direct-page space: transferring it to the direct-page register after saving the
current value sets our direct page.

We give the direct-page memory the same user ID as the driver. Thus when our
driver is unloaded, the direct-page memory is likewise released.

If you don’t need static direct-page space, by all means don’t allocate any. If you use
the application’s existing stack frame instead of allocating the new direct-page
space, you can conserve bank zero space. However, since allocating direct-page
space is a little trickier, a solution is included in MakeOurWorld.

MakeOurWorld returns with the accumulator zero and the carry clear if
everything was right. If the accumulator is zero and the carry is set, we were just
loaded and our direct page is not initialized. If the accumulator is nonzero and the
carry is set, there was a real error.

Immediately in every subroutine, Picter puts the number of bytes of input
parameters in the Y register and calls CheckTheWorld. If there was a real error,
CheckTheWorld calls EndOurWorld to get out of the printer driver with the
error code. If there was no error, CheckTheWorld quickly returns to the caller.

EndOurWorld removes the saved values of the direct-page and data bank
registers we pushed on the stack in MakeOurWorld. On entry, X contains an error
code or the value $FFFF to indicate the internal error code should not be changed.
The Y register contains the number of bytes of input parameters to pull. The
routine that removes the input parameters is quite generic and is very similar to
those used in the Toolbox’s common exit routines.

PICTER’S METRICS ROUTINES
Because Picter is limited in its scope and abilities, its actual printer driver calls
function slightly differently than they would in a full-blown printer driver. Here’s
a description of how Picter implements the standard print record metrics routines.

 474

d e v e l o p October 1990

PrDefault. PrDefault does nothing more than copy a linked-in default print record
to the handle passed as input. It then fixes the rPage and rPaper rectangles to
match the current screen resolution.

PrValidate. PrValidate examines the print record values Picter knows about to
make sure they match the values we support. If they don’t, they are modified to be
supportable and consistent.

PrStlDialog. PrStlDialog calls the ConductStyleDialog routine to do the actual
Page Setup dialog box. The dialog routines call several very small subroutines in
Picter to read the print record values. ConductStyleDialog never accesses the print
record itself. This is an example of a method of print record management that I
prefer.

PrJobDialog. PrJobDialog is very much like PrStlDialog in that it calls one of the
dialog routines to conduct the dialog, and those routines call us for information on
the print record.

PrGetPgOrientation. PrGetPgOrientation returns the value for page orientation
out of the supplied print record. It reads the values directly, although it could call
a metrics subroutine just as easily.

PICTER’S PRINT LOOP ROUTINES
These routines are Picter’s implementation of the routines that do the actual
printing.

PrOpenDoc. The actual print loop itself is also slightly unorthodox, due to the
nature of the target device (QuickDraw picture files).

PrOpenDoc sets up a printing Grafport, validates the print record, and displays a
small status message dialog box. It also initializes other printing parameters, like
the internal error and page number variables.

PrOpenDoc stores variables on direct page, making it very bad if the driver were to
become unloaded before PrPicFile. Since MakeOurWorld lets us check for this
easily, we return a new error if it happens. The error is defined as $13FF and the
equate is PrBozo. Any meaning this equate has is the interpretation of the reader.

PrOpenPage. PrOpenPage checks to make sure our direct page is still around and
returns PrBozo if not. If all is well, we increment the page number and check the job
subrecord to make sure this page is one we’re supposed to be printing. If it is, we
initialize the printing Grafport to contain rectangular clipping and visible regions
the size of the rPage rectangle (or of the supplied frame rectangle, if any).

 475

DRIVING TO PRINT: AN APPLE IIGS PRINTER DRIVER October 1990

We update the status dialog box and call our subroutine OpenPICTFile, which
creates the new picture file, opens it, and opens a QuickDraw picture for recording
the page images.

PrClosePage. PrClosePage calls ClosePICTFile, which closes the picture,
writes it to disk, and kills the picture. We then close the printing Grafport,
update the status dialog box, and return. (None of this happens if the driver was
just loaded. The caller gets PrBozo instead.)

PrCloseDoc. PrCloseDoc disposes of the memory for the printing Grafport if
it was allocated by PrOpenDoc. We restore the old Grafport, close the status
dialog box, and exit.

PrPicFile. PrPicFile doesn’t really do anything in Picter. We do all our actual
“printing” in the page routines, but our job record indicates that we are in deferred
mode for compatibility with applications that don’t think they print in immediate
mode. Nevertheless, Picter shows how to do several of the more common
PrPicFile actions, like setting up a status record, allocating and initializing a
new Grafport for imaging the pages, calling the idle procedure in the job
subrecord, and displaying the status dialog box.

PICTER’S MISCELLANEOUS ROUTINES
These routines are Picter’s implementation of the routines that make your driver
complete. They allow your driver to respond to requests for error, network, and
version information.

PrReserved. PrReserved is the name we picked for what Note #35 calls
InvalidRoutine. It is, in fact, the remnants of an old Print Manager architecture
call named PrControl. This had varying parameters and was generally not Your
Friend. To be safe here, we return error $0002, which as a Tool Locator error
indicates to the caller that he should pull his parameters back off the stack.

PrError and PrSetError. PrError returns the value in our internal direct-page
error location. PrSetError takes the value and puts it in our error location on
direct page.

GetDeviceName (PrChanged). GetDeviceName really has no meaning for us,
since our target device doesn’t (and can’t) exist on an AppleTalk network, but an
NBP-type string is included anyway to demonstrate the technique. This will cause
the network port driver to report that no devices of our type are available.

PrDriverVer. PrDriverVer returns the version word for our driver. You might
want to stop in the middle of writing your PrPicFile call to write PrError,
PrSetError, and PrDriverVer just to remind yourself that it’s not always that
hard.

 476
For More Information
Apple IIGS Toolbox Reference, Volumes 1–3
Apple IIGS Technical Note #34, Low-Level
QuickDraw II Routines
Apple IIGS Technical Note #35, Printer Driver
Specifications
Apple IIGS Technical Note #36, Port Driver
Specifications

Apple IIGS Technical Note #51, How to Avoid
Running Out of Memory
Apple IIGS Technical Note #72, QuickDraw II
Quirks
Apple IIGS Technical Note #93, Compatible
Printing •

d e v e l o p October 1990

PrGetPrinterSpecs. PrGetPrinterSpecs returns our iDev word and the
color capabilities of this printer (picture files are always in color). If you need to
check your target device’s capabilities (for example, an ImageWriter doesn’t
always have a color ribbon in it), this is the place to do it.

WHAT YOU CAN ADD
Picter is intended as a workbook, a shell from which you can learn printer driver
technique. There are many more things you can do with it before starting your own
printer driver. By examining these areas now—before you actually try to
implement them in a driver—you will avoid future frustration.

More picture types. Picter writes only QuickDraw picture files as supplied. You
could add a pop-up “Picture type” menu to the job dialog box and allow the user to
pick any of the popular graphics formats. Apple Preferred is a good choice because
its line-oriented structure makes it a good candidate for banding. Banding will be
necessary unless you have a pixel map large enough to hold the entire image at
once. Other easy additions are packed QuickDraw pictures and 32K screen dumps
(if you can get a 32K block for the pixel map). Remember that screen files aren’t 32K
of pixels—they’re 32,000 bytes of pixels and 768 bytes of scan-line control bytes and
color tables.

More page types. As supplied, Picter only supports two types of page metrics—
screen size and U.S. letter size. Try adding more sizes (legal, label, envelope). The
code to handle different page metrics is directly applicable to any other printer
driver. In fact, you could add line edit controls to let the user type the size of the
page rectangle in inches or centimeters and thus have no limit to the number of
paper sizes you support.

Communicating with the port driver. Picter doesn’t communicate with the port
driver (except in GetDeviceName). Try writing the name of each call to the port
driver as it executes. If you have an ASCII printer connected to the hardware
controlled by the port driver, you should get a hard copy of each call name as it
executes. You could also write debugging information this way, such as parameters
or print record addresses.

More options. You can also add more standard print record options—such as
condensed and landscape modes—to Picter. Supporting landscape mode involves
swapping the horizontal and vertical coordinates of the rPage and rPaper
rectangles as well as the horizontal and vertical printer resolutions—just be sure
your validation routines know how to deal with it! You can make vertical
condensed mode happen by passing a rectangle that is half the correct height of the
framing rectangle for OpenPicture. Other reduction values, both horizontal and
vertical, come by changing the framing rectangle for DrawPicture as well.

 477
Thanks to Our Technical Reviewers
Pete ”Luke“ Alexander, Ben Koning, Suki Lee,
Jim Luther, and Dave Lyons •

DRIVING TO PRINT: AN APPLE IIGS PRINTER DRIVER October 1990

GO FORTH AND IMAGE
Printing doesn’t have to be a big mystery. The task is divided into components so
that no one part of it becomes insurmountable. Turning imaging into printer codes is
the responsibility of the printer driver, talking to the hardware is the
responsibility of the port driver, and the Print Manager holds it all together.
While supporting different printers and interfaces would normally be beyond the
scope of most applications, the Apple IIGS printing architecture makes it easy for
applications. All you need is a printer driver—and now you know how to create
those as well.

A
A0 68
A5 20, 68, 73
A5World 404-405, 407-408
$A89F 9
$AB03 9
abbreviations (C++) 207
abstract base classes 220

defined 409
abstract classes, defined 194
abstraction, defined 179
acceleration, GC QuickDraw and

340-341
access, hardware 72
“Accessing CD-ROM Audio

Tracks From Your
Application” (Mueller)
306-316

add-on cards. See specific
add-on card

address(es)
pass by 133, 154
procedure 149-150

address errors 136
addressing 12
Adobe 452
Advanced Disk Utility (ADU)

289-290
aGDevice 34-36
Alexander, Pete (Luke) 348
aliases. See reference(s)

alignPix 38
“All About the Palette Manager”

(van Brink) 22-27
AllocHeap 121-123, 126
AllowPurgePixels 38
alpha channel 8
Am29000 kernel

described 338
programming 345-346

analysis phase (of object-based
design) 194-202

ANDI 72
AnimateEntry 26
AnimatePalette 26-27
ANSI C 209, 210, 214,

230-232
background reading 227
See also C; C++; MPW C

antialiasing 13, 15
APDA 156, 157
AppleCD SC drive, sound and

306-316
Apple Convolution, described

335
Apple Developer CD Series 289
Apple Developer University 161
AppleDict. See PostScript

dictionaries
APPLE_DRIVER 292
Apple File Exchange 162
APPLE_FREE 292-293, 298
APPLE_HFS 292
AppleLink 158, 160, 242
APPLE_PARTITION_MAP 292
Apple Partners 242
Apple Portrait Display, Macintosh

Display Card 8•24 GC and
333-334

APPLE_PRODOS 292
Apple Real-time Operating

System Environment. See
A/ROSE

APPLE_SCRATCH 292, 295
AppleShare 162

FST 240-241
AppleTalk 162, 230
Apple 13-Inch monitor,

Macintosh Display Card
8•24 GC and 333-334

Apple II Developer Technical
Support 242

“Apple II Development Dynamo,
The” (Soldan) 93-100

Apple Two-Page Display,
Macintosh Display Card
8•24 GC and 333-334

application(s)
cache and 237
compatibility 50-74
integrating classes into

167-170
object-based 178-203
PostScript and 41-47
ProDOS 16 237
resetting cache from 241
See also software or specific

application
application environments,

CD-ROM and 267. See also
CD-ROM

application heap patches 73
APW 235
argument names, function

prototypes and 205
arguments 214-215
argument type, wrong 215-

216A/ROSE (Apple Real-
time Operating System
Environment) 424-445

background 424-425
described 427-429
samples 436-444

d e v e l o p October 1990

This is a cumulative index. All page
numbers for articles in this issue are in
color and all page numbers for articles in
previous issues are in black. The first issue
ran from pages 1-112, the second issue
ran from pages 113-256, the third issue

ran from pages 257-372, and this issue
runs from pages 373-500. For a complete
source code listing, see the Developer
Essentials disc. •

478

INDEX

AROSEFreeMem() 428, 435
AROSEGetMem() 428, 435
_array 97-98arrays, Dynamo

and 97-98
aShape 130, 131, 134, 139
aShape^^ 138
AskICCM() 438-439
assembly language

Dynamo and 93-100
writing device drivers in

376-399
assembly language glue 386-391
assignment operator 222
associated files, High Sierra/ISO

9660 format and 278, 279
audio. See sound
Audio Notes #1: “The Magic Flute”

(CD-ROM) 270
AudioPause 307, 315, 316
AudioPlay 307, 315, 316
AudioScan 307, 315, 316
AudioSearch 307, 315, 316
AudioStatus 306, 311,

313-315
AudioStop 307, 315, 316
AutoFlush 236
AutoRecCallback 329, 330
A/UX 55, 57, 67, 72

compatibility and 74
See also Unix

B
background printing 66
BackPixPat 39
banding, defined 463
Base 406-407
baseAddress 28
base class(es) 207, 225

abstract 220, 409
functional syntax and 217
multiple inheritance and 225
private 220-221
virtual 225

battery RAM parameter. See
BRAM parameter

Baumwell, Mark 75-76
Beard, Patrick 400-401
Bechtel, Brian 272-273
Bechtel, Meg 272
BeginSession 238
behavior, defined 179
Berkowitz, Rob 317
Better Bull's eye 17-18
Bianchi, Curt 129
bit blits 8
bitmaps, from regions/regions

from 8, 19
BitmapToRegion 8

advantages of 19-20
BlockMove 154
blocks

CD-ROM sound and 312
defined 234
Memory Manager and 141
nonrelocatable 141-145, 146,

151-152
relocatable 131-132, 142-146

block transfers, NuBus 335
bn, downloading fonts and

451-453
BoardId 82
board IDs 83
_BoardName 83
board sResources 76-77

defined 76
example 82-84

_BoardType 82-83
Boetcher, Mary (Mouser Woman)

159
Boolean 137
boot descriptor, High Sierra/ISO

9660 format and 276-277
boot records, High Sierra/ISO

9660 format and 274

bottleneck procedures, standard
339-340, 344

boundsRect 33, 35-37
BRAM (battery RAM) parameter

234
“Braving Offscreen Worlds”

(Ortiz) 28-40
browser, difference between editor

and 159
bu, downloading fonts and

451-453
bufSizes 325
BuildISO.c 286
built in types 230
bull’s eye 15
bus errors 136
Button 68
bXtra 358
byte lanes 89-91
ByteLanes 87-88, 91-92
bytes, CD-ROM sound and 312

C
© 205
C 147, 149, 154, 156, 161,

209, 226-228, 231-232.
See also ANSI C; C++;
MPW C

C++ 156-158, 160, 163, 164,
166, 167

background reading 227-228
inheritance and 400-412
Mouser and 159
objects 118-128
polymorphism and 400-412

unofficial style guide 204-
232

writing device drivers in
376-399

See also ANSI C; C; MPW C

INDEX October 1990

479

cache
applications and 237
described 233-234
full 235-236
fundamentals 233-238
how requests are fulfilled

238-242
resetting from application 241
size of 234-235
write-deferral sessions and

238
write-through 234

CACHE_ADD_BLK 238-239
CACHE_FIND_BLK 239
Cache Manager 234, 236-239
cachePriority 237, 239,

240
caching

class one calls and 237
class zero calls and 237
GS/OS and 233-242
Macintosh and 236

calcCntlRgn 56
calcCRgns 55-56
calcThumbRgn 56
callback routines 148-150
calloc 119
calls 237

drawing 339-340
parameter-changing 340-341

candidate classes, generating 184
candidates, choosing classes from

185-187
canonical format for data

files/messages 230
capacity (of CD-ROM) 262
cards. See specific card
CatDisplay 81, 92
Category 80-81
CCR 72

CD driver. See GS/OS SCSI CD
driver

CDEFs, common problems
55-56

cDepthErr 33, 38
CDevs

8•24 GC 346
General 5
Monitor 5, 8
RAM 241

CD Remote classic desk accessory
307

“CD-ROM: The Cutting Edge”
(Johnson) 262-271

CD-ROM (Compact Disc—Read
Only Memory)

capacity of 262
cost of drives 265
durability of 263
economy of 262-263
HyperCard and 270
inability to write 265
interchangeability of 263
mixed-partition 288-298
portability of 263
possibilities of 265-271
pressing 282
sound and 306-316
speed of 263-264
versatility of 263
See also High Sierra format;

ISO 9660 format or specific
CD-ROM

CFront 163, 216
virtual function tables and

405-407
writing device drivers in C++

and 379-380
CGrafPort 29

CGrafPtr 29, 33, 35
char * 229
chars 230
CheckTheWorld 473
chunks 89-91
{CIncludes} files 205
Clark, Richard (Tigger) 140
class(es)

abstract 194
assigning responsibilities to

189-191
base 207, 217, 220-221,

225, 409
C++ and 401
candidate 184
choosing from candidates

185-187
concrete 194
creating 163-166
described 180
files and 205-206
finding 184-188
friend 221
handle-based 408
implementation 221
incomplete 221
integrating into applications

167-170
mix-in 207, 225
pass by 226
recording 187-188 sample

C++ device driver and 380-
383

See also object(s); subclasses or
specific class

classic desk accessories, CD
Remote 307

class ID 130
class libraries, MacApp and 158
class members, static 212
class names 207

d e v e l o p October 1990

480

class one calls, caching and 237
class zero calls, caching and 237
cleanliness, 32-bit 52-57
client(s)

defined 180
exposing implementation to

222
ClientAppli 437
client-server model, described

180
[clipPix] 36
clipPix 38
[clipPix, ditherPix] 37
Clone 131, 136, 226
Close 387, 389
closeRgn 21
‘clut’ displays 23
‘clut’s, new 27
CMAccept 326
CMActivate 324
CMAddSearch 328, 329
CMChoose 320
CMClose 326
CMDispose 326
CMEvent 324
CMGetProcID 319, 325
CMIdle 324, 326
CMListen 326
CMNew 320, 325
cmnu 160
CMOpen 326
cmpCount 10-11
cmpSize 11-12
CMRead 326
CMStatus 326
CMWrite 326
cNoMemErr 39

Coax-Twinax Card, Macintosh
Coprocessor Platform and
424-445

code, self-modifying 68-72
codes, error 232
coercion, type 217-218
collaborations

determining 191-193
identifying 191-193
recording 193
streamlining 197-200

collaborations graph, described
197

collaborative products, CD-ROM
and 267. See also CD-ROM

Color2Index 12, 20
Color2Pixel 12
color(s) 4-21

drawing with 27
hidden 12

color arbitration 23-24
ColorComponent 209-210
color dithering 6
color look-up table displays. See

‘clut’ displays
color look-up tables. See ‘clut’s
Color Manager 12, 22
Color Picker 8
color PostScript printing 8
color printing 158
Color QuickDraw 5, 11-13,

21, 24
checking for 9-10
32-Bit QuickDraw and 6
See also GC QuickDraw;

QuickDraw; 32-Bit
QuickDraw

Color Search Procedures. See
Custom Color Search
Procedures

color sets
requesting 26
selecting 24-25

colorSpec 27
color tables, GC QuickDraw and

340
commands. See specific command
comments 205
Communications folder 318
Communications Resource

Manager 317-319
Communications Toolbox

317-331
Compact Disc—Read Only

Memory. See CD-ROM
compaction, Memory Manager

and 142-143
“Compatibility: Rules of the

Road” (Radcliffe) 50-74
compatibility

A/UX and 74
GC QuickDraw and 341-344
printer drivers and 465
System 7.0 and 50-74

compilation, conditional 209,
210

completion routines 68
compression 8
concrete classes, defined

194conditional compilation
209, 210

condition code register. See CCR
ConductJobDialog 472
ConductStyleDialog 472
configuration ROMs. See

declaration ROMs
Connection Manager 317-331
connection record 320, 321
ConnHandle 328
const 210-212

constants and 209
constant names 207
constants 209

INDEX October 1990

481

constructors 218
exceptions and 232
protected 220
static 213
virtual functions and 223

contract(s)
defined 180
grouping responsibilities into

196
Control 379, 387
_Control 398
control definition functions. See

CDEFs
Control Manager 56
Control Panel 34
conventions

naming 206-208
source file 204-206

Converse, Scott 304, 420
Convolution. See Apple

Convolution
copiedShape 131
Coprocessor Platform. See

Macintosh Coprocessor
Platform

CopyBits 11-13, 15, 19, 28,
36, 359

error codes 21
GC QuickDraw and 340-342

Copy Blocks command (SEDIT)
298

CopyMask 19
copy protection schemes 68, 72
copyright notice 204-205
cost (of CD-ROM drives) 265
CPlusLib.o 392, 393
CRAY 229
CRC 87, 91
CreateAVolume 286
CreateFiles 286

CreatePVD 286
creator, High Sierra/ISO 9660

format and 279-280
CTab2Palette 24
CTabChanged 39-40, 345
cTable 33, 36-37
ctFlags 11, 27. See also

transindex
ctSeed 11
ctSize 11
cType 80-81
currentfont 44
Custom Color Search Procedures

20-21
Cyan 174-175

D
dangling pointers 146-151
Data 87
data files, canonical format for

230
data forks 278-279
data-hiding 218-222
data list entry macro. See

DatLstEntry
data member, static 123
data type, fixed-point 222
DatLstEntry 79-80, 83, 88
DC.L 68
DControl 306, 307, 309-311
DC.W 68
DDM. See driver description map
DeathBuildOff 29, 32
Deatherage, Matt 233, 454
debugging

declaration ROMs 75-92
MacApp and 158

“Debugging Declaration ROMs”
(Baumwell) 75-92

declaration ROMs
debugging 75-92
example 77-88

declarations, inline functions and
214

default arguments 214-215
defensive programming,

compatibility and 51-52
deferred mode (printing mode)

460-463
#define, constants and 209
delete 118, 392, 393
DemoDialogs MAMake 170
DemoDialogs.r 167
DemoDialogs sample application

157, 167-170
“Demystifying the GS/OS Cache”

(Deatherage) 233-242
Derived 406-407
descriptors

boot 276-277
partition 277
primary volume 276,

284-285
secondary volume 276
volume 276-277

desk accessories, classic 307
desktop database, High

Sierra/ISO 9660 format and
280

Desktop file 280
desktop information, High

Sierra/ISO 9660 format and
280-281

desktop pattern 27
updating 8

destructors
exceptions and 232
virtual 223
virtual functions and 223

d e v e l o p October 1990

482

DetachResource 393, 394
develop (CD-ROM version)

268-269
Developer Technical Support. See

Apple II Developer
Technical Support

Developer University. See Apple
Developer University

device drivers 235, 239-240
sample 380-397
writing in C++ 376-399
See also printer drivers or specific

device driver
Device Manager 234, 237,

378-379, 387, 397, 398
dialog, Save As 157
dialog boxes, print 158
dialog box routines, sample 472
DialogView 168
dictionaries. See PostScript

dictionaries
DInfo 280, 307-308
direct hardware access,

compatibility and 72
directories, High Sierra/ISO 9660

format and 277-278
directory records

High Sierra/ISO 9660 format
and 277

ISO 9660 Floppy Builder and
285-286

direct page, GS/OS 238-239
direct pixMap 10-11
directType 13
Disc Called Wanda, A 293
discrete resolution, defined 352
disk(s)

GSBug 241
hard 288-298
RAM 233

disk transfer 162
Display Card 8•24 GC. See

Macintosh Display Card
8•24 GC

displays, Macintosh Display Card
8•24 GC and 333-334

DisposCTable 27
DisposeGWorld 38
DisposeHeap 121-123,

127-128
DisposeScreenBuffer 39
DisposHandle 119
DisposPtr 120, 326
dithering 6, 12, 15
ditherPix 38
DoEvent 323
DoGraphGetBar 165
DoGraphGetYMax 165
DoGraphInit 166
DoMenuCommand 160
DOS. See MS-DOS
DoSetupMenus 160
double indirection 131
doubles 229
Download, A/ROSE and 436
Download application (ndld),

A/ROSE and 436
DraftBits 348, 349,

359-361, 362
draft mode 359-361
draft mode. See immediate mode
DragGrayRegion 19
Draw 165, 166
DrawChar 42-43
drawing calls, GC QuickDraw and

339-340
DrawString 42-43, 66

DRead 237
DrHwWidget 81
driver description map (DDM)

291
DriverGlue.a 386, 387-389
Driver_Read 239
drivers. See device drivers; printer

drivers or specific driver
DriverWrapper.cp 386, 390-391
Driver_Write 239
drives, AppleCD SC 306-316
“Driving to Print: An Apple IIGS

Printer Driver”
(Deatherage) 454-477

DrSwApple 81, 92
DRVRClose 387
DRVRControl 387
DrvrHW 81
_DrvrInstall 395
DRVROpen 387
DRVRPrime 387
DRVR resource

creating 386-393
installing 393-396

DRVRRuntime.o 387
DRVRStatus 387
DrvrSW 80-81
DRVW resource 387
DStatus 306, 307, 309-311
Dumpcard, A/ROSE and 436
durability (of CD-ROM) 263
DWrite 237
DXInfo 280
DynamicDownload() 433
Dynamo 93-100
Dynamo MPW 95

E
Echo Manager 433, 435
economy (of CD-ROM)

262-263
editor, difference between browser

and 159

INDEX October 1990

483

8•24 GC card. See Macintosh
Display Card 8•24 GC

8•24 GC CDev 346
8•24 GC file 339
8x86 230
encapsulation 218-222

described 179
encoding. See font encoding
_End020Drvr 85
EndOurWorld 473
EndSession 238
_EndsPInitRec 83
Englander, Roger 270
enhanced versions of products,

CD-ROM and 266
Enter() 408
enumerated/enumeration types

208, 209
Enwall, Tim 376-377
EORI 72
equivalence 228
EraseRect 35
Error() 408
error codes
CopyBits 21
region creation 21
returned 232

error reporting 232
errors 136

Memory Manager 33, 38-39
QuickDraw 33, 38-39
Slot Manager 92

escapeSequences 276
evaluation, lazy 213
EventLoop 322
Event Manager 68
events, MacApp and 158
exceptions 232
Exerciser 241

ExitToShell 73
expansion cards, declaration

ROMs and 75-92
expansion slots. See NuBus slots
exploratory phase (of object-based

design) 184-193
expressions, evaluating 147-148
extended attribute records, High

Sierra/ISO 9660 format and
277

Extended Sense Line Protocol
336, 337

Extensions folder 318
external file system hook

273-274
extern C 163
extern “C” functions, sample C++

device driver and 386-391

F
f 207
FailNIL 131, 136
FailOSErr 131
failure, memory allocation 158
fake handle, described 56
fBounds 134
field. See f
file(s)

associated 278, 279
{CIncludes} 205
classes and 205-206
data 230
Desktop 280
8•24 GC 339
Foreign File Access 274
GraphAccel.o 346
header 163, 205, 206
High Sierra File Access 274,

280, 281
#include 166, 168, 209,

210, 212
ISO 9660 File Access 274,

280, 281

Macintosh 278-281
Projector and 206
regular 278, 279
source 204-206
swap 145

file access, common problems 57
file forks, High Sierra/ISO 9660

format and 278-279
file identifiers, High Sierra/ISO

9660 format and 277, 279
File Manager 57
File menu 160
file server 162
file system translators. See FSTs
file transfer 162
File Transfer Manager 317-331
file transfer record 320, 321
file type, High Sierra/ISO 9660

format and 279-280
Finder (Apple II) 235
Finder (Macintosh), ISO 9660

format and 289
Finder flags, High Sierra/ISO

9660 format and 280
findfont 41
FindToolID 330
FInfo 280
FinishStatusMessage 472
fixed-point data type 222
flags 35-36
flags, Finder 280
fLandscape 358
float.h 230
floats 229
Floppy Builder. See ISO 9660

Floppy Builder
folders

Communications 318
Extensions 318
System Folder 318, 339

'FOND' 67

d e v e l o p October 1990

484

font encoding, defined 41
Font Family ID 41
font metrics 67
FontMetrics 67
fonts

compatibility and 66-67
downloading using SetFont

446-453
GC QuickDraw and 340
outline 230
PostScript and 41-47

font selection 66-67
font size selection 66-67
Foreign File Access file 274
forks, data/resource 278-279
Format2Str 67
Format block

common problems 90-91
example 87-88

formats
High Sierra 272-287
ISO 9660 272-287
logical 274

FORTRAN 156, 228
FracApp 29-32
fragmentation

heap 119, 137, 151-154
memory 141-145

frame buffers, support for 9
FrameRect, GC QuickDraw and

344
frames, CD-ROM sound and

312
free 119, 120-121
Free 166
FreeMem 122
FreeMemory 122, 123, 127,

128
FreeMsg() 428, 430
FRESTORE 72
friend classes/functions 221

FSAVE 72
FSTs (file system translators)

235, 236, 240-241
FTAbort 328
FTChoose 320, 329
FTDispose 329
FTEvent 324
FTExec 324, 328
FTGetProcID 328
ftIsFTMode 329
FTNew 320, 328, 329
FTProcID 319
FTReceiveProc 329
FTSendProc 329
FTStart 328, 329
FTSucc 329
function(s)

friend 221
inline 210, 213-214
member 123, 222
protected members and 219
public members and 219
virtual 220, 222-224

functional sResources 76-77
defined 76-77
example 84-86

functional syntax, base class and
217

function macros 210
function name overloading

215-216
function prototypes, argument

names and 205
functions

extern “C” 386-391
virtual member 402, 403
window definition 409-411
See also specific function

_FunDrvrDir 85
_FunName 85
_FunType 85
FXInfo 280
fZone 123

G
g 207
garbage collection 132, 136
GC kernel. See Am29000 kernel
GC OS. See Am29000 kernel
GC QuickDraw, Macintosh

Display Card 8•24 GC and
332-347. See also Color
QuickDraw; QuickDraw;
32-Bit QuickDraw

gDeadStripSuppression
169

GDevice 13, 20, 28, 34-35, 40
GC QuickDraw and 340, 341

GDeviceChanged 40, 345
gdh 33, 35, 39
gdPMap 13
gdRect 33
gdType 13
General CDev 5
_getb 97
GetCoordinateRange 165
GetCTable 27
GetCVariant 55
GetDeviceName

in Picter 475
in printer drivers 471

GetFileInfo 286
GetFNum 41, 43
GetGDevice 33, 35
GetGWorld 33, 35
GetGWorldDevice 35
GetHandleSize 65
GetInfo 281
GetKeys 68
GetMouse 68
GetMsg() 428, 429

A/ROSE sample 440
GetNewControl 147
GetNewPalette 24
GetNewWindow 147, 326
GetPen 43

INDEX October 1990

485

GetPixBaseAddr 38
GetPixelsState 38
GetPort 33, 35
GetPrintRecord 62-63
GetResource, downloading

PostScript dictionaries and
449

GetRotn 348, 349, 358-359,
361, 362

GetRsl 353, 362
GetRslData 348, 350,

352-354, 356-358, 361
GetTID() 440
GetTrapAddress 73
_getw 97
GetWindowInfo 153
GetWVariant 55
global names 207-208
globalRect 39
globals, low-memory 67-68
global variables 73, 146,

212-213
virtual function tables and

404-405
glue routines 67
Goldsmith, David 204, 206
GrafPorts 11, 43, 151
GrafPtr 33, 35
GraphAccel.o file 346
Graph.c 161-163, 167
Graph.h 161-163, 167
graphics, 16-bit-per-pixel/

32-bit-per-pixel 5
graphics point 222
gray-level representation 6
grayscale mode 6
grayscale screens 24
grestore 45-46
gsave 45-46
GSBug disk 241

GS/OS
caching and 233-242
CD-ROM sound and 306-316
direct page 238-239

GS/OS SCSI CD driver 306,
307

gwFlagErr 37
GWorldflags 37
GWorldPtr 29, 33, 35
GWorlds 13, 29, 34

GC QuickDraw and 340-344

H
$H 134-135
$H- 135
.h 206
handle(s)

C++ objects and 118-128
code implemented with

129-132
common problems 56
defined 52
dereferencing 132
described 56
fake 56
locking 137
pitfalls of 131-132
safe usage of 138-139
See also object(s); pointer(s);

relocatable blocks
HandleAScrollbar 149
handle-based classes 408
HandleObject 119, 121, 398,

408
HandToHand 131
hard disks, mixed-partition

288-298
hardware access, direct 72
HClrRBit 55
header files 205, 206

modifying 163

heap 131-132
compacting 132
Memory Manager and 141,

142-143
heap fragmentation 119, 137,

151-154
heap zones, defined 52
HFS (Hierarchical File System)

High Sierra/ISO 9660 format
and 278-281

mixed-partition CD-ROMs and
288-298

HGetState 55
hidden colors 12
HideCursor, GC QuickDraw

and 344
Hierarchical File System. See HFS
hierarchies

building 194-196
recording existing 194-195
restructuring 195-196

hierarchy graph, described 194
high-level languages, Dynamo and

93-100
Highlighted Data 266
high-resolution output 350-358
High Sierra File Access file 274,

280, 281
High Sierra format 57, 272-287

described 274-278
differences between ISO 9660

format and 278
history of 273
Macintosh files and 278-281
Macintosh support of 273-274
pressing CD-ROMs in 282
strange behavior in 281
See also CD-ROM; ISO 9660

format
Hit() 411
HLock 55, 57, 137, 152, 153
HNoPurge 55
Hodgson, Jack 304, 420

d e v e l o p October 1990

486

“How to Create a Mixed-Partition
CD-ROM” (Roberts)
288-298

“How to Design an Object-Based
Application” (Wilkerson)
178-203

hPrint 355
HPurge 55-56
hRes 20
HSetRBit 55
HSetState 55
Huggins, Cleo 305, 421
HUnlock 55, 137, 152, 153
HWDevID 86
HyperCard, CD-ROM and 270
HyperTalk 131

I
IAC. See interapplication

communication
iacDriver.make 392, 396
iacDriver.r 396
iacGlobalNewDel.cp 392-393
IACHeaders.h 383
IACRecord 383, 398
ICCM. See InterCard

Communication Manager
iconifiable window definition

functions, example 409-
411

IconWDef 411
ID(s)

board 83
class 130

identifiers
file 277, 279
mangled/unmangled 379-380

ID number, FST 240
iError 349, 350, 353, 355,

362
iHRes 355
images

rescaling/resizing 8
16-bit/32-bit 6

ImageWriter 65

ImageWriter driver
compatibility and 465
PrGeneral and 348-362

iMax 352
iMin 352
Immediate 397
immediate mode (printing mode)

459
implementation, exposing to

clients/subclasses 222
implementation classes, hiding

221
#include files 166, 168, 209,

210, 212
incompatibility. See compatibility
incomplete class 221
_index 97
indirection

double 131
single 132

information hiding, described
179

information products, CD-ROM
and 267-268. See also
CD-ROM

inheritance
C++ and 400-412
described 180
multiple 119, 128, 224-225
single 224
See also polymorphism

inheritance hierarchies. See
hierarchies

inheritor, defined 180
Init, creating 393-396
InitCallbackArray 149
InitCM 319, 325
Init file for 32-bit QuickDraw 5
InitFT 319, 328
initialization, static 213
Initialize 321
InitializePrintRecord 60
InitTM 319, 327
InitToolbox 124, 125
init_vtables() 408

inline functions 210, 213-214
declarations and 214

“Inside the Macintosh
Coprocessor Platform and
A/ROSE” (Maurer)
424-445

“Ins and Outs of ISO 9660 and
High Sierra, The” (Bechtel)
272-287

installDriver.c 394, 395
instances, defined 180
instantiating, defined 180
instruction cache 68
instructions, privileged 72
interactive dialog box routines,

sample 472
interactive media, CD-ROM and

270. See also CD-ROM
interapplication communication

(IAC) 380
InterCard Communication

Manager (ICCM) 433,
434, 439, 442

interchangeability (of CD-ROM)
263

interlaced video, defined 335
international support,

compatibility and 67
interprocess communication,

A/ROSE and 429-432
ints 229, 230
invalidrestore, downloading

fonts and 451
iOpCode 349, 353
IPC software, described 338
IRes 166, 168
iRgType 353
iRslRecCnt 353
IsAppWindow 330
IsEqual 213
IsLandscapeModeSet 359
ISO 9660 File Access file 274,

280, 281

INDEX October 1990

487

ISO 9660 Floppy Builder
283-287

ISO 9660 format 57, 272-287
described 274-278
differences between High

Sierra format and 278
history of 273
Macintosh files and 278-281
Macintosh support of 273-274
mixed-partition CD-ROMs and

289
pressing CD-ROMs in 282
strange behavior in 281
See also CD-ROM; High Sierra

format
itabRes 12
IUCompStr 67
iVRes 355
iXRsl 353, 355
iYRsl 353, 355

J
jIODone 379, 397, 398
JMP 73
job dialog box routines, sample

472
Johnson, Mark B. 262-263
Journaling Driver 68
JSR 73

K
k 207
Kazim, Alex 317, 318
kernel, Am29000 338
killbn, downloading fonts and

452-453
killbu, downloading fonts and

451-453
Kingsley, Chris 121
Knepper, Chris 155

L
landscape orientation 358-359
language. See international

support
languages, high-level 93-100
large products, CD-ROM and

266
LaserPrep. See PostScript

dictionaries
LaserTalk (Adobe) 452
LaserWriter driver 8, 66

described 448
PostScript and 41-47
PrGeneral and 348-362

LaserWriter II SC 65
lazy evaluation 213
Leak, Bruce 4-5
least-recently used caching

algorithm. See LRU caching
algorithm

Leave() 408
libraries

class 158
MacApp 155-156, 158, 160,

171
lightness 6
Limits.h 230, 231
linker, creating DRVR resource

with 386-393
Lisp 226
LLC. See Logical Link Control
Loader 234
localization. See international

support
local names 207
local variables 146
Lock 137
LockPixels 35-36
logical format, High Sierra/ISO

9660 format and 274
Logical Link Control (LLC)

432-433

long doubles 229
longs 229, 230
Lookup_Task() 433, 434

A/ROSE sample 439, 440
low-memory globals,

compatibility and 67-68
lReserved 349, 353
LRU (least-recently used) caching

algorithm 236
ltGray 46
Ludwig Van Beethoven, Symphony

No. 9 (CD-ROM) 270
luminance mapping 12
luminance value 6
luminosity 6

M
M 207, 225
MacApp 129, 131, 135-137,

155-171, 229, 232
libraries 155-156, 158, 160,

171
MacApp Developer’s Association

(MADA) 156, 158, 160
MacApp.Tech$ 158, 160
MacDraw 157
Macintosh Coprocessor Platform

424-445
background 424-425
described 425-427

“Macintosh Display Card 8•24
GC: The Naked Truth”
(Ortiz) 332-347

Macintosh Display Card 8•24 GC
332-347

illustrated 333
Macintosh II Video Card 23
MacroMaker 68
MacroMind CD-ROM 267
MacroMind, Inc. 267
macros, function 210
MacsBug 91
MADA. See MacApp Developer’s

Association

d e v e l o p October 1990

488

main() 438-439
Main Event Loop 158
MajorBaseOS 86
MajorLength 86
Make14RedPalette 23
MakeOurWorld 473
MakeRedPalette 25
makeRGBPat 12
malloc 119, 120-121
managers. See specific manager
Mandlebrot (MB) sets 444
mangled identifiers, writing device

drivers in C++ and 379-380
Manhole (CD-ROM) 266
mapPix 38
marching ants technique, GC

QuickDraw and 344
master pointer 52-54, 131-132
#mat1loc 98
mat1loc 98
#mat2loc 98
mat2loc 98
Maurer, Joseph 424
MaxMem 122
MaxMemory 122, 123, 127
MB sets. See Mandlebrot sets
MCIMail 242
MCP card and software. See

Macintosh Coprocessor
Platform

md. See PostScript dictionaries
Mediagenic 266
“Meet PrGeneral, the Trap That

Makes the Most of the
Printing Manager”
(Alexander) 348-362

member(s)
class 212
data 123
protected 219
public 219
static 208

member functions
static 123
virtual 222

member names 207
memory 131-132

pages of 145
memory allocation

defensive programming
and 51

problems with 118-121
solution to 121-123

memory allocation failure 158
memory fragmentation, Memory

Manager and 141-145
memory management services,

MacApp and 158
Memory Manager 33, 51-52,

54, 73, 140-154, 408
blocks and 141
C++ and 118-128
common problems 55-57
compaction and 142-143
errors 33, 38-39
expert’s guide to 146-154
heap and 141, 142-143
memory fragmentation and

141-145
myths about 140-145
nonrelocatable blocks and

141-145
Object Pascal and 129-139
reservation and 142-143
Virtual Memory and 145

memory relocation 133-135
Merriam-Webster’s Ninth New

Collegiate Dictionary
(CD-ROM) 266

messages
A/ROSE and 429-432
canonical format for 230

metrics routines (print record).
See specific metrics routine

MFTempNewHandle 56
Microsoft Office (CD-ROM)

267
Miller, Rand 174-175
Miller, Robyn 174-175
_MinorBase 86
MinorBaseOS 86
MinorLength 86
_MinorLength 86
minutes, CD-ROM sound and

312
mixed-partition CD-ROMs

288-298
mix-in classes 207, 225
Modula-2 156
Monitor 241
monitors 39
monitors, Macintosh Display Card

8•24 GC and 333-334
Monitors CDev 5, 8
monochrome printing 158
Monthly Values Dialog 167-170
Mouser 157, 159, 161

MacApp and 158
MOVE 72
MoveHHi 52, 144, 152-154
MOVE_INFO 239
MoveTo 43
MPW 118-121, 129, 156, 161,

164, 167, 206
MPW C 205. See also ANSI C;

C; C++
MPW C++, described 402
MPW Pascal 129, 136. See also

Object Pascal; Pascal; TML
Pascal

MPW Shell document 380
MPW IIGS Cross-Development

System 99-100
MPWTypes.r 387
MS-DOS 57, 121, 230
Mueller, Eric 306
MultiFinder 21, 22, 52, 56, 73,

145

INDEX October 1990

489

multiple inheritance 119, 128,
224-225

base class and 225
multiple-word names 207
_mulvar 97
Music Discovery series 270
MyCallback 148
MyCallback 148
mydict 451-453. See also

PostScript dictionaries
myHandle^^ 147
myPP 27
myTask 442-444
MyVScrollCallback 149

N
name(s)

argument 205
class 207
constant 207
function 215-216
global 207-208
local 207
member 207
multiple-word 207
parameter 207
type 207

NameLookup() 438-439
Name Manager 433-435, 439,

440, 442
naming conventions 206-208
ndld. See Download application
new 118, 119, 392, 393
NEW 130-131, 136
newDepth 38
NewDisc 311
NewDownload() 435
NewFindcard() 433
NewGWorld 33-36

GC QuickDraw and 341, 342

NewHandle 119, 131, 136,
142

NewObjectByClassId 136
NewObjectByClassName 136
NewPalette 24
NewPtr 52, 120, 121, 128,

142-144, 147
NewPtrSys 398
newRowBytes 38
NewScreenBuffer 39
new versions of products,

CD-ROM and 266
nil 24, 33-36, 38, 51
NIL 136, 137, 147
NoDraftBits 348, 349, 361,

362
noErr 33, 39, 349, 350, 355
noNewDevice 34-35
noninterlaced video, defined 335
nonrelocatable blocks 146,

151-152
allocating 141-143, 144
Memory Manager and

141-145
nonrelocatable objects 137
nonrelocatable pointer. See master

pointer
nonsquare resolution, defined

352
NoPurgePixels 38
NoSuchRsl 349, 355
NotCorrectDevDialog 472
nprm. See Print Manager
NRVD resource 276
NTSC output, Macintosh Display

Card 8•24 GC and
333-334, 335

NuBug, A/ROSE and 436
NuBus 230
NuBus block transfers, Macintosh

Display Card 8•24 GC and
335

NuBus cards, Macintosh
Coprocessor Platform and
424-445

NuBus slots, declaration ROMs
and 75-92

O
object(s)

C++ 118-128
code implemented with

129-132
described 179
freeing 136-137
locking 137
nonrelocatable 137
Object Pascal and 129-139
safe usage of 132-137
wrapper 163-166
See also class(es); handle(s)

object-based applications,
designing 178-203

object-based design
analysis phase of 194-202
background reading 227-228
basic concepts of 178-180
benefits of 181
exploratory phase of 184-193
further reading on 203
two-phase process for 182

Object Pascal 156-158, 160,
163, 171, 226

Mouser and 159
objects and 129-139
See also MPW Pascal; Pascal;

TML Pascal
%_OBNEW 131
OCLC (On-Line Computer

Library Corporation) 267
Office. See Microsoft Office

d e v e l o p October 1990

490

offscreen bitmaps. See offscreen
graphics environments

offscreen graphics environments
28-40

GC QuickDraw and 341-343
32-Bit QuickDraw and 13-18

offscreenGWorld 38
offscreen pixMap support 8, 39
offscreenWorld 33, 35
offscreen worlds. See offscreen

graphics environments
offset list entry macro. See

OSLstEntry
OffsetRect 134
1 alpha-5-5-5 5
128K ROMs 141, 152
On-Line Computer Library

Corporation. See OCLC
Open 387, 389
OpenDriver 393, 395
_OpenDriver 395
OpenQueue() 439, 440
operator(s)

assignment 222
type coercion 218

operator delete 119, 121,
122, 128

operator new 119, 121,
122, 128

operator overloading 217
OpNotImpl 349
Option-g 205
organizations, support 158
orientation, page 358-359
Ortiz, Guillermo 28-29,

332-333
OS/2 121
osinit() 435

A/ROSE sample 442
OSLstEntry 79-80, 88
osmain.c 440-444

osstart() 435
A/ROSE sample 442

outline fonts 66-67, 230
output

high-resolution 350-358
NTSC 333-334, 335
PAL 336
RS-170A 335-336

overrides 216

P
page(s)

direct 238-239
of memory 145

page orientation, verifying
358-359

paint bucket fill, patterned 19
PaintRegion 19
Palette Manager 7, 22-27, 39
palettes

defined 22
drawing with 27
sample 23

Palevich, Jack (Hackerjack)
204-205, 206

PAL output, Macintosh Display
Card 8•24 GC and 336

paramErr 33, 38-39
parameter(s)

BRAM 234
passing 150-151

parameter-changing calls, GC
QuickDraw and 340-341

parameter names 207partition
descriptor, High Sierra/ISO
9660 format
and 277

partition map entry (PME)
291-293

partitions, mixed 288-298
Partners. See Apple Partners
_PartNum 84

Pascal 129, 131, 133, 138,
139, 146, 147, 151, 209,
226, 228, 229. See also
MPW Pascal; Object Pascal;
TML Pascal

pass by address 133, 154
pass by class 226
pass by reference 211, 226, 229
pass by value 133
patches/patching. See application

heap patches; system heap
patches; tail patching;
traps/trap patching

path table
High Sierra/ISO 9660 format

and 277
ISO 9660 Floppy Builder and

285
patterned paint bucket fill,

creating 19
pData 349
'PDEF' 65
PenPat 19, 44
PenPixPat 39
performance enhancement

schemes 72
“Perils of PostScript, The”

(Zimmerman) 41-47
“Perils of PostScript, The—The

Sequel” (Zimmerman)
446-453

Phil & Dave’s Excellent CD 265,
288

picFrame 20
PICT 8-9
Picter

described 454
presented 471-476

pixelDepth 33, 35-37
pixel patterns. See pixPats
pixels, 16-bit/32-bit 10
pixelsLocked 38
pixelsPurgeable 38
pixelType 10

INDEX October 1990

491

pixMap 11-13, 20-21, 27, 28,
33, 35-40

direct 10-11
PixMap, GC QuickDraw and

340, 342, 344
pixMap

offscreen support 8
72 dpi barrier 20

PixPatChanged 39-40, 345
PixPat.patMap^^.pmTable

39
pixPats 11-12, 27, 39, 40
PixPats, GC QuickDraw and

340
pixPurge 35
Pizzuti, Louella 114
Play 311
pmAnimated 26
PmBackColor 26-27
pmCourteous 26
PME. See partition map entry
pmExplicit 26
PmForeColor 26-27
pmMapBlkCnt 292
pmPartBlkCnt 292, 297, 298
pmPartName 292
pmPartType 292
pmPyPartStart 292, 298
pmTable 11
pmTolerant 23, 26
pmVersion 12
pointer(s) 226

dangling 146-151
master 52-54, 131-132
versus references 228-229
See also handle(s)

“Polymorphic Code Resources in
C++” (Beard) 400-412

polymorphism
C++ and 400-412

described 180
example 409-411
maximizing 201
writing device drivers in C++

and 378
p1 Modula-2 156
$Pop 135
port 33, 35
portability

of CD-ROM 263
of code 229-232

PortChanged 39-40, 345
port driver, defined 456
Portrait Display. See Apple

Portrait Display
portRect 33
possibilities (of CD-ROM)

265-271
'POST' 65
PostScript 41-47, 446-453

color printing 8
compatibility and 65-66

PostScriptBegin 44-46
downloading PostScript

dictionaries and 447-449
PostScriptBeginNoSave

46-47
downloading PostScript

dictionaries and 449
PostScript dictionaries,

downloading using
PostScriptHandle
446-453

PostScriptEnd 44-47
downloading PostScript

dictionaries and 447-449
PostScriptHandle 44, 66

downloading PostScript
dictionaries using 446-453

'ppat' 27
PrChanged. See

GetDeviceName
PrCloseDoc

in Picter 475
in printer drivers 468

PrClosePage
in Picter 475
in printer drivers 468

PrDefault 355
in Picter 474
in printer drivers 470

PrDriverVer
in Picter 475
in printer drivers 471
in Technical Note #35 466

PREC resource 65
downloading PostScript

dictionaries and 449
Preferences item 160
premastering, ISO 9660 format

and 289
preprocessor 163, 209-210
PrError 350, 362

in Picter 475
in printer drivers 470

PrGeneral 348-362
about 348-350
things to remember 361-362

PrGeneral Play 348, 350, 353,
356, 362

PrGetPgOrientation
in Picter 474
in printer drivers 470
in Technical Note #35 466

PrGetPrinterSpecs
in Picter 476
in printer drivers 471

PrimaryInit.a 83-84
primary volume descriptor

High Sierra/ISO 9660 format
and 276

ISO 9660 Floppy Builder and
284-285

Prime 379, 387
primitives 227, 231-232
PrintDefault 355
print dialog boxes 158

d e v e l o p October 1990

492

printer drivers (Apple IIGS)
454-477

sample 471-476
See also device drivers or specific

printer driver
printing 158

background 66
color 8
compatibility and 58-66
described 455-463
forcing 359-361

Printing Manager 65-66
PrGeneral and 348-362

printing modes, described
459-463

printing services, MacApp and
158

print loop
defined 455
routines 467-469
See also specific print loop routine

Print Manager, described
455-463

Print Manager (nprm), A/ROSE
and 436

print record metrics routines. See
specific print record metrics
routine

print records
described 456-458
fields in 460-461
handling 58-65

private 218-219
private base classes, declaring

220-221
privileged instructions,

compatibility and 72
PrJobDialog

in Picter 474
in printer drivers 470

procedural programming, defined
178

procedure addresses, table of
149-150

procedures, bottleneck 339-340,
344

ProcID 325
procID 319, 330, 331
procPtr 329
ProDOS 57, 234

FST 236, 240, 241
mixed-partition CD-ROMs

and 288-298
ProDOS 16

applications 237
Exerciser 241

products, CD-ROM and
265-271

programming
defensive 51-52
procedural 178

programs. See application(s);
software

Projector, files and 206
PrOpenDoc

in Picter 474
in printer drivers 467-468

PrOpenPage 66
in Picter 474-475
in printer drivers 468

protected 218-219
described 219-220

protected constructors, abstract
base classes and 220

protected members, functions
and 219

protocol, defined 201
prototypes, function 205
PrPicFile

in Picter 475
in printer drivers 468-469,

472
PrPixelMap

in printer drivers 469
in Technical Note #35 466

PrReserved 475

PrSetError 350
in Picter 475
in printer drivers 470

PrStlDialog
in Picter 474
in printer drivers 470

PrValidate 65, 355
in Picter 474
in printer drivers 470

pseudo-NuBus slots. See NuBus
slots

PtItRgn 20
ptrdiff_t 231
PtrObject 118, 121-123

implementing 126-128
sample application using

123-125
PtrObject::AllocHeap 124
PtrObject.h 122
public 218-219
public domain CDs 289
public members, functions and

219
pure virtual function, defined

220
$Push 135
_putb 97

Q
QD. See QuickDraw
QDDone 347
QDError 21
QuickDraw 5-6, 8, 11, 19-21,

65-66
errors 33, 38-39
PostScript and 41-47
printer drivers and 454-477
See also Color QuickDraw; GC

QuickDraw; 32-Bit
QuickDraw

QuickDraw GC. See GC
QuickDraw

INDEX October 1990

493

R
Radcliffe, Dave (Technical Sherpa)

50-51
Raja, Anumele 432-433, 436
RAM

fragmenting 145
32-Bit QuickDraw and 6

RAM CDev 241
RAM disks 233
Read 237
_Read 398
ReadTOC 306, 311, 316
“Realistic Color for Real-World

Applications” (Leak) 4-21
reallocPix 38
Real-time Operating System

Environment. See A/ROSE
Receive() 428, 429, 432,

433
A/ROSE sample 437, 439,

440
records

boot 274
connection 320, 321
directory 277, 285-286
extended attribute 277
file transfer 320, 321
print 58-65
terminal 320, 321

Rect 165
refCon 152, 324, 327, 328,

330
reference(s)

pass by 211, 226, 229
versus pointers 228-229

refNum 329
refnum 28

region-clipped pattern fills 8
region creation error codes 21
regions, bitmaps from/from

bitmaps 8, 19
registers. See specific register
Register_Task() 433
regular files, High Sierra/ISO

9660 format and 278, 279
Relocatable 408

example 409
relocatable blocks 131-132, 146

allocating 142-143
deleting 144-145
locking 144-145
See also handle(s)

Remote System Manager 433,
435

ReportError 60
rescaling images 8
Reschedule() 428
reservation, Memory Manager

and 142-143
ResetCache 241
resizing images/windows 8
resNotFound 350, 362
resolution 352, 356-357
resource forks 278-279
Resource Manager 394
resources. See specific resource
responsibilities

assigning 188-191
finding 188
grouping into contracts 196
recording 191

ResrvMem 143, 144
restore, downloading fonts

and 450-451
restorebn, downloading fonts

and 452-453
restorebu, downloading fonts

and 451-453

RestoreEntries 22
returned error codes 232
_RevLevel 84
rez 387, 396
RGB Color 12
RGBDirect 10
RGBForeColor 19, 24
RGB pattern 12
rgnOverflowErr 21
rgRslRec 353
Roberts, Llew 288
ROM(s)

declaration 75-92
128K 141, 152
64K 152

ROMEqu.a 79, 82, 87
routines 161-163

callback 148-150
rowbytes 9
rowBytes 28

GC QuickDraw and 342
RS-170A output, Macintosh

Display Card 8•24 GC and
335-336

RTSing 379, 397

S
SADE 158
sameShape 131
Sample.c 397
sample palette 23
save, downloading fonts and

451
Save As dialog 157
SavePrintRecord 60-62
scaling 357-358
screen(s)

drawing to 345
grayscale 24

screenBits.bounds 28
Script Manager 67

d e v e l o p October 1990

494

SCSI CD driver. See GS/OS SCSI
CD driver

Search Procs. See Custom Color
Search Procedures

secondary volume descriptors,
High Sierra/ISO 9660
format and 276

seconds, CD-ROM sound and
312

“Secret Life of the Memory
Manager, The” (Clark)
140-154

SEDIT 293, 298
Segment Loader 141
self-modifying code, compatibility

and 68-72
Send() 428

A/ROSE sample 437
SendPostScript 43-44,

452-453
Sense Line Protocol 337
Serial NB Card, Macintosh

Coprocessor Platform and
424-445

server, defined 180
services, encapsulating 163-166
SessionStatus 241
SET_DISKSW 236, 239, 240
SetEntries 22, 39
setfont 41
SetFont 42-44

downloading fonts using
446-453

SetGDevice 35
setgray 44-46
SetGWorld 35
SetMaxResolution 356-358
SetPalette 22
SetPixelsState 38

SetPort 35, 326
SetRsl 348, 350, 351, 353,

355-358, 361, 362
SetTrapAddress 73
72 dpi pixMap barrier 20
SFGetFile 57
'sfnt' 67
SFPutFile 57
shape hierarchy 400-402. See also

polymorphism
Shayer, David 293
Shebanow, Andy (The

Shebanator) 118
Shell document. See MPW Shell

document
shorts 230
show 43
ShowTasks 437-440
signals, video 335-336
signatures, defining 201-202
signed chars 230
single indirection 132
single inheritance 224
680x0 229
16-bit images, dithering of 6
16-bit-per-pixel graphics 5
16-bit pixels 10
64K ROMs 152
size (of cache) 234-235
sizeof 231
size_t 231
Skinner, Mary 305, 421
SleepTime menu/SleepTime

value 437
Slot Manager

declaration ROMs and 75-92
errors 92

slot Resources. See sResources
slots, NuBus 75-92
_sMacOS68020 85
Smalltalk 226

SmartPort 307
software, IPC 338. See also

application(s)
Soldan, Eric 93-94
sound, CD-ROM and 306-316
source file conventions 204-206
SourceType 218
speed

of CD-ROM 263-264
writing device drivers in C++

and 379
“Speed Your Software

Development With
MacApp” (Knepper)
155-171

_sPInitRec 83
Spl() 428
spooling, avoiding 359-361
spool mode. See deferred mode
spreadsheet specification

analysis phase and 194-202
described 183
exploratory phase and

184-193
square resolution, defined 352
SR 72
srcCopy 21
sResource directory, example

79-80
sResources 88, 92

board 76-77, 82-84
defined 75
functional 76-77, 84-86
in general 80-82
using 76-77

sRsrcBoard 79
_sRsrcBoard 79, 82
_sRsrcDir 79
_sRsrcFun 80, 84-85
sRsrcName 82
sRsrc_Names 82-83, 85
sRsrc_Type 80, 82
sRsrcType 82

INDEX October 1990

495

_sRsrcType 82
sRsrc_Type 85, 92
standard bottleneck procedures,

GC QuickDraw and
339-340, 344

StartAROSE() 435
START.GS.OS 235
StartICCManager(pb) 441
StartmyTask(pb) 441
StartNameServer(pb) 441
StartStatusMessage 472
StartTask() 428, 432, 435
state calls. See parameter-changing

calls
static 213
static class members 212
static constructors 213
static data member, defined 123
static extern 212
static initialization 213
static member functions, defined

123
static members 208
Status 379, 387
status dialog box routines, sample

472
StatusMesgFeedPrompt 472
StatusMessage 472
status register. See SR
StdBits 20-21
StdDef.h 231
StdText GrafProc 43
StopTask() 428, 435
storage, allocating 226-227
Str2Format 67
strcmp 67
[stretchPix] 37
stretchPix 38
[stretchPix, ditherPix]

37
strings, Dynamo and 99

StripAddress 12, 20
common problems 56-57

style dialog box routines, sample
472

subclasses, exposing
implementation to 222.
See also class(es); inheritor

support organizations, MacApp
and 158

Surfer 317-331
“Surf’s Up: Catch the Comm

Toolbox Wave” (Berkowitz
and Kazim) 317-331

swap file, fragmenting 145
SwapMMUMode 20, 57
syntax, functional 217
SysEnvirons 9
System 5.0 (Apple II) 235, 236,

241
ADU and 289-290

System Folder 318
8•24 GC file and 339

system heap patches 73
System Service calls 238-239
System 7.0 (Macintosh)

compatibility and 50-74
Extensions folder and 318
32-Bit QuickDraw and 5, 21

SystemUse 280
sysz resource, creating 396

T
T 206, 207, 225
table of procedure addresses

149-150
tables

color 340
path 277, 285
width 340

tail patching 73
TApplication 160, 220
TApplication.DoMenu

Command 160
TargetClass 218
TargetType 218
TAS 72
tasks, A/ROSE and 429-432
TaskSample 437
TBarGraph 164
TDftBitsBlk 360
TDriver 380, 388
TDriver.cp 384-386
TDriver.h 380-382
temp 96
temporary variables 148, 152,

153
terminal emulator 162
Terminal Manager 317-331
terminal record 320, 321
TermSendProc 328, 329
Test And Set instruction. See TAS
testing, defensive programming

and 51
TestPrintRecord 63-65
TestPtrObject.make 125
TextFont 41-43
TextIsPostScript 66
TFracAppDocument.BuildOf

fWorld 29-32
TGetRotnBlk 358
TGetRslBlk 352, 353
TGnlData 349, 362
TGraph 164-166, 168, 169
TGraph::IRes 166
theControl^^ 150
TheGDevice 12-13, 20
ThePostScript 66
THINK C 15
13-Inch monitor. See Apple

13-Inch monitor

d e v e l o p October 1990

496

32-bit addressing 12
32-bit cleanliness

common problems 55-57
compatibility and 52-55

32-bit images, dithering of 6
32-bit Memory Manager. See

Memory Manager
32-bit-per-pixel graphics 5
32-bit pixels 10
32-Bit QuickDraw 4-21

offscreen graphics
environments and 28-40

Palette Manager and 22-27
See also Color QuickDraw; GC

QuickDraw; QuickDraw
32-Bit QuickDraw Init file 5
TickCount 67-68
Ticks 67
tiled pixel images. See pixPats
Time Manager 344
timing, GC QuickDraw and 344
TImplementation * 221
TImplementation & 221
TImplementation 221
titleshow, downloading fonts

and 452-453
TLineGraph 164
TList 229
TLout 123, 124
TMChoose 320
TMClick 324
TMDispose 327
TMessage 380, 398
TMessage.h 382-383
TMEvent 324
TMGetProcID 319, 327, 331
TMIdle 324, 327
TMKey 327

TML Pascal 129, 136. See also
MPW Pascal; Object Pascal;
Pascal

TMNew 320, 327
TMonthlyDialog 168
TMonthlyDialog::Stuff

Values 169
TMStream 327
TMUpdate 324
TMyApplication 160
TMyApplication.DoMenu

Command 160
TObject 137
TokenTalk, A/ROSE and

432-433
TokenTalk NB Card, Macintosh

Coprocessor Platform and
424-445

ToolBox 344
TPrinfo 355
TPrStl 65
TrackControl 148
tracks, CD-ROM sound and 312
transfer, disk/file 162
transfers, block 335
transindex 27. See also

ctFlags
transparency mask. See alpha

channel
traps/trap patching, compatibility

and 67, 73. See also specific
trap

TRslRec 352-353
TRslRg 352
TSetRslBlk 355
TShape 130
TTestApplication::ITest

Application 169
TView 164, 166, 215, 217,

220

24-bit addressing 12
24-bit Memory Manager. See

Memory Manager
TWindow 217
Two-Page Display. See Apple

Two-Page Display
two-phase process (for

object-based design) 182
txFont 43
type(s)

argument 215-216
built in 230
data 222
enumerated/enumeration

208, 209type coercion
217-218

type names 207
TypVideo 81, 92

U
UDemoDialogs.cp 168-169
UDemoDialogs.h 168
UFailure 136
UGraph.cp 164-166, 167
UGraph.h 164-166, 167
underscores 207
Unix 57, 120, 121. See also

A/UX
UnlockPixels 35-36
unmangled identifiers, writing

device drivers in C++ and
379-380

“Unofficial C++ Style Guide”
(Goldsmith and Palevich)
204-232

unsigned chars 230
unspecified arguments 214-215
Unused 51

INDEX October 1990

497

UpdateGWorld 35-38
UpdateWindow 152, 153
updating desktop pattern 8
user interface, MacApp and 157
user views, CD-ROM and

270-271. See also CD-ROM
“Using C++ Objects in a

Handle-Based World”
(Shebanow) 118-128

“Using Objects Safely in Object
Pascal” (Bianchi) 129-139

utilities (A/ROSE) 436

V
ValidateControl 150
ValidRect 150
value, pass by 133
van Brink, David 22-23
VAR 133, 135, 136, 151,

154, 228
_varcpy 95-96
variable resolution, defined 352
variables

Dynamo and 94-97
global 73, 146, 212-213,

404-405
local 146
temporary 148, 152, 153

varspace 95
VAX 229
VBL tasks 68
_VendorId 84
_VendorInfo 84
versatility (of CD-ROM) 263
versions of products, CD-ROM

and 266
_vgetb 97
_vgetw 97
Vian, Corey 268-269, 304, 420

video cards 5, 9
sResources and 81

video signals, Macintosh Display
Card 8•24 GC and
335-336

ViewEdit 157
virtual * 228
virtual & 228
virtual base classes 225
virtual destructors 223
virtual function(s) 222-224

pure 220
virtual function tables 402-408.

See also polymorphism
virtual member functions 222

C++ and 402, 403
See also polymorphism

Virtual Memory, Memory
Manager and 145

VirtualWorld 407-408
visRgn 28, 33
void * 229
volume descriptors, High

Sierra/ISO 9660 format and
276-277

volume descriptor terminator,
High Sierra/ISO 9660
format and 277

volumeFlag 276
volumes, High Sierra/ISO 9660

format and 274, 275
Voyager CD Companion Series

270
Voyager Company 270
_vputb 97
_vputw 97
vRes 20
vTables. See virtual function tables

W
WaitNextEvent() 437
walk-throughs, designing 193

Warner New Media 270
WDEFs (window definition

functions)
common problems 55
iconifiable 409-411

wDev 65
where 8
width tables, GC QuickDraw and

340
Wilkerson, Brian 178
WindowDefinition 409
window definition functions. See

WDEFs
WindowFrame 410-411
Window Manager 11, 55
WindowPtr 147
WindowRecords 151
windows, resizing 8
Winter, Robert 270
WITH 138, 146
wrapper object 163-166
Write 237
_Write 398
write-deferral sessions, cache

and 238
write-through cache, defined 234
“Writing a Device Driver in C++

(What? In C++?)” (Enwall)
376-399

wrong argument type 215-216

X
x-register 95, 97, 99
xRslRg 353

Y
y-register 95
yRslRg 353

Z
Zimmerman, Scott (Zz) 41-42,

446
zones, heap 52

d e v e l o p October 1990

498

