
d e v e l o p
T h e A p p l e T e c h n i c a l J o u r n a l

THREADS ON THE
MACINTOSH

QUICKDRAW'S
COPYBITS
PROCEDURE:
BETTER THAN EVER
IN SYSTEM 7.0

MACTCP COOKBOOK:
CONSTRUCTING
NETWORK-AWARE
APPLICATIONS

A FAMILIAR
(INTER)FACE

COLOR PRINTING
WITH LASERWRITER
6.0 REVISITED

MACINTOSH Q & A

APPLE II Q & A

YOUR DEVELOPER
ESSENTIALS DISC
(NOW WITH CODE
SNIPPETS)

I ssue 6 Spring 1991
Apple Computer, Inc.

E D I T O R I A L

Editor-in-Cheek Caroline Rose

Spirited Guide Louella Pizzuti

Technical Buckstopper Dave Johnson

Managing Editor Monica Meffert

Contributing Editors Lorraine Anderson,

Geta Carlson, Toni Haskell, Judy Helfand,

and Rilla Reynolds

Editorial Assistant Helen Stea

Indexer Ira Kleinberg

Manager, Developer Technical Communications

David Krathwohl

A R T & P R O D U C T I O N

Production Manager Hartley Lesser

Art Director Diane Wilcox

Design Joss Parsey

Technical Illustration Don Donoughe and

Diane Wilcox

Formatting Automatrix

Printing Craftsman Press

Film Preparation Aptos Post Inc.

Production PrePress Assembly

Photographer Ralph Portillo

Circulation Management David Wilson

Online Production Cassi Carpenter

Cleo Huggins created this cover with
Adobe Illustrator®. A theoretical Klein
plane was chosen to represent the
complex topology on which threads of
execution operate.

d e v e l o p, The Apple Technical
Journal, is a quarterly publication
of the Developer Technical
Communications group.

CONTENTS Spring 1991

1

E D I T O R I A L 2

L E T T E R S 4

A R T I C L E S
Threads on the Macintosh by Michael Gough Multiple concurrent threads
of execution on the Macintosh? You bet! This article presents a complete threads
package, talks about its implementation, and shows you how to use it. 6

QuickDraw‘s CopyBits Procedure: Better Than Ever in System 7.0
by Konstantin Othmer In System 7.0, the internal workings of this versatile
routine have changed (for the better, of course!). Learn all about the differences,
and check out some simple but useful image processing techniques. 23

MacTCP Cookbook: Constructing Network-Aware Applications
by Steve Falkenburg Networking for the rest of us. Here’s an introduction to
the TCP/IP protocol suite, and a library of routines that make using MacTCP a
(relative) breeze. 46

C O L U M N S
Print Hints from Luke & Zz: Color Printing with LaserWriter 6.0
Revisited by Pete “Luke” Alexander A potential color printing problem,
and some solutions. Also sharks, surfboards, and surfer dudes. 44

The Veteran Neophyte: A Familiar (Inter)face by Dave Johnson
Chernoff faces, n-dimensional points, and simulation in the human (and canine)
interface. 70

Q & A
Answers to your product development questions.
Macintosh Q & A 72
Apple II Q & A 80

D E V E L O P E R E S S E N T I A L S 86
A description of what’s old and what’s new on your Developer Essentials CD-ROM
disc. Code snippets are new—check ’em out!

I N D E X 90

© 1991 Apple Computer, Inc. All rights reserved.

Apple, the Apple logo, Apple IIGS, AppleLink, APDA, AppleTalk, GS/OS, HyperTalk, ImageWriter, LaserWriter,
Macintosh, MacTCP, MPW, MultiFinder, and ProDOS are registered trademarks of Apple Computer, Inc. Finder,
HyperMover, KanjiTalk, and QuickDraw are trademarks of Apple Computer, Inc. HyperCard is a registered
trademark of Apple Computer, Inc., and is licensed to Claris Corporation. PostScript is a registered trademark
of Adobe Systems Incorporated. NuBus is a trademark of Texas Instruments. UNIX is a registered trademark of
UNIX System Laboratories.

CONTENTS

d e v e l o p Spring 1991

CAROLINE ROSE has been writing computer
documentation ever since “a computer at your
fingertips” meant timesharing a mainframe. After
a seven-year digression into programming, she
returned to her first love—writing—and was given
the opportunity to document the inner workings of
a funny little computer named Macintosh. The
result was a three-volume tome that, in its hard-
cover edition, was the first technical manual to

qualify as a lethal weapon (and we don‘t mean
by boring people to death). In what proved to be
another digression, she left Apple to launch
NeXT’s documentation effort. Returning after a
five-year hiatus, she’s thrilled to be back at Apple
among friends and foe alike. For pleasure outside
of work, Caroline reads voraciously, swims
fanatically, dances, sings, plays Scrabble, hugs
her cat, and much more.

2

Dear Readers,

Starting with this issue of develop, Louella has passed the editorial baton to yours
truly, Caroline Rose. If the name sounds familiar, it’s because you may have seen it in
the credits for Inside Macintosh, Volumes I-III. At one point during my three-and-a-
half-year stint as the primary author and editor of that magnum opus, I interviewed
an inexperienced but delightfully cocky young woman who convinced me that she
could do as good a job as anyone of formatting the IM files on the Macintosh® (they
were created on the Apple® III). She was hired, and ended up being a great help to
the project as well as a great friend. You’ll also find her name in the credits: “assisted
by” none other than Louella Pizzuti.

But the time came for me to move on. I went looking for jobs and found the next
company I would work for (puns intended). After four years as that next company’s
Manager of Publications and a year as its Editor in Chief, I was ready to move on
again. I put the word out at Apple and got a phone call from Louella, with whom I
had fallen woefully out of touch over the years. Now the friendship has been
renewed and we’re working together once again—this time with her as my boss!

After a brief orientation (and a wonderful “welcome” lunch) on my first day back at
Apple, I was steered into a meeting at which I had to immediately make my first
decision as develop’s new Editor in Chief. Actually, it was sort of a trick question,
since everyone present had already agreed on the answer. Fortunately, I was of like
mind, and as a result we’re calling this simply Issue 6 rather than continue with the
previous issue’s use of “Volume 2” (which snuck in while Louella was out with a bad
back). So for those of you who are collecting the whole set (knowing it will be of
inestimable value someday), take note that the previous issue’s number should be
reassigned according to the following formula:

int
CalculateIssueNumber(int Volume, int Issue)
{

return ((Volume – 1) * 4) + Issue;
}

2

LOUELLA PIZZUTI
PASSES TO
CAROLINE ROSE

Or, for you Pascal types:

FUNCTION CalculateIssueNumber (Volume, Issue: INTEGER): INTEGER;
BEGIN

CalculateIssueNumber := ((Volume - 1) * 4) + Issue;
END;

You may notice other changes introduced in this issue. We hope you’ll agree
they’re changes for the better; if not, be sure to let us know. Please also let us know
if you’d be interested in writing an article for develop yourself. Do you have any
nifty code you’d like to share with the rest of the Apple developer world? Have you
yearned to have your own silly bio grace these pages (not to mention your photo)?
Think of how pleased your mother would be to receive a copy.

I’ll leave you with a riddle: I entered this entire editorial without pressing a single
key on the keyboard or clicking the mouse button. I was as quiet as a mouse (the
furry kind). How did I do this? And furthermore, why? Stay tuned for the answer
in our next issue.

Caroline Rose
Editor

EDITORIAL Spring1991

3
SUBSCRIPTION INFORMATION
Use the order form on the last page of this issue
to subscribe to develop. Please address all
subscription-related inquiries to develop, Apple
Computer, Inc., P.O. Box 531, Mt. Morris, IL
61054 (or AppleLink DEV.SUBS).•

BACK ISSUES
Back issues of develop are available through
APDA® (see inside back cover for APDA
information) and are also on the Developer
Essentials CD-ROM disc.•

•I encountered a technical error in the
Macintosh Q & A section in the latest
issue of develop. The question was: “Is
the maximum size for global and local
data still 32K?” The answer stated that
the 32K limit for local (stack) data “is
basically due to the Motorola processor
architecture.” As stated in the answer,
the LINK instruction is limited to a 16-
bit offset. Unstated in the answer is that
the compiler can easily work around this
limitation. Suppose your program
declares 50K bytes of local data. The
compiler should generate a LINK
instruction for the first 32K bytes and
then adjust the stack for the remaining
18K bytes needed by the routine. If the
program is compiled specifically for the
68020 or 68030, the compiler can issue a
LINKL (link long) instruction, which
allows a full 32-bit offset.

—Chuck Lins

Thanks for the clarification. You’re
absolutely right, but of course for most of us
it doesn’t make any difference; we don’t
write our compilers, we’re slaves to them. I
guess the answer should have read “is
basically due to the way that current
compilers handle local data.” All you
aspiring compiler writers, take note.

—Dave Johnson

•After receiving Gorillas in the Disc
(Developer CD Series Volume VI) a few
months ago, I checked out the electronic
versions of the develop issues that we did
not have in hardcopy, and came across
something that prompted me to write. I
was reading the letters in develop Issue 2
(April 1990) and saw a letter and
response in which you mentioned the
“ever-popular audio track” from the

develop CD. Because we are an Apple
Partner, our copy of develop contains a
card telling us that Developer Essentials
will be included in a folder on our
Developer CD Series disc. Imagine my
disappointment when I realized that the
disc Apple Partners received contained
no audio track. What a crime to deprive
all us Partners of such a bonus! Please
tell your people that Partners want their
audio!

—Bill Stoker

The Developer CD Series disc contains a
superset of what’s on the disc that’s bound
into develop (now called the Developer
Essentials disc). Volume III of the Developer
CD Series (“A Disc Called Wanda”)
corresponds to develop Issue 2 and does
indeed contain the ever-popular audio track,
as part of the CD Audio Toolkit demo. Were
you looking for an audio track on the latest
Developer CD Series disc? If so, you would
in fact not find one there; there wasn’t one
on the corresponding Developer Essentials
disc, either. Rest assured that we won’t
deprive Apple Partners of any of the goodies
we provide on the Developer Essentials disc!

—Caroline Rose

•First let me say that develop is great!

I read on page 5 of the latest issue that
your group is now responsible for the
Developer CD Series. Gorillas in the Disc is
a bit of a disappointment. Not a lot of
really new stuff on it. That’s not your
fault, I know. There must be neat stuff
floating around in Apple somewhere!

Someone decided that the Q & A Stack
should contain both Macintosh and
Apple IIGS stuff. Boo, hiss! I tend to read
through that stack looking for stuff I

d e v e l o p Spring 1991

COMMENTS
We welcome timely letters to the editors,
especially from readers reacting to articles that
we publish in develop. Letters should be
addressed to Caroline Rose (or, if technical, to
Dave Johnson) at Apple Computer, Inc., 20525
Mariani Avenue, M/S 75-2B, Cupertino, CA
95014 (AppleLink: CRose or Johnson.DK).

All letters should include name and company
name as well as address and phone number.
Letters may be excerpted or edited for clarity
(or to make them look like they say what we
wish they did).•

4

LETTERS

LETTERS Spring 1991

5

don’t know, before I know I need to
know it! I was really confused by things
that I had never heard of on the
Macintosh before, only to find they were
on the Apple IIGS! Arrggh! Can you
please separate the IIGS stuff and the
Macintosh stuff into two stacks? And can
you please go back to the format of
putting dots beside the new stuff?

The X Ref stuff is kinda neat. Can’t wait
for 7.0 aliasing!

—Scott Anguish

Thanks a lot for your letter and your words
of encouragement. My group contributes to
the Developer CD Series, but we’re not
actually responsible for it. Besides adding
more new “neat” stuff, is there anything we
could do to improve the disc? We’re always
looking for suggestions!

Sorry to hear that adding Apple IIGS stuff
to the Q & A stack confused you so much
(but I’m awfully glad to hear that you’re
browsing the Q & A stack!). We put the
IIGS info in the stack hoping that Macintosh
developers would see how similar the two
toolboxes are and perhaps get some extra
mileage from their work by porting their
Macintosh application to the IIGS. It sounds
like it’s more confusing than helpful, so we’ll
reevaluate our decision. What do the rest of
you think about combining IIGS and
Macintosh information in one stack?

In reply to your request for dots: The latest
Q & A Stack has been reworked so much it’s
practically all new, but in the future you can
expect to once again see dots beside new
material. Also note that, starting with the
latest stack, each card will show the date of
the last modification.

—Louella Pizzuti

•Just a quick note to congratulate you
and your staff on another fine issue of
develop (and in the hopes that I won’t see
a survey). I read it cover to cover, and
thoroughly enjoyed it, especially the
Macintosh Q & A. I kept turning the
page expecting to have seen the last
question answered, but lo and behold,
there were more questions. It was better
than Jeopardy. You really outdid
yourselves! Keep up the wonderful
work, and please consider starting a new
column: a soap opera about the dogcow.

By the way, whose nose is lighting up
the cover?

—Robert H. Zakon

Thanks for the letter. If we ever do a survey
(and my boss has been pushing me to do one
ever since Issue 2 came out), I’ll make sure
that the surveyors know you’re officially
exempt.

The nose on the cover belongs to Cleo
Huggins, who has done all our covers and
nose what she’s doing.

—Louella Pizzuti

Threads are a great way to improve the performance and simplify the
design of programs. Apple’s Advanced Technology Group developed a
Threads Package to implement this programming technique on the
Macintosh. This article explains how you can use this package to
incorporate threads in your own code.

The idea for the Threads Package arose during the design phase of some scientific
visualization software, when we discovered that some of the applications we were
working on needed a way to juggle several simultaneous activities. It quickly became
clear that the Macintosh run-time environment posed some serious obstacles to
anyone wanting to implement threads on the Macintosh. With some effort, we were
able to come up with workarounds that made the use of threads with the Macintosh
OS relatively painless.

These workarounds are the main subject of this article. After briefly introducing the
purpose and mechanics of threads in general, the article presents some specific
details of the Macintosh threads implementation as it currently stands. A summary
of the functions in the Threads Package appears at the end of the article. The
Threads Package itself and several simple example programs can be found on the
Developer Essentials disc for this issue.

The Threads Package was developed as a means to an end, and it’s by no means the
last word on threads for the Macintosh. We welcome any suggestions you may have
for improvements.

WHAT THREADS DO
Suppose you want to write an AppleLink®-like communications program. You’d like
to write the program so that while it’s downloading a file, it can also print an existing
file and allow the user to write a new message. A typical program can perform only
one of these functions at a time, displaying the watch cursor until the task is
completed. What’s needed is some technique for allowing the program to perform
these tasks concurrently.

6

MICHAEL GOUGH

THREADS

ON THE

MACINTOSH

d e v e l o p Spring 1991

MICHAEL GOUGH is a designer in Apple’s
User Programming Group. We’d tell you what
he’s up to these days, but it’s so secret we’d have
to kill you if we did. Before coming to Apple,
Michael worked at STX as a NASA contractor,
designing scientific data visualization systems. He
is best known as the designer and implementor of
CDF, a “mini-database” that NASA uses to store
data from dozens of spacecraft. Michael

developed software used by NOAA’s fleet of
oceanographic vessels to map the ocean floor.
He also worked as a contractor to the United
Nations World Meteorological Organization, so
if you have any problems with the weather, now
you know who to blame. While he was there, he
developed real-time satellite tracking and data
ingest systems for the TIROS-N, GOES, and GMS
spacecraft, and conducted training and

6

Programmers have often tried to achieve concurrency through the use of idle procs.
For your communications program, for instance, you could write the downloading,
printing, and text entry tasks as idle procs. While the download procedure is
executing, it could regularly call a printing idle proc to send a few lines of a message
to the printer. The download procedure could also periodically call an editing
procedure to allow the user to enter text for a new message in a window.

But think of the tremendous effort involved in writing the program so that it can
switch among these tasks. Every task would have to save variables each time it
returns so that it could resume where it left off. Most complex functions would not
be able to contain deep levels of nesting because that would make it impossible to
freely return to the caller at any time. In fact, you’d have to divide most functions
into inconveniently small chunks so that you could juggle between them. The net
result is that the modularity of your program would be destroyed, and you’d have a
tremendous programming headache on your hands.

Threads are a much better technique for achieving concurrency than idle procs.
When your program uses threads, it’s like a mind that can have several trains of
thought simultaneously. A program using idle procs, in contrast, is like a mind with a
single train of thought that must constantly interrupt itself to attend to side issues.

Note that there’s a difference between multithreaded programs and multitasking
systems. Multitasking is the ability to run more than one application at once, but each

THREADS ON THE MACINTOSH Spring 1991

7installation in Beijing and Buenos Aires. In Beijing
he used his knowledge of electronics, computer
science, math, and Scotch tape to successfully
complete the installation—just goes to show that
you never quite know what the right tools for the
job are going to be. (Here at Apple, we make
sure he always has plenty of office supplies—just
in case.) •

WHY THREADS ARE IMPORTANT IN THE SYSTEM 7.0 ERA
Interprocess communication (IPC) is one of the most
compelling reasons why threads are going to become
increasingly important in the future. This became clear to
a group of us working in Apple’s Advanced Technology
Group when we observed that a client and a server
application communicating via IPC could easily get into a
deadly embrace. A client would ask the server
application a question and would wait for an answer
before continuing. Unfortunately, sometimes the client
would wait forever for the answer. What happened was
that the server needed to ask its own question of the client
before answering the client. However, the client was
monitoring exclusively for a response to its question and
would ignore the server’s question. The client needed to
answer the server’s incoming question before it could get
an answer to its own question. Both client and server
would be stopped dead waiting for the other to respond.

In a sense, the Threads Package exists because the
problem described here was intractable without threads.
The application must be both a client and a server. It must
be able to simultaneously handle incoming questions and
wait for incoming answers. Other approaches to doing
this, such as idle procs, skirted the core of the problem
and led to code complexity that was unmanageable. Idle
procs push too much of the problem onto the application
programmer, who already has enough to worry about.

The threads solution is even more important now that IPC
has been integrated into the Macintosh OS in System 7.0.
As more programmers will have access to IPC because of
System 7.0, they will need this elegant method of
achieving concurrency.

application can still only do one thing at a time. In other words, concurrency is
happening at the system level. A multithreaded application performs concurrent tasks
within the same program; concurrency happens at the program level. Of course, it’s
possible to have a multitasking environment in which threaded programs run.

d e v e l o p Spring 1991

8

HOW THREADS WORK
When writing multithreaded code, you must let go of old ideas about how the
machine executes your program. Instead of a single program counter marching
through your code, in a sense you now have many. While the idea of multiple
program counters may sound complex, you don’t have to relearn programming. You
just need to be aware that the main train of execution in a program is itself a thread
and that all threads must relinquish control to each other. You also have to
remember to share globals and heap objects that you used to access exclusively.

Here’s a sample program that shows how simple it is to use threads. The program is
a modified version of the ever-popular SillyBalls. Unmodified, the program opens a
window and draws colored balls into it until the main event loop detects that the
mouse button is down. This new version forks a thread that beeps while the balls are
being drawn.

IDLE PROCS VERSUS THREADS
Idle procs have traditionally been used to approach
thread-like functionality. This involves writing a piece of
code to handle a particular task and installing it in a
queue of things that get called periodically. Thereafter, the
flow of control pulses through the routine, which can do
some finite amount of work and then return, so that other
idle procs can get pulsed.

This approach results in several gnarly coding problems.
The most serious is that the pulsed routine, which is
attempting to execute some algorithm, must return to its
caller at inopportune moments. Imagine that you’re
marching through a deeply nested piece of code and you
want to relinquish control when you reach a certain point.
With the pulsing approach, you must return to the caller
from deep within the nested code. You could put in a
return statement, but the problem would be that when it’s
time to pick up where you left off, you would have to

magically jump back into the code after the return
statement on the next pulse. Obviously, this is not a simple
thing to do when you have to bypass several layers of
conditionals and loops.

The magic of the Threads Package is that it allows you to
avoid these problems: you can leave a complex function
and resume execution of it precisely where you left off.
With idle procs, on the other hand, you’re forced to
completely redesign the algorithm. You must give the
algorithm an “inside out” appearance: code that was in
the most deeply nested part of the algorithm now appears
near either the top or the bottom of the routine. You may
even have to break your routine into several smaller
functions that are run in sequence. But doing these things
will negate the natural top-down structure of a routine. It’s
a mess.

main()
{

ThreadHandle beepThread;

Initialize();

/* The InitThreads call initializes the Threads Package, converting
the original thread of execution into a swappable thread. */

InitThreads(nil, false);

/* This code forks a thread that beeps 30 times, and then quits. */

if (InNewThread(&beepThread, kDefaultStackSize))
{
long i;
for (i=0; i<30; i++)

{
SysBeep(120);
Yield();
}

EndThread(beepThread);
}

/* Here's the main event loop. The only change is the new call to
Yield. */

do
{
Yield();
NewBall();
} while (!Button());

/* This call to ExitThreads waits for all threads to die before
allowing the program to terminate. */

ExitThreads();
}

The InitThreads call is made at the beginning of the program. It initializes threads
and converts the original thread into something that can be swapped by the Threads
Package. Once this call is made, you can fork other threads.

THREADS ON THE MACINTOSH Spring 1991

9

In this example, execution from the original thread enters the InNewThread
procedure. Two threads leave the procedure, but at different times. The original
thread goes in and is cloned before coming out. A new thread now exists, but it
hasn’t started execution yet. InNewThread tests whether the current thread’s ID is
that of the new thread, beepThread, and returns a Boolean indicating the result of
this test. It’s essentially supplying an answer to the question “Am I running the new
thread?” Since the original thread is still the current thread, it returns from
InNewThread with a value of false, thus skipping over the code contained in the IF
block. It continues execution by entering the main event loop, drawing balls, and
calling the Yield function. Each time it calls Yield, it politely gives control to other
threads that may want time to execute.

On the first call to Yield, the newly cloned thread returns from the call to
InNewThread with a value of true, indicating that this is the new thread and not the
original. The new thread enters the block of code associated with the IF statement
and begins executing the loop, which beeps and yields 30 times. Each call to Yield
exchanges control with the main event loop. The new thread lives out its life within
the confines of the IF block. After completing its task, it calls EndThread and dies.

The conditions for terminating these two threads are different: the beeping thread
ends after 30 iterations; the original thread ends when the user presses the mouse
button. The call to ExitThreads at the end of the program ensures that all threads
have completed before the program terminates.

SEMAPHORES
With multiple threads running around in your program, it’s possible for them to get
in each other’s way. The Threads Package provides a semaphore mechanism to help
you manage this problem. The problem occurs when two threads compete for a
resource. Two threads that are executing at the same time may each want exclusive
use of the same device, file, or memory location.

To deal with this situation, you assign a semaphore to control access to this resource.
Then, when you write the thread that uses the resource, you always make sure that
the thread “grabs” the semaphore. After you’re done with the resource, you
“release” the semaphore.

What happens if a thread tries to grab a semaphore that has already been grabbed?
The thread goes to sleep, waiting in a queue associated with the semaphore. When
the semaphore does become available, the sleeping thread wakes up with control of
the semaphore, completely unaware that it had to wait in the queue. It continues
executing code as usual, and releases the semaphore when it’s done, thus giving
other threads an opportunity to use the resource.

d e v e l o p Spring 1991

10

Below is a small example program that demonstrates the behavior of semaphores. It’s
very similar to the first example, except that the beeping thread grabs a semaphore
before beeping 4 times and then releases it. A call to Yield was inserted within this
inner loop just to demonstrate that even though there is a call to Yield in the loop,
no balls are drawn during this time. This is because the code that draws the balls
grabs the semaphore too. When it gets control of the semaphore, it draws 20 balls
before letting go. After you release a semaphore, you still have to call Yield before
other threads will get control.

main()
{

ThreadHandle beepThread;
SemaphoreHandle aSemaphore;

Initialize();

/* The InitThreads call initializes the Threads Package, converting
the original thread of execution into a swappable thread. */

InitThreads(nil, false);
aSemaphore = NewSemaphore();

/* Fork the beeping thread. */

if (InNewThread(&beepThread, kDefaultStackSize))
{
long i,j;
Yield();
for (i=0; i<10; i++)

{

/* Grab the semaphore, beep 4 times, and release the semaphore. */

GrabSemaphore(aSemaphore);
for (j=0; j<4; j++)

{
SysBeep(120);
Yield();
}

ReleaseSemaphore(aSemaphore);
}

EndThread(beepThread);
}

THREADS ON THE MACINTOSH Spring 1991

11

/* Here's the main event loop. */

do
{
long j;
Yield();

/* Grab the semaphore, draw 20 balls, and release the semaphore. */

GrabSemaphore(aSemaphore);
for (j=0; j<20; j++)

{
NewBall();
Yield();
}

ReleaseSemaphore(aSemaphore);

} while (!Button());

/* This call to ExitThreads waits for all threads to die before
allowing the program to terminate. */

ExitThreads();
}

IMPLEMENTING THREADS ON THE MACINTOSH
After examining the ramifications of implementing threads in the Macintosh run-
time environment, we identified three serious problems:

• non-reentrant Toolbox and application code
• Toolbox use of memory between the stack and the heap
• segment unloading

Although the Threads Package minimizes the impact of these problems, you must
still deal with some special coding issues when writing programs that use threads.

NON-REENTRANT TOOLBOX AND APPLICATION CODE
When you develop code that uses threads, it’s important to write reentrant code.
This is a fancy way of saying that your threads must not interfere with each other. A
common way in which threads do interfere with each other is in the use—or
misuse—of global variables.

The basic problem can be described as follows: Your thread is merrily running
along, and it politely yields control to the other threads. When it gets control again,

d e v e l o p Spring 1991

12

the other threads may have unexpectedly changed some global variables, causing
your thread to crash and burn, or behave in an unexpected manner.

Let’s illustrate this problem with a realistic example. Suppose you want two windows
in your application, and you want to have some drawing going on in each of them
simultaneously. Naturally, you would start two threads that draw in the two
respective windows. Unfortunately, when you run the program, you find that both of
the threads end up drawing in the same window.

What happened? The first thread sets its grafPort to the grafPort of the first
window. When the first thread yields control to the second thread, the second
thread changes the grafPort to point to its window. Finally, when the first thread
gets control again, the grafPort is still pointing to the second window.

You might attempt to solve this problem by placing code that saves and restores
your grafPort before and after your call to Yield. This approach may appear to
work, but watch out! There may be other calls to the Yield function in routines
that your thread is calling. You would have to make sure your save-and-restore
code surrounds every one of these calls as well. This would be cumbersome, to say
the least.

A safer solution to the reentrancy problem is simply to write reentrant code from the
beginning. In other words, just don’t misuse global variables. But alas, millions of
lines of code have already been written for the Macintosh with globals galore. The
Macintosh Toolbox itself is on the whole non-reentrant. For instance, in the above
example, the grafPort global is referenced not just in the application but in the
Toolbox itself. It would be unrealistic to expect reentrancy problems in Toolbox and
application code to vanish overnight.

To get around all this, the Threads Package provides an innovation called
customizable swapping behavior. To understand how this behavior works, you must
first know a little bit about the thread structure.

The thread structure contains additional fields for the custom procedures that the
Threads Package uses to control a thread. Figure 1 illustrates these fields.

You implement the customizable swapping behavior by writing custom routines that
carefully set up a thread’s globals when the thread swaps in and save these values
before the thread swaps out. You assign these routines to the fields in the thread
structure, so that the Threads Package can automatically call these routines for you
when it does the actual swapping. This enables you to get control at the critical
times.

Here’s how the customizable swapping feature works. Normally when you create a
thread, the Threads Package assigns default swapping and context-preserving

THREADS ON THE MACINTOSH Spring 1991

13

functions to the thread. If you want to use all these defaults, just call the
InNewThread routine to launch a thread. To use customizable swapping, you create
the thread object yourself, customize it, and then launch it. Note that you must
always be sure to call the corresponding default routine from within your custom
routine.

Figure 1
Customizable Routines in the Thread Structure

Remember, you don’t necessarily have to use this customizable swapping technique
to juggle all of your global variables. Some globals are really fixed values and don’t
change when your program switches threads. You only have to worry about the
globals that other threads are going to change.

The following sample program demonstrates how to customize the swapping
behavior of threads. Notice that there are now two ball-drawing threads. They
manage to use the same global variable, gBallSize, to draw balls of different sizes. If
we assume that this global is used by the NewBall procedure to determine the size of
the ball, and that you don’t have control over the implementation of NewBall, then

d e v e l o p Spring 1991

14

fCopyContext�

fSwapIn�

fSwapOut�

fFree�

fSchedule�

fUserBytes�

Points to the routine that saves the context.�

Points to the routine that restores the context�
when the thread swaps in.�

Points to the routine that calls TCopyContext.*�

Points to the routine that deallocates data�
structures associated with the thread.�

Points to the routine that selects the next�
thread to execute.�

Storage area to be used as the programmer desires.�

* Don’t alter this pointer. In practice we’ve
found

you must have a way to juggle the global’s value. This example shows you how to do
just that:

pascal void MyCopyContext(ThreadHandle theThread)
{

(**theThread).fUserBytes[0] = gBallSize ;
TCopyContext(theThread);

}

pascal void MySwapIn(ThreadHandle theThread)
{

gBallSize = (**theThread).fUserBytes[0] ;
TSwapIn(theThread);

}

main()
{

ThreadHandle ballThread;
ThreadHandle mainThread;

Initialize();

/* Create and customize the main thread. InitThreads will start it. */

mainThread = NewThread(kDefaultStackSize);
(**mainThread).fCopyContext = &MyCopyContext;
(**mainThread).fSwapIn = &MySwapIn;
InitThreads(mainThread, false);

/* Create, customize, and start the ball thread. */

ballThread = NewThread(kDefaultStackSize);
(**ballThread).fCopyContext = &MyCopyContext;
(**ballThread).fSwapIn = &MySwapIn;
StartThread(ballThread);
if (InThread(ballThread))

{
long i;
gBallSize = 100;
for (i=0; i<100; i++)

{
NewBall();
Yield();
}

EndThread(ballThread);
}

THREADS ON THE MACINTOSH Spring 1991

15

/* Here's the main event loop. */

gBallSize = 20;
do

{
Yield();
NewBall();
} while (!Button());

/* This call to ExitThreads waits for all threads to die before
allowing the program to terminate. */

ExitThreads();
}

Note that this example uses procedure pointers. As always with procedure pointers,
make sure that they’re A5 relative so that they can be dereferenced from another
segment. In this case, the Threads Package will be calling your procedures at the
critical moments before swapping in and swapping out. My preferred technique for
ensuring that procedure pointers are A5 relative is to put the procedure in its own
segment, separate from the routine that’s generating the reference to it.

Figure 2 illustrates how we’ve customized the thread for the sample program above.

Figure 2
Customizing a Thread

d e v e l o p Spring 1991

16

fCopyContext�

fSwapIn�

fUserBytes�

Thread Handle�
MyCopyContext�

TCopyContext�

MySwapIn�
TSwapIn�

Save gBallSize value.�

Call default copy�
context code.�

Restore gBallSize value.�

Call default swap-in code.�
Do default stuff.�

Do default stuff.�

•�
•�

•�

gBallSize is saved here.�

TOOLBOX USE OF MEMORY BETWEEN THE STACK AND THE HEAP
Most threads implementations involve keeping a separate stack in the heap for each
thread. They do their context swapping by altering the stack pointer and the stack
base; the data on the stack never moves. Unfortunately, there are some routines in the
Macintosh Toolbox that assume the stack remains in the same place, not in the heap.

One of the primary design goals of the Threads Package was Toolbox compatibility,
so here’s the solution we chose. It’s a given that there is only one stack and all
threads must share the use of this stack. However, since a thread needs to maintain
its unique stack data and protect it from being clobbered by other threads, each
thread needs to keep this data safe when it doesn’t have control of the stack. The
way a thread does this is by creating its own unique storage area in the heap. The
Threads Package’s context-swapping strategy moves data between the stack and the
heap with the BlockMove instruction. As a thread swaps out, its context is moved to
the heap. As a thread swaps in, its context is moved from the heap into the
application’s stack area.

The context-swapping code is written in such a way that interrupts can function as
usual, and of course you can call Toolbox routines as usual. The heap storage
associated with a thread’s stack can and will grow dynamically as necessary, since it’s
free to move around in memory while it’s not running.

Swap time using this strategy is 500 microseconds for a stack size of 256 bytes
running on an SE/30. Your mileage may vary.

You must be careful not to pass pointers to stack objects between threads, since such
pointers are not valid unless the associated thread is swapped in. One subtle way that
this problem occurs is in the use of parameter blocks associated with asynchronous
I/O. Such parameter blocks should not be allocated on the stack because the I/O
operation may complete when the wrong thread is swapped in.

SEGMENT UNLOADING
When you write threaded programs for the Macintosh, you must never unload a
code segment unless you’re certain that there is no thread that has entered that code
segment and has not yet left. In some cases, you can be sure that there’s no way for a
thread to yield control while it’s in a specific code segment. For example, if you have
some code that does some computation that stands on its own, you can be
reasonably certain that there’s no way for it to call other code that could result in a
Yield. In cases like this, it’s safe to unload the segment as usual.

We looked at several mechanisms for overcoming this problem and found that the
most promising design involves unloading segments at GrowZone time. Here’s how
this could work: The system could call the GrowZone routine when you need more
memory in the current heap zone. Since the whole idea behind unloading code
segments is to free up memory, we thought that this would be a good place to

THREADS ON THE MACINTOSH Spring 1991

17

unload segments. The trick is to make sure that your GrowZone routine only
unloads segments that are not needed by any thread. To ensure this, you could
augment the thread structure to include linked-list pointers that would allow your
custom GrowZone procedure to traverse a list of all threads (even sleeping threads)
in one pass. During the traversal, GrowZone would scan the stack of each thread,
looking for anything resembling a return address. If it found a return address, the
associated code segment would be “needed.” When all the stacks were scanned,
GrowZone would simply unload all of the unneeded code segments.

THE THREADS API
Here’s a description of all the routine and data structures provided by the Threads
Package.

THE THREAD STRUCTURE
The API functions all access a thread through its handle. The thread structure as it’s
defined in the Threads.h file is as follows:

struct Thread
{

struct Thing fThing; // Linked-list stuff.
ThreadType fType; // Obsolete.
ThreadState fState; // Running,pending,blocked,sleeping,ended.
Boolean fLocked; // Obsolete.
Handle fStack; // The storage for the stack data.
ThreadProc fCopyContext; // Copy current context and store in fStack.
ThreadProc fSwapIn; // Called to context-swap a thread in.
ThreadProc fSwapOut; // Calls fSchedule, then fSwapIn on the nextThread.
ThreadProc fFree; // Called to dispose of the thread.
ScheduleProc fSchedule; // Queue this thread (if necessary), return the next one.
long fUserBytes[8]; // For user use.

};

d e v e l o p Spring 1991

18

THREADS IN USE TODAY
Threads are currently in use in a product called Virtual User (APDA #M0987LL/A). This
program uses a single machine, acting as the “user,” to run software tests on many
CPUs at once.

Virtual User used to wait until each test was done before starting something else on
another test machine. That was slow, because all the testing machines were waiting
for one of their siblings to finish something before getting anything to work on. Now,
with threads, the controlling machine is happily juggling separate conversations with
all of the testing machines simultaneously. The result is a dramatic boost in
performance.

INITIALIZING THE THREADS PACKAGE

pascal void InitThreads(ThreadHandle mainThread, Boolean usesFPU);

This routine initializes the Threads Package. The first parameter is the handle of
the main thread, which has been customized with specific swapping behavior. If you
don’t need customized swapping behavior for the main thread, pass nil. The second
parameter indicates whether you want to swap floating-point registers. If you pass a
value of true, they’ll be swapped. Of course, the Threads Package is smart enough to
know that some machines don’t support FPUs, in which case it ignores a value of
true.

CUSTOMIZING THREADS

pascal ThreadHandle NewThread(long stackSize);

Each thread structure has a number of fields that are procedure pointers. The
Threads Package assigns default procedures to these fields when it creates a thread.
You can create a custom thread by calling NewThread and changing the values of
the procedure pointers before giving the thread a chance to run.

Here’s a list of the procedure pointers that you can change in the thread structure:

ThreadProc fCopyContext;
ThreadProc fSwapIn;
ThreadProc fSwapOut;
ThreadProc fFree;
ScheduleProc fSchedule;

When you change one of these procedure pointers in the thread structure, you’re
overriding the default behavior of a given thread. You will usually customize
fCopyContext and fSwapIn to save and restore globals at the appropriate moments.
If you need to deallocate data structures associated with the thread, you should
override fFree, which is called when the thread dies.

If you’re using the default behavior, don’t forget to call the corresponding default
procedure appropriately within your procedure. Here’s a list of the default
procedures:

pascal void TCopyContext(ThreadHandle);
pascal void TSwapIn(ThreadHandle);
pascal void TSwapOut(ThreadHandle);
pascal void TFree(ThreadHandle);
pascal ThreadHandle TSchedule(ThreadHandle);

THREADS ON THE MACINTOSH Spring 1991

19

There is a handy place to store information in the thread structure, called
fUserBytes. If you store handles there, be sure to deallocate them in your override
of fFree.

pascal void StartThread(ThreadHandle theThread);
pascal Boolean InThread(ThreadHandle theThread);

Once you’ve created the thread with the call to NewThread and have customized it,
you call StartThread, which clones the current stack and saves it in the newly
created thread structure. The call to StartThread is typically followed by a call to
InThread, which returns true if the specified thread is currently running. This call is
embedded in an IF statement that you use to route the respective threads. The
original thread jumps over the code in the IF statement, while the new thread enters
this body of code.

CONVENIENCE ROUTINES

pascal Boolean InNewThread(ThreadHandle* theThread,
long stackSize);

The InNewThread function combines the features of NewThread, StartThread,
and InThread. What’s different about InNewThread is that it automatically
launches a thread with the default swapping behavior and doesn’t give you the
opportunity to customize the thread. InNewThread returns a Boolean as does
InThread, and returns a thread handle in the theThread parameter. You must
supply a value for stackSize, which is the number of bytes initially allocated for this
thread’s stack. If the number you supply is too small, the Threads Package will
automatically grow the block of memory that contains the stack. Nice, huh? So if
you don’t know or care what stack size you need, just pass in 0.

pascal ThreadHandle Spawn(ThreadHandle theThread,
pascal void (*threadProc)(ThreadHandle,

long),
long stackSize,
long refCon);

The Spawn routine is for mutants who don’t like fork semantics. You supply a
thread handle, or nil if you want an uncustomized thread. You also supply a
procedure pointer that points to a procedure containing code for the new thread to
run. The new thread dies when it returns from your procedure. You also specify a
stackSize and a refCon, which allows you to pass some context information to the
new thread. The refCon field is usually a pointer or a handle to a memory block that
contains parameters you want to pass in.

The distinguishing characteristic of spawn semantics is that the code for the new
thread is separated from the code for the original thread. Some people are more

d e v e l o p Spring 1991

20

comfortable when these things are separated, but passing parameters to initialize the
new thread is more work. With fork semantics, all of your local variables are right
there on the stack. You don’t need to package them up in a record as you do with
spawn semantics.

OTHER STUFF

pascal ThreadHandle GetCurrentThread();

The GetCurrentThread function returns the handle to the currently executing thread.

pascal void Yield();

The Yield function is called to explicitly give control to other threads. Yield is
called implicitly through other routines like Sleep. (If the current thread is going to
sleep, it had better yield control to a waking thread.)

STATES OF CONSCIOUSNESS

pascal void Sleep(ThreadHandle theThread);
pascal void Wake(ThreadHandle theThread);
pascal void EndThread(ThreadHandle theThread);

These routines allow you to alter a thread’s state of consciousness. To put a thread to
sleep, you simply call Sleep and pass it a thread handle. Usually, a thread will call
Sleep to put itself to sleep, although there are some cases where this will be done by
another thread. To wake a thread up, call Wake. To kill the thread, use EndThread.

THE THREADS ADVANTAGE
The Threads Package provides a nearly painless way for you to implement multiple
threads of execution in your programs. All you need to learn is a handful of routines
and a slightly new way of thinking about program execution. And you can gain a lot:
easier, more intuitive program design; vastly simpler code; possible performance
boosts; and, of course, that holy grail of Macintosh programmers, increased user
satisfaction. It’s a deal that’s hard to refuse.

ACKNOWLEDGMENTS

I would like to thank Joe MacDougald for his Herculean contributions to the design
and implementation of the Threads Package. Without his devoted effort, the Threads
Package would not exist in its current form. Thanks to Tom Dowdy for the FPU
register-swapping feature, and numerous other improvements. Thanks also to ATG
researcher Jed Harris, who originally suggested threads as a solution to our problems.
Jed helped a great deal with design issues, and some gnarly assembly code debugging.

THREADS ON THE MACINTOSH Spring 1991

21

The swapping strategy that allows the Threads Package to be Macintosh
Toolbox–compatible was suggested by Donn Denman. Thanks to P. Nagarajan, the
first threads user. He dropped threads into his code virtually overnight, giving us
valuable input that made it possible to steer the design and implementation.

Tom Saulpaugh made significant contributions to the current design of semaphores.
Thanks, Tom. Thanks to Dave Harrison for reviewing an early version of the source
code for threads. Thanks to Mitchell Gass for documenting an earlier version of the
Threads Package. And thanks to my mentor Larry Tesler for supporting the
development of the first version of threads, and suggesting the convenience functions.

Thanks x 106 to my editor Geta Carlson. We had a blast working together on this
article, although we’ve never met in person. Thanks to Paul Snively for polishing the
article and championing threads in DTS. Greg Anderson, C. K. Haun, Dave Johnson,
and Dave Williams all contributed valuable suggestions that were incorporated. Thanks
to Monica Meffert, Louella Pizzuti, and Caroline Rose for making the article happen.

Finally, thanks to my managers Dave Leffler and Ron Metzker for putting up with me
while I worked on this, and for supporting what this is leading up to.

d e v e l o p Spring 1991

Thanks to Our Technical Reviewers
C. K. Haun, Paul Snively, Dave Williams •

22

QUICKDRAW’S COPYBITS PROCEDURE: BETTER THAN EVER IN SYSTEM 7.0 Spring 1991

23

KONSTANTIN OTHMER

QUICKDRAW’S

COPYBITS

PROCEDURE:

BETTER

THAN EVER

IN SYSTEM 7.0

With System 7.0 comes a major revision of QuickDraw. The CopyBits
procedure, QuickDraw’s image-processing workhorse, has had some
bugs fixed and some features added. This article gives a brief overview
of changes to QuickDraw and then brings you up to speed on changes to
CopyBits.

We’re seeing some impressive examples of computer image processing at the movies
these days. Special effects in movies such as Star Trek III, Willow, Back to the Future,
Arachnophobia, Ghost, and The Abyss were either assisted or completely generated by
computer. While QuickDraw™ does not have the built-in ability to perform the
highly specialized image processing necessary to produce the types of effects seen in
those movies, producing such effects is not beyond the capability of the Macintosh.
You can write custom routines to perform such operations as rotation, warping, and
advanced filtering.

Before you get to that advanced stuff, though, you need to be familiar with
QuickDraw’s basic image-processing capabilities, which provide the starting point
for an effects toolbox. With QuickDraw’s CopyBits procedure, you can perform
several standard image-processing operations, such as resizing (by stretching,
shrinking, or clipping the image), colorizing, or changing the pixel depth.

CopyBits is better than ever in System 7.0. Improvements to transfer operations and
colorizing mean enhanced results. And it’s now easier to use a search procedure to
alter colors. We’ll look at these improvements in detail and will see samples of
CopyBits in action after a brief overview of how QuickDraw has evolved.

KONSTANTIN OTHMER is a wild man. He
whips out books, develop articles, and ski
vacations in less time than it takes most of us to
find our keys. We’re not sure what position he
plays on the soccer field—maybe it’s “guy with
the ball.” He is, however, a team player. He
works on QuickDraw in the system software group
and helps people out all over the place. The kind
of music he likes is from famous bands you

haven’t yet heard of. The baby picture here is just
a trade show disguise; if you want a hint about
what Konstantin really looks like, check out the
Berlin Wall illustration in this article—if you look
carefully you’ll find him and Bruce Leak peeking
out at you.•

d e v e l o p Spring 1991

24

A BRIEF HISTORY OF QUICKDRAW
There have been a number of QuickDraw versions since the introduction of the
Macintosh in 1984. Table 1 summarizes the major QuickDraw versions. Many
minor revisions and bug fixes have also occurred along the way, of course.

The version of black-and-white QuickDraw that accompanied the Macintosh Plus
system added the SeedFill, CalcMask, and CopyMask calls. The Macintosh II
revision introduced Color QuickDraw (which supported indexed devices only) and
revised the existing black-and-white QuickDraw (which is still used on 68000-based
machines) to display pictures (data of type 'PICT') created in the color version.

Table 1
A Summary of Major QuickDraw Versions

Where
Date Version Documented

January 1984 Original B&W QuickDraw Inside Macintosh
(Macintosh 128K) Volume I

January 1986 B&W QuickDraw Inside Macintosh
(Macintosh Plus) Volume IV

March 1987 Color QuickDraw Inside Macintosh
B&W QuickDraw Volume V
(Macintosh II)

May 1989 32-Bit QuickDraw v. 1.0 Inside Macintosh
Volume VI

September 1989 32-Bit QuickDraw v. 1.1 Inside Macintosh
(System 6.0.4, Macintosh Volume VI
IIci, IIfx, IIsi, and LC)

March 1990 32-Bit QuickDraw v. 1.2 Inside Macintosh
(System 6.0.5) Volume VI

April 1991 Color QuickDraw Inside Macintosh
B&W QuickDraw Volume VI
(System 7.0)

Note: QuickDraw is revised for system releases and, in the past, major revisions have coincided
with hardware releases. In the future, it’s likely that major system releases will be independent of
hardware releases.

Version 1.0 of 32-Bit QuickDraw, released as an INIT at the Developers
Conference in 1989, added direct-color capability to QuickDraw. No black-and-
white QuickDraw update was provided. Version 1.1 of 32-Bit QuickDraw is in
ROM on the Macintosh IIci, IIfx, IIsi, and LC. Version 1.2 of 32-Bit QuickDraw,
released as an INIT with System 6.0.5 and patched by the system on machines that
have version 1.1 in ROM, added the OpenCPicture call and the capability of
recording font names into pictures.

The System 7.0 version of Color QuickDraw integrates the functionality of 32-Bit
QuickDraw into all Color QuickDraw machines and adds a variety of new features
and bug fixes. In addition, System 7.0 has a new version of black-and-white
QuickDraw that includes some of Color QuickDraw’s functionality. (See
“QuickDraw Features New in System 7.0” on the next page for more information.)

ABOUT COPYBITS
The CopyBits procedure, along with the CopyMask and CopyDeepMask calls, is the
core of QuickDraw’s image-processing capability. CopyBits transfers a bit image
from one bitmap to another and clips the result to a specified area. With CopyBits
you can perform such image-processing operations as resizing (by stretching,
shrinking, or clipping the image), colorizing, and changing the pixel depth. You can
use it to display on-screen the contents of an off-screen buffer.

In the System 7.0 version of QuickDraw, as in previous versions, the CopyBits
procedure is defined as

PROCEDURE CopyBits (srcBits,dstBits: BitMap;srcRect,dstRect: Rect;
mode: INTEGER; maskRgn: RgnHandle);

In the original black-and-white QuickDraw, CopyBits used six explicit parameters
(srcBits, dstBits, srcRect, dstRect, mode, and maskRgn) and one global variable
(thePort). The introduction of Color QuickDraw required an additional global variable,
theGDevice, which is used to determine color information for the destination.

Although the number of variables used by CopyBits hasn’t changed from earlier
QuickDraw versions, several things have changed:

• The way transfer operations specified by the mode parameter are
performed has changed to make their results predictable
regardless of whether the destination device uses indexed or
direct color.

• The way the notCopy transfer operation is performed has
changed to improve the quality of color inversions.

QUICKDRAW’S COPYBITS PROCEDURE: BETTER THAN EVER IN SYSTEM 7.0 Spring 1991

25

d e v e l o p Spring 1991

26

NEW IN COLOR QUICKDRAW

Custom drawing for specific screen depths. The
DeviceLoop call lets applications do custom drawing for
specific screen depths rather than having QuickDraw do
the color translation. (If QuickDraw does the translation,
a picture of a color wheel may turn out solid black when
drawn on a black-and-white screen.) With DeviceLoop,
you pass a drawing region, flags, and a pointer to a
callback procedure that DeviceLoop will call for each
different device that intersects the drawing region.

Picture Utilities. The Picture Utilities package ('PACK'
15) provides an easy way to profile the contents of a
picture. It can tell you which fonts are used inside a
picture so you can warn the user if one of the fonts is not
available. It can also calculate the optimal color table or
palette (using a predefined color pick method, or you can
write your own) for displaying the picture.

Any bit depth for a mask. Before System 7.0,
CopyMask’s mask parameter could be only 1 bit deep.
This caused the mask to be used very much like a region,
selecting whether or not to copy a specific source pixel.
In 7.0, the mask can be any bit depth. It specifies a
blending value for merging the source and destination:
black selects the source, white selects the destination,
and gray provides a blend between the source and
destination. Color masks can be used to blend only
specific color components.

New version of the CopyMask call. The new
CopyDeepMask call is an extension of CopyMask that
includes a mode parameter and a region parameter.
CopyDeepMask enables a blend of the source and
destination to be applied to the destination using any
transfer mode (not just srcCopy). Like previous versions
of CopyMask, CopyMask and CopyDeepMask calls are
not saved in pictures and do not print in System 7.0.
(The resulting image can be printed, of course!) This
may change in a future version.

NEW IN BLACK-AND-WHITE QUICKDRAW

New calls. The calls RGBForeColor, RGBBackColor,
GetForeColor, GetBackColor, and QDError are now
available in B&W QuickDraw.

Font names in pictures. Font names, rather than just
font IDs (which may be different on different machines),
are recorded into pictures, as in 32-Bit QuickDraw v. 1.2.

Custom drawing for specific screen depths. The
DeviceLoop call, as described for Color QuickDraw,
exists on all 7.0 machines, but because B&W QuickDraw
supports only one screen device, the call is trivial.

Native resolution. OpenCPicture enables you to
specify a picture’s native resolution. This makes it easy to
create pictures with resolutions other than 72 dpi. This
feature was first available in 32-Bit QuickDraw v. 1.2.

Picture Utilities. See description for Color QuickDraw.
In B&W QuickDraw, the Picture Utilities will not return a
palette when you request color information.

Version 2 pictures. B&W QuickDraw previously
could display version 2 pictures created on color
machines, but could create only version 1 pictures. In
7.0, pictures created with OpenCPicture are version 2.

Display of 16- and 32-bit PICTs. Before System
7.0, B&W QuickDraw could display only PICTs
containing indexed pixMap data; in 7.0, it can display
pictures containing direct-color data.

1-bit GWorlds. In 7.0, 1-bit GWorlds are available
in B&W QuickDraw. You must access the data with
GetGWorldPixMap. You cannot dereference the
GWorldPtr directly. On black-and-white machines,
GetGWorldPixMap returns a handle to an extended
bitmap (only 1 bit is supported), rather than a pixMap.
You can then call GetPixBaseAddr to access the pixels.

QUICKDRAW FEATURES NEW IN SYSTEM 7.0

• Dithering has been extended to improve the quality of images
resulting from depth conversion, color mapping, or resizing.

• The way colorizing is performed has changed to make the results
predictable for all pixel depths.

• The use of search procedures has been extended and now
provides an easier mechanism for altering colors.

In the following sections we’ll take a closer look at each of these improvements.
We’ll then watch CopyBits in action as we stretch and colorize a gray ramp, and
perform RGB and CMY color separations.

IMPROVEMENTS TO TRANSFER OPERATIONS
The appearance of the result of the CopyBits procedure is determined by the mode
parameter. This parameter specifies which source transfer mode is to be used and
whether or not dithering should occur during transfer operations. Improvements to
CopyBits in System 7.0 make the results of transfer operations independent of
whether the destination device uses indexed or direct color. The new CopyBits also
improves the results of color inversions and extends the use of dithering.

RESULTS INDEPENDENT OF DESTINATION DEVICE
Before System 7.0, the transfer mode specified in CopyBits’ mode parameter was
implemented directly by one of eight transfer operations: Copy, Or, Xor, Bic,
notCopy, notOr, notXor, and notBic. For each bit in the source bitmap to be drawn,
QuickDraw found the corresponding bit in the destination bitmap, performed the
transfer operation on the pair of bits, and stored the resulting bit into the bit image.

This method extended naturally to the use of indexed devices in Color QuickDraw.
But with the introduction of 32-Bit QuickDraw, which supported both indexed and
direct-color devices, the results of the Or, Bic, and Xor transfer operations became
dependent on the type of destination device. Using the Or operation with direct
color—where 0 represents black and $FF represents white—resulted in pixels that
went toward white, while using the Or operation on indexed pixels—where indexes
typically range from 0 (white) to $FF (black)—had a result that went toward black.
Bic and Xor had similar problems.

For example, many applications use the srcXor transfer mode—defined in Inside
Macintosh Volume I as inverting destination pixels that are black in the
source—when dragging a selection. In the original Color QuickDraw, this operation
was performed correctly. In 32-Bit QuickDraw, on the other hand, destination pixels
that were white in the source were inverted on direct-color devices.

QUICKDRAW’S COPYBITS PROCEDURE: BETTER THAN EVER IN SYSTEM 7.0 Spring 1991

27

d e v e l o p Spring 1991

28

In the new Color QuickDraw, the transfer modes srcOr, srcBic, and srcXor are still
undefined for color pixel values, but behave correctly—that is, as documented in
Inside Macintosh Volume I—with respect to black and white regardless of whether
the destination device uses indexed or direct color. The way these modes work now
as compared to the way they worked in 32-Bit QuickDraw version 1.0 for direct
sources copied to a direct-color device is shown in Figure 1.

Figure 1
Results of Transfer Modes for Direct Source to Direct Destination

For all devices now, the srcOr transfer mode produces a black result where the
source is black. The srcXor transfer mode inverts destination pixels where the
source is black. And srcBic (which stands for “bit clear” but may be easier to
remember as “black is changed”) produces a white result where the source is black.
All three modes leave the destination pixels under the white part of the source
unchanged. (Note that using these transfer modes for colored sources, while legal,
does not always produce well-defined results.)

INVERSIONS IN COLOR SPACE
Before System 7.0, notCopy was performed by inverting source index values. In
System 7.0, the inversion takes place in color space, giving a much more pleasing
result. Note that the trade-off for higher quality in this case is reduced speed: this
operation is somewhat slower than in previous versions.

Using notSrcCopy mode to highlight items when they’ve been selected produces
good results on screens of all depths, although it suffers from gray mapping to gray.

�

srcOr� srcXor� srcBic�

32-Bit QuickDraw v. 1.0

Color QuickDraw in System 7.0

Source� Source�Destination�

QUICKDRAW’S COPYBITS PROCEDURE: BETTER THAN EVER IN SYSTEM 7.0 Spring 1991

29

Figure 2 shows a button (“Squishy”) highlighted using notSrcCopy mode.

Figure 2
Button Highlighted Using notSrcCopy Mode

EXTENSIONS TO DITHERING
32-Bit QuickDraw version 1.0 introduced the dither flag. In that version of
QuickDraw, setting the dither flag (bit 6 of the mode, called ditherCopy) caused
dithering to occur when direct pixMaps were copied to indexed destinations.

In System 7.0, setting the dither flag in QuickDraw causes dithering to occur during
any depth conversion or color mapping. For example, you can get a dither when
converting an 8-bit image to a 4-bit image or a 1-bit image, or when copying
between two 4-bit pixMaps that have different color tables. Figure 3 shows the effect
of dithering when depth conversion occurs.

8-bit original

Converted with
dithering to 4 bits

Converted with
dithering to 1 bit

Converted without
dithering to 1 bit

Figure 3
Depth Conversion With and Without Dithering

Converted without
dithering to 4 bits

d e v e l o p Spring 1991

30

8-bit original

Shrunk without dithering

Shrunk with dithering

1-bit original
Shrunk with dithering

Shrunk without dithering

Figure 4
Resizing With and Without Dithering

In addition, setting the dither flag now affects how images are resized. In 32-Bit
QuickDraw, only 32-bit pixMaps used a technique of pixel averaging in RGB space
when they were shrunk. All other pixMaps were shrunk using a technique that
maximizes pixel value and tends to turn shrunk pixMaps to black. In System 7.0,
setting the dither flag causes pixMaps of all depths to be averaged when shrunk.
Figure 4 shows the effect of dithering when shrinking a 1-bit image and an 8-bit
image. Notice that the dithered result for the 1-bit image includes shades of gray as
well as black and white.

Because dithering is a relatively slow process, setting the dither flag tells CopyBits
that quality is more important than speed. Note, however, that direct pixMaps are
always averaged when shrunk, regardless of the state of the dither flag.

IMPROVEMENTS TO COLORIZING
When CopyBits transfers an image from one bitmap to another, it refers to the
foreground and background color fields of the global variable thePort. The
foreground color specified there is applied to black pixels in the source and the
background color is applied to white pixels. This is known as colorizing.

Before System 7.0, colorizing with CopyBits was performed on the indexes of the
colors rather than on the color values. This meant that the results depended on the
organization of the color look-up table (CLUT) of the destination GDevice. Thus,
the results for multicolor images were unpredictable. This problem is illustrated in
Figure 5. This was the basis for the common knowledge that the foreground and
background color in the current grafPort must be set to black and white respectively
or unpredictable results would occur when using CopyBits.

QUICKDRAW’S COPYBITS PROCEDURE: BETTER THAN EVER IN SYSTEM 7.0 Spring 1991

31

Original image Image colorized with
pre-System 7.0 CopyBits

Image colorized with
System 7.0 CopyBits

Figure 5
Colorizing

In System 7.0, colorizing occurs in color space, not index space. Thus, colorizing
now works as predictably for deep source pixMaps as it always has for 1-bit source
pixMaps.

Colorizing is logically the last step in the CopyBits procedure. It modifies the
destination pixel color as follows: all bits that are off in the source pixel are given the
value of the corresponding bit in the foreground color, and all bits that are on are
given the value of the corresponding bit in the background color. This is illustrated
for a 16-bit pixel in Figure 6. For a foreground color of black (all components 0) and
a background color of white (all components $FFFF) this operation does not change
the pixel color value. The formula that performs this operation (in color space) is

result = (src AND bkColor) OR ((not src) AND fgColor)

Figure 6
How Colorizing Works in System 7.0

This operation may seem convoluted at first, but it turns out to be quite useful. For
example, you can invert an image by changing the foreground color to white and the
background color to black. Figure 7 shows some of the variations on one image that
can be obtained simply by changing the foreground and background colors. The
code samples later in this article use CopyBits colorizing to perform CMY and RGB
color separation.

d e v e l o p Spring 1991

32

fgColor

bkColor

source
pixel

resultb15 f14 b13 f12 b11 b10 b9 b8 f7 f6 f5 f4 b3 b2 f1 f0

0 0 1 1 0 01 0 1 0 1 1 1 1 0 0

f1f2f3f4f5f6f7f8f9f10f11f12f13f14f15 f0

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Figure 7
Colorized Versions of the 32-Bit QuickDraw Icon

AN EASIER WAY TO ALTER COLORS
In Color QuickDraw, destination color information comes from the current
GDevice. You can attach a search procedure to a GDevice to determine how colors
will appear on that device.

Before System 7.0, search procedures were used only when the source and
destination pixMaps had different depths or color tables. In System 7.0, search
procedures can be used in any case—for example, to alter the colors of a pixMap. In
addition, the RGBColor parameter that the search procedure receives is now always
a VAR parameter. (This was not true in 32-Bit QuickDraw for direct-color
destinations.)

In System 7.0, a search procedure is defined as

FUNCTION SearchProc(VAR rgb: RGBColor; VAR position: LongInt) : Boolean;

QUICKDRAW’S COPYBITS PROCEDURE: BETTER THAN EVER IN SYSTEM 7.0 Spring 1991

33

Original image fgColor = $FFFF FFFF FFFF

bkColor =$0000 0000 0000

fgColor = $8000 8000 8000

bkColor =$FFFF FFFF FFFF

fgColor = $FFFF 0000 0000

bkColor = $FFFF FFFF FFFF
fgColor = $FFFF FFFF FFFF

bkColor = $8000 8000 8000

fgColor = $8000 8000 8000

bkColor = $7FFF 7FFF 7FFF

On entry, the RGBColor parameter contains the color QuickDraw is trying to
represent on the current device. The search procedure can do one of three things:

• It can return the index or the direct-color value (depending on
the device) in the position parameter and a result of TRUE. In
this case, QuickDraw draws using the color returned in the
position parameter.

• It can modify the RGBColor parameter and return a result of
FALSE. In this case, QuickDraw ignores the position parameter
and uses its default color look-up mechanism on the returned
color to find the value to draw with. For indexed devices,
QuickDraw uses an inverse look-up table (ILUT) to determine
which index to represent a given color with. For direct-color
devices, QuickDraw merely truncates each component of the
RGBColor parameter to the desired size: 5 bits for 16-bit color, 8
bits for 32-bit color.

• It can leave the RGBColor parameter unchanged, return FALSE,
and still let QuickDraw do the job using the default algorithm above.

Using a search procedure in this way provides an easy mechanism for altering colors.
For example, to darken an image you simply attach a search procedure that reduces
the RGBColor parameter to a GDevice and then call CopyBits with that device as
the current GDevice.

COPYBITS IN ACTION
The following code samples show how to do some useful things with the improved
CopyBits found in Color QuickDraw in System 7.0. Example 1 shows how to
stretch and colorize a gray ramp. Although the example is trivial, a number of
pitfalls associated with directly accessing a GWorld’s pixMap are addressed.

Example 2 shows how to do RGB and CMY color separation with CopyBits, and
how to expand the source picture by a factor of 1.5. It’s fairly easy to do RGB and
CMY color separation using CopyBits with the correct foreground and background
colors. Note that CMYK color separation (which removes gray components before
separating the cyan, magenta, and yellow) is generally more useful than the simple
CMY separation performed here. CMYK color separation is usually accomplished
by using a search procedure.

EXAMPLE 1: STRETCHING AND COLORIZING A GRAY RAMP
The goal in this first example is to produce a red-scale ramp that fills the current
window. The code merely allocates a one-pixel-wide gray-scale line and then uses
CopyBits colorizing to stretch this line to the size of the window.

d e v e l o p Spring 1991

34

The first thing the code does is allocate a 32-bit off-screen GWorld to hold the one-
pixel-wide line. If the allocation fails, the routine does nothing.

Next, GetGWorldPixMap is used to get a handle to the GWorld’s pixMap. Note
that this call did not work in pre-System 7.0 versions of QuickDraw. In those
versions you could get the pixMap handle directly from the GWorld. On black-and-
white QuickDraw machines, you must use GetGWorldPixMap. Note that on these
machines you get the functional equivalent of a pixMap as far as GWorlds are
concerned, but you do not get a true PixMapHandle.

The code then locks the pixels. This is necessary since CopyBits can move memory.
Here’s what we’ve got so far:

void
DoColorizedCopyBits()
{

Rect srcRect;
long * bitsPtr;
short iii;
long jjj;
RGBColor myrgb, savergb;
GDHandle oldGD;
GWorldPtr oldGW;
GWorldPtr myOffGWorld;
PixMapHandle myPixMapHandle;
unsigned short myRowBytes;
char mode;

SetRect(&srcRect, 0, 0, 1, 256); /* Left, top, right, bottom. */
if(NewGWorld(&myOffGWorld, 32, &srcRect, 0, 0, 0) == noErr)
{

myPixMapHandle = GetGWorldPixMap(myOffGWorld); /* 7.0 only. */
/* myPixMapHandle = myOffGWorld->portPixMap; pre-7.0. */

LockPixels(myPixMapHandle);

Next the code gets the base address of the pixels using the GetPixBaseAddr call.
This call returns a base address that’s good in 32-bit addressing mode, so the code
saves the current mode and switches to 32-bit addressing mode. This is necessary to
support accelerators that might keep the GWorld data cached on a card requiring
32-bit addressing. See “About 32-Bit Addressing” on the next page for more
information.

QUICKDRAW’S COPYBITS PROCEDURE: BETTER THAN EVER IN SYSTEM 7.0 Spring 1991

35

d e v e l o p Spring 1991

36

ABOUT 32-BIT ADDRESSING

If your application needs to directly access the memory in
a GWorld, you need to know some things about 32-bit
addressing.

A tour through slot space. Slot space, and thus
video memory, is at the top of the memory map, as shown
in Figure 8, and sometimes requires 32-bit addressing.

In 24-bit mode, slot space ranges from $900000 to
$EFFFFF, with 1 MB per slot ($s00000 to $sFFFFF where
s = slot number $9 to $E). In 32-bit mode, slot space
ranges from $F9000000 to $FEFFFFFF, with 16 MB per
slot ($Fs000000 to $FsFFFFFF where s = $9 to $E). Super
slot space, accessible only in 32-bit mode, ranges from
$90000000 to $EFFFFFFF, with 256 MB per slot
($s0000000 to $sFFFFFFF where s = $9 to $E).

QuickDraw versions before 32-bit QuickDraw always use
24-bit slot space. But 24-bit slot space doesn’t permit
access to more than 1 MB of video memory, easily
outgrown with 32-bit-per-pixel displays. Thus, video cards
with more than 1 MB of video memory must be addressed
in 32-bit mode. 32-Bit QuickDraw always accesses the
screen in 32-bit mode, using either the 32-bit slot space or
the super slot space baseAddr as given by the video ROM.

Let’s look at some examples of how cards use slot space
if 32-Bit QuickDraw is running:

• The original Macintosh High-Resolution Video Card uses
24-bit slot space, with a baseAddr of $Fss00000. In
24-bit mode, the stripped address is $s00000, which
maps to slot s in 24-bit slot space. That address also
works with 32-Bit QuickDraw because if it’s used in 32-
bit mode, it happens to map to 32-bit slot space as well.

• The 8•24 card uses $Fs000000 (32-bit slot space) with
32-Bit QuickDraw and $Fss00000 (24-bit slot space)
with earlier versions. The 8•24 GC card uses
$s0000000 (super slot space!) with 32-Bit QuickDraw
and $Fss00000 with earlier versions.

32-Bit QuickDraw correctly handles pixMaps it
creates—that is, pixMaps belonging to GDevices in the
DeviceList and to GWorlds. However, if you create your
own pixMap with your own baseAddr, the address is
assumed to be good in 24-bit mode. If you pass
QuickDraw a 32-bit base address, you must explicitly
indicate that the address is 32-bit by setting bit 2 of the
pixMap’s pmVersion field.

The plot thickens. The issue of 24-bit versus 32-bit
addressing becomes important when you use the GWorld
calls to create a GWorld and then access the GWorld’s
pixels directly. To get the baseAddr of such a pixMap,
you should call GetPixBaseAddr. This call returns a
baseAddr that’s good for certain cards only in 32-bit
mode. Thus, you should always assume that the address
is 32-bit and that you have to call SwapMMUMode.

If you forget to switch to 32-bit mode by calling
SwapMMUMode, you’ve got problems. But the bug will
not appear until you use an 8•24 GC card with a 2 MB
DRAM upgrade kit or any other card that implements
GWorlds.

Thus, to access the data at the address returned by
GetPixBaseAddr you must switch to 32-bit mode with
SwapMMUMode, call StripAddress on any handle that you
dereference, and switch back to the original mode when
you’ve finished accessing the pixels. Example 1 in this
article shows how to correctly access a GWorld’s pixels.
Note that you can’t make any other system calls after you’ve
switched from 24- to 32-bit mode, since calls expect to be
made in whatever mode the Macintosh was started up in.

The upshot. To access the pixels of an off-screen
GWorld in System 7.0, call GetPixBaseAddr and switch
to 32-bit mode. And test your application with an
accelerator card that implements GWorlds. If you don’t
want your GWorlds to go out on a card, you can set the
keepLocal flag in NewGWorld—but then you won’t get
the benefits of graphics acceleration.

/* Get baseAddr good in 32-bit mode. */
bitsPtr = (long *) GetPixBaseAddr(myPixMapHandle);
myRowBytes = (**myPixMapHandle).rowBytes & 0x3fff;
mode = true32b; /* Switch to 32-bit mode. */

/* Go to 32-bit addressing mode to access pixels. */
SwapMMUMode(&mode);

Then the code fills the GWorld with a gray ramp. Note that you cannot make other
system calls after you switch the addressing mode, since system calls expect to be
made in the addressing mode the machine was booted in.

24-bit mode� 32-bit mode�

Slot space�
Reserved�

Super slot�
space�

Additional�
 256 MB�
per slot�

I/O�

Up to�
256 MB ROM�

Up to�
1024 MB RAM�

I/O�

Slot space�

1 MB�
per slot�

ROM�

8 MB RAM�

4 MB RAM�

2 MB RAM�

1 MB RAM�

$00F00000 �

$00E00000 �

$00D00000 �

$00C00000 �

$00B00000 �

$00A00000 �

$00900000 �

$00400000 �

$00200000 �

$00100000 �

$00000000 � $00000000 �

$40000000 �

$50000000 �

$60000000 �

$F0000000 �
$F9000000 �

$90000000 �
Various uses,�

depending on �
machine�

QUICKDRAW’S COPYBITS PROCEDURE: BETTER THAN EVER IN SYSTEM 7.0 Spring 1991

37

Figure 8
Macintosh II Memory Map in 24-Bit and 32-Bit Mode

for(jjj = 256-1; jjj >= 0; jjj--)
{

*bitsPtr = jjj | (jjj<<8) | (jjj<<16);
bitsPtr = (long *)((char *)bitsPtr + myRowBytes);

}

Next the code switches back to the prior addressing mode, sets the foreground color
to red, and uses CopyBits to stretch the line to the size of the current port and
colorize it to red. Finally, the foreground color is restored and the GWorld is
disposed of.

/* Back to old addressing. */
SwapMMUMode(&mode);
GetForeColor(&savergb);
myrgb.red = 0xFFFF;
myrgb.green = 0;
myrgb.blue = 0;
RGBForeColor(&myrgb);
CopyBits(*myPixMapHandle, &thePort->portBits, &srcRect,

&thePort->portRect, srcCopy, 0);
RGBForeColor(&savergb);
UnlockPixels(myPixMapHandle);
DisposeGWorld(myOffGWorld);

}
}

EXAMPLE 2: DOING RGB AND CMY COLOR SEPARATIONS
AND SCALING A SOURCE PICTURE
In addition to doing RGB and CMY color separation, the following code expands
the source picture by a factor of 1.5. When QuickDraw stretches an image, it simply
replicates pixel values. Thus, if you scale an image up by a factor of 3 in both the
horizontal and vertical dimensions, each pixel appears in nine places in the result.
But if you scale an image by a factor of 1.5, only every other pixel is repeated, so
source pixels do not contribute equally to the result.

Fortunately, this problem is easy to rectify. Since CopyBits averages when shrinking
with the ditherCopy flag set, you can first scale the image up by a factor of 3 and
then shrink it by a factor of 2. It’s easiest to visualize this process by thinking of the
horizontal and vertical dimensions independently. In the vertical direction, each
source pixel is first expanded to three destination pixels. Then, when the image is
shrunk by a factor of 2, CopyBits averages two scanlines to produce each pixel of the
result. The outcome is that each source pixel contributes equally to the result.

d e v e l o p Spring 1991

38

The following code sample produces CMY color separations that are scaled by 1.5.
The first section of code draws the picture into a GWorld three times the size of the
picture’s bounding box.

void
CMYColorSeparation()
{

Rect dstRect;
long * bitsPtr;
RGBColor myrgb, savergb;
GDHandle oldGD;
GWorldPtr oldGW;
GWorldPtr myOffGWorld;
PixMapHandle myPixMapHandle;

Rect bounds;
PicHandle myPicHandle;

#define PICTResID 1000

myPicHandle = GetPicture(PICTResID);
if(!myPicHandle)

return; /* Failed -> exit. */
bounds = (*myPicHandle)->picFrame;
/* Home the rect (top, left at 0, 0). */
OffsetRect(&bounds, -bounds.left, -bounds.top);
dstRect = bounds;
dstRect.right *=1.5; /* Final image = 1.5 times size of src image. */
dstRect.bottom *=1.5;
OffsetRect(&dstRect, 20, 20);

bounds.right *=3; /* Expand by factor of 3. */
bounds.bottom *=3;

if(NewGWorld(&myOffGWorld, 32, &bounds, 0, 0, 0) == noErr)
{

GetGWorld(&oldGW,&oldGD);
GetForeColor(&savergb);
SetGWorld(myOffGWorld,nil);

EraseRect(&bounds); /* Clear the GWorld. */

myPixMapHandle = GetGWorldPixMap(myOffGWorld); /* 7.0 only*/
/* myPixMapHandle = myOffGWorld->portPixMap; pre-7.0. */

LockPixels(myPixMapHandle);
DrawPicture(myPicHandle, &bounds);

QUICKDRAW’S COPYBITS PROCEDURE: BETTER THAN EVER IN SYSTEM 7.0 Spring 1991

39

The GWorld now contains the picture blown up three times in both directions.
Next it’s copied four times to the window to a dstRect 1.5 times the size of the
original picture. The first three times, the GWorld is color-separated to yellow,
magenta, and cyan; then the original image is drawn.

SetGWorld(oldGW,oldGD); /* Copy to window. */

/* Get the yellow component. */
myrgb.red = 0xFFFF;
myrgb.green = 0xFFFF;
myrgb.blue = 0;
RGBForeColor(&myrgb);
CopyBits(*myPixMapHandle, &thePort->portBits, &bounds, &dstRect,

ditherCopy + srcCopy, 0);
OffsetRect(&dstRect, 220, 0);

/* Get the magenta component. */
myrgb.red = 0xFFFF;
myrgb.green = 0;
myrgb.blue = 0xFFFF;
RGBForeColor(&myrgb);
CopyBits(*myPixMapHandle, &thePort->portBits, &bounds, &dstRect,

ditherCopy + srcCopy, 0);
OffsetRect(&dstRect, -220, 220);

/* Get the cyan component. */
myrgb.red = 0;
myrgb.green = 0xFFFF;
myrgb.blue = 0xFFFF;
RGBForeColor(&myrgb);
CopyBits(*myPixMapHandle, &thePort->portBits, &bounds, &dstrect,

ditherCopy + srcCopy, 0);
OffsetRect(&dstRect, 220, 0);

/* Copy original image. */
myrgb.red = 0;
myrgb.green = 0;
myrgb.blue = 0;
RGBForeColor(&myrgb);
CopyBits(*myPixMapHandle, &thePort->portBits, &bounds, &dstRect,

ditherCopy + srcCopy, 0);
RGBForeColor(&savergb);
UnlockPixels(myPixMapHandle);
DisposeGWorld(myOffGWorld);

}
}

d e v e l o p Spring 1991

40

Getting the RGB components is similar. Simply replace the previous four CopyBits
calls with the following:

/* Get the red component. */
myrgb.red = 0;
myrgb.green = 0;
myrgb.blue = 0;
RGBForeColor(&myrgb);
myrgb.red = 0xFFFF;
myrgb.green = 0;
myrgb.blue = 0;
RGBBackColor(&myrgb);
CopyBits(*myPixMapHandle, &thePort->portBits, &bounds, &dstRect,
ditherCopy + srcCopy, 0);

OffsetRect(&dstRect, 220, 0);

/* Get the green component. */
myrgb.red = 0;
myrgb.green = 0xFFFF;
myrgb.blue = 0;
RGBBackColor(&myrgb);
CopyBits(*myPixMapHandle, &thePort->portBits, &bounds, &dstRect,
ditherCopy + srcCopy, 0);

OffsetRect(&dstRect, -220, 220);

/* Get the blue component. */
myrgb.red = 0;
myrgb.green = 0;
myrgb.blue = 0xFFFF;
RGBBackColor(&myrgb);
CopyBits(*myPixMapHandle, &thePort->portBits, &bounds, &dstRect,
ditherCopy + srcCopy, 0);

OffsetRect(&dstRect, 220, 0);

/* Original. */
myrgb.red = 0xffff;
myrgb.green = 0xffff;
myrgb.blue = 0xffff;
RGBBackColor(&myrgb);
CopyBits(*myPixMapHandle, &thePort->portBits, &bounds, &dstRect,
ditherCopy + srcCopy, 0);

The result of these color separations is shown in Figure 9.

QUICKDRAW’S COPYBITS PROCEDURE: BETTER THAN EVER IN SYSTEM 7.0 Spring 1991

41
FOR MORE INFORMATION
The usual sources (Inside Macintosh, Tech Notes)
will soon be augmented by a new QuickDraw
book by David Surovell, Frederick Hall, and
Konstantin Othmer in the Macintosh Inside Out
series from Addison-Wesley. Debugging
Macintosh Software With Macsbug by Konstantin
Othmer and Jim Straus (Addison-Wesley, 1991)
contains a great deal of information on

debugging QuickDraw-related (as well as other)
problems.•

d e v e l o p Spring 1991

Thanks to Our Technical Reviewers
Rich Biasi, Jean-Charles Mourey, Guillermo Ortiz,
Forrest Tanaka•

42

Figure 9
CMY and RGB Color Separations Generated Using CopyBits

LATER, DUDE
CopyBits is the workhorse at the core of QuickDraw’s image-processing capabilities.
As you’ve learned in this article, it’s better than ever in System 7.0. CopyBits transfer
operations now give higher-quality images and produce reliable results for all pixel
depths and regardless of whether the destination device uses indexed or direct color.
The GDevice’s search procedure provides an easy way to alter colors. Color
separations have become fairly easy to do. Can Hollywood-style special effects be far
behind?

Original image

Yellow Magenta Cyan

Red Green Blue

As you know, when pixel data is included in a PICT, the
data is usually packed. Pixel maps that are 8 or fewer bits
deep pack fairly well using straight run-length encoding of
bytes (that is, the PackBits routine), but compressing direct
pixels using run-length encoding doesn’t work very well.
Here’s what QuickDraw does with direct pixels in PICTs:

If the packType field contains 1, no compression is done
at all. The complete pixel image is saved in the PICT. If the
packType field contains 2 and the pixel map is 32 bits per
pixel, all that’s done is that the alpha channel byte is
removed. So this

00 FF FF FF 00 FF FF FF

is compressed to this

FF FF FF FF FF FF

If the packType field contains 3 and the pixel map is 16
bits per pixel, run-length encoding is done, but not
through PackBits. Instead, a run-length encoding algorithm
private to QuickDraw is used. This algorithm is very
similar to PackBits, but where PackBits compresses runs of
bytes, this routine compresses runs of words. The format of
the resulting data is exactly the same as described in
Technical Note #171, Things You Wanted to Know About
_PackBits, but you’ll get words instead. For example, let’s
say the 16-bit pixel image begins with these pixel values:

AAAA AAAA AAAA 0000 2A2A AAAA AAAA AAAA
AAAA F0F0 0101 2A2A 4F4F AAAA AAAA AAAA

After being packed by QuickDraw’s internal compression
routine, this becomes

FEAA AA01 0000 2A2A FDAA AA03 F0F0 0101
* * * *
2A2A 4F4F FEAA AA

*

where the asterisks mark the flag counter bytes. Notice
that you can’t assume the pixel values are word-aligned.
PackBits packs data 127 bytes at a time, for up to
32,767 total bytes; similarly, the internal compression
routine packs data 127 words at a time.

If the packType field contains 4 and the pixel map is 32
bits per pixel, run-length encoding via PackBits is done,
but only after some preprocessing. QuickDraw first
rearranges the color components of the pixels so that
each color component of every pixel is consecutive. So
the following three pixels

00 FF FF FF 00 FF C0 00 00 FF 80 00
a0 r0 g0 b0 a1 r1 g1 b1 a2 r2 g2 b2

are rearranged to become

FF FF FF FF C0 80 FF 00 00
r0 r1 r2 g0 g1 g2 b0 b1 b2

In the row below the pixel values a = alpha channel,
r = red, g = green, b = blue, and the number is the pixel
offset. The first three bytes are the red components of the
three pixels, the next three bytes indicate the green
components of the three pixels, and so on. The alpha
channel isn’t included unless the cmpCount field contains
4 rather than the normal 3. If cmpCount contains 4, all
the alpha channel bytes are placed before the red bytes.
Once this is done, PackBits is called to compress the
rearranged data.

These are the only four compression schemes (including
no compression) that are supported for direct pixel maps
in PICTs. As always, reading PICTs yourself puts you in
danger of not being able to read PICTs generated by
future versions of QuickDraw. However, for compatibility
reasons, these compression algorithms as described here
probably won’t change in the future. It’s possible that new
values for packType could be implemented, though.

QUICKDRAW’S COPYBITS PROCEDURE: BETTER THAN EVER IN SYSTEM 7.0 Spring 1991

43

THE LOW-DOWN ON IMAGE COMPRESSION
BY FORREST TANAKA

d e v e l o p Spring 1991

44

With the release of 32-Bit QuickDraw version 1.0,
Apple wanted to find a way to support color printing
on the high-end (albeit black-and-white)
LaserWriter® II, as well as other, third-party devices.
So, the great implementors (GIs) created a new
LaserWriter driver—version 6.0. This driver added a
new Color/Grayscale button to the print dialog,
allowing users to print their “way cool” color
pictures that were created with 32-Bit QuickDraw.
All was happy in the land of Apple’s new color model.
But wait! There was a problem lurking on the
horizon, a problem called the PostScript Offending
Command Error.

Imagine this scenario: You’ve just created a cool 32-
Bit QuickDraw picture, a true masterpiece, and all
seems to be going well. You decide to print your
picture and show it off to Mom. You choose Print
from the File menu; the print dialog appears, and you
click OK. A few minutes pass, and voilà: a printed
page containing your picture. Life is gooood.

With this success, you’re now dreaming of other
pictures that you’ll be able to create and print. You
create another cool 32-bit picture. You choose Print
from the File menu; the print dialog appears, and you
click OK. A few minutes pass, and this time the
PostScript Offending Command Error dialog
appears, looking something like this:

Error: LimitCheck; Offending Command:
080AGOBBLEDEGOOK0B

What’s this? An offending command? But all you
wanted to do was print your color picture. You were
able to print your first picture a few minutes ago.
What’s going on? Unfortunately, LaserWriter driver
version 6.0 does not reliably print images that are
deeper than 8 bits. We won’t bore you with the
details: just think of the LaserWriter driver as a
shark, ready to swallow a surfer off the California
coast. But instead of the surfer dude it was expecting,
in rushes the surfer dude’s surfboard. The
LaserWriter driver chokes on deeper images just as
our poor shark chokes on the surfboard; the driver is
ready to receive a particular variable but occasionally
receives something different, and doesn’t know what
to do with it. The result: the PostScript Offending
Command Error. Life is no longer so good; your
dreams are beginning to fade away. But I can see a
solution appearing on the horizon . . .

Actually, there are three possible solutions: you can
use LaserWriter driver version 6.1 (or version 7.0
when it’s available); you can depth-convert your
image from 32 bits to 8 bits using 32-Bit QuickDraw;
or you can use the PostScript® image operator to
generate PostScript code for your image, and send it
directly down to the LaserWriter. Let’s look at each
solution.

Using LaserWriter driver version 6.1 is the simplest
solution. LaserWriter driver version 6.1 likes data of
any depth, no matter when it’s sent. So, if you’re
printing to LaserWriter driver version 6.1, life is
happy when you’re printing your 32-bit images—but
how can you be sure that you’re using LaserWriter
driver version 6.1?

You can call PrDrvrVers, which is provided by the
Printing Manager to enable your application to
determine which version of a particular printer driver
you’re talking to. But there’s a minor problem with
this call. You don’t know if you’re talking to a

PETE “LUKE” ALEXANDER spends much of his Developer
Technical Support time diving deep into the bowels of the
Printing Manager, where he never turns up his nose at a
challenge or at odiferous code that needs explaining. Although
that kind of diving is fun, he prefers the balmy blue waters of
anyplace (preferably far from computers) that has both beach
and beer close together. If he can’t get away from it all on the
beach somewhere, he’ll settle for getting above it all in his
glider; with Luke, being up in the air about something takes on

a whole new meaning. Fortunately, not everything on the
horizon is blue sky. Luke’s looking forward to the cool new
printing architecture that will make his job (and yours) a lot
easier. He’s preparing for this new architecture by spending a
week sailing around the Caribbean—figuring that he’d better
start getting used to a life of leisure. Until that leisure can
become a lifestyle, you can count on seeing lots from Luke.•

PRINT HINTS
FROM LUKE &
ZZ

COLOR PRINTING
WITH LASERWRITER
6.0 REVISITED

Luke speaks

PRINT HINTS FROM LUKE & ZZ Spring 1991

45

PostScript LaserWriter or some other device. So,
you must dive into the bowels of the print record for
additional information. You need to check the high
byte of the wDev field of the TPrStl record to
determine a particular driver and version. But wait!
You thought checking wDev was evil. In this case,
using wDev is OK because you’re not checking for
particular functionality of a driver, and thereby not
making your code device dependent. If wDev is 3,
you know that you’re talking to a PostScript
LaserWriter. Non-PostScript LaserWriters (for
example, the LaserWriter IIsc) have a different value
for the wDev field. You would then call PrDrvrVers
to determine if you’re talking to LaserWriter driver
version 6.1. If PrDrvrVers returns 61, you know that
you’re using LaserWriter driver version 6.1, and life
is good again. If wDev is 3, and the driver version is
less than 61, you’re not using LaserWriter driver
version 6.1, so you have a little more work to do: try
the next solution.

The next possible solution is to use 32-Bit QuickDraw
to depth-convert your 32-bit image to 8 bits by using
32-Bit QuickDraw’s GWorld support. You would first
create an 8-bit GWorld containing a grayscale CLUT,
and use CopyBits to copy your 32-bit image into it.
You would then use CopyBits to copy the 8-bit image
directly into the printer’s grafPort, and voilà—your
image would be printing. This approach works with
LaserWriter driver version 6.0 and later.

Your final option is to use the PostScript image
operator to generate PostScript code that represents
your 32-bit image. This approach is a little more
complex than the 32-Bit QuickDraw idea. To send
your data down to the LaserWriter, you would need
to use the PostScriptHandle PicComments with the
image operator. If you’re already sending PostScript
code to the LaserWriter, this is probably the best
approach.

By the way, if you don’t have a copy of LaserWriter
driver version 6.1, it’s available on the Developer
Essentials disc. If you want to ship this version of the
driver with your application, you should contact Apple
Software Licensing for the details.

In conclusion, we have some good news and some
bad news. The good news is that we’ve fixed the 32-
bit image printing problem that was present in
LaserWriter driver versions 6.0, 6.0.1, and 6.0.2.
LaserWriter driver version 6.1 will allow you to print
pictures that are 1 bit to 32 bits deep without any
problems. The bad news is that if you want your
application to print all depths of pictures with
LaserWriter driver version 6.0, you’re going to need
to do a little extra work, either depth-converting
your pictures from 32 bits to 8 bits before print time,
or using the PostScript image operator to generate
PostScript code for your image. Now that’s not so
bad, is it?

For details regarding the use of the PostScriptHandle
PicComments, take a look at Technical Note #91, Optimizing for
the LaserWriter—PicComments.•

For details about depth-converting your 32-bit images or
using the PostScript image operator, see Technical Note #72,
Color Printing.•

d e v e l o p Spring 1991

46

STEVE FALKENBURG

MACTCP

COOKBOOK:

CONSTRUCTING

NETWORK-

AWARE

APPLICATIONS

The Macintosh is now a full-fledged player in the world of TCP/IP
networking. MacTCP, an implementation of TCP/IP for the Macintosh,
lets applications take advantage of a protocol suite that is used extensively
by many makes of computers. This article attempts to demystify the
process of MacTCP programming and provides a library of calls that can
be used easily by anyone familiar with Macintosh programming.

TCP/IP, which stands for Transmission Control Protocol/Internet Protocol, was
developed by the U.S. Department of Defense Advanced Research Products Agency
(DARPA) and used initially on the ARPANET, a national research network created
by DARPA in the late 1960s. Although the ARPANET no longer exists, the TCP/IP
protocols are used on many large-scale networks. Many of these networks are
interconnected and are known collectively as the Internet.

The TCP/IP protocol stack, shown in Figure 1, is composed of several layers. At the
lowest layer, the Internet Protocol (IP) handles transmitting packets of information
from one host to another. Above this network level, TCP/IP provides two transport
layer protocols: Transmission Control Protocol (TCP) and User Datagram Protocol
(UDP). TCP provides reliable connection-based service, while UDP is not
connection based. The MacTCP® driver gives the programmer interfaces to TCP
and UDP, but not to the lower-level IP. This article deals only with TCP
programming. For information on MacTCP UDP programming, consult the
MacTCP Programmer’s Guide.

Several application-level protocols use TCP to provide user-level service. The
Simple Mail Transfer Protocol (SMTP) is used to send electronic mail, the Network
News Transfer Protocol (NNTP) is used to transfer and post news, the File Transfer
Protocol (FTP) is used to transfer files between machines, and the Finger protocol is
used to retrieve user information. MacTCP does not include programming
interfaces or implementations for any of these application-level protocols.

STEVE FALKENBURG just started his new life
as an Apple Developer Technical Support
engineer, but when writing this he was still a
computer engineering student at the University of
Michigan at Ann Arbor. Last summer he worked
in Apple’s Advanced Technology Group as an
intern, and he claims to have emerged from the
experience totally normal (a summer in ATG may
not be long enough, but a full-time job in DTS is

another story altogether). He says there is
absolutely nothing weird about him (which he
thinks is a shame), but we’re convinced we’ll
either unearth something or inspire it. In addition
to attending classes, he’s been working for the
university’s Computer-Aided Engineering
Network, supporting and programming
Macintoshes. When not working or studying,
he’s been seen in the stands at U of M football

MACTCP COOKBOOK: CONSTRUCTING NETWORK-AWARE APPLICATIONS Spring 1991

47

Figure 1
TCP/IP Protocol Stack

With connection-based protocols, such as TCP, a connection is defined as a
bidirectional open line of communication between two hosts. Data is guaranteed to
be received in the same order as it was sent, and in TCP, data reliability is ensured.
To open a connection between two computers, the initiating program sends an open
command containing the network address of the remote computer to MacTCP. If
the remote computer is listening for a connection, it acknowledges the connection,
and data can then be transferred on the connection stream. If the remote computer
is not listening for a connection, the open command fails. Once all transactions have
been completed, the connection may be closed by either computer.

Network addressing is essential to this process. Each device connected to a TCP/IP
network is assigned a unique 4-byte address, also known as the IP number, as shown
in Table 1. A unique name can also be assigned to each network entity. MacTCP
provides a name service mechanism, called the Domain Name Resolver (DNR),
which translates network names to addresses and vice versa.

games (so don’t misinterpret him when he yells
“Go Big Blue”), attending loud rock concerts,
going to movies, and reading Cyberpunk (his
favorite is William Gibson).•

Table 1
Network Name to Address Mapping

Network Name IP Number
sol.engin.umich.edu
mondo.engin.umich.edu
freebie.engin.umich.edu
daneel.engin.umich.edu
maize.engin.umich.edu

141.212.4.65
141.212.68.14
141.212.68.23
141.212.68.30
141.212.10.56

Network�
Layer�

MacTCP �
internals�{ } IP�

Application�
Layer�

Implementation�
discussed in this �
article �{ } FTP� NNTP� SMTP�

} TCP� UDP�Transport�
Layer�

MacTCP programming�
interfaces provided�{

In addition, there’s a 2-byte port number associated with TCP connections. Each
port number is usually mapped to the type of application-level service the sender is
requesting. For example, the NNTP protocol always operates on TCP port 119.
This mapping is shown in Table 2. MacTCP does not provide a service for
translating between service name and port number.

MACTCP PROGRAMMING BASICS
This section focuses on the basics of MacTCP programming, while the remainder
of the article discusses high-level, easy-to-use routines. MacTCP is a driver for the
Macintosh that provides access to TCP/IP through the Device Manager. By making
standard Device Manager PBControl calls, programs can access TCP/IP transport
protocols to control and maintain connections. The standard TCP parameter block,
defined in TCPPB.h, is shown here:

typedef struct TCPiopb {
char fill12[12];
TCPIOCompletionProc ioCompletion; /* address of completion routine */
short ioResult; /* result of call (>0 = incomplete) */
char *ioNamePtr;
short ioVRefNum;
short ioCRefNum; /* MacTCP driver reference number */
short csCode; /* command code */
StreamPtr tcpStream; /* pointer to stream buffer */
union {

struct TCPCreatePB create; /* var for TCPCreate,TCPRelease */
struct TCPOpenPB open; /* var for TCPActiveOpen,TCPPassiveOpen */
struct TCPSendPB send; /* var for TCPSend */
struct TCPReceivePB receive; /* var for TCPNoCopyRcv,TCPRcvBfrReturn,TCPRcv */
struct TCPClosePB close; /* var for TCPClose */
struct TCPAbortPB abort; /* var for TCPAbort */
struct TCPStatusPB status; /* var for TCPStatus */
struct TCPGlobalInfoPB globalInfo; /* var for TCPGlobalInfo */
} csParam;

} TCPiopb;

d e v e l o p Spring 1991

48

Table 2
Service to Port Number Mapping

Service Port Number
ftp
telnet
smtp
finger
nntp

21
23
25
79
119

From the start of the parameter block up to the tcpStream parameter, this structure
is a standard Device Manager control block. Three fields must be filled in:

• csCode, which specifies the driver command to be executed.

• ioCRefNum, which contains the MacTCP driver reference number.

• tcpStream, which contains a pointer to the pertinent TCP stream.
This stream pointer, which is described in more detail later, is the
unique identifier for a connection.

If the call is made asynchronously, as all MacTCP calls may be, a pointer to a
completion routine can be specified in ioCompletion. Depending on the type of call
made, there are various ways to fill in the union at the end of this parameter block.

TCP DRIVER CALLS
A description of some of the common commands and their parameter blocks
follows. Unless otherwise specified, a value of zero for any parameter indicates the
default value.

TCPCreate (csCode = 30)
TCPRelease (csCode = 42)
typedef struct TCPCreatePB {

Ptr rcvBuff; /* pointer to area allocated for stream buffer */
unsigned long rcvBuffLen; /* length of stream buffer */
TCPNotifyProc notifyProc; /* address of asynchronous notification routine */
Ptr userDataPtr;

}TCPCreatePB;

TCPCreate allocates a MacTCP stream to be used for opening or listening for a
connection. The rcvBuff parameter should be a pointer to a block of memory
previously allocated as a stream buffer; set rcvBuffLen to the length of that buffer. If
you want to be interrupted when the connection state changes, set notifyProc to the
address of an asynchronous notification routine (ASR). The code in this article
doesn’t make use of the ASR feature, so in this case notifyProc should be set to nil.
A pointer to the created stream is returned in tcpStream.

TCPRelease removes the stream pointed to by tcpStream from all MacTCP-
internal stream lists. It returns a pointer to the stream buffer in rcvBuff. When
TCPRelease completes successfully, this buffer should be disposed of by the calling
program.

MACTCP COOKBOOK: CONSTRUCTING NETWORK-AWARE APPLICATIONS Spring 1991

49

TCPPassiveOpen (csCode = 31)
TCPActiveOpen (csCode = 32)

typedef struct TCPOpenPB {
byte ulpTimeoutValue; /* upper-layer protocol timeout */
byte ulpTimeoutAction; /* upper-layer protocol timeout action */
byte validityFlags; /* validity flags for options */
byte commandTimeoutValue; /* timeout value for command */
ip_addr remoteHost; /* IP address of the remote host */
tcp_port remotePort; /* TCP port to connect to on the remote host */
ip_addr localHost; /* local IP number */
tcp_port localPort; /* local port from which connection originates */
byte tosFlags; /* type of service requested */
byte precedence; /* priority of connection */
Boolean dontFrag; /* if true, don't fragment packets */
byte timeToLive; /* maximum number of hops for packets */
byte security; /* security option byte */
byte optionCnt; /* number of IP options */
byte options[40]; /* other IP options (def in RFC 894) */
Ptr userDataPtr;

}TCPOpenPB;

TCPPassiveOpen listens for an incoming connection from a specific host and port.
The command completes when a remote host connects to the port monitored by
this command. Store the remote host address in remoteHost and specify the remote
TCP port number in remotePort. Connections from any host and port are possible
if these values are set to zero. Set the localPort parameter to the local TCP port
number or to zero to assign an unused port. ULP (“ulp” in the parameter names)
stands for upper-layer protocol. The ulpTimeoutValue parameter is the maximum
amount of time MacTCP allows for a connection to complete after the connection
process has started. If this timeout is reached, and the value of ulpTimeoutAction is
zero, the ASR, if present, is called and the ULP timer is reset. When the timeout is
reached, if ulpTimeoutAction is nonzero, the command returns an error. The
validityFlags parameter indicates which of the other command parameters are
specified explicitly. Bit 6 is set if the ULP timeout action is valid; bit 7 is set if the
ULP timeout value is valid. Descriptions for the rest of the entries in this structure
can be found in the MacTCP Programmer’s Guide. In most cases, they can all be set
to zero, indicating default values should be used.

TCPActiveOpen attempts to initiate a connection with a remote host and completes
when this connection is established. The parameters are identical to
TCPPassiveOpen, with the following exceptions: There’s no command timeout
parameter, although the ULP timeout is available. You must fully specify the remote
host address and remote port in remoteHost and remotePort, respectively, since it’s
impossible to initiate a connection to an arbitrary host without direction.

d e v e l o p Spring 1991

50

TCPSend (csCode = 34)
typedef struct TCPSendPB {

byte ulpTimeoutValue; /* upper-layer protocol timeout */
byte ulpTimeoutAction; /* upper-layer protocol timeout action */
byte validityFlags; /* validity flags for options */
Boolean pushFlag; /* true if data should be sent immediately */
Boolean urgentFlag; /* identifies the data as important */
Ptr wdsPtr; /* pointer to write data structure */
unsigned long sendFree;
unsigned short sendLength;
Ptr userDataPtr;

}TCPSendPB;

TCPSend sends data to a remote host along an open connection stream. The
definitions of ulpTimeoutValue, ulpTimeoutAction, and validityFlags are the same
as in TCPPassiveOpen. The pushFlag parameter is set if the data should be sent
immediately and the urgentFlag option can be set to indicate that the data is
important. The data to be sent is stored in a write data structure (WDS). The
format of this structure is simply an array of wdsEntry structures, which are
length/pointer pairs. You terminate the WDS by setting the last entry’s length
to zero.

typedef struct wdsEntry {
unsigned short length; /* length of buffer */
char * ptr; /* pointer to buffer */

} wdsEntry;

TCPRcv (csCode = 37)
typedef struct TCPReceivePB { /* for receive and return rcv buff calls */

byte commandTimeoutValue; /* timeout value for command */
byte filler;
Boolean markFlag; /* true if start of read data structure is urgent data */
Boolean urgentFlag; /* true if read data structure ends in urgent data */
Ptr rcvBuff; /* pointer to data that has been received */
unsigned short rcvBuffLen; /* amount of data in bytes that has been received */
Ptr rdsPtr; /* pointer to read data structure */
unsigned short rdsLength;
unsigned short secondTimeStamp;
Ptr userDataPtr;

}TCPReceivePB;

TCPRcv receives incoming data on an already established connection. Allocate a
buffer for the incoming data and store a pointer to this location in rcvBuff. Store the
maximum length to be received in rcvBuffLen. This value is changed to the number
of bytes received when the command completes. Store the timeout value for this

MACTCP COOKBOOK: CONSTRUCTING NETWORK-AWARE APPLICATIONS Spring 1991

51

command in commandTimeoutValue. Finally, use markFlag and urgentFlag to
delimit the start and end of urgent data blocks.

TCPClose (csCode = 38)
typedef struct TCPClosePB {

byte ulpTimeoutValue; /* upper-layer protocol timeout */
byte ulpTimeoutAction; /* upper-layer protocol timeout action */
byte validityFlags; /* validity flags for options */
Ptr userDataPtr;

}TCPClosePB;

TCPClose indicates to the remote host that the caller has no more data to send on
the connection. It’s assumed that the remote host will then issue a close command,
which permits the connection to close. However, the connection will not close until
both hosts issue this command. The parameters to this call are described in other
calls.

TCPAbort (csCode = 39)
typedef struct TCPAbortPB {

Ptr userDataPtr;
}TCPAbortPB;

TCPAbort closes a connection without asking the remote host for permission. This
command does not ensure that all data transfers have completed. The parameters to
this call are described earlier.

MEDIUM-LEVEL TCP CALLS
Since calling the Device Manager is a painful experience for some programmers, a
small library of intermediate routines can speed up development time. This article
includes such a library. There’s one medium-level call provided for each associated
TCP driver command, so these calls simply isolate programmers from filling out
parameter blocks. This seems to be a big plus with most programmers. The source
code for the calls is on the Developer Essentials disc.

Several of the medium-level calls have hooks that allow them to be called
asynchronously. Any procedure containing an async flag can be called in this
manner. If this is done, the parameter block used to make the call is returned in
returnBlock. The calling program must then poll returnBlock->ioResult to
determine when the command has completed. As with any other Device Manager
call, the ioResult field remains positive while the command is executed and then
changes to zero or a negative value upon completion, indicating the call’s result
code. Any number of calls may be awaiting completion, since medium-level routines
dynamically allocate space for parameter blocks. Completion routine hooks are not
provided by these routines, but could easily be added.

d e v e l o p Spring 1991

For a more complete reference to the
TCP driver calls, please see the MacTCP
Programmer’s Guide.•

52

If a medium-level routine is called with the async flag false, or if the routine doesn’t
have an async flag, the underlying PBControl call is still called asynchronously.
While awaiting completion of the command, the medium-level routines call a
routine defined by

Boolean GiveTime(unsigned long sleepTime);

This callback permits the application to carry out other small tasks. In the examples
in this article, GiveTime spins the cursor and calls WaitNextEvent from a secondary
main event loop to handle a subset of normal program operation and to give other
applications time to execute.

At this point, you may be thinking that figuring out proper values for these routines
is as much of a pain as filling out parameter blocks. For this reason, another set of
high-level routines is provided for sending and receiving data.

HIGH-LEVEL TCP CALLS
High-level TCP calls further simplify and generalize the process of calling MacTCP.
Write data structures are not required to send data, only a single timeout value is
allowed, and other TCP specifics (mark, push, and so on) have been removed.
Instead, the high-level calls are a core set of routines that are both understandable
and easy to use. In most cases, it’s to your advantage to use these routines, since they
abstract the MacTCP programming interface to resemble a generic connection-
based protocol scheme. This opens the possibility of porting these high-level
routines to another protocol stack, such as AppleTalk®. In fact, if the high-level
routines were modified to use AppleTalk Datastream Session Protocol (ADSP), any
code written using the high-level calls for MacTCP could be compiled for use on an
AppleTalk network. The source code for these routines is on the Developer Essentials
disc.

The operation of high-level MacTCP calls is fairly straightforward. For each
asynchronous routine, there’s a corresponding routine to call when the asynchronous
command completes. The moment of completion can be determined by polling
returnBlock->ioResult. This returnBlock parameter is the same as the one returned
by the medium-level routines and contains the MacTCP parameter block used in
the pending asynchronous call.

NAME RESOLVER CALLS
Before you can build a useful network application, you must consider name-to-address
resolution. Name-to-address resolution provides a means of converting from domain
names (unique string identifiers for computers on a TCP/IP network) to IP numbers
(4-byte addresses) and vice versa. In general, people can remember the name of a
computer (for example, goofy.apple.com) more easily than they can remember a
network address (for example, 90.1.0.10). Translation tables between the names and
numbers can be stored on the local machine (the MacTCP Hosts file, for example) or

MACTCP COOKBOOK: CONSTRUCTING NETWORK-AWARE APPLICATIONS Spring 1991

53

on a remote server. Remote access to network numbers is provided through the
Domain Name Server protocol. The MacTCP Domain Name Resolver allows
name/address translations using both the static table and remote server methods.

The MacTCP Developer’s Kit (APDA #M0230LL/D) ships with the file dnr.c, a
set of C routines providing a programming interface to the name resolver. Several
important calls from this code module are described here.

OSErr OpenResolver(char *fileName);

OpenResolver initializes the name resolver. As a parameter to the call, you can
supply a local file containing important hosts. Passing nil for this filename defaults
to the Hosts file in the current System Folder.

OSErr StrToAddr(char *hostName, struct hostInfo *hostInfoPtr,
ResultProcPtr ResultProc, char *userDataPtr);

StrToAddr converts a string of the form “W.X.Y.Z” or “goofy.apple.com” to its
4-byte IP address. The hostInfo struct that you pass in looks like this:

typedef struct hostInfo {
long rtnCode;
char cname [255];
unsigned long addr [NUM_ALT_ADDRS];

};

OSErr AddrToName(ip_addr addr, struct hostInfo *hostInfoPtr,
ResultProcPtr ResultProc, char *userDataPtr);

AddrToName performs a reverse lookup to retrieve a host name, given a 4-byte IP
address.

OSErr CloseResolver();

CloseResolver closes the resolver and deallocates the resources and the address
cache that has accumulated.

Calls to these dnr.c routines can be combined to construct a fairly simple routine to
convert host names to IP addresses:

/* CvtAddr.c
Converts host names to IP numbers
written by Steve Falkenburg

*/

d e v e l o p Spring 1991

54

#include <Types.h>
#include <MacTCPCommonTypes.h>
#include <AddressXLation.h>
#include "CvtAddr.h"

pascal void DNRResultProc(struct hostInfo *hInfoPtr,char *userDataPtr);

/* ConvertStringToAddr is a simple call to get a host's IP number, given the name
of the host.

*/

OSErr ConvertStringToAddr(char *name,unsigned long *netNum)
{

struct hostInfo hInfo;
OSErr result;
char done = 0x00;

if ((result = OpenResolver(nil)) == noErr) {
result = StrToAddr(name,&hInfo,DNRResultProc,&done);
if (result == cacheFault)

while (!done)
; /* wait for cache fault resolver to be called by interrupt */

CloseResolver();
if ((hInfo.rtnCode == noErr) || (hInfo.rtnCode == cacheFault)) {

*netNum = hInfo.addr[0];
strcpy(name,hInfo.cname);
name[strlen(name)-1] = '\0';
return noErr;

}
}
*netNum = 0;

return result;
}

/* This is the completion routine used for name resolver calls.
It sets the userDataPtr flag to indicate the call has completed.

*/
pascal void DNRResultProc(struct hostInfo *hInfoPtr,char *userDataPtr)
{
#pragma unused (hInfoPtr)

userDataPtr = 0xff; / Setting the user data to nonzero means we're done. */
}

MACTCP COOKBOOK: CONSTRUCTING NETWORK-AWARE APPLICATIONS Spring 1991

55

PROGRAMMING A SIMPLE MACTCP APPLICATION
The core set of routines provided in the earlier sections makes it fairly easy to write
a small but useful TCP application. These core routines can be stacked together to
form a framework for a basic MacTCP application, as shown in Figure 2. Note that
no module accesses a module that’s farther than one level away. This provides the
programmer the flexibility needed to improve the networking library or switch
protocol stacks without losing functionality.

Figure 2
Finger Code Modularization

One of the simplest and most widely used network utilities is finger. Implemented
on most UNIX workstations, finger is used to retrieve personal information (such as
phone number and address) for a particular user. The finger utility accesses
information through the Finger User Information Protocol, discussed in RFC 1194
on the Developer Essentials disc. The protocol operates on a client/server model.
Figure 3 is a diagram of a sample transaction.

d e v e l o p Spring 1991

56

Application-level Protocol�
finger.c�

MacTCP Device Driver� Domain Name Resolver�

High-Level Calls�
(TCPHi.c)�

ConvertStringToAddr�
(CvtAddr.c)�

Programmer-Level DNR�
(dnr.c)�

Medium-Level Calls�
(TCPRoutines.c)�

= provided by MacTCP� = provided in article�

Figure 3
Finger Protocol Transaction

The code for a simple MPW tool to implement the Finger protocol is shown here,
with accompanying explanation:

/* MacTCP finger client */
/* written by Steven Falkenburg */
/* */

#include <Types.h>
#include <Memory.h>
#include <Packages.h>
#include <CursorCtl.h>
#include <String.h>

#include "CvtAddr.h"
#include "MacTCPCommonTypes.h"
#include "TCPPB.h"
#include "TCPHi.h"

/* constants */

#define kFingerPort 79 /* TCP port assigned for finger protocol */
#define kBufSize 16384 /* Size in bytes for TCP stream buffer and receive buffer */
#define kTimeOut 20 /* Timeout for TCP commands (20 sec. pretty much arbitrary) */

MACTCP COOKBOOK: CONSTRUCTING NETWORK-AWARE APPLICATIONS Spring 1991

57

1. Client sends "sfalken" to retrieve
information on user sfalken.

3. Client receives "Phone: 555-1234"
from server and closes connection.

2. Server retrieves information from
database: "Phone: 555-1234"

Client Server

/* function prototypes */

void main(int argc,char *argv[]);
OSErr Finger(char *userid,char *hostName,Handle *fingerData);
OSErr GetFingerData(unsigned long stream,Handle *fingerData);
void FixCRLF(char *data);
Boolean GiveTime(short sleepTime);

/* globals */

Boolean gCancel = false; /* This is set to true if the user cancels an operation. */

/* main entry point for finger */
/* */
/* usage: finger <user>@<host> */
/* */
/* This function parses the args from the command line, */
/* calls Finger() to get info, and prints the returned info. */

void main(int argc,char *argv[])
{

OSErr err;
Handle theFinger;
char userid[256],host[256];

if (argc != 2) {
printf("Wrong number of parameters to finger call\n");
return;

}

sscanf(argv[1],"%[^@]@%s",userid,host);

strcat(userid,"\n\r");

err = Finger(userid,host,&theFinger);

if (err == noErr) {
HLock(theFinger);
FixCRLF(*theFinger);
printf("\n%s\n",*theFinger);
DisposHandle(theFinger);

}
else

printf("An error has occurred: %hd\n",err);
}

d e v e l o p Spring 1991

58

/* Finger() */
/* This function converts the host string to an IP number, */
/* opens a connection to the remote host on TCP port 79, sends */
/* the id to the remote host, and waits for the information on */
/* the receiving stream. After this information is sent, the */
/* connection is closed down. */

OSErr Finger(char *userid,char *hostName,Handle *fingerData)
{

OSErr err;
unsigned long ipAddress;
unsigned long stream;

/* open the network driver */

err = InitNetwork();
if (err != noErr)

return err;

/* get remote machine's network number */

err = ConvertStringToAddr(hostName,&ipAddress);
if (err != noErr)

return err;

/* open a TCP stream */

err = CreateStream(&stream,kBufSize);
if (err != noErr)

return err;

err = OpenConnection(stream,ipAddress,kFingerPort,kTimeOut);
if (err == noErr) {

err = SendData(stream,userid,(unsigned short)strlen(userid),false);
if (err == noErr)

err = GetFingerData(stream,fingerData);
CloseConnection(stream);

}

ReleaseStream(stream);
return err;

}

OSErr GetFingerData(unsigned long stream,Handle *fingerData)
{

OSErr err;

MACTCP COOKBOOK: CONSTRUCTING NETWORK-AWARE APPLICATIONS Spring 1991

59

long bufOffset = 0;
unsigned short dataLength;
Ptr data;

*fingerData = NewHandle(kBufSize);
err = MemError();
if (err != noErr)

return err;

HLock(*fingerData);
data = **fingerData;
dataLength = kBufSize;

do {
err = RecvData(stream,data,&dataLength,false);
if (err == noErr) {

bufOffset += dataLength;
dataLength = kBufSize;
HUnlock(*fingerData);
SetHandleSize(*fingerData,bufOffset+kBufSize);
err = MemError();
HLock(*fingerData);
data = **fingerData + bufOffset;

}
} while (err == noErr);

data[0] = '\0';

HUnlock(*fingerData);
if (err == connectionClosing)

err = noErr;
}

/* FixCRLF() removes the linefeeds from a text buffer. This is */
/* necessary, since all text on the network is embedded with */
/* carriage return linefeed pairs. */

void FixCRLF(char *data)
{

register char *source,*dest;
long length;

length = strlen(data);

if (*data) {
source = dest = data;

d e v e l o p Spring 1991

60

while ((source - data) < (length-1)) {
if (*source == '\r')

source++;
*dest++ = *source++;

}
if (*source != '\r' && (source - data) < length)

*dest++ = *source++;
length = dest - data;

}

*dest = '\0';
}

/* This routine would normally be a callback for giving time to */
/* background apps. */

Boolean GiveTime(short sleepTime)
{

SpinCursor(1);
return true;

}

The main points in the execution of this program can be traced as follows:

1. Get userid, host
2. Initialize MacTCP InitNetwork();
3. Get address of host ConvertStringToAddr(hostName,&ipAddress);
4. Make a TCP stream CreateStream(&stream,kBufSize);
5. Connect to finger host OpenConnection(stream,ipAddress,kFingerPort,kTimeOut);
6. Send userid across stream SendData(stream,userid,(unsigned short)strlen(userid),false);
7. Receive finger information RecvData(stream,data,&dataLength,false);

from stream
8. Close connection CloseConnection(stream);
9. Release stream ReleaseStream(stream);

10. Quit program

Once the host name and user ID are received, MacTCP is initialized by a call to
InitNetwork. The IP number of the host is then retrieved by a call to
ConvertStringToAddr. If this is successful, CreateStream creates a TCP stream, and
OpenConnection opens a connection on that stream to the finger port on the
remote host. Next, SendData sends the user ID along this connection. The finger
information is received through repeated calls to RecvData. Once all data has been
sent, CloseConnection closes the connection, and the stream is removed with

MACTCP COOKBOOK: CONSTRUCTING NETWORK-AWARE APPLICATIONS Spring 1991

61

ReleaseStream. Finally, the program terminates, leaving the MacTCP driver open.
Here’s a sample run of the finger tool in action:

finger sfalken mondo.engin.umich.edu <enter>
Login name: sfalken In real life: Steven Falkenburg
Phone: 555-1234
Directory: /u/sfalken Shell: /bin/csh
On since Feb 26 07:08:28 on ttyp2 from rezcop.engin.umi
No Plan.

The code for the finger tool can be compiled and linked with the high- and
medium-level routines into an MPW tool. This example shows how a standard
network protocol can be easily encapsulated into a simple program. The high-level
networking calls act somewhat like a Macintosh Toolbox Manager, since they
encapsulate the complexity of TCP programming. These routines can be used by
any programmer with a user-level knowledge of networking, making network
programming less of a mysterious art.

NEWSWATCHER—A COMPLEX TCP APPLICATION
The finger tool is limited in scope, but the same techniques can be used to construct
more complex programs. NewsWatcher, a Macintosh-based network news reader,
provides an example.

One of the most popular services available on the Internet is network news, an
international forum for discussion of almost any topic you can imagine. Anyone can
post and read messages. Since thousands of messages are posted every day, the
messages are divided into more than a thousand newsgroups. Examples of these
diverse groups include

comp.sys.mac.programmer Macintosh programming discussions
comp.sys.mac.misc Miscellaneous Macintosh ramblings
alt.flame.spelling People insulting others’ spelling skills
alt.alien.visitors Discussions of alien life—intelligent or otherwise

The volume of network news bombarding readers necessitates a usable interface.
I wrote NewsWatcher to provide that interface.

NAVIGATING THE NET WITH NEWSWATCHER
Before plunging into a deep technical discussion of the NewsWatcher code
structure, a brief description of the interface is in order. A typical NewsWatcher
screen is shown in Figure 4.

d e v e l o p Spring 1991

62

Figure 4
A Typical NewsWatcher Screen

The program is based on a multiwindow browser interface, similar to the Finder
(without the icons). A window containing all active newsgroups is always available,
and users can get a full article subject list for a group by double-clicking that group’s
name. This opens up another browsing window, containing the subjects. These
subjects, in turn, can be opened to display the full text of individual articles in
separate windows. A user who wants to keep track of a few specific newsgroups and
see only new articles in those groups can “subscribe” to the specific groups. This is
done by choosing New Group Window from the File menu, which creates an
empty group window. The desired groups can then be dragged from the main
Newsgroups window to this custom group window. The new window can be
browsed like any other group window. When the user is ready to quit, the custom
group list can either be saved to disk or uploaded to a UNIX® news file (using
FTP). This gives users access to their group list from multiple computers.

MACTCP COOKBOOK: CONSTRUCTING NETWORK-AWARE APPLICATIONS Spring 1991

63

d e v e l o p Spring 1991

64

INTRODUCTION TO NNTP

The Network News Transfer Protocol (NNTP) is a popular
protocol for transmitting and accessing network news on
the Internet. This protocol, which runs out of TCP port 119
on a news host computer, is described in detail in RFC
977 on the Developer Essentials disc. NNTP, like finger, is
based on the client-server model. An NNTP server, usually
one per site, stores a copy of each newsgroup and new
article. Clients contact this server to request news or post
new articles.

The protocol is based on a request-response model.
Clients contact the NNTP server, make a request, and
receive a response. A sample session with an NNTP
server is shown below. Commands sent from the client (in
this case a Macintosh) are shown in italics.

200 srvr1.engin.umich.edu NNTP server version 1.5.10 + serve.c GNUS patch (3 October 1990)
ready at Tue Oct 9 23:46:12 1990 (posting ok).

HELP

100 This server accepts the following commands:
ARTICLE BODY GROUP
HEAD LAST LIST
NEXT POST QUIT
STAT NEWGROUPS HELP
IHAVE NEWNEWS SLAVE

Additionally, the following extension is supported:

XHDR Retrieve a single header line from a range of articles.

Bugs to Stan Barber (Internet: nntp@tmc.edu; UUCP: ...!bcm!nntp)
.
GROUP comp.sys.mac.misc
211 281 3035 3744 comp.sys.mac.misc
ARTICLE 3035
220 3035 <1990Sep14.145124.25214@midway.uchicago.edu> Article retrieved; head and body
follow.

...article text here...

.
QUIT
205 srvr1.engin.umich.edu closing connection. Goodbye.

Not surprisingly, the user interface code for NewsWatcher, though complex, has
virtually nothing to do with MacTCP programming and is beyond the scope of this
article. This code, however, is included on the Developer Essentials disc for those
interested in a multiwindow browsing system.

NEWSWATCHER NNTP ROUTINES
The Network News Transfer Protocol (NNTP) is easily implemented from the
medium-level TCP calls described in the first part of this article. (For information
on NNTP, see “Introduction to NNTP.”) The NNTP calls in NewsWatcher are
encapsulated into a module named NNTPLow.c. The external functions in this
module, along with a description of their purpose, are described here:

OSErr StartNNTP(void);

StartNNTP initializes the network resources needed to establish an NNTP
connection with a remote server. Once all proper drivers have been initialized, this
routine opens a connection to the local NNTP server, whose name is stored in the
program’s configuration file. This connection is maintained throughout the life span
of the program.

OSErr CloseNewsConnection(void);

CloseNewsConnection gracefully terminates a connection with a remote NNTP
server. This command is executed only when NewsWatcher is quitting.

OSErr ResetConnection(void);

ResetConnection is called when a communication error occurs between the client
and server. This routine terminates and attempts to reestablish connection to the
NNTP server.

OSErr GetGroupList(short *numGroups);

GetGroupList puts the list of newsgroups in the global variable gGroupList. To get
the list of groups from the server, the command LIST is sent to the server, which
responds with a list of all known newsgroups.

OSErr GetMessages(char *newsGroup,long first,long last,
TSubject *subjects,long *numSubjects,char *hdrName);

GetMessages returns a set of subject headers specified by group name and article
number range. This routine operates by sending the command XHDR groupname
first-last to the NNTP server and parsing the response.

MACTCP COOKBOOK: CONSTRUCTING NETWORK-AWARE APPLICATIONS Spring 1991

65

OSErr GetArticle(char *newsGroup,char *article,char **text,
long *length, long maxLength);

GetArticle retrieves the full text of the article in group newsGroup named article.
This procedure sends the command ARTICLE article to the NNTP server.

These procedures are called in response to user requests for articles and subject
lists. As you can see, there’s absolutely no network dependence at this point, even on
the NNTP protocol. It would be trivial to write a set of routines with identical
function prototypes that treated a file hierarchy on a hard disk as a set of
newsgroups and articles. This layered isolation approach is of critical importance in
network programming, since network-level protocols may change while applications
remain the same.

OTHER PROTOCOLS IN NEWSWATCHER
In addition to NNTP, several other network protocols are implemented for
NewsWatcher. These protocols include the Simple Mail Transfer Protocol (SMTP)
and the File Transfer Protocol (FTP).

Simple Mail Transfer Protocol (SMTP). SMTP gives users the ability to respond
to article postings through electronic mail. This protocol, like NNTP, operates on a
request-response stream. SMTP servers listen on TCP port 25, and the protocol is
described in detail in RFC 821 on the Developer Essentials disc. NewsWatcher
contains a single procedure, SendSMTP, that takes care of setting up a connection
to the server, sending the message, and disconnecting. The function prototype for
this function is as follows:

Boolean SendSMTP(char *text,unsigned short tLength);

The SendSMTP code is contained within the SMTPLow.c code module. This
separation allows the code to be used in other programs easily. The routine calls
functions in TCPLow.c (the medium-level routines) and is called from netstuff.c.

File Transfer Protocol (FTP). NewsWatcher includes FTP-based routines that
allow users to send lists of newsgroups to, and receive them from, a file on a remote
machine. This protocol uses a control stream, running on TCP port 21, to set up
file transfers. When a transfer is initiated, a secondary data stream is opened on a
negotiated TCP port. The file transfer is completed by means of this secondary
stream, and the data stream is then closed down. For a detailed description of the
protocol and command set used, see RFC 959 on the Developer Essentials disc. To
shield programmers from the complications of FTP, I wrote several high-level
routines to implement it:

d e v e l o p Spring 1991

66

OSErr FTPInit(ProcPtr statusCallback);

FTPInit initializes network resources required for FTP transfers. The single
parameter provided is a pointer to a callback procedure called when a status message
is received from a remote host.

OSErr FTPFinish(void);

Call this routine when file transfers are finished to release network resources used to
support the FTP session.

OSErr FTPConnect(unsigned long *connID,char *address,char *userID,
char *password);

Call FTPConnect with the address of the remote machine, along with the user ID
and password of the account needed to access that machine.

OSErr FTPDisconnect(unsigned long connID);

After all transfers to a particular host have been completed, call this routine to
disconnect from the remote host.

OSErr FTPViewFile(unsigned long connID,Ptr *file,char *fileName);

FTPViewFile retrieves a file from the remote machine and stores its data in a
pointer allocated within the function.

OSErr FTPPutFile(unsigned long connID,char *fileName,char *data,
long size);

FTPPutFile is used to send a file to a remote machine. The remote filename and
the file data and length must be given.

These routines are contained in FTPLow.c, using the same modular layered
approach as for other protocols.

NEWSWATCHER CODE MODULARITY
As in the finger example, the NewsWatcher source code is structured for maximum
flexibility in case of a protocol switch and to allow for ease in code sharing. The
logical code blocks are shown in Figure 5. The FTPLow.c module, for example,
could easily be extended and used as a generic file transfer module in many
applications. It simply requires the medium- and high-level TCP calls described
earlier.

MACTCP COOKBOOK: CONSTRUCTING NETWORK-AWARE APPLICATIONS Spring 1991

67

Figure 5
NewsWatcher Code Modularization

SUMMARY
Although programming with MacTCP can be fairly complicated from a low-level
point of view, using high-level routines makes it much simpler to create an easy-to-
use TCP networking module. Once difficult issues, such as asynchronous behavior,
are handled at a low level, higher-level modules can successively add protocol
support for mail, news, and file transfer. These high-level routines can be used by
any programmer, regardless of network-level knowledge.

d e v e l o p Spring 1991

For interested programmers, full source
code to both the finger tool and NewsWatcher
are available on the Developer Essentials disc.•

68

User Interface�
(various files)�

netStuff.c�

NNTPlow.c� FTPLow.c� SMTPLow.c�

High-Level TCP Routines (TCPHi.c)�

Medium-Level TCP Routines (TCPRoutines.c)�

For information on the TCP/IP protocol stack and networking in
general:

• Douglas E. Comer: Internetworking with TCP/IP, Prentice Hall, 1991.
• Andrew S. Tanenbaum: Computer Networks, Prentice Hall, 1988.

For an in-depth discussion of some of the protocols:

• J. B. Postel: Simple Mail Transfer Protocol, RFC #821, August 1982.
• J. B. Postel and J. K. Reynolds: File Transfer Protocol, RFC #959, October 1985.
• B. Kantor and P. Lapsley: Network News Transfer Protocol, RFC #977, February 1986.
• D. P. Zimmerman: Finger User Information Protocol, RFC #1194, November 1990.

These RFCs are on the Developer Essentials disc. The library of RFC (Request For
Comment) memos is available by anonymous FTP from NIS.NSF.NET in the directory
RFC. Use FTP to connect to this host and use anonymous for username and guest for
password.

A useful on-line reference for TCP/IP:

• Computer Science Facilities Group: Introduction to the Internet Protocols, Rutgers
University, 1988.

This on-line reference is on the Developer Essentials disc.

MACTCP COOKBOOK: CONSTRUCTING NETWORK-AWARE APPLICATIONS Spring 1991

69
Thanks to Our Technical Reviewers
Pete (Luke) Alexander, Brian Bechtel, Harry
Chesley, Larry Rosenstein, Andy Shebanow,
Gordon Sheridan, John Veizades.•

I just learned about a technique for graphically
representing points in n-dimensional space, first
presented in 1973 (I guess I’m a little behind) by a
Harvard statistician, H. Chernoff. Representing
points in two or three dimensions is pretty
straightforward, but what about data points in, say,
ten dimensions? Chernoff’s approach was to use
cartoon faces, with each dimensional parameter
determining a facial feature. One parameter
determines eye size, for instance; another regulates
eyebrow slant, another determines the position of the
mouth, and so on. I was struck dumb by the power of
the idea. Humans have a built-in feature integration
and recognition ability that lets us intuitively track
and correlate changing facial features with no
conscious effort, and Chernoff’s technique elegantly
capitalizes on this ability.

The possible uses for these “Chernoff faces” are
many and varied. In his book Computers, Pattern,
Chaos, and Beauty, Clifford Pickover talks about a
number of possible applications: the elucidation of
high-level statistical concepts, uses in air traffic
control and aircraft piloting, educational
applications, and many more. In one particularly
illuminating example he uses the faces to characterize
sound. He runs the sound data through an auto-
correlation function (for the gory details, see his
book) and then uses the first ten points of the
resulting data set to control the faces. As examples he

shows the faces generated by the sounds s, sh, z, and
v, sounds which are very similar. The resulting faces,
though, are easily and immediately distinguishable.
As Pickover points out, this correlation between
sounds and appearance of the faces immediately
suggests the possibility of using the faces as feedback
devices for helping severely hearing-impaired people
to modify their vocalizations. To learn a particular
sound, they would try to produce the same Chernoff
face as that produced by a hearing person vocalizing
the sound.

There are a few things worth noting about these
faces. First of all, children respond just as well as
adults to the faces. Since facial recognition
capabilities develop in infancy, that’s really not
surprising, but it does mean that the faces have very
broad application possibilities. I’d also bet that
they’re freer of cultural bias than many interface
elements, which broadens their possible uses even
more. Second, the faces probably aren’t appropriate
for quantitative analysis; if you need to get the exact
value of a parameter, use a gauge. But they’re great
for high-level cognitive discrimination, especially
for tracking qualitative changes in multiple variables
through time. Third, because they’re human faces,
they could contain emotional connotations that
have nothing whatever to do with the data they
represent. Imagine a face used to track water levels
and pump pressures in a nuclear power plant getting
happier and happier as the plant approaches
meltdown. Time for some facial calibration, I’d say.

Included on the Developer Essentials CD is my
version of Pickover’s face routine. It takes as
arguments a pointer to a rect and a pointer to an
array of 10 bytes, and it draws the resulting face in
the current port, scaled to the rect. See the code for
more details. One really cool thing is that if ten
dimensions aren’t enough, you can simply add more
detail to the picture: hair maybe, or ears. The
hardest part is coming up with meaningful 10-D
data.

d e v e l o p Spring 1991

DAVE JOHNSON, our technical buckstopper, has been with
Apple for three years. Before becoming an official stopper-of-the-
buck, he worked on PostScript printers in Apple’s software
testing group. His interest in computers dates back to his college
days at Humboldt State University, where he majored in energy
systems engineering, and minored in everything else he could
think of (it was a seven-year stay). He’s also our resident juggler,
who will juggle anything or anybody—and has. Actually, Dave
has always been a show-biz kind of guy; as a kid, he was into

monster makeup, which led him to monster-making and
puppeteering at Lucasfilm’s Industrial Light and Magic. (You’ve seen
his work in such flicks as Spaceballs, The Witches of Eastwick, and
Inner Space; he was also an On-Set Duck Mechanic for Howard the
Duck.) When not buckstopping and juggling, he programs the
Macintosh (screen savers, gratuitous fractal programs, artificial life
simulations: nothing useful), hangs out with his wife and dogs, reads
as much as possible, and pushes all available limits, both real and
imagined.•

70

THE VETERAN
NEOPHYTE

A FAMILIAR
(INTER)FACE

DAVE JOHNSON

THE VETERAN NEOPHYTE Spring 1991

71

What’s really interesting is how this technique and
others like it capitalize on the kind of processing that
we already do automatically: you don’t have to learn
to discriminate faces; you already know how, and you
do it without even trying. So even while some part of
your brain is busily integrating facial features, your
conscious mind is still free to deal with other, higher-
level tasks. All the best interfaces do this to some
degree, by simulating some part of what we call
reality. (For instance, everyone’s favorite desktop
model simulates a flat, bounded environment with
overlapping two-dimensional areas, something we’re
very familiar with in the real world through our
interactions with tabletops and paper.) A convincing
simulation, or even one that captures essential parts
of the reality (like the Macintosh desktop), is an
incredibly powerful thing.

Human interfaces (so far humans are the
predominant, market-driving users of computers) can
take advantage of many things: our ability to
maintain internal mental maps, our built-in image
processing, our kinesthetic awareness of space, and so
on. All these things have been finely tuned by a
zillion years of evolution, so why not use them?
Effective human interfaces are overwhelmingly visual
and tactile, precisely because vision and touch are the
primary senses we use to interact with the world we
know so well. (For a dog I suppose a good interface
would have to be heavily auditory and olfactory:

sniff a file to get info; when something you search for
is found, it whines so you can locate it; system errors
smell like flea shampoo.)

New interfaces are trying to capitalize even further on
what we already know how to do. Xerox PARC’s latest
experimental interface, the Information Visualizer, uses
3-D real-time animation and represents information as
directly manipulable 3-D objects. You can “pick up” a
data structure and look at it from all angles, using your
built-in spatial skills to help make sense of large bodies
of information. PenPoint, Go Corporation’s recently
announced pen-based operating system, takes
advantage of, among other things, our familiarity with
pencils and notebooks. (I guess it’s not recent anymore,
is it? It’s still February in here.)

The goal of an interface is to make using the
computer easier and more intuitive. What more
direct way than to simulate on the computer things
that people already know how to work with? A really
interesting question is whether simulation is a
necessary part of a good interface, but it’s a question
without an answer yet, at least as far as I know. In the
meantime, while you’re programming your next
whiz-bang interface, remember to occasionally look
beyond the next crash or whether you remembered
to unlock that handle. There are many, many things
that all people are already good at: take advantage of
them.

RELATED AND SEMI-RELATED READING

• Computers, Pattern, Chaos, and Beauty by Clifford
A. Pickover (St. Martin’s Press, 1990).

• A Monster Is Bigger Than 9 by Claire and Mary
Ericksen (The Green Tiger Press, 1988).

• Byte, February 1991.

• Anything by Bruce Tognazzini.

d e v e l o p Spring 1991

72

MACINTOSH

Q & A

Q The TrapAvailable function listed in the “Compatibility Guidelines” chapter of Inside
Macintosh Volume VI contains code that checks the size of the trap table. Do I have to
do this if my application doesn’t support the old 64K ROMs?

A Yes, you do. With the introduction of the Macintosh Plus and 128K ROMs, the
trap table was divided into the OS trap table and Toolbox trap table. The
number of trap table entries was increased and the format of those entries was
expanded. For additional information on this expansion see the “Using
Assembly Language” chapter of Inside Macintosh Volume IV. However, the 64K
to 128K ROM trap table expansion is not what the code in the TrapAvailable
function is checking for. The Toolbox trap table was expanded yet again when
the Macintosh II was introduced. The Macintosh Plus and SE use the smaller
Toolbox trap table on pre-7.0 systems. To be sure your application is
compatible with these machines on pre-7.0 systems, check the size of the
Toolbox trap table.

Q What are the guidelines for determining how much of an image CopyBits can copy to a
Macintosh pixel map at one time, given a particular set of characteristics for the source
map and the destination map and given how much stack space is available? For
example, say that we have an 8-bit-deep pixMap to be copied to a 32-bit-deep pixMap
using the ditherCopy mode and expanded by a factor of 4, and we have 45K of stack
space.

A CopyBits’ stack requirement depends on the width of each scan line (rowBytes).
The rule of thumb is that you need at least as much stack as the rowBytes value
in your image (which can be huge with 32-Bit QuickDraw), with the following
additional modifiers: add an additional rowBytes for dithering; add an
additional rowBytes for any stretching (source rect != dest rect); add an
additional rowBytes for any color map changing; add an additional rowBytes
for any color aliasing. The stack space you need is roughly five times the
rowBytes of your image. In general, you’re better off processing narrower scan
lines. Reducing the vertical size will not affect stack requirements. Narrow, tall
bands (if you can use them) will reduce the stack requirements.

Q Where can I find documentation on how to write a Macintosh printer driver
equivalent to the ImageWriter® or LaserWriter driver? In particular, how are
Printing Manager and QuickDraw commands translated into calls to the printer
driver?

A DTS’s “Learning to Drive” document and “SampleWriter” source code,
available in AppleLink’s Developer Support folder and on the latest Developer
Essentials CD, are helpful references.

Kudos to our readers who care enough to
ask us terrific and well thought-out questions. The
answers are supplied by our teams of technical
gurus; our thanks to all. Special thanks to Pete
“Luke” Alexander, Mark Baumwell, Rich Collyer,
Marcie “MG” Griffin, C. K. Haun, Dennis
Hescox, Kevin Mellander, Guillermo Ortiz, Keith
Rollin, Kent Sandvik, Gordon Sheridan, Paul
Snively, Bryan Stearns, Forrest Tanaka, Vince

Tapia, and Scott “Zz” Zimmerman for the
material in this Q & A column.•

Q How can I determine what hardware device is driven by a particular Macintosh gDevice? I can
call GetDeviceList and GetNextDevice to get the driver reference number of each gDevice but
not the hardware ID. The system 'scrn' resource for the hardware ID of each device doesn’t give
me the driver reference number. The device list produced by calling GetDeviceList and
GetNextDevice isn’t always in the same order as the 'scrn' resource slot information.

A The following code shows how to obtain the slot number:

DCEHand = (AuxDCEHandle) GetDCtlEntry(DevInfoList[index].gdRefNum);
DevInfoList[devCount].gdSlot = (*DCEHand) -> dCtlSlot;

/* Get slot number. */

Once you have the slot number, you can call the Slot Manager to get the board
name and other information you may need to identify the device, as in the
following code:

/* Get the board name from the Slot Manager's board sResource. */
spB.spSlot = DevInfoList[devCount].gdSlot;
spB.spID = 0;
spB.spExtDev = 0;
spB.spCategory = 1; /* board sResource sRsrcType value */
spB.spCType = 0;
spB.spDrvrSW = 0;
spB.spDrvrHW = 0;
if (! SNextTypesRsrc(&spB)) {

spB.spID = 2; /* Found board sRsrc now, get the sRsrcName. */
if (! SGetCString(&spB)) { /* Let C unravel its own strings. */

for (count = 0;
DevInfoList[devCount].bdName[count+1]

= *((char *)(spB.spResult)+count);
count++);

DevInfoList[devCount].bdName[0] = count;
}

}

Q When I draw a 32-bit Macintosh 'PICT' image from a file to an 8-bit port via an off-
screen GWorld, I use dithered mode in the CopyBits call and the results are quite
impressive. If there’s not enough memory to allocate the GWorld, I draw the image
directly to the port. But since there doesn’t seem to be any way to tell QuickDraw to use
dithered drawing mode, the image looks horrible. Should I use dithered mode instead of
source mode? I don’t want to try to parse the 'PICT' myself, but I thought that maybe
a QuickDraw global could be modified in my StdBits proc to force dithered drawing for
that operation only.

MACINTOSH Q & A Spring 1991

73
Have more questions? Need more answers?
Take a look at the developer technical library on
AppleLink (updated weekly) or the Q & A stack
on the Developer Essentials disc.•

A You can install a bitsProc bottleneck procedure to get all the CopyBits calls
when the picture is being played back. One of the parameters to the bitsProc
call is the mode. You can install a procedure that passes ditherMode to the
original StdBits proc.

Q Why does a call to gestaltNuBusConnectors return zero slots when there actually is a
NuBus™ card or a PDS (Processor Direct Slot) card in the Macintosh IIsi slot?

A A call to gestaltNuBusConnectors returns zero slots because there’s no way to
determine if there’s a NuBus card or a PDS card in the Macintosh IIsi slot.
Gestalt can’t assume that there’s always a NuBus or PDS slot, so it just says
there’s no slot. However, Apple recommends that you always use the Slot
Manager instead of Gestalt to search for cards, after first checking to see that
the Slot Manager trap is implemented. The Slot Manager will safely do all the
necessary work for you whether a card with a valid declaration ROM is
installed or not, and you can search for the card using a variety of criteria.
This technique will allow you to locate NuBus cards, but has the added
benefit of being able to find PDS cards that contain declaration ROMs.

The Macintosh SE/30, IIfx, and LC have the Slot Manager and PDS slots. It’s
safe to assume the Slot Manager will be resident in all future machines that
have either NuBus or PDS slot capability.

Q Do you have any available tools or test programs for testing how well our Macintosh
application responds to core Apple events? We need a test application that will, for
example, send events to open a document and print it within our application.

A One of the best tools to test Apple events like 'odoc' and 'pdoc' is the Finder®.
The System 7.0 beta CD version of the Finder provides excellent 'odoc' and
'pdoc' testing capabilities. That’s what most of DTS uses to test sample
applications.

There are no tools designed specifically to send Apple events to an application
as a test. Try using some of the DTS sample applications on the Developer
Essentials disc to test your application. One of the easiest to use and adapt is
the TrafficLight 3.0 sample. It already will send its own MoveWindow Apple
event to any application, allowing you to see how your application is handling
“foreign” events.

Also, you can adapt the CreateAndSendAppleEvent function in AppleEvents.c
to send any type of event you’d like, which allows you to test events that may
be specific to your application.

d e v e l o p Spring 1991

74

Q Why do I get a bomb when I create a Macintosh filename starting with a period (.)?

A Macintosh filenames are not allowed to begin with a period, to avoid possible
confusion with driver names, which must begin with a period. (This restriction
does not apply to folder names.) Ideally, the Finder should catch this possible
error and require the file to be renamed, but it doesn’t. Future versions of the
Finder should catch this potential problem, but until then users must
remember not to begin a filename with a period. See Macintosh Technical
Note #102, HFS Elucidations, for details.

Q Can the refNum returned by FSOpen ever be 1? What is the range or format of legal
refNums?

A Macintosh file reference numbers (refNums) are currently positive and that
means any positive number, including 1. This doesn’t mean that they won’t
change in the future, however. To maintain system compatibility, use refNums
only as they’re intended to be used.

Q Calling Create from an INIT causes the INIT to be called twice if it alphabetically
follows the file it creates. Is there a workaround?

A This particular limitation of the startup process occurs when you create files in
the same folder as the INIT that alphabetically precede your INIT file. HFS
orders files alphabetically, and the startup process does its thing by
incrementing the ioFDirIndex field of a PBGetFileInfo call. Your INIT file (for
example, file #5) is getting opened, your INIT is called, and it creates a file.
The file it creates, for example, is file #3—that is, it’s alphabetically before your
INIT file. Now your INIT file is file #6, and when you return, it increments
the ioFDirIndex value from 5 to—you guessed it—6, opens that file, and runs
your INIT again.

The workaround is to avoid creating files in the same folder as the INIT that
alphabetically precede your INIT file. Also, the file you create should be placed
in the Preferences folder within the System Folder, for both System 6 and System
7. Check for a Preferences folder within the System Folder using FindFolder, and
create one if it doesn’t exist.

Q During a Macintosh application’s life, does the value of A5 change? Why does
SetCurrentA5 have to set A5 to CurrentA5? Aren’t A5 and CurrentA5 the same
while an application is executing non–interrupt-time code?

MACINTOSH Q & A Spring 1991

75

A A5 is not necessarily always equal to CurrentA5. Because the Macintosh
operating system and Toolbox don’t need to access your application’s jump
table or global variables (which A5 points to), they often use A5 for other
purposes, except for the parts of the Toolbox that need to perform graphics
operations and use the QuickDraw globals defined by your application.

Because the operating system or Toolbox can change A5, you must make sure
it’s set correctly if the operating system or Toolbox ever calls your code in the
form of a callback. For example, if you make an asynchronous File Manager
call, your I/O completion routine must call SetCurrentA5 for your I/O
completion routine. Other places where you may want to call SetCurrentA5 are
in trap patches, your GrowZoneProc, custom MDEFs, WDEFs, or CDEFs, or
control action procedures.

Please note that even SetCurrentA5 is not sufficient when writing code that’s
executed at interrupt time, such as VBL and Time Manager tasks. When an
interrupt occurs that your application wants to handle, there is no guarantee
that the low-memory global CurrentA5 belongs to your application. The
interrupt could occur while some other application is running under
MultiFinder®. In this case, you should use other approaches to setting A5.
Please see Technical Note #180, MultiFinder Miscellanea, for further
information.

Q My Macintosh application receives information from the serial port, keeping as much
information in memory as possible. However, if I do run out of memory, my GrowZone
routine is allowed to delete older information. Does the operating system allow the
GrowZone routine to be called recursively? That is, if in handling a GrowZone call,
my code does something that requires memory, such as bringing in a font that isn’t
there, can I call the GrowZone routine again or would doing so cause an error? Am I
allowed to update things on the screen, such as windows and text in windows, while in
my GrowZone routine?

A Neither the GrowZone routine nor the Macintosh system is reentrant. There is
very little that you can safely do in a GrowZone routine. The system expects
that the typical extent of a GrowZone routine is to check a table or some other
predesignated criteria and then to release or not to release any memory blocks
it can. Any sort of user interface is well beyond the reasonable scope of this
level of routine.

Keep a list of handles to blocks of text that you’re willing to purge, so that your
GrowZone routine can look through them when called and then release one or
more blocks. Any more than that is really stretching GrowZone too far.

d e v e l o p Spring 1991

76

By the way, SetGrowZone should not be assumed to return a result. Inside
Macintosh is incorrect in saying that D0 contains a result code on exit.

Q Do I need to call StripAddress when using SwapMMUMode to switch to 32-bit mode?
I would like to assume that all my pointers are valid 32-bit quantities when in 32-bit
mode.

A Yes, though it would be nice to be able to assume that all your master pointers
are valid 32-bit quantities when in 32-bit mode, the assumption would only be
true of master pointers that were created in a zone created while you were in
32-bit mode, and even this would only be true on systems that have a 32-bit
Memory Manager (the Macintosh IIci, IIfx, LC, and IIsi).

You need to call StripAddress on any master pointers that were created in a
24-bit world that you expect to use while in 32-bit mode. You also need to call
StripAddress on distinct master pointers that were created in 24-bit mode if
you want to compare them, regardless of whether you’re currently in 32-bit
mode.

Q When building a standalone code resource (such as an 'XCMD', 'INIT', 'CDEV', or
'CDEF') with the MPW Linker, the main entry point is specified with the “-m”
option. So why does one also need to make sure that the main routine is the first one in
its object file, and that that object file is the first one linked? Why isn’t “-m” enough
for the Linker to figure this out?

A The MPW® Linker generally places modules in the output file in the order that
they appear in the sequence of files to be linked. When building an application,
the Linker builds the jump table after building all the code resources; thus, it
doesn’t need to have “seen” the main procedure first in order to place the main
procedure’s entry first in the jump table. For standalone code resources (which
have no jump table), the main procedure must be first in the code resource.
The simplest way to make sure this happens is, as you say, to make sure that the
main procedure is the first one the Linker sees.

Q Why does MPW Pascal convert SINGLE numbers to extended, create a temporary
area for them, and then pass a pointer to those extended numbers on the stack?

A The conversion of single-precision values to extended is being done to maintain
accuracy. It’s entirely possible to generate values of extended precision while
doing the intermediate math with single-precision values, and the MPW
compilers do this conversion to preserve accuracy.

MACINTOSH Q & A Spring 1991

77

If your application doesn’t need the accuracy, you can declare the parameters to
be of type LONGINT, and typecast them as necessary within your procedure
or function. There’s no way to tell the MPW compilers not to do the
conversion if the parameters are declared as SINGLE.

Q What is the difference between RelString and EqualString? What should Macintosh
developers use when sorting? Do you suggest having an option for the international
sort?

A RelString and EqualString are mainly intended for the File Manager. The File
Manager uses them for quick-and-dirty string comparison so that it knows how
to return files ordered alphabetically when you use indexed File Manager
routines, and so that it can detect file name collisions. Beyond that, RelString
and EqualString aren’t localizable or extensible.

The International Utilities string comparison routines are localizable and
extensible. They use information in the active 'itl2' resource to determine how
the characters are sorted. Most localized systems come with their own 'itl2'
resource, so string comparisons are done correctly for the region for which the
system is localized. Because RelString and EqualString stay the same for all
these regions, you’ll probably find some cases in which strings are compared
incorrectly by these routines.

One important place where RelString and EqualString don’t work very well is
with the new characters in the extended Macintosh character set. When the
LaserWriter was introduced, the LaserWriter fonts used the extended
Macintosh character set, which added many new characters, including several
new uppercase characters with diacriticals. In system software version 6.0.4, the
International Utilities were updated to take advantage of these new characters.
For example, the uppercase “E” with a grave accent first appeared in the
extended Macintosh character set. With 6.0.4, the lowercase and uppercase “E”
with a grave accent were considered to be equal in primary ordering, and
unequal in secondary ordering, which is correct. Even today, RelString and
EqualString think in the old Macintosh character set, erroneously believing
that lowercase and uppercase “E” with a grave accent have nothing to do with
each other.

Q The Macintosh IIsi and LC computers don’t come with programmer’s switches. How do
I get reset and NMI on these machines?

A Both machines have an ADB (Apple Desktop Bus) I/O processor which
incorporates the reset and NMI functions through the keyboard. The functions
are accessed as follows:

d e v e l o p Spring 1991

78

• Use MacsBug 6.2 or later to enable the NMI on the Macintosh IIsi or LC.
Both machines start up with NMI disabled because nontechnical users
might get into trouble with it, so the ADB controller must be programmed
to enable it. Once MacsBug is installed, you can activate NMI by holding
down the Command key while pressing the Power button.

• Hold down the Command and Control keys while pressing the Power
button, with or without MacsBug installed, to reset these Macintosh
systems.

Under some circumstances you may have to hold the reset and NMI key
combinations down for a little while (but no more than a second) to make sure
the ADB processor sees them.

You’ll find the latest MacsBug on the Developer Essentials disc and in
AppleLink’s Developer Support folder. The MacsBug reference manual is very
helpful. A package containing both MacsBug 6.2 and the manual is available
from APDA for $35.00 (#M7034/B).

Q What’s wrong with having VBL (Vertical Blanking) tasks make calls to the Macintosh
Memory Manager, either directly or indirectly?

A The problem is that the Memory Manager could be moving memory around
when an interrupt occurs. If the VBL task also moves memory, the heap could
be destroyed.

VBL tasks are intended to provide a method of time-syncing to the video beam
of the display. (On slotted Macintosh models you’d use SlotVInstall.) They’re
also used to get periodic time for short tasks, although the Time Manager is
better for this. VBL tasks should minimize execution time. The best use of a
VBL task is to do a short condition check and set a flag for the main process to
indicate that it’s now a good time to do something.

Q Can I still write to James Brown at his work release address?

A The Godfather of Soul was released from prison on parole last March. His new
address is

Universal Attractions
218 West 57 Street
New York, NY 10019

MACINTOSH Q & A Spring 1991

79

d e v e l o p Spring 1991

80

APPLE II

Q & A

Q When I write an Apple IIGS TextEdit keyFilter procedure and put its address in my
TextEdit control template, I get funny little pieces of garbage drawn on the screen in
my TextEdit record, and sometimes TextEdit crashes. Doesn’t the keyFilter mechanism
work?

A The keyFilter mechanism in TextEdit works, but there’s no space for a keyFilter
address in a TextEdit control template. The only filter procedure in the control
template is the generic filter procedure, which does not take the same
parameters as the keyFilter procedure. If you include a filterProc address in a
TextEdit control template, it must be to a generic filter procedure. Generic
filter procedures are defined on pages 49-16 through 49-18 of Apple IIGS
Toolbox Reference Volume 3.

If you want to use TextEdit’s keystroke filter, word wrap hook, or word break
hook, you must modify the TERecord directly to put your procedure’s address
in the appropriate place.

Q While linking my Apple IIGS® application, LinkIIGS does a system death:
“ExpressLoad error 1301.” What am I doing wrong?

A Believe it or not, LinkIIGS has dynamic segments. ExpressLoad has the
annoying habit of taking error codes it’s not expecting, adding $1100 to them,
and calling SysFailMgr. Why is this habit annoying? Well, it works just fine for
what the author had in mind, which was GS/OS errors (all of the form $00xx),
but it causes problems with Toolbox errors.

You’ve probably figured out the rest by now: $1301 - $1100 = $0201 = Memory
Manager “unable to allocate handle” error. ExpressLoad ran out of memory
trying to load a dynamic segment in LinkIIGS.

The best solution is to get more memory. If you can’t make enough memory to
link it, you might consider having some of your code in code resources instead
of in dynamic segments in the data fork, to create separate links for those
segments and make the big link even smaller.

Q What is the correct procedure for installing system software on an Apple IIGS?

A Always use the Installer application. The Installer scripts provided by Apple on
the Apple IIGS system disks will put everything you need on the startup disk. If
you attempt to install system software without using the Installer, there’s a good
chance you’ll forget to copy a needed file or delete an obsolete file.

Kudos to our readers who care enough to
ask us terrific and well thought-out questions. The
answers are supplied by our teams of technical
gurus; our thanks to all. Special thanks to Matt
Deatherage, C. K. Haun, Jim Luther, and Jim
Mensch for the material in this Q & A column.•

Have more questions? Need more answers?
Take a look at the developer technical library on
AppleLink (updated weekly) or the Q & A stack
on the Developer Essentials disc.•

Because SCSI hard disk drivers are not included on System.Disk, you’ll need to
do the following to install System 5.0.4 on a hard disk:

1. Make backup copies of System.Disk and System.Tools, making sure they
keep the same names.

2. Launch the Installer from System.Tools (backup) and install SCSI Driver on
the backup of System.Disk. The Installer script will delete a couple of fonts
as well as the tutorial folder to make room for the SCSI information on a
3.5-inch disk.

3. Boot the backup of System.Disk and install System 5.0.4 onto your hard
drive. If you want Shaston 16 and Times 12 fonts, install “Additional Fonts”
last.

The Installer knows how to make the software fit on a floppy disk. It can also
update your system without requiring you to trash your existing System Folder.

Apple IIGS Technical Note #64, Apple IIGS Installer and Installer Scripts,
describes how the Apple IIGS Installer executes Installer script files and how to
write Installer script files.

Q In some of my recent work, I’ve found it necessary to patch the Apple IIGS GS/OS
vectors in order to monitor OS calls. My patch works without interfering, but it
disappears when the user switches to ProDOS 8 and back to GS/OS. I tried
unsuccessfully to fix this by using the notification queue, asking GS/OS to notify me
when the user was coming back from ProDOS 8. How can I safely and reliably patch
GS/OS on a permanent basis?

A You should be able to patch GS/OS® with System 5.0.4. Two observations may
help:

• If you ask for all notification events, you’ll get at least one disk-insert event
before you get any restart events, since the device driver for the startup disk
will “fake” a disk insert to get the appropriate disk-switched statuses set
before doing any real work.

• Your procedure may not be the first notification procedure called at restart
time. For example, the Resource Manager inserts a procedure so that it can
reopen the system resource file on return from ProDOS® 8. If this
mechanism was broken as you say, the Resource Manager’s notification
procedure wouldn’t work either.

APPLE II Q & A Spring 1991

81

Q Why does a dialog box without a Cancel button come up from an Apple IIGS Loader
call when the volume is not on-line?

A The loaders always set the preferences to “dialog, no Cancel button” when
trying to load a dynamic segment indirectly (because you passed control to it).
The loaders must do this because they have no way to report errors. For
example, if your code does a JMP DynSegLabel, the Loader must load the
dynamic segment. Should it get an error, it has no way to report an error and
no place to pass control back to if your program does a JMP and the Loader
has no place to return to. In earlier systems, inability to load a dynamic
segment was a fatal system error. Today, the Loader will not give up until you
insert the disk because it has no other choice. However, if you call
LoadSegName yourself, the Loader should not change the preferences;
because that’s a call, the Loader can return from it gracefully. Indirect dynamic
segment loading doesn’t have that luxury. The current Loader documentation
is in the Addison-Wesley version of GS/OS Reference.

Q What are longStatText2 items, mentioned in the “Dialog Manager” chapter of the
Apple IIGS Toolbox Reference?

A A longStatText2 item is similar to a longStatText item except that the text is
drawn with LETextBox2. A longStatText2 item allows you to embed formatting
codes so that you can change fonts, font styles, sizes, colors, and justification.
The longStatText2 capability is built into the Dialog Manager to support
formatting flexibility in standard dialogs. To use longStatText2 items, the Apple
IIGS QuickDraw Auxiliary and Font Manager tools must be started.

Q Where do I find a current list of the MessageCenter message types that have been
registered with DTS?

A Message types that are assigned to individual developers are treated
confidentially. We have very few of these, as most developers now use
MessageByName to get an assignment dynamically.

Q Where do I find technical documentation on the messages written by the Finder to tell
an Apple IIGS application which files to open as it starts up?

A The only truly public message types are #1 (the files message from the Finder
or other program launchers) and #2 (the desktop pattern message).

Message type #1 is documented in Apple IIGS Toolbox Reference Volume 2, with
the description of the MessageCenter tool call. The documentation implies
that there are both filenames and full pathnames (such as Standard File returns)

d e v e l o p Spring 1991

82

in the message, but, in fact, each Pascal string indicates a totally separate file.
Message type #2 is documented in Apple IIGS Toolbox Reference Volume 3, in the
“Window Manager Update” chapter (page 52-4).

Q How does an Apple IIGS New Desk Accessory (NDA) obtain its ID?

A Each Apple IIGS NDA has two IDs: a Memory Manager ID and a Menu ID. If
you want the Memory Manager ID, simply call MMStartup from your DA.
The NDA ID for the OpenNDA call can easily be obtained from your menu
string. The Desk Manager replaces the ** of your \H** at the end of your menu
string with your Menu ID, which is also your NDA number. A note of caution:
Please be sure you’re running in the 16-bit environment before using the NDA
ID to call OpenNDA. If you try this while ProDOS 8 is running, nothing good
comes of it!

Q I’m creating an Apple IIGS list control from a resource. How can I update my listRef
resource dynamically, if my list grows dynamically?

A To modify the content of a resource and to grow it, load the resource, make any
changes you want to the handle (such as change the data inside or call
SetHandleSize to make it bigger), and then use the MarkResourceChange call
to tell the Resource Manager your resource’s content has been changed. The
Resource Manager then updates the contents of your file when you call
UpdateResourceFile. The Resource Manager even recognizes handle size and
content changes (actually, it just assumes the contents have changed).

Q Why is there no GS-only version of HyperMover?

A HyperMover™ is actually implemented as a pair of HyperCard® stacks:
HyperMover.mac, which runs under Macintosh HyperCard and disassembles
Macintosh stacks; and HyperMover.GS, which runs under HyperCard IIGS and
reassembles the stacks into HyperCard IIGS stacks. Although there are a few
XCMDs to handle tricky stuff like sounds and paint files, the majority of the
work is done by simple HyperTalk scripts. It may seem like a disadvantage to
require two computers to do the translation, but in fact there are a number of
tremendous advantages:

• HyperMover doesn’t need to know anything about the internal binary
format of stacks. This makes it somewhat immune to stack format changes.
For example, you can convert a Macintosh HyperCard 1.2.5 stack to
HyperCard 2.0 format, but HyperMover will still translate it because the
HyperCard program takes care of reading data from the stack.

APPLE II Q & A Spring 1991

83

• The interchange format is simple—a file containing a complete textual
description of the stack. After disassembly, you can open and even edit this
file using any text editor (such as MPW or APW), before reassembling the
file on the GS side. This provides an easy way to browse scripts, looking for
potential machine dependencies, and you can actually perform global
modifications on your stack using the find-and-replace capabilities of your
text editor.

• When small-font painted text is used to label objects, it often shrinks to
unreadability when converted to the Apple IIGS screen resolution. You’ll
need a Macintosh to view all the graphics and decide what they’re supposed
to look like, before you can redraw them in 16-color Apple IIGS graphics.

• You’ll also need a Macintosh to perform side-by-side comparisons and
testing of your new stack.

Having a Macintosh available is important at all phases of the stack translation
process. You’ll find it makes the entire process much smoother.

Q Which versions of Macintosh HyperCard are compatible with HyperMover?

A The HyperMover stack will execute in the 1.2.5 and 2.0 Macintosh HyperCard
environments. However, stacks that are translated should be either 1.2.5 stacks,
or 1.2.5 stacks converted to 2.0 but not modified. There are two reasons for this:

• The graphics converters are designed to start from a Macintosh HyperCard
1.2.5–sized card only, because stacks with other card sizes may have objects
and graphics improperly aligned.

• HyperCard IIGS uses a version of the HyperTalk® scripting language
derived from Macintosh HyperCard 1.2.5, so if a stack uses language
elements that were not present in Macintosh HyperCard 1.2.5, it may
translate correctly but report script errors when the script is executed.

Q How can I perform error trapping in a script?

A Normally, most errors interrupt script execution and immediately present a
dialog to the user. Advanced scripters may want to intercept these errors and
deal with them more “aggressively.” Two new HyperCard properties,
lockErrors and lastError, have been provided to control error handling:

• lockErrors is a Boolean property that has a simple effect: it prevents the
display of errors. The errors, however, are still there, and stop execution of
the current handler.

d e v e l o p Spring 1991

84

• lastError is a string property that always contains the text of the most recent
error dialog, whether displayed or not. Because errors cause handlers to
terminate, you’ll probably wind up checking lastError from an idle handler.

How do you use lockErrors and lastError? To activate an “error catcher” you
can use the following scripts:

on CatchErrors errorSource -- Begin handling errors.
global gErrorSource
set the lastError to empty
set lockErrors to true
put errorSource into gErrorSource

end CatchErrors
on ClearErrors -- Handle errors normally.

global gErrorSource
set the lastError to empty
set lockErrors to false
put empty into gErrorSource

end ClearErrors
on idle -- Check for error occurrence.

global gErrorSource
if gErrorSource is not empty
then
-- Error-handling code goes here.
-- gErrorSource = where in your code the error happened.
-- The lastError = what the error was.

end if
pass idle

end idle

If you have a button that does something dangerous, you can surround the
dangerous portions of the handler with

on mouseUp
-- normal error handling out here
CatchErrors “dangerous operation #1”
-- Do things that might not work.
ClearErrors
-- Now we’re back to normal error handling.

end mouseUp

For more information, be sure to see the HyperCard IIGS Script Language Guide,
published by Addison-Wesley.

APPLE II Q & A Spring 1991

85

d e v e l o p Spring 1991

86

For each issue of develop, there’s a corresponding
updated version of the Developer Essentials CD-ROM
disc. If you’ve subscribed to develop, your copy of the
disc will be bound into the journal; if you’re an Apple
Associate or Partner, you’ll get your copy in a folder
on the Developer CD Series disc.

We’ll tell you here about some of the headliners in
Developer Essentials, but you should take some time to
browse the disc and see what else you might discover.
We’ll be adding more as Developer Essentials evolves,
and we hope you agree that these are tools no
developer should be without.

We start out by describing the old standbys (and
what they’re standing by for) and finish up with
descriptions of what’s new or improved on this disc.
We’re especially happy to introduce snippets in this
issue—read on to find out why.

THE STANDBYS
develop
There’s more than one way to browse a magazine (or
to look through back issues) and we’ve given you even
more by making develop available electronically. With
the electronic version of develop, you can easily search
(by word or with a cumulative index), you can copy the
code (or any text that’s particularly useful), and you
can check out the HyperCard limits we’re pushing.

SpInside Macintosh
Of course the most essential documentation for the
Macintosh is Inside Macintosh, so Developer Essentials
offers you SpInside Macintosh, an on-line version of
Volumes I-V. SpInside Macintosh combines these
volumes into a single, searchable electronic form
that’s cross-referenced with the Macintosh Technical
Notes Stack, the Q & A Stack, and the Human
Interface Notes Stack.

DTS Technical Notes and Sample Code
All the Apple II and Macintosh Technical Notes and
Sample Code programs prepared by Apple’s
Developer Technical Support group are here for your
reference. Technical Notes are updates to existing
technical documentation, useful hints and tips, and
special coverage of technical topics.

Macintosh Technical Notes Stack
This HyperCard stack incorporates all of the latest
Macintosh Technical Notes into a single on-line
source, which is cross-referenced with SpInside
Macintosh, the Q & A Stack, and the Human
Interface Notes Stack.

Q & A Stack
Got a tough development question? The Q & A
Stack is a collection of hundreds of the most
frequently asked questions answered by the
Developer Technical Support group. Organized by
subject, this stack includes question and answer pairs
as well as cross-references to SpInside Macintosh and
the Macintosh Technical Notes Stack.

Human Interface Notes and Stack
These notes will help you develop uniform user
interfaces in your Apple II and Macintosh
applications. They cover everything from how to use
color most effectively (without shortchanging those
customers who see everything in black and white) to
how to seamlessly incorporate sound.

YOUR
DEVELOPER
ESSENTIALS
DISC

WHAT’S OLD AND
WHAT’S NEW

YOUR DEVELOPER ESSENTIALS DISC Spring 1991

87

Apple II
If it’s about the Apple II, you’ll find it here. We’ve
got documentation on everything from the basic to
the most esoteric, as well as MPW IIGS Interfaces, all
kinds of disk utilities, system software, and every
released version of HyperCard IIGS.

International System Software/HyperCard
Developer Essentials includes all the latest international
versions of Macintosh system software. In addition,
look for the KanjiTalk™ Toolkit, KanjiTalk 6.0 Docs,
and the Taiwan Chinese Font Option Kit. (You must
have a Macintosh to run DiskCopy and create floppy
disks from these images.) Developer Essentials also
includes the latest international versions of
HyperCard in DiskCopy image format.

U.S. System Software/HyperCard
Here you’ll find system software versions from 0.1 to
6.0.5—you can copy them right to a floppy disk using
DiskCopy. You’ll also find HyperCard U.S. versions
1.2.2, 1.2.5, and 2.0, all of which come complete with
an idea stack. Have you ever wondered how many
gills there are in a pint? Find the answer in the idea
stack.

Programming
No, we won’t do it for you, but we’ll give you some
tools. HyperCard XCMDs (pieces of code used to
extend HyperCard functionality), MPW Interfaces &
Libraries 3.1, and DefProcs (modules of code for
system functionality) are included for your reference.

NEW OR IMPROVED
Q & A Stack
You’ve told us in surveys and in focus groups that the
Q & A Stack just doesn’t work for you: the format’s
ugly, the information’s out of date, and there aren’t
enough question and answer pairs to make it worth
your while to look there for answers. Well, we
listened. The new, improved, and tremendously
beefed up (or radished up, for you vegetarians out
there) Q & A Stack has changed so much so that we
toyed with changing the name to get you to look at it

again. It’s organized more clearly, the information’s
up to date, and there are hundreds of question and
answer pairs available for your searching pleasure.

System 7.0 Sample Code
This is the most robust code from the System 7.0
Beta 4 CD; if you’ve taken the samples from there,
you don’t need these, since they’re the same. System
7.0 was still in its Beta cycle when these samples were
written. That means that none of these samples are
in their final form and there may be bugs or some
incomplete sections—look for later updates on
AppleLink and on future versions of Developer
Essentials.

CShell She sells C Shells by the MPW shore . . .
no, not really. CShell is a complete Macintosh
application shell that includes the basics that are
common to all Macintosh applications (whatever
system version you’re targeting for). These basics
include an event loop, menu handling, window
handling, TextEdit, file handling, and basic printing
code. This sample also includes Apple-event code
(both required and custom) for System 7.0
applications. For Think C enthusiasts, we’ve
included a Think C version of CShell.

DTS.Utilities This is a grab bag of useful routines
that any self-respecting application would like to
have. There are many useful window, dialog,
QuickDraw, and control functions included in this
package. Browse through the header files and look at
the functions available; you’ll probably see something
you need or can use. CShell and Kibitz (described
below) both require these routines, so you’ll need to
have them available if you build those projects.

Edition Manager Read All About It! The Edition
Manager is not as fearsome as you may think! This
sample shows you the basics of using the Edition
Manager with PICT and TEXT data types in a
multiwindowed application. It shows you how to use
the Edition Manager routines, plus one method of
dealing with the internal bookkeeping of section
handles. Browse the code, cut out the pieces you can

use, and make your application Edition Manager
aware. This sample also shows you how to handle the
four required Apple events, plus the Apple events
that are specific to the Edition Manager.

INIT - CDEV This sample uses the PPC toolbox to
communicate between an INIT and a cdev,
something that has never had a very satisfactory
solution until System 7.0. It also demonstrates some
very good techniques for writing INITs and cdevs. If
your package requires special INITs or cdevs, you
can save yourself a lot of work by looking this over
first.

Kibitz It’s your move. Kibitz puts CShell to work by
building a working Apple-event–reliant application
on top of the shell. Kibitz is a two-player chess
program that plays across your network,
communicating through Apple events. The move-
passing code will be of special interest to those of you
who need to implement a private Apple event type.
Caution: Please try to actually look at the code, and
don’t spend all your time playing the game!

ProcDoggie This sample lets you dog the heels of
any running process, and shows how to work with
the new Process Manager calls, as well as showing
you how to use the new LaunchApplication trap.
ProcDoggie shows you all the current processes on
your machine, and lets you examine, launch, and kill
any process. Besides showing how to use Process
Manager calls, ProcDoggie can be very handy during
debugging sessions.

Snippets
Snippets are small pieces of code that show you one
engineer’s implementation of something or other.
We’ve tried the snippets listed below to make sure
they work, but they haven’t benefited from the same
testing that develop and the rest of our sample code go
through. So, before you incorporate a snippet into
your code, test it thoroughly and make sure it does
what you want it to.

Audio CD An MPW Tool that allows you to start,
stop, pause, and continue audio CD tracks.

BusErrorTest Shows how to replace the 68K bus
error vector—very useful for testing.

ChangeTextStyleRec A utility routine that can
simplify the process of modifying a TextStyle record
to change a font, style, or type size.

ClickSound A simple sound producer.

ClutWind Displays a window that shows the colors
in the color table associated with the device the
window is on top of.

DisableEject Shows how to stop a floppy disk from
being ejected. We’ve provided this snippet because
many of you have asked how to do it, but you should
know as well as we do that it has no chance of being
compatible with future system software.

Heap Purge dcmd Simulates TMON’s heap purge
in MacsBug.

Icon Display A Think C project that reads pixMaps
from an icon family (icsX) that are actually stored as
pure pixel data (not a PixMap struct or a color icon),
allocates an appropriate off-screen world, and then
copies the pixels into the off-screen pixMap with
BlockMove. This creates a pixMap you can use with
CopyBits. This code is found in the bullwindow.c
file. There’s some other code that demonstrates how
to keep the pixMap matched up to the depth of the
current device.

GetFInfo, GetVInfo MPW Tools that simply parse
command-line options and print the value of the
parameter blocks returned from Toolbox calls.

KeyMapTest Shows how to interpret the results of
GetKeys.

d e v e l o p Spring 1991

Thanks to C. K. Haun for collecting and describing the System
7.0 samples and to C. K. Haun, Pete Helme, Jim Reekes, Keith
Rollin, Eric Soldan, and Forrest Tanaka for writing them.•

88

YOUR DEVELOPER ESSENTIALS DISC Spring 1991

89

Marquee Demonstrates marching ants (the
scrolling dashed lines used in a selection rectangle).

MDEF.Sample An MDEF written in Pascal that
supports rez MENU templates and allows you to
request the use of the Shift-Command symbol (made
famous by our friends to the North and perhaps
MacroMaker) for a menu item instead of the
traditional Command-key symbol. The MDEF also
erases and redraws items rather than inverting them;
this is necessary for a hierarchical menu.

OpenWindow Shows basic initialization calls and
how to open a window for drawing.

Process An MPW tool that prints information
about all running processes under System 7.0.

ReadLN.c A routine that causes the FSRead call to
behave like a Pascal Readln.

ReKeyTrans Shows how to use the Script Manager
and KCHRs to call KeyTrans.

TCP Includes two MPW Tools, TCPSend and
TCPReceive, that demonstrate a very simple
establishment of a TCP connection and sending a
text string over that connection. An API library of all
the MacCTB driver and DNR calls is also included.

TickAnimate Sample of how to use ticks to
synchronize drawing to the screen.

TimerTst This hardware-dependent snippet shows
how to use the VIA timers (for the few times when
the Time Manager is not appropriate).

ZoomWindow Demonstrates how to properly
zoom a window. It gives attractive results with most
WDEFs because it uses the window’s structure
region rather than just its portRect.

There are also a number of esoteric NBP and PPC
samples that demonstrate, among many other
wonderful things, how to use the PPC toolbox.

Thanks to Guillermo Ortiz for collecting and making sense
of these snippets, and to James Beninghaus, Cameron Birse, Tim
Enwall, John Harvey, Dennis Hescox, and Craig Prouse for
submitting them.•

A
A5-relative procedure pointers 16
address-to-name resolution. See

DNR
AddrToName 54
ADSP (AppleTalk Datastream

Session Protocol), MacTCP
and 53

Advanced Technology Group,
threads and 6, 7

Alexander, Pete (Luke) 44
AppleTalk Datastream Session

Protocol (ADSP), MacTCP
and 53

Apple II, Developer Essentials disc
and 87

Apple II Technical Notes and
Sample Code, Developer
Essentials disc and 86

applications, threads and 12–16
ARPANET 46
ARTICLE command,

NewsWatcher and 66
ASR (asynchronous notification

routine), MacTCP and 49
async flag, MacTCP and 52, 53
asynchronous notification routine

(ASR), MacTCP and 49
Audio CD snippet 88

B
background color, colorizing and

31, 32
baseAddr, 32-bit addressing and 36
Bic transfer operation, CopyBits

and 27
black-and-white QuickDraw

history of 24–25
System 7.0 and 26
See also Color QuickDraw;

QuickDraw; 32-Bit
QuickDraw

BlockMove, threads and 17
BusErrorTest snippet 88

C
CalcMask 24
ChangeTextStyleRec snippet 88
Chernoff faces 70
Chernoff, H. 70
ClickSound snippet 88
CloseConnection, Finger protocol

and 61–62
CloseNewsConnection 65
CloseResolver 54
CLUT (color look-up table),

colorizing and 31
ClutWind snippet 88
cmpCount field, QuickDraw and

43
CMY color separations, sample

code 38–42
code, reentrancy and threads

12–16
code snippets, Developer Essentials

disc and 88–89
colorizing 31

CopyBits and 31–33
sample code 34–38

color look-up table (CLUT),
colorizing and 31

color mapping, dithering and 29
color printing, LaserWriter driver

6.0 and 44–45
Color QuickDraw

altering colors in 33–34
history of 24–25
System 7.0 and 26
See also black-and-white

QuickDraw; QuickDraw;
32-Bit QuickDraw

color separations 38–42
color space

colorizing and 31, 32
inversions in 28–29

compression of images,
QuickDraw and 43

Computers, Pattern, Chaos, and
Beauty (Pickover) 70

d e v e l o p Spring 1991

For a cumulative index to all issues of
develop and a complete source code
listing, see the Developer Essentials disc. •

90

INDEX

ConvertStringToAddr, Finger
protocol and 61

CopyBits 25–27
code samples 34–42
color printing and 45
improvements to colorizing

31–33
improvements to transfer

operations 27–31
QuickDraw and 23–43

CopyDeepMask 25, 26
CopyMask 24, 25, 26
Copy transfer operation, CopyBits

and 27
CreateStream, Finger protocol

and 61
CShell sample code 87
customizable swapping behavior

13–14

D
DARPA, TCP/IP and 46
depth conversion, dithering and

29
develop, Developer Essentials disc

and 86
Developer Essentials CD-ROM disc

86–89
DeviceList 36
DeviceLoop 26
Device Manager, MacTCP and

48, 49, 52
direct-color devices, CopyBits and

27–28
direct pixels, QuickDraw and 43
DisableEject snippet 88
ditherCopy flag

color separations and 38
CopyBits and 29

dithering, CopyBits and 29–31
DNR (Domain Name Resolver)

47, 53–55
dnr.c, MacTCP and 54
Domain Name Resolver. See DNR

Domain Name Server protocol,
MacTCP and 54

DTS Technical Notes and Sample
Code, Developer Essentials disc
and 86

DTS.Utilities sample code 87

E
Edition Manager sample code

87–88
8•24 card, 32-Bit QuickDraw and

36
8•24 GC card, 32-Bit QuickDraw

and 36
EndThread 10, 21
ExitThreads 10

F
Falkenburg, Steve 46–47
File Transfer Protocol. See FTP
Finger protocol 46, 56–62
foreground color

colorizing and 31, 32
stretching and colorizing a

gray ramp and 38
fork semantics, threads and 20–21
FTP (File Transfer Protocol) 46

NewsWatcher and 66–67
FTPConnect 67
FTPDisconnect 67
FTPFinish 67
FTPInit 67
FTPLow.c, NewsWatcher and 67
FTPPutFile 67
FTPViewFile 67

G
GDevice

colorizing and 31
search procedures and 33,

34
32-bit addressing and 36

GetArticle 66
GetBackColor 26

GetCurrentThread 21
GetFInfo snippet 88
GetForeColor 26
GetGroupList 65
GetGWorldPixMap

black-and-white QuickDraw
and 26

stretching and colorizing a
gray ramp and 35

GetMessages 65
GetPixBaseAddr

black-and-white QuickDraw
and 26

stretching and colorizing a
gray ramp and 35

32-bit addressing and 36
GetVInfo snippet 88
GiveTime 53
global variables, threads and

12–16
Go Corporation 71
Gough, Michael 6–7
gray ramp, stretching and

colorizing 34–38
GrowZone, threads and 17–18
GWorld

black-and-white QuickDraw
and 26

color printing and 45
color separations and 39,

40
stretching and colorizing a

gray ramp and 35, 37, 38
32-bit addressing and 36

GWorldPtr, black-and-white
QuickDraw and 26

H
heap, threads and 17
Heap Purge dcmd snippet 88
High-Resolution Video Card. See

Macintosh High-Resolution
Video Card

hostInfo struct, MacTCP and 54

INDEX Spring 1991

91

Human Interface Notes and Stack,
Developer Essentials disc and 86

HyperCard, Developer Essentials
disc and 87

I
Icon Display snippet 88
idle procs 7

versus threads 8
image compression, QuickDraw

and 43
image operator (PostScript), color

printing and 45
indexed devices, CopyBits and

27–28
index space, colorizing and 31, 32
Information Visualizer 71
INIT - CDEV sample code 88
InitNetwork, Finger protocol and

61
InitThreads 9, 19
InNewThread 10, 14, 20
interfaces 70–71
International System

Software/HyperCard, Developer
Essentials disc and 87

Internet 46
Internet Protocol (IP) 46. See also

MacTCP
interprocess communication

(IPC), threads and 7
InThread 20
inversions in color space 28–29
IP (Internet Protocol) 46. See also

MacTCP
IPC, threads and 7
IP number 47

J
Johnson, Dave 70

K
keepLocal flag, 32-bit addressing

and 36

KeyMapTest snippet 88
Kibitz sample code 88

L
LaserWriter driver 6.0, color

printing and 44–45
LaserWriter driver 6.1, color

printing and 44, 45
LIST command, NewsWatcher

and 65
“Low-Down on Image

Compression, The” (Tanaka) 43

M
Macintosh High-Resolution Video

Card 36
Macintosh Technical Notes and

Sample Code, Developer
Essentials disc and 86

Macintosh Technical Notes Stack,
Developer Essentials disc and 86

MacTCP 46–69
DNR and 53–55
driver calls 49–52
high-level calls 53
medium-level calls 52–53
programming basics 48–55
programming a complex

application 62–68
programming a simple

application 56–62
See also TCP

“MacTCP Cookbook:
Constructing Network-Aware
Applications” (Falkenburg)
46–69

Marquee snippet 89
mask parameter (CopyMask),

Color QuickDraw and 26
MDEF.Sample snippet 89
memory

threads and 17
video 36

mode parameter (CopyBits) 25,
27, 29

Color QuickDraw and 26
multitasking 7–8
multithreaded applications. See

threads

N
name-to-address resolution. See

DNR
netstuff.c, NewsWatcher and 66
networking, MacTCP and 46–69
Network News Transfer Protocol.

See NNTP
NewGWorld, 32-bit addressing

and 36
NewsWatcher 62–68

code modularity 67–68
FTP and 66–67
NNTP and 65–66
SMTP and 66

NewThread 19
NNTP (Network News Transfer

Protocol) 46
introduction to 64
NewsWatcher and 65–66

NNTPLow.c, NewsWatcher and
65

non-reentrant code, threads and
12–16

O
Offending Command Error

(PostScript), color printing and
44

OpenConnection, Finger protocol
and 61

OpenCPicture
black-and-white QuickDraw

and 26
32-Bit QuickDraw and 25

OpenResolver 54
OpenWindow 89
Othmer, Konstantin 23

P
PackBits, QuickDraw and 43

d e v e l o p Spring 1991

92

'PACK' 15 26
packType field, QuickDraw and

43
PBControl calls, MacTCP and

48, 53
PenPoint 71
Pickover, Clifford 70
PICTs, QuickDraw and 43
Picture Utilities package 26
pixel maps, QuickDraw and 43
pixels, direct 43
PixMapHandle, stretching and

colorizing a gray ramp and 35
pixMaps

black-and-white QuickDraw
and 26

colorizing and 32
dithering and 29, 31
search procedures and 33
stretching and colorizing a

gray ramp and 35
32-bit addressing and 36

pmVersion field, 32-bit addressing
and 36

PostScriptHandle PicComments,
color printing and 45

PostScript image operator, color
printing and 45

PostScript Offending Command
Error, color printing and 44

PrDrvrVers, color printing and
44, 45

“Print Hints from Luke & Zz”
(Alexander) 44–45

printing, color 44–45
Printing Manager, color printing

and 44
ProcDoggie sample code 88
Process snippet 89
pulsed routines, threads and 8

Q
Q & A Stack, Developer Essentials

disc and 86, 87
QDError 26

QuickDraw
CopyBits and 23–43
history of 24–25
System 7.0 and 26
See also black-and-white

QuickDraw; Color
QuickDraw; 32-Bit
QuickDraw

“QuickDraw’s CopyBits
Procedure: Better Than Ever in
System 7.0” (Othmer) 23–43

R
RasterOps graphics accelerator

card, 32-Bit QuickDraw and 36
ReadLN.c snippet 89
RecvData, Finger protocol and

61
reentrant code, threads and

12–16
ReKeyTrans snippet 89
ReleaseStream, Finger protocol

and 62
ResetConnection 65
resizing, dithering and 30, 31
RGBBackColor 26
RGB color separations, sample

code 38–42
RGBForeColor 26

S
sample code, Developer Essentials

disc and 86
SearchProc, CopyBits and 33
SeedFill 24
segment unloading, threads and

17–18
semaphores

sample program 11–12
threads and 10–12

SendData, Finger protocol and
61

SendSMTP 66
SillyBalls, threads and 8–10

Simple Mail Transfer Protocol.
See SMTP

Sleep 21
slot space, 32-bit addressing and

36
SMTP (Simple Mail Transfer

Protocol) 46
NewsWatcher and 66

SMTPLow.c, NewsWatcher and
66

snippets, Developer Essentials disc
and 88–89

Spawn 20
spawn semantics, threads and

20–21
SpInside Macintosh, Developer

Essentials disc and 86
srcRect parameter, black-and-

white QuickDraw and 25
stack, threads and 17
StartNNTP 65
StartThread 20
StripAddress, 32-bit addressing

and 36
StrToAddr 54
super slot space, 32-bit addressing

and 36
SwapMMUMode 36
System 7.0

black-and-white QuickDraw
and 26

Color QuickDraw and 26
QuickDraw and 23–43
sample code 87–88
threads and 7

System Software, Developer
Essentials disc and 87

T
Tanaka, Forrest 43
TCP

parameter block 48
snippet 89
See also MacTCP

TCPAbort 52

INDEX Spring 1991

93

TCPActiveOpen 50
TCPClose 52
TCPCreate 49
TCP/IP (Transmission Control

Protocol/Internet Protocol)
46. See also MacTCP

TCPLow.c, NewsWatcher and 66
TCPPassiveOpen 50
TCPPB.h, MacTCP and 48
TCPRcv 51–52
TCPRelease 49
TCPSend 51
Technical Notes, Developer

Essentials disc and 86
Technical Notes Stack, Developer

Essentials disc and 86
theGDevice global variable, Color

QuickDraw and 25
thePort global variable

black-and-white QuickDraw
and 25

colorizing and 31
32-bit addressing 36
32-Bit QuickDraw

color printing and 44, 45
history of 25
See also black-and-white

QuickDraw; Color
QuickDraw; QuickDraw

threads 6–22
advantage of 21
convenience routines 20–21
customizing 19–20
how they work 8–10
implementing 12–18
sample programs 8–10,

14–16
states of consciousness 21
structure 18
System 7.0 and 7
uses of 18
versus idle procs 8
what they do 6–8
See also Threads Package

Threads.h 18

“Threads on the Macintosh”
(Gough) 6–22

Threads Package 6–22
initializing 19
See also threads

TickAnimate snippet 89
TimerTst snippet 89
Toolbox, threads and 12–16, 17
TPrStl record, color printing and

45
transfer operations, CopyBits and

27–31
24-bit addressing 36

U
UDP (User Datagram Protocol)

46
upper-layer protocol 50
User Datagram Protocol (UDP)

46
U.S. System Software/HyperCard,

Developer Essentials disc and 87

V
variables (global), threads and

12–16
“Veteran Neophyte, The”

(Johnson) 70–71
video memory, 32-bit addressing

and 36
Virtual User, threads and 18

W
WaitNextEvent, MacTCP and 53
Wake 21
wDev field, color printing and 45
WDS (write data structure),

MacTCP and 51
wdsEntry structures, MacTCP

and 51
write data structure (WDS),

MacTCP and 51

X
Xerox PARC 71
XHDR command, NewsWatcher

and 65

Y
Yield 21

semaphores and 11
threads and 10, 13

Z
ZoomWindow snippet 89

d e v e l o p Spring 1991

94

