
d e v e l o p
T h e A p p l e T e c h n i c a l J o u r n a l

QUICKTIME 1.0:
“YOU OUGHTA
BE IN PICTURES”

SCORING POINTS
WITH TRUETYPE

THREADED
COMMUNICATIONS
WITH FUTURES

USING C++ OBJECTS
IN A WORLD OF
EXCEPTIONS

THE SUBSPACE
MANAGER IN
SYSTEM 7.0

HELP FOR
YOUR DIALOG
APPENDAGES

IF I HAD A HAMMER

MACINTOSH Q & A

APPLE II Q & A

YOUR DEVELOPER
ESSENTIALS DISC

I ssue 7 Summer 1991
Apple Computer, Inc.

E D I T O R I A L

Editor-in-Cheek Caroline Rose

Spirited Guide Louella Pizzuti

Technical Buckstopper Dave Johnson

Managing Editor Monica Meffert

Contributing Editors Lorraine Anderson,

Geta Carlson, Toni Haskell, Judy Helfand,

Rilla Reynolds, and Gregg Williams

Editorial Assistant Helen Stea

Indexer Ira Kleinberg

Manager, Developer Support Systems and

Communications David Krathwohl

A R T & P R O D U C T I O N

Production Manager Hartley Lesser

Art Director Diane Wilcox

Technical Illustration Automatrix, Don Donoughe,

and John Ryan

Formatting Automatrix

Printing Wolfer Printing Company, Inc.

Film Preparation Aptos Post Inc.

Production PrePress Assembly

Photography Sharon Beales, Ralph Portillo,

and Steven C. Johnson

Circulation Management David Wilson

Online Production Cassi Carpenter

R E V I E W B O A R D

Pete Alexander, C. K. Haun, Larry Rosenstein,

Andy Shebanow, and Gregg Williams

d e v e l o p, The Apple Technical
Journal, is a quarterly publication of
the Developer Support Systems and
Communications group.

The cover was created by Hal Rucker and
Cleo Huggins using Adobe Photoshop™,
a RasterOps™ Frame Grabber, and their
friends Denise Huajardo and Brian
Crowley. Wildebeests were inspired by a
documentary on an African watering hole.

With TrueType, Apple‘s outline font technology, “Hello, World” has never
looked so good. See “Scoring Points With TrueType” for details.

CONTENTS Summer 1991

1

E D I T O R I A L 2

L E T T E R S 4

A R T I C L E S
QuickTime 1.0: “You Oughta Be in Pictures” by Guillermo A. Ortiz
An introduction to QuickTime that shows you how to create and play back simple
movies. 7

Scoring Points With TrueType by Konstantin Othmer and Mike Reed
This article demonstrates some snazzy, never-before-possible text effects. 30

Threaded Communications With Futures by Michael Gough Futures are
an addition to the Threads Package that can make your IPC code even cleaner. 51

Using C++ Objects in a World of Exceptions by Michael C. Greenspon
This article explores some subtle gotchas that can occur when mixing Pascal and
C++ objects, and provides guidelines for avoiding them. 66

The Subspace Manager in System 7.0 by Harry R. Chesley A little-
known Macintosh Manager is revealed for the first time, and the (hairy) implications
for life on earth are discussed. 86

C O L U M N S
Print Hints From Luke & Zz: Help for Your Dialog Appendages
by Scott “Zz” Zimmerman How can you add Balloon Help to your custom Print
dialog items? Zz will tell you all about it. 48

The Veteran Neophyte: If I Had a Hammer . . . by Dave Johnson
Kids, MS-DOS, wireless modems, collaboration, and computer binges. Disparate
topics? Perhaps. 91

Q & A
Answers to your product development questions.
Macintosh Q & A 93
Apple II Q & A 101

D E V E L O P E R E S S E N T I A L S 104
What’s old and what’s new on your Developer Essentials CD-ROM disc.

I N D E X 107

© 1991 Apple Computer, Inc. All rights reserved. Apple, the Apple logo, APDA, Apple IIGS, AppleLink,
AppleShare, AppleTalk, GS/OS, LaserWriter, Lisa, MacApp, Macintosh, MPW, MultiFinder, ProDOS, and
StyleWriter are registered trademarks of Apple Computer, Inc. Apple Desktop Bus, Balloon Help, develop,
Finder, KanjiTalk, QuickDraw, QuickTime, and TrueType are trademarks, and ACOT is a service mark, of Apple
Computer, Inc. HyperCard is a registered trademark of Apple Computer, Inc. licensed to Claris Corp. PostScript
is a registered trademark, and Adobe Photoshop is a trademark, of Adobe Systems Inc. Bitstream is a
registered trademark of Bitstream Inc. Turbo C and Turbo Pascal are registered trademarks of Borland
International Inc. MacDraw and MacWrite are registered trademarks of Claris Corp. dip-er-do is a trademark of
Dipco Products Co. GRiDPAD is a registered trademark of GRiD Systems Corp. Times is a registered trademark
of Linotype Co. MacRenderMan is a registered trademark of Pixar. RasterOps is a trademark of RasterOps.
THINK C and THINK Pascal are trademarks of Symantec Corp. NuBus is a trademark of Texas Instruments.
WriteNow is a trademark of T/Maker Co. UNIX is a registered trademark of UNIX System Laboratories, Inc.

CONTENTS

 2
CAROLINE ROSE has been writing computer
documentation ever since “timesharing” meant
mainframes, not condos. After a seven-year digression
into programming, she returned to writing and joined
Apple to document the inner workings of a beguiling
new computer named Macintosh. The result was a
three-volume tome that was affectionately nicknamed
“The Vault of Horror.” In what proved to be another
digression, she left Apple to launch NeXT’s

documentation effort (starting, interestingly enough,
with writing the WriteNow™ For Macintosh manual).
She’s thrilled to be back at Apple with all its charms.
Caroline is an avid reader, swimmer, dancer, and
hiker, and is passionate about her cat and all things
Italian. Seeing Michael Crawford in Phantom of the
Opera was a recent high that she’s not sure how she’ll
top (but she’ll try).•

d e v e l o p Summer 1991

CAROLINE ROSE

Dear Readers,

My editorial in Issue 6 ended with this riddle: “I entered this entire editorial
without pressing a single key on the keyboard or clicking the mouse button. I was as
quiet as a mouse (the furry kind). How did I do this? And furthermore, why?”
Well, first I had an on-screen keyboard (a desk accessory) that interprets a click on
one of its keys as a press of that key. This DA has an option that lets you set a
delay after which the mere presence of the cursor over that key will be interpreted
as a keypress. I also had a trackball set up on the floor and used my foot to move the
cursor around. So with this I was able to type without using my hands.

As for why I wasn’t using my hands—besides as a way of getting a snappy ending to
the editorial—I’m one of many people who suffer from RSI, repetitive strain injury.
In my case, this means tendinitis in my forearms, but it can also mean carpal tunnel
syndrome and a host of other similar problems. Since my recent return to Apple®,
I’ve learned that there are many software and hardware products for the
Macintosh® that can help RSI sufferers and others with limited hand movement.
I’m now using a trackball with my nondominant (less-suffering) hand and with a
foot switch—a pedal I step on to click. I’m also using a desk accessory that alerts me
when I’ve been typing for a half hour without at least a five-minute break (I chose
delicate Tibetan-style flute music as my auditory cue, but there are of course less
sublime options). There are many similar products that I haven’t yet explored.
With diligent stretching and breaks from typing—and freedom from using the
mouse—I’m able to type as much as I need to in order to do my job. Many others are
less fortunate.

That’s the good news. The bad news is that many of these products don’t work with
other, mainstream software: the on-screen keyboard isn’t compatible with a certain
macro program I’d also benefit from using, or with the word processor I use most of
the time. This is a very real example of the effect of programming things in
nonstandard ways—for example, using GetKeys to find out what characters have
been typed rather than getting this information out of the event record, or calling
the ADB Manager when you’re not writing a special driver and so really should be
using higher-level routines. (You know who you are.)

Incompatibilities notwithstanding, these products are terrific, and thanks go to all
the Macintosh developers who have created them. You’ve made a big difference in
some people’s lives—probably including your own, since I’ve learned that the

motivation for many of you has been that you’ve had a repetitive strain injury
yourselves. For those of you who haven’t yet had the problem, you’d be wise to
takes steps toward prevention. Don’t ignore it; if you slave over the keyboard for
long hours, it will probably not ignore you.

While we’re on the subject of doing the right thing, I might add that develop’s paper
is now recycled enough to pass California’s stringent requirements for the use of
the familiar recycle logo (which we now proudly bear on our back cover). Formerly
we used paper that was 50 percent de-inked (waste paper from printing plants, with
the chemical inks removed); now our paper is also 10 percent post-consumer waste
(not de-inked). Recycled paper keeps getting better looking and more practical to
use; we’re happy to be able to do our part toward saving the forests. Please do
yours, and recycle your issues of develop if you don’t want to hold on to
them—preferably by passing them on to a friend!

As always, we welcome your comments and suggestions. Keep those cards and
letters coming . . .

Caroline Rose
Editor

EDITORIAL Summer 1991

3
SUBSCRIPTION INFORMATION
Use the order form on the last page of this issue
to subscribe to develop™. Please address all
subscription-related inquiries to develop, Apple
Computer, Inc., P.O. Box 531, Mt. Morris, IL
61054 (or AppleLink DEV.SUBS).•

BACK ISSUES
For information about back issues of develop and
how to obtain them, see the reverse of the order
form on the last page of this issue. Note that back
issues are also on the Developer Essentials CD-
ROM disc.•

NEAT THREADS
I’ve just finished experimentally adding
the Threads Package to my current
application. I was amazed at how
painlessly it could be added. What I felt
was truly remarkable was that I use
THINK C’s™ object-oriented
extensions (which I refer to as C+-)
along with the THINK Class Library,
and it took less than 10 minutes to
perform all the necessary conversions.
Pretty neat.

I’m linking to ask whether you have any
information about using the Threads
Package with THINK C and TCL, and
whether there are any special
considerations involved in using threads
with or inside methods. Just using them
inside a method with a single instance,
with no reference to instance variables,
is demonstrably effective, but this case
is logically indistinguishable from
conventional code. I suspect that use
with objects might require custom
fSwapIn and fCopyContext routines to
preserve this, the handle to the object's
instance. In THINK C, this is
internally kept in an address register.

If the default context-saving routines
save A0-A4 register states as well as the
stack, this should automatically be
preserved. Whether registers are
preserved does not seem to be
documented in your otherwise nifty
develop article. Logic says some must be
preserved (A5 at least), but have you
been prescient enough to save all of
them?

—Kirk Kerekes

Thanks for your truly inspiring link! It
really makes a difference for me to get
feedback like this.

I don’t foresee any special problems
threading THINK C code. All the data
and address registers are saved. The FPU
registers are saved only if you specifically
request that they be saved at InitThreads
time, and then only when you have an
FPU. Remember to be careful about
segment unloading.

I’m at your service if you need any help
with threads. Feel free to contact me by
telephone. My number is (408)974-0355.

—Michael Gough

MISSING SNIPPETS
Am I blind? Issue 6 of develop, page 88,
talks about code snippets, but I can’t
find them anywhere. Are they inside a
stack somewhere, or did they miss
getting on the CD?

—Greg Johnson

You are not blind. Snippets did not make it
onto that CD, but they’ve made it onto the
Developer Essentials disc for this issue of
develop. They’re also available via
AppleLink®, in the Developer Technical
Support folder on the Developer Services
Bulletin Board, as well as in the Dev Tech
Answers library.

—Caroline Rose

MISSING TRUETYPE INIT
Recently I received Issue 6 of develop. I
enjoy reading the articles and would
like to make a comment.

Since Apple is distributing a TrueType™

INIT for System 6.0.7, why didn’t you
put it on the CD of Issue 6? I hope I
can find it in the next issue even though
System 7.0 is now available.

—Tetsuya Ishikawa

d e v e l o p Summer 1991

4
COMMENTS
We welcome timely letters to the editors,
especially from readers reacting to articles that
we publish in develop. Letters should be
addressed to Caroline Rose (or, if technical
develop-related questions, to Dave Johnson) at
Apple Computer, Inc., 20525 Mariani Avenue,
M/S 75-2B, Cupertino, CA 95014 (AppleLink:
CRose or Johnson.DK).

All letters should include name and company
name as well as address and phone number.
Letters may be excerpted or edited for clarity
(or to make them look like they say what we
wish they did).•

LETTERS

LETTERS Summer 1991

5

I hope we can fulfill other people’s wishes as
easily as we did yours. The TrueType INIT
for System 6.0.7 is now on the CD in the
folder with the System; an oversight kept it
off of the last CD.

As with all old System software, we’re
providing this INIT so you can test your
software with it (just in case you’ve got some
as-yet-unupgraded users). When testing
with the TrueType INIT, make sure you use
it only with System 6.0.7; that’s the only
System it’s designed to work with.

Happy testing,

—Caroline Rose

DISAPPOINTING CD
I must admit to being disappointed with
the CD-ROM disc that came with Issue
6: Tech Notes “stuck” back in 12/90, no
Volume VI of Inside Macintosh, just
HyperCard® alone rather than a
developer’s edition, no System 7.0.
Should I expect that my perception that
the disc is out-of-touch, out-of-date,
and insufficient will be permanent? That
is, develop is not really meant to be a real
developer-support package for the
individual (noncorporate) developer
operating on a shoe string? Thanks for
any insight you can give me.

—Pete Roberts

I certainly hope your perception that the disc
is out-of-touch, out-of-date, and insufficient
will not be permanent. We collect and press
as much as we can, but because we want
subscribers to get develop regularly, we
don’t hold the presses for software or
documentation that isn’t quite ready yet, as
was the case last time for System 7.0 and
Inside Macintosh Volume VI. They’re both
on this issue’s disc.

The Tech Notes on Issue 6’s disc were
actually updated through February 1991.
(Well, the stack version was, anyway; the
MacWrite® version wasn’t, and we
apologize for the oversight.)

As for the developer edition of HyperCard,
Claris Corporation no longer allows us to
distribute it.

We’ll continue to do our best to give you the
latest, greatest information possible!

—Caroline Rose

WHERE’S LOUELLA?
Congratulations, Caroline, on your new
job as Editor-in-Cheek of develop. I hope
you have as much fun at it as Louella
had.

Thanks for the riddle at the end of your
first editorial. We’ve been scratching
our heads over it for a while. The closest
thing to a guess we can come up with is
that you used either a tablet or some
other alternative text entry device. You
probably were able to emulate the
mouse as well as the keyboard. Why?
Perhaps to demonstrate that
handicapped people can have access to
the Macintosh.

A humble suggestion: I’ve saved all the
CD-ROMs that have come with your
magazine (develop the CD, aka develop,
the disc, aka Developer Essentials). How
about designing inserts for the CD cases
that some of us keep their CD-ROMs
in? Something we could print on thick
paper, cut out, and stick in the plastic
boxes to label the contents.

Keep up the good work!

—Lyle D. Gunderson

P.S. I tried to send mail to Louella at
pizzuti1@applelink.apple.com, but your
system denied knowing about her. Any
help you could give me in addressing
e-mail to her would be very much
appreciated.

Thanks for the nice letter. I’m having more
fun than I’ve ever had on a job.

Regarding the answer to my riddle: If
you’ve read this issue’s editorial, you know
by now that you were barking up the right
tree. Other readers who replied did not
think of access by people with physical
limitations. I hope I’ve succeeded in doing
some consciousness raising here.

Your idea about the insert is a good one. We
didn’t manage to get it onto this issue’s disc,
but we’ll try for next time. It sounds as if
you’re holding on to all the old discs. If so,
be careful about using stuff on them,
because we update software and generally
attempt to correct the mistakes of the past
with each new disc.

Louella decided that there was after all no
job as much fun as being editor of develop,
so she retired to raise flowers in Holland.
Just kidding. You can reach her at
louella@applelink.apple.com.

—Caroline Rose

POLES AND FONTS
Two things I’d like to mention after
reading Issue 5 (Volume 2, Issue 1):

First, I’m not sure that the answer to
the question “What is the difference
between North and West?” is
completely correct. To my mind, there
are two points on the globe from which
one would be hard pressed to go further
West (or East): the North and South
Poles.

Second, may I make a typographic
recommendation? Please use Courier
for “computer voice” (program listings
and the like). Prestige Elite is ugly and
too lightweight. The Bitstream®

Courier family has a good regular
weight and a bold that would be
compatible with your Futura headings.

Oh, and without being too dogmatic, I
disagree that a spacious layout is
necessarily more effective or attractive.

—Toby Thain

You’re right, we mistakenly left out the
South Pole. Those PR folks for the North
Pole do a really good job at making you
forget that the other pole exists at all
(especially in December, and that was after
all our Winter issue). Thanks for the
correction.

I’m not sure I agree that Prestige Elite is
ugly, but it does bother me that its hyphen
(what’s typed for a minus sign in code) is so
narrow and its O (Oh) and 0 (zero) are
not very easily distinguishable. So in this
issue we have indeed switched to Bitstream
Courier, which solves these problems and
has the right weight.

The beauty of a particular font or layout is
surely in the eye of the beholder; I’ve heard
at least as many positive responses as
negative ones to the choices we’ve made for
develop. We hope that you and others will
keep giving us specific feedback so we’ll
know what’s working and what isn’t.

—Caroline Rose

d e v e l o p Summer 1991

6

QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

7

QuickTime is Apple’s new architecture for enabling the Macintosh to
handle time-based data. The recently introduced QuickTime 1.0 makes
it easy for you to add dynamic media like video and sound into your
applications—and that’s just the beginning. Two sample programs
show you how to do the two most basic (and important) QuickTime
tasks: playing existing movies and creating new ones.

The world isn’t standing still—it’s moving, fast—and Apple intends to stay at the
front of the race. When Apple came out with the Lisa® and then the Macintosh, the
idea of a document file that mimicked a piece of paper was a big deal. But now it’s
not. Users have taken the “paper” metaphor for granted and are now looking for new
metaphors that increase their ability to communicate. One way to do that is to allow
documents and applications to contain and display data that changes.

QuickTime™ is more than just the ability to record and play back movies—it’s a
fundamental addition to the Macintosh Operating System. Just as QuickDraw™ gave
the original Macintosh the edge of sophisticated graphics in 1984, QuickTime will
give the Macintosh another edge over other computers: the built-in ability to handle
data that changes with time.

Until now, the Macintosh Toolbox has not provided a standard way of dealing with
dynamic media, and some developers have come up with their own solutions,
especially in the areas of video and sound. Unfortunately, this has resulted in
confusion and a lack of standards and basic system support for these data types.
Apple has created QuickTime to provide a standard way of dealing with data that
changes with time. Even more important, QuickTime gives you the necessary
support software so that you can spend your time using new data types instead of
designing, implementing, and maintaining them.

QuickTime 1.0 works on all color-capable Macintosh computers running Color
QuickDraw (models with either a 68020 or 68030 processor) and either System 6.0.7
or System 7.0; a later version will add QuickTime support for monochrome, 68000-

GUILLERMO ORTIZ Instead of giving you
details about his life, Guillermo would like to
share with you a passage from a soon to be
published book. Some say that his affinity for this
book tells you much more about Guillermo than
we ever could.

Tired, hungry, and thirsty after a long and
arduous trek, DunKennsan, also known after his

conversion as “He who seeks the Light,” entered
Brucewhandra’s cave, and, without waiting for
the religious man to acknowledge his presence,
he posed the question burning in his mind: “Why
‘QuickTime’?” As a response, Brucewhandra, the
man called the Wisest, kept repeating the mantra
now famous among the true followers: “Calls that
take a Movie can take a Track or a Media. Calls
that take a Track can take a Media. Calls that

QUICKTIME

1.0: “YOU

OUGHTA BE

IN PICTURES”

GUILLERMO A. ORTIZ

d e v e l o p Summer 1991

8 take a Media can take a Track.” After sixty-one
nights and sixty days DunKennsan left.

From DunKennsan, the Favorite Disciple, by Lord
James Batson. Any resemblance to any real
person or event is intentional and should be
construed as such.•

In the future, QuickTime will be able to do
things like control audio-visual equipment and
manipulate custom-defined types of data (such as
scientific instrument data). Also remember that
QuickTime will become even more powerful
when compression and decompression hardware
becomes cheaper and is found in most users’
computers.•

based Macintoshes. As a result, you, the developer, can take it for granted that
QuickTime will be available on any Macintosh running your software.

QuickTime 1.0 makes it possible for your program to manipulate the audio/video
sequences we call movies. (The size, duration, and quality of the average movie
largely depends on how much disk space you have for movie files.) It also includes
routines for the compression and decompression of still and dynamic images (which
should encourage you to use color images without worrying about how much space
they take up).

The result of all this is something that you’ll like very much: applications and
documents that give users a richer experience with your product than they can get
with non-QuickTime Macintosh applications or applications on other platforms.
QuickTime will make possible a new generation of Macintosh software and hardware
solutions that until now have been available only using expensive and narrow-
purpose hardware.

ENOUGH MARKETING STUFF! NOW THE DETAILS . . .
QuickTime 1.0 contains the following parts:

• Movie Toolbox. This contains the calls needed for playing and
recording dynamic media. It communicates with the necessary
components for the type of media being used.

• Component Manager. Previously called the Thing Manager in
internal circles, this piece of QuickTime provides a high-level
interface that allows applications to communicate during run time
with a collection of software objects. These components,
affectionately called Things, provide a variety of functions. At
present, these functions include image compressing and
decompressing, movie data handling, video digitizing, and
playback controlling.

• Image Compression Manager. This tool handles the interaction
among the components that compress and decompress image
data. Its services are available both for movie making and playing
and for the compression and decompression of still images.

MOVIE TOOLBOX
The basic component of QuickTime is the movie. At its highest level, a movie
contains one or more tracks, each of which points to data of one type (see Figure 1).
A movie also includes its time scale, duration, size, location and poster information,
current selection and insertion point (if any), preferred volume, image scaling and
positioning matrix, and other information (more on this later).

A movie contains any number of tracks (it’s true that a movie can have zero tracks,
but that’s kind of a boring case). Each track has a media associated with it, which
points to the “raw” data that the track draws from when it plays. Other track
parameters include time scale, duration, time offset within the movie, audio volume,
and track type. The track edit list is the list of media subsegments that define the
track’s output.

Each media references a file that contains its raw data; the file can be any place you
can put a random-access stream of data—it can be in the file containing the movie, a
nearby file, or even a file elsewhere on the network! If more than one media in the
movie references the same data file, the different types of data may be interleaved
within the file.

As Figure 2 shows, each media is associated with exactly one track and vice versa.
Because the track can map nonlinearly to the media (as is the case in Figure 2), you
can edit a movie by simply changing a few pointers rather than having to move large
pieces of data around. Two or more tracks can be members of a movie’s alternate
group; when the user picks one of these tracks to be active, QuickTime does not use
any of the other alternate tracks.

Each media references “raw” data of one type—for QuickTime 1.0, either video or
sound. It also contains its duration, time scale, priority, language, quality, media type,
and handler. The media handler knows how to play back its data at the right time.

The poster is the single frame (in the movie) that the creator of a movie considers as
best conveying the spirit of the movie. You can think of it as the frame you would like
to show if motion were not possible—for example, when printing the document that

QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

9
One common use for alternate audio
tracks is to let the user watch the movie in the
(human) language of her or his choice—for
example, tracks 4 and 5 in Figure 1. A movie
could also contain alternate video tracks—for
example, tracks to be played using hardware
decompression (for one track) or software
decompression (for the other). In such a case, the
video would play on any Macintosh with

QuickTime, but it would play better on one with
hardware decompression.•

Track�

1�

2�

3�

4�

5�

6�

Video�

Audio (alternate track, Spanish)�

Audio (alternate track, English)�

Time�

Video�

Audio�

Video�

Figure 1
A Movie and Its Tracks

contains the movie. The poster is usually a frame from the movie the user sees, but it
can be an arbitrary frame from a video track that is not visible in the normal movie.

The preview is a short piece of the movie that best conveys the spirit of the movie.
Note that although a preview is associated with a movie, the data (frames) associated
with the preview may not be part of the movie the user sees. In movie terms, the
track associated with the preview may not be part of the regular movie playback.

Although in the normal situation a movie file contains the data for its tracks (in
which case it’s called self-referenced data), it’s possible for the data associated with a
media to reside in a file separate from the movie, anywhere on the network.

Future releases of QuickTime are expected to extend the referencing capabilities of
media to allow for data being acquired as the movie plays along—as, for example,
data coming from a CD player or a video digitizer board.

d e v e l o p Summer 1991

10

Movie�
(has multiple tracks)�

Track�
(maps nonlinearly�

to one media)�

Media�
(belongs to one track,�
maps linearly to data)�

Data �

Figure 2
Basic Components of a Movie

To recap: A movie may contain any number of tracks. These tracks do not need to be
playing at the same time, and as a matter of fact, a track doesn’t need to become
active at all. Several tracks can belong to a movie’s alternate group, and only one of
them can play at a time.

COMPONENT MANAGER
One very important architectural feature of QuickTime 1.0 is its extensibility. Let’s
take a video track as an example. When the Movie Toolbox (the subset of QuickTime
that deals with movies) finds out it needs to play back this track, it calls the video
media handler (which is a component). The handler in turn calls the Image
Compression Manager, telling it the type of compression used. The Image
Compression Manager then calls the Component Manager to find out if a
corresponding decompressor component is available. If so, the Image Compression
Manager can use this component without having to know all the details about the
particular decompressor component needed. Of course, this is just one example;
several different compression and decompression techniques are available, and the
Component Manager allows the caller to choose a certain type of component by
supplying additional information about it.

Let’s study the decompressor component with subtype 'rpza', which has the
following structure:

ComponentResource:
ComponentDescription /* Registration Parameters */

componentType: imdc
componentSubType: rpza
componentManufacturer: appl
componentFlags: 0x00000447 /* binary 0100 0100 0111 */
componentFlagsMask: 0

resourceSpec /* resource where component code is found */
type: cdec /* the code is in a resource of type 'cdec' */
id: 0x000A /* with id of 10 */

resourceSpec /* resource with name string */
type: STR /* 'STR ' resource */
id: 0x000B /* with id of 11 */

resourceSpec /* resource with info string */
type: STR /* 'STR ' resource */
id: 0x000B /* with id of 11 */

resourceSpec /* resource with icon */
type: ICON /* 'ICON' resource */
id: 0x000B /* with id of 11 */

The registration parameters allow the Component Manager searching for a
component of type 'imdc' (image decompression) to narrow the search to a
component of subtype 'rpza', made by 'appl' (Apple Computer, Inc.). The parameters

QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

11

include the componentFlags and componentFlagsMask fields, which help determine
how to search for a given component. Note that the subtype field can be omitted if
no more information is considered necessary for the type of component in question.

For example, the componentFlags field in the example above indicates that the
decompressor can do the following:

bit 0 scale on decompress
bit 1 mask on decompress
bit 2 use matrix for blending on decompress
bit 6 spool (used for compression and decompression)
bit 10 do fast dithering

The cleared bits have meaning, too. For example, the cleared bit 3 means that this
component cannot use a matrix for the placement and scaling of the decompressed
image.

The ComponentResource (shown above) also contains the type and ID of the
resource where the code that performs the actual work is located. In addition, it
contains the type and ID for resources containing the name string, info string, and
icon associated with the component.

In short, the Component Manager can help applications access certain services by
function rather than by name; Figure 3 shows how an application can call the
Component Manager to interact with different types of components. When an
application registers a component, it’s guaranteeing that the component supports the
basic set of calls defined for the type. This enables applications to find components
by their function without having to know exact names or locations.

COMPRESSION AND DECOMPRESSION
Following the basic concepts of the Component Manager, the Image Compression
Manager provides applications with a common interface to compression and
decompression “engines” that’s independent of devices and drivers. Figure 4 shows
how the Image Compression Manager interacts with the Movie Toolbox, the
Component Manager, and the application.

The services provided through the Image Compression Manager allow applications
to compress still images as well as sequences of images (such as those found in video
track media). In the case of image sequences, the Image Compression Manager also
provides optional support for the differencing of frames—that is, storing only the
pixels that differ from the previous frame to reduce the size of the movie data.

Given that these compression techniques are tightly coupled to the type of data
they’re supposed to handle, the Image Compression Manager does not work for
sound, text, or any type of data other than images.

d e v e l o p Summer 1991

12

The Image Compression Manager accepts the input data as either a PICT or a
pixMap; obviously, the first format is most often used for still images and the second
for sequences of video. Since images can be very large (even when compressed), in
both cases the Image Compression Manager allows for the calling application to
provide spooling routines that feed the Image Compression Manager source data as
needed and write the resulting compressed data to disk. The Image Compression
Manager can also translate between pixMaps of varying bit depth. This simplifies the
manipulation of an image split across monitors of two different bit depths; it also
extends a compressor or decompressor’s ability to manipulate images that (because of
incompatible pixel bit depths) it would otherwise not be able to handle.

In the case of pictures, the Image Compression Manager provides a set of high-level
calls that allow applications to compress and play back PICT resources and files.
Although these compression facilities are available to applications that call them,
even applications that know nothing about QuickTime’s compression facilities can
play back pictures containing compressed images. (This can occur because
QuickTime-unaware applications calling DrawPicture will automatically invoke the

QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

13

Application�

'imco' component�
'imdc' component 1�
'imdc' component 2�

'clok' component�

'imco'�
'rpza'�
'appl'�

0�
0�

Registered�
components�

'imco' component�
description�

Component�
Manager�

'clok' component�'imdc' component 2�'imdc' component 1�

'imco' component�

Macintosh�

N˙?zNVHÁ

;|ınIÌıt

+LıpBß/:

8?<©†.+G

ıjJ�ıjf

Bg©Ø>=G

Bn/ıjN�C

¶LflÄN^Nu

WAVENVHÁ

(mı¶(T>R

G8á>æl���

o/-ıjN�
Cj/ı¶N�
CbN˙�X>
SGœ¸+tp
ıv+tpı~
+tpıÜ+t
pıé<ºlf
<4p�ÕÌ
ı™;FıtN
˙<4pÕÌı
™�F;Fıt
<4pÕÌı™
;Fı�Lflp
+tpıÜ+t�

6000426 7A93A0C

4700046 C000008

52474EF AFFE2A9

371B7C0 001FA90

A8523F3 C000242

67201FA 0324EFA

006A0C6 D0003F9

346C000 00A526D

F9344EF A00083B

7C0001F 9343E2D�

4E49EDF C902F34

6000426 7A93A0C

4700046 C000008�

0000000 14EFA62

FC4E56F FFE48E7

03084A2 E000867

00004E2 F2DFCA0

4267A93 53E3C00

010C470 0046E00

00223C0 75346E5

4E49EDF C902F34

6000426 7A93A0C

4700046 C000008�

Figure 3
Component Manager Interactions

Image Compression Manager, which will decompress the image automatically and
hand the application the uncompressed PICT image it was expecting.) In other
words, when QuickTime is present, you can use compressed PICTs as part of your
application and know that any PICT-reading application can open them correctly.

The Image Compression Manager provides a simple and at the same time powerful
system for compressing images. Since the mechanism is based in the workings of the
Component Manager, adding new compression engines is as simple as dropping a
'thng' file into the Extensions folder of the System Folder (for System 7.0, or into
the System Folder itself for System 6.0.7). Even when the exact decompressor
component is not available to decompress the data, the Image Compression Manager
will find a substitute if any is available. High-level calls are provided for applications
to access these features in a nearly effortless manner.

d e v e l o p Summer 1991

14

Photo�
Hardware�

Decompressor�

Acme�
Animation�

Decompressor�
Video�

Decompressor�

Photo�
Software�

Compressor�
Animation�

Compressor�
Video�

Compressor�

NuBus™ JPEG�
Compression/�

Decompression card�

Color�
QuickDraw�

Image�
Compression�

Manager�

Component�
Manager�

Movie�
Toolbox�Application�

Display�

Figure 4
Image Compression Manager Interactions

QUICKTIME SAMPLE CODE
We’ll now directly explore the QuickTime features that you can immediately put
into your applications. We’ll follow two samples, each of which accomplishes one of
the two basic QuickTime functions: playing back a movie (which most applications
should be able to do) and creating a movie (which you’ll need to know how to do if
your application creates new movies).

PLAYING BACK A MOVIE
To show the basic steps necessary to open movie files and play them back, we’ll use
the sample application SimpleInMovie. (You can find the source code for this on the
latest Developer Essentials disc.) This program presents the user with a dialog for
opening a movie and plays the movie back in a window. SimpleInMovie uses
QuickTime’s standard movie controller (which is itself a component) to let the user
start or stop the movie as well as scan back and forth within it. Some commands for
the movie controller are implemented as menu commands to show how a program
can control the controller component.

But first, a few words . . . Before we look at the SimpleInMovie source code, we
need to make several new distinctions. The most important distinction is that of a
public movie versus a playable movie. A playable movie is what the Movie Toolbox
manipulates; it has all the information needed for it to be played or edited. In
contrast, a public movie is used only for data interchange, and it contains all the
information needed to create a playable movie. A playable movie must be converted
to a public movie (which is stored as a resource of type 'moov', pronounced “moo-
vee”) before it can be stored to disk or put into the Clipboard. QuickTime provides
two calls to convert between the two forms: GetMoviePublicMovie converts a public
movie into a playable movie, and MakePublicMovie does the opposite.

To summarize, a playable movie is what the Movie Toolbox plays back; it has all the
media handlers instantiated and is ready to go. A public movie is strictly a static
representation used when the movie is to be transferred or copied.

QuickTime gives you wide latitude in choosing the location of the raw data
associated with a media, so we need to look at a few alternatives. A movie file has a
file type of 'MooV'. We’ll call a movie file “normal” if it contains exactly one 'moov'
resource.

A movie file whose data fork contains only the media data referenced by the movie
and no more is called a flattened movie. Specifically, it does not contain media frames
that aren’t referenced by the track to which they belong—for example, the unshaded
media frames in Figure 2. A flattened movie is handy for transporting a movie in toto
to another Macintosh computer. QuickTime provides a FlattenMovie call to create
such a movie file.

QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

15A movie file containing multiple 'moov'
resources would be atypical. In such a case,
the application must inform the user of the
existence of multiple movies and give the user a
way to choose one of them. The Movie Toolbox
can handle such files, but Apple discourages you
from creating them. Most applications will just
use the first 'moov' resource found in the movie
file.•

The single-fork file is another type of movie file. Here, not only the media data but
also the 'moov' resource data are in the file’s data fork. (You might use a single-fork
file when exporting to a non-Macintosh computer that doesn’t have separate data
and resource forks.) You can make a single-fork file by calling FlattenMovie with the
proper parameters. QuickTime can automatically read these files.

Another possibility is that the movie’s media point to data that are not in the movie
file’s data fork but in a different file; this is very common when you’re about to edit a
movie. Remember that to edit a track, you need only change pointers to the media; if
you had to cut/copy/paste the actual image data (which can be multiple megabytes in
length), editing operations could take an inordinate amount of time and disk space.

Back to the code. We can now proceed to examine SimpleInMovie’s source code.
Note that in the listing below, the comments help describe only those calls that have
directly to do with playing movies. The full source code of this program (on the
Developer Essentials disc) contains numerous other comments on the details that
pertain to all normal Macintosh operations.

As is the case with most parts of the Macintosh Toolbox, the Movie Toolbox has to
be initialized. In our sample, the initialization is done as follows:

void InitMovieStuff()
{
ComponentDescription controllerDescriptor;
long version;
extern Boolean DoneFlag;
extern Component movieControllerComponent;

/* We have to fill in the fields for the player descriptor in order
to get the standard movie controller component. */

controllerDescriptor.componentType = 'play';
controllerDescriptor.componentSubType = 0;
controllerDescriptor.componentManufacturer = 0;
controllerDescriptor.componentFlags = 0;
controllerDescriptor.componentFlagsMask = 0;

/* We'll use gMoviesInited as a flag for everything; false means that
the Movie Toolbox or standard player couldn't be initialized. */

gMoviesInited = false; /* so pessimistic */

if (!(Gestalt(gestaltQuickTime, &version)))
if (!(EnterMovies()))

if (movieControllerComponent = FindNextComponent((Component)0,
&controllerDescriptor)) /* No error means we're OK. */

gMoviesInited = true; /* Good! */

d e v e l o p Summer 1991

16

if (!gMoviesInited) {
Alert(rBadMooviesALRT, nil); /* Inform user we're bailing out. */
DoneFlag = true;

}
}

EnterMovies initializes the Movie Toolbox. In an application, this must be balanced
by ExitMovies (or Bad Things will happen to your application). If you’re calling
EnterMovies from a nonapplication environment (such as an XCMD), you must call
ExitMovies to balance the calls and ensure that all memory allocated and all globals
are disposed of.

Normally, when an application presents a movie, it also wants to give the user some
basic control over the playing of the movie. QuickTime provides a tool that lets
developers add such control easily: a component called the standard movie controller
(the horizontal bar at the bottom of the window in Figure 5).

Getting and using the component. To use a component, you first have to get it,
which means you must fill in a ComponentDescription. Our example specifies only
the basic type, but the subtype, manufacturer, and flags fields allow you to specify the
component in greater detail. If, for example, you were looking for a compressor, the
type would be 'imco' for an “image compressor” or 'imdc' for an “image
decompressor.” In addition, the subtype could be 'rpza', 'rle ', or 'jpeg' (or others),
each of which specifies a specific implementation of compression or decompression.

Although an application can register components “live” (that is, after the application
has started up), the normal way they get registered is during system startup, at which
time the Component Manager registers all components found in files of type 'thng'
in the Extensions folder of the System Folder (for System 7.0, or in the System
Folder itself for System 6.0.7). Because this happens automatically, the application
can find a specific component by making the following call:

QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

17

Figure 5
The Standard Controller

FindNextComponent((Component)0, &controllerDescriptor);

This call tells the Component Manager to find the component that matches the
descriptor (controllerDescriptor); passing 0 in the first parameter tells the
Component Manager to return the first one of this type that it finds. In the case of a
more extensive search, you may want to continue the search; you would then pass the
last component found to get the next in the list that matches the descriptor.

Once you know that the component exists, you have to open it. A component (if it’s
so designed) can be accessed multiple times simultaneously. Each time a component
is opened, the calling application receives what is known as an instance of the
component. The instance is what the application uses to maintain communication
with the component. In our sample, we get an instance of the standard movie
controller by calling OpenComponent(movieControllerComponent), where
movieControllerComponent is the value returned by FindNextComponent. So keep
in mind that there’s a difference between a component and an instance of the
component.

Once we’ve done the initialization, the user can select a file, and we can then proceed
to set up showing the movie. The code that gets the movie looks like this:

if (OpenMovieFile(&(reply.sfFile), &movieResFile, fsRdPerm, nil)) {
DoReportFailure();
return; /* and go back */

}
else {

if (!(err = NewMovieFromFile(&moov, movieResFile, &resID, nil,
0, &wasChanged))) {

if (err = GetMoviesError())
DebugStr("\perror after NewMovieFromFile");

}
else {

DebugStr("\pCould not get the moov ");
err = -1; /* err set will make it skip the rest */

}
CloseMovieFile(movieResFile);

}

Given an FSSpec (which, in this example, is reply.sfFile), the call OpenMovieFile
returns the reference number for the resource fork of the file, once it has been
opened. (In the code above, the reference number is in the parameter movieResFile.)
It can also return the data reference for the movie, but in this example we pass nil,
which indicates that we don’t need it; we would need it if we were going to add tracks
to the movie. (Later in this article, the section “Creating a Movie” gives more details
on data references.)

d e v e l o p Summer 1991

18

Once the resource fork is open, we call NewMovieFromFile, which when successful
returns the playable movie. NewMovieFromFile first gets the 'moov' resource (which
is a public movie), creates a movie, and then resolves its data references.

Apple has provided calls such as OpenMovieFile and NewMovieFromFile to simplify
things for you. Though it is possible for you to make the low-level calls needed to
make a playable movie from a public one, we don’t recommend it. You run the risk of
confusing the Movie Toolbox, which may result in incorrect values for the self-
referenced data references (which indicate that the data is in the same file as the
'moov' resource). Both OpenMovieFile and NewMovieFromFile handle this
situation correctly when they resolve the data references.

In our sample, when calling NewMovieFromFile, we pass 0 for the ID, meaning that
we’ll take the first 'moov' resource found. We also pass nil for a name pointer, since
we don’t plan to display the name or change it. We proceed to close the file by
calling CloseMovieFile. (If we were editing the movie, we would not close the movie
file here.)

Now that we have a movie, the next step is to adjust the movie box so that the movie
appears in the right place in our GWorld (the window in which the movie appears):

GetMovieBox(moov, &moovBox); /* Get the movie box. */
OffsetRect(&moovBox, -moovBox.left, -moovBox.top); /* topleft=0 */
SetMovieBox(moov, &moovBox);

What is a movie box? Figure 6 shows how the Movie Toolbox calculates the
rectangle known as the movie box and displays a multitrack movie in an application’s
window.

• Pieces 1 and 2: For each track, the Movie Toolbox takes the
intersection of the source rect of the track and the track’s clip
region (both of these entities share the same coordinate system).
The resulting area is transformed into the movie’s coordinate
system using the track’s matrix. In piece 1, the track’s clip region
is smaller than the image. The clip region of piece 2 is the same
size as the track’s source rect.

• Piece 3. The MovieSrcBoundsRgn is the union of all the clipped
track regions. In this example, there are two regions. Note that
the MovieSrcBoundsRgn includes both the striped and unstriped
parts of piece 3.

• Piece 4. The MovieSrcClipRgn is the region in which the Movie
Toolbox is to display the movie. It clips the image to the areas
marked with diagonal and vertical stripes.

QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

19

• Piece 5, 6, and 7. Piece 5 is the image resulting from the
intersection of pieces 3 and 4. The MovieBox, piece 7, is the
minimum rectangle that contains piece 5, mapped into the local
coordinates of piece 6, the MovieGWorld (which belongs to the
application that’s showing the movie).

• Piece 8. The MovieDisplayClipRgn is the last clip applied to the
movie before it’s displayed.

• Piece 9. The application displays only the intersection of pieces 7
and 8, which includes the minimal rectangle enclosing the
diagonally and vertically striped areas.

When QuickTime plays a movie, it doesn’t take the GWorld’s clip region into
account; the GWorld’s clip takes effect at the level of the application running the
movie. If your application draws into the window where a movie is playing, you want
to be sure that the MovieGWorld’s clip region excludes the part being drawn by the
Movie Toolbox; in Figure 6, this would be the striped regions within piece 8 and the
smallest rectangle that contains them.

The last clip applied by the Movie Toolbox occurs when it applies the movie display
clip region (piece 8 in Figure 6). This clipping area is not, in the strict sense of the
word, part of the movie; it is only a run-time option and is not saved in the public
movie. (This allows your application to apply a final clip of the movie within your
application’s GWorld.) If, for example, you used a triangular movie display clip
region to clip a larger movie image, the movie would appear in its window as shown
in Figure 7.

Now that such an important question has been taken care of, we can go back to the
sample code. The main idea here is that the movie box probably does not have its top
left corner set to (0,0). So if left to chance, the movie may not be visible in the
GWorld (CGrafPort) used to display it, since its coordinate system is the GWorld’s.
The code then translates the resulting movie to the top left corner of our window,
thus ensuring that it will be visible. Figure 8 shows how the movie box can also be
used to scale the resulting image.

Our sample application then creates a window for the movie and stores with it the
player instance (obtained by calling OpenComponent(movieControllerComponent))
and the movie associated with that window.

Adding the controller. Then we call MCNewAttachedController. The objective
here is to put together the movie, the player instance, and the window. Although we
recommend that you use the standard controller, it’s not the only way to control
movies; you can do it all “by hand” if you want tighter control—but you must be
careful to do it right.

d e v e l o p Summer 1991

20 For your information, the “MC” in
QuickTime-related names stands for “Movie
Controller.”•

MCNewAttachedController sets the destination window as the GWorld for the
movie and for the drawing of the control, and it attaches the control instance to the
movie being played.

Then we must call SetMovieActive to enable the movie to be serviced by calls to
MoviesTask; StartMovie then sets it in motion. MoviesTask has to be called
periodically (normally as part of the normal idle processing in the event loop) for the
movie to display successive frames without erratic playback.

QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

21

MovieSrcBoundsRgn�
(union of heavily outlined areas) �

TrackSrcRect (and its image)�

TrackSrcClipRgn (inner rectangle)�

TrackSrcRect (and its image)�

TrackSrcClipRgn�
(same size as TrackSrcRect)�

MovieSrcClipRgn�

MovieBox �

The visible result is the�
intersection of pieces 7 and 8�

MovieDisplayClipRgn�

1.�

2.�

3.�

4.�

7.�

9.�

8.�

MovieDisplayBoundsRgn�
(union of heavily outlined areas)�

5.�

MovieGWorld�6.�

Figure 6
Displaying a Multitrack Image in an Application’s Window

d e v e l o p Summer 1991

22

Figure 7
Movie Clipped by Display Clip Region

Original movie Same movie after
InsetRect(&moovBox, 30, 30);
SetMovieBox(moov, &moovBox);Figure 8

Changing the Movie Box

Since in our sample we’re using the standard controller, we call instead
MCIsPlayerEvent, which accomplishes the following: First it calls MoviesTask to
keep the movie (or movies) in motion. Then it performs the tracking of events that
belong to the controller itself (such as button clicks and moving the scroll box as the
movie moves along).

To summarize, the basics of including playback of movies in an application are as
follows:

• Get a public movie and convert it into a playable movie.

• Associate the movie to the GWorld that will display it.

• Set the movie in motion.

• Periodically call MoviesTask to keep the movie in motion.

The above is, necessarily, a simplistic description of the process. By reading
QuickTime’s documentation, you’ll find that the set of calls range from the very
high-level, such as when using the standard controller and the movie file calls, to the
fine-detail calls that allow you to control the movie at the track level, as well as
intermediate-level calls that allow you to control and monitor such movie parameters
as the rate (speed) of the movie and its sound level.

CREATING A MOVIE
The sample source code that we’ll use to discuss the creation of a movie is called
SimpleOutMovies. This program creates a movie that contains two tracks. The first
is a video track made out of frames that are read in from PICT files (this is what you
must do to create a movie from a sequence put together using a rendering package
like MacRenderMan®). The second track uses the data contained in a 'snd ' resource
to add sound to the movie.

Again, we won’t dwell here on the details that aren’t pertinent to the creation of
movies. The curious reader is once more invited to check out the source code files on
this issue’s Developer Essentials disc for the whole story. I can’t help mentioning that
the file-handling part of the code demonstrates how to let the user select a folder and
then access the files in it sequentially; I found writing this an interesting exercise.

SimpleOutMovies first calls the usual initialization stuff, including (since we’re
QuickTime savvy) EnterMovies, the call that initializes the Movie Toolbox. Then it
proceeds to prompt the user to indicate where to put the movie file and what to call
it, followed by a prompt to find the folder with the PICT files. The program also
creates a window to display the frames as they’re processed, sizes the window
according to the frame of the pictures, and starts the real job.

QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

23

The code looks like this:

theErr = CreateMovieFile(&mySpec, 'TVOD', 0, cmfDeleteCurFile);
if (theErr) DebugStr("\pCreateMovieFile Failed");
theErr = OpenMovieFile(&mySpec, &resRefNum, fsRdWrPerm, &mdrh);
if (theErr) DebugStr("\pOpenMovieFile Failed");

After calling CreateMovieFile (passing the FSSpec corresponding to the file the user
wants to create), we call OpenMovieFile. Although we discussed this call earlier,
there’s an important difference: Now we want to use the media data reference (held,
in the code above, in the parameter mdrh).

A media data reference is what the Movie Toolbox uses to find the location of the data
for a given media. In this part of the example, we want to add the data to the same
file we’re creating. That’s why it’s important that, when the call returns, the
parameter mdrh contains the reference to the file being created. Remember that this
type of data reference is called self-referencing because it points to its data as being
in the same file as the 'moov' resource. In the case where the data for a track resides
in a different file, it’s necessary to create a new data reference that points to that file.

Once the file has been opened, we create the movie by calling NewMovie(0, 60).
This creates an empty movie (devoid of tracks) but one that you could play (with,
however, little result). In other words, NewMovie creates what I’ve been calling a
playable movie. The parameters indicate that we want the movie to be created
inactive and that the TimeScale for the movie is 60—in other words, each unit of
time in the movie is 1/60th of a second, equivalent to a Macintosh “tick.” (I might
add that each track has a TimeScale associated with it, but the Movie Toolbox takes
care of synchronizing the individual times.)

Next, we create the video track based on the following two lines of code:

gTrack = NewMovieTrack(gMovie, 0, kTimeScale, frameX, frameY);
gMedia = NewTrackMedia(gTrack, VIDEO_TYPE, mdrh, kTimeScale);

A track contains bookkeeping information associated with the track’s overall data
content. For example, to the new movie track we feed in the following: the movie the
track is part of (in the above code, gMovie), the time offset (0), the scale for the track
(kTimeScale), and the dimensions of the frames as obtained from the PICT frame
(frameX and frameY). kTimeScale in this case is set to 10 (which means that the time
unit for the track is 1/10th of a second).

Then we create the media associated with the track by calling NewTrackMedia. The
parameters establish the type of the media (currently the types defined are
VIDEO_TYPE and SOUND_TYPE; new types will be announced as they’re
defined) and, of course, the time scale for the media. For the last parameter in our

d e v e l o p Summer 1991

It’s important to note that the time offset is
given in movie time; since we want the track to
start from the beginning of the movie, we pass 0
to NewMovieTrack. Nothing prohibits a track
from starting at a time different from 0; if we
wanted this track to start two seconds into the
movie, we would pass an offset value of 120.•

24

example we again pass kTimeScale—same as for gTrack—but this is not required;
the media can have a different rate than the associated track. The Movie Toolbox
provides many calls that allow you to convert between times and rates for those cases
when this is necessary.

The next call to the Movie Toolbox is

BeginMediaEdits(gMedia);

This call is needed here because we’re going to add data to the media; in other
words, the data comprising the samples will be moved into the media’s data file.
We’ll see that when adding samples by reference (when the data doesn’t move),
BeginMediaEdits is not necessary.

Capturing the video track. We’re now ready to start collecting samples for our
video track; enter the Image Compression Manager, stage left. In most cases it’s
desirable to compress the images to minimize both the size of the resulting file and
the amount of data that needs to be moved when playing back the movie.

After we allocate a buffer that can contain the images we want to use, we call

GetCompressionSize(&pm, &r, theDepth, theQuality, codecType, codecID,
&maxCompressedFrameSize)

The purpose of this call is to find out, using the known parameters for the images, an
estimate of the worst-case size for the resulting image. (In the same manner,
GetCompressionTime can return information concerning the time that it would take
to compress the image.)

After allocating the buffer for the compressed data, we call

CompressSequenceBegin(&seqID, &pm, nil, &r, nil, theDepth, codecType,
codecID, theQuality, mQuality, keyFrameRate, ct,
codecFlagUpdatePrevious, imageDescriptorH);

The parameter seqID points to a variable where the ID of the sequence is stored.
This value is needed to continue adding frames to the sequence. We pass nil for both
the previous pixMap and rectangle; this indicates that the Image Compression
Manager will allocate the GWorld to keep a copy of the image against which the next
frame will be compared. If you wanted to allocate it yourself, you would pass it here.

The overall objective of the code that creates this video sequence is, when going
from frame to frame, to store as little information as possible for each new frame.
Instead of storing a complete image for every frame, we want to add only the

QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

25

difference between a given frame and the key frame (the most recent frame that
contains the complete image).

The Movie Compressor component has a built-in decision maker that determines
when a new key frame is needed. Nevertheless, based on the expected images, the
program can set the maximum number of frames that can be added before a new key
frame is needed. In our case, we pass a value of 10 for the keyFrameRate, which
means that at least every ten frames a key frame of the entire image has to be added
to the sequence. If you want to force the creation of a new key frame every frame,
you can easily do this by calling SetCSequenceQuality and passing 0 for
temporalQuality.

The last parameter to mention is the ImageDescription handle. This handle (which
the calling program has to preallocate) is filled in by the compressor and contains all
the information necessary to reassemble the image. The ImageDescription handle is
required by the media to interpret the data. Later, when we add sound to this movie,
we’ll see how this is handled differently.

Then our code renders one picture in the off-screen GWorld allocated for this
purpose and calls

CompressSequenceFrame(seqID, &pm, &r, codecFlagUpdatePrevious,
*compressedFrameBitsH, &compressedFrameSize, &similarity, nil);

followed by

AddMediaSample(gMedia, compressedFrameBitsH, 0L, compressedFrameSize,
(TimeValue)1, (SampleDescriptionHandle)imageDescriptorH,
1L, similarity?sampleNotSync:0, &sampTime);

Very similar to CompressSequenceBegin, CompressSequenceFrame adds more
frames to a sequence. Note that we have to pass the sequence ID, the
ImageDescription handle, and a VAR parameter named “similarity,” which tells how
close the current frame is to the previous frame (the values range from 0, which
means a key frame was added, to 255, meaning that the two frames are identical).
The compressor has one flag, codecFlagUpdatePrevious, which tells the Image
Compression Manager to copy the current frame to the previous frame’s buffer.

This process is repeated for each frame and, when all the PICTs have been
processed, we close the sequence and add the media to the movie:

CDSequenceEnd(seqID);
EndMediaEdits(gMedia);
InsertTrackMedia(gTrack, 0L, GetMediaDuration(gMedia), 0L,

GetMediaDuration(gMedia));

d e v e l o p Summer 1991

26

The important call here is InsertTrackMedia. This call is the final link in adding
samples to a track. When EndMediaEdits executes, the new data samples are already
part of the media. However, the track does not know about the additions that have
just been made, and the call to InsertTrackMedia takes care of that. There are
numerous implications here, but an interesting one is that a segment of the media
can be inserted into the track more than once. Since the time scale of the media and
track are the same, we can use the value of the media’s duration for the track
segment’s duration, too.

At this point we have completed the creation of a movie and have added a video track
to it, so we end with the following:

AddMovieResource(gMovie, resRefNum, &resId, (char *)sfr.fName);
CloseMovieFile(resRefNum);

That’s it—we have a movie that we can play. But we’re missing one thing: sound.
This is not a big deal, since adding sound is very much like what we’ve just done. In
the paragraphs below, we’ll describe what’s different.

Adding sound. Before closing the file in our sample program, SimpleOutMovies,
we must include the routine that handles adding the sound. The process is the same
as it was for video. In this case, the user is prompted for a file containing a sound
resource. When selected, the program reads in the 'snd ' resource and, with that data
at hand, we proceed to fill in the sound description record.

In the QuickTime 1.0 release, the Movie Toolbox can deal only with sound data
made out of sampled sounds; any other data will make no sense. Future releases of
QuickTime will most surely have support for other sound formats. This is why most
of the fields in the sound descriptor record have to be filled with zeros; but based on
the 'snd ' data, we enter the number of channels, the sample size (in bits), and the
frequency of the sampled sound.

Then we start again with

NewMovieTrack(moov, (TimeValue)0, kTimeScale, 0, 0);

Note that for a nonvideo track, the spatial information width and height must be set
to 0. Since we’re adding sound that has been sampled at a rate of 11 kHz, the
constant kTimeScale has been set to this value.

The call to create the new track is followed by

NewTrackMedia(gTrack, SOUND_TYPE, mdrh, kTimeScale);

QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

27

Note that we’re still using the same media data reference that we used for the video
track; this means that we want to continue adding samples to the same file, since
that’s where the parameter mdrh points.

After this we call BeginMediaEdits to start adding samples, followed by
AddMediaSample, EndMediaEdits, and InsertTrackMedia. The difference in this
sequence is that AddMediaSample is called only once; since all the sound data is in
one place, we add it all at once.

Finally, what happens when we don’t want to add the data directly—that is, when it’s
in a file and we don’t want to copy it over to the movie file? In this case we need to
add data by reference and first we need to create a media data reference record.
Although these calls are System 7.0-specific, QuickTime makes sure they work when
running under System 6.0.7.

In this case, our program goes through the same process as before, asking the user to
select a file with sound data in it:

SFGetFile(dlgPos, "\pSound file:", nil, 1, &typeList, nil, &reply);

where “reply” is an old, trusted SFReply. Once the user selects the file, we call

FSMakeFSSpec(reply.vRefNum, 0, (unsigned char *)reply.fName, mySpec);

passing a pointer to an FSSpec in mySpec.

When we have the FSSpec that describes our sound file, we have to make an alias to
it. We do this by calling

NewAlias(nil, &mySpec, &SoundFileAlias);

From the alias, we create a media data reference by calling

mdrh = NewDataRef(SoundFileAlias);

We then use the parameter mdrh to create the media (gMedia) and immediately call

AddMediaSampleReference(gMedia, 0, fSize, (TimeValue)1,
(SampleDescriptionHandle)sndDescriptH, nSamples, 0, &sampTime);

Note that we pass 0 for the location of the data within the file; fSize is the size of the
samples. If the file cannot be found when opening the movie, the user will be
prompted to locate the missing file. Since we are not adding the sample data directly,
it’s not necessary to call BeginMediaEdits and its companion EndMediaEdits.

d e v e l o p Summer 1991

We did not have to add the sound all at
once; it would have been possible to have added
samples in smaller chunks if this had been
appropriate. One such example would have
been to allow the Movie Toolbox to play the
sound track by reading in parts of it as needed
(instead of all at once). The other side of the coin
is that there would be more accesses to the disk
and, in instances when the disk media is slow,

this could cause a performance degradation. It’s
recommended that when you create movies, you
perform some tests to find the balance that
provides the best results.•

28

So now you know how to create a movie file and then the movie itself; you start out
with an empty shell that you must then fill by creating tracks and media. This sample
program also shows how to add media, both directly and by reference.

WHAT’S LEFT?
QuickTime comprises over 500 calls, and it was never the intention of this article to
detail them all. We hope that after reading this article, you will see great possibilities
for QuickTime and will continue collecting information about this new and exciting
technology. Who knows, maybe next time “I’ll see you in the movies!”

QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

29
Thanks to Our Technical Reviewers
Jim Batson, Mark Krueger, Scott “Zz” Zimmerman•

QUICKTIME AND THE HUMAN INTERFACE
DISTILLED WISDOM FROM THE QUICKTIME HUMAN INTERFACE GROUP

The discussions we‘ve had of QuickTime-related human
interface issues could fill more than a thousand books;
below are the main recommendations for a good
interface. Most of these guidelines for using movies come
from the maxim “put the user in control.” Our user-testing
has shown that more often than not you really do need to
do the following things to keep your users happy.

• Users should be able to look at the screen and figure
out which images are movies.

• A movie should open with its poster showing; if it has
no poster, its first frame should be shown. Upon first
playing, the movie should make a visual transition from
the poster state to the movie state. To get back to the
poster, users may reset the movie to the beginning.

• If you allow users to resize movies, the movies should
by default maintain their original aspect ratios.

• Where it makes sense, make handling movies as much
like handling conventional (static) graphics as possible.
For example, in your word processor, resize movies the
same way you do pictures.

• Movies should not play when a document is opened.

• Users should be able to find the controls for playing any
movie easily.

• It should be reasonably obvious not only how to turn the
movie on, but also how to turn it off.

• There must always be an easy and immediate way to
stop a movie that’s playing.

• There must be at least a sound mute control, and
preferably a volume control. The sound tracks of
different movies will have different sound levels, and
movies will be played back in different environments—
some that can tolerate loud playback and others that
cannot. Also, it’s highly desirable that users have a
convenient way to adjust the volume of sounds that
accompany the movies. The Sound Control Panel is not
judged to be adequately convenient for this purpose.

• In most applications, single-clicking a movie must select
it, not play it. This allows users to perform operations
on the movie such as Cut, Get Info, “hide controls,”
“resize,” or any number of other operations that your
application might support.

• Double-clicking a movie may cause it to play, but only if
subsequently single- or double-clicking stops it (you
have to test for and ignore any immediate second click
because many users double-click reflexively).

• If you don’t need single-clicking to select a movie,
single-clicking may begin the playing of the movie—just
as long as single-clicking also stops it (and you dispose
of double clicks, both for starting and stopping).

• Don’t mix movies that play on single click with movies
that select on single click.

TrueType, Apple’s outline font technology, opens up a world of possibilities
for improved handling of text. For example, with outline fonts, users can
resize text as they’ve always been able to resize other objects in drawing
programs—by grabbing handles and dragging. This article shows how to
program this and other exciting transformations to text.

The Font Manager in System 7.0 can use TrueType outline fonts, in addition to
bitmapped fonts, to produce text on the screen and on a printer. In outline fonts, the
appearance of individual characters is defined by outlines, not bitmaps. The
TrueType font mechanism is also available as an INIT for System 6.0.7 users.

Your application can take advantage of the special capabilities provided by TrueType
fonts to transform text in decorative and useful ways. These transformations include
shrinking or stretching text to fit a given bounding box and creating patterned,
antialiased text. This article provides routines for accomplishing both of these kinds
of transformations. First, though, let’s explore in more detail how TrueType fonts
differ from their predecessor, bitmapped fonts.

WHY TRUETYPE IS TRULY WONDERFUL
To understand why TrueType is truly wonderful, you first have to understand the
trouble with bitmapped fonts. With bitmapped fonts, to generate fonts of sizes for
which no bitmap exists, QuickDraw simply picks an available font size according to a
gnarly algorithm and stretches or shrinks the bits. Unfortunately, when a bitmap is
resized the resulting image is often far from pleasing.

This problem is easily understood: imagine you’re shrinking a 1-bit image by a factor
of two in the vertical dimension. This means two pixels in the source image combine
to form one pixel in the result. If both source pixels are black or both are white, the
solution is easy. The problem comes when the two source pixels are different. In this
case, since most images on the Macintosh appear on a white background,
QuickDraw preserves black. Thus, if either source pixel is black, the result is black.

30

KONSTANTIN OTHMER
AND MIKE REED

SCORING

POINTS WITH

TRUETYPE

d e v e l o p Summer 1991

KONSTANTIN OTHMER AND MIKE REED
Have you seen these two guys? Konstantin and
Mike, better known as Jake and Elwood, were
last seen driving an old Black & White to the
Palace Hotel Ballroom where they performed
such hits as “Everybody Needs Some PixMaps to
CopyBits” and “Gimme Some TrueType.”
Frequented hangouts: kitchen after lunch
meetings, football field, poker tables, slopes at

Tahoe, beach, Fitness Center, center stage.
Known contacts: Bruce “Second Hand” Leak,
Dave “Know” Good. Distinguishing marks: gym
bag, running shoes, soft-edged clip art, smooth
text forms. Latest fortune cookie: Ask and you
shall receive; this includes trouble. Any
information as to the whereabouts of these
rascals should be sent to their managers, who are
probably looking for them.•

QuickDraw uses this same algorithm for larger shrinks. When an image is shrunk
vertically by a factor of eight, if any one of the eight source pixels is black, the
resulting pixel is black. Because there is more information in the source than can be
represented in the destination, the resulting image often looks ragged and is typically
too dark.

A similar problem is encountered when enlarging an image. QuickDraw enlarges
images by replicating pixels; thus, the result becomes blocky. There simply is not
enough information in the source image to provide a better scaled-up representation.
Figure 1 shows a 72-point B in the bitmapped Times® font resized by various
amounts.

This problem with resizing has further implications. Have you ever tried to resize
text in the same way you resize other objects in a drawing program like MacDraw®?
If you have, you’ve discovered that when you move the handles on the bounding box,
the text clipping and formatting change, but the text isn’t resized. This inconsistency
between the way text and other objects are handled can be very confusing to users
and may deny them the function they really want: to stretch the text to fill the box.
The reason for this difficulty is—you guessed it! Although resizing an object such as
a rectangle produces excellent results, resizing a bitmapped font results in an image
that is, well, ugly.

Enter TrueType. With TrueType fonts, each character is stored as an outline.
QuickDraw knows the shape of the character, much as it knows the shape of a circle.
When a character is imaged, its outline is scaled to the appropriate size and then
filled. When a character is scaled, the outline is scaled rather than the bits. Thus, an
excellent representation of the character is possible at all scaling factors. Figure 2
shows how an outline font looks when compared to a bitmapped font drawn in a size
for which no bitmap exists.

SCORING POINTS WITH TRUETYPE Summer 1991

31
Note that the fonts shown in the illustrations
are drawn at screen resolution, so they don’t look
as good as they would if drawn on a higher-
resolution device such as a printer.•

x8 x4 x2

Reduced

Original

72-point Times

x2

Enlarged

Figure 1
Resizing a Bitmapped Character

Because characters maintain their integrity at all sizes in TrueType, it’s now possible
to resize text in the same way users have always been able to resize other objects in
drawing programs. We’ll show you a routine for doing this. It’s also possible to
superimpose a text mask on any picture you want in order to create decorative
effects. We’ll also show you how to do this.

SCALING TEXT TO FIT A GIVEN RECTANGLE
To show how easy it is with TrueType to produce high-quality text scaled to given
dimensions, we’ve written a routine called BoxText that scales a string of text to fit a
given rectangle. It takes a parameter that indicates how the text should be
constrained: vertically, horizontally, both, or neither. Figure 3 shows examples of text
treated in these ways with the BoxText routine.

The BoxText routine is fairly simple. It first checks to see if any constraints are
turned on. The constraints are defined as follows:

typedef enum boxTextOptions {
noConstraints,
constrainH,
constrainV

} boxTextOptions;

d e v e l o p Summer 1991

The example code shown here was written
in THINK C. The Developer Essentials disc
contains both THINK C and MPW® versions.•

32

Figure 2
Bitmapped Versus Outline Font

Normally, BoxText works just like DrawString. If you pass constraints, the text is
stretched to fit the bounding rectangle’s width, or height, or both. This is done
through a call to StdText. The stretching factors are computed from the text’s
original bounds and the bounds passed to BoxText.

SCORING POINTS WITH TRUETYPE Summer 1991

33

In addition to seamless integration with the existing
QuickDraw and Font Manager calls (DrawText,
GetFontInfo, StdTxMeas, and so on), TrueType offers an
extended set of calls. New are three calls that enable
applications to choose TrueType fonts over bitmapped
fonts, three calls to scale fonts, plus a FlushFonts function
to purge the Font Manager’s memory caches. Compete
explanations of the new calls can be found in Inside
Macintosh Volume VI; we’ll describe the first six briefly
here.

PROCEDURE SetOutlinePreferred
(outlinePreferred: Boolean);

FUNCTION GetOutlinePreferred : Boolean;

When a font is selected, the system’s default behavior
(outlinePreferred = FALSE) is to use an outline font only if
there is no bitmapped font that matches the current font,
style, and size. If you set outlinePreferred to TRUE, the
bitmapped font is chosen only if there is no outline font
that matches the current font and style. (Size is not an
issue since outline fonts can be scaled to any size.) Note
that outlinePreferred is global to the application; the state
is not kept on a port-by-port basis.

In general, most applications will want to set
outlinePreferred to TRUE. The default is FALSE to maintain
compatibility with existing applications. Setting
outlinePreferred to TRUE allows you to use the
OutlineMetrics function (described below) more often.

FUNCTION IsOutline (numer, denom: Point) :
Boolean;

The IsOutline function takes scaling factors (like StdText)
and returns TRUE if the font specified in the current
grafPort will be an outline font when scaled by these
factors. One technique for determining whether an outline
font exists at all for the current font is to set the text size to
1 point and call IsOutline. This is useful for building a font
menu containing only outline fonts.

FUNCTION OutlineMetrics (byteCount: Integer;
textPtr: Ptr; numer, denom: Point;
VAR yMax: Integer; VAR yMin: Integer;
awArray: FixedPtr; lsbArray: FixedPtr;
boundsArray: RectPtr) : OSErr;

OutlineMetrics is the successor to GetFontInfo and
StdTxMeas. It returns widths, side bearings, and
bounding boxes for each character in a given string of
characters. Information provided by OutlineMetrics is
more detailed and more consistent than that provided by
the pre-TrueType font measuring calls.

PROCEDURE SetPreserveGlyph (preserveGlyph:
Boolean);

FUNCTION GetPreserveGlyph : Boolean;

Bitmapped fonts are designed so that all the characters fit
vertically between the font’s ascent and descent lines.
TrueType fonts are not designed with this constraint. To
maintain compatibility with the old behavior, the default
behavior of the system is to vertically scale down any
glyphs that exceed the font’s ascent or descent line. If you
set preserveGlyph to TRUE, glyphs are not vertically
scaled and are drawn at their normal size. (Note that
printer drivers set preserveGlyph to TRUE.)

NEW CALLS PROVIDED BY TRUETYPE

void GetTextRect(char* text, Rect* bounds)
{

Point identity;

SetPt(&identity, 1, 1); /* No scaling. */
GetTextBounds(text, identity, identity, bounds);

}

void GetTextBounds(char* text, Point numer, Point denom, Rect* bounds)
{

FontInfo info;
Fixed hScale = FixDiv(numer.h, denom.h);
Fixed vScale = FixDiv(numer.v, denom.v);

GetFontInfo(&info);
SetRect(bounds, 0, FixMul(-info.ascent, vScale),

FixMul(StringWidth(text), hScale),
FixMul(info.descent + info.leading, vScale));

OffsetRect(bounds, thePort->pnLoc.h, thePort->pnLoc.v);
}

d e v e l o p Summer 1991

34

Unconstrained

Constrained horizontally

Constrained vertically

Constrained both

Figure 3
Text Scaled With the BoxText Routine

GetTextRect calls GetTextBounds. GetTextBounds takes a string and scaling factors
and returns the bounding rectangle; note that it calls GetFontInfo to determine the
height and StringWidth to determine the width. GetFontInfo is used instead of
OutlineMetrics since the measurements for the entire font (not just individual
characters) are used to calculate the rectangle for the text. Furthermore,
GetFontInfo is faster than OutlineMetrics.

The bounds are then scaled by the given scaling factors. The ascent is scaled by the
vertical stretching factor to correctly place the text’s baseline. Without this
adjustment, the top of the text would not align with the top of the constraining
rectangle. Finally, the rectangle is offset to the current pen location.

When the text is constrained to fit in the rectangle both horizontally and vertically,
the numerator for vertical scaling is set to the height of the rectangle and the
denominator is set to the height of the text. For horizontal scaling, the numerator is
set to the rectangle width and the denominator is set to the string width.
Traditionally, these scaling factors have been stored in point records, and in our
routine the code uses SetPt to set the values. Then MoveTo is called to position the
pen at the location where the text is to be drawn. Finally, the scaled text is drawn
using StdText and the text size is restored.

Note the technique used to call StdText: First the code checks to see whether there
are custom bottlenecks in the current port (as there are when printing). If so (the
grafProcs field is nonzero), the StdText bottleneck routine, rather than the trap, is
called. This is necessary to allow BoxText to print. (Calling the StdText bottleneck is
accomplished via the macro, given for both MPW and THINK C, before the
BoxText routine.)

#ifdef MPW
typedef pascal void (*StdTextProc)(short count, Ptr text, Point numer,

Point denom);
#define STDTEXTPROC(count, text, numer, denom) \

((StdTextProc)thePort->grafProcs->textProc) \
(count, text, numer, denom)

#else /* THINK C version. */
#define STDTEXTPROC(count, text, numer, denom) CallPascal(count, \

text, numer, denom, thePort->grafProcs->textProc)
#endif

void BoxText(char* myPString, Rect *dst, boxTextOptions options)
{

Point numer, denom;
short txSize;
Rect src;

SCORING POINTS WITH TRUETYPE Summer 1991

35

if (!(options & (constrainH | constrainV))) {
/* If there are no constraints, just call DrawString. */
MoveTo(dst->left, dst->bottom);
DrawString(myPString);
return;

}

/* Save the current point size. */
txSize = thePort->txSize;

/* Temporarily set the size to something big, so that our
* source rectangle is more precise. This is needed since QD
* doesn't return fixed-point values for ascent, descent, and
* leading. */
TextSize(100);

MoveTo(0, 0);
GetTextRect(myPString, &src);

switch (options) {

case constrainH:
numer.h = numer.v = dst->right - dst->left;
denom.h = denom.v = src.right - src.left;
break;

case constrainV:
numer.h = numer.v = dst->bottom - dst->top;
denom.h = denom.v = src.bottom - src.top;
break;

case (constrainH | constrainV):
/* Constrain both dimensions. */

SetPt(&numer, dst->right - dst->left, dst->bottom - dst->top);
SetPt(&denom, src.right - src.left, src.bottom - src.top);
break;

}

if (denom.h && denom.v) {
/* Since we're applying a fixed scale to src.top, a short,
* the result, baseline, is also a short. */
short baseline = FixMul(-src.top, FixDiv(numer.v, denom.v));
MoveTo(dst->left, dst->top + baseline);

d e v e l o p Summer 1991

36

/* If there are bottleneck procs installed, call them instead
* of calling the trap directly. */
if (thePort->grafProcs)

STDTEXTPROC(*myPString, myPString+1, numer, denom);
else

StdText(*myPString, myPString+1, numer, denom);
}
TextSize(txSize);

}

RESIZING TEXT INTERACTIVELY
In most drawing programs, you change the size of an object by clicking and dragging
with the mouse. This type of interactive resizing is called rubberbanding since the
borders of the object stretch and shrink like a rubber band. Using the previously
described BoxText routine, it’s easy to achieve this result for text.

The following routine, SlowRubberBandText, performs the operation. As you can
probably guess from the routine name, the performance is not optimal. We’ll return
to this issue later with the FastRubberBandText routine.

The first thing SlowRubberBandText does is to set the pen mode and text mode to
Xor. Xor mode is used so that drawing and erasing can be accomplished without
buffering the screen contents and thus without using much memory. The drawback
is that the text flickers when it’s being resized. A commercial application would check
to see if enough memory is available to buffer the screen contents, and if so would
provide flicker-free resizing.

Next we have a do-while loop that tracks the mouse as long as the button is held
down. On each iteration through the loop, a rectangle is constructed from the
anchor point and the current mouse position. This rectangle is drawn and then
BoxText is called to draw the text scaled to the rectangle.

The do-while loop waits for the mouse to move or for the button to be let up. If
either of these conditions occurs, the text is erased (by being drawn again in the same
place). If the button is let up (the terminating condition on the do-while loop), the
routine exits, returning the bounding rectangle. Otherwise, the text is drawn scaled,
using the new mouse position.

void SlowRubberBandText(char* myPString, Point anchorPoint,
Rect *theRect, boxTextOptions options)

{
Point oldPoint;
Point newPoint;

SCORING POINTS WITH TRUETYPE Summer 1991

37

PenMode(patXor);
TextMode(srcXor);
SetRect(theRect, 0, 0, 0, 0);
do {

GetMouse(&oldPoint);
Pt2Rect(oldPoint, anchorPoint, theRect);
FrameRect(theRect); /* Draw it. */
BoxText(myPString, theRect, options);
newPoint = oldPoint;
while (EqualPt(newPoint, oldPoint) && Button())

GetMouse(&newPoint);
FrameRect(theRect); /* Erase it. */
BoxText(myPString, theRect, options);

} while (Button());
}

While this routine is a simple illustration of the use of BoxText, it’s excruciatingly
slow. The reason is that QuickDraw must rerender the outline every time the scaling
changes. The FastRubberBandText routine images the text into a 1-bit off-screen
GWorld, and then uses CopyBits to stretch the resulting bitmap to fit the specified
rectangle. This is similar to the method QuickDraw uses to scale bitmapped fonts,
described previously, and is much faster than the slow case.

The code first allocates a sufficiently large bitmap so that the text looks good even at
large sizes. If the allocation fails in both temporary memory and the application
heap, the code tries smaller rectangles in both heaps. If this also fails, it calls the
SlowRubberBandText routine. If the needed memory is available, GWorld gyrations
are performed to image the text into the off-screen pixMap. Then a do-while loop
similar to the one in the SlowRubberBandText routine is executed, but rather than
calling BoxText, it calls CopyBits. The exit conditions are similar to
SlowRubberBandText, with the addition that the GWorld is disposed of.

void FastRubberBandText(char* myPString, Point p, Rect *theRect, boxTextOptions constraints)
{

Rect srcRect, dstRect, origRect;
GDHandle oldGD;
GWorldPtr oldGW;
GWorldPtr myOffGWorld;
Point oldPoint;
Point newPoint;
PixMapHandle myPixMapHandle;
short theFont = thePort->txFont;
short theFace = thePort->txFace;
short err;

d e v e l o p Summer 1991

38

GetTextRect(myPString, &origRect);
srcRect = origRect;
OffsetRect(&srcRect, -srcRect.left, -srcRect.top);

/* Scale rectangle up by a factor of 8 to get good results when resizing bitmap. */
srcRect.right <<= 3;
srcRect.bottom <<= 3;

/* Take a ride on the GWorld allocation loop. Try temporary memory first,
* then the application heap. If both fail, keep trying with smaller rectangles
* until success or until the rectangle is smaller than the original rectangle. */

do
if (err = NewGWorld(&myOffGWorld, 1, &srcRect, 0, 0, useTempMem))

if (err = NewGWorld(&myOffGWorld, 1, &srcRect, 0, 0, 0)) {
srcRect.right >>= 1; /* Try rectangle smaller by factor of 2. */
srcRect.bottom >>= 1;

}
while (err && srcRect.right >= (origRect.right - origRect.left));

if (!err) {
GetGWorld(&oldGW,&oldGD);

/* Copy font info from current port into GWorld, clear GWorld, and draw
* the text into the GWorld. This leaves a pixMap that can be stretched
* using CopyBits. */

SetGWorld(myOffGWorld, 0);
TextFont(theFont); /* Use font from the current port. */
TextFace(theFace); /* Ditto. */
myPixMapHandle = GetGWorldPixMap(myOffGWorld);
LockPixels(myPixMapHandle);
EraseRect(&srcRect);
BoxText(myPString, &srcRect, constraints);

/* Back to old GWorld for drawing. */
SetGWorld(oldGW, oldGD);
PenMode(patXor);
TextMode(srcXor);
do {

GetMouse(&oldPoint);
Pt2Rect(oldPoint, p, &dstRect);
ConstrainRect(&srcRect, &dstRect, theRect, constraints);
FrameRect(&dstRect); /* Draw the text scaled to fit in the rectangle. */
CopyBits(*myPixMapHandle, &thePort->portBits, &srcRect, theRect, srcXor, 0);
newPoint = oldPoint;

SCORING POINTS WITH TRUETYPE Summer 1991

39

while (EqualPt(newPoint, oldPoint) && Button())
GetMouse(&newPoint);

FrameRect(&dstRect); /* Erase the text. */
CopyBits(*myPixMapHandle, &thePort->portBits, &srcRect, theRect, srcXor, 0);

} while (Button());
UnlockPixels(myPixMapHandle);
DisposeGWorld(myOffGWorld);

}
else

/* If GWorld allocation fails, use the slow version, which doesn't require a GWorld. */
SlowRubberBandText(myPString, p, theRect, constraints);

}

The FastRubberBandText routine calls ConstrainRect, which mirrors the scaling
performed by BoxText. The routine scales the source rectangle to fit inside the
destination rectangle with regard to constraints.

void ConstrainRect(Rect* src, Rect* dst, Rect* result, boxTextOptions constraints)
{

Fixed ratio;

*result = *dst;
switch (constraints) {

case constrainH:
ratio = FixDiv(src->bottom - src->top, src->right - src->left);
result->bottom = dst->top + FixMul(dst->right - dst->left, ratio);
break;

case constrainV:
ratio = FixDiv(src->right - src->left, src->bottom - src->top);
result->right = dst->left + FixMul(dst->bottom - dst->top, ratio);
break;

}
}

CREATING PATTERNED, ANTIALIASED TEXT
Generation of high-quality scaled text is only one of the fun tricks of the new outline
fonts in System 7.0. You can also create patterned, antialiased text with just a few
lines of code. (Antialiased text is text whose edges have been smoothed by the
addition of gray, creating a softer effect; see Figure 4, and see the antialiased version
in color on the inside front cover of this issue.) The possibilities this opens up for
writing a “Hello, World” program are staggering, as illustrated in Figure 5.

To achieve this result you use the CopyDeepMask call (available only in System 7.0).
Your application generates a source pixMap with the pattern or picture you want to
use; the CreateTextMask routine creates a GWorld containing the text mask; and

d e v e l o p Summer 1991

The antialiasing technique used in this
article requires a multiple-bits-per-pixel destination
device. Since most printers are 1 bit per pixel,
these antialiasing techniques are useful primarily
for the screen. A second problem with printing
antialiased text using these techniques is that
QuickDraw does not pass the CopyDeepMask
call to printer drivers. For multiple-bits-per-pixel
printers, you could image the antialiased text into

a GWorld and then use CopyBits to draw the
image on a printer.•

40

finally, you call CopyDeepMask to image the source through the mask onto the
destination. Figure 6 illustrates this.

GENERATING THE MASK
The CreateTextMask routine works as follows: First, we attempt to allocate a
GWorld that would allow text to be rendered at four times its final size. (If there’s
not enough memory in the application heap or temporary memory to allocate a
GWorld this big, GWorlds of three times and then two times the final size are
created. If all of these attempts fail, nil is returned.) Next the 1-bit GWorld is cleared
to white and the text is imaged into it scaled by a factor of four (or whatever multiple
the 1-bit GWorld turned out to be) in each direction. Then CopyBits with mode

SCORING POINTS WITH TRUETYPE Summer 1991

41

Regular text Magnified view

Antialiased text Magnified view

Figure 4
Regular Versus Antialiased Text

ditherCopy is used to shrink the large 1-bit GWorld to a 4-bit gray-scale GWorld;
this is illustrated in Figure 7.

Because the mask will consist only of grays, the 4-bit GWorld is given a gray-scale
CLUT. We are now finished with the 1-bit GWorld and dispose of it. The 4-bit
gray-scale image we just created is returned by CreateTextMask. Notice that this
routine may return a GWorld allocated in temporary memory, so you must dispose
of the GWorld before calling WaitNextEvent.

d e v e l o p Summer 1991

For details on using CopyBits with
ditherCopy, see “QuickDraw’s CopyBits
Procedure” in develop, Issue 6.•

42

Figure 5
How ”Hello, World“ Looks in 1991

SCORING POINTS WITH TRUETYPE Summer 1991

43

Source

Mask

Destination

Result

Figure 6
Using CopyDeepMask

GWorldPtr CreateTextMask(char* text, Rect* myRect, boxTextOptions options)
{
PixMapHandle bigPixMap;
GDHandle oldGD;
GWorldPtr oldGW, maskWorld, bigWorld;
short theFont = thePort->txFont;
short theFace = thePort->txFace;
Rect myRectBig;

/* Create the 4-bit maskWorld. */
{ CTabHandle ctab = GetCTable(4+32);

if (NewGWorld(&maskWorld, 4, myRect, ctab, 0, useTempMem) != noErr)
if ((NewGWorld(&maskWorld, 4, myRect, ctab, 0, 0) != noErr)) {

DisposHandle(ctab);
return 0;

}
}

d e v e l o p Summer 1991

44

Large 1-bit GWorld

4-bit mask GWorld

Magnified view of 4-bit mask GWorld

Figure 7
Shrinking the Mask With ditherCopy

/* Create the supersample bigWorld. First try to use a GWorld 4 times larger. If
* that fails, try 3 and 2 times larger. If all attempts fail, return a nil GWorld. */

{ short zoom = 4;
short width = myRect->right-myRect->left;
short height = myRect->bottom-myRect->top;
do {

SetRect(&myRectBig, 0, 0, width * zoom, height * zoom);
if (NewGWorld(&bigWorld, 1, &myRectBig, 0, 0, useTempMem) == noErr)

break;
else
if (NewGWorld(&bigWorld, 1, &myRectBig, 0, 0, 0) == noErr)

break;
zoom--;

} while (zoom > 1);
if (zoom == 1) {

DisposeGWorld(maskWorld);
return 0;

}
}

/* Draw the text into supersample bigWorld. */
GetGWorld(&oldGW, &oldGD);
SetGWorld(bigWorld, 0);
TextFont(theFont);
TextFace(theFace);
LockPixels(bigPixMap = GetGWorldPixMap(bigWorld));
EraseRect(&myRectBig);
BoxText(text, &myRectBig, options);

/* Create 4-bit maskWorld by shrinking the big GWorld (with ditherCopy) into the 4-bit
* gray-scale GWorld. NOTE: This is one of the slowest steps, and is relatively easy to
* optimize with a custom shrinking procedure. */

{ PixMapHandle maskPixMap = GetGWorldPixMap(maskWorld);
LockPixels(maskPixMap);
SetGWorld(maskWorld, 0);
CopyBits(*bigPixMap, *maskPixMap, &myRectBig, myRect, ditherCopy+srcCopy, 0L);
UnlockPixels(maskPixMap);

}
DisposeGWorld(bigWorld);
SetGWorld(oldGW, oldGD);

return maskWorld;
}

SCORING POINTS WITH TRUETYPE Summer 1991

45

SAYING “HELLO, WORLD”
Now we’re ready to say “Hello, World” in patterned, antialiased text as shown in
Figure 4. The following routine combines the BoxText, FastRubberBandText, and
CreateTextMask routines to produce its results. In this example, the source pixMap
contains a picture that’s read in from a resource file. This pixMap could, of course,
contain anything, and that image would peek through the text mask. The interesting
thing to notice is that if you scale the source picture to the size of the text, the image
behind each letter will stay the same regardless of the scaling factor.

void JustShowOff(Point anchorPt)
{
#define kBoxOptions constrainH | constrainV

Rect myRect;
GWorldPtr mask = 0;
char *text = "\pHello, World";

FastRubberBandText(text, anchorPt, &myRect, kBoxOptions);

if (mask = CreateTextMask(text, &myRect, kBoxOptions)) {

GWorldPtr oldGW;
GWorldPtr src;
PicHandle pic;
PixMapHandle maskBits;
PixMapHandle srcbits;
GDHandle oldGD;

if (NewGWorld(&src, 8, &myRect, 0, 0, useTempMem) != noErr)
if (NewGWorld(&src, 8, &myRect, 0, 0, 0) != noErr)

goto EXIT;
if (!(pic = GetPicture(1001))) /* Assumes the PICT is marked purgeable. */

goto EXIT;
GetGWorld(&oldGW, &oldGD);
SetGWorld(src, 0); /* Set to draw into off-screen 8-bit. */
DrawPicture(pic, &myRect); /* Stretch picture to fill user's rect. */
LockPixels(maskBits = GetGWorldPixMap(mask));
LockPixels(srcBits = GetGWorldPixMap(src));
SetGWorld(oldGW, oldGD);
CopyDeepMask(*srcBits, *maskBits, &thePort->portBits, &myRect, &myRect, &myRect, srcCopy, 0L);
DisposeGWorld(src);

}
EXIT:

if (mask) DisposeGWorld(mask);
}

d e v e l o p Summer 1991

46

SUMMARY AND PARTING THOUGHTS
TrueType fonts provide high-quality characters at all sizes and scaling factors. This
is possible because TrueType fonts are stored as outlines rather than bitmaps, and
scaling an outline produces much better results than scaling a bitmap. The BoxText
routine described in this article uses the StdText call to stretch text to fit within a
specified box. A logical extension of this could solve a problem that has plagued
humankind (or at least high school students): how to expand six and a half pages of
text to produce a report that’s exactly ten pages long, as required by law or a high
school teacher.

Usually tactics such as adjusting the margins, line spacing, and font size can get you
close. But this trial-and-error process could easily be replaced with a procedure
written by some enterprising and humanitarian programmer:

FitTextToPages(char *text, long numPages);

Rather than simply adjusting the margins and line spacing, this routine could
uniformly stretch a block of text to fill the desired number of pages.

System 7.0 also allows applications to pass a deep mask to CopyMask or
CopyDeepMask. By imaging text into a large bitmap and then scaling it down with
ditherCopy, it’s possible to generate a soft-edged mask for producing antialiased text.
Furthermore, text drawn using CopyDeepMask can have any image as the source
pixMap, making it easy to produce patterned or picture text.

In the process of producing all of these great effects with text, we used GWorlds
extensively. From the code samples it should be clear that GWorlds are extremely
simple to create and manipulate. Judicious use of temporary memory for holding
GWorlds allows our sample “Hello, World” program to run in a 100K heap and still
produce very large (bigger than 1200 x 500 pixels) scaled text (provided there’s
enough temporary memory available, of course).

Enjoy!

SCORING POINTS WITH TRUETYPE Summer 1991

47
Thanks to Our Technical Reviewers
Pete “Luke” Alexander, John Harvey, Bryan
“Beaker” Ressler•

d e v e l o p Summer 1991

48

OK, so you’re cruising your source like a madman
trying to get all those little System 7.0 changes in
before that target ship date (whatever it is this week),
and you notice that the items you’ve added to the
Page Setup/Print dialogs don’t have any Balloon
Help™—you know, those items like Reverse Pages,
Print Hidden Text, or even Use Fractional Font
Widths. (Coming up with meaningful names for
these items, in four words or less, was a little tricky.)
But now there’s help, literally, in System 7.0. Great!
Then you remember that there wasn’t a simple
Printing Manager call to add those items to the
dialogs. You had to resort to the technique described
in Technical Note #95, How to Add Items to the
Print Dialogs. As you remember, it used a set of
procedures that modified the Printing Manager’s
(that is, the selected print driver’s) dialog item list
(DITL) resource.

Remembering the actual code in Tech Note #95, you
consider that the Standard File package shipped with
7.0 has a new call that allows you to append things to
its dialog, including Help Manager resources. Feeling
relieved, you think, “Ah, there must be a similar call
in the new Pri . . .” But no, the new printing
architecture has been delayed. A quick scan shows
that there isn’t even a Printing Manager chapter in
Inside Macintosh Volume VI! Help!!!

It’s not as bad as you might expect. If you consult
Tech Note #95, you’ll see the rather husky
AppendDITL procedure. This procedure is called to
append the items that you want to add to the dialog
item list being used by the particular dialog (Page
Setup or Print).

The sample code from Tech Note #95 calls some
Printing Manager routines that let you get in after
the DITL resource has been loaded, but before the
dialog has been displayed. You add your items to the
resource in memory without calling either
ChangedResource or WriteResource. The driver
then uses this DITL and displays your items. Once
the dialog is dismissed, the resource is purged, and
the driver doesn’t even know you were there. Life is
good.

As you’ve probably guessed by now, you’re going to
have to append to the Help Manager dialog item help
('hdlg') resource in the same way that you appended
to the DITL resource. You simply scan the list to the
end, and then append the appropriate items. The
'hdlg' resource is purged in the same way as the
DITL resource, so once again you make no
permanent changes.

On the next page is the definition of the
Append2hdlg procedure. We start by getting both
'hdlg' resources into memory. It’s safe to assume the
source 'hdlg' resource hasn’t been loaded yet, but we
use the SetResLoad trick on the destination in case it
has already been loaded. (The SetResLoad trick is a
method for determining whether a resource has
already been loaded. This trick is important, since in
cases where the resource has already been loaded by
the system, you don’t want to unload it or
permanently change any of its resource attributes.)
The trick works like this: You SetResLoad to false so
that the Resource Manager doesn’t load the resource
data; instead, it just creates an empty resource
handle that can be passed to routines like

SCOTT “ZZ” ZIMMERMAN loves Disneyland—we think it’s
because he’s really a cartoon character at heart. When asked,
he admitted to wanting to be Captain Hook when he grew up.
His favorite ride is Peter Pan because it’s romantic, cool, dark,
and the main character is a kid who never grew up. Except for
the romantic, cool, and dark parts, it reminds him a lot of life at
Apple. When he’s at Apple he makes sure he drinks at least 15
gallons of Mountain Dew a day—he says it powers the
mechanism for his retractable Barbie Doll hair. In closing, we’ll

leave you with his favorite question, “How can I miss you if you
won’t leave?”•

PRINT HINTS
FROM LUKE &
ZZ

HELP FOR
YOUR DIALOG
APPENDAGES

Zz speaks

PRINT HINTS FROM LUKE & ZZ Summer 1991

49

void Append2hdlg(srcResID, dstResID)
short srcResID, dstResID;
{

Handle srcHdl, dstHdl;
Ptr srcPtr, dstPtr;
short srcLength, dstLength;
short missingItmSz;
SignedByte dstHState;

srcHdl = GetResource('hdlg', srcResID);
if (srcHdl != nil) {

SetResLoad(false); /* System resource, make sure it's not */
dstHdl = GetResource('hdlg', dstResID); /* already loaded. */
SetResLoad(true);
if (*dstHdl == 0)

dstHdl = GetResource('hdlg', dstResID);
dstHState = HGetState(dstHdl);

if (dstHdl != nil) {
srcPtr = (Ptr)*srcHdl + sizeof(hdlgHeader);
missingItmSz = *((IntPtr)srcPtr);
srcLength = GetHandleSize(srcHdl) - (sizeof(hdlgHeader) - missingItmSz);

dstLength = GetHandleSize(dstHdl);
SetHandleSize(dstHdl, dstLength + srcLength);
if (MemError() != noErr) {

DebugStr("\pMemError"); /* Use this error handler, go to jail. */
ExitToShell(); /* It's the law! */

}
dstPtr = (Ptr)*dstHdl + dstLength;
srcPtr = (Ptr)*srcHdl + sizeof(hdlgHeader) + missingItmSz;

HLock(srcHdl);
HLock(dstHdl);

BlockMove(srcPtr, dstPtr, srcLength);

HUnlock(srcHdl);
HSetState(dstHdl, dstHState);

((hdlgHeaderPtr)*dstHdl)->hdlgNumItems += ((hdlgHeaderPtr)*srcHdl)->hdlgNumItems;
}

}
ReleaseResource(srcHdl);

}

GetResInfo. You then call GetResource on the
resource you’re looking for. If the handle returned is
empty (that is, points to nil), you know the resource
isn’t already in memory. If the handle returned is not
empty, something else (like the system) has already
loaded it before you called GetResource. In this
example, since we use HGetState and HSetState to
preserve the resource attributes, and we want the
resource to be left in memory when we’re done, we
don’t really need to know if it was already loaded.
The SetResLoad code is included for anyone who is
planning on modifying this code to do more.

Next we initialize our locals. We want to point srcPtr
to the place in the source resource that we want to
start copying from. To do this, we need to point past
the “missing item.” The size of the item is stored in
the resource just after the resource header. We first
use srcPtr to get the size (in bytes) of the missing
item. Using that size, we can calculate the starting
location for the copy. We don’t actually initialize
srcPtr yet, since resizing the destination handle
could move memory. Next we initialize dstPtr and

dstLength. In the process, we resize dstHdl to make
room for the items we’re going to append. Once
SetHandleSize has been called, we also initialize
srcPtr.

Now that srcPtr and dstPtr are set up, we use
BlockMove to copy the new items into the
destination resource. After unlocking the resource
handles, we update the numItems field of the
destination resource so that the Help Manager will
know how many items we added. Finally, we release
the source resource. We don’t want to release the
destination, since our changes would then be lost.

So that’s about it. Append2hdlg is a lot smaller than
AppendDITL because we don’t actually need to
parse the contents of the 'hdlg' resource. Although
it’s another piece of code to be added to your
application, this should be quite painless, unlike
other Printing Manager exercises. Don’t forget to
read the Help Manager chapter of Inside Macintosh
Volume VI for guidelines on the contents of your
Help Manager balloons. See ya next time . . .

d e v e l o p Summer 1991

For more information on the format and use of the “missing
item” in an 'hdlg' resource, and much more about Balloon Help,
see the Help Manager chapter in Inside Macintosh Volume VI. •

50

THREADED COMMUNICATIONS WITH FUTURES Summer 1991

51

Interprocess communication (IPC) promises to provide a solution to
problems that can’t ordinarily be solved in a single-tasking, single-
machine environment. But attempts at implementing IPC with
traditional programming techniques lead to cumbersome code that
doesn’t come close to realizing IPC’s potential. This article shows an
example of using threads and futures to do IPC in a way that allows
you to achieve concurrency with clean, robust code.

In the article “Threads on the Macintosh” in Issue 6 of develop, I identified a
potential problem with interprocess communications when you’re using the client-
server model. Simply put, if you don’t use threads when you’re using the client-
server model to implement IPC, the result could be deadlock. The deadlock occurs
because each application is capable of only a single train of thought. The client
expects an answer to a question posed to the server but never receives that answer
because the server must receive an answer to its question before it can respond. The
result is that each party is waiting for answers to its own questions before it can
proceed.

Although “Threads on the Macintosh” sounded the alarm about the communications
deadlock problem, it didn’t go into detail about how threads can be applied to solve
the problem. That’s the purpose of this article. Specifically, this article shows how
you can avoid client-server deadlocks by using threads and a new facility called
futures. The Futures Package has been integrated seamlessly with Apple events. In
this article, we’ll use Apple events as the generic facility for implementing IPC. The
sample code presented here appears on the Developer Essentials disc for this issue.

Before discussing futures in detail, let’s review some of the basics about threads.
Threads provide multiple trains of thought for your application. If your application is
doing more than one thing at a time, threads allow you to simplify your code. Instead
of juggling between multiple tasks, you start a separate thread to handle each
individual task. You then have multiple program counters, one for each thread. Of

MICHAEL GOUGH

THREADED

COMMUNICATIONS

WITH FUTURES

MICHAEL GOUGH has been ranting about
threads, futures, and other stuff for about three
years at Apple. (Maybe he’ll pipe down if we let
him publish one more article.) Here are a few
things you might not know about Michael: While
he was at NASA, he developed solid model
generation and ray tracing software. He also
introduced virtual memory and remote procedure
call support for NASA’s Massively Parallel

Processor. Michael developed a package called
“Virtual Data Table” which makes complex
multidimensional data easy to deal with. His
pride and joy is a package called “Spherical
Database” which turns geographic data sets into
a continuous function over a sphere. Michael is
often seen levitating things around the office and
doing other magic tricks. He insists he learned
the levitation trick while traveling in India, but we

d e v e l o p Summer 1991

52

course, the threads don’t actually run simultaneously on a single CPU. They share
the CPU, cooperatively trading control by calling a special function that says, “Let
the other threads in this application have some CPU time.”

HOW THREADS AND FUTURES FACILITATE IPC
Ideally, when you’re writing code for IPC, you’d like things to work such that
whenever the client poses a question, it gets an immediate answer. This situation
would translate into nice linear code, such as the following:

•
• code that prepares the question
•
answer := Ask(question);
•
• code that uses the answer
•

The semantics would be very simple: A question is prepared, and then it’s “asked.”
The Ask function waits synchronously for the answer to be returned. When it’s
returned, execution continues and the answer is used.

Unfortunately, this code suffers from a fatal flaw: the synchronous nature of the Ask
function will cause a deadly embrace in some situations. What if, as we saw above,
the client never receives an answer because the server needs to ask something of the
client before it can reply? This is an all too common situation.

Threads allow you to circumvent the deadlock problem by making each application
have a client and server portion so that both sides can ask and answer questions of
each other. In other words, the client and server portions of each application
are assigned to separately executing threads. IPC then works as follows: Application
1’s client asks a question of application 2’s server, and application 2’s server must ask a
question before it can answer. However, application 1 is able to field this question
because even though its client portion is waiting for an answer, its server portion is
available to answer application 2’s question. Because the answering and the
questioning portions of each program are able to function independently, a hangup
in the client or the server doesn’t bring the application to a halt.

In the “plain threads” situation just described, notice that execution of the client
thread is still held up while the client is waiting for an answer. What futures do is to
postpone or even eliminate this delay in processing, giving the thread a chance to do
related work before blocking. In this way, futures extend the capacity of threads to
maximize the efficient use of the CPU.

think that’s balderdash. When Michael’s not at
work, he’s hiking and eating ice cream with his
two sons. On occasion, he visits Nevada to take
the casinos for all they’re worth. When he’s done
with his current project, he’s going on a really
long trip to Antarctica.•

In the futures implementation, when a question is posed, the application never has to
wait for an answer; it can continue execution immediately. This may seem
impossible: in the above example, how can the Ask function return immediately
when it must supply an answer to the question? Mustn’t it wait until the answer is
received? No, because the answer that’s returned by Ask is a future. The future
doesn’t contain the information that the real answer contains. Instead, it contains
information that says “this answer isn’t ‘real’ yet.” Your code keeps executing,
thinking that it has the answer, but it really doesn’t. At some point later, when the
real answer is received by the Apple Event Manager, the future is automatically
transformed into the real answer, with all the information that was requested.

Note that when it comes time to get the contents out of an answer, and the answer
could be a future, you must be executing in a thread other than the main event loop
thread, or the result will be deadlock. This is because a thread that attempts to access
the contents of a future is blocked until the real answer is received. And since the real
answer to a future is received by the main event loop, you can’t risk blocking the
main loop by using it to access the future. The solution is to fork a thread to access
the future. This way, your main event loop keeps running, receiving Apple events
and passing them to the Apple Event Manager.

In some situations you’ll need to find out whether an Apple event is a future or not,
and you’ll need to do this without blocking. This is done through a call to the
IsFuture function. It returns a Boolean value of TRUE if the Apple event you passed

THREADED COMMUNICATIONS WITH FUTURES Summer 1991

53

Futures are almost always useful when you’re
implementing the client-server model. Any time you have to
ask a question of another process, but your program must
keep handling incoming messages from other processes,
threads and futures are a good approach.

For instance, suppose you’ve got a pipeline of
interconnected processes, where messages are sent from
one end to the other. If you’re able to run these processes
on separate CPUs, you can use threads and futures to
make all the processes communicate simultaneously. Every
time a process receives an incoming question, have it fork
a thread whose job in life is to handle the question. The
thread sends the question to the next thread in the chain
and waits for the answer. Meanwhile, the process will very
happily service other questions. Questions and answers

will flow throughout all parts of the pipeline simultaneously.
Because the original client can fork many threads, each of
which is responsible for a single transaction, there’s never
any unnecessary delay while a transaction waits for
another independent transaction to complete.

Futures are also great in cases where your program must
ask questions of two or more processes and then combine
the answers in some calculation. Since the order of the
transactions isn’t critical, you ask all the questions and then
use all the answers. When the last answer is in, your
program will complete its task. The rule of thumb is that
you always ask questions as early as you can and access
answers as late as you can. This way, you don’t block until
all the questions have been asked and all the associated
processing has commenced.

THE POWER OF FUTURES

in is a future. Of course, unlike the Apple event accessor functions, it never blocks
when you call it.

A CLOSER LOOK AT HOW FUTURES WORK
So how do you work with futures in a program? That is, how do you receive a
“future” answer to a question and then replace that future with the real answer when
it becomes available?

You first prepare your question event just as you would any other Apple event.
However, instead of sending out the question with the AESend function, you call the
Ask function in the Futures Package. Note that it’s never necessary to install a
handler for the answer, as is sometimes the case with AESend. The code that handles
the answer is neatly placed after the call to Ask.

Ask returns a fake answer—the future—as a placeholder for the real answer that is to
come. Since Ask returns immediately, the client can continue processing. In the
meantime, the server has time to receive the question and prepare an answer. The
main event loop of the server application receives a high-level event, which it passes
to the Apple Event Manager via a call to AEProcessAppleEvent. The Apple Event
Manager calls the appropriate event handler routine to receive the question and
generate an answer. The client is sent this answer from the server as a normal Apple
event reply. Replies that are answers to a future have a special code signifying that
they correspond to a particular future. AEProcessAppleEvent recognizes this code
and automatically transfers the contents of the real answer into the future. It also
calls a hidden routine in the Futures Package that wakes up the threads that are
blocked on the future. At this point, the future is no longer a future.

Figure 1 illustrates the sequence of events that are set in motion when a question is
asked.

EXAMPLE PROGRAM
The example shown here is a modified version of the TESample program that ships
with the Macintosh Programmer’s Workshop. When you start the program, it brings
up a window for user interaction as usual. You’ll notice that there’s a new Test menu,
with two items that you can choose, Ping and Ping2. First we’ll discuss Ping.

Choose the Ping item to start a conversation with another copy of the program
running somewhere on your network. The PPC Browser dialog box appears and
prompts you to select another running copy of the program on your machine or
elsewhere on the network. The copy you select will be the server; the application
that posed the dialog will be the client. At this point you’ll hear some beeps. What
this means is that the client is asking the server questions. The server beeps when it
receives a question, and then it returns an answer. You can start as many

d e v e l o p Summer 1991

54

List of �
threads�
blocked on�
this future�

1

3

8

simultaneous conversations as you like between any two copies of the program. In
this way, you establish a number of simultaneous client-server relationships between
the various copies of this application. You can even have an application be a client of
itself. When this started working for the first time, we had great fun pinging
messages around our network (all in the name of testing, of course).

When you select the name of the server from the PPC Browser dialog box, your
client program extracts the server’s address so that it knows where to direct
questions. The client then starts a thread that sends messages to the server. If the

THREADED COMMUNICATIONS WITH FUTURES Summer 1991

55

Ask a question�

Processing continues�

Access answer�

Receive question�

Event handler�
generates answer�

Access answer �
without blocking�

Futures Package�
releases blocked�

threads�

Apple Event Manager�
 fills in contents �

of future�

Apple Event �
Manager sends �
question�

The question�

Apple Event Manager�
sends answer back�

The answer�

Server�
Client�

Block until the future�
becomes real�

List of �
threads�
blocked on�
this future�

1.�

3.�

8.� 6.�

2.�
4.�

5. �

7.�

Figure 1
The Transformation of a Future Into a Real Answer

answer the client receives is a future, the thread is blocked. When the real answer
arrives, the thread is unblocked and is able to access the contents of the answer. After
finishing with the answer, the thread properly disposes of both the question and the
answer events with the AEDisposeDesc function. The thread then terminates.

Note that the application continues to service the text editing window as usual while
servicing incoming requests and driving the conversations it’s responsible for. This
illustrates that the main event loop is happy and healthy even though many threads
may be blocked. Since a thread is not swapped in when it’s blocked, a blocked thread
has no impact on performance. Practical experience shows that these
communications-oriented threads end up spending most of their time blocked.

The second menu item, Ping2, allows you to select two processes. Questions are sent
to these processes at just about the same time. This example takes advantage of the
asynchrony provided by futures. The first Ask call returns a future. The second Ask
is called before the real answer is available for the first call. Then both answers are
accessed. This strategy can be used to drive two server CPUs in parallel.

d e v e l o p Summer 1991

56

To use futures, there are a few things that you need to
know about Apple events. The most important thing to
be aware of is the AESuspendTheCurrentEvent-
AEResumeTheCurrentEvent feature that the Apple Event
Manager provides. You need this feature to avoid
deadlock when your event handlers ask their own
questions. AESuspendTheCurrentEvent allows your
event handler to say, “I’m going to return from this
handler, but I’m not done processing the event you just
gave me. I’ll continue processing this event, and I’ll call
AEResumeTheCurrentEvent when I’m really done.”

To use this mechanism in your handler, you suspend the
event and fork a thread that asks the question. The
original thread that entered the handler returns to the
Apple Event Manager with the understanding that the
event has not been handled yet. The new thread then
constructs an answer to the original question based on the
contents of the answer that it received. This may involve
copying information from one answer to another. Then the
thread calls AEResumeTheCurrentEvent to let the Apple
Event Manager know that the event has finally been

handled. After calling AEResumeTheCurrentEvent, the
thread dies via a call to EndThread.

Without this Apple event mechanism for suspending and
resuming events, it would be very difficult to avoid
deadlock. Handlers would have to avoid returning
because returning implies, “I’m done with this event. It’s
OK to send the answer back now.” Since the handler
wouldn’t be able to return, the main event loop would
be stalled, and deadlock would result. See Inside
Macintosh Volume VI for more information on the
AESuspendTheCurrentEvent-AEResumeTheCurrentEvent
feature.

One final note about Apple events: Even though you call
Apple event functions in your code to handle certain
incoming events, your code isn’t truly “Apple-event
aware.” For your code to achieve this awareness and full
System 7.0 compatibility, Apple requires that you
implement handlers for standard Apple events like Open
Documents and Print Documents. See Inside Macintosh
Volume VI for details on Apple-event awareness.

A FEW NOTES ABOUT APPLE EVENTS

The following code initializes the Threads and Futures Packages and installs an
Apple event handler to process ping events. It goes in the main program, right before
the main event loop routine is called.

#pragma segment Main
main()
{

•
• initialization stuff from TESample
•

// Initialize the Threads Package.

InitThreads(false); // Note the API change.

// Initialize the Futures Package.

InitFutures();

// Install a handler for the ping messages in the Apple events
// dispatch table, so that when we receive these events, this
// routine will be called.

AEInstallEventHandler(kSillyEventClass, kPingEvent,
(EventHandlerProcPtr) &HandlePing, 0, false);

EventLoop(); /* Call the main event loop. */
}

The following is the handler that processes the ping Apple event. Note that it’s in a
separate code segment so that procedure pointers to it are jump-table relative.

#pragma segment handlers
pascal OSErr HandlePing(AppleEvent question, AppleEvent answer,

long handlerRefcon)
{

char* stringPtr;
char stringBuffer[100];
long actualSize;
DescType actualType;
OSErr theErr;

// Beep to indicate that the question was received.

SysBeep(120);

THREADED COMMUNICATIONS WITH FUTURES Summer 1991

57

// Extract a string from the question.

theErr = AEGetParamPtr(&question, 'qstr', 'TEXT', &actualType,
(Ptr) stringBuffer, sizeof(stringBuffer)-1, &actualSize);

// Load a string into the answer.

stringPtr = "I'm just fine.";
theErr = AEPutParamPtr(&answer, 'rstr', 'TEXT', stringPtr,

strlen(stringPtr));
return(noErr);

}

Below is the main event loop. Well, sort of. I cut out some stuff for the sake of
brevity. The important thing here is the call to Yield, which gives CPU time to other
threads. It’s interesting to note that the standard call to WaitNextEvent (not shown)
is like Yield in the sense that it gives CPU time to other MultiFinder™ processes.
One significant difference is that WaitNextEvent requires that you supply a sleep
time of at least one tick when yielding control to other applications. The semantics
of the Yield function allow you to regain control as soon as possible, with no
obligatory sleep period. The sleep period, as well as the Process Manager’s
scheduling algorithm, affect the speed with which applications can exchange control
and therefore affect the round-trip speed of an IPC transaction.

#pragma segment Main
void EventLoop()
{

•
• declaration and initialization stuff from TESample
•
do {

•
• Get an event from the event queue and pass it to DoEvent.
•

// Yield control to other threads.

Yield();

} while (true); /* Loop forever. We quit via ExitToShell. */
} /*EventLoop*/

DoEvent decides what to do with events picked up by the main event loop. Here I’ve
inserted an entry in the case statement that passes high-level events to the Apple

d e v e l o p Summer 1991

58

Event Manager routine, AEProcessAppleEvent. Its job is to forward the Apple event
to the appropriate handler, in this case HandlePing.

#pragma segment Main
void DoEvent(event)

EventRecord *event;
{

•
• declaration stuff from TESample
•

switch (event->what) {

// If this is a high-level event, pass it to the Apple Event Manager.

case kHighLevelEvent:
AEProcessAppleEvent(event);
break;

•
• Process other kinds of events.
•

}
} /*DoEvent*/

At this point, we’ve touched on all of the boilerplate. Now let’s take a look at the Ask
function at work. Note that a real program would check for errors.

#pragma segment Main
void DoMenuCommand(menuResult)
{

•
• declaration and initialization stuff
•
switch (menuID) {

•
• Process other kinds of menus.
•
case mTest:

switch (menuItem) {
case iPing:

{
OSErr theErr;
TargetID theTargetID;
PortInfoRec thePortInfo;
AEAddressDesc theAddressDesc;

THREADED COMMUNICATIONS WITH FUTURES Summer 1991

59

d e v e l o p Summer 1991

60

ThreadHandle theThread;
AppleEvent question;
AppleEvent answer;
char* stringPtr;
char stringBuffer[100];
long actualSize;
DescType actualType;

// Get the target address of the other process.

theErr = PPCBrowser("\p", "\p", false,
&theTargetID.location, &thePortInfo, nil, "\p");

if (theErr) break;
theTargetID.name = thePortInfo.name;
theErr = AECreateDesc(typeTargetID, (Ptr) &theTargetID,

sizeof(TargetID), &theAddressDesc);

// Start the thread that pings.

if (InNewThread(&theThread, kDefaultStackSize))
{
long i;
for (i=0; i<30; i++)

{
Yield();

// Build an Apple event question that is addressed to the user-
// selected target.

theErr = AECreateAppleEvent(kSillyEventClass,
kPingEvent, &theAddressDesc,
kAutoGenerateReturnID, kAnyTransactionID,
&question);

// Load a string into the question.

stringPtr = "Hello server, how are you doing?";
theErr = AEPutParamPtr(&question, 'qstr', 'TEXT',

stringPtr, strlen(stringPtr));

// Ask the question.

theErr = Ask(question, &answer);

// If the answer is not a future so soon after Ask, something is
// probably wrong.

if (!IsFuture(answer)) Debugger();

// Extract a string from the answer. This will cause the thread to
// block until the answer is received.

theErr = AEGetParamPtr(&answer, 'rstr', 'TEXT',
&actualType, (Ptr) &stringBuffer,
sizeof(stringBuffer)-1, &actualSize);

// If the answer is still a future after you retrieve a string from
// the answer, something is definitely wrong.

if (IsFuture(answer)) Debugger();

// Dispose of the answer and the question.

theErr = AEDisposeDesc(&answer);
theErr = AEDisposeDesc(&question);
}

// Dispose of the address descriptor now that the thread no longer
// needs it.

theErr = AEDisposeDesc(&theAddressDesc);
EndThread(theThread);
}

}
break;

case iPing2:
{
OSErr theErr;
TargetID theTargetID;
PortInfoRec thePortInfo;
AEAddressDesc theAddressDesc;
AEAddressDesc theAddressDesc2;
ThreadHandle theThread;
AppleEvent question;
AppleEvent question2;
AppleEvent answer;
AppleEvent answer2;

THREADED COMMUNICATIONS WITH FUTURES Summer 1991

61

// Get the target addresses of the two processes.

theErr = PPCBrowser("\p", "\p", false,
&theTargetID.location, &thePortInfo, nil, "\p");

if (theErr) break;
theTargetID.name = thePortInfo.name;
theErr = AECreateDesc(typeTargetID, (Ptr) &theTargetID,

sizeof(TargetID), &theAddressDesc);
theErr = PPCBrowser("\p", "\p", false,

&theTargetID.location, &thePortInfo, nil, "\p");
if (theErr) break;
theTargetID.name = thePortInfo.name;
theErr = AECreateDesc(typeTargetID, (Ptr) &theTargetID,

sizeof(TargetID), &theAddressDesc2);

// Start the thread that pings.

if (InNewThread(&theThread, kDefaultStackSize))
{
long i;
for (i=0; i<30; i++)

{
Yield();

// Build the questions.

theErr = AECreateAppleEvent(kSillyEventClass
kPingEvent, &theAddressDesc,
kAutoGenerateReturnID, kAnyTransactionID,
&question);

theErr = AECreateAppleEvent(kSillyEventClass,
kPingEvent, &theAddressDesc2,
kAutoGenerateReturnID, kAnyTransactionID,
&question2);

// Ask the questions.

theErr = Ask(question, &answer);
theErr = Ask(question2, &answer2);

// Block until the answers become real.

theErr = BlockUntilReal(answer);
theErr = BlockUntilReal(answer2);

d e v e l o p Summer 1991

62

// Dispose of the answers and the questions.

theErr = AEDisposeDesc(&answer);
theErr = AEDisposeDesc(&answer2);
theErr = AEDisposeDesc(&question);
theErr = AEDisposeDesc(&question2);
}

// Dispose of the address descriptors now that the thread no longer
// needs them.

theErr = AEDisposeDesc(&theAddressDesc);
theErr = AEDisposeDesc(&theAddressDesc2);
EndThread(theThread);
}

}
break;

THE FUTURES API
Here’s a description of the routines provided by the Futures Package. Remember
that in addition to what you see here, you’ll use Apple Event Manager routines to
access the contents of a future in the same way that you’d access the contents of any
Apple event.

pascal void InitFutures ();

InitFutures initializes the Futures Package. It lets the Apple Event Manager know
that you’re using futures. You call it after you initialize the Threads Package.

pascal OSErr Ask (AppleEvent question, AppleEvent* answer);

You pass in an Apple event question to the Ask function, and it immediately returns a
future in the answer parameter.

pascal Boolean IsFuture (AppleEvent theMessage);

This handy function tells you whether or not a given Apple event is a future, without
blocking.

pascal OSErr BlockUntilReal (AppleEvent theMessage);

This function blocks the execution of the current thread until the specified Apple
event is converted from a future to a real answer. If the Apple event is already real,
this function returns immediately without blocking. If you ever find yourself

THREADED COMMUNICATIONS WITH FUTURES Summer 1991

63

accessing a parameter in a future just to cause your thread to block, use this function
instead.

THE FUTURE OF FUTURES
Threads and futures make it possible to divide a problem into independent parts that
can be executed concurrently. Whenever you can divide a problem into several parts
in this way and direct these parts to different CPUs, you can take advantage of
parallel processing. One of the most exciting things about threads and futures is, in
fact, that they make it very easy to build distributed systems that use multiple CPUs
executing in parallel.

Work along these lines is in progress on the Macintosh. The goal is to foster a new
era of computing in which users purchase smaller chunks of functionality from a
variety of vendors, and then wire them together in new and interesting
configurations. Rather than have a single multifunction program, why not have
multiple single-function programs that can be spread across several CPUs and
seamlessly brought together? In addition to a customized application environment,
you also get the advantage of using all the computing power on a network.

Stay tuned for more information about a specific project that makes distributed
processing a reality for the Macintosh user.

ACKNOWLEDGMENTS
Thanks to Kurt Piersol for designing the final version of Apple events and for
addressing all my concerns before I even posed them. Thanks to Ed Lai, who
incorporated support for futures seamlessly into the shipping version of Apple events
for me.

Thanks to Larry Tesler for supporting the original version of my “Transporter”
research project, which introduced futures to the Macintosh. Larry played a major
role in the early brainstorming for Transporter in the Advanced Technology Group,
and was the first to relate it to Peter Halstad’s work on futures at DEC. Thanks also
to researchers Jed Harris and Joshua Susser, who helped reel in and refine the idea.

Thanks to Laile Di Silvestro, the first person to implement a robust communications
timeout mechanism using dreaming threads and futures; to James Redfern, Don
Olson, and Eric House for assisting me with past, present, and future versions of
Apple events; and to Paul Snively for championing futures in Developer Technical
Support.

God bless Geta Carlson, Caroline Rose, Dave Johnson, Monica Meffert, and Louella
Pizzuti. You’d be amused to see what these articles start out like, and amazed at how

d e v e l o p Summer 1991

64

much editing work goes into them. Special thanks to Don Donoughe, our illustrator.
Futures aren’t easy to depict, and Don really hung in there as we carved out the
figure in this article.

Mondo thanks to Greg Anderson for putting threads and futures into an INIT and
for “saving the day” on a daily basis. Thanks to John Wendt for his dedicated work
integrating futures with his current secret project. Greg, John, and I are cooking up
something really big, so you’d better renew your subscription to develop.

THREADED COMMUNICATIONS WITH FUTURES Summer 1991

65
Thanks to Our Technical Reviewers
Kurt Piersol, Paul Snively, Dave Williams•

The big news is that the Threads and Futures Packages
are now shipping together as an INIT. This will allow us to
release improved implementations of threads and futures
that you can integrate with your code without relinking
your application. There is a “glue” object library that
replaces the old threads library. Now when you call a
routine in the Threads Package, it calls the INIT.

While implementing the “glue” code, we encountered a
problem that forced us to change the threads API. First,
the InitThreads call now has only one parameter:

pascal void InitThreads(Boolean usesFPU);

So where did the second parameter go? It’s been moved
to a new procedure:

pascal void SetMainThread(ThreadHandle
mainThread);

This tells the Threads Package that you have a new
“customized” thread that you want to use as the main
thread. The former main thread dies and is reborn as this
new customized thread. The reason for this API change is

that the InitThreads glue code now does some
initialization that must be done before any thread is
created. The old API would have you creating threads
before this initialization, which would be bogus.

An interesting new feature of the Threads Package is that
threads now “dream” when they’re sleeping. Each thread
has the option of installing a procedure in its fDream
field. This routine is pulsed periodically via a call to
LetThreadsDream in your event loop. A sleeping thread’s
dream proc can decide that it has waited too long and
call Wake to wake itself from a “nightmare.”

Dreaming is extremely useful in implementing robust
timeout mechanisms in IPC systems. Instead of using a
simplistic timer mechanism, you can place arbitrarily
complex logic in the dream proc to decide whether or not
your thread should timeout. The dream proc can be
designed to be sensitive to periodic messages from a
server that say, “I’m still working on your request, so don’t
timeout.” In this way, the dreaming thread knows that it’s
still in contact with the server, even if it’s taking a long
time to respond. This approach is far superior to
mechanisms that timeout after some fixed period of time.

WHAT’S HAPPENING WITH THREADS?

 66
MICHAEL GREENSPON is the principal noisemaker
for Integral Information Systems, a Berkeley, California
software engineering and consulting group (AppleLink:
Integral). When he’s not breaking compilers by trying to
use all of their features at once, he’s busy designing
next-generation solutions for clients. His interest in the
evolution of information systems goes beyond silicon—
as a neurobiology undergrad at Cal Berkeley he
developed visualization tools for neural network

dynamic modeling using a Macintosh workstation
linked to the school’s Cray supercomputer. “People
think the brain’s a computer, but it’s really an
aquarium.” (Ask him about his lava lamp
representation of the mind.) A native Californian, he
says he “prefers UV to ELF, any day.” In fact, when the
sun’s out you’re likely to find him swimming, mountain
biking in

d e v e l o p Summer 1991

USING C++

OBJECTS IN

A WORLD OF

EXCEPTIONS

MICHAEL C.
GREENSPON

The ability to derive C++ objects from MacApp’s PascalObject classes
yields a powerful marriage, but not without some
misunderstandings between the two languages. One potentially
thorny area crops up in combining exception handling with
dynamic object construction for C++ objects. Judicious use of
exception handling techniques can simplify the development and
maintenance of robust, well-structured applications. But beware: it’s
easy to get stuck by the undesired interactions of C++ features and
wind up in some tangled brush indeed.

Whereas the C++ language supports dynamic storage management implicitly
through object constructors and destructors, Object Pascal relies on user-defined
conventions such as those provided by TObject and adhered to explicitly by
MacApp®. In addition, MacApp defines conventions for exception handling during
object initialization. Here we explore techniques for incorporating MacApp-style
exception handling in C++ objects and strategies for object construction, destruction,
and dynamic storage management that provide MacApp compatibility. The
challenge is to retain the power of C++ features while avoiding some potential
pitfalls.

First we examine some basic differences in C++ and Object Pascal semantics and
provide an introduction to C++ objects. Then we review the object construction
mechanism used by MacApp and by C++, and present techniques for implementing
MacApp-compatible exception handling in C++. We also present techniques for
using C++ constructors and destructors with PascalObject-derived classes. Finally
we explore some special difficulties and workarounds for using C++ member objects
in handle-based classes.

NOT ALL OBJECTS ARE CREATED EQUAL
Both C++ and Object Pascal rightfully claim to be “object-oriented” languages; yet,
in fact, there are some fundamental differences in expressiveness and meaning

between seemingly similar constructs in the two languages. These differences can be
seen by comparing the object creation process in the two languages:

{ Object Pascal: }
Var obj: TObj;

Begin
New(obj); { Allocate heap storage for a TObj instance }

End;

// C++:
TObj* obj = new TObj; // Allocate and construct a TObj instance on

// the heap

PASCAL NEW STATEMENT ALLOCATES STORAGE
The Pascal New statement allocates relocatable storage on the heap and places a
reference to the storage in the declared object reference variable. In the MacApp
environment, all Pascal objects are allocated as relocatable heap blocks using
NewHandle, so the reference is a Memory Manager handle. In the example above,
executing the Pascal New statement does not provide a fully constructed object
instance, but merely initializes the storage enough to give the object its class identity.
To become a true object instance, the storage must be initialized explicitly by the
programmer. By convention in MacApp, this is done by calling the method
I«Classname», where «Classname» is the class of the object being
instantiated—IObj, for example. Referring to object fields through the object
reference variable before this explicit initialization will probably yield garbage
results, greetings from Mr. Bus Error, or worse.

C++ NEW STATEMENT INSTANTIATES OBJECTS
In contrast, the C++ compiler gives a passing new statement much deeper
consideration. In general, a C++ compiler translates the new statement into a call to
a new operator followed by a call to a constructor for the class. The new operator is
similar to the New statement in Pascal: it’s a function responsible for allocating
storage for the object instance. A constructor is a function responsible for changing
that raw storage into an instance of the class—a fully constructed object. Both
operator new and a default constructor are provided by the language system or
generated by the compiler and may be redefined, overloaded, and overridden for
each class by the user.

C TRANSLATED CODE
MPW C++ and other C++ systems based on the CFront translator instantiate objects
by generating a single call to the appropriate constructor. This constructor calls
operator new explicitly and, if the allocation is successful, constructs the object. For a
class with a trivial user-defined default constructor, the generated C code looks like
this (assuming the TObj class is derived from a HandleObject):

USING C++ OBJECTS IN A WORLD OF EXCEPTIONS Summer 1991

67Wildcat Canyon, or backpacking in the High
Sierra. In between, he’s working to promote
telecommuting, car-free days, and CRT-free
spaces.•

struct TObj** obj = __ct__4TObjFv(0); // TObj* obj = new TObj;

The trivial constructor itself is spit out by the translator as

// Translation of definition TObj::TObj() { /* user code goes here */ }
struct TObj** __ct__4TObjFv(struct TObj** this) {

if (this || (this =
(struct TObj**)__nw__12HandleObjectSFUi(sizeof(struct TObj)))) {

// A nontrivial constructor would have user code here
}
return this;

}

If you can squint past the mangled function names, you’ll see that the new statement
has been translated as an explicit call to the default constructor for the class. The
constructor is named __ct__4TObjFv, which loosely unmangles as “a constructor
function for class TObj taking void (no) arguments.” This default constructor (there
can be multiple overloaded constructors for a class) is called without user-supplied
arguments. That’s how we declared it, but the translator snuck in another
argument—the this reference for the object being constructed. The constructor is
passed a nil this reference, indicating that no storage is allocated and the constructor
needs to do so by calling operator new.

Looking at the translation of the constructor itself, you’ll see that the code tests the
this reference and, if it’s nil, then calls the function __nw__12HandleObjectSFUi
(operator new function for class HandleObject taking an unsigned int argument).
The intrinsic HandleObject::operator new just calls NewHandle unless overridden.
If operator new returns a non-nil value, the constructor assumes it’s a reference to
storage for the nascent object and executes its body of initialization code.

We’ll come back to constructors and translations when we explore constructor
implementation for objects in a multilevel class hierarchy. A clear understanding of
the object instantiation process is needed to use exception handling with dynamic
storage management. For now, just notice that Pascal’s New statement provides
storage, while C++’s new statement provides objects.

C++ OBJECT STORAGE CLASSES
In MacApp, Pascal objects are allocated only as handles on the heap. In C++,
however, you can specify several ways for the compiler to get storage for an object:

• dynamically on the heap with operator new

• automatically on the stack in the scope of any code block

• in the static data space, courtesy of the linker

d e v e l o p Summer 1991

Reading the intermediate C code can save
you a lot of MacsBug time. The C code can be
dumped into a file by using the –c option on the
compilation command line and redirecting the
output with > file (for example, cplus foo.cp –c
– l0 > foo.c). Including the – l0 (el zero) option
prevents the generation of #line directives.•

68

For convenience we’ll distinguish between heap-based objects that are only accessible
by pointers or handles and auto and static objects, which we’ll call stack-based.
Regardless of where an object is allocated, a constructor is invoked to create the
instance. This is also true for temporary objects generated by the compiler under
certain circumstances (such as for function arguments and return values). A
constructor is always invoked when a new class object is created, no matter where or
how. This is one of the desirable properties that makes all C++ objects first-class
citizens regardless of storage class.

STATIC POTENTIAL
The low run-time overhead needed to allocate storage for stack-based objects makes
them light and suitable for implementations where heap-based objects would be too
inefficient. Further, many objects have limited enough scope to be allocated on the
stack. Thus the ability of C++ to create stack-based first-class objects is a powerful
feature that allows us to make our programs more intensively object-oriented than
we could with only heap-based objects.

For example, consider a dynamic list class like MacApp’s TList. A TList is a Pascal
heap object that dynamically adjusts its size to store (typically) handles to other
Pascal heap objects. This is a good arrangement for relatively short lists of things like
windows, documents, and views. But what if you want a list of 50,000 objects that are
small in storage but complex enough operationally to be encapsulated as a class?

Such small but complex objects are common and include things like atoms, strings,
and lists themselves—the nuts and bolts of data structures. Each of these classes owns
and manages dynamic storage, yet instances of them rarely need to be allocated on
the heap. For example, a string class in C++ can be represented statically as a handle
to storage for characters; yet it can have many operators (concatenation, equality,
assignment) defined for it and a constructor and destructor that conspire to count
references and perform garbage collection on the handle. Just treating a string as a
typedef synonym for a handle would lose the encapsulation and notational
convenience of the operator family. A string that derived from a TObject (or other
heap-based object) would still be first-class, but doing something simple, like
building a long TList of strings, could get pretty inefficient.

A possible C++ solution would be to define a StaticList class that manages a single
handle to storage for a list of small static objects, such as strings. Having the list class
manage the allocation of objects in the list (which themselves manage handles to
storage) rather than allocating them as heap-based objects reduces the memory
management overhead for the list by more than half.

However, until the addition of language and compiler support for exception
handling, throwing exceptions from stack-based object constructors is basically a no-
no, because the compiler doesn’t generate the needed destructor call. Stack-based
objects are useful anyway, even though their constructors can’t throw exceptions; and

USING C++ OBJECTS IN A WORLD OF EXCEPTIONS Summer 1991

69
For an example of a garbage-collecting string
class see “The Power of C++,” by Waldemar
Horwat, MacHack Conference Proceedings,
1990.•

it’s useful to throw exceptions from heap-based object constructors, as MacApp does
for its Pascal classes. We’re going to take a closer look at how exceptions and
construction interact in a moment, but first let’s consider member objects.

MEMBERS ONLY
In addition to the heap-based, auto, and static storage classes described above, C++
objects can also be allocated as members of an enclosing object. This is different
from the common practice of maintaining an object field with a reference (such as a
handle) to another heap-based object—an owned object allocated separately from the
owning object. Members take their storage from the storage of their enclosing
object. Like all C++ objects, members are first-class in that they can have
constructors, destructors, and all other class properties. Member objects are a
powerful feature of C++, but using them in a handle-based world and in the presence
of exceptions presents some special difficulties. We’ll examine these difficulties later
and for now restrict the discussion to heap-based objects without member objects.

EXCEPTIONS DURING OBJECT CONSTRUCTION
MacApp and C++ each provide a functionally similar scheme for object instantiation,
and it’s important to understand these mechanisms in order to use exception
handling during object construction. During the instantiation process, object fields
must be initialized to a known state before any failures can occur. Then, if a failure
does occur, the exception handler can safely destroy the partially constructed object
and free its storage.

THE MACAPP WAY
After the Pascal New statement allocates uninitialized heap storage, an explicit
initialization step is required to instantiate an object in the allocated space. In the
MacApp environment, the root TObject class provides the canonical framework for
this initialization. Figure 1 illustrates this initialization process, showing the flow of
control during construction of a three-class Pascal object hierarchy.

THE C++ WAY
C++ provides implicitly in its language semantics an instantiation scheme
functionally similar to MacApp’s conventions. When the CFront translator generates
code for a derived class constructor, it automatically inserts calls to the base class
constructors before executing the user-supplied body. Figure 2 shows an overview of
the C++ object instantiation process.

There are several things to notice in Figure 2:

• The class hierarchy is derived from class HandleObject, which is
a native C++ class in that it uses the C++ virtual function table
dispatching mechanism.

d e v e l o p Summer 1991

For more information on object initialization
in MacApp see the MacApp 2.0 Cookbook, Beta
Draft, APDA #M0299LL/C, Chapters 1 and 7.•

70

• Each derived class constructor calls its immediate base class
constructor before executing its own body so that the base
portions of the object are constructed before the derived portions.
The example class hierarchy has class CDerived descended from
CBase descended from HandleObject.

• The virtual function table pointer (vptr) for the object being
constructed is initialized to the constructor’s class. This narrows
the object’s type to that of the constructor’s class. So although we
may be constructing an object of class CDerived, within the
constructor CBase::CBase the object is essentially one of class
CBase with respect to virtual function calls.

The user-defined body of each constructor initializes the fields belonging to that
class and performs other constructions, such as allocating owned objects. The
narrowing of type in constructors is important for exception handling, because if a
constructor signals a failure, we want to delete the partially constructed object using
a virtual destructor. Without narrowing, the virtual destructor call would resolve to
the most-derived class’s destructor. This destructor would expect to operate on fields

USING C++ OBJECTS IN A WORLD OF EXCEPTIONS Summer 1991

71
For more information on object initialization
in C++ see The Annotated C++ Reference
Manual, by Margaret A. Ellis and Bjarne
Stroustrup, Addison-Wesley, 1990, §12.6.2 (on
base/member initialization syntax) and §10.9c
(on virtual function instantiation).•

Client� TDerived� TBase� TObject�

IBase;�
Catchfailures();�
{Other initialization�
 that may fail}�
Success();�

IDerived�

IBase�

Initialize;�

IObject�

newObj=New(TDerived);�
newObj.IDerived;�

inherited Initialize;�
{Set TDerived�
 fields to a known�
 state}�

Initialize�

Initialize�

BEGIN�
END; {Empty�
 method}�

Initialize�

return�

return� return�

return�

return�

return�

IObject;�
Catchfailures();�
{Other initialization�
 that may fail}�
Success();�

inherited Initialize;�
{Set TBase fields�
 to a known state; �
 i.e., set references�
 to nil}�

…�

Figure 1
Flow of Control During Pascal Object Instantiation

of the derived object, which has not yet been constructed—Heap Check time! With
narrowing, the destructor invoked is of the same class as the constructor signaling
the failure, and only the constructed portions of the object are destroyed.

Since the constructors for each class in the hierarchy typically set fields to 0 in order
to initialize the object to a freeable state, sometimes it’s more convenient and
efficient to initialize the entire block of storage to 0 when it’s allocated. One
way to do this for native C++ objects is by redefining operator new. (See
“ClearHandleObject Approach for Native C++ Objects.”)

EXCEPTIONS IN CONSTRUCTORS
To implement a simple but convenient MacApp-compatible failure handling
mechanism in C++, we use the try and catch macros (see “Exception-Handling
Macros”). In general, if a constructor does anything that could throw an exception
(say, due to failure of an owned object allocation), it must take responsibility for
catching all exceptions and deleting its object on failure. If the constructor doesn’t

d e v e l o p Summer 1991

72

Client� CDerived� CBase�

HandleObject::operator new();�

CDerived::CDerived�

CBase::CBase�

{}//nil�

HandleObject�

CDerived* newObj=�
 new CDerived;�

return�

return�

return�

CBase::CBase();�
_ _vptr=CDerived::_ _ptbl;�

//Initialize members to a�
 known state�
try {
 Other initialization�
���� that may fail�
}�
catch delete this;�

NewHandle();�

operator new�

return�

Compiler-generated�
portion�

User-supplied portion�

HandleObject�

•
•
• •

•
•

…�

HandleObject::HandleObject();�
_ _vptr=CBase::_ _ptbl;�

//Initialize members to a�
 known state�
try {�
 Other initialization�
���� that may fail�
}�
catch delete this;�

Figure 2
Flow of Control During C++ Object Instantiation

delete its object on failure, no other code will have the this reference to do so. This
is also true for a hierarchy of constructors—each base constructor must catch all
exceptions it could generate and delete its object on failure before throwing to the
next handler. In a typical case, each constructor/destructor pair might look like this:

CDerived::CDerived : CBase(...), fOwned(nil) (...) { // Reference is nil to start
try {

fOwned = new TOwned;
// Other stuff that could fail

}
catch delete this; // If failure, destroy and throw to next handler

}

CDerived::~CDerived() { // Virtual destructor
if (fOwned) delete fOwned;
// Other cleanup

}

USING CONSTRUCTORS AND DESTRUCTORS WITH
PASCALOBJECTS
As C++ programmers, we’d like to use constructors and destructors with
PascalObject-derived classes to attain a uniform interface for clients. That is, in C++
programs we’d like to instantiate all objects, whether native or PascalObject-derived,

USING C++ OBJECTS IN A WORLD OF EXCEPTIONS Summer 1991

73
For more information on proposed C++
exception handling see The Annotated C++
Reference Manual, by Ellis and Stroustrup, §15.•

CLEARHANDLEOBJECT APPROACH FOR NATIVE C++ OBJECTS

class ClearHandleObject : public HandleObject { // Provides HandleObjects pre-
// initialized to zero

public:
void** operator new(size_t theSize) { return NewHandleClear(theSize); }

// Could declare some other useful handle-oriented functions here (or in a superclass)
// Boolean Lock(Boolean); // Lock/unlock object and return previous

// state, like TObject
// void MoveHigh(); // Move object handle out of the way to top

// of heap
// etc.

Here’s a simple technique that redefines operator new for
HandleObject to call NewHandleClear, so that on entry
to derived constructors, all object fields are initialized to

0 (references to nil, flags to false). This saves you the
trouble of explicitly initializing these fields to 0 with
constructor code before doing anything that could fail.

d e v e l o p Summer 1991

74

Here we present a derivative of Andy Shebanow and
Andy Heninger’s excellent UFailure-compatible exception
handling scheme for C and C++ that was distributed with
Sample Code #14, CPlusTESample, on the Developer
Essentials disc. The basic scheme is the same, but we’ve
tweaked the macros so that they follow C block structuring
conventions more closely. This produces code that’s easier
to read and more compatible in form with proposed C++
language extensions for exception handling. Now we can
write:

try {
// stuff that might throw an exception

}
catch {

// do stuff to recover
break; // Exit handler, recovered

}

This establishes a failure handler within the scope of the
try { } block. If any code within this block generates an
exception (by calling Failure) the exception will be caught
by the code in the catch { } block. Since we’re following
C structuring conventions, for simple statements you can
omit the { }.

Normally, falling through the end of the catch block will
throw the exception to the next handler in the chain by
calling Failure again. If you want to recover from the
exception, you can execute an explicit goto out of the
catch or simply execute a break statement. For example,

try CouldFail();
catch break;

would recover from all exceptions in CouldFail without
further checking. Also, you can do a break in a try
block that just exits the try. The catch block is executed
only if something in the try block throws an exception.

The following caveats apply:

• You can only have one try/catch pair per code
block. If you want more than one, enclose each
try/catch pair in its own block. But you’ll find that
when you have multiple try blocks in a function,
they often occur within a block already (if, while),
so this is not really a big deal.

• CFront is thought to have problems with macro
expansions in constructors. Sometimes macro
expansions are positioned incorrectly relative to
code the compiler inserts for calling operator new
and base class constructors! If you’re getting
weird results, be sure to look at the generated C
code to see what’s really going on. As MacApp
would say, “You Are Warned”—which makes it
OK, right?

MPW C does a good job of optimizing out the loops,
making the generated code comparable to the previous
versions.

Here are the macro definitions to replace the previous
version:

#define try \
jmp_buf errorBuf; \
if (! setjmp(errorBuf)) { \

FailInfo fi; \
CatchFailures(&fi, StandardHandler, \

errorBuf); \
do {

#define catch \
} while (0); \
Success(&fi); \

} \
else \

for(; (1); Failure(gFailError, \
gFailMessage))

EXCEPTION-HANDLING MACROS

with a new statement and destroy all objects with a delete statement. In general, we
expect objects to follow language semantics, regardless of their storage class or
implementation, and we want to encapsulate the MacApp initialization scheme so
that our C++ clients don’t have to know its details.

This seems straightforward, but there are several difficulties in using constructors
and destructors with C++ classes derived from PascalObjects. Though handle-based,
these classes use the Pascal method dispatcher and not the C++ virtual function table
mechanism. Thus, the native C++ narrowing isn’t generated in constructors, making
method calls (such as Free) always virtual to the most-derived class—even if that part
of the object hasn’t been constructed yet. Further, as of the E.T.O. #3 release (C++
3.1) there’s a problem with how MPW C++ translates virtual destructors in
PascalObject hierarchies (see “Virtual Destructors and PascalObjects”).

These considerations suggest some guidelines for those determined to make use of
object constructors and destructors to attain some consistency between native C++
objects and descendents of PascalObjects:

USING C++ OBJECTS IN A WORLD OF EXCEPTIONS Summer 1991

75

VIRTUAL DESTRUCTORS AND PASCALOBJECTS

MPW C++ 3.1 uses a Pascal method dispatch instead of a static call for the base
class destructor calls it generates at the end of a derived destructor that is declared
virtual in a PascalObject-derived class. The Pascal method dispatch resolves (virtually)
to the most-derived class’s destructor, which is the caller—in other words, death by
infinite recursion. Oops.

Without virtual destructors, the delete statement won’t operate polymorphically. In
other words, you can get bitten by this:

funfun() { // TBase has a nonvirtual
// destructor

TBase* anObj = new TDerived; // Create a new TDerived
delete anObj; // But delete a TBase! Ugh!
delete (TDerived*) anObj; // This works correctly but what

// a pain--error prone, too
}

Until the C++ compiler is updated, you should adopt the convention of using the Free
method as the virtual destructor chain, and redefine PascalObject::operator delete to
invoke it.

• For C++ classes descended directly from MacApp classes, define
constructors CObj::CObj(...) as you would a MacApp IType
method. That is, the constructor should initialize fields of the
object to a known state and then call inherited::IType before
performing any additional construction that could fail—for
example, before allocating owned objects.

• For C++ classes descended indirectly from MacApp classes, the
compiler invokes the base class constructors (which can fail) before
the constructor body can execute to set up a handler. Therefore,
in order for your Free method to operate correctly, you must
define a virtual pascal function Initialize to initialize fields to a
known state. MacApp calls this method before doing anything
that could fail. Your constructor can simply call inherited::IType
before performing any initialization that could fail.

• If you call any other virtual member functions in your
constructors, make sure that the fields they depend on are
initialized by your Initialize method. Virtual function calls in
PascalObject hierarchies are always instantiated as their most-
derived definitions, even before derived constructors are executed
to construct the derived parts.

• Constructors should perform operations that could fail within the
scope of an exception-handling try block. The catch block
should, if it can’t recover from the exception, perform any special
cleanup and then delete the partially constructed object by
executing the statement delete this.

For destruction, we need a workaround because the native virtual destructor
mechanism is inoperative in PascalObject hierarchies. We would like the delete
statement to invoke the Free method chain, which functions as the canonical Pascal
virtual destructor (TObject::Free deletes the storage). Here’s one possible solution
that may require minor revision with future releases of MacApp:

• Do not define any destructors in derived C++ classes. Define a
virtual pascal function Free to perform the cleanup functions you
would have put in a virtual destructor and then call inherited::Free.
This method then becomes the canonical virtual destructor and
allows the object to be destroyed and disposed of by Pascal code.

• In order for C++ code to destroy and free the object with a delete
statement, redefine PascalObject::operator delete to invoke Free:

void PascalObject::operator delete(void** h) {
((TObject*)h->Free(); // Invoke canonical virtual

// destructor chain
}

d e v e l o p Summer 1991

76

Future versions of MacApp may rely on operator delete to
actually dispose of the object’s storage; if this becomes the case,
you can modify TObject::Free or TObject::ShallowFree to do
the right thing.

If you’re using member objects with destructors in PascalObject hierarchies, there
are other problems, as discussed in the next section.

IT’S DIFFERENT WITH MEMBERS AND AUTOS
So far we’ve been discussing classes that do not contain member objects. This covers
all standard MacApp classes, provided your derivatives don’t add members. To take
advantage of first-class member objects, which are a powerful feature of C++, we
must face some difficulties. There are problems using member objects with handle-
based classes (both HandleObjects and PascalObjects) and problems with exceptions
in member constructors (common to static/auto objects as well). There are further
complications with PascalObjects due to the lack of virtual destructors.

Nevertheless, on balance we think member objects represent a powerful enough
construct to justify exploring these problems and possible workarounds—if we can’t
have the compiler support that’s really needed. The following sections offer
techniques for overcoming problems encountered with member objects in regard to
handle-based classes and exception handling.

Declare a wrapper class for member objects in handle-based classes.
Consider this translation of a constructor for a handle-based class that has a member
object with a constructor:

struct foo : public PascalObject { foo(); Memb a; /* a member object */ };
foo::foo() {} // Default constructor

// Translation of foo::foo()
struct foo** __ct__3fooFv(struct foo** this) {

if (this ||
(this = (struct foo**)__nw__12PascalObjectSFPFv_vUi(_foo, sizeof(struct foo)))) {

__ct__4MembFv(& (*this)-> a) ; // Compiler-generated call of member constructor!
}
return this;

}

See the problem? It’s the this reference passed to the member object’s constructor
behind our backs by the compiler—it’s a dereferenced handle! If the member
constructor does anything interesting (like allocate memory) it could move the
enclosing object, leaving the code with a dreaded dangling pointer. This is true for

USING C++ OBJECTS IN A WORLD OF EXCEPTIONS Summer 1991

77

all nonstatic member functions of member objects (not just constructors). Danger,
Will Robinson!

A general workaround involves locking the enclosing object’s handle before calling
member functions that can move memory—the question is who should do the
locking. If you have a library of classes you’d like to use as members in handle-based
objects, you may want to create wrapper declarations for these classes and pass the
handle to be locked (the this reference of the enclosing object). Here’s an example of
a wrapper for use by TObjects (which have a Lock method built in). It looks like a
lot of code, but it’s all declarations. The run-time overhead is negligible—a trade-off
between using HLock/HUnlock to make the member safe and having a separately
allocated heap object.

class CObj { // Some library class we want to use as a member in handle-based objects
public:

CObj(...); // Constructor, could move memory
virtual int Accessor() { return field; } // Won’t move memory
virtual void Funky(...); // Could move memory

private: int field;
};

// A utility class with a constructor that locks handles
class Lockit { // Lock the enclosing handle in constructor chain before member

// constructor is called
public:

Lockit(TObject* h) { h->Lock(true); } // Lock the handle
// This unfortunately defines a 1-byte structure rather than zero-length
};

// A wrapper for the above functional class CObj——reexport via private base class.
// Also inherit from Lockit so that its constructor is called before CObj::CObj().
// Member functions and locking wrappers must be inline or in a resident segment. Otherwise,
// calling these functions can trigger a segment load and heap scramble before we can lock
// the enclosing object.
class MObj : private Lockit, private CObj { // Wrapper for using CObjs in handle-based

// classes
public:

// Provide handle-locking wrappers for functions that can move memory
MObj(TObject* h,...);

// MObj(HandleObject* h,...); // Could overload all to work with
// HandleObjects too

virtual void Funky(TObject* h,...);

d e v e l o p Summer 1991

78

// Now we'd like to use the access declaration syntax to republicize functions that don't
// move memory, but unfortunately CFront currently miscalculates the 'this' reference! To
// get 'this' right, we have to provide an explicit inline call, which is messy in this
// declaration but doesn't add any run-time overhead.
// CObj::Accessor; // Doesn't work, miscalculates 'this'!
// Workaround:

virtual int Accessor() { return CObj::Accessor(); }
// Inline call wrapper so 'this' is right

};

// Wrapper function for constructor--lock enclosing handle first
inline MObj::MObj(TObject* h,...) : Lockit(h), CObj(...) {

h->Lock(false); // Unlock enclosing handle now that we've finished with base constructors
}

inline void MObj::Funky(TObject* h,...) { // Some memory-moving member function to wrap
Boolean state = h->Lock(true); // Lock the handle--preserve its previous state
CObj::Funky(...); // Call original function
h->Lock(state); // Put handle back the way it was

}

// Clients can use CObj as a wrapped member like this:
class TFoo : public TObject {

MObj fMember; // Include the wrapped member
public:

TFoo(...) : fMember(this,...), ... { ... } // Be sure to pass 'this' to
// member constructor

virtual void Func() { fMember.Funky(this,...); } // Pass 'this' to member
// functions for HLocking

};

Notice that this wrapper scheme has some drawbacks—for example, the requirement
of explicitly passing a this reference as an additional argument. This won’t work for
functions such as operator functions that have a fixed number of arguments.
Similarly, there’s no way to pass an explicit argument to a destructor. In these cases,
you can get by if you don’t refer to any member object fields within member object
functions after doing anything that can move memory. For example:

CObj::~CObj() { // Destructor for above example library class that's used
// as a member in handle-based objects

// Can use our fields here; our 'this' reference is a dereferenced handle!
delete fOwned; // Dispose of some storage we were managing--could compact heap?
// Better not reference any fields here! Our 'this' reference could now be a dangling
// pointer!

}

USING C++ OBJECTS IN A WORLD OF EXCEPTIONS Summer 1991

79
For more information on member access
declaration syntax see The Annotated C++
Reference Manual, by Ellis and Stroustrup,
§11.3.•

If you can’t guarantee not referencing member fields after doing anything that can
move memory, then you’ll have to explicitly lock and unlock your enclosing objects
before calling member object functions.

Don’t throw exceptions from member/auto object constructors. Because
the compiler invokes member object constructors before the body of the calling
constructor can execute to set up an exception handler, it’s a bad idea to throw
exceptions from member and auto object constructors. If the member constructor
throws an exception, it’s caught outside the scope of the calling constructor. The
object is only partially constructed, but fully allocated, and no code has the this
reference to delete the storage.

Therefore, member objects should not throw exceptions from their constructors.
For similar reasons, it’s inadvisable to throw exceptions from constructors for
classes used as auto objects. The exceptions are caught by a calling function in
a higher stack frame, and other autos in the original frame aren’t destroyed
correctly.

Explicitly test successful initialization of members/auto objects. To deal with
member and auto objects with constructors that may fail, and to avoid memory leaks
and worse, we really need language and compiler support for exception handling.
Such support has been proposed for a while, but it may be a long time coming. In
the interim, we’ll fill in with conventions and guidelines for member and auto
objects that manage storage and perform other operations in their constructors that
may not succeed.

Possible conventions include explicitly initializing instead of using constructors
(which we’ve been trying to avoid) or explicitly testing for successful initialization
(which we prefer). A nice way to test explicitly is to define operator! as a test for
failure. This convention follows the C notion of using ! to test for a nil pointer
indicating an allocation failure. For example, consider a constructor for a class that
has a member object:

TObj::TObj() : memb(this,...) { // Initialize members with member
// initialization syntax

try {
if (!memb) Failure(err,msg); // Test explicitly for member

// initialization failure
// Do other construction that could fail

}
catch delete this; // Destroy object if failure occurs

}

Here’s code for the member class constructor and operator! :

d e v e l o p Summer 1991

80

TMemb::TMemb(...) {
fOwned=nil;
try fOwned=new TOwned; // Don't throw exceptions if failure occurs
catch break; // Just exit from handler chain--i.e., recover

}

TMemb::operator!() {
return fOwned==nil ||

(other init failure); // Return *true* if initialization failed
}

Call destructors explicitly for auto objects in exception handlers. A final
convention for using auto objects allocated within code blocks that can generate
exceptions (either themselves, or by calling things that can fail) is to explicitly
destroy these autos in your exception handler. This can be done by calling the
destructor function directly using the static call syntax obj.TObj::~TObj().

Normally, the compiler knows to destroy autos when they go out of scope.
Unfortunately, the compiler doesn’t yet know about exceptions and stack unwinding,
so it doesn’t know that a call to Failure is blasting us out of scope. This can cause
memory leaks and worse, so always be careful with auto objects that manage storage
in the presence of exceptions. In particular, don’t declare autos that require
destruction within the scope of a try block. For example:

MapFile(TFile* aFile) {
String s(10000); // Construct a 10K dynamic string on the heap
// Be sure to catch all exceptions now so we can free our autos
try { // Don't declare autos needing destruction within this block!

FailInit(!s); // Throw memFullErr if initialization failed
aFile->ReadIntoString(s); // Do our work--could fail

}
catch s.String::~String(); // Destroy auto explicitly and throw to next handler frame

}

Be aware of implications of no PascalObject virtual destructors for
members. Previously we recommended using operator delete to invoke Free
instead of defining destructors in PascalObject hierarchies. But, if you include
member objects with destructors in your classes, the compiler generates calls to
these destructors before Free is invoked. That is, all member objects in the hierarchy
are destroyed before any of their enclosing objects are destroyed. This is not a
problem as long as your Free methods don’t try to access the member objects.
Finally, because there’s no declared virtual destructor, the delete statement won’t
operate polymorphically with respect to the members. Be sure to delete the derived
class and not a base class.

USING C++ OBJECTS IN A WORLD OF EXCEPTIONS Summer 1991

81

AN EXAMPLE
Finally, here’s some sample code that illustrates all the techniques mentioned above:

// A fictitious example illustrating the techniques described above
// Let's declare this mess once and for all
typedef pascal void (*DoToField)(StringPtr fieldName, Ptr fieldAddr, short fieldType,

void *DoToField_StaticLink);

class Lockit; // Declared earlier in article
inline void FailInit(Boolean t) { t? Failure(memFullErr,0) : ; }

class TMyEvtHandler : public TEvtHandler { // Derived directly from a MacApp class
public: // Constructors and destructors

TMyEvtHandler(TMyCommand* aCmd=nil,TMyDocument* aDoc=nil);
// ~TMyEvtHandler(); // No C++ virtual destructors for

// PascalObjects yet!
// Override operator delete instead

virtual pascal void Free(void); // Canonical Pascal virtual destructor

// Other methods
#if qInspector

virtual pascal void Fields(DoToField, void* DoToField_StaticLink);
#endif

virtual pascal Boolean DoIdle(IdlePhase idlePhase);
// ...
private:

TMyDocument* fDocument; // References to objects owned by someone else
TMyCommand* fCommand;
TMyOwned* fOwned; // Reference to an object we own
MStaticList fStringList; // A wrapped member object--must take special care

// in its destructor to not access fields after
// moving memory

};

class TMySpecialEvtHandler : public TMyEvtHandler { // Derived indirectly from a
// MacApp class

public: // Constructors and destructors
TMySpecialEvtHandler(); // Default constructor

virtual pascal void Initialize(void); // Pascal-style constructor
// No C++ destructor

virtual pascal void Free(void); // Pascal-style virtual destructor

// Other methods
};

d e v e l o p Summer 1991

82

// Use member initialization syntax to pass arguments to our member object constructors
TMyEvtHandler::TMyEvtHandler(TMyCommand* itsCmd,TMyDocument* itsDocument) :

fStringList(this,sizeof(String),String::CopyConstructor,String::~String) {

// Initialize fields to a known state
fDocument = itsDocument;
fCommand = itsCmd;
fMyOwned = nil; // So we won't try to delete it until we allocate it!

// Call IType chain to init MacApp classes
IEvtHandler(nil); // Initialize inherited MacApp classes

try { // Do rest of initialization in the context of a failure handler
// Make sure our member objects initialized themselves OK
FailInit(!fStringList); // Make sure MStaticList member was initialized OK

// Do the rest of our construction (e.g., allocate owned objects)
FailNIL(fMyOwned = new TMyOwned); // . . .

// Do anything else that could perhaps fail
gApplication->InstallCohandler(this,true); // Install ourselves in the idle chain

}
catch delete this; // Oops, something failed, so just Free ourselves

}

pascal void TMyEvtHandler::Free(void) {
gApplication->InstallCohandler(this,false); // Get us out of the idle chain
DeleteIfNotNil(fMyOwned); // Delete our owned objects if they were allocated
try fDocument->Notify(); // Try something that could fail
catch break; // Just recover--destructors can't throw exceptions!!
inherited::Free(); // Tell bases to destroy themselves

// TObject::Free will delete the storage
}

// Use base initialization syntax
TMySpecialEvtHandler::TMySpecialEvtHandler() : // Derived indirectly from a MacApp class

TMyEvtHandler(gSomeCommand,gSomeDoc) {

// By the time we get here, all base and member constructor and IType chains have executed
// without failure

try { // Initialization that could fail
}
catch delete this;

};

USING C++ OBJECTS IN A WORLD OF EXCEPTIONS Summer 1991

83

pascal void TMySpecialEvtHandler::Initialize(void) {
inherited::Initialize(); // Initialize inherited fields to a known state
// Initialize our fields to a known state here!

}

pascal void TMySpecialEvtHandler::Free(void) {
// Delete owned objects and perform other cleanup here
inherited::Free(); // Let base classes destroy themselves

}

SUMMARY
Here’s a summary of the various techniques we’ve discussed for successfully using
C++ objects in a world of exceptions:

• Use exception-handling macros to make code more reliable and
easier to maintain.

• Throw exceptions from heap-based object constructors only
after deleting the object being constructed.

• Don’t use destructors in PascalObject-derived hierarchies;
instead redefine PascalObject::operator delete to invoke the Free
chain.

• Don’t throw exceptions from member object or auto object
constructors; instead use explicit tests of successful initialization
(such as operator!).

• Remember to explicitly destroy auto objects before exiting their
scope by throwing an exception.

• Use a wrapper class or other technique to lock enclosing object
handles when using member object functions that can move
memory within handle-based objects.

• If you’re brave enough to use members with destructors within
PascalObjects, be aware of the implications of not having virtual
destructors.

• When in doubt, compile with –c –l0 and check the translated C
code.

CONCLUSION
As an evolutionary outgrowth of the C language, C++ adds the basic features needed
to support object-oriented programming and, to a limited extent, user-defined
language extensions. Coupled with a powerful class library such as that supplied by
MacApp, C++ is a sensible platform for serious development where reliability,

d e v e l o p Summer 1991

84

maintainability, reusability, and efficiency are primary considerations. However, it’s
also important to consider that C++ is essentially an immature language subject to
future growth and mutation. Because C++ was not specifically designed for the
Macintosh environment, the integration of language features is not yet seamless, as
we’ve seen.

With the advent of object-oriented programming and higher-level languages like
C++ comes the desire of applications programmers to work at as abstract a level as
possible, insulated from the often arbitrary details of a particular platform’s memory
architecture, operating system, or toolbox. With C++ you have the freedom to work
closer to the design level, but not without first making an investment in
understanding the depths of the language implementation. That is, we think it is
always important to know what the compiler is doing behind your back. The return
on this initial time investment comes in applications that are better designed, more
reliable, and easier to upgrade and migrate. This article was written in hopes of
reducing some of the pain in this initial time investment, so that you can concentrate
on the more enjoyable and productive aspects of developing in C++.

USING C++ OBJECTS IN A WORLD OF EXCEPTIONS Summer 1991

85
Thanks to Our Technical Reviewers
Dave Radcliffe, Larry Rosenstein, Kent Sandvik,
Brad Silen•

REFERENCES

• Andy Shebanow: “C++ Objects in a Handle-Based World,” develop, Issue 2, April
1990.

• David Goldsmith and Jack Palevich: “Unofficial C++ Style Guide,” develop, Issue
2, April 1990.

• Margaret A. Ellis and Bjarne Stroustrup: The Annotated C++ Reference Manual,
Addison-Wesley, 1990.

• Waldemar Horwat: “The Power of C++,” MacHack Conference Proceedings,
1990.

• MacApp 2.0 Cookbook, Beta Draft, APDA #M0299LL/C.

• Macintosh Technical Note #88, Signals.

• Macintosh Technical Note #281, Multiple Inheritance and HandleObjects.

It has long been a well-kept secret that among the many innovative
and controversial aspects of the original Macintosh design—such as
bitmapped graphics, iconic interfaces, and excessive disk swapping—was
hardware capable of accessing subspace fractal strings. Until now, there
has been no system software means of accessing this hardware. But with
System 7.0 comes the Subspace Manager, an access path to the
underlying subspace transceiver available in every Macintosh. Now the
truth can be told—and this article tells it.

While the Macintosh was being designed, a small group of researchers at the Pacific
Alternative Reality Center discovered a simple means of accessing subspace. The
method they developed could be incorporated into virtually any integrated circuit,
requiring very little space. The Apple development team, aware of this work via
personal contacts with the group, decided to incorporate a subspace transceiver into
the IWM chip.

Almost from the first day, the decision to include a subspace facility was
controversial. Many thought that the device was simply a toy and would keep the
Macintosh from being accepted in the business market. Others felt that the device
might be dangerous and worried about getting UL approval. Still others were
concerned about adding yet another chapter to Inside Macintosh.

In the end, a compromise was worked out: the hardware was included in the
Macintosh, but no means was provided to access it via the operating system. This
allowed the facility to be included in the spec sheet, but kept it from slowing down
third-party software developers. An early version of MacWrite used the facility to
enable interstellar collaborative editing, but the collaborative aspects were eliminated
by Marketing for being too far ahead of their time and thus confusing to users.

When the ASC chip was added to later Macintosh models, an improved subspace
transceiver was included. But once again, due to a slight management error—the

86

HARRY R. CHESLEY

THE SUBSPACE

MANAGER IN

SYSTEM 7.0

d e v e l o p Summer 1991

HARRY CHESLEY has had a fascination with
subspace ever since discovering a wormhole in
his bathtub at age five. Spending much of his
youth in subspace and his college years as an
exchange student on Pluto (“a real Mickey Mouse
planet”), Harry has relentlessly pursued the study
of subspace, putting him in an ideal position to
write this article. Today he lives in subspace with
his wife and daughter, and commutes to Apple.•

86

resources intended to be used to develop the Subspace Manager were instead used for a
four-day party in Monterey—no means of accessing the transceiver was made available.

Finally, during the development of System 7.0, someone said, “Hell, we’ve got
everything else in it, why not add the Subspace Manager too.” And so it was done.
Unfortunately, the contents page of Inside Macintosh Volume VI was frozen before a
chapter on the Subspace Manager could be added. This article takes the place of
that chapter.

ABOUT THE SUBSPACE MANAGER
The Subspace Manager is the part of the operating system that handles
communication between the application and the subspace transceiver in the IWM or
ASC chip. The Subspace Manager includes routines to access specific subspace
dimensional strings and transmission frequencies, subintegral dimensional storage,
and the underlying physical constants. Higher-level routines provide access to
structured storage as defined by Intragalactic Standards Organization (ISO)
document 332.12.2234.2313.22.123a: Interspecies Data Standards, Subspace Storage
and Retrieval, Structured Formats, Access Methods, subsection J, revision 1822.

SUBSPACE AND FRACTAL STRINGS
To use the Subspace Manager properly, you need to understand what subspace is and
how fractal strings work.

The universe is composed of billions (and billions) of strings, all intricately
interwoven. Collectively these strings are known as subspace. Each individual string is
a zero-dimensional point fractally interwoven through the local space-time
continuum, bounded by mass concentrations (which distort the spatial geometry and
thereby contain the strings). Because a string has zero dimensions, the concept of
transit time across the string is meaningless. Because it’s fractal, it achieves
connectivity with a large area in space.

Each fractal string has a unique fractal number that can be used to identify that
specific string. No other string can have exactly the same fractal dimension, as a
consequence of Boorman’s conservation of dimensionality principle
(CoDP—pronounced “cod pee”). CoDP provides a convenient means of addressing
a particular string:

TYPE CoDPNumber = EXTENDED;

THE SUBSPACE TRANSCEIVER
The subspace transceiver in the Macintosh works by creating a subspace resonance
chamber, empty of any strings, and then “intruding” a length of a single string. The
influence on the string is directly proportional to the length of the string intruded.

THE SUBSPACE MANAGER IN SYSTEM 7.0 Summer 1991

87

Even though the lengths are measured in parsecs, the nature of fractal strings allows
the entire length to be intruded into a chamber that fits within a small part of an
integrated circuit.

Note: Observant readers will note that although strings are described as zero-
dimensional, we can also speak of the length of a portion of string. This is not the
contradiction it seems at first glance. However, the mathematics needed to
illustrate this fact are beyond the scope of this document.

Subspace string intrusion is commonly called string sucking in the technical literature.
This is the origin of the popular song “Suckin’ in the Subspace,” written and
originally performed by The Fracs. The (totally unsubstantiated) claim is made that
during the band’s last performance of this song they hit precisely the right frequency
(just under F sharp) and were themselves sucked into subspace using no more
instrumentality than a poorly tuned guitar.

Warning: Don’t try this with your Macintosh.

THE INTRAGALACTIC SUBSPACE ENCYCLOPEDIA
In an effort to share information with other species in the same gravitational
neighborhood, certain strings have been set aside as a community-access
encyclopedia. The format of the encyclopedia is defined by the ISO. Details of these
standards are available via the encyclopedia itself. The Subspace Manager includes a
high-level interface to the encyclopedia.

Warning: Members of some civilizations have decided not only not to contribute
to the encyclopedia, but also to actively disrupt it. These species make changes to
existing entries in the encyclopedia, rendering the content questionable and even
dangerous. For example, the entry on Earth was changed by one of these species
to read “a mostly harmless planet run by small white mice.” Of course, Earth
authorities immediately changed it back to “a mostly harmless planet run by large
multicolored apes.”

HIGH-LEVEL SUBSPACE MANAGER ROUTINES
This section describes the high-level Pascal interface to the Subspace Manager.
Because of space constraints, low-level Pascal routines are not described in this
article, but we’re sure you can figure them out yourself.

FUNCTION SSInitialize (pi: EXTENDED; e: EXTENDED): OSErr;

SSInitialize initializes the hardware, evacuates the intrusion chamber, and tests the
local values of pi and e against those given. If pi and e do not match those of the local
reality, SSInitialize returns ssWrongReality; otherwise it returns noErr.

d e v e l o p Summer 1991

88

TRANSMITTING AND RECEIVING

FUNCTION SSTransmit (p: CoDPNumber; VAR count: LONGINT; buffPtr: Ptr):
OSErr;

SSTransmit attempts to send the bytes found at buffPtr, of length count, via the set of
strings starting at p. It chooses a series of string numbers based on p, as needed to
contain the entire block of data. The algorithm for choosing the string number
sequence is defined in the ISO document. Besides being an accepted standard, the
sequences are chosen to maximize the string intrusion rate (the “suck”). Upon return,
count reflects the actual number of bytes transmitted.

FUNCTION SSReceive (p: CoDPNumber; VAR count: LONGINT; buffPtr: Ptr):
OSErr;

SSReceive attempts to receive, from the strings starting at p, the number of bytes
specified by count, placing the received bytes in buffPtr. As with SSTransmit, a
sequence of string numbers is chosen based on the original p.

ACCESSING THE INTRAGALACTIC ENCYCLOPEDIA

FUNCTION SSEncycEntry (p: CoDPNumber; VAR entryTitle: Str255; VAR entry:
Handle): OSErr;

SSEncycEntry attempts to retrieve the encyclopedia entry at string p. It places the
title of the entry into entryTitle and returns the contents of the entry in a handle. It is
the responsibility of the application to dispose of the entry handle when finished with
it.

All entries in the encyclopedia are written in the native language of the originators of
the encyclopedia concept—the Herbans. SSEncycEntry automatically translates
encyclopedia entries from Herbaneeze into English. However, the system can handle
only a limited subset of entries from the entire encyclopedia.

Note: No high-level access is provided to write new entries in the encyclopedia.
If, however, you must have write access to the encyclopedia, you can use the low-
level interface. This will require you to write an English-to-Herbaneeze translator.
System 8.0 will include a bidirectional Herbaneeze translator as part of the
Universal Translator Package.

CHANGING REALITY
One of the many consequences of CoDP (the conservation of dimensionality
principle) is that each alternative reality has its own unique set of physical constants.
In addition, it follows directly from Malanthorpin’s theorem of constant universality
that only two constants are needed to define a reality, because all other constants can
be derived from those two, and that any two constants are sufficient.

THE SUBSPACE MANAGER IN SYSTEM 7.0 Summer 1991

89
The standard reference on subspace is
Subspace Engineering—Theory and Practice by
MacMillon and Boorman (New York:
Counterweight Press, 1957). The reader may
also be interested in Hummin’ Beings, The Next
Stage in Evolution by Gregor Alman (Chicago:
Omega Memes Press, 1997). In this book Alman
argues that creatures capable of directly
influencing subspace string frequencies are the

next logical step in evolution. The fact that he
completely misunderstands the concept of
evolution and that there are no examples of his
so-called hummin’ beings listed anywhere in the
Intragalactic Encyclopedia doesn’t keep the book
from being extremely entertaining.•

The Macintosh subspace transceiver has the ability to change the physical constants
of the current reality, thus moving the reality into a new Herzhold plane.

FUNCTION SSChangeReality (newPi: Extended; newE: Extended): OSErr;

SSChangeReality attempts to change the current reality’s physical constants. If
another reality already exists with the new constants, SSChangeReality returns
ssRealityExists. If the reality change was successful, it returns noErr.

Changing the physical constants of reality almost always causes the destruction of all
life. To make sure that this is the real intent of the user, a new type of alert is
included with the Subspace Manager. The alert is invoked with the function
EndOfWorldAlert.

FUNCTION EndOfWorldAlert (alertID: INTEGER; filterProc: ProcPtr):
INTEGER;

This alert works the same as the StopAlert, NoteAlert, and CautionAlert functions,
except that it uses a different icon, as shown in Figure 1. Physical reality constants
should be changed only if the user clicks the OK button in the alert.

Figure 1
End-of-World Alert

CONCLUSION
This article has described the Subspace Manager available with System 7.0. This new
facility provides many powerful capabilities, and should result in many new and
exciting applications for the Macintosh.

The story is widely told that sometime in the last century, the legislature of Indiana
passed a law declaring that pi would henceforth be exactly 3, with the intent to
decrease the cost of teaching that portion of mathematics. This story is untrue: in
fact, the law was proposed but was defeated. If the Indiana legislature had only had a
Macintosh with a Subspace Manager, they could have actually succeeded in changing
pi to 3. And they may yet.

d e v e l o p Summer 1991

Thanks to Our Technical Reviewers
Harry R. Boorman, Alfred P. MacNewman, Harry
R. Malanthorpin •

90

 91
DAVE JOHNSON has the best toy collection of anyone around. He
says that his favorites either make cool noises, fly, do something
surprising, or have just the right number of exclamation points in the
product description. His Humming Bee (a rubber band stretched over a
cheap wooden frame on the end of a string) hums when you whirl it
over your head; Mike Stone’s Amazing dip-er-do™ Stunt Plane defies
gravity (it’s a weighted paper plane that only does tight loops, so no
matter which way you throw it, it always comes back to you); and the
rattleback—this one’s so surprising that Scientific American had to

publish something about it (see the article in Roundabout: The Physics
of Rotation in the Everyday World by Jearl Walker, 1985). But his
favorite toy of all is his Macintosh, because it makes cool noises, flies
(well, figuratively), and does surprising things all at once. When he’s
not playing with his (and everyone else’s) toys, he enjoys redwoods
(wherever he may find them), dogs (his own in particular), clear blue
(sky and water), escapist fiction (science and otherwise), and complex
mechanical contraptions.•

THE VETERAN NEOPHYTE Summer 1991

THE VETERAN
NEOPHYTE

IF I HAD A
HAMMER . . .

DAVE JOHNSON

The people at ACOTSM (Apple’s Classroom of
Tomorrow) recently offered me the opportunity to
work on another of their cool projects. I’ll tell you
all about the project, but—as usual—I’ll also veer
off into some wild philosophical speculation about
computers and programming. So please fasten your
seat belts and keep your head and arms inside the
magazine at all times.

ACOT was working on a research project in mobile
computing: by combining GRiDPAD® computers
(notebook MS-DOS machines with pen-based input)
and tiny wireless modems, they had created a unit
that could be carried around easily in the field and
that was continuously connected with other
identical units. The software they were developing
to run on these machines was a sort of collaborative
spreadsheet, so that many separate users could enter
and edit data simultaneously, and everyone would
be updated continuously. They were going to give
these units to kids at an elementary school in Tucson,
Arizona, and send ’em out in the desert to collect
various kinds of environmental data (temperature,
pH, location, number of cacti, and so on). The idea
was this: the kids would be able to see not only their
own data, but how their data fit into the big picture.
Presumably learning is enhanced when a person can
see multiple levels of meaning side by side, because
the mental “level switching” that has to happen to
discern interdependencies can happen faster.

In addition to the spreadsheet, they wanted a user-
configurable graphing tool that would enable the
user to plot any available value against any other,
and to label the data points with a third variable
to get a crude sort of a 3-D graph. This is another
potentially powerful thing: being able to see the
same set of data represented in two different ways
side by side should enhance the understanding of the
data and how it relates to reality. ACOT was
running out of time and needed someone to write the
graphing tool. In return for taking on this project I’d
get a trip to Tucson to assist in the field trials. It
sounded great: I love to program graphics, I have a
good friend in Tucson I haven’t seen in years, I’d get
to learn all about a pen-based computer, and I’d
have a chance to participate in some really
interesting research.

Unfortunately, this was at a time when my
workload, which waxes and wanes over the quarter,
was on a steep rise. I had less than ten days to write
this graphing tool, and I had to maintain some
semblance of responsibility to my regular job. I knew
perfectly well that if I took this project it would
mean some late night and weekend hacking
(something I increasingly try to avoid, at least for
code that relates to work), and it would also mean
working on an MS-DOS machine, something I had
hoped to adroitly sidestep forever. Ah well, what’s
life without a little adventure? I took it.

Suddenly there I was, sitting in front of this strange
machine made by Toshiba, all softly textured gray
plastic and glowing plasma orange, surrounded by
about thirty pounds of documentation, and the screen
says something like “C:\GRID\BIN>.” Yikes!
What have I done? I’m a Macintosh guy. I can get
around OK on UNIX®, thanks to a class I took once,
but I’ve never touched an MS-DOS machine in my
life, believe it or not. Now I’m not going to write yet
another MS-DOS slam from the Macintosh
perspective, but there are two lasting impressions I
want to share. First, it took me almost half an hour
to copy one directory of files into another the first
time I tried, and I’ll never forget it. Second, batch
files are pretty handy.

d e v e l o p Summer 1991

92

Mercifully, I didn’t have to spend much time in MS-
DOS itself. I used Borland’s Turbo C® to do the actual
development work, and it’s a lot like THINK C, my
preferred compiler on the Macintosh. Also, the
programming interface for the GRiDPAD is very
Macintosh-like, so aside from some syntactic
differences I felt pretty much at home writing the
code. In order to finish on time, though, I did have to
go on a rather severe coding binge.

You know that feeling that you get around the sixth or
eighth or tenth hour of nonstop digital interaction?
Strange tensions, displacement, a weird urgency
enclosing every movement, feeling compelled and
repulsed simultaneously . . . you’ve all been there, I’m
sure. Isn’t it bizarre that computers can create such
visceral reactions? Maybe if you do anything nonstop
for a long time like that it would feel the same, but
somehow I don’t think so.

Programming is, at least partially, the ability and/or
desire to force your mind to be completely literal. I have
a pet theory that the reason programming is so
difficult for many people, and the reason it induces
such a strange mind state, is that it’s a fundamentally
different way of thinking that’s not at all natural and
must be consciously donned, like a hat that doesn’t fit.
You know how it sometimes takes a while to get fully
into it, and once you’re there it takes a while to come
out of it? My wife still struggles with that: she doesn’t
understand that I am in a sort of trance, holding a
whole strange world inside my head that is at odds
with reality. She’ll ask me a simple question, like what
should we eat for dinner or have I let the dogs out
recently, and it sometimes takes a full ten or fifteen
seconds before I can react coherently. And it’s not that
I’m ignoring her. I just don’t have room in my poor
overburdened brain for the real world: it’s been
crowded out by the digital one. And unfortunately, by
coming out long enough to answer her, I’ve lost a lot
of ground. It will take another twenty minutes to get
back to where I was. I don’t think, though, that
programming has to do that to people forever: it’s just
that our method of telling computers what to do is still
very crude and cumbersome.

How can computers be so . . . I don’t know, profound?
I mean, they’re only machines, right? And they only do
one thing really well—they can add—but boy, are they
good at it! They can add circles around anything else
on the planet. Big circles. And somehow that makes
them into what they are: these fluid, configurable,
multipurpose tools and toys. You forget, and rightly so,
that they’re just adding machines on steroids. I once
heard Todd Rundgren give a talk at a local
SIGGRAPH meeting, and he made the point that
computing itself is a poorly understood thing. He
compared computers to the handles on tools: if you
put a handle on a rock, you’ve got a hammer.
Computers are like handles, but we don’t yet know
what they’re handles to, and I suspect that we won’t
really know for a long time, if ever. It sure is a lot of
fun, though, to grab that handle and start swinging!

Well, I can’t tell you the end of the ACOT story,
’cause it hasn’t happened yet, but maybe a future
column will pick up where this one leaves off. My little
graphing tool plugged into the spreadsheet with a
minimum of hassle, thankfully, and it seems to be just
what they wanted. Next week we get to hand our
newly forged handle to the kids and see what they bash
into. It might be anticlimactic—maybe they’ll just treat
it like a fancy pad of paper—but maybe, just maybe,
their minds will light up when they grab on.

RECOMMENDED READING

• Mindstorms: Children, Computers, and Powerful
Ideas by Seymour Papert (Basic Books, Inc.,
1980).

• Good Dog, Carl by Alexandra Day (The Green
Tiger Press, 1985).

• Shared Minds: The New Technologies of Collab-
oration by Michael Schrage (Random House,
1990).

MACINTOSH Q & A Summer 1991

93

MACINTOSH

Q & A

Q Why would using OpenResFile(fileName) cause a crash when I try to open a
Macintosh font file that’s already open?

A The problem stems from the fact that OpenResFile doesn’t deal effectively with
cases where the resource file is already open. Luckily, there are some relatively
new Resource Manager calls that you can and should use instead. They’re all
documented in the Resource Manager chapter of Inside Macintosh Volume VI
and in Macintosh Technical Note #214, New Resource Manager Calls.

The call of interest in your case is HOpenResFile. To use it, break down the
vRefNum (actually WDRefNum) returned by Standard File into a real
vRefNum and dirID by calling PBGetWDInfo, and pass those to
HOpenResFile along with the file name. The important part, however, is the
permissions byte. If you expect to modify the file, pass fsRdWrPerm in that
field. If there’s an error of any kind, expect HOpenResFile to return -1, which
should serve as a signal that you need to call ResError to find out what went
wrong.

Q My application, which has several units and objects, compiles under MPW 3.1 but not
under MPW 3.2. Do forward references to objects work differently with MPW 3.2?

A MPW 3.2 has a new syntax for forward references to objects. Objects must be
declared as externals, as follows:

TYPE
TObjB = OBJECT; external; { MPW 3.2 requires this }
TObjA = OBJECT(TObject)

fFwdRef: TObjB;

{methods}
END;

Note that by default the Pascal compiler includes information such as USES in
its symbol table resources, so simply using the correct USES and external
declarations may not be sufficient; you may find it necessary to invoke the
Pascal compiler with the -rebuild option to force it to reconstruct its symbol
table resources from scratch.

Q With the System 7.0 version of the LaserWriter driver, when the user selects Envelope
from the Page Setup dialog, the page size returned by the driver is still a standard
page: 8.5 x 11. How do you recommend that applications display the page size when the
user has chosen a nonstandard page size?

Kudos to our readers who care enough to
ask us terrific and well thought-out questions. The
answers are supplied by our teams of technical
gurus; our thanks to all. Special thanks to Pete
“Luke” Alexander, Mark Baumwell, Jim “Im”
Beninghaus, Neil Day, Tim Dierks, Godfrey
DiGiorgi, Steve Falkenburg, Bill Guschwan, C. K.
Haun, Pete Helme, Dave Hersey, Dennis Hescox,
Mark Johnson, Jim Luther, Jim Mensch, Bill

Mitchell, Guillermo Ortiz, Greg Robbins, Jack
Robson, Kent Sandvik, Gordon Sheridan, Paul
Snively, Bryan Stearns, Forrest Tanaka, Vincent
Tapia, and Scott “Zz” Zimmerman for the
material in this Q & A column.•

A We recommend that you have the page preview show a full page instead of an
envelope-sized page. The LaserWriter® driver supports a large number of
PostScript® devices, and it can’t be sure whether the envelope will be fed on the
right, left, or center of the paper tray. If you show the full page, a user can print
on any device by putting the text in the correct location for that device.

Manufacturers of PostScript printers can add custom page sizes to the
LaserWriter driver. If they do, the representation on the screen will be
whatever they decide to define. Applications should not try to interpret custom
page sizes. If your application ignores the results returned by the driver, you
risk incompatibility down the road.

Q Why is my Macintosh driver receiving a positive drive number under System 7.0 upon
notification of an _Eject call?

A When the “driver wants a call on eject” bit is set in the flag bytes preceding a
drive queue element, _Eject will issue a _Control call with a csCode of 7 to the
driver. This _Control call is supposed to inform the driver which disk the OS is
attempting to eject, by passing the drive number in the ioVRefNum field of the
parameter block.

However, there’s a bug in the ROM that only manifests itself when _Eject is
given a volume reference number for a disk that has both the “nonejectable”
and “driver wants a call on eject” bits set in the drive flag bytes. This bug causes
the driver to receive the negative of the drive number, rather than the positive
drive number.

The System 7.0 Finder has reversed the order of its calls to _UnmountVol and
_Eject, causing it to pass the drive number to _Eject, which then passes it on to
the driver correctly. Unfortunately, under previous systems, the Finder passed
the volume reference number to _Eject, forcing developers to work around the
bug by accepting negative drive numbers; however, a problem could occur now
under System 7.0 if positive drive numbers weren’t accepted as well.

A number of driver writers have notified us of this problem, but few (so far)
have been adversely affected. As it has always been possible for utilities or
applications to make _Eject calls with either a volume reference number or a
drive number, the proper workaround is to handle both positive and negative
drive numbers.

Q How many active ranges can a Macintosh application have on a shared file? If the
answer is more than one, is the limit per application or per machine? If two ranges
overlap, are they joined into one range? Can an application nest ranges? For example,

d e v e l o p Summer 1991

94 Have more questions? Need more answers?
Take a look at the Dev Tech Answers library on
AppleLink (updated weekly) or at the Q & A stack
on the Developer Essentials disc.•

MACINTOSH Q & A Summer 1991

95

if an application’s user performs an action that forces a record to be locked and later the
application locks the full range of the file, does the initial record lock disappear?

A The only way to determine the limit is to hit the limit and get a NoMoreLocks
error. The number of range locks supported is a limit of the server platform,
and that limit is shared by all users of the server (at least it is with Apple’s
AppleShare® server software). With Apple’s server-based version of
AppleShare, approximately 40 locks per user are allowed (for example, if the
server allows 25 users, there are 1000 locked ranges total; if the server allows 50
users, there are 2000 locked ranges total; and with File Sharing running under
System 7.0, approximately 20 locks are allowed per user). Other vendors may
allow more or fewer locked ranges on their implementations of an AppleTalk®

Filing Protocol (AFP) server. Notice that the numbers given are per user, not
per application. It’s assumed that a user probably won’t need more than a few
locks at a time on a single file.

You cannot have range locks that overlap. You’ll get a RangeOverlap error
from AFP. All the rules for range locking can be found in the AFP chapter of
Inside AppleTalk (page 13-56). Additional information on AppleShare limits is
available in the Dev Tech Answers library on AppleLink and on the
Developer Essentials disc.

The February 1991 revision of Macintosh Technical Note #186 covers
several important details about PBLockRange and PBUnlockRange that are
not in Inside Macintosh.

Q Where can we get our hands on a fix to the ROM bug in the Macintosh IIci and
Macintosh IIfx Memory Manager? Word has it that Apple wrote an INIT (MMInit)
to fix this problem. Because we’re using our application on both the Macintosh IIci and
the IIfx, and the application uses many handles, this fix would be appreciated.

A Under System 6.0.x, Apple had identified a minor problem with the Memory
Manager in the Macintosh IIfx, IIci, IIsi, and LC. This problem resulted in a
performance degradation in an extremely small number of applications and did
not cause system crashes. We believe this was an insignificant problem that
affected few applications and very few customers. The problem was not new
and was not caused by the introduction of System Software 6.0.5 or 6.0.7.

Based on developer feedback, customer feedback, and extensive in-house
testing, Apple has identified very few affected applications. Because the
problem affects only an extremely small number of developers, Apple is
working with those developers to fix their applications. The best solution,
however, is to upgrade to System 7.0, as it includes an enhancement to the
Memory Manager to address this issue.

During extensive testing and research, Apple investigated a variety of solutions
to enhance the Memory Manager performance. One area researched was a
software solution called the Memory Manager INIT (a software “patch”), or
MMInit as it’s most often called. Through testing we discovered that this patch
did not enhance Memory Manager performance and introduced risks such as
decreased performance in some mainstream applications.

An unofficial version of the Memory Manager INIT has surfaced. This INIT
should not be used, because it has been modified from Apple’s experimental
version and could cause data corruption, data loss, and crashes. Apple strongly
urges that you discard the INIT if you have obtained a copy, and not use it. If
any version of this INIT is used under System 7.0, it defeats the enhanced
Memory Manager and reintroduces the bugs that were present in the System
6.0.x Memory Manager.

You may still wonder if you have been affected by this problem and how to
avoid it under 6.0.x. The problem is most severe when allocating pointers in a
heap with a rather large number of handles (on the order of tens of thousands).
It’s helpful to allocate enough master pointers (via MoreMasters) during
initialization. If the Memory Manager has to call MoreMasters later on, not
only could it fragment memory, but it could take an exceedingly long time. It’s
also helpful not to allocate thousands of handles. Besides requiring lots of
master pointers, it takes the Memory Manager a long time to crunch through
them during heap compaction.

Q Does setting the is32BitCompatible bit in the 'SIZE' resource have any effect in
System 7.0?

A The alert box that was to be shown for applications with the 'SIZE' resource’s
is32BitCompatible flag disabled was found to be too confusing for an end user,
so the is32BitCompatible flag is not used and the alert box is not displayed in
the final System 7.0. (It is, however, displayed in A/UX 2.0 and 2.0.1.) This
could change in the future.

Q Can you describe a procedure for extracting TrueType character outline data directly
from the Macintosh system software?

A Future releases of Macintosh system software probably will include calls for
accessing TrueType character outline data. In the meantime, sample code
showing how to parse the 'sfnt' outline font resource is available on the
Developer Essentials disc and on AppleLink in the Developer Support:
Developer Services:Developer Technical Support:Developer Essentials:Sample
Code folder.

d e v e l o p Summer 1991

96

MACINTOSH Q & A Summer 1991

97

Q Where can I find information on manipulating TrueType fonts under System 6.0.7?

A The System 6.0.7 TrueType INIT includes all the outline calls in System 7.0,
so everything you need is in Inside Macintosh Volume VI. Use Gestalt’s
gestaltFontMgrAttr selector (described in the “Compatibility Guidelines”
chapter of Volume VI, and available in System 6.0.4 and later) to determine
whether TrueType is available on the machine in question, and then use outline
calls freely and with abandon. The latest MPW release has the header files,
called OutlineCalls. Use version 4.1 of Font/DA Mover to move outline fonts
under System 6.0.7. Both the TrueType INIT and Font/DA Mover 4.1 are
available on AppleLink and on the Developer Essentials disc, and you can license
Font/DA Mover to include it with your product release by contacting Apple’s
Software Licensing group.

Q Why doesn’t the StyleWriter® like the SetLineWidth PicComment (182)? It prints
the line at a 1-point weight.

A Most of Apple’s QuickDraw printers do not support the SetLineWidth
PicComment. Because there’s no feedback as to whether the PicComment was
successful, use of the comment is problematic. It’s not regularly handled, except
in PostScript printers.

The best way to make full use of a Macintosh printer’s resolution is through the
PrGeneral trap. You’ll find it thoroughly described in the article “Meet
PrGeneral, the Trap That Makes the Most of the Printing Manager” in Issue 3
of develop, and also covered in Inside Macintosh Volume V. PicComments are
discussed in Macintosh Technical Notes #91 and #175.

Q How can a Macintosh in 24-bit addressing mode read from disk into a GWorld? If the
GC card is installed, sometimes the GWorld is a 32-bit one cached on the card. How do
we ensure the GWorld will be in main memory?

A When you create your GWorld, set the keepLocal flag in the flags field of the
NewGWorld call. This ensures that the newly created GWorld will be in main
memory where you can access it. Read your data into the GWorld and then
clear the keepLocal flag with a call to SetPixelState. This will issue a “GWorld
has been updated” type of message, causing the GWorld to be cached off to the
GC card, giving you the best performance. When you want to load another
image, call SetPixelState again, setting the keepLocal flag to bring the GWorld
back to main memory. Using this technique you’ll be able to load your GWorld
and cache it too, and you won’t need to recreate the GWorld each time you
want to load more data into it.

Q What are the effects of InitCM, InitCRM, InitCRMUtilities, and similar calls to the
Macintosh Communications Tools by nonapplications such as INITs or background
processes? What effect do multiple INIT calls have on Communications Tools operations
and any existing connections? What do these calls do, and when (and how many times)
is it safe to call them?

A All these initialization calls deal with the process of loading the 'cmtb' resource
into the system heap, putting entries into the Communications Toolbox (CTB)
dispatch table with references to the current heap zone, and setting up various
things having to do with resource management for the operation of the CTB.
You can call them over and over again without damaging existing information.

With this new perspective, you can see that a synergy exists between operations
of the CTB and the Resource Manager. The CTB needs to be in the
appropriate heap zone when a ConnHandle is generated or referenced for it to
operate as desired. If you’re writing a background process that maintains its
own persistent heap zone, you shouldn’t have any difficulties using the CTB.

If you’re writing an INIT, matters are more complex. You must
SetZone(SystemZone) while performing all CTB operations (including
initialization, CMGetProcID, and CMNew) to be sure the heap zone will
persist after the INIT has completed. Possibly the reason for doing this at
INIT time is to create ConnHandles that will persist for CTB access at a later
time. It seems reasonable that ConnHandles thus created require a
SetZone(SystemZone) by any routine that needs to access them for
Read/Write/Status/Delete operations.

Q Is there some kind of bug with the Macintosh Balloon Help feature in System 7.0? It
goes into the application and uses the text from the 'STR#' resource ID 4001 instead of
the 'STR#' resource ID 4001 of Finder Help.

A The System 7.0 Help Manager stores its balloon strings in the Finder™ Help
resource file. Under certain circumstances, the Help Manager will access the
string resources in your application before it accesses the resources of the
Finder Help file. Consequently, problems will occur if your application
contains certain 'STR#' and 'STR ' resources.

There are only two circumstances in which your application may be affected.
First, if your application uses a 'STR#' resource with ID 4001, the Help
Manager will use the first string resource of the list instead of the
corresponding resource in Finder Help. When the pointer is placed over your
application icon’s text on the desktop, the default text, “Change the icon’s name
by clicking on the name and typing,” will be changed to the text stored in
'STR#' 4001 of your application.

d e v e l o p Summer 1991

98

MACINTOSH Q & A Summer 1991

99

Second, if your application has a 'STR ' resource with ID 17251, the Help
Manager will use that string resource instead of the corresponding string
resource in Finder Help. The default text, “This is an application—a program
with which you . . . ” will be changed to the text stored in 'STR ' 17251 of your
application.

To avoid these problems, you have a few options. You can create your own
'hfdr' resource to override 'STR ' 17251, or you can avoid using 'STR ' 17251
and 'STR#' 4001. If you must use 'STR#' 4001, paste the text “Change the
icon’s name by clicking on the name and typing” into the first string and use the
rest of the strings for your application’s use.

Q How can I determine the intrinsic styles supported by a particular PostScript font?

A To find the styles that are supported by a particular font, you need to access one
of two tables. To find the screen fonts that are available, you can use the font
association table, shown on page 38 of Inside Macintosh Volume IV. Each entry
in the table contains the size and style of the font, as well as the resource ID.
Each font in this table should be available for the screen.

When you print a font to a PostScript printer, the Font Manager uses the style-
naming table in the family record to create a PostScript name for the font. The
table has a list of strings, followed by an entry for each style supported by that
particular font. A table for Times might look like this:

Value Description Hex Dump
9 Number of strings <INTEGER> 09
“Times” Basename of font 05, 54, 69, 6D, 65, 73
6, 7 Suffix index for style 1 02, 06, 07

Pascal string that looks like:
String[0] := CHR(2);
String[1] := CHR(6);
String[2] := CHR(7);

6, 8 Suffix index for style 2 02, 06, 08
6, 9 Suffix index for style 3 02, 06, 09
6, 8, 9 Suffix index for style 4 03, 06, 08, 09
“-” Suffix 1 01, 2D
“Roman” Suffix 2 05, 52, 6F, 6D, 61, 6E
“Bold” Suffix 3 04, 42, 6F, 6C, 64
“Italic” Suffix 4 06, 49, 74, 61, 6C, 69, 63

Except for the first entry, all entries in the table are stored as Pascal strings with
a length byte followed by one byte for each character in the string.

The table is used to build the PostScript font name for a particular style. This
is a little complicated, so hang on. Let’s look at the table again, with each line
numbered, and without all the hex:

0: 9
1: “Times”
2: 6, 7
3: 6, 8
4: 6, 9
5: 6, 8, 9
6: “-”
7: “Roman”
8: “Bold”
9: “Italic”

Entry #0 is the number of strings in this table. Entry #1 is the basename of the
font. Entries #6-9 are the suffixes that will be appended to the basename for
particular styles. Entries #2-5 are the indexes of the suffixes required to create
the PostScript names for the different styles (entry 2 = plain, 3 = bold, 4 = italic,
and 5= bold+italic).

Let’s use entry #2 to build a name:

1. Always start with the basename: “Times”

2. Append the first suffix, #6 in this case: “Times-”

3. Append the second and last suffix, #7: “Times-Roman”

The style-naming table is not documented in the Font Manager chapter of
Inside Macintosh because it’s too specific to PostScript. Instead, it’s documented
in the LaserWriter Reference (Addison-Wesley) on pages 28-35. The manual’s
description doesn’t include examples, so the above example makes things easier
to understand.

Q What is the easiest way to reset a Macintosh color map or palette to the default system
color map?

A Use RestoreDeviceClut(gd:GDHandle). You pass the handle to the device in
question, or nil if you want all devices reset. The call is described in the Palette
Manager chapter of Inside Macintosh Volume VI.

Q If System 7.0 were the Seven Dwarfs, which dwarf would Virtual Memory be?

A Sneezy.

d e v e l o p Summer 1991

100

APPLE II Q & A Summer 1991

101

APPLE II

Q & A

Q Our Apple IIGS® TextEdit field created with NewControl2 appears to be redrawn
within the TESetText call, but Apple IIGS Toolbox Reference Volume 3 says controls
won’t be redrawn until the next update event. Is this a mistake in the documentation
or in our logic?

A Internally, TextEdit uses control records for all TextEdit records. The main
difference between control and noncontrol records is that the control defproc
handles many of the standard TextEdit functions without requiring your
application to do so. In the case of TESetText, though, TextEdit will always
redraw the entire viewRect. This is a mistake in the manual.

Q We want to load $BC files from a folder when our program is launched. How do we
ask the Apple IIGS System Loader to discard these loaded files at application shutdown
time? We tried using the main program’s master ID from the Memory Manager, but
the files are still not unloaded.

A The Loader is not designed to support more than one program with one user
ID. It assumes that InitialLoad or InitialLoad2 will be called with distinct user
IDs for each “program” to be controlled individually.

You need to get new user IDs (probably $1000 type) for each module you
load, so that you can call UserShutDown on each of them individually when
you need to. Don’t dispose of the memory at the end; call UserShutDown on
each of the IDs and the Loader will take care of the rest. If you’re not
quitting, you might want to shut them down in zombie state so that they
don’t have to be reloaded from disk if the memory is available. You can just
pass $1000 as the user ID to InitialLoad and it will get a new ID for you and
return it on the stack.

Remember that $BC auxiliary types are reserved and must be assigned by
Apple Developer Technical Support.

Q How can I turn off the GS/OS file system cache, or keep it from writing to a disk while
my file system optimizer is running?

A Altering volumes at the block level will confuse GS/OS®, because the
ProDOS® File System Translator (FST) keeps copies of file system structures
that aren’t in the cache. You need to use DWrite, although using DWrite
instead of WRITE_BLOCK risks destroying the integrity of any open files on
disk, such as the system resource file. If you use WRITE_BLOCK, you must
close any open files, including the system resource file if you optimize the boot
disk.

Kudos to our readers who care enough to
ask us terrific and well thought-out questions. The
answers are supplied by our teams of technical
gurus; our thanks to all. Special thanks to Matt
Deatherage, C. K. Haun, Jim Luther, and Jim
Mensch for the material in this Q & A column.•

Have more questions? Need more answers?
Take a look at the Dev Tech Answers library on
AppleLink (updated weekly) or at the Q & A stack
on the Developer Essentials disc.•

Once you start optimizing, don’t make any calls that could directly or
indirectly result in operating system calls—no DA access, no Font Manager
calls, no loading tools, nothing. When you’re done, GS/OS’s internal
volume control records (VCRs) will be completely invalid and you’ll have to
call OSShutDown.

Q When is it OK to make Apple IIGS system service calls? I’d like to make calls such as
MOVE_INFO from a driver that’s executing asynchronously.

A It’s OK to make system service calls in response to a GS/OS request, for
example. Most of them require the OS environment, such as GS/OS’s direct
page, but MOVE_INFO, SET_SYS_SPEED, DYN_SLOT_ARBITER, and
SIGNAL do not.

When you’re not in the GS/OS environment, make sure the proper
language card bank of bank 1 is swapped in. Just JSLing there will put you
into something that’s not a system service call. You can either use the bank
$E1 equivalents of MOVE_INFO, SET_SYS_SPEED, and
DYN_SLOT_ARBITER, or you can make sure that the right $01 language
card bank is enabled:

short
lda >$E0C068
pha
lda >$E0C08B
lda >$E0C08B
longmx

; Set up the registers and make your
; JSL My_Favorite_SysSrv_Call

short
lda >$E0C083
lda >$E0C083
pla
sta >$E0C068
longmx

Q Do I have to write extra program code for my Apple IIGS program to grow a resource?

A No, it’s pretty straightforward. All you have to do to modify the content of any
resource (including growing it) is to load the resource in, make any changes
you want to the handle (such as change the data inside or call SetHandleSize to
make it bigger), and then call MarkResourceChange. The Resource Manager
updates the contents of your file when you call UpdateResourceFile. The

d e v e l o p Summer 1991

102

APPLE II Q & A Summer 1991

103

Resource Manager recognizes the change in the size of the handle
automatically.

Q The Apple IIGS does not seem to sort out equivalent devices on the Apple Desktop Bus™
(ADB) as the Macintosh does and as outlined in the ADB specification. We want
multiple keyboard support, but the Apple IIGS ADB micro just begins reading blindly
from addresses 2 and 3, assuming one keyboard and one mouse are attached. Is this
information correct?

A The Apple IIGS does not do the same kind of dynamic device mapping and
remapping that the Macintosh ADB Manager does. The “Apple Desktop Bus
Tool Set” chapter of the Apple IIGS Toolbox Reference gives instructions on how to
remap devices dynamically yourself. Essentially, you have two options:

• You can leave the second keyboard address as 2, allowing input from
multiple keyboards, but the keyboards’ modifier key input will be mixed.

• You can dynamically remap the keyboards in your program or in an INIT
(although some forms of remapping require the user to press a key on the
device to be remapped) and then a second keyboard will not appear as the
standard keyboard—requiring all who use it to do their own ADB requests
to get at the information entered from a second keyboard.

If you don’t expect many developers to use a second keyboard, you might
just choose to remap it inside any program that uses it. You could write an
external library or functions that remap a second keyboard and read from it.

Q Where can I find documentation on how to recognize SCSI partitions, such as MS
DOS partitions, from GS/OS?

A The documents you’ll need are the GS/OS Reference (Addison-Wesley) and the
GS/OS Device Driver Reference (APDA). You can recognize SCSI hard disk
partitions programmatically by looking for a SCSI Hard Drive device type
($0005) and a forwardLink or headLink that’s nonzero. This will give you all
SCSI hard disk partitions, but it won’t give you non-SCSI partitions, which
have a different device type.

Bit 13 of the Device Characteristics word is for “Linked devices” like partitions,
but the GS/OS Device Driver Reference says that bit applies to removable media,
so not all third-party GS/OS drivers may set that bit for partitions (even
though Apple’s SCSI hard disk driver does).

Remember that GS/OS requires each partition to appear as a separate device,
so there’s no support for multiple partitions on one logical device.

d e v e l o p Summer 1991

104

For each issue of develop, there’s a corresponding
updated version of the Developer Essentials CD-ROM
disc. If you’ve subscribed to develop, your copy of the
disc will be bound into the journal; if you’re an Apple
Associate or Partner, you’ll get your copy in a folder
on the Developer CD Series disc.

We’ll tell you here about some of the headliners in
Developer Essentials, but you should take some time to
browse the disc and see what else you might discover.
We’ll be adding more as Developer Essentials evolves,
and we hope you agree that these are tools no
developer should be without.

We start out by describing the old standbys (and
what they’re standing by for) and finish up with
descriptions of what’s new or improved on this disc.

THE STANDBYS
develop
There’s more than one way to browse a magazine (or
to look through back issues), and we’ve given you even
more by making develop available electronically. With
the electronic version of develop, you can easily search
(by word or with a cumulative index), you can copy the
code (or any text that’s particularly useful), and you can
check out the HyperCard limits we’re pushing.

SpInside Macintosh
Of course the most essential documentation for the
Macintosh is Inside Macintosh, so the Developer
Essentials disc offers you SpInside Macintosh, an on-
line version of Volumes I-V. SpInside Macintosh
combines these volumes into a single, searchable
electronic form that’s cross-referenced with the
Macintosh Technical Notes Stack, the Q & A Stack,
and the Human Interface Notes Stack.

DTS Technical Notes and Sample Code
All the Apple II and Macintosh Technical Notes and
Sample Code programs prepared by Apple’s
Developer Technical Support group are here for your
reference. Technical Notes are updates to existing
technical documentation, useful hints and tips, and
special coverage of technical topics.

Macintosh Technical Notes Stack
This HyperCard stack incorporates all of the latest
Macintosh Technical Notes into a single on-line
source, which is cross-referenced with SpInside
Macintosh, the Q & A Stack, and the Human
Interface Notes Stack.

Q & A Stack
Got a tough development question? The Q & A
Stack is a collection of hundreds of the most
frequently asked questions answered by the
Developer Technical Support group. Organized by
subject, this stack includes question and answer pairs
as well as cross-references to SpInside Macintosh and
the Macintosh Technical Notes Stack.

Human Interface Notes and Stack
These notes will help you develop uniform user
interfaces in your Apple II and Macintosh
applications. They cover everything from how to use
color most effectively (without shortchanging those
customers who see everything in black and white) to
how to seamlessly incorporate sound.

YOUR
DEVELOPER
ESSENTIALS
DISC

WHAT’S OLD AND
WHAT’S NEW

YOUR DEVELOPER ESSENTIALS DISC Summer 1991

105Snippets are also available via AppleLink, in the
Developer Technical Support folder on the Developer Services
Bulletin Board, and in the Dev Tech Answers library.•

Apple II
If it’s about the Apple II, you’ll find it here. We’ve
got documentation on everything from the basic to
the most esoteric, as well as MPW IIGS Interfaces, all
kinds of disk utilities, system software, and every
released version of HyperCard IIGS.

International System Software/HyperCard
The Developer Essentials disc includes all the latest
international versions of Macintosh system software.
In addition, look for the KanjiTalk™ Toolkit,
KanjiTalk 6.0 Docs, and the Taiwan Chinese Font
Option Kit. (You must have a Macintosh to run
DiskCopy and create floppy disks from these
images.) The Developer Essentials disc also includes
the latest international versions of HyperCard in
DiskCopy image format.

U.S. System Software/HyperCard
Here you’ll find system software versions from 0.1 to
7.0—you can copy them right to a floppy disk using
DiskCopy. You’ll also find HyperCard U.S. versions
1.2.2, 1.2.5, and 2.0, all of which come complete with
an idea stack. Have you ever wondered how many
gills there are in a pint? Find the answer in the idea
stack.

Programming
No, we won’t do it for you, but we’ll give you some
tools. HyperCard XCMDs (pieces of code used to
extend HyperCard functionality), MPW Interfaces &
Libraries 3.1, and DefProcs (modules of code for
system functionality) are included for your reference.

Snippets
Snippets are small pieces of code that show you one
engineer’s implementation of something or other.
We’ve tried the snippets to make sure they work, but
they haven’t benefited from the same testing that
develop and the rest of our sample code go through.
So, before you incorporate a snippet into your code,
test it thoroughly and make sure it does what you
want it to.

NEW OR IMPROVED
Snippets
Here are the new snippets for this issue.

DemoTextDump 1 This MacApp MPW script
contains an example of how to write an MAMake file
for C++ that uses load/dump.

DemoTextDump 2 In this two-level dump system, a
switch makes it possible to either dump everything or
exclude a couple of header files when working with
them, which saves time.

DialogBits This sample application shows how to
deal with many of the most commonly asked
questions about the Dialog Manager.

DoubleBack This sample application shows how to
play sounds using double buffering.

ficycle This THINK Pascal™ program lists the files
contained in a folder.

FindSysFolder In this code, the FindSysFolder
returns the real vRefNum and dirID of the current
System Folder. It uses the Folder Manager, if
possible, or falls back to SysEnvirons.

FreqForEverChange This sample application shows
how to play a sound and how to alter its frequency.

GDevVideo This code shows how to get the
parameters out of GDevice records.

InvertedText This sample application gives you
cool tricks for printing inverted text.

KeepMeAround This sample code keeps an INIT’s
resource file open so that code installed by the INIT
can access resources stored in the file.

MakeITable This sample application shows how to
manipulate a GDevice’s inverse table.

MultiHider This sample application, in both MPW
and Turbo Pascal® versions, shows how to hide any
number of editText fields in a dialog.

MultiPlay This sample application shows how to
play a sound several times in a row.

Palette Animation and Palette Animation Gray
These sample applications show how to animate the
entries of a palette.

PBAllocate This MPW tool shows how to work
around a bug in PBAllocate.

SampleSndPlay This sample application shows
how to use SndStartFilePlay.

SCSIInquiry This MPW tool shows how to make a
SCSI inquiry command to an HD80SC.

SetPDiMC This MPW tool sets the “Printer Driver
Is MultiFinder Compatible” flag (see “Learning to
Drive” on the Developer Essentials disc).

ShowBalloon XFCN This XFCN allows you to use
Balloon Help in conjunction with HyperCard. The
source code and the demo stack will get you going.

SubLaunch This sample application shows how to
launch one application from another.

TestQD and TestVM These sample applications
show how to use Gestalt to get information on
system features.

UniHider This sample application, in both MPW
and Turbo Pascal versions, shows how to hide one
editText field in a dialog.

VBLThang.p InstallPersistentVBL takes a
VBLRecord and installs it in such a way in this
sample code that the VBL will get time even when
the application that installs it is switched out.

VertTest This sample application shows how to get
information from a 'vers' resource (see Technical
Note #189).

d e v e l o p Summer 1991

Thanks to Guillermo Ortiz for collecting and making sense of
these snippets and to Mark Baumwell, Rich Collyer, C. K. Haun,
Dave “The Rad” Radcliffe, Kent Sandvik, Paul Snively, and Scott
“Zz” Zimmerman for submitting them.•

106

INDEX Summer 1991

107

A
ACOT 91–92
ADB (Apple Desktop Bus) 103
AddMediaSample 26, 28
AddMediaSampleReference 28
AddMovieResource 27
AEDisposeDesc 56
AEProcessAppleEvent 54, 59
AEResumeTheCurrentEvent 56
AESuspendTheCurrentEvent 56
antialiased text, TrueType and

40–46
Append2hdlg procedure 48
AppendDITL procedure 48, 50
Apple Desktop Bus (ADB) 103
Apple Event Manager

Futures Package and 56, 63
TESample program and 59
threads and futures and 53,

54
Apple’s Classroom of Tomorrow

91–92
Apple II Q & A 101–103
Ask function 52–54, 56, 59, 63
auto objects 80–81

B
background processes,

Communications Tools and 98
Balloon Help

adding to Page Setup/Print
dialogs 48–50

string bug 98–99
$BC files 101
BeginMediaEdits 25, 28
bitmapped fonts 30–32
BlockUntilReal 63
BoxText routine 32–37

C
C++

deriving objects from
PascalObject classes
66–85

exceptions during object
construction using 70–73

members and autos and
77–81

object storage classes 68–70
catch macro 74
CDSequenceEnd 26
Chesley, Harry R. 86
classes

handle-based 77–80
object storage 68–70
PascalObject 66–85
wrapper 77–80

ClearHandleObject 73
CloseMovieFile 19
code snippets, Developer Essentials

disc 105–106
See also sample code

color maps 100
color palettes 100
Communications Tools 98
ComponentDescription 17
Component Manager 8, 11–12
ComponentResource 12
compression. See Image

Compression Manager
CompressSequenceBegin 25
CompressSequenceFrame 26
constructors

exceptions in 72–73
object 80
using with PascalObjects

73–77
CopyBits 38, 41–42
CopyDeepMask 40, 41
CPlusTESample 74
CreateMovieFile 24
CreateTextMask 40–41, 42

D
data, self-referenced 10
deadlock 51
decompression. See Image

Compression Manager
DemoTextDump snippets 105

For a cumulative index to all issues
of develop and a complete source code
listing, see the Developer Essentials disc.•

INDEX

destructors 81
using with PascalObject

73–77
virtual 75, 81

develop, Developer Essentials disc
104

Developer Essentials CD-ROM disc
104–106

DialogBits snippet 105
differencing of frames 12
DoubleBack snippet 105
drivers

drive numbers 94
LaserWriter driver 93–94

dynamic object construction, C++
66–85

E
_Eject call 94
EndMediaEdits 26–28
EndThread 56
EnterMovies 17, 23
exception handling, C++ objects

66–85
ExitMovies 17

F
FastRubberBandText routine 38
ficycle snippet 105
file system cache 101–102
file system optimizer 101–102
FindNextComponent 18
FindSysFolder snippet 105
flattened movies 15
FlattenMovie 15, 16
font files 93
Font Manager, TrueType and 30
fonts

bitmapped 30–32
outline 30–47
PostScript 99–100
TrueType 30, 97

FreqForEverChange snippet 105
FSMakeFSSpec 28
FSSpec 18, 24, 28

futures 51–65
future of 64–65
sample code 54–63

Futures Package 51–65

G
GC card 97
GDevVideo snippet 105
GetCompressionSize 25
GetCompressionTime 25
GetFontInfo 35
GetMoviePublicMovie 15
GetTextBounds 34
GetTextRect 34
Gough, Michael 51
Greenspon, Michael C. 66–67
GS/OS

file sytem cache 101–102
SCSI partitions and 103

GWorlds
addressing mode and 97
FastRubberBandText routine

and 38
“Hello, World” program and

40–41, 42
SimpleInMovie sample code

and 19–21, 23
SimpleOutMovies sample

code and 25, 26

H
handle-based classes 77–80
heap-based objects 69
“Hello, World” program 40–46
help

Balloon Help 48–50, 98–99
Finder Help 98–99

Heninger, Andy 74
human interface, QuickTime and

29
Human Interface Notes and Stack,

Developer Essentials disc 104
HyperCard, Developer Essentials

disc 105

I
Image Compression Manager 8,

12–14
InitCM, Communications Tools

and 98
InitFutures 63
INITs, Communications Tools

and 98
InitThreads 65
InsertTrackMedia 26–28
instance of a component 18
International System Software,

Developer Essentials disc 105
interprocess communication

51–65
InvertedText snippet 105
IPC 51–65
is32BitCompatible bit 96
IsFuture function 53, 63

J
Johnson, Dave 91

K
KeepMeAround snippet 105
keyboards, multiple, on Apple II

103
key frame 26

L
LaserWriter driver 93–94
LetThreadsDream 65

M
MacApp

deriving C++ objects from
PascalObject classes
66–85

exceptions during object
construction using 70–73

Macintosh Q & A 93–100
Macintosh Technical Notes Stack,

Developer Essentials disc 104
macros, exception-handling 74

d e v e l o p Summer 1991

108

MakeITable snippet 105
MakePublicMovie 15
MCIsPlayerEvent 23
MCNewAttachedController 20,

21
media 9
media data reference 24
member object constructors 80
member objects 70, 77–81
Memory Manager INIT 95–96
MMInit 95–96
MOVE_INFO 102
MovieBox 20
movie box 19
movie display clip region 20
MovieDisplayClipRgn 20
movies 8

creating 23–29
flattened 15
playable 15
playing back 15–23
public 15

MovieSrcBoundsRgn 19
MovieSrcClipRgn 19
MoviesTask 21, 23
Movie Toolbox 8–11

SimpleInMovie sample code
and 16, 17, 19, 20

SimpleOutMovies sample
code and 23–25, 27

MPW, forward references and 93
MultiHider snippet 106
MultiPlay snippet 106
multiple keyboards, Apple II 103

N
NewAlias 28
NewControl2 101
NewDataRef 28
NewMovie 24
NewMovieFromFile 19
NewMovieTrack 27
new statement (C++) 67
New statement (Pascal) 67
NewTrackMedia 24, 27

O
object construction

dynamic 66–85
exceptions during 70–73

object constructors 80
Object Pascal

C++ versus 66–85
members and autos and

77–81
using constructors and

destructors with
PascalObjects in 73–77

objects
auto 80–81
C++ 66–85
forward references in MPW

93
heap-based 69
member 77–81
new statement and 67
stack-based 69

object storage classes, C++ 68–70
OpenComponent 18, 20
OpenMovieFile 18, 19, 24
OpenResFile crash 93
Ortiz, Guillermo A. 7–8
Othmer, Konstantin 30
outline fonts 30

bitmapped fonts versus
30–32

TrueType and 30–47
OutlineMetrics 35

P
Page Setup dialog

adding Balloon Help to
48–50

Envelope page size 93–94
page sizes 93–94
Palette Animation snippets 106
palettes, color 100
partitions, Apple II 103
Pascal. See Object Pascal
PascalObject classes, deriving C++

objects from 66–85

PascalObjects
using constructors and

destructors with 73–77
virtual destructors and 75,

81
PBAllocate snippet 106
playable movies 15
poster 9
PostScript fonts, styles 99–100
PPC Browser dialog, TESample

program and 54, 55
preview of a movie 10
Print dialog, adding Balloon Help

to 48–50
“Print Hints From Luke & Zz”

(Zimmerman) 48–50
Printing Manager, Balloon Help

and 48
public movies 15

Q
Q & A

Apple II 101–103
Macintosh 93–100

Q & A Stack, Developer Essentials
disc 104

“QuickTime 1.0: ‘You Oughta Be
in Pictures’” (Ortiz) 7–29

QuickTime 7–29
components of 8–14
human interface 29
sample code 15–29

R
ranges, active 94–95
Reed, Mike 30
resources, growing on Apple II

102–103
rubberbanding 37
Rundgren, Todd 92

S
sample code

C++ 82–84
Developer Essentials disc 104

INDEX Summer 1991

109

futures 54–63
QuickTime 15–29
See also code snippets

SampleSndPlay snippet 106
“Scoring Points With TrueType”

(Othmer and Reed) 30–47
SCSIInquiry snippet 106
SCSI partitions, Apple II 103
self-referenced data, QuickTime

10
SetCSequenceQuality 26
SetLineWidth PicComment 97
SetMainThread 65
SetMovieActive 21
SetPDiMC snippet 106
SetResLoad trick 48–50
SFGetFile 28
SFReply 28
shared files, Macintosh 94–95
Shebanow, Andy 74
ShowBalloon XFCN snippet 106
SimpleInMovie sample code

15–23
SimpleOutMovies sample code

23–29
single-fork files 16
SlowRubberBandText routine

37–40
snippets, Developer Essentials disc

105–106
sound. See QuickTime
SpInside Macintosh, Developer

Essentials disc 104
stack-based objects 69
Standard File package, adding

Balloon Help to Page
Setup/Print dialogs and 48

standard movie controller 17
StartMovie 21
styles, PostScript 99–100
StyleWriter, SetLineWidth

PicComment and 97
SubLaunch snippet 106
“Subspace Manager in System 7.0,

The” (Chesley) 86–90

System 6.0.7
SimpleOutMovies sample

code and 28
TrueType and 30, 97

System 7.0
adding Balloon Help to Page

Setup/Print dialogs and
48

Apple events and 56
“Hello, World” program and

40
SimpleOutMovies sample

code and 28
TrueType and 30

System Loader, Apple II 101
system service calls, Apple IIGS

102
system software, Developer

Essentials disc 105

T
Technical Notes, Developer

Essentials disc 104
Technical Notes Stack, Developer

Essentials disc 104
TESample program, threads and

futures and 54–63
TESetText 101
TestQD snippet 106
TestVM snippet 106
text

creating patterned, anti-
aliased using TrueType
40–46

resizing interactively using
TrueType 37–40

scaling to fit a rectangle
using TrueType 32–37

TrueType and 30–47
TextEdit field, Apple II 101
Thing Manager. See Component

Manager
“Threaded Communications With

Futures” (Gough) 51–65
threads 51–65

Threads Package 51–65
TimeScale 24
track edit list 9
tracks of a movie 8
TrueType 30–47

creating patterned, anti-
aliased text using 40–46

extracting character outline
data 96

new calls 33
resizing text interactively

using 37–40
scaling text to fit a rectangle

using 32–37
under System 6.0.7 97

try macro 74

U
UniHider snippet 106
“Using C++ Objects in a World of

Exceptions” (Greenspon)
66–85

U.S. System Software, Developer
Essentials disc 105

V
VBLThang.p snippet 106
VertTest snippet 106
“Veteran Neophyte, The”

(Johnson) 91–92
video. See QuickTime
virtual destructors, PascalObjects

and 75, 81

W, X
Wake 65
wrapper classes 77–80

Y
Yield 58

Z
Zimmerman, Scott 48–50

d e v e l o p Summer 1991

110

