
d e v e l o p
T h e A p p l e T e c h n i c a l J o u r n a l

CURVES AHEAD:
WORKING WITH
CURVES IN
QUICKDRAW

VALIDATING DATE
AND TIME ENTRY IN
MACAPP

MACINTOSH
DEBUGGING: A
WEIRD JOURNEY
INTO THE BELLY OF
THE BEAST

MACINTOSH HYBRID
APPLICATIONS FOR
A/UX

COPYMASK,
COPYDEEPMASK,
AND LASERWRITER
DRIVER 7.0

GWORLDS AND
NUBUS MEMORY

MACINTOSH Q & A

APPLE II Q & A

I ssue 8 Autumn 1991

E D I T O R I A L S T A F F

Editor-in-Cheek Caroline Rose

Spirited Guide Louella Pizzuti

Technical Buckstopper Dave Johnson

Review Board Pete “Luke” Alexander, Chris

Derossi, C. K. Haun, Larry Rosenstein, Andy

Shebanow, and Gregg Williams

Managing Editor Monica Meffert

Contributing Editors Lorraine Anderson,

Geta Carlson, Toni Haskell, Judy Helfand,

Rilla Reynolds, and Carol Westberg

Indexer Ira Kleinberg

Manager, Developer Support Systems and

Communications David Krathwohl

A R T & P R O D U C T I O N

Production Manager Hartley Lesser

Art Director Diane Wilcox

Technical Illustration Don Donoughe

Formatting Forbes Mill Press

Printing Wolfer Printing Company, Inc.

Film Preparation Aptos Post, Inc.

Production PrePress Assembly

Photography Sharon Beals, Ralph Portillo,

and Steven C. Johnson

Circulation Management David Wilson

Online Production Cassi Carpenter

d e v e l o p, The Apple Technical
Journal, is a quarterly publication of
the Developer Support Systems and
Communications group.

This sinuous cover artwork was made
possible by quadratic Bézier curves and
TrueType, and was created by Rucker-
Huggins (initial studies by Corinne
Okada; final arrangement by Cleo
Huggins) using Adobe Illustrator 3.0.

CONTENTS Autumn 1991

1
© 1991 Apple Computer, Inc. All rights reserved.

Apple, the Apple logo, APDA, AppleCD SC, Apple IIGS, AppleLink, AppleShare, AppleTalk, A/UX, LaserWriter,
MacApp, Macintosh, MPW, MultiFinder, and SADE are trademarks of Apple Computer, Inc., registered in the U.S.
and other countries. Balloon Help, develop, Finder, QuickDraw, QuickTime, ResEdit, and TrueType are trademarks of
Apple Computer, Inc. HyperCard and HyperTalk are registered trademarks of Apple Computer, Inc. licensed to Claris
Corporation. Adobe Illustrator and PostScript are registered trademarks of Adobe Systems Incorporated. MacDraw is
a registered trademark of Claris Corporation. GRiDPAD is a registered trademark of GRiD Systems Corp. TMON and
TMON Professional are trademarks of ICOM Simulations, Inc. Windows is a trademark of Microsoft Corp. THINK C
and THINK Pascal are trademarks of Symantec Corp. NuBus is a trademark of Texas Instruments. UNIX is a registered
trademark of UNIX System Laboratories.

On-line reading versus on-line reference 2

Your letters to us. Keep ’em coming! 4

Curves Ahead: Working With Curves in QuickDraw by Mike Reed and
Konstantin Othmer All about quadratic Bézier curves on the Macintosh,
including using the curves from TrueType fonts. 7

Validating Date and Time Entry in MacApp by James Plamondon
Here’s a new MacApp class that provides robust and flexible entry validation. 28

Macintosh Debugging: A Weird Journey Into the Belly of the Beast
by Bo3b Johnson and Fred Huxham This article presents some very useful
debugging techniques that every Macintosh developer needs to know about. 43

Macintosh Hybrid Applications for A/UX by John Morley This is an
introduction to writing Macintosh applications meant to run under A/UX,
explaining the basics and pointing out some potential gotchas. 64

Print Hints From Luke & Zz: CopyMask, CopyDeepMask, and
LaserWriter Driver 7.0 by Pete “Luke” Alexander How do you print
graphics that use CopyMask and CopyDeepMask with LaserWriter driver 7.0? Read
this column to find out. 41

The Veteran Neophyte: Don’t Fence Me In by Dave Johnson Dave
waxes philosophical about wirelessness, collaboration, communication, and buffalo
heels. 79

Be Our Guest: GWorlds and NuBus Memory by Forrest Tanaka and
Paul Snively Taking advantage of NuBus memory for off-screen graphics is tricky.
Here are some tips on how to do it in a friendly, compatible way. 95

Answers to your product development questions.
Macintosh Q & A 82
Apple II Q & A 92

99

The Developer CD Series Disc Volume X accompanies this issue of develop.
Along with the code described in this issue, it contains all back issues of develop and
other software and documentation that will make your programming life easier and
more interesting.

E D I T O R I A L

L E T T E R S

A R T I C L E S

C O L U M N S

Q & A

I N D E X

Dear Readers,

I’d like to bring up a subject that’s been on my mind lately and a matter of interest to
me—and probably to many of you—for quite some time now. It’s the subject of what
we called the “paperless office” as far back as the Seventies, when I worked in the
same group as Doug Engelbart, inventor of the mouse. I laughed to myself back then
when I’d hear predictions that in ten years or so, manuals would be obsolete. Who
needs information in any form other than electronic? Printed manuals persist, but
they’re definitely an endangered species. At Apple and many other companies like it,
the trend is toward “on-line only” dissemination of information: it uses the
technology in zippy ways, it costs less, and it saves trees. Who needs paper, anyway?

I myself don’t care if I ever see most memos, notes, reports, and similar daily jottings
in print. I prefer to file the majority of this stuff on-line rather than in my physical
file cabinets, which I mostly use to hold rice cakes and pistachio nuts. When I need a
reminder of some technical information like the meaning of a parameter or the
definition of a word, I like quick on-line access to it as much as the next person. And
Balloon Help is great when I’m wondering what a particular command or button is
for.

But when I don’t know how to do something at all, or how different pieces fit
together, I prefer to read printed documentation. I’m speaking here of the
background material that’s needed to get you launched on a particular product in a
way that will make you really know what it’s about. (Whether this information is
needed at all could be the subject of another editorial.) Call it “concepts” versus
“reference.” For me, there’s nothing like reading about concepts in a real book when
and where I want. The image that comes to mind is “curling up in front of a fire.” I’d
much sooner do that with a good novel than a technical manual, but still I like to pick
a place and time away from my computer to take in the concepts. It’s quieter and
more comfortable, especially on my eyes, and it’s a more pleasing visual and tactile
experience. I learn more that way. Later, I might want to look up some conceptual
material on-line, but for first-time reading and learning, I want hard copy.

At the last company I worked for we surveyed a lot of developers on this, and most of
them seemed to agree. We decided to divide our technical documentation along
those exact lines: concepts versus reference; concepts would always be available as a
printed manual while reference would be on-line only (or primarily, at least).

d e v e l o p Autumn 1991

CAROLINE ROSE has been writing computer
documentation ever since “peripheral storage”
meant paper tape. After a seven-year digression
into programming, she returned to writing and
joined Apple to document the inner workings of a
new computer named Macintosh. In what proved
to be another (five-year) digression, she left Apple
to launch NeXT Computer’s documentation
effort—a real learning experience. She’s thrilled

to be back at Apple among old friends and new.
Caroline loves to read, swim, hike, travel, dance,
sing, and spend time with her best friend, Cleo
(see photo). This summer she got her feet wet
(literally) on a backpacking trip in Utah, through a
tributary of the Escalante River and some pretty
spectacular canyons. Her new wilderness goals
are hiking up Half Dome and rafting the
Colorado.•

2

CAROLINE ROSE

This all ties in with the fact that Apple Associates and Partners no longer receive a
printed copy of develop as part of their regular mailing; they have to subscribe to
develop to receive it in print. The mailing has been simplified to be just a CD-ROM
disc and a 16-page publication in newspaper format that points to things on the disc.
Those developers who don’t want a lot of paper don’t have to deal with it; those who
do can order it. So Associates and Partners will cast their vote for paper develop by
subscribing to it. (Letters from all of you expressing your opinions—especially when
they agree with mine—are of course more than welcome.)

Speaking of electronic media, those of you who were receiving develop with its CD-
ROM disc bound into it will notice that the disc corresponding to this issue has been
packaged separately in its own case (made of partially recycled fiberboard and
plastic). This should put a stop to the problem of mangled discs. Also, the disc is no
longer the Developer Essentials disc, but the Developer CD Series disc, the same disc
that Apple Associates and Partners receive. We hope this will make life easier for us
and less confusing for you (not to mention that you’ll get more goodies on the disc
than before!).

I’ll end with a vaguely related trivia question: What word was used instead of “click”
to describe the action of pressing a button on that first mouse? If you’ve got any
good trivia questions of your own, send them along to us. We need all the help we
can get.

EDITORIAL Autumn 1991

3
SUBSCRIPTION INFORMATION
Use the order form on the last page of this issue
to subscribe to develop. Please address all
subscription-related inquiries to develop, Apple
Computer, Inc., P.O. Box 531, Mt. Morris, IL
61054 (or AppleLink DEV.SUBS).•

BACK ISSUES
For information about back issues of develop and
how to obtain them, see the reverse of the order
form on the last page of this issue. Back issues
are also on the Developer CD Series disc.•

Caroline Rose
Editor

THREADS PACKAGING
I’m impressed with threads and futures
and I think they’ll be of real use to me
in a commercial product I’m working
on. I have a simple problem. I don’t
think we can ship your INIT with our
application. Doing so constitutes an
unnecessary invitation to support
hassles (as well as a just plain
unaesthetic package, in my opinion). Is
there any chance that you could
repackage the current threads and
futures stuff as straight libraries (in
THINK C form, please)?

—Richard Reich

The latest version of threads and futures,
which is on this issue’s CD, has been
augmented so that you have your choice of
how to package the code. Just use the INIT
as is, or copy the code resources into your
application. Let me know if you need any
more help. My number is (408)974-0355.

—Michael Gough

THREADS IN A BLACK BOX
I was really pleased to see the article on
threads in Issue 6 of develop. There have
been several instances in my
programming experience on the
Macintosh when I had some long
involved processing that was not easily
restructured to pass control to the
interface or to other applications. The
Threads Package seems like the best
way to handle this problem that we are
likely to have without major changes in
the Macintosh OS.

However, I was disappointed to discover
that Semaphore, one of the examples
from the CD, crashes. If you click
before the program is finished, it exits

normally, but if you let it run its course,
it crashes after it’s done beeping. I hope
that a corrected version of the Threads
Package will be available on a future
develop CD.

If the source code for this package had
been provided on the disc, I would at
least have a chance of understanding the
source of the bug and correcting it.
Instead I must rely on the possibility
that a corrected version of the object
code will be provided with a future issue
of develop. We can count on Apple to
provide updates for object libraries
supplied with MPW; hence we have no
need for the source. Can we rely on the
same level of support for object libraries
without source distributed on develop
CDs?

I’ve seen develop evolve from a journal
with good articles on programming
techniques into a journal with articles
that were basically blurbs for source
code, and now into a journal with
articles that are blurbs for black boxes
provided on the CD. I still think develop
is an extremely useful resource for
Macintosh programmers. However, I
urge you to try to include source code
when you possibly can.

At any rate I am looking forward to
seeing a corrected version of the
Threads Package in a future issue of
develop—I intend to give it a try even if
it is a black box!

—Dennis C. De Mars

You’re right, the Semaphore example
crashes, and it is a bug in the Threads
Package. I guess I always clicked out early
during the final testing. Issue 7 has a
follow-up article to Threads that includes
an updated (and fixed) Threads Package.

d e v e l o p Autumn 1991

COMMENTS
We welcome timely letters to the editors,
especially from readers reacting to articles that
we publish in develop. Letters should be
addressed to Caroline Rose (or, if technical
develop-related questions, to Dave Johnson) at
Apple Computer, Inc., 20525 Mariani Avenue,
M/S 75-2B, Cupertino, CA 95014 (AppleLink:
CROSE or JOHNSON.DK). All letters should

include name and company name as well as
address and phone number. Letters may be
excerpted or edited for clarity (or to make them
say what we wish they did).•

4

LETTERS

To address your concern about develop
heading toward “black boxiness”: The
Threads Package is the only develop article
ever that hasn’t included source code. We
debated for a long time whether that was
OK, and many people expressed the same
concerns you did. We decided that Threads
was unique enough and useful enough to
justify it. The reaction has been extremely
positive, so I think we did the right thing.

I assure you that we won’t make a habit of
featuring black boxes, and that as long as
Michael Gough keeps supporting Threads,
the latest CD will contain the latest version.
Threads is not an official Apple product,
though, so use it in your application at your
own risk. It’s possible that we will be able to
publish the source code someday.

Thank you for taking the time to write!
People’s comments are the best barometer we
have for how we’re doing.

—Dave Johnson

CD SETUP (AND MORE!) ON CD
How about including on the Developer
Essentials CD-ROM a copy of the latest
version of the CD Setup disc that comes
with the AppleCD SC drive? It would
be a convenient way to get a current
version of the AppleCD SC software,
and a lot of people who are browsing
your CD have an AppleCD SC anyway.

—Kazimir C. Stusinski

The latest version of the CD Setup disc is on
this issue’s CD. Note that it’s now the
“Developer CD Series” disc, the same disc
that Apple Associates and Partners receive.
The contents of Developer Essentials was
only a subset of the Developer CD Series
disc; now you can have it all!

—Caroline Rose

EVASIVE SNIPPETS
The Snippets section of develop always
has such neat-sounding code fragments
in it . . . if only I could find them! I
always peruse the Developer CD Series
disc that arrives with each issue of
develop, but many of the snippets can’t
be found, either by my old-fashioned
hand searching or by using the
HyperCard® stack that, hopefully, really
does have a complete index of the
contents.

It’s safe to say that it seems that most
can’t be found. Assuming they are
there—somewhere—I’d like to suggest
that the code you list in the Snippets
section be included in the develop folder.
Even a directory or stack in that folder
that would point me to them would be a
terrific savings in time. Keep up the
good work!

—Chris Gibson

Snippets have had a rough time. They
didn’t make it onto the Issue 6 CD at all.
And, although they were on the Issue 7 CD,
they were not mentioned in the Contents
Catalog stack on the Developer CD Series
disc. They can be found with the DTS
sample code. That seems the most logical
place for them, since they’re not strictly a
develop thing: they come from DTS
(Developer Technical Support); we just
describe them (and we’ve decided to stop
that—they’re now described in a text file in
with the snippets). Sorry for the confusion!

—Dave Johnson

ONE UGLY DUDE
I just wanted to comment that I was
totally shocked when I saw Harry
Chesley’s picture in develop this month.

LETTERS Autumn 1991

5

“This is one ugly dude,” I thought.
Perhaps his picture was sabotaged. Or
maybe he really is a Vulcan with three
Adam’s apples!

—Dan Wood

Actually, that picture wasn’t supposed to be
printed at all. It’s top secret, the result of an
internal Apple project in the area of desktop
bioengineering.

But now that the cat’s out of the bag, I guess
I can mention that we’re expecting to ship
the product second quarter next year. It
attaches to the SCSI port of the Macintosh.
You stick one of your fingers in a hole in the
front, and it modifies your DNA. The
actual physiological changes take about a
week to materialize.

—Harry Chesley

P.S. The three Adam’s apples are a bug,
which we’re planning to fix in the next rev.

WHERE’S LOUELLA, REALLY?
I sent mail to your predecessor, Louella,
at louella@applelink.apple.com, but
your system denied knowing about her.
Any help you could give me in
addressing e-mail to her would be very
much appreciated.

—An Admirer

In Issue 7, I joked that Louella had retired
to raise flowers in Holland. Well, I was
close: she has left Apple to paint and write
until her money runs out. We’ll miss her
terribly but will remember her always as
our “Spirited Guide.” She’ll be living
wherever the living is easy (and cheap), but
letters will always get to her through this
address: 932 Rosette Court, Sunnyvale, CA
94086. Sorry, she will no longer be
electronically plugged in.

—Caroline Rose

d e v e l o p Autumn 1991

6

On the Developer CD Series disc, the code that corresponds to articles in develop is
kept up to date wherever possible. Bugs that are reported are fixed, changes are
made to maintain compatibility, and so on. The latest CD always contains the most
up-to-date versions of the code for all issues of develop, so if you’re going to use any
code, get it from the most recent CD you have—even if the article is in a past issue.

A notable change on this disc is that the QuickTime example from Issue 7 has been
updated to work with the beta release of QuickTime, and has a couple of new
features as well. Also, we’ve included the beta QuickTime extension, so you can try
the samples immediately. (Remember, this is prerelease software that cannot be
distributed or included with shipping applications.)

Another change we’ve made, to be sure we give you the latest possible information,
is to include descriptions of code “snippets” on the disc itself rather than describe
them in develop. The Snippets folder (which is in with the DTS sample code) now
includes text files that describe all of the snippets. The snippets are batched by date of
release, so you can easily tell what’s new.

UPDATES TO CODE ON THE DISC

Imagine being able to build into your application the capability to draw
freehand curves. Imagine being able to save these curves so that they
can be loaded into other programs like MacDraw or printed using the
LaserWriter. And imagine being given the key to an abundant supply
of previously defined curves to play with. Imagine no more . . . this
article reveals all.

QuickDraw is a heck of a fine drawing engine for the Macintosh, but it does have its
limitations. In particular, it supports a limited set of geometric primitives for
drawing: lines, rectangles, rounded-corner rectangles, ovals, arcs, and polygons (see
Figure 1). If you want your application to provide the capability of drawing contours
consisting of curves and straight lines, you’re out of luck.

Sure, you can use the arc primitive to draw a curve, but if you want to connect the
curve to anything, you’ve got a problem. An arc represents a segment of an ellipse
and is specified by a bounding rectangle (defining the ellipse) and start and stop
angles (see Figure 2). Because an arc is not specified by starting and ending points, it’s
hard to know the exact points where QuickDraw will begin and end drawing the arc.
Thus, the arc does not lend itself to being combined with other arcs or lines.

A more useful curve primitive would be one that describes its start and end positions
as points. The quadratic Bézier is just such a curve. Applications such as MacDraw®

use this type of curve to allow the drawing of freehand curves, and the Macintosh
itself uses this type of curve in an internal procedure to describe TrueType fonts.

In this article we give you the lowdown on the quadratic Bézier. We show the coding
and the data structures used by programs like MacDraw to draw this kind of curve,
and we show how your application can interchange data about this kind of curve with
MacDraw and with devices equipped with a PostScript® interpreter. And since the
quadratic Bézier happens to be the same curve that TrueType uses (in combination
with other shapes) to draw outline fonts, we show how to extract curve data from
TrueType fonts.

CURVES AHEAD: WORKING WITH CURVES IN QUICKDRAW Autumn 1991

7
MIKE REED AND KONSTANTIN OTHMER
have become such regular contributors to develop
that they scarcely need introduction. Still, we’ve
just discovered something new about them: they
dabble in doggerel. Consider this sample:

Late into the night, by the glow of a candle,
Two men are found working on mischief and

scandal.

Their mice are a-clicking, their keyboards in motion,
They’re working on something of mythic proportion.
We move closer in, to get a good look,
And notice they’re writing a get-rich-quick book.
We wonder what topic could hold their attention
And keep them from working on some new

invention.
Their title reveals what the work will envelop—
How to Get Rich: Just Write for develop.•

MIKE REED AND
KONSTANTIN OTHMER

CURVES AHEAD:

WORKING

WITH CURVES

IN QUICKDRAW

DRAWING CURVES AND PATHS
The quadratic Bézier has a couple of properties that make it useful as a basis for
drawing curves in QuickDraw. First, it can be rotated easily by changing just the
starting, ending, and middle points and not the underlying equation itself. Second, it
can easily be subdivided into any number of shorter curves that become flatter and
flatter, until in effect it can be drawn with a series of straight lines. Indeed, the basic
technique for drawing a curve using the existing QuickDraw primitives is by
subdividing the curve into a series of line segments. If you’re interested in the
mathematics behind this, see “Parametric Equations, Anyone?”

This section begins by showing sample C code that implements the subdivision
algorithm that produces a curve. We then move on to consider how to produce a

d e v e l o p Autumn 1991

8

Lines� Rectangles� Rounded-corner rectangles�

Polygons�Arcs�Ovals�

Lines�

Figure 1
QuickDraw’s Geometric Primitives

combination of curves and straight lines, known in the lingo as a path. Then we talk
about how to combine paths to produce shapes. Note that for a curve, as for every
geometric primitive in QuickDraw, you always have two options: you can either
frame it or fill it. We show you how to do the framing; you can do the filling using
the call FillPoly or PaintPoly.

FRAMING A CURVE
The code that implements the subdivision algorithm to produce a curve takes a value
for the number of times the curve should be subdivided before it’s drawn as straight
lines. This number can be dynamically computed based on the size of the curve and
the quality-versus-speed trade-off the application wants to make. The code uses
fixed-point coordinates to maintain high precision during the subdivisions.

To begin, let’s define a few macros to help us use fixed-point coordinates in an
integer-based graphics system.

#define FR(x) ((x) + 0x8000 >> 16)
#define ff(x) ((long)(x) << 16)
#define fmoveto(x,y) MoveTo(FR(x), FR(y))
#define flineto(x,y) LineTo(FR(x), FR(y))
#define AVE(a,b) (((a) + (b)) / 2)

FR The same as FixRound: takes a Fixed and makes it a short.
ff The reverse of FixRound: takes a short and promotes it to a Fixed.
fmoveto The same as MoveTo, but takes Fixed coordinates.
flineto The same as LineTo, but takes Fixed coordinates.
AVE Averages two numbers, either Fixed, short, or long.

CURVES AHEAD: WORKING WITH CURVES IN QUICKDRAW Autumn 1991

9
For an explanation of the Fixed data
type, see Inside Macintosh Volume I, Chapters 3
and 16.•

0°�

90°�

{�
�
�
�
�
�
}�

Rect r;�
�
SetRect(&r, 0, 0, 144, 144);�
FrameArc(&r, 0, 90);�
PenPat(gray);�
FrameRect(&r); �

Figure 2
How an Arc Is Specified in QuickDraw

d e v e l o p Autumn 1991

10

Though you can draw curves without understanding the
mathematics behind the operation, some people find this
kind of thing interesting. This explanation is for those
people (you know who you are).

A quadratic Bézier (or parabola) can be defined by the
parametric equation

f(t) = a(1 – t)2 + 2bt(1 – t) + ct2

where t is a scalar and a, b, and c are points.

This parametric formulation has the advantage of being
rotationally independent: since t is the independent
variable, and not x or y, there is no bias for curves that
are symmetric about the x- or y-axis. Thus, to rotate the
curve, you only need to rotate a, b, and c into their new
positions, while the equation for the curve stays the same.

To better understand the equation, take a look at its
geometric representation in Figure 3. You’ll note there that
as the curve is drawn from point a to point c, t varies from
0 to 1. The curve at a is tangential to the line ab, and the
curve at c is tangential to the line bc. Its maximum
displacement from the line that could be drawn from a to
c is reached at point q, where t is 0.5. In addition, the
curve at q is parallel to the (imagined) line ac.

Perhaps the most useful property of the curve in this form
is the easy way it can be decomposed into a pair of
smaller curves, each of the same form. This is called
subdivision and is the basis for drawing curves in
QuickDraw.

Suppose we subdivide the curve at point q, as shown in
Figure 4. The point q is

q = f (0.5) = (a + 2b + c) / 4

The tangent (that is, the first derivative) of the curve at q is
parallel to the line ac.

f ' (t) = –2a(1 – t) + 2b(1 – 2t) + 2ct

f'(0.5) = c – a

The line from the point b' = (a + b) / 2 to q is tangential
to the curve at q.

q – b' =

(a + 2b + c) / 4 – (a + b) / 2 =

(a + 2b + c – 2a – 2b) / 4 =

(c – a) / 4

By symmetry, the same holds for b'' = (b + c) / 2.

Thus, the formulas for the two curves that make up the left
and right halves of the original curve are as follows:

Left: a' = a

b' = (a + b) / 2

c' = (a + 2b + c) / 4

Right: a'' = (a + 2b + c) / 4

b'' = (b + c) / 2

c'' = c

The equations for the new points are especially nice,
since the arithmetic can be performed with only shifts and
adds, making it very efficient.

Notice in Figure 4 that each of the resulting smaller curves
is flatter than the original curve, by a factor of 4. This
means that the distance from the midpoint of the curve to
the midpoint of the straight line drawn from the start point
to the endpoint is reduced by 4. Thus, if the curve is
subdivided enough times, drawing the curve will be
equivalent to drawing a line from the start point to the
endpoint for each of the little curves. This is the basis for
drawing the curve in QuickDraw.

PARAMETRIC EQUATIONS, ANYONE?

To represent fixed-point coordinates, we define a struct called point. Note that this is
similar to QuickDraw’s Point, but uses Fixed numbers instead of integers.

typedef struct {
Fixed x;
Fixed y;

} point;

To represent a curve, we need three points: a start point, a control point, and an
endpoint. (These correspond to a, b, and c in Figure 3.)

typedef struct {
point start;
point control;
point end;

} curve;

The function FrameCurve (below) draws a quadratic Bézier using subdivision. If the
level for the FrameCurve routine is 0, a LineTo (using flineto) operation is
performed; otherwise, the curve is subdivided and FrameCurve is called recursively,
once for the left half of the curve and once for the right. FrameCurve assumes the
caller has already called fmoveto on the start point of the curve. The second routine,
ExampleCurve, calls FrameCurve requesting four levels of subdividing. Thus, the
final curve consists of 2^4, or 16, lines. It’s shown in Figure 5.

CURVES AHEAD: WORKING WITH CURVES IN QUICKDRAW Autumn 1991

11

tangents�

t = 0.5�
t = 1�

t = 0�a�

c�q�

b�

tangents�

b�

a = a'�

c = c"�
q = c' = a"�

b"�

b'�

Figure 3
Geometric Representation of Our Bézier

Figure 4
Our Bézier, Subdivided

void FrameCurve(curve *cur, int level)
{

if (level)
{ curve left, right;

left.start = cur->start;
left.control.x = AVE(cur->start.x, cur->control.x);
left.control.y = AVE(cur->start.y, cur->control.y);
right.control.x = AVE(cur->control.x, cur->end.x);
right.control.y = AVE(cur->control.y, cur->end.y);
left.end.x = right.start.x = AVE(left.control.x,

right.control.x);
left.end.y = right.start.y = AVE(left.control.y,

right.control.y);
right.end = cur->end;

FrameCurve(&left, level-1);
FrameCurve(&right, level-1);

}
else

flineto(cur->end.x, cur->end.y);
}

d e v e l o p Autumn 1991

12

(0,0)� (100,0)�

(100,100)�

Figure 5
The Curve Drawn by ExampleCurve

void ExampleCurve()
{

static curve myCurve = {ff(0), ff(0), ff(100), ff(100), ff(100),
ff(0)};

fmoveto(myCurve.start.x, myCurve.start.y);
FrameCurve(&myCurve, 4);

}

FRAMING A PATH
Drawing contours such as font outlines requires drawing a combination of straight
lines and curves. Such a combination is known as a path. A path is defined by the
following data structure:

typedef struct {
long vectors; /* The number of points in the path. */
long controlBits[anyNumber];
point vector[anyNumber]; /* The points. */

} path;

A path is similar to a polygon except that it has a set of control bits that determine
whether each point is on or off the curve. There’s one control bit for each point,
beginning with the most significant bit for point 0. If the bit is set, the corresponding
point is an off-curve point and therefore the control point for a curve. If the bit is
clear, the corresponding point is an on-curve point and therefore an endpoint for
either a line segment or a curve segment. Two consecutive on-curve points form a
straight line.

Here’s a routine that takes an index and the control bits and returns TRUE (nonzero)
if the point is on the curve:

Boolean OnCurve(long *bits, long index)
{

bits += index >> 5; /* Skip to the appropriate long. */
index &= 31; /* Mask to get index into current long. */
return (*bits & (0x80000000 >> index)) == 0;

}

Two consecutive off-curve points imply an on-curve point at their midpoint, as shown
in Figure 6. This path consists of two curve segments. The first is defined by a, b,
(b + c) / 2 and the second by (b + c) / 2, c, d.

This ability to store a series of off-curve points allows a path to describe an arbitrarily
complex shape without having to store unneeded intermediate points. However, this
is just a storage nicety. When we draw the path, we need it broken down into a series

CURVES AHEAD: WORKING WITH CURVES IN QUICKDRAW Autumn 1991

13

of line and curve segments. This is done with an iterator function called
NextPathSegment. It’s called continuously, each time filling a record that is either a
line segment or a curve segment, until it returns FALSE.

typedef struct {
int isLine;
curve c;

/* Private. */
long index;
long ep;
long *bits;
point *p;

} pathWalker;

void InitPathWalker(pathWalker *w, path *aPath)
{

w->index = 0;
w->ep = aPath->vectors - 1;
w->bits = aPath->controlBits;
/* Skip past the control bits to point to the first point. */
w->p = (point *)(w->bits + (aPath->vectors + 31 >> 5));

}

int NextPathSegment(pathWalker *w)
{

long prevIndex, nextIndex;

d e v e l o p Autumn 1991

14

b�

c�

a�

e� d�

b + c�

2�

Figure 6
On-Curve Point Implied by Two Off-Curve Points

if (w->index == 0) /* 0 means this is the first segment. */
{ if (OnCurve(w->bits, w->ep))

w->c.start = w->p[w->ep];
else
{ if (OnCurve(w->bits,0))

{ w->c.start = w->p[0];
w->index = 1;

}
else /* Start at an implied on-curve point. */
{ w->c.start.x = AVE(w->p[0].x, w->p[w->ep].x);

w->c.start.y = AVE(w->p[0].y, w->p[w->ep].y);
}

}
}
else /* Start where we previously left off. */

w->c.start = w->c.end;

NEXT_SEGMENT:
/* Compute the point index before and after the current one.
* This wraps around, since we assume the contour is closed. */
prevIndex = w->index == 0 ? w->ep : w->index - 1;
nextIndex = w->index == w->ep ? 0 : w->index + 1;

if (OnCurve(w->bits, w->index))
{ if (OnCurve(w->bits, prevIndex))

{ w->isLine = true; /* This means we have a line. */
w->c.end = w->p[w->index];

}
else if (w->index++ <= w->ep)

goto NEXT_SEGMENT;
}
else
{ w->isLine = false; /* This means we have a curve. */

w->c.control = w->p[w->index];
if (OnCurve(w->bits, nextIndex))

w->c.end = w->p[nextIndex];
else
{ w->c.end.x = AVE(w->p[w->index].x, w->p[nextIndex].x);

w->c.end.y = AVE(w->p[w->index].y, w->p[nextIndex].y);
}

}

return w->index++ <= w->ep; /* Return TRUE if there are still
* more segments. */

}

CURVES AHEAD: WORKING WITH CURVES IN QUICKDRAW Autumn 1991

15

The FramePath routine uses a pathWalker to traverse the path and draw it as it goes.

path *NextPath(path *aPath)
{

return (path *)((long *)aPath + 1 + (aPath->vectors + 31 >> 5) +
aPath->vectors * 2);

}

path *FramePath(path *cont)
{

pathWalker walker;

InitPathWalker(&walker, cont);
/* The first segment is special, since it calls fmoveto. */
if (NextPathSegment(&walker))
{ fmoveto(walker.c.start.x, walker.c.start.y);

if (walker.isLine)
flineto(walker.c.end.x, walker.c.end.y);

else
FrameCurve(&walker.c, kCurveLimit);

}
/* Keep looping until we run out of segments. */
while (NextPathSegment(&walker))

if (walker.isLine)
flineto(walker.c.end.x, walker.c.end.y);

else
FrameCurve(&walker.c, kCurveLimit);

/* Return the next path, used if this path is one of several within
* a series of paths. */
return NextPath(cont);

}

Now we can draw the path shown in Figure 6 that demonstrates consecutive off-
curve points.

void ExamplePath()
{

long myPath[] = {
5, /* Five points. */
0x60000000, /* The second and third are off-curve points. */
0,0,ff(10),0,ff(20),ff(10),ff(20),ff(20),0,ff(20) /* x,y data */

};

FramePath((path *)myPath);
}

d e v e l o p Autumn 1991

16

FRAMING A SHAPE MADE OF SEVERAL PATHS
To describe a shape that contains several disjoint paths (such as an outline letter o), we
use a simple data structure that’s just a composite of several path structures:

typedef struct{
long contours;
path contour[anyNumber];

} paths;

Drawing such a shape (called in the vernacular a paths) is straightforward:

void FramePaths(paths *aPath)
{

long ctr = aPath->contours;
path *cont = aPath->contour;

while (ctr--)
cont = FramePath(cont);

}

The following code draws the paths shown in Figure 7.

void ExamplePaths()
{

long myPaths[] = {
5, /* Five contours. */
3, 0xE0000000, 0, ff(16), 0, ff(8), ff(14), ff(12),
3, 0xE0000000, ff(8), 0, ff(16), 0, ff(12), ff(14),
3, 0xE0000000, ff(24), ff(8), ff(24), ff(16), ff(10), ff(12),
3, 0xE0000000, ff(16), ff(24), ff(8), ff(24), ff(12), ff(10),
16, 0x11110000,

ff(8), 0, ff(12), ff(4), ff(16), 0, ff(16), ff(8),
ff(24), ff(8), ff(20), ff(12), ff(24), ff(16), ff(16), ff(16),
ff(16), ff(24), ff(12), ff(20), ff(8), ff(24), ff(8), ff(16),
0, ff(16), ff(4), ff(12), 0, ff(8), ff(8), ff(8)

};

FramePaths((paths *)myPaths);
}

SAVING PATHS IN PICTS
Now that you know how to give your application the capability to draw all sorts of
curved shapes on the screen or on a QuickDraw printer, you might wonder whether
you can cut and paste these shapes into other applications or send them to a

CURVES AHEAD: WORKING WITH CURVES IN QUICKDRAW Autumn 1991

17

PostScript printer. The answer is yes, thanks to picture comments. Picture comments
encapsulate non-QuickDraw graphics data that other “smarter-than-QuickDraw”
applications can interpret.

Fortunately, there’s a picture comment that takes quadratic Bézier information
directly: PolySmooth. When this comment is encountered in a PICT it indicates that
the endpoints of the following lines are control points of a quadratic Bézier.
Unfortunately, the comment assumes that all the control points lie off the curve. This
is a major drawback of the PolySmooth comment and forces us to break a path down
into curves and lines, rather than allowing us to put an entire path in at once.

When a picture interpreter (such as the LaserWriter driver) sees a PolySmooth
picture comment, it interprets the following points (put in the picture with a LineTo
opcode) as off-curve control points. Since DrawPicture ignores picture comments
completely, the clipping rectangle is set to empty so that no drawing will occur. The
picture interpreter now has the control points and can render the curve however it
sees fit.

To save a path in a picture, we start with the PolyBegin picture comment. This
comment indicates that a special polygon follows. If the path is closed, we add the
picPlyClo comment. Then we set the clipping to empty so that DrawPicture will not

d e v e l o p Autumn 1991

For more information about picture
comments, see Technical Note #91,
“Optimizing for the LaserWriter—Picture
Comments.” This tech note explains how picture
comments work and documents a number of
standard picture comments supported by the
LaserWriter printer driver.•

18

Figure 7
A Shape Made of Several Paths

render the following data. Next we add the PolySmooth comment, followed by the
control points.

When the whole polygon is in the picture, we restore the clipping to its previous state
and add the PolyIgnore picture comment. Anyone reading picture comments will
know to ignore the following QuickDraw polygon. DrawPicture, which ignores all
picture comments and skips over the smooth polygon since the lines are all clipped
out, will draw the polygon just as it should.

Thus, we have something like the following (where an asterisk indicates a picture
comment):

Save the current clip
*PolyBegin
Set the clip to the empty rectangle to turn off drawing
*PolySmooth
Record the PostScript version of the curves (just the control points)
*PolyIgnore
Restore the original clip to turn drawing back on
Record the QuickDraw version of the curves (subdivided into short lines)
*PolyEnd

Since the PolySmooth picture comment allows only off-curve points, it’s necessary to
break the path down into segments. This is done by the AddPathsToPict routine,
which calls AddSegmentToPict for each path fragment (either a single quadratic
Bézier or a line). AddSegmentToPict copies two sets of points into the PICT, one
that contains the actual control points of the curve or line segment (for PostScript
printing or pasting into MacDraw) and another that is the QuickDraw rendering of
the curve or line.

In AddSegmentToPict (below), cur is the current segment to be added; isLine is a
Boolean identifying whether the segment is a curve or a line segment; and delta
specifies an amount to offset the data when recording the PostScript version, to
account for the difference between PostScript’s centered pen and QuickDraw’s upper
left pen.

void AddSegmentToPict(curve *cur, point *delta, int isLine)
{

/* Real programs check errors. */
Handle verbHdl = NewHandle(1);
RgnHandle origClip = NewRgn();
Rect emptyRect = {0, 0, 0, 0};

CURVES AHEAD: WORKING WITH CURVES IN QUICKDRAW Autumn 1991

19

**verbHdl = kPolyFrame;
GetClip(origClip);

PicComment(POLYBEGIN, 0, 0);
ClipRect(&emptyRect); /* This turns drawing off. */
PicComment(POLYSMOOTH, 2, verbHdl);

/* Record the endpoints for PostScript. */
fmoveto(cur->start.x + delta->x, cur->start.y + delta->y);
if (isLine)

flineto(cur->end.x + delta->x, cur->end.y + delta->y);
else

flineto(cur->control.x + delta->x, cur->control.y + delta->y);
flineto(cur->end.x + delta->x, cur->end.y + delta->y);

PicComment(POLYIGNORE, 0, 0);
SetClip(origClip); /* This turns drawing back on. */

/* Record the lines for QuickDraw. */
fmoveto(cur->start.x, cur->start.y);
if (isLine)

flineto(cur->end.x, cur->end.y);
else

FrameCurve(cur, kCurveLimit);
PicComment(POLYEND, 0, 0);

DisposeRgn(origClip);
DisposHandle(verbHdl);

}

AddPathsToPict is relatively simple. It walks through each path, and each segment
within each path, and records the segments by calling AddSegmentToPict.

AddPathsToPict(paths *myPaths)
{

point penDelta;
long i;
path *cont;

/* Compute half the pen's thickness as a delta, since PostScript's
* pen is centered and QuickDraw's hangs to the right and down. */
penDelta.x = ff(thePort->pnSize.h) / 2;
penDelta.y = ff(thePort->pnSize.v) / 2;

/* Record the curve data. */
cont = myPaths->contour;

d e v e l o p Autumn 1991

20

for (i = 0; i < myPaths->contours; i++)
{ pathWalker walker;

/* This loop looks a lot like FramePath. */
InitPathWalker(&walker, cont);
while (NextPathSegment(&walker))

AddSegmentToPict(&walker.c, &penDelta, walker.isLine);
cont = NextPath(cont);

}
}

A word about rounding: We’ve kept all our data in Fixed, even during the subdivision
process, up until calling LineTo; still, when we record the data into a PICT, we’re
forced to throw away information since the PICT records only integer coordinates.
The upshot of this is that a given series of paths may draw much better in your
application than when it’s been put into a PICT and pasted into another application.

EXTRACTING CURVES FROM TRUETYPE
Because TrueType uses the quadratic Bézier as its curve primitive, as mentioned
earlier, the outlines in a TrueType font represent a rich source of curve data for
programmers. In fact, a program demonstrated at Apple’s Worldwide Developers
Conference in May of this year uses TrueType fonts as a basis for turning text typed
by the user into outlines that can be rotated, filled, stretched and shrunk, and
transformed in other amusing ways. All it takes to produce such a program is to
convert TrueType data from its native storage structure into a paths data structure.
We show you how to do that here, and then discuss the sample program you’ll find
on the Developer CD Series disc that draws outlines extracted from TrueType fonts.

CONVERTING THE DATA
For space reasons, the data for TrueType outlines is not stored in a paths data
structure but instead is compressed as byte deltas. Code provided on this issue’s
Developer CD Series disc fills out a glyph outline data structure given a TrueType font
and a glyph ID. The glyph outline data structure looks like this:

typedef struct {
long contourCount;
long pointCount;
point origin;
point advance;
short **endPoints; /* [contourCount] */
Byte **onCurve; /* [pointCount] */
Fixed **x; /* [pointCount] */
Fixed **y; /* [pointCount] */

} GlyphOutline;

CURVES AHEAD: WORKING WITH CURVES IN QUICKDRAW Autumn 1991

21
Complete information on the TrueType
format is provided in The TrueType Font Format
Specification, available from APDA
(#M0825LL/A).•

A glyph outline is a bit less compact than a paths data structure, but contains enough
information to be converted into one. One difference from the paths data structure is
that in a path, if a control bit is set, the point is treated as an off-curve point. In a
glyph outline, if the onCurve byte is set, the point is treated as an on-curve point.
Another difference is that in a glyph outline, the points for all the contours are stored
contiguously, rather than separated into discrete path structures.

The utility function PackControlBits takes an array of bytes, each representing a
point, and packs them into a bit array, suitable for a path. It then returns a pointer to
the long after the last control long.

long *PackControlBits(long *p, Byte *onCurve, long count)
{

unsigned long mask = 0x80000000;

*p = 0;
while (count--)
{ if (!mask)

{ mask = 0x80000000;
*++p = 0;

}
if (!*onCurve++)

*p |= mask;
mask >>= 1;

}
return p + 1;

}

The function OutlineToPaths takes a glyph outline and returns a pointer to a path
that represents the outline. NewPtr is called, so when the application has finished
using the path it should call DisposePtr.

paths *OutlineToPaths(GlyphOutline *out)
{

long size, *p, *origP;

/* First compute how big the resulting path will be. */
size = sizeof(long); /* paths.contours */

{ long i, sp = 0;
for (i = 0; i < out->contourCount; i++)
{ long pts = (*out->endPoints)[i] - sp + 1;

size += sizeof(long); /* path.vectors */
size += (pts + 31 >> 5) << 2; /* path.controlBits */
size += pts << 3; /* path.vector[] */

d e v e l o p Autumn 1991

22

sp = (*out->endPoints)[i] + 1;
}

}

/* Now allocate the paths. */
origP = p = (long *)NewPtr(size);
/* Real programs check errors. */

/* Record the number of contours. */
*p++ = out->contourCount;
{ long i, sp = 0;

Fixed *x = *out->x;
Fixed *y = *out->y;
short *ep = *out->endPoints;
Byte *onCurve = *out->onCurve;

/* For each contour, record the point count,
* record the control bits, then the points. */
for (i = 0; i < out->contourCount; i++)
{ long pts = *ep - sp + 1;

*p++ = pts;
p = PackControlBits(p, onCurve, pts);
onCurve += pts;
while (pts--)
{ *p++ = *x++;

*p++ = *y++;
}
sp = *ep++ + 1;

}
}
return (paths *)origP;

}

ABOUT OUR SAMPLE APPLICATION
The sample application QD Curves on the Developer CD Series disc uses paths to
draw the outlines of TrueType text. It can put the outlines onto the Clipboard so that
they can be pasted into another application for editing or printing. In addition, the
application uses some of the other TrueType access functions to build variable-length
font and style menus and display information about a font, such as its version number,
copyright notice, and trademark (see Figure 8).

To display a path, the application determines how large the path currently is and
scales it to fill the window. The utility functions OffsetPaths, ScalePaths, and
GetPathsBounds are used in positioning and scaling paths.

CURVES AHEAD: WORKING WITH CURVES IN QUICKDRAW Autumn 1991

23

void OffsetPaths(paths* p, Fixed dx, Fixed dy)
{

long ctrs = p->contours;
path *aPath = p->contour;

while (ctrs--)
{ long pts = aPath->vectors;

/* Skip the control bits. */
Fixed *coord = (Fixed *)aPath + 1 + (pts + 31 >> 5);

/* Apply the offsets; remember, x comes before y. */
while (pts--)
{ *coord++ += dx;

*coord++ += dy;
}
/* The next path follows the end of the current path. */
aPath = (path *)coord;

}
}

void ScalePaths(paths *p, Fixed sx, Fixed sy)
{

long ctrs = p->contours;
path *aPath = p->contour;

d e v e l o p Autumn 1991

24

Figure 8
Font Information Displayed by QD Curves

/* Apply the scales; remember, x comes before y. */
while (ctrs--)
{ long pts = aPath->vectors;

/* Skip the control bits. */
Fixed *coord = (Fixed *)aPath + 1 + (pts + 31 >> 5);

while (pts--)
{ *coord = FixMul(*coord, sx);

coord++;
*coord = FixMul(*coord, sy);
coord++;

}
/* The next path follows the end of the current path. */
aPath = (path *)coord;

}
}

void GetPathsBounds(paths *p, Rect *r)
{

long ctr = p->contours;
path *cont = p->contour;

/* Begin with the minimum rectangle. */
r->left = r->top = 32767;
r->right = r->bottom = -32678;

while (ctr--)
{ long *bits = cont->controlBits;

/* Skip the control bits. */
long *coord = (long *)(bits + (cont->vectors + 31 >> 5));
long pts = cont->vectors;

while (pts--)
{ short x = FR(*coord++);

short y = FR(*coord++);

if (x < r->left)
r->left = x;

else if (x > r->right)
r->right = x;

if (y < r->top)
r->top = y;

else if (y > r->bottom)
r->bottom = y;

}

CURVES AHEAD: WORKING WITH CURVES IN QUICKDRAW Autumn 1991

25

/* The next path follows the end of the current path. */
cont = (path *)coord;

}
}

Note that what is returned is the bounds for the control points of the paths, not
necessarily the bounds of the actual paths being drawn (see Figure 9). That requires a
slightly more complex, though useful, function, which we leave to you as an exercise.
(Hint: Find the x and y extrema for the curve. To do this, find the local extrema in t
by setting the derivative of the equation in x or y equal to 0, and solve for t.)

As part of its display options, the application will also mark the on-curve points in the
paths.

void MarkPaths(paths *aPath)
{

long ctr = aPath->contours;
path *cont = aPath->contour;
Point loc;
Rect r;

while (ctr--)
{ long *bits = cont->controlBits;

long *coord = (long *)(bits + (cont->vectors + 31 >> 5));
long ptIndex;

d e v e l o p Autumn 1991

26

b�

a �

c�

Point bounds�

Curve bounds�

Figure 9
Bounds of the Control Points Versus Bounds of the Curve

for (ptIndex = 0; ptIndex < cont->vectors; ptIndex++)
{ r.left = FR(*coord++) - 2;

r.top = FR(*coord++) - 2;
r.right = r.left + 5;
r.bottom = r.top + 5;
if (OnCurve(bits, ptIndex))

PaintOval(&r);
#ifdef mark_off_curve

else
FrameOval(&r);

#endif
}
cont = (path *)coord;

}
}

This function to mark the control points of a path is a good framework for adding
curve editing. We leave that to you also, and suggest that besides simple point-by-
point direct mouse editing, you consider providing the capability to do the following:

• do direct curve editing by hit-testing the curve itself instead of just
its control points

• select groups of points/segments to move at once, similar to
selecting multiple icons in the Finder

• do constrain-based editing, where tangent continuity is maintained
between adjacent segments

• interpolate changes to a set of key points across the rest of the
path, allowing, for instance, creation of a bold character by simply
moving a few points on the stems and then smoothing out the rest
of the outlines

NOW IT’S UP TO YOU
This article has given you the tools to do some fancy work with curves in your
applications. We’ve given you routines for drawing curves and paths using
QuickDraw, discussed how to save these in PICTs so that they can be loaded into
other programs like MacDraw or printed using the LaserWriter, and shown how to
extract paths from TrueType fonts, giving you an abundant supply of path data. Now
it’s up to you to play off this knowledge by adding curve editing, text rotation, and
other means of transforming your new freehand curves.

CURVES AHEAD: WORKING WITH CURVES IN QUICKDRAW Autumn 1991

27
THANKS TO OUR TECHNICAL REVIEWERS
Pete “Luke” Alexander, Guillermo Ortiz, Sean
Parent•

MacApp’s TEditText class checks strings entered by the user, displaying
an error message when an invalid string is encountered. This article
shows how TEditText’s validation and error notification schemes can be
made more flexible, and demonstrates this flexibility in TEditText
subclasses for the entry of dates and times. You can try out these classes
in the sample program that’s on the Developer CD Series disc.

My favorite high school teacher, Mrs. Whalen, had a sign under the wall clock in her
classroom that read “Time passes—but will you?” Back when I was in the Class of
’78, there were many times I wished that I could set the clock back (during a tough
quiz) or forward (on a warm afternoon). Although I can’t offer any such hope to the
Class of ’91, I can at least provide MacApp developers with classes that make the
entry of dates and times as easy as I ever dreamed.

I wrote these classes during some recent work on a MacApp application that involved
the entry and validation of dates and times. After considering and rejecting all sorts of
controls—controls that looked like little monthly calendars, 24-hour clocks, and so
on—I settled on simple editable text boxes. I thought that with these boxes, those
pesky localization issues that plagued the other designs wouldn’t be a problem,
because I could use the Macintosh Script Manager to handle the different date and
time formats described by the international resources in the operating system. I also
figured that if I used MacApp’s TEditText class, writing editable text boxes for date
and time entry would be trivial. An override here, a little data there, and voilà—done.
It wasn’t the first time I’ve been wrong.

But to understand TEditText’s flaws, first you have to know how it works.

TEDITTEXT REVEALED
TEditText is a TControl subclass. It encapsulates the Toolbox’s TextEdit routines. A
TEditText view is to one of MacApp’s TDialogViews what an editText item is to one

d e v e l o p Autumn 1991

28
JAMES PLAMONDON was born, is hanging
around for a while, and will soon die, like
everybody else. But he’s trying to have fun in the
meantime. As a software engineer at Power Up
Software Corporation of San Mateo, California,
he has worked on an as yet unreleased MacApp
product he can’t talk about, and he has recently
begun working on the Microsoft Windows version
of this product—but he can’t talk about that either.

The founder of the Bay Area MacApp Developer’s
Association (BAMADA), his interests include
raising his four kids, following international
politics, writing the Great American Computer
Game, and trying to convince Apple to port
MacApp to Windows. (If only he could get his
kids to write the international version of his game
using MacApp for Windows, his life would be
complete.)•

JAMES PLAMONDON

VALIDATING

DATE AND

TIME ENTRY

IN MACAPP

of the Dialog Manager’s dialogs: it allows the user to enter strings into a box in a
dialog box. In addition, TEditText extends the functionality of editable text items to
include the notion of validation. If an invalid string is entered into a TEditText view,
an alert is displayed, notifying the user of the problem.

The validation process implemented by TEditText centers on its Validate method. In
TEditText, a valid string is any string that’s not longer than the maximum allowed
length, which is specified by the application’s author. If the string is valid, the
Validate method returns the constant value kValidValue; otherwise—that is, if the
string is too long—it returns the error code kTooManyCharacters. TNumberText, a
subclass of TEditText that handles the entry and validation of integer numbers, can
return additional error codes—kValueTooSmall, kValueTooLarge, or
kNonNumericCharacters.

The only place Validate is ever called in MacApp is from the TDialogView method
DeselectCurrentEditText. If Validate returns a value other than kValidValue, that
value is assumed (in a call to TDialogView.CantDeselect) to be an index into a string
list resource called kInvalidValueReasons. It’s expected that the string at that index
will describe the error encountered. This string is then displayed in an error alert that
tells the user why the string entered is invalid. Figure 1 shows the alert displayed
when the user types too many characters into a TEditText view.

My dad used to say “Whenever a guy’s telling you what he’s gonna do for you, start
worrying about what he’s gonna do to you.” It wasn’t long before I realized that
TEditText was like that. I had hoped that it would be easy to extend the checking
done in TEditText.Validate to include checking for a valid date or time, but it wasn’t.
To add this kind of checking, I was going to have to rewrite Validate from scratch—
just the kind of thing object-oriented programming is supposed to prevent.

VALIDATING DATE AND TIME ENTRY IN MACAPP Autumn 1991

29

Figure 1
MacApp’s Validation Error Alert

DON’T FIX WHAT AIN’T BROKE
When in the course of application programming it becomes necessary to replace a
mechanism written by the MacApp engineers, one should declare the causes that
impel this decision. I hold these truths to be self-evident:

1. That the reuse of existing code is preferable to the addition of
new code.

2. That the addition of new code is preferable to the alteration of
existing code.

3. That the alteration of existing code is preferable to missing a
deadline.

MacApp’s approach to text validation fails to meet a number of these criteria. First, it
assumes that new error strings will simply be added to the STR# resource called
kInvalidValueReasons, with new error codes indexing the added strings. However,
this won’t work: TDialogView.CantDeselect uses a constant, kNoOfDefaultReasons,
to indicate the number of strings in this resource. It can only be changed by altering
and recompiling MacApp—a violation of self-evident Truth #2.

Also, the error-code-equals-string-index scheme can be a problem when one
combines existing class libraries; two different TEditText subclasses, written
independently, may use the same error codes (and string indices) to indicate different
problems. Resolving this conflict would probably require changing and recompiling
at least one of the conflicting classes.

Further, the use of error strings can cause problems during localization since not all
languages can stick an arbitrary string into a sentence and have the result make any
sense. Static error strings also give little context—they may not be able to display the
invalid string, or a valid example string, to help the user figure out what went wrong.

For all of these reasons, MacApp’s use of a single error string list—with Validate’s
result being used as an index into this list—seems inappropriate. Each class should
instead build its own error strings in any manner it sees fit, using its own string lists
as necessary.

That’s not all. The error alert displayed when invalid strings are encountered has only
one button. But what if two or more alternative actions can be taken in response to
the entry of an invalid string?

Consider the following validation case (which has nothing to do with dates or times).
Assume that the user needs to enter the name of a category—like Work, School, or
Personal—into an editable text box. If the string the user enters matches the name of
an existing category (for example, “Work”), the string is valid; otherwise—for
example, if the user types “Wirk”—the string is invalid.

d e v e l o p Autumn 1991

30

VALIDATING DATE AND TIME ENTRY IN MACAPP Autumn 1991

31

In addition, we want to allow the user to add new categories to the list by entering
them into the editable text box. To do this, we must distinguish those entries that are
simply mistyped (like “Wirk”) from those intended to become new category names
(like “School” or “Personal”). In effect, we need to present the user with a two-button
dialog box like that in Figure 2.

Unlike the default MacApp validation alert, which has only one button, the dialog
box in Figure 2 allows the user to decide whether the entered string—“Personal,” in
this case—is valid or invalid.

TVALIDTEXT: THE UNAUTHORIZED BIOGRAPHY
So to extend validation to dates and times, I decided to write two new classes,
TDateEditText and TTimeEditText. After writing these classes, I realized that they
had so much validation code in common that it made sense to put this code in a
common superclass. I called this superclass TValidText.

TValidText is a pretty simple extension to TEditText. It adds three notions to
TEditText—strictness, required value, and an invalid entry alert ID. It also
significantly enhances the text validation process.

TValidText is an example of an “abstract class”—a class that’s never expected to be
instantiated directly. It exists only to factor out the code that’s expected to be
common to its subclasses. All of TValidText’s subclasses will simply inherit its
validation and error reporting code, while overriding a few methods to implement
their own specific validation tests and error messages.

The class declaration for TValidText is as follows:

Figure 2
Two-Option Validation Error Alert

TValidText = OBJECT(TEditText)
fStrict: BOOLEAN;
fRequired: BOOLEAN;
fAlertID: INTEGER;
•
• See the Developer CD Series disc for method declarations.
•

END; {TValidText}

TValidText’s fStrict field, a Boolean variable, determines whether or not strict
checking will be used when validating. This field exists here because both the date
and time classes needed the concept. TValidText itself doesn’t use fStrict, except to
get and set its value. It might be more general to implement it as a scalar (maybe a
signed byte) to provide multiple strictness levels. We’ll look at strictness again in the
discussion of the date and time classes later in this article.

The fRequired field answers the question of whether an empty string is valid or not.
As far as TValidText is concerned, if fRequired is true, an empty string is invalid;
otherwise, it’s valid. TValidText’s subclasses may add additional conditions to the
notion of validity by overriding the method IsValid and calling the inherited version.
Both the date and time editing classes do this, as we’ll see later.

The fAlertID field contains the resource ID of the alert to be displayed when the
current text doesn’t pass validation. It may contain the value phInvalidValue (defined

d e v e l o p Autumn 1991

32
The fRequired field might better be called
fEmptyStringValid or something to this effect. I
called it fRequired to match a comment in the
method TNumberText.Validate in the UDialog unit
of the MacApp 2.0 source code.•

MacApp is an evolving system, just like the Macintosh
itself. With the coming of System 7, a new and more
powerful version of MacApp is in the works: MacApp
3.0.

Totally rewritten in C++, this new version of MacApp is
still in development; however, an early version, MacApp
3.0b1, is available to Macintosh developers on the
Essentials•Tools•Objects CD #5.

MacApp 3.0 will offer a lot of new features, most of them
directed toward support for System 7. A discussion of
most of these features is far beyond the scope of this
article. With regard to text validation, MacApp 3.0’s
display of validation error alerts is much improved.

In MacApp 3.0, the TargetValidationFailed method has
been added to TEvtHandler to allow each class to handle
validation errors in a class-specific manner. An override of
TargetValidationFailed in TDialogTEView calls another
override of the same method in TEditText, which displays
the error alert and restores the TEditText’s previous
contents. Thus the validation error alert is posed by
TEditText, not by TDialogView, as was the case in
MacApp 2.0. That’s a big improvement.

Unfortunately, the nature of TEditText’s Validate routine
remains unchanged in MacApp 3.0. If your application
requires more flexible validation than that provided by
MacApp, you may still need to use some of the techniques
described in this article.

WHAT ABOUT MACAPP 3.0?

in UDialog), or the resource ID of any other ALRT resource. It would be easy to
override the routines involved to display a MacApp dialog box rather than a Toolbox
alert, in which case fAlertID could be the ID of the appropriate view resource.

THE NATURE OF VALIDITY
The TValidText declaration introduces a new method, IsValid:

FUNCTION TValidText.IsValid(
VAR theText: Str255;
VAR whyNot: INTEGER)

:BOOLEAN;

In addition to returning a Boolean indicating the validity of the given string, IsValid
returns in whyNot an indication of why the string is invalid (or the value noErr, if it’s
valid). This is very similar in functionality to TEditText’s Validate routine, with one
major difference: the string being validated is passed in as an argument. Where
TEditText.Validate assumes that it’s supposed to validate the string currently being
edited, TValidText.IsValid can be used to test arbitrary strings for validity.

I overrode the Validate method in TValidText to make it a flow-of-control method. It
validates the current string and displays the error alert when necessary, as follows:

FUNCTION TValidText.Validate:LONGINT; OVERRIDE;
VAR

parentResult: LONGINT;
theText: Str255;
whyNot: INTEGER;

BEGIN
{Make sure the current text passes the superclass's validation.}
parentResult := INHERITED Validate;
IF (parentResult <> kValidValue)
THEN

Validate := parentResult
ELSE

BEGIN
GetText(theText);
IF IsValid(theText, whyNot)
THEN

Validate := HandleValidText(theText)
ELSE

Validate := HandleInvalidText(theText, whyNot);
END; {else}

END; {Validate}

VALIDATING DATE AND TIME ENTRY IN MACAPP Autumn 1991

33

This structure places the responsibility for handing invalid cases in the class itself,
rather than relying on MacApp’s code for mapping error codes to error strings in
TDialogView.CantDeselect (never trust a method with a contraction in its name).
Given this structure, you can change any step in the validation process without
changing the nature of validation itself by overriding IsValid, HandleValidText, or
HandleInvalidText. That’s the whole idea behind flow-of-control methods.

HandleValidText simply returns kValidValue (defined in UDialog), after notifying its
superview that the text is valid. Two lines of code—no fuss, no muss.

HandleInvalidText has to do a little more, but not much. It calls the method
ValidationErrorAlert to notify the user of the problem. Although the default alert has
only an OK button, I’ve also added support for a Cancel button. If the user clicks
OK, HandleAlertAccepted is called; otherwise—if the user clicks Cancel—
HandleAlertCancelled is called.

FUNCTION TValidText.HandleInvalidText(
VAR theText: Str255;

theError: INTEGER)
:LONGINT;

BEGIN
IF ValidationErrorAlert(theText, theError)
THEN

HandleInvalidText :=
HandleAlertAccepted(theText, theError)

ELSE
HandleInvalidText :=

HandleAlertCancelled(theText, theError);
END; {HandleInvalidText}

In either case, a handler routine is called. Again, this kind of flow-of-control method,
which calls other methods to do the dirty work, is a very useful addition to the object
programmer’s repertoire.

ValidationErrorAlert is equally trivial, consisting of only two lines. The first is a call
to PrepareErrorAlert, while the second displays the alert itself, returning TRUE if
the user accepts the dialog box and FALSE if the user cancels out of it.

PrepareErrorAlert is also only two lines of code:

PROCEDURE TValidText.PrepareErrorAlert(
VAR theText: Str255;

theError: INTEGER);
{This routine sets up the dialog that is displayed by
ValidationErrorAlert.}

d e v e l o p Autumn 1991

34

VAR
theString: Str255;

BEGIN
{Get the best string to describe the given error.}
ErrorToString(theError, theString);
ParamText(theString, '', '', '');
END; {PrepareErrorAlert}

PrepareErrorAlert converts the given error code to a string by calling ErrorToString,
and then calls ParamText to get the string into the dialog. The error code was
generated by IsValid way back in the Validate method.

The essential feature of these routines is that they’re all teeny-tiny pieces of code,
each with a single, well-defined goal. Any one of them can be overridden in isolation,
to tweak the validation mechanism one way or another. I think you’ll find it to be a
big improvement over TEditText’s validation mechanism.

VALIDATING THE DATE
The TDateEditText class allows the user to enter a date string and have the
Macintosh Script Manager’s LongDateTime routines figure out what date it is, in a
convenient, internationally compatible manner. It can display the resulting date in
any of the three formats supported by the Script Manager: short (9-13-91),
abbreviated (Fri, Sep 13, 91), or long (Friday, September 13, 1991).

TDateEditText overrides four TValidText methods to implement date validation:
IsValid, HandleValidText, ErrorToString, and PrepareErrorAlert.

IsValid looks pretty complicated, and it is—by my standards, anyway. It has to set up
not only its Boolean return value, but also an error code if the given text is not valid.
This latter chore is complicated by the optional strict checking, embodied in fStrict.
The Script Manager provides two different levels of error messages when converting
dates (and times) to strings. It will take almost anything you give it and make a date
out of it, but it will warn you about leftover characters, nonstandard separators, and
the like. Strict checking for dates means that only perfectly formed date strings will
be accepted, while nonstrict checking means that so long as a date can be extracted
from the string, you don’t want to hear the Script Manager complain about how hard
it was to get it.

FUNCTION TDateEditText.IsValid(
VAR theText: Str255;
VAR whyNot: INTEGER)

:BOOLEAN;
OVERRIDE;

VALIDATING DATE AND TIME ENTRY IN MACAPP Autumn 1991

35

VAR
theError: INTEGER;
valid: BOOLEAN;
dateSecs: LongDateTime;

BEGIN
IF (NOT INHERITED IsValid(theText, theError))
THEN

BEGIN
valid := FALSE;
whyNot := theError;
END

ELSE
BEGIN
{Use the Script Manager to convert the date string to a
LongDateTime.}
theError := StringToDate(theText, dateSecs);
IF fStrict
THEN

valid := (theError = noErr) | (theError = longDateFound)
ELSE {Error codes >= noErr mean a valid date was found.}

valid := (theError >= noErr);
IF (theError = dateTimeNotFound) & {Date isn't found,}

(NOT fRequired) & {empty strings are OK,}
(Length(theText) = 0) {and the string is empty.}

THEN {Empty string is OK if entry isn't required.}
valid := TRUE;

IF valid
THEN

whyNot := noErr
ELSE

whyNot := theError;
END; {else}

IsValid := valid;
END; {IsValid}

HandleValidText just sets the fDateSecs instance variable to reflect the date of the
given string, and then calls the inherited version of the HandleValidText routine in
TValidText.

Likewise, ErrorToString catches those errors that it knows about and converts them
to strings; others, it just passes on to the inherited version of ErrorToString. Don’t
you love inheritance?

d e v e l o p Autumn 1991

36

PROCEDURE TDateEditText.ErrorToString(
theError: INTEGER;

VAR theString: Str255);
OVERRIDE;

{This routine sets theString to the string that best
explains the given error. It's intended to be called
only from PrepareErrorAlert.}
VAR

strIndex: INTEGER;

BEGIN
CASE theError OF

{These are the error codes returned by the Script Manager's
string-to-date routine.}

{strIndex 1 contains the default string, "invalid date".}
leftOverChars: strIndex := 2;
sepNotIntlSep: strIndex := 3;
fieldOrderNotIntl: strIndex := 4;
extraneousStrings: strIndex := 5;
tooManySeps: strIndex := 6;
sepNotConsistent: strIndex := 7;
tokenErr: strIndex := 8;
cantReadUtilities: strIndex := 9;
dateTimeNotFound: strIndex := 10;
dateTimeInvalid: strIndex := 11;

OTHERWISE strIndex := 0; {Not our error.}
END; {case theError}

IF (strIndex > 0)
THEN {It's an error we know how to describe, so handle it.}

GetIndString(theString, kInvalidDateReasons, strIndex)
ELSE {Never heard of it - ask our superclass to handle it.}

INHERITED ErrorToString(theError, theString);
END; {ErrorToString}

TDateEditText.PrepareErrorAlert (below) calls ErrorToString to convert the given
error code to a string. This string will then be displayed in the validation error alert
(see Figure 3). It also converts the current system date to a string to be displayed in
the alert, where it will serve as an example of the proper date format.

PROCEDURE TDateEditText.PrepareErrorAlert(
VAR theText: Str255;

theError: INTEGER);
OVERRIDE;

VALIDATING DATE AND TIME ENTRY IN MACAPP Autumn 1991

37

VAR
errString: Str255;
dateSecs: LongDateTime;
dateString: Str255;

BEGIN
{Get the current date, as a string.}
GetCurrentDate(dateSecs);
DateToString(dateSecs, shortDate, dateString);

{Get the best string to describe the given error.}
ErrorToString(theError, errString);
ParamText(errString, dateString, '', '');
END; {PrepareErrorAlert}

TDateEditText.PrepareErrorAlert can’t call the version of PrepareErrorAlert it
inherits from TValidText. The inherited version’s call to ParamText would cloud the
effect of the override’s call. I got around this by duplicating the body of
TValidText.PrepareErrorAlert in the override, and not calling the inherited version
at all. This duplication is a violation of Truth #1 (reusing code is better than writing
new code), but I couldn’t figure out how to avoid it—so I just duplicated it, thus
adhering to Truth #3 (anything’s better than missing a deadline).

Eventually, if an invalid date like February 31 has been entered by the user,
TDateEditText displays an alert similar to that shown in Figure 3.

VALIDATING THE TIME
Given the description and discussion of TDateEditText above, the most striking
thing about TTimeEditText is its similarity to TDateEditText. That shouldn’t be

d e v e l o p Autumn 1991

38

Figure 3
TDateEditText’s Validation Error Alert

surprising. The validation of dates has been designed to follow a particular series of
steps, which can also be applied to time. Validating time therefore involves subtly
tailoring the behavior of a few steps rather than writing the validation logic from
scratch. You can see this in the code on the Developer CD Series disc, which includes a
test application and its source.

WHAT’S DONE IS DONE
If you build the test application yourself and bang on it even a little, you’ll find a bug:
if you’ve got invalid text in one editText item, and click on the other, you’ll see the
invalid entry alert twice. This is very annoying. Fixing this problem requires a change
to MacApp, however, because that’s where the bug lives. Consider MacApp’s
TEditText.HandleMouseDown method:

FUNCTION TEditText.HandleMouseDown(
theMouse: VPoint;

VAR info: EventInfo;
VAR hysteresis: Point;
VAR theCommand: TCommand)

: BOOLEAN;
OVERRIDE;

BEGIN
{Get the floating TE installed if necessary.}
IF IsViewEnabled & (gTarget <> fTEView)
THEN

DoChoice(SELF, fDefChoice);
HandleMouseDown := INHERITED HandleMouseDown(

theMouse, info, hysteresis, theCommand);
END; {HandleMouseDown}

The call to DoChoice goes to TDialogView, which attempts to deselect the currently
edited item with a call to its Validate method. If validation fails, the validation failure
alert is displayed. The subsequent call to INHERITED HandleMouseDown
eventually calls DoMouseCommand. This call, in turn, creates and returns a control
tracker that eventually calls TDialogView.DoChoice again. TDialogView.DoChoice
again attempts to deselect its currently edited item, and the validation again fails
(since nothing has changed), displaying the invalid entry alert for the second time.

To fix the problem, we must add an override of DoMouseCommand to TEditText.
Just overriding DoMouseCommand in TValidText won’t fix the problem, since the
flaw is in TEditText itself.

FUNCTION TEditText.DoMouseCommand(
VAR theMouse: Point;
VAR info: EventInfo;

VALIDATING DATE AND TIME ENTRY IN MACAPP Autumn 1991

39

VAR hysteresis: Point)
: TCommand;
OVERRIDE;

BEGIN
IF (gTarget = fTEView) {Only true when validation succeeds.}
THEN {Validation has succeeded, so Do the Right Thing.}

DoMouseCommand := INHERITED DoMouseCommand(
theMouse, info, hysteresis)

ELSE {Validation failed - stop cold.}
DoMouseCommand := NIL;

END; {DoMouseCommand}

Thus INHERITED DoMouseCommand is called only when all is as it should be.
(I’d like to thank Tom Dinger for suggesting this solution, which is cleaner than my
originally proposed change to TEditText.HandleMouseDown.) I added this change
to my copy of MacApp, and used it to build the compiled version of the sample
application you’ll find on the Developer CD Series disc—so it demonstrates the fix, not
the bug.

. . . AND NOW, THE QUIZ
That about wraps up TValidText, TDateEditText, and TTimeEditText. Their use is
demonstrated further in the accompanying sample program. You can use the
TValidText class as a common basis for the validation of any quantity-related editable
text control—such as controls for numbers, currency, and weights and measures—in
the same uniform and flexible manner. If you have any questions, I’m sorry, but your
time is up: please put down your pencils, and pass your papers forward. Class
dismissed!

ACKNOWLEDGMENTS
This article wouldn’t have been possible without the support of Steve Starr, Marian
Cauwet, or Ed Lauing, who have made Power Up Software such a great place to
work, or my family, who have made my home such a great place to live. To the
former, I give my thanks and respect; to the latter, my love. Many thanks also to my
editor, Geta Carlson.

Special thanks to the MacApp engineers, past and present, for writing such a great
piece of work. If inflexible string validation is the worst flaw I can find in MacApp, it
must be pretty good. And thanks to our technical reviewers: Jesse Feiler of The
Philmont Software Mill, author of articles on topics related to this one; Carl Nelson,
President of Software Architects and former President of the MacApp Developer’s
Association (MADA); Bryan Stearns, Macintosh guru and Tech Note author; and
David Taylor of Bear River Associates, author of Calendar Creator 1.0, the first
shipping retail application written using MacApp 2.0.

d e v e l o p Autumn 1991

40
THANKS TO OUR TECHNICAL REVIEWERS
Jesse Feiler, Carl Nelson, Bryan Stearns, David
Taylor•

PRINT HINTS FROM LUKE & ZZ Autumn 1991

41

With the release of System 7 comes a new release of
the LaserWriter driver, version 7.0. Yes, the great
implementors (GIs) have once again created another
version of this driver. This version supports TrueType
fonts, it’s 32-bit clean, it has the new PostScript file-
saving capability, and it remembers the last setting of
the Black & White and Color/Grayscale print buttons
(HOORAY!!).

Along comes our hero, Dudley Developer. He’s been
using the new CopyMask and CopyDeepMask calls
that are available in QuickDraw in System 7 and he’s
very excited about printing his new images with the
LaserWriter driver. He assumes that since QuickDraw
supports the new CopyMask and CopyDeepMask calls,
the LaserWriter driver 7.0 will also support them.

Bad assumption. Our hero has not been keeping up
with current events. He has not even read
“QuickDraw’s CopyBits Procedure: Better Than Ever
in System 7.0” in Issue 6 of develop. If he had, he would
know that, like previous versions of the LaserWriter
driver, LaserWriter driver 7.0 does not directly support
the CopyMask and CopyDeepMask calls.

So, in his ignorance, our hero creates a few pictures
with the new QuickDraw calls, and sends them off to
the LaserWriter. Time goes by, paper comes out, but
the picture doesn’t look the same as it did on his

monitor. It has lost some of the cool effects from
CopyMask and CopyDeepMask.

Why, he wonders, won’t LaserWriter driver 7.0 print
his images with the same effects provided by the
CopyMask and CopyDeepMask calls? What was Apple
thinking when they created LaserWriter driver 7.0?
How could they release a driver that doesn’t support
the new 32-bit QuickDraw calls? How do they expect
him to print his new cool pictures created in System 7
with these calls?

To attempt to understand the problem, Dudley looks
between the covers of the Adobe red book (a.k.a.
PostScript Language Reference Manual by Adobe
Systems). Even he knows transfer modes would be
required to support the new calls—but alas, he doesn’t
find any information on them, because PostScript level
1 doesn’t understand transfer modes. Unfortunately,
the LaserWriter driver won’t rewrite PostScript for
you; it just merrily converts your QuickDraw calls into
their equivalent PostScript call. The LaserWriter
driver always uses the srcCopy transfer mode when it
prints a pixel map, regardless of the mode used when
the picture was created. (Why srcCopy? Because of the
limitations of the color model and the lack of transfer
mode support provided by PostScript level 1.)

There is a method that will allow Dudley to print the
images he created, but as usual with printing, he’ll need
to do a little more work: he’ll need to use GWorlds and
PrGeneral. Since our hero is not familiar with using
GWorlds, he decides to go back through his old issues
of develop, hoping for an article. Luckily, he finds just
what he’s looking for in Issue 1: “Realistic Color for
Real-World Applications” and “Braving Offscreen
Worlds.” And the CD contains the sample code that
uses GWorlds.

So, after reading the articles and trying the code,
Dudley is all set to create an off-screen world to hold
his image. He realizes that to get the best print quality,
he’ll need to make the GWorld bigger than the picture
on the screen. The GWorld should be the size of the

PETE “LUKE” ALEXANDER After taking almost a year to check
out Ford Explorers in parking lots and dealerships, Luke has, in a
surprise move, actually purchased one of his own. At SIGGRAPH
in Las Vegas he ran into some Ford engineers; they were surprised,
but not seriously hurt. They asked increduously, “Have you driven a
Ford lately?” Luke left wondering what kind of inside information
they had. He knew for sure, though, that the animation was his
favorite part of the show—which figures, since since he’s so
used to working with Zz, our resident cartoon character. Not

surprisingly, the Las Vegas show he talked about the most had little
to do with computers! He also enjoys the show at Gordon Biersch,
a local brew pub known for its good beer and yuppie clientele.
Luke says he goes there to see how yuppie scum lives, but every
once in a while we think he already knows.•

PRINT HINTS
FROM LUKE &
ZZ

COPYMASK,
COPYDEEPMASK,
AND LASERWRITER
DRIVER 7.0

Luke speaks

grafPort returned by the application’s call to
PrOpenDoc, at the printer’s resolution. Dudley knows
he needs a device-independent method to acquire this
information, and he knows he can get it by using
PrGeneral’s GetRslData opcode. And even better still,
he remembers an article about using PrGeneral from
Issue 3 of develop. The article was titled “Meet
PrGeneral,” and it contained complete sample code.
Yippee! After using the GetRslData opcode to
determine the resolutions supported by the currently
selected printer, he uses the SetRsl opcode to set the
printer to the resolution he wants. When his
application calls PrOpenDoc, the printer driver will
return a grafPort that’s sized correctly for the
resolution he chose.

Next, Dudley creates the correctly sized off-screen
world and draws his image using CopyMask or
CopyDeepMask. He just needs to remember that since
the CopyMask and CopyDeepMask calls are not saved
in pictures, he needs to make the calls directly into his
off-screen world (not relying on DrawPicture). So,
when he’s ready to print his image, Dudley uses
CopyBits to copy it from his GWorld into the printer’s
grafPort with srcCopy. That’s it; his totally cool image
has been printed in living color (or anemic gray scales,
if he’s printing to the LaserWriter).

This wasn’t so bad, but our hero is wondering—when
will the GIs make this easier? When will all of this
incompatibility between QuickDraw and the
LaserWriter driver improve? That’s a really good
question. The GIs tell me things will probably not
improve until the new printing architecture is released.
In the meantime, you’ve got this way around the
problem, and at least it isn’t too ugly!

d e v e l o p Autumn 1991

42

REFERENCES
• “QuickDraw’s CopyBits Procedure: Better Than Ever

in System 7.0,” develop Issue 6, Spring 1991.

• “Meet PrGeneral, the Trap That Makes the Most of
the Printing Manager” develop Issue 3, July 1990.

• “Realistic Color for Real-World Applications,”
develop Issue 1, January 1990.

• “Braving Offscreen Worlds,” develop Issue 1,
January 1990.

• Inside Macintosh, Volume V, Color Manager
chapter, Addison-Wesley, 1988.

Macintosh debugging is a strange and difficult task. This article
provides a collection of tried-and-true debugging techniques Bo3b and
Fred discussed at Apple’s Worldwide Developers Conference in May
1991. These techniques can ease your debugging woes and make your
life a lot simpler. They’re guaranteed to help you find your bugs earlier
on, saving you hours of suffering.

The first thing you should know is that debugging is hard. Drinking gallons of
Mountain Dew won’t help much, nor will seeking magic formulas or spreading fresh
goat entrails around your keyboard and chanting. The only way to get better at it is
to do it a lot, and even then it’s still hard. What we’re going to talk about are a
number of techniques that will make debugging a little bit easier.

Notice that the title of this article is “Macintosh Debugging” and not “Macintosh
Debuggers.” We’re not going to do a comparative review of debuggers. We’re not
going to show you how to use them. In fact, we recommend that you buy and use all
the ones described here. Each has useful features that the others don’t have. Which
you use most often is up to you—pick one as your main debugger and really get to
know it, but keep all of them around.

The main Macintosh debuggers are

•MacsBug from Apple

•TMON (we often refer to version 2.8.4 as Old TMON) and
TMON Professional (version 3.0, called TMON Pro for short)
from Icom Simulations, Inc.

•The Debugger from Jasik Designs (we’ll call it “Jasik’s debugger”
here, because Steve Jasik wrote it, and that’s what everybody calls
it in conversation)

We’ll touch on many of the individual features of these debuggers in this article.

MACINTOSH DEBUGGING: A WEIRD JOURNEY INTO THE BELLY OF THE BEAST Autumn 1991

43
BO3B JOHNSON AND FRED HUXHAM
didn’t want a bio, except to say that they are
cohosts of “Lunch with Bo3b and Fred.” We also
feel compelled to tell you that in Bo3b’s name, the
“3” is silent.•

AND FRED HUXHAM

ADAPTED FROM THEIR
TALK AT THE WWDC BY
DAVE JOHNSON

MACINTOSH

DEBUGGING:

A WEIRD

JOURNEY INTO

THE BELLY OF

THE BEAST

BO3B JOHNSON

The hardest bugs to find are those that are not reproducible. If you have a crashing
bug that can be reproduced 100 percent of the time, you’re well on your way to fixing
it. But a bug that crashes your application only once every few hours, at seemingly
random times . . . well, that kind can take days or weeks to find. Often the ultimate

d e v e l o p Autumn 1991

44

WHY WRITE A DEBUGGER
Since I didn’t have the right connections for selling illegal
drugs, I had to consider the alternative of selling legal
addictive drugs to Macintosh developers.

OK, seriously, I wanted to learn about the 68000
architecture. Given my experience writing compilers and
code generators for superscalar RISC mainframes, I
decided to write a disassembler for and on the Macintosh.
I introduced my first product, MacNosy, in January 1985.
It allowed a fair number of developers to discover the
innards of the Macintosh ROMs, as well as to curse at me
for its original TTY interface.

Unhappy with the state of Macintosh debuggers, I
decided to write one of my own, using MacNosy as a
foundation. The resulting product, The Debugger, made its
international debut in London in November 1986. Since
then, it’s been expanded to become a system debugger (it
runs at INIT time and is available to debug any process),
include an incremental Linker for MPW compiled
programs, and more.

THE MACINTOSH INTERFACE
The Debugger uses the Macintosh user interface, or at
least my interpretation of it. The windows, menus, dialogs,
and text processing are standard for the Macintosh.

The only real problem was the switch in context. I had to
swap in all of low memory ($0 to $1E00 on a Macintosh
II-class machine). This may appear to be a bit expensive,
but in comparison with the screen swap, which is a
minimum of 22K on a small-screened Macintosh, it’s
trivial. The biggest problem in this area is that some of the

values have to be “cross-fertilized” between worlds, and
many of the low-memory globals are not documented.

Using the Macintosh interface became a royal pain as the
System 7 group extended the system in such a way that
the basic ROM code assumed the existence of a Layer
Manager and MultiFinder functions. In many cases, I had
to “unpatch” the standard code and substitute my own in
order to keep The Debugger functional.

MMU PROTECTION
MMU protection was initially designed so that The
Debugger would try to protect the system from destruction
no matter what program was running. As we implemented
the design, we found that this goal was impossible
because many of the applications (MPW Shell, ResEdit,
Finder) diddled with the system heap. I ended up
protecting the rest of the system only when an application
that’s being debugged is running.

EASE OF USE
Users have had an influence on the design and feature set
in The Debugger. For example, the initial version of the
watchpoint (memory watch) command was very simple.
When a user pointed out the usefulness of an auto reset
feature in the command, we added it.

I’ve tried to use simple commands for the most frequently
performed operations in The Debugger. The idea has
been to make common things easy to do. Some of the
more complicated operations are difficult to keep simple,
as the scripting capability is limited. SADE, in contrast,
has an extensive scripting capability but is cumbersome to
use.

THE INSIDE STORY OF THE DEBUGGER
BY STEVE JASIK

failure of a program is caused by code that executed long ago. Tracing back to find
the real problem can be difficult and extremely time consuming.

The techniques we show you in this article will help turn most of your random bugs
into completely reproducible ones. These techniques are designed to make your
software crash or to otherwise alert you as close as possible to where your code is
doing something wrong.

We explain what each technique is, why it works, and any gotchas you need to be
aware of. Then we tell you how to turn it on or invoke it and list some of the
common Macintosh programming errors it will catch. Finally, we show a code sample
or two. The code samples were chosen for a number of reasons:

• The errors in many of them are subtle. We couldn’t tell what was
wrong with some of them after not looking at them for a couple
months, and we wrote them in the first place.

• The mistakes are common. We’ve seen people make these same
mistakes time and time again.

• They’re short. They had to fit on one slide at our Worldwide
Developers Conference presentation.

So, on to our first technique

SET $0 TO $50FFC001
The basic idea here is that the number $0 comes up a lot when things go wrong on
the Macintosh. When you try to allocate memory or read in a resource, and it fails,
what gets returned is $0. Programs should always check to see that when they ask for
something from the Toolbox, they actually get it.

Programs that don’t check and use $0 as an address or try to execute from there are
asking for trouble. The code will often work without crashing, but presumably it’s not
doing what it was meant to do, since there isn’t anything down there that even
remotely resembles resources or data in a program.

Why $50FFC001? Old TMON used this number when we turned on Discipline
(more on Discipline later). This fine number has the following characteristics:

• Used as a pointer (address), $50FFC001 is in funny space on all
Macintosh computers—that is, it’s in I/O space, which is currently
just blank. Any relative addresses close by are going to be in I/O
space as well, so positive or negative offsets from that as a base will
crash, too. These types of offset are common when referencing
globals or record fields.

MACINTOSH DEBUGGING: A WEIRD JOURNEY INTO THE BELLY OF THE BEAST Autumn 1991

45

• When used as an address, it will cause a bus error on 68020, ’030,
and ’040 machines. Because there’s no RAM there, and no device
to respond, the hardware returns a bus error, crashing the program
at the exact instruction. Without this handy number, you not only
won’t crash, you won’t even know the bug exists (for a while . . .).

• On 68000 machines, $50FFC001 will cause an address error
because it’s an odd number. This also stops the offending code at
the exact line that has a bug.

• If the program tries to execute the code at memory location $0, it
will crash with an illegal instruction, since the $50FF is not a valid
opcode. This is nice when you accidentally JSR to $0 and the
program tries to run from there. Those low-memory vectors are
certainly not code but don’t usually cause a crash until much later.

• It’s easy to recognize because it doesn’t look like any normal
number. If a program uses memory location $0 as a source for
data, this funny number will be copied into data structures. If you
see it in a valid data structure someplace else you know there’s a
bug lurking in the program that’s getting data from $0 instead of
from where it should.

Many different funny bus error numbers can be used. Take your pick.

AVAILABILITY
You can find various programs that set up memory location $0 in this helpful way, or
you can build your own.

• EvenBetterBusError (included on the Developer CD Series disc) is a
simple INIT that sets memory location $0 to $50FFC003. It also
installs a VBL to make sure no one changes it.

• Under System 7, the thing that used to be MultiFinder (now the
Process Manager) takes whatever is in memory location $0 when it
starts up and saves it. Periodically it stuffs that saved number back
in. If it were a bus error number at system startup (from an INIT,
say), that number would be refreshed very nicely. With MacsBug,
it would be easy to build a dcmd that stuffs memory location $0
during MacsBug INIT, and MultiFinder would then save and
restore that number.

• Jasik’s debugger has a flag that allows you to turn the option on or
off.

• Old TMON will set up the bus error number when Discipline is
turned on. TMON Pro has a script command, NastyO, that will
also do this.

d e v e l o p Autumn 1991

46

• You can put code in your main event loop that stuffs the bus error
number into memory location $0. Be sure to remove it before you
ship.

ERRORS CAUGHT
The most obvious catch using this technique is the inadvertent use of NIL handles
(or pointers). NIL handles can come back from the Resource Manager and the
Memory Manager during failed calls. If a program is being sloppy and not checking
errors, it’s easy to fall into using a NIL handle, and this technique will flush it out. A
double dereference of a NIL handle will crash the computer. Something like

newArf := aHandle^^.arf;

will crash if aHandle is $0 and we’ve installed this nice bus error number.

This technique will tell when a program inadvertently jumps off to $0 as a place to
execute code, which can happen from misaligned stacks or from trying to execute a
purged code resource.

By watching for the funny numbers to show up in data structures, you can find out
when NIL pointers are being used as the source for data. This is surely not what was
meant, and they’re easy to find when a distinctive number points them out. These
uses won’t crash the computer, of course.

CODE SAMPLE

theHandle = GetResource('dumb', 1);
aChar = **theHandle;

This is easy: the GetResource call may fail. If the 'dumb' resource isn’t around,
theHandle becomes NIL. Dereferencing theHandle when it’s NIL is a bug, since
aChar ends up being some wacko number out of ROM in the normal case
(ROMBase at $0) and cannot be assumed to be what was desired. This bus error
technique will crash the computer right at the **theHandle, pointing out the lack of
error checking.

HEAP SCRAMBLE AND PURGE
With this option on, all movable blocks of memory (handles) are moved, and all
purgeable blocks are purged, whenever memory can be moved or purged—which is
different from moving and purging memory whenever it needs to be moved or
purged. This technique is excellent at forcing those once-a-month crashing bugs to
crash more often—like all the time. You should run your entire program with this
option on, in combination with the bus error technique, using all program features

MACINTOSH DEBUGGING: A WEIRD JOURNEY INTO THE BELLY OF THE BEAST Autumn 1991

47

d e v e l o p Autumn 1991

48

The first version of TMON was released in late 1984.
TMON was a summer project for me at TMQ Software
when I was a junior in high school. I wrote it because I
was dreaming about a one-Macintosh debugger
(MacsBug required a terminal at the time) that had a
direct-manipulation user interface. Direct manipulation
meant more than just having windows—it meant you
would be able to change memory or registers simply by
typing over your values, assemble instructions by typing in
a disassembly window, and so on.

THE ORIGINAL TMON
Memory constraints of the Macintosh 128K forced me to
write TMON entirely in assembly language—the original
version used only 16K plus a little additional memory to
save the screen. TMON used its own windowing system
to avoid reentrancy problems with debugging programs
that call the system. TMON also included a “User Area,”
a block of code that could extend TMON. The source
code was provided for the standard user areas, and Darin
Adler took great advantage of this facility to add
numerous features to TMON in his Extended User Area.

Writing TMON took a little ingenuity. I didn’t have
anything that could debug it, so I wrote the entire
program, assembled it, ran it on a Macintosh, and
watched it crash. After a couple of dozen builds, I got it
to display its menu bar on the screen. By about build 100,
I had a usable memory dump window that I could then
use to debug the rest of TMON.

TMON PRO
Improving a program written entirely in tight assembly
language designed for a Macintosh 128K became
intractable, so I switched to MPW C++. Version 3.0 of
TMON (TMON Pro) is written half in assembly language
and half in C++. Using C++ turned out to be one of the
best ways to debug a program: C++ features such as
constructors and destructors prevented a lot of pesky
programming errors. The downside of using a high-level

language is that code size grows explosively—TMON
3.0’s code is about ten times larger than TMON 2.8’s.

When writing TMON 3.0, I reevaluated earlier design
decisions. I opted to continue to concentrate on
debugging at the assembly language level for two
reasons. First, there are many bugs that can arise on a
Macintosh that pure source-level debuggers can’t handle.
Second, I find that I use TMON at least as much for
learning about the Macintosh as I do for debugging.

I sometimes wish I could use the Macintosh windows in
TMON. Nevertheless, I decided to remain with TMON’s
custom windows for reasons of safety. Until the Macintosh
has a real reentrant multitasking system that can switch to
another task at any point in the code, writing such a
debugger would either make it prone to crashing if it was
entered at the wrong time or require the debugger to be
more dependent on undocumented operating system
internals than I like.

I found that writing TMON 3.0 was much harder and took
much longer than writing the original TMON. Part of this
was due to the second-system effect—the product just kept
on growing over time. Nevertheless, I also found that
writing TMON 3.0 was difficult because of the loss of the
Macintosh “standard.” There are now over a dozen
Macintosh models, using the 68000 through the 68040,
some with third-party accelerators, various ROM versions,
24- and 32-bit mode, virtual memory, several versions of
the operating system, and numerous INITs, patches, video
cards, and other configuration options. These options
present unique challenges to a low-level debugger such as
TMON, which must include special code for many of
them.

Despite the frustration, I think that writing TMON was
worth it—it made many developers’ lives easier. I plan to
continue to evolve TMON in the future and incorporate
suggestions for improvements.

TMON, THEN AND NOW
BY WALDEMAR HORWAT

and really putting it through its paces. You’ll be glad you did. Because this debugger
option simulates running under low-memory conditions all the time, it stress-tests
the program’s memory usage.

AVAILABILITY
All the debuggers have this option, but the one most worth using is in Old TMON
and TMON Pro, since it implements both scramble (moving memory) and purge.
MacsBug and Jasik’s debugger both have scramble, but they’re too slow, and neither
has a purge option.

ERRORS CAUGHT
This technique will catch improper usage of dereferenced or purgeable handles,
mistakes that fall into the “easy to make, hard to discover” category. The technique
will also catch blocks that are overwritten accidentally, since there’s an implicit heap
check each time the heap is scrambled. Warning: The bugs you find may not be
yours.

CODE SAMPLE

aPicture = GetPicture(1);
FailNil(aPicture);
aPtr = NewPtr(500000);
FailNil(aPtr);
aRect = (**aPicture).picFrame;
DrawPicture(aPicture, &aRect);

Here, if the picture is purgeable, it might be purged to make room in the heap for the
large pointer allocated next. This would make aRect garbage, and DrawPicture
wouldn’t work as intended, probably drawing nothing. Here’s a similar example in
Pascal:

aPicture := GetPicture(kResNum);
FailNil(aPicture);
WITH aPicture^^ DO
BEGIN

aPtr := NewPtr(500000);
FailNil(aPtr);
aRect := picFrame;

END; {WITH}

Here, even if the picture isn’t purged, the NewPtr call might move it, invalidating the
WITH statement and resulting, again, in a bad aRect.

MACINTOSH DEBUGGING: A WEIRD JOURNEY INTO THE BELLY OF THE BEAST Autumn 1991

49

ZAPPING HANDLES
The idea here is to trash disposed memory at the time it’s disposed of in order to
catch subsequent use of the free blocks. The technique fills disposed memory with
bus error numbers, so that if you attempt to use disposed memory later, the program
will crash. A related option is MPW Pascal’s -u option, which initializes local and
global variables to $7267.

AVAILABILITY
This technique is implemented as a part of Jasik’s Discipline option and is also a
dcmd, available on the Developer CD Series disc, for TMON Pro or MacsBug. You can
also just write it into your program by writing bottleneck routines for disposing of
memory (such as MyDisposHandle, MyDisposPtr) that fill blocks with bus error
numbers just before freeing them. The problem with this is that memory freed by
other calls (ReleaseResource, for instance) isn’t affected. We recommend the dcmd or
Jasik’s Discipline.

ERRORS CAUGHT
This technique will catch reusing deallocated memory or disposing of memory in the
wrong order. It can also catch uninitialized variables, since after you’ve been running
it for a while, much of the free memory in the heap will be filled with bus error
numbers.

CODE SAMPLE

SetWRefCon(aWindowPtr, (long)aHandle);
. . .
DisposeWindow(aWindowPtr);
DisposHandle((Handle) GetWRefCon(aWindowPtr));

The GetWRefCon will work on a disposed window, but it’s definitely a bug. Zapping
the handles sets the refCon to a bus error number, forcing the DisposHandle call to
fail.

CHECKSUM $0
Once again, we’re dealing with the address $0. This technique, however, is sort of the
opposite of the first one: it catches writing to $0 rather than reading or executing
from it.

AVAILABILITY
This one is easy: you can set up a checksum so that you’ll drop into the debugger
whenever the value at $0 changes. All the debuggers have a way to do this. Also,
EvenBetterBusError sets up a VBL to detect if $0 changes, but since VBL tasks don’t
run very often (relative to the CPU, anyway), you’ll probably be far away in your

d e v e l o p Autumn 1991

50

code by the time it notices. It’s still much better than nothing, though, since knowing
the bug exists is the first step toward fixing it.

Note that on the IIci the Memory Manager itself changes $0, so you’ll get spurious
results. EvenBetterBusError knows about this and ignores it.

ERRORS CAUGHT
The errors caught by this technique are much the same as those caught by the first
technique, except that this one catches writes rather than reads. This way, if your
code tries to write to address $0 (by dereferencing a NIL handle or pointer), you’ll
know.

CODE SAMPLE

aPtr = NewPtr(kBuffSize);
BlockMove(anotherPtr, aPtr, kBuffSize);

This one’s pretty obvious: if the NewPtr call fails, aPtr will be NIL, and the
BlockMove will stomp all over low memory. If kBuffSize is big enough, this will take
you right out, trashing all your low-memory vectors and your debugger, too.

DISCIPLINE
Discipline is a debugger feature that checks for bogus parameters to Toolbox calls. It
would of course be nice if the Toolbox itself did more error checking, but for
performance reasons it can’t. (Be forewarned that some versions of the system have
errors that Discipline will catch.) Discipline is the perfect development-time test. It
catches all those stupid mistakes you make when typing your code that somehow get
past the compiler and may persist for some time before you discover them. It can
literally save you hours tracking down foolish parameter bugs that should never have
happened in the first place.

AVAILABILITY
Old TMON has an early version of Discipline, but there are no checks for Color
QuickDraw calls or later system calls, so its usefulness is limited. There is an INIT
version of Discipline (on the Developer CD Series disc with MacsBug) that works in
conjunction with MacsBug or TMON Pro that’s quite usable, if slow and clunky.
Jasik’s version of Discipline is far and away the best; use it if you can.

ERRORS CAUGHT
As you’d expect, Discipline catches Toolbox calls with bad arguments, like bogus
handles, and also sometimes catches bad environment states, like trying to draw into a
bad grafPort.

MACINTOSH DEBUGGING: A WEIRD JOURNEY INTO THE BELLY OF THE BEAST Autumn 1991

51

CODE SAMPLE

aHandle = GetResource('dumb', 1);
FailNil(aHandle);
. . .
DisposHandle(aHandle);

The problem here is that a resource handle has to be thrown away with
ReleaseResource, not DisposHandle. Otherwise, the Resource Manager will get
confused since the resource map won’t be properly updated. Sometime later (maybe
much later) Very Bad Things will happen.

32-BIT MEMORY MODE
Running in full 32-bit mode in System 7 forces the Memory Manager and the
program counter to use full 32-bit addresses: this is something new on the
Macintosh. The old-style (24-bit) Memory Manager used the top byte of handles to
store the block attributes (whether or not the handle was locked, purgeable, and so
forth). By running your program in 32-bit mode, you’ll flush out any code that mucks
with the top bits of an address, for any reason, accidentally or on purpose. In the past,
many programs examined or modified block attributes directly. This is a bad idea.
Use the Toolbox calls HGetState and HSetState to get and set block attributes.

AVAILABILITY
You get 32-bit memory mode with System 7, of course! You use the Memory cdev to
turn on 32-bit addressing, available only on machines that have 32-bit-clean ROMs
(Macintosh IIfx, IIci, IIsi). You should also install more than 8 MB of RAM and
launch your application first, so that it goes into memory that requires 32-bit
addressing (within the 8 MB area, addresses use only 24 bits). We also recommend
using TMON’s heap scramble in 32-bit mode, since the block headers are different.

ERRORS CAUGHT
You can inadvertently mess up addresses in a bunch of ways. Obviously, any code that
makes assumptions about block structures is suspect. Doing signed math on pointers
is another one that comes up pretty often. Any messing with the top bytes of
addresses can get you into big trouble, jumping off into weird space, where you have
no business.

CODE SAMPLE

aHandle = (Handle) ((long) aHandle | 0x80000000);

Naturally, this method of locking a handle is not a good idea, since in 32-bit mode
the locked bit isn’t even there. Use HLock or HSetState; they’ll do the right thing.

d e v e l o p Autumn 1991

52

FULL COMPILER AND LINKER WARNINGS
Always develop your code with full warnings on. When you’re compiling and linking
your program, any number of errors or warnings will be emitted. The errors are for
things that are just plain wrong, so you’ll have to fix those immediately. Warnings,
however, indicate things that aren’t absolutely wrong, but certainly are questionable
as far as the compiler or linker is concerned.

We think you should fix every problem as soon as a warning first appears, even if
there’s “nothing wrong” with the code. If you leave the warnings in, little by little
they’ll pile up, and pretty soon you’ll have pages full of warnings spewing out every
time you do a build. You know you won’t read through them every time. You’ll
probably just redirect the warnings to a file you never look at so that your worksheet
won’t be sullied. Then the one warning that will cause a problem will sneak right by
you, and much later you’ll find out that the totally nasty, hard-to-find bug that you
finally corrected was one the compiler warned you about a month ago. To avoid this
painful experience, deal with the warnings when they appear, even if they’re false
alarms.

AVAILABILITY
Use the compiler and linker options that turn on full warnings:

• MPW C++: The “-w2” option turns on the maximum compiler
warnings.

• MPW C: Use “-warnings full” (“-w2” does the same thing). In
addition, the “-r” option will warn you if you call a function with
no definition.

• MPW Linker: The “-msg keyword” option controls the linker
warnings. Keyword is one or more of these: dup, which enables
warnings about duplicate symbols; multiple, which enables
multiple warnings on undefined references to a label (you can thus
find all the undefined references in one link); and warn, which
enables warnings.

• THINK C: Because the compile is stopped when a warning is
encountered, it forces you to fix all warnings. Some people like
this; others don’t. We do, but you decide. Be sure that “Check
Pointer Types” is turned on in the compiler options.

• Pascal: Most of the things that cause warnings in C are
automatically enforced.

If you’re coding in C, it’s also a good idea to prototype all your routines. This avoids
silly errors.

MACINTOSH DEBUGGING: A WEIRD JOURNEY INTO THE BELLY OF THE BEAST Autumn 1991

53

ERRORS CAUGHT
The compiler and linker will tell you about lots of things. Some examples are

• the use of uninitialized variables (which is a real bug)

• bad function arguments

• unused variables (these confuse the code and may be real bugs)

• argument mismatches (probably bugs)

• signed math overflow

In C++, overriding operator new without overriding operator delete is probably a bug
and unintentional. Even if a warning is caused by something intentional, fix it so that
the warning won’t appear.

CODE SAMPLE

#define kMagicNumber 12345
. . .
short result;
result = kMagicNumber*99;

The problem with this code is that the multiplication is overflowing a 16-bit short
value. If you have full compiler warnings on, the MPW compiler will let you know
this with the following error message:

Warning 276 This assignment may lose some significant bits

MEMORY PROTECTION
This is something you’ve always wanted: a way to get a protected memory model for
the Macintosh. With memory protection on, memory accesses outside the
application’s RAM space would be caught as illegal, giving you the chance to find bad
program assumptions and wild references. Only Jasik’s debugger has this feature now.

The protected mode is only partly successful, though, since the Macintosh has
nothing that resembles a standard operating system. The problems stem from how
programs are expected to run, in that references to some low-memory globals are
OK, and code and data share the same address space. Given the anarchy in the
system, the way Jasik set it up is to allow protection of applications only. The
protected mode also protects the CODE resources in the application from being
overwritten.

Although this protected mode is not as good as having the OS support protected
memory spaces, it’s still a giant leap ahead in terms of finding bugs in your programs.
By catching these stray references during development, you can be assured that the

d e v e l o p Autumn 1991

54

user won’t get random crashes because of your program. This is an ideal development
tool for catching latent bugs that don’t often show up. Who knows what a write to a
random spot in memory may hit? Sometimes you’re just lucky, and those random
“stomper” bugs remain benign, but more often they’re insidiously nasty.

AVAILABILITY
This tool is currently implemented only in Jasik’s debugger. The memory protection
is implemented using the MMU, and it slows down the machine by around 20
percent. It’s a mixed blessing, since it will crash on any number of spurious errors—
use it anyway.

ERRORS CAUGHT
If the application writes to low memory or to the system heap, it’s probably not what
was desired. A few cases could be deemed necessary, but in general, any references
outside the application heap space are considered suspect. Certainly, modifying
system variables is not a common task that applications need to support. This
memory protection will catch those specific references and give you the chance to be
sure that they’re valid and necessary.

Writing to I/O space or screen RAM is another problem this technique will catch.
Writing directly to the screen is bad form, and only tacky programs (and games,
which must do it) stoop this low. Even HyperCard writes directly to the screen;
please don’t emulate it. Some specialized programs could make an argument for
writing to I/O space, since they may have a device they need to use up there. This
protection will catch those references and point out a logically superior approach,
which is to build a driver to interface to that space, instead of accessing it directly.

CODE SAMPLE

((long) 0x16A) = aLong;

The low-memory global Ticks is being modified. Writing to low-memory globals is a
Very Bad Thing to do. This will be caught by memory protection.

LEAKS
A memory leak occurs when a program allocates a block of memory with either
NewHandle or NewPtr (or even with Pascal New or C malloc, both of which turn
into NewPtr at a lower level), but that block is never disposed of, and the reference to
it is lost or written over. If a program does this often enough, it will run out of RAM
and probably crash. This leads to the famous statement: “Properly written Macintosh
programs will run for hours, even days, without crashing”—a standing joke in
Developer Technical Support for so long we’ve forgotten the original source.
Naturally, if the program is leaking in the main event loop, it will crash sooner than if

MACINTOSH DEBUGGING: A WEIRD JOURNEY INTO THE BELLY OF THE BEAST Autumn 1991

55

it leaks from some rare operation. If it leaks at all, it will ultimately fail and crash
some poor user.

AVAILABILITY
A simple technique that all debuggers support can tell you whether or not the
program is leaking. Do a Heap Total and check the amount of free space and
purgeable space that’s available. Run the program through its paces and then see if
the amount of free space plus purgeable space has dropped. If it has, try again, under
the assumption that the program might have loaded some code or other data the first
time around. If it’s still smaller, it’s likely to be a leak. This approach, of course, only
shows that you have a leak; tracking it down is the hard part. But, hey, you can’t start
tracking till you know it’s there.

There’s a dcmd called Leaks (on the Developer CD Series disc) that runs under both
TMON Pro and MacsBug. The basic premise is to watch all the memory allocations
to see if they get disposed of correctly. Leaks patches the traps NewHandle,
DisposHandle, NewPtr, and DisposPtr. When a new handle or pointer is allocated
on the heap, Leaks saves the address into an internal buffer. When the corresponding
DisposHandle or DisposPtr comes by, Leaks looks it up in the list and, if it finds the
same address, dumps that record as having been properly disposed of. Now all those
records on the Leaks list that didn’t have the corresponding dispose are candidate
memory leaks.

The Macintosh has a lot of fairly dynamic data, so Leaks often ends up getting a
number of things on its list that haven’t been disposed of but are not actually leaks.
They’re just first-time data, or loaded resources. To avoid false alarms, the Leaks
dcmd requires that you perform the operation under question three times, in order to
get three or more items in its list that are similar in size and allocated from the same
place in the program. An operation can be as simple or complex as desired, since
every memory allocation is watched. An example of an operation to watch is to
choose New from a menu and then choose Close, under the assumption that those
are complementary functions. If you do this three times in a row with Leaks turned
on, anything that Leaks coughs out will very likely be a memory leak for that
operation.

The dcmd saves a shortened stack crawl of where the memory is being allocated, so
that potential leaks can be found back in the source code.

One problem with Leaks as a dcmd is that if it’s installed as part of the TMON Pro
startup, it patches the traps using a tail patch. Tail patches are bad, since they disable
bug fixes the system may have installed on those traps. This could cause a bug to
show up in your program that isn’t there in an unpatched system. It’s still probably
worth the risk, given the functionality Leaks can provide. The problem doesn’t exist
with MacsBug, since the traps are patched by the dcmd before the system patches
them.

d e v e l o p Autumn 1991

56

A vastly superior way around this problem is to provide the Leaks functionality as
debugging code, instead of relying on an external tool. By writing an intermediate
routine that acts as a “wrapper” around any memory allocations your program does,
you can watch all the handles and pointers go by, do your own list management to
know when the list should be empty, and dump out the information when it isn’t. By
wrapping those allocations, you avoid patching traps (always a good idea). Be sure to
watch for secondary allocations, such as GetResource/DetachResource pairs. You
may still want to run Leaks when you notice memory being lost, but your wrappers
don’t notice it.

ERRORS CAUGHT
Potential memory leaks, but you knew that already.

CODE SAMPLE

anIcon := GetCIcon(kIconId);
PlotCIcon(aRect, anIcon);
DisposHandle(Handle (anIcon));

This orphans any number of handles, because the GetCIcon call will create several
extra handles for pixMaps and color tables. This is an easy error to make, since the
GetCIcon returns a CIconHandle, which seems a lot like a PicHandle. A PicHandle
is a single handle, though, and a CIconHandle is a number of pieces. Always use the
corresponding dispose call for a given data structure. In this case, the appropriate call
is DisposCIcon.

STRESS ERROR HANDLING
Here the goal is to see how the program deals with less than perfect situations. Your
program won’t always have enough RAM or disk space to run smoothly, and it’s best
to plan for it. The first step is to write the code defensively, so that any potential error
conditions are caught and handled in the code. If you don’t put in the error-handling
code, you’re writing software that never expects to be stressed, which is an
unreasonable assumption on the Macintosh.

AVAILABILITY
Try running the program in a memory-critical mode, where it doesn’t have enough
RAM even to start up. Users can get into this unfortunate situation by changing the
application’s partition size. Rather than crash, put up an alert to tell users what went
wrong, and then bail out gracefully. Try running with just enough RAM to start up,
but not enough to open documents. Be sure the program doesn’t crash and does give
the user some feedback. Try running in situations where there isn’t enough RAM to
edit a document, and make sure it handles them. What happens if you get a memory-
low message, and you try to save? If you can’t save, the user will be annoyed. What
happens when you try to print?

MACINTOSH DEBUGGING: A WEIRD JOURNEY INTO THE BELLY OF THE BEAST Autumn 1991

57

Run your program on a locked disk, and try to save files on the locked disk. The
errors you get back should be handled in a nice way, giving the user some feedback.
This will often find assumptions in the code, like, “I’m sure it will always be run from
a hard disk.”

To see if you handle disk-full errors in a nice way, be sure to try a disk that has
varying amounts of free space left. Here again, if you’ve only ever tested on a big, old,
empty hard disk, it may shock you to find out that your users are running on a
double-floppy-disk Macintosh SE and aren’t too happy that disk-full errors crash the
program. A particularly annoying common error is saving over a file on the disk.
Some programs will delete the old file first and then try to save. If a disk-full error
occurs, the old copy of the data has been deleted, leaving the user in a precarious
state. Don’t force a user to switch disks, but allow the opportunity.

Especially with the advent of System 7, you should see how your program handles the
volume permissions of AppleShare. Since any Macintosh can now be an AppleShare
server, you can definitely expect to see permission errors added to the list of possible
disk errors. Try saving files into folders you don’t have permission to access, and see if
the program handles the error properly.

ERRORS CAUGHT
Inappropriate error handling, unnecessary crashes, lack of robustness, and general
unfriendliness.

CODE SAMPLE

i := 0;
REPEAT

i := i + 1;
WITH pb DO
BEGIN

ioNamePtr := NIL;
ioVRefnum := 0;
ioDirID := 0;
ioFDirIndex := i;

END;
err := PBGetCatInfo (@pb, False);

UNTIL err <> noErr;

This sample is trying to enumerate all files and directories inside a particular
directory by calling PBGetCatInfo until it gets an error. (Note that this sample does
one very important thing: initializing the ioNamePtr field to NIL to keep it from
returning a string at some random place in memory.) The problem with this loop is
that it assumes that any error it finds is the loop termination case. For an AppleShare

d e v e l o p Autumn 1991

58

volume, you may get something as simple as a permission error for a directory you
don’t have access to. This is probably not the end of the entire search, but the code
will bail out. This bug would be found by trying the program with an AppleShare
volume. The appropriate end case would be to look for the exact error of fnfErr
instead or, better, to add the permErr to the conditional.

MULTIPLE CONFIGURATION TESTS
This technique goes beyond merely finding the crash-and-burn bugs to help ensure
that the program will run in situations that weren’t originally expected. Just fixing
crash-and-burn bugs is for amateurs. Professional software developers want their
programs to be as bug-free as possible. As a step toward this higher level of quality,
testing in multiple configurations can give you more confidence that you haven’t
made faulty assumptions about the system. The idea is to try the program on a
number of machines in different configurations, looking for combinations that cause
unexpected results.

AVAILABILITY
Multiple configuration tests should use the Macintosh Plus as the low-end machine
to be sure that the program runs on 68000-based machines and on ones that have a
lot of trap patches. Some of the code the system supports is not available, like Color
QuickDraw. If you use anything like that, you will crash with an unimplemented trap
number error, ID=12. The Macintosh Plus is a good target for performance testing as
well, since it’s the slowest machine you might expect to run on. Its small screen can
also point out problems that your users might see in the user interface. For example,
some programs use up so much menu bar space that they run off the edge of the
screen. That might not be noticed until you run the program on a machine with a
small screen. If your program specifically doesn’t support low-end machines, you
should still put in a test for them and warn the user. Crashing on a low-end machine
is unacceptable, especially when all you needed was a simple check.

Naturally, the multiple configurations include a Macintosh II-class machine to be
sure that assumptions about memory are caught. Because most development is done
on Macintosh II computers, this case will likely be handled as part of the initial
testing. It’s virtually certain that your program will be used on a Macintosh II by
some users.

Using multiple monitors on a single system can point out some window- or screen-
related assumptions. The current version of the old 512 x 342 fixed-size bug is the
assumption that the MainGDevice is the only monitor in the system. Testing with
multiple monitors will point out that although sometimes the main device is black
and white, there’s a color device in the system. Should your users have to change the
main device and reboot just to run your program in color?

MACINTOSH DEBUGGING: A WEIRD JOURNEY INTO THE BELLY OF THE BEAST Autumn 1991

59

By testing the program within a color environment, even if it doesn’t use color, you’ll
find any assumptions about how color might be used or the way bitmaps look. It’s a
rare (albeit lame) program that gets to choose the exact Macintosh it should run on.

Try the program under Virtual Memory to see if there are built-in assumptions
regarding memory.

Use the program under both System 6 and 7. If the program requires System 7, but a
user runs it under System 6, it should put up an alert and definitely not crash. For the
short term, it’s obvious that you cannot assume all users will have either one system
or the other. The number of fundamental differences between the systems is
sufficiently large that the only way to gain confidence that the program will behave
properly is to run it under both systems. Some bugs that were never caught under
System 6 may now show up under System 7. The bugs may even be in your code,
with implicit assumptions about how some Toolbox call works.

Doing a set of functionality tests on these various types of systems will ensure that
you can handle the most common variations of a Macintosh. Tests of this form will
give you a better feeling for the limits of your program and the situations it can
handle gracefully. There’s usually no drawback to getting a user’s-eye view of your
program.

There is a tool called Virtual User (APDA #M0987LL/B) that can help a lot with
these kinds of tests. It allows you to script user interactions so that they can be
replayed over and over, and it can execute scripts on other machines remotely, over
AppleTalk. So, for instance, you could write a script that puts your program through
its paces, and then automatically execute that script simultaneously on lots of
differently configured Macintosh systems.

ERRORS CAUGHT
As discussed above, this technique attempts to flush out any assumptions your code
makes about the environment it’s running in: color capabilities, screen size, speed,
system software version, and so on.

CODE SAMPLE

void Hoohah(void)
{

long localArray[2500];

. . .
}

Naturally, this little array is stack hungry and will consume 10K of stack. On a
Macintosh II machine, this is OK, as the default stack is 24K. On the Macintosh Plus,

d e v e l o p Autumn 1991

THIRD-PARTY COMPATIBILITY TEST LAB
Apple maintains a Third-Party Compatibility Test
Lab for the use of Apple Associates and Partners.
The Lab features many preconfigured domestic
and international systems, extensive networking
capabilities, support from staff engineers, and so
on. If you’re an Apple Associate or Partner, and
you’d like to make a test-session appointment or
get more information, contact Carol Lockwood at

(408)974-5065 or AppleLink LOCKWOOD1.
Or you can write to Apple Third-Party Test Lab,
Apple Computer, Inc., 20525 Mariani Avenue
M/S 35-BD, Cupertino, CA 95014.•

60

the stack is only 8K, so when you write into this array you will be writing over the
heap, most likely causing a problem. This type of easy-to-code bug may not be
caught until testing on a different machine. Merely because the code doesn’t crash on
your machine doesn’t mean it’s correct.

ASSERTS
Asserts are added debugging code that you put in to alert you whenever a situation is
false or wrong. They’re used to flag unexpected or “can’t happen” situations that your
code could run into. Asserts are used only during development and testing; they’ll be
compiled out of the final code to avoid a speed hit.

AVAILABILITY
You could write a function called ASSERT that takes a result code and drops into the
debugger if the result is false—or, better yet, writes text to a debugging window. In
MPW, you can use __FILE__ and __LINE__ directives to keep track of the location
in the source code. Another thing to check for is bogus parameters to calls, sort of
like Discipline. Basically, you want to check any old thing that will help you ensure
consistency and accuracy in your code, the more the merrier, as long as the asserts
don’t “fire” all the time. Fix the bugs pointed out by an assert, or toughen up the
assert, but don’t turn it off. If you just can’t stand writing code to check every possible
error, temporarily put in asserts for the ones that will “never” happen. If an assert
goes off, you’d better add some error-handling code.

The following sample code shows one way to implement ASSERT.

In this example, ASSERT is defined by a C macro. If DEBUG is true, the macro
expands to a block of code that checks the argument passed to ASSERT. If the
argument is false, the macro calls the function dbgAssert, passing it the filename and
line number on which the ASSERT occurs. If DEBUG is false, the macro ASSERT

MACINTOSH DEBUGGING: A WEIRD JOURNEY INTO THE BELLY OF THE BEAST Autumn 1991

61

#if DEBUG
#define ASSERT(what) do { if(!(what)) dbgAssert(__FILE__,__LINE__); } while(0)
#else
#define ASSERT(what) ((void)0)
#endif

void dbgAssert(const char* filename, int line)
{

char msg[256];

sprintf(msg, "Assertion failed # %s: %d", filename, line);
debugstr((Str255)msg);

}

expands to nothing. Making the definition of ASSERT dependent on a DEBUG flag
simplifies the task of compiling ASSERTs out of final code.

ERRORS CAUGHT
This technique catches all sorts of errors, depending, of course, on how you
implement it. Logic errors, unanticipated end cases that show up in actual use, and
situations that the code is not expecting are some of the possibilities.

CODE SAMPLE

numResources = Count1Resources('PICT');
for(i=1; i<=numResources; i++) {

theResource = Get1IndResource('PICT', i);
ASSERT(theResource != nil);
RmveResource(theResource);

}

The problem here is that the code doesn’t account for the fact that Get1IndResource
always starts at the beginning of the available resources. So the first time through, we
get the resource with index 1, and we remove it. The next time through, we ask for
resource 2, but since we removed the resource at the front of the list, we get what
used to be resource 3; we’ve skipped one. The upshot is that only half the resources
are removed, and then Get1IndResource fails. This is a great example of a “never
fail” situation failing. The ASSERT will catch this one nicely; otherwise, you might
not know about it for a long time. The solution is to always ask for the first resource.

TRACE
Trace is a compiler option that causes a subroutine call to be inserted at the
beginning and end of each of your functions. You have to implement the two routines
(%__BP and %__EP), and then the compiler inserts a JSR %__BP just after the
LINK instruction and a JSR %__EP just before UNLK. This gives you a hook into
every procedure that’s compiled, which can be extremely useful. Like asserts, trace is
debugging code and will be compiled out of the final version.

AVAILABILITY
Trace is available in all the MPW compilers and in THINK Pascal. THINK C’s
profiler can be configured and used in the same sort of way.

ERRORS CAUGHT
By being able to watch every call in your program as it’s made, you can more easily
spot inefficiencies in your segmentation and your call chain: If two often-called
routines live in different segments, under low-memory situations you may be
swapping code to disk constantly. If you’re redrawing your window 12 times during

d e v e l o p Autumn 1991

RELATED READING
Debugging Macintosh Software with MacsBug by
Konstantin Othmer and Jim Straus (Addison-
Wesley, 1991) and How to Write Macintosh
Software by Scott Knaster (Hayden Books,
1988).•

62

an update event, you could probably snug things up a little and gain some
performance. You can watch the stack depth change, monitor memory usage and free
space, and so on. Think up specific flow-of-control questions to ask and then tailor
your routines to answer them. Expect to generate far more data than you can look at.
Really get to know your program. Go wild.

CODE SAMPLE

PROCEDURE HooHah
VAR

localArray: ARRAY[1..2500] OF LongInt;
BEGIN

. . .
END; {HooHah}

Once again, we’re building a stack that’s too big for a Macintosh Plus. The stack
sniffer will catch it eventually, but since VBL tasks don’t run very often, you may be
far away by then. Trace could watch for it at each JSR and catch it immediately.

USEFUL COMBINATIONS
All these techniques are powerful by themselves, but they’re even better when used in
combination. Use them as early and as often as you can. Some of them are a bit of
trouble, but that smidgen of extra work is paid back many times over in the time
saved by not having to track down the stupid bugs. Use them throughout
development, right up to the end. Many bugs show up through interactions that only
begin near the end of the process. Diligent use of these techniques is guaranteed to
find many of the easy bugs, so you can spend your time finding the hard ones, which
is much more interesting and worthwhile.

OK, now armed to the teeth with useful techniques, you’re ready to stomp bugs. You
know what to look for and how to flush them out. But you know what? Debugging is
still hard.

MACINTOSH DEBUGGING: A WEIRD JOURNEY INTO THE BELLY OF THE BEAST Autumn 1991

63
THANKS TO OUR TECHNICAL REVIEWERS
Jim Friedlander, Pete Helme, Jim Reekes•

What we’ve described in this article are a number of tools
for doing Macintosh software development. Some of you
are about to say, “Oh, those sound really great, but I
don’t have time to use them—I’m about to ship,” or
whatever. I’d like to tell you a story that a man of sound
advice, Jim Reekes, told me: A young boy walked into a
room and saw a man pushing a nail into the wall with his

finger. The boy asked him, “Hey, mister, why don’t you go
next door and get a hammer?” The man replied, “I don’t
have time.” So the boy went next door, got a hammer,
and came back. The man was still pushing the nail into
the wall with his finger. So the boy hit the man in the head
with the hammer, killed him, and took the nail.

A WORD TO THE WISE FROM FRED

Apple’s A/UX operating system is unique among UNIX systems in that
it merges the Macintosh user interface and application environment
with the multitasking UNIX operating system. Developers can take
advantage of this combination by creating a class of applications called
hybrids. This article describes the techniques necessary to create
Macintosh hybrid applications and demonstrates some of the benefits of
these applications.

The UNIX® operating system began some 20 years ago as a personal project
undertaken by a couple of engineers at AT&T Bell Laboratories. For a number of
technical and business reasons, UNIX emerged as the leading software platform for a
phenomenon called Open Systems. Although this buzzword is batted around in many
different and confusing contexts, it basically refers to systems that adhere to
multivendor industry standards, thus protecting their owner’s investment in software,
training, and so on.

At Apple we recognized the growing importance of the UNIX system in many
segments of the marketplace, particularly for government, higher education, and
large corporate customers. We also understood that the UNIX system’s principal
weakness was its lack of ease of use at both the system and application level. By
grafting the Macintosh user interface onto a full-featured UNIX operating system,
and supporting the bulk of popular Macintosh application software as well, we hoped
to meet the requirements of the Open Systems marketplace and retain all the joys of
working on a Macintosh.

Release 2.0 of the A/UX operating system was the realization of this effort. When
using a Macintosh running A/UX, you can treat it purely as a Macintosh or dive into
whatever level of sophistication with the UNIX system your expertise and/or bravado
allow.

d e v e l o p Autumn 1991

JOHN MORLEY is the manager for development
tools in Apple's A/UX engineering group. John
has been hacking code for so long (20 years) that
he remembers the “good old days” when the
mark of a good programmer was being able to
sight-read punched paper tape. When asked
about the future of software engineering, he is
quick to praise the virtues of object-oriented
programming and his work on the design of a

new language called “Add 1 to COBOL giving
Object COBOL.” In his spare time John loves to
ride his Harley-Davidson motorcycle, plan trips to
the Hawaiian island of Kauai, and visit with the
fish underwater. John’s dream is to work at an
Apple engineering facility on Kauai so that the
blurry line dividing work and play will finally be
dissolved altogether.•

64

JOHN MORLEY

MACINTOSH

HYBRID

APPLICATIONS

FOR A/UX

For the developer, A/UX opens up some new possibilities due to the presence of both
the UNIX system and Macintosh programming paradigms. Macintosh developers
can use A/UX as a gateway from their Macintosh application into the world of UNIX
system services. UNIX system developers can use A/UX to deliver UNIX system
applications that incorporate the benefits of the Macintosh user interface.

HYBRID APPLICATIONS
As the name implies, a hybrid application combines two distinct programming
models within a single application program. In the case of the A/UX operating
system, the two available programming models are the Macintosh Toolbox interface
and the UNIX system call interface.

In addition to the two programming models present in A/UX, there are two distinct
executable file formats: the UNIX executable file format known as Common Object
File Format (COFF) System V.2, and the Macintosh executable file format known as
Object Module Format (OMF).

The term Macintosh hybrid application refers to an application that’s represented in
Macintosh OMF, primarily uses the Macintosh Toolbox interface, but also accesses
the A/UX operating system via the UNIX system call interface.

Alternatively, the term UNIX hybrid application refers to an application that’s
represented in COFF, primarily uses the UNIX system call interface, but also
accesses the functions provided by the A/UX Macintosh Toolbox.

A/UX MACINTOSH TOOLBOX
The Macintosh Toolbox as it is supported under A/UX is documented in Inside
Macintosh Volumes I-V and in A/UX Toolbox: Macintosh ROM Interface. The interface
mechanism that’s used to access the Macintosh Toolbox is the set of A-line trap
instructions reserved for this purpose in the Motorola 680x0 architecture. The high-
level languages supporting Macintosh programming contain features that allow the
programmer to use traditional procedure call notation to access the Macintosh
Toolbox. The compiler then translates those procedure calls into the actual A-line
trap instructions to access the Toolbox.

A/UX SYSTEM CALLS
The UNIX system call interface is documented in the A/UX Programmer’s Reference,
Section 2. The interface mechanism that’s used to access the UNIX system calls is a
CPU trap instruction that causes a context switch between the application program,
which runs in user mode, and the UNIX system kernel, which runs in supervisor
mode. The A/UX C runtime library contains procedures to access each of the UNIX
system calls supported by A/UX.

MACINTOSH HYBRID APPLICATIONS FOR A/UX Autumn 1991

65

Macintosh applications running on A/UX may also access the UNIX system calls. An
MPW library (libaux_sys.o) that contains procedures for each UNIX system call,
analogous to the ones in the A/UX C runtime library, is included on the Developer
CD Series disc for this issue. By calling routines from this library a Macintosh
application becomes a Macintosh hybrid application with access to the capabilities
provided by the UNIX system.

WHY CREATE MACINTOSH HYBRID APPLICATIONS?
There are several reasons why you might want to create a Macintosh hybrid
application. Here are some examples:

• to create a Macintosh style front-end interface for an existing
character-based UNIX system application

• to access UNIX system networking from a Macintosh application

• to execute UNIX system applications and utilities from a
Macintosh application

The class of applications that act as front ends to existing UNIX system programs is
of particular interest. The UNIX operating system has been around for two decades
and a large body of software exists that can be ported easily from one UNIX system
to another. The problem with these applications is that they were designed to work
with character-oriented display devices.

Most people who are familiar with the Macintosh user interface are reluctant to
sacrifice the ease of use that applications designed for the Macintosh provide. One
way to “dress up” these older UNIX system applications is to provide a Macintosh-
style user interface via an application that acts as a front end to the existing character-
based application. While not as elegant a solution as redesigning the application with
the new user interface in mind, the front-end approach can usually be implemented
in less time and at less expense.

MULTITASKING AND THE MACINTOSH
A developer creating a Macintosh hybrid application needs some understanding of
Macintosh multitasking and how it’s implemented by A/UX. If not properly designed,
a Macintosh hybrid application can easily cause the Macintosh Toolbox environment
within A/UX to become deadlocked. Following the guidelines given here can keep
the number of catastrophic failures during development to a minimum.

The Macintosh was designed to be a personal computer. This resulted in emphasis on
the interaction between a single user and the computer while performing a single
task. With the advent of MultiFinder the Macintosh became capable of switching
between two or more active applications as well as performing some limited
processing in the background while the user interacts with any application.

d e v e l o p Autumn 1991

The MPW library libaux_sys.o is also on the
A/UX Developer’s Tools set of CD-ROM discs
(APDA #B0596LL/A).•

In Macintosh System 7, MultiFinder is
integrated into the system as the Process
Manager. This article refers to MultiFinder, since
A/UX is currently based on Macintosh System 6
software.•

66

To avoid major incompatibilities with the existing base of application software,
MultiFinder was cleverly designed to implement multitasking on top of the existing
Macintosh programming model. This style of multitasking is called cooperative
multitasking. The name conveys the requirement that applications must provide the
system with a cue indicating when it’s reasonable to interrupt them.

The UNIX operating system, on the other hand, was designed to control
minicomputers that normally support many users at once. These computers require
the operating system to preemptively schedule tasks for execution using a well-
defined scheduling algorithm. A/UX fully implements this style of preemptive
multitasking for all UNIX processes.

To implement the MultiFinder method of cooperative multitasking within the
preemptive multitasking model of the UNIX system, a special thread of control is
defined for all processes that access the A/UX Macintosh Toolbox. The A/UX kernel
associates one and only one process at a time with the token of control for the
Macintosh Toolbox. The token of control is passed in the same way that applications
are activated under MultiFinder.

THE PERILS OF MULTITASKING
An unsuspecting programmer creating a Macintosh hybrid application can easily be
tripped up by lack of knowledge about the multitasking environment. Consider the
following program:

#include <StdIO.h>
main()
{

char buf[100];
int len;

write(1,"Type Something\n",15);
len = read(0,buf,100);
write(1,"You Typed: ",11);
write(1,buf,len);
write(1,"\n",1);

}

This rather primitive piece of code can be compiled with MPW C and linked to
produce an MPW tool. When run, it writes a prompt to the active MPW window
and waits for keyboard input terminated by the Enter key. The program then echoes
the input to the window and terminates. During the time that the program is waiting
for keyboard input, you can switch MultiFinder layers by clicking in a different
application window or choosing from the Apple menu or MultiFinder application
icon in the menu bar.

MACINTOSH HYBRID APPLICATIONS FOR A/UX Autumn 1991

67

This same program can be compiled and linked with the A/UX C compiler (cc or
c89) to produce a native COFF application. When run within a CommandShell
window it exhibits the same behavior as when compiled with MPW C, including the
ability to switch MultiFinder layers while waiting for input from the keyboard.

The program can be modified so that when compiled with MPW it becomes a
Macintosh hybrid application. (See “Compiling and Linking Macintosh Hybrid
Applications” for some useful tips.) This is done by substituting calls to the A/UX
system call routines in place of the standard MPW C runtime routines, as follows:

#include <StdIO.h>
#include <LibAUX.h>
#include </:usr:include:fcntl.h>
main()
{

char buf[100];
int len, fd;

fd = auxopen("/dev/ttyC1",O_RDWR);
(void) auxwrite(fd,"Type Something\r",15);
len = auxread(fd,buf,100);
(void) auxwrite(fd,"You Typed: ",11);
(void) auxwrite(fd,buf,len);
(void) auxwrite(fd,"\r",1);
(void) auxclose(fd);

}

The program now opens the device associated with the window CommandShell 1
and performs the I/O to that window. However, this program contains a serious
flaw—the call to auxread will result in a deadlock situation, because as yet there is no
data available to be read from the file descriptor associated with the CommandShell
window, and the A/UX read system call blocks when data is not available. As a result,
the entire MultiFinder environment running on A/UX is suspended. This makes it
impossible to switch to CommandShell 1 and enter data via the keyboard.

In this example it’s not too difficult to solve the problem of blocking. The A/UX
system call interface allows you to perform I/O that’s nonblocking, otherwise referred
to as asynchronous I/O. You can use the A/UX system call fcntl to change the blocking
status of a UNIX system file descriptor. Here’s how to modify the previous example
so that the deadlock situation is avoided:

#include <StdIO.h>
#include <CursorCtl.h>
#include <LibAUX.h>
#include </:usr:include:fcntl.h>

d e v e l o p Autumn 1991

Blocking is the suspension of a process pending
completion of some external event—for example,
data becoming available.•

68

main()
{

char buf[100];
int len, fd, flags;

/* Open the device associated with CommandShell 1's window.*/
fd = auxopen("/dev/ttyC1",O_RDWR);
/* Get the current flags for this file descriptor.*/
flags = auxfcntl(fd,F_GETFL,0);
/* Add the O_NDELAY flag to the flags that are already set.*/
(void) auxfcntl(fd,F_SETFL,flags | O_NDELAY);
(void)auxwrite(fd,"Type Something\r",15);
while ((len = auxread(fd,buf,100)) < 1)

SpinCursor(1);
(void)auxwrite(fd,"You Typed: ",11);
(void)auxwrite(fd,buf,len);
(void)auxwrite(fd,"\r",1);
/* Reset the flags to their original state.*/
(void)auxfcntl(fd,F_SETFL,flags);
(void)auxclose(fd);

}

MACINTOSH HYBRID APPLICATIONS FOR A/UX Autumn 1991

69

There are a few things you should know in order to
compile and link a Macintosh hybrid application:

• Use the include file LibAUX.h to define the system calls
and their prototypes (especially if you’re using C++). For
example:

#include <LibAUX.h>

• You may need to include A/UX system header files for
some of the system calls. These must be specified using
the complete pathname in the Macintosh file system
format. You must include LibAUX.h before including any
A/UX system header files. For example:

#include <LibAUX.h>
#include </:usr:include:fcntl.h>

For information on when to include header files refer to
A/UX Programmer’s Reference, Section 2, and A/UX
Development Tools, Chapter 2.

• The meanings of the special characters \n and \r are
reversed between MPW C and A/UX C. In general,
use \r within strings that are passed to A/UX system
calls.

• It’s a good idea to have the application test to see that
A/UX—not the Macintosh operating system—is running.
To do this, call function AUXisRunning, which returns a
nonzero value if A/UX is running or a zero value if it’s
not.

• You must link with the library libaux_sys.o to access the
system call routines. The default filename for this library
is

{MPW}Libraries:AUX System Calls: libaux_sys.o

This library name should be included in addition to any
other library names and options you usually include with
your Link command.

COMPILING AND LINKING MACINTOSH HYBRID APPLICATIONS

The A/UX system call fcntl is used first to get the file descriptor flags associated with
the CommandShell window and then to set the O_NDELAY bit in the flags word.
The O_NDELAY bit determines whether reads from the file descriptor will block if
data is not available. With this bit set, when data is not available the value returned by
the read system call is 0. The call to the MPW library routine SpinCursor creates idle
time for the layer switch to occur. The last call to auxfcntl resets the flags to their
original state.

If you want to try this example hybrid application, open a CommandShell window
under A/UX, type “sleep 1000” in the window, and then run the example from the
MPW shell.

HELPFUL UTILITY FUNCTIONS
For many types of potential Macintosh hybrid applications, particularly the front-end
variety, the only UNIX system functionality necessary is the ability to execute a
UNIX process and communicate with it. Toward this end I’ve included in the system
call library several utility routines that are at a higher level than the basic system calls.
A description of these utility routines follows.

AUXFORK_PIPE
The auxfork_pipe function executes several system calls to create a new UNIX
process. In UNIX system parlance, the new process is the child and the process that
created it is the parent. The definition for this function is

Handle auxfork_pipe(int toparent, int tochild, void (*childtask)(),
void *childarg);

The parameters toparent and tochild are flags that indicate whether or not to
establish a communication pipe in either direction between the parent and child
processes. A zero value signifies that no pipe should be created and a nonzero value
signifies that a pipe should be created.

The parameter childtask is a function pointer used to identify a function to be called
by the child process when the child process is first created. The parameter childarg is
a generic pointer passed to the function pointed to by childtask so that you can vary
the behavior of that function. Typically, the function pointed to by childtask executes
one of the variants of the exec system call and uses the childarg pointer to identify the
filename of the program to be executed.

The value returned by this function is either a handle to a structure that holds some
global information about the child process or a null pointer if the call was
unsuccessful. The definition for this structure is as follows:

d e v e l o p Autumn 1991

For details on the read system call see
A/UX Programmer’s Reference, Section 2.•

70

struct childinfo {
/* file descriptor for parent->child communication pipe */
int tochild;
/* file descriptor for child->parent communication pipe */
int toparent;
/* process ID of the child process */
int pid;

};

The file descriptor for the toparent communication pipe has the O_NDELAY bit set
in its flags word so that reading from this file descriptor won’t cause a block when
data is not available.

AUXCLEANUP_FORK_PIPE
An additional utility function is used to clean up after the child process
terminates—the auxcleanup_fork_pipe function. Its definition is

int auxcleanup_fork_pipe(Handle globals);

It takes one parameter, which is the handle returned previously by the auxfork_pipe
function. You must be sure that the child process has terminated or is about to
terminate before calling auxcleanup_fork_pipe. If you’re not sure that the child
process will terminate, you can call auxkill to send the child process a termination
signal.

AUXFGETS
The auxfgets function uses the read system call to read a string of characters from an
open UNIX system file descriptor. The definition for this function is

char *auxfgets(char *buf, int count, int file, int timeout);

The buf parameter is a pointer to space in which to store the characters read. The
count parameter specifies the maximum number of characters to read. The file
parameter is the UNIX system file descriptor from which to read. (The auxfgets
function described here differs from the standard fgets function in that it uses a file
descriptor rather than a stream pointer.) The timeout parameter indicates the
maximum number of times to retry the read system call when data is not
available.

This function reads characters until one of the following conditions occurs:

• A newline character (0x10) is read.

• The number of characters specified in the count is reached
(reserving room for a null character to mark the end of the
string).

MACINTOSH HYBRID APPLICATIONS FOR A/UX Autumn 1991

71

• The retry count specified in the timeout parameter is reached
without any new data being available to read. If the value of
timeout is 0, auxfgets retries indefinitely.

The newline character, if any, is stored at the end of the character string. In any case,
a null character is appended after the last character stored to mark the end of the
string.

AUXSYSTEM
The auxsystem function works much like the UNIX library routine named system. To
use this function in a Macintosh hybrid application, the application must either be
linked as an MPW tool or linked with the Simple Input/Output Window (SIOW)
package, which implements standard I/O streams for Macintosh applications. The
definition for this function is

int auxsystem(char *command);

The parameter is a pointer to a character string that contains a valid UNIX system
shell command (Bourne shell syntax). This function executes the given command and
redirects any output that the command produces on the standard output or standard
error streams to the SIOW standard output and standard error streams.

The MPW tool Unixcmd included on the Developer CD Series disc is an example of a
tool that uses the auxsystem function. This tool executes the UNIX command given
on the command line for Unixcmd. The standard output and standard error streams
produced by the UNIX command are sent to the MPW window from which
Unixcmd was executed, or they can be individually redirected using the MPW shell’s
redirection syntax. The Unixcmd tool also sets the MPW variable {Status} to the exit
status of the UNIX command, so that MPW scripts can test the exit status.

THE UNIX MAIL READER
To demonstrate some of the techniques used to create Macintosh hybrid applications,
we’ll look at an example front-end application for the Berkeley UNIX system mail
reading program, mailx. The application is implemented using a HyperCard stack
with HyperTalk® scripts that access HyperCard XFCNs.

The interface for the mail reader consists of two cards in a HyperCard stack. The
first card is called headers and is used to display a list of header lines identifying the
available mail messages. The second card is called message and is used to display the
content of a selected message.

The UNIX Mail Reader example is provided solely to illustrate the technical issues
involved in creating an A/UX Macintosh hybrid application. It is not an example of
good user interface design, since it was written by a UNIX hacker (yours truly) with

d e v e l o p Autumn 1991

72

little knowledge of Macintosh user interface guidelines (a little knowledge is a
dangerous thing).

HYPERCARD XFCNS
A HyperCard XFCN is a code segment that the HyperCard application calls to
perform a function that can’t be accomplished with the standard HyperCard
commands. By providing HyperCard with XFCNs to access UNIX system calls,
you can create Macintosh hybrid applications that are implemented by HyperTalk
scripts. Five different XFCNs are used by the UNIX Mail Reader to create a
HyperCard front end to the UNIX mail reading program. The XFCNs used are as
follows:

• forkpipexfcn, which calls the auxfork_pipe utility function

• fgetsxfcn, which calls the auxfgets utility function

• fgetfxfcn, which makes multiple calls to the auxfgets utility
function

• writexfcn, which calls the auxwrite utility function

• cleanupxfcn, which calls the auxcleanup_fork_pipe utility function

The source code for these XFCNs is included on the Developer CD Series disc to serve
as a model for other XFCNs you may create.

THE ENTRY SCRIPT
When the UNIX Mail Reader stack is opened, the HyperTalk script associated with
the headers card is executed.

on openStack
global global_handle, linecount
put empty into cd field one
put empty into global_handle
put forkpipexfcn("/usr/bin/mailx") into global_handle
- - A real application would give an error message here.
if global_handle is empty then go to home
- - Call fgetsxfcn to read first line of mailx output.
put fgetsxfcn(global_handle,2500) into buf
- - Check if any mail is available.
if word 1 of buf is "No" then

- - Inform user there’s no mail.
put cleanupxfcn(global_handle) into status
put empty into global_handle
Beep 1
answer "Sorry, no mail"
go to home

MACINTOSH HYBRID APPLICATIONS FOR A/UX Autumn 1991

73
For more information about HyperTalk
and XCMDs refer to the Apple HyperCard
Script Language Guide: The HyperTalk
Language.•

else
- - Inform user there’s mail.
play "mail.sound"
- - Discard 2nd line of mailx output.
put fgetsxfcn(global_handle,2500) into buf
- - Read available mail headers.
repeat with linecount = 1 to 9999

put fgetsxfcn(global_handle,250) into buf
- - Check if done.
if length(buf) = 0 then exit repeat
put buf into line linecount of cd field one

end repeat
- - Calculate number of messages.
subtract 1 from linecount

end if
end openStack

After some initialization, the XFCN forkpipexfcn is called to start execution of the
Berkeley UNIX system mail reader located in the file /usr/ucb/mailx. Then, the
XFCN fgetsxfcn is called to read the first line of output from the mailx program into
the HyperTalk variable buf.

Notice that the second parameter to fgetsxfcn is the value 2500. This parameter is the
timeout count described in the definition of auxfgets. The value 2500 was derived by
observing the longest time it normally takes for the mail program to begin execution
and produce the first line of output.

The script tests the string that was just read to see if it’s the special message that
indicates no mail messages. If it is, the script notifies the user and exits.

If the first message is other than the no-mail message, the script reads the header for
each message and places it sequentially in the message headers field on the headers
card. The message headers begin with the third line of output from the mailx
program, so the script reads and discards the second line of output from the mailx
program. After the final message is read, the global HyperTalk variable linecount is
set to the total number of messages. The final message header is identified by
checking to see if the last fgetsxfcn call returned no data, indicating a timeout.

Figure 1 shows the headers card of the UNIX Mail Reader example.

THE EXIT SCRIPT
When the user clicks the Home button, the UNIX Mail Reader stack exits and the
following script associated with the headers card executes:

d e v e l o p Autumn 1991

74

on closeStack
global global_handle
if global_handle is not empty then

answer "Update Message Queue?" with "Yes" or "No"
if It is "No" then

put writexfcn(global_handle,("x" & lineFeed)) into writecount
else

play "empty trash (flush)"
put writexfcn(global_handle,("q" & lineFeed)) into writecount

end if
put cleanupxfcn(global_handle) into status
put empty into global_handle

end if
put empty into cd field one
play "bye.sound"

end closeStack

MACINTOSH HYBRID APPLICATIONS FOR A/UX Autumn 1991

75

Figure 1
Headers Card With Sample Mail Headers

This script asks if the user wants to update the message queue, which permanently
deletes any messages marked for deletion. Depending on the user’s response, the
script sends either the exit command (indicated by the letter x) or the quit command
(indicated by the letter q) to the mailx program to terminate the session. The
commands are sent to the mailx program by writing to the communication pipe with
the XFCN writexfcn. The special character lineFeed is appended to the command to
simulate the user pressing the Return key.

The script then calls cleanupxfcn to perform the termination processing. This is safe
now, since the mailx program will be terminating as a result of the exit or quit
command just sent.

THE SELECTION SCRIPT
When the user clicks one of the message headers displayed in the first card of the
stack, the following script is executed to display the selected message in the second
card of the stack. Figure 2 shows a message card with a sample message.

on mouseUp
global global_handle, linecount, vline
put (item 2 of the clickLoc) + (the scroll of cd field one) into vline
divide vline by the textHeight of cd field one
put trunc(vline+.6) into vline
if vline <= linecount then

select line vline of cd field one
if the textStyle of the selectedLine is italic then

beep 1
else

put writexfcn(global_handle,(vline & lineFeed)) into writecount
play "ZoomUp"
go to card 2
put fgetfxfcn(global_handle,250) into cd field msgx

end if
else

beep 1
end if
select empty

end mouseUp

This script computes the line number of the selected message, checks to see that it’s a
valid message number, and then sends this value to the mailx program, causing that
message to be displayed. The call to fgetfxfcn reads multiple lines of output into a
field with one XFCN call. This is much faster than calling fgetsxfcn several times and
inserting each line into the field.

d e v e l o p Autumn 1991

76

THE DELETE BUTTON SCRIPT
Users viewing the content of a message in the second card of the stack have the
option of marking the message for deletion by clicking the Delete button. That
causes the following script to be executed:

on mouseUp
global global_handle, vline
play "Cash Register"
put writexfcn(global_handle,("d" & lineFeed)) into writecount
put empty into cd field msgx
go to card 1
select line vline of cd field one
set textStyle of the selectedLine to italic

end mouseUp

This script sends the delete command (the letter d) to the mailx program, clears the
message field on the second card, and then changes the text style of the header for

MACINTOSH HYBRID APPLICATIONS FOR A/UX Autumn 1991

77

Figure 2
Message Card With a Sample Message

that message to italic. This is an indication to the user that the message has been
marked for deletion. The text style is checked in the selection script to prevent access
to a deleted message.

PARTING THOUGHTS
I hope this article has given you some insight into the possible uses of programming
Macintosh hybrid applications for A/UX, as well as some helpful techniques for doing
this on your own. Although HyperCard was used to quickly implement the UNIX
Mail Reader, the same techniques apply to using UNIX system calls from a
Macintosh application written without HyperCard.

The A/UX Developer’s Tools set of CD-ROM discs (APDA #B0596LL/A) contains
more tools for dealing with both UNIX and Macintosh hybrid applications on A/UX.
Developers interested in exploring this programming technique in depth may want to
acquire that product to supplement the library and examples from this article.

d e v e l o p Autumn 1991

THANKS TO OUR TECHNICAL REVIEWERS
Kent Sandvik, Joe Sokol, John Sovereign, Kristin
Webster•

78

REFERENCES
• A/UX Programmer’s Reference, Section 2, Apple Computer, 1990.

• A/UX Development Tools, Chapter 2, Apple Computer, 1991.

• A/UX Toolbox: Macintosh ROM Interface, Apple Computer, 1990.

• Apple HyperCard Script Language Guide: The HyperTalk Language, Addison-
Wesley, 1988.

• Inside Macintosh, Volumes I-V, Addison-Wesley, 1986.

THE VETERAN NEOPHYTE Autumn 1991

79

So here I am in Tucson, Arizona, standing in a dry
streambed reeking of sunscreen with a notebook
computer contraption in my hands and a walkie-talkie
hooked on my pants and a squawking headset barely
staying on my head, watching people tying white
cotton string from one tree to another. Every time I
move my head the headset slips forward a little more,
but my hands are completely filled with this device, a
fairly delicate thing due to the wire and duct tape and
Velcro attachments, and I can’t find any place safe to
put it down. So I’m trying not to move my head, and
I’m trying to look like an intelligent and purposeful
person at the same time. It’s hard.

I had written a little piece of the software that’s running
on the notebook computer, which is a GRiDPAD (pen-
based, small, DOS). There are three others like it
scattered around the canyon I’m in. Each has a tiny
wireless modem and a battery stuck to the back, and
each is running a sort of collaborative spreadsheet: data
entered in one is quickly picked up by all the others. I’ll
call this contraption The Device from now on, to avoid
funny capitalizations.

This event is an experiment in wireless communication
and in collaboration at a distance. The main
participants are a bunch of elementary school kids and
their science teachers. They’re here to study the
canyon, and are split into four groups, each of which is
being deployed to a different spot to take

environmental measurements (pH, temperature, and so
on) and to count species. Each group has one of The
Devices, so once we’re set up everybody will be able to
see everybody else’s data all the time. Each group also
has a walkie-talkie, so they’ll be able to talk to one
another. We’ve just arrived for the very first field trials.

The string people have finished, neatly delineating the
area that is our group’s responsibility. The kids
energetically begin fooling with thermometers and vials
and yardsticks and—everyone’s favorite—sling
psychrometers. I finally find a rock flat enough to put
The Device on, just as the headset lets go and slips over
my eyes, pulling the earplug out of my ear. Gathering
together the shredded remains of my dignity, I
disentangle the headset from my ears and sunglasses,
put it back on my head, and reinsert the little earplug in
my ear. Who designed this thing? It just won’t stay put.
Maybe my head is a weird shape, or maybe this headset
isn’t meant to be used with sunglasses on. I take off the
headset, take off my sunglasses, put the headset back
on, and it’s just as bad. Must be my head.

There are some very large issues that are touched on by
this experiment, directly or indirectly: the implications
of wireless communication, the nature of collaboration,
and the nature of communication itself. I’ll take a closer
look at these issues, with the assumption up front that
the goal is to provide technology that can enable—and
hopefully enhance—collaboration at a distance.

First of all, what does wirelessness mean exactly? At
face value, not much: it means that the wires are gone.
The information flow hasn’t changed; it’s just using a
different medium to flow in (or on, or around, or
whatever). One person involved in this project
compared the advent of wireless communication to
taking down the fence around a herd of captive buffalo.
Will they burst from their former confinement,
joyously kicking their heels (I’m not sure if buffalo have
heels, but you get the idea) and searching out new
limits to conquer? Or will they not even notice, so used
to the way things were that they can’t conceive of
anything else? That would be like some large,
unimaginative corporation’s vision of wirelessness: the

DAVE JOHNSON was born in southern California, but moved
elsewhere as a small boy, so he’s never even been on a surfboard
and doesn’t say “totally” unless he means it. He did most of his
growing up in a suburb of Chicago (and consequently has strong
opinions about pizza and snow shovels), but was dragged kicking
and screaming back to southern California at the age of seventeen.
As soon as he could, he left for college at Humboldt State
University, which was as far as he could get from San Bernardino
and still be in the California school system. He and his wife Lisa

now make their home in San Francisco with their two dogs and
two cats (which is, incidentally, the legal limit on animals in a San
Francisco household). They’re currently looking for a big house
elsewhere.•

THE VETERAN
NEOPHYTE

DON’T FENCE
ME IN

DAVE JOHNSON

wires vanish, which saves a little money and hassle
setting up the office, but nothing else changes. Clearly
an approach like this is doesn’t take advantage of the
situation.

Wireless communication adds a whole new degree of
freedom to human communication, that of space. It
makes communication position-independent, it
unsticks people geographically. This is potentially a far-
reaching freedom if high-bandwidth wireless
communication becomes pervasive. Many existing
institutions—schools, businesses, and so on—that
largely evolved from the need to have a central physical
place are now freed up, just like the buffalo, and have
lots of new territory to explore. Maybe there are other
ways of doing things without people’s bodies in
attendance that we haven’t thought of yet, since we
haven’t had the opportunity. But will people take
advantage of this new freedom? Or are we too cozy, too
entrenched in our old familiar ways to transcend them?

Periodically pushing my headset back onto my head, I
look around: chaos reigns, but it’s a good, busy,
productive sort of chaos. The kids are measuring
things, counting plants and birds and spiders,
clambering around in the brush, chattering incessantly
on their walkie-talkies, and entering data into The
Device; the video crew—ostensibly documenting the
event but mostly invoking Heisenberg’s Uncertainty
Principle—are running around poking their cameras
and microphones at people; the adults are watching
carefully, coordinating when necessary, commenting on
the action over their own walkie-talkie channel.

One thing that surprises me about how the kids are
relating to The Device is that they pretty much take it
for granted. I guess I expected them either to ignore it
or to be amazed by it, but they seem to just take it in
stride, and use it when it’s appropriate. It occurs to me
that that’s probably the best reaction we could hope for,
to see it for what it is—a tool—and use it accordingly.
And yes, by golly, the kids are collaborating a little. It’s
hard to tell, though, whether they’d collaborate on
their own. They know that’s what the adults are

looking for, and every school kid learns early on to do
what they think their teachers want.

What The Device provides very nicely is a kind of
shared data space. It’s as if each group has a magic
looking glass that lets them all see the same thing,
despite being physically separated. What The Device
doesn’t provide is a communication channel that lets
them discuss the data with each other. The walkie-
talkies provide that channel, although in a stilted
manner. To collaborate effectively, you really need both
kinds of communication: the communication of data
(the shared thing you’re collaborating on) and the
communication of instructions (the conversation about
the thing you’re collaborating on).

One really interesting point (hotly debated in the post-
study debriefing) is the importance of including voice
capabilities in new communication/collaboration
hardware. There is no question that voice, or more
generally language, is the primary medium we use to
communicate. The debate pivots on whether voice
should be provided de facto in the technology or
whether there is some new, as-yet-undiscovered mode
of communication that technology can provide us that
would render voice communication unnecessary, or at
least optional. Pretty heady stuff, no? We’re talking
about a quantum leap here, a revolutionary change
away from the familiar. Using voice only because it’s the
way we do it now might hinder or prevent our moving
forward into the grand and glorious communication
revolution.

On the other hand, why should we not provide voice?
Voice compression technology is advancing quickly
because of cellular demand. Good-quality voice can be
transmitted at 4800 bits per second now, and soon it
will be 2400. Those bandwidths are easy and getting
easier and cheaper all the time. Full-duplex real-time
voice transmission (in other words, a conversation) also
provides a huge degree of familiarity to people, and it
really adds to the feeling of being connected. Isn’t that
the goal? To be apart but not to feel apart? Voice alone
provides lots of that “in the same space” kind of feeling.

d e v e l o p Autumn 1991

The ideas and issues discussed in this column did not
arise in a vacuum. I’d like to acknowledge the others who inspired
me to think about these things and provided the grist for the mill. In
particular, thanks are due to Wayne Grant and Rick Borovoy, who
dreamed up this project in the first place and were kind enough to
let me participate and observe. Also, I want to thank everyone who
attended the post-study debriefing meeting: Tyde Richards, Kathy
Ringstaff, Brian Reilly, and Rifaat “Rick” Dayem. It was at that
meeting that I really began to see the implications and issues

surrounding wireless communications and communication
technology in general.•

80

THE VETERAN NEOPHYTE Autumn 1991

81

My thoughts seem to keep circling back to one central
question: should we use this radical new wireless
technology to adopt (and then attempt to improve
upon) the way people communicate and collaborate
now, or should we throw out all the rules and go for
something really new? If you’re interested in selling
products today, probably you want something like the
former. If you’re a wild-eyed visionary intent on
changing the world, you’ll tend toward the latter. And
in reality, let’s face it, you always end up with something
in between.

In my humble and inexpert opinion, we ought to build
from familiarity. I don’t really have any facts or studies
to back me up, just personal observations and a strong
feeling that building from existing modes of
communication is the most effective way to get what we
want. And I don’t think that this method necessarily
precludes radical advances. Look at the Macintosh. Few
people would argue against the fact that it was a radical
leap from any other machine. But the very thing that
made it radical was its familiarity, its humanness.
Humanness in a machine is extremely powerful, and
extremely attractive to people.

Maybe I just have a soft spot for humans, being one
myself, but I tend to give them a lot of credit. The
advent of wireless communication does remove a fence,

but it is a fence around people, not buffalo. People
explore, it’s one of the things they’re best at. They
won’t stay huddled in the center of the corral for long.
And I also believe that people already know how to
collaborate. If you and I are standing next to each other
looking at a piece of paper that we’re working on
together, we won’t have trouble proceeding. So if we
can provide communication tools that are truly
transparent, I think that collaboration will fall out
automatically. Now don’t get me wrong. I know that
there’s plenty of room for improvement in the way
people work together, but I think the communication
tools need to be available before we can make much
progress in collaboration. And yeah, I really think we
should provide voice, if we can. If there are better ways
to communicate, I suspect it will be quite a while until
we find them, and in the meantime voice is the best
we’ve got and really does make people feel connected.

It will of course take a while for all these things to come
to fruition, but we are tantalizingly close. I think the
best way to proceed is to build what we can right now,
and get it out into the world as quickly as possible.
Then, to learn how to make it better, we should watch
very closely what people do with it. This way the tools
will evolve as natural extensions of the people who use
them, which seems like a good goal to me. Maybe if the
headset makers had followed this approach . . .

Q When my application is running, it relies on the MultiFinder’s “puppet strings” (which
choose Open from the application’s File menu and suppress the SFGetFile dialog) to
open a document that was double-clicked in the Finder. Why doesn’t this work under
System 7? The high-level event-aware bit in my 'SIZE' resource is clear.

A System 7 will not pull puppet strings for an application that makes use of the
System 7 Standard File routines, such as StandardGetFile and CustomGetFile,
nor will it pull them if the application’s high-level event-aware bit is set.

If you update an older application to take advantage of any System 7 features,
be sure to also add support for the 'odoc' and other required Apple events.
Sample code showing how to support the required Apple events is available on
the System 7 Golden Master CD.

Q Why does Gestalt tell me I have Color QuickDraw features on a non-Color
QuickDraw machine?

A The gestaltQuickdrawFeatures ('qdrw') selector, used for determining your
system’s Color QuickDraw features, has a bug that causes it to tell you
incorrectly that noncolor machines have color. The fix is quite simple: Gestalt
has another selector, gestaltQuickdrawVersion ('qd '), which simply returns the
QuickDraw version number. This version number is < gestalt8BitQD for
classic QuickDraw and >= gestalt8BitQD for Color QuickDraw (see Inside
Macintosh Volume VI, page 3-39, for more information). The trick is to ask
Gestalt for the QuickDraw version first; once you’ve determined that you have
Color QuickDraw, the 'qdrw' selector is OK to use to find out specifics.

Q What do we return to the Apple event handler if we get an application error while
processing a standard event, Edition Manager event, or custom Apple event for
commands and queries? Probably not errAENotHandled, since that means we didn’t
handle the event, which is different from trying to handle it and failing. Would it be
errAEFail? What if we want to return more specific error information? Do we define
our own errors, or try to use Apple’s errors such as memFullErr or parmErr?

A You pass back errAENotHandled, because it’s true, and because some simple
applications will not be able to handle anything more than that. What you can
also do, and what most commercial applications will do (particularly
applications that want to be scripting savvy), is add errn and errs parameters to
the reply record for that event (as shown on page 6-49 of Inside Macintosh
Volume VI). You can be as descriptive as you like in the text—the more the
better, in fact, since this text will be seen at the user level usually. The errn
value you pass back can be the system error number; then the sending program
may be able to recover and try again.

d e v e l o p Autumn 1991

Kudos to our readers who care enough to
ask us terrific and well thought-out questions. The
answers are supplied by our teams of technical
gurus; our thanks to all. Special thanks to Pete
“Luke” Alexander, Sonya Andreae, Mark
Baumwell, Mike Bell, Jim “Im” Beninghaus, Rich
Collyer, Neil Day, Tim Dierks, Marcie “MG”
Griffin, C.K. Haun, Pete Helme, Dave Hersey,
Dennis Hescox, Jim Luther, Joseph Maurer, Jim

Mensch, Guillermo Ortiz, Craig Prouse, Dave
Radcliffe, Greg Robbins, Jack Robson, Kent
Sandvik, Paul Snively, Bryan “Stearno” Stearns,
Forrest Tanaka, Vincent Tapia, John Wang, and
Scott “Zz” Zimmerman for the material in this
Q & A column.•

82

MACINTOSH

Q & A

Q According to the QuickTime Movie Toolbox documentation, “The Movie Toolbox
maintains a set of global variables for every application using it.” How much global
memory is required? Our application is shy on global data space.

A The information maintained is not kept with the application’s global variables.
The handle created by the EnterMovies call is stored in the system heap, not in
the application heap. You don’t have to worry about how much space to allocate
in your application. This initialization does not affect your A5 world either.

EnterMovies initializes everything, including setting up the necessary data
space and creating a handle to it. When you’re done, be sure to make a call to
ExitMovies to clean up the QuickTime data.

If an application makes multiple calls to EnterMovies, a different set of
“globals,” or data area, is set up for each call. A call to ExitMovies should be
made before exiting the area that made the call to EnterMovies. For example,
an application that uses QuickTime will call EnterMovies and set up the
QuickTime world. Then an external may be called upon that wants to use
QuickTime. This external would have to make a call to EnterMovies to set up
another QuickTime world for its use. Before leaving, the external should call
ExitMovies to clean up after itself. The application can then continue to use
QuickTime with the original world it set up.

Q Why does the longword at location $0 get changed to 0x40810000 at every trap?

A In System 7, the Process Manager slams a benign value into location $0 to help
protect against bus errors when an application inadvertently dereferences a
NIL pointer. (There’s no bus-error checking on writes to ROM, so the “benign
value” is usually ROMBase+$10000.)

If you’re debugging, you want the opposite effect: you want these inadvertent
accesses to “cause” bus errors. If you put a different value in location $0 before
the Process Manager starts up (that is, from MacsBug or TMON initialization,
or from an INIT like EvenBetterBusError), it will force that value instead. For
more information, see the “Macintosh Debugging” article in this issue.

Q I’m filling a large buffer with one SCSIRead call. What happens if the Macintosh runs
under System 7 with virtual memory (VM) and parts of my buffer are swapped out?

A Parts of your buffer must not be swapped out. Before calling SCSIGet, you
must ensure that all code and buffers accessed while the SCSI bus is busy are
held in physical memory. If there isn’t enough real memory to allocate a full
buffer, the application must request smaller blocks (if possible) from the SCSI

MACINTOSH Q & A Autumn 1991

83
Have more questions? Need more answers?
Take a look at the Dev Tech Answers library on
AppleLink (updated weekly) or at the Q & A stack
on the Developer CD Series disc.•

device, because it’s not possible to swap in and out any buffer space during a
single I/O operation. Page faults are not serviced while SCSI I/O is in progress.
If SCSI I/O is performed at device driver-level Read or Write calls, VM holds
your buffer for you. Otherwise, you are responsible for doing this yourself. If
there is insufficient physical memory for VM to hold your buffers for you, the
Read or Write call fails with an error result.

In general, I/O buffer space used by drivers must be held in real memory for the
duration of the I/O operation. This is especially true for SCSI I/O because VM
uses SCSI to swap virtual memory in and out, and encountering another page
fault would cause a bus error. Device Manager-level I/O handles this
automatically, by holding down the appropriate memory when the driver is
entered through a Read or Write call. The Device Manager does not take care
of this for you when the driver is entered through a Control or Status call,
however. If the SCSIRead call is made from within a device driver as a result of
a PBRead, no special action is necessary. Any other type of code must be very
careful not to cause page faults between SCSIGet and SCSIComplete. This
requires holding or placing in the system heap any code or data structures
referenced during this time.

Q Is there anything special that a Macintosh hard disk or a removable cartridge driver
must do to be fully compatible with System 7?

A One important thing you should be aware of regarding removable cartridges is
that a cartridge can’t be removable if VM is to use it for a backing store. Some
removables allow you to fix this with a SCSI command to prohibit ejection and,
just as important, the drive must be marked nonejectable in the drive queue.

Here are a couple of suggestions: Read Macintosh Technical Note #285,
“Coping with VM and Memory Mappings.” Also, take a look at the Memory
Management chapter of Inside Macintosh Volume VI and the Virtual Memory
paper (Goodies:VM Goodies:VM Paper) on the System 7 Golden Master CD.

Q What does the “!” mean when I use the MacsBug Heap Zone (HZ) command? It
appears in front of one of the zone names listed, or just after the address if the zone
doesn’t have a name.

A MacsBug’s HZ command does a quick-and-dirty heap check, and if it thinks
something is wrong with a heap, it puts the exclamation point after the address
range of the heap. If you select the heap flagged with a “!” with the Heap
Exchange (HX) command and then use the regular Heap Check (HC)
command, MacsBug tells you what it thinks is wrong with that heap.

d e v e l o p Autumn 1991

84

Q I want to display only visible files and folders in a Standard File dialog, but I can’t find
a way to filter out invisible folders—specifically the 000Move&Rename folder. The
FileFilter routine filters only files, not folders. If I put in a nonzero TypeList, invisible
folders seem to be removed, but I want to open all types of files, just not invisible files or
folders. Any suggestions?

A This is, in fact, impossible under System 6 using general methods. The
problem is that passing -1 as numTypes means not only to display all items, but
to display invisible items. A file filter can be used to remove the invisible files
but cannot affect invisible folders. The only current way to do this is to use
CustomGetFile under System 7, as described in the Standard File Package
chapter of Inside Macintosh Volume VI. This provides a filter that allows you to
filter both files and folders. This will give you the right functionality, but will
work only under System 7. We recommend that you use this method under
System 7, and a more standard SFGetFile when running under earlier systems.

Q How can I obtain the volume reference information in my DlgHook function for a
file selected by the user before SFPPutFile or SFPGetFile has completed the reply
record?

A On exit, SFPGetFile and SFPPutFile generate a working directory reference
number in the vRefNum field of the reply record. This is not available to you
from within the operation of a DlgHook function. WDRefNums are provided
to allow compatibility with older, pre-HFS functions that took vRefNum values
of integer size with the older flat file system.

We suggest that, unless you plan to support the flat file system of 64K ROM
Macintosh systems, you move your file system interfaces to the HFS interfaces
documented in the File Manager sections of Inside Macintosh Volumes IV and V
(or to the equivalent high-level calls as documented in Macintosh Technical
Note #218, “New High-Level File Manager Calls”). If you’re using the HFS
calls, low-memory globals SFSaveDisk and CurDirStore contain, respectively,
the negative of the “real” volume reference number for the current volume and
the HFS ID of the directory that Standard File is displaying. You then have all
the information you need to create, open, rename, or delete files from within
the SFPGetFile and SFPPutFile DlgHook functions. If a user is accessing an
MFS volume on an HFS system, these calls are designed tohandle file access
transparently.

Moving your file system interfaces to the HFS-level conventions has a side
benefit of being closer to the System 7 file system specifications. If you look at
the new high-level file system calls in Inside Macintosh Volume VI, you’ll
recognize much of the HFS information embedded in the new data structures.

MACINTOSH Q & A Autumn 1991

85

If your file system interfaces depend on MFS-style vRefNums, or
WDRefNums in the HFS nomenclature, you can use the HFS functions
PBOpenWD, PBCloseWD, and PBGetWDInfo to open, close, and obtain
volume reference numbers and directory IDs. This is particularly important if,
for instance, you’re using the THINK C ANSI file I/O functions, which rely
on SetVol to operate correctly.

Complete information on the HFS-level calls that will be most useful in
Standard File customization is contained in the File Manager chapters of Inside
Macintosh Volumes IV and V, and in Macintosh Technical Notes #66, 77, 102,
140, 179, 190, and 218. For C users, Macintosh Technical Note #246
summarizes a list of the difficulties with mixing C file I/O with Macintosh file
I/O. Macintosh Technical Notes #47 and 80 discuss a few points of Standard
File customization from the point of view of HFS.

Q Why does GetGWorldPixMap (when called on a Macintosh II, IIcx, or IIx running
system software version 6.0.5 or 6.0.7 with 32-Bit QuickDraw 1.2) return a
combination of the device field (two bytes) and the first two bytes of the portPixMap
field? Is this a bug?

A Your analysis of GetGWorldPixMap is exactly right: It doesn’t work correctly
in system software version 6.0.5 and 6.0.7 with 32-Bit QuickDraw 1.2. It
returns a value that’s two bytes before the value it’s supposed to return.

The solution is to use GWorldPtr->portPixMap instead of GetGWorldPixMap.
It’s safe to do this, but you should use GetGWorldPixMap under System 7. Not
only is the bug fixed there, but dereferencing the port is dangerous under
System 7 because it may not be CGrafPort. Use Gestalt with the
gestaltQuickdrawVersion selector to determine whether you can use
GetGWorldPixMap. If Gestalt returns a value from gestalt8BitQD ($0100)
through gestalt32BitQD12 ($0220), then GetGWorldPixMap either doesn’t
exist or is the buggy version. If it returns gestalt32BitQD13 ($0230) or higher,
then GetGWorldPixMap does exist and works correctly. Interestingly,
GetGWorldPixMap can be called on a black-and-white QuickDraw machine
under System 7. It returns a handle to a structure which should be treated as a
BitMap structure, though there are some undocumented fields after the normal
BitMap fields. To tell whether GetGWorldPixMap is available on a black-and-
white QuickDraw machine, you must check the system software version by
calling Gestalt with the gestaltSystemVersion selector. If it returns $0700 or
higher, GetGWorldPixMap is available.

Q DrawText with srcCopy takes six times as long as with srcOr now that my Macintosh is
running System 7. Why is this so slow? Is this a bug in System 7?

d e v e l o p Autumn 1991

86

A It’s true that srcCopy is slower than srcOr when handling text, especially in
color mode. This loss in speed occurs because CopyBits is a lot smarter than it
used to be. It can handle foreground and background colors a lot better, but
that improvement came at the cost of speed. Our recommended method for
drawing text is to erase before drawing, and use srcOr to draw, not srcCopy.
Alternatively, you could draw colorized text in srcOr mode off screen and then
use CopyBits to draw it on the screen in srcCopy mode without colorization.

Q I’m creating PICTs that are comprised of many lines drawn in srcOr mode. When
using the LaserWriter 6.x or 7.x driver with the Color/Grayscale radio button selected,
some lines fail to print. Why is this happening?

A The problem is a bug in the LaserWriter driver. Sometimes, when using a
CGrafPort, the driver doesn’t reproduce lines drawn in srcOr mode. (A
CGrafPort is used when the Color/Grayscale print option is selected; in Black
& White print mode, a regular grafPort is used.) A workaround is to use
srcCopy instead of srcOr when drawing QuickDraw objects within your PICTs.

Q Is there any way to determine whether I’m printing to either a color printer or a
printer simulating color, such as the LaserWriter set for Color/Grayscale?

A Check the grafPort returned by your call to PrOpenDoc. If the rowBytes of the
grafPort is less than 0, the Printing Manager has returned a color grafPort. You
can then make Color QuickDraw calls into this grafPort. LaserWriter driver
version 6.0 and later returns a color grafPort from the PrOpenDoc call, if the
Color/Grayscale button has been set.

The following code fragment demonstrates this:

(* This function determines whether the port passed to it is a *)
(* color port. If so, it returns TRUE. *)
FUNCTION IsColorPort(portInQuestion: GrafPtr): BOOLEAN;
BEGIN

IF portInQuestion^.portBits.rowBytes < 0 THEN
IsColorPort := TRUE

ELSE
IsColorPort := FALSE;

END;

A third-party printer driver should return the type of grafPort that represents
the abilities of its printer. Therefore, if the printer supports color and/or
grayscale, and if Color QuickDraw is present, the application will receive a
color grafPort after calling PrOpenDoc. Otherwise, if the Macintosh you’re

MACINTOSH Q & A Autumn 1991

87

running on does not support Color QuickDraw, you should return a black-and-
white grafPort.

Q If I use the PostScriptHandle PicComment to send PostScript code to the LaserWriter
driver, do I need to open a picture and then draw the picture to the driver, or can I just
use the PicComment with no picture open while drawing to the printer’s grafPort?

A You don’t need to create a picture with your PicComment in it and draw the
picture to the driver. The best method for sending PostScript code to the
LaserWriter is to use the PostScriptHandle PicComment documented in
Macintosh Technical Note #91, “Optimizing for the LaserWriter—Picture
Comments,” as shown below.

PrOpenPage(...)
{ Send some QuickDraw so that the Printing Manager gets a }
{ chance to define the clipping region. }
PenSize(0,0);
MoveTo(0,0);
LineTo(0,0);
PenSize(1,1);
PicComment(PostScriptBegin, 0, NIL);
{ QuickDraw representation of graphic. }
MoveTo(100, 100);
LineTo(200, 200);
{ PostScript representation of graphic. }
thePSHandle^^ := '100 100 moveto 200 200 lineto stroke';

PicComment(PostScriptHandle, GetHandleSize(thePSHandle),
thePSHandl);

PicComment(PostScriptEnd, 0, NIL);
PrClosePage(...)

The above code prints a line on any type of printer, PostScript or not. The first
MoveTo/LineTo combination is required to give the LaserWriter driver a
chance to define a clipping region. The LaserWriter driver replaces the
grafProcs record in the grafPort returned from PrOpenDoc. In order for the
LaserWriter driver to get execution time, you must execute a QuickDraw
drawing routine that calls one of the grafProcs. In this case, the
MoveTo/LineTo combination calls the StdLine grafProc. When StdLine
executes, it notices that the grafPort has been reinitialized, and therefore
initializes the clipping region for the port. Until the MoveTo/LineTo
combination is executed, the clipping region for the port is set to (0,0,0,0). If
PostScript code is sent via the PostScriptHandle PicComment before executing
any QuickDraw routines, all PostScript operations will be clipped to (0,0,0,0).

d e v e l o p Autumn 1991

88

The next thing that’s done is to send the PostScriptBegin PicComment. This
comment is recognized only by PostScript printer drivers. When the driver
receives this comment, it saves the current state of the PostScript device (by
executing the PostScript gsave operator), then disables all QuickDraw drawing
operations. This way, the QuickDraw representation of the graphic will be
ignored by PostScript devices. In the above example, the second
MoveTo/LineTo combination is executed only on non-PostScript devices.

The next PicComment is PostScriptHandle, which tells the driver that the data
in thePSHandle is to be sent to the device as PostScript code. The driver then
passes this code unchanged to the PostScript device for execution. The
PostScriptHandle comment is recognized only by PostScript printer drivers.

The last PicComment, PostScriptEnd, tells the driver to restore the previous
state of the device (via a PostScript grestore call), and to enable QuickDraw
drawing operations.

Since most PicComments are ignored by QuickDraw devices, only the
QuickDraw representation is printed. Since PostScriptBegin tells PostScript
drivers to ignore QuickDraw operations, only the PostScript representation is
printed on PostScript devices. This is a truly device-independent method for
providing both PostScript and QuickDraw representations of a document.

Q How do users install the Macintosh Communications Toolbox (CTB)?

A The Communications Toolbox consists of two parts: the CTB managers and
the CTB tools. The installation procedure for CTB tools is different between
System 6 and System 7. Under System 6 the CTB tools are dragged from the
Basic Connectivity Set disk to the Communications Folder in the System Folder
on the hard disk. Under System 7 the CTB tools are dragged from the Basic
Connectivity Set disk to the Extensions folder in the System Folder on the hard
disk. Of course, because of the way System 7 works, CTB tools can simply be
dragged to the System Folder and the Finder will automatically move them to
the Extensions folder where they belong.

No installation of the CTB managers is required under System 7, since System
7 includes the Communications Toolbox as part of the system. Users running
System 6.0.5 should use the Installer and Install script on the Communications 1
disk to install the CTB managers and other resources onto their hard disks.
Users running System 6.0.7 should use the Installer and Install script on the
Network Products Installer disk, which is part of the System 6.0.7 set users
receive with their Macintosh systems. The Network Products Installer disk does
not contain the CTB managers and other resources, but it prompts the user to
insert the Communications 1 disk during the installation procedure.

MACINTOSH Q & A Autumn 1991

89

The Basic Connectivity Set and Communications 1 disks should be shipped with
your CTB-aware product. Contact Apple’s Software Licensing group
(AppleLink SW.LICENSE) for a licensing agreement to ship the disks.

Q Can any AppleTalk routines be called at interrupt time? Inside Macintosh says that
DDPWrite and DDPRead can’t be called from interrupts. If all higher-level
AppleTalk protocols are based on DDP, it seems that they all would not work.

A The AppleTalk routines you can’t call at interrupt time are the original
AppleTalk Pascal Interfaces listed in Inside Macintosh Volume II; these are also
known as the “Alternate Interface” AppleTalk routines, or ABPasIntf.

The Alternate Interface routines cannot be called at interrupt time because
they allocate the memory structures needed to make the equivalent assembly
language AppleTalk call. For example, when the NBPLookup routine is called,
it’s passed a handle to an ABusRecord. NBPLookup then has to allocate an
MPPParamBlock and move the parameters from the ABusRecord into the
newly allocated MPPParamBlock. Then NBPLookup makes a LookupName
call, passing it the MPPParamBlock. When LookupName completes,
NBPLookup must move results into the ABusRecord and release the memory
used by the MPPParamBlock. Since memory is allocated and released within
the routine, it cannot be called at interrupt time.

With that out of the way, the calls you can make at interrupt time (with some
restrictions listed below) are what Apple calls the “Preferred Interface”
AppleTalk routines. Most of the Preferred Interface routines are listed on page
562 of Inside Macintosh Volume V. There are a few additional calls that were
added after the publication of Inside Macintosh Volume V; they’re documented
in the AppleTalk chapter of Inside Macintosh Volume VI.

The Preferred Interface AppleTalk routines can be made at interrupt time as
long as:

• You make them asynchronously with a completion routine (that is, the
asynch parameter must be TRUE and you must provide a pointer to the
completion routine in the ioCompletion field of the call’s parameter block).
Making a call asynchronously and polling ioResult immediately afterward
within the same interrupt-time code (which is basically the same as making
the call synchronously) is not the same as using a completion routine.

• They are not listed as routines that may move or purge memory. The
Preferred Interface routines do not allocate or dispose of any memory, since
they’re just high-level ways to make the assembly language AppleTalk calls
and are not built upon the old Alternate Interface routines.

d e v e l o p Autumn 1991

90

Q Why do I get only the left channel of a stereo sound out of my Macintosh IIcx?

A The only Macintosh models that combine the two stereo channels into one for
playback out of the internal speaker are the Macintosh SE/30 and the IIsi. All
others use just the left channel. If you would like to check for the machine’s
ability to do mixing, you can use Gestalt. This is documented in Inside
Macintosh Volume VI, page 22-70. Bit 1 of the Gestalt selector for sound will
tell you whether the machine has stereo mixing on the internal speaker.

Q Inside Macintosh Volume VI, page 2-22, recommends updating the window positions in
a file without changing the last modification date and time on the file. How do I alter a
file without automatically changing the timestamp?

A To modify the contents of a file’s data or resource fork without changing the
last modified date, get the modified date before performing any save operations
on the file and restore it when you’re done. You can use the PBHGetFInfo and
PBHSetFInfo calls to do this. A short Pascal snippet that modifies the contents
of a known file’s resource fork without modifying its modification date is
included in the Snippets folder on this issue’s Developer CD Series disc. The
code shows how the parameter block is filled in with the file’s information at
the start of the routine with a PBHGetFInfo call, and the same data is then
used without modification to set the file information at the end of the routine
with a PBHSetFInfo. Inside Macintosh Volume IV, page 150, tells you which
fields can be changed with PBHSetFInfo.

Q Help! I’ve just added Balloon Help to my application, but I’m having some problems.
Whenever a balloon appears, it immediately begins floating away off the top of the
screen. What can I do to stop this madness?

A It appears you failed to heed our warning when it comes to routines that can
move balloons. Consult Appendix D of Inside Macintosh X-Ref, “Routines That
May Pop Balloons or Cause Barometric Disturbances,” for a complete listing of
these help balloon meteorological nightmares. In addition, be sure to call the
new trap HMSetBalloonContents:

OSErr HMSetBalloonContents (balloonContents: INTEGER);
CONST { types of balloon contents }

helium = 0;
air = 1;
water = 2;
whippedCream = 3;

with balloonContents set to something greater than helium.

MACINTOSH Q & A Autumn 1991

91

Q How can I “dim” text in my Apple IIGS application, similar to the way the Toolbox
dims menu titles and menu options, and the way that HiliteControl dims a button
name?

A Dimming text is a piece of cake. Here’s how the Apple IIGS Menu Manager
does it in both 640 and 320 mode. The same thing works great for both.

1. Calculate the bounding box of the text.

2. Fill it with the proper background color for the operation in question.

3. Draw the text.

4. Execute code that looks something like this:

pea dimmed>>16
pea dimmed
_SetPenMask ;Set the pen mask to "dimmed" mask
pea textRect>>16
pea textRect ;Push pointer to text boundary rect
lda backColor ;Get text's background color
and #$00FF ;Always solid

; Here you need to do something in your code to get the
; appropriate pattern for the text you're drawing. This will be
; one of the 16 patterns in the 512-byte table, starting with 16
; bytes of $00, 16 bytes of $11, and ending with 16 bytes of $FF.
; We leave the routine GetColorPtr for you to code, but our
; example assumes it returns the pointer we need in A (low word)
; and X (high word).

jsr GetColorPtr ;(see above)
phx ;high word
pha ;low word
_FillRect ;Fill will be dithered
pea nor_mask>>16 ;Reset drawing mask to normal solid
pea nor_mask
_SetPenMask
rts

textRect DC.B $00,00,00,00 ;Put your rectangle here
backColor DC.W $0000 ;Background color of text to dim

dimmed DC.B $55,$AA,$55,$AA,$55,$AA,$55,$AA
nor_mask DC.B $FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF

Yes, it’s really this easy!

d e v e l o p Autumn 1991

Kudos to our readers who care enough to
ask us terrific and well thought-out questions. The
answers are supplied by our teams of technical
gurus; our thanks to all. Special thanks to Matt
Deatherage, Jim Luther, Dave Lyons, Jim Mensch,
and Eric Soldan for the material in this Q & A
column.•

Have more questions? Need more answers?
Take a look at the Dev Tech Answers library on
AppleLink (updated weekly) or at the Q & A stack
on the Developer CD Series disc.•

92

APPLE II

Q & A

Q When I call FixFontMenu from my Apple IIGS new desk accessory (NDA), everything
works fine, but if the current application has a font menu it stops working. What’s
wrong?

A FixFontMenu keeps only one correspondence between menu item IDs and font
family numbers—if you call FixFontMenu from an NDA, you blow away the
already existing correspondence that the application was using, maintained
within the Font Manager. ItemID2FamNum then works only on item IDs
corresponding to your NDA’s font menu, and these usually are unrelated to the
values the application passes from its font menu. Worse, FamNum2ItemID will
subsequently return menu item IDs for font family numbers that have nothing
to do with the application’s menus; depending on how the application operates
on the resulting item ID, this could be disastrous.

Fortunately, doing this yourself is fairly easy with the Font Manager’s help.
CountFamilies tells you how many font families there are, and FindFamily
returns the name of each of them. You can manipulate this information into a
font menu in a fairly straightforward way, using standard Menu Manager calls.
While you’re at it, you can also use FindFontStats to figure out what point sizes
and styles are available for each font family, so you can indicate this in your Size
and Style menus. You could even use the information to build your own font-
choosing dialog, much as HyperCard IIGS does. Remember that your NDA
should run in either 320 or 640 mode, so don’t make the dialog box too wide.

Q When using an Apple IIGS run queue item, can I use the second reserved field to find
out when the item was last executed? I assume this value is the tickCount. Currently, I
just get the current tickCount and subtract the last tickCount. Using this field could
save me one tool call, and when doing animation via a RunQ, every extra tick counts.

A No, you should not use undocumented fields in the run queue header because
they could change with future software releases. However, there is a fast way to
get the current tick count. Pass refNum $0005 to the GetAddr function in the
Miscellaneous Tools once each time your program runs, and it tells you the
location of the tick counter. Since the tick count changes during heartbeat
interrupts, be sure to disable interrupts around your direct accesses to the tick
counter (PHP, SEI, access tick count, PLP).

If your application makes certain tool calls frequently, it may be worthwhile to
short-circuit the tool dispatcher and transfer control to the Toolbox function
directly (if the tool takes a long time to execute anyway, it isn’t worth it). You
can get a function’s address and work area pointer by calling GetFuncPtr and
GetWAP in the Tool Locator. When the function gets control, the Y and A
registers must contain the tool set’s work area pointer, the X register must

APPLE II Q & A Autumn 1991

93

contain the function number, and there must be two RTL addresses on the
stack.

Q Does the Apple IIe Card for the Macintosh LC have a technical reference manual?

A There’s no separate technical reference manual. Use the Apple IIe Technical
Reference (Addison-Wesley), together with Apple IIe Technical Note #10, “The
Apple IIe Card for the Macintosh LC.”

Q What’s the proper method of saving the Apple IIGS Super Hi-Res (SHR) screens? If
my application both uses shadowing and is fast-port aware, the restored screen colors are
garbaged. Can I simply use HandToPtr with ptr representing the screen addresses, or
will this mess up the scan-line control byte (SCB) restoration since these are read-
modify-write locations?

A The shadowed screen’s SCBs may not be correct, so by saving and restoring
them you’re causing random data to be restored into the standard SCBs. Your
best bet, if shadowing is on, is to turn shadowing off, restore the bank $01
screen, including its SCBs and color tables, turn shadowing on, and restore the
$E1 screen and contents. If you don’t want to double-restore the $E1 screen
and $01 screen, you should turn shadowing off, restore the bank $01 color
tables/SCBs, turn shadowing on, and restore the $01 screen. But, since these
screens are never guaranteed to be the same when you save, you should always
restore both screens separately.

QuickDraw never touches the shadowed screen SCBs, so if the fastPort flag is
set you can ignore the restoring of the bank $01 SCBs/color tables, since the
application promised not to interfere with them. But since this won’t save very
much time, you probably shouldn’t worry about it.

Q I am using an Apple IIGS utility to generate resources for my application, and I noticed
that some of the resource IDs generated are in the range $07FF0000 to $07FFFFFF,
which is reserved for the system software’s use. What’s happening?

A Your utility is calling UniqueResourceID with an IDRange of $FFFF, to
request any unused resource ID. A bug in system software version 5.0.x allows
UniqueResourceID to accidentally return a system-range resource ID if any
system-range resources of that type are already present. This will be fixed in
System 6. In the meantime, utilities can use UniqueResourceID with IDRange
values other than $FFFF, and you should watch your resource IDs carefully to
avoid using system-range resource IDs.

d e v e l o p Autumn 1991

94

FORREST TANAKA has been in Developer Technical Support just
shy of two years after a stint with unemployment and trying to get
a job at Apple. Before that, he got a BSCS while writing Macintosh
device drivers for scanners and writing utility software for a PBX.
Now he’s working with anything that makes images appear on the
Macintosh’s screen while avoiding anything that makes images
appear on paper. Whenever he’s not working, eating, sleeping,
watching TV, reading, or watching a movie, he’s out riding his bike
and wondering whether he should shave his legs.•

PAUL SNIVELY, formerly of Apple’s DTS group, came to Apple
from ICOM Simulations, Inc., the land of the TMON debugger. He
wrote the TMON 2.8 User’s Guide and has written for MacTutor
magazine. His interests include natural-language processing,
knowledge representation, adventure-game programming, horror
and suspense, hiking, camping, spelunking, and other things better
left unsaid.•

BE OUR GUEST: GWORLDS AND NUBUS MEMORY Autumn 1991

95

In Developer Technical Support, we’re asked from time
to time how to make a GWorld so that its pixel image
uses memory on a NuBus™ card rather than memory in
the application’s heap. The idea is to create a GWorld,
put the address of the card into the GWorld, use
QuickDraw to draw into the GWorld, which effectively
draws into the NuBus card’s memory, and display the
resulting image on the screen. Doing this in a way that
works well with the 8•24 GC version of QuickDraw
and with whatever QuickDraw brews up in the future
isn’t possible without breaking a few guidelines. We’ll
talk about the reasons for this and what you can do
instead. For the more cavalier among you, we’ll also
talk about the least offensive method of coercing a
GWorld so that it uses memory on your NuBus card.

NewGWorld allocates off-screen buffers simply by
using the same Memory Manager calls that you can
make. To allocate the memory, NewGWorld simply
calls NewHandle to allocate the buffer in your
application’s heap unless you have the useTempMem
bit set, in which case it allocates the buffer in
temporary memory. It then tries to move the buffer as
high in your heap as possible by calling MoveHHi.
That’s really all there is to it. The GWorld’s pixMap,
GDevice, and CGrafPort are allocated similarly—
they’re all allocated in your heap using regular Memory
Manager calls with no special options, patches, or other
nefarious tricks.

None of this changes when you have the 8•24 GC
software active—all memory is still allocated out of
your application’s heap. Once you start drawing into
the GWorld, though, the GC software can copy the
parts of the GWorld to the 8•24 GC memory. The
GWorld and its parts still occupy your heap’s memory
though, regardless of whether it’s cached on the 8•24
GC card.

If you have a NuBus card with gobs of memory,
NewGWorld can’t take advantage of it because the
Memory Manager calls that it uses can’t allocate
memory on NuBus memory cards. There are no
options to NewGWorld or any other GWorld calls that
let you say, “There’s lots of memory over on this
NuBus card, all for you.” While GWorlds are
absolutely fantastic for creating off-screen drawing
environments for most of the usual kinds of situations,
they’re just not appropriate if you want complete
control over where or how the parts of a GWorld are
allocated.

QuickDraw is the only thing that’s supposed to know
how GWorlds are constructed. We know that they’re
CGrafPorts and we can get their pixMap, GDevice,
and off-screen buffer, but we shouldn’t make any
assumptions about how they were allocated and where
they are. For example, we know that the off-screen
buffer is allocated as a handle now, but that won’t
necessarily be the case in the future. There’s no
guaranteed way to tell which way it was allocated, or
even if NewGWorld uses the Memory Manager to
allocate it at all (which it always does currently, of
course). Even the GWorld’s CGrafPort is allocated as a
handle that just happens to be always locked. If you try
to dispose of a GWorld in which you’ve modified the
baseAddr, you’ll need DisposeGWorld to make sure
everything is deallocated properly, but its behavior is
undefined when it tries to deallocate the off-screen
buffer.

So if you want to use the memory on your NuBus
memory card and feel comfortable that you’re not
relying on something that could change, you’re going

BE OUR GUEST

GWORLDS AND
NUBUS MEMORY

FORREST TANAKA AND
PAUL SNIVELY

to have to create your own off-screen drawing
environment by creating an off-screen pixMap, a color
table if your off-screen drawing environment uses
indexed colors, a GDevice, and a CGrafPort. The April
1989 edition of Macintosh Technical Note #120,
“Drawing Into an Off-Screen Pixel Map,” covers
creating your own off-screen pixMap, CGrafPort, and
color table, but it requires you to have the same depth
and the equivalent color table that the screen has, so it
just steals a screen’s GDevice. We think it’s always a
good idea to create your own GDevice when you draw
off screen. If you use a screen’s GDevice for drawing
off screen, you have to depend on that GDevice’s depth
and color table. By creating your own GDevice, your
off-screen drawing environment can use any depth and
color table you want at any time and still be insulated
from whatever changes the user makes with the
Monitors control panel.

To create your own GDevice, it’s better not to use
NewGDevice because it always creates the GDevice in
the system heap; it’s better to keep your data structures
in your own heap so that they don’t get orphaned if
your application quits unexpectedly and that precious
system heap space is preserved. Here’s what you should
set each of your GDevice’s fields to be:

gdRefNum Your GDevice has no driver, so just
set this to 0.

gdID It doesn’t matter what you set this
to; you might as well set it to 0.

gdType Set to 2 if your off-screen pixMap
uses direct colors (16 or 32 bits per
pixel) or 0 if it uses a color table (1
through 8 bits per pixel).

gdITable Allocate a small (maybe just 2-byte)
handle for this field. After you’re
done setting up this GDevice and
your off-screen pixMap, color table
(if any), and CGrafPort, set this
GDevice as the current GDevice
by calling SetGDevice, and then
call MakeITable, passing it nil for
both the color table and inverse

table parameters, and 0 for the
preferred inverse table resolution.

gdResPref We reckon that more than 99.9%
of all inverse tables out there have a
resolution of 4. Unless you have
some reason not to, we’d
recommend the same here.

gdSearchProc Set to nil. Use AddSearch if you
want to use a SearchProc.

gdCompProc Set to nil. Use AddComp if you
want to use a CompProc.

gdFlags Set to 0 initially, and then use
SetDeviceAttribute after you’ve set
up the rest of this GDevice.

gdPMap Set to be a handle to your off-
screen pixMap.

gdRefCon Set to whatever you want.

gdNextGD Set to nil.

gdRect Set to be equal to your off-screen
pixMap’s bounds.

gdMode Set to -1. Why? We’re not sure.
This is intended for GDevices with
drivers anyway.

gdCCBytes Set to 0.

gdCCDepth Set to 0.

gdCCXData Set to 0.

gdCCXMask Set to 0.

gdReserved Set to 0.

For gdFlags, you should use SetDeviceAttribute to set
the noDriver bit. You should also set the gDevType bit
to 1 if you’re using two bits per pixel or more, but it
can be left at 0 if you’re using only one bit per pixel.

The other big difference from the technique shown in
Technical Note #120 is that the off-screen pixel image
shouldn’t be allocated. Instead, just point the baseAddr
field of your off-screen pixMap at your NuBus card’s

d e v e l o p Autumn 1991

For information about inverse tables, see pages 137
through 139 in the Color Manager chapter of Inside Macintosh
Volume V.•

96

BE OUR GUEST: GWORLDS AND NUBUS MEMORY Autumn 1991

97

memory. You should also set the pmVersion field of
your off-screen pixMap to be the constant baseAddr32
(equal to 4). That tells Color QuickDraw to use 32-bit
addressing mode to access your off-screen buffer, and
that’s a requirement if your off-screen pixel image is
located on a NuBus card.

When you want to draw into your off-screen pixMap,
save the current port with a call to GetPort and the
current GDevice with a call to GetGDevice. Then set
the current port to the off-screen CGrafPort with a call
to SetPort, and set the current GDevice to the off-
screen GDevice with a call to SetGDevice. Now all
QuickDraw commands are drawn off screen and the
resulting images are in your NuBus card’s memory. To
switch back to drawing on screen, set the current port
and GDevice back to the port and GDevice that you
saved earlier. Easy!

Even with all this, there might still be a reason to use
GWorlds to draw into a NuBus memory card. You
might just want some quick and dirty way to get an off-
screen drawing environment that uses your NuBus
memory card and don’t care whether it works with
future system software releases or not. We’ll talk about
that next and also discuss the issues that you have to be
careful about when you do this.

First, create a GWorld using NewGWorld as usual. If
you want to, pass it a color table, or you can just pass it
nil if you want it to make the default color table. For
the GWorld flags, make sure you pass only the
keepLocal flag. This makes sure that all the pieces of
the GWorld are kept in your own heap rather than
being cached into the 8•24 GC card, even when you
draw into it. That way, you avoid running into any
conceivable conflicts with GC QuickDraw over where
the GWorld really is. There’s no way to tell
NewGWorld not to allocate the pixel image, so you
might want to make the bounds rectangle small and
then make it bigger later so that your heap isn’t hit up
for a lot of memory that you don’t even want. Don’t
pass it an empty rectangle because NewGWorld just
gives you a paramErr in that case. Call

GetGWorldDevice to get a handle to your GWorld’s
GDevice and save it for later.

Now it’s time to have the new GWorld use your NuBus
card’s memory. The baseAddr of your GWorld’s
pixMap is allocated as a handle, and it has to be thrown
out. Call GetPixBaseAddr with a handle to your
GWorld’s pixMap to get a pointer to the pixel image
that NewGWorld allocated for you. Call
RecoverHandle with that pointer to get a handle to the
pixel image, and then call DisposHandle to get rid of it.
Now put the address of your NuBus board into the
baseAddr of your GWorld’s pixMap. Then set the
pmVersion field of your GWorld’s pixMap to the
constant baseAddr32. That tells Color QuickDraw that
the baseAddr of the pixMap is a 32-bit address and so it
should switch to 32-bit addressing mode whenever it
draws into your GWorld.

If you passed NewGWorld a rectangle that’s smaller
than you actually want, you can now set it to the real
size. Set the bounds rectangle of your GWorld’s
pixMap and the portRect rectangle of your GWorld’s
CGrafPort to the rectangle that you really wanted.
Also, set the visRgn of the CGrafPort and the gdRect
field of your GWorld’s GDevice to that same rectangle.
Your GWorld is ready for use!

Now the bad news. Many of the GWorld routines
assume that the baseAddr field is either a real handle or
a copy of the handle’s master pointer. Because the
pointer in the baseAddr field isn’t a master pointer,
those routines can crash when they expect one. Setting
the pmVersion field doesn’t help in most cases; these
routines just assume that the GWorld’s pixel image was
allocated by NewGWorld, which is a reasonable
assumption. What this implies is that you can no longer
call many of the GWorld routines to maintain your
GWorld without a risk of crashing. When you call
SetGWorld for your GWorld, you should pass it the
GWorld’s GDevice instead of nil (that’s why we
recommended that you save the GWorld’s GDevice
after calling NewGWorld). For safety’s sake, don’t call
any of the following:

LockPixels
UnlockPixels
AllowPurgePixels
NoPurgePixels
GetPixelsState
SetPixelsState
UpdateGWorld
GetGWorldDevice

You can call DisposeGWorld because it won’t get hung
up trying to deallocate the pixel image on your NuBus
card; setting your pmVersion to baseAddr32 makes this
possible. Of course, since all these GWorld routines are
off limits, almost all the benefits of having a GWorld at
all are gone as well.

Another piece of bad news is that this doesn’t take
advantage of the speed benefits of using GWorlds with
an 8•24 GC card. Most of the speed benefit of using
GWorlds with GC QuickDraw is that the GWorld’s
pixel image is allocated on the 8•24 GC card itself, and
so the image data doesn’t have to take the time to move
across NuBus. If your GWorld draws into a NuBus
memory card, the image data has to be moved across
NuBus, and so that speed benefit is gone.

The last bit of bad news is that even if you follow all of
this, you’re still not guaranteed that it will still work in
future system software or future video card releases. As
we said earlier, this should only be done if you don’t
care whether it works on future system software
releases or not. The description above breaks a lot of
rules: don’t assume that the pixel image is allocated as a
handle; don’t set the baseAddr of a GWorld; don’t
change the dimensions of a GWorld without
UpdateGWorld; and don’t set the pmVersion field of a
GWorld.

You have your choices when you want to use
QuickDraw to draw off screen into the memory of a
NuBus video card. You can be safe for future
compatibility by creating your own off-screen drawing
environment from scratch, or you can modify a
GWorld so that it uses your NuBus card’s memory at
the risk of breaking on future systems and at the cost of
losing most of the benefits of GWorlds. If you choose
the first method and you have no existing routines to
create off-screen drawing environments, it’s worth it to
take a look at Skippy White’s Famous High-Level Off-
Screen Map Routines in DTS Sample Code #15 on the
Developer CD Series disc. You can see these routines in
action in DTS Sample Code #16. These routines are
GWorld-like to some extent, except this time you have
the great benefit of source code!

d e v e l o p Autumn 1991

Thanks to Guillermo Ortiz for reviewing this column.• We welcome guest columns from readers who have
something interesting or useful to say. Send your column idea or
draft to Caroline Rose at Apple Computer, Inc., 20525 Mariani
Avenue, M/S 75-2B, Cupertino, CA 95014 (AppleLink: CROSE).•

98

REFERENCES
• “About 32-Bit Addressing,” Konstantin Othmer,

develop Issue 6, Spring 1991, pp. 36-37.

• “Deaccelerated _CopyBits & 8•24 GC
QuickDraw,” Guillermo Ortiz, Macintosh Technical
Note #289, January 1991.

• “Drawing Into an Off-Screen Pixel Map,” Jim
Friedlander, Rick Blair, and Rich Collyer, Macintosh
Technical Note #120, April 1989.

• Inside Macintosh Volume VI, Graphics Devices
Manager chapter, Addison-Wesley, 1991.

• Inside Macintosh Volume V, Color Manager
chapter, Addison-Wesley, 1988.

A
AddPathsToPict, curves in

QuickDraw and 19, 20
AddSegmentToPict, curves in

QuickDraw and 19, 20
Alexander, Pete 41
Apple event handler, Macintosh

Q & A 82
AppleTalk, Macintosh Q & A 90
Apple IIe Card, Apple II Q & A

94
Apple II Q & A 92–94
applications, hybrid 64–78
asserts, debugging and 61–62
asynchronous I/O 68
A/UX, hybrid applications and

64–78
auxcleanup_fork_pipe 71
auxfgets 71–72
auxfork_pipe 70–71
AUXisRunning, hybrid

applications and 69
auxsystem 72

B
Balloon Help, Macintosh Q & A

91
“Be Our Guest” (Tanaka and

Snively) 95–98
Bézier curves, working with in

QuickDraw 7–27
buffers and SCSIRead, Macintosh

Q & A 83–84

C
CantDeselect, date and time entry

in MacApp and 30, 34
cards

Apple IIe Card 94
8•24 GC card 95–98

cartridge drivers, removable 84
CGrafPort, GWorlds and NuBus

memory and 95–97

checksum $0, debugging and
50–51

cleanupxfcn, UNIX Mail Reader
and 73, 76

COFF (Common Object File
Format) System V.2 65

collaboration 79–81
color printing, Macintosh Q & A

87–88
Color QuickDraw, Macintosh

Q & A 82
Communications Toolbox (CTB),

Macintosh Q & A 89–90
compiler warnings, full 53–54
configuration tests, debugging and

59–61
cooperative multitasking 67
CopyBits, LaserWriter driver 7.0

and 42
CopyDeepMask, LaserWriter

driver 7.0 and 41–42
CopyMask, LaserWriter driver 7.0

and 41–42
CTB (Communications Toolbox),

Macintosh Q & A 89–90
curves, in QuickDraw 7–27
“Curves Ahead: Working With

Curves in QuickDraw” (Reed
and Othmer) 7–27

custom Apple events, Macintosh
Q & A 82

D
date entry, validating in MacApp

28–40
datestamp, Macintosh Q & A 91
DDPRead, Macintosh Q & A 90
DDPWrite, Macintosh Q & A 90
Debugger, The 43–63
debugging 43–63
Delete button script, UNIX Mail

Reader and 77–78
DeselectCurrentEditText, date

and time entry in MacApp and
29

INDEX Autumn 1991

99
For a cumulative index to all issues of
develop and a complete source code
listing, see the Developer CD Series disc.•

INDEX

dimming text, Apple II Q & A 92
Discipline, debugging and 51–52
DlgHook, Macintosh Q & A

85–86
DoChoice, date and time entry in

MacApp and 39
DoMouseCommand, date and

time entry in MacApp and
39–40

DrawPicture, curves in
QuickDraw and 18–19

DrawText, Macintosh Q & A
86–87

drivers
cartridge 84
LaserWriter driver 41–42,

87, 88–89

E
Edition Manager events,

Macintosh Q & A 82
8•24 GC card, GWorlds and

NuBus memory and 95–98
8•24 GC QuickDraw, GWorlds

and NuBus memory and 95–98
Entry script, UNIX Mail Reader

and 73–74
errAEFail, Macintosh Q & A 82
errAENotHandled, Macintosh

Q & A 82
error handling, debugging and

57–59
ErrorToString, date and time

entry in MacApp and 35,
36–37

events, Macintosh Q & A 82
ExampleCurve, curves in

QuickDraw and 11
Exit script, UNIX Mail Reader

and 74–76

F
fgetfxfcn, UNIX Mail Reader and

73, 76

fgetsxfcn, UNIX Mail Reader and
73, 74

FileFilter, Macintosh Q & A 85
files, invisible 85
FillPoly, curves in QuickDraw and

9
$50FFC001, debugging and

45–47
FixFontMenu, Apple II Q & A 93
folders, invisible 85
forkpipexfcn, UNIX Mail Reader

and 73, 74
FrameCurve, curves in

QuickDraw and 11
FramePath, curves in QuickDraw

and 16
freehand curves, working with in

QuickDraw 7–27
full compiler and linker warnings,

debugging and 53–54

G
GC card, GWorlds and NuBus

memory and 95–98
GC QuickDraw, GWorlds and

NuBus memory and 95–98
Gestalt, Macintosh Q & A 82
GetGDevice, GWorlds and

NuBus memory and 97
GetGWorldDevice, GWorlds and

NuBus memory and 97
GetGWorldPixMap, Macintosh

Q & A 86
GetPathsBounds, QD Curves and

23
GetPixBaseAddr, GWorlds and

NuBus memory and 97
GetPort, GWorlds and NuBus

memory and 97
GetRslData, LaserWriter driver

7.0 and 42
global memory, Macintosh Q & A

83
GRiDPAD 79–81

GWorlds
LaserWriter driver 7.0 and

41–42
NuBus memory and 95–98

H
HandleAlertAccepted 34
HandleAlertCancelled 34
HandleInvalidText 34
HandleMouseDown 39
HandleValidText 34–36
HandToPtr, Apple II Q & A 94
heap scramble and purge,

debugging and 47–49
Heap Zone (HZ) command,

Macintosh Q & A 84
HGetState, debugging and 52
Horwat, Waldemar 48
HSetState, debugging and 52
Huxham, Fred 43
hybrid applications 64–78
HZ (Heap Zone) command,

Macintosh Q & A 84

I
“Inside Story of The Debugger,

The” (Jasik) 44
invisible files and folders,

Macintosh Q & A 85
I/O, asynchronous 68
IsValid, date and time entry in

MacApp and 32–36

J, K
Jasik’s debugger 43–63
Jasik, Steve 44
Johnson, Bo3b 43
Johnson, Dave 79

L
LaserWriter

Macintosh Q & A 87–88
curves in QuickDraw and

7–27

d e v e l o p Autumn 1991

100

LaserWriter driver 41–42
Macintosh Q & A 87,

88–89
leaks, memory 55–57
LibAUX.h, hybrid applications

and 69
libaux_sys.o, hybrid applications

and 69
LineTo, curves in QuickDraw and

11, 18, 21
linker warnings, full 53–54
LongDateTime, date and time

entry in MacApp and 35

M
MacApp, validating date and time

entry in 28–40
MacDraw, curves in QuickDraw

and 7–27
“Macintosh Debugging: A Weird

Journey Into the Belly of the
Beast” (Johnson and Huxham)
43–63

“Macintosh Hybrid Applications
for A/UX” (Morley) 64–78

Macintosh Q & A 82–91
MacsBug 43–63

Macintosh Q & A 84
mailx, UNIX Mail Reader and

72–78
memFullErr, Macintosh Q & A

82
memory

NuBus 95–98
32-bit memory mode 52
virtual 83–84

memory leaks 55–57
memory protection 54–55
Morley, John 64
MoveHHi, GWorlds and NuBus

memory and 95
000Move&Rename folder,

Macintosh Q & A 85
Movie Toolbox, Macintosh Q & A

83

MultiFinder
hybrid applications and

66–70
Macintosh Q & A 82

multiple configuration tests,
debugging and 59–61

multitasking, hybrid applications
and 66–70

N
\n, hybrid applications and 69
NewGDevice, GWorlds and

NuBus memory and 96
NewGWorld, GWorlds and

NuBus memory and 95, 97
NextPathSegment, curves in

QuickDraw and 14
NuBus memory, GWorlds and

95–98

O
OffsetPaths, QD Curves and 23
Old TMON. See TMON
OMF (Object Module Format) 65
Othmer, Konstantin 7
OutlineToPaths, curves in

QuickDraw and 22

P
PackControlBits, curves in

QuickDraw and 22
PaintPoly, curves in QuickDraw

and 9
parametric equations, curves in

QuickDraw and 10
ParamText, date and time entry in

MacApp and 35, 38
parmErr, Macintosh Q & A 82
paths 9, 13, 17

drawing 8–17
framing 13–17
saving in PICTs 17–21

picPlyClo picture comment,
curves in QuickDraw and 18

PICTs
Macintosh Q & A 87
saving paths in 17–21

Plamondon, James 28
PolyBegin picture comment,

curves in QuickDraw and 18
PolyIgnore picture comment,

curves in QuickDraw and 19
PolySmooth picture comment,

curves in QuickDraw and 18,
19

PostScript
Macintosh Q & A 88–89
curves in QuickDraw and

7–27
PostScriptHandle picture

comment, Macintosh Q & A
88–89

preemptive multitasking 67
PrepareErrorAlert, date and time

entry in MacApp and 34–35,
37–38

PrGeneral, LaserWriter driver 7.0
and 41–42

“Print Hints From Luke & Zz”
(Alexander) 41–42

PrOpenDoc, LaserWriter driver
7.0 and 42

“puppet strings,” Macintosh
Q & A 82

Q
Q & A

Apple II 92–94
Macintosh 82–91

QD Curves application 23–27
quadratic Béziers, working with in

QuickDraw 7–27
QuickDraw

GWorlds and NuBus
memory and 95–98

LaserWriter driver 7.0 and
41–42

Macintosh Q & A 82
working with curves in 7–27

INDEX Autumn 1991

101

QuickTime
Macintosh Q & A 83
update 6

R
\r, hybrid applications and 69
RecoverHandle, GWorlds and

NuBus memory and 97
Reed, Mike 7
resource IDs, Apple II Q & A 94
RunQ, Apple II Q & A 93–94
run queue items, Apple II Q & A

93–94

S
ScalePaths, QD Curves and 23
screens, SHR 94
SCSIRead, Macintosh Q & A

83–84
Selection script, UNIX Mail

Reader and 76–77
SetDeviceAttribute, GWorlds and

NuBus memory and 96
SetGDevice, GWorlds and NuBus

memory and 97
SetGWorld, GWorlds and NuBus

memory and 97
SetPort, GWorlds and NuBus

memory and 97
SetRsl, LaserWriter driver 7.0 and

42
SFPGetFile, Macintosh Q & A

85–86
SFPPutFile, Macintosh Q & A

85–86
shapes, framing in QuickDraw 17
SHR (Super Hi-Res) screens,

Apple II Q & A 94
'SIZE' resource, Macintosh Q & A

82
Snively, Paul 95
SpinCursor, hybrid applications

and 70
Standard File dialog, Macintosh

Q & A 85

stereo sound, Macintosh Q & A
91

stress error handling 57–59
Super Hi-Res (SHR) screens,

Apple II Q & A 94

T
Tanaka, Forrest 95
TargetValidationFailed, MacApp

3.0 and 32
TDateEditText, date and time

entry in MacApp and 31,
35–38

TDialogTEView, MacApp 3.0 and
32

TDialogView
MacApp 3.0 and 32
date and time entry in

MacApp and 29, 39
TEditText

MacApp 3.0 and 32
date and time entry in

MacApp and 28–40
TEvtHandler, MacApp 3.0 and

32
32-bit memory mode, debugging

and 52
time entry, validating in MacApp

28–40
timestamp, Macintosh Q & A 91
TMON, debugging and 43–63
“TMON, Then and Now”

(Horwat) 48
TNumberText, date and time

entry in MacApp and 29
token of control 67
trace, debugging and 62–63
TrueType, curves in QuickDraw

and 7–27
TTimeEditText, date and time

entry in MacApp and 31,
38–39

TValidText, date and time entry in
MacApp and 31–33, 35, 36,
38, 39

U
UNIX, hybrid applications and

64–78
Unixcmd, auxsystem and 72
UNIX Mail Reader 72–78
UpdateGWorld, GWorlds and

NuBus memory and 98

V
Validate

MacApp 3.0 and 32
date and time entry in

MacApp and 29, 30, 33,
35, 39

“Validating Date and Time Entry
in MacApp” (Plamondon)
28–40

ValidationErrorAlert, date and
time entry in MacApp and 34

“Veteran Neophyte, The”
(Johnson) 79–81

virtual memory (VM), Macintosh
Q & A 83–84

volume reference information,
Macintosh Q & A 85–86

W
warnings, compiler and linker

53–54
wireless communication 79–81
writexfcn, UNIX Mail Reader and

73, 76

X, Y
XFCNs, UNIX Mail Reader and

72–78

Z
zapping handles, debugging and

50
$0

debugging and 45–47,
50–51

Macintosh Q & A 83

d e v e l o p Autumn 1991

102

