
d e v e l o p
T h e A p p l e T e c h n i c a l J o u r n a l

MAKING THE MOST
OF COLOR ON 1-BIT
DEVICES

THE TEXTBOX YOU’VE
ALWAYS WANTED

MAKING YOUR
MACINTOSH SOUND
LIKE AN ECHO BOX

SIMPLE TEXT
WINDOWS VIA THE
TERMINAL MANAGER

TRACKS: A NEW
TOOL FOR
DEBUGGING DRIVERS

USING THE
PALETTE MANAGER
OFF-SCREEN

BACKGROUND-ONLY
APPLICATIONS IN
SYSTEM 7

MACINTOSH Q & A

APPLE II Q & A

NEW FEATURE:
KON & BAL’S
PUZZLE PAGE

I ssue 9 Winter 1992

Apple Computer, Inc.

E D I T O R I A L S T A F F

Editor-in-Cheek Caroline Rose

Technical Buckstopper Dave Johnson

Review Board Pete “Luke” Alexander, Chris

Derossi, C. K. Haun, Larry Rosenstein, Andy

Shebanow, Gregg Williams

Managing Editor Monica Meffert

Assistant Managing Editor Ana Wilczynski

Contributing Editors Lorraine Anderson,

Toni Haskell, Judy Helfand, Rebecca Pepper,

Rilla Reynolds, Leslie Steere, Carol Westberg

Indexer Ira Kleinberg

Manager, Developer Support Systems and

Communications David Krathwohl

A R T & P R O D U C T I O N

Production Manager Hartley Lesser

Art Director Diane Wilcox

Technical Illustration Geoff McCormack,

John Ryan

Formatting Forbes Mill Press

Printing Wolfer Printing Company, Inc.

Film Preparation Aptos Post, Inc.

Production PrePress Assembly

Photography Sharon Beals, Dennis Hescox,

Kathleen Siemont

Circulation Management David Wilson

Online Production Cassi Carpenter

develop, The Apple Technical Journal, is a
quarterly publication of the Developer
Support Systems and Communications
group.

To create this cover, Hal Rucker and Cleo
Huggins bought the nicest-looking fruit
they could find, photographed it and
scanned in a slide, manipulated the scan
with Adobe Photoshop, and blended in a
dithered version of it. Delicious!

The Developer CD Series disc for February
1992 or later contains this issue and all
back issues of develop along with the code
that the articles describe. The contents of
this disc, which includes other handy
software and documentation, can also be
found on AppleLink.

CONTENTS Winter 1992

1
© 1992 Apple Computer, Inc. All rights reserved. Apple, the Apple logo, APDA, Apple IIGS, AppleLink, AppleShare,
AppleTalk, EtherTalk, GS/OS, ImageWriter, LaserWriter, LocalTalk, MacApp, Macintosh, MPW, MultiFinder, and
TokenTalk are trademarks of Apple Computer, Inc., registered in the U.S. and other countries. A/ROSE, Balloon Help,
develop, Finder, Macintosh Coprocessor Platform, Macintosh Quadra, QuickDraw, QuickTime, SNA•ps, Sound
Manager, Tools Advisor, and TrueType are trademarks of Apple Computer, Inc. HyperCard is a registered trademark
of Apple Computer, Inc. licensed to Claris Corp. Adobe Photoshop and PostScript are registered trademarks of Adobe
Systems Inc. MacWrite is a registered trademark of Claris Corp. CompuServe is a registered trademark of
CompuServe, Inc. Internet and VAX are trademarks of Digital Equipment Corp. IBM is a registered trademark of
International Business Machines Corp. Linotronic is a trademark, and Helvetica and Times are registered trademarks,
of Linotype Company. Microsoft is a registered trademark of Microsoft Corp. Nisus is a trademark of Paragon
Concepts, Inc. Sony is a registered trademark of Sony Corporation. NuBus is a trademark of Texas Instruments. UNIX
is a registered trademark of UNIX System Laboratories, Inc.

We want your two cents! 2

Your praise and your scorn. 4

Making the Most of Color on 1-Bit Devices by Konstantin Othmer and
Daniel Lipton A two-part article: how to create color PICTs on black-and-white
machines, and the theory and practice of dithering. 7

The TextBox You’ve Always Wanted by Bryan K. (“Beaker”) Ressler
Here’s a replacement for TextBox, with better performance, more flexibility, and
international compatibility. What more do you want? 31

Making Your Macintosh Sound Like an Echo Box by Rich Collyer
Learn how to use double buffering techniques to simultaneously record and play
sounds. 48

Simple Text Windows via the Terminal Manager by Craig Hotchkiss
The Terminal Manager (in the Communications Toolbox) provides handy text
output capabilities in your application with virtually no effort. 60

Tracks: A New Tool for Debugging Drivers by Brad Lowe Debugging
device drivers is a pain. This tool provides an easy way to log information from your
driver, greatly easing your debugging woes. 68

Graphics Hints From Forrest: Using the Palette Manager Off-Screen
by Forrest Tanaka Can you use the Palette Manager to manage colors in off-
screen ports? Well, yes, but there are some caveats. 29

Be Our Guest: Background-Only Applications in System 7 by C. K.
Haun Faceless background tasks provide a handy way out of some sticky situations.
C. K. shows you the basics. 58

The Veteran Neophyte: Silicon Surprise by Dave Johnson Computers
are not only great for studying complex systems, they are complex systems. Or at
least Dave thinks so. 82

KON & BAL’s Puzzle Page: It’s Just a Computer by Konstantin Othmer
and Bruce Leak Are there demons in Kon’s computer? Or is it just a simple
mistake? A debugging puzzle to tickle your brain. 103

Answers to your product development questions.
Macintosh Q & A 85
Apple II Q & A 100

106

E D I T O R I A L

L E T T E R S

A R T I C L E S

C O L U M N S

Q & A

I N D E X

Dear Readers,

Let’s talk about develop: what it is, what it might be, what it can do for you, and what
you can do for it. This journal exists to meet your needs, so I hope you’ll help us out
by reading on and giving us your two cents (if not your articles).

Originally, develop was thought of as “heavily commented code”: along with the
accompanying CD, it was meant as a vehicle for providing well-explained code that
you, the developer, could plug into your application with the confidence that it would
be compatible with future system software. To ensure compatibility, articles and code
were written primarily by Apple engineers and heavily reviewed by other engineers at
Apple.

But other types of articles have been submitted, and some have made it into print.
Most notable was the ground-breaking Threads article in Issue 6, the first article for
which source code was not provided. This lack of source code did not go unnoticed
by our readers, yet the overall response to the Threads package was extremely
favorable. So we’ve moved from always providing source code to providing it if at all
possible. We still make every effort, however, to give you something that won’t break
in future systems.

Recently we’ve had some requests to publish articles that describe algorithms or
ideas, not code. Our current feeling is that as long as an article can help you create
good Apple products, we’ll consider publishing it. Please let us know what you’d like
to see. There are some Apple engineers who are willing to contribute to develop but
would like to know just what developers want to see. We get a lot of input from
Developer Technical Support about what you seem to need the most help with—but
let us at develop know directly, and we can try to make it happen faster.

Regarding who writes the articles: we feel that as long as the code is reviewed by
Apple engineers, there’s no need to rely solely on people at Apple for contributions.
We’d like to encourage all of you to think about what you’d like to share with your
fellow developers—something that would help them and also give you a way to
showcase and release your code in a way that wouldn’t otherwise be possible. We
offer something those other journals don’t: not only review by Apple engineers and
the assurance of future compatibility, but also an editorial process that will make your
prose shine so brilliantly you’ll need to wear shades. We’ll assign an editor who will

d e v e l o p Winter 1992

CAROLINE ROSE (AppleLink: CROSE) has been
writing computer documentation ever since Steve
Jobs was barely a teen. When his company
moved in down the block from where she worked
as a writer and then a programmer, Caroline took
no notice—until they asked if she wanted to write
what even then was known as Inside Macintosh.
Around the time she completed that three-volume
tome, Steve left Apple to form NeXT, and Caroline

signed on to launch NeXT’s Publications group. A
year ago she returned to Apple to take on the fun-
filled job of being develop’s editor in chief. For
fun outside of work, Caroline dances up a storm,
listens to music, plays with her cat and other
friends, treks through the wilderness (in boots or
on skis), swims like a maniac, reads fiction (not
sci-fi!), studies Italian, does Tai Chi, and never
stops exploring new ways to have fun.•

2

CAROLINE ROSE

help turn your raw material into a polished piece—or tread lightly on it if that’s all
you need. We’ll give your article that professional look and feel without killing the
humor. So, if you’re willing, please send me your ideas or outlines, and we’ll take it
from there.

Back to the subject of your opinions about develop: Many of you who are Apple
Associates and Partners have by now been formally surveyed on how you rate various
support-related materials, of which develop is only one shining example. We’d also
like to hear from the rest of you, however informally. I can’t overemphasize how
important your opinions are and how much they’ll affect develop’s future. So please,
express yourself! Tell us what’s good or bad about this journal’s content, format,
delivery, or anything else. We’re all ears.

Issue 8 ended with this trivia question: What word was used instead of “click” to
describe the action of pressing a button on that first mouse? The answer, which none
of you have gotten as of this writing, is “bug.” Maybe you’ll do better on this next
one: The original hardcover Inside Macintosh Volumes I-III had a running pattern of
Macintosh computers across its endpapers (those heavy sheets at the very beginning
and end of hardcover books). What broke this pattern, and why?

EDITORIAL Winter 1992

3
SUBSCRIPTION INFORMATION
Use the order form on the last page of this issue
to subscribe to develop. Please address all
subscription-related inquiries to develop, Apple
Computer, Inc., P.O. Box 531, Mt. Morris, IL
61054 (or AppleLink DEV.SUBS).•

BACK ISSUES
For information about back issues of develop and
how to obtain them, see the reverse of the order
form on the last page of this issue. Back issues
are also on the Developer CD Series disc.•

Caroline Rose
Editor

CURLING UP WITH DEVELOP
Regarding your editorial in Issue 8: I
agree with you on liking to have a “hard
copy” to be able to curl up with when
trying to understand something for the
first time. I can always go to the
computer and try examples or ideas. But
to lay back and put up my feet or nestle
under a quilt in bed is more relaxing to
let concepts sink in and develop on their
own, to spring forth with clarity later.

I like the idea of sending the disc
separately in its own case—though I
never had a mangled disc problem. It is
the magazine itself that has a rougher
trip. I received Issue 8 without the disc
and hope that the disc is not far behind.
The mailing label on the back cover was
half off, not torn, but detached.
Flapping in the breeze, so to speak.

Keep up the good work on the
magazine. I look forward to it each
time.

—Robert Redmond

Thanks for your letter. It’s not only
heartening to hear from developers who
agree with me on this, but it makes a
difference. Your opinions do count.

The disc is now in a separate case, but it’s
not mailed under a separate label. They
should have arrived wrapped cozily together.
We’ll send you the disc right away. Sorry
about that.

—Caroline Rose

TEXT FORMATS GALORE
There’s a problem with the Macintosh
Technical Notes which I’m finding with
increasing frequency in Apple’s
electronic publications. The only word

processor I use is Nisus, with which I
can read MS Word 3.0 and 4.0 files
without buying a Microsoft product.
This may be an unreasonable prejudice,
but I bet it isn’t uncommon.

But Nisus can’t decipher fast-saved
Word files. This means, I suspect, that
the entire set of new Macintosh
technical publications is unavailable to
me. Worse, I fear that the next
Developer CD is going to have lots of
files with new, valuable, and (for me)
hidden information.

I know Apple is serious about electronic
distribution of technical documents. I’m
sure fast-saving in Word is a great
convenience to the authors, but surely
using a format not widely readable
defeats the purpose of the exercise. I
don’t object to standardizing on Word
3.0 or 4.0, so long as that format—and
not Microsoft’s convenience variant—is
actually used.

Could you please ask your authors, when
providing documents for publication, to
use an accessible format?

—Fritz Anderson

Thank you for alerting us to this problem.
It was a snafu on our part. None of the files
should have been fast-saved in Word.

We know that having text documents in
Word and MacWrite® represents a bias
toward these products. Unfortunately our
alternatives are limited and we’ll probably
have to continue using these products until
the spring.

The good news is that we’re working on a
new text formatting tool. This tool will be
available on the CD and will be able to
open, search, and print text documents
available on the CD. The dilemma of how

d e v e l o p Winter 1992

PLEASE WRITE!
We welcome timely letters to the editors,
especially from readers reacting to articles that
we publish in develop. Letters should be
addressed to Caroline Rose (or, if technical
develop-related questions, to Dave Johnson) at
Apple Computer, Inc., 20525 Mariani Avenue,
M/S 75-2B, Cupertino, CA 95014 (AppleLink:
CROSE or JOHNSON.DK). All letters should

include your name and company name as well
as your address and phone number. Letters may
be excerpted or edited for clarity (or to make
them say what we wish they did).•

4

LETTERS

to make every document available to every
developer has been a topic of discussion for
some time. We’re hoping this will solve the
problem.

Again, thank you for your input. Developer
feedback is the fuel of change around here.
Keep it coming.

—Sharon Flowers

NEW AND IMPROVED CD
I just received Issue 8 of develop, and was
pleased to find that the developer’s CD
has improved. Is this new?

—Mike Caputo

Yes, starting with Issue 8 the CD is not just
Developer Essentials, but the entire
Developer CD Series disc (of which
Developer Essentials is just a subset).

—Caroline Rose

SUBMITTING TO DEVELOP
First of all, I’d like to say that I’m a big
fan of develop. The combination of
excellent technical articles (with
required humor) and a CD-ROM of
other developer materials is unmatched.
At least the flak surrounding the CD-
ROM has finally calmed down in the
Letters section. I’ve always liked the
idea from the start even though I
purchased a CD-ROM drive only last
week.

I’m writing to find out if develop accepts
articles from non-Apple employees. I
haven’t looked through the back issues
to see if there were any, but none come
to mind. If so, do you have a style guide
for writing articles?

Keep up the great work!

—Paul-Marcel St-Onge

Thank you for your kind words about
develop; it’s always a pleasure to receive
mail from a big fan. Yours is the type of
letter that editors in chief dream of.

We do indeed accept articles from non-Apple
employees (see this issue’s Editorial). We
have a vast array of materials ready for
prospective authors, including an
introductory document, a short submission
form, a set of detailed author’s guidelines,
and even a Microsoft Word template for
entering your article in a develop-like
format. We’ll start with the intro and then
send the rest as you need it.

On the subject of the CD-ROM controversy,
it may experience a revival as a result of
Apple’s dropping printed develop and Tech
Notes from the monthly mailing to
Associates and Partners. We’d like to hear
what developers think about that.

—Caroline Rose

ART ILLEGIBLE ON-LINE
Figure 1 from Michael Gough’s article
on Futures (Issue 7) was illegible when
printed under System 7 from a
Macintosh II on a LaserWriter IINTX.
It’s just as illegible on the screen. Any
ideas?

The HyperCard® format on the CD is
convenient for flipping to pages and
articles but is terrible for seeing all of a
page at one time, since HyperCard’s
windows are not resizable. Further-
more, HyperCard is slow—especially
from a CD. And searching is neither
fast nor intuitive.

—Steve Tyler

LETTERS Wnter 1992

5

I looked into the problem and found out that
a mistake was made when the electronic
version of Issue 7 was created: Art that’s in
EPS format is normally opened in an
application that interprets PostScript® and
then saved as a PICT. This process wasn't
followed, with the result that the conversion
to PICT was only an approximation, and so
not very legible. This will be fixed in Issue 7
on the CD.

Regarding the HyperCard format, a lot of
people agree with you. We’re working on an
alternate viewing mechanism—but this
mechanism may not apply to develop for a
while yet. Meanwhile, HyperCard’s
windows are in fact resizable. If you’re not
able to resize them, your memory partition
for HyperCard is probably not large
enough; try increasing it.

—Caroline Rose

d e v e l o p Winter 1992

You can obtain a copy of the Tools
Advisor through APDA. The disk-based version
can also be found on the Developer CD Series
disc. To use the Tools Advisor, you’ll need a
Macintosh with System 6.0.5 or later,
HyperCard 2.0 or later, and a hard disk. To use
the CD-ROM version, you’ll of course also need
a CD-ROM drive.•

6

To a Macintosh developer starting a new project, the
range of equipment available can seem daunting. To an
experienced engineer suffering the constant barrage of
catalogs, technical brochures, and advertisements, it can
feel safest to hang on to familiar tools, whatever their
shortcomings. But what’s available? What systems or
tools might help you get your project done? Developer
University has released the Macintosh Development
Tools Advisor to help answer these questions.

The Tools Advisor offers a broad array of information. A
hypertext system, it tailors the data it presents to your
particular interests and demands. The Advisor
incorporates comprehensive technical data on over 80
programming tools—compilers and languages,
debuggers and prototypers, CASE tools, and multimedia
packages. It also includes essays on critical topics such
as object-oriented programming, Apple events, and
System 7. In preparing the Tools Advisor, Developer
University collected a considerable body of catalog-style
information on products available.

But a catalog is rarely sufficient. It’s not enough to read
lists of capabilities as recorded by manufacturers. You
need to know how the tools get used in actual projects.
So the Tools Advisor provides a collection of stories by
programmers who use the tools it describes. These
stories provide a real feel for the product. They’re
sometimes critical, warning of potential hazards and

shortcomings of particular tools. They’re also often
inspiring in explaining how particular achievements
were made. To help you find stories most appropriate to
you, the Advisor lets you match a loose profile of your
needs and wants to stories by developers with similar
backgrounds and tasks.

To augment its profiles of programming tools, critical
essays, and developers’ stories, the Tools Advisor
includes a glossary that describes exactly what technical
and trade terms mean and what they imply to a
development effort. Glossary entries and cross-
references let you navigate the intricate terrain of
technical information without losing sight of your
particular interests.

Two versions of the Tools Advisor are available. The disk-
based edition includes screen shots and comprehensive
data on programming tools in a range of categories as
well as technical details on the Macintosh and on
Macintosh programming in general. The CD-ROM
edition of the Tools Advisor adds demonstration versions
of dozens of tools; for instance, you can take a
multimedia tool for a test drive as you learn about
animations and about other developers’ experiences
with that product.

We hope that with the Tools Advisor guiding you, you
won’t feel lost any more.

FEELING LOST? SEE THE MACINTOSH DEVELOPMENT TOOLS ADVISOR

Macintosh developers faced with the dilemma of which platform to
develop software for—machines with the original QuickDraw or those
with Color QuickDraw—can always choose to write code that runs
adequately on the lower-end machines and gives additional
functionality when running on the higher-end machines. While this
sounds like a simple and elegant solution, it generally requires a great
deal of development and testing effort. To make this effort easier and
the outcome more satisfying, we offer techniques to save color images
and process them for display on 1-bit (black-and-white) devices.

Suppose you’re writing a program that controls a 24-bit color scanner and you’d like
it to work on all Macintosh computers. The problem you’ll run into is that machines
with the original QuickDraw (those based on the 68000 microprocessor) only have
support for bitmaps, thus severely crippling the potential of your scanner. But don’t
despair. In our continuing quest to add Color QuickDraw functionality to machines
with original QuickDraw, we’ve worked out techniques to save color images and
process them for display, albeit in black and white, on the latter machines. We’ve also
come up with a technique to address the problem of a laser printer’s inability to
resolve single pixels, which results in distorted image output. This article and the
accompanying sample code (on the Developer CD Series disc) share these techniques
with you.

SAVING COLOR IMAGES
The key to saving color images is using pictures. Recall that a picture (or PICT) in
QuickDraw is a transcript of calls to routines that draw something—anything. A
PICT created on one Macintosh can be displayed on any other Macintosh (provided
the version of system software on the machine doing the displaying is the same as or
later than the version on the machine that created the picture). For example, on a
Macintosh Plus you can draw a PICT containing an 8-bit image that was created on a

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter 1992

7
KONSTANTIN OTHMER has wanted his
photograph to appear in Sports Illustrated for as
long as he can remember. Unfortunately, his
college was in the NCAA’s Division III, which is
often overlooked by SI’s editors, and somehow
they’ve missed his virtuosity on the ski slopes at
Tahoe, Vail, and Red Lodge. So Kon’s had to
scale down his dream, setting his sights on
making the pages of develop instead. Here he’s

gotten to try on various alter egos. To come up
with his latest persona, he spent a few late nights
in a secret Apple lab with skilled pixel surgeon
Jim Batson.•

KONSTANTIN OTHMER
AND DANIEL LIPTON

MAKING THE

MOST OF

COLOR ON

1-BIT DEVICES

Macintosh II. With System 7, you can even display PICTs containing 16-bit and 32-
bit pixMaps on machines with original QuickDraw. (Of course, they will only be
displayed as 1-bit images there.)

Creating a picture normally requires three steps:

1. Call OpenPicture to begin picture recording.

2. Perform the drawing commands you want to record.

3. Call ClosePicture to end picture recording.

The catch is that the only drawing commands that can be recorded into a picture are
those available on the Macintosh on which your application is running. Thus, using
this procedure on a machine with original QuickDraw provides no way to save color
pixMaps into a picture, since there’s no call to draw a pixMap. In other words, you
can’t create an 8-bit PICT on a Macintosh Plus and see it in color on a Macintosh II.
But that’s exactly what would make a developer’s life easier—the ability to create a
PICT containing deep pixMap information on a machine without Color QuickDraw.
With this ability, you could capture a color image in its full glory for someone with a
Color QuickDraw machine to see, while still being able to display a 1-bit version on a
machine with original QuickDraw.

To get around the limitations of the normal procedure, we came up with a routine
called CreatePICT2 to manually create a PICT containing color information. Your
application can display the picture using DrawPicture. Now, you may be wondering
whether creating your own pictures is advisable. After all, Apple frowns on developers
who directly modify private data structures, and isn’t that what’s going on here? To
ease your mind, see “But Don’t I Need a License to Do This?”

The parameters to CreatePICT2 are similar to those for the QuickDraw bottleneck
procedure stdBits. The difference is that CreatePICT2 returns a PicHandle and does
not use a maskRgn.

The first thing the routine does is calculate a worst-case memory scenario and
allocate that amount of storage. If the memory isn’t available, the routine aborts,
returning a NIL PicHandle. You could easily extend this routine to spool the picture
to disk if the memory is not available, but that’s left as an exercise for you. (Hint:
Rather than writing out the data inline as is done here, call a function that saves a
specified number of bytes in the picture. Have that routine write the data to disk.
Essentially, you need an equivalent to the putPicData bottleneck.)

At this point the size of the picture is not known (since there’s no way to know how
well the pixMap will compress) so we simply skip the picSize field and put out the
picture frame. Next is the picHeader. CreatePICT2 creates version $02FF pictures,
with a header that has version $FFFF. This version of the header tells QuickDraw to
ignore the header data. (OpenCPicture, available originally in 32-Bit QuickDraw

d e v e l o p Winter 1992

DANIEL LIPTON (a.k.a. “The PostScript Kid”) is
a two-and-a-half-year veteran of Apple’s System
Software Imaging Group, where he’s working on
the next generation of printing software for the
Macintosh. When he’s not thinking backward, he
enjoys taking in a good flick, spending time with
his iguana, “Iggy” (who’s never quite forgiven
Dan for the time she nearly froze to death in the
cargo compartment of a 747), and writing zany

new lyrics to classic tunes (his “Working in the
Print Shop Blues” is well known to his coworkers).
Most of all, Dan enjoys building and flying model
airplanes, and he’s recently joined the
competition circuit. In fact, when asked what he’d
really like to do with his life, Dan replies:

sunny { { { { hours 8 { flying } for } rather_be }
dayforall } } if •

8

version 1.2 and in Color QuickDraw in System 7, still creates version $02FF pictures,
but the header version is now $FFFE and contains picture resolution information.)

In addition, the bounds of the clipping region of the current port are put in the
picture. Without this, the default clipping region is wide open, and some versions of
QuickDraw have trouble drawing pictures with wide-open clipping regions.

Next we put out an opcode—either $98 (PackBitsRect) or $9A (DirectBitsRect),
depending on whether the pixMap is indexed or direct. Then the pixMap, srcRect,
dstRect, and mode are put in the picture using the (are you ready for this?)
PutOutPixMapSrcRectDstRectAndMode routine. Finally, either
PutOutPackedDirectPixData or PutOutPackedIndexedPixData is called to put out
the pixel data.

There’s an important difference between indexed and direct pixMaps here. The
baseAddr field is skipped when putting out indexed pixMaps and is set to $000000FF
for direct pixMaps. This is done because machines without support for direct
pixMaps (opcode $9A) read a word from the picture, skip that many bytes, and

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter 1992

9

The reason Apple doesn’t want developers modifying
data structures is that it makes it hard to change them in
the future. For example, early Macintosh programs locked
handles by manually setting the high bit of the handle
rather than calling HLock. This caused numerous
compatibility problems when the 32-bit-clean Memory
Manager was introduced.

So what gives? What if Apple changes OpenPicture so
that it creates a totally different data format—won’t the
manually created pictures break?

Calm down, because the answer is no. The difference
between creating your own pictures and directly
modifying other data structures is that Apple can’t make
the current picture data format obsolete without
invalidating users’ data that exists on disk. Just as you can
still call DrawPicture on version 1 pictures and everything
works, you will always be able to call DrawPicture on
existing version 2 pictures, regardless of the format of
pictures created in the future.

One possible pitfall is that you might create a picture with
subtle compatibility risks that draws on the existing system
software but breaks at some future date. To minimize the
chances of such an occurrence, you should compare the
pictures you generate with those that QuickDraw
generates in identical circumstances. You must be able to
account for any and all differences.

Creating your own pixMaps (as our example code does)
is definitely in the gray area between risky and outright
disastrous behavior, and you shouldn’t do it. Then why
would an article written by two upstanding citizens do
such a thing? The answer is that the pixMaps used by this
code are kept private; they’re never passed as arguments
to a trap. We could just as easily have called them
something else, but pixMaps work for what we’re doing,
so we used them. If you want to pass a pixMap to a trap,
you can generate it using the NewPixMap call (not
available on machines with original QuickDraw) or let
other parts of Color QuickDraw, like OpenCPort,
generate it.

BUT DON’T I NEED A LICENSE TO DO THIS?

continue picture parsing. When such a machine encounters the $000000FF
baseAddr, the number of bytes skipped is $0000 and the next opcode is $00FF, which
ends the picture playback. A graceful exit from a tough situation.

An interesting fact buried in the PutOutPixMapSrcRectDstRectAndMode routine is
the value of packType. All in-memory pixMaps (that aren’t in a picture) are assumed
to be unpacked. Thus, you can set the packType field to specify the type of packing
the pixMap should get when put in a picture. “The Low-Down on Image
Compression” (develop Issue 6, page 43) gives details of the different pixMap
compression schemes used by QuickDraw. Note that all of QuickDraw’s existing
packing schemes lose no image quality. QuickTime (the new INIT described in detail
in the lead article in develop Issue 7) adds many new packing methods, most of which
sacrifice some image quality to achieve much higher compression.

Anyway, these routines support only the default packing formats: 1 (or unpacked) for
any pixMap with rowBytes less than 8, 0 for all other indexed pixMaps, and 4 for 32-
bit direct pixMaps with rowBytes greater than 8. Note that these routines do not
support 16-bit pixMaps.

Finally, the end-of-picture opcode is put out and the handle is resized to the amount
actually used.

PicHandle CreatePICT2(PixMap *srcBits, Rect *srcRect, Rect *dstRect,
short mode)

{
PicHandle myPic;
short myRowBytes;
short *picPtr;
short iii;
long handleSize;

#define CLIPSIZE 12
#define PIXMAPRECSIZE 50
#define HEADERSIZE 40
#define MAXCOLORTABLESIZE 256*8+8
#define OPCODEMISCSIZE 2+8+8+2 /* opcode+srcRect+dstRect+mode */
#define ENDOFPICTSIZE 2
#define PICSIZE PIXMAPRECSIZE + HEADERSIZE + MAXCOLORTABLESIZE + \

ENDOFPICTSIZE + OPCODEMISCSIZE + CLIPSIZE

myRowBytes = srcBits->rowBytes & 0x3fff;
/* Allocate worst-case memory scenario using PackBits packing. */

myPic = (PicHandle) NewHandle(PICSIZE + (long)
((myRowBytes/127)+2+myRowBytes)*(long)(srcBits->bounds.bottom
- srcBits->bounds.top));

d e v e l o p Winter 1992

10

if(!myPic)
return(0);

/* Skip picSize and put out picFrame (10 bytes). */
picPtr = (short *) (((long)*myPic) + 2);
*picPtr++ = dstRect->top;
*picPtr++ = dstRect->left;
*picPtr++ = dstRect->bottom;
*picPtr++ = dstRect->right;

/* Put out header (30 bytes). This could be done from a resource or
taken from an existing picture. */
picPtr++ = 0x11; / Version opcode. */
picPtr++ = 0x2ff; / Version number. */
picPtr++ = 0xC00; / Header opcode. */
picPtr++ = 0xFFFF; / Put out PICT header version. */
*picPtr++ = 0xFFFF;

/* The rest of the header is ignored--0 it out. */
for(iii = 10; iii > 0; iii--)

picPtr++ = 0; / Write out 20 bytes of 0. */

/* Put out current port's clipping region. */
picPtr++ = 0x01; / Clipping opcode. */
picPtr++ = 0x0A; / Clipping region only has bounds rectangle. */
*picPtr++ = (**thePort->clipRgn).rgnBBox.top;
*picPtr++ = (**thePort->clipRgn).rgnBBox.left;
*picPtr++ = (**thePort->clipRgn).rgnBBox.bottom;
*picPtr++ = (**thePort->clipRgn).rgnBBox.right;

HLock(myPic);
if(srcBits->pixelType == RGBDirect)
{ /* Must be 32-bits/pixel */
/* Put out opcode $9A, DirectBitsRect. */

*picPtr++ = 0x9A;
picPtr++ = 0; / BaseAddr for direct pixMaps is 0x000000FF. */
*picPtr++ = 0xFF;
PutOutPixMapSrcRectDstRectAndMode(srcBits, &picPtr, srcRect,

dstRect, mode);
if(PutOutPackedDirectPixData(srcBits, &picPtr))

goto errorExit; /* Nonzero indicates an error. */
}
else
{
/* Put out opcode $98, PackBitsRect. */

*picPtr++ = 0x98;

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter 1992

11

PutOutPixMapSrcRectDstRectAndMode(srcBits, &picPtr, srcRect,
dstRect, mode);

if(PutOutPackedIndexedPixData(srcBits, &picPtr))
/* Nonzero indicates an error. */
goto errorExit;

}
HUnlock(myPic);

/* All done! Put out end-of-picture opcode, $00FF. */
*picPtr++ = 0x00FF;

/* Size handle down to the amount actually used. */
handleSize = (long) picPtr - (long) *myPic;
SetHandleSize(myPic, handleSize);
/* Write out picture size. */
*((short *) *myPic) = (short) handleSize;
return(myPic);

errorExit:
DisposHandle(myPic);
return(0);

}

Just remember that it’s not advisable to pass a pixMap you create yourself to a trap.
The reason is that although it’s unlikely, the format of a pixMap could change (since
it’s not a persistent data structure, as a picture is); this would then break your
application.

The subroutines the CreatePICT2 routine calls as well as some sample code that uses
CreatePICT2 are on the Developer CD Series disc.

PROCESSING COLOR IMAGES FOR DISPLAY
The remainder of this article focuses on processing color images for display on 1-bit
(black-and-white) devices, both monitors and laser printers.

There are many techniques for representing a full-color image on a monitor when
color resources are limited. The Picture Utilities Package (new in System 7) offers
routines for determining optimal colors to use when displaying a pixMap in a limited
color space. For example, if you want to display a 32-bit image on an 8-bit monitor,
Picture Utilities can tell you the 256 best colors to use to display the image. The
CreatePICT2 routine just described creates a picture that you can legally analyze
using the Picture Utilities.

d e v e l o p Winter 1992

12

You can also use the techniques of thresholding and of dithering, of which there are
three varieties: error diffusion, ordered, and random. Ordered dithering, also known
as halftoning, is particularly useful for producing images to be printed on a laser
printer. We’ll examine each of these techniques in turn.

USING A 50% THRESHOLD
The first technique that leaps to mind when one is faced with displaying a color
picture on a 1-bit screen is to convert each color to a luminance and then use a
threshold value to determine whether or not to set the corresponding pixel. It turns
out that green contributes the most to the luminance and blue contributes the least.
Red, green, and blue contribute approximately 30%, 59%, and 11%, respectively, to
the luminance. Thus, our formula to convert an RGB value to a luminance becomes

Luminance = (30*RED + 59*GREEN + 11*BLUE)/100

If the resulting luminance is 128 (50% of 256) or greater, the pixel is set to white;
otherwise it’s set to black. This technique produces the results shown in Figure 1 for
gray gradations and a lovely picture of one of the authors. Note that thresholding
occurs at the source pixel resolution. Thus, even though the output device used to
produce Konenna is 300 dpi, the thresholded picture appears to be 72 dpi. In
contrast, the techniques of error-diffusion dithering and halftoning discussed on the
following pages occur at the destination device resolution.

The results shown in Figure 1 are far from ideal. The gray gradations end up as a
black rectangle beside a white rectangle, and the picture of Konenna, while still cute,
is completely devoid of detail.

USING ERROR-DIFFUSION DITHERING
The major problem with the threshold algorithm is that a great deal of information is
thrown away. The luminance is calculated as a value between 0 and 255, but the only
information we use is whether it’s 128 or greater.

An easy fix is to preserve the overall image lightness by maintaining an error term
and then passing the error onto neighboring pixels. Both original and Color
QuickDraw have dithering algorithms built in for precisely this purpose. (Yes, it’s
true—while a dither flag cannot be passed explicitly to any original QuickDraw trap,
a picture containing a color bit image created using dither mode on a Color
QuickDraw machine will dither when drawn with original QuickDraw.) The error is
calculated as

Error = Requested Intensity - Closest Available Intensity

For a black-and-white destination, the closest available intensity is either 0 (black) or
255 (white). The requested intensity is the luminance of the current pixel plus some

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter 1992

13

 14

d e v e l o p Winter 1992

Figure 1
Gray Gradations and Konenna Pictured Using 50% Threshold

part of the error term of surrounding pixels. Ideally, the error term is spread evenly
among all surrounding pixels. But to maintain acceptable performance, QuickDraw
uses a shortcut. In original QuickDraw, the error term is pushed to the right on even
scan lines and to the left on odd scan lines. Color QuickDraw uses the same
technique, except it pushes only half the error to the left or right, and the other
half to the pixel immediately below. The result of using this technique in Color
QuickDraw at monitor resolution for the two test images is shown in Figure 2.

This form of dithering is normally referred to as error diffusion. That is to say that
each pixel is thresholded at 50%, but the error incurred in that process is
distributed across the image in some manner, thus minimizing information loss.
Error diffusion produces very pleasing results when the device being drawn onto is
capable of accurately rendering a single dot at the image resolution. Monitors are
quite good at this; laser printers are not. If you want your application’s output to
look good on a laser printer, a different technique is called for.

USING ORDERED DITHERING (HALFTONING)
There are two kinds of laser printers: write-white and write-black. A write-white
printer (such as some of the high-end Linotronic printers that use a photographic
process) starts the image out black and uses the laser to turn off pixels. A write-black

printer (such as Apple’s LaserWriter) starts the image out white and turns on pixels
with the laser. Since the pixels are thought of as being square and the laser beam is
round, neither process can accurately turn on or off single pixels.

Generally, the circle generated by the laser beam is slightly bigger than the pixel as
the computer “sees” it, to guarantee that all space is covered (see Figure 3). The
effect of this with a write-black printer is that the black dots tend to be bigger than
the individual pixels, causing any 1-bit image drawn at device resolution to appear too
dark. The effect with a write-white printer is that the black dots tend to be smaller
than the individual pixels, causing any 1-bit image drawn at device resolution to
appear too light. If the area of the circle is 20% greater than the individual pixel, the
percentage of unwanted toner, or error, for a single pixel is 20%.

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter 1992

15

Figure 2
Gray Gradations and Konenna Dithered at Monitor Resolution

Figure 3
A Laser’s Idea of a Square Pixel

Because the error is introduced only at the black/white boundaries, it’s reduced when
two or more pixels are drawn next to each other. Then the percentage of error is
reduced to the perimeter of the pixel group. So in the case where the error for a
single pixel is 20%, two pixels drawn next to each other would have only a 15.5%
error, and four pixels in a square would have only a 10.25% error in the area covered.

Ordered dithering, or halftoning, minimizes the dot-to-pixel error just described by
clumping pixels. Pixels are turned on and off in a specific order in relation to each
other and the luminance of the source image. The order can be specified in such a
way that clumps of pixels next to each other are turned on as the luminance decreases.
This allows us to minimize the effects of the laser printer’s dot-to-pixel error. The
order is determined by what’s known as a dither matrix. (Warning: From here on out,
things get deep, so put on your waders. You don’t really need to understand all the
following to use the sample code we provide.)

About the dither matrix. With a dither matrix, to render intermediate shades of
gray or primary colors, we sacrifice spatial resolution for shading—that is, we
effectively lower the device’s dots-per-inch rating while increasing the number of
shades that we can print. For example, if we use a 2x2 cell of 300-dpi dots for every
pixel on the page, we’ve lowered the spatial resolution of the device to 150 dpi but we
now have 24 or 16 different patterns to choose from for each one of the pixels. Each
pattern has anywhere from 0 to 4 of the 300-dpi dots blackened, or a density between
0 and 100%. In fact, for the 16 possible patterns there are only five possible densities:
0%, 25%, 50%, 75%, and 100%, corresponding to 0, 1, 2, 3, and 4 dots blackened in
the cell. The dither matrix determines which five of the possible patterns to use to
represent the five possible densities. It’s left to you as an exercise to generate these
matrixes using the algorithm we provide below. (The sample code on the Developer
CD Series disc has a commonly useful example.)

If we construct a matrix with the same dimensions as the dot cell that we’re going to
use (2x2 for the described case) so that the matrix contains the values 25, 50, 75, and
100, we can use this matrix to determine each of the five possible patterns. Each dot
in the pattern corresponds to a position in the matrix. To generate a pattern for 50%
gray, we turn on all the dots in the pattern with corresponding matrix values less than
or equal to 50. The position of the values in the matrix determines the shape of the
pattern, as shown in Figure 4.

The dither matrix is used to render an image in much the same way as the 50%
threshold described earlier. In fact, that process uses a 1x1 dither matrix whose single
element has a value of 50%. The dither matrix is sampled with (x mod m, y mod n),
where (x, y) is the device pixel location and (m, n) is the width and height of the dither
matrix.

It turns out that the spatial resolution of the device isn’t really reduced by the size of
the dither matrix. For regions that are all black, for example, the resolution remains

d e v e l o p Winter 1992

16

the device resolution. Each pixel in the device is still sampled back to a pixel in the
source image.

The basic algorithm for doing an ordered dither of an image onto a page becomes the
following:

For all device pixels x, y:

• sx, sy = transform(x, y) where transform maps device pixel
coordinates to source pixel coordinates

• If sourceLuminance(sx, sy) > ditherMatrix[x mod m, y mod n],
device-dot(x, y) = black

The code on the Developer CD Series disc is an elaboration on this basic algorithm.

As stated before, the position of the various values in the dither matrix determines the
patterns that various luminances generate. A general way to specify this order is to
use a spot function, as the PostScript interpreter does. If the rectangle of the dither
matrix is thought to be a continuous space whose domain is 0–1 in the x and y
directions, spot-function(x, y) will return some value that ultimately can be converted
into a luminance threshold in the matrix. If the desired pattern is a dot that grows
from the center as the luminance decreases (known as a clustered-dot halftone), spot-
function(x, y) is simply the distance from (x, y) to the center of the cell (0.5, 0.5). The
dither matrix would be generated from the spot function as follows:

for i = 1 to m
x = i/m
for j = 1 to n

y = j/n
matrix[i, j] = spot-function(x, y)

The result of this process is that the matrix contains the spot function’s results. What
we really want in the matrix are threshold values for the luminance. The spot

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter 1992

17

25�

75

50�

100

Dither matrix 50% gray pattern

Figure 4
A 2x2 Dither Matrix

function result is converted as follows: Treating the dither matrix as a one-
dimensional array A, generate a sort vector V such that A[V[i]] is sorted as i goes
from 1 to m*n. Then, replacing all of the values in A with V[i] * 100/(m*n) will yield
the desired threshold matrix, with each value being a percentage of luminance. (The
code uses numbers that are more computer-friendly than percentages.) These
percentages assume that the device is capable of accurately rendering a single pixel.
The values can be modified by a gamma function to more accurately produce a linear
relationship between image luminance and pixel density.

Ordered dithering is generally done at a specific angle and frequency. The frequency
is the number of cells (or dither matrixes) per inch and the angle refers to how the
produced patterns are oriented with respect to the device grid. In the preceding
example, the frequency (if printing on a 300-dpi device) is 150 cells per inch and the
angle is 0˚.

Because of the way our brains work (our eyes tend to pick up patterns at 90˚ angles
but not at 45˚ angles), it’s desirable to orient these patterns at arbitrary angles. Since
the dither matrix itself is never rotated with respect to the device, we must generate
the dither matrix in such a way that it contains enough repetitions of the rotated cell
to achieve the effect of being rotated itself. In other words, because a square device
requires us to “tile” an area with 0˚ rectangles, we need to find a 0˚ rectangle
enclosing a part of the rotated pattern that forms a repeatable tile. For some angles of
rotation, this rectangle may be much larger than the pattern itself.

Suppose we want to halftone to a 300-dpi device at a frequency of 60 cells per inch
and an angle of 45˚. At 0˚, the dither matrix would be 5x5 (300/60), yielding 26
possible shades of gray. However, as Figure 5 illustrates, we need an 8x8 matrix to
approximate the desired angle. These dimensions are found by rotating the vectors
(0, 5) and (5, 0) by 45˚ and pinning them to integers, yielding the vectors (4, 4) and
(-4, 4). Since the magnitude of the vector (4, 4) is 4*sqrt(2), the actual halftone
frequency achieved will be 300/(4*sqrt(2)), around 53. The error in frequency and
angle is due to the need to pin the vectors to integer space.

Here’s the basic algorithm for computing the dither matrix:

1. The halftone cell is specified by the parallelogram composed of
the vectors (x1, y1) and (x2, y2) and based at (0, 0).

2. A, the area of the modified halftone cell, is (x1*y2) - (x2*y1). For the
required dither matrix, the horizontal dimension is A/P and the
vertical dimension is A/Q, where P = GCD(y2, y1) and
Q = GCD(x2, x1).

3. For every point in the matrix, which is in (x, y) orthogonal space,
we want to find its relative position in the space of one of the
repeated halftone cells, defined by the vectors (x1, y1) and (x2, y2).
(See Figure 6.) Call this point (u, v). The transformation is

d e v e l o p Winter 1992

The source of step 2 in the above algorithm is
“An Optimum Algorithm for Halftone Generation
for Displays and Hard Copies” by Thomas M.
Holladay, from the Proceedings of the Society for
Information Display, Vol. 21, No. 2, 1980.•

18

u = A*x + B*y, v = C*x + D*y. Since the point (x2, y2) in (x, y) space
is the point (1, 0) in halftone cell space and the point (x1, y1) is the
point (0, 1) in halftone cell space, the coefficients A, B, C, and D
are found by solving the following simultaneous linear equations:

A*x1 + B*y1 = 0
C*x1 + D*y1 = 1
A*x2 + B*y2 = 1
C*x2 + D*y2 = 0

We compute the dither matrix in the rotated case as follows:

For each position in the matrix (i, j):

• Get (x, y) the center of the matrix point (i, j)

x = i + 0.5
y = j + 0.5

• Transform (x, y) to a point in halftone cell space (u, v)

u = A*x + B*y
v = C*x + D*y

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter 1992

19

Desired matrix shape

Actual larger matrix repeated four times

Figure 5
Approximating the Desired Angle

u and v now express the point (x, y) as multiples of the two cell
vectors. Therefore, the fractional parts of u and v represent the
position as if the particular halftone cell at the point (x, y) were the
(0, 0) cell.

• Z = spot-function (u - floor(u), v - floor(v))

• Find the index of the record (containing fields x, y, and Z) such
that u = x, v = y. If the record doesn’t exist, enter u, v, Z into the
table. (Note that the equality between [u, v] and [x, y] requires an
allowable epsilon difference to account for fixed-point round-off
error.)

• matrix[i, j] = index

Find the order of records sorted by values of Z; store order in sort vector
(described earlier in connection with converting the spot function result).
Reassign values of matrix based upon sort vector.

Figure 7 shows our example matrix with values from 0 through 255, representing
luminances, filled in. A luminance from an image with this range could be sampled

d e v e l o p Winter 1992

20

A * x1 + B * y1 = 0
C * x1 + D * y1 = 1

A * x2 + B * y2 = 1
C * x2 + D * y2 = 0

A =
y1�

 x2 * y1 – x1 * y2

(x2, y2)

(x1, y1)

B =
x1�

 –x2 * y1 + x1 * y2

C =
y2�

 –x2 * y1 + x1 * y2

D =
x2�

 x2 * y1 – x1 * y2

Figure 6
Transforming a Halftone Cell

directly against the matrix. The values in this matrix are those that would actually be
used for a 300-dpi, 60-line-per-inch, 45˚ halftone. As in Figure 5, the matrix is
repeated four times for the sake of clarity, with the 45˚ halftone cells overlaid. The
position of any particular number in the matrix relative to the 45˚ cell it falls in
corresponds exactly to the relative position of that same number in any of the other
45˚ cells. Thus, the effect of having a rotated halftone cell is created with an
unrotated dither matrix.

This particular example leads us to some other interesting possibilities. It turns out
that QuickDraw patterns are 8x8 matrixes, just like our example. This means that we
can halftone other QuickDraw primitives besides pixMaps when drawing to a 300-dpi
non-PostScript device (provided that pattern stretching is disabled, by setting the
bPatScale field in the print record to 0) and achieve a look similar to what a
PostScript device would give us.

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter 1992

21

7�

87�

215�

247�

231�

199�

119�

23�

7�

87�

215�

247�

231�

199�

119�

23

111�

47�

143�

223�

191�

159�

63�

95�

111�

47�

143�

223�

191�

159�

63�

95�

183�

135�

39�

103�

71�

55�

151�

167�

183�

135�

39�

103�

71�

55�

151�

167

239�

175�

79�

31�

15�

127�

207�

255�

239�

175�

79�

31�

15�

127�

207�

255

231�

199�

119�

23�

7�

87�

215�

247�

231�

199�

119�

23�

7�

87�

215�

247

191�

159�

63�

95�

111�

47�

143�

223�

191�

159�

63�

95�

111�

47�

143�

223

71�

55�

151�

167�

183�

135�

39�

103�

71�

55�

151�

167�

183�

135�

39�

103�

15�

127�

207�

255�

239�

175�

79�

31�

15�

127�

207�

255�

239�

175�

79�

31

7�

87�

215�

247�

231�

199�

119�

23�

7�

87�

215�

247�

231�

199�

119�

23

111�

47�

143�

223�

191�

159�

63�

95�

111�

47�

143�

223�

191�

159�

63�

95�

183�

135�

39�

103�

71�

55�

151�

167�

183�

135�

39�

103�

71�

55�

151�

167

239�

175�

79�

31�

15�

127�

207�

255�

239�

175�

79�

31�

15�

127�

207�

255

231�

199�

119�

23�

7�

87�

215�

247�

231�

199�

119�

23�

7�

87�

215�

247

191�

159�

63�

95�

111�

47�

143�

223�

191�

159�

63�

95�

111�

47�

143�

223

71�

55�

151�

167�

183�

135�

39�

103�

71�

55�

151�

167�

183�

135�

39�

103�

15�

127�

207�

255�

239�

175�

79�

31�

15�

127�

207�

255�

239�

175�

79�

31

Figure 7
Our Example Matrix With Luminance Values Filled In

Here’s how. Suppose we want to paint a region with a luminance of 150 on the scale
from 0 to 255. We simply create a QuickDraw pattern in which all of the 1 bits
correspond to the cells in the 8x8 matrix that are greater than or equal to 150. This
pattern (shown in Figure 8) can then be used to paint any region or other QuickDraw
primitive to get the halftone effect. Furthermore, because QuickDraw patterns are
aligned to the origin of the grafPort, separate objects drawn touching one another
will not generate undesirable seams, even when drawn with different shades. The
nature of the clustered dot pattern is such that gradations appear continuous to the
extent possible at the resolution of the device.

Figure 9 shows the gray gradations and Konenna printed on a laser printer using
error-diffusion dithering compared with halftoning using the 8x8 matrix. The
difference in print quality is radical. For more commentary on this difference, see
“Printing: Ideal Versus Real.”

d e v e l o p Winter 1992

22

7�

87�

215�

247�

231�

199�

119�

23

111�

47�

143�

223�

191�

159�

63�

95

183�

135�

39�

103�

71�

55�

151�

167

239�

175�

79�

31�

15�

127�

207�

255

231�

199�

119�

23�

7�

87�

215�

247

191�

159�

63�

95�

111�

47�

143�

223

71�

55�

151�

167�

183�

135�

39�

103

15�

127�

207�

255�

239�

175�

79�

31

7�

87�

215�

247�

231�

199�

119�

23

111�

47�

143�

223�

191�

159�

63�

95

183�

135�

39�

103�

71�

55�

151�

167

239�

175�

79�

31�

15�

127�

207�

255

231�

199�

119�

23�

7�

87�

215�

247

191�

159�

63�

95�

111�

47�

143�

223

71�

55�

151�

167�

183�

135�

39�

103

15�

127�

207�

255�

239�

175�

79�

31

8x8 pattern�

8x8 pattern

Figure 8
Pattern for an Image With a Luminance of 150

 23

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter 1992

Gray gradations dither Gray gradations halftone

Konenna dither Konenna halftone

Figure 9
Gray Gradations and Konenna Dithered and Halftoned at Laser Printer Resolution

About the code. And now, about the code. To illustrate the principle of dithering,
our sample code is pixel-based—that is, the calculations are done on a pixel basis.
Thus, the perfomance is sluggish. A real-world commercial application would use an
optimized version of this code. One way to do this is to make the routines work on a
scan-line rather than a pixel basis. Also note that the routine that does the halftoning
only supports input pixMaps of 8 or 32 bits. It would be easy to extend the routine to
accept pixMaps of other depths.

The first routine we need is one that calculates the luminance given a pointer to the
current pixel. The LUMVAL routine returns a long luminance in the range of 0 to
255 using the 30%-59%-11% formula described previously.

long LUMVAL(Ptr pPixel, PixMapPtr pMap)
{

long red, green, blue;

if (pMap->pixelSize == 32) {
red = (long)(unsigned char)*(++pPixel); /* Skip alpha,

get red. */
green = (long)(unsigned char)*(++pPixel); /* Get green. */

d e v e l o p Winter 1992

24

We’ve already talked about the error introduced in
printing by the fact that the laser beam is round while the
pixel is square. Many other factors also can make the
transfer of toner to paper deviate from the ideal. Sources
of error include differences in inks, papers, printer drums,
and even humidity. Additionally, a printer’s behavior
changes over time as the drum wears. Compensating for
all these factors to achieve ideal images would require
constant calibration and recalibration of the printer.

An error appears most pronounced in the final print when
imaging directly at device resolution, as Figure 9 shows.
Halftoning hides much of this error and produces
reasonably uniform results among printers with varying
degrees of error.

The tonal reproduction curves (known as TRC or gamma
curves) shown in Figure 10 indicate the gray levels
produced by the Apple LaserWriter when dithering and
halftoning. Note that with dithering, the measured

luminance of an image remains dark much longer than
with halftoning as requested luminance increases, due to
the error when each pixel is printed. Of particular interest
is the point on the dither curve right at 50% luminance.
The measured luminance is actually darker than when
44% luminance is requested. The reason is that with a
50% dither, every other pixel is drawn, maximizing the
effect of the laser error.

While the TRC curve for the halftone print doesn’t match
the ideal curve, it’s much closer to the ideal than is the
dither curve. To get the halftone even closer to ideal, you
could adjust the luminance calculation by the amount
indicated by the halftone TRC to compensate. Indeed,
most image-processing applications perform this TRC
adjustment to compensate for the nonlinearities of the
output device. See Designing Cards and Drivers for the
Macintosh Family, Second Edition (Addison-Wesley,
1990) for more information about how gamma correction
works on the Macintosh II family for monitors.

PRINTING: IDEAL VERSUS REAL

blue = (long)(unsigned char)*(++pPixel); /* Get blue. */
return((30 * red + 59 * green + 11 * blue)/100);

} else if (pMap->pixelSize == 8) {
RGBColor* theColor;
theColor = &((*(pMap->pmTable))->ctTable[(unsigned

char)*pPixel].rgb);
return((30 * (theColor->red >> 8) + 59 * (theColor->green >>

8) + 11 * (theColor->blue >> 8))/100);
} /* End if */

} /* LUMVAL */

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter 1992

25

Figure 10
TRC Curves for the LaserWriter

BLACK WHITE
Requested Luminance

M
ea

su
re

d
Lu

m
in

an
ce

0 10 20 30 40 50 60 70 80 90 100

100�

90�

80�

70�

60�

50�

40�

30�

20�

10�

0

Ideal�
Halftone�
Dither

The routine that actually does the halftoning is the HalftonePixMap routine. Rather
than taking a PixMapPtr as the CreatePICT2 routine did, this routine takes a
PixMapHandle. This enables us to pass in either a pixMap we create manually (as we
did when we called CreatePICT2) or a PixMapHandle that QuickDraw creates (for
example, from a GWorld). We must distinguish which one we pass in so that the
routine knows whether it can access the fields of the pixMap directly (which it can if
we created it) or if it must use QuickDraw to access the fields. This is relevant only
for the LockPixels and GetPixBaseAddr routines.

Furthermore, the HalftonePixMap routine assumes the resolution of the source
pixMap is 72 dpi (screen resolution) and only supports devices with square pixels
(same hRes and vRes). You can pass in the resolution of the destination device in the
Resolution parameter, but it must be greater than or equal to 72 dpi.

Like the CreatePICT2 routine, HalftonePixMap returns a PicHandle. In this case,
the picture contains a 1-bit/pixel pixMap. You can display it using DrawPicture.

The prototype for the HalftonePixMap routine is

PicHandle HalftonePixMap(PixMapHandle hSource, Boolean qdPixMap,
short Resolution);

The source code for the complete routine can be found on the Developer CD Series
disc.

USING RANDOM DITHERING
Random dithering is yet another kind of dither useful for drawing images. It’s
discussed last, however, because of its inherent limitations.

The method is simple. It’s much the same as the 50% threshold method described
earlier. The only difference is that instead of being compared to 50%, the luminance
values are compared to a random number between 0 and 100%. The effect of this is
that the probability of any dot in the device image being turned on is directly
proportional to the luminance of the pixel in the source image at the corresponding
point.

This method has three limitations. First, calculating a random number is an
expensive operation that we would not want to do for every device pixel. Second,
except at very high resolutions, images dithered in this manner appear very noisy, like
bad reception on a black-and-white TV. And third, this method requires a random
number generator that’s very good at producing a uniform distribution.

Ironically, this least frequently used method of dithering most accurately models the
physical process of photography. Photographic film is like laser printing in that it’s
composed of pixels. However, the pixels are grains of silver rather than toner.

d e v e l o p Winter 1992

26

Additionally, there are tens of thousands of grains per inch rather than the 300 dots
per inch we’re used to with laser printers. The lower the ASA rating of the film, the
higher the grain density.

The place on a film where a photon strikes one of these silver grains turns black when
the film is developed (which is why you get negatives). Since photons are really, really,
really small, the likelihood of a single photon striking one of the grains of silver is
very low. However, the brighter the light, the more photons there are; so the
probability of striking one of those silver grains increases in proportion to the
luminance. Thus, we see how random dithering simulates photography.

Figure 11 shows the image of a frog’s head produced using halftoning with an 8x8
matrix as compared with using a 72-dpi random dither. You can see that the randomly
dithered image looks like a really grainy photograph.

HASTA LA VISTA, BABY
This article has addressed several issues. First, the problem of saving deep pixMaps
on machines with original QuickDraw was overcome by showing you how to
manually create a PICT, which can then be rendered by calling DrawPicture. Such a

MAKING THE MOST OF COLOR ON 1-BIT DEVICES Winter 1992

27

Halftoned with 8x8 at 72 dpi Randomly dithered at 72 dpi

Figure 11
Frog’s Head, Halftoned and Randomly Dithered

PICT can be exported by an application so that it can be viewed in color on a Color
QuickDraw machine.

Second, several solutions to the problem of displaying and printing color images on
black-and-white devices were discussed. Images can be displayed on screen using a
50% threshold or error-diffusion dithering. Ordered dithering (halftoning) provides a
way to get around the problem of the laser printer’s inability to resolve single pixels.
Random dithering has practical limitations but represents yet another alternative for
producing color images on black-and-white devices.

Thanks to these techniques, the market for applications that deal with color images
need not be limited to Color QuickDraw machines and PostScript printers. The
necessary code is small (and already written for you) and the gain in functionality is
very high. Now get to work on those applications!

d e v e l o p Winter 1992

THANKS TO OUR TECHNICAL REVIEWERS
Sean Parent, Forrest Tanaka, Dave Williams•

28

If you’d like to delve more deeply into the mysteries of processing color images for
display, check out the following:

• “An Optimum Algorithm for Halftone Generation for Displays and Hard Copies”
by Thomas M. Holladay, in the Proceedings of the Society for Information Display,
Vol. 21, No. 2, 1980.

• Digital Halftoning by Robert Ulichney (MIT Press, 1987). This book, based on a
Ph.D. thesis done at MIT, is devoted entirely to discussing halftoning algorithms; it’s
extremely thorough and includes many example images halftoned in different
ways.

• Fundamentals of Interactive Computer Graphics by J. D. Foley and A. Van Dam
(Addison-Wesley, 1982). The standard text on computer graphics. Not nearly as
thorough as Ulichney, but has a solid discussion of the basics.

And then, of course, the two books all Macintosh programmers should own:

• Programming with QuickDraw by Dave Surovell, Frederick Hall, and Konstantin
Othmer (Addison-Wesley, 1992). Everything you need to know about graphics on
the Macintosh.

• Debugging Macintosh Software with MacsBug by Konstantin Othmer and Jim
Straus (Addison-Wesley, 1991). Everything you need for debugging Macintosh
software, including in-depth discussions of a number of the Macintosh managers.

WANT TO READ MORE?

GRAPHICS HINTS FROM FORREST: USING THE PALETTE MANAGER OFF-SCREEN Winter 1992

29

Most people who’ve done any graphics programming
on the Macintosh are aware of the Palette Manager,
because it’s the documented way to control the on-
screen color environment, and perhaps because my
cohorts and I in Developer Technical Support keep
going on about how right the world would be if
everyone used it. In an effort to follow the rules as best
they can, some people have taken the Palette Manager
so much to heart that they use it not only with
windows, but with off-screen cGrafPorts as
well—something that isn’t heard about very much.
Some of these people have concluded that all the
features of the Palette Manager apply just as well to
off-screen cGrafPorts as they do to windows. Logical
enough, right?

Well, that’s the kick; whether this is logical or not, the
truth is that only a small part of the Palette Manager
works with off-screen cGrafPorts. Specifically, the
pmCourteous usage mode and the pmWhite and
pmBlack usage-mode modifiers work fine when they’re
used in a palette that’s attached to an off-screen
cGrafPort, but the pmTolerant, pmAnimated, and
pmExplicit usage modes do not. In this column, I’ll
describe how you can take advantage of the Palette
Manager features that work off-screen and how you can
simulate the features that don’t work.

The pmCourteous usage mode seems pretty useless to
a lot of people because it has no effect on the current

color environment. But in general, making a palette full
of pmCourteous colors is a lot better than hard-coding
RGBColors into your code. Instead of hard-coding
colors, make a palette of courteous colors—as many
entries as you need colors—and save it as a 'pltt'
resource. When your application runs, call SetPalette
to attach this palette to your off-screen cGrafPort.
When you need to use a color while drawing into this
cGrafPort, pass the desired color’s palette index to
PmForeColor or PmBackColor, and then draw. This is
better than hard-coding colors because you or a
software localizer can easily change the colors by
changing the 'pltt' resource—no code changes are
necessary.

The pmWhite and pmBlack usage-mode modifiers are
new with System 7; they let you specify whether you
want a particular palette entry to map to white or black
in a black-and-white graphics environment. By default,
colors whose average color-component value is larger
than 32767 are mapped to white and other colors are
mapped to black. (If you use RGBForeColor, Color
QuickDraw also checks to see whether your specified
color is different from your background color but maps
to your background color; if so, Color QuickDraw uses
the complement of the color you specified so that your
drawing is visible over the background.) By specifying
that a palette entry is pmCourteous + pmBlack or
pmCourteous + pmWhite, you can control which
colors map to black and to white when there aren’t
enough colors available. This applies to palettes
attached to off-screen cGrafPorts as well as to palettes
attached to windows.

Those are the Palette Manager features that do work
off-screen. Now I’ll talk about the features that don’t
and what you can do to get the same effect.

The pmExplicit usage mode is handy when you want to
draw using a pixel value without knowing or caring
what color that pixel value represents. With this mode
you can easily show the colors in a screen’s color table,
and you can also draw into a pixel image with a specific
value even though you specify the color for that value
elsewhere.

FORREST TANAKA has been playing Developer Technical
Support as one of the graphics support people for slightly more
than two years. “It amazes me still,” he says, “that the more you
learn about the Macintosh graphics tools, the farther off total
understanding seems to be.” Outside of DTS, he likes to ride his
bike, and uses it to commute the three blocks to his office (“Hey, it’s
faster than driving the three blocks!”), and he likes to try getting his
radio-controlled car to act as if it’s actually controlled.•

PRINT HINTS FROM LUKE & ZZ is in hibernation.•

GRAPHICS
HINTS FROM
FORREST

USING THE
PALETTE MANAGER
OFF-SCREEN

FORREST TANAKA

When you have a palette that’s attached to an off-
screen cGrafPort, pmExplicit colors are interpreted as
pmCourteous colors. Instead of using a palette, you
should convert your pixel value to an RGBColor and
use this as the foreground or background color. Set the
current GDevice to your off-screen GDevice so that
the color environment is set; then pass your pixel value
to Index2Color, which is documented on page 141 of
Inside Macintosh Volume V. Index2Color converts your
pixel value to the corresponding RGBColor, which you
can pass to RGBForeColor or RGBBackColor, and
then you can draw. The result is that your pixel value is
drawn into the destination pixel image.

Both the pmAnimated and pmTolerant usage modes
are used to modify the color environment, and both are
interpreted as pmCourteous when they’re in a palette
that’s attached to an off-screen cGrafPort. The most
important difference between the two usage modes is in
the style of color-table arbitration that they do—
pmTolerant gives the front window the colors it needs,
while pmAnimated additionally makes sure that
nothing outside the front window is drawn in its colors.
Color-table arbitration doesn’t apply off screen, so the
pmAnimated and pmTolerant usage modes can be
unified into “I want to change my off-screen colors.”

Changing the colors in an off-screen color
environment means changing its color table; the most
straightforward way to do this is to modify the contents
of the color table directly. That is, get your off-screen
color table’s handle and then directly assign new values
to the rgb fields in its CSpecArray. You could also
assign a whole new color table to the off-screen
environment by assigning the new one to the pmTable
field of the off-screen pixMap. Either way, you have to

tell Color QuickDraw what you’ve done by updating
the changed color table’s ctSeed field. The next time
you draw into your off-screen graphics environment,
Color QuickDraw detects your change by comparing
the ctSeed of your changed color table against the
iTabSeed of the current GDevice’s inverse table, and it
rebuilds the inverse table according to the changed
color table. You can update the ctSeed field by
assigning to it the return value of GetCTSeed, which is
documented on page 143 of Inside Macintosh Volume V.
If the 32-Bit QuickDraw extensions are available, you
can update a color table’s ctSeed simply by passing the
color table to CTabChanged, documented on page 17-
26 of Inside Macintosh Volume VI.

If you have a GWorld and you want to replace its color
table, you should call UpdateGWorld, passing it a new
color table. UpdateGWorld makes sure that all the
cached parts of a GWorld are properly updated, which
is tough to do any other way. If you don’t pass any flags
to UpdateGWorld, it’s within its rights to destroy your
existing GWorld’s image. But if you pass the clipPix or
stretchPix flag, UpdateGWorld is obligated to keep
your existing image, and it tries to reproduce the
existing image in the new colors as best it can.

To wrap up, you can use the Palette Manager with off-
screen graphics environments, but you’ll only be able
to use the pmCourteous usage mode and the pmWhite
and pmBlack usage-mode modifiers. But that’s not to
cast aspersions on these features, because they can be
very handy for both on-screen and off-screen drawing.
The pmExplicit, pmTolerant, and pmAnimated usage
modes don’t work for off-screen drawing, but there are
easy ways to simulate those features without the Palette
Manager and without risking future compatibility.

d e v e l o p Winter 1992

For more details about changing or replacing off-screen color
tables, see the October 1991 version of Macintosh Technical Note
#120, “Principia Off-Screen Graphics Environments.”•

30

NeoTextBox is an alternative to the TextEdit utility routine TextBox.
NeoTextBox provides full-justification capability and the option to use
TrueType features while retaining all the advantages of TextBox. The
three routines that comprise NeoTextBox compile to fewer than 900
bytes yet offer a 40% performance increase over TextBox in common
cases.

In the deepest, darkest corner of the TextEdit chapter in Inside Macintosh Volume I,
there’s an extremely useful routine called TextBox.

pascal void TextBox(void *text, long length, Rect *box, short just)

Given a rectangle and some text, TextBox word wraps the text inside the rectangle,
drawing in the font, style, and size specified in the current grafPort.

Anyone who’s tried to word wrap text knows that it’s not as easy as it first appears.
Perhaps that’s why TextBox takes the approach it does: to perform its task, TextBox
creates a new TERec with TENew, sets up the rectangles in the record, and calls
TESetText to create a temporary handle to a copy of the text you provided to
TextBox. TextBox then calls TEUpdate to wrap and draw the text, and finally
TEDispose to dispose of the TERec. By calling TextEdit to do the text wrapping and
drawing, TextBox avoids doing any hard work. Unfortunately, it also incurs quite a bit
of overhead.

Despite its pass-the-buck implementation, TextBox’s use of TextEdit has several
advantages. Perhaps most important, TextBox works correctly with non-Roman script
systems like Japanese and Arabic without the need for any extra programming.
Another handy side effect is that updates in TextEdit degenerate into calls to
DrawText, and can therefore be recorded into QuickDraw pictures. TextBox was
designed specifically for drawing static text items in dialog boxes and performs this
function well.

THE TEXTBOX YOU’VE ALWAYS WANTED Winter 1992

31
BRYAN K. RESSLER, or “Beaker” as he’s
known at Apple, is one of our twisted software
engineers who seems to be convinced that
anything is possible on a Macintosh, and if it’s
already been done, it can be done better. He got
his BSCS from the University of California, Irvine,
and wrote commercial MIDI applications before
coming to Apple. Beaker wrote many of the
programs used for testing TrueType fonts. When

he’s not on a coding frenzy, he writes
noncommercial MIDI applications, tries to have a
life, and keeps a consistent blood-caffeine level so
high you need scientific notation to express it.•

BRYAN K. (“BEAKER”)
RESSLER

THE TEXTBOX

YOU’VE

ALWAYS

WANTED

So TextBox is great—if you’re drawing dialog boxes. But you want more. You want
better performance. You want more flexibility. You want to control line height. You
want full justification (instead of only left, center, and right alignment). You want to
use whizzy TrueType calls when they’re available. You want to control the text
drawing mode. You can’t stand the way TextBox always erases (and therefore isn’t too
useful when you’re drawing to printers—it slows printing way down). Yeah, and you
don’t like that 32K text limitation either. You want to word wrap War and Peace in a
single call to TextBox. And you’d like some useful information back, too, like the line
height it used, and where the last line of text was drawn, so that you can draw
something below the text. And, of course, you want to retain the advantages of
TextBox.

Well, this is your lucky day.

ENTER NEOTEXTBOX
NeoTextBox is the TextBox you’ve always wanted (and didn’t even have to ask for).
NeoTextBox is on the average 33% faster than an equivalent call to TextBox. Plus, it’s
considerably more flexible:

• NeoTextBox allows a line height specification. You can ask for the
default (same behavior as TextBox); use variable line height, which
adjusts for characters that extend beyond the font’s standard ascent
or descent line; or specify a line height in points.

• NeoTextBox provides left, center, and right alignment and full
justification.

• NeoTextBox never erases the rectangle it’s drawing into. It lets you
erase or, if you wish, draw a colored background.

• NeoTextBox returns the total number of lines in the wrapped text.
• NeoTextBox can return, via VAR parameters, the vertical pen

position of the last line of text and the line height that was used to
draw the text.

NeoTextBox gives you all this extra functionality, yet retains the advantages of
TextBox. It is completely language independent and uses the Script Manager heavily
(just like TextEdit). It’s easy to call, and if you don’t want all the spiffy new features,
it’s easy to get TextBox-like behavior with a free performance increase.

Let’s take a look at the parameters for NeoTextBox.

short NeoTextBox(unsigned char *theText, unsigned long textLen,
Rect *wrapBox, short align, short lhCode, short *endY,
short *lhUsed)

d e v e l o p Winter 1992

32

The first two parameters, theText and textLen, are analogous to TextBox’s text and
length parameters: they specify the text to be wrapped. Note that theText isn’t a
Pascal string—it’s a pointer to the first printable character.

The third and fourth parameters, wrapBox (box in TextBox) and align, also hearken
back to NeoTextBox’s ancestor. Just as in TextBox, wrapBox specifies the rectangle
within which you’re wrapping text, and the align parameter specifies the alignment.
In addition to the standard TextEdit alignments teFlushLeft, teCenter, and
teFlushRight (see “Text Alignment Constants for System 7”), a new alignment is
defined—ntbJustFull. It performs full justification in whatever manner is appropriate
for the current script.

The fifth parameter, lhCode, specifies how the line height is derived. If lhCode is 0,
the default line height is derived via a call to GetFontInfo. This gives the same
behavior as TextBox. If lhCode is less than 0, the line height is derived by
determining which characters in the text that’s being drawn extend the most above
and below the baseline (see “SetPreserveGlyph With TrueType Fonts”). Finally, if
lhCode is greater than 0, the value of lhCode itself specifies the line height. For
instance, you can draw 12-point text in 16-point lines.

The last two parameters, endY and lhUsed, are reference parameters that allow you
to retrieve the vertical position of the last line of text and the line height that was
used to draw the text, respectively. The endY parameter can be very useful if you

THE TEXTBOX YOU’VE ALWAYS WANTED Winter 1992

33

Before System 7, there was a conflict between the names of the text alignment
constants and their actual behavior. To help make applications compatible with non-
Roman scripts, teJustLeft was interpreted as the default text alignment appropriate for
the current script rather than forcing text to be aligned on the left as specified. For
example, on a Hebrew system, a TextBox call with a just parameter of teJustLeft would
actually use the default justification for Hebrew, which is teJustRight.

To overcome this conflict, new constants were introduced in System 7, as shown in
Table 1.

TEXT ALIGNMENT CONSTANTS FOR SYSTEM 7

Table 1
Text Alignment Constants

New Constant Old Constant Value Meaning
teFlushLeft teForceLeft –2 Align text on the left for all scripts
teFlushRight teJustRight –1 Align text on the right for all scripts
teFlushDefault teJustLeft 0 Use conventional alignment for script
teCenter teJustCenter 1 Center text for all scripts

intend to draw anything below the text, since it tells you exactly where the last line of
text was drawn. To find out what the actual derived line height was if you used a
negative lhCode, use the lhUsed parameter. Pass nil for either or both of these last
two parameters if you don’t want this extra information.

NeoTextBox returns the total number of lines in the text. That includes lines clipped
off because they were below the bottom of wrapBox. You can tell whether the text
overflowed wrapBox by whether the value returned in endY is greater than
wrapBox.bottom. If you want to know how many lines fit in wrapBox, simply divide
the height of wrapBox by the value returned in lhUsed.

d e v e l o p Winter 1992

34

Before TrueType, all characters in all fonts fit beneath the
font’s ascent line and above the descent line, like the
default characters shown in Figure 1. Bitmapped fonts
were drawn so that diacriticals, like the angstrom over the
A in Ångström, would fit beneath the ascent line. To do
this, the letterform had to be distorted. With the advent of
TrueType, this “feature” can be controlled, because
TrueType fonts carry outline data that’s true to the original
design (hence the name TrueType).

Since most applications expect characters to fit beneath
the ascent line and above the descent line, QuickDraw
transforms characters in TrueType fonts to force them
within those bounds. To override this transformation and
preserve the original glyph shape, use the Font Manager
call SetPreserveGlyph(TRUE). After this call, TrueType fonts
will be drawn as shown to the right in Figure 1.
Preserving the glyph shape makes it possible to take
advantage of NeoTextBox’s variable line height feature.

SETPRESERVEGLYPH WITH TRUETYPE FONTS

Example shown: 72-point Times� Example shown: 72-point Symbol�

Ascent�

Baseline�

Descent�

YMin�

Default�
SetPreserveGlyph(TRUE)�

A Å Å
Unaccented� Default�

SetPreserveGlyph(TRUE)�

YMax�

Ascent�

Baseline�

Descent�

Figure 1
How SetPreserveGlyph Affects Line Height

REQUIREMENTS
NeoTextBox uses some advanced Script Manager routines that are available only in
System 6 or later. NeoTextBox assumes they’re available, so make sure your main
program checks that it’s running on System 6 or later via a Gestalt or SysEnvirons
call.

NeoTextBox requires one global variable, a Boolean named gHasTrueType. It should
be set to TRUE if the TrueType trap ($A854) is available, or FALSE if not. If your
development environment provides glue for Gestalt, you can use the following lines
to set up gHasTrueType:

#define kTrueTypeTrap 0x54 /* The TrueType trap number */
#define kUnimplTrap 0x9f /* The "unimplemented" trap number */
long gResponse;

if (Gestalt(gestaltFontMgrAttr,&gResponse) == noErr)
gHasTrueType = BitTst(&gResponse,31-gestaltOutlineFonts);

else {
gHasTrueType = (NGetTrapAddress(kTrueTypeTrap,ToolTrap) !=

NGetTrapAddress(kUnimplTrap,ToolTrap));
}

THE BASIC ALGORITHM
NeoTextBox does a lot. But, in order to appease the programmer’s natural desire to
avoid work, we allow the Script Manager to do the hard parts. (Do you know how to
do full justification in Arabic?) In short, here’s how NeoTextBox gets its job done:

1. It saves the current grafPort’s clipping region and clips to the box
we’re drawing into.

2. It calculates the appropriate line height with the function
NTBLineHeight.

3. It calls the Script Manager routine StyledLineBreak to find each
line-break point in the input text.

4. It draws each line with the function NTBDraw.
5. It advances the pen down one line.
6. When there’s no more text, it restores the clipping region and

returns the appropriate values.

It sounds simple, doesn’t it? That’s because StyledLineBreak does all the work. It
knows how to find word breaks in whatever script we’re using. StyledLineBreak is
smart, too. For instance, in English, it knows that it’s OK to break a hyphenated word
if necessary. It uses rules that are provided by the installed script systems, so it always
takes the appropriate actions. Let’s take a closer look at the code.

THE TEXTBOX YOU’VE ALWAYS WANTED Winter 1992

35

THE NEOTEXTBOX FUNCTION
The source code for NeoTextBox that’s shown here is written in MPW C 3.2. We’ll
start in the NeoTextBox function and break out to a couple of utility functions when
we come upon them.

Here’s the NeoTextBox declaration and local variables:

short NeoTextBox(unsigned char *theText, unsigned long textLen,
Rect *wrapBox, short align, short lhCode, short *endY,
short *lhUsed)

{
RgnHandle oldClip; /* Saved clipping region */
StyledLineBreakCode breakCode; /* From StyledLineBreak */
Fixed fixedMax; /* boxWidth in fixed point */
Fixed wrapWid; /* Width to wrap within */
short boxWidth; /* Width of box */
long lineBytes; /* Number of bytes in one line */
unsigned short lineHeight; /* Calculated line height */
short curY; /* Current vert pen location */
unsigned short lineCount; /* Number of lines we've drawn */
long textRemaining; /* Number of bytes of text left */
unsigned char *lineStart; /* Pointer to start of a line */
unsigned char *textEnd; /* Pointer to end of input text */

Many of these variables are used in the call to StyledLineBreak, which is explained in
detail later. The most important variables to know about here are breakCode, which
contains the line break code returned by each call to StyledLineBreak; lineStart and
lineBytes, which are returned by StyledLineBreak to specify a single line; and curY,
the current vertical pen location.

GET READY
NeoTextBox, like TextBox, clips to wrapBox. Since this is a general-purpose routine,
it’s safest to save the clipping region, then restore it at the end. We calculate the
width of wrapBox, because it’s used a lot, and convert it to fixed point as fixedMax,
which is used in calls to StyledLineBreak as a VAR parameter. Also, we retrieve the
appropriate text alignment if the user has requested default alignment.

GetClip((oldClip = NewRgn()));
ClipRect(wrapBox);
boxWidth = wrapBox->right - wrapBox->left;
fixedMax = Long2Fix((long)boxWidth);
if (align == teFlushDefault)

align = GetSysJust();

d e v e l o p Winter 1992

36

DETERMINE THE LINE HEIGHT
Now we need to determine the appropriate line height. NeoTextBox calls
NTBLineHeight to perform this function, passing the text pointer, the text length,
the wrap rectangle, the caller-specified line height code, and the address of curY, the
current vertical pen location. NTBLineHeight calculates and returns the line height
and calculates the correct starting pen location. Here’s the NTBLineHeight function:

unsigned short NTBLineHeight(unsigned char *theText,
unsigned long textLen, Rect *wrapBox, short lhCode, short *startY)

{
short asc, desc;
FontInfo fInfo;
Point frac;
unsigned short lineHeight;

GetFontInfo(&fInfo);
if (lhCode < 0) {

/* lhCode < 0 means "variable line height", so if it's a */
/* TrueType font use OutlineMetrics, otherwise use default. */
frac.h = frac.v = 1;
if (gHasTrueType && IsOutline(frac, frac)) {

OutlineMetrics((short)textLen, theText, frac, frac, &asc,
&desc, nil, nil, nil);

lineHeight = MAXOF(fInfo.ascent, asc)
+ MAXOF(fInfo.descent, -desc) + fInfo.leading;

*startY = wrapBox->top + MAXOF(fInfo.ascent, asc)
+ fInfo.leading;

} else {
/* Punt to "default" if we can't use TrueType. */
lineHeight = fInfo.ascent + fInfo.descent + fInfo.leading;
*startY = wrapBox->top + fInfo.ascent + fInfo.leading;

}
} else if (lhCode == 0) {

/* lhCode == 0 means "default line height." */
lineHeight = fInfo.ascent + fInfo.descent + fInfo.leading;
*startY = wrapBox->top + fInfo.ascent + fInfo.leading;

} else {
/* lhCode > 0 means "use this line height" so we trust 'em. */
lineHeight = lhCode;
*startY = wrapBox->top + lhCode + fInfo.leading;

}
return(lineHeight);

}

THE TEXTBOX YOU’VE ALWAYS WANTED Winter 1992

37

Remember, there are three possible line height codes:
• Variable line height (specified by an lhCode less than 0) is handled

first. If the TrueType trap is available and this particular font is a
TrueType font, OutlineMetrics is called to determine the line
height (see “Descent Into Hell”). OutlineMetrics can return a
variety of information, but we really only want the highest ascent
and the lowest descent, which are returned in the local variables
asc and desc. Then we choose whichever is higher, the default
ascent or asc, and whichever is lower, the default descent or desc. If
TrueType isn’t available or the particular font isn’t a TrueType
font, we punt to the default line height.

• If lhCode is 0, the default line height is used. This is defined as the
sum of the ascent, descent, and line gap (leading) derived by a
GetFontInfo call.

• Finally, if lhCode is greater than 0, the caller is providing a specific
line height. In this case, NTBLineHeight returns lhCode as the
line height.

Each of the three line height calculation methods also figures the correct startY based
on the line height and wrapBox->top.

Back in NeoTextBox, we call NTBLineHeight to set up our local variables
lineHeight and curY:

lineHeight = NTBLineHeight(theText, textLen, wrapBox, lhCode, &curY);
lineCount = 0;
lineStart = theText;
textEnd = theText + textLen;
textRemaining = textLen;

d e v e l o p Winter 1992

38

Descent is the amount of space that should be allocated for a font below the text
baseline. When you call GetFontInfo, the value returned for descent is a positive
number of points below the baseline. Although this is convenient, in the typographic
industry it’s more common to represent descent values as negative numbers.

In an attempt to be more typographically useful, TrueType’s OutlineMetrics call returns
its descent values as negative numbers. So, to avoid a descent into hell, remember to
note the sign of descent values when mixing calls to GetFontInfo and OutlineMetrics.

DESCENT INTO HELL

Here we also set up some other local variables. The variable lineCount records the
number of lines we’ve drawn. The pointer lineStart points to the beginning of the
current line, which initially is the beginning of the text. The variable textEnd is a
pointer to just beyond the end of the input text and is used for testing when the text is
all used up. Finally, the variable textRemaining keeps track of how many bytes of
input text remain to be processed.

THE BREAK-DRAW LOOP
Now NeoTextBox is ready to break lines and draw the text. This task is performed by
the following do-while loop:

do {
lineBytes = 1;
wrapWid = fixedMax;

breakCode = StyledLineBreak(lineStart, textRemaining, 0,
textRemaining, 0, &wrapWid, &lineBytes);

NTBDraw(breakCode, lineStart, lineBytes, wrapBox, align, curY,
boxWidth);

curY += lineHeight;
lineStart += lineBytes;
textRemaining -= lineBytes;
lineCount++;

} while (lineStart < textEnd);

If this looks simple, that’s because it is. Anyone who’s tried to write code to wrap text
knows that it’s a difficult task. Making the algorithm compatible with different script
systems complicates the matter even more. Fortunately, we have the Script Manager,
which in this case makes our lives a lot easier.

The workhorse: StyledLineBreak. First we set lineBytes to 1, signaling to
StyledLineBreak that this is the first “script run” on this line. Since we have only one
script run, we always reset lineBytes at the top of the loop. Also, we reset wrapWid to
be fixedMax (which was previously initialized to the fixed-point width of the wrap
rectangle). WrapWid tells StyledLineBreak the width within which to wrap the text
and returns how much of the line is left (if any) after wrapping (that’s why we have to
reset it at the top of the loop each time).

Now we call StyledLineBreak. We provide a pointer to the beginning of the text for
this line, the number of bytes of text remaining, the wrap width, and the address
of a variable where StyledLineBreak puts the number of bytes in this line.
StyledLineBreak does the hard work of finding word boundaries, adding up character
widths, and handling special cases, all in an internationally compatible way.

THE TEXTBOX YOU’VE ALWAYS WANTED Winter 1992

39

After StyledLineBreak returns, lineBytes tells us the length of the current line
beginning at lineStart, and breakCode has a line break code that tells us the
circumstances of the line break, as shown in Figure 2.

Usually, StyledLineBreak returns smBreakWord, indicating that it broke the line on a
word boundary. The break code smBreakChar says that it encountered a word that
was too long to fit on a single line and was forced to break in the middle of a word.
StyledLineBreak returns smBreakOverflow if you run out of text before filling the
given width. These line break codes help determine how to draw the text.

Draw the text with NTBDraw. After StyledLineBreak figures the length of the
line, NeoTextBox calls NTBDraw to draw the line. NeoTextBox passes a pointer to
the line of text, the length of the line in bytes, the wrap rectangle, the alignment, the
current vertical pen location, and the width of the wrap rectangle. Let’s take a look at
NTBDraw:

#define kReturnChar 0x0d

void NTBDraw(StyledLineBreakCode breakCode, unsigned char *lineStart,
long lineBytes, Rect *wrapBox, short align, short curY,
short boxWidth)

{
unsigned long blackLen; /* Length of non-white characters */
short slop; /* Number of pixels of slop for */

/* full justification */

blackLen = VisibleLength(lineStart, lineBytes);

d e v e l o p Winter 1992

40

The head and in frontal attack on an�
English writer that the character of this �
point is therefore another method for the�
letters in a time when whom ever told�
the problem to an unexpected.�
The Shannon Text is a strange,�
wayultramegasupercalafragilisticexpiala�
docious sentence. �

smBreakWord�
smBreakWord�
smBreakWord�
smBreakWord�
smBreakWord�
smBreakWord�
smBreakChar�
smBreakOverflow�

Break Code�

Figure 2
Line Break Codes

if (align == ntbJustFull) {
slop = boxWidth - TextWidth(lineStart, 0, blackLen);
MoveTo(wrapBox->left, curY);
if (breakCode == smBreakOverflow ||

*(lineStart + (lineBytes - 1)) == kReturnChar)
align = GetSysJust();

else DrawJust(lineStart, blackLen, slop);
}
switch(align) {

case teFlushLeft:
case teFlushDefault:

MoveTo(wrapBox->left, curY);
break;

case teFlushRight:
MoveTo(wrapBox->right - TextWidth(lineStart, 0,

blackLen), curY);
break;

case teCenter:
MoveTo(wrapBox->left + (boxWidth - TextWidth(lineStart, 0,

blackLen)) / 2, curY);
break;

}
if (align != ntbJustFull)

DrawText(lineStart, 0, lineBytes);
}

NTBDraw’s job is to move the pen and draw the text as indicated by the alignment
parameter, align, and the line break code, breakCode. NTBDraw first calculates the
visible length of the line with a call to the Script Manager routine VisibleLength.
This excludes white-space characters at the end of the line. What exactly are white-
space characters? Well, that depends on the script. VisibleLength knows which
characters are visible and which are not for the current script, and returns an
appropriate length in bytes, which is stored in the local variable blackLen.

When align is ntbJustFull, we need to determine whether the current line has a
carriage return character ($0D) at the end, because a line with a carriage return (for
example, the last line in a paragraph) should always be drawn with the default system
alignment, rather than fully justified.

Looking back at the break codes for different types of lines shown in Figure 2, notice
that the line that ends with the carriage return (denoted graphically in the
illustration) returns a line break code of smBreakWord, where you might expect it to
return smBreakOverflow. As you can see, StyledLineBreak expects the caller to know
when a line is the last line of a paragraph. Therefore, every line whose break code is
smBreakWord must be checked for a carriage return.

THE TEXTBOX YOU’VE ALWAYS WANTED Winter 1992

41

NTBDraw looks at the last byte in the line it’s drawing to see if it’s a carriage return.
Since the carriage return character ($0D) falls into the control-code range, it’s
guaranteed never to occur as the low byte of a two-byte character. This frees us from
having to test whether the last character in the line is two-byte and allows us to
proceed directly to the last byte.

We now know whether the current line has a carriage return or not. If not, we
calculate the amount of white-space slop remaining in the line, then call the Script
Manager routine DrawJust to draw the text fully justified—whatever that means for
this script. (In Arabic, for instance, full justification is performed completely
differently than for Roman text.) If the current line does end in a carriage return, we
override the align parameter with the default system alignment and fall through.

For the left, right, and center alignments, the switch statement moves the pen
appropriately, and a DrawText call is made to draw the text. The visible length (in
blackLen) helps correctly calculate the pen position for right and center alignment
and full justification.

Update the variables. After NTBDraw returns, we need to update a bunch of local
variables and loop around again.

curY += lineHeight;
lineStart += lineBytes;
textRemaining -= lineBytes;
lineCount++;

} while (lineStart < textEnd);

First, we add lineHeight to curY, setting us up for the next line. LineStart, the
pointer to the beginning of a line, gets updated to the character after the end of the
current line. TextRemaining gets reduced by the number of bytes consumed by the
current line, and lineCount gets incremented. If lineStart still hasn’t run off the end
of the text, the whole break-draw process is repeated.

RETURN SOME VALUES
Now that NeoTextBox has done such a fine job wrapping the text, it’s time to return
some useful values to the caller.

if (endY)
*endY = curY - lineHeight;

if (lhUsed)
*lhUsed = lineHeight;

NeoTextBox returns these values only if the caller wants them. This makes it easy to
get TextBox-like behavior from NeoTextBox without having to do any work: if you
don’t want a return value, just pass nil instead of providing the address of a variable.

d e v e l o p Winter 1992

42

CLEAN UP AND WE’RE DONE
The only thing left to do is a little cleanup, and we’re outa here.

SetClip(oldClip);
DisposeRgn(oldClip);

return(lineCount);
}

We restore the clipping region, dispose of our saved region, and return lineCount.

CALLS TO NEOTEXTBOX
One of the best features of NeoTextBox is that you can easily substitute it for calls
you’re currently making to TextBox. If that’s all you want to do, replace every
occurrence that looks like this

TextBox(textPtr, textLen, &wrapBox, justify);

with this

{
EraseRect(&wrapBox);
NeoTextBox(textPtr, textLen, &wrapBox, justify, 0, nil, nil);

}

To use NeoTextBox in place of TextBox, you pass 0 for lhCode (default line height)
and nil for endY and lhUsed, and ignore the return value. If you add NeoTextBox to
your program and just do the substitution above, every NeoTextBox call will be on
the average 33% faster than the old TextBox call. If you use TextBox a lot, that can
mean a real performance increase.

You can use NeoTextBox in more ways than just as direct substitution to improve
performance. It does, after all, have whizzy new features that TextBox never had. Let’s
take a look at a more sophisticated call to NeoTextBox that uses some of its unique
features:

short UseNTB(void)
{

Rect wrapBox;
RGBColor ltBlue;
Handle textHdl;
long textLen;
short numLines = 0;
short endY, lineHt;

THE TEXTBOX YOU’VE ALWAYS WANTED Winter 1992

43

/* Set up our RGBColor and wrapBox. */
SetRect(&wrapBox, 10, 10, 110, 110);
ltBlue.red = 39321;
ltBlue.green = 52428;
ltBlue.blue = 65535;

/* Paint the background, then set up the port text parameters. */
PenNormal();
RGBForeColor(<Blue);
PaintRect(&wrapBox);
ForeColor(blackColor);
TextFont(helvetica); TextSize(12);
TextFace(0); TextMode(srcOr);

/* Retrieve some text for us to draw. */
textHdl = GetResource('TEXT', 128);
if (textHdl) {

textLen = GetHandleSize(textHdl);
/* Be sure to lock the handle. NeoTextBox can move memory! */
HLock(textHdl);

/* Wrap text and set numLines, endY, and lineHt. */
numLines = NeoTextBox(*textHdl, textLen, &wrapBox, ntbJustFull,

18, &endY, &lineHt);
HUnlock(textHdl);

/* Beep if text overflows wrapBox. */
if (endY > wrapBox.bottom)

SysBeep(1);

/* Prove we know where the text ended by drawing a line. */
MoveTo(wrapBox.left, endY + lineHt);
Line(20, 0);

}
return(numLines);

}

This sample function draws a 100-by-100-pixel box in light blue, then wraps text
from a TEXT resource into the rectangle, ORing the text over the blue background.
The text is fully justified 12-point Helvetica®, with 18-point line spacing. If the text
overflows the box, a beep sounds. A small line is drawn at the baseline where
subsequent text might be drawn.

Here’s an example using NeoTextBox with variable line height and TrueType fonts:

d e v e l o p Winter 1992

44

void UseVariableLineHeight(Rect *wrapBox, short align)
{

Boolean oldPreferred, oldPreserve;
Handle textHdl;
long textLen;

if (gHasTrueType) {
oldPreferred = GetOutlinePreferred();
oldPreserve = GetPreserveGlyph();
SetOutlinePreferred(TRUE);
SetPreserveGlyph(TRUE);

}

textHdl = GetResource('TEXT', 128);
textLen = GetHandleSize(textHdl);
HLock(textHdl);
NeoTextBox(*textHdl, textLen, wrapBox, align, -1, nil, nil);
HUnlock(textHdl);

if (gHasTrueType) {
SetOutlinePreferred(oldPreferred);
SetPreserveGlyph(oldPreserve);

}
}

Notice that we save the current settings of the Font Manager’s OutlinePreferred and
PreserveGlyph flags. This allows us to be transparent to the caller. By setting
OutlinePreferred to TRUE, we are ensured of using TrueType fonts, even if
bitmapped fonts are available. By setting PreserveGlyph to TRUE, we get the
accurate glyph shapes and measurements (see “SetPreserveGlyph With TrueType
Fonts” on page 34). Calling NeoTextBox with -1 as its lhCode parameter causes it to
use variable line height, which results in the difference shown in Figure 3.

THE TEXTBOX YOU’VE ALWAYS WANTED Winter 1992

45

The Head Ånd În Frontal Àtt�
Therefore Änother Method F�
Problem to Ån Ûnexpected.

lhCode = 0 lhCode = -1

The Head Ånd În Frontal Àtt�
Therefore Änother Method F�
Problem to Ån Ûnexpected.

Default line height Variable line height

Figure 3
Using Variable Line Height

LIMITATIONS AND POSSIBLE ENHANCEMENTS
NeoTextBox is a nice alternative to TextBox, but it has its limitations and areas that
could benefit from improvement. Following are some suggestions for overcoming the
limitations and adding useful features.

32K TEXT SIZE LIMIT
All you War and Peace fans out there need to do a little work. NeoTextBox shares the
32K text limitation that TextBox has, but not for the same reason. TextBox can wrap
only 32K of text in one call because it uses TextEdit. In NeoTextBox, the limitation
arises from the OutlineMetrics call, which is used in deriving variable line height and
can only handle 32K of text. Heavy-duty Tolstoy types could remove the code that
implements variable line height and subsequently word wrap most novels in a single
NeoTextBox call (knock yourselves out).

DON’T FORGET TO ERASE
Perhaps this isn’t really a limitation, but you can’t simply replace a TextBox call with a
NeoTextBox call. You need to call EraseRect explicitly if you want TextBox behavior,
as shown earlier in the section “Calls to NeoTextBox.”

SCREEN-ONLY OPTIMIZATIONS
If you know you’ll be using NeoTextBox only for screen applications (that is, you
won’t be using it to draw into a printer port), you can make a few optimizations. If
you don’t care about the return values, you can use RectInRgn to check whether the
wrap rectangle intersects with the current port’s visRgn; if it doesn’t, you can simply
return.

If you don’t need the return value giving the number of total lines, you can make the
break-draw loop terminate when curY exceeds wrapBox->bottom + lineHeight.

SPECIAL ONE-LINE CASE
In Macintosh computers with 256K ROMs, TextBox has a feature that might be a
worthwhile addition to NeoTextBox. If the TextWidth of the input text is less than
boxWidth, simply use DrawText to draw the text and don’t bother with any of the
wrapping code. TextBox has this feature because it’s used for dialog box statText
items, which are often one line.

DON’T DRAW OFF THE END OF WRAPBOX
It might make NeoTextBox faster if NTBDraw isn’t called when curY is greater than
wrapBox->bottom + lineHeight. You’d still have to wrap all the text (to determine the
total number of lines), but you wouldn’t be drawing text that you know will be
clipped.

d e v e l o p Winter 1992

46

MAKE SAVING/RESTORING THE CLIPPING REGION OPTIONAL
It might be useful to be able to set up some complex clipping region and have
NeoTextBox wrap as usual but clip its text to whatever the clipping region is set to at
invocation. You could add a Boolean swapClip parameter to control this.

STYLED NEOTEXTBOX
With considerable effort, NeoTextBox could be extended to handle styled and
multiscript text. Since StyledLineBreak, the workhorse of NeoTextBox, is designed to
be used with styled text, such an enhancement is possible.

CONCLUSION
Once you start using NeoTextBox, you’ll find it ending up in all your applications. In
tests on a Macintosh IIfx running System 7, NeoTextBox was between 25% and 50%
faster than TextBox, 33% faster on the average. Performance varies depending on
font, screen depth, and the ratio of wrapping to drawing. For left-aligned Geneva text
on an 8-bit screen, NeoTextBox is 40% faster than TextBox. That alone is a good
reason to use it. Plus, it has features you can’t get out of TextBox at all.

Perhaps the moral of this article is if you don’t like some feature of the Toolbox or
OS go ahead and write your own. But you’ll be doing yourself a favor—and you’ll be
a lot more compatible in the future—if you can find lower-level system, Toolbox, or
OS facilities to aid you in your task, rather than recoding the entire feature yourself.

So go ahead and whip NeoTextBox into your application. Enjoy the improved
performance and new features. And if there’s something you don’t like, go right in
there and change it. Make NeoTextBox the TextBox you’ve always wanted!

THE TEXTBOX YOU’VE ALWAYS WANTED Winter 1992

47
THANKS TO OUR TECHNICAL REVIEWERS
Sue Bartalo, John Harvey, Joe Ternasky•

Happy notes for sound buffs: As you’ll see from the sample code provided
on the Developer CD Series disc, you can make your Macintosh play
and record sounds at the same time, simply by using double buffering to
record into one buffer while playing a second buffer, and then flipping
between the buffers. If you want to take things a few steps further, pull
out elements of this code and tailor them to suit your own acoustic needs.

We all know that the Macintosh is a sound machine, so to speak, but with a little
clever programming you can turn it into an echo box as well. The sample
2BufRecordToBufCmd included on the Developer CD Series disc is just a small
application (sans interface) that demonstrates one way to record sounds at the same
time that you’re playing them. There are other ways to achieve the same goal, but my
purpose is to educate you about the Sound Manager, not to lead you down the
definitive road to becoming your own recording studio.

In addition to the main routine, 2BufRecordToBufCmd includes various setup
routines and a completion routine. For easy reading, I’ve left out any unnecessary
code out of this article.

CONSTANT COMMENTS
Before I get into the sample code itself, here are a few of the constants you’ll run into
in the application.

GETTING A HANDLE ON IT
The kMilliSecondsOfSound constant is used to declare how many milliseconds of
sound the application should record before it starts to play back. The smaller the
number of milliseconds, the more quickly the sound is played back. This constant is
used to calculate the size of the 'snd ' buffer handles (just the data). Depending on the
sound effect you’re after, kMilliSecondsOfSound can range from 50 milliseconds to
400,000 or so. If you set it below 50, you risk problems: there may not be enough
time for the completion routine to finish executing before it’s called again. On the
high end of the range, only the application’s available memory limits the size. The

d e v e l o p Winter 1992

RICH COLLYER is just your run-of-the-mill three-
year Developer Technical Support veteran: He’s
often heard screaming at his computer to the
soothing accompaniment of Blazy and Bob on
KOME radio, he’s honed his archery skills to a
fine point dodging (and casting) the slings and
arrows at Apple, and he actually admits to a
degree from Cal Poly with a specialty in
computational fluid dynamics. We let you in on

his outdoor adventures last time he wrote for us
and he claims most of his indoor adventures
aren’t appropriate develop material, but we have
it on good authority that he lives with carnivorous
animals, if that’s any clue. He’s also a confirmed
laserdisc and CD addict; he keeps promising to
start a recovery program for those of us with the
same affliction just as soon as he finishes writing
that next sample . . .•

48

RICH COLLYER

MAKING

YOUR

MACINTOSH

SOUND LIKE

AN ECHO BOX

smaller the value, of course, the faster the buffers fill up and play back, and the faster
an echo effect you’ll get. A millisecond value of 1000 provides a one-second delay
between record and echo, which I’ve found is good for general use. You’ll want to
experiment to find the effect you like. (Beware of feedback, both from your machine
and from anyone who’s in close enough proximity to “enjoy” the experimentation
secondhand.)

YOUR HEAD SIZE, AND OTHER #DEFINES
The next three constants (kBaseHeaderSize, kSynthSize, and kCmdSize) are used to
parse the sound header buffers in the routine FindHeaderSize. kBaseHeaderSize is
the number of bytes at the top of all 'snd ' headers that aren’t needed in the
application itself. While the number of bytes isn’t really of interest here, you need to
parse the header in order to find the part of the sound header that you’ll pass to the
bufferCmd. How much you parse off the top is determined by the format of the
header and the type of file; for the purposes of this code, however, all you need to be
concerned with are the 'snd ' resources. The second constant, kSynthSize, is the size
of one 'snth'. In the calculations of the header, I find out how many 'snth's there are,
and multiply that number by kSynthSize. The last constant, kCmdSize, is the size of
one command, which is used in the same way as kSynthSize. (These equations are
derived from Inside Macintosh Volume VI, page 22-20.)

ERROR CHECKING WITH EXITWITHMESSAGE
2BufRecordToBufCmd includes error checking, but only as a placeholder for future
commercialization of the product. If the present code detects an error, it calls the
ExitWithMessage routine, which displays a dialog box that tells you more or less
where the error occurred and what the error was. Closing this dialog box quits the
application, at which point you have to start over again. Note that calling
ExitWithMessage at interrupt time could be fatal, since it uses routines that might
move memory. For errors that could occur at interrupt time, DebugStr is used
instead.

USING THE SOUND INPUT DRIVER
Use of the sound input driver is fairly well documented in Inside Macintosh Volume
VI, Chapter 22 (pages 22-58 through 22-68 and 22-92 through 22-99), but here’s a
little overview of what 2BufRecordToBufCmd does at this point in the routine, and
why. When you use sound input calls at the low level (not using SndRecord or
SndRecordToFile), you need to open the sound input driver. This section of the code
just opens the driver, which the user selects via the sound cdev.

gError = SPBOpenDevice (kDefaultDriver, siWritePermission, &gSoundRefNum);

To open the driver, you call SPBOpenDevice and pass in a couple of simple
parameters. The first parameter is a driver name. It doesn’t really matter what the
name of the driver is; it simply needs to be the user-selected driver, so the code passes

MAKING YOUR MACINTOSH SOUND LIKE AN ECHO BOX Winter 1992

49

in nil (which is what kDefaultDriver translates into). The constant siWritePermission
tells the driver you’d like read/write permission to the sound input driver. This will
enable the application to actually use the recording calls. The last parameter is the
gSoundRefNum. This parameter is needed later in the sample so that you can ask
specific questions about the driver that’s open. The error checking is just to make
sure that nothing went wrong; if something did go wrong, the code goes to
ExitWithMessage, and then the sample quits.

gError = SPBSetDeviceInfo (gSoundRefNum, siContinuous, (Ptr) &contOnOff);

Continuous recording is activated here to avoid a “feature” of the new Macintosh
Quadra 700 and 900 that gives you a slowly increasing ramp of the sound
input levels to their normal levels each time you call SPBRecord. The result in

d e v e l o p Winter 1992

50

You do need to check two rather critical sound attributes for 2BufRecordToBufCmd.
First of all, your machine must have a sound input driver. There’s very little point in
trying to record sounds if the sample is being run on a machine that doesn’t have
sound input capabilities. Checking bit 5 of the returned feature variable with the
Gestalt Manager will give you this handy bit of information.

Second, your hardware needs to support stereo sound, since you need one channel
for sound input and one for sound output. Check for this attribute by checking bit 0 of
the returned feature variable.

The following code shows how you can test all of the bits returned in the feature
variable. (I didn’t use this code in my sample.)

err = Gestalt (gestaltSoundAttr, &feature);
if (!err) {

if (feature & (1 << gestaltStereoCapability))
//This Macintosh Supports Stereo (test bit 0)

if (feature & (1 << gestaltStereoMixing))
//This Macintosh Supports Stereo Mixing (test bit 1)

if (feature & (1 << gestaltSoundIOMgrPresent))
//This Macintosh Has the New Sound Manager (test bit 3)

if (feature & (1 << gestaltBuiltInSoundInput))
//This Macintosh Has Built-in Sound Input (test bit 4)

if (feature & (1 << gestaltHasSoundInputDevice))
//This Macintosh Supports Sound Input (test bit 5)

}

GESTALT YOUR MACHINE

2BufRecordToBufCmd is a pause and gradual increase in the sound volume between
buffers as the buffers are being played. Continuous recording gives you this ramp
only on the first buffer, where it’s almost unnoticeable.

BUILDING 'SND ' BUFFERS
Now that the sound input driver is open, the code can get the information it needs to
build the 'snd ' buffers. As its name implies, 2BufRecordToBufCmd uses two buffers.
The reason is sound (no pun intended): The code basically uses a double-buffer
method to record and play the buffers. The code doesn’t tell the machine to start to
play the sound until the recording completion routine has been called, so you don’t
have to worry about playing a buffer before it has been filled with recorded data. The
code also does not restart the recording until the previous buffer has started to play.

INFORMATION, PLEASE
To build the sound headers, you need to get some information from the sound input
driver about how the sound data will be recorded and stored. That’s the function of
the GetSoundDeviceInfo routine, which looks for information about the SampleRate
(the number of samples per second at which the sound is recorded), the SampleSize
(the sample size of the sound being recorded—8 bits per sample is normal), the
CompressionType (see “Putting on the Squeeze”), the NumberChannels (the number
of sound input channels, normally 1), and the DeviceBufferInfo (the size of the
internal buffers).

This code (minus the error checking) extracts these values from the sound input
driver.

gError = SPBGetDeviceInfo (gSoundRefNum, siSampleRate,
(Ptr) &gSampleRate);

gError = SPBGetDeviceInfo (gSoundRefNum, siSampleSize,
(Ptr) &gSampleSize);

gError = SPBGetDeviceInfo (gSoundRefNum, siCompressionType,
(Ptr) &gCompression);

gError = SPBGetDeviceInfo (gSoundRefNum, siNumberChannels,
(Ptr) &gNumberOfChannels);

gError = SPBGetDeviceInfo (gSoundRefNum, siDeviceBufferInfo,
(Ptr) &gInternalBuffer);

value = kMilliSecondsOfSound;
gError = SPBMillisecondsToBytes (gSoundRefNum, &value);
gSampleAreaSize = (value / gInternalBuffer) * gInternalBuffer;

MAKING YOUR MACINTOSH SOUND LIKE AN ECHO BOX Winter 1992

51

Opening the sound input driver gives you the gSoundRefNum. The values
siSampleRate, siSampleSize, siCompressionType, siNumberChannels, and
siDeviceBufferInfo are constants defined in the SoundInput.h file; these constants tell
the SPBGetDeviceInfo call what information you want. The last parameter is a
pointer to a global variable. The SPBGetDeviceInfo call uses this parameter to return
the requested information.

The last bit of work the code needs to do before it’s ready to start building the 'snd '
headers is to convert the constant kMilliSecondsOfSound to the sample size of the
buffer. To do this, the routine needs to call SPBMillisecondsToBytes and then round
down the resulting value to a multiple of the size of the internal sound buffer. This is
to bypass a bug connected with the continuous recording feature of Apple’s built-in
sound input device, which will collect garbage rather than audio data if the recording
buffer is not a multiple of the device’s internal buffer. Creating a buffer of the right
size not only avoids this problem, but also enables the input device to more efficiently
record data into your buffer.

Now the code has the information it needs to build the sound buffers. To save code
space, I’ve made a short routine that builds the buffers and their headers. All the code
has to do is call this routine for each of the buffers it needs and pass in the
appropriate data.

IT’S A SETUP
The first line of code in the SetupSounds routine is fairly obvious. It simply calls the
Memory Manager to allocate the requested handles, based on the known size of the
data buffer and an estimated maximum size for the header, and does some error
checking (see the code itself). Then, if the handle is good, the routine builds the 'snd '
header. Setting up the sound buffer requires building the header by making a simple
call, SetupSndHeader, to the Sound Manager. There’s a small problem with calling
SetupSndHeader only once, however: When you call it, you don’t know how big the

d e v e l o p Winter 1992

52

If you want to use compression for 2BufRecordToBufCmd,
keep in mind that the Sound Manager basically supports
three types of sound compression: none at all, which is
what I’m using, and MAC3 and MAC6, which are Mace
compression types for 3:1 and 6:1 compression,
respectively.

If you set the compression, the sound data is compressed
after the interrupt routine is called (if you have one) and

before the Sound Manager internal buffers are moved to
the application’s sound buffers.

You have a couple of options for playing back a
compressed sound. Either the bufferCmd or SndPlay will
decompress the sounds on the fly. If you need to
decompress a sound yourself, you’ll want to call the
Sound Manager routine Exp1to3 or Exp1to6 (depending
on the compression you were using).

PUTTING ON THE SQUEEZE

sound header is, so you just give the call the buffer, along with a 0 value for the buffer
size. When the call returns with the header built, one of the values in the header—the
one that’s the number of bytes in the sample—will be wrong. (The header size will be
correct, but the data in the header will not be.) To correct this, you simply wait until
your recording is complete and then put the correct number of bytes directly into the
header, at which time you’ll know how much data there is to play back. The
misinformation in the header won’t affect your recording, only the playback.

Once the header’s built, the code resets the size of the handle, moves the handle high
(to avoid fragmentation of the heap), and locks it down. It’s important to lock down
the handles in this way; otherwise the Sound Manager will move the sound buffers it’s
working with out from under itself.

*bufferHandle = NewHandle (gSampleAreaSize + kEstimatedHeaderSize);

gError = SetupSndHeader (*bufferHandle, gNumberOfChannels, gSampleRate,
gSampleSize, gCompression, kMiddleC, 0, headerSize);

SetHandleSize (*bufferHandle, (Size) *headerSize + gSampleAreaSize);
MoveHHi (*bufferHandle);
HLock (*bufferHandle);

TELLING IT WHERE TO GO
The next part of the program allocates and initializes a sound input parameter block,
gRecordStruct. This structure tells the sound input call how to do what the code
wants it to do.

The first instruction is obvious: it simply creates a new pointer into which the
structure can be stored.

gRecordStruct = (SPBPtr) NewPtr (sizeof (SPB));

The recording call will need to know where it can find the open sound input driver,
so next it needs the reference number to the driver (gSoundRefNum). The
subsequent three lines of code inform the recording call how much buffer space it has
to record into. Here, you could either give the call a count value, tell it how many
milliseconds are available for recording, or give it the size of the sound buffer. For
this code, it’s easiest to just make the bufferLength the same as the count and ignore
the milliseconds value. The code then tells the recording call where to put the sound
data as it’s recorded.

gRecordStruct->inRefNum = gSoundRefNum;
gRecordStruct->count = gSampleAreaSize;
gRecordStruct->milliseconds = 0;

MAKING YOUR MACINTOSH SOUND LIKE AN ECHO BOX Winter 1992

53

gRecordStruct->bufferLength = gSampleAreaSize;
gRecordStruct->bufferPtr = (Ptr) ((*bufferHandle) + gHeaderLength);
gRecordStruct->completionRoutine = (ProcPtr) MyRecComp;
gRecordStruct->interruptRoutine = nil;
gRecordStruct->userLong = SetCurrentA5();
gRecordStruct->error = 0;
gRecordStruct->unused1 = 0;

The recording call also needs to know what to do when it’s finished recording. Since
the call is done asynchronously, it needs a completion routine. (I’ll talk more about
this routine later on.) You could leave out the completion routine and just poll the
driver periodically to see if it’s finished recording. To do that, you’d repeatedly call
the routine SPBGetRecordStatus, and when the status routine informed you that
recording was finished, you’d restart the recording and play the buffer that had just
been filled. For this code, however, it’s better to know as soon as possible when the
recording is done because the more quickly you can restart the recording, the more
likely you are to prevent pauses between recordings.

The userLong field is a good place to store 2BufRecordToBufCmd’s A5 value, which
you’ll need in order to have access to the application’s global variables from the
completion routine. As you can see, the rest of the fields are set to 0. The code
doesn’t need an interrupt routine. There’s also no point in passing an error back or
using the unused1 field.

You’d need to use an interrupt routine if you wanted to change the recorded sound
before compression, or before the completion routine was called (see “Routine
Interruptions”).

TIME TO CHANNEL
Just before the code jumps into the main loop, it needs to open a sound channel. This
generally is not a big deal, but for 2BufRecordToBufCmd, I initialized the channel to
use no interpolation.

d e v e l o p Winter 1992

54

The interrupt routine gives you a chance to manipulate the
sound data before any sound compression is done. For
some of the operations that you may want to carry out
inside the interrupt routine, you’ll need access to the A5
world of the application, which is why I stored
2BufRecordToBufCmd’s A5 value in the userLong field of
gRecordStruct.

For more information about sound interrupt routines, take
a look at Inside Macintosh Volume VI, page 22–63.

Warning: Don’t try to accomplish too much in an interrupt
routine. In general, you’ll want interrupts to be minimal,
and possibly written in assembly language, to avoid
unnecessary compiler-generated code.

ROUTINE INTERRUPTIONS

gError = SndNewChannel (&gChannel, sampledSynth, initNoInterp, nil);

Interpolation causes clicks between the sound buffers when they’re played back to
back, which can be a rather annoying addition to your recording (unless, of course,
you’re going for that samba beat).

JUST FOR THE RECORD
To start recording, all the code needs to do now is call the low-level recording
routine, pass in gRecordStruct, and tell it that it wants the recording to occur
asynchronously.

gError = SPBRecord (gRecordStruct, true);

LOOP THE LOOP
The main loop of this code is a simple while loop that waits until the mouse button is
pressed or an error occurs in the recording, at which time the application quits.

/* main loop of the app */
while (!Button() || (gRecordStruct->error < noErr));

ROUTINE COMPLETION
You don’t want a completion routine to do much, generally, since it’s run at interrupt
time and keeps your system locked up while it’s running. There are three parts to this
completion routine, one of which has four parts to itself.

The first part of the completion routine sets its A5 value to be the same as the A5
value of the application. This gives you access to the application’s global variables
from the completion routine.

storeA5 = SetA5 (inParamPtr->userLong);

If the completion routine weren’t broken into two parts here, the MPW C compiler
optimization scheme would cause a problem at this point: access to global arrays
would be pointed to in an address register as an offset of A5 before you had a chance
to set A5 to your application’s A5 value, and you’d get garbage information.
Therefore, it’s necessary to restore your A5 value (part 1 of the completion routine)
and then call the secondary completion routine to actually do all the work.

Before the routine does any work, it needs to make sure that there have not been any
problems with the recording. If there were errors, the code drops out of the
completion routine without doing anything.

if (gRecordStruct->error < 0)
return;

MAKING YOUR MACINTOSH SOUND LIKE AN ECHO BOX Winter 1992

55

Next the routine prepares the header of the buffer, which has just been filled, by
correcting the header’s length field. This field needs to be set to the count field of
gRecordStruct, which now contains the actual number of bytes recorded.

header = (SoundHeaderPtr) (*(gBufferHandle[gWhichRecordBuffer]) +
gHeaderSize);

header->length = gRecordStruct->count;

Once the header’s been fixed, the code just sends the buffer handle off to the play
routine to play the sound. (See “Play Time” for a full explanation of the play routine.)

PlayBuffer (gBufferHandle[gWhichRecordBuffer]);

The last part of the real completion routine prepares gRecordStruct to start the next
recording. To do this, the code needs to select the correct buffer to record to and
rebuild gRecordStruct to reflect any changes. The macro NextBuffer performs an
XOR on the variable gWhichRecordBuffer to make it either 1 or 0. The changes
include setting the correct buffer to record to and checking to see that the
bufferLength is correct. Once the structure is reset, the code makes the next call to
SPBRecord to restart the recording.

#define NextBuffer(x) (x ^= 1)

gWhichRecordBuffer = NextBuffer (gWhichRecordBuffer);
gRecordStruct->bufferPtr = (*(gBufferHandle[gWhichRecordBuffer]) +

gDataStart);
gRecordStruct->milliseconds = 0;
gRecordStruct->count = gSampleAreaSize;
gRecordStruct->bufferLength = gSampleAreaSize;

err = SPBRecord (gRecordStruct, true);

The last piece of the completion routine resets A5 to what its value was when the
routine started.

storeA5 = SetA5 (storeA5);

PLAY TIME
The code in the PlayBuffer routine is very simple Sound Manager code. All it does is
set up the command parameters and call SndDoCommand. The routine needs to
know what channel to play into and what buffer to play, so the code sets up the local
sound structure by telling it which buffer to play, and sends that local structure to
SndDoCommand along with the necessary channel information (gChannel).
SndDoCommand then plays the sound. The last parameter in the SndDoCommand
call, false, basically tells the Sound Manager to always insert the command in the

d e v e l o p Winter 1992

56

channel’s queue: if the queue is full, SndDoCommand will wait until there’s space to
insert the command before returning.

localSndCmd.cmd = bufferCmd;
localSndCmd.param1 = 0;
localSndCmd.param2 = (long) ((*bufferHandle) + gHeaderSize);
gError = SndDoCommand (gChannel, &localSndCmd, false);

If you wanted to send the sounds to a different machine to be played, you could
simply replace the code in the the PlayBuffer routine with IPC or Communications
Toolbox calls telling a second machine to play the buffers.

CLEANING UP AFTER THE SHOW
Once the code finds the mouse button down or discovers that an error occurred in
the recording and exits the main loop, there’s only one last thing to do: clean up. The
first part of cleaning up is to close the sound input driver. Before you can close the
driver, you need to make sure it’s not in use; the routine SPBStopRecording stops the
recording.

gError = SPBStopRecording (gSoundRefNum);
SPBCloseDevice (gSoundRefNum);

Next you need to dispose of the handles and pointers you’ve been using. Before
sending them on their way, however, you have to make sure that they have been
allocated, so the code checks to see whether or not the handles and pointer are nil.

for (index = 0; index < kNumberOfBuffers; ++index)
DisposeHandle (gBufferHandle[index]);

DisposePtr ((Ptr) gRecordStruct);

Last but not least, the code disposes of the sound channel for you. Setting the
quitNow flag clears the sound queue before the channel is closed.

gError = SndDisposeChannel (gChannel, true);

COMPOSE YOURSELF
So now you know a little bit more about doing basic sound input at a low level. I’ve
fielded many questions about clicks, pauses between buffers, and so on, which I’ve
resolved and built into 2BufRecordToBufCmd. The specific techniques I’ve outlined
here may not apply to what you’re interested in doing right now, but if you’re using
the sound input driver or are interested in continuous recording, parts of this sample
may be useful to you in some other application. You’ve heard the saying “take what
you like and leave the rest”? Sound advice (so to speak).

MAKING YOUR MACINTOSH SOUND LIKE AN ECHO BOX Winter 1992

57
THANKS TO OUR TECHNICAL REVIEWERS
Neil Day, Kip Olson, and Jim Reekes, who
burned the midnight oil ripping this code to
shreds and putting it back together again.•

One of the least heralded new features of System 7, but
nonetheless a very important one, is full support for
faceless background applications (FBAs). An FBA is a
full-fledged application that’s invisible to the user. It
has its own event loop, and it receives time and
some events like any other application, but it doesn’t
have a menu bar, windows, dialogs, or other graphic
components. An FBA is a normal file of type 'APPL'.

FBAs are, by a stretch of the imagination, similar to
UNIX® daemons. The purpose of an FBA is to provide
services to other applications or to monitor the system.
For instance, an application that periodically checks
your hard drive for files that haven’t been backed up
lately is a perfect candidate for FBA status. Thus, an
FBA can be a silent partner to your application, INIT,
cdev, desk accessory, or driver.

An FBA is the best way to provide certain services. For
example, an FBA paired with a desk accessory can
enable the DA to send Apple events, something a DA
cannot usually do. (See the AECDEV/AEDAEMON
sample in the snippets provided with the DTS Sample
Code on the Developer CD Series disc.) An FBA can
replace an INIT that patches traps to get time and
provides services, or it can replace a driver that
depended on periodic run messages to operate.
Converting to an FBA not only frees you from having
to patch to get the time you need, but also gives you a
fully supported and documented interface and design.

You get all the advantages of a full application, without
the overhead of a user interface.

An FBA can also be an application manager for a suite
of applications. With an FBA, you can control the
launching of and communication between applications,
using LaunchApplication and Apple events.

Writing an FBA is simple. An FBA is a subset of a
standard Macintosh application, consisting of a
minimal event loop and the code to handle two types of
events, null events and high-level events. No other
events are sent to an FBA. This makes a great deal of
sense, since every other event (keystroke, mouse click,
and such) is designed for foreground applications.

The SmallDaemon backgrounder shell included on the
Developer CD Series disc shows just how simple the
basics of an FBA are:

Boolean gQuit = false;
EventRecord gERecord;
unsigned long gMySleep = 50000; /* A long, long

time */
main()
{
/* Routine for installing my Apple event

handlers. Need to install the four required
handlers, plus handlers for any other events
I want to accept. */
InitAEStuff();
while (gQuit == false) {
/* A normal call to WaitNextEvent. I want

only highLevelEvents, since all other
events relate to interface actions, and I
have no interface. */
if (WaitNextEvent(highLevelEventMask,

&gERecord, gMySleep, 0)) {
/* I'll get only null and high-level

events. */
switch (gERecord.what) {

case nullEvent:
/* No null processing in this

sample. */
break;

d e v e l o p Winter 1992

C. K. HAUN has been programming Apple computers since
1979, writing commercial education, utility, and game
applications for the Apple II, IIGS, and Macintosh, with some
occasional dark forays into the Big Blue world. (It paid the rent.)
He currently works in Developer Technical Support and focuses
mainly on Apple events and the Edition Manager. Besides working
to provide the best possible support to developers, he’s been trying
to organize the Silicon Valley chapter of Heck’s Moofers, a
motorcycle club devoted to the precept that computer nerds on

bikes can raise heck too, darn it. And yes, that really is his
mustache.•

58

BE OUR GUEST

BACKGROUND-ONLY
APPLICATIONS IN
SYSTEM 7

C. K. HAUN

BE OUR GUEST: BACKGROUND-ONLY APPLICATIONS IN SYSTEM 7 Winter 1992

59

case kHighLevelEvent:
/* Get a high-level event (an Apple

event) and process it. */
DoHighLevel(&gERecord);
break;

}
}

}
}

As you can see, there’s not much there. The first thing
you’ll notice is that an FBA doesn’t start up any
managers. All the managers you normally start are
based on user interface actions. Thus, they should not
be called in an FBA—in fact, calling them will cause
your FBA to crash. There’s one exception to this rule:
you can initialize QuickDraw, but only to provide
yourself with off-screen grafPorts or to use some
QuickDraw functions. Do not do any actual screen
drawing from an FBA.

You’ll also notice that you don’t pass a mouse region to
WaitNextEvent. That’s obvious, since you’re never in
the foreground and have no windows or mouse control
to track. And the only events you’ll be handling are null
events and high-level events (Apple events).

The next step is to make sure the system knows that
you’re a background-only application. You do this with
a SIZE resource, by setting the canBackground and
onlyBackground bits to true. When the Finder
launches your FBA, it checks these bits and finds that
you’re a background-only application.

Some tips and techniques to keep in mind:

• Always remember that an FBA is invisible to the
user. An FBA does not show up in the Process menu

or in the Finder About window. Also, its heap
memory is added to the system size thermometer
bar in the Finder About window, even though it has
its own application heap. The user often will have
no idea that it’s running, so be friendly.

• Being friendly means yielding time. Have a very
large sleep time when you’re not actually doing
some processing. If you don’t, users will think that
their machine has slowed down inexplicably. You can
always use the new Process Manager call
WakeUpProcess to get yourself back into fast
processing when you need to.

• Being friendly also means making sure you’re
occupying the smallest heap size you can possibly run
in. Again, users may never know that your FBA
exists, so if you eat up a bunch of memory in your
FBA, users will not understand why they’ve lost so
much memory. Be conservative.

• Putting your FBA in the Startup Items folder in the
System Folder is also a good idea. That will ensure
that your FBA is launched right after Finder startup
and will put the FBA high in the Process Manager’s
heap, preventing fragmentation of application
memory space.

• Use WakeUpProcess to get your FBA running.
Keep your sleep time at maximum normally, and
when you need to start doing null processing (in
response to an Apple event or PPC completion
routine, for example) use the Process Manager to
wake yourself up. WakeUpProcess can be called at
interrupt time. Then, when you’ve finished
processing, drop back to a maximum sleep time.

For further information and help with writing an FBA,
refer to the Process Manager chapter of Inside
Macintosh Volume VI. Then try it—you’ll like it!

We welcome guest columns from readers who have
something interesting or useful to say. Send your column idea or
draft to Caroline Rose at Apple Computer, Inc., 20525 Mariani
Avenue, M/S 75-2B, Cupertino, CA 95014 (AppleLink: CROSE).•

A major feature of System 7 is the fact that the Macintosh
Communications Toolbox is built in and available for all to use. This
article presents code that uses the Communications Toolbox Terminal
Manager to implement a simple text window that can be dropped into
any application. The window is useful for displaying debugging or
status information such as variable values or memory usage during
application development.

Many times, when writing code, I’ve wished I had some sort of text repository, a
place to write some quick text. I tried to use TextEdit for this at first, but its
structures grow as you add text, so my memory accounting became confused.
Sprinkling DebugStr calls throughout the code told me what I needed to know most
of the time, but they were interruptive to both the user interface and timing-sensitive
functions. Finally, I turned to the Terminal Manager because in addition to a
terminal tool it contains the nuts and bolts necessary to display a text window and
uses a fixed amount of memory.

TermWindow, included on the Developer CD Series disc, consists of a few simple
routines that use the Terminal Manager and a terminal tool to display text in a
Macintosh window. The package can be used in any application for purposes such as
displaying variable values, heap checks, memory usage, and routine paths. I’ve even
used some features of the terminal tool to grab attention, like having text blink when
I encounter an OSErr or when memory begins to get tight.

Figure 1 shows a sample TermWindow terminal emulation window. I used the
Developer Technical Support (DTS) Sample application (included with MPW) and
the Apple VT102 tool to produce the display. The double-high/double-wide text
shown in the figure is a feature of the VT102 emulator. I displayed it by writing the
escape sequences shown on the next page to the window. (Two lines are needed for
double-high text, one to display the top half of the line, and one for the bottom half.)

d e v e l o p Winter 1992

CRAIG HOTCHKISS works on the Connectivity
team in Apple’s system software group. When
he’s not pondering new ways for you to discover
the world via your Macintosh, you might catch
him practicing maneuvers with his stunt kite,
playing chess, or “on his way” to a volleyball
game. Before coming to Apple, Craig spent
several years (in the great state of the world
champion Twins) at the telephone company

frustrated with DOS in preparation for database
work on PDP and VAX machines.•

60

CRAIG HOTCHKISS

SIMPLE TEXT

WINDOWS

VIA THE

TERMINAL

MANAGER

<ESC>#3HELP! I'm trapped in here!
<ESC>#4HELP! I'm trapped in here!

THE HEADER FILE
The file TermWindow.h defines a basic TermWindowRec structure that
TermWindow uses internally for housekeeping and for storage of other structures,
including the handles for the terminal and control records.

struct TermWindowRec
{

WindowRecord fWindowRec; // so it can be a WindowPtr
short fWindowType; // for application use
TermHandle fTermHandle; // CTB terminal handle
TermEnvironRec fTermEnvirons; // environment info
ControlHandle fVertScroll; // vertical scroller
ControlHandle fHorizScroll; // horizontal scroller
Point fMinWindowSize; // min. width/height of window

};

SIMPLE TEXT WINDOWS VIA THE TERMINAL MANAGER Winter 1992

61

Figure 1
A TermWindow Window

typedef struct TermWindowRec TermWindowRec;
typedef TermWindowRec *TermWindowPtr;

Six prototype routines, used to put TermWindow to work in an application, are also
defined in the header file TermWindow.h.

pascal OSErr InitTermMgr(void);
pascal OSErr NewTermWindow(TermWindowPtr *termPtr,

const Rect *boundsRect,
ConstStr255Param title,
Boolean visible,
short theProc,
WindowPtr behind,
Boolean goAwayFlag,
Str31 toolName);

pascal OSErr DisposeTermWindow(TermWindowPtr termPtr);
pascal Boolean IsTermWindowEvent(TermWindowPtr termPtr,

const EventRecord *theEventPtr);
pascal void HandleTermWindowEvent(TermWindowPtr termPtr,

const EventRecord *theEventPtr);
pascal OSErr WriteToTermWindow(TermWindowPtr termPtr,

Ptr theData, Size *lengthOfData);

HOW TO USE TERMWINDOW
The six TermWindow routines are easy to use. After normal Macintosh manager
initialization, you’ll initialize the Terminal Manager with a call to InitTermMgr and
then call NewTermWindow. The NewTermWindow function allocates the
TermWindowPtr, terminal handle, and control handles. It also creates a Macintosh
window complete with scroll bars and then attaches the terminal emulation region to
the window with a call to TMNew. (See the next section for more on initialization.)

There are two functions to handle events, IsTermWindowEvent and
HandleTermWindowEvent. These should be placed in your application event loop.
IsTermWindowEvent determines whether the incoming event is for the emulation
window by looking at the EventRecord structure, and it also provides time to the
terminal emulator by calling TMIdle. HandleTermWindowEvent is a dispatcher that
routes the event to routines that in turn call the Terminal Manager to process the
event. These routines are discussed in more detail in the section “Handling Events.”

The WriteToTermWindow routine, discussed later in this article under “Writing
Text,” uses the Terminal Manager to display your data in the terminal emulation
window. And finally, DisposeTermWindow performs window and structure cleanup.

d e v e l o p Winter 1992

62

INITIALIZATION
The InitTermMgr routine prepares to initialize the Terminal Manager by checking
the status of three Gestalt selectors: gestaltCTBVersion, gestaltCRMAttr, and
gestaltTermMgrAttr. (We don’t have to check for Gestalt, since MPW 3.2 contains
the code to make Gestalt work.) The gestaltCTBVersion selector tells us which
version of the Communications Toolbox is available, thereby letting us know that it
exists. The gestaltCRMAttr and gestaltTermMgrAttr selectors tell us, respectively,
whether the Communications Resource Manager (which must be initialized for tool
resource handling) and Terminal Manager are available for use. InitTermMgr then
calls the Communications Toolbox initialization routines if each Gestalt call returns a
value of true. It all looks like this:

pascal OSErr InitTermMgr(void)
{

OSErr result = noErr;
Boolean hasCTB, hasCRM, hasTM;
long gestaltResult;

hasCTB = (Gestalt(gestaltCTBVersion, &gestaltResult) ?
false : gestaltResult > 0);

hasCRM = (Gestalt(gestaltCRMAttr, &gestaltResult) ?
false : gestaltResult != 0);

hasTM = (Gestalt(gestaltTermMgrAttr, &gestaltResult) ?
false : gestaltResult != 0);

if ((hasCTB) && (hasCRM) && (hasTM))
if (noErr == (result = InitCRM()))

if (noErr == (result = InitCTBUtilities()))
if (noErr == (result = InitTM()))

return (result);
} /*InitTermMgr*/

You may wonder whether the Communications Toolbox requires that the Macintosh
Toolbox managers be started up at initialization time. The Communications Toolbox
managers are loaded in the system heap, so you may have other reasons for starting
them up in your initialization routine, but TermWindow’s only requirement is that
InitTermMgr be called at some point before NewTermWindow. Because the
NewTermWindow routine has the potential to allocate nonrelocatable memory,
calling InitTermMgr and NewTermWindow at initialization removes the possibility
of heap fragmentation.

NewTermWindow begins by validating each parameter that was passed and assigns
default values if necessary (see Table 1 below; refer to “The Header File” earlier in
this article for the NewTermWindow declaration). You might notice that a good deal
of the parameter list to NewTermWindow is very similar to that for the NewWindow

SIMPLE TEXT WINDOWS VIA THE TERMINAL MANAGER Winter 1992

63

function in the Macintosh Toolbox. The NewTermWindow parameter list is
designed to provide as much window control as possible when calling NewWindow,
while also adding the functionality for the terminal emulation region. Calls to
NewControl attach scroll bars to the window being created.

Once the Macintosh window is ready, NewTermWindow attaches the terminal
emulation region to the window with a call to TMNew. Parameters to the TMNew
routine tell the terminal tool, via the Terminal Manager, how to set up the emulation.
(Terminal tools, not the Terminal Manager, implement the emulation.) The basic
TMNew prototype is as follows:

pascal TermHandle TMNew(const Rect *termRect, const Rect *viewRect,
TMFlags flags, short procID, WindowPtr owner,
TerminalSendProcPtr sendProc,
TerminalCacheProcPtr cacheProc,
TerminalBreakProcPtr breakProc,
TerminalClikLoopProcPtr clikLoop,
TerminalEnvironsProcPtr environsProc,
long refCon, long userData);

In TermWindow’s case, NewTermWindow sets termRect and viewRect to the
portRect of the window’s grafPort minus the scroll bar area and sets the flags
parameter to 0L. (This enables the terminal tool to put up custom menus or provide
error alerts to the user.) The procID parameter is a terminal tool reference number
(obtained with TMGetProcID) that tells the Terminal Manager which tool to use.
The owner parameter is set to the WindowPtr of our Macintosh window. The
procedure pointers, refCon, and userData are all set to nil or 0L.

termPtr->fTermHandle = TMNew(&termRect, &termRect, 0L, procID,
(WindowPtr)(*termPtr), nil, nil, nil,
nil, nil, 0L, 0L);

d e v e l o p Winter 1992

64

Table 1
NewTermWindow Defaults

Parameter Name Default Value
termPtr Pointer allocated for TermWindow storage
boundsRect FrontWindow window size
title "\pStatus"
visible True
theProc ZoomDocProc
behind FrontWindow
goAwayFlag False
toolName TMChoose user setup dialog box

HANDLING EVENTS
Your application’s main event loop should use the two event-handling routines,
IsTermWindowEvent and HandleTermWindowEvent, to process events for the
emulation window and to determine whether the event has already been handled. I
use the following fragment just after calling WaitNextEvent; it sets the gotEvent flag
to false when TermWindow has processed the event, so that I don’t try to handle the
event twice.

if (IsTermWindowEvent(&gTheEvent, gTermWindowPtr)) {
HandleTermWindowEvent(&gTheEvent, gTermWindowPtr);
gotEvent = false;

}

IsTermWindowEvent uses FindWindow or the message field of the event record to
determine whether the event is for the terminal window. (See Inside Macintosh Volume
I, page 250, for details.) IsTermWindowEvent is also a convenient place to give the
terminal tool idle time; it calls TMIdle to give the tool a chance to draw text or blink
the cursor. (Some terminal tools also have the ability to display blinking text; that
would be done here also.)

The HandleTermWindowEvent routine is fairly straightforward, especially if you’ve
written window- and scroll-handling code before. As is true when handling normal
windows, the what field of the event record defines the work to be done. Terminal
Manager routines exist for most of this work, so handling events is primarily a matter
of calling the right routine at the appropriate time. For example, window activation
and deactivation are communicated to the tool with a call to TMActivate.

TMActivate(termPtr->fTermHandle,
(0 != (theEventPtr->modifiers & activeFlag)));

Figure 2 illustrates how a message like TMActivate is routed to accomplish its goal.
The Terminal Manager receives the TMActivate call and routes the tmActivateMsg
message to the terminal tool. The terminal tool then takes the opportunity to call
Macintosh Toolbox routines such as InsertMenu or RemoveMenu (if the tool uses a
custom menu, as the VT102 tool does) to keep the screen up to date.

Update events are handled by a call to TMUpdate sandwiched between BeginUpdate
and EndUpdate. You’ll just need to pass TMUpdate the update region freshly
calculated by BeginUpdate. Of course, if you check for an empty region first, you
won’t have to call TMUpdate at all.

BeginUpdate((WindowPtr)termPtr);
if (nil != ((WindowPtr)termPtr)->visRgn)

TMUpdate(termPtr->fTermHandle, ((WindowPtr)termPtr)->visRgn);
EndUpdate((WindowPtr)termPtr);

SIMPLE TEXT WINDOWS VIA THE TERMINAL MANAGER Winter 1992

65

Mouse-click handling is also fairly traditional. FindWindow is used to determine
where in the window the click took place, and Terminal Manager routines are called
to let the terminal tool know what to do. When a zoom or grow event causes the size
of the emulation rectangle to change, the window’s portRect gets passed to
TMResize. If FindWindow returns inContent, FindControl is used to determine the
control in which the click occurred, so that TermWindow will know whether to
scroll horizontally or vertically. The partCode returned from FindControl tells how
much to scroll by indicating the part of the control where the click took place. If

d e v e l o p Winter 1992

66

HandleTermWindowEvent�
routine �

TMActivate�
�

Communications Toolbox�
�Communications Resource Manager�

Terminal Manager�
�

Terminal tool�
� InsertMenu�

�•�
•�
•�

Macintosh�
Toolbox�

�

TermWindow�

tmActivateMsg�
�

Figure 2
Calling TMActivate

FindControl returns nil for the ControlHandle parameter, the click is in the
emulation region and TMClick is called.

WRITING TEXT
Writing data is easy via the WriteToTermWindow routine. Here’s an example of a
WriteToTermWindow call with tempString declared as a char array:

sprintf(tempString, "Hello, world");
dataLength = strlen(tempString);
osResult = WriteToTermWindow(termPtr, tempString, &dataLength);

In a debugging situation, you might want to do something like the following to keep
track of heap size:

gAppHeapRef -= FreeMem();
if (gAppHeapRef) {

sprintf(tempString, "\t\t#M# App. heap grew by %ld bytes",
gAppHeapRef);

dataLength = strlen(tempString);
osResult = WriteToTermWindow(termPtr, tempString, &dataLength);

}

WriteToTermWindow hands the data off to the terminal tool, via a call to
TMStream. You might be tempted here to think that the data should appear in the
window immediately, but it doesn’t—it’s simply put in the terminal tool buffer. The
terminal tool waits for a TMUpdate or TMIdle before actually writing to the
window. Another point to remember when working with terminal tools is that display
fonts are controlled by the terminal tool; in fact, many use specific terminal fonts.

NOW IT’S YOUR TURN . . .
That’s really all there is to using this simple text window. Now that you have some
base code to work from, you might want to add the communication abilities needed
to talk to another computer by using Connection Manager calls like CMRead or
CMWrite and telling the terminal tool when to use them with procedure pointer
parameters to TMNew. How about extending TermWindow to write all data
displayed to a file? Or if you’re really up to a challenge, try adding a scroll-back cache
to store data that gets scrolled out of the emulator. Just scrolling the data around is
not too difficult, but brush up on your region handling when you try to work with
selections.

I hope you find the TermWindow package useful. Put it to work, add some features,
and pass it on. Everything should evolve over time.

SIMPLE TEXT WINDOWS VIA THE TERMINAL MANAGER Winter 1992

67
For more details on using the Macintosh
Communications Toolbox, see Inside the
Macintosh Communications Toolbox, by Apple
Computer, Inc. (Addison-Wesley, 1991).•

THANKS TO OUR TECHNICAL REVIEWERS
James Beninghaus, Mary Chan, Byron Han•

Here’s a tool that gives you access to what you really need to know while
debugging a driver. With Tracks, you decide what kind of information
you want to track—variable contents, who called the current function,
timing information, and more—all while your driver’s running. When
a problem arises, you can easily tell where your driver’s been and what
it’s been doing, so you can find out just what went wrong.

If you’ve ever written a device driver, you know how hard it is to keep track of what’s
going on. Learning the value of variables and other data as the driver runs usually
requires a lot of time in a debugger.

When a driver crashes, trashing the stack in the process, it’s often impossible to
determine the last routine that was executed. Finding the bug can take many hours,
especially if the crash appears only periodically. Even after you’ve found the bug,
each crash requires recompiling, building, restarting, and retesting. Anything to help
locate bugs more quickly and accurately could save a lot of time and frustration.

That’s why Tracks was written. Whether you’re writing your first or your fiftieth
driver, it can help you track down those nasty bugs that always show up. The simple
macros in Tracks make it easy to log all kinds of information from a driver written in
C or C++. You can record strings, data blocks, longs, and even formatted data types.
Tracks can write debugging information directly to disk as it comes in, or it can keep
the information in a circular buffer and dump it to disk on command—a MacsBug
dcmd (debugger command) lets you do this even after a crash.

You can completely control what information is logged, and your driver won’t even
know it. If you know a routine works, you can turn off calls from it at any time—
including while your driver’s running.

On the Developer CD Series disc, you’ll find TestDrvr, a sample driver that
demonstrates how to implement Tracks functionality in a simple (and useless) driver.

d e v e l o p Winter 1992

BRAD LOWE attends Chico State, where he
claims to be majoring in fashion merchandising,
although informed sources say he’s been sighted
frequently in computer science classes. An Eagle
Scout, he enjoys hiking, skiing, mountain biking,
and scuba diving. His newest toy is a paraglider,
which he flies—on his free weekends—over
obscure regions of Northern California.•

68

BRAD LOWE

TRACKS:

A NEW TOOL

FOR

DEBUGGING

DRIVERS

Also enclosed is the complete source for the Tracks utilities, as well as all the
necessary support tools.

In the following sections, you’ll find out about how Tracks works, what kind of
information the Tracks macros log, and what the code does. You’ll also get some
pointers on installing and using Tracks. If you’re eager to start using Tracks, take a
look at “Tracks in Action.”

HOW TRACKS WORKS
Tracks works somewhat like a message service that can accept telephone calls on 128
different lines from the target driver. You decide where to install the lines and what
kinds of messages each line will deliver. You can control which lines to listen to (or
not) and where to save incoming messages.

The invocations of macros—or calls—that send information to Tracks are called
tracepoints. You assign each tracepoint a number between 0 and 127, called a diagnostic
ID (diagID), and a name. The diagID represents one bit in a 128-bit flag that can be
set or cleared from the Tracks control panel device (cdev). When a tracepoint is
encountered, data is logged only if the corresponding bit has been set.

Being able to set or clear tracepoints on the fly allows you to tailor the type of
information being traced. By assigning a meaningful name to each tracepoint, you’ll

TRACKS: A NEW TOOL FOR DEBUGGING DRIVERS Winter 1992

69
Tracks was written by Jim Flood and Brad
Lowe for Orion Network Systems, Inc., a
subsidiary of Apple Computer, to help develop
and debug Orion’s SNA•ps Access driver, part of
the SNA•ps product family. SNA•ps allows you
to connect your Macintosh to an IBM SNA
(System Network Architecture) network and
communicate with SNA-based hosts, midrange

systems (such as AS/400), and even personal
computers.•

TestDrvr is a simple driver skeleton that checks the status
of the keyboard. If the Option key is down, it logs one
type of data, and if the Command key is down, it logs
another type of data.

To see Tracks in action, follow these condensed
instructions:

1. Put DumpTracks into your MPW Tools folder and
TestDrvr into your System Folder or Extensions folder.

2. Put Tracks into your System Folder or, in System 7, into
your Control Panels folder.

3. Restart your Macintosh.

4. Open the Tracks cdev, click the Driver Name button,
and locate the file TestDrvr.

5. Turn on Tracks and click the Level 1 button to turn on
tracepoints 0-31 (only 0-3 are used).

6. Press the Command key or the Option key to begin to
log data. The Bytes Buffered field should change.

7. Click Write Buffer to send TestDrvr output to disk. Only
data written to disk can be examined.

8. Start up MPW and type “DumpTracks” to see what
was just traced.

Look over the TestDrvr source code if you haven’t already
done so. Don’t forget to remove TestDrvr when you’re
done. For information about the output from the example,
see the section “Examining Tracks Output” under “Using
Tracks.”

TRACKS IN ACTION

know which ones to set or clear, and the name of the tracepoint will be recorded with
any Tracks output. Tracks breakpoints are tracepoints that will drop you into your
debugger.

GROUPING INFORMATION
Because the diagID doesn’t have to be unique, a tracepoint can represent a single
Tracks call, a type of Tracks call, or a grouping of Tracks calls. A type of Tracks call,
for instance, might be all error-reporting calls. A grouping might be all tracepoints in
a particular routine.

This kind of flexibility allows you to group your information into logical and
functional units. It’s up to you to create as many or as few tracepoints as you need.
For instance, if you’re working on a new routine, you may set a whole bunch of
Tracks calls all to the same diagID. When you test the routine, you can set some or
all of the other switches to off and focus on the messages from that routine. Later,
when you know the function works, you can keep that switch off.

Numbering for ease of use. There aren’t any limits on how you group your
diagIDs. You might assign all messages to one tracepoint or simply start at 0 and
increment by 1 from there. The key is that once you know something works, you
want to be able to turn off tracing in that area. By assigning unique diagIDs to groups
of Tracks calls, you can quickly tailor your tracing.

For convenience, there are four groups of 32 tracepoints each (0-31, 32-63, 64-95,
and 96-127) that you can turn on or off with a click. (The Tracks cdev contains
buttons for levels 1 through 4, which correspond to these four groups.) Most new
users start out tracing all information. But as more and more Tracks output is added,
information overload can be a problem, and it’s great to be able to limit Tracks
information easily.

PartCodes are used to identify consecutive Tracks calls that have the same diagID.
PartCodes should start at 0 and increment by 1 for each additional Tracks call with
the same diagID. For example, say you wanted to dump the contents of all three
parameters you receive on entry to a function. You’d probably want all these to have
the same diagID. The first Tracks call should have a partCode of 0, the next call a
partCode of 1, and so on. The partCode makes it more evident if some Tracks
information is lost. Data can be lost if the circular buffer fills before writing to a file,
and data can be locked out if Tracks is already in use.

THE TRACKS MACROS
To log data from your driver, you call one of five simple macros from your driver
code. Each macro logs a different kind of information. All the calls must have access
to your driver’s global storage and follow the numbering conventions just described
for the diagID and partCode.

d e v e l o p Winter 1992

70

T_STACK(diagID);

T_STACK, one of the most useful calls, records the current function and who called
it. If the driver is written in C++, a special unmangler automatically prints out the
arguments that were passed to the function. If called from every major routine,
T_STACK will leave the proverbial trail of bread crumbs. T_STACK’s partCode is
always 0.

T_DATA(diagID, partCode, &dataBlock, sizeof(dataBlock));

T_DATA is used to dump a block of memory, formatted in hexadecimal and ASCII.

T_TYPE(diagID, partCode, recordPtr, sizeof(Record), "\pRecord");

T_TYPE records a data structure. The address, size, and a Pascal string with the
name of the structure must be passed to the macro. The format of the data structure
must be defined in an 'mxwt' resource, stored in your driver or in your MacsBug
Debugger Prefs file. If the resource to define the structure isn’t found, the data will
be treated as a T_DATA call. Since the templates are used only to format data, you
don’t need to use MacsBug.

T_PSTR(diagID, partCode, "\pA string you'd like to see");

T_PSTR simply records a Pascal string.

T_PSTRLONG(diagID, partCode, "\ptheLong = ", theLong);

T_PSTRLONG records a Pascal string and a long. Usually the string is used to tell
you what follows. Feel free to cast whatever you can get away with to the long.

TRACKS: A NEW TOOL FOR DEBUGGING DRIVERS Winter 1992

71
For more information on the 'mxwt'
templates, see the MacsBug documentation.•

breakpoint A tracepoint that enters your debugger.

diagnostic ID (diagID) A number between 0 and 127
that represents one bit in a 128-bit flag. In Tracks, a
diagID is assigned to a tracepoint. The flag determines
whether trace data will be logged or not. A diagID can
represent a single Tracks call or a grouping of calls.

DumpTracks An MPW tool that lets you see Tracks
output.

partCode A number used to identify consecutive Tracks
calls that have the same diagID.

tracepoint An invocation of a macro in your driver
code that sends out information to the Tracks driver.

Tracks A programming utility—containing the Tracks
cdev, INIT, and driver—used to debug drivers in
development.

SOME HELP WITH TERMS

A LOOK AT THE TRACKS CODE
This section is for folks who are really wide awake and ready for the gritty details. (If
you’re not one of those folks, you may want to jump ahead to the “Installing Tracks”
section.) The Tracks file contains a cdev, an INIT, and the Tracks driver. The Tracks
driver has three key responsibilities: maintaining the cdev, sending messages to the
target driver, and accepting data from the target driver via the trace procedure
(TraceProc). Figure 1 shows the flow of data between Tracks and the target driver.

MAINTAINING THE CDEV
The Tracks driver’s first responsibility includes sending status information to the cdev
and responding to cdev commands like “clear buffer” and “write file.” Because the
cdev displays the status of fields that can change at any time, the cdev monitors the
driver and updates fields as they change.

The Tracks driver doesn’t always need periodic (accRun) messages. When the driver
gets a message to turn its periodic write-to-file flag on or off, the driver sets or clears
its dNeedTime bit in the dCtlFlags. (Recall that BitClr, BitSet, and BitTst test bits
starting at the high-order bit.)

BitClr(&dCtl->dCtlFlags, 2L); /* Clear bit 5 = dNeedTime bit. */
BitSet(&dCtl->dCtlFlags, 2L); /* Set bit 5 = dNeedTime bit. */

SENDING MESSAGES TO THE TARGET DRIVER
The Tracks driver can send one of two messages to the target driver: “enable tracing”
or “disable tracing.” The enable message passes the target driver a function pointer
that points to an address within the Tracks driver code as well as a pointer that points
to the Tracks driver’s own globals. The target driver needs to save both of these
because they’re needed by the Tracks macros. The macros use the function pointer to
call the Tracks driver directly, passing it the globals pointer along with tracing data.

When the target driver gets the disable message, the saved function pointer is set to
nil. (For the code to handle enable and disable messages, see the “Installing Tracks”
section.) The Tracks macros in the target driver check to see if the function pointer is
nil, and if it isn’t, the target driver calls the function pointer within Tracks with
arguments that correspond to the particular Tracks function.

The macro that checks and invokes a non-nil function pointer is defined in the
following code. The macros used in the target driver’s code reference this macro.
Notice that for a Tracks call to compile, it needs to access your globals by the same
name, in this case by the name globals. Macros are used so that they can easily be
compiled out of the final product.

d e v e l o p Winter 1992

72

TRACKS: A NEW TOOL FOR DEBUGGING DRIVERS Winter 1992

73

Driver code

cdev

Tracing�
on?

Log this�
data?

Log to�
circular�
buffer

Break-�
point�
set?

Globals

Startup message�
to driver

Turn tracing on

Turn tracing off
Trace�

procedure

Enter debugger

JSR to fTraceProcPtrYes

No

BitArray fTraceMask[128];�
BitArray fBreakMask[128];�

XYZ(Globals *globals,...)�
{�
�
 TRACE(a,b,c...);�
�
}

Ptr fTraceArg;�
ProcPtr fTraceProcPtr;

No

Yes

Driver code

Target driver

RTS back to target driver

BitTst(fTraceMask, diagID);

Yes

BitTst(fBreakMask, diagID);

...

No

...
...

...
...

...

Tracks driver

Globals

Circular�
bufferData

Messages to and�
from Tracks driver

INIT

...

Is�
fTraceProcPtr�
not nil?

...

Figure 1
How Tracks Interacts With the Target Driver

#define TRACE(diagID, partCode, formatID, data1, data2, data3) \
{ register ProcPtr func; \
func = globals->fTraceProcPtr; \
if (func != nil) \
(*((pascal void (*)(long, unsigned char, unsigned char, unsigned char, \
long, long, long))func)) \
(globals->fTraceArg, diagID, partCode, formatID, \
data1, data2, data3); }

ACCEPTING DATA FROM THE TARGET DRIVER
The actual routine the macro executes, located in the Tracks driver, is shown below.
The address of this routine was passed to the target driver in the enable message, and
the first argument (long refcon) is actually the pointer to the Tracks driver’s globals,
which the Tracks driver expects the target driver to pass back to it each time. The
macro calls right into the Tracks driver code.

pascal void TraceProc(long refcon, unsigned char diagID, unsigned char
partCode, unsigned char formatID, long data1, long data2, long data3)

{
register TraceGlobals *globals;
register Boolean okLocked;
register Boolean breakOnExit = false;

globals = (TraceGlobals *)refcon; // Set up driver globals.

if (diagID < 128) // Valid diagIDs range from 0 to 127.
{

// Check the need for a break on exit (breakpoint was set).
breakOnExit = BitTst((Ptr)globals->fBreakMask, (long)diagID);

// Check to see if the information passed should be logged.
if (BitTst((Ptr)globals->fTraceMask, (long)diagID))
{

// The tracepoint was set--check that the buffer is ready.
if (globals->fBufferEnabled) // Is the buffer ready?
{

// Test and set "locked-out" flag.
okLocked = UTLock(&globals->fTraceLock);

// If trace request was locked out, set locked-out flag.
if (okLocked)

// Log incoming data to circular buffer.
HandleTraceData(globals, diagID, partCode, formatID,

data1, data2, data3);

d e v e l o p Winter 1992

74

else
globals->fLockedOutFlag = true; // Locked out!

}
}

}

// Handle a breakpoint, if any.
if (breakOnExit)
{

// We can assume there's a debugger installed.
if (globals->fBreakOnceThenClear)
{

BitClr((Ptr)globals->fBreakMask,(long)diagID);
// Signal cdev that debug mark was turned off.
globals->fDebugMarkUnset = true;
DebugStr("\pTrace User Breakpoint (Once)");

}
else

DebugStr("\pTrace User Breakpoint");
}
return;

}

The above routine checks to see if the diagID specified is enabled (checked in the
cdev). If it is, HandleTraceData handles the data passed in the way indicated by the
formatID. The formatID specifies what type of data is being passed—a Pascal string,
a Pascal string and a long, a data block, a stack peek request, or a formatted type
dump. Adventurous programmers could add their own formats (for instance, to record
floating-point numbers) by modifying the HandleTraceData routine and
DumpTracks and then creating a new macro. Adding a new format isn’t trivial,
though. Usually, it’s easier to make an existing format do the job.

Since this routine can be called at interrupt time, it needs to test and set a “locked-
out” flag, which it does with an assembly language routine called UTLock that uses
the 68000’s BSET instruction. BSET helps ensure that the routine won’t get into
trouble by executing more than one instance of itself. If the routine gets locked out,
DumpTracks will notify you that some data was lost.

The routine also checks to see if a breakpoint has been set for that diagID. If it has,
just before the routine exits, it invokes the debugger. Two kinds of breakpoints are
supported—“once-only” and “immortal.” The once-only kind of breakpoint flag is
cleared after being tripped. Tracks breakpoints can be cleared or set only through the
Tracks cdev—not from your debugger.

TRACKS: A NEW TOOL FOR DEBUGGING DRIVERS Winter 1992

75

An interesting routine in drvr.c is StackPeek, which is called by T_STACK macros.
StackPeek examines the stack frame to find what the current procedure is and who
called it. StackPeek searches backward until it finds the return address of the function
that called T_STACK. From there, it searches the actual code, looking for the last
instruction (an RTS, a JMP(A0), or an RTD), which is followed by the name of the
function. It then finds the length of the function name and repeats the process for the
caller, which is just one stack frame deeper.

INSTALLING TRACKS
The following are instructions for adding Tracks capabilities to a driver written in C
or C++. Currently the only way to view Tracks output is through the DumpTracks
MPW tool.

1. Install the Tracks files on your hard drive. Put a copy of Tracks
into your System Folder or, in System 7, into your Control Panels
folder. Put DumpTracks into your MPW Tools folder and add the
'dcmd' resource in Tracks.dcmd to your Debugger Prefs. Finally,
make a copy of TracksInfo.h and put it with your driver code.

2. Add two variables to your driver’s global storage area. These must
be accessible from every place you want to trace from. You may
need to redo your globals so that these variables are always able to
be accessed in the same way. The globals should look like this:

typedef struct
{

your stuff
ProcPtr fTraceProcPtr;
Ptr fTraceArg;

} Globals, *GlobalsPtr;

3. In your initialization routine, you’ll need to set the fTraceProcPtr
to nil.

globals->fTraceProcPtr = nil;

Tracks calls attempted before this is done will result in fireworks.
If your driver’s global storage isn’t referenced by a parameter
called globals, you can change the word “globals” in the file
TracksInfo.h to whatever the global storage is referenced by. The
Tracks macros require you to be consistent in your global storage
references.

d e v e l o p Winter 1992

76

4. Include TracksInfo.h in the header file where you define your
global storage block.

5. Add two csCodes to your driver’s code. They need to look like
this:

case kInstallTrace:
globals->fTraceProcPtr = ((TraceDataPtr)paramPtr)->TraceProc;
globals->fTraceArg = ((TraceDataPtr)paramPtr)->TraceGlobals;
break;

case kRemoveTrace:
globals->fTraceProcPtr = nil;
globals->fTraceArg = nil;
break;

6. Add two resources to your driver’s .r or .rsrc file: 'DrvN' and
'STR#'.

Resource 'DrvN' ID 128 contains a Pascal string with the name of
your driver (which starts with a period). The 'DrvN' resource lets
the cdev know which driver to send the “turn on” and “turn off”
messages to.

Resource 'STR#' ID 777 is a string list that should contain the
names of tracepoints you create. It’s for the tracepoint names in
the cdev and for DumpTracks output—not for use by your driver.
The 'STR#' resource can be partially filled, blank, or even missing.

When you add a Tracks call with a new diagID, you’ll want to give
it a name and add it to the string list. Changes show up the next
time the cdev is opened or DumpTracks is used. If the 'STR#'
resource is missing, the tracepoint name will show up in the cdev
as a number—the diagID. DumpTracks will warn you when there’s
no name associated with the diagID.

Warning: The diagIDs range from 0 to 127, and in ResEdit the
string list is set up to start at 1. This means that if you add a Tracks
call with a new diagID of 5, you need to change entry number 6 in
the string list.

Add a few Tracks macros to your code, rebuild your driver, and you’re set to start
using Tracks. When you’re ready to ship your driver, simply #define GOLD in
TracksInfo.h and remove the two Tracks resources and any 'mxwt' resources from
your driver.

TRACKS: A NEW TOOL FOR DEBUGGING DRIVERS Winter 1992

77

USING TRACKS
Tracks can be controlled via dcmd or cdev. The dcmd lets you turn tracing on and off
and write the circular buffer to disk. The Tracks cdev, shown in Figure 2, lets you
control all the Tracks functions.

TRACING AND SETTING TRACEPOINTS
To begin tracing data, open the cdev, click the Driver Name button, and select a
driver that has Tracks code installed at the Standard File prompt. If the target driver
is set up properly, you’ll see the name of the driver next to the button. To turn on
tracing, click the On button and check the tracepoints you want traced. Tracepoints
are represented by the list of 128 checkboxes. As soon as information is retrieved, the
number in the Bytes Buffered field will change. To stop sending data to Tracks, click
the Off button.

SETTING BREAKPOINTS
To set breakpoints from Tracks, either click in the Tracks cdev just to the left of the
scroll bar, opposite the desired tracepoint, or Option-click a checkbox. A tiny bug will
appear, indicating a breakpoint. When a breakpoint is hit, you’ll need to step a few

d e v e l o p Winter 1992

78

Tracepoints

Tracks�
breakpoint

Figure 2
A Look at the Tracks cdev

times to return from the Tracks code to your driver. Since the default type of
breakpoint is once-only, a breakpoint must be reset each time after it’s encountered.

SETTING THE BUFFER
Like all good circular buffers, the Tracks buffer will hold the most current data. The
default (and minimum) setting is 4K. If you want to change this size, you need to turn
off Tracks and clear the contents of the buffer before clicking the arrows button.
Generally, it’s better to have a large buffer if you can afford it. But if you aren’t
logging a lot of data, and periodic write-to-file is turned on, you can have a small
buffer and not lose any information.

An excellent use of the circular buffer is to catch sporadic bugs that might not occur
for hours (or days). For example, set up a test to run continuously until the problem is
detected. Plan to let the test run over the weekend with write-to-file turned off.
When you come in on Monday, the circular buffer will have the last 4K of data—or
whatever size buffer you used—leading up to and including the occurrence of the
problem.

WRITING THE BUFFER
Before you can examine any Tracks data, you need to send it to a file by clicking the
Write Buffer button. To clear the file, click the Reset EOF button. The data is always
written to the Tracks Prefs file, which hangs out in your System Folder or, in System
7, in your Preferences folder. Use the Reset EOF button instead of throwing the
Tracks Prefs file away, since settings information is also stored there.

If you check the Periodic Write-To-File box, data will be written to the disk
approximately every second (60 ticks), assuming there’s data to send. Be forewarned
that data can come out at an alarming clip—in minutes you can create a
multimegabyte file. The periodic writes-to-file occur even when the cdev is closed,
until you turn it off or your hard drive becomes full.

If your driver crashes, you can write the circular buffer to disk via the Tracks dcmd.
Just type “Tracks write” from your dcmd-supporting debugger.

EXAMINING TRACKS OUTPUT
Once data has been written to your Tracks Prefs file, you can examine it using
DumpTracks. Figure 3 shows a sample (from the TestDrvr example) of a couple of
simple Tracks calls and the type of output you’ll get. Notice that each routine that
wants to use a Tracks macro needs to have a pointer to the globals passed as an
argument with the same name—in this case, globals.

The first line of a record holds a time stamp. Because other calls with the same
diagID will follow immediately, it’s shown only when the partCode is 0.

TRACKS: A NEW TOOL FOR DEBUGGING DRIVERS Winter 1992

79

The second line shows the diagID and the name of the corresponding tracepoint,
shown in parentheses.

The “(diagID - partCode) TYPE_OF_TRACE” line (the third line) is followed by
the data for that Tracks call.

d e v e l o p Winter 1992

80

++ Tracks Record 1:33:34 PM at Mon, Aug 12, 1991 ++�
++ DiagID 00 (StackPeek Example) ++�
(0- 0) STACKPEEK�
'HandleOptKeyDown'�
 called by 'DRVRENTRY'�
�
++ Tracks Record 1:33:34 PM at Mon, Aug 12, 1991 ++�
++ DiagID 02 (HandleOptKeyDown) ++�
(2- 0) PSTR + LONG �
'EventCount = ' 2178 0x882 �
(2- 1) PSTR �
"KeyMap = "�
(2- 2) DATA �
 ---- ASCII ----- �
00: 0000 0000 0000 0004 0000 0000 0000 0000

// This routine is called when the Option key is down.�
void HandleOptKeyDown(Globals *globals)�
{ �
 /* This will record who called this routine. */�
 T_STACK(kStackPeek1); �
 // Log periodic event count.�
 T_PSTRLONG(kOptKeyDown, 0, "\pEventCount = ", (long)�
 globals->EventCount);�
 T_PSTR(kOptKeyDown, 1, "\pKeyMap = ");�
 T_DATA(kOptKeyDown, 2, theKeyMap, (long)sizeof(KeyMap));�
}�

void HandleCmdKeyDown(Globals *globals, DCtlPtr dCtl)�
{�
 /* This will record who called this routine. */�
 T_STACK(kStackPeek1); �
 // Record a formatted data type.�
 // The template is defined in MacsBug 6.2's Debugger Prefs.�
 // File in resource 'mxwt'.�
 T_TYPE(kCmdKeyDown, 0, dCtl, (long)sizeof(DCtlEntry),�
 (long)"\pDCtlEntry");�
}�

++ Tracks Record 1:33:32 PM at Mon, Aug 12, 1991 ++�
++ DiagID 00 (StackPeek Example) ++�
(0- 0) STACKPEEK�
'HandleCmdKeyDown'�
 called by 'DRVRENTRY'�
++ Tracks Record 1:33:32 PM at Mon, Aug 12, 1991 ++�
++ DiagID 01 (HandleCmdKeyDown) ++�
(1- 0) FORMATTED TYPE DUMP�
DCtlEntry �
 'dCtlDriver ' 0xD4E8 �
 'dCtlFlags ' 31840 �
 'dCtlQHdr ' QHdr �
 'qFlags ' 0 �
 'qHead ' 0x0 �
 'qTail ' 0x0 �
�
 'dCtlPosition ' 0 �
 'dCtlStorage ' 0x4978 �
 'dCtlRefNum ' -131 �
 'dCtlCurTicks ' 54430 �
 'dCtlWindow ' 0x0 �
 'dCtlDelay ' 15 �
 'dCtlEMask ' 0 �
 'dCtlMenu ' 0 �

Output Corresponding Code

Output Corresponding Code

Figure 3
Comparing Tracks Output With the Calls

Notice that the T_TYPE call formats the contents of the driver’s DCtlEntry. To be
able to display formatted types, DumpTracks needs to read the 'mxwt' format from
Debugger Prefs. Also notice that the DCtlEntry has a QHdr structure inside it,
which was also displayed.

ON YOUR OWN
Debugging a device driver can be time consuming and difficult. Tracks provides you
with a tool to help keep your drivers under control. How you set up tracing really
depends on what kinds of things you’d like to monitor—error conditions, your own
driver statistics, or whatever. If you suspect bugs will be, or are, a major source of
headaches, you’ll save time by adding lots of Tracks calls.

Take a look at the TestDrvr sample source code. Once you get Tracks going in your
own code, you should find that you’re debugging your drivers in a fraction of the
time it used to take.

TRACKS: A NEW TOOL FOR DEBUGGING DRIVERS Winter 1992

81
THANKS TO OUR TECHNICAL REVIEWERS
Neil Day, Jim Flood, Craig Hotchkiss, Gordon
Sheridan•

• Inside Macintosh Volume II, Device Manager chapter (Addison-Wesley, 1985).

• Designing Cards and Drivers for the Macintosh Family, Second Edition (Addison-
Wesley, 1990).

• “Using Object-Oriented Languages for Building Non-Applications in MPW” by
Allan Foster and David Newman (MacHack ’91 proceedings, available on
CompuServe).

• “Writing a Device Driver in C++ (What? In C++?)” by Tim Enwall, develop Issue
4, October 1990. (One caveat if you want to build the sample driver: Be sure to
use to MPW 3.1 and System 6.)

• Black Holes and Warped Spacetime by William J. Kaufmann (W. H. Freeman and
Co., 1979).

• The Pleasantries of the Incredible Mulla Nasrudin by Idries Shah (E. P. Dutton &
Co., 1968).

RECOMMENDED READING

Many of the things that are important, many of the
phenomena that drive the world, are based on very
simple rules. Huge numbers of independent entities
interacting in a simple way at their local level can
exhibit surprisingly complex behavior. The amazing
and endlessly fascinating thing is that the end result is
not at all obvious if you look only at the local rules.

Weather, for instance: get a bunch—and I mean
lots—of gas molecules and water vapor together, and
weather just happens (I’ve heard that really big closed
buildings, like hangars and roofed stadiums, experience
“weather” inside). As far as the molecules are
concerned, there’s no such thing as weather; they just
sort of bump around and interact with their neighbors,
and the result is wind, or clouds, or rain.

Another good example is evolution (one of my favorite
topics): throw a bunch of replicating things into an
environment with limited but necessary (for
replication) resources, and evolution just happens. As
far as the replicators are concerned, there’s no such
thing as evolution; they simply do their best to
replicate, and the result is trees, or dogs, or us.

Chemistry is another example that comes to mind:
throw a bunch of atoms together, and chemistry just
happens. Again, as far as the atoms are concerned,
there’s no such thing as chemistry; they simply attract
and repel each other, sticking together or flying apart,

swapping electrons around, and the result is diamonds,
or dynamite, or rust.

The examples go on and on, you can find them almost
anywhere you care to look. Scientists call it “emergent
behavior”: simple, local rules, repeated ad infinitum (in
time, or space, or even some other dimension),
surprisingly often produce behavior that’s unexpected,
even unpredictable, from just the rules. One of the
things I like so much about computers is that they’re
superlative tools for exploring emergent behavior.

There are three things in particular that make
computers so good for this task: they can do arithmetic
unsupervised, once they’re told what to do; they can do
their arithmetic inside a logical structure; and they can
do it really fast. This combination is extremely powerful
and, more important, is unique to computers. Before
computers, no one ever saw good pictures of fractals—
though a few mathematicians knew they were
there—and the reason is simply that no one had the
patience to slog through the incredibly tedious,
repetitive arithmetic needed to generate pictures of
them. Computers allowed mathematicians to write a
recipe for the math, and then just wait a little while for
the results. In this sense, computers are a kind of
microscope that allows people to see certain things for
the very first time.

Today there’s a huge and burgeoning branch of
research, often and aptly termed the “sciences of
complexity,” that has only become possible with the aid
of computers. Emergent behavior is just one aspect of
this larger field. The study of complexity is suggesting
all kinds of brand-new approaches in long-established
fields. Medicine, sociology, psychology, economics,
biology, neuroscience, mathematics, physics—all have
been affected. Computers have also given rise to
completely new fields of inquiry: artificial intelligence,
artificial life, chaos theory, neural networks, genetic
algorithms, even the study of computation itself. The
list of applications and repercussions seems to be
endless.

d e v e l o p Winter 1992

DAVE JOHNSON once spent the better part of a day at the
public library researching rock skipping (a.k.a. gerplunking or
dapping). He found two official organizations, one annual event,
and a handful of articles in various magazines. Although he sent
very nice letters to the organizations asking for further information,
he never heard from them. The currently recognized world record
is 29 skips. Rock skipping is still poorly understood by scientists.•

82

THE VETERAN
NEOPHYTE

SILICON SURPRISE

DAVE JOHNSON

THE VETERAN NEOPHYTE Winter 1992

83

It’s amazing to me still, and probably always will be,
that doing arithmetic inside a logical structure is a
necessary and sufficient condition to simulate anything
that can be described precisely. (Even things that can’t
be described precisely can be “precisely approximated”;
a fact that makes engineers rejoice but mathematicians
gag.) Simply doing arithmetic very fast and
automatically produces a blazing, frothing torrent of
diversity, a veritable fire hose of creation.

What’s even more fascinating to me is that computers
themselves are beginning to exhibit many of the
properties that characterize complex systems, including
emergence. All they do, really, is arithmetic. (Of course,
if you want to get down deep, all they do is shove
electrons around, but that’s a little too abstract, even
for me.) But look at all the things computers are used
for today, and think of all the things they could be used
for. Admittedly, this progression and diversification is
driven by humans—it wouldn’t happen without us—but
the number and variety of computers and software that
exist have arisen without a grand design, without an
overall plan. It has truly begun to evolve.

Early computer programs directly reflected the
computer’s capabilities. Most were basically number
crunchers, since at heart the computer is a number
cruncher. Computers were, after all, invented to do
long, time-consuming calculations quickly and
automatically (it helps a lot during wartime). And that’s
still all they do, but the programs have changed
dramatically.

Programmers soon began to abstract their programs
away from sheer arithmetic—and thus from the
machine—and began to use the arithmetic to simulate
other things, both strange and ordinary. Word
processing, computer graphics, spreadsheets, databases:
all these arrived on the scene. There was (and still is) a
wild divergence away from simply doing arithmetic. In
theory, according to mathematical proofs, computers
can simulate any logical system. There are certainly
plenty of logical systems to go around, and plenty more
to invent.

So the progress of computing is a kind of human-
driven evolution, with human use being the “fitness
function” (that is, the function that determines how
well a particular entity is doing). Humans also drive the
mutation and recombination, since they’re the ones
inventing and modifying programs. And that’s where
programmers come into the picture. If we’re dealing
with an evolutionary process, and we want it to
continue as fast as possible (we do, don’t we?), we
should provide the things that drive evolution most
strongly: diversity, large numbers, and strong selection
pressure.

Selection pressure is amply provided by the
marketplace; applications that aren’t useful, or are too
expensive or buggy, die quick ignominious deaths. The
large numbers that we need are already there, and
getting larger. We can help increase them by moving
away from the current tendency toward huge,
multipurpose, feature-crammed applications and trying
to get closer to the concept of independent, single-
purpose tools. (Besides, small programs are easier to
develop, easier to support, and easier for people to
learn.)

This “granulation” also helps increase diversity, in that
it breaks up the different functions of an application
into independent entities, with “lives” of their own. But
even more effective at increasing diversity is thinking of
new things. Only by trying new stuff, by constantly
exploring the landscape of possibilities, by endlessly
diversifying, do we make progress. Today’s applications
are only the tiniest subset of what’s possible.

Admittedly, there are very real practical limits:
computers are only so fast (so far); developers need to
make a living, so their programs have to sell (excepting,
of course, those of you lucky enough to work in
research and academia: you can’t use this excuse); and,
probably most important, programming computers
well turns out to be really hard! But none of these limits
are insurmountable. Computers are getting faster at an
incredible rate, new markets are opening up as the
number and diversity of computer users increase, and

programming is getting easier. (Obviously the joy of
programming has very little to do with the mechanics
of communicating with the machine: just look at all the
assembly hackers and UNIX folks in the world. Come
to think of it, maybe a lot of the fun is figuring out how
to say what you want with a painfully limited
vocabulary.)

A characteristic trait of complex systems is their
sensitive dependence on initial conditions. Ask any
meteorologist. A tiny whisper of change can cascade
into a complete transformation of the system. The
evolution of computing is careening along at a very
high speed, with a lot of inertia, and in a lot of
directions; but a gentle shove in just the right place
might profoundly affect the outcome. Where’s the
right place to push? If I knew, I wouldn’t be working
for a living. But if we all just start pushing everywhere

we can think of, as often as we can, then we’re helping
computing reach its next incarnation, whatever that
may be. I can’t wait to find out.

d e v e l o p Winter 1992

Dave welcomes feedback on his musings. He can be reached
at JOHNSON.DK on AppleLink, dkj@apple.com on the Internet, or
75300,715 on CompuServe.•

84

RECOMMENDED READING
• Artificial Life, edited by Christopher G. Langton

(Addison-Wesley, 1989).

• Chaos by James Gleick (Penguin Books, 1987).

• Great Mambo Chicken and the Trans-Human
Condition by Ed Regis (Addison-Wesley, 1990).

• The Tenth Good Thing About Barney by Judith
Viorst (Atheneum, 1971).

Q If I send Apple events to myself and specify kAEQueueReply to AESend, the event
doesn’t get put in the queue as I requested. It shows up immediately in the reply
parameter. According to Inside Macintosh, if I specify kAEQueueReply I should treat
the reply event as undefined. Please help; my application falls apart because it never
receives the event it’s supposed to. If this is a bug, will the behavior be changed in the
future?

A This isn’t a bug; it’s an undocumented “feature” of the Apple Event Manager
(AEM). If you send an Apple event to yourself, the AEM directly dispatches to the
handler you’ve installed for that event. So Apple events you send to yourself
don’t come in through WaitNextEvent. This means that if you reply to an
Apple event you sent yourself, your 'ansr' handler will get called directly.

This was not an arbitrary decision, though it can have some confusing
ramifications for an application. Two factors influenced the decision—the first
minor, the second major:

• Speed. The AEM has all the handlers for your application in a hashed table,
and can dispatch very quickly to them, so for performance reasons direct
dispatching was implemented.

• Event priorities and sequencing. Apple events have a lower priority than
user-generated events (keystrokes, clicks); they come in right before update
events. This created a potentially serious problem for applications that sent
Apple events to themselves.

If all Apple events came through the event loop, you could easily create the
following scenario:

1. The user selects a menu item, the application sends an Apple event to itself
in response, and this Apple event requires a reply or will cause other Apple
events to be sent.

2. The user clicks the mouse in an application window.

The mouse click has a higher priority than the reply or any Apple events that
are sent in response to the first Apple event, and gets posted ahead of the Apple
event in the event queue. This means that the mouse click happens and
conceivably changes the current context of the application (perhaps switching
windows, for example); then when the Apple events sent by the menu item
handler are processed through the queue, the application state is not the same as
it was when the menu selection was made, and the menu selection may be
totally inappropriate for the current configuration.

So, to prevent a loss of sequencing, the AEM directly dispatches. Any non-
Apple events that happen while you’re sending and processing an Apple event

MACINTOSH Q & A Winter 1992

85
Kudos to our readers who care enough to
ask us terrific and well thought-out questions. The
answers are supplied by our teams of technical
gurus; our thanks to all. Special thanks to Pete
“Luke” Alexander, Mark Baumwell, Mike Bell, Jim
“Im” Beninghaus, Rich Collyer, Neil Day, Tim
Dierks, Godfrey DiGiorgi, Steve Falkenburg,
C. K. Haun, Dave Hersey, Dennis Hescox, Dave
Johnson, Rich Kubota, Edgar Lee, Jim Luther,

Joseph Maurer, Kevin Mellander, Jim Mensch, Bill
Mitchell, Guillermo Ortiz, Greg Robbins, Gordon
Sheridan, Bryan “Stearno” Stearns, Forrest
Tanaka, Vincent Tapia, John Wang, and Scott
“Zz” Zimmerman for the material in this Q & A
column.•

MACINTOSH

Q & A

to yourself will be queued and won’t interrupt the Apple event process you’ve
initiated. What this means in the case you’re describing is that queued replies
don’t happen when you’re sending to yourself. The AEM will directly dispatch
to your 'ansr' handler, bypassing WaitNextEvent processing of Apple events to
prevent any other events from breaking the chain of Apple events you may be
processing. This isn’t a major problem, but it’s something you need to be aware
of if you’re expecting some other events to be processed before you get a reply
or other Apple event.

Q Under System 7, but not System 6, HiliteMode doesn’t work when the foreground and
background colors are similar. Is this a bug?

A Yes, it’s a bug. The problem you encounter exists whenever the background and
foreground color map to the same color table index. If the foreground color is
the same as the background color, highlighting is ignored. Therefore, you
should always make sure the foreground and background colors are different
when using HiliteMode.

Q When my hardware device sends data to a Macintosh at 57.6 kilobaud, characters can
get lost if LocalTalk is on and a file server is mounted. Does Apple know about the
problem? Is there a solution?

A The coherency of a standard serial connection is not guaranteed at any baud
rate. Guaranteed delivery requires more complicated protocols like those
employed by AppleTalk or by file transfer protocols like Kermit. At high baud
rates, particularly over 19.2 kilobaud, a Macintosh serial connection may not be
reliable depending on a number of factors.

Every single character that’s sent or received by the Macintosh serial port
requires an interrupt to alert the processor that a character is available at the
receiver or that the transmitter is ready to send a character. A nasty drawback of
interrupts is that they can be masked—equal or higher priority interrupts may
be in service or other pieces of code running on the machine can disable
interrupts altogether. If the period of time interrupts are not serviced becomes
too great, the 3-byte receive buffer in the serial chip overflows with incoming
data and characters are lost. This is known as a hardware overrun.

AppleTalk works a little differently. When a packet comes across the network,
an interrupt alerts the processor to that event. AppleTalk code then disables
interrupts and polls in the entire packet without multiple successive interrupts.
This is necessary because of the high speed at which data is received: 230.4
kilobaud. The overhead of processing an interrupt for each byte of data would
be prohibitive.

d e v e l o p Winter 1992

86

A “worst case” situation is that a 603-byte packet (the largest possible
AppleTalk packet) sent to the LocalTalk port takes approximately 26
milliseconds to receive. Compare this with asynchronous serial data transmitted
at 9600 baud, which would take only 1 millisecond to receive. A very realistic
situation arises in which 26 bits could be lost during a concurrent
AppleTalk/Serial Device transmission. This possibility is increased when there
are routers on the network, which send out large RTMPs (Routing Table
Maintenance Packets).

During the time that interrupts are disabled by AppleTalk, AppleTalk code
attempts to poll regular serial data as well (from the modem port only) to
prevent the hardware overrun problem. Unfortunately, at very high serial baud
rates there may not be enough time to do both; characters may be lost anyway.

This same loss of characters may also occur in conjunction with the Sony
driver. If a disk is inserted that requires special attention (like formatting), the
odds of losing characters is increased. The Sony driver has built-in checks like
the AppleTalk driver (although not as frequent). So you can still lose data at
high transfer rates if a disk is inserted during the transfer.

The character dropout also occurs on systems that aren’t currently running
AppleTalk but are receiving serial transmissions from high-speed devices (57.6
kilobaud) and are performing CPU tasks that require a high amount of memory
access (such as a CPU like the Macintosh IIsi or IIci running on-board video in
8-bit mode, or a CPU using virtual memory).

This is simply a performance problem, asking the machine to process more
data over two separate ports than the processor speed and hardware
architecture can allow. Any number of factors affect serial performance at high
baud rates. Turning off AppleTalk helps. Turning on 32-bit addressing helps
because it reduces interrupt handler overhead. Turning on VM hurts
performance for the opposite reason. Running on a faster machine helps.
Running on a Macintosh IIfx or Macintosh Quadra 900 with a serial I/O
Processor (IOP) helps a lot because the IOP handles the serial port regardless
of whether the main processor is busy doing something else.

There is, however, a way to ensure reception of high-speed serial data without
character loss—through the use of a Serial NB card or a third-party NuBus™

card with a dedicated processor necessary to provide higher speeds. These cards
in essence operate as dedicated port-handling circuitry. They’re able to perform
necessary buffering while the processor is servicing other interrupts. This is the
reason that network cards such as EtherTalk and TokenTalk can accomplish
transactions without data loss; they do at least some of their own buffering until
being serviced to avoid interference with other operations such as receiving
serial data.

MACINTOSH Q & A Winter 1992

87

Alternatively, you may want to develop a custom card yourself that exactly fits
the needs of your product. In this case you should look into the Macintosh
Coprocessor Platform (MCP) and Apple Real-Time Operating System
Environment (A/ROSE) as a possible basis of this line of development.
Development packages for both these products—the Macintosh Coprocessor
Platform Developer’s Kit (#M0793LL/B) and the A/ROSE Software Kit
(#M0794LL/B)—are available from APDA.

Q How can I make FSSpec file information comply with what was an SFReply
information block? Is there a way to convert FSSpec information—as passed, for
example, via an Open Documents Apple event—to a vRefNum as understood by an
SFReply record? We want to keep our tried-and-true non-System 7 file management
logic and convert from FSSpec to SFReply-type format.

A Not wanting to make a good bit of file system code obsolete is understandable;
however, while it’s unlikely that Apple will dispense with support for old
SFGetFile or SFPutFile functions in the near future, the use of SFReply-style
data structures in internal calls has no development future.

The vRefNum field of the SFReply record was originally (in Inside Macintosh
Volume II days) a volume reference number; later, with the creation of HFS in
1986, it became a working directory reference number for purposes of
backward compatibility. In HFS, a file or directory entity on a volume is
specified with a volume reference number, a directory ID, and a name. An
FSSpec contains this latter information.

Converting from FSSpec to SFReply requires that your application manage the
manipulation of working directory entities, which has disadvantages from the
point of view of the system and compatibility. There are several difficulties with
working directory references:

• There’s a system-wide limit on their number.

• If you have a working directory reference to which no file buffers are open
and some other application closes that working directory without your
knowledge of it, your internally stored reference number is invalid and you
have no way of knowing about it.

• The documentation about where, when, and how to close a working
directory is somewhat ambiguous.

• An FSSpec can refer to either a file or a directory while an SFReply can
refer only to a file.

Developer Technical Support urges you to take the time to remove
dependencies on SFReply data structures as soon as is feasible.

d e v e l o p Winter 1992

88

Q Can I add a media to a QuickTime movie that is not video or audio? If so, is there
anything special I need to do to add text notes that can potentially accompany each
frame in my “movie,” which can follow the video frames if a user edits the movie in
any way?

A QuickTime version 1.0 allows for only video and sound media. There’s no way
to install your own type, even in a case so obvious as the one you mention.
Adding other media types is a high QuickTime priority and is likely to make it
in a future release, but currently there’s no mechanism to do it.

Q Inside Macintosh Volume V (page 445) states that SGetCString automatically allocates
memory for holding the requested string. Does this mean that repeated calls to
SGetCString will eventually exhaust memory and, if so, what’s the correct way to
release the memory?

A SGetCString automatically allocates memory (via NewPtr) for holding the
requested string. It copies the string into that pointer and returns the pointer in
spResult. You need to call DisposPtr on spResult to deallocate the pointer.

Q Installing a VBL task doesn’t seem to work on Macintosh systems with on-board video.
I get the slot number for a video card by extracting the second nibble of the base address
of the screen’s pixMap; however, on-board video computers report that the video card is
in slot $B but the video card doesn’t seem to exist in any slot. Is there a better way to
determine a video card slot number? Is there any way to attach a VBL task to on-board
video? How can I determine whether the main monitor is using on-board video?

A You should be getting the slot number for the video from the AuxDCE entry,
not from the base address of the pixMap (Inside Macintosh Volume V, page 424).
You’ll need to get the gdRefNum for the desired monitor from the device list
(Inside Macintosh Volume V, Chapter 5). For example, to install a VBL task for
the main screen, do something like this:

GDevHand := GetMainDevice;
IF GDevHand = NIL THEN HandleError
ELSE

BEGIN
mainGDRefNum := GDevHand^^.gdRefNum;
DCEHand := AuxDCEHandle(GetDctlEntry(mainGDRefNum));
IF DCEHand = NIL THEN HandleError
ELSE retCode := SlotVInstall(@myVBLTask,DCEHand^^.dCtlSlot);

END;

This should work regardless of the kind of video used.

MACINTOSH Q & A Winter 1992

89

Q When using “-model far,” I get the following error from the linker:

While reading file "HD:MPW:Libraries:Libraries:Runtime.o"
Link: Error: PC-relative edit, offset out of range. (Error 48)
%__MAIN
(260) Reference to: main in file: xxx.c.o

What does it mean?

A In your Link command, you should put Runtime.o and the object file
containing your main program close together, and as early in the list as
possible. This is because %__MAIN (the part of Runtime.o that actually
receives control when your application is launched) uses a PC-relative BSR
instruction to transfer control to your “real” main. (OK, so it’s “32-bit-almost-
everything”!)

Q Do all System 7-savvy programs need to run with background processing enabled?

A Yes, System 7-savvy applications should have the SIZE resource’s background
processing bit set. (It’s not documented explicitly that you need to have this bit
set.)

All System 7 Apple event-aware applications need to be background-capable,
since there are many instances where Apple events will come in to you while
you’re in the background, and there will be many times (as new applications are
developed) when you will not come to the front to process a series of events;
you’ll work in the background as a client for another application.

You don’t want to hog a lot of system time when you have nothing to do in the
background, but with the Edition Manager you do need to be able to receive
events while you’re in the background. However, you can still be system-
friendly when you do this. Here’s one way: When you’re switched into the
background, set your sleep time to MAXLONGINT and make sure you have
an empty mouse region. This way, you’ll be getting null events very rarely, and
you won’t be taking much time away from other applications, but you can still
react to events sent to you by other parts of the system. Then when you come
forward, you can reset your sleep time to your normal, low, frontmost sleep.

Note that WaitNextEvent is implemented when running System 6 without
MultiFinder, but there’s no DA Handler ensuring that DAs receive time. In this
case, large sleep values prevent DAs from receiving timely accRun calls—the
Alarm Clock DA stops ticking, for example. A compromise that doesn’t hog too
much processing time is to use sleep values only as large as 30-60 ticks for
System 6.

d e v e l o p Winter 1992

90

Q Is there a way to test whether a particular key is down independently of the event
record? My application needs to check the Option key status before entering the main
event loop.

A The call GetKeys(VAR theKeys:KeyMap) returns a keyMap of the current state
of all the keys on the keyboard. The call is documented in Inside Macintosh
Volume I on page 259. The Option key will appear as the 58th bit (counting
from 0) in the map. In MacsBug you can see this with a DM KeyMap, which
returns the following:

0000 0000 0000 0004 0000 0000 0000 0000

It’s important to understand that the keyMap is an array of packed bits. You
need to test whether the Option key bit is 1 or 0. The key code 58 = $3A is the
58th bit of the keyMap. This number can be determined from the keyboard
figure on page 251 of Inside Macintosh Volume I and pages 191-192 of Volume
V. (If in counting the above bits you get 61 instead of 58, remember that the
bits within each byte are counted right to left.)

With the above information you should be able to determine the status of any
key on the keyboard within your program without waiting for an event.
GetKeys, however, should be called only for special situations. Normal
keyboard processing should be done through events; otherwise, your
application risks incompatibilities with nonstandard input devices.

Q Read calls at interrupt time often result in a “hang,” waiting for the parameter block
to show “done.” This happens if the interrupt occurred during another Read call. I’ve
tried checking the low-memory global FSBusy, and that decreases the occurrence of this
problem but does not eliminate it. When is it safe to make the Read call?

A The problem you’re experiencing is a common one known as “deadlock.” The
good news is that you can always make Read calls at interrupt time! The only
requirement is that you make them asynchronously and provide a completion
routine, rather than loop, waiting for the ioResult field to indicate the call has
completed. This will require that you use the lower-level PBRead call, rather
than the high-level FSRead.

The low-memory global FSBusy is not a reliable indicator of the state of the
File Manager. The File Manager’s implementation has changed over time, and
new entities patch it and use the hooks it offers to do strange and wonderful
things. File Sharing really turns it on its ear. The result is that when FSBusy is
set, you can be sure the File Manager is busy, but when it’s clear you can’t be
sure it’s free. Therefore, it would be best if you ignore its existence.

MACINTOSH Q & A Winter 1992

91

If you need to have the Read calls execute in a particular order, you’ll have to
chain them through their completion routine. The basic concept is that the
completion routine for the first Read request initiates the next Read request,
and so on until you’re done reading.

By the way, never make synchronous calls at interrupt time (and, contrary to
the popular misconception, deferred tasks are still considered to be run at
interrupt time) or from ioCompletion routines, which may get called at
interrupt time.

Q Is there a limit on the values set in the Name Binding Protocol (NBP) interval and
count fields when used with PLookupName and PConfirmName calls? How do the
interval and count work? If a device is not on the network and I send a PLookupName
with interval = 20 and count = 20, will I wait 400 seconds before PLookupName
returns?

A Since the interval and count parameters for NBP calls are both 1-byte, the
values used are limited to the range of 0-255 ($00-$FF). Here’s what the values
do:

• interval = retransmit interval in 8-tick units. This value is used to set up a
VBL task. A value of 0 should not be used because that would mean the
VBL task would never be executed and would be removed from the VBL
queue.

• count = total number of transmit attempts. Each time the interval timer
expires, this value is decremented by 1. When it reaches 0, the NBP call
completes. So if a value of 0 is used, the packet will be retransmitted 255
times (or transmitted 256 times).

Three things can happen to make the LookupName, RegisterName, or
ConfirmName calls complete:

• PKillNBP can be called to abort one of the calls (see Inside Macintosh
Volume V, page 519).

• maxToGet matches are returned or the return buffer is filled. Here’s how
this works: Each time an NBP lookup reply (LkUp-Reply) packet is
received, an attempt is made to add all the NBP tuples found in that LkUp-
Reply packet to the return buffer. If all the tuples cannot be added to the
buffer because there isn’t enough room, the call completes with as many
tuples as could fit and the numGotten field will contain the number of
matches in the buffer. If all the tuples from the LkUp-Reply packet are
added to the buffer, numGotten (the number of matches in the buffer) is
compared to the value passed in the maxToGet field. If numGotten is
greater than or equal to maxToGet, the call completes and the numGotten

d e v e l o p Winter 1992

92

field will contain the number of matches in the buffer. Since the buffer can
fill before maxToGet matches are received and since LkUp-Reply packets
can return multiple tuples, you may get more or fewer matches than you
asked for with maxToGet.

• The count is decremented to 0. You can use this equation to determine how
long the call would take to complete this way:

IF count = 0 THEN count := 256;
TimeToCompleteInTicks := count * interval * 8;

The RegisterName and ConfirmName calls always complete after they receive
the first LkUp-Reply packet to their request, so you could look at them as
always having a maxToGet of 1 (maxToGet is not one of the parameters for
those two calls).

Q Why does System 7 get rid of my 'vers' resources in my desk accessories when dropped
into the System Folder icon?

A The System 7 Finder takes over some of the job of the old Font/DA Mover
program. The Font/DA Mover took great pains to keep all resources owned by
the DA together with the driver resource. This is mentioned in Macintosh
Technical Note #6, “Shortcut for Owned Resources,” as well as in Inside
Macintosh Volume I, page 109.

Under System 7, the 'vers' resource used for Finder information is not owned
by the desk accessory, so when the Finder copies the desk accessory it skips the
resources extraneous to the DA—including the 'vers' resource.

The simplest thing to do is to provide a System 7-ready version of your DA
(see Inside Macintosh Volume VI, page 9-32). The Finder will not strip off
resources if the file type is already 'dfil' when the DA is dragged to the System
Folder. You can also provide a version of the DA in a suitcase for System 6, or
you can instruct System 6 users to hold down the Option key while clicking
Open in Font/DA Mover if they want to install your DA.

Q Are CRMSerialRecord’s inputDriverName and outputDriverName fields of type
StringHandle or are they Pascal string pointers?

A As shown on page 183 of Inside the Macintosh Communications Toolbox, the
CRMSerialRecord data structure contains two fields, inputDriverName and
outputDriverName, declared as type StringHandle. These two fields are
erroneously described as “pointer to Pascal-style string” in the documentation
further down the page. The correct declaration is type StringHandle.

MACINTOSH Q & A Winter 1992

93

Q How many ways are there to assemble an industry-standard Mr. Potato Head, part
number 2250?

A With the standard Mr. Potato Head accessory set, there are 1,139,391,522
different ways to assemble Mr. Potato Head. Some of our favorite
configurations are as follows:

• The demon cyclops Potato Head: assemble as normal, but turn the eyes
sideways and tape sharp objects to his hands.

• The Australian Potato Head: assemble upside down (in Australia, this is
known as the U.S.A. Potato Head).

• The “Gaping Wonder” Potato Head: assemble backwards, using the part
storage compartment as a mouth.

Q What is csCode 100? A control call with csCode 100 seems to come into my block device
driver whenever the Macintosh system fails to recognize the file system on my media.
Should my driver specify valid non-HFS formats such as ISO 9660?

A The csCode 100 you’re seeing is a ReadTOC command bound for what the
operating system thinks is a CD-ROM drive. What’s happening here is that
after deciding your device doesn’t contain an HFS partition, Foreign File
Access (FFA) is attempting to identify the file system residing on that device;
looking at the Table of Contents on a CD is one of the ways that it attempts to
go about that. This csCode is documented in the AppleCD SC Developer’s Guide,
which is available through APDA (#A7G0023/A).

If you remove the Audio CD File System Translator (FST) from your System
Folder, you’ll find that the csCode no longer gets issued. The reason is that the
ReadTOC call returns information about audio CDs. Your driver doesn’t even
have to support this call; if FFA sees a paramErr (which you should return upon
seeing an unrecognized csCode) it knows it can’t be looking at an audio CD.

You needn’t worry about adding any support to your driver for ISO 9660 or
High Sierra. FFA’s FSTs will just request certain blocks from your driver which
contain information that identifies the disk in question as ISO or HFS.

Q What’s the story with RealFont and TrueType? I’m finding that, of the standard
System 7 TrueType fonts, only Symbol and Courier get a TRUE result from RealFont
for 7-point.

A You’re correct in your observation of RealFont for the 7-point size of certain
TrueType fonts. The explanation is hidden in TrueType Spec—The TrueType Font
Format Specification (APDA #M0825LL/A), page 227.

d e v e l o p Winter 1992

94

The font header table contains a lowestRecPPEM field, which indicates the
“lowest recommended pixel number per em,” or, in other words, the smallest
readable size in pixels. As it turns out, the Font Manager in its wisdom uses this
information for the value it returns from RealFont. Note that for higher-
resolution devices, a point size of 7 does not correspond to 7 pixels; but since
the unit “point” is 1/72 inch and the screen resolution is (approximately) 72
dpi, the result corresponds to reality in this case.

The value for lowestRecPPEM can be arbitrarily set by the font designer. We
all know that small point sizes on low-resolution devices never look great, and
even less so for outline fonts. Courier and Symbol have lowestRecPPEM = 6,
while the other outline fonts in the system have lowestRecPPEM = 9. This
doesn’t mean that Courier and Symbol (TrueType) in 7-point size look better
than Times® or Helvetica under the same conditions. It means the font
designer had higher standards (or was in a different mood) when choosing
lowestRecPPEM = 9.

Q Is trackbox in the MPW C library broken? It always returns 0 (false).

A Yes, the glue for the MPW C library trackbox is broken. In fact, the glue for
many of the lowercase Toolbox calls is broken. Fixing lowercase glue routines is
a never-ending challenge. This probably won’t be fixed; instead, expect to see
all lowercase glue routines removed from future versions of MPW. What does
this mean to you? Use only the proper mixed-case interfaces (the ones spelled
just like in Inside Macintosh) at all times. This also will serve to make your code
smaller and faster, since the mixed-case interfaces make direct Toolbox calls
instead of calls to glue routines in many cases.

Incidentally, in case you’re wondering, the C library trackbox doesn’t work
because the glue clears a long for the result instead of a word and pulls a long
off the stack, so the result is in the wrong byte of the register on return.

Q After an application in the System 7 Application or Apple menu is selected, sometimes
control doesn’t switch from our application to the selected application. What could be
wrong and how can I zero in on the problem?

A The symptoms you’ve described—the process menu not switching layers—is
exactly what happens if you have an activate or update event pending that
you’re not acting on. Here are ways that pending activate or update events can
be handled incorrectly:

• You’re not calling BeginUpdate and EndUpdate (the most likely problem).

• Your application isn’t asking for all events.

MACINTOSH Q & A Winter 1992

95

• Your application has dueling event loops.

• The word in your code that contains the everyEvent constant is trashed
(unlikely).

Q I have a problem with Balloon Help for modeless dialogs. The balloons don’t show up
most of the time unless the user clicks the mouse over the dialog item of interest.

A The problem you’re having is that you’re not calling isDialogEvent with null
events. The most likely cause for this is that you’re not getting null events, or
you have your sleep time way too high in WaitNextEvent. If you’re not getting
null events, it’s probably due to unserviced update events in the event queue. If
you can’t ensure that you’ll get null events back from WaitNextEvent, you must
fudge them instead. This way the TextEdit insertion point will blink properly as
well.

Q What’s the correct method for a custom MDEF to dim menu items when running
under System 7? What’s the preferred method for determining whether to draw in a
gray color or paint the items with a gray pattern?

A The proper method for dimming text in menu items is to use the
grayishTextOr transfer mode when drawing text. This is documented on page
17-17 of Inside Macintosh Volume VI and is what Apple uses. This mode takes
into account both color and black-and-white screens. A simple method for
dimming nontext items is to set the OpColor to gray and then draw the nontext
item in Blend mode.

Q Under System 7 my filter procedure for displaying invisible data files no longer works.
How can I use Standard File to display the names of invisible files of a specific type
under System 7?

A System 7 can show invisible files in the standard SFGetFile dialog box;
however, not all System 6 Standard File package calls are handled the same in
System 7.

When using invisible files under System 7, you should perform type filtering
within a filter proc and not with the typeList field of the SFGetFile call. System
7 no longer allows a typeList for detecting invisible files. The actual check for
invisible files of a particular type or types should be done within the file filter
proc.

The SFGetFile call below displays only folders and invisible 'TEXT' files in
the standard SFGetFile dialog box. With the numTypes parameter set to -1, all
types of files will be passed to the filter proc.

d e v e l o p Winter 1992

96

SFGetFile(where, "", myFilterProc, -1, typeList, nil, &reply);

In this example, the filter proc’s return value depends on the file’s type and
Finder flags.

pascal Boolean myFilterProc(fp)
FileParam *fp;
{

if ((fp->ioFlFndrInfo.fdFlags & fInvisible) &&
(fp->ioFlFndrInfo.fdType == 'TEXT'))

return FALSE;
else

return TRUE;
}

Q The System 7 Help, Keyboard, and Application menus at the right of the Macintosh
menu bar don’t have text titles that can be included in a command string in the way
that “File” or “Edit” can be. Do these menus always have the same menu ID?

A The menu ID numbers of the Help, Keyboard, and Application menus are
always the same, so the menus can always be identified by their IDs:

kHMHelpMenuID = -16490;
kPMKeyBdMenuID = -16491;
kPMProcessMenuID = -16489;

Q Do String2Date and Date2Secs treat all dates with the year 04 to 10 as 2004 to 2010
instead of 1904 to 1910?

A Yes, the Script Manager treats two-digit years less than or equal to 10 as 20xx
dates if the current year is between 1990 and 1999, inclusive. Basically, it just
assumes that you’re talking about 1-20 years in the future, rather than 80-100
years in the past. The same is true of two-digit 9x dates, when the current year
is less than or equal to xx10. Thus, in 2003, the date returned when 3/7/94 is
converted will be 1994, not 2094. This is all documented in Macintosh
Worldwide Development: Guide to System Software, available from APDA
(#M7047/A).

Q Is there a universally recognized wildcard character for the Macintosh, like the “*” in
the MS-DOS world? Furthermore, for Boolean logic, should my application accept
Pascal syntax (such as .NOT., .AND., .OR.), C syntax (such as !, &&, ||), or still
another convention? My users aren’t programming gurus.

MACINTOSH Q & A Winter 1992

97

A First, see if there’s a friendlier way to implement the wildcard’s function. Take a
look at System 7 Finder’s Find command, for example. If you find wildcard use
is necessary, “*” is common, though for file searching any character other than
“:” can be used in an HFS filename.

As for Boolean operators, nonprogrammers prefer a syntax that matches
English as closely as possible, so AND, OR, and NOT are better than their C
counterparts. However, user testing indicates that the most intuitive, user-
friendly way to put Boolean search criteria on a command line is to bring up a
dialog with pop-up menus used to form an English sentence describing the
search (like System 7’s Find). If you can make something like this work for your
application, your nontechnical users will love you.

Q When I pass FALSE in the cUpdates parameter to SetPalette, I still get update events
to that window when I modify its palette. What’s going on?

A SetPalette’s cUpdates parameter controls whether color-table changes cause
that window to get update events only if that window is not the frontmost
window. If that window is the frontmost window, any changes to its palette
cause it to get an update event regardless of what the cUpdates parameter is.
When you call SetEntryColor and then ActivatePalette for your frontmost
window, the window gets an update event because it’s the frontmost window
even though you passed FALSE in the cUpdates parameter. Another important
point is that windows that don’t have palettes always get update events when
another window’s palette is activated.

Fortunately, system software version 6.0.2 introduced the NSetPalette routine,
which is documented in Macintosh Technical Note #211, “Palette Manager
Changes in System 6.0.2,” and on page 20-20 in the Palette Manager chapter of
Inside Macintosh Volume VI. This variation of SetPalette gives you the following
options in controlling whether your window gets an update event:

• If you pass pmAllUpdates in the nCUpdates parameter, your window gets
an update event when either it or another window’s palette is activated.

• If you pass pmFgUpdates, your window gets an update event when a palette
is activated only if it’s the frontmost window (in effect, it gets an update
event only if its own palette is activated).

• If you pass pmBkUpdates, your window gets an update event when a palette
is activated only if it’s not the frontmost window (in effect, it gets an update
event only if another window’s palette is activated).

• If you pass pmNoUpdates, your window never gets an update event from
any window’s palette being activated, including that window itself.

d e v e l o p Winter 1992

98

Q I want to determine whether a disk is locked before trying to mount the volume. When
I examine bit 15 of ioVAtrb using PBGetVInfo, as suggested on page 104 of Inside
Macintosh Volume II, bit 15 is clear for a locked volume such as a CD-ROM, but bit 7
is set. Why is this happening?

A The reason for your observed discrepancy is that bit 15 is set for a software lock
and bit 7 is set for a hardware lock. In the case of the CD-ROM there’s no
software lock but only a hardware lock, so bit 7 is set and bit 15 is clear.
Volumes II and IV of Inside Macintosh both say that “only bit 15 can be
changed” and should be set if the volume is locked. The fact that you can set it
with PBSetVol means that it’s a software lock. What the documentation fails to
mention is that using PBGetVInfo you can also check bit 7 of ioVAtrb to see if
there’s a hardware lock. The recommended procedure is to first check the
hardware lock (bit 7 of ioVAtrb) and then check the software lock (bit 15 of
ioVAtrb).

Q How do we create a “fixed fractional width” font using ResEdit 2.1? I tried setting
FontInfo fields such as ascent and widMax with fractional numbers, but ResEdit
refused all noninteger numbers.

A ResEdit doesn’t know how to take fixed-point numbers as input, so it assumes
the number you enter for a value like widMax is the integer representation of
the fixed-point number. In other words, ResEdit displays a 16-bit fixed-point
number as an integer with 256 times the value of the fixed-point number
actually used by the Font Manager.

To enter the numbers with ResEdit, you’ll need to do the conversion yourself.
Take an 8.8 fixed-point number and multiply by 256 to get the integer to enter,
or take a 4.12 fixed-point number and multiply by 4096 to get the integer.

This rigamarole is necessary because ResEdit wasn’t designed to build fonts
from scratch. You may find that third-party tools specifically designed for this
task are easier for you. The time you save in building your width table may be
worth the cost of the program.

Q In my Installer script, how can I include the current volume name in a reportVolError
alert, as many of the installation scripts from Apple do?

A The volume name can be included by inserting “^0” as part of the Pascal string
passed to the reportVolError error-reporting clause.

MACINTOSH Q & A Winter 1992

99
Have more questions? Need more answers?
Take a look at the Dev Tech Answers library on
AppleLink (updated weekly) or at the Q & A stack
on the Developer CD Series disc.•

Q What’s the best way to do text-only printing to a character device through GS/OS?

A If you want to print text to a GS/OS character device, here’s how you do it:

1. Look at all the on-line devices to find which are character devices. You can
tell when a device is a character device by examining bit 7 of the
“characteristics” word returned by DInfo—the bit is set for block devices
and clear for character devices. You don’t have to hard-code a list of
character device IDs.

2. Present the user with a list of device names followed by their location and
generic type in parentheses. You can adjust the names of device types to
reflect your use. For example, “.RPM (AppleTalk printer, port 1),” “.DEV2
(serial modem, port 2),” or “.DEV3 (generic character device, slot 5).” You
can use bit 3 of the slot returned by DInfo to know whether to return “slot”
or “port,” too.

3. When the user selects a printing device, call Open on the device name (such
as .RPM for an AppleTalk printer). Use Write to write the information, just
as you would to a file; then call Close (you can call Flush if you like, but it
shouldn’t be necessary). That’s all you need to do.

Remember not to embed ImageWriter or any other printer-specific codes in
the output stream. With the exception of choosing a device and creating a file,
this same code could be used to print to any text printer or to another device
such as a disk or modem. You might give users a “text printing preferences”
dialog where they can enter some codes if they like, and you might have built-
in sets for ImageWriters and other common printers, but don’t make it too
complicated. These instructions are very generic and will work well on any
setup, not just an ImageWriter II connected through the serial port.

Q On a ROM 03 Apple IIGS, I save and restore the mouse mode by getting it from
ReadMouse, setting the mode to what I need, and restoring the value (with SetMouse)
when done. This sometimes kills the mouse—I don’t get any mouse movement until my
program quits. Help! By the way, this isn’t a problem on ROM 01 machines.

A The ROM 03 mouse firmware doesn’t behave as documented in two respects.
First, it sometimes returns an illegal mouse mode value from ReadMouse.
Specifically, there’s garbage in the high nibble of the mouse mode byte. Second,
SetMouse returns an error and takes no action when passed an invalid mode,
even though the Apple IIGS Toolbox Reference says it returns no errors. When you
try to restore the invalid mode, nothing happens and the mouse stays in
whatever mode you had it in—if it’s not what the system needs, the mouse will
appear “hung” until someone sets the mode to what the system does need.

d e v e l o p Winter 1992

Kudos to our readers who care enough to
ask us terrific and well thought-out questions. The
answers are supplied by our teams of technical
gurus; our thanks to all. Special thanks to Matt
Deatherage, Jim Luther, Dave Lyons, Jim Mensch,
and Tim Swihart for the material in this Q & A
column.•

100

APPLE II

Q & A

You can work around this problem by masking off the high nibble of the mode
result from ReadMouse (AND #$000F in 65816 assembly) before passing it to
SetMouse. This problem is fixed in Apple IIGS system software version 6.0—
ReadMouse always returns a valid mode under 6.0.

Q When I call SFMultiGet2, I randomly get error $1705 (bad pathname descriptor in
the reply record) even though that error doesn’t mean anything for that call. Any
ideas?

A All versions of SFMultiGet2 before Apple IIGS System 6.0 incorrectly look at
two of the words in the reply record (offsets $0008 and $000E) to make sure
they don’t contain the value $0002. That value would be illegal in those
positions—in any of the other new Standard File calls. SFMultiGet2 doesn’t use
the same reply record, but pre-6.0 versions of Standard File accidentally check
those fields anyway. Make sure the values in bytes that are past the beginning of
the 6-byte reply record are not $0002. This is fixed in System 6.0.

Q Although my application fully supports GS/OS, the Finder uses slashes instead of colons
in the pathnames in message #1. This means my application can’t open any files that
have slashes in the filename.

A The Finder and its message-passing conventions were originally released before
GS/OS was written. Applications depend on the slash (/) as the separator
character to be able to parse these pathnames (for example, to find the filename
to use in a document window title). If the separator character were to change,
many older applications would break.

Finder version 6.0 may support an additional message containing a list of fully
expanded GS/OS pathnames. These pathnames use colons as separators and
aren’t limited to 255 characters. See the Finder 6.0 documentation for details
on using this message.

Q I’ve written a program that hangs inside Standard File under Apple IIGS System
5.0.4, but works fine under development versions of 6.0. I’m not using any 6.0-specific
features. What could be the problem?

A Standard File before System 6.0 does not behave gracefully if called with both
prefix 0 and prefix 8 empty. Try setting one of these prefixes to an existing
directory and see if your problem vanishes.

Q I can’t find the ProDOS partition on Volume IX or later of the Developer CD Series
discs. What’s happened?

APPLE II Q & A Winter 1992

101

A Apple II information was duplicated on all Developer CDs from Volume III
through Volume VIII because without the ProDOS partition, Apple II users
couldn’t see the information, and without the Apple II folder on the HFS
partition, the information couldn’t be shared on an AppleShare file server (or
Macintosh System 7 File Sharing). Apple IIGS System 6.0 includes an HFS
(Macintosh) file system translator, which means that Apple IIGS developers can
access the information on the HFS partition, making the ProDOS partition
unnecessary.

The Apple II information can be found on the HFS partition with the
pathname Dev.CD Vol. IX:Development Platforms (Moof!):Apple II. Note that
this means the Apple II folder can only be accessed from ProDOS 8 using
AppleShare with long naming on—the path to the Apple II folder is not a legal
ProDOS 8 pathname.

Q Apple II Applesoft’s floating-point routine results are sometimes accurate to only two
places. For example, the answer returned for PRINT 55555.099-55555.09 is
9.01031494 E-03. How can we get more accurate results?

A The accuracy loss you’re experiencing with the Applesoft floating-point
routines is normal. If you convert a number such as 55555.099 to a base 2
floating-point number, you won’t get an exact representation using Applesoft’s
floating-point routines or even 96-bit precision IEEE numerics. Because
9.01031494 E-03 is 0.0090103, you can see that you have accuracy out to three
and a half decimal places. The solution is to determine the accuracy that you
want and massage the result to give you that accuracy. Here’s a sample program
that shows common Applesoft rounding techniques:

1 REM Round to 3 decimal places of accuracy example
10 Input a
20 Input b
30 If a-b>1000 then 100: REM no 3-digit rounding of numbers >1000
40 Print "Standard Applesoft Non-accurate result:";a-b
50 Print "Truncated result:";INT((a-b)*1000)/1000
60 Print "Rounded result:";INT(((a-b)+.0001)*1000)/1000
70 Goto 10
100 Print "Result has 3 decimal accuracy already:";a-b
110 Goto 10

This is the only way that you can get Applesoft to clip the numbers, apart from
using a separate floating-point engine. Alternatively, you can do your own
conversion from Applesoft internal numeric format to a string in assembly
language and have it simulate the above operation when converting the
number.

d e v e l o p Winter 1992

Have more questions? Need more answers?
Take a look at the Dev Tech Answers library on
AppleLink (updated weekly) or at the Q & A stack
on the Developer CD Series disc.•

102

See if you can solve this programming puzzle, presented in the form of
a dialog between Konstantin Othmer (KON) and Bruce Leak (BAL).
The dialog gives clues to help you. Keep guessing until you’re done; your
score is the number to the left of the clue that gave you the correct
answer. These problems are supposed to be tough. If you don’t get a high
score, at least you’ll learn interesting Macintosh trivia.

KON I wrote this program that crashes with a bus error and I can’t figure
out what’s going wrong.

BAL If it’s crashing with a bus error, that’s easy: just figure out where the
bogus bus error address came from.

110 KON Well, that’s the problem. I look around and there’s not a bad address
anywhere.

BAL Let me see.

105 KON OK.

Bus Error at 1B586
1B582 BFEXTU (A3){D6; $00}, D0
1B586 *ADDQ.W #$4,A3
1B588 MOVE.L (A2)+,D1

Register A3 has $70E368, and A2 has $70DEDC.

So that’s your puzzle; what do you do now?

BAL Hmmm. Suppose I trace a few times.

100 KON No problem; everything seems to work OK.

BAL What if I type “Go” and hope for the best?

95 KON You crash immediately with an address error at $1B5A4. The code is
trying to do an RTS, but the stack is trashed.

KON & BAL’S PUZZLE PAGE Winter 1992

103
KONSTANTIN OTHMER AND BRUCE LEAK
As a mere lad, Bruce pulled the programmer’s
key out of the stone and swore allegiance to the
Lady of the Leak. Years later, while good King
Bruce was doing penance for his wandering
ways, young Kon of Locksley had to defend the
crown against the Mongol hordes attempting to
draw directly to the screen. Upon his return, King
Bruce declared, “Let there be time,” and there

was. Today young Kon and his sovereign do
battle against the forces of evil lurking in your
local heap.•

KON & BAL’S

PUZZLE PAGE

IT’S JUST A
COMPUTER

KONSTANTIN OTHMER
AND BRUCE LEAK

BAL Well that’s just a little ways down from where I was before. Anything
funny happening in between?

90 KON Nope, just a loop that doesn’t touch the stack or anything.

BAL Was the stack OK when I crashed the first time?

85 KON No, the top address on the stack was garbage.

BAL OK, so I run the program again and break just before this routine gets
called and check the stack.

80 KON The stack is OK. Everything looks fine. You’re at a JSR (A0).

BAL Is A0 OK?

75 KON Yep, it points to the code you were looking at before—at $1B582.

BAL So I step in and look at the stack.

70 KON You crash immediately with a bus error at $82.

BAL Huh? Sounds like someone jumped to $0.

65 KON A0 looked OK. It was just doing a JSR (A0).

BAL Some weird MacsBug bug?

60 KON In this case, no.

BAL All I did was step into a subroutine and I crash somewhere totally
different?

55 KON Pretty cool, huh?

BAL Are the registers OK? What does the stack look like?

50 KON Garbage everywhere. The stack has all kinds of noise on it, and the
registers seem pretty fragged.

BAL Hmmm. I try it again; this time I set a breakpoint a few instructions
before the JSR (A0).

KON OK.

BAL Is everything OK?

45 KON The registers, stack, and code look OK.

BAL So I trace a few instructions, up to the JSR.

40 KON You crash immediately after the first trace with a bus error at
$0104B0CA.

BAL Well that address is garbage. Was it in any register or on the stack
before I traced?

35 KON Nope.

d e v e l o p Winter 1992

SCORING
100–110 Be honest.
75–95 Next time we find a bug, we’re calling you.
50–70 So this has happened to you!
25–45 No doubt about it, these puzzles are tough.
0–20 Well, maybe next time . . .•

104

BAL What happened to the stack?

30 KON There’s 56 extra bytes on it now.

BAL What? Is my machine possessed?

KON It’s just a computer.

BAL Some interrupt nastiness happening?

25 KON When you crash, you’re at interrupt level 1.

BAL Now we’re getting somewhere. Does MacsBug enable interrupts
when I trace?

20 KON Yes.

BAL So where’s the level 1 interrupt vector kept?

15 KON $64.

BAL I DM it and see if it’s OK.

10 KON It’s $104B07C. Pretty close to where you crashed.

BAL So it sounds like someone is trashing the interrupt vectors, and all the
interrupts are held pending when I’m in MacsBug. As soon as I do
anything that returns control to the Macintosh, I blow up. So I step
spy on $64 and see who trashes it.

0 KON It’s a routine that assumed a buffer was being allocated but wasn’t. So
the buffer pointer was NIL, and the routine wrote all over low
memory, including the exception vectors.

BAL Nasty.

KON Yeah. So how could you catch this before the vectors get trashed?

BAL Doesn’t EvenBetterBusError catch writes to NIL?

KON Only at VBL time, and the chances of a VBL interrupt happening
before the VBL vector gets trashed are mighty slim.

BAL You could initialize pointer variables to a bus error number like
$50FFC001 instead of NIL. If you did that, you’d crash at the write
and know immediately what was wrong.

KON Cool.

KON & BAL’S PUZZLE PAGE Winter 1992

105
Thanks to Scott Douglass for reviewing this
column.•

A
AESend, Macintosh Q & A 85–86
Apple events

FBAs and 58, 59
Macintosh Q & A 85–86

Apple menu, Macintosh Q & A
95–96

AppleSoft, Apple II Q & A 102
Apple II Q & A 100–102
Application menu, Macintosh

Q & A 95–96, 97

B
background color, Macintosh

Q & A 86
background processing, Macintosh

Q & A 90
Balloon Help, Macintosh Q & A

96
BeginUpdate, Terminal Manager

and 65
“Be Our Guest” (Haun) 58–59
black-and-white images, 1-bit

devices and 7–28
Boolean logic, Macintosh Q & A

97–98
breakpoints, Tracks and 70, 71,

78–79
BSET, Tracks and 75
bus errors 103–105

C
cGrafPorts, off-screen 29–30
ClosePicture, 1-bit devices and 8
Collyer, Rich 48
color images, 1-bit devices and

7–28
Color QuickDraw

off-screen cGrafPorts and
29, 30

1-bit devices and 7–28
Communications Resource

Manager, Terminal Manager
and 63

Communications Toolbox,
Terminal Manager and 60–67

CompressionType,
2BufRecordToBufCmd and 51

ControlHandle, Terminal
Manager and 67

Courier font, Macintosh Q & A
94–95

CreatePICT2, 1-bit devices and
8, 9, 12, 26

CRMSerialRecord, Macintosh
Q & A 93

CSpecArray, off-screen cGrafPorts
and 30

CTabChanged, off-screen
cGrafPorts and 30

D
dates, Macintosh Q & A 97
Date2Secs, Macintosh Q & A 97
DCtlEntry, Tracks and 81
debugging device drivers 68–81
DebugStr, 2BufRecordToBufCmd

and 49
descent, NeoTextBox and 38
desk accessories, Macintosh

Q & A 93
DeviceBufferInfo,

2BufRecordToBufCmd and 51
device drivers, debugging 68–81
diagnostic ID (diagID), Tracks and

69, 71
“disable tracing” message, Tracks

and 72
display, processing color images

for 12–27
DisposeTermWindow, Terminal

Manager and 62
dithering

error-diffusion 13–14
ordered 14–26
random 26–27

dither matrix 16–24
DrawJust, NeoTextBox and 42

d e v e l o p Winter 1992

For a cumulative index to all issues of
develop and a complete source code
listing, see the Developer CD Series disc.•

106

INDEX

DrawPicture, 1-bit devices and 8,
9, 26

DrawText, NeoTextBox and 31,
42, 46

DumpTracks, Tracks and 71, 75,
76, 79–81

E
echo box application 48–57
emergent behavior 82–84
“enable tracing” message, Tracks

and 72
EndUpdate, Terminal Manager

and 65
EraseRect, NeoTextBox and 46
error-diffusion dithering 13–14
errors

Apple II Q & A 101
bus 103–105
Macintosh Q & A 90
printing 24

ExitWithMessage,
2BufRecordToBufCmd and 49,
50

Exp1to3, 2BufRecordToBufCmd
and 52

Exp1to6, 2BufRecordToBufCmd
and 52

F
faceless background applications

(FBAs) 58–59
50% threshold 13
FindControl, Terminal Manager

and 66, 67
Finder (Apple II), Apple II Q & A

101
FindHeaderSize,

2BufRecordToBufCmd and 49
FindWindow, Terminal Manager

and 65, 66
“fixed fractional width” fonts,

Macintosh Q & A 99
FontInfo, Macintosh Q & A 99

Font Manager, NeoTextBox and
34, 45

fonts
fixed fractional width 99
Macintosh Q & A 94–95
TrueType 34, 35, 38, 44–45

foreground color, Macintosh
Q & A 86

FSSpec, Macintosh Q & A 88

G
gamma curves, printing errors and

24
GDevice, off-screen cGrafPorts

and 30
Gestalt

NeoTextBox and 35
Terminal Manager and 63
2BufRecordToBufCmd and

50
GetCTSeed, off-screen

cGrafPorts and 30
GetFontInfo, NeoTextBox and

33, 38
GetPixBaseAddr, 1-bit devices and

26
GetSoundDeviceInfo,

2BufRecordToBufCmd and 51
“Graphics Hints From Forrest”

(Tanaka) 29–30
GS/OS, Apple II Q & A 100, 101
GWorld, off-screen cGrafPorts

and 30

H
HalftonePixMap, 1-bit devices and

26
halftoning 14–26
HandleTermWindowEvent,

Terminal Manager and 62, 65
HandleTraceData, Tracks and 75
Haun, C. K. 58
help, Balloon Help 96
Help menu, Macintosh Q & A 97
HiliteMode, Macintosh Q & A 86

HLock, 1-bit devices and 9
Hotchkiss, Craig 60

I
images, 1-bit devices and 7–28
Index2Color, off-screen

cGrafPorts and 30
InitTermMgr, Terminal Manager

and 62, 63
InsertMenu, Terminal Manager

and 65
installation scripts, Macintosh

Q & A 99
Installer, Macintosh Q & A 99
invisible data files, Macintosh

Q & A 96–97
IsTermWindowEvent, Terminal

Manager and 62, 65

J
Johnson, Dave 82

K
Keyboard menu, Macintosh

Q & A 97
“KON & BAL’s Puzzle Page”

(Othmer and Leak) 103–105

L
LaunchApplication, FBAs and 58
Leak, Bruce 103
linker, Macintosh Q & A 90
Lipton, Daniel 8
LocalTalk, Macintosh Q & A

86–88
locked disks, Macintosh Q & A

99
LockPixels, 1-bit devices and 26
Lowe, Brad 68
LUMVAL, 1-bit devices and 24

M
Macintosh Q & A 85–99

INDEX Winter 1992

107

“Making the Most of Color on
1-Bit Devices” (Othmer and
Lipton) 7–28

“Making Your Macintosh Sound
Like an Echo Box” (Collyer)
48–57

MDEF, Macintosh Q & A 96
memory, Macintosh Q & A 89
Memory Manager

1-bit devices and 9
2BufRecordToBufCmd and

52
menu IDs, Macintosh Q & A 97
menus, Macintosh Q & A 95–96,

97
modeless dialogs, Macintosh

Q & A 96
mouse, Apple II Q & A 100–101
MPW C, Macintosh Q & A 95
Mr. Potato Head, Macintosh

Q & A 94
'mxwt' resource 71, 77, 81

N
Name Binding Protocol (NBP),

Macintosh Q & A 92–93
NeoTextBox 31–47
NewControl, Terminal Manager

and 64
NewPixMap, 1-bit devices and 9
NewTermWindow, Terminal

Manager and 62, 63–64
NewWindow, Terminal Manager

and 63–64
NextBuffer,

2BufRecordToBufCmd and 56
NTBDraw, NeoTextBox and 35,

40–42, 46
NTBLineHeight, NeoTextBox

and 35, 37, 38
NumberChannels,

2BufRecordToBufCmd and 51

O
off-screen cGrafPorts 29–30

1-bit devices, color images and
7–28

OpenCPicture, 1-bit devices and
8–9

OpenCPort, 1-bit devices and 9
OpenPicture, 1-bit devices and 8,

9
Option key status, Macintosh

Q & A 91
ordered dithering 14–26
Othmer, Konstantin 7, 103
OutlineMetrics, NeoTextBox and

38, 46

P
Palette Manager, off-screen

cGrafPorts and 29–30
partCodes, Tracks and 70, 71
PBGetVInfo, Macintosh Q & A

99
PConfirmName, Macintosh

Q & A 92–93
PICTs, 1-bit devices and 7–28
Picture Utilities Package, 1-bit

devices and 12
PlayBuffer,

2BufRecordToBufCmd and 56,
57

PLookupName, Macintosh Q & A
92–93

pmAnimated usage mode, off-
screen cGrafPorts and 29, 30

PmBackColor, off-screen
cGrafPorts and 29

pmBlack usage-mode modifier,
off-screen cGrafPorts and 29,
30

pmCourteous usage mode, off-
screen cGrafPorts and 29, 30

pmExplicit usage mode, off-screen
cGrafPorts and 29, 30

PmForeColor, off-screen
cGrafPorts and 29

pmTolerant usage mode, off-
screen cGrafPorts and 29, 30

pmWhite usage-mode modifier,
off-screen cGrafPorts and 29,
30

printing
1-bit devices and 24
text-only on Apple II 100

Process Manager, FBAs and 59
ProDOS, Apple II Q & A

101–102
PutOutPackedDirectPixData,

1-bit devices and 9
PutOutPackedIndexedPixData,

1-bit devices and 9
PutOutPixMapSrcRectDstRect-

AndMode, 1-bit devices and 9,
10

Puzzle Page 103–105

Q
Q & A

Apple II 100–102
Macintosh 85–99

QuickDraw
FBAs and 59
NeoTextBox and 31, 34
1-bit devices and 7–28

QuickTime
Macintosh Q & A 89
1-bit devices and 10

R
random dithering 26–27
Read calls, Macintosh Q & A

91–92
ReadMouse, Apple II Q & A

100–101
RealFont, Macintosh Q & A

94–95
RectInRgn, NeoTextBox and 46
RemoveMenu, Terminal Manager

and 65
ResEdit, Macintosh Q & A 99
Ressler, Bryan K. 31
RGBBackColor, off-screen

cGrafPorts and 30

d e v e l o p Winter 1992

108

RGBColors, off-screen cGrafPorts
and 29, 30

RGBForeColor, off-screen
cGrafPorts and 29, 30

S
Sample application, Terminal

Manager and 60
SampleRate,

2BufRecordToBufCmd and 51
SampleSize,

2BufRecordToBufCmd and 51
sciences of complexity 82–84
Script Manager, NeoTextBox and

32, 35, 39, 41, 42
SetMouse, Apple II Q & A

100–101
SetPalette

Macintosh Q & A 98
off-screen cGrafPorts and

29
SetPreserveGlyph, TrueType and

34
SetupSndHeader,

2BufRecordToBufCmd and
52–53

SetupSounds,
2BufRecordToBufCmd and 52

SFMultiGet2, Apple II Q & A
101

SFReply, Macintosh Q & A 88
SGetCString, Macintosh Q & A

89
“Simple Text Windows via the

Terminal Manager” (Hotchkiss)
60–67

SmallDaemon backgrounder shell,
FBAs and 58–59

'snd ' buffers,
2BufRecordToBufCmd and
51–53

SndDoCommand,
2BufRecordToBufCmd and
56–57

SndPlay, 2BufRecordToBufCmd
and 52

SndRecord,
2BufRecordToBufCmd and 49

SndRecordToFile,
2BufRecordToBufCmd and 49

sound, 2BufRecordToBufCmd and
48–57

sound compression,
2BufRecordToBufCmd and 52

sound input driver,
2BufRecordToBufCmd and
49–51

Sound Manager,
2BufRecordToBufCmd and
48–57

SPBGetDeviceInfo,
2BufRecordToBufCmd and 52

SPBGetRecordStatus,
2BufRecordToBufCmd and 54

SPBMillisecondsToBytes,
2BufRecordToBufCmd and 52

SPBOpenDevice,
2BufRecordToBufCmd and 49

SPBRecord,
2BufRecordToBufCmd and 50,
56

SPBStopRecording,
2BufRecordToBufCmd and 57

StackPeek, Tracks and 76
Standard File

Apple II Q & A 101
Macintosh Q & A 96–97

String2Date, Macintosh Q & A
97

StyledLineBreak, NeoTextBox and
35, 36, 39–40, 41, 47

Symbol font, Macintosh Q & A
94–95

SysEnvirons, NeoTextBox and 35
System 5.0.4 (Apple II), Apple II

Q & A 101
System 6.0 (Apple II), Apple II

Q & A 101

System 6 (Macintosh)
Macintosh Q & A 86
NeoTextBox and 35

System 7 (Macintosh)
FBAs and 58–59
Macintosh Q & A 86, 90,

93, 94–97
off-screen cGrafPorts and

29
1-bit devices and 8, 12
Terminal Manager and

60–67
text alignment constants for

33
System Folder icon, Macintosh

Q & A 93

T
Tanaka, Forrest 29
T_DATA, Tracks and 71
TEDispose, NeoTextBox and 31
TENew, NeoTextBox and 31
TERec, NeoTextBox and 31
Terminal Manager 60–67
TermWindow 60–67
TermWindowPtr, Terminal

Manager and 62
TESetText, NeoTextBox and 31
TestDrvr, Tracks and 68–81
TEUpdate, NeoTextBox and 31
text alignment constants, for

System 7 33
TextBox, NeoTextBox and 31–47
“Textbox You’ve Always Wanted,

The” (Ressler) 31–47
TextEdit, NeoTextBox and 31–47
text-only printing, Apple II Q & A

100
TextWidth, NeoTextBox and 46
text windows, Terminal Manager

and 60–67
TMActivate, Terminal Manager

and 65
TMClick, Terminal Manager and

67

INDEX Winter 1992

109

TMGetProcID, Terminal
Manager and 64

TMIdle, Terminal Manager and
62, 65, 67

TMNew, Terminal Manager and
62, 64

TMResize, Terminal Manager and
66

TMStream, Terminal Manager
and 67

TMUpdate, Terminal Manager
and 65, 67

tonal reproduction curves (TRC),
printing errors and 24

T_PSTR, Tracks and 71
T_PSTRLONG, Tracks and 71
tracepoints, Tracks and 69, 71, 78
trackbox, Macintosh Q & A 95
Tracks 68–81
“Tracks: A New Tool for

Debugging Drivers” (Lowe)
68–81

TrueType
Macintosh Q & A 94–95
NeoTextBox and 34, 35, 38,

44–45
T_STACK, Tracks and 71, 76
T_TYPE, Tracks and 71, 81
2BufRecordToBufCmd 48–57

U
update events, Macintosh Q & A

98
UpdateGWorld, off-screen

cGrafPorts and 30
UTLock, Tracks and 75

V
VBL tasks, Macintosh Q & A 89
'vers' resource, Macintosh Q & A

93
“Veteran Neophyte, The”

(Johnson) 82–84
video, Macintosh Q & A 89

VisibleLength, NeoTextBox and
41

VT102 tool, Terminal Manager
and 60

W, X, Y, Z
WaitNextEvent

FBAs and 59
Terminal Manager and 65

WakeUpProcess, FBAs and 59
wildcard characters, Macintosh

Q & A 97–98
WriteToTermWindow, Terminal

Manager and 62, 67

d e v e l o p Winter 1992

110

