

E D I T O R I A L S T A F F

Editor-in-Cheek Caroline Rose

Technical Buckstopper Dave Johnson

Our Boss Greg Joswiak

His Boss David Krathwohl

Review Board Pete (“Luke”) Alexander, Neil Day,

C. K. Haun, Jim Reekes, Bryan K. (“Beaker”)

Ressler, Larry Rosenstein, Andy Shebanow,

Gregg Williams

Managing Editor Monica Meffert

Assistant Managing Editor Ana Wilczynski

Contributing Editors Lorraine Anderson, Toni

Haskell, Judy Helfand, Rebecca Pepper, Rilla

Reynolds

Indexer Ira Kleinberg

A R T & P R O D U C T I O N

Production Manager Hartley Lesser

Art Director Diane Wilcox

Technical Illustration Nurit Arbel, John Ryan

Formatting Forbes Mill Press

Printing Wolfer Printing Company, Inc.

Film Preparation Aptos Post, Inc.

Production PrePress Assembly

Photography Sharon Beals, Lisa Jongewaard

Online Production Cassi Carpenter

develop, The Apple Technical Journal, is a
quarterly publication of the Developer
Support Systems and Communications
group.

Cleo Huggins of Rucker Huggins used
Ray Dream Designer 2.0 to orchestrate
this 3-D score of sound and music. The
music symbols are characters from
Sonata, a noteworthy typeface that Cleo
designed at Adobe Systems.

The Developer CD Series disc for August
1992 or later contains this issue and all
back issues of develop along with the code
that the articles describe. The develop
issues and code are also available on
AppleLink and via anonymous ftp on
ftp.apple.com.

CONTENTS August 1992

1
© 1992 Apple Computer, Inc. All rights reserved.

Apple, the Apple logo, APDA, Apple IIGS, AppleLink, AppleShare, AppleTalk, ImageWriter, LaserWriter, LocalTalk,
MacApp, Macintosh, MPW, MultiFinder, SADE, and StyleWriter are trademarks of Apple Computer, Inc., registered in
the U.S. and other countries. Balloon Help, develop, Finder, Macintosh Quadra, PowerBook, QuickDraw, QuickTime,
Sound Manager, System 7, and TrueType are trademarks of Apple Computer, Inc. HyperCard is a registered
trademark of Claris Corporation. DEC is a trademark of Digital Equipment Corporation. UNIX is a registered
trademark of UNIX System Laboratories. All other trademarks are the property of their respective owners.

Out with the old, in with the new (and improved). 2

Please keep ’em coming! Your opinions matter. 4

The Asynchronous Sound Helper by Bryan K. (“Beaker”) Ressler
Confused about the Sound Manager? Here’s help: a detailed walk-through of useful
routines for accomplishing common Sound Manager tasks. 7

Around and Around: Multibuffering Sounds by Neil Day The inside
world of multibuffering sounds is exposed to the light, and we discover that it’s really
not that gory. 38

Living In an Exceptional World by Sean Parent Ever get mad at those
“Real programs check errors here” comments you see so often in sample code?
Here’s a workable error-handling methodology that might interest you. 65

The NetWork Project: Distributed Computing on the Macintosh by
Günther Sawitzki Distributed computing is looming large on the horizon, and
programmers need to be ready. NetWork enables you to experiment with distributed
computing right now. 82

Graphical Truffles: Writing Directly to the Screen by Brigham Stevens
and Bill Guschwan The message hasn’t changed: Don’t write directly to the screen.
But if you absolutely need to break the rules, here are some clues for success. 59

The Veteran Neophyte: Quantum Lunch by Dave Johnson, with
Michael Greenspon Is it possible to simulate a brain? Can thought and matter be
separated? Should you care? 106

KON & BAL’s Puzzle Page: An Off-Color Puzzle by Konstantin Othmer
and Bruce Leak Think historically and you just might get this one. 123

Macintosh Q & A Answers to your product development questions. 110

126I N D E X

Q & A

C O L U M N S

A R T I C L E S

L E T T E R S

E D I T O R I A L

Dear Readers,

Time marches on, and with it, inevitably, comes change. I’ll be telling you here about
some recent changes in the world of Macintosh documentation and develop. We think
they’re changes for the better—but of course you, the developer, are the final judge.

First, the “bible,” Inside Macintosh, is on its way out, starting with the imminent
publication of New Inside Macintosh. I know only too well what your problems were
with the first three IM volumes, which I slaved over for a good chunk of my life—not
enough examples, not enough explanation of how the parts work together as a
whole—and (till now) I’ve resisted the urge to defend myself here by telling you how
time- and staff-restricted we were, how the software kept changing out from under
us, and numerous other excuses. Volumes IV through VI sparked new complaints,
primarily that the information on a specific topic was scattered over several volumes.
All these problems have been addressed in New Inside Macintosh, which brings
everything together in an organized and understandable way that should, once it’s
published in its entirety, have you happily discarding all your old volumes (except for
you sentimentalists who will never part with your old “phone book” edition). The
first NIM books are due to appear in bookstores in September, and the last books in
the series should be available by May 1993. The electronic versions of these books
will show up on the Developer CD Series disc as soon as they’re ready. References to
Inside Macintosh in develop will continue to point to the original IM volumes until next
year when the transition to NIM is complete.

Tech Notes have also undergone a reincarnation, as you’ll notice when you look at
them on the CD. Our new Tech Note poobah, Neil Day, talks about this at the end
of the Letters section, on page 6. The Notes are no longer numbered, but are now
organized by subject, similar to the organization of New Inside Macintosh. As a result
of this change, develop’s references to Tech Notes now refer to numbered Notes as
things of the past (for example, “formerly #161”).

Another change in this issue of develop is one we want to be sure you know is an
aberration: There’s no Print Hints column this time. It turns out that Luke
Alexander committed one of the very printing crimes he wrote about in Issue 10, and
he couldn't pay the bail. Well, actually, Luke was very busy preparing for his talk at
the Worldwide Developers Conference while this issue was being written, and we
had to let him off the hook. He promises he’ll be back stronger than ever in Issue 12.

d e v e l o p August 1992

CAROLINE ROSE (AppleLink: CROSE) first
interviewed at Apple in 1982, when she was
shown a Macintosh with balls bouncing all over
its screen. Having been raised on computers as
card sorters and number crunchers, she thought
this was pretty exciting, and signed up to write its
technical documentation. Her love affair with the
Macintosh suffered a blow when she left in 1986
to join NeXT, but she came back after five years

away, and all was forgiven. Caroline recently
learned from a bio in an early issue of develop
that 8/8/88 was considered a very lucky day by
the Chinese, and she ponders the significance of
having missed that day entirely due to crossing
the international date line. She loves to travel,
whether in planes, trains, and automobiles, on
foot, or simply back and forth in a swimming
pool.•

2

CAROLINE ROSE

Speaking of the Worldwide Developers Conference, it was wonderful to meet so
many of you there, hear your good words about develop, answer your questions, and
set you straight on a few things. Many developers didn’t know, for example, that
develop accepts articles from outside Apple (though we rigorously review them just
like our own) and that they don’t have to already be at the polished level of writing
you’re used to seeing in develop (we have editors who help with that). The
overwhelming majority of Associates and Partners expressed their displeasure at no
longer receiving develop in printed form in their monthly mailing (though some of
them still hadn’t realized this, because it usually takes a long time for develop to get to
them anyway). Not all of them knew that they could subscribe to get printed develop
(through APDA, AppleLink DEV.SUBS, or the subscription card in an actual
printed issue). We’ll keep trying to spread the word; meanwhile, please tell two
friends.

On to the trivia . . . Issue 10’s editorial asked: What character in develop’s body font is
upside-down (not just one-time-only, but defined that way)? The answer is “8”—see?
If it were a snowman, it would topple over.

Some of you wondered about my answer to this earlier trivia question: What word
was used instead of “click” to describe the action of pressing a button on that first
mouse? The answer was “bug,” and I was asked whether the choice of that word was
a joke, or what. I called Doug Engelbart himself to find out, and he said that in those
days the cursor was called a “bug,” so it became short for “to put the bug somewhere
by pressing this button.” It had nothing to do with the meaning of “bug” as a
problem in a program. As to why “bug” was used to refer to the cursor, he didn’t
know the history of that. So I guess—unless one of you can shed some light on
this—the bug stops there.

Caroline Rose
Editor

EDITORIAL August 1992

3
SUBSCRIPTION INFORMATION
You can subscribe to develop through APDA (see
the inside back cover) or by using the subscription
card in the back of this issue. Please address all
subscription-related inquiries to develop, Apple
Computer, Inc., P.O. Box 531, Mt. Morris, IL
61054 (or AppleLink DEV.SUBS).•

BACK ISSUES
For information about back issues of develop and
how to obtain them, see the last page of this
issue. Back issues are also on the Developer CD
Series disc.•

DEVELOP ON FTP.APPLE.COM
I think develop is the greatest Macintosh
journal around. I’ve gotten lots of help
from the articles and the code on the
CD. One thing about the CD: It would
be nice if I could ftp the files from
apple.com, since I don’t have a CD-
ROM player.

—Jim Wintermyre

Thanks for the kind words about develop,
and for the idea of putting the files on
apple.com (actually, it’s now ftp.apple.com).
Like Technical Notes, DTS Sample Code,
and Snippets, develop articles and code are
now available via anonymous ftp on
ftp.apple.com, thanks to Mark Johnson,
manager of Apple’s Core Technical Support
group, who does this on his own time.

—Caroline Rose

OUR AUTHORS ARE REAL
I would like to suggest that you publish
your authors’ e-mail addresses. I wanted
to send a note of praise, thanks, and
encouragement to Bryan K. (“Beaker”)
Ressler, author of the excellent article
“The TextBox You’ve Always Wanted”
in Issue 9— but I didn't know how to
reach him. Even a “Find Address”
search on AppleLink turned up nothing.
Are you sure this guy’s for real?

—James Plamondon

Yes, we’re sure. Since receiving your
suggestion, we’re asking all authors if
they’d like to put their e-mail addresses in
their bios. Many would prefer not to be
contacted directly. And sometimes the
authors are in flux and don’t have a stable
or convenient address for a while. Where no
address is provided, letters should be sent to

the AppleLink address DEVELOP, and
they’ll be forwarded.

—Caroline Rose

ASSOCIATES MISS DEVELOP
In Issues 8 and 9 of develop, you
mentioned that Apple Partners and
Associates no longer receive a printed
copy of the publication. If I were an
Associate, and I plan to become one
soon, I would continue to subscribe to
the printed version.

First, there’s the “curling up in front of
a fire” factor you mentioned. There are
many places I take develop that I couldn’t
take a Macintosh and CD-ROM drive.
It slips easily into a briefcase and can be
read on a bus or while waiting in line.
While I’m reading develop, somebody
else can use the Macintosh. Some of
the articles require some effort to
understand, which is easier while sitting
in an overstuffed chair with the article
in my hands than while looking at a
computer screen. Oh, yeah, put a cat in
my lap for good measure.

Second, the aesthetic experience of the
printed version would be hard to give
up. The beautiful covers are the most
obvious part of this, but the care you
put into laying out the pages, providing
just the right amount of white space,
selecting the typefaces to complement
each other and make the content easy to
read makes reading develop a very
pleasant experience. Then there’s the
smell of a newly printed develop and the
faint “crick” sound of it being opened
for the first time.

Third, the printed version has material
that would be impossible to view on the
1-bit screen I’m using. How would I
know what “Konenna” looks like

d e v e l o p August 1992

IT MAKES OUR DAY WHEN YOU WRITE
We welcome timely letters to the editors,
especially from readers reacting to articles that
we publish in develop. Letters should be
addressed to Caroline Rose (or, if technical
develop-related questions, to Dave Johnson) at
Apple Computer, Inc., 20525 Mariani Avenue,
M/S 75-2B, Cupertino, CA 95014 (AppleLink:
CROSE or JOHNSON.DK). All letters should

include your name and company name as well
as your address and phone number. Letters may
be excerpted or edited for clarity (or to make
them say what we wish they did).•

4

LETTERS

without a printed copy? How would I
know what you look like? Even if I could
display some of the artwork and
photographs, it would take some effort
and time, and I might not bother.
Turning a page is a very simple thing to
do. And the access time is much faster
than a CD-ROM could ever be.

Fourth, the “green” factor. A Macintosh
uses electricity even when you’re just
sitting there staring at the screen. I
haven’t noticed develop using any, no
matter how long I spend reading it. I
believe you use partially recycled paper,
and you don’t have to worry about my
copies being recycled because they’ll sit
on the bookshelf until I die or get a
room in the loony bin. Sort of like
National Geographic.

develop, in its physical form, is beautiful,
informative, sometimes funny,
interesting, and occasionally inspiring. I
won’t give it up when I become an
Associate, though for what that costs I
darn well shouldn’t be asked to. Keep up
the good work. I appreciate it!

—Lyle Gunderson

I’ve been a fan of develop since its first
issue, and still look forward to each one.
I take mouse in hand to share my angst
about hardcover versions of develop.

I love them.

Hey, we recycle at home. We have a
compost heap. We’re down to one car.
But, for a mag like develop, I like the feel
of hefting it, scanning through to see
what’s up, and snooping through the
bios looking for the ever present
chuckles. It’s a magazine I sit on the
couch with and, what else, browse. This
is not the Technical Notes stack, nor is

it Inside Macintosh. I’m prepared to look
at them through the glass keyhole of my
Apple monitor, since they’re only mildly
amusing, very functional, and I usually
need them when I’m in front of it
anyway. That’s what references are for.

But develop is a different beast. develop is
Life magazine for Mac-crazed software
craftspeople. It needs to be perused,
thoughtfully, where it can be set down
and have some latte dripped on it.

I hope the developer mailing resumes
the practice of sending develop in paper
form.

—David Kauffman

I love these letters—and the similar
comments that we got at this year’s
Worldwide Developers Conference. As a
result of all this feedback, which has been
pouring in since develop was taken out of
the developer mailing, people in high places
at Apple no longer believe that this is what
most Associates and Partners want. No
changes are imminent, but the subject is not
dead. For now I can only urge you to pay
the $30 to subscribe to develop in its
printed form.

—Caroline Rose

NEW SINCE LAST DEVELOP?
Could you prevail on the Developer CD
folks to include a “What’s new since last
develop” folder on CDs that come with
develop? It would be done like the very
nice “What’s new on this CD?” folder,
but cover three months rather than one.

—John Baxter

The “What’s new on this CD?” folder now
indicates (separately) what’s new for each of

LETTERS August 1992

5

the last three months—in this case, June,
July, and August. Thanks for the idea!

—Caroline Rose

FAKIN’ IT
develop is a great publication, and the
Q & A section is especially useful. In
Issue 10 you define the term “fakey” as
“riding your snowboard backwards.”
There are two problems with this. First,
the correct spelling is “fakie.” The
greatest mistake, however, was not
attributing the word to its original
source: skateboarding. Snowboarding

has taken almost all of its trick names
from skateboarding, “fakie” included.
Keep up the good work, but get the
facts straight! ;-)

—Frank Giraffe

We here at develop are embarrassed and
chagrined that such an obvious and
important error could have slipped past us,
and we apologize profusely for any
inconvenience this misrepresentation of fact
has caused you, either real or imagined.
Thank you for your comments.

—Dave Johnson

d e v e l o p August 1992

A note for international folks: Tech Notes
now print on A4 paper as well as US Letter, so
you don’t need to spend hours reformatting them
by hand!•

Send your feedback on Tech Notes or
Sample Code to Neil at AppleLink NMDAY or on
the Internet at nmday@apple.com.•

6

It’s 3:00 A.M. You’ve just finished polishing that code
that you’ve been slugging it out with for the last several
nights. It works beautifully, you’re happy and full of
energy. Instead of waking up the nearest person for a
demo (and risking being murdered), you decide to start
work on “just one more thing” before hitting the sack.

So here you are with Inside Macintosh, a tureen of Dark
French Roast, and about 15 Tech Notes open, trying to
figure out how to get some gadget to work. The feeling
of success has been replaced by annoyance. It took 20
minutes of index scouring to find these Tech Notes, and
you’re still not sure you’ve got the whole picture.

Writing great software is challenging enough without
fighting with documentation. If you take a look at the
latest Developer CD Series disc, you’ll see that Tech
Notes and Sample Code have been reorganized; we
believe this new system will be far easier for you to use.

The first thing you’ll notice is that Tech Notes and
Sample Code have new categories; these are based on
the ones used in New Inside Macintosh, which will be

released over the next nine months or so. We want you
to be able to quickly collect all the information on a
given problem. Take a look at the Categories document
to familiarize yourself with the new categories.

Tech Notes have also lost their numbers; the actual
document simply has a name. “Numbers have worked
fine for me for all these years; why change now?” you
ask. Now that the Notes are organized by category,
using numbers makes less sense. And using names
instead of numbers solves the problem of gaps in the
numbering scheme, which happens when Tech Notes
are removed. We expect even more of them to be
removed than before, because they’ll be incorporated
into New Inside Macintosh periodically as it’s revised.

In the Indexes folder, you’ll see “alias indexes” that will
let you get to the information in several different ways,
including by the old Tech Note number. We’re trying to
cover all the bases.

We hope you’ll check out the Tech Notes and let us
know what you think of the new scheme!

TECH NOTES TAKE A NEW PATH; CHECK IT OUT!
BY NEIL DAY

In system software version 6.0.7 and later, the Sound Manager has
impressive sound input and output capabilities that are largely
untapped by the existing body of application software. This article
presents a code module called the Asynchronous Sound Helper that’s
designed to make asynchronous sound input and output easily accessible
to the application programmer, yet provide an interface flexible enough
to facilitate extensive application features.

Of all the Managers in Inside Macintosh, the Sound Manager may be the winner of the
Most Startling Metamorphosis contest. On the earliest Macintosh computers, sound
was produced by direct calls to a Sound Driver, as described in Inside Macintosh
Volume II. Later, with the advent of system software version 4.1 and the more
powerful sound-generation hardware of the Macintosh SE and Macintosh II, the
Sound Driver was superseded by a fairly buggy initial implementation of the Sound
Manager, which was first documented in Inside Macintosh Volume V. The new Sound
Manager presented a problem for developers, because there was a large installed base
of Macintosh 128K, 512K, 512K enhanced, and Plus computers that didn’t have the
ROMs or system software to support the Sound Manager. At this point, all but the
heartiest developers decided the tradeoffs for including sound in a non–sound-related
application were too severe.

By the time version 6.0.7 rolled around, many of the details of the Sound Manager
had changed, and sound input support was added. In fact, the Sound Manager in
6.0.7 and System 7 is relatively stable. So if you’ve been waiting for the right moment
to add sound support to your application, the moment has arrived.

The Macintosh Sound Manager acts as a buffer between your application and the
complexities of the sound hardware (see Figure 1). Sounds are produced by sending
sound commands to a sound channel. The sound channel sends the commands through a
synthesizer that knows how to control the audio hardware. Among the Sound
Manager’s current 38 commands are operations such as playing simple frequencies,

THE ASYNCHRONOUS SOUND HELPER August 1992

7
BRYAN K. (“BEAKER”) RESSLER (AppleLink:
ADOBE.BEAKER) Looking back, it seems clear
that Bryan sacrificed quality time with his wife
during the writing of this article. So, in the spirit
of fairness, develop asked Bryan’s wife, Nicole,
to contribute the bio for her husband. Here it is: ”I
owe it all to my wife, without whom I wouldn’t be
the man I am today. The End.”•

BRYAN K. (“BEAKER”)
RESSLER

THE

ASYNCHRONOUS

SOUND HELPER

playing complex recorded sounds, and changing sound volume. The Sound Manager
also allows you to record new sounds if the appropriate hardware is available.
Recording is performed through a sound input driver.

Sound playback and recording through the Sound Manager can be performed
synchronously or asynchronously. When you make a synchronous call to the Sound
Manager, the function doesn’t return control to your application until the entire
operation (sound playback, for instance) is complete. In general, it’s easy to use the
Sound Manager to play or record sound synchronously. Asynchronous calls return
control immediately to your application and perform their operations in the
background, which makes asynchronous operations somewhat trickier. Many
developers feel that there are too many details to make asynchronous sound
worthwhile in an application not specifically oriented toward sound. However, with
sound input devices becoming more common, the market impetus to add sound is
growing.

This article presents the Asynchronous Sound Helper, a code module designed to
take much of the heartburn out of asynchronous sound input and output. The goals
of Helper, as we’ll be calling it from now on, are threefold:

• Provide a straightforward and uncomplicated interface for
asynchronous sound I/O specifically tailored toward common
application requirements.

• Encourage developers to include support for sound as a standard
type of data, just like text or graphics.

d e v e l o p August 1992

8

Application

Sound�
Manager

Synthesizer

Sound�
input driver

Figure 1
The Sound Manager

• Function as a tutorial on how to perform asynchronous sound
input and output using the Sound Manager.

Helper provides two-tiered support—“easy” calls for basic operations and “advanced”
calls for more complex operations. You choose which calls to use depending on your
application’s specific needs and user interface. For simple asynchronous recording
and playback, only a few routines are required. Or go all out and use Helper routines
to easily provide a “sound palette” with tape-deck–like controls for your application.

To top it off, the overhead for Helper is fairly small. The code compiles to about 4K,
and it adds 86 bytes of global data to your application. At run time, it uses around 4K
in your application’s heap. Helper uses clean Sound Manager techniques—nothing
skanky that might cause compatibility problems in the future.

HOOKING UP WITH HELPER
First let’s take a quick look at how Helper works and how your application uses it.
We’ll leave the details for later.

Before you can use Helper you need to add a global Boolean flag to your application
—the attention flag. At initialization time, your application calls Helper’s
initialization routine and provides the address of the attention flag. In its main event
loop, your application checks the value of the attention flag and, if true, calls Helper’s
idle routine.

Because Helper’s main function is to spawn asynchronous sound tasks,
communication between your application and Helper is carried out on an as-needed
basis. Here are the basic phases of communication for a typical sound playback
sequence (the numbers correspond to Figure 2).

1. Your application tells Helper to play some sound.

2. Helper uses the Sound Manager to allocate a sound channel and
begins asynchronous playback of your sound.

3. The application goes on its merry way, with the sound playing
asynchronously in the background.

4. The sound completes playback. Helper has set up a sound
command that causes Helper to be informed immediately upon
completion of playback (this occurs at interrupt time). At that
time, Helper sets the application’s global attention flag.

5. The next time through your application’s event loop, the
application notices that the attention flag is set and calls SHIdle to
free up the sound channel.

THE ASYNCHRONOUS SOUND HELPER August 1992

9

When your application terminates, it calls Helper’s kill routine. Helper’s method of
communication with the application minimizes processing overhead. By using the
attention flag scheme, your application calls Helper’s idle routine only when it’s really
necessary. This could be important in game and multimedia applications where CPU
bandwidth is pushed to the limit.

HELPER’S INTERFACE
Now let’s take a look at the interfaces and the basic uses of the routines provided by
Helper. Later we’ll go into more detail about how the routines work and how to use
them.

INITIALIZATION, IDLE, AND TERMINATION

pascal OSErr SHInitSoundHelper(Boolean *attnFlag, short numChannels);
pascal void SHIdle(void);
pascal void SHKillSoundHelper(void);

SHInitSoundHelper initializes Helper. It allocates memory, so you should call it near
the beginning of your application. The application passes to SHInitSoundHelper the
address of the Boolean attention flag that Helper uses to inform the application when
it needs attention.

d e v e l o p August 1992

Helper is written in C, but all public routines
are declared as Pascal so that they can be called
from other languages.•

10

Application

Helper

1 2 3 4

Application

5

callBackCmd

Sound�
Manager

SHIdle

Asynchronous sound

Channel

Attention flag

SHPlayByID

Helper Helper

Application

Figure 2
Application-Sound Manager Interface

SHIdle performs various cleanup tasks. Call SHIdle when the attention flag goes
true.

At application termination, call SHKillSoundHelper. It stops current recording and
playback and deallocates Helper’s memory.

EASY SOUND OUTPUT

pascal OSErr SHPlayByID(short resID, long *refNum);
pascal OSErr SHPlayByHandle(Handle sound, long *refNum);
pascal OSErr SHPlayStop(long refNum);
pascal OSErr SHPlayStopAll(void);

SHPlayByID and SHPlayByHandle provide an easy way to begin asynchronous
sound playback. These routines return a reference number via the refNum parameter.
This reference number can be used to stop playback and can be used with the
advanced routines described later. If you intend to simply trigger a sound that you
want to run to completion (like a gunshot sound in a game), you can pass nil for the
refNum parameter, thereby ignoring the reference number.

To stop a given sound or stop all playback, use SHPlayStop or SHPlayStopAll.

ADVANCED SOUND OUTPUT

pascal OSErr SHPlayPause(long refNum);
pascal OSErr SHPlayContinue(long refNum);
pascal SHPlayStat SHPlayStatus(long refNum);
pascal OSErr SHGetChannel(long refNum, SndChannelPtr *channel);

If you want more control over the playback process, these routines will be of interest.
SHPlayPause pauses the playback of a sound, like the pause button on a tape deck.
SHPlayContinue continues playback of a sound that was previously paused. Use
SHPlayStatus to find out the status of a sound—finished, playing, or paused. If you
want to send commands directly to a sound channel that was allocated by Helper, use
SHGetChannel. You might want to send sound commands in your application, for
example, to play continuous looped background music.

EASY SOUND INPUT

pascal OSErr SHRecordStart(short maxK, OSType quality, Boolean *doneFlag);
pascal OSErr SHGetRecordedSound(Handle *theSound);
pascal OSErr SHRecordStop(void);

These are the three basic routines for recording sound through a sound input device.
To begin asynchronous sound recording, use SHRecordStart. The application passes
the address of a Boolean—a recording-completed flag—that tells the application

THE ASYNCHRONOUS SOUND HELPER August 1992

11

when the recording is complete. Once complete, the application calls
SHGetRecordedSound to retrieve a sound handle. The handle is suitable for
playback with SHPlayByHandle or to be written out as a 'snd ' resource. To stop
recording immediately (as with the stop button on a tape recorder), use
SHRecordStop.

ADVANCED SOUND INPUT

pascal OSErr SHRecordPause(void);
pascal OSErr SHRecordContinue(void);
pascal OSErr SHRecordStatus(SHRecordStatusRec *recordStatus);

To pause recording, use SHRecordPause. To continue previously paused recording,
use SHRecordContinue. Use SHRecordStatus to get information about the status of
recording. This status information includes the current input level (which could be
used to draw a tape-deck–like level meter), the amount of sound that’s been recorded
(with respect to the maximum), and whether the recording is finished, recording, or
paused.

HELPER’S DATA STRUCTURES
Helper uses three internal data structures to keep track of recording and playback.

typedef struct {
short numOutRecs; // The number of output records in outArray.
SHOutRec *outArray; // Our preallocated output records.
long nextRef; // Next available output reference number.

} SHOutputVars;

The SHOutputVars record contains an array of SHOutRec records. The
numOutRecs field tells how many are in the array. These records, one for each
allocated channel, hold information about currently playing sounds. They’re reused
when sounds have completed. The SHOutputVars record also keeps track of the next
available output reference number, in the field nextRef. The reference numbers are
unique (modulo 2,147,483,647).

typedef struct {
SndChannel channel; // Our sound channel.
long refNum; // Our Helper reference number.
Handle sound; // The sound we're playing.
Fixed rate; // Sampled sound playback rate.
char handleState; // The handle state for this handle.
Boolean inUse; // Tells whether this SHOutRec is in use.
Boolean paused; // Tells whether this sound is paused.

} SHOutRec, *SHOutPtr;

d e v e l o p August 1992

12

An SHOutRec record’s first field, channel, contains the actual Sound Manager
SndChannel used to play the sound. The sound reference number associated with
this sound (the one passed back to the application) is stored in the refNum field. A
handle to the sound we’re playing is stored in the sound field. The rate field holds the
sample playback rate of sampled sounds, which is used when pausing sampled sounds.
The handleState field contains the original handle state (derived via a call to
SHGetState), so Helper can reset the handle’s state after playback is complete. The
inUse field tells whether a given SHOutRec is in use by a playing sound (as opposed
to available for reuse). Finally, the paused flag lets Helper remember when a sound
has been paused.

typedef struct {
long inRefNum; // Sound Manager's input device refNum.
SPB inPB; // The input parameter block.
Handle inHandle; // The handle we're recording into.
short headerLength; // The length of the sound's header.
Boolean recording; // Tells that we're actually recording.
Boolean recordComplete; // Tells that recording is complete.
OSErr recordErr; // Error, if error terminated recording.
short numChannels; // Number of channels for recording.
short sampleSize; // Sample size for recording.
Fixed sampleRate; // Sample rate for recording.
OSType compType; // Compression type for recording.
Boolean *appComplete; // Tells caller when recording is done.
Boolean paused; // Tells that recording has been paused.

} SHInputVars;

The SHInputVars record contains information pertaining to a sound being recorded.
When the sound input device is opened, its reference number is stored in inRefNum.
The sound input parameter block, inPB, is part of SHInputVars. The sound being
recorded is stored in inHandle until complete. The recording flag tells whether we’re
actually in the act of asynchronous recording, and the recordComplete flag (set by
the record completion routine, described later) tells us when recording has
completed. If an error occurs during recording, it’s saved in recordErr so that it can
be returned to the application later, when it calls SHGetRecordedSound. The next
four fields—numChannels, sampleSize, sampleRate, and compType—hold
information that’s used to construct the sound’s header. The appComplete field
points to a Boolean that the application may optionally use to be informed of
recording termination (the application may use repeated calls to the SHRecordStatus
routine instead). The paused flag lets Helper keep track of when recording has been
paused.

Helper declares its global storage as shown on the following page. As we go on, you’ll
see the use of these globals in context, which will clarify their function.

THE ASYNCHRONOUS SOUND HELPER August 1992

13

static Boolean gsSHInited = false; // Has Helper been initialized?
static Boolean *gsSHNeedsTime; // Pointer to application's

// attention flag.
static SHOutputVars gsSHOutVars; // Sound output variables.
static SHInputVars gsSHInVars; // Sound input variables.

HELPER’S INTERNAL UTILITY ROUTINES
Helper uses twelve static utility routines to help it carry out its job. Many of these
routines are trivial, but let’s go over a few of the more important ones in detail—
SHPlayCompletion, SHRecordCompletion, and SHOutRecFromRefNum.

When Helper performs asynchronous sound playback, it depends on a callback
routine that signals to the application that playback has completed. Here’s the
playback callback routine, SHPlayCompletion:

pascal void SHPlayCompletion(SndChannelPtr channel, SndCommand *command)
{

long otherA5;

// Look for our "callback signature" in the sound command.
if (command->param1 == kSHCompleteSig) {

otherA5 = SetA5(command->param2); // Set up our A5.

channel->userInfo = kSHComplete;
*gsSHNeedsTime = true; // Tell application to give us

// an SHIdle call.

SetA5(otherA5); // Restore old A5.
}

}

When Helper begins the sound playback, it queues up a sound command—
a callBackCmd—in the sound channel. The callBackCmd tells the Sound Manager to
call the callback routine, SHPlayCompletion. We place a verifiable “signature” in the
sound command record so that the application can verify that the call occurred as a
result of a specific callBackCmd, and not as a result of some spurious one. When such
a blessed callback occurs, Helper uses another handy value stuffed into the sound
command—a pointer to the A5 global world—to set up access to the globals. Helper
then sets the channel’s userInfo field to a value that flags the sound as complete.
Helper also sets the application’s attention flag so that later, in the main event loop,
the application sees that the attention flag is set and calls SHIdle. SHIdle then skips
through the SHOutRec array looking for sound channels that are in use and have
kSHComplete in their userInfo fields, and disposes of their sound channels. This is
how Helper cleans up after sound playback has completed.

d e v e l o p August 1992

14

Asynchronous sound recording also relies on a callback routine that signals when
recording has completed. Here’s the callback routine, SHRecordCompletion:

pascal void SHRecordCompletion(SPBPtr inParams)
{

long otherA5;

otherA5 = SetA5(inParams->userLong); // Set up our A5.

*gsSHNeedsTime = true; // Tell application to give us
// an SHIdle call.

gsSHInVars.recordComplete = true; // Make a note to ourselves.

SetA5(otherA5); // Restore old A5.
}

When recording has completed (for any reason—we filled the entire buffer, an error
occurred, or the user manually stopped recording), the Sound Manager calls the
record callback routine. Like the playback callback routine, it first sets up the A5
world. Then it sets the application’s attention flag and the recordComplete flag inside
the global SHInputVars structure. Later, the application will notice its attention flag
is set and call SHIdle. SHIdle checks the recordComplete flag and notices that
recording is complete, closes the sound input device, and prepares for the application
to call SHGetRecordedSound to retrieve the recorded sound. This is how Helper
cleans up after asynchronous sound recording.

Another heavily used static utility routine is SHOutRecFromRefNum. It maps a
sound reference number into a pointer to the appropriate SHOutRec.

SHOutPtr SHOutRecFromRefNum(long refNum)
{

short i;

// Search for the specified refNum.
for (i = 0; i < gsSHOutVars.numOutRecs; i++)

if (gsSHOutVars.outArray[i].inUse &&
gsSHOutVars.outArray[i].refNum == refNum)

break;

// If we found it, return a pointer to that record, otherwise nil.
if (i == gsSHOutVars.numOutRecs)

return(nil);
else return(&gsSHOutVars.outArray[i]);

}

THE ASYNCHRONOUS SOUND HELPER August 1992

15

SHOutRecFromRefNum simply does a linear search through the output records,
looking for a record that is in use and has a matching reference number. If none is
found, nil is returned.

We’ll investigate a few more utility routines as we delve into the details of the public
routines in the sections that follow.

HELPER’S INITIALIZATION, TERMINATION, AND IDLE
ROUTINES
Let’s take a closer look at the SHInitSoundHelper, SHKillSoundHelper, and SHIdle
routines.

SHINITSOUNDHELPER

pascal OSErr SHInitSoundHelper(Boolean *attnFlag, short numChannels)
{

OSErr err;

// Use default number of channels if zero was specified.
if (numChannels == 0)

numChannels = kSHDefChannels;

// Remember the address of the application's attention flag.
gsSHNeedsTime = attnFlag;

// Allocate the channels.
gsSHOutVars.numOutRecs = numChannels;
gsSHOutVars.outArray = (SHOutPtr)NewPtrClear(numChannels *

sizeof(SHOutRec));

// If successful, flag that we're initialized and exit.
if (gsSHOutVars.outArray != nil) {

gsSHInited = true;
return(noErr);

} else {
// Return some kind of error (MemError if there is one, otherwise
// make one up).
err = MemError();
if (err == noErr)

err = memFullErr;
return(err);

}
}

d e v e l o p August 1992

A note to MacApp users: Set PermAllocation
to true before calling SHInitSoundHelper;
otherwise the outArray pointer may be allocated
from temporary storage.•

16

SHInitSoundHelper is fairly uncomplicated. The attnFlag parameter points to the
application’s attention flag, which is used to tell the application that a call to SHIdle is
needed. The numChannels parameter tells Helper how many channels to allocate.
The number of simultaneous sounds that can be played back by Helper is limited by
the number of channels allocated (via numChannels) and the number of simultaneous
sound channels the Sound Manager allows. So use a numChannels that’s
appropriate to your needs. If you specify zero, a reasonable default (four) is used.
SHInitSoundHelper allocates the output records and stores a pointer to the array in
gsSHOutVars. If the memory allocation is successful, gsSHInited is set to true.

SHKILLSOUNDHELPER

pascal void SHKillSoundHelper(void)
{

short i;
long timeout;
Boolean outputClean, inputClean;

if (!gsSHInited)
return;

SHPlayStopAll(); // Kill all playback.
SHRecordStop(); // Kill recording.

// Now sync-wait for everything to clean itself up.
timeout = TickCount() + kSHSyncWaitTimeout;
do {

if (*gsSHNeedsTime)
SHIdle(); // Clean up when required.

// Check whether all our output channels are cleaned up.
outputClean = true;
for (i = 0; i < gsSHOutVars.numOutRecs && outputClean; i++)

if (gsSHOutVars.outArray[i].inUse)
outputClean = false;

// Check whether our recording is cleaned up.
inputClean = !gsSHInVars.recording;

if (inputClean && outputClean)
break;

} while (TickCount() < timeout);

// Lose our preallocated sound channels.
DisposePtr((Ptr)gsSHOutVars.outArray);

}

THE ASYNCHRONOUS SOUND HELPER August 1992

17

SHKillSoundHelper first stops any asynchronous sound input or output in progress.
It waits for all the output channels to be free and for recording to stop before
continuing. Finally, it disposes of the output record array.

SHIDLE

pascal void SHIdle(void)
{

short i;
OSErr err;
long realSize;

// Immediately turn off the application's attention flag.
*gsSHNeedsTime = false;

// Do playback cleanup.
for (i = 0; i < gsSHOutVars.numOutRecs; i++)

if (gsSHOutVars.outArray[i].inUse &&
gsSHOutVars.outArray[i].channel.userInfo == kSHComplete)

// We've found a channel that needs closing.
SHReleaseOutRec(&gsSHOutVars.outArray[i]);

// Do recording cleanup.
if (gsSHInVars.recording && gsSHInVars.recordComplete) {

HUnlock(gsSHInVars.inHandle);
if (gsSHInVars.inPB.error && gsSHInVars.inPB.error != abortErr) {

// An error (other than a manual stop) occurred during
// recording. Kill the handle and save the error code.
gsSHInVars.recordErr = gsSHInVars.inPB.error;
DisposeHandle(gsSHInVars.inHandle);
gsSHInVars.inHandle = nil;

} else {
// Recording completed normally (which includes abortErr, the
// "error" that occurs when recording is stopped manually).
gsSHInVars.recordErr = noErr;
realSize = gsSHInVars.inPB.count + gsSHInVars.headerLength;
err = SetupSndHeader(gsSHInVars.inHandle, gsSHInVars.numChannels,

gsSHInVars.sampleRate, gsSHInVars.sampleSize,
gsSHInVars.compType, kSHBaseNote, realSize,
&gsSHInVars.headerLength);

SetHandleSize(gsSHInVars.inHandle, realSize);
}

// Error or not, close the recording device and tell the application
// that recording is complete through the recording-completed
// flag that the caller originally passed into SHRecordStart.

d e v e l o p August 1992

18

SPBCloseDevice(gsSHInVars.inRefNum);
gsSHInVars.recording = false;
gsSHInVars.inRefNum = 0;
if (gsSHInVars.appComplete != nil)

*gsSHInVars.appComplete = true;
}

}

SHIdle is one of the most important routines in Helper. It performs cleanup of
completed sound playback and recording. First SHIdle clears the application’s
attention flag. For playback cleanup, it iterates through the output records looking
for records that have their inUse flag set and have kSHComplete in their sound
channel’s userInfo field. These sounds have been flagged as completed by the callback
routine. When such an output record is found, its channel is closed with a call to
SHReleaseOutRec.

void SHReleaseOutRec(SHOutPtr outRec)
{

short i;
Boolean found = false;

// An SHOutRec's inUse flag gets set only if SndNewChannel has been
// called on the record's sound channel. So if it's in use, we call
// SndDisposeChannel and ignore the error. (What else can we do?)
if (outRec->inUse)

SndDisposeChannel(&outRec->channel, kSHQuietNow);

// If this sound handle isn't being used by some other output record,
// kindly restore the original handle state.
if (outRec->sound != nil) {

for (i = 0; i < gsSHOutVars.numOutRecs && !found; i++)
if (&gsSHOutVars.outArray[i] != outRec &&

gsSHOutVars.outArray[i].inUse &&
gsSHOutVars.outArray[i].sound == outRec->sound)

found = true;

if (!found)
HSetState(outRec->sound, outRec->handleState);

}

outRec->inUse = false;
}

The SHReleaseOutRec routine has two important functions. First, it calls
SndDisposeChannel to free up the sound channel. Second, it restores the handle state

THE ASYNCHRONOUS SOUND HELPER August 1992

19

of the sound that was playing if that same sound isn’t currently playing on some other
channel.

Recording cleanup is also performed back in SHIdle. If the recording flag and the
recordComplete flag are set, the record callback has informed Helper that recording
is complete. Right away, Helper unlocks the sound handle. Next Helper checks for
errors. If the application called SHRecordStop to manually stop recording before the
buffer was full, the error abortErr is generated. We don’t really consider this an error,
so we expressly allow abortErr. If an error did occur, Helper saves the error code.
This way, later, when the application calls SHGetRecordedSound, Helper can return
an appropriate OSErr. If no error occurred, Helper calculates the actual size of the
sampled sound and builds an appropriate sound header, including the correct length.

After checking for errors, Helper resizes the handle to exactly the size it should be.
Then it calls SPBCloseDevice to close the sound input device, clears the recording
flag, and sets the application’s recording-completed flag, if one was provided.

As you can see, it’s important to call SHIdle when the attention flag goes true;
otherwise subsequent requests for playback or recording may fail.

EASY PLAYBACK ROUTINES
Now we’ll look more closely at Helper’s easy playback routines, SHPlayByID,
SHPlayByHandle, SHPlayStop, and SHPlayStopAll.

SHPLAYBYID AND SHPLAYBYHANDLE

pascal OSErr SHPlayByID(short resID, long *refNum)
{

Handle sound;
char oldHandleState;
short ref;
OSErr err;
SHOutPtr outRec;

// First, try to get the caller's 'snd ' resource.
sound = GetResource(soundListRsrc, resID);
if (sound == nil) {

err = ResError();
if (err == noErr)

err = resNotFound;
return(err);

}
oldHandleState = SHGetState(sound);
HNoPurge(sound);

d e v e l o p August 1992

20

// Now let's get a reference number and an output record.
ref = SHNewRefNum();
err = SHNewOutRec(&outRec);
if (err != noErr) {

HSetState(sound, oldHandleState);
return(err);

}

// Now let's fill in the output record. This routine also initializes
// the sound channel and flags outRec as "in use."
err = SHInitOutRec(outRec, ref, sound, oldHandleState);
if (err != noErr) {

HSetState(sound, oldHandleState);
SHReleaseOutRec(outRec);
return(err);

}

// We're in pretty good shape. We've got a reference number, an
// initialized output record, and the sound handle. Let's party.
MoveHHi(sound);
HLock(sound);
err = SHBeginPlayback(outRec);
if (err != noErr) {

HSetState(sound, oldHandleState);
SHReleaseOutRec(outRec);
return(err);

} else {
if (refNum != nil) // refNum is optional--the caller may not

*refNum = ref; // want it.
return(noErr);

}
}

SHPlayByID starts asynchronous playback of the 'snd ' resource with ID resID. First
the resource is loaded and set to be nonpurgeable. Notice the call to SHGetState.
This utility routine searches the output record array looking for the given sound
handle in some output record that’s flagged as inUse. If the handle is found,
SHGetState returns the handle state that’s stored in the output record. If the sound
handle isn’t found, the function returns HGetState(sound). See “Why SHGetState?”
for details on why this is necessary.

Then SHPlayByID calls SHNewRefNum to get the next consecutive sound
reference number, and SHNewOutRec to find the first available output record in the
list. Next, SHPlayByID calls SHInitOutRec to fill out the output record.

THE ASYNCHRONOUS SOUND HELPER August 1992

21

OSErr SHInitOutRec(SHOutPtr outRec, long refNum, Handle sound,
char handleState)

{
short i;
OSErr err;
SndChannelPtr channel;

// Initialize the sound channel inside outRec. Clear the bytes to
// zero, install the proper queue size, and then call SndNewChannel.
for (i = 0; i < sizeof(SndChannel); i++)

((char *)&outRec->channel)[i] = 0;
outRec->channel.qLength = stdQLength;
channel = &outRec->channel;
err = SndNewChannel(&channel, kSHNoSynth, kSHNoInit,

(SndCallBackProcPtr)SHPlayCompletion);
if (err != noErr)

return(err);

// Initialize the rest of the record and return noErr. Note that we
// set the record's inUse flag only if the SndNewChannel call was
// successful.
outRec->refNum = refNum;
outRec->sound = sound;

d e v e l o p August 1992

22

SHGetState is necessary because your application might
trigger the same sound handle twice, the second time
while the first is still playing. If SHPlayByID used only
HGetState, here’s what would happen:

1. At time t0 your application calls SHPlayByID. The
handle’s state is retrieved—unlocked and purgeable—
and stored in output record 0. So far, all is well, and
the sound begins playing.

2. Later, at time t1, your application makes a new call to
SHPlayByID to trigger the same sound again while the
first call is still playing. SHPlayByID calls HGetState to
get the handle’s state—locked, nonpurgeable—and
stores it in output record 1 (perhaps you see the
problem already). The sound begins playing a second
time, over the one that’s already playing.

3. At time t2, the first sound completes. Your application’s
attention flag gets set, and you dutifully call SHIdle.
SHIdle retrieves the sound’s original state—unlocked
and purgeable—from output record 0 and sets the
sound handle to that state.

4. At time t3, the second sound completes. Again, SHIdle
sets the sound handle’s state according to what’s
stored in the output record—locked and nonpurgeable.

We’re left with the sound handle in the wrong state. So
instead of HGetState, SHPlayByID uses SHGetState.
SHGetState looks to see if the sound has already been
triggered, and if so, returns the state stored in the
previous trigger’s output record. Also, SHReleaseOutRec
doesn’t reset the handle’s state if the sound handle is
found to be currently playing on some other channel.

WHY SHGETSTATE?

outRec->rate = 0;
outRec->handleState = handleState;
outRec->inUse = true;
outRec->paused = false;
return(noErr);

}

The SHInitOutRec routine calls SndNewChannel to open the sound channel that’s
associated with this output record. The constant kSHNoSynth is passed as the
synthesizer and kSHNoInit is passed as the synthesizer initializer value. These
values are passed because Helper doesn’t have any idea what kind of sound will be
played on this channel, so it must assume nothing. (See “Types of Sound” for an
overview of the different synthesizers.) SHInitOutRec also passes the address of the
playback completion routine, SHPlayCompletion, to SndNewChannel. If
successful, the rest of the output record is filled out and the output record’s inUse
flag is set.

If the SHInitOutRec call is successful, SHPlayByID moves the handle high in the
heap, locks it, and begins playback with a call to SHBeginPlayback.

OSErr SHBeginPlayback(SHOutPtr outRec)
{

OSErr err;

// First, initiate playback. If an error occurs, return it
// immediately.
err = SndPlay(&outRec->channel, outRec->sound, kSHAsync);
if (err != noErr)

return(err);

// Playback started OK. Let's queue up a callback command so that
// we'll know when the sound is finished.
SHQueueCallback(&outRec->channel); // Ignore error. (What can we do?)
return(noErr);

}

The SHBeginPlayback routine calls SndPlay to start the sound playing
asynchronously, passing as parameters the sound handle and the flag kSHAsync.
Since the only way to tell that an asynchronous sound has completed is via a callback,
Helper must queue up a callBackCmd after beginning playback. This is done with a
call to SHQueueCallback.

Finally, SHPlayByID returns the sound reference number, if the application wants it.
(You can pass nil if you don’t care about the reference number.)

THE ASYNCHRONOUS SOUND HELPER August 1992

23

The SHPlayByHandle routine is similar to SHPlayByID, except that it supports a
special case: you can pass SHPlayByHandle a nil handle. This means “go ahead and
open a sound channel, but don’t call SndPlay.” Normally an application that does this
subsequently calls SHGetChannel to retrieve the sound channel pointer and sends
sound commands directly to the channel itself. This is covered in more detail later in
the section “Advanced Playback Routines.”

SHPLAYSTOP AND SHPLAYSTOPALL

pascal OSErr SHPlayStop(long refNum)
{

SHOutPtr outRec;

// Look for the associated output record.
outRec = SHOutRecFromRefNum(refNum);

// If we found it, call SHPlayStopByRec to stop playback.
if (outRec != nil) {

SHPlayStopByRec(outRec);
return(noErr);

} else return(kSHErrBadRefNum);
}

SHPlayStop stops playback of a given sound by looking up the reference number.
The routine tries to find the output record associated with refNum by a call to
SHOutRecFromRefNum. If one is found, SHPlayStop calls SHPlayStopByRec to do
the actual work.

d e v e l o p August 1992

24

The Sound Manager supports three basic types of sound.
First is simple square-wave synthesis. You can specify
the amplitude (volume), frequency (pitch), approximate
timbre, and duration of sounds for a square-wave
synthesizer with the Sound Manager commands
ampCmd, timbreCmd, and freqDurationCmd.

The second type of sound is wave-table synthesis, which
allows you to specify a waveform as 512 samples. These
samples specify the relative output voltage over time for
one period of the waveform. Sounds with more complex
timbre can be created using a wave-table synthesizer. You

control the frequency and amplitude of wave-table sound
in the same way as square-wave sound.

The most interesting sounds can be produced via the third
type—sampled synthesis. Sampled sounds are a
continuous list of relative voltages over time that allow the
Sound Manager to reconstruct an arbitrary analog
waveform. This could be a recording of music, your voice
—anything.

Helper allows you to easily play any of these types of
sound asynchronously.

TYPES OF SOUND

pascal OSErr SHPlayStopAll(void)
{

short i;

// Look for output records that are in use and stop their playback
// with SHPlayStopByRec.
for (i = 0; i < gsSHOutVars.numOutRecs; i++)

if (gsSHOutVars.outArray[i].inUse)
SHPlayStopByRec(&gsSHOutVars.outArray[i]);

return(noErr);
}

SHPlayStopAll is not much different, but instead of looking up a reference number, it
calls SHPlayStopByRec on all output records that have their inUse flag set. Let’s take
a look at SHPlayStopByRec.

void SHPlayStopByRec(SHOutPtr outRec)
{

SndCommand cmd;

// Dump the rest of the commands in the queue (including our
// callBackCmd).
cmd.cmd = flushCmd;
cmd.param1 = 0;
cmd.param2 = 0;
SndDoImmediate(&outRec->channel, &cmd);

// Shut up and go to your room! No dessert for you, little boy.
cmd.cmd = quietCmd;
cmd.param1 = 0;
cmd.param2 = 0;
SndDoImmediate(&outRec->channel, &cmd);

// It's now safe to manually dump our channel (we'll just skip the
// whole callback thing in this case).
SHReleaseOutRec(outRec);

}

To stop a playing sound, Helper sends a flushCmd, which flushes all subsequent
(currently unprocessed) sound commands from a channel’s queue, and a quietCmd,
which tells the channel to stop making sound. The flushCmd also flushes the
callBackCmd we previously queued up. After these two commands, we can safely call
SHReleaseOutRec to dispose of the sound channel for the sound.

THE ASYNCHRONOUS SOUND HELPER August 1992

25

Now that we’ve seen the basic stuff, on to the advanced sound output routines.

ADVANCED PLAYBACK ROUTINES
Helper’s easy calls are enough to satisfy the demands of many applications. If finer
control is desired, a few other playback routines can be used. Let’s take a closer look
at the advanced playback routines, SHPlayPause, SHPlayContinue, SHPlayStatus,
and SHGetChannel.

SHPLAYPAUSE

pascal OSErr SHPlayPause(long refNum)
{

SHOutPtr outRec;
SndCommand cmd;
OSErr err;

outRec = SHOutRecFromRefNum(refNum);
if (outRec != nil) {

// Don't bother with this if we're already paused.
if (outRec->paused)

return(kSHErrAlreadyPaused);

// Get the current playback rate for this sound.
cmd.cmd = getRateCmd;
cmd.param1 = 0;
cmd.param2 = &outRec->rate;
err = SndDoImmediate(&outRec->channel, &cmd);
if (err != noErr)

return(err);

// Now pause with either a rateCmd or a pauseCmd, as appropriate.
cmd.param1 = 0;
cmd.param2 = 0;
if (outRec->rate != 0) {

// If we get something nonzero, it's safe to assume that
// whatever synthesizer we're talking to will be able to
// understand a rateCmd to restore the rate (probably the
// sampled synthesizer). To pause the sound, we'll set the
// rate to zero.
cmd.cmd = rateCmd;
err = SndDoImmediate(&outRec->channel, &cmd);
if (err != noErr)

return(err);

d e v e l o p August 1992

26

} else {
// This synthesizer doesn't understand rateCmds. So instead
// we'll just pause command queue processing with a pauseCmd.
// This is how we pause command-type sounds (e.g., Simple Beep).
cmd.cmd = pauseCmd;
err = SndDoImmediate(&outRec->channel, &cmd);
if (err != noErr)

return(err);
}

outRec->paused = true;
return(noErr);

} else return(kSHErrBadRefNum);
}

There are two basic methods of pausing a sound: one uses a pauseCmd, the other
uses a rateCmd. Sounds that are composed of a lot of little sound commands (like
Simple Beep) are paused by pausing command-queue processing with a pauseCmd.
Most sampled sounds, however, have only one command, a bufferCmd, which plays
the sampled sound. A pauseCmd is ineffective for this type of sound because it pauses
command-queue processing after the completion of the bufferCmd; in essence, the
sound plays to completion before pausing. Therefore, a different approach is taken
with sampled sounds: a rateCmd is used to set the sample playback rate to 0.0,
effectively stopping the bufferCmd in its tracks.

SHPlayPause first retrieves the output record associated with the given refNum, and
then checks that the sound is not already paused. SHPlayPause then sends a
getRateCmd to establish the current playback rate of the sound. If getRateCmd
returns a nonzero rate, SHPlayPause knows that a rateCmd can be used to pause the
sound; otherwise a pauseCmd is used. Either way, SHPlayPause sets the paused flag
in the output record.

SHPLAYCONTINUE

pascal OSErr SHPlayContinue(long refNum)
{

SHOutPtr outRec;
SndCommand cmd;
OSErr err;

outRec = SHOutRecFromRefNum(refNum);
if (outRec != nil) {

// Don't even bother with this stuff if the channel isn't paused.
if (!outRec->paused)

return(kSHErrAlreadyContinued);

THE ASYNCHRONOUS SOUND HELPER August 1992

27

// Now continue playback with a rateCmd or a resumeCmd, as
// appropriate.
cmd.param1 = 0;
if (outRec->rate != 0) {

// Resume sampled sound playback by restoring the synthesizer's
// playback rate with a rateCmd.
cmd.cmd = rateCmd;
cmd.param2 = outRec->rate;
err = SndDoImmediate(&outRec->channel, &cmd);
if (err != noErr)

return(err);
} else {

// Resume sound queue processing with a resumeCmd.
cmd.cmd = resumeCmd;
cmd.param2 = 0;
err = SndDoImmediate(&outRec->channel, &cmd);
if (err != noErr)

return(err);
}

outRec->paused = false;
return(noErr);

} else return(kSHErrBadRefNum);
}

SHPlayContinue continues the playback of a previously paused sound, checking
whether there’s a nonzero rate in the output record. This is the indicator of whether
to send a resumeCmd or rateCmd. If the rate is zero, SHPlayContinue sends a
resumeCmd to resume the sound. If the rate is nonzero, SHPlayContinue sends a
rateCmd to restore the sample playback rate for the sound.

SHPLAYSTATUS

pascal SHPlayStat SHPlayStatus(long refNum)
{

SHOutPtr outRec;

if (refNum >= gsSHOutVars.nextRef)
return(shpError);

else {
outRec = SHOutRecFromRefNum(refNum);

if (outRec != nil) {
// We found an SHOutRec for the refNum (so it's in use).
return((outRec->paused) ? shpPaused : shpPlaying);

d e v e l o p August 1992

28

} else {
// Although we've used the reference number in the past,
// it's not in use, so we can assume whatever sound it was
// associated with has stopped. Therefore, we'll return
// shpFinished.
return(shpFinished);

}
}

}

SHPlayStatus returns status information about a given sound, by reference number.
The SHPlayStat enum looks like this:

typedef enum {
shpError = -1,
shpFinished = 0,
shpPaused = 1,
shpPlaying = 2

} SHPlayStat;

SHPlayStatus uses the fact that sound reference numbers are sequential and unique
to infer the status of a sound, even if its record is no longer in the output record array.
If refNum is greater than the next available reference number, SHPlayStatus returns
shpError, since refNum is invalid. If refNum can be found in the output record list,
SHPlayStatus returns shpPlaying or shpPaused, depending on the state of the output
record’s paused flag. And finally, if refNum is not in use by an existing output record
but has been used in the past, it’s safe to assume that playback has completed for that
reference number, and SHPlayStatus returns shpFinished.

SHGETCHANNEL
Finally, there’s SHGetChannel. This routine allows you to use Helper to do sound
channel management but retain the ability to send sound commands to the channel
yourself. This is most commonly done to play looped continuous music in the
background.

To use Helper to play looped continuous music, the application calls the
SHPlayByHandle routine with nil as the sound handle. This tells Helper to open
the channel without a subsequent call to SndPlay. Then the application calls
SHGetChannel to retrieve a pointer to the sound channel that Helper has set up.
The application loads a sound resource containing a soundCmd, which installs a
sampled sound as a voice. It plays this sound in the channel with a call to SndPlay,
then issues a freqCmd to start it playing indefinitely. The demonstration program
SHDemo provided on the Developer CD Series disc gives a specific example of this
technique.

THE ASYNCHRONOUS SOUND HELPER August 1992

29

pascal OSErr SHGetChannel(long refNum, SndChannelPtr *channel)
{

SHOutPtr outRec;

// Look for the output record associated with refNum.
outRec = SHOutRecFromRefNum(refNum);

// If we found one, return a pointer to the sound channel.
if (outRec != nil) {

*channel = &outRec->channel;
return(noErr);

} else return(kSHErrBadRefNum);
}

SHGetChannel simply searches for the output record associated with refNum. If one
is found, a pointer to the sound channel is returned via the channel parameter.

EASY RECORDING ROUTINES
Helper provides routines to simplify the process of asynchronous sound recording.
Most applications’ needs will be satisfied by the three easy routines, SHRecordStart,
SHGetRecordedSound, and SHRecordStop.

pascal OSErr SHRecordStart(short maxK, OSType quality, Boolean *doneFlag)
{

Boolean deviceOpened = false;
Boolean allocated = false;

OSErr err;
short canDoAsync;
short metering;
long allocSize;

// 1. Try to open the current sound input device.
err = SPBOpenDevice(nil, siWritePermission, &gsSHInVars.inRefNum);
if (err == noErr)

deviceOpened = true;

// 2. Now let's see if this device can handle asynchronous recording.
if (err == noErr) {

err = SPBGetDeviceInfo(gsSHInVars.inRefNum, siAsync,
(Ptr)&canDoAsync);

if (err == noErr && !canDoAsync)
err = kSHErrNonAsyncDevice;

}

d e v e l o p August 1992

30

// 3. Try to allocate memory for the application's sound.
if (err == noErr) {

allocSize = (maxK * 1024) + kSHHeaderSlop;
gsSHInVars.inHandle = NewHandle(allocSize);
if (gsSHInVars.inHandle == nil) {

err = MemError();
if (err == noErr)

err = memFullErr;
}
if (err == noErr)

allocated = true;
}

// 4. Set up various recording parameters (metering and quality).
if (err == noErr) {

metering = 1;
SPBSetDeviceInfo(gsSHInVars.inRefNum, siLevelMeterOnOff,

(Ptr)&metering);
err = SPBSetDeviceInfo(gsSHInVars.inRefNum, siRecordingQuality,

(Ptr)&quality);
}

// 5. Call SHGetDeviceSettings to determine a bunch of information
// we'll need to make a header for this sound.
if (err == noErr) {

err = SHGetDeviceSettings(gsSHInVars.inRefNum,
&gsSHInVars.numChannels, &gsSHInVars.sampleRate,
&gsSHInVars.sampleSize, &gsSHInVars.compType);

}

// 6. Create a header for this sound.
if (err == noErr) {

err = SetupSndHeader(gsSHInVars.inHandle, gsSHInVars.numChannels,
gsSHInVars.sampleRate, gsSHInVars.sampleSize,
gsSHInVars.compType, kSHBaseNote, allocSize,
&gsSHInVars.headerLength);

}

// 7. Lock the input sound handle and set up the input parameter
// block.
if (err == noErr) {

MoveHHi(gsSHInVars.inHandle);
HLock(gsSHInVars.inHandle);
allocSize -= gsSHInVars.headerLength;
gsSHInVars.inPB.inRefNum = gsSHInVars.inRefNum;

THE ASYNCHRONOUS SOUND HELPER August 1992

31

gsSHInVars.inPB.count = allocSize;
gsSHInVars.inPB.milliseconds = 0;
gsSHInVars.inPB.bufferLength = allocSize;
gsSHInVars.inPB.bufferPtr = *gsSHInVars.inHandle +

gsSHInVars.headerLength;
gsSHInVars.inPB.completionRoutine = (ProcPtr)SHRecordCompletion;
gsSHInVars.inPB.interruptRoutine = nil;
gsSHInVars.inPB.userLong = SetCurrentA5(); // For our

// completion routine.
gsSHInVars.inPB.error = noErr;
gsSHInVars.inPB.unused1 = 0;

err = noErr;
}

// 8. Finally, if all went well, set our recording flag, make sure our
// recording-completed flag is clear, and initiate asynchronous
// recording.
if (err == noErr) {

gsSHInVars.recording = true;
gsSHInVars.recordComplete = false;
gsSHInVars.appComplete = doneFlag;
gsSHInVars.paused = false;
if (gsSHInVars.appComplete != nil)

*gsSHInVars.appComplete = false;

err = SPBRecord(&gsSHInVars.inPB, kSHAsync);
}

// 9. Now clean up any errors that might have occurred.
if (err != noErr) {

gsSHInVars.recording = false;
if (deviceOpened)

SPBCloseDevice(gsSHInVars.inRefNum);
if (allocated) {

DisposeHandle(gsSHInVars.inHandle);
gsSHInVars.inHandle = nil;

}
}

return(err);
}

This routine, the most lengthy in Helper, is staged, and nearly every stage can fail.
Each stage does its function and sets err to some error code. Subsequent stages

d e v e l o p August 1992

32

execute only if the result of the previous stage was noErr. Significant stages (like
opening the sound input device and memory allocation) set flags that allow
SHRecordStart to clean up if an error occurs after one of those operations.

The first stage tries to open the sound input device with SPBOpenDevice. The
device’s reference number is stored in the inRefNum field of the input variables
record. The second stage tests the device to see if it can handle asynchronous
recording. The third stage attempts to allocate the memory buffer for the recorded
sound based on the parameter maxK.

The fourth stage turns on metering (which allows Helper to retrieve the
instantaneous record level) and sets the recording quality based on the quality
parameter (the Sound Manager recording values—'good', 'betr', or 'best'). The fifth
stage retrieves device settings that Helper uses to construct the sound header. The
sixth stage actually creates the header with a call to the Sound Manager routine
SetupSndHeader.

The seventh stage moves the recording handle high in the heap and locks it in
preparation for recording. SHRecordStart then sets up inPB, the sound input
parameter block, in preparation for recording. Finally, the eighth stage flags that
recording is under way, clears the application’s recording-completed flag, and then
initiates recording with a call to SPBRecord. If some failure occurred, the sound
handle is deallocated if necessary, and the sound input device is closed if it was
opened.

THE ASYNCHRONOUS SOUND HELPER August 1992

33
A note to MacApp users: You should set
PermAllocation to true before calling
SHRecordStart; otherwise the sound input handle
may be allocated from temporary storage.•

Two basic characteristics affect the quality of sampled
sound: sample rate and sample size.

Sample rate, or the rate at which voltage samples are
taken, determines the highest possible frequency that can
be recorded. Specifically, for a given sample rate, you
can sample sounds of up to half that frequency. For
instance, if the sample rate is 22,254 samples per second
(hertz, or Hz), the highest frequency you could record
would be around 11,000 Hz.

A commercial compact disc is sampled at 44,100
samples per second, providing a frequency response of
up to around 20,000 Hz, the limit of human hearing.

Your dog, however, may find your CD player a bit
wanting.

Sample size, or quantization, determines the dynamic
range of the recording (the difference between the
quietest and the loudest sound). If the sample size is eight
bits, there are 256 discrete voltage levels that can be
recorded. This provides approximately 48 decibels (dB)
of dynamic range.

A CD’s sample size is 16 bits, which provides about 96
dB of dynamic range. Humans with good hearing are
sensitive to ranges greater than 100 dB, so you’re likely
to see 18- or 20-bit digital audio in the next ten years.

QUALITY OF SAMPLED SOUND

SHGETRECORDEDSOUND

pascal OSErr SHGetRecordedSound(Handle *theSound)
{

if (gsSHInVars.recordComplete) {
if (gsSHInVars.recordErr != noErr) {

*theSound = nil;
return(gsSHInVars.recordErr);

} else {
*theSound = gsSHInVars.inHandle;
return(noErr);

}
} else {

*theSound = nil;
return(kSHErrNoRecording);

}
}

SHGetRecordedSound is used by the application to retrieve the handle of a sound
that has finished recording. Once the application’s recording-completed flag goes
true (or SHRecordStatus indicates “finished”) it’s OK to call SHGetRecordedSound.
If an error terminated recording, SHGetRecordedSound returns the error. If no
error occurred, theSound is set as a handle to the recorded sound. The recorded
sound can be played back with the Sound Manager or any of Helper’s playback
routines, or can be written out as a 'snd ' resource.

SHRECORDSTOP

pascal OSErr SHRecordStop(void)
{

if (gsSHInVars.recording)
return(SPBStopRecording(gsSHInVars.inRefNum));

}

SHRecordStop stops recording like the stop button on a tape deck. If recording was
stopped before the entire input buffer was filled, SHIdle will shorten the sound
handle to the correct size.

ADVANCED RECORDING ROUTINES
Three advanced routines give you more control over the recording process.
SHRecordPause and SHRecordContinue pause and continue recording.
SHRecordStatus returns status information about a recording sound, as well as its
progress (how much has been recorded with respect to the total space that has been
allocated) and the instantaneous input level.

d e v e l o p August 1992

34

SHRECORDPAUSE AND SHRECORDCONTINUE

pascal OSErr SHRecordPause(void)
{

OSErr err;

if (gsSHInVars.recording) {
if (!gsSHInVars.paused) {

err = SPBPauseRecording(gsSHInVars.inRefNum);
gsSHInVars.paused = (err == noErr);
return(err);

} else return(kSHErrAlreadyPaused);
} else return(kSHErrNotRecording);

}

SHRecordPause simply pauses recording with the routine SPBPauseRecording,
assuming the recording is not already paused.

pascal OSErr SHRecordContinue(void)
{

OSErr err;

if (gsSHInVars.recording) {
if (gsSHInVars.paused) {

err = SPBResumeRecording(gsSHInVars.inRefNum);
gsSHInVars.paused = !(err == noErr);
return(err);

} else return(kSHErrAlreadyContinued);
} else return(kSHErrNotRecording);

}

SHRecordContinue resumes recording of a previously paused recording with the
routine SPBResumeRecording.

SHRECORDSTATUS
SHRecordStatus uses an SHRecordStatusRec record to provide detailed information
about the progress of a sound while it’s being recorded.

typedef struct {
SHRecordStat recordStatus; // Current recording status.
unsigned long totalRecordTime; // Total (maximum) record time in ms.
unsigned long currentRecordTime // Current recorded time in ms.
short meterLevel; // 0..255, the current input level.

} SHRecordStatusRec;

THE ASYNCHRONOUS SOUND HELPER August 1992

35

pascal OSErr SHRecordStatus(SHRecordStatusRec *recordStatus)
{

short recStatus;
OSErr err;
unsigned long totalSamplesToRecord, numberOfSamplesRecorded;

if (gsSHInVars.recording) {
err = SPBGetRecordingStatus(gsSHInVars.inRefNum, &recStatus,

&recordStatus->meterLevel, &totalSamplesToRecord,
&numberOfSamplesRecorded, &recordStatus->totalRecordTime,
&recordStatus->currentRecordTime);

if (err == noErr)
recordStatus->recordStatus = (gsSHInVars.paused ? shrPaused :

shrRecording);
else recordStatus->recordStatus = shrError;
return(err);

} else if (gsSHInVars.recordComplete) {
recordStatus->recordStatus = shrFinished;
recordStatus->meterLevel = 0;
// Don't know about the other fields--just leave 'em.
return(noErr);

} else return(kSHErrNotRecording);
}

An SHRecordStatusRec record contains a recordStatus field that’s analogous to the
playback status. SHRecordStatus calls SPBGetRecordingStatus to get status
information from the Sound Manager. The meter level, total record time, and
current record time are placed directly in the output record.

The SHRecordStat enum looks like this:

typedef enum {
shrError = -1,
shrFinished = 0,
shrPaused = 1,
shrRecording = 2

} SHRecordStat;

The recording status is set to shrError if an error occurred on the
SPBGetRecordingStatus call, shrFinished if the recordComplete flag is set,
shrRecording if the sound is currently recording, or shrPaused if the sound is
recording but is paused. The information in an SHRecordStatusRec, along with
the other routines described in this article, is enough to support an on-screen
tape deck.

d e v e l o p August 1992

36

USING HELPER
The best way to get a feeling for how to use Helper is to look over the source code
for the small demonstration program, SHDemo, on the CD. It demonstrates
triggered sounds using SHPlayByID; continuous background music using
SHPlayByHandle and SHGetChannel; and a mini tape deck with a level meter,
progress bar, and record, stop, play, and pause buttons that work for both recording
and playback. SHDemo exercises all of Helper’s calls, so you’re likely to find
appropriate examples somewhere inside SHDemo. For a practical example of what
Helper can do, take a look at the RapMaster application on the CD.

JOIN THE NOISY REVOLUTION
Consider how sound, as a data type, might fit into and enhance your application.
You’ll still need to implement the user interface, but Helper can shield you from
many of the ugly Sound Manager details described above, and can also form the basis
for a customized sound package better suited to the specific needs of your application.
Either way, join the Noisy Revolution today!

THE ASYNCHRONOUS SOUND HELPER August 1992

37
THANKS TO OUR TECHNICAL REVIEWERS
Rich Collyer, Neil Day, Kip Olson, Jim Reekes•

RELATED READING
• Inside Macintosh Volume VI (Addison-Wesley, 1991), Chapter 22, provides

comprehensive information on the latest version of the Sound Manager, including
information on sound input.

• Inside Macintosh Volume V (Addison-Wesley, 1988), Chapter 2, provides user
interface guidelines for the inclusion of sound in Macintosh applications.

• Inside Macintosh Volume II (Addison-Wesley, 1985), Chapter 8, and Volume V,
Chapter 27, provide a historical perspective on sound on the Macintosh, if
you’re curious. The information in these chapters is superseded by Volume VI,
Chapter 22.

The main problem with digital audio is that the data often exceeds the
amount of available memory, forcing programmers to resort to
multiple-buffering schemes. This article presents one such technique, in
the form of a program called MultiBuffer, and explores some
interesting things you can do along the way.

When dealing with digital audio, you’re frequently going to find yourself in
situations where the sample you want to play won’t fit in the memory you have
available. This leaves you with several alternatives: you can play shorter sounds; you
can try to squeeze the sound down to a more manageable size by resampling it at a
lower frequency or by compressing it (both of which will degrade the fidelity of the
sound); or you can try to fool the machine into thinking it has the whole sample at its
disposal. In cases where you don’t want to compromise length or quality, trickery is
your only option.

If you’ve spent any time with the Sound Manager, you no doubt have run across the
routine SndPlayDoubleBuffer, which provides one reasonably straightforward
method of implementing a double-buffering scheme. The advantage of using
SndPlayDoubleBuffer is that it allows you to get a fairly customized double-
buffering solution up and running with very little work. You need only write a
priming routine for setting up the buffers and filling them initially, a DoubleBack
procedure that takes care of swapping buffers and setting flags, and a read service
routine for filling exhausted buffers; the Sound Manager handles all the other details.
SndPlayDoubleBuffer is in fact used by the Sound Manager’s own play-from-disk
routine, SndStartFilePlay.

If your program will simply play from disk, your best bet is probably either
SndPlayDoubleBuffer or SndStartFilePlay. Both offer good performance painlessly,
saving you development time and avoiding the need to understand the Sound
Manager to any great degree. If, however, you want to do some snazzier things with
your sound support, such as adding effects processing, a deeper understanding of
multiple buffering is essential. Read on . . .

d e v e l o p August 1992

NEIL DAY When Neil isn’t glued to his
Macintosh, working on one of his various
programmatic whatnots, you can usually find him
strapped to a piece of sporting equipment
leaping off something. Neil’s favorite jumping-off
points are waves, cliffs, and cornices, in that
order.•

38

NEIL DAY

AROUND AND

AROUND:

MULTI-

BUFFERING

SOUNDS

PROCESSING SOUNDS WITH THE ASC
Audio support on the Macintosh computer is handled by the Apple Sound Chip
(ASC), which takes care of converting the digital representation of your sound back
to analog, which can then be played by a speaker attached to your Macintosh. (See
“Sound: From Physical to Digital and Back” for a description of this process.)

You can think of the ASC as a digital-to-analog converter with two 1K buffers to hold
the data to be processed. When either of the buffers reaches the half-full mark, the
ASC generates an interrupt to let the Sound Manager know that it’s about to run out
of data. Because of this, it’s important to make sure that your buffers are a multiple of
512 bytes, since in an attempt to keep the ASC happy the Sound Manager will pad
your data with silence if you choose an “odd” buffer size. In the worst case this can
lead to annoying and mysterious silences between buffers, and at best it will hurt your
performance. This doesn’t mean that you need to limit yourself to 512- or 1024-byte
buffers: The Sound Manager takes care of feeding large buffers to the ASC a chunk
at a time so that you don’t have to worry about it. As long as your sound is small
enough to fit into available memory, you can play it simply by passing the Sound
Manager a pointer to the buffer containing the sample.

Assuming that the ASC’s buffers never run dry, it will produce what seems to be a
continuous sound. As long as you can keep handing it data at a rate greater than or
equal to the speed at which it can process the data, there won’t be any gaps in the
playback. Even the best-quality samples, like those found on audio CDs, play back at
the leisurely rate of 44,100 sample frames per second (a frame consists of two sample
points, one for each channel of sound), a rate that the processors of 68020-based
Macintosh computers and SCSI devices can keep up with. All you need to do is hand
one buffer to the Sound Manager to play while you’re filling another. When the
buffer that’s currently playing is exhausted, you pass the recently filled one to the
Sound Manager and refill the empty one. This process is the digital equivalent of the
venerable bucket brigade technique for fighting fires.

CONTINUOUS SOUND MANAGEMENT
This section discusses a general strategy for actually making a multibuffering scheme
work. First, however, I want to touch on some of the properties and features of the
Sound Manager that we’ll exploit to accomplish multibuffering. If you’re already
familiar with the Sound Manager, you may want to skip ahead to the section “When
You’re Done, Ask for More.”

CHANNELS, QUEUES, COMMANDS, AND CALLBACKS
The atomic entity in the Sound Manager is a channel. A channel is essentially a
command queue linked to a synthesizer. As a programmer, you issue commands to
the channel through the Sound Manager functions SndDoCommand and
SndDoImmediate. The Sound Manager executes the commands asynchronously,

AROUND AND AROUND: MULTIBUFFERING SOUNDS August 1992

39

d e v e l o p August 1992

40

What you experience when you hear a sound is actually
your ear picking up a series of pressure changes,
commonly thought of as waves, in the ambient air.
Through a bunch of physiological magic, the ear converts
these pressure changes to a neural signal that your brain
can then recognize as your alarm clock or Chopin,
depending on the waveform. Both the waveform and its
neural equivalent are analog, which is useless as far as
your computer is concerned. To get the analog
phenomena into your machine, you need to use some sort
of transducer (a microphone, for instance) and an analog-
to-digital converter such as the sound input hardware
found in most Macintosh models.

Like your ear, the microphone picks up minute pressure
changes in the air, but it produces an electrical signal that
the analog-to-digital converter turns into a stream of
numbers corresponding to the voltage (amplitude) of the
signal. Each of these numbers is a discrete sample point,
and the collection of sample points that define the
waveform are collectively known as a sample.

In an ideal world your sample would be continuous,
meaning that there would be an infinite number of sample
points for any given time period. The reality is that
analog-to-digital (and digital-to-analog) converters can
handle only a finite number of sample points per second,
so the concept of sample frequency becomes important.
The higher the frequency, the better the sample
approximates the original waveform. The sample
frequency is usually expressed in kilohertz, which gives
the number of sample points per microsecond. Common
sample rates are 7 kHz, 11 kHz, and 22 kHz, though the
Sound Manager currently supports any sample rates
between 1 kHz and 22 kHz. In practice, it’s best to stick
to an even divisor of 22 kHz, since it minimizes the
number of hoops the software needs to jump through to
play your sound.

Another factor that affects the fidelity of the sample is its
quantization, which is related to how many bits are used

to describe each sample point. The Sound Manager
currently supports only 8-bit samples, which is sufficient
for most applications.

The digitized sound is stored either in memory or on a
more permanent storage medium such as a hard disk or
CD-ROM. The important thing to take away from this
discussion is that in order to get high-quality samples, you
need to have a high sampling rate and a reasonable
sample size (read: lots of memory).

Converting samples back into sound is exactly the reverse
of the recording process. The data goes to a digital-to-
analog converter, which generates a specific voltage
based on the digital value handed to it. After some sort of
amplification, these voltages cause a speaker to emit an
“image” of the originally sampled waveform.

The following figure shows a 1-microsecond snapshot of a
waveform sampled at a rate of 22 kHz and digitized at
sample sizes of 8 and 16 bits. The dots show how much
the digitized waveform can vary from the original
waveform at each sample size. The 16-bit size gives a
better approximation of the original waveform, but eats
up a lot of memory.

SOUND: FROM PHYSICAL TO DIGITAL AND BACK

Time

A
m

pl
itu

de

8-bit sample point accuracy�

16-bit sample point accuracy

1 µs

Original�
waveform

returning control to the caller so that your application can continue with its work.
The difference between the two functions is that SndDoCommand will always add
your request to a queue, whereas SndDoImmediate bypasses the queuing mechanism
and executes the request immediately. It’s important to understand that at the lowest
level the Sound Manager always executes asynchronously—your program regains
control immediately, whether the call is queued or not.

We’re interested here in two sound commands, bufferCmd and callBackCmd.

• bufferCmd sends a buffer off to the Sound Manager to be played.
The buffer contains not only the sample, but also a header that
describes the characteristics of the sound, such as the length of the
sample, the rate at which it was sampled, and so on.

• callBackCmd causes the Sound Manager to execute a user-defined
routine. You specify this routine when you initialize the sound
channel with the Sound Manager function SndNewChannel. Be
aware that the routine you specify executes at interrupt time, so
your application’s globals won’t be intact, and the rules regarding
what you can and can’t do at interrupt time definitely apply.

WHEN YOU’RE DONE, ASK FOR MORE
The key to achieving continuous playback of your samples is always to have data
available to the ASC. To keep the ASC happily fed with data, your code needs to
know when the current buffer is exhausted, so that it can be there to hand over
another buffer. Most asynchronous I/O systems provide completion routines that
notify the application when an event terminates. Unfortunately, such a routine is not
included in the current incarnation of the output portion of the Sound Manager. In
the absence of a completion routine, the best way to accomplish this type of
notification is to queue a callBackCmd immediately following a bufferCmd. For the
purpose of this discussion, the bufferCmd-callBackCmd pair can be considered a unit
and will be referred to as a frame from here on. Since it’s often not practical to play an
entire sample in one frame, you’ll probably need to break it up into smaller pieces
and pass it to the Sound Manager a frame at a time. Figure 1 illustrates how a sample
too large to fit in memory is broken up into frames consisting of a bufferCmd and
callBackCmd.

To further reinforce the illusion of a frame being a standalone entity, it’s useful to
encapsulate the bufferCmd-callBackCmd pair in a routine. A bare-bones version of a
QueueFrame routine might look like this:

OSErr QueueFrame (SndChannelPtr chan, Ptr sndData)
{

OSErr err;
SndCommand command;

AROUND AND AROUND: MULTIBUFFERING SOUNDS August 1992

41

command.cmd = bufferCmd;
command.param1 = nil;
command.param2 = (long) sndData;
err = SndDoCommand (chan, &command, false);
if (err)

return err;

command.cmd = callBackCmd;
command.param1 = nil;
command.param2 = nil;
err = SndDoCommand (chan, &command, false);
if (err)

return err;
}

By queuing up another frame from the callback procedure, you can start a chain
reaction that will keep the sample playing. Be sure to have another frame ready and
waiting before the Sound Manager finishes playing the current frame. Failure to do
this will cause a gap in the playback of the sound, often referred to as latency.

Two important factors that can cause latency are the speed of your source of sound
data and the total size of the buffers you’re using. The faster your data source, the
smaller the buffer size you can get away with, while slower sources require larger
buffers. For example, if you’re reading from a SCSI device with an average access
time of 15 milliseconds, you can keep continuous playback going with a total of about
10K of buffer space; if your source is LocalTalk, plan on using significantly larger
buffers. You may need to experiment to find the optimal buffer size.

A third factor that can contribute to latency is the speed at which your callback code
executes. It’s very important to do as little work as possible within this routine, and in
extreme cases it may be advantageous to write this segment of your code in assembly
language. Of course, faster 68000-family machines will let you get away with more
processing; a routine that may require hand coding to run on a Macintosh Plus can
probably be whipped off in quick-and-dirty C on a Macintosh Quadra. As is the case
with all time-critical code on the Macintosh, it’s important to take into account all the
platforms your code may run on.

Once you’ve compensated for any potential latency problems, this method of
chaining completion routines has a couple of advantages:

• After you start the process by queuing the first frame, the
“reaction” is self-sustaining; it will terminate either when you kill
it or when it runs out of data.

• Once started, the process is fully asynchronous. This gives your
application the ability to continue with other tasks.

d e v e l o p August 1992

42

AROUND AND AROUND: MULTIBUFFERING SOUNDS August 1992

43

Figure 1
Dividing a Sample into Frames

Frame 1 Frame 2 Frame 3 Frame 4

Frame 1��� Frame 2

Code

callBackCmdbufferCmd

Size: kBufferSize Size: kBufferSize

Code

callBackCmdbufferCmd

Frame 3��� Frame 4

Size: kBufferSize

Code

callBackCmdbufferCmd

Size: n – 3(kBufferSize)

Code

callBackCmdbufferCmd

n
kBufferSize kBufferSize kBufferSize kBufferSize

Your callback procedure must take care of three major functions. It must queue the
next frame, refill the buffer that was just exhausted, and update the buffer indices. In
pseudocode, the procedure is as follows:

CallbackService ()
{

//
// Place the next full buffer in the queue.
//
QueueFrame (ourChannel, fullBuffer);
//
// Refill the buffer we just finished playing.
//
GetMoreData (emptyBuffer);
//
// Figure out what the next set of buffers will be.
//
SwapBuffers (fullBuffer, emptyBuffer);

}

WHAT MAKES MULTIBUFFER DIFFERENT?
The previous section discussed general tactics for multiple-buffering models and for
chaining callback routines; these would be used by any continuous play module.
MultiBuffer, included on the Developer CD Series disc, uses these basic concepts as its
foundation, but differs in several important ways in order to address some
performance issues and attain a higher level of flexibility.

Thus far the discussion has centered on playback-driven buffering models, in which
the completion routine is keyed to the playback. This model, on which MultiBuffer is
based, is appropriate for applications that play from a storage device or that play from
synthesis. Playing from a real-time source, such as a sound input device or a data
stream coming over a network, requires a source-driven buffering model, in which the
callback is associated with the read routine. There’s little difference between these
two models, but using the wrong model can lead to the loss of small amounts of
sound data.

The major design goal for MultiBuffer was to make it modular enough to be easily
customized. It includes an independent procedure for reading data from the source
(ReadProc), as well as a procedure for processing the raw data obtained from the
ReadProc (ProcessingProc). MultiBuffer also allows you to work with more than two
buffers; simply modify the constant kNumBuffers. In some situations, more than two
buffers can be handy, such as instances where you want to reduce the lag between
playback time and real time. Several classes of filter require that you have a fairly
extensive set of data available for processing. Pulse-response filters, low- and high-

d e v e l o p August 1992

44

pass (first-order) filters, and spectral-compression filters are all examples of
applications in which multiple buffers can simplify implementation. It’s important to
realize, however, that using many buffers introduces extra overhead, so your buffer
sizes will need to be correspondingly larger. Because of this added overhead, you can
end up in a Catch-22 situation; there is a point at which the benefit of having more
buffers is negated by the increase in buffer size.

The optional processing procedure allows you to perform some simple modifications
on the data before it’s played. It’s vital that you keep the issue of latency in mind when
dealing with your processing procedure; it can have a profound effect on the amount
of time required to ready a buffer for play. Since this is a time-critical section of the
buffering code, it’s often desirable to write this procedure in assembly language to
squeeze out the highest performance possible.

Because the procedures for reading sound data and for processing the data are
separate modules, MultiBuffer is quite flexible. The program includes a simple
example of this flexibility. One of the playback options is to play an Audio
Interchange File Format (AIFF) file backward. To achieve this, I altered ReadProc to
read chunks of the target file from end to beginning, then used ProcessingProc to
reverse the contents of the buffer. If you take a look in PlayFromFile.c, you’ll find
that the differences between the functions ReadProc and ProcessingProc and their
counterparts BackReadProc and BackProcessingProc are minimal.

HOW IT HANGS TOGETHER
MultiBuffer is basically a series of three sequentially chained interrupt routines.
These are the callBackProc, a read completion routine, and a deferred task that takes
care of any processing that needs to be done on the raw data. Deferred tasks are
essentially interrupt routines that get put off until the rest of the regularly scheduled
interrupts have completed. A deferred task won’t “starve” important interrupts
executing at a lower priority level. Such tasks also have the advantage of executing
when interrupts have been reenabled, allowing regular interrupt processing to
continue during their execution. Unfortunately, a deferred task is still bound by the
restrictions on moving or purging memory placed on regular interrupt routines.

The routine DoubleBuffer begins the execution. It takes care of setting up private
variables, priming the buffers, and initiating the play that starts the chain reaction.

MultiBuffer is composed of six main files, each of which deals with one of the
functional aspects of MultiBuffer.

• MainApp.c contains the application framework for the MultiBuffer
demo.

• DoubleBuffers.c includes all the code for dealing with
multibuffering. For most applications, you shouldn’t need to
modify any of the code in this file.

AROUND AND AROUND: MULTIBUFFERING SOUNDS August 1992

45

• AIFFGoodies.c features fun with parsing AIFF header
information. The basic purpose of the code in this file is to get
pertinent information out of an AIFF file and into a sound header.

• PlayFromFile.c contains the routines for playing an AIFF file
forward and backward.

• PlayFromSynth.c has the code necessary for playing a wave
segment as a continuous sound.

• Oscillator.c is responsible for generating one cycle of a sine wave
at a specified frequency and amplitude.

NUTS AND BOLTS
The rest of this article goes into gory detail on the inner workings of MultiBuffer.
You’ll find this helpful if you plan on modifying the code to suit your own needs, or if
you want to gain a painfully in-depth understanding of the processes involved.

CONSTANTS
There are only two constants you need to worry about.

kBufferSize. This indicates the size of the buffer in bytes. The larger this value, the
more time you have between buffer switches. It should be a multiple of 512.

kNumBuffers. The value of this constant determines the number of buffers that
MultiBuffer uses. In most cases, this value should be 2.

IMPORTANT DATA STRUCTURES
Listed here are some of the important data structures used by MultiBuffer. All of
them can be found in the file DoubleBuffer.h.

typedef struct {
ParamBlockHeader
short ioFRefNum;
long filler1;
short filler2;
Ptr ioBuffer;
long ioReqCount;
long ioActCount;
short ioPosMode;
long ioPosOffset;

} strippedDownReadPB, *strippedDownReadPBPtr;

The strippedDownReadPB structure is the minimal parameter block the Device
Manager needs in order to execute a read from a file. A primary concern was keeping

d e v e l o p August 1992

46

MultiBuffer’s overhead very low, and since each buffer needs to have a parameter
block associated with it, using the full-blown ParamBlockRec was undesirable.

typedef struct {
strippedDownReadPB pb;
Ptr userInfo;
short headerNum;

} ExtParamBlockRec, *ExtParmBlkPtr;

ExtParamBlockRec is a wrapper that adds a few pieces of MultiBuffer-specific
information to the end of a parameter block. It allows us to get information about the
state of the program to the completion routine without using any globals, which
would make for ugly code.

typedef struct {
short flags;
ExtParamBlockRec readPB;
DeferredTask dt;
SoundHeaderPtr header;

} SampleBuffer, *SampleBufferPtr;

SampleBuffer contains all the information necessary for managing samples. The flags
field holds the current status of the buffer. The readPB field is the parameter block
the Device Manager uses to read the data from the source. Since it’s possible that
you’ll have more than one asynchronous read queued at a time, reusing parameter
blocks is inadvisable, hence the need for one associated with each buffer. The dt field
is a deferred task record that will be used to install the ProcessingProc. The header
field is a pointer to a sound header that the Sound Manager uses to play a sample.
Note that the sound header definition, found in Sound.h, contains a samplePtr that
will have a nonrelocatable block associated with it for holding the actual sample data.

typedef struct {
OSType signature;
long refNum;
long fileDataStart;
long bytesToGo;
short currentBuffer;
SampleBuffer buffers[kNumBuffers];
SndCommand bCmd;
SndCommand cbCmd;
SndCallBackProcPtr oldCallBack;
long oldUserInfo;
long a5ref;

} PrivateDBInfo, *PrivateDBInfoPtr;

AROUND AND AROUND: MULTIBUFFERING SOUNDS August 1992

47

PrivateDBInfo is a private data structure that contains all the information
MultiBuffer requires to do its thing. The refNum field contains the reference number
of the file or device that contains the sound data we’re going to play. As implemented
here, MultiBuffer reads information from a file on an HFS device, so refNum will
contain a File Manager file reference number. It’s also possible to use a sound input
device or the network as the source for your sound data. In such cases refNum would
contain a sound input device reference number or an AppleTalk unit reference
number, respectively. The field fileDataStart contains the position in the file at which
the actual sound data starts; since AIFF files and resources can contain tens of bytes
of header information, it’s important to be able to locate the start of our data. The
bytesToGo field keeps track of the number of bytes of sound data to be played. This
field may not be meaningful in the case of continuous sound sources, since the data
stream doesn’t necessarily have a definite end.

The currentBuffer field contains the number of the buffer that’s currently playing.
This field can actually be thought of as an index into the array of SampleBuffers. In
this array, buffers[kNumBuffers] contains the information needed for actually playing
the sound through the Sound Manager (and some other convenient goodies, too).

bCmd and cbCmd are sound commands that are used to send a frame off to be played
by the Sound Manager. bCmd contains the information necessary to issue a
bufferCmd, and cbCmd is used to issue a callBackCmd. Both of these structures are
used frequently with little modification; by having them preinitialized and easily
accessible to the routines that need them, we save a few instructions.

oldCallBack and oldUserInfo are holding spots for any userInfo and callBack data
stored in the SndChannel data structure before MultiBuffer was called. MultiBuffer
places its own information in the userInfo and callBack fields, so it’s important to save
and restore any values that may have been lurking there previously.

a5Ref contains a reference to the application’s A5 world, so that we can access the
global variables that MultiBuffer uses at times when A5 may be invalid, such as at
interrupt time.

THE ROUTINES
This section describes support routines that make up MultiBuffer, many of which can
be used unchanged in your own code.

short OpenAIFFFile (void)

Found in: AIFFGoodies.c

OpenAIFFFile is a pretty generic Standard File-based routine that filters out all file
types other than 'AIFF' files. After the user selects a file, this routine opens it and
returns the file reference number or an OSErr.

d e v e l o p August 1992

48

long GetAIFFHeaderInfo (short frefNum, SoundHeaderPtr theHeader)

Found in: AIFFGoodies.c

GetAIFFHeaderInfo is an example of how to parse the header information out of an
AIFF file. The basic strategy is to read pieces of the header into a buffer, where a
struct template can be overlaid onto the data, making the values easy to access.
Important information from the AIFF file can then be put into a SoundHeader data
structure, which will be used later when data is passed to the Sound Manager for
playing. The routine provided in MultiBuffer extracts only the sound data
parameters, such as the length, sample rate, sample size, and number of channels.
Other chunks are currently ignored, although the code is there to support siphoning
the information out of them. GetAIFFHeaderInfo leaves the file mark at the
beginning of the sound data and returns the number of bytes of sound data in the
file.

One limitation of the current implementation of this routine is that it deals only with
8-bit monophonic sounds.

OSErr RecordAIFFFile (OSType creator)

Found in: AIFFGoodies.c

RecordAIFFFile uses the sound input routine SndRecordToFile to record a sound to
an AIFF file. In preparation for this, it uses the Standard File Package to select a file
to record to and opens the file, creating it if it doesn’t exist, clearing it if it does. One
of the great features of the sound input portion of the Sound Manager is that it
provides routines with standard user interfaces for recording. As this routine
illustrates, all you need to worry about is passing a valid file reference number and
quality selector to SndRecordToFile; the rest is taken care of.

OSErr DoubleBuffer (SndChannelPtr chan, unsigned long fileRefNum, ProcPtr
readproc, ProcPtr processproc, SoundHeaderPtr generalHeader,
unsigned long playSize, long dataOffset, Ptr *privateData)

Found in: DoubleBuffers.c

DoubleBuffer is the main application interface to the buffering routines. It takes care
of all the setup required as well as initiating the buffering “chain reaction.” In the
spirit of a picture being worth a thousand words, the routine follows.

OSErr DoubleBuffer (SndChannelPtr chan, unsigned long fileRefNum, ProcPtr
readproc, ProcPtr processproc, SoundHeaderPtr generalHeader,
unsigned long playSize, long dataOffset)

{
OSErr err = noErr; // error bucket
PrivateDBInfoPtr dbInfo = nil;

AROUND AND AROUND: MULTIBUFFERING SOUNDS August 1992

49

// Clear the global stop flag.
gsStopFlag = false;

// We're going to use a PrivateDBInfo structure to hold all the
// information we'll need later on to do our double buffering. The
// next several lines of code deal with allocating space for it and
// its members and initializing fields.
dbInfo = SetUpDBPrivateMem ();
if (dbInfo != nil) {

DebugMessage ("\p Allocated dbInfo successfully");

// Return a pointer to MultiBuffer's private data structure so the
// caller can dispose of it when the operation finishes.
*privateData = (Ptr)dbInfo;

// Install the read procedure. This is mandatory.
if (readproc == nil) {

Assert (readproc == nil, "\pNo readproc specified");
FreeDBPrivateMem (dbInfo); // say bye to memory

} else {
DebugMessage ("\p Have a valid readproc");
dbInfo->readProcPtr = readproc;

// Install the processing procedure (if any). Lack of a
// processing procedure knocks one level of interrupt processing
// out, so this is a good way to save time and decrease the
// minimum buffer size.
dbInfo->processingProcPtr = processproc;

dbInfo->refNum = fileRefNum; // store file ref num
dbInfo->a5ref = SetCurrentA5 ();

// We're essentially going to take over the specified sound
// channel to do double buffering with it; as a result, we'll
// install our own callback and put private data structures in
// the userInfo field. We're going to save the values that were
// there when we started, in case they shouldn't be stomped on.
if (chan->userInfo) // valid userInfo?

dbInfo->oldUserInfo = chan->userInfo; // save it
chan->userInfo = (long) dbInfo; // pointer to our vars

DebugMessage ("\pAbout to prime buffers");
dbInfo->bytesToGo = playSize; // set up play size
dbInfo->fileDataStart = dataOffset; // offset into data stream
err = PrimeBuffers (dbInfo, generalHeader); // fill buffers

d e v e l o p August 1992

50

if (err != noErr) {
// If we got to here, we got one [censored] of an error
// trying to read the buffers, so now we commit programmatic
// seppuku.
Assert (err != noErr,

"\pHit an error trying to Fill buffers");
FreeDBPrivateMem (dbInfo); // say bye to memory

} else {
DebugMessage ("\pSuccessfully primed buffers");
// Presumably at least one of our buffers has been filled,
// so let's set the chain reaction in motion. Note that
// there is a possibility that we got only one buffer half
// full. No worries: the callback routine will handle that
// nicely!!

dbInfo->bCmd.cmd = bufferCmd;
dbInfo->bCmd.param1 = nil;
dbInfo->bCmd.param2 = (long) dbInfo->buffers[0].header;

dbInfo->cbCmd.cmd = callBackCmd;
dbInfo->cbCmd.param1 = nil;
dbInfo->cbCmd.param2 = nil;

err = QueueFrame (chan, dbInfo);
DebugMessage ("\pJust finished queueing up the first frame");

}
}

}
return (err);

}

OSErr QueueFrame (SndChannelPtr chan, PrivateDBInfoPtr dbInfo)

Found in: DoubleBuffers.c

QueueFrame takes care of passing a bufferCmd containing the sound data to be
played followed by a callBackCmd to the Sound Manager, making sure that the data
is valid. QueueFrame also updates the pointer to the next buffer to be played.

pascal void DBService (SndChannelPtr chan, SndCommand* acmd)

Found in: DoubleBuffers.c

When the Sound Manager receives a callBackCmd indicating that a buffer has
finished playing, DBService queues up the next buffer in line to be played and calls
the user-specified ReadProc to refill the exhausted buffer.

AROUND AND AROUND: MULTIBUFFERING SOUNDS August 1992

51

void CompleteRead (void)

Found in: DoubleBuffers.c

Upon completion of the asynchronous read queued by ReadProc, CompleteRead is
called to handle errors and queue up a deferred task to perform any processing
necessary on the freshly read data. Note that this routine uses the inline functions
getErr and getPB to retrieve the error value from register D0 and a pointer to the
parameter block from register A0, respectively.

OSErr ReadProc (void *private, short bufNum, Boolean asynch)
OSErr BackReadProc (void *private, short bufNum, Boolean asynch)

Found in: PlayFromFile.c

ReadProc is one of the few routines you may want to modify for your specific
application. It takes care of reading data from the input source—in this case an AIFF
file on a hard disk.

The three versions provided in the MultiBuffer application are ReadProc,
BackReadProc, and WaveReadProc. ReadProc reads data starting at the mark and
moving forward, BackReadProc starts at the end of the data and reads toward the
start, and WaveReadProc fakes a continuous stream of data from a wave snippet by
filling the buffer with copies. By replacing ReadProc, you can easily customize the
behavior of your application.

void ProcessingProc (void)
void BackProcessingProc (void)

Found in: PlayFromFile.c

The ProcessingProc routine does any processing needed on the freshly read buffer.
The amount of time you can spend in this routine depends directly on the size of
your buffers. This is one of the key areas in which latency problems can occur.

In the MultiBuffer code, ProcessingProc simply converts from 2’s complement
notation to binary offset notation. BackProcessingProc reverses the buffer as well as
converts it. AIFF files are by definition in 2’s complement notation, whereas the
Sound Manager understands only binary offset notation, making this conversion
necessary. Binary offset notation is a somewhat peculiar format; its zero point is at
$80. $FF corresponds to the maximum amplitude and $0 is the minimum amplitude
of a wave.

If you’re planning on doing any processing on your data, it’s strongly recommended
that you write the code in assembly language, since your code will likely execute far
faster.

d e v e l o p August 1992

52

OSErr PrimeBuffers (PrivateDBInfoPtr dbInfo)

Found in: DoubleBuffers.c

PrimeBuffers fills each of the allocated buffers with data. This gives the buffering
routines some data to work with on the first trip through the buffering cycle.

An interesting aspect of this routine is that it uses ReadProc to get the data from the
source and ProcessingProc to transform it to the desired state.

PrivateDBInfoPtr SetUpDBPrivateMem (void)

Found in: DoubleBuffers.c

SetUpDBPrivateMem allocates memory for the PrivateDBInfo data structure and
initializes its fields.

void FreeDBPrivateMem (void *freeSpace)

Found in: DoubleBuffers.c

FreeDBPrivateMem releases all the memory allocated by SetUpDBPrivateMem.
Zowee.

pascal long getPB ()

Found in: DoubleBuffer.h

When a completion routine is called, register A0 will contain a pointer to the
parameter block of the caller. Since MPW C doesn’t have support for directly
accessing registers, the inline function getPB moves register A0 onto the stack, where
the C compiler can figure out how to assign it to a variable.

pascal short getErr ()

Found in: DoubleBuffer.h

The getErr function does the same thing as getPB, except that it deals with the error
code (found in register D0) instead of the parameter block pointer.

pascal SampleBufferPtr getDTParam ()

Found in: DoubleBuffer.h

The Deferred Task Manager places an optional argument to its service routine in
register A1. As was true with getPB and getErr, we need to use an inline assembly
function, getDTParam, to retrieve the argument.

AROUND AND AROUND: MULTIBUFFERING SOUNDS August 1992

53

pascal void CallDTWithParam (ProcPtr routine, SampleBufferPtr arg)

Found in: DoubleBuffer.h

So that we don’t need to have two copies of ProcessingProc present, the inline
function CallDTWithParam allows you to call a deferred task service routine with an
argument directly. It takes the argument passed to it and puts it in register A1, then
JSRs to the service routine.

pascal void QuickDTInstall (DeferredTaskPtr taskEl)

Found in: DoubleBuffer.h

The QuickDTInstall procedure saves us a few cycles by bypassing the trap dispatcher
when we install a deferred task service routine. The address of the service routine is
loaded into A0, then we jump directly to the installation procedure pointed to by the
low-memory global jDTInstall.

This is one of the few legitimate reasons to access a low-memory global, but it can
potentially get you in trouble. It works fine under system software through version
7.0.1, but is certainly a future compatibility risk. The alternative is to call DTInstall
in the normal manner, but even the few milliseconds you spend in the trap dispatcher
will have an adverse effect on the amount of processing you can do on your sounds.

pascal void Reverse (Ptr buffer, long length)

Found in: PlayFromFile.c

The Reverse routine does the real processing on the freshly read buffer. It reverses
the buffer passed to it as well as converting it from 2’s complement notation to binary
offset format.

Ptr NewWaveForm (unsigned char amplitude, unsigned short frequency)

Found in: Oscillator.c

NewWaveForm generates a waveform based on the values most recently read from
the controls in the application window. Amplitude must be a value between 0 and
$80, while frequency can be anything within reason. This routine returns one cycle of
the waveform requested.

TIPTOE THROUGH THE INTERRUPTS
As you’ve probably gathered from the descriptions of the routines, MultiBuffer is
essentially a maze of self-perpetuating interrupt routines. This makes keeping track
of what’s happening at any given moment a real pain, not to mention that it severely
complicates debugging. In the interest of sparing you a headache or two trying to
figure out the flow of processing, let’s walk through a bit of MultiBuffer’s execution.

d e v e l o p August 1992

54

Initialization. This particular phase of execution happens at normal run time and is
fairly uninteresting. The process is as follows:

1. SetUpDBPrivateMem gets called to allocate our private memory.

2. Fields of the PrivateDBInfo structure are initialized. This step
includes saving the current A5 world, putting pointers to
ReadProc and ProcessingProc into the appropriate fields, and
saving copies of the sound channel’s callBack and userInfo values.

3. PrimeBuffers is called to prefill each of the buffers with sound
data.

The chain reaction. The last thing that happens in the DoubleBuffer routine is a
call to QueueFrame, which places a bufferCmd followed by a callBackCmd in the
channel’s queue. Since both these operations will be executed asynchronously, control
returns immediately to DoubleBuffer and subsequently to your application.

Figure 2 illustrates how things unfold from here. The buffer flags are set to
kBufferPlaying, to indicate that the buffer is busy. As soon as the first buffer is
exhausted, its associated callBackCmd causes an interrupt that transfers control to
DBService, where the next frame is queued, assuming its flags indicate readiness
(kBufferReady). To keep things going smoothly, a read is issued to refill the recently
exhausted buffer, and its flags are set to kBufferFilling. At this point, control returns
to whatever process was going on when the callBackCmd generated the interrupt.

The next phase starts as soon as the read queued in DBService completes,
transferring control (again, at interrupt time) to the completion routine
CompleteRead. If a processing procedure has been installed, a deferred task is

AROUND AND AROUND: MULTIBUFFERING SOUNDS August 1992

55

Play�
�
Callback�
�
Fill�
�
Process�
�
State of �
Buffer 1�

State of �
Buffer 2

Buffer 1 Buffer 2 Buffer 1

Buffer 1 Buffer 2

Buffer 1 Buffer 2

kBufferPlaying kBufferFilling kBuffer�
Processing kBufferReady kBufferPlaying

kBufferReady kBufferPlaying kBufferFilling kBuffer�
Processing kBufferReady

Figure 2
The Illustrated Execution, or What Happens When

initiated for the buffer, and its flags are set to kBufferProcessing. Upon completion of
the processing procedure, the buffer’s flags are reset to kBufferReady and control
returns to the main stream of execution.

The importance of using a deferred task may not be obvious, since it would seem to
make sense just to call ProcessingProc at the end of CompleteRead. Doing so,
however, would cause the program to spend too much time in the interrupt service
routine, shutting out other critical functions being performed at a lower interrupt
priority. Using a deferred task also means that the processing procedure executes
after interrupts have been reenabled, which allows us to spend a little more time
processing without causing the system to grind to a halt and die. Remember, though,
that the total amount of time required to read in a new chunk of data and process it
cannot exceed the time it takes to play a buffer, or you’ll run into latency problems.

THE CUSTOM SHOP
Customizing MultiBuffer simply involves replacing ReadProc and ProcessingProc
with your own routines.

ReadProc should take care of reading data from some source. It needs to fill the
buffer indicated by the argument bufNum with sound data. It should have the ability
to behave synchronously or asynchronously as indicated by the asynch argument.
Remember to specify CompleteRead as the completion routine; otherwise
MultiBuffer won’t work. Depending on the device that you’re reading from, you may
have to use a different type of parameter block. strippedDownReadPB is a minimal
parameter block for use with the File Manager; AppleTalk and the input portion of
the Sound Manager will both require substituting a different parameter block for the
strippedDownReadPB. All you need to modify is the definition of the data structure
ExtParamBlockRec in DoubleBuffer.h. ReadProc often executes at interrupt time, so
the prohibitions against anything like moving or purging memory apply.

You absolutely must have a ReadProc. The ProcessingProc, on the other hand, is
optional. If specified, this routine allows you to do some limited processing on the
data read from the source before it goes off to the Sound Manager to be played. Since
this is a deferred task service routine, the argument is placed in A1. MultiBuffer
passes this routine a pointer to the SampleBuffer to be processed. You can do
anything you want to this buffer, as long as it completes relatively quickly. Remember,
this is the routine that’s often responsible for causing latency problems.

While this doesn’t necessarily require writing additional code, DoubleBuffer expects
a generic sound header for the data you’re interested in playing. The only
information you really need is the sample rate and the base note, since MultiBuffer
sets up the other fields in the sound header. In the case of AIFF files, this requires
parsing the header information in the file; for the wave-play operation, fudging a
header with constants that describe the type of wave is acceptable.

d e v e l o p August 1992

56

IMPLEMENTATION EXAMPLES
To show how you might customize MultiBuffer, I’ve provided a couple of routines
that make use of the package. Both have examples of how to implement a ReadProc,
and the play-from-file example also takes advantage of a ProcessingProc.

PlayFromFile. PlayFromFile.c contains routines that play an AIFF file. These are
good examples of how you can use alternate ReadProcs and ProcessingProcs to
customize the output of your data.

PlayFromSynth. PlayFromSynth.c and Oscillator.c contain the routines necessary to
implement a basic sine wave synthesizer. The only really notable feature of this
implementation is the use of the refNum field of the PrivateDBInfo structure as a
pointer to a single wave cycle. My thinking here was that refNum really points to the
data source, unlike a traditional refNum, so why not use it as such?

FUN THINGS TO DO WITH MULTIBUFFER
Here are a couple of ideas for other processing options you might consider
implementing in MultiBuffer’s ProcessingProc:

• Summation: Averaging the samples of two waveforms will produce
a third sample that sounds like both being played simultaneously.
This technique can be useful for spitting two input sources out of
one sound channel.

• Reverb and delay: These commonly used studio effects are
produced by summing the sample points at t and t+∂t,where ∂t is
the desired intensity of the effect. The reason I’ve lumped these
two together is that reverb can be considered a really short delay
—generally less than 50 milliseconds.

A FEW WORDS ON DEBUGGING

Conditional compilation flags. If you take a look at BuildMultiBuffer, the makefile
for MultiBuffer, you’ll see -Debug and -Verbose as possible compilation options.
These are triggers for Debug messages that can be compiled into the code to help
you figure out where the code is failing during development. The advantage of this
scheme is that when undefined, the Assert and DebugMessage macros evaluate to
(void), which the compiler happily optimizes out.

The general form of this kind of macro is

#if _TRIGGER
#define SomeFunction(s) SomeFunctionOfS (s)

#else
#define SomeFunction(s) ((void) 0)

#endif

AROUND AND AROUND: MULTIBUFFERING SOUNDS August 1992

57

These can be really useful if you want to generate different types of executables
without resorting to multiple parallel source files.

Why debugging interrupt routines is painful. There are two significant
problems with debugging interrupt routines. Using a debugger that leaves interrupts
enabled (such as TMON) means that you may not be able to observe a “steady state”
of your code. Using a debugger that disables interrupts (such as MacsBug) allows you
to see a snapshot of the system, but you run the risk of killing the system if you stay in
the debugger for any length of time.

As you can imagine, this can make getting an accurate picture of what’s really
happening nearly impossible. As a result, the approach used in MultiBuffer was to
leave a “bread crumb” in the debugger so that one could go back later and see what
happened. You’ll notice that in routines that are going to be executed at interrupt
time the debugging statements have the form

Assert (err, "\p Some Message; g");
DebugMessage ("\p Another Message; g");

This causes MacsBug to log a copy of “Some Message” in its window and return
immediately to the routine. This gets you out of MacsBug quickly enough to avoid
causing problems. From the log left in MacsBug, you can often narrow down the
cause of the problem. TMON, to the best of my knowledge, doesn’t have a similar
feature, so MacsBug is really the tool of choice for debugging MultiBuffer. Be careful
when running debug versions of MultiBuffer with TMON installed, as Assert and
DebugMessage statements executed at interrupt level can leave you in the debugger.

The message you should be especially watchful for is “Tried to queue a buffer that
wasn’t ready.” This indicates that QueueFrame attempted to play a buffer that wasn’t
marked kBufferReady, and usually indicates that you’re taking too much time in your
ReadProc or ProcessingProc. The solution here is to either increase the size of your
buffers or reduce the amount of time you spend in your read and processing routines.

ALL PLAYED OUT (“KBUFFEREMPTY”)
MultiBuffer provides one example of how to play sounds that are too large to fit in
memory. Its theory of operation is very similar to that of the Sound Manager routine
SndPlayDoubleBuffer in that the buffer-refreshing mechanism keys off the play
completion routine; this class of buffering algorithm is appropriate for play-from-disk
and related applications.

Adding sound support to your application can greatly enhance your user’s experience.
Once you have an understanding of a few simple principles, it’s also fairly simple. To
that end, I hope that MultiBuffer is useful in enhancing your understanding of some
of these issues.

d e v e l o p August 1992

THANKS TO OUR TECHNICAL REVIEWERS
Rich Collyer, Leo Degen, Jim Mensch, Jim
Reekes•

58

GRAPHICAL TRUFFLES August 1992

59

Many developers want to go beyond the speed of
QuickDraw. Writing directly to the screen can allow
you to create faster animation and graphics than
possible with QuickDraw. However, Apple has always
maintained that writing to video memory is
unsupported, since it may cause your application to
break on a future system. If you write directly to the
screen, your application will forfeit the use of many
Toolbox managers and will put future compatibility at
risk. Since most applications require the Window
Manager and other basic Macintosh managers, writing
to the screen is only for a few specialized applications,
such as video games and some animation packages that
compete on the quality and speed of graphics.

We’re providing guidelines for writing to the screen in
this column because we know that some developers are
already doing it. We also understand that, in today’s
market, you need every advantage you can get in order
to be competitive.

BEFORE YOU READ ON
The most important thing to remember is don’t write
directly to the screen if you don’t have to. In general, only a
few applications need to do this. If you’re porting an
existing graphics or animation library from another
system, or writing an application that competes mainly
on the speed of the graphics, writing directly to the
screen may be necessary. For any other applications,
turn back now and forget about writing to the screen.

Even if your application is animation intensive or a port
from another system, we recommend that you always
attempt to use QuickDraw first. QuickDraw may be
fast enough for your purposes, and it would not be wise
to sacrifice its compatibility and flexibility for no
reason. You should always have a QuickDraw version of
your code anyway, and it should be the default, in case
your program isn’t compatible with the system or video
card being used. Writing directly to the screen should
be a user-selectable option.

As an alternative to writing to the screen, your
application may be able to increase graphics
performance by using custom drawing routines in a
GWorld and CopyBits to transfer your image to the
screen. This allows you to have faster graphics while
avoiding the compatibility nightmare that you may face
by writing directly to the screen. To learn more about
custom drawing routines, see “Drawing in GWorlds for
Speed and Versatility” in develop Issue 10.

We hope we’ve scared almost everyone away. For those
of you still reading, we want to point out that violating
one compatibility guideline doesn’t mean your program
should break others: you still need to follow certain
rules in order to peacefully coexist with other
applications. For example, don’t assume the screen is a
fixed size or depth. Use data structures like GDevice
and screenBits to access this information (Inside
Macintosh Volume VI, page 3-7).

So remember, most applications have no need to write
directly to the screen, and if you choose to do it, it may
give you more compatibility headaches than you’re
ready for. If your program breaks in the future because
you decided to write to the screen, it will be your
responsibility to fix it. We feel that the methods
outlined in this column will give you the best chance of
future compatibility; however, there are no guarantees.

WHERE’D THAT MANAGER GO?
In addition to risking compatibility problems, writing
directly to the screen means you have to do a lot of
extra work. Specifically, you have to handle (or live

BRIGHAM STEVENS (AppleLink: BRIGHAM) escaped from
mainframe hell to work for Apple in June 1991 on the HyperCard®

IIGS project. (He’s the one on the right in the photo.) After a short
and amazingly entertaining stint writing XCMDs, he joined
Developer Support as a contractor in November 1991, and has
never been home since. You can tell when you’re getting near
Brigham’s office, because you’ll be ducking Nerf arrows, and the
sounds of “Dude!” will be raging across your lobes. At night you
can find him there basking in the cathode rays of his 16" color

monitor. By day you can find him romancing the sidewalk with his
skateboard. On weekends he may be dancing in San Francisco,
enmeshed in the rhythm of something relentless and metallic. He
says one of his weirdest dreams was missing a turn while driving,
and then setting up a 68000 jump table to return. His next goal is
to be in a PowerBook commercial, on his skateboard saying
“Dude, it’s the next thing!” while doing an axle grind over a DOS
PC—all this with a PowerBook in his right hand running his favorite
application, MacsBug.•

GRAPHICAL
TRUFFLES

WRITING DIRECTLY
TO THE SCREEN

BRIGHAM STEVENS AND
BILL GUSCHWAN

without) many of the tasks that Toolbox managers
would normally handle for you.

You lose the full benefit of QuickDraw’s graphics
routines, most importantly the clipping ability. Because
the Window Manager uses QuickDraw for its clipping,
you lose the ability to have multiple overlapping
windows as part of your application’s interface. If your
application requires multiple overlapping windows, you
don’t want to be writing directly to the screen.

You lose the ability to stretch your windows across
multiple monitors. QuickDraw automagically has the
ability to split the contents of a window across multiple
monitors. If you write directly to the screen, you’ll be
limited to one monitor, or you’ll have to write a lot of
code that has already been implemented in QuickDraw.

You lose the Help Manager. The Help Manager
displays its balloons in a window over your application’s
window. If you’re writing directly to the screen, you’ll
blast the Help Manager’s windows.

You lose QuickDraw’s ability to map pictures and
pixMaps from one color environment to another.
Replacing such code with your own is nontrivial. Just
try writing an image-copying routine that deals with
simultaneous multiple pixel depths and you’ll gain a
new respect for CopyBits!

You restrict your ability to print. The Printing
Manager only understands QuickDraw. To print you’ll
have to use your drawing code to render your images
and then use CopyBits to transfer them to the printing
grafPort. This means sacrificing quality on the printed
page, since pixMaps generally don’t look as nice on the
printer as objects composed of QuickDraw calls. Of
course, if you have a QuickDraw version of your code
you can easily work around this.

Your program may have a different look and feel than a
standard Macintosh application. In the case of video
games and other animation packages, this may be OK.
But if you’re writing the next-generation word
processor or spreadsheet application, you should be

using QuickDraw, the Window Manager, and the
Palette Manager. You lose all or most of these user
interface managers if you write directly to the screen.
Do your writing to the screen within a window; this
will lessen the user interface impact. If you want to take
over the entire screen, open a window that covers the
entire screen.

Your program will also need to know when it’s running
in the background (see Inside Macintosh Volume VI,
page 5-19). When you’re in the background, other
applications’ windows may be covering your window.
In this case, you must use QuickDraw to refresh your
window when you get an update event. If you write
directly to the screen, you may clobber the foreground
application’s window.

FEELIN’ THE NEED FOR SPEED
Writing directly to the screen for faster animation or
graphics means a lot of work for you, because it will be
up to your programming skills to beat QuickDraw.
QuickDraw does everything possible to be as fast as it
can while still being very generic. Efficient use of
QuickDraw may actually eliminate the need to write to
the screen.

If you write specialized code that’s tailored specifically
for the kinds of images and graphics that your
application deals with, you might be able to make it
faster than QuickDraw. The routine presented at the
end of this column, which simply draws a color icon, is
about 50% faster than CopyBits. It was timed on a
Macintosh LC II at 1221 frames per second. CopyBits
came in at a relatively sluggish 579 frames per second.
The timing was done by taking the average number of
frames per second for 100 seconds.

Our routine is faster because it doesn’t make any of the
extra checks that QuickDraw must make to work with
different bit depths and color environments. This
routine is also coded to copy an image of a specific size,
while CopyBits is a generic bit copier.

Writing directly to the screen doesn’t guarantee that
you’ll be faster than QuickDraw. Even if your code is

d e v e l o p August 1992

BILL GUSCHWAN, reflecting his lack of belief in a self, quotes
Wittgenstein: “Whereof one cannot speak thereof one must be
silent.” Bill enjoys the wrath of Peleus's son, Smashing Pumpkins,
Skinny Puppy, and Smashing Candy, which are his favorite book
theme, rock groups, and poem, respectively. On a Shakespearean
note, he quotes the tenet, “For O, for O, the hobbyhorse is forgot!”
or, deconstructed, “Language deceives; never trust it.” We think
Bill’s brain needs a little deconstruction; we could donate it to
science because we now know how unselfish he really is.•

To learn how to influence the speed of CopyBits, see the
Macintosh Technical Note “Of Time and Space and _CopyBits”
(formerly #277).•

60

GRAPHICAL TRUFFLES August 1992

61

good, under some circumstances QuickDraw may
outperform you. If there’s an accelerator in the system,
you may not be able to beat QuickDraw at all. Also,
CopyBits is more efficient when copying large images,
because the overhead is a smaller part of the overall
work.

Increasing drawing speed enhances certain special
effects. Not only can you gain smoother animation, but
you also may be able to perform complex
transformations, such as rotating 3-D shapes, and
photo-realistic shading, which QuickDraw can’t do.
And you can do it with a high animation frame rate.
For applications such as games, increased drawing
speed and improved special effects are essential.

The table below shows the trade-off between image
size and drawing speed, comparing writing directly to
the screen, QuickDraw CopyBits, and CopyBits in
QuickDraw accelerated by an 8•24 GC card. We
copied an 8-bit color image from an offscreen GWorld
to the screen, on a Macintosh IIfx with System 7.0.1.

GETTING READY
Before you venture into video memory, you should do a
few things to prepare for writing directly to the screen.
Your program should determine the pixel depth and
open a window to draw into. Additionally, for
maximum performance under System 7, you may want
to kill all applications in the background.

To beat QuickDraw, your code should be tailored for a
specific pixel depth. Your program should find the pixel

depth of the screen it’s writing to by accessing the
screen’s GDevice.gdPMap.pixelSize field. If the depth
is different from the depth that your program expects,
you should ask the user’s permission to change the pixel
depth, and then change it using SetDepth (Inside
Macintosh Volume VI, page 21-23).

You must open a window to cover the part of the screen
you’re drawing on. If you don’t use a window, update
events for applications in the background may interfere
with your graphics.

If you require maximum performance, and you don’t
want any applications taking away your cycles at
WaitNextEvent time, you may want to consider
using the System 7 Process Manager to kill all the
background applications. If you do this, you should ask

The code used to measure the trade-off between image size
and drawing speed can be found on the Developer CD Series
disc.•

THE TEN COMMANDMENTS OF
WRITING TO THE SCREEN
1. Be sure your code is faster than QuickDraw.

2. Have a QuickDraw version of your code for
compatibility.

3. Write your code for a specific QuickDraw
version.

4. Write your code specifically for the kind of data
you’re dealing with.

5. Write your code for a specific pixel depth.

6. Never change the pixel depth without the user’s
permission.

7. Always bracket your drawing code with
ShieldCursor and ShowCursor.

8. Always draw into a window.

9. Never draw directly to the screen while you’re
in the background. Use QuickDraw instead.

10. Don’t write off the edge of video memory.
512 x 384 256 x 192 128 x 96

Image Image Image
Writing to
the Screen 20 77 306

CopyBits 19 72 268
8•24 GC
CopyBits 92 304 770

Numbers shown are frames per second.

the user’s permission first. Your users will no longer be
able to access any desk accessories, which require the
Finder to launch. There’s an example of killing the
background applications, called KillEveryOneButMe,
on the Developer CD Series disc in the Snippets folder.

REACHING FIRST BASE
To access video memory, you need the base address of
the video buffer for the screen to which you’re writing.
Depending on the version of QuickDraw installed,
you’ll need to use a different method of getting the
base address. Use the Gestalt function with the
gestaltQuickdrawVersion selector to determine the
QuickDraw version.

• If you’re running on a system with the original
black-and-white QuickDraw, which has a Gestalt
result of gestaltOriginalQDxx, you can access the
address of the screen by using the QuickDraw global
variable screenBits.baseAddr.

• If you’re running Color QuickDraw, which has a
Gestalt result of gestalt8BitQD, you can get the base
address of the screen you’re drawing on from the
baseAddr field of the GDevice’s pixMap. You should
leave the addressing mode alone.

• If you’re running 32-Bit QuickDraw, which has a
Gestalt result of gestalt32BitQDxx, you can get the
32-bit–clean base address of the screen’s video
memory by calling GetPixBaseAddr on the
screen’s GDevice’s pixMap. Before you begin
writing to the screen, you’ll need to shift to 32-bit
addressing mode to access video memory (see
SwapMMUMode, Inside Macintosh Volume V, page
593). After you change the addressing mode, you
can’t make any Toolbox or OS calls until you switch
back, because they all expect to be called with the
addressing mode established when the Macintosh
was booted. Also, if you’re changing modes from 24
bit to 32 bit, you should call StripAddress on any
master pointers that may be dereferenced in 32-bit
mode, because the high byte may contain garbage.

On multiple-monitor systems, you have to decide
whether you want your windows to be on any of the
additional screens. If you decide to allow users to drag

your window to other monitors, you should get the
base address from the monitor that the window is on.
See Graphical Truffles in develop Issue 10 for a
discussion of multiple monitors, including code.

PIXEL ACCESS
Now that you have the base address of video memory,
you need to know how to get to a pixel. To access a
pixel within video memory, you need to translate the
screen coordinate into a byte address.

To map the vertical coordinate, multiply it by the
rowBytes and add this product to the base address of
the screen’s video memory; this gives you the row
address. To map the horizontal coordinate, calculate
the byte number and add it to the row address. Voilà!
You now have the pixel address.

Below is a formula to translate a pixel coordinate into a
pixel address. We leave it up to you to implement these
formulas in the most efficient way for the graphics
you’re working with.

rowAddr = screenBaseAddr + (rowBytes
* pixel_vertical_coordinate);

if (pixel_depth < 8) {
pixels_per_byte = 8/pixel_depth;
byteNum = pixel_horizontal_coordinate

/ pixels_per_byte;
}
else {

bytes_per_pixel = pixel_depth/8;
byteNum = pixel_horizontal_coordinate

* bytes_per_pixel;
}
pixelAddr = rowAddr + byteNum;

For the example at the end of this column, we use the
formula for a pixel depth of 8 because it’s the simplest.
In this case, the above calculations can be reduced to

rowAddr = screenBaseAddr + (rowBytes *
pixel_vertical_coordinate);

pixelAddr = rowAddr +
pixel_horizontal_coordinate;

d e v e l o p August 1992

For information about killing the Finder, see the Q & A on
page 115.•

For more about 32-bit addressing, see develop Issue 6,
page 36.•

62

GRAPHICAL TRUFFLES August 1992

63

MOUSETRAP
You must call ShieldCursor (Inside Macintosh Volume I,
page 474) before you actually start writing to video
memory. If you don’t call ShieldCursor, your
application will not be compatible with some third-
party monitors. Also, if you don’t have the cursor
hidden and the mouse is moving over an area as you
draw to it, the mouse will leave behind “serially
repeating artifacts” (garbage). When you’re done
writing to video memory, call ShowCursor (Inside
Macintosh Volume I, page 168) to reverse the effects of
ShieldCursor.

CONCLUSION
Writing directly to the screen is risky because the
Macintosh hardware or OS may change in the future;
Apple makes no guarantee that these methods will
always work. In writing directly to the screen, you’ll
sacrifice the services of many Toolbox managers. For
mainstream applications, QuickDraw’s speed and
flexibility will suffice. But for certain applications, such
as games and animation, writing directly to the screen
may provide an extra competitive edge.

AN EXAMPLE
Below is a sample function, DirectPlotColorIcon, that
draws an 8-bit color icon (an 'icl8' resource) to an 8-bit
color screen device whose pixMap is passed.

What about that 0x7FFF rowBytes? The largest rowBytes of
a pixMap passed into CopyBits is 0x3FFE, otherwise the largest
rowBytes is 0x7FFE.•

void DirectPlotColorIcon(long *colorIconPtr, PixMapHandle screenPixMap, short row, short col)
{

register long *screenMemPtr; // Pointer to video memory
register short numRowsToCopy; // Rows we're going to copy
register short stripRowBytes; // To clear high bit of rowBytes
register short rowLongsOffset; // rowBytes converted to long
char mmuMode; // 32-bit mode required
Rect cursRect; // Rectangle for ShieldCursor call
Point cursOffset; // 0,0 to indicate rect is in global coordinates

/* High bit of pixMap rowBytes must be cleared. */
stripRowBytes = (0x7FFF & (**screenPixMap).rowBytes);

/* Strip high byte of icon address to prevent bus error in 24-bit mode. */
colorIconPtr = (long *)StripAddress(colorIconPtr);

REFERENCES
• “Drawing in GWorlds for Speed and Versatility”

by Konstantin Othmer and Mike Reed, develop
Issue 10.

• “Making the Most of Color on 1-Bit Devices” by
Konstantin Othmer and Daniel Lipton, develop
Issue 9.

• “QuickDraw’s CopyBits Procedure: Better Than
Ever in System 7.0” by Konstantin Othmer,
develop Issue 6.

• “Realistic Color for Real-World Applications” by
Bruce Leak, develop Issue 1.

• “Compatibility: Rules of the Road” by Dave
Radcliffe, develop Issue 1.

• Macintosh Technical Note “Of Time and Space
and _CopyBits” (formerly #277).

• Macintosh Technical Note “Compatibility: Why &
How” (formerly #117).

• “Accessing Hardware,” Inside Macintosh Volume
VI, page 3-7.

d e v e l o p August 1992

Thanks to C. K. Haun, Dennis Hescox, Guillermo Ortiz, and
Forrest Tanaka for reviewing this column.•

64

/* Calculate the address of the first byte of the destination. */
screenMemPtr = (long *)(GetPixBaseAddr(screenPixMap) + (stripRowBytes * row) + col);

/* Call ShieldCursor to maintain compatibility with all displays. */
cursRect.top = row;
cursRect.left = col;
cursRect.bottom = row + 32;
cursRect.right = col + 32;
cursOffset.h = 0;
cursOffset.v = 0;
ShieldCursor(&cursRect, cursOffset);

/* Change to 32-bit addressing mode to access video memory. The previous addressing mode
is returned in mmuMode for restoring later. */

mmuMode = true32b;
SwapMMUMode(&mmuMode);

/* Color icons have 32 rows. */
numRowsToCopy = 32;

/* Calculate the long word offset from the end of one row of the color icon on the screen's
pixMap to the first byte of the icon in the next row. */

rowLongsOffset = (stripRowBytes/4) - 8;

/* Draw the color icon directly to the screen. */
do {

*screenMemPtr++ = *colorIconPtr++;
*screenMemPtr++ = *colorIconPtr++;
*screenMemPtr++ = *colorIconPtr++;
*screenMemPtr++ = *colorIconPtr++;
*screenMemPtr++ = *colorIconPtr++;
*screenMemPtr++ = *colorIconPtr++;
*screenMemPtr++ = *colorIconPtr++;
*screenMemPtr++ = *colorIconPtr++;

/* Bump to start of next row. */
screenMemPtr += rowLongsOffset;

} while(--numRowsToCopy);

/* Restore addressing mode back to what it was. */
SwapMMUMode(&mmuMode);

ShowCursor();
}

Handling exceptions is a difficult but important part of developing
Macintosh applications. This article provides a methodology as well as a
set of C tools for handling exceptions and writing robust code.
Techniques and examples are provided for dealing with some of the
Toolbox idiosyncrasies, and some interesting features of the C
preprocessor, MacsBug, and MPW are explored.

Writing software on the Macintosh can be difficult. Writing robust software on the
Macintosh is even more difficult. Every call to the Toolbox is a potential source of a
bug and there are too many cases to handle—what if there isn’t enough memory, or
the disk containing the code has been ejected, or there isn’t enough stack space, or
the printer is unplugged, or . . . The list goes on, and a well-written application is
expected to handle every case—always recovering without loss of information. By
looking at how software is developed, this article introduces a methodology and tools
for handling the exceptional cases with minimal impact on the code that handles the
task at hand.

VERSION 1: NORMAL FLOW OF CONTROL
When writing code, programmers usually begin by writing the normal flow of
control—no error handling. The code shown below is a reconstruction of the first
version of a printing loop routine that eventually went out as a Macintosh Technical
Note, “A Printing Loop That Cares . . .” (#161). Note that comments were removed
to make the structure more apparent.

#include <Printing.h>
#include <Resources.h>
#include <Memory.h>

void PrintStuff(void)
{

GrafPtr oldPort;

LIVING IN AN EXCEPTIONAL WORLD August 1992

65
SEAN PARENT (AppleLink PARENT, Internet
parent@apple.com) is a parent, but Parent is his
last name, not his title. He grew up in Renton,
Washington, with his parents (you know, the
people who produced him), who are also Parents.
Sean came to Apple to pursue his lifelong interest
in reference manuals. He enjoys a good ANSI
standards document during breakfast, and likes
catchy punch lines such as, "No, no! I said

'ANSI,' not 'ASCII'!" Sean also likes to write a
good hack, and consistently comes in next-to-
second-best at the annual MacHack MacHax
Hack Contest. Unable to hide his prowess, he
gave in to the inevitable job at Apple, and now
he wants to change the world, one programming
paradigm at a time.•

SEAN PARENT

LIVING IN AN

EXCEPTIONAL

WORLD

short copies, firstPage, lastPage, numCopies, printmgrsResFile,
realNumberOfPagesInDoc, pageNumber;

DialogPtr printingStatusDialog;
THPrint thePrRecHdl;
TPPrPort thePrPort;
TPrStatus theStatus;

GetPort(&oldPort);
UnLoadTheWorld();
thePrRecHdl = (THPrint)NewHandle(sizeof(TPrint));
PrOpen();
printmgrsResFile = CurResFile();
PrintDefault(thePrRecHdl);
if (PrStlDialog(thePrRecHdl)) {

realNumberOfPagesInDoc = DetermineNumberOfPagesInDoc(
(**thePrRecHdl).prInfo.rPage);

if (PrJobDialog(thePrRecHdl)) {
numCopies = (**thePrRecHdl).prJob.iCopies;
firstPage = (**thePrRecHdl).prJob.iFstPage;
lastPage = (**thePrRecHdl).prJob.iLstPage;
(**thePrRecHdl).prJob.iFstPage = 1;
(**thePrRecHdl).prJob.iLstPage = 9999;
if (realNumberOfPagesInDoc < lastPage) {

lastPage = realNumberOfPagesInDoc;
}
printingStatusDialog =

GetNewDialog(257, nil, (WindowPtr) -1);
for (copies = 1; copies <= numCopies; copies++) {

(**thePrRecHdl).prJob.pIdleProc = CheckMyPrintDialogButton;
UseResFile(printmgrsResFile);
thePrPort = PrOpenDoc(thePrRecHdl, nil, nil);
pageNumber = firstPage;
while (pageNumber <= lastPage) {

PrOpenPage(thePrPort, nil);
DrawStuff((**thePrRecHdl).prInfo.rPage,

(GrafPtr)thePrPort, pageNumber);
PrClosePage(thePrPort);
++pageNumber;

}
PrCloseDoc(thePrPort);

}
if ((**thePrRecHdl).prJob.bJDocLoop == bSpoolLoop) {

PrPicFile(thePrRecHdl, nil, nil, nil, &theStatus);
}

}
}

d e v e l o p August 1992

66

PrClose();
DisposeHandle((Handle)thePrRecHdl);
DisposeDialog(printingStatusDialog);
SetPort(oldPort);

} /* PrintStuff */

VERSION 2: ERROR HANDLING ADDED
With code in the preliminary stage shown above, the flow of control is easy to follow.
After writing it, the programmer probably read through it and added some error-
handling code. Adding “if (error == noErr)” logic wasn’t difficult, but it took some
thought to determine how to handle the cleanup and deal with the two loops. Some
more error-handling code may have been added after running the routine under
stressful conditions. Perhaps it was reviewed by lots of people before it went out as a
Technical Note. Here’s the new version of the code (with the added error-handling
code shown in bold):

#include <Printing.h>
#include <Resources.h>
#include <Memory.h>

void PrintStuff(void)
{

GrafPtr oldPort;
short copies, firstPage, lastPage, numCopies, printmgrsResFile,

realNumberOfPagesInDoc, pageNumber, printError;
DialogPtr printingStatusDialog;
THPrint thePrRecHdl;
TPPrPort thePrPort;
TPrStatus theStatus;

GetPort(&oldPort);
UnLoadTheWorld();
thePrRecHdl = (THPrint)NewHandle(sizeof(TPrint));
if (MemError() == noErr && thePrRecHdl != nil) {

PrOpen();
if (PrError() == noErr) {

printmgrsResFile = CurResFile();
PrintDefault(thePrRecHdl);
if (PrError() == noErr) {

if (PrStlDialog(thePrRecHdl)) {
realNumberOfPagesInDoc = DetermineNumberOfPagesInDoc(

(**thePrRecHdl).prInfo.rPage);
if (PrJobDialog(thePrRecHdl)) {

numCopies = (**thePrRecHdl).prJob.iCopies;

LIVING IN AN EXCEPTIONAL WORLD August 1992

67

firstPage = (**thePrRecHdl).prJob.iFstPage;
lastPage = (**thePrRecHdl).prJob.iLstPage;
(**thePrRecHdl).prJob.iFstPage = 1;
(**thePrRecHdl).prJob.iLstPage = 9999;
if (realNumberOfPagesInDoc < lastPage) {

lastPage = realNumberOfPagesInDoc;
}
printingStatusDialog =

GetNewDialog(257, nil, (WindowPtr) -1);
for (copies = 1; copies <= numCopies; copies++) {

(**thePrRecHdl).prJob.pIdleProc =
CheckMyPrintDialogButton;

UseResFile(printmgrsResFile);
thePrPort = PrOpenDoc(thePrRecHdl, nil, nil);
if (PrError() == noErr) {

pageNumber = firstPage;
while (pageNumber <= lastPage &&

PrError() == noErr) {
PrOpenPage(thePrPort, nil);
if (PrError() == noErr) {

DrawStuff((**thePrRecHdl).prInfo.rPage,
(GrafPtr)thePrPort, pageNumber);

}
PrClosePage(thePrPort);
++pageNumber;

}
}
PrCloseDoc(thePrPort);

}
} else PrSetError(iPrAbort);

} else PrSetError(iPrAbort);
}

}
if (((**thePrRecHdl).prJob.bJDocLoop == bSpoolLoop) &&

(PrError() == noErr)) {
PrPicFile(thePrRecHdl, nil, nil, nil, &theStatus);

}
printError = PrError();
PrClose();
if (printError != noErr) PostPrintingErrors(printError);

}
if (thePrRecHdl != nil) DisposeHandle((Handle)thePrRecHdl);
if (printingStatusDialog != nil) DisposeDialog(printingStatusDialog);
SetPort(oldPort);

} /* PrintStuff */

d e v e l o p August 1992

68

Can you easily follow the normal flow of control in the second version? What if an
error occurs? Could an error ever go unreported? Could this code crash because it
didn’t handle an error? Does this routine always clean up after itself? These questions
are difficult to answer because the normal flow of control of this routine is
intertwined with the flow that will occur in the event of an error. If the two could be
separated, it would be much easier to tell what the routine does normally and how
things are handled when something goes wrong. Besides making the code easier to
read, a methodology that allowed such separation would make the code easier to
write, debug, and, maintain.

PROGRAMMING BY CONTRACT
Programming by contract is based on the assumption that all correct routines have a
contract, either stated or implied, with their caller. The contract states that if a given
set of preconditions is met, the routine either succeeds or flags an exception and
leaves the machine in a known or determinable state. This contract is flexible enough
to be applied to any correct code.

The secret to writing robust code is to understand what the preconditions of a given
routine are, when an exception can be flagged, and how to handle the exception.
Separating the logic that checks conditions and handles exceptions from the
algorithm of the routine allows code to be written in a straightforward way with the
flow of control seen as easily as in our first version.

PRECONDITIONS
The preconditions of a routine specify the state the machine must be in for the
routine to execute without failure (where failure implies a crash—not flagging an
exception). A routine may require in its precondition items such as

• a previously called initialization routine

• valid ranges for value parameters

• available memory

• initialization of global state

• a specific software version

For some routines the preconditions may be readily apparent either in the interface
or in the documentation. Sometimes it’s necessary to experiment to discover the
preconditions of a routine. When writing a routine, the “strength” of the
precondition can be set according to the use of the routine. For example, a routine
named DivideLong is written with a description that states:

Given two numbers, numer and denom, DivideLong will divide numer by
denom, set numer to the result, and return noErr. If denom is zero, DivideLong
will return divideByZeroErr and leave numer unchanged.

LIVING IN AN EXCEPTIONAL WORLD August 1992

69

With this description, numer and denom can be any numbers of the proper type.
This is a weak precondition. Another description might read:

Given two numbers, numer and denom, DivideLong will divide numer by
denom and return the result. If denom is zero, DivideLong will fail.

With the second description, it would be the caller’s responsibility to ensure that
denom isn’t zero. This is a strong precondition.

In general, it’s better to have a strong precondition in a routine that is used within a
sequence of related routines or shares conditions with other routines, because it
generates more efficient code by eliminating error checking. It’s better to have a weak
precondition in routines that are called only once or at the start of a sequence of
related routines. Routines with weak preconditions free the caller from ensuring the
state of the machine before making the call.

A precondition can be strengthened by the caller but must not be weakened.
Strengthening is useful when you’re making a sequence of related calls where being
sure additional conditions are met guarantees that no routine flags an exception. For
example, given the first description of DivideLong it would be valid for a caller to do
the following:

if (denom != 0) {
(void)DivideLong(&numer_a, denom); /* Ignore return. */
(void)DivideLong(&numer_b, denom); /* Ignore return. */

} else HandleError();

This may be more desirable than checking for a result of divideByZeroErr after each
call. An example of weakening a precondition would be to call DivideLong as
described in the second description without ensuring that denom isn’t zero. This
would constitute a bug.

POST-CONDITIONS
Post-conditions specify the state of the machine on the return of a routine. They
include side effects and changes to global state as well as function results and variable
parameters. The post-conditions of a routine must be determinable for the routine to
be correct. They don’t vary in strength and, if not met, the routine has a bug. A
thorough understanding of the post-conditions of a routine is required to ensure that
the routine is being called correctly and that cleanup can occur when the routine flags
an exception.

Sometimes it’s necessary to rephrase the preconditions and post-conditions of a
routine to use it correctly. For example, a common misconception is that the only
preconditions for calling TEKey are that it has passed a valid TEHandle and the
appropriate Managers have been initialized. Since there’s no mechanism for TEKey

d e v e l o p August 1992

70

to flag an exception, the assumption is that it can’t fail. But TEKey may need to grow
the hText handle if the character isn’t replacing others and isn’t a backspace. Growing
a handle requires memory—something there may not be enough of. Since TEKey
can fail without flagging an exception with these preconditions, it appears to be
incorrect and contain a bug. However, by strengthening the preconditions to require
that hText must be able to grow by the size of a character, the routine is once again
correct. Strengthening preconditions is an easy fix often used in system software. (See
the section “Preflighting Calls” for tips on how to ensure preconditions.)

HOW TO WRITE CHECKS
The check macro is used to ensure that static preconditions and post-conditions are
being met during development. It also documents conditions for you, making it a
very useful tool that adds to the maintainability of the code. Unfortunately, these
conditions cannot be expressed directly in the interface so as to be more apparent to
the caller. The syntax for check is

check(assertion);

To use the check macro, include Exceptions.h (provided on the Developer CD Series
disc). For MacsBug, use ResEdit to add Exceptions.rsrc to the DebuggerPrefs file in
the System Folder.

What check does depends on the setting of the compile-time variable
DEBUGLEVEL. DEBUGLEVEL can be set to one of the following values:

• DEBUGOFF or DEBUGWARN: check does nothing and
assertion is not evaluated.

• DEBUGMIN or DEBUGSYM: assertion is evaluated and, if it’s
false (zero), a debugger break is executed. (The debugger break is
Debugger() for DEBUGMIN and SysBreak() for DEBUGSYM.
The first is useful for low-level debuggers like MacsBug or
TMON, the second for symbolic debuggers like SourceBug,
SADE, or THINK C.)

• DEBUGON or DEBUGFULL: assertion is evaluated and, if it’s
false (zero), MacsBug is entered and the dprintf dcmd is invoked to
display more information. If DEBUGON, assertion is displayed
and if DEBUGFULL, the source code file and line number are
also displayed (see “Wonders of MacsBug and dprintf” for more
information about dprintf).

Normally, check is used at the start and end of a routine. At the start it’s used to
ensure that parameters are within a given range and are not specific values (such as
nil). At the end it’s used to ensure that allocations succeeded and results are as
desired.

LIVING IN AN EXCEPTIONAL WORLD August 1992

71

d e v e l o p August 1992

72

The MacsBug dcmd, dprintf, is used by the require and
check macros to display useful debugging information.
The dprintf command is also a powerful tool that provides
all the features of the standard printf but uses MacsBug as
the console. The dprintf command assumes MPW
parameter-passing conventions. The syntax for dprintf is

dprintf([no]trace, formatString, …);

where trace and notrace are used to specify whether
or not to continue after displaying the information in
MacsBug. The variable formatString is a printf style-
format string with some extensions (see the comment in
the Exceptions.h file on the Developer CD Series disc).
Following formatString are the parameters to display. This
can be a very useful tool for viewing complex structures or
difficult-to-read values like floating- or fixed-point numbers.

The implementation of the dprintf dcmd is shown in the
DPrintf.c file on the CD. It’s fairly straightforward and can
be extended easily to add any special data types
required (for example, a t format character that would
take a pointer to text and an integer length and display
the text). The dcmd is invoked from C using the inline
declaration for dprintf. The inline declaration invokes the
DebugStr trap and pushes a long on the stack. The push
is required because DebugStr uses Pascal calling
conventions and so pops the [no]trace string from the
stack. Since dprintf is a C-based function, the stack is
fixed, so the string isn’t popped twice. Both trace
and notrace are macro Pascal strings containing
“;dprintf;doTrace” and “;dprintf”. Since the strings begin
with a semicolon, MacsBug interprets them as commands
and executes them. The dcmd then fetches the parameters
from the stack according to formatString and displays
them. The MacsBug macro doTrace evaluates to “g” or
“”. It’s used to switch tracing between trace and break
by entering either traceGo or traceBreak in MacsBug.

When developing software, it’s useful to insert dprintf
statements to display information in sections of code that

are executed only in unusual circumstances. If dprintf is
bracketed with #if debugon / #endif directives, it
compiles out when DEBUGLEVEL is set to DEBUGWARN
or DEBUGOFF. With trace the information is displayed
without seriously interrupting the execution of the code.
The trace macro is also useful for logging timing
statistics by displaying Ticks. Since formatString is
interpreted in MacsBug with interrupts disabled, even a
complex formatString has minimal impact on timing
results.

MACSBUG POWER USER TIP
If you have more than one monitor, you can use the swap
command to make MacsBug always visible and use
dprintf with trace to continually log information. You can
set which screen MacsBug uses by opening the Monitors
control panel, holding down the Option key, and
dragging the “Happy Macintosh” to the monitor on which
you want to display MacsBug (you have to restart for it to
take effect).

MPW POWER USER TIP
At the end of the comment for dprintf in Exceptions.h is a
section that uses Echo to pipe code to the assembler.

/***
Echo " ∂n∂

PRINT OFF,NOHDR ∂n∂
INCLUDE 'Traps.a' ∂n∂
PRINT ON ∂n∂
PROC ∂n∂
_DebugStr ∂n∂
SUBQ #4,SP ; Fix the stack ∂n∂
ENDPROC ∂n∂
END ∂n∂

" | Asm -l
***/

If you select this section and press Enter, it generates a
listing with hex output. This is a handy way to generate
and document inline functions.

WONDERS OF MACSBUG AND DPRINTF

REQUIREMENTS FOR BETTER LIVING
Although check can ensure that preconditions and post-conditions are being met
during development, check is of limited value in situations where it cannot be
determined whether the conditions are being met statically, because

• it disappears when DEBUGLEVEL is set to DEBUGOFF

• it doesn’t provide sufficient support for handling exceptions to
return the machine to a known state

What’s needed is a mechanism that does not compile out and provides the ability to
invoke a handler when assertion fails.

WHAT WE REQUIRE
The require macro was created to make handling exceptions simpler. The syntax for
require is

require(assertion, exception);

If assertion evaluates to false (zero), execution continues at the handler exception. (The
exception parameter, by convention, shares the name of the routine that failed, but this
isn’t mandatory.) Handlers are typically written as shells with control falling from one
to the next, cleaning up after prior calls along the way. The extent of the cleanup
needed gets deeper as more of the routine succeeds. Figure 1 shows an extended form
of require called require_action. The extended form executes a statement when
assertion fails before executing the handler. This is most useful for setting an error
variable. The syntax for require_action is

require_action(assertion, exception, action);

Like check, require breaks into MacsBug and displays pertinent information
depending on the settings of DEBUGLEVEL. Unlike check, require does not
compile out when DEBUGLEVEL is set to DEBUGWARN or DEBUGOFF. It
evaluates assertion and invokes the handler (and action), but no break occurs.

The nrequire macro is equivalent to require(!assertion, exception). However, under
rare circumstances it generates more efficient code, and when debugging is on, it
displays the value of assertion. It’s also easier to read. As a general rule, use require
with handles and pointers and nrequire with errors.

VERSION 3: IMPROVED WITH REQUIRE
A close look at the code in version 2 reveals some problems:

• No error handling is done after PrCloseDoc, though any errors
will get caught either after the next PrOpenDoc or on exit.

LIVING IN AN EXCEPTIONAL WORLD August 1992

73

• No error handling is done for GetNewDialog; if it fails it may
result in a crash.

• If the NewHandle at the start of the code fails, it won’t print and
the user is never notified why.

• If an error occurs in the copies loop, the loop isn’t terminated.

d e v e l o p August 1992

74

Figure 1
Control Flow for require_action

OSErr CreateContent(WindowPtr window)
{

OSErr error;
long scrapSize, tempLong;
HContent content;

check_action(window, return(nilParamErr););

content = (HContent)NewHandle(sizeof(SContent));
require_action(content, NewHandle_content,

error = MemErr(););

(*content)->picture = (PictHandle)NewHandle(0);
require_action((*content)->picture, NewHandle_picture,

error = MemErr (););

scrapSize = GetScrap((Handle)(*content)->picture,
'PICT', &tempLong);

require_action((scrapSize >= noErr) || (scrapSize ==
noTypeErr), GetScrap, error = (OSErr)scrapSize;);

if (scrapSize == noTypeErr) {
DisposeHandle((Handle)(*content)->picture);
(*content)->picture = nil;

}

SetWRefCon(window, (long)content);

return(noErr);

GetScrap:
DisposeHandle((Handle)(*content)->picture);

NewHandle_picture:
DisposeHandle((Handle)content);

NewHandle_content:
return(error);

} /* CreateContent */

If printing is well behaved and does nothing once PrError has been set, none of these
problems poses much of a threat to the actual stability of the code (with the exception
of GetNewDialog). However, the use of require when writing the code could have
avoided the problems and the code would be easier to understand and maintain. This
is shown in the code below—version 3. The structure of the code in version 3 is
almost identical to version 1 with the addition of the require statements and the
handlers at the end. Writing code like this is straightforward. When a routine is
called that can flag an exception, a require statement is added with a handler. The
statements executed in a handler typically clean up after the routines called before the
routine flagging the exception. (See the section “When To Clean Up” for more
discussion.) Although PrClose should never cause an error, a check statement was
added during development.

Here’s version 3 of the code (with changes from version 1 shown in bold):

#include <Printing.h>
#include <Resources.h>
#include <Memory.h>
#include <Errors.h>
#include "Exceptions.h"

void PrintStuff(void)
{

GrafPtr oldPort;
short copies, firstPage, lastPage, numCopies, printmgrsResFile,

realNumberOfPagesInDoc, pageNumber;
DialogPtr printingStatusDialog;
OSErr theError;
THPrint thePrRecHdl;
TPPrPort thePrPort;
TPrStatus theStatus;
long contig, total;

enum { dialogSlop = 8192 };

GetPort(&oldPort);
UnLoadTheWorld();

thePrRecHdl = (THPrint)NewHandle(sizeof(TPrint));
require_action(thePrRecHdl, NewHandle, theError = MemError(););

PrOpen();
nrequire(theError = PrError(), PrOpen);

printmgrsResFile = CurResFile();

LIVING IN AN EXCEPTIONAL WORLD August 1992

75

PrintDefault(thePrRecHdl);
nrequire(theError = PrError(), PrintDefault);

if (PrStlDialog(thePrRecHdl)) {
realNumberOfPagesInDoc = DetermineNumberOfPagesInDoc(

(**thePrRecHdl).prInfo.rPage);
if (PrJobDialog(thePrRecHdl)) {

numCopies = (**thePrRecHdl).prJob.iCopies;
firstPage = (**thePrRecHdl).prJob.iFstPage;
lastPage = (**thePrRecHdl).prJob.iLstPage;
(**thePrRecHdl).prJob.iFstPage = 1;
(**thePrRecHdl).prJob.iLstPage = 9999;
if (realNumberOfPagesInDoc < lastPage) {

lastPage = realNumberOfPagesInDoc;
}

PurgeSpace(&total, &contig);
require_action(contig >= dialogSlop, PurgeSpace,

theError = memFullErr;);

printingStatusDialog =
GetNewDialog(257, nil, (WindowPtr) -1);

require_action(printingStatusDialog, GetNewDialog,
theError = memFullErr;);

for (copies = 1; copies <= numCopies; copies++) {
(**thePrRecHdl).prJob.pIdleProc = CheckMyPrintDialogButton;
UseResFile(printmgrsResFile);
thePrPort = PrOpenDoc(thePrRecHdl, nil, nil);
nrequire(theError = PrError(), PrOpenDoc);

pageNumber = firstPage;
while (pageNumber <= lastPage) {

PrOpenPage(thePrPort, nil);
nrequire(theError = PrError(), PrOpenPage);

DrawStuff((**thePrRecHdl).prInfo.rPage,
(GrafPtr)thePrPort, pageNumber);

PrClosePage(thePrPort);
nrequire(theError = PrError(), PrClosePage);

++pageNumber;
}
PrCloseDoc(thePrPort);
nrequire(theError = PrError(), PrCloseDoc);

}

d e v e l o p August 1992

76

if ((**thePrRecHdl).prJob.bJDocLoop == bSpoolLoop) {
PrPicFile(thePrRecHdl, nil, nil, nil, &theStatus);
nrequire(theError = PrError(), PrPicFile);

}
}

}

PrClose();
ncheck(PrError());

DisposeHandle((Handle)thePrRecHdl);
DisposeDialog(printingStatusDialog);
SetPort(oldPort);
return;

PrOpenPage:
PrClosePage(thePrPort);

PrClosePage:
PrOpenDoc:

PrCloseDoc(thePrPort);
PrPicFile:
PrCloseDoc:

DisposeDialog(printingStatusDialog);
GetNewDialog:
PurgeSpace:
PrintDefault:
PrOpen:

PrClose();
DisposeHandle((Handle)thePrRecHdl);

NewHandle:
SetPort(oldPort);
PostPrintingErrors(theError);

} /* PrintStuff */

PREFLIGHTING CALLS
Preflighting a call is the process of ensuring that the preconditions are met. Usually
this isn’t necessary since the preconditions will be satisfied by handling the exceptions
of prior calls or will be implicit in the caller’s preconditions. For example, there’s no
need to ensure that the TEHandle being passed to TEKey isn’t nil if the exceptional
case of the previous TENew returning nil was handled.

In case preconditions haven’t been satisfied by handling the exceptions of previous
calls, require can be used to check the precondition and invoke a handler if it’s not
being met. This is especially useful for routines that have strong preconditions or

LIVING IN AN EXCEPTIONAL WORLD August 1992

77

preconditions that are difficult to determine. Earlier, TEKey was used as an example
of a routine with strong preconditions. To ensure the preconditions for TEKey,
require could be used as follows:

OSErr SafeTEKey(short key, TEHandle hTE) {
enum { teSlop = 1024 };

OSErr error;
TEPtr w = *hTE;
Handle hText = w->hText;
short teLength = w->teLength;

SetHandleSize(hText, teLength + teSlop);
nrequire(error = MemError(), SetHandleSize);
SetHandleSize(hText, teLength);
TEKey(key, hTE);
return(noErr);

SetHandleSize:
return error;

}

The constant teSlop is used instead of 1 just to be safe. Adding some slop for routines
with implied, rather than stated, preconditions is always a good idea.

For some routines the preconditions are too complex or subject to change to
accurately state as an assertion. This is the case for GetNewDialog, as shown in
version 3. GetNewDialog can fail when there isn’t enough memory for one of the
numerous QuickDraw elements to be allocated, to load the WDEF, or, if the dialog
contains TextEdit items, to create the TEHandle. About all that can be done to
guarantee that GetNewDialog succeeds is to ensure that there’s a reasonable amount
of memory available. It’s fairly safe to rely on the Process Manager in System 7 to
make sure there’s space in the system heap for the WDEF. This is what’s done in
version 3. The assertion is based on contiguous memory instead of total memory in
case the heap is too fragmented to allocate some of the larger blocks required.
Sometimes all that can be done is to increase the chances of survival.

WHEN TO CLEAN UP
Just as preconditions can sometimes be tricky to determine, post-conditions can be
hazardous as well. It’s important to understand the post-conditions of the routines
being called, so that the machine can be returned to a known state, ensuring valid
post-conditions for the calling routine. Normally, if an exception is being raised, a
routine should dispose of everything it successfully allocated, close everything it
successfully opened, and release everything it successfully locked. So, if NewHandle is

d e v e l o p August 1992

CouldDialog, which was intended as a preflight
tool for GetNewDialog, is a no-op in System 7
(it’s been broken since the Macintosh II was
introduced).•

78

called successfully, DisposeHandle is called in the handler. If OpenFile is called
successfully, CloseFile is called in the handler.

But this rule isn’t always true. One counterexample is the Printing Manager. Even if
PrOpen flags an exception PrClose must be called. The same is true for
PrOpenDocument and PrOpenPage.

Shared resources present another potential problem. If GetResource is successfully
called on a system resource, it’s a bad idea to release it, because it may also be in use
by another routine. SetResLoad(false) and GetResource can be called to determine
whether the resource is already in memory before loading it, and then it can be
released only if it was loaded. This, however, is taking things to an extreme. It may be
better to document that these resources may be loaded even if the routine flags an
exception. Since this is determinable by the caller, it suffices as a valid post-condition.

FUTURE DIRECTIONS
The routines and macros provided in Exceptions.h lay the foundation for writing
robust software. There are more sophisticated exception-handling mechanisms, such
as the proposed catch and throw implementation for C++. Ada has a reasonable
exception-handling mechanism, as does CLU and Eiffel. However, these mechanisms
don’t lend themselves to dealing with exceptions from routines that were not written
using the same mechanism and so are difficult to use on the Macintosh when dealing
with the OS and Toolbox. The check and require macros are flexible enough to be
useful in most situations and are implemented in C, so they can be of value for many
(if not most) existing projects. They are also C++ friendly and can be of great use to
C++ programmers as well.

After you read the code in version 3 that uses these macros it should be fairly simple
to answer the questions asked about version 2 at the beginning of the article. This is
left as an exercise.

Turn the page if you want even more detail . . .

LIVING IN AN EXCEPTIONAL WORLD August 1992

79

RELATED READING
• Macintosh Technical Note ”A Printing Loop That Cares . . .“ (formerly #161).

• Object-Oriented Software Construction by Bertrand Meyer (Prentice-Hall, 1988).
Contains more information on programming by contract.

• Debugging Macintosh Software with MacsBug by Konstantin Othmer and Jim
Straus (Addison-Wesley, 1991). Contains additional MacsBug tips.

d e v e l o p August 1992

Seriously insane cycle counters take note
that the MPW 3.2 C compiler doesn’t reuse a
register to store a variable in a local scope when
the register was used in a prior scope containing
a goto statement (require generates a goto).
This can lead to code that isn’t as efficient as it
should be but can usually be coded around (it’s
difficult to generate in the first place). Hopefully
this will be fixed in a future compiler.•

80

The require and check macro implementation is shown
in Figure 2. To ensure that there aren’t any side effects,
any macro that’s larger than a single statement is
enclosed in do { } while(false). This ensures that the
macro behaves as a simple statement and can be used
anyplace a simple statement would be (such as after an
if). The do { } while(false) does not generate any
object code. In some of the macros, if statements appear
in the form

if (assertion) ; /* Do nothing. */
else { /* Do something. */ }

Under some conditions, this will generate more efficient
code than

if (!assertion) { /* Do something. */ }

(This was especially true back in the days of the MPW
3.1 compiler.) There are variables declared within the
scope of the macros when debugging is on. This avoids
side effects caused by evaluating assertion multiple times
(once in the condition and once to display it). For
example:

nrequire(ReadCharacters(), Fail);

If ReadCharacters returned a value other than nil,
MacsBug would be invoked to display the result before
executing the handler Fail. Without the local variable,
ReadCharacters would be executed a second time to
display the value. The second execution may cause side
effects like increasing a file pointer as well as reading in
a different set of characters.

When assertion is an error code returned by a function, it
can be assigned to a variable to preserve the error. This
also keeps the exception-handling code enclosed within
the require statement. For example:

nrequire(error = GetError(), Fail);

However, with warnings set to full, this invokes a warning
because the assignment takes place as part of an if
statement. Using

error = GetError();
nrequire(error, Fail);

generates identical code (at least with MPW 3.2) and
doesn’t cause any warnings.

A macro, resume, is provided for recovering from
exceptions. It’s used within a handler and takes the form

resume(exception);

where exception corresponds to exception used in a
require statement. The resume macro simply transfers
control to the point immediately following the require
statement. Because of the resume feature, multiple
require statements cannot share the same exception
handler. Sometimes sharing a handler is convenient, so
resume can be disabled with a statement:

#define resumeLabel(exception)

To reenable resume, use

#define resumeLabel(exception)\
resume_ ## exception:

There’s also a check_action macro which, like
require_action, allows a statement to be executed
when assertion fails. The check_action macro compiles
out like all check macros and should be viewed as a
development-time tool only. Being able to execute a
statement allows for the exit of a routine if the
preconditions aren’t met.

MORE DETAIL THAN MOST FOLKS NEED

LIVING IN AN EXCEPTIONAL WORLD August 1992

81
THANKS TO OUR TECHNICAL REVIEWERS
Scott Boyd, Konstantin Othmer, Sam Weiss. Also,
special thanks to everyone in the Print Shop
(present and former members) for using this stuff
and suggesting numerous improvements during
the past few years.•

Figure 2
Implementing require and check

#define require(assertion, exception) \
do { \

if (assertion) ; \
else { \

dprintf(notrace, \
"Assertion \"%s\" Failed\n" \
"Exception \"%s\" Raised", \
#assertion, #exception); \

goto exception; \
resumeLabel(exception); \

} \
} while (false)

#define check(assertion) \
do { \

if (assertion) ; \
else { \

dprintf(notrace, \
"Assertion \"%s\" Failed", \
#assertion); \

} \
} while (false)

Distributed computing is the wave of the future, soon to come rolling
onto the shores of programming. Programmers should be prepared for
the possibilities and challenges that distributed computing will offer. The
NetWork model proposes a design strategy and provides a testbed
implementation that enables you to explore and experiment with
distributed computing on the Macintosh. While this article may not
help you write a better application today, it will help familiarize you
with the idea of distributed computing so that when system support for
it comes along, you’ll be ready to take advantage of it.

As computing evolves, we’re rapidly moving from a reliance on discrete personal
computers and workstations to a new type of computing infrastructure—a computing
environment. In a computing environment, applications will make massive use of
many partially coordinated or uncoordinated autonomous computing devices. That
is, one device won’t necessarily know which application subtask any other device is
working on or when and how any other device is completing its particular subtask.
These autonomous devices will be connected by multiple threads of communication.
What’s more, the computing environment of tomorrow will be continually changing,
with portable devices moving in and out and with new capabilities added dynamically.
Devices will change in time and will have varying availability. In short, distributed
computing in an environment with no guaranteed stability will become the order of
the day.

Visions like Apple’s Personal Digital Assistant and the TRON Project give some idea
of what we’ll see. The Personal Digital Assistant will be a small intelligent device that
will help you with some aspect of living and working; for example, it might be a smart
map leading you around in a town you’re visiting, or a dietary assistant helping you
plan a week’s meals, or a TV viewer helping you trace back a thread of interesting
news you’ve just become aware of. TRON will work the other way, making your
environment smart on its own; for example, the washing machine itself will place

d e v e l o p August 1992

GÜNTHER SAWITZKI sold his car seven years
ago and hasn’t regretted it for a second since
then. He thinks that cars, along with sports
(except for art forms like aikido), are relics of the
past. He works (within walking distance of home)
at the University of Heidelberg’s Institute for
Applied Mathematics, doing computational
statistics and data analysis when he’s not busy
with software engineering and development. He

headed the NetWork Project and designed the
basis of NetWork. In his opinion, Aldous Huxley’s
Brave New World is a vital book of immediate
importance. His favorite game is go (“It’s the only
game that allows me to comprehend that it’s a
game”), his favorite food is mousse au chocolat
(with white and black chocolate), and his favorite
time of day is tomorrow.•

82

GÜNTHER SAWITZKI

THE NETWORK

PROJECT:

DISTRIBUTED

COMPUTING

ON THE

MACINTOSH

orders for more detergent and will tell the warm water supply to diminish for a
moment because there will be hot wastewater that will feed a heat exchanger. Both
these visions will soon become reality in a distributed computing environment.

What distributed computing will mean for users is that they’ll have access to the
considerable computing power that’s typically left unused in today’s computing setup.
Implementing a system for distributed computing is easy if you reduce or restrict the
availability of personal workstations to their users. The challenge addressed by the
NetWork Project is to make access to idle workstations possible while still guarantee-
ing users immediate access to their personal workstations. NetWork is a minimal
communication and management model designed to operate in this environment. By
handling communication and managing computing resources, it frees the
programmer to think about how to split up a task so that it can be done by multiple
workstations working on small pieces in an uncoordinated and asynchronous way.

NetWork is available on the current Developer CD Series disc and via Internet for
those who want to try it out. This article describes the NetWork Project itself,
considers the types of applications that are most amenable to a distributed computing
approach, thoroughly examines the NetWork model, and then suggests how to
implement a NetWork program on the Macintosh. Because I’m a statistician I’ve
included some discussion of statistical underpinnings. I’ve presented this discussion
separately, though, so that if you don’t find mathematics fascinating, you can skip it.

HISTORY OF THE NETWORK PROJECT
NetWork is a project of StatLab, the statistical laboratory at the University of
Heidelberg. StatLab was founded in 1984 to complement the existing mathematical
statistics research group by studying practical applications of advanced statistical
methods. We took a look at what was available as the hardware base for our work and
chose the Macintosh, but since no Macintosh was on the German market at that
time, we bought a Lisa. We’ve been developing our statistical software on Lisa and
Macintosh ever since. This eventually brought us into contact with Larry Taylor,
representing Apple’s Advanced Technology Group in Europe.

During a November 1988 meeting, we discussed future perspectives in computing
with Larry. We tried to identify current gaps and obvious next steps. One thing we
could point to was the discrepancy between the amount of computing power we had
installed and the return it gave us. At that time, we were running an installation of
Macintosh Plus and Macintosh II computers, and the usual turnaround time for a
statistical simulation was one night. This was better than the turnaround time for the
same job on the IBM mainframe time-sharing system (about a week), but still it was
frustrating to have to wait so long while other computer resources lay idle. Just the
same, given the Macintosh’s character as an absolutely devoted servant of one master,
how in the world could we find a way to share its computing power while still
guaranteeing reliable and efficient service for the Macintosh owner?

THE NETWORK PROJECT: DISTRIBUTED COMPUTING ON THE MACINTOSH August 1992

83
For more on the TRON Project, see The
TRON Project, 1988: Proceedings of the Fifth
TRON Project Symposium.•

In December 1988 we had a visit from Bill Eddy, then head of the statistics
department at Carnegie Mellon University. In a lecture he mentioned that the CMU
people were annoyed at the discrepancy between installed computing power and the
return it gave them and were doing research on executing iterations asynchronously
(in an uncontrolled way) to make use of aggregated computing power. Until then, I’d
been thinking of the solution only in terms of distributed computing in a controlled
environment. Bill emphasized that in the computing environment of the future,
computing time per se won’t be expensive. In fact, in a network consisting of
thousands of CPUs, computing power will be free—if you can access it. This started
me thinking about how we could possibly make a distributed system work under
these circumstances—that is, in a large heterogeneous environment.

When we next met with Larry Taylor in February 1989, I claimed that we could build
a system for distributed computing based on the Macintosh philosophy of the
absolute priority of the user and at the same time able to cope with a large
environment. Larry agreed to support the project, and we formed a team consisting
initially of Larry, me, Reimer Kühn and Leo van Hemmen of the Heidelberg Neural
Network Research Group, and Joachim Lindenberg, then a computer science student
at Karlsruhe University.

The project started in May 1989. We called it the NetWork Project, a reference to
the fact that in the future the only measure of performance that will matter will be
the net work done per unit of time, not cumulative computing time or other measures of
resource utilization. We gave ourselves six months to decide on the specifications and
build a working prototype of a distributed system that would fit a Macintosh
environment and be scalable up to some thousands of CPUs. Although Macintosh
was the original development target, we did make sure that the system would run in
any other decent environment (DEC™, UNIX®, what have you). We finished our
first release one week late in November 1989. As they say, the rest is history.

Worth mentioning is the fact that with NetWork’s accelerated development schedule,
we didn’t spend a lot of time on planning and administration. That’s the nature of
progress sometimes. Fortunately, Apple’s Advanced Technology External Research
Group had resources available to allocate to the project on the spot. Without this
kind of flexible support, the NetWork Project could not have succeeded.

CANDIDATES FOR DISTRIBUTED COMPUTING
Distributed computing will be a great boon to applications where computing power is
critical and where the computing task can be split into discrete subtasks. Such
applications include the following:

• compiling a new product using a superoptimizing compiler

• solving an optimization problem like placing chips on a board

d e v e l o p August 1992

84

• generating computer graphics, especially ray tracing

• performing optical character recognition

In these cases, processing may take too long on one particular machine, but if the
application can tap into the computing power available by sending out subtasks, the
processing can be completed in a much more timely manner.

Many applications that involve working on large data sets can benefit from additional
computing power, even in an environment where completion of a subtask is not
guaranteed. Such tasks include sorting with some appropriate merge/sort algorithm:
the global sort can benefit if a subset has already been sorted by another machine but
need not be affected if the result of the presorting is not available. The same applies
to searching and practically all major accounting tasks. Any statistical analysis based
on exponential families, like normal (Gaussian) distributions, can also benefit from
distributed computing: in these analyses you can calculate global sufficient statistics
from those of partial data sets, if available. Problems of this type are completely
splittable into subtasks and clearly are fine candidates for distributed computing.

But what about problems that have a stronger internal structure than those that are
completely splittable? What about iterative and recursive problems, or problems that
lead to pipeline processing or networks of data flow? We can’t automatically assume
that these can take advantage of additional computing power in a distributed
environment where the completion of a subtask isn’t guaranteed. Still, mathematical
theory can help us identify problems of this type that are good candidates for
distributed computing.

A SPECIAL CLASS: ASYNCHRONOUS ITERATIONS
As an example of problems with a stronger internal structure than those that are
completely splittable, we’ll focus on iterative algorithms. The trouble with running
an iterative algorithm in a nonguaranteed distributed environment is this: the
outcome of iterations in one part of the problem might critically depend on results
from iterations in other parts, and the result of a previous iteration may or may not
be available for the next round. Even if the original iteration converges to a correct
result, we don’t know whether the same will hold true if the iterations are done
asynchronously.

Suppose, for instance, we have a mapping to be iterated that operates on some high-
dimensional vector or matrix. To prepare for a distributed version, we restrict the
mapping to a subset by providing the full input but allowing the mapping to operate
only on the coordinates selected by the subset. We allocate different subsets to
different machines for a number of iterations. These iterations are performed in
parallel. The results are collected as they come in and new tasks based on these
results are redistributed repeatedly.

THE NETWORK PROJECT: DISTRIBUTED COMPUTING ON THE MACINTOSH August 1992

85

In a guaranteed environment, we could wait for all results to come in before assigning
the next round of tasks. But in a nonguaranteed environment, we don’t know whether
a result will come in, and if it does, when. Synchronizing tasks may be impossible.
And even when possible, it would be a waste of computing power, because we would
spend much of our time waiting for the latest result to come in. Enter asynchronous
iterations. Asynchronous iterations don’t spend time on waiting. New tasks are
assigned as partial results come in. The only question is, will asynchronous iterations
give us a correct result?

Mathematical theory can tell us under what conditions asynchronous iterations will
yield correct results in a nonguaranteed distributed environment. According to G. M.
Baudet in his paper “Asynchronous Iterative Methods for Multiprocessors” in the
Journal of the ACM, if the original mapping is what mathematicians call a Lipschitz
contraction, in general an asynchronous iteration will converge to the same limit as
the original mapping. Many numerical methods can be formulated such that they fall
into this class. For example, the time-consuming core in many applications—like
solvers for differential equations, optimizers, or matrix inversions—can be
implemented as algorithms that correspond to Lipschitz contractions.

AN EXAMPLE: NEURAL NETS
As an example of the use of asynchronous iterations in a distributed computing
environment, let’s look at a neural net applied to picture reconstruction, from work
done jointly by Reimer Kühn and me. The specific variant of neural nets we’re using
is a Hopfield net. Neural nets provide a useful model for cognitive functions; when
we reconstruct a picture using a neural net, we’re modeling how humans might
recognize someone they know in a blurred photograph.

Kühn and I developed an interactive program for associative recall of visual patterns
called Spinning Brain. The program, which is included on the Developer CD Series
disc, first trains a neural net on a series of pictures. Each pixel in a picture is linked to
a neuron in our net. Then rudimentary pictures based on the originals are presented
to the net. The program then reconstructs the originals from the rudimentary
pictures by iterating a certain transformation until a stable state is reached.

In a distributed computing environment, we can take a slice, represented by a subset
of the pixels, and ask an idle workstation to perform a number of transformations on
it. The restriction to one slice means that only pixels in that slice can be changed,
although the full picture is available as initial information. As illustrated in Figure 1,
while one slice is being processed on one workstation, we pass other slices as subtasks
to other workstations. When we get a result, we merge the processed slice with the
rest of the picture; that is, our updating function uses the processed slice to replace
the corresponding part of our original picture. This may introduce an error because
the processed slice may depend on the state in other slices, which may have changed
significantly in the meantime. We repeat the assignment of tasks until we reach a
stable state. This example isn’t a Lipschitz contraction and thus isn’t covered by

d e v e l o p August 1992

Numerical methods that can be
formulated as Lipschitz contractions are
discussed in Part 2 of Parallel and Distributed
Computation by D. P. Bertsekas and J. N.
Tsitsiklis.•

Hopfield nets are described in more detail in
“Spinning Brain: An Interactive Program for the
Associative Recall of Visual Patterns” by R. Kühn
and G. Sawitzki and in Chapter 5 of Brains,
Machines, and Mathematics by M. A. Arbib.•

86

Baudet’s convergence result, but under mild regularity conditions, convergence to the
original limit still holds.

Neural nets are an interesting target for asynchronous distributed computing. If we
accept that neural nets provide a useful model for cognitive functions, we still must
admit that in real biological systems there’s no indication of global synchronization
except on a very large scale (for example, daily rhythm). Information processing takes
place in a distributed asynchronous environment (the brain). And we must admit that
this isn’t a guaranteed environment: some results may be late or may never be
reached. This is true for the individual and even more so for collective or social
cognitive phenomena. So experiences with neural nets in our environment might
shed light on critical aspects of neural network modeling in an asynchronous,
nonguaranteed environment.

THE NETWORK MODEL OF DISTRIBUTED COMPUTING
Now that you know how the NetWork model was developed and have an idea of the
kinds of applications that might take advantage of a distributed computing
environment, we turn to the model itself. First I’ll list the design goals for the

THE NETWORK PROJECT: DISTRIBUTED COMPUTING ON THE MACINTOSH August 1992

87

Initial configuration�
for search

This slice is allocated�
to a remote station

These slices are allocated�
to remote stations
Album=�
training set for�
the neural net

This slice is�
processed locally

Figure 1
Spinning Brain in Action

NetWork model; then I’ll list the services NetWork needs and the services the
Macintosh makes available. From there I’ll explain the principles of operation and the
layers of the NetWork model. Finally, I’ll discuss some important strategies
incorporated in the NetWork model to help meet its goals.

DESIGN GOALS
Simply stated, the primary goal of the NetWork model is to make use of the idle
resources of a network while respecting the absolute priority of events and processes
initiated by each machine’s owner. The model implementation runs in an unobtrusive
way, making use of free network resources but interfering as little as possible with any
user request. The approach we take is to allow other users to borrow the computing
power if a machine is idle, but to impose a strict rule: if the owner accesses the
machine, the guest is given only minimal time to retreat. The machine has to be
completely available without any noticeable delay. This imposes a time to leave of
about 1/10th of a second, which might be too short for any proper notification or
cleanup.

NetWork takes the view that for every machine there is an owner. The owner may,
but need not, correspond to a real user. For example, if the machine is a dedicated
server, the server process can be considered the owner. Furthermore, a NetWork
machine in general will, but need not, correspond to a physical machine. For
example, a cluster of CPUs may be considered a machine for the purposes of
NetWork.

Even if there is no immediate owner access, a machine may be busy because an
owner-initiated process needs the resources of the machine. The absolute priority of
the owner must extend to owner-initiated processes as well. A machine is considered
idle, or free for the purposes of NetWork, if there is no owner access and no owner-
initiated activity. NetWork is only allowed to use resources that are free in this sense.

The goal to use only free network resources also affects communication. The effect
for any owner other than the one requesting network services should be barely
noticeable, and care must be taken not to compete for network bandwidth.
Unfortunately, with current technology it’s nearly impossible to avoid interfering
with other users. All that can reasonably be done is to use “second-class”
communication where possible and to take measures to minimize the number of
network accesses and the additional network load.

To allow for open environments, independence of the underlying communication
model (including network/file/bus-based communication, network topology, and
such) and adaptability to heterogeneous hardware are additional design goals of
NetWork. We aren’t narrow-minded: we don’t mind making use of a Cray computer
via Hyperchannel if it’s idle. Finally, to invite experiments with our model, the
implementation of an asynchronous iteration scheme should be as near to that of a
standard iteration scheme as possible.

d e v e l o p August 1992

88

In summary, then, the design goals of the NetWork model are as follows:

• immediate availability of any machine to its owner

• minimal interference with owner communication

• independence of communication model

• adaptability to heterogeneous hardware

• close resemblance to a standard iteration scheme

NECESSARY SERVICES
To meet the design goals, NetWork needs the following services:

• idle/busy state monitoring to keep track of owner activity

• process management to launch a process to serve a remote request
and to kill all processes launched by NetWork when the owner
accesses the machine

• communication to pass message descriptions and results

First, NetWork needs a monitor whose only task is to keep track of whether the
machine is idle or whether it’s active on behalf of its owner. Since this is machine-
specific information, each machine must be equipped with such a monitor, which we
call an idle monitor.

Second, NetWork needs a process manager that’s capable of handling all process
management on remote request. If the machine is idle, the process manager can
launch processes to fulfill remote computing requests, and it’s responsible for
cleaning up all remote processes immediately if the state of the machine changes
from idle to busy—that is, if the owner accesses the machine. The process manager is
informed of any idle/busy transition by the idle monitor. It’s responsible for guarding
the priority of the owner. The process manager keeps track of active processes on the
local machine.

Third, NetWork needs a communication system. The communication system has to
guarantee reliable services in a possibly unreliable environment. Moreover, it should
take special precautions to minimize interference with owner communication, as
required by the NetWork design goals.

The idle monitor, the process manager, and the communication system form the core
of the NetWork model. They must be present in any implementation of NetWork.
This core provides convenient primitives for distributed computing while shielding
the transport system. In this respect it resembles other approaches, such as those
described by G. Bernard, A. Duda, Y. Haddad, and G. Harrus in their article
“Primitives for Distributed Computing in a Heterogeneous Local Area Network
Environment” and by T. J. Gardner, I. M. Gerard, C. R. Mowers, E. Nemeth, and

THE NETWORK PROJECT: DISTRIBUTED COMPUTING ON THE MACINTOSH August 1992

89

R. B. Schnabel in their paper “DPUP: A Distributed Processing Utilities Package.”
Going beyond these approaches, NetWork tries to provide a minimal model suited
even for a nonguaranteed environment.

SERVICES AVAILABLE ON THE MACINTOSH
Given that an idle monitor, a process manager, and a communication system are
necessary to the NetWork model, let’s look at what we’ve got on the Macintosh.

The Macintosh doesn’t have an idle monitor. If one were available, many applications
could take advantage of it. It could relieve applications of the tedious calculations
needed to find out which sleep value to use. (Some applications never seem to get this
right!) And it would allow a clean strategy for background tasks like indexing and
compressing. So we decided that we should implement an idle monitor for NetWork.

Fortunately, the Macintosh Operating System provides an event queue. Since the OS
is user oriented, there’s a clear model for user events, and all are funneled through the
event queue. But looking at the event queue isn’t sufficient. A user might have started
a time-consuming calculation and left for lunch. In this case, the machine should be
considered busy. If it’s not, the user might come back and find the machine in slow
mode or serving someone else. On the Macintosh, we run a statistic of the CPU
program counter to catch these situations. This still leaves frontmost applications that
are allowed to consume arbitrary time on the Macintosh. This is where the most
important feature of the Macintosh enters: the Human Interface Guidelines. We
monitor any cursor changes and busy cursor states to catch this situation as well.

A process manager is available with System 7. This takes care of many tasks that
NetWork has to fulfill under previous system software. However, processes under
System 7 don’t have priority attributes: System 7 can launch processes but doesn’t
know which processes to kill when the owner comes back. NetWork has to
implement this needed functionality. What’s more, the System 7 Process Manager is
designed to launch an application on a single machine and isn’t set up to handle
remote launching, so this additional functionality has to be provided by NetWork. To
enable portability, NetWork has its own process manager. If you’re using System 7,
the NetWork process manager maps to the System 7 Process Manager where
appropriate and has augmented functionality where necessary.

AppleTalk is the native communication system on the Macintosh. There are
restrictions, however. Current implementations of AppleTalk support just one
transport system. NetWork has its own communication system, which maps to
AppleTalk if appropriate but isn’t restricted to AppleTalk. With NetWork’s
communication system you can talk UDP from the TCP/IP suite to one machine
while engaging in AppleTalk with another one. NetWork supports any number of
concurrent transport systems, with no gateway needed. And the NetWork
communication system tries to reduce additional communication load that would
compete with immediate users.

d e v e l o p August 1992

90

NetWork’s communication system is message based. We wanted our message-passing
system to be as flexible and powerful as possible. In particular, we wanted it to have
extremely low overhead, we didn’t want it to impose unnecessary size limitations, and
we didn’t want it to be restricted to certain operating systems or transport systems.
For these reasons, we decided to use our own message-passing system, instead of
using Apple events.

For the Macintosh, we’ve bundled the idle monitor, the process manager, and the
communication system kernel into a control panel extension, the NetWork
Processor. To use NetWork, you move the NetWork Processor into your System
Folder and restart your Macintosh. Programmers can access the NetWork services
with the help of a library (NetWorkLib.o) and interface files that come with
NetWork. For tips on how to use NetWork’s idle monitor and communication
system, see “Cheap Thrills: Using NetWork’s Services.”

NETWORK LAYERS AND PRINCIPLES OF OPERATION
NetWork views the computing environment as a set of machines with processes
running on them. Each machine has an owner, who has absolute priority on this
machine. Processes can run on behalf of the (local) owner, or they can satisfy a
remote request. If a process is running on behalf of a remote request, it should be
terminated immediately when the owner accesses the machine. A process handles
tasks and eventually may generate tasks for remote execution. A task can be delegated
to another process, possibly on a different machine, and results may or may not be
returned.

The NetWork programming model has three layers, as shown in Figure 2. The top
layer, the application layer, contains the application-specific code. Apart from
initialization and cleanup sections, this code should be able to define subtasks and to
handle results from subtasks if available. The specific details of this layer are, of
course, application dependent.

The scheduler layer provides support for asynchronous iterations. The NetWork
scheduler monitors and stimulates the generation, assignment, and integration of
subtasks. While the proper generation of subtasks is application dependent, the

THE NETWORK PROJECT: DISTRIBUTED COMPUTING ON THE MACINTOSH August 1992

91

Application

Scheduler

Communications

Figure 2
Layers of the NetWork Programming Model

d e v e l o p August 1992

92

Even if you don’t plan to implement a NetWork system,
you might find some of NetWork’s services very useful
indeed. If you install the NetWork Processor, you can
make use of any NetWork service. For example, you can
ask NetWork whether your station is to be considered idle
instead of implementing all the code yourself.

THRILL 1: USING THE IDLE MONITOR TO HELP
YOU EXECUTE A BIG JOB
Move the NetWork Processor into your System Folder and
reboot your Macintosh. Modify your code to include
NetWork.p and link to NetWorkLib.o.

Add the following line to your initialization code:

myErr := InitNetWork(NetWorkEvent);

Add the following line to the idle branch of your main
event loop:

IF Idle THEN DoNextRoundOfMyGreatBigJob;

DoNextRoundOfMyGreatBigJob is executed whenever
NetWork considers your machine to be idle.

A word of warning: If DoNextRoundOfMyGreatBigJob is
compute intensive, this will move your machine to the busy
state, so “WHILE Idle DO . . . ” would not be a good
idea.

THRILL 2: USING THE IDLE MONITOR TO LAUNCH
AN IDLE TASK
Move the NetWork Processor into your System Folder.
Create a folder named NetWork Idle Tools in your System
Folder. Move your application into NetWork Idle Tools.
Your application will be launched whenever NetWork
considers your machine to be idle. Note that because
NetWork will kill any application it has launched when

the state of the machine changes to busy, this use of the
idle monitor makes sense only for turnkey applications
such as screen savers. (See the ScreenSaver example
provided with NetWork.)

As NetWork has a chance to learn that the application is
not a user-initiated process, the machine will stay in the
idle state (in contrast to Thrill 1).

THRILL 3: USING THE COMMUNICATION
SYSTEM
Move the NetWork Processor into your System Folder.
Modify your code to include NetWork.p and link to
NetWorkLib.o.

Add the following line to your initialization code:

myErr := InitNetWork(NetWorkEvent);

Add the line

MyHandleMsg(MsgPtr(Event.message));

to your main event loop, like so:

CASE Event.what OF
mouseDown:

DoMouseDown(Event);
. . .
NetWorkEvt:

MyHandleMsg(MsgPtr(Event.message));

Your application will now receive messages from
NetWork. You’ll have to write the MyHandleMsg
procedure to evaluate the messages. Message format and
support routines are documented in the NetWork
Programmer’s Guide.

CHEAP THRILLS: USING NETWORK’S SERVICES

NetWork scheduler can monitor the overall system behavior and try for dynamic load
balancing. Task assignment is an interaction between scheduler and application.

The communications layer forms the basis of the NetWork design. It provides the
basic communication services needed for the network system. In particular, it
provides transport shielding to cope with a potentially unreliable environment. If
necessary (for example, to implement diagnostic or management tools), the services
of the communication system can be accessed directly, avoiding the scheduler.

NetWork is implemented as a message-passing system. A process may send task
descriptions as messages, and results are returned as messages. If a process is set up
for task generation, the scheduler will ask the application periodically for the
definition of a new task. If a new task definition is given, the scheduler will pass this
information to the communication system for further transmission. If a process is set
up for result handling, the scheduler will inform the application of any result received
by the communication system.

In the NetWork model, messages flow as diagrammed in Figure 3. The task-
generating application defines a task message and hands it to the scheduler. The
scheduler does the necessary housekeeping and passes the message to the NetWork
Processor, which communicates it to the receiving NetWork Processor. The
receiving NetWork Processor launches the destination application (if necessary). The
destination scheduler passes the message to the task handler of its application.

THE NETWORK PROJECT: DISTRIBUTED COMPUTING ON THE MACINTOSH August 1992

93

Scheduler

Application (Task Generator)

NetWork Processor

Application (Task Handler)

NetWork Processor

Scheduler

Figure 3
Simplified Diagram of the NetWork Message Flow

Since NetWork is designed to work in a nonguaranteed environment, no assumptions
about the lifetime of a communication partner are made. Hence, a process that’s
generating tasks doesn’t know its target in delegating a task. The scheduler proposes
a target to which the next task can be delegated when asking for a new task definition.
The application is free to accept this proposal or to select a different target using a
lookup server or any other source of information.

Messages are addressed to processes, residing on machines. However, in a
nonguaranteed environment, no assumption about the existence of a communication
partner can be made. The address refers to a process class (defined as any
instantiation of the underlying program) rather than to a particular process instance.
On the recipient machine, NetWork checks whether the target is active—that is,
whether there is a corresponding process. If so, the message is made available. If the
machine is idle but no corresponding process is active, NetWork tries to locate the
program and launch it first. If it fails, the message is discarded. No prolonged
negotiation takes place and no acknowledgment is made. The task message is an
implicit launch command, and the completed result is the only acknowledgment, if
any. If the state of a machine changes from idle to used—that is, if the owner accesses
the machine—NetWork immediately kills any application it has launched.

SOME IMPORTANT STRATEGIES
The NetWork model uses three important strategies to meet its goals effectively.
These strategies have to do with minimizing the communication load, recruiting idle
machines that are most likely to remain idle, and minimizing the probability of
conflicts among incoming messages.

Strategy 1: Minimize the communication load. As stated earlier, one of
NetWork’s design goals is to minimize the communication load to avoid competing
with machine owners. We’ve already mentioned that NetWork allows a process to be
launched implicitly by sending a task addressed to it, and that NetWork avoids
negotiations and explicit launch sequences. This is done to reduce additional
communication load. Of course, it’s possible to use explicit authentication and
authorization schemes and exert direct control over launching with NetWork, and in
any environment where security is required this will be necessary. But it’s in no way
required for a minimal implementation of distributed computing, so it’s not required
in the NetWork model.

The decision not to enforce any session maintenance techniques, nor even any
acknowledgment schemes, is another measure to minimize communication load.
NetWork can operate in a connectionless mode, so session maintenance techniques
or acknowledgment schemes aren’t required. Again, if needed, both can be applied.

Since NetWork is designed to work in a noisy environment where no guarantees of
availability or performance are given, NetWork has to be prepared for messages that
are outdated or out of context. To minimize communication load in these cases,

d e v e l o p August 1992

94

NetWork encourages a separation of descriptive information from bulk load.
Conceptually, each NetWork message consists of a priority part, which should be
small and contain just enough information to indicate whether the message is usable
in a given context, and the message core, which should contain the bulk of
information, as shown in Figure 4. When a message arrives, the priority part along
with the usual administrative information is presented to the recipient for inspection.
Only if the recipient accepts the message as usable does the core information need to
be transported.

The separation of priority information from core information is only a conceptual
one. The NetWork communication manager will do packing/unpacking and
transport in a way that seems optimal for the transport system. In particular, for a
packet-oriented transport system, the communication manager will pack header and
priority information into a first transport system package and fill it up with as much
core information as fits reasonably into this package. (Note that the communication
manager should signal a received message only if all parts of the priority data are
received, but it need not rely on a handshake.) Subsequent packages with the
remainder of the core information will be sent only if the recipient requires this
information. Thus, unnecessary information load can be avoided. The scheduler
included in the NetWork distribution package is adapted to this optimization
strategy.

Strategy 2: Recruit the idle machines most likely to remain idle. We need to
identify idle machines and have a strategy to allocate them for cooperation. The idle
state is determined by the idle monitor, and idle machines can be registered as
possible compute servers using a lookup server. Of course, we’d prefer to use those
machines that will be available for some time and to avoid those machines that are
free for the moment but will be used shortly. To do this, we need some way to
distinguish the most promising machines—some method to ascertain what we’ll call
the hazard-to-leave-idle-state.

Our first informal review of literature and interviews with experts gave us little hope
of finding some indicator of this hazard. Still, disregarding any recommendations, we
implemented an allocation scheme based on observed idle times and then measured

THE NETWORK PROJECT: DISTRIBUTED COMPUTING ON THE MACINTOSH August 1992

95

Header Priority information Core information

Always transported�
or synthesized

Always transported�
�

Transported�
if necessary

Figure 4
Message Segments

the availability of idle machines. Our results implied that the frequency of useless
(short-time) allocation of machines can be drastically reduced by waiting until a
certain critical idle time has been exceeded before allocating a task to a particular
machine. This is the approach we take in the NetWork implementation. (If you’re
interested in the details of how we arrived at our conclusion, see “Diagnostic Plots for
the Statistically Minded.”)

Strategy 3: Filter incoming messages. A scheduler for NetWork can be
integrated in applications and make use of the services of the NetWork system. In the
current NetWork implementation, a scheduler prototype is provided, together with a
library that interfaces with the NetWork communication system. The scheduler asks
the application regularly whether a new task should be defined or informs the
application of incoming messages. It also does a preliminary check for the usefulness
of incoming messages, filtering out messages that can be identified as useless or
outdated with respect to the application context.

To guarantee fail-safe behavior, tasks should be allocated redundantly. As a
consequence, more than one result may be returned relating to a particular subtask.
This poses a problem to the scheduler. Assume we have two incoming partial results.
If the first result is based on an earlier state and if less work (fewer iterations) has
been done for this result, it’s clearly outdated. Or if the first result is based on more
recent information and if more work has been invested in this result, it’s clearly the
better one and should replace the other result. The remaining cases enter a critical
region where the scheduler is required to make a decision. (See “Deciding Between
Results” if you’d like to read this in mathematical language.)

Our strategy is to accept only those packages that can be accepted without any
further analysis. Instead of putting computational power into evaluating the optimal
acceptance decision, we try to keep the probability of entering the critical region low.
Since our criterion is the time it takes to perform the task, and both acceptance
decision making and task allocation are done by the same machine, there’s a trade-off
between those two, and we can keep the expected loss due to a wrong decision small
by keeping the probability of conflicts low.

The NetWork scheduler uses an adaptive task assignment scheme to minimize the
probability of these conflicts: from the received results, the scheduler tries to estimate
the relative complexity of a subtask and the relative computing power of the partners.
New tasks are calibrated so that the expected return time is distributed
homogenously, thus reducing the probability of conflicts. An application can override
or augment the generic strategy as provided by the scheduler with a more
application-specific strategy. In the Spinning Brain example that comes with
NetWork, you can see the scheduler trying to adapt to the relative computing power
and reliability of the partners. Choose the Scheduler menu item from the Control
menu. You’ll see a running plot of the task size assigned to machines versus the time
of allocation by NetWork, as illustrated in Figure 7.

d e v e l o p August 1992

96

THE NETWORK PROJECT: DISTRIBUTED COMPUTING ON THE MACINTOSH August 1992

97

Read this if you’re interested in the details of how we
compared the idea the experts gave us about predicting
the hazard-to-leave-idle-state versus our own hunch about
how it might be predicted.

The general idea we met with was that usable idle time
would be controlled by a Poisson process, so the idle time
would have an exponential distribution. But since an
exponential distribution is memoryless, there would be no
chance for optimization based on waiting times: the
hazard-to-leave-idle-state would be constant.

To test this idea, we used a special statistical tool—
diagnostic plots. Diagnostic plots represent statistics
in a way that makes their message easy to grasp. A
diagnostic plot is often designed by a statistician in such
a way that the significant information shows up as the
deviation of a curve from a straight line, visual
information that’s easy for humans to process.

To find out whether a certain distribution is exponential,
we plot observed idle times against those that would be

expected given an exponential distribution. If the idle time
distribution were in fact near to exponential, this plot
would exhibit a straight line. As you can see in Figure 5,
this clearly isn’t the case.

How we plot the relevant information to test for a
Weibull distribution is more complicated, so we won’t go
into the details here. (Ask your statistician!) Suffice it to
say that as shown by the fairly linear behavior of the plot
in Figure 6, the idle time distribution is more adequately
approximated by a Weibull distribution than by an
exponential distribution.

This Weibull distribution has a decreasing hazard rate.
For the application this means that it’s helpful to know
how long a machine has been idle. In particular, the
hazard-to-leave-idle-state is lower if a machine has been
idle for some time.

So if you have a chance to select among machines, here’s
the winner’s strategy: choose the machine that’s been idle
for the longest time.

DIAGNOSTIC PLOTS FOR THE STATISTICALLY MINDED

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

F[
ob

se
rv

ed
]

F[expected]

Figure 5
Sample Plot Checking for Exponential Distribution

0
–2

lo
g(

– l
og

(1
– F

[o
bs

]))

log IdleTime
1 2 3 4

–1

0

1

Figure 6
Sample Plot Checking for Weibull Distribution

NetWork’s ability to adapt itself to the relative computing power of the partners
provides a natural way to do load balancing. By finding out the relative performance
of the CPUs available and allocating larger tasks to more powerful CPUs, NetWork
is able to effectively balance the work load.

HOW TO IMPLEMENT A NETWORK PROGRAM
Now for the good part. You’re familiar with the design and operation of NetWork.
Here’s your chance to explore how your application might make use of distributed
computing with the help of NetWork. The following discussion will give you a
general idea of how to make your application work with NetWork, but you should
study the full example code included with NetWork on the Developer CD Series disc
for a thorough understanding.

d e v e l o p August 1992

The signature you use when you experiment
with NetWork should be NetE (this spelling). This
signature has been registered with Apple by the
NetWork Project and is reserved for experimental
use.•

98

For the mathematically minded: Assume we have some
effective time scale (some measure of effective iterations
done, for example). Assume we have two incoming
partial results Y and Y', where Y is based on information
available at effective time T, with K iterations done on Y,
and Y' is based on information available at time T', with
K' iterations. Let Y arrive at time t, Y' at time t' > t. Should
we replace the results of Y by those of Y'?

There are trivial cases: If T' < T and K' < K, then Y' is
clearly outdated. Or if T' > T and K' > K, then Y' is better
than Y, so Y should be replaced. Put another way, results
based on better initial information (K' – K > 0) and with
better iteration count (T' – T > 0) can be accepted a
priori. Results based on poorer initial information
(K' – K < 0) and with fewer iteration counts (T' – T < 0)
can be rejected a priori. For the remaining cases, a

decision must be made. Figure 8 shows the limits of the
acceptance region. The NetWork strategy is to take only
those results that can be accepted a priori.

DECIDING BETWEEN RESULTS

Accept Y'

Reject Y'

K'– K

T' – T

Figure 8
Limits of Acceptance Region for Results

Figure 7
Running Time-Plot of Assigned Task Size, From Spinning Brain

NetWork will communicate with your code by NetWork events. You have to
augment your event-handling code to handle these events. If the what field of the
EventRecord is NetWorkEvt, the message field of the EventRecord will contain a
pointer to a NetWork message.

{******************** The Event Handler *******************}
PROCEDURE DoEvent(Event: EventRecord);

. . .
BEGIN

CASE Event.what OF
mouseDown:

DoMouseDown(Event);
. . .
{*** You add a case to handle events of type NetWorkEvt. ***}
NetWorkEvt:

NetWorkScheduler.HandleMsg(MsgPtr(Event.message));
. . .
app4Evt:
. . .

END; {case}
END;

To keep NetWork running, you should give it a chance to fulfill its regular tasks, like
asking you for new jobs or looking for idle workstations. This should be done in your
main event loop. Since we’re interested in getting the most from our computing
power, we’re using a slightly more elaborate event loop than you’ll usually find in the
DTS Sample Code on the CD. We prefer to calculate the next time to call
WaitNextEvent in a more flexible way to get the most from our computing power if
our application is frontmost. The next time to call WaitNextEvent will be kept in a
global variable gNextEventLoopTime.

{******************** The Event Loop ******************}
PROCEDURE MainEventLoop;

CONST
cSleep = 0; {Ticks to wait for wake-up}
cBackgroundSleep = 20;
cEventLoopDelay = 1; {3 = 1/20 second, recommended interval between

WaitNextEvents for human interaction. We
take 1 for faster response.}

VAR
newEvent: EventRecord; {Event from GetNextEvent}
hasWNE: BOOLEAN;
eventReceived: BOOLEAN;
mySleep: LONGINT;

THE NETWORK PROJECT: DISTRIBUTED COMPUTING ON THE MACINTOSH August 1992

99

BEGIN
hasWNE := system.WNEIsImplemented;
mySleep := cSleep; {This is the foreground delay.}
REPEAT {Loop until done.}

IF hasWNE THEN
BEGIN
{No mouse moved is wanted, so pass NIL for the mouseRgn.}
eventReceived := WaitNextEvent(everyEvent, newEvent,

mySleep, NIL);
UpdateCursor; {Change the cursor shape if appropriate.}
END

ELSE
BEGIN
SystemTask; {Let the system do its stuff.}
UpdateCursor; {Change the cursor shape if appropriate.}
eventReceived := GetNextEvent(everyEvent, newEvent);
END;

SetEventLoopTime(cEventLoopDelay); {Adjust global variable
gNextEventLoopTime.}

IF eventReceived THEN DoEvent(newEvent)
ELSE {No real event, just timeout}

REPEAT

{*** You add the following section. ***}
NetWorkScheduler.PeriodicTask; {Allow to generate

new tasks.}
IF NlTask <> noErr THEN {Try to look up new partners.}

ProgramBreak('NlTask Error');
mySleep := NetWorkScheduler.GetSleep; {Adjust sleep value.}
{*** End of added section ***}

MyTask(BackContinue, mySleep); {Do local job.}
UNTIL (gTaskState <> TaskOK) | (LongIntPtr(Ticks)^ >=

gNextEventLoopTime);
IF PAbortFlag THEN gTaskState := TaskCancel;
{PAbortFlag is a function to check whether the standard abort
combination has been pressed. gTaskState is a global variable
where we keep the current state of the program.}
IF gTaskState IN [TaskExit, TaskFatal, TaskAbort] THEN

gAppDone := TRUE;
UNTIL gAppDone;

END; {End of main event loop}

Of course, accessing global memory locations like Ticks is bad programming; you
should use TickCount instead. And you shouldn’t do direct comparisons

d e v e l o p August 1992

100

(LongIntPtr(Ticks) ^ >= gNextEventLoopTime); you should use a function to do
comparisons instead. But because this part is in the main loop and we didn’t want to
waste any time here, we use this dirty inline comparison.

To start NetWork, you have to generate an instance of the scheduler by calling
new(NetWorkScheduler) and activate it by calling NetWorkScheduler.init.
NetWorkScheduler is defined in the file SchedulerUnit.p that comes with
NetWork. If you’ve activated or used the scheduler, you should always call
NetWorkScheduler.free before leaving your program.

If you’re going to generate subtasks, you have to override the task generator. Take
the prototype definition tTaskGenerator from SchedulerUnit.p and adapt it to your
needs. Create a task generator object and call NetWorkScheduler.InitTaskGenerator
to install it. To customize a task generator, you have to write a function NewTask.
NewTask should return NIL if no subtask can be defined, or a message pointer
defining a new subtask. The proper task definition is private to you. The scheduler’s
task-sending activity can be controlled by NetWorkScheduler.SetSending.

If you think of a master-slave setting, you can implement the code for both sides in
one program. At run time, you can use the function Master from the NetWork
library to find out whether you’re running as master or as slave.

{**************** Main Routines *******************}
PROCEDURE MyInit; {(VAR TheState : TaskStateType)}

VAR
myTaskHandler: tTaskHandler;
myMasterTaskHandler: tMasterTaskHandler; {Used for masters only}
mySlaveTaskHandler: tSlaveTaskHandler; {Used for slaves only}
myTaskGenerator: tMyTaskGenerator; {Typically for masters only}
myResultHandler: tReplyResultHandler;
. . .

BEGIN
. . .
{Initialize the NetWork library.}
IF InitNetwork(NetWorkEvt) <> noErr THEN fatal;

{Initialize the name lookup manager.}
IF NlInit <> noErr THEN fatal;

{Create and initialize a NetWorkScheduler. Needs a persistent
memory, so NetWorkScheduler must be a global variable.}
new(NetWorkScheduler);
IF NetWorkScheduler = NIL THEN fatal;
NetWorkScheduler.init; {The scheduler is up and running now.}

THE NETWORK PROJECT: DISTRIBUTED COMPUTING ON THE MACINTOSH August 1992

101
Further details on customizing the task
generator are given in the NetWork
Programmer’s Guide.•

{Create and initialize a handler for incoming messages.}
IF NetWorkScheduler.Err = noErr THEN

BEGIN
IF Master THEN {Master is defined in NetWorkLib.}

BEGIN
new(myMasterTaskHandler);
myTaskHandler := tTaskHandler(myMasterTaskHandler);
END

ELSE
BEGIN
new(mySlaveTaskHandler);
myTaskHandler := tTaskHandler(mySlaveTaskHandler);
END;

IF myTaskHandler <> NIL THEN
NetWorkScheduler.InitTaskHandler(myTaskHandler);

END; {End of NetWorkScheduler installation}
. . .
{Create and initialize a task generator.}
IF Master THEN

BEGIN
new(myTaskGenerator);
IF myTaskGenerator <> NIL THEN

NetWorkScheduler.InitTaskGenerator(myTaskGenerator);
END;

. . .
END;

Programming for NetWork in general consists of writing a master process (later to be
the client seeking additional computing resources) and a compute server. The
compute server has to be distributed to the coworkers (the additional computing
resources that can be called upon). To guarantee fail-safe behavior, both task
generation and task-handling functions should be implemented on the original
generating machine so that it can operate by itself if need be. These functions must
be implemented in the master process (compute client). Note that to avoid virus
proliferation, worms, and other nasty things, NetWork doesn’t do any active
transportation of code. The code to be launched has to reside on the destination
machine and is under the control of the destination owner.

The compute server must be able to accept and handle subtasks. Although it’s
possible to use the message-handling system of NetWork directly, we recommend
you use the supplied scheduler model instead. If you’re going to accept subtasks, you
have to customize the task handler. Take the prototype definition tTaskHandler and
adapt it to your needs. Create a task handler object and install it by calling
NetWorkScheduler.InitTaskHandler. To customize a task handler, you have to write a
function MsgUsable and a procedure MsgEvaluation. The scheduler will get the

d e v e l o p August 1992

102

priority information from an incoming message to the PriorityBuffer indicated by
MsgPrioPtr. MsgUsable should check any incoming task on the basis of the header
information and the available priority information. If MsgUsable returns TRUE, the
scheduler asks the message system to pass the bulk of the data describing the subtask
to the core buffer indicated by MsgCorePtr. You have to write a procedure
MsgEvaluation to take the data from the buffer and initiate the proper task execution.
To return a result to the sender, you can make use of the ReplyMessage function.

With NetWork, programs can be launched automatically on remote request.
Programs launched on remote request may be terminated by NetWork when the
owner accesses the machine. Don’t assume it’s safe to continue processing at that time
if you receive a Command-Q. You must clean up as soon as possible or you won’t
have another chance. Also note that you don’t have the time to report results, because
all messages—including those about to be transferred—are killed when your
application dies. Remember that NetWork’s priority is with the owner, not with your
application. The only way to override this is to control the process class of your
application. If it’s necessary to clean up, set your process type to master after program
initialization and call the Idle function regularly. But be forewarned that users may
become annoyed at having an alien application around, and your application will
likely be removed from the list of welcome visitors.

RISKS IN DISTRIBUTED COMPUTING
Anyone working in distributed computing should be aware of the risks involved in a
distributed system. Such risks include those relating to competition for resources as
well as those relating to security.

COMPETITION FOR RESOURCES
Any distributed computing system competes for computing and communication
resources. NetWork has been designed to minimize the impact of this competition on
priority users. Still, the version of NetWork currently distributed uses the AppleTalk
Name-Binding Protocol (NBP) to register and look up idle stations, and the
AppleTalk NBP is prone to impose a cumulative load that increases with the square of
the number of workstations. This will create a problem if the number of workstations
in the network is very large. The version of NetWork in distribution won’t impose a
big load if used in networks with up to 100 workstations. If you do have more
workstations in your local zone, please consult the NetWork Programmer’s Guide for
suggestions—our research version scales linearly to accommodate up to 10,000
workstations. If you have more than 10,000 Macintosh computers, we’ll have to
invest some additional thinking, which we’ll gladly do.

Distributed computing systems can also compete for disk space with priority users.
This is a crucial point for UNIX-based systems. On a UNIX-based system you can
send a guest process to the background, but this still may result in a swapping
behavior that’s a nuisance to the priority user (unless you’re using Mach). For

THE NETWORK PROJECT: DISTRIBUTED COMPUTING ON THE MACINTOSH August 1992

103
Further details on customizing the task
handler are given in the NetWork
Programmer’s Guide.•

NetWork, we decided to kill any guest process if the priority user returns, so
NetWork doesn’t compete for disk space.

SECURITY CONSIDERATIONS
Other risks relate to the security of code and information. Just as programs and data
can carry viruses into a machine from the outside, so distributed computing guests
can bring in something undesirable. When you grant access to another user, you
never know whether you’re enabling the importation of a Trojan horse. For the
present, we don’t see any way to guarantee system security under conditions of
distributed computing, so we’ve chosen two ad hoc actions to improve security.

First, we refrain from code migration. Of course, it would be most convenient to
make use of a remote machine without any assumptions about the availability of code
on that machine, and we’d love to do this. But this would require moving executable
code if necessary or training the receiving machine on the job. Because we don’t see
any way to check whether that code contains a virus, the code to be executed is
required to be already available to the host machine. Furthermore, NetWork assumes
that an access path is denoted on the host machine and launches only applications
resting in this trusted path. This path may direct code to a server, and the usual access
control mechanisms apply.

Second, we include with NetWork an example called RemoteJob, designed to educate
users about the risk of allowing remote execution of powerful code like MPW. Even
if there’s no virus attached to the code of MPW, it’s powerful enough to allow you to
compile new programs, viruses and all. The point of including this example is to
forewarn you of this possibility. RemoteJob takes commands from the sending
station, passes them to the recipient, and launches the MPW shell there if it can be
found in the trusted path. The default example passes a “beep” command to MPW,
but it could just as well get MPW to compile a virus and install it on the fly. The
moral of the story: Never put a shell or any powerful tool in the trusted access path.

BACK FROM THE FUTURE
After reading this article you should have a good idea of the possibilities and
challenges that are bound to confront programmers with the advent of distributed
computing. These possibilities and challenges are already being actively explored in
some quarters. In particular, the NetWork model of distributed computing has
already been used in a variety of applications. Some examples: a distributed file
system using NetWork was built at the University of East Anglia; a U.S. company
used NetWork to implement a distributed rendering system; and an IBM subsidiary
in France is using NetWork for distributed compilation/program construction.

But for most of the world, the distributed computing wave is still just out there on the
horizon. We need to begin playing with and prototyping applications now with
distributed computing in mind, so that when system support arrives, we’ll know how

d e v e l o p August 1992

THANKS TO OUR TECHNICAL REVIEWERS
Michael Gough, Larry Taylor, Peter Zukoski•

104

to use it. In sum, the time we spend experimenting with NetWork now is sure to
pay off in the not-too-distant future when the distributed computing wave comes
rolling in.

THE NETWORK PROJECT: DISTRIBUTED COMPUTING ON THE MACINTOSH August 1992

105
FURTHER CREDITS Studying asynchronous
iterations in a nonguaranteed (random)
environment was suggested by the paper by
W. F. Eddy and M. J. Schervish entitled
“Asynchronous Iteration.” W. Rheinboldt
suggested the scheduler strategy of accepting
only those packages that can be accepted a
priori. The NetWork communication system was
designed and implemented by J. Lindenberg.

The NetWork software and documentation is
© 1989–1992 The NetWork Project, StatLab
Heidelberg. NetWork is free for personal,
noncommercial use. The most recent version can
be accessed on Internet from StatLab.uni-
heidelberg.de[129.206.113.100].•

• “Asynchronous Iteration” by W. F. Eddy and
M. J. Schervish, Computing Science and Statistics:
Proceedings of the 20th Symposium on the Interface,
1987 (American Statistical Association, 1988), pages
165–173.

• “Asynchronous Iterative Methods for Multiprocessors”
by G. M. Baudet, Journal of the ACM (1978), pages
226–244.

• Brains, Machines, and Mathematics by M. A. Arbib
(Springer, 1987).

• “DPUP: A Distributed Processing Utilities Package” by
T. J. Gardner, I. M. Gerard, C. R. Mowers, E. Nemeth,
and R. B. Schnabel, ACM SIGNUM Newsletters
(1986, Issue 4), pages 5–19.

• “Finding Idle Machines in a Workstation-Based
Distributed System” by M. T. Theimer and K. A. Lantz,
IEEE Transactions on Software Engineering (November
1989), pages 1444–1457.

• NetWork Communications by J. Lindenberg
(Universität Karlsruhe, Institut für Betriebs und

Dialogsysteme, 1990). Republished on the current
Developer CD Series disc.

• NetWork Programmer’s Guide by G. Sawitzki
(Universität Heidelberg, Institut für Angewandte
Mathematik, 1990, 1991). Republished on the current
Developer CD Series disc.

• Parallel and Distributed Computation by
D. P. Bertsekas and J. N. Tsitsiklis (Prentice-Hall, 1989).

• “Primitives for Distributed Computing in a
Heterogeneous Local Area Network Environment” by
G. Bernard, A. Duda, Y. Haddad, and G. Harrus,
IEEE Transactions on Software Engineering (December
1989), pages 1567–1578.

• “Spinning Brain: An Interactive Program for the
Associative Recall of Visual Patterns” by R. Kühn and
G. Sawitzki, Wheels for the Mind (Europe) (Apple
Computer, Inc., January 1989).

• The TRON Project, 1988: Proceedings of the Fifth
TRON Project Symposium edited by K. Sakamura
(Springer, 1989).

REFERENCES AND FURTHER READING

I've just read the book Alan Turing: The Enigma, by
Andrew Hodges, an outstanding and profound— if thick—
biography of Alan Turing. Turing’s work touched on some
deep philosophical questions about the relationship between
brains and computers. I naturally had my own opinions, but
I wanted to talk to somebody with more knowledge of brains
who was also computer savvy—someone with a foot in both
worlds. So I paid a visit to Michael Greenspon, who develops
software models of neural systems with Walter Freeman at
UC Berkeley. We got together for lunch and had a very
interesting conversation. Here’s a sample:

[Audio embellishment: clinking of nice glassware as
Dave and Michael dine in the sun]

DKJ: I heard something recently that struck me as
profound: computers don’t manipulate reality, they
manipulate representations of reality. The profound part
is that seems to be what brains do, too. Alan Turing, for
much of his life, wanted to build a brain. He firmly
believed that consciousness was caused only by the
operation of the brain, and that the brain’s operation
could eventually be described at any level of detail.

[Michael looks patiently skeptical, but Dave plunges
ahead, oblivious, waving his fork excitedly.] Further, he
had previously proven that in principle, a “universal
machine,” of which the computer is a finite
approximation, could simulate any other logical
machine, and thus any logical process whatsoever. So if

you could describe the function of the brain as a logical
process, you should be able to program a computer to
“be” a brain. The description part, of course, is the
killer. But I can’t help thinking that we’ll get there
eventually. What do you think?

MCG: Whoa, Dave [almost choking on his exotic Thai
salad], I think you’ve hit the intellectual cul-de-sac of
traditional artificial intelligence. The reason it’s so hard
to describe the operation of the brain as a logical
process is simple: it isn’t a logical process at all. That’s a
cerebral approach to a fundamentally biological and
physical problem. I’m sure someday we’ll be able to
logically explain the operation of the brain in terms of
physics, but that explanation won’t include a
computational mechanics based on formal logical
operations.

DKJ: But then how do you approach the problem of
trying to understand and model brains in your lab, if
you can’t describe them as logical processes?

MCG: Our approach is that of computational
neuroscience; we’re doing dynamic modeling at the
level of cell populations, using massively parallel
machines with a Macintosh front end.

When I say representationalist AI is a cerebral
approach, it helps to realize that the cerebral cortex is
just a few millimeters thin. It’s a tissue essential for
generating the separatist intellectual conception of
ourselves as humans, but it’s really a translucent veneer
over the bulk of what our brains do day in, day out,
which comes from our animal ancestors. Before we
ever learn formal or even natural languages, our brains
are already highly developed as processors of spatial,
tactile, and kinesthetic information, to name my
favorites. This is one reason why the Macintosh has
been so successful as a tool—because it’s the first
readily available machine to offer at least at the outer
layer a spatially based interface.

DKJ: And the reason that’s so great is that our brains
process spatial information effortlessly, without our
even trying.

d e v e l o p August 1992

DAVE JOHNSON once borrowed a friend’s video camera so that
he could spy on his dogs when they were alone. He carefully—and
gleefully—set up the camera near the front door, turned it on, and
went out for dinner and a movie. The dogs mostly just slept, with
an occasional barking fit, apparently just for doggie grins. It was
really very dull viewing except for one incident about halfway
through: the smallest dog, affectionately known as Dinky, sat down
right in front of the camera, stared balefully into the lens for a

moment, then put her head back and howled for a full five minutes,
something Dave has never seen before or since.•

106

THE VETERAN
NEOPHYTE

QUANTUM LUNCH

DAVE JOHNSON, WITH
MICHAEL GREENSPON

THE VETERAN NEOPHYTE August 1992

107

MCG: Right, a spatial interface allows us to apply
more of our innate biological intelligence in
communicating with the machine. But both structurally
and functionally, the digital computer as a metaphor for
the brain is almost completely inaccurate at every level
of analysis.

I think if you look further into the nature of thought
and perception, and also look more carefully through
microscopes and macroscopes at what real brain tissue
is doing, you’ll see a physical system that exhibits
chaotic dynamics in time, has fractal extent in space,
and is inextricably linked to the natural world.
Computers are powerful tools for simulating and
visualizing these properties, but they don’t themselves
have these properties yet.

DKJ: Especially the links to the natural world.

MCG: Exactly. If you want to apply computational
metaphors to the brain, perhaps the brain is like a
fractal architecture computer that can compute
infinitely recursive functions in finite time.

DKJ: Oooh, I like the sound of that. Fractals,
computers, infinity, and recursion all at once.

MCG: I like it too, but that’s really just a structural
metaphor. I’m interested in what we can learn about
how real brains might work, so that we can apply these
principles to next-generation user interfaces and to new
non–von Neumann computing architectures.

In an engineering sense, we’re after machine
perception. That is, we want future machines to
interact in the human sensory world, rather than
forcing humans to interact in the virtual world of the
machine.

DKJ: Yeah, to use or program a computer today you
still have to interact on the machine’s terms. I think one
good approach to changing that is to try to build
computational structures that are like the brain, so that
our machines will be a little more like us. There are 10
billion neurons in the brain, more or less, right?

MCG: More. And perhaps 1015 synapses, which you
could say is where a lot of the computation is going on.

DKJ: OK, more than 10 billion neurons in the brain,
and they’re wired together in unbelievably complex
ways. The point is this: I’ll bet that we can simulate a
single neuron fairly closely with a computer, and over
time we can get our simulation closer and closer to the
real thing, arbitrarily close. Further, I’ll bet that
someday it will be possible to get 10 billion little
computers together and talking to each other. I know
this is a little speculative, but my business card says
“Limit Pusher,” and I feel compelled to live up to it.

MCG: Rave on.

DKJ: So we set this thing up—10 billion little
processing nodes—and we turn it on and start feeding
it information. What will happen? What will it do? I
can’t help thinking that whatever it is, it will be
something very much like life. And just as mysterious.

MCG: Well, I don’t think it’s purely an issue of scale.
At Berkeley, we’re building a new ring architecture
parallel machine based on superscalar processors that
can accommodate multimodal sensors and effectors. It’s
called CNS-1 and is spec’d at upwards of 100 billion
operations per second.

DKJ: 100 BIPS!

MCG: Right. Or 0.1 TRIPS, which is perhaps a better
indication of how far we have to go. We expect CNS-1
will be able to simulate many of the emergent
dynamical properties of cell populations observed in
real brains—to run what I call the lava lamp model of
the mind. But even this much power won’t bring us
“arbitrarily close” to the wetware. I don’t think you’ll
want to say it’s alive or that it works the way a
biological brain works.

DKJ: Maybe not, but I think that a network of 10
billion processors could act something like a brain,
could seem like a brain, even though it’s not one by any
stretch of the imagination. That idea fascinates me: that

MICHAEL GREENSPON is a doctoral student in the department
of Electrical Engineering and Computer Science at UC Berkeley.
When he’s not cramming for quals, he can often be overheard
trying to explain the cost benefits of telecommuting to Apple
managers. (We’re still not sure when he sleeps.) If the sun’s out,
you’re sure to find him soaking up some of it; since the release of
the Macintosh PowerBook and ToolServer, he’s hardly been seen
indoors except for an occasional rave. In fact, he and Dave
Johnson were recently spotted rigging a LAN in the outfield at

Golden Gate Park. He does, however, respond to his e-mail: he
can be reached via AppleLink as INTEGRAL or on the Internet as
mcg@icsi.berkeley.edu.•

a computer, or a bunch of computers, can behave like
something else. This gets back to Turing’s thesis that a
computer can simulate anything, if you can describe the
thing in enough detail. That begs the question, though,
of whether the simulation is fundamentally the same as
the reality it simulates.

MCG: Is it live or is it Memorex?

DKJ: Precisely. It’s like comparing painting on the
computer to painting using canvas, brushes, and oils. At
one level of description they’re identical activities:
applying color to a surface in intricate and skillful ways
to produce a little piece of space that other humans can
look at and experience emotion toward. But the tools
differ hugely and, perhaps more important, the
experience of using them is completely different. So I
guess what I’m saying is that at the right level of
description I believe (well, I want to believe) that it’s
possible to “build a brain.”

MCG: Or to grow a brain. I think you’re barking up
the wrong dendritic tree. It’s experience that’s essential.
Brains are dynamic systems that actively reach out
into the sensory world for experience; perception is
a creative process, not a passive one. To talk about
building a machine with the capabilities of the
human brain you have to include the same kinds of
connections to the world that humans have. In the real
tissue, it goes right down to the level of quantum
phenomena and beyond—what I call “real virtuality.”

What I’ve been trying to get across is that real brains
operate by virtue of being physically continuous
systems; there’s an interplay between the nanoscopic
and macroscopic, the intrinsic and extrinsic, such that
structure and function are not separable. The notion
that there exists in brains a “level of description” at
which cognition is implemented as logical operations is
a convenient fallacy, what John Searle calls “closet
dualism.” It means, for example, that if you want to
start capturing the creative, human aspects of
language—not just the literal, but the slang, humorous,
ungrammatical, and allusory—you have to model the
dynamics of the underlying physical processes.

DKJ: Hmm, this point about not being able to separate
cognition from sensory experience is important. It’s
interesting to compare the development of computers
with the development of life. Computer sensors and
effectors—the parts of computers that by necessity
touch the world—always seem to lag way behind the
other parts, the computing parts, in their development.
And the gap seems to be widening. So computers are
currently wrapped in sensory cellophane, while the
connection of biological systems to the world is very
strong and high-bandwidth.

MCG: Exactly. It’s likely that in biological systems,
sensors and effectors developed first and, as part of an
evolutionary feedback loop, drove the development of
the nervous system. Though now you could say the
demands of more sophisticated user interfaces are
driving the development of CPUs. The perceptual side
is limited to 2-D mouse tracking and 1-D clicks and
keystrokes. But speech and pen gestures are about to
expand that. Eventually computer-human interface will
be polymodal, including intonation, spatial gestures,
eye position, facial expression, and cortical activity
patterns—what I call the “think-along interface.”

DKJ: It fascinates me that programmers can so easily
get sucked into the machine—I know I’ve been there—
despite the very limited modes of interaction with it.

MCG: Yes, in programming, I often feel I’m being
sucked into a one-dimensional world of historical
arbitrariness. I think this comes from the fact that while
the complexity of our software systems has increased
exponentially, our development tools haven’t kept pace.
The current tools fail to provide the real-time,
interactive turnaround that’s crucial to maintaining the
creative flow. They force us to think too much about
the machine’s problems, instead of the human problems
we’re presumably trying to solve.

DKJ: Amen. And it’s true for nonprogrammers, too. So
how would you like to see the tools improve?

MCG: Well, besides speed—where speed means real-
time, no perceptible delay; anything less is slow—

d e v e l o p August 1992

108

THE VETERAN NEOPHYTE August 1992

109

future tools will have semantic knowledge of the
process of software engineering and eventually of the
application you’re building. The code browsers are a
good step forward; at least they can automatically
determine structure from syntax. The next step is to
automate the build process, the incremental linking of
components, and the maintenance of an audit trail and
nonlinear undo space for source code. Here we start to
blur into a dynamic-language sort of model.

DKJ: That’s exactly the kind of administrivia that
computers are supposed to be good at. But right now,
for most of us, the burden is still on the human.

MCG: It sure is. Where we want to head is to shift
the focus of the iterative process from the syntax
level—compilation, debugging—which is what the
machine is concerned with, to the level of design and
validation, which is hopefully where the programmer is
trying to solve the semantic problems of the
application.

DKJ: Way back in the 1940s Turing talked about the
fact that “. . . as soon as any technique becomes at all
stereotyped it becomes possible to devise a system of
instruction tables which will enable the electronic
computer to do it for itself.” In other words, as soon
as we can describe how we do a job, we can program
the machine to do it for us. This is happening, but
slowly. As an amusing footnote, he went on to say “It
may happen however that the masters [programmers]
will refuse to do this. They may be unwilling to let
their jobs be stolen from them in this way. In that case
they would surround the whole of their work with
mystery and make excuses, couched in well chosen
gibberish . . .” He was a pretty prescient guy.

[Setting his napkin on the table] Well, I guess we
should try to wrap it up here; our readers’ MacApp
builds are probably finished by now, and we’ll be losing
them soon. Let’s try to wring a message out of our
ramblings, something developers can take home with
them. How about this: Strive to bring computers ever
more firmly into the world of people, rather than

trying to cram people ever more firmly into the world
of computers. The differences can be subtle, but the
distinction is very important.

MCG: Well, I think we can and will go much further
toward humanizing the experience of using computers.
But I don’t think we have to couch what we do in
gibberish to keep our jobs, because programming is
fundamentally a creative discipline. Like other creative
disciplines, when you’ve done it long enough and
intently enough, you tend to see its way reflected in
everything you perceive. You could say programming is
a way of seeing. That leads us to computers as tools for
extending human visualization.

[Flipping up his shades] The point is that it’s human
vision—not the technology—that’s crucial. When we
create tools and toys and lifestyles that separate and
insulate us from nature, we further the consumption
and destruction we see all around us. But I think we
can see past the empty goal of creating trillion dollar
markets for our products. As humans, we’ve always had
the infinite power to change our minds. It’s time we tap
that power by creating tools that connect us—to each
other, to the earth—and enable us to meet the real
life-or-death challenges we face on this planet. As
programmers and technologists we’re in a key position
to determine the future by the choices we make every
day. I hope each of us can make every keystroke and
every mouse click a step toward a sustainable society.

Dave welcomes feedback on his musings. He can be reached
at JOHNSON.DK on AppleLink, dkj@apple.com on the Internet, or
75300,715 on CompuServe.•

RECOMMENDED READING
• Alan Turing: The Enigma by Andrew Hodges

(Simon & Schuster, 1983).

• The Three-Pound Universe by Judith Hooper and
Dick Teresi (Tarcher Press, 1986).

• Who Needs Donuts? by Mark Alan Stamaty (The
Dial Press, 1973).

Q Is it my imagination, or does GetPictInfo return a bit depth of 1 on QuickTime
compressed PICT files?

A Yep! This is what’s happening: The Picture Utilities Package doesn’t know of
the QuickTime Compressed Pixmap opcode (0x8200), so it just skips over the
opcode’s data; then it finds the PacksBitRect opcode containing the black-and-
white pseudo-alert that you get when you draw the picture on a machine that
doesn’t have QuickTime installed, and GetPictInfo reports back this alert.

Trivia: When QuickTime is installed, it displays the compressed image and then
ignores the following PacksBitRect since QuickTime knows it’s only the black-
and-white alert.

Q Is it true that if I double-click a document belonging to my application, the application
will be launched and will receive an 'odoc' Apple event, but will not receive an 'oapp'
event—that is, it will receive either 'odoc' or 'oapp' but not both?

A Yes, except actually it will receive one of 'oapp', 'odoc', or 'pdoc'. The 'pdoc'
will be followed (as the next event) by a 'quit' if the 'pdoc' was the event sent as
the application was launched.

This is the normal sequence of events, and should be adhered to by everyone
who launches applications. However, it isn’t enforced by the system or the
Finder. It’s possible for any application to launch your application with any
event, since it can stuff anything in the launchAppParameters field of
LaunchApplication, as long as it’s a valid high-level (not even Apple) event.
Launching another application this way would be bad programming, and would
break most applications, but you should be aware that someone who doesn’t
understand event handling may do this to you.

Note that if another application launches your application using
LaunchApplication and doesn’t specify any high-level event in the launch
parameter block, the Finder will automatically supply the 'oapp' event. So, in
general, if Apple events and launching have been coded correctly, you’ll always
receive an 'oapp', 'odoc', or 'pdoc'.

Q I’m using the Picture Utilities Package to extract the color table from a picture. After
getting the color table, I use NewPalette to construct a palette from the color table
(usage = tolerant, tolerance = 0). After I do this, the RGB values in the palette don’t
always exactly match the RGB values in the source color table, causing my program to
fail. If I use NewPalette without a source color table, and then use CTab2Palette to copy
the colors over (again with usage = tolerant, tolerance = 0), the colors match exactly.

d e v e l o p August 1992

Kudos to our readers who care enough to
ask us terrific and well thought-out questions. The
answers are supplied by our teams of technical
gurus; our thanks to all. Special thanks to Jim
“Im” Beninghaus, Neil Day, Matt Deatherage,
Tim Dierks, Steve Falkenburg, C. K. Haun, Dave
Hersey, Rich Kubota, Scott Kuechle, Edgar Lee,
Jim Luther, Joseph Maurer, Kevin Mellander, Jim
Mensch, Guillermo Ortiz, Dave Radcliffe, Greg

Robbins, Eric Soldan, Bryan “Stearno” Stearns,
Forrest Tanaka, and John Wang for the material
in this Q & A column.•

110

MACINTOSH

Q & A

A It turns out that NewPalette doesn’t use CTab2Palette, but copies the RGB
fields in a strange way that’s causing the problems you’re seeing. NewPalette
copies the high byte in each color table RGB entry into both the high byte and
the low byte of the corresponding palette entry. Thus, if the color table entry
for red was $F000, it becomes $F0F0. This of course makes no difference to
QuickDraw since the low byte isn’t displayed, but if your program expects the
low byte to match, that’s where your problem exists. CTab2Palette is different,
in that it doesn’t copy the high byte into the low byte unless the pmAnimated
bit is set.

The best solution for your code isn’t to compare the entire RGB value when
comparing colors, but rather to compare the high byte of each RGB component
separately. If this isn’t possible, the next best solution is for you to use the
workaround that you’ve already discovered with CTab2Palette.

It’s unlikely that the Palette Manager is going to change in the future for
something like this. In fact, we would almost call it a “feature” since other
developers may even depend on it.

Q My application wants to open other applications and play with the resources therein, like
ResEdit, but when it calls OpenResFile on an application, the program gets lost in
GetNamedResource. Is there something I’m missing?

A Your problem stems from the fact that some resources in the application file
you’re opening with OpenResFile are marked to be preloaded, and so are
loaded into memory when the resource fork is opened.

Since most applications have CODE resources marked to be preloaded, this
turns into a much bigger problem, because the Segment Loader will treat these
preloaded CODE resources as your code resources if you make a between-
segment call that triggers a call to LoadSeg while the opened resource file is
first in the resource chain. If this happens, you’ll begin executing code out of
the other application, which will cause your Macintosh to crash and burn.

The solution to this problem is to bracket OpenResFile calls with
SetResLoad(FALSE) and SetResLoad(TRUE), and to avoid making between-
segment calls when you’ve got another resource file open that contains CODE
resources. This will not only prevent your application’s memory from being
used by preloaded resources that you don’t want, but will also prevent the
Segment Loader from jumping into the other application’s code. If you need to
get CODE resources out of the opened resource file, you can still prevent the
Segment Loader problem by calling UseResFile on your application’s resource
reference number to put your application at the top of the resource chain.

MACINTOSH Q & A August 1992

111

Q How can our application search for files by label or color, getting the actual string for the
label/color field, so that users can select from a menu that looks like what they’d see in
the Finder or ResEdit?

A In the icon utilities there’s a call that will get you the RGB color and string for
the Finder’s labels. Information from the May 1992 revision of Macintosh
Technical Note “Drawing Icons the System 7 Way ” (formerly #306) is shown
below. It includes the glue code for the call in MPW Pascal and C formats.

FUNCTION GetLabel (labelNumber: INTEGER; VAR labelColor: RGBColor;
VAR labelString: Str255): OSErr;

INLINE $303C, $050B, $ABC9;

The label number is in the range of 0 to 7, and is available in bits 1–3 of the
file’s Finder flags (Inside Macintosh Volume VI, page 9-36). The call returns the
actual color and string used in the Label menu of the Finder and the label’s
control panel. This information is provided in case you want to include the label
text or color when displaying a file’s icon in your application.

Q I’m making an asynchronous low-level File Manager call from inside a completion
routine (for example, error := PBxxx(@PB, TRUE);). Occasionally on some machines,
the call immediately returns an error in the function result even though everything
appears to work correctly. Do I need to worry about the result when I make the call?

A It sounds as if you’re making the mistake of testing the function result of an
asynchronous File Manager call (the value of register D0 is returned in the
function result). There’s no useful information in the function result of an
asynchronous call made to the File Manager; the call might not even have been
looked at by the File Manager yet. The call’s result status is stored only in
ioResult after the call completes, or in either D0 or ioResult at the entry to the
completion routine. If you’re polling to check for the call’s completion, ioResult
will indicate the call has completed when it’s less than or equal to 0.

In general, when making asynchronous I/O calls (reads or writes) there are only
two types of function result error that are of any possible consequence: a “driver
not open” error (notOpenErr) and a driver reference number error (badUnitErr
or unitEmptyErr), which indicate the call wasn’t successfully queued by the
driver and the ioCompletion routine won’t be called. Neither one of these error
conditions makes any sense for the File Manager (which isn’t a driver); the File
Manager will always call the completion routine (if any) of a given asynchronous
call. Your program should just ignore the function result of an asynchronous
low-level File Manager call and leave it up to the completion routine or the
routine polling ioResult to check for and handle any errors that may have
happened on the call.

d e v e l o p August 1992

112

Q Many of the new File Manager calls are just HFSDispatch with new selector codes.
How do I check whether a given selector is implemented? An example of a new File
Manager call is GetVolParms. Currently I don’t check, I just read the result code. It
seems to be OK. How should I interpret the response from Gestalt when called with
gestaltFSAttr? As I read it, gestaltFullExtFSDispatching tells me that all the calls are
available. Are there times that only a few of them are available? PBHGetVolParms
seems to be available at all times anyway. Where do I find more info on the workings of
HFSDispatch? In general I would appreciate some more info on the compatibility issue.

A There are two issues. One is that not all versions of the File Manager support
all calls. The other is that even if the File Manager supports the calls, individual
volumes may not.

The first issue is addressed by Gestalt’s gestaltFSAttr selector. Before System 7,
HFSDispatch supported a fixed range of selectors. The result was that some
advanced file services were unavailable, even though the volume would support
them. A good example is PBCatSearch. If you mount an AppleShare 3.0 or
FileShare volume under System 6 with the AppleShare 3.0 Chooser extension,
the volume will report via PBHGetVolParms that bHasCatSearch is true. But if
you try to make the call, you’ll get back a paramErr because HFSDispatch
doesn’t know about the CatSearch selector.

System 7 doesn’t restrict the range of HFSDispatch selectors. For external file
systems, this means it’s up to the external file system to determine whether it
can handle the selector and to return an appropriate error if it cannot. This is
the meaning of the gestaltFullExtFSDispatching flag. If it’s true, there are no
limitations on the range of selectors.

The second problem is that even though HFSDispatch won’t limit the range of
selectors, the volume may still not support the call. To turn the previous
example around, making a PBCatSearch call in System 7 to a pre-AppleShare
3.0 volume will result in an error because the volume doesn’t support the call.

The best way to determine whether a volume supports a feature is to use
PBHGetVolParms. This can return most of the information you need about
advanced file system calls. Unfortunately, there can be problems even with
that. For example, when the user turns file sharing on and off, the
bHasPersonalAccessPrivileges flag can change. So you can’t just test attributes
once and assume they’ll never change.

As far as knowing whether PBHGetVolParms is available, this is not a new call.
It’s documented in Chapter 21 of Inside Macintosh Volume V. The way to check
for it is to simply call it and if you get back a paramErr, it’s unsupported (page
387). This seems to be what you’re doing, so you should be safe.

MACINTOSH Q & A August 1992

113

To summarize, there’s no guaranteed way to know if a particular selector will
work (but it should never crash, just return paramErr). The right sequence of
steps is to first check to see if the HFS supports the full range of calls, then
check for specific features using PBHGetVolParms. And in any event, you
should always check for errors and be prepared to take appropriate action. A
good example of how to do this can be found in the January 1992 version of the
Macintosh Technical Note “Searching Volumes—Solutions and Problems”
(formerly #68).

Q How does Developer Technical Support manage to answer so many difficult questions so
accurately?

A We swear by the Magic 8-Ball as a technical reference. Not only is it
convenient, user-friendly, and available at your local toy store for less than ten
dollars, but it’s guaranteed 100% correct. This way, we manage to answer all
questions quickly and accurately and still leave time for playing Spaceward Ho!

Q What’s the purpose of the MacApp 'mem!' and 'seg!' resources, and where does the
documentation for these resources exist?

A The 'mem!' resource allows you to change MacApp’s memory allocation
reserves in various ways. Each contains three numbers: the amount to add to the
temporary reserve, which is used for system allocations such as system resources
and temporary handles; an amount to add to the permanent reserve, which is
used by you for your memory allocation; and an amount of stack space. Having
multiple 'mem!' resources causes their values to be summed; in this way, you can
create a “debugging” 'mem!' resource that gives you extra space and delete it
when you produce a non-debug version. This is discussed in the MacApp 2.0
General Reference, in Chapter 3.

The 'seg!' resource is used to reserve space for code segments. If the Macintosh
ever tries to load a code segment but fails due to lack of memory, it will crash.
Thus, MacApp keeps a store of memory solely for loading code resources. It
sizes this reserve by adding together the sizes of the segments named in the
'seg!' resource. One way to do this would be to just name all the segments, so
that you know there’s room for them all; however, this would be wasteful,
because many segments are often unused (your printing code, for example). So
what you do is name only those segments that represent the largest code path
you can have—the calling chain that would require the largest set of code
segments to be loaded at any time. This is also described in Chapter 3 of the
MacApp General Reference. In contrast, 'res!' names segments that must be
resident all the time; they’re actually loaded and made resident, as opposed to
the 'seg!' segments, which are used only to calculate how much memory should
be reserved for segments in general.

d e v e l o p August 1992

114

Q I’ve been thinking of shutting down the System 7 Finder. Is this a cool thing to do in my
application?

A We normally recommend that you don’t quit the System 7 Finder application.
Nevertheless, there may be a few good reasons to shut down the Finder. For
example, the Installer (the only application Apple ships with a good reason to do
so) sometimes needs to shut down the Finder and all other applications to make
sure system resources aren’t being used while they’re being updated by the
Installer.

If you find yourself in a situation where you need to shut down the Finder, you
should know about a few things:

• Before you shut down the System 7 Finder, use the Process Manager to see
if the File Sharing Extension is running. If so, you should shut it down
before shutting down the Finder. The File Sharing Extension shouldn’t be
running without the Finder because the Finder is the only user interface the
File Sharing Extension has. You shouldn’t take away the user interface to file
sharing.

There’s another good reason to shut down the File Sharing Extension before
the Finder. The Network Extension (not the Network control panel)
handles all the user interface transactions among the Finder, the File
Sharing Monitor control panel, the Sharing Setup control panel, the Users
& Groups control panel, and the File Sharing Extension (the file server).
The Network Extension opens another file, the Users & Groups Data File,
so that it can manipulate users and groups. When you shut down the Finder
(with a kAEQuitApplication Apple event), the Network Extension and its
connection to the Users & Groups Data File are also closed (almost).
Because of a minor bug in the system, the File Manager thinks that the file is
closed and that the FCB used by that access path is free for reuse; however,
the File Sharing Extension thinks the access path to the Users & Groups
Data File from the Network Extension is still open. When the File Manager
attempts to reuse that FCB to open another file later, the file is opened, but
because the File Sharing Extension thinks that FCB is still in use by the
Network Extension, it won’t allow access to the file and it returns opWrErr
(-49) to the Open call. At this point, the file that someone was attempting to
open can’t be accessed or closed.

• If the Finder is shut down and then eventually relaunched, there may be
some fragmentation of the MultiFinder heap. This can occur because the
Finder is the first application to be started, so it’s always first in the
MultiFinder heap. When you shut it down, that memory becomes available
and other processes might occupy that space. When the Finder is restarted,
if it can’t get into its original space in the MultiFinder heap, it will get
loaded somewhere else and probably won’t be shut down again.

MACINTOSH Q & A August 1992

115

• In System 7, the Finder is responsible for filling the Apple menu with the
items in the Apple Menu Items folder. When the Finder is gone, so are the
Apple menu items, including things that are important to most users (like
control panels).

• If the user has selected background printing with a LaserWriter or
StyleWriter, nothing will print while the Finder is gone. That’s because the
Finder is responsible for monitoring the PrintMonitor Documents folder
and launching the PrintMonitor application when necessary.

Q My Balloon Help message doesn’t appear when I use a 'TEXT' resource in a static
window as the message in the balloon, following string resource examples in Inside
Macintosh Volume VI and modifying the code to indicate 'TEXT'. Why doesn’t this
work?

A While using 'TEXT' resources in Help Manager balloons is a way to provide
stylized text, it doesn’t mean that strings longer than 256 are possible. In fact,
strings up to only 239 characters in length are valid. When string lengths are
greater than 239 the Help Manager takes a short-circuit return and no balloon
is displayed. To work around this limit, you can draw a picture with the text you
want to display and then use the picture in the Help Manager balloon.

Q My TrueType font has all 256 characters defined with a unique glyph. I’ve been unable
to draw the $20 (space) character. DrawChar, DrawText, DrawString, and DrawJust
all ignore this character in the font and draw a blank character. How can I draw it?

A Unfortunately, the problem with the space character not being drawn is hard-
coded into the text-drawing routine in the core of QuickDraw. ASCII 32 is
always “optimized away,” regardless of the font being used or of the particular
circumstances. The only workaround is to put the corresponding character
elsewhere in the ASCII character encoding (or, if this isn’t possible, to use an
additional font).

You’re lucky that TrueType fonts always render the ASCII code 13 (carriage
return) if it has a glyph in the font; for bitmapped fonts, if the character drawing
happens with scaling, or with foreground/background colors different from
black/white, even the CHR(13) drawing is optimized away.

Q After connecting to a remote network via AppleTalk Remote Access (ARA) I can call
PGetAppleTalkInfo and it returns the proper zone name. However, after disconnecting,
PGetAppleTalkInfo still returns the remote network’s zone name instead of “*” or
nothing as I would expect. Is there some period of time I should wait before expecting the
zone name and network number to return to zero (no internet)?

d e v e l o p August 1992

116

A This is, in fact, a bug with ARA version 1.0. Apple is investigating the problem
and there will be a fix in a future release. An easy workaround is to check the
GetZoneList or GetMyZone call to see if it returns any zones.

Q My application opens a number of resource files. If my 'hrct' resources aren’t in the
most recently opened resource file, I get an error -192 (resource not found) from
HMGetIndHelpMsg. Is this a Help Manager bug?

A Your 'hrct' resources get loaded only from the most recently opened resource
file because that’s where the Help Manager is looking for them. The Help
Manager uses Get1Resource to get 'hrct'-type resources to avoid Resource
Manager conflicts with other resources. This is simply a behavior of the Help
Manager. To use HMGetIndHelpMsg properly, call UseResFile with the
refNum of the file containing the 'hrct' before you call the Help Manager. If the
'hrct' is stored in your application resource fork, you can use HomeResFile or
CurResFile (at the start of your program before you’ve opened any other
resource files) to get the refNum of the application resource file.

Not all Help Manager resources are treated this way, due to the design of the
Macintosh Toolbox; 'hdlg' resources, for example, are loaded using
GetResource so that things like Standard File can have common help
throughout all applications.

Q We’re having problems with the GetScrap function in our desk accessory. After a user
opens our DA, when we call GetScrap to get any text from the Clipboard, GetScrap
returns -102 (no requested type in scrap). After once (or more?) through the event or
SystemTask loop, the scrap suddenly shows up. What’s causing this?

A The reason for the trouble you’re having with desk accessories and GetScrap is
that you’re looking for the converted scrap at the wrong time in the process.
According to the MultiFinder documentation (Programmer’s Guide to
MultiFinder and Inside Macintosh Volume VI), an application is supposed to
convert its private scrap and write it to the public scrap when it receives a
suspend event. When the system opens your DA, it immediately sends it an
Open message; the application hasn’t received its suspend event yet. You have to
wait until the scrap has been converted. This, for a DA, should occur at the first
null event, and for applications, when you get a resume event.

Q QuickTime is a joy! But I’ve run aground with SetMovieRate. I’m trying to change the
rate at which a movie plays back, but if I call SetMovieRate the movie starts playing
immediately, the controller goes wild, and the next time I hit the play button it ignores
the previous rate. How can I control my playback rate?

MACINTOSH Q & A August 1992

117

A SetMovieRate takes effect immediately; that’s why the movie starts playing as
soon as you make the call with a rate other than zero. Also, calling
SetMovieRate behind the controller’s back can only cause confusion because
you’re changing the state of the movie without letting the movie controller
know about the change. Note that in normal operation the movie controller
plays back movies at the standard speed, rate = 1; this is the current behavior. It’s
possible that in a future release the movie controller will use the rate the movie
was saved with or the one set with SetPreferredMovieRate.

A little-known fact is that the standard controller does contain a primitive
mechanism for controlling the rate of playback. If you hold the Control key
down and then click the stepping buttons, you can, for example, play the movie
backward. Furthermore, if you hold the mouse button down you’ll get a slider
control that does let you play the movie at different rates backward or forward.

The slider provided by the standard controller isn’t intended to set the rate, so if
you play once at low speed the rate doesn’t stick and, as you’ve found, the next
time you click the play button you go back to the normal speed. If you need the
selected rate to remain for the session, you’ll have to provide your own method
of selection.

Once you know your desired speed, you’ll need to provide your own filter
procedure and install it calling MCSetActionFilter. Upon receiving any
mcActionPlay actions for rate changes, you’ll need to call SetMovieRate to set
the movie in motion at the desired rate (and return TRUE). Using a filter
procedure is the proper way of doing this because the controller can keep in
sync with the actions even though it’s your code that actually affects the action.

Note that you’ll have to do some extra work to mimic the normal behavior of
the standard controller. For example, when you’re at the end of the movie and
the user hits the play button, the controller goes back to the beginning and
plays the movie. Your filter proc has to do the same when playing back the
movie at a rate different from the normal. A different behavior will confuse the
user.

For details on filter procedures, controller actions, and the movie controller in
general, see the “QuickTime Components” chapter of the QuickTime Developer’s
Guide.

Q How does the Magic 8-Ball achieve its high level of technical accuracy?

A There are two theories on this: The first is that the Magic 8-Ball picks an
answer at random and then alters reality to fit the answer it has picked. For
example, if you were to ask it “Am I a millionaire?” it might pick “Signs point to

d e v e l o p August 1992

118

yes” at random. Then it would either have to warp reality so that you actually
would have a million dollars or, more likely, warp your memory of the question
so that you would think you’d asked “Is Elvis still alive?” The other theory is
that it’s just magic.

Q I’m having trouble with PBGetCatInfo returning old data to my application. For
example, if I change a file label using the Finder Label menu and then run my
program, which calls PBGetCatInfo, the fdFlags field in the FInfo record returned
doesn’t reflect the change. I’ve tried calling PBFlushVol before I do this; the file isn’t
open, so there’s no way to call PBFlushFile. However, restarting the Macintosh or
changing the file’s name causes PBGetCatInfo to work correctly. What’s going on and
how do I get around it?

A The Finder caches much of the “Finder information,” including things like the
color coding information users can set with the Finder Label menu and the view
position of objects in folder windows. Changes to the Finder information are
cached until the folder that contains the objects that were changed is closed
(which happens at system restart or shutdown time) or until some noncached
change is made to the object (for example, the file is renamed). The Finder
caches what it considers Finder-specific information to cut down on the number
of disk accesses it must make. (For example, rearranging the object view in a
window would be very slow on floppy disks if the Finder wrote to the disk every
time the user drags a group of objects around.) Since in most cases no other
applications should care about the state of the Finder information, this normally
doesn’t cause problems. There’s no workaround for this behavior in the current
implementation of the Finder.

Q The Macintosh QuickDraw routine ObscureCursor hides the cursor until the next time
the mouse is moved, but it isn’t affected by HideCursor or ShowCursor. Our application
needs to use ObscureCursor while the user is typing but needs the cursor to be visible
after no typing has occurred for a short period. How do we “undo” ObscureCursor, since
we can’t rely on the user to move the mouse?

A The only way (besides actual mouse movement) to make an obscured cursor
visible again is to convince the system that the mouse has moved. There’s no
really good way to do this via Toolbox calls, so you’re going to have to do it the
hard way and simply update the low-memory cursor information to tell the
system the cursor moved (even though you don’t need to update the actual
position).

To tell the system the cursor has changed location, simply set the crsrNew flag
(a byte located at $08CE) to 1. When the system sees this byte is 1, it will
assume the cursor has moved and redraw the unobscured cursor at the

MACINTOSH Q & A August 1992

119

appropriate place (where it was all along), and reset CrsrNew, waiting for the
mouse to move again.

Q In System 7, I want to place my user’s preferences file in the Preferences folder in the
System Folder, but I can’t seem to get the Preferences folder’s directory ID and other
information so that my file will appear there! Also, how do I get to that folder if the
user changes the names of the System Folder and Preferences folder? And once the user’s
preferences file is there, am I assuming correctly that the best way to find it again is to
make an alias record to track the file ID?

A System 7 introduced the routine FindFolder for locating the Preferences folder.
Just make this call:

err := FindFolder (kOnSystemDisk, kPreferencesFolderType,
kCreateFolder, prefVRefNum, prefDirID);

If FindFolder returns noErr, prefVRefNum and prefDirID will contain the
vRefNum and dirID of the Preferences folder, which can be used later with
HCreateResFile, HOpenResFile, PBHGetFInfo, and other File Manager calls
to locate your preferences file. If a Preferences folder doesn’t already exist, the
kCreateFolder parameter instructs FindFolder to make one and return the
vRefNum and dirID of the new folder.

FindFolder is documented in Chapter 9 of Inside Macintosh Volume VI, under
“The System Folder and Its Related Directories.” Although FindFolder is
implemented only in System 7, if you’re using MPW 3.2 (or the current
THINK compilers) glue is automatically included in your compiled code,
making it safe to call FindFolder in System 6. The glue checks whether
FindFolder is available and, if it isn’t, returns the System Folder’s vRefNum and
dirID for the kPreferencesFolderType selector. Use the System Folder values as
the location for the preferences file in System 6.

If you’re not using a development system that provides the FindFolder glue,
your code should check the FindFolder Gestalt selector gestaltFindFolderAttr
to see if FindFolder is available. If FindFolder is available, call it. FindFolder is
defined as

FUNCTION FindFolder (vRefNum: INTEGER; folderType: OSType;
createFolder: BOOLEAN; VAR foundVRefNum: INTEGER;
VAR foundDirID: LONGINT): OSErr;

INLINE $7000, $A823;

If FindFolder isn’t available, call SysEnvirons to find the System Folder’s
working directory reference number, call PBGetWDInfo or GetWDInfo to

d e v e l o p August 1992

120

convert that number to a true vRefNum and dirID, and use those System
Folder numbers for the location of the preferences file. Example code for this is
in the Q&A stack, under Operating System:File System:Code for identifying
vRefNum and dirID of Macintosh System Folder.

To locate the Preferences folder, follow the steps described above rather than
trying to keep an alias of the Preferences folder or of the preferences file.
However, if there are any other files in the System Folder that the application
depends on (such as dictionaries) those should be tracked with aliases, stored as
'alis' resources in the preferences file. See Chapter 27 of Inside Macintosh
Volume VI for information on using aliases.

Q I recall reading that QuickTime includes an implementation of the Alias Manager for
System 6, but I haven’t found any precise description of what’s included. Is it a bare
minimum to support QuickTime? Or is the full Alias Manager there? Also, is there
any way I can use the FSSpec interface to the File Manager, or must I revert to the
System 6 interface?

A When QuickTime is installed, most of the Alias Manager is available in System
6, with these exceptions:

• NewAlias will accept a fromFile parameter, but it never creates a relative
alias.

• NewAliasMinimalFromFullPath and ResolveAliasFile aren’t available.

• ResolveAlias and UpdateAlias will accept a fromFile parameter, but ignore
it.

• MatchAlias may be called, but the kARMMultVols, kARMSearchMore, and
kARMSearchRelFirst flags aren’t available. If you pass them in, they’ll be
ignored. Furthermore, if you pass in a matchProc, it will never be called.

• The System 6 Alias Manager won’t mount network volumes.

To summarize, in System 6 the Alias Manager doesn’t handle relative aliases,
multiple volume searches, “searchMore” searches, and network volume
mounting. On the bright side, nearly all calls are present. Aliases created in
System 6 are compatible with System 7 aliases, and aliases created in System 7
will work in System 6.

Unfortunately, QuickTime doesn’t currently install an Alias Manager Gestalt
selector, since it’s only a partial implementation. You can check for the Alias
Manager using Gestalt and, if it isn’t present, look for QuickTime (using
Gestalt); if QuickTime is present, assume you have an Alias Manager, subject to
the limitations listed above.

MACINTOSH Q & A August 1992

121

QuickTime also makes extensive use of the FSSpec data structure introduced in
the System 7 File Manager. Nearly all the FSSpec calls are available in System 6
when QuickTime is installed. The following calls are available in System 6, and
should behave as documented for System 7: FSMakeFSSpec, FSpOpenDF,
FSpOpenRF, FSpCreate, FSpDirCreate, FSpDelete, FSpGetFInfo,
FSpSetFInfo, FSpSetFLock, FSpRstFLock, FSpRename, FSpCatMove,
FSpOpenResFile, FSpCreateResFile, and FSpGetCatInfo. FSpExchangeFiles
isn’t available when using the QuickTime System 6 version of the FSSpec calls.

Again, the Gestalt selector for the FSSpec calls isn’t installed when QuickTime
is there. This means that the gestaltFSAttr Gestalt selector may not be present,
and gestaltHasFSSpecCalls may not be set, even if gestaltFSAttr is present.

Q I would like to implement the preview/thumbnail feature in the Standard File dialog,
just like the extension included with QuickTime. Is that code available separate from
QuickTime? If not, could I at least get information on how the preview is created?

A To implement your own preview/thumbnail feature, simply duplicate the
Standard File dialog, add the necessary 'DITL' resources, and install a custom
filter procedure for handling preview commands. On the System 7 CD there’s
an example, StdFileSample, that shows exactly how to create a custom file
dialog. The Macintosh Technical Note “Customizing Standard File” (formerly
#47) describes how to do this as well. For generating and displaying the preview,
you can use the following PreviewResourceRecord, found at the end of the
ImageCompression.h file:

struct PreviewResourceRecord {
unsigned long modDate;
short version;
OSType resType;
short resID;

};

typedef struct PreviewResourceRecord PreviewResourceRecord;
typedef PreviewResourceRecord *PreviewResourcePtr, **PreviewResource;

This is the format for the 'pnot' resource, which defines the preview for the
movie file, usually pointing to a 'PICT' resource. It’s all you need to generate
QuickTime-compatible preview without using QuickTime.

Q You guys don’t really use the Magic 8-Ball to answer programming questions, do you?

A Reply hazy, try again.

d e v e l o p August 1992

Have more questions? Need more answers?
Take a look at the Dev Tech Answers library on
AppleLink (updated weekly) or at the Q & As on
the Developer CD Series disc, or ask a Magic
8-Ball.•

122

See if you can solve this programming puzzle, presented in the form of
a dialog between Konstantin Othmer (KON) and Bruce Leak (BAL).
The dialog gives clues to help you. Keep guessing until you’re done; your
score is the number to the left of the clue that gave you the correct
answer. These problems are supposed to be tough. If you don’t get a high
score, at least you’ll learn interesting Macintosh trivia.

100 BAL This guy has this program that leaves all the palette colors messed up
after his program quits.

KON Yeah, I’ve seen it. He’s probably got version 1.0 of that KeithPaint
program.

90 BAL This is something he wrote with MPW C, and he spent days
debugging his code with SADE. He’s sure it’s not his problem.

KON Sounds like some kind of Palette Manager nastiness.

80 BAL He sends you a copy and it works fine on your machine.

KON Which system is he running? How many monitors does he have?

75 BAL You’re both running 6.0.7 on a Macintosh fx with one Apple 13-inch
color monitor.

KON That’s a nice programming environment. Why doesn’t he upgrade to
System 7 and buy himself a real monitor?

70 BAL Well, he has System 7 on a Macintosh Quadra with a 16-inch color
monitor for reading NetNews and watching QuickTime movies. But
the bug doesn’t happen on that machine.

KON So it must be some INIT conflict. What’s he got, ColorDesk or
something?

65 BAL Nope, happens without any INITs.

KON & BAL’S PUZZLE PAGE August 1992

123
KONSTANTIN OTHMER AND BRUCE LEAK
Between vacations, KON and BAL often find
themselves under a lot of pressure to catch up on
their work load. When BAL gets himself in too
deep, he calls KON in for assistance. They try to
hash out their puzzling problems at Apple’s
Fitness Center-—although KON admits to having
trouble staying focused, due to what we can only
call his “wandering eye.” When not working on

Puzzle Pages and develop articles, KON and
BAL actually write software. As a follow-on to
their previous QuickDraw and QuickTime
successes, look for QuickFit, featuring QuickTime-
based exercise videos and QuickBuf protein
powder. You read it here first!•

KON & BAL’S

PUZZLE PAGE

AN OFF-COLOR
PUZZLE

KONSTANTIN OTHMER
AND BRUCE LEAK

KON He’s using the Color Manager and calling some nasty thing like
SaveEntries or RestoreEntries, and he isn’t MultiFinder compatible. I
tell him to use the Palette Manager.

60 BAL He’s using the Palette Manager, and he’s totally MultiFinder friendly.

KON Sounds impossible. I swap motherboards with him.

55 BAL Still happens, just on his machine. If you swapped hard drives it would
happen on yours.

KON It’s got to be some kind of GDevice color table thing. I check the
GDevice color table before and after running his program.

BAL Wait a second. Who has which hard drive?

KON I have mine, he has his.

50 BAL The color tables are different on his GDevice, but the same on yours.

KON Well, who restores the color table? PaletteMgrExit or something like
that, right?

45 BAL The Palette Manager changes the color environment only when a
window with an associated palette comes to the front. This method
assumes that people who need colors request them, and people who
don’t request colors don’t care enough to affect the color environment.

Unfortunately, with this approach to color management, when an
application that’s Palette Manager intensive quits, and an application
such as the Finder which has no intensive color demands comes to the
front, you’re stuck with the nonstandard color state of the application
that just quit.

In 32-Bit QuickDraw David Van Brink extended the Palette Manager
to include a routine called PaletteMgrExit. This routine is called
automatically for you when your application quits, thus restoring the
default color state.

KON Don’t you have the same problem when twitching between layers? If
you twitch to the Finder and the other application is still running,
you’ll be stuck with the nonstandard color state too.

40 BAL Yeah, but there’s still an application around that needs those colors,
and you can potentially see that application’s documents, so it’s a good
bet to keep them. No one is specifically asking for the standard colors,
and someone wants the others, so why not keep them around? If you
twitch to another application that had palettes, obviously its color
needs will be satisfied.

KON So in effect you start out with a default color world, and you launch an
application that twists the colors to the demands of a particular

d e v e l o p August 1992

SCORING
90–100 So you’re still using System 6 with SADE? Upgrade to System 7 immediately!
60–80 Do you swear to tell the truth, the whole truth, and nothing but the truth?
35–55 Good job. Next time you’re in L.A., try out for “Jeopardy.”
5–30 Hey, we’re with you! MacsBug users through and through.•

124

document you’re viewing or editing. Upon quitting that application
your machine is left in some nonstandard color state. So
PaletteMgrExit cleans up the mess.

35 BAL That’s basically it, but just going back to the default color environment
when an application quits isn’t sufficient. PaletteMgrExit reverts to the
default color set modified to accommodate the application coming to
the front.

KON I set an ATB on PaletteMgrExit and see if it gets called.

30 BAL It’s called on your machine, but not his.

KON Well, ExitToShell is supposed to call it, and it’s hard to call
ExitToShell wrong, so there must be some system problem.

25 BAL Welcome to the Puzzle Page, KON. Maybe this would be an excellent
opportunity to fire up one of those many fine Macintosh debugging
environments, Mr. MacsBug.

KON Clearly _ExitToShell is different. So I list ExitToShell with MacsBug
and see who’s there.

20 BAL It’s in RAM.

KON I see whose heap it’s in using HZ.

15 BAL It’s above all heaps.

KON So it’s in MultiFinder memory. He must be running an old version of
MultiFinder that doesn’t know about PMgrExit.

10 BAL Yeah, you know that SetAside MultiFinder they still ship with SADE?

KON Version 6.1b9. Sounds like they never really finished it.

5 BAL Well, my hero Phil Goldman broke off the sources to add that
SetAside stuff, but it was never shipped as an official Apple release,
since System 7 was just around the corner. SADE needed that feature
because they twitch in some weird way. So they’re sort of stuck using
that version, while the rest of the world moves on. And they keep
shipping that old MultiFinder for those last two, die-hard, System 6
developers. System 7 SADE users don’t have this problem.

KON Nasty.

BAL Yeah.

KON & BAL’S PUZZLE PAGE August 1992

125
Thanks to Sean Callahan, Scott Douglass, and
David Van Brink for reviewing this column.•

A
Alias Manager, Macintosh Q & A

121–122
ampCmd, Helper and 24
animation, writing to screen and

59
Apple events, NetWork Project

and 91
Apple Sound Chip (ASC),

MultiBuffer and 39, 41
AppleTalk

MultiBuffer and 48, 56
NetWork Project and 90,

103
AppleTalk Remote Access (ARA),

Macintosh Q & A 116–117
“Around and Around:

Multibuffering Sounds” (Day)
38–58

Assert, MultiBuffer and 57, 58
asynchronous iterations, NetWork

Project and 85–86
Asynchronous Sound Helper

7–37
“Asynchronous Sound Helper,

The” (Ressler) 7–37
Audio Interchange File Format

(AIFF), MultiBuffer and 45

B
BackProcessingProc, MultiBuffer

and 45, 52
BackReadProc, MultiBuffer and

45, 52
Balloon Help, Macintosh Q & A

116
bCmd, MultiBuffer and 48
brains, Johnson and Greenspon

discuss 106–109
break macro, exception handling

and 72
bufferCmd

Helper and 27
MultiBuffer and 41, 48, 51,

55

BuildMultiBuffer, MultiBuffer and
57

C
C, exception handling and 65–81
callBackCmd

Helper and 14, 23, 25
MultiBuffer and 41, 48, 51,

55
callBackProc, MultiBuffer and 45
CallDTWithParam, MultiBuffer

and 54
catch macro, exception handling

and 79
cbCmd, MultiBuffer and 48
channels, sound 39–41
check_action macro, exception

handling and 80
check macro, exception handling

and 71–72, 73, 75, 79, 80
Clipboard, Macintosh Q & A 117
CloseFile, exception handling and

79
Color QuickDraw, writing to

screen and 62
colors

KON & BAL puzzle
123–125

Macintosh Q & A 112
color tables, Macintosh Q & A

110–111
CompleteRead, MultiBuffer and

52, 55, 56
computing environment 82
conditional compilation flags,

MultiBuffer and 57–58
contract, programming by 69–72
CopyBits, writing to screen and

59, 60, 61
CTab2Palette, Macintosh Q & A

110–111
cursor, Macintosh Q & A

119–120

d e v e l o p August 1992

For a cumulative index to all issues of
develop, see the Developer CD Series
disc.•

126

INDEX

D
Day, Neil 6, 38
DBService, MultiBuffer and 51,

55
Debug, MultiBuffer and 57
Debugger, exception handling and

71
DebugMessage, MultiBuffer and

57, 58
DebugStr, exception handling and

72
Deferred Task Manager,

MultiBuffer and 53
deferred tasks 45
delay, MultiBuffer and 57
desk accessories, Macintosh

Q & A 117
Device Manager, MultiBuffer and

46, 47
diagnostic plots, NetWork Project

and 97
digital audio, MultiBuffer and

38–58
DirectPlotColorIcon, writing to

screen and 63
DisposeHandle, exception

handling and 79
distributed computing, NetWork

Project and 82–105
DivideLong, exception handling

and 69, 70
doTrace macro, exception

handling and 72
DoubleBack, MultiBuffer and 38
DoubleBuffer, MultiBuffer and

45, 49, 55, 56
dprintf, exception handling and

72
DrawChar, Macintosh Q & A 116
DrawJust, Macintosh Q & A 116
DrawString, Macintosh Q & A

116
DrawText, Macintosh Q & A 116
DTInstall, MultiBuffer and 54

E
Echo, exception handling and 72
exception handling 65–81
ExtParamBlockRec, MultiBuffer

and 47, 56

F
File Manager

Macintosh Q & A 112,
113–114, 121–122

MultiBuffer and 48, 56
files, Macintosh Q & A 112, 119
Finder

information (Macintosh
Q & A) 119

labels (Macintosh Q & A)
112

shutting down and
(Macintosh Q & A)
115–116

writing to screen and 62
flow of control

with error handling 67–69
normal 65–67
with require macro 73–77

flushCmd, Helper and 25
fonts, Macintosh Q & A 116
frame, sound sample 39, 41
FreeDBPrivateMem, MultiBuffer

and 53
freqCmd, Helper and 29
freqDurationCmd, Helper and 24
FSSpec, Macintosh Q & A

121–122

G
GDevices, writing to screen and

59, 61, 62
Gestalt

Macintosh Q & A 113–114
writing to screen and 62

GetAIFFHeaderInfo, MultiBuffer
and 49

getDTParam, MultiBuffer and 53

getErr, MultiBuffer and 53
GetNamedResource, Macintosh

Q & A 111
GetNewDialog, exception

handling and 74, 75, 78
getPB, MultiBuffer and 53
GetPictInfo, Macintosh Q & A

110
GetPixBaseAddr, writing to screen

and 62
getRateCmd, Helper and 27
GetResource, exception handling

and 79
GetScrap, Macintosh Q & A 117
GetVolParms, Macintosh Q & A

113–114
glyphs, Macintosh Q & A 116
“Graphical Truffles” (Stevens and

Guschwan) 59–64
graphics, writing to screen and 59
Greenspon, Michael 107
Guschwan, Bill 60
GWorlds, writing to screen and

59, 61

H
hazard-to-leave-idle-state,

NetWork Project and 95, 97
Helper 7–37
Help Manager

Macintosh Q & A 117
writing to screen and 60

HFSDispatch, Macintosh Q & A
113–114

HGetState, Helper and 21, 22
HideCursor, Macintosh Q & A

119–120
HMGetIndHelpMsg, Macintosh

Q & A 117

I
Idle, NetWork Project and 103
idle monitor, NetWork Project

and 89

INDEX August 1992

127

J
Johnson, Dave 106

K
KillEveryOneButMe, writing to

screen and 62
“KON & BAL’s Puzzle Page”

(Othmer and Leak) 123–125

L
Label menu, Macintosh Q & A

119
labels, Macintosh Q & A 112,

119
latency 42
Leak, Bruce 123
“Living in an Exceptional World”

(Parent) 65–81
LocalTalk, MultiBuffer and 42

M
Macintosh Q & A 110–122
MacsBug, exception handling and

65–81
Master, NetWork Project and

101
menus, Macintosh Q & A 112
movies, Macintosh Q & A

117–118
MPW, exception handling and

65–81
MsgEvaluation, NetWork Project

and 102, 103
MsgUsable, NetWork Project and

102, 103
MultiBuffer 38–58
multiple buffering, MultiBuffer

and 38–58

N
Name-Binding Protocol (NBP),

NetWork Project and 103
network numbers, Macintosh

Q & A 116–117

NetWork Project 82–105
“NetWork Project, The:

Distributed Computing on the
Macintosh” (Sawitzki) 82–105

NetWorkScheduler, NetWork
Project and 101, 102

neural nets, NetWork Project and
86–87

NewHandle, exception handling
and 74, 78–79

NewPalette, Macintosh Q & A
110–111

NewTask, NetWork Project and
101

NewWaveForm, MultiBuffer and
54

notrace macro, exception
handling and 72

nrequire macro, exception
handling and 73

O
ObscureCursor, Macintosh Q & A

119–120
OpenAIFFFile, MultiBuffer and

48
OpenFile, exception handling and

79
OpenResFile, Macintosh Q & A

111
Othmer, Konstantin 123

P
Palette Manager, writing to screen

and 60
palettes

KON & BAL puzzle
123–125

Macintosh Q & A 110–111
ParamBlockRec, MultiBuffer and

47
Parent, Sean 65
pauseCmd, Helper and 27
PBFlushFile, Macintosh Q & A

119

PBFlushVol, Macintosh Q & A
119

PBGetCatInfo, Macintosh Q & A
119

PBHGetVolParms, Macintosh
Q & A 113–114

PGetAppleTalkInfo, Macintosh
Q & A 116–117

pictures, Macintosh Q & A
110–111

Picture Utilities Package,
Macintosh Q & A 110–111

PlayFromFile, MultiBuffer and
57

PlayFromSynth, MultiBuffer and
57

post-conditions, exception
handling and 70–71

PrClose, exception handling and
75, 79

PrCloseDoc, exception handling
and 73

preconditions, exception handling
and 69–70

preflighting, exception handling
and 77–78

PrError, exception handling and
75

preview/thumbnail feature,
Macintosh Q & A 122

PrimeBuffers, MultiBuffer and
53, 55

printf, exception handling and 72
Printing Manager

exception handling and 79
writing to screen and 60

PrivateDBInfo, MultiBuffer and
48, 53, 55, 57

ProcessingProc, MultiBuffer and
44, 45, 47, 52, 53, 54, 55, 56,
57, 58

Process Manager
exception handling and 78
NetWork Project and 90
writing to screen and 61

d e v e l o p August 1992

128

programming by contract,
exception handling and 69–72

PrOpen, exception handling and
79

PrOpenDoc, exception handling
and 73

PrOpenDocument, exception
handling and 79

PrOpenPage, exception handling
and 79

Puzzle Page 123–125

Q
Q & A, Macintosh 110–122
quantization 33, 40
QueueFrame, MultiBuffer and

41–42, 51, 55, 58
QuickDraw

exception handling and 78
Macintosh Q & A 119–120
writing to screen and 59,

60, 61, 62, 63
QuickDTInstall, MultiBuffer and

54
QuickTime, Macintosh Q & A

110, 117–118, 121–122
quietCmd, Helper and 25

R
RapMaster, Helper and 37
rateCmd, Helper and 27, 28
ReadCharacters, exception

handling and 80
ReadProc, MultiBuffer and 44,

45, 51, 52, 53, 55, 56, 57, 58
RecordAIFFFile, MultiBuffer and

49
RemoteJob, NetWork Project and

104
remote networks, Macintosh

Q & A 116–117
ReplyMessage, NetWork Project

and 103
require_action macro, exception

handling and 73, 80

require macro, exception
handling and 72, 73–77, 78,
79, 80

ResEdit
exception handling and 71
Macintosh Q & A 111, 112

resources, Macintosh Q & A 111
Ressler, Bryan K. 7
resumeCmd, Helper and 28
resume macro, exception

handling and 80
reverb, MultiBuffer and 57
Reverse, MultiBuffer and 54

S
SampleBuffer, MultiBuffer and

47, 48, 56
Sample Code, reorganization of 6
sampled sound, quality of 33
sampled synthesis, sound and 24
sample rate, sound and 33
samples, sound and 24, 40
sample size, sound and 33, 40
sampling, MultiBuffer and 38–58
Sawitzki, Günther 82
screen, writing to 59–64
selectors, Macintosh Q & A

113–114
SetDepth, writing to screen and

61
SetMovieRate, Macintosh Q & A

117–118
SetResLoad, exception handling

and 79
SetUpDBPrivateMem,

MultiBuffer and 53, 55
SetupSndHeader, Helper and 33
SHBeginPlayback, Helper and 23
SHDemo, Helper and 29, 37
SHGetChannel, Helper and 11,

24, 26, 29–30, 37
SHGetRecordedSound, Helper

and 12, 13, 15, 20, 30, 34
SHGetState, Helper and 13, 21,

22

SHIdle, Helper and 9, 11, 14, 15,
16, 17, 18–20, 22, 34

ShieldCursor, writing to screen
and 61, 63

SHInitOutRec, Helper and 21,
23

SHInitSoundHelper, Helper and
10, 16–17

SHKillSoundHelper, Helper and
11, 16, 17–18

SHNewOutRec, Helper and 21
SHNewRefNum, Helper and 21
SHOutRecFromRefNum, Helper

and 14, 15, 16, 24
ShowCursor

Macintosh Q & A 119–120
writing to screen and 61, 63

SHPlayByHandle, Helper and 11,
12, 20–24, 29, 37

SHPlayByID, Helper and 11,
20–24, 37

SHPlayCompletion, Helper and
14, 23

SHPlayContinue, Helper and 11,
26, 27–28

SHPlayPause, Helper and 11,
26–27

SHPlayStatus, Helper and 11, 26,
28–29

SHPlayStop, Helper and 11, 20,
24–26

SHPlayStopAll, Helper and 11,
20, 24–26

SHPlayStopByRec, Helper and
24, 25

SHQueueCallback, Helper and
23

SHRecordCompletion, Helper
and 14, 15

SHRecordContinue, Helper and
12, 34, 35

SHRecordPause, Helper and 12,
34, 35

SHRecordStart, Helper and
11–12, 30, 33

INDEX August 1992

129

SHRecordStatus, Helper and 12,
13, 34, 35–36

SHRecordStop, Helper and 12,
20, 30, 34

SHReleaseOutRec, Helper and
19, 22, 25

Simple Beep, Helper and 27
SndDisposeChannel, Helper and

19
SndDoCommand, MultiBuffer

and 39, 41
SndDoImmediate, MultiBuffer

and 39, 41
SndNewChannel

Helper and 23
MultiBuffer and 41

SndPlay, Helper and 23, 24, 29
SndPlayDoubleBuffer,

MultiBuffer and 38, 58
SndRecordToFile, MultiBuffer

and 49
SndStartFilePlay, MultiBuffer and

38
sound

Helper and 7–37
MultiBuffer and 38–58

soundCmd, Helper and 29
Sound Driver, Helper and 7
sound input driver 8
Sound Manager

Helper and 7–37
MultiBuffer and 38–58

SPBCloseDevice, Helper and 20
SPBGetRecordingStatus, Helper

and 36
SPBOpenDevice, Helper and 33
SPBPauseRecording, Helper and

35
SPBRecord, Helper and 33
SPBResumeRecording, Helper

and 35
Spinning Brain, NetWork Project

and 86, 96
square-wave synthesis 24

Standard File Package
Macintosh Q & A 122
MultiBuffer and 48, 49

Stevens, Brigham 59
StripAddress, writing to screen

and 62
summation, MultiBuffer and 57
synthesizer 7
SysBreak, exception handling and

71
System 4.1, Helper and 7
System 6, Macintosh Q & A

121–122
System 6.0.7, Helper and 7–37
System 7

exception handling and 78
Helper and 7
Macintosh Q & A 115–116,

120–121
NetWork Project and 90
writing to screen and 61

System 7.0.1
MultiBuffer and 54
writing to screen and 61

SystemTask, Macintosh Q & A
117

T, U
Tech Notes, reorganization of 6
“Tech Notes Take a New Path;

Check It Out!” (Day) 6
TEHandle, exception handling

and 70, 78
TEKey, exception handling and

70–71, 77, 78
TENew, exception handling and

77
TextEdit, exception handling and

78
32-Bit QuickDraw, writing to

screen and 62
throw macro, exception handling

and 79
timbreCmd, Helper and 24

Toolbox
exception handling and

65–81
writing to screen and 59,

60, 62, 63
traceBreak macro, exception

handling and 72
traceGo macro, exception

handling and 72
trace macro, exception handling

and 72
TrueType, Macintosh Q & A 116
Turing, Alan 106, 108, 109

V
“Veteran Neophyte, The”

(Johnson, with Greenspon)
106–109

W, X, Y
WaitNextEvent

NetWork Project and 99
writing to screen and 61

WaveReadProc, MultiBuffer and
52

wave-table synthesis 24
Window Manager, writing to

screen and 59, 60
writing to screen 59–64

Z
zone names, Macintosh Q & A

116–117

d e v e l o p August 1992

130

