


E D I T O R I A L  S T A F F

Editor-in-Cheek  Caroline Rose

Technical Buckstopper  Dave Johnson

Our Boss  Greg Joswiak

His Boss  David Krathwohl

Review Board  Pete (“Luke”) Alexander, Neil Day,

C. K. Haun, Jim Reekes, Bryan K. (“Beaker”)

Ressler, Larry Rosenstein, Andy Shebanow,

Gregg Williams

Managing Editor  Monica Meffert

Assistant Managing Editor  Ana Wilczynski

Contributing Editors  Lorraine Anderson, 

Geta Carlson, Toni Haskell, Judy Helfand,

Rebecca Pepper, Rilla Reynolds

Indexer  Ira Kleinberg

A R T  &  P R O D U C T I O N

Production Manager  Hartley Lesser

Art Director  Diane Wilcox

Technical Illustration  Nurit Arbel, John Ryan 

Formatting  Forbes Mill Press

Printing  Wolfer Printing Company, Inc.

Film Preparation  Aptos Post, Inc.

Production  PrePress Assembly

Photography  Sharon Beals, Lisa Jongewaard

Online Production  Cassi Carpenter

develop, The Apple Technical Journal, is a
quarterly publication of the Developer
Support Information  group.

The stone jigsaw puzzle was pieced
together by Hal Rucker of Rucker
Huggins using Adobe Illustrator,
FontMonger, Ray Dream Designer 
2.0, and Adobe Photoshop.

The Developer CD Series disc for
November/December 1992 or later
contains this issue and all back issues of
develop along with the code that the articles
describe. The develop issues and code are
also available on AppleLink and via
anonymous ftp on ftp.apple.com.



CONTENTS December 1992

1
© 1992 Apple Computer, Inc. All rights reserved.

Apple, the Apple logo, APDA, AppleLink, AppleTalk, ImageWriter, LaserWriter, MacApp, Macintosh, MacTCP, MPW,
MultiFinder, SADE, and StyleWriter are trademarks of Apple Computer, Inc., registered in the U.S. and other
countries. develop, Finder, Macintosh Quadra, MacroMaker, PowerBook, QuickDraw, QuickTime, Sound Manager,
and System 7 are trademarks of Apple Computer, Inc. PostScript and Adobe are trademarks of Adobe Systems
Incorporated, which may be registered in certain jurisdictions. HyperCard is a registered trademark of Claris
Corporation. NuBus is a trademark of Texas Instruments. UNIX is a registered trademark of UNIX System Laboratories,
Inc. All other trademarks are the property of their respective owners.

Playing the postdating game.   2

CDs lost in space.   4

Techniques for Writing and Debugging Components  by Gary
Woodcock and Casey King Components aren’t just for QuickTime
programmers anymore.   7

Time Bases: The Heartbeat of QuickTime  by Guillermo A. Ortiz
Understanding and manipulating time bases directly is sometimes helpful. Here are
some tips.   41

Better Apple Event Coding Through Objects  by Eric M. Berdahl Adding
Object Model support to your existing OOP code may be easier than you think.   58

Another Take on Globals in Standalone Code  by Keith Rollin   For
MPW users, here’s an alternative way to implement globals in standalone code.   89

Be Our Guest: Components and C++ Classes Compared  by David 
Van Brink Components and C++ classes have some surface similarities but
underneath are very different beasts.   37

Graphical Truffles: Animation at a Glance  by Edgar Lee Three basic
animation techniques everyone should know about.   53

Print Hints: Top 10 Printing Misdemeanors  by Pete (“Luke”) Alexander
You know the felonies, now learn the lesser printing crimes.   84

The Veteran Neophyte: Digital Zoology  by Dave Johnson Genetic
takeovers, Lamarckian evolution, and language.   116

KON & BAL’s Puzzle Page: A Micro Bug by Konstantin Othmer and
Bruce Leak Remember that little built-in debugger that no one ever uses? 
People do.   134

Macintosh Q & A   Apple’s Developer Support Center answers your product
development questions.   120

138I N D E X

Q  &  A

C O L U M N S

A R T I C L E S

L E T T E R S

E D I T O R I A L



Dear Readers,

The more observant among you may have noticed that we’ve made yet another
change to develop with respect to how it’s dated. The last change happened with Issue
10, when we stopped designating issues with the current season and went back to
using the current month, because the season isn’t the same around the world. Now
we’ve  moved the date ahead by one month — also to accommodate worldwide
distribution.

For the terminally curious, here are the details: Apple Direct, our vanguard of
information for business and technical decison makers, doesn’t reach other countries
until two to eight weeks after it’s distributed in the U.S.; it might, for example, be
folded into a local mailing whose schedule doesn’t coincide. So by the time some
non-U.S. developers see Apple Direct, they think they’ve been sent a past issue rather
than the latest one. To help convey to them that it is indeed the latest issue, it’s now
dated with a month that’s closer to when they’ll see it. The Developer CD Series disc,
Apple Direct, and develop all need to be in sync — so there you have it. What is now
the December issue of develop was the Autumn issue last year and the October issue
in 1990 (when our production cycle was a month out of phase from where it is now).
Anyway, we hope those of you in the U.S. agree there’s no harm in a little time travel
forward.

A little time travel forward would be really handy for me while I’m writing these
editorials, because I don’t always know what the state of the develop-related world will
be two months in advance (that’s the lag time before you actually read this). In Issue
11’s editorial, for example, I couldn’t alert you to develop’s being in a new format on
the Developer CD Series disc, because at that time we weren’t sure it would make it
onto that disc. Yes, we’ve responded to your complaints about develop in HyperCard®

by switching to that popular viewing tool that you may know as “BlueNote” — now
“Apple DocViewer” — the same tool that’s used for viewing New Inside Macintosh. 

The Developer CD corresponding to Issue 11 contained a prerelease version of
DocViewer that still needed some work; for example, it wouldn’t work at all on a
Macintosh Plus. In lieu of a time machine, I’ve consulted the Magic 8-Ball DTS uses
to answer developer questions, and it tells me that the CD corresponding to this issue
of develop — called the “November/December” CD, to ease the transition — will
include a version 1.0 release of DocViewer along with Issues 11 and 12 in DocViewer

d e v e l o p December 1992

CAROLINE ROSE (AppleLink CROSE) has been
writing software documentation since before there
were personal computers or even lava lamps. Her
total of five years at Apple is (to use the jargon
she helped coin in Inside Macintosh Volume I) a
discontinuous selection, interrupted by as many
years at NeXT. When not reading, writing,
coining, or otherwise obsessing over words,
Caroline enjoys the outdoors. (As songwriter

Greg Brown puts it, “People say small things
when they stay too long in little rooms.”) The
highlight of her summer was “swimming Lava
Falls”: being thrown from a raft that capsized in
the largest rapid (a 37-foot drop) on the Colorado
River in the Grand Canyon, and being rescued by
a small paddleboat that braved the next rapid
with 12 worried souls aboard. Talk about an
adrenaline rush! And she lived to tell the tale.•

2

CAROLINE ROSE



format. Version 1.0 should work on Macintosh Plus and newer models, with system
software version 6.0 and later. Back issues of develop will eventually also make their
way over into this format (the 8-Ball is hazy regarding just when this will happen).
We’d really like your feedback on DocViewer and how well it works for reading
develop (or anything else). Please check it out, and send your flames or even praise to
AppleLink DEV.CD. 

Whoops — did I say “DTS”? Old habits die hard. Another change we’re gradually
making in develop is to shift from “Developer Technical Support” (DTS) to
“Developer Support Center” (DSC). As you may have read in the April 1992 issue of
Apple Direct, the DSC is a gateway to DTS as well as other support-related resources.
It provides a focal point for developer queries — a single AppleLink address,
DEVSUPPORT, and a single phone number, (408)974-4897. Developers who aren’t
Apple Associates or Partners can contact the DSC for limited nontechnical support
and referrals. We’ll be adjusting to this change along with others that are creeping in:
Tech Note references no longer numbered; Inside Macintosh references that include
New Inside Macintosh; DocViewer as the on-line viewing tool; postdating; and other
changes that I foresee but don’t dare reveal lest I upset the delicate balance of the
universe.

Finally, I feel compelled to explain my bizarre trivia answer in Issue 11, about the
upside-down character that wasn’t. I claimed the offending character was “8,” which
on the contrary looks perfectly OK — not at all topheavy — in printed develop. It
turns out that this “8” is topheavy only in LaserWriter output. That will teach me to
use a media-specific question! I think I’ll quit while I’m behind and lay off trivia
questions altogether for a while (even though I’ll miss those friendly letters from
you).

Caroline Rose
Editor

EDITORIAL  December 1992

3
SUBSCRIPTION INFORMATION
To subscribe to develop, use the subscription card
in the back of this issue. Please address all
subscription-related inquiries to develop, Apple
Computer, Inc., P.O. Box 531, Mt. Morris, IL
61054 (or AppleLink DEV.SUBS).•

BACK ISSUES
For information about back issues of develop and
how to obtain them, see the last page of this
issue. Back issues are also on the Developer CD
Series disc.•



POSTAL DEVILS EATING CDS?
develop is the most exciting piece of
regular mail I get after Japanese
animation laserdiscs. I joyfully received
Issue 11 but unfortunately the
wolverines in the Postal Service dined
on some of the plastic and no CD was
to be found! Help!

— Jim Perry

Would you consider mailing develop in a
nonperforated plastic wrapping? The
perforation was two-thirds torn when I
received it.

— Eva Schlesinger

I really enjoy develop, but I have to say
that I’ve enjoyed it less recently. 

Some time ago the CDs came in a small
envelope well protected inside the
magazine, and everything was fine.
Now, develop is shipped with the CD in
its own holder, which would seem to be
a fabulous idea except that you were
blind-sided by the U.S. Post Office.

Every month since the CD got its own
holder, the Post Office has mangled my
plastic bag, CD holder, and magazine.
Today my develop issue 11 arrived sans
CD. I called the subscription office 
(1-800-545-9364) and they promise to
send me another within four weeks.(!?)
Growl.

— Bob Cent

Most of the mail I get is, unfortunately, on
this subject. Our Production Manager,
Hartley Lesser, really has been working on
it. Even with Issue 11, we took a small step
toward solving the problem: since many
people thought someone was breaking open
the package and stealing the CD, we

inserted a thick sheet of paper over the CD
so that it wouldn’t be visible. But complaints
of torn packaging still came in, so clearly the
packaging just wasn’t sturdy enough. The
packaging around Issue 12 and its CD
should be about twice as thick as before and
have no perforation. If that doesn’t work
we’ll try something else.

Issue 7 was the last one to list the 800
number you used to contact the subscription
office (though it stubbornly has still shown
up on our renewal notice). The correct
number is 1-800-877-5548. The person
you spoke to normally doesn’t handle calls
regarding develop and didn’t know that
replacement CDs should be mailed within a
day or two of notification of the problem.
Sorry for the mixup. We hope you’ll never
need that service again!

— Caroline Rose

SCREENWRITING CAVEAT
Your Issue 11 column on drawing to the
screen was really useful to me. I had an
animation program that wrote directly
to the screen and it worked fine. But
when I upgraded to a new accelerator
card my program kept crashing. I spent
months trying to figure out the
problem. But your article fixed it
straight away. All I needed was the
SwapMMUMode calls. I don’t know
why the previous card didn’t require
them, but my program works fine now.

— Tony Cooper

Thanks for your interest in the column.
We’re glad it was helpful to you.

One thing we want to be sure to mention is
that writing directly to the screen will break
for sure on future Macintosh systems based
on RISC technology. And we again want to

d e v e l o p December 1992

WHY DON’T YOU WRITE MORE OFTEN?
We welcome timely letters to the editors,
especially from readers reacting to articles that
we publish in develop. Letters should be
addressed to Caroline Rose (or, if technical
develop-related questions, to Dave Johnson) at
Apple Computer, Inc., 20525 Mariani Avenue,
M/S 75-2B, Cupertino, CA 95014 (AppleLink
CROSE or JOHNSON.DK). All letters should

include your name and company name as well
as your address and phone number. Letters may
be excerpted or edited for clarity (or to make
them say what we wish they did).•

4

LETTERS



stress that the only applications that should
even consider writing directly to the screen
are games and other animation programs.

— Brigham Stevens and Bill Guschwan

USER-FRIENDLY RENEWING
Recently I received a couple of renewal
notices for develop in the mail. In trying
to decipher these notices, I realized that
user friendliness is something we should
all be aiming for not just in the software
we write, but in everything we do. It’s
interesting how working with the
Macintosh makes one aware of human
interface issues in everyday life.

Anyway, I think there are a few ways in
which the develop renewal notices could
be made more user friendly:

1. Leave a bigger space for writing the
credit card number.

2. Clearly indicate on the renewal
notice the date my subscription expires. 

3. Is there any reason why the renewal
notices are printed in red ink?

—Tim Hammett

We’re in the process of making the changes
you suggested to the develop renewal notice. 

1. We’ll leave a bigger space for writing the
credit card number. 

2. The notice will indicate when the
subscription expires. You can also find this
out at any time from your mailing label:
the number that appears on a line by itself
at the top of the label indicates the last issue
you’ll receive unless you renew.

3. The reason for the red ink is so that this
little piece of paper doesn’t get lost on your
desk. But you’ve inspired us to change it to
a more readable, deeper red.

We’re also correcting the 800 phone
number on the notice, to 1-800-877-5548.

Thanks for your letter. Without it, I would
have assumed that the renewal notice
(which isn’t really in my domain) was in
great shape. I appreciate the enlightenment.

—Caroline Rose

REUSED CDS: IS IT ART?
In Issue 10 of develop, Bruce Radford
stated that he wasn’t sure what to do
with his old CDs. He felt that he should
recycle them, but he wasn’t sure how.
Well, I have a suggestion. 

Many people forget that reusing
something is often even better than
straight recycling. My school would
have many uses for old issues of the
develop CD. I know a few friends who
would love copies, no matter how old; I
could use them in a programming class;
and other students could cut them up to
make jewelry for school fundraisers. I
also have many uses for old 256K
SIMMs, which seem to be becoming
about as useful as pennies now. 

So go ahead and send the stuff that you
think no one needs to me, or to a school
near you.

— Peter Bierman (age 16)
BS Software
5757 Olentangy Blvd.
Worthington, OH 43085

Thanks for the idea. Day care centers and
children’s museums have also been
mentioned as possible destinations for old
CDs. We suggest that before giving away
CDs for for art projects, developers put a
deep scratch through the data side of the
CD if it contains any confidential or
licensed data. 

LETTERS  December 1992

5



For some wild and crazy ideas on this from
Apple’s Developer Support Center, see the 
Q & A on page 126.

— Caroline Rose

DEVELOP INTERNET ADDRESS
I’m on the Internet and develop contains
only AppleLink addresses. I’m guessing
that crose@applelink.apple.com is your
Internet address. develop really should
have an Internet address for academic
developers to send e-mail to.

— Eric Kofoid

Adding “applelink.apple.com” to any
AppleLink address converts it to an Internet
address. The Internet addresses for me and
develop’s Technical Editor Dave Johnson
are listed on the last page of every issue.

— Caroline Rose

BACK ISSUES CONUNDRUM
I noticed that your back issues are listed
at $13 in develop and at $10 in the
APDA catalog.

Why the discrepancy? Who should I
order the back issues from?

— Michael Tackie

P.S. Great magazine. Very technical. I
don’t understand everything, but that’s
good; it forces me to become a better
programmer.

You pay a $3 shipping charge when you
order from APDA, so it adds up to $13 in
the end.

— Caroline Rose

P.S. Thanks!

d e v e l o p December 1992

6

The “Apple Event Objects and You” article in develop
Issue 10 contains two errors in the printed sample code.
The first problem is that five lines were omitted from the
end of GetWindowIndex. The code at the top of page 25
should be changed from

return noErr;
}

to

if ((rawIndex > numWindows)||(rawIndex <= 0)) {
*index = 0;
return errAENoSuchObject;

} else
*index = rawIndex;
return noErr

}

The second bug is in the routine WriteRectToken (page
30). The following call

BlockMove(*thisRectDesc.dataHandle,
&tokenPtr->theRect,sizeof(Rect)); 

should be changed to

BlockMove(*thisRectDesc.dataHandle,
(Ptr)tokenPtr->theRect,sizeof(Rect));

Since theRect is actually a pointer to a rectangle (see the
declaration at the top of page 29), the first version would
have destroyed the pointer and four bytes of the following
long integer.

Thanks to Doug McKenna, the author of Resorcerer, for
pointing out these problems.

CORRECTION TO APPLE EVENTS ARTICLE IN ISSUE 10



Programmers first saw the Component Manager as part of the
QuickTime 1.0 system extension. Now that the Component Manager is
part of System 7.1, components aren’t just for QuickTime programmers
any more. This article shows you how to take advantage of the power
and flexibility of components as a way to give extended functionality to
any Macintosh application. 

Software developers are continually searching for ways to avoid reinventing the
proverbial wheel every time they need new capabilities for their programs. A new
approach is available with components. Components are modules of functionality
that applications can share at run time. They enable applications to extend the
services of the core Macintosh system software with minimal risk of introducing
incompatibilities (unlike, for example, trap patching). 

As Figure 1 suggests, components also encourage a building-block approach to
solving complex problems. Higher-level components can call lower-level components
to build sophisticated functionality, while at the same time making the application
program interface (API) much simpler. What’s more, because components are
separate from an application that uses them, you can modify and extend components
without affecting the application.

Components are maintained by the Component Manager, which is responsible for
keeping track of the components available at any given time and of the particular
services they provide. The Component Manager provides a standard interface
through which applications establish connections to the components they need.

Almost anything you can dream up can be a component — video digitizer drivers,
dialogs, graphics primitives, statistical functions, and more. QuickTime 1.0 itself
contains a number of useful components, including the movie controller, the
sequence grabber, and a variety of image compressors and decompressors (codecs), all
of which are available to any client application.

TECHNIQUES FOR WRITING AND DEBUGGING COMPONENTS  December 1992

7
GARY WOODCOCK AND CASEY KING
have a long history of collaboration. They first
met at a flight simulation company in the early
80’s where they worked together on designing a
multimillion-dollar F-16 jet fighter simulator (and
you thought Falcon was cool!). They parted ways
temporarily, but regrouped at Apple to join forces
in what colleague Jim Batson has termed the
“QuickTime sleep deprivation experiment.”

They’re both currently working on RISCy products,
but from different parts of the country (Gary in
Cupertino, and Casey in the new PowerPC mecca
of Austin, Texas). With his wife Lonna, Casey is
the proud co-owner of his latest obsession — a
year-old baby boy named Brian — but he still
makes time for mountain biking, hiking, and
flying. Gary still spends much of his time
diligently testing video capture cards for

GARY WOODCOCK AND
CASEY KING

TECHNIQUES

FOR WRITING

AND

DEBUGGING

COMPONENTS



To demonstrate the all-around usefulness of components, we’ll examine the
development and implementation of a component that does some rather trivial
mathematical calculations. This example will help us focus on concepts rather than
getting lost in the details of solving a complex problem. We’ll build a fairly generic
component template that you can use in your own designs. We’ll also discuss some
advanced component features, such as extending component functionality, capturing
components, and delegating component functions. Finally, we’ll show you some
techniques and tools for debugging your components. The accompanying Developer
CD Series disc contains our example component’s source code, a simple application to
test our component, and the debugging tools.

d e v e l o p December 1992

QuickTime compatibility with Movie Recorder
(translation: watching Star Trek: The Next
Generation episodes on his Macintosh).
Occasionally he ventures out for a bit of mountain
biking or flying. This article is their latest joint
venture.•

8

Sequence grabber�
component (type 'barg')

Movie recording�
application

Sound digitizing�
hardware

�
Sequence grabber video�

channel component�
(type 'sgch', subtype 'vide')

Sequence grabber sound�
channel component�

(type 'sgch', subtype 'soun')

Video digitizer�
component (type 'vdig')

Image compressor�
component (type 'imco') Sound driver

Video digitizing�
hardware

Figure 1
Using Components as Software Building Blocks



Note that this article doesn’t spend a great deal of time explaining how applications
can find and use components. We assume that you’ve invested some effort in reading
the QuickTime Developer’s Guide (part of the QuickTime Developer’s Kit). If you
haven’t, we strongly urge you to do so, since the Developer’s Guide contains the
definitive description of the Component Manager.

SHOULD YOU WRITE A COMPONENT?
OK, components sound interesting, but should you write one? Why write a
component when you can just code the functionality you need directly into your
application or write a device driver? Here are a few reasons to choose components
over the alternatives:

• Components are easier for applications to use. Client applications
don’t have to know what they’re looking for before opening a
service. This is different from device drivers, where open calls
must provide either a driver name or a refNum. An application can
simply tell the Component Manager, “I’m looking for somebody
to do this for me. Is anybody available?” In addition, clients don’t
need to set up parameter blocks or make control/status calls to use
components. Armed with the API of the component type, the
caller simply makes normal function calls to the component, and
the Component Manager does the work.

• Components are more flexible. You can modify the behavior of a
component by overriding its capabilities without adversely
affecting the application. The Component Manager enables the
component to communicate its capabilities to clients dynamically.

• Components allow you to design more flexible applications. They
can be used to divide the functional aspects of an application into
parts. For example, a word processing application might use a
spelling checker component, a thesaurus component, and a
grammar checker component. If the thesaurus component is

TECHNIQUES FOR WRITING AND DEBUGGING COMPONENTS  December 1992

9

The original name for the Component Manager (as conceived of by Bruce “Of course
the feature set is frozen!” Leak) was the Thing Manager. Components were referred
to as “things” (as were the QuickTime project schedules, the significance of which
engineers couldn’t easily grasp). The use of this terminology led to one of two
conditions in most QuickTime engineers: in some, an irrepressible compulsion to
make “thing” puns, and in others, perhaps as a backlash against the former, an
almost pathological aversion to the use of the word “thing” in normal conversation.

COMPONENT TRIVIA #1



updated, the application code doesn’t have to change at all. A user
can simply replace the old thesaurus component with the new one.

• Components are easier to implement than device drivers. There
are no declaration structures, driver headers, assembly code glue,
installation INITs, or any of the peculiarities that come with
device drivers.

• Components are easier to debug than device drivers. No longer
will you be walking the unit table to find your driver so that you
can set a breakpoint at your control call dispatcher. You can easily
and effectively debug your code using a source-level debugger
such as Symantec’s THINK C Debugger.

Now that you know the advantages of components, you have to decide whether the
functionality you need is a good candidate for a component. To do this, ask yourself
the following:

• Do I anticipate reusing this functionality in other applications?
Components are ideal for providing services that many
applications can use.

• Do I anticipate having to modify certain aspects of this
functionality in the future? Functionality encapsulated in a
component can be extended or modified without disturbing the
original interface specification.

• Is there a benefit to users in establishing a common API for this
functionality, so that other developers can use or extend it? You
might want to be able to allow third parties to extend your
application without having to expose detailed information about
your application’s internal data structures. For example, many of
the “plug-in” modules for today’s popular graphics applications
could easily be implemented as components.

A “yes” to more than one of these questions means that components are probably a
good approach for your next product. But you still have one last question to answer:
has someone else already written a component that solves your problem? To find out,
you need to contact Apple’s Component Registry group (AppleLink REGISTRY)
and ask them. These folks maintain a database of all registered component types,
subtypes, and manufacturers, as well as the corresponding APIs (if they’re publicly
available). A check with the Registry is mandatory for anyone who’s contemplating
writing a component. 

If after all this you find that you’re still about to embark into uncharted territory, read
on, and we’ll endeavor to illuminate your passage.

d e v e l o p December 1992

10



COMPONENT BASICS 101
Client applications use the Component Manager to access components. As shown in
Figure 2, the Component Manager acts as a mediator between an application’s
requests for component services and a component’s execution of those requests. The
Component Manager uses a component instance to determine which component is
needed to satisfy an application’s request for services. An instance can be thought of
as an application’s connection to a component. We’ll have more to say about
component instances later on. 

Conceptually, components consist of two parts: a collection of functions as defined in
the component’s API, and a dispatcher that takes care of routing application requests
to the proper function. These requests are represented by request codes that the

TECHNIQUES FOR WRITING AND DEBUGGING COMPONENTS  December 1992

11

The original component type for the sequence grabber
component was, logically enough, 'grab'. The engineer
primarily responsible for the sequence grabber, Peter
Hoddie, requires massive infusions of Diet Coke to
function properly. During a particularly intense bout of
engineering mania, the Diet Coke supply was exhausted;
unbeknownst to anyone, Peter became temporarily

dyslexic and changed the sequence grabber component
type to 'barg'. The change was never noticed, and it
caused no real harm, other than the wasted time
developers spent trying to figure out what 'barg' might be
an acronym for (Boffo Audio Reverb Gadget? Bodacious
Analog Reference Gizmo?). Peter’s brain has since
returned to its (relatively) normal state.

COMPONENT TRIVIA #2

Component�
�

Component�
Manager

Application

Application uses �
Component Manager�
to get component�
connection and call�
component function.

Component Manager �
sends application’s �
request for component �
function to proper �
component for �
execution.

Component executes �
function call and �
returns result.

Figure 2
How Applications Work With Components



Component Manager maps to the component functions. Let’s take a look at both the
component functions and the component dispatcher in detail.

COMPONENT FUNCTIONS
There are two groups of functions that are implemented in a component. One group
does the custom work that’s unique to the component. The nature of these functions
depends on the capabilities that the component is intended to provide to clients. For
example, the movie controller component, which plays QuickTime movies, has a
number of functions in this category that control the position, playback rate, size, and
other movie characteristics. Each function defined in your component API must have
a corresponding request code, and you must assign these request codes positive values
(0 or greater).

The second group of functions comprises the standard calls defined by the
Component Manager for use by a component. Currently, four of these standard calls
must be implemented by every component: open, close, can do, and version. Two
more request codes, register and target, are defined, but supporting these is optional.
The standard calls are represented by negative request codes and are defined only by
Apple. 

Here’s a quick look at each of the six standard calls.

The open function. The open function gives a component the opportunity to
initialize itself before handling client requests, and in particular to allocate any private
storage it may need. Private storage is useful if your component has hardware-
dependent settings, local environment settings, cached data structures, IDs of
component instances that may provide services to your component, or anything else
you might want to keep around. 

The close function. The close function provides for an orderly shutdown of a
component. For simple components, closing mainly involves disposing of the private
storage created in the open function. For more complex components, it may be
necessary to close supporting components and to reset hardware.

The can do function. The can do function tells an application which functions in
the component’s API are supported. Clients that need to query a component about its
capabilities can use the ComponentFunctionImplemented routine to send the
component a can do request.

The version function. The version function provides two important pieces of
information: the component specification level and the implementation level. A
change in the specification level normally indicates a change in the basic API for a
particular component class, while implementation-level changes indicate, for
example, a bug fix or the use of a new algorithm.

d e v e l o p December 1992

12



The register function. The register function allows a component to determine
whether it can function properly with the current system configuration. Video
digitizer components, for example, typically use register requests to check for the
presence of their corresponding digitizing hardware before accepting registration
with the Component Manager. A component receives a register request code only if
it explicitly asks for it. We’ll see how this is done when we walk through our sample
component. 

The target function. The target function informs your component it has been
captured by another component. Capturing a component is similar to subclassing an
object, in that the captured component is superseded by the capturing component.
The captured component is replaced by the capturing component in the component
registration list and is no longer available to clients. We’ll discuss the notion of
capturing components in more detail later.

THE COMPONENT DISPATCHER
All components must have a main entry point consisting of a dispatcher that routes
the requests the client application sends via the Component Manager. When an
application calls a component function, the Component Manager passes two
parameters to the component dispatcher — a ComponentParameters structure and a
handle to any private storage that was set up in the component’s open function. The
ComponentParameters structure looks like this:

typedef struct {
unsigned char flags;
unsigned char paramSize;
short what;
long params[kSmallestArray];

} ComponentParameters;

The first two fields are used internally by the Component Manager and aren’t of
much interest here. The what field contains the request code corresponding to the
component function call made by the application. The params field contains the
parameters that accompany the call.

Figure 3 shows a detailed view of how a component function call from an application
is processed. The component dispatcher examines the what field of the
ComponentParameters record to determine the request code, and then transfers
control to the appropriate component function.

REGISTERING A COMPONENT
Before a component can be used by an application, it must be registered with the
Component Manager. This way the Component Manager knows which components
are available when it’s asked to open a particular type of component. 

TECHNIQUES FOR WRITING AND DEBUGGING COMPONENTS  December 1992

13



Autoregistration versus application registration. There are two ways that you
can register a component. By far the easiest way is to build a standalone component
file of type 'thng'. At system startup, the Component Manager will automatically
register any component that it finds in files of type 'thng' in the System Folder and in
the Extensions folder (in System 7) and its subfolders. The 'thng' component file
must contain both your component and the corresponding component ('thng')
resource. The definition of this resource can be found in the Components.h header
file and is shown below.

typedef struct {
unsigned long type; /* 4-byte code */
short id;

} ResourceSpec;

d e v e l o p December 1992

14

Component�
�

Component�
Manager

Application

Application calls�
component function.

Component Manager sends �
request code corresponding �
to desired component �
function along with function �
parameters.  

Dispatcher decodes �
request code and �
calls appropriate �
component function�
with parameters.

Function result is returned�
to dispatcher, then to�
Component Manager,�
and finally to application.

Component�
dispatcher

Component�
functions

Function 1�
�
�
�

Function 2�
�
•�
•�
•�
�

Function n

1 2 3

4

Figure 3
Processing an Application’s Request for Component Services



typedef struct {
ComponentDescription td; /* Registration parameters */
ResourceSpec component; /* Resource where code is found */
ResourceSpec componentName; /* Name string resource */
ResourceSpec componentInfo; /* Info string resource */
ResourceSpec componentIcon; /* Icon resource */

} ComponentResource;

Figure 4 shows the contents of the component resource that we’ll use for the example
component.

TECHNIQUES FOR WRITING AND DEBUGGING COMPONENTS  December 1992

15

'math'�
�

'      '�
�

'appl'�
�

$00000000�
�

$00000000�
�

'CODE'�
�

$0080�
�

'STR '�
�

$0080�
�

'STR '�
�

$0081�
�

'ICN#'�
�

$0080

componentType�
�

componentSubType�
�

componentManufacturer�
�

componentFlags�
�

componentFlagsMask�
�

component rsrcSpec type�
�

component rsrcSpec ID�
�

componentName rsrcSpec type�
�

componentName rsrcSpec ID�
�

componentInfo rsrcSpec type�
�

componentInfo rsrcSpec ID�
�

componentIcon rsrcSpec type�
�

componentIcon rsrcSpec ID�
�

Component description�
�
�
�
�
�
�
Component code resource�
�
�
�
"Math Component"�
�
�
�
"This component provides�
simple math services."�
�
�

Figure 4
Math Component Resource



An application can also register a component itself using the Component Manager
call RegisterComponent or RegisterComponentResource. As we’ll see, this
registration method facilitates symbolic debugging of components.

Global versus local registration. Components can be registered locally or
globally. A component that’s registered locally is visible only within the A5 world in
which it’s registered, whereas a globally registered component is available to all
potential client applications. Typically, you register a component locally only if you
want to restrict its use to a particular application.

A SIMPLE MATH COMPONENT
To help you understand how to write a component, we’re going to go through the
whole process with an example — in this case, a simple math component. We start by
contacting the Apple Component Registry group, and to our astonishment (and their
bemusement), we find that there are no registered components that do simple math!
We assume for the moment that the arithmetic operators in our high-level
programming language are unavailable and that our application is in desperate need
of integer division and multiplication support.

We create a component called Math that performs integer division and
multiplication.

THE FUNCTION PROTOTYPE DEFINITION
We need to define function prototypes for each of the calls in our component API —
namely, DoDivide and DoMultiply. The function prototype for the DoDivide
component call can be found in MathComponent.h and is shown below. The
declaration for the DoMultiply function is similar.

pascal ComponentResult DoDivide (MathComponent mathInstance,
short numerator, short denominator, short *result) = 
ComponentCallNow (kDoDivideSelect, 0x08);

This resembles a normal C language function prototype with a relatively
straightforward parameter list. The mathInstance parameter is the component
instance through which the application accesses the component; we’ll see how an
application gets one of these instances in a moment. The numerator and
denominator parameters are self-explanatory and are passed in by the calling
application as well. The contents of the last parameter, result, are filled in by the
DoDivide function upon completion.

Those of you who have a passing familiarity with C are probably more than a little
curious about the last portion of the declaration. ComponentCallNow is a macro
defined by the Component Manager (see “Inside the ComponentCallNow Macro”
for the nuts and bolts of how the macro works). Its main purpose is to identify a

d e v e l o p December 1992

16



routine as a component function, as opposed to a normal C function. When an
application calls the DoDivide function, the macro is executed. This causes a trap to
the Component Manager to be executed, allowing the Component Manager to send
a message to the component responsible for handling the function. 

The first parameter to the ComponentCallNow macro is an integer value
representing the request code for the integer division function. As noted earlier, your
component’s dispatcher uses this request code to determine what function has been
requested. Recall that you may only define request codes that are positive.

The second parameter is an integer value that indicates the amount of stack space 
(in bytes) that’s required by the function for its parameters, not including the
component instance parameter. Be careful to note that Boolean and single-byte
parameters may need to be passed as 16-bit integer values (see the section “Eleven
Common Mistakes” for details). For the Math component, the space required for the
DoDivide function is two 16-bit integers followed by a 32-bit pointer, for a total of
eight bytes.

THE MATH COMPONENT DISPATCHER
The dispatcher of the Math component is shown in its entirety below. Notice that the
dispatcher executes its component functions indirectly by calling one of two
Component Manager utility functions — CallComponentFunction or
CallComponentFunctionWithStorage. You use CallComponentFunction when your
component function needs only the fields in the ComponentParameters structure,
and CallComponentFunctionWithStorage when it also needs access to the private
storage that was allocated in your component’s open function. 

TECHNIQUES FOR WRITING AND DEBUGGING COMPONENTS  December 1992

17

Some of you may be wondering exactly what the
ComponentCallNow macro does. Let’s expand this macro
for our DoDivide component call and examine it in detail.

= {0x2F3C, 0x08, kDoDivideSelect, 0x7000,
0xA82A};

The first element, 0x2F3C, is the Motorola 68000 opcode
for a move instruction. Execution of this instruction loads
the contents of the next two elements onto the stack. The
next element, 0x08, is the amount of stack space that we
calculated for the function parameters of the DoDivide
call. The third element, kDoDivideSelect, is the request

code corresponding to the DoDivide call. The fourth
element, 0x7000, is the Motorola 68000 opcode for an
instruction that sets the contents of register D0 to 0. The
Component Manager interprets this condition as a request
to call your component rather than handling the request
itself. The last element, 0xA82A, is the opcode for an
instruction that executes a trap to the Component
Manager.

While you can use this inline code in your component
function declarations directly, we recommend that you use
the ComponentCallNow macro to make your code more
portable.

INSIDE THE COMPONENTCALLNOW MACRO



pascal ComponentResult main (ComponentParameters *params,
Handle storage)

{
// This routine is the main dispatcher for the Math component.
ComponentResult result = noErr;

// Did we get a Component Manager request code (< 0)?
if (params->what < 0) {

switch (params->what)
{

case kComponentOpenSelect: // Open request
result = CallComponentFunctionWithStorage (storage, params,

(ComponentFunction) _MathOpen);
break;

case kComponentCloseSelect: // Close request
result = CallComponentFunctionWithStorage (storage, params,

(ComponentFunction) _MathClose);
break;

case kComponentCanDoSelect: // Can do request
result = CallComponentFunction (params,

ComponentFunction) _MathCanDo);
break;

case kComponentVersionSelect: // Version request
result = CallComponentFunction (params,

(ComponentFunction) _MathVersion);
break;

case kComponentTargetSelect: // Target request
result = CallComponentFunctionWithStorage (storage, params,

(ComponentFunction) _MathTarget);
break;

case kComponentRegisterSelect: // Register request not 
// supported

default: // Unknown request
result = paramErr;
break;

}
}
else { // One of our request codes?

switch (params->what)
{

case kDoDivideSelect: // Divide request
result = CallComponentFunction (params, 

(ComponentFunction) _MathDoDivide);
break;

d e v e l o p December 1992

18



case kDoMultiplySelect: // Multiply request
result = CallComponentFunction (params,

(ComponentFunction) _MathDoMultiply);
break;

default: // Unknown request
result = paramErr;
break;

}
}
return (result);

}

A drawback of the dispatcher is the overhead incurred in having the Component
Manager functions mediate all your requests. To reduce your calling overhead and
thus improve performance, you can use a fast dispatch technique. While this technique
is used in most of the QuickTime 1.0 components, this is the first time that it’s been
publicly described. See “Fast Component Dispatch” for details.

THE MATH COMPONENT DODIVIDE CALL
For the Math component, the DoDivide function is declared as follows:

pascal ComponentResult _MathDoDivide (short numerator, short denominator,
short* quotient)

{
ComponentResult result = noErr;

if (denominator != 0) {
*quotient = numerator/denominator;

} 
else {

*quotient = 0;
result = -1L; // Divide by zero not allowed

}
return (result);

}

The key thing to note here is that component functions must always return a result
code. The return value is 32 bits and is defined in the API for the component. In our
case, a value of 0 (noErr) indicates successful completion of the call and a negative
value indicates that an abnormal completion occurred. Note that for some
components a negative result code could indicate that the returned parameter values
should be interpreted in a particular manner. For example, a video digitizer may
return a negative result code of notExactSize from the VDSetDestination call. This
doesn’t indicate an error. It just means that the requested size wasn’t available on the
digitizer and that the next closest size was given instead. Also, since this result code is

TECHNIQUES FOR WRITING AND DEBUGGING COMPONENTS  December 1992

19



32 bits, you could actually return pointers or handles as results, rather than error
codes. 

USING THE MATH COMPONENT
In this section, we look at how an application uses the Math component. First, the
application has to ask the Component Manager to locate the Math component. If the
Math component is found, the application can open it and make calls to it.

FINDING AND OPENING THE MATH COMPONENT
We tell the Component Manager which component we’re looking for by sending it a
ComponentDescription record containing the type, subtype, and manufacturer codes
for the desired component. We then call the Component Manager routine
FindNextComponent to locate a registered component that fits the description. The
code fragment below shows how this looks.

ComponentDescription mathDesc;
Component mathComponentID;

// Math component description
mathDesc.componentType = mathComponentType;
mathDesc.componentSubType = 0L; // Wild card

d e v e l o p December 1992

20

If you’re concerned about the time it takes to dispatch
calls made to your component, try the fast dispatch
method. This method eliminates the need for your
component to make the extra call to the Component
Manager functions CallComponentFunction and
CallComponentFunctionWithStorage, and allows control
to pass directly back to the caller. It does this by calling
your component entry point with the call’s parameters, the
instance storage, and the caller’s return address already
on the stack. It passes the component request code in
register D0, and points register A0 at the stack location
where the instance storage is kept.

To handle a fast dispatch, you must write your component
entry point in assembly language. Use the request code in
D0 as an index into a table of function addresses, paying

special attention to the negative request codes used 
for the standard Component Manager calls like
OpenComponent and CloseComponent. If the functions
are defined correctly, the dispatcher can jump directly to
the function address. Note that the function parameter the
caller uses to specify the component instance will instead
be a handle to your component instance storage. When
the function completes, control will return to the calling
application.

You need to tell the Component Manager that your
component has a fast dispatch handler instead of a
normal dispatcher. To do this, set bit 30 ($40000000) 
of the componentFlags field of your component resource,
and the Component Manager will always call your
component using the fast dispatch method.

FAST COMPONENT DISPATCH
BY MARK KRUEGER



mathDesc.componentManufacturer = 'appl';
mathDesc.componentFlags = 0L; // Wild card
mathDesc.componentFlagsMask = 0L; // Wild card

// Find a Math component
mathComponentID = FindNextComponent (nil, &mathDesc);

The zeros in the componentSubType, componentFlags, and componentFlagsMask
fields indicate that they function as wild cards. If the Component Manager was
unable to locate a component matching the description, it returns zero. 

Assuming the Component Manager returned a nonzero component ID, we now open
the component using the OpenComponent call, as follows:

mathInstance = OpenComponent (mathComponentID);

OpenComponent returns a unique connection reference — a component instance —
to the Math component. If the component instance is nonzero, we’re ready to use the
component. Figure 5 illustrates the process of finding a component. 

TECHNIQUES FOR WRITING AND DEBUGGING COMPONENTS  December 1992

21
HELPFUL TIP
You can obtain the component ID corresponding
to a component instance by calling
GetComponentInfo with the component instance
(you’ll need to cast it as a Component). The
componentFlagsMask of the returned
ComponentDescription record will contain the
component ID.•

Component�
registration list�
�

Component�
Manager

Application

Application passes�
description of component�
it wants to access to �
Component Manager.

Component Manager tries�
to match a component in�
its registration list with the �
requested description.

Component Manager�
returns ID of component�
to application.

1 2

3

ID = 10000�
Type = 'math'�
Subtype = '       '�
Manufacturer = 'appl'�
�

Type = 'math'�
Subtype = '       '�
Manufacturer = 'appl' �
�
           10000

ID = 10001�
Type = 'math'�
Subtype = '       '�
Manufacturer = 'gwck'�
�

ID = nnnnn�
Type = 'blah'�
Subtype = 'foo '�
Manufacturer = 'appl'

•�
•�
•

Type = 'math'�
Subtype = '       '�
Manufacturer = 'appl'�
�
           10000

Figure 5
How Applications Find Components



MAKING CALLS TO THE MATH COMPONENT
The Math component performs only two functions, dividing and multiplying two
integers. To ask it to divide two numbers for us, we just call the component function
DoDivide with the component instance value we got by opening the Math
component.

result = DoDivide (mathInstance, numerator, denominator, &quotient);

When we’re done with the component, we close the connection with the
CloseComponent call, like this:

result = CloseComponent (mathInstance);

That’s all there is to it. You can see that making component function calls is much like
making any other kind of call.

EXTENDING EXISTING COMPONENTS
After defining the basic functionality for your component, you may find that you
want to extend it beyond what you originally specified in your component API.
There are three ways to extend the functionality of existing components:

• Use the subtype and/or manufacturer fields of the component
description to indicate to a client application that a specific
component implementation provides previously undefined
functionality.

• Revise the component API to add calls that weren’t specified in the
original interface.

• Modify the behavior of a particular component implementation by
capturing it and overriding a specific function.

The following sections examine these methods in detail.

ADDING NEW FUNCTIONALITY TO A SPECIFIC COMPONENT
IMPLEMENTATION
Let’s add some more functionality to the Math component. The MoMath component
extends the Math component by adding an addition function. A new function
prototype is added for the new function in MoMathComponent.h, along with a new
request code, kDoAddSelect.

pascal ComponentResult DoAdd (MathComponent mathInstance, short firstNum,
short secondNum, short* result) = ComponentCallNow (kDoAddSelect, 
0x08);

d e v e l o p December 1992

22



Request codes for implementation-specific functions must have an ID of 256 or
greater. This is required to differentiate these functions from those that are generally
defined in the API for the component type. Implementation-specific functions
usually provide capabilities beyond those specified in the component API, and thus
offer developers a way to differentiate their component implementations from those
of competing developers. The following code fragment from the MoMath
component dispatcher shows support for the DoAdd function:

case kDoAddSelect: // Add function
{

result = CallComponentFunction (params, 
(ComponentFunction) _MoMathDoAdd);

break;
}

How does the calling application know that a superset of the Math component is
around? To start with, the caller needs to know that such a beast even exists.
Remember, this is an extension of a component implementation by a particular
vendor, not of the component type in general. In this case, the extended component
is differentiated from its basic implementation by its manufacturer code. Both Math
and MoMath have the same component type ('math'), but their manufacturer codes
differ ('appl' for Math and 'gwck' for MoMath). Note that the subtype field can be
used in a similar manner, but it’s typically used to distinguish algorithmic variations of
a general component type. For example, image compressor components ('imco') use
the subtype field to differentiate various types of compression algorithms ('rle ' for
run length encoding, 'jpeg' for JPEG, and so on). The manufacturer field is used to
identify vendor-specific implementations of a particular compression algorithm.

If the application is aware that this extended component exists, it can use the
information stored in the component’s 'thng' resource to locate and open it. Once the
component has been opened, the application calls the extended function just as it
would any other component function.

ADDING NEW FUNCTIONALITY TO A COMPONENT TYPE
In the preceding example, we used the manufacturer code to hook in new
functionality to the Math component; this allowed a specific implementation to
extend the interface. In reality, we would be better off extending the component by
defining a change to the Math component API, so that all components of this type
would have an interface defined for the new addition function. Of course, this is an
option only when you’re the owner of the component API. Changing component
APIs that are owned by others (for instance, by Apple) is a good way to break
applications, and no one appreciates that, least of all your users.

If you’re going to take this route, be sure that the existing API is left unchanged, so
that clients using the old component’s API can use your new component without

TECHNIQUES FOR WRITING AND DEBUGGING COMPONENTS  December 1992

23



having to be modified. In addition, it’s important to update the interface revision level
of components that implement the new API, so that clients can determine whether a
particular component implementation supports the new API.

MODIFYING EXISTING FUNCTIONALITY
Modifying existing functionality is a little more complicated than adding functionality
to a component type. In the example component, the DoDivide function divides two
16-bit integers, truncating the result. We would actually get a better answer if the
result were rounded to the nearest integer. We don’t need to add a new call to do this,
since what we really want to do is replace the implementation of the existing call with
a more accurate version. On the other hand, the Math component does an acceptable
job of multiplying two integers, so we don’t need to override that function. Instead,
we’ll use the multiply function that’s already implemented.

We can do this by writing a component that does the following:

• captures the original Math component 

• overrides the original DoDivide function with a more accurate
division function

• delegates the DoMultiply function to the original Math
component

Let’s start by writing a new component — in the example code, it’s called
NuMathComponent — that contains a dispatcher, as well as functions to handle the
Component Manager request codes and the new DoDivide routine. We use a register
routine to check for the availability of a Math component before we allow the
NuMath component to be registered. If no Math component is available, obviously
we can’t capture it, and we shouldn’t register. We also set cmpWantsRegisterMessage
(bit 31) in the componentFlags field of the ComponentDescription record in the
NuMath component’s 'thng' resource to let the Component Manager know that we
want a chance to check our environment before we’re registered. With this flag set,
the sequence of requests that NuMath will get at registration time will be open,
register, and close.

The NuMath component register routine is as follows:

pascal ComponentResult _NuMathRegister (void)
{

// See if a Math component is registered. If not, don't register
// this component, since it can't work without the Math component.
// We return 0 to register, 1 to not register.

ComponentDescription mathDesc;

d e v e l o p December 1992

24



mathDesc.componentType = mathComponentType;
mathDesc.componentSubType = 0L; // Wild card
mathDesc.componentManufacturer = 'appl';
mathDesc.componentFlags = 0L; // Wild card
mathDesc.componentFlagsMask = 0L; // Wild card

return ((FindNextComponent (nil, &mathDesc) != 0L) ? 0L : 1L);
}

Our open routine opens an instance of the Math component normally, and then uses
the ComponentFunctionImplemented routine to determine whether the component
we want to capture supports the target request code. We then capture the Math
component with the CaptureComponent call.

if (ComponentFunctionImplemented ((ComponentInstance) mathComponentID,
kComponentTargetSelect)) {

mathComponentID = CaptureComponent (mathComponentID, (Component) self);
}

The original Math component ID is now effectively removed from the Component
Manager’s registration list. This means that the Math component is now hidden from
all other clients, except those that already had a connection open to it before it was
captured.

We then open an instance of the Math component, and use the ComponentSetTarget
utility (defined in MathComponent.h) to inform Math that it’s been captured by
NuMath.

result = ComponentSetTarget (mathInstance, self);

Why does a component need to know that it’s been captured? If a captured
component makes use of its own functions, it needs to call through the capturing
component instead of through itself, because the capturing component may be
overriding one of the calls that the captured component is using. A captured
component does this by keeping track of the component instance that the
ComponentSetTarget call passed to it and by using that instance to make calls to the
capturing component.

When the NuMath Comp;onent receives a divide request code, we dispatch to the
new DoDivide function, effectively overriding the DoDivide function that was
implemented in the Math component. However, when we receive a multiply request
code, we delegate this to the captured Math component, since we aren’t overriding
the multiply function. We do this by simply making a DoMultiply call to the Math
component, passing in the parameters that the NuMath component was provided
with.

TECHNIQUES FOR WRITING AND DEBUGGING COMPONENTS  December 1992

25
In our sample code, ComponentSetTarget is
defined in MathComponent.h because the
QuickTime 1.0 Components.h interface file
doesn’t declare it. The ComponentSetTarget
declaration is included in newer QuickTime
interface files, so if you’re using them, you should
comment it out in MathComponent.h.•



result = DoMultiply (mathInstance, firstNum, secondNum,
multiplicationResult);

In the close routine of the NuMath component, we remember to close the instance of
the Math component we were using, and also to uncapture it so that we restore the
system to its original state.

result = CloseComponent (mathInstance);
result = UncaptureComponent (mathComponentID);

THAT WASN’T SO BAD, WAS IT?
As you can see, adding new functionality is no big deal. As always, however, you
should notify developers who may use your component of any late-breaking interface
changes. You want to be sure that everyone’s writing code that conforms to your most
recent component specification.

ELEVEN COMMON MISTAKES
You may encounter some pitfalls during the development of your component. Here
we discuss 11 common mistakes that we’ve either made personally or observed other
developers make. We hope that you’ll learn from our own fumblings and save
yourself time and frustration.

Allocating space at registration time. Generally, it’s best if your component
allocates its storage only when it’s about to be asked to do something — that is, when
it has received a kOpenComponentSelect request code. This way, memory isn’t tied
up unnecessarily. Remember, your component may never be called during a given
session, and if it’s not, it shouldn’t hang out sucking up memory some other process
might be able to use.

Allocating space in the system heap. The system heap shouldn’t be your first
choice as a place to put your component globals. The system heap is generally
reserved for system-wide resources (big surprise), and most components fall into the
category of application resources that needn’t be resident at all times. Consider
carefully whether you need to scarf up system space. In addition, if your component is
registered in an application heap, you should never try to allocate space in the system
heap. The fact that you’re registered in an application heap probably indicates that
there isn’t any more space in the system heap for you to grab.

Not supporting the kComponentVersionSelect request code. This is a pretty
nasty omission for several reasons. First, this is the easiest request code to implement;
it takes only a single line of code! What are you, lazy? (Don’t answer that.) Second,
clients may use the API version level to keep track of extended functionality — it may
be that version 2 of a component interface contains additional calls over version 1,
and a client certainly has reason to want to know that. Third, clients may use the

d e v e l o p December 1992

26



component version to determine, for example, whether the component in question
contains a recent bug fix.

Incorrectly calculating the parameter size for your component function
prototype. If you do this, you’ll probably notice it right after calling the offending
component function, since your stack will be messed up by however many bytes you
failed to calculate correctly. A common instance of this error occurs when calculating
the space required by a function call that has char or Boolean parameters. Under
certain circumstances, Boolean and char types are padded to two bytes when passed
as function parameters. 

To illustrate, we’ll look at two example declarations. How many bytes of stack space
need to be reserved for the parameters of the following function?

pascal ComponentResult I2CSendMessage (ComponentInstance ti, 
unsigned char slaveAddr, unsigned char *dataBuf, short byteCount)

The correct answer is eight bytes. The slaveAddr parameter is promoted to two
bytes, the dataBuf pointer takes four bytes, and the byteCount takes two bytes. The
rest of the declaration then takes the following form: 

= ComponentCallNow (kI2CSendMessageSelect, 0x08);

Let’s look at the next example. How many bytes of stack space does this function
require?

pascal ComponentResult MyFunction (ComponentInstance ti,
Boolean aBoolean, char aChar, short *aPointer)

The correct answer is six bytes. The aBoolean parameter takes one byte, the aChar
parameter takes one byte, and the aPointer parameter takes four bytes. What’s that?
Didn’t we just say that Boolean and char parameters got padded to two bytes? We
certainly did, but these types get padded only when an odd number of char or
Boolean parameters occurs consecutively in the declaration. Because we could add
one byte for the Boolean to the one byte for the char following it, we didn’t need to
do any padding — the total number of bytes was even (two bytes), and that’s what’s
important. In the first example, this didn’t work. We added one byte for the char to
the four bytes for the pointer following it, and got five bytes, and so we needed to 
pad the char parameter by one byte. The rest of the declaration for the second
example is 

= ComponentCallNow (kMyFunctionSelect, 0x06);

Registering your component when its required hardware isn’t available. If
your component doesn’t depend on specific hardware functionality, don’t worry about

TECHNIQUES FOR WRITING AND DEBUGGING COMPONENTS  December 1992

27



this. If it does (as, for example, video digitizers do), make sure you check for your
hardware before you register your component. The Component Manager provides a
flag, cmpWantsRegisterMessage, that you can set in the componentFlags field of
your component description record to inform the Component Manager that your
component wants to be called before it’s registered. This gives your component an
opportunity to check for its associated hardware, and to decline registration if the
hardware isn’t available.

Creating multiple instances in response to OpenComponent calls when your
component doesn’t support multiple instances. Only you can know whether
your component can be opened multiple times. For instance, the Math component is
capable of being opened as many times as memory allows (although our sample code
restricts the number of open instances to three for the sake of illustration). Normally,
a component that controls a single hardware resource should be opened only once
and should fail on subsequent open requests. This will prevent clients from
oversubscribing your component. 

Not performing requisite housekeeping in response to a CloseComponent
call. Bad things will happen, especially if you have hierarchies of components! As
part of your close routine, remember to dispose of your private global storage and to
close any drivers, components, files, and so on that you no longer need. 

Allowing multiple instances from a single registration of a hardware
component instead of allowing a single instance from each of multiple
registrations. While this isn’t really a common mistake today, we want to emphasize
that there’s a big difference between designing your component to allow multiple
instances versus registering the component multiple times and allowing each
registered component to open only once. In the case of a generic software library
element (like Math), there’s no problem with multiple instances being opened. In the
case of a hardware resource that’s being controlled with a component, it’s almost
always preferable to register the component once for every resource that’s available
(four widget cards would result in four different registrations rather than one
registration that can be opened four times). 

Why does it matter? Consider an application whose sole purpose in life is to manage
components that control hardware resources. It may be selecting which resource to
use, which one to configure, or which one to pipe into another. It’s much more
natural to ask the Component Manager to provide a list of all components of a
certain type than it is to open each component that fits the criteria n times (until it
returns an open error) in order to determine how many are available. 

To kill a dead horse, suppose we have three identical video digitizers, and we want to
convey that information to the user via a menu list. If all are registered separately, we
can easily determine how many video digitizers are available (without even opening
them) by using the FindNextComponent call. If only one were registered, the list

d e v e l o p December 1992

28



presented to the user would only be a partial list. Take the blind leap of faith: register
duplicate hardware resources!

As a final note, if you’re registering a single component multiple times, be sure that
the component name is unique for each registration. This allows users to distinguish
between available components (as in the menu example in the previous paragraph),
and it also helps you avoid the next gotcha.

Always counting on your component refCon being preserved. We know this
may be upsetting to many of you, but there exists a situation in which your
component refCon may not be valid. A component refCon (similar to a dialog,
window, or control refCon) is a 4-byte value that a component or client can use for
any purpose. It’s accessed through a pair of Component Manager calls,
GetComponentRefcon and SetComponentRefcon. Component refCons are
frequently used to hold useful information such as device IDs or other shared global
data, and so can be quite critical to a component. We can hear you now . . . “What?
You’re going to nuke my global data reference?!” Well, not exactly — it’s just not as
immediately accessible as you would like it to be. Don’t worry, it’s possible to detect
when your component is in this situation and retrieve the refCon from it, as long as
you follow a few simple steps.

The situation in question arises when there’s not enough room in the system heap to
open a registered component. This happens when you run an application (that uses
your component) in a partition space so large that all free memory is reserved by the
application. This will prevent the system heap from being able to grow. When the
application calls OpenComponent, the component may be unable to open in the
system heap because there’s no available space. In this case, the Component Manager
will clone the component. When a component is cloned, a new registration of the
component is created in the caller’s heap, and the component ID of the cloned
component is returned to the caller, not the component ID of the original
registration. The clone is very nearly a perfect copy, but like the Dopplegänger
Captain Kirk in the Star Trek episode “What Are Little Girls Made Of?” it’s missing
something crucial.

That something is the component refCon. The refCon isn’t preserved in the clone,
so if your component needs the refCon to perform properly, it must be recovered
from the original component. How you go about doing this is a bit tricky. We assume
that you followed our advice and made sure that your component registered itself
with a unique name. (This technique is not guaranteed to work properly unless this
constraint is satisfied — you’ll see why shortly.)

The first problem is detecting whether your component has been cloned at open
time. You can determine this by examining your component’s A5 world using the
GetComponentInstanceA5 routine. If the A5 world is nonzero, you’ve been cloned.
But wait, you say, what if I registered my component locally? Won’t it have a valid A5

TECHNIQUES FOR WRITING AND DEBUGGING COMPONENTS  December 1992

29



value? Yep, it sure will, but if it was registered locally, we won’t have this nasty
situation to begin with, since the component won’t be in the system heap anyway.

Now you know that you’ve been cloned, and that you can’t depend on your refCon.
How do you retrieve it? Well, we know that there are two registrations of the same
component in the Component Manager registration list (the original and the clone).
So all we have to do is to set up a component description for our component, and
then use FindNextComponent to iterate through all registrations of it. We know
what our current component description and ID are, so we can just examine the
component description and ID for each component returned. Once we find a
component whose ID is different from ours but whose description is identical, 
we’ve found the original component registration. We can then make a call to
GetComponentRefcon to obtain the original refCon value, and then set the clone’s
refCon appropriately. Whew!

This technique won’t work with a component that registers multiple times and
doesn’t register each time with a unique name. If component X, capable of multiple
registrations, always registers with the name “X,” then when we try to find the
original component from the clone, there will be multiple components named “X” in
the registration list, and we’ll be unable to determine which component is the one we
were cloned from.

Omitting the “pascal” keyword from declarations for your component
dispatcher or for any functions that are called by CallComponentFunction or
CallComponentFunctionWithStorage. This bug will only antagonize those
developers who are working in C. As many of you know, the Macintosh system
software was originally written in Pascal, and functions that are called by Toolbox
routines (in this case, by the Component Manager) must conform to Pascal calling
conventions. If you fail to include this keyword where necessary, the parameters for
your function will be interpreted in the reverse order from what you intended, and
your component may enter the Twilight Zone, perhaps never to return.

Trying to read resources from your component file when its resource fork
isn’t open. When one of your component functions is called, the current resource
file (as obtained from CurResFile) is not the component’s resource file unless you
explicitly make it so. If you need to access resources that are stored in your
component file, you must first call OpenComponentResFile to get an access path,
and then call UseResFile with that path. When you’re done with the file, restore 
the current resource file and call CloseComponentResFile to close your component
file.

DEBUGGING TOOLS AND TECHNIQUES
Debugging components can be frustrating if all you have to work with is MacsBug.
Fortunately, there are a few tricks and tools that give you a little more power to

d e v e l o p December 1992

30



terminate those pesky bugs. In this section, we’ll show you how to debug your
component code with a symbolic debugger, and then we’ll examine three utilities that
will help you test your component.

SYMBOLIC DEBUGGING
Let’s suppose that we’ve got the Math component up and running, but something
funny is happening in our DoDivide routine. It would be nice to be able to step
through the component code symbolically and see what’s happening. Fortunately,
there’s a simple trick that involves registering our component in such a way that it can
be symbolically debugged.

For the purposes of the example, we’ll discuss how to do this with Symantec’s
THINK C development system. The first step is to add the component source code
to the application source code project. Then we modify the application code so that
instead of using the FindNextComponent call to locate the Math component, we
register it ourselves using the RegisterComponent call.

#define kRegisterLocally 0 
mathComponentID = RegisterComponent (&mathDesc,

(ComponentRoutine) MathDispatcher, kRegisterLocally, nil, nil, nil);

Note that when you register a component in an application heap as we’re doing, you
must register it locally, or your system may die a horrible death after your application
quits and its application heap goes away.

The component description, mathDesc, is set up just as before. The second
parameter is the main entry point (the dispatcher) to the Math component. The
Component Manager will call this routine every time it receives a request code for an
instance of the Math component. 

In the Math component code, we set up a debug compiler flag (DEBUG_IT, found
in DebugFlags.h) which, if defined, indicates whether we want to declare our
component dispatcher as a main entry point for a standalone code resource or as just
another routine linked into our application program.

#ifdef DEBUG_IT
// Use this declaration when we're running linked.
pascal ComponentResult MathDispatcher (ComponentParameters *params,

Handle storage)
#else

// Use this declaration when we're building a standalone component.
pascal ComponentResult main (ComponentParameters *params,

Handle storage)
#endif DEBUG_IT

TECHNIQUES FOR WRITING AND DEBUGGING COMPONENTS  December 1992

31



The two declarations differ only in that one is declared as a main and one isn’t.
(Remember, with both the source for the component and the application in the same
project, we can’t have two mains.) Now, each time the Component Manager sends a
request code to the Math component, it’s calling a component routine linked into the
application (MathDispatcher) that we can trace with the debugger. When we’ve
finished debugging the component, we can undefine the debug flag and rebuild the
component as a standalone code resource. The test application will now use
FindNextComponent to access the standalone component.

THE THING MACSBUG DCMD
The thing dcmd is included on the QuickTime 1.0 Developer’s CD. To use this
dcmd, simply use ResEdit to copy the 'thng' dcmd resource into a file named
Debugger Prefs, and put this file into your System Folder. Once in MacsBug, the
dcmd is invoked by entering “thing”. A sample thing display is shown in Figure 6.

d e v e l o p December 1992

32

Figure 6
Sample thing MacsBug Display

Displaying Registered Components
Cnt tRef#  ThingName      Type SubT Manu Flags    EntryPnt FileName Prnt LocalA5  RefCon
#0 010005 Movie Grabber  barg •••• appl 40000000 00000000 QuickTi…      00000000 00000000
#0 010007 Preview Loader blob •••• appl 00000000 00000000 QuickTi…      00000000 00000000
#0 01000c Apple Microse… clok micr appl 40000003 00000000 QuickTi…      00000000 00000000
#0 01000d Apple Tick Cl… clok tick appl 40000001 00000000 QuickTi…      00000000 00000000
#0 01000e Apple Alias D… dhlr alis appl 40000000 00000000 QuickTi…      00000000 00000000
#0 010018 Apple Photo -… imco jpeg appl 40600028 00000000 QuickTi…      00000000 00000000
#0 010014 Apple None     imco raw  appl 4060003f 00000000 QuickTi…      00000000 00000000
#0 01001c Apple Animati… imco rle  appl 4060043f 00000000 QuickTi…      00000000 00000000
#0 010016 Apple Video    imco rpza appl 40200438 00000000 QuickTi…      00000000 00000000
#0 01001a Apple Graphics imco smc  appl 40600408 00000000 QuickTi…      00000000 00000000
#0 010012                imdc SIVQ appl 00000030 00000000 QuickTi…      00000000 00000000
#0 010017 Apple Photo -… imdc jpeg appl 40400028 00000000 QuickTi…      00000000 00000000
#0 010013 Apple None     imdc raw  appl 40400bff 00000000 QuickTi…      00000000 00000000
#0 01001b Apple Animati… imdc rle  appl 40400c7f 00000000 QuickTi…      00000000 00000000
#0 010015 Apple Video    imdc rpza appl 40000878 00000000 QuickTi…      00000000 00000000
#0 010019 Apple Graphics imdc smc  appl 40400438 00000000 QuickTi…      00000000 00000000
#0 ..000b                jimB jph  leak 00000000 00000000 QuickTi…      00000000 00000000
#1 010002 NuMath Compon… math      appl 80000000 001a9b80 NuMath …      00000000 00000000

820000                               0000                            00000000 01263af8
#1 ..0000 Math Component math      appl 00000000 001a9f80 Math Co…      00000000 00000000

840001                               0000                            00000000 01263b08
#0 010001 MoMath Compon… math      gwck 00000000 00000000 MoMath …      00000000 00000000
#0 010011 Apple Standar… mhlr mhlr appl 40000000 00000000 QuickTi…      00000000 00000000
#0 01000f Apple Sound M… mhlr soun appl 40000000 00000000 QuickTi…      00000000 00000000
#0 010010 Apple Video M… mhlr vide appl 40000000 00000000 QuickTi…      00000000 00000000
#0 010006 Movie Control… play •••• appl 40000000 00000000 QuickTi…      00000000 00000000
#0 010009 Movie Preview… pmak MooV appl 00000000 00000000 QuickTi…      00000000 00000000
#0 010008 Pict Preview … pmak PICT appl 00000000 00000000 QuickTi…      00000000 00000000
#0 01000a Picture Previ… pnot PICT appl 00000000 00000000 QuickTi…      00000000 00000000
#0 010003 Movie Grabber… sgch soun appl 40000000 00000000 QuickTi…      00000000 00000000
#0 010004 Movie Grabber… sgch vide appl 40000000 00000000 QuickTi…      00000000 00000000
#32 Thing Table entries, #29 in use.      #32 Instance Table entries, #2 in use.
#5  File Table entries, #4  in use.
Thing Modification Seed #33.            Codec Manager 000dad3c



The Cnt field indicates the number of instances of a particular component. 

The tRef# field shows the component ID that the Component Manager has assigned
to a particular component; this is the value that’s returned to your application by the
FindNextComponent call. If there are instances of a component open, the
component instances are listed below the component ID in the tRef# field. Note that
the tRef# for the Math component is ..0000. The two dots at the beginning indicate
that this component has been captured. (We know from the earlier discussion of the
NuMath component that it has captured the Math component.)

The ThingName field displays the name of a particular component. This is either the
string that’s pointed to by the component’s 'thng' resource or the name that it was
registered with by a call to RegisterComponent. 

The Type, SubT, Manu, and Flags fields likewise correspond either to the
information that’s stored in the component’s 'thng' resource or to the codes and flags
that were supplied to a call to RegisterComponent.

The EntryPnt field is the main entry point of the component code. 

The FileName field indicates what file the component’s 'thng' resource resides in.
This field is empty for components registered without a component resource.

The Prnt field displays the parent of a cloned component. This information isn’t
available through the Component Manager API. 

The LocalA5 field shows the A5 world that the component is associated with; unless
the component is cloned or registered locally, this value is 0. 

The RefCon field is the value of the component’s refCon.

At the bottom of the display there’s a decimal number indicating the number of
component (thing) entries allocated in the Component Manager registration list,
along with the number of entries actually in use. Similar information is given for the
number of file table entries. Finally, the Component Manager modification seed is
listed.

THINGS! CONTROL PANEL
The Things! control panel, included on the QuickTime 1.0 Developer’s CD, is
similar to the thing dcmd but provides several additional capabilities. These include
displays of version levels, info and name strings, and resource information, as well as
controls to reorder the component search chain and to unregister components.

Figure 7 shows a sample display of the Things! control panel.

TECHNIQUES FOR WRITING AND DEBUGGING COMPONENTS  December 1992

33



The list on the left in the top panel shows the types of components currently
registered with the Component Manager; the list on the right shows the components
of the selected type that are currently registered. The latest version of Things!
doesn’t display components that aren’t registered globally or that aren’t registered in
the same application heap as the control panel is operating in. Things! also doesn’t
show components that aren’t resource-based.

The middle panel shows the name of the currently selected component and a
description of its type, subtype, and manufacturer fields. The number of instances of
the type of component selected (in the example, the 'imco', or image compressor,
component type) is displayed at the bottom of this panel. Clicking this field will
toggle it to display the number of instances of the selected component (in this case,
the Apple Video image compressor component).

The bottom panel shows an information string that usually describes what the
component does. At the upper left in this panel are two arrow buttons that can be
used for paging the bottom panel (the top and middle panels don’t change).

Figure 8 shows a variation of the bottom panel’s second page. The component
version information is displayed at the top. The “Set default” button allows you to
assign a particular component as the first component in the Component Manager’s
search chain for that component type. 

d e v e l o p December 1992

34

Figure 7
Things! Control Panel Main Display



If the Option key is held down while paging to the second page, a Destroy button is
displayed (as shown in Figure 9). Clicking this button will unconditionally unregister
the currently selected component. 

The third page shows the flags and mask fields of the component. 

The fourth page displays a variety of information about the 'thng' resource associated
with a particular component, including the resource name and ID as well as its
attributes. 

Page 5 presents a summary of the system software configuration.

REINSTALLER
Reinstaller is a utility that lets you install resource-based components without
restarting your Macintosh. Launching the application presents a Standard File dialog
asking you to choose the file containing the component you want to register. Clicking
the Open button will dismiss the dialog and register the selected component with the
Component Manager.

The same component file can be installed multiple times. Duplicate components
aren’t removed; the most recently installed version of a component becomes the
default component for that type. Note that any components installed with Reinstaller
are installed only until shutdown or reboot.

TECHNIQUES FOR WRITING AND DEBUGGING COMPONENTS  December 1992

35

Figure 8
Things! Page 2 Display

Figure 9
Things! Extended Page 2 Display



This utility is quite handy in conjunction with the Things! control panel’s Destroy
button. Between the two of them, you can easily register and unregister your
components without having to restart your Macintosh.

GO DO YOUR OWN “THING”
Now you know how easy it is to write your own components. You’ve learned how to
declare your own component API and how to implement a component dispatcher for
it. You’ve seen what common pitfalls to avoid and how to symbolically debug your
component to help you get around new pitfalls we haven’t thought of. 

We’re confident that once you start programming components, you’ll become
addicted! So what are you hanging around here for? Get busy writing, and start
amazing your users (and us, too) with some way cool components. We’re waiting . . . 

d e v e l o p December 1992

THANKS TO OUR TECHNICAL REVIEWERS
Neil Day, Mike Dodd, Mark Krueger, John
Wang•

36

• QuickTime Developer’s Guide (part of the QuickTime Developer’s Kit v. 1.0, ADPA
#R0147LL/A). Currently the essential reference for programming with the
Component Manager. This documentation will be replaced in the near future by
three new Inside Macintosh volumes: QuickTime, QuickTime Components, and
More Macintosh Toolbox. (The Component Manager will be documented in the
latter volume.)

• “QuickTime 1.0: ‘You Oughta Be in Pictures,’” Guillermo A. Ortiz, develop
Issue 7. An overview of QuickTime, including the Component Manager.

REQUIRED READING



BE OUR GUEST: COMPONENTS AND C++ CLASSES COMPARED  December 1992

37

If you’re familiar with C++ classes but new to thinking
about components, you may find it instructive to know
how the two compare. Although each has its own niche
in Macintosh software development, components and
C++ classes have many features in common. 

In general, both components and C++ classes
encourage a building-block approach to solving
complex problems. But whereas a component is
separate from any application that uses it, a class exists
only within the application that uses it. Components
are intended to add systemwide functionality, while
classes are intended to promote a modular approach to
developing a program.

We can also compare components and C++ classes in
terms of how they’re declared and called, their use of
data hiding and inheritance, and their implementation.
But first, let’s briefly review what a class is and what a
component is.

SOME BASIC DEFINITIONS
A class, in the programming language C++, is a
description of a data structure and the operations
(methods) that can be performed on it. An instance of a
class is known as an object. Classes are provided in C++
to promote an “object-oriented programming style.”
By grouping a data type and its methods together,
classes enable programmers to take a modular approach
to developing a program. 

A component, as described in the preceding article
(“Techniques for Writing and Debugging
Components”), is a single routine that accepts as
arguments a selector and a parameter block. The
selector specifies which of several (or many) operations
to perform, and the parameter block contains the
arguments necessary for that operation. Components
are “registered” with the Component Manager and can
be made available to either the program that registered
the component or to any program that’s executed,
making it possible to add systemwide functionality. For
instance, if Joe’s Graphics Corporation develops a new
image compression technique, it can be sold to users as
a component. Users install the component simply by
dragging an icon into a folder, and that form of image
compression is then automatically available to all
programs that make use of graphics. 

DECLARING CLASSES AND COMPONENTS
A C++ class is declared in much the same way as a
struct, with the addition of routines that operate only
on the structure described. Once the class is declared,
instances can be declared in exactly the same way as
other variables. That is, to create an instance of a class,
you either declare a variable of that class or dynamically
allocate (and later deallocate) a variable of that class. 

A component must be registered with the Component
Manager. At that time, its type, subtype, manufacturer,
and name are specified. The type, subtype, and
manufacturer are long integers; the name is a string.

Component instances can only be created dynamically,
using specific Component Manager routines. To create
an instance of a component that has been registered, a
program must first find the component. If the seeking
program is the same one that registered the
component, it already has the component. If not, it can
make Component Manager calls to search for all
available components with a given type, subtype, and
manufacturer; any part of the description can be a wild
card. 

Once a component has been found, it must be opened,
and this operation produces a reference to the

DAVID VAN BRINK is a computer programmer. When he’s not
busy programming computers, he can usually be found writing
computer programs. Mostly, he does this in the soothing fluorescent
glow of his cubicle at Apple. He’s presently writing components
(with great fervor) to support musical synthesizers for QuickTime.•

We welcome guest columns from readers who have
something interesting or useful to say. Send your column idea or
draft to AppleLink DEVELOP or to Caroline Rose at Apple
Computer, Inc., 20525 Mariani Avenue, M/S 75-2B, Cupertino,
CA 95014.•

BE OUR GUEST

COMPONENTS AND
C++ CLASSES
COMPARED

DAVID VAN BRINK



component instance. Operations can be performed on
the component instance using this reference. 

Table 1 compares how classes and components are
declared and how instances of each are created. (Note
that for components, the code is idealized.)

CALLING ALL ROUTINES
Calling a routine that operates on a C++ object is
slightly different from making a standard routine call:
the call more closely resembles a reference to an
internal field of a struct. The routine that gets called is
identical to any other routine, except that it’s declared
within the class definition rather than at the same brace
level as the main routine.

Calling a component routine is identical to calling any
other routine. The first argument is always the
component instance, and other arguments may
optionally follow. The return type of every component
routine is a long integer, and part of the numerical
range is reserved for error messages from either the
component or the component dispatch mechanism. 

The Component Manager lets a program issue calls to
a component that it has never “met” before. This form
of dynamic linking is crude, because no type checking
is performed.

Table 1 compares how classes and components are
called.

DATA HIDING
A C++ class can have “private” fields and methods,
which are accessible by class methods but not by the
caller. The programmer can see these private parts
simply by perusing the class declaration. If a change to
the implementation of a class requires that the private
parts be changed, relinking with the implementation of
the class won’t be sufficient: all clients must be
recompiled, since the positions of public fields might
have changed. (One tricky way around this is to include
a private field of type char * that’s really a pointer to the
class’s internal state data. The class constructor

allocates memory for whatever internal state it likes and
coerces a pointer to it to live in that char * field. This
technique is useful for object-only software library
distribution and also protects proprietary algorithms
from curious programmers.)

A component is responsible for allocating memory for
its internal state (the component’s “globals”) when it’s
opened and releasing that memory when it’s closed.
There are both component globals and component
instance globals. These correspond to static and
automatic variables in a C++ class and have similar
utility. A component might keep track of how many
instances of itself have been opened and restrict that
number by failing on the open call. 

INHERITANCE
It’s often useful to build software on top of existing
functionality or, alternatively, to take existing
functionality and alter it to perform a more specialized
function. Both of these things can be accomplished for
C++ classes with inheritance. In the former case, the
new class will have methods that don’t exist in the base
class; in the latter, the new class will have methods with
the same name as methods in the base class but that
take precedence over the base methods.

Components and the Component Manager support
both kinds of inheritance as well, as discussed in the
preceding article. All components of a given type must
support the same set of calls, although this is enforced
only by convention. Components of a particular type
and subtype may optionally support other calls as well,
and components of a particular type, subtype, and
manufacturer may support still more calls.

In the case where a component wants to use the
services of another component and perhaps override
some of its functions with modifications, Component
Manager utilities let a component designate another
component as its “parent.” A simple protocol ensures
that the correct variant of a routine gets called. When a
component must call itself, it must issue the call to its
child component, if any. When a component wants to

d e v e l o p December 1992

38



BE OUR GUEST: COMPONENTS AND C++ CLASSES COMPARED  December 1992

39

rely on the existing implementation of the parent
component, it must pass the call to its parent.

IMPLEMENTING CLASSES AND COMPONENTS
My discussion of implementation is based on the 68000
platform, since that’s the only one I’ve scrutinized with
regard to compiled C++ and Component Manager
calls. 

The routines that can be used with a C++ class are
declared, and optionally implemented, within the class
declaration. They behave like normal C routines, as
described earlier.

A call to a C++ class that has no parents or descendants
is compiled as a direct subroutine call, exactly as is a
standard routine call. A call to a C++ class that has

Table 1
A Comparison of Calls: Classes (Actual Code) Versus Components (Idealized Code)

Declaring a Class Declaring a Component
class MyClass { myComponent = RegisterComponent(MyEntryRoutine,
/* Variables and methods for myType, mySubType, myManufacturer, 

the class */ "A Component");
}

Creating a Class Instance Creating a Component Instance
MyClass x; myComponent = FindComponent(myType, mySubType,

myManufacturer);
myInstance = OpenComponent(myComponent);

Calling a Class Calling a Component
x.MyMethod(arg1, arg2); result = MyMethod(myInstance, arg1, arg2);

Implementing a Class Implementing a Component
class MyClass { long MyEntryRoutine(ComponentParams *params,

void MyMethod(int arg1, int arg2)  { char *globals)  {
/* Some code for MyMethod */ switch(params->selector)  {
} case kOpen:

} case kClose:
return noErr;

. . . /* other required calls here */
case MyMethod:

/* Do my method. */
/* arg1 and arg2 are in params. */
return noErr;

default:
return routineNotImplementedErr;

}
}



parents or descendants is slightly more complicated. A
table lookup is used at run time to determine exactly
which implementation of a routine gets called for the
particular object being operated on. Such a call takes
perhaps a dozen assembly instructions.

A component consists of only a single routine. It’s
passed a selector and a parameter block. The selector is
used to decide which operation to actually perform,
and the parameter block contains all the arguments
passed by the caller. 

The component’s parameter block is untyped — the
component routine has no way to determine what kinds
of arguments were originally passed, and herein lies the
danger. Some languages, such as LISP, have untyped
arguments; in LISP, however, a routine can determine
how many arguments have been passed and what the
argument types are. A component interface is more like
assembly language — or C without prototypes! — in
that it can determine nothing about what has been
passed to it.

You can’t compile a C++ program containing a call to a
nonexistent routine; the compiler will balk. (Well, OK,
this isn’t strictly true: there are dynamically linking
systems for C++, and other languages, that let you call a
C++ routine that hasn’t been linked with the rest of the
compiled source code; the routine can be linked to
later, at run time. But no facility of this type is currently
standard in the Macintosh Operating System or
supported under the standard Macintosh development
tools.) In the case of components, the compiler can’t
check for such illegal calls, since the particular
components that may be opened are decided at run
time. Therefore, the caller must be prepared to handle
a “Routine Not Implemented” error if a call is made
with an unknown selector.

All calls to components pass through the Component
Manager’s dispatch mechanism. The dispatcher must
locate the component’s entry point and globals from
the component reference, which is not simply a pointer

but a packed record containing an index into a table
and some bits used to determine whether the
component reference is still valid. If a client makes a
call to a component it no longer has open, the
Component Manager has a statistical likelihood of
catching this call and returning an appropriate error. 

The Component Manager has facilities to redispatch
the parameter block to one of many routines, and those
routines are written to take the arguments as originally
passed. The Component Manager was originally
written for use on the 68000 series of processor; on
computers with that processor, the parameter block
doesn’t have to be recopied onto the stack for further
dispatching. On other processors the parameters might
have to be recopied, however.

The Component Manager has been highly optimized
and fast dispatching can reduce its overhead still more,
but in general its lookup-and-dispatch process still
takes several dozen instructions. If the component
being called is using the Component Manager’s
inheritance mechanism, further overhead is incurred by
passing control to the parent or child component.
Overall, the Component Manager is quite efficient, but
still not as efficient as direct routine calls.

Table 1 compares how classes and components are
implemented.

IN SUM
Components, as supported by the Component
Manager, exhibit many of the features of C++ classes.
Both encourage a modular approach to solving
problems. Both feature inheritance and data hiding.
Where they differ is in how they’re declared and
implemented, how they do (or fail to do) type checking,
and how expensive they are to call. Each occupies its
own distinct niche in Macintosh programming: classes
as a way to ease development of a single program,
components as a way to add systemwide functionality
and give control and choice to the user. 

d e v e l o p December 1992

Thanks to Casey King and Gary Woodcock for reviewing this
column.•

40



A time base is the heartbeat of a QuickTime movie. It keeps the movie
going and tells the Movie Toolbox when to stop and when to display the
next frame. This article explores the concept of time bases and shows
how you can use time bases to affect the behavior of movies as well as
how to use time base callback procedures for timing purposes.

In a basic sense, a time base can be viewed as the black box that maintains the
temporal characteristics of a QuickTime movie. When a movie is playing, some of its
temporal characteristics are obvious: it has a duration, it’s “moving” or not, and so on.
Some of the not-so-obvious characteristics that a time base keeps track of are also
important, such as the clock that governs the passing of time as far as the movie is
concerned and whether the movie is looping.

Time bases are created dynamically by the Movie Toolbox each time a movie is
opened, rather than being stored with a movie. Time bases can also exist by
themselves, with no movie attached, and can therefore be used to time other dynamic
events, much as you would use a Time Manager task. 

The QuickTime Movie Toolbox provides a high-level interface that lets you modify
all the parameters of a movie, some of which implicitly change its associated time
base. Most applications therefore will never need to manipulate time bases directly.
Nevertheless, there are situations in which it’s necessary to access time bases more
directly, such as the following: 

• when a document presents multiple views of a movie and all views
need to be kept in sync

• when you need to take advantage of the callback functions of a
time base

• when you’re writing a custom movie controller

This article addresses these situations.

TIME BASES: THE HEARTBEAT OF QUICKTIME  December 1992

41
GUILLERMO A. ORTIZ  When I met Guillermo
I was really young. The first thing I said to him
was, “Are you my dad?” Well, really I said
something like “Waaaa!” As a matter of fact, I
was a newborn. What I like about Guillermo is
that we are almost the same. We like the same
food and we watch the same TV shows, like Star
Trek and Nova. We like to play the same sports,
such as tennis and basketball, and we both like to

read a lot — lately we even read the same books.
But the one way we are most alike is that we love
computers. Isn’t that a weird coincidence?
Another thing I like about Guillermo is that he is
really smart. He used to be a teacher, and having
a teacher around the house is always useful. He
is always there to help me with stuff like math and
science. He is also a great cook. The dinners he
prepares for us on the weekends are fit for a

GUILLERMO A. ORTIZ

TIME BASES:

THE

HEARTBEAT OF

QUICKTIME



THE ARROW OF TIME
First let’s define some of the terms related to the way QuickTime treats time:

• Time scale: the number of units into which a second is subdivided.
For most QuickTime movies, the time scale is set to 600, meaning
that the smallest fraction of time measurement for the movie is
1/600th of a second.

• Rate: the multiplier for the time scale. The rate controls how fast
the movie plays. When the rate is 1.0, the movie plays at its
normal speed, meaning that for each second of play the movie’s
time advances a number of units equal to the time scale. If the rate
is between 0.0 and 1.0, the movie plays in slow motion, and fewer
units are counted off per second of play. A negative rate implies
that the movie is playing backward. A rate of 0 means that the
movie is stopped.

• Time value: indicates where we are in the movie being played
back. The time value is given as a number of time scale units.
When a movie is playing forward from its start, the current time
value can be calculated as

time elapsed (in seconds) * time scale * rate

You can think of a time base as a dynamic container that holds the following
information about a process, normally a movie: the time source (either the clock
being used as the master clock or the master time base); the time bounds (the start
and stop time values) and the current time value; the rate; the time base flags,
indicating different conditions for the time base; and a list of callback routines.

Figure 1 illustrates these concepts and shows how they interact. The figure assumes
that the clock or time source ticks at a constant speed; however, you could
conceivably use a clock that runs at a varied speed, which would make the movie go
faster and slower in sync with the clock.

Figure 1 doesn’t show the effect of the time base flags. In QuickTime versions 
1.0 and 1.5, two mutually exclusive flags are defined — loopTimeBase and
palindromeLoopTimeBase. The loopTimeBase flag causes the time base to go back
to the start time value when it reaches the stop time value (or vice versa if the movie
is playing in reverse); palindromeLoopTimeBase reverses the direction of play when
it gets to the start or stop value of the time base.

THE BASIC STUFF
The QuickTime Movie Toolbox is the best mechanism for manipulating movies and
their parameters. The high-level calls provided by the Toolbox are all that most
applications will ever need. Using graphics as an analogy, suppose that you wanted to

d e v e l o p December 1992

king! He is like my family’s own personal four-star
chef. The music Guillermo likes to listen to is the
Beatles, the Doors, Santana, and Cream. I like
those groups too, but on our way to school we
listen to rap. Guillermo is a great guy and I am
really glad to have him for a dad.

— Guillermo A. Ortiz Jr., age 13•

RECOMMENDED READING  
This article assumes a reasonable knowledge of
QuickTime programming. For background
information, see the QuickTime developer notes,
available from APDA as part of the QuickTime
Developer’s Kit v. 1.0 (#R0147LL/A). For an
introduction to QuickTime, see my article
“QuickTime 1.0: ‘You Oughta Be in Pictures’” in
develop Issue 7.•

42



TIME BASES: THE HEARTBEAT OF QUICKTIME  December 1992

43

Universe time in seconds
0 1 2

Big �
Crunch

Big �
Bang

Movie�
coordinate�
system

Time base�
stop time

Time base�
start time

Movie stopped

Movie’s time scale is 600 units

When the movie rate is more than 1�
movie time passes more quickly

Movie moving�
forward at twice�
normal rate

rate=0�
current time �
value=300

 rate=–1�
 current time �
  value=600

  rate=1�
 current time �
value=900

     rate=2�
  current time �
value=1000

Movie ends after 1 second

Movie moving�
forward at�
normal rate

Movie moving�
in reverse at�
normal rate

0 200 400 600 800 1000 1200

0 600 1200

Figure 1
Time Concepts in a QuickTime Movie



draw a complicated image. The easiest way to do this would be with QuickDraw, by
calling DrawPicture, but you could also interpret the picture by hand and execute its
opcodes individually or even set the video RAM pixels directly! Similarly, when
working with a movie, you can work directly with its time base, but it’s best to let the
Movie Toolbox do as much as possible — not because it’s the only way, but because
it’s safer, it lessens the chances for compatibility problems, and it’s simpler. Thus, for
time bases associated with movies, it’s best to call SetMovieTime rather than
SetTimeBaseTime and to call SetMovieMasterClock rather than
SetTimeBaseMasterClock. 

For those cases in which it makes sense to access and modify time bases directly (as in
the scenarios mentioned earlier), the Movie Toolbox provides procedural interfaces
that allow you to do so. The sample program TimeBaseSimple provided on the
Developer CD Series disc shows how to get a time base from a movie, how to
interrogate the time base, and how to change some of its parameters.

Figure 2 shows the window displayed by TimeBaseSimple. This window displays the
duration of the time base (in most cases the same as the duration of the movie), a
number obtained by subtracting the start time value from the stop time value. It also
shows the rate at which the movie is playing, the preferred rate (a value normally set

d e v e l o p December 1992

44

Figure 2
TimeBaseSimple Window



when the movie is created; it will differ from the rate if the movie is stopped or is
playing in reverse due to palindrome looping), the name of the clock being used, and
the type of looping in effect. 

Through this window, the user can set the preferred rate, which is the rate the Movie
Toolbox and the standard movie controller use to set the movie in motion. Radio
buttons allow the user to specify the type of looping via the time base flags. The user
can also scan the movie backward and forward by clicking the shuttle control in the
top left of the window. This control is included in the sample to show how to go
forward or backward in the movie by changing the current time value in the movie’s
time base.

GETTING AND CHANGING A TIME BASE
Before you can begin working with a time base, you have to get it. TimeBaseSimple
does this with the following line:

tb := GetMovieTimeBase(gMoov); (* get movie's time base *)

GetMovieTimeBase returns the time base associated with the movie gMoov. The
variable tb receives this value.

Getting the clock information. Once you’ve retrieved the time base, you can get
the information about it. TimeBaseSimple acquires the information regarding the
master clock in order to display its name in the window. The clock information is
obtained via the Component Manager. First we obtain the clock component being
used by the time base; then we use it to get the information from the Component
Manager. 

clock := GetTimeBaseMasterClock(tb); (* instance of clock being used *)
err := GetComponentInfo(Component(clock), cd, Handle(clockN), NIL, NIL); 

In the variable cd, a ComponentDescription record, GetComponentInfo returns the
type of component, the subtype, the manufacturer, and the component flags. Note
that the program could be written to pass NIL instead, because the information
received is not used. clockN is a handle in which GetComponentInfo returns the
name of the component, which is what we’re really looking for.

Note also that when a time base has been enslaved to another (as discussed later),
GetTimeBaseMasterClock returns NIL. To ensure there’s a master clock associated
with a time base, the application should first call GetTimeBaseMasterTimeBase; a
NIL result indicates that the time base has a master clock, whereas a nonzero result
indicates that a master time base exists that contains the master clock.

Getting and changing the time values. You can get the start and stop time values
for a time base as follows: 

TIME BASES: THE HEARTBEAT OF QUICKTIME  December 1992

45
There are no guidelines (as of this writing)
regarding ways to allow users to set the rate 
of a movie; the solution implemented in
TimeBaseSimple has not been approved by the
User Interface gods. It’s primitive, but it works.•

The TimeBaseSimple shuttle control is a
cool CDEF created by C. K. Haun, member
emeritus of Developer Technical Support. Its C
source is included on the Developer CD Series
disc.•



scale := GetMovieTimeScale(gMoov); (* first get the time scale *)
startTimeValue := 

GetTimeBaseStartTime(tb, scale, startTime); (* get start time *)
stopTimeValue :=

GetTimeBaseStopTime(tb, scale, stopTime); (* get stop time *)

Note that the start and stop times returned are given in terms of the time scale being
passed; this means that we can get different values for the same time point, depending
on the granularity we require. As a matter of fact, in TimeBaseSimple, when we’re
preparing the shuttle control, we get the same values but with a different scale:

shuttleScale := moovScale DIV 10;
localDuration := GetTimeBaseStopTime(tBase, shuttleScale, tr);
localDuration := 

localDuration - GetTimeBaseStartTime(tBase, shuttleScale, tr);

The shuttle control in TimeBaseSimple lets you scan the movie backward and
forward. This is implemented by changing the current time value for the time base,
which looks something like this:

SetTimeBaseValue(gTBState.tBase, value*10, gTBState.moovScale);
(* 'movie scale/10' tick *)

Setting the rate. Although you can obtain the current rate for a time base and set
the rate directly, for a time base associated with a movie a better approach is to make
Movie Toolbox calls such as StartMovie or SetMovieRate. The Movie Toolbox
executes these calls by changing the time base associated with the movie. For
example, StartMovie gets the preferred rate and sets the time base rate to it, setting
the movie’s time base in motion. 

When the movie is being controlled by the standard movie controller, it’s 
important to call MCMovieChanged if you change any movie characteristic, such as
the rate or the current time value, to keep the controller in sync with the new
settings. As mentioned earlier, it’s better to use high-level interfaces to enact these
changes; for example, to change the rate via the movie controller, you can call
MCDoAction(mc, mcActionPlay, newRate).

Using the time base flags. When you access a time base directly, you can set its
movie to loop, either normally or backward and forward, by setting the time base
flags. GetTimeBaseFlags retrieves the flags for inspection, and SetTimeBaseFlags
modifies the flags. In TimeBaseSimple, the SetTBLoop routine sets the looping flags:

(* Changes the state of looping in the movie if needed. *)
PROCEDURE SetTBLoop(newFlags: LONGINT);
VAR targetTB: TimeBase;

d e v e l o p December 1992

46



BEGIN
targetTB := gTBState.tBase; (* the movie's time base *)
SetTimeBaseFlags(targetTB, newFlags); (* change it *)
gTBState.flags := newFlags; (* remember new state *)

END;

Now that you’ve seen how you can access the state information of a time base, let’s
look at some of the possible uses of time bases.

TIME SLAVES
One interesting situation arises when you need to play back two or more instances of
a movie simultaneously. In such situations you can synchronize the movies by
enslaving all the instances to one time base. The central idea behind this is to have
control of the movie’s time flow pass through a single point instead of having a
number of individual time bases running at the same time. The sample program
TimeBaseSlave on the Developer CD Series disc shows how to do this.

TimeBaseSlave splits the window in which the selected movie is to play into four
parts, with the quarters rotating while the movie is playing back. Figure 3 shows the
TimeBaseSlave window at its four stages of playback. 

TIME BASES: THE HEARTBEAT OF QUICKTIME  December 1992

47

Figure 3
TimeBaseSlave Window at Its Four Stages of Playback



The basic programming strategy is as follows:

1. Get the time base associated with one of the instances of the
movie.

2. Force the time base from step 1 to be used for the other instances.

3. Start playing the first instance of the movie, controlling it in any
way you like. (TimeBaseSlave starts the movie and sets it back to
the beginning when it reaches the end.)

4. The other instances of the movie will follow blindly.

The EnslaveMovies routine in TimeBaseSlave takes care of all this:

FUNCTION EnslaveMovies: OSErr;
VAR err: OSErr;

masterTimeBase: TimeBase;
slaveZero: TimeRecord;
slaveZeroTV: TimeValue;
masterScale: TimeScale;
count: INTEGER;

BEGIN
err := noErr;
masterTimeBase := GetMovieTimeBase(gMoov[1]);

{* time base of first movie instance *}
masterScale := GetMovieTimeScale(gMoov[1]);

{* needed for SetMovieMasterTimeBase *}
slaveZeroTV := 

GetTimeBaseStartTime(masterTimeBase, masterScale, slaveZero); 
{* ditto *}

FOR count := 2 TO 4 DO (* slave all movies to first time base *)
BEGIN

SetMovieMasterTimeBase(gMoov[count], masterTimeBase, slaveZero);
{* now we do it *}

(* real programmers do check for errors *)
err := GetMoviesError;
IF err <> noErr THEN 

BEGIN
ErrorControl('SetMovieMasterTimeBase failed');

LEAVE;
END;

END;
EnslaveMovies := err;

END;

d e v e l o p December 1992

48



Once the slave instances of the movie have been set to obey the first time base, their
behavior will mimic the first movie’s actions. In the TimeBaseSlave code, it appears
that only the first instance is started and that only it is rewound when the end is
reached. These actions are accomplished in TimeBaseSlave by calls to StartMovie
and GoToBeginningOfMovie, respectively, with the first movie passed as a 
parameter.

You could use this technique to play different movies but have all of them under a
single control. It might also be useful when no movies are involved at all but time
bases are being used for timing purposes.

TIMELY TASKS
TimeBaseSlave also shows how to take advantage of the callback capabilities of time
bases. Callbacks are useful when an application needs to execute given tasks when the
time base passes through certain states. You can program time base callbacks to be
triggered under the following conditions:

• when a certain time value is encountered (callBackAtTime)

• when a rate change occurs (callBackAtRate)

• when there’s a jump in time (callBackAtTimeJump)

• when the start or stop time is reached (callBackAtExtremes)

Passing callBackAtTime to NewCallBack shows the use of callbacks that are executed
at a specified time value. TimeBaseSlave uses the callback service to rotate the movie
pieces at regular intervals; we ask to be called every three seconds in movie time. 

Note that the time value triggering the callback depends on the rate of the time base.
In other words, the time value specified will never be reached if the movie isn’t
playing (if the rate is 0). If the rate is something other than 1.0 (if the movie is
accelerated or is moving in slow motion or in reverse), the specified break will come
every three seconds in movie time, not clock time.

CREATING A CALLBACK
First TimeBaseSlave has to create a callback. This could be accomplished as follows:

cb := NewCallBack(tb, callBackAtTime);

Since we want to be called at interrupt time, however, the line looks like this:

cb := NewCallBack(tb, callBackAtTime + callBackAtInterrupt);

The variable cb receives a callback, which depends on the time base tb. The callback
will be executed at specific times and can be scheduled to fire at interrupt time.

TIME BASES: THE HEARTBEAT OF QUICKTIME  December 1992

49



NewCallBack moves memory, which means that you can’t create a callback while in
an interrupt handler. Electing to be called at interrupt time has an advantage over
normal interrupt-driven tasks, however, as I’ll explain later.

PRIMING THE CALLBACK
Once we’re satisfied that the callback was created (cb <> NIL), we proceed to prime
the callback. At this point we have only the hook into the time base; priming the
callback schedules it to call us. This is accomplished by CallMeWhen, as follows:

err := CallMeWhen(cb, @FlipPieces, callWhen, triggerTimeFwd, callWhen,
scale);

FlipPieces is the routine that we want to have called when the specified time value
arrives. The callWhen variable is passed both as a refCon (the third parameter) and as
the time to trigger the callback (the fifth parameter), the idea being that FlipPieces
will need to know the current time. Of course, the refCon parameter can also be used
for any other purpose you may see fit.

The time at which the callback is triggered is given a frame of reference by the scale
parameter. Remember that a time value without a time scale has no meaning at all.
Finally, triggerTimeFwd means that our routine will be called only when the movie is
moving forward. This is reasonable since TimeBaseSlave plays back the selected
movie in forward motion only.

THE FLIPPIECES ROUTINE
The routine responsible for servicing the callback follows a simple interface and is
defined in TimeBaseSlave as follows:

PROCEDURE FlipPieces(cb: QTCallBack; refCon: LONGINT); (* CallBackProc *)
(* The refCon parameter contains the time that triggers the callback; 
this is the value passed to the CallMeWhen routine. *)
VAR j: INTEGER;

callWhen: LONGINT;
scale: TimeScale;
stop: LONGINT;
tr: TimeRecord;
tb: TimeBase;
err: OSErr;

BEGIN
stage := (stage + 1) MOD 4;
FOR j := 1 TO MoviePieces DO

ShiftMoviePieces(j); (* turn the movie pieces around *)
scale := 100; (* 100 units in this scale means 1 second *)
callWhen := refCon + 3*scale; (* call me in 3 seconds *)
tb := GetCallBackTimeBase(cb); (* needed for next line *)

d e v e l o p December 1992

50



stop := GetTimeBaseStopTime(tb, scale, tr);
IF callWhen > stop THEN (* wrap around the three seconds *)

callWhen := GetTimeBaseStartTime(tb, scale, tr) + callWhen - stop;

(* now to really reprime the callback *)
err := CallMeWhen(cb, @FlipPieces, callWhen,

triggerTimeFwd + callBackAtInterrupt, callWhen, scale);
END;

TimeBaseSlave does the actual splitting of the movie into different views by creating
four instances of the same movie and setting the movie clipping region for each one
to be the rectangle in which each is expected to display. When it’s time to move the
pieces, the movie box of each instance is offset to cover the next spot. Take a look at
SplitMovie and ShiftMoviePieces to see the code.

A FEW CONSIDERATIONS
Inquisitive readers will have noted that when calling CallMeWhen, TimeBaseSlave
uses both noninterrupt and interrupt-time invocations. This was done to illustrate
one of the advantages of using Movie Toolbox callbacks: the Toolbox takes care of
setting up the A5 world when your service routine is called. Having the A5 world set
up properly is useful when your program needs to access global variables; other
interrupt handlers can’t count on A5 being right when they’re invoked.

Using time base interrupt callback routines does not, however, liberate the
application from the normal limitations of interrupt-servicing routines; for example,
you can’t move memory.

As mentioned earlier, although time bases are created automatically when a movie is
opened or created, they can also exist on their own. If an application requires services
that allow control over the passing of time, it can create a time base and use callbacks
to trigger the service routines required. Keep in mind that even when a time base has
no movie, the application must still call MoviesTask to guarantee that callback
routines will get time to run.

OTHER TYPES OF CALLBACKS
Time base callbacks can also be triggered by a change in the rate or by a jump in the
time value. A change in the rate occurs when the movie is stopped while it’s playing,
when a movie is set in motion, or when the playback speed is somehow changed. A
jump in time occurs when the current time value in the time base is set to a value
outside the normal flow — for example, when a movie that’s playing is set back to the
beginning. In addition, QuickTime 1.5 introduces callbacks “at extremes” that can be
triggered when the time base time reaches the start or stop time.

These three means of triggering a callback are of interest only if the code is tracking
the behavior of the movie, as a movie controller or a media handler would need to do;

TIME BASES: THE HEARTBEAT OF QUICKTIME  December 1992

51



the constants used for calling NewCallBack in these cases are callBackAtRate,
callBackAtTimeJump, and callBackAtExtremes.

FINALLY
If you’d like to play with the sample programs, you may want to try some variations.
For instance, it’s very easy to modify TimeBaseSlave to have all the movies play at
their own beat, with separate time bases, and compare the performance with the
original TimeBaseSlave. You could also modify TimeBaseSimple to see the time
values obtained with different time scales.

Time bases are an important part of the QuickTime Movie Toolbox. Understanding
their role in the way movies play back can be extremely important for developers
trying to push the envelope in writing new and innovative QuickTime applications.
This article has opened the door; now it’s up to you to decide whether this route will
prove beneficial to your efforts.

d e v e l o p December 1992

THANKS TO OUR TECHNICAL REVIEWERS
Bill Guschwan, Peter Hoddie, David Van Brink•

52

Listed below are some of the more significant features of
QuickTime 1.5.

• Photo CD: Using QuickTime 1.5 and the Photo CD
Access extension, you can work with Kodak Photo CDs
on your Macintosh. Photos on the CD appear as
standard PICT files and can be opened in any
application that opens pictures.

• Compact video compressor: A new compressor has
been added that provides high-quailty, low data rate
playback.

• Movie import: Any application that opens movies
using QuickTime’s Standard File Preview can import
PICS, AIFF, PICT, and System 7 sound files.

• 1-bit dither: Playback performace of color movies has
been significantly enhanced on black-and-white (1-bit)

displays. This is particularly useful on PowerBook
computers.

• Sequence grabber dialogs: To provide for a more
flexible and consistent user interface for configuring
capture devices, the sequence grabber provides a set
of standard configuration dialogs. Support for sound
capture is also substantially improved.

• Text media handler: In addition to sound and video,
QuickTime 1.5 has built-in support for text. The text
media handler is built using QuickTime’s new Generic
Media handler, which allows you to create your own
QuickTime data types.

• Standard compression: The Standard Image
Compression dialog is now built into QuickTime. The
user can pan and zoom the test image within Standard
Compression.

HIGHLIGHTS OF QUICKTIME 1.5 NEW FEATURES



GRAPHICAL TRUFFLES: ANIMATION AT A GLANCE  December 1992

53

The Macintosh has always provided animation
capabilities. From the early Macintosh 128K to current
CPUs, animation has consistently played a large part in
the development of software. And though CPU models
continue to change, the theories and concepts behind
animation have stayed basically the same. Simply
stated, animation is the process of stepping through a
sequence of images, each slightly different from the
previous.

The thought of animation on the Macintosh usually
brings to mind games and multimedia, when in fact the
actual use of animation is more prevalent than most
people imagine. I’ll describe some common uses and
methods of performing animation and get you started
on writing your own animation sequences.

METHOD 1: PRIMITIVE BUT EFFECTIVE
One of the most fundamental methods of animation is
using the srcXor transfer mode. The basic idea is that
once you’ve drawn something in this mode, you can
erase it simply by drawing it again, restoring the bits
underneath to their previous state. Primitive though it
may be, this method is common to many applications.
Probably the most obvious example of it can be found
in the Finder. Familiar to even the novice Macintosh
user is the dotted rectangle that often appears during
desktop navigation. The movement of the dotted
rectangle, which appears when the user selects multiple
icons or drags windows across the desktop, is a simple

form of animation. The dotted rectangle is also used to
create the zooming effect when desktop folders are
opened and closed.

To use this method, you set the current transfer mode
to srcXor before drawing the object you plan to
animate. In the desktop example, the Finder switches
to srcXor mode and then draws the dotted rectangle
with a simple FrameRect call, with the PenPat set to
50% gray. The movement of the dotted rectangle is
accomplished by redrawing the rectangle at its 
previous position before drawing it at its new location.
With srcXor mode, simply redrawing the rectangle at
the same position restores the desktop to its original
state. So by repeatedly drawing and redrawing the
rectangle in its new position, you float a frame across
the screen without damaging the contents of the
desktop.

As a variation on the dotted rectangle, applications use
what’s called the “marching ants” effect. With this
effect, the bounding frame gives the illusion that the
dashed lines or “ants” are moving around the edges of
the box, thereby producing an animated and more
interesting visual appearance.

The marching ants effect is simple to create. The most
common way to do this is with a simple 8-by-8-bit
pattern. To create the illusion, you draw a bounding
frame by calling FrameRect, with the PenMode set to
srcXor and the PenPat set to a pattern defined with
diagonal stripes (see the illustration below). Shifting
the pattern up one row, and then wrapping the first 
row of the pattern to the last row, creates the effect. 
If the rows were shifted down rather than up, the ants

EDGAR LEE (AppleLink EDGAR) Recently spared from the
traumas of big city living, Edgar enjoys the relaxing and granola-
like atmosphere of sunny Cupertino. When asked what he likes
most about the area, he proudly points to his car stereo in disbelief
that it’s still there. Besides adjusting to his newly found appreciation
of suburban living, Edgar enjoys a good challenge of doubles
volleyball, an excellent head-to-head game of Tetris, and learning
the newest and latest human tricks from his faithful companion,
Sunny. Though Edgar realizes Sunny is only a dog, he still believes

some of the engineers here at Apple could stand to learn a lot from
her. Of course these engineers don’t seem to agree.•

GRAPHICAL
TRUFFLES

ANIMATION AT A
GLANCE

EDGAR LEE

Marching ants 8-by-8-bit pattern

�



would appear to move in the opposite direction. In
either case, the ants typically start at one corner of the
box and then end at the opposite corner.

As with the dotted rectangle, the frame is continually
drawn and redrawn, but this time with each new
updated pattern. Note the difference between the two
effects when the frame is drawn: With the ants, the
frame is constantly being drawn and redrawn even if
the rectangle’s coordinates haven’t changed. With the
dotted rectangle, the frame is redrawn only when its
position has changed. Since no animation takes place
when the dotted rectangle is sitting in the same
position, it’s not necessary to continually draw the
frame in that case.

METHOD 2: NOT SEEING IS MORE THAN
BELIEVING
Another method of performing animation is to use off-
screen drawing. With this method, the actual drawing
is being done behind the user’s back. The animation
frames are prepared off-screen and quickly transferred
to the screen with CopyBits to create the animation
sequence. Regardless of what CPU you’re running, 
this method can provide excellent animation effects.
And with the advent of GWorlds to simplify the
process of building off-screen environments,
performing animation with this technique has become
much easier.

In this section I’ll provide some important points to
consider when building your own off-screen world and
describe how to apply these off-screen worlds to
animation. For a detailed description of creating your
own custom GDevices, cGrafPorts, and pixMaps, see
the Macintosh Technical Note “Principia Off-Screen
Graphics Environments.”

Before even considering off-screen animation, you
need to determine whether your Macintosh has enough
memory for creating the off-screen environment.
Without sufficient memory, you might as well forget it.
Having high-performance, high-quality animation isn’t
cheap. Most of what determines the amount of

required memory is the off-screen world’s dimensions
and pixel depth.

• Typically, or at least for this method, the dimensions
of the off-screen world are the same as those of the
entire on-screen area. 

• For the depth of the off-screen world, you’ll need to
determine whether it’s based on the depth of the
images used in the window or on the depth of the
GDevice intersecting the window. In the case where
the GDevice is set to direct colors, you may want to
create only an 8-bit off-screen world to save
memory if your images use only 256 or fewer colors.
On the other hand, you may want to create an off-
screen world equal to the depth of the GDevice
containing the window, for better data transfer
performance. 

Once you’ve determined the dimensions and depth for
the off-screen world, you’re ready to create the off-
screen environment. Note that if you’re using the
GWorlds introduced with 32-Bit QuickDraw, many of
the off-screen initialization procedures have been
simplified. Also, with certain video display cards, the
GWorlds can be cached into the NuBus™ card’s
memory, providing even better performance when off-
screen worlds are used. 

To create the off-screen environment, you pass
NewGWorld the off-screen dimensions, depth, and
color table, and the routine creates the environment or
warns you if there wasn’t sufficient memory. After
you’ve made all the required memory checks and
created your off-screen environment, either by hand or
with NewGWorld, the next step is to create the
animation sequence.

In the simplest case, the off-screen world is used to
store an identical copy of what’s displayed on the
screen. Rather than erasing and drawing the moving
object on-screen, you perform all this in the off-screen
world. Once the moving object has been drawn in its
new position, the off-screen image is transferred to the
screen. By continually drawing the next frame of the
moving object in the off-screen world before displaying

d e v e l o p December 1992

For more information on caching GWorlds into NuBus
memory and improving drawing performance, see “Macintosh
Display Card 8•24 GC: The Naked Truth” in develop Issue 3.•

54



GRAPHICAL TRUFFLES: ANIMATION AT A GLANCE  December 1992

55

it on the screen, you produce the animation effect. The
following steps describe the process.

1. Assuming that the entire window is being used for
the animation, create an off-screen environment of
the same dimensions as the window, either by hand
or with NewGWorld. When you’re defining the
depth and color table of the off-screen world,
remember that QuickDraw requires extra time to
map colors when the destination GDevice’s depth
and color table are different from those of the
source.

2. Switch to the off-screen grafPort and GDevice and
draw the background image. This is the image that
the object will be moved on top of; typically it won’t
change.

3. Draw the object that will be moved or animated into
the off-screen world. Actually, any image not part of
the background image should be drawn at this time.
Also, since the object overwrites the background
image, the background under the object will
eventually need to be restored.

4. Switch back to the on-screen grafPort and GDevice
and use CopyBits to transfer the off-screen pixMap
to the screen.

These steps create just one frame of the animation
sequence. To create the full sequence, repeat the last
three steps until the animation is complete. In step 2,
instead of redrawing the entire background, you may
want to redraw just the areas that need to be restored, if
that information is available. By redrawing just a
portion of the damaged background, you’ll notice
improved performance, especially when working with
higher pixel depths.

Besides providing a quick introduction to off-screen
animation, this method has the advantage that it’s
simple and straightforward. Since all the objects and
images are drawn at one time and in the same
environment, it’s easy to create your sequences and
synchronize the animation for any moving object.
However, as mentioned earlier, large off-screen images
at higher pixel depths can really affect the performance

of the animation. To overcome this problem, you need
to use multiple off-screen worlds.

METHOD 3: SWITCHING INTO HIGH GEAR
The concept of multilayer off-screen worlds isn’t much
different from the basics of off-screen animation.
Rather than having just one off-screen environment,
you’ve also got an intermediate off-screen layer in
which all the actual drawing is completed, leaving the
background layer undamaged. So unlike the previous
method, where one off-screen world was used for
storing the background and the moving object, this
method uses two separate off-screen worlds to maintain
this information. The following steps describe how the
intermediate layer fits in.

1. Again, create the background off-screen layer with
the same dimensions as the window.

2. Switch the current grafPort and GDevice to the
background layer, then draw the background image.
This layer will never change, since its main purpose
is to restore the overwritten areas of the
intermediate layer.

3. Find the common rectangle containing the object’s
previous location and its new location. This can be
calculated by passing UnionRect the object’s
bounding rectangle for both positions. Be sure the
common rectangle uses coordinates local to the
window.

4. Create the intermediate off-screen layer with the
dimensions of the common rectangle.

5. Switch to the intermediate layer and transfer the
area of the corresponding common rectangle of the
background layer to the current layer. This will
restore the area at which the object was last
positioned. Rather than having to redraw the
background for each frame, you simply replace the
damaged area with the background image stored in
memory.

6. Draw the moving object at its new location in the
intermediate layer. If multiple objects are within the
same bounding region of this layer, they should be
drawn at this time as well.



d e v e l o p December 1992

For source-code routines that create and manage off-screen
layers, see GWLayers in the Sample Code folder on the Developer
CD Series disc. To see how these routines are actually used, check
out the Kibitz and DTS.Draw samples on the CD as well.
(GWLayers is brought to you by Forrest Tanaka, and Kibitz and
DTS.Draw are from Eric Soldan.)•

56

7. Switch to the window layer and use CopyBits to
transfer the contents of the intermediate layer to the
screen.

Finally, to create the entire animation sequence, repeat
steps 3-7 until the animation is complete. The
illustration below shows the process of creating one of
the frames in the sequence. In this frame, the moving
object is the sun, drawn on top of the background
image of the mountains.

When moving multiple objects, you’ll need to decide
whether to handle the objects separately or in groups.
In the case where objects are widely dispersed in the
window, it would be more practical to create a separate
intermediate layer for each object than to create one
layer containing all the objects. Since no changes are
occurring in places between widely spread objects,
unnecessary time and memory would be spent updating
these areas. 

However, if the objects are closely spaced, grouping the
objects and creating one intermediate layer would make
more sense. Since objects can overlap each other,
creating separate off-screen worlds would not be too
practical or easily accomplished. So when determining
the number of intermediate off-screen layers, you’ll
want to first check where the objects are located in the
window.

The main advantage of using the intermediate layer is
the performance improvement. As mentioned earlier,
transferring large blocks of data at high pixel depths
can be time consuming. As you can guess, the smaller
the transfer image, the less time QuickDraw requires.

Another advantage of using this layer is the ability to
isolate the background image. Since all the drawing is
taking place in the intermediate layer, there’s no need
to redraw the background image for each frame, which
can be a real time saver for complex backgrounds.
Though more memory is required with the addition of
the intermediate layer, the performance gains can
sometimes make the extra memory worth it.

Finally, to fully optimize the animation performance,
you’ll want to be sure the data transfer from the off-
screen layers is as fast as possible. Since you can
influence the speed of CopyBits, here are a few points
you’ll want to keep in mind when creating and using
off-screen layers:

• For indexed GDevices, the same color table should
be used for the window and the off-screen layers.
Since no color mapping should be required when
the source and destination share the same color
table, less time is needed for the data transfer.

• Be sure no nonrectangular clipping is involved in the
CopyBits operation. Having to check which pixels
should or shouldn’t be clipped can really slow down
the data transfer.

• Use srcCopy as the transfer mode for CopyBits. 
Any other mode takes extra time to perform the
logical operations on the source and destination
pixels.

• Set the current port’s foreground color to black and
background color to white before calling CopyBits.
This will ensure that no colorizing (which can be
slow) takes place.

• Make sure no dithering takes place. Unless you have
your own rippin’ fast method for dithering, try to
stay away from it. If possible, prepare the images in
the off-screen layers in such a way that dithering
isn’t needed.

• Keep the same alignment of pixels for the source
and destination pixMaps. Having to shift unaligned
pixels can take time.

• The source and destination rectangles should be the
same size. Scaling requires extra work.

Background�
layer

Window�
layer

Intermediate�
layer



GRAPHICAL TRUFFLES: ANIMATION AT A GLANCE  December 1992

57
For a more detailed explanation of increasing data transfer
performance, see the Macintosh Technical Note “Of Time and
Space and _CopyBits.”•

Thanks to Bill Guschwan, C. K. Haun, Guillermo Ortiz,
Konstantin Othmer, Forrest Tanaka, and John Wang for reviewing
this column, and to Brigham Stevens for his special help.•

By following as many of these points as possible, you’ll
improve the performance that you’ll get out of
CopyBits and waste less time in the on-screen updates.

LIGHTS, CAMERA, ACTION!
I’ve presented several methods of animation; which
method to use depends on your application. In fact, you
may choose to use several methods or switch between
methods under different system requirements. Say your
application uses multiple layering for optimal
animation; under low-memory conditions, you may
want to switch to just one off-screen world to provide
at least some type of off-screen animation. But if that
isn’t even an option, you may have to do all the
animation on-screen. For an example that does exactly
that, see DTS.Draw in the Sample Code folder on the
Developer CD Series disc. If sufficient memory is
available to create the off-screen worlds, the application
uses the multilayer method; otherwise, the application
decides on the next best method based on the current
available memory.

This column has described different animation
techniques, but the principle behind them is basically
the same, even if the results don’t show it. Given a set

of slightly different images, all the methods involve
stepping through the series of images, where each
object in the image is erased before the next object in
the series is displayed.

Animation provides excellent visual effects, more fun
for the programmer, and most important, an enhanced
experience for the user. Now that you’ve got the basics
of animation on the Macintosh, I hope you’ll be
inspired to animate your own applications!

RECOMMENDED READING
• “Macintosh Display Card 8•24 GC: The Naked

Truth” by Guillermo Ortiz, develop Issue 3.

• Macintosh Technical Notes “Principia Off-Screen
Graphics Environments” (formerly #120) and “Of
Time and Space and _CopyBits” (formerly #277).

• Computer Graphics: Principles and Practice,
2nd ed., by J. D. Foley, A. Van Dam, S. K. Feiner,
and J. F. Hughes (Addison-Wesley, 1990),
Chapter 21.



In “Apple Event Objects and You” in develop Issue 10, Richard Clark
discusses a procedural approach to programming for Apple events and
goes into details of the Apple event object model. This article reveals a
few simple truths about the significance of Apple events and the Apple
event object model, focusing on how the object model maps onto a typical
object-oriented application. It also provides an object-oriented C++
framework for adding scripting support. 

It’s every developer’s worst nightmare: Your team has just spent the last two years
putting the finishing touches on the latest version of Turbo WhizzyWorks II NT
Pro, which does everything, including make coffee. As a reward for your great work,
the team is now preparing to do some serious tanning development on an exotic
island. Then, Marketing comes in with “one last request.” They promise it’s the last
thing they’ll ask for before shipping, and in a weak moment, you agree that one last
little feature won’t hurt your itinerary. “Good,” quips the product manager, “then as
soon as you add full scripting support, you can enjoy your vacation.”

You know that to add scripting support, you need to delve into Apple events. You
think this requires learning about Apple events, the Apple event object model, and
scripting systems. Further, you think Apple events must be designed into your
application from the ground up and can’t possibly be added without a complete
redesign. Which of the following is the appropriate reaction to Marketing’s request?

A. Immediately strangle your sales manager and plead justifiable
homicide.

B. Look around while laughing hysterically and try to find the hidden
Candid Camera.

C. Change jobs.

D.Feign deafness.

E. None of the above.

d e v e l o p December 1992

ERIC M. BERDAHL (AppleLink BERDAHL) is a
refugee from Chicago, recently deported to the
West Coast to join Taligent. Having lived most of
his life in a suburb of the Windy City, he exhibits
a psychosis common to that area of the country
— fanatic loyalty to the Cubs. His formula for
success includes bucking the establishment and
blindly following one’s heart over one’s head. The
jury’s still out on whether that formula works, but

it’s been effective so far. He’s the current president
of MADA, an international developer’s
association devoted to providing cutting-edge
access to information about object technologies.
MADA conferences are a real blast, too (just ask
Eric about his grass skirt). In his copious spare
time, he collects comic books, catches up on the
Cubs’ latest follies, and chases a neurotic flying
disc around a grassy field (some call it Ultimate).•

58

ERIC M. BERDAHL

BETTER

APPLE EVENT

CODING

THROUGH

OBJECTS



Unfortunately, there’s no correct answer, but the scenario is all too real as developers
are increasingly being asked to add scripting support to their applications. The design
of Apple events and the Apple event object model can provide the user with more
power than any other scripting system. However, to access the power of the design
you need to work with the complex interface provided by the Apple Event Manager.
By its nature, this interface collapses to a procedural plane of programming that
prevents developers from fully taking advantage of the object-oriented design
inherent in the Apple event world. The Apple event object model is difficult to
implement without some fancy footwork on the part of your framework. But
remember the words of Marshall Brodeen, “All magic tricks are easy, once you know
the secret.” With this in mind, join me on a trip through the rabbit hole into
AppleEventLand.

WHAT ARE APPLE EVENTS AND THE OBJECT MODEL?
Whenever I give presentations on Apple events, the audience has an overwhelming
urge to ignore the theory and jump into coding. Resist the urge. For most developers
Apple events provide an unfamiliar perspective on application design. To appreciate
the significance of Apple events and the object model, it’s important to understand
their underlying concepts and background. So, although you’ll be reading about code
later, a little theory needs to come first.

At the most basic level, Apple events are a program-to-program communication
(PPC) system, where program is defined as a piece of code that the Macintosh can see
as an application (in other words, that has a real WaitNextEvent-based event loop).
However, billing Apple events as PPC is akin to describing an F-16 as merely a plane.
To fully understand how Apple events are more than simple program-to-program
communication, you need to take a look at the Apple event object model. 

The object model isn’t really defined in a pithy paragraph of Inside Macintosh, but is
instead a holistic approach to dealing with things that users call objects. In a literal
sense, the object model is a software developer’s description of user-centric objects or
cognitive objects.

COGNITIVE THEORY
Cognitive science tells us that people interact with the world through objects. A
printed copy of develop is an object, a plant in the corner of your office is an object,
and a can of Coke Classic on your desk is an object. Each of the objects has
properties, behaviors, and parts. Some properties exist for each of the objects (for
example, each one has a name) and other properties make sense for only some of the
objects (for example, page size makes sense only when applied to develop). Behaviors
are quite similar to properties in their ephemeral binding to objects. Only Coke will
fizz, but all three objects will decompose. However, they each decompose in a different
way. Further, each object can be separated into arbitrary parts that are themselves
objects. The plant can be separated into branches, which can in turn be separated

BETTER APPLE EVENT CODING THROUGH OBJECTS  December 1992

59
Marshall Brodeen, a.k.a. Wizzo the Wacky
Wizard from station WGN’s “Bozo’s Circus,”
was a television spokesman for T.V. Magic
Cards.•



into leaves. The plant itself can also be separated into leaves, so leaves are contained
by both branch objects and plant objects.

BACK INSIDE THE COMPUTER
Now, since a user will someday interact with your software, and since users interact
with the world in terms of cognitive objects, it makes sense to model software in
terms of cognitive objects. Hence, the object model describes objects in a rather
ghostlike fashion whereby objects have behaviors and properties and contain other
objects. Although the object model defines an inheritance for each category of objects
(for example, Journal might inherit from OpenableThing which might inherit from
Object), it’s used only for the purpose of grouping similar behaviors. Just as in the
mind, the only thing that’s important is the identity of a specific object in existence at
a given time — its categorization is purely a detail of implementation.

Gee, this sounds a lot like what real programmers mean when they talk about objects.
Strangely enough, real objects and cognitive objects are quite related. Many
references cite cognitive theory as justification for beginning to program in an object-
oriented style. Object-oriented code tries to get closer to the language of the native
operating system of the human mind than traditional procedural approaches, and the
format of an Apple event object mirrors natural language to a surprisingly large
degree. It comes as no surprise, then, that Good Object Design lends itself quite
easily to slipping in support for Apple event scripting.

APPLE EVENT OBJECTS AND SCRIPTING
The motivation for you to provide object model support is so that your users can
“script” your application. There are a variety of solutions available today that allow
advanced users to write things that resemble DOS batch files or UNIX® shell scripts.
These entities are commonly called scripts, but in the context of Apple events a script
is something with greater potential. Whenever a user thinks “I want to sharpen the
area around the rose in this picture,” a script has been formed. If this seems too
simplistic, consider it again. Script here refers to the earliest conception of a user’s
intent to do something. It’s not relegated to the world of the computer and does not
imply any given form or class of forms; an oral representation (voice interface a la the
Knowledge Navigator) is equally as valid as a written one (traditional scripting
systems). From this perspective, the definition of script takes the user to a greater
depth of control over applications than previously dreamed of, allowing access to the
very engine of your application by the very engine of the user. This is the great
empowering ability of Apple events: they enable users to use their native operating
system — the mind — with little or no translation into computerese. 

OBJECT-ORIENTED PROGRAMMING OBJECTS
The biggest problem with Apple event objects is the interface provided by the Apple
Event Manager. Instead of allowing you to write real object-oriented source code

d e v e l o p December 1992

Good Object Design is sometimes lumped
together with pornography as being difficult to
define, “but I’ll know it when I see it.” Others
consider the search for G.O.D. as a holy
crusade. Rather than giving a thoroughly useless
description for G.O.D. here, I refer the interested
reader to Developing Object-Oriented Software
for the Macintosh by Alger and Goldstein
(Addison-Wesley, 1992).•

60



using a given class library that implements basic Apple event and object model
functionality, the Apple Event Manager requires you to register every detail
programmatically. You must declare what classes exist, which methods exist and
where, and what relationships are possible within and between classes. Although at
first this flexibility seems advantageous, many developers find it a problem later when
they have to declare everything again at run time. Anyone with secret desires to
design an object-oriented runtime environment and a compiler/linker combination to
support that environment will feel quite at home with Apple event coding.

The second biggest problem with Apple event objects is that programs aren’t written
in the Apple event (user) world. Instead, they’re often written in object-oriented
programming languages like LISP and C++. What’s needed is a good generic
interface to translate objects from the user world of natural language into the world
of LISP or C++ objects. Scripting systems do some of the work by delivering Apple
event objects to applications in the form of object specifiers, a strange data structure
that resembles a binary form of natural language stuffed into the familiar Apple event
generic data structure AEDesc. However, object-oriented applications ship objects
around in the form of . . . well . . . objects! So, you need translation from binary
natural language to actual objects. Easy, huh? (Don’t hurt me yet — this will seem
fairly straightforward after reading a bit further.)

Presenting a new interface should solve the problem of the Apple Event Manager
interfaces. Presenting that new interface in terms of the familiar object-oriented class
libraries should solve the problem of different paradigms. So, if these two problems
are approached with an object perspective, it’s clear that some of the classes in your
program need to include a set of methods that implement object model protocols.
Application domain classes must be able to return objects contained within them and
to perform generic operations on themselves. It turns out that if your classes also
provide the ability to count the number of a specific type of object they contain, you
can provide a rudimentary, yet powerful, parsing engine for transforming objects
from the Apple event world into the traditional object programming world.

Further analysis indicates that only those application domain classes that correspond
to object model classes need this protocol. This indicates that the protocol for
providing Apple event object model support is probably appropriate to provide in a
mixin class (a class that’s meant to be multiply inherited from). In this way, only those
classes that need to provide object model support must provide the necessary
methods. In the sample application discussed later, that class is called MAppleObject.
MAppleObject plays a key role in UAppleObject, a generic unit that can be used to
provide Apple event object model support to any well-designed C++ application.

Apple provides a convenient solution to the user versus programming language
problem in the form of the Object Support Library (OSL). The OSL has the specific
responsibility of turning an object specifier into an application’s internal
representation of an object. (See “A Sample OSL Resolution” for an example of how

BETTER APPLE EVENT CODING THROUGH OBJECTS  December 1992

61
AEDesc is the basic Apple event data
structure described in Inside Macintosh Volume
VI, Chapter 6, “The Apple Event Manager.”•



the OSL actually works.) The OSL implements a generic parsing engine, applying a
few simple assumptions about the state of the application’s design to the problem.
However, for all the power provided by the engine within the OSL, it lacks an object-
oriented interface. Instead, it uses a paradigm like that provided by the Apple Event
Manager, requiring the application to register a set of bottleneck routines to provide
application-specific functionality. As with the Apple Event Manager, you must write

d e v e l o p December 1992

62

Here’s a short example to give you a feel for how the OSL
actually works. Don’t read too much into the details of
object resolution, but do try to understand the flow and
methodology the OSL applies to resolve object specifiers.
Also, don’t worry too much about how the OSL asks
questions; the protocol you’ll actually be using in
UAppleObject hides such details from you. 

Figure 1 on the next page gives an overview of the
process. Consider the simple object specifier “the third
pixel in the first scan line of the image called ‘Girl with
Hat,’” and an Apple event that says “Lighten the third
pixel in the first scan line of the image called ‘Girl with
Hat’ by twenty gray levels.” On receiving this Apple event
(Lighten) the application notes that the direct object of the
event (the third pixel in the first scan line of the image
called “Girl with Hat”) is an object specifier and asks the
OSL to resolve it into a real object.

At this point the parsing engine in the OSL takes over,
beginning a dialog with your application through a set of
preregistered callback routines. Notice that the object
specifier bears a striking resemblance to a clause of
natural language — English in this case. This is not
unintentional. Apple event objects are cognitive objects,
and cognitive objects are described by natural language
— hence the parallels between object specifier formats
and natural language. Further, the parsing engine inside
the OSL operates like a high school sophomore parsing
sentences at the chalkboard. But I digress . . .

To continue, the OSL asks the null object to give it a token
for the image called “Girl with Hat.” (Tokens are the Coin

of the Realm to the OSL.) So the null object looks through
its images to find the one named “Girl with Hat” and
returns a token to it. 

The OSL then turns around and asks the image called
“Girl with Hat” to give it a token for the first scan line.
After getting this token, the OSL has no further use for the
image token, so it’s returned to the application for
disposal. In effect, this says, “Uh, hey guys, I’m done with
this token. If you want to do anything like free memory or
something, you can do it now.” Notice how polite the
OSL is.

Next, the OSL asks the scan line for a token representing
the third pixel, which the line handily returns. Now it’s the
scan line token’s turn to be returned to the application for
recycling. The OSL has no further use for the scan line
token, so the application can get rid of it if necessary.

Finally, having retrieved the token for the third pixel of the
first line of the image called “Girl with Hat,” the OSL
returns the token with a “Thanks, and come again.” The
application can then ask the object represented by the
token to lighten itself (remember that was the original
Apple event), and dispose of the token for the pixel.

As you can see, the OSL operates by taking an
unreasonable request, “give me the third pixel of the first
line of the image called “Girl with Hat,” and breaks it into
a number of perfectly reasonable requests. Thus, your
application gets to take advantage of its innate
knowledge of its objects and their simple relationships to
answer questions about complex object relationships.

A SAMPLE OSL RESOLUTION



BETTER APPLE EVENT CODING THROUGH OBJECTS  December 1992

63

Resolut ionObject

Resolut ion
Hey, Null Object! Can I get�
the image “Girl with Hat”?

Sure! Be�
my guest.

Thanks! Hey, Image! Can �
I have your first scan line?

Not a problem.�
Here ya go!

Null Object

OSL Image

Scan Line

Thanks, Image.�
You can go now.

Hey, Scan Line! Can I�
have your third pixel?

Thanks, Scan Line.�
Now you can go.

Get me the third pixel of�
the first scan line of the�
Image “Girl with Hat.”

Application

Yes, Sire! Sure! Here�
ya go.

An

Pixel

Here’s the pixel you�
asked for, Sire.

Object

Figure 1
Resolving an Object Specifier



routines that implement runtime dispatching to the individual objects your
application creates instead of using the natural method-dispatching mechanisms
found in your favorite object-oriented language, whatever it may be.

The nicest thing about the OSL is that, like the Apple Event Manager itself, it applies
itself quite well to being wrapped with a real object-oriented interface (although you
have to write it yourself, sigh). Curiously, the OSL solves both problems — poor
interface and cognitive versus object-oriented programming differences. With a nice
object-oriented framework, you can write your code once, in the fashion to which
you’re accustomed. I won’t lie to you by telling you the job becomes easy, but it does
change from obscure and harrowing to straightforward and tedious.

OBJECT MODEL CONCEPTS
There are two basic concepts defined in the object model. One is containment, which
means that every object can be retrieved from within some other object. In the
language of the object model, every object is contained by another object. The only
exception to this rule is the single object called the null object. The null object is
commonly called the application object, and may or may not be contained by another
object. In practice, a null object specifier is like a global variable defined by the object
model. The application implicitly knows which object is meant by “null object.”
Object resolution always begins by making some query of the null object.

For example, with a simple image processor, it would be appropriate to state that
pixels are contained by scan lines, scan lines by images, and images by windows. It’s
also appropriate to have pixels contained by images and windows. Windows
themselves have no natural container, however. Therefore, they must be contained by
the null object. One way you can decide whether these relationships make sense for
your product is to ask if a user could find it useful to do something to “the eighth
pixel of the second scan line” or to “the twentieth pixel of the image.” If statements
like these make sense, a containment relationship exists.

The second basic concept of the object model is behavior. Behavior is quite simple; it
means that objects must be able to respond to an Apple event. Behavior correlates
directly with the traditional object programming concept of methods of a class. In
fact, as you’ll see, the actual Apple event–handling method of Apple event objects is
usually a switch statement that turns an Apple event into a dispatch to the C++
method that implements the Apple event’s functionality.

Taken together, the concepts of containment and behavior define the limits for
objects in the model of the Apple event world. The object model resembles the
programming worlds of Smalltalk or LISP, where everything is an object. Everything.
For those familiar with these paradigms where even integers, characters, and floating-
point numbers are full first-citizen objects, the Apple event world will be a refreshing
change from traditional programming in C++ and Pascal.

d e v e l o p December 1992

64



FINDING THE OBJECTS
The overriding concept in designing object model support in your application is to
do what makes sense for both you — as the developer — and the user. 

1. It’s best to begin by deciding what objects exist in your application.
To decide what objects exist, do some user testing and ask the
users what objects they see and what objects they think of while
using your application. If this isn’t possible, just pretend you’re a
user and actually use your application, asking yourself those same
questions. For example, if you ask users for a list of objects in an
image processing application (and refrain from biasing them with
computer mumbo jumbo) they’ll probably list such things as
window, icon, image, pixel, area, scan line, color, resolution, and
menu bar. (Figure 2 shows types of objects a user might list.)
Guess what? In reality, those probably are object model classes
that an image processing application could support when it
supports the object model. Since the objects you’ll want to support
are user-level kinds of entities, this makes perfect sense.

BETTER APPLE EVENT CODING THROUGH OBJECTS  December 1992

65

Menu bar

Window

Image Size box

Pixel

Scan line

Scroll arrow

Tool palette

Title bar

Area

Figure 2
Objects the User Sees



2. After deciding what objects exist in your application, run another
series of user tests to determine the relationships between different
objects. For example, what objects does a window contain?
Menus? Pixels? Areas? Color? What objects does an area contain?
Pixels? Scan lines? Windows? This is just as simple as it seems.
Just ask the question, “Does this object contain that object?” If you
get immediate laughter, move on. Positive answers or thoughtful
looks indicate a possible relationship.

3. Finally, determine what properties and behaviors each object class
will have. These questions can be asked during the same user test
as in step 2 because the answers users will give are closely related.
Will you be able to ask windows for their names or pixels for their
colors? How about asking windows to move or close? Can you ask
pixels to change color or make a copy?

You may have noticed that this approach falls into the category of Good Object
Design. Undoubtedly, anyone who does object-oriented design has gone through a
similar process when developing an application. Resist the temptation to design the
application’s internal structure using G.O.D. and be done with it, because the object
model design is different from the application design. When designing the
application, you typically analyze structure from the perspective of eventually
implementing the design. Thus, you impose design constraints to make
implementation easier. For example, you probably don’t keep representations of
images, areas, and pixels, but choose one model for your internal engine — a
reasonable solution for a programmer looking at the problem space. A typical image
processing program usually has real classes representing images, and probably has an
area class, but may not have a pixel class or scan line class. Pixels and scan lines may
be implemented by a more basic representation than classes — simple indices or
pointers into a PixMap, for example.

However, when you design object model support, you have a very different
perspective. You’re designing classes based on user expectation and intention, not on
programmer constraints. In object model design of an image processor, you do have
TImage, TArea, TScanLine, and TPixel classes, regardless of your internal
representation. This is because a user sees all these classes. The TImage and TArea
may be the same as your internal engine’s TImage and TArea, and probably are. After
all, there’s little reason to ignore a perfectly usable class that already exists. However,
the TPixel and TScanLine classes exist only to provide object model support. I call
classes that exist only to provide object model support ephemeral classes.

Undeniably, the most useful tool for finding objects is user testing. Another
important source of information is the Apple Event Registry. The Apple Event
Registry describes Apple event classes that are standardized in the Apple event world.
The Registry lists each class along with its inheritance, properties, and behaviors. It’s
also the last word on the values used to code object model support. For example,

d e v e l o p December 1992

The Apple Event Registry is on the
Developer CD Series disc and is available in print
from APDA (#R0130LL/A).•

66



constants for predefined Boolean operators and class types are listed in detail. As you
follow the process for finding the objects in your application, you can use the
elements found in the Registry as a basis for your investigation and for later
implementation. For example, if your user tests reveal that a pixel class is appropriate
for your application and a Pixel class is documented in the Registry, you should
probably use the behaviors and properties documented there as a basis for your
application’s TPixel class. Doing so allows your application to work well with existing
scripts that manipulate pixels and allows your users to have a consistent scripting
experience across all pixel-using applications.

OSL CONCEPTS
In addition to the principles imposed by the object model itself, the OSL makes a few
reasonable assumptions about what applications provide to support their objects.
Since the object model requires that objects be able to retrieve contained objects, the
OSL allows an object to count the number of objects of a given type contained within
them. So, if an image contains scan lines, the image object needs to be able to count
the number of scan line objects contained within it. Of course, in some
circumstances, the number of objects that are contained can’t be counted or is just
plain big (try asking how many TSand objects are contained in a TBeach object). In
this case, the OSL allows the object to indicate that the number can’t be counted.

Additionally, the OSL allows applications to apply simple Boolean operators to two
objects. The operators themselves are a part of the Apple Event Registry. They include
the familiar operators like less than, equal to, and greater than as well as some more
interesting relations like before, after, over, and under. The requirement for these
operators is that they have Boolean results. This means that if object1 and object2 have
operator applied to them, the expression object1 operator object2 is either true or false.
Of course, there’s no requirement that every class implement every operator, only
those that make sense. It makes little sense to ask if an object of type TColor is
greater than another, but brighter than is another story.

During resolution of an Apple event, the OSL asks for tokens of objects between the
application object and the final target to be returned (as described earlier in this
article in “A Sample OSL Resolution”). To a programmer, they look like AEDescs
being passed around, but the OSL treats them specially: 

• The OSL guarantees that it will never ever look in the data
portion of the token, the dataHandle field of the AEDesc. It may
peek at the descriptorType field from time to time, but the data
itself is golden. This becomes a critical point when applying the
OSL engine to an object-oriented interface. The token data of
Apple event objects should be “real” object references in whatever
programming language is appropriate, and keeping the data
completely private to the application makes this possible. 

BETTER APPLE EVENT CODING THROUGH OBJECTS  December 1992

67



• The application must be able to recognize the token when it
appears again. Thus, if the application returns a token for the
image “Girl with Hat” to the OSL, the application must be able to
recognize the significance of having that token passed back by the
OSL. 

• The OSL asks only that we guarantee the validity of a token
during the resolution of the current object specifier. 

Since the data contained in the AEDescs is private, the OSL must provide a system
for the application to know when a token is being created and when it’s being
terminated. Creation of tokens is provided through the containment accessor
protocol. Termination is provided by a callback routine which does the actual token
disposal and which the application registers with the OSL. This callback is invoked
from AEDisposeToken and comes in handy when applying the object model to C++
classes. 

There are also a number of features that are beyond the scope of this article. One of
these is the OSL concept of marking objects. This means that objects are labeled as
belonging to a particular group. The contract the OSL makes with the application is
that the OSL will ask whenever it needs a new kind of mark, and the application will
recognize whether any object is marked with a particular mark. Further, given the
mark itself, the application will be able to produce all the objects with that mark. If
this sounds particularly confusing, just consider mark objects as typical list objects.
Given a list and an object, it’s quite natural to answer the question, “Is this object in
this list?” Further, it’s quite natural to answer the question, “What are all the objects
contained in this list?” 

The framework for adding Apple event support described later in the section “Inside
UAppleObject” satisfies the basic OSL requests for counting objects, applying
Boolean operators, and handling tokens. However, it doesn’t handle marks. The
intrepid reader could add support for this feature with a little thought.

CLASS DESIGN
To incorporate object model support into your applications, you need a class library
that implements the object model classes you want to support — for example, the
TWindow, TImage, TArea, and TPixel classes described earlier. These classes exist
because they represent Apple event objects the application will support. Then you
create a mapping of Apple event objects to the C++ classes that implement them (see
Figure 3). For the sake of argument, say that TWindow, TArea, and TImage are also
part of the class library used to implement the non–object-model portions of the
program. The TPixel class is an ephemeral class. What these four classes have in
common is a mixin class, MAppleObject, that provides the hooks for adding object
model functionality (see the next section, “Inside UAppleObject,” for more details).

d e v e l o p December 1992

68



MAppleObject must include protocol that implements the object model and OSL
concepts. Given an MAppleObject, there should be protocol for returning an object
contained within MAppleObject. This accessor method is expected to return an
object that satisfies the containment request. It also needs to inform the framework if
the returned object is an ephemeral object — some might say that such an object is
lazy evaluated into existence. As a practical matter, this informs the framework
whether an object needs to be deleted when the OSL disposes of the object’s token
(as described in “A Sample OSL Resolution”). Obviously, it would be undesirable to
have the framework delete the TImages because the application depends on them for
its internal representation. It would be equally stomach-turning to have all the
TPixels pile up in the heap, never to be deleted.

Since TPixel objects don’t actually exist until they’re lazy evaluated into existence,
you’re free to design their implementation in a wide variety of ways. Remember that
one of the contracts the OSL makes with the application is that tokens need to be
valid only during the resolution of the current object specifier. Well, consider that the
implementation of images is just a handle of gray values. Normally, if someone
suggested that a pixel be implemented as an index into a block of data, you’d throw
temper tantrums. “What!” you’d yell, “What if the pixel is moved in the image! Now
the index is stale.” This is not an issue for tokens, because they’re transient. Since
pixels won’t be added during the resolution of an object specifier, such a

BETTER APPLE EVENT CODING THROUGH OBJECTS  December 1992

69
The naming convention I use for classes
differentiates between classes that are intended to
be instantiated directly and those that are
intended to be used as a mixin class. Classes that
are directly instantiable begin with an uppercase
T — TPixel, for example. Similarly, mixin classes
begin with an uppercase M — MAppleObject,
for example.•

TPixel objects don’t actually exist until
someone — usually the OSL — asks for them.
Before that, pixels are hidden within other
objects, probably TImage or TArea objects.
However, when someone asks for a pixel object,
suddenly a TPixel is lazy evaluated into
existence.•

Image

Window

Pixel Scan line

Area

Figure 3
The Objects As Implemented



representation is fine. Of course, if you’d prefer a more robust implementation, that’s
fine, too, but remember that the OSL doesn’t impose such robustness on you.

MAppleObject must also include a protocol to implement the comparison operators,
counting protocol, and behavior dispatching. As a practical matter, these methods will
likely be large switch statements that call other, more meaningful, methods
depending on the details of the request. For example, the counting protocol might
key on the kind of objects that should be counted and invoke methods specialized to
count contained objects of a specific class.

Finally, each class provides protocol for telling clients which object model class the
object represents. This is necessary for the framework to be able to communicate
with the OSL. During the resolution conversation the OSL holds with the
framework, the framework returns descriptors of each object the OSL asks for. These
descriptors are required to publish to the OSL the type of the object returned from
the request.

INSIDE UAPPLEOBJECT
UAppleObject is a framework whose main contribution is the class MAppleObject.
MAppleObject provides the basis for integrating Apple event objects and Apple event
object support into object-oriented applications. UAppleObject also includes a
dispatcher, TAppleObjectDispatcher, and the 'aedt' resource. You drop the
UAppleObject files into your application and immediately begin subclassing to
provide Apple event functionality.

EXCEPTION HANDLING IN UAPPLEOBJECT
Developers familiar with the details of Apple event implementation are no doubt
aware that the Apple Event Manager deals exclusively with error code return values,
as does the rest of the Toolbox. When the Apple Event Manager invokes a developer-
supplied callback routine, that routine commonly returns an integer error code. This
style of error handling is found nowhere in UAppleObject. Instead, UAppleObject
uses the UMAFailure unit to provide exception handling. UMAFailure is a unit
available on the Developer CD Series disc that provides both a MacApp-style
exception-handling mechanism for non-MacApp programs and excellent
documentation for its use.

Wherever UAppleObject is invoked through a callback routine that expects an error
code to be returned, all exceptions are caught and the exception’s error code is
returned to the Toolbox. Therefore, when an error occurs, call the appropriate
FailXXX routine provided by UMAFailure — for example FailMemError, FailNIL,
or FailOSErr. In the UAppleObject documentation, calling one of these routines is
referred to as throwing an exception.

d e v e l o p December 1992

70



MAPPLEOBJECT
The major workhorse of UAppleObject is MAppleObject, an implementation of the
basic Apple event object functionality. MAppleObject is an abstract mixin class that
provides the protocol necessary for the UAppleObject framework to resolve Apple
event objects and handle Apple events.

class MAppleObject
{
public:

MAppleObject();
MAppleObject(const MAppleObject& copy);

virtual ~MAppleObject();

MAppleObject& operator=(const MAppleObject& assignment);

virtual DescType GetAppleClass() const = 0;

virtual long CountContainedObjects(DescType ofType);
virtual MAppleObject* GetContainedObject(DescType desiredType,

DescType keyForm, const AEDesc& keyData, Boolean& needDisposal);
virtual Boolean CompareAppleObjects(DescType compareOperator, 

const MAppleObject& toWhat);
virtual void DoAppleEvent(const AppleEvent& message, 

AppleEvent& reply, long refCon);

static void SetDefaultAppleObject(MAppleObject* defaultObject);
static MAppleObject* GetDefaultAppleObject();

static void GotRequiredParameters(const AppleEvent& theAppleEvent);

static void InitAppleObject(TAppleObjectDispatcher* dispatcher = nil);
};

GetAppleClass 

DescType GetAppleClass() const = 0;

GetAppleClass is an abstract method that returns the object model type of an object.
Every MAppleObject subclass should override this method to return the object
model type specific to the individual object.

CountContainedObjects 

long CountContainedObjects(DescType ofType);

CountContainedObjects should return the number of objects of the indicated type
that are contained within the receiver object. This is usually done by counting the

BETTER APPLE EVENT CODING THROUGH OBJECTS  December 1992

71



number of objects your subclass knows how to access and adding it to the number 
of objects the parent class finds (in other words, call the inherited version and add it
to the number you find yourself). If the number of objects is too large to be
enumerated in a signed 16-bit integer, CountContainedObjects may throw the
errAEIndexTooLarge exception.

GetContainedObject 

MAppleObject* GetContainedObject(DescType desiredType, DescType keyForm,
const AEDesc& keyData, Boolean& needDisposal);

GetContainedObject is a generic method for obtaining an object contained by the
receiver. Subclasses always override this method to provide access to the subclass’s
contained objects. The desiredType, keyForm, and keyData arguments indicate the
specific object to be returned as the function result. If the resulting object is one used
in the framework of the application, GetContainedObject should return false in the
needDisposal argument. 

The alternative is for GetContainedObject to create the resulting object specifically
for this request; in this case, it returns true in the needDisposal argument. If
needDisposal is true, the UAppleObject framework deletes the result object when it’s
no longer needed.

CompareAppleObjects 

Boolean CompareAppleObjects(DescType compareOperator, 
const MAppleObject& toWhat);

CompareAppleObjects performs the logical operation indicated by the arguments,
returning the Boolean value of the operation. The semantics of the operation 
is this compareOperator toWhat. So, if the compareOperator parameter were
kAEGreaterThan, the semantics of the method call would be this is greater than
toWhat. Subclasses always override this method to provide the logical operations 
they support.

DoAppleEvent 

void DoAppleEvent(const AppleEvent& message, AppleEvent& reply,
long refCon);

When an object is identified as the target of an Apple event, it’s sent the
DoAppleEvent message. The message and reply Apple event records are passed 
in the corresponding arguments. If the direct parameter to the message is
typeObjectSpecifier, the object specifier is guaranteed to resolve to the receiver;
otherwise the receiver is the application object. Additional modifiers for the event can
be extracted from the message, and the reply should be filled in by DoAppleEvent, if
appropriate. The refCon parameter is the shortcut number registered with the
UAppleObject framework (see the section “The 'aedt' Resource”). Subclasses always

d e v e l o p December 1992

72



override DoAppleEvent to dispatch their supported Apple events to appropriate
methods.

SetDefaultAppleObject and GetDefaultAppleObject 

void MAppleObject::SetDefaultAppleObject(MAppleObject* defaultObject);
MAppleObject* MAppleObject::GetDefaultAppleObject();

GetDefaultAppleObject returns the MAppleObject currently registered as the null
container. Similarly, SetDefaultAppleObject registers a particular object as the null
container. Usually, the object serving as null container doesn’t change during the
lifetime of the application — it’s always the application object. In this case, just call
SetDefaultAppleObject from within your application object’s constructor. But
remember that any Apple event that arrives when no null container is registered falls
on the floor and is returned to the Apple Event Manager with the
errAEEventNotHandled error.

GotRequiredParameters

void MAppleObject::GotRequiredParameters(const AppleEvent&
theAppleEvent);

GotRequiredParameters is here for convenience. To do Apple event processing
“right,” each Apple event handler should check that it has received everything the
sender sent. Almost every good Apple event sample has this routine and calls it from
within the handlers. Since all handling is done from within an MAppleObject
method, it makes sense for this protocol to be a member function of MAppleObject.
However, the member function really doesn’t need access to the object itself, and
could actually be called from anywhere, so it’s a static member function.

InitAppleObject 

void MAppleObject::InitAppleObject(TAppleObjectDispatcher* dispatcher = 
nil);

InitAppleObject must be called once after the application initializes the Toolbox and
before it enters an event loop (specifically, before WaitNextEvent gets called). This
method installs the given object dispatcher, or creates a TAppleObjectDispatcher if
nil is passed.

TAPPLEOBJECTDISPATCHER
The second element of UAppleObject is TAppleObjectDispatcher. Together with
MAppleObject, TAppleObjectDispatcher forms a complete model of Apple events,
the objects themselves, and the Apple event engine that drives the object protocol.
TAppleObjectDispatcher is responsible for intercepting Apple events and directing
them to the objects that should handle them. A core feature of this engine is the
ability to resolve object specifiers into “real” objects.

BETTER APPLE EVENT CODING THROUGH OBJECTS  December 1992

73



class TAppleObjectDispatcher
{
public:

TAppleObjectDispatcher();
virtual ~TAppleObjectDispatcher();

virtual void Install();

virtual MAppleObject* ExtractObject(const AEDesc& descriptor);
virtual void StuffDescriptor(AEDesc& descriptor, MAppleObject* object);

virtual void HandleAppleEvent(const AppleEvent& message,
AppleEvent& reply, long refCon);

virtual void AccessContainedObjects(DescType desiredClass,
const AEDesc& container, DescType containerClass, DescType form,
const AEDesc& selectionData, AEDesc& value, long refCon);

virtual long CountObjects(const AEDesc& containerToken,
DescType countObjectsOfType);

virtual Boolean CompareObjects(DescType operation, const AEDesc& obj1,
const AEDesc& obj2);

virtual void DisposeToken(AEDesc& unneededToken);

virtual MAppleObject* GetTarget(const AppleEvent& message);

virtual void SetTokenObjectDisposal(MAppleObject* tokenObject, 
Boolean needsDisposal);

virtual Boolean GetTokenObjectDisposal(const MAppleObject*
tokenObject);

virtual MAppleObject* ResolveSpecifier(AEDesc& objectSpecifier);

virtual void InstallAppleEventHandler(AEEventClass theClass,
AEEventID theID, long refCon);

static TAppleObjectDispatcher* GetDispatcher();
};

Install

void Install();

Install is called when the dispatcher object is actually installed (at InitAppleEvent
time). It’s responsible for reading the 'aedt' resources for the application and
declaring the appropriate handlers to the Apple Event Manager as well as registering
with the OSL. Overrides should call the inherited version of this member function 

d e v e l o p December 1992

74



to maintain proper functionality. This method may be overridden to provide
functionality beyond that supplied by TAppleObjectDispatcher — to provide for
mark tokens, for example, which are left as an exercise for the reader. (Don’cha just
hate it when articles do this to you?) 

ExtractObject and StuffDescriptor

MAppleObject* ExtractObject(const AEDesc& descriptor);
void StuffDescriptor(AEDesc& descriptor, MAppleObject* object);

One of the key abstractions provided by TAppleObjectDispatcher is the packaging of
MAppleObjects into tokens for communication with the Apple Event Manager and
OSL. ExtractObject and StuffDescriptor are the pair of routines that carry the
responsibility for translation. ExtractObject returns the MAppleObject contained
within the token descriptor, while StuffDescriptor provides the inverse function.
These functions are extensively used internally, but are probably of little interest to
clients. Subclasses that override one method should probably override the other as
well.

HandleAppleEvent 

void HandleAppleEvent(const AppleEvent& message, AppleEvent& reply,
long refCon);

HandleAppleEvent is called whenever the application receives an Apple event. All
responsibility for distributing the Apple event to an object is held by this member
function. HandleAppleEvent is rarely overridden.

AccessContainedObjects

void AccessContainedObjects(DescType desiredClass,
const AEDesc& container, DescType containerClass, DescType form,
const AEDesc& selectionData, AEDesc& value, long refCon);

At times during the resolution of an object specifier, MAppleObjects are asked to
return objects contained within them. AccessContainedObjects is called when the
parsing engine makes that query (in other words, it’s the polymorphic counterpart of
the OSL’s object accessor callback routine). The method is responsible for getting the
MAppleObject container, making the appropriate inquiry, and returning the result,
properly packed. AccessContainedObjects is rarely overridden.

CountObjects

long CountObjects(const AEDesc& containerToken,
DescType countObjectsOfType);

At times during the resolution of an object specifier, it may be helpful to find out how
many of a particular object are contained within a token object. This method is called
when the parsing engine makes that query (in other words, it’s the polymorphic
counterpart of the OSL’s count objects callback routine). It’s responsible for finding

BETTER APPLE EVENT CODING THROUGH OBJECTS  December 1992

75



the MAppleObject corresponding to the token, making the inquiry of the object, and
returning the answer.

CompareObjects

Boolean CompareObjects(DescType operation, const AEDesc& obj1,
const AEDesc& obj2);

At times during the resolution of an object specifier, it may be helpful to compare two
objects to determine if some logic relationship (for example, less than, equal to,
before, or after) holds between them. CompareObjects is responsible for making the
inquiry of the appropriate MAppleObject and returning the result (in other words, it’s
the polymorphic counterpart of the OSL’s compare objects callback routine). The
semantics of the operation is obj1 operation obj2. So, if the compareOperator
parameter were kAEGreaterThan, the semantics of the method call would be obj1 is
greater than obj2. This method is rarely overridden.

DisposeToken 

void DisposeToken(AEDesc& unneededToken);

DisposeToken is called when the OSL determines that a token is no longer necessary.
This commonly occurs during resolution of an object specifier. DisposeToken is
responsible for acting appropriately (in other words, it’s the polymorphic counterpart
of the OSL’s object disposal callback routine). For the implementation in
TAppleObjectDispatcher, this means the routine checks to see if the object is marked
as needing disposal, and deletes the object if necessary.

GetTarget

MAppleObject* GetTarget(const AppleEvent& message);

GetTarget is responsible for looking at the Apple event and determining which 
object should receive it. Notably, GetTarget is used by HandleAppleEvent. The
TAppleObjectDispatcher implementation sends the Apple event to the default object
unless the direct parameter is an object specifier. If the direct parameter is an object
specifier, it’s resolved to an MAppleObject, which is then sent the Apple event. This
method is rarely overridden.

SetTokenObjectDisposal and GetTokenObjectDisposal

void SetTokenObjectDisposal(MAppleObject* tokenObject,
Boolean needsDisposal);

Boolean GetTokenObjectDisposal(const MAppleObject* tokenObject);

Any MAppleObject can be marked as needing disposal or not needing it.
SetTokenObjectDisposal and GetTokenObjectDisposal manage the internal
representation of the table that keeps track of such information. You may want to
override them both (never do it one at a time) to provide your own representation.

d e v e l o p December 1992

76



ResolveSpecifier 

MAppleObject* ResolveSpecifier(AEDesc& objectSpecifier);

ResolveSpecifier returns the MAppleObject that corresponds to the object specifier
passed as an argument. Under most circumstances, you don’t need to call this routine
since it’s called automatically to convert the direct parameter of an Apple event into
an MAppleObject. If, however, in the course of handling an Apple event, you find
another parameter whose descriptorType is typeObjectSpecifier, you’ll probably 
want to resolve it through this routine. Remember that objects returned from
ResolveSpecifier may need to be deleted when the application is done with them. 
To accomplish this, you may either stuff the object into an AEDesc by calling
StuffDescriptor and then call AEDisposeToken, or ask whether the object needs to be
deleted by calling GetTokenObjectDisposal and delete it if true is returned.

InstallAppleEventHandler 

void InstallAppleEventHandler(AEEventClass theClass, AEEventID theID,
long refCon);

InstallAppleEventHandler is very rarely overridden. It’s responsible for registering an
Apple event with the Apple Event Manager, notifying the manager that the
application handles the Apple event. 

GetDispatcher

TAppleObjectDispatcher* GetDispatcher();

This static member function returns the dispatcher object that’s currently installed.
It’s useful for calling TAppleObjectDispatcher member functions from a global scope.

THE 'AEDT' RESOURCE
The last piece of the UAppleObject puzzle is the 'aedt' resource. The definition of
this resource type is in the Types.r file distributed with MPW. Developers familiar
with MacApp’s use of the 'aedt' resource already know how it works in UAppleObject
because UAppleObject uses the same mechanism.

The 'aedt' resource is simply a list of entries describing the Apple events that an
application handles. Each entry contains, in order, the event class, the event ID, and a
numeric reference constant. The event class and ID describe the Apple event the
application supports and the numeric constant is used internally by your application.
The constant should be different for each supported Apple event. This allows your
application to recognize the kind of Apple event at run time by looking at the refCon
passed to DoAppleEvent. 

When installed via the Install method, a TAppleObjectDispatcher object looks at all
'aedt' resources in the application’s resource fork, registering all the Apple events in
them. Thus, additional Apple event suites can be signified by adding resources

BETTER APPLE EVENT CODING THROUGH OBJECTS  December 1992

77
The TAppleObjectDispatcher
implementation registers a static member
function as the actual handler of the Apple event.
This static member function calls the dispatcher’s
HandleAppleEvent method polymorphically. Thus,
you’ll most likely get the behavior you want out of
an override of HandleAppleEvent.•



instead of adding to one resource. For example, the Rez code to define an 'aedt'
resource for the four required Apple events is as follows:

resource 'aedt' (100) {{
'aevt', 'oapp', 1;
'aevt', 'odoc', 2;
'aevt', 'pdoc', 3;
'aevt', 'quit', 4;

}};

When the Open Document Apple event ('aevt', 'odoc') is sent to the application, the
refCon value to DoAppleEvent is 2. Since you’ve assigned a unique numeric constant
to each different Apple event, a refCon value of 2 can be passed to DoAppleEvent
only when the Apple event is Open Document.

To add the mythical foobar Apple event ('foo ', 'bar ') to the application, mapped to
number 5, you may either add a line to the resource described above or add another
resource:

resource 'aedt' (101) {{
'foo ', 'bar ', 5;

}};

EXTENDING CPLUSTESAMPLE
So far this sounds all well and good. The theory behind adding Apple event object
support holds together well on paper. The framework, UAppleObject, has been
written and works. The only thing left is to put my money where my mouth is and
actually use UAppleObject to demonstrate the addition of Apple events to an Apple
event–unaware application. The subject of this foray into the Twilight Zone is
CPlusTESample in the Sample Code folder on the Developer CD Series disc.
TESample serves as the basis for adding scripting support for object model classes.

CPlusTESample is attractive for a number of reasons. First, it’s a simple application
that could support some nontrivial Apple events. Second, it’s written in an object-
oriented style and contains a decent design from the standpoint of separating the user
interface from the engine and internal representation. Finally, it’s written in C++, a
necessary evil for the use of UAppleObject.

To prove that CPlusTESample actually had the necessary flexibility to add Apple
events, I began by adding font, font size, and style menus to the original sample.
Adding these features required little modification to the original framework aside
from the addition of methods to existing classes. Thus, I was satisfied that the
underlying assumptions and framework could hold the paradigm shift of adding
Apple event support.

d e v e l o p December 1992

UAppleObject is easier to implement in
dynamic languages like Smalltalk or Macintosh
Common Lisp. However, these packages don’t yet
lend themselves to creating commercial
applications (no flames, please). The only
language that has the requisite malleability and
marketability is Uncle Barney’s love child. Sorry,
folks.•

78



In identifying the objects of the program, I chose windows and text blocks as the
central object classes. If I were more gutsy, I would have attempted to actually define
words and characters. However, the ancient programmer’s credo crept in — it was
more work than I was willing to do for this example. Further complicating this
decision was the fact that CPlusTESample is built on TextEdit. Therefore, the
obvious concepts of paragraphs and words translated exceptionally poorly into the
internal representation, TEHandles. Characters would have been simpler than either
paragraphs or words, but I copped out and left it as an exercise for the reader.

The relationships between classes are very straightforward. Windows are contained
by the null object and text blocks are contained by windows. However, since I had a
concept of window, it became interesting to define various attributes contained in
windows: name, bounding box, and position. So, object model classes were defined
for names, bounding boxes, and positions.

Behaviors were similarly straightforward. Text blocks, names, bounding boxes, and
positions had protocol for getting their data and setting their data. Thus, an Apple
event could change a name or text block or could ask for a position or bounding box.

In the end, six classes were defined to implement the object model classes:
TESample, TEDocument, TWindowName, TWindowBounds, TWindowPosition,
and TEditText. TESample is the application class and functions as the null object.
TEDocument implements the window class and is used as the internal representation
of the document and all its data. The remaining four classes are ephemeral classes
that refer to a specific TEDocument instance and represent the indicated feature of
that instance.

From that point, it was straightforward to write methods overriding MAppleObject
to provide the containment, counting, comparison, and behavior dispatching. You can
check out CPlusTESample with Apple event support added on the Developer CD
Series disc.

IMPLEMENTING A CLASS
This section shows how UAppleObject helps you write cleaner code by looking at
one of the CPlusTESample classes in detail — TEditText, the text class. User testing
revealed the need for a class to represent the text found inside a CPlusTESample
window, so I created a TEditText class whose objects are contained within some
window class. Additionally, users wanted to retrieve and set the text represented by
the text class. The Apple Event Registry defines a text class that roughly resembles the
text class I wanted to provide in my CPlusTESample extension. Therefore, I decided
to use the Registry’s description as a basis for my TEditText class.

TEditText provides object model support for the user’s concept of text, indicating
that it should inherit from MAppleObject. TEditText objects don’t contain any other

BETTER APPLE EVENT CODING THROUGH OBJECTS  December 1992

79



objects, so there’s no need to override the CountContainedObjects or
GetContainedObject methods. However, TEditText objects do respond to Apple
events. The Registry says that text objects should provide access to the text data itself
through the Set Data and Get Data Apple events. Therefore, TEditText should
include methods to implement each Apple event and should override DoAppleEvent
to dispatch an Apple event to the appropriate method. After taking all this into
account, here’s what TEditText looks like:

class TEditText : public MAppleObject
{
public:

TEditText(TEHandle itsTE);

virtual void DoAppleEvent(const AppleEvent& message,
AppleEvent& reply, long refCon);

virtual DescType GetAppleClass() const;

virtual void DoAppleGetData(const AppleEvent& message,
AppleEvent& reply);

virtual void DoAppleSetData(const AppleEvent& message,
AppleEvent& reply);

private:
TEHandle fTEHandle;

};

The constructor is relatively simple to implement. Since CPlusTESample uses
TextEdit records internally, it’s natural to implement TEditText in terms of TextEdit’s
TEHandle data structure. Therefore, TEditText keeps the TEHandle to which it
refers in the fTEHandle instance variable.

TEditText::TEditText(TEHandle itsTE)
{

fTEHandle = itsTE;
}

UAppleObject requires each MAppleObject instance to describe its object model
class type through the GetAppleClass method. Since all TEditText objects represent
the Registry class denoted by typeText, TEditText’s GetAppleClass method is
exceptionally straightforward, blindly returning the typeText constant.

DescType TEditText::GetAppleClass() const
{

return typeText;
}

d e v e l o p December 1992

80



DoAppleEvent is also straightforward. It looks at the refCon parameter to determine
which Apple event–handling method should be invoked. This method represents a
large part of the remaining tedium for Apple event coding. Each class is responsible
for translating the integer-based Apple event specifier, refCon in this example, into a
polymorphic method dispatch such as the invocation of DoAppleSetData or
DoAppleGetData. The nice part of this implementation is that subclasses of
TEditText won’t need to implement DoAppleEvent again if all the subclass needed
was the Set Data or Get Data protocol. Instead such a subclass would simply override
the DoAppleSetData or DoAppleGetData method and let the C++ method-
dispatching mechanisms do the work.

void TEditText::DoAppleEvent(const AppleEvent& message,
AppleEvent& reply, long refCon)

{
switch (refCon)
{
case cSetData:

this->DoAppleSetData(message, reply);
break;

case cGetData:
this->DoAppleGetData(message, reply);
break;

default:
MAppleObject::DoAppleEvent(message, reply, refCon);
break;

}
}

DoAppleGetData and DoAppleSetData are the Apple event–handling methods of the
TEditText class. To developers familiar with the traditional Apple Event Manager
interfaces, these methods are the UAppleObject equivalents of what the Apple Event
Manager calls Apple event handlers. Each method follows a general pattern common
to most remote procedure call protocols, of which Apple events are an advanced
form.

First, the Apple event–handling method reads additional information from the
message Apple event. The DoAppleGetData method doesn’t happen to need any
additional information because the entire meaning of the message is found in the
identity of the Apple event itself. However, DoAppleSetData needs one additional
piece of information — the text that should be stuffed into the object.

Next, the handler method calls GotRequiredParameters, passing the message Apple
event as the sole argument. GotRequiredParameters ensures that the handler has
retrieved all the information that the Apple event sender has sent. (For a discussion of
why this is necessary, see Inside Macintosh Volume VI, Chapter 6.)

BETTER APPLE EVENT CODING THROUGH OBJECTS  December 1992

81



Third, the handler method will do whatever is necessary to perform the Apple event
and create necessary reply data. The Get Data Apple event requires the TEditText
object to fill the reply Apple event with the text it represents. Therefore, the
DoAppleGetData method should retrieve the text contained in the TEHandle and
pack it into an appropriate Apple event descriptor, putting that descriptor into the
reply Apple event. In contrast to Get Data, the Set Data Apple event requires no
reply, but does require that the text represented by the TEditText object be changed
to reflect the text contained by the message Apple event. Thus, the DoAppleSetData
method should contain code that sets the text contained in the object’s TEHandle to
the text retrieved from the message Apple event.

void TEditText::DoAppleGetData(const AppleEvent& message,
AppleEvent& reply)

{
// Note: This method uses no additional parameters.

// Make sure we have all the required parameters.
GotRequiredParameters(message);

// Pack the text from the TEHandle into a descriptor.
CharsHandle theText = TEGetText(fTEHandle);
AEDesc textDesc;
HLock((Handle) theText);
OSErr theErr = AECreateDesc(typeText, (Ptr) *theText,

GetHandleSize((Handle) theText), &textDesc);

// Unlock the handle and check the error code, throwing an
// exception if necessary.
HUnlock((Handle) theText);
FailOSErr(theErr);

// Package the reply.
theErr = AEPutParamDesc(&reply, keyDirectObject, &textDesc);

// Dispose of the descriptor we created and check the reply from
// packaging the reply, throwing an exception if necessary.
OSErr ignoreErr = AEDisposeDesc(&textDesc);
FailOSErr(theErr);

}

void TEditText::DoAppleSetData(const AppleEvent& message,
AppleEvent& /* reply */)

{
// Get the text data descriptor from the message Apple event.
AEDesc textDesc;

d e v e l o p December 1992

82



FailOSErr(AEGetParamDesc(&message, keyAETheData, typeText,
&textDesc));

// Make sure we have all the required parameters.
GotRequiredParameters(message);

// Use the data in the text descriptor to set the text of TEHandle.
HLock(textDesc.dataHandle);
TESetText(*textDesc.dataHandle, GetHandleSize(textDesc.dataHandle),

fTEHandle);
HUnlock(textDesc.dataHandle);

// Dispose of the text descriptor we created above.
OSErr ignoreErr = AEDisposeDesc(&textDesc);

}

IT’S UP TO YOU
This article set out to reveal the deep significance of Apple events and the object
model and to find a strategy for developing an object-oriented framework to take
advantage of the Apple event object model design. Along the way, it danced around
cognitive theory and discussed how cognitive theory applies to user perception of
software. You’ve seen how object programming resembles such cognitive models to a
more-than-trivial degree. And you’ve seen how those similarities can be leveraged to
give workable, programmable models of user concepts within Turbo WhizzyWorks II
NT Pro.

You’ve also seen the difficulties presented by the Apple Event Manager interface.
Although Apple event objects and the object model are unarguably tied to user
models and user-centric models, the Apple Event Manager is not. The UAppleObject
framework presented here works with the object model and the Apple Event
Manager to reduce generic user scripting to a tedious but straightforward task. 

In the midst of all this detail, don’t forget the payoff — providing a mechanism for
users to interact with your applications using a level of control and precision
previously undreamed of. The rest, as they say, is in your hands.

BETTER APPLE EVENT CODING THROUGH OBJECTS  December 1992

83
THANKS TO OUR TECHNICAL REVIEWERS
Richard Clark, C. K. Haun, Chris Knepper•



In my last column (in develop Issue 10), I talked about
the “Top 10 Printing Crimes” that would cause you and
your application serious headaches during print time.
Here I’ll list the “Top 10 Printing Misdemeanors.” A
printing misdemeanor will cause minor to major
printing problems on different devices. Usually, you’ll
be able to get output onto a page, but it won’t
necessarily be what you want or where you want it.

Here’s the list:

10. Using CopyMask and CopyDeepMask with the
LaserWriter.

9. Using the obsolete spool-a-page, print-a-page
method.

8. Not being very careful when using SetOrigin with
the LaserWriter.

7. Creating pictures while the Printing Manager is
open.

6. Not having all your data ready for the Printing
Manager when you open it.

5. Making assumptions about the imageable area.

4. Using variables from Laser Prep (that is, md).

3. Checking wDev for the wrong reasons.

2. Accessing print record fields that are used
internally.

1. Adding printing to your application four weeks
before going final.

Most of these misdemeanors are easily avoided if you
plan ahead. Let’s take a look at the problems and the
solution to each one. 

SOLUTIONS TO THE MISDEMEANORS

10. Using CopyMask and CopyDeepMask with the
LaserWriter.

It’s not possible to directly print to a LaserWriter an
image that was created with CopyMask or
CopyDeepMask, because these calls aren’t saved in
pictures and they don’t go through the stdBits
QuickDraw bottleneck. The image’s data must be
recorded in the picture or go through the stdBits
bottleneck in order for the LaserWriter driver to be
able to image the data on the printer.

Solution: You can create your image in an off-screen
world using CopyMask and CopyDeepMask to your
heart’s content. When you’re ready to print your
image, CopyBits it directly to the LaserWriter’s
grafPort using srcCopy.

9. Using the obsolete spool-a-page, print-a-page
method.

There are still a few applications using the spool-a-
page, print-a-page method of printing a document.
This approach is no longer required unless you’re
printing from a Macintosh that doesn’t have a hard
drive. Otherwise, it’s a bad idea; it has major drawbacks
in the areas of speed and user happiness. 

The idea of this method was to print each page of a
document as a separate job. This was required in the
early Macintosh days because disk space was at a
premium. It prevented a document from filling up the
entire disk and never printing a page. But in this age of
hard disks, it’s no longer needed.

Opening and closing the Printing Manager for each
page could result in a serious speed penalty. And it

d e v e l o p December 1992

PETE (“LUKE”) ALEXANDER  Luke’s latest adventure was
landing his sailplane close to the edge of the earth (there’s an
actual sign, near Gerlach, north of Reno, that reads “The Edge of
the Earth, 8 miles — Planet X”). Not only is this in the middle of
nowhere, but rumor has it that Gerlach is the home of the best
ravioli in Nevada. Luke and his friends didn’t locate the ravioli, but
as a consolation prize they stumbled onto Planet X instead (and
Planets Y and Z, all art galleries, run by a slow-motion hippie who
will reluctantly take MasterCard, if you have all year). The edge of

the earth did deliver some great camping under the stars, and real
cool satellite watching.•

84

PRINT HINTS

TOP 10 PRINTING
MISDEMEANORS

PETE (“LUKE”) ALEXANDER



PRINT HINTS: TOP 10 PRINTING MISDEMEANORS  December 1992

85

could make your users very unhappy when printing to a
shared printer; it’s possible to have another user grab
the printer before you do, thereby intermixing your
pages with theirs.

Solution: Don’t use the spool-a-page, print-a-page
technique. Instead, use the method described in the
Technical Note “A Printing Loop That Cares . . .”.

8. Not being very careful when using SetOrigin with
the LaserWriter.

If you’re using SetOrigin to change the coordinate
system when sending direct PostScript™ code to the
LaserWriter, you’ll run into trouble when printing in
the foreground versus the background.

The PostScript LaserWriter drivers 4.0 through 5.2
handle SetOrigin differently when background printing
is enabled. 

• When background printing is disabled and the
application calls SetOrigin, QuickDraw responds by
adjusting the portRect of the printer driver’s
grafPort. Since SetOrigin doesn’t cause any
grafProcs to run (because no drawing occurs), the
printer driver doesn’t see the effect of this call until
the next QuickDraw call is made (for example,
DrawString or LineTo). At this point, the driver
notices the change in the portRect and updates its
internal origin. From then on, all QuickDraw and
PostScript graphics are localized to the new origin.

• When background printing is enabled, QuickDraw
is playing back a picture that was spooled earlier.
When SetOrigin is encountered while DrawPicture
is playing the picture, the grafPort’s portRect isn’t
updated. Instead, QuickDraw keeps the current
origin cached and offsets each graphic on the fly.
Since the portRect wasn’t modified, the printer
driver doesn’t see the SetOrigin call. Although all
QuickDraw objects are still localized correctly (by
QuickDraw), PostScript graphics don’t move to the
new origin.

In LaserWriter drivers 6.0 and later, the call to
SetOrigin is a problem only on the first page that’s

spooled. After the first page, the driver looks at the
grafPort’s coordinates and then records the SetOrigin
information correctly by inserting a picture comment
into the spool file. This enables PrintMonitor to realize
when the origin changes. Unfortunately, the driver
never records the changes produced by a SetOrigin call
when it’s in the stdBits QuickDraw bottleneck.

Solution: In general, using SetOrigin doesn’t buy you
much, and it can get you in a lot of trouble. There are
still a few printer drivers that don’t handle the call
correctly. Avoid using SetOrigin if possible. 

If you use SetOrigin when sending direct PostScript
code, use the techniques described in the Technical
Note “Position-Independent PostScript” to ensure that
all the PostScript code your application creates is
position independent. To get the LaserWriter driver to
realize as soon as possible that you’ve changed the
coordinate system, you can send the following code:

PicComment (PostScriptBegin, 0, nil);
PicComment (PostScriptEnd, 0, nil);

This is a little weird, but it works because the two
PicComment calls go through the stdBits QuickDraw
bottleneck, which is where the driver checks and
updates the coordinate system as required.

7. Creating pictures while the Printing Manager is
open.

Some applications use a picture to collect all their
QuickDraw objects before sending them on to the
printer. This approach is OK unless the Printing
Manager has already been opened by a call to PrOpen.
The most noticeable problems are memory use and
floating picture comments.

The memory problem can be very evident if you’re
printing to a printer driver that requires a lot of
memory. Between your memory use and the printer
driver’s, there might not be enough memory available
to meet everyone’s appetite. Remember, there isn’t a
magical amount of memory that will guarantee that
your application will print successfully.



The other significant problem you might encounter is
floating picture comments. When this occurs, the
picture comments sent by your application will be
recorded out of order, which will usually cause your
image to print its objects out of order. 

Solution: Read the Technical Note “Pictures and the
Printing Manager” before you start to use pictures at
print time. Better yet, don’t create a picture when the
Printing Manager is open.

6. Not having all your data ready for the Printing
Manager when you open it.

There aren’t too many things you can do to speed up
printing, but having data ready for the Printing
Manager when you open it is one of them. If you open
the Printing Manager and then go off to collect data
you want to print, your printing time could increase
dramatically. You also run the risk of timing out the
print job because you don’t send data to a networked
printer fast enough or your print job takes too long to
complete.

Solution: When you open the Printing Manager, have
all your data collected and ready to send to the printer.
Make sure the data is formatted for the current printer
(see the next misdemeanor for additional details).

If your application needs to perform a lot of data
collection or preparation (as would a database
application), consider spooling all your information to
disk as pictures. This is especially useful when you
don’t know how long it will take to gather the data for a
particular page. To use this approach, you would open
up a file and write out each page as a picture (as the
Printing Manager does), spool everything to disk, and
then send the pictures to the printer driver. Printing
will be really fast! But be sure not to commit
misdemeanor 7 above, and note that this should not be
the only way your application prints; since you may not
have enough disk space, you should make it an option
in a Preferences or Print dialog.

Having your data ready to go when you open the
Printing Manager ensures that you’ll print as fast as

possible and avoid timeout problems. And it will make
your application a friendly networked printer user,
compared to grabbing the printer on the network and
hogging it while your application collects data. 

5. Making assumptions about the imageable area.

Some applications make assumptions about the
imageable area (the page rectangle) at print time. This
can cause some serious speed and clipping problems. If
any part of your image (which may contain text,
QuickDraw objects, bitmaps, or pixMaps) falls outside
the page rectangle, the printer driver will need to clip
it. This will slow down the printing process and you
won’t get the output you want. The imageable area for
each printer is slightly different; this is actually a good
thing, since it allows the printer driver to take full
advantage of the printer’s capabilities.

About half of the printing game is reformatting your
image to work for the currently selected printer. This
problem is most noticeable when you print to a film
recorder an image that was set up for a LaserWriter. If
you don’t reformat the image, you won’t get the results
you want; because of the higher resolution of the film
recorder (1500 versus 300 dpi), you’ll get a micro-
image and you’ll waste film. Also, most film recorders
print only in landscape orientation.

Solution: Since each printer has a slightly different
imageable area, you should format your image to this
area. Before sending your data to the printer, you
should format it to rPage, the page rectangle for the
current printer. rPage lives in the TPrInfo record
within the print record. However, be careful; as
mentioned in the previous misdemeanor, you should
have all your data ready to send (including all
formatting) before opening the Printing Manager.
Open the Printing Manager, get the dimension for
rPage, close the Printing Manager, format your data,
open the Printing Manager again, and print. 

One approach for saving your data within your
application to help you format it at print time is to
specify the location of each object on the page as a
percentage of distance (as opposed to pixels). For

d e v e l o p December 1992

86



PRINT HINTS: TOP 10 PRINTING MISDEMEANORS  December 1992

87

example, you could specify an object to be 10% from
the top and left margins. You would then always be able
to place the object in the correct position for all
printers no matter what the resolution.

4. Using variables from Laser Prep (that is, md).

Using operators from the LaserWriter driver’s
dictionary md is a classic way of causing your
application compatibility problems when a new
LaserWriter driver is released. Some developers do this
to achieve additional PostScript functionality at print
time. The problem is that when Apple releases a new
LaserWriter driver it usually changes a few of the
operators in md. This will then break code that
depends on md. It’s an even bigger problem if you save
this information in pictures. When a new LaserWriter
driver is released, none of these pictures created by
your users will be able to be printed.

Solution: Don’t use any of the operators defined within
md in your printing code. This has been around for a
long time as a compatibility issue; take a look at the
Technical Note “Using Laser Prep Routines” for the
historical data. 

If you decide to jump off the cliff and use operators in
md, you owe it to your users to check the existence of
an operator before you use it. This piece of PostScript
code will do the trick:

userdict /md known 
{

md /bu known {myBU} if
} if

In this example, we’re checking for the existence of bu
before we replace it with our newly defined operator,
myBU. If the bu operator didn’t exist, we’d do the
right thing (that is, we’d still be able to print).

3. Checking wDev for the wrong reasons.

The printer type (such as LaserWriter or StyleWriter)
is stored as an unsigned char in the high byte of the
print record’s wDev field (in the TPrStl record). Each

printer driver has a unique wDev, and there are now
over 142 wDevs in the world. That’s quite a few
printers available for your application to print to. 

If you’re checking wDev to see which type of printer
you’re talking to, you could end up very disappointed.
Relying on wDev to make decisions at print time makes
your application completely device dependent. What
do you do when you get a wDev you don’t know about?
You have to make assumptions about the printer, and if
you make a bad decision, you won’t get the output you
expect. This isn’t fair to your users; they should be able
to print to any printer that’s connected to the
Macintosh. 

When we were developing the StyleWriter printer, we
had some serious compatibility problems with a few of
the major applications. They assumed that any device
with a resolution greater than 300 dpi must be a
PostScript printer. They sent only PostScript code to
the StyleWriter, which didn’t work out too well, since
of course the StyleWriter doesn’t understand
PostScript. 

Solution: Don’t check wDev, with a couple of
exceptions. One exception is that you should check
wDev and the printer driver version if you need to
work around a bug in the printer driver. This is the
only method available to determine whether you’re
dealing with a particular printer driver. Checking the
driver version by calling PrDrvrVers is important,
because when the bug is fixed, you can remove your fix
and let the driver do the work. Another exception is
that you can check wDev after you’ve created a valid
print handle (by calling PrintDefault) to see if the user
has changed the printer type (for example, a
LaserWriter to a StyleWriter) via the Chooser. In any
case, be sure that when you do check wDev, you check
it as an unsigned char value.

2. Accessing print record fields that are used
internally.

You may notice that this is similar to the number 2
printing crime in the Print Hints column in Issue 10.
There I emphasized the crime of accessing private



(“PT”) fields that you may come across when prowling
around in the print record. Also likely to cause
inconsistent results is the misdemeanor of accessing
other fields in the print record that are used internally
(or unused). To make this even clearer, I’ll tell you just
what print record fields you can read and write.

The print record is chock full of information. It’s an
application’s playground during printing. It’s also used
by printer drivers to hold information about the
current print job. Since each printer has slightly
different needs, each one uses these fields differently.
The public API documented in Inside Macintosh is the
same, but the rest of the print record is free domain for
the printer driver to use as it sees fit. 

Setting a field that the printer driver doesn’t expect you
to touch can cause big problems for your application.
This is one of the reasons why printer drivers have
compatibility problems when they’re being developed,
and why they take so long to create.

Solution: Don’t set any fields in the print record besides
iLstPage, iFstPage, pIdleProc, pFileName, and
iFileVol. If you do, you’re running a serious
compatibility risk with new printer drivers and printers
you don’t have access to during your test cycle. See the
Technical Note “A Printing Loop That Cares . . .” for
details about setting and using iLstPage and iFstPage,
and the Technical Note “Me and My pIdle Proc (or
how to let users know what’s going on during print
time . . .)” for details about setting pIdleProc. 

Don’t read any fields in the print record besides the
ones you can set and the fields rPage, rPaper, iCopies,
iVRes, iHRes, bjDocLoop, and bFileVers. (You can
also read the TPrStatus record returned by prPicFile.) 

1. Adding printing to your application four weeks
before going final.

This too is similar to a printing crime in Print Hints in
Issue 10 — but there has been a change, to four weeks
instead of two. I can’t emphasize this enough. Since my

last column, a couple of developers have come to us
with major printing problems and a shipping deadline
only a few weeks away. They had just started to add
printing to their applications.

Solution: Designing printing at the beginning — not the
end! — of your application’s development cycle is the
solution to most of your printing headaches. Printing
performance can make or break an application. You
should convince the right people in your organization
that printing is just as important as any other feature.
There are a few pitfalls in the current printing
architecture, but most of these problems can be
avoided without a lot of work — if you design printing
into your application from the start. 

So please, stay out of trouble and avoid the printing
crimes and misdemeanors. You’ll be a happy printing
developer and your users will also be delighted.

d e v e l o p December 1992

Thanks to Hugo Ayala, Dave Hersey, and Scott (“Zz”)
Zimmerman for reviewing this column, and to Ana Wilczynski for
the column idea.•

88

REFERENCES
• Inside Macintosh Volume II (Addison-Wesley,

1985), Chapter 5, “The Printing Manager,” pages
150–151.

• “Print Hints: Top 10 Printing Crimes” by Pete
(“Luke”) Alexander, develop Issue 10.

• “Print Hints From Luke & Zz: CopyMask,
CopyDeepMask, and LaserWriter Driver 7.0” by
Pete (“Luke”) Alexander, develop Issue 8.

• Macintosh Technical Notes “The Effect of 
Spool-a-page/Print-a-page on Shared Printers”
(formerly #125), “Using Laser Prep Routines”
(formerly #152), “A Printing Loop That Cares . . .”
(formerly #161), “Position-Independent PostScript”
(formerly #183), “Me and My pIdle Proc (or how
to let users know what’s going on during print
time . . .)” (formerly #294), and “Pictures and the
Printing Manager” (formerly #297).



While MPW is great for developing applications, it provides little
support for creating standalone code resources such as XCMDs, drivers,
and custom window, control, and menu definition procedures, especially
if you have nonstandard needs. Two roadblocks developers immediately
notice are the inability to create more than 32K of object code and the
lack of access to global variables. This article addresses the latter issue.

The Macintosh Technical Note “Stand-Alone Code, ad nauseam” (formerly #256)
does an admirable job of explaining what standalone code is and discussing the issues
involved in accessing global variables from within it. I’ll describe the solution
proposed in that Tech Note later in this article, but you may also want to look over
the Note before reading further. 

It’s important to realize that the Tech Note discusses just one possible solution to the
problem of using global variables in standalone code. This article presents another
solution, in the form of the StART package included on the Developer CD Series disc.
Along the way, I’ll talk a bit about what the issues are, describe how users of
Symantec’s THINK environments address the problem, recap the solution presented
in the Tech Note, and show how to use MPW to implement a THINK-style
solution. I’ll also take a look at the advantages and disadvantages of each approach,
allowing you to choose the right solution for your needs. 

Note that the StART package is a solution for MPW users and that it assumes a lot
about how MPW currently works. It’s possible that you may not be able to use the
StART package to develop standalone code that uses globals with future versions 
of MPW, although code already created with StART will, of course, continue to 
work.

WHAT IS STANDALONE CODE?
Standalone code is merely executable code that receives little to no runtime support
from the Macintosh Operating System. The advantage of standalone code resources

ANOTHER TAKE ON GLOBALS IN STANDALONE CODE  December 1992

89
KEITH ROLLIN is one of Taligent’s charter
members, sporting the obligatory snide business
title of Phantom Programmer (he got this title after
buying that lakefront property in the fifth
basement of the Grand Opera House in Paris).
When not fending off people asking him what he
does at Taligent, Keith skis, rides his bike, reads
voraciously, watches 1940s movies at the local
oldies theater, and comes up with reasons not to

shave. Look for his latest book, Macintosh
Programming Secrets, 2nd edition, co-authored
with Scott Knaster, at your local bookstore (he
needs the money).•

KEITH ROLLIN

ANOTHER

TAKE ON

GLOBALS IN

STANDALONE

CODE



is that they can be quickly loaded into memory, executed, and dismissed without the
overhead of setting up a full-fledged runtime environment for them. In addition,
standalone code can execute without affecting the currently running application or
relying on it for any services. This makes such resources ideal for easily extending the
system’s or your application’s functionality. By creating the right kinds of standalone
code resources, you can change how controls or windows appear, or you can
dynamically extend the capabilities of your application.

Table 1 shows a list of the most common system- and application-defined standalone
code resources.

d e v e l o p December 1992

90

Resource Type Resource Function
* ADBS ADB device driver
* adev AppleTalk link access protocol
boot Boot blocks
CACH System RAM cache code

* CDEF Custom control definition
* cdev Control panel device
* dcmd Debugger extension
dcmp Resource decompressor

* DRVR Device driver
* FKEY Function key
FMTR 3.5-inch disk formatting

* INIT System extension
itl2 Localized sorting routines
itl4 Localized time/date routines

* LDEF Custom list display definition
* MBDF Custom menu bar definition
* MDEF Custom menu definition
* mntr Monitors control panel extension
PACK System package

* PDEF Printer driver
PTCH System patches
ptch System patches

* rdev Chooser device
ROvr ROM resource override

* RSSC Resource editor for ResEdit
SERD Serial driver

* snth Sound Manager synthesizer
* WDEF Custom window definition
* XCMD HyperCard external command
* XFCN HyperCard external function

Note: Items marked with an asterisk are ones that you might create for your own application,
extension, driver, or whatever. The rest are reserved for the system.

Table 1
Kinds of Standalone Code Resources



Standalone code differs from the executable code that makes up an application, which
has a rich environment set up for it by the Segment Loader. Let’s take a look at an
application’s runtime environment so that we can better understand the limitations
we must overcome to implement standalone code.

An application runs in a section of memory referred to as its partition. Figure 1 shows
the layout of an application partition. A partition consists of three major sections. At
the top of the partition is the application’s A5 world, consisting of the application’s
global variables, the jump table used for intersegment function calls, and 32 bytes of
application parameters (see “Application Parameters”). This area of memory is called
the A5 world because the microprocessor’s A5 register points into this data and is
used for all access to it. Immediately below the A5 world is the stack, the area of
memory used to contain local variables and return addresses. The stack grows
downward toward the heap, which occupies the rest of the partition. The heap is used
for all dynamic memory allocation, such as blocks created by NewHandle and
NewPtr. Everything we see in Figure 1 — the heap (with a valid zone header and
trailer), the stack, and the filled-out global variables and initialized jump table — is
created by the Segment Loader when an application is launched.

This is the application’s domain, and none shall trespass against it. And therein lies
the conflict between applications and standalone code: Executing code needs to use
the A5 register to access its global variables, but an application’s use of A5 prevents
any standalone code from using it with impunity. Additionally, the A5 world is
created by the Segment Loader when an application is launched. Since standalone
code is not “launched” (instead, it’s usually just loaded into memory and JSRed to), it
doesn’t get an A5 world, even if A5 were available. We must solve these two problems

ANOTHER TAKE ON GLOBALS IN STANDALONE CODE  December 1992

91

A5 �
points �
here

A5 world�
�

Stack �
grows down�

�
  �

Heap �
grows up

Jump table�

Application parameters�

Pointer to �
QuickDraw globals�

Application globals�

thePort�

QuickDraw globals 

Figure 1
An Application Partition



— the contention for A5 and the need to set up some sort of global variable space —
in order to use globals in standalone code.

THE THINK SOLUTION
For years, users of THINK C and THINK Pascal have been able to use global
variables in their CDEFs, LDEFs, drivers, and other types of standalone code.
THINK has solved the problem of A5 contention by compiling standalone code to
use the A4 register for accessing globals, leaving A5 untouched. Their solution to the
need to set up global variable space is simply to attach the globals to the end of the
standalone code, again leaving the application’s A5 world untouched. 

Figure 2 shows how standalone code created by a THINK compiler looks, both on
disk and in memory. If the code was created with the C compiler, which allows
preinitialized global variables, the global variable section contains the initial values. If
the code was generated by the Pascal compiler, which sets all global variables to zero,
the entire global section simply consists of a bunch of zeros (kind of like some guys I
used to know in high school).

This is in contrast to the way globals are stored on disk for applications. MPW, for
instance, uses a compressed data format to represent an application’s globals on disk.
When the application is launched, a small bit of initialization code is executed to read
the globals from disk, expand them, and write them into the application global
variable space in its A5 world.

Standalone code created by a THINK compiler accesses global variables by using 
A4-relative instructions. Because the use of the A4 register is ungoverned, such
standalone code must manually set up A4 so that it can be used to reference its global
variables. This setup is done by some macros provided by the THINK headers:
RememberA0 and SetupA4. (It’s called RememberA0, and not RememberA4, because
the macro has to store the value in the A0 register temporarily.) When the standalone

d e v e l o p December 1992

92

Not much is known about the mysterious 32 bytes directly above A5 known as
application parameters. Figures 9 and 10 on pages 19 and 21 of Inside Macintosh
Volume II indicate their existence, but the description simply says that “they’re
reserved for use by the system.” We know that the first four bytes contain a pointer
into the QuickDraw globals, but that’s about it. Some MPW glue routines use some of
the other bytes, but that use is undocumented. In any case, the application
parameters seem pretty important. As you’ll see later, we make sure our standalone
code resources support them.

APPLICATION PARAMETERS



code is finished and is about to return to its caller, it must call RestoreA4 to restore
the value that was in A4 before the standalone code was called.

The solution provided by THINK offers many advantages: 

• It’s simple to use. Making sure you surround the entry point of
your standalone code with the appropriate macros is easy, and the
macros don’t require any tricky parameters. Just type them in and
you’re done. 

• The THINK development systems automatically insert a little bit
of magic code at the beginning of standalone code resources that
make the setting up of A4 as transparent as possible. 

• THINK’s use of A4 means that A5 is totally undisturbed, and
hence A5 continues to point to a valid A5 world with, presumably,
an initialized set of QuickDraw globals. This means that
standalone code can make Toolbox calls without a second thought
(or even much of a first thought, for that matter). 

• Because the globals are attached to the standalone code, when 
the memory allocated to the standalone code resource is 
disposed of (for example, when the process that loaded it calls
ReleaseResource on the segment), the globals are removed as well.

There are at least three disadvantages to THINK’s approach, however:

• Since A4 is now pulling duty as the global variable reference base,
fewer registers are available for calculating expressions, caching
pointers, and so on. This means that the code generated is less
efficient than if A5 were used for referencing globals. 

ANOTHER TAKE ON GLOBALS IN STANDALONE CODE  December 1992

93
For the sake of brevity, I occasionally refer
to both the THINK C and THINK Pascal compilers
simply as “THINK.”•

Global variables�

�

�

�

Executable code

Code entry point A4 points here

Figure 2
Format of a Standalone Code Resource Created by a THINK Compiler



• The globals are stored on disk in an uncompressed format, a fact
you should be aware of before cavalierly declaring those empty
20K arrays. 

• The resources holding the standalone code must not be marked as
purgeable, or the global variables will be set back to their original
values when the resource is reloaded. 

A fourth disadvantage could be that the combined size of the executable code and the
global variables must be less than 32K. However, this is somewhat ameliorated by
THINK’s support of multisegmented standalone code.

THE TECH NOTE SOLUTION
Users of THINK development systems have their solution for accessing global
variables in standalone code. MPW users, however, don’t have an immediately
obvious solution. First, MPW’s compilers don’t have the option of specifying that A4
should be used to access global variables. Second, the MPW linker is written to
create a compressed block of data representing the global variables and to place that
block of data off in its own segment. Because A4 can’t be used to access globals, and
because the globals aren’t attached to the end of the standalone code resource, MPW
users don’t have the slick solution that THINK users do.

A possible alternative was presented to MPW users a couple of years ago with the
publication of the Technical Note “Stand-Alone Code, ad nauseam.” Let’s take a quick
look at that approach, and then compare it with THINK’s solution.

Let’s start by examining the format of a simple application, shown in Figure 3. This is
the format that MPW is designed to create, with any deviance from the standard
formula being cumbersome to handle.

This application has three segments. CODE 0 contains the information used by the
Segment Loader to create the jump table, the upper part of an application’s A5 world.
CODE 1 contains executable code, and usually contains the application’s entry point.
CODE 2 contains the compressed data used to initialize the global variable section of
the application’s A5 world, along with a little bit of executable code that does the
actual decompressing. This decompression code is automatically called by some
runtime setup routines linked in with the application. The purpose of the call to
UnloadSeg(@_DataInit) in MPW programs is to unload the decompression code
along with the compressed data that’s no longer needed.

The solution proposed in the Tech Note is to use a linker option that combines
segments 1 and 2. At the same time, the Note provides a couple of utility routines
that create a buffer to hold the global variables and that decompress the variables into
the buffer. Figure 4 shows what standalone code looks like when it’s running in
memory.

d e v e l o p December 1992

94



ANOTHER TAKE ON GLOBALS IN STANDALONE CODE  December 1992

95

Code entry �
point

Compressed�
global data�

�
�

Decompression�
routines�

�
�
�
�
�

Executable code

A5 points �
here

Global variables�
buffer (created �

in the heap)

Teensy 32-byte space �
above A5 reserved for �
application parameters

Figure 4
Format of Standalone Code Using the Tech Note Method

CODE 0

Jump table �
and size of �

globals section

Executable code�
�
�
�

Entry point

CODE 1

Compressed�
global data�

�
�
�
�

Decompression �
routines

CODE 2

Figure 3
Format of a Simple Application Created by MPW



When the standalone code is called, it’s responsible for creating and initializing its
own A5 world. It does this by calling OpenA5World, which is directly analogous to
THINK’s SetupA4 macro. OpenA5World creates the buffer shown on the right in
Figure 4, sets A5 to point to it, and calls the decompression routines to fill in the
buffer. When the standalone code is ready to exit, it must call CloseA5World to
deallocate the buffer and restore the original value of A5.

Note that this approach has an immediate disadvantage compared to the THINK
approach. Because the global variables buffer is deallocated when the code exits back
to the caller, all values that were calculated and stored in global variables are lost.
This makes the OpenA5World/CloseA5World solution good if you simply want to
use global variables in lieu of passing parameters, but lousy if you’re trying to
maintain any persistent data.

Fortunately, the Tech Note also presents a slight variation on the above solution that
doesn’t require that the global variables buffer be deallocated when the standalone
code exits. However, the solution requires a little help from the host application.
When the standalone code exits, it has two problems to consider. The first is that it
must find some way to maintain a reference (usually a handle) to the buffer holding
the global variables. After all, where can the standalone code store this reference
itself? It can’t store it in a global variable, because this reference will later be used to
recover our global variables buffer. It can’t store the reference in a local variable,
because local variables are destroyed once the function that declares them exits.

The second problem that must be solved when creating a solution that doesn’t
require flushing the global variables is that of knowing when it actually is time to
dispose of them. Globals accessed by THINK code resources are attached to the
segments themselves, which means that they’re disposed of at the same time as the
code resource itself. What happens if the caller of a standalone code resource created
using the OpenA5World technique decides that it no longer needs that resource? If it
simply calls ReleaseResource on the resource, the global variables used by the
standalone code will be stranded in the heap. This is known as a memory leak, and it
is very bad. The block of memory holding the global variables is no longer referenced
by any code, and there’s no way to recover a reference to them. That block of
memory will never be disposed of and will waste memory in the heap.

The approach that the Tech Note takes to solving both of these problems is to
require the help of the caller (usually the host application). First, the caller must agree
to maintain the reference to the standalone code’s global variables buffer. After the
buffer is created, the reference to it is passed back to the caller. The next time the
standalone code is called, and all subsequent times, the caller passes that reference
back to the standalone code, which then uses that reference to recover its global
variables and reset A5 the way it likes it. Additionally, the caller must agree to notify
the standalone code when it’s about to go away. When the standalone code receives
that notification, it takes the opportunity to dispose of the global variables buffer.

d e v e l o p December 1992

96



Our brief recap of the Tech Note outlines a workable approach that provides a few
advantages over the solution provided by THINK:

• The on-disk representation of the standalone code is usually
smaller, because the combination of the compressed data and
decompression routines of MPW is often smaller than the raw
data generated by THINK. 

• Because the executable code and global variables are allocated in
their own buffers, each of which can be 32K in length, you can
create larger code resources and define more global variables.
(This does not take into account the partial advantages provided
by THINK’s multisegmented standalone code.) 

• Because MPW doesn’t use it to access the globals, the A4 register
can be used to generate more efficient object code. 

• Since the globals are stored separately from the standalone code,
the resource holding the standalone code can be marked as
purgeable. 

• The two blocks of memory holding standalone code and global
variables can be locked or unlocked separately from each other,
providing greater memory management flexibility.

There are, however, some disadvantages to the OpenA5World approach. The major
disadvantage concerns the persistence of the global variables buffer. Either this buffer
must be deallocated every time the code resource is exited, or the help of the caller
must be elicited to maintain the reference to the buffer and to tell the standalone
code when the buffer must be deallocated. If you’re not in a position to define the
responsibilities of the caller (for instance, if you’re writing a WDEF), this
disadvantage could be quite serious. 

The second disadvantage concerns the reuse of the A5 register. Once the standalone
code changes A5 from pointing to the caller’s A5 world to pointing to the standalone
code’s globals, A5 no longer points to a valid set of QuickDraw globals. This can
easily be solved by calling InitGraf early in the standalone code, but some problems
may still exist. For instance, what if the standalone code needed to draw something in
the current port (as an LDEF would need to do)? The GrafPtr of the port to be used
is back in the caller’s A5 world. Once we switch over to the standalone code’s A5
world, we no longer know what port to draw into. This problem is briefly alluded to
in the Tech Note, but it’s not directly addressed.

THE START SOLUTION
It’s possible to combine the advantages of the two approaches we’ve seen so far, while
at the same time eliminating some of the disadvantages. The idea behind the hybrid
approach I’ll now present is to con MPW into creating a standalone code resource

ANOTHER TAKE ON GLOBALS IN STANDALONE CODE  December 1992

97



that has the same layout as one created by THINK. Specifically, instead of being
stored in a separate buffer, the globals will be tacked onto the end of the code
resource. This eliminates much of the reliance the standalone code has on the caller,
and, as you’ll see later, still allows us to create 32K worth of object code and 32K of
global data.

As we saw when discussing the Tech Note approach, we need to get MPW to take the
stuff it normally puts in an application and convert it to a standalone code resource.
The OpenA5World solution used a linker option to accomplish this. My solution
uses a custom MPW tool instead.

Let’s begin by taking a look at what we’ll end up with, and then determine what it 
will take to get there. First, the standalone code will access its global variables by
using the A5 register; there’s no way around that. Even if we were to pass the object
code through a postcompilation tool that converted all A5 references into A4
references, there’s no way we could take care of the cases where the compiler
generates code that uses A4 for other purposes. Therefore, this solution still uses A5
for accessing globals.

Second, the globals will be tacked onto the end of the standalone code resource, just
as they are with THINK’s solution. This means that the globals will be in a known
and easily determined location at all times, relieving us from having to rely on the
caller to maintain our globals. When doing this, we inherit the problem THINK
code has with not being purgeable, but that’s a small price to pay for the ease of use
we get in return.

Third, the globals will be in expanded format. The approach taken in the Tech Note
requires that our standalone code carry around the baggage of the decompression
routines, as well as the compressed data, long after they’re no longer needed. Using
pre-expanded data means a larger on-disk footprint, but again, this is a small price to
pay, especially if the in-memory footprint is more of an issue (and it usually is).

Finally, we’ll need routines that calculate and set our A5 value when we enter our
standalone code, and that restore A5 when we leave. These routines are analogous to
the macros THINK uses and to the OpenA5World and CloseA5World routines of
the Tech Note solution. Figure 5 shows how our standalone code resource will end
up looking, both on disk and in memory.

My system is called StART, for StandAlone RunTime. It consists of two parts: an
MPW tool called MakeStandAlone that converts a simple program like the one
shown in Figure 3 into a standalone code resource, and a small library file with
accompanying header files for Pascal and C.

To show how these pieces work together, let’s take a small sample that uses a global
variable, and build it using the StART tools. The sample we’ll use is the Persist.p

d e v e l o p December 1992

98



program included in the Tech Note. Following is a version of the file, modified to
make calls to the StART library.

UNIT Persist;
{ This is a standalone module that maintains a running total of the }
{ squares of the parameters it receives.                            }

INTERFACE
USES Types, StART;
FUNCTION Main(parm: LONGINT): LONGINT;

IMPLEMENTATION
{ Define global storage to retain a running total over multiple }
{ calls to the module.                                          }
VAR

accumulation: LONGINT;
FUNCTION Main(parm: LONGINT): LONGINT;

VAR
saved: SaveA5Rec;

BEGIN
UseGlobals(saved);
accumulation := accumulation + (parm * parm);
Main := accumulation;
DoneWithGlobals(saved);

END;
END.

ANOTHER TAKE ON GLOBALS IN STANDALONE CODE  December 1992

99

Figure 5
Format of Standalone Code Using StART Techniques

Teensy 32-byte space �
above A5 reserved for �
application parameters

A5 points here

Code entry point

Global variables�
�
�
�
�
�

Executable code�
�

StART support routines
StART entry point

Entry point that you define



This very simple sample performs the useless function of taking the number you pass
it, squaring it, adding the result to a running total, and returning that total.
UseGlobals is the StART routine that enables us to access our global variables (in this
case, the lone variable named accumulation), returning the value of the caller’s A5.
After we’ve performed our mathematical wizardry, we close up shop by calling a
second StART routine, DoneWithGlobals, to restore the previous A5 value.

Following is the makefile for Persist.p.

Persist ƒƒ Persist.p.o Persist.make StARTGlue.a.o
Link StARTGlue.a.o ∂

Persist.p.o ∂
"{Libraries}Runtime.o" ∂
"{PLibraries}PasLib.o" ∂
-sn PASLIB=Main ∂
-o Persist

MakeStandAlone Persist -restype CUST -resnum 129 -o Persist.rsrc

Persist.p.o ƒ Persist.p Persist.make
Pascal Persist.p

This makefile contains a couple of interesting things that are worth examining. The
first point to note is that we link with a file called StARTGlue.a.o. This file contains a
few useful routines, including UseGlobals and DoneWithGlobals. It also contains a
special header routine that performs some crucial setup. This setup needs to be
performed before any of our custom code can be executed, so StARTGlue.a.o should
be the first file in the link list.

The second interesting thing about the makefile is the statement -sn PASLIB=Main.
Recall that MakeStandAlone requires a file that contains the resources shown in
Figure 3 in order to perform its magic. Specifically, MakeStandAlone demands that
there be only three segments with a single entry point each into CODE 1 and CODE
2. However, when we link with PasLib.o, we create a fourth segment called PASLIB.
We therefore get rid of this segment by merging it with the rest of our executable
code in CODE 1, the Main segment.

After linking and running the resulting file through the MakeStandAlone tool, we’re
left with a resource containing standalone code that sets up and uses its own set of
global variables. Following are highlights from the Persist sample shown above. Some
routines have been removed, since we’ll be examining them in depth later. 

Entry
+0000 00000 BRA.S Entry+$0014
+0002 00002 DC.B $0000 ; flags
+0004 00004 DC.B $43555354 ; resource type (CUST)

d e v e l o p December 1992

100



+0008 00008 DC.B $0081 ; resource ID (129)
+000A 0000A DC.B $0000 ; version
+000C 0000C DC.B $00000000 ; refCon
+0010 00010 DC.B $00000000 ; cached offset to globals
+0014 00014 BRA MAIN

[ UseGlobals, DoneWithGlobals, GetSAA5, and CalculateOffset removed ]

MAIN ; from Persist.p
+0000 000076 LINK A6,#$FFF8
+0004 00007A PEA -$0008(A6) ; UseGlobals(save);
+0008 00007E JSR UseGlobals
+000C 000082 MOVE.L $0008(A6),-(A7) ; parm * parm
+0010 000086 MOVE.L $0008(A6),-(A7)
+0014 00008A JSR %I_MUL4
+0018 00008E MOVE.L (A7)+,D0
+001A 000090 ADD.L D0,-$0004(A5) ; add to accumulation
+001E 000094 MOVE.L -$0004(A5),$000C(A6) ; return as function result
+0024 00009A PEA -$0008(A6) ; DoneWithGlobals(save);
+0028 00009E JSR DoneWithGlobals
+002C 0000A2 UNLK A6
+002E 0000A4 MOVE.L (A7)+,(A7)
+0030 0000A6 RTS

[ %I_MUL4 removed ]

Globals
+0000 000E4 DC.W $0000, $0000 ; global var accumulation
+0004 000E8 DC.W $0000, $0000 ; 32 bytes of app parms
+0008 000EC DC.W $0000, $0000
+000C 000F0 DC.W $0000, $0000
+0010 000F4 DC.W $0000, $0000
+0014 000F8 DC.W $0000, $0000
+0018 000FC DC.W $0000, $0000
+001C 00100 DC.W $0000, $0000
+0020 00104 DC.W $0000, $0000

Entry, UseGlobals, DoneWithGlobals, GetSAA5, and CalculateOffset are all
routines linked in from the StARTGlue.a.o file; MAIN is from the Persist.p source
file; and %I_MUL4 is a library routine from PasLib.o. Following these routines are
36 bytes of data. The first 4 bytes are for our global variable, accumulation. The final
32 bytes are the application parameters above A5 that the system occasionally uses.

Let’s take a look at the MAIN function, which shows us accessing our global variable.
First, we call UseGlobals to determine what A5 should be and to set A5 to that value.

ANOTHER TAKE ON GLOBALS IN STANDALONE CODE  December 1992

101



In this case, UseGlobals will set A5 to point to Globals+$0004, placing our single 
4-byte global below A5, and the 32 bytes of system data above A5. Next, we push the
value we want to square onto the stack twice and call %I_MUL4 to multiply the two
4-byte values.

Finally, we get to the fun part, where we add the result of %I_MUL4 to our global
variable. This is done by the instruction at MAIN+$001A: ADD.L D0,-$0004(A5).
This instruction says to take the value in register D0 and add it to the number stored
four bytes below A5. Because A5 points to Globals+$0004, this instruction adds D0
to the value starting at Globals.

THE MAKESTANDALONE TOOL
The code above was created by the MakeStandAlone tool. Let’s look now at the
workhorse function of that tool, ConvertAppToStandAloneCode. It’s this function
that takes an application conforming to the format shown in Figure 3 and converts it
to the standalone resource shown in Figure 5.

ConvertAppToStandAloneCode starts by declaring a ton of variables, all of which are
actually used. It then opens the file containing the segments shown in Figure 3 by
calling OpenResFile on gInputFile, a string variable set up before calling this routine.
If we can’t open the file, we blow out by calling ErrorExit, a routine that prints the
string passed to it and then aborts back to the MPW Shell.

PROCEDURE ConvertAppToStandAloneCode;

VAR
refNum: INTEGER;
code0: Code0Handle;
code1: CodeHandle;
code2: CodeHandle;
sizeOfGlobals: LONGINT;
expandedGlobals: Handle;
myA5: LONGINT;
codeSize: LONGINT;
address: CStrPtr;
err: OSErr;
fndrInfo: FInfo;
existingResource: Handle;

BEGIN
refNum := OpenResFile(gInputFile);
IF (refNum = - 1) | (ResError = resFNotFound) THEN

ErrorExit('Error trying to open the source file.', ResError);

d e v e l o p December 1992

102



Loading the segments. ConvertAppToStandAloneCode then scopes out the
contents of the file it has just opened. 

The first thing it looks at is CODE 0, which contains the application’s jump table. If
CODE 0 exists and we can load it, we mark it nonpurgeable and call a utility routine,
ValidateCode0, to make sure that CODE 0 contains what we expect. Here’s what the
code looks like:

code0 := Code0Handle(Get1Resource('CODE', 0));
IF (code0 = NIL) | (ResError <> noErr) THEN

ErrorExit('Couldn’t load CODE 0 resource.', ResError);
HNoPurge(Handle(code0));
ValidateCode0(code0);

MakeStandAlone requires that the input file conform strictly to the format shown in
Figure 3. Among other things, this means that there should be only two entries in the
jump table, one for CODE 1 and one for CODE 2. ValidateCode0 checks for this
condition and makes a few other sanity checks to make sure that CODE 0 doesn’t
contain any other information that we’d otherwise have to deal with. If there are any
problems, ValidateCode0 calls ErrorExit with an appropriate message. Thus, if
ValidateCode0 returns, everything appears to be OK with CODE 0.

At times it might be tricky or impossible to create a CODE 1 resource with only one
entry point. In some cases, you can bludgeon your code into a single segment by
passing -sn to the Link tool, as was done earlier. Unfortunately, this won’t always
work. For instance, some MPW routines are compiled to require jump table entries.
(Examples of such routines are sprintf and its subroutines.) If you try to use any of
these routines, you’ll get more than one entry point in CODE 1. The only way to
avoid this problem is to keep away from library routines that require jump table
entries. If you’re in doubt, simply attempt to use the routine in question; the
compiler, the linker, or MakeStandAlone will tell you if anything is wrong.

ConvertAppToStandAloneCode next checks the remaining resources, CODE 1 and
CODE 2. CODE 1 contains the executable code that will make up the bulk of the
standalone code resource, and CODE 2 contains the compressed data holding the
global variables’ initial values, as well as the routines that decompress that data. Each
segment is loaded and passed to ValidateCode to make sure that the resource looks
OK. 

code1 := CodeHandle(Get1Resource('CODE', 1));
IF (code1 = NIL) | (ResError <> noErr) THEN

ErrorExit('Couldn’t load CODE 1 resource.', ResError);
HNoPurge(Handle(code1));
ValidateCode(code1, 1, 0);

ANOTHER TAKE ON GLOBALS IN STANDALONE CODE  December 1992

103



code2 := CodeHandle(Get1Resource('CODE', 2));
IF (code2 = NIL) | (ResError <> noErr) THEN

ErrorExit('Couldn’t load CODE 2 resource.', ResError);
HNoPurge(Handle(code2));
ValidateCode(code2, 2, 8);

ValidateCode takes a handle to the segment, along with a couple of values used in the
sanity check. The first number is actually the resource ID of the segment and is used
when reporting any errors. The second value is the jump table offset of the entry
point for this segment and is checked against the segment header (see Inside Macintosh
Volume II, page 61, for a description of this header). Again, if any problems are
discovered or any unexpected values encountered (such as more than one entry point
per segment), ValidateCode aborts by calling ErrorExit.

Converting to a standalone resource. Once the three segments have been loaded
into memory and validated, we’re ready to convert these resources into a single
standalone resource. We begin by decompressing the data that represents the
preinitialized values for our global data. The first part of accomplishing this is getting
a temporary buffer to hold the expanded values. We find the size of this buffer by
looking at the belowA5 field in CODE 0. We then create a buffer this size by calling
NewHandle.

sizeOfGlobals := code0^^.belowA5;
expandedGlobals := NewHandle(sizeOfGlobals);
IF expandedGlobals = NIL THEN

ErrorExit('Couldn’t allocate memory to expand A5 data.', MemError);

We next perform the magic that expands the global variables into the buffer. CODE
2 contains the decompression routines, so all we do is call them. The function that
performs this decompression is called _DATAINIT, which our validation routines
have already confirmed is the entry point to CODE 2. _DATAINIT needs to have A5
already pointing to the top of the globals area, which in our case is the end of the
handle we just created. After calling SetA5 to do this, we use CallProcPtr, a little
inline assembly routine, to call _DATAINIT in CODE 2. _DATAINIT fills in our
handle with the initial values for our global variables and then kindly returns to us.
We quickly restore the previous value of A5 so that we can access our own global
variables again, and then prepare to finish with the input file. We’ll need CODE 1
later, so we detach it from the input file, and then close the input file.

myA5 := SetA5(ord4(expandedGlobals^) + sizeOfGlobals);
CallProcPtr(ProcPtr(ord4(code2^) + SizeOf(CodeRecord)));
myA5 := SetA5(myA5);
DetachResource(Handle(code1));
CloseResFile(refNum);

d e v e l o p December 1992

104



At this point, we’re done with the input file, and we have in our possession two
handles. The code1 handle contains the executable code for the standalone resource,
and the expandedGlobals handle contains the global data. Our task at this point is to
combine these two pieces of data.

We start by getting the size of the actual object code in CODE 1. This is the size of
the entire handle, less the size of the CODE resource header. The handle is then
grown large enough to hold the object code, the global data, and the 32 bytes of
application parameters. If we can’t grow the handle, we exit. Game over.

codeSize := GetHandleSize(Handle(code1)) - SizeOf(CodeRecord);
SetHandleSize(Handle(code1), codeSize + sizeOfGlobals + kAppParmsSize);
IF MemError <> noErr THEN

ErrorExit('Couldn’t expand CODE 1 handle.', MemError);

Once the handle containing the code is large enough, we call BlockMove twice to put
everything in place. The first call to BlockMove moves the object code down in the
handle, effectively removing the segment header. This header is useful only for
segments and jump table patching; we don’t need it for our standalone resource. The
second call to BlockMove copies the global data stored in expandedGlobals to the
end of the handle holding the object code. We finish up by calling FillChar, a built-in
Pascal routine, to clear out the 32 bytes of application parameters.

BlockMove(Ptr(ord4(code1^) + SizeOf(CodeRecord)), Ptr(code1^), codeSize);
BlockMove(expandedGlobals^, Ptr(ord4(code1^) + codeSize), sizeOfGlobals);
address := CStrPtr(ord4(code1^) + codeSize + sizeOfGlobals);
FillChar(address^, 32, CHAR(0));

Filling out the header. Our standalone code resource is now almost complete. All
that remains is to fill out the fields of the standard header that seems to begin most
standalone code resources. 

The header consists of a word for a set of flags, the type and ID of the resource, and a
word for a version number. These fields were written to our original CODE 1 when
we linked with StARTGlue.a.o, but they were uninitialized. We take the opportunity
here to fill in these fields. 

As an additional goodie, our standard header contains a 4-byte refCon that can be
used for anything the standalone code wants (for example, holding some data that the
calling application can access).

Once the global data has been appended to the object code handle, we no longer
need the expandedGlobals handle, so we dispose of it and prepare to write out our
objet d’art.

ANOTHER TAKE ON GLOBALS IN STANDALONE CODE  December 1992

105



WITH StdHeaderHandle(code1)^^ DO BEGIN
flags := gHdrFlags;
itsType := gResType;
itsID := gResID;
version := gHdrVersion;
refCon := 0;

END;

DisposeHandle(expandedGlobals);

Writing the standalone resource. The first step to writing out our standalone
code resource is to open the file that will hold it. We do this by calling OpenResFile.
If OpenResFile reports failure, it’s probably because the file doesn’t exist. Therefore,
we try to create the file by calling CreateResFile. If that succeeds, we set the Finder
information of the output file so that we can easily open it with ResEdit, and then
attempt to open the file again. If that second attempt fails, we give up by calling
ErrorExit.

refNum := OpenResFile(gOutputFile);
IF (refNum = - 1) | (ResError = resFNotFound) THEN BEGIN

CreateResFile(gOutputFile);
IF (ResError <> noErr) THEN

ErrorExit('Error trying to create the output file.', ResError);

err := GetFInfo(gOutputFile, 0, fndrInfo);
IF err <> noErr THEN

ErrorExit('Error getting finder information.', err);

fndrInfo.fdType := 'rsrc';
fndrInfo.fdCreator := 'RSED';
err := SetFInfo(gOutputFile, 0, fndrInfo);
IF err <> noErr THEN

ErrorExit('Error setting finder information.', err);

refNum := OpenResFile(gOutputFile);
IF (refNum = - 1) | (ResError = resFNotFound) THEN

ErrorExit('Error trying to open the output file.', ResError);
END

If our first call to OpenResFile succeeded (skipping to the ELSE clause shown
below), the file already exists and may need to be cleaned up a little. If the output file
already contains a resource with the same type and ID of the resource we want to
write, we need to get rid of it. Calls to RmveResource and DisposeHandle
accomplish that grisly task.

d e v e l o p December 1992

106



ELSE BEGIN
SetResLoad(FALSE);
existingResource := Get1Resource(gResType, gResID);
SetResLoad(TRUE);

IF existingResource <> NIL THEN BEGIN
RmveResource(existingResource);
DisposeHandle(existingResource);

END;
END;

At this point, we have a handle that needs to be added to a file as a resource, and an
open file waiting for it. Three quick calls to the AddResource, WriteResource, and
SetResAttrs routines take care of the rest of our duties, and the standalone code
resource is written to the designated file. We then close the file and leave
ConvertAppToStandAloneCode with the knowledge of a job well done.

AddResource(Handle(code1), gResType, gResID, gResName);
IF ResError <> noErr THEN

ErrorExit('Error adding the standalone resource.', ResError);

WriteResource(Handle(code1));
IF ResError <> noErr THEN

ErrorExit('Error writing the standalone resource.', ResError);

SetResAttrs(Handle(code1), gResFlags);
IF ResError <> noErr THEN

ErrorExit('Error setting the resource attributes.', ResError);

CloseResFile(refNum);
END;

UP CLOSE AND PERSONAL WITH STARTGLUE.A.O
Converting our application into a standalone code resource is only part of the
process. The other part involves the routines that allow our code to execute on its
own. These routines preserve the A5 world of the host application, set up the
standalone code’s A5 world, and restore the host application’s A5 world when the
standalone code is finished.

These routines are provided by StARTGlue.a.o. StARTGlue.a.o includes four client
(external) routines (UseGlobals, CopyHostQD, DoneWithGlobals, and GetSAA5),
an internal routine (CalculateOffset), and a block of public and private data. Because
of this embedded block of data, the library is written in assembly language. Let’s take
a look at the source file, StARTGlue.a. 

ANOTHER TAKE ON GLOBALS IN STANDALONE CODE  December 1992

107



CASE OFF

INCLUDE 'Traps.a'
INCLUDE 'QuickEqu.a'
INCLUDE 'SysEqu.a'

FirstByte MAIN
IMPORT Main, _DATAINIT
ENTRY gGlobalsOffset
bra.s Island

dc.w 0 ; flags
dc.l 0 ; resType
dc.w 0 ; ID
dc.w 0 ; version
dc.l 0 ; refCon 

gGlobalsOffset dc.l 0 ; offset to globals

By convention, standalone code resources start with a standard header having the
format shown in Table 2.

Nothing requires standalone code to include this header. However, it’s nice to follow
convention, and including the resource type and ID makes identifying blocks in the
heap easier.

When you compile and link with StARTGlue.a.o, these fields are empty (set to zero).
However, the MakeStandAlone tool automatically fills in these fields based on
command-line options when it converts your code. 

d e v e l o p December 1992

108

Table 2
Standard Header for Standalone Code Resources

Field Size Contents
entry 2 bytes Branch instruction to first byte of executable code.
flags 2 bytes User-defined flags. You can set and define this field any way

you want.
resType 4 bytes Resource type.
resID 2 bytes Resource ID.
version 2 bytes Version number. The values for this field are unregulated, 

but usually follow the same format as the version numbers 
in 'vers' resources.

refCon 4 bytes User-defined reference constant. Use this field for anything
you want, including communicating with the host.



StARTGlue.a.o’s entry point branches to the following code, which then branches to
a function called Main. The reason for this double jump is to maintain the standard
header for a standalone code resource. The first two bytes are used to jump to the
code’s entry point. However, we can jump only 128 bytes with the 68000’s 2-byte
relative branch instruction. If Main happens to be further than 128 bytes from the
start of the code resource, we would need to use the 4-byte branch instruction. To
provide for this contingency, we have our 2-byte branch instruction jump to the 
4-byte branch instruction, which can then jump to anywhere that it wants with
impunity.

Island
bra Main
lea _DATAINIT,A0 ; dummy line to reference

;   _DATAINIT

The LEA instruction that follows the branch is a dummy statement. Its sole purpose
is to trick the linker into including _DATAINIT, the routine that the
MakeStandAlone tool calls to decompress the global data. Because the LEA
instruction immediately follows an unconditional branch, and because it doesn’t have
a label that can be jumped to, it’s never actually executed.

UseGlobals. The UseGlobals function is used to set up the standalone code’s A5
world. An example of this is shown earlier in the Persist program. 

UseGlobals performs three functions:

• It sets the A5 register and the low-memory location CurrentA5 to
the correct value for the standalone code. It determines the
standalone code’s A5 value by calling the GetSAA5 function,
described later.

• It copies the host application’s QuickDraw globals pointer to the
standalone code’s QuickDraw globals pointer (this pointer is the 
4-byte value to which A5 normally points). By copying this
pointer, the standalone code can call Toolbox routines knowing
that A5 references a valid set of QuickDraw globals.

• It returns the host application’s A5 and CurrentA5 values so that
they can later be restored.

;
; PROCEDURE UseGlobals(VAR save: SavedA5Rec);
; { Balance with DoneWithGlobals. }
;
UseGlobals PROC EXPORT

IMPORT GetSAA5

ANOTHER TAKE ON GLOBALS IN STANDALONE CODE  December 1992

109



move.l 4(sp),A0 ; get ptr to save record
move.l A5,(A0) ; save A5
move.l CurrentA5,4(A0) ; save low-memory value
clr.l -(sp) ; make room for function 

;   result
bsr.s GetSAA5 ; get our own A5
move.l (sp)+,A5 ; make it real
move.l A5,CurrentA5 ; make it really real
move.l 4(sp),A0 ; get ptr to save record
move.l (A0),A0 ; get host’s A5
move.l (A0),(A5) ; copy his QD globals ptr
move.l (sp)+,(sp) ; remove parameters
rts ; return to caller

CopyHostQD. The CopyHostQD routine is an optional utility routine. You don’t
need to call it unless you have to ensure that the host’s QuickDraw globals remain
undisturbed. By default, your standalone code shares the same set of QuickDraw
globals as the host application. However, if you have unusual requirements, you may
need to establish your own set of QuickDraw globals.

A simple way to set up your own QuickDraw globals would be to call
InitGraf(@thePort) after you called UseGlobals. This would create a valid set of
QuickDraw globals. However, some standalone code resources initially need to work
with information provided by the host application. For instance, a custom MDEF
normally draws in the currently set port. To inherit such information, you can call
CopyHostQD just after you call UseGlobals.

;
; PROCEDURE CopyHostQD(thePort: Ptr; oldA5: Ptr);
; { Balance with DoneWithGlobals. }
; assumes that A5 has already been set up to our globals
;
CopyHostQD PROC EXPORT

returnAddress EQU 0
oldA5 EQU returnAddress+4
thePortPtr EQU oldA5+4
parameterSize EQU thePortPtr-oldA5+4

move.l oldA5(sp),A0 ; get oldA5
move.l (A0),(A5) ; make (A5) point to 

;   thePort

move.l (A0),A0 ; get host’s thePort 
;   pointer

d e v e l o p December 1992

110



move.l thePortPtr(sp),A1 ; get our thePort pointer
move.l #grafSize,D0 ; copy whole grafPort
move.l D0,D1 ; since the pointers
subq.l #4,D1 ;   point near the end of 
sub.l D1,A0 ;   the QD globals, move 
sub.l D1,A2 ;   them down to point 

;   to the beginning
_BlockMove

move.l (sp)+,A0 ; pop return address
add #parameterSize,sp ; pop parameters
jmp (A0) ; return to caller

DoneWithGlobals. The DoneWithGlobals routine reverses the effects of
UseGlobals. It simply restores the values of the A5 register and low-memory global
CurrentA5 to the values saved by UseGlobals.

;
; PROCEDURE DoneWithGlobals(restore: SaveA5Rec);
;
DoneWithGlobals PROC EXPORT

move.l (sp)+,A0 ; pull off return address
move.l (sp)+,A1 ; address of record 

;   holding info
move.l (A1),A5 ; first restore A5
move.l 4(A1),CurrentA5 ; then restore low-memory 

;   value
jmp (A0) ; return to caller

GetSAA5. You probably won’t need to call GetSAA5. This function is called by
UseGlobals to return the value that’s used to refer to the standalone code’s A5 world.
The first time this function is called, this value needs to be calculated. After that, the
offset from the beginning of the code to the global data is cached and is used in
subsequent calls to GetSAA5. Once the offset has been determined, it’s added to the
address of the start of the standalone code and returned to the caller.

;
; FUNCTION GetSAA5: LONGINT;
;
GetSAA5 PROC EXPORT

IMPORT CalculateOffset

move.l gGlobalsOffset,D0 ; have we done this 
;   before?

ANOTHER TAKE ON GLOBALS IN STANDALONE CODE  December 1992

111



bne.s @1 ; yes, so use cached 
;   value

bsr.s CalculateOffset ; nope, so calculate it
@1

lea FirstByte,A0 ; get base address
add.l A0,D0 ; add offset to top of 

;   globals
move.l D0,4(sp) ; set function result

rts ; return to caller

CalculateOffset. CalculateOffset determines the offset from the beginning of the
code resource to the location that A5 should point to. We see from Figure 5 that A5
should point to the location 32 bytes before the end of the resource. Therefore, we
get a handle to the code resource, get the code resource’s size, subtract 32 from it,
and return the result as the needed offset.

CalculateOffset PROC

lea FirstByte,A0 ; get pointer to us
_RecoverHandle ; get handle to us
_GetHandleSize ; find our size (= offset 

;   to end of globals)
sub.l #32,D0 ; account for 32 bytes of 

;   appParms
lea gGlobalsOffset,a0 ; get address to save 

;   result
move.l D0,(A0) ; save this offset for 

;   later
rts

SUMMARY OF THE THREE SOLUTIONS
This article has explored three ways to access global variables in standalone code: the
THINK method, the OpenA5World method, and the StART method.

The THINK method uses the A4 register to access the global variables. The A4
register is managed by the RememberA0, SetUpA4, and RestoreA4 functions. The
advantages of the THINK method are as follows:

• The host’s A5 register is untouched.

• The storage for globals is coupled with the storage for the code
itself, meaning that no additional storage needs to be allocated or
disposed of.

d e v e l o p December 1992

112



The disadvantages of the THINK method are:

• The A4 register cannot be used for code optimization.

• Standalone code resources cannot be marked purgeable without
the risk of losing any values stored in global variables.

• Unless you use the multisegmented standalone code features of
the THINK environments, you’re limited to a combined total of
32K of code and data.

• The global data is stored in an uncompressed format on disk.

Because MPW doesn’t provide the compiler support that THINK does, the approach
described in the Tech Note reuses register A5 to access global variables. Support is
provided by the functions MakeA5World, SetA5World, RestoreA5World,
DisposeA5World, OpenA5World, and CloseA5World. The advantages of this
method are as follows:

• It has a compact on-disk format (global data is compressed).

• A4 is free for code optimization.

• The code resource can be marked purgeable.

• You can access 32K of code and 32K of data.

The disadvantages of the Tech Note method are:

• It requires support from the host application for persistence of
globals.

• Care must be taken to restore the host’s A5 when control is
returned to the host (which can include callbacks, a la HyperCard).

The StART solution tries to incorporate the best of both worlds. StART’s use of the
A5 register is managed by calls to UseGlobals, DoneWithGlobals, and (optionally)
CopyHostQD. Its advantages are as follows:

• A4 is free for code optimization.

• You can access 32K of code and 32K of data.

• The storage for globals is coupled with the storage for the code
itself, meaning that no additional storage needs to be allocated or
disposed of.

The disadvantages it doesn’t address are:

• Care must be taken to restore the host’s A5 when control is
returned to the host (which can include callbacks).

ANOTHER TAKE ON GLOBALS IN STANDALONE CODE  December 1992

113



• Standalone code resources cannot be marked purgeable without
the risk of losing any values stored in global variables.

• The global data is stored in an uncompressed format on disk.

There’s one major limitation that none of these techniques address. Neither MPW
nor THINK can handle certain kinds of global variables — ones that get
preinitialized to some absolute address — in standalone code. For instance, consider
the following C source:

char *myStrings[] = {
"Macintosh",
"Programming",
"Secrets",
"2nd Edition"

};

This declares an array of pointers to the four given strings. When this definition
appears in source code in a THINK C project, the compiler will tell you that this sort
of initialization is illegal in standalone code. However, MPW’s compilers aren’t as
integrated into the build process as THINK’s are, and they don’t know to give you a
similar warning. Thus, we can compile an array like the one just shown without an
error. When the MakeStandAlone tool is later executed, it will dutifully initialize the
array with pointers to the given strings. However, these pointers are in the form of
absolute memory locations, which are valid only at the time the globals are expanded.
When it’s time to execute the standalone code, it’s almost certain that the strings
won’t be loaded into the same place they were in when the globals were expanded,
making the pointers in our array invalid.

All you can do to avoid this problem is make sure that you don’t have any global
variables that are preinitialized to the addresses of other objects (such as strings,
functions, and other variables). Without knowing the format of the compressed
global data that _DATAINIT expands, it isn’t possible to program the
MakeStandAlone tool to look for the problem globals. 

WHERE TO GO FROM HERE
This article just scratches the surface of what can be done with MPW. It gives a little
behind-the-scenes information and describes how to take advantage of that
information with a custom tool. The intrepid explorer may want to apply what’s
learned here to some other topics.

32-BIT EVERYTHING
With MPW 3.2, Apple has eliminated most of the traditional 32K barriers imposed
by 16-bit fields. By expanding fields in the jump table to 32 bits, replacing the

d e v e l o p December 1992

114



Segment Loader, patching object code with absolute addresses, and providing user-
callable runtime routines, MPW allows you to create code and data blocks of
practically any size. It may be interesting to explore the new formats and data
structures used with 32-bit everything to see how you can use them in the same way
we used the old 16-bit information.

MERGING START TECHNIQUES WITH THOSE OF THE TECH NOTE
The StART method uses a bit of assembly language to provide some runtime support
for standalone code. Specifically, it maintains a reference to the code’s global variables
in a local data field. This same technique could be used to partially remove the
dependency of code created with the Tech Note method on the host application.

JUMP TABLE
We’ve fully explored the area below A5, but only a small part of the area above A5.
We’ve looked at the globals area below A5 and the application parameters area above
A5, but the majority of the “above A5 world” is normally occupied by a jump table
that supports multisegmented applications. With a little more work and runtime
support, it may be possible to write multisegmented standalone code in MPW.

Multisegmented standalone code offers more benefits than simply allowing you to
write huge chunks of standalone code. Programmers using Object Pascal and readers
of the Macintosh Technical Note “Inside Object Pascal” (formerly #239) know that
polymorphism requires the use of a jump table. By implementing support for a jump
table in standalone code, it should be possible to write standalone code with Object
Pascal or C++’s PascalObjects. C++ programmers writing native C++ classes or classes
based on HandleObject should refer to Patrick Beard’s article, “Polymorphic Code
Resources,” in develop Issue 4.

THANKS DEPARTMENT
This article would not have existed if not for the help and inspiration of the following
individuals and nonindividuals:

• The creators of the A4 method used in the THINK products for
showing that globals could be used in standalone code

• The authors of the BuildDCMD tool for MacsBug, a tool that
proved that applications conforming to a certain guideline could
be converted to standalone code

• Larry Rosenstein, who, thanks to file sharing, unknowingly
provided the source code shell for the MakeStandAlone tool (all
the stuff that deals with error handling and command-line parsing)

ANOTHER TAKE ON GLOBALS IN STANDALONE CODE  December 1992

115
THANKS TO OUR TECHNICAL REVIEWERS
C. K. Haun, Pete Helme, Craig Prouse•



4 A.M. Friday still feels like Thursday. Five hours
remain until the contest. Bean dip slowly dries around
the rim of a jar, turning a darker, almost translucent
brown. This corner of the table, the one nearest the
center of the room, is littered with the strange and
particular combination of plastic, paper, metal, glass,
and organic debris that typifies the remains of junk
food. The room, a large but nondescript meeting room
with beige-painted cinder block walls, is bathed in
fluorescent light, 60-cycle radiation painting the few
remaining occupants a lovely whitish green.

A few of them still hunch over keyboards, pecking
feverishly, squeezing the last few desperate instructions
into their robots. Others sprawl on the floor around the
test course, watching carefully and hopefully as their
fragile creations, their little Lego and wire and motor
golems, their tiny mind children, haltingly — but
autonomously — negotiate their way toward the goal.
The expressions on their faces are variously rapt,
worried, and proud.

The scene is the early morning of the last day of
Artificial Life III, a week-long scientific hoe-down that
took place last June in Santa Fe. The hardy hackers in
the cluttered room at the back of the building are
entrants in a robot-building contest that will be run as
part of the “Artificial 4H Show” beginning at 9 A.M.
Their robot creatures run the gamut from the
eminently practical to the practically insane. 

The insane ones, of course, are by far the more
interesting. One, appropriately named Rob Quixote,
has only a single wheel, and therefore must steer by
rotating an oversized horizontal windmill-like
contraption fastened to its head, effectively pushing
against the air to turn itself. Another moves by a sort of
spastic lurching; throwing its entire front section
forward, it gains an awkward quarter inch, then gathers
up its hindquarters for another throw. This one is so
inefficient that it requires twice the usual number of
batteries, and uses them up in a single run. Amazingly
enough, though, it successfully traverses the course,
albeit slowly and with much ineffectual thrashing. 

“Artificial life,” as a named discipline, appeared on the
scientific scene relatively recently. The first conference
happened in the fall of 1987, and gave joyous birth to
this new field of scientific inquiry, or rather this new
and rich confluence of many different fields. Scientists
who had been working in isolation suddenly discovered
others pursuing similar lines of investigation, and the
meeting of minds was electric.

Artificial life is an attempt to create and study artificial
systems — that is, systems created by humans — that
mimic processes or exhibit behaviors usually associated
only with living systems. Predictably, the primary
medium that these systems are created on (in?) is
computers; this is a field that depends heavily on
technology to get its work done (they’re doomed if
electricity ever becomes unavailable). Also predictably,
a large proportion of its devotees are biologists,
especially theoretical biologists.

Why would biologists want to study artificial life?
Don’t they already have their hands full trying to figure
out the real thing? Well, for one thing, there are a lot
of experiments biologists would love to do that they
simply can’t: nature doesn’t come with convenient
levers and knobs, and you can never roll back time and
try something over again. So if biologists can develop
good models of biological phenomena, they can
implement them on computers and run clean and tidy
experiments that are repeatable, detailed, controlled,
and manipulable down to the last detail. This is a far

d e v e l o p December 1992

DAVE JOHNSON’s mother recently moved across the country,
and sent him a total of eight large cardboard boxes crammed with
junk spanning his entire life that she didn’t want cluttering her
garage any more. Among his old school stuff was a report card
from second grade that included a couple of N’s, meaning “needs
improvement.” The N’s were in the categories of “Is Prompt” and
“Works Steadily.” Here’s a quote from his teacher, Mrs. Doris
Short, that accompanied the report: “We’ve talked about being
prompt, but it’s always ‘I’ll finish tomorrow.’” This is strong

evidence for the claim that personality is established early in life,
and never changes.•

116

THE VETERAN
NEOPHYTE

DIGITAL ZOOLOGY

DAVE JOHNSON



THE VETERAN NEOPHYTE  December 1992

117

cry from the messy, inexact, unrepeatable real world,
and for some biologists would be tantamount to
scientific nirvana.

But there’s another, larger reason for biologists to study
artificial life. In the words of Chris Langton, self-
described “midwife” of artificial life (he organized the
first conferences and named the field), “Such systems
can help us expand our understanding of life as it could
be. By allowing us to view the life that has evolved here
on Earth in the larger context of possible life, we may
begin to derive a truly general theoretical biology
capable of making universal statements about life
wherever it may be found and whatever it may be 
made of.”

I like it.

When I read this I was hooked. Visions of bizarre,
unknowable alien intelligences and strange, seething
soups that cling and quiver and creep around filled my
head. And here are real scientists hanging around
seriously discussing it! This is some serious fun! And
lots of different kinds of scientists are paying attention;
biologists, mathematicians, physicists, chemists,
robotocists, and computerists are all well represented at
the conferences, with a sprinkling of philosophers,
anthropologists, economists, and others. The gee-whiz
factor hooked me, but the interdisciplinary thrust of
artificial life reeled me in.

(In conversation people say “a-life.” I’ve seen it written
as Alife, A-life, alife, and a-life. I wanted to use alife,
but people tended to pronounce it like “get a life,” so
I’ll use a-life instead.)

Another appeal for me is the tacit approval of the
“build it first, then study it” approach in a-life. This
method of building things and learning things
(stumbling around, really, but intelligent stumbling,
directed stumbling) has always been my particular forte.
The premise is that we don’t need to completely
understand something before we can build it or build a
model of it, and that it’s very often more instructive to
get a crude version up and working immediately than

to try to refine the thing completely before trying it
out. By fumbling around and building things blindly,
we can often learn a lot by virtue of the happy 
accidents that inevitably occur. And it’s tons more fun
that way.

There were far too many interesting things at the
conference to describe them all here. Instead I want to
tell you about one particular talk that caused me to
have a powerful “Aha!” experience (and I live for “Aha!”
experiences). If you know something about evolution
already, the following may not be news to you, but
presumably most computer programmers don’t study
biology. 

The talk dealt with Lamarckian evolution. Lamarck
was a contemporary of Darwin who postulated that the
things experienced by an organism during its lifetime
could affect the traits handed down to the next
generation. As an example, a Lamarckian might believe
that proto-giraffes had to stretch their necks up to
reach the leaves at the tops of the trees, and because of
all the stretching, their descendants were born with
longer necks. Unfortunately for Lamarck and his
followers, this is rubbish.

It turns out that as far as biological evolution is
concerned, Lamarckism is nonexistent: there was no
such thing at work in the development of life on Earth.
So my curiosity was piqued when I saw the title of this
talk by David Ackley and Michael Littman: “A Case for
Distributed Lamarckian Evolution.” What, were they
crazy? Talking Lamarck to all these modern scientists?
(At the previous conference, Ackley had one of the few
really amusing presentations, so of course I would have
gone no matter what the topic, but this one looked
particularly juicy.)

Ackley and Littman weren’t trying to convince people
that Lamarckian evolution had anything to do with life
on earth. What they did instead was compare the
efficiencies of the two types of evolution. (They created
a simple evolution simulation, and then compared
Darwinian and Lamarckian evolution in their abilities
to find a solution to a particular problem.) Hey, this is



after all artificial life, so if Lamarckian evolution works
better, we can use it, right? 

What they found was that when Lamarckian evolution
was allowed to enter the picture — when the things
learned in one generation were at least partially passed
on to the next — the system was much, much better at
solving the given problem. It consistently found better
solutions faster in every single case they tried. This of
course makes some intuitive sense. Rather than waiting
for genetic shuffling to find a solution to the problem,
the prior generation can point the current one in the
right direction. So Lamarckian evolution is pretty
much a great thing, evolutionarily speaking, because it
gets you a lot further and it gets you there a lot faster.
(Where it is exactly that you’re going is a question for
the philosophers; for the moment, let’s just blithely
assume that we really do want to get there.) Their point
was that as simulation builders we should think about
using Lamarckian inheritance in our simulations,
because it works so well. But this point reinforced
something else that had been rolling around in my
head.

There’s an evolutionary premise that I initially learned
about through reading an article by a robotocist named
Hans Moravec in the first Artificial Life proceedings. I
learned more about it in Richard Dawkins’s book The
Blind Watchmaker and in a fascinating book called Seven
Clues to the Origin of Life by a Glasgow chemist named
Graham Cairns-Smith. This particular concept is called
“genetic takeover.”

According to this idea, one substance can gradually
replace another as the carrier of genetic information.
Cairns-Smith postulates that life began with replicating
inorganic crystals — clays, as a matter of fact — and
that a genetic takeover gradually occurred, with
proteins and nucleic acids gaining in dominance until
finally the original materials were no longer needed.
Dawkins and Moravec (and many others) think that a
genetic takeover is occurring now, with human culture
taking over from nucleic acids as the evolving entity,
though they differ in their candidates for the new
“gene-equivalent.”

Dawkins likes to speak about the “meme,” a very useful
term first coined in his book The Selfish Gene. A meme
is an idea, really, or a piece of information. It is
immaterial, and requires a material substrate of brains,
books, computers, or other media to exist. But given
that substrate, the parallels with genes are very good.
Just like genes, memes replicate (we tell each other
good ideas, or write them down for others), memes
mutate (we don’t always get it right in the telling),
memes mate (ideas in combination often give birth to
new ones), and memes compete for survival (“good”
ideas stick around a long, long time, but “bad” ones die
by not being passed on to anyone: mindshare is their
means of existence).

Moravec, on the other hand, seems to be more
interested in the evolution of machines, and speculates
convincingly and entertainingly that our machines, our
artifacts, will eventually become the dominant evolving
entities on Earth. Science fiction, or science fact? I
don’t know — there are compelling arguments both
ways — but in either case it makes for very good
reading.

In any case, they think that perhaps here on Earth
biological evolution is thoroughly obsolete, and 
almost despite myself I have to agree. Sure, it’s still
operating, but the evolution of human bodies has been
completely outstripped by the evolution of human
culture. Bodies evolve at an extremely slow pace, but
culture evolves incredibly fast, and humans are having
such a profound impact on the Earth that biology
simply can’t keep up. Look at the changes on Earth in
the last millennium. Most of the species alive a
thousand years ago have remained physically about the
same, yet there’s no question that the Earth has
undergone a radical transformation, and primarily at
the hands of humans, as a by-product of their culture.
(You might hesitate to call the rampant, wanton
destruction and boundless consumption of resources
that Earth has suffered at the hands of humans
“evolution,” but remember that the word “evolution”
does not necessarily imply improvement.) But why is it
going so fast? How come humans do this and other
species don’t?

d e v e l o p December 1992

118



THE VETERAN NEOPHYTE  December 1992

119

One of the primary distinctions between human beings
and their close animal relatives is language. Humans
can communicate with abstract symbols, and their
communications can be “fossilized” in time (that is,
written down for later). Here comes the “Aha!” we’ve
all been waiting for: this ability allows humans to
engage in a form of Lamarckian evolution! The things
we learn in our lifetimes can be passed on to the next
generation, though in a filtered sort of way. We can’t
change the way our offspring are built, but we can
change their behavior (teenagers notwithstanding).
Other species do this to some extent, but humans are
the unquestioned champs at shaping their offspring.

As you can see, a-life —  just like life itself — is rife
with philosophical conundrums and radical, thought-
provoking concepts, and that’s much of the reason I
stay interested. But probably the biggest reason of all
that I like a-life is hard to express, except by analogy: I
get the same feeling peering through a glass screen into
a computer world full of digital critters that I do
peering through the bars of a cage at the zoo. The
xenophile in me wants to see all the forms that life can
take, and get to know the minds of every other being. I
want to puzzle out the motivations behind a critter’s
behavior, and I love that shock of recognition I
experience every time I look into an animal’s eyes —
even the ones that are so alien, like birds and reptiles
and fish. Again, it’s this feeling that there are universal
properties of life waiting to be discovered, properties
that apply not only to life as it has evolved on Earth but
to all possible life, including the digital variety.

Are any of these a-life explorations really alive? That’s
an energetic and ongoing debate among a-lifers, of
course, and the answer ultimately depends on the
definition you pick for the word “life.” Rather than
arguing whether metabolism is more necessary to life
than reproduction, though, I like to duck the definition
issue. I don’t really care too much whether we call them
alive, I want to see if people react to them as if they’re
alive. I want to see that shock of recognition occur
when people and digital organisms collide. (What if
“they” recognize “us”?!) It’s sort of the Turing Test
approach for life: if it seems alive — if people can’t tell
that it’s not alive — then no matter what we call it,
people will treat it as if it’s alive. That I’d like to see.

Dave welcomes feedback on his musings. He can be reached
at JOHNSON.DK on AppleLink, dkj@apple.com on the Internet, or
75300,715 on CompuServe.•

RECOMMENDED READING
• Artificial Life by Steven Levy (Pantheon Books,

1992).

• The Blind Watchmaker by Richard Dawkins 
(W. W. Norton & Company, 1987).

• The Selfish Gene by Richard Dawkins (Oxford
University Press, 1976).

• Seven Clues to the Origin of Life by A. G. Cairns-
Smith (Cambridge University Press, 1985).

• ZOTZ! by Walter Karig (Rinehart & Company,
Inc., 1947).



Q Here’s a tidbit I stumbled across in Inside Macintosh Volume VI, page 3-10: the four
Dialog Manager procedures CouldDialog, CouldAlert, FreeDialog, and FreeAlert are
no longer supported. I use CouldDialog, and I happened to notice that it didn’t work
right when I tested it under System 7, but I reported it as a bug. Now you tell us that
it’s not guaranteed to work in System 7. I can’t recall a trap ever becoming suddenly
unsupported like this. What’s the story?

A The system software engineers felt that CouldDialog, CouldAlert, FreeDialog,
and FreeAlert didn’t do much good under System 6, since the Could calls never
completely guaranteed that all dialog items were loaded in. These calls also
caused problems in the beta versions of System 7. Relatively little software uses
those traps anymore; like many things in Inside Macintosh Volume I, they’re
relics of the days when Macintosh programmers had to deal with desk accessory
and floppy disk support issues. So these calls were simply patched out. In the
final System 7, the traps return without doing anything.

Q I can’t get the black-and-white version of my lasso-type tool to work correctly with
CalcMask and CopyMask. With CalcCMask it seems to work fine. What could I be
doing wrong?

A CalcMask and CalcCMask are similar in that they both generate a one-bit mask
given a source bitmap. With CalcCMask, though, a pixMap can be used in place
of the source bitmap; the seedRGB determines which color sets the bits in the
mask image. An easy mistake to make is to forget that CalcCMask expects a
pointer to a BitMap data structure while CalcMask expects a pointer to the
actual bit image. And unlike CalcCMask, which uses bounding rectangles for
the image’s dimensions, CalcMask uses the bitmap’s rowBytes and pixel image
offsets to determine the bounding Rects for the image. A typical call to these
routines is as follows:

BitMap source, mask;
CalcMask (source.baseAddr, mask.baseAddr, source.rowBytes, 

mask.rowBytes, source.bounds.bottom-source.bounds.top, 
source.rowBytes>>1);

CalcCMask (&source, &mask, &(*source).bounds, &(*mask).bounds, 
&seedRGB, nil, 0);

One last thing to note when using CalcMask is that the width of the image is in
words and not bytes. To learn more about these routines, see page 24 of Inside
Macintosh Volume IV and page 72 of Inside Macintosh Volume V. Also, the
Developer CD Series disc contains a sample, CalcCMask&CalcMask, that shows
how to use these routines.

d e v e l o p December 1992

Kudos to our readers who care enough to
ask us terrific and well thought-out questions. The
answers are supplied by our teams of technical
gurus; our thanks to all. Special thanks to Chris
Berarducci, Tim Dierks, Steve Falkenburg, Marcie
“M. G.” Griffin, Charles Grosjean, Bill
Guschwan, C. K. Haun, Dave Hersey, Dennis
Hescox, Rich Kubota, Scott Kuechle, Edgar Lee,
Jim Luther, Joseph Maurer, Kevin Mellander,

Guillermo Ortiz, Dave Radcliffe, Greg Robbins,
Kent Sandvik, Eric Soldan, Brigham Stevens, Dan
Strnad, Forrest Tanaka, and John Wang for the
material in this Q & A column.•

120

MACINTOSH

Q & A



Q How do I update the color table of my off-screen graphics world without destroying the
picture?

A The recommended approach for changing the color table of an existing
GWorld involves calling UpdateGWorld, passing either clipPix or stretchPix
for gWorldFlags. When passed either of these constants, QuickDraw knows to
update the pixels of the pixMap image. Even though the actual image isn’t
changed, the flags are still needed to remap the pixels to their new colors.

Q Are there any C++ or C compilation flags that will optimize performance of the
Macintosh Quadra computers? Even when I use the “-NeedsMC68030” flag in
MacApp, an investigation of the MABuild source files reveals that it sets compiler flags
only for the 68020 optimization. If Quadra-specific compilation flags don’t exist, do you
have any Quadra performance optimization suggestions?

A The current MPW compilers don’t have a 68040 performance optimization
flag, though Apple’s future compilers will optimize code for the best possible
’040 performance. In the meantime, here are some tips on ’040 performance
tuning:

• Cache management for the ’040 can give you the biggest performance boost.
Keep program loops inside the cache space, and flush the cache as seldom as
possible. In most cases you’ll have small loops inside the 4K instruction
cache.

• You might get better performance by not calling BlockMove, because the
system flushes the cache when you call it in case you’re moving code. If
you’re moving data, the cache doesn’t need to be flushed, but the system
can’t tell from the BlockMove call whether you’re moving code or data.
Testing will help you determine whether you should call BlockMove or
write your own transfer routine. The new MOVE16 opcode is used by the
BlockMove trap when the system is running on an ’040 processor, but
because of problems with this opcode in early ’040 processors, it requires
special handling. For details, see the Macintosh Technical Note “Cache As
Cache Can” (formerly #261).

• Transcendental functions aren’t implemented in the 68040 hardware as they
are in the 68881 chip used with the 68020 and 68030. Consequently, the
functions are emulated in software, resulting in slower performance. If you
suspect that your floating point performance is less than optimal, consider
modifying your code to use functions supported by the internal ’040 FPU.
See the Macintosh Technical Note “FPU Operations on Macintosh Quadra
Computers” (formerly #317) for more information about this performance
factor. Future MPW compiler and library releases will support faster
transcendental operations and floating point–to–integer conversions.

MACINTOSH Q & A December 1992

121



Q In the past we had heard of a problem using calloc and NewPtr in the same program. Is
this true?

A There are a few difficulties, which you can deal with if you need to. The
primary problem is that calloc and all the other malloc routines weren’t
designed for the Macintosh platform. Macintosh memory management is
designed around trying to squeeze as much as possible out of a limited memory
area, which is why handles are the primary storage scheme in a Macintosh; they
can move, and so greatly reduce memory fragmentation. Because the malloc
tools return a pointer, they have to be located in a locked block, so they tend to
lead to fragmentation if used with any other memory allocation calls (such as
NewPtr). For this reason, any use of the malloc suite of allocation calls isn’t
recommended for Macintosh programs. The only good reason to use them is if
you’re porting a large body of code from other platforms; in this case, it may be
a reasonable tradeoff to keep the old allocation code.

You should also be aware that most of the Macintosh malloc routines never free
up memory. When you malloc some space, the routine must first allocate it
from the Memory Manager. It allocates a large block of space using NewPtr and
divides it internally for distribution in response to malloc calls. If, however, you
eventually free all the blocks you allocated from this NewPtr block, the block
won’t be released to the Memory Manager with the DisposPtr call. This means
that once you allocate some memory with malloc, you won’t be able to free it
and then use that memory from a Macintosh allocation call. Thus, if you had
two phases to your program, one of which used the malloc calls extensively and
the second which used Toolbox calls, the second phase wouldn’t be able to use
memory freed by the first phase. That memory is still available in the malloc
pool, of course; it simply can’t be used by NewPtr or NewHandle. The malloc
routines supplied by THINK C work similarly, as described in their Standard
Libraries Reference. Thus, mixing the C and Macintosh allocation routines
requires special care.

Q Why do I get error -903 (a PPC Toolbox noPortErr) when I send an Apple event to a
running application with AESend?

A The isHighLevelEventAware bit of the sending application’s SIZE -1 resource
(and SIZE 0 resource, if any) must be set.

Q Sometimes the Alias Manager mistakes one volume for another. In particular, we’re
experiencing problems getting aliases to volumes to work correctly with our AppleTalk
Filing Protocol (AFP) server volumes. Here’s how I can duplicate the problem:

1. I mount two server volumes from my AFP server: VolA and VolB.

d e v e l o p December 1992

122



2. I use the Finder to create an alias file for each volume.

3. I unmount VolA.

4. I open the alias file for VolA. However, when I do this, VolB (which is still mounted)
is opened.

Is this a bug in the Alias Manager or did we implement something the wrong way in
our server?

A As noted in the Alias Manager chapter of Inside Macintosh Volume VI, the Alias
Manager uses three criteria to identify a volume: the volume’s name, the
volume’s creation date, and the volume’s type. If the Alias Manager can’t find a
mounted volume that matches all three criteria, it tries again with just the
volume’s creation date and the volume’s type. This second attempt finds
volumes that have been renamed. If that attempt fails, the Alias Manager tries
one last time on mounted volumes with the volume’s name and the volume’s
type. If it can’t find a mounted volume with those three attempts and the alias is
to an AFP volume (a file server), the Alias Manager assumes the volume is
unmounted and attempts to mount it.

The problem you’re having is probably happening because both volumes have
the same creation date and type. That will cause the Alias Manager to mistake
VolA for VolB and VolB for VolA when it attempts to match by volume creation
date and volume type. You can prevent the Alias Manager from making this
mistake by making sure your server volumes all have unique volume creation
dates.

This same behavior can be observed when partitioned hard disks use the same
volume creation date for all partitions. If one partition isn’t mounted, the Alias
Manager can mistake one disk partition for another.

Q I’m looking for a Macintosh Toolbox routine that will allow me to turn down the
backlight on a Macintosh PowerBook from within a screen saver to prevent screen burn
and save battery life. Is there such a thing?

A Turning down the backlight won’t prevent screen burn. Screen burn can be
prevented only by either shutting the system off or letting the PowerBook enter
its native sleep mode.

In an RGB monitor the phosphor that illuminates each pixel is what causes
screen burn. By setting the pixels to black (the phosphor isn’t active) or rapidly
changing the colors of an RGB screen (as with a screen saver), you can prevent
screen burn. While effective on an RGB display, setting the pixels to black may
actually cause screen burn on a PowerBook. The reason is that all the

MACINTOSH Q & A December 1992

123



PowerBooks have a liquid crystal display (LCD), which can be burned by white
pixels, black pixels, or repeating patterns on the screen over a period of time.
For this type of display the only good way to save the screen is to power it off.

Only the Power Manager has access to the chip that shuts the screen off. After a
certain amount of time, the Power Manager makes the function calls to put the
system to sleep. (These calls are documented in Chapter 31 of Inside Macintosh
Volume VI.) At this time the Power Manager signals the chip to turn the screen
off. There’s no direct interface between the user and the chip to achieve this. It’s
best to let the PowerBook’s native screen-saving mechanism (sleep mode, which
shuts off the screen) work as is. This also has the benefit of saving the precious
battery power that would be used by the screen saver.

By the way, if your PowerBook screen has ghost images because you’ve left it on
too long without going into sleep mode, letting the screen sleep or shutting
down your computer for at least 24 hours will probably make the ghost images
go away. Although there’s no hard and fast rule, usually ghost images caused by
your system being on for less than 24 hours won’t be permanent if the screen is
rested for an equal amount of time. Any ghost images caused by the system
being on for greater than 24 hours may be permanent.

Q How can I call Connect in AppleTalk Remote Access without an existing ARA
connection file created by the Remote Access application?

A This isn’t directly possible, because without the ARA connection file your
program becomes tied to the underlying link tool. The file was implemented so
that in the future, when there are different link tools for the different link types,
the program will know the link type and tool, plus associated link-specific data
to use. To connect without the ARA connection file requires knowledge of the
link tool data structures used by each individual link tool. Because these may
change, your code may break.

However, there’s a roundabout way of calling Connect. It requires that you first
establish a connection using a document created by the ARA application. Next,
make the IsRemote call, setting the optionFlags to ctlir_getConnectInfo (see
page 11 of the AppleTalk Remote Access Application Programming Interface Guide).
This will cause the information necessary to create the remote connection
(connectInfoPtr) to be returned. You would then save this connectInfo data in
your application, and when you want to connect sometime later, you would pass
this data to the Connect call (in the connectInfo field).

Q When we allocate space for a new file using AllocContig with an argument in multiples
of clump size, we should be grabbing whole clumps at a time so that file length (and
physical EOF) will be a multiple of clump size. What happens if we truncate a file by

d e v e l o p December 1992

124



moving the logical EOF somewhere inside a clump? Inside Macintosh says disk sectors
are freed at the allocation block level, so we could have a file whose physical EOF isn’t a
multiple of clump size, right? Does AllocContig guarantee that the new bytes added are
contiguous with the end of the existing file, or only that the newly added bytes are
contiguous among themselves? If the logical and physical EOFs aren’t the same, does
AllocContig subtract the difference before grabbing the new bytes, or do we get the extra
bytes (between EOFs) as a bonus?

A You can create a file whose physical size isn’t a multiple of the clump size, if you
try. When the file shrinks, the blocks are freed at the allocation level, without
regard for the clump size. Therefore, if you set the logical EOF to a smaller
value, you can create a file of any physical length.

There’s no guarantee that the allocated bytes will be contiguous with the
current end of the file. The decisions that file allocation makes are as follows:

• It always attempts to allocate contiguously, regardless of whether you’re
explicitly doing a contiguous allocation. (If it can’t, it fails rather than
proceeding if doing an AllocContig.)

• It always attempts to keep the added space contiguous with the existing
space, but it will forgo this before it will fragment the current allocation
request (regardless of whether you’re calling Allocate or AllocContig).

So these are the actions that file allocation will take:

1. Allocate contiguous space immediately after the current physical end of file.

2. Allocate contiguous space separated from the current physical EOF.

3. Fail here if allocating contiguously.

4. Allocate fragmented space, where the first fragment follows the physical
EOF.

5. Allocate fragmented space somewhere on the volume.

You don’t get “extra” space with AllocContig. It just does a basic allocation but
makes sure any added blocks are contiguous. PBAllocContig does not guarantee
that the space requested will be allocated contiguously. Instead, it first grabs all
the room remaining in the current extent, and then guarantees that the
remaining space will be contiguous. For example, if you have a 1-byte file with a
chunk size of 10K and you try to allocate 20K, 10K-1 bytes will be added to the
current file; the remaining 10K+1 bytes are guaranteed to be contiguous.

Q Inside Macintosh says that ROM drivers opened with OpenDriver shouldn’t be closed.
However, it seems that any driver opened with OpenDriver should be closed when the
application is done. Should our application close the serial port after using it?

MACINTOSH Q & A December 1992

125



A As a general rule, applications that open the serial driver with OpenDriver
should do so only when they’re actually going to use it, and they should close it
when they’re done. (Note that it’s important to do a KillIO on all I/O before
closing the serial port!) There are a couple of reasons for closing the port when
you’re finished using it. First, it conserves power on the Macintosh portable
models; while the serial port is open the SCC drains the battery. Second, closing
the serial port avoids conflicts with other applications that use it. Inside
Macintosh is incorrect in stating that you shouldn’t close the port after issuing an
OpenDriver call.

Most network drivers shouldn’t be closed when an application quits, on the
other hand, since other applications may still be accessing the driver.

Q We’ve tried to put old CDs to productive use. We use them for coasters, but you can only
drink so many Mountain Dews at once. We’ve even resorted to using them for skeet-
shooting practice. Can you suggest other good uses for my old CDs?

A It’s not well known that stunning special effects in some films, such as
Terminator 2, were produced with the aid of compact disc technology. For
example, the “liquid metal” effect used for the evil terminator was nothing more
than 5000 remaindered Madonna CDs, carefully sculpted into the shape of an
attacking android. And did you know that dropping a CD into a microwave
oven for five seconds or so produces an incredible “lightning storm” effect?
(Kids, don’t try this at home; we’re trained professionals.) For ideas of what you
can do with old CDs, see the letter on page 5.

Q I need to launch an application remotely. How do I do this? The Process Manager
doesn’t seem to be able to launch an application on another machine and the Finder
Suite doesn’t have a Launch Apple event.

A What you need to do is use the OpenSelection Finder event. Send an
OpenSelection to the Finder that’s running on the machine you want to launch
the other application on, and the Finder will resolve the OpenSelection into a
launch of the application. 

As you can see if you glance at the OpenSelection event in the Apple Event
Registry, there’s one difficulty with using it for remote launching: You have to
pass an alias to the application you want to launch. If the machine you want to
launch the application on is already mounted as a file server, this isn’t important,
since you can create an alias to that application right at that moment. Or, if
you’ve connected in the past (using that machine as a server) you can send a
previously created alias and it will be resolved properly by the Finder on the
remote machine.

d e v e l o p December 1992

126



However, if you want to launch a file without logging on to the other machine
as a server, you’ll need to use the NewAliasMinimalFromFullPath routine in the
Alias Manager. With this, you’ll pass the full pathname of the application on the
machine you want to launch on, and the Alias Manager will make an alias to it
in the same way it does for unmounted volumes. The obvious drawback here is
that you’ll need to know the full pathname of the application — but there’s a
price to pay for everything. The FinderOpenSel sample code on the Developer
CD Series disc illustrates this use of the NewAliasMinimalFromFullPath
routine.

Q When I try to link my driver in MPW 3.2, it tells me

### Link: Error : Output must go to exactly one segment when using 
"-rt" (Error 98)
### Link: Errors prevented normal completion.

In all my source files I have #pragma segment Main {C} and SEG 'Main' {Asm}
directives. Why is it doing this? What factors determine how segments are assigned
(besides the #pragma stuff)? How can I get it to work?

A The problem is probably that you’re including modules from the libraries that
are marked for another segment. Usually the culprit here is that some of the
routines in StdCLib or some other library are marked for the StdIO segment.
You can generally fix this by using the -sg option to merge segments, either
explicitly by naming all the segments you want to merge, or implicitly by just
putting everything into one segment. You probably want to do the latter,
because you only want one segment anyway. Thus, what you should do is add
the option “-sg Main” to your link line in place of the “-sn Main=segment”
option. This will merge all segments into the Main segment, making it possible
to link.

Q How do I count the number of items in a dialog without System 7’s CountDITL? My
solutions are either messy or dangerous: (1) Fiddle with the dialog’s item list, (2) Try to
find out which DITL the dialog used and read the count from the DITL resource, or
(3) Repeatedly call GetDItem until garbage is returned. :-(

A It’s possible to use the CountDITL function with system software version 6.0.4
or later if the Macintosh Communications Toolbox is installed, because it’s
included as a part of the Toolbox. It’s also possible, as you’ve found, to use the
first two bytes of the DITL resource to get the number of items in the item list
(see Inside Macintosh Volume I, page 427). If the handle to your DITL resource
is defined as ditlHandl, for example, you can get at the number of items as
follows:

MACINTOSH Q & A December 1992

127



short **ditlHandl;
ditlHandl = (short **)ditlRez;
itemcount = (**ditlHandl) + 1;

Q How does Simple Player determine whether a movie is set to loop or not? Movie files
that are set to loop seem to have a string of 'LOOP' at the end of the 'moov' resource.
Does Simple Player check 'LOOP'?

A Simple Player identifies whether movies are set to loop by looking within the
user data atoms for the 'LOOP' atom, as you’ve noticed. It’s a 4-byte Boolean in
which a value of 1 means standard looping and a value of 0 means palindrome
looping. Your applications should add the user data 'LOOP' atom to the end of
the movie when a user chooses to loop. We recommend this method as a
standard mechanism for determining the looping status of a movie. If the
'LOOP' atom doesn’t exist, there’s no looping. The calls you need to access this
information are GetMovieUserData, GetUserData, AddUserData, and
RemoveUserData, as defined in the Movie Toolbox chapter of the QuickTime
documentation. For more information see the Macintosh Technical Note
“Movies 'LOOP' Atom.”

Q Calling SetFractEnable seems to force the width tables to be recalculated regardless of
the setting of the low-memory global FractEnable. We’re calling this routine at a
central entry point for any document, as it’s a document-by-document attribute. We
then unconditionally call SetFractEnable(false) on exit back to the event loop, to be nice
to other applications. Calling SetFractEnable(false) seems to trigger the recalculation
even though FractEnable is false. What’s the best way to get around this?

A Your observation is correct. The SetFractEnable call stuffs the Boolean
parameter (as a single byte) into the low-memory global $BF4 and
indiscriminately invalidates the cached width table by setting the 4-byte value at
$B4C (LastSpExtra, a Fixed value) to -1. Obviously, it wasn’t anticipated that
SetFractEnable could be called regularly with a parameter that often doesn’t
change the previous setting. (By the way, the same observation applies to
SetFScaleDisable.)

In your case, you may want to keep track of the fractEnable setting in your
application and avoid redundant SetFractEnable calls. (Note that it’s not a good
idea to use the above insider information and poke at $BF4 and $B4C on your
own!)

You don’t need to think of other applications when resetting fractEnable; it
belongs to those low-memory globals that are swapped in and out during
context switches to other applications.

d e v e l o p December 1992

128



Q It looks as though the Event Manager routine PostHighLevelEvent could be (ab)used to
send low-level messages, like phony mouse clicks and keystrokes. Would this work?

A No; unfortunately, this won’t work. A few reasons why:

• The only applications that will receive high-level events (and their
descendants, like Apple events) are applications that have their HLE bit set
in their SIZE resource. If you try to send (or post) an HLE to an older
application you’ll get an error from the PPC Toolbox telling you that there’s
no port available.

• There’s no system-level translator to convert these things. There are
currently translators to change some Apple events. Specifically, the Finder
will translate any “puppet string” event into puppet strings for non-System 7
applications (odoc, pdoc, and quit), but these are very special.

• The only way to send user-level events such as mouse clicks through HLEs
is to use the Apple events in the MiscStndSuite shown in the Apple Event
Registry. And all those events assume that the receiving application will do
the actual translations to user actions themselves.

• HLEs come in through the event loop. So even if it were possible (through
some very nasty patching to WaitNextEvent) to force an HLE into a
non–HLE-aware application, the event would come in with an event code of
23 (kHighLevel) and the targeted application would just throw it away.

So the answer is that you can’t send user-level events to an HLE-aware
application. If you want to drive the interface of an old application in System 7,
you have to use the same hacky method you used under all previous systems.
This, by the way, is one of the main reasons why MacroMaker wasn’t revised for
System 7. Apple decided that it wasn’t supportable and that we would wait for
applications to update to System 7 and take advantage of third-party Apple
event scripting systems.

Q What’s the recommended method for allowing an AppleTalk node to send packets to
itself using AppleTalk’s self-send mode (intranode delivery), assuming customers are
running various versions of AppleTalk? There used to be a control panel called
SetSelfSend that would turn on AppleTalk self-send mode at startup time. Should we
use that control panel or should we use the PSetSelfSend function in our program to set
the self-send flag ourselves?

A AppleTalk self-send mode requires AppleTalk version 48 or greater. You can
check the AppleTalk version with Gestalt or SysEnvirons. All Macintosh models
except for the Macintosh XL, 128, 512, and Plus have AppleTalk version 48 or
greater in ROM.

MACINTOSH Q & A December 1992

129



The SetSelfSend control panel is still available on the Developer CD Series disc
(Tools & Apps:Intriguing Inits/cdevs/DAs:Pete’s hacks-Moof!:SetSelfSend).
However, we don’t recommend it as a solution if you need to use self-send mode
in your program. Instead, you should use the PSetSelfSend function to turn
self-send mode on with your program.

AppleTalk’s self-send mode presents a problem. Any changes made to the state
of self-send will affect all other programs that use AppleTalk. That is, self-send
mode is global to the system. Because of this, programs using self-send should
follow these guidelines:

• If you need self-send for only a brief period of time (for example, to perform
a PLookupName on your own node), you should turn it on with
PSetSelfSend (saving the current setting returned in oldSelfFlag), make the
call(s) that require self-send, and restore self-send to its previous state.

• If you need self-send for an extended period of time (for example, the life of
your application) in which your program will give up time to other
programs, you should turn self-send on and leave it on — do not restore it
to its previous state! Since other programs running on your system (that
aren’t well-behaved) may turn off self-send at any time, programs that
require self-send should periodically check to make sure it’s still on with
either PSetSelfSend or PGetAppleTalkInfo. Apple’s system software has no
compatibility problems with self-send — that is, it doesn’t care if it’s on or
off — so leaving it on won’t hurt anything.

Q In a version 2 picture, the picFrame is the rectangular bounding box of the picture, at
72 dpi. I would like to determine the bounding rectangle at the stored resolution or the
resolution itself. Is there a way to do this without reading the raw data of the PICT
resource itself?

A With regular version 2 PICTs (or any pictures), figuring out the real resolution
of the PICT is pretty tough. Applications use different techniques to save the
information. But if you make a picture with OpenCPicture, the resolution
information is stored in the headerOp data, and you can get at this by searching
for the headerOp opcode in the picture data (it’s always the second opcode in
the picture data, but you still have to search for it in case there are any zero
opcodes before it). Or you can use the Picture Utilities Package to extract this
information.

With older picture formats, the resolution and original bounds information is
sometimes not as obvious or easily derived. In fact, in some applications, the
PICT’s resolution and original bounds aren’t stored in the header, but rather in
the pixel map structure(s) contained within the PICT.

d e v e l o p December 1992

130



To examine these pixMaps, you’ll first need to install your own bitsProc, and
then manually check the bounds, hRes, and vRes fields of any pixMap being
passed. In most cases the hRes and vRes fields will be set to the Fixed value
0x00480000 (72 dpi); however, some applications will set these fields to the
PICT’s actual resolution, as shown in the code below.

Rect gPictBounds;
Fixed gPictHRes, gPictVRes;

pascal void ColorBitsProc (srcBits, srcRect, dstRect, mode, 
maskRgn)

BitMap *srcBits;
Rect *srcRect, *dstRect;
short mode;
RgnHandle maskRgn;
{

PixMapPtr pm;
pm = (PixMapPtr)srcBits;
gPictBounds = (*pm).bounds;
gPictHRes = (*pm).hRes; /* Fixed value */
gPictVRes = (*pm).vRes; /* Fixed value */

}
void FindPictInfo(picture)
PicHandle picture;
{

CQDProcs bottlenecks;
SetStdCProcs (&bottlenecks);
bottlenecks.bitsProc = (Ptr)ColorBitsProc;
(*(qd.thePort)).grafProcs = (QDProcs *)&bottlenecks;
DrawPicture (picture, &((**picture).picFrame));
(*(qd.thePort)).grafProcs = 0L;

}

Q The code I added to my application’s MDEF to plot a small icon in color works except
when I hold the cursor over an item with color. The color of the small icon is wrong
because it’s just doing an InvertRect. When I drag over the Apple menu, the menu
inverts behind the icon but the icon is untouched. Is this done by brute force, redrawing
the small icon after every InvertRect?

A The Macintosh system draws color icons, such as the Apple icon in the menu
bar, every time the title has to be inverted. First InvertRect is called to invert
the menu title, and then PlotIconID is called to draw the icon in its place. The
advantage of using PlotIconID is that you don’t have to worry about the depth
and size of the icon being used. The system picks the best match from the

MACINTOSH Q & A December 1992

131



family whose ID is being passed, taking into consideration the target rectangle
and the depth of the device(s) that will contain the icon’s image.

The Icon Utilities call PlotIconID is documented in the Macintosh Technical
Note “Drawing Icons the System 7 Way” (formerly #306); see this Note for
details on using the Icon Utilities calls.

Q The cursor flashes when the user types in TextEdit fields in my Macintosh application.
This is done in TEKey. I notice that most programs hide the cursor once a key is pressed.
I don’t care for this because then I have to move the mouse to see where I am. Is this a
typical fix for this problem and an accepted practice?

A There’s very little you can do to avoid this. The problem is that every time you
draw anything to the screen, if the cursor’s position intersects the rectangle of
the drawing being done, QuickDraw hides the cursor while it does the drawing,
and then shows it again to keep it from affecting the image being drawn beneath
it. Every time you enter a character in TextEdit, the nearby characters are
redrawn. Usually this is invisible because the characters just line up on top of
their old images, but if the cursor is nearby and visible, it will flicker while it’s
hidden to draw the text. This is why virtually all programs call ObscureCursor
when the user types. Also, most users don’t want the image of the cursor
obscuring text they might be referring to, yet they don’t want to have to move it
away and then move it back to make selections. Because it’s so commonplace,
hiding the cursor probably won’t bother your users; in fact, they might very well
prefer the cursor hidden. This, combined with the fact that there’s very little
you can do to help the flickering, suggests that you should obscure the cursor
while the user types.

Q We’re using Apple events with the PPC Toolbox. We call StartSecureSession after
PPCBrowser to authenticate the user’s identity. The user identity dialog box is displayed
and everything looks good. However, in the first AESend call we make, the user
identity dialog is displayed again. (It isn’t displayed after that.) Why is this dialog being
displayed from AESend when I’ve already authenticated the user identity with
StartSecureSession?

A First, a few PPC facts:

• When a PPC session is started, StartSecureSession lets the user authenticate
the session (if the session is with a program on another Macintosh) and
returns a user reference number for that connection in the userRefNum
field of the PPCStartPBRec. That user reference number can be used to
start another connection (using PPCStart instead of StartSecureSession)
with the same remote Macintosh, bypassing the authentication dialogs.

d e v e l o p December 1992

132



• User reference numbers are valid until either they’re deleted with the
DeleteUserIdentity function or one of the Macintosh systems is restarted.

• If the name and password combination used to start a session is the same as
that of the owner of the Macintosh being used, the user reference number
returned refers to the default user. The default user reference number
normally is never deleted and is valid for connections to the other
Macintosh until it’s deleted with DeleteUserIdentity or one of the
Macintosh systems is restarted.

With that out of the way, here’s how user reference numbers are used when
sending high-level events and Apple events: When you first send a high-level
event or an Apple event to another Macintosh, the code that starts the session
with the other system doesn’t attempt to use the default user reference number
or any other user reference number to start the session, and it doesn’t keep the
user reference number returned to it by StartSecureSession. The session is kept
open for the life of the application, or until the other side of the session or a
network failure breaks the connection.

When you started your PPC session, StartSecureSession created a user
reference number that could be used to start another PPC session without
authentication. However, the Event Manager knows nothing of that user
reference number, so when you send your first Apple event, the Event Manager
calls StartSecureSession again to authenticate the new session. Since there isn’t
any way for you to pass the user reference number from the PPC session to the
Event Manager to start its session, there’s nothing you can do about this
behavior.

Q How can I make my ImageWriter go faster?

A To make your ImageWriter go blazingly fast, securely tie one end of a 12-foot
nylon cord around the printer and the other end around your car’s rear axle. If
your car has a manual transmission, hold the clutch in and race your car’s engine
until the tachometer is well into the red zone. Slip the clutch and off you go! If
your car has an automatic transmission, you can approach the same results by
leaving plenty of slack in the rope before peeling out.

MACINTOSH Q & A December 1992

133
Have more questions? Need more answers?
Take a look at the Q & A Technical Notes on the
Developer CD Series disc and the Dev Tech
Answers library on AppleLink.•



See if you can solve this programming puzzle, presented in the form of
a dialog between Konstantin Othmer (KON) and Bruce Leak (BAL).
The dialog gives clues to help you. Try to guess this one before BAL does.
To figure out your score, see “Scoring” at the end. 

KON Have you heard of Spaceward Ho!?

BAL Yeah, it’s that awesome conquer-the-galaxy game from Delta Tao. That
game has done more to hurt productivity around here than pinball.

KON After they released it, they got several calls complaining about a crash. They
tried to reproduce the crash but couldn’t.

BAL They don’t have that SADE MultiFinder installed, do they?

KON Very funny.

BAL How is their configuration different from the configuration of customers
with the problem?

KON Everyone who complained had a 4-meg IIsi, ci, or fx. And the Delta Tao
folks tested those configurations.

BAL Hmmm. How does it crash? Can you get into MacsBug?

KON That’s part of the problem, the customers who have the crash aren’t
programmers and don’t have MacsBug. The crash is with an Error 01, a bus
error.

BAL Well, find one of the machines it crashes on, install MacsBug, and see what’s
wrong. How hard can it be?

KON So you fly to Bismarck, North Dakota, and install MacsBug, and it doesn’t
crash anymore. Pretty hard, I guess.

BAL Hmmm. Just MacsBug? Are there any INITs running?

KON The machine has only MacsBug, nothing else.

d e v e l o p December 1992

KONSTANTIN OTHMER AND BRUCE LEAK
are basically slackers who go on way too many
vacations. Unfortunately, they write buggy code
and there are always a number of bugs that they
need to fix on their return. But in true slacker
style, they wouldn’t think of fixing their own bugs.
Enter the Puzzle Page, a sly coverup for getting
someone else to solve these problems. Instead of
fighting through buggy code with MacsBug, they

call each other looking for easy answers. To keep
pace with their bugs, they’re lobbying the
develop staff to do a whole issue of just Puzzle
Pages.•

134

KON & BAL’S

PUZZLE PAGE

A MICRO BUG

KONSTANTIN OTHMER
AND BRUCE LEAK



BAL And you never set a breakpoint, or an A-trap break, or anything?

KON Nope.

BAL Do you have a FirstTime macro?

KON Nope.

BAL So how could MacsBug be interfering?

KON I can’t help you there. It’s your puzzle.

BAL Well, MacsBug initializes some low-memory values and rearranges things
above BufPtr. Is the app doing anything funny that might depend on some
low mems?

KON The app follows every programming convention dictated by Inside Macintosh
and the Developer Support Center. They even follow every human interface
guideline and . . .

BAL Yeah, yeah, yeah. Impossible. So MacsBug is installed, but it’s never invoked.

KON Yep.

BAL What’s the app doing when it crashes?

KON It’s in the middle of a bunch of calculations — you know, how many ships
got destroyed in battle, how fast planets’ populations are growing, what the
computer players are doing, that kind of thing.

BAL Well, MacsBug causes the app to launch in a different place.

KON OK.

BAL MacsBug loads above BufPtr, so everything else loads lower. Maybe the app
reads past the end of its heap. When MacsBug is in, it’s lower in the heap, so
the app reads somewhere in MacsBug territory. When MacsBug is out, the
app reads past the end of RAM and causes a bus error.

KON Nice theory. But how do you verify that that’s the problem without
MacsBug?

BAL Launch another app first.

KON Then the Ho! will load even lower in memory. It won’t crash.

BAL Use MicroBug.

KON You mean that thing that comes up when you push the NMI switch and
MacsBug isn’t installed? Where is that documented?

BAL I don’t know. It can’t be too hard to figure it out, though.

KON Well, the only command I know is G for “Go.” What else will it let me do?

KON & BAL’S PUZZLE PAGE December 1992

135



BAL You can look at memory and registers, you can set the PC, and you can even
exit to the shell. Let’s try a Total Display, TD. MicroBug responds with this:

000C30  0000 0000 0074 0000  FFFF 0100 0000 00C4
000C40  0000 FFFF 0000 0000  00AD E5D7 0074 0000
000C50  006E B2D0 0074 0A80  006E 9EB8 0057 0308
000C60  0000 0000 0074 0BAC  006E 49F8 006E 49E0
000C70  000A D96A 2014 0000  0000 0000 0000 0000
000C80  0000 0000 5444 0020  0020 0020 0020 0020

KON It looks like it’s dumping memory from C30.

BAL Yeah, from SysEqu.a we see that C30 is SEVarBase. The system exception
vars go up to CBF. I guess that’s where the exception vectors dump the
processor state when an exception occurs.

KON Since the system sets up the SEVars, they’re set up on any exception
regardless of the debugging environment. Using MacsBug, we can figure
out that the first two lines are registers D0-D7, the next two lines are 
A0-A7, then the PC, then the status register, then what?

BAL I don’t know, but at C84, it looks like what we typed: TD.

KON You could read a book written in ASCII!

BAL Let’s try something else, maybe it can do math. Let’s try DM PC-10.

KON It works.

BAL Yeah. In addition to the PC, it knows registers as RA0 or RD0 (but you set
registers with a line like D0 = 5, not RD0 = 5). You can set memory using
SM.

KON Anyway, back to the Ho!

BAL So in the Ho! I can look at the PC and the registers and figure out that it’s
looking past the end of memory.

KON You can’t do an IL or an IP, so you can’t prove that bogus values in a register
are causing the bus error. 

BAL I go into MacsBug on my PowerBook and disassemble the code with the
DH command. 

KON How do you find the problem code in the source?

BAL I pattern-match using the Find command on the PowerBook. Once I find
the problem in MacsBug on the PowerBook, I’m golden.

KON Right! Here’s the scoop: One of their pointers got messed up and they were
reading off the end of their heap. The value they read had only a minor
impact on the calculations, so no one noticed the problem. When MacsBug

d e v e l o p December 1992

SCORING
If you stick with MacsBug and never even try MicroBug, score 25.
If you figured out the bug before BAL did, score 50.
If you start to use MicroBug and like it better than MacsBug, score 75.
If you start to play Spaceward Ho! regularly, and like it better than MicroBug, score 100.•

136



was in, they were reading in MacsBug’s code space, which is a valid address
and didn’t cause a bus error. The reason it was reported on 4-meg IIsi’s, ci’s,
and fx’s is that only ’030 or ’040 machines that have the ci-class ROM cause
bus errors when reading a valid RAM address that doesn’t have RAM
installed. 

BAL And reading off the end of RAM on an 8-meg machine in 24-bit addressing
mode just reads the ROM, which is valid.

KON Instead of this MicroBug detour, you could just write a flag value on the
screen from various interesting places in the source. The flag value when
you crash tells you where you were last.

BAL Yeah, but that’s been done before. And it doesn’t give us a good excuse to
discuss MicroBug.

KON OK, Mr. MicroBug, what’s the fewest keystrokes you can use to do an
ExitToShell from MicroBug?

BAL Well, ExitToShell is Toolbox trap A9F4. The Toolbox trap table begins at
$E00, so you can calculate the address of the trap and then use the G
command.

KON Once you have the address, that’s a minimum of seven keystrokes. You like
to type a lot.

BAL I need some time to think about that one.

KON While you’re thinking, how do you restart from MicroBug?

BAL Let’s just leave everyone in suspense until next time.

KON Nasty.

BAL Yeah.

KON & BAL’S PUZZLE PAGE December 1992

137
Thanks to Gary Davidian, scott douglass, and
Jean-Charles Mourey for reviewing this column.•



A
AccessContainedObjects,

TAppleObjectDispatcher and
75

AddResource, MakeStandAlone
tool and  107

AEDisposeToken, Apple events
and  68

'aedt' resource, UAppleObject and
77–78

AESend, Macintosh Q & A  122,
132–133

Alexander, Pete  84
aliases, Macintosh Q & A

122–123
Alias Manager, Macintosh Q & A

122–123
AllocContig, Macintosh Q & A

124–125
animation  53–57
“Another Take on Globals in

Standalone Code” (Rollin)
89–115

Apple Event Manager, Apple
events and  59, 60–61, 62–64

Apple event object model, objects
and  58–83

“Apple Event Objects and You”
(Clark), correction to  6

Apple Event Registry  66–67
Apple events

Macintosh Q & A  122,
126–127, 132–133

objects and  58–83
Apple menu, Macintosh Q & A

131–132
AppleTalk, Macintosh Q & A

129–130
AppleTalk Filing Protocol (AFP),

Macintosh Q & A  122–123
AppleTalk Remote Access,

Macintosh Q & A  124
application parameters, global

variables and  92

artificial life, Johnson ponders
116–119

Artificial Life III (Santa Fe, NM)
116

assembly language, components
and C++ classes compared  40

B
backlight, Macintosh Q & A

123–124
battery, Macintosh Q & A

123–124
“Be Our Guest” (Van Brink)

37–40
Berdahl, Eric M.  58
“Better Apple Event Coding

Through Objects” (Berdahl)
58–83

BlockMove, MakeStandAlone tool
and  105

C
C

components and C++ classes
compared  40

Macintosh Q & A  121
C++

Apple events and  58–83
Macintosh Q & A  121

C++ classes, components
compared to  37–40

CalcCMask, Macintosh Q & A
120

CalcMask, Macintosh Q & A  120
CalculateOffset, StART system

and  101, 112
callbacks, time bases and  49–52
CallComponentFunction,

components and  17, 20, 30
CallComponentFunctionWith-

Storage, components and  17,
20, 30

CallMeWhen, time bases and  50,
51

d e v e l o p December 1992

For a cumulative index to all issues of
develop, see the Developer CD Series
disc.•

138

INDEX



CallProcPtr, MakeStandAlone
tool and  104

can do function, components and
12

CaptureComponent, Math
component and  25

CDs, Macintosh Q & A  126
Clark, Richard  6
classes

Apple events and  68–70,
79–83

C++  37–40
CloseA5World, global variables

and  96
CloseComponent, components

and  20, 22, 28
CloseComponentResFile,

components and  30
close function, components and

12
clumps, Macintosh Q & A

124–125
color, Macintosh Q & A  131–132
color tables, Macintosh Q & A

121
CompareAppleObjects,

MAppleObject and  72
CompareObjects,

TAppleObjectDispatcher and
76

ComponentCallNow, Math
component and  16–17

ComponentFunctionImplemented,
Math component and  25

Component Manager
components and  7–36
components and C++ classes

compared  37–40
time bases and  45

Component Registry group (Apple
Computer, Inc.)  10

components
C++ classes compared to

37–40
writing and debugging  7–36

ComponentSetTarget, Math
component and  25

Connect, Macintosh Q & A  124
ConvertAppToStandAloneCode,

MakeStandAlone tool and  102,
103, 107

CopyBits, animation and  54, 55,
56, 57

CopyDeepMask, print hint  84
CopyHostQD, StARTGlue.a.o

and  110–111
CopyMask

Macintosh Q & A  120
print hint  84

CouldAlert, Macintosh Q & A
120

CouldDialog, Macintosh Q & A
120

CountContainedObjects,
MAppleObject and  71–72

CountDITL, Macintosh Q & A
127–128

CountObjects,
TAppleObjectDispatcher and
75–76

CPlusTESample, Apple events
and  78–79

CreateResFile, MakeStandAlone
tool and  106

CurResFile, components and  30
cursor, Macintosh Q & A

131–132

D
Darwin, Charles Robert  117–118
data hiding, components and C++

classes compared  38
debugging, components and  7–36
declarations, components and C++

classes compared  37–38
Delta Tao  134
Dialog Manager, Macintosh

Q & A  120
dialogs, Macintosh Q & A

127–128

dispatcher, components and  13,
17–19

DisposeHandle, MakeStandAlone
tool and  106

DisposeToken,
TAppleObjectDispatcher and
76

DITL resource, Macintosh Q & A
127–128

DoAdd, MoMath and  23
DoAppleEvent, MAppleObject

and  72–73
DoDivide, Math component and

16, 17, 19, 22, 24, 25
DoMultiply, Math component and

16, 24, 25
DoneWithGlobals, StART system

and  100, 101, 111
drivers, Macintosh Q & A

125–126, 127
DTS.Draw, animation and  57

E
EnslaveMovies, time bases and  48
Entry, StART system and  101
EOFs, Macintosh Q & A

124–125
ErrorExit, MakeStandAlone tool

and  102, 103, 104, 106
Event Manager, Macintosh Q & A

129
evolution, Johnson ponders

117–118, 119
exception handling, UAppleObject

and  70
ExtractObject,

TAppleObjectDispatcher and
75

F
“Fast Component Dispatch”

(Krueger)  20
FillChar, MakeStandAlone tool

and  105

INDEX December 1992

139



Finder
animation and  53
Macintosh Q & A  126–127
MakeStandAlone tool and

106
FindNextComponent,

components and  20, 28, 30
FlipPieces, time bases and  50–51
FractEnable, Macintosh Q & A

128
FrameRect, animation and  53–54
FreeAlert, Macintosh Q & A  120
FreeDialog, Macintosh Q & A

120

G
GDevices, animation and  54, 55,

56
“genetic takeover,” Johnson

ponders  118
GetAppleClass, MAppleObject

and  71
GetComponentInfo, time bases

and  45
GetComponentInstanceA5,

components and  29
GetComponentRefcon,

components and  29, 30
GetContainedObject,

MAppleObject and  72
GetDefaultAppleObject,

MAppleObject and  73
GetDispatcher,

TAppleObjectDispatcher and
77

GetDItem, Macintosh Q & A
127–128

GetMovieTimeBase, time bases
and  45

GetSAA5, StART system and
101, 111–112

GetTarget,
TAppleObjectDispatcher and
76

GetTimeBaseFlags, time bases and
46–47

GetTimeBaseMasterClock, time
bases and  45

GetTimeBaseMasterTimeBase,
time bases and  45

GetTokenObjectDisposal,
TAppleObjectDispatcher and
76

GetWindowIndex, correction to  6
global variables, MPW and

89–115
GoToBeginningOfMovie, time

bases and  49
GotRequiredParameters,

MAppleObject and  73
“Graphical Truffles” (Lee)  53–57
GWorlds, animation and  54

H
HandleAppleEvent,

TAppleObjectDispatcher and
75

I
icons, Macintosh Q & A  131–132
imageable area, print hint  86–87
ImageWriter, Macintosh Q & A

133
implementation, components and

C++ classes compared  39–40
inheritance, components and C++

classes compared  38–39
InitAppleObject, MAppleObject

and  73
InitGraf, OpenA5World and  97
Install, TAppleObjectDispatcher

and  74–75
InstallAppleEventHandler,

TAppleObjectDispatcher and
77

InvertRect, Macintosh Q & A
131–132

J
Johnson, Dave  116

K
King, Casey  7–8
“KON & BAL’s Puzzle Page”

(Othmer and Leak)  134–137
Krueger, Mark  20

L
Lamarckian evolution, Johnson

ponders  117–118, 119
Lamarck, Jean-Baptiste-Pierre-

Antoine de Monet de  117–118,
119

Laser Prep, print hint  87
LaserWriter, print hint  84, 85
Launch Apple event, Macintosh

Q & A  126–127
Leak, Bruce  134
Lee, Edgar  53
LISP, components and C++ classes

compared  40
'LOOP', Macintosh Q & A  128

M
MABuild, Macintosh Q & A  121
MacApp, Macintosh Q & A  121
Macintosh Operating System

components and C++ classes
compared  40

standalone code and  89–90
Macintosh Q & A  120–133
Macintosh Toolbox, Macintosh

Q & A  123–124
MacsBug

components and  32–33
KON & BAL puzzle  134,

135, 136–137
MakeStandAlone tool, StART

system and  98, 100, 102–107,
108, 109

MAppleObject, Apple events and
61, 68, 69, 70, 71–73

d e v e l o p December 1992

140



“marching ants” effect, animation
and  53–54

Math component  16–26
MCDoAction, time bases and  46
MCMovieChanged, time bases

and  46
md, print hint  87
MDEF, Macintosh Q & A

131–132
“memes,” Johnson ponders  118
messages, Macintosh Q & A  129
MicroBug, KON & BAL puzzle

135, 136, 137
MoMath, Math component and

22–23
'moov' resource, Macintosh

Q & A  128
movies

Macintosh Q & A  128
QuickTime and  41–52

MoviesTask, time bases and  51
Movie Toolbox, time bases and

41–52
MPW, global variables and

89–115
MPW 3.2, Macintosh Q & A  127
multilayer off-screen worlds,

animation and  55–57

N
NewCallBack, time bases and  49,

50, 52
NewGWorld, animation and  54,

55
NewHandle, MakeStandAlone

tool and  104
NewPtr, Macintosh Q & A  122
NuMath, Math component and

24, 25, 26
NuMathComponent, Math

component and  24

O
object-oriented programming,

Apple events and  60–64

objects, Apple events and  58–83
Object Support Library (OSL),

Apple events and  61–64, 67–68
off-screen drawing, animation and

54–55
off-screen graphics worlds,

Macintosh Q & A  121
OpenA5World, global variables

and  94–97, 112–114
OpenComponent, components

and  20, 21, 28, 29
OpenComponentResFile,

components and  30
OpenDriver, Macintosh Q & A

125–126
open function, components and

12
OpenResFile, MakeStandAlone

tool and  102, 106
Ortiz, Guillermo A.  41–42
Othmer, Konstantin  134

P
PenMode, animation and  53–54
PenPat, animation and  53–54
Persist.p, StART system and

98–99, 100–101
PICT resource, Macintosh Q & A

130–131
pictures

Macintosh Q & A  121,
130–131

print hint  85–86
PostHighLevelEvent, Macintosh

Q & A  129
PPCBrowser, Macintosh Q & A

132–133
PPC Toolbox, Macintosh Q & A

132–133
“Print Hints” (Alexander)  84–88
printing, print hints  84–88
Printing Manager, print hint

85–86
Process Manager, Macintosh

Q & A  126–127

PSetSelfSend, Macintosh Q & A
129–130

Puzzle Page  134–137

Q
Q & A, Macintosh  120–133
QuickDraw

animation and  55, 56
global variables and  92, 97

QuickTime 1.0, components and
7–36

QuickTime 1.5  41–52

R
RegisterComponent, components

and  16
RegisterComponentResource,

components and  16
register function, components and

13
Reinstaller, components and

35–36
ReleaseResource, OpenA5World

and  96
RememberA0, global variables and

92–93
ResEdit, MakeStandAlone tool

and  106
ResolveSpecifier,

TAppleObjectDispatcher and
77

RestoreA4, global variables and
93

RmveResource, MakeStandAlone
tool and  106

Rollin, Keith  89
ROM drivers, Macintosh Q & A

125–126

S
scripting, Apple events and  58–83
Segment Loader, global variables

and  91, 94
segments, Macintosh Q & A  127

INDEX December 1992

141



serial port, Macintosh Q & A
125–126

server volumes, Macintosh Q & A
122–123

SetA5, MakeStandAlone tool and
104

SetComponentRefcon,
components and  29

SetDefaultAppleObject,
MAppleObject and  73

SetFractEnable, Macintosh Q & A
128

SetMovieMasterClock, time bases
and  44

SetMovieRate, time bases and  46
SetMovieTime, time bases and  44
SetOrigin, print hint  85
SetResAttrs, MakeStandAlone tool

and  107
SetSelfSend, Macintosh Q & A

129–130
SetTBLoop, time bases and

46–47
SetTimeBaseFlags, time bases and

46–47
SetTimeBaseMasterClock, time

bases and  44
SetTimeBaseTime, time bases and

44
SetTokenObjectDisposal,

TAppleObjectDispatcher and
76

SetupA4, global variables and
92–93

ShiftMoviePieces, time bases and
51

Simple Player, Macintosh Q & A
128

Spaceward Ho! (Delta Tao), KON
& BAL puzzle  134–137

SplitMovie, time bases and  51
spool-a-page, print-a-page

method, print hint  84–85
srcCopy transfer mode, animation

and  56

srcXor transfer mode, animation
and  53–54

standalone code, MPW and
89–115

StARTGlue.a.o, StART system
and  100, 101, 105, 107–112

StART system, global variables
and  97–114

StartMovie, time bases and  46, 49
StartSecureSession, Macintosh

Q & A  132–133
StuffDescriptor,

TAppleObjectDispatcher and
75

Symantec  89
symbolic debugging, components

and  31–32
System 7, Macintosh Q & A  120,

127–128
System 7.1, components and  7–36

T
TAppleObjectDispatcher,

UAppleObject and  73–77
TArea, Apple events and  66
target function, components and

13
“Techniques for Writing and

Debugging Components”
(Woodcock and King)  7–36

TEditText, Apple events and
79–83

TEKey, Macintosh Q & A  132
TextEdit, Macintosh Q & A  132
thing dcmd, components and

32–33
Things! control panel,

components and  33–35
THINK solution, global variables

and  92–94, 112–114
32-Bit QuickDraw, animation and

54
TImage, Apple events and  66
time bases, QuickTime and  41–52

TimeBaseSimple, time bases and
44–47

TimeBaseSlave, time bases and
47–52

“Time Bases: The Heartbeat of
QuickTime” (Ortiz)  41–52

Time Manager, time bases and  41
TPixel, Apple events and  66
TScanLine, Apple events and  66

U
UAppleObject, Apple events and

61, 62, 70–78
UnionRect, animation and  55
UseGlobals, StART system and

100, 101, 102, 109–110
UseResFile, components and  30
user identity dialog box,

Macintosh Q & A  132–133

V
ValidateCode, MakeStandAlone

tool and  103–104
Van Brink, David  37
version function, components and

12
“Veteran Neophyte, The”

(Johnson)  116–119
volumes, Macintosh Q & A

122–123

W, X, Y, Z
width tables, Macintosh Q & A

128
Woodcock, Gary  7–8
WriteRectToken, correction to  6
WriteResource, MakeStandAlone

tool and  107

d e v e l o p December 1992

142


