

E D I T O R I A L S T A F F

Editor-in-Cheek Caroline Rose

Technical Buckstopper Dave Johnson

Our Boss Greg Joswiak

His Boss David Krathwohl

Review Board Pete (“Luke”) Alexander, Neil Day,

C. K. Haun, Jim Reekes, Bryan K. (“Beaker”)

Ressler, Larry Rosenstein, Andy Shebanow,

Gregg W illiams

Managing Editor Monica Meffert

Assistant Managing Editor Cynthia Jasper

Contributing Editors Lorraine Anderson, Geta

Carlson, Toni Haskell, Judy Helfand, Rilla

Reynolds

Indexer Ira Kleinberg

A R T & P R O D U C T I O N

Production Manager Hartley Lesser

Art Director Diane W ilcox

Technical Illustration Dave Olmos, John Ryan

Formatting Forbes Mill Press

Printing Wolfer Printing Company, Inc.

Film Preparation Aptos Post, Inc.

Production PrePress Assembly

Photography Sharon Beals, Lisa Jongewaard, Tom

Sandborn

Online Production Cassi Carpenter

develop, The Apple Technical Journal, is a
quarterly publication of Apple Computer’s
Developer Support Information group.

Mark Jenkins of Rucker Huggins
created this beautiful image depicting
asynchronous routines by synchronizing
four graphics applications: Adobe
Photoshop, Adobe Illustrator, Ray Dream
Designer, and Fractal Design Painter.

The Developer CD Series disc for March
1993 or later contains this issue and all
back issues of develop along with the code
that the articles describe. The develop
issues and code are also available on
AppleLink and via anonymous ftp on
ftp.apple.com.

CONTENTS March 1993

1
© 1993 Apple Computer, Inc. All rights reserved.

Apple, the Apple logo, APDA, Apple IIGS, AppleLink, AppleShare, AppleTalk, ImageWriter, LaserWriter, MacApp,
Macintosh, MPW, MultiFinder, ProDOS, SANE, and StyleWriter are trademarks of Apple Computer, Inc., registered in
the U.S. and other countries. AppleGlot, ColorSync, develop, DocViewer, the dogcow logo, Finder, Moof,
MoviePlayer, PhotoGrade, PowerBook, QuickDraw, QuickTime, Sound Manager, System 7, and TrueType are
trademarks of Apple Computer, Inc. PostScript and Adobe are trademarks of Adobe Systems Incorporated, which may
be registered in certain jurisdictions. HyperCard and MacWrite are registered trademarks of Claris Coporation.
NuBus is a trademark of Texas Instruments. UNIX is a registered trademark of UNIX System Laboratories. All other
trademarks are the property of their respective owners.

Documentation matters. 2

Apple DocViewer queries. What’s on your mind? 4

Asynchronous Routines on the Macintosh by Jim Luther How to avoid
the pitfalls of calling routines asynchronously. 5

Inside QuickTime and Component-Based Managers by Bill Guschwan
Useful debugging and tracing techniques for QuickTime and the Component
Manager. 34

Macintosh Debugging: The Belly of the Beast Revisited by Fred
Huxham and Greg Marriott A supplement to the Belly of the Beast debugging
article in Issue 8: four new tools explained. 54

Adventures in Color Printing by Dave Hersey A general strategy for
printing color images that ensures the best possible quality. 64

DeviceLoop Meets the Interface Designer by John Powers This little-
known System 7 routine can help you deal with multiple screen environments. 97

Somewhere in QuickTime: Top 10 QuickTime Tips by John Wang
The first installment of a new column on QuickTime: hot tips from the masters. 31

Print Hints: Looking Ahead to QuickDraw GX by Pete (“Luke”)
Alexander Some things you should be aware of involving QuickDraw GX and its
effect on printing. 52

The Veteran Neophyte: Tower of Babble by Dave Johnson
Programming languages are just like natural languages, only different. 61

Graphical Truffles: The Palette Manager Way by Edgar Lee and Forrest
Tanaka The Palette Manager need not be a mystery. Here’s the scoop. 91

KON & BAL’s Puzzle Page: Booting Blues by Konstantin Othmer and
Bruce Leak Yet another elusive crasher bug that you’ll never guess in a million
years. 118

Macintosh Q & A Apple’s Developer Support Center answers your product
development questions. 104

122I N D E X

Q & A

C O L U M N S

A R T I C L E S

L E T T E R S

E D I T O R I A L

Dear Readers,

In May of last year, I schmoozed with a lot of developers at Apple’s Worldwide
Developer’s Conference, and one of the subjects that came up was documentation. I
expressed my ideas on this subject somewhat hesitantly, because I thought the truths
I was spouting were all pretty obvious, but I was surprised to find that several
developers seemed enlightened by them and even suggested this as a topic for a
develop editorial. So here goes.

But first, some motivation. If you’re one of those developers who think no one reads
manuals anyway, has it occurred to you that this might be a self-fulfilling prophecy?
If manuals were better, maybe people would read them. Also, customers who do never
read the manual will never learn the full power of your product (probably not every
feature is self-explanatory) and will be that much quicker to move on when someone
shows them the great things a rival product can do. More likely, people glance at the
manual to get started and then thumb through it later when they want to explore
certain features.

Also keep in mind that a shoddy manual will be seen as a reflection of the product as
a whole: “If this is the best they could do on the manual, how good can their software
be?” Don’t fool yourself that only writers or editors will criticize a poorly done
manual; any reader who has trouble learning from it will complain, and not just to
themselves. While there are times when consistency may be the hobgoblin of small
minds, it’s often the case that inconsistent presentation or terminology will confuse
readers and have them throwing your manual down in disgust and thinking your
product is more complicated than it really is. And people who do know things like
the difference between “its” and “it’s” will wonder how well you debugged your code
if you couldn’t find mistakes like this in your manual. Basically, you won’t look like a
class act.

I’ll state the following points with user documentation in mind, though most of them
also apply to technical documentation for developers. Some points may be useful
only to small companies, but there should be something here for everyone.

• Get a technical writer to write your documentation. Don’t do it
yourself — and try to talk the CEO or VP of Marketing out of
doing it. Contrary to many people’s opinions, writing a manual is

d e v e l o p March 1993

CAROLINE ROSE (AppleLink CROSE) has been
writing and editing software documentation since
many of you were rug rats. She began at a
timesharing company, joined Apple in 1982 to
write Inside Macintosh, and helped get NeXT off
the ground in 1986. Back at Apple now, she has
seven issues of develop under her belt and is still
having a wonderful time. A transplanted New
Yorker, Caroline visited the East Coast last

October in time to see the leaves turn colors. She
enjoyed doing the theater and museum thing in
Manhattan and hitting some incredible restaurants
and nightclubs — not to mention a deli whose
smoked mozarella is the best this side of Naples.
But the highlight was her visit to a friend’s farm in
Connecticut (sheep feeding beats sheet feeding
any day!). Walking to an apple orchard and
tasting fresh sweet cider was sheer rural bliss.•

2

CAROLINE ROSE

not something any smart person can do; it’s a skill like any other.
Most likely you are no more qualified to write the documentation
than a writer is qualified to write your code.

• Look over a relevant writing sample from your prospective writer.
Awards, certificates, and years of experience go only so far:
nothing will tell you whether you’ll get a good manual as much as
looking at past work. Ask how the material for the sample was
gathered, who else contributed to it, and how heavily it was edited.

• Get the writer started early in the process — long before the
feature set is frozen. Writers provide a valuable perspective of your
product, not unlike that of product management. They’ll help with
the design of the product, telling you what features don’t fit in
with other ones and pointing out loopholes, inconsistencies, and
other Bad Things. And they’re typically excellent bug finders.

• Have the documentation edited by an editor. Unless they also
happen to be editors, writers need their work checked like anyone
else — and an electronic spelling or grammar check (while a good
start) isn’t enough.

• Test the result on users, after your product ships if not sooner (you
can revise the documentation for the next printing). And don’t be
defensive: if only one out of ten “testers” turns up a particular
problem, it may mean that 10% of your user base will have the
same problem. Judge no misunderstanding as stupid; they’re all
valid, no matter how much you may disagree with them.

I could go on forever, but that’s enough for now. Please make my day and let me
know if you got anything of value out of this. Or criticize it if you like; I can use the
practice in not being defensive.

Caroline Rose
Editor

EDITORIAL March 1993

3
SUBSCRIPTION INFORMATION
To subscribe to develop, use the subscription card
in the back of this issue. Please address all
subscription-related inquiries to develop, Apple
Computer, Inc., P.O. Box 531, Mt. Morris, IL
61054 (or AppleLink DEV.SUBS).•

BACK ISSUES
For information about back issues of develop and
how to obtain them, see the last page of this
issue. Back issues are also on the Developer CD
Series disc.•

TECH NOTES: WORD IS OUT
Why are the Tech Notes in Microsoft
Word documents? Are you assuming all
developers have Microsoft Word? I
don’t think this is a good assumption.
Developers who don’t have Microsoft
Word would be required to either
purchase it or get an illegal copy. Or I
suppose they might be able to use their
favorite word processor and convert the
Tech Notes if such converters exist.

Big developers may have the capital to
purchase Microsoft Word but small or
starting developers may not, especially
those enthusiastic and creative
programmers in school. It would be a
shame to force them to get an illegal
copy of Microsoft Word so that they
could learn the same wonderful magic
tricks that others get from the Tech
Notes.

Is it possible to produce the Tech Notes
in a minimal text editor such as
TeachText or DocMaker? Or better yet,
why not use Apple DocViewer like the
New Inside Macintosh documents?

— Hoon Im

This is a timely question, as the format of
Tech Notes on the CD has changed. But
first, some background.

There are several reasons why we
distributed Tech Notes as Microsoft Word
documents. Internally we use Microsoft
Word as the authoring tool for Tech Notes
because of its relatively powerful formatting
abilities and ease of use. It also turns out
that most word processing packages, such as
MacWrite® II, have translators that do a
reasonable job on Microsoft Word
documents, so most people have access to the
information. We’re firmly against pirating
software!

Also, our primary commitment has been to
providing the highest quality technical
material possible; rather than focusing on
format conversion, we chose to improve the
overall content and organization of the Tech
Notes. Only then were we ready to turn our
full attention to the question of format.

You mention Apple DocViewer as a possible
alternative format — we have in fact
converted the Tech Notes into Apple
DocViewer format (take a look on the CD).
Over time this will be improved to provide
better indexing and cross-reference facilities
— whose absence we’ve been painfully
aware of in the Microsoft Word format.

— Neil Day, Tech Note Pooh-Bah

LICENSING DOCVIEWER
We are a long-time Macintosh
educational software developer. We’ve
traditionally converted our printed
documentation to HyperCard® for on-
line use by our customers. I wondered
to whom we should speak to request
developer licensing of Apple
DocViewer?

—Rhett Tindall

Apple DocViewer documents are sourced
from several word processors. These
documents must be processed in another
application before they become DocViewer
documents. This application is currently not
of commercial quality and is for Apple
internal use only. However, we’re in the
process of investigating whether to refine
the application and make it available
outside Apple. This process may take some
time and may not result in providing the
software to external parties. Please stay
tuned!

—In-Yung Kim

d e v e l o p March 1993

GIVE US A PIECE OF YOUR MIND
We welcome timely letters to the editors,
especially from readers reacting to articles that
we publish in develop. Letters should be
addressed to Caroline Rose (or, if technical
develop-related questions, to Dave Johnson) at
Apple Computer, Inc., 20525 Mariani Avenue,
M/S 75-2B, Cupertino, CA 95014 (AppleLink
CROSE or JOHNSON.DK). All letters should

include your name and company name as well
as your address and phone number. Letters may
be excerpted or edited for clarity (or to make
them say what we wish they did).•

4

LETTERS

The Macintosh has always supported asynchronous calls to many parts
of its operating system. This article expands on the information found
in Inside Macintosh by telling when, why, and how you should use
functions asynchronously on the Macintosh. It includes debugging hints
and solutions to problems commonly encountered when asynchronous
calls are used.

When calling a routine synchronously, your program passes control to the routine
and doesn’t continue execution until the routine’s work has completed (either
successfully or unsuccessfully). This would be like giving someone a task and then
watching them perform that task. Although the task is eventually completed, you
don’t get anything done while you watch.

On the other hand, when calling a routine asynchronously, your program passes
control to the routine, and the program’s request is placed in a queue or, if the queue
is empty, executed immediately; in either case, control returns to the program very
quickly, even if the request can’t be executed until later. The system processes any
queued requests while your program is free to continue execution, then interrupts
you later when the request is completed. This is like giving someone a task and going
back to your work while they finish the task. In most cases, it results in more work
being accomplished during the same period of time. Figure 1 illustrates the
difference between synchronous and asynchronous calls.

One situation in which you shouldn’t use synchronous calls is when you don’t know
how long it may take for the operation to complete, as with the PPC Toolbox’s
PPCInform function, for example. PPCInform won’t complete until another
program attempts to start a session with your program. This could happen
immediately, but the chances are far greater that it won’t. If PPCInform is called
synchronously, it appears that the system has locked up because the user won’t get
control back until the call completes. If you call PPCInform asynchronously, it
doesn’t matter if the function doesn’t complete for minutes, hours, or even days —
your program (and the rest of the system) can continue normally.

ASYNCHRONOUS ROUTINES ON THE MACINTOSH March 1993

5
JIM LUTHER works in Apple Developer
Technical Support, focusing on AppleTalk, the
File Manager, and other lower regions of the
operating system. Jim uses a heap/stack-based
organizational model in his office: there are
heaps or stacks of books, papers, disks, and
hardware on every square inch of shelf space
and over most of the floor. He was last seen

muttering to himself “Now where did I put
that . . .?”•

JIM LUTHER

ASYNCHRONOUS

ROUTINES ON

THE MACINTOSH

You should also avoid synchronous calls when you can’t know the state of the service
you’ve asked for. Program code that’s part of a completion routine, VBL task, Time
Manager task, Deferred Task Manager task, or interrupt handler is executed at what’s
commonly called interrupt time. Synchronous calls made at interrupt time often result
in deadlock. (See “Deadlock.”) An asynchronous call can solve the problem: if the
service you call is busy handling another request, your asynchronous request is
queued and your program code can give up control (that is, the completion routine or
task your code is part of can end), letting the service complete the current request and
eventually process your request.

Routines called synchronously are allowed to move memory, while routines called
asynchronously purposely avoid moving memory so that they can be called at
interrupt time. For example, the File Manager’s PBHOpen routine may move
memory when called synchronously, but won’t when called asynchronously. If your
code is executing in an environment where memory can’t be moved (for example, at
interrupt time), you must call routines asynchronously to ensure that they don’t move
memory.

At this time, the various lists in Inside Macintosh of “Routines That May Move or
Purge Memory,” “Routines and Their Memory Behavior,” and “Routines That

d e v e l o p March 1993

6

Synchronous call

Operating system Operating system

Response

Asynchronous call

Application codeApplication code

Time Time

Response/C
ontrol

Request/C
ontrol

Interrupt

C
ontrol

Request/C
ontrol

Figure 1
How Synchronous and Asynchronous Calls Work

Should Not Be Called From Within an Interrupt” are either incomplete or incorrect
and can’t be trusted entirely. The reasons why a system routine can’t be called at
interrupt time include: the routine may move memory; the routine may cause a
deadlock condition; the routine is not reentrant. This article shows how to postpone
most system calls until a safe time. You’re encouraged to call as few system routines at
interrupt time as possible.

The routines discussed in this article are low-level calls to the File Manager, the
Device Manager (including AppleTalk driver, Serial Driver, and disk driver calls), and
the PPC Toolbox. All these routines take the following form:

FUNCTION SomeFunction (pbPtr: aParamBlockPtr; async: BOOLEAN): OSErr;

Routines of this form are executed synchronously when async = FALSE or
asynchronously when async = TRUE.

ASYNCHRONOUS ROUTINES ON THE MACINTOSH March 1993

7

Deadlock is a state in which each of two or more
processes is waiting for one of the other processes to
release some resource necessary for its completion. The
resource may be a file, a global variable, or even the
CPU. The process could, for example, be an application’s
main event loop or a Time Manager task.

When deadlock occurs on the Macintosh, usually at least
one of the processes is executing as the result of an
interrupt. VBL tasks, Time Manager tasks, Deferred Task
Manager tasks, completion routines, and interrupt
handlers can all interrupt an application’s main thread of
execution. When the interrupted process is using a
resource that the interrupting process needs, the processes
are deadlocked.

For example, suppose a Time Manager task periodically
writes data to a file by making a synchronous Write
request, and an application reads the data from its main
event loop. Depending on the frequency of the task and
the activity level of the File Manager, the Time Manager
task may often write successfully. Inevitably, however, the

Time Manager task will interrupt the application’s Read
request and deadlock will occur.

Because the File Manager processes only one request at a
time, any subsequent requests must wait for the current
request to complete. In this case, the synchronous request
made by the Time Manager task must wait for the
application’s Read request to complete before its Write
request will be processed. Unfortunately, the File Manager
must wait for the Time Manager task to complete before it
can resume execution. Each process is now waiting for
the other to complete, and they’ll continue to wait forever.

Synchronous requests at interrupt time tend to produce
deadlock, because the call is queued for processing and
then the CPU sits and spins, waiting for an interrupt to
occur, which signals that the request has been completed.
If interrupts are turned off, or if a previous pending
request can’t finish because it’s waiting to resume
execution after the interrupt, the CPU will wait patiently
(and eternally) for the request to finish — until you yank
the power cord from the wall.

DEADLOCK
BY GORDON SHERIDAN

DETERMINING ASYNCHRONOUS CALL COMPLETION
Your program can use two methods to determine when an asynchronous call has
completed: periodically poll for completion (check the ioResult field of the parameter
block passed to the function) or use a completion routine. Both methods enable your
program to continue with other operations while waiting for an asynchronous call to
complete.

POLLING FOR COMPLETION
Polling for completion is a simple method to use when you have only one or two
asynchronous calls outstanding at a time. It’s like giving someone a task and calling
them periodically to see if they’ve completed it. When your program fills in the
parameter block to pass to the function, it sets the ioCompletion field to NIL,
indicating that there’s no completion routine. Then, after calling the function
asynchronously, your program only needs to poll the value of the ioResult field of the
parameter block passed to the function and wait for it to change:

• A positive value indicates the call is either still queued or in the
process of executing.

• A value less than or equal to 0 (noErr) indicates the call has
completed (either with or without an error condition).

Polling is usually straightforward and simple to implement, which makes the code
used to implement polling easy to debug. The following code shows an asynchronous
PPCInform call and how to poll for its completion:

PROCEDURE MyPPCInform;
VAR

err: OSErr; { Error conditions are ignored in this procedure }
{ because they are caught in PollForCompletion. }

BEGIN
gPPCParamBlock.informParam.ioCompletion := NIL;
gPPCParamBlock.informParam.portRefNum := gPortRefNum;
gPPCParamBlock.informParam.autoAccept := TRUE;
gPPCParamBlock.informParam.portName := @gPPCPort;
gPPCParamBlock.informParam.locationName := @gLocationName;
gPPCParamBlock.informParam.userName := @gUserName;
err := PPCInform(PPCInformPBPtr(@gPPCParamBlock), TRUE);

END;

In this code, MyPPCInform calls the PPCInform function asynchronously with no
completion routine (ioCompletion is NIL). The program can then continue to do
other things while periodically calling the PollForCompletion procedure to find out
when the asynchronous call completes.

d e v e l o p March 1993

8

PROCEDURE PollForCompletion;
BEGIN

IF gPPCParamBlock.informParam.ioResult <= noErr THEN
BEGIN { The call has completed. }

IF gPPCParamBlock.informParam.ioResult = noErr THEN
BEGIN

{ The call completed successfully. }
END

ELSE
BEGIN

{ The call failed, handle the error. }
END;

END;
END;

PollForCompletion checks the value of the ioResult field to find out whether
PPCInform has completed. If the call has completed, PollForCompletion checks for
an arror condition and then performs an appropriate action.

There are three important things to note in this example of polling for completion:

• The parameter block passed to PPCInform, gPPCParamBlock, is
a program global variable. Since the parameter block passed to an
asynchronous call is owned by the system until the call completes,
the parameter block must not be declared as a local variable within
the routine that makes the asynchronous call. The memory used
by local variables is released to the stack when a routine ends, and
if that part of the stack gets reused, the parameter block, which
could still be part of an operating system queue, can get trashed,
causing either unexpected results or a system crash. Always declare
parameter blocks globally or as nonrelocatable objects in the heap.

• Calls to PollForCompletion must be made from a program loop
that’s not executed completely at interrupt time. This prevents
deadlock. You don’t necessarily have to poll from an application’s
event loop (which is executed at noninterrupt time), but if you poll
from code that executes at interrupt time, that code must give up
control between polls.

• PollForCompletion checks the ioResult field of the parameter
block to determine whether PPCInform completed and, if it
completed, to see if it completed successfully.

One drawback to polling for completion is latency. When the asynchronous routine
completes its job, your program won’t know it until the next time you poll. This can
be wasted time. For example, assume you give someone a task and ask them if they’re
done (poll) only once a day: if they finish the task after an hour, you won’t find out

ASYNCHRONOUS ROUTINES ON THE MACINTOSH March 1993

9

they’ve completed the task until 23 hours later (a 23-hour latency). To avoid latency,
use completion routines instead of polling ioResult to find out when a routine
completes.

USING COMPLETION ROUTINES
Making an asynchronous call with a completion routine is only slightly more complex
than polling for completion. A completion routine is a procedure that’s called as soon
as the asynchronous function completes its task. When your program fills in the
parameter block to pass to the function, it sets the ioCompletion field to point to the
completion routine. Then, after calling the function asynchronously, your program
can continue. When the function completes, the system interrupts the program that’s
running and the completion routine is executed. (There are some special things you
need to know about function results to use this model; see “Function Results and
Function Completion.”)

Since the completion routine is executed as soon as the function’s task is complete,
your program finds out about completion immediately and can start processing the
results of the function. Using a completion routine is like giving someone a task and
then asking them to call you as soon as they’ve completed it.

Because a completion routine may be called at interrupt time, it can’t assume things
that most application code can. When a completion routine for an asynchronous
function gets control, the system is in the following state:

• On entry, register A0 points to the parameter block used to make
the asynchronous call.

d e v e l o p March 1993

10

Not all function results are equal. Ignore some, pay
attention to others. Ignore function results from
asynchronous File Manager and PPC Toolbox calls. They
contain no useful information. To get useful result
information, wait for the call to complete, then check
ioResult or register D0; both contain the result.

Both the File Manager and the PPC Toolbox will always
call your completion routine if you specified one. If you
didn’t supply one, and instead are polling, test ioResult in
your parameter block. The call has completed if ioResult is
less than or equal to noErr.

Don’t ignore function results from asynchronous Device
Manager calls (for example, AppleTalk driver, Serial
Driver, and disk driver calls). The function result tells you
whether the Device Manager successfully delivered your
request to the device driver. Success is indicated by noErr;
any other value indicates failure.

The system calls your completion routine only if the Device
Manager successfully delivered your request to the driver.
On completion, check whether your call succeeded by
looking in ioResult or register D0.

FUNCTION RESULTS AND FUNCTION COMPLETION
BY SCOTT BOYD AND JIM LUTHER

• Your program again owns the parameter block used to make the
asynchronous call, which means you can reuse the parameter block
to make another asynchronous call (see the section “Call
Chaining” later in this article).

• Both register D0 and ioResult in the parameter block contain the
result status from the function call.

• For completion routines called by the File Manager or Device
Manager, the A5 world is undefined and must be restored before
the completion routine uses any application global variables.

Since completion routines execute at interrupt time, they must follow these rules:

• They must preserve all registers except A0, A1, and D0-D2.

• They can’t call routines that can directly or indirectly move
memory, and they can’t depend on the validity of handles to
unlocked blocks.

• They shouldn’t perform time-consuming tasks, because interrupts
may be disabled. As pointed out in the Macintosh Technical Note
“NuBus™ Interrupt Latency (I Was a Teenage DMA Junkie),”
disabling interrupts and taking over the machine for long periods
of time “almost always results in a sluggish user interface,
something which is not usually well received by the user.” Some
ways to defer time-consuming tasks are shown later in this
article.

• They can’t make synchronous calls to device drivers, the File
Manager, or the PPC Toolbox for the reasons given earlier.

PPC Toolbox completion routines. The PPC Toolbox simplifies the job of writing
completion routines. When a PPC Toolbox function is called asynchronously, the
current value of register A5 is stored. When the completion routine for that call is
executed by the PPC Toolbox, the stored A5 value is restored and the parameter
block pointer used to make the call is passed as the input parameter to the completion
routine.

A completion routine called by the PPC Toolbox has this format in Pascal:

PROCEDURE MyCompletionRoutine (pbPtr: PPCParamBlockPtr);

PPC Toolbox completion routines are still called at interrupt time and so must follow
the rules of execution at interrupt time.

The following code shows an asynchronous PPCInform call and its completion
routine.

ASYNCHRONOUS ROUTINES ON THE MACINTOSH March 1993

11

PROCEDURE InformComplete (pbPtr: PPCParamBlockPtr);
BEGIN

IF pbPtr^.informParam.ioResult = noErr THEN
BEGIN

{ The PPCInform call completed successfully. }
END

ELSE
BEGIN

{ The PPCInform call failed; handle the error. }
END;

END;

PROCEDURE DoPPCInform;
VAR

err: OSErr; { Error conditions are ignored in this procedure }
{ because they are caught in InformComplete. }

BEGIN
gPPCParamBlock.informParam.ioCompletion := @InformComplete;
gPPCParamBlock.informParam.portRefNum := gPortRefNum;
gPPCParamBlock.informParam.autoAccept := TRUE;
gPPCParamBlock.informParam.portName := @gPPCPort;
gPPCParamBlock.informParam.locationName := @gLocationName;
gPPCParamBlock.informParam.userName := @gUserName;
err := PPCInform(PPCInformPBPtr(@gPPCParamBlock), TRUE);

END;

In this code, DoPPCInform calls PPCInform asynchronously with a completion
routine (ioCompletion contains a pointer to InformComplete). The program can
then continue to do other things.

When PPCInform completes, control is passed to InformComplete with a pointer to
gPPCParamBlock. InformComplete checks the result returned by PPCInform and
then performs an appropriate action.

Here are the important things to note in this example of a PPC Toolbox completion
routine:

• The parameter block gPPCParamBlock is declared globally for
the reasons given earlier in the section “Polling for Completion.”

• InformComplete checks the ioResult field of the parameter block
to determine whether PPCInform completed successfully.

File Manager and Device Manager completion routines in high-level
languages. File Manager and Device Manager completion routines written in a

d e v e l o p March 1993

COMPLETION ROUTINE ADDRESS
GENERATION When you fill a parameter
block’s ioCompletion field with the address of a
completion routine, your compiler has to calculate
the address of the completion routine. Most
compilers generate that address either as a PC-
relative reference (the address of the routine’s
entry point within the local code segment) or as
an A5-relative reference (the address of the

routine’s jump table entry). If your compiler
generates an A5-relative reference, the code that
generates the address of the completion routine
must run with the program’s A5 world set up.

MPW Pascal defaults to using PC-relative
references when routines are in the same segment
and uses A5-relative references when routines are
in a different segment. MPW C defaults to using

12

high-level language such as Pascal or C are more complicated than PPC Toolbox
completion routines. They must take additional steps to get the value in register A0
and, if program global variables will be used, restore register A5 to the application’s
A5 value. The reason for this is that File Manager and Device Manager completion
routines are called with the pointer to the call’s parameter block in register A0 and
with the A5 world undefined.

In most high-level languages, registers A0, A1, and D0-D2 are considered scratch
registers by the compiler and aren’t preserved across routine calls. For this reason,
you should not depend on register values as input parameters to routines written in a
high-level language. Examples of completion routines in Inside Macintosh and in
several Macintosh Technical Notes use short inline assembly routines to retrieve the
value of register A0, in the following manner:

FUNCTION GetPBPtr: ParmBlkPtr;
{ Return the pointer value in register A0. }
INLINE $2E88; { MOVE.L A0,(A7) }

PROCEDURE MyCompletionRoutine;
{ This procedure gets called when an asynchronous call completes. }

VAR
pbPtr: ParmBlkPtr;

BEGIN
pbPtr := GetPBPtr; { Retrieve the value in register A0. }
DoWork(pbPtr); { Call another routine to do the actual work. }

END;

Although the GetPBPtr inline assembly routine works with today’s compilers, be
careful, because register A0 could be used by the compiler for some other purpose
before the statement with the inline assembly code is executed. As shown in the
previous example, you can minimize the chances of the compiler using a register
before you retrieve its value by retrieving the register value in the completion
routine’s first statement and then doing as little as possible within the completion
routine (call another routine to do any additional work).

The safest way to use register values as input parameters to completion routines
written in a high-level language is to use a completion routine written in assembly
language that calls a routine written in a high-level language. The following record
type allows File Manager and Device Manager completion routines to be written in
high-level languages such as C or Pascal with only one small assembly language
routine. This record also holds the application’s A5 value so that the completion
routine can restore A5 and application globals can be accessed from within the
completion routine.

ASYNCHRONOUS ROUTINES ON THE MACINTOSH March 1993

13
A5-relative references. THINK Pascal and THINK
C always use A5-relative references. MPW Pascal
and MPW C allow you to change their default
method with the -b compiler option.•

TYPE
extendedPBPtr = ^extendedPB;
extendedPB = RECORD

ourA5: LONGINT; { Application's A5 }
ourCompletion: ProcPtr; { Address of the completion routine }

{ written in a high-level language }
pb: ParamBlockRec; { Parameter block used to make call }

END;

PreCompletion, a small assembly language routine, is used as the completion routine
for all File Manager and Device Manager asynchronous calls (PreCompletion comes
preassembled and ready to link with your C or Pascal code on the Developer CD Series
disc). PreCompletion preserves the A5 register, sets A5 to the application’s A5, calls
the designated Pascal completion routine with a pointer to the parameter block used
to make the asynchronous call, and then restores the A5 register:

PreCompletion PROC EXPORT
LINK A6,#0 ; Link for the debugger.
MOVEM.L A5,-(SP) ; Preserve A5 register.
MOVE.L A0,-(SP) ; Pass PB pointer as the parameter.
MOVE.L -8(A0),A5 ; Set A5 to passed value (ourA5).
MOVE.L -4(A0),A0 ; A0 = real completion routine address.
JSR (A0) ; Transfer control to ourCompletion.
MOVEM.L (SP)+,A5 ; Restore A5 register.
UNLK A6 ; Unlink.
RTS ; Return.
STRING ASIS
DC.B $8D,'PreCompletion' ; The debugger string.
DC.W $0000
STRING PASCAL
ENDP
END

Before an application makes an asynchronous call, it initializes the extendedPB record
with the application’s A5 and the address of the high-level language’s completion
routine. The ioCompletion field of the extendedPB record’s parameter block is
initialized with the address of PreCompletion:

myExtPB.ourA5 := SetCurrentA5;
myExtPB.ourCompletion := @MyCompletionRoutine;
myExtPB.pb.ioCompletion := @PreCompletion;

The high-level language’s completion routine called by PreCompletion has this
format in Pascal:

PROCEDURE MyCompletionRoutine (pbPtr: ParmBlkPtr);

d e v e l o p March 1993

14

When MyCompletionRoutine is called, register A5 has been set to the stored
application A5 and pbPtr points to the parameter block (within the extended
parameter block) used to make the asynchronous call.

The rest of this article shows how to use asynchronous calls and completion routines
to your program’s advantage and describes various techniques for working around the
limitations imposed on completion routines.

THE BIG THREE TECHNIQUES
There are lots of techniques you can use when working with asynchronous calls.
Most are useful for solving only one or two programming problems. This section
describes the three most useful techniques — the use of operating system queues, call
chaining, and extended parameter blocks.

OPERATING SYSTEM QUEUES
After reading the description of operating system queues in Inside Macintosh Volume
II, you might assume they’re for use only by the operating system. Wrong! Any
program can create an OS queue for its own purposes. OS queues are very useful in
interrupt-time code such as completion routines, because the two routines that
manipulate OS queues, Enqueue and Dequeue, have the following characteristics:

• They disable all interrupts while they update the queue. This is
very important because it prevents race conditions between
interrupt and noninterrupt code accessing the queue. (See “Race
Conditions and OS Queues.”)

• They can be called at interrupt time, because they don’t move
memory — they only manipulate a linked list of queue elements.

• They’re very fast and efficient, so they won’t be time-consuming
operations in your completion routines.

An OS queue owned by your program can hold queue elements defined by the system
or queue elements of your own design. A queue element is a record that starts with
two fields, qLink and qType. The qLink field is a QElemPtr that links queue
elements together while they’re in an OS queue. The qType field is an integer value
that identifies the queue element type. In OS queues owned by your program, you
may not need to use the qType field unless the OS queue can hold more than one
type of queue element. Here’s how the system defines a queue element:

QElem = RECORD
qLink: QElemPtr; { Link to next queue element. }
qType: INTEGER; { Queue element type. }
{ Add your data fields here. }

END;

ASYNCHRONOUS ROUTINES ON THE MACINTOSH March 1993

15

The following record types are some of the system-defined queue elements:
ParamBlockRec, CInfoPBRec, DTPBRec, HParamBlockRec, FCBPBRec,
WDPBRec, CMovePBRec, MPPParamBlock, ATPParamBlock, XPPParamBlock,
DSPParamBlock, EParamBlock, PPCParamBlockRec, TMTask, DeferredTask, and
VBLTask.

To use an OS queue in your program, you need to allocate a queue header (QHdr)
variable and possibly define your own queue element type:

TYPE
{ Define a queue element type. }
MyQElemRecPtr = ^MyQElemRec;
MyQElemRec = RECORD

qLink: QElemPtr;
qType: INTEGER;
myData: myDataType; { Put any data fields you want here. }

END;
VAR

d e v e l o p March 1993

16

When two or more processes share the same data, you
must be careful to avoid race conditions. A race condition
exists when data is simultaneously accessed by two
processes. On the Macintosh, the two processes are
typically program code running with interrupts enabled
and code executing at interrupt time (such as a
completion routine).

To prevent race conditions, you must have a method of
determining ownership of the shared data. A shared
global flag isn’t safe because there can be a race
condition with the flag. For example, the following code
can’t be used to claim ownership of a record:

{ This can cause a race condition. }
IF gRecFree THEN { Is record in use? }

BEGIN { It wasn't when we checked. }
gRecFree := FALSE; { Claim record. }
{ Use record. }
gRecFree := TRUE; { Release record. }

END;

A race condition can occur in this code because there’s a
small window of time between when the IF statement’s
expression is evaluated and when the record is claimed.
During this time the program can be interrupted. The only
way to prevent race conditions is to make the process of
checking for and claiming ownership a step that can’t be
interrupted.

OS queues and the Operating System Utility routines
Enqueue and Dequeue provide a safe way to claim
ownership of data. Enqueue and Dequeue briefly disable
interrupts while manipulating the queue, so they’re safe
from race conditions.

To use an OS queue to protect data from race conditions,
make the data part of a queue element and put the queue
element into an OS queue. Whenever any part of the
program wants to manipulate data in the queue element,
it attempts to remove the queue element from the OS
queue. If the queue element isn’t in the queue and so can’t
be removed, that means another process currently has
ownership of the queue element and the data within it.

RACE CONDITIONS AND OS QUEUES

{ Allocate a queue element and a queue header. }
myQElem: MyQElemRec;
myOSQueueHdr: QHdr;

You must initialize the queue header before it’s used by setting its qHead and qTail
fields to NIL:

{ Initialize the OS queue. }
myOSQueueHdr.qHead := NIL;
myOSQueueHdr.qTail := NIL;

The queue element can then be added to the OS queue:

{ Add myQElem to the queue. }
Enqueue(QElemPtr(@myQElem), @myOSQueueHdr);

This code shows how to remove a queue element (in this example, the first item in
the queue) from an OS queue before using it:

VAR
myQElemPtr: MyQElemRecPtr;

myQElemPtr := MyQElemRecPtr(myOSQueueHdr.qHead);
IF myQElemPtr <> NIL THEN { Make sure we have a queue element. }

BEGIN
IF Dequeue(QElemPtr(myQElemPtr), @myOSQueueHdr) = noErr THEN

BEGIN
{ We successfully removed the queue element from the queue, }
{ so we can use myQElemPtr^.myData. }
{ In this example, we'll put the queue element back in }
{ the queue when we're done with it. }
Enqueue(QElemPtr(myQElemPtr), @myOSQueueHdr);

END
ELSE

BEGIN
{ Someone else just claimed the queue element between the }
{ two IF statements and we just avoided a race condition! }
{ Try again later. }

END;
END;

OS queues owned by your program can be used for many purposes, including these:

• Completion routines can schedule work to be done by your
application’s event loop by putting requests into an OS queue.

ASYNCHRONOUS ROUTINES ON THE MACINTOSH March 1993

17

• Extra buffers or parameter blocks needed by completion routines
can be put into an OS queue by code called from the program’s
event loop. These buffers or parameter blocks can be safely
claimed and used by code running at interrupt time.

• Completion routines can schedule the processing of a completed
call by putting the parameter block used to make the call into an
OS queue. This is useful when the processing might move
memory or take too much time and so can’t be performed in the
completion routine.

• Data accessed and manipulated by both interrupt code and
noninterrupt code can be protected from race conditions if it’s
stored in a queue element and the Dequeue and Enqueue routines
are used to claim and release ownership of the data from an OS
queue (as described earlier in “Race Conditions and OS Queues”).

CALL CHAINING
When a multistep operation is performed via multiple asynchronous calls with
completion routines, it’s called call chaining. Each asynchronous call’s completion
routine reuses the parameter block passed to the completion routine to make the next
asynchronous call. Call chaining from completion routines allows your program to
start the next step in a multistep operation with no latency (see Figure 2).

To use call chaining, you must design your call chain; that is, you must decide the
order of the asynchronous calls you want to make. For each completion routine,
determine what step should be taken if the previous call completed successfully with
no error condition and what step should be taken if the previous call completed with
an error.

A chained call sequence may have several end points or breaks in the chain,
depending on what you’re trying to accomplish and what conditions are encountered
along the way. For example, you may not want to make another asynchronous call
because an error condition occurred, because the next step your program needs to
take involves a call that can’t be made at interrupt time, or because all steps were
completed successfully. The easiest way for your chained call sequence to pass control
back to noninterrupt code is through an OS queue. This technique is shown in the
section “Putting the Big Three Together.”

EXTENDING PARAMETER BLOCKS
Unless you do a little extra work, a completion routine is somewhat isolated from the
rest of your program. The only data accessible to a completion routine when it
executes is the parameter block used to make the asynchronous call and, if you
preserve and restore A5, the program’s global variables. As noted before, you must be
careful to avoid race conditions when accessing global variables.

d e v e l o p March 1993

18

You can extend a parameter block by attaching your own data to the end of a
parameter block, like this:

TYPE
myPBRecPtr = ^myPBRec;
myPBRec = RECORD

pb: ParamBlockRec;
myData: myDataType; { Put any data type you want here. }

END;

From within a completion routine, using the extended fields is easy:

IF thePBRecPtr^.pb.ioResult = noErr THEN
thePBRecPtr^.myData := kSomeValue;

Extending a parameter block has several benefits for asynchronous program code:

• By extending a parameter block to include all variables used by the
routine, you can reduce the amount of stack space used by
completion routines.

ASYNCHRONOUS ROUTINES ON THE MACINTOSH March 1993

19

Application code

C
ontrol

Response A

Response B

Response C

Operating system

Time

Notification�
of completion

Request A/C
ontrol

Request B

Request C

Completion �
routine A

Completion �
routine B

Completion �
routine C

Figure 2
Call Chaining

• By keeping all data associated with a particular session in the
extended parameter block, you can support multiple independent
sessions.

• By putting values needed by a completion routine in an extended
parameter block instead of in program global variables, you can
prevent race conditions. This provides noninterrupt code and
interrupt code with a safe method to communicate.

PUTTING THE BIG THREE TOGETHER
Now that you know about OS queues, call chaining, and extending parameter blocks,
let’s look at a simple example of how these techniques can be used together. PPC
Toolbox calls, being slightly simpler, are used in this example.

In the example, the program is to receive and accept a PPC session request, read
some data, process the data, and then close the connection. To accomplish this, the
program calls PPCInform asynchronously with a completion routine, has
PPCInform’s completion routine call PPCRead asynchronously with a completion
routine, and then has PPCRead’s completion routine schedule processing of the data
by putting a request into an OS queue. After the data is removed from the queue and
processed in the application’s main event loop, the program calls PPCClose
asynchronously with a completion routine and has PPCClose’s completion routine
call PPCInform again to wait for another connection.

We begin with an extended PPC parameter block record that can hold all the data the
program needs to access from the various procedures:

CONST
kPPCIOBufSize = 1024; { Size of the I/O buffer. }

TYPE
PPCIOBuffer = ARRAY[1..kPPCIOBufSize] OF SignedByte;
PPCSessRecPtr = ^PPCSessRec;
PPCSessRec = RECORD

pb: PPCParamBlockRec; { The pb must be first. }
err: OSErr; { To catch results. }
sessPortName: PPCPortRec; { Port name returned to }

{ PPCInform. }
sessLocationName: LocationNameRec; { Location name returned }

{ to PPCInform. }
sessUserName: Str32; { User name returned to }

{ PPCInform. }
buffer: PPCIOBuffer; { R/W buffer used by this }

{ session. }
END;

d e v e l o p March 1993

20

Next, we declare the global variables used in this example:

VAR
gQuitting: BOOLEAN; { True when no new sessions should }

{ be allowed. }
gPortRefNum: PPCPortRefNum; { PPC port reference number from }

{ PPCOpen. }
gReadQueue: QHdr; { Where PPCRead parameter blocks are }

{ scheduled to be processed. }
gDoneQueue: QHdr; { Where parameter blocks are put when }

{ completion routines are done with }
{ them. }

Several procedures are used in the example: DoPPCInform, InformComplete,
ReadComplete, ProcessPPCData, EndComplete, and HandlePPCErrors. Not shown
in this article is the program code for such operations as opening the PPC port,
setting gQuitting to FALSE, and initializing the two OS queue headers before
DoPPCInform is called.

DoPPCInform simply fills in the parameter block, previously allocated by the
program and passed to DoPPCInform, and calls PPCInform asynchronously with
InformComplete as the completion routine. Any errors returned by PPCInform will
be handled by InformComplete.

PROCEDURE DoPPCInform (pbPtr: PPCSessRecPtr);
BEGIN

{ Call PPCInform. }
PPCInformPBPtr(pbPtr)^.ioCompletion := @InformComplete;
PPCInformPBPtr(pbPtr)^.portRefNum := gPortRefNum;
PPCInformPBPtr(pbPtr)^.autoAccept := TRUE;
PPCInformPBPtr(pbPtr)^.portName := @pbPtr^.sessPortName;
PPCInformPBPtr(pbPtr)^.locationName := @pbPtr^.sessLocationName;
PPCInformPBPtr(pbPtr)^.userName := @pbPtr^.sessUserName;
{ Error conditions are ignored in this procedure because they are }
{ caught in InformComplete. }
pbPtr^.err := PPCInformAsync(PPCInformPBPtr(pbPtr));
{ Continued at InformComplete. }

END;

InformComplete is called when PPCInform completes. InformComplete first checks
for errors from PPCInform. If the result is noErr, InformComplete fills in the
parameter block and calls PPCRead asynchronously with ReadComplete as the
completion routine. Any errors returned by PPCRead will be handled by
ReadComplete. If PPCInform failed (the result is not noErr), InformComplete puts

ASYNCHRONOUS ROUTINES ON THE MACINTOSH March 1993

21

the parameter block into gDoneQueue, where the error condition can be handled
from the program’s event loop.

PROCEDURE InformComplete (pbPtr: PPCSessRecPtr);
BEGIN

IF PPCInformPBPtr(pbPtr)^.ioResult = noErr THEN
{ The PPCInform call completed successfully. }
BEGIN

{ Call PPCRead. }
PPCReadPBPtr(pbPtr)^.ioCompletion := @ReadComplete;
{ We're reusing the same parameter block, so the }
{ sessRefNum is already filled in. }
PPCReadPBPtr(pbPtr)^.bufferLength := kPPCIOBufSize;
PPCReadPBPtr(pbPtr)^.bufferPtr := @pbPtr^.buffer;
{ Error conditions are ignored in this procedure because they }
{ are caught in ReadComplete. }
PPCSessRecPtr(pbPtr)^.err := PPCReadAsync(PPCReadPBPtr(pbPtr));
{ Continued at ReadComplete. }

END
ELSE

{ The PPCInform call failed. Drop the parameter block in the }
{ "done" queue for handling later. }
Enqueue(QElemPtr(pbPtr), @gDoneQueue);
{ Dequeued by HandlePPCErrors. }

END;

ReadComplete is called when PPCRead completes. ReadComplete first checks for
errors from PPCRead. If the result is noErr, ReadComplete puts the parameter block
into gReadQueue. If PPCRead failed (the result is not noErr), ReadComplete puts
the parameter block into gDoneQueue. In either case, the information queued is
handled from the program’s event loop.

PROCEDURE ReadComplete (pbPtr: PPCParamBlockPtr);
BEGIN

IF PPCReadPBPtr(pbPtr)^.ioResult = noErr THEN
{ The PPCRead call completed successfully. Drop the }
{ parameter block in the "read" queue for handling later. }
Enqueue(QElemPtr(pbPtr), @gReadQueue)
{ Dequeued by ProcessPPCData. }

ELSE
{ The PPCRead call failed. Drop the parameter block in the }
{ "done" queue for handling later. }
Enqueue(QElemPtr(pbPtr), @gDoneQueue)
{ Dequeued by HandlePPCErrors. }

END;

d e v e l o p March 1993

22

ProcessPPCData is called regularly from the program’s event loop. If gReadQueue
contains a parameter block, ProcessPPCData removes the parameter block from the
queue and processes the data read in the PPCSessRec’s buffer. After processing the
data, ProcessPPCData calls PPCEnd asynchronously with EndComplete as the
completion routine. Any errors returned by PPCEnd will be handled by
EndComplete.

PROCEDURE ProcessPPCData;
VAR

pbPtr: PPCSessRecPtr;

BEGIN
{ Check for a parameter block in the queue. }
IF gReadQueue.qHead <> NIL THEN

BEGIN
{ Get the PPCSessRec and remove it from the queue. }
pbPtr := PPCSessRecPtr(gReadQueue.qHead);
IF Dequeue(QElemPtr(pbPtr), @gReadQueue) = noErr THEN

BEGIN
{ Process PPCReadPBPtr(pbPtr)^.actualLength bytes of }
{ data in the data buffer, pbPtr^.buffer, here. }
{ Then call PPCEnd to end the session. }
PPCEndPBPtr(pbPtr)^.ioCompletion := @EndComplete;
{ Error conditions are ignored in this procedure because }
{ they are caught in EndComplete. }
pbPtr^.err := PPCEndAsync(PPCEndPBPtr(pbPtr));
{ Continued at EndComplete. }

END;
END;

END;

EndComplete is called when PPCEnd completes. It first checks for errors from
PPCEnd. If the result is noErr, EndComplete either calls DoPPCInform to call
PPCInform asynchronously again or puts the parameter block into gDoneQueue. If
PPCEnd failed (the result is not noErr), EndComplete puts the parameter block into
gDoneQueue. Any queued information is handled from the program’s event loop.

PROCEDURE EndComplete (pbPtr: PPCParamBlockPtr);
BEGIN

IF PPCEndPBPtr(pbPtr)^.ioResult = noErr THEN
BEGIN { The PPCEnd call completed successfully. }

IF NOT gQuitting THEN
{ Reuse the parameter block for another PPCInform. }
DoPPCInform(PPCSessRecPtr(pbPtr))
{ Continued at DoPPCInform and then InformComplete. }

ASYNCHRONOUS ROUTINES ON THE MACINTOSH March 1993

23

ELSE
{ Drop the parameter block in the "done" queue for }
{ handling later. }
Enqueue(QElemPtr(pbPtr), @gDoneQueue);

{ Dequeued by HandlePPCErrors. }
END

ELSE
BEGIN { The PPCEnd call failed. }

{ Drop the parameter block in the "done" queue }
{ for handling later. }
Enqueue(QElemPtr(pbPtr), @gDoneQueue);
{ Dequeued by HandlePPCErrors. }

END;
END;

HandlePPCErrors is called regularly from the program’s event loop. If gDoneQueue
contains any parameter blocks, HandlePPCErrors removes the parameter blocks
from the queue one at a time, checks to see what PPC call failed by inspecting the
csCode field of the parameter block, and then handles the error condition
appropriately. If the call that failed was PPCRead or PPCWrite, HandlePPCErrors
calls PPCEnd asynchronously with EndComplete as the completion routine. Any
errors returned by PPCEnd will be handled by EndComplete.

PROCEDURE HandlePPCErrors;
CONST
{ PPC csCodes from async calls. }

ppcOpenCmd = 1;
ppcStartCmd = 2;
ppcInformCmd = 3;
ppcAcceptCmd = 4;
ppcRejectCmd = 5;
ppcWriteCmd = 6;
ppcReadCmd = 7;
ppcEndCmd = 8;
ppcCloseCmd = 9;
IPCListPortsCmd = 10;

VAR
pbPtr: PPCSessRecPtr;

BEGIN
{ Process any parameter blocks in the queue. }
WHILE gDoneQueue.qHead <> NIL DO

BEGIN
{ Get the PPCSessRec and remove it from the queue. }
pbPtr := PPCSessRecPtr(gDoneQueue.qHead);

d e v e l o p March 1993

24

IF Dequeue(QElemPtr(pbPtr), @gDoneQueue) = noErr THEN
CASE PPCEndPBPtr(pbPtr)^.csCode OF

ppcOpenCmd..ppcRejectCmd, ppcEndCmd..IPCListPortsCmd:
{ For these calls, we'll just dispose of the }
{ parameter block. }
DisposePtr(Ptr(pbPtr));

ppcWriteCmd, ppcReadCmd:
BEGIN

{ We need to call PPCEnd after read or write }
{ failures to clean up after this session. }
PPCEndPBPtr(pbPtr)^.ioCompletion := @EndComplete;
{ Error conditions are ignored in this procedure }
{ because they are caught in EndComplete. }
pbPtr^.err := PPCEndAsync(PPCEndPBPtr(pbPtr));
{ Continued at EndComplete. }

END;
END;

END;
END;

In this example of extending parameter blocks and using OS queues and call chaining,
notice that asynchronous calls are chained together until an operation that can’t be
accomplished at interrupt time is necessary; then the extended parameter block is put
into an OS queue where the main program can access it. Very few global variables are
needed because OS queues are used to hold any data the main program code needs to
access. Local variables aren’t needed by the completion routines because the extended
parameter block, PPCSessRec, holds everything the completion routines need.

DEBUGGING HINTS
Here are the top five debugging hints for writing asynchronous code.

Use Debugger or DebugStr calls and a low-level debugger. Because
completion routines are called by the system, usually as a result of an interrupt,
source-level debuggers don’t work with completion routines. If you’re having
problems with a completion routine, first look at the parameter block used to make
the asynchronous call. Look both before and after the call by using a Debugger or
DebugStr call just before you make the asynchronous call and again at the beginning
of the completion routine (remember, register A0 points to the parameter block).

Make sure parameter blocks are around for the life of the asynchronous
call. The parameter block will have a whole new meaning if you forget and allocate a
parameter block on the local stack, then make an asynchronous call with it, leave the
current procedure or function, and reuse the stack for something new. There’s
nothing the system hates more than a completely bogus parameter block. If you

ASYNCHRONOUS ROUTINES ON THE MACINTOSH March 1993

25

check your parameter block at completion time and the contents are different from
what you expected, you’ve probably done this.

Don’t reuse a parameter block that’s in use. A parameter block passed to an
asynchronous call is owned by the operating system until the asynchronous call
completes. If you reuse the parameter block before the asynchronous call completes,
at least one of the calls made with the parameter block will fail or crash the system.
This can happen if you use a parameter block once from one place in your program
and then forget and use it again from somewhere else.

Global parameter blocks should be avoided, because they’re easy to reuse from
several places within a program. If you keep your unused parameter blocks in an OS
queue, you can safely claim one and reuse it anytime.

Avoid SyncWait. Does your Macintosh just sit there not responding to user events?
Drop into the debugger and take a look at the code that’s executing. Does it look like
this?

MOVE.W $0010(A0),D0
BGT.S -$04,(PC)

That’s SyncWait, the routine that synchronous calls sit in while waiting for a request
to complete. Register A0 points to the parameter block used to make the call, offset
$10 is the ioResult field of the parameter block, and SyncWait is waiting for ioResult
to be less than or equal to 0 (noErr).

The ioResult field is changed by code executing as a result of an interrupt. If
interrupts are disabled (because the synchronous call was made at interrupt time) or if
the synchronous call was made to a service that’s busy, you’ll be in SyncWait forever.
Take a look at the parameter block and where it is in memory, and you’ll probably be
able to figure out which synchronous call was made at interrupt time and which
program made it.

Leave a trail of bread crumbs. There’s nothing harder than reading chained
asynchronous source code with no comments. You should always use comments to
remind yourself where your chained call sequence goes. In the PPC code example
given above, I left comments like “Continued at EndComplete” or “Dequeued by
ProcessPPCData” to remind me where the chained call sequence will resume
execution.

COMMON PROBLEMS AND THEIR SOLUTIONS
This section warns of some common problems and suggests ways to work around
them.

d e v e l o p March 1993

26

TIME-CONSUMING TASKS AT INTERRUPT TIME
You may find a situation where a completion routine needs to perform some time-
consuming task, but that task can be performed from interrupt-time code. This is a
situation where the Deferred Task Manager may be useful. The Deferred Task
Manager allows you to improve interrupt handling by deferring a lengthy task until
all interrupts can be reenabled, but while still within the hardware interrupt cycle.

WAITNEXTEVENT SLEEP LATENCY
If you set your sleep time to a large value, maybe because you’ve been switched out,
polling from the program’s event loop may cause additional latency. The Process
Manager’s WakeUpProcess call, when available, can be used to shorten the time
between when a completion routine queues a parameter block and when your
program’s event loop polls the queue header and processes the data in the parameter
block. WakeUpProcess does this by making your program eligible for execution
before the sleep time passed to WaitNextEvent expires.

The only parameter passed to WakeUpProcess is the process serial number of the
process you want to wake up. You’ll need to get your program’s process serial number
with the GetCurrentProcess function and add it to the extended parameter block
used to call asynchronous functions:

{ Zero the process serial number. }
myPB.myPSN.highLongOfPSN := 0;
myPB.myPSN.lowLongOfPSN := 0;

{ Make sure the Process Manager is available. }
IF Gestalt(gestaltOSAttr, myFeature) = noErr THEN

IF GetCurrentProcess(myPB.myPSN) = noErr THEN
; { Either we got the process serial number or it's still zero. }

The completion routine would use the process serial number (if available) to wake up
your program immediately after queueing a parameter block:

{ Drop the parameter block in the "done" queue for handling later. }
Enqueue(QElemPtr(pbPtr), @gDoneQueue);

{ If we have a process serial number (myPSN <> 0), wake up the process. }
IF (pbPtr^.myPSN.highLongOfPSN<>0) OR (pbPtr^.myPSN.lowLongOfPSN<>0) THEN

IF WakeUpProcess(pbPtr^.myPSN) = noErr THEN
; { Wake up the process. }

STACK SPACE AND CODE EXECUTING AT INTERRUPT LEVEL
Have you ever thought about the stack space used by interrupt code? Where does it
come from? How much is available? Good questions.

ASYNCHRONOUS ROUTINES ON THE MACINTOSH March 1993

27
The Deferred Task Manager is fully
described in Chapter 6, “The Deferred Task
Manager,” in Inside Macintosh: Processes.•

When interrupt code (including completion routines) is called, it borrows space from
whatever stack happens to be in use at the time. That means you have no control over
the amount of stack space available, and so should use as little of the stack as possible.

At times, very little stack space is available, because some common Macintosh system
calls temporarily use large portions of the stack. For example, some QuickDraw
routines may leave as little as 1600 bytes of stack space and MoveHHi can leave as
little as 1024 bytes of stack space under certain conditions. That’s not a lot of space to
borrow. If your interrupt code will call a routine that uses more than a few bytes of
stack space, you should call the StackSpace function before calling that routine.

The typical symptom of using too much stack space is a random crash, because the
memory you trash by overflowing the stack could belong to any program —
including the Macintosh Operating System.

Here are the easiest ways to reduce the amount of stack space used by interrupt code:

• Don’t use local variables. Either extend your parameter block to
hold any variables needed by your completion routine or keep an
OS queue of buffers that can be used by your completion routine.

• Try to keep the number of calls from your completion routine to
other routines to a minimum. Each routine you call uses part of
the stack to build a stack frame.

PROBLEMS WITH REUSING PARAMETER BLOCKS
There are three problems you may run into when you reuse a parameter block:
unfortunate coercions, unfortunate overlap, and garbage in the parameter block.

Unfortunate coercions. Make sure parameter blocks are large enough for every use
you’ll put them to. For example, if you use a parameter block for both PPC Toolbox
calls and File Manager calls, make sure the parameter block is large enough to hold
any of the parameter blocks used by either manager. One way to do this is with a
variant record:

variantPBRec = RECORD
CASE INTEGER OF
1: (PB: ParamBlockRec); { File Manager parameter blocks }
2: (cInfoPB: CInfoPBRec);
3: (dtPB: DTPBRec);
4: (hPB: HParamBlockRec);
5: (cMovePB: CMovePBRec);
6: (wdPB: WDPBRec);
7: (fcbPB: FCBPBRec);
8: (ppcPB: PPCParamBlockRec); { PPC Toolbox parameter block }
END;

d e v e l o p March 1993

28

Unfortunate overlap. Don’t assume variant record fields with the same name are in
exactly the same place in the variant record. If they aren’t, you’ll run into problems
with overlap. Check first and be sure.

Garbage in the parameter block. When reusing a parameter block, make sure
data from the last use doesn’t affect the next call. Always initialize all input fields.
Many programmers go one step further by clearing the entire parameter block to
zeros before initializing the input fields.

COMPLETION ORDER MIXUPS
Don’t depend on a service being single-threaded (requests executed one at a time) or
on requests being handled in the order they were made (first in, first out). The File
Manager is single-threaded, but requests may not always be handled in the order they
were made. The AppleTalk drivers allow multiple requests to execute concurrently.

If the order of completion is important, don’t use concurrent calls — use chained
calls. For example, if you write some data and then expect to read that data back,
don’t start an asynchronous write and then start an asynchronous read before the
write completes. If the calls aren’t handled in the order they were made, the read may
complete before the write.

POLLING PROBLEMS
If your application that polls for completion works great when it’s the current
application, but slows down dramatically or stops when it’s in the background, check
for these common problems.

The canBackground bit. If you forget to set the canBackground bit in the SIZE
resource, your application’s event loop won’t get called with null events while your
application is in the background. If you’re depending on null events for polling, your
program won’t poll while it’s in the background.

Large WaitNextEvent sleep values. Did you crank up the sleep value passed to
WaitNextEvent when your application received a suspend event? Talk about
additional latency! This will do it if you’re polling from the event loop.

What are other applications doing? Other applications can slow your event
handling down by not calling WaitNextEvent regularly. If your polling from the
event loop slows down because of that, there’s not a lot you can do about it.

If your polling stops when another application is in the foreground, it could be that
the other application isn’t handling its update events. See Macintosh Technical Note
“Pending Update Perils” for a description of this problem.

Polling from VBL tasks in an application’s heap. VBL tasks in your application’s
heap are removed from the VBL queue during a context switch when your

ASYNCHRONOUS ROUTINES ON THE MACINTOSH March 1993

29

application is switched out and are added to the VBL queue when your applicaton is
switched back in. VBL tasks in the system heap are unaffected by context switches.

If you poll from a VBL task and don’t want polling to stop when your application is
switched out, make sure you put your VBL task in the system heap.

COMPLETION
There are many situations where synchronous calls work well. However, there are
times when asynchronous calls must be used to prevent system deadlock or to let
your program continue execution while waiting for time-consuming calls to
complete. Understanding the material covered in this article should help you
understand when to use asynchronous calls and give you the techniques needed to
avoid the problems commonly encountered in code that executes asynchronously.

d e v e l o p March 1993

THANKS TO OUR TECHNICAL REVIEWERS
Scott Boyd, Neil Day, Martin Minow, Gordon
Sheridan•

30

• Inside Macintosh Volume II (Addison-Wesley, 1985), Chapter 6, “The Device
Manager,” Chapter 10, “The AppleTalk Manager,” and Chapter 13, “The
Operating System Utilities.”

• Inside Macintosh Volume V (Addison-Wesley, 1986), Chapter 28, “The AppleTalk
Manager.”

• Inside Macintosh Volume VI (Addison-Wesley, 1991), Chapter 7, “The PPC
Toolbox,” Chapter 29, “The Process Manager,” and Chapter 32, “The AppleTalk
Manager.”

• Inside Macintosh: Files (Addison-Wesley, 1992), Chapter 2, “The File Manager.”
Previously, Inside Macintosh Volume II, Chapter 4.

• Inside Macintosh: Processes (Addison-Wesley, 1992), Chapter 6, “The Deferred
Task Manager.” Previously, Inside Macintosh Volume V, Chapter 25 and
Macintosh Technical Note #320, “Deferred Task Traps, Truths, and Tips.”

• Macintosh Technical Notes “MultiFinder Miscellanea” (formerly #180), “Setting
and Restoring A5” (formerly #208), “NuBus Interrupt Latency (I Was a Teenage
DMA Junkie)” (formerly #221), and “Pending Update Perils” (formerly #304).

RECOMMENDED READING

SOMEWHERE IN QUICKTIME: TOP 10 QUICKTIME TIPS March 1993

31

To inaugurate this new column on QuickTime, we’ll
take a look at ten useful tips for QuickTime application
developers. This is certainly not an exhaustive list, but
it is an important one.

Here’s the list:

10. Working around data reference limitations.

9. Using GetMovieNextInterestingTime.

8. Not calling ExitMovies.

7. Getting a movie’s unscaled size.

6. Avoiding the Movie Toolbox when using
the standard movie controller.

5. Prerolling a movie for improved playback.

4. Using CustomGetFilePreview with custom
dialogs.

3. Conditionally registering a component
that requires a hardware device.

2. Detaching a movie controller properly.

1. Calling MaxApplZone from every
application.

Some of the tips describe pitfalls that need to be
avoided, while others are simply clarifications. Let’s
take a closer look at each one.

10. Working around data reference limitations.

A current limitation of QuickTime is that each media
can have only one data reference to a media data file.
This isn’t a problem except when you start cutting and
pasting between tracks that refer to different media.
You’ll then be required to copy the media data from
one media data file to another. For example,
InsertTrackSegment will copy media data between
media if the tracks refer to different media.

Calls like GetMediaDataRefCount, AddMediaDataRef,
and GetMediaDataRef will reflect the “one data
reference” limitation by only accepting index values
of 1. You can’t replace an existing media data reference
in QuickTime 1.0, but you can in QuickTime 1.5, with
a new call, SetMediaDataRef. Using this routine is a
common way of manually resolving media data
references that may have been moved by an application.
For example, if you move a movie data file onto a
different volume, you can update the alias using the
Alias Manager and update the data reference for the
movie with SetMediaDataRef.

9. Using GetMovieNextInterestingTime.

Since QuickTime is time based rather than frame-
number based in the way it deals with temporal video
data, a common question is how to get information
about movie frames, such as frame rate. The answer is
to use GetMovieNextInterestingTime. This function
allows you to step quickly and easily through
interesting times in a movie. For example, for an
estimate of the frame rate of a movie, you could use
GetMovieNextInterestingTime to count the total
number of frames in the movie and divide it by the
total duration of the movie. Likewise, you could use
GetMovieNextInterestingTime to identify the 600th
frame in a movie. Since the internal data structure of
QuickTime movies is optimized for accessing this type
of information, GetMovieNextInterestingTime and the
other GetNextInterestingTime calls are very efficient.

8. Not calling ExitMovies.

One recommendation that contradicts QuickTime 1.0
documentation is that applications should not call

JOHN WANG (AppleLink WANG.JY) is enjoying his youth in the
playpen of the Printing, Imaging, and Graphics (PIGs) group in
Developer Technical Support at Apple. When he’s not engaged in
piglet activities, he can be found on a golf course or hogging the
road with his Mazda Miata. No one has trouble identifying John’s
car, since he often cruises the California highways with his dog,
Skate. In return, Skate promises to drive safely.•

SOMEWHERE IN
QUICKTIME

TOP 10
QUICKTIME TIPS

JOHN WANG

ExitMovies before quitting. QuickTime calls this
function at ExitToShell time, and it’s safer to allow
QuickTime to release private storage and component
connections at that time. This prevents problems such
as closing components in the wrong order. For
example, the proper way to clean up after a movie that
uses a standard movie controller is to dispose of the
movie controller first, and then dispose of the movie. If
done in the reverse order, there may be adverse
consequences.

7. Getting a movie’s unscaled size.

An application should save the movie box obtained with
GetMovieBox when a movie is loaded so that it can
retrieve the intended offset and scaling of the movie for
playback. However, some applications may also want to
get the unscaled size, and there isn’t an intuitive way to
get it. Since the programmatical effect of calling
SetMovieBox is that the movie matrix is changed to
reflect the new offset and scaling, you can easily get the
movie box for an unscaled movie by setting the movie
matrix to the identity matrix; using the utility routine
SetIdentityMatrix along with SetMovieMatrix
accomplishes this. Then GetMovieBox will return the
unscaled size and offsets.

However, there’s a loophole. If a track inside the movie
is scaled, there may still be scaling in playback since
QuickTime supports transformation matrices for
movies and for tracks within a movie. Therefore, when
working with scaling, applications need to pay attention
not only to the movie’s scaling but to the tracks’ scaling
as well.

6. Avoiding the Movie Toolbox when using the
standard movie controller.

When using the standard movie controller, you
should almost never use any Movie Toolbox routines
that control movie playback or change movie
characteristics. For example, it would be a mistake to
call StartMovie to start playing a movie. Instead, use
the movie controller equivalent, MCDoAction with
mcActionPlay. Calling StartMovie directly causes the
movie to play but with the controller’s button in the

pause state, not reflecting that the movie is playing
back. Similarly, to set looping, you would use
MCDoAction with mcActionSetLooping. Bypassing
the movie controller by using the Movie Toolbox
routines directly on a movie controlled with a movie
controller can have dire consequences. As an example,
if you set looping for a movie before creating a
controller with NewMovieController, you’ll cause the
Macintosh to crash. Don’t let it happen to you!

5. Prerolling a movie for improved playback.

Prerolling can improve playback performance by
allowing QuickTime to do preliminary initialization.
Since PrerollMovie is passed the movie time and rate, it
can fill buffers and caches optimally to prevent initial
stuttering. Normally, QuickTime automatically prerolls
the movie for you. For example, if you call StartMovie,
you don’t need to also call PrerollMovie, since
StartMovie prerolls the movie for you. The QuickTime
1.5 documentation describing the StartMovie call states
this clearly. Likewise, the standard movie controller is
optimized to preroll whenever the user starts a movie
with the keyboard or mouse. If you call PrerollMovie
in these situations, the second PrerollMovie is
redundant and will simply waste time. In all other
cases, prerolling by calling PrerollMovie is
recommended before initiating playback. For example,
you should call PrerollMovie before SetMovieRate.

4. Using CustomGetFilePreview with custom dialogs.

If you use CustomGetFilePreview with custom DLOG
and DITL resources, you should be aware of a bug
with the System 7 pop-up menu CDEF: pop-up menus
used in conjunction with black-and-white grafPorts are
shifted to the wrong location within the dialog box.
The simple workaround is to force the dialog to be a
cGrafPort by adding a 'dctb' resource with the same ID
as the DLOG and DITL resources. You can easily
create a 'dctb' resource with ResEdit by selecting the
Custom color button in the DLOG resource template
window. For more information on the 'dctb' resource,
see the Dialog Manager chapter in Inside Macintosh:
Macintosh Toolbox Essentials (or in Inside Macintosh
Volume V).

d e v e l o p March 1993

32

SOMEWHERE IN QUICKTIME: TOP 10 QUICKTIME TIPS March 1993

33

3. Conditionally registering a component that requires
a hardware device.

If you write a component that requires a hardware
device, you should set the wantsRegisterMessage flag
to give your component an opportunity to verify that
the specific hardware is properly installed. If the
hardware isn’t available, you can then indicate to the
Component Manager that you don’t want the
component registered. The register routine, called with
selector kComponentRegister, should return FALSE if
it does want to be registered and TRUE if it doesn’t.

One thing to be aware of is that even during
registration, the component will be opened with
OpenComponent and closed with CloseComponent.
Therefore, you can expect OpenComponent before
the ComponentRegister routine is called, and
CloseComponent after ComponentRegister is called.

For example, if you have a 'vdig' that works with
a NuBus video digitizer card, each time that
OpenComponent is called you can check whether the
hardware is correctly installed, and then return that
status when ComponentRegister is called by the
Component Manager.

2. Detaching a movie controller properly.

If you want to place the standard movie controller in a
different window or location from its usual placement
directly below the movie, you must detach the movie
controller. Follow these steps:

1. First bring up the controller by calling
NewMovieController with the flag mcNotVisible
so that the controller is initially invisible. If you
don’t do this, the application will momentarily
display the controller in the wrong location.

2. Call MCSetControllerAttached with FALSE to
detach the controller.

3. Call MCSetControllerPort to move the controller
to a different port if you want to place it in a
different window. If you only want to move the
controller in the same window as the movie, you
don’t have to call MCSetControllerPort.

4. Call either MCPositionController or
MCSetControllerBoundsRect to move the
controller to the new location in the port.

5. Call MCSetVisible to display the controller.

The movie will remain in whatever port it was assigned
to using SetMovieGWorld. If MCSetControllerPort
isn’t called (step 3), the controller will remain assigned
to the movie’s port when NewMovieController is
called.

For example:

SetMovieGWorld(myMovie, (CGrafPtr) myWindow, 0);
mcMC = NewMovieController(myMovie, &movieBounds,

mcTopLeftMovie + mcNotVisible);
MCSetControllerAttached(mcMC, FALSE);
MCSetControllerPort(mcMC, myOtherWindow);
MCPositionController(myMC, &movieBounds,

&newControllerRect, mcTopLeftMovie);
MCSetVisible(myMC, TRUE);

1. Calling MaxApplZone from every application.

Not calling MaxApplZone in an application is the
reason why many simple QuickTime playback
applications play back movies poorly. Because the
Memory Manager grows the heap only if there isn’t
any purgeable or free space left, QuickTime doesn’t
have the space it needs to play back a movie optimally.
Since there’s no penalty or drawback for calling
MaxApplZone, all applications should call the routine
during initialization. In fact, MaxApplZone should be
your first Macintosh Toolbox call, because initializing
QuickDraw and other managers could allocate
memory.

We hope these tips will help you avoid some of the
most common pitfalls of QuickTime development.
With so many developers writing QuickTime
applications and adding QuickTime support into
existing applications, we want the journey to be as
smooth as possible. We’ll keep you updated and
informed by continuing to bring you insightful tips and
details about QuickTime in this column. Watch for it!

For more information on the Component Manager, see
the QuickTime or System 7.1 documentation on this subject, and
see Gary Woodcock and Casey King’s article, “Techniques for
Writing and Debugging Components,” in develop Issue 12.•

Thanks to the developers who have made this list possible and to
Bill Guschwan, Peter Hoddie, and Guillermo Ortiz for reviewing
this column.•

Intercepting the processing of a QuickTime routine enables you to debug
the routine, use the routine in new ways, and better understand
QuickTime architecture. To intercept the routine, you need to know
something about its low-level implementation. This article discusses the
low-level implementation of QuickTime routines, and also describes
tools and programming techniques that can be used to debug, modify,
and analyze QuickTime routines. Some of these techniques take
advantage of the Component Manager, and their usefulness will extend
beyond QuickTime as future managers capitalize on components.

As QuickTime routines pass through some common locations, they’re accessible to
your application or to a debugger. A QuickTime routine begins with its function
name, as used in your application and defined in the interface files. It usually
compiles as an A-trap and maybe some assembly glue. The routine may call other
Macintosh routines, be affected by global data structures, pass through a grafPort’s
bottleneck, or pass through a component’s main function. Because you have access to
these locations, you can intercept the processing of the routine, perform your own
special processing, and then allow the normal execution of the routine to continue.

This article’s examples use MacsBug and TMON Pro (TMON Professional v. 3.0.1
from Icom Simulations, Inc.) to intercept and analyze routines. The tools discussed
create resources for both debuggers, though in some situations you’ll want to use one
debugger over the other. For example, the language extensibility of TMON Pro’s
built-in assembler provides capabilities that other debuggers don’t provide. Now let’s
get into the practical aspects of analyzing and debugging QuickTime routines.

QUICKTIME A-TRAPS
An A-trap is a two-byte opcode that always begins with the hexadecimal numeral A.
The remaining 12 bits in the opcode identify the particular routine you’re calling,

d e v e l o p March 1993

BILL (“ANGUS”) GUSCHWAN describes
Angus as an identity cocktail in the sky. If his
favorite philosophers, character, and author were
alive today, we can imagine what they might say
about the young man and the sky. Gottlieb Frege:
“A setting sun indicates the object, sun. But the
sun also rises. Just as a night in the forest,
mountains in springtime, and a walk in the rain
convey solitude, each sense adds knowledge to

the meaning of the sun. Thus, Angus does not
singularly denote Bill Guschwan, but rather
indicates a sense of him.” Ludwig Wittgenstein:
“Bullfighting is an analogy for life. Angus
represents the bull, whereas language represents
the toreador’s red cape. Thus, Angus perishes if
he trusts it, and destroys if he ignores it.”
Andromache: “As a young Indian identifies with
soaring hawks, young Angus identifies with the

34

BILL GUSCHWAN

INSIDE

QUICKTIME

AND

COMPONENT-

BASED

MANAGERS

along with other information about the call. A-traps interrupt the normal processing
of the CPU and cause it to jump through a low-memory vector to the trap dispatcher.
The trap dispatcher examines the bit pattern of the opcode to determine the actual
location of the Macintosh routine in memory, and then jumps to it. Almost all
Macintosh Toolbox routines use the A-trap mechanism to jump to their code.

In the early days of the Macintosh, there was one routine name per A-trap, but the
number of routines increased so dramatically that a second mechanism was
introduced to avoid exhausting all the A-traps. This mechanism uses the normal
A-trap mechanism to identify a grouping of routines (usually defined by a specific
manager) and uses selectors located on the stack or in a register to identify the
specific routines within the grouping. QuickTime uses only four A-traps:

• 0xAAAA: Movie Toolbox

• 0xA82A: Component Manager

• 0xAAA3: Image Compression Manager

• 0xABC2: Matrix routines

Using four A-traps for over 500 routines is possible because the interface glue can
push routine selectors into registers or onto the stack. QuickTime picks the routine it
needs to execute from the value of the selector. For example, with the Movie
Toolbox, QuickTime uses a word in the D0 register. So 0x303C and xxxx (the two-
byte selector) appear before the A-trap in the Movies.h file. This disassembles into
MOVE.W #$xxxx, D0. If you want to find out what other opcodes mean, try using
the TMON Pro assembler as described in “TMON Pro Assembler Demo.”

On a separate note, components implement routines through selectors as well. In
some ways, a component is not unlike an A-trap. The ramifications of this are
discussed later in the section “Bottlenecks.”

TRAPPING COMPILED APPLICATIONS
A QuickTime routine’s A-trap provides a common location that your debugger can
interact with. Traditionally, Macintosh developers have used MacsBug to investigate
the flow of A-traps in compiled applications. Knowing the sequence of A-traps
needed to implement specific functionality provides invaluable information exceeding
the scope of even the best documentation.

Let’s see what happens when we take the simple QuickTime debugging approach of
breaking on the four A-traps. For example, start with the 0xAAAA trap. If you
perform an “atb _AAAA” and run MoviePlayer, MacsBug is continually invoked. You
can use the debugger to see the selector value that identifies the routine, but unless
you have the interface files in front of you or you memorize the selector values, you
won’t be able to tell which QuickTime routine is being called. You can probably

INSIDE QUICKTIME AND COMPONENT-BASED MANAGERS March 1993

35
lost generation of somnambulating dogcows. As
an Indian peasant links with god via the farm
tools in the hands of a Buddhist statue, Angus
links with god via the TMON Pro manual in the
hands of a Zimmerman statue.” Ernest
Hemingway: “OK. Sure, Angus. Anyone for a
martini cocktail? With a twist.”•

d e v e l o p March 1993

36

TMON Pro has an assembler/disassembler built in. You
can enter TMON Pro, type hexadecimal machine code,
and watch as it’s disassembled into assembly. To do this,
you need to make use of TMON Pro’s typed windows,
which provide alternative views of the same location in
memory. So, if you anchor an Assembly window and a
Memory window at some safe location in memory, you
can type machine code in the Memory window and
watch the numbers translate into the assembly routines in
the Assembly window.

TMON Pro sets aside an area of memory for you to play
with, identified by the variable PlayMem. Here’s a useful

alias that you can install in your TMON script (it assumes
you use the script provided with TMON Pro):

alias PlayTime,
"TopWind .10 ∂n New Memory HereHP, :Δplaymem ∂
BottomWind .6 ∂n New Assembly HereHP,Δplaymem ∂
Open Registers #1=#0"

Now you can type “PlayTime” at the command line and
have a safe area in memory for exploring the TMON Pro
assembler. The PlayTime alias anchors the two windows
to the same place in memory and swaps out the registers
so that you don’t harm them while you play (see Figure 1).

TMON PRO ASSEMBLER DEMO

Figure 1
TMON Pro Windows

 [] Disassembly from $00076670 []�
00076670: ‘PlayMem’������:�_EnterMovies�
00076676: ‘PlayMem’+$0006: MOVE.W ��������������� #$0002,D0�
0007667A: ‘PlayMem’+$000A: _AAAB�
0007667C: ‘PlayMem’+$000C: ORI.B ��������������� #$00,D0�
00076680: ‘PlayMem’+$0010: ORI.B ��������������� #$00,D0�
00076684: ‘PlayMem’+$0014: ORI.B ��������������� #$00,D0�
00076688: ‘PlayMem’+$0018: ORI.B ��������������� #$00,D0�
0007668C: ‘PlayMem’+$001C: ORI.B ��������������� #$00,D0�
00076690: ‘PlayMem’+$0020: ORI.B ��������������� #$00,D0�
�
�
 [] Memory from :$00076670 []�
00076670: ‘PlayMem’ : 303C0001 AAAA303C 0002AAAB 00000000 0<..™™0<..™´....�
00076680: ‘PlayMem’+$0010: 00000000 00000000 00000000 00000000�
00076690: ‘PlayMem’+$0020: 00000000 00000000 00000000 00000000�
000766A0: ‘PlayMem’+$0030: 00000000 00000000 00000000 00000000�
000766B0: ‘PlayMem’+$0040: 00000000 00000000 00000000 00000000�
000766C0: ‘PlayMem’+$0050: 00000000 00000000 00000000 00000000�
000766D0: ‘PlayMem’+$0060: 00000000 00000000 00000000 00000000�
000766E0: ‘PlayMem’+$0070: 00000000 00000000 00000000 00000000�
000766F0: ‘PlayMem’+$0080: 00000000 00000000 00000000 00000000�
�
�

Alternative views of the same�
location in memory

memorize a few routines like EnterMovies, which has a selector value of 1. You could
even record all the A-trap routines (using the atr command), print to a file, and
compare the traps against the interface files. However, these methods leave a lot to be
desired.

Because there’s no one-to-one correspondence between A-traps and routines, you
need some tools to facilitate trapping QuickTime applications. To take advantage of
trapping compiled applications, you’d like to be able to do the following:

• Set the A-trap break on the routine name.

• Easily identify the routines in the debugger.

USING 'MXBM' RESOURCES
You can set A-trap breaks on QuickTime routine names by creating MacsBug macros
in the form of 'mxbm' resources. Unfortunately, MacsBug doesn’t ship with the
'mxbm' resources for QuickTime, and creating those resources by hand would be
tedious at best. So I wrote debugit, an MPW tool that converts standard Macintosh C
headers into the resources. The tool and the 'mxbm' resources that are needed to set
QuickTime A-trap breaks are on the Developer CD Series disc and the QuickTime
Version 1.5 for Developersdisc. (Also supplied are the 'mxbm' resources for several
other managers that use A-traps with routine selectors.) You simply place the
resources in your Debugger Prefs file using a resource editor and reboot.

Using MacsBug in this way is still limited because even though you can break on a
routine name, the names of the QuickTime routines aren’t displayed when you’re in
MacsBug — only the assembly code is displayed.

USING A TMON PRO USER AREA
You saw (in “TMON Pro Assembler Demo”) how you can type machine code in
TMON Pro and watch it disassemble. While this is fun, its practical use for
developers is limited. The real power of the TMON Pro assembler comes from the
extensibility of its language. With a little work, you can use TMON Pro to both
break on routine names and display routine names instead of assembly code in the
debugger.

To extend the vocabulary of TMON Pro’s interactive assembler, you need to create
TMON Pro assembler macros for the A-traps and glue, which TMON Pro
disassembles into the QuickTime function name. TMON Pro looks many
instructions ahead to disassemble the A-trap and glue into the routine name. If you
create the requisite 'Asm ' resources, the TMON Pro Assembly window can display
code like

MOVE.W #1,D0
_AAAA

INSIDE QUICKTIME AND COMPONENT-BASED MANAGERS March 1993

37

as follows:

_EnterMovies

If you create the proper aliases ('mxbm' resource equivalents), you can set A-trap
breaks on QuickTime routine names as well.

Creating the 'Asm ' resources manually is impractical, so I modified debugit to create
both the assembler macros and the aliases for setting breaks on the QuickTime
routine names from a Macintosh C interface file. To load the 'Asm ' resources into
TMON Pro, you also need to create a TMON Pro user area to hold the 'Asm '
resources (see “Creating Debugging Tools”). To keep the resources and aliases in one
location, you place the aliases in the data fork of the TMON Pro user area. TMON
Pro looks there when it’s loading scripts. To use the QuickTime Angus User Area
(which is on the Developer Series CD disc), just drop it in your TMON folder and
reboot. Remember, this user area is large and contains an alias for every QuickTime
routine. But it’s easy to pull it out if you want to run stealthily.

d e v e l o p March 1993

38

Although the QuickTime Angus User Area and 'mxbm'
resources are included on the Developer Series CD disc,
instructions for creating them are given here to show how
simple it is. You could create resources for other managers
using the same technique. The CD includes a script that
uses the following commands to create the MacsBug and
TMON Pro resources for QuickTime.

MAKING AN ANGUS USER AREA
To create a debugging user area for TMON Pro you need
to have TMON Pro installed, because the script will
automatically place the user area in your TMON Folder.
In addition, you need to do the following:

• Place the MakeUserArea script in your MPW Scripts
folder.

• Place the debugit MPW tool (on the CD) in your MPW
Tools folder.

• Place the TMONTypes.r and Macsbug.r files in your
MPW RIncludes folder.

• Place the User Area Template (on the CD) in your
current directory.

With the tools properly stored, you can create the
QuickTime Angus User Area with the following command:

makeuserarea {CIncludes}"Movies.h" ∂
{CIncludes}"ImageCompression.h" ∂
{CIncludes}"Components.h" ∂
{CIncludes}"QuickTimeComponents.h" ∂
{CIncludes}"MediaHandlers.h"

MakeUserArea is a script that uses the Rez, C, and
debugit tools, so you can alter its behavior fairly easily.
Be sure to use the script with the managers of your
choice!

MAKING 'MXBM' RESOURCES
To make 'mxbm' resources, you need to place the debugit
tool in your MPW Tools folder, Macsbug.r in your MPW
RIncludes folder, the MakeMxbm script in your MPW
Scripts folder, and a Debugger Prefs file in your System
Folder. Here’s how to make the 'mxbm' resources for
Movies.h:

makemxbm {CIncludes}Movies.h MoovDispatch 128

CREATING DEBUGGING TOOLS

With the QuickTime Angus User Area you can set breaks as you do with 'mxbm'
resources in MacsBug. Just type the routine name without the underscore at the
command line (type Command-space to invoke the command line). By default,
typing the name of the QuickTime routine sets an intercept action, or break, for the
A-trap. You can also specify the other four trap actions by using the trap action
keywords after the QuickTime routine name. For example, to turn on a heap trap
action every time EnterMovies is called, type

entermovies heap

You can also turn off trap actions from the command line. So, for example, if you type
“findnextcomponent,” you can cancel it with “findnextcomponent nointercept.” You
can shorten your commands by creating a macro such as

macro ni,"nointercept"

Several useful macros are included as a separate script on the Developer Series CD disc.
See the TMON Pro reference manual for more information on using macros.

When you break into the debugger and look in the Memory window, TMON Pro’s
interactive assembler uses the 'Asm ' resources from the resource fork of the user area
to interpret the assembly code and display routine names. Now you have the tools
you need to easily watch the flow of QuickTime routines in a compiled application
(see Figure 2).

SETTING A-TRAP BREAKS ON COMMON ROUTINES
As mentioned earlier, a Macintosh Toolbox routine’s code is located via the A-trap
vector, which provides a convenient location for interaction with a debugger. While
watching the flow of A-traps can help you understand a manager, sometimes
microscopic detail is needed to understand a specific routine. Historically, Macintosh
developers have used MacsBug to investigate internal routines of Macintosh A-traps
and provide keen insight where Inside Macintosh leaves off. This is usually done by
setting A-trap breaks on routines called by the routine being investigated.

BREAKING ON COMMON RESOURCE MANAGER ROUTINES
It may seem too obvious to mention that Macintosh routines use other Macintosh
routines, but it’s a crucial debugging concept. Given a routine and its functionality,
good Macintosh programmers can make excellent guesses as to which other routines
it uses. For example, FlattenMovie calls an internal version of FlattenMovieData.

Because a movie is the significant data structure introduced with QuickTime, let’s
look at new movie calls (NewMovie, NewMovieFromFile, NewMovieFromHandle,
NewMovieFromDataFork, and NewMovieFromScrap). Setting A-trap breaks on
Macintosh routines is best done with a small speedy debugger — like MacsBug. So

INSIDE QUICKTIME AND COMPONENT-BASED MANAGERS March 1993

39

d e v e l o p March 1993

40

Figure 2
The Flow of QuickTime Routines in TMON Pro

 [] newmoviefromfile�
�
�
 [] Memory from :�PC []�
00D4F64C:P ‘OpenTheMovie’+$00BA: _MovieDispatch�
00D4F64E: ‘OpenTheMovie’+$00BC: MOVE.W (A7)+,D0�
00D4F650: ‘OpenTheMovie’+$00BE: EXT.L D0�
00D4F652: ‘OpenTheMovie’+$00C0: MOVE.L D0,D7�
00D4F654: ‘OpenTheMovie’+$00C2: MOVEQ #`80,D0 ;’Ä’�
00D4F656: ‘OpenTheMovie’+$00C4: CMP.L D7,D0�
00D4F658: ‘OpenTheMovie’+$00C6: BNE.S ^$00D4F668 ��� ��� ;‘OpenTheMovie’+$D6�
00D4F65A: ‘OpenTheMovie’+$00C8: TST.B D5�
00D4F65C: ‘OpenTheMovie’+$00CA: BNE.S^ $00D4F668 ��� ��� ;‘OpenTheMovie’+$D6�
00D4F65E: ‘OpenTheMovie’+$00CC: ORI.L #$00000002,D6�
�
�
[] Disassembly from �PC-4 []�
00D4F648: ‘OpenTheMovie’+$00B6: _NewMovieFromFile�
00D4F64E: ‘OpenTheMovie’+$00BC: MOVE.W (A7)+,D0�
00D4F650: ‘OpenTheMovie’+$00BE: EXT.L D0�
00D4F652: ‘OpenTheMovie’+$00C0: MOVE.L D0,D7�
00D4F654: ‘OpenTheMovie’+$00C2: MOVEQ #`80,D0 ;’Ä’�
00D4F656: ‘OpenTheMovie’+$00C4: CMP.L D7,D0�
00D4F658: ‘OpenTheMovie’+$00C6: BNE.S ^$00D4F668 ��� ��� ;‘OpenTheMovie’+$D6�
00D4F65A: ‘OpenTheMovie’+$00C8: TST.B D5� ��� �
00D4F65C: ‘OpenTheMovie’+$00CA: BNE.S ^$00D4F668 ;‘OpenTheMovie’+$D6�
00D4F65E: ‘OpenTheMovie’+$00CC: ORI.L #$00000002,D6�
�
�
[] Traps []�
«rhSi» _WaitNextEvent�
«rhSi» _GetNextEvent.._EventAvail�
«rhsi» ..: �$2AA^<PC&&PC<$130^�
«rhsI» _MovieDispatch: �D0.W==$F0�
�
�
 [] Memory from :$00000910 []�
00000910: ‘CurApName’ : “MoviePlayer”�
�
�

QuickTime routine nameIntercept trap for�
NewMovieFromFile

let’s use MacsBug to find out how QuickTime loads its data. As you probably know,
the data structure for a movie is undocumented. While any type of manipulation with
the movie can be done with the Movie Toolbox, leaving the movie data structure
undocumented can cause some confusion as to how a movie actually works. In fact,
the movie on the disk is different in structure from the movie in memory. While the
movie on disk is documented, the movie in memory is not, which lets the QuickTime
team change the loaded movie without affecting your application. Keep that in mind
as you begin investigating the exact nature of the movie in memory.

The target application for this investigation is MoviePlayer because it calls the
various new movie routines. MoviePlayer was created by the QuickTime team, and
it’s widely distributed. If you launch the application and choose Open from the File
menu, you’re presented with the CustomGetFilePreview dialog box.

To look at the internals of an individual routine, you need to drop into the debugger
before executing the routine. Simply set your traditional A-trap break and go:

atb newmoviefromfile; g

Next, open a movie that uses a 'moov' resource. Now you’re ready to investigate
NewMovieFromFile’s use of internal routines. Since QuickTime uses the Resource
Manager, you’ll set a break on GetResource and expect NewMovieFromFile to load
the 'moov' resource from a file. In MacsBug, set a break on the condition:

atb getresource (sp+2)^='moov'; br pc+2

This command lets you check for all the calls that NewMovieFromFile makes to
GetResource that load a 'moov' resource. Watch for one of the following messages in
the debugger:

Breakpoint at address routinename
A-Trap break at address routinename

If you see the first message before the second, you know that NewMovieFromFile
doesn’t use GetResource. As you’ll see, GetResource is not called.

But you don’t need to give up on the GetResource idea. Some A-traps have
variations, which makes it difficult to guess which routine is called. Two obvious
variations of GetResource are Get1Resource and Get1IndResource.
NewMovieFromFile can be passed nil for the resource ID, which means it
probably loads the first 'moov' resource. With this theory in mind, break into
NewMovieFromFile again, and this time set the break on Get1xResource instead of
GetResource (Get1xResource is the MacsBug equivalent of Get1IndResource):

atb get1xresource (sp+2)^='moov'; br pc+2

INSIDE QUICKTIME AND COMPONENT-BASED MANAGERS March 1993

41
To easily read the type of resource in the
upper left corner of MacsBug, try executing the
command “show 'sp+2' a”. The a parameter lets
you view the information in ASCII, and the single
quotation marks tell MacsBug to anchor the status
region to the changing location of the stack
pointer. In TMON Pro, use the command
“Δ(sp+2)” in a Memory window.•

When you leave MacsBug, you’ll get an A-trap break and thus know how
NewMovieFromFile loads the movie.

Unfortunately, breaking on GetResource works for only one of the five new movie
calls. You don’t get a break with NewMovie, because the call is similar to a
NewWindow call and doesn’t bring in a resource. You may get a break with a
NewMovieFromFile call, since it does bring in the 'moov' resource from the file. It’s
similar to a GetNewWindow call, but it may break on Get1IndResource or
Get1Resource, depending on whether you supplied a resource ID to the call.
NewMovieFromHandle and NewMovieFromDataFork will not break, because a
movie doesn’t have to be stored in a resource. You don’t get a break for
NewMovieFromScrap, because it loads the movie directly from the scrap.

As you’ve seen, although breaking on GetResource can provide some insight, it’s
limited in what it can tell you about the general class of new movie calls. Breaking on
GetResource showed you how the new movie calls differ in their methods of loading
the data. However, it didn’t show how they implement their common behavior. Their
similar names indicate that the calls exhibit similar behavior in loading a movie into
memory. While it’s true you can break on the loading of code resources, and even
code resources of different types (WDEF, CDEF, INIT), you have limited
information to differentiate one code resource from another (other than by the
resource type). Thus, we turn to techniques for breaking on component routines.

BREAKING ON COMMON COMPONENT MANAGER ROUTINES
Components consist of a set of routines that implement a specific type of
functionality. To identify the exact nature of the functionality, a component has an
associated 'thng' resource. (At one point in their evolution, components were called
“things.”) The 'thng' resource stores a reference to the component code, a
ComponentDescription record, string resources, and an icon resource. The
ComponentDescription record identifies the type of functionality that the
component’s set of routines implements; for example, a media handler component is
identified by the OSType 'mhlr' in the type field of the ComponentDescription
record. Thus, components make it possible to break on the loading of functionality.

Components are identical to code resources, except that a component uses an
extended resource specification in the form of the 'thng' resource. Normal resources
use a resource type and ID for their resource specification. Because a component
consists of a typed code resource and a 'thng' resource, you can use the traditional
GetResource techniques on components, but in newer and better ways.

So let’s exploit QuickTime’s use of components. QuickTime depends on over 50
components. The best call to break on is FindNextComponent, which queries the
Component Manager for components and returns a reference to a component. It’s
consistently called by applications that need a component, and its parameters contain
extra information about the component. Breaking on OpenComponent isn’t as useful

d e v e l o p March 1993

Breaking on internal A-traps assumes that
QuickTime uses the A-trap mechanism. A later
example illustrates how this assumption can affect
your investigations.•

For more information on components, see
the QuickTime or System 7.1 documentation on
the Component Manager, and see Gary
Woodcock and Casey King’s article, “Techniques
for Writing and Debugging Components,” in
develop Issue 12.•

42

because you have no simple way of identifying the component type. You break on
FindNextComponent just as you do with GetResource:

atb findnextcomponent

The first field of a ComponentDescription record is the component type. Since it’s
the last parameter pushed on the stack, you can anchor a dereferenced stack pointer
to the upper left corner of MacsBug:

show 'sp^' a

By watching the status region, you can see which components QuickTime loads and
when they’re loaded. This helps you understand the internal behavior of a routine.
Alternatively, in TMON Pro, you could anchor a Memory window to a dereferenced
stack pointer, as shown in Figure 3.

Unfortunately, QuickTime doesn’t always call the A-trap mechanism for some
internal routines. A notable example is OpenDefaultComponent, which may not call
FindNextComponent via the A-trap mechanism. It can use a direct dispatch
mechanism, which helps speed up QuickTime. One solution to this problem is to set
an A-trap break on OpenDefaultComponent as well as FindNextComponent.
Another solution is to use the thing dcmd and an A-trap break on OpenComponent.
Even though with OpenComponent you have no simple method of identifying the
type of component, at least OpenComponent must always be called for any
component that’s opened. The thing dcmd lets you find out what type of component
is loaded. It lists all components registered with the Component Manager and, in the
far left column, lists the number of instances.

Let’s consider the NewMovieFromFile example again. You break on
NewMovieFromFile, and then execute the thing dcmd to see what components are
loaded, remembering particularly the number of instances. Next, you break on
OpenComponent, step over it, and invoke thing again. You can easily notice the
change in instances for the 'clok' component. This technique may be a little more
cumbersome, but because QuickTime sometimes bypasses the trap dispatch
mechanism, it’s more accurate.

As more Macintosh Toolbox managers rely on components, you’ll find trapping on
typed functionality to be invaluable to your understanding of that manager.
Debugging techniques that you’ve used with the Resource Manager can be used
successfully with the Component Manager.

DYNAMIC STATE INFORMATION
You’ve seen how debuggers can interact with A-traps to provide valuable information
about QuickTime routines. Now let’s leave the realm of debuggers and focus on the

INSIDE QUICKTIME AND COMPONENT-BASED MANAGERS March 1993

43

interaction of global data structures and QuickTime routines. The Macintosh uses
state information extensively to build simulations of real-world environments.
QuickDraw’s grafPort provides a familiar example — it contains state information to
provide a consistent context for graphics operations. But it can trip you up if you’re
not aware of that context.

d e v e l o p March 1993

44

Figure 3
Breaking on Component Routines With TMON Pro Debugging Tools

 [] Memory from :�A7^ []�
00E47A3E: 636C6F6B 6D696372 6170706C 00000001 clokmicrappl....�
00E47A4E: 00000001 00E47A7E 00130812 00D5F1D8 ‰z~.....’Òÿ�
00E47A5E: 00000000 00D5DEB0 00E47D16 000500E4 ’fi�.‰}....‰�
00E47A6E: 9C602004 00060006 DBA84081 B01E4081 ú`¤®@Å�^@Å�
00E47A7E: 00E47AEE 00131662 00000258 00000000 .‰zÓ...b...X....�
00E47A8E: 00E47C84 00000000 00000000 00400000 .‰|Ñ.........@..�
00E47A9E: 00000CDC 00000000 00000000 00E49C60 ...‹.........‰ú`�
00E47AAE: 00D5DEB0 00E47D16 0006DD52 0006DD52 .’fi�.‰}...›R..›R�
00E47ABE: 000000D5 000000E4 000000D4 C21800D5 ...’...‰...‘¬..’�
00E47ACE: DDC000D5 DDC00000 00000000 00E49C60 ›¿.’›¿.......‰ú`�
�
�
 [] Disassembly from �PC-2 []�
000C24E4: †_PaletteDispatch+$0BA0: _FindNextComponent�
000C24E8: †_PaletteDispatch+$0BA4: MOVEA.L (A7)+,A3�
000C24EA: †_PaletteDispatch+$0BA6: MOVE.L A3,D0�
000C24EC: †_PaletteDispatch+$0BA8: BNE.S ^$000C2520 ;†_PaletteDispatch+$BDC�
000C24EE: †_PaletteDispatch+$0BAA: MOVE.L #$7469636B,`FFF0(A6) ;’tick’�
000C24F6: †_PaletteDispatch+$0BB2: MOVE.L #$6170706C,`FFF4(A6) ;’appl’�
000C24FE: †_PaletteDispatch+$0BBA: SUBQ.L #4,A7�
000C2500: †_PaletteDispatch+$0BBC: MOVEQ#$00,D0�
000C2502: †_PaletteDispatch+$0BBE: MOVE.L D0,-(A7)�
000C2504: †_PaletteDispatch+$0BC0: PEA `FFEC(A6)�
 �
�
 [] findnextcomponent�
�
�
 [] Memory from :$00000910 []�
00000910: ‘CurApName’ : “MoviePlayer”�
�
�
 [] Dump from �A7 []�
00E47A12: 00E47A3E 00000000 000C24A8 00000000 .‰z>......$®....�
00E47A22: 00D5DE8C 00D5F1B0 40809A26 00D74FE0 .’fiå.’Ò�@Äö&.�O‡�
�

Last parameter pushed�
on stack is a pointer to�
ComponentDescription record

QuickTime routine name ASCII display of�
ComponentDescription record

With that in mind, let’s continue our investigation of QuickTime routines. Go back
to MoviePlayer and set the breaks again on NewMovieFromFile. Then use the
technique described in the previous section to find out which components are loaded.
NewMovieFromFile first loads a 'clok' component. This is probably part of a
NewTimeBase call. Testing this guess by breaking on NewTimeBase shows that the
TimeBase is created dynamically — it’s not a static part of a movie file format. What
does it mean that all NewMovieFromFile calls load a TimeBase?

QuickTime adds its own context in the form of dynamic state information. By
default, a movie generates a TimeBase. Just as GrafPort supplies a data structure for
graphical state information, TimeBase provides a data structure for time information.
Any time can be autonomously specified by a time base, time scale, and time value,
which are grouped in a convenient data structure called TimeRecord.

If you work with QuickTime a lot, you’ll notice that you seldom use TimeRecord. It
seems odd until you realize that if you use a movie, you already have a default
TimeBase supplied. There’s no point to filling out a TimeRecord structure. There
are easy calls to get the movie time scale (such as GetMovieTimeScale), and you
usually specify a time value. Developers often forget the time context and make
redundant calls. For example, developers forget that StartMovie calls SetMovieRate
with the movie’s preferred rate, and call both StartMovie and SetMovieRate. For
movies, don’t forget the time context. (This is not to say that TimeRecord is useless;
when you don’t have a movie and need to specify a specific time, TimeRecord comes
in handy.)

If you continue breaking on component routines, you’ll see that after loading a 'clok'
component, NewMovieFromFile dynamically loads its media handlers. The Movie
Toolbox doesn’t know how to interpret media: it leaves that task to the media
handlers. (Media handlers are discussed later under “Component Bottlenecks.”) A
movie is a dynamically loaded series of components. As a further exercise for breaking
on component routines, try looking at the components that CustomGetFilePreview
uses.

BOTTLENECKS
Some programming techniques allow you to alter Macintosh routines. QuickTime
relies extensively on QuickDraw, and QuickDraw uses bottlenecks to implement its
routines’ functionality. Bottlenecks are commonly used in two ways:

• You can observe the behavior of an entire group of routines by
replacing one bottleneck routine with your own. Most commonly,
you would put a Debugger statement in it.

• You can gain access to information at a lower level and before it’s
been worked on. You can either change this information or use it
for other purposes.

INSIDE QUICKTIME AND COMPONENT-BASED MANAGERS March 1993

45
Time bases are discussed in “Time Bases: The
Heartbeat of QuickTime” by Guillermo Ortiz in
develop Issue 12.•

GRAFPORT BOTTLENECKS
QuickDraw provides some familiar examples of using bottlenecks. A grafPort
contains pointers to all the low-level routines that it uses to implement its higher-
level calls. By default the bottlenecks contain routines for drawing to the screen.
When you create a grafPort, it’s possible to swap out those ProcPtrs and put in
your own. The default QuickDraw bottlenecks are usually swapped out in two
circumstances: printing and getting information. Since all of QuickDraw must route
through bottlenecks in the grafPort, and there are only 20 bottlenecks, a savvy
Macintosh programmer will know which high-level routines call which low-level
routine.

QuickTime introduces a new bottleneck — StdPix — to handle compressed image
data. StdPix replaces the newProc1 bottleneck (see Chapter 4, “Color QuickDraw,”
of Inside Macintosh Volume V for details). You can sit in this bottleneck (that is,
replace it with one of your own) and look at compressed data before it’s
decompressed.

Let’s look at a situation where you may want to do this. The Picture Utilities Package
is useful for getting information about pictures; however, it wasn’t designed to
support QuickTime. For example, GetPictInfo returns an inaccurate depth for
QuickTime compressed images. The following code shows how to work around this
problem. You replace all a grafPort’s bottlenecks with dummy routines (so that
nothing is actually drawn), except you can call GetCompressedPixMapInfo in the
StdPix bottleneck. GetCompressedPixMapInfo returns the ImageDescriptionHandle
for the picture, from which you can get the depth. DrawPicture eventually calls
StdPix, among other bottleneck routines. Because the other bottlenecks were
replaced with dummy routines, DrawPicture’s behavior is reduced to just a StdPix
call. The parameters passed to the StdPix routine fill out the parameters of the
GetCompressedPixMapInfo routine, which in turn retrieves the pixel depth via the
ImageDescription structure. The sample code on the CD creates a window for this
function to “draw” in.

short gDepth = -1;

pascal void myStdPix(PixMapPtr src, Rect *srcRect,
MatrixRecordPtr matrix, short mode, RgnHandle mask, PixMapPtr matte,
Rect *matteRect, short flags)

{
ImageDescriptionHandle desc;
Ptr data;
long bufferSize;

GetCompressedPixMapInfo(src, &desc, &data, &bufferSize, nil, nil);
gDepth = (**desc).depth;

}

d e v e l o p March 1993

46

pascal void myTextProc(short byteCount, Ptr textBuf, Point numer,
Point denom){}

pascal void myLineProc(Point newPt){}
pascal void myRectProc(GrafVerb verb, Rect *r){}
pascal void myRRectProc(GrafVerb verb, Rect *r, short ovalWidth,

short ovalHeight){}
pascal void myOvalProc(GrafVerb verb, Rect *r){}
pascal void myArcProc(GrafVerb verb, Rect *r, short startAngle,

short arcAngle){}
pascal void myPolyProc(GrafVerb verb, PolyHandle poly){}
pascal void myRgnProc(GrafVerb verb, RgnHandle rgn){}
pascal void myBitsProc(BitMap *bitPtr, Rect *srcRect, Rect *dstRect,

short mode, RgnHandle maskRgn){}

void GetQTImagePixelDepth(PicHandle picture)
{

CQDProcs bottlenecks;

SetStdCProcs(&bottlenecks); // Define our own bottlenecks.
bottlenecks.textProc = (Ptr)myTextProc;
bottlenecks.lineProc = (Ptr)myLineProc;
bottlenecks.rectProc = (Ptr)myRectProc;
bottlenecks.rRectProc = (Ptr)myRRectProc;
bottlenecks.ovalProc = (Ptr)myOvalProc;
bottlenecks.arcProc = (Ptr)myArcProc;
bottlenecks.polyProc = (Ptr)myPolyProc;
bottlenecks.rgnProc = (Ptr)myRgnProc;
bottlenecks.bitsProc = (Ptr)myBitsProc;
bottlenecks.newProc1 = (Ptr)myStdPix; // pixProc.

// Install our custom bottlenecks to intercept any compressed
// images.
(*(qd.thePort)).grafProcs = (QDProcs *)&bottlenecks;
DrawPicture(picture, &((**picture).picFrame));

(*(qd.thePort)).grafProcs = 0L; // Switch back to the default procs.
}

COMPONENT BOTTLENECKS
A QuickTime routine may be implemented by a component. In this case, the concept
of sitting in bottlenecks applies in a useful way to QuickTime components. As you
know, the Component Manager sends the routine selector to the component, and the
component parses the selector in its main function. Since all the selectors flow
through the main function, it would be extremely valuable to replace the component

INSIDE QUICKTIME AND COMPONENT-BASED MANAGERS March 1993

47

with your own delegating component in order to watch the selectors flow by. Just as
you can sit in a bottleneck and capture routines, you can capture a component,
perform an operation, and delegate the rest to the captured component. Then you
could identify the sequence of routines needed to implement specific functionality.

Fortunately, some components have standardized interfaces as defined by Apple.
These public APIs make it easy to match up the selector to the routine name, as
defined in the interface files. With the introduction of QuickTime 1.5, the API
for the base media handler has been made available as defined in the file
MediaHandlers.h.

With a delegating component, you could theoretically modify the behavior of any
component. But whether you can modify a given component depends on whether it
implements the target request. Many components in QuickTime don’t implement
this functionality, which is unfortunate. However, with the introduction of
QuickTime 1.5, the media handlers support the target request. By allowing media
handlers to be delegated, QuickTime 1.5 greatly opens its architecture, giving
enhanced meaning to multimedia. For example, the text media handler delegates the
generic media handler and uses its media scheduling and editing functions to do all
the hard work. If you want to write your own media handler, delegating the generic
media handler is just what you need.

To create a generic delegating component, I’ll use a sample supplied with the article
“Techniques for Writing and Debugging Components” in develop Issue 12. The
sample is called NuMathComponent. It’s a simple matter to convert it into a generic
delegating component.

1. Using a resource editor, replace the componentType,
componentSubType, and componentManufacturer of the
NuMathComponent.π.rsrc 'thng' resource with 'mhlr', 'vide', and
'angs', respectively. Using 'angs' for the manufacturer puts the
component before 'appl' alphabetically. Because the Component
Manager searches alphabetically, when a search is done by
QuickTime for a component of type 'mhlr' and subtype 'vide', it
grabs your component. This technique forces QuickTime to use
your component, which then captures Apple’s component.

2. Open the NuMathComponent.π project and open the
NuMathComponent.c file.

3. Be sure to declare the globals variable at the top of the main
function as

PrivateGlobals** globals = (PrivateGlobals**)storage;

This declaration gives you access to the fields in your global
storage.

d e v e l o p March 1993

QuickTime components that implement
the target request include Apple generic
media handler, Apple standard media handler,
Apple video media handler, Apple sound media
handler, Apple text media handler, movie
controller, movie grabber video channel, and
movie grabber sound channel.•

48

4. Delete the second switch statement in the main function and
replace it with

if (globals)
DelegateComponentCall(params,

(**globals).delegateComponentInstance);
else

result = paramErr;

5. In _NuMathOpen and _NuMathRegister, change the described
component’s componentType and componentSubType fields to
'mhlr' and 'vide', respectively.

6. Build the code resource for the generic capture component (the
code from develop Issue 12 on the CD has all the necessary files).
You’ll have to turn the declaration of ComponentSetTarget into a
comment if you’re using QuickTime 1.5.

Your main function should look like the following sample code. Focus on the call to
DelegateComponentCall, as it’s the major change needed to make the generic
delegating component. To use the delegating component, either put it in the System
Folder and reboot or drag and drop it on Reinstaller II.

pascal ComponentResult main(ComponentParameters *params, Handle storage)
{

// This routine is the main dispatcher for the NuMath component.
ComponentResult result = noErr;
PrivateGlobals** globals = (PrivateGlobals**)storage;

// Did we get a Component Manager request code (< 0)?
if (params->what < 0)
{

switch (params->what)
{

case kComponentOpenSelect: // Open request.
result = CallComponentFunctionWithStorage (storage, params,

(ComponentFunction) _NuMathOpen);
break;

case kComponentCloseSelect: // Close request.
result = CallComponentFunctionWithStorage (storage, params,

(ComponentFunction) _NuMathClose);
break;

case kComponentCanDoSelect: // Can Do request.
result = CallComponentFunction (params,

(ComponentFunction) _NuMathCanDo);
break;

INSIDE QUICKTIME AND COMPONENT-BASED MANAGERS March 1993

49

case kComponentVersionSelect: // Version request.
result = CallComponentFunction (params,

(ComponentFunction) _NuMathVersion);
break;

case kComponentRegisterSelect: // Register request.
result = CallComponentFunction (params,

(ComponentFunction) _NuMathRegister);
break;

case kComponentTargetSelect: // Target request unsupported.
default: // Unknown request.

result = paramErr;
break;

}
}
else // Was it one of our request codes?
{

if (globals)
DelegateComponentCall(params,

(**globals).delegateComponentInstance);
else

result = paramErr;
}
return (result);

}

Now let’s go back to the old example: Open MoviePlayer, set the break on
DelegateComponentCall, and anchor a Memory window at “Δ(sp+4)^+2” for
TMON Pro or “show '(sp+4)^+2' l” for MacsBug. This displays the selector from the
ComponentParameters data structure passed into DelegateComponentCall. You’ll be
able to read the selectors for the routines as they’re passed into the main function of
the component. Remember, you can compare these numbers with the interface files
(there are no interface files for the video media handler because it doesn’t have a
public API). In TMON Pro, you can open a View window of the interface file and
look at the selectors without leaving the debugger.

You can try other situations and other traps to see whether they call the video media
handler. Or set breaks in the open, close, version, and register routines — to find out
how Things! works, for example. If you bring up the Things! control panel and select
your media handler, you’ll see Things! calls a trio of routines — open, version, and
close. Also, you can see what calls are made to the component on startup.

A simpler technique can be used if you just want to analyze the selectors. Enter
MacsBug and execute thing, which will list the entry point for each component. Set a
breakpoint on an entry point. You can now use the same “show” instruction to display
the selector. If it uses a fast dispatch mechanism, the selector will be in the low-order

d e v e l o p March 1993

When you’re exploring, it’s useful to use the
dx command to turn the Debugger and DebugStr
traps on and off. In TMON Pro, you can use the
Options window to achieve the same result. If you
set debugger traps in all the component requests,
you’ll inevitably be annoyed by the constant
breaking.•

50

word of register D0. To modify this sample to be a media handler, you need to keep
the same basic structure but support some or all of the selectors defined in the
MediaHandlers.h file. For a description of those routines, refer to the QuickTime
Version 1.5 for DevelopersCD.

OLD WORLD MEETS NEW WORLD
QuickTime routines can be intercepted and specially processed at various locations.
Debuggers interact with QuickTime routines via the A-trap mechanism, providing
valuable information about the sequence of routines needed to implement specific
functionality. Applications can interact with QuickTime routines at the component
level, allowing the program to change the routine’s behavior.

The themes presented in this article extend beyond QuickTime. When newer
technology comes from Apple, you can apply the common Macintosh themes of
bottlenecks, contexts, and breaking on A-traps to new managers. Understanding
these themes and applying them expedites your learning dramatically. In addition,
you’re now armed with techniques for investigating future Macintosh managers,
some of which will be implemented through use of components. The techniques
discussed in this article can help you flatten your learning curve, which can only be
an advantage.

INSIDE QUICKTIME AND COMPONENT-BASED MANAGERS March 1993

51
THANKS TO OUR TECHNICAL REVIEWERS
Jim Batson, Peter Hoddie, Guillermo Ortiz, John
Wang, Gary Woodcock•

• “Techniques for Writing and Debugging Components” by Gary Woodcock and
Casey King, develop Issue 12.

• “Time Bases: The Heartbeat of QuickTime” by Guillermo A. Ortiz, develop Issue
12.

• “QuickTime 1.0: ‘You Oughta Be in Pictures’” by Guillermo A. Ortiz, develop
Issue 7.

• TMON Professional Reference Manual and Tutorial (Icom Simulations, Inc.).

• QuickTime Developer’s Guide, available from APDA as part of the QuickTime
Developer’s Kit (#R0147LL/B), and the System 7.1 documentation. These have
information on the Component Manager.

• Inside Macintosh Volume V (Addison-Wesley, 1986), Chapter 4, “Color
QuickDraw.”

RECOMMENDED READING

With the release of QuickDraw GX later this year,
there are a few changes in store for print land. In this
column, I’m going to talk about two of these changes
— the disappearance of the PDEF 10 resource from
the QuickDraw GX LaserWriter driver, and the
disappearance of the 'STR ' (-8192) and 'PAPA' (-8192)
resources from a system running QuickDraw GX.

Like most changes, the fact that these resources are
going away is both good news and bad news. The good
news is that printing is going to work much better in
the GX world than it does today. For one thing, the
new printer driver architecture provides functionality
that used to be unavailable through the Printing
Manager, which is why people got involved in directly
grabbing resources in the first place. The bad news is
that if you are currently grabbing these resources,
you’re going to have some problems running under
QuickDraw GX, and you need to decide now how
you’re going to deal with this.

Before we get into solutions, however, let’s back up a
bit, and answer the question, What’s a PDEF, anyway?
A PDEF is just a code resource for printer drivers. All
printer drivers contain multiple PDEFs, each of which
implements a piece of the driver’s functionality, like
displaying dialog boxes or alerts. PDEF 10 contains the
printer access protocol (PAP) code that enables a
LaserWriter driver to communicate with a network
printer. (For details about the interface to PAP, see

Chapter 10, “Printer Access Protocol,” in Inside
AppleTalk.) Some applications that need the PAP code
have acquired it by sucking PDEF 10 out of the
LaserWriter driver. Before Apple put together its PAP
software licensing package, grabbing PDEF 10 like this
was a quick and easy way to get what you needed. But
it’s an approach that’s unsupported by Apple and that
has always carried the seeds of compatibility problems.

So what should you do if you’re currently grabbing
PDEF 10 out of the LaserWriter driver? You’ve got the
following possible solutions:

• Continue to grab PDEF 10, but make sure you’re
prepared to handle failure gracefully when you can’t
get it. Basically, you’ll need to let the user know that
your application isn’t compatible with the version of
system software being used — that is, the
QuickDraw GX–based system. Not a very user-
friendly solution, but that might be OK for your
application.

• If all you need to do is download a PostScript™ file
to the LaserWriter, use the PostScriptHandle
PicComment and a basic print loop. Most
applications need to do a lot more than send a bunch
of PostScript code down the pipe — for instance,
they need to set the characteristics of the PostScript
printer — but if your application’s needs are really
this limited, it can be happy in the GX world. If
you’re interested in this approach, take a look at the
Technical Notes “A Printing Loop That Cares . . .”
and “PicComments — The Real Deal.” You can also
look at the PostScriptHandleDemo snippet in the
Snippets folder on the Developer CD Series disc.

• Write your own PAP interface files. This is a
relatively time-consuming operation, but it gives
you total ownership of the code, and your
application is unlikely to break with future system
software releases. Quite a few developers have had
success with this approach.

• License Apple’s PAP library code — the same library
that’s used within the LaserWriter Font Utility. The
latest version (v. 1.5) of the library improves on the
last version and has more complete documentation.

d e v e l o p March 1993

PETE (“LUKE”) ALEXANDER In the winter, Luke likes to hit the
cross-country ski tracks. There you’ll find him striding across
meadows and down hills on long strips of fiberglass. One day he
agreed to a “small” uphill ski at a friend’s urging, only to discover
halfway into it a virtually vertical two-mile climb! Weighing the
risks of descending uncontrollably from there versus continuing on,
Luke forged ahead, arriving at the summit an hour (and a lot of
side stepping) later. Since then, he’s been particularly wary of
e-mails beginning “Dear Luke, I have this small printing problem.”•

Grabbing the PAP driver from PDEF 10 is described both in
the Macintosh Technical Note “Printer Access Protocol Q&As”
under “Using PAP & code for finding printer driver under System 7”
and in the article by Mike Schuster called “Laser Print DA for
PostScript” in MacTutor Volume 2, Number 2.•

52

PRINT HINTS

LOOKING AHEAD TO
QUICKDRAW GX

PETE (“LUKE”) ALEXANDER

PRINT HINTS: LOOKING AHEAD TO QUICKDRAW GX March 1993

53

If you’re interested in licensing this library, please
contact

Software Licensing
Apple Computer, Inc.
20525 Mariani Avenue, M/S 38-I
Cupertino, CA 95014
AppleLink: SW.LICENSE
Phone: (408)974-4667

• Use Apple’s LaserWriter Font Utility and add your
custom features to it. In System 7, the LaserWriter
Font Utility can handle drop-in enhancements
called UTILs. UTILs take care of all the
communication issues for you, and they give you
quite a bit of power and flexibility. If you’re
interested in this approach, take a look at
“PostScript Enhancements for the LaserWriter Font
Utility” in Issue 10 of develop.

At this point, you’re probably wondering which
solution is the best for you. It all depends on your
requirements. From my point of view, any solution
besides the first is acceptable if it will keep your users
happy and keep you compatible with future system
software releases.

Now let’s turn to the disappearance of the 'STR '
(-8192) and 'PAPA' (-8192) resources. On a non-
QuickDraw GX system, the 'STR ' resource contains
the name of the currently chosen printer driver, while
the 'PAPA' resource contains the name and network
address of the current PAP printer. Because
QuickDraw GX will allow more than one active printer
at a time, these resources will become obsolete.

Why is this a problem? Only because some applications
currently grab the 'STR ' and 'PAPA' resources to
automatically select a printer without going through
the Chooser. Under QuickDraw GX, it will be possible
to redirect a print job to another printer via the
Printing Manager’s public API. So new applications
and applications revised to work under QuickDraw GX

will be able to programmatically redirect print jobs on
the fly in a clean, supported manner.

If your application isn’t GX-smart, the simplest way to
deal with the disappearance of the 'STR ' and 'PAPA'
resources is probably just to remove your application’s
feature of circumventing the Chooser. If your
application absolutely requires this functionality,
however, make sure that when these resources aren’t
available, you tell the user to go use the Chooser. This
way your application will print on a QuickDraw GX
system without any problems.

This column has looked at a couple of compatibility
problems that can emerge when non-QuickDraw GX
applications run under QuickDraw GX, and also at
some of the ways that you can avoid these problems. As
long as you’re prepared to implement one of the
solutions recommended here, your application will run
just fine under QuickDraw GX. And on the bright side,
QuickDraw GX is going to allow your application to
access and control a vast amount of information at
print time. QuickDraw GX will provide the API your
application requires to take care of all the user’s
printing needs without having to cruise through printer
driver or system resources. You asked for it, and soon
you’ll have it!

To find out whether the QuickDraw GX Printing Manager
is installed, call the Gestalt function with the 'pmgr' selector.•

Thanks to Hugo Ayala, Tom Dowdy, Dave Hersey, Jim Luther, and
Scott (“Zz”) Zimmerman for reviewing this column.•

REFERENCES
• Inside AppleTalk (Addison-Wesley, 1990),

Chapter 10, “Printer Access Protocol.”

• Macintosh Technical Notes “PicComments — The
Real Deal” (formerly #91), “A Printing Loop That
Cares . . . ” (formerly #161), and “Printer Access
Protocol Q&As” under “Using PAP & code for
finding printer driver under System 7.”

• “PostScript Enhancements for the LaserWriter Font
Utility” by Bryan K. Ressler, develop Issue 10.

This is a supplement to the article “Macintosh Debugging: A Weird
Journey Into the Belly of the Beast” in Issue 8 of develop. It presents
a few debugging tools that were discussed at Apple’s Worldwide
Developers Conference in May 1992. Like those discussed in the
previous article, these tools are designed to help you force the nasty,
subtle bugs in your code to show their hideous little faces immediately,
rather than lying in wait and biting you when you least expect it.

People often ask us, “How can I be a totally awesome, godlike debugging stud [or
studette] like you?” Unfortunately, the big truth from the Issue 8 debugging article is
just as true now as it was then: debugging is hard. That’s just the way it is. The only
way to get better at it is to practice. Now that we’ve got that straight and before we
get into describing the new debugging tools, here are three pearls of wisdom to guide
you in your practice.

First of all, it helps to know a lot about the operating system. The better sense you
have of how the Macintosh works, the better off you’ll be trying to track down a nasty
bug. Dare to delve into the bowels of the OS. Read and reread Inside Macintosh; take
it with you to bed, to the bathroom, out to dinner, and on dates. (You might want to
invest in a sturdy wheelbarrow, especially with the new Inside Macintosh volumes
proliferating like rabbits.) For that matter, read every Macintosh programming book
ever written (especially those listed at the end of this article) and every Technical
Note, Snippet, piece of Sample Code, and issue of develop, as well as every word on
the AppleLink Discussion boards. Also, spend lots of time in debuggers, watching the
system do its thing. If you’re not dreaming in hex, you’re not spending enough time
in MacsBug.

Second, get slammed a lot. The people who are the best at debugging are usually the
ones who’ve had to track down the most bugs and therefore have an encyclopedic
knowledge of them. If you have a really nasty bug in your code that crashes the
machine on a seemingly random basis and takes you three days to find and squash,

d e v e l o p March 1993

FRED HUXHAM (AppleLink FRED) was born
and raised in California. He used to be a
tremendous athlete, know bazillions of babes,
and go to wild parties in New York and
California with people like Andy Warhol and
Keith Haring. Now he’s 15 pounds heavier,
knows only one babe (his wife), and thinks a day
spent sitting on his roof deck watching boats go
through the Golden Gate is really exciting.•

GREG MARRIOTT (AppleLink GREG) is a
SWM, 28, 6'0", 195 lbs., brown hair and eyes,
sincere, hardworking, good sense of humor.
Enjoys music, romantic walks, quiet evenings, and
good books. Seeks nice woman for friendship
and more. Send photo.•

54

FRED HUXHAM AND
GREG MARRIOTT

ADAPTED FROM THEIR
TALK AT THE WWDC BY
DAVE JOHNSON

MACINTOSH

DEBUGGING:

THE BELLY OF

THE BEAST

REVISITED

then by jove you’ll remember that bug the next time you see it. Simply put, the more
bugs you find, the better you’ll be at finding bugs.

Last, use good tools, and use them all. Reread the Issue 8 article. Turn on those tools
and stress your code. Bend, fold, staple, and mutilate it. Show no mercy.

These things will help you on your way to becoming a primo bug stomper, but
debugging is like any complex skill in that it can’t really be taught past a certain point.
You simply have to do it a lot, and over time you’ll get better. Tools and techniques
such as the ones presented here can help enormously, especially by forcing hidden
bugs to the surface, but they can never do the whole job for you.

This time there are only four new tools to talk about — Double Trouble, Dispose
Resource, Blat, and Smart Friends — so this article is much shorter than the last one.
The tools are available on the Developer CD Series disc, as well as on AppleLink and
elsewhere. We’re doing this backward from the last time: first we’ll present a buggy
code sample, then we’ll talk about the tool that would find the bug.

DOUBLE TROUBLE
Can you find the bug in this code sample?

myHandle = NewHandle(100);
if (myHandle) {

AddResource(myHandle, 'dumb', 10, "\p");
if (resError()) HandleTheError();
CloseResFile(outputFileRef);
DisposeHandle(myHandle);

}

OK, time’s up. This one’s not too hard. The problem is that during CloseResFile the
Resource Manager disposes of all the resources in memory. The DisposeHandle call
afterward is unnecessary and is actually potentially disastrous. Normally you’ll just
get an error and DisposeHandle will do nothing, but occasionally the data structures
in the Memory Manager will conspire to really screw you.

Here’s how: Master pointers are allocated in clumps called master pointer blocks,
which are nonrelocatable blocks in your application’s heap. The master pointers that
are currently free for use are kept in a linked list by the Memory Manager. The list is
LIFO, like a stack: when you allocate a new handle, the Memory Manager uses the
first master pointer in the free list, and when you dispose of a handle the freed master
pointer is returned to the beginning of the list.

Now the plot thickens. If the first master pointer in the free list also happens to be
the first master pointer in its master pointer block (so that the master pointer and the

MACINTOSH DEBUGGING: THE BELLY OF THE BEAST REVISITED March 1993

55

master pointer block have the same address) and then you dispose of a handle twice
by mistake, very bad things will happen. On the first dispose, everything is fine: the
Memory Manager frees the block the master pointer points to and returns the master
pointer to the start of the free list. At this time, the master pointer still points to a
valid block of memory, but now it’s the master pointer block itself! So on the second,
unintentional dispose, when the Memory Manager dutifully frees the block for reuse,
you’re set up for disaster. Subsequent memory use will likely result in writing over
many master pointers, which will of course trash you one way or another.

Figure 1 illustrates this scenario. On the left is the top part of a master pointer block
that resides in the heap at address 80. The heap’s free list is a standard linked list
(each entry contains the next entry’s address) beginning at hFstFree. Note that the
first entry in the heap’s free list is also the first master pointer in the block. This is the
first step to trouble.

Now we call DisposeHandle on the master pointer at 81. DisposeHandle looks at the
block pointed to by the master pointer (in this case the block at 144, not shown),
determines that it is indeed a valid block, marks it as free for reuse, and adds the

d e v e l o p March 1993

56

83

144

480

85

226

0

83

80

480

85

226

0

= Master pointers in free list

= Master pointers in use

80

81

82

83

84

85

Address Contents

hFstFree = 80 hFstFree = 81

80

81

82

83

84

85

Address Contents

After freeing handle 81Before freeing handle 81

Figure 1
How Disposing of the Same Handle Twice Can Spell Disaster

newly freed master pointer to the front of the free list. So far so good. Now the
master pointer block looks like the one on the right in the figure.

Then we call DisposeHandle on 81 again by mistake. DisposeHandle looks at the
block pointed to by the master pointer (now it’s the block at 80, our master pointer
block!), determines that it is indeed a valid block (uh oh), marks it as free for reuse
(yikes!), and adds the newly freed master pointer to the front of the free list — and
the heap is now hosed for good. This Memory Manager bug is subtle and rare, but oh
so nasty.

Even if you’re lucky enough to avoid this particular sequence of events, a double
disposal is definitely a bug. Double Trouble is a system extension that watches calls to
DisposeHandle to make sure it’s not being called on something in the free list. If it is,
Double Trouble drops into the debugger with a suitable warning.

We’ll be the first to admit that Double Trouble is far from perfect. It infers the
existence of heap zones by watching InitZone and then trying to figure out when a
heap isn’t a heap anymore. The possibility exists that it will guess wrong and cause a
bus error when trying to walk a free list that’s no longer a free list. Furthermore, in
some cases Double Trouble can noticeably slow down parts of the system. (After
playing a long QuickTime movie, for instance, the machine may freeze for almost a
minute.)

But despite Double Trouble’s shortcomings, we do still recommend running it all the
time. Just try to remember that it’s running so you don’t chase your tail trying to find
the cause of occasional mysterious slowdowns.

DISPOSE RESOURCE
Here’s the code. What’s the bug?

myPicture = GetPicture(kPicID);
if (myPicture) {

DrawPicture(myPicture, &myRect);
DisposeHandle(myPicture);

}

That’s right, you should never call DisposeHandle on a resource handle. If you do,
the Memory Manager will free it just fine, but the Resource Manager has another
reference to it, stored in the resource map, that will be left dangling. Later on, since
the Resource Manager doesn’t know the handle was disposed of, it may try some
manipulation with the handle. The results may not crash you immediately, or at
all — it depends on what the operation is and what’s in the handle — but they’re
certainly not what was intended. Instead of DisposeHandle, you should always call
ReleaseResource on resource handles. ReleaseResource will properly dispose of the

MACINTOSH DEBUGGING: THE BELLY OF THE BEAST REVISITED March 1993

57

handle and will update the resource map. (Note that KillPicture won’t do the right
thing here either; it’s intended for pictures created via OpenPicture, not for PICT
resources.)

Dispose Resource is another extension a lot like Double Trouble. It also watches
DisposeHandle calls, this time looking to see if the handle being disposed of is a
resource handle. If so, you’ll drop into the debugger with a suitable warning.

Dispose Resource has one idiosyncrasy you should know about: it’s been known to
indicate “false positives.” Some parts of the system (we haven’t been able to track
down which ones yet) seem to save a resource handle’s state, detach the resource, and
then restore the state of the handle (restoring the resource bit!). Use Dispose
Resource. It will ensure that you don’t make the same mistake.

BLAT
This time the code’s in assembler:

; Offset the rect by 128 pixels in each direction.
PEA theRect(A6)
MOVE.W $0080, -(SP)
MOVE.W $0080, -(SP)
_OffsetRect

If you have “iron man” syndrome and insist on programming in assembly language,
this can happen to you. We forgot to type a # in front of each $0080. As a result,
instead of moving the number $0080 (128) onto the stack twice in preparation for the
OffsetRect call, we’re moving the contents of memory location $0080. Often this
kind of bug is immediately obvious, but not always. If you’re moving a Boolean, for
instance, you have a fifty-fifty chance of getting the right value, even though you’re
getting it from some random spot in memory. It’s those cases that will give you
debugging headaches.

One easy (and recommended) way to avoid the problem in this example is to write in
a higher-level language. But we realize that’s not always possible, and besides, this is
really a whole class of problems: reads and writes from places in memory you didn’t
intend. The best way to catch this wild memory reference kind of problem is,
naturally, with memory protection, something that — sadly — the Macintosh
normally lacks. In the last article we mentioned Jasik’s implementation, but now
there’s something else you should know about. Bo3b Johnson has written a dcmd
called Blat that uses the MMU to protect memory locations 0–255 from both reads
and writes.

Blat has been tested and works well on the Macintosh IIfx, IIx, and SE/30. Because its
operation is so hardware dependent, it’s hard to predict whether it will work on a

d e v e l o p March 1993

In Bo3b’s name, the “3” is silent.•
58

given machine. Some basic guidelines are that it requires an MMU and won’t work
with 68040 machines or with most configurations of machines with the IIci ROM
(IIci, IIsi, LC). For further details, see the release notes and the source code,
thoughtfully provided by Bo3b along with the dcmd itself.

SMART FRIENDS
This bug is subtle, so pay close attention:

#pragma parameter __d0 GetA0
Ptr GetA0(void) = {0x2008}; // MOVE.l A0,D0

void MyCompletionRoutine()
{

long saveA5;
HooHahPtr myHooHah;

myHooHah = (HooHahPtr)GetA0();
saveA5 = SetA5(myHooHah->myA5);
gSomething[0].flag = true; // Set a flag in a global array.
SetA5(saveA5);

}

This code really tries hard to do everything right. As the name implies, it’s a
completion routine, so it could be called at interrupt time. First a pointer to the data
is retrieved from A0, and then A5 is set to a previously saved value, thus allowing the
routine to access its global variables. Once A5 is set up, the global reference can be
made safely. Finally, A5 is restored to its previous value to clean up. Sounds great,
right? The only problem is, it doesn’t work.

Here’s why: the MPW C compiler will actually set up the global reference before the
SetA5 call, so accessing the global accesses some unknown part of memory. This is
legal compiler optimization behavior! If GetA0 and SetA5 were functions or traps,
the bug would disappear, but since they’re declared inline the compiler doesn’t feel
compelled to delay the evaluation of the global array reference. The solution is to set
up A5, then call a different routine that does the global reference.

Now in this case, how do you think we — the debugging gods — figured out the
bug? We tried the first few things we could think of; but then when we weren’t
making headway after a few probes, we didn’t just sit there and suffer in silence,
banging our heads against the proverbial wall. We called in some Smart Friends! The
veil of illusion was torn from our eyes, and we were shown the heart of the truth (in
other words, one of them had seen this bug before). The point is that in debugging,
two (or more) heads are far, far better than one. Bugs are not like germs: when you
share them, everyone benefits. Maybe your very own Smart Friends have had a

MACINTOSH DEBUGGING: THE BELLY OF THE BEAST REVISITED March 1993

59

similar bug before, so they’ll recognize immediately what’s going on. Or maybe
they’ll think of something different to try. At the very least, they’ll temporarily divert
you from your frustration, maybe make you feel less stupid, and then you can all go
out for pie together.

THAT’S IT!
Add these tools to your arsenal of bug sprays and foggers. Use them all and use them
well, and you, your code, and your customers will be far better off.

d e v e l o p March 1993

THANKS TO OUR TECHNICAL REVIEWERS
Jim Reekes and Bryan Stearns•

60

Bedside books for the serious student of debugging:

• How to Write Macintosh Software, 3rd ed., by Scott Knaster and Keith Rollin
(Addison-Wesley, 1992).

• Macintosh Programming Secrets, 2nd ed., by Scott Knaster and Keith Rollin
(Addison-Wesley, 1992).

• Debugging Macintosh Software with MacsBug by Konstantin Othmer and Jim
Straus (Addison-Wesley, 1991).

• MC68000 Family Programmer’s Reference Manual (Motorola, Inc.).

FURTHER READING

THE VETERAN NEOPHYTE March 1993

61

I recently started learning MacApp. (I know, I know, I
can see you shaking your great shaggy collective head,
chuckling to yourself, asking where I was three years
ago when MacApp was still news. Let’s just say I’m a
late bloomer.) People weren’t kidding when they said
that the learning curve is long and steep. They also
weren’t kidding when they said that it’s absolutely
worth it.

For me, it was a double whammy: learning MacApp
and transitioning from THINK C to MPW. (See, if I’d
only learned it in the MacApp 2.0 days I could have
used THINK Pascal, but noooo, I had to wait till
now.) I’ve been using THINK C for virtually all my
programming since 1986 or so. Using MPW for my
own little exploratory projects would be like calling in a
highly trained, ultramodern, rapid-deployment mobile
emergency medical team to remove a splinter from my
thumb. The job would get done, and beautifully, but
it’d be an absolutely colossal waste of time, effort, and
expense. Frankly, I’d rather just have a good pair of
tweezers.

But alas, if I want to use MacApp (and I do!) the days of
coding on my PowerBook 100 in the backyard with
loyal hounds lolling at my feet are gone for good. Now
I need 16 MB of RAM minimum and at least 40 MB of
hard disk space (120 to be really comfortable). And I’m
not even going to mention MacApp compile times; it
hurts me too much.

But all that’s really just logistics and can be gotten used
to pretty quickly. The real difference is in the very
nature of my interaction with the machine: It used to
be that when I’d think of something that needed doing,
I’d just go do it. It was like building a machine from
scratch, piece by handcrafted piece. Now, using
MacApp, when I think of something that needs doing I
conduct massive, cross-referenced searches through
megabytes of source code to figure out where it’s
already been done, because no doubt somebody already
thought of it, or something very much like it, and
implemented it better than I ever could. It’s as though
I’m running around on top of a giant, humming
machine that stretches to the horizon on all sides,
hunting for just the right place to reach down into the
dark recesses, pull up a live, vibrating cable, and splice
in my little special-purpose unit. Often I’ve spent an
hour hunting around for the right place to insert some
code, only to discover that to do what I want I just need
to set the value of some out-of-the-way Boolean deep
inside an object’s remote ancestor.

Well, I could ramble forever about my learning
experiences, but those of you who’ve been there know
all about it, and those of you who haven’t probably
don’t want to hear it. But this is the first time since I
discovered the Macintosh and switched from FORTH
to C that the feel of programming has been completely
transformed for me. It occurred to me that the fact that
programming is the kind of thing that can have a
feeling to it is noteworthy.

Programming computers is an activity unlike any other.
It’s a human-machine interaction, but because the
machine is very special, interacting with it is also very
special. Programming has a depth that other machine
interactions don’t, so it can assume qualities not
normally associated with the operation of machinery. It
can be a creative act, akin to building an intricate,
glittering crystal clockwork out of gossamer strands of
pure thought; and it can also be formidable drudgery, a
mountain of mind-numbing details, endless in their
intricacy, interrelatedness, and total irrelevance to the
real task at hand. These are not normally the kinds of

DAVE JOHNSON recently bought some Crash Dummies and
peripheral equipment. These are little “action figures,” modeled
after real crash dummies, that fly apart in various ways upon
impact. You can buy a car to crash them in, crash dummy pets
(named Bumper and Hubcat), crash dummy babies in strollers or
car seats, crash dummy pedestrians, and even a crash dummy
torture chair with straps and clamps and cranks to pull the dummies
apart more slowly, one limb at a time. Dave is convinced that if he
preserves all the parts in their original packaging he can sell them

for some huge amount of money in the future, or at least that’s how
he’s justifying the expense.•

THE VETERAN
NEOPHYTE

TOWER OF BABBLE

DAVE JOHNSON

things you’d say about operating your dishwasher or
toilet.

Computers are something truly new on earth. They’re
machines that can simulate any other machine; they’re
somehow potentially every machine in one. A well-
known computer luminary put it this way:

It [the computer] is a medium that can dynamically
simulate the details of any other medium, including
media that cannot exist physically. It is not a tool,
although it can act like many tools. It is the first
metamedium, and as such it has degrees of freedom
for representation and expression never before
encountered and as yet barely investigated.

— Alan Kay, “Computer Software,” Scientific
American, September 1984.

Other machines are physical extensions of ourselves;
they let us sense and manipulate our physical world
with more power and flexibility than we can by
ourselves. But they’re just physical extensions.
Computers, though, manipulate and embody
abstractions and symbols; they operate on patterns
of electrical activity, on imagination, on mindstuff.
If you can imagine a machine or a medium in detail,
you can program a computer to simulate it. So
programming computers is much, much more than
telling them what to do — it’s telling them what to be.

Of course, all this philosophical and poetic mumbo-
jumbo crashes to the ground when faced with reality.
Try telling my friend Michele — who wrote an entire
book on her Macintosh SE and just recently realized
that she can use Standard File dialogs to navigate her
hard disk — that her computer “has degrees of freedom
for representation and expression never before
encountered.” Yeah, right. Admittedly, the computer is
much more fluid-seeming to programmers than to
users (someday, hopefully, a moot distinction), but
there’s still a large discrepancy between the promise
and the realization. Computers still feel more like
erector sets — lots of hard, inflexible little parts — than
like clay.

Boiled down to its thick, syrupy essentials, computer
programming is quite simply the creation and
communication of detailed instructions. The creation is
the really exciting part, and is (or should be) the main
task. But the communication is what really defines the
experience of programming; it’s the part that has a feel
to it.

All this touchy-feely talk smacks of natural language.
Are programming languages really just another class of
natural languages? Is that why programming can feel so
rich? I found a great book that addressed this very
question (among others): The Cognitive Connection by
Howard Levine and Howard Rheingold.

Programming languages and natural languages do
indeed have deep similarities, and share essential
features found in any language. They’re both sets of
abstract symbols that have meaning only by mutual
agreement between communicating parties. They’re
both open-ended: they have an underlying structure
and system of rules that allow an infinite variety of
correct sentences to be constructed. (Even more
remarkably, any correct sentence can later be
deciphered by anyone who knows the language, even
though they’ve never seen that sentence before.)

Linguists say that a language has three parts:
phonology, syntax, and semantics. Phonology is the
way a language is turned into sounds, and is irrelevant
to programming languages since they’re never spoken.
Syntax is the set of rules that specify how the parts of
the language — words and phrases — are put together
to form sentences. Programming languages obviously
have strict and unforgiving syntax. But syntax by itself
is an empty shell, telling us only whether a sentence is
well formed, not what it means. That’s the function of
semantics.

Ah, sweet semantics! This is where the rubber meets
the road, linguistically speaking, and where significant
differences between natural languages and
programming languages begin to appear. Howard
and Howard illustrate one big semantic difference
between natural languages and programming languages

d e v e l o p March 1993

62

THE VETERAN NEOPHYTE March 1993

63

by comparing their dictionaries. (Dictionaries are, in a
sense, the embodiment of a language’s semantics.)

Natural language dictionaries are written in natural
languages, so the language must be rich and flexible
enough to describe itself. When you look up an
English word in Webster’s, you get a definition written
in English. This is only possible because words in
natural languages can have more than one meaning.

Programming language dictionaries, on the other
hand, are never written in a programming language.
When you look up the definition of a Pascal word, the
description is written in English (or Portuguese or
Swahili or whatever), not Pascal or C++ or LISP.
Unfortunately, the duplicity of meaning that allows a
natural language to describe itself opens the door to
paradox and self-contradiction, something
programming languages can’t tolerate.

But there’s another, even more apparent semantic
difference between programming languages and
natural languages. As the Howards so aptly put it:

. . . although philosophers and linguists have struggled
for centuries to give precise meaning to the word
“meaning,” you don’t need a degree in either
discipline to realize that what constitutes meaning for
a programming language is dramatically different
from what constitutes meaning for a natural
language.

Semantically, programming languages are only a sort of
horribly stunted subset of natural languages, because
the world they describe — the operations of computers
— is only a sort of horribly stunted subset of the
natural world. So “conversations” in a programming
language aren’t conversations at all; they’re one-sided
and one-dimensional commands whose conversational
interest is on a par with the instructions on the back of
a shampoo bottle: Lather, rinse, repeat.

We are, of course, in the infancy of our relationship
with computers, still drooling and babbling

experimentally most of the time. Look at MacApp:
compared to other available methods of programming
the Macintosh, it’s astoundingly elegant and
streamlined, but even MacApp’s most vocal devotees
don’t want to stop there. Far from being the end
product of the evolution of programming, MacApp is
only one of the first teetering steps toward more
natural and more fluent communication with
computers.

A big question is whether our interactions with
computers will ever be totally fluent, where fluency
means the complete subsumption of syntax, so that we
can go directly from meaning to expression with no
conscious effort. Some people insist it will happen, that
there’s a future of instant, effortless communication
with computers, a wide and crystal clear pathway
between us and them, but somehow I can’t buy it.
I suspect that instead, computer communication will
just get more and more like natural communication.

Fraught with misunderstanding and misinterpretation,
blocked by its implicit awkwardnesses and
incompleteness, human language is nevertheless rich
beyond depth. Its infinite flexibility allows it to carry
and contain the full spectrum of human thought and
feeling, and provides a ground for endless creativity.
Indeed, there is an intense joy to using language — any
language — well. If we get only half as far with our
computers as we have with our words, we’ll have come
a very long way indeed.

Dave welcomes feedback on his musings. He can be reached
at JOHNSON.DK on AppleLink, dkj@apple.com on the Internet, or
75300,715 on CompuServe.•

RECOMMENDED READING
• The Cognitive Connection by Howard Levine and

Howard Rheingold (Prentice-Hall Press, 1987).

• Scientific American, September 1984.

• The Happy Birthday Present by Joan Heilbroner,
pictures by Mary Chalmers (Harper & Row,
1962).

Along with Color QuickDraw came the need for applications to support
printing of pixMaps. Users need (and expect) to be able to produce
realistic hard copies of their color screen displays. The challenge for
developers is to ensure high-quality output regardless of the printing
configuration being used. This article and its accompanying sample
programs show you how.

Consider a 24-bit color image we’ve just scanned in. We’d like this image to print in
color on all color printers, whether they’re color LaserWriters, ImageWriters with
color ribbons, or color ink jet printers. Similarly, we’d like to generate output that
represents the source image as closely as possible when we’re using grayscale printers
such as the LaserWriter IIg with PhotoGrade, or monochrome printers such as
LaserWriters without PhotoGrade, StyleWriters, and ImageWriters with black
ribbons. And, of course, we’d like our images to look great even when the user has
chosen black-and-white printing on a color-capable printer.

The challenge of producing high-quality output regardless of the printing
configuration should ideally be handled at the driver level, through new printer
drivers or solutions such as ColorSync or QuickDraw GX. But until every system
makes use of these new technologies, we’re stuck with the task of working around the
pitfalls of the present printing architecture. The key is to determine the printing
configuration we’re working with and then supply the routine that ensures the
highest-quality output in that particular case.

This article and the sample code that accompanies it on the Developer CD Series disc
will show you how to print pixMaps (or pictures containing pixMaps) faithfully on
any printer by building in a combination of approaches to cover all cases. The results
will be far better than any you can get by a “one size fits all” approach. I’ll discuss
how to make use of Color QuickDraw when a printer driver can support it, how to
render color images with original QuickDraw on printers whose drivers don’t support
Color QuickDraw (such as the ImageWriter), and how to convert color images to
high-resolution halftone images for printing on monochrome printers.

d e v e l o p March 1993

DAVE HERSEY is a member of the Printing,
Imaging, and Graphics (PIGs) group in Apple
Developer Technical Support. Before leaving his
boyhood home of Newport, Rhode Island, more
than two years ago, Dave churned out code for a
number of different software developers, writing
applications that ranged from a popular
accounting package to flatbed scanner software.
When he’s not absorbing radiation in front of his

computer, Dave enjoys vacationing at the family
summer camp in Wayne, Maine (no kidding),
watching CNN on his 35-inch television (“It’s still
not big enough”), and playing Duplos with his
nephews. Even with such a busy agenda, Dave
still finds time to torment his peers with occasional
practical (and impractical) jokes, in true DTS
style.•

64

DAVE HERSEY

ADVENTURES

IN COLOR

PRINTING

The methods in this article apply equally well to PostScript and QuickDraw printers,
and they work correctly whether or not the new printing solutions are in place. Note,
however, that without some extra work (see the end of this article) these methods may
not be optimal for printing pictures that contain text. When text is converted to
pixMaps, all of the font information is lost, and the result can often be chunky, poor-
quality text that’s hard to read.

All of the techniques described here require you to have 32-Bit QuickDraw available.
This covers any Macintosh with 32-Bit QuickDraw in ROM and any machine with
Color QuickDraw in ROM that either is running System 7 or has the 32-Bit
QuickDraw INIT installed. If you have only Color QuickDraw available (the version
that predates 32-Bit QuickDraw), you can still use all of the techniques described
here as long as you implement a GWorld structure and replacements for the calls
OpenCPicture, NewGWorld, DisposeGWorld, and CopyBits with ditherCopy
mode. Methods to apply when Color QuickDraw is not available are discussed in
“Making the Most of Color on 1-Bit Devices” in develop Issue 9. Together, the
present article and the article in Issue 9 give you solutions that cover printing in any
situation.

THE “ONE SIZE FITS ALL” APPROACH: A BAD IDEA
Many applications today that deal with pixMap images don’t worry about addressing
all the possible variations in printing configurations. This is unfortunate because the
“one size fits all” approach can severely limit an application’s potential.

Under the current printing architecture, if you provide just one printing method in
your application based on assumptions about the printing configuration most likely to
be used, you’re bound to frustrate and annoy some users. For example, imagine a user
with a color laser printer who for some special purpose wants to print a color image
in black and white. If your application has failed to take this printing possibility into
account, the user will end up with a hideous Black Blob that looks nothing like the
original. Or picture a user with an ImageWriter who decides to invest in a color
ribbon so that she can print color images with her favorite paint program, only to
discover that because the program doesn’t provide for this possibility, the result is —
you guessed it — a hideous Black Blob. Or consider the users who find that
documents containing color images that print just fine on their LaserWriters at work,
print terribly on their StyleWriters, ImageWriters, or Personal LaserWriters at
home. These frustrated users will end up clogging your customer service hotline with
the kind of calls you don’t want to get. The moral of the story is that under the
current printing architecture it’s not enough to provide just one method to print your
images.

Far superior to the “one size fits all” approach is the strategy of providing printing
routines to address the whole range of printing configurations your application might
encounter. Then all your application has to do at print time is to determine which

ADVENTURES IN COLOR PRINTING March 1993

65

printing configuration it’s dealing with and provide the appropriate printing routine.
That’s what this article is about.

We start by looking over the possible printing configurations; then we consider
routines to address each of these configurations; and finally, we look at how an
application can determine which printing configuration it’s facing.

THE POSSIBLE PRINTING CONFIGURATIONS
When you’re printing from the Macintosh, there are three distinct types of printer
drivers that you might encounter:

• Printer drivers that support Color QuickDraw calls. For example,
the LaserWriter driver 6.0 and later in Color/Grayscale mode,
printing to color, grayscale, or monochrome laser printers; and
drivers for a number of third-party color laser printers, ink jet
printers, film recorders, and so forth.

• Drivers for color-capable printers that don’t support Color
QuickDraw calls or data structures. For example, the ImageWriter
drivers through version 7.0 printing to an ImageWriter with a
color ribbon installed.

• Drivers for monochrome printers that don’t support Color
QuickDraw calls or data structures. For example, the ImageWriter
drivers through version 7.0 printing to an ImageWriter with a
black ribbon installed, the StyleWriter using the 7.2.2 driver, and
laser printers using the LaserWriter driver 5.2 (or 6.0 and later in
Black & White mode).

Note that what matters to you isn’t the printer being used, but the printer driver.
Thus, for example, if you print Color QuickDraw to a LaserWriter IINT using the
version 5.2 driver (which doesn’t have the Color/Grayscale option), you’ll end up
with nothing but stark black shapes because there’s no Color QuickDraw support in
the driver. The same printer using the 7.0 driver with the Color/Grayscale option
selected will produce excellent results in response to the very same drawing
commands — same printer, but totally different results depending on the driver.
Another good example is the ImageWriter. Versions of the ImageWriter driver
through version 7.0 don’t support Color QuickDraw calls, but there are third-party
drivers for the ImageWriter that do.

Note also that in the category of drivers that support Color QuickDraw calls, no
distinction needs to be made between grayscale and color printers. Based on your
experience with Color QuickDraw on the screen, you might have the impression that
a color image should be converted to a grayscale image before printing to a noncolor
device, or that you need to get the printer port’s color table, GDevice, or bit depth,
and map your images to those before printing. But in fact, this is not only

d e v e l o p March 1993

66

unnecessary but also undesirable in the printing environment. If the driver supports
Color QuickDraw, you don’t need to worry about whether your images will be
printing on a color or a grayscale printer.

ABOUT PRINTER DRIVER PORTS AND COLOR QUICKDRAW SUPPORT
While I’ve categorized printer drivers by whether or not they support Color
QuickDraw, what we’re really concerned with is whether they give us a cGrafPort or
a grafPort to draw in. The port I’m referring to here is the TPPrPort that the driver
returns to the application through PrOpenDoc. Printer drivers that give us a
cGrafPort support Color QuickDraw calls, because a cGrafPort is capable of
handling multibit pixels. On the other hand, printer drivers that give us a grafPort
don’t support Color QuickDraw calls.

Drawing with Color QuickDraw in a grafPort, while possible, will yield
disappointing results. Consider what happens if you try to CopyBits a 24-bit-deep
image to the ImageWriter (assuming you’re not using ditherCopy mode in System 7).
Since you’re copying to a driver port that’s capable of only two colors, every one of
the pixels in your image will become either your foreground color or your
background color, whichever its value is closest to. In the usual case of a black
foreground and a white background, you’ll end up with the Black Blob effect — all
colors with luminance values of at least 50% black draw black and everything else
draws white.

Although the situation is improving, at present most of the drivers that Apple ships
return grafPorts. (See “The Story Behind Color QuickDraw Support” for the whys
and wherefores.) The LaserWriter drivers version 6.0 and later are capable of
providing a cGrafPort for your application to draw into, but note that if the user
selects Black & White mode in the color LaserWriter driver’s print job dialog, even
that driver returns a grafPort; a cGrafPort is returned only when the user has chosen
Color/Grayscale mode.

Let me warn you up front that the printer driver port isn’t necessarily a true
cGrafPort or grafPort — that is, one that’s valid outside the context of the Printing
Manager. In the case of Apple’s printer drivers, it never is. The fact is that drivers
have a lot of leeway when it comes to the port structure they return. Since the driver
needs to replace the port’s QuickDraw bottleneck procedures in order to direct the
data to a printer, there’s no need for many of the fields that you would use if you were
drawing to a true grafPort or cGrafPort, such as a window on the screen. In fact,
when you make a call like

CopyBits(&bitMap, &printPort->gPort.portBits, &srcRect, &destRect,
srcCopy, nil);

the data most likely won’t even end up in the driver port’s bitmap. In fact, the bitmap
structure may not even exist. There’s no need for it to. All that matters is that as you

ADVENTURES IN COLOR PRINTING March 1993

67

draw into the grafPort or cGrafPort, your drawing commands are intercepted,
possibly translated, and then redirected to the printer.

So don’t assume that the printer driver’s port is a true grafPort or cGrafPort, or that
the values therein have anything to do with how your image will print. You should
view the printer driver’s port as a private structure, with the only public fields being
the actual pointer to the grafPort or cGrafPort (your TPPrPort pointer) and its port’s
portBits bitmap. Even then, SetPort and CopyBits are the only calls you should pass
those values to.

THE PROBLEM AT HAND
To get back to the problem at hand, we need printing routines to address each of the
three possible printing configurations. The rest of this article is devoted to describing
those routines and outlining how to determine at print time which routine is
appropriate. The routines are demonstrated by four samples in the Adventures in
Color Printing folder on the Developer CD Series disc.

Note that all the samples implement the technique of loading and storing print
records from job to job. All printing applications should implement some sort of
handling like this so that when users attempt to print documents, their last used
settings are available, rather than the driver’s defaults.

d e v e l o p March 1993

68

So why is it that the LaserWriter didn’t support cGrafPorts
until the 6.0 LaserWriter driver? And why is it that the 7.0
ImageWriter driver still doesn’t support cGrafPort
printing?

The first answer is simple. Color QuickDraw didn’t exist
when the LaserWriter driver was created back in 1985. It
wasn’t until 32-Bit QuickDraw came on the scene that the
driver was revised to support color/grayscale printing.
Since the driver wasn’t originally designed with Color
QuickDraw in mind, this support represented major
changes to the source code. As such, it took until version
6.0.2 for most of the glitches to be worked out. Even
today, the LaserWriter driver is essentially an old-style
QuickDraw driver with Color QuickDraw support
patched in.

The ImageWriter driver never was revised, except to add
color tables to the print job dialogs in the 6.1 version.
Why wasn’t the driver revised? Well, for the ImageWriter
driver to fully support Color QuickDraw, it would
essentially need to be rewritten. Since there’s been no
overwhelming demand and since color printing solutions
are available via the color LaserWriter driver and third-
party printers and drivers, no one has rewritten the driver
to provide color support.

At some point in the future, all of Apple’s printer drivers
will support Color QuickDraw calls. But for now,
applications should be aware that a printer driver returns
either a cGrafPort or a grafPort, and it’s the application’s
responsibility to “do the right thing” regardless of the port
type.

THE STORY BEHIND COLOR QUICKDRAW SUPPORT

All samples work under System 6 or 7. Remember that to use the methods described
here, you must have 32-Bit QuickDraw available, or if you have only Color
QuickDraw (the version that predates 32-Bit QuickDraw) available, you must
implement a GWorld structure (which is the same thing as a cGrafPort) and
replacements for the calls OpenCPicture, NewGWorld, DisposeGWorld, and
CopyBits with ditherCopy mode.

PRINTING WITH COLOR QUICKDRAW SUPPORT
The easiest color printing situation you’ll come across occurs when a printer driver
gives you a cGrafPort to work in. To generate the best results we first need to deal
with setting the resolution and scaling the image. Then we want to band our image
through a 32-bit-deep GWorld to avoid the potential problem of operator
incompatibility. The Color Adventures sample code demonstrates how we go about
this. As mentioned earlier, grayscale printing in a cGrafPort shouldn’t be treated any
differently from color printing in a cGrafPort.

SETTING RESOLUTION AND SCALING THE IMAGE
When we print an image, a couple of different scaling operations are involved. First,
our application sets the printer driver port’s resolution and, if necessary, scales the
image to that resolution; then the printer driver scales the image to the device’s
physical (output) resolution during printing. The amount an image is scaled when
copied to the printer port is calculated as follows:

scaleAmt = (sourceDPI / destinationDPI) * (scaling factor from Page Setup dialog)

To achieve the highest-quality output, our image’s resolution should ideally be the
same as the printer’s physical resolution. If our image’s resolution doesn’t match the
printer’s resolution, we can scale the image before printing, change the port’s
resolution to match the image resolution, or do a combination of both (scale the
source image and the port).

Here’s how we proceed: First, we need to know the resolution of our source image.
Most PICT files on the Macintosh are rendered at 72 dpi, but that needn’t be the
case, and in the case of scanned images is actually rather unlikely. The GetImageRes
routine in the Color Adventures sample shows how to find the resolution of any
PICT. If the OpenCPicture call was used to create the picture, the resolution
information is stored right in the picture header for easy retrieval. Otherwise, we
need to determine the resolution by parsing the picture.

Once we have the image resolution, we need to know how close the printer can be set
to that resolution. We can determine the supported resolutions for a particular
printer using PrGeneral, as discussed in the article “Meet PrGeneral” in develop
Issue 3 and in Inside Macintosh Volume V. As noted in those sources, when we call
PrGeneral with the GetRslData opcode, drivers that support PrGeneral will return a

ADVENTURES IN COLOR PRINTING March 1993

69

list of discrete resolutions and possibly a range of supported resolutions that we can
also specify.

So, for example, if PrGeneral told us that we were capable of printing our 300-dpi
image at 300 dpi, we would set the printer port’s resolution to 300 dpi x 300 dpi by
using PrGeneral with the setRsl opcode. Then all we’d need to do would be to draw
the image at its original size. That’s the easy case.

If we’re printing to a device none of whose supported resolutions match our image’s
resolution, the best choice is usually the pair of horizontal and vertical resolutions
that when multiplied yield the largest product. We’ll need to scale the image to that
resolution before printing. While this method of choosing resolutions isn’t foolproof,
it should typically give us the best results. Of course, if someone comes out with a
driver for a printer that supports a resolution pair such as 600 dpi x 72 dpi, where
there’s a big difference between the horizontal and the vertical resolution, there
might be problems with such an approach. Many times, we’ll want the horizontal and
vertical resolutions to be equal. The section on setting resolution under “Printing in
Black and White” later in this article discusses this further.

We’ll probably also want to put a ceiling on the resolution of the printer port.
Otherwise, if we’re printing to a Linotronic we may have to scale our 72-dpi images
up about 3528 percent to 2540 dpi, and that will take a long, long, long time to print
and require an enormous amount of memory. Of course there may be times when
2540 dpi is exactly what we want. We can always provide the user with a list of
supported output resolutions to choose from.

Finally, suppose that we can’t set the printer resolution because we’re using a driver
that doesn’t support PrGeneral. We can tell this because after our call to PrGeneral,
ResError is set to resNotFoundErr. In this case, we have only one recourse — to
scale the image to the port’s default resolution, 72 dpi.

Putting all this together, we end up with the GetBestDPI routine in the Final
Adventure sample for setting the best resolution with PrGeneral. GetBestDPI
obtains the best horizontal and vertical resolutions to use for printing with the
selected driver. The function looks like this:

void GetBestDPI(short *pxDPI, short *pyDPI, short xDPI_ceiling,
short yDPI_ceiling, Boolean wantSquareDPI);

The caller places an ideal resolution pair (what the caller really wants to use) in the
parameters pxDPI and pyDPI. This is also where the routine returns the resolutions
it decides on. In xDPI_ceiling and yDPI_ceiling, the caller places the maximum
resolution desired in either direction. For example, if you didn’t want values larger
than 300 dpi returned, you’d put 300 in both of these parameters. If wantSquareDPI

d e v e l o p March 1993

The LaserWriter’s physical resolution is
300 dpi but printer drivers on the Macintosh
return a 72-dpi port by default, because 72 dpi is
the native resolution of QuickDraw. It’s important
to realize that unless you explicitly set the port’s
resolution to 300 dpi, you’re working in a 72-dpi
port and the effective resolution is cut by more
than three quarters.•

70

is true, only square resolutions (those with equal horizontal and vertical components)
will be considered.

The printer driver is expected to be closed upon entry to this routine and is therefore
opened and closed around the PrGeneral code. If PrGeneral isn’t supported by this
driver, or if an error occurs, the routine returns 72 x 72 dpi, which is the default for
Macintosh printer drivers. If the ideal resolution the caller passes in is available, we
choose that, ignoring wantSquareDPI, xDPI_ceiling, and yDPI_ceiling. We figure
that the calling routine knows more about the ideal resolution it requests than we do.
Here’s the code:

void GetBestDPI(short *pxDPI, short *pyDPI, short xDPI_ceiling,
short yDPI_ceiling, Boolean wantSquareDPI)

{
TGetRslBlk getResRec;
Boolean exactMatch = false;
short bestResX, bestResY, xDPI, yDPI,

desiredResX, desiredResY, rec;

// Open the driver for our PrGeneral call. Assume we'll return 72 x 72
// dpi until we find otherwise, and also store the desired resolution
// that the caller passed to us through the pxDPI and pyDPI parameters.

PrOpen();
bestResX = bestResY = 72;
desiredResX = *pxDPI;
desiredResY = *pyDPI;

if (!PrError())
{

// Ask PrGeneral for the resolution records for this driver.
getResRec.iOpCode = getRslDataOp;
PrGeneral((Ptr) &getResRec);

if ((!ResError()) && (!getResRec.iError))
{

// First check for the exact resolution pair that the caller requested.
// To begin with, check the range of resolutions supported to see if the
// pair is within that.

if ((getResRec.xRslRg.iMin <= desiredResX) &&
(getResRec.xRslRg.iMax >= desiredResX) &&
(getResRec.yRslRg.iMin <= desiredResY) &&
(getResRec.yRslRg.iMax >= desiredResY))

exactMatch = true;

ADVENTURES IN COLOR PRINTING March 1993

71

// If we didn't find an exact match, check the driver's discrete
// resolutions to see if we have one there.

for (rec = 0; (!exactMatch) && (rec < getResRec.iRslRecCnt);
rec++)

if ((getResRec.rgRslRec[rec].iXRsl == desiredResX) &&
(getResRec.rgRslRec[rec].iYRsl == desiredResY))

exactMatch = true;

// If we found an exact match, use it. Otherwise, loop through each
// resolution record and find the one that best matches our
// criteria.

if (exactMatch)
{

bestResX = desiredResX;
bestResY = desiredResY;

}
else

for (rec = 0; (rec < getResRec.iRslRecCnt); rec++)
{

xDPI = getResRec.rgRslRec[rec].iXRsl;
yDPI = getResRec.rgRslRec[rec].iYRsl;

if ((xDPI <= xDPI_ceiling) && (yDPI <= yDPI_ceiling) &&
(!wantSquareDPI || (xDPI == yDPI)) &&
((xDPI * yDPI) > (bestResX * bestResY)))

{
bestResX = xDPI;
bestResY = yDPI;

}
}

}
}

// Return the best resolution pair we found and close the driver.
*pxDPI = bestResX;
*pyDPI = bestResY;
PrClose();

}

The following code returns a rectangle to use when scaling from an image’s bounds
(srcRect) and resolution (ixDPI, iyDPI) to a printer port’s resolution (pxDPI, pyDPI).
The resulting rectangle (scaleRect) will have a top left corner of (0, 0).

void GetScaleRect(Rect *srcRect, short ixDPI, short iyDPI, short pxDPI,
short pyDPI, Rect *scaleRect)

d e v e l o p March 1993

72

{
Fixed scale;

*scaleRect = *srcRect;
OffsetRect(scaleRect, -scaleRect->left, -scaleRect->top);

scale = FixRatio(pxDPI, ixDPI);
scaleRect->right = FixMul(scale, (long) scaleRect->right <<16) >>16;
scale = FixRatio(pyDPI, iyDPI);
scaleRect->bottom = FixMul(scale, (long) scaleRect->bottom <<16) >>16;

}

BANDING THE IMAGE THROUGH A GWORLD
Pictures can include information that a printer driver can’t understand, such as
transfer modes and structures that have been added to the system since the driver was
developed, and sometimes a driver can’t reproduce certain operations that work great
on the screen. For example, PostScript doesn’t understand the concept of transfer
modes, so the LaserWriter driver doesn’t know what to do when it encounters such
modes as blend, ditherCopy, and addMin. Aside from transfer modes, certain
QuickDraw operations aren’t supported by all drivers. For instance, CopyMask
doesn’t work with any of Apple’s printer drivers as of this writing.

The upshot is that if you only use DrawPicture, some pictures are bound to print
incorrectly on various printers because of operator incompatibility. The PICT named
Incompatibility Test in the sample code folder demonstrates this problem. Try
printing the picture with TeachText and comparing the output to the screen image. A
safer approach to printing an image (although one that may require more data to be
sent to the printer and thus result in slower printing) is to always send 32-bit-deep
data to the printer by banding the image through a GWorld. Of course, if you know
your application never needs 32-bit pixMaps, you can just use a GWorld deep enough
for the data you’ll be printing.

Here’s how it works: Create a 32-bit-deep GWorld that has room for one horizontal
(or vertical) strip of data of some arbitrary size. In the following example, we use
horizontal strips. Call SetGWorld on this GWorld and then DrawPicture, passing the
full image’s picFrame. All of the picture outside the banding GWorld’s bounds
rectangle is clipped. The code might look like this:

#define BAND_HEIGHT 144 // 2 inches at 72 dpi.

pictRect = (*imgPICT)->picFrame;
bandRect = pictRect;
bandRect.top = 0;
bandRect.bottom = BAND_HEIGHT;

ADVENTURES IN COLOR PRINTING March 1993

73

err = NewGWorld(&bandGWorld, 32, &bandRect, nil, nil, 0);

if (err == noErr)
{

SetGWorld(bandGWorld, nil);
destPix = GetGWorldPixMap(bandGWorld);

LockPixels(destPix);
DrawPicture(imgPICT, &pictRect);
UnlockPixels(destPix);

}

This results in a band of the original picture being drawn to bandGWorld, which in
turn can be copied to the printer port, like so:

SetPort(&(printPort->gPort));
srcPix = GetGWorldPixMap(bandGWorld);

LockPixels(srcPix);
CopyBits((BitMap *) *srcPix, &(printPort->gPort.portBits), &bandRect,

&bandRect, srcCopy, nil);
UnlockPixels(srcPix);

To create the next band, shift bandGWorld’s bounds rectangle down by one
bandwidth and repeat the process. For best results, you may want to increase the
printer port’s resolution with PrGeneral, draw into a GWorld of the same resolution,
and then use CopyBits to draw that in the printer port.

When you’re working with 32-bit images, it’s very useful to implement some sort of
banding or picture spooling algorithm, since 32-bit images take up an enormous
amount of memory, especially when you need to scale them to higher printer
resolutions. All of the program samples on the CD have routines that implement
banding and spooling. These routines also handle the special problems introduced
when you need to dither and scale during banding.

When you send 32-bit-deep data to the printer driver, you inadvertently solve
another problem as well — worrying about the printer’s output characteristics.
Printing images as 32-bit deep will give you the best output on all color printers
whose drivers return a cGrafPort. You can be sure that when you send 32-bit-deep
data the driver and printer will do the right thing — either print the image 32 bits
deep or map it to the device’s characteristics, be it an 8-bit device or whatever. You
don’t need to worry about checking the depth of the printer port or getting its
GDevice or color table, which would be futile anyway since the port probably isn’t a
true cGrafPort.

d e v e l o p March 1993

74

ADVENTURES IN COLOR PRINTING March 1993

75

A word to the wise: The LaserWriter driver changes your
image’s color table. You must be prepared for this and
know how to prevent its altering your printout.

Suppose you have an 8-bit color image with a custom
color table. What happens when you print this with the
LaserWriter driver using CopyBits when Color/Grayscale
is selected? The driver returns a cGrafPort at PrOpenDoc
time. As the drawing begins, the driver makes a copy of
your image’s color table. It then replaces the first entry in
the color table with the current background color, and the
last entry with the current foreground color. Once the
foreground and background colors have been placed in
the color table, the driver sends the image to the printer,
passing the indexed RGB value for each pixel.

This means that if your foreground color is not the same
as your last color table entry, or your background color is
not the same as your first entry, your image may be
altered when it prints. The best way to avoid this problem
is to keep white in the first color table entry and black in
the last, and make sure to set the foreground color to
black and the background color to white before drawing.

Because the driver alters your color table, it’s not a good
idea to invert an image by inverting its color table, as

some applications do. Imagine that you have an 8-bit
grayscale image of a scanned photograph. Let’s say that
you want to print an inverted copy of the image and that
its color table is a linear ramp of grays, from white to
black. The easy — but incorrect — approach is to invert
the entries in the image’s color table and then print the
image. The correct approach is to use CopyBits to copy
the image over itself using notSrcCopy mode before
printing.

Figure 1 compares printouts of an image inverted
correctly and incorrectly. Notice that the incorrect method
hasn’t inverted absolute (or pure) black or white pixels in
the image.

Why does the driver alter your color table? Because it’s
attempting to perform bitmap colorization. This is a
feature of CopyBits that’s not very well documented and
that the LaserWriter driver supports. The version of
CopyBits in System 7 will actually colorize an entire
pixMap, although the LaserWriter driver has never been
upgraded to support this functionality. The improvements
to CopyBits colorizing are discussed in “QuickDraw’s
CopyBits Procedure: Better Than Ever in System 7.0” in
develop Issue 6 and in Chapter 17 of Inside Macintosh
Volume VI.

OF COLOR TABLES AND THE LASERWRITER DRIVER

Original Inverted incorrectlyInverted correctly

Figure 1
Grayscale Image Inverted Correctly and Incorrectly

In general, if you don’t know whether an image is 32 bits deep or 8 bits deep, you
should print it at 32 bits. This way, you won’t lose any color information. Of course,
printing 32-bit-deep images means increased printer data and print times, so you may
want to let the user have some control over the decision. Getting the best output may
not be as important to a user as seeing an 8-bit draft of the image sooner.

PRINTING IN COLOR ON THE IMAGEWRITER
Most printer drivers today have been updated to return cGrafPorts when color ink is
used. The only exception to this rule that I know of is the ImageWriter driver.
Because all Apple ImageWriter drivers through version 7.0 return a grafPort, we can’t
rely on Color QuickDraw calls and structures to give us accurate color images when
we have a color ribbon installed. We can draw only eight colors into a grafPort
(traditionally called “the original QuickDraw colors”).

Printing on the ImageWriter with DrawPicture works perfectly well as long as our
picture is made up of original QuickDraw objects (those that appear in Inside
Macintosh Volume I), each preceded by a call to ForeColor to set the foreground
color to one of the eight original QuickDraw colors. For example, the following code
will print correctly on an ImageWriter with a color ribbon, whether it’s simply sent to
the printer port or enclosed in a PicHandle that’s then printed with DrawPicture:

SetRect(&bounds, 20, 20, 120, 120); // Initial object bounds (a square).
BackColor(whiteColor); // Set background color to white.
ForeColor(cyanColor); // Set foreground color to cyan.
FillRect(&bounds, gray); // Fill square with 50% cyan pattern.
OffsetRect(&bounds, 70, 70); // Move down a bit.
ForeColor(blackColor); // Select black.
FrameRect(&bounds); // Draw a black square frame.
ForeColor(cyanColor); // Select cyan.
PaintOval(&bounds); // Draw a cyan circle in the frame.

The result is shown in Figure 2. Without the calls to ForeColor, our picture would
be recorded using our current foreground color for all objects. This is usually black
and would cause everything to print as black.

If we need to print Color QuickDraw objects on an ImageWriter with a color ribbon,
we must first convert them to original QuickDraw objects. In the case of pixMaps, we
convert all of the pixMap’s colors to the eight original QuickDraw colors and make a
bitmap separation of the image for each color. The Color ImageWriter Adventures
sample demonstrates how to do this.

CONVERTING TO THE ORIGINAL QUICKDRAW COLORS
First, possibly through banding, we use CopyBits to ditherCopy the source picture
into a 4-bit GWorld whose color table is made up of the eight original colors. We

d e v e l o p March 1993

The original QuickDraw colors and their
predefined constants are listed on page 158 of
Inside Macintosh Volume I.•

76

obtain this color table by passing a value of 127 to GetCTable, as explained in Inside
Macintosh Volume V, page 81.

If we don’t use ditherCopy, the resulting output will have colors determined by
threshold comparison. In other words, every color in the original will simply be
mapped to one of the eight original QuickDraw colors. This method will make
scanned images look fake or “painted,” which is not what we’re looking for. In most
cases, we’d rather have a dithered image that approximates more than eight colors by
putting different colors side by side. Since we’re printing only eight real colors,
dithering is a necessity when using this method. For the curious, the Color
ImageWriter Adventures sample allows you to turn dithering off for comparison.

MAKING THE SEPARATIONS
Once our image has been copied to the 4-bit “original color” GWorld, we can start
making our separations. We need a Color QuickDraw searchProc that returns the
position indicator for black or white, depending on whether or not the color passed
matches the color we’re looking for. If it does, the routine returns black. Since we’ll
be copying to a bitmap (in which a 0 pixel value indicates the background color and a
1 pixel value indicates the foreground color), this is all the code it takes:

pascal Boolean OQDSearch(RGBColor *anRGB, long *position)
{

*position = 0; // Initially assume no color.

if ((anRGB->red == (*gOrgQDCTab)->ctTable[gCurColor].rgb.red) &&
(anRGB->green == (*gOrgQDCTab)->ctTable[gCurColor].rgb.green) &&
(anRGB->blue == (*gOrgQDCTab)->ctTable[gCurColor].rgb.blue))

*position = 1; // Color it.

return true; // To indicate that we've handled the color
// processing.

}

ADVENTURES IN COLOR PRINTING March 1993

77
Color QuickDraw searchProcs are discussed
in Inside Macintosh Volume V, pages 145–147.•

Figure 2
Product of Drawing With a Sequence of Calls to ForeColor

We’ll make seven separations (one for each of the eight original QuickDraw colors
except white). The code that follows is adapted from the Color ImageWriter
Adventures sample and stores the different separations in a picture that uses only
original QuickDraw primitives, so it can be sent with DrawPicture to the
ImageWriter driver’s grafPort with great results.

The process goes like this: Once we have the dithered image in our 4-bit GWorld, we
create a 1-bit GWorld using exactly the same dimensions. We’ll use this 1-bit
GWorld to create our bitmap representations of each color separation. After setting
the current GWorld to our 1-bit GWorld, colorSep, we call OpenPicture. This is
critical because OpenPicture and OpenCPicture tie each open picture to the current
port. (That’s why you can have multiple pictures open at once as long as they’re in
different ports.) If we change ports, we can draw all we want and the calls will not be
recorded into our picture. Only when we make the colorSep GWorld the current one
will this picture’s recording be enabled. Very cool.

PicHandle SeparateColors(PicHandle wPICT, Fixed scaleAmt,
Boolean useDither)

{
QDErr err;
GWorldPtr savedGW;
GDHandle savedGDH;
PicHandle sepsPICT = nil;
Rect pictFrame;
GWorldPtr OQDGWorld = nil;
PixMapHandle srcPix, destPix;
GWorldPtr colorSep = nil;
short QDColor[7] = {blackColor, yellowColor, magentaColor,

redColor, cyanColor, greenColor,
blueColor};

// Save the current GWorld and GDevice.
GetGWorld(&savedGW, &savedGDH);

// Set our global color table to the eight original QuickDraw colors and
// get the picture's frame.

gOrgQDCTab = GetCTable(127);
pictFrame = (*wPICT)->picFrame;

// Create a 4-bit GWorld that uses the eight original QuickDraw colors.
// If there are no errors, band the picture, using ditherCopy if desired
// and scaling the amount we need to. The result is a representation of
// the image in the eight original colors.

err = NewGWorld(&OQDGWorld, 4, &pictFrame, gOrgQDCTab, nil, 0);
if (!err) err = BandPicture(wPICT, OQDGWorld, scaleAmt, useDither);

d e v e l o p March 1993

78

// Create a new 1-bit GWorld for the separations.
if (!err)
{

err = NewGWorld(&colorSep, 1, &pictFrame, nil, nil, 0);

// Set the current GWorld to the 1-bit GWorld and create a picture.
// Note that this means that the picture is tied to the 1-bit GWorld.
// Only when that GWorld is current will data be recorded into the
// picture.

if (!err)
{

SetGWorld(colorSep, nil);
srcPix = GetGWorldPixMap(OQDGWorld);
LockPixels(srcPix);
destPix = GetGWorldPixMap(colorSep);
LockPixels(destPix);

ClipRect(&pictFrame);
sepsPICT = OpenPicture(&pictFrame);

With the picture opened, the separations can be made. We go through each of the
eight original colors (except white) and create a separation for that color. To do this,
we set the current GWorld to one that’s different from our picture’s GWorld (to turn
off recording). Next we install our searchProc and we CopyBits from the 4-bit
GWorld to the 1-bit one. This gives us black bits only where the color in the original
matches the current separation color. Then we delete the searchProc and set our
current GWorld back to the 1-bit one. This reenables recording into our picture, and
we record the foreground color for the current separation, followed by the
separation’s bitmap using srcOr mode. After all seven passes have been completed, we
will get a picture with seven separations in it, overlaying each other to make the
composite, which will differ slightly from the original because we lose some
information to dithering. (See Figure 3.) We use srcOr mode so that the white is
transparent; otherwise the white for each layer would overwrite the color from the
previous layer.

for (gCurColor = 0; (gCurColor < 7) && !err; gCurColor++)
{

SetGWorld(savedGW, savedGDH);
AddSearch(OQDSearch);
CopyBits((BitMap *) *srcPix, (BitMap *) *destPix,

&pictFrame, &pictFrame, srcCopy, nil);
DelSearch(OQDSearch);

SetGWorld(colorSep, nil);
ForeColor(QDColor[gCurColor]);

ADVENTURES IN COLOR PRINTING March 1993

79

CopyBits((BitMap *) *destPix, (BitMap *) *destPix,
&pictFrame, &pictFrame, srcOr, nil);

}

// Close the picture, restore our saved GWorld/GDevice, and dispose of our
// GWorlds and the global color table. Finally, return the picture we
// created.

ClosePicture();
SetGWorld(savedGW, savedGDH);
UnlockPixels(srcPix);
UnlockPixels(destPix);

}
}

if (gOrgQDCTab) DisposeCTable(gOrgQDCTab);
if (OQDGWorld) DisposeGWorld(OQDGWorld);
if (colorSep) DisposeGWorld(colorSep);
return sepsPICT;

}

After the seventh separation is made, we can jump into our print loop and print the
image with DrawPicture. The result is a nicely dithered color image. For best results,
we’d use PrGeneral to set the printer grafPort’s resolution higher than 72 dpi. In the
case of a printer such as the ImageWriter, though, this has a tremendous performance
hit. Here’s another good opportunity to provide some user interaction and let the
user decide what to do, via a preferences setting or by adding an item to the print job
dialog.

GOTCHAS
This method of printing a picture to an ImageWriter with a color ribbon will achieve
great results without doing anything special. However, there are two gotchas with it.

First, if you generate an image at a high resolution and export it to another
application, the printing application needs to know to call PrGeneral to boost the
printer port’s resolution. However, you can export the pictures at 72 dpi, use a
picFrame that’s correct for 72-dpi display of the image, or use OpenCPicture to store
the resolution in the picture. In any of those cases, DrawPicture will do the right
thing with the picture, even though the application doesn’t. To see this, print out the
sample PICT called Separations Test to a color ImageWriter using TeachText.
TeachText has no special code to handle ImageWriter printing and yet it prints the
PICTs generated by this method just fine. Pictures you create this way will print to a
color ImageWriter from any application and can be pasted into word processors and
such for color image output. Pretty neat, huh?

d e v e l o p March 1993

80

But, unfortunately, srcOr mode doesn’t necessarily print well with all printer drivers.
This means that these way-cool images may not print way-cool on printers other
than ImageWriters. This isn’t a problem in the sample code because we use this
method only if we’re printing on an ImageWriter. PICTs that are pasted into a
document might be printed on any printer, however, so exporting these pictures
could create more problems than it solves.

For more details on how to do the separations, see the Color ImageWriter
Adventures sample. The sample prints color pixMaps using this method and allows
you to specify high-resolution or low-resolution output. I strongly urge you to print
at least one of the sample images using the application in ditherCopy mode and
specifying high-resolution output. The results may surprise you, as they did me.

ADVENTURES IN COLOR PRINTING March 1993

81

Figure 3
Seven Separations Created With Original QuickDraw for a Color Image

Original

yellowColor

redColor

greenColor

blackColor

magentaColor

cyanColor

blueColor

Composite

PRINTING IN BLACK AND WHITE
When we’re printing pixMaps to a grafPort and the printer doesn’t have (or the user
doesn’t want to use) color capability, we need to use dithering (or more precisely, a
special kind of dithering called halftoning) to get any kind of decent output. In other
words, we need to convert pixMaps to dithered bitmaps. The Halftone Adventures
sample demonstrates three different dithering methods: the CopyBits ditherCopy
method, the “true” halftone method, and the lazy person’s halftone method. Before
we look at these, a note about resolution.

SETTING RESOLUTION
When printing halftoned images, it’s best to set the printer to a square resolution
(equal horizontal and vertical dpi). The reason is that when we use mixed resolutions,
our halftone matrix becomes distorted, and that can distort the printed image. This
happens because dots that should be a fixed distance apart are now closer to each
other in one direction than in the other.

We can compensate for this distortion when we create our halftone matrix, but it’s
likely to be a great deal of work, which is only marginally justified. All of the halftone
routines in the sample code print using square resolutions. (They call the
GetBestDPI routine described earlier with the wantSquareDPI parameter set to
true.)

THE DITHERCOPY METHOD
The ditherCopy method uses CopyBits to dither the image to a 1-bit GWorld at
device resolution and print that. If you’re working with a device that has a low
resolution (prints big dots) and a relatively constant physical dot size — such as the
ImageWriter — then this method works fine. If, however, you’re printing to a device
that has a high resolution and a variable pixel size (from device to device, or even
within the same device across time or due to variations in amount and type of toner,
humidity, and paper type), this method results in image distortion. Figure 4 was
dithered to a LaserWriter using this method, and the resulting distortion is very
noticeable.

The distortion you see in Figure 4 is due to pixel error (the difference between the
physical pixel drawn on the page and its size as the driver or rendering system models
it). Since dithering must occur at device resolution, it’s hard to compensate for the
device pixel error when a dithered image is printed. Halftoning, on the other hand,
increases the size of each dot, negating the pixel error that occurs during printing.
Thus halftoning results in better output on devices such as the LaserWriter. This
phenomenon is discussed further in “Making the Most of Color on 1-Bit Devices” in
develop Issue 9 and is one of the main reasons that just doing a straight dither is not
acceptable for most cases. The ditherCopy method does, however, provide a good
benchmark to judge the other methods against.

d e v e l o p March 1993

82

THE “TRUE” HALFTONE METHOD
The “true” halftone method is described in “Making the Most of Color on 1-Bit
Devices” in develop Issue 9. You can read all about it there and try it out in the
Halftone Adventures sample. Note that the routine in the sample code uses 8 x 8
halftones, but the algorithm described in the Issue 9 article is general and will work at
any angle, any frequency, and any resolution. Also, since the sample’s routine accepts
only 8-bit-deep and 32-bit-deep pixMaps, the source image is passed in as a 32-bit-
deep pixMap. When you use this sample code, an image may take one to two minutes
to render before being printed, but the code can be optimized to increase its speed.
Figure 5 provides an example of the kind of output we can expect using this method.

THE LAZY PERSON’S HALFTONE METHOD
I came up with the lazy person’s halftone method to create fast “halftone-ish” output
that looks very good and prints very fast. It works especially well on LaserWriters.
Typical images render in 12 seconds or so (before printing), and I’m sure
optimization would shorten this time. But note that this is not intended to be a
general solution like the “true” halftone method; its usefulness is restricted to
halftones at one angle, one frequency, and a square resolution.

Strictly speaking, this isn’t halftone generation but rather halftone approximation
with patterns. The difference is that in “true” halftoning, a halftone matrix is cookie-
cuttered around the image, and adjacent pixels are taken into account when the

ADVENTURES IN COLOR PRINTING March 1993

83

Figure 4
Distorted Sample Output From the ditherCopy Method

halftones are created. In this way, the appearance of strong patterns (such as vertical
stripes) can be removed. With the method I propose, the output appears to be a 0°
4 x 4 halftone, not a 45° 8 x 8 as in the Halftone Adventures implementation of the
true halftone method. While this approach doesn’t generate strong patterns, the
absence of a 45° halftone is somewhat noticeable on lower-resolution printers like
ImageWriters or those with drivers that don’t support PrGeneral (and therefore must
be used at 72 dpi).

Here’s how it works: First, we dither the original image to a 4-bit grayscale GWorld,
at 1/4 the optimal printer resolution. This may mean stretching or shrinking the
original image. Next we find out how much of the printed image will fit on the paper.
We use this information to limit the amount of data we’re working with to just the
pixels that will end up on paper. If the image extended 5 inches off the right edge of
the paper, for example, it would be a waste of time to process that extra 5 inches.
Once we have the dithered data and the bounds we’re working with, we create a 1-bit
GWorld that’s four times as big as the 4-bit one. (This also means that it’s at our
printer port’s resolution.) Going through the source (4-bit) image one pixel at a time,
we create the halftoned output by matching up each pixel’s index value with one of
the patterns shown in Figure 6 and drawing that 4 x 4 pattern in our 1-bit GWorld.

For example, if we find a pixel has the index value of 8, the pattern with 8 dots in it is
used. With 4 x 4 patterns, we could actually create 17 unique patterns (counting the
pattern created when no dots are used). However, this wouldn’t be helpful since our

d e v e l o p March 1993

84

Figure 5
Sample Output From the “True” Halftone Method

image has only 16 shades of gray in it. Therefore, we ignore one, and I chose to drop
the pattern for 15. (The pattern designated 15 is really one for 16.) The reason for
using the pattern for 16 in the 15 spot is that black in our image will have a value of
15, and we want to make sure that black pixels are rendered as totally black patterns.
Otherwise, the resulting image would have no solid black in it.

Once the entire image has been halftoned, we just CopyBits it to the printer port.
Figure 7 provides an example of the kind of output we can expect using this method.

This method works especially well when we’re printing at a high resolution. On the
LaserWriter at 300 dpi, for example, the 4 x 4 patterns are so small (1/75") that they
appear as a single dot. It’s hard to believe that the output in Figure 7 was printed in
just black! As you can see by comparing this output to the halftone output in Figure
5, there’s very little difference between the two, and for speed considerations, the lazy
person’s method may be a viable alternative.

DETECTING THE PRINTING CONFIGURATION
We now have the methods that enable us to obtain high-quality output from the
whole range of possible printing configurations when we print pixMaps. All we still
need is a way to decide which method to use at print time.

ADVENTURES IN COLOR PRINTING March 1993

85

0

4

8

12

1 2 3

5 6 7

9 10 11

13 14 15

Figure 6
The Patterns Used to Approximate Halftones

To make this decision, we need to determine only three things:

• Do we have a cGrafPort or a grafPort?

• If a grafPort, is this an ImageWriter?

• If an ImageWriter, is a color ribbon installed?

That’s it! These things can be determined in ways that will be compatible now and in
the future. Let’s take a quick look at the questions and how to determine their
answers.

DO WE HAVE A CGRAFPORT OR A GRAFPORT?
We can determine whether we have a cGrafPort or a grafPort by checking the
rowBytes value in the port returned by PrOpenDoc. If it’s negative (the high bit is
set), we have a cGrafPort. Otherwise, we have a grafPort. In C this reads:

printPort = PrOpenDoc(hPrint, nil, nil);
haveCGrafPort = (printPort->gPort.portBits.rowBytes < 0);

Since we’ll probably need this information before we actually want to print (while
we’re still rendering), we may need to use the following routine. This routine
assumes that we’ve already called PrOpen, that hPrint is a valid handle to a print

d e v e l o p March 1993

86

Figure 7
Sample Output From the Lazy Person’s Halftone Method

record, and that we’re calling this routine outside of our PrOpenDoc/PrCloseDoc
code. Normally, we would call this routine immediately after calling PrJobDialog.

Boolean HaveColorPrPort(THPrint hPrint, OSErr *anErr)
{

Boolean haveCGrafPort = false;
TPPrPort dummyPort;
TPrStatus statusRec;

if (hPrint)
{

// Open a document and check for errors.
dummyPort = PrOpenDoc(hPrint, nil, nil);
*anErr = PrError();

// If no errors, check the port's rowBytes value.
if (*anErr == noErr)
{

haveCGrafPort = (dummyPort->gPort.portBits.rowBytes < 0);

// We don't want to print yet, so kill the job by setting an error.
// Clean up by closing the document and calling PrPicFile to delete
// any spool file we may have created. Finally, clear the error
// we set.

PrSetError(iPrAbort);
PrCloseDoc(dummyPort);
if ((*hPrint)->prJob.bjDocLoop == bSpoolLoop)

PrPicFile(hPrint, dummyPort, nil, nil, &statusRec);
PrSetError(noErr);

}
}
else

*anErr = nilHandleErr;

return haveCGrafPort;
}

The routine calls PrOpenDoc, checks the value of the returned port’s rowBytes
(negative means cGrafPort), and then posts an error to halt printing and calls
PrCloseDoc. Finally, it calls PrPicFile to delete any spool file that may have been
generated, clears the error it set, and returns true or false depending on whether or
not the port we looked at was a cGrafPort. It’s not glamorous, but it works.

If as a result of this inquiry we find that we have a cGrafPort, we give the go-ahead to
printing with Color QuickDraw calls. If not, we go on to the next question.

ADVENTURES IN COLOR PRINTING March 1993

87

IF A GRAFPORT, IS THIS AN IMAGEWRITER?
We can find out if we’re talking to the ImageWriter driver by getting the high byte of
a validated print record’s prStl.wDev field. If the high byte is 1 or 5, we’re using the
ImageWriter or the ImageWriter LQ driver. In C:

#define IW_wdevID 1
#define IWLQ_wdevID 5
unsigned char devID;

devID = (*hPrint)->prStl.wDev >>8;
if ((devID == IW_wdevID) || (devID == IWLQ_wdevID))

/* Then we have an ImageWriter. */;

This method is described in the Macintosh Technical Note “Optimizing for the
LaserWriter — Techniques” and is strongly discouraged there. So why am I
suggesting that you use it? Well, unfortunately, there’s no other reliable way to do
this. In fact, checking the wDev has begrudgingly become an acceptable thing;
developers have become so used to this method that we’d need to give ample warning
before breaking it. However, you should expect that one of these days, checking
wDevs will not be supported anymore. As soon as Apple provides a better method,
you should jump on the code conversion bandwagon and replace all your wDev-
snooping code.

It’s important to make this check after the cGrafPort check because there are third-
party printer drivers for the ImageWriter that support 8-bit color through
cGrafPorts. If we first check for an ImageWriter and then jump to the ImageWriter
grafPort printing code, we may be sacrificing output quality, since we may have been
able to print using the Color QuickDraw methods described for cGrafPorts.

Anyway, if we find that we have an ImageWriter, we go on to the next question.
Otherwise, we assume we have a monochrome printer and we accordingly launch the
halftoning routine for printing.

IF AN IMAGEWRITER, IS A COLOR RIBBON INSTALLED?
In the case of the ImageWriter, we have two options for determining whether a color
ribbon is installed: we can either ask the printer or ask the user.

To ask the printer, we would go through the serial driver if the ImageWriter were
connected to a serial port or through AppleTalk Printer Access Protocol (PAP) if the
printer were an AppleTalk ImageWriter. But this approach has a few problems. First,
even if the user has a color ribbon, he may not want to use it. He may be printing
rough copies of his work and want to save the color ink until he’s ready to make a
final copy. Or he may know that his color ribbon is worn out and prints well only in
black. A second problem is that the printer must be turned on and selected when we

d e v e l o p March 1993

88

query it, or we’ll hang until we time out. The delay is likely to thoroughly annoy our
users.

Third, there’s a problem with ImageWriter I support: the “ESC ?” query sequence
(see the ImageWriter Technical Reference Manual) that’s used to ask a serial
ImageWriter if it has a color ribbon is not supported by the ImageWriter I. This
means our query routine will hang until it times out, and we still won’t know whether
the printer has a color ribbon. A final and more compelling argument against
performing the color ribbon query is that the methods that work today are unlikely to
work under QuickDraw GX. Whether or not you decide to take advantage of
QuickDraw GX’s abilities, you should avoid implementing code that will make your
application incompatible with it.

So we’re left with the option of asking the user. The easiest way to do this is through
a preferences setting. A slightly more coding-intensive but preferred approach is to
add controls to the print job dialog. This might be a checkbox that simply says “Print
in color,” a pop-up menu that offers color or black and white (as in the Apple IIGS
ImageWriter driver version 4.0), or, as I chose in the Final Adventure sample code,
radio buttons for color or halftone output.

Even with this method, there are a few problems. If we add the control to every
printer driver’s job dialog, it will appear even when printers return cGrafPorts, in
which case we’ll want to ignore the setting. Also, if a checkbox is added to a driver
like the 7.0 LaserWriter driver, the user will see redundant settings: a set of radio
buttons for Color/Grayscale versus Black & White printing, and another checkbox
for “Print in color.” The way to get around this problem is to add the output controls
only when the ImageWriter or ImageWriter LQ driver is being used, something
we’ve already discussed how to determine. If we implement this solution, we’ll want
to store the last selected value for the control and default to it whenever the dialog is
displayed. That will spare users from possibly having to click an extra button every
time they print. However, if they change ImageWriters between print jobs, the saved
flag may be incorrect for the new printer. This is a minor glitch that will become
apparent the next time they print.

The bottom line here is that if we determine that our application is dealing with an
ImageWriter with a color ribbon installed, we print using the eight original colors.
Otherwise, we use our halftoning routine and print in black.

PUTTING IT ALL TOGETHER
To see how this decision process translates into code, take a look at the DoPrint
routine in the Final Adventure sample on the CD. That sample rolls together into
one neat package all the methods we’ve discussed in this article. Study it and give it a
try to see how it works.

ADVENTURES IN COLOR PRINTING March 1993

89
Adding controls to the print job dialog is
described in the Macintosh Technical Note “How
to Add Items to the Print Dialogs” and illustrated
by PDlog Expand in the Snippets folder on the
Developer CD Series disc.•

LAST WORDS
In this article, we’ve looked at the problems associated with color printing under the
current printing architecture. We’ve seen that there’s a real need for application
developers to provide color printing support in their applications. We’ve also looked
at techniques for printing high-quality representations of pictures containing
pixMaps. These techniques consist of banding images through GWorlds for color-
capable printers and drivers, creating color separations for printing on ImageWriters
with color ribbons, and creating dithered halftones for black-and-white output.

I mentioned that these techniques aren’t intended for printing pictures that contain
text, because when text is converted to pixMaps, all of the font information is lost,
and the result is chunky, poor-quality text that’s hard to read. You should always draw
text separately from bitmaps or pixMaps, if at all possible. One way to do this is to
write a routine to split a picture into two pictures: one with pixMaps, bitmaps, and
foreground colors, and the other with everything except pixMaps and bitmaps (we’d
want foreground colors in both). Once you have the two pictures, you can render the
first using the methods discussed in this article and the second with DrawPicture.
The order is important if we want the text to appear on top of the pixMap data.
Remember to scale both pictures to the grafPort’s or cGrafPort’s resolution during
printing.

As more technologies make use of color on the Macintosh, and more scanners and
jumbo color monitors are shipped, users are going to need a way to get realistic hard
copies of their screen displays. And although the color capabilities of Apple drivers
and printers will continue to improve in both the short and long term (through such
technologies as QuickDraw GX, ColorSync, and new printer drivers), interim
solutions such as the ones proposed here will be needed for some time to come.

d e v e l o p March 1993

THANKS TO OUR TECHNICAL REVIEWERS
Pete (“Luke”) Alexander, Hugo Ayala, Dan Lipton,
Konstantin Othmer, Sean Parent•

90

• “Making the Most of Color on 1-Bit Devices” by
Konstantin Othmer and Daniel Lipton, develop Issue 9.

• “Print Hints From Luke & Zz: CopyMask,
CopyDeepMask, and LaserWriter Driver 7.0” by Pete
(“Luke”) Alexander, develop Issue 8.

• “Print Hints From Luke & Zz: Color Printing With
LaserWriter 6.0 Revisited” by Pete (“Luke”) Alexander,
develop Issue 6.

• “Meet PrGeneral, the Trap That Makes the Most of the
Printing Manager” by Pete (“Luke”) Alexander,
develop Issue 3.

• Macintosh Technical Notes “Optimizing for the
LaserWriter — Techniques” (formerly #72) and “How
to Add Items to the Print Dialogs” (formerly #95).

• Fundamentals of Interactive Computer Graphics by
J. D. Foley and A. Van Dam (Addison-Wesley, 1982).
Pretty much the standard in computer graphics books.

• Graphics Gems edited by A. S. Glassner (Academic
Press, 1990). Graphics Gems II edited by J. Arvo
(Academic Press, 1991). Lots of quick routines to
do neat image processing stuff without the brain-
bashing.

RELATED READING

GRAPHICAL TRUFFLES: THE PALETTE MANAGER WAY March 1993

91

No part of the Macintosh graphics environment is
more feared, hated, or misunderstood than the Palette
Manager. The Developer Support Center gets many
questions about it from people who don’t have any idea
how to get it to do what they want. We’ve seen many
people just give up on the Palette Manager completely
and instead use lower-level routines that are much
more difficult to use but easier to understand quickly.

The Palette Manager is actually very simple. It has no
complicated heuristics that only rocket scientists can
understand. In this column, we’ll show how the Palette
Manager gets its job done, and we’ll talk about a couple
of issues that you’ll have to deal with to make your
palettes do what you want them to do. You’ll see that
the Palette Manager is both easy to understand and a
very useful part of the Macintosh Toolbox.

Before you read this column, it would be a good idea to
read the Palette Manager chapter (Chapter 20) of Inside
Macintosh Volume VI, which lays down the terminology
that we’ll use here.

WHAT HAPPENS WHEN A PALETTE IS ACTIVATED
The critical job that the Palette Manager does is
activate a palette. This happens whenever you call
SetPalette or ActivatePalette for the frontmost window
and whenever a window that has a palette is activated.
When a palette is activated, the Palette Manager loads
the palette colors into the screen’s color table. How it

goes about doing this is determined by the usage mode
of each entry in the palette.

You indicate an entry’s usage mode by setting a flag
in its usage field. There are four usage modes:
pmCourteous, pmTolerant, pmAnimated, and
pmExplicit. You can choose a separate usage mode or
combination of usage modes for each entry in a palette,
or you can give all the entries the same usage mode.
Let’s take a look at what each usage mode is good for
and what effect each one has when a palette is activated.

pmCourteous. The pmCourteous usage mode enables
you to replace RGBColor records in your code with
single integers. Thus, having a palette of courteous
colors gives you an alternative way to specify
foreground and background colors. This is great for
localizers who might need to change the colors in your
program to something more meaningful in other
countries, and it’s great for you if you feel like changing
a color without recompiling.

Activating a palette of courteous colors simply tells the
Palette Manager to use your window’s palette as a sort
of lookup table. When your window is the current port
and you call PmForeColor or PmBackColor with a
palette index, the Palette Manager simply retrieves the
color in your window’s palette at that index and uses it
for any subsequent drawing to that window. Courteous
colors never change the screen’s color table — they get
mapped to the closest colors already available there.

Here’s an example: Without the Palette Manager, you
would draw a green oval in a window by setting up an
RGBColor record with a red component of 0, a green
component of 65,535, and a blue component of 0 and
passing this record to RGBForeColor; then you would
call FrameOval. To change the oval to blue, you would
modify your RGBColor record in your source code and
recompile your program. Now, suppose instead you
brought in the Palette Manager by setting up a palette
resource (resource type 'pltt') that contained one
courteous entry — green — with an index of 0. In your
code, you would call PmForeColor(0) instead of
RGBForeColor with green. When you called

EDGAR LEE (AppleLink EDGAR) Before Edgar’s dog, Sunny,
departed for the East Coast, we asked her if she could tell us a little
about him. Here’s what she had to say: ”Edgar . . . is that his
name? Oh yeah, nice human. A little hairless for my taste, but a
good guy. He works over there in DTS or something. He used to
come home late all the time. At first I thought he was seeing
another dog, then I realized he’s just a nerd. And how is he to me?
Well, let’s see, he takes care of me, entertains me. I bark once, he
feeds me; I bark twice, we go out for a walk. Not bad for an

owner; I’ve heard worse stories. Does he ever get upset with me? I
suppose at times he does. I probably deserve it; carpet cleaning
isn’t cheap, you know. But hey, I see a clean spot, I go
for it.”•

GRAPHICAL
TRUFFLES

THE PALETTE
MANAGER WAY

EDGAR LEE AND
FORREST TANAKA

FrameOval, the oval would be drawn in green. To
change the color to blue, you would just use ResEdit to
modify the green entry in your 'pltt' resource to blue.

So calling PmForeColor for a courteous palette entry is
just like calling RGBForeColor, but instead of
supplying the RGB components, you simply pass an
index into the palette, where the index points to the
color’s RGB components (see Figure 1).

pmTolerant. The pmTolerant usage mode is used
when you want to be sure that a specific set of colors is
available to the screens that your window is on. It’s a
bummer to draw a rainbow in a window on a screen
that another application has removed all the greens and
yellows from. You need a palette of tolerant colors to
assert your application’s right to the colors it needs to
display its images optimally. With such a palette, you
can change the colors in a screen’s color table to ones
that you want.

Before we look at how a palette of tolerant colors is
activated, realize that Color QuickDraw always wants
white in the first entry of a screen’s color table and
black in the last. To enforce this rule, Color
QuickDraw protects these two entries from being
changed to other colors. That means a palette of
tolerant colors can change all the colors of a screen’s
color table except two.

When a palette of tolerant colors is activated, the
Palette Manager checks each entry in the palette and
associates it with an entry in the screen’s color table.
Let’s say we have a palette with three entries — bright
green, black, and dark yellow — attached to a window
on a 16-color screen. All three palette entries are
tolerant, with a tolerance of 0. The Palette Manager
does the following:

1. It checks the first entry in the palette, bright green,
and searches the screen’s color table for the same
bright green. It finds that color near the middle of
the color table, and so associates palette entry 0 with
this existing bright green entry in the color table.

2. It searches the screen’s color table for the second
entry in the palette, black. It finds it at the very end,
so palette entry 1 corresponds to entry 15 of the
color table.

3. It searches the screen’s color table for dark yellow.
There isn’t one, so it chooses a color table entry to
change to dark yellow. It can’t choose the black or
the white entry because they’re protected and can’t
be changed, and it can’t change the bright green
entry because that entry is already associated with
entry 0 of the palette. So it chooses one of the other
color table entries and changes it to dark yellow.

Because the color table has been changed, the Palette
Manager makes sure that other windows are redrawn,

d e v e l o p March 1993

FORREST TANAKA (AppleLink TANAKA) has spent the last
couple of months learning how to be a domestic kind of guy. Once
worried about paying the rent, he’s now worried about paying the
mortgage. Once worried about his downstairs neighbors, he’s now
worried about getting the best fertilizer. Now he’s even the
stepparent of an old dog and a cat with an attitude. As a final
blow to his carefree days of youth, he has to mow the lawn!•

92

PmForeColor
Palette index Palette�

Manager
RGBColor

RGBForeColor
RGBColor

Color�
Manager

Pixel value

Figure 1
Alternative Ways to Specify a Foreground Color

GRAPHICAL TRUFFLES: THE PALETTE MANAGER WAY March 1993

93

just in case they were drawn using the color table entry
that was changed to dark yellow. It does this by sending
update events to all windows as soon as the palette is
activated. If no color table changes were needed, the
Palette Manager doesn’t bother doing this.

Once our three-entry palette has been activated, we can
call PmForeColor, passing it 0, 1, or 2 to draw objects
in bright green, black, or dark yellow, respectively. In
fact, we could call RGBForeColor, passing it bright
green, black, or dark yellow RGBColor records, and
they would use the same colors that our palette loaded
into the screen’s color table. Figure 1 applies to palettes
of tolerant colors as well as palettes of courteous colors.

If there are more palette entries than will fit in the
screen’s color table, the Palette Manager associates each
palette entry with a color table entry until no more
color table entries are available and then interprets the
rest of the palette entries as courteous. For example,
let’s say a 20-entry palette is activated on a 16-color
screen, where each palette entry is pmTolerant with a
tolerance of 0 and neither black nor white is in the
palette. Beginning with the first palette entry, the
Palette Manager associates each entry with a color table
entry. The 15th palette entry can’t be associated with
any color table entry because the black and white
entries are protected from changes and all 14 other
entries have already been associated with palette
entries. So the 15th palette entry and all entries beyond
it are simply treated as courteous colors.

pmAnimated. On indexed devices, the pmAnimated
usage mode is used to do color table animation, which
gives you smooth, fast visual effects simply by changing
the colors in your screen’s color table very quickly. You
don’t have to redraw anything to see this animation;
you just use the Palette Manager to change the
interpretation of the colors of your existing image. This
is great for games and fast controls for image
processing applications. On direct devices, animated
entries are treated as courteous entries.

Like pmTolerant entries, each pmAnimated palette
entry is associated with an entry in a screen’s color table

when the palette is activated, and the colors in the
palette are put into the screen’s color table. But
changing color table entries for color animation
changes everything on the screen that uses those same
color table entries, like the desktop or window frames.
That’s usually not what we want, so the Palette
Manager forces everything outside the window to be
redrawn without the colors that are being used for
color animation — those colors are off limits. In fact,
the only way to use those colors is to call PmForeColor
or PmBackColor for an animated palette entry and
then draw some QuickDraw object. Remember, the big
difference between tolerant and animated colors is that
color table entries that are used for tolerant colors can
be used by anyone, but animated color table entries are
used only by objects drawn in the palette’s window after
a call to PmForeColor or PmBackColor.

Let’s use our three-entry palette as an example again,
but this time assume that each entry is animated. The
Palette Manager first takes the bright green entry, picks
a color table entry on the screen, and changes it to
bright green. It doesn’t matter if there’s already a bright
green in the color table. As usual, the Palette Manager
avoids the black and white entries at either end of the
color table. It then picks another color table entry and
puts black into it, and does the same for the dark
yellow entry. If you call PmForeColor(0) and draw an
object, it’s drawn in bright green. But if you call
RGBForeColor for bright green and draw an object, it
doesn’t use the bright green that’s been defined as
animated. Instead, it uses the closest color to bright
green available, aside from any color table entries that
have been defined as animated.

pmExplicit. The pmExplicit usage mode is rarely used
alone, and there’s not much to it beyond what’s
described in the Palette Manager chapter of Inside
Macintosh Volume VI. We’ll discuss in the next section
the more interesting case of using pmExplicit along
with the other usage modes.

ARE BLACK AND WHITE NEEDED IN A PALETTE?
When attaching a palette to a window, the Palette
Manager works in a way that affects whether you

Indexed and direct devices are discussed in the Graphics
Overview chapter (Chapter 16) of Inside Macintosh Volume VI.•

should store black and white in the palette. We’ll
outline the way it works in two different categories.
The first category applies to palettes containing the
same number of entries as the screen’s color table, and
the second category applies to palettes containing fewer
entries than the screen’s color table.

Same number of entries in palette and color
table. If the palette contains the same number of
entries as the screen’s color table, black and white
should be stored in the palette. If these two entries
aren’t stored in the palette, the Palette Manager will
ignore two entries in the palette when loading the
palette colors into the screen’s color table, to avoid
overwriting the color table’s black and white entries.
The Palette Manager will decide which palette entries
to ignore based on the usage field for each palette
entry.

As an example, let’s take the case of a palette all of
whose entries are defined as pmTolerant + pmExplicit.
Because the pmExplicit flag tells the Palette Manager
to store each palette entry in its respective index in the
screen’s color table, the choice of which palette entry to
ignore is fairly straightforward. The colors stored at the
first and last entry of the palette correspond to the
protected entries in the screen’s color table, so these
entries will be ignored.

In the case of a palette containing entries not defined
with the pmExplicit flag set, the decision of which two
palette colors to ignore can seem somewhat random.
This is because the decision is based on the current
distribution of the palette entries in the screen’s color
table, where the distribution is derived from the
tolerance values of the palette entries and the existing
colors in the screen’s color table before the palette was
activated.

For example, suppose we have a 16-entry palette and a
4-bit screen color table as shown in Figure 2 (we’ve
used the default color table). Figure 3 shows how the
screen’s color table will look in two different cases
when the palette of the frontmost window has been
activated. In these figures, the explicit entries are

distributed sequentially in the screen’s color table,
whereas the nonexplicit entries are scattered
throughout the color table.

For the explicit entries, we see that the first and last
entries of the palette are not loaded into the screen’s
color table, to protect the color table’s white and black
entries. However, for the nonexplicit entries, the two
palette colors ignored aren’t necessarily the first and
last entries of the palette. When determining where the
nonexplicit palette entries should be stored in the color
table, the Palette Manager first checks to see which
colors in the screen’s color table already match those in
the palette. If there’s a match within the specified
tolerance, that palette entry is stored at the index of the
matching color in the screen’s color table.

And one other thing: When multiple nonexplicit
palette entries match (within the specified tolerance)
the same color in the screen’s color table, all those
palette entries are stored at the same index in the color
table. This means that only one slot in the color table is
needed rather than as many slots as there are palette
entries.

Fewer entries in the palette. Now, if the window’s
palette contains fewer entries than the screen’s color
table, the palette entries’ usage field plays a large part

d e v e l o p March 1993

94

16-entry palette Default 4-bit�
screen color table

Figure 2
An Example Palette and Color Table

Using pmTolerant entries Using pmTolerant +�
pmExplicit entries

Figure 3
The Color Table With the Palette of the
Frontmost Window Active

GRAPHICAL TRUFFLES: THE PALETTE MANAGER WAY March 1993

95

in determining whether black and white should be
included in the palette. The reason for this is similar to
the previous case for nonexplicit entries.

If all the entries in a palette are defined without the
pmExplicit flag set, the presence of black and white in
the palette isn’t as critical, since the palette entries will
likely be scattered throughout the screen’s color table
while avoiding the protected white and black colors
stored in the first and last slots of the screen’s color
table. Since there are fewer palette entries than color
table entries, we needn’t worry about palette entries
getting ignored. So in this case, creating a palette
without a black entry or a white entry is perfectly fine
as long as there are enough slots in the screen’s color
table to hold all the palette entries and the two
protected colors.

However, if the palette entries are all defined with the
pmExplicit flag set, there’s a good chance that one of
the palette’s entries will be ignored. And the palette
entry that does get ignored will usually be the first
entry in the palette, because this entry shares the same
index as the protected white entry in the screen’s color
table.

For example, suppose we have a 192-entry palette and
an 8-bit screen color table as shown in Figure 4 (again,

we’ve used the default color table). Figure 5 shows how
the screen’s color table will look in two different cases
when the palette of the frontmost window has been
activated.

Again, the explicit entries are distributed sequentially in
the screen’s color table, starting with the first entry in
the color table. Because the first entry in the screen’s
color table is protected from being overwritten, the
first entry in the palette is ignored. But in the
nonexplicit case, the entries are distributed somewhat
differently. Depending on what colors are already in
the screen’s color table, the nonexplicit entries can be
stored anywhere throughout the color table. And in
this example, since there are clearly more slots in the
screen’s color table than needed by the palette entries,
all the colors in the palette appear in the color table;
none are ignored. So again in this case, including black
and white in the palette really isn’t necessary.

WHERE TO PUT BLACK AND WHITE IN THE
PALETTE
We’ve seen how the way the Palette Manager works
can affect whether you decide to store black and white
in your palette. In all the instances we mentioned, the
positions of the black entry and white entry were
always the same: white first and black last. However, in
certain cases, you may not want to position white first
and black last.

In the case where you’d like to create just one palette to
handle devices at multiple bit depths, the black and
white entries should be stored as the first two colors in
the palette. This ensures that the two colors used on a
1-bit device are present. Likewise, to ensure that the
optimal colors are used at depths 2, 4, and 8, we do the
same thing for each additional depth. We store the
preferred colors at the appropriate position in the
palette. Figure 6 shows how a typical palette could be
configured to handle multiple bit depths.

In our sample palette, the first 16 colors are defined as
shades of gray, because we’ve decided our window
would look best when displayed in grayscale on a 1-, 2-,
or 4-bit device. For the 1-bit and 2-bit devices, we

Figure 4
Another Example Palette and Color Table

Figure 5
The Color Table With the Palette of the
Frontmost Window Active

Default 8-bit
screen color table

192-entry palette

Using pmTolerant entries Using pmTolerant +
pmExplicit entries

simply choose the appropriate shades for those depths
and store them in the first four slots of our palette. But
for an 8-bit device, we include as many colors as we can
for the optimal display at that depth. For this example,
we added the nongrayscale colors from the standard
8-bit color table to the remaining slots in our palette.
Because the Palette Manager only uses the maximum
number of colors it can (starting at the first index in the
palette) for a specific bit depth, only the colors we want
shown will be shown. Also, because the placement of
the colors determines which colors are available at a
certain depth, all the palette entries must be defined as
explicit entries.

Another way of ensuring that certain palette entries are
available at certain depths is to apply the inhibit usage
categories to the palette entries. These inhibit
constants tell the Palette Manager which entries are
available under the current color environment.
Depending on which inhibit constant is used, the
palette entries can be inhibited from a specific bit depth
and from a color or grayscale device. So by combining
various inhibit constants to our sample palette, we can
inhibit the colors outside the current depth’s range
from being used. In our example, if entry number 16
were defined with

pmInhibitC2 + pmInhibitC4 + pmInhibitG2 +
pmInhibitG4

this entry would be available only on an 8-bit or deeper
color or grayscale device.

ONE LAST WORD
The Palette Manager works very simply, but it has so
many options and effects that it can seem complicated.
By understanding how the Palette Manager makes its
decisions, you should find it easy to figure out how to
make it do precisely what you want. We hope this
column has made this clear, so that you can use the
Palette Manager and avoid fussing with the
alternatives.

d e v e l o p March 1993

The inhibit constants are discussed in the Palette Manager
chapter (Chapter 20) of Inside Macintosh Volume VI.•

Thanks to Bill Guschwan, Shannon Holland, Guillermo Ortiz,
Konstantin Othmer, Brigham Stevens, and John Wang for
reviewing this column. Special thanks to Joseph Maurer and Faith
Pai.•

96

1-bit 2-bit 4-bit

0 1 2 3 4 15

+ +

255
8-bit

16

+

Figure 6
A Palette Configured to Handle Multiple Bit Depths

W ith the ascendancy of multimedia, 3-D shading and elaborate color
backgrounds are showing up in an increasing number of interface
designs. But what happens when these sophisticated interface elements
must be displayed across multiple monitors of different bit depths? This
article explains how to use the DeviceLoop function to take care of the
device, clipping, and bit-depth logistics involved in multiple-monitor
displays.

One of the great things about the Macintosh is its ability to support more than one
monitor at a time. You can display windows in any active monitor or split a window
— and the objects in it — across several monitors at once. What’s more, you can
make an image adjust to the bit depth and other capabilities of each monitor it’s
displayed on, so that the visual interface looks as good as it possibly can on each of
the devices attached to the computer.

I recently worked on a project in which one of the goals was exactly that — we
wanted our application windows to look really good across multiple monitors and at
any bit depth. The task was complicated by the fact that the interface was quite
sophisticated graphically. To give our windows a distinctive, three-dimensional look,
we used shaded color graphics. We filled the content area with background graphics,
text, patterned and colored lines, and 3-D buttons. With the exception of our
standard List Manager lists, all the window objects were drawn by our application
program. Even the conventional scroll bar, close box, and zoom box were replaced by
custom art drawn by the application, not the Window Manager.

Displaying these complex windows across multiple monitors was obviously going to
be a challenge. We knew that the Finder, for example, pulled it off — whenever
Finder windows span monitors of different bit depths, the parts of the window on
each monitor are drawn to the individual monitor’s depth. “If the Finder does it, so
can we,” I decided, although I actually knew very little about how to solve the
problem.

DEVICELOOP MEETS THE INTERFACE DESIGNER March 1993

97
JOHN POWERS (AppleLink JOHNPOWERS)
started his career as a behavioral scientist,
studying how people use computers. He worked
his way up the management ladder, and then
cofounded a company that developed software
for the first home computers. That lead him to
Atari, but Atari got weird, so John joined
Convergent Technologies to develop the
WorkSlate notebook computer, eight years before

the PowerBook. That led him to another
management ladder and into The Learning
Company, where he developed software for
children. Locked in his management office, John
discovered the Macintosh and decided to become
a Macintosh software developer. Now he’s at
Apple Computer developing Macintosh software
that helps people use computers.•

JOHN POWERS

DEVICELOOP

MEETS THE

INTERFACE

DESIGNER

DEVICELOOP TO THE RESCUE
I bit the bullet. The search for ways to draw a window across multiple monitors led in
a number of directions, all of them involving visible regions, clipping regions, and
region-rect conversions. I asked a lot of people for advice, and while everyone was
gracious in offering help, the job was looking complicated. Fortunately, one of the
advice givers suggested that I check out the DeviceLoop function in Inside Macintosh
Volume VI. (I found out later that the advice giver was the author of the DeviceLoop
function.)

When I looked up DeviceLoop in Volume VI, here’s what I found:

The DeviceLoop procedure searches all active screen devices, calling your
drawing procedure whenever it encounters a screen that intersects your drawing
region. You supply a handle to the region in which you wish to draw and a
pointer to your drawing procedure. . . . If the DeviceLoop procedure encounters
similar devices — having the same pixel depth, black-and-white/color setting,
and matching color table seeds — it makes only one call to your drawing
procedure, pointing to the first such device encountered.

This sounded exactly like what we were looking for. The Window Manager itself uses
DeviceLoop to display window components on a variety of monitors. Since we were
drawing our own windows, DeviceLoop was clearly what we needed.

Here’s what DeviceLoop looks like in C:

pascal void DeviceLoop (RgnHandle drawingRgn,
DeviceLoopDrawingProcPtr drawingProc,
long userData, DeviceLoopFlags flags);

The drawingRgn parameter is a handle to the region that will be drawn in (usually a
window’s visRgn). The drawingProc parameter is a pointer to your drawing routine
(see below). The userData parameter is a long that gets passed to your drawing
routine. Finally, the flags parameter controls how devices are grouped before your
drawing routine is called. (Pass 0 for the default behavior — grouping similar devices
together. See the description in Inside Macintosh for other possible values.)

The drawing routine needs to be declared as follows:

pascal void MyDrawProc (short depth, short deviceFlags,
GDHandle targetDevice, long userData);

Here the depth parameter is the depth of the device you’re currently drawing on.
The deviceFlags parameter is a copy of the device’s gdFlags, targetDevice is a handle
to the device, and userData is whatever you passed to DeviceLoop.

d e v e l o p March 1993

The DeviceLoop call first appears in
System 7. If your application will be running
under an earlier version of system software, you’ll
need to implement your own DeviceLoop function.
For an example of how to do this, see the column
“Graphical Truffles: Multiple Screens Revealed” in
Issue 10 of develop.•

98

DeviceLoop works like this: Each time your drawing routine is called, the current
port’s visRgn will have been set to the intersection of your drawing region and some
screen device. DeviceLoop passes the drawing characteristics of the particular screen
it’s working on to the drawing routine, which can then make use of them — for
instance, by drawing to the appropriate bit depth. In short, DeviceLoop takes care of
all the device, clipping, and bit-depth logistics, while all you have to do is draw.

USING DEVICELOOP IN AN OBJECT-ORIENTED WORLD
In our application, we had to draw not only the contents of the window, but also the
window itself. True to our object-oriented design, we created classes for all the
interface objects. These classes included a TArt class for backgrounds, graphics, and
3-D button objects; a TLine class for lines; a TTxt class for black-and-white text; and
a TBkg class for backgrounds for the text. Although we used DeviceLoop for drawing
objects in every class except the text classes, the heart of the process is best illustrated
by our use of DeviceLoop for TArt objects.

The graphics for TArt objects were stored as PICT resources. To give the best
possible image, the interface designer created an 8-bit-deep PICT for display depths
of 8 bits or deeper. For all other display depths and CPUs without Color QuickDraw,
she created a 1-bit-deep, black-and-white PICT. We could have let the Macintosh
use the 8-bit PICT for all drawing — color and black-and-white — and, with
dithering, the results would have been pretty good. But since we had our own hand-
designed, 1-bit version of the PICT, DeviceLoop was a better solution.

Our window object kept track of all the interface objects that it needed to draw.
When an update event was received, the document object told the window object to
draw. Specifically, our BeginUpdate/EndUpdate function called a particular drawing
routine for each of the objects. Each object, in turn, called DeviceLoop with our
DrawProc callback, which contained the actual drawing code for that object. Figure 1
shows this strategy.

DEVICELOOP MEETS THE INTERFACE DESIGNER March 1993

99

BeginUpdate/�
EndUpdate�

function

PICT background�
TArt::Draw

Button�
TArt::Draw

Filled background�
TBkg::Draw

Line�
TLine::Draw

DeviceLoop

DeviceLoop

DeviceLoop

DeviceLoop

DrawProc

DrawProc

DrawProc

DrawProc

Figure 1
An Inefficient Way to Incorporate DeviceLoop

We used this DeviceLoop-within-each-object’s-drawing-procedure approach until
someone pointed out how inefficient it was to call DeviceLoop for every interface
object. We realized that it would be much better to call DeviceLoop once and have
the drawing procedure that we passed to it decide which object had to be drawn. We
wound up with a single DeviceLoop call in the window’s BeginUpdate/EndUpdate
function, as shown in Figure 2. The use of a single DeviceLoop call in the window
object really streamlined the design.

One problem we encountered was that the compiler balked whenever we referenced
our drawing routine (called DrawProc) in the DeviceLoop parameter list. We even
included the scope — TWin::DrawProc — and that didn’t help. The breakthrough
came when we made DrawProc static. Unfortunately, changing it to static caused
another problem: the compiler choked when we referenced this within DrawProc.
We forgot that static functions can’t reference nonstatic member variables. (You C++
aficionados are probably smiling, but we recent converts must struggle at first.) We
couldn’t use static variables, however, because each of our objects required its own
variables. Thus, to access an object’s variables, we had to pass the window object
pointer in the userData parameter of the DeviceLoop function.

AN EXAMPLE
The Developer CD Series disc contains a sample application that shows how we used
DeviceLoop for TArt objects in our interface. The application, DeviceLoopInDrag,
displays a window that can be dragged between monitors of different bit depths.
Figure 3 shows this window spanning a grayscale and a black-and-white monitor.

Excerpts from the DeviceLoopInDrag source code follow. First there’s the update
function that’s called whenever the window needs to be redrawn. It just calls the
drawing procedure for the window object (TWin).

d e v e l o p March 1993

100

BeginUpdate/�
EndUpdate�

function

PICT background�
TArt::Draw

Button�
TArt::Draw

Filled background�
TBkg::Draw

Line�
TLine::Draw

DeviceLoop DrawProc

Figure 2
A Better Way to Call DeviceLoop

// TDoc::DoUpdate
// Document object.
// Entry for update event action.
void
TDoc::DoUpdate()
{

BeginUpdate(this->fDocWindow);
this->fWinObj->Draw();
EndUpdate(this->fDocWindow);

}

The window’s drawing procedure does little more than set up and call DeviceLoop.
Notice that we’re passing the reference to the current window object — this — in
DeviceLoop’s userData parameter, as described earlier. Since we want the default
DeviceLoop behavior, we set the flags to 0.

// TWin::Draw
// Window object.
// Within BeginUpdate/EndUpdate.
void
TWin::Draw()
{

// Have DeviceLoop manage the drawing.
// Pass the window object in userData.

DEVICELOOP MEETS THE INTERFACE DESIGNER March 1993

101

Figure 3
DeviceLoop in Action

long userData = (long)this;
DeviceLoopFlags flags = 0;
GrafPtr myPort;
GetPort(&myPort);
DeviceLoop(myPort->visRgn, TWin::DrawProc, userData, flags);
// Draw the stuff we don't need DeviceLoop for.
// We tell the subview to take care of that.
this->fView->Draw();

};

Next, theTWin drawing procedure is the callback procedure that DeviceLoop
invokes to coordinate the drawing of each of the elements on the screen.

// TWin::DrawProc
// Called by DeviceLoop.
// A static function. Must be in a resident segment, locked and
// unpurgeable. Because it's static, it can't access object member
// variables directly. We use the window object passed in userData
// to access its member variables.
#pragma segment Main
pascal void
TWin::DrawProc(short depth, short /*deviceFlags*/,

GDHandle hTargetDevice, long userData)
{

// Get the window object from userData.
TWin* theWinObject = (TWin*) userData;
// Use depth of 1 if we have a computer without Color QuickDraw.
depth = (hTargetDevice==NULL)?1:depth;
// Draw our objects.
theWinObject->fBackground->Draw(depth);
theWinObject->fLogo->Draw(depth);
theWinObject->fText->Draw(depth);
theWinObject->fButton->Draw(depth);

};

Finally, here’s the actual TArt::Draw function, used for various items in the window.
Based on the bit-depth parameter passed to it, the Draw function decides whether to
use the black-and-white or the color version of its PICT.

// TArt::Draw
// All art objects (PICTs) are drawn here. This is where we distinguish
// between B&W or color renderings of TArt objects. The B&W rendering has
// a resource ID that's kBWOffset larger than its color counterpart value.
void
TArt::Draw(short depth)

d e v e l o p March 1993

102

{
// Don't draw empty art.
if(this->fPictID==0)

return;
PicHandle hPict;
if(depth<8)
{

// Use B&W PICT.
hPict = (PicHandle) GetResource('PICT', this->fPictID+kBWOffset);

}
else
{

// Use color PICT.
hPict = (PicHandle) GetResource('PICT', this->fPictID);

}
if(hPict)
{

Rect theDrawRect;
this->GetDrawRect(theDrawRect);
HLock((Handle) hPict);
DrawPicture(hPict, &theDrawRect);
HUnlock((Handle) hPict);

}
};

SUMMING UP
How did we wind up feeling about DeviceLoop? After we first discovered it, our
tendency was to use it everywhere. We even used it to call a drawing routine that
always drew in black and white, no matter what the bit depth. We later stripped this
use out of the interface because it offered no advantage and added extra code.

One concern we had was that performance would degrade to an intolerable level as
we added objects to be drawn. To see what would happen, the mischievous test
engineer for our project devised a case with 99 separate TArt objects in the same
window. Predictably, the 99 objects weren’t displayed all at once. While you can
expect some lag between the appearance of first object in a window and the last,
however, the drawing time when you use DeviceLoop is really very short, well within
user tolerance.

All in all, our design team was very pleased with DeviceLoop. We were glad to have
found such an easy way to solve the problem of displaying interface objects on
monitors of different bit depths. The interface designer got the look she wanted, and
we were able to accomplish the job with a minimum of hassle and a minimum of
code. This was one challenge that left everyone happy.

DEVICELOOP MEETS THE INTERFACE DESIGNER March 1993

103
THANKS TO OUR TECHNICAL REVIEWERS
Edgar Lee and Brigham Stevens. Special thanks to
Pat Coleman, the Interface Designer on the
project that inspired this article.•

Q Our program has a problem with filenames that start with a period. During an Open
call, if the filename starts with a period, the Open code calls the Device Manager (for
drivers and DAs) instead of the File Manager. However, we’ve seen other applications
that can successfully open these files. W hat’s the secret? How do we open files that
otherwise look (from the name) like drivers?

A The Open trap is shared between the Device Manager and the File Manager.
When Open is called, it checks first to see whether you’re trying to open a
driver. Driver names always start with a period. If you can, avoid using
filenames that begin with a period. Macintosh Technical Note “HFS
Elucidations” (formerly #102) discusses this conflict. The secret to opening
those files is using the new Open Data Fork functions available with System 7
— FSpOpenDF, HOpenDF, and PBHOpenDF. These functions bypass the
driver name check and go right to the File Manager. Here’s the code we use to
open a file:

err := HOpenDF(vRefNum, dirID, fileName, permission, refNum);
IF (err = paramErr) THEN {HOpenDF call isn't available}

err := HOpen(vRefNum, dirID, fileName, permission, refNum);
{try again with old HOpen call}

Try this and your problem should go away under System 7. The code retries
with the regular Open call (which uses the same input parameters), so this code
can be used in programs that run under both System 6 and System 7.

Q In System 7, the memory allocated for INITs by the 'sysz' resource mechanism seems to
be limited to about 16 MB on our 32 MB Macintosh IIfx. For 'sysz' values up to 15
MB it works great, but it seems the system heap can’t grow beyond 16 MB. Is there
some reason for this?

A The system heap size at startup is limited to approximately half the size of total
RAM. This is because the early startup code places the stack and some globals
in the middle of RAM so that the system heap can grow up from below while
BufPtr is lowered from above. This is basically the situation until an application
is launched. Things are eventually rearranged so that the system heap will have
more room to grow, but this doesn’t happen until the Process Manager is
launched, after INIT time. This limitation would mean that you could size your
heap until it reached nearly (but not quite) half the size of RAM. We suggest
that you attempt to allocate some of your RAM later, after the Process Manager
starts up; at that point, the system heap should be somewhat less limited.

Q The Macintosh Technical Note “Setting ioNamePtr in File Manager Calls” (formerly
#179) says that ioNamePtr needs to point either to nil or to storage for a Str255. This

d e v e l o p March 1993

Kudos to our readers who care enough to
ask us terrific and well thought-out questions. The
answers are supplied by our technical gurus in
Apple’s Developer Support Center; our thanks to
all. Special thanks to Pete (“Luke”) Alexander,
Mark Baumwell, Joel Cannon, Matt Deatherage,
Tim Dierks, Marcie (“M. G.”) Griffin, Bill
Guschwan, C. K. Haun, Dave Hersey, Dennis
Hescox, Rich Kubota, Jim Luther, Joseph Maurer,

Guillermo Ortiz, Kent Sandvik, Brigham Stevens,
and Dan Strnad for the material in this Q&A
column.•

104

MACINTOSH

Q & A

contradicts the Technical Note “Searching Volumes — Solutions and Problems”
(formerly #68), which gives an example of a recursive indexed search using
PBGetCatInfo. The example uses a Str63. W hich Technical Note is correct?

A To be generically correct, ioNamePtr should point to a Str255. However, in the
case of PBGetCatInfo and other calls that return a filename (or a directory
name), a Str63 is sufficient. The reasons are tied to the history of the Macintosh
file system.

MFS, the original Macintosh file system, supported filename lengths of up to
255 characters. However, the Finder on those systems supported filename
lengths up to only 63 characters and, in fact, developers were warned to limit
filename lengths to fewer than 64 characters (see page II-81 of Inside Macintosh
Volume II).

HFS, the hierarchical file system (in every Macintosh ROM since the
Macintosh Plus), further limited filename lengths to 31 characters. If you mount
an MFS disk while running HFS, the old MFS code is called to handle the
operation. So, the file system can still create and use files with long filenames on
MFS volumes.

When the System 7 file system was being designed, Engineering had to decide
what size string to use in FSSpec records. The decision was to use a Str63
instead of a Str31 to be able to support long MFS filenames, and to use a Str63
instead of a Str255 because there were probably very few filenames with over 63
characters (remember, the old Finder limited filenames to 63 characters). Using
a Str63 instead of a Str255 saves 192 bytes per FSSpec record.

So, we recommend that you use at least a Str63 for filenames, as in “Searching
Volumes — Solutions and Problems.” If you need to manipulate the filename in
any way after you’ve gotten the name — for example, to concatenate it with
another string — you might want to use a Str255.

Note: Even though the System 7 file system supports filenames longer than 31
characters on MFS volumes, the System 7 Finder does not. In fact, the System 7
Finder currently crashes if you try to open an MFS volume (that is, open the
volume window) that has files with names longer than 31 characters.

Q I’m trying to use the Macintosh Time Manager to calculate elapsed times, but when I
increase the delay time from $4FFFFFF to $5FFFFFF I get incorrect results. W hy is
this happening?

A There seems to be an undocumented limitation of the Time Manager: it can’t
keep track of times longer than about a day, so it replaces them with the

MACINTOSH Q & A March 1993

105

maximum time it supports. For Time Manager tasks, this isn’t crippling; the
task simply executes earlier than expected. When used for elapsed-time
calculations, however, it’s a bad thing; the Time Manager installs the task with
the smaller time, and when you remove it, you see a smaller than expected
remaining time. This makes it appear as if a large period of time has passed.

The value at which the Time Manager trims is approximately $53A8FE5. The
reason for this strange value is somewhat complex. The Time Manager uses a
VIA timer to do its measurement. This timer runs at 783360 Hz, giving it a
resolution of about 1.276 microseconds. However, the Macintosh could never
actually provide this kind of accuracy, given its latencies and overhead. Also, this
frequency would have given a 32-bit counter a range of only about 91 minutes.
Therefore, the Time Manager actually throws away the low four bits of this
counter, keeping a 32-bit counter with a resolution of 20.425 microseconds and
a range of 24 hours, 22 minutes. This time is a lot larger than the maximum
number of microseconds that can be measured, but is equal to 87,724,005
milliseconds, which is (ta-dahh!) $53A8FE5. This is why you were overflowing
the Time Manager’s internal counter, causing your task to be clipped.

All should work well if you use times less than 24 hours. If you need to measure
durations for times exceeding the Time Manager’s limits, you can use a fixed-
frequency task that executes every hour and increments an hour counter. To
determine the fractional hours component of the time, you’d remove the task to
determine how much longer till the next hour.

Q W hen a picture that contains a pixMap is spooled into a window, how and when is
the depth of the pixMap in the picture converted to the depth of the screens the window
is on?

A When a picture is spooled in, if QuickDraw encounters any bitmap opcode, it
allocates a pixMap of the same depth as the data associated with the bitmap
opcode, expands the data into the temporary pixMap, and then calls StdBits.
StdBits is what triggers the depth and color conversions as demanded by the
color environment (depth, color table, B&W settings) of the devices the target
port may span (as when a window crosses two or more screens).

If there’s not enough memory in the application heap or in the temporary
memory pool, QuickDraw bands the image down to one scan line and calls
StdBits for each of these bands. Note that if you’re providing your own
bitsProc, QuickDraw will call it instead of StdBits.

This process is the same when the picture is in memory, with the obvious
exception that all the picture data is present; the color mapping occurs when
StdBits does its stuff.

d e v e l o p March 1993

106

Q How do I get the pixel depth of the QuickTime video media for a given track?

A To find the video media pixel depth, you’ll need to retrieve the media’s image
description handle. You can use GetMediaSampleDescription to get it, but this
routine needs both the video media and the track’s index number. It’s not
obvious, but a media’s type is identified by its media handler’s type. Thus, you
can walk through a movie’s tracks by using its indexes until you find video
media, at which point you have both the track index and video media.

The following sample code does the trick:

#include <QuickDraw.h>
#include <Movies.h>
#include <ImageCompression.h>

Media GetFirstVideoMedia(Movie coolMovie, long *trackIndex)
{

Track coolTrack = nil;
Media coolMedia = nil;
long numTracks;
OSType mediaType;
numTracks = GetMovieTrackCount(coolMovie);
for (*trackIndex=1; *trackIndex<=numTracks; (*trackIndex)++) {

coolTrack = GetMovieIndTrack(coolMovie, *trackIndex);
if (coolTrack) coolMedia = GetTrackMedia(coolTrack);
if (coolMedia) GetMediaHandlerDescription(coolMedia,

&mediaType, nil, nil);
if (mediaType = VideoMediaType) return coolMedia;

}
*trackIndex = 0; // trackIndex can't be 0
return nil; // went through all tracks and no video

}

short GetFirstVideoTrackPixelDepth(Movie coolMovie)
{

SampleDescriptionHandle imageDescH =
(SampleDescriptionHandle)NewHandle(sizeof(Handle));

long trackIndex = 0;
Media coolMedia = nil;
coolMedia = GetFirstVideoMedia(coolMovie, &trackIndex);
if (!trackIndex || !coolMedia) return -1; // we need both
GetMediaSampleDescription(coolMedia, trackIndex, imageDescH);
return (*(ImageDescriptionHandle)imageDescH)->depth;

}

MACINTOSH Q & A March 1993

107

Q W hat’s the difference between ignorance and apathy?

A We don’t know and we don’t care.

Q Could you tell me what the “printer driver is MultiFinder compatible” bit is used for?

A The “printer driver is MultiFinder compatible” bit provides two features. First,
it allows the printer driver resource file to be opened by multiple clients. This
was obviously needed to support multiple applications printing simultaneously
under MultiFinder. The other feature provided by the flag is the loading of
PDEFs into the system heap rather than the application heap (which is where
they go under the Finder).

The MultiFinder-compatible bit has a major limitation: if your driver has this
flag set, you aren’t allowed to add or resize resources, or do anything else that
would cause the RAM-resident resource map to change. Although MultiFinder
lets multiple applications open the printer resource file at the same time, it has
no control over the resource map that gets loaded by the Resource Manager
when the file is opened. Because of this, each client gets its own personal copy
of the resource map. When these clients get done with the file, they write the
resource map back to the file (via UpdateResFile). Obviously, if the resources
have changed in any way, the last client to call UpdateResFile is the only one
whose changes will be recorded. This is a “thrill seeker” method of handling the
printer driver resource files, but since none of the Apple printer drivers
currently add or resize resources, it made sense.

So the bottom line here is that if you want your drivers to be compatible under
MultiFinder, you’ll have to implement a scheme that doesn’t require adding or
resizing resources. It’s OK to change the data in a resource, as long as you don’t
change its size. Changing the data won’t cause changes to the resource map, so
each client will still have accurate copies of the map.

Here’s what would happen to your printer driver’s resources under the Finder
and MultiFinder when the MultiFinder-compatible bit is set:

• Under the Finder in system software version 6.0.x: All resources are loaded
into the application heap — regardless of the resource attribute’s bit setting.
If the resource has the “load into the system heap” bit set, it will still be
loaded into the application heap under the Finder. This makes sense in the
Finder world because the application heap will usually have more room than
the system heap.

• Under MultiFinder in System 6 or System 7: All the printer driver’s
resources will be loaded into the system heap. This is true whether the “load
into the system heap” bit is set or not.

d e v e l o p March 1993

108

Why does the resource loading occur this way, even when the resource’s “load
into the system heap” bit is set? Patches to the GetResource trap load all your
printer driver’s resources into the system heap when the MultiFinder-
compatible bit is set under MultiFinder, and into the application heap under the
Finder (as described above), which is why you can’t override this behavior.

By the way, you should be aware of the SetPDiMC MPW tool, which is
available on the Developer CD Series disc. It will automatically set the
MultiFinder-compatible bit for you when you build your printer driver.

Q If I call FSWrite and attempt to write more than space allows, what happens? Of course
I get a Disk Full error, but does FSWrite write as much as possible before quitting, and
then return the number of bytes written in the count parameter?

A In the current implementation of the file system, writes to local volumes owned
by the file system are an all-or-nothing deal. If the space for a write can’t be
allocated, the write call fails and no bytes are written.

However, do not depend on that, because the Macintosh file system doesn’t
control all volumes that might be mounted. Today, Apple ships four external file
systems: CD-ROM, AppleShare, ProDOS File System (for Apple II ProDOS
volumes), and PC Exchange (for MS-DOS volumes). Various third parties have
written other external file systems. The way they react to error conditions may
not be the same as local volumes controlled entirely by the file system.

To make your application always work correctly, you should check for errors
and handle them appropriately. If you get a dskFulErr, you should assume that if
any information was written to the file, it wasn’t written correctly. You should
either reset the file’s EOF to its previous position (if you’re appending to an
existing file) or delete the file (if you had just created the file and were writing
to it for the first time).

Q How can I mount a volume without using aliases? I get the mounting information,
then attempt to mount the volume. However, the PBVolumeMount call returns an
error code.

A The PBGetVolMountInfo, PBGetVolMountInfoSize, and PBVolumeMount
functions are currently handled by only the AppleShare external file system
(part of the AppleShare Chooser extension). Those functions are available on
AppleShare volumes when the AppleShare Chooser extension is version 7.0
(system software versions 7.0 and 7.0.1), version 3.0 (AppleShare 3.0), or version
7.1 (System 7.1). The AppleShare Chooser extension version 3.0 can be
installed on System 6 systems, and then the PBGetVolMountInfo,
PBGetVolMountInfoSize, and PBVolumeMount functions can be used in

MACINTOSH Q & A March 1993

109

System 6. Other file systems may support these functions in the future. The
paramErr error code is returned when these functions aren’t available on a
particular volume.

Q I need to prevent users from copying my application off a volume. Is there a new
equivalent of the old Bozo bit?

A The Bozo or NoCopy bit was bit 11 in the fdFlags word of the FInfo record. As
noted in the Macintosh Technical Note “Finder Flags” (formerly #40), this bit
hasn’t been used for that purpose since System 5. In fact, System 7 reused bit 11
for the isStationery bit. (See Inside Macintosh Volume VI, pages 9-36 and 9-37,
for the current list of Finder flag bits.)

There isn’t an equivalent of the Bozo bit. However, the System 7 Finder won’t
copy files that have the copy-protect bit (bit 6) set in the ioFlAttrib field
returned by the PBGetCatInfo function. However, the bits in the ioFlAttrib
field can’t be changed with the PBSetCatInfo function. Instead, they’re used to
report the state of things set by other parts of the file system.

The copy-protect bit is set by the AppleShare external file system when it finds
that a file’s copy-protect bit is returned by an AppleTalk Filing Protocol file
server. The AppleShare external file system is the only file system we know of
that sets the copy-protect bit. There’s no way to make the local file system set
the copy-protect bit for volumes it controls.

Q Are there any tricks that might speed up reading and writing large files to disk? We’re
using standard C calls (fread and fwrite) for this purpose since our file I/O calls need to
be platform-independent. Are there any low-level File Manager calls that might speed
up the file I/O?

A The C fread and fwrite functions are slower than File Manager calls because the
standard C library adds another layer of overhead to file I/O. In addition, unless
you turn buffering off, all file I/O is double-buffered when you use the standard
C library functions. That is, fread reads from a RAM buffer in which the lower-
level C library code has buffered data read from a disk file; fwrite writes data
into a RAM buffer and the lower-level C library code writes from that buffer
into a disk file.

For the highest file I/O throughput, and for maximum flexibility and
functionality on the Macintosh, you should use the File Manager for all file
access. The low-level File Manager calls (the PBxxx or PBHxxx calls) have the
least overhead and give you the most control. If you use the File Manager’s
Read (FSRead or PBRead) and Write (FSWrite or PBWrite) calls, you’ll achieve
maximum throughput by reading or writing your data in the largest size

d e v e l o p March 1993

110

possible (for example, if you need to write 10,000 bytes, you can write them
with one Write call).

If you must use the standard C library, you may want to adjust the size of the
file I/O buffer used by the library for your particular purposes. You can adjust
the size of the file I/O buffer using MPW C’s setvbuf function. If you do
nothing, you’ll get a default buffer with a size of 1024 (1K).

MPW C’s setvbuf size parameter is treated internally as an unsigned short. This
means that the largest value acceptable to setvbuf for its size parameter is 65535.
Larger values will be treated modulo this number. If you set the buffer size to 0,
I/O is unbuffered. You can turn off buffering like this:

setbuf(stream, NULL); // turn off buffering

or like this:

setvbuf(stream, NULL, _IONBF, 0); // turn off buffering

Here are some general rules to follow to determine the size of the file I/O
buffer you should use:

• If the file is small (less than 10K), you should probably use the default buffer.

• If the file is large (greater than 10K) but you write to it from your program
in small pieces, buffering may help cut down the number of disk accesses.
You may want to change the buffer size to around 10K. You can experiment
to see whether other values provide better results for you. You’ll probably
find some point where the overhead of double-buffering is more than the
overhead of disk accesses — that’s when you should turn buffering off.

• If the file is large (greater than 10K) and you write to it in large pieces or
write to it with one Write call, you should turn buffering off.

Q If you were omnipotent and you had a round knob that controls the value of π, what
would happen to the knob as you turned it?

A Although unsure, we believe that the number of fingers on your hand would
change.

Q I’m porting C code from a UNIX® platform to the Macintosh. The code uses stdlib and
stdio calls such as calloc, realloc, malloc, free, memcmp, memcpy, memset, strtod, strcat,
strchr, strcpy, strlen, strncat, strncpy, strrchr, fopen, fclose, fwrite, and fread. For the
most part, I’ve always avoided these calls on the Macintosh since the Toolbox has
equivalents. However, I’d like to know whether there are any ramifications if I use these

MACINTOSH Q & A March 1993

111

calls for porting compatibility. The only issues I can identify are (1) StdCLib.o, which
defines these calls, uses globals and therefore will prevent me from using the code in
standalone code segments, and (2) I’ll lose some file information such as type and creator.
Are there any other issues that I should be aware of?

A There are various difficulties or “gotchas” associated with use of these calls on
the Macintosh, which generally keep them from being used in commercial
development. However, being able to cross-compile code is very useful, so
people like to use the calls for portability reasons despite their drawbacks.

The memory allocation calls (such as malloc, calloc, and realloc) all allocate
pointer-based blocks. This works but can cause memory fragmentation and
inefficient usage compared to the handle-based system usually used on the
Macintosh. Also, MPW’s implementation of these calls doesn’t return memory
to the Macintosh pool; when you allocate a block with malloc, the routine gets a
larger block from the Macintosh with NewPtr, which it then subdivides into
several smaller blocks to satisfy allocation requests. However, if the program
then frees all the allocations made from this Macintosh pointer block, the
library routine won’t notice and dispose of it. Although the memory remains
available for reuse by the standard C allocation routines, it has been lost to the
Macintosh. For details, see the Q&A about using calloc and NewPtr in the same
program in develop Issue 12 and the Macintosh Technical Note “A/UX Q&As.”

The file manipulation calls suffer somewhat merely because they don’t fit well
into the Macintosh file system. For example, if you want to select files with the
Macintosh StandardGet dialog, you’ll find that fopen doesn’t accept the volume
reference or directory ID returned; it accepts a pathname, making it difficult to
specify files in various folders. Also, as you noted, you have no control over
types or creators; you also can’t easily associate resource forks with data forks or
use a number of the more expressive Macintosh file system calls.

You can use all of the string-manipulation calls (such as strcpy and strlen) and
simple memory-access calls (such as memcpy and memcmp) with impunity;
fortunately, bytes is bytes. Note, however, that a large number of seemingly
innocuous calls (such as atoi and many others) use globals, making them
inappropriate for use in cases where globals wouldn’t be available, such as in
code resources.

Basically, the standard C calls do work but suffer from faults, primarily because
they’ve been kind of wedged into a system in which they don’t fit. While most
are functional and compatible enough to be used in software safely, be aware of
their drawbacks and limitations; the basic decision is whether you can provide
the functionality you need with these calls and whether the extra work required
to deal with them is more or less than the effort saved by avoiding wholesale
modifications to the source being ported.

d e v e l o p March 1993

112

Q How can I detect whether a font suitcase is corrupted when it’s opened and whether any
of the fonts in it are corrupted before any of the fonts are used? I know that the Finder
is able to do this, and I was wondering whether Apple gives out this information. My
program will run only under System 7, if that helps.

A The Finder and font architecture on the Macintosh are living things; the
definition of what is and isn’t a damaged suitcase can change from release to
release of system software. However, any of the following conditions makes
System 7 report the suitcase as “damaged”:

• More than eight FONDs reference the same font.

• The Finder can’t create a new standalone icon object for each font in the
suitcase. The usual cause of this is that two FONDs have the same name for
the first 31 characters, and the Finder thinks there’s already an icon in that
window with the same name. (Two icons in the same directory with the same
name is a sign of damage.)

• There isn’t at least one font association table entry, or the table goes past the
logical end of the resource.

• The first resource name in the map is zero-length. (This is a test for some
older third-party corrupted suitcases.)

• The FOND has no name.

• The FOND doesn’t have a valid character range; ffFirstChar has to be less
than ffLastChar, unless it’s a “dummy” FOND (created on the fly for old
standalone FONTs, in which case ffLastChar is 0).

• All the font association table entries aren’t in ascending point size order.

• Two font association table entries reference exactly the same point size and
style.

• The offsets to the width table, kerning table, and style mapping table are
invalid and nonzero.

• The font ID is 0 and it’s not the system font.

We can’t promise that this list is complete, but it does contain most conditions
for which the Finder would report a suitcase as damaged.

Q We’d like to maintain only one version of our globally distributed application, which
would adapt to the language in use by changing DITL resource text items and menu
titles and items. Does the Macintosh Operating System support this?

A Currently the Macintosh Operating System doesn’t inherently support localized
resources for several languages, or choose the right language according to the

MACINTOSH Q & A March 1993

113

localized version of the system. However, your approach of including all
localized text items in the same application is absolutely feasible. Just include an
option to let the user select the language — somewhere in Preferences, if not in
a dedicated “Languages” menu — and design a numbering scheme for the
resource IDs such that the resources to be loaded can be determined from the
language code.

It’s better to let the user choose the language, rather than derive it from the
system. This provides for a choice in case the user lives in a multilingual region,
or in case your application doesn’t include translations for the language of the
user’s system.

Because menus, windows, and dialogs are displayed with the system font, this
approach works only for languages supported by the system script.

Q My installer creates a folder on a user’s hard disk and copies the necessary files into it.
My final action atom moves the folder onto the desktop and sets its size and location. I’d
also like to be able to open the folder. I call PBGetCatInfoSync to get the data into a
CInfoPBRec record. W here is the state of a folder (open/closed) stored, and can I set one
of the parameters in the CInfoPBRec and then call PBSetCatInfoSync to solidify the
change? Using the installer to copy an open folder to the user’s drive is unacceptable
because of the size and nature of the program I’m installing.

A There’s no solution for System 6; the Finder data structures are private, and
there’s no call to open a folder. In System 7, you can send the Finder an Open
Selection Apple event. This is described in a HyperCard stack called
FinderEvents on the Developer CD Series disc. The stack also contains the source
code for the XCMD used to demonstrate the Finder events. There’s another
sample that you should see as well: SendFinderOpen in the Snippets folder.

Q We’re having problems with color patterns using the LaserWriter driver version 7.1.2.
If we create a 'ppat' resource in ResEdit (32 x 32 bits, in this case) and then do a
FillCRect to the port returned by PrOpenDoc (with color set so that it’s a cGrafPort)
with the pattern loaded by GetPixPat, we get a weird pattern. Doing the same to an
off-screen GWorld and using CopyBits to copy to the printer port works fine, if a little
slowly. Are we missing something here?

A You need to use the FillCRect call off-screen rather than directly into the
printer port, for at least two reasons. First, the LaserWriter driver doesn’t
support filling objects with anything but black-and-white patterns because it
uses the PostScript halftone screen functions to draw patterns. Second, the
LaserWriter driver doesn’t understand (or handle) pixPats. Therefore, your only
recourse is the one you discovered — to copy to and from GWorlds.

d e v e l o p March 1993

114

Unfortunately, FillCRect doesn’t work with the LaserWriter drivers through
version 7.2. After version 7.2 this probably won’t be a problem.

Q Do NumToString and StringToNum work correctly regardless of the script chosen as
the system script? W hen I attempt to use SANE to convert non-Roman digits from a
dialog box editText item, SANE doesn’t seem to like it.

A SANE expects all digits to be in the range ASCII $30–$39, with $2D as a
negative indicator. These ASCII values can be generated from any international
script by using the Macintosh numeric keypad. The symbols 0 through 9 are
internationally recognized as numeric values.

There are many additional ways to represent numbers on the Macintosh,
including words (one, two, uno, dos), notations (dozen, hundred, million),
ordinals (first, second, third), Roman numerals (I, II, III), symbols (π, e, i), and
hexadecimal ($FF). Many languages have alternative numbering systems and
special characters that represent numbers. In Symbol and double-byte fonts,
there are special characters representing fractions (1/2, 1/4), superscripts,
subscripts, numbers within circles, and so on.

While it would be nice to have routines that convert between ASCII numbers
and alternatives such as longhand numbers (used when writing checks), Roman
numerals (used for copyright year in movie credits), or local number systems
(for formal documents), no such routines exist in the Macintosh Toolbox today.
It would be possible but difficult for an application to custom-process numbers
for each language and script. The Unicode Standard Reference, Volume 1, lists
hundreds of different kinds of numbers — and they’re not all base 10.

Scripts that have alternative number character sets always support the universal
single-byte ASCII digits as well. When a script has alternative numeric
characters, the user generally types script-dependent numeric characters from
the top row of the keyboard and the single-byte ASCII digits from the numeric
keypad.

Although it doesn’t translate the digits themselves, the Script Manager offers
support for formatting a number into a local form. For example, Europeans
often use a comma as a decimal point and a period as a thousands marker. Most
countries have unique currency symbols. There are many different ways to
represent numerical values for things such as date, time, and money. This kind
of formatting information is in the international resources.

One way to do data validation is to use CharType and check for numeric
characters. We can’t guarantee that this has been implemented for all scripts,
but it is correct for Roman and Japanese.

MACINTOSH Q & A March 1993

115

NumToString and StringToNum don’t deal with international formats. Use the
Script Manager routines Str2Format and Format2Str to get the text into a
numerical form that SANE can deal with. See Inside Macintosh Volume VI, page
14-49, for details.

Q I’m attempting to determine whether a debugger is installed, and if so, to find a THz
pointer to its heap zone. Is this possible?

A The MacsBug debugger is loaded into high memory above the value found in
the global variable BufPtr ($10C). Since it’s loaded into the memory that’s not
managed by the Memory Manager, it’s not in a heap. The global variable
MacJmp ($120) points to the debugger’s entry point.

There’s also a flags byte in low memory that contains the following information:

Bit 7 Set if debugger is running.

Bit 6 Set if debugger can handle system errors.

Bit 5 Set if debugger is installed.

Bit 4 Set if debugger can support the Discipline utility.

The flags byte may be in one of two places: the high-order byte of the long
word at MacJmp, or the address $BFF. When MacsBug is loaded, it examines
the value at address $BFF. If the value at $BFF is $FF, the system is using the
24-bit Memory Manager and the flags byte will be the high-order byte of the
long word at MacJmp. If the value at $BFF isn’t $FF, the system is using the
32-bit Memory Manager and the flags byte will be at address $BFF.

For information on debuggers other than MacsBug, you’ll need to contact the
publishers of those products.

Q We need to localize our application for several international markets. Do you have any
special tools or recommendations for us?

A You can use a System 7.1 tool called AppleGlot (on the Developer CD Series disc)
to localize text in your application. Once a file has been localized the first time,
the tool can compare versions and copy over everything that has stayed the
same (usually 99%) so that it can focus on the text that’s different. It also creates
a nice audit trail and is pretty easy to use. It should save you a lot of time.

To take full advantage of this tool, you need common code for all localized
versions, which is what you’re planning to do to avoid the mess of having
multiple sources. Occasionally, your application might have features that make
sense only on a particular script system; in that case, you can check for that

d e v e l o p March 1993

116

configuration and enable those routines when appropriate. Once you have
common source and tools that help localize your application, you can add
auxiliary resources for various languages.

If you have only a small amount of text in your application, it makes sense to
bundle everything together in one worldwide product. Apple’s TrueType fonts,
for example, have internal name tables with names and information such as
copyright strings in about a dozen languages. Each string is tagged with a
platform, script, and language. But if you have a fair amount of textual
resources, it might make more sense to have optional files and resources that
can be installed as needed.

Unless you intend to support every script and language, you’ll probably want to
have a set of resources for unavailable languages. You can pick whatever
language you want for this other set (English is popular), but the trick is to use
only 7-bit ASCII characters. All script systems use the same character codes for
the range $00–$7F, which match ASCII. It’s the 8-bit characters that differ
radically. This means that text that includes characters like …, ™, ©, and • will
not display properly on non-Roman script systems. Just substitute text such as
. . ., tm, (c), and * for them. You can decide what’s appropriate and necessary.

Another thing to consider is checking for and supporting secondary script
systems in your application. The Macintosh Toolbox doesn’t fully support
secondary scripts such as Japanese menus on an English system, but your
application can support secondary script data even with the current Toolbox
limitations, by using styled text commands.

Q We would like to use the “dogcow” icon in our Page Setup dialog. Is the dogcow
trademarked, and are there any restrictions on using this icon in our software?

A Yes, the dogcow logo (along with its call, “Moof!”) is a trademark of Apple and
is proprietary. The dogcow appears on Apple’s Developer CD Series disc and in
other material. Apple has a pending U.S. registration on it. Accordingly, it’s not
available to third-party developers as an icon or file symbol.

Q W here in the world does the dogcow come from?

A Some people say that the dogcow hails from the sunny shores of the Middle of
Nowhere. This location in the south Atlantic can be found in the Map control
panel; simply type “Middle of Nowhere” and click Find. (For a small fee, these
same people will tell you where they last saw Elvis.)

MACINTOSH Q & A March 1993

117
Have more questions? Need more answers?
Take a look at the Q&A Technical Notes on the
Developer CD Series disc and the Dev Tech
Answers library on AppleLink.•

After answering a question they tantalizingly left hanging in Issue 12
of develop, Konstantin Othmer (KON) and Bruce Leak (BAL) go on
to present yet another programming puzzle in the form of a dialog
between them. The dialog gives clues to help you. Keep guessing until
you’re done; your score is the number to the left of the clue that gave
you the correct answer. These problems are supposed to be tough. If you
don’t get a high score, at least you’ll learn interesting Macintosh trivia.

KON So have you figured out what’s the fewest keystrokes needed to do an
ExitToShell from MicroBug?

BAL Aren’t you at least going to say “Good morning”?

KON Good morning, BAL. Well . . .?

BAL Well, you can do it by calling through the trap table, or by doing an
SM PC A9F4 and then G.

KON Good idea, but that definitely won’t work if you’re in ROM, and it
could really hose you if you’re somewhere in the system and you
modify RAM-based system code.

BAL How about if you jump to the bus error vector by doing a PC=@8, and
then G?

KON MicroBug, not MacsBug! It can’t do indirection. What do you think
the “Micro” stands for?

BAL Fine. Manually set the PC to the address at 8.

KON Four keystrokes for the DM 8, eight keystrokes for the PC=XXXXX,
and another one for the G. I’m not even counting all the return
characters. But it works great.

BAL OK, OK. PC=-1, G. That will cause a bus error and MultiFinder will
deal with it as long as MultiFinder is in a reasonable state at the time.

d e v e l o p March 1993

KONSTANTIN OTHMER AND BRUCE LEAK
After cashing in on their develop incentive points
from the highly acclaimed Puzzle Page, KON
and BAL have diversified their interests from
programming and publishing to predicting the
stock market. Although their attempts to corner
the DRAM market backfired, they still have high
hopes. KON says, “I can’t believe we didn’t do
this before — talking to our brokers while we’re

programming.” BAL adds, “Yeah. True
multitasking, and we don’t even need a
preemptive, multithreaded OS.”•

118

KON & BAL’S

PUZZLE PAGE

BOOTING BLUES

KONSTANTIN OTHMER
AND BRUCE LEAK

KON Come on BAL, that’s six keystrokes. You can do better than that.

BAL OK. G -1 does the same thing in four keystrokes. Beat that!

KON Not bad — but I can crash that machine in three keystrokes. G -1 is
the best you can do for a bus error, but you can get an address error in
three strokes: G 1.

100 BAL Fine. If you think you’re so smart, figure this next one out: We got our
QuickTime 1.5 test disc back and I decided to try it out on System 6. I
took a Macintosh si we used for development and downgraded it from
System 7 to system software version 6.0.7. After I installed QuickTime
1.5 from our test disc, the machine crashed at boot time.

KON You crashed while QuickTime was loading, right?

BAL Your puzzle, KON.

KON Hmmm. So I reboot with the Control key down to get into MacsBug.
Then I do a

atb HOpenResFile ';dm @(sp+2); g

and see what was the last resource file that was opened. That way I can
find who’s causing the crash.

BAL System 6, future boy.

KON OK, so I use

atb OpenResFile ';dm @sp; g

90 BAL Surprise, surprise — it’s QuickTime. You could have just used the File
dcmd after you crashed and noticed that the QuickTime file was still
open.

KON So you have some other INIT in there that’s got a conflict with
QuickTime 1.5. Boot with the Shift key held down and throw out
everything else.

BAL Take a hike. This is System 6. Your brain’s gone soft.

KON Well, just use the skipInits macro.

80 BAL Sorry, I don’t have that one.

KON D’oh! [Watch The Simpsons for correct pronunciation.] So I skip over
all the INITs by making them fail using

atb GetIndResource @(sp+2) = 'INIT' ';sp=sp+6; @sp.l=0;
pc=pc+2; g

KON & BAL’S PUZZLE PAGE March 1993

119

BAL Wow! How’d you whip that one up?

KON I just checked out page 326 of that excellent book, Debugging
Macintosh Software with MacsBug. You know, it tells you all about how
INITs work in both System 6 and System 7, it even . . .

75 BAL Yeah, yeah, yeah. More shameless self-promotion. I have the Dimmer
and Programmer’s Key INITs, Apple CD-ROM stuff, AppleShare, and
QuickTime, of course.

KON So throw all those INITs out of there except QuickTime, and go buy
Delta Tao’s WonderPrint since you need it anyway.

70 BAL You still crash, same time, same place, same channel.

KON Try it without QuickTime. Maybe System 6 didn’t get installed
correctly.

65 BAL Boots fine.

KON So either this copy of the INIT is bad or QuickTime 1.5 is lame under
System 6. Try the INIT somewhere else.

60 BAL I have a System 6 LC and a System 7 si, and that copy works fine on
both, especially the new compact video compressor. Totally awesome.
I can’t believe we give it away for free. Windows: $99; QuickTime:
free. Go figure.

KON So what’s the difference between the two si’s, other than one is running
System 7? Does either have that FPU-NuBus slot adapter?

55 BAL No slot adapter. Both have 4 megs.

KON Same video mode? Both booting in 24-bit mode?

50 BAL Good question, but the System 7 version works fine in 24-bit mode,
and the monitor depths are the same.

KON So maybe there’s some kind of boot block problem, or some other
conflict arising since the machine was downgraded. Convert the other
si to System 6 and try it.

45 BAL OK, works fine.

KON So what you’re telling me is you take two si’s, install System 6 on both
from the same disks, neither has any external hardware or INITs, and
when you install QuickTime, one crashes and the other doesn’t.

BAL Your puzzle, KON.

KON Same system, same INITs, same hardware — there must be some state
that’s different. Something is funny about PRAM: the addressing
mode, disk cache size, sound volume, default video mode, network
settings, mouse speed. One of those things must be hosing us.

d e v e l o p March 1993

SCORING
75–100 Yeah, right. You still have that bridge for sale?
50–70 QuickTime team members and their immediate family are not eligible.
25–45 Better than KON! Write a develop article.
10–20 You win! Honest people like you are rare these days!•

120

40 BAL Well, which ones do you want me to change? I don’t have all day.

KON Put them all back to their default state with Command-Option-RP
(Reset Pram) at boot time.

35 BAL Fine. I do that. While booting it reboots, letting you know it cleared
PRAM. Then one crashes and the other one doesn’t.

KON I swap hard disks.

30 BAL The crash follows the hard disk.

KON So maybe there’s something funny going on with MacsBug. Are the
versions the same?

25 BAL The versions are the same, but one is black text on white and the other
is blue text on black.

KON I get it. Just pull MacsBug out.

20 BAL Boots fine. OK. So what’s the answer?

KON There’s something going on with Debugger Prefs.

15 BAL How could they affect things at boot time?

KON The FirstTime macro or the EveryTime macro.

10 BAL I don’t have either.

KON Dcmds get an initialization call and one of them is hosing the system.
It’s probably not System 6 friendly.

BAL OK. So how do you figure out which one is causing the problem?

KON Keep taking them out half at a time until you find the problem, or just
look for the skanky ones Darin wrote.

BAL Yeah, there was a dcmd in Debugger Prefs that was used for debugging
System 7 patches. QuickTime uses the same loading mechanism as
some of the System 7 patches, and this dcmd overrides the loading
mechanism for debugging purposes. So the dcmd assumed a System 7
runtime environment, which turned out to be a bad assumption.

KON Nasty.

BAL Yeah.

KON & BAL’S PUZZLE PAGE March 1993

121
Thanks to Gary Davidian and scott douglass for
reviewing this column.•

A
ActivatePalette 91
“Adventures in Color Printing”

(Hersey) 64–90
Alexander, Pete (“Luke”) 52
aliases, Macintosh Q & A

109–110
Angus User Area, QuickTime and

38, 39
application heap, asynchronous

routines and 29–30
'Asm ' resources, QuickTime and

37, 38, 39
assembly language, debugging and

58–59
asynchronous routines 5–30
“Asynchronous Routines on the

Macintosh” (Luther) 5–30
A-traps, QuickTime and 34–51

B
banding, color printing and

73–76
BeginUpdate, DeviceLoop and

99, 100
black and white

color printing and 82–85
palettes and 93–96

Blat, debugging and 58–59
booting, KON & BAL puzzle

118–121
bottlenecks, QuickTime and

45–51
Boyd, Scott 10

C
C, Macintosh Q & A 110–112
call chaining, asynchronous

routines and 18
cGrafPorts, color printing and

64–90
Chooser, QuickDraw GX and 53
'clok' component, QuickTime and

45

CloseResFile, debugging and 55
Color Adventures sample, color

printing and 69
Color ImageWriter Adventures

sample, color printing and 77,
78, 81

color patterns, Macintosh Q & A
114–115

color printing 64–90
Color QuickDraw

color printing and 64–90
DeviceLoop and 99
palettes and 92

color tables
color printing and 75
palettes and 91–96

completion routines,
asynchronous routines and 6,
10–15, 29

component bottlenecks,
QuickTime and 47–51

Component Manager, QuickTime
and 34–51

components, QuickTime and
34–51

CopyBits
color printing and 67, 68,

74, 76–77, 79
Macintosh Q & A 114–115

copying files, Macintosh Q & A
110

custom dialogs, QuickTime and
32

CustomGetFilePreview,
QuickTime and 32, 41, 45

D
DAs, Macintosh Q & A 104
data reference limitations,

QuickTime and 31
“Deadlock” (Sheridan) 7
Debugger routine

asynchronous routines and
25

QuickTime and 45

d e v e l o p March 1993

For a cumulative index to all issues of
develop, see the Developer CD Series
disc.•

122

INDEX

debuggers
asynchronous routines and

25
Macintosh Q & A 116

debugging 54–60
asynchronous routines and

25–26
KON & BAL puzzle

118–121
QuickTime and 34–51

debugit, QuickTime and 37, 38
DebugStr, asynchronous routines

and 25
Deferred Task Manager,

asynchronous routines and 6
delay time, Macintosh Q & A

105–106
DelegateComponentCall,

QuickTime and 49, 50
Dequeue, asynchronous routines

and 15, 18
desk accessories (DAs), Macintosh

Q & A 104
DeviceLoop 97–103
DeviceLoopInDrag, DeviceLoop

and 100
“DeviceLoop Meets the Interface

Designer” (Powers) 97–103
Device Manager

asynchronous routines and
7, 11, 12–15

Macintosh Q & A 104
DisposeHandle, debugging and

55, 56–58
Dispose Resource, debugging and

57–58
ditherCopy method, color printing

and 82
dithering, color printing and

82–85
DITL resource, Macintosh Q & A

113–114
DoPPCInform, asynchronous

routines and 12, 21, 23
DoPrint, color printing and 89

Double Trouble, debugging and
55–57

Draw, DeviceLoop and 102
DrawPicture

color printing and 73, 76,
78, 80

QuickTime and 46
DrawProc, DeviceLoop and 99,

100
drivers

color printing and 64–90
Macintosh Q & A 104

dynamic state, QuickTime and
43–45

E
elapsed times, Macintosh Q & A

105–106
EndComplete, asynchronous

routines and 21, 23, 24
EndUpdate, DeviceLoop and 99,

100
Enqueue, asynchronous routines

and 15, 18
ExitMovies, QuickTime and

31–32
extended parameter blocks,

asynchronous routines and
18–20, 25–26, 28–29

F
file I/O, Macintosh Q & A

110–111
File Manager

asynchronous routines and
6, 7, 11, 12–15

Macintosh Q & A 104,
110–111

filenames, Macintosh Q & A 104
FillCRect, Macintosh Q & A

114–115
Final Adventure sample, color

printing and 70, 89

Finder
DeviceLoop and 97
Macintosh Q & A 113

FindNextComponent, QuickTime
and 42–43

fonts, Macintosh Q & A 113
font suitcases, Macintosh Q & A

113
ForeColor, color printing and 76
FrameOval, palettes and 91–92
FSWrite, Macintosh Q & A 109
“Function Results and Function

Completion” (Boyd and
Luther) 10

G
GDevices, color printing and

66–67, 74
Get1IndResource, QuickTime and

41, 42
Get1Resource, QuickTime and

41, 42
Get1xResource, QuickTime and

41
GetA0, debugging and 59
GetBestDPI, color printing and

70
GetCompressedPixMapInfo,

QuickTime and 46
GetCTable, color printing and 77
GetImageRes, color printing and

69
GetMovieNextInterestingTime,

QuickTime and 31
GetNewWindow, QuickTime and

42
GetPBPtr, asynchronous routines

and 13
GetPixPat, Macintosh Q & A

114–115
GetResource, QuickTime and 41,

42, 43
GetRslData, color printing and

69–70

INDEX March 1993

123

grafPort bottlenecks, QuickTime
and 46

grafPorts, color printing and
64–90

“Graphical Truffles” (Lee and
Tanaka) 91–96

Guschwan, Bill 34
GWorlds, color printing and 69,

73–77, 78, 79

H
Halftone Adventures sample, color

printing and 82, 83, 84
halftoning, color printing and

82–85
HandlePPCErrors, asynchronous

routines and 21, 24
hardware devices, QuickTime and

33
heap zone, Macintosh Q & A 116
Hersey, Dave 64
Huxham, Fred 54

I
Image Compression Manager,

QuickTime and 35
Incompatibility Test, color

printing and 73
InformComplete, asynchronous

routines and 21–22
INITs, Macintosh Q & A 104
InitZone, debugging and 57
“Inside QuickTime and

Component-Based Managers”
(Guschwan) 34–51

installers, Macintosh Q & A 114
interface design, DeviceLoop and

97–103
internal routines, QuickTime and

39–43
interrupt handlers, asynchronous

routines and 6
interrupt time, asynchronous

routines and 6, 27–28

J
Johnson, Dave 61

K
“KON & BAL’s Puzzle Page”

(Othmer and Leak) 118–121

L
language, Johnson ponders 61–63
LaserWriter driver

color printing and 75
QuickDraw GX and 52–53

LaserWriter driver 7.1.2,
Macintosh Q & A 114–115

LaserWriter Font Utility,
QuickDraw GX and 52, 53

lazy person’s halftone method,
color printing and 83–85

Leak, Bruce 118
Lee, Edgar 91
List Manager, DeviceLoop and

97
localization, Macintosh Q & A

113–114, 116–117
Luther, Jim 5, 10

M
MacApp, Johnson ponders 61–63
“Macintosh Debugging: The Belly

of the Beast Revisited”
(Huxham and Marriott) 54–60

Macintosh Q & A 104–117
MacsBug

KON & BAL puzzle
118–121

QuickTime and 34–51
Marriott, Greg 54
matrix routines, QuickTime and

35
MaxApplZone, QuickTime and

33
memory

debugging and 58
Macintosh Q & A 104

Memory Manager, debugging and
55, 56, 57–58

MicroBug, KON & BAL puzzle
118–121

MMU, debugging and 58, 59
'moov' resource, QuickTime and

41, 42
mounting volumes, Macintosh

Q & A 109–110
movie controller, QuickTime and

33
MoviePlayer, QuickTime and 41,

45, 50
movies

debugging and 57
Macintosh Q & A 107
QuickTime and 31–33

Movie Toolbox, QuickTime and
32, 35, 41, 45

MPW C, debugging and 59
multiple monitors, DeviceLoop

and 97–103
'mxbm' resources, QuickTime and

37, 38, 39

N
natural languages, Johnson

ponders 61–63
NewMovie, QuickTime and 42
NewMovieFromDataFork,

QuickTime and 42
NewMovieFromFile, QuickTime

and 41, 42, 43, 45
NewMovieFromHandle,

QuickTime and 42
NewMovieFromScrap,

QuickTime and 42
NewTimeBase, QuickTime and

45
NewWindow, QuickTime and 42
NuMathComponent, QuickTime

and 48–49
NumToString, Macintosh Q & A

115–116

d e v e l o p March 1993

124

O
off-screen GWorlds, Macintosh

Q & A 114–115
OffsetRect, debugging and 58
“one size fits all” approach, color

printing and 65–66
Open, Macintosh Q & A 104
OpenComponent, QuickTime and

43
OpenCPicture, color printing and

69, 78, 80
OpenDefaultComponent,

QuickTime and 43
OpenPicture, color printing and

78
operating system queues,

asynchronous routines and
15–18

Othmer, Konstantin 118

P
Palette Manager 91–96
palettes 91–96
'PAPA' resource, QuickDraw GX

and 52–53
PBGetCatInfo, Macintosh Q & A

105
PBGetCatInfoSync, Macintosh

Q & A 114
PBHOpen, asynchronous routines

and 6
PBSetCatInfoSync, Macintosh

Q & A 114
PBVolumeMount, Macintosh

Q & A 109–110
PDEF resource, QuickDraw GX

and 52–53
PICT resources, DeviceLoop and

99, 102
PICTs, color printing and 69, 73,

80, 81
pictures, Macintosh Q & A 106
Picture Utilities Package,

QuickTime and 46

pixMaps
color printing and 64–90
Macintosh Q & A 106

'pltt' resource, palettes and 91–92
pmAnimated, palettes and 93
PmBackColor, palettes and 91, 93
pmCourteous, palettes and 91–92
pmExplicit, palettes and 93, 94,

95
PmForeColor, palettes and 91,

92, 93
pmTolerant, palettes and 92–93,

94
PollForCompletion, asynchronous

routines and 8, 9
polling, asynchronous routines and

8–10, 29–30
PostScript, QuickDraw GX and

52
PostScriptHandleDemo snippet,

QuickDraw GX and 52
'ppat' resource, Macintosh Q & A

114–115
PPCClose, asynchronous routines

and 20
PPCEnd, asynchronous routines

and 23, 24
PPCInform, asynchronous

routines and 5, 8, 9, 11, 12,
20, 21–22, 23

PPCRead, asynchronous routines
and 20, 21–22, 24

PPC Toolbox, asynchronous
routines and 5, 7, 11–12, 13,
20

PPCWrite, asynchronous routines
and 24

PrCloseDoc, color printing and
87

PreCompletion, asynchronous
routines and 14

prerolling a movie, QuickTime
and 32

PrGeneral, color printing and
69–70, 71, 74, 80

printer access protocol (PAP),
QuickDraw GX and 52, 53

printer drivers, color printing and
64–90

“Print Hints” (Alexander) 52–53
printing, color printing 64–90
Printing Manager

color printing and 67
QuickDraw GX and 52, 53

PrJobDialog, color printing and
87

ProcessPPCData, asynchronous
routines and 21, 23

programming languages, Johnson
ponders 61–63

PrOpen, color printing and 86–87
PrOpenDoc

color printing and 67, 86,
87

Macintosh Q & A 114–115
PrPicFile, color printing and 87
Puzzle Page 118–121

Q
Q & A, Macintosh 104–117
QuickDraw

palettes and 93
QuickTime and 45, 46

QuickDraw GX, print hint 52–53
QuickTime 31–33, 34–51

debugging and 57
KON & BAL puzzle

118–121
Macintosh Q & A 107

R
race conditions, asynchronous

routines and 16
ReadComplete, asynchronous

routines and 21–22
ReleaseResource, debugging and

57–58
ResEdit

Macintosh Q & A 114–115
palettes and 92

INDEX March 1993

125

resolution, color printing and
69–72, 82

Resource Manager
debugging and 55, 57–58
QuickTime and 39–42, 43

RGBColor, palettes and 91, 93
RGBForeColor, palettes and 92,

93

S
SANE, Macintosh Q & A

115–116
scaling

color printing and 69–72
movies and 32

Separations Test, color printing
and 80

SetA5, debugging and 59
SetGWorld, color printing and 73
SetPalette 91
SetPort, color printing and 68
Sheridan, Gordon 7
Smart Friends, debugging and

59–60
“Somewhere in QuickTime”

(Wang) 31–33
stack space, asynchronous routines

and 27–28
standard movie controller,

QuickTime and 32
StdPix, QuickTime and 46
Str63, Macintosh Q & A 105
Str255, Macintosh Q & A

104–105
StringToNum, Macintosh Q & A

115–116
'STR ' resource, QuickDraw GX

and 52–53
SyncWait, asynchronous routines

and 26
System 6, KON & BAL puzzle

118–121
System 6.0.7, KON & BAL puzzle

118–121

System 7
KON & BAL puzzle

118–121
Macintosh Q & A 104, 113
UTILs and 53

system heap, Macintosh Q & A
104

system script, Macintosh Q & A
115–116

'sysz' resource, Macintosh Q & A
104

T
Tanaka, Forrest 91
TeachText, color printing and 73,

80
thing dcmd, QuickTime and 43,

50–51
'thng' resource, QuickTime and

42
TimeBase, QuickTime and 45
Time Manager

asynchronous routines and 6
Macintosh Q & A 105–106

TMON Pro, QuickTime and
34–51

trapping, QuickTime and 34–51
“true” halftone method, color

printing and 83

U
UNIX, Macintosh Q & A

111–112
UTILs, print hint 53

V
VBL tasks, asynchronous routines

and 6, 29–30
“Veteran Neophyte, The”

(Johnson) 61–63
video media pixel depth,

Macintosh Q & A 107

W, X, Y, Z
WaitNextEvent, asynchronous

routines and 27, 29
Wang, John 31
Window Manager, DeviceLoop

and 97, 98

d e v e l o p March 1993

126

