

E D I T O R I A L S T A F F

Editor-in-Cheek Caroline Rose

Technical Buckstopper Dave Johnson

Our Boss Greg Joswiak

His Boss Dennis Matthews

Review Board Pete (“Luke”) Alexander,
Jim Reekes, Bryan K. (“Beaker”) Ressler,
Larry Rosenstein, Andy Shebanow, Gregg
Williams, Dean Yu

Managing Editor Cynthia Jasper

Contributing Editors Lorraine Anderson,
Toni Haskell, Judy Helfand, Elaine Meyer,
Rebecca Pepper

Indexer Marc Savage

A R T & P R O D U C T I O N

Production/Art Director Diane Wilcox

Technical Illustration Shawn Morningstar,

John Ryan

Formatting Forbes Mill Press

Film Services Aptos Post, Inc.

Prepress Production PrePress Assembly

Printing Wolfer Printing Company, Inc.

Photography Sharon Beals

Cover Illustration Mark Jenkins of Rucker

Huggins Design

Online Production Cassi Carpenter

develop, The Apple Technical Journal,
a quarterly publication of Apple Computer’s
Developer Press group, is published in March,
June, September, and December.

This issue’s CD. The develop Bookmark CD (or
the Developer CD Series disc, Reference Library
edition) for March 1994 or later contains this
issue and all back issues of develop along with the
code that the articles describe. The develop issues
and code are also available on AppleLink and via
anonymous ftp on ftp.apple.com. Note that some
software and documentation referred to as being
on this issue’s CD may be located on the Tool
Chest edition rather than the Reference Library
edition of the Developer CD Series disc.

Macintosh Technical Notes. Where references
to Macintosh Technical Notes in develop are
followed by something like “(Memory 13),” this
indicates the category and number of the Note
on this issue’s CD.

E-mail addresses. Most e-mail addresses
mentioned in develop are AppleLink addresses;
to convert an AppleLink address to an Internet
address, append “@applelink.apple.com” to it.
For example, DEVELOP on AppleLink converts
to develop@applelink.apple.com on the Internet.
To convert a NewtonMail address to an Internet
address, append “@online.apple.com” to it.

CONTENTS March 1994

1
© 1994 Apple Computer, Inc. All rights reserved.

Apple, the Apple logo, APDA, AppleLink, AppleShare, AppleTalk, ImageWriter, LaserWriter, MacApp, Macintosh,
Macintosh Quadra, MPW, MultiFinder, PowerBook, Reanimator, and SADE are trademarks of Apple Computer, Inc.,
registered in the U.S. and other countries. AOCE, develop, the dogcow logo, Finder, Moof, Newton, QuickDraw,
QuickTime, Sound Manager, SourceBug, System 7, and TrueType are trademarks of Apple Computer, Inc. PostScript is
a trademark of Adobe Systems Incorporated, which may be registered in certain jurisdictions. NuBus is a trademark of
Texas Instruments. All other trademarks are the property of their respective owners.

User interface excesses. 2

Floating windows corrections. 4

Using Proto Templates on the Newton by Harry R. Chesley For
Newton developers, a sample game that uses proto templates to good effect; for
everyone else, a flavor of what Newton development is like. 5

Standalone Code on PowerPC by Tim Nichols Standalone code is better
and easier than ever before in the PowerPC environment. 36

Debugging on PowerPC by Dave Falkenburg and Brian Topping It’s a
whole new world in there, but your hard-won debugging skills still work. 51

Concurrent Programming With the Thread Manager by Eric Anderson
and Brad Post With both cooperative and preemptive threads, the possibilities
provided by the new Thread Manager are nearly endless. 73

The Zen of Window Zooming by Dean Yu Everybody does it, but many
still don’t do it right. Dean has some code to help you out. 101

Print Hints: Tracking QuickDraw GX Messages by Pete (“Luke”)
Alexander MessageWatcher lets you spy on QuickDraw GX printing. 32

The Veteran Neophyte: Why We Do It by Dave Johnson Why do people
like to program computers? The results of an ad hoc survey. 48

Somewhere in QuickTime: Cross-Platform Compatibility and
Multiple-Movie Files by John Wang The title says it all. 70

View From the Ledge by Tao Jones Amazing advice about awful allies. 99

Ten Tips for Game Developers by Brigham Stevens Things you should
know if you want to write games for the Macintosh — or even if you don’t. 114

KON & BAL’s Puzzle Page: When Maps Go Bad by Konstantin Othmer
and Bruce Leak More Macintosh orienteering with KON and BAL. 130

History of the Dogcow: Part 1 by Mark (“The Red”) Harlan Here it is
for the first time — the real story, from someone who was there. 135

Macintosh Q & A Apple’s Developer Support Center answers your questions
about product development, postage stamp glue, and more. 119

137I N D E X

Q & A

C O L U M N S

A R T I C L E S

L E T T E R S

E D I T O R I A L

Dear Readers,

We’re excited to bring you, in this issue, develop’s first Newton article. Even if you’re
not set up for Newton development, you may find this article of interest. But it’s the
article on zooming windows that inspired this editorial. The subject is user interface
annoyances: those cases where the application doesn’t quite do what the user expects
it to — as when a window zooms to an odd location — and the user has to adjust for
it. So what’s the big deal? Well, it all adds up. Over time, the harm to the user from
compensating for these problems can be physical as well as mental. You’ll end up
with a customer who is suffering in more ways than one.

As Joan Stigliani puts it in her forthcoming book, High-Tech Health: The Computer
User’s Survival Guide: “Software can make you work hard and contribute to overuse if
it requires a lot of mouse use — clicking and dragging, scrolling, moving the cursor
back and forth across the screen — or a lot of complex key sequences or excessive
keying. Software that is difficult or frustrating to use can increase stress and tension.”
This especially struck a chord with me, since I suffer from tendinitis caused by
excessive keying and mousing. So I’m going to take advantage of this opportunity to
vent my frustration (isn’t that what editorials are for?). Mainly, I hope to have at least
some small influence on how you design the interface for your applications in the
future.

Why do so many applications lack common sense? Why, for example, shouldn’t Print
or Save work on my frontmost document even if the active window happens to be a
dialog box? Why can’t I just type Command-F followed by text to be found rather
than first have to select the text that the application (for some odd reason) didn’t
choose to highlight in the Find dialog? Why, even on my two-page monitor, do I
have to resize a teeny window for every piece of e-mail I receive, or read a mere eight
lines at a time, scrolling repeatedly (excessively) to get to the end? Why, when I cut a
double-clicked word and then paste it, do so few applications add spaces intelligently?

The list of user interface superfluities goes on and on; these are only the problems I
encounter most frequently each day. Please, give my hands (and my mind) a break! If
I may make a few suggestions:

• Don’t blindly follow what other applications have done: maybe
they didn’t think it through well enough. There’s a place for

d e v e l o p Issue 17

CAROLINE ROSE (AppleLink CROSE) started
writing and programming at a company called
Tymshare, where she thought at first that the
terminal was the computer. (She was stunned to
learn it occupied a huge room in another
building.) By the time computers were the size of
terminals, Caroline was on her way to Apple to
write Inside Macintosh. She digressed to spend
five years at NeXT, where she managed the

Publications group, but returned to the Apple fold
to edit develop. Caroline owes her love of the
printed word to her father, who worked for the
New York Daily News for over 50 years. There
was no greater thrill as a child than to go to the
office with him and see the copy desks,
darkrooms, printing presses — and, of course, the
editors. She’d like to take this opportunity to say
thanks, Dad, and Happy 85th Birthday!•

2

CAROLINE ROSE

guidelines and precedents, but don’t totally disregard common
sense.

• Use the application yourself for real tasks until you’re blue in the
face. Be honest; what bugs you about it? Your users will be even
less tolerant.

• Do extensive user testing before first ship, of course — but even
after you ship, solicit feedback and incorporate it into the next
release. Be sure to get feedback from experienced users, not just
first-timers.

• Beware of creeping featurism: fix problems your testers or
customers have with current features before adding new ones.

These suggestions are based on my own experience as the user manual writer and
ad hoc product manager for the first version of the WriteNow application. John
Anderson, one of the authors of WriteNow, says he thinks interface problems stem
from software being too hard to write (something his next product will address) and
from the related problem of software teams being too large. With many specialized
programmers on a project, no one person focuses on the overall picture well enough
to make the requisite intelligent decisions about the interface. Given a large team, a
good product manager can make all the difference in the world. Look for someone
both knowledgeable about the market and able to grasp the technical issues. As I
noted about technical writing in an earlier editorial, product management isn’t a job
that just any smart person can do, or that CEOs or VPs should tackle in their spare
time.

So I guess the moral is that more is not always better — not when it comes to
features in an application or programmers on a project, and certainly not when it
comes to keystrokes and mouse clicks in an interface. Please, keep it clean.

Caroline Rose
Editor

EDITORIAL March 1994

3
SUBSCRIPTION INFORMATION
Subscriptions to develop are available through
APDA (see inside back cover for APDA
information), or you can use the subscription card
in the back of this issue. Please address all
subscription-related inquiries to develop, Apple
Computer, Inc., P.O. Box 531, Mt. Morris, IL
61054 (or AppleLink DEV.SUBS).•

BACK ISSUES
For information about back issues of develop and
how to obtain them, see the last page of this
issue. Back issues are also on the develop
Bookmark CD and the Developer CD Series
disc.•

FLOATING BUGS
I liked Issue 15’s article on floating
windows and have successfully
implemented your routines. I did,
however, find one bug. Your routine
HideReferencedWindow can leave the
process’s window list pointing to a
deallocated window when there are no
floating windows.

— Chester Murphy

Thanks for pointing this out. It’s fixed —
along with some other small bugs — in the
code on this issue’s CD. (It’s been fixed since
Issue 16’s CD.)

— Dean Yu

PRAGMATIC SOLUTION
Floating windows is one of my favorite
subjects. I tried to compile your
WindowExtension example, using
THINK C 6.0. My first problem was
with USES68KINLINES. THINK C
checks the #pragma parameter with the
function declaration. So I tried to use
A1 and D0 as parameters, but then I
needed a few more #pragmas for the
activate handlers. I still don’t have a
working version.

Also, could you explain why we need
CallUniversalProc? I’m quite happy
with the C syntax.

Thank you very much for doing such a
good job on the article.

— Robert Puyol

The use of USES68KINLINES has
changed since Issue 15 went to press.
Currently, #pragma parameters aren’t
used any more, so you shouldn’t have any

problems using the header file with
THINK C. Additionally, the new version of
the floating windows code uses the universal
header files that are discussed in the
“Making the Leap to PowerPC” article in
Issue 16 and are on this issue’s CD.

We recommend using CallUniversalProc in
your source code (or one of its specific
variants, like CallActivateHandlerProc in
the floating windows code) to allow for
greater portability of your source code
between platforms. For a detailed
explanation of using CallUniversalProc
and UniversalProcPtrs, check out the
aforementioned article in Issue 16.

— Dean Yu

DESKTOP FILES REDUX
I liked Issue 15’s Puzzle Page, about the
damaged desktop files. I’ve seen this
bug often, since I fix a lot of damaged
hard disks.

You probably know this, but if the
desktop files get hosed in a certain way,
rebuilding them in the Finder won’t fix
them. You have to delete them (or
rename them) to get the Finder to build
new files from scratch.

AutoDoubler comes with a little utility
called Desktop Reset just for deleting
the desktop files.

— David Shayer

I didn’t know this when I wrote that Puzzle
Page, but you’re right. When the desktop
file gets damaged to the point where the File
Manager can’t open it, the Finder can’t
rebuild the file, so you have to throw it
away or rename it.

Thanks for the feedback.

— Konstantin Othmer

d e v e l o p Issue 17

IF MORE OF YOU DON’T WRITE, WE’LL
HAVE TO START MAKING THEM UP!
We welcome timely letters to the editors,
especially from readers reacting to articles that
we publish in develop. Letters should be
addressed to Caroline Rose (or, if technical
develop-related questions, to Dave Johnson) at
Apple Computer, Inc., 20525 Mariani Avenue,
M/S 303-4DP, Cupertino, CA 95014 (AppleLink

CROSE or JOHNSON.DK). All letters should
include your name and company name as well
as your address and phone number. Letters may
be excerpted or edited for clarity (or to make
them say what we wish they did).•

4

LETTERS

Proto templates are a central feature of the Newton development
environment. All Newton applications use built-in prototypes, and
developers can also write their own application-specific prototypes. This
article uses proto templates in the design of an application that plays a
few simple games. For non-Newton developers it reveals some of the
flavor of designing and writing Newton applications.

An application often includes multiple instances of a design element, with only minor
variations among them. In object-oriented systems, it’s possible to share the common
portions of the design among several different pieces of the application by using
inheritance. On the Newton, you can do this with proto templates, which let you reuse
the definition of a particular type of view very efficiently. Since views are the basic
visual and functional elements of the Newton user interface, proto templates give you
a very powerful ability to share and reuse user interface features.

Built-in proto templates supply most of the common views seen in Newton
applications — push buttons, pop-up menus, checkboxes, radio buttons, and so on.
In addition, developers of Newton applications can define their own proto templates.
These templates allow for very compact designs, shorter development times, easier
maintenance, and smaller finished applications.

In this article we develop a game application for the Newton called TapBoard.
TapBoard is actually three games, each with its own style of board, rules of play, and
algorithm for computer-generated moves. The games have many elements in
common, and these can be abstracted into a proto template containing the shared
aspects of the design. You’ll find much of the code for TapBoard in the article; the
complete source code can be found on this issue’s CD.

If you’ve never written a Newton application, see “(Slightly) Inside Newton
Programming” for an introduction to the development process and some of the
Newton terminology that’s used in this article.

USING PROTO TEMPLATES ON THE NEWTON March 1994

5
HARRY R. CHESLEY (AppleLink CHESLEY1,
NewtonMail CHESLEY) has spent most of the last
three years in subspace (see develop Issue 7,
“The Subspace Manager in System 7.0”) working
on PowerTalk templates. His return to Earth-normal
space was accompanied by an interstitial stutter,
resulting in a temporary doubling of his
personality matrix. This allowed him to
simultaneously finish PowerTalk and design and

write the NewtonScript communications interface
(protoEndpoints). He’s better now, but still
occasionally repeats himself in social situations. If
he should happen to tell you a story you’ve heard
from him before, just humor him and pretend it’s
all new stuff. Too much self-referential
introspection could cause a substitial relapse.•

HARRY R. CHESLEY

USING PROTO

TEMPLATES

ON THE

NEWTON

d e v e l o p Issue 17

6

Programming the Newton is different — and I mean
that in a good sense. Once you digest the Newton
documentation, you can create a simple application and
have it running on a Newton in about 15 minutes. The
Newton development process encourages lots of quick
code/compile/debug cycles — good for those of us who
need positive reinforcement on a regular basis — and the
cycle is short enough that you don’t notice a delay.

OVERVIEW
Before I describe how a Newton program works, here’s
an overview of the development process. To create a
Newton application, all you need is the Newton Toolkit
(available from APDA), a serial cable, a 68030
Macintosh with 8 MB of memory and 32-bit addressing,
and a Newton. You create your program with the Toolkit,
compile it, and then download it to a Newton that’s
connected to your Macintosh through a serial port. Your
completed application appears in the Extras drawer, just
like any other third-party Newton application.

Using tools from a floating window called the layout
palette, you draw the layout of your application — what
its screens should look like — in layout windows. Not only
can you reuse the dozens of user interface definitions that
the Newton Toolkit supplies, you can create your own
custom proto templates (more on proto templates below).
Each layout or custom proto template is stored as a
separate file; all of these files, plus optional files that
contain the Macintosh-style resources your program
needs, are grouped into what’s called a project.

Once you’ve drawn all your views, you can open a
browser window (familiar to users of object-oriented
languages like Smalltalk and LISP). In the browser
window, you can add and modify both code and data
associated with the objects in your program. The code
you write is in a new language called NewtonScript,
which is a simple but sophisticated symbolic language
with a Pascal-like syntax.

Most of the (usually short) routines you’ll write execute
when triggered by a user action, like the user’s tapping a
button or writing in a designated area, or by a system
action. You’re already acquainted with this event-driven
approach from your experience in programming for the
Macintosh. And if you’ve been doing object-oriented
programming, the idea of a network of cooperating
software objects, rather than a hierarchy of routines
executed by a processor that’s always in control, is also
familiar to you.

FRAMES AND SLOTS
One idea you may not be familiar with, depending on
whether you’ve used object-oriented languages, is that of
frames. Artificial intelligence fanatics will probably kill
me, but I think of a frame as just a record of data, and
slots as what most of us call record fields. However, slots
in NewtonScript are more versatile than record fields in
several ways. First, slots aren’t limited to one type of data.
(Like Newton variables, slots aren’t typed and can hold,
for example, an integer one minute and a frame the next.)
Second, you can arbitrarily add or remove slots from a
frame at any time, including during program execution.
Third, you can access slots indirectly through path
expressions; these allow you to store part of a slot’s
pathname in a variable, thus letting the contents of a
variable determine which slot gets accessed. In
NewtonScript, a frame looks like this:

{ slotname1: value1, slotname2: value2, ...,
slotnameN: valueN }

Slot names can be omitted or mentioned in any order. By
using the slot names _proto and _parent, you can create
data structures that exhibit Newton’s flavor of object-
oriented behavior, as discussed later in this article.

To access the data in a frame’s slot, you use the notation

framename.slotname

(SLIGHTLY) INSIDE NEWTON PROGRAMMING
BY GREGG WILLIAMS

USING PROTO TEMPLATES ON THE NEWTON March 1994

7
For more information about views, see the
“Views” chapter of the Newton Programmer’s
Guide.•

TEMPLATES, VIEWS, AND PROTOS
Everything you see on the Newton screen is composed of
views. A view can display, among other things, a picture,
a paragraph of text, an area for writing or drawing, an
on-screen keyboard, a calendar-month page, a pop-up
list, or a gauge (which is like a horizontal thermometer).

Many of the things that you see on the screen are
standard prefabricated user interface elements built into
the Newton ROM and available to every Newton
developer. These are called proto templates, or protos for
short, and they include six different kinds of buttons and
checkboxes, protoSliders (like a linear slider light switch),
protoRolls (which allow information to scroll vertically off
the screen), and different kinds of labels, borders, and
standard interface elements. Each tool on the Newton
Toolkit layout palette allows you to lay out a view or a
proto.

Views can contain views inside them, and in fact, a proto
is a predefined hierarchical grouping of views that
behaves in a certain way. You can create your own
custom protos by drawing them in layout windows.

In NewtonScript, you can describe a view as a frame
called a template; the Newton later creates a view from
the template at run time. The slots in a template represent
the view’s data and the functions that implement the
behavior you have to add. (Most views and protos have
behavior built in, and the built-in behavior of a proto is
often quite extensive.) When your application executes, a
template (which cannot be changed) is used to create the
data structure in RAM that corresponds to the visual
representation of the view — that is, what you see on the
Newton’s screen.

To send a message to a view (that is, to invoke one of its
methods), the syntax is

view:messagename(arg1, arg2, ..., argN)

(The function involved is the method, while the name used
to invoke it is the message. You send a message to an

object, and that causes the associated method to
execute.)

SYSTEM MESSAGES
As with the Macintosh, Newton applications are driven
by user events — the user taps or draws on the Newton
screen in different places — as well as by system events.
The Newton sends your program system messages, which
trigger their corresponding methods. In some cases, you
let the built-in Newton methods do their work; in many
others, you write your own. There are 25 or so system
messages you need to know about. Here are a few of
them, and when the corresponding methods execute:

• viewChangedScript: executes when a view slot is
changed using the SetValue function or when certain
functions change a view directly

• viewDrawScript: executes when a view needs to be
drawn

• viewStrokeScript: executes when a user writes inside
a view

• viewSetupFormScript, viewSetupChildrenScript,
viewSetupDoneScript: execute at specific points
during the setup of a view, before the view is
displayed

• viewIdleScript: executes periodically

• viewQuitScript: executes just before a view is
disposed of

Some system messages pertain to particular views — for
example, buttonClickScript (for buttons), keyPressScript
(for keyboard views), and monthChangedScript (for the
monthly calendar view).

AND THAT’S JUST THE BEGINNING. . .
There’s a lot more to programming the Newton. You can
find out more by reading the manuals that come with the
Newton Toolkit. Be sure to read any errata sheets, release
notes, and “read me” files; I overlooked one and missed
a piece of information that would have saved me several
days’ work!

GAMES WE’RE GOING TO PLAY
TapBoard plays three games: Tic-tac-toe, Gomoku, and Reversi. The user chooses
one of the games from a set of radio buttons, a game board is displayed, and the
user moves by tapping a square on the board. The application responds with a
countermove. This process repeats until one player wins or the game ends in a tie.
When the user closes TapBoard, the application remembers the state of the board —
which game is being played, where the pieces are placed, whose turn it is, and the
game’s outcome. When TapBoard is reopened, it restores the state so that the user
can continue the game where it left off.

So, common elements shared by the games include the following:

• displaying the board to the user

• adding a new move to the board display

• acknowledging the user’s tap with an appropriate sound

• tracking the stroke to decide whether it ended on the same square
as it started on

• figuring out which square it was, and whether the move is valid

• recording the move

• checking it to see if it’s a winning or tying move

• uncovering a good move when it’s TapBoard’s turn

• saving the state of the board when the user closes the game

• restoring the state when the game is reopened

All these common actions can be abstracted into a prototype that each specific game
can then inherit from (as described later in the section “The protoBoard Proto
Template”). But since the games are different, each also has its own rules and possibly
its own board, and each requires its own algorithm for finding good moves for the
computer; details follow.

TIC-TAC-TOE
You undoubtedly know this game, but we’ll describe it briefly: Tic-tac-toe is played
on a 3 x 3 board with players taking turns making X’s and O’s. The first player to get
three in a row horizontally, vertically, or diagonally wins. If neither player gets three
in a row, the game is tied. Figure 1 shows a typical game of Tic-tac-toe. X gets three
on the diagonal and wins.

Tic-tac-toe is a simple game to master. There are a few easy heuristics, such as always
take the center square if you can, and with a little thought it’s not hard to see several
moves ahead.

d e v e l o p Issue 17

8

TapBoard’s algorithm for determining a good Tic-tac-toe move involves doing a two-
move look-ahead, combined with some simple heuristics. The look-ahead tries all
possible moves, then tries all possible answering moves. The heuristic gives greater
weight to taking the center and corner squares. This algorithm doesn’t play a perfect
game of Tic-tac-toe, but this is actually an advantage, for two reasons: it pulls players
into the game by giving the impression that the computer is an easy target, and it
provides a game that’s playable by younger users (my five-year-old daughter loves it).

GOMOKU
Gomoku is played on an 8 x 8 board. Players take turns placing pieces on the board,
and the first player to get five in a row horizontally, vertically, or diagonally wins.
Figure 2 shows a short game of Gomoku won by white (a real game would of course
be played more defensively than this one, which is for demonstration purposes
only).

Gomoku is more challenging than Tic-tac-toe. The larger game board and longer
winning sequence make for many more combinations, and the game virtually requires
that the winner “sneak up” on the loser, rather than just going for a simple sequence
of five pieces, which the opponent can easily detect and prevent.

TapBoard’s approach to finding a good Gomoku move involves making three passes
over the board: the first looks for winning moves; the second looks for situations
where the user has three or more in a row and tries to block those; the third looks for

USING PROTO TEMPLATES ON THE NEWTON March 1994

9

• • •

Figure 1
Tic-tac-toe

• • •

Figure 2
Gomoku

situations where TapBoard has three or more in a row and tries to add to those. This
algorithm plays a defensive game that’s hard to beat.

REVERSI
Reversi is also played on an 8 x 8 board. Four pieces are placed in the center of the
board as shown in Figure 3A, and the players take turns placing pieces, trying to trap
the opponent’s pieces between the new piece and an existing one horizontally,
vertically, or diagonally. Figure 3B shows one of the squares that would be a legal first
move for white. The pieces that are “trapped” change color, or reverse — hence the
name of the game. Figure 3C shows the result of the move in 3B.

Play continues until no legal moves are left. The player with the most pieces wins. If
both players have the same number of pieces, it’s a tie. Because of the reversing
pieces, the situation can change suddenly and dramatically. Often one player looks
like the clear winner until near the end of the game, when the other player suddenly
surges ahead and wins.

TapBoard looks for a good move in Reversi by checking every possible move,
counting the number of user pieces that will be converted, and then modifying the
counts based on heuristics concerning plays along the edges of the board. This
algorithm plays the game quite well, and can often come on surprisingly strong at the
end of the game.

THE TAPBOARD APPLICATION
The layout of the TapBoard application is shown in Figure 4. The center of the
screen is the game board, and there are three different game board templates
corresponding to the three games. Only one is displayed at a time. Below the board
are radio buttons indicating whose turn it is. Underneath these are pictures of the
pieces for the user and for the application, which change from game to game. Below
them is a set of radio buttons with the names of the games, from which the user
chooses. At the bottom of the screen is a set of buttons including a time and battery
status button, buttons for New Game, Help, and Credits, and a close box.

d e v e l o p Issue 17

10

A B C

Figure 3
Reversi

Besides the games themselves, the application has to take care of the following:

• selecting which game to play

• showing whose turn it is, and letting the user choose who goes first

• displaying help and credits

• triggering save and restore operations when the application closes
and reopens

• removing the saved state from memory when the application is
removed from the Newton

Most of the TapBoard application is in the application template and the game boards.
The buttons are in the application template. The core functionality of the application,
playing the games, is in the game boards and in protoBoard, the proto template from
which all three games inherit. (Newton inheritance is a little different from what you
might be used to; for more information, see “Proto and Parent Inheritance.”)

THE PROTOBOARD PROTO TEMPLATE
The protoBoard proto template takes care of several functional areas. In some cases,
it does everything needed by the game boards that derive from it. In other cases, one
or more of the game boards must override part of the proto template functionality —

USING PROTO TEMPLATES ON THE NEWTON March 1994

11

Game Boards

Figure 4
TapBoard Application Screen Layout

and several slots are designed to be overridden. In still other cases, a protoBoard
function uses data slots defined in the game boards as input.

BOARD STATE AND SHAPE
The protoBoard proto template maintains a two-dimensional array, named
boardArray, that remembers where pieces have been placed on the board. The array

d e v e l o p Issue 17

12

When you draw a view inside another view, the one
inside is said to be a subview or a child view. When you
draw nested views in a layout window in the Newton
Toolkit, you’re doing the equivalent of writing code that is
a frame, with each piece of data or method having its
own slot.

Unless it’s at the end of its chain, every view has a _proto
slot, which points to the proto from which it inherits its
behavior. Similarly, every view (except the “top” one) has
a _parent slot, which points to the view that contains it
(that is, its parent view).

Here’s where things get interesting. A view exists in RAM
while your program is executing; it can have its own slots,
which are also in RAM. If some code tries to access a slot
that the view doesn’t have, the view looks for that slot in
the view’s proto. If its proto doesn’t have that slot, the
proto looks for the slot in the proto’s proto (if it has one),
and so on up the line of proto “ancestors.” The value
that’s ultimately returned is used as if it were actually a
slot in RAM belonging to that view.

But wait — there’s more! You also have parent
inheritance: a view can get a slot value from one of its
parent views. If the desired slot isn’t found in any proto,
the search continues (from above) with the view’s parent
and, if necessary, its protos. (The process is a bit different
when changing slot values; the only slot values you can
change are in the view or one of its ancestors — all of
these slots, of course, are in RAM. For details, see the
“Working With Proto Templates” chapter of the
NewtonScript Programming Language manual.)

Why two kinds of inheritance? Two answers: ROM and
application size. The reason for views and protos in the
first place is to minimize the amount of code in your
application and so make it as compact as possible.
Because views and protos are in ROM, though, you can’t
change their slots. You need another mechanism to
override their default values, and that’s where proto
inheritance comes in.

Proto inheritance shrinks application size by minimizing
the amount of code associated with individual instances
of often-used “building blocks.” Parent inheritance shrinks
application size by allowing related elements in your
program to share common data or behavior. (For
example, three radio buttons in a cluster may share a
button-click method that’s different from that of other
buttons on the same screen.)

In addition to sending a message to a certain view, you
can send a message that starts with the current view and
checks protos, parents, and parent protos until it finds a
view or proto template that has a slot with the same name
as the message. The associated method, wherever it
comes from, is then applied to the current view. The
syntax is

:messagename(arg1, arg2, ..., argN)

This is a very brief overview of a software architecture
that has many implications. To fill in the gaps, read the
Newton documentation.

— GW

PROTO AND PARENT INHERITANCE

is actually one entry larger than the board in each direction. This oversizing can be
handy in the algorithms used to find a good move for the application.

Each space in the array can have one of four values: empty, Newton piece, user piece,
or edge of the board. To simplify the algorithms used to compute the application’s
moves, we use 1 for the user and -1 for the Newton, so that if p is a piece of one type,
-p is the opposing type of piece. Empty spaces are filled with nil, and board edges are
0 — neither nil nor a valid Newton or user piece value. These same values are used to
keep track of whose turn it is and who has won (if anyone). We define constants for
each of these potential values:

constant kEmptySquare := nil;
constant kNewtonPiece := -1;
constant kUserPiece := 1;
constant kBoardEdge := 0;
constant kTieWinner := 0;

Here’s the portion of protoBoard’s viewSetupFormScript that creates boardArray:

protoBoard.viewSetupFormScript := func()
begin

. . .
// Make the board array; we make it one entry larger in each direction
// than the board, which is nice sometimes when figuring out moves.
boardArray := Array(squaresWide+2, kEmptySquare);
local i;
for i := 0 to squaresWide+1 do

begin
boardArray[i] := Array(squaresHigh+2,

if (i = 0) or (i = squaresWide+1) then
kBoardEdge else kEmptySquare);

boardArray[i][0] := kBoardEdge;
boardArray[i][squaresHigh+1] := kBoardEdge;

end;
// Reset the number of squares left.
squaresLeft := squaresWide * squaresHigh;
// No winner yet.
winner := nil;
// Do any game-specific setup.
:setupBoard();
. . .

end

We initialize squaresLeft to the number of squares on the board so that TapBoard can
determine whether the board is full without having to check every square. We also set

USING PROTO TEMPLATES ON THE NEWTON March 1994

13

winner to nil. When the game is finished, the winner slot is set to kUserPiece (user
won), kNewtonPiece (Newton won), or kTieWinner (tie). This allows for a very
quick check on whether the game is over and who won.

The setupBoard function is called to do any game-specific board setup. For example,
Reversi needs to place four initial pieces on the board. The default setupBoard
function defined in protoBoard does nothing; inheritors of protoBoard override it as
needed.

Two slots, squaresWide and squaresHigh, must be defined by any protoBoard
inheritor to determine the width and height of the board. They’re used throughout
protoBoard — as in viewSetupFormScript — and in the following utility functions.
(Note that LocalBox is a function that returns a rectangle having the width and
height of the view in its right and bottom slots, respectively.)

// The height of a square:
protoBoard.squareHeight := func()
begin

return :LocalBox().bottom div squaresHigh;
end

// The width of a square:
protoBoard.squareWidth := func()
begin

return :LocalBox().right div squaresWide;
end

// The bounds of a square:
protoBoard.squareBounds := func(x, y)
begin

local width := :squareWidth();
local height := :squareHeight();
// RelBounds takes a top and left coordinate, a width, and a height
// and returns a rectangle.
return RelBounds((x-1)*width+1, (y-1)*height+1, width-1, height-1);

end

// Which square (1..squaresWide) contains coordinate x (or zero if none):
protoBoard.squareOfX := func(x)
begin

local gb := :GlobalBox();
if (x < gb.left) or (x > gb.right) then return 0;
else return ((x - gb.left) div :squareWidth()) + 1;

end

d e v e l o p Issue 17

The utility functions are usable only at
viewSetupChildrenScript time and later because
they use the LocalBox function. You couldn’t use
them, for instance, in viewSetupFormScript.•

14

// Which square (1..squaresHigh) contains coordinate y (or zero if none):
protoBoard.squareOfY := func(y)
begin

local gb := :GlobalBox();
if (y < gb.top) or (y > gb.bottom) then return 0;
else return ((y - gb.top) div :squareHeight()) + 1;

end

DRAWING THE BOARD
The drawing of the board itself is created once and stored in the slot
backgroundDrawing. This drawing is then displayed by viewDrawScript.

protoBoard.viewDrawScript := func()
begin

:DrawShape(backgroundDrawing, nil);
end

The backgroundDrawing slot is built in viewSetupDoneScript, which is called just
before the view is shown on the screen. The default function supplied in protoBoard
draws a closed set of squares for the board. This is appropriate for Gomoku and
Reversi but is overridden by Tic-tac-toe, which needs an open grid.

protoBoard.viewSetupDoneScript := func()
begin

// Build the board display. This builds a closed set of squares,
// but can be overridden.
local height := :LocalBox().bottom - 1;
local width := :LocalBox().right - 1;
backgroundDrawing := []; // Empty array
for x := 0 to width by :squareWidth() do

AddArraySlot(backgroundDrawing, MakeLine(x, 0, x, height));
for y := 0 to height by :squareHeight() do

AddArraySlot(backgroundDrawing, MakeLine(0, y, width, y));
end

ADDING PIECES
Besides an entry in boardArray, each piece has a subview within the board of class
clPictureView, which displays the piece on the board. Adding a piece to boardArray,
adding the corresponding subview, and adjusting squaresLeft are the responsibility of
the addPiece function.

protoBoard.addPiece := func(p, x, y)
begin

// Mark the new piece in boardArray.
boardArray[x][y] := p;

USING PROTO TEMPLATES ON THE NEWTON March 1994

15

// Check if there's already a view there in the view list.
local bounds := :squareBounds(x, y);
local i := if p = kUserPiece then player1Piece else player2Piece;
local v;
// ChildViewFrames returns an array containing all child views.
foreach v in :ChildViewFrames() do

if (v.viewBounds.top = bounds.top) and
(v.viewBounds.left = bounds.left) then

begin
// If there is, replace the icon and redisplay.
SetValue(v, 'icon, i);
return;

end;
// One less square available.
squaresLeft := squaresLeft - 1;
// Create, add in, and display the new view.
AddStepView(self,

{viewClass: clPictureView, viewBounds: :squareBounds(x, y),
viewFlags: vVisible, icon: i}):Dirty();

end

To determine the picture to display, addPiece looks in slots player1Piece and
player2Piece, which contain pictures for the user and for the computer. The default
versions supplied in protoBoard are suitable for Reversi and Gomoku. Tic-tac-toe
overrides these slots to provide an X and an O.

Note that this function checks to see if there’s already a piece on that square. If there
is, it simply changes the picture for the piece rather than creating a new view. In most
games, moving on a square that already has a piece on it is illegal. But in Reversi, we
often replace existing pieces with pieces of the opposite color.

MAKING MOVES
Checking the legality of a move, deciding whether it’s a winning or losing move, and
then switching the state of whose turn it is, are done in the move function. This is the
function to call to actually make a move.

protoBoard.move := func(p, x, y)
begin

// Check if this is a reasonable thing to do.
if :isTurn(p) and :validMove(p, x, y) then

begin
// Add the piece to the board.
:addPiece(p, x, y);

d e v e l o p Issue 17

16

// If this was a winner, let the user know.
if :winningMove(p, x, y) then

begin
winner := p;
:announceWin(p);

end
// If this was a tie-maker, let the user know.
else if :tieGame() then

begin
winner := kTieWinner;
:turn(kTieWinner);
:announceWin(kTieWinner);

end
// Switch whose turn it is.
else :turn(-p);

end;
end

The functions isTurn, announceWin, and turn are global application functions
defined in the application template; we’ll get to them later. The functions validMove,
winningMove, and tieGame are game-specific and are defined in the protoBoard
inheritors. We provide default versions:

protoBoard.validMove := func(p, x, y)
begin

// If it's an empty space, it's legal to move there.
// This function may be overridden.
return boardArray[x][y] = kEmptySquare;

end

protoBoard.winningMove := func(p, x, y)
begin

// By default, the computer never wins and the user wins when the
// board is full. This is always overridden, but we leave it in
// because it can be handy during the early stages of developing
// a new game.
if p = kNewtonPiece then return nil
else return squaresLeft = 0;

end

protoBoard.tieGame := func()
begin

// It's a tie if there's nothing left to do. This can be overridden.
return squaresLeft = 0;

end

USING PROTO TEMPLATES ON THE NEWTON March 1994

17

THE USER’S MOVES
The user moves by tapping on the board. When the tap first occurs, viewClickScript
is called. This function turns off ink and plays a sound to let the user know clearly
that the tap was hard enough. The actual move is recorded in viewStrokeScript,
which is called after the user lifts the pen from the screen.

protoBoard.viewClickScript := func(unit)
begin

// No ink (we're tapping, not drawing).
InkOff(unit);
// Make a nice little click to give the user warm fuzzies.
PlaySound(ROM_click);
// But let the normal processing handle tracking and such.
return nil;

end

protoBoard.viewStrokeScript := func(unit)
begin

// Find out where we clicked to start with.
local originalX := :squareOfX(GetPoint(firstX, unit));
local originalY := :squareOfY(GetPoint(firstY, unit));
// If we ended where we started, make the move.
if (originalX <> 0) and (originalY <> 0) and

(originalX = :squareOfX(GetPoint(finalX, unit))) and
(originalY = :squareOfY(GetPoint(finalY, unit))) then

:move(kUserPiece, originalX, originalY);
return true;

end

We return nil from viewClickScript to say we didn’t handle it, so the system processes
the stroke for us. But we return true from viewStrokeScript because here we did
handle the stroke and don’t want the system to do anything more.

THE COMPUTER’S MOVES
It’s the computer’s turn to move after the user has moved, or because the user tapped
the Computer’s Move radio button. Rather than put code in each of these places, we
simply set up an idle method called viewIdleScript in protoBoard that checks to see if
it’s the computer’s turn and then makes its move.

This is not the most efficient approach because it involves checking periodically while
the user is thinking, but it’s quite simple (and shows how to set up idle methods).
Since it only checks every quarter of a second, it doesn’t actually use much CPU or
battery power.

d e v e l o p Issue 17

18

protoBoard.viewSetupFormScript := func()
begin

. . .
// Have our idle method called.
:SetUpIdle(250);

end

protoBoard.viewIdleScript := func()
begin

// If we are visible, and it's the computer's turn, and there's no
// winner...
if Visible(self) and :isTurn(kNewtonPiece) and (winner = nil) then

begin
// Put up the "Working..." display, and figure the computer's
// move.
:startWorking();
:makeComputerMove();
:stopWorking();

end;
// Try again in a quarter of a second.
return 250;

end

protoBoard.makeComputerMove := func()
begin

// By default, we just do something random.
// This is always overridden.
:makeRandomMove(kNewtonPiece);

end

protoBoard.makeRandomMove := func(p)
begin

// Try ten times to find a reasonable random move.
local i, x, y;
for i := 1 to 10 do

begin
x := Random(1, squaresWide);
y := Random(1, squaresHigh);
if :validMove(p, x, y) then

begin
:move(p, x, y);
return;

end;
end;

USING PROTO TEMPLATES ON THE NEWTON March 1994

19

// If that doesn't work, just pick the first linear move.
for x := 1 to squaresWide do

for y := 1 to squaresHigh do
if :validMove(p, x, y) then

begin
:move(p, x, y);
return;

end;
end

SAVING AND RESTORING STATE
Between invocations of TapBoard the application needs to save its state, so that it can
restore the state when the user reopens the application. Permanent data on the
Newton is stored in one or more database-like objects called soups (for more on soups
and related concepts, see “Soups”). Since we only need to save a fairly simple set of
state information, we can put it into the system configuration and preferences soup.
This soup is named “System” and contains information such as the user’s name and
Newton configuration options.

d e v e l o p Issue 17

20

If frames are sort of like records, then soups are like what
we normally think of as files — both hold collections of
data. But soups — like frames — do so in a way that’s
more relaxed and free form. To use a food analogy, if
traditional files are like a stack of sugar cubes, then soups
are like, well, soup.

Soups store data in a general format that doesn’t limit
their usefulness to the application that created them. For
example, any Newton application can access all the
names in the Newton’s built-in address book because the
names are in the same soup.

Soups engender their own terminology. Here are a few
terms you need to know:

• Entry: An entry points to a “record” of data. When an
entry is accessed as a frame, the actual data is
constructed in RAM and stays there until it’s no longer
referenced.

• Store: A store is a place where data physically resides.
The Newton has a single built-in store, which is in
RAM; an installed PCMCIA RAM or ROM card would
be another store.

• Query: To retrieve an entry from a soup, you perform
a query on it. This returns a cursor that represents the
criteria specified by the query.

• Cursor: A cursor (also called a cursor object) points to
the first entry that matches the query. To read other
matching entries, you send the cursor Next and Prev
(previous) messages, which “move” the cursor to point
to other matching entries. Cursors are dynamic, that is,
they find the next entry in the soup as it exists when the
cursor is moved.

Soups are one of the uniquely new things about the
Newton, and are a topic unto themselves. To learn more,
see the documentation that comes with the Newton Toolkit.

— GW

SOUPS

The process of saving and restoring the state is triggered in the application view, as
we’ll discuss later. But the bulk of the actual work is done in protoBoard.

protoBoard.saveState := func()
begin

// Get the existing state entry, if any.
local stateEntry := :getStateEntry();
// If there isn't one yet, make one.
// Note: GetStores()[0] returns the built-in store;
// GetSoup(ROM_SystemSoupName) returns the "System" soup.
if stateEntry = nil then

stateEntry := GetStores()[0]:GetSoup(ROM_SystemSoupName)
:Add({Tag: kPackageName});

// If we can't make one, well, uh, let's just forget the whole thing.
if stateEntry = nil then return;
// Build an array of pieces and their positions from boardArray.
local x, y;
local pieces := [];
local ba := boardArray;
for x := 1 to squaresWide do

for y := 1 to squaresHigh do
if ba[x][y] <> kEmptySquare then

AddArraySlot(pieces, {player: ba[x][y], x: x, y: y});
// Remember which game this is, the piece positions, whose turn it is,
// and the winner.
stateEntry.name := name;
stateEntry.pieces := pieces;
stateEntry.whichTurn := :whoseTurn();
stateEntry.winner := winner;
// Tell the soup to save the changed entry.
EntryChange(stateEntry);

end

protoBoard.restoreState := func(stateEntry)
begin

// For each piece stored in the state entry, add it to the board.
local p;
foreach p in stateEntry.pieces do

:addPiece(p.player, p.x, p.y);
// Set whose turn it is.
:turn(stateEntry.whichTurn);
// Set the winner, if there is one.
winner := stateEntry.winner;

end

USING PROTO TEMPLATES ON THE NEWTON March 1994

21

The constant kPackageName is the name of the application concatenated with a
registered signature. This string is unique, ensuring that we don’t try to use an entry
in the soup that is already used by another application:

// Who we are:
constant kAppSymbol := '|TapBoard:Chesley|;
constant kPackageName := "TapBoard:Chesley";

The function getStateEntry is defined in the application template:

TapBoard.getStateEntry := func()
begin

// Find our one-and-only entry in the System soup, if there is one.
return Query(GetStores()[0]:GetSoup(ROM_SystemSoupName),

{type: 'index, indexPath: 'tag, startKey: kPackageName,
validTest: func(item) StrEqual(item.tag,
kPackageName)}):Entry();

end

LET THE GAMES BEGIN
Each game inherits from protoBoard all of the functionality described in the previous
section. Now we only need to define the details of the game — the size of the playing
board, what the pieces look like, what the valid moves are, and the algorithm for
figuring out the computer’s moves.

TIC-TAC-TOE
For Tic-tac-toe, we provide the name of the game and the board size and override
the default piece pictures as follows:

tictactoe := { ... name: "Tic-tac-toe", squaresWide: 3, squaresHigh: 3,
player1Piece: TapBoard.rsrc:XPicture,
player2Piece: TapBoard.rsrc:OPicture ... }

We override the board drawing in viewSetupDoneScript.

tictactoe.viewSetupDoneScript := func()
begin

// Make an open cross-hatch (the default function does a closed board).
local height := :LocalBox().bottom - 1;
local width := :LocalBox().right - 1;
local xIncr := :squareWidth();
local yIncr := :squareHeight();
backgroundDrawing := [];

d e v e l o p Issue 17

22

for x := xIncr to width - xIncr by xIncr do
AddArraySlot(backgroundDrawing, MakeLine(x, 0, x, height));

for y := yIncr to height - yIncr by yIncr do
AddArraySlot(backgroundDrawing, MakeLine(0, y, width, y));

end

We can use the default tieGame function, which says the game is a tie if all the
squares are used, but we need to override winningMove.

tictactoe.winningMove := func(p, x, y)
begin

local ba := boardArray;
return

((ba[x][1] = p) and (ba[x][2] = p) and (ba[x][3] = p)) or
((ba[1][y] = p) and (ba[2][y] = p) and (ba[3][y] = p)) or
((ba[1][1] = p) and (ba[2][2] = p) and (ba[3][3] = p)) or
((ba[3][1] = p) and (ba[2][2] = p) and (ba[1][3] = p));

end

We also need to override makeComputerMove:

tictactoe.makeComputerMove := func()
begin

local moves := [];
local bestScore := -1000;
local newScore;
local x, y;
// Try each board position.
for x := 1 to squaresWide do

for y := 1 to squaresHigh do
if boardArray[x][y] = kEmptySquare then

begin
// Look ahead to score this move.
newScore := :tryMove(kUserPiece, kNewtonPiece, x, y);
// If this is the best one yet, remember only it.
if newScore > bestScore then

begin
moves := [];
bestScore := newScore;

end;
// If it's tied for best move, remember it too.
if newScore = bestScore then

AddArraySlot(moves, {mvx: x, mvy: y});
end;

USING PROTO TEMPLATES ON THE NEWTON March 1994

23

// If there are any good moves...
if Length(moves) > 0 then

begin
// Make the move.
local move := moves[Random(0, Length(moves)-1)];
:move(kNewtonPiece, move.mvx, move.mvy);

end
// If there are no good moves, make a random one and pray.
else :makeRandomMove(kNewtonPiece);

end

tictactoe.tryMove := func(d, p, x, y)
begin

// First, guess based on heuristics.
// Note: We use a quoted array here to save execution time; quoting
// it means there will be only one copy -- without the quote a new
// one would be constructed each time at run time. Of course, this
// also means we can't change the contents, but we don't want to.
local score := '[5, 0, 5, 5, 10, 5, 5, 0, 5][x+x+x+y-4];
// Make the move internally (we'll retract it later).
local ba := boardArray;
ba[x][y] := p;
squaresLeft := squaresLeft - 1;
// If it's a winner, great, give it a high score.
if :winningMove(p, x, y) then score := 100;
// If there's anything to look ahead to, do it.
else if (squaresLeft <> 0) and (d > 0) then

begin
local worstResponse := 1000;
local newResponse;
local x2, y2;
// Try every board position.
for x2 := 1 to squaresWide do

for y2 := 1 to squaresHigh do
if ba[x2][y2] = kEmptySquare then

begin
// How good is this one?
newResponse := :tryMove(d-1, -p, x2, y2);
// If it's a loser, give up quick.
if newResponse >= 100 then

begin
ba[x][y] := nil;
squaresLeft := squaresLeft + 1;
return -100;

end;

d e v e l o p Issue 17

24

// If it's the least bad one so far, remember that.
if newResponse < worstResponse then

worstResponse := newResponse;
end;

score := score - worstResponse;
end;

// Retract the move.
ba[x][y] := kEmptySquare;
squaresLeft := squaresLeft + 1;
return score;

end

That’s it. As you can see, most of the real work was done by protoBoard.

GOMOKU
For Gomoku, we provide the name and board size but leave the default piece pictures
and board drawing.

gomoku := { ... name: "Gomoku", squaresWide: 8, squaresHigh: 8 ... }

The tieGame function in protoBoard is fine, but winningMove needs to be
overridden. We also need to override makeComputerMove and makeRandomMove
(which makeComputerMove calls) because the default version makes some really
stupid moves in the case of Gomoku (you shouldn’t move on the edge of the board if
you can avoid it). You can find the code for these functions, along with the rest of the
source code, on this issue’s CD. Again, most of the work was done by protoBoard.

REVERSI
For Reversi, as for Gomoku, we define the name and board size but use the default
piece pictures and board drawing. We also define a setupBoard function which places
the first four pieces on the board.

Making a move in Reversi is more complex than in the other games, since existing
pieces must be reversed. To do this, we override the move function in protoBoard.
Determining whether a move is valid is also more complex, since we require that the
user flip some pieces. There are no “winning moves” per se. Rather, the game is
scored when there are no more legal moves. We make this determination in
makeComputerMove, and then echo it in winningMove and tieGame. Again, see the
CD for the complete source code.

THE TAPBOARD APPLICATION TEMPLATE
While the functionality of making a move by either side is encapsulated in the game
board templates and the protoBoard proto template, keeping track of whose turn it is
and which game is being played is the responsibility of the application template. This

USING PROTO TEMPLATES ON THE NEWTON March 1994

25

template also provides Help and Credits buttons and coordinates activities when the
application opens and closes.

The Your Move and Computer’s Move radio buttons are simple protoRadioButton
templates enclosed in the protoRadioCluster. After a user move is recorded, the
Computer’s Move button is turned on. The viewIdleScript of protoBoard notices this
state and makes the computer’s move, which in turn sets the Your Move radio button.

The game selection buttons are also protoRadioButton templates within a
protoRadioCluster named gamePicker. When the value of these buttons changes, the
gamePicker clusterChanged function starts the appropriate game by calling the
newGame function in the application. The newGame function finds the appropriate
game board and makes it visible; then it starts with the user’s turn.

gamePicker.clusterChanged := func()
begin

// Find the name of the new button.
foreach t in stepChildren do

if t.buttonValue = clusterValue then
begin

// Found it; start a new game with that name.
:newGame(t.text);
return;

end
end

TapBoard.newGame := func(nm)
begin

// Look through all the boards.
local b;
foreach b in boardList do

// Are we looking for the one that's currently displayed?
if nm = nil then

begin
// If so, and if this is it, clear it.
if Visible(b) then b:clearBoard();

end;
// If not, check if this is the one that's been specified.
else if StrEqual(b.name, nm) then

begin
// Set the current board, clear it, show it, and set the
// piece icons.
currentBoard := b;
b:clearBoard();
b:Show();

d e v e l o p Issue 17

26

player1Sample.icon := b.player1Piece;
player1Sample:Dirty();
player2Sample.icon := b.player2Piece;
player2Sample:Dirty();

end
// If this isn't it, hide it (harmless if already hidden).
else b:Hide();

// Always start with the user's turn.
:turn(kUserPiece);

end

As a shortcut, newGame uses boardList, an array that lists the available boards (one
for each of the three games). It could have searched through the entire view list,
but it’s much quicker to have an array that lists just the game boards. This array,
boardList, is created in the application’s viewSetupFormScript and filled in by
protoBoard’s viewSetupFormScript.

TapBoard.viewSetupFormScript := func()
begin

boardList := [];
. . .

end

protoBoard.viewSetupFormScript := func()
begin

// Register ourselves with the application.
AddArraySlot(boardList, self);
. . .

end

The newGame function also sets an application slot called currentBoard, which keeps
track of the currently displayed board.

The two application-level functions below make it easy to set and find out whose turn
it is. These functions are used within protoBoard and the game boards.

TapBoard.turn := func(p)
begin

userOrComputer:SetClusterValue(p);
end

TapBoard.isTurn := func(p)
begin

return p = userOrComputer.clusterValue;
end

USING PROTO TEMPLATES ON THE NEWTON March 1994

27

DISPLAYING INFORMATION
The announceWin utility function brings up protoGlance templates (text views that
appear for a brief time only) to announce game winning, losing, and tying. Other
utility functions bring up and remove the “Working...” display. And finally, two utility
functions bring up the help and credits protoFloatNGo templates (floating views with
close boxes). All of these templates are in linked subviews.

TapBoard.announceWin := func(p)
begin

// Make sure the current game display is up to date.
RefreshViews();
// Bring up the right glance view.
if p = kUserPiece then youWin:Open()
else if p = kNewtonPiece then iWin:Open()
else tie:Open();

end

TapBoard.startWorking := func()
begin

// Open the view.
working:Open();
// Force a refresh of anything that might need it; we're about to do
// lots of time-consuming work, so the system won't get a chance to do
// this otherwise.
RefreshViews();

end

TapBoard.stopWorking := func()
begin

working:Close();
end

TapBoard.announceHelp := func()
begin

help:Open();
end

TapBoard.announceCredits := func()
begin

credits:Open();
end

SAVING AND RESTORING THE STATE
When the application opens, viewSetupDoneScript checks whether there’s a saved
state in the System soup. If there is, it restores the state. When the application closes,

d e v e l o p Issue 17

28

viewQuitScript saves the state. A utility function, getStateEntry (described earlier),
returns the current state entry in the System soup, if there is one.

TapBoard.viewSetupDoneScript := func()
begin

// Find the saved state.
local stateEntry := :getStateEntry();
// Is there one?
if stateEntry = nil then

// If not, default to the first radio button.
gamePicker:setClusterValue(1)

else
begin

// If there is, restore the state from the entry.
gamePicker:setByName(stateEntry.name);
currentBoard:restoreState(stateEntry);

end;
end

gamePicker.setByName := func(nm)
begin

// Find the radio button with this name and set it.
local t;
foreach t in :ChildViewFrames() do

if StrEqual(t.text,nm) then
begin

if clusterValue <> t.buttonValue then
:setClusterValue(t.buttonValue);

return;
end

end

TapBoard.viewQuitScript := func()
begin

// If any board is displayed (which it always will be -- we're just
// being paranoid), save the current state.
if currentBoard <> nil then currentBoard:saveState();

end

REMOVING THE SOUP ENTRY
When the application is removed from the Newton, it needs to remove the entry in
the System soup so that it doesn’t permanently waste Newton memory. This is done
in the RemoveScript function. Note that this function is called both when the
application is removed and when the card it’s on is taken out of the Newton. We
could distinguish these two cases, and not remove the soup entry if it’s simply the

USING PROTO TEMPLATES ON THE NEWTON March 1994

29

card being pulled out, but we want to make sure we don’t clutter up precious memory
with game trivia if the card is never reinserted.

RemoveScript := func(packageFrame)
begin

local cursor := Query(GetStores()[0]:GetSoup(ROM_SystemSoupName),
{type: 'index, indexPath: 'tag,
startKey: kPackageName, validTest: func(item)

StrEqual(item.tag, kPackageName)});
if cursor:Entry() <> nil then

EntryRemoveFromSoup(cursor:Entry());
end;

ALLOWING FOR OTHER SCREEN SIZES
We also need to consider the possibility that TapBoard may be used on a Newton
with a screen size larger or smaller than that of the first Newton model (240 x 336
pixels). First we define all views in the bottom half of the application window to be
relative to the bottom of the view, and views in the top half relative to the top.
Leaving about 20 pixels of space between these two sets of views allows the
application to shrink by that much, or to grow by a bit. We then need to dynamically
set the bounds of the application to fit the screen, using the system function
GetAppParams. If the screen is much larger than 240 x 336 we center it instead. All
of this is accomplished in the application’s viewSetupFormScript:

TapBoard.viewSetupFormScript := func()
begin

. . .
// Remember the original dimensions in case we need them.
local originalWidth := viewBounds.right - viewBounds.left;
local originalHeight := viewBounds.bottom - viewBounds.top;
// Default the app bounds to the screen bounds (nice on small screens).
local ap := GetAppParams();
self.viewBounds := RelBounds(0, ap.appAreaTop,

ap.appAreaWidth, ap.appAreaHeight);
// But if the screen's too large for that to look good, center it.
// (We allow for a range of sizes to handle future screens.)
if ap.appAreaWidth > (originalWidth+20) then

self.viewBounds.right := originalWidth;
if ap.appAreaHeight > (originalHeight+20) then

begin
self.viewBounds.top := ap.appAreaTop +

(ap.appAreaHeight - originalHeight) div 2;
self.viewBounds.bottom := self.viewBounds.top + originalHeight;

end;
end

d e v e l o p Issue 17

30

SOME NEWTONSCRIPT EXERCISES
The following modifications to TapBoard would make good NewtonScript
programming exercises:

• Replace the three linked subviews used by announceWin with a
single template, with different text set programmatically within
announceWin.

• Move the Your Move and Computer’s Move radio buttons into the
protoBoard proto template. Consider the ways this simplifies the
application and the ways it complicates it.

• Add an elapsed time display showing how much total time the user
and the Newton have taken to make their moves.

• Improve the algorithm for playing Tic-tac-toe.

• Add Go to the set of games.

SUMMING UP
As you’ve seen, TapBoard reduces code size by using proto templates to abstract out
the redundant elements of the three games. This also reduces development time by
making the application simpler, and easier to understand and modify.

The protoBoard proto template used in TapBoard is fairly large, implementing a
substantial amount of functionality. Other uses of proto templates are much smaller,
ranging from custom button types to modified versions of standard views or even
completely new classes of templates.

Now you’re ready to write some proto templates of your own — assuming you’ve
ordered the Newton Toolkit from APDA. Be sure to share your protos with your
friends!

USING PROTO TEMPLATES ON THE NEWTON March 1994

31
THANKS TO OUR TECHNICAL REVIEWERS
Chris Christensen, Bob Ebert, Mike Engber,
Martin Gannholm, Kent Sandvik, Maurice Sharp,
Gregg Williams•

In this column, I’d like to bring a tool called
MessageWatcher to your attention. This tool, which is
provided on this issue’s CD, will help you understand
the messages sent to your QuickDraw GX printer
driver or printing extension when an application prints
a document through the QuickDraw GX system.

A LITTLE BACKGROUND
develop Issue 15 gave an overview of QuickDraw GX in
the article “Getting Started With QuickDraw GX” and
discussed the QuickDraw GX messaging system in
“Developing QuickDraw GX Printing Extensions.”
You can also learn about QuickDraw GX printing and
messaging in Inside Macintosh: QuickDraw GX Printing
Extensions and Drivers. If you’ve read these and don’t
need a refresher, you can just skip to the next section.

QuickDraw GX’s extensible printing architecture
makes writing printer drivers easier than ever. Easier
yet is writing printing extensions, which allow you to
modify the behavior of the QuickDraw GX printing
system (similar to the way system extensions let you
change the system by patching traps).

When an application prints through the QuickDraw
GX system, QuickDraw GX either performs the
requested task or sends a message (via the Message
Manager) to the printer driver to perform the task. The
QuickDraw GX printing system defines over 150
messages. For many tasks, QuickDraw GX provides a

default implementation for the associated message, but
sends a message to the driver anyway. The driver can
then perform the task in its own way or massage the
message parameters before forwarding the message on
to the default implementation. In a printing extension,
you can intercept and override any message before it
gets to the printer driver.

ABOUT MESSAGEWATCHER AND OUR EXAMPLE
With over 150 messages in the QuickDraw GX
printing system, it’s a little difficult to follow the flow of
the messages through the system or figure out their
default implementation. MessageWatcher helps you
with this by showing the messages being sent while an
application is printing a document. This “live” view is
very helpful toward understanding the calling chain
and hierarchy of messages.

The MessageWatcher application and system extension
are on this issue’s CD. To use MessageWatcher, first
drop the system extension into the System Folder and
reboot; then launch the MessageWatcher application.
Whenever any application initiates a print job, a
window corresponding to that job will be opened in
MessageWatcher and the messages sent as part of the
job will scroll past. The title of each MessageWatcher
window contains the internal ID of the job. (You
should view the internal ID of a job similar to the way
you view a file reference number today.)

The QuickDraw GX Finder printing extension (which
is part of the QuickDraw GX system extension) and
PrinterShare GX are treated like any other applications
printing through the QuickDraw GX printing system.
So they each have a print job associated with them, and
MessageWatcher displays windows for them as well. If
you were to create a desktop printer with the Chooser,
there would also be a window for the Chooser.

As an example, we’re going to print a document created
and displayed by the “All Shapes with Printing” sample
application, which is part of the sample code included
with QuickDraw GX. This sample creates all of the
shapes possible within the graphics system. Below is the
code that prints the page of shapes; keep it in mind

d e v e l o p Issue 17

PETE (“LUKE”) ALEXANDER will tell you that life at Apple is
hard. He spends long days (and frequent nights) with smart people
trying to figure out what the right thing is and how to make it
happen. Then he gets sent all over the world to tell people about
what’s new and happening. Last year Luke went to London and
walked around the streets for ten hours trying to fend off jet lag
and punk rockers, to Madrid where he had an unforgettable
chocolate shake, to Milan where he saw the basement of the Apple
building and tried not to take it personally that they wouldn’t let

him near a window, to Munich and Frankfurt where he finally
understood why Germans gush about their beer, and to Sweden
where he gave his QuickDraw GX talk in a discotheque filled with
engineers who couldn’t get the beat. After these whirlwind tours,
Luke soars above the stress in his glider, but only occasionally
takes an Apple Evangelist along, since they seem to think they've
got connections up there and are forever telling him how to fly. Yes,
life at Apple is hard, but after five years, Luke’s beginning to get
the hang of it.•

32

PRINT HINTS

TRACKING
QUICKDRAW GX
MESSAGES

PETE (“LUKE”) ALEXANDER

PRINT HINTS: TRACKING QUICKDRAW GX MESSAGES March 1994

33

while going through the example of using
MessageWatcher in the next section.

OSErr DoPrintOneCopy (WindowPtr myWindow)
{

Str255 windowTitle;
OSErr printError = noErr;

if (myWindow)
{

GetWTitle(myWindow, windowTitle);
// Start sending the job. The job has the
// same name as our window and contains
// one page. This name appears in the
// status messages sent to the desktop
// printer.
GXStartJob(gDocumentJob, windowTitle, 1);

// Send the entire page of shapes to the
// printer. (All the shapes being printed
// have been collected into the GX picture
// shape: gthePage.)
GXPrintPage(gDocumentJob, 1,

GXGetJobFormat(gDocumentJob, 1),
gthePage);

// Tell QuickDraw GX printing we're done
// sending the job, so terminate the
// spooling process.
GXFinishJob(gDocumentJob);

if (GXGetJobError(gDocumentJob) != noErr)
// Your error-handling code here!

}
}

We’re going to look at our sample application printing
to a LaserWriter II SC, so the message sequence
displayed by MessageWatcher contains messages that
are sent to a raster printer. Note that most of the
messages would be different if we were printing to a
PostScript® printer or to a plotter.

Each line in a MessageWatcher window consists of a
message preceded by one of the following labels: send

message, send object, and send object to. These labels
represent the similarly named API calls in the Message
Manager — for example, “send message” corresponds
to the SendMessage call. All the “send” labels are
roughly equivalent, so you’ll be able to follow along
well enough without distinguishing between them; if
you do want more information about the Message
Manager calls, see Chapter 6, “Message Manager,” in
Inside Macintosh: QuickDraw GX Environment and
Utilities.

While going through the various MessageWatcher
windows in the next section, I won’t bore you with a
line-by-line discussion of everything displayed in each
window. I’ll give you the general idea behind the
information presented; by checking out the
documentation and trying out MessageWatcher
yourself on different applications, you’ll be able to
figure out these details easily enough.

WHAT MESSAGEWATCHER DISPLAYS
The first time our sample application calls the
QuickDraw GX printing API, the QuickDraw GX
Finder printing extension initializes the default printer

THE RETURN OF 'STR ' (–8192)
In the Print Hints column in Issue 13 of develop, I
talked about the disappearance of 'STR ' (–8192)
and 'PAPA' (–8192) resources from a system running
QuickDraw GX and how your application should be
prepared to handle this situation. The 'PAPA' (–8192)
resource is still gone, but the 'STR ' (–8192) resource,
containing the name of the default printer driver, has
returned. Unfortunately, there are a few applications
that require this resource to be present to run
correctly — in some cases, to run at all. Since we
wanted old applications to have the highest possible
compatibility while printing through a QuickDraw GX
system, we put the resource back. However, as
mentioned in Issue 13, it’s still not a good idea to
depend on the information in 'STR ' (–8192).

and then shuts down. The MessageWatcher window
for this extension contains the following (the window
title is shown in boldface; the ID displayed in each title
will be different when you run MessageWatcher
yourself):

Finder: 0x0000fac4
send object to: initialize
send object: defaultPrinter
send object to: shutDown

You’ll also see PrinterShare GX start up a couple of
times: The first time, it performs some general spool
file and desktop printer queue management; it
examines all the spool files and makes sure that the
print jobs that are waiting are handled in the
appropriate order. The second time it runs, it starts
up the print job. The MessageWatcher window for
PrinterShare GX displays this:

PrinterShare GX: 0x0000fa3c
send object to: initialize
send object: defaultPrinter
send object to: initialize
send object: defaultPrinter
send object: defaultPaperType
send object: defaultFormat
send object: defaultJob

send object: defaultPaperType
send object to: shutDown

Notice that MessageWatcher indents some of
information in the window, allowing you to see the
message hierarchy. For example, the above window
shows that the recipient of the defaultJob message
sent the message in the indented line below it,
defaultPaperType.

The next application to send messages through the
system is our sample application, All Shapes with
Printing. In this case, we chose Print One Copy from
the File menu of the application to start the printing
process. The application starts by setting up various
default printing structures associated with the print job.

All Shapes with Printing: 0x00990c
send object to: initialize
send object: defaultPrinter
send object to: initialize
send object: defaultPrinter
send object: defaultPaperType
send object: defaultFormat
send object: defaultJob

send object: defaultPaperType

Now we’ll see the actual messages sent to print a
document. Our sample application is ready to start
up the print job and create the spool file. It uses
GXPrintPage to print the document; you’ll see the
startJob and finishJob messages in the MessageWatcher
window because GXPrintPage sends these messages in
its default implementation. Next, the data contained on
the page is spooled to disk. Finally, the print job is
finished, and the spool file is closed and waiting for
PrinterShare GX to find it and send it to the printer.

send object: startJob
send message: createSpoolFile
send object: jobStatus

send object: printPage
send message: StartPage

send object: jobStatus
send message: finishPage

send message: spoolPage
send message: spoolData
send message: spoolData
send message: spoolData
send message: spoolData
send message: spoolData

send object: finishJob
send message: completeSpoolFile

send object: spoolResource
send object: jobStatus

send object to: shutDown

The QuickDraw GX printing system is now ready to
send the data contained in the spool file to the printer.
PrinterShare GX starts by checking the status of the
printer and then writing (that is, sending) the data. It
continues to write the data and check the device status

d e v e l o p Issue 17

34

PRINT HINTS: TRACKING QUICKDRAW GX MESSAGES March 1994

35

until all the data is sent. If a status check were to reveal
that an error had occurred, the error would be available
via GXGetJobError to the driver or extension (not to
the application, which is usually out of the printing
process at this point). Once all the data has been sent to
the printer, PrinterShare GX checks the status of the
printer one last time, makes sure the print job was
successful, closes the spool file, and shuts down. We
now have a piece of paper coming out of the printer.

PrinterShare GX: 0x00092520
send message: getDeviceStatus
send message: writeData

send message: getDeviceStatus
lots of writeData and getDeviceStatus
messages to send the data to the printer

send message: writeData
send message: checkStatus

send object: jobStatus
send object: closeSpoolFile
send object to: shutDown

The MessageWatcher window for the QuickDraw GX
Finder printing extension shows the messages it
receives to update the status information being
displayed in the desktop printer’s window. In this case,
the status is updated six times during the process of
printing the document. To see exactly what status
information is being sent to the desktop printer’s
window, you could open the window yourself and take
a look. Remember, the messages will be slightly
different for different types of printers — PostScript,
raster (QuickDraw based), and plotter.

Finder: 0x000912dc
send object: writeStatusToDTPWindow
send object: writeStatusToDTPWindow
send object: writeStatusToDTPWindow
send object: writeStatusToDTPWindow
send object: writeStatusToDTPWindow
send object: writeStatusToDTPWindow

WATCH OUT NOW . . .
Following the flow of messages through the
QuickDraw GX printing system will give you a better
understanding of the calling chain and hierarchy of
messages that are sent while a document is being
printed. With MessageWatcher, you have the power to
peek into the world of QuickDraw GX messaging.
Happy exploring!

Buried deep within QuickDraw GX is an About box. The
exercise of how to get to this box is left for the reader.•

Thanks to Hugo Ayala, Tom Dowdy, and Dave Hersey for
reviewing this column.•

REFERENCES
• Inside Macintosh: QuickDraw GX Printer Drivers

and Extensions and Inside Macintosh: QuickDraw
GX Environment and Utilities. On-line versions
accompany QuickDraw GX releases; printed
manuals will soon be available (Addison-Wesley,
1994).

• “Getting Started With QuickDraw GX” by Pete
(“Luke”) Alexander and “Developing QuickDraw
GX Printing Extensions” by Sam Weiss, develop
Issue 15.

• “Print Hints: Looking Ahead to QuickDraw GX” by
Pete (“Luke”) Alexander, develop Issue 13.

A new format for standalone code in the PowerPC world brings
increased functionality and easier implementation. You’ll no doubt want
to port existing code resources and write plug-ins for the new platform.
Here you’ll learn how to do both while also retaining or building in the
ability to run the standalone code on the old 680x0 platform.

Standalone code is an important part of the Macintosh environment and will
continue to be in the age of the PowerPC processor. Such code takes many different
forms and serves many different purposes. It can serve as a definition function —
such as an MDEF or a WDEF — for Macintosh system software, act as a dynamic
extension to an application, or find other, more esoteric uses. In the PowerPC world,
it can also be used to port time-critical portions of an application written in 680x0
code.

This article shows you how to develop and package standalone code modules to run
in both the PowerPC and 680x0 worlds. We start by discussing the differences
between standalone code in the two runtime environments. Then we go through the
steps of compiling, linking, and packaging different types of standalone code, and
calling it from within your application. We look at the following:

• how an application can support a plug-in that contains code in
both the 680x0 and PowerPC formats, illustrated by preparing a
plug-in sort algorithm for a simple application called SuperSort

• how to use a similar mechanism to port time-critical portions of an
existing application to the PowerPC platform

• how to make an existing WDEF into a “fat” resource — one that
will work in either a 680x0 or a PowerPC environment, depending
on the machine executing the code

SuperSort, the plug-in, and the WDEF, along with their source code, are all on this
issue’s CD. All the code can run on either the 680x0 or the PowerPC platform,
although you do need MPW to compile it.

d e v e l o p Issue 17

TIM NICHOLS (Internet tim.nichols@3do.com)
says the eight years he spent earning his
bachelor’s and master’s degrees at UC Santa
Barbara in between trips to the beach were the
best years of his life. At Apple, he was a member
of the PowerPC software team, where he
developed some of the first PowerPC applications
for demos and performance evaluation. He now
works at 3DO in their ROM/OS group doing

drivers and low-level system software. When not
working, he plays softball and volleyball, fueling
his activity with pizza and burritos.•

36

TIM NICHOLS

STANDALONE

CODE ON

POWERPC

This article assumes that you know how to write a standalone code resource for the
680x0 platform and that you have a general grasp of PowerPC technology and
runtime architecture.

THE STORY ON STANDALONE CODE
The format of standalone code has changed in the PowerPC world. Standalone code
in the 680x0 world is packaged in resources such as WDEFs and INITs, with limited
functionality and significant restrictions on their implementation. PowerPC
standalone code, on the other hand, can be packaged as a resource or stored in the
data fork of a file and enjoys a more flexible and powerful mechanism for managing
global data and importing and exporting functions based on shared libraries.

STANDALONE CODE IN THE 680X0 WORLD
In the 680x0 world, developers can write two types of code: applications and
standalone code. Applications have special privileges that aren’t available to
standalone code. Perhaps the most notable is the ability to easily access global and
static data via the A5 world. The A5 register is maintained by the Process Manager
for each application, to facilitate access to the QuickDraw global data as well as
application global and static data. All references to global and static data by the
application are made via the A5 register.

By contrast, standalone code resources have no A5 world and therefore don’t have
access to global or static data. This can limit the functionality of the code. There are
mechanisms to get around this limitation, but they differ from one environment to
the next. THINK C has a mechanism for using A4 as a pointer to global data for
standalone code, while MPW uses special functions and macros to create a pseudo A5
world for the code resource. Both of these place a burden on developers by forcing
them to set up and restore the appropriate registers before they can access their
globals.

STANDALONE CODE IN THE POWERPC WORLD
In the PowerPC world, there’s only one type of code, known as a code fragment. A
code fragment is a collection of code and its corresponding data. Fragments can be
packaged in a number of different kinds of containers. A PowerPC application
consists of one or more code fragments packaged in the data fork of the application.
Part of the Macintosh system software consists of code fragments packaged in the
Macintosh ROM. Standalone code is really just another code fragment packaged in a
resource or in the data fork of a file.

Whether standalone code is packaged in a resource or in the data fork depends on
how it’s being used. If you’re writing a PowerPC version of an existing code resource
such as a WDEF or an XCMD, the standalone code should be packaged in a
resource, for purposes of compatibility. (The existing code only knows to look for

STANDALONE CODE ON POWERPC March 1994

37
For more on standalone code in the 680x0
world, see the Macintosh Technical Note “Stand-
Alone Code, ad nauseam” and the article
“Another Take on Globals in Standalone Code”
in develop Issue 12 •

For an overview of PowerPC technology
and runtime architecture, see the article “Making
the Leap to PowerPC” in develop Issue 16 and
the soon-to-be-available Inside Macintosh:
PowerPC System Software.•

code in resources of a specific type; for example, the Window Manager only looks for
window definition functions in resources of type 'WDEF'.) If, on the other hand,
you’re developing a new standalone code module as a plug-in or to accelerate some
part of your application, the standalone code should be stored in the data fork of your
application or plug-in file to fully exploit the PowerPC runtime environment. Code
can be loaded rapidly and efficiently from the data fork of a file without using a large
memory footprint, thanks to the mechanism of file-mapped virtual memory.

Fragments can export symbols (code or data) by name to other fragments and can
import symbols by name from other fragments. Each fragment contains an array of
pointers known as the table of contents (TOC), which allows the fragment to share
symbols with other fragments and is used to reference the fragment’s own global and
static data. Each entry in the TOC is a reference to either an imported symbol from
another fragment or a static data item in the fragment itself. For example, suppose
the code fragment Foo exports a procedure DoThis, contains a single global variable
gMyGlobal, and imports a function DoThat from the shared library Bar. The TOC
will contain an entry for each one of these symbols (DoThis, DoThat, gMyGlobal),
and each entry will point to the address of the corresponding symbol, as shown in
Figure 1.

The R2 register in the PowerPC processor is dedicated to storing the currently active
TOC and thus is sometimes called the RTOC. The RTOC is saved, modified, and
restored each time a new fragment is invoked. Because the TOC allows references to
global and static data, it’s analogous to the A5 world in the 680x0 environment.
However, it’s important to emphasize that in the 680x0 environment only
applications have an A5 world and easy access to global and static data, while in the
PowerPC environment, all fragments have a TOC and easy access to global and static
data. So the great thing about standalone code being handled as a code fragment is
that you can have globals in your WDEFs, INITs, and plug-ins without having to
jump through any hoops at all!

d e v e l o p Issue 17

38

gMyGlobal

DoThat

Foo’s TOC Code fragment Foo Shared library Bar

Pointer to�
gMyGlobal

DoThisPointer to�
DoThis

Pointer to�
DoThat

Figure 1
A Fragment’s Table of Contents

Because a fragment can contain symbols from other fragments, these symbols must
be resolved or bound at run time. This preparation is performed by the Code
Fragment Manager. In most cases, such as when a PowerPC application is loaded,
this is done transparently. Standalone code can be automatically prepared by the
Mixed Mode Manager, but the preferred method is to have your application call the
Code Fragment Manager directly. Fortunately, the Code Fragment Manager makes
this an easy task, as we’ll see later. Once a fragment has been prepared, the Code
Fragment Manager returns a connection ID to identify the fragment. This
connection ID is used when unloading the fragment, similar to a refNum that’s
returned when opening a file and later used to close the file.

The Code Fragment Manager has the ability to resolve symbols by name, so you can
export any routine or data by name and then import that symbol in another fragment.
This allows you to store multiple routines in your fragment, export them, and then
call each routine when necessary by asking the Code Fragment Manager for its
address. This is much nicer than having a dispatch-based, single-entry-point code
resource as we do in the 680x0 environment.

CALLING STANDALONE CODE
At any given time a PowerPC processor–based Macintosh may be executing in the
native PowerPC runtime architecture or in an emulated 680x0 runtime architecture.
The switching between the two runtime environments is transparent and handled by
the Mixed Mode Manager. And thanks to the Mixed Mode Manager, code from one
instruction set can call code from another instruction set, which is just what happens
when a 680x0 application calls a standalone code module written in PowerPC code or
a native PowerPC application calls a standalone code module written in 680x0 code.

So whenever we’re running on a PowerPC processor–based Macintosh and our
application calls standalone code, we’re presented with an interesting problem. Given
a pointer to standalone code, how do we know what kind of code it points to? In the
680x0 world, a procedure pointer is simply the address of a procedure. But in the
PowerPC environment, a procedure pointer is actually the address of a transition
vector, which in turn contains pointers to the actual routine and the TOC for the
fragment. Figure 2 shows the difference.

To solve this problem, the Mixed Mode Manager creates a generic procedure pointer
known as a UniversalProcPtr (UPP). A UPP can point to one of two things: a 680x0
procedure (in which case the UPP is really just a 680x0 ProcPtr in disguise) or a
routine descriptor (data type RoutineDescriptor). A routine descriptor is a data
structure that describes the instruction set, parameters, and calling convention of the
routine. The Mixed Mode Manager looks at the routine descriptor to determine
whether a mode switch is necessary and, if so, how to perform the switch.

To run in a PowerPC environment, we use a UPP anywhere we would formerly have
passed a ProcPtr, such as in specifying a dialog filter procedure. In the case of 680x0

STANDALONE CODE ON POWERPC March 1994

39

standalone code (which typically is stored in a resource), we indirectly pass a ProcPtr,
and thus a UPP, to the calling routine via the handle to the resource. For a PowerPC
code resource (or for a “fat” resource), we have to replace this ProcPtr with a UPP,
which points to a routine descriptor describing the routine in our code resource.
Figure 3 compares the forms taken by the three different kinds of code resources
(680x0, PowerPC, and fat).

Now that you have the necessary background information on standalone code, we can
move on to demonstrate how to handle three different types of standalone code: a
universal plug-in module, a module to port time-critical code, and a fat resource.

d e v e l o p Issue 17

40

680x0�
code

PowerPC�
code

Transition vector

Code pointer

TOC pointer

680x0�
procedure�

pointer

PowerPC�
procedure�

pointer

Figure 2
680x0 and PowerPC Procedure Pointers Compared

PowerPC�
code

Routine�
descriptor

Routine�
descriptor

680x0�
code680x0

PowerPC

Fat

680x0�
code

PowerPC�
code

Figure 3
Forms of Code Resources Compared

A UNIVERSAL PLUG-IN MODULE
Plug-ins are a popular way for third-party developers to extend the functionality of an
application. To demonstrate how to create and support a universal plug-in module —
one that will run in either the PowerPC or the 680x0 world — we’ll use the example
of a plug-in module for an application called SuperSort, which you’ll find on this
issue’s CD.

SuperSort is a simple application that visually sorts data represented as bars of
varying height according to a specified algorithm. SuperSort has two built-in
algorithms — bubble sort and quick sort — and can add new algorithms through a
plug-in mechanism. We’ll compile and package a shell-sort algorithm into a plug-in
that will work with either the 680x0 or the PowerPC version of SuperSort. The
application will pick the correct version of the plug-in automatically at run time.

EXAMPLE CODE
Below is the code for our plug-in sort routine that implements the shell-sort
algorithm. ShellSort’s data parameter is a pointer to the data to be sorted, the size is
the number of elements to be sorted, and the swap parameter is a callback procedure
to SuperSort to animate the sort.

#include "SortPlugIn.h"

#if powerc
#include <MixedMode.h>
ProcInfoType swapPI = kCStackBased

| STACK_ROUTINE_PARAMETER(1, kFourByteCode)
| STACK_ROUTINE_PARAMETER(2, kFourByteCode);

#endif

void ShellSort(DataPoint *data, short size, SwapProc swap);

void ShellSort(DataPoint *data, short size, SwapProc swap)
{

short i, j, incr;

incr = size / 2;
while (incr > 0) {

for (i=incr; i<size; i++) {
j = i - incr;
while (j >= 0) {

if (data[j].n > data[j + incr].n) {
#if powerc

// We must use CallUniversalProc since we will be passed a
// UPP for the SwapProc.
CallUniversalProc(swap, swapPI, &data[j], &data[j + incr]);

STANDALONE CODE ON POWERPC March 1994

41
For details on the shell-sort algorithm,
see any book on algorithms, such as
Fundamentals of Computer Algorithms by
Horowitz and Sahni or Data Structures and
Algorithms by Aho, Hopcroft, and Ullman.•

#else
// If we're 680x0, we can just call the proc directly.
// MixedMode will handle switching if swap is a UPP.
(*swap)(&data[j], &data[j + incr]);

#endif
j -= incr;

} else
j = -1;

}
}
incr /= 2;

}
}

COMPILING, LINKING, AND PACKAGING
We execute the following commands to compile and link this procedure in order to
create the 680x0 version stored in a 'SORT' resource:

C ShellSort.c -o ShellSort.o
link -t 'rsrc' -c 'RSED' -m ShellSort -rt SORT=128 ShellSort.o ∂

-o ShellSort.rsrc

We compile and link the procedure again to create the PowerPC version to be stored
in the data fork. The output of the PowerPC linker is known as an XCOFF (extended
common object file format) file. This is a bloated file that we then strip to turn into a
leaner file known as a PEF file (your guess as to what PEF stands for is as good as
any). Here are the commands:

PPCC -w conformance -appleext on -sym full ShellSort.c -o ShellSort.c.o
PPCLink -main ShellSort -export ShellSort ∂

ShellSort.c.o ∂
"{PPCLibraries}"StdCRuntime.o ∂
"{PPCLibraries}"PPCCRuntime.o ∂
-o ShellSort.xcoff

makepef ShellSort.xcoff -e ShellSort ∂
-o ShellSort.pef

Now that we have the two pieces, we join them together:

duplicate -y -d ShellSort.pef ShellSort
duplicate -y -r ShellSort.rsrc ShellSort
SetFile ShellSort -t 'SORT' -c 'TimN'

The resulting file, ShellSort, is our plug-in that can be executed on either the 680x0
or the PowerPC platform. The code fragment that’s stored in the data fork will be

d e v e l o p Issue 17

42

loaded, prepared, executed, and unloaded by the PowerPC version of the SuperSort
application, while the code contained in the 'SORT' resource will be loaded,
executed, and unloaded by the 680x0 version.

CALLING THE PLUG-IN
When calling a universal plug-in, your native PowerPC application should first check
to see whether there’s a code fragment in the data fork of the plug-in, using the Code
Fragment Manager routine GetDiskFragment. If so, the pointer returned by
GetDiskFragment can be used to call the module. If not, the application should then
look for the appropriate plug-in resource in the resource fork of the plug-in.

GetDiskFragment locates and loads a fragment found in the data fork of a file.

OSErr GetDiskFragment(FSSpecPtr fileSpec, long offset, long length,
Str63 fragName, Mask findFlags, ConnectionID *connID,
Ptr *mainAddr, Str255 errName);

The parameters are as follows:

fileSpec The file to check for a fragment
offset Offset into the data fork where the fragment resides
length The length of the fragment, in bytes
fragName The name of the fragment, used for debugging only
findFlags The operation to be performed on the fragment
connID The fragment connection ID
mainAddr The main entry point of the fragment
errName The error string returned if the call fails

Here’s an example of how you might call a universal plug-in:

Handle myProcHandle;
MyProcType myProcPtr;
OSErr err;
ConnectionID connID;

err = GetDiskFragment(theFile, 0, 0, theFile.name, kLoadNewCopy,
&connID, &myProcPtr, errName);

if (err == noErr) {
/* We have a fragment, ladies and gentlemen! */
(*myProcPtr)(p1, p2, p3);
CloseConnection(connID);

} else
{

/* We have a resource. */
myProcHandle = Get1Resource(kMyCodeType, kMyCodeID);

STANDALONE CODE ON POWERPC March 1994

43

if (myProcHandle != nil) {
HLock(myProcHandle);
myProcPtr = (MyProcType)*myProcHandle;
#if powerc

CallUniversalProc(myProcPtr, kMyProcInfo, p1, p2, p3);
#else

(*myProcPtr)(p1, p2, p3);
#endif
HUnlock(myProcHandle);
ReleaseResource(myProcHandle);

}
}

The address that’s returned is whatever symbol was defined as the main entry point
during the linking of the PowerPC code. Because this is a true pointer to the routine
and not a routine descriptor, it can be dereferenced and called directly as with any
other ProcPtr you may be used to.

If your fragment has multiple entry points, you can use the Code Fragment Manager
function FindSymbol after loading the fragment via GetDiskFragment in order to
locate a particular symbol by name. The FindSymbol routine returns the address of
the symbol you request.

A MODULE TO PORT TIME-CRITICAL CODE
To port only time-critical portions of your application, you would use a technique
similar to the one just described. Factor out the code whose execution you want to
accelerate, create a fragment, and package the fragment in the data fork of your
application. In your application’s initialization code, call the Code Fragment Manager
to get the entry point to this fragment from your application’s data fork and store this
pointer. When you no longer need the pointer, call the Code Fragment Manager to
close the connection to the code fragment.

Your code fragment will need a routine descriptor as its main entry point since it will
be called from 680x0 code. To make a routine descriptor your main entry point,
declare a global routine descriptor in your code that describes the fragment’s main
entry point. When you link the resulting object file, tell the linker to use this global
routine descriptor rather than the actual code entry point as the main entry point.

Here’s an example of using a global routine descriptor as an entry point to a
fragment:

RoutineDescriptor MyEntryPointRD =
BUILD_ROUTINE_DESCRIPTOR(kMyEntryPointProcInfo, MyEntryPoint)

d e v e l o p Issue 17

44

When we go to link this code, we tell the linker that the main entry point is our
routine descriptor.

link -main MyEntryPointRD -export MyEntryPointRD {MyObject} {MyLibs} ∂
-o {MyXCOFF}

A FAT RESOURCE
Although existing resources can run on a PowerPC processor–based Macintosh
thanks to the 680x0 emulator, they run much more slowly than they would if they
were written in native PowerPC code. If you make an existing resource “fat,” it will
work in either the 680x0 or the PowerPC environment and you won’t need to ship
two different versions of your resource. For example, if you have a fat WDEF, the
code will run as usual on the 680x0 platform but will execute as native PowerPC code
on the PowerPC platform, with the Macintosh system software choosing the correct
code at run time.

CREATING A FAT RESOURCE
There’s a template defined in MixedMode.r that allows easy creation of fat resources.
We’ll create a fat resource version of a WDEF to show how it’s done. We won’t
present all of the code here but simply the steps involved in making the WDEF into a
fat resource. The code for the WDEF is on this issue’s CD along with an application
called TestWDEF that shows the WDEF working.

Recall from our earlier discussion that we call a code resource through a ProcPtr,
which in this case is a dereferenced resource handle. That means that we need to
create a routine descriptor for our PowerPC version of the WDEF so that the Mixed
Mode Manager can invoke a mode switch, if necessary, when the system software
calls the WDEF. This is consistent with the requirement that all ProcPtrs be replaced
with UPPs in native PowerPC code.

Here’s an example of a fat resource Rez definition:

#include "MixedMode.r"

type 'WDEF' as 'sdes';

resource 'WDEF' (128) {
0x00003BB0, // 680x0 ProcInfo
0x00003BB0, // PowerPC ProcInfo
$$Resource("WDEF.rsrc", 'oCod', 128), // Name, type, ID of resource

// containing 680x0 code
$$Resource("WDEF.rsrc", 'pCod', 128) // Name, type, ID of resource

// containing PowerPC code
};

STANDALONE CODE ON POWERPC March 1994

45
MixedMode.r is part of the Macintosh on
RISC Software Developer’s Kit, soon to be
available from APDA.•

The resource type 'sdes' is defined in MixedMode.r. The 'sdes' resource template
inserts into the start of your resource some 680x0 code that checks whether you’re
running on a PowerPC platform. If so, it copies your PowerPC code to the start of
the resource data in memory and calls the PowerPC code via a UniversalProcPtr
embedded in the resource at the start of the PowerPC code. Once the PowerPC code
has been copied, each subsequent call to the resource goes straight to the PowerPC
code, bypassing the initial checks. If you’re running on a 680x0 platform, the same
process occurs, but instead the 680x0 code is copied over the resource data in
memory. All of this is done transparently by the 'sdes' resource template.

CALLING THE FAT RESOURCE
If your fat resource was created using the template in MixedMode.r, you don’t have to
change your calling code to execute the PowerPC code fragment. Calling PowerPC
standalone code is exactly the same as calling 680x0 code. Due to the magic of the fat
resource, the calling code doesn’t have to know the PowerPC processor even exists. It
simply grabs the resource and calls it.

Here’s what the code looks like:

Handle myProcHandle;
MyProcType myProcPtr;

myProcHandle = Get1Resource(kMyType, kMyID);
if (myProcHandle == nil) {

// Handle the error.
. . .

} else
{

HLock(myProcHandle);
myProcPtr = (MyProcType)*myProcHandle;
(*myProcPtr)(/* Params go here. */);
HUnlock(myProcHandle);
ReleaseResource(myProcHandle);

}

When this code is compiled into 680x0 code, the parameters are placed on the stack
and the actual routine is called via a 680x0 JSR(A0) instruction. When the JSR
instruction is executed, the pointer in A0 points to a routine descriptor, not to 680x0
code. This causes the emulator to invoke the Mixed Mode Manager, which then
performs the necessary context switch, automatically prepares the fragment for
execution, and calls the PowerPC code. Upon exit from the PowerPC code, the
Mixed Mode Manager performs a switch back to the emulated 680x0 environment
and execution continues as if the call were to 680x0 code. The calling code never
knows the difference.

d e v e l o p Issue 17

46

NOW WHAT?
Now that you’ve learned the basics of standalone code on the PowerPC platform, you
can start thinking about what you can do with your application or existing code
resource to exploit the speed of the PowerPC processor. A good exercise is to consult
your favorite algorithm book and create your own SuperSort plug-in using a different
algorithm, or to recompile your favorite WDEF or other code resource into a fat
resource that you can run on any Macintosh, whether PowerPC processor–based or
680x0-based. Remember to package your new code fragments in the data fork, and
your recompilations of existing resources as resources. Then watch your creations
take off!

STANDALONE CODE ON POWERPC March 1994

47
THANKS TO OUR TECHNICAL REVIEWERS
Erik Eidt, Jim Gochee, Ed Navarrete, Jim Reekes•

REFERENCES
• “Making the Leap to PowerPC” by Dave Radcliffe, develop Issue 16.

• “Another Take on Globals in Standalone Code” by Keith Rollin, develop Issue 12.

• Macintosh Technical Note “Stand-Alone Code, ad nauseam” (Platforms & Tools
35).

• Data Structures and Algorithms by Alfred V. Aho, John E. Hopcroft, and Jeffrey D.
Ullman (Addison-Wesley, 1983).

• Fundamentals of Computer Algorithms by Ellis Horowitz and Sartaj Sahni
(Computer Science Press, 1978).

• Inside Macintosh: PowerPC System Software (Addison-Wesley, 1994).

In the interest of pushing back the boundaries of
human knowledge in my own small way, I decided to
conduct a little survey via e-mail. I asked only one
question:

What’s so interesting about programming computers,
anyway?

I sent out 87 letters and received 37 direct responses, a
43% return rate! This is a fantastic return rate for a
survey. As one respondent wrote: What an interesting
survey! Getting hackers to talk about themselves should be
easy!

It was.

To alleviate your suspense, here are the top two reasons
programmers program, according to my survey:

1. Programmers like solving problems and puzzles.
(49%)

2. Programming is a creative outlet. (36%)

In the survey itself I included some hypothetical
answers to my own question, as follows:

Do you just like doing puzzles? Is it the money? Was it a
horrible accident, and you were supposed to be a doctor
when you grew up? Is it because you’re really an artist,
and computers are the best medium around? Is it because

it’s the only profession where you don’t need to wear shoes
to meetings? Is it because you get to hang out with smart
people?

Unfortunately, while this accurately conveyed my
enthusiasm for the subject, it also completely shredded
any objectivity my survey might have had, and skewed
the results sharply toward the tight, square little box of
my preconceptions. Note that the top reason appears in
this list, and furthermore it appears first. Coincidence?
I think not. As one alert respondent pointed out, I even
blurred the important distinction between what makes
programming interesting and what makes it a nice
business to be in. Sheesh.

Abandoning rigor and embracing whimsy, I decided to
dump all the responses into one big text file and do a
word frequency analysis of the whole thing, logging
how many times each word appeared. Ignoring the
common words like the and the expected words like
program, the winner was problem, at 12 occurrences.
Game came in a close second, at 11 appearances. Three
words tied for third place, at 8 occurrences: fun,
interesting, and think. Now this is a satisfying analysis!

Other frequently appearing words were these: puzzle,
art, control, creation, enjoy, paid, challenge, complex,
efficient, god, high, hooked, money, music, play, and solving.
Taken together, they make a strangely accurate mantra
about what programming is like, and probably describe
in a more complete way than any individual answer
why people program.

But let’s look again at those top two reasons. In second
place we have “Programming is a creative outlet.” That
fact was mentioned over and over again, but creativity
comes in many varieties, and it’s interesting to look at
the metaphors people chose to describe the act of
writing software. Interestingly, they fell into three
very distinct categories: programmer as mechanic,
programmer as artist, and programmer as God.

The similarities between computer programming and
mechanical engineering may be deeper than it seems at
first glance:

d e v e l o p Issue 17

DAVE JOHNSON’s favorite book between the ages of 5 and 11
was the World Book Encyclopedia. Sometimes in the early
mornings, before anyone else was awake, he’d sneak out of bed,
creep quietly through the dark and silent house to the living room,
and slip a volume from the shelf. (“M” is fondly remembered to this
day: matches, monsters, motors . . .) Stopping off in the kitchen for
a stack of cookies, he'd make his way back to his bed, and stay
there reading and generating crumbs as the sun came up.•

48

THE VETERAN
NEOPHYTE

WHY WE DO IT

DAVE JOHNSON

THE VETERAN NEOPHYTE March 1994

49

I got hooked on erector sets when I was young.
— John Powers

But if programmers are just frustrated machinists, then
why don’t they get up from their computers and build
real machines? Here’s why:

On a computer, I can build an amazingly fantastic and
elegant gadget, with thousands of working parts all
cooperating pleasantly with one another, and I never have
to get my hands dirty.
— Jeremy Nguyen

If you’re willing to build your machines behind the
glass of a computer monitor, to build them out of
logical stuff instead of real stuff, then suddenly the
landscape of possible machines becomes effectively
infinite. You can build any machine you can think of,
and all those pesky, annoying details like friction and
inertia and tensile strength just fall away. For people
who like to design machines, and especially for those
who aren’t so keen on the grease and skinned knuckles,
this is a powerful attraction.

Other people chose to compare programming with
creating art:

I’m not very good at art, but when I write something
that works well I feel like an artist creating a piece of
artwork.
— Kevin Mellander

My father is a painter, and I grew up watching him
continually producing new artwork . . . Software is just
another medium, less messy, easier to change.
— Fred Huxham

Programming is definitely a means of expression, and
unlike other media software can simulate every other
medium; in Alan Kay’s words it’s a meta-medium. For
those with an artistic leaning this is rich ground,
indeed: you can create your art and you can create new
ways of creating art.

My own favorite creation metaphor is programmer as
God:

I like it because you can play God, albeit on a microscopic
scale. It’s hard to explain, but writing code is like creating
new life.
— Dave Hersey

It is the closest I can get to being God (without lifetimes
of sadhana). I get to sculpt a little “life-form” that, while
admittedly unsophisticated, has a satisfying degree of
autonomy.
— Corey Vian

Since software is something that’s dynamic in time and
semi-autonomous, it can fairly convincingly imitate
living things, in much the same way that machinery
often can. But since the software “machines” that
computers allow us to construct can be orders of
magnitude more complex than machines in the real
world, their resemblance to life can be much more
compelling, much more striking.

The joy of solving problems (or the compulsion to solve
them, as the case may be) seems to be the major reason
people program. My favorite survey response of all
sums this up nicely:

The reason I program is because I’m a compulsive
problem solver and my computer is a never-ending source
of problems.
— Craig Prouse

It’s the twin meaning of “never-ending” that I love so
much here. The fact that the problems never end is one
of those “both blessing and curse” features that
computers seem to overflow with. On the one hand, it
means that we have an inexhaustible source of puzzles
and problems to slake our thirsts, but on the other
hand it means that we can never really be finished, and
like Sisyphus rolling his stone up the hill, we are
doomed to repetitive toil, solving the same kinds of
puzzles over and over again.

Here are some of the other reasons people gave, which
didn’t fall neatly into any category:

It’s basically because I have all these ideas in my head,
and a computer is the best way to get them OUT of my
head . . .
— Jeff Barbose

Solving the problems is fun, but I must admit that I
enjoy the company of the machine — it’s not every day
you meet somebody who will associate with you
unconditionally.
— Steve Beitzel

I program to get back at my senior year English teacher.
I once got a bad grade on an English paper, and she
couldn’t give me any concrete reasons why. She just didn’t
like it. The computer, on the other hand, always gives me
a reason why I’m incorrect. It’s a game I play with my
Mac . . . There are a bunch of rules and it tells me
(usually via a bus error) that I broke one.
— Konstantin Othmer

It’s the one thing in my life that is easy to debug.
— Michael Weingartner

These last two hint at something else that I think might
be important. In sharp contrast to the real world, the
world of the computer is reassuringly knowable. What
this means is that computer problems always have answers.
There is always a discoverable reason behind a
computer’s behavior, and I can’t help wondering
whether this is one of the major reasons people get
such satisfaction from programming.

Most questions we ask about the real world turn out to
be hopelessly complicated. How can we improve the
economy? No neat and tidy answer to that one. Why
does your child love those particular red plastic boots
so much? That’s not really answerable in any complete
way. Why is ice slippery? Why is the sky blue? How do
birds know when it’s time to fly south? None of these
questions have clean answers.

Ironically, though, there seems to be a basic human
need to find answers. Look at the huge amount of time
and energy we spend trying to discover and proclaim
truths about our world. Religion, art, and science are all
manifestations of the human desire to understand. So
it’s no surprise that computers, with their fantastically
complex but ultimately knowable behavior, are
extremely satisfying artifacts to spend time grappling
with. Finding the answers can be enormously
challenging, but there’s always an answer to be found:

It gives me one thing I *know* I can boss around.
— Jim Luther

Amen.

d e v e l o p Issue 17

Thanks to all the survey respondents and to Jeff Barbose, Michael
Greenspon, Bill Guschwan, Mark (“The Red”) Harlan, Bo3b
Johnson, Lisa Jongewaard, and Ned van Alstyne for their always
enlightening review comments.•

Dave welcomes feedback on his musings. He can be reached
at JOHNSON.DK on AppleLink, dkj@apple.com on the Internet, or
75300,715 on CompuServe.•

50

RECOMMENDED READING
• Dreams of Reason by Heinz R. Pagels (Simon and

Schuster, 1988).

• The Hidden Life of Dogs by Elizabeth Marshall
Thomas (Houghton Mifflin, 1993).

• Tuesday by David Wiesner (Clarion Books, 1991).

Debugging on a PowerPC processor–based Macintosh is just like
debugging on any other Macintosh, only different. You should bring
along the debugging skills you carefully honed on 680x0-based
machines but expect the mechanics of debugging to be easier thanks to
the PowerPC two-machine debugger. We give you basic instructions
and provide a sample program that you can crash like crazy while you
learn to debug PowerPC code.

The most important thing to realize when you set out to develop (and hence debug)
for the PowerPC processor–based Macintosh is that this beast is still a Macintosh.
Besides having a 680x0 emulator, the CPU has a Macintosh Toolbox in ROM, low-
memory globals, a trap dispatcher, and 680x0 interrupt vectors. Since it retains so
many elements you know and love, you don’t have to throw away any of what you’ve
learned about debugging with MacsBug, TMON, or any other debugger.

On the other hand, if all the new Macintosh had up its sleeve were 680x0 emulation,
we wouldn’t be writing this article. As described in “Making the Leap to PowerPC”
in develop Issue 16 and in the imminent Inside Macintosh: PowerPC System Software, the
PowerPC runtime architecture is new and improved. A couple of new managers —
the Code Fragment Manager and the Mixed Mode Manager — help bridge the
software gap between the 680x0 emulator and the PowerPC 601 microprocessor, and
introduce some new twists and turns in how code is loaded and executed.

This article introduces you to the two-machine debugger developed for debugging
PowerPC code. It then lays down some debugging ground rules, describes the
circumstances in which your program might end up in the debugger, and discusses
extensions and dcmds old and new to assist you in debugging. Finally, it talks about
how to debug even in the absence of the debugger nub.

On this issue’s CD you’ll find CrashOMatic, a sample program you can use to explore
the debugger without risking your own code. CrashOMatic is designed to cause

DEBUGGING ON POWERPC March 1994

51
DAVE FALKENBURG (falken@apple.com on the
Internet) begins his ideal day with French toast
at Angelo’s, continues with a #54 (poached
chicken, Vermont cheddar, cucumbers, and ranch
dressing grilled on challah) at Zingerman’s, and
ends at Metzger’s with a large portion of brown
food served with beer. Between culinary
experiences he sandwiches in some work for the
Macintosh Low-Level Toolbox Group at Apple. He

just bought a house in California, so a trip back
to Ann Arbor is probably out of the question.
Dave has no pets with hair.•

DAVE FALKENBURG AND
BRIAN TOPPING

DEBUGGING

ON POWERPC

crashes or demonstrate unusual aspects of PowerPC debugging. When launching
CrashOMatic, hold down the Control key to force the debugger to take control.

To experiment with debugging CrashOMatic and to develop and debug native
PowerPC applications, you’ll need the Macintosh on RISC Software Developer’s Kit
(soon to be available from APDA) or one of the other PowerPC development kits
available from third parties. The Macintosh on RISC Software Developer’s Kit
contains R2Db, an MPW-based cross-compiler called PPCC, and other assorted
tools used for building PowerPC applications.

INTRODUCING R2DB
Apple’s new debugger for the PowerPC processor–based Macintosh is called R2Db,
for “RISC two-machine debugger.” (As this issue goes to press, the fate of this name
is undecided, so it may be different by the time you read this.) This modernized cross
between ReAnimator and SourceBug allows for single stepping, setting breakpoints,
and disassembling PowerPC code fragments. Like MacsBug, it’s a systemwide low-
level debugger; unlike MacsBug, R2Db also enables source-level debugging and is
designed for debugging PowerPC applications. But as we hinted at earlier, you
probably don’t want to throw away your MacsBug skills just yet. R2Db can be used in
conjunction with MacsBug, as explained in the section “Working With dcmds and
MacsBug.”

THE TWO-MACHINE SCHEME
R2Db is a two-machine debugger, as illustrated in Figure 1. The R2Db application
runs on the host machine, which can be any Macintosh at all, preferably one with a
large screen and enough CPU power to run a debugger built with MacApp 3.0. The
part of R2Db called the PPC Debugger Nub runs on the target machine, the
PowerPC processor–based Macintosh running the program you want to debug. The
host machine acts as a remote control panel for the target. The machines need to be
connected by a standard 8-pin printer cable.

Using two machines to debug code has several advantages. For one, a bug in your
application that locks up the keyboard can’t bring your debugging to a halt. For
another, you can debug interrupt-level code without having to have incredible luck.
(Can you say “MacsBug caused the exception”?) Throughout the development of
Macintosh with PowerPC, the system software team relied on R2Db to debug such
nasty (but necessary) things as the Memory and Resource Managers. Running a
single-machine debugger on such shaky ground can lead to premature aging and the
loss of some motor functions.

On the other hand, two-machine debugging has the disadvantage of requiring two
Macintosh systems. (Oh darn, I guess it’s time to ask the boss for another Macintosh
Quadra.) Don’t worry, though — Apple (and others) are busy working on single-
machine debugging environments for those folks who develop on smaller budgets.

d e v e l o p Issue 17

BRIAN TOPPING spends most of his days as
part of the PowerPC team at Apple sandblasting
the Memory Manager and debugging his Porsche
911. He’s easily amused by such things as the
kind of people who put Kleenex boxes in the
back window of their cars and likes to exercise
on weekends in mosh pits. He’s currently as
young as he’ll ever be.•

To brush up on your debugging skills,
see “Macintosh Debugging: A Weird Journey Into
the Belly of the Beast” in develop Issue 8 and
“Macintosh Debugging: The Belly of the Beast
Revisited” in develop Issue 13.•

52

R2DB BASICS
When you first launch R2Db, it presents a Standard File dialog box from which you
choose an xSYM file to use when debugging. If you’ve used SourceBug, you know
that a SYM file bundles together information about the application’s source and
object code and enables the debugger to associate a range of machine-language
instructions with a line of C source code. The xSYM file is an extended version of the
MPW SYM file that supports both 680x0 and PowerPC code. To support debugging
“fat” applications — those with both 680x0 and PowerPC versions packaged together
— two different kinds of SYM files are needed: the SYM file for the 680x0 version
and the xSYM file for the PowerPC version.

When a PowerPC application is being debugged at the source level, its xSYM file and
all its source code must be available on the machine running R2Db. Without the
xSYM file, your application can still be debugged, but not at the source level.

When you choose an xSYM file, the R2Db browser window appears. This window,
which will be familiar to users of Smalltalk or MacApp’s Mouser, enables you to
examine source code by file and function. Choosing Go To Debugger from the
Debug menu makes the browser window look like the one shown in Figure 2. In the
top left corner, a list of source files is presented. When a source file is chosen, the
functions belonging to that file are listed in the top right corner. (Sorry, C++ fans —
there’s no object browsing in this release of R2Db.) The status of the target machine,
along with a few stepping controls, appears in a control palette.

A small arrow points to the current instruction or line of code being executed.
Breakpoints can be set by clicking to the left of the source display; a small hexagonal
“stop sign” marks any breakpoints you’ve set. Double-clicking a breakpoint enables
you to choose from a myriad of useful variants on the traditional behavior. Finally,

DEBUGGING ON POWERPC March 1994

53
Don’t try to use file sharing to make an
xSYM file and its source code accessible from the
target machine. When R2Db suspends the
program being debugged, it will lock up the
target machine, including file sharing.•

Target machine
(Macintosh with PowerPC�
running the application�

being debugged)

Host machine
(any Macintosh�
running R2Db)

Figure 1
The Two-Machine Debugging Scheme

you can switch between assembly and source views by using the pop-up menu at the
lower left of the display. To see exactly how the compiler translates your C code into
native PowerPC code, select a line of source code and then switch to the assembly
view, where it’s highlighted.

Lurking under the R2Db menu bar are some useful commands, including commands
to get register displays, memory dumps, and even 680x0 disassembly. If you ever find
yourself stopped outside of your application, choose Show Instructions from the
Views menu to get a disassembly at the current point of execution. This can also be
helpful when debugging without an xSYM file.

R2DB IDIOSYNCRASIES
Like all things in life, R2Db has a couple of idiosyncrasies you should be aware of.

d e v e l o p Issue 17

54

Breakpoint column

Current instruction

Source/Assembler menu

Source file browser
R2Db status

Control palette

Functions browser

Figure 2
The R2Db Browser During CrashOMatic Debugging

Debugger versus SysBreak. If you’re familiar with SADE and SourceBug, you’re
probably accustomed to using SysBreak and SysBreakStr to add high-level
breakpoints to your code. These functions aren’t supported by R2Db, so you should
use the familiar Debugger and DebugStr calls that you would normally use with
MacsBug or other low-level debuggers. If a PowerPC debugger isn’t installed, these
calls are routed to MacsBug for handling. If you prefer using MacsBug to inspect data
structures or log debugging messages, you can use the functions Debugger68k and
DebugStr68k.

Memory Manager access faults. Starting with the Macintosh IIci, Apple added a
hack to the existing Memory Manager to correctly support changes for 32-bit
addressing and NuBus™ expansion cards. The change involved adding bus error
wrappers within several internal routines to automatically call StripAddress and retry
when a 24-bit handle is passed to the Memory Manager while the machine is
temporarily operating in 32-bit mode. These bus error wrappers don’t exist on 68000
machines like the Macintosh Plus, SE, and Classic (a fine reason to test your software
on all sorts of machines).

These handlers also mask a serious problem: fake handles, fake pointers, and fake
heap zones being passed to the Memory Manager. For Macintosh with PowerPC, the
Memory Manager has been completely rewritten and actually preserves this tolerant
behavior — but with a twist. When any PowerPC debugger is installed, these
Memory Manager exceptions get routed through the debugger to point out the
problem to the developer.

We would have added a “feature” to CrashOMatic so that you could see this behavior
in action, but fortunately it doesn’t happen that often. Before examining the fields of
a handle or pointer block, the Memory Manager checks a magic cookie in the block
as a first guard against fake handles. If we were to contrive an example without setting
that magic cookie, the HLock call would still return an error code as it should; we
just wouldn’t see the bus error handlers get hit.

There are, however, some applications in which you will see the bus error handlers
get hit. Open a file in ResEdit 2.1.1, for example, and you’ll see access faults in
R2Db. Choose Propagate Exception from R2Db’s Control menu and the Memory
Manager will clean up after ResEdit.

In future versions of Macintosh system software, this compatibility hack will be
removed. Consider yourself warned.

GROUND RULES FOR DEBUGGING ON POWERPC
Before you start debugging your PowerPC application, you should commit the
following ground rules to memory. This will ensure that you get off on the right
foot.

DEBUGGING ON POWERPC March 1994

55
For more about the evils of fake handles,
see the Macintosh Technical Note “Memory
Manager Compatibility” (Memory 13).•

Rule 1: Always use a nonoptimized build for source-level debugging.
RISC C compilers radically reorder the sequence of instructions when generating
optimized code. This makes straightforward source-level debugging impossible —
imagine single stepping to the next line of code and having the arrow move to a
statement three lines before where you just were. Following is a little program to
demonstrate why you don’t want to do source-level debugging with an optimized
build of your code unless you really know what you’re doing. Ignore the fact that
“dude” is never initialized before being used.

void main(void)
{

long counter, dude;
float fooVal = 1.0;

for (counter = 1; counter < 1000; counter++)
{

fooVal = counter * fooVal;
dude++;

}
}

Below is the nonoptimized compiler output. (Incidentally, we compiled this program
using the IBM compiler; if you compile it with PPCC you’ll see different results.)
Notice that the basic top-to-bottom structure of the C source is preserved.

Main:
stw r31,-4(SP) ;# Preserve nonvolatile registers (r31)
stwu SP,-128(SP) ;# Create stack frame

;# Variable initialization starts here.
lwz r31,xx(RTOC) ;# Get address of a 1.0
stw r3,152(SP) ;# Save r3 - we are going to use it
lfs fp1,0(r31) ;# Put 1.0 in a register
stfs fp1,56(SP) ;# Put 1.0 into fooVal

;# The FOR loop starts here.
li r3,1 ;# Get a 1
stw r3,60(SP) ;# Put it in counter

liu r4,r0,0x4330 ;# Make floating-point version of counter
stw r4,96(SP)

cmpi cr1,r3,1000 ;# (counter < 1000)?
bgt cr1,Exit ;# Goto end of loop

d e v e l o p Issue 17

56

;# Body of the FOR loop starts here.
Loop:

lwz r3,60(SP) ;# Load counter into register
lfd fp2,8(r31) ;# Make fp_version_of_counter from counter
xoris r3,r3,0x8000
stw r3,100(SP)
lfd fp1,96(SP)
fsub fp1,fp1,fp2
frsp fp2,fp1

lfs fp1,56(SP) ;# Get fp_version_of_counter
fmul fp1,fp1,fp2 ;# fooVal = fooVal * fp_version_of_counter;
frsp fp1,fp1
stfs fp1,56(SP)

lwz r3,64(SP) ;# dude++;
addic r3,r3,1
stw r3,64(SP)

lwz r3,60(SP) ;# counter++
addic r3,r3,1
stw r3,60(SP)

;# Conditional test of FOR loop here.
cmpi cr1,r3,1000 ;# if (counter < 1000)
blt cr1,Loop ;# goto loop

Exit:
lwz r31,124(SP) ;# Restore saved registers (r31)
addic SP,SP,128 ;# Release stack frame
blr ;# Outta here!

The optimized compiler output is shown below. Note the interleaving of instructions
used to initialize fooVal. Also note the radically different loop structure, which has no
straightforward correspondence to the C code — counter is now zero-based and
decrements, fooVal is calculated in a totally different fashion, and dude is nowhere to
be found in the generated code.

Main:
lwz r3,xxx(RTOC) ;# Get address of a 1.0
li r0,999 ;# counter = 999;
lfd fp1,8(r3) ;# Finish fooVal = 1.0;

fmr fp0,fp1 ;# tmp = fooVal
mtspr CTR,r0 ;# CTR = counter

DEBUGGING ON POWERPC March 1994

57

Loop:
fadd fp0,fp0,fp1 ;# tmp = tmp + fooVal
bdnz loop ;# CTR--; if (CTR != 0) goto loop
blr ;# Outta here!

The moral of this story is that if you want to debug your application by looking at
source code, you should create a special version compiled without optimization turned
on. (Of course, the version you ship should be optimized.) If you can’t cause the
problem to occur with compiler optimizations turned off, you’ll need to become
familiar with debugging techniques involving animal or human sacrifice (or just learn
to love reading optimized PowerPC assembly language).

Rule 2: Enable generation of symbol information by the compiler.
It’s also important at build time to enable generation of symbol information by the
compiler. This is analogous to “-sym on” and “-mbg on” for 680x0. The extra
information generated is used by the MPW tools Link and MakeSYM to create the
xSYM file that R2Db uses to enable source-level debugging. Here’s a makefile to
build a simple PowerPC program using PPCC (with debugging extras in boldface):

APPNAME = CrashOMatic
APPOBJECTS = CrashOMatic.o
PPCC = PPCC
PPCCOPTIONS = -w conformance -appleext on -sym on -opt off

PEFOPTIONS = -ft 'APPL' -fc 'GDed'
LIBEQUATES = -l InterfaceLib.xcoff=InterfaceLib ∂

-l StdCLib.xcoff=StdCLib ∂
-l MathLib.xcoff=MathLib

{APPNAME} ƒƒ {APPOBJECTS}
PPCLink -warn -sym on ∂

{APPOBJECTS} ∂
"{PPCLibraries}"InterfaceLib.xcoff ∂
"{PPCLibraries}"StdCLib.xcoff ∂
"{PPCLibraries}"MathLib.xcoff ∂
"{PPCLibraries}"StdCRuntime.o ∂
"{PPCLibraries}"PPCCRuntime.o ∂
-o {APPNAME}.xcoff

Create PEF executable from linker output
makepef {APPNAME}.xcoff -o {APPNAME} {LIBEQUATES} {PEFOPTIONS}
Rez in 'cfrg' (0) resource
rez {APPNAME}.r -a -o {APPNAME}
Create xSYM file for debugging
makesym -o {APPNAME}.xSYM {APPNAME}.xcoff

d e v e l o p Issue 17

If you use the IBM AIX PowerPC compiler,
check your documentation to find out how to
disable optimization, suppress traceback
information, set up structure alignment, and
disable generation of code that uses the MQ
register.•

58

CrashOMatic.o ƒ CrashOMatic.c
{PPCC} {PPCCOPTIONS} CrashOMatic.c -o CrashOMatic.o

Rule 3: Always test with virtual memory both on and off.
Macintosh developers have long been used to having free access to any bits in
memory, whether they contain code, data, or teachings of the illuminati. Meanwhile,
users have been complaining that the Macintosh doesn’t offer “modern” features like
protected memory. The first release of System 7 for the PowerPC microprocessor
includes the ability to protect PowerPC application code from errant write
instructions; however, write protection is enabled only when virtual memory is
turned on.

In addition, several PowerPC C compilers create string constants and initialized
arrays in read-only sections by default. Modifying these values from your program
will cause an access fault. For instance, it’s surprisingly easy to write the following:

DebugStr(C2PStr("Hello, world"));

Because C2PStr modifies a string in place, your program will attempt to write into
the read-only storage where “Hello, world” lives. There are compiler options to turn
this feature off, but we don’t recommend them.

The stricter runtime environment isn’t the only reason to make sure that your
software works properly when virtual memory is active. PowerPC programs are
usually larger than their 680x0 cousins, so the likelihood of a user’s enabling virtual
memory on a PowerPC machine is much higher than on an earlier Macintosh. Apple
has been telling you to be virtual-memory compatible for years. Just do it now and
your customers will thank all of us later when Apple can release a protected-memory,
preemptive multitasking version of the Macintosh operating system without breaking
any of their favorite applications.

Rule 4: Don’t write self-modifying code.
Unlike its later siblings the 603 and the 604, the PowerPC 601 has a merged data and
instruction cache, which makes it much easier to write self-modifying code without
getting caught. Remember all those 68040 compatibility problems you had when the
Macintosh Quadra first came out? Don’t forget what you learned. Also remember
that writing to application code will cause an access fault in any PowerPC application
when virtual memory is active.

Use the Code Fragment Manager to load all executable code. The Code Fragment
Manager will take care of invalidating instruction caches (and flushing data caches) in
an efficient manner on later versions of the PowerPC chip. If you’re one of those
crazed folks who still wants to write “structs” of code, custom-compiled shape
blitters, or stub defprocs, be forewarned that you do so at your own risk.

DEBUGGING ON POWERPC March 1994

59
PowerPC code is bigger than the equivalent
680x0 code because all instructions are four
bytes long to make things easier for the
hardware. Instructions are also typically register-
based and may require a few surrounding
instructions to accomplish the same task as a
single 680x0 instruction. On the positive side,
RISC compilers are much better at keeping these
extra instructions to a minimum.•

With the ground rules laid, it’s time to look at the reasons why your application
might end up in the debugger.

EXCEPTIONAL CIRCUMSTANCES
Just like the 680x0, the PowerPC microprocessor has a list of things it can’t handle
without the help of developers like you. Any program can come to a screeching halt
as a result of any of the following exceptions. (Note that these are hardware
exceptions, as opposed to the software exceptions discussed in the article “Living in
an Exceptional World” in develop Issue 11.)

illegalInstructionException

You executed some code that wasn’t code. This usually happens when you
accidentally call 680x0 code without using CallUniversalProc or one of its macro
shortcuts.

trapException

A trap instruction that the debugger didn’t know about was encountered. The most
likely cause is hitting a developer-inserted debug trap.

accessException

This PowerPC version of a bus error usually occurs when a memory access was made
in never-never land. You might encounter the fabled address 0xDEADBEEF in an
access exception; someone (probably the same person who came up with the eieio
instruction) decided it would be cool to initialize registers with this weird value to
help you understand that you probably used an uninitialized variable.

readOnlyMemoryException

As mentioned earlier, when virtual memory is active, application code is mapped
read-only for your protection. You may also see this exception when errant PowerPC
code attempts to write to ROM. Sometimes this exception masquerades as a generic
access exception.

privilegeViolationException

Remember how users wanted protected memory? Part of ensuring this capability in a
future Macintosh is ensuring that nobody writes code that can mess with the
operating system behind its back. Learn to live with it — the users who pay you want
things this way. For a list of privileged instructions that you should avoid in your
application, check out the PowerPC 601 RISC Microprocessor User’s Manual. (By the
way, even the debugger and the 680x0 emulator are written using only user-level
instructions.)

d e v e l o p Issue 17

Those interested in obscure hexadecimal
numbers will want to know that 0x7F800008 is
the value corresponding to one of the many
variants of the PowerPC trap instruction.•

60

traceException

If the debugger goes astray, you may see this exception. It’s pretty tough to cause.

In a departure from 680x0 Macintosh applications, PowerPC applications can
attempt to field these exceptions before the dreaded bomb is emblazoned on the
user’s screen, without resorting to low-memory antics. Using the Exception Manager
(new on the Macintosh with PowerPC) it’s possible to catch memory faults, illegal
instructions, and other faults within your application.

If you encounter an exception inside R2Db and would like to give the application a
crack at fixing things, you can choose the Propagate Exception command from the
Control menu. With some work, it’s even possible to debug your application’s
exception handler.

USING OLD TRICKS IN THE NEW WORLD
Experienced developers know that extensions (such as Double Trouble and Dispose
Resource) and dcmds (such as rd, file, drive, and driver) make the job of debugging
go much more quickly. Most of the existing MacsBug extensions and dcmds work in
the PowerPC world much as you would expect, but you should be aware of a few
caveats.

WORKING WITH DEBUGGING EXTENSIONS
Tried-and-true debugging extensions install 680x0 code that will be emulated. When
they detect a problem, they may behave differently depending on whether they’re
discipline-style extensions or memory-modification extensions.

Discipline-style extensions are extensions that patch traps to check parameters to calls
for validity. Since the code that patches into the trap is emulated and signals failure
via a 680x0 DebugStr trap, MacsBug is entered during a failure.

Memory-modification extensions such as EvenBetterBusError work by causing a bus
error (also known as an access fault) in the problem program. You should remember
that EvenBetterBusError works by setting the value at location 0 to be an illegal
instruction, an illegal address, and an odd address, all in one 4-byte value. This
catches lots of programs that accidentally use stale data in empty handles and nil
pointers returned by NewPtr.

Through the magic of emulation, EvenBetterBusError works as before for 680x0
applications. Because EvenBetterBusError causes the problem to surface within the
application (and not MacsBug), the bus error exception is thrown to the application’s
exception handler. If no exception handler is installed, control is passed to the PPC
Debugger Nub. As with all PowerPC exceptions, if the debugger nub isn’t installed,
the PowerPC system software generates a 68000 “spurious interrupt” exception,

DEBUGGING ON POWERPC March 1994

61
See the Exception Manager chapter of
Inside Macintosh: PowerPC System Software for
details on teaching your application to deal with
exceptions.•

which is caught by MacsBug. We’ll come back to this in the section “Debugging
Without the Debugger Nub.”

WORKING WITH DCMDS AND MACSBUG
Because R2Db does have its shortcomings (mostly due to lack of maturity), it gives
you a way to enter MacsBug — by choosing Enter MacsBug from the Extras menu.
This enables you to use almost any Macintosh debugging trick in the PowerPC
world. You might want to do this, for instance, to gain access to commands that
display data in forms not yet available in R2Db. For more information on how the
old and new worlds coexist in a compatible yet forward-thinking manner, see “Traps
and the PowerPC InterfaceLib: More Than You Want to Know.”

When in MacsBug, you need to remember that you got there as a result of a Mixed
Mode transition to a 680x0 R2Db subroutine that contains a 680x0 DebugStr, and
nothing more. You can look and touch, but you can’t step. Stepping will only walk
you into the hands of the Mixed Mode monster, returning control to the PPC
Debugger Nub and upward to R2Db. It’s more dignified to return to R2Db when
you choose to, by typing “G.”

Be aware that the step-and-check commands such as step spy work only while the
emulator is active. This is because they rely on 680x0 trace vectors or 680x0
breakpoints. The emulator is good enough to oblige MacsBug when between
emulated instructions, but remember that the PowerPC microprocessor pays no
attention to such things. This changes the definition of these commands from “do
neato thing you really like after each instruction” to “do neato thing you really like after
each 680x0 instruction.” The difference is subtle but important, as illustrated by the
following example.

Choose Step Spy from the Debug menu in CrashOMatic; this will bring up a dialog
where you can type an address to spy on. Then choose Clobber from the Debug
menu, which will bring up a dialog in which you type the same address. MacsBug will
know that the memory got hit, but it won’t know who hit it. Since the subroutine that
did the clobbering and everything else back out to the main event loop is PowerPC
code, the step spy won’t get hit until the next call to the emulator (usually a Toolbox
trap), in this case WaitNextEvent. You may be thinking, “Funny, it looks like there’s
no way that the previous instruction could have done that much damage,” but
remember that a lot of PowerPC code could have executed in the meantime.

Another funny thing about the 680x0 emulator is the way in which trap dispatching is
performed for emulated code. To gain an immense performance boost, if the
emulator recognizes that the A-line exception vector points at the ROM trap
dispatcher, it takes some shortcuts and runs its own superfast version. Unfortunately,
doing an atb in MacsBug modifies this behavior and throws the emulator into low
gear. Just for fun, try doing an atb _Chain (a trap that never gets called) and see how
much your machine slows down.

d e v e l o p Issue 17

You can port MacsBug dcmds to the
PowerPC platform very easily. For more
information, check out the R2Db documentation
that accompanies the Macintosh on RISC
Software Developer’s Kit.•

When you use MacsBug from within an
R2Db session, sometimes the connection between
host and target can be dropped. The connection
can usually be reestablished by relaunching R2Db
on the host machine.•

62

DEBUGGING ON POWERPC March 1994

63

Why would you want to use MacsBug and R2Db at the
same time? As mentioned earlier, Macintosh with PowerPC
still has the familiar A-line trap dispatcher present on
earlier Macintosh models. With the advent of system-
supported shared libraries, it may seem strange to still
support the trap dispatcher. Two main reasons motivated
the use of the trap table by the PowerPC native toolbox:
support should be provided for systemwide patching to
preserve compatibility with existing System 7.x–friendly
system extensions; and existing 680x0 software should be
able to access PowerPC-accelerated Toolbox managers
like QuickDraw.

Toolbox accelerations such as PowerPC QuickDraw are
implemented by using NSetTrapAddress to patch out the
680x0 implementation with a PowerPC subroutine

wrapped by a Mixed Mode routine descriptor. This allows
existing 680x0 software to call PowerPC code in an
application-transparent fashion.

On the other side of the coin, PowerPC applications must
be able to call patchable versions of the Macintosh
Toolbox. This is accomplished by building an interface
library that calls through the trap dispatch table via
CallUniversalProc, as illustrated below.

Understanding the behavior shown in the illustration is
useful for debugging now, but in the future several new
managers will be released that don’t use this bizarre
mechanism (most notably QuickDraw GX and the Thread
Manager). For future compatibility, don’t rely on this
behavior.

TRAPS AND THE POWERPC INTERFACELIB: MORE THAN YOU WANT TO KNOW

Widget ** GetWidgetStorage(void)�
{�
 return (NewHandle(sizeof(Widget)));�
}

PowerPC application

Interface library
Handle NewHandle(Size s)�
{�
 return CallUniversalProc(kNewHandleProcInfo,�
 GetToolboxTrapAddress(_NewHandle), s);�
}

Routine descriptor

procinfo

procPtr

Transition vector

TOC pointer

Code pointer•�
•�
•

_NewHandle

Trap dispatcher

mfspr r0,LR�
stwu r1,-72(rl)�
. . .�
blr

Memory Manager

Speaking of atb, the way PowerPC code calls Macintosh traps makes this dcmd
almost useless for PowerPC debugging. Remember that atb works by replacing the
ROM trap dispatcher with its own version, but because all PowerPC calls to the
Toolbox are invoked via Mixed Mode and not the 680x0 emulator trap dispatcher, the
new dispatcher is never invoked. Unfortunately, the same is true for atr. Fortunately,
there is a fix for this in the form of a new dcmd.

NEW EXTENSIONS AND DCMDS
So far we’ve looked only at extensions and MacsBug dcmds created for the 680x0
environment. As you’d expect, many more have been created for debugging the
changes that came with the PowerPC technology. In this section we look at some of
the most important ones. These dcmds were created by the PowerPC development
team to aid in the construction of Macintosh with PowerPC and are provided on this
issue’s CD in a completely unsupported and barely documented fashion. If they
weren’t so useful, the people in charge probably wouldn’t let us give them to you.

atbv
Given a trap name, atbv sets a breakpoint on the trap vector so that both emulated
and PowerPC callers can be intercepted by the debugger. Unlike atb, it doesn’t
ignore PowerPC callers or affect the emulator’s ability to run at full speed.

brp
The dcmd brp stands for “breakpoint PowerPC.” Given an address, brp will set a
one-time breakpoint at the address in R2Db. Unlike br, its 680x0 cousin, the
breakpoint set by brp is cleared once it’s been hit.

cfm
All code must be loaded by the Code Fragment Manager before it can be executed.
The dcmd cfm displays the Code Fragment Manager contexts of loaded PowerPC
code and is thus a very powerful way to find exactly where an address lives. This
dcmd is case sensitive.

Typing “cfm” all by itself gives a dump that looks like this:

CFM Info for all loaded fragments:
contextID = 3: heapZone = 004cbe00 processName = "DiaTim"
connID=3: 'DiaTim'#0; file (v=-1,d=232) "DiaTim" @ 0:#12592

inf = 'peff','pwpc', sym = #0, use = 1, pef = 004cddf0, flg = 20
sect 0: @ 004ce3a0-004d0e78, exec, use = 1, len = #10968
sect 1: @ 004d36e0-004d6240, writ, use = 1, len = #11104

connID=4: 'InterfaceLib'#0; inMem @ 409f3690:#214592
inf = 'peff','pwpc', sym = #2466, use = 1, pef = 409f3690, flg = 00
sect 0: @ 40a03ac0-40a268ec, exec, use = 2, len = #142892
sect 1: @ 000143c0-0001b744, writ, use = 2, len = #29572

d e v e l o p Issue 17

64

The entire dump shows many more libraries. All loaded code fragments, including
shared libraries and applications, are listed. Every application running, whether
emulated or PowerPC code, is provided with a Code Fragment Manager context ID.
Individual code fragments, which include the application itself and any referenced
shared libraries, are loaded into this context. The listing above shows that the
application DiaTim has a code fragment context ID of 3, has a single executable
(exec) code section and a writable (writ) data section, and references a shared library
called InterfaceLib.

Typing “cfm” followed by a name will dump the code fragment with that name, plus
the libraries it references. Remember that PowerPC applications are fragments, so
this is quite useful for seeing only the fragments associated with your program. (In
this example and the others that follow, what you type is shown in italic.)

cfm DiaTim
CFM Info for fragment named "DiaTim"
contextID = 3: heapZone = 004cbe00 processName = "DiaTim"
connID=3: 'DiaTim'#0; file (v=-1,d=232) "DiaTim" @ 0:#12592

inf = 'peff','pwpc', sym = #0, use = 1, pef = 004cddf0, flg = 20
sect 0: @ 004ce3a0-004d0e78, exec, use = 1, len = #10968
sect 1: @ 004d36e0-004d6240, writ, use = 1, len = #11104

dis
The dcmd dis is like il for PowerPC instructions. Given an address that points to
code, dis disassembles the PowerPC instructions at that address.

dis 409cdf28
409cdf28 mfspr r0,LR | 7c0802a6
409cdf2c stwu SP,0xffffffc0(SP) | 9421ffc0
409cdf30 stw r0,0x48(SP) | 90010048
409cdf34 ori r6,r3,0x0000 | 60660000
409cdf38 addis r4,r0,0x0003 | 3c800003
409cdf3c addis r0,r0,0x0001 | 3c000001
409cdf40 addic r4,r4,0x3932 | 30843932

drd and pp
The dcmds drd and pp are used to examine the contents of a Mixed Mode routine
descriptor. The drd dcmd, which stands for “display routine descriptor,” is used to
examine how a given trap is patched with PowerPC code.

drd NewHandle
drd: 00064ad0
MixedModeMagic: 0xAAFE, version: #7, flags: 0x00 (NotIndexable)
LoadLoc: 0x00000000, reserved2: 0x00000000, SelectorInfo: 0x00

(No Selector)

DEBUGGING ON POWERPC March 1994

65

Routine Count (zero-based): 0x0000 (#0)
---- Routine Record 0x0000 (#0) at 0x00064adc ----

ProcInfo: 0x00033132, Reserved1: 0x00000000, ISA: #1 (PowerPC)
Record Flags: 0x0004 (Absolute, IsPrepared, NativeISA,

PassSelector, IsNotDefault)
ProcPtr: 0x00064458, offset: 0x00000000, selector: 0x00000000

Included in this information about the routine descriptor is the procInfo value, which
describes the calling conventions, and the procPtr, which is the address of a transition
vector. Using pp, which stands for “parse procInfo,” we can convert a procInfo value
into a more readable form.

pp 33132
ProcInfo: 00033132

Calling Convention: 0x02 (#2) Register Based
Return value: 4 Bytes in Register A0
Parameter 1: 2 Bytes in Register D1
Parameter 2: 4 Bytes in Register D0

Finally, we can use our old friend dis to look at the code, remembering that a
PowerPC procPtr is a pointer to a pointer to code (hence the extra caret in the
following).

dis 64458^
40a9cb24 mfspr r0,LR | 7c0802a6
40a9cb28 stmw r26,0xffffffe8(SP) | bf41ffe8
40a9cb2c stw r0,0x8(SP) | 90010008
40a9cb30 stwu SP,0xfffffe90(SP) | 9421fe90
40a9cb34 lwz r30,0x0(TOC) | 83c20000
40a9cb38 rlwinm r29,r3,0,16,31 | 547d043e
40a9cb3c addic r6,SP,0x004c | 30c1004c

findsym
Typing “findsym” followed by a symbol name gives specific information about an
exported symbol.

In the following example, we see that NewHandle lives in ROM at address 40a0d5d0
(your results will vary), has a TOC value of 1b704, and occupies the shared library
called InterfaceLib.

findsym NewHandle

findsym: "NewHandle"
"NewHandle" #952 TVec 00015f10 (40a0d5d0,0001b704) in "InterfaceLib" (1,4)

d e v e l o p Issue 17

66

frown
The dcmd frown, which stands for “fragment ownership,” is similar to wh in
MacsBug but is used to display the code fragment and closest exported routine name
associated with a given address. Unlike wh, frown doesn’t give you any information
about where an address is located within a Memory Manager heap.

frown 40a0d5d0

frown: 40a0d5d0
is owned by: section #0 (exec,non-writ) of "InterfaceLib"
is near: "NewHandle" #952 TVec 00015f10 (40a0d5d0,0001b704)

r2db
The dcmd r2db allows you to enter R2Db from MacsBug. It’s the complement of
R2Db’s Enter MacsBug command. But because Enter MacsBug executes a
_Debugger trap, it isn’t the greatest idea to use r2db as a way of getting back to
R2Db — MacsBug and R2Db aren’t reentrant in all cases. Instead, the best way to
get back to R2Db is by typing a simple “G” in MacsBug.

scp
The dcmd scp stands for “stack crawl PowerPC.” Given an address, it will unwind
PowerPC stack frames to display a calling sequence. This dcmd doesn’t understand
Mixed Mode switch frames, so it may not prove useful in the general case.

tdp
The dcmd tdp stands for “total dump PowerPC.” Much like its MacsBug sibling td,
tdp displays all the registers from the PowerPC context. This is useful for looking at
a crash when the PPC Debugger Nub isn’t installed.

DEBUGGING WITHOUT THE DEBUGGER NUB
Believe it or not, you can remove the PPC Debugger Nub and still debug your code.
While this isn’t the optimal debugging environment, you may find yourself in it in
the future, and it’s good to be prepared.

The basic problem is to understand the context that the unhandled native exception
will put you in, what values are a good reflection on the native execution context, and
how to reconstruct what happened in your mind.

Remove the debugger nub from your System Folder and reboot. Then launch
CrashOMatic and choose the Bus Error command from the Debug menu. This will
drop you into MacsBug with a spurious interrupt. MacsBug has no idea what a
PowerPC exception frame looks like and makes this not-so-great guess as to the
cause of your problem.

DEBUGGING ON POWERPC March 1994

67

Start the attack by looking at the native context. (You may need the PowerPC 601
RISC Microprocessor User’s Manual handy if you haven’t done much of this yet.) Type
“tdp” to get a dump that will show you the context of the native machine.

Spurious Interrupt or Uninitialized Interrupt Vector at 00643762
while fetching instructions from FFFFFFFE and 00000000 while reading
word from 20104802 in F

tdp
PowerPC registers from context block
PC = 08c877e0 LR = 08c87cf0 CR = 24000004
CTR = 409EEE18 XER = 20000010
r0 = 000225F8 r8 = 08CA4908 r16 = 00000000 r24 = 00000000
r1 = 08D93DDA r9 = 00000000 r17 = 00000000 r25 = 409DF150
r2 = 00022904 r10 = 0003AB30 r18 = 46810000 r26 = 00133002
r3 = deadbeef r11 = 409EEE18 r19 = 00000000 r27 = 00000002
r4 = deadbeef r12 = 6802D764 r20 = 00000000 r28 = 08D93DDA
r5 = 68FFF740 r13 = 68FFF400 r21 = 00000000 r29 = 0008C838
r6 = 00000000 r14 = 00000000 r22 = 48400000 r30 = 0008C82C
r7 = 08CA4808 r15 = 00000000 r23 = 00000000 r31 = 68FFF740

The PowerPC runtime environment specifies that R1 is used as the stack pointer and
that the return address is kept inside the link register, LR. If we dis at the PC, we can
see that we’re inside the routine doWithoutProtection.

dis 8c877e0
doWithoutProtection+34
+0034 08c877e0 lwz r5,0x0(r4) | 80a40000
+0038 08c877e4 stw r5,0x3c(SP) | 90a1003c
+003c 08c877e8 b doWithoutProtection+58 | 4800001c
+0040 08c877ec lha r6,0x5a(SP) | a8c1005a
+0044 08c877f0 cmpi 0,r6,0x0005 | 2c060005
+0048 08c877f4 bc BO_IF,CR0_EQ,doWithoutProtection+20 | 4182ffd8
+004c 08c877f8 lha r7,0x5a(SP) | a8e1005a
+0050 08c877fc cmpi 1,r7,0x0004 | 2c870004
+0054 08c87800 bc BO_IF,CR1_VX,doWithoutProtection+30 | 4186ffdc
+0058 08c87804 lwz r0,0x48(SP) | 80010048
+005c 08c87808 addic SP,SP,0x0040 | 30210040
+0060 08c8780c mts LR,r0 | 7c0803a6
+0064 08c87810 bclr BO_ALWAYS,CR0 | 4e800020

Of course, it’s pretty easy to debug a rigged example, but nonetheless it’s a valuable
experience to get practice reading hex dumps of PowerPC stack frames inside
MacsBug. This actually has some historical significance, in that many folks (in the
original generation of programmers) debugged problems almost exclusively through

d e v e l o p Issue 17

68

DEBUGGING ON POWERPC March 1994

69
THANKS TO OUR TECHNICAL REVIEWERS
Jeff Cobb, Bruce Jones, Bill Kincaid, Dave
Radcliffe•

Many thanks to the folks on the PowerPC
development team who came up with the
techniques and dcmds mentioned here. Even
more thanks to the Macintosh debugging
demigods who gave us things like
EvenBetterBusError, Programmer’s Key,
XapHandles, and MacsBug.•

large printed stacks of octal numbers known affectionately as “dumps.” Now a new
generation of hackers can learn how difficult life was when their bosses not only
programmed with toggle switches but also had to walk to school through a
snowstorm, uphill — both ways.

NOW BUG OFF!
For more interesting examples of hybrid debugging, check out the Debug menu in
CrashOMatic. Included at no extra charge are examples of using the PowerPC
Exception Manager to do strange and exciting things with your program. We hope
that these hints and techniques will help you debug your PowerPC application in less
time than it took us to write this article.

REFERENCES
• “Making the Leap to PowerPC” by Dave Radcliffe, develop Issue 16.

• “Macintosh Debugging: The Belly of the Beast Revisited” by Fred Huxham and
Greg Marriott, develop Issue 13.

• “Macintosh Debugging: A Weird Journey Into the Belly of the Beast” by Bo3b
Johnson and Fred Huxham, develop Issue 8.

• Macintosh Technical Note “Memory Manager Compatibility” (Memory 13).

• Inside Macintosh: PowerPC System Software (Addison-Wesley, 1994).

• PowerPC 601 RISC Microprocessor User’s Manual (Motorola, 1993).

The success of QuickTime since its introduction in
December of 1991 has been extraordinary; not only are
there now countless applications and multimedia
products for QuickTime on the Macintosh platform,
but QuickTime has been successful for cross-platform
developers as well. QuickTime for Windows, shipping
since November of 1992, is becoming an important
tool for Windows multimedia developers. Because
movies can be created with QuickTime on the
Macintosh and then used unaltered with QuickTime
for Windows, developers are able to create a movie
once and use it on both systems. This capability has
been available since the 1.0 release of QuickTime.

To satisfy your curiosity and help you out with your
own QuickTime products, this column discusses how
to create movie files that are cross-platform compatible
and then gives techniques for storing and accessing
multiple movies in a single file (which currently poses
a problem in the cross-platform environment).

CREATING CROSS PLATFORM–COMPATIBLE
MOVIE FILES
The structure you choose for your QuickTime movie
files will depend in part on the platform your movies
will run on. This is because the Macintosh file system is
different from other file systems in that there can be up
to two forks in every file: a data fork and a resource
fork. The data fork is the standard file for I/O that
most file systems support. The resource fork, however,

is unique to the Macintosh. It’s a “database” of
resources that can be randomly accessed via the
Resource Manager.

There are two components to a movie file: the movie
resource atom — a small data structure describing the
movie, its tracks, and the tracks’ media — and the
movie data atom, containing the movie’s data such as
video and sound. A typical movie file on the Macintosh
consists of a movie resource atom in the resource fork
and a movie data atom in the data fork. Storing the
movie resource atom in the resource fork with resource
type 'moov' allows easy random access to the data it
contains. The movie data atom is stored in the data
fork as sequential data, which optimizes playback
performance.

Because file systems on other platforms don’t support
a resource fork, a movie that is to be used on other
platforms must have its movie resource atom stored in
the data fork of the movie file. This type of file is called
a single-fork file because the movie resource atom and
the movie data atom are both stored in the data fork of
the movie file, and the resource fork is not used.

Movies that will be played on both Macintosh and non-
Macintosh platforms can use a file in which the movie
resource atom is redundantly stored in both the
resource fork and the data fork of the file. The movie
data atom is, as always, stored only in the data fork. For
lack of a better term, this type of file is also often called
a single-fork file since the resource fork of the movie
file can be ignored.

The simplest way to create a single-fork movie file for
cross-platform compatibility is to use the Movie
Converter application from the QuickTime Starter Kit
(available from Apple-authorized dealers). The Save As
dialog in this application has a checkbox that allows a
movie to be stored in the single-fork format. However,
the QuickTime API can easily be used to add this
capability to any application. You simply call either
FlattenMovie or FlattenMovieData with the
flattenAddMovieToDataFork flag set. When called
with this flag set, FlattenMovie places the movie

d e v e l o p Issue 17

JOHN WANG (AppleLink WANG.JY) is often seen sneaking
around the Apple campus with a heavy duffle bag that one would
think to be dozens of 8•24 GC cards that John is trying to get out
of harm’s way. But, in truth, John is protecting unknowing strangers
from his two attack dogs, shown above.•

70

SOMEWHERE IN
QUICKTIME

CROSS-PLATFORM
COMPATIBILITY AND
MULTIPLE-MOVIE
FILES

JOHN WANG

SOMEWHERE IN QUICKTIME: CROSS-PLATFORM COMPATIBILITY AND MULTIPLE-MOVIE FILES March 1994

71

resource atom in both forks, while FlattenMovieData
puts it only in the data fork, leaving the resource fork
untouched.

Movie files that are created with FlattenMovie or
FlattenMovieData with the flattenAddMovieToDataFork
flag set are compatible with both QuickTime and
QuickTime for Windows because QuickTime is able to
retrieve the movie resource atom and the movie data
from the data fork alone on either platform.

MULTIPLE-MOVIE FILES FOR THE MACINTOSH
We’ll return to cross-platform issues in a moment, but
first let’s take a look at the simple case of multiple-
movie files: those that will be used only on the
Macintosh platform. You can create such files in one
of two ways, depending on whether you want the
resulting file to be self-contained (that is, to contain all
of the movie information in one file). Both of these
methods have their benefits and drawbacks. The one
that will work best for you depends on your
implementation and performance testing.

To create a self-contained multiple-movie file for the
Macintosh, you can use the FlattenMovie call (without
the flattenAddMovieToDataFork flag set) to append an
entire movie to an existing movie file. This adds the
movie resource atom to the resource fork and the
movie data atom to the data fork of the file.

The second method creates a multiple-movie file that’s
not self-contained, but instead consists entirely of
movie resource atoms that reference other movie files
containing the movie data atoms. This technique can
be useful if, for example, you’re writing an interactive
CD application that uses multiple movies and you want
to store all the movie resource atoms in a single file
that’s relatively small. This file can be copied locally to
a hard disk for faster access. The drawback of this
approach is that you have to handle multiple files
rather than have everything in one file. The excerpt
below from the sample code provided on the CD
demonstrates — without error checking, for better
readability — how easy it is to add an existing movie’s
resource atom to a movie file.

// Open source movie file to add.
OpenMovieFile(&reply.sfFile, &sourceRefNum,

fsRdWrPerm);
NewMovieFromFile(&theMovie, sourceRefNum,

&resId, movieName, 0, (Boolean *) 0);
CloseMovieFile(sourceRefNum);

// Write out to the collection file.
currentResFile = CurResFile();
UseResFile(collectionRefNum);
myResId = 0;
AddMovieResource(theMovie, collectionRefNum,

&myResId, movieName);
UseResFile(currentResFile);

// Clean up.
DisposeMovie(theMovie);

AddMovieResource does more than just add the movie
resource atom: it updates the data references so that the
new movie will refer to the correct movie data file.

Accessing multiple-movie files for Macintosh-only use
is easy. You just use the Resource Manager to access the
movie resource atoms in the resource fork of the file.
The following excerpt from the sample code on the
CD uses the Resource Manager to access the various
movies. (The code on the CD adds the resource names
of all the movies to a menu; your code can of course do
whatever it wants with the movies.)

currentResFile = CurResFile();
UseResFile(theRefNum);
movieCount = Count1Resources('moov');
for (i=1; i<=movieCount; i++) {

movieResource = Get1IndResource('moov', i);
// Do whatever you want with this movie.
. . .
ReleaseResource(movieResource);

}
UseResFile(currentResFile);

CROSS-PLATFORM MULTIPLE-MOVIE FILES
To create a multiple-movie file that’s cross-platform
compatible, you just repeatedly call FlattenMovie or

For information on movie resource formats, see
Chapter 4 of Inside Macintosh: QuickTime.•

FlattenMovieData with the flattenAddMovieToDataFork
flag set, as described earlier under “Creating Cross
Platform–Compatible Movie Files.” Accessing such a
file, however, is complicated. Since it’s a single-fork file,
you can’t access the movie resource atoms randomly as
with the Resource Manager. There’s also a problem
with accessing the atoms directly; to understand this
problem, you need to know how a single-fork movie
file is structured.

The movie data atom appears before the movie
resource atom in a single-fork file. The first four bytes
of the movie data atom contain the size of the atom.
(Figure 4-2 in Inside Macintosh: QuickTime, page 4-5,
illustrates this structure.) This permits QuickTime to
skip over the movie data atom to find the movie
resource atom. If you place several movies in the same
file, the movie data atoms are interleaved with the
movie resource atoms.

Here’s the problem: A bug in QuickTime through its
current version (1.6.1) causes the size field in the movie
data atoms to be filled in incorrectly. The illustration
below shows how QuickTime currently creates a
single-fork movie file in which FlattenMovieData has
been called multiple times. The atom size in the first
movie data atom takes you to the last movie resource
atom rather than the first movie resource atom.
Therefore, you can locate only the last movie in the
file.

This bug will be fixed in the next version of QuickTime.
The solution for now is to use the wrapper function
called BetterFlattenMovieData, included on this issue’s
CD. This function, when called multiple times, creates

a single-fork file in which the size and type fields of all
atoms contain the correct information.

To locate the movies in a file with correct size and type
fields, you traverse the data fork and read in those fields
of each atom to determine its size and whether it’s a
movie resource atom. When you know the size of the
atom, it’s easy to skip over it and access the next atom.
Of course, the last atom is reached when the end of the
file is reached. The following code from the CD
demonstrates how you would do this.

// Locate the file offset of the movie resource
// atom stored at the specified index.
if (FSpOpenDF(theFile, fsRdPerm, &myRefNum)

== noErr) {
currentLoc = 0;
doneCounter = index;
*fileOffset = 0;
while ((doneCounter > 0)) {

if (err = SetFPos(myRefNum, fsFromStart,
currentLoc))

return(err);
readLength = 8;
if (err = FSRead(myRefNum, &readLength,

header))
return(err);

if (header[1] == 'moov')
doneCounter--;

*fileOffset = currentLoc;
currentLoc += header[0];

}
FSClose(myRefNum);

} else
return (err);

return (noErr);

MOVING ON
I’m happy to see that QuickTime is being used in new
and exciting ways. By taking full advantage of the
cross-platform and multiple-movie capabilities of
QuickTime, you can bring your products to new
heights. The sample code on the CD will start you on
your way. Enjoy!

d e v e l o p Issue 17

Thanks to Peter Hoddie, Don Moccia, and Brigham Stevens for
reviewing this column.•

72

Movie data atom

Movie resource atom

Movie data atom

Movie resource atom

Movie data atom

Movie resource atom

Atom size of first�
movie data atom�
encompasses all�
but the last movie �
resource atom.

These movies�
cannot be�
located.

Let us introduce you to the latest addition to the Macintosh Toolbox —
the Thread Manager. The Thread Manager enables concurrent
programming so that you can provide true multitasking within your
application. We give a quick overview of the Thread Manager and then
move on to discuss advanced programming techniques not found in the
Thread Manager documentation.

The Thread Manager is a new part of the Macintosh Toolbox that provides both
cooperative and preemptive threads of execution within an application. Although it’s
available only within your application and is not used for systemwide preemption,
you can take advantage of it in many valuable ways:

• Use a threaded About box so that your application can continue
running in the background while displaying a modal dialog.

• Do anything you do today at idle time with null events within a
thread. This avoids the complexity of writing idleProcs.

• Decouple time-consuming processes from the user interface of
your application. For example, create an image-rendering thread
for each image to render, and use the main thread for the user
interface of the application. Similarly, with graphics screen redraws
and print spooling, have a thread do the redraw or spool a print
job while the main thread handles the user interface.

• Construct complex simulations without complex logic. For
example, in a program that simulates city streets, use a thread for
each car, one for each traffic signal, and one for the time of day.

• Use threaded I/O and communication to easily allow an
application to act as both a client and a server. With this approach,
applications can handle incoming questions and wait for incoming
answers simultaneously. Examples of this are discussed in more
detail in “Threads on the Macintosh” in develop Issue 6.

CONCURRENT PROGRAMMING WITH THE THREAD MANAGER March 1994

73
ERIC ANDERSON has been developing various
parts of the Macintosh Toolbox and OS for over
five years. Having worked on System 7 virtual
memory for the past four years and the Thread
Manager for the past two, he thinks that moving
to Hawaii and building boats is an excellent idea.
Before Apple, he designed tower and street
crane-positioning simulation software and
developed various software/hardware systems for

controlling live-action effects (read: pyrotechnics)
for film productions.•

ERIC ANDERSON AND
BRAD POST

CONCURRENT

PROGRAMMING

WITH THE

THREAD

MANAGER

The Thread Manager has all the rights and privileges of other services in the
Macintosh Toolbox, such as a trap interface to avoid linking a library into your code
and header files for C, Pascal, and assembly-language programmers. It’s a fully
supported product and will be around for years to come. You can license the Thread
Manager through Apple’s Software Licensing group (AppleLink SW.LICENSE).
The Thread Manager works on all Macintosh platforms running System 7 or later.

THREAD MANAGER OVERVIEW
This section describes the two types of threads — cooperative and preemptive — and
the basic services for creating, scheduling, and deleting threads and gathering thread
status. It also discusses the main thread, code organization, and thread disposal.

COOPERATIVE THREADS
Cooperative threads allow cooperative multitasking. They’re the easiest to use in terms
of scheduling and accessibility to Toolbox traps. Everything you can do today in a
standard application you can do with a cooperative thread — memory allocation, file
I/O, QuickDraw, and so on. Cooperative threads yield to other cooperative threads
only when the developer explicitly makes one of the Thread Manager yield calls or
changes the state of the current cooperative thread.

Cooperative threading in the Thread Manager is similar to the cooperative threading
in the Threads Package made available through APDA a few years ago (see “Threads
on the Macintosh” in develop Issue 6). In fact, this library should no longer be used
since the Thread Manager is replacing it as the preferred method. Converting your
applications from the Threads Package to the Thread Manager is easy as long as you
don’t rely heavily on the internal data structures provided by the Threads Package.
The big advantage to using the Thread Manager is that thread stacks are register
swapped, not block moved, during a context switch.

PREEMPTIVE THREADS
Preemptive threads allow true multitasking at the application level. Whenever the
application gets time from the Process Manager, preemptive threads for that
application are allowed to run. Unlike cooperative threads, which execute only when
a previously running cooperative thread explicitly allows it, preemptive threads may
interrupt the currently executing thread at any time to resume execution. You can
make the preemptive thread yield back to the just-preempted cooperative thread with
any of the Thread Manager yield calls. Alternatively, a preemptive thread can simply
wait for its time quantum to expire and automatically yield back to the cooperative
thread it interrupted. If the interrupted cooperative thread is in the stopped state, the
next available preemptive thread is made to run. Preemptive threads then preempt
each other, in a round-robin fashion, until the interrupted cooperative thread is
made ready. Figure 1 illustrates the default round-robin scheduling mechanism for
threads.

d e v e l o p Issue 17

BRAD POST (AppleLink BPOST) is a member of
SMMFD (a geek club for mathematical modeling
and fractal design). His other hobbies include
computer graphics, skiing, surfing, playing
Ultimate Frisbee, drinking Tied House Ale,
working out, and just living life to its fullest.
Remember, no one gets outta here alive!•

74

For situations where you don’t want a thread to be preempted, the Thread Manager
provides two calls for turning off preemption (see the next section). These calls don’t
disable interrupts, just thread preemption.

Because a preemptive thread can usually “interrupt” cooperative threads and doesn’t
need to explicitly use the API to yield to other threads, preemptive threads have to
conform to the guidelines set up for code executed at interrupt time. Don’t make any
calls that are listed in Inside Macintosh X-Ref, Revised Edition, Appendix A, “Routines
That Should Not Be Called From Within an Interrupt.” No moving of memory is
allowed and definitely no QuickDraw calls should be made. QuickDraw calls may
seem tempting and may even appear to work, but they fail on many occasions and can
corrupt other parts of memory in subtle ways that are very difficult to debug.
(QuickDraw GX was designed to be reentrant, so preemptive threads may make use
of the QuickDraw GX feature set if they follow the rules set up by QuickDraw GX.)
If there’s only one thing you learn in this article, make sure it’s this: preemptive threads
must follow interrupt-time rules!

THE THREAD MANAGER API
There are several data types declared in the Thread Manager API that determine the
characteristics of a thread. These include the type of thread you’re dealing with

CONCURRENT PROGRAMMING WITH THE THREAD MANAGER March 1994

75

Yie
ld

Yield

Yield

Yield

Yi
el

d

Preemptive thread�
of executable code

Cooperative thread�
of executable code

Cooperative Threads

Pr
ee

m
pt

Pr
ee

m
pt

Pr
ee

m
pt

Preempt

Preempt

Yield

Figure 1
Round-Robin Scheduling Mechanism

(cooperative or preemptive), the state of a thread (running, ready, or stopped), and a
set of options for creating new threads. With the thread creation options, you can
create a thread in the stopped state (to prevent threads from beginning execution
before you want them to), create a thread from a preallocated pool of threads (which
is how you would create a new thread from a preemptive thread), or tell the scheduler
not to save FPU state for the new thread (to reduce scheduling times for threads that
don’t use the FPU). These creation options are combined into one parameter and
passed to the routines that create new threads.

General-purpose services make it possible to create a pool of preallocated threads and
determine the number of free threads in the pool, get information on default thread
stack sizes and the stack currently used by a thread, and create and delete threads.

There are basic scheduling routines for determining the currently running thread and
for yielding to other threads. You can also use the preemptive scheduling routines —
ThreadBeginCritical and ThreadEndCritical — to define critical sections of code. A
critical section of code is a piece of code that should not be interrupted by preemptive
threads — because it’s changing shared data, for example. The use of critical sections
of code is needed to prevent interference from other threads and to ensure data
coherency within your code. Note that preemptive threads run at the same hardware
interrupt level as a normal application, and calls to ThreadBeginCritical don’t disable
hardware interrupts; they simply disable thread preemption.

Advanced scheduling routines enable you to yield to specific threads and to get or set
the state of nearly any thread. (You can’t set a thread to the running state or change
the state of the currently running thread if it’s in a critical section of code.) Custom
context-switching routines allow you to add to the default thread context and may be
associated with any thread on a switch-in and/or switch-out basis. Any thread may
have a custom context switcher for when it gets switched in and a different switcher
for when it gets switched out. In addition, a custom scheduling procedure may be
defined that gets called every time thread rescheduling occurs. All of these features
may be used by both types of threads.

The Thread Manager also provides debugging support: a program or debugger can
register callback routines with the Thread Manager so that it gets notified when a
thread is created, deleted, or rescheduled.

THE MAIN THREAD
When an application launches with the Thread Manager installed, the Thread
Manager automatically defines the application entry point as the main cooperative
thread. The main cooperative thread is commonly referred to as the application thread
or main thread. There are several guidelines you should follow regarding the main
thread. These aren’t hard and fast rules, but just guidelines to keep you from having
debugging nightmares. Remember that cooperative threads must make explicit use of
the Thread Manager API to give time (yield) to other cooperative threads.

d e v e l o p Issue 17

76

First, the Thread Manager assumes the main thread is the thread that handles the
event mechanism (WaitNextEvent, GetNextEvent, ModalDialog, and so on). Events
that can cause your application to quit should be handled by the main thread: the
application was entered through the main thread and should exit through it as well.
The Thread Manager schedules the main thread whenever a generic yield call is
made and an OS event (such as a key press or mouse click) is pending. This is done to
speed up user-event handling; otherwise, it could take a long time before the main
thread got time to run, because of the round-robin scheduling mechanism used for
cooperative threads. In general, all event handling should be done from the main
thread to prevent event-handling confusion. For example, if the main thread calls
WaitNextEvent while another thread is calling GetNextEvent while yet another
thread is calling ModalDialog, and they’re all yielding to each other, sorting out
which event belongs to which thread becomes a nightmare. Just let the main thread
handle all events. Your application will run faster and work better in the long run.

The second guideline is to avoid putting the main thread in a stopped state. Doing so
is perfectly legal but can lead to some exciting debugging if your application makes
incorrect assumptions about the state of the main thread.

Last but not least, be sure you call MaxApplZone from the main thread to fully
extend your application heap before any other cooperative threads get a chance to
allocate, or move, memory. This requirement is due to the limitation on cooperative
threads extending the application heap — they can’t.

DISPOSING OF THREADS
When threads finish executing their code, the Thread Manager calls DisposeThread.
Preemptive threads are recycled to avoid moving memory. Recycling a thread causes
the Thread Manager to clear out the internal data structure, reset it, and place the
thread in the proper thread pool. (There are two pools, one for cooperative and one
for preemptive threads.) Since recycling a thread doesn’t move memory, preemptive
threads can dispose of themselves and other threads safely.

The Thread Manager handles disposing of threads automatically, so it’s not necessary
for the last line of your code to call DisposeThread unless you want to — for
example, to recycle all terminating cooperative threads. DisposeThread takes three
parameters: the thread ID of the thread to be disposed of, a return value to return to
the creator of the thread, and a Boolean flag that tells the Thread Manager whether
or not to recycle the thread. A preemptive thread should only call DisposeThread
with the recycle flag set to true.

The Thread Manager API also defines a routine, SetThreadTerminator, that allows
your application to install a callback routine to be called when a thread terminates —
which is when it’s disposed of. You could use SetThreadTerminator to do any cleanup
needed by the application, but remember, you can’t move memory during
termination of a preemptive thread because you’re still in the preemptive state.

CONCURRENT PROGRAMMING WITH THE THREAD MANAGER March 1994

77

When your application terminates, threads are terminated as follows:

• Stopped and ready threads are terminated first but in no special
order.

• The running thread, which should be the main thread, is always
terminated last.

CODE ORGANIZATION
To use the Thread Manager most effectively, break your applications into discrete
functional pieces, similar to the code organization used for object-oriented
applications. Keep the code for event handling, window management, calculation,
and drawing separate. In general, design your code such that the discrete parts may
run independently of each other, but in an organized and coherent way. Object-
oriented code, in general, is designed this way and is much easier to think about in a
concurrent manner. The following sections discuss techniques that you can use to
write more effective thread code. The examples illustrate what we learned from lots
of trial and error during the development of the Thread Manager, which should
reduce the development time for your threaded applications.

THREAD INPUT AND OUTPUT PARAMETERS
When creating a thread, you can pass in both a thread input parameter and a return
value storage location. The Thread Manager defines the input parameter as a void*
and the return parameter as a void**. Don’t let the messy C-language semantics get
you down; it’s actually quite easy to understand.

The Thread Manager assumes the input parameter is the size of a void* (a 32-bit long
word for today’s 680x0 applications) and is passed to your thread as such. Any value
may be passed as the input parameter, as long as it’s the size of a void*. Passing nil as
this parameter will simply pass nil — not nothing — as your thread’s input parameter.

The return parameter is a little messier. In asking for a void**, the Thread Manager is
asking for the memory location to store the void* returned by the thread. If nil is
passed as the return value storage location, the Thread Manager assumes there’s no
return value and won’t bother to set it on thread completion. Your thread may return
any value as long as it’s the size of a void*. The address passed in as the return value
storage location can be simply the address of a long-word local variable (a long word
is the size of a void*) or can be as complicated as the address of a global variable
record pointer. The idea is that the Thread Manager wants, as the return value
storage location, the address in which to store a value the size of a void*. The Thread
Manager stores the returned value at thread termination time by using either a
return (x) statement or a DisposeThread call.

Don’t pass the address of a short-word local variable as the return value storage
location, because a short word is shorter than a void*. When the thread terminates,

d e v e l o p Issue 17

The return value has been set by the time a
thread termination routine is executed. In this
way, a piece of code may be notified when the
return result of a terminated thread becomes
valid. There’s more information on thread
termination routines in the Thread Manager
documentation.•

78

the Thread Manager will slam all 32 bits of the return value (the size of a void*) into
the short word, destroying the high word of your next defined variable. You must also
make sure the storage location used for the return parameter is valid at the time the
thread terminates. For example, if you use a local variable as the storage location, you
need to be sure the new thread will terminate before you return from the routine that
created it (that is, before the local variable goes out of scope).

The following code samples show two methods of sending in thread parameters and
returning thread results. First let’s define some constants and the record structure
used in the example:

#define kNoCreationOptions 0 /* Just use the standard default */
/* creation options. */

#define kDefaultThreadStackSize 0 /* Zero tells the Thread Manager */
/* to use the default value. */

struct ExampleRecord {
long someLongValue;
short someShortValue;
};

typedef struct ExampleRecord ExampleRecord;
typedef ExampleRecord *ExampleRecordPtr;

The kNoCreationOptions #define specifies the default creation options. These
options create a thread using newly allocated memory from the Memory Manager
with the thread in the “ready” state; the thread will have its FPU context switched
during a reschedule. The kDefaultThreadStackSize #define tells the Thread Manager
to use the default stack size for the thread.

Now let’s look at the routine prototypes and thread parameters:

pascal long ExampleOne (long);
pascal ExampleRecordPtr ExampleTwo (ExampleRecordPtr inputRecordParam);

void ParametersExample (void)
{

ThreadID tempThreadID;
OSErr err;
long myLong;
short myShort;
Boolean notDone = true;
long longResult = -1;
ExampleRecordPtr recordOutResult = nil;
ExampleRecord recordInParam;

CONCURRENT PROGRAMMING WITH THE THREAD MANAGER March 1994

79

In the call to create the first thread, the numeric value 42 is passed in as the input
parameter. The return value storage location is the address of a long-word local
variable. Remember, you can’t return from this function until the new thread
terminates — the local variable return value storage must stay valid.

err = NewThread(kCooperativeThread, (ThreadEntryProcPtr)(ExampleOne),
(void*)42, kDefaultThreadStackSize, kNoCreationOptions,
(void**)&longResult, &tempThreadID);

if (err)
DebugStr("\p Could not make coop thread 1");

To create the second thread, the address of a locally allocated data structure is passed
as the input parameter. The return value storage location is the address of a local
variable used to hold a pointer to the type of data structure to be used for storing the
return value. Again, you can’t return from this function until the new thread
terminates.

recordInParam.someLongValue = 0xDEADBEEF;
recordInParam.someShortValue = 0xBADD;
err = NewThread(kCooperativeThread, (ThreadEntryProcPtr)(ExampleTwo),

(void*)&recordInParam, kDefaultThreadStackSize, kNoCreationOptions,
(void**)&recordOutResult, &tempThreadID);

if (err)
DebugStr("\p Could not make coop thread 2");

Now that the two threads are created and ready to run, the code sits in a loop
handling user events, yielding, and waiting for the threads to complete their work.

while (notDone)
{
YieldToAnyThread(); /* Other threads run. */

This code looks to see whether the first thread has completed and, if it has, goes off
and does what computers do best — compute on the data.

if (longResult != -1)
{
GoHandleThreadReturnResult(longResult);
longResult = -1; /* Reset the value. */
}

Now the code checks to see whether the second thread has completed. If there’s a
non-nil value in recordOutResult, the data is available. It’s then sucked out of the
record into the local variables and sent on its way to be used by the application.
Notice that the record structure that was allocated by the second thread is disposed of.

d e v e l o p Issue 17

80

if (recordOutResult != nil)
{
myLong = recordOutResult->someLongValue;
myShort = recordOutResult->someShortValue;
DoStuffWithParams(myLong, myShort);
DisposePtr((Ptr)recordOutResult); /* Toss it. */
recordOutResult = nil; /* Neutralize it. */
}

/* Handle user events until we quit. */
GoHandleEvents(¬Done); /* WaitNextEvent event handling. */
}

return; /* Out of here. */
}

In the code for the first thread, both the input and output parameters are longs, and
the thread simply returns the value sent to it. The important point here is that both
the input and output parameters are the size of a void*.

pascal long ExampleOne (long inputParam)
{

return (inputParam); /* Must be the size of a void*. */
}

The code for the second thread is a little more complex. Here, we allocate the storage
needed for the record that will be passed back to the creator. It’s the creator’s duty to
dispose of the data after using it. The record elements from the input parameter are
used as the source material for the elements within the record being returned to the
creator. Again, both the input and output parameters are the size of a void*.

pascal ExampleRecordPtr ExampleTwo (ExampleRecordPtr inputRecordParam)
{

ExampleRecordPtr myRecordPtr;

myRecordPtr = NewPtr(sizeof(ExampleRecord));
myRecordPtr->someLongValue = inputRecordParam->someLongValue;
myRecordPtr->someShortValue = inputRecordParam->someShortValue;

return (myRecordPtr); /* Must be the size of a void*. */
}

PARANOID PREEMPTIVE PROGRAMMING
If a preemptive thread can preempt, it will preempt. This can cause problems,
especially when you create new preemptive threads. When you create a preemptive
thread in the ready state, it’s free to run whenever preemption occurs. This could

CONCURRENT PROGRAMMING WITH THE THREAD MANAGER March 1994

81

mean that your preemptive thread fires off before data it might need is available or set
up. There are two simple solutions, illustrated in the examples that follow: create the
preemptive thread in the stopped state and wake it up when you’re ready to let it run,
as shown in the first example, or wrap all creation of “ready” preemptive threads
within critical sections, as shown in the second example. Remember that preemptive
threads can’t preempt code that’s wrapped within critical sections.

Here’s the example of creating a preemptive thread in the stopped state:

pascal void* aThread (void* parameter)
{

/* Preemptive threads don't need to call Yield. */
while (true); /* Infinite loop. */

}

void somefunction (void)
{

ThreadID theThreadID;
OSErr theError;

theError = NewThread(kPreemptiveThread, /* Type of thread */
aThread, /* Thread entry point */
nil, /* Input parameter */
kDefaultThreadStackSize, /* Stack size */
kNewSuspend, /* Creation options */
nil, /* Return result */
&theThreadID); /* New thread ID */

if (theError != noErr)
DebugStr("\pFailed to create thread");

. . .
/* Now wake the thread up. */
theError = SetThreadState(theThreadID, /* Thread to set */

kReadyThreadState, /* New state */
kNoThreadID); /* Suggested thread */

if (theError) != noErr
DebugStr("\pFailed to set the preemptive thread to the ready

state.");
}

The parameter kNewSuspend in the NewThread call tells the Thread Manager to
create the thread in the stopped state. The SetThreadState call is used to wake up the
thread. The last parameter to SetThreadState suggests to the Thread Manager which
thread to execute after this call; this parameter is used only if the state of the
currently executing thread is being changed. At this point, the preemptive thread is
allowed to begin execution whenever it can.

d e v e l o p Issue 17

82

Here’s how to create a preemptive thread within a critical section:

pascal void* aThread (void *parameter)
{

/* Preemptive threads don't need to call Yield. */
while (true); /* Infinite loop. */

}

void somefunction (void)
{

ThreadID theThreadID;

ThreadBeginCritical(); /* Disable preemption. */

theError = NewThread(kPreemptiveThread, aThread, nil,
kDefaultThreadStackSize, kNoCreationOptions, nil, &theThreadID);

if (theError != noErr)
DebugStr("\pFailed to create a preemptive thread");

ThreadEndCritical(); /* Enable preemption. */
}

AVOIDING QUICKDRAW FROM PREEMPTIVE THREADS
As mentioned earlier, you can’t call QuickDraw from preemptive threads because
QuickDraw isn’t interrupt safe and you have to obey the rules of executing during
interrupt time when you use preemptive threads. There’s no way around this, but you
can draw from preemptive threads with some extra work.

First you need to write your own primitives for drawing. This can be as simple as
blasting pixels with *(pixelPtr) = 0xFFFF or as complex as writing your own
primitives for all drawing. Next you create a GWorld for your preemptive thread to
draw into. The idea is to modify this GWorld and then later use CopyBits from a
cooperative thread to blast it to the screen. There are just a couple of things to
remember before you start using the preemptive thread’s GWorld: make sure you
lock down the PixMap handle within the GWorld using HLock and make sure you
call LockPixels for that GWorld. This guarantees there won’t be any memory moving
while you’re drawing into the GWorld with preemptive threads.

APPLICATION/THREAD MANAGER SCHEDULING
This section provides code examples for creating your own scheduler and context-
switching routines. Figure 2 shows how your custom scheduler and custom context-
switching routines are executed in conjunction with the Thread Manager’s own
scheduling routines.

CONCURRENT PROGRAMMING WITH THE THREAD MANAGER March 1994

83

d e v e l o p Issue 17

84

Yield

Thread A

Yield

Thread B

Yield

Thread A

Custom scheduler

Default scheduler

Context switch

B’s custom context�
switcher-inner

Custom scheduler

Default scheduler

Context switch

B’s custom context�
switcher-outer

A’s custom context�
switcher-inner

A’s custom context�
switcher-outer

Figure 2
Thread Scheduling With Custom Scheduler and Context Switcher

CUSTOM SCHEDULERS
Occasionally, the YieldToThread(ThreadID) call is insufficient as a thread-scheduling
mechanism. Assigning a custom scheduler function gives localized control over
thread scheduling within your application. From this function you can inform the
Thread Manager which thread you would like to schedule. Here’s the header
information that deals with custom schedulers (it’s extracted from Threads.h):

/* Information supplied to the custom scheduler */
struct SchedulerInfoRec {

unsigned long InfoRecSize;
ThreadID CurrentThreadID;
ThreadID SuggestedThreadID;
ThreadID InterruptedCoopThreadID;

};
typedef struct SchedulerInfoRec SchedulerInfoRec;
typedef SchedulerInfoRec *SchedulerInfoRecPtr;

typedef pascal ThreadID (*ThreadSchedulerProcPtr)(SchedulerInfoRecPtr
schedulerInfo);

Note that the Thread Manager passes the custom scheduler the ID of the current
thread (CurrentThreadID) and the ID of the thread that the Thread Manager is
going to schedule (SuggestedThreadID). If a cooperative thread was preempted and
has not yet resumed execution, the ID of that thread (InterruptedCoopThreadID) is
passed to the custom scheduler; kNoThreadID is passed if there’s no cooperative
thread waiting to resume from being preempted. With this information, all you have
to do is tell the Thread Manager which thread to execute next by returning the
thread ID of the thread you want to run.

There’s one rule you must follow when returning a thread ID: if the value of
InterruptedCoopThreadID is not equal to 0, return the InterruptedCoopThreadID
value or the ID of any ready preemptive thread. This is because scheduling a different
cooperative thread while another cooperative thread has been preempted would
cause cooperative thread preemption and could result in a system misunderstanding
(crash). If you don’t care which thread the Thread Manager schedules next, you can
just return the constant kNoThreadID. If the value of CurrentThreadID is
kNoThreadID, the Thread Manager schedules the first available ready thread by
default; your custom scheduler may override this.

During the execution of a custom scheduler, certain conditions exist: preemption is
disabled to take care of any reentrancy problems and your A5 world is not guaranteed
to be valid. You’re probably thinking, “Geez, I have to worry about A5!” We show
you a quick way to get around that in the example below, by using Gestalt to store
A5. A few more things about custom schedulers: You can’t yield from within a custom
scheduler, nor can you cause scheduling to recur from this function. Also, only ready

CONCURRENT PROGRAMMING WITH THE THREAD MANAGER March 1994

85

and running threads are valid for rescheduling — and you can’t call SetThreadState
from the custom scheduler.

OK, enough background — here’s the custom scheduler example:

#include "GestaltValue.h" /* Gestalt utility. */

pascal ThreadID myThreadScheduler (SchedulerInfoRecPtr mySchedulerInfo)
{

long currentA5, myA5;
ThreadTaskRef currentTaskRef;

/* The task ref is our Gestalt selector. */
GetThreadCurrentTaskRef(¤tTaskRef);

/* Get application's A5. If we can't, let Thread Manager do it all. */
if (Gestalt(currentTaskRef, &myA5) != noErr)

return kNoThreadID;

/* Was a cooperative thread preempted? If so, let Thread Manager */
/* continue. */
if (mySchedulerInfo->InterruptedCoopThreadID != kNoThreadID)

return mySchedulerInfo->InterruptedCoopThreadID;

/* Restore application's A5. */
currentA5 = SetA5(myA5);

/* Now you can determine what you want to do. You have access to all */
/* your globals, so select a thread to run. */
. . .
/* Restore the A5 we entered with. */
myA5 = SetA5(currentA5);

}

void InitAll (void)
{

long myA5;
ThreadTaskRef currentTaskRef;
OSErr myError;

/* Do standard initialization stuff here. */
. . .
myA5 = SetCurrentA5();
/* Get a unique value to use as a gestalt selector. */
GetThreadCurrentTaskRef(¤tTaskRef);

d e v e l o p Issue 17

The GestaltValue library, available on this
issue’s CD, provides the NewGestaltValue,
ReplaceGestaltValue, and DeleteGestaltValue
functions.•

86

/* Set up a Gestalt value to use. */
if ((myError = NewGestaltValue(currentTaskRef, myA5)) != noErr)
{

/* Does it already exist? It better not! */
if (myError == gestaltDupSelectorErr)

DebugStr("\pWon't replace Gestalt selector.");
}

}

CUSTOM CONTEXT SWITCHERS
Now we come to the next feature the Thread Manager supplies for dealing with
scheduling: custom context switchers. You might ask, what is a thread context? The
default context of a thread consists of the CPU registers, the FPU registers if an FPU
is present, and a few internal globals. The saved data is as follows:

• CPU registers: D0–D7; A0–A7; SR (including CCR)

• FPU registers: FPCR, FPSR, FPIAR; FP0–FP7

The thread context lives on the thread’s A7 stack, and the location of the thread
context is saved at context switch time. Initially, the A5 register (which contains a
pointer to the application’s A5 world) and the thread MMU mode (24-bit or 32-bit) is
set to be the same as the main thread. This allows all threads to share in the use of the
application’s A5 world, which gives threads access to open files and resource chains,
for example. To allow preemption of threads that change the MMU operating mode,
the MMU mode is saved as part of the context of a thread. The FPU context is fully
saved along with the current FPU frame.

Custom context switchers don’t need to worry about saving the standard CPU
context, as this is done by the Thread Manager. When writing a custom context
switcher, keep in mind that preemption is disabled while it executes. Just as in custom
schedulers, don’t make any calls that can cause scheduling. In addition, when the
custom context switcher is being called, the thread context is in a transition state, so
any calls to GetCurrentThread won’t work, nor will any calls to which you pass
kCurrentThreadID as a parameter. As with the custom scheduler, you’re not
guaranteed to have A5 set up for you; the example below shows how to get around
that.

You may have context switchers for when a thread is entered (switcher-inner) and
when a thread is exited (switcher-outer). Which context switcher to use is determined
by a parameter passed to the SetThreadSwitcher routine. Here’s the header
information on custom context switchers (extracted from Threads.h):

typedef pascal void (*ThreadSwitchProcPtr)(ThreadID threadBeingSwitched,
void *switchProcParam);

CONCURRENT PROGRAMMING WITH THE THREAD MANAGER March 1994

87

pascal OSErr SetThreadSwitcher (ThreadID thread, ThreadSwitchProcPtr
threadSwitcher, void *switchProcParam, Boolean inOrOut);

Besides the selector for whether the switcher is an inner or an outer, the application
can supply a parameter to the switch function. This parameter may vary for every
thread, allowing you to write only one custom context switcher. It isn’t necessary to
have a switcher for both entry and exit, and all threads can share the same switcher.
One last thing to remember about switchers is that a switcher-inner is called
immediately before the thread begins execution at the entry point.

Here’s an example of a custom context switcher:

#define switcherInner true
#define switcherOuter false

struct myContextSwitchParamStruct
{

long appsA5; /* Save application's A5. */
/* Anything else you may need for your custom context switch. */
. . .

};
typedef struct myContextSwitchParamStruct myContextSwitchParamStruct;
struct myContextSwitchParamStruct gMyContextSwitchParam;

pascal void* aThread (void *parameter)
{

/* Does something. */
YieldToAnyThread();
. . .

}

pascal void myThreadSwitchProc (ThreadID theThreadBeingSwitched,
void *theSwitchProcParam)

{
long currentA5, myA5; /* A5 when our custom switcher was called. */

myA5 = ((myContextSwitchParamStruct *)theSwitchProcParam)->appsA5;
/* Restore application's A5. */
currentA5 = SetA5(myA5);
/* Now you can determine what you want to do. You have access to all */
/* your globals, so do any context stuff. */
. . .
/* Restore the A5 we entered with. */
myA5 = SetA5(currentA5);

}

d e v e l o p Issue 17

88

void InitAll (void)
{

ThreadID theThreadID;
OSErr theError;

/* Do standard initialization stuff here. */
. . .
/* Set up A5 in switch parameter. */
gMyContextSwitchParam.appsA5 = SetCurrentA5();
/* Create a thread. */
theError = NewThread(kCooperativeThread, aThread, nil,

kDefaultThreadStackSize, kNoCreationOptions, nil, &theThreadID);
if (theError != noErr)

DebugStr("\pFailed to create a cooperative thread");
theError = SetThreadSwitcher(theThreadID, myThreadSwitchProc,

(void*)&gMyContextSwitchParam, switchInner);
if (theError != noErr)

DebugStr("\pFailed to set custom context switcher-inner");
. . .

}

DIALOGS THAT YIELD
Aren’t you tired of having your dialogs hang up your application while you wait for
the user to do something? With the Thread Manager you can alleviate this problem
by making only one call, YieldToAnyThread. Basically, if your program is broken into
multiple threads, you can put the dialog handler in one of those threads (usually the
main thread is best) and have the dialog’s filter procedure call YieldToAnyThread.
This gives any other threads that are waiting time to run. When the user makes a
choice in the dialog, the main thread is scheduled automatically by the Thread
Manager so that your application can handle that event immediately. While the user
is getting a cup of coffee, your application can finish whatever other tasks are
appropriate, without slowing the machine down.

In the following example, YieldFilter is a filter procedure for a dialog that just calls
YieldToAnyThread, to give other threads time while the dialog is in the front. This
allows threads “behind” the dialog to continue to process information.

pascal boolean YieldFilter (DialogPtr theDialogPtr, EventRecord *theEvent,
short *theItemHit)

{
/* Yield to whoever wants to run. */
YieldToAnyThread();
/* Call the 7.0 standard filter procedure defined in Dialogs.h. */
return (StdFilterProc(theDialogPtr, theEvent, theItemHit));

}

CONCURRENT PROGRAMMING WITH THE THREAD MANAGER March 1994

89

/* The DoOKDialog function just handles a simple OK dialog. */

void DoOKDialog (short dialogID)
{

DialogPtr theDialog;
short itemHit;
GrafPtr savePort;
OSErr theError;

GetPort(&savePort);

if ((theDialog = GetNewDialog(dialogID, NULL, (Ptr)-1)) != NULL)
{

SetPort(theDialog);
ShowWindow(theDialog);
do
{

ModalDialog(YieldFilter, &itemHit);
} while (itemHit != okButton);
DisposDialog(theDialog);

} else
DebugStr("\pCould not find dialog");

SetPort(savePort);
}

THREAD-BLOCKING I/O
In general, thread-blocking I/O occurs when code making an I/O call sleeps until the
I/O call completes. The basic problem with doing thread-blocking I/O with the
Thread Manager is that threads are application based, not systemwide Device
Manager I/O based. This means that threads are really good at doing work at the
application level but aren’t designed to auto-block on I/O — that’s your job.
Fortunately, the Thread Manager provides all the tools needed to create your own
thread-blocking I/O.

I/O WITH COOPERATIVE THREADS
Let’s suppose you use a thread to make an asynchronous I/O call. Then the thread
goes to sleep, waiting for the completion routine to wake it up. The problem is the
completion routine can (and will) fire off before the thread is able to be put to sleep
— there’s a window of misfortune after the thread makes the asynchronous call and
before it completes the sleep call. Having nothing to do, the completion call just
returns. The thread then makes the sleep call and will sleep forever, waiting for a
completion routine that already occurred.

d e v e l o p Issue 17

90

A completion routine, or any other code running on the Macintosh, may ask for the
state of a thread in an application by using GetThreadStateGivenTaskRef. Given a
task reference to a particular application and a thread ID, you can get the state of any
thread. If that thread is sleeping, you can call SetThreadReadyGivenTaskRef, which
will tell the Thread Manager to mark the thread as ready. The thread is not actually
made ready, just marked ready. The next time a reschedule occurs in the application,
the marked thread is made ready and is eligible to run.

Note that you can’t just check to see if the thread isn’t in the running state because it
could have been preempted (and probably was if possible) before it made the sleep
call, when the completion routine fired. You must wait for the thread to be in the
stopped state before making a call to SetThreadReadyGivenTaskRef.

One solution is to have the completion routine use one of the interrupt-safe routines
and ask the Thread Manager if the thread in question is sleeping yet and, if it is, ask
the Thread Manager to wake it up. If it’s not sleeping yet, set up a timer task (or VBL
or Deferred Task Manager task) to ask again later, and keep asking until the thread is
sleeping; then wake it up.

As you can imagine, the “poll until thread stopped” solution is messy and time
consuming. A cleaner solution is to have a second thread whose only job in life is to
wake up the first thread after it goes to sleep (after making the asynchronous I/O
call). The following steps show how to do this for the two threads ThreadA and
ThreadB.

From a cooperative thread — ThreadA:

1. Create a cooperative thread, ThreadB, in the stopped state.

2. Set the completion routine to wake up ThreadB when it fires off.

3. Make the asynchronous I/O call from ThreadA.

4. Put ThreadA to sleep, forcing a reschedule with the
SetThreadState call.

5. After ThreadB wakes up ThreadA, ThreadA magically continues
running right where it left off! This is what’s fun with concurrent
programming.

From the completion routine:

1. Be safe and make the GetThreadStateGivenTaskRef call on
ThreadB.

2. If ThreadB is not in a stopped state, give up. Things are in a bad
way. ThreadB should be in the stopped state, since it was created
that way.

CONCURRENT PROGRAMMING WITH THE THREAD MANAGER March 1994

91

3. Make a call to SetThreadReadyGivenTaskRef on ThreadB to
mark it ready. The Thread Manager will actually make it ready at
the next reschedule time.

4. That’s it; just return.

While executing code from the cooperative thread, ThreadB, you know the following
to be true:

• ThreadB is cooperative.

• You’re executing code in ThreadB.

• ThreadA is cooperative.

• Only one cooperative thread may run at a time.

• ThreadA didn’t yield to anybody and is therefore not in the ready
state while ThreadB is running.

• ThreadA put itself in the stopped state, which caused a reschedule.

• Since cooperative ThreadB is running, ThreadA can’t be running.

• Therefore, ThreadA is in the stopped state.

From the above truths, all ThreadB needs to do is set the thread state of ThreadA to
ready. The following steps wake up ThreadA from ThreadB:

1. Set the state of ThreadA to ready with the SetThreadState call.

2. Return.

The big concept is that only one cooperative thread can run at a time. Cooperative
threads can’t preempt each other. The only way to get from one cooperative thread to
another is by yielding — making a yield call or setting the state of the running
cooperative thread to ready or stopped. If a cooperative thread, ThreadA, sets itself to
stopped, another cooperative thread, ThreadB, knows that because it (ThreadB) is
running, ThreadA must be stopped. However, this scheme works only if there are
other (at least one) cooperative or preemptive threads that can run while the wake-up
thread and the thread making the I/O call are stopped. It’s highly recommended that
you never stop the main thread; this will keep you safe for doing thread-blocking I/O
with a thread making an I/O call and a wake-up thread. Keeping the main thread
ready also keeps the Macintosh user interface active.

To summarize the preceding steps: The cooperative thread doing the I/O creates a
cooperative wake-up thread (in the stopped state), makes an asynchronous I/O call,
and tells the Thread Manager to put itself in the stopped state. The completion
routine fires off any time after the I/O call and makes a call to mark the wake-up
thread as ready. Once the thread that made the I/O call goes to sleep, rescheduling
occurs and, if the wake-up thread is ready, it’s made eligible for running. Normal

d e v e l o p Issue 17

92

thread scheduling occurs until the wake-up thread is run. The only thing the wake-up
thread needs to do is tell the Thread Manager to set the state of the thread making
the I/O call to ready and return. Rescheduling will occur and the thread that made
the I/O call will continue on its merry way as if nothing had happened. This process
is illustrated in Figure 3.

I/O THREAD BLOCKING EXAMPLE
Now let’s see how the preceding solution looks in code. We begin by setting up
housekeeping and doing some administrative stuff. The extended parameter block
structure is used to store the parameter block used by the file system as well as data
used by the completion routine. The first element of the structure must be the file
system parameter block, as this is the address passed into the file system call. The
next two parameters are used by the completion routine to get the application task
reference and thread ID of the thread to wake up. These values are stored here
because completion routines can’t access the application globals when they’re called.

To finish up the housekeeping, we define the routine prototypes and the inline
routine GetPBPtr. Completion routines are passed the address of the parameter

CONCURRENT PROGRAMMING WITH THE THREAD MANAGER March 1994

93

Running/executing Ready to run

Available to be made ready�
at next reschedule

Stopped

I/O Thread

Completion Routine

Wake-up Thread

Async I/O

Mark wake-up�
thread ready

Start

Time

Main Thread

State transition/reschedule

Create�
wake-up�
thread

Start

Wake up�
I/O�

thread

Sleep

Exit

Exit

Yield Yield

Start

Figure 3
Timeline State Flow Diagram for Threaded I/O

block in register A0, so the GetPBPtr routine is needed to retrieve the parameter
block.

struct ExtendedParamBlk {
/* PB must be first so that the file system can get the data. */
ParamBlockRec pb;
ThreadTaskRef theAppTask;
ThreadID theThread;
};

typedef struct ExtendedParamBlk ExtendedParamBlk;
typedef ExtendedParamBlk *ExtendedParamBlkPtr;

/* Routine prototypes. */
pascal void IOExampleThread (void);
pascal void WakeUpThread (ThreadID threadToWake);
void MyCompletionRoutine (void);

/* Completion routines are called with register A0 pointing to */
/* the parameter block. */
pascal ExtendedParamBlkPtr GetPBPtr(void) = {0x2E88};

/* move.l a0, (sp) */

This is a routine in the main thread that creates a thread that makes an I/O call:

void KickOffAnIOThread (void)
{

ThreadID newCoopID;
OSErr theError;

theError = NewThread(kCooperativeThread,
(ThreadEntryProcPtr)IOExampleThread, nil, kDefaultThreadStackSize,
kNoCreationOptions, nil, &newCoopID);

if (theError)
DebugStr("\p Could not make cooperative I/O thread");

/* Return and let the I/O thread do its thing! */
}

Below is the code for the thread that makes the I/O call — IOExampleThread. It
makes an asynchronous I/O call with a completion routine that will wake up the
wake-up thread, which then wakes up IOExampleThread.

pascal void IOExampleThread (void)
{

ThreadID wakeupThreadID, meThreadID;
ThreadTaskRef theAppRef;

d e v e l o p Issue 17

For more information on completion routines,
parameter blocks, and calling routines
asynchronously in general, see “Asynchronous
Routines on the Macintosh” in develop Issue 13.•

94

ExtendedParamBlk myAsyncPB;
OSErr theError, theIOResult;

/* Get the ID of IOExampleThread. */
theError = GetCurrentThreadID(&meThreadID);
if (theError != noErr)

DebugStr("\pFailed to get the current thread ID");

/* Get the application's task reference. */
theError = GetThreadCurrentTaskRef(&theAppRef);
if (theError != noErr)

DebugStr("\Could not get our task ref");

/* Create a wake-up thread. */
theError = NewThread(kCooperativeThread,

(ThreadEntryProcPtr)WakeUpThread, (void*)meThreadID,
kDefaultThreadStackSize, kNewSuspend, nil, &wakeupThreadID);

if (theError != noErr)
DebugStr("\pFailed to create a cooperative thread");

Here’s where you prepare for the I/O call — a simple asynchronous flush volume
command. Notice how we set the address of the completion routine. We also set up
the extended data needed by the completion routine — the thread ID of the wake-up
thread and the application’s task reference.

myAsyncPB.pb.ioParam.ioCompletion = (ProcPtr)MyCompletionRoutine;
myAsyncPB.pb.ioParam.ioResult = 0; /* Initialize the result. */
myAsyncPB.pb.ioParam.ioNamePtr = nil; /* No name used here. */
myAsyncPB.pb.ioParam.ioVRefNum = -1; /* The boot drive. */
myAsyncPB.theThread = wakeupThreadID;
myAsyncPB.theAppTask = theAppRef;

IOExampleThread makes the I/O call and then calls SetThreadState to put itself to
sleep. The first two parameters to SetThreadState indicate the thread to set, which is
IOExampleThread, and the state to set it to — stopped. The kNoThreadID
parameter indicates that any ready thread can run next.

PBFlushVol((ParmBlkPtr)&myAsyncPB, async);
theError = SetThreadState(kCurrentThreadID, kStoppedThreadState,

kNoThreadID);
if (theError != noErr)

DebugStr ("\pFailed to put ourselves to sleep");

At this point, IOExampleThread is sleeping, but other threads are running (including
the main thread, because it’s not nice to put it in the stopped state). Meanwhile,

CONCURRENT PROGRAMMING WITH THE THREAD MANAGER March 1994

95

thread scheduling is taking place, so when the completion routine executes and tells
the scheduler to place the wake-up thread in the ready queue, the wake-up thread can
get scheduled to execute. (Make sure the main thread doesn’t quit the application
with the asynchronous I/O pending. You could run into problems when the
completion routine tries to run but no longer exists because the application is gone.)

Next the completion routine fires off and tells the Thread Manager to ready the
wake-up thread. The wake-up thread eventually runs and tells the Thread Manager
to ready the I/O thread. Then the I/O thread awakes and continues running as if
nothing happened, continuing with the rest of the code.

theIOResult = myAsyncPB.pb.ioParam.ioResult;
. . .

}

void MyCompletionRoutine (void)
{

ExtendedParamBlkPtr myAsyncPBPtr;
ThreadTaskRef theAppTaskRef;
ThreadID theThreadID;
ThreadState theThreadState;
OSErr theError;

/* Get the parameter block. */
myAsyncPBPtr = GetPBPtr();

/* Get the data. */
theAppTaskRef = myAsyncPBPtr->theAppTask;
theThreadID = myAsyncPBPtr->theThread;

/* See if the thread is stopped yet - just to be sure. */
theError = GetThreadStateGivenTaskRef(theAppTaskRef, theThreadID,

&theThreadState);
/* If we can get the thread state, go for it! */
if (theError == noErr)

{
/* If it's awake, we have problems. */
if (theThreadState != kStoppedThreadState)

DebugStr("\pWake-up thread is in the wrong state!");
/* Should be sleeping, mark it for wake up! */
else

SetThreadReadyGivenTaskRef(theAppTaskRef, theThreadID);
}

}

d e v e l o p Issue 17

96

The wake-up thread eventually begins execution and has only one job — to wake up
the thread that made the I/O call.

pascal void WakeUpThread (ThreadID threadToWake)
{

OSErr theError;

/* Wake up the specified thread. */
theError = SetThreadState(threadToWake, kReadyThreadState,

kNoThreadID);
if (theError != noErr)

DebugStr("\pFailed to wake our thread");

/* We've done our deed, so just return quietly and let it run. */
}

I/O WITH PREEMPTIVE THREADS
Things get a little tricky when the thread making the I/O call is preemptive — not to
mention that you may not be allowed to make certain asynchronous I/O calls from
preemptive threads (you know, the interrupt routine rules and all that). To solve the
problem, all you do is force your preemptive thread to look like a cooperative thread.
Before you make the asynchronous I/O call, you need to begin a critical section
with the ThreadBeginCritical routine. Also, since you can’t create threads from
preemptive threads (again, the interrupt routine rules), you need to get the wake-up
thread from the thread pool you created earlier (you did create one, didn’t you?).
After the I/O call, call SetThreadStateEndCritical rather than SetThreadState; this
puts the thread in the stopped state, ends the critical section to allow preemptive
scheduling, and forces a reschedule all at the same time. Then, when the wake-up
thread gets run, it knows that the thread that made the I/O call must be sleeping.

FINAL THOUGHTS
Here are some final thoughts before you dive in and start programming with the
Thread Manager:

• Remember to always preload the code segments that will be used
by preemptive threads. Since you’re not allowed to move memory
during preemptive thread time, loading a code segment would
definitely cause a problem.

• Make sure you call MaxApplZone during the application’s
initialization, especially before you start creating threads. The
application’s heap won’t grow correctly from other cooperative
threads, so you must fully grow your heap before any other thread
allocates memory.

CONCURRENT PROGRAMMING WITH THE THREAD MANAGER March 1994

97

• When dealing with cooperative and preemptive threads in the
same application, make sure you maintain data coherency between
your threads. It’s very possible that a preemptive thread could
change shared data out from underneath a cooperative thread
that’s using it. A simple way to maintain data coherency is to use
critical sections.

• Be careful calling WaitNextEvent with a large sleep value when
there are threads that need time. Threads get time to run only
when your application gets time. Putting the application to sleep
with WaitNextEvent means that your threads sleep, too.

• Be very careful when quitting an application with suspended
threads that will be awakened by an interrupt service routine. This
can be a problem in some cases. The Thread Manager provides a
thread termination procedure that’s called when a thread is about
to be disposed of — such as when the application quits — to
handle any cleanup needed before final application termination.

We urge you to use the Thread Manager because it will be integrated directly into
the system software, and it will be upwardly compatible with the new RISC and OS
directions Apple is taking. If you start taking advantage of the Thread Manager now,
you’ll only be more ahead in the future.

d e v e l o p Issue 17

THANKS TO OUR TECHNICAL REVIEWERS
Dave Falkenburg, Michael Gough, C. K. Haun,
John Yen•

98

VIEW FROM THE LEDGE March 1994

99

Before we get rolling here, I have a confession to make
to those of you who have read this column in the last
two issues. I feel I owe it to you for being so faithful.
Due to lead times, publishing deadlines, and attempts
to appear organized, develop authors actually write their
MacNuggets of wisdom months before you read them.
You’ve already had a chance to be in a New Year’s Day
fight with your significant other, yet I’m writing this
before Hallowe’en.

How do I put this? I’ve been lying to you. The
questions in my earlier columns were fakes. I made
them up for my own self-aggrandizement. Which is
bad enough, but I also gave myself the heartwarmingly
collectible gift that’s supposed to be given to the
dedicated readers who write in. Like Richard Nixon in
the seventies, I guess the only defense I have is: I
misspoke myself.

But that’s the past, and now my head reels because I’ve
received four letters. (Well, actually I received three and
develop’s editor got a piece of hate mail.) Now I know
what it’s like to be 1/150,000th of “Dear Abby.”

Dear Tao,

Help! We have a power-hungry team member who is
making the rest of the team thoroughly miserable! What can
we do? Mutiny has crossed our collective minds, but after

reading Mutiny on the Bounty none of us fancies suffering
the fate of Mr. Christian.

Desperate

Dear Desperate,

In general you’ll find that the world is in turmoil for no
reason other than intolerance. If people simply were
more tolerant of each other’s beliefs, values, customs,
and driving skills, the world would be a much more
hospitable place. Typically you should try to live in as
much harmony as possible with your office workers in
an effort to spread peace and happiness in the world.
This, however, is not one of those times.

You may be surprised to learn that the answer to your
problem was at your fingertips; you just failed to dig far
enough for it. All you needed to do was ask yourself a
simple question: What was the fate of Fletcher
Christian?

Historians have actually tried to cover up the real
reason there was mutiny: it had nothing to do with ill-
tempered leadership. Rather, Mr. Christian couldn’t
stand being in an island-sized sauna with the obese
Captain Bligh any longer. To remedy the situation, Mr.
Christian decided to send Bligh on a crash diet the old-
fashioned way: by making him row across 3500 miles of
open ocean.

Shortly after Bligh left, Mr. Christian got out his
Apple I computer with cassette tape backup (remember,
this was a long time ago) and discovered that, by Jove,
Bligh might actually make it. The last thing Mr.
Christian wanted was to witness a size-6 Bligh parade
his new physique around the island. So, he gathered up
a bunch of Tahitian babes, sailed over to Pitcairn
Island, burned the Bounty, and lived the rest of his life
sipping coconut juice in a tropical paradise. The only
penalty was that he would never be able to go back to a
country where they serve a dish called “Spotted Dick”
for dessert. To say it was a fair trade is a gross
understatement.

TAO JONES was stunned when he discovered that the actual
lyrics to The Beatles’ “Let It Be,” were, “and in my hour of
darkness, she is standing right in front of me.” He thought the line
was, “and in my oblidoplous. . .” and spent the next ten years
trying to figure out what an oblidoplous was.•

Tao Index: Roughly 50% of the lawyers in the world graduated
in the bottom half of their class.•

VIEW FROM
THE LEDGE

TAO JONES

Taking a cue from Mr. Christian, I’d say the following
actions are in order: First, get a detailed plan of your
building(s) and find the spot that’s the furthest from
where the mutiny will actually take place; this will be
your equivalent of Pitcairn Island. Due to twentieth-
century building layout, it’s very possible that you may
have to choose someplace like a boiler room. This gives
you the tropical climate by default, but I’d add some
sand and a few posters just to spice the place up a bit.
Don’t forget to stock enough coconut milk to last until
your management turns its attention to some other
crisis. Two weeks worth is probably more than enough.

Then, mutiny to your heart’s content. Start by issuing a
new org chart, and when your troublemaker comes to
protest, just do whatever seems to be most natural. Be
as loud and obnoxious as possible, and don’t forget to
throw in lines like “You call yourself a ship’s Captain?”
and “From now on you get your own breadfruit trees!”
Burning things to the ground is optional. I wouldn’t
recommend it if your paycheck is important to you.

There’s a good chance you’ll be set for life. Just be sure
you don’t get so carried away that you start sending
postcards to your colleagues from your island retreat.
Nothing gives away a hiding spot like a postmark.

Dear Tao,

Every time I get up quickly I become dizzy. Everyone thinks
I have a drinking problem. What can I do?

Spinning in Sacramento

Dear Spinning,

You’re in a situation that has very serious physical and
sociological implications and needs immediate
attention. First and foremost, you should get yourself
to a doctor. You may have something as complicated
and life threatening as transient ischemic attack, or you
may just be a ditz. Only a licensed physician will be
able to tell for sure. By no means should you rely on
self-diagnosis from watching reruns of “Marcus Welby,

M.D.” Remember, the guy who played Dr. Kiley tried
that and he ended up in The Amityville Horror.

Whatever you do, if you go to a university to get
checked, be certain the person you’re talking to is a
Medical Doctor. You can’t swing a dead cat in that
environment without hitting someone who is all too
willing to be called “Doctor” yet thinks that “throat
culture” has something to do with opera. These people
have the title “Doctor of Philosophy,” and their
specialty is to heal problems with philosophical ideals.
If you believe your dizziness is caused by an inability to
understand dialectic materialism, this type of doctor is
perfect; otherwise, steer clear.

Unfortunately, getting fixed physically won’t heal the
seeping sociological wound that has opened by
everyone thinking you’re intoxicated. To tackle this
part, first you should decide whether you deserve any
time off from work. If you think you do, tell your boss
you believe you have a substance abuse problem, and
ask to have at least a month off to get yourself treated.
If you happen to acquire a tan while you’re gone, say
that you had to have minor UV therapy for jaundice.

If you don’t want the time off, or you want to squelch
those rumors once and for all, simply stand up in your
next company meeting and say something like, “I know
many of you think I have a drinking problem due to my
dizzy spells. This simply is not true. I just have a very
strange habit of having my head reel whenever I get
around a corporate back-stabbing weasel.”

d e v e l o p Issue 17

Have you seen this polar bear cub?• Tao needs questions to keep from hoarding the freebies he is
supposed to be sending out to you, the devoted reader. Send your
queries regarding all aspects of office survival, or just that funny
little thing we call “life,” to AppleLink DEVELOP, and there’s a
possibility that you’ll end up even cooler than you are now.•

100

RECOMMENDED READING AND
LISTENING
• The Red Couch by Clarke, Moon, and Wackerbarth.

Surprisingly, it’s lots of pictures of a red couch.

• War and Peace by Leo Tolstoy. Good book. Great
monitor stand.

• Godzilla, on Star Child records. The original
soundtrack; makes all other music sound great.

Window zooming is a feature of the Macintosh user interface that’s
rarely implemented correctly. Because a lot of calculation and pixel-
tweaking is required to achieve the “perfect” window zoom, few
applications go through the effort to properly zoom their document
windows. This article discusses proper zooming etiquette and provides a
routine that deals with all the details of zooming windows.

About once a year, I go on a tirade about how few programs zoom their windows
properly. Most programs zoom to the full size of the main screen; other applications
make the window only as big as they need to but still move it to the main screen,
even if the window is on another screen. The System 7 Finder comes close to making
me happy, but every once in a while it zips a window to the main screen for reasons
known only to the Finder engineers.

As I was writing some application code recently, I took the opportunity to make it
zoom windows the way I wish all other programs would zoom windows. The
resulting code (which is on this issue’s CD) is the basis for this article. The zooming
behavior that this code implements reflects all the documentation Apple has ever
published about window zooming, from the old Human Interface notes to the
Window Manager chapter in Inside Macintosh: Macintosh Toolbox Essentials.

THE ETIQUETTE OF ZOOMING
First let’s look at the subtle effects of a user’s actions on how a window should be
zoomed. After some basic definitions, we’ll go over a few rules that govern zooming
behavior. If you couldn’t care less about these preliminaries, you can skip to the
section “The Zooming Code” (however, if you do this, you’ll hurt the author’s
feelings, since he spent a perfect Saturday afternoon indoors to write this article).

THE STATES OF A WINDOW
A window is zoomed between two states, the user state and the standard state. The user
state is any size and position in which the user can place the window on the desktop.

THE ZEN OF WINDOW ZOOMING March 1994

101
DEAN YU recently went on a cross-country road
trip in his new car. In retrospect, he decided that
the time off wasn’t worth the emotional trauma of
being pelted by marble-sized hail in Cheyenne,
Wyoming, being salt-blasted in the Utah salt flats,
being nearly blown off the road as an 18-wheeler
passed him at 95 miles an hour in the dead of
night, and having his windshield chipped by
gravel falling off a dump truck. Dean didn’t even

get the satisfaction of finding out exactly how fast
he can drive without getting pulled over for
speeding in Nebraska. Sympathy notes and
donations for getting his car repaired can be sent
to Dean in care of develop.•

DEAN YU

THE ZEN OF

WINDOW

ZOOMING

The Window Manager updates the user state when it calls a WDEF to recalculate a
window’s regions.

The standard state of a window is defined to be the size that can best display the data
contained in the window. For example, in word processing applications the standard
state of a document window would most likely be the size of a printed page. For some
types of windows the standard state depends on the window’s contents and so is
determined dynamically by the application when the user zooms the window. In the
Finder, for instance, the standard state of a window in an icon view would be the
smallest size that can display all the icons in that window. The position of a window
in its standard state varies depending on the position of the user state when the
window was zoomed and on other factors, as explained later.

Figure 1 shows the user state and standard state of a Finder window displayed in the
“small icon” view.

RULES OF THE ROAD
In addition, there are a few rules that govern how a window should be zoomed in
different situations. These rules can be divided into two categories: rules on size and
rules on position.

Rules on size. Although the standard state of a window is defined to be the best size
for displaying the window’s contents, this state is actually constrained by the size of
the screen to which the window is being zoomed. If the ideal size for the standard
state is larger than the destination screen, the window should be pinned to the size of
the screen, minus some slop pixels. For example, Figure 2 shows the height of the
standard state being pinned on the main screen. (Note that space was also left for the
menu bar.)

d e v e l o p Issue 17

A lot of people think the Window Manager
has some magic value stashed away in a dark
corner that tells it whether a window is in its user
state or its standard state. In reality, it’s not that
sophisticated. It’s actually the WDEF that does all
the work, since it’s the thing that really needs to
know which state a window is in. To make this
decision, the standard document WDEF takes a
window’s portRect, converts it to global

coordinates, and then compares it with the user
and standard state rectangles to determine which
state the window is in.•

102

User state Standard state

Figure 1
The User and Standard States of a Window

If a window is being zoomed to the main screen and the ideal size for the standard
state would take up the entire width of the screen, a strip of space should be left on
the right side of the screen to let the first column of Finder icons show through.

Rules on position. The basic guideline for positioning a window during a zoom is
that the window should move as little as possible, to avoid distracting the user.

A window in its standard state should be positioned so that it’s entirely on one screen.
If a window straddles more than one screen in the user state and is subsequently
zoomed to the standard state, it should be zoomed to the screen that contains the
largest portion of the window’s content region. (See Figure 3.)

When a window is zoomed from the user state to the standard state, it should be
anchored at its current top left corner if possible. If the standard state size will fit on
the screen without moving the window, the window can simply be resized. If the
standard state of the window cannot fit with the top left corner anchored, the window
should be “nudged” so that the parts that were off the screen fall just on screen. (See
Figure 4.)

THE ZOOMING CODE
This section goes through the window zooming code chunk by chunk, discussing the
logic behind each step.

ZoomTheWindow is the entry point to the window zooming code. It determines the
best screen to zoom the window to, and nudges the window into position in case part
of it falls off the edge of the screen. Applications should call this routine instead of
calling the Toolbox routine ZoomWindow directly.

THE ZEN OF WINDOW ZOOMING March 1994

103

Pinned standard stateIdeal size

Figure 2
Pinning to the Screen Size

d e v e l o p Issue 17

104

User state

Standard state

Figure 3
Zooming to the Best Screen

ZoomTheWindow has the following prototype:

void ZoomTheWindow(WindowPeek theWindow, short zoomState,
CalcIdealDocumentSizeProcPtr calcRoutine);

The first two parameters, theWindow and zoomState, are identical to the first two
parameters of ZoomWindow. The last parameter, calcRoutine, is an application-
supplied callback routine that calculates the ideal size for the window without taking
the user’s screen configuration into consideration. The prototype of the
CalcIdealDocumentSizeProcPtr function type is as follows:

typedef void (*CalcIdealDocumentSizeProcPtr) (WindowPtr theWindow,
Rect *idealContentSize);

Given the window to be zoomed, the callback routine returns (in local coordinates)
the ideal rectangle for the window in the idealContentSize parameter. The window
will be the current graphics port when the callback routine is invoked.

ZoomTheWindow calls two utility routines, CalculateWindowAreaOnScreen and
CalculateOffsetAmount. CalculateWindowAreaOnScreen calculates the area of a
window on a screen. The screen that contains the largest portion of the window is the
screen that the window will be zoomed to. If ZoomTheWindow determines that
anchoring the window at its current top left corner will result in part of the window
lying off the screen, it calls CalculateOffsetAmount to find out how many pixels the
window needs to be nudged so that it’s entirely on the screen. These utility routines
are described in detail following the discussion of ZoomTheWindow below.

THE ZEN OF WINDOW ZOOMING March 1994

105

User state Standard state

Figure 4
Nudge Zooming

THE ZOOMDATA STRUCTURE
The ZoomData structure is used by ZoomTheWindow to hold information about
the screen the window should be zoomed to. ZoomTheWindow uses DeviceLoop to
find the screen containing the largest portion of the window. The DeviceLoop
drawing procedure updates the ZoomData structure as DeviceLoop calls it for each
active screen device.

struct ZoomData {
GDHandle screenWithLargestPartOfWindow;
unsigned long largestArea;
Rect windowBounds;

};
typedef struct ZoomData ZoomData, *ZoomDataPtr;

The screenWithLargestPartOfWindow field is a handle to the screen device that the
window should be zoomed to. The largestArea field holds the area of the largest
portion of the window encountered so far, as DeviceLoop iterates through the
screens. The windowBounds field is the portion of the window that’s currently visible
on the desktop.

THE ZOOMTHEWINDOW ROUTINE
About 90% of the code in ZoomTheWindow executes only when the window is to be
zoomed to the standard state. The routine starts by setting up the current graphics
port and getting some frequently used fields out of the window record.

void ZoomTheWindow(WindowPeek theWindow, short zoomState,
CalcIdealDocumentSizeProcPtr calcRoutine)

{
ZoomData zoomData;
Rect newStandardRect, scratchRect, screenRect, portRect;
Rect contentRegionBoundingBox, structureRegionBoundingBox;
Rect deviceLoopRect;
GrafPtr currentPort;
RgnHandle scratchRegion, contentRegion, structureRegion;
GDHandle mainDevice;
short horizontalAmountOffScreen, verticalAmountOffScreen;
short windowFrameTopSize, windowFrameLeftSize;
short windowFrameRightSize, windowFrameBottomSize;

GetPort(¤tPort);
SetPort((WindowPtr) theWindow);
contentRegion = GetWindowContentRegion(theWindow);
structureRegion = GetWindowStructureRegion(theWindow);
GetWindowPortRect(theWindow, &portRect);
contentRegionBoundingBox = (**contentRegion).rgnBBox;

d e v e l o p Issue 17

106

structureRegionBoundingBox = (**structureRegion).rgnBBox;
windowFrameTopSize = contentRegionBoundingBox.top -

structureRegionBoundingBox.top;
windowFrameLeftSize = contentRegionBoundingBox.left -

structureRegionBoundingBox.left;
windowFrameRightSize = structureRegionBoundingBox.right -

contentRegionBoundingBox.right;
windowFrameBottomSize = structureRegionBoundingBox.bottom -

contentRegionBoundingBox.bottom;

Determining the proper screen. The code then determines which screen contains
the largest portion of the window, as follows:

// If the window is being zoomed to the standard state, calculate the
// best size to display the window's information.
mainDevice = GetMainDevice();
if (zoomState == inZoomOut) {

zoomData.screenWithLargestPartOfWindow = mainDevice;
zoomData.largestArea = 0;

// Get the portion of the window that's on the desktop.
scratchRegion = NewRgn();
SectRgn(GetGrayRgn(), contentRegion, scratchRegion);
if (EmptyRgn(scratchRegion))

zoomData.windowBounds = structureRegionBoundingBox;
else

zoomData.windowBounds = contentRegionBoundingBox;

// Use DeviceLoop to walk through all the active screens to find the
// one with the largest portion of the zoomed window.
deviceLoopRect = zoomData.windowBounds;
GlobalToLocal((Point *)&deviceLoopRect);
GlobalToLocal((Point *)&deviceLoopRect.bottom);
RectRgn(scratchRegion, &deviceLoopRect);
DeviceLoop(scratchRegion, &CalcWindowAreaOnScreen, (long) &zoomData,

(DeviceLoopFlags) singleDevices);
DisposeRgn(scratchRegion);
screenRect = (**(zoomData.screenWithLargestPartOfWindow)).gdRect;

// If the window will be zoomed to the main screen, change the top
// of the usable screen area so that the window's title bar won't be
// placed under the menu bar.
if (zoomData.screenWithLargestPartOfWindow == mainDevice)

screenRect.top += GetMBarHeight();

THE ZEN OF WINDOW ZOOMING March 1994

107

ZoomTheWindow sets up default values in the ZoomData structure so that the
window will zoom to the main screen by default. Normally, the content area of the
window is used to determine the area of the window that’s on each screen. However,
if the user has the window positioned such that only the title bar (or a portion of the
title bar) is visible on the desktop, the structure region of the window is used to
determine the screen that contains the largest portion of the title bar.

One of the little-known facts about the universe is that inspiration actually comes
from subatomic particles flying around in deep space. These particles occasionally hit
a sentient brain, resulting in a flash of inspiration. One of these events resulted in the
use of DeviceLoop to iterate through the list of active screen devices. (Of course, this
means that the zooming code requires System 7; for a System 6 alternative to
DeviceLoop, see “Graphical Truffles: Multiple Screens Revealed” in develop Issue 10.)
The CalcWindowAreaOnScreen routine is the DeviceLoop drawing procedure. The
ZoomData structure is passed to DeviceLoop as the userData value, and the
DeviceLoop flags are set so that DeviceLoop will call its drawing procedure for each
screen device.

Determining the ideal size for the window. After determining the proper screen
to zoom to, the application’s callback routine is called to get back the ideal content
size for the window. This rectangle is then anchored at the window’s current top left
corner and expanded to include the window frame.

// Figure out the perfect size for the window as if we had an
// infinitely large screen.
(*calcRoutine)((WindowPtr) theWindow, &newStandardRect);

// Anchor the new rectangle at the current top left corner of the
// window.
OffsetRect(&newStandardRect, -newStandardRect.left,

-newStandardRect.top);
OffsetRect(&newStandardRect, contentRegionBoundingBox.left,

contentRegionBoundingBox.top);

// Add the window frame to the ideal content rect.
newStandardRect.top -= windowFrameTopSize;
newStandardRect.left -= windowFrameLeftSize;
newStandardRect.right += windowFrameRightSize;
newStandardRect.bottom += windowFrameBottomSize;

Fitting the ideal size onto the screen. This is the tedious part of the code. At this
point, newStandardRect holds the ideal size for the window being zoomed. Since a
window in its standard state must be entirely on one screen, we ensure that the
window fits on the screen, maintaining its ideal size if possible.

d e v e l o p Issue 17

If the structure region is always used to
calculate the screen containing most of the
window, there’s actually a scenario in which the
code will zoom to the wrong screen. If the user
has a multiscreen setup and places a window so
that it sits across two screens, with only the title
bar showing on one screen but a sliver of the
content region showing on the other, and there’s
more title bar than content showing, the window

will zoom to the first screen. However, since there
is content area on the second screen, the window
should zoom to that screen.•

108

// If the new rectangle falls off the edge of the screen, nudge it
// so that it's just on the screen. CalculateOffsetAmount determines
// how much of the window is off the screen.
SectRect(&newStandardRect, &screenRect, &scratchRect);
if (!EqualRect(&newStandardRect, &scratchRect)) {

horizontalAmountOffScreen = CalculateOffsetAmount(
newStandardRect.left, newStandardRect.right,
scratchRect.left, scratchRect.right,
screenRect.left, screenRect.right);

verticalAmountOffScreen = CalculateOffsetAmount(
newStandardRect.top, newStandardRect.bottom,
scratchRect.top, scratchRect.bottom,
screenRect.top, screenRect.bottom);

OffsetRect(&newStandardRect, horizontalAmountOffScreen,
verticalAmountOffScreen);

}

// If we're still falling off the edge of the screen, the perfect
// size is larger than the screen, so shrink the standard size.
SectRect(&newStandardRect, &screenRect, &scratchRect);
if (!EqualRect(&newStandardRect, &scratchRect)) {

// First shrink the width. If the window is wider than the screen
// it's being zoomed to, just pin the standard rectangle to the
// edges of the screen, leaving some slop; otherwise, we know we
// just nudged the window into position, so do nothing.
if ((newStandardRect.right - newStandardRect.left) >

(screenRect.right - screenRect.left)) {
newStandardRect.left = screenRect.left + kNudgeSlop;
newStandardRect.right = screenRect.right - kNudgeSlop;

if ((zoomData.screenWithLargestPartOfWindow == mainDevice) &&
(newStandardRect.right > (screenRect.right - kIconSpace)))
newStandardRect.right = screenRect.right - kIconSpace;

}

// Move in the top of the window. As with the width of the
// window, do nothing unless the window is taller than the
// height of the screen.
if ((newStandardRect.bottom - newStandardRect.top) >

(screenRect.bottom - screenRect.top)) {
newStandardRect.top = screenRect.top + kNudgeSlop;
newStandardRect.bottom = screenRect.bottom - kNudgeSlop;

}
}

THE ZEN OF WINDOW ZOOMING March 1994

109

// We've got the best possible window position. Remove the
// frame, slam it into the WStateData record and let ZoomWindow
// take care of the rest.
newStandardRect.top += windowFrameTopSize;
newStandardRect.left += windowFrameLeftSize;
newStandardRect.right -= windowFrameRightSize;
newStandardRect.bottom -= windowFrameBottomSize;
SetWindowStandardState(theWindow, &newStandardRect);

} // if (zoomState == inZoomOut)
else

GetWindowUserState(theWindow, &newStandardRect);

We call CalculateOffsetAmount to determine how much to nudge the window if it
falls off the edge of the screen in its ideal size. After nudging the window, we double
check to see if the window is entirely on the screen. If it still isn’t, that means that the
ideal size of the window is larger than the screen that it’s zooming to, so the window
has to be shrunk to fit on the screen. The code shrinks the window so that there’s a
small area of slop space between the edge of the window and the screen boundary.
Additionally, if the screen that the window is zooming to is the main screen, space is
left for the menu bar and a column of Finder icons.

After all that, newStandardRect contains the best size for the window for that screen.
After we remove the window frame, the stdState field of the WStateData record can
be filled with this rectangle.

There’s also the simple case of zooming to the user state. Since the Window Manager
takes care of keeping the userState field of the WStateData record up to date, that
rectangle is easy to get.

Zooming the window. Finally, all that’s left to do is to actually zoom the window.
One final optimization that can be performed is that if the top left corner of the
window hasn’t moved, SizeWindow can be called instead of ZoomWindow, reducing
the amount of redrawing that needs to be done. The window’s clipping region is reset
to be the size of the window to ensure that the window’s contents are entirely erased
before ZoomWindow is called.

// If the window is still anchored at the current top left corner, just
// resize it.
if ((newStandardRect.left == contentRegionBoundingBox.left) &&

(newStandardRect.top == contentRegionBoundingBox.top)) {
OffsetRect(&newStandardRect, -newStandardRect.left,

-newStandardRect.top);
SizeWindow((WindowPtr) theWindow, newStandardRect.right,

newStandardRect.bottom, true);
}

d e v e l o p Issue 17

110

else {
scratchRegion = NewRgn();
GetClip(scratchRegion);
ClipRect(&portRect);
EraseRect(&portRect);
ZoomWindow((WindowPtr) theWindow, zoomState, false);
SetClip(scratchRegion);
DisposeRgn(scratchRegion);

}
SetPort(currentPort);

}

THE CALCWINDOWAREAONSCREEN ROUTINE
CalcWindowAreaOnScreen, the DeviceLoop drawing procedure for the zooming
code, doesn’t actually do any drawing, but instead simply calculates the area of the
window that’s on a screen. If there’s more content area on one screen than any of the
other screens that have been encountered so far, CalcWindowAreaOnScreen saves
the GDHandle of this screen in the ZoomData structure as the potential screen to
zoom the window to.

pascal void CalcWindowAreaOnScreen(short depth, short deviceFlags,
GDHandle targetDevice, long userData)

{
#pragma unused (depth, deviceFlags)

ZoomDataPtr zoomData = (ZoomDataPtr) userData;
unsigned long windowAreaOnScreen;
Rect windowPortionOnScreen;

// Find the rectangle that encloses the intersection of the screen and
// the document window.
SectRect(&(zoomData->windowBounds), &((**targetDevice).gdRect),

&windowPortionOnScreen);

// Offset this rectangle so that its right and bottom are also its
// width and height.
OffsetRect(&windowPortionOnScreen, -windowPortionOnScreen.left,

-windowPortionOnScreen.top);

// Calculate the area of the part of the window that is on this
// screen.
windowAreaOnScreen = windowPortionOnScreen.right *

windowPortionOnScreen.bottom;

// If this is the largest area that has been encountered so far,
// remember this screen as the potential screen to zoom to.

THE ZEN OF WINDOW ZOOMING March 1994

111

if (windowAreaOnScreen > zoomData->largestArea) {
zoomData->largestArea = windowAreaOnScreen;
zoomData->screenWithLargestPartOfWindow = targetDevice;

}
}

THE CALCULATEOFFSETAMOUNT ROUTINE
The zooming code calls the CalculateOffsetAmount routine to calculate the number
of pixels the window needs to be nudged to be entirely on the screen. This routine
works in one dimension at a time, so ZoomTheWindow calls it twice, once for the
width of a window and once for the window’s height. If CalculateOffsetAmount
determines that the window is larger than the screen, it returns 0 for the offset, since
the window will be resized later.

short CalculateOffsetAmount(short idealStartPoint, short idealEndPoint,
short idealOnScreenStartPoint, short idealOnScreenEndPoint,
short screenEdge1, short screenEdge2)

{
short offsetAmount;

// Check to see if the window fits on the screen in this dimension.
if ((idealStartPoint < screenEdge1) && (idealEndPoint > screenEdge2))

offsetAmount = 0;

else {
// Find out how much of the window lies off this screen by
// subtracting the amount of the window that's on the screen from
// the size of the entire window in this dimension. If the window is
// completely off-screen, offset the window so that it's placed just
// on the screen.
if ((idealOnScreenStartPoint - idealOnScreenEndPoint) == 0) {

// See if the window is lying to the left or above the screen.
if (idealEndPoint < screenEdge1)

offsetAmount = screenEdge1 - idealStartPoint + kNudgeSlop;
else
// Otherwise, it's below or to the right of the screen.

offsetAmount = screenEdge2 - idealEndPoint - kNudgeSlop;
}
else {

offsetAmount = (idealEndPoint - idealStartPoint) -
(idealOnScreenEndPoint - idealOnScreenStartPoint);

// If we're nudging, add slop pixels.
if (offsetAmount != 0)

offsetAmount += kNudgeSlop;

d e v e l o p Issue 17

112

// Check to see which side of the screen the window was falling
// off of, so that it can be nudged in the opposite direction.
if (idealEndPoint > screenEdge2)

offsetAmount = -offsetAmount;
}

}
return offsetAmount;

}

CalculateOffsetAmount determines the nudge amount by calculating the amount of
overlap of two line segments. The first line segment, described by the idealStartPoint
and idealEndPoint parameters, is the width or height of the window being zoomed.
The second line segment, described by the idealOnScreenStartPoint and
idealOnScreenEndPoint parameters, is the part of the window’s width or height that
is on the screen the window will be zoomed to. The number of pixels the window will
be nudged is the difference between the lengths of these two line segments, plus some
slop. If the length of the second line segment is 0, the window is entirely off the
screen that it will be zoomed to. In this case, CalculateOffsetAmount will return the
number of pixels the window will have to be nudged to be just on the screen. A third
line segment, describing the screen width or height, is used to check whether the
window is larger than the screen and to determine the direction to nudge the window.

ZOOMING AWAY
The code presented in this article takes care of most of the work of zooming
windows. All your application needs to do is supply the code that determines the ideal
size for your windows. Hopefully, many more applications will implement proper
zooming behavior in the near future. This will make the people in the offices around
me especially happy, since it’s one less thing I’ll have to complain about.

THE ZEN OF WINDOW ZOOMING March 1994

113
THANKS TO OUR TECHNICAL REVIEWERS
C. K. Haun, Elizabeth Moller, Dave Owens,
Craig Prouse•

RECOMMENDED READING
• “DeviceLoop Meets the Interface Designer” by John Powers, develop Issue 13.

How to use DeviceLoop the correct way.

• Making It Macintosh: The Macintosh Human Interface Guidelines Companion
(Apple Computer, 1993). Anyone who wants to write programs on the Macintosh
should be required to go through this CD first. APDA #R0450LL/A.

• Sourcery by Terry Pratchett (Signet, 1989). Find out about inspiration particles,
magicons, and other subatomic particles and how they interact with ducks.

In this column I’ll give some general tips that are
targeted at game developers but can in fact benefit
any Macintosh application. Many of the tips are
illustrated in the accompanying sample code (CopyBits
ColorKarma) on this issue’s CD. If you’re considering
writing a game for the Macintosh, or you want to
improve your existing game or other application, these
tips are for you. Here they are at a glance:

1. The Macintosh gaming market is wide open.

2. Bypass QuickDraw wisely.

3. Use CopyBits correctly.

4. Scroll graphics smoothly.

5. Don’t synchronize with the VBL interrupt.

6. Use Sound Manager 3.0.

7. Learn when to use (or not use) Apple events.

8. Use the Time Manager.

9. Use the Memory Manager effectively.

10. Use a compatible copy-protection scheme (if any).

THE TIPS IN DETAIL

1. The Macintosh gaming market is wide open.

The Macintosh has infiltrated the homes, offices, and
schools of every continent on the planet, and it has
matured enough to be ready for entertainment software

of all sorts. Hit Macintosh games have sold over 60,000
copies, and users are clamoring for more. If you walk
into a software store, though, you’ll notice that there
isn’t a very large selection of Macintosh game and
entertainment software. Now is the time to take
advantage of the lack of competition and get into the
entertainment market with your games.

2. Bypass QuickDraw wisely.

Applications that bypass QuickDraw by accessing video
memory directly may not work on future Macintosh
platforms. The Macintosh is evolving, and some of the
changes may be in the bus architecture, causing
applications that write to video memory to break.
We’re not saying this is going to happen any time soon,
but it’s a good idea to be ready for it now so that your
product will last in the marketplace.

A good compromise is to draw with custom drawing
code into an off-screen GWorld, and then use
CopyBits to transfer it to the screen. This avoids
accessing hardware directly, and will always work.

If you must write directly to the screen, it’s important
to follow the guidelines set forth in “Graphical
Truffles: Writing Directly to the Screen” in develop
Issue 11, which states that you should always have a
QuickDraw version of your code. If your program uses
QuickDraw (or QuickDraw GX), it will always be
compatible with every future Macintosh platform.

If you do bypass QuickDraw, your application should
time the custom drawing code versus QuickDraw at
run time, and then choose the fastest routines. This
way, the fastest code will be used in cases where your
code is running on a system that has an accelerated
version of QuickDraw, or perhaps a different CPU
altogether.

3. Use CopyBits correctly.

I’ve heard many developers say that CopyBits is slow,
that it can’t achieve the frame rates needed to do good
games. If you use CopyBits correctly, however, you can
achieve a high animation frame rate.

d e v e l o p Issue 17

BRIGHAM STEVENS (Internet vikingmind@aol.com) Since
you last saw Brigham here, he has spoken at the Worldwide
Developers Conference on Macintosh game development, moved
to San Francisco, jumped out of a perfectly good airplane, become
addicted to flight simulators, spent 150 hours in a car with no
stereo, tossed his cookies on the steps of the Smithsonian Air and
Space Museum in Washington DC, quit Apple to start a game
development/consulting company in San Francisco, and become a
vampire. You’ll see some games from him later on in 1994.•

114

TEN TIPS
FOR GAME
DEVELOPERS

BRIGHAM STEVENS

TEN TIPS FOR GAME DEVELOPERS March 1994

115

Understanding all of the factors that affect CopyBits
performance is critical to achieving high animation
frame rates and still having processor bandwidth left
over for the rest of the game. The following tips on
CopyBits speed have been collated from many different
sources, including Technical Notes, sample code, and
other tomes of QuickDraw knowledge. (See also tip 4
below.)

• CopyBits is more efficient with wider images than
with tall ones.

• CopyBits is more efficient with rectangular
transfers, with no mask region.

• CopyBits is more efficient when the source and
destination have the same color table, and even
better when the ctSeeds of the color tables are the
same. (The accompanying sample code shows how
to use the Palette Manager and how to set up the
color tables in your application window and off-
screen GWorld.)

• CopyBits with a mask region is faster than either
CopyMask or CopyDeepMask. Convert your masks
to QuickDraw regions and then use CopyBits. (See
the CopyBits vs. CopyMask snippet on this issue’s
CD.)

• CopyBits is faster when the transfer source and
destination are long-word aligned, especially on an
68040-based Macintosh.

For more details on these principles, see the Tech Note
“Of Time and Space and _CopyBits.”

4. Scroll graphics smoothly.

This tip applies to games with scrolling maps, painting
programs, and any application that needs to scroll
window content quickly and smoothly.

Many Macintosh applications suffer from flickering
scrolling, caused by erasing the previous image before
drawing the new image. To reduce flicker, you should
redraw only the parts of the screen that change; don’t
erase anything first, unless absolutely necessary. When
you’re designing your scrolling code or animation

engine, the philosophy to adopt is that every pixel
should be touched only once.

Another technique is to buffer your graphics into an
off-screen GWorld: make all changes in the GWorld
and then transfer the image to the screen with
CopyBits. This can be slower, because the image is
drawn twice, but it results in an especially smooth
update. An example of a game that uses CopyBits in
this way is MacPlay’s Out of This World. This game
draws into an off-screen GWorld using custom
polygon-rendering code (thus ensuring a high frame
rate); then, when the image is completely rendered, it’s
transferred to the screen with CopyBits (ensuring
compatibility with future video hardware). For more on
this subject, see “Graphical Truffles: Animation at a
Glance” in develop Issue 12 and “Drawing in GWorlds
for Speed and Versatility” in Issue 10.

There’s another method that isn’t as smooth but uses
less memory, and that is to use ScrollRect. ScrollRect
was changed in System 7: if you pass nil for the
updateRgn parameter of ScrollRect, it won’t erase the
area that has been uncovered, and you can then use
CopyBits in a second step to copy in the new bits. (In
System 6, ScrollRect will erase the area you’re scrolling
out of, causing the screen to flicker more.)

The sample code demonstrates these techniques,
showing the tradeoffs between memory footprint and
smoothness/apparent speed.

5. Don’t synchronize with the VBL interrupt.

Many developers have wanted to synchronize
animation with the vertical blanking (VBL) interrupt to
eliminate tears when the next frame of animation is
drawn before the display hardware has completed the
previous frame. It’s possible to eliminate tears from
small-sized animations, but the overall application will
run more slowly because you’ll be spending time
waiting for the VBL period to start. This results in a
much lower animation frame rate, and the application
also loses processing power for the rest of the program.
Note that QuickTime does not synchronize with the
VBL interrupt.

For more on VBL interrupts, see the Guide to Macintosh
Family Hardware, second edition.•

Another headache to consider with respect to
synchronizing with the VBL interrupt is that displays
have different refresh rates, and each one’s actual VBL
period has a different length. This means that for your
program to have accurate frame rates on different
monitors, you’ll have to time the refresh rate of the
display you’re animating on.

To work around not being able to synchronize with
the VBL interrupt, you should try to interleave the
animation processing so that you’re never updating too
many objects at one time. The Time Manager will
allow you to break the processing up into separate tasks
(see tip 8). If you’re getting tears on objects, consider
using fewer objects or smaller ones.

6. Use Sound Manager 3.0.

The Macintosh Sound Manager has recently been
enhanced (version 3.0). It now can efficiently handle
as many sound channels as memory and processor
bandwidth can take. This means four channels on a
Macintosh LC (which used to handle only one channel)
and up to 16 or more on higher-end platforms. As a
result, your application can play sound and still have
enough CPU bandwidth for other animation and
processing. The sample code demonstrates multiple
sound channels playing asynchronously while
animating an image. Also see “Somewhere in
QuickTime: What’s New With Sound Manager 3.0”
in develop Issue 16 and “The Asynchronous Sound
Helper” in Issue 11.

Many bugs have been fixed in Sound Manager 3.0.
You can now open a sound channel at the start of your
program and then continuously use SndPlay to play
sounds through it, without disposing of the channel
between sounds. Previous versions of the Sound
Manager had problems playing sampled sounds like
this, so many developers adopted the technique of
allocating and disposing of a new sound channel for
each sound played.

On the AV Macintosh models, the Sound Manager uses
the DSP. This requires the DSP Manager to load a new
component every time you open a new channel, and

may require disk access. So if you’re running with
Sound Manager 3.0 you should not open and close a
sound channel for each sound played; doing so will
cause your application to perform less than optimally,
especially on the AV models.

See the source code file GameSounds.c, which is part
of the CopyBits ColorKarma sample, for an example of
a unit that manages asynchronous sound. If Sound
Manager 3.0 or later is present, the code opens the
sound channels at initialization and closes them when
the program quits; otherwise it opens and closes the
channels as sounds are played.

Sound Manager 3.0 also adds a new routine, named
GetSndHeaderOffset, that makes it easier to use a
bufferCmd to play sounds. Using a bufferCmd is faster
than using SndPlay. See the sample code on the CD for
an example.

Note that the sample code doesn’t store the
application’s A5 register as part of the callback
command, so that the interrupt code can set the flag
associated with the channel. Instead it just stores a
pointer to the flag. This allows the interrupt-time
callback to be very small, since it doesn’t have to save,
set up, and restore A5; it just dereferences the pointer
and sets the flag directly. The sample code gives an
example of playing a sound asynchronously with a
completion callback. I use this technique in just about
any interrupt-time callback code I write, including
VBL tasks, Time Manager tasks, and Device Manager
completion routines.

If you don’t use the Sound Manager at all, you’re taking
an unnecessary compatibility risk. Apple has always
recommended against accessing the sound hardware
directly. Applications that violate this rule have broken
in the past, and they will break again.

7. Learn when to use (or not use) Apple events.

Apple events have simplified interapplication
communication, making it easy to add value to your
application. A game played against live human players
is often more fun than a game played against a

d e v e l o p Issue 17

Sound Manager 3.0 is available for licensing, so you can
distribute it with your products to ensure that your customers and
applications will receive its benefits. You can reach Apple’s
software licensing department at AppleLink SW.LICENSE.•

116

TEN TIPS FOR GAME DEVELOPERS March 1994

117

computer. Just about every night you’ll find some
Apple engineers huddled over their computers playing
Bolo, Spaceward Ho!, or other network games.

Consider Velocity’s Spectre, a network tank game that
has been very successful. Spectre doesn’t use Apple
events; it uses custom DDP (datagram delivery
protocol) socket listeners at the lowest level of
AppleTalk to achieve high performance. But if your
game doesn’t require the same level of performance,
you may benefit from the ease of use of Apple events.

If you require more performance than Apple events
can provide, one option is to use the PPC Toolbox
directly, which will allow you to still remain a step
removed from direct AppleTalk. See the PPC Toolbox
chapter of Inside Macintosh Volume VI for more
information.

If you require even more performance, you can use
AppleTalk Data Stream Protocol (ADSP) directly, or
one of the other AppleTalk protocols. ADSP is a
higher-level protocol that will allow you to do block
transfers and not worry about losing packets and packet
order.

It’s hard to determine which networking protocol to
use ahead of time. From my experience in using Apple
events to synchronize animation and events between
two Macintosh computers, I would say that if your
game is a more than two-player, real-time arcade game,
Apple events would probably not be the best solution.
If your game is a turn-based strategy-type game, like
Spaceward Ho!, RoboSport, Strategic Conquest, and
many others, Apple events will work very well for you,
no matter how many players are in the game.

For a simple example of using Apple events as a game
messaging system, see ZAM 1.a13 on the CD.

8. Use the Time Manager.

The Macintosh Time Manager is very useful for game
developers. Animation code often needs a heartbeat, to
synchronize the timing and updates of every object.

The Time Manager lets you break down your code into
discrete tasks that run at a steady rate. This allows you
to write modular code that updates smoothly.

One limitation of the Time Manager is that tasks fire at
interrupt time, so they can’t do much more than set a
flag to inform the regular event loop that it’s time to do
something. The sample code on the CD shows how to
place a wrapper around the Time Manager that allows
you to execute tasks at non-interrupt time.

9. Use the Memory Manager effectively.

The Macintosh Memory Manager is very flexible, and a
boon to most application programmers. However, for
the game programmer it can be a performance problem
unless it’s used wisely. In a game, you should
preallocate as much of your memory as possible. If
you’re using a dynamic object allocation scheme, you
should design one that preallocates the objects and
keeps track of which ones are in use or not. If you have
many allocated blocks in a heap and then request a new
one, you could send the Memory Manager into
thrashing mode where it will try to move many blocks
around to make space. This can cause your animation
to be jerky or your whole game to freeze for an instant.
So the best thing to do when performance matters is to
minimize your use of the Memory Manager.

To minimize Memory Manager use, you should not
only allocate as much of your memory up front as
possible but also avoid using relocatable blocks unless
absolutely necessary. This means avoiding game
architectures that rely on the Memory Manager for
dynamic object allocation. Definitely allocate your
nonrelocatable blocks first, and allocate handles later.
This prevents heap fragmentation and avoids sending
the Memory Manager into a tailspin.

Be aware that some parts of the Toolbox, like Apple
events, expect Memory Manager structures. However,
if the rest of the program’s memory is allocated wisely
to prevent heap fragmentation, even these allocations
will happen quickly, with no impact on game
performance.

10. Use a compatible copy-protection scheme (if any).

It’s a matter of great controversy whether software
should be copy-protected at all. No software protection
scheme on the Macintosh has ever survived the talented
efforts of Macintosh hackers. There’s always someone
who will defeat your copy protection, no matter how
convoluted it may be. There are many who consider
such protection a puzzle and a challenge to break, so by
putting it in you may be inviting piracy.

But if you do decide you want some level of protection
on your game, we strongly recommend against a disk-
based protection scheme, which is guaranteed to break
your program. Instead, we recommend using one (or a
combination) of the methods described here.

One method is to use serial numbers: when the
software is installed, ask the user to enter the serial
number from the disk label, and then imprint the
software with the person’s name. Another method
involves requiring the user to enter a password from
the manual every once in a while. If you do this, it’s a
nice touch to allow users who send you the registration
card to disable the password dialog; once you have the
registration card, you can link the customer to a serial
number.

Consider also making the following checks: At
installation time, use Gestalt to determine the
characteristics of the machine you’re installed on, and
save these to your preferences file. Also, use FindFolder
to record the directory ID of the System Folder, which
is the same until a new System Folder is created. Every
time your application starts up, make the same Gestalt
and FindFolder calls to check whether you’re running
on the same machine; if not, have the user reinstall the
software and reenter the serial number, or reenter the
password from the manual.

These techniques are the most compatible way to both
protect your sales and minimize the kind of frustration
customers experience with other password- or disk-
based copy protection systems.

ARE YOU GAME?
That’s not all! To help Macintosh game developers
share tips, tricks, and information, Apple has set up the
Game Development Discussion folder on AppleLink
(in Developer Support: Developer Talk). This board is
read by Macintosh game development companies,
other developers, and Apple engineers on a daily basis.
Also, there’s a folder on this issue’s CD, called Game
Development, that contains special resources Apple has
put together to aid all game developers.

So if you’re tired of the scant choices on the Macintosh
Entertainment shelf in your local software store, do
something about it: write some games!

d e v e l o p Issue 17

If you create a demo version of a game by commenting out
code or imposing a time limit to game play, be aware that these
kinds of demos are often hacked into full-blown pirate applications.
We strongly suggest that when you create a demo version, you
take out all nonessential pieces of code and sufficiently cripple the
remaining software (so that a hacker can’t simply paste in missing
resources to get a full, unprotected copy).•

Thanks to Konstantin Othmer, Jim Reekes, and John Wang for
reviewing this column. And special thanks to the people who
contributed to the information in this column, including (but not
limited to) C. K. Haun, Tony Myles, Craig Fryar, Mike Schlachter,
Bill Dugan of Interplay Productions, and the rest of the developers
I’ve worked with over the past couple of years.•

118

REFERENCES
• Macintosh Technical Note “Of Time and Space

and _CopyBits” (QuickDraw 21).

• “Somewhere in QuickTime: What’s New With
Sound Manager 3.0” by Jim Reekes, develop
Issue 16.

• “Graphical Truffles: Animation at a Glance” by
Edgar Lee, develop Issue 12.

• “The Asynchronous Sound Helper” by Bryan K.
(“Beaker”) Ressler, and “Graphical Truffles:
Writing Directly to the Screen” by Brigham
Stevens and Bill Guschwan, develop Issue 11.

• “Drawing in GWorlds for Speed and Versatility”
by Konstantin Othmer and Mike Reed, develop
Issue 10.

• Guide to Macintosh Family Hardware, 2nd ed.
(Addison-Wesley, 1990).

• Snow Crash, by Neal Stephenson. A fast-paced
book to keep you up late at night. Stephenson
says this book was inspired by the original
Macintosh Human Interface Guidelines. (Imagine
what he would have done if he’d had the new
improved edition!)

Q In QuickDraw GX, if the QuickDraw clipping region of a window (set by
SetClip(aRgn)) is not rectangular, the shapes drawn to the window’s viewPort are
sometimes clipped incorrectly. Is this a bug?

A This is not a bug. QuickDraw GX doesn’t honor any of the QuickDraw
clipping regions except the one that’s connected to a viewPort, created by
calling the GXNewWindowViewPort routine.

Here’s why: So that QuickDraw GX can draw into viewPorts associated with
windows, it patches the Window Manager. When the user moves a window, or
when your application calls BeginUpdate and EndUpdate, QuickDraw GX
updates the viewPort caches and clip shape. The clip shape is set to the visRgn
of the window. However, all other QuickDraw regions are ignored.

If you want to do some smart window clipping, you can. But you can’t play
directly with the viewPort attached to the window: that viewPort is maintained
by the QuickDraw GX system and is therefore off limits to the application. (If
you do try to manipulate it, you’ll receive an error.) You need to attach a child
viewPort to the window’s viewPort; then you can convert the QuickDraw
region you want to clip to into a GX shape (with the GX Translator) and set the
child viewPort’s clip shape to this new shape. Your QuickDraw GX shapes will
then be clipped correctly.

Q Calling GXSetStyleRunControls on a layout shape with the “track” field set doesn’t
always have any visible effect, although the track value is always safely stored in the
layout shape and can be retrieved with GXGetStyleRunControls. You can see this in
GXWrite by adjusting the track kerning of some Tekton text: that works fine. If you
switch to the Hoefler font, however, no track kerning is performed. Can you explain
this?

A When a track kerning value is specified, QuickDraw GX looks to the tables in
the font to see how the kerning should be performed. A narrow text face with a
large x-height, like Avant Garde, can probably take much tighter track kerning
than something like Hoefler Italic can; only the font designer really knows how
the kerning should behave. The font designer tells QuickDraw GX how to do
track kerning by setting values in the 'trak' table of the font. This table contains
one or more “reference points” — values between -2 and 2 — each of which
tells how much to adjust space between the glyphs for any number of point
sizes. If the specified track kerning value lies between reference points,
QuickDraw GX interpolates accordingly.

Hoefler Italic contains only one reference point — “normal” kerning (value 0).
It does contain values for several different point sizes, but the font designer

MACINTOSH Q & A March 1994

119
These answers are supplied by the
technical gurus in Apple’s Developer Support
Center. Special thanks to Pete (“Luke”) Alexander,
Matt Deatherage, Godfrey DiGiorgi, Steve
Falkenburg, Mark (“The Red”) Harlan, Dave
Hersey, Elli Howe, Joseph Maurer, Kevin
Mellander, Jim Mensch, and Brigham Stevens
for the material in this Q & A column.•

MACINTOSH

Q & A

doesn’t want the face more tightly or loosely kerned than in his original design.
Since there’s only one 'trak' point, QuickDraw GX winds up interpolating those
entries with themselves and nothing really happens for the values you specify in
the run controls. As you’ve noted, those values are still there, and they would be
used if you switched those runs to a different text face, but they’re having
exactly the effect Jonathan Hoefler wanted — none at all.

Q We’re developing a QuickDraw GX printer driver for a 24-bit continuous-tone device.
First, what should halftone fields be set to for a continuous-tone device (are they
ignored?). Second, do we have to override GXDefaultPrinter and GXDefaultJob? The
ImageWriter example shows building a default colorset inside GXDefaultPrinter.

A The answer to your first question is that you can stop QuickDraw GX from
using the halftone information by setting the gxDontSetHalftone flag in the
plane flags field of each plane in the 'rdip' resource. That’s it — the halftone
fields will be ignored.

The messages GXDefaultPrinter, GXDefaultDesktopPrinter, GXDefaultJob,
GXDefaultPaperType, and GXDefaultFormat may be appropriate for your
driver to override in order to modify default objects. You don’t need to override
these messages unless you have a reason to change the default object.

The ImageWriter driver with QuickDraw GX adds a list of view devices that
are appropriate for the printer that’s being used. Specifically, it adds a 144-dpi
black-and-white view device and, if color is available, a 144-dpi color view
device. If the driver didn’t add these, the default printer view device (24-bit at
72 dpi) would be used. Overrides of a GXDefaultxxx message typically forward
the message first to obtain the default object, and then modify that object as
needed. So if you want more than one view device to be installed by your driver,
you should override GXDefaultPrinter. That’s what the ImageWriter driver is
doing.

Q What is the correct way to recognize PowerTalk letters? Is it by checking for the file type
'lttr' or by looking at Finder flag bit 0x0200? Should I be saving letters as type 'lttr' or
as my own file type, and should I be setting the bit?

A The correct way of checking whether a particular document is a letter is to
check the isLetter bit of the Finder info field. It’s bit 9, mask 0x0200, and
occupies the space formerly used by the “changed” bit.

Checking for file type 'lttr' doesn’t work, since letters may have whatever file
type the sending application desires. In fact, an application may support
multiple letter types, and may have a different file type and icon for each type.

d e v e l o p Issue 17

120

This allows additional flexibility, since an application may have some idea what
content the letter contains by checking its type, even before opening the letter.

Note that when your application saves a letter to disk, nothing special needs to
be done with either the Finder flags or the file type to ensure that the Finder
notices that the file created is a letter. SMPBeginSave and SMPEndSave will
automatically set the isLetter bit for you, and the Finder will realize from this
bit that your file is indeed a letter.

One final piece of information: Since letters may have a file type other than
'lttr', an additional hook was added to the Finder drag and drop mechanism to
allow applications to have any letter drop-opened on them, regardless of the
letter’s file type. If you add a BNDL/FREF pair with the type 'ltr*' to your
application, the Finder will highlight your icon whenever any letter is dragged
over it. This mechanism works in the same way that '****' does for the universal
drag and drop wildcard.

Q Can we use a different A5 world with QuickTime? Our plug-in architecture uses A5
for global access, but we allow the A5 world to move. QuickTime doesn’t seem to
appreciate this and doesn’t think that EnterMovies has been called after the A5 world
moves. We currently work around this by locking down our A5 world but would rather
not. Is locking down the A5 world even good enough?

A You can use a different A5 world with QuickTime. QuickTime allocates a new
set of state variables for each A5 world that’s active when EnterMovies is called.
However, since QuickTime uses A5 to identify each QuickTime client, if you
move your plug-in’s A5 world QuickTime will no longer recognize that you’ve
called EnterMovies for that client. So you can use a different A5 world, but
you’ll have to lock it down.

Q We’re trying to display a QuickTime movie in a frame that can be panned, cropped,
and overlaid by other objects. The movie controller doesn’t seem to understand that the
badge may lie entirely outside the frame. Is there some way to tell the movie controller
where to place the badge?

A Unfortunately, QuickTime isn’t flexible about this. The code that positions the
badge calculates it from the bounding box of the movie region, and insets it six
pixels from the left and bottom. There’s no sane way to work around this, other
than not to use the standard badge, but instead use your own badge and perform
your own badge tracking.

Q I’ve noticed some interesting behavior using the standard compression dialog and was
wondering if someone could explain it to me. I’m trying to provide session-wide

MACINTOSH Q & A March 1994

121

defaults for compressing sequences of images. If I don’t prime the dialog by doing an
SCRequestSequenceSettings, then when I do an SCCompressSequenceBegin the dialog
is displayed. Is there any way to prevent this, and to use some set of defaults (without
using an image to derive the defaults)?

A The compression dialog components allow you to get settings with the
SCGetInfo call, and to set them with SCSetInfo. The first time, you should
display the dialog with SCRequestSequenceSettings, and then use SCGetInfo to
retrieve the settings. After that, you can apply the same parameters before
starting a compression sequence by using SCSetInfo. If you provide settings
before calling SCCompressSequenceBegin, the dialog won’t be displayed;
otherwise it will be. See Inside Macintosh: QuickTime Components, page 3-8 and
pages 3-15 through 3-25, for details about the format of the settings.

Also, as you may know, you can generate default parameters that also avoid the
dialog by using the SCDefaultPixMapSettings, SCDefaultPictHandleSettings,
and SCDefaultPictFileSettings routines. But these do require an image. This
way you can avoid displaying the dialog for the first sequence, and still generate
valid settings. See Inside Macintosh: QuickTime Components, pages 3-26 through
3-28, for more information about these routines.

Q When a user pastes a movie into a movie-controller movie, the added movie is inserted
in the top left corner of the movie. Is there a way for the user to choose where the movie
is pasted, and if not, how can I give the movie controller or Movie Toolbox an offset to
use rather than have the editing operations use the top left corner?

A When you paste a movie into a movie-controller movie, the movie controller
is simply calling PasteMovieSelection to insert the source movie. All the
characteristics of the movie are inserted, and therefore the movie is inserted in
the top left corner of the movie. There’s no easy way to specify an offset directly
to the movie controller. If you want to change the offset of the pasted movie,
you’ll have to modify the movie yourself after the paste using Movie Toolbox
commands. Once you’re done changing the movie, be sure to call
MCMovieChanged so that the movie controller updates correctly.

The actual modification is simple: call GetTrackMatrix, add your offset to the
matrix, and call SetTrackMatrix. The difficulty is in determining which tracks to
modify, since the paste may either create a new track or use an existing one. We
recommend doing this by gathering all track indexes before the paste, and then
comparing with the track indexes after the paste. Since most movies these days
have just a few tracks, this shouldn’t require much overhead. (But be warned:
some movies do have a lot of tracks!) To get the track information, you can call
GetMovieTrackCount and GetMovieIndTrack.

d e v e l o p Issue 17

122

One last idea: If you don’t mind changing the source movie, an alternative is to
simply offset the source movie before the paste.

Q Has Apple defined a codec type for a codec that does CCITT Group IV FAX
compression/decompression? If not, how does one go about registering a brand new codec
type with Apple?

A We’re not aware of any standard codec type for CCITT Group IV FAX. Apple
doesn’t have any mechanism in place for registering codec types. We suggest
that developers use the creator code for their applications, since creator codes
are unique, as long as they register them with us. We hope to have a better
solution than this sometime in the future.

Q When I called Gestalt with the gestaltKeyboardType selector and my new Apple
Adjustable Keyboard using System 7.1, I expected Gestalt to return a response that
wasn’t in GestaltEqu.h, but instead it returned an error of -5550, meaning “Couldn’t
obtain response.” Is there something more I need to do? Should I expect Gestalt to
return an error when I get new hardware?

A Gestalt is in error in not being able to identify the adjustable keyboard. But
the real problem (which the adjustable keyboard exacerbates) is that the
gestaltKeyboardType selector doesn’t really do what you want it to do. What
you want Gestalt to do is enumerate the features of a system; however,
gestaltKeyboardType tells you the type of keyboard most recently touched,
which is of limited utility. In the past, it’s been very rare to have more than one
keyboard on a system, so the gestaltKeyboardType selector could give you a
unique answer. But the adjustable keyboard is two separate keyboards — one
for the keyboard and one for the numeric keypad — so gestaltKeyboardType
can’t give you a unique answer. Because of these problems, we consider this
selector to be obsolete.

What you need is a way to list all the keyboard devices on a system. You can use
the ADB Manager’s GetADBInfo call to get the information for all the ADB
keyboards connected. You’ll see two keyboards connected if the whole
adjustable setup is installed. The first will be at address $02 (all keyboards have
an original address of $02); the second will be at an address between $08 and
$0F, due to ADB remapping. Your first task would be to determine which ADB
devices are keyboards. You can do this by using CountADBs to tell you how
many devices there are, and then having a loop that calls GetIndADB for each
device. For each device, you would test the original address field; if it’s $02, you
have a keyboard of some type. You can then use the handler ID of the device to
identify the keyboard. The names and device handler IDs of the three main
adjustable keyboards and the adjustable keypad are as follows:

MACINTOSH Q & A March 1994

123

U.S. standard adjustable keyboard $10
ISO standard adjustable keyboard $11
Japan adjustable keyboard $12
Adjustable keyboard’s keypad $0E

Note that the keypad will usually be the one remapped and there’s no way to
guarantee that it will be remapped to a specific address. That’s why you have to
use CountADBs and GetIndADB to get the information.

Q Someone told me recently that the glue on postage stamps is made from horse hooves
and other mammalian unmentionables. Is this true? I’m a strict vegetarian.

A The glue used on postage stamps is not made from hooves or any other animal
products. Although we’re not sure exactly what it is made of, we’ve been assured
by the United States Post Office that the glue they use is vegan and kosher.
(International readers should check with their local postal services.)

Q Is there any reliable way of extracting the scaling information from a page setup record?
We want to display a summary of the page setup in terms of paper size and scaling (for
example, 8.5" by 11", 50%) instead of virtual page size (such as 17" by 22"). Can we
assume that the editText item with a numerical value is the scaling field?

A There is no reliable way to extract the scaling information. You certainly can’t
assume an editText item in a dialog is the scaling field — it could be anything.
Don’t assume anything about the items or their order, because printer driver
developers are free to do whatever they feel like, and most of them have. The
ImageWriter allows only 50% reduction, for example, so it’s a checkbox, not a
numerical field. In some drivers such options may even be in the job dialog for
“user convenience.”

We’ve tried for a long time to come up with a reliable way to do this, and there
just isn’t one. Drivers can and do store scaling values, if they support them,
anywhere they like in the print record. You can’t compare the page rectangle to
that returned by PrintDefault because the user may have picked a paper size
other than the default. (You wouldn’t want the user to choose legal paper and
see 8.5" by 11", scaled 100% horizontally, 122% vertically!) This mechanism
was designed to be transparent so that applications wouldn’t have to do
anything, but it was designed too transparently: applications can’t tell what the
scaling is even if they want to. Note that the new printing architecture of
QuickDraw GX actually lets you find out things like this.

Q I’m trying to draw text to a rectangle and am using TextBox, which works fine. What
I want to do is determine the vertical coordinates of the bottom of the text in the text

d e v e l o p Issue 17

124

box. I want to draw a line right under the bottom of the text, and the text is arbitrary
in length. One time it may be a single word, other times an entire sentence that wraps
in the rectangle. Do you know any way to calculate what I need?

A Unfortunately, you can’t do it. TextBox doesn’t leave the port in any state that
can be counted on. However, all is not lost: TextBox is a relatively simple
operation and can be easily duplicated with a few lines of code. If you duplicate
TextBox, you can access the TextEdit record before it’s destroyed. With access
to the TextEdit record you can easily measure the text drawn. Try the code
below. Also see “The TextBox You’ve Always Wanted” in develop Issue 9 for a
very flexible, fast replacement to TextBox.

void MyTextBox(Ptr text, long length, Rect *box, short just)
{
// Replacement for TextBox that will draw a line under the last
// line of text.

TEHandle te;
Rect UnderRect;

te = TEStyleNew(box, box);
TESetJust(just, te);
TESetText(text, length, te);
TEUpdate(box, te);

UnderRect = (*box);
UnderRect.top = TEGetHeight(32767, 0, te) + UnderRect.top;
UnderRect.bottom = UnderRect.top + 1;
TEDispose(te);
FrameRect(&UnderRect);

}

Q Is there any way for an application to mount an AppleShare volume in System 6? In
System 7, the PBVolumeMount function allows you to do this if you have the right
information. Is this call or a similar one supported in System 6?

A The PBVolumeMount, PBGetVolMountInfoSize, and PBGetVolMountInfo
calls are all supported in System 6 if the AppleShare 3.0 or later Chooser
extension has been installed. These versions of the Chooser extension have been
tested back to System 6.0.4, and work fine.

Q Our product needs to access the DCD signal from the modem port to function correctly
when talking to an external modem. Most documentation doesn’t say anything about
the DCD signal being available. However, we have a hardware diagram that shows
that pin 7 on the mini-8 connector is connected to give a DCD signal on later

MACINTOSH Q & A March 1994

125

Macintosh models. In most documentation pin 7 is shown as not connected. Is pin 7
connected to anything, so that I can wire it to the DCD signal from the modem? If so,
how can I access the status of pin 7 to see when DCD is asserted or negated? If I can do
this, what models of Macintosh will it work on, and will it stay like that in future
releases?

A There is ongoing confusion regarding the Macintosh serial ports and how to
wire them for serial operation. Macintosh serial ports are RS-422. By shorting
the positive receive pin to ground, you create an RS-423 port, which is an RS-
232 emulation. The table below shows a pin-wiring schematic from the
Macintosh DIN-8 to DB-25 RS-232 serial cable, which supports hardware
handshake and DCD transmission (arrows show the direction of signal
transmission):

Notice that we connect the DCD signal to the GPi input pin. As you know, the
GPi trace isn’t implemented on all Macintosh CPUs. Additionally, there is no
serial driver call implemented to obtain the current state of the GPi pin. Rather
than have a complete list of which CPUs it’s connected on, you can fairly easily
make your application dynamically find this out on a particular CPU at run
time. So you can tell the user whether DCD from a modem can be detected on
a particular installation, with no need for a priori knowledge. See the Macintosh
Technical Note “Serial GPi (General-Purpose Input)” (Devices 16) for a
description of using GPi and Gestalt.

Q I use the OpenPicture, draw, ClosePicture sequence to create a picture handle. Since the
handle can be quite large, and since I dispose of it fairly quickly, it would make sense to
allocate it in temporary memory. But I haven’t found any reasonable way to do that.
Any suggestions? Both these situations arise because my application runs in a fairly
small (800K) partition. I do this so that other applications have adequate space to work
with it, since one of my main functions is to interact with other applications using Apple
events. However, I occasionally need more memory for a few seconds at a time.

d e v e l o p Issue 17

126

DIN-8 DB-25
HSKo 1 —> 4, 20 RTS, DTR
HSKi 2 <— 5 CTS
TxD– 3 —> 2 TxD
GnD, RxD+ 4, 8 — 7 GnD
RxD– 5 <— 3 RxD
TxD+ 6
GPi 7 <— 8 DCD
Shield 1 -— 1 Shield

A There are two ways to cause OpenPicture to use temporary memory. A simple
way to do it is to allocate a block of temporary memory, then create a new
heap zone in that block and make it the current zone just before you call
OpenPicture. This will cause subsequent memory allocations to happen in your
temporary block, and will work fine. See Inside Macintosh: Memory for more
information about creating heap zones.

Another way is to replace the putPicProc, as is commonly done when spooling a
picture to disk, and instead spool it to temporary memory. If you’re not familiar
with picture spooling, see Inside Macintosh Volume V, page 89, which has code
for spooling a picture to disk as it’s created. This is the same technique as
documented there, only it spools the picture to temporary memory instead.

You create a handle in temporary memory the size of a picture and fill in its size
and picFrame fields so that it looks like a normal picture handle. In your
putPicProc you copy the data in, continually resizing the handle if necessary to
fit the data. After you call ClosePicture, remove your putPicProc; then you can
use the temporary handle just like a normal picture.

The advantage of this method over the first one is that you can make the picture
as large as temporary memory will let you, and you end up using just enough
memory. The first technique, while technically easier to implement, limits you
to the size of the heap you initially create, and you also may use a lot more
temporary memory than you need. If you’re able to come up with a good guess
of how large your pictures are going to be, use the first technique; if not, use the
second one.

Q I think I may have found a bug in the System 7 TrueType rasterizer code: under some
clipping conditions it may crash/freeze the system inside the DrawText call. I’m really
not doing anything out of the ordinary; the key to making it die apparently lies in the
placement of an obstructing window that just barely overlaps the text being drawn.
Investigating the problem in MacsBug reveals that somewhere deep in the TrueType
rasterizer some code is trashing the A3 register and not restoring it properly.

A This is a bug in QuickDraw’s text-drawing routine, introduced when support
for TrueType was added: QuickDraw (under certain circumstances, like
foreground not black or background not white) allocates an off-screen buffer for
the text on the stack. If there isn’t enough stack space, the string is cut in pieces,
and the code reentered for each piece separately. (If that still doesn’t help, no
text is drawn at all.) The bug is that A3 is assumed to hold the port throughout
the text-drawing code, but when we added support for TrueType, we reused A3,
forgetting the previous convention for the case where the string had to be
subdivided. This probably won’t be fixed before the rewritten QuickDraw is
released in PowerPC processor–based machines.

MACINTOSH Q & A March 1994

127

The workaround is to preflight available stack space before issuing text-drawing
calls for long strings and large point sizes, and draw the string in pieces yourself
if necessary. You may also want to allocate more stack space at startup via

SetApplLimit(GetApplLimit() - something);

with something empirically determined. For a big application with a large
minimal partition size, 16K or 32K more or less in the heap shouldn’t matter;
but it’s a big win for QuickDraw’s reliability, and generally a good
recommendation.

Q I would like to be able to determine the clock speed of any CPU. I know that I could
write a routine and calculate the time it took to execute the code, but can you tell me a
more direct way?

A You can use the GetCPUSpeed routine to check the current clock speed of the
PowerBooks (after checking gestaltPowerMgrAttr to make sure that the Power
Manager is present). This routine is documented in the Power Manager chapter
of Inside Macintosh Volume VI (page 31-20).

Unfortunately, there’s no way to check the clock speed of other Macintosh
models. The only thing you might be able to use as a crude way of comparing
relative speeds is the low-memory global, TimeDBRA ($0D00). TimeDBRA
gives you the number of iterations of DBRA per millisecond, which can help in
a relative speed comparison.

Q A wonderful thing about MacsBug is that you can save logs, and our testers use it to log
crashes of our programs under development. Unfortunately, some of our more lazy
testers just send a log without a description of how they made the crash occur. I was
wondering if there’s a way a user can enter a comment in MacsBug that will get saved
in a log but won’t be interpreted by MacsBug. This way, users could put the whole bug
report in one nice consolidated log, without going and editing it later in a text editor.

A You can enter text into your MacsBug log by using the printf dcmd in MacsBug.
It’s similar to the C printf function. If your testers want to add anything to the
log file, they can simply type

printf "interesting comment that I wanted to make"

For more on the printf dcmd, see the MacsBug 6.2 reference manual.

Q I have problems linking my QuickDraw GX printing extension when I include MPW’s
StdClib.o, evidently because I call sprintf. I was told this is because of global variables in

d e v e l o p Issue 17

128

the StdClib.o library. Does MPW have a parallel library for use with standalone code
— something like THINK C’s ANSI-A4 library?

A The problem is that two of the routines in StdCLib.o use global data. You can
get around this problem by redeclaring the problem routines in your code. First
#include <StdIO.h> in one of your source files or included header files. Add the
following to your source:

size_t fwrite(const void *, size_t, size_t, FILE *) { return 0; }
int _flsbuf(unsigned char, FILE *) { return 0; }

These lines redefine fwrite and _flsbuf, the offending routines, so that they
don’t use global data (or do anything, for that matter, except return 0). Make
sure that the object file containing the above routines appears in your Link
instruction before StdCLib.o, since only the first declaration will be used. Of
course, this means that you can’t use the fwrite and _flsbuf routines, but it’s
unlikely you’ll want to in a printing extension anyway. Also, sprintf never calls
them. The linker will generate “duplicate symbol definition” warnings for the
two routines, of course, unless you specify -msg nodup in your Link
instruction. In addition, don’t forget to link with RunTime.o.

The sprintf routine is great for debugging, since you can easily get formatted
debugger output, as follows:

OSErr err;
Str255 pStr;

// Do stuff that might cause an error
. . .

if (err) {
pStr[0] = sprintf(&pStr[1], "Error %d", err);
DebugStr(pStr);

}

Also, check out the dprintf command in QuickDraw GX’s GXExceptions.h file;
it’s similar to this.

Q What is the correct term for the little depression above the center of my upper lip? In
high school we called it a “curvicle,” but I’m pretty sure we made that up.

A The correct term is “philtrum.” Biologists debate heatedly about its real
purpose, but there’s no doubt that it makes a good place to rest the tip of your
index finger during periods of deep thought.

MACINTOSH Q & A March 1994

129
Have more questions? Need more answers?
Take a look at the Macintosh Q&A Technical
Notes on this issue’s CD and in the Dev Tech
Answers library on AppleLink.•

See if you can solve this programming puzzle, presented in the form of
a dialog between Konstantin Othmer (KON) and Bruce Leak (BAL).
The dialog gives clues to help you. Keep guessing until you’re done; your
score is the number to the left of the clue that gave you the correct
answer. These problems are supposed to be tough. If you don’t get a high
score, at least you’ll learn interesting Macintosh trivia.

KON: I have a Macintosh IIfx at home with a 13-inch color monitor and an
old Kong.

BAL You mean the black-and-white two-page display? That thing is out of
production. Programmers were the only ones who bought it, and we
already sold one to every Macintosh programmer. I’ve got one too.

KON Mine’s probably older, though. Fung gave me one of the prototype
units that were blocking the entrance to his office about five years ago.

BAL Does it have the stylish metal cheese grater cage around it or did you
actually get a plastic case?

KON I scored one with plastic, though it’s yellow now from sitting in the
sun. Anyway, now that the PowerPC workload is finally winding down,
I’ve actually spent some time at home. I started playing around with
Darryl’s mapping program on my fx.

BAL MacAtlas?

KON Yeah. It’s pretty cool. The problem is I can’t open files.

BAL Command-O open? What happens?

KON Nothing. No Standard File, no dancing bears — it’s as if I never gave
the Open command.

BAL I’ve never had a problem with that program. Does the menu get
highlighted?

d e v e l o p Issue 17

KONSTANTIN OTHMER AND BRUCE LEAK
regularly change their AppleLink addresses
through various front companies to help defray
their tax losses from dealings in the stock market.
They’re currently trying to corner the market on
masked ROMs, particularly 680x0 ROMs
targeted at PowerPC processor–based machines.
They were last seen looking for a ’57 Corvette

in good condition and are willing to swap
debugging services in trade.•

130

KON & BAL’S

PUZZLE PAGE

WHEN MAPS
GO BAD

KONSTANTIN OTHMER
AND BRUCE LEAK

KON Yeah. Every once in a while you’ll see it flash. This problem happens
systemwide; I can’t even open files in ResEdit.

BAL Can you drag documents onto the application icon in the Finder to
open them?

KON Yeah. Everything not related to Standard File seems to work fine. I can
edit files, play movies — even file sharing works.

BAL What version of the system are you running? Does printing work?

100 KON I’m running System 7.1. I can’t save and then print as recommended
by our print shop because there’s a problem with Standard File, but
other than that it works fine. Why?

BAL This one’s easy, KON. Something is locked down in your MultiFinder
heap, so your system heap can’t grow. Standard File can’t bring in all
its resources, so it punts. Are you running that skanky StockItToMe
server that Timo and Rubinowitz wrote?

90 KON This happens just after boot and I’ve got mounds of RAM now that
I’ve removed DAL. I do a heap dump (hd) of the MultiFinder heap
and there are no locked blocks at the bottom, so the system heap can
grow all it wants. Furthermore, the heap total (ht) command shows
that there’s plenty of room in the system heap.

BAL Clearly this bug is limited to your home machine. I figure you have
some slimy KON code on there that’s only half debugged — maybe a
beta version of WonderPrint. Set an ATB on Standard File, 'PACK' 3,
and then try to open a document.

80 KON I hit the A-trap, but when I trace over it it just returns without putting
up the Standard File dialog.

BAL Is the package getting loaded?

70 KON Yeah.

BAL Since I don’t have the source to Standard File handy, I’ll use the log
command and then the conditional step command to get a trace of all
the instructions executed inside the package. I figure it should be fairly
easy to spot some error condition where the code decides to bail. Since
the _Pack3 instruction is two bytes, if the call to it is at the current PC
address, I use the MacsBug commands

log MyStdFileLog
s pc=pc+2

to step, logging each instruction to a file and then stopping as soon as
the trap is exited.

KON & BAL’S PUZZLE PAGE March 1994

131

60 KON Wow, that conditional stepping is pretty cool. I didn’t know MacsBug
was that sophisticated. You could have just put a breakpoint on the
other side of the _Pack3 and stepped a zillion instructions.

Anyway, the trace isn’t prohibitively long. Standard File preloads all
the resources it needs to display the dialog, checking each one to see if
it was loaded properly. When it tries to load LDEF -4000, it fails and
bails.

BAL All the resources it needs must come from the System file. Check to
see if LDEF -4000 exists in the system.

55 KON According to ResEdit, the LDEF isn’t present in the System file.

BAL Compare the LDEFs in your system with a fresh installation.

50 KON The LDEFs are all the same except one, which has a different resource
ID.

BAL Well, it sounds like you’ve got a trashed System file. Copy and paste
the bad LDEF into your system and reboot.

45 KON Everything works fine now, but if I drag-install a new system, Standard
File fails. Fixing the LDEF is addressing the symptom, not the
problem.

BAL You drag the good System file over and reboot, and Standard File is
broken again?

KON Yep.

BAL Check the LDEF with ResEdit.

40 KON It’s renumbered again.

BAL So something is trashing the resource map during boot. What if I boot
with the Shift key held down to disable extension loading?

35 KON According to ResEdit, the resource map is still trashed.

BAL Try dumping resources of type 'LDEF' with the command rd LDEF
at interesting times during the boot process.

30 KON If you hold down the Control key to enter MacsBug just after it’s
installed, the LDEF resources are fine. If you check it again when
you’re in the Finder, the LDEF is bad.

BAL So I use

atb hopenresfile ‘;dm @(sp+2);rd LDEF;g

to watch extensions load during the boot process. The command
breaks as each extension is loaded and displays the name of the

d e v e l o p Issue 17

132

extension and the current state of all LDEF resources. When I see the
LDEF go bad, I’ve gone a long way toward finding the offending code.

KON During the 7.1 boot process, the system patches are loaded from disk
and installed. One of those patches opens all the font files in that crazy
font folder. After all the patches are installed, the system extensions
are loaded, starting with the 8•24 GC card. It’s loaded first so that
QuickDraw is in a well-defined state before other system extensions go
and patch out the world; once third parties start getting in there, it’s a
free-for-all.

BAL Obviously, all the system patches need to be installed before extensions
are loaded so that the extensions can take advantage of improvements
provided by the patches. Haven’t you ever wondered why booting
takes so long?

25 KON While the font files are being opened, the resource map is fine. But
just before the first extension is loaded, the resource map is bad.

BAL We need to narrow down where the map is going bad. I’ll look
through the system map for the ID that’s getting stepped on. First I
get the size of the resource map handle by using

wh @@sysmaphndl

Then I can find the resource ID with

f @@sysmaphndl size f060

since F060 is hex for -4000, the resource ID that’s getting smashed.

20 KON Good try, but you find seven occurrences.

BAL So I continue until the map goes bad, and check for -4000 again. I’ll
find the one that’s changed, reboot, and step-spy on that address.
Ta-da!

15 KON Sorry, but the resource map is a handle and it has moved on you. You
can identify the one that’s changed, but you can’t step-spy on it since
it’s moving around all the time.

BAL Fine. I’ll reboot in 24-bit mode, lock the handle down by setting the
high bit of the resource map handle’s master pointer, and step-spy on
the address. Over.

10 KON Now Standard File works fine, but file sharing is starting to act flaky.

BAL OK. So I’m going to have to brute force it. I’ll break when the last
font loads. I’ll log the MacsBug output to a file with log myLDEFFile
and then atb ‘;rd LDEF;g to break on all traps and dump all the

KON & BAL’S PUZZLE PAGE March 1994

133
SCORING
80–100 This is a special category reserved for Waldemar and Jasik.
50–70 Weekends spent at Weird Stuff Warehouse or Van Brink’s garage are starting to pay off.
25–45 You’re spending too much time playing with that 3DO interactive multiplayer machine at

your local electronics store.
5–20 You’re spending too much time at the gym.•

LDEF resources. I’ll also do an atc hopenresfile and then an atb
hopenresfile to clear the rd LDEF;g when HOpenResFile is hit. This
way we’ll fall into MacsBug when the first INIT is opened. Then I’ll
let it rip and get some lunch.

5 KON Pretty snazzy there, BAL. Before the map goes bad you see a bunch of
Slot Manager calls and control calls. The last trap that gets called
before the map goes bad is a control call to the driver which seems to
originate from within InitGDevice.

BAL Hmmm. We’re at secondary INIT time. The driver gets called again
since all the system patches are now loaded. We added this because
monitors boot back to the same configuration they were in when the
machine was shut down. With 32-Bit QuickDraw, the machine
could have been shut down in 32-bit video mode, so the driver needs
to be called a second time after the system patches (where 32-Bit
QuickDraw lives) are loaded.

KON Yeah, the call that’s killing the map is a call to the driver to set the bit
depth. At secondary INIT time the 'scrn' resource is read to find out
what the last bit depth was, and each device is called to set the depth
up properly.

BAL The call must be going to the bogus Kong video card Fung gave you.
What’s the ROM version on that thing?

KON It’s a beta ROM. When I asked Mike Puckett about it he said there was
some nasty “fungus” in the code, and that it was fixed before final. He
gave me a new video ROM, and now everything works great. Real-
world users would never experience this, of course, since the problem
was corrected long before the card went out.

BAL You and Van Brink should share packrat stories. You never know, some
of that old equipment might become collector’s items some day.

KON This problem began when I started using MacAtlas because I switched
my Kong into grayscale mode. My system is a lot more stable now that
those spurious writes have been fixed. Before I tracked this bug down,
I was having intermittent problems.

BAL Nasty.

KON Yeah.

d e v e l o p Issue 17

Thanks to Peter Hoddie, Brian McGhie, and
Mike Puckett for reviewing this column.•

134

HISTORY OF THE DOGCOW: PART 1 March 1994

135

I’m going to tell you a few things that have never been
put in print before about the dogcow. If you don’t know
what or who the dogcow is, or you don’t care for Apple
cultural minutiae, you should just flip past this column.

This is only part 1 of the story, to be followed by more
in a future issue of develop. We didn’t want to hit you
with it all at once, for fear of what the shock (or the
boredom) might do.

HOW IT ALL BEGAN
The dogcow was originally a character in the Cairo
font that used to ship with the Macintosh; it was
designed by Susan Kare. I had always been interested in
this critter ever since I first saw it in the LaserWriter
Page Setup Options dialog, sometime during my stint
in Apple’s Developer Technical Support (DTS) group
in 1987. To me it showed perfection in human interface
design. With one picture it was very easy to explain
concepts like an inverted image or larger print area that
otherwise would be nearly impossible to communicate.

Interest became an obsession when one day I was
talking to Scott (“Zz”) Zimmerman about the dialog
and suddenly thought, “Just what is that animal
supposed to be, anyway?” Since Zz was the Printing
Guy in DTS (now in the Newton group), and my
favorite pastime was to bother him endlessly anyway, I
started pressing him on whether the animal was a dog
or a cow.

In an act of desperation he said, “It’s both, OK? It’s
called a ‘dogcow.’ Now will you get out of my office?”
The date was October 15, 1987, and I consider this to
be the first use of the term. It should be noted that
since then a few people (including Ginger herself) have
told me that actually the phrase was coined by Ginger
Jernigan (ex-DTS, now ROM software) at a meeting of
Apple’s Print Shop sometime shortly before that, which
very well could be the case. Nevertheless it was Zz who
pressed it into common usage, and he certainly was the
first person I ever heard use the term.

Zz’s ploy to get me out of his office was futile, however,
because then I stood around and postulated that the
dogcow’s genes would have a radical effect on its
behavior, and it must not bark or moo, but rather utter
a combination like “Boo-woo!” or “Moof!”

We both thought it was funny enough that we decided
to press it into everyday usage, and I started circulating
the dogcow with “Moof!” on internal memos. The idea
caught on, and at the 1988 Worldwide Developers
Conference we gave away dogcow buttons in the
debugging lab. Louella Pizzuti (ex-DTS, ex-develop
editor, now citizen of the world) came up with the great
idea of making the background Mountain Dew green.
Response to the buttons was huge, and no one was
smiling more than the DTS folks when John Sculley
wore one for his keynote speech. It was a major-league
coup.

THE ORIGIN OF TECH NOTE #31
Then things started to spin out of control. Various
groups internally started picking up the dogcow logo
and doing things that didn’t seem, well, DTS-like. The
final straw was when the dogcow pin appeared in a
Microsoft advertisement. Mark Johnson (ex-DTS, now
in Apple Europe) approached me and suggested that we
throw down the gauntlet and write a Technical Note on
the subject. I balked out of nothing more than sheer
laziness.

Some time passed and we were getting ready to go with
the April 1989 batch of Tech Notes when Mark
approached me again, saying that he thought having an

MARK (“THE RED”) HARLAN started life in Rawlins, Wyoming,
and has led about exactly the kind of life you’d expect as a result.
He spends most of his time at Apple finding employees who were
hired by Steve Jobs and asking them, “So how does it feel knowing
that the way you changed the world is by putting Windows on all
PCs?”•

Our friend in the LaserWriter Page Setup Options
dialog, normal and with Invert Image and Larger Print Area:

HISTORY OF
THE DOGCOW

PART 1

MARK (“THE RED”)
HARLAN

April Fool’s edition describing the dogcow would be
perfect. I said yes but then stalled and stalled, missing
two deadlines, and I thought the Tech Note wasn’t
going to happen.

Mark marched in my office one day in March of 1989
at 11:30 A.M. announcing that Tech Notes were
shipping at noon and implied that my manliness was in
question if I didn’t get that Note in the batch. My
macho instincts just couldn’t allow that to happen, so
Tech Note #31, “The Dogcow,” was written in literally
40 minutes in one pass. I’d been thinking about it for
quite some time, so I knew pretty much how it would
go; I just sat down and typed it out. Given more time I
definitely would have churned out something a bit
more polished, and part of its quirkiness, I’m sure, is
due to the time pressure I was under.

One thing was certain: it had to be something original
in concept. I’ve always had a deep disdain for people
who rip off comedic stuff. You know, the same people
who used to have to tell all their jokes with an English
accent because of Monty Python are now those who say
“Not!” behind phrases. Once is funny, but after a while
it gets really old. I definitely wanted it out of the
mainstream.

For numbering I wanted to use e, but Mark pointed out
that there had been confusion early on in the Tech
Note numbering scheme and that a few numbers had
been left out for various reasons. He showed me some
conversations from the net that went on and on about
Tech Note #31 and people’s guesses as to why it was
missing. (People were really, really out there with their
guessing; anyone who’s a believer in conspiracy theories
would have enjoyed this blatant gibberish.) The
number 31 had the right feel; it would blend into the
regular batch better than e, and I’ve always had a soft
spot for prime numbers, so we picked it.

Sports Illustrated had run a great fake story about a Zen
baseball pitcher sometime earlier and we borrowed the
idea of having the words “April Fool’s” spelled out
within the article from them — in our case using the
first letter of every line of the poem at the closing. No

one has ever mentioned this to me, so few people must
have caught it.

There’s a picture of the wrong way to draw the dogcow
that several people thought was a scanned image of Zz.
Actually, completely independently of the Tech Note,
I’d been using a program called Mac-a-Mug, designed
to make mug shots, and came across a set of hair that
looked frighteningly like Zz’s. After fiddling around
with the program a bit I was able to come up with a
good rendition of Zz’s head, and I shoved it into the
Tech Note without his ever knowing about it. The
expression (and color) of his face when he learned
about the picture is a memory I’ll always cherish.

The Note also contains the expression “Aanal, Enacku
Naiimadu, Kaanali!” People came up with very unusual
anagrams or unusual explanations for what it meant,
the best being that it was an obscure reference to a clip
of The Day the Earth Stood Still that had been cut from
the film. But the truth is that it’s phoneticized Tamil
that was supplied by Sriram Subramanian (Networking
Guy, ex-DTS, ex-Taligent, now in Apple Japan)
meaning “But I can’t see the dogcow!”

Ironically, there’s also a mistake in that the “correct”
way to draw the dogcow is actually wrong. We ended
up being so pressured for time in getting the Note out
the door that we just jammed it into a weird PostScript
file that ended up mutating the shape. Shortly after the
release of that Note, Chris Derossi (ex-DTS, now at
General Magic) convinced me that a better solution
was to have the correct way to draw the dogcow be
pixelated, to avoid these idiosyncracies in the future —
which is what’s now done.

NEXT TIME
There will be more history of the dogcow in a future
issue of develop. Have you ever wondered if you have
the entire set of dogcow pins? Is that dogcow T-shirt of
your cubemate’s bootlegged? Is there any way things
can get more meaningless? Some, but not all, of these
questions will be answered the next time we have a
little extra space to fill.

d e v e l o p Issue 17

Tech Note #31 is not on this issue’s CD and hasn’t been on
the CD for quite some time now; it’s no longer available. It used to
be hidden in the Technical Notes Stack on the early versions of
develop’s CD. It appeared on paper only once, as part of the
monthly mailing to Apple Partners and Associates in April of 1989.
The continued secrecy has a little bit to do with history and a lot to
do with tradition. For more on the distribution of the Tech Note,
stay tuned for History of the Dogcow: Part 2.•

Thanks to Gary Robinson, whose letter asking for the story of the
dogcow inspired this column.•

136

A
A5 world, QuickTime and 121
accessException, PowerPC

debugging and 60
AddMovieResource, QuickTime

and 71
addPiece, protoBoard and 15–16
Alexander, Pete (“Luke”) 32
A-line trap dispatcher, PowerPC

debugging and 63
All Shapes with Printing sample

application (QuickDraw GX)
32–33, 34

Anderson, Eric 73
announceWin, TapBoard and 17,

28, 31
Apple Adjustable Keyboard,

Macintosh Q & A 123
Apple events, game development

and 116–117
AppleTalk Data Stream Protocol

(ADSP), game development
and 117

atb, PowerPC debugging and
62–64

atbv, PowerPC debugging and 64
atr, PowerPC debugging and 64

B
backgroundDrawing, protoBoard

and 15
BetterFlattenMovie, QuickTime

and 72
boardArray, protoBoard and

12–13
boardList, newGame and 27
browser windows

Newton programming and
6

PowerPC debugging and
53–54

brp, PowerPC debugging and 64
bufferCmd, game development

and 116

C
CalcIdealDocumentSizeProcPtr,

window zooming and 105
CalculateOffsetAmount, window

zooming and 105, 110,
112–113

CalculateWindowAreaOnScreen,
window zooming and 105,
108, 111–112

CallUniversalProc
floating windows and 4
PowerPC debugging and 63

CCITT Group IV FAX,
Macintosh Q & A 123

cfm, PowerPC debugging and
64–65

Chesley, Harry R. 5
child view, Newton programming

and 12
Chooser, MessageWatcher and 32
ClosePicture, Macintosh Q & A

126–127
clPictureView, protoBoard and 15
clusterChanged, gamePicker and

26
Code Fragment Manager

(PowerPC) 39, 51
debugging PowerPC code

59
porting time-critical code

44–45
code fragments, PowerPC and

37–39
compression dialog components,

Macintosh Q & A 121–122
Computer’s Move radio button

(TapBoard) 26, 31
“Concurrent Programming with

the Thread Manager”
(Anderson and Post) 73–98

context switchers (Thread
Manager), custom 84, 87–89

cooperative threads, Thread
Manager and 74, 90–93, 98

INDEX March 1994

137
For a cumulative index to all issues of
develop, see this issue’s CD.•

INDEX

CopyBits, game development and
114–115

CopyBits ColorKarma sample
code 114, 116

CopyDeepMask, game
development and 115

CopyMask, game development
and 115

copy protection, game
development and 118

CountADBs, Macintosh Q & A
123–124

CrashOMatic sample program
51–52, 67

cross-platform movie files,
QuickTime and 70–72

currentBoard, newGame and 27
CurrentThreadID, Thread

Manager and 85
cursor, soups and 20

D
DCD signal, Macintosh Q & A

125–126
dcmds, PowerPC debugging and

62–67
Debugger function, R2Db and 55
Debugger68k, R2Db and 55
debugging, on PowerPC 51–69
“Debugging on PowerPC”

(Falkenburg and Topping)
51–69

DebugStr, R2Db and 55
DebugStr68k, R2Db and 55
DeviceLoop, window zooming

and 106, 108
dis, PowerPC debugging and 65,

66, 68
discipline-style extensions,

PowerPC debugging and 61
DisposeThread, Thread Manager

and 77, 78
dogcow 135–136
drd, PowerPC debugging and

65–66

E
editText, Macintosh Q & A 124
EnterMovies, Macintosh Q & A

121
entry, soups and 20
EvenBetterBusError, PowerPC

debugging and 61
Exception Manager (PowerPC)

61, 69
extensions, PowerPC debugging

and 61–62, 64

F
Falkenburg, Dave 51
fat applications, PowerPC

debugging and 53
fat resources, PowerPC and

45–46
FindFolder, game development

and 118
findsym, PowerPC debugging and

66
FindSymbol (Code Fragment

Manager) 44
finishJob message,

MessageWatcher and 34
flattenAddMovieToDataFork flag,

QuickTime and 70–72
FlattenMovie, QuickTime and

70–72
FlattenMovieData, QuickTime

and 70–72
frames, Newton programming and

6
frown, PowerPC debugging and

67

G
gamePicker, TapBoard and 26
games

application on the Newton
5–31

tips for developing 114–118

Gestalt
game development and 118
Macintosh Q & A 123

gestaltKeyboardType, Macintosh
Q & A 123

GetADBInfo, Macintosh Q & A
123

GetAppParams, Newton
programming and 30

GetCPUSpeed, Macintosh Q & A
128

GetCurrentThread, Thread
Manager and 87

GetDiskFragment (Code
Fragment Manager) 43

GetIndADB, Macintosh Q & A
123–124

GetMovieIndTrack, Macintosh
Q & A 122

GetMovieTrackCount, Macintosh
Q & A 122

GetNextEvent, Thread Manager
and 77

GetPBPtr, Thread Manager and
93–94

GetSndHeaderOffset, game
development and 116

getStateEntry, protoBoard and
22, 29

GetThreadStateGivenTaskRef,
Thread Manager and 91

GetTrackMatrix, Macintosh
Q & A 122

Gomoku (Newton game) 9–10,
25

Go To Debugger command
(R2Db Debug menu) 53

GXDefaultDesktopPrinter,
Macintosh Q & A 120

GXDefaultFormat, Macintosh
Q & A 120

GXDefaultJob, Macintosh Q & A
120

GXDefaultPaperType, Macintosh
Q & A 120

d e v e l o p Issue 17

138

GXDefaultPrinter, Macintosh
Q & A 120

gxDontSetHalftone flag,
Macintosh Q & A 120

GXGetJobError, MessageWatcher
and 35

GXGetStyleRunControls,
Macintosh Q & A 119

GXNewWindowViewPort,
Macintosh Q & A 119

GXPrintPage, MessageWatcher
and 34

GXSetStyleRunControls,
Macintosh Q & A 119

H
Harlan, Mark (“The Red”) 135
HideReferencedWindow, floating

windows and 4
“History of the Dogcow: Part 1”

(Harlan) 135–136
Hoefler font, Macintosh Q & A

119–120

I
idle method, Newton

programming and 18–19
idleProcs, Thread Manager and

73
illegalInstructionException,

PowerPC debugging and 60
inheritance, Newton

programming and 12
InterruptedCoopThreadID,

Thread Manager and 85
IOExampleThread, Thread

Manager and 94–95
isTurn, protoBoard and 17

J
Johnson, Dave 48
Jones, Tao 99

K
kCurrentThreadID, Thread

Manager and 87
KDefaultThreadStackSize,

Thread Manager and 79
kNewSuspend, Thread Manager

and 82
kNewtonPiece, protoBoard and

14
kNoCreationOptions, Thread

Manager and 79
kNoThreadID, Thread Manager

and 85
“KON & BAL’s Puzzle Page”

(Othmer and Leak) 130–134
kPackageName, protoBoard and

22
kTieWinner, protoBoard and 14
kUserPiece, protoBoard and 14

L
layout palette, Newton

programming and 6, 7
layout window, Newton

programming and 6, 7
LDEF resources, KON & BAL

puzzle 132–134
Leak, Bruce 130
LocalBox, protoBoard and 14
'lttr' file type, Macintosh Q & A

120–121

M
Macintosh Q & A 119–129
MacsBug, PowerPC debugging

and 52, 61–64
MacsBug logs, Macintosh Q & A

128
main thread (application thread),

Thread Manager and 76–77
makeComputerMove, protoBoard

and 23–25
makeRandomMove, protoBoard

and 25

MakeSYM (MPW tool), PowerPC
debugging and 58

MaxApplZone, Thread Manager
and 77, 97

MCMovieChanged, Macintosh
Q & A 122

Memory Manager, game
development and 117

Memory Manager access faults,
R2Db and 55

memory-modification extensions,
PowerPC debugging and 61

Message Manager (QuickDraw
GX) 32, 33

message
Newton programming and

7
tracking in QuickDraw GX

32–35
MessageWatcher application

(QuickDraw GX) 32–35
method, Newton programming

and 7
Mixed Mode Manager (PowerPC)

39, 45, 46, 51
MixedMode.r, creating fat

resources 45–46
MMU operating mode, Thread

Manager and 87
ModalDialog, Thread Manager

and 77
move function, protoBoard and

16–17
Movie Converter application

(QuickTime Starter Kit) 70–71
movie data atom, QuickTime and

70
movie files

cross-platform compatibility
70–72

multiple (QuickTime)
71–72

movie resource atom, QuickTime
and 70, 71

INDEX March 1994

139

Movie Toolbox commands,
Macintosh Q & A 122

multiple-movie files, QuickTime
and 71–72

N
newGame, TapBoard and 26–27
NewThread, Thread Manager and

82–83
Newton, using proto templates on

5–31
NewtonScript 6, 7, 31
Newton Toolkit 6, 7, 20
Nichols, Tim 36
nonoptimized compiler output,

source-level debugging and
56–57

NSetTrapAddress, PowerPC
debugging and 63

nudge zooming, of windows 105,
110

O
OpenPicture, Macintosh Q & A

126–127
optimized compiler output,

source-level debugging and
57–58

Othmer, Konstantin 130

P
'PAPA' (-8192), QuickDraw GX

and 33
parent inheritance, Newton

programming and 12
parent view, Newton

programming and 12
PasteMovieSelection, Macintosh

Q & A 122
path expressions, Newton

programming and 6
PBGetVolMountInfo, Macintosh

Q & A 125
PBGetVolMountInfoSize,

Macintosh Q & A 125

PBVolumeMount, Macintosh
Q & A 125

PEF files (PowerPC) 42
Post, Brad 73
PowerPC

debugging on 51–69
and MacsBug extensions and

dcmds 61–64
standalone code on 36–47

PowerTalk letters, Macintosh
Q & A 120–121

pp, PowerPC debugging and
65–66

PPC Debugger Nub
debugging without 67–69
PowerPC debugging and

52, 61
PPC Toolbox, game development

and 117
preemptive threads

QuickDraw and 83
Thread Manager and

74–75, 81–83, 97, 98
PrinterShare GX, MessageWatcher

and 32, 34–35
“Print Hints” (Alexander) 32–35
privilegeViolationException,

PowerPC debugging and 60
ProcPtr, and UniversalProcPtr

39–40
Propagate Exception command

(R2Db Control menu) 55, 61
proto. See proto template
“Proto and Parent Inheritance”

(Williams) 12
protoBoard proto template,

Newton programming and
11–22

protoFloatNGo templates
(TapBoard) 28

protoGlance templates (TapBoard)
28

proto inheritance, Newton
programming and 12

protoRadioButton templates
(TapBoard) 26

protoRadioCluster, TapBoard and
26

proto template, Newton
programming and 5–31

Q
query, soups and 20
QuickDraw

game development and 114
preemptive threads and 83

QuickDraw GX, Macintosh
Q & A 119–120

QuickDraw GX Finder printing
extension, MessageWatcher and
32, 33–34

QuickDraw GX printing system,
tracking messages 32–35

QuickTime
cross platform–compatible

movie files 70–71
Macintosh Q & A 121

QuickTime for Windows, cross-
platform compatibility 70

R
r2db, PowerPC debugging and

67
R2Db debugger (PowerPC)

52–55
MacsBug and 63

readOnlyMemoryException,
PowerPC debugging and 60

recordOutResult, Thread
Manager and 80–81

RemoveScript, Newton
programming and 29–30

restoreState, protoBoard and 21
Reversi (Newton game) 10, 25
round-robin scheduling

mechanism, Thread Manager
and 74–75

RTOC (R2) register, PowerPC
and 38

d e v e l o p Issue 17

140

S
saveState, protoBoard and 21
SCCompressSequenceBegin,

Macintosh Q & A 122
SCDefaultPictFileSettings,

Macintosh Q & A 122
SCDefaultPictHandleSettings,

Macintosh Q & A 122
SCDefaultPixMapSettings,

Macintosh Q & A 122
SCGetInfo, Macintosh Q & A

122
schedulers (Thread Manager),

custom 84–87
scp, PowerPC debugging and 67
screen sizes, Newton

programming and 30
SCRequestSequenceSettings,

Macintosh Q & A 122
scrolling graphics, game

development and 115
ScrollRect, game development and

115
SCSetInfo, Macintosh Q & A 122
'sdes' resource template

(PowerPC) 46
self-modifying code, PowerPC

debugging and 59–60
serial ports, Macintosh Q & A

125–126
SetThreadState, Thread Manager

and 82, 86, 91
SetThreadStateEndCritical,

Thread Manager and 97
SetThreadStateGivenTaskRef,

Thread Manager and 91, 92
SetThreadSwitcher, Thread

Manager and 87–88
SetThreadTerminator, Thread

Manager and 77–78
SetTrackMatrix, Macintosh Q & A

122
setupBoard, protoBoard and 25
ShellSort, SuperSort and 41–43

Show Instructions command
(R2Db Views menu) 54

single-fork movie files,
QuickTime and 70–71

SizeWindow, window zooming
and 110–111

“(Slightly) Inside Newton
Programming” (Williams) 6–7

slots, Newton programming and
6

SndPlay, game development and
116

“Somewhere in QuickTime”
(Wang) 70–72

Sound Manager 3.0, game
development and 116

soups, Newton programming and
20

“Soups” (Williams) 20
source-level PowerPC debugging,

nonoptimized builds for 56–58
sprintf, Macintosh Q & A

128–129
squaresHigh, protoBoard and 14
squaresLeft, protoBoard and 13,

15
squaresWide, protoBoard and 14
standalone code

on the 680x0 platform
36–37

on the PowerPC 36–47
“Standalone Code on PowerPC”

(Nichols) 36–47
Standard File dialog, KON &

BAL puzzle 130–133
standard state of a window

101–105
startJob message, MessageWatcher

and 34
StdCLib.o, Macintosh Q & A

128–129
step spy, PowerPC debugging

and 62
Stevens, Brigham 114
store, soups and 20

'STR ' (-8192), QuickDraw GX
and 33

subview, Newton programming
and 12, 31

SuggestedThreadID, Thread
Manager and 85

SuperSort application 36, 41
SYM files, PowerPC debugging

and 53
SysBreak, R2Db and 55
SysBreakStr, R2Db and 55
system messages, Newton

programming and 7
System soup, Newton

programming and 28–30

T
table of contents (TOC),

PowerPC code fragments and
38

TapBoard (Newton application) 5,
8–31

TapBoard application template
25–30

tdp, PowerPC debugging and 67,
68

templates, Newton programming
and 7

“Ten Tips for Game Developers”
(Stevens) 114–118

TextBox, Macintosh Q & A
124–125

ThreadBeginCritical, Thread
Manager and 76, 97

thread-blocking I/O, Thread
Manager and 90–97

ThreadEndCritical, Thread
Manager and 76

Thread Manager 73–98
API 75–76
application/Thread Manager

scheduling 83–89
thread-blocking I/O 90–97
thread input and output

parameters 78–81

INDEX March 1994

141

Tic-tac-toe (Newton game) 8–9,
22–25

tieGame, protoBoard and 17, 23,
25

time-critical code, porting
(PowerPC) 44–45

TimeDBRA, Macintosh Q & A
128

Time Manager, game development
and 116, 117

Topping, Brian 51
traceException, PowerPC

debugging and 61
trapException, PowerPC

debugging and 60
TrueType rasterizer code,

Macintosh Q & A 127
tryMove, protoBoard and 24–25
turn, protoBoard and 17
two-machine debugging

(PowerPC) 52–53

U
UniversalProcPtr (UPP), Mixed

Mode Manager and 39–40,
45–46

user state of a window 101–105
USES68KINLINES, floating

windows and 4
“Using Proto Templates on the

Newton” (Chesley) 5–31

V
validMove, protoBoard and 17
VBL interrupt, game development

and 115–116
“Veteran Neophyte, The”

(Johnson) 48–50
view, Newton programming and 7

nested 12
viewChangedScript (Newton

system message) 7
viewClickScript (Newton system

message) 18

viewDrawScript (Newton system
message) 7, 15

“View From the Ledge” (Jones)
99–100

viewIdleScript (Newton system
message) 7, 18–20, 26

viewPort, Macintosh Q & A 119
viewQuitScript (Newton system

message) 7, 28–29
viewSetupChildrenScript (Newton

system message) 7, 14
viewSetupDoneScript (Newton

system message) 7, 15, 22–23,
28–29

viewSetupFormScript (Newton
system message) 7, 13, 27, 30

viewStrokeScript (Newton system
message) 7, 18

virtual memory, PowerPC
debugging and 59

W
WaitNextEvent

PowerPC debugging and 62
Thread Manager and 77, 98

Wang, John 70
Williams, Gregg 6–7, 12, 20
windows

standard state 101–105
user state 101–105
zooming 101–113

winningMove, protoBoard and
17, 23, 25

WStateData record, window
zooming and 110

X
XCOFF (extended common object

file format) files (PowerPC) 42
xSYM files, PowerPC debugging

and 53

Y
YieldFilter, Thread Manager and

89–90

YieldToAnyThread, Thread
Manager and 89–90

YieldToThread, Thread Manager
and 85

Your Move radio button
(TapBoard) 26, 31

Yu, Dean 101

Z
“Zen of Window Zooming, The”

(Yu) 101–113
ZoomData structure, window

zooming and 106, 108, 111
zooming windows 101–113
ZoomTheWindow, window

zooming and 103–108
ZoomWindow, window zooming

and 103, 105, 110–111

d e v e l o p Issue 17

142

