

E D I T O R I A L S T A F F

Editor-in-Cheek Caroline Rose

Managing Editor Toni Moccia

Technical Buckstopper Dave Johnson

Bookmark CD Leader Alex Dosher

Able Assistants Meredith Best, Liz Hujsak

Our Boss Greg Joswiak

His Boss Dennis Matthews

Review Board Pete “Luke” Alexander,
Ray Chiang, Dave Hersey, Dave Radcliffe,
Jim Reekes, Bryan K. “Beaker” Ressler,
Larry Rosenstein, Andy Shebanow,
Gregg Williams

Contributing Editors Lorraine Anderson,
Steve Chernicoff, Toni Haskell, Judy
Helfand, Jody Larson, Joe Williams

Indexer Marc Savage

A R T & P R O D U C T I O N

Production/Art Director Diane Wilcox

Technical Illustration Sandee Karr

Formatting Forbes Mill Press

Photography Sharon Beals, Jean-Eric
Garnier, Marcie Griffin, Mark Maxham

On-line Production Cassi Carpenter

ISSN #1047-0735. © 1994 Apple Computer,
Inc. All rights reserved. Apple, the Apple logo,
APDA, AppleLink, AppleTalk, HyperCard,
LaserWriter, MacApp, Macintosh, MacTCP,
MPW, Newton, QuickTime, SANE, and
TrueType are trademarks of Apple Computer,
Inc., registered in the U.S. and other countries.
AOCE, AppleScript, A/ROSE, Balloon Help,
ColorSync, develop, Finder, NewtonMail,
NewtonScript, OpenDoc, Power Macintosh,
PowerShare, PowerTalk, QuickDraw, and
Sound Manager are trademarks of Apple
Computer, Inc. PostScript is a trademark of
Adobe Systems Incorporated, which may be
registered in certain jurisdictions. PowerPC is a
trademark of International Business Machines
Corporation, used under license therefrom.
UNIX is a registered trademark of UNIX
System Laboratories, Inc. All other trademarks
are the property of their respective owners.

T H I N G S T O K N O W

develop, The Apple Technical
Journal, a quarterly publication of
Apple Computer’s Developer Press
group, is published in March, June,
September, and December. develop
articles and code have been reviewed
for robustness by Apple engineers.

This issue’s CD. Subscription issues
of develop are accompanied by the
develop Bookmark CD. The Bookmark
CD contains a subset of the materials
on the monthly Developer CD Series,
which is available from APDA.
Included on the CD are this issue and
all back issues of develop along with the
code that the articles describe. The
develop code is updated when necessary,
so always use the most recent CD.
The CD also contains Technical
Notes, sample code, and other useful
documentation and tools (these
contents are subject to change).
Software and documentation referred
to as being on this issue’s CD are
located on either the Bookmark CD or
the Reference Library or Tool Chest
edition of the Developer CD Series.

The develop issues and code are also
available on AppleLink and via
anonymous ftp at ftp.apple.com.

Macintosh Technical Notes.
Where references to Macintosh
Technical Notes in develop are followed
by something like “(QT 4),” this
indicates the category and number of
the Note on this issue’s CD. (QT is the
QuickTime category.)

E-mail addresses. Most e-mail
addresses mentioned in develop are
AppleLink addresses; to convert one of
these to an Internet address, append
“@applelink.apple.com” to it. For
example, DEVELOP on AppleLink
becomes develop@applelink.apple.com
on the Internet. To convert a
NewtonMail address to an Internet
address, append “@online.apple.com”
to it.

C O N T A C T I N G U S

Feedback. Send editorial suggestions
or comments to Caroline Rose at
AppleLink CROSE, Internet
crose@applelink.apple.com, or fax
(408)974-6395. Send technical
questions about develop to Dave
Johnson at AppleLink JOHNSON.DK,
Internet dkj@apple.com, CompuServe
75300,715, or fax (408)974-6395. Or
write to Caroline or Dave at Apple
Computer, Inc., One Infinite Loop,
M/S 303-4DP, Cupertino, CA 95014.

Article submissions. Ask for our
Author’s Guidelines and a submission
form at AppleLink DEVELOP,
Internet develop@applelink.apple.com,
or fax (408)974-6395. Or write to
Caroline Rose at the above address.

Subscriptions. Subscribe to develop
through APDA (see below) or use the
subscription card in this issue. For
subscription changes or queries, call
1-800-877-5548 in the U.S. or
(815)734-1116 outside the U.S., or
write to AppleLink DEV.SUBS,
Internet dev.subs@applelink.apple.com,
or develop, P.O. Box 531, Mount Morris,
IL 61054-7858.

Back issues. Printed back issues are
available for $13 each in the U.S. or
$20 outside the U.S. To order, call
1-800-877-5548 in the U.S. or
(815)734-1116 outside the U.S., or
write to AppleLink DEV.SUBS,
Internet dev.subs@applelink.apple.com,
or develop, P.O. Box 531, Mount Morris,
IL 61054-7858.

APDA. To order products from APDA
or receive a catalog, call 1-800-282-
2732 in the U.S., 1-800-637-0029 in
Canada, (716)871-6555 internationally,
or (716)871-6511 for fax. Order
electronically at AppleLink APDA,
Internet apda@applelink.apple.com,
CompuServe 76666,2405, or America
Online APDAorder. Or write APDA,
Apple Computer, Inc., P.O. Box 319,
Buffalo, NY 14207-0319.Printed on recycled paper

d e v e l o p

A R T I C L E S

5 Getting the Most out of AOCE Catalog Records by Christine Buttin
AOCE templates let you extend AOCE catalogs to store new kinds of data. This article introduces you to
writing AOCE templates by providing an example template that extends the built-in User record.

26 Exploring Advanced AOCE Templates Through Celestial Mechanics
by Harry R. Chesley
AOCE templates allow you to specify how the Finder displays your data and how the user interacts with it.
This article shows how to use some of the more advanced features of the template mechanism.

50 Make Your Own Sound Components by Kip Olson
Sound Manager 3.0 supports plug-in components for compression, decompression, custom hardware
support, and more. This introduction to Sound Manager components will get you started.

65 Scripting the Finder From Your Application by Greg Anderson
The System 7.5 Finder is OSL-compliant, opening the door to full scriptability and to direct manipulation
through Apple events. Here’s how to talk to the Scriptable Finder from your application.

84 NetWare Development on PowerPC by Jamie Osborne
With NetWare now on the Power Macintosh, you may want to write your network products to use it. This
introduction to the NetWare environment includes a simple sample module.

C O L U M N S

44 SOMEWHERE IN QUICKTIME
Supporting Text Tracks in Your Application
by Nick Thompson
How to support text tracks in your application,
allowing both searching and editing.

63 GRAPHICAL TRUFFLES
A Space-Saving PICT Trick
by Guillermo A. Ortiz and Dave Johnson
If you’re storing a large set of pictures with the
same colors, here’s a neat trick to reduce its size.

79 PRINT HINTS
Improving QuickDraw GX Printer Driver
Performance
by Dave Hersey
Understanding QuickDraw GX buffering will
help you fine-tune the performance of your
printer driver.

96 BALANCE OF POWER
PowerPC Branch Prediction
by Dave Evans
Is it science or is it hokum? Only your branch
prediction unit knows for sure.

99 Macintosh Q & A
Apple’s Developer Support Center answers
questions about Macintosh product
development.

109 THE VETERAN NEOPHYTE
Nothing Comes From Nothing
by Dave Johnson
Creation-shmeation, nothing’s really new; it’s
just a rearrangement of what’s already there.
Then again, maybe not.

112 Newton Q & A: Ask the Llama
Answers to Newton-related development
questions; you can send in your own.

117 KON AND BAL’S PUZZLE PAGE
Processed Cheese
by Cary Clark
Process is everything. Or is it?

2 EDITOR’S NOTE
3 LETTERS

122 INDEX

Issue 20 December 1994

CONTENTS 1

At the Worldwide Developers Conference in May, hundreds of developers
volunteered comments on develop, the Developer CD, and related products, writing
them either on a big board we set up for that purpose or in a comments box in our
electronic survey. The remarks were collated and handed out to the people in Apple’s
Developer Press group who are responsible for those products. (Our Able Assistant
Meredith Best, whom you can see hard at work with other develop team members on
page 111, typed up all those comments that were scrawled on the big board — even
the complaints about the conference food and the unique “At what elevation do deer
turn into elk?”)

So what results come out of this, if any? That’s harder to answer. Of course it
depends on the nature of the comment. The result of all the great feedback on
develop is that I’ll have the pleasure of doing this job for a while longer. (Thanks
especially to the person who wrote “develop is brilliant! Give Caroline a raise now!”;
it was hard convincing my boss I didn’t enter that one myself.) The answers to some
questions are really easy. For example, “How about a guest developer column?” is a
no-brainer; we’ve always accepted columns from developers (and articles too!) and
would be happy to send our author’s guidelines to anyone who’s interested.

Most of the comments from the conference are in the process of being assimilated,
and what they’ll yield is uncertain, but we do want to thank you for sharing, as we say
in California. In turn we’ll share with you some feedback that was among the strongest
and that applies to many of you out there as well as to us at Apple: documentation
should not be electronic-only. (OK, a couple of developers disagreed, and one said
“Ehh, who cares,” but we’re talking overwhelming majority here.) Paper was praised.

But it’s clear from other feedback that developers also hold up THINK Reference as
a model for viewing documentation on-line. Does this contradict their praise of
paper? I think not. They’re recognizing the difference between reference and other
types of documentation. They want paper for conceptual information but would like
good (fast!) on-line access for reference materials. I for one am happy to see this
distinction being made. Not only are the different types of materials too often
lumped together when the big question of on-line versus off-line presentation arises,
but this separation isn’t being realized enough in printed books either. The first thing
I polled developers on when planning NeXT’s technical documentation (in a past life)
was this very question, and as a result, the reference-type descriptions were placed in
an entirely separate book. Read-once versus read-many — simple.

What I’d like to know is, if so many hundreds of you took the time to give us
feedback at the conference, why don’t more of you write to develop? You know where
to find us . . .

CAROLINE ROSE

d e v e l o p Issue 20 December 19942

EDITOR’S NOTE

CAROLINE ROSE (AppleLink CROSE) has been
writing about software ever since the Internet was
the ARPAnet. She was originally hired because
they wanted the fresh approach of someone new
to the industry, which in those days wasn’t hard
to find. Now she has to leave town to find
someone new to the industry. Caroline loves her

job but seems to enjoy leaving town most of all.
Her big trip this year was to England, where she
especially enjoyed the green rolling hills and
quaint old towns of the Cotswolds. She was also
crazy about British desserts, particularly the
banoffi pie (she lacked the courage, however, to
try the Spotted Dick).•

Caroline Rose
Editor

PENMODE NOT FOR TEXT
In the Macintosh Q & A section of
develop Issue 18, I noticed the suggestion
to use PenMode(srcBic) for drawing
white text on a black background. This
is wrong; the desired result will be
achieved by TextMode(srcBic). Hope
this helps.

— David Surovell

Thanks for the correction. Say, don’t I
recognize your name from an article in
Issue 19?

— Caroline Rose

SLIME: IS IT SAFE?
As I was reading develop Issue 18, I came
across the green slime question in
Macintosh Q & A. A friend of mine has
been looking for just this recipe, to help
keep her preschool-aged daughter
amused. However, after reading the
recipe, I’m not going to forward it to
my friend, because one of the
ingredients, borax, is poisonous.

Now, I’m not a toxicologist, nor do I
play one on TV, so I don’t know exactly
how toxic borax is. But I don’t want to
find out by letting anyone’s children
play with it (not even the nasty little
feral children down the street). And
what about people who screw up the
recipe? Or decide to experiment with it?
You didn’t even tell them that straight
borax is poisonous. And it’s not like
there’s a big “Mr. Yuk” sticker on the
box of Twenty-Mule Team, just those
friendly-looking equines.

You and your staff do a fine job of
technical presentation, and you have a
process for technical review. You might

consider a “toxicity review” before you
publish any more recipes for nifty stuff
that’s not inherently edible. Ya never
know.

— Greg Guerin

I volunteer at the Exploratorium, a science
museum in San Francisco, and we’ve been
handing out this slime for months to any
kid who wants it. The recipe was acquired
from a grade-school teacher and is used in
schools all over the country.

A chemist at the Exploratorium told me
that borax is toxic to about the same degree
as soap: if you eat enough of it, you’ll
probably get a belly ache. Any kid who’s old
enough to have figured out that soap is
yucky to eat is plenty old enough, in my
opinion. It’s my sincere hope and belief that
most develop readers have already reached
that stage of maturity.

To be absolutely sure, I called the Poison
Control center, and they said that to have
any toxic effect at all someone would have to
eat an awful lot of it. They even told me I
didn’t need to bother to wash my hands
after handling it. I asked if the soap analogy
was a good one, and they said it was
accurate.

You might recommend corn starch and
cold water to your friend. In the right
proportions (just enough water to get it all
wet) it makes a very satisfying goop (usually
called “oobleck” by teachers, after Dr. Seuss)
that’s probably more appropriate for very
young children.

— Dave Johnson

DOGCOW IN THINK REFERENCE
I really enjoyed reading Mark Harlan’s
history of the dogcow in Issues 17 and

LETTERS

LETTERS 3

IT PAINS US WHEN YOU DON’T WRITE
We welcome timely letters to the editors,
especially from readers reacting to articles that
we publish in develop. Letters should be
addressed to Caroline Rose (or, if technical
develop-related questions, to Dave Johnson) at
Apple Computer, Inc., One Infinite Loop, M/S

303-4DP, Cupertino, CA 95014 (AppleLink
CROSE or JOHNSON.DK). All letters should
include your name and company name as well as
your address and phone number. Letters may be
excerpted or edited for clarity (or to make them
say what we wish they did).•

18 of develop. He states that Technical
Note #31 has not been available for
quite a while. That may be so, but
something like this Tech Note is hiding
inside the THINK Reference databases.
Just do a search for “DogCow” and
you’ll find it.

— Robert Grimm

Thanks for pointing out the dogcow lore in
THINK Reference; I didn’t know about
that. I especially like the part about how,
since the dogcow is two-dimensional, she can
face a predator head-on to avoid being seen.
Although that defensive maneuver sounds
likely enough, keep in mind that the dogcow
information in THINK Reference is
unauthorized and has nothing to do with
the Tech Note. The Tech Note gives lots
more information, and we’re glad it
remains as mysterious as ever.

— Caroline Rose

PUZZLING OVER THE PUZZLE
PAGE
After reading Issue 17 of develop, I have
a question. I’m not sure what the
purpose is in calling KON & BAL’s page
a Puzzle Page if it requires that you
have access to certain obscure beta
ROMs in order to solve the puzzle.
Perhaps this is just sour grapes because
I’ve never scored above 5? Sure, it still
demonstrates various debugging
techniques (although I’m not sure that
iterative debugging with a reboot after
each test is a very useful technique, and
this seems quite common in the puzzle
pages). But is it really a puzzle?

— Peter Lewis

KON & BAL chose the Puzzle Page format
because they thought it was a fun way to
give people debugging tips. They don’t
expect readers to take the puzzle aspect of it
seriously; in fact, you’re the first one we’ve
ever heard from who has scored anything
besides 0.

None of us were thrilled with Issue 17’s
puzzle, but, in KON’s words, “There was a
lot of great stuff about how the Resource
Manager works, locking down handles, and

other really useful advice. We try to
demonstrate efficient and good debugging
techniques.”

Want a better Puzzle Page? Why not write
one yourself? We now accept “guest
puzzlers,” as you may have noticed. If
you’ve got a good idea for a Puzzle Page,
please send it to us at AppleLink
DEVELOP.

— Caroline Rose

SAVED BY THE PUZZLE PAGE
I’ve enjoyed reading develop since the
first issue was published. I find that the
articles contain a lot of useful technical
information.

Normally I try to read each issue when
it arrives, but when Issue 16 arrived, it
sat for two months while I was finishing
a product. About two weeks after the
application shipped, a bug was reported
where the application would randomly
crash with a trashed stack on the
PowerBook 180c. We spent a very
frustrating Friday trying to reproduce
and isolate the bug, but the behavior
was inconsistent.

Over the weekend, in an effort to catch
up on my reading, I picked up develop
Issue 16 and read through it. About
an hour after I finished, I thought back
on KON & BAL’s Puzzle Page, picked
the magazine up again, and reread it.
Something struck me about the problem
they were puzzling over. Their result
sounded similar to the problem we were
encountering.

On Monday, we ran a series of tests in
which we were able to prove that the
bug was in Sound Manager 2.0 and
disappeared under Sound Manager 3.0.
If it hadn’t been for the timely
coincidence of reading develop and
seeing a different manifestation of our
bug described, we might have spent a
lot longer tracking down the problem.
develop saved us a lot of time and
frustration.

Thanks for the magazine.

— Bruce D. Rosenblum

d e v e l o p Issue 20 December 19944

Apple Open Collaboration Environment (AOCE) catalogs can contain
any kind of data, which users can browse and edit using the Finder.
Developers and knowledgeable end users can write AOCE templates,
which add new record types to catalogs and tell the Finder how to
display the data. This article describes AOCE templates and provides an
example of using templates to extend PowerTalk’s built-in User records
to contain your own data.

Personal computers are great for storing large amounts of related data. Databases
make it possible to organize data and to find individual items quickly, but it takes a
long time to set up a database and enter data into it. If you’re a system administrator
or in-house developer and you want to provide a database for use by others, you also
have to worry about providing and maintaining the database software for everyone
involved. If you’re using PowerTalk, however, you already have a way to store
information: AOCE catalogs. What’s more, the related Catalogs Extension (CE) to
the Finder allows users to browse and edit catalog records with the Finder.

The Human Resources group at Apple Computer France wanted to create a
directory of Apple personnel that included each person’s name, title, department,
address, and a list of keywords to identify areas of expertise. Furthermore, the group
wanted to be able to list everyone with a particular area of expertise. Since Human
Resources uses a PowerShare collaboration server, there was already a catalog with a
User record containing all of the information for everyone with an account on the
server, except for areas of expertise. What better way to create the directory than to
add the new keyword data to the User records? To list people related to a specific
keyword, the group could create keyword records by adding a new record type to the
AOCE catalog in which the data was stored.

The User records that are defined as part of the PowerTalk system software store
information such as a person’s name, title, phone number, and electronic address.
PowerTalk uses AOCE templates — resource files that go in the Extensions folder in
the System Folder — to tell the CE how to store and display the data. This article
shows you how to write AOCE templates that extend User records to hold additional

CHRISTINE BUTTIN

Getting the Most out of AOCE Catalog
Records

GETTING THE MOST OUT OF AOCE CATALOG RECORDS 5

CHRISTINE BUTTIN has worked in Developer
Technical Support for Apple since 1989, first for
Apple Computer Europe and now for Apple
France. At the office, they call her the talkative
woman, not only because she enjoys chatting, but
also because she mainly supports technologies
that enable communication (such as AppleTalk,
AppleScript, AOCE). When not talking, she

spends most of her time practicing Aikido or
traveling (she has a special love for the Sahara
Desert, where she’s sure to be far away from
computers). An extra benefit of her job is that she
can regularly visit the U.S., where she has made
many good friends. Visiting her American friends
might not be as restful as a trip to the Sahara
Desert, but it certainly is a lot of fun.•

information (keywords identifying areas of expertise) and templates that define a new
record type (keyword records). Although writing templates doesn’t necessarily require
writing any code resources at all, you can do more by adding code resources to your
templates. This article goes on to demonstrate how to use a code resource to keep
records synchronized that refer to each other’s data.

You’ll find all the example code on this issue’s CD. Even if you’re not using a
PowerShare server, you can use the approach described in this article to store data in
a personal catalog on your own Macintosh.

A BIT ABOUT AOCE CATALOGS
To get the most out of this article, you should have PowerTalk installed on your
computer and have spent a little time playing with catalogs. A catalog is a
hierarchically arranged store of data. The bottom level of the catalog hierarchy is the
record, which is analogous to a file in the Macintosh hierarchical file system (HFS).
Unlike files, however, when the user double-clicks a record, the application that
opens the record is the Finder itself. How the contents of the record are stored in the
catalog and displayed to the user is determined by sets of resources in files known as
AOCE templates.

For the complete story on AOCE, see Inside Macintosh: AOCE Application
Interfaces.•

A PowerShare collaboration server stores the name and account information of each
entity (person, gateway, or whatever) that has an account on the AOCE server in a
server-based catalog. It uses User records for this purpose. A personal catalog looks
much like a server-based catalog but is, in fact, an HFS file on the local disk. There’s
practically no difference between a record in a server-based catalog and one in a
personal catalog; AOCE templates work identically in both cases.

The data in records is organized into attributes. Each attribute has a type (for
example, address or area of expertise) and any number of attribute values, which can
contain any sort of data. Each attribute type is defined by a template that specifies the
format for the data. You can write new templates to expand the types of attributes
that existing record types can contain — that’s precisely what this article does, in fact.

FROM RECORDS TO INFORMATION PAGES
When the user double-clicks an AOCE catalog record in the Finder, a window called
an information page window opens. An information page window can contain a single
information page, or several information pages, each with a pop-up menu listing the
other pages. Each information page displays data stored in the record. The window in
Figure 1 shows an information page that displays data stored in a User record.

The CE uses a two-step process to get from a record to an information page. Because
there’s not necessarily a one-to-one correspondence between attribute values and the
data you want to display on an information page, the first step consists of parsing the
data in the attribute values into discrete units of data known as properties. For
example, an address attribute value may contain street, city, and zip code properties.
The second step is to specify exactly where and how each property is displayed on the
information page.

Two types of AOCE templates specify how the CE performs each of these steps:

• An aspect template describes how the attribute values are to be
parsed into properties.

d e v e l o p Issue 20 December 19946

• An information page template specifies how the properties are to be
displayed on the information page.

These aspect and information page templates share a data structure in memory that
contains the properties. This data structure is called an aspect. The relationships
among records, aspect templates, aspects, information page templates, and
information pages are illustrated in Figure 2.

There are a few important things to note about these relationships:

• An aspect template does not have to deal with every attribute type
in a record. There can be any number of aspect templates that
apply to a given record type, and each can describe the parsing of
some subset of attribute types.

• An information page template does not have to use every property
stored in an aspect.

• More than one information page template can use properties from
the same aspect, but each information page template can use
properties from only one aspect.

GETTING THE MOST OUT OF AOCE CATALOG RECORDS 7

Figure 1. An information page window

User record

User data

Company data

Birthday

�

Attributes

Icon�
resources

Aspect�
template Aspect

Name

Title

Department

Company name

Location

Properties

Information�
page template

Information page

Figure 2. Getting from a record to an information page

• The process works in reverse as well. When the user enters
data into an information page, the information page template
defines which property that data belongs to and the aspect
template describes how the data should be stored in an attribute
value.

WHAT’S IN A TEMPLATE
Every template contains a signature resource that indicates the type of the template and
specifies some other template characteristics. In addition, there are other resources
that are required for every template (such as the template name resource), resources
that are required for specific template types, and a variety of optional resources that
you can include if needed.

The CE identifies each resource by its resource type and by the offset of its resource
ID from the resource ID of the signature resource. For example, the template name
resource and the record type resource (which specifies what type of record the
template applies to) are both 'rstr' resources; the CE can distinguish between them
because the template name resource’s ID is equal to the signature resource’s ID plus
the constant value kDETTemplateName, while the record type resource has an ID
offset of kDETRecordType.

Aspect templates contain a resource called a lookup table. The lookup table contains
the instructions to the CE for parsing attribute values into properties and properties
into attribute values. If the CE needs a property that has a property number in the
range 0 to 249, and it doesn’t find a value for that property that the lookup table
constructed from an attribute value, it looks for a resource with an ID offset equal to
the property number. This means that in the aspect template itself you can provide
property values to be used as default values, initial values, or constant values for
properties.

Information page templates contain one or more resources called view lists, which
specify the views that appear on the information page. A view is an item or a field on
an information page displaying one or more property values (for example, a text field
or a radio button).

Unlike the ID of other template resources, a view list’s resource ID isn’t related to
the signature resource’s ID. Instead, the information page template’s signature
resource includes references to all the view lists for that template. For each view list,
the signature resource includes two property numbers that identify properties
associated with that view list. The view list is active only if the values of its two
associated properties are equal. You can use this feature to implement conditional
views, that is, information-page features that the CE displays only under certain
circumstances.

MAIN VIEWS, SUBLISTS, AND MAIN ASPECTS
Figure 3 shows another common feature of information pages — a sublist. A sublist
is a portion of the information page that contains a list of attribute values or records.
In Figure 3, the sublist holds two records (actually, it holds aliases to the records).
Typically, when the user double-clicks an item in a sublist, the same two-step process
as described earlier in the section “From Records to Information Pages” occurs; as a
result, another information page opens and displays the information associated with
the attribute or record represented by the selected item. For example, double-clicking
the AOCE item in Figure 3 opens an information page displaying all people with that
expertise (as shown in Figure 4 later in this article).

d e v e l o p Issue 20 December 19948

All the property values displayed on an information page outside the sublist come
from a single aspect, called the main view aspect. This aspect also provides the list of
items to be included in the sublist (if any).

Each item in a sublist has its own aspect, called a main aspect, which provides the
property values necessary to display the item in the sublist (such as the name of a
record or the kind of attribute value). A main aspect can contain other property
values as well; in fact, a main aspect can also serve as the main view aspect for an
information page.

If you want to create a new information page for an existing record, you must provide
a main view aspect template for that information page. If you’re defining a new
record type to be displayed in a sublist, you need to provide a main aspect template
for that record type. The example in this article demonstrates how to create a main
view aspect template and an information page template that extend the User record
to hold keywords. It then shows how to create the main aspect template needed in
order to list keyword records in the new User record information page sublist.

DEFINING THE ASPECT TEMPLATE
Now we’re ready to define the aspect template for the new information page, which is
a main view aspect template. The main view aspect template serves as the aspect
template for everything on the new User record information page except for the
content of the sublist items. Aspect templates contain a signature resource, a name
resource, a record type resource, resources that specify how to handle objects
dropped on the information page, resources for handling the View menu and Balloon
Help, and the all-important lookup table.

SIGNATURE, NAME, AND RECORD TYPE RESOURCES
The ID of the aspect template signature resource, of type 'deta', provides the base
resource ID for the other aspect template resources. The signature resource also
makes some settings related to drag and drop operations, as discussed in the next
section, and specifies whether this template is a main aspect template.

resource 'deta' (kEInfoPageAspect, purgeable) {
0, // Drop-operation order
dropCheckAlways, // Drop-check flag
notMainAspect // Not the main aspect template

};

GETTING THE MOST OUT OF AOCE CATALOG RECORDS 9

Figure 3. Information page with a sublist

In our example, the aspect template defines the properties for the new information
page being added to an existing record type — “aoce User.” Because User records
already have a main aspect template provided as part of the PowerTalk system
software, you don’t have to provide one yourself. In fact, declaring a template to be
the main aspect template for User records would cause a conflict and the User
records would no longer work correctly.

To replace an existing main aspect template, you use a killer template, which
is not covered in this article. See Inside Macintosh: AOCE Application Interfaces for
more on killer templates.•

Aspect templates, like other templates, have a name that must be unique to be
identified by other templates. To guarantee uniqueness, start the names of all your
templates (as well as all the new record types and attribute types for which you
provide main aspect templates) with your four-character application signature as
registered with Apple’s Developer Support Center. Here’s our aspect template name
resource:

resource 'rstr' (kEInfoPageAspect+kDETTemplateName, purgeable) {
"ACFC InfoPage aspect"

};

The record type resource identifies the record that the aspect applies to, in this case
the User record:

resource 'rstr' (kEInfoPageAspect+kDETRecordType, purgeable) {
"aoce User"

};

Although we’re going to be defining a new attribute type that goes in User
records, we don’t provide a resource (of type kDETAttributeType) to specify that
attribute type for the aspect template. In fact, if an attribute type were specified for the
aspect template, the CE could use the template only for that attribute type and could
not use it to modify the User record itself. (If the new attribute type were in a sublist
and we provided a main aspect template to describe how that attribute should appear
in the sublist, that main aspect template would contain a kDETAttributeType resource,
as shown in the sample code on this issue’s CD.)•

DRAG AND DROP RESOURCES
The aspect template drag and drop resources in the sample code make it possible for
users to drag keyword records and drop them either on a closed User record or
directly on a sublist on an information page, thereby adding those records to the
sublist.

The kDETAspectRecordDragIn resource specifies what types of records can be
dropped on a sublist. Because the CE can’t actually store a record in a record, it adds
to the sublist an attribute containing an alias to the dropped record. For each type of
record the user can drag in, you also need to specify the type of attribute to store the
alias in. The following resource indicates that aliases to keyword records should be
stored as attribute type “ACFC Alias keyword”:

resource 'rst#' (kEInfoPageAspect+kDETAspectRecordDragIn, purgeable) {
{
"ACFC Keywords", "ACFC Alias keyword"
}

};

d e v e l o p Issue 20 December 199410

The drop-operation order and drop-check flag in the aspect template signature
resource (shown in the previous section) come into play during these drag and drop
operations, as follows:

• The drop-check flag controls when the user will be prompted for
confirmation upon performing the drag and drop. Setting this flag
to dropCheckAlways indicates that the prompt message should
always appear. Setting it to dropCheckConflicts limits its
appearance to times when the user drops a record on a closed User
record and more than one information page contains a sublist that
accepts that record type. In this case, the CE would have to
determine which information page should have the record added
to its sublist. If you set the drop-check flag to dropCheckConflicts,
the user is prompted for confirmation only if such a conflict arises.

• Setting the drop-operation order to 0 indicates that you want the
highest possible priority in case of the conflict just described. If the
conflicting template also set its drop-operation order to 0, the CE
makes an arbitrary decision about which sublist to add the record
to. The user can always avoid the conflict by opening the desired
information page and dropping the object directly on the desired
sublist.

You also need to define the prompt message, which can include parameters (token ̂ 2
is the destination’s name, and token ̂ 3 is the dragged record’s name).

resource 'rstr' (kEInfoPageAspect+kDETAspectDragInString, purgeable) {
"Do you want to add %3%“^3”%the selected items% to the company info "
"for “^2”?"

};

In this example, dragging the keyword record named “AppleScript” onto John’s
business card produces the message “Do you want to add AppleScript to the company
info for John?” If the user drags several items at once, the CE substitutes “the
selected items” for the name of the dragged item.

VIEW MENU COMMANDS AND BALLOON HELP
When a template contains a sublist, the user determines how data is sorted in the
sublist by choosing from the Finder’s View menu (for example, “by Name” or “by
Kind”) or by clicking the labels above the sublist (“Name” and “Kind” in Figure 3).
For these features to work, you have to provide the items for the View menu and
specify which properties are used for sorting in each case. Our example uses the
metaproperties (properties that are provided by the CE and that don’t correspond to
specific attribute values): kDETPrName (the record’s name) and kDETPrKind (the
record’s kind).

resource 'detm' (kEInfoPageAspect+kDETAspectViewMenu, purgeable) {
kEInfoPageAspect+kDETAspectViewMenu,
{
kDETPrName, "by Name";
kDETPrKind, "by Kind";
}

};

You also need to add Balloon Help strings for properties. Each property has two
strings: the first one is displayed if the property is editable, the second one if it’s not.
The first pair of text strings corresponds to the first property, the second pair to the

GETTING THE MOST OUT OF AOCE CATALOG RECORDS 11

second property, and so on. In our example, there’s only one property (the employee’s
job description):

resource 'rst#' (kEInfoPageAspect+kDETAspectBalloons, purgeable) {
{
"Description of the employee’s job", "Description : Uneditable "
"because the record is locked or access controlled."
}

};

THE LOOKUP TABLE
As mentioned earlier, the lookup table tells the CE how to parse attribute values into
properties and how to convert property values into attributes. For each property that
you want to use on an information page, the lookup table must contain an entry that
describes how to process the property’s associated attribute. An attribute is identified
by an attribute type and an attribute value tag:

• The attribute type is a string that describes the contents of the
attribute (such as “ACFC Alias keyword” or “aoce Member”).

• The attribute value tag is a 4-byte code that specifies the data
format of the attribute value (such as typePackedDSSpec or
typeBinary).

A single lookup table entry can specify how to parse more than one attribute type, but
only if they have the same attribute value tag. You can provide separate lookup table
entries for input (that is, translating attribute values to properties) and output
(translating properties to attribute values), but you must provide both.

Each lookup table entry contains a set of flags that indicate the following:

• whether the entry is used for translating attribute values to
properties (useForInput)

• whether the entry is used for translating properties to attribute
values (useForOutput)

• whether the attribute value is to be used in a sublist

• whether the resulting entry in the sublist is an alias

The entry also includes elements that specify what to do with the attribute. Each
element consists of three parts: a format that drives the parsing process, a property
number, and an extra parameter used in certain types of elements. The format can be
a simple data type that specifies how many bytes of data to take from the attribute and
how to store it in the property. For example, a format of type 'word' takes the next
two bytes from the attribute value and puts it in a number-type property. In the other
direction, it would take two bytes from a number-type property and store it in an
attribute value.

Lookup tables are complex and can be used in more ways than described here.
For more information, see Inside Macintosh: AOCE Application Interfaces.•

In our example, there are two attribute types: one contains the description of an
employee’s job (attribute type “ACFC Company Empext Function”); the second is
multivalued and contains the list of keywords or users (contact people, not discussed
in this article), which are records in the catalog. There are two entries in the lookup
table, one for each attribute type: the first one maps the attribute value to a string
property (kFunction, defined on the CD); the second is for sublist items, each of

d e v e l o p Issue 20 December 199412

which is a record of type “ACFC Alias keyword.” The notForOutput and notForInput
flags are set for the items in the sublist because sublist items are described in their
own main aspects, not in the main view aspect that defines the sublist.

resource 'dett' (kEInfoPageAspect+kDETAspectLookup, purgeable) {
{
{"ACFC Company Empext Function"}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,
{
'rstr', kFunction, 0; // An element
};

{"ACFC Alias keyword"}, typePackedDSSpec,
notForInput, notForOutput, useInSublist, isAlias, isNotRecordRef,
{};

}
};

DEFINING THE INFORMATION PAGE TEMPLATE
As described earlier in “What’s in a Template,” an information page template specifies
the contents and layout of an information page. It includes one or more view lists,
which describe the different views on the page, such as text fields or radio buttons.
When your information page contains a sublist, you must include a view list
describing an entry in the sublist. The CE uses this view list to display appropriate
information for each item of the sublist, such as an icon and the name of the item.

SIGNATURE, NAME, AND TYPE RESOURCES
The information page template signature resource provides the resource IDs of the
view lists associated with the information page, as well as two property numbers for
each view list. As discussed earlier, if the values of these two properties are not equal,
the CE doesn’t display the views described by the view list.

The signature resource also specifies the sort-order number of the information page,
the presence or absence of a sublist in the information page, and the rectangle that
contains the sublist (if any). The CE displays the information pages in the sequence
indicated by their sort-order numbers.

resource 'deti' (kEInfoPage, purgeable) {
4000, // Sort-order number
{kSublistTop, kSublistLeft, kSublistBottom, kSublistRight},
noSelectFirstText, // Don't automatically select the first editable

// text field when the information page is opened.
{
kDETNoProperty, kDETNoProperty, kEInfoPage;
},
{
kDETNoProperty, kDETNoProperty, kEInfoPage+1;
}

};

As with the aspect template, you need to include resources that provide the template
name and the type of record the template applies to:

resource 'rstr' (kEInfoPage+kDETTemplateName, purgeable) {
"ACFC 1stInfoPage"

};

GETTING THE MOST OUT OF AOCE CATALOG RECORDS 13

resource 'rstr' (kEInfoPage+kDETRecordType, purgeable) {
"aoce User"

};

OTHER REQUIRED RESOURCES
Because there’s more than one information page for the User record, you need to
provide the string that gets displayed in the information page pop-up menu used for
changing to a different page:

resource 'rstr' (kEInfoPage+kDETInfoPageName, purgeable) {
"Company Info"

};

You also need to provide the name of the aspect template that defines the properties
used by the information page:

resource 'rstr' (kEInfoPage+kDETInfoPageMainViewAspect, purgeable) {
"ACFC InfoPage aspect"

};

VIEW LISTS
Our example has two view lists: the first describes the views (graphical elements) of
the information page, and the second describes an entry in the sublist. To complete
the information page template, you need to define these view lists (see Listing 1). A
view list contains the following information for each view:

• the view’s bounds

• the view’s type (such as button or editable text field)

• the property associated with this view, if any

• information specific to the type of view

d e v e l o p Issue 20 December 199414

Listing 1. Defining the view lists

resource 'detv' (kEInfoPage, purgeable) {
{
// Icon
{6, 156, 22, 172}, kDETNoFlags, kDETAspectMainBitmap, Bitmap {kDETSmallIcon};
// Static text
{kFunctionTop, kFunctionLeft, kFunctionBottom, kFunctionRight}, kDETNoFlags, kDETNoProperty,

StaticTextFromView {kDETApplicationFont, kDETApplicationFontSize, kDETRight, kDETBold,
"Job description"};

// Editable text
{kTEFunctionTop, kTEFunctionLeft, kTEFunctionBottom, kTEFunctionRight}, kDETMultiLine, kFunction,

EditText {kDETApplicationFont, kDETApplicationFontSize, kDETLeft, kDETNormal};
// Sublist label: "Name"
{kSublistSeeAlsoTop, kSublistSeeAlsoLeft,kSublistSeeAlsoBottom, kSublistSeeAlsoRight},

kDETNoFlags, kDETPrName,
StaticCommandTextFromView {kDETDefaultFont, kDETDefaultFontSize, kDETLeft, kDETUnderline,
"Name", kDETChangeViewCommand, -1};

(continued on next page)

DEFINING THE NEW KEYWORD RECORD TYPE
The aspect and information page templates are now defined, adding a new
information page for User records. However, there’s still work to do before the user
can create keyword records — you need to provide aspect and information page
templates for this new record type.

MAIN ASPECT TEMPLATE FOR KEYWORD RECORDS
Since the new record type appears in a sublist, you need to provide a main aspect
template (as shown in Listing 2).

A main aspect template is similar to the aspect template defined earlier, but it includes
some additional resources:

• the menu item text for the Finder’s Catalog menu for creating
keyword records

• the name the CE should assign to newly created records of this
type

• an icon family for the icon, the record kind, and the kind of an
alias to a record, as they are to be displayed in a sublist

• one or more categories that this record type belongs to

• Balloon Help strings for the record and for aliases to the record

GETTING THE MOST OUT OF AOCE CATALOG RECORDS 15

// Sublist label: "Kind"
{kSublistKindTop, kSublistKindLeft, kSublistKindBottom, kSublistKindRight},

kDETNoFlags, kDETPrKind,
StaticCommandTextFromView {kDETDefaultFont, kDETDefaultFontSize, kDETLeft, kDETNormal,
"Kind", kDETChangeViewCommand, -2};

// Sublist box
{kSublistTop-1, kSublistLeft-1, kSublistBottom+1, kSublistRight+1}, kDETNoFlags,

kDETNoProperty, Box {kDETUnused};
}

};

// Sublist view list -- description of an entry in the sublist
resource 'detv' (kEInfoPage+1, purgeable) {

{
// Icon
{kDETSublistEntryTop, kDETSublistIconColumnLeft, kDETSublistEntryBottom,

kDETSublistIconColumnRight}, kDETEnabled, kDETAspectMainBitmap, Bitmap {kDETMiniIcon};
// Record's name
{kDETSublistEntryTop, kSeeAlsoColumnLeft, kDETSublistEntryBottom, kSeeAlsoColumnRight},

kDETEnabled+kDETDynamicSize, kDETPrName,
EditText {kDETDefaultFont, kDETDefaultFontSize, kDETLeft, kDETItalic};

// Record's type
{kDETSublistEntryTop, kKindColumnLeft, kDETSublistEntryBottom, kKindColumnRight},

kDETEnabled+kDETDynamicSize, kDETPrKind, EditText {kDETDefaultFont, kDETDefaultFontSize,
kDETLeft, kDETNormal};

}
};

Listing 1. Defining the view lists (continued)

d e v e l o p Issue 20 December 199416

Listing 2. Main aspect template for keyword records

resource 'deta' (kKeywordAspect, purgeable) {
0, // Drop-operation order
dropCheckAlways, // Drop-check flag
isMainAspect // Is the main aspect

};

resource 'rstr' (kKeywordAspect+kDETTemplateName, purgeable) {
"ACFC Keywords Aspect"

};

resource 'rstr' (kKeywordAspect+kDETRecordType, purgeable) {
"ACFC Keywords"

};

resource 'rstr' (kKeywordAspect+kDETAspectKind, purgeable) {
"Keyword"

};

resource 'rst#' (kKeywordAspect+kDETAspectCategory, purgeable) {
{
"Miscellaneous"
}

};

// Icons
include "Keywords.rsrcs" 'ICN#'(128) as 'ICN#'(kKeywordAspect+kDETAspectMainBitmap, purgeable);
include "Keywords.rsrcs" 'icl4'(128) as 'icl4'(kKeywordAspect+kDETAspectMainBitmap, purgeable);
include "Keywords.rsrcs" 'icl8'(128) as 'icl8'(kKeywordAspect+kDETAspectMainBitmap, purgeable);
include "Keywords.rsrcs" 'ics#'(128) as 'ics#'(kKeywordAspect+kDETAspectMainBitmap, purgeable);
include "Keywords.rsrcs" 'ics4'(128) as 'ics4'(kKeywordAspect+kDETAspectMainBitmap, purgeable);
include "Keywords.rsrcs" 'ics8'(128) as 'ics8'(kKeywordAspect+kDETAspectMainBitmap, purgeable);
include "Keywords.rsrcs" 'SICN'(128) as 'SICN'(kKeywordAspect+kDETAspectMainBitmap, purgeable);

include "KeywordsInfoPageAspect.code" 'code'(1) as 'detc'(kKeywordAspect+kDETAspectCode, purgeable);

// Drag and drop resources
resource 'rstr' (kKeywordAspect+kDETAspectDragInString, purgeable) {

"Add “^3” to “^2”?"
};

resource 'rst#' (kKeywordAspect+kDETAspectRecordDragIn, purgeable) {
{
"aoce User", kMemberAttrTypeBody
}

};

// View menu and Balloon Help resources
resource 'rstr' (kKeywordAspect+kDETAspectNewMenuName, purgeable) {

"New Keyword"
};

(continued on next page)

INFORMATION PAGE TEMPLATE FOR KEYWORD RECORDS
Upon double-clicking a keyword record, the user expects an information page to
appear, as shown in Figure 4. Defining the information page template for the
keyword record is similar to defining the information page template for the User
record, as described earlier. You include signature, name, type, and optional resources
along with the view lists. The resource definitions are provided on this issue’s CD.

GETTING THE MOST OUT OF AOCE CATALOG RECORDS 17

resource 'rstr' (kKeywordAspect+kDETAspectNewEntryName, purgeable) {
"Untitled Keyword"

};

resource 'rst#' (kKeywordAspect+kDETAspectBalloons, purgeable) {
{
"Keyword description", "Keyword description : uneditable because the record is locked or "
"access controlled."
}

};

resource 'rst#' (kKeywordAspect+kDETWhatIs, purgeable) {
{
"Keyword \n \nA keyword record. Open this icon to see a description of this keyword and a list "
"of people who have this job skill."
}

};

resource 'rst#' (kKeywordAspect+kDETAliasWhatIs, purgeable) {
{
"Keyword alias \n \nAn alias to a keyword record. Open this alias to see a description of this "
"keyword and a list of people who have this job skill."
}

};

resource 'detm' (kKeywordAspect+kDETAspectViewMenu, purgeable) {
kKeywordAspect+kDETAspectViewMenu,
{
kDETPrName, "by Name";
kDETPrKind, "by Kind";
}

};

// Lookup table
resource 'dett' (kKeywordAspect+kDETAspectLookup, purgeable) {

{
{"ACFC Keyword Description"}, typeRString,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,
{'rstr', prDescription, 0};

{kMemberAttrTypeBody}, typePackedDSSpec,
notForInput, notForOutput, useInSublist, isAlias, isNotRecordRef,
{};

}
};

Listing 2. Main aspect template for keyword records (continued)

A CODE RESOURCE TO SYNCHRONIZE SUBLISTS
As illustrated earlier in Figure 3, the sublist in the new User record information page
lists the areas of expertise of the employee described by that record. Each area of
expertise is represented by an alias to a keyword record. The sublist in a keyword
record lists all the employees who have expertise in the area described by that
keyword record (as shown in Figure 4). To keep these two lists synchronized, both
the aspect template for the new information page we added to the user template and
the keyword record’s aspect template include a code resource. Each time someone
adds a User record to a keyword record’s sublist, the keyword record’s code resource
adds that keyword to the User record’s sublist; each time someone adds a keyword
record to a User record’s sublist, the User record’s code resource adds that user to the
keyword record’s sublist.

The code resources of the two templates are exactly the same because the structure of
the attributes in both the records is identical, as described in the lookup table entry of
the two aspect templates.

The following line adds the code resource to the aspect template:

include "UserInfoPageAspect.code" 'code'(1) as
'detc'(kEInfoPageAspect+kDETAspectCode, purgeable);

The CE calls code resources when certain events occur, such as a change in an
attribute or a drag and drop action. If the code resource doesn’t handle the event, it
must return a kDETDidNotHandle result code; if it successfully handles the event, it
returns noErr. The CE calls the code resource’s main routine, passing it a pointer to a
parameter block (see Listing 3). This call block indicates which event occurred and
contains additional parameters specific to the event.

DODROPQUERY
The CE calls your code routine with a drop-query command (that is, with the
kDETcmdDropQuery selector) when the user drops an object on the object that
your aspect template applies to. If you want your code resource to handle the drop
operation, return a value that’s in the developer property-value range (that is,
kDETFirstDevProperty through 249) in the commandID field of the call block.

d e v e l o p Issue 20 December 199418

Figure 4. Keyword record information page

In our example (shown in Listing 4), we accept a record when the user drops it on a
record that the template applies to by checking the commandID parameter provided
by the CE and accepting drops only when the commandID value is kDETAlias. For
other values, we inform the CE that we don’t manage these cases by returning the
constant kDETDidNotHandle. When we accept the drop operation, DoDropQuery
returns the value prChangeRec in response to the drop-query command. When it
receives a property number in response to the drop-query command, the CE calls the
code resource again, this time with a property command (that is, with the selector
kDETcmdPropertyCommand).

The property command’s call block includes the property number specified in
response to the drop-query command. The property-command code can use this
property number as a routine selector. In our example, DoCommand checks to make
sure the property number is prChangeRec. If it is, DoCommand calls DoAddRecord
(more on this in a moment).

Most of the time, a resource doesn’t handle all the CE events; therefore, to avoid the
overhead resulting from frequent calls to the code resource, each template has a “call-
for” mask that indicates which events to invoke it for. You must return the call-for
mask when the CE calls the code resource with the kDETcmdInit selector. The
kDETcmdInit case of the switch statement in Listing 3 returns a call-for mask that
indicates that the code resource should be called only for property commands and
drop queries.

GETTING THE MOST OUT OF AOCE CATALOG RECORDS 19

Listing 3. The code resource’s main routine

#define prChangeRec kDETFirstDevProperty

/* Entry point called by the CE */
pascal OSErr KeywordsIP (DETCallBlock* callBlockPtr)
{

OSErr err = noErr;

if (callBlockPtr->protoCall.target.selector == kDETSelf ||
callBlockPtr->protoCall.target.selector == kDETSublistItem)

switch (callBlockPtr->protoCall.reqFunction) {
case kDETcmdInit:

/* Call-for masks */
callBlockPtr->init.newCallFors = kDETCallForCommands +

kDETCallForDrops;
break;

case kDETcmdDropQuery:
err = DoDropQuery(callBlockPtr);
break;

case kDETcmdPropertyCommand:
err = DoCommand(callBlockPtr);
break;

default:
err = kDETDidNotHandle;
break;

}
else err = kDETDidNotHandle;
return err;

}

DOADDRECORD
When the CE calls DoCommand with the property number prChangeRec,
DoCommand calls DoAddRecord (Listing 5). DoAddRecord needs to add data to a
record, so it must first identify which record is the target of the drop. To do so, it calls
the CE’s kDETcmdGetDSSpec callback routine, passing it the kDETSelf target
selector. DoAddRecord then extracts the reference number of the personal catalog
and the record ID from the record’s DSSpec that was returned by the callback
routine. To find out how many objects were dropped (that is, for how many dropped
objects the drop-query routine returned the same property number), DoAddRecord
calls the CE’s kDETcmdGetCommandSelectionCount callback routine.

DoAddRecord calls the CE’s kDETcmdGetCommandItemN callback routine for
each object dropped. Dropped objects can be of different types, such as catalog items,
files, and letters. In our example, the only kind of objects we want to add to our
sublist are keyword records and User records, so DoAddRecord requests only
information of type kDETDSType to get a packed DSSpec for each dropped record.
If the targeted record is a User record, DoAddRecord checks to make sure the
dropped record is a keyword record. If the targeted record is a keyword record,

d e v e l o p Issue 20 December 199420

Listing 4. DoDropQuery and DoCommand

/* Called when an object is dropped onto a record. Just set up a
property number (prChangeRec) to be sent to the target aspect. */

OSErr DoDropQuery (DETCallBlock* callBlockPtr)
{

DETTargetSelector theDET;
/* What is the best guess of the CE regarding the dropped object? */
if (((DETDropQueryBlock*)callBlockPtr)->commandID == kDETAlias) {

/* Make an alias of the dropped object. */
((DETDropQueryBlock*)callBlockPtr)->copyToHFS = false;
((DETDropQueryBlock*)callBlockPtr)->commandID = prChangeRec;
return noErr;
}

else
return kDETDidNotHandle;

}

/* Called when the CE sends a property command. We check that it's
the property we expect. */

OSErr DoCommand (DETCallBlock* callBlockPtr)
{

OSErr err = noErr;

/* Check whether called for the prChangeRec command. */
switch (((DETPropertyCommandBlock*)callBlockPtr)->property) {

case prChangeRec:
err = DoAddRecord(callBlockPtr);
break;

default:
err = kDETDidNotHandle;
break;

}
return err;

}

GETTING THE MOST OUT OF AOCE CATALOG RECORDS 21

Listing 5. DoAddRecord

/* When record A is dragged onto record B, this function updates record A to store
an alias to record B and updates record B to store an alias to record A. Updates
occur only if records are of the required type. */

OSErr DoAddRecord (DETCallBlock* callBlockPtr)
{

DETCallBackBlock cbb, cbb1, cbb2;
short PABrefNum;
RecordID targetRID, receivedRID;
LocalIdentity userLocalId;
PackedDSSpec *targetDSSpec, *droppedDSSpec;
DSSpec dsp, dsp1;
OSErr err;
long count, i;
Str255 targetAttrType, droppedAttrType;

#ifdef USER
Str255 theStr = "ACFC Keywords";
RString recType;
OCECToRString(theStr, smRoman, &recType, kRStringMaxBytes);

#endif

/* Find out target record DSSpec. */
cbb.getDSSpec.target.selector = kDETSelf;
cbb.getDSSpec.reqFunction = kDETcmdGetDSSpec;
err = CallBackDET(callBlockPtr, &cbb);
if (err != noErr)

return err;

HLock((Handle) cbb.getDSSpec.dsSpec);
targetDSSpec = *(cbb.getDSSpec.dsSpec);
/* Get record ID. */
PABrefNum = cbb.getDSSpec.refNum;
userLocalId = cbb.getDSSpec.identity;
OCEUnpackDSSpec(targetDSSpec, &dsp, &targetRID);

/* Find out how many records have been dropped. */
cbb1.getCommandSelectionCount.reqFunction = kDETcmdGetCommandSelectionCount;
err = CallBackDET(callBlockPtr, &cbb1);
if (err != noErr) {

DisposeHandle((Handle) cbb.getDSSpec.dsSpec);
return err;
}

count = cbb1.getCommandSelectionCount.count;
for (i = 1; i <= count; i++) {

/* Get the DSSpec of dropped record. */
cbb1.getCommandItemN.reqFunction = kDETcmdGetCommandItemN;
cbb1.getCommandItemN.itemNumber = i;
cbb1.getCommandItemN.itemType = kDETDSType;
err = CallBackDET(callBlockPtr, &cbb1);

(continued on next page)

DoAddRecord checks to make sure the dropped record is a User record. It uses the
AOCE utility routine OCEEqualRString to check the record type.

ADDRECORDASATTRIBUTE
If the dropped record is the right type, DoAddRecord calls AddRecordAsAttribute,
which is shown in Listing 6. AddRecordAsAttribute calls the Catalog Manager’s
DirAddAttributeValue routine to add the dropped object to the record. The
parameter block for DirAddAttributeValue includes parameters that identify the
catalog containing the record to be modified, the record itself, and the attribute to be
added. The attribute specification includes the attribute type, the attribute value tag,
and the attribute value.

To maintain the synchronization between the User record and the keyword record,
you also need to update the dropped record, adding the target record as an attribute

d e v e l o p Issue 20 December 199422

if (err == noErr) {
HLock((Handle) cbb1.getCommandItemN.item.ds.dsSpec);
droppedDSSpec = *(cbb1.getCommandItemN.item.ds.dsSpec);
OCEUnpackDSSpec(droppedDSSpec, &dsp1, &receivedRID);
/* Check type of record. */

#ifdef USER
if (OCEEqualRString(receivedRID.local.recordType, &recType, kOCERecordType)) {

strcpy(targetAttrType, kMemberAttrTypeBody);
strcpy(droppedAttrType, "ACFC Alias keyword");

#else
if (OCEEqualRString(receivedRID.local.recordType, OCEGetIndRecordType(kUserRecTypeNum),

kOCERecordType)) {
strcpy(targetAttrType, "ACFC Alias keyword");
strcpy(droppedAttrType, kMemberAttrTypeBody);

#endif
/* Update target record to set up dropped record as an attribute of this record. */
AddRecordAsAttribute(userLocalId, droppedDSSpec, &targetRID, PABrefNum, droppedAttrType);
/* Update dropped record to set up target record as an attribute of the dropped record. */
AddRecordAsAttribute(userLocalId, targetDSSpec, &receivedRID, PABrefNum, targetAttrType);
}

HUnlock((Handle) cbb1.getCommandItemN.item.ds.dsSpec);
DisposeHandle((Handle) cbb1.getCommandItemN.item.ds.dsSpec);
}

else
break;

}

if (err == noErr) {
/* Ask for immediate update. */
cbb2.requestSync.target = ((DETPropertyCommandBlock*)callBlockPtr)->target;
cbb2.requestSync.reqFunction = kDETcmdRequestSync;
err = CallBackDET(callBlockPtr, &cbb2);
}

DisposeHandle((Handle) cbb.getDSSpec.dsSpec);
return err;

}

Listing 5. DoAddRecord (continued)

of the dropped one. You can use the same routine — AddRecordAsAttribute —
because the structure of the attributes in the two records is the same — the record to
be updated is now the dropped record and the attribute value is the DSSpec of the
target record.

SUMMARY
To summarize what happens when a drag and drop action occurs:

1. The user drops a bunch of icons on a closed record or an
information page. If the drop is on an information page, that page
is the only possible destination; if it’s a closed record, all the
information pages are potential destinations.

2. For each icon/possible-destination-aspect pair, the CE looks at the
template resources and calls the code resource (if there is one).

3. Based on the information returned by the code resources and any
drag and drop resources present, the CE decides what operation is
desired for each pair.

4. Based on the drop-operation order number, the CE picks one
destination and one operation for each icon.

5. For each group of icons with the same destination and operation,
the CE performs that operation at that destination. If the
operation is copy, move, or make alias, the CE handles it. If the
operation is a property command (as in this article), the CE calls
the code resource to perform the operation.

GETTING THE MOST OUT OF AOCE CATALOG RECORDS 23

Listing 6. AddRecordAsAttribute

/* This routine adds an attribute as a DSSpec to a record. */
void AddRecordAsAttribute(LocalIdentity userLocalId, PackedDSSpec* theDSSpec,

RecordIDPtr updatedRecord, short refNum, Ptr attrType)
{

OSErr err;
Attribute theAttribute;
DirParamBlock dspb;
AttributeType kwRType;

/* Prepare the attribute; set up its type and the data within the attribute. */
OCECToRString(attrType, smRoman, (RString *) &kwRType, kAttributeTypeMaxBytes);
theAttribute.attributeType = kwRType;
theAttribute.value.tag = typePackedDSSpec;
theAttribute.value.dataLength = theDSSpec->dataLength+sizeof(theDSSpec->dataLength);
theAttribute.value.bytes = (Ptr) theDSSpec;

/* Prepare the parameter block used by the Catalog Manager to add an attribute. */
*(long *)&dspb.addAttributeValuePB.serverHint = nil;
dspb.addAttributeValuePB.dsRefNum = refNum; /* refNum of a personal catalog */
dspb.addAttributeValuePB.identity = userLocalId;
dspb.addAttributeValuePB.aRecord = updatedRecord; /* Record to be modified */
dspb.addAttributeValuePB.attr = &theAttribute; /* Attribute to be added */
dspb.addAttributeValuePB.clientData = 0;
err = DirAddAttributeValue(&dspb, false);

}

USING THE TEMPLATES
When you compile the templates, you get a PowerTalk extension that can be installed
in the Extensions folder of the System Folder. Users who install these templates can
display and edit new information about users in User records in their personal
catalogs. The system administrator or anyone who has sufficient access privileges can
use the new keyword records and the new User record information page to maintain
this information for everyone who has a PowerShare account.

The benefit in extending User records is that all the information regarding a person
is stored in the same place and therefore is very easy to retrieve. The work involved in
developing this customized solution is much less than that typically involved in
developing a database. What’s more, AOCE catalogs are part of system software —
why pay more for new database software and servers?

AND NOW LET’S DREAM
This article has shown a relatively easy way to extend the templates that come built
into PowerTalk. As you become more familiar with AOCE templates, you’ll
undoubtedly think of more complex things you can do with templates and template
code resources.

The next article, “Exploring Advanced AOCE Templates Through Celestial
Mechanics,” describes one imaginative use of templates. Another use might be to
define different kinds of templates for different people, giving them access to
different types of data in the same catalog.

Imagine a traditional library using a catalog to store references to books: A specialized
template could provide information on a book, including keywords related to the
topics in the book. A keyword template would let users browse the catalog and find
all the books available on a specific topic. And to dream a bit further, the catalog
could be a very large database on a distant system that you access by dialing up. It
would contain all the references in the world of existing books, and you could consult
it from your home, just by browsing the catalog through the Finder. The book
information page might even contain a button that could open the electronic version
of the book.

So go ahead and take advantage of AOCE catalogs. Apply what you’ve learned about
expanding records through AOCE templates and begin building the world of
connectivity and information sharing that you dream about.

d e v e l o p Issue 20 December 199424

Thanks to our technical reviewers David
Akhond, Paul Black, Harry Chesley, and Steve
Falkenburg. Special thanks to Paul Black for

writing the background material on AOCE
catalogs and templates.•

PowerTalk provides AOCE catalogs to store and edit collections of
information. The Catalogs Extension to the Finder lets you use AOCE
templates to extend the types of information stored and the means of
editing it, which makes the catalogs open-ended rather than limited to
the information types provided by Apple with the PowerTalk software.
This article explores several advanced features of AOCE templates,
showing how new types of entries can be added that store information
about planets and calculate their current locations and orbits.

The AOCE Catalogs Extension (CE) — an extension to the Finder and one of the
PowerTalk components — was originally conceived as an open-ended means of
providing addresses for PowerTalk mail and messaging; however, it goes well beyond
that original goal. The CE allows third-party developers to extend the Finder in a
variety of ways, including providing new catalog entry types, new views on the
contents of entries, new means of editing those contents, runtime calculation of
information to be displayed, and new actions to perform in the case of drag and drop
and double-click operations. AOCE templates, which serve as the extension
mechanism, provide resources and code that define the format, appearance, and
functionality of catalog entries.

Because this article explores advanced features of the AOCE template mechanism, we
assume some familiarity with AOCE catalogs and a basic understanding of AOCE
templates and the terms used to describe them. The article “Getting the Most out of
AOCE Catalog Records” in this issue gives an overview of AOCE catalogs and
templates. For in-depth information, the definitive reference is Inside Macintosh:
AOCE Application Interfaces.

In this article, we demonstrate how the template mechanism can be extended to plot
the orbits of the planets. For those of you who aren’t interested in celestial mechanics
and could care less about the mathematics involved in calculating the position of a
celestial body, don’t worry — the article focuses on templates; you can skip the details
on celestial mechanics without limiting your understanding. But if you are interested,
see “Algorithms for Calculating Planetary Positions.”

HARRY R. CHESLEY

Exploring Advanced AOCE Templates Through
Celestial Mechanics

d e v e l o p Issue 20 December 199426

HARRY R. CHESLEY There are two mysteries
that have always — well — mystified Harry:
(1) Why do mirrors exchange left and right but
not top and bottom? (2) What is consciousness?
Harry recently worked out the answer to the first
question. You reverse the scene yourself by
turning around to look through the mirror rather

than directly at it. If you’d turned head-over-heels
instead of around, the scene would be top and
bottom exchanged but not right and left
exchanged. Given this resolution, Harry feels the
answer to the second question can’t be far
behind. Meanwhile, Harry works in Apple Online
Services, doing Newton programming.•

EXPLORING ADVANCED AOCE TEMPLATES THROUGH CELESTIAL MECHANICS 27

Here we discuss the parameters and algorithms used for
calculating the positions of the planets. Orbits are three
dimensional, but for our purpose — plotting the orbit from
an overhead perspective — we need only two dimensions.
Extending the templates to three dimensions is an
excellent exercise for the reader.

The parameters needed for calculating a planet’s orbit are
as follows:

Symbol Meaning

Tp Period (tropical years)
ε Longitude at epoch (degrees)

Longitude at the perihelion (degrees)
e Eccentricity of the orbit
a Semi-major axis of the orbit

These parameters are for the epoch 1990 January 0.0.
We use them to calculate a series of intermediate values,
leading up to calculating the x and y coordinates used to
plot the planet’s position for the specified date and time.
Table 1 below shows the actual values of the orbital
parameters for each of the planets.

To begin the calculations, we need to know how many
days (d) it has been since the start of the epoch. The
epoch actually starts on midnight between December 30
and 31, 1989. This may seem confusing, but it simplifies
some of the calculations. Thus, 6 A.M., January 5, 1990,
is six days and six hours since the start of the epoch, or
6.25 days.

Next, we need to find the true anomaly (v), which is the
angle the planet makes with the line between the sun and

the perihelion (the point nearest the sun in the planet’s
orbit). To find it, we first calculate the mean anomaly (m),
which would be the true anomaly if the planet’s orbit were
circular.

The heliocentric longitude (l) is

Now that we know the angle of the planet, all we need is
the distance given by the radius vector (r).

From here it’s simple trigonometry to get the x and y
coordinates:

You’ll see these calculations later in the code.

Warning: While the above calculations are perfectly
sufficient to tell you which window to look out of to see
Mars, they may lack something if your object is to actually
reach Mars. For this reason, readers with their own
spacecraft should not count on these formulas, or the
resulting templates, for purposes of celestial navigation.

ω−

ALGORITHMS FOR CALCULATING PLANETARY POSITIONS

Table 1. Orbital parameter values

Planet Tp ε e a

Mercury 0.240852 60.750646 77.299833 0.205633 0.387099
Venus 0.615211 88.455855 131.430236 0.006778 0.723332
Earth 1.00004 99.403308 102.768413 0.016713 1.00000
Mars 1.880932 240.739474 335.874939 0.093396 1.523688
Jupiter 11.863075 90.638185 14.170747 0.048482 5.202561
Saturn 29.471362 287.690033 92.861407 0.055581 9.554747
Uranus 84.039492 271.063148 172.884833 0.046321 19.21814
Neptune 164.79246 282.349556 48.009758 0.009003 30.109570
Pluto 246.77027 221.4127 224.133 0.24624 39.3414

ω−

v = m + ⎯⎯ e sin m degrees360
π

m = ⎯⎯⎯⎯⎯ ⎯× + ε − ω degrees360
365.242191

d
Tp

−

l = v + ω−

r = ⎯⎯⎯⎯⎯ a(1 − e)�
1 + e cos v

2

x = r cos l�
y = r sin l

We begin by developing a set of templates that plot the positions and orbits of the
planets at a specified time. A sublist on one of the record information pages lists the
planets and their positions. We also develop templates to display information pages
for each planet; these pages enable the user to enter the information needed to
calculate a planet’s orbit. The calculations and plotting are performed by code
resources in the templates. Using the techniques described in the article, you could
add other types of celestial bodies (such as comets, moons, and alien spacecraft) that
would be defined by a different set of parameters and have a different algorithm for
calculating position and orbit.

Although the templates are quite straightforward in general, the article focuses on the
code resources that implement three advanced features of the template mechanism:

• type conversion between text (RStrings) and custom, internal data
types — to display and edit floating-point numbers and date/time
information

• automatic calculation of property values when other selected
property values change — to update the planet’s position when the
time or orbital parameters change

• drawing in a custom view — to display the plotted object positions
and orbits

DEFINING THE TEMPLATES
The templates we create define a record type of “hrc Orbits” to hold the list of
planets we want to display. The record contains an attribute type “hrc Planet” with
one attribute value per planet and an attribute value tag of 'plnt'. There’s also a
single-valued attribute of type “hrc Orbits info,” which holds information pertinent
to the orbits record.

Using an attribute value tag allows for future expansion to new types of objects —
spacecraft, for instance. In the example, the aspect template for the attribute type
“hrc Planet” is used only for attribute values with the attribute value tag 'plnt'. To add
a new type of object, which may require different orbital parameters and a different
algorithm to calculate the orbits, you would use a different tag. For example, an
attribute value that describes a spacecraft might have an attribute value tag of 'crft'.

We need to define the following templates:

• information page templates for the orbits record (record type “hrc
Orbits”)

• information page templates for the attribute type “hrc Planets,”
which is the attribute type of the sublist entries

• an aspect template for the record type “hrc Orbits”

• an aspect template for the attribute type “hrc Planets”

These templates are included on this issue’s CD. There’s nothing remarkable about
most of them. This article discusses only those portions of the templates that are
more interesting and unusual.

ORBITS RECORD INFORMATION PAGE TEMPLATES
We use two information pages to display the information stored in an orbits record
(Figure 1). The List information page contains a sublist of planets (attribute type “hrc
Planet”), allowing the user to create new planets and drag existing ones into and out

d e v e l o p Issue 20 December 199428

of the list. Besides an icon, name, and kind, the sublist on the List page displays x and
y coordinates for each planet. This is the location at the time given in the field at the
top of the page. The user can edit the time to see past and future positions. The
Continuous Update checkbox, when checked, causes the Time field to be constantly
updated to the current time. The state of this checkbox is kept in the “hrc Orbits
info” attribute of the orbits record.

The Plot information page contains a plot of the position of each planet in the sublist
on the List information page. When the Show Orbits checkbox is checked, the plot
shows not only the position of each planet, but also the future track — the orbit — of
the planet. Orbital calculations take a lot of time, especially on slower systems, so the
user can choose whether or not to display this information.

Listing 1 shows resource definitions for the Plot information page template. Note
that kOrbitsCustomViewProperty is used for the property number for both the Show
Orbits checkbox and the custom view that plots the positions. Normally two views
don’t share the same property. Using the same one here causes an automatic redraw

EXPLORING ADVANCED AOCE TEMPLATES THROUGH CELESTIAL MECHANICS 29

Figure 1. Information pages for the orbits record

List Plot

Listing 1. Plot information page template

resource 'deti' (kOrbitsPlotPage, purgeable) {
2000, kDETNoSublistRect, noSelectFirstText,
{
kDETNoProperty, kDETNoProperty, kOrbitsPlotPage;
},
{}

};

resource 'rstr' (kOrbitsPlotPage+kDETTemplateName, purgeable) {
"hrc Orbits plot page"

};

(continued on next page)

of the custom view when the checkbox changes. This is simpler than using the code
resource to intercept the property-dirtied call resulting from the checkbox change
and using a dirty-property callback to cause the custom view to be redrawn.
(Whenever a property is changed, a kDETcmdPropertyDirtied call is made to the
code resource.) The bulk of the work for the custom view occurs in the code
resource, as described later in the section “Drawing in a Custom View.”

PLANET INFORMATION PAGE TEMPLATES
When the user double-clicks a planet in the sublist, a window opens with two more
information pages (Figure 2). The Orbit Calculation information page displays the
position of the planet at a user-specified time. The Orbit Parameters information
page displays, and lets the user enter, the values for the orbital parameters (shown
earlier in Table 1). These two pages could have been combined, but most users aren’t
interested in seeing the orbital parameter values once they’ve been entered. They just
clutter up the interesting information — the planet’s location at a given time.

ORBITS RECORD ASPECT TEMPLATE
We define one aspect template for the orbits record (record type “hrc Orbits”) — a
main aspect that also serves as the main view aspect for the orbits record information
pages. The aspect for the orbits record contains the properties listed in Table 2.

d e v e l o p Issue 20 December 199430

resource 'rstr' (kOrbitsPlotPage+kDETRecordType, purgeable) {
kOrbitsRecordType

};

resource 'rstr' (kOrbitsPlotPage+kDETInfoPageName, purgeable) {
"Plot"

};

resource 'rstr' (kOrbitsPlotPage+kDETInfoPageMainViewAspect,
purgeable) {
"hrc Orbits main aspect"

};

resource 'detv' (kOrbitsPlotPage, purgeable){
{
kDETSubpageIconRect, kDETNoFlags, kDETAspectMainBitmap,
Bitmap {kDETLargeIcon};

{12, kOrbitsPageWidth-120, 28, kOrbitsPageWidth-8},
kDETNoFlags, kOrbitsCustomViewProperty,
CheckBox {kPalatino, 12, kDETLeft, kDETBold,

"Show Orbits", kOrbitsCustomViewProperty};

{44, 8, kOrbitsPageHeight-8, kOrbitsPageWidth-8}, kDETNoFlags,
kDETNoProperty, Box {kDETUnused};

{47, 11, kOrbitsPageHeight-11, kOrbitsPageWidth-11}, kDETNoFlags,
kOrbitsCustomViewProperty, Custom {kDETUnused};

}
};

Listing 1. Plot information page template (continued)

The kOrbitsNowProperty property and the entries in the sublist are stored in the
record, as specified by the 'dett' lookup table resource (shown below). You’ll find the
full source code for the orbits record aspect template on this issue’s CD.

resource 'dett' (kOrbitsMainAspect+kDETAspectLookup, purgeable) {
{
{kOrbitsAttributeType}, typeBinary,

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,
{
'long', kOrbitsNowProperty, 0;
};

{kPlanetAttributeType}, 'plnt',
notForInput, notForOutput, useInSublist, isNotAlias, isNotRecordRef,
{};

}
};

ASPECT TEMPLATE FOR ATTRIBUTE TYPE “HRC PLANET”
The aspect template for attribute type “hrc Planet” is also a main aspect template.
The properties defined by this aspect are shown in Table 3.

The orbital parameters, as well as the name of the attribute value (for example,
“Mercury” or “Venus”), are stored in the attribute value, so they’re included in the
'dett' resource:

#define kExtendedPropertyType 2
#define kExtendedPropertyTypeSize 10
...

EXPLORING ADVANCED AOCE TEMPLATES THROUGH CELESTIAL MECHANICS 31

Figure 2. Information pages for a planet

Orbit Calculation Orbit Parameters

Table 2. Properties in the orbits record’s aspect

Property Meaning
kOrbitsTimeProperty The time to use when calculating positions, as entered by the

user in the Time field on the List information page

kOrbitsNowProperty The value of the Continuous Update checkbox

kOrbitsCustomViewProperty The property number associated with the custom view that
plots the planets’ positions and with the value of the Show
Orbits checkbox, both on the Plot information page

resource 'dett' (kPlanetMainAspect+kDETAspectLookup, purgeable) {
{
{kPlanetAttributeType}, 'plnt',

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,
{
'rstr', kDETAspectName, 0;
'btyp', kDETNoProperty, kExtendedPropertyType;
'blok', kTpProperty, kExtendedPropertyTypeSize;
'blok', kEpsilonProperty, kExtendedPropertyTypeSize;
'blok', kOmegaBarProperty, kExtendedPropertyTypeSize;
'blok', keProperty, kExtendedPropertyTypeSize;
'blok', kaProperty, kExtendedPropertyTypeSize;
};

}
};

Each of the properties in the 'dett' resource except kDETAspectName has a
template-defined custom property type of 2 (kExtendedPropertyType) and is 10
(kExtendedPropertyTypeSize) bytes in size. The actual format is that of the standard
SANE floating-point extended type. The 'btyp' element specifies that all subsequent
'blok' elements should produce properties of the type given (kExtendedPropertyType).
The 'blok' elements that follow specify a fixed-size block, kExtendedPropertyTypeSize
bytes in size. The next section describes how these property types get used.

As with the main aspect template for the orbits, the rest of this template is quite
simple and is included on the CD.

CUSTOM PROPERTY TYPE CONVERSION
The templates we’re defining use two property types that aren’t supported directly by
the CE: SANE floating-point extended, for orbital parameters and positions, and
date/time, for specifying the time for which the positions should be calculated. In
addition to using these property types for internal calculations, we want to display
them and let the user edit them. To do this, we display the items in text fields and
supply a code resource that translates between the internal representation of the
custom property types and text (RStrings). The code resource implements
convertToRString and convertFromRString when called by the CE. The part of the
Planet routine that figures out when to call the conversion functions is as follows:

#define kTimePropertyType 1
#define kTimePropertyTypeSize 8

d e v e l o p Issue 20 December 199432

Table 3. Properties in the “hrc Planet” attribute type’s aspect

Property Meaning
kTimeProperty The time, as entered by the user in the Time field
kXProperty The x coordinate at that time
kYProperty The y coordinate at that time

kTpProperty The Tp orbital parameter
kEpsilonProperty The ε orbital parameter
kOmegaBarProperty The orbital parameter
keProperty The e orbital parameter
kaProperty The a orbital parameter

ω−

pascal OSErr Planet(DETCallBlockPtr callBlockPtr)
{

if (callBlockPtr->protoCall.target.selector == kDETSelf)
switch (callBlockPtr->protoCall.reqFunction) {

...
case kDETcmdConvertToRString:

return convertToRString(callBlockPtr);
case kDETcmdConvertFromRString:

return convertFromRString(callBlockPtr);
...
}

return kDETDidNotHandle;
}

In each case, the conversion function in the code resource first gets the type of the
property being converted — either kTimePropertyType or kExtendedPropertyType
— and then performs the conversion appropriate to that property type. The code in
Listing 2 is for the convertToRString case; code for convertFromRString performs
the opposite conversion, taking an RString and turning it into a custom property
type.

EXPLORING ADVANCED AOCE TEMPLATES THROUGH CELESTIAL MECHANICS 33

Listing 2. Converting custom property types to a text string

OSErr convertToRString(DETCallBlockPtr callBlockPtr)
{

DETConvertToRStringBlock* ctrs;
DETGetPropertyTypeBlock gpt;

ctrs = &(callBlockPtr->convertToRString);

// Get the type of the property being converted.
gpt.reqFunction = kDETcmdGetPropertyType;
gpt.target = ctrs->target;
gpt.property = ctrs->property;
if (CallBackDET(callBlockPtr, (DETCallBackBlock*) &gpt) == noErr) {

char s[256];
RStringHandle h;

// Convert time property types.
if (gpt.propertyType == kTimePropertyType) {

LongDateTime ldt;
char tStr[256];

// Get the current value.
ldt = GetTimeProperty(callBlockPtr, ctrs->property);

// Convert it to a string.
iuldatestring(&ldt, shortDate, s, nil);
tStr[0] = ' '; tStr[1] = 0;
strcat(s, tStr);
iultimestring(&ldt, true, tStr, nil);
strcat(s, tStr);
}

(continued on next page)

Two utility functions retrieve properties of the new types — getTimeProperty and
getExtendedProperty. Listing 3 shows getExtendedProperty (getTimeProperty is
virtually identical).

The code shown in this section belongs to the aspect template for attribute type “hrc
Planet.” Similar code is used for the orbits record aspect template, but that template
never needs to convert extended types — they’re always converted by the “hrc
Planet” attribute type template — so only the code for converting times is included.

The CE makes all the decisions about when to perform the conversions. When it
needs to display a property in a text field, it calls the code resource to convert the
property to text. When the user finishes editing a property and closes the field (by
tabbing to the next field, pressing Enter, switching pages, or closing the window), the
CE calls the code resource to convert the property from text to the internal type.

The CE knows what type a property is because the template tells it. In the case of
properties stored in an attribute value, the 'dett' resource includes the type

d e v e l o p Issue 20 December 199434

// Convert floating-point extended property types.
else if (gpt.propertyType == kExtendedPropertyType) {

extended n;
decform df;
decimal d;

// Get the current value.
n = GetExtendedProperty(callBlockPtr, ctrs->property);

// Convert it to a string.
df.style = FLOATDECIMAL;
df.digits = 9;
num2dec(&df, n, &d);
dec2str(&df, &d, &s);
}

// If we don't know the type, don't convert it.
else return kDETDidNotHandle;

// Return the string as an RString handle.
h = (RStringHandle) NewHandle(strlen(s) + sizeof(ProtoRString));
if (h) {

HLock((Handle) h);
OCECToRString(s, smRoman, *h, strlen(s));
HUnlock((Handle) h);
ctrs->theValue = h;
return noErr;
}

else return MemError();
}

return kDETDidNotHandle;
}

Listing 2. Converting custom property types to a text string (continued)

information, as discussed earlier in the section on the aspect template for attribute
type “hrc Planet.”

In the case of temporary properties not stored in an attribute value, for which there is
no 'dett' entry, the code resource sets the type, generally while setting the property.
For example, in the aspect template for attribute type “hrc Planet” the code resource
initializes the Time field to the current time as a part of the instanceInit routine,
which is invoked when the code resource is called with the kDETcmdInstanceInit
routine selector (Listing 4).

CALCULATING POSITIONS AUTOMATICALLY
The aspect template for attribute type “hrc Planet” calculates the position of the
planet at a specified time. It takes the time from kTimeProperty and puts the
resulting position in kXProperty and kYProperty. This calculation, which is
performed whenever kTimeProperty changes, is used in three places: in the Orbit
Calculation information page of each “hrc Planet” attribute value; in the sublist on
the List information page of the orbits record; and in calculating where to draw the
planets on the Plot information page of the orbits record.

If you want to create another template that implements a different type of celestial
body — using a different attribute value tag — the same procedure would work, even
though you may use an entirely different algorithm to calculate kXProperty and
kYProperty from kTimeProperty. We’re using the template as an object-oriented
database: Each object (aspect) is of a specific class (aspect template), which specifies
how it should react to certain messages (setting the kTimeProperty property).
Portions of the object (properties) are persistent (stored in AOCE catalogs).

To calculate kXProperty and kYProperty from kTimeProperty, we supply code that
responds to a kDETcmdPropertyDirtied call, as shown in Listing 5. Note that the
code resource also recalculates kXProperty and kYProperty when any of the orbital
parameters changes. The functions degsin and degcos are versions of sin and cos that
take their parameters in degrees rather than radians. The constant kAU is the size of
one astronomical unit (149,600,000.0 meters).

EXPLORING ADVANCED AOCE TEMPLATES THROUGH CELESTIAL MECHANICS 35

Listing 3. getExtendedProperty

extended getExtendedProperty(DETCallBlockPtr callBlockPtr,
short property)

{
DETGetPropertyBinaryBlock gpb;
extended n;

gpb.reqFunction = kDETcmdGetPropertyBinary;
gpb.target = callBlockPtr->protoCall.target;
gpb.property = property;
if (CallBackDET(callBlockPtr, (DETCallBackBlock*) &gpb) != noErr)

return 0.0;
BlockMove(*gpb.propertyValue, (char*) &n, sizeof(n));
DisposeHandle(gpb.propertyValue);
return n;

}

d e v e l o p Issue 20 December 199436

Listing 4. Initializing the Time field in instanceInit

OSErr instanceInit(DETCallBlockPtr callBlockPtr)
{
DETSetPropertyTypeBlock spt;
DETSetPropertyBinaryBlock spb;
unsigned long l;
LongDateCvt ldt;

// Set the time property type.
spt.reqFunction = kDETcmdSetPropertyType;
spt.target = callBlockPtr->protoCall.target;
spt.property = kTimeProperty;
spt.newType = kTimePropertyType;
CallBackDET(callBlockPtr, (DETCallBackBlock*) &spt);

// Set the time property to the current time.
GetDateTime(&l);
ldt.hl.lHigh = 0; ldt.hl.lLow = l;
spb.reqFunction = kDETcmdSetPropertyBinary;
spb.target = callBlockPtr->protoCall.target;
spb.property = kTimeProperty;
spb.newValue = (Ptr) &ldt;
spb.newValueSize = sizeof(ldt);
if (CallBackDET(callBlockPtr, (DETCallBackBlock*) &spb) == noErr) {

// Dirty the time property.
DETDirtyPropertyBlock dp;

dp.reqFunction = kDETcmdDirtyProperty;
dp.target = callBlockPtr->protoCall.target;
dp.property = kTimeProperty;
CallBackDET(callBlockPtr, (DETCallBackBlock*) &dp);
}

}

Listing 5. Calculating kXProperty and kYProperty from kTimeProperty

// Returns days (including fractions) since 1990.
extended daysSince1990(LongDateTime t)
{

LongDateRec ldr;
LongDateTime t1990;
extended et, et1990;

et = t;
ldr.ld.era = 0; ldr.ld.year = 1989; ldr.ld.month = 12;
ldr.ld.day = 31; ldr.ld.hour = 0; ldr.ld.minute = 0;
ldr.ld.pm = 0;
LongDate2Secs(&ldr, &t1990);
et1990 = t1990;
return et/(24.0*60.0*60.0) - et1990/(24.0*60.0*60.0);

}

(continued on next page)

EXPLORING ADVANCED AOCE TEMPLATES THROUGH CELESTIAL MECHANICS 37

OSErr propertyDirtied(DETCallBlockPtr callBlockPtr)
{

DETPropertyDirtiedBlock* pd;

pd = (DETPropertyDirtiedBlock*) &callBlockPtr->propertyDirtied;
switch (pd->property) {

// Recalculate only on selected properties.
case kTimeProperty:
case kTpProperty:
case kEpsilonProperty:
case kOmegaBarProperty:
case keProperty:
case kaProperty:

{
DETSetPropertyTypeBlock spt;
DETSetPropertyBinaryBlock spb;
extended d, tp, epsilon, omegaBar, e, a;
extended n, m, l, v, r, x, y;

// Get the orbital parameters.
d = daysSince1990(GetTimeProperty(callBlockPtr,

kTimeProperty));
tp = GetExtendedProperty(callBlockPtr, kTpProperty);
epsilon = GetExtendedProperty(callBlockPtr, kEpsilonProperty);
omegaBar = GetExtendedProperty(callBlockPtr,

kOmegaBarProperty);
e = GetExtendedProperty(callBlockPtr, keProperty);
a = GetExtendedProperty(callBlockPtr, kaProperty);

// If the parameters are zero, return zero.
if (tp == 0.0) {

x = 0.0; y = 0.0;
}

// Otherwise, calculate the current position.
else {

n = fmod((360.0/365.242191)*(d/tp), 360.0);
m = n+epsilon-omegaBar;
l = fmod(n+(360.0/pi())*e*degsin(m)+epsilon, 360.0);
v = l-omegaBar;
r = kAU*(a*(1.0-e*e))/(1.0+e*degcos(v));
x = degcos(l)*r;
y = degsin(l)*r;
}

// Prepare to set the type and value of the x and y properties.
spt.reqFunction = kDETcmdSetPropertyType;
spt.target = pd->target;
spb.reqFunction = kDETcmdSetPropertyBinary;
spb.target = pd->target;

Listing 5. Calculating kXProperty and kYProperty from kTimeProperty (continued)

(continued on next page)

The calculation in Listing 5 happens automatically when the user changes the Time
field on the Orbit Calculation information page, or any of the orbital parameters on
the Orbit Parameters page. But on the orbits record List information page, we need
to do a little work to make each entry in the sublist change when the user changes the
Time field on that page. The updateOrbitEntries routine sets the time for each item
in the sublist by calling setSublistTimeProperty (Listing 6). The updateOrbitEntries
routine iterates through the sublist until it gets an error return, which happens when
it tries to reference an entry that doesn’t exist — the one just past the end of the list.

d e v e l o p Issue 20 December 199438

// Set x's type.
spt.property = kXProperty;
spt.newType = kExtendedPropertyType;
if (CallBackDET(callBlockPtr, (DETCallBackBlock*) &spt)

== noErr) {
// Set x's value.
spb.property = kXProperty;
spb.newValue = (Ptr) &x;
spb.newValueSize = sizeof(x);
CallBackDET(callBlockPtr, (DETCallBackBlock*) &spb);
}

// Set y's type.
spt.property = kYProperty;
spt.newType = kExtendedPropertyType;
if (CallBackDET(callBlockPtr, (DETCallBackBlock*) &spt)

== noErr) {
// Set y's value.
spb.property = kYProperty;
spb.newValue = (Ptr) &y;
spb.newValueSize = sizeof(y);
CallBackDET(callBlockPtr, (DETCallBackBlock*) &spb);
}

return noErr:
}

}
return kDETDidNotHandle;

}

Listing 5. Calculating kXProperty and kYProperty from kTimeProperty (continued)

Listing 6. updateOrbitEntries and setSublistTimeProperty

OSErr updateOrbitEntries(DETCallBlockPtr callBlockPtr)
{

LongDateTime ldt;
long i;

// Get the time from the Time field.
ldt = getTimeProperty(callBlockPtr, kOrbitsTimeProperty);

(continued on next page)

DRAWING IN A CUSTOM VIEW
The CE calls the orbits record aspect template’s code resource with the routine
selector kDETcmdCustomViewDraw whenever the part of the Plot information page
that contains the custom view needs redrawing. This can happen because the user has
just flipped to that page, or because all or part of the page was uncovered — perhaps
because another window was moved out from in front of the orbits record window.

pascal OSErr Orbits(DETCallBlockPtr callBlockPtr)
{

if (callBlockPtr->protoCall.target.selector == kDETSelf)
switch (callBlockPtr->protoCall.reqFunction) {

...
case kDETcmdCustomViewDraw:

return customViewDraw(callBlockPtr);
}

return kDETDidNotHandle;
}

EXPLORING ADVANCED AOCE TEMPLATES THROUGH CELESTIAL MECHANICS 39

// Set the time in each sublist entry.
for (i = 1;; i++)

if (setSublistTimeProperty(callBlockPtr, kTimeProperty, i, ldt)
!= noErr)

break;
return noErr;

}

OSErr setSublistTimeProperty(DETCallBlockPtr callBlockPtr,
short property, long itemNumber, LongDateTime ldt)

{
DETSetPropertyBinaryBlock spb;
OSErr retVal;

spb.reqFunction = kDETcmdSetPropertyBinary;
spb.target.selector = kDETSublistItem;
spb.target.aspectName = nil;
spb.target.itemNumber = itemNumber;
spb.property = property;
spb.newValue = (Ptr) &ldt; spb.newValueSize = sizeof(ldt);
retVal = CallBackDET(callBlockPtr, (DETCallBackBlock*) &spb);
if (retVal == noErr) {

DETDirtyPropertyBlock dp;

dp.reqFunction = kDETcmdDirtyProperty;
dp.target.selector = kDETSublistItem;
dp.target.aspectName = nil;
dp.target.itemNumber = itemNumber;
dp.property = kOrbitsTimeProperty;
retVal = CallBackDET(callBlockPtr, (DETCallBackBlock*) &dp);
}

return retVal;
}

Listing 6. updateOrbitEntries and setSublistTimeProperty (continued)

Listing 7 shows the calculations we need to perform before we can draw the custom
view. First, we determine the view bounds. Given the bounds of the view, the
template can then calculate the center of the display, which is where it draws the sun.
Finally, the template determines a scaling factor such that the largest orbit will just fill
the display. (Actually, with the algorithm we use, it may overflow the display a bit if
the orbit is very elliptical.) After these preparations, the template can go through each
of the items in the sublist and plot their current positions, names, and (if the Show
Orbits checkbox is checked) orbits (Listing 8). Being able to call on the aspect
template for attribute type “hrc Planet” to do most of the work greatly simplifies this
process.

d e v e l o p Issue 20 December 199440

Listing 7. Preparing to draw the custom view

DETGetCustomViewBoundsBlock gcvb;
OSErr retVal:
short halfWidth, halfHeight, centerX, centerY;
LongDateTime ldt;
long i;
extended x, y, largestDistance, scaleFactor;

// 1. Determine the view bounds.
// If this isn't for our view, ignore it.
if (callBlockPtr->protoCall.property != kOrbitsCustomViewProperty)

return kDETDidNotHandle;

// Get the bounds of the view.
gcvb.reqFunction = kDETcmdGetCustomViewBounds;
gcvb.target = callBlockPtr->protoCall.target;
gcvb.property = callBlockPtr->protoCall.property;
retVal = CallBackDET(callBlockPtr, (DETCallBackBlock*) &gcvb);
if (retVal != noErr) return retVal;

// 2. Calculate the center of the display.
halfWidth = (gcvb.bounds.right - gcvb.bounds.left) / 2;
halfHeight = (gcvb.bounds.bottom - gcvb.bounds.top) / 2;
centerX = gcvb.bounds.left + halfWidth;
centerY = gcvb.bounds.top + halfHeight;

// Draw space.
PaintRect(&gcvb.bounds);

// Draw the sun.
ForeColor(whiteColor);
r.top = centerY - 4; r.bottom = centerY + 4;
r.left = centerX - 4; r.right = centerX + 4;
PaintOval(&r);

// 3. Determine the proper scaling factor.
// Get the time.
ldt = getTimeProperty(callBlockPtr, kOrbitsTimeProperty);

(continued on next page)

EXPLORING ADVANCED AOCE TEMPLATES THROUGH CELESTIAL MECHANICS 41

// Guess the maximum size.
largestDistance = 0.0;
for (i = 1;; i++) {

extended newDistance;

if (getSublistPosition(callBlockPtr, i, ldt, &x, &y) != noErr)
break;

newDistance = sqrt(x*x + y*y);
if (newDistance > largestDistance)

largestDistance = newDistance;
}

scaleFactor = (halfHeight - 15) / largestDistance;

Listing 7. Preparing to draw the custom view (continued)

Listing 8. Drawing the custom view

DETGetPropertyRStringBlock gpr;
long showOrbits;
Rect r;

// Plot each planet.
showOrbits = getNumberProperty(callBlockPtr, kOrbitsCustomViewProperty);
TextFont(kDETApplicationFont);
TextSize(9);
gpr.reqFunction = kDETcmdGetPropertyRString;
gpr.target.selector = kDETSublistItem;
gpr.target.aspectName = nil;
gpr.property = kDETPrName;

for (i = 1;; i++) {
// Draw the body.
if (getSublistPosition(callBlockPtr, i, ldt, &x, &y) != noErr)

break;
r.top = centerY - ((short) rint(scaleFactor*y)) - 1;
r.bottom = r.top + 3;
r.left = centerX + ((short) rint(scaleFactor*x)) - 1;
r.right = r.left + 3;
PaintOval(&r);

// Draw the name.
gpr.target.itemNumber = i;
if ((CallBackDET(callBlockPtr, (DETCallBackBlock*) &gpr) == noErr) &&

((*gpr.propertyValue)->dataLength < 256)) {
HLock((Handle) gpr.propertyValue);
MoveTo(r.right + 1, r.top < centerY ? r.top - 1 : r.bottom + 10);
DrawString(((char*) &(*gpr.propertyValue)->dataLength) + 1);
DisposeHandle((Handle) gpr.propertyValue);
}

(continued on next page)

BEYOND PLUTO
AOCE templates are extraordinarily elastic. You can use them to do all of the
following:

• show information such as users, addresses, file servers, and planets
contained in local and remote catalogs

• easily display text and integer information and, with a little work,
display and let the user edit floating-point numbers, times, and
virtually any other data type

• display information as text, pictures, or any developer-defined
custom view

In this article, we developed a set of templates to hold information about planets, to
calculate the positions of the planets, and to plot the positions and orbits of those
planets. This issue’s CD contains records with entries for all nine known planets.
More entries can be added as more planets are discovered in our solar system — or in
some other solar system. The planets supplied are divided into two records: inner
planets and outer planets. If they’re all placed in one record, the scaling of the orbit
plots, forced by the size of the outer planet orbits, is such that the inner planets are
squished too close together — try it.

d e v e l o p Issue 20 December 199442

// Show the orbit (if requested).
if (showOrbits) {

LongDateTime ldtInc;
extended orbitInc;
short j;

if (getSublistExtendedProperty(callBlockPtr, i, kTpProperty,
&orbitInc) != noErr)

break;
// orbitInc is calculated such that 36 of them produce a complete
// one-year orbit.
orbitInc *= (10.0*24.0*60.0*60.0);
for (j = 36, ldtInc = ldt + orbitInc; j--; ldtInc += orbitInc) {

if (getSublistPosition(callBlockPtr, i, ldtInc, &x, &y)
!= noErr)

break;
r.left = centerX + ((short) rint(scaleFactor*x));
r.right = r.left + 1;
r.top = centerY - ((short) rint(scaleFactor*y));
r.bottom = r.top + 1;
PaintRect(&r);
}

}
}

// Return things to normal.
ForeColor(blackColor);
updateOrbitEntries(callBlockPtr);

Listing 8. Drawing the custom view (continued)

Some readers may wonder why we used AOCE templates for our planetary
explorations rather than HyperCard, a desk accessory, or a full Macintosh application.
Templates provide a lightweight solution, which doesn’t require the support of a large
application like HyperCard. Indeed, templates run within the Finder itself and
leverage off its existing user interface code. Desk accessories are also lightweight, but
we wanted permanent storage of the data, for which the AOCE catalog system is
perfect.

There’s plenty of room for extending these templates. Here are a few ideas:

• Add the z coordinate — see Practical Astronomy With Your
Calculator for the appropriate formulas.

• Add new types of celestial objects — moons and comets for
starters.

• Add spacecraft as a type. Allow the user to set the acceleration
vector of the ship.

• Add a page to the orbits record that plots the planet’s positions in
the sky from a given location on Earth.

• Add options to the existing Plot information page to allow the user
to choose one of the planets as the center of the plot, rather than
the sun.

• Add a pop-up menu to one of the two information pages for the
planet attribute values that selects the color to use when plotting
that planet.

We hope you’re inspired by this article to write templates for many other uses besides
celestial ones. As you can see, AOCE templates provide capabilities well beyond
supplying electronic mail addresses or browsing network devices.

EXPLORING ADVANCED AOCE TEMPLATES THROUGH CELESTIAL MECHANICS 43

RECOMMENDED READING
• Practical Astronomy With Your Calculator, by Peter Duffett-Smith (Cambridge

University Press, 1988). All the algorithms for the celestial mechanics used in the
templates come from this excellent book.

• Inside Macintosh: AOCE Application Interfaces (Addison-Wesley, 1994).

Thanks to our technical reviewers Paul Black,
Dave Evans, and Bruce Gaya.•

Text media tracks were introduced with QuickTime
version 1.5 and have been further improved in
QuickTime 2.0 with the addition of calls for more
powerful searching and a new facility called burnt text.
The big news is that text tracks are now supported in
QuickTime for Windows version 2.0, which makes text
tracks a cross-platform solution. If you’re developing
content-based products that need to be cross-platform,
you’ll want to take a look at text tracks.

Text tracks give you the ability to embed text in a
QuickTime movie, which is particularly useful if you’re
aiming your product at international markets or at
people with hearing impairments (you can subtitle your
movie) or if you want to enable your users to perform
searches (by including the script of a play or movie in a
text track, for instance, you can make it easy for users
to find a particular scene by searching for a key piece of
dialog). The possibilities for adding value to your
QuickTime application and content with text tracks are
limited only by your imagination.

This column shows you how to add text track support
to your QuickTime application, including support for
searching and editing. The sample program
QTTextSample on this issue’s CD demonstrates what’s
involved. This small application plays a movie
controller–based movie in a window and offers users
the ability to search for a particular sequence of
characters, or edit the text, in the text track.

Text tracks are handled by the text media handler,
which is documented in the “Movie Toolbox” chapter
of Inside Macintosh: QuickTime. The text media handler’s
functionality includes the following:

• Searching for text, using FindNextText. With
QuickTime 2.0, a new routine for text searching,
MovieSearchText, can be used. This call is also
available with QuickTime 2.0 for Windows.

• Adding plain or styled text, using AddTextSample or
AddTESample. Both of these calls allow you to
define additional text properties, such as scrolling
and highlighting.

Searching is something that all applications that
support text tracks will want to offer the user, while
editing text is likely to be something that only a few
specialized applications will want to provide. Editing of
text can be accomplished with Movie Toolbox routines,
as discussed later in this column.

FIRST THINGS FIRST
Your QuickTime application needs to do a few basic
things at the outset, as QTTextSample demonstrates.
These include checking for the QuickTime version
number, growing your heap as large as possible, and
checking return codes.

QuickTime version number. A Macintosh
application that supports text tracks requires
QuickTime version 1.5 or later; a Windows application
that supports text tracks requires QuickTime 2.0 for
Windows. On Macintosh platforms you can use the
Gestalt selector gestaltQuickTime to check that the
version number returned in the high-order word is
greater than or equal to the required version (0x0150
for QuickTime 1.5; 0x0200 for QuickTime 2.0).

Our sample program bails out if the system isn’t
running QuickTime version 1.5 or later. If your
application uses calls provided by later releases of
QuickTime but you also want it to run on earlier
versions, you should check for the version number and
selectively enable your application’s functionality
accordingly.

Heap size. As discussed in the Somewhere in
QuickTime column in develop Issue 13 (“Top 10
QuickTime Tips” by John Wang), you need to ensure
that you grow your heap as large as possible in your
initialization code by calling the MaxApplZone routine.
QuickTime needs to use a lot of handle-based data
structures, so you also need to ensure that there are
enough master pointers allocated in the base of your

SOMEWHERE IN
QUICKTIME

Supporting Text
Tracks in Your
Application

NICK THOMPSON

d e v e l o p Issue 20 December 199444

NICK THOMPSON (AppleLink NICKT) found his first job in a
surfboard factory, gluing wetsuits together. Then he scammed a job
finishing custom surfboards. Somewhere along the way he learned
how to program, and he’s been riding that wave ever since. Last
summer he snagged a job at Apple in Developer Technical Support

and moved from London to California. Now he dresses up in a
neoprene seal suit on weekends and goes shark fishing in the cold
Pacific, armed only with a surfboard. (The glue from his first job
must have affected his brain.)•

heap. To do that, you should call MoreMasters a
number of times (you can tell how many times by
examining your heap while the application is running).
If you don’t do this, your heap may become fragmented,
which in turn may cause certain QuickTime routines to
fail due to lack of memory. This is a general Macintosh
programming issue that you should be aware of for all
applications.

Return codes. Finally, always check those return
codes, and handle errors as required. Most QuickTime
routines return a status code of type OSErr; if this isn’t
equal to noErr, you have problems. QuickTime is
always trying to tell you something — listen and your
life will be more complete!

THE USER INTERFACE
The user interface for the sample application is pretty
basic. Figure 1 shows the application window. As you
can see, the text for the movie is repeated below the
movie so that it can be edited. Buttons offer the user
the options of finding specific text or updating the text
with editing changes. (The Update Text button is
dimmed unless the text in the text box has been
modified.)

Because the user can potentially edit two items — the
movie’s text track or the movie itself — the application
needs to keep track of what the user selected last (either
text or the movie) and highlight it in some way. As
shown in Figure 1, when the text track is selected in
our sample application, the text below the movie has a
black box around it; when the movie is selected, the
movie frame has a black box around it. When the

window is inactive (for example, when you switch
applications), the box surrounding the active item is
rendered in gray.

TRICKS FOR EASY ACCESS
In the sample code, the movie controller is stored in a
record referenced by a handle stored in the window’s
refCon, along with a few other bits and pieces related
to the movie and the text for a window. This gives us
easy access to both the movie controller and its
associated movie:

aDocHdl = (DocHandle)GetWRefCon(theMovieWindow);
aController = (**aDocHdl).myController;
aMovie = MCGetMovie(aController);

When we need to locate the first track of a particular
type (in our case a text track) in a movie, we can use the
following handy utility routine:

Track GetFirstTrackOfType (Movie aMovie,
OSType trackType)

{
Track theTrack = nil;
OSType mediaType;
short trackCount, index;

trackCount = GetMovieTrackCount(aMovie);
for (index=1; index <= trackCount; index++) {

Track t = GetMovieIndTrack(aMovie, index);
GetMediaHandlerDescription(GetTrackMedia(t),

&mediaType, nil, nil);
if (mediaType == trackType) {

theTrack = t;
break;

}
}
return theTrack;

}

A new function, GetMovieIndTrackType, was
introduced with QuickTime 2.0 for both Macintosh
and Windows. GetMovieIndTrackType provides an
easy way to iterate through all tracks in a movie that are
either of a given media type or that support a particular
media characteristic. Documentation for this, and the
other new QuickTime calls, can be found in the
QuickTime 2.0 Developer’s Kit (which is available
from ADPA).

HANDLING TEXT TRACKS
By default, QuickTime displays the text for an enabled
text track. We want to be able to exercise more control
over the format and display of the text track and to edit
the text embedded in the movie. Thus, we need to

SOMEWHERE IN QUICKTIME: SUPPORTING TEXT TRACKS IN YOUR APPLICATION 45

Figure 1. The application window for QTTextSample

With text track selected With movie selected

extract the text from the track and stuff it into a
TextEdit record.

Our application needs to be able to access the text for
a particular frame as it’s displayed. We do this by
defining a text-handling procedure (or textProc for
short) with the following format:

pascal OSErr MyTextProc (Handle thisText,
Movie thisMovie, short *displayFlag,
long refCon)

The text is passed in the handle. To access the text, we
need to determine the length of the text and store it
somewhere.

// This yields the actual size of the text.
textSize = *(short*)(*thisText);
// This yields a pointer to the text.
textSamplePtr =

(char*)(*thisText + sizeof(short));

The style data for a text track is stored in one of two
places. Information about the default text style,
together with other items of interest (such as the
background color), is stored in a text description handle
(see page 2-291 of Inside Macintosh: QuickTime).
Additional information may be supplied at the end of
the handle passed to the textProc, in the form of 'styl'
atoms (see page 2-290 of Inside Macintosh: QuickTime).
Our sample code demonstrates how to access the style

information. To get the text description, you need to
call GetMediaSample in the textProc, as shown in
Listing 1. You need to parse the handle passed into
your textProc to see if additional information is
supplied; the sample code illustrates how to do this.

We can control whether QuickTime also displays the
text, by returning a value in the displayFlag parameter.
For example, if we want the default display, we set it in
the following way:

*displayFlag = txtProcDefaultDisplay;

Other flags are available either to suppress output or to
ensure that QuickTime always displays the text track,
regardless of the settings saved in the movie. Check
page 2-364 of Inside Macintosh: QuickTime for more
details.

In order for the textProc we’ve defined to get called,
we need to tell QuickTime about it. This is easily
accomplished with the SetMovieTextHandler routine
(shown in Listing 2), which uses the utility routine
described earlier to get the first text track.

SEARCHING FOR TEXT
One feature that should be provided in movies that
have embedded text is the ability to search for words.
Consider a scenario where you’re providing an
interactive learning experience. The video track of your

d e v e l o p Issue 20 December 199446

Listing 1. Getting the text description

theErr = GetMediaSample(aMedia, myData, nil, nil, mediaCurrentTime,
nil, sampleDescriptionH, nil, nil, nil, nil);

...
if (sampleDescriptionH) {

scrapHdl = (StScrpHandle)NewHandle(sizeof(StScrpRec));
if (scrapHdl == nil)

CheckError(MemError(), "\pCouldn't allocate memory for the style table");
(**scrapHdl).scrpNStyles = 1;
(**scrapHdl).scrpStyleTab[0] = (**((TextDescriptionHandle)sampleDescriptionH)).defaultStyle;

// Delete the previous contents of the TextEditHandle.
TESetSelect(0, (**myDocTEH).teLength, myDocTEH);
TEDelete(myDocTEH);

// Insert the new text.
TEStylInsert(textPtr, textSize, scrapHdl, myDocTEH);

DisposeHandle((Handle)scrapHdl);
}
else TESetText(textPtr, textSize, myDocTEH);

QuickTime movie contains a play, and the text track
contains its script. Students can search for a particular
scene just by searching for a few words. If the play were
Shakespeare’s Julius Caesar, for example, searching for
“Lend me your ears” would find Marc Antony’s speech
at Caesar’s funeral.

Searching for text in a movie is a straightforward
operation using QuickTime’s FindNextText routine
(which is described on page 2-298 of Inside Macintosh:
QuickTime). You can control the way this routine works
by passing in the following flags:

• findTextWrapAround — wraps the search around at
the end or start of the movie and continues
searching for the text

• findTextReverseSearch — searches backward

• findTextCaseSensitive — makes the search case
sensitive

Under QuickTime 1.5 or 1.6, however, you shouldn’t
use all three of these flags together in the same call; if
you do, a bug will cause a bus error. You can work
around this by manually implementing a wrapped
search. This was fixed in QuickTime 2.0.

The sample code illustrates the use of FindNextText in
the DoSearchForStringInMovieWindow routine. This

routine gets the movie controller and its associated
movie from the movie window. We pass in the text to
search for, the direction to search in, and whether to
wrap the search. The sample code shows one way of
doing this with a simple dialog.

The new routine MovieSearchText, which was added
to the Movie Toolbox in QuickTime 2.0 and in
QuickTime 2.0 for Windows, also aids in searching for
text in a movie. It can search any track that supports
the text characteristic. (For a track to support the text
characteristic, it must implement the FindNextText and
HiliteTextSample calls as defined in the Movies.h file.)
MovieSearchText is defined like this:

pascal OSErr MovieSearchText(Movie theMovie,
Ptr text, long size, long searchFlags,
Track *searchTrack, TimeValue *searchTime,
long *searchOffset);

In this definition, theMovie is the movie to search, text
is a pointer to a block of text that contains the search
string, and size is the length of the search string in
bytes. The other parameters are as follows:

• searchFlags is a combination of findText flags as
defined for media handlers that support text and
searchText flags that manage the higher-level
searching operation.

SOMEWHERE IN QUICKTIME: SUPPORTING TEXT TRACKS IN YOUR APPLICATION 47

Listing 2. The SetMovieTextHandler routine

OSErr SetMovieTextHandler (WindowPtr aWindow)
{

MediaHandler aMediaHandler;
MovieController aController;
Movie aMovie;
Track aTrack;
DocumentHandle aDocHdl;

aDocHdl = (DocumentHandle)GetWRefCon(aWindow);
aController = (**aDocHdl).myController;
if (aController != nil) {

aMovie = MCGetMovie(aController);

// If there's a text track in the movie, set the textProc.
if (aMovie != nil && (aTrack = GetFirstTrackOfType(aMovie, TextMediaType)) != nil) {

aMediaHandler = GetMediaHandler(GetTrackMedia(aTrack));
if (aMediaHandler != nil)

SetTextProc(aMediaHandler, NewTextMediaProc(MyTextProc), (long)aWindow);
}

}
return GetMoviesError();

}

• searchTrack is a pointer to the first track to search
(or the only track, if searchTextOneTrackOnly is set
in searchFlags). If the text is found, searchTrack will
be updated to point to the track in which the text
was found. If nil is passed in for searchTrack or if it
points to nil, the search will start from the first track
in the movie.

• searchTime is a pointer to the movie time at which
to start the current search. If the text is found,
searchTime will be updated to reflect the movie
time at which the text was found. If nil is passed in
for searchTime or if it points to -1, the current
movie time will be used.

• searchOffset is a pointer to the offset within the text
sample (as defined by searchTrack and searchTime)
in which to start the search. If the text is found,
searchOffset will be updated to reflect the offset
into the text sample where the text was found. If nil
is passed in for this parameter, an offset value of 0
will be used.

If MovieSearchText doesn’t succeed in finding the
search string because either there were no text tracks in

the movie or the text simply wasn’t found, an error
value is returned.

EDITING TEXT
While the text media handler provides routines to add
and delete text track segments, it doesn’t provide
routines to edit the text contained in a text track. Most
applications won’t need to edit text, but in case you’re
interested, this section looks at the Movie Toolbox
routines involved.

The DoUpdateText routine in the sample code shows
how the user can edit the text contained in a movie’s
text track. The steps involved in this process are listed
below, and the code to accomplish these steps is shown
in Listing 3. Note that error checking isn’t included in
this simplified version of the sample code; you’ll find
the complete code on this issue’s CD.

1. Determine which text track to edit.

2. Determine the segment of the track to be edited. To
do this we need to find the start time and duration of
the sample we want to edit.

d e v e l o p Issue 20 December 199448

Listing 3. The DoUpdateText routine, simplified version

// Step 1:

// Get the text track; remember to check that it's not nil.
aTrack = GetFirstTrackOfType(aMovie, TextMediaType);
...

// Step 2:

// Get the media time of the current sample.
mediaCurrentTime = TrackTimeToMediaTime(currentTime, aTrack);
...
// Get detailed information on start and duration of the current sample (this is used later).
MediaTimeToSampleNum(aMedia, mediaCurrentTime, &mediaSampleIndex, &mediaSampleStartTime,

&mediaSampleDuration);
...
// Look back and find where this text starts.
theErr = GetTrackNextInterestingTime(aTrack, nextTimeMediaSample | nextTimeEdgeOK, currentTime,

-kFix1, &interestingTime, nil);

currentTime = interestingTime;

// Determine the duration of this sample.
theErr = GetTrackNextInterestingTime(aTrack, nextTimeMediaSample | nextTimeEdgeOK, currentTime,

kFix1, &interestingTime, &theDuration);
...

(continued on next page)

3. Delete the existing text using the start time and
duration we’ve determined.

4. Add the text from the TextEdit handle into the
media, using the QuickTime routine AddTESample
(described on page 2-295 of Inside Macintosh:
QuickTime). Then call the InsertMediaIntoTrack
routine to insert the media we just created into the
track.

Like all movie editing operations, editing text will
cause the movie to become fragmented. You should
ensure that the final production version of your movie
is flattened; this will remove any fragmentation
introduced by editing.

NEW IN QUICKTIME 2.0: BURNT TEXT
QuickTime 1.6 introduced the capability for
applications to apply special effects to the text in text
tracks, notably antialiased text and drop shadows.
Antialiased text is generally easier to read and looks
more attractive than fonts rendered in the normal
manner. However, antialiasing text takes time, and the
performance penalty that’s incurred playing movies
with antialiased text tracks limits their usefulness.

QuickTime 2.0 allows applications to prerender text
tracks, with a new facility called burnt text. Burnt text
not only incurs less of a performance penalty than
antialiased text but also has the advantage that a font
doesn’t need to be installed on the target machine in
order to be rendered correctly. Applications that want
to take advantage of this facility need to write data to
the movie file in the form of a number of new atoms;
for information on these additional atoms, see the file
Text Imaging in QuickTime 2.0, accompanying this
column on the CD.

THAT’S ALL THERE IS TO IT
Adding text track support to QuickTime applications
really makes sense. With just a few lines of code, you
can add a great deal of functionality. Most applications
that use text tracks won’t need to support editing the
text, but it’s a good idea to support searching because it
provides an easy and powerful way of indexing into a
movie containing text tracks.

Take a look at the sample code on the CD. It will help
you get started with adding basic searching to your
applications and (if required) with more advanced text
track features, such as editing. Have fun!

SOMEWHERE IN QUICKTIME: SUPPORTING TEXT TRACKS IN YOUR APPLICATION 49

Listing 3. The DoUpdateText routine, simplified version (continued)

// Step 3:

// Tell the media that we're about to edit stuff.
theErr = BeginMediaEdits(aMedia);
...
// Delete whatever was there before.
theErr = DeleteTrackSegment(aTrack, interestingTime, theDuration);
...

// Step 4:

// Write out the new data to the media.
theErr = AddTESample(aMediaHandler, aTEH, (RGBColor *)&theTextColor, teFlushDefault, nil,

dfClipToTextBox, 0, 0, 0, nil, mediaSampleDuration, &sampleTime);
...
// Insert the new media into the track.
theErr = InsertMediaIntoTrack(aTrack, interestingTime, sampleTime, mediaSampleDuration, kFix1);
...
theErr = EndMediaEdits(aMedia);
...

Thanks to Ken Doyle, C. K. Haun, Peter Hoddie, Don Johnson,
and John Wang for reviewing this column.•

Sound Manager 3.0, Apple’s current audio software release, has an
extensible architecture based on sound components that makes it easy for
developers to add support for third-party audio hardware and any
compressed audio format. Inside Macintosh: Sound gives the theory of
how to do this; this article illustrates how to implement the theory, with
examples of a sound output component and a sound decompression
component.

Since its release as a system extension in June 1993, Sound Manager 3.0 has offered
developers the possibility of obtaining high-quality digital audio output from the
Macintosh using third-party audio hardware and any compressed audio format.
Sound Manager 3.0 is now built into all shipping Macintosh computers and is fully
integrated into System 7.5. QuickTime 2.0 also takes advantage of new Sound
Manager features to provide an even higher level of audio support for multimedia
applications. “Somewhere in QuickTime: What’s New With Sound Manager 3.0” in
develop Issue 16 gives a brief sketch of Sound Manager 3.0 and the new vistas it opens.

The Sound Manager architecture and the sound component programming interface
are described in detail in Inside Macintosh: Sound. What you won’t find there is an
illustration of how Sound Manager features are implemented in practice. This article
fills that gap by offering two examples of sound components. On this issue’s CD
you’ll find NoiseMaker, a sound output component, and MewLaw, a sound
decompression component. After briefly describing how Sound Manager 3.0 works,
I’ll explain how to make a sound output component and a sound decompression
component, with reference to these examples.

HOW SOUND MANAGER 3.0 WORKS
Sound Manager 3.0 uses an architecture based on sound components to process
audio samples for playback. A sound component is a software module that performs
a specific task, usually some kind of audio processing like decompression, rate
conversion, sample format conversion, or mixing. Sound components use the
Component Manager for registration, loading, and execution.

Figure 1 diagrams a typical sound playback scenario and the sound components that
are used. Basically, the sequence is as follows: When an application wants to produce

KIP OLSON

Make Your Own Sound Components

d e v e l o p Issue 20 December 199450

KIP OLSON received a watch for Christmas
last year that records vertical feet skied. To test
it out, he had to abandon his post working on
QuickTime at Apple while he went on a two-
month ski odyssey with his shredder-pal KON.

When they weren’t arguing about unfair scoring
on the Puzzle Page, they managed to rack up
537,460 vertical feet in 340 runs over 28 days, a
feat akin to skiing down Mt. Everest 18 times.•

a sound, it calls the Sound Manager to open a sound channel and play the sound. In
response the Sound Manager creates a chain of sound components for this channel,
where each component performs a specific operation on the audio data. The Sound
Manager passes the audio data to the first component in the chain, which can be a
decompression component if the data is compressed, a format conversion component
if the sample size needs to be changed, or a rate conversion component if the sample
rate needs to be adjusted. These components can be applied in series to completely
process the audio data into the required format. The mixer component then sums all
these audio streams together and provides a single audio source for the sound output
component, which uses hardware to convert it to an audible sound.

The sound output component (sometimes called the sound output device component
or the output device component) is a software module that identifies, controls, and
plays audio samples on some audio hardware device. This device can be a plug-in
audio board, a telecommunications pod, or just about anything else that can play
sound. Apple provides a sound output component for the built-in audio hardware on
every Macintosh except the Macintosh Plus, SE, and Classic machines.

All the sound output components installed on a Macintosh have icons displayed in
the Sound control panel that ships with Sound Manager 3.0. The user selects which
sound output component to play sounds with by clicking an icon. Figure 2 shows a
situation where two sound output components are available: the standard built-in
Macintosh sound output component and our example sound output component,
NoiseMaker.

When the Sound Manager wants to play a sound, it opens the selected sound output
component and sends it commands to start playing the sound. The component is
closed when sound playback is completed. The sound output component is
responsible for opening a mixer component, which handles the complicated work of
allocating chains of sound components and processing the audio data. Our example
sound output component, NoiseMaker, shows how this works.

Apple provides sound components for mixing, rate conversion, sample format
conversion, and decompression. In addition, sound components can be defined to
expand compressed audio from any other format into a format that can be used
by other components and played by the hardware. Our example decompression
component, MewLaw, illustrates this.

MAKE YOUR OWN SOUND COMPONENTS 51

Audio�
hardware

Sound�
Manager

Decompression�
component

Decompression�
component

Mixer�
component

Sound output�
componentApplication 1

Application 2

Rate�
conversion�
component

Rate�
conversion�
component

Format�
conversion �
component

Figure 1. A typical playback scenario

MAKING A SOUND OUTPUT COMPONENT
Now I’ll explain how to make your own sound output component, using NoiseMaker
as an example. NoiseMaker doesn’t actually control an audio hardware device but
rather plays sounds using normal Sound Manager routines. It can be installed on any
Macintosh running Sound Manager 3.0 and is meant to be used as a template to
manage your own audio hardware.

Here’s how NoiseMaker works: The NoiseMaker component is loaded at system
startup if the Register method called at that time indicates that the corresponding
hardware is available. When the Sound Manager plays a sound using NoiseMaker,
it first calls the Open method to open the component, followed by a call to the
InitOutputDevice method to have NoiseMaker do any hardware initializations and
open a mixer component. It then calls the PlaySourceBuffer method to start the
sound playing. When the sound has finished playing, the Sound Manager calls the
Close method to have NoiseMaker release the audio hardware and dispose of any
memory it created.

I’ll refer to NoiseMaker as I describe how to register a sound output component,
the structure of a sound output component, the dispatcher, and the methods and
interrupt routine that must be implemented.

REGISTRATION AND LOADING
In order for a sound component to be recognized by the Sound Manager, it must be
registered with the Component Manager. This is most easily done by creating a file
of type 'thng' containing a 'thng' resource that describes your sound component.
When you place this file in the Extensions folder, the Component Manager will
automatically load the sound component every time the Macintosh starts up. Listing
1 is a 'thng' resource describing our example sound output component.

For full details on the 'thng' resource, see the Component Manager
documentation in Inside Macintosh: More Macintosh Toolbox.•

The component type and subtype in the 'thng' resource identify the component so
that the Sound Manager can find it. The subtype must be unique for each hardware
device connected and must contain at least one uppercase character (Apple has dibs
on all-lowercase types); it’s usually advisable to use an application creator type that

d e v e l o p Issue 20 December 199452

Figure 2. The Sound control panel

has been registered with Apple’s Developer Support Center to avoid conflicts with
other companies. Similarly, the manufacturer name should identify your company
and must contain at least one uppercase character; in our example, Apple is the
manufacturer so we can get away with using all lowercase letters.

Setting the cmpWantsRegisterMessage bit in the component flags causes the
Component Manager to call the sound component with the Register method during
the startup process so that the component can determine whether its hardware is
available (more on this later). The code resource is the resource type and ID of the
code that implements your component. The component description is a string that
describes the function of the component to the user. The component name and
component icon are used in the Sound control panel, as shown in Figure 2.

The component version and the registration flags are used by the Component
Manager during loading to determine whether this component should replace an
existing one. If the componentDoAutoVersion bit is set in the registration flags, the
Component Manager will install this component only if the version given here is
greater than for any other existing component.

The icon family ID and platform fields aren’t used by our component.

THE COMPONENT’S STRUCTURE
Sound output components use the standard format required by the Component
Manager. The main entry point is a dispatcher, which uses a selector to call the
appropriate subroutines (methods). The standard Component Manager methods
must be supported, along with a number of additional methods defined for sound
output components. The sound output component also contains an interrupt routine
that functions as its heartbeat.

Sound output components can create globals that are passed to each method. In
addition, there can be one set of global variables that the Component Manager
maintains even when the sound output component is closed, which is useful for storing

MAKE YOUR OWN SOUND COMPONENTS 53

Listing 1. The 'thng' resource for NoiseMaker

#define cmpWantsRegisterMessage (1 << 31)
#define componentDoAutoVersion (1 << 0)
#define kNoiseMakerVersion 0x00010000
#define kNoiseMakerComponentID 128

resource 'thng' (kNoiseMakerComponentID, purgeable) {
'sdev', // sound output component type
'NOIS', // subtype of this component
'appl', // manufacturer
cmpWantsRegisterMessage, 0, // component flags
'proc', kNoiseMakerComponentID, // code resource
'STR ', kNoiseMakerComponentID, // component name
'STR ', kNoiseMakerComponentID+1, // component description
'ICON', kNoiseMakerComponentID, // component icon
kNoiseMakerVersion, // component version
componentDoAutoVersion, // registration flags
0, 0 // icon family ID, platform

};

state information. (More about this later when I describe the InitOutputDevice
method.)

THE DISPATCHER
The first routine in the component is the dispatcher, which uses a given selector to
call the appropriate method. Selectors used by the dispatcher have three ranges,
described in Table 1.

A number of methods are defined for sound components that don’t need to be
implemented by every type of sound component. For example, the method
SoundComponentAddSource is used only by mixer components and shouldn’t be
implemented by sound output components. When a component receives a selector
that it doesn’t support but that can be delegated, it should delegate that selector to its
source component and let that component take care of it.

Listing 2 is the dispatcher from our example sound output component. This dispatcher
calls an internal utility routine called GetComponentRoutine that returns the address
of the routine to call based on the selector. If the sound output component doesn’t
implement a method, it returns kDelegateComponentCall (-1) as the routine address,
which is a flag that this method should be delegated. If the routine returns nil, this is
a nondelegatable selector not supported by this component, and an error should be
returned. Otherwise, this is a valid method address and the method should be called.

STANDARD COMPONENT MANAGER METHODS
The Component Manager requires that every sound component implement five
standard methods, as listed in Table 2. I’ll describe each of these methods here; look
at the NoiseMaker code to see them in practice.

The Open method is the first method called when a component is opened. This
method must create the component globals and store them with the Component
Manager, which will then pass these globals to all subsequent methods. While this
sounds fairly simple to implement, there are a number of nuances that frequently
escape the attention of component writers and wreak havoc; read “Pitfalls of the
Open Method” and be forewarned!

The CanDo method is used to determine whether a selector is implemented by this
component. In our example code, the CanDo method calls the internal utility routine
GetComponentRoutine to determine whether a selector is implemented.

d e v e l o p Issue 20 December 199454

Table 1. The ranges of selectors used by the dispatcher

Selector Range Description
–5 to –1 These are standard Component Manager selectors that all sound

components must support. The selectors –6 and –7 are optional and
can be supported if you wish. Refer to the Component Manager
documentation for more information.

0 to 255 These selectors can’t be delegated. If the component receives one of
these but doesn’t implement it, the component should return the
badComponentSelector error.

256 to infinity These selectors should be delegated. If the component receives one
of these but doesn’t implement it, the component should use
DelegateComponentCall to pass this selector on up the sound
component chain.

The Version method returns the version of the component, specified as a fixed-point
number. If you’re using the auto-version feature of the 'thng' resource, this version
must agree with the one specified there.

If the cmpWantsRegisterMessage bit is set in the component flags of the 'thng'
resource, the Register method is called by the Component Manager at startup time
so that you can see if your hardware is installed and determine whether your
component should be loaded. Typically, the Register method should just try to find
your hardware. If it’s successful, it should return 0; if not, it should return 1, in which
case the component won’t be registered and won’t show up in the Sound control
panel. Note that the Open method is always called before the Register method.

The Close method is called to release all memory allocated and all hardware set up by
the component. If the Open method fails for some reason and returns an error, the

MAKE YOUR OWN SOUND COMPONENTS 55

Listing 2. The dispatcher from NoiseMaker

#define kDelegateComponentCall -1

pascal ComponentResult NoiseMaker(ComponentParameters *params,
GlobalsPtr globals)

{
ComponentRoutine theRtn;
ComponentResult result;

// Get address of component routine.
theRtn = GetComponentRoutine(params->what);

if (theRtn == nil)
// Selector isn't implemented.
result = badComponentSelector;

else if (theRtn == kDelegateComponentCall)
// Selector should be delegated.
result = DelegateComponentCall(params, globals->sourceComponent);

else
// Call appropriate method.
result = CallComponentFunctionWithStorage((Handle) globals,

params, (ComponentFunctionUPP) theRtn);
return (result);

}

Table 2. The standard Component Manager methods

Method Selector Result
Open kComponentOpenSelect Opens the component

CanDo kComponentCanDoSelect Determines if a given selector is implemented by
the component

Version kComponentVersionSelect Returns the version of the component

Register kComponentRegisterSelect Determines if hardware is installed

Close kComponentCloseSelect Closes the component

Component Manager calls the Close method. This means the Close method must
always check to see if there are valid globals before using or disposing of them. The
Close method also must not access the hardware unless the InitOutputDevice
method has been called, for the same reasons described in “Pitfalls of the Open
Method.”

OUTPUT COMPONENT METHODS
In addition to the standard Component Manager methods just described, the sound
output component must support the methods listed in Table 3. Again, I’ll describe
these methods here and leave it up to you to take a look at how they’re implemented
in the NoiseMaker code.

The InitOutputDevice method is called by the Sound Manager after it opens the
component to set up the hardware. This method should initialize the output
hardware to a known state and then set the hardware to the default settings stored in

d e v e l o p Issue 20 December 199456

Implementing the Open method can be straightforward
if you watch out for some common pitfalls. Most
important, do not access or even look for your hardware
in the Open method! There is a separate method
(InitOutputDevice) for initializing hardware. The Open
method should only allocate instance globals and return.
There are two reasons for this:

• If you access hardware in the Open method that isn’t
available, you might crash or make bad assumptions.
The possibility that you might try to access hardware
that isn’t available is a real one because the
Component Manager calls the Open method before it
calls the method that checks to see whether your
hardware is installed (the Register method).

• Sometimes the component is opened when sound is
already playing, to get status information like sample
rates and sizes. For instance, the Sound control panel
does this to display hardware settings to the user.
Resetting or changing hardware in any way during
this kind of Open component operation would
obviously be disruptive to the sound.

Another tricky interaction with the Component Manager
comes into play when you’re trying to decide where to
create the component globals. Because the sound output
component is shared by all applications that are playing
sound, the Component Manager will attempt to load
the component in the system heap. In this case, your
component should create its globals in the system heap as
well, so you aren’t dependent on any application heaps.

However, if the Component Manager can’t find enough
space in the system heap to load the component, it will
load it in the application heap. In this case, you’ll want to
create your globals in the application heap as well.

The Component Manager gives you a way to determine
where you should create your globals. The call
GetComponentInstanceA5 returns the A5 world for the
component. If it returns 0, the component was loaded in
the system heap and the globals should go there as well;
otherwise, the component is in the application heap and
the globals should also be created there. The NoiseMaker
code shows how this works.

PITFALLS OF THE OPEN METHOD

Table 3. Additional methods the output component must support

Method Selector Result
InitOutputDevice kSoundComponentInitOutputDeviceSelect Sets up the hardware and

opens a mixer

GetInfo kSoundComponentGetInfoSelect Returns hardware information

SetInfo kSoundComponentSetInfoSelect Changes hardware settings

PlaySourceBuffer kSoundComponentPlaySourceBufferSelect Begins sound

StartSource kSoundComponentStartSourceSelect Begins sound after pause

the component’s permanent globals. “Managing Sound Component Preferences”
describes an easy way to manage permanent globals.

The InitOutputDevice method must also open a sound mixer component that will be
its source for all further sound operations. The mixer does all the hard work of
maintaining separate chains of sound components and calling back to the Sound
Manager to get more data, while mixing down all the sounds into the single stream of
audio data required by your sound output component. Your component simply has to
specify the type of sound it needs in the SoundComponentData structure, and the
mixer will take care of the rest.

Listing 3 shows how NoiseMaker opens a mixer that will produce a 16-bit, stereo,
44.1 kHz sample stream. For 8-bit data, the format field must be kOffsetBinary, while
for 16-bit data, the format must be kTwosComplement. The sampleRate field

MAKE YOUR OWN SOUND COMPONENTS 57

Sound Manager 3.0 provides an easy way to save
and recall preferences for your sound component. It
maintains a file called Sound Preferences in the Preferences
folder and provides two routines to manage this file:
SetSoundPreference and GetSoundPreference.

pascal OSErr SetSoundPreference(OSType type,
Str255 name, Handle settings);

The SetSoundPreference routine saves a handle of data in
the Sound Preferences file tagged with the OSType and

name you provide. Typically, the name and type will be
the same as your sound component’s.

pascal OSErr GetSoundPreference(OSType type,
Str255 name, Handle settings);

The GetSoundPreference routine retrieves a handle from
the Sound Preferences file based on the OSType and
name provided. Typically, the name and type will be the
same as your sound component’s, and you’ll store the
handle in the refCon of your component, as shown below.

MANAGING SOUND COMPONENT PREFERENCES

OSErr GetPreferences(ComponentInstance self, Handle prefsHandle)
{

Handle componentName;
ComponentDescription componentDesc;
OSErr err;

componentName = NewHandle(0); // Space for name
if (componentName == nil)

return (MemError());

// Get name and subtype of sound component.
err = GetComponentInfo(self, &componentDesc, componentName, nil, nil);
if (err != noErr)

return (err);

// Get preferences for this component from file.
HLock(componentName);
err = GetSoundPreference(componentDesc.componentSubType, *componentName, prefsHandle);
DisposeHandle(componentName);

// Keep preferences in component's refCon.
if (err == noErr)

SetComponentRefcon(self, (long) prefsHandle);
return (err);

}

contains an unsigned fixed-point sampling rate in samples per second. The
sampleSize and numChannels fields specify sample size and the mono/stereo setting.
The sampleCount field specifies the size of the mixer’s output buffer in samples.
Every time it’s called, the mixer returns a buffer of this size that can then be copied
directly to the hardware buffers.

The GetInfo method returns information about the hardware settings. The
information returned is based on a four-character selector and is different for each

d e v e l o p Issue 20 December 199458

Listing 3. NoiseMaker’s InitOutputDevice method

pascal ComponentResult __InitOutputDevice(GlobalsPtr globals,
long actions)

{
#pragma unused (actions)

ComponentResult result;
PreferencesPtr prefsPtr;

// Open the mixer and tell it the type of data it should produce.
// The description includes sample format, sample rate, sample size,
// number of channels, and the size of your optimal interrupt buffer.
// If a mixer can't be found that will produce this type of data,
// an error is returned.

// Get settings from preferences.
prefsPtr = *globals->prefsHandle;

// Set to hardware defaults.
globals->hwSettings.flags = 0;
globals->hwSettings.format = (prefsPtr->sampleSize == 8) ?

kOffsetBinary : kTwosComplement;
globals->hwSettings.sampleRate = prefsPtr->sampleRate;
globals->hwSettings.sampleSize = prefsPtr->sampleSize;
globals->hwSettings.numChannels = prefsPtr->numChannels;
globals->hwSettings.sampleCount = kInterruptBufferSamples * 2;

// Open mixer that will produce this format.
result = OpenMixerSoundComponent(&globals->hwSettings, 0,

&globals->sourceComponent);
if (result != noErr)

return (result);

// Set the hardware to these settings.
result = SetupHardware(globals);
if (result == noErr) {

// Hardware is ready to go.
globals->hwInitialized = true;
// Lock prefs so that we can use them at interrupt time.
HLock((Handle) globals->prefsHandle);

}

return (result);
}

selector; see Inside Macintosh: Sound for the details. The SetInfo method changes
hardware settings. All sound output components must support the GetInfo and
SetInfo selectors listed in Table 4. All other selectors must be delegated to the mixer
component.

The PlaySourceBuffer method is used to begin playing a sound. This method has to
first delegate the call to the mixer to start it playing the sound and then make sure the
hardware is turned on before returning, by checking the kSourcePaused bit in the
actions parameter.

Similarly, the StartSource method is used to begin playing a sound that has previously
been paused. In this case, the mixer isn’t returning any data for this sound, and the
sound output component may have turned off the hardware if no other sounds were
playing. Like PlaySourceBuffer, this method has to first delegate the call to the mixer
to start it playing the sound again and then make sure the hardware is turned on
before returning.

THE INTERRUPT ROUTINE
The interrupt routine is the heartbeat of a sound output component. It’s called
whenever the audio hardware needs to play another buffer of audio data. It’s entirely
defined by the component, so it doesn’t have a selector or a programming interface.
Still, all interrupt routines share the same common features.

First, the interrupt routine should check to see whether any requests have been made
to change the hardware settings as a result of the SetInfo method. If so, the hardware
should be reset to the new settings. It’s important to do this at interrupt time so that
the mixer can be synchronized to the new settings without a glitch in the sound.

Second, the interrupt routine must make sure the mixer has provided a load of data.
It does this by checking the state of the SoundComponentData structure last
returned by the mixer and asking the mixer for more data if needed with the
GetSourceData method, described in the next section. Remember, the mixer always
returns a buffer of the same size, so it’s a simple matter to copy the data to the
hardware in fixed sizes. The only exception occurs at the end of the sound, when it
might not fill up an entire mixer buffer. In this case, you should copy only as much
data as the mixer returned.

Finally, if the mixer has no more data, all sounds have completed playing and the
interrupt routine can turn off the hardware.

MAKE YOUR OWN SOUND COMPONENTS 59

Table 4. GetInfo and SetInfo selectors

Selector GetInfo Result SetInfo Result
siSampleSize Gets current sample size Sets current sample size
siSampleSizeAvailable Gets available sample sizes
siSampleRate Gets current sample rate Sets current sample rate
siSampleRateAvailable Gets available sample rates
siNumberChannels Gets current number of channels Sets current number of channels
siChannelAvailable Gets available number of channels
siHardwareVolume Gets current volume setting Sets current volume setting

Note: The “...Available” selectors apply only to GetInfo.

MAKING A SOUND DECOMPRESSION COMPONENT
Sound components can also be defined to expand compressed audio into a form that
can be used by other components and played by the available hardware. The Sound
Manager tells a decompression component what format it should use for the data it
produces so that when a sound is played it will decompress to the correct sample size,
sample format, and number of channels. Our example sound decompression
component, MewLaw, decompresses audio data encoded in µ-law format.

When your sound decompression component is installed, the Sound Manager will be
able to automatically play sounds compressed in your format, so most applications
will be able to play your compressed sounds without any modification. To determine
which decompressor to call, the Sound Manager matches the compression format
types stored in AIFF files and 'snd ' resources (described in detail in Inside Macintosh:
Sound) against the subtype you specify in the 'thng' resource.

The structure of a decompression component is similar to that of a sound output
component, with a few exceptions and some additional methods, described in the
following sections.

EXCEPTIONS TO THE OUTPUT COMPONENT MODEL
Because there is no hardware associated with a decompression component, no
initialization is needed beyond the Open call, and only one selector has to be
implemented for the GetInfo method. The 'thng' resource should have 'sdec' for a
type and your compression OSType for a subtype. The component flags must also be
set to describe your format, as documented in Inside Macintosh: Sound. The flags
should specify the data formats supported by your component in terms of the
sample sizes, sample formats, and number of channels that your component can
handle.

In the case of a sound decompression component, the GetInfo method returns
information about your compression algorithm. Your component needs to support
only the siCompressionFactor selector. The infoPtr parameter passed in will point
to a CompressionInfo data structure, which must be filled out with information
describing your compression algorithm. On entry, the format field of the
CompressionInfo record will contain the OSType of the compression format. The
fields that you must fill out are as follows:

compressionID Must be set to fixedCompression
samplesPerPacket Number of samples in a compressed packet
bytesPerPacket Number of bytes in a compressed packet
bytesPerSample Number of bytes in an uncompressed sample

Just like in the output component, the PlaySourceBuffer method is called when the
Sound Manager needs to play a new sound. In the case of a sound decompression
component, though, your routine should clear out any pointers to the source data
that you’re keeping. It should not reset your compression state variables, as this new
buffer is probably a continuation of a previous sound. Be sure to delegate this call to
your source component (the component immediately preceding yours in the chain)
before you return.

ADDITIONAL METHODS
Besides the methods supported by the sound output component, the sound
decompression component must support the methods listed in Table 5. MewLaw
demonstrates the use of these methods.

d e v e l o p Issue 20 December 199460

The SetSource method is used by the Sound Manager to tell your component who
to call to get more data. The source field should be stored for later use; then the
SetOutput method should be called on this source to tell it the type of input needed
by the decompressor.

The SetOutput method is used by the Sound Manager to tell your component what
kind of output to produce. A SoundComponentData record is passed in specifying
the output the Sound Manager is requesting. If your component can’t produce data
using this format, it should set the actual field to the kind of output it can produce
and return paramErr. The Sound Manager will then try to convert your output to the
format it needs.

The GetSourceData method does the work of getting compressed data from the
source, decompressing the data into an internal buffer, and returning this buffer to
the component that called it. A couple of subtle features must be supported:

• If the source returns data that’s already in the required output
format, no decompression needs to take place, and the source data
pointer should be passed back.

• If the source buffer is nil, that means that the Sound Manager is
requesting that the mixer produce silence for this channel, and
your component should just pass the data pointer through.

If neither of these is the case, there is valid compressed source data that your routine
should decompress. First you have to decide whether the sound is playing in reverse
(that is, backward). Many applications (such as QuickTime applications) need to
play sounds backward. The Sound Manager supports this by setting a bit in the flags
field of the SoundComponentData record telling the components to play the sound
backward. Decompression can’t go backward, but the decompression component
can decompress chunks of the sound starting at the end of the source buffer and
working toward the beginning. (Because the internal buffer is typically fairly small,
decompression components often need to decompress source data in chunks.) It
passes these decompressed chunks to the format conversion component, which takes
care of actually reversing the samples. The example code on the CD shows how this
is done.

Once you’ve determined the right source data to decompress, you simply call your
decompression routine, update the information in your SoundComponentData
record, and return a pointer to this record.

The StopSource method is called when the Sound Manager needs to stop a sound
from playing. Your routine should clear out any pointers to the source data and reset
all compression state information. Be sure to delegate this call to your source
component before you return.

MAKE YOUR OWN SOUND COMPONENTS 61

Table 5. Additional methods the decompression component must support

Method Selector Result
SetSource kSoundComponentSetSourceSelect Specifies who to call for data

SetOutput kSoundComponentSetOutputSelect Specifies type of output

GetSourceData kSoundComponentGetSourceDataSelect Gets compressed data and
decompresses it

StopSource kSoundComponentStopSourceSelect Stops sound

PLAY ON
With Sound Manager 3.0 so widely available, you’ll want to take advantage of the
support it offers for third-party audio hardware and for the full range of compressed
audio formats by making your own sound components. Look to Inside Macintosh:
Sound for the technical details of how to proceed, and examine the code for
NoiseMaker and MewLaw to see examples of how it’s done. Then start making
some noises of your own!

d e v e l o p Issue 20 December 199462

REFERENCES
• Inside Macintosh: More Macintosh Toolbox (Addison-Wesley, 1993), Chapter 6,

“Component Manager.”

• Inside Macintosh: Sound (Addison-Wesley, 1994), Chapter 5, “Sound
Components.”

• “Somewhere in QuickTime: What’s New With Sound Manager 3.0” by Jim
Reekes, develop Issue 16.

Thanks to our technical reviewers Bob Aron,
Ray Chiang, and Jim Reekes.•

1/2 page horizontal ad
goes here

Yearn no more: write for develop. We’re always looking for people
who might be interested in submitting an article or a column. If
you’d like to spotlight and distribute your code to thousands of
developers of Apple products, here’s your opportunity.

If you’re a lot better at writing code than writing articles, don’t
worry. An editor will work with you. The result will be something
you’ll be proud to show your colleagues (and your Mom).

So don’t just sit on those great ideas; feel the thrill of seeing them
published in develop!

For Author’s Guidelines, editorial schedule, and information
on our incentive program, send a message to DEVELOP on
AppleLink, develop@applelink.apple.com on the Internet, or
Caroline Rose, Apple Computer, Inc., One Infinite Loop,
M/S 303-4DP, Cupertino, CA 95014.

Do you yearn for the adulation of your colleagues?

YOUR NAME HERE

YOUR PHOTO HERE

On the Macintosh, the standard file format for storing
images is the PICT format. When pixel maps are
stored in PICTs, the color table is always included. If
you have a large number of PICTs that all use the same
color table, however, it’s redundant to have a separate
copy of the color table in each PICT. It would be better
to strip the color tables out of the PICTs themselves,
store only one copy of the color table on disk, and use
that color table for all the PICTs. This column
describes a simple way to do that.

OF COLOR TABLES AND PICTS
One of the really neat features of the Macintosh and
QuickDraw is that the process to store a pixel image in
a picture is really simple. The code can be as simple as
opening a picture to start PICT recording, doing a
CopyBits of a PixMap onto itself, and closing the
picture; QuickDraw does the rest.

newPict = OpenPicture(&offRect);
CopyBits(srcPix, srcPix, &offRect, &offRect,

srcCopy, nil);
ClosePicture();

Here I use OpenPicture for simplicity, but as pointed out in
Inside Macintosh: Imaging With QuickDraw, you should really
use OpenCPicture, especially if you want to specify a resolution
other than 72 dpi.•

This code works great, but there’s a catch: every time
you do this, the whole PixMap — including its color
table — is recorded into the picture. For a PixMap
that’s 8 bits deep (256 colors), the color table takes a
little over 2K. This may not be that big a deal for one

or two pictures, but what if you’re pressing a CD with
thousands of pictures that use the same color table?
Suddenly all those embedded color tables add up to a
significant chunk of space. For pictures delivered on
floppy disks, space may be at even more of a premium,
and those extra few kilobytes might matter. Also note
that if you create PICTs with multiple calls to
CopyBits, a color table is stored with each PixMap in
the picture, making the problem even worse.

LEARNING TO SHARE
More often than not, a series of PICT files will all use
the same color table (usually the default color table). In
these cases it would be much more economical if we
could somehow store only one copy of the color table,
and then share it among all the pictures. As it turns out,
doing that is pretty easy. The solution has two parts:
first, we need to be able to create PICTs that don’t
include a color table, and later we need to be able to
draw those same PICTs using the appropriate color
table, stored separately from the picture.

JUST SAY NIL
The first part of the solution is easy. In a PixMap, the
pmTable field contains a handle to a color table. When
recording a picture, QuickDraw simply stores the color
table specified by the pmTable field into the PICT. But
if pmTable is nil, there’s no color table to put in the
picture, so its size ends up smaller. Only one extra line
of code is needed to do this:

// Set PixMap color table handle to nil.
(*srcPix)->pmTable = nil;

Naturally, you’ll need to save the color table handle
beforehand, and afterward restore it before disposing of
the PixMap, so that QuickDraw can dispose of all the
pieces correctly. But even more important, you’ll use
the color table handle to create a 'clut' resource that
you can save and that can later be used to draw the
PICT with its correct colors. The sample program
named CLUTLess, included on this issue’s CD,
contains the complete code to do this.

In reality, QuickDraw adds more than just a nil color
table handle to the picture when the code described
above is executed. The reason for this is that some
applications assume that PixMaps in a picture always
have a color table, and they would die horrible deaths if

GRAPHICAL
TRUFFLES

A Space-Saving
PICT Trick

GUILLERMO A. ORTIZ
AND DAVE JOHNSON

GRAPHICAL TRUFFLES: A SPACE-SAVING PICT TRICK 63

GUILLERMO A. ORTIZ of Apple’s Developer Technical Support
group left on sabbatical just after completing the first draft of this
column, but before he had a chance to write a bio. He left his
office chanting his favorite mind-soothing mantra, “Nothing
compensates like cash.”•

DAVE JOHNSON watched in astonishment recently as a large
hawk or falcon of some kind (he’s not much of an ornithologist)
devoured a freshly killed dove just outside his living room window
in San Francisco. Whoa.•

QuickDraw didn’t somehow protect them from
themselves. To avoid this problem, QuickDraw stores a
color table “stub” into the PICT that it recognizes as
such when playing back the picture.

If you simply call DrawPicture to display the “clutless”
picture you’ve made, QuickDraw will see the color
table stub and create a color table for the picture on the
fly. This color table is a color ramp between the current
port’s foreground color and its background color — in
most cases this means that you get a grayscale image.
(If the foreground color and background color are not
black and white, respectively, you’ll get a “colorized”
image.) Figure 1, which appears along with Figure 2 on
the inside back cover of this issue of develop, shows an
example of a once-colorful picture drawn this way.

GET IT TOGETHER
To display the image in its original colors, you need to
somehow get the saved color table back into the PICT
before drawing. You can do this by replacing the
QuickDraw low-level routine that’s called when a
PixMap opcode is found in a picture. This replacement
low-level routine will simply add the color table to the
PixMap and then let QuickDraw continue on its merry
way, doing all the real work of drawing, but with the
correct color table in place. Replacing a low-level
routine is a standard technique:

void SetNewBitsProc (WindowPtr aWindow,
CQDProcs *theProcs)

{
// Load structure with the standard routines.
SetStdCProcs(theProcs);
// Change the one we want to override.
theProcs->bitsProc = NewQDBitsProc(AddClutProc);
// Set our window's port to use them.
aWindow->grafProcs = theProcs;

}

Our replacement routine first saves the contents of the
PixMap’s pmTable field so that it can later restore this
value before returning. It then puts a handle to the
appropriate color table in the pmTable field and calls
StdBits to let QuickDraw do the hard work of drawing.
Finally, it restores the saved pmTable value in the
PixMap. (Note that to be completely bulletproof you
might want this routine to check to see if the image
actually needs a color table — that is, check to make sure
it’s an indexed image, not direct. In our sample code we
know this routine won’t get called with a direct PixMap.)

pascal void AddClutProc (BitMap *src, Rect *srcR,
Rect *dstR, short mode, RgnHandle msk)

{
CTabHandle saveCTH;

// Save color table handle.
saveCTH = ((PixMapPtr) src)->pmTable;
// Put 'clut' resource.
((PixMapPtr) src)->pmTable = gSharedClut;
// Let QuickDraw do the work.
StdBits(src, srcR, dstR, mode, msk);
// Restore saved handle and return.
((PixMapPtr) src)->pmTable = saveCTH;

}

Once the new QDProcs are in place, you can simply
call DrawPicture and the correct color table will be
inserted on the fly. Figure 2 shows the same PICT as in
Figure 1, drawn with the correct color table this time.

BUT WHAT IF . . .
The sample code illustrates the case in which the
pictures are being created from PixMaps directly and
the color tables are being removed as it happens. But
what if the images already exist, and they need to be
“postprocessed” in order to strip out the color tables?
Using techniques similar to those described above, it’s
not hard; see this issue’s CD for an example.

Another common case might be this: you have a large
number of pictures that among them share just a few
color tables. To deal with this, you could use a
PicComment to store a number in the PICT that will
indicate which of the color tables to use for that PICT.

IS IT FOR YOU?
These techniques are probably useful only if you plan
to deliver a lot of images that all use the same color
table (most likely on a CD). Stripping out the color
tables may help you cram more images onto your
distribution media or fit a few more images in memory,
perhaps allowing for faster redraw (for example, when a
sequence of pictures is being used for animation).

Remember that the images thus created will be seen as
grayscale (or colorized) images in any application that’s
not aware it needs to load a separate color table from a
resource. But if you find yourself jumping through
flaming hoops to try to cram just a few more PICTs on
your disk, this may be just the trick you need.

d e v e l o p Issue 20 December 199464

Thanks to Cameron Esfahani, Josh Horwich, and Don Moccia for
reviewing this column.•

Figure 1. Fractal picture with no color table

Figure 2. Correct color version of the same fractal

What are these doing here?
See the Graphical Truffles column on page 63.

The Finder has long been a black box to users and developers —
extending the Finder or even examining its state has been nearly
impossible. With System 7.5, Apple has shipped a Finder that supports
the Object Support Library; this Scriptable Finder opens a new world to
developers by allowing applications to interact with the Finder through
Apple events.

The System 7 Finder has always accepted a number of simple events that provide
services such as duplicating files, making aliases, and emptying the Trash. But the
System 7.0 and 7.1 Finder events are very limited and have strict requirements for the
order of parameters and for parameter data types. The Finder that shipped with
System 7.5 greatly expands the set of available events: it uses the Object Support
Library (OSL) to provide full compatibility with AppleScript, and it provides a new
set of events to do things such as examine the Finder’s selection, change Finder
preferences, and modify file sharing settings.

The term Scriptable Finder refers to any Finder that’s OSL compliant. In System 7.5,
this support is implemented by the Finder Scripting Extension in the Extensions
folder; however, future Finders will have scriptability built into their core code base.
Developers can count on the presence of the Scriptable Finder in all future versions
of system software.

The OSL and the Open Scripting Architecture are critical additions to the Macintosh
Toolbox. They mark the end of black-box applications and system software and pave
the way for configurable, component-based systems. A Scriptable Finder is only the
first step in providing a more unified, open system, but it’s an important one.

This article shows you how to generate Finder events from your application. First
we’ll look at event addressing and the Apple Event Manager, and then we’ll see how
to specify Finder objects. Finally, the section “Making the Finder Do Tricks” provides
a taste of the power and flexibility of the Scriptable Finder, showing some practical
uses of this great new capability. On this issue’s CD, you’ll find the complete code for
the article’s examples along with sample applications that show how to control the
Finder with Apple events. The header file FinderRegistry.h on the CD declares all of
the event message IDs, class IDs, and property IDs that the Finder defines.

GREG ANDERSON

Scripting the Finder From Your Application

SCRIPTING THE FINDER FROM YOUR APPLICATION 65

GREG ANDERSON (AppleLink G.ANDERSON)
is currently the Technical Lead of the Finder Team
at Apple and was the lead engineer on the Finder
Scripting Extension. He’s known to engage in a
number of activities of questionable sanity,
including running straight up hills that are much

too steep and much too long, working at Apple
for four solid years, making chain mail by hand
(with pliers, actually), and putting on armor and
hitting people with sticks. Don’t worry, he never
hits anyone in staff meetings or developer
conferences.•

CREATING AND ADDRESSING FINDER EVENTS
Every feature of the Scriptable Finder is accessible via AppleScript. For example, the
following script, if typed into the Script Editor and executed, would create a new
folder on the desktop:

tell application "Finder"
make folder at desktop

end tell

An application doesn’t need to compile and execute scripts, however, to use the
features of the Scriptable Finder; every command that a script can instruct the Finder
to do has a corresponding representation as an Apple event. An application that
controls the Finder may bypass AppleScript entirely and send Apple events to the
Finder directly. That’s the technique we’ll use in this article.

There are a number of ways to address an Apple event, but for sending an event to
the Finder on the local machine, the simplest and most straightforward technique is
to address the event by process serial number (PSN). To determine the Finder’s PSN,
you walk the list of running processes and search for the Finder’s file type and creator,
'FNDR' and 'MACS'.

Listing 1 shows one way to generate an address targeted at the Finder on the local
machine. Notice that we’ve used TDescriptor, which is a C++ wrapper class that
corresponds to the Apple Event Manager type AEDesc. (See “C++ Wrappers” for an
explanation of wrappers used in this article.)

Should the Finder not be running, looking for processes with the signature 'MACS'
will find other user interface shells, such as At Ease, and in some cases you might
prefer your application to do that. However, no shells other than the Finder currently
support the full Finder Event Suite, so the sample code provided here always requires
the process type to be 'FNDR'.

Earlier Finders were not only unaware of the OSL, but they also didn’t use the
Apple Event Manager. That’s right, the System 7.0 and 7.1 Finders never call
AEProcessAppleEvent — they interpret and process high-level events in their own
special way, without ever informing the Apple Event Manager of what’s going on.
This means that an application that sends any unrecognized high-level event to the
System 7.0 or 7.1 Finder will never get a reply; the application will sit idle in AESend
until the event times out (assuming that the send mode was kAEWaitReply).

d e v e l o p Issue 20 December 199466

The sample code in this article makes extensive use of
C++ wrappers. The file AppleEventUtilities.h, included on
this issue’s CD, defines the wrapper classes TDescriptor
and TAEvent, which correspond to the Apple Event
Manager types AEDesc and AppleEvent, respectively. The
class TDescriptor contains methods for examining and
extracting the contents of AEDesc, AEDescList, or
AERecord structures. TAEvent inherits from this class (since
an Apple event really is an AERecord) and adds methods
for getting and setting attributes and addressing and
sending events.

The use of the C++ wrappers makes the code easier to
read, but it would be a simple matter to translate the code
back into straight C or Pascal functions that call the Apple
Event Manager directly. If you do this, don’t forget that the
C++ constructor of TDescriptor automatically initializes the
fields of the AEDesc to a null descriptor (descriptor type =
typeNull, data handle = nil). You must do this explicitly in
your C or Pascal program, or you could cause problems
for the OSL. For example, CreateObjSpecifier will crash if
its second parameter is a pointer to an uninitialized AEDesc
rather than a valid object specifier or a null descriptor.

C++ WRAPPERS

To determine whether the Finder on the local machine supports the Finder Event
Suite, an application can call Gestalt with the selector gestaltFinderAttr and check the
gestaltOSLCompliantFinder bit of the result. Before System 7 Pro, gestaltFinderAttr
didn’t exist, so Gestalt will return the error gestaltUndefSelectorErr on some
machines.

Unfortunately, the only way to determine whether the Scriptable Finder is running
on a remote machine is to send it an event and wait for it to time out. The best event
to send is the Gestalt event from the Finder Event Suite (an event whose class is
kAEFinderSuite and whose ID is kAEGestalt) with a direct parameter whose type is
typeEnumeration and whose value is gestaltFinderAttr. If the Scriptable Finder is
running, the result will have the gestaltOSLCompliantFinder bit set. Under System 7
Pro, the Finder will return an error (event not handled) if the Scriptable Finder isn’t
running, but the System 7.0 and 7.1 Finders will never return a result.

The Gestalt event can be used to ask for the value of any Gestalt selector. It’s easier to
call Gestalt directly on the local machine (and more reliable, since the Scriptable
Finder might not be running), but some distributed computing applications may want
to examine the result of Gestalt selectors on remote machines to determine which are
suitable for use as remote hosts.

SCRIPTING THE FINDER FROM YOUR APPLICATION 67

Listing 1. Getting the address of the Finder

TDescriptor GetAddressOfFinder()
{

ProcessSerialNumber psn;
ProcessInfoRec theProc;
TDescriptor finderAddressDescriptor;

// Initialize the process serial number to specify no process.
psn.highLongOfPSN = 0;
psn.lowLongOfPSN = kNoProcess;

// Initialize the fields in the ProcessInfoRec, or we'll have memory
// hits in random locations.

theProc.processInfoLength = sizeof(ProcessInfoRec);
theProc.processName = nil;
theProc.processAppSpec = nil;
theProc.processLocation = nil;

// Loop through all processes, looking for the Finder.
while (true)
{

FailErr(GetNextProcess(&psn));
FailErr(GetProcessInformation(&psn, &theProc));
if ((theProc.processType == 'FNDR') &&

(theProc.processSignature == 'MACS'))
break;

}

finderAddressDescriptor.MakeProcessSerialNumber(psn);
return finderAddressDescriptor;

}

SPECIFYING FINDER OBJECTS
Most events operate on some Finder object, such as a file, a folder, or a window.
These objects are always specified with an Apple event descriptor (AEDesc) placed in
the direct object of the event. Some events require specification of more than
one object; for example, the Copy event requires parameters for both the objects to
be copied and the location to copy them to. In these cases, the direct object of the
event is the object being operated on, and other parameters are defined for any
other object it requires. The destination of the Copy event goes in the parameter
keyAEDestination; other events may define other keywords for parameters they use.

Most scriptable applications require object specification parameters to be in a very
specific format called an object specifier. The Finder is a little more flexible than
that — it will accept a descriptor of type typeAlias (alias record) or typeFSS (FSSpec)
in any parameter that requires an object specifier. All the same, understanding object
specifiers is critical to sending events to the Finder, because many objects cannot be
represented by an alias record or an FSSpec, and therefore must be referenced by
object specifier.

Object specifiers are described in “Apple Event Objects and You” in develop
Issue 10 and in “Better Apple Event Coding Through Objects” in develop Issue 12.
See also Chapter 6, “Resolving and Creating Object Specifier Records,” in Inside
Macintosh: Interapplication Communication.•

An object specifier is a descriptor whose type is typeObjectSpecifier, but it’s actually
an Apple event record (AERecord), and can be accessed as such if coerced to type
typeAERecord. To build an object specifier, it’s most convenient to use the routine
CreateObjSpecifier (MakeObjectSpecifier in AppleEventUtilities.cp), which takes
four parameters: the desired class of the specified object, the key form, the key data,
and the object container.

• The desired class indicates the kind of object. Some classes that the
Finder recognizes are disks, windows, and folders. The desired
class may also be set to typeWildCard to indicate any class of
object.

• The key form specifies how the object is being addressed; the most
common choices are by name and by index.

• The key data contains the specification for the object in a format
compatible with the key form. For example, if the key form is
formName, the key data will contain the name of the object being
specified.

• The object container is either another object specifier or a null
descriptor. Thus, object specifiers have a recursive definition that’s
always terminated with a null descriptor.

The null descriptor in the object specifier’s container is a reference to a special
container called the null container, which serves as the root container of every
scriptable application. In most applications, the items accessible from the null
container (called the elements of the container) include all the open documents and
open windows. The Finder doesn’t have any documents that it can open on its own;
its null container contains all the open windows, plus all the objects on the desktop,
including the mounted disks and the Trash.

You specify properties, such as the name of an object or the original item of an alias
file, with an object specifier whose desired class is cProperty and whose key form is
formProperty. The key data is always of type typeType, and it contains the four-

d e v e l o p Issue 20 December 199468

character code identifying the property. The container of the property’s object
specifier is, as required, an object specifier or a null descriptor.

Usually, the property’s container specifies an object — for example, “name of disk 1”
would be represented as a property specifier for pName with a container specifier to
disk 1. It’s also possible to create property specifiers of property specifiers, such as
“name of startup disk” (since the term “startup disk” is represented as a property
specifier for pStartupDisk). Additionally, there are properties that refer to the Finder
itself, or to the Macintosh that the Finder is running on — such as “file sharing,” the
property that indicates whether file sharing is on or off. These are called properties of
the null container, and the container of these property specifiers is always a null
descriptor.

Any four-character code that’s recognized by FindFolder may be provided as a
Finder property that refers to the folder returned by FindFolder. You’ll find this useful
when moving, copying, or setting properties of special folders.•

The Finder defines a special key form named formAlias. The key data of an object
specifier whose key form is formAlias should be an alias record; the desired class
should be typeWildCard; and the object container must always be a null descriptor.
At first, the existence of formAlias may seem superfluous. The Finder will accept alias
records in any object-specifier parameter, and there’s no functional difference
between a descriptor of type typeAlias and an object specifier of form formAlias.
However, formAlias object specifiers are very useful in one regard, and that’s to
specify properties of files referenced by alias records. As mentioned earlier, the
container parameter of an object specifier must be another object specifier. If an
application already has an alias record, it may use it to build an object specifier of
form formAlias for use in other object specifiers. Putting a descriptor of type
typeAlias into the container parameter of an object specifier doesn’t work, and can
even cause the OSL to crash.

MAKING THE FINDER DO TRICKS
A Macintosh running the Scriptable Finder is capable of a variety of tricks that other
Finders only dream about. This section demonstrates a number of these features,
including events that examine and change the state of the Finder, that notify the
Finder of changes, and that manipulate files on disk. For a summary of events the
Finder recognizes, see “Overview of Finder Events.” This issue’s CD includes the
complete code for listings in this section.

A complete list of properties the Finder recognizes can be found in the
AppleScript Finder Guide, the Finder’s dictionary resource (viewable from the Script
Editor), or the Finder Event Suite document on this issue’s CD.•

GETTING AND SETTING THE FINDER SELECTION
Determining which files have been selected by the Finder is something developers
have been trying to do for a long time. Many ingenious and completely unsanctioned
hacks and patches have been devised just to get this simple piece of information.
Often, these patches fail to work beyond the Finder that they were designed for, and
those that happen to work with multiple Finders may not be compatible with future
versions. With the Scriptable Finder, there’s no need to patch, hack, or guess which
items are selected in the Finder; one simple event will return the answer.

You can obtain the Finder’s selection by sending a Get Data event (event class
kAECoreSuite, event ID kAEGetDataEvent) to the Finder, and specifying an object
specifier for the property pSelection of the null container in the direct object. By

SCRIPTING THE FINDER FROM YOUR APPLICATION 69

default, the result returned by the Finder will be an object specifier (if one item is
selected) or a list of object specifiers (if multiple items are selected). It’s also possible
to have the results returned as an FSSpec, an alias record, or a pathname by filling in
the optional parameter keyAERequestedType of the Apple event. The recognized
types are typeFSS, typeAlias, and typeChar (which will return a pathname to the
object in the result string). Listing 2 shows how to get the Finder’s selection.

Notice that before sending the event, we put in the optional “requested type”
parameter. Coercing the data descriptor to a list isn’t necessary when sending an
event to the Finder, but it is required by the OSL specification, so it’s a good habit to
get into.

You can also change the Finder’s selection with a Set Data event (event class
kAECoreSuite, event ID kAESetDataEvent): The direct object should again be an
object specifier for the property pSelection, and the parameter keyAEData should
contain the items to be selected. The key data parameter may contain an object
specifier, an FSSpec, an alias record, an empty list (to clear the selection), or a list that
contains multiple objects.

As you’ll see in the rest of this article, the Get Data and Set Data events are very
powerful and can be used for a wide variety of purposes.

GETTING THE FRONTMOST FINDER WINDOW
Although it’s not a terribly difficult thing for an ingenious bit of code to obtain a
pointer to the Finder’s frontmost window, a well-behaved application never peeks at
another process’s window list. The Scriptable Finder will tell you which windows are
open if you ask nicely; once again, the event to use is the Get Data event. The direct
object should be an object specifier to the window whose index is 1, as the frontmost
window is always the first window in the window list.

d e v e l o p Issue 20 December 199470

The Scriptable Finder recognizes most of the events in the
Required and Core suites, and defines a few events of its
own in the Finder suite.

The Finder recognizes events that:

• count, get, and set data

• test whether an object exists

• open, reveal, select, and close objects

• tell applications to print documents

• move and copy files and folders

• make folders, aliases, and suitcases

• eject and unmount disks

• put away objects in the Trash or on the desktop

• empty the Trash

• query Gestalt

• quit and restart

• shut down and sleep

Of these events, Get Data and Set Data are the most
versatile, as they can be used to determine and change a
wide variety of properties of the Finder. Some of these
properties are:

• the name, label, creation date, modification date,
position, custom icon, and comment of an item, as well
as its logical and physical size

• the creator, type, and version of a file

• the original item of an alias file

• the partition size of application files

• file sharing and view settings of folders

• the capacity and free space of a disk

• the memory used by a running process

OVERVIEW OF FINDER EVENTS

Note that the event to get the frontmost window always returns an object specifier. It
isn’t possible to get the Finder to return an FSSpec, alias record, or pathname to a
window, because FSSpecs, alias records, and pathnames cannot represent a window
— they always point to file system objects. For the event to return an alias to the file
system item whose contents are displayed in the frontmost window, its direct object
must specify “item of window 1,” that is, the item that owns window 1. In most
applications, the window’s owner would be accessed via the specifier “document of
window 1,” but because the Finder doesn’t have documents, its windows are owned
by “items” instead. Listing 3 shows how to get the owner of the frontmost window.

The frontmost Finder window will usually be a folder window, but it could also be an
information window, a sharing setup window, or even the About This Macintosh
window or Finder Shortcuts window. To limit the window returned to only folder

SCRIPTING THE FINDER FROM YOUR APPLICATION 71

Listing 2. Getting the Finder’s selection

// tell application "Finder"
// get selection
// end tell
//
// Get the address of the Finder and make a Get Data event.
TAEvent ae;

TDescriptor target = GetAddressOfFinder();
ae.MakeAppleEvent(kAECoreSuite, kAEGetData, target);
target.Dispose();

// Make an object specifier for "selection" and put it into the
// direct object of the event.
TDescriptor directObjectSpecifier;
TDescriptor keyData;
TDescriptor nullDescriptor;

keyData.MakeDescType(pSelection);
directObjectSpecifier.MakeObjectSpecifier(cProperty, nullDescriptor,

formPropertyID, keyData, true);
ae.PutDescriptor(keyDirectObject, directObjectSpecifier);
directObjectSpecifier.Dispose();

// Put in the optional "requested type" parameter.
TDescriptor dataDescriptor;

dataDescriptor.MakeDescType(typeAlias);
dataDescriptor.CoerceInPlace(typeAEList);
ae.PutDescriptor(keyAERequestedType, dataDescriptor);
dataDescriptor.Dispose();

// Send the event, extract the reply, and dispose of event and reply.
TAEvent reply;

ae.Send(&reply, kAEWaitReply);
TDescriptor selectedItems = reply.GetDescriptor(keyAEResult);
reply.Dispose();
ae.Dispose();

windows, change the desired class from cWindow to cContainerWindow. Similarly,
the open information windows can be identified by the class cInfoWindow.

The sample application Finder Snapshot on this issue’s CD illustrates a very useful
reason for requesting the list of open Finder windows. When launched, it records the
set of open Finder windows in a document; opening the document results in the same

d e v e l o p Issue 20 December 199472

Listing 3. Getting the owner of the frontmost Finder window

// tell application "Finder"
// get item of window 1
// end tell
//
// Get the address of the Finder and make a Get Data event.
TAEvent ae;

TDescriptor target = GetAddressOfFinder();
ae.MakeAppleEvent(kAECoreSuite, kAEGetData, target);
target.Dispose();

// Make an object specifier for "item of window 1" and put it into the
// direct object of the event. Note that the Apple Event Registry class
// for "item" is cObject.
TDescriptor directObjectSpecifier;
TDescriptor frontWindowSpecifier;
TDescriptor keyData;
TDescriptor nullDescriptor;

keyData.MakeLong(1);
frontWindowSpecifier.MakeObjectSpecifier(cWindow, nullDescriptor,

formAbsolutePosition, keyData, true);
keyData.MakeDescType(cObject);
directObjectSpecifier.MakeObjectSpecifier(cProperty,

frontWindowSpecifier, formPropertyID, keyData, true);
ae.PutDescriptor(keyDirectObject, directObjectSpecifier);
directObjectSpecifier.Dispose();

// Specify that we would like the result returned as an alias record
// rather than an object specifier.
TDescriptor dataDescriptor;
dataDescriptor.MakeDescType(typeAlias);
dataDescriptor.CoerceInPlace(typeAEList);
ae.PutDescriptor(keyAERequestedType, dataDescriptor);
dataDescriptor.Dispose();

// Send the event, extract the reply, and dispose of the event and
// reply. frontWindowOwner will contain an object specifier to the
// frontmost window.
TAEvent reply;

ae.Send(&reply, kAEWaitReply);
TDescriptor frontWindowOwner = reply.GetDescriptor(keyAEResult);
reply.Dispose();
ae.Dispose();

set of windows being opened again and positioned in the same locations that they
were in at the time that the document was created. This application provides a simple
way to make multiple “working sets” of Finder windows, easily accessible through
items in the Apple Menu Items folder, or perhaps via documents sitting on the
desktop.

GETTING AND SETTING CUSTOM ICONS
The icon bitmap of a file is available through ordinary file system calls, but there are
a couple of different cases to contend with: the icon might be stored in the desktop
database, or it could be a custom icon stored in the resource fork of the file. Some
files are “special,” and only the Finder really knows what their icon bitmap should be.
The simplest way to get the exact icon bitmap for a file is to ask the Finder what it is.
Once again, Get Data and Set Data are the events to use.

The result of a Get Data event that specifies the icon property of some object is an
AERecord that contains the entire icon family for the item’s icon. The record
contains parameters whose key is the same as the individual resources of an icon
family (for example, 'ICN#' and 'icl8'); the data stored in these parameters is identical
to the data found in a resource of the same type. A Set Data event takes a record in
the same format, or an empty list if the intention is to remove the custom icon.

Listing 4 shows how to remove the custom icon from every item in the selection.
Note that the specifier “icon of selection” is equivalent to the more complex specifier
“icon of every item of selection.”

The sample application Finder Tricks on the CD has a feature that changes the icons
of all the items in the frontmost Finder window — each item is given some other
item’s icon. Other than serving as a useful example of how to send events to the
Finder, this sample doesn’t have much utility, although it does do an admirable job at
messing up the appearance of Finder windows.

An application can change an item’s icon by writing the custom icon directly into the
appropriate resources in the file and then setting the “custom icon bit” using the file
system, instead of sending an event to the Finder — but the change won’t take effect
right away. The reason for the delay is that the Finder isn’t notified when the
contents of the disk change, so it must periodically poll the file system to find out
whether it needs to redraw any items in its open windows. Polling happens only every
now and again, so that the Finder doesn’t eat up every spare CPU cycle on the
machine when it’s just sitting idle in the background.

UPDATING FINDER CONTAINERS
As just mentioned, the Finder sometimes takes a while to notice when the contents of
the disk change. If an application writes new information into a folder, it may inform
the Finder via an Apple event that the item changed (Listing 5). This event is most
useful after an application has created a new file or has changed some visible attribute
of an existing file — its type or creator, for example. If an update event isn’t sent, the
Finder will eventually notice the change and redraw the item; however, there’s a
several-second delay that’s somewhat disconcerting, particularly if the user has just
saved a new document to the desktop with the Standard File dialog and expects to see
it show up right away.

SETTING UP SHARING
Setting the sharing properties of a folder is a task that many users find confusing.
Although scripting this task isn’t necessarily any easier, the availability of file sharing

SCRIPTING THE FINDER FROM YOUR APPLICATION 73

scriptability makes possible applications that could walk through the process or could
provide a more intuitive user interface than the Sharing dialog (commonly referred to
in technical circles as “the evil grid of checkboxes”). Listing 6 shows how to enable
file sharing on every folder in the current selection.

Unfortunately, not every file sharing feature is scriptable. It’s possible to set the
sharing properties of a folder (everything that can be set from the Finder’s Sharing
menu item), create a new user or a new group, and rename a user or a group;
however, currently it’s not possible to set a user’s password, allow a user to connect
to file sharing or program linking, add a user to a group, or remove a user from a
group. This capability will be available in some future version of Macintosh system
software.

d e v e l o p Issue 20 December 199474

Listing 4. Removing custom icons from the selection

// tell application "Finder"
// set icon of selection to empty
// end tell
TAEvent ae;

TDescriptor target = GetAddressOfFinder();
ae.MakeAppleEvent(kAECoreSuite, kAESetData, target);
target.Dispose();

// Make an object specifier for "icon of selection" and put it into the
// direct object of the event.
TDescriptor directObjectSpecifier;
TDescriptor selectionSpecifier;
TDescriptor keyData;
TDescriptor nullDescriptor;

keyData.MakeDescType(pSelection);
selectionSpecifier.MakeObjectSpecifier(cProperty, nullDescriptor,

formPropertyID, keyData, true);
keyData.MakeDescType(pIconBitmap);
directObjectSpecifier.MakeObjectSpecifier(cProperty, selectionSpecifier,

formPropertyID, keyData, true);
ae.PutDescriptor(keyDirectObject, directObjectSpecifier);
directObjectSpecifier.Dispose();

// Obviously, a Set Data event needs data. In the case of this sample,
// the data we want is "empty," which is represented by an empty list.
TDescriptor emptyList;

emptyList.MakeEmptyList();
ae.PutDescriptor(keyAEData, emptyList);
emptyList.Dispose();

// Send the event and dispose of it once it has been sent.
TAEvent reply;

ae.Send(&reply, kAENoReply);
ae.Dispose();

SCRIPTING THE FINDER FROM YOUR APPLICATION 75

Listing 5. Updating a Finder container

// tell application "Finder"
// update alias "HD:Documents:"
// end tell
void UpdateFinderContainer(FSSpec& changedContainer)
{

TAEvent ae;

TDescriptor target = GetAddressOfFinder();
ae.MakeAppleEvent(kAEFinderSuite, kAEUpdate, target);
target.Dispose();

// Make an object specifier for the FSSpec and put it into the direct
// object of the event.
TDescriptor directObjectSpecifier;

directObjectSpecifier.MakeFSS(changedContainer);
ae.PutDescriptor(keyDirectObject, directObjectSpecifier);
directObjectSpecifier.Dispose();

// Send the event and dispose of it once it has been sent.
TAEvent reply;

ae.Send(&reply, kAENoReply);
ae.Dispose();

}

Listing 6. Sharing every folder in the selection

// tell application "Finder"
// set shared of every folder of selection to true
// end tell
TAEvent ae;

TDescriptor target = GetAddressOfFinder();
ae.MakeAppleEvent(kAECoreSuite, kAESetData, target);
target.Dispose();

// Make a specifier for "selection."
TDescriptor selectionSpecifier;
TDescriptor keyData;
TDescriptor nullDescriptor;

keyData.MakeDescType(pSelection);
selectionSpecifier.MakeObjectSpecifier(cProperty, nullDescriptor,

formPropertyID, keyData, true);

// Make a specifier for "every folder of..."
TDescriptor everySpecifier;

(continued on next page)

MOVING FILES — AND AN UNDOCUMENTED PARAMETER
The Finder also has events that move and copy files from one container to another.
Strictly speaking, there’s little reason for an application to use these events, since file
copying can be done quite acceptably using the file system directly. However, it may
take less code to tell the Finder to create a copy than to make the appropriate file
system calls and put up a copy progress dialog. The events to use are kAEClone and
kAEMove, both of which have the event class of kAECoreSuite.

A new parameter was added to the Move and Copy events of the Scriptable Finder
after the AppleScript Finder Guide went to press, but before the Finder Scripting
Extension shipped with System 7.5. The new parameter allows a Move event to
specify the position of every item being moved inside the destination container. This
parameter was not originally a part of the Finder Event Suite because a script that
needed to position items being moved to another container could always go back
and set the position property of the destination items after the move was completed.
The new Find File desk accessory included with System 7.5, however, needed to be
able to move and position items all in one atomic operation; otherwise, the user
would see the items move from an intermediate position to a final position, which
would look jerky. The new parameter was added to fill this need; its use is shown in
Listing 7.

The code in Listing 7 specifies the position of the item in local coordinates of the
destination window. To specify the position in global screen coordinates, use the
parameter keyGlobalPositionList instead of keyLocalPositionList.•

d e v e l o p Issue 20 December 199476

keyData.MakeOrdinal(kAEAll);
everySpecifier.MakeObjectSpecifier(cFolder, selectionSpecifier,

formAbsolutePosition, keyData, true);

// Make a specifier for "shared of..."
TDescriptor directObjectSpecifier;

keyData.MakeDescType(pSharing);
directObjectSpecifier.MakeObjectSpecifier(cProperty, everySpecifier,

formPropertyID, keyData, true);
ae.PutDescriptor(keyDirectObject, directObjectSpecifier);
directObjectSpecifier.Dispose();

// Set the property to true.
TDescriptor sharedSetting;

sharedSetting.MakeBoolean(true);
ae.PutDescriptor(keyAEData, sharedSetting);
sharedSetting.Dispose();

// Send the event and dispose of it once it has been sent.
TAEvent reply;

ae.Send(&reply, kAENoReply);
ae.Dispose();

Listing 6. Sharing every folder in the selection (continued)

TEACHING THE FINDER NEW TRICKS
From the previous sections it should be clear that the events the Finder recognizes
are all very similar, and the code to generate them looks pretty much the same. The
event class and message ID may vary, and the contents of the direct object might
specify different objects, but there’s nothing substantially different between the code

SCRIPTING THE FINDER FROM YOUR APPLICATION 77

Listing 7. Moving a file with the optional position parameter

// tell application "Finder"
// move item "x" to preferences folder positioned at ¬
// location {10, 10}
// end tell
TAEvent ae;

TDescriptor target = GetAddressOfFinder();
ae.MakeAppleEvent(kAECoreSuite, kAEMove, &target);
target.Dispose();

// Make a specifier for item "x" and place it in the direct object.
TDescriptor directObjectSpecifier;
TDescriptor keyData;
TDescriptor nullDescriptor;

keyData.MakeString("\px");
directObjectSpecifier.MakeObjectSpecifier(cObject, nullDescriptor,

formName, keyData, true);
ae.PutDescriptor(keyDirectObject, directObjectSpecifier);
directObjectSpecifier.Dispose();

// Make a specifier for the preferences folder and place it in the
// destination parameter.
TDescriptor preferencesSpecifier;

keyData.MakeDescType(pPreferencesFolder);
preferencesSpecifier.MakeObjectSpecifier(cProperty, nullDescriptor,

formPropertyID, keyData, true);
ae.PutDescriptor(keyAEInsertHere, preferencesSpecifier);

// Put the point {10, 10} into the local position list.
Point destinationPosition;

destinationPosition.h = 10;
destinationPosition.v = 10;
keyData.MakePoint(destinationPosition);
keyData.CoerceInPlace(typeAEList);
ae.PutDescriptor(keyLocalPositionList, keyData);
keyData.Dispose();

// Send the event and dispose of it once it has been sent.
TAEvent reply;

ae.Send(&reply, kAENoReply);
ae.Dispose();

that sends an event to open the System Folder and the code that sends an event to get
the view setting of the frontmost window.

Be careful, though, when using the constants defined in AERegistry.h; they’re
intended for use with the old System 7.0 Finder Event Suite. Using the old events
(events whose class is kAEFinderEvents, or 'FNDR') has the advantage that they’re
recognized by earlier System 7 Finders, but in general they should be avoided. The
old events are buggy, they don’t work with the OSL, and they won’t ever be upgraded
or changed to support new Finder features. Events in the new event suite (events
whose class is kAEFinderSuite, or 'fndr') work better, return meaningful results, and
are compatible with the OSL.

Programmer’s documentation of Finder events can be found in the Apple Event
Registry: Standard Suites and the Finder Event Suite document on this issue’s CD. The
old Finder events are described in the Finder Events chapter of the Apple Event
Registry. The Scriptable Finder supports the Required and Core suites, as described
in the Apple Event Registry, and also provides new events that are described in the
Finder Event Suite. These documents list the events defined in each suite, the
parameters that they take, the classes of objects defined in the suite, and the
properties of those objects.

So, the next time you’re tempted to disassemble the Finder, poke around in private
Finder data structures, or hack your way to Finder properties, remember the new
event suite for the Scriptable Finder. Really cool integration with the Finder doesn’t
have to be painful any more.

d e v e l o p Issue 20 December 199478

Thanks to our technical reviewers Sue Dumont,
Max McFarland, Donald Olson, and Greg
Robbins.•

RELATED READING
• Inside Macintosh: Interapplication Communication (Addison-Wesley, 1993),

Chapter 6, “Resolving and Creating Object Specifier Records.”

• AppleScript Finder Guide (Addison-Wesley, 1994).

• Apple Event Registry: Standard Suites, on this issue’s CD and available in print
from APDA.

• “Apple Event Objects and You” by Richard Clark, develop Issue 10.

• “Better Apple Event Coding Through Objects” by Eric M. Berdahl, develop
Issue 12.

In this column, we go spelunking in the frost-covered
caverns of QuickDraw GX. We’ll discover how
QuickDraw GX I/O buffering works and how to use
that knowledge to squeeze optimal performance from a
printer driver, whether PostScript™, raster, or vector.
We’ll also learn how to find (and avoid) the common
bottlenecks.

Suppose you’ve been working on your first QuickDraw
GX printer driver, and the big moment has arrived.
Your printer’s innards begin to whir and spin, and your
heart beats a little faster. Your driver is actually
printing! As you see that image being drawn on the
page, your breathing quickens, and then . . . the printer
stops. You run to your Macintosh to see if your driver
has crashed (again), but no, not this time. A few
seconds later the printer starts up again. And stops. And
starts. This repeats until, several minutes later, the page
is finished.

What’s going on? Is your printer defective? Maybe. But
then again, the problem may lie elsewhere. You
probably have a data delivery problem on your hands.
For one reason or another, the data isn’t getting to the
printer fast enough to keep it busy. To understand why,
we need to look at what goes on behind the scenes
when a driver tells QuickDraw GX to send data to your
printer.

Your first reaction might be, “Ah, I need to implement
some sort of asynchronous I/O to keep a steady stream
of data going to my printer.” That’s a good thought,
but QuickDraw GX already provides asynchronous
I/O. Let’s look a little deeper.

There are four QuickDraw GX printing messages that
are used to implement buffering:

• GXBufferData — sent to move data into an available
buffer

• GXWriteData — sent to write data to the printer
immediately without buffering it first

• GXDumpBuffer — sent to move a buffer full of data
to the printer

• GXFreeBuffer — sent to ensure that a buffer has
been processed and is available for new data

How do you get GXBufferData and GXFreeBuffer to
work asynchronously, so that the driver’s data is sent to
the printer as fast as possible? GXBufferData, in its
default implementation, already works asynchronously.
However, GXFreeBuffer has to work synchronously.
Let’s look at why.

In the following figures, assume that we have a driver
with four buffers, and that at every time interval (a, b, c,
and so on) half of a buffer can be filled by the driver.
(In reality, the time it takes to fill a buffer will vary as
rendering time varies.)

First, let’s say that the device can’t process the data fast
enough to empty out the first buffer before that buffer
is needed again. Figure 1 shows what will happen. At
the following time intervals shown in Figure 1, here’s
what takes place:

a. None of the buffers have been used.

b. The first buffer is being written to with
GXBufferData.

PRINT HINTS

Improving
QuickDraw GX
Printer Driver
Performance

DAVE HERSEY

PRINT HINTS: IMPROVING QUICKDRAW GX PRINTER DRIVER PERFORMANCE 79

DAVE HERSEY (AppleLink HERSEY) is known to small relatives as
“Uncle Mommy.” He spent the last three years working with
QuickDraw GX and helping developers learn its wily ways. In his
spare time, Dave helps his nephews and niece hunt for buried
pirate treasure on Joe’s Island in Wayne, Maine.•

The best reference for writing QuickDraw GX printer drivers is
Inside Macintosh: QuickDraw GX Printing Extensions and Drivers.•

Time
Buffer 1�

Buffer 2�

Buffer 3�

Buffer 4

a
–�
–�
–�
–

b

*�
–�
–�
–

c
�
–�
–�
–

d

�
*�
–�
–

e
�
�
–�
–

f

�
�
*�
–

g

–

h

*

i j

 –�

 *�
�

Empty buffer�
Half-full buffer
Full buffer, asynchronous write initiated�
Full buffer, pending I/O completion

Figure 1. Device processes data very slowly

c. The first buffer has been filled, so QuickDraw GX
sends GXDumpBuffer, which starts an asynchronous
write of the data in buffer 1.

d. The first buffer is pending I/O completion, and the
driver begins filling the second buffer.

e. The second buffer has been filled, so QuickDraw
GX sends GXDumpBuffer for it. It can’t be written,
however, until the first buffer is finished writing.

f. The first and second buffers are pending I/O
completion, and the driver begins filling the third
buffer.

g. The third buffer has been filled, so QuickDraw GX
sends GXDumpBuffer for it. We’re still waiting for
the first and second buffers to finish writing.

h. The first through third buffers are pending I/O
completion, and the driver begins filling the fourth
buffer.

i. The fourth buffer has been filled, so QuickDraw GX
sends GXDumpBuffer for it, but it can’t write until
the first through third buffers finish.

j. All buffers have writes pending. For the first buffer,
QuickDraw GX sends GXFreeBuffer, which will
wait for I/O to complete on that buffer before
returning. GXFreeBuffer must behave
synchronously, because its return signifies “This
buffer can now be reused.”

This is a worst-case scenario from the CPU’s point of
view. The device’s communications pipe can’t take the
data fast enough to keep up with the buffering. Data
buffering is delayed until pending writes are completed.
There isn’t any alternative — you must free up a buffer
in order to have a place to put the new data. Note that
it may take several seconds before a buffer is freed.
During this delay, the CPU sits idle, although it could
be preparing more data.

Figure 2 shows another nonoptimal situation. The
buffers are being filled and processed so quickly that at
any given time, two — or even three — of the buffers
aren’t even being used. This is a waste of memory, and
also increases the latency between buffers.

Figure 3 shows the ideal situation. This is what you
should strive for, although it may not be attainable,
depending on your device. In this case, there’s always a
buffer free. Data is buffered as fast as it’s available and
(with luck) is sent to the device as fast as the device can
service it. In practice, this may be a difficult (if not
impossible) scenario to achieve. In a moment, we’ll see
why. First, let’s take a look at the resource that specifies
the buffering parameters for a QuickDraw GX printer
driver.

THE GXUNIVERSALIOPREFSTYPE RESOURCE
The gxUniversalIOPrefsType ('iobm') resource
controls the behavior of the standard buffering and
device communication for QuickDraw GX printing.
Here’s what this resource looks like:

type gxUniversalIOPrefsType
{

longint standardIO = 0x00000000,
customIO = 0x00000001;

longint; // number of buffers to allocate
longint; // size of each buffer
longint; // number of I/O requests that

// can be pending at once
longint; // open/close timeout in ticks
longint; // read/write timeout in ticks

};

The first field in the resource specifies whether you’re
using QuickDraw GX’s standard communications
methods (like PAP or serial) or if you’re going to
provide custom device communications routines (to
support SCSI or Centronics printers, for example). If
you set this field to customIO, QuickDraw GX won’t
perform needless memory allocation or initialization to
support the standard I/O routines.

The next field indicates the number of buffers you’d
like QuickDraw GX to allocate for you (0 indicates
none). In low-memory situations, fewer buffers than
this number may be created.

Following the number of buffers is the size of each
buffer, and then the intimidating “number of I/O
requests that can be pending at once” field. A good
value for this field is the number of buffers + 3. This
represents the possibility of a pending write (or read)

d e v e l o p Issue 20 December 199480

Time
Buffer 1�

Buffer 2�

Buffer 3�

Buffer 4

a
–�
–�
–�
–

b

*�
–�
–�
–

c
�
–�
–�
–

d

�
*�
–�
–

e
–�
�
–�
–�

f
–�

�
*�
–�

–�
–�
�
–�

–�
–�
�
�

–�
–�
–

*�
–�
–

�
–�
–�
–

�
*�
–�
–

–�
�
–�
–

g h

*

i j k

�

l m

Figure 2. Device processes data very quickly

Time
Buffer 1�

Buffer 2�

Buffer 3�

Buffer 4

a
–�
–�
–�
–

–
–

*
b

*�
–�
–�
–

c
�
–�
–�
–

d

�
*�
–�
–

�
*

e
�
�
–�
–

�
�
–

f

�
�
*�
–

�
�
*

g

–

h

*

i j k l m n

Figure 3. Device and buffers are working optimally

on each buffer, as well as a pending status, read, and
close connection request.

The rest of the fields in this resource are used to set
timeout thresholds.

If a driver doesn’t include an 'iobm' resource, the
system defaults to two 1K buffers and 10-second
timeout values. Because every device is different, it’s
unlikely that the default options will be ideal for your
printer.

DIFFERENCES BETWEEN IMAGING SYSTEMS
PostScript, raster, and vector drivers send differently
formatted data to their devices, and this has an effect
on how you should set up your buffers.

PostScript drivers. PostScript drivers send text or
binary data to their printers, and are generally
connected via PAP (Printer Access Protocol). As it
turns out, the low-level PAP driver in QuickDraw GX
makes sure that no more than (512 * flow quantum)
bytes are sent to your device at a time. The flow
quantum (normally 8 for LaserWriters) is specified in
your gxDeviceCommunicationsType ('comm')
resource. So, if your PAP printer uses a flow quantum
of 8, a maximum of only 4K will be sent to the printer
at a time, even if your buffer size is 8K. This means
that a buffer size of (256 * flow quantum) or
(512 * flow quantum) usually works well for PAP
devices.

Vector drivers. There are some distinct differences
between vector drivers and other types of drivers:

• Vector drivers send text commands, but not in the
quantity that their PostScript counterparts do.
Vector devices tend to understand graphics
commands that are only a few characters long but
describe graphics that may take several seconds to
plot. This is especially true for pen plotters and
cutters.

• Because vector devices usually have very basic
graphics primitives, operations such as clipping and
converting text into polygons are often performed
on the Macintosh before the data is sent to the
plotter.

• Unlike most PostScript and some raster devices,
vector devices rarely wait to start imaging until the
entire page is received. It’s therefore more efficient
to begin the plot as soon as possible, and then send
small chunks of data as quickly as possible.

As a result, vector drivers work best when they use
several small buffers — for example, buffers of 256

bytes each. This helps keep both the Macintosh and the
printer busy.

Raster drivers. Raster drivers send bitmaps to their
printers, often with control codes to skip over white
areas in the image. The way you set up your buffers
for raster drivers can have a dramatic effect on
performance — more so than for other types of drivers.
The bitmap for a US Letter–sized page on a 24-bit,
300-dpi color device can require 24 megabytes of data.
With that much data to process, your code has to be as
efficient as possible. For raster drivers, your buffers
should be at least the size of one (preferably two)
maximum-sized scan lines for your device.

BUFFERING BOTTLENECKS
There are several things that can have an impact on the
flow of data to your device. We’ll discuss the most
common ones here.

The number of buffers specified in your 'iobm'
resource. If you used only one buffer in your printer
driver, you’d constantly hit the “pending write” lock-
out situation described earlier. As soon as you finished
filling the buffer, you’d have to wait for it to empty
before buffering more data. You should therefore
always have at least two buffers.

In an ideal situation, two buffers are all you’d need —
one would be always available for buffering while the
other is sent to the device. However, you’d need a very
fast device to manage this, as we’ll soon see. In practice,
three or four buffers is a good start for PostScript and
raster drivers. For vector drivers, start with eight
buffers.

The size of the buffers specified in your 'iobm'
resource. As mentioned earlier, this is critical for
vector and raster drivers. For vector devices, even
moderate-sized buffers (2K) can cause your plotter to
stall while data is being buffered, and your Macintosh
to stall while that data is being plotted. Remember, a
little vector data goes a long way. Start with 256-byte
buffers.

If you’re writing a raster driver using the default
implementation of GXRasterDataIn, make sure that at
least one worst-case scan line of data will fit in your
buffers. (Keep in mind that your compression scheme
might expand the data.) Your buffers must be this large
because the gxDontSplitBuffer buffering option is used
by the default implementation of GXRasterDataIn. If
your buffer isn’t big enough to hold an entire scan line,
you’ll get into an infinite loop as QuickDraw GX keeps
rejecting buffers and asking for one that can hold all
the data.

PRINT HINTS: IMPROVING QUICKDRAW GX PRINTER DRIVER PERFORMANCE 81

There are two reasons for using the gxDontSplitBuffer
option:

• It allows for some degree of error recovery. If data is
sent to the printer, and the printer is off-line and
discards the data, you can just repackage the same
scan lines and resend the buffer. If scan lines are split
across buffers, it’s a little more work to keep track of
what to send again.

• Some devices are modal in that they must be set to
“graphics mode” before receiving graphics data, and
set to other modes before receiving other types of
data. Imagine that you split a buffer containing a
“start graphics mode” command, followed by some
graphics data, followed by an “end graphics mode”
command. In between the two GXBufferData calls,
the driver might want to query the device with
GXWriteData. This could result in chaos or ignored
requests because the printer is set to graphics mode
and might not accept such queries.

Using the gxDontSplitBuffer option does mean that
some portion of each buffer will probably be unfilled. If
splitting the data between buffers isn’t a problem for
your device, override GXRasterDataIn and don’t
specify gxDontSplitBuffer when you buffer the data.

How big should your buffers be? As mentioned before,
probably at least the size of two maximum-sized scan
lines. In a minute, we’ll see how you can tune your
buffer size.

How fast QuickDraw GX can prepare data. It’s
going to take QuickDraw GX time to prepare the data
that it hands your driver. For raster drivers, make sure
that your gxRasterPrefsType ('rdip') resource is set up
to ask only for the data that you need. Don’t make
QuickDraw GX spend any more time or pass more
data than it needs to.

Time hits from postprocessing. This applies to
drivers that do their own halftoning and the like. Can
you gain significantly by doing your own halftoning?
It’s possible, but keep in mind that QuickDraw GX
offers a wide range of halftoning and dithering options,
and using these methods is likely to take a similar
amount of time as just passing your driver the raw data
and having it halftone that.

The throughput of the communications pipe. Your
device might want to process data faster than the
computer sends it due to hardware constraints of, for
example, the serial port.

How fast the device can receive data. Similarly,
the device itself might be the bottleneck. Keep in mind

that the speed the manufacturer claims may not refer to
using the printer for printing graphics. Graphic images
usually take longer to process than text. The Macintosh
(with some minor irrelevant exceptions) prints in
graphics mode only, so the claimed rate may not be
realistic.

WHICH BOTTLENECKS AFFECT YOU?
Before you can improve the performance of your
printer driver, you have to find your bottlenecks. Here
are some tests that help determine where your
bottlenecks are.

How long does it take QuickDraw GX to prepare
data? If you’re writing a raster driver, implement a
GXRasterDataIn override that does nothing but return
noErr. For PostScript or vector drivers, do the same
thing in a message override for GXBufferData or
GXVectorPackageShape, respectively. If your PostScript
or vector driver renders some shapes on its own, you
should also override GXPostScriptProcessShape or
GXVectorVectorizeShape. In this override, simply
forward the message unless you’re passed a shape that
your driver will render itself. In that case, don’t forward
the message; just return noErr. This way, your
calculations won’t include time spent rendering shapes
that your driver will be handling completely on its own.

Next, print a typical several-page document and see
how many pages per minute you get. If this is slower
than the device can print, you might want QuickDraw
GX to create an image file of the data before sending it.

Calculating pages per minute is easy. Suppose your
“typical” 4-page document takes 72 seconds to render. Then
(72 seconds ÷ 4 pages) = 18 seconds per page and (60
seconds ÷ 18 seconds per page) = 3.3 pages per minute.•

To create an image file, override GXCreateImageFile
and forward the message along with a combination of
the image file options (such as “gxMakeImageFile |
gxEntireFile”). There are options for creating image
files for each plane, each page, or both. For details, see
the QuickDraw GX interface file PrintingMessages.h.

If you use the debugging version of QuickDraw GX,
rendering is slower. For accurate benchmarks, use the
nondebugging QuickDraw GX extension for timing tests.•

How long is your code taking to postprocess
data? Do the same thing as you just did, but include
any of your own code (for halftoning, compressing, or
whatever) that you normally execute. Compare this to
the rate you got from the last test to see how your code
is affecting rendering time. Again, an image file might
be an option if this is a problem. Also, consider using

d e v e l o p Issue 20 December 199482

PRINT HINTS: IMPROVING QUICKDRAW GX PRINTER DRIVER PERFORMANCE 83

QuickDraw GX’s built-in halftoning and dithering
instead of your own.

How fast does the device want data? Suppose
your device is a two-page-per-minute, 300-dpi, 4-bit
device with a maximum page size of 8 by 10 inches.
Some quick arithmetic (see “Calculating Device Data
Requirements”) tells you that you need over 7
megabytes of data per minute, though you can reduce
this requirement substantially with compression.

There’s another way to determine whether the
communications speed is too low: Make your driver
roll everything into an image file before sending
anything to the printer. Then, print a typical document
and see if the printer stays busy once it starts receiving
data. If not, the data isn’t being sent to your device fast
enough. There’s not much you can do about this except

reduce the amount of data you send or redesign the
hardware.

Finally, don’t package white space and send it to your
device if the device supports skipping it. The
GXRasterDataIn message passes a rectangle that
indicates where the nonwhite scan lines are in a given
band. If you don’t skip over the white space on a page,
you’re wasting time packaging and sending useless data.

Is the buffer usage optimal? Whenever you send
GXBufferData, first send GXFreeBuffer. Check to see
if GXFreeBuffer returns immediately. If it doesn’t, the
buffering is being blocked by a pending write. An
alternate approach is to implement an override for
GXFreeBuffer that subtracts the tick count determined
before calling Forward_GXFreeBuffer from the tick
count when the call returns. You could record this in a
file and look at the information after a print job
finishes. Large values indicate that your driver is
blocked while waiting for a free buffer.

Try increasing your buffer size or adding more buffers
until the lock-out goes away. Note that if your device
isn’t fast enough, you may never (with reasonable
buffer allocation) reach a state in which you never have
to wait. Your device (or the communications pipe)
might be so slow that the only way to keep a buffer free
is to allocate enough buffers to hold the entire page.
That’s what I would consider unreasonable buffer
allocation. However, if you can reach this state of
always having a buffer free, back off on the number of
buffers or buffer size slightly so that you begin to get
occasional lock-outs again. This is your optimal buffer
configuration.

EYES TO THE FRONT, DRIVER
Now that you can optimize your QuickDraw GX
buffering and printing, you can avoid the sporadic
printing that so many driver writers fall prey to. Your
drivers will have the printers humming steadily along,
your users will be pleased, and other driver developers
will stand in awe of you.

Thanks to our technical reviewers Hugo Ayala, Tom Dowdy,
Daniel Lipton, and Harita Patel.•

CALCULATING DEVICE DATA
REQUIREMENTS
A two-page-per-minute, 300-dpi, 4-bit device with a
maximum page size of 8 by 10 inches requires
(300 x 300 x 4) ÷ 8 bits per byte = 360,000 bits
per square inch, or a little under 44K bytes per
square inch. The entire page requires (45,000 x 8 x
10) = 3,600,000 bytes per page or about 3.5
megabytes per page. To achieve the device’s
maximum two-page-per-minute throughput rate, you
need to pass twice this amount, or over 7 megabytes
of data per minute.

Now, suppose you use compression and also remove
beginning-of-line and interline white space to reduce
a typical page to, say, 25% of its raw size. Then
you’re looking at 7 x .25 or about 1.8 megabytes
per minute. That’s still about 29K bytes per second or
about 300 Kbaud to satisfy this device. This can still
be a problem if your interface is running at only
9600 baud.

Apple and Novell recently announced a PowerPC version of NetWare.
Under NetWare, network services such as file servers, print spoolers,
and electronic mail dispatchers are written as NetWare loadable
modules, or NLMs. By providing a software layer between the NLMs
and the hardware they run on, NetWare makes more efficient use of
the available hardware, improves portability, and allows programs to
run on mixed networks tying together different platforms. This article
shows you how to get started with NLM development.

Novell’s NetWare has been around for years, and is considered by many to be the
networking standard in the DOS/Windows world. NetWare servers have always been
able to handle AppleTalk clients, too, but they have not been as prevalent in
predominantly Macintosh environments. As a result, most Macintosh developers have
never had the need or inclination to learn how to write software for NetWare servers.
With Apple’s NetWare for PowerPC™, you can now port your existing network
products, or create new ones, to run on Apple Workgroup Servers under NetWare.

In this article, we’ll take a brief tour of the NetWare environment and what it takes to
write software for it. The article is intended primarily for developers of networking
software, particularly running on networks using Apple Workgroup Servers or
multiple platforms — but you should also find it of interest if you’re just curious
about NetWare or want to know about the available options for writing networking
software.

NetWare is a network operating system, a framework for providing network services.
Instead of running application programs, NetWare runs NetWare loadable modules, or
NLMs, which typically implement network-based services such as file storage,
printing, and electronic mail. An NLM can be loaded either on demand or
automatically, and uses the NetWare Operating System (NOS) to allocate memory,
communicate with clients, and interact with the underlying hardware. Once loaded,
an NLM becomes an integral part of the operating system, with no architectural
“middlemen” to slow it down. Figure 1 shows an overview of the NetWare
architecture.

JAMIE OSBORNE

NetWare Development on PowerPC

d e v e l o p Issue 20 December 199484

JAMIE OSBORNE (AppleLink JWO) In the
short space of a year, Jamie Osborne has gone
from doing three-dimensional user interfaces to
working on exception-handling routines for a
PowerPC Memory Manager to programming
NetWare NLMs. When he’s not sitting in front of
a computer (which, according to his fiancée, is

“only when he’s sleeping, and maybe not even
then”), he keeps busy writing television scripts for
Paramount to reject. He hasn’t quite figured out
what he really wants to do with his life, but he’s
reasonably certain it involves long days lounging
about in a large house in the hills of New
Hampshire.•

The information in this article is based on Apple’s NetWare for PowerPC, an
implementation of Novell’s NetWare 4.1. Earlier versions of NetWare are still in wide
use, but NetWare 4.0 added some new features such as directory services and
improved security. NetWare 4.1 is a more robust version of 4.0 and improves still
further on these new features. Though earlier versions of NetWare client software can
connect to NetWare 4.1 networks, they may not be able to use all the features of the
available NLMs. If you want your NLMs to support all versions of NetWare clients, the
NOS provides the necessary support libraries.•

WHY NETWARE?
If you’re a Macintosh developer, why should you make the leap to NetWare
development? To make your product available to the greatest number of users.
NetWare is used on more than 60% of all servers in the DOS-compatible world.
Here are some of the reasons NetWare is so popular.

EFFICIENT RESOURCE ALLOCATION
In a typical Macintosh network installation, a single server machine provides file
storage, printing service, a mail server, and maybe even a scheduling server or other
network services. Any one of these services might deliver acceptable performance on
its own; but when you try to put them all on the same “box,” they must contend for
limited resources such as processor time, memory, and disk access. The result is that
they all suffer performance degradation: even on a blindingly fast machine, such
resource contention can slow all of your network services to a crawl.

NetWare helps alleviate this problem in three ways:

• OS-level resource access. Unlike other operating systems (such as
UNIX®), NetWare has no protection scheme to prevent a process
from accessing memory outside its domain. Once loaded, NLMs
become part of the operating system itself, with unrestricted access
to memory and other hardware resources. NLMs run faster
without the overhead associated with memory protection. The
cost, of course, is that an unprotected NLM can bring the entire
system down if it crashes.

• “Lightweight” threads. The NOS is multithreaded, with threads
from NLMs existing alongside those belonging to the system
itself. Because they operate at the system level, NLM threads carry
very little overhead and can be spawned, executed, and switched
very quickly.

NETWARE DEVELOPMENT ON POWERPC 85

NetWare server

Third-party NLMs

CLIBSystem NLMs NLMLIB

NetWare Operating System

CPU

Network

NetWare system interface

Figure 1. The NetWare architecture

• Nonpreemptive multitasking. NetWare is a nonpreemptive
multitasking system: the burden of deciding when to switch
threads is placed on the individual NLMs, rather than on the
operating system itself. So long as all NLMs are “good citizens,”
they can work cooperatively to produce a more efficient system.

CENTRALIZED DIRECTORY SERVICES
One of the biggest headaches for many network administrators is maintaining user
and group lists for multiple servers and services. A single user may have an account
on two or three file servers, a mail server, and who-knows-what else. Keeping the
different accounts for that one person up to date can be a significant chore.

NetWare helps ease this burden by making centralized directory services available to
all NLMs. NetWare users log directly into the network itself, not into a particular
server. Using interfaces that NetWare provides, NLMs can access the directory
services and use them for authentication. Thus a mail server and a file server, for
example, can share the same user list instead of each maintaining its own. This
centralized approach to directory services benefits everyone. NLM developers don’t
have to write the code to store, edit, and maintain their own user lists; network
administrators only need to maintain a single centralized directory; and users don’t
have to remember half a dozen different passwords and authenticate themselves every
time they move from one network service to another.

PORTABILITY
Networks are growing larger everywhere, as users discover that computers linked
together, sharing services over a network, are far more useful than isolated
workstations. While this growth presents many opportunities for developers of
network services, it also presents the problem of diversity. The days are gone when a
company’s computers all ran the same operating system. Today, Macintosh
computers, DOS-based PCs, and UNIX workstations must all coexist on the same
network.

Porting a network service such as a mail server from one hardware platform to
another can take a great deal of time and effort. Building your server as an NLM,
however, gives it instant portability to any platform for which NetWare is
implemented. NetWare’s uniform API “virtualizes the hardware,” so that NLMs
don’t have to interact directly with the platform they’re running on. Since the
interface to NetWare is the same from one platform to another, porting your NLM is
a simple matter of recompiling.

THE RIGHT TOOLS FOR THE JOB
By now you should be convinced that NetWare has a lot of advantages to offer. The
rest of this article details what it takes to build an NLM that will run on NetWare for
PowerPC. Included on this issue’s CD is sample code for a simple multithreaded
NLM.

CHOOSING A DEVELOPMENT ENVIRONMENT
If you’re already developing software for Power Macintosh computers, you probably
have most of the tools you need to develop software for NetWare for PowerPC. In
the next section, we’ll see how to use these tools to do NetWare development in a
Macintosh environment; but there are non-Macintosh options as well:

• If you have an IBM RS/6000 computer, you can use the cset
compiler to develop your NetWare NLMs. (You’ll need version
2.1.1 or later of the compiler, which can generate PowerPC code.)

d e v e l o p Issue 20 December 199486

This is the method Apple used to port many of the NLMs that are
part of NetWare itself.

• If you have a DOS-compatible machine, you may be able to use
Novell’s UnixWare in conjunction with the Cygnus C/C++
Compiler for PowerPC (a PowerPC version of gcc). You should
have at least an 80386 processor for this option, but an 80486 or
Pentium is recommended.

If you already have the hardware and software, either of these non-Macintosh options
can help you quickly begin producing high-quality code. But if you aren’t already
using an RS/6000 or a DOS-compatible system, you’ll probably do better to go the
Macintosh route. Purchasing an RS/6000 can be quite expensive, not to mention the
additional cost of setup and maintenance. You can get DOS-compatible machines for
much less, but not all of them are compatible with UnixWare. (Any certified
UnixWare reseller should be able to help you determine whether UnixWare will run
on your hardware.)

This article will focus exclusively on Macintosh development options. However,
general information about NetWare’s interfaces applies to any development platform
you choose.

NETWARE DEVELOPMENT THE MACINTOSH WAY
MPW Pro (available from APDA) includes a PowerPC C/C++ compiler and linker
that run as tools under Macintosh Programmer’s Workshop (MPW). The compiler,
PPCC, produces PowerPC object (.o) files, which you then pass to the PPCLink tool
to produce an XCOFF (eXtended Common Object File Format) file.

Ordinarily, the next step would be to pass the XCOFF file, in turn, to the MakePEF
tool, which turns it into a PEF (Preferred Executable Format) file ready to run as a
Macintosh application. To build an NLM, however, you don’t use MakePEF. Instead,
you pass your object files to a special-purpose NLM linker that translates them into a
finished NLM, using information about imports and exports taken from a definition
file you supply. (See the next section for more information on the structure and
contents of the definition file.) You invoke the NLM linker with an MPW script,
NLMLink. As shown in Figure 2, you pass it your definition file along with the usual
PowerPC runtime library, PPCRuntime.o, and another library, Prelude.o (provided
with the NetWare for PowerPC Software Development Kit), that allows NetWare to
load your NLM. The NLMLink script can also accept a list of .o files as arguments,
in which case it calls the standard PowerPC linker, PPCLink, for you.

To run and test your NLMs, you’ll need the developer’s version of NetWare for
PowerPC from Novell. You can install it on any Power Macintosh computer.

THE DEFINITION FILE
In addition to your NLM’s object (.o) files, you must provide the NLMLink tool with
a definition (.def) file. This file, which is usually named NLMName.def (where
NLMName is the name of your NLM), contains information that NLMLink needs in
order to turn your linked object file into a finished NLM. Among other things, the
definition file includes a list of all routines imported to and exported from your
NLM. Listing 1 shows an example definition file, taken from the sample NLM on
this issue’s CD.

The keywords description, copyright, and version give the information that will be
displayed on the NetWare console when the NLM is loaded.

NETWARE DEVELOPMENT ON POWERPC 87

The keyword reentrant specifies that the NLM can be loaded multiple times on the
console, but only one copy of the NLM will reside in memory, with all threads
sharing that same copy of the code.

The keywords input and output tell the linker what file or files to read and what to
name the file it produces.

The keywords start and exit identify routines to execute when the NLM is loaded
and unloaded, respectively. The Prelude.o file that you pass to the NLMLink tool
defines default start and exit routines, named _Prelude and _Stop, to set up your
NLM’s threads at load time and clean them up at unload. If your NLM is reentrant,
you’ll probably supply a start routine of your own to handle reentrant loading; if not,
you can just omit the start keyword (to use the default start routine _Prelude). If you
define your own start routine, make sure it calls _Prelude the first time your NLM is
loaded.

The keyword import is followed by a list of the routines that your NLM needs to
have available at run time. These routines usually come from the NetWare C
Interface, but they could be exported by any other NLM running on the server. Any
routine your code calls that is not part of your NLM must be listed here, or the
NLMLink tool will report an error.

Finally, the keyword export is followed by a list of the routines that your NLM
makes available for other NLMs on the server to call. You need not export any
routines at all; however, if you want to give other NLMs access to any of your
routines, you must list them here. (Our sample NLM doesn’t actually export any
routines, but we’ve included a fictitious one in the sample definition file, just for
illustration.)

These are just some of the keywords you can use in a definition file. The NetWare
for PowerPC Software Development Kit documentation describes all of the possible
keywords and how to use them.

d e v e l o p Issue 20 December 199488

MyNLM

Bar.oFoo.h

MyNLM.h

Programmer-created files

Foo.c

Bar.c

PPCC

Prelude.o

Foo.o

PPCRuntime.o

NLMLink

PPCLink

MyNLM.def

Figure 2. Building an NLM with MPW

A BRIEF TOUR OF THE NETWARE INTERFACE
The NetWare C Interface provides more than 1000 functions for interfacing with the
NOS. It’s a load-time interface, meaning that function calls are resolved at the time
an NLM is loaded rather than at link time. Trying to document the entire NetWare
interface here would be like trying to summarize all of Inside Macintosh. We can,
however, look at some highlights. The NLMs that make up the NetWare C Interface
include, among others, CLIB (C LIBrary), DSAPI (Directory Services API),
THREADS, NWSNUT (NetWare ScreeN UTility), and TLI (Transport Layer
Interface). Together, these NLMs offer interfaces to the following NetWare services:

• high- and low-level I/O

• directory services

• file manipulation

NETWARE DEVELOPMENT ON POWERPC 89

Listing 1. Example definition file

description "AppleTalk Demo NLM"
copyright "Apple Computer, Inc."
version 1, 1, 1
reentrant
input ATDemo.out
output ATDEMO.NLM
start HandleMultipleLoad
exit _Stop
import

ATAtpClose
ATAtpGet
ATAtpOpen
ATAtpSendRsp
ATDdpNetinfo
ATNbpParseEntity
ATNbpRegister
ATNbpRemove
ATZipGetMyZone
exit
free
GetFileServerName
malloc
printf
strcat
strlen
strncat
_StartNLM
ImportSymbol
_TerminateNLM
_SetupArgv
atexit
__get_errno_ptr
BeginThread
ExitThread
strcpy

export
FooBar

• memory management

• threads

• communications protocols

• math functions

• human interface utilities

These services (which are described in more detail below) are actually only a few of
those available through the NetWare C Interface. Currently, more than 40 different
services (analogous to Macintosh Toolbox managers) are available to developers
of NLMs. The NetWare for PowerPC Software Development Kit contains
documentation on all of these services, as well as the latest development utilities
and sample code.

INPUT/OUTPUT
NetWare provides APIs for both synchronous and asynchronous I/O.

DIRECTORY SERVICES
The Directory Services API provides access to the distributed directory services
database on a NetWare 4.1 network. NetWare directory services offer functionality
very similar to that of the Apple Open Collaboration Environment (AOCE) — in
fact, Apple and Novell are pursuing ways to integrate the two services. Typical calls
include NWDSAuthenticate, NWDSCreateObject, and NWDSSearch.

FILE MANIPULATION
NetWare provides several sets of interfaces for file manipulation. Calls such as open,
fopen, DFSOpen, and AFPOpenFileFork all open a disk file, but take different
parameters and follow different I/O models. You decide which you need, depending
on whether you want speed, convenience, or compatibility.

MEMORY MANAGEMENT
NetWare uses the standard C malloc/free model for memory management. NetWare
doesn’t use a virtual-memory scheme to increase a server’s memory capacity beyond
that of the available physical RAM, so you must be careful to allocate only as much
memory as you actually intend to use. It’s also a good idea to include code for
handling low-memory conditions in a graceful way.

THREADS
NetWare is a nonpreemptive operating system, meaning that each NLM is
responsible for voluntarily giving up control of the processor from time to time, to
allow other NLMs to run. Every NLM has at least one thread of execution, known
as the main thread, created when the NLM is initially loaded. The NLM can then
optionally spawn as many additional threads as it needs. At any given time, exactly
one thread is in active control of the processor; all others are temporarily suspended.
The NOS maintains a run queue of such suspended threads awaiting execution.

The NetWare interface provides a set of routines for thread management, including
BeginThread, Delay, EnterCritSec, and ThreadSwitch. The “good citizen” routines
CYieldIfNeeded, CYieldWithDelay, and CYieldUntilIdle yield control of the
processor to give other NLMs their turn at bat. In addition, many other system calls
automatically block (suspend the execution of a thread) while waiting for some
external occurrence such as the arrival of a packet on the network, so it isn’t always
necessary to relinquish the processor explicitly.

d e v e l o p Issue 20 December 199490

COMMUNICATIONS
NetWare’s AppleTalk interface implements all of the protocols defined in Inside
AppleTalk, from the Datagram Delivery Protocol (DDP) to the AppleTalk Filing
Protocol (AFP). NetWare also provides native interfaces to IPX/SPX and TCP/IP.
For greater flexibility, you can use the NetWare Transport Layer Interface (TLI).
Because TLI functions are independent of the underlying transport layer, they allow
you to use a variety of protocols, such as AppleTalk, IPX/SPX, and TCP/IP, without
having to write extra code.

MATH FUNCTIONS
The Math Services API provides common mathematical functions like min, sqrt, and
cos. For maximum efficiency, the implementation on PowerPC servers uses the
processor’s built-in floating-point capabilities whenever possible.

HUMAN INTERFACE UTILITIES
Many NLMs present a human interface on the server machine, allowing an operator
or administrator to perform needed server-management tasks. If you want your NLM
to have a graphical (as opposed to a command-line) interface, you can use the
NetWare NLM User Interface Services to create windows, menus, and dialog boxes
on the server console. Although the interfaces aren’t as sophisticated as those of the
Macintosh Toolbox, they can help you provide a convenient human interface to your
NLM.

A SIMPLE NLM
To illustrate how NLMs are written, we’ll look at two examples. Both will run on any
server running NetWare. You’ll find the code for both examples on this issue’s CD.

Our first sample NLM is the obligatory “Hello, world” example, which we’ll name
HELLO.NLM. The code is short enough that we can show it right here:

/* HELLO.NLM
This NLM prints the traditional message "Hello, world." on the server
console. Type "Load Hello" on the server to see it run.

*/
#include <stdio.h>
main()

{
printf("Hello, world.\n");

}

Pretty painless, right? The reason for including this example is to show that writing
an NLM doesn’t require you to learn an entirely new programming method. Much of
the programming you do when writing an NLM is the same as if you were writing an
application for Macintosh or UNIX.

A MORE INTERESTING NLM
Now let’s look at another sample NLM, named ATDEMO.NLM. When loaded on
your server, ATDEMO watches for an incoming AppleTalk connection and provides
the client with server statistics on request, such as the number of clients connected,
directory listings, and so forth. (The CD also contains a small Macintosh client
application that connects to the server and queries ATDEMO for this information.
The client application is provided in “fat binary” form so that it can run in native
mode on both PowerPC and 680x0 platforms. We won’t examine its code in this
article, but it’s included on the CD in case you’re interested.)

NETWARE DEVELOPMENT ON POWERPC 91

ATDEMO demonstrates three important points about writing NLMs:

• how to make calls to the NetWare C Interface

• how to use the AppleTalk protocol in an NLM

• how to create and schedule threads for execution by the NOS

The code for the entire NLM is contained in a single file, ATDemo.c. It begins with
a list of #include macros. Some of these, such as stdio.h and stdlib.h, are standard
ANSI includes. Others, such as nwenvrn.h, nwthread.h, and nbp.h, are headers for
the NOS. Remember that all routines you call from these header files, even the ANSI
C routines, are linked at load time and implemented by the NLMs described earlier.
Do not use the ANSI headers from your MPW CIncludes folder — there may be
subtle differences in the header files that could cause debugging nightmares later on.

Like all C programs, an NLM written in C must have a main routine. Macintosh
applications typically have a structure based on a main event loop:

main()
{

/* Do preliminary setup and initialization. */
...

do {
...
WaitNextEvent(...);
...

} while (1);

/* Do final cleanup and exit. */
...

}

The structure of an NLM is a bit different, because the server itself is doing the event
processing. Instead of polling the system for events and processing them one at a time
in our main thread, we block for action and spawn a separate thread to handle each
incoming event. This removes the bottleneck associated with a single point of event
processing, with each spawned thread doing its own work and blocking only for its
own needs.

The structure of ATDEMO looks like this:

main()
{

/* Do preliminary setup and initialization. */
...

do {
ATAtpGet(...);
...
BeginThread(...);

} while (1);

/* Do final cleanup and exit. */
...

}

d e v e l o p Issue 20 December 199492

At first glance, our NLM seems to spend all its time in a busy do-while loop. In fact,
this is not the case. ATAtpGet is a NOS function that waits to receive an ATP
(AppleTalk Transaction Protocol) packet. Like many other functions in the NetWare
C Interface, ATAtpGet is a blocking function: it suspends execution of the calling
thread while waiting for an ATP packet to arrive, allowing the NOS to run other
scheduled threads in the meantime. The thread calling the blocking function gets
placed at the end of the run queue; eventually it will work its way back to the front of
the queue and resume execution from the point of the suspension. (If our NLM
didn’t call such a blocking function, we could instead call ThreadSwitchWithDelay at
the end of our do-while loop, to relinquish control of the processor explicitly and
allow other threads to run.)

When the server eventually receives an ATP packet addressed to our NLM, it
reactivates our main thread, causing control to return from the ATAtpGet call and
resume with the next instruction. Our NLM next calls the NOS function
BeginThread to create a new thread to respond to the packet. The actual code issues
this call by means of a subsidiary function, SpinNewSession:

int SpinNewSession(...)
{

int completionCode;

completionCode = BeginThread(HandleClientSession, ...);
return completionCode;

}

BeginThread takes a function pointer as its main parameter, creates a new thread to
execute the function, and adds the thread to the NOS’s run queue. When the time
comes to run this thread, the NOS will call the specified function (in this case, an
ATDEMO function named HandleClientSession). Thus, instead of a single thread of
execution that handles all communications with all clients, we have a main thread that
waits for new clients to initiate communications and spins off a subsidiary thread for
each such client connection.

Like our main function, HandleClientSession also has a do-while loop that uses
ATAtpGet as the main blocking function:

void HandleClientSession(...)
{

/* Allocate data structures and open a connection. */
...

ATAtpSendRsp(...);

do {
ATAtpGet(...);
quitRequest = HandleRequest(...);
if (quitRequest) {

ATAtpClose(...);
ExitThread();

}
} while (1);

}

ATAtpGet will continue getting packets from the client until the client notifies the
server to break the connection. Each time HandleClientSession receives a packet, it

NETWARE DEVELOPMENT ON POWERPC 93

calls another ATDEMO function, HandleRequest, to examine the content of the
message and determine what specific information the client is requesting. When
HandleRequest reports that the client has asked to break the connection,
HandleClientSession calls the NOS function ATAtpClose to close the connection
and then destroys the thread with the NOS function ExitThread.

NETWARE DEVELOPMENT TIPS
Here are some key points to keep in mind when writing an NLM or porting an
existing program to NetWare.

• Don’t rule out a NetWare version of your software just because it’s
not “real Macintosh.” Apple’s future plans for client/server
solutions feature NetWare as a core OS.

• Try to make your NLM platform-independent, if possible. If you
avoid the platform-specific features of NetWare for PowerPC,
you’ll be able to port your NLM to NetWare running on other
platforms, including DOS-compatible machines, with little effort.

• Remember that your NLM runs on a server that handles many
different clients. Try to make it compatible with clients of any
type.

• If your NLM is intended to run on multiple platforms or support
multiple transport protocols, use the NetWare Transport Layer
Interface (TLI) rather than native protocols. This will save you
time and effort when porting to another platform.

• Be careful when developing NLMs with a Macintosh development
environment. You’re writing an application that has no Macintosh
Toolbox underneath: use only the headers and libraries that come
with the NetWare for PowerPC Software Development Kit.

• Test your NLM carefully and extensively. While in development,
an NLM can be run in isolation, where it can’t damage anything
but itself. Once it’s ready for prime time, it will be loaded as part of
the NOS; then if it crashes, it may bring the entire server down
with it.

• NetWare is a nonpreemptive multitasking operating system. Be
sure to design your threads of execution so that they relinquish the
processor frequently, to give other NLMs their fair share of
processor time.

• Because NetWare servers have no virtual memory, they’re limited
to the physical memory available in the computer. Don’t be a
memory pig!

• Be sure to take advantage of the numerous developer programs
and information available from Apple and Novell.

Once you’ve finished developing and testing your NLM, you’ll probably want to get
it certified by Novell before you release it to the world. Following the guidelines
above will help make that process as speedy and painless as possible.

WHAT NEXT?
This article should give you enough basic information to get started with NetWare
and NLMs. Novell recommends that anyone interested in setting up a NetWare
system hire a trained specialist called a Certified NetWare Engineer, or CNE, to help

d e v e l o p Issue 20 December 199494

with the installation. Many NetWare developers also attend training classes to learn
how to port their existing software or develop new NLMs. If you don’t want to go to
the time and expense of a training course, a couple of good books can go a long way
to help you learn what you need to know. See the list at the end of this article for
some suggestions.

Before embarking on serious development, you’ll definitely want to get Novell’s
NetWare for PowerPC Software Development Kit (which should be available soon if
not by the time you read this). In it you’ll find a complete set of software and
documentation to assist you in developing your own NLMs. For more information,
call Novell at 1-800-NETWARE (1-800-638-9273). For information from Apple on
NetWare developer programs, call Apple’s Developer Support Center at (408)974-
4897 or send a message to AppleLink DEVSUPPORT.

In today’s networking environment, more and more products, especially client/server
programs, are being written for multiple platforms. NetWare gives you a convenient
way to develop portable network software without having to rewrite all your code
separately for each new platform. Whether you’re porting an existing network
application or writing a new one, you can benefit greatly by doing it in NetWare.

NETWARE DEVELOPMENT ON POWERPC 95

Thanks to our technical reviewers Rob Hawley,
Bob Heldt, Rich Kubota, Michael McDaniel, and
Clara McKenzie.•

If you found this article interesting and
would like to see more in-depth NetWare articles
in the future, send a note to AppleLink NWDEV.•

RECOMMENDED READING
Here are some suggestions for further reading on the subject of NetWare and NLMs:

• Novell’s Guide to NetWare 4.0 NLM Programming (Novell Press, 1993).

• “Writing Your Own NetWare Loadable Modules,” PC Magazine Volume 12 Issue
20 (November 23, 1993), pages 355–364.

• “Concurrent Programming With the Thread Manager” by Eric Anderson and Brad
Post, develop Issue 17. Information on multithreaded programming.

The PowerPC processors try to predict which way
your code will execute. This sounds surprisingly
astrological for a digital machine, but it becomes very
useful for a pipelined processor and will often speed up
your code. In this column I’ll go over why and how this
works, focusing especially on the new PowerPC 604
processor prediction techniques, and I’ll answer the
question “Can a Power Macintosh really tell the
future?”

PSYCHIC DECISIONS
Typically about one-seventh of the instructions in your
code are branches, either to call subroutines or to make
logical decisions in your program. The PowerPC
processor would ordinarily tend to stall at branches,
since it tries to work on more than one instruction at a
time and it’s not always sure which code it should
execute after a branch. It could either take the branch
or fall through, and often the processor won’t know
which until a couple of cycles later.

So the PowerPC processors allow for speculative
execution, meaning they’ll guess at the most probable
direction the branch will go and then will issue those
instructions. But the processor doesn’t let the
instructions commit until it’s sure the guess was
correct. Usually it guesses right, and a few instructions
are already completed when the branch is decided. If
the guess was wrong, it throws out those results and
starts over with the correct code.

This predictive skill helps keep the processor executing
successfully without stalls, and better prediction
techniques will yield better overall performance. The
new PowerPC 604 processor improves on earlier
prediction techniques; I’ll discuss all of them in detail
below.

But first, a relevant astrological note: The “birthday” of
the 601 makes it a Taurus, whereas the 603 is a Libra.
The 604 chip had a birthday in April, so it’s an Aries.

TAURUS AND LIBRA ARE COMPATIBLE
The PowerPC 601 and 603 processors use basically the
same techniques to predict branches. For simple
unconditional branches, for example, they both process
and remove the branch early in the instruction issue
stage. This operation, called branch folding, keeps the
instruction stream moving without having to wait for
the branch to be processed. The branch is handled
early, and the new instructions are fetched from the
cache immediately.

For conditional branches, both processors first try to
handle the branch early in the instruction issue stage. If
the condition being tested has already been evaluated,
the branch is folded out of the instruction stream. But
if the condition being tested is still in the pipeline, the
processor must guess at the branch direction.

Prediction of guessed branches are based on two
things: the direction of the branch and a software
“hint” bit. If the direction is negative — backward in
your code — the branch is taken (because loops often
iterate a few times backward before falling through,
and this heuristic is more often true). All other
branches fall through by default. The hint bit is a way
for the compiler to reverse this heuristic: if the bit is
set, the prediction will be reversed.

As far as I know there are no compilers that allow you
to specify the hint bit in your code, although this could
be a valuable feature. Also, profilers or similar tools
could take statistics on your code flow and then set the
bits for you from trial runs of your software.

THE TEMPERAMENT OF ARIES
The PowerPC 604 has much better branch prediction,
which means better performance. Because branch
statements most often repeat themselves, it remembers
recent branch results to make its predictions:

• It has a cache of the last 64 branches that it has
taken, and any time it sees one of these branches
again it will immediately predict to the same branch
destination. This technique, called dynamic branch
prediction, is used on the Pentium and other
processors with great results.

• It keeps a history of all other branches and predicts
based on the recent directions that branch took.

BALANCE OF
POWER

PowerPC Branch
Prediction

DAVE EVANS

d e v e l o p Issue 20 December 199496

DAVE EVANS (Aquarius, January 20–February 18) Look for
opportunities to communicate. You are bound to have fun. Love is

in the air; don’t work too much or you’ll miss it. Apple continues to
hold promise for you. Compatible with Sagittarius.•

The cache technique has the advantage of being very
fast. When the 604 fetches an instruction, it also sends
the instruction’s address to the branch cache. If the
instruction is a recently executed branch, the cache will
return the address of where the branch last went. This
is immediately used to fetch the next instruction.
Because this all occurs during the fetch of the branch
instruction itself, there’s no delay in fetching the first
predicted instruction.

For conditional branches that aren’t in the branch
cache, the 604 keeps a history of recent times it saw
that instruction. It keeps 512 such histories, each two
bits wide, to remember whether the branch was taken
during the last few executions. The processor hashes
the instruction address to keep the branch histories
distinct, and hash collisions are very rare.

Each history is set to one of four states: strongly taken,
taken, not taken, and strongly not taken. The current
state determines the branch prediction as taken or not
taken. After the branch commits, the state is updated.
Each update adjusts the state one step toward strongly
taken or strongly not taken. The two intermediate
steps are a hedge so that it will usually take two
mistakes before a prediction changes. Because branches
tend to repeat, this algorithm generally results in the
following prediction:

• If the branch was taken during the last two
executions, the 604 predicts it will again be taken.

• If the branch wasn’t taken during both of the last
two executions, the 604 predicts it again won’t be
taken.

Also with the 604, branches on the count register base
their prediction on the current count value. This will
usually predict loops correctly and yield good
performance, since loops count down for a number of
iterations before the final iteration causes an incorrect
prediction.

But these techniques also come with a tradeoff: the 604
has an extra pipeline stage to dispatch instructions.
This means instructions take longer to get through the
pipe, and mispredicted branches are more expensive.

ARIES RISING
The 604 is the fastest PowerPC processor yet, and I
can’t talk about it here without also going into why it’s
such a fast engine. Besides its advanced branch
prediction hardware, it has significantly more integer
and floating-point hardware, which yields improved
overall performance. Given that it’s produced with a
more advanced silicon process than the original 601, it’s

clocked above 80 MHz and offers blazingly fast
computation for your code.

As a backbone for the chip, the instruction issuing and
control logic allow the 604 to issue up to four
instructions per clock, compared to the 601’s and 603’s
effective three. As mentioned above, however, its
pipeline has one extra decode stage and branches are
issued and handled in their own branch unit. To help it
speculatively execute more instructions than the other
chips, it also comes with twice the number of “rename”
registers than the 603. Twelve extra general-purpose
and eight extra floating-point registers are available to
hold speculatively produced results until a branch
commits. The 604 is also the first PowerPC processor
that can speculatively execute two branches at once.
This, combined with advanced branch prediction,
should keep the processor screaming even through
complex code flow.

What most people will notice, however, is the
additional integer math performance on the 604. At
any one time, the 604 can have two add-subtract
instructions and one multiply-divide instruction
completing in a cycle. IBM says that it therefore has
three integer units, but the multiply-divide hardware is
also used for logical and bit manipulation operations.
The bottom line is much better integer performance
than the Power Macintosh 8100/80. As an example of
this, the following code should execute nearly twice as
fast on the 604 than on the 601:

do {
unsigned long datapoint;
datapoint = *(dataarray + datasize);
if (datapoint > kThreshold) {

if (datapoint > kMaxLong - accumulate)
MyOverflowError();

accumulate += datapoint;
samplecount += 1;
}

} while (datasize--);

Looking at this code, we see a few integer operations
that will be dual-issued on the 604. As long as the
datapoint values aren’t too erratic, the 604 will better
predict the first if statement’s branch: it will assume
that the current datapoint is on the same side of the
threshold as on the previous iteration, which in fact is
where it will tend to be. And the second if statement,
which checks for an overflow, will (barring an
exception) get predicted correctly out of the loop. The
601 or 603 may predict it incorrectly. So even though
one integer unit will be busy doing the math, the
overflow checking will effectively occur without stalling
the pipeline.

BALANCE OF POWER: POWERPC BRANCH PREDICTION 97

The floating-point hardware was also supercharged.
On the 601 and 603 processors, a single-precision
floating-point instruction can issue and complete each
cycle, but double-precision numbers take twice as long.
The 604 allows one full double-precision multiply-add
instruction to be issued and one to complete each cycle.
The chip is twice as fast as the 601 and 603 for these
double-precision calculations.

THE FUTURE IS IN THE STARS
So can Power Macintosh tell your future? It certainly
tries to with the prediction techniques described above,
and in doing so yields better performance. With the
simple methods of the 601 and 603, or the dynamic
prediction of the 604, your Power Macintosh will
speculatively execute your code with seemingly psychic
results.

What about the future of the Power Macintosh? The
PowerPC architecture allows excellent growth. When I
saw the specifications for the first processor, the 601, I
was very impressed. It’s an excellent design and it has

proven to be a potent engine for the Macintosh. When
I saw the specifications for the follow-on chips,
however, I was really blown away. The 603 and 604
offer incredible performance for the price, and prove
that the PowerPC architecture scales well both into
low-cost/low-energy solutions and to the cutting edge
in performance. And the technology applied to the 604
can be expanded in future chips, adding more execution
units and advanced caches at higher clock speeds. The
latest IBM POWER2 processors can issue two
load/store, two logic/branch, two floating-point, and
two integer instructions per cycle. These processors
point to the future of PowerPC performance.

So without any additional tuning on your part,
PowerPC will continue to improve your performance
in the future. I also feel compelled to reiterate this
advice from my previous columns: tune your critical
code. Tuning often trades performance for code
readability and maintainability, so carefully choose
which code to tune and use code profilers (and the
stars?) to guide your way.

d e v e l o p Issue 20 December 199498

Thanks to Phil Sohn, Peter Steinauer, and Eric Traut for reviewing
this column.•

How do you make the world’s best
Macintosh programming
reference even better?
With instant electronic access!

Inside Macintosh® CD-ROM
Apple Computer, Inc.
Inside Macintosh CD-ROM collects all 25 of the current volumes in
the Inside Macintosh library on one convenient disk, including:

• The QuickDraw GX Library
• Macintosh Human Interface Guidelines
• PowerPC System Software
• Macintosh Toolbox Essentials and More Macintosh Toolbox
• QuickTime and QuickTime Components
• and much more...

To order your copy of
this essential Macintosh
programmers reference,
call 1-800-822-6339 or
FAX 1-800-367-7198.

Apple and Macintosh are registered trademarks of
Apple Computer, Inc. QuickDraw and QuickTime

are trademarks of Apple Computer, Inc.
Available from Addison-Wesley Publishing Company, Inc.
$99.95 • 640MB CD-ROM • Order number 0 - 201- 40674-8

▲
▼▼

Q I’m having problems getting PICTs to display with the colors I want. I’m converting
GIF files to PICTs by drawing the GIF into an offscreen GWorld. I’m using the Palette
Manager to set up the colors, but there’s no way to associate a palette with an offscreen
PixMap. After I’m done drawing the GIF to a PixMap, I open the picture with the
offscreen PixMap as the current port and use CopyBits to copy the PixMap onto itself,
creating the picture. The problem is that if I use srcCopy, the colors are incorrect in the
PICT when opened with TeachText (and other applications). But if I use ditherCopy the
colors are saved correctly. I can use srcCopy if I do a CopyBits to/from a “color” window
with the window’s palette changed to my color palette. Is there a way to assign a palette
to use for OpenPicture and still use CopyBits from an offscreen bitmap with srcCopy?

A You can associate a palette with a GWorld, but it won’t solve your problem:
since a GWorld never becomes “active,” the associated device’s colors are never
changed to match the palette. The solution is to use a custom color table with
the GWorld. And you can easily use Palette Manager routines to convert your
palette to a color table.

Use the Palette2CTab routine to perform the conversion. Palette2CTab takes a
PaletteHandle and a CTabHandle and copies all the colors from the palette into
the color table, resizing the color table as necessary. If the palette handle is nil,
no change takes place.

Now you have a color table that you can associate with your GWorld. You can
pass it to NewGWorld when you create your GWorld initially; the fourth
parameter is a handle to a color table. You need to explicitly set the depth in this
call for best results. (If you pass nil for the depth, the color table parameter will
be ignored and the depth of the GWorld will be set to match the deepest device
that intersects the GWorld’s boundary rectangle.) The other possibility is to
associate the color table with an existing GWorld using UpdateGWorld.

Q I’m having a bit of a problem with DiffRgn. I start out with a “wide open” rectangular
region (-32767, -32767, 32767, 32767) and then use DiffRgn to subtract a group of
smaller rectangles from it. When I’m done, the bounding box of the region isn’t what it
should be. Any idea what’s happening?

A What you need to do is create your clipping region so that it’s not quite wide
open (bottom and right coordinates of 32766 will work). If you do this, all your
DiffRgn calculations will work fine.

While this isn’t explicitly documented anywhere, it does seem to be a quirk in
the way regions work. Due to the internal storage format of regions, the
number 0x7FFF (32767) causes problems if it appears as a point inside a region.
0x7FFF is used as a flag in the internal region data structure to signify a
“barrier.” When this flag is used as a data point in a nonrectangular region,
region parsing becomes completely screwed up.

QuickDraw tries to catch the creation of regions that will be poorly formed and
turn them into properly formed (but slightly incorrect) regions, but it isn’t
100% successful.

Q I’m erasing my windows with a color other than white, by setting the window’s
background color and calling EraseRect. But in cases where the Window Manager gets
there first (window ordering changes or a window’s size gets larger) I still get flicker,

Macintosh
Q & A

MACINTOSH Q & A 99

because the Window Manager erases with the wContent color from the window’s color
table (white by default) and not the port’s background color. Is there a friendly, clean
way to avoid that flicker? (I notice that in System 7.5, background colors are
implemented with EraseRect, just as I’m doing it. Are you simply assuming the flash
will be minimal?)

A One of the Window Manager’s functions is to ensure that the content region of
a window is opaque when it needs to be: that’s why the Window Manager “pre-
erases” the window when the content region grows, before your application gets
a chance to. As you point out, if your application is then erasing large areas of
the window to a different color, you’ll get a noticeable flicker in those parts of
the content region that needed to be opaque. This is an unfortunate side effect
of a necessary maneuver by the Window Manager. Any system dialogs that set a
background color and use EraseRect will suffer from the same flicker (although
you won’t spot it so often, since for the most part they’re modal, nonresizable,
and relatively small).

There are two solutions: If you create your windows from 'WIND' resources,
you can create 'wctb' resources with the same ID and an appropriate wContent
color and they’ll automatically be used when the window is created.
Alternatively, you can use the SetWinColor routine to apply a color table to a
window after it has been created.

Q How can we write native PowerPC versions of our QuickDraw GX printer drivers?
Native QuickDraw GX applications are easy, but I can’t find any documentation for
writing native drivers. One problem I can see is the jump table at the top of the 'pdvr'
code resource, where each of the jump table entries is supposed to contain a 680x0
instruction to jump to the appropriate override procedure within the resource. How
should we proceed?

A First of all, in our experiments with native QuickDraw GX drivers we’ve found
little or no performance increase, so we don’t really recommend writing native
printer drivers. The bottlenecks in typical QuickDraw GX printer drivers are in
the file and network I/O, which aren’t affected much by the driver’s code (see
the Print Hints column in this issue of develop for more information). Unless
you have some repetitive and time-consuming operation in which you can
expect a huge win, your code will most likely just get bigger, and possibly even
slower in some cases because of the context switches.

That said, I’ll tell you how to make any or all of your overrides into “fat”
overrides. Each of the fat overrides needs to consist of three parts:

• a “safe routine descriptor” (see below)

• the 680x0 code

• the PowerPC code

The safe routine descriptor allows a simple JMP instruction (such as those
found in the 'pdvr' jump table) to run either 680x0 code or PowerPC code,
depending on what type of Macintosh it’s running on. The beginning of the safe
routine descriptor contains 680x0 code that’s executed the first time through
and that determines whether the Mixed Mode Manager is present. If so, the
routine descriptor from the PowerPC chunk of code is copied to the top of the
resource. If not, a 680x0 branch instruction that jumps to the 680x0 code is
inserted at the top of the routine descriptor. This code munging happens only

d e v e l o p Issue 20 December 1994100

the first time through — after that, the code resource is set up to run the 680x0
code or the PowerPC code immediately upon jumping to it. This is described in
more detail in Inside Macintosh: PowerPC System Software and in MixedMode.r.

Here’s how a fat override would be called from QuickDraw GX: First, execution
jumps to the desired entry in the printer driver’s jump table. The 680x0 JMP
instruction in the table is executed and jumps to the safe routine descriptor in
the override. The safe routine descriptor then executes either the 680x0 code or
the PowerPC code, depending on the machine.

The real trick is building the makefile. First the makefile has to compile each of
the override functions into a 680x0 code resource using C and Link, and into a
PowerPC code resource using PPCC, PPCLink, makePEF, makesys, and Rez.
Next, it needs to use Rez to combine the results of the compiles into fat
resources with safe descriptors. Finally, it needs to use Rez to combine the jump
table with all of the fat resources. This last step is a doozy. You’ll need to write
an MPW tool that concatenates all the fat resources while keeping track of the
offsets of each one. These offsets will need to be stuffed into the jump table at
the top of the final 'pdvr' resource.

Q I’m trying to display from my QuickDraw GX printer driver a movable modal dialog
box that contains a list. What would be the best way to do it?

A Since you’re displaying the dialog from a printer driver, you can let QuickDraw
GX do most of the work. Use GXAlertTheUser to put up a 'plrt' resource that
specifies the printingStatus type. That makes a movable modal dialog. Then
override GXInitializeStatusAlert to build your list information for the dialog,
and GXHandleAlertEvent so that you can update your dialog, handle clicks,
dispose of the dialog, and so forth. You’ll probably also want to override
GXHandleAlertFilter to help out with that.

Q I noticed that the “Larger Print Area” checkbox has been taken out of QuickDraw
GX’s LaserWriter Page Setup Options. I assume this means one of three things: (a) it’s
now on all the time, (b) it’s now off all the time, or (c) it’s lurking someplace else.
Which is it?

A The option has been removed, as you noted, but the functionality is still
available, in the guise of papertypes. To decide where on the page to print,
QuickDraw GX printing uses the papertype that a page is formatted for. Some
of these papertypes come standard (built into QuickDraw GX or into specific
drivers), but users can also create their own papertypes using the papertype
editor that accompanies QuickDraw GX.

For example, a user could create a papertype called “Company Letterhead”
that’s based on US Letter but has an imageable area that excludes the part of the
page at the top where the address and logo might be, as well as the line or two
of text at the bottom of the page. When dropped into the Extensions folder,
these custom papertypes become available from QuickDraw GX applications,
and users can format their documents with them. In the case of this letterhead
example, the result would be that you wouldn’t have to fiddle around with your
text to avoid printing over the type and graphics on the paper.

The “Larger Print Area” feature isn’t compatible with the concept of papertypes
because in order for QuickDraw GX to honor the imageable area of a
papertype, it can’t change the dimensions that the papertype is set up for. Again,

MACINTOSH Q & A 101

using the letterhead example, if we were to expand the imageable area it would
probably result in text printing over the company logo or address information.

We realized that some customers would still expect this functionality to be
around, so we’ve included some papertypes in the LaserWriter GX driver that
mimic the old behavior. When you format for the LaserWriter GX driver (or
for a desktop printer for that driver), you’ll notice that two new papertypes
become available in the QuickDraw GX page setup dialogs: “A4 Letter (7.8 x
11.4)” and “US Letter (8.5 x 11).” These are “larger print area” versions of their
counterparts. In applications that aren’t QuickDraw GX aware, these
papertypes can be found in the Page Setup dialog’s Paper Type menu.

Q I was wondering whether QuickDraw GX, like LaserWriter 8, uses PostScript printer
description (PPD) files. How do PPD files and the new printing architecture integrate?
What happens in QuickDraw printing compatibility mode?

A The short answer to this question is no, QuickDraw GX does not use PPD files.
The longer answer is, well, longer.

The main use for PPD files was to extend the functionality of the LaserWriter 8
driver. As you know, the contents of many of LaserWriter 8’s dialogs depend on
the contents of the PPD file. The user can associate a PPD file with a printer
via the Chooser from LaserWriter 8 onwards, by using the Setup button in the
Chooser dialog.

As you’re also aware, the mechanism for choosing printers has changed with
QuickDraw GX. This means that PPD files aren’t needed, except for one case:
using QuickDraw GX Helper to print with LaserWriter 8 with QuickDraw GX
installed. In this situation, printing will occur in the same way as before — in
other words, the print process will be the same as for plain old LaserWriter 8,
including the use of PPD files. In QuickDraw printing compatibility mode
(that is, printing with a pre–QuickDraw GX application on a system running
QuickDraw GX), the emulation will use the QuickDraw GX driver, so PPD
files won’t be used unless the driver specifically supports them.

By the way, there’s no reason a printer driver manufacturer can’t incorporate
PPD files into a QuickDraw GX printer driver, if it’s deemed appropriate.

Q When my application creates a new media (of text type in this case) for a new track in
a movie created with NewMovieFromScrap, the dataRef and dataRefType should be set
to nil, according to the QuickTime documentation. The problem is that later I want to
edit that media (adding a text sample to it, for example), but BeginMediaEdits returns
-2007 (no data handler found). I assume I can get around that by first saving the
movie to a file, but this seems slimy since the movie won’t end up on disk in the end.
Any suggestions for a better approach?

A You’re correct — BeginMediaEdits complains if the movie has been created
with NewMovieFromScrap. Unfortunately, BeginMediaEdits doesn’t think
memory-based movies are on a media that will support editing. The
workaround is, as you thought, to store the movie in a temporary file until
you’re finished editing it.

Fortunately, this is easy to do. When you call NewTrackMedia, pass an alias to a
new file in the dataRef parameter instead of nil. Passing nil (the usual approach)

d e v e l o p Issue 20 December 1994102

indicates that the movie’s default data reference should be used, but because
your movie came from the scrap and not a file, it has no data reference — hence
the error you’re getting. By the way, using the data handler in QuickTime 2.0,
you can create a movie entirely in memory.

Q I need to alter the pixel information of a QuickTime movie frame after it has been
decompressed but before it’s displayed on the screen. Is there any way that a user-defined
procedure can be called by QuickTime at this point? If not, how can I accomplish this?

A As long as you use QuickTime 1.6 or later, you can do this easily. The
mechanism is described in the Macintosh Technical Note “QuickTime 1.6.1
Features” (QT 4) under the heading “SetTrackGWorld.”

SetTrackGWorld lets you force a track to draw into a particular GWorld. This
GWorld may be different from that of the entire movie. After the track has
drawn, it calls a “transfer procedure” that you’ve written to copy the track to the
actual movie GWorld. You can also install a transfer procedure and set the
GWorld to nil. This results in your transfer procedure being called only as a
notification that the track has drawn — no transfer takes place.

You should do your image manipulation in your transfer procedure. Bear in
mind, of course, that calling resource-intensive or time-consuming routines in
your transfer procedure will have an adverse effect on the playback performance
of your movie.

Q I’m looking for the documentation for five routines in the Communications Toolbox that
aren’t in my 1.0 documentation. The routines are “PBxxx-style” asynchronous
routines: CMNewIOPB, CMDisposeIOPB, CMPBRead, CMPBWrite, and
CMPBIOKill. Where are these calls documented?

A These calls are documented in the Communications Toolbox 1.1 Engineering
Notes. The calls were added to allow “overlapping I/O,” that is, issuing a
_CMWrite call and then issuing another before the first completes. The
Communications Toolbox version 1.0 specifically prohibits this behavior.

Q I have an application that needs to be able to detect invisible folders. The “invisible” bit
for files is in the fdFlags in the FInfo structure, but that obviously won’t work for
directories. What’s the recommended way to do this?

A PBGetCatInfo will get you the information you need. The ioDrUsrWds field of
the DirInfo structure that you get by calling PBGetCatInfo is a DInfo structure:

struct DInfo {
Rect frRect; /* folder rect */
unsigned short frFlags; /* flags */
Point frLocation; /* folder location */
short frView; /* folder view */

};

The frFlags field has the same layout as the fdFlags field in an FInfo structure.
Many of the bits don’t apply to directories, but fOnDesk and fInvisible do. The
fInvisible bit is set for almost all invisible folders. The only exceptions to this
are certain special folders that the Finder can create, such as the “Temporary
Items” folder, which you shouldn’t have to worry about.

MACINTOSH Q & A 103

Q When a user of my application saves a file, I want to automatically save a few files, each
of which has a different extension to the name the user chose. For instance, if the user
saves the file as “MyFile” I want to create “MyFile.a,” “MyFile.b,” and “MyFile.c.” If
the user gives a filename that already exists, but the filename with the extension doesn’t
exist, is there a way to avoid the appearance of the Replace/Cancel dialog? Conversely,
can I make the Replace/Cancel dialog appear for the filenames with the extensions? I
assume CustomPutFile is the way to go here, but I’m not sure how to proceed.

A CustomPutFile is the answer, all right. One way to get rid of the Replace/Cancel
dialog is to write a simple dialog hook function that includes the following code:

/* If it's the "Replace Existing?" dialog... */
if (refCon == sfReplaceDialogRefCon)

/* ...and the dialog is just about to appear... */
if (item == sfHookFirstCall)

/* ...then "hit" the Replace button automatically. */
return 1;

The problem you pose is a little different, however, so we recommend a different
approach. In addition to avoiding the standard Replace/Cancel warning, your
dialog hook function will also need to make sure each filename-plus-suffix
combination is a valid filename (that is, not too long), put up Replace/Cancel
dialogs in case any filename-plus-suffix combination already exists, and override
other warnings, such as the “That name is already used by a folder” dialog.

First, define a data structure that can be passed to CustomPutFile so that your
dialog hook function can access the list of suffixes you’re working with and
return the results (that is, the FSSpec and FInfo) of each filename-plus-suffix
combination. Then, your dialog hook function should do the following when
the user clicks the Save button:

1. Make sure that each filename-plus-suffix combination is a valid filename.

2. Put FSSpecs for each filename-plus-suffix combination into the data
structure so that you can get at them later.

3. Put up Replace/Cancel dialogs for any filename-plus-suffix combination that
already exists.

a. If the user cancels any of these, remap the Save item to nothing by
returning sfHookNullEvent.

b. If the user accepts all of these, remap the Save item to Cancel by
returning sfItemCancelButton and, before returning, mark the sfReply
as good, so that your application can tell that the user really clicked the
Save button. By changing the Save item to the Cancel item, you bypass
all the standard warnings, which means that your dialog hook function is
responsible for warning the user if there’s anything wrong with the
filename. These warnings should maintain the spirit of the normal
Standard File warnings as much as possible.

Inside Macintosh: Files, pages 3-26 through 3-40, provides additional information
on this subject.

Q I need to obtain the location of my application from within my application. How can I
do this?

d e v e l o p Issue 20 December 1994104

A The Process Manager routine GetProcessInformation returns an FSSpec to the
current process if you use the process serial number kCurrentProcess, as shown
in the following code:

OSErr GetCurrentProcessSpec(FSSpec *spec)
{

ProcessSerialNumber currentPSN;
ProcessInfoRec info;

/* Get current process FSSpec with GetProcessInformation. */
currentPSN.highLongOfPSN = 0;
currentPSN.lowLongOfPSN = kCurrentProcess;
info.processInfoLength = sizeof(ProcessInfoRec);
info.processName = NULL; /* we don't need process name here */
info.processAppSpec = spec;
return (GetProcessInformation(¤tPSN, &info));

}

If GetCurrentProcessSpec returns with a noErr result, spec.vRefNum is the
volume reference number of the volume your application file is on, spec.parID
is the directory ID of your application file’s parent directory, and spec.name is
the name of your application file.

If your application is a 680x0 application and might run under System 6 (where
the Process Manager and the Apple Event Manager aren’t available), you can
use GetAppParms to get the reference number of your application and then
pass that number to PBGetFCBInfo to get the location of your application.
PowerPC applications must use GetProcessInformation because GetAppParms
isn’t available to them.

The following code shows how to use GetAppParms and PBGetFCBInfo to get
the location of your application. You must define OBSOLETE in your source
code before you include SegLoad.h; otherwise GetAppParms (and the other
obsolete Segment Loader routines CountAppFiles, GetAppFiles, and
ClrAppFiles) will not be defined.

/* Obsolete System 6 way of getting the application location. */

#define OBSOLETE
#include <SegLoad.h>
#include <Files.h>

OSErr GetCurrentAppLocation(short *vRefNum, long *parID, Str63 apName)
{

OSErr result;
FCBPBRec fcbPB;
Handle apParam;

/* Get application reference number from Segment Loader. */
GetAppParms(apName, &fcbPB.ioRefNum, &apParam);

/* Get application location from File Manager. */
fcbPB.ioNamePtr = apName; /* return application name here */
fcbPB.ioVRefNum = 0;
fcbPB.ioFCBIndx = 0;
result = PBGetFCBInfoSync(&fcbPB);

MACINTOSH Q & A 105

if (result == noErr) {
*vRefNum = fcbPB.ioFCBVRefNum;
*parID = fcbPB.ioFCBParID;

}
return (result);

}

Q I have a handle to a resource and I want to find the location of the file it came from.
Can I do this?

A Yes, you can use HomeResFile to get the file reference number associated with
the resource and then pass that number to PBGetFCBInfo to get the location of
the resource file, as follows:

OSErr GetFileLocationFromResource (Handle theResource, short *vRefNum,
long *parID, Str63 name)

{
OSErr result;
FCBPBRec fcbPB;

/* Get resource file reference number from Resource Manager. */
fcbPB.ioRefNum = HomeResFile(theResource);
result = ResError();
if (result == noErr) {

if (fcbPB.ioRefNum != 1) { /* Is resource in ROM? */
if (fcbPB.ioRefNum == 0) { /* Is it in the System file? */

/* Get System file's real refNum. */
fcbPB.ioRefNum = LMGetSysMap();

}
/* Get resource file location from File Manager. */
fcbPB.ioNamePtr = name; /* return filename here */
fcbPB.ioVRefNum = 0;
fcbPB.ioFCBIndx = 0;
result = PBGetFCBInfoSync(&fcbPB);
if (result == noErr) {

*vRefNum = fcbPB.ioFCBVRefNum;
*parID = fcbPB.ioFCBParID;

}
}
else {

/* Resource was in ROM, not a file. Return paramErr. */
result = paramErr;

}
}
return (result);

}

Q I need to write an extension that will launch an application at a specified time. I’ve
looked at various ways to do this, but they all seem dangerous or difficult, mostly because
I can’t call either LaunchApplication or AESend (to send an 'oapp' event) at interrupt
time. What’s the best/safest/simplest way to do this?

A Write a BOA (background-only application, also called a faceless background
application) that just sits in the background and periodically checks the time.
When the correct time arrives, the BOA can launch the application and quit (or

d e v e l o p Issue 20 December 1994106

remain running if this is a periodic task). Make your BOA have a file type of
'appe' (application extension) and it will be installed in the Extensions folder
and launched at startup.

Q I need to insert a two-dimensional array, such as “long double myArray[512][3],” into
an Apple event. Is there any way to use AEPutArray? I know that I can probably loop
over each item and add it to a list of typeFloat, but that’s extremely cumbersome and
slow. Also, I could send it as typeData, but that wouldn’t let users view the data in a
script editor. Any ideas? I’m looking for the most elegant and speedy solution. I’ll also
need the inverse: a way to extract that data from an incoming Apple event.

A There’s no standard way of implementing two-dimensional arrays in Apple
events. Apple event arrays are limited to one-dimensional arrays of integer, char,
handle, or descriptor types. While it may be possible to represent your data in
one of these formats, this is not going to be a very efficient solution.

There are several other possible solutions to the problem, but only you can
decide which one will work best. Perhaps the most straightforward is to create
an AEList, which in itself contains a set of AELists, to represent your data.
While this will allow your data to be displayed by the Script Editor, it could be
very inefficient for large arrays. It’s also consistent with the way that the Table
Suite specifies a table (which is basically what your two-dimensional array is):
type cTable consists of a list of typeRow descriptors, which in turn consist of a
list of typeCell descriptor records.

Another more efficient approach (which is also more trouble) is to use your own
private data format and install a system coercion handler to coerce this data into
a form that can be displayed in the Script Editor (typeChar, for example). When
the data is returned from your GetData handler, the coercion handler will be
called to translate the data, so it would be displayed as text in the results window.

Do you really need to provide a two-dimensional array in a form that can be
read in the Script Editor? Often the user will just want to request certain
elements of the array, rather than requesting the entire array. The best solution
of all might be to avoid sending large arrays completely, at least in a format that
can be displayed in the Script Editor. There’s very little the user can do to view
and manipulate large amounts of data from the Script Editor anyway. You could
allow users to request pieces of data from the array, using a row and column
approach to allow them to specify the data, but when they need to manipulate
large amounts of data you might consider writing the requested data to a file
and then returning an alias to the file.

Q I’m implementing a dialog in which seven items need to be present all the time while
the presence of the other items depends on various situations. I use Hide/ShowDItem to
do the trick. Is there any other way to do it? The dialog’s DITL is really a mess!

A The approach of showing and hiding individual items is fine if you have only a
couple of items in the dialog item list, but as you’ve found, it becomes a real
mess when the dialog starts to become more complex.

You can dynamically add items to and remove items from a dialog box by using
the AppendDITL and ShortenDITL routines. When you call AppendDITL,
you specify a dialog box and a new item list resource to append to the dialog’s
existing item list resource. You also specify where the Dialog Manager should

MACINTOSH Q & A 107

display the new items, using one of these constants to designate where
AppendDITL should display the appended items:

CONST overlayDITL = 0; {overlay existing items}
appendDITLRight = 1; {append at right}
appendDITLBottom = 2; {append at bottom}

You should create one dialog with the seven items that remain constant, and a
series of associated DITL resources that contain the items you need to add to
each variant of the dialog. Then use AppendDITL to add these as required.

Q If I call the following stripped-down routine twice, my application crashes the second
time. Why?

static void CrashMeBaby (void)
{

Rect aRect;
DialogPtr aDialog;

SetRect(&aRect, 50, 50, 200, 200);
aDialog = NewDialog(NIL, &aRect, "\p", true, altDBoxProc,

(WindowPtr) -1L, false, 0, GetResource('DITL', 400));
DisposeDialog(aDialog);

}

A The problem is that DisposeDialog disposes of the item list (which you’re
obtaining with GetResource) by calling DisposeHandle, not ReleaseResource.
This leaves an invalid reference lingering in the resource map, which is bad
news. The next time the resource is needed, it would normally be read in again
from disk. However, in this case the handle is no longer valid, and you crash.
The workaround for this is simply to call DetachResource on your item list
handle after you retrieve it.

One way of finding this kind of bug is to use the DisposeResource extension,
which can be found on this issue’s CD. This traps instances of DisposeHandle
being called to dispose of a resource. If you install DisposeResource and try it
with your code, you’ll see that this is what’s happening in your case.

Q How do fleas jump so high? Surely the power required for these prodigious leaps (easily
100 times their length!) can’t be supplied by muscle. How do they do it?

A Fleas have an organ (not a muscle) that’s elastically deformable and can store
energy like a rubber band. It’s “charged up” over time, with a sort of ratcheting
muscular action. So the flea “winds up” and then lets go all at once. An
interesting side effect is that just after a flea jumps, it’s unable to jump again; it
needs time to recharge. (The time needed, however, is a mere tenth of a second.)

d e v e l o p Issue 20 December 1994108

These answers are supplied by the
technical gurus in Apple’s Developer Support
Center. Special thanks to Brian Bechtel, Joel
Cannon, David Hayward, Dave Hersey, Peter
Hoddie, Dave Johnson, Jon Lansdell, Jim Luther,
Kevin Mellander, Jim Mensch, and Nick
Thompson for the material in this Q & A column.•

Have more questions? Need more answers?
Take a look at the Macintosh Q & A Technical
Notes on this issue’s CD.•

Take a good look around at all the different structures
you see in the world. Not only the physical structures,
like buildings and mountains and dogs and trees, but
the conceptual structures, like language and
government and the Dewey decimal system and the
management hierarchy at your place of work. Some of
these structures seem to exist independently of humans,
but others seem to be completely invented, made up
from whole cloth, so to speak. But how can that be?
Can you really create something from nothing? I
wonder.

I just got back from a sort of educational/recreational
summer camp for adults (I’m writing this in early
August). It was the California Coast Music Camp, a
week of intensive classes and refreshing musical single-
mindedness. There were no cars, no computers, no
worries — nothing to do but play and sing and learn
(and swim and eat and hike).

The camp itself was classic: squat brown bunkhouses
scattered in small groups like big hollow dice; long low
latrines, redolent with that cloyingly sweet chemical
peculiar to outdoor bathrooms; enormous vats of jello
and drowned salad at the ends of the long serving tables
in the echoing dining hall; bug bites, bug spray, and
bugs — you get the idea. And even though it was
strictly adults, all the same feelings I remember from
my one camp experience as a kid were there in the wide
and ragged spectrum of emotions it generated. I had
the same scary and uncertain feelings at the beginning,
wondering if I really should be there at all; the same
gradual discovery that it was all OK, and in fact was
fantastic; and, at the end, the same bittersweet longing
to start it all over again.

Music really is a lovely thing. One of the classes I took
was called “Theory, Scales, and Chord Construction on
the Guitar” and it was on the third day of class, as I was
plunking away at yet another arpeggio, that I began to
get my first glimpse of the underlying structure of the
notes on the guitar fretboard. (And I do mean glimpse:
it’s something that will probably take a year or more to
see clearly, and five or ten years to really feel — and
that’s if I practice every day.) I was suddenly struck by
the notion that it’s the discontinuities in musical scales
that make them both difficult and interesting, that it’s
the complications in the structure of music that give it
an interesting shape. If you’ve ever taken a music
theory class, or even a piano class, you might know
what I mean: if only there were a black key between
every pair of white keys, things would be much simpler.
It’s that damned half step between B and C and
between E and F that screws things up. But it also
seems that those discontinuities — those bumps and
dips in an otherwise smooth, even progression — are
what give rise to all the beauty and complexity and
subtlety. It’s precisely those “flaws” in the structure that
lend it an interesting texture.

However, the structure itself is artificial. Underneath,
the range of musical tones is actually continuous, as
any slide whistle demonstrates. It’s a spectrum, a
continuously varying quantity, in this case the
frequency of vibration of a material. So the set of notes
we use — our tuning system — is externally applied, a
necessarily arbitrary set of discrete slots pasted onto an
underlying continuum. It’s a sort of quantization of
something inherently smooth that lends it a tractable
structure, that gives us a handle with which to
manipulate it and a context in which to make sense of
it. By conceptually making the smoothly varying curve
into a step function, by arbitrarily chopping the
continuous line into discrete chunks, we can somehow
work with it more manageably and think about it more
clearly.

If you look around a little, you’ll find examples of this
kind of artificial structuring of continuums all over the
place. The computer in front of you (or wherever it is)
is an excellent example. Many early computers were
analog; they dealt with smoothly varying quantities
(usually voltages in circuits). But they turned out to be
too hard to program — in effect you had to create a
physical circuit that modeled the problem you wanted
to solve. By making the computer purely digital, we

THE VETERAN
NEOPHYTE

Nothing Comes
From Nothing

DAVE JOHNSON

THE VETERAN NEOPHYTE: NOTHING COMES FROM NOTHING 109

DAVE JOHNSON has for years had the same favorite quote,
from Albert Einstein: “He . . . who can no longer pause to wonder
and stand rapt in awe is as good as dead; his eyes are closed.”
But recently he encountered another, in a book by Primo Levi, that
came very close to unseating Einstein’s: “It is enough to think of

intestinal worms: they feed themselves at our expense with a food
so perfect that, unique in creation, together perhaps with the
angels, they have no anus.” Although Dave howled uncontrollably
at that one, Einstein still wins in the end.•

abstracted its operation away from the physical realm
into the realm of pure logic, and that really opened up a
lot of doors. Another much simpler example is a radio
dial; it actually represents a continuous spread of
frequencies, but we’ve arbitrarily divided it into bands
so that we can parcel it out to those who want to use
pieces of it.

More abstractly, in mathematics one often takes a
continuously varying function and “pretends” for a
moment that it’s a step function, simply because it
makes things easier to deal with. Then, when you’ve
got a handle on the step function, you can use a nifty
trick (called calculus) to sort of extrapolate what you’ve
discovered about the steps and apply it to the whole
curve. Time itself (which sure feels like a continuum,
whatever it is) is conveniently chopped into bits by
humans to make it easier to keep track of and to talk
about.

But there are other quantities in our world that seem to
come to us already divided up into discrete chunks,
already structured. The periodic table of the elements
certainly isn’t a continuum. There’s no smooth
transition between sodium and magnesium, though
they sit next to each other in the table. The distinction
between the phases of matter — solids, liquids, and
gases — seems pretty clear, too. (Well, OK, there are
some bizarre in-between states you learn about in
college, but they’re encountered only in extreme
conditions, usually artificially induced in laboratories
and definitely inhospitable to mammals.) Living things
appear to be made up of lots of discrete functional
blocks — organs and cells and organelles and protein
molecules and such — and the interactions of these
discrete parts are what makes them “go.” DNA itself,
the structure that stores the instructions for building, is
just a binary (or rather quaternary) string, with each
discrete position capable of storing only four possible
values. Even the seeming continuum of a fluid like
water is an illusion. In reality it’s made of discrete
particles, and it’s their interactions with one another
that give rise to “fluidness.”

This endless interplay between the continuous and the
discrete, between discovering structure and creating it,
seems to be at the heart of many (maybe most) human
endeavors. On the one hand, we often labor mightily to
reveal structures that are somehow already there. Many
of the sciences, in particular, are precisely an attempt to
make clear the underlying structure of the universe, to
peel away the layers of obfuscation that our senses have
piled on. But it’s not limited to science: Michelangelo
spoke of sculpting not as inventing the shape of the
statue, but rather as freeing it from the stone in which
it was imprisoned.

On the other hand, many human activities are all about
applying structure to something formless, or about
creating structure from nothingness. Again, the arts
spring to mind. A painting, a poem, a story, a song —
all these begin from nothing: from a blank canvas, from
an empty sheet of paper, from silence. Computer
programs, those awesomely complex logical
constructions we devote ourselves to so slavishly, seem
to be created from thin air, and serve as the structure
for an otherwise “formless” machine. Business
contracts, sheet metal ventilation ducts, bingo games,
steering committees, and acoustic guitars — these are
all structures that we’ve created from, essentially,
nothingness.

Ah, but there’s the real question: are the structures we
build really new? Do we really just invent them, whole,
from nothing? Or do they grow from and reflect other
underlying structures that are already there? The latter
seems much more likely to me. If you look closely,
even a structure that at first blush seems really new
turns out to be a recombination or an extension or a
reworking of some existing structure. Sometimes I
think of evolutionary processes this way, as a sort of
extrapolation, a patient elaboration, of a very few
essential, innate principles that lie buried far beneath
the surface, an endless cycle of structure standing on
the shoulders of what has gone before. Perhaps the
macroscopic shapes of living things hint at the
underlying nature of matter: quantum reality writ large,
for all to see.

So, getting back to music, does the tuning system
that we use reflect some underlying structure, some
relationship among the frequencies, or is it truly
arbitrary, decided by some bewigged old coot in the
dim and dusty past? To find out, I did a little snooping
around in the local library and on the net. The answer
turns out to be complex (no surprise there), and it
has as much to do with accidents of history, people’s
personalities, and the practicalities of tuning
instruments as it does with mathematics. There is an
underlying structure beneath the western tuning
system and many others (the relationships among the
harmonics of a vibrating string or column of air, first
elaborated by — you guessed it — the Greeks). But it
also turns out that most music has evolved away from
those “ideal” frequencies for a variety of reasons that
have little to do with mathematics or physics. Here’s
what I think: I think the structure of music is largely
determined by the structure of us.

Sunburst shapes — mandalas — appear over and over
in pictures drawn by children, no matter what their
culture or language or what part of the world they live
in. You could argue that it’s simply because there are

d e v e l o p Issue 20 December 1994110

Hard at work

Meredith Best, Dave Johnson, Caroline Rose, and Alex Dosher deal valiantly with the unexpected
ups and downs of working on develop at an offsite meeting held at a local amusement park. As the
meeting coasted to a close, they all agreed that they should do it again. And again. And again.

THE VETERAN NEOPHYTE: NOTHING COMES FROM NOTHING 111

lots of radially symmetric things in the world, and that
children are simply drawing what they see. But I prefer
to think that mandalas somehow mirror the internal
structure of the human mind, that they are, in a sense,
pictures of humanity.

Humans spend enormous amounts of time shaping
things, refining things, expressing things, creating.
Where does all the structure come from? I think it’s
simply an outgrowth, an elaboration, a reinterpretation
and repackaging, of the structure inside ourselves,
which in turn reflects the structure of the universe we
live in. Taken all together — all the songs, all the
buildings, all the stories, all the social groupings and
computer programs and bad jokes and trash and art —
the structures we humans reveal and create form a

churning, turbulent, clouded mirror, a mirror that
occasionally, if we look very closely, may afford us a
glimpse of who and what we really are.

RECOMMENDED READING
• Catapult: Harry and I Build a Siege Weapon by

Jim Paul (Villard Books, 1991).

• Weetzie Bat by Francesca Lia Block (Harper &
Row, 1989).

• Cane Toads: An Unnatural History by Stephanie
Lewis (Doubleday, 1989).

Thanks to Lorraine Anderson, Jeff Barbose, Brian Hamlin, Mark
“The Red” Harlan, Bo3b Johnson, Lisa Jongewaard, and Ned van
Alstyne for their always enlightening review comments.•

Dave welcomes feedback on his musings. He can be reached
at JOHNSON.DK on AppleLink, dkj@apple.com on the Internet, or
75300,715 on CompuServe.•

Q I could really use some help with speeding up my Newton application. Have you got any
tips on performance?

A You’re not the only one who wants this; my llama senses have recently been
overwhelmed by a call for information on performance. All the questions in this
issue’s column will relate to performance in some way. Take a look and see if
there’s something here that will help you.

There are two important points to remember:

1. None of these tips will work by themselves; you must measure your code.
Use Ticks, use the trace global (see below), use Print. Find out where your
code is slow, or where your application is bloated.

2. There is no silver bullet for a problem; you must experiment with different
solutions.

In the words of my wise programming master: “When is a llama not a llama? . . .
When it is a guanacos.” Or, “When you can snatch these coconuts from my
hand, then it will be time for me to leave.”

Q I’m building an application that has a large set of static data. I search on a key term (a
string) and get all the data associated with that string. Mike Engber’s “Lost In Space”
article (in the May 1994 issue of PIE Developers magazine) says that I should include
this data in my package and things will be fast. But this doesn’t seem to be the case. I
have thousands of frames of data. Each frame contains one or more slots with strings
that contain the key terms. I use FindStringInFrame to find all references to a key term
but this takes a long time. Am I doing something wrong?

A This may seem like a simple question, but it isn’t. The root of the problem is
that you’ve made an assumption that functions provided in the ROM are fast, so
they’ll solve your problem. In this case, you assumed that FindStringInFrame
would be fast. You’re both right and wrong.

FindStringInFrame is fast, but it still has to linearly search every slot in every
frame recursively. That means that if you have thousands of entries, it’s checking
thousands of frames. You can talk about how long something will take by
calculating the worst case. FindStringInFrame has to search all your data frames
(thousands of items), and for each frame it has to check each slot to see if it’s a
string. If so, it then has to check to see if the string you gave it matches the
string it’s looking for (step by step down the string). So if you had n strings (not
just data items), and the average length of a string was m characters, that’s n*m
checks. In computer science terms, you would say that FindStringInFrame is an
O(n *m) operation; this is called Big-Oh notation and, in its simplest form,
refers to the worst-case time.

This means you should think about other data structures and methods of
accessing them. In your case, a simple change of data representation would
result in a massive speedup. The idea is to make the expression in the Big-Oh
notation have the smallest possible value. One way to do this is to reduce the

Newton
Q & A:
Ask the
Llama

d e v e l o p Issue 20 December 1994112

The llama is the unofficial mascot of the
Developer Technical Support group in Apple’s
Personal Interactive Electronics (PIE) division.•

Send your Newton-related questions to
NewtonMail DRLLAMA or AppleLink DR.LLAMA.
The first time we use a question from you, we’ll
send you a T-shirt.•

search time for your key phrases. Since you have a fixed set of data, you can sort
them and use a binary search algorithm. You can store the actual data in arrays
and store indexes along with the key items.

The nice thing about a binary search is that you’re always cutting your search
space in half. On average, you only have to check log to the base 2 of the data.
In Big-Oh notation, that’s O(log n). Of course you still have to do the individual
string comparisons, so you end up with O(m log n). So for 1000 items,
FindStringInFrame takes 1,000,000 time units, but the modified method takes
3000, a speedup of 300 times! It’s unlikely that a function implemented at a low
level performs 300 times faster than custom NewtonScript code.

This excursion into computer science should make you think about your data
structures and how you access them. Of course an academic exercise can take
you only so far. You also have to get your feet wet and test the code. You can use
Ticks to get rough estimates of time, and Stats (after a GC) to get estimates of
memory.

Q The following is a viewClickScript from a pickList button in my application. Why does
it take so long to execute?

viewClickScript.func(unit)
begin

currentPickItems := [];
for i := 0 to Length(defaultPickItems) - 1 do

if i = currentSelectedItem then
AddArraySlot(currentPickItems,

{item: defaultPickItems[i], mark: kCheckMarkChar});
else

AddArraySlot(currentPickItems, defaultPickItems[i]);
if :TrackHilite(unit) then

DoPopUp(currentPickItems, :LocalBox().right+3,
:LocalBox().top, self);

end

A There are several possible reasons why your code would execute slowly. Since
they potentially apply to lots of code out there, I’ll go through each one
separately. At the end is a rewritten function that should execute considerably
faster.

• Lookup costs. Assuming that currentPickItems, currentSelectedItem, and
defaultPickItems are slots somewhere in your view hierarchy, at best they’re
slots in the pick button, at worst they’re in your base application view.
Remember that each access to a variable requires an inheritance lookup:
check locals, then globals, then current context, then the _proto chain, then
the _parent chain. This cost isn’t high for single references but can be deadly
in loops. Every cycle through your loop, you’re doing three lookups; that’s a
lot of overhead. The solution is to use local variables for faster access.

• Unnecessary object creation. The AddArraySlot call will grow, and
potentially copy, the array on the NewtonScript heap, resulting in a lot of
unnecessary memory movement. Since you know the length of the
currentPickItems array in advance, you should preallocate the array and use
the array accessor (that is, [n]) to add array elements. You can use the Array
function call to allocate the array:

local pickItems := Array(Length(defaultPickItems), nil);

NEWTON Q & A: ASK THE LLAMA 113

• Unnecessary execution. You need to create a new pick list only if the call to
TrackHilite succeeds. You should make the TrackHilite conditional be the
outer conditional:

if :TrackHilite(unit) then
begin

// construct pick list and DoPopUp
...

end;

• Inefficient variable initialization. It’s inefficient to use a loop for initializing
currentPickItems from defaultPickItems, because currentPickItems has only
minor differences. It’s better to use Clone for initialization. This way you
get a new array whose elements are references back to the array items in
defaultPickItems. All you need to do is replace the individual references in
currentPickItems with their new or modified values. It’s the difference
between an O(n) operation (traversing all the array items in defaultPickItems)
and an O(1) operation (accessing only the changed item). In other words,
expect about an order of magnitude difference.

• Unnecessary slot. In this case you don’t need to have a currentPickItems slot
since its value is recreated each time the viewClickScript is executed. You’re
better off using a local variable.

The modified code is shown below. To illustrate the savings, I ran a brief test
using a defaultPickItems array of ten elements. Each function is called 100
times (note that TrackHilite was always true). I found the following code to be
over six times faster than the original code.

viewClickScript.func(unit)
begin

if :TrackHilite(unit) then
begin

local pickItems := Clone(defaultPickItems);
local selectedItem := currentSelectedItem;
local l := :LocalBox();
if selectedItem then

pickItems[selectedItem] :=
{item: pickItems[selectedItem], mark: kCheckMarkChar};

DoPopUp(pickItems, l.right+3, l.top, self);
end;

end

Q I’ve written my own IsASCIIAlpha, IsASCIINumeric, etc. functions. They seem to be
really slow. Why is that? Here’s my IsASCIIAlpha:

// returns true if s is an alpha string (i.e., between a..z or A..Z)
IsASCIIAlpha.func(s)
begin

local c := Upcase(Clone(s));
local i;
for i := 0 to StrLen(c) - 1 do

if (StrCompare(SubStr(c, i, 1), "A") < 0) or
(StrCompare(SubStr(c, i, 1), "Z") > 0) then
return nil;

true;
end;

d e v e l o p Issue 20 December 1994114

A The main source of the slowness is that you’re using string functions when
character functions would be faster. The distinction is subtle but important. In
the code above, you loop through each length 1 substring of the target string to
determine whether it’s an alpha character. All this takes time. The Upcase call is
O(n), as are the SubStr and StrCompare. Of course, the StrCompare isn’t really
that slow, but it’s still slower than you need.

The SubStr call is returning a single character at a time, but in the form of a
string. That means there is a memory allocation for at least two characters (the
content and the null terminator) for each call to SubStr. A better way is to
compare each character of the string. In certain circumstances you can access a
character at a time with the array accessor (that is, []). An example of a function
that does this is IsASCIIAlpha3 (see the code on this issue’s CD). In general,
when you need either a single character from a string or character-by-character
access, the array-like syntax is faster.

Note that the final fix to the code is that it doesn’t do any preprocessing of the
string; instead it uses a lookup in an pregenerated array of valid alphabetic
ASCII characters. That gives it a significant speed advantage. Since timing in
the Inspector is a useful technique, the code to do the timings and print results
is included on the CD. Also note that this function is specifically for ASCII
characters, so characters like é and ß would fail.

Something else to note: Newton is a Unicode-based device. ASCII is a subset of
Unicode (from 0x0000 to 0x007F), but Unicode characters up to 0xFFFD are
documented. Your routine is checking only some of the characters on page 0
(that is, characters of the form 0x00nn), but it must deal with all characters.

Q I’m trying to use the trace global to get information on what methods are called. But I
get lots of output that doesn’t start or end where I want. What can I do?

A There are really two questions here: how to use trace effectively, and how to
use the output. Usually you would turn tracing on inside a method, then turn it
off later on in the code. Unfortunately, you need to do more than just set the
value of trace; you also have to force the interpreter to notice that trace has
changed. The PIE Developer Technical Support NewtonScript Q&A on
debugging (on this issue’s CD, among other places) tells you how to do this.

// to turn tracing on for functions
trace := 'functions;
// force interpreter to notice change in state of trace variable
Apply(func () nil, []);

// to turn tracing off
trace := nil;
Apply(func () nil, []);

Once you have the trace output, you should cut and paste it into a text
processor. There are three main bits of information you can get from a trace:

• You can look at how many messages are generated from an apparently
simple call. You can use trace in conjunction with function call timings
made using Ticks to see why a particular call takes so long. Using the find
feature of your text processor, you can jump to the function call you’re
looking at.

NEWTON Q & A: ASK THE LLAMA 115

• You can look at the values passed in and returned by function calls.

• Perhaps most useful of all, you can use the text processor to strip away all
the extraneous information (things like the lines specifying return values —
that is, lines that contain the string "=>" as the first non-whitespace entry) so
that you’re left with the messages sent. Then you can sort the messages and
get a histogram of the results. This process is easier if you have a text
processor that supports grep-like text substitution (regular expressions) and
sorts.

Q I’m using the Newton Toolkit layout editor to organize my data object classes in my
application. I have 20 classes with one layout per object type. To access the objects, I
declare each class layout to the main application. This gives me the benefits of parent
inheritance. Unfortunately, even my test applications are memory hogs. I would expect
a time penalty, but why is there such a large space penalty?

A The space penalty is much larger than it needs to be. You’re using a layout
editor to edit your classes so that you can graphically edit the classes’ slots. But
this has the disadvantage that you have to specify each class as some sort of view
class or prototype, perhaps a simple clView. It’s the cause of your space problem,
because you also carry all the memory and runtime allocation that goes with a
view. Since your layouts are declared to your base application view, and since the
default for a clView is visible, each of your classes is also a full runtime view.
That can take a large amount of space on the NewtonScript heap. For a clView,
the penalty is roughly 40 bytes, so that’s an extra 800 bytes of NewtonScript
heap that you can free.

A better solution is to avoid using the NewtonScript heap for your class (after
all, that’s one of the advantages of prototype inheritance). You can do this in one
of two ways:

• If you still want to use a layout editor to edit your class, you can use a user
prototype instead of a layout. At run time, you’ll have access to the data class
using the PT_<filename> syntax documented in the Newton Toolkit User’s
Guide (page 4-25). Remember that the user prototype will be read-only.

• The other option is to textually define the class. You can do this in your
Project Data file, or use the Load command to read in a different text file.
See the PIE Developer Technical Support NewtonScript Q&A document
on this issue’s CD for more information.

d e v e l o p Issue 20 December 1994116

Thanks to our PIE Partners for the questions
used in this column, and to jXopher, Bob Ebert,
Mike Engber, Kent Sandvik, Jim Schram, and
Maurice Sharp for the answers.•

Have more questions? Need more answers?
Take a look at PIE Developer Info on AppleLink.•

KON and BAL still lay claim to the Puzzle Page, and they assure us
they’ll be back, but meanwhile they’d like to have some guest puzzlers
take over for a while. (They say they’re busy with work at Catapult
Entertainment and Rocket Science, but we all know about those
vacations they take!) This puzzle is from Cary Clark, presented in the
form of a dialog between his astute pug dogs, Shelley and Byron (who,
Cary says, will eat anything, including codecs and Texas Hold’ems).
The dialog gives clues to help you. Keep guessing until you’re done; your
score is the number to the left of the clue that gave you the correct
answer. And please, help out KON and BAL by submitting puzzles of
your own to AppleLink DEVELOP.

Shelley KON and BAL have gone the way of the dodo bird (or at least the way
of the hedgehog), so it’s time to replace all of their arcane QuickDraw
knowledge with arcane QuickDraw GX knowledge.

Byron I tried to use QuickDraw GX, but since installing it off the 1994
WWDC CD, I can’t launch any of my applications.

Shelley Are you sure?

100 Byron Well, the applications launch, but double-clicking a document doesn’t
do anything, even though the icons look all right.

Shelley The problem is in the desktop database, which the Finder uses to tell
which document file types correspond to which applications. Did you
try rebuilding your desktop?

90 Byron Sure, but it didn’t help.

Shelley How about booting off a different disk?

85 Byron That works, but only for some files. So I removed QuickDraw GX
altogether and rebuilt the original desktop by holding down Option-
Command at system startup. Then everything worked fine.

Shelley That must mean that one of the files you removed got rid of the
problem.

KON & BAL’S PUZZLE PAGE

Processed Cheese

KON & BAL’S PUZZLE PAGE 117

CARY CLARK, once on the QuickDraw GX
engineering team at Apple, has joined BAL at
Rocket Science. He’s co-owner of Shelley and
Byron, who often know more than he does. Cary
was working on QuickDraw when BAL made

Microsoft Word skanky and KON made GM (not
General Magic) what it is today. Next time you
see KON, ask him if he wants to cut for a
hundred and watch him wince.•

CARY CLARK, BYRON,
AND SHELLEY

80 Byron Nope, grr. I tried explicitly taking the QuickDraw GX extension out of
my Extensions folder and rebooting, and nothing happened, except
that my desktop printers went away.

Shelley So how do you like the LQ, anyway?

Byron It’s a lot faster than the Qume. But I miss watching it hammer the
period to make my LisaDraw pictures.

Shelley So, what else is a part of QuickDraw GX? Let’s take a peek in the
System Folder. There’s the printer drivers, ATM . . .

Byron That’s never caused any trouble.

Shelley . . . ColorSync, the new Color Picker, PrinterShare GX. Hmmm, that’s
odd — PrinterShare GX’s icon is dimmed as if it were an open
application, but it doesn’t show up in the process menu as
PrintMonitor used to.

75 Byron Oh, you dog. That’s because PrinterShare’s file type is 'appe'. It’s a
faceless application that’s always running in the background.

Shelley I don’t remember reading about that in the Processes volume of Inside
Macintosh.

Byron That’s because dogs can’t read. But I’ve heard it’s briefly mentioned in
Volume VI on page 9-41. Anyway, that’s beside the point. If you type
procinfo in MacsBug, you’ll get a list that looks like this:

Displaying Process Information
PSN Process Name Size Free HeapAt Type Crtr Status
2000 PowerTalk Manager 00044800 00003AE4 05892960 appe kl02 BgOnly
2002 Finder 00026C00 000012DC 05846E80 FNDR MACS Bkgnd
2003 File Sharing Ext… 00029C00 00005A2A 057A2C60 INIT hhgg BgOnly
2005 Eudora 1.4.2 0005CC60 000154F8 057242E0 APPL CSOm Front
2006 NCSA Telnet 2.6 00088000 0003E0B2 056982D0 APPL NCSA Bkgnd
2007 THINK Project Ma… 003E8000 001E1A68 052AC2C0 APPL KAHL Bkgnd
2008 Find File 00046000 00014F4A 052622B0 APPL fndf Bkgnd
200B Microsoft Word 00200000 000C1D5C 0505E2A0 APPL MSWD Bkgnd
200C PrinterShare GX 0001C000 00011488 0503E290 appe PtSr BgOnly

Shelley OK, try removing PrinterShare GX and rebuilding the desktop.

70 Byron Hey, that fixed it!

Shelley But the question remains, what’s wrong with PrinterShare GX? And
how did you get into this sorry situation anyway?

65 Byron Well, I ran Norton Utilities on my disk, and it said it was fixing some
applications with bad bundle bits.

Shelley So Norton must force the desktop to rebuild in order to register the
applications it thought needed to be reregistered with the Finder’s
desktop database. Bad dog. And the Finder fails when rebuilding the
desktop.

Byron Wait a minute. PowerTalk Manager is also an 'appe'. What’s different
about it?

60 Shelley AOCE requires that PowerTalk Manager always run as a background
application, while QuickDraw GX needs PrinterShare GX to run only
when a document is printing.

d e v e l o p Issue 20 December 1994118

Byron So, how does the system know to run PowerTalk Manager, but not to
run PrinterShare GX?

55 Shelley PowerTalk Manager contains a resource of type 'appe', ID = 0. This
resource returns true when called as a Pascal function, which tells the
Startup Manager to launch it. PrinterShare GX has no such resource.

Byron I bet we could figure this out from the Process Manager source, but
barring that, let’s use MacsBug to figure out why the Finder fails.

Shelley We can stop on file opens using atb openrf to figure out when the
Finder is accessing PrinterShare GX.

Byron But how do you get it to stop only for PrinterShare GX?

Shelley Well, I need to find the filename. I put a break on _Open; then I
display the parameter block using dm a0 iopb.

Byron iopb?

Shelley I/O parameter block. It looks like this:

Displaying IOParamBlockRec at 0008D720
0008D720 qLink NIL
0008D724 qType 0000
0008D726 ioTrap A000
0008D728 ioCmdAddr NIL
0008D72C ioCompletion NIL
0008D730 ioResult 0000
0008D732 ioNamePtr 0008A8D6 -> "PrinterShare GX"
0008D736 ioVRefNum FFFF
0008D738 ioRefNum 0000
0008D73A ioVersNum #0
0008D73B ioPermssn #4
0008D73C ioMisc NIL
0008D740 ioBuffer NIL
0008D744 ioReqCount 00000000
0008D748 ioActCount 00000000
0008D74C ioPosMode 0000
0008D74E ioPosOffset 00000000

Byron So the 18th byte into the block can be a pointer to a string; we can
dereference that and look for strings that start with 'Prin'.

Shelley You C mutt. You have to think Pascal; the first byte will be the string
length, 15, so you want to break when @@(a0+12)=0F507269.

50 Byron By George, this won’t work. The file is already open!

Shelley How do you know?

Byron I used the MacsBug file dcmd, and there it is, near the bottom of the
list.

Displaying File Control Blocks
fRef File Vol Type Fl Fork LEof Mark FlNum Parent FCB at
0002 System fat zsys dW rsrc #2303194 #920 008359 007bfe 2fb352
0060 fat •••• dw data #1032192 #0 000003 000000 2fb3b0
00be fat •••• dw data #3096576 #0 000004 000000 2fb40e
011c Apple Chanc… fat FFIL dW rsrc #269497 #219985 008220 007c02 2fb46c
017a Chicago fat FFIL dW rsrc #48064 #38423 008351 007c02 2fb4ca
. . .

KON & BAL’S PUZZLE PAGE 119

0874 PowerTalk M… fat appe dW rsrc #507556 #413184 007ca8 007bff 2fbbc4
08d2 PrinterShar… fat appe dW rsrc #32978 #708 008236 007bff 2fbb22
0930 Finder fat FNDR dW rsrc #456553 #362328 00835c 007bfe 2fbc80
098e Finder Pref… fat pref dW rsrc #19983 #328 007cde 007c95 2fbcde
09ec Desktop DB fat BTFL dW data #196608 #150528 000011 000002 2fbd3c
0a4a Desktop DF fat DTFL dW data #351810 #101184 000010 000002 2fbd9a
0bc2 QMgrCatalog fat BTFL dW data #65536 #1024 007ce5 007ce4 2fbf12
0c20 WSBTree fat BTFL dW data #65536 #1024 007ce7 007ce2 2fbf70
131a Mail En… •••• dw data #0 #0 000003 000000 2fc66a
#74 FCBs, #35 in use, #39 free

45 Shelley That could be OK. It depends on whether the Finder is opening a
read-only path on the file. We can tell by looking at the parameter
block as we did before and seeing what’s in the ioPermssn field.

40 Byron As I suspected, it’s a 3, meaning the Finder is opening it for reading
and writing, when it only needs to read the bundle resource.

35 Shelley Well, not exactly, since it wants to mark the file as initialized, so that
next time it won’t add the file to the database again.

Byron But isn’t that data in the Finder info, which is in neither the data fork
nor the resource fork, but just part of the file identifier, like the
filename?

30 Shelley Oh, yeah. I know! The standard call OpenResFile always tries for
read/write permission. The Finder desktop-building code is old and
tired, but I’m sure when they rewrite it they’ll correctly use OpenRF
instead. In any case, the Finder is getting an error it doesn’t expect
when opening the file, so it gives up building the desktop database
before it has retrieved the bundle information from all of the
applications.

25 Byron So one possible fix is to prevent the Startup Manager from opening
the file in the first place, since QuickDraw GX doesn’t need it to be
open all the time.

20 Shelley Or we could cause the file to be opened as read-only by setting its
shared bundle bit. There’s a more obscure way to solve the problem: if
we put the right stuff in the 'appe' resource, the Startup Manager will
be instructed to close the file after executing some code.

15 Byron I happen to have a copy of ResEdit right here. It’s a little difficult to
work with my paws, so give me a minute. Hey — look at that little
man going in and out of the jack-in-the-box. I could watch this all
day!

Shelley Cool. It even changes all the colors in the system palette, causing all of
the screens to redraw, and then redraw again when you quit. State of
the art, man — I mean, dog.

10 Byron Well, the problem is now obvious. PrinterShare GX is a background
application that doesn’t need to run all the time, but it doesn’t have the
shared bit set, and it doesn’t have an 'appe' resource. The 'appe'
resource is code, and I don’t have that nifty ResEdit code editor.

5 Shelley We can use MacsBug to write it for us. All we need are enough
instructions to create a Pascal function that returns false. We can cheat
by disassembling PtInRect and steal a little code from there. We can
verify our code by using the MacsBug command dh to disassemble our
hex. I think 422e 0004 4e74 0004 ought to do the trick.

d e v e l o p Issue 20 December 1994120

Byron What does that do?

Shelley It causes an illegal instruction error on a 68000 machine. Good thing
Apple doesn’t sell those anymore.

Byron But I just bought a luggable for a steal at the flea market! What can I
do?

Shelley Hit your smushed-faced little head against it. QuickDraw GX runs
only on 68020 and better, so this code is just fine.

Byron Arf.

Shelley Grr.

KON & BAL’S PUZZLE PAGE 121

SCORING
80–100 Excellent! You’re good enough to write your own puzzles. Heck, you could probably write

the whole develop magazine. (While you’re at it, try to get some work out of those slackers
at Catapult Entertainment and Rocket Science.)

55–75 Pretty good. You could speed up the blits in QuickDraw GX. (When you do, let us know.)
30–50 Not bad. You could make the PostScript driver go fast even without taking it native.
5–25 Try not to hurt yourself with shape operations.•

Thanks to Dave Hersey, KON (Konstantin Othmer), and BAL (Bruce Leak) for reviewing this column,
and to Ron Voss for tracking the problem down and fixing it in the shipping version of QuickDraw GX.•

If you have questions, suggestions, or even gripes about develop, please don’t keep them to yourself.
Drop us a line and let us know what you think.

Send editorial suggestions or comments Send technical questions about develop
to AppleLink DEVELOP or to: to:

Caroline Rose Dave Johnson
Apple Computer, Inc. Apple Computer, Inc.
One Infinite Loop, M/S 303-4DP One Infinite Loop, M/S 303-4DP
Cupertino, CA 95014 Cupertino, CA 95014
AppleLink: CROSE AppleLink: JOHNSON.DK
Internet: crose@applelink.apple.com Internet: dkj@apple.com
Fax: (408)974-6395 CompuServe: 75300,715

Fax: (408)974-6395

Please direct all subscription-related queries to develop, P.O. Box 531, Mount Morris, IL 61054-
7858 or AppleLink DEV.SUBS (or, on the Internet, dev.subs@applelink.apple.com). Or call
1-800-877-5548 in the U.S., (815)734-1116 outside the U.S., or (815)734-1127 for fax.

How’re we doing?

✍

✍

For a cumulative index to all issues of
develop, see this issue’s CD.•

A
AddArraySlot, Newton Q & A

113
AddRecordAsAttribute (AOCE)

22–23
AddTESample (QuickTime) 44,

49
AddTextSample (QuickTime) 44
AEDesc, Finder events and 66,

68
AEProcessAppleEvent, Finder and

66
AERegistry.h file 78
“Algorithms for Calculating

Planetary Positions” (Chesley)
27

Anderson, Greg 65
AOCE (Apple Open

Collaboration Environment)
5–24

AOCE Catalogs Extension (CE)
5, 26, 34–35

AOCE templates 5–24, 26–43
advanced features 28
contents of 8
custom property type

conversion 32–35
defined 6, 26
defining 28–32
storage location of 5
types 6–7

AppendDITL, Macintosh Q & A
107–108

'appe' resource, KON & BAL
puzzle 118, 120

AppleEvent, Finder events and 66
Apple Event Manager, Finder and

66
Apple events

addressing 66
Finder and 65–66
inserting two-dimensional

arrays (Macintosh Q & A)
107

AppleEventUtilities.h file 66
Apple Open Collaboration

Environment (AOCE) 5–24
Apple Workgroup Servers,

running NetWare on 84

aspect (AOCE), defined 7
aspect template (AOCE) 6, 7,

30–32
defining 9–13
drag and drop resources

10–11
for keyword records 15–17
and lookup tables 8, 12–13
naming 10
signature resource 9

ATAtpClose (NetWare) 94
ATAtpGet (NetWare) 93
ATDEMO.NLM sample NLM

(NetWare) 91–94
attributes (AOCE), defined 6
attribute types (AOCE) 12
attribute value tags (AOCE) 12

B
background-only application,

launching applications with
(Macintosh Q & A) 106–107

“Balance of Power” (Evans),
PowerPC branch prediction
96–98

Balloon Help, AOCE and 11–12
BeginMediaEdits, Macintosh

Q & A 102
BeginThread (NetWare) 93
Big-Oh notation, Newton Q & A

112
blocking functions (NetWare),

NLM development and 93
BOA (background-only

application), launching
applications with (Macintosh
Q & A) 106–107

branch folding, PowerPC and 96
branch prediction, PowerPC and

96–98
burnt text (QuickTime) 49
Buttin, Christine 5

C
C++ wrappers, Apple Events and

66
call-for mask (AOCE) 19
CanDo method (Component

Manager) 54, 55
catalogs (AOCE) 26

defined 6

Catalogs Extension (CE) (AOCE)
5, 26, 34–35

CE (Catalogs Extension) (AOCE)
5, 26, 34–35

Certified NetWare Engineer
(CNE) 94–95

character functions, versus string
functions (Newton Q & A) 115

Chesley, Harry R. 26
Clark, Cary 117
Clone, Newton Q & A 114
Close method (Component

Manager) 52, 55–56
CLUTLess sample program 63
'clut' resource, PICT files and 63
CMDisposeIOPB, Macintosh

Q & A 103
CMNewIOPB, Macintosh Q & A

103
CMPBIOKill, Macintosh Q & A

103
CMPBRead, Macintosh Q & A

103
CMPBWrite, Macintosh Q & A

103
cmpWantsRegisterMessage bit

(Component Manager) 53, 55
code resources, AOCE and

18–23, 28–42
color tables, stripping from PICT

files 63–64
'comm' resource (QuickDraw GX)

81
componentDoAutoVersion bit

(Component Manager) 53
Component Manager, registering

sound output components
52–53

CompressionInfo data structure
(Sound Manager) 60

conditional branches, branch
prediction and 96, 97

conditional views (AOCE) 8
convertFromRString (AOCE)

32–34
convertToRString (AOCE) 32–34
Copy event (Scriptable Finder) 76
copyright keyword, NLM

development and 87
Core event suite 70, 78
CreateObjSpecifier, Apple events

and 68

INDEX

d e v e l o p Issue 20 December 1994122

currentPickItems, Newton Q & A
113, 114

currentSelectedItem, Newton
Q & A 113

custom (internal) data types
(AOCE), converting to text
(RStrings) 28, 32–35

custom color tables, Macintosh
Q & A 99

custom icons (Scriptable Finder)
getting and setting 73
removing 74

custom property types (AOCE),
converting to text (RStrings)
28, 32–35

CustomPutFile, Macintosh Q & A
104

custom views (AOCE), drawing
28, 39–42

D
date/time property type, AOCE

and 32
decompression components

(Sound Manager) 60–61
.def (definition) files, for creating

NLMs 87–89
defaultPickItems, Newton Q & A

113, 114
definition files (.def), for creating

NLMs 87–89
description keyword, NLM

development and 87
desired class, object specifiers and

68
DetachResource, Macintosh

Q & A 108
'deta' resource (AOCE) 9
'dett' resource (AOCE) 32, 34–35
dialog boxes, displaying movable

modal (Macintosh Q & A) 101
DiffRgn, Macintosh Q & A 99
digital audio 50–62
DirAddAttributeValue (Catalog

Manager) 22
Directory Services API (NetWare)

90
dirty-property callback (AOCE)

30
DisposeDialog, Macintosh Q & A

108
DisposeHandle, Macintosh Q & A

108
DisposeResource, Macintosh

Q & A 108

DoAddRecord (AOCE) 19,
20–22

DoCommand (AOCE) 19–20
DoDropQuery (AOCE) 18–20
DoSearchForStringInMovie-

Window (QuickTime) 47
DoUpdateText (QuickTime)

48–49
drag and drop, AOCE and 23
DrawPicture (QuickDraw) 64
drop-check flag (AOCE) 11
drop-operation order (AOCE) 11
drop-query command (AOCE)

18–19
dynamic branch prediction 96

E
elements, of null containers 68
EraseRect, Macintosh Q & A

99–100
Evans, Dave 96
exit keyword, NLM development

and 88
ExitThread (NetWare) 94
“Exploring Advanced AOCE

Templates Through Celestial
Mechanics” (Chesley) 26–43

export keyword, NLM
development and 88

F
faceless background application,

launching applications with
(Macintosh Q & A) 106–107

files, moving with the optional
position parameter (Scriptable
Finder) 77

file sharing (Scriptable Finder)
73–76

Finder
changing the selection 70
custom icons 73, 74
determining the selection

69–71
file sharing 73–76
getting the address of 67
getting the owner of the

frontmost window 72
Scriptable 65–78
updating containers 73, 75

Finder containers, updating 73,
75

Finder events 70
creating and addressing

66–67

Finder Event Suite 70, 78
Finder support for 67

Finder objects, specifying 68–69
FinderRegistry.h header file 65
Finder Scripting Extension 65, 76
Finder Snapshot sample

application 72–73
Finder Tricks sample application

73
Find File desk accessory (System

7.5) 76
FindFolder, Finder and 69
FindNextText (QuickTime) 44,

47
FindStringInFrame, Newton

Q & A 112
findTextCaseSensitive flag

(QuickTime) 47
findTextReverseSearch flag

(QuickTime) 47
findTextWrapAround flag

(QuickTime) 47
'FNDR' process type, Finder

events and 66, 78
folders

detecting invisible
(Macintosh Q & A) 103

setting sharing properties
(Scriptable Finder) 73–76

formAlias, Finder and 69
Forward_GXFreeBuffer

(QuickDraw GX) 83
FSSpec, Finder and 68, 71

G
Gestalt events, Scriptable Finder

and 67
gestaltQuickTime 44
GetAppParms, Macintosh Q & A

105
GetComponentInstanceA5

(Component Manager) 56
GetComponentRoutine

(Component Manager) 54
Get Data event

and custom icons 73
Finder and 69–70
Scriptable Finder and 70–71

getExtendedProperty (AOCE)
34, 35

GetInfo method (Sound Manager)
56, 58–59, 60

selectors for 59, 60
GetMediaSample (QuickTime)

46

INDEX 123

GetMovieIndTrackType
(QuickTime) 45

GetProcessInformation (Process
Manager), Macintosh Q & A
105

GetSoundPreference (Sound
Manager) 57

GetSourceData method (Sound
Manager) 61

getTimeProperty (AOCE) 34
“Getting the Most out of AOCE

Catalog Records” (Buttin)
5–24

“Graphical Truffles” (Ortiz and
Johnson), a space-saving PICT
trick 63–64

GXAlertTheUser, Macintosh
Q & A 101

GXBufferData 79, 82, 83
GXCreateImageFile 82
gxDeviceCommunicationsType

('comm') resource 81
gxDontSplitBuffer option 81–82
GXDumpBuffer 79, 80
GXFreeBuffer 79, 80, 83
GXHandleAlertEvent, Macintosh

Q & A 101
GXHandleAlertFilter, Macintosh

Q & A 101
GXInitializeStatusAlert,

Macintosh Q & A 101
GXPostScriptProcessShape 82
GXRasterDataIn 81, 82, 83
gxRasterPrefsType ('rdip')

resource 82
gxUniversalIOPrefsType ('iobm')

resource 80–82
GXVectorPackageShape 82
GXWriteData 79, 82

H
HandleClientSession (NetWare)

93–94
HandleRequest (NetWare) 94
Hersey, Dave 79
Hide/ShowDItem, Macintosh

Q & A 107
hint bits, branch prediction and

96
HomeResFile, Macintosh Q & A

106

I
image files (QuickDraw GX) 82
import keyword, NLM

development and 88

information pages (AOCE) 29, 31
creating from records 6–8
sort-order number 13
and sublists 9, 13

information page templates
(AOCE) 7–8, 28–30

defining 13–15
for keyword records 17–18
naming 13–14
signature resource 13
type resource 13–14
view lists 8, 14–15

information page window (AOCE)
6, 7

InitOutputDevice method (Sound
Manager) 52, 56–58

for NoiseMaker 58
input keyword, NLM

development and 88
InsertMediaIntoTrack

(QuickTime) 49
instanceInit (AOCE) 35

initializing the Time field
36

internal data types (AOCE),
converting to text (RStrings)
28, 32–35

invisible folders, detecting
(Macintosh Q & A) 103

'iobm' resource (QuickDraw GX)
80–82

J
Johnson, Dave 63, 109

K
kAEClone (Scriptable Finder) 76
kAEMove (Scriptable Finder) 76
kDETAspectRecordDragIn

resource (AOCE) 10
kDETcmdCustomViewDraw

selector (AOCE) 39
kDETcmdGetCommandItemN

callback routine (AOCE) 20
kDETcmdGetCommandSelection-

Count callback routine (AOCE)
20

kDETcmdGetDSSpec callback
routine (AOCE) 20

kDETcmdPropertyDirtied
(AOCE) 35

kDETDidNotHandle result code
(AOCE) 18

kDETPrKind metaproperty
(AOCE) 11

kDETPrName metaproperty
(AOCE) 11

kExtendedPropertyType (AOCE)
32, 33

kExtendedPropertyTypeSize
(AOCE) 32

key data, object specifiers and 68
key form, object specifiers and 68
keyGlobalPositionList, optional

position parameter 76
keyword records (AOCE)

defining 15–18
information page template

17–18
main aspect template 15–17
sublists in 18

killer templates (AOCE) 10
“KON & BAL’s Puzzle Page”

(Clark), Processed Cheese
117–121

kTimeProperty (AOCE) 32,
35–39

kXProperty (AOCE) 32, 35–39
kYProperty (AOCE) 32, 35–39

L
Larger Print Area checkbox

(QuickDraw GX LaserWriter
Page Setup Options),
Macintosh Q & A 101–102

LaserWriter 8, Macintosh Q & A
102

layout editor (Newton Toolkit),
Newton Q & A 116

lookup table (AOCE) 8, 9, 12–13

M
Macintosh Q & A 99–108
'MACS' process signature, Finder

events and 66
main aspect (AOCE) 9
main aspect template (AOCE)

for keyword records 15–17
replacing existing 10

main thread (NetWare), NLM
development and 90

main view aspect (AOCE) 9
“Make Your Own Sound

Components” (Olson) 50–62
Math Services API (NetWare) 91
MaxApplZone, QuickTime and

44
metaproperties (AOCE), defined

11

d e v e l o p Issue 20 December 1994124

MewLaw example decompression
component (Sound Manager)
50, 60

MoreMasters, QuickTime and 45
Move event (Scriptable Finder)

76
MovieSearchText (QuickTime)

44, 47–48
Movie Toolbox, editing text tracks

in QuickTime 44, 48–49
MPW (Macintosh Programmer’s

Workshop) Pro 87
building an NLM with 88

N
NetWare 4.1 (Novell) 84
NetWare AppleTalk interface 91
NetWare C Interface 89–91

communications 91
directory services 90
file manipulation 90
human interface facilities 91
input/output 90
math functions 91
memory management 90
thread management 90

“NetWare Development on
PowerPC” (Osborne) 84–95

NetWare loadable modules
(NLMs) 84, 85, 91–94

definition file 87–89
development environment

86–87
development tips 94
examples 91–94
and the NetWare C

Interface 89–91
for PowerPC 86–94

NetWare NLM User Interface
Services 91

NetWare Operating System
(NOS) 84

NetWare for PowerPC 84–95
AppleTalk interface 91
architecture 84
development environment

86–87
development tips 94
directory services 86
nonpreemptive multitasking

86, 94
portability 86
resource allocation 85–86

NetWare for PowerPC Software
Development Kit 90, 94, 95

NetWare Transport Layer
Interface (TLI) 91, 94

network operating systems 84
NewGWorld, Macintosh Q & A

99
NewMovieFromScrap, Macintosh

Q & A 102
Newton

accelerating applications
(Newton Q & A) 112

searching strings (Newton
Q & A) 112–113

string functions versus
character functions
(Newton Q & A) 115

Newton Q & A: Ask the LLama
112–116

NewTrackMedia, Macintosh
Q & A 102–103

NLMLink script, NLM
development and 87

NLMName.def files, NLM
development and 87

NLM threads (NetWare) 85
NoiseMaker example sound

output component (Sound
Manager) 50, 52

dispatcher from 55
InitOutputDevice method

for 58
'thng' resource for 53

notForInput flag, in lookup table
(AOCE) 13

notForOutput flag, in lookup table
(AOCE) 13

null container
object specifiers and 68
properties of 69

O
object container, object specifiers

and 68
object specifiers, Apple events and

68
Object Support Library (OSL),

Scriptable Finder and 65
OCEEqualRString utility routine

(AOCE) 22
Olson, Kip 50
OpenCPicture (QuickDraw) 63
Open method (Component

Manager) 52, 54, 55, 56, 60
OpenPicture (QuickDraw) 63
OpenResFile, KON & BAL

puzzle 120

Ortiz, Guillermo A. 63
Osborne, Jamie 84
OSErr status code, QuickTime

and 45
OSL (Object Support Library),

Scriptable Finder and 65
output device components (Sound

Manager) See sound output
components

output keyword, NLM
development and 88

P
Palette2CTab, Macintosh Q & A

99
PAP (Printer Access Protocol),

PostScript drivers and 81
PBGetCatInfo, Macintosh Q & A

103
PBGetFCBInfo, Macintosh

Q & A 105, 106
PEF (Preferred Executable

Format) files, NLM
development and 87

PenMode(srcBic) 3
PicComment (QuickDraw) 64
PICT files, stripping color tables

63–64
PixMap, storing PICT files 63
planetary positions, algorithms for

calculating 27
PlaySourceBuffer method (Sound

Manager) 52, 56, 59, 60
pmTable field (PixMap) 63, 64
PostScript drivers, QuickDraw

GX and 81, 82
PowerPC

branch prediction 96–98
creating QuickDraw GX

printer drivers (Macintosh
Q & A) 100–101

NetWare development on
84–95

PowerPC 601, branch prediction
96

PowerPC 603, branch prediction
96

PowerPC 604
branch prediction 96–98
performance 97–98

PowerPC object (.o) files, NLM
development and 87

PowerShare collaboration servers,
AOCE catalogs and 6

INDEX 125

PowerTalk
built-in User records 5–6,

10, 24
extension for AOCE

templates 24
PowerTalk Manager, KON &

BAL puzzle 118–119
PPCRuntime.o (PowerPC

runtime library), NLM
development and 87

PPD (PostScript printer
description) files, Quick Draw
GX and (Macintosh Q & A)
102

prChangeRec (AOCE), and
DoCommand 20

Prelude.o library, NLM
development and 87, 88

Print, Newton Q & A 112
PrinterShare GX, KON & BAL

puzzle 118–120
“Print Hints” (Hersey), improving

QuickDraw GX printer driver
performance 79–83

PrintingMessages.h file
(QuickDraw GX) 82

process serial number (PSN),
addressing Apple events 66

properties
of null containers 69
recognized by the Finder 69
specifying with object

specifiers 68–69
properties (AOCE), defined 6
property command (AOCE) 19
property-dirtied call (AOCE) 30
property values (AOCE),

automatic calculation of 28,
35–39

Q
QDProcs (QuickDraw) 64
QTTextSample sample program

44
application window 45

QuickDraw GX
buffering bottlenecks 81–83
buffering messages 79–80
calculating device data

requirements 83
creating image files 82
creating PowerPC printer

drivers (Macintosh
Q & A) 100–101

displaying dialogs from
printer drivers (Macintosh
Q & A) 101

KON & BAL puzzle
117–121

papertypes (Macintosh
Q & A) 101–102

PostScript drivers 81, 82
PPD files and (Macintosh

Q & A) 102
printer driver performance

79–83
raster drivers 81
vector drivers 81, 82

QuickTime
altering pixel information

(Macintosh Q & A) 103
checking return codes 45
determining version number

44
maximizing heap size 44–45
supporting text tracks 44–49

QuickTime 2.0
burnt text 49
and Sound Manager 50
supporting text tracks 44–49

QuickTime for Windows 2.0,
supporting text tracks 44–49

R
raster drivers, QuickDraw GX and

81
'rdip' resource (QuickDraw GX)

82
records (AOCE)

creating information pages
from 6–8

defined 6
reentrant keyword, NLM

development and 88
Register method (Component

Manager) 53, 55
ReleaseResource, Macintosh

Q & A 108
Replace/Cancel dialog box,

Macintosh Q & A 104
Required event suite 70, 78
resource IDs (AOCE) 8, 13
resources (AOCE) 8

and the aspect template
9–11

and the information page
template 13–14

RStrings (AOCE), converting
custom property types to 28,
32–35

'rstr' resources (AOCE) 8, 14
run queue (NetWare), NLM

development and 90, 93

S
SANE floating-point extended

property type, AOCE and 32
Scriptable Finder 65–78

custom icons 73
defined 65
determining the selection

69–71
file sharing 73–76
running status 67

“Scripting the Finder From Your
Application” (Anderson) 65–78

Set Data event
and custom icons 73
Finder and 70

SetInfo method (Sound Manager)
56, 59

selectors for 59
SetMovieTextHandler

(QuickTime) 46, 47
SetOutput method (Sound

Manager) 61
SetSoundPreference (Sound

Manager) 57
SetSource method (Sound

Manager) 61
setSublistTimeProperty (AOCE)

38–39
SetTrackGworld, Macintosh

Q & A 103
SetWinColor, Macintosh Q & A

100
ShortenDITL, Macintosh Q & A

107
siCompressionFactor selector

(Sound Manager) 60
signature resources (AOCE) 8

for aspect templates 9
for information page

templates 13
“Somewhere in QuickTime”

(Thompson), supporting text
tracks 44–49

SoundComponentAddSource
(Sound Manager) 54

SoundComponentData structure
(Sound Manager) 57, 59, 61

sound components (Sound
Manager)

decompression components
60–61

defined 50

d e v e l o p Issue 20 December 1994126

managing preferences 57
output components 51,

52–59
Sound control panel (Sound

Manager) 51, 52
sound decompression components

(Sound Manager) 60–61
Sound Manager 3.0 50–62

sound decompression
components 60–61

sound output components
51, 52–59

sound output components (Sound
Manager) 51, 52–59

dispatcher 54
interrupt routine 59
managing preferences 57
output component methods

56–59
registering 52–53
standard methods 54–56

Sound Preferences file 57
SpinNewSession (NetWare) 93
start keyword, NLM development

and 88
StartSource method (Sound

Manager) 56, 59
Stats, Newton Q & A 113
StopSource method (Sound

Manager) 61
StrCompare, Newton Q & A 115
string functions, versus character

functions (Newton Q & A) 115
'styl' atoms (QuickTime) 46
sublists (AOCE) 8–9

in keyword records 18
synchronizing 18–23

SubStr, Newton Q & A 115
System 7.5, Scriptable Finder 65

T
TAEvent, Finder events and 66
TDescriptor, Finder events and

66
text (RStrings) (AOCE),

converting custom property
types to 28, 32–35

text-handling procedure
(QuickTime) 46

TextMode(srcBic) 3
textProc (QuickTime) 46
text tracks (QuickTime)

burnt text 49
editing text in 48–49
getting the text description

46

searching text in 46–48
style data 46
supporting 44–49

'thng' resource (Component
Manager) 52–53, 55, 60

Thompson, Nick 44
Ticks, Newton Q & A 112, 113
trace global, Newton Q & A 112,

115–116
TrackHilite, Newton Q & A 114
two-dimensional arrays, inserting

into Apple events (Macintosh
Q & A) 107

typeAlias (alias record), Finder and
68, 69

typeFSS (FSSpec), Finder and 68,
71

typeObjectSpecifier, Apple events
and 68

U
UnixWare (Novell), for NetWare

development 87
Upcase, Newton Q & A 115
UpdateGWorld, Macintosh

Q & A 99
updateOrbitEntries (AOCE)

38–39
useForInput flag, in lookup table

(AOCE) 12
useForOutput flag, in lookup table

(AOCE) 12
User records (PowerTalk) 5–6,

10, 24

V
vector drivers, QuickDraw GX

and 81, 82
version keyword, NLM

development and 87
Version method (Component

Manager) 55
“Veteran Neophyte, The”

(Johnson), Nothing Comes
From Nothing 109–111

viewClickScript, Newton Q & A
113–114

view lists (AOCE) 8, 13
defining 14–15
and the information page

template 14–15
View menu commands, AOCE

and 11
views (AOCE), defined 8

W
'wctb' resources, creating windows

(Macintosh Q & A) 100
Window Manager, Macintosh

Q & A 99–100
'WIND' resources, creating

windows (Macintosh Q & A)
100

X
XCOFF (eXtended Common

Object File Format) files, NLM
development and 87

INDEX 127

