

E D I T O R I A L S T A F F

Editor-in-Cheek Caroline Rose

Managing Editor Toni Moccia

Technical Buckstopper Dave Johnson

Bookmark CD Leader Alex Dosher

Able Assistants Meredith Best, Liz Hujsak

Our Boss Greg Joswiak

His Boss Dennis Matthews

Review Board Pete “Luke” Alexander, Dave
Radcliffe, Jim Reekes, Bryan K. “Beaker”
Ressler, Larry Rosenstein, Andy Shebanow,
Gregg Williams

Contributing Editors Lorraine Anderson,
Steve Chernicoff, Toni Haskell, Judy
Helfand, Cheryl Potter

Indexer Marc Savage

A R T & P R O D U C T I O N

Production Manager Diane Wilcox

Technical Illustration Deb Dennis, Sandee
Karr, Shawn Morningstar

Formatting Forbes Mill Press

Photography Sharon Beals, Maggie Fishell,
Marcie Griffith, Tin Janssens, Michael
Johnson, Mark Maxham

Cover Illustration Graham Metcalfe

ISSN #1047-0735. © 1995 Apple Computer, Inc.
All rights reserved. Apple, the Apple logo, APDA,
AppleLink, AppleScript, AppleTalk, HyperCard,
ImageWriter, LaserWriter, Mac, MacApp, Macintosh,
Macintosh Quadra, MacTCP, MPW, MultiFinder,
Newton, PowerBook, QuickTime, SANE, TrueType,
and WorldScript are trademarks of Apple Computer,
Inc., registered in the U.S. and other countries. AOCE,
AppleScript, A/ROSE, Balloon Help, ColorSync,
develop, Dylan, Finder, NewtonMail, NewtonScript,
OpenDoc, Power Macintosh, PowerTalk, QuickDraw,
and QuickTake are trademarks of Apple Computer, Inc.
PostScript is a trademark of Adobe Systems Incorporated,
which may be registered in certain jurisdictions.
PowerPC is a trademark of International Business
Machines Corporation, used under license therefrom.
Smalltalk is a trademark of ParcPlace Systems. NuBus
is a trademark of Texas Instruments. UNIX is a
registered trademark of UNIX System Laboratories,
a wholly owned subsidiary of Novell, Inc. All other
trademarks are the property of their respective owners.

T H I N G S T O K N O W

develop, The Apple Technical
Journal, a quarterly publication of
Apple Computer’s Developer Press
group, is published in March, June,
September, and December. develop
articles and code have been reviewed
for robustness by Apple engineers.

This issue’s CD. Subscription issues
of develop are accompanied by the
develop Bookmark CD. The Bookmark
CD contains a subset of the materials
on the monthly Developer CD Series,
which is available from APDA.
Included on the CD are this issue and
all back issues of develop along with the
code that the articles describe. The
develop code is updated when necessary,
so always use the most recent CD.
The CD also contains Technical
Notes, sample code, and other useful
documentation and tools (these
contents are subject to change).
Software and documentation referred
to as being on this issue’s CD are
located on either the Bookmark CD or
the Reference Library or Tool Chest
edition of the Developer CD Series.
The develop issues and code are also
available on AppleLink and via
anonymous ftp at ftp.info.apple.com,
in the Developer Services area.

Macintosh Technical Notes.
Where references to Macintosh
Technical Notes in develop are followed
by something like “(QT 4),” this
indicates the category and number of
the Note on this issue’s CD. (QT is the
QuickTime category.)

E-mail addresses. Most e-mail
addresses mentioned in develop are
AppleLink addresses; to convert one of
these to an Internet address, append
“@applelink.apple.com” to it. For
example, DEVELOP on AppleLink
becomes develop@applelink.apple.com
on the Internet. To convert a
NewtonMail address to an Internet
address, append “@online.apple.com”
to it.

C O N T A C T I N G U S

Feedback. Send editorial suggestions
or comments to Caroline Rose at
AppleLink CROSE, Internet
crose@applelink.apple.com, or fax
(408)974-6395. Send technical
questions about develop to Dave
Johnson at AppleLink JOHNSON.DK,
Internet dkj@apple.com, CompuServe
75300,715, or fax (408)974-6395. Or
write to Caroline or Dave at Apple
Computer, Inc., One Infinite Loop,
M/S 303-4DP, Cupertino, CA 95014.

Article submissions. Ask for our
Author’s Guidelines and a submission
form at AppleLink DEVELOP,
Internet develop@applelink.apple.com,
or fax (408)974-6395. Or write to
Caroline Rose at the above address.

Subscriptions and back issues.
You can subscribe to develop through
APDA (see below) or use the
subscription card in this issue. You can
also order printed back issues. For
subscription changes or queries or back
issue orders, call 1-800-877-5548 in
the U.S., (815)734-1116 outside the
U.S. Or write AppleLink DEV.SUBS or
Internet dev.subs@applelink.apple.com.
Be sure to include your name, address, and
account number as it appears on your mailing
label in all correspondence related to your
subscription. One-year U.S. subscription
price is $30 for 4 issues of develop and the
develop Bookmark CD; all other countries,
$50 U.S. For Canadian orders, price
includes GST (R100236199). Back issues
are $13 each in the U.S., $20 all other
countries.

APDA. To order products from APDA
or receive a catalog, call 1-800-282-
2732 in the U.S., 1-800-637-0029 in
Canada, (716)871-6555 internationally,
or (716)871-6511 for fax. Order
electronically at AppleLink APDA,
Internet apda@applelink.apple.com,
CompuServe 76666,2405, or America
Online APDAorder. Or write APDA,
Apple Computer, Inc., P.O. Box 319,
Buffalo, NY 14207-0319.Printed on recycled paper

d e v e l o p

A R T I C L E S

5 Getting Started With OpenDoc Graphics by Kurt Piersol
OpenDoc provides very powerful document layout and imaging capabilities, but the basic graphics tasks that
everyone needs to accomplish aren’t much more complex. Here are some recipes to get you started.

29 A First Look at Dylan: Classes, Functions, and Modules by Steve Strassmann
Dylan has fundamentally different notions about classes and methods than C++, notions that make specifying
and using methods simpler and more expressive. Here’s an overview of the Dylan way of doing things.

48 Designing a Scripting Implementation by Cal Simone
The design of your application’s scripting vocabulary is as important as the design of your user interface.
These guidelines will help you create a clean and consistent scripting vocabulary.

78 An Object-Oriented Approach to Hierarchical Lists by Jan Bruyndonckx
This article shows how to implement the hierarchical lists described in Issue 18 (and other custom list types)
in PowerPlant, CodeWarrior’s object-oriented framework.

C O L U M N S

23 BALANCE OF POWER
Introducing PowerPC Assembly Language
by Dave Evans
You won’t often need to write it, but you’ll
surely have to read it and debug it. Get the
basics here.

44 MPW TIPS AND TRICKS
Launching MPW Faster Than a Speeding
Turtle
by Tim Maroney
The first installment of a new column to help
you get the most out of MPW. This time:
speeding up MPW’s launching.

73 PRINT HINTS
Writing QuickDraw GX Drivers With
Custom I/O and Buffering
by Dave Hersey
Here’s what you’ll need to know to write a
QuickDraw GX driver that uses custom I/O or
buffering schemes.

94 SOMEWHERE IN QUICKTIME
Choosing the Right Codec
by John Wang
Compressor/decompressor components vary
widely in their capabilities and limitations.
Learn how to pick the right one.

98 MACINTOSH Q & A
Apple’s Developer Support Center answers
queries about Macintosh product development.

108 THE VETERAN NEOPHYTE
The Downside
by Dave Johnson
Programming is great . . . most of the time.

112 NEWTON Q & A: ASK THE LLAMA
Answers to Newton-related development
questions; you can send in your own.

117 KON AND BAL’S PUZZLE PAGE
Printing Pains
by Josh Horwich
Josh attempts to flummox KON with yet
another series of events that lead to a bus error.

122 THE ART OF HUMAN COMPUTING
Finger-Coded Binary
by Tobias Engler
Trapped in the wilderness with dead batteries?
Don’t despair: you can still twiddle bits around
the campfire.

Issue 21 March 1995

CONTENTS 1

2 EDITOR’S NOTE
3 LETTERS

123 INDEX

From time to time people I know outside of Apple ask me what kind of Macintosh
they should buy for home use. I in turn always ask what made them decide on a
Macintosh in the first place. The answer is usually along the lines of “My kid has one
at school and loves it” or “I use PCs at work but write my memos on a Macintosh,
and I love my Mac.” Typically they can’t pinpoint the reasons for this “love.” People
enjoy using the Macintosh; you might say they’re charmed by it.

Charm sells. I used to think my taste for older houses with all their nooks and
crannies — and yes, imperfections — would work to my benefit in the real estate
market. But in fact it seems that’s what everyone wants. The houses that suit me are
rarely put up for sale, their owners are so loathe to part with them; on those few
occasions that they are on the market, they’re sold in the blink of an eye. Newer,
bigger houses that go for the same price sell much more slowly.

So when I hear about how some new computer is expected to run infinitesimally
faster than some other one, I’m not swayed. (You’d be amazed to learn the creaky
model of the Macintosh I use at home for my personal tasks.) Through years of
complaints about how slow and otherwise imperfect the Macintosh was, I just knew it
would thrive. I don’t think people in the home market, especially, are going to focus
on performance measurements or the number of applications available. Of course
they need reasonable speed and the necessary applications to do what they want to do
— but most of all they want a computer they’ll enjoy using. They ask around, and
they see where people’s hearts lie in the computer-using world. Not that there won’t
be heartless millions choosing those other computers, but there will always be
Macintosh.

To quote from Tim Maroney’s first installment of “MPW Tips and Tricks,” in this
issue: “I don’t use my computer to run Dhrystone benchmarks: I use it to accomplish
tasks.”

As someone on the original Macintosh team, I’m not surprised by its appeal to the
heart. We all succumbed very early to its charm. I remember the big meeting we had
to decide the computer’s name, “Macintosh” being a code name that we were
resolved not to keep. But no other ideas for names — what few there were — gained
headway. The reason “Macintosh” stuck wasn’t because it was the name of an apple (if
misspelled); it stuck because we’d all grown so fond of our little “Mac.” It would have
been like renaming our first born.

Call me sentimental; I can take it. Call this my valentine to the Macintosh.

CAROLINE ROSE

d e v e l o p Issue 21 March 19952

EDITOR’S NOTE

CAROLINE ROSE (AppleLink CROSE) started
working at Apple in 1982 the first time, then
again in 1991. In between, she learned what it’s
like to be among the first employees in a startup
company run by Steve Jobs. She worked as a
programmer back when any math major could
pick it up pretty easily and when there were

about three programming languages to choose
from. Now that there are OODLs of languages
out there, she’s happy to be back to writing in
English. Caroline stood out as an odd bird in
grade school because she actually enjoyed
diagramming sentences. (There are other
reasons, too, but we won’t go into those.)•

Caroline Rose
Editor

BOOKMARK CD ALIAS PROBLEM
On the develop Issue 19 Bookmark CD,
there’s an alias in the OpenDoc folder
that can’t be opened because it apparently
thinks it’s supposed to be on a disc with
a different name than “Bookmark CD
19.” What’s the problem?

— Eric Shepherd

There was an alias (to “AppleScript™ 1.1”)
in the OpenDoc A6 folder that pointed to
the Developer CD. This slipped by us on the
Issue 19 Bookmark CD; it should have
pointed to a file explaining that the software
was on the Developer CD or could be
obtained through APDA. (Occasionally,
we’re unable to publish certain software
packages on the Bookmark CD.) Thanks
for pointing this out; we’re now checking
more carefully for such things.

— Alex Dosher

HOW NOT TO DO PREFERENCES?
When I saw the article on writing
preferences files in Issue 18, I thought it
would be great to finally have someone
explain how to do it properly. But the
article didn’t really do that, at least not
in my opinion, and it didn’t agree with
what Apple software does.

For one thing, I really think preferences
files should use the 'pref' file type; it
keeps down the time it takes for the
Finder to display the contents of the
Preferences folder, it automatically gives
the files the correct icon, and it avoids
the foolishness of having to register two
creators for every application. The
Finder should be revised so that double-
clicking a file of type 'pref' gives the
“can’t open preferences file” alert.

Programmers should not need to put
what is effectively a fixed string in every
preferences file. Balloon Help on a file
of type 'pref' should yield something
sensible instead of erroneously naming
the file as the Finder’s preferences file,
especially since many other preferences
files already use the 'pref' type.

Most of the rest of the article was on
target, especially the bit about not
putting static data in the preferences
folder. But there was no comment about
where static, shared data should go. The
trend seems to be to drop everything
into the Extensions folder, but it would
be better if a new “Data” or “Shared”
folder were created in the System Folder
to support these shared resources.

— Peter N. Lewis

I find little to disagree with in your note.
I’ve received other messages on this subject,
many containing the same good suggestions,
among others.

I’ll be the first to admit that several of the
methods I describe in the article are, in
their best light, convoluted, and at worst,
an unpleasant hack. The article reviewers
and I discussed the issues with Apple
engineers and human interface folks, and
nobody could come up with a better solution
for the system as it exists today. (Maybe the
title should have been “A Good Way to
Implement Preferences Files” instead of
“The Right Way . . .”) I tried to codify the
current thinking at Apple on the best way
to handle preferences files in the existing
system software environment, and I think I
achieved that goal.

I’m actually pleased (in a perverse sort of
way) that the article has created somewhat
of a stir: it highlights the problems in this

LETTERS

LETTERS 3

IF YOU WRITE, WE WILL ANSWER
We welcome timely letters to the editors,
especially regarding articles published in
develop. Letters should be addressed to Caroline
Rose — or, if technical develop-related questions,
to Dave Johnson — at AppleLink CROSE or
JOHNSON.DK. Or you can write to Caroline

or Dave at Apple Computer, Inc., One Infinite
Loop, M/S 303-4DP, Cupertino, CA 95014. All
letters should include your name and company
name as well as your address and phone
number. Letters may be excerpted or edited for
clarity (or to make them say what we wish they
did).•

area faced by developers better than
anything I might write. Granted, in the
overall scheme of things preferences files are
rather low on the totem pole, but still, this
discussion may provide some impetus at
Apple to fix things in a subsequent system
release. At that time, I’ll be more than
happy to revisit the topic and do away with
the two-creator hack forever!

It was also pointed out to me that the
preferences library doesn’t include any
provision for handling cross-platform issues,
and that because it’s resource-based, it
precludes the possibility of being cross-
platform. What can I say? This is what
happens when your thinking is too Mac-
centric. Even though I don’t work at Apple
any more, I’m still a hopeless Mac fanatic!

— Gary Woodcock

OBJECT-ORIENTED LISTS
The article on hierarchical lists in Issue
18 was especially interesting to me
because I’m writing an object-oriented
database and need to display large
amounts of hierarchically organized
objects. I’m using the PowerPlant
library LListBox class; however, I want
to be able to display icons and triangular
buttons along with styled text, so I’ve
started adding LDEF modifications to
achieve that. The LDEF approach,
being ultimately based on the List
Manager, will have problems with large
lists. Any suggestions you may have
would be greatly appreciated.

— Maynard Chen

You’re in luck; we just happen to have a
followup article with the information you
need. See “An Object-Oriented Approach to
Hierarchical Lists” in this issue.

— Caroline Rose

FLOATING WINDOWS UPDATE
Recently, when I tried to use the
floating windows library that was
described in develop Issue 15, I ran into a
few problems getting it to work with the
universal headers (the library relies on
SysEqu.h for the existence of the
WindowList global variable). I’m trying
to recompile this library for use with my

CodeWarrior projects (MPW and I
have had a falling out over speed!) but
I’m having problems. Is there a more
recent version of the code than the one
on the June 1994 CD? If not, can you
tell me how to fix it?

— David A. denBoer

An updated version of the floating windows
code appears on this issue’s CD. The only
changes to the code were to replace SysEqu.h
with LowMem.h in the includes, and to
change GetWindowList and SetWindowList
to use the new low-memory accessor routines.
The sample application was also revamped
slightly to compile in CodeWarrior.

— Dave Johnson

SPOTTED DICK REVEALED
The British dessert “spotted dick” seems
to have become a running joke in
develop. You’ve got me curious. Can
your technical staff do some research
and give us the scoop on this?

— Steven C. Johnson

Spotted dick is Reason #87 on the list of
Why There Will Always Be an England.
(Reason #112 is “The word Worcester is
pronounced Wooster.”) A dick is a steamed
dessert cake, or “pudding,” made of suet (or
shortening), flour, and other ingredients
(like sugar) to make it taste good. It’s
usually served hot, with a milky syrup the
British refer to as custard. If you add
currants to the recipe, the dick ends up
having spots, hence the name “spotted dick.”

In a recent edition of The Patrick O’Brian
Newsletter (he being a favorite author of
mine), I was surprised to see a reference to
this dessert as Spotted Dog, along with the
variations Drowned Baby (glutinous
surface), plum duff (prunes), figgy-dowdy
(raisins), and roly-poly (rolled and spread
with jam).

Surely this is more than you ever wanted to
know. But for the terminally curious, I’ve
got an actual recipe. Douglas Norton (of —
you guessed it — Great Britain) sent it in
“just to show that someone does read the
little pieces at the bottom of the page.”

— Caroline Rose

d e v e l o p Issue 21 March 19954

KURT PIERSOL

Getting Started With OpenDoc Graphics

GETTING STARTED WITH OPENDOC GRAPHICS 5

The layout and imaging services offered by OpenDoc, Apple’s compound-
document architecture, provide extremely powerful support for document
layout. However, with power comes a certain amount of complexity.
The introduction to OpenDoc graphics given in this article reduces some
common graphics operations to simple recipes. By following these recipes,
you’ll get a sense of how to use OpenDoc that you can later build on as
you learn about its more sophisticated capabilities.

OpenDoc’s layout and graphics model is designed to allow maximum flexibility at
imaging time. You can use it to create very complex displays that include real-time
motion, offscreen rendering and compositing, and more. But at first glance, it can
appear complicated and bewildering. Don’t despair: the good news, as you’ll learn in
this article, is that you can use it for simple tasks without much trouble.

I touched on some of the basics of the OpenDoc layout model and drawing code in
my article “Building an OpenDoc Part Handler” in develop Issue 19 (which you need
not have read before reading this article). Here I reiterate a little of that and add to it
as I explain the basic terminology and concepts of OpenDoc graphics. Then I present
a series of simple recipes (also provided on this issue’s CD) that illustrate the use of
OpenDoc graphics objects. You’ll learn how to draw a part, scroll the part, zoom or
rotate the part’s content, make an embedded part visible, alter the coordinate system
scaling, and do simple printing under QuickDraw.

THE BASICS OF OPENDOC GRAPHICS
OpenDoc objects work together to lay out and draw each piece of content (each part)
in a compound document. We’ll take a look at the layout model here before focusing
on each of its constituent objects and how the objects relate to one another.

THE LAYOUT MODEL
OpenDoc’s layout model includes both a persistent representation and a runtime
representation of a document’s state. Persistent information is represented in objects
called frames, while runtime information is captured in objects called facets. The two
sets of objects, working together, produce the structure of the displayed or printed
document.

KURT PIERSOL is a system architect at Apple
and has been involved with the Apple events
project, AppleScript, and OpenDoc. You can
recognize him by his eccentric fashion sense and
his tendency to use funny accents during heated
engineering discussions.•

Early releases of OpenDoc will be made
available through a number of different sources,
including develop.•

Frames are arranged in a lattice (speaking in mathematical, not geometric, terms).
Any frame can contain any other, but in practice they almost always fall into a strict
hierarchy, with each frame contained in only one other frame. Frames always contain
a pointer to their containing frame but not directly to their embedded frames. Some
applications — like Personal Information Managers, which handle lots of unstructured
information — have more sophisticated data models, however, so OpenDoc is built to
accommodate these applications.

Facets are always arranged in a strict hierarchy, and every facet has pointers to every
contained facet as well as to the containing facet. OpenDoc walks this structure at run
time to perform drawing as well as to handle geometric events such as mouse clicks.

The runtime representation is hooked into the window system by means of a window
object. This window object simply points to the topmost facet in that window’s facet
hierarchy.

To understand these objects in greater detail, you need to be familiar with three basic
ideas that form the foundation of OpenDoc’s layout and imaging capabilities: canvas,
shape, and transform.

• A canvas is simply a drawing context. Different platforms have
different ideas of what a canvas might be, based on the particular
graphics toolbox they provide. On the Macintosh, a canvas can be
either a QuickDraw graphics port or a QuickDraw GX view port.

• A shape is a way to describe an area of a canvas. OpenDoc provides
a platform-independent shape definition based on polygons. In
addition, for speed, QuickDraw regions and rectangles and
QuickDraw GX shapes can serve as shape objects in OpenDoc.

• A transform is a way of altering the coordinate system that applies
to a particular canvas. You’re familiar with the concept of
transforms if you provide scrolling in your applications. When a
window is scrolled, a new origin is set in the graphics port before
drawing calls are performed. This offset is an example of a
transform. In QuickDraw, the only transforms with built-in
support are offsets and (partly) scaling, both of which require a
certain amount of work on the programmer’s part; QuickDraw GX
offers offsets and scaling as well as more interesting transforms
such as rotating and skewing. OpenDoc supports full two-
dimensional transformations and provides hooks to supply your
own transform types.

With these definitions in mind, let’s take a closer look at frames, facets, and windows.

FRAMES
A containing part and its embedded part share a single frame object, which they use
to communicate persistent layout information. Much of this information is
communicated in the form of shapes, which are ways to describe a geometric area.
Specifically, layout information is communicated by way of the frame shape, the used
shape, and the internal transform associated with a frame.

The frame shape is how the container tells the embedded part how much area it has in
which to lay itself out. The container “owns” this shape, meaning that it’s allowed to
set the value. If the embedded part wants a different frame shape, it must ask the
container to change it, and the container might refuse.

d e v e l o p Issue 21 March 19956

The rule in this sort of negotiation is “Don’t ask twice!” This means that if an
embedded part asks for a new frame shape and is denied, it shouldn’t ask again. It
might want to request a different shape later, but it should never again request exactly
the same shape. The reason, as you might imagine, is to avoid infinite loops in
negotiation. Very long, dull, and useless negotiations between parts may well result if
the “Don’t ask twice!” rule isn’t followed.

The used shape serves to inform the container exactly what part of the frame shape the
embedded part decided to use, and is “owned” by the embedded part. For example,
imagine that a word processing container passes a rectangular area as the frame
shape, but an embedded pie chart uses only a circular area within the frame shape.
The pie chart can inform the word processor of this by setting the used shape of the
frame to the circular area actually used. It’s then the responsibility of the container to
fill in any unused areas of the frame with an appropriate background or drawing. This
is what makes part transparency work.

The internal transform, also “owned” by an embedded part, captures information
about how the embedded part wishes to transform its content when it’s displayed. If,
for example, the pie chart of the previous example were too big to fit in the allotted
space in the word processor and wanted to scroll itself to a particular location, it
could do so by setting the internal transform of the frame. We’ll look at some
examples in the recipes section to come.

FACETS
A facet is similar to a QuickDraw GX view port, or to a QuickDraw graphics port on
steroids; it’s a description of the place where a particular frame of a part becomes
visible. Typically passed in to your part handler by an object at drawing time, a facet
has information about where the part should be drawing the content of the frame
right now. It specifies the canvas where all drawing calls should be made and also
includes clipping and transformation information.

The clipping information appears in the form of the clip shape. This shape specifies
exactly where on a canvas a part handler can draw. It’s equivalent to the content
region of a window in a traditional Macintosh application. Actually, there are two
versions of this shape that you can retrieve: the aggregate clip shape, which is the
clipping information relative to your drawing canvas, and the clip shape, which is
relative to the coordinate system of your container. Your container owns the clip
shape and sets it in its own coordinate system. You should always clip any drawing
calls you make to the aggregate clip shape of the facet you’re drawing into.

The transformation information comes in the form of a set of transform objects that
are available from the facet, each one specifying a particular coordinate system related
to the frame being displayed. The external transform of a facet specifies where the
facet sits in relation to its container. For example, as illustrated in Figure 1, if the
embedded facet should be offset by (100,100) from the origin of its container, the
external transform would specify an offset of (100,100). Note that in this figure, only
a portion of the content is being displayed in the embedded facet, and the coordinates
(0,0) refer to the content and indicate that the content’s upper left corner presently
coincides with the upper left corner of the facet.

The internal transform of a frame is composed with the external transform of its facet
plus all the transforms above it in the facet hierarchy to give the complete
transformation used to draw into the facet, called the content transform. In Figure 2,
which illustrates this process of composition, both transforms are simply offsets. The
external transform specifies an offset of (100,100), so the embedded facet is offset by
(100,100) from the origin of its container, the same as in Figure 1. The internal

GETTING STARTED WITH OPENDOC GRAPHICS 7

transform specifies an offset of (0,-75), so the content is scrolled upward from its
position in Figure 1. A different portion of it now shows in the embedded facet,
which remains the same size as before.

This composition is recursive, so every level of embedding adds a new external and
internal transform to the final transformation. All of the transforms must be
composed together to produce a correct graphical result. When drawing occurs, the
content transform should be applied to any drawing commands. The only exception
to this rule is if you’re drawing content that shouldn’t scroll as well as content that
should. In this case, use the content transform for scrolling content and use a
different transform, called the frame transform, to draw the rest. The frame transform
is exactly the same as the content transform except that it doesn’t include the internal
transform of the innermost frame.

d e v e l o p Issue 21 March 19958

Containing facet

(0,0)(100,100)

(0,0)

External transform

Embedded facet

Containing facet

(100,100)

(0,0)
(100,25)

(0,75)

Embedded facet

(0,0)

Internal transform

External transform

Content transform

Figure 2. Composing internal and external transforms to obtain a content transform

Figure 1. An embedded facet with an external transform of (100,100)

WINDOWS
Windows are the objects that hook OpenDoc facets and frames into the Macintosh
window structure. A window object holds a Macintosh window structure, as well as a
pointer to the topmost facet visible in the window. We call this facet the root facet
because it’s the root of the facet hierarchy in that window. The frame being displayed
through that facet is called the root frame, and the part being displayed in the root
frame is called the root part.

HOW THESE OBJECTS RELATE TO ONE ANOTHER
When a window is visible, it points to a facet at the root of the window. The graphics
port, or root QuickDraw GX view port, of that window is used as the canvas on
which that facet appears.

Every facet displays a particular frame, but a frame can be visible in more than one
facet at the same time. Every frame displays a particular part, but a part can be
displayed in more than one frame, as shown in Figure 3. Here we see a window
displaying two parts: a drawing container that has chosen to split itself into two
independently scrollable sections, and an embedded charting part. To split itself, the
container has set up two facets on the same frame of its embedded charting part, as
indicated in the schematic to the right of the window (in which the arrows represent
pointers). This automatically causes the embedded charting part to display
synchronized views of itself in the two scrollable sections. This is the model that
people who already do splitting in their code are most likely to implement, although
there are more elegant models included in the standard recipes that are part of the
OpenDoc Software Development Kit.

When the information in a part changes, the part needs to update every frame in
which it’s displayed. When a part updates the information in a frame, it should
redraw into every facet of the frame. Let’s assume, for example, that we have a
charting part that can display a bar chart. When someone changes a data value, the
part should make sure that every frame is redrawn. Since every frame may have
multiple facets, the part handler should iterate through every display frame, iterate
through each frame’s visible facets, and draw the content into each. To accomplish
this, you can decide to invalidate all of the affected frames and let OpenDoc make
sure everything is redrawn correctly. However, if performance or timing constraints
make this impractical, or if flicker is an issue, your part handler can draw directly into
each facet or each affected frame, using a doubly nested loop.

GETTING STARTED WITH OPENDOC GRAPHICS 9

Facet

Facet

Facet

Frame Containing�
part

Embedded�
part

Frame

Drawing container

Embedded�
charting part

Embedded�
charting part

Figure 3. A split window using multiple facets of the same frame

SOME OPENDOC GRAPHICS RECIPES
Now let’s look at a series of examples of how to use these objects to perform basic
graphics operations. Each of the following recipes is, by nature, just a skeleton. Every
part handler has different drawing code, so we’ll concentrate on outlining general
recipes and wave our hands over the specific drawing commands.

The examples are all based on Color QuickDraw, on the assumption that more
readers will be familiar with these calls than with the QuickDraw GX equivalents. I’m
counting on you QuickDraw GX aficionados to perform the necessary mapping
between QuickDraw and QuickDraw GX as you read. The QuickDraw GX
equivalent calls will work equally well to clip, set up drawing contexts, and perform
geometric operations. Of course, you’ll find QuickDraw GX helps tremendously in
implementing scaling, rotation, and other transformations. Even though these
examples are in Color QuickDraw, I urge you to use QuickDraw GX as your basic
imaging model if you can.

The example code you’ll see here is a simplified version of code written by Steve
Smith and Eric House. The good ideas are theirs; the mistakes are probably mine.
This is not intended to be working code, since error handling and some other pieces
have been left out for the sake of simplicity.

DRAWING A PART
Our first recipe tells how to draw a part. There are only a few simple steps here, for
the most basic case. Take a look at Listing 1 as we discuss the recipe. To keep things
as simple as possible, we’ll ignore scrolling and printing for the moment. The basic
steps are as follows:

1. Get the canvas of the facet you’re drawing into and set the
graphics port to that.

2. Get the content transform out of the facet and use it to set offset
information.

3. Get the aggregate clip shape out of the facet and use it to set the
clipping region.

4. Draw your content.

5. Clean up.

As you may have noticed, this is only slightly more complex than using the existing
window system. Luckily, all of the added complexity comes only in the setup code,
not in the actual drawing calls. Once the drawing environment has been set up,
you’re free to make the same drawing calls you always have.

Incidentally, there’s an easy way to get all of the correct setup code done for you: a
public utility called FocusLib, available as part of the OpenDoc Software
Development Kit, reduces the setup code you see in this and the following examples
to a single call. I didn’t use it here because I wanted you to see exactly what needs to
be done, just in case FocusLib doesn’t meet your precise requirements and you must
do it yourself. For instance, FocusLib is in C++, so not everyone can use it.

SCROLLING THE PART
Creating a scrolling part is only a bit more complex than making one that doesn’t
scroll. The best way to scroll in OpenDoc is to modify the internal transform of your
part’s display frame. This has the effect of automatically scrolling any embedded parts
that are visible right now, without any extra work on your part. Check out Listing 2,

d e v e l o p Issue 21 March 199510

which shows the changes in the draw method for this slightly more complex case.
The basic steps are as follows:

1. Get the canvas of the facet you’re drawing into and set the
graphics port to that.

2. Get the frame transform out of the facet and use it to set offset
information.

3. Get the aggregate clip shape out of the facet and use it to set the
clipping region.

4. Draw your scroll bar control.

5. Get the content transform out of the facet and use it to set offset
information.

6. Make sure the scroll bar area is removed from the clipping region.

7. Draw your content.

8. Clean up.

GETTING STARTED WITH OPENDOC GRAPHICS 11

Listing 1. MyPart::Draw, simplest case

void MyPart::Draw(Environment* ev, ODFacet* facet, ODShape* invalShape)
{

// Set up graphics port.
GrafPtr port = facet->GetCanvas(ev)->GetQDPort(ev);
SetPort(port);

// Set up graphics port offset for drawing content.
ODTransform* localToGlobal = facet->GetContentTransform(ev, kODNULL);
ODPoint offset(0,0);
offset = localToGlobal->TransformPoint(ev, &offset);
SetOrigin(-offset.IntX(), -offset.IntY());
localToGlobal->Release(ev);

// Set up graphics port clip; save old clip.
RgnHandle saveClip = NewRgn();
GetClip(saveClip);
ODShape* clipShape = facet->GetAggregateClipShape(ev, kODNULL);
RgnHandle clip = clipShape->GetQDRegion(ev);
SetClip(clip);
clipShape->Release(ev);

// And draw (insert your drawing code here).
// Remember to respect the scaling and rotation information
// in your content transform, if possible. If you can't do this,
// it's graceful to at least try to draw as best you can, rather
// than simply signaling an error.
...

// Clean up.
SetClip(saveClip);
DisposeRgn(saveClip);
SetOrigin(0,0);

}

d e v e l o p Issue 21 March 199512

Listing 2. MyPart::Draw, with scrolling

void MyPart::Draw(Environment* ev, ODFacet* facet, ODShape* invalShape)
{

Point spclOffset = {0,0};
Point contentOffset = {0,0};

// Set up graphics port.
GrafPtr port = facet->GetCanvas(ev)->GetQDPort(ev);
SetPort(port);

// Set up graphics port offsets for controls.
ODTransform* localToGlobal = facet->GetFrameTransform(ev, kODNULL);
ODPoint tempOffset1(0,0);
tempOffset1 = localToGlobal->TransformPoint(ev, &tempOffset1);
SetOrigin(-tempOffset1.IntX(), -tempOffset1.IntY());

// Set up special offset for later efficient reset of clipping region.
spclOffset = localToGlobal->GetQDOffset(ev);
ODTransform* contentTransform = facet->GetContentTransform(ev,

kODNULL);
contentOffset = contentTransform->GetQDOffset(ev);
spclOffset.v -= contentOffset.v; spclOffset.h -= contentOffset.h;
localToGlobal->Release(ev);

// Set up graphics port clipping.
RgnHandle saveClip = NewRgn();
GetClip(saveClip);
ODShape* clipShape = facet->GetAggregateClipShape(ev, kODNULL);
RgnHandle clip = clipShape->GetQDRegion(ev);
SetClip(clip);

// Draw your controls (such as scroll bars) here, using the standard
// Toolbox calls. Remember to respect the scaling and rotation
// information in your transform, or at least try to draw as best
// you can, rather than simply signaling an error.
...

// Set up graphics port for drawing content.
ODPoint tempOffset2(0,0);
tempOffset2 = contentTransform->TransformPoint(ev, &tempOffset2);
SetOrigin(-tempOffset2.IntX(), -tempOffset2.IntY());

// Use the special offset we set up earlier to keep the clip in the
// right place relative to the origin. Remember to remove the scroll
// bar area from the clipping region.
OffsetRgn(clip, spclOffset.h, spclOffset.v);
SetClip(clip);

// And draw (insert your drawing code here).
// Remember to respect the scaling and rotation information
// in your content transform if possible, as mentioned above.

(continued on next page)

Listing 3 shows how you would handle the actual scrolling. The recipe here is also
quite simple. By altering the internal transform of the frame being displayed, you
change not only the display of the content but also the position of all embedded
facets. For this recipe to work, the previous recipe must have been implemented. The
steps are as follows:

1. Track the scroll bar control.

2. Decide the scrolling distance.

3. Create a transform that offsets by the correct amount.

4. Call ScrollRect; invalidate the correct areas of the screen.

5. Change the internal transform of the frame being scrolled.

You can no doubt imagine much more complex scrolling behavior, with significantly
better optimization than you see in these examples.

There’s a bit of human interface to mention at this juncture. You shouldn’t grab the
selection focus simply because scrolling is occurring. At first blush, it might make
sense to imagine that a part should become active when scrolling. There’s no
particular reason to do this, though. Scroll bars should become active when the
window is frontmost, but a part should become active (that is, grab the selection
focus) only when a selection is made within it.

ZOOMING OR ROTATING THE PART’S CONTENT
The process of zooming or rotating your content is closely related to the scrolling
recipe we just examined. Again, the internal transform can be used to apply to not
only your own content but that of embedded parts as well. Listing 4 is a simple
example of a 4x scaling operation that zooms in by a factor of 4. As before, it assumes
correct behavior from the drawing code, as illustrated in Listing 1.

The recipe for both zooming and rotating is fairly simple:

1. Set up a transform that captures the desired transformation.

2. Change the internal transform of the frame.

3. Invalidate the frame to make sure it gets redrawn.

MAKING AN EMBEDDED PART VISIBLE
When you’re writing a handler for parts that can contain other parts, there comes a
time when you have a pointer to a part that hasn’t yet been made visible. We won’t go
into exactly how such a part is obtained from the Clipboard or the drag and drop

GETTING STARTED WITH OPENDOC GRAPHICS 13

...

// Clean up.
SetClip(saveClip);
DisposeRgn(saveClip);
contentTransform->Release(ev);
clipShape->Release(ev);
SetOrigin(0, 0);

}

Listing 2. MyPart::Draw, with scrolling (continued)

d e v e l o p Issue 21 March 199514

Listing 3. Handling the scrolling

ODBoolean MyPart::HandleMouseDownScrollBar(Environment* ev, Point mouse,
ODFrame* frame)

{
ODSShort partcode = TrackControl(fScrollBar, mouse, kODNULL);
Point transPt;
ODSShort setting = GetControlValue(fScrollBar);

if (partcode) {
// Deal with the scroll bar and choose the scroll distance.
switch (partcode) {

case inUpButton:
setting--;
break;

case inDownButton:
setting++;
break;

case inPageUp:
if ((setting - kPBPageSize) < 0) setting = 0;
else setting -= kPBPageSize;
break;

case inPageDown:
ODSShort max = GetControlMaximum(fScrollBar);
if ((setting + kPBPageSize) > max) setting = max;
else setting += kPBPageSize;
break;

default:
break;

}

SetControlValue(fScrollBar, setting);
SetPt(&transPt, 0, (0-setting)); // This is a vertical

// scroll bar.

// Set up the transform.
ODTransform* newIntTrans = frame->CreateTransform(ev);
newIntTrans->SetQDOffset(ev, &transPt);
frame->ChangeInternalTransform(ev, newIntTrans, kODNULL);
newIntTrans->Release(ev);

// Here's some simplified code for invalidating any embedded
// facets that have been moved. This is a "saturation bombing"
// approach rather than the tuned code of a real application,
// but it gets the basic idea across. Typically, we do a
// ScrollRect followed by invalidation of the revealed area.
// Here we simply invalidate everything.
frame->Invalidate(ev, kODNULL, kODNULL);
return kODTrue;

}
return kODFalse;

}

object. Suffice it to say that if you do things correctly, you’ll end up with a pointer to
a storage unit that has part data inside it.

To embed this part, you must create a frame and a facet for it. Once you’ve done that,
you probably want to remember the frame and the facet for further reference. Take a
look at Listing 5 for an example. The recipe for making a part visible and embedding
it inside your part is as follows:

1. Get the part, using the draft, from the storage unit pointer.

2. Create a frame to display the part.

3. Create a facet to make the frame visible.

4. Invalidate the facet.

5. Clean up.

GETTING STARTED WITH OPENDOC GRAPHICS 15

Listing 4. A 4x scaling operation

void MyPart::ZoomContents4X(Environment* ev, ODFrame* frame)
{

ODPoint frameScale(4, 4);

// Apply the zoom transformation.
ODTransform* intTrans = frame->GetInternalTransform(ev, kODNULL);
intTrans->ScaleBy(ev, &frameScale);
intTrans->Release(ev);

// Invalidate the frame for redrawing.
frame->Invalidate(ev, kODNULL, kODNULL);

}

Listing 5. Making an embedded part visible

void MyPart::EmbedPartFromSU(Environment* ev, ODStorageUnit* newSU,
ODFacet* myFacet)

{
ODPart* newPart = newSU->GetDraft(ev)->GetPart(ev, newPartID);
ODRect rect(0, 0, kPBDefaultFrameSize, kPBDefaultFrameSize);
ODShape* newFrameShape = myFacet->CreateShape(ev);
newFrameShape->SetRectangle(ev, &rect);
ODFrame* newFrame = newSU->GetDraft(ev)->CreateFrame(ev,

kODNULL, // Use the default frame type.
myFacet->GetFrame(ev), // Containing frame is my frame.
newFrameShape, // Use the frame shape we set up.
(ODCanvas*)kODNULL, // No special canvas.
newPart, // The part in the frame.
fSession->Tokenize(ev, kODViewAsFrame), // View as a frame.
kODNullTypeToken, // Undefined presentation.
kODFalse, // Not a root frame.
kODFalse); // Not overlaid.

(continued on next page)

ALTERING THE COORDINATE SYSTEM SCALING
A common misconception about OpenDoc is that its base coordinate system is
insufficient to handle truly large documents. The coordinate system is in fixed-point
16.16 numbers, where the number 72.0 represents 1 inch. If we take this literally, it
means that coordinates in this space can only represent an area of about 455 inches
on a side and that we can place elements in that area to a precision of about
1/2,000,000 of an inch.

Clearly, we could trade off a little bit of that precision for a larger working area.
This would involve scaling any incoming points or shapes. Actually, by doing this,
we can easily lay out an area about 2,000 typical pages on a side at a precision of
about 1/4,000 of an inch, including some bits for round-off error in the scaling
multiplications. You can ask why we chose 72.0 as the basic scale of our coordinate
system, but we won’t tell you.

The key here is to work internally in coordinates that suit you, without disturbing the
coordinate scaling of your embedded parts. The best way to do this is to apply an

d e v e l o p Issue 21 March 199516

newSU->Release(ev);
// Set up a clip shape, same as frame shape.
ODShape* frameShape = newFrame->GetFrameShape(ev, kODNULL);
ODShape* newClipShape = frameShape->Copy(ev);
Point offset = {100,100};
ODTransform* newExternalXForm = myFacet->CreateTransform(ev);
newExternalXForm->SetQDOffset(ev, &offset);
ODFacet* newFacet = myFacet->CreateEmbeddedFacet(ev,

newFrame, // Of this frame.
newClipShape, // With this clip shape.
newExternalXForm, // At this location/scale/rotation.
kODNULL, // No special canvas.
kODNULL, // No special bias canvas.
kODNULL, // No sibling specified.
kODFrameInFront); // Put this facet at front.

// At this point, we probably want to remember the new frame
// and facet in some data structure.
this->rememberFrame(newFrame, newFacet);

// Invalidate facet so that it displays. We need to invalidate our
// entire frame because the new facet may interact with other content
// in various ways. This is the simplest correct method, although
// optimizations may be reasonable in production code.
myFacet->GetFrame(ev)->Invalidate(ev, kODNULL, kODNULL);

// Clean up.
newPart->Release(ev);
newFrame->Release(ev);
newFrameShape->Release(ev);
newExternalXForm->Release(ev);
newClipShape->Release(ev);
frameShape->Release(ev);

}

Listing 5. Making an embedded part visible (continued)

internal scaling transform for your own graphics and then apply external scaling
transforms to all of your embedded parts.

For example, to get a larger area that still has adequate placement, you might decide
to work in a coordinate system where 1.0 = 1 inch. This would still let you place
elements with an accuracy of about 1/32,767 of an inch but would let you work in a
layout space that was 32,767 inches on a side. This is about 3,000 pages high, a pretty
good size. You’ll probably get some rounding error during multiplication, though, so
it’s best not to count on exact placement within more than about 1/1,000 of an inch at
this scaling. Listing 6 is an example of how to do this particular transformative trick.

GETTING STARTED WITH OPENDOC GRAPHICS 17

Listing 6. Altering the coordinate system scaling

void MyPart::ShiftCoordinateScaling(Environment* ev, ODFrame* frame)
{

ODPoint frameScale(72,72);

// Set up the transform.
ODTransform* existingTransform = frame->GetInternalTransform(ev,

kODNULL);
ODTransform* newIntTrans = existingTransform->Copy(ev);
existingTransform->Release(ev);
newIntTrans->ScaleDownBy(ev, &frameScale);

// Apply the zoom transformation within myself.
frame->ChangeInternalTransform(ev, newIntTrans, kODNULL);
newIntTrans->Release(ev);

// Now, be a good citizen and iterate over every facet of myself.
ODFrameFacetIterator* facets = frame->CreateFacetIterator(ev);
for (ODFacet* facet = facets->First(ev); facets->IsNotComplete(ev);

facet = facets->Next(ev)) {
// For each facet of myself, find every embedded facet.
ODFacetIterator* embeddedFacets = facet->CreateFacetIterator(ev,

kODTopDown, kODFrontToBack);
for (ODFacet* embeddedFacet = embeddedFacets->First(ev);

embeddedFacets->IsNotComplete(ev);
embeddedFacet = embeddedFacets->Next(ev)) {

// Alter the transform of each embedded facet.
existingTransform = embeddedFacet->GetExternalTransform(ev,

kODNULL);
ODTransform* newExtTrans = existingTransform->Copy(ev);
// Notice that we scale in the opposite direction in
// each embedded frame.
newExtTrans->ScaleBy(ev, &frameScale);
embeddedFacet->ChangeGeometry(ev, kODNULL, newExtTrans,

kODNULL);
newExtTrans->Release(ev);
existingTransform->Release(ev);

}
ODDeleteObject(embeddedFacets);

}
ODDeleteObject(facets);

}

SIMPLE PRINTING UNDER QUICKDRAW
The last and most complicated recipe is getting a part to print under QuickDraw. As
you know, any printing activity on the Macintosh is fairly complex. OpenDoc doesn’t
add much complexity to the process, as you’ll see from the example.

First, every part needs to understand how to draw correctly to a PostScript™ printer.
There’s a trick to this because of how the LaserWriter drivers operate. They don’t
clip to regions if asked to do so; instead, they merely clip to the bounding rectangle
of the suggested region. So to set a clipping region when printing to a PostScript
device, you’ll need to create a clipping polygon in PostScript. This is true even for
parts that are always rectangular, because they might be clipped irregularly.

You can detect the presence of a PostScript device by examining the printing job at
draw time. The printing job is always available in the canvas when you’re being asked
to draw to a PostScript device. There are a number of ways to check this, but no
standard method that Apple supports; typically, you check the device number and
make a choice based on a table kept in your code. If you are in fact drawing to a
PostScript device, call the routines shown in Listing 7, rather than SetClip, to set
clipping for your part. You don’t have to do this when you’re printing to a non-
PostScript printer, because simple region clipping works just fine there.

You may well want to consider using ColorSync during printing. There’s nothing
special to worry about in OpenDoc; just go ahead and take advantage of it as desired.
Other parts may be using ColorSync independently when they draw as well, and all
of these may use independent color-matching methods.

Every part should understand how to perform printing of the window if it’s the root
part of that window. You’ll invoke this recipe when the Print command is chosen
from the Document menu. The recipe presented here works for rather simple parts
but probably not for complex parts like full word processors or page layout programs
that have hundreds of pages to lay out and print. In addition, to simplify the look of
the code, a special helper object handles most of the direct calls to the printer driver.
Finally, this part doesn’t alter its layout for printing, as some parts might want to do.

Given these caveats, though, the basic recipe is as follows:

1. Create a printing job.

2. Use the graphics port from the printing job to create a canvas.

3. Add a facet to your root frame on the canvas.

4. Loop through copies and pages.

a. Reset the offset and clipping of the facet so that the correct
page is showing on the canvas.

b. Invalidate the facet to cause it to draw.

5. Clean up.

Listings 8 through 10 contain some code to help you implement this recipe. Rather
than attempt to show you an entire printing loop here, I’ll show three routines that
correspond to the key differences in the OpenDoc model of printing.

Listing 8 shows how to perform steps 2 and 3 of the recipe above. This routine
expects to be passed a printing port, the page rectangle for the first page of the print
job, and the root frame of the window being printed. The routine takes this
information and creates a facet on the root frame. It then builds a canvas on the print
job’s printing port and sets the facet to draw on that canvas. We do this so that we can

d e v e l o p Issue 21 March 199518

GETTING STARTED WITH OPENDOC GRAPHICS 19

Listing 7. Setting clipping when printing to a PostScript device

#define kPostScriptBegin 190 // Picture comments for PostScript
#define kPostScriptEnd 191 // printing.
#define kPostScriptHandle 192

void ODBeginPostScriptClip(Environment* ev, ODShape *shape)
{

ODPolygon poly = shape->CopyPolygon(ev);
Handle clipHandle = NewEmptyHandle();

AppendString("\pgrestore", clipHandle); // Utility routine to append
AppendString("\pnewpath", clipHandle); // string to a handle.

char buf[128];
ODContour *cont = poly.FirstContour();

for (long n=poly.GetNContours(); n>0; n--) {
const ODPoint *v = cont->vertex;
long m = cont->nVertices;
if (m > 2) {

sprintf(buf, "%.2f %.2f moveto", v->x/65536.0, v->y/65536.0);
AppendBuf(buf, strlen(buf), clipHandle); // Utility routine to

// append string buffer to a handle.
while (--m > 0) {

v++;
sprintf(buf, "%.2f %.2f lineto", v->x/65536.0,

v->y/65536.0);
AppendBuf(buf, strlen(buf), clipHandle);

}
}
AppendString("\pclosepath clip", clipHandle);
cont = cont->NextContour();

}

// Set pic comment; then delete clipHandle.
AppendString("\pgsave", clipHandle);
PicComment(kPostScriptBegin, 0, kODNULL);
PicComment(kPostScriptHandle, GetHandleSize(clipHandle), clipHandle);
PicComment(kPostScriptEnd, 0, kODNULL);
DisposeHandle(clipHandle);

}

void ODEndPostScriptClip()
{

Handle clipHandle = NewEmptyHandle();
AppendString("\pgrestore", clipHandle);
PicComment(kPostScriptBegin, 0, kODNULL);
PicComment(kPostScriptHandle, GetHandleSize(clipHandle), clipHandle);
PicComment(kPostScriptEnd, 0, kODNULL);
DisposeHandle(clipHandle);

}

use OpenDoc’s drawing code to image the page. Once we have a facet set up, we need
only force the facet to update to get all of the parts to image on the page.

Note that this particular setup routine doesn’t handle a very important case:
QuickDraw GX–based part handlers. To set these up correctly, we would replace
steps 1 and 2 of the recipe above with the following:

1. Check for the existence of QuickDraw GX printing using Gestalt.

a. If QuickDraw GX printing isn’t present, set up a normal Color
QuickDraw print job.

b. If QuickDraw GX printing is present, set up a QuickDraw GX
print job. Also, set up a Color QuickDraw graphics port, for
use with the QuickDraw–to–QuickDraw GX translator.

2. Set up a canvas representing the printing job, ready for use by
both QuickDraw and QuickDraw GX.

a. Install the QuickDraw–to–QuickDraw GX translator in your
Color QuickDraw graphics port.

b. Install the Color QuickDraw graphics port as the QuickDraw
platform canvas in the canvas object.

c. Install a view port that embedded part handlers can use as the
QuickDraw GX platform canvas in the canvas object.

d e v e l o p Issue 21 March 199520

Listing 8. Setup for basic printing

ODFacet* MyPart::BeginPrinting(Environment *ev, ODFrame* rootFrame,
TPrPort* thePrPort, ODRect *pageRect)

{
// Set up identity transform, get page rect, set up to clip to it.
ODTransform* xtransform = rootFrame->CreateTransform(ev);
ODShape* clipshape = rootFrame->CreateShape(ev);
clipshape->SetRectangle(ev, pageRect);

// Create a facet with the specific geometry we just set up.
ODFacet* prFacet = fSession->GetWindowState(ev)->

CreateFacet(ev, rootFrame, clipshape, xtransform, kODNULL,
kODNULL);

xtransform->Release(ev);
clipshape->Release(ev);

// Set up a canvas based on the print job's port.
ODCanvas* prCanvas = prFacet->CreateCanvas(ev, kODQuickDraw,

(GrafPtr)thePrPort, kODFalse, kODFalse);
prCanvas->SetPlatformPrintJob(ev, kODQuickDraw, (GrafPtr)thePrPort);

// Make it the canvas of the facet we created.
prFacet->SetCanvas(ev, prCanvas);
rootFrame->FacetAdded(ev, prFacet);

// Return the facet to the main print routine.
return prFacet;

}

By setting up translators, a QuickDraw GX–based part handler can still work with
embedded QuickDraw-based parts. This is a fairly complex (though straightforward)
bit of code, one that we’ll avoid for the purposes of this article. There’s a complete
recipe in the OpenDoc Software Development Kit for handling this case.

The next step is to loop through the pages, drawing each one. We’ll assume that you
can handle the details of creating a standard print loop yourself. Listing 9 shows the
correct code to call in the middle of the page loop. This corresponds to steps 4a and
4b of our printing recipe. This routine gets the basic page geometry, resets the offsets
and clipping for the page, and then forces the parts visible on the page to draw by
calling an update on the root facet we’ve created elsewhere.

GETTING STARTED WITH OPENDOC GRAPHICS 21

Listing 9. Printing a page

void MyPart::PrintPage(Environment *ev, ODFacet* prFacet, ODUShort page,
ODRect *pageRect)

{
// Get some basic printing geometry.
ODRect bbox;
Rect frect, qdPRect;

ODShape* frameShape = prFacet->GetFrame(ev)->
GetFrameShape(ev, kODNULL);

frameShape->GetBoundingBox(ev, &bbox);
bbox.AsQDRect(frect);
frameShape->Release(ev);
Point pt = {0,0};
ODUShort locator = page-1;

// Pick an appropriate offset, based on page number.
pageRect->AsQDRect(qdPRect);
while (locator) {

pt.v += (qdPRect.bottom+1);
locator--;
if (PtInRect(pt, &frect))

continue;
else {

pt.v = 0; pt.h += (qdPRect.right+1);
}

}

// Make a transform for that offset.
ODTransform* xtransform = prFacet->CreateTransform(ev);
xtransform->SetQDOffset(ev, &pt);

// Create a clip shape for the page, based on the transform.
ODShape* clipshape = prFacet->CreateShape(ev);
clipshape->SetRectangle(ev, pageRect);
ODShape* invalshape = clipshape->Copy(ev);
clipshape->Transform(ev, xtransform);
xtransform->Invert(ev);

(continued on next page)

d e v e l o p Issue 21 March 199522

Once the print loop is complete, we’ll want to clean up. Listing 10 shows the routine
that corresponds to step 5 of our printing recipe. It simply tosses away the facet and
the canvas we created in Listing 8.

If you’re performing more advanced printing, you may want to allow embedded parts
to lay themselves out differently based on whether they’re printing to a static or a
dynamic canvas. In this case, you’ll need to create new frames and perform layout
negotiation. You should create nonpersistent frames, or they’ll needlessly be written
out to the document the next time the user saves. You’ll probably want to do this:

1. Create a new nonpersistent frame for your part (the “master frame”).

2. Create new nonpersistent frames for each embedded part and
allow shape negotiation to occur on these new embedded frames.

3. Use the previous recipe to print the master frame.

ONWARD AND UPWARD
For simple cases, as you can see, the OpenDoc layout and graphics model isn’t much
more complex than what you probably already do. Even better, most of your code
will work fine in the new model with just some additional setup and cleanup code.
This is no accident, as OpenDoc has been designed from the start to allow you to
reuse large parts of your code. So go ahead and show us some cool new parts with
great graphics.

// Change the geometry of the printing facet.
prFacet->ChangeGeometry(ev, clipshape, xtransform, kODNULL);

// Draw everything on the page. OpenDoc will call the Draw method
// on every part visible on the page.
prFacet->Update(ev, invalshape, kODNULL);

// Clean up.
clipshape->Release(ev);
invalshape->Release(ev);
xtransform->Release(ev);

}

Listing 9. Printing a page (continued)

Listing 10. Cleanup after printing

void MyPart::EndPrinting(Environment *ev, ODFacet* prFacet)
{

// Find the printing canvas and facet; delete them.
ODCanvas* prCanvas = prFacet->GetCanvas(ev);
prFacet->GetFrame(ev)->FacetRemoved(ev, prFacet);
delete prCanvas;
delete prFacet;

}

Thanks to our technical reviewers Jens Alfke,
Steve Smith, and Joshua Susser.•

BALANCE OF POWER: INTRODUCING POWERPC ASSEMBLY LANGUAGE 23

So far I’ve avoided the subject of PowerPC™ assembly
language in this column, for fear of being struck down
by the portability gods. But I also realize that a column
on PowerPC development without a discussion of this
subject would be too pious. Although today’s compiler
technology makes assembly language generally
unnecessary, you might find it useful for critical
subroutines or program bottlenecks. In this column I’ll
try to give you enough information to satisfy that
occasional need.

If the thought of using assembly language still troubles
you, please consider this as useful information for
debugging. Eventually you’ll need to read PowerPC
assembly for tracing through code that was optimized,
or when symbolic debugging just isn’t practical. Also in
this column, I’ll cover the runtime basics that will help
you recognize stack frames and routine calls during
debugging.

USING POWERPC ASSEMBLY LANGUAGE
Assembly language on the PowerPC processor should
be used only for the most performance-critical code —
that is, when that last 5% performance improvement is
worth the extra effort. This code typically consists of
tight loops or routines that are very frequently used.

After you’ve carefully profiled your code and found a
bottleneck routine in which your application spends
most of its time, then what do you do? First you need
an assembler; I recommend Apple’s PPCAsm (part of
MPW Pro or E.T.O., both available from APDA).

Next, you’ll need to understand the instruction set and
syntax. This column will give you a basic summary, but

for a thorough reference you’ll need the PowerPC 601
RISC Microprocessor User’s Manual; to order one, call
1-800-POWERPC (1-800-769-3772).

Finally, you need to know the basic PowerPC runtime
details — for example, that parameters are passed in
general registers R3 through R10, that the stack frame
is set up by the callee, and so on.

Once you have these tools and information, you can
easily write a subroutine in assembly language that’s
callable from any high-level language. Then you’ll need
to review your code with the persistence of Hercules,
fixing pipeline stalls and otherwise improving your
performance.

THE INSTRUCTION SET AT A GLANCE
Many people think RISC processors have fewer
instructions than CISC processors. What’s truer is that
each RISC instruction has reduced complexity,
especially in memory addressing, but there are often
many more instructions than in a CISC instruction set.
You’ll be amazed at the number and variation of the
instructions in the PowerPC instruction set. The basic
categories are similar to 680x0 assembly language:

• integer arithmetic and logical instructions

• instructions to load and store data

• compare and branch instructions

• floating-point instructions

• processor state instructions

We’ll go over the first three categories here; you can
read more about the last two in the PowerPC user’s
manual. Once you’re familiar with the PowerPC
mnemonics, you’ll notice the similarity with any other
instruction set. But first let’s look at some key
differences from 680x0 assembly: register usage,
memory addressing, and branching.

KEY DIFFERENCES
Most PowerPC instructions take three registers as
opposed to two, and in the reverse order compared to
680x0 instructions. For example, the following
instruction adds the contents of register R4 and R5 and
puts the result in register R6:

add r6,r4,r5 ; r6 = r4 + r5

BALANCE OF
POWER

Introducing
PowerPC
Assembly
Language

DAVE EVANS

DAVE EVANS came to California in 1991 in search of temperate
weather, having left Boston, the land of erratic and extreme climate.
While in Boston he developed Macintosh software for a radical
startup company and studied applied math at the Massachusetts

Institute of Technology. At Apple, Dave has attended an estimated
1000 meetings, but in between them he managed to develop the
Drag and Drop Developer’s Kit. Dave is also trying to teach his pet
iguana Herman to roll over, but without much success.•

Note that the result is placed in the first register listed;
registers R4 and R5 aren’t affected. Most instructions
operate on the last two registers and place the result in
the first register listed.

Unlike the 680x0 processors, the PowerPC processor
doesn’t allow many instructions to deal directly with
memory. Most instructions take only registers as
arguments. The branch, load, and store instructions are
the only ones with ways of effectively addressing
memory.

• The branch instructions use three addressing modes:
immediate, link register indirect, and count register
indirect. The first includes relative and absolute
addresses, while the other two let you load the link
or count register and use it as a target address. (The
link and count registers are special-purpose registers
used just for branching.) Using the link register is
also how you return from a subroutine call, as I’ll
demonstrate in a moment.

• Load and store instructions have three addressing
modes: register indirect, which uses a register as the
effective address; register indirect with index, which
uses the addition of two registers as the effective
address; and register indirect with immediate index,
which adds a constant offset to a register for the
effective address. I’ll show examples of these later.

The more complicated 680x0 addressing modes do not
have equivalents in PowerPC assembly language.

On 680x0 processors, there are branch instructions and
separate jump (jmp), jump to subroutine (jsr), and
return from subroutine (rts) instructions. But in
PowerPC assembly there are only branches. All
branches can be conditional or nonconditional; they all
have the same addressing modes, and they can choose
to store the next instruction’s address in the link
register. This last point is how subroutine calls are
made and then returned from. A call to a subroutine
uses a branch with link (bl) instruction, which loads the
link register with the next instruction and then jumps
to the effective address. To return from the subroutine,
you use the branch to link register (blr) instruction to
jump to the previous code path. For example:

bl BB ; branch to "BB"
AA: cmpi cr5,r4,0 ; is r4 zero?

...
BB: addi r4,r3,-24 ; r4 = r3 - 24

blr ; return to "AA"

Since conditional branches can also use the link or
count register, you can have conditional return
statements like this:

bgtlr cr5 ; return if cr5 has
; greater than bit set

The instructions blr and bgtlr are simplified mnemonics
for the less attractive bclr 20,0 and bclr 12,[CRn+]1
instructions. The PowerPC user’s manual lists these as easier-to-
read alternatives to entering the specific bit fields of the bclr
instruction, and PPCAsm supports these mnemonics. But when
debugging you may see the less attractive versions in
disassemblies.•

ARITHMETIC AND LOGICAL INSTRUCTIONS
You’ve already seen the add and addi instructions, but
let’s go over one key variation before looking at other
integer arithmetic and logical instructions. Notice the
period character “.” in the following instruction:

add. rD,rA,rB ; rD = rA + rB, set cr0

You can append a period to most integer instructions.
This character causes bits in the CR0 condition register
field to be set based on how the result compares to 0;
you can later use CR0 in a conditional branch. In 680x0
assembly language, this is implied in most moves to a
data register; however, PowerPC assembly instructions
that move data to a register must explicitly use the
period.

Other basic integer instructions include the following:

subf rD,rA,rB ; subtract from
; rD = rB - rA

subfi rD,rA,val ; subtract from immediate
; rD = val - rA

neg rD,rA ; negate
; rD = -rA

mullw rD,rA,rB ; multiply low word
; rD = [low 32 bits] rA*rB

mulhw rD,rA,rB ; multiply high word
; rD = [high 32 bits] rA*rB

divw rD,rA,rB ; divide word
; rD = rA / rB

divwu rD,rA,rB ; divide unsigned word
; rD = rA / rB [unsigned]

and rD,rA,rB ; logical AND
; rD = rA AND rB

or rD,rA,rB ; logical OR
; rD = rA OR rB

nand rD,rA,rB ; logical NAND
; rD = rA NAND rB

srw rD,rS,rB ; shift right word
; rD = (rS >> rB)

srawi rD,rS,SH ; algebraic shift right
; word immediate
; rD = (rS >> SH)

d e v e l o p Issue 21 March 199524

Another flexible and powerful set of instructions is the
rotate instructions. They allow you to perform a
number of register operations besides just rotation,
including masking, bit insertions, clearing specific bits,
extracting bits, and combinations of these. Each rotate
instruction takes a source register, a destination, an
amount to shift either in a register or as immediate
data, and a mask begin (MB) and mask end (ME) value.
The mask is either ANDed with the result or is used to
determine which bits to copy into the destination
register. The mask is a 32-bit value with all bits
between location MB and ME set to 1 and all other bits
set to 0. For example, the following instruction will
take the contents of R3, rotate it left by 5, AND it with
the bit pattern 00001111 11111100 00000000
00000000, and place the result in register R4.

rlwinm r4,r3,5,4,13 ; rotate left word
; immediate, AND with mask
; r4 = (r3 << 5) & 0FFC0000

Note that some assemblers allow you to specify a
constant instead of the MB and ME values.

MOVING DATA
Getting data to and from memory requires the load and
store instructions. There are a few variations, each with
the addressing modes mentioned earlier. The amount
of memory, the address alignment, and the specific
processor will also affect how much time the operation
will take. Here are some examples of specifying the size
with load instructions:

lbz rD,disp(rA) ; load byte and zero
; rD = byte at rA+disp

lhz rD,disp(rA) ; load half word and zero
; rD = half word at rA+disp

lwz rD,disp(rA) ; load word and zero
; rD = word at rA+disp

lwzx rD,rA,rB ; load word & zero indexed
; rD = word at rA+rB

Note that the “z” means “zero,” so if the amount
loaded is smaller than the register, the remaining bits
of the register are automatically zeroed. This is like an
automatic extend instruction in 680x0 assembly
language. You can also have the effective address
register preincrement, by appending “u” for “update.”
For example,

lwzu r3,4(r4) ; r4 = r4 + 4 ; r3 = *(r4)

will first increment R4 by 4 and then load R3 with the
word at address R4. The preincrement doesn’t exist in
680x0 assembly, but it’s similar to the predecrementing
instruction move.l d3,-(a4). There’s also an option for

indexed addressing modes — for example, “load word
and zero with update indexed”:

lwzux r3,r4,r5 ; r4 = r4 + r5 ; r3 = *(r4)

This instruction will update register R4 to be R4 plus
R5 and then load R3 with the word at address R4.

Store instructions have the same options as load
instructions, but start with “st” instead of “l.” (The “z”
is omitted because there’s no need to zero anything.)
For example:

stb rD,disp(rA) ; store byte
sthx rD,rA,rB ; store half word indexed
stwux rD,rA,rB ; store word update indexed

A word of caution: Do not use the load or store string
instructions (lswi, lswx, stswi, and stswx) or load
multiple instruction (lwm). Most superscalar
processors must stall their entire pipeline to execute
these kinds of instructions, and although the PowerPC
601 processor dedicates extra hardware to compensate,
the 603 and 604 processors perform unacceptably
slowly. Loading each register individually will result in
faster execution.

COMPARE AND BRANCH
A compare instruction operates on one of the eight
condition register fields, CR0 to CR7. It compares a
register against either another register or immediate
data, and then sets the four condition bits in that
condition register field accordingly. The bits are as
follows:

bit 0 less than
bit 1 greater than
bit 2 equal to
bit 3 copy of summary overflow bit

If you’re wondering how to test for greater than or
equal to, you’re paying attention: You can test whether
each bit is true or false, so to test for greater than or
equal to, just see if the less-than bit is false. The last
bit is a copy of an overflow bit from the integer or
floating-point exception register. For more information
on exceptions, see the PowerPC user’s manual.

The official mnemonics for compare instructions
include a 64-bit option, but until PowerPC registers
are 64-bit, the following simpler 32-bit mnemonics are
used:

cmpwi CRn,rA,val ; compare word immediate
; rA to val

cmpw CRn,rA,rB ; compare word
; rA to rB

BALANCE OF POWER: INTRODUCING POWERPC ASSEMBLY LANGUAGE 25

cmplwi CRn,rA,val ; compare logical word
; rA to val (unsigned)

cmplw CRn,rA,rB ; compare logical word
; rA to rB (unsigned)

The “w” stands for “word” and means these are the
32-bit compare instructions. The “l” means the
comparison is logical and therefore unsigned.

Now let’s look at the branch instructions. We covered
basic branch instructions earlier, but here are some
examples of common simplified branch mnemonics:

bgt CRn,addr ; branch if CRn has greater
; than bit set true

ble CRn,addr ; branch if CRn has greater
; than bit set false (tests
; for less than or equal)

bgtl CRn,addr ; set link register, branch if
; CRn has greater than bit set

Also useful are the decrement counter conditional
branches. They allow you to load the count register
and, in one instruction, decrement it and branch based
on its value and another condition. For example:

dbnz addr ; CTR = CTR - 1
; branch if CTR is nonzero

dbz addr ; CTR = CTR - 1
; branch if CTR is zero

dbzt bit,addr ; CTR = CTR - 1
; branch if CTR is zero and
; condition bit is set true

The dbzt instruction’s bit testing brings up an
important point. Conditional branches specify either a
condition register field or a condition bit. As shown
below, the condition register fields are placed side by
side in a single 32-bit condition register. When a
branch mnemonic requires a field, it needs a value from
0 to 7 to specify which 4-bit field to use. When a
branch mnemonic requires a bit value, it needs a
number from 0 to 32 specifying a bit in the whole
condition register. Bit number 0 is the high (less than)
bit in CR0, bit number 4 is the high bit in CR1, and so
on. (Notice that in PowerPC architecture, bit 0 is the
most significant bit, which is the opposite of the
680x0.)

Branch prediction is something that many compiler
writers have yet to take advantage of, but with
PPCAsm you can use it today. By adding a “+” or “–” to
a branch mnemonic, you can specify whether you think

the branch is likely or unlikely to be taken, respectively.
For example:

bgt+ cr0,addr ; predict branch taken

However, this works only if the target address is in the
same source file. Branch prediction on the PowerPC
601 and 603 is determined by the target address of the
branch — specifically, on whether the target address is
before or after the branch instruction. So if the target
routine is in another source file, the compiler can’t
determine if the target address will be before or after
the branch instruction, and therefore can’t set the
branch prediction bit accurately. See the Balance of
Power column in Issue 20 for more information on
branch prediction.

CALLING CONVENTIONS
The PowerPC processors have 32 general-purpose
registers, 8 condition register fields, and 32 floating-
point registers. Just as in the 680x0 Macintosh run
time, most registers are available for general use. But
some are reserved for specific duties: general register
R1 is the stack pointer, and R2 is the RTOC or
Register for Table of Contents. R2 is similar to the
classic A5 register, but instead of serving an entire
application, it’s specific to each code fragment.

Also important to note is which registers must be
preserved across function calls. Registers R13 to R31,
FPR14 to FPR31, and CR2 to CR4 must be saved and
restored if you use them in your function. It’s all right
to store them in a scratch register if you don’t call
another subroutine. You can always use registers R3
through R10, for example, without any additional work.

Optimized code doesn’t always use stack frames, and if
your assembly is just for tight utility routines you won’t
need them. But if you call other subroutines, your
routine must set up a frame. This will also aid in
debugging. When your assembly routine is called, the
stack pointer will point to the caller’s stack frame. Your
routine should set up a frame with space for local
variables plus the standard frame size of 56. It should
also save the return address in the frame and clean up
before exiting. Here’s the recommended code to do
this:

mflr r0 ; move return addr to r0
stw r0,8(sp) ; save r0 in stack frame
stwu sp,-frame(sp) ; set up new frame
... ; your code here
lwz r0,frame(sp)+8 ; return address to r0
addic sp,sp,frame ; remove frame
mtlr r0 ; restore return
blr ; return

 CR6 CR0 CR1 CR2 CR3 CR4 CR5 CR7
0 3 4 7 8 11 12� 15 16 19 20 23 24 27 28 31

d e v e l o p Issue 21 March 199526

The size of the frame is variable, but at a minimum is
56 bytes for parameter space and special register
storage. If you save and restore any variables, or need
local stack variables, add the size needed to 56. The
frame size must be a multiple of 8, to leave the stack
double-word aligned. Add padding to your frame to
make sure it’s a multiple of 8 bytes.

Subroutine calls within your code fragment use just a
simple instruction-relative branch and link. If you call
subroutines outside your fragment, such as into the
Toolbox, you need to put a no-op instruction after that
branch. The no-op is actually the impotent ori r0,r0,0
instruction. The linker will replace this no-op with an
instruction to restore your RTOC register after the
call. It will also add special cross-TOC glue code and
redirect the branch to that glue. This is necessary
because you must set up the callee’s RTOC so that it
can access its globals, and your code is responsible later
for restoring your RTOC.

Here’s an example of this cross-TOC glue:

lwz r12,routine(RTOC) ; load t-vector
stw RTOC,20(RTOC) ; save my RTOC
lwzr 0,0(r12) ; get callee address
lwz RTOC,4(r12) ; set callee RTOC
mtctr r0 ; prepare branch
bctr ; jump to callee

You’ll often see this glue during low-level debugging.
The first instruction gets a transition vector (or t-vector)
from your global data and places it in R12. This vector
is a structure containing the callee’s address and
RTOC, and it’s filled in by the Code Fragment
Manager when your code binds to the callee’s
fragment. Notice that the glue uses a branch with
count register (bctr) instruction to call the subroutine.
This uses the count register as a target address so that
the link register with your return address will remain
unmodified; therefore, don’t make cross-TOC calls in
loops that use the count register.

OPTIMIZING FOR SPEED
Let’s look at a simple routine in C that compares two
Pascal strings:

Boolean pstrcompare(StringPtr p1, StringPtr p2)
{

short length, i;

if ((length = p1[0]) != p2[0]) return false;
for (i = 1; i <= length; ++i)

if (p1[i] != p2[i]) return false;
return true;

}

Compiling this with the PPCC compiler and using the
optimizer for speed produces the assembly code shown
below. (While it certainly is possible to tune the C code
directly, we’ll ignore that for the purposes of this
example.)

lbz r11,0(r3) ; r11 = length p1
lbz r5,0(r4) ; r5 = length p2
cmpw cr0,r11,r5 ;• compare lengths
beq pre ;•
li r3,0 ; nope, return false
blr

pre: cmpwi cr0,r11,1 ; check length
li r12,1 ; load count

loop: blt pass ;• done?
lbzx r5,r3,r12 ; r5 = p1[i]
lbzx r6,r4,r12 ; r6 = p2[i]
cmpw cr0,r5,r6 ;• equal?
bne fail
addic r5,r12,1 ; add 1
extsh r12,r5 ;• extend and move
cmpw cr0,r11,r12 ;• check if done
b loop

pass: li r3,1 ; return true
blr

fail: li r3,0 ; return false
blr

Looking at this code, we notice that the two StringPtr
parameters are passed in R3 and R4. The first six
instructions check the lengths of these two strings and
return false if they’re not equal. Then the loop preloads
a count and uses cmpwi cr0,r11,1 to see if it needs to
iterate even once. The loop is simple, but it does an
extraneous extsh instruction because the optimizer
doesn’t realize R12 is already a full word.

The key to optimizing PowerPC assembly code is to
keep the processor’s pipeline from stalling. This isn’t
always possible, and different PowerPC processors have
different pipelines, but you can usually arrange your
assembly code for significant performance
improvements on all PowerPC processors.

For more information on pipelines and different
optimization techniques, see the article “Making the Leap to
PowerPC” in develop Issue 16 and the Balance of Power
column in Issues 18 and 19.•

The situations that most often stall the pipeline are
memory access, register dependencies, and conditional
branch instructions. If data is loaded from memory and
then used immediately, you’ll stall the pipeline at least
one cycle and possibly more for cache or page misses.
If one instruction writes to a register and the next
instruction references the same register, the processor

BALANCE OF POWER: INTRODUCING POWERPC ASSEMBLY LANGUAGE 27

might not be able to finish the second instruction until
after the first one completes. The processor alleviates
this by executing instructions out of order or with
temporary registers, but you may nonetheless waste
cycles. Also, if a branch is directly preceded by the
needed comparison, the processor may mispredict the
branch or just stall until the compare is done.

The key tactic for addressing these situations is to
reorder your instructions. Move loads and stores as
early in your code as possible, as they may take a long
time to service. Then if two instructions reference the
same register, find another unrelated instruction and
move it in between. The same goes for conditional
branch instructions: try to put as many other
instructions between the compare and the branch as
possible. As examples, look for the “•” characters in
the above sample code; these denote possible pipeline
stall points. Note, however, that the 603 and 604
microprocessors issue instructions differently such that
you shouldn’t bunch loads and stores together.

Other general tactics can improve your speed. Use as
many scratch registers as possible and go to the stack
for local storage only if you absolutely must. The same
applies to your stack frame: only save to it things that
will be modified in your routine. For example, if you
don’t call any subroutines, don’t save your link register
there. Loops should use the one-step decrement branch
(bdnz) instruction.

Finally, read the PowerPC user’s manual before going
to bed every night for time-saving instructions like
rlwimi (rotate left word immediate with mask insert).

Now let’s optimize the above example by hand:

pstrcompare:
lbz r7,0(r3) ; r7 = length p1
mr r6,r3 ; save a copy of p1
lbz r8,0(r4) ; r8 = length p2
li r3,0 ; preload false
addi r5,r7,1 ; add 1 for count
mtctr r5 ;• preload count

loop: cmpw cr0,r7,r8 ; equal?
lbzu r7,1(r6) ; r7 = *(++p1)
bnelr ; return if ¬ equal
lbzu r8,1(r4) ; r8 = *(++p2)
bdnz loop

pass: li r3,1 ; return true
blr

Here we’ve removed all the key stall points by doing
more work before the loop and also modifying the
loop. With lbzu autoincrementing and dbnz
autodecrementing instructions, the loop is now only
five instructions long, compared to the earlier nine
instructions and one stall point. To achieve this we also
needed to preload R3 and the count register, but we did
that additional work in stall points. The mtctr
instruction can be expensive, with a latency of three or
more cycles; however, using the count register reduces
the work done within a loop, and that often makes up
for the added mtctr cycles.

The earlier PPCC-optimized version would take about
110 cycles to verify that two 10-byte strings were
identical. Our hand-tuned version takes only half as
long. And although string comparisons are probably
not your critical bottleneck, this same procedure can be
applied to your critical code.

PROCEED WITH CAUTION
Any code you write in assembly language is not
portable and is usually harder to maintain. You also
don’t get the type checking and warnings that a
compiler provides. But for code that must be faster
than the competition, you may want to hand-tune in
PowerPC assembly language.

One strong word of caution: Do not use IBM POWER
instructions! They may work on the 601 processor,
which supports them, but they will not run on any
other PowerPC processor. If you use them, your
software may crash or run significantly slower on future
Power Macintosh models. To make sure your code is
clean of POWER instructions, you can use Apple’s
DumpXCOFF or DumpPEF tool, both of which have
an option to check for invalid instructions. There’s also
a list of POWER instructions supported by the 601 in
Appendix B of the PowerPC 601 user’s manual.

Another warning: Most instructions take registers,
immediate data, or bit numbers as arguments, and the
assembler will assume you’re setting them correctly. It’s
easy to think you’ve specified a bit number but in fact
have used a critical register by accident. These bugs are
hard to find. Our earlier rlwinm example can be
written rlwinm 4,3,5,4,13; it’s easy to see how
argument meanings can be confused. You might try the
-typecheck option of PPCAsm version 1.1 to help
catch mistakes, but please be careful!

d e v e l o p Issue 21 March 199528

Thanks to Dave Falkenburg, Tim Maroney, Mike Neil, and Andy
Nicholas for reviewing this column.•

Dylan is a new object-oriented dynamic language (OODL) that’s
attracting a lot of attention. Like C++, it’s designed for efficient
compilation and delivery of mainstream commercial applications.
However, Dylan differs from C++ in important ways that make it more
powerful and flexible. Here we’ll focus on one important difference from
C++: the way classes and their methods are organized.

The organization of classes and functions is different in Dylan than in C++. In C++,
classes are used in two ways: to encapsulate data and as a scoping mechanism. Methods
in C++ “belong to” classes, and there are many complex mechanisms governing
access to methods from “inside” and “outside” a class. In Dylan, classes are used only
for data encapsulation — there’s no notion of methods being owned by classes. As a
result, specifying and using methods is cleaner, simpler, and more expressive.

Access is simplified and abstracted through modules, which are a way of grouping
related classes, methods, and variables. Rather than being tied to a single class, each
method belongs to a family called a generic function. Each generic function can operate
on one or more related classes, and can be extended across one or more modules. We’ll
talk more about generic functions, polymorphism, and modules later in this article.

Dylan has many other features that distinguish it from C++, including:

• automatic memory management

• clean, consistent syntax

• fully and consistently object-oriented model

• dynamic as well as static type checking

• support for incremental compilation

• first-class functions and classes

There’s not enough space here to do justice to each of these topics, so we’ll just touch
on some of them as we discuss classes, functions, and modules. As you might expect,
this article assumes you have some familiarity with basic object-oriented concepts,
such as classes, instances, and inheritance.

On this issue’s CD, you’ll find a freeware Dylan interpreter, called Marlais, that you
can use to execute code written in Dylan. Simply run the application and enter your

STEVE STRASSMANN

A First Look at Dylan:
Classes, Functions, and Modules

A FIRST LOOK AT DYLAN: CLASSES, FUNCTIONS, AND MODULES 29

STEVE STRASSMANN (AppleLink STRAZ,
Internet straz@apple.com) has a patent on
surgical catheters (#4,838,859) and is the co-
author of the infamous UNIX-Haters Handbook.

After getting his Ph.D. at the MIT Media Lab in
entertainment engineering, he joined the Dylan
team at Apple in Cambridge, Mass.•

code at the prompt. Also on the CD are the code samples you’ll see in this article,
plus the Dylan Interim Reference Manual and other Dylan goodies.

Apple’s implementation of Dylan, called Apple Dylan, is planned to ship later this
year. One great feature of Apple Dylan is that it allows you to call existing C and C-
compatible code libraries, such as the Macintosh Toolbox. See “Creole: Using the
Toolbox and Other C Code From Within Dylan Code” for details.

d e v e l o p Issue 21 March 199530

With any new language, you’re bound to wonder
whether you’ll be able to get at the “really good stuff.”
You know, interfaces always seem to be published just for
C programmers, and nobody else. I don’t mean merely
the Macintosh Toolbox, but any other code already
written by you or a third party, like database access
routines or advanced graphics libraries. In many cases
(such as with the Macintosh Toolbox), you may not have
access to the source code, so recompiling or translating it
into the new language is simply not an option.

Apple has designed a cross-language extension to the
Dylan language. This extension, called Creole in Apple
Dylan, allows you to build programs with parts written in
both Dylan and C or C-compatible languages. We at
Apple hope the extension will be supported by other
Dylan implementations, but since the extension isn’t part
of the standard Dylan language, it’s not required. (The
Marlais interpreter on this issue’s CD doesn’t support it.)
In the future, Apple will also support the System Object
Model (SOM) extension, which is used by OpenDoc.
Here we’ll take a look at some features of Apple Dylan’s
Creole implementation.

Once you import C interfaces into Dylan, you can call C
functions and refer to C structs as if they were Dylan
functions and objects. There’s no need to translate the C
headers first; Creole reads them directly. In the following
simple example, we import the interface file OSUtils.h,
which contains the Toolbox function SysBeep; we can
then, for instance, call SysBeep(1) from Dylan.

define interface
#include "OSUtils.h",

import: {"SysBeep"};
end interface;

Creole provides these additional facilities:

• An access path (linking) mechanism links compiled C-
compatible modules, including C++, Pascal, assembler,
and FORTRAN modules, into a Dylan application.
Creole supports object (“.o”) files, shared libraries

(Apple Shared Library Manager or Code Fragment
Manager), inline traps, code resources, and PowerPC
transition vectors.

• Cross-language calls allow Dylan routines to call
routines in another language, and vice versa.

• Name mapping translates names of entities in another
language into Dylan variable names in a specified
module. Apple Dylan offers several convenient
mappings for common naming conventions.

• Type mapping translates C types into Dylan types
and provides type checking for Dylan clients of the
Macintosh Toolbox and other interfaces.

• Low-level facilities provide Dylan programs with direct
use of machine pointers and the raw bits pointed to by
the machine pointers.

A define interface statement imports one or more C
interface files and creates Dylan classes, constants, and
functions corresponding to the C types, constants, and
functions in the interface files. Like any Dylan expression,
a define interface statement exists in a particular
module, as do the variables that it defines. You can export
and rename these variables using module options just as
you would for normal Dylan variables (as discussed later
under “The Role of Modules”).

Many options are available to override Creole’s default
behavior. For example, you can do any of the following:

• selectively import parts of an interface

• explicitly control type mapping — for example, to map
StringPtr to <Pascal-string>

• explicitly control name mapping to avoid name
conflicts because of the difference in case-sensitivity
and scoping rules in Dylan and C

• work around undesirable features in the interface or in
Creole

• control tradeoffs between runtime memory consumption
and dynamic functionality

CREOLE: USING THE TOOLBOX AND OTHER C CODE FROM WITHIN
DYLAN CODE

CLASSES AND OBJECTS
Dylan is fully and consistently object-oriented, much like Smalltalk™. Everything is
an object, including numbers, strings, and even functions and classes themselves.
Each object descends from a single common ancestor class, named <object>.

The <> characters are not some fancy operator but are merely a typographic
convention for indicating the name of a class in Dylan, just as all-uppercase letters
might indicate a macro in C++. You’re allowed to name a class without the <>
characters, but that would be considered bad style.•

To illustrate how classes are used in Dylan, let’s look at one of our samples, SimMogul,
to model Hollywood high finance. In Listing 1, we define a few classes, creating the
inheritance hierarchy shown in Figure 1.

The first thing you might notice about this code is that Dylan identifiers draw on a
richer stock of characters than do most languages. Dylan identifiers are case-
insensitive and can include characters like <, >, *, +, and –, which are traditionally

A FIRST LOOK AT DYLAN: CLASSES, FUNCTIONS, AND MODULES 31

Listing 1. SimMogul — basic version

define class <project> (<object>)
slot script; // All you need is a hot script
slot star; // and a big name.

end class <project>; // Last two words are optional.

define class <actor> (<object>)
slot name; // Actor's name
slot salary; // Cost to hire
slot fans; // Audience size

end class;

define class <script> (<object>)
slot name; // Script's name
slot fx-budget; // Cost of special effects

end class;

define class <sci-fi> (<script>)
end class;

define class <romance> (<script>)
end class;

<object>

<project>

<sci-fi> <romance>

<actor> <script>

Figure 1. Inheritance hierarchy of SimMogul classes

reserved for operators. As a result, operators like these must be surrounded by spaces
when used in formulas (as you’ll see later in the definitions for profits in Listing 5).

As shown in Listing 1, each define class statement begins with the name of the class
being defined, followed by its parent (or superclass) in parentheses. Dylan supports
multiple inheritance; multiple superclasses would be listed in the parentheses,
separated by commas. For this short example, however, we’ll stick to single
inheritance.

<project> is a simple class with two slots (comparable to data members in C++)
named script and star. This is a pretty basic structure that doesn’t include any
options, but it illustrates the syntax for class definitions. There’s no need to create
constructor or destructor methods; that’s taken care of automatically. The last two
words, class <project>, are optional, but if you provide them, the name must match
that of the class being defined. You can just say end or end class instead if you like,
which is what we’ve done for the remaining classes.

TYPE DECLARATIONS AND AUTOMATIC MEMORY MANAGEMENT
Type declarations are optional in Dylan because values, not storage locations, are
strongly typed. Each object’s type is always known from the moment it’s created, so
there’s less need to declare types on storage locations. It’s OK to leave off type
declarations, as we did for slots in Listing 1. This makes rapid prototyping much
easier than in C++.

Listing 2 shows a version of SimMogul that does contain some type declarations. The
definition of <actor>, for example, has a slot declared as name :: <string>, which
specifies the type of the name slot. The compiler will generate code that guarantees
that only strings can be stored in this slot; attempts to store anything else will cause
an error.

Another reason to provide type declarations is that it allows the compiler to generate
more efficient code. For example, if you wrote code that stores an appropriately
declared value in an <actor>’s name slot, at compile time the compiler would be able
to deduce the value’s type. Values that are known to be strings will be stored efficiently,

d e v e l o p Issue 21 March 199532

Listing 2. SimMogul — embellished version

define class <project> (<object>)
slot script; // All you need is a hot script
slot star; // and a big name.

end class <project>; // Last two words are optional.

define class <actor> (<object>)
slot name :: <string>, // Actor's name

required-init-keyword: name:;
slot salary :: <number>, // Cost to hire

init-value: 1000000,
init-keyword: salary:;

slot fans :: <number>, // Audience size
init-value: 1000000,
init-keyword: fans:;

end class;

(continued on next page)

with no runtime type checking. Those known not to be strings will generate compile-
time warnings, just as they would in a strongly typed language. If you choose to leave
off declarations, the compiler will insert instructions for runtime type checking, so
you’ll have crash-safe code no matter what. This is an example of how Dylan always
lets you compile in a way that’s both maximally safe and efficient.

In general, Dylan programs should crash much less often than comparable C
programs, because most errors will be detected and handled gracefully and
automatically. Automatic memory management is one big source of this safety, since
it eliminates the majority of bugs that usually come from manually operating on raw
memory pointers. Dylan’s ability to ensure safety, however, is limited when working
with code imported from outside Dylan, such as the Macintosh Toolbox, which forces
Dylan programmers to use raw memory pointers in some cases. Apple Dylan will
insulate programmers as much as possible from these pointers with an application
framework.

CREATING OBJECTS AND FILLING THEIR SLOTS
Your application creates objects by calling make, which creates instances of a class.
Listing 2 gives some examples of actors and scripts being created with calls to make.
Values for slots are provided with keyword arguments to make, called init-keywords.
Dylan keywords, which are similar to Smalltalk keywords, are a way to provide

A FIRST LOOK AT DYLAN: CLASSES, FUNCTIONS, AND MODULES 33

define class <script> (<object>)
slot name :: <string>, // Script's name

required-init-keyword: name:;
slot fx-budget :: <number>, // Cost of special effects

init-value: 10000,
init-keyword: fx-budget:;

end class;

define class <sci-fi> (<script>)
inherited slot fx-budget, init-value: 20000000;

end class;

define class <romance> (<script>)
inherited slot fx-budget, init-value: 0;

end class;

define variable arnold =
make(<actor>, name: "Arnold", fans: 10000000);

define variable betty =
make(<actor>, name: "Betty", fans: 5000000);

define variable tender :: <script> =
make(<romance>, name: "Tender Sunshine");

define variable zarx :: <script> =
make(<sci-fi>, name: "Land of the Zarx-Eaters");

define constant $ticket-price = 7;

Listing 2. SimMogul — embellished version (continued)

optional function parameters. I’ll have more to say about specifying and using
keywords in function calls in the section on functions.

Since the slots in <project> don’t have init-keywords, you can’t provide values
for them when you use make to make projects. If a project is created with
make(<project>), the slots are uninitialized, and any attempt to read their values
in this uninitialized state is an error that will be detected and reported.

The name slot in <actor> has a required-init-keyword: option, which is used
further down to specify the name of the arnold object. Required init-keywords are
commonly used for slots with no default value because this requires callers to provide
a value when they make objects.

The other slots in <actor>, salary and fans, have default values as well as init-
keywords. When an actor is created, the slot’s value can be defaulted (for example,
arnold’s salary) or overridden (for example, arnold’s fans). Slots can also be
initialized with the init-function: option, which calls a function to compute the
default value.

The declaration salary :: <number> restricts the salary slot to hold only numbers.
Notice that we didn’t choose a specific numeric type for the salary slot type (such as
short, int, long, or double), though we easily could have. Dylan provides a rich library
of numeric types, including integers of unlimited size (which are good for devalued
currencies and salaries of major athletes). By using <number> instead of a more
specific numeric type, your type declaration becomes a tool for documentation and
error checking, even while you’re in the midst of rapid prototyping. We’re not
obliged to make some arbitrary and premature optimization at this stage, as we would
with C or C++. Using <number> captures as much of our design as we want for now;
we can always come back and tune it later.

A Dylan class inherits slots from all its superclasses and can also define its own new
slots, just as in C++. All slots in a given class must be unique; there cannot be two
different slots with the same name. You can override some properties of an inherited
slot, however, by partially respecifying the slot. Taking a look at the definition of
<sci-fi> in Listing 2, we see that it overrides the default init-value for fx-budget
inherited from <script> with a somewhat higher value. The keyword inherited
indicates that the slot is inherited from a superclass; it’s not a new slot with the
coincidentally identical (and therefore illegal) name.

You can specify many other interesting options for slots, such as class allocation,
which shares a singly allocated value used by all instances of that class; class
allocation roughly corresponds to a static data member in C++. Dylan also lets you
provide virtual allocation for slots. Rather than being stored in the slot, a virtual slot’s
value is computed by a function each time the slot is referenced. This feature is
missing from C++ and is very different from what C++ refers to as virtual data
members.

USING VARIABLES AND CONSTANTS
In Listing 2, we make some objects out of the classes and bind them to global
variables with the define variable statement. The variables holding the actors have
no type declaration — we didn’t do this with any design considerations in mind, but
just to show you that it can be done. Like slot declarations, type declarations for
global variables are optional; they’re used to increase efficiency, not to change the
program logic. The other two variables have :: <script> type declarations, which is
OK, since the values stored there are indirect instances of <script>. The variable
tender is an instance of <romance>, which is a subclass of <script>.

d e v e l o p Issue 21 March 199534

Also included is a define constant statement, which looks just like define variable,
except that once you give it a value, the running program isn’t allowed to change
it. The $ in the name $ticket-price is something of a coincidence. By convention,
all constants in Dylan are given names beginning with a dollar character, as in
define constant $pi = 3.14159.

It’s worth noting that define constant doesn’t restrict mutable objects from being
mutated. Some collections, such as vectors, are mutable in that the value of an
element can change, and class instances are mutable in that a slot can change (unless
you declare the slot as a constant in the class definition, of course). Since define
constant describes the identifier, not the object, what it really means is that the
identifier will always refer to that particular object, and to no other object. This is the
same as a const pointer in C++, where the pointer is not allowed to change but the
object pointed to may be mutated.

$ticket-price is a real constant after all, because its value of 7 (like all numbers)
cannot be mutated; for example, you cannot change the 7 to an 8 without changing
the object itself.

VARIABLES HOLD ANYTHING
Variables (and constants, which are a kind of variable) can contain any type of Dylan
data object, including numbers, strings, and user-defined objects like actors and
scripts. But in Dylan, the classes and functions themselves are also objects, and hence
are also stored in variables. It turns out that <actor> is just another variable, as is
arnold. The value of the variable whose name is <actor> happens to be a class, and
the value of the variable whose name is arnold is an instance of that class.

When we say everything’s an object in Dylan, we mean everything. A variable is just a
way of naming an object so that you can refer to it in your program. Since you can
refer to functions or classes just as easily as you can refer to numbers, we think of
them as “variables.” So don’t be shocked when you see documentation referring to
something like print as a variable. It’s just a variable whose value happens to be a
function.

HOW FUNCTIONS WORK IN DYLAN
Dylan uses a simple, consistent, functional interface for slot access, which avoids
many of the confusing aspects of C++’s data members. Functions in Dylan have many
elegant features that make them more powerful than their counterparts in C++, but
without adding a lot of complicated syntax. In this section we’ll talk about some of
the ways you can create and use Dylan functions.

GETTERS AND SETTERS
By default, a pair of accessor functions, called getter and setter functions, is created for
each slot. For example, the definition of <actor> in Listing 1 automatically creates
the following six functions:

name(a) // Gets the name of actor a
name-setter(new, a) // Sets the name of actor a to new
salary(a) // Gets the salary of actor a
salary-setter(new, a) // Sets the salary of actor a to new
fans(a) // Gets the audience size of actor a
fans-setter(new, a) // Sets the audience size of actor a to new

Slot access in Dylan looks exactly like a function call, even though the compiler may
implement slot access much more efficiently. Alternatively, you can use the more

A FIRST LOOK AT DYLAN: CLASSES, FUNCTIONS, AND MODULES 35

traditional dot notation for slot access. Therefore, the syntax object.property is
exactly equivalent to property(object). You can use whichever syntax best fits the
situation.

This functional interface is a great feature, because it allows a class’s implementation
details to remain an abstraction for the users of a class. The fans property, which
indicates the box office drawing power, might be stored as a slot in some classes or it
might be computed on the fly by a function for other classes. Users will always see a
functional interface, and never need to know about the internal implementation.

Whenever a slot reference appears on the left side of an assignment statement, the
reference is translated into a call to the appropriate setter function. For example,
these are all equivalent ways of changing the name slot of the arnold object:

arnold.name := "Arnie";
name(arnold) := "Arnie";
name-setter("Arnie", arnold);

Slots can also take a setter: option, which lets you provide the name of the setter
function. The default is to give it a name like name-setter, but you can use a
different name, or specify that no setter at all should be created. If there is no setter
function, you effectively make the slot’s value read-only. As you’ll see later in the
section on modules, you can also control read and write access to slots by selectively
exporting getter and setter functions to other modules.

POLYMORPHISM
Object-oriented languages, including Dylan, provide polymorphic functions, which
means a given function may be executed as one of several possible implementations of
that function, called methods. In our code above, name is just such a function. Calling
name(arnold) calls the name method for actors, but calling name(tender) invokes
the name method for scripts, which may have a very different implementation.

So, when Dylan sees a call to name(x), depending on what type of object x is, one of
several methods is selected and executed. In Dylan, name is called a generic function,
consisting of a family of name methods that implement the functionality of name for
various classes (see Figure 2). Each of these methods “belongs to” its generic function
(in this case, name) rather than to a class. This is a key point; it’s the core difference
between C++’s object model and Dylan’s.

C++’s virtual methods are polymorphic only to the extent that they share a common
ancestor. In C++, if you wanted name to work on both actors and scripts, you’d have
to create a class (for example, nameableObject) just to contain the name method,
and then modify both actor and script classes to inherit from it. This scenario creates
quite a few unwanted complications. First, it clutters up your object hierarchies with

d e v e l o p Issue 21 March 199536

name(x)

name(x :: <actor>)

name(x :: <script>)

name(x :: <tune>)

Methods

•••

Figure 2. Generic function containing several methods

unnatural “glue” classes that have little to do with the problem domain being
represented. Second, it requires you to add inheritance links to bring together classes
that otherwise have no reason to be connected, which reduces modularity. Multiple
inheritance is extremely awkward in C++ (much less so in Dylan), so you usually want
to avoid it wherever possible when using C++.

You also may not have the desire or the ability to change classes near the root of a
C++ class hierarchy, either because you don’t have access to the affected classes’
source code, or because the recompilation time would be very costly. The latter is
usually not a problem in Dylan, because most commercial Dylan implementations
(including Apple Dylan) provide incremental compilation, which means you can edit,
recompile, and relink classes in a matter of seconds.

METHOD SPECIFICITY
As with slots and global variables, type declarations for Dylan function parameters are
optional. Providing type declarations, which is called specializing the method, restricts
a method to be valid for a specific set of operands. Listing 3 shows several methods
belonging to the double generic function, specialized for various parameter types.
(The value returned by a Dylan function is simply the value returned by the last
expression executed in its body; there’s no need for an explicit return statement.)

The first method in Listing 3 has no specialization at all, so it’s equivalent to a default
specialization of x :: <object>, which means it will work on anything. It returns a new
structure (an instance of the built-in class <pair>), containing two pointers to the
argument x.

The default specialization might not be satisfactory for all objects, of course, so the
second method specializes the behavior for the case where x is a <number>. In this
case, double returns the argument multiplied by 2. For a <string>, the third method
returns a new string created by concatenating the argument to itself.

Dylan provides a large library of collection types, including strings, vectors,
hash tables, and much more, along with an extensive and highly consistent library of
operations on them. Working with Dylan’s collections is much easier than with C,
since you don’t have the administrative headaches of manual storage management.•

A FIRST LOOK AT DYLAN: CLASSES, FUNCTIONS, AND MODULES 37

Listing 3. Method specificity

define method double (x) // No type declaration, default handler
pair(x, x); // Works on any type of object

end method double;

define method double (x :: <number>) // Works on all numbers
2 * x; // Returns 2 times x

end method double;

define method double (x :: <string>) // Works on all strings
concatenate(x, x); // Returns "stringstring"

end method double;

define method double (x == cup:) // Works on the symbol cup:
pint:; // Returns the symbol pint:

end method double;

The last method in Listing 3 illustrates Dylan’s ability to specialize on specific
instances (called singletons), not just whole classes. Through the use of == rather than
::, the parameter is constrained by an equality test, not class membership. The object
in this case is a symbol, which is an interesting data type not found in C or C++. A
symbol is a case-insensitive immutable string, often used where you might use an
enum in C. In this method, double is defined to return the symbol pint: whenever
the argument is the symbol cup:.

The foo: syntax is a convenient way to refer to symbols in your code, but it can be
confusing, especially when passing symbols as keyword parameters in function calls.
Dylan provides a second, equivalent syntax for symbols, which looks like a string with
a # (for example, #"foo"). This also lets you create symbols with spaces in their
names.•

When double is invoked on an argument, the most specific method is invoked.
Singletons are considered to be the most specific; if a match isn’t found, a method for
the most specific matching parameter type is found. For example, double("foo")
would invoke the third method, because <string> is more specific than <object>,
which is what the first method is specialized to. If no match is found, Dylan will catch
it and signal an error.

OTHER PARAMETER TRICKS: #REST, #KEY, AND RETURNED VALUES
In addition to having the normal kind of parameters (also called required parameters),
whose number and position are fixed, Dylan functions can take varying numbers of
additional parameters.

A #rest parameter collects an arbitrary number of arguments as a sequence. For
example, the following function takes one required argument, view, and any number
of additional arguments. A for loop is used inside the function to iterate over the
arguments.

define method polygon (view :: <view>, #rest points)
for (p in points)

...
end for;

end method;

Here’s an example of using this function:

polygon(myWindow, p1, p2, p3, p4, p5); // Typical usage

Keyword parameters specified with #key are quite handy, especially for functions
with many parameters, which often take default values. As we saw earlier, make takes
keyword parameters in order to create objects. These can be provided in any order by
the caller, or omitted entirely if default values are specified. The keywords themselves
provide an extra degree of clarity to the calling code, since they serve to document
the arguments they introduce. For example:

define method rent-car (customer :: <person>, // Two required parameters
location :: <city>, // and up to 4 keywords
#key color = white:, // Default color is white

sunroof? = #f, // Default no sunroof
automatic? = #t, // Default automatic shift
days = 3) // Default 3-day rental

...
end method;

d e v e l o p Issue 21 March 199538

Notice the usage of #t and #f. These are the Dylan values for Boolean true and false,
respectively.

Some examples of using this function are as follows:

rent-car(arnold, dallas, days: 7, sunroof?: #t);

rent-car(betty, dallas, days: 8, color: #"red");

rent-car(colin, vegas); // Everything defaulted

You also have the option of specifying the return parameters for Dylan functions, as
illustrated in Listing 4. This provides more information to the compiler to assist in
optimization, as well as documents your code for other users. Dylan functions can
return multiple values, which means the caller can get zero, one, or more than one
value from the callee. This lets you program in a cleaner, more functional style than
in C. In Dylan, you don’t need to mix your input and output parameters and bash
inputs to make them outputs, or clutter your code with definitions for funny data
structures that do nothing more than carry the results of one function back to
another.

All methods in a generic function must be congruent. Basically, this means they must
all take the same number of required parameters, and they must agree on taking
keyword and rest values. There are a few more options you can specify for a generic
function using the define generic statement, which can also constrain method
congruency.

MULTIPLE POLYMORPHISM
One interesting feature of Dylan is that functions are multiply polymorphic (unlike in
C++ or Smalltalk). A function can have as many required parameters as you like, and
any or all of them can be specialized. When you call a generic function, a method is
picked based on the specializations of all the required parameters, not just of the first
one.

A FIRST LOOK AT DYLAN: CLASSES, FUNCTIONS, AND MODULES 39

Listing 4. Example of return declarations and multiple return values

define class <brick> (<object>)
slot vert;
slot horiz;
slot depth;
slot density;

end class;

define method calculate-weight (b :: <brick>)
=> weight :: <number>; // Declares return parameter
let (x, y, z) = bounding-box(b); // Binds multiple values
x * y * z * b.density; // Returns one value

end method;

define method bounding-box (b :: <brick>)
=> (height :: <number>, width :: <number>, length :: <number>);
values(b.vert, b.horiz, b.depth); // Returns three values

end method;

There are two methods in the profits generic function defined in Listing 5. The
second of these methods is more specialized than the first one, because its script
parameter (<sci-fi>) is more specific than that in the first (<script>). It just happens
that the script parameter is in the second position. When selecting the method to
handle a call like profits(betty, tender), Dylan determines that the first method is
the only one that’s applicable, so that’s the one that’s used (see Figure 3). It turns out
that both methods are applicable in a call like profits(arnold, zarx). The second
method is more specific, so that’s what gets invoked.

The body of the second profits method uses a special trick to inherit functionality
provided in the base method. It calls next-method, a Dylan function that calls the
next appropriate method in the generic function, in decreasing order of specificity. In
the example, next-method gets a numeric value calculated by the first method,
divides it by 2, and returns that to the caller. As a result, you don’t have to write the
basic equation twice; new methods have the option of calling up the specificity chain
and doing what they want with the results. You can also add code to perform tasks
before or after calling next-method.

THE ROLE OF MODULES
Dylan provides an important abstraction tool, called a module, which typically contains
several related functions and classes. Modules let you simplify or limit access to
objects by controlling their names. In other words, a module is a namespace, a set of
names and the objects they refer to.

A module’s definition specifies which names are exported. This gives you control over
which variables, functions, classes, and slots are private to that module and which are
public. For example, suppose the code in Listing 2 lived in a module called the studio
module. We could define this module with the statement below, which exports three
classes and three functions. Since arnold and betty are not exported, they’re private
to the studio module, and are inaccessible to any code outside it.

d e v e l o p Issue 21 March 199540

Listing 5. Multiply polymorphic functions

define method profits (star :: <actor>, script :: <script>)
(star.fans * $ticket-price) // Money from ticket sales
- (script.fx-budget + star.salary); // minus expenses

end method;

define method profits (star :: <actor>, script :: <sci-fi>)
next-method() / 2; // Sci-fi is out of fashion these days

end method;

profits(<actor>, <script>)profits(betty, tender)

profits(<actor>, <sci-fi>)profits(arnold, zarx)

next-method

Figure 3. Method selection based on all arguments (not just the first one)

define module studio
use dylan;
export <project>, <actor>, <script>, name, name-setter, profits;

end module

Modules can selectively import some or all of another module’s exports. Once
imported, these can be used internally, extended, or reexported. We can define a new
hollywood module that uses (imports everything exported from) the studio module.
Notice that both modules also use the dylan module. Since the dylan module defines
all the basic language primitives (like addition), it’s a good idea for user-defined
modules to always use it.

define module hollywood
use dylan;
use studio,

export: name, profits;
export <movie>, <tv-show>, <videogame>, do-oscars;

end module

This definition assumes that the hollywood module defines three new classes, plus
one new function for computing the Oscar winners. It may define others for internal
purposes, but those are the only internal classes and functions that it exports. The
module also exports two functions imported from the studio module, name and
profits. Even though the hollywood module imports the <actor> class from the
studio module, there’s no way to access the salary slot because salary wasn’t
exported, and hence cannot be imported into the hollywood module (see Figure 4).

You can selectively export just the getter but not the setter function for a slot, which
has the effect of making the slot read-only to all other modules. This is what
hollywood does with name. Code in the hollywood module can change an object’s

A FIRST LOOK AT DYLAN: CLASSES, FUNCTIONS, AND MODULES 41

dylan module studio module hollywood module

Exported

Private

profits�
name�
�
name-setter�
<project>�
<actor>�
<script>

<sci-fi>�
<romance>�
�
arnold�
betty�
tender�
zarx�
$ticket-price

script�
script-setter�
star�
star-setter�
salary�
salary-setter�
fans�
fans-setter�
fx-budget�
fx-budget-setter

name-setter�
<project>�
<actor>�
<script>

profits�
name

<movie>�
<tv-show>�
<videogame>�
do-oscars

Imported from dylan Imported from dylan

Figure 4. Selectively exporting names from modules to other modules

name because name-setter is imported from studio, but clients outside hollywood
can only read, but not set, an object’s name.

You could go ahead and define a new function in the hollywood module called fans,
but it would have nothing to do with the fans slot in <actor>. This new fans function
would be totally unrelated, and could have a different number of parameters than the
fans function in the studio module. It’s like two different cities each having a street
called Main Street; the references are not valid across city borders. This is another
key advantage of namespaces — they reduce the pressure to keep names unique at the
expense of legibility or clarity.

You can even rename what you import, which is useful to prevent name conflicts, or
to emphasize the origin of a name. For example, the following version of the
hollywood module imports the <project> class from studio, but renames it. Within
this hollywood module, the class is known only as <production>, not <project>.
Modules have many more fancy renaming and import/export features, but we’ll skip
them for now.

define module hollywood
use dylan;
use studio,

export: name, profits,
rename: {<project> => <production>};

export <movie>, <tv-show>, <videogame>, do-oscars;
end module

Modules let you control the interface to a portion of code by specifying exactly what
you want to make public. You can even use several modules to provide high- and low-
level interfaces to the same internal code — a capability not available in C++. For
example, a hollywood-tourist module would import, rename, and export a subset of
documented high-level calls to one set of users, whereas a separate hollywood-
insider module might import, rename, and export more detailed calls to a different
audience. This helps keep the implementation and interface nicely separated.

C++ has many notions of scope, including lexical (block scope inside functions), class,
file, and name space. Some people even rely on the selective inclusion of header files
or verbose name prefixes (“typographic scoping”) to prevent name collisions. Dylan’s
simpler scheme — just lexical scope and modules — provides precise control over the
importing, exporting, and naming of classes, functions, and variables in a clean and
consistent way.

COMING SOON TO A DESKTOP NEAR YOU
In this whirlwind tour, you’ve had a quick look at how to write classes, functions, and
modules in Dylan. Methods are grouped into generic functions, instead of being
“owned” by classes. Modules package the names of related classes and functions into
convenient APIs.

Apple Dylan isn’t planned to ship until later this year, but that doesn’t mean you can’t
play with Dylan before then. If you like what you’ve seen here, or want to see more,
check out the goodies on the CD or those available from on-line services (see
“Where to Get Dylan Software and Information”).

Just like the Macintosh, Dylan was carefully designed from scratch to make your life a
lot more fun and productive. Enjoy, and happy hacking!

d e v e l o p Issue 21 March 199542

A FIRST LOOK AT DYLAN: CLASSES, FUNCTIONS, AND MODULES 43

Thanks to our technical reviewers Stoney
Ballard, Jeff Barbose, Ken Dickey, Phil Kania,

Ken Karakotsios, David Moon, Carl Nelson,
and Kent Sandvik.•

Some experimental freeware Dylan implementations are now available. Marlais, an
interpreter, has been ported to Macintosh, Windows, and UNIX®, and is included on
this issue’s CD so that you can play with the code examples in this article. Mindy, a
byte-code compiler, is available for UNIX. Also on the CD is the Dylan Interim
Reference Manual and other goodies.

Other sources of Dylan software and documentation include the following on-line
services:

• On the Internet, http://www.cambridge.apple.com is the Apple Dylan World
Wide Web server, and ftp.cambridge.apple.com:/pub/dylan is Apple’s Dylan
ftp site.

• On AppleLink, look in Developer Support: Developer Services: Development
Platforms: Dylan Related.

• On eWorld, go (Command-G) to “dev service”; then click Tool Chest: Development
Platforms: Dylan Related.

• On CompuServe, type GO APPLE to get to the Apple support forum. There are
16 libraries; go into Programmers/Developers Library #15.

Dylan discussions can be found on the Internet newsgroup called comp.lang.dylan.
You can also access Dylan discussions through e-mail. Internet users can ask to be
included in discussions by sending a request to info-dylan-request@cambridge.apple.com
(AppleLink users can use the address info-dylan-req@cambridge.apple.com@internet#).

If you’d like to become a beta tester of Apple Dylan, please send a message,
including your name, address, telephone number, and a brief statement of what
you’d like to do with Apple Dylan, to AppleLink DYLAN.

WHERE TO GET DYLAN SOFTWARE AND
INFORMATION

One myth about MPW is that it’s slow, but that’s an
unfair description. Personally, I think “glacial” would
be a more appropriate word, or perhaps “executionally
challenged.” However, it’s possible to speed it up in
a variety of ways, such as simulating the 68020
instruction set on a fully loaded Cray. On a tighter
budget, you can improve MPW’s launch time just by
making some minor changes to your configuration.

Perhaps some of you are asking, “Who cares about
launch time? Compile speed is the important thing!
God built the whole world in less time than it takes me
to compile my project with PPCC, and he only had a
slide rule!” It’s a valid objection, and I’m glad you
brought it up, but many people launch MPW more
often than they compile. Quite a few projects use
MPW as a development workhorse because of its
scripting and source control capabilities, but compile
and link using language systems that aren’t laboring
under the delusion that they’re getting paid by the
hour.

I didn’t invent this technique, but I’ve tuned it up and
eliminated some trouble spots. The original was distributed on
a Developer CD so old that I can’t find it now.•

STATES’ RITES
The trick is simple and capitalizes on an important fact
about MPW tools. Because of the innovative approach
MPW takes to the traditional TTY interface, it’s easy
to execute the output of tools by selecting the output
with the mouse and pressing the Enter key. Tool
writers are strongly encouraged to write executable
commands as their output. Since some of the tool
writers didn’t get the message, there are umpty-million

exceptions, but when the tool does the right thing it’s
very useful.

There’s an even better way to select the output, which is
to press Command-Z twice after running the tool, but don’t say
I told you so. On the Macintosh, Undo followed by Redo is
supposed to return you to your original state.•

The nice people responsible for the Set, Export, Alias,
AddMenu, SetKey, CheckOutDir, and MountProject
commands followed MPW policy and made them
reversible: giving these commands without parameters
dumps a list of commands that you can execute later to
return to your current state.

As it happens, in a standard MPW configuration there’s
not much to your state beyond the output of these
seven commands. You’re in a current directory and
some file windows might be open, and that’s about all
that matters. You can save the directory and the open
files with four lines of script.

You can probably see where all this is leading. MPW
lets you install scripts that get run when it quits and
when it starts up. Is it really faster to save your state
when you quit and restore it on your next launch than
it is to iterate over your startup files? The answer is an
emphatic yes, at least with the usual baroque MPW
configuration. You’ll see much less improvement if
you’re already using a lightweight MPW without many
startup files.

Now if you’re clever, you’ve probably written all kinds
of things that need to get loaded each time you start up.
I can understand that — I often feel like I need to get
loaded every time I launch the MPW Shell myself!
Maybe you’ve written a tool that lets you add
hierarchical menus to the MPW Shell so that you can
keep your wrist muscles toned, or a floating utility
window with buttons for your frequently used
commands. These clever hacks are going to hurt your
startup time, but if you must do something every time
you start up the Shell, you can move these commands
into separate files that still get executed on each launch.

THAT DOES IT – I QUIT!
Saving the state is the easiest part of the trick. Just
put a file named Quit in your MPW folder. You can
overwrite the default Quit script if you have one, but
if you need to keep it, you can name this script

MPW TIPS AND
TRICKS

Launching MPW
Faster Than a
Speeding Turtle

TIM MARONEY

d e v e l o p Issue 21 March 199544

TIM MARONEY is a leather-wearing vegetarian from Berkeley,
California. He’s been published in MacTutor and Gnosis magazines
and in the San Francisco Chronicle. Tim is currently working as a
contractor at Apple on the next release of the Macintosh operating

system. When he’s not standing on his head, he’s usually peering
at eldritch tomes such as the R’lyeh Text and the SOM User’s
Guide. No, that’s not what we expected him to look like either.•

Quit•SaveState instead; the default Quit script will run
it, as well as any other scripts named Quit•Whatever.
The script should read like this, more or less:

Quit and save state for fast startup

We need to set Exit to 0 so that errors won't
cause Quit or Startup to bomb, but we also want
to maintain the user's setting of the Exit
variable. Save and restore it.
Set SaveExit {Exit}
Export SaveExit
Set Exit 0

State saving is turned off by creating a file
named DontSaveState in the MPW folder.
If "`Exists "{ShellDirectory}"DontSaveState`"

Delete -i "{ShellDirectory}"DontSaveState ∂
"{ShellDirectory}"MPW.SuspendState ∂
≥ Dev:Null

Else

Write the state to a temporary file.
Begin

Tell the restoration not to bomb.
Echo Set Exit 0

Save the custom menus.
AddMenu

Save the current directory.
Echo Directory "`Directory`"

Save the open windows.
Echo For window In "`Windows`"
Echo 'Open "{window}" || Set Status 0'
Echo 'End ≥ Dev:Null'

Save the aliases.
Alias

Save the variables.
Set

Save the exports. This runs much faster
with all the exports on one line, so we
use -s to get all the names at once.
Echo Export "`Export -s`"

Save the key assignments.
SetKey

Save lines that will execute the UserMount
script if any. The script doesn't have to

exist, and it's harmless to throw it away
between saving and restoring state.
If "`Exists "{ShellDirectory}"UserMount`"

Echo Execute ∂
"{ShellDirectory}"UserMount ∂
"≥ Dev:Null"

End

Save the mounted Projector databases and
their checkout directories.
MountProject
CheckOutDir -r

After the rest of the state is restored
with Exit set to 0 to prevent bombing,
save lines to restore the user's setting
of Exit.
Echo Set Exit '{SaveExit}'

End > "{ShellDirectory}"MPW.SuspendState ∂
≥ Dev:Null

End

Sometimes anomalies prevent the Worksheet from
auto-saving at Quit time; make sure it does.
Save "{Worksheet}"

Every time you quit the MPW Shell normally, this
Quit script will save your complete state to a file named
MPW.SuspendState in your MPW folder. You probably
noticed that this can be turned off by creating a file
named DontSaveState. You don’t have to do this by
hand; if you’ll just wait a gosh-darn minute, I’ll give
you a menu command for it.

Unfortunately, the Choose command, which lets you
mount a file server, isn’t reversible; that is, it doesn’t
put out a list of Choose commands that you could run
later to remount your servers. Using this Quit script,
though, you can create a file named UserMount in your
MPW folder that will be executed every time you
launch, before any attempt is made to remount your
saved projects. This file should contain Choose
commands that mount the servers on which your
Projector databases are located. If you’re not using
Projector or other remote services, there’s no reason to
create this file. Here’s an example, assuming I have a
Projector database on the volume “Rendezvous” on the
server “Development” in the zone “Engineering
Heck”:

if !"`Exists Rendezvous:`"
choose -u 'Tim Maroney' -askpw ∂

"Engineering Heck:Development:Rendezvous"
end

MPW TIPS AND TRICKS: LAUNCHING MPW FASTER THAN A SPEEDING TURTLE 45

The Quit script isn’t especially tricky, but if you’re new
to MPW scripting, you may be interested to note a few
features.

First, observe the use of the back quote (`), that
otherwise useless key at the top left of your keyboard.
MPW uses it the same way as csh (pronounced “sea-
shell”), the seminal UNIX shell from Berkeley: a
command inside back quotes is executed and its output
is inserted into the command line containing it. In this
case, the Directory, Windows, and Export commands
are backquoted, capturing their output so that it can be
combined with other text using the Echo command.
The Exists command is backquoted so that its output
can be treated as a conditional expression.

Another handy fact is that compound statements, like
Begin…End blocks, conditionals, and loops, are treated
as single commands that can be redirected in their
entirety. This saves a lot of needless repetition: you
don’t have to redirect each statement inside the block.
Note the use of the error redirection operator “≥”,
typed as Option-period. Like UNIX, MPW Shell has
separate output and error channels that can be
redirected independently. In this Quit script, errors are
redirected to yet another UNIXism, the faux file
“Dev:Null,” which is another way of saying send them
to oblivion.

You can find out more about the various redirection options
in MPW by starting up the MPW Shell and giving the command
Help Characters. For clarity, the help text refers to the error
channel as the “diagnostic file specification.”•

One very important feature of MPW is its set of built-
in variables. You can set up any variables you want by
using the Set command, and expand them by putting
them in curly brackets; there are also quite a few built-
in variables that tell you things about the state of the
MPW Shell and let you modify its behavior. The
ShellDirectory variable is used extensively in the script;
when expanded ("{ShellDirectory}") it yields the path
name of the folder containing the MPW Shell, where
many useful things are stored. The old name for this
variable is “MPW,” which you can still use as a
synonym.

Another built-in variable is Exit. If Exit isn’t 0, script
commands that fail will bring the execution of their
script to a screeching halt; if it is 0, subsequent script
commands will go on regardless of earlier failures,
much like some people’s conversational gambits at
trade-show parties. These fast-launch scripts set Exit to
0, because if there’s a failure at some point, the rest of
the state should still be saved and restored. In normal
MPW setups, Exit is set to 1 most of the time, but

since idiosyncratic MPW configurations set it to 0 as
the default, some special work is needed to save and
restore the user’s Exit setting. This is done by saving
Exit in a custom variable named SaveExit, which
records Exit at the beginning of the Quit script and
restores it at the conclusion of the MPW.SuspendState
script.

HAPPINESS IS A WARM BOOT
The startup sequence is slightly more complicated.
After all, you’ve got to iterate over all those startup files
sometime. The approach I’m using distinguishes
between a cold boot, which does a pretty normal
startup, and a warm boot, which starts up quickly from
MPW.SuspendState.

“Cold boot” and “warm boot” are terms that old-time
programmers will remember from the manual kick-starters on
the original Model T computers.•

There’s a menu item you can use to force the next
launch to be a cold boot, or you can throw away the
MPW.SuspendState file before launching for the same
effect. The cold boot mechanism exists mostly for the
sake of paranoia, so programmers tend to use it
frequently. Generally speaking, you don’t need to do
a cold boot after you change your startup files; you
can just select the change and press Enter. The
modifications will get stored in the saved state the
next time you quit.

MPW comes with a file named Startup that gets
executed each time the Shell is launched. Rename
Startup to ColdStartup and put the following in a new
Startup file:

Restore the state if possible; else cold boot.
∑∑ means redirect to end of file.
If "`Exists "{ShellDirectory}MPW.SuspendState"`"

Execute "{ShellDirectory}MPW.SuspendState" ∂
∑∑ "{Worksheet}"

Set ColdBoot 0
Else

Beep 2g,3 2f,3 2a,3 # Hum a merry tune
Begin

Echo "MPW.SuspendState was not found."
Echo "Here's your Cold Boot…"

End ∑∑ "{Worksheet}"
Execute "{ShellDirectory}ColdStartup"
Set ColdBoot 1

End

Export ColdBoot

Do anything that needs doing each launch
(UserStartup•X files in EachBoot folder).

d e v e l o p Issue 21 March 199546

If "`Exists -d "{ShellDirectory}EachBoot"`"
For fileName in ∂

`(Files ∂
"{ShellDirectory}"EachBoot:UserStartup•≈ ∂

|| Set Status 0) ≥ Dev:Null`
Execute "{fileName}"

End
Unset fileName

End
Unset ColdBoot

The default Startup script runs all the files whose
names start with ”UserStartup•” in the MPW folder:
UserStartup•Utilities, UserStartup•EraseBootBlocks,
UserStartup•AlterPersonnelRecords, and so forth. You
just moved the default Startup script to ColdStartup, so
these files will get reexecuted whenever you do a cold
boot. Also, in case you need to do something every
time you launch regardless of whether it’s a cold or a
warm boot, you can put it in a UserStartup•Whatever
file in a folder named EachBoot in the MPW folder.

Sometimes you need to do something different at
startup depending on whether it’s a cold or a warm
boot. The Startup script above sets a variable named
ColdBoot so that you can distinguish between cold and
warm startups. In one of your startup scripts, you can
use the ColdBoot variable in a conditional construct.
For instance, suppose you’re part of a large project
with a centrally maintained MPW configuration that
uses a custom tool named HierMenu to create a
hierarchical menu. HierMenu is called from the central
UserStartup•Project script at cold boot, but because it’s
not a standard part of MPW, it also needs to get called
from an EachBoot script at warm boot — the state isn’t
automatically saved by the Quit script. You don’t want
to edit the shared file UserStartup•Project because
you’ll have to laboriously reapply your change every
time the build engineers improve the central copy, but
you can’t run HierMenu more than once without
bringing the system to its knees. The solution is to
create a UserStartup•DoHierMenu file in your

EachBoot folder which only runs HierMenu in the
case of a warm boot, like so:

If ¬ "{ColdBoot}"
HierMenu HierItem MainMenu 'Title for Item'

End

I promised you a menu command to do a cold boot.
Here it is (in the immortal words of Heidi Fleiss, don’t
say I never gave you anything). Put this in a file named
UserStartup•ColdBootItem in your MPW folder:

AddMenu File '(-' '' # menu separator
AddMenu File "Quit with Cold Boot…" ∂

'confirm "Quit with cold boot?" && ∂
(Set Exit 0; ∂
Echo > "{ShellDirectory}"DontSaveState; ∂
Quit)'

MEASURING PERFORMANCE WISELY
If you measure performance by elapsed time, MPW
can be slow. However, real-world performance has
more to do with usefulness than with theoretical
throughput. I don’t use my computer to run Dhrystone
benchmarks: I use it to accomplish tasks. MPW gives
me the power to accomplish the complex and bizarre
tasks of programming automatically.

Real-world friendliness is always relative to a particular
set of users and a particular set of tasks. The very things
that make UNIX and MPW unfriendly to novice users
make them friendly to programmers, who have the
unusual skill of memorizing arcane commands and
connecting them in useful ways. Don’t get me wrong;
MPW is not the final frontier of development
environments. A true next-generation software
authoring system would make command shells and
project files seem equally ridiculous, but command-line
interfaces for programmers are a sound approach, at
least for now. And with a little tuning, they can be
greatly improved. In future columns I’ll be sharing more
tips on making the worksheet a pleasant place to live.

MPW TIPS AND TRICKS: LAUNCHING MPW FASTER THAN A SPEEDING TURTLE 47

Thanks to Dave Evans, Greg Robbins, and Jeroen Schalk for
reviewing this column. Thanks also to beta testers Arnaud Gourdol,
Jon Kalb, and Ron Reynolds.•

Now that AppleScript is fast becoming an important core technology
of the Macintosh operating system, more and more developers are
making their applications scriptable or improving their scriptability.
The way you design your scripting implementation can make the
difference between satisfaction and frustration for users who want to
script your application. The tips presented in this article will help you
do it right.

A well-designed user interface enables users to discover your application’s capabilities
and take full advantage of them. Likewise, the way you design your scripting
implementation determines the degree of success users will have in controlling your
application through scripting — writing simple, understandable, and, in most cases,
grammatically correct sentences.

And just as the consistency of its user interface has been perhaps the most important
factor in the Macintosh computer’s ongoing adoption and success, consistency is an
essential part of the world of scripting. It’s highly important for users (by which I
mean anyone who writes scripts, including power users, solutions providers,
consultants, in-house developers, resellers, and programmers) to feel as if they’re
using a single language, regardless of which application they’re scripting. As a
developer, you have a responsibility to extend the AppleScript language in a
consistent manner.

My purpose in this article, which might be considered a first attempt at some “human
scriptability guidelines,” is to offer conventions, suggestions, and general guidelines
that you can follow to maintain consistency with the AppleScript language. I also give
some suggestions for redoing a poorly done scripting implementation. (I’m assuming
you’re already convinced that you should make your application scriptable; if you’re
not, see “Why Implement Scriptability?”) The result of doing all this work is that the
AppleScript language feels consistent across applications of different types produced
by different vendors.

CAL SIMONE

Designing a Scripting Implementation

d e v e l o p Issue 21 March 199548

CAL “MR. APPLESCRIPT” SIMONE (AppleLink
MAIN.EVENT) has dedicated his life to bringing
scripting to the masses. He can usually be found
moving fast through the Worldwide Developers
Conference or MACWORLD Expo, a cloud of
dust in his wake. A founder of Main Event
Software of Washington, DC, he designed the
Scripter authoring and development environment
for AppleScript and sometimes teaches

AppleScript at corporate sites. An honorary
member of the Terminology Police as a result of
having reviewed scripting vocabularies for more
than two dozen third-party products, Cal is
available to look at yours. He lives about a mile
from the White House and was fond of saying of
President Bush, “I don’t bother him, and he
doesn’t bother me.” •

FIRST, SOME BASIC CONCEPTS
A good scripting implementation consists of two parts:

• An Apple event object model hierarchy, which describes the objects
in your application and the attributes of those objects.

• A semantic vocabulary, also called a terminology, consisting of the
terms used in the construction of command statements. Your
vocabulary is stored in your application’s 'aete' resource, known to
users as the dictionary.

Your terms, and the organization of those terms in your dictionary, directly affect the
ability of users to explore and control your application through scripting. Creating a
vocabulary through which users can effectively and easily script your application takes
time and careful effort. Don’t expect to spend six months implementing Apple events
and then simply to throw together a dictionary at the last second.

It’s important to note that a well-designed Apple event structure greatly increases the
ease of scripting your application. In a minute I’ll say more about that, but first let’s
look at the basic anatomy of an AppleScript command.

ANATOMY OF A COMMAND
You should design your scripting implementation so that users will be guided into
using a clean, natural-language sentence structure. To help you begin to visualize the
kinds of sentences your users should be encouraged to write, let’s look at AppleScript’s
syntactic statement structure (say that three times fast!). All application-defined
commands are in the form of imperative sentences and are constructed as follows:

verb [noun] [keyword and value] [keyword and value] . . .

These elements of sentence construction can be thought of as parts of speech that
make up a human-oriented computer language. Here are a couple of examples of
commands:

DESIGNING A SCRIPTING IMPLEMENTATION 49

If you’re still wondering why you should implement
scriptability in your application, consider these reasons:

• Scripting gives users a way to control your application
through a different interface. This alternate interface
allows users to incorporate your application into multi-
application scenarios, as well as to automate tedious,
repetitive tasks.

• Allowing your application to be controlled through
Apple events enables Apple Guide to give your users
truly active assistance.

• Implementing scripting prepares your application for
OpenDoc by ensuring that your part handlers will be
able to mesh smoothly with other parts.

• Making your application scriptable ensures that as
speech recognition matures, you’ll be able to give
users the option of voice control.

It’s important to implement AppleScript support in your
core application, rather than through an external API, as
some databases such as 4th Dimension and Omnis do.
When your core application isn’t Apple event–aware, two
things happen: (1) no dictionary resides in the application
itself, and (2) functionality is usually limited. Users have
difficulty doing decent scripting of these applications, by
and large. If you simply must support Apple events
through an external API, at least support the dynamic
terminology mechanism for your extensions.

The bottom line is this: If your application isn’t scriptable
soon, you’ll be left out in the cold. If you do the work
now, not only will you open up more uses for your
application in the “big picture,” but you’ll also be that
much closer to implementing what you need in order to
support several other technologies. So please, don’t put
it off!

WHY IMPLEMENT SCRIPTABILITY?

close the front window saving in file "Goofballs:Razor"
set the font of the first word in the front window to "Helvetica"

Let’s dissect these:

close verb, corresponding to kAECloseElement
the front window noun, corresponding to keyDirectObject

(typeObjectSpecifier)
saving in keyword, corresponding to keyAEFile
file "Goofballs:Razor" value, of typeFSS

set verb, corresponding to kAESetData
the font of the first word noun, corresponding to keyDirectObject

in the front window (typeObjectSpecifier)
to keyword, corresponding to keyAEData
"Helvetica" value, of typeWildCard

Note that for application-defined commands, a verb — for example, close or set — is
the human language representation for the action described by an Apple event (which
I often shorten to just event), so there’s a general correspondence between Apple
events and verbs. In this article, I identify Apple events by the event’s name, its 4-byte
ID, or the constant name for the ID. For example, the Close Element event has the
ID 'clos' and the constant name kAECloseElement, and corresponds to the
AppleScript verb close; the Set Data event has the ID 'setd' and the constant name
kAESetData, and corresponds to the AppleScript verb set.

Your ability to guide users toward writing clean, natural-language statements depends
a great deal on your use of the object model, as I explain next.

WHY USE THE OBJECT MODEL?
Supporting the object model facilitates scripting by allowing the use of familiar terms
for objects and actions. In the last couple of years, some important applications that
don’t implement the object model have shipped, and most of them range from
difficult to impossible to script. Let’s explore a couple of examples of how using the
object model can make scripting a lot easier.

Apple events and the object model are covered extensively in “Apple Event
Objects and You” in develop Issue 10 and “Better Apple Event Coding Through
Objects” in Issue 12.•

The following script is the result of a lack of defined objects in the application we’ll
call My Charter. The lack of defined objects leads to a vocabulary in which every
noun-verb combination must be covered by verbs alone — a vocabulary that doesn’t
relate to other applications and that forces users to learn a new set of commands.

tell application "My Charter"
Plot Options myOptions
Set Axis Lengths for X 100 for Y 100
Output PICT
Plot chart "pie"

end tell

By contrast, the script below describing the same operation in much more familiar
terms results when the application uses familiar objects and characteristics
of objects (properties):

d e v e l o p Issue 21 March 199550

tell application "My Charter"
make new chart
tell chart 1

set the type to pie
set the x axis to 100
set the y axis to 100

end tell
end tell

As illustrated by this script, a principal indication of solid use of the object model is
that the most common verbs used in scripts are make, set, and get.

Users are more likely to remember the terms for objects than commands. Moreover,
from the user interface, they often use Command-key shortcuts for the actions
instead of looking at the menu items once they get comfortable using your
application. If you don’t implement the standard commands, they’ll probably need to
go back to your application’s menus to find out that the menu command is, for
instance, Plot Chart. You can help them by making the scripting terms intuitive. For
instance, they already know what a chart is, and they’re familiar with the standard
AppleScript verbs make and set, which they’re using to script other applications.
Thus, the second script above will feel like an extension of the same language used in
scripting other applications, while the first script won’t.

Now consider this partial list of custom verbs from a popular mail application that
doesn’t follow the object model:

AddAttachment SetSubject GetSubject
AddTo SetText GetText
AddCC SetReceipt GetReceipt
AddBCC SetPriority GetPriority
AddToAtPO SetLog GetLog

Notice some patterns here? All of them start with Add, Set, or Get — and this isn’t
even a complete list of all the commands in this application starting with these verbs.
It’s definitely time for this application to go with the object model. Most of the above
commands can be replaced by set and get commands applied to properties such as
subject, receipt, priority, log, and so forth.

DESIGNING YOUR OBJECT MODEL
Now that you know how important the object model is to scriptability, let’s look at
how to get started with your design. As you approach the design of your object
model, keep in mind both your application’s objects and the style of the commands
you expect your users to write.

DECIDE WHICH OBJECTS TO INCLUDE
Base the design of your object model only partly on your application’s objects. Keep
in mind that the objects in an object model aren’t necessarily the same as the
programmatic objects in an object-oriented program but rather represent tangible
objects that the user thinks about when working with your application.

Generally, you won’t want the user to script interface elements, such as dialog box
items (whose meaning should be expressed through verbs, or properties of the
application or your objects), but rather objects that either contain or represent the
user’s data (which I’ll call containers and content objects). For example, an object model
might incorporate documents (containers); graphic objects (containers or content

DESIGNING A SCRIPTING IMPLEMENTATION 51

objects); forms (containers) and the elements of a form, such as fields (content
objects); cells in a spreadsheet or database (content objects); and text elements, like
paragraphs, words, and characters (content objects).

You should think carefully about whether to make something an object or a property;
this is discussed later in the section “Other Tips and Tricks.”

THINK FROM ACTIONS TO OBJECTS
When you design your commands, the primary thing to keep in mind is how you
want the script command statements to read or to be written. The style of the
commands you expect your users to write should determine your object model, not
the other way around.

As programmers, we have the notion that an object “owns” its methods; we think in
terms of sending messages to an object. For instance, the following C++ code
fragment sends several messages to one object:

CDocument::Print
CDocument::Close
CDocument::Save
CDocument::Delete

By contrast, users think about doing some action to an object. So when you design
your commands, you should think about allowing verbs to be applied to many
different types of objects, as illustrated here:

print document "Fred"
print form ID 555
print page 4

Examine the actions that users take with your application and the objects that the
actions are taken on. This will lead you naturally to an effective object model design.

START — BUT DON’T END — WITH MENU COMMANDS
One place to start your scripting implementation is to implement your menu
commands as verbs for scripting. You can use this as a push-off point, but because
your menu commands most likely don’t supply all the functionality of your
application, you shouldn’t limit yourself to only implementing menu commands.

Before I say any more about this approach, you should note these two very important
caveats:

• Keep in mind that the philosophy of AppleScript is to allow the
user to script the meaning behind an action, not the physical act of
selecting a menu item or pushing a button. This perspective
should be the foundation for your entire design.

• When you use the standard events, often there’s a set <property>
scripting equivalent that’s better than creating a new verb to match
a particular menu item. Menu commands are designed for user
interface work and don’t always provide the best terminology for
scripting. Thinking in terms of make, set, and get can often be
more useful than creating verbs that mimic menu commands.

That said, let me elaborate on the idea of implementing menu commands and
beyond.

d e v e l o p Issue 21 March 199552

Ideally, you should allow users to achieve through scripting everything that they can
with your user interface. To accomplish this, you should think of capabilities you
would like users to be able to script that go beyond your menu commands, such as
capabilities accessible only from tools in a palette or actions resulting from a drag and
drop operation. On the other hand, it’s not entirely necessary to make the capabilities
available from your user interface identical to those controllable through scripting.
Scripting is a different interface into your program, so it’s OK to do things a bit
differently.

For example, you don’t have to create exactly one script statement corresponding to
each user action. If a single menu item or button in your application results in a
complex action or more than one action, it might produce clearer scripting or give
more flexibility to allow the user to perform individual portions of the action through
separate statements in a script. Conversely, it can also be better to combine more than
one action into one statement, especially when the set of actions is always performed
in the same sequence.

Also, actions that aren’t even possible from the user interface can often be made
scriptable. For example, the Scriptable Text Editor allows a script to make a new
window behind the front window, something that the user normally can’t do. You
could also provide a method of accomplishing a task that’s too complex or impossible
to express through manipulation of objects on the screen.

MAKE AN EARLY BLUEPRINT
These two exercises can help you get started with designing your hierarchy and your
command scheme:

• Write down in real human sentences as many commands as you
can think of to control your application. Refer to these sentences
later when you’re thinking about what Apple events and objects to
include in your implementation.

• Make an early version of your 'aete' resource (see “Tools for
Developing an 'aete'”). You can then do your coding based on this
resource.

DESIGNING A SCRIPTING IMPLEMENTATION 53

To assemble your 'aete', you can choose from these tools:

• The aete editor stack — This HyperCard stack is a
commonly used tool. It’s a good way to assemble your
'aete' if it’s not too large.

• The Rez files — Rez source files can easily be changed
and can handle any size 'aete', so this is the tool of
choice for developers who do serious work with
resources. You’ll need AEUserTermTypes.r and
AERegistry.r as include files. In addition, you can refer
to AppleEvents.r, AEObjects.r, AEWideUserTermTypes.r,
and ASRegistry.r. You can use EnglishTerminology.r
and EnglishMiscellaneous.r to examine the standard
registry suites.

• Resource editors — Any resource editor except ResEdit
will suffice. This is one situation in which ResEdit isn’t

really useful unless your 'aete' is microscopic; you
can’t open your resource using the 'aete' template if
it’s more than about 2K in size. Resorcerer includes a
pretty decent 'aete' editor, considering the complexity
of this resource — but be warned, the editor is equally
complex.

The aete editor stack and the include files for Rez are
available on this issue’s CD and as part of the
AppleScript Software Development Toolkit from APDA.
Resource editors with good 'aete' editors are
commercially available.

Details of the structure and format of an 'aete' resource
can be found in Chapter 8 of Inside Macintosh:
Interapplication Communication.

TOOLS FOR DEVELOPING AN 'AETE'

I would recommend that you go back and do both of these exercises again
periodically throughout your development cycle. Use the combination of your 'aete'
resource and the sentences as a blueprint during your implementation work.

MAKE THE CONTAINMENT HIERARCHY OBVIOUS
Your object model design includes an object containment hierarchy, a scheme indicating
which objects are contained in which other objects. When you design your
containment hierarchy, think again about the user’s experience when writing scripts.
Make it easy for the user to determine that objects of class y are contained in objects
of class x, which is in turn contained in the application.

For instance, Figure 1 shows part of the object containment hierarchy for an
imaginary application that contains text windows, folders, and a connection. The
windows can contain one or more paragraphs, words, or characters; paragraphs can
contain words or characters; and words can contain characters. Note that even
though only one connection is possible for this particular application, connection is
an object class contained by the application, as opposed to being merely a property of
the application.

It’s important to connect up all the appropriate pieces of your containment hierarchy.
It’s especially important to hook up the main classes of objects — such as windows,
documents, and other special objects not contained by other objects — to the top level
of the hierarchy by listing them as elements of your application. Never “orphan” a
class! Every object class (except the application) must be listed as an element of
something. Most classes or objects are contained by another object. If any object can’t
be contained by another object, it must be contained by the application.

ASSEMBLING YOUR VOCABULARY
After you’ve taken a shot at writing down the kinds of commands suggested by
your application’s capabilities and the object model, it’s time to think about how
to assemble your vocabulary.

The AppleScript terms (commands, objects, and properties) that you’ll use in your
vocabulary fall into two categories:

• standard terms — those drawn from the standard Apple Event
Registry suites and other well-defined suites

• extended terms — those you’ll create to represent actions or
objects specific to your application

d e v e l o p Issue 21 March 199554

Application

Window

Paragraph

Word

Character

Folder Connection

Figure 1. Part of a typical object containment hierarchy

To ensure that your scripting implementation will have as much consistency across
applications as the user interface, you should use the standard terms whenever
possible. As you’ve seen, this is inextricably tied to good object model design. See
“Registry Suites” for descriptions of the standard suites. Unless you have a excellent
reason, don’t vary from the standard terms associated with these suites.

DESIGNING A SCRIPTING IMPLEMENTATION 55

The Apple event suites listed below (which include those
defined in the Apple Event Registry as well as additional
standard suites) are collections of events, objects,
properties, and other terms common to most applications.
For the sake of consistency with other scripting
implementations, you should draw on these suites as
much as possible as you design your vocabulary.

• The Required suite (kCoreEventClass = 'aevt') consists
of the four events that the System 7 Finder uses to
launch and terminate an application and to open and
print documents. Note that while the Required suite’s
ID is 'reqd' (kAERequiredSuite), its four Apple events
have the suite ID 'aevt'. Note also that in the early
days, Apple originally referred to the Apple events in
the Required suite as the core events (even including
“core” in the C and Pascal constant names), creating
some confusion with the Core suite. Please don’t refer
to the events in the Required suite as “core events.”

• The Core suite (kAECoreSuite = 'core') consists of 17
events (14 main and 3 extra) and 8 objects that
encompass much of the functionality that most
applications support, including creating, deleting,
opening, closing, and counting objects, as well as
getting and setting properties. In an object model–
based application, a great deal of the work in
AppleScript is done through the Apple events in the
Core suite. See the Scriptable Text Editor’s dictionary
for an example of the standard implementation of this
suite. Applications generally support most but not all of
the Core suite. Note that the Core suite’s ID is 'core',
and while most of its events have that suite ID, the
Open, Print, and Quit events have the suite ID 'aevt'.

• The Text suite (kAETextSuite = 'TEXT') defines the object
classes used in text handling, such as characters,
words, and paragraphs, normally the direct objects of
events defined in the Core suite. No Apple events are
defined in this suite.

• The Table suite (kAETableSuite = 'tbls') defines the
essential object classes used in table handling, such as
rows, columns, and cells, normally the direct objects of
events defined in the Core suite. Again, no Apple
events are defined in this suite.

• The Database suite (kAEDBSuite = 'dbst') consists of
the Group and Sort events; transaction-related events;
the host, DBMS, database, session, and key objects;
and extended definitions for the Table suite objects. It
focuses the functionality of the Table suite specifically
toward database activity.

• Miscellaneous Standards (kAEMiscStandards = 'misc')
is a collection of additional Apple events, including
editing events such as Cut, Paste, Undo, Redo, Select,
and Revert, and the menu, menu item, and text item
objects. This isn’t used as a suite; only individual
events or small groups of events are used.

Other Apple event suites that are used less frequently
include the following:

• the Scheduling suite, used for applications such as
calendars, appointment books, and alarm programs

• the Telephony suite, used by any application that
handles phone numbers, including PIM, database,
forms, and scheduling applications

• the Mail suite, based on the AOCE Mailer and used
in mail-capable applications to mail documents

• the Collaborative Information suite, used in
applications that access AOCE catalog services or
manage contact or human resources information

• the System Object suite (not actually a suite), used for
terminologies defined in Apple’s scripting additions

The Word Services, QuickDraw, and QuickDraw
Supplemental suites are generally not used in scripting.

To look up the accepted human-language constructs for
the Required, Core, Text, Table, and QuickDraw suites,
see the file EnglishTerminology.r (also available for French
and Japanese); for the Database suite, see the file
Database.aete.r; and for Miscellaneous Standards, see
EnglishMiscellaneous.r (also available for French and
Japanese). These files, which present the standard terms
in the form of 'aete' resource templates (in Rez form), can
be found on this issue’s CD and are included in the
AppleScript Software Development Toolkit.

REGISTRY SUITES

USING STANDARD TERMS
When it comes to implementing the standard suites, you have three options:

• supporting an entire suite as is

• supporting an entire suite and overriding or adding to it

• supporting part of a suite

Supporting an entire suite. When you want to support all the events, parameters,
classes, properties, and so on, of a suite, you should include the entire suite in your
'aete' resource. Listing 1 is an example of the Rez code you’ll use to indicate that an
entire suite (in this case, the Required suite) is supported. The four empty arrays in
this listing are indicative of the fact that when you want a whole suite intact, you
don’t supply any events, classes, and so on. The entire suite will appear in your
dictionary.

Note that whenever you use the 4-byte suite ID for a suite itself (as opposed to the
suite ID for the individual events in a suite), all the standard definitions for that suite
will automatically appear in your dictionary. Do not use this technique if you’re
implementing only a few of a suite’s Apple events or objects. And note that this
technique works only for the Required, Core, Text, Table, and QuickDraw suites,
which are in AppleScript’s 'aeut' resource. For all other suites, you’ll need to include
all the details of the suite in your 'aete' resource if you support it in its entirety.

Supporting only the Required suite doesn’t qualify your application as Apple
event–aware or scriptable. To qualify as being scriptable, your application must
support more than just the Required suite.•

Supporting an entire suite to be modified. When you want to support a whole
suite and then add to or otherwise modify it, use the Rez code in Listing 2 as a model.
In this example, the entire Core suite is supported, and a new copies parameter is
added to the print command. You can use the same technique to add property
definitions to a standard object class. Just as in the previous example, here we don’t
specify any of the suite’s details except the ones we’re overriding or adding.

Supporting part of a suite.
On the other hand, when you want to implement only part of a suite, you need to
explicitly define the subset of the suite’s events and objects that you support. For

d e v e l o p Issue 21 March 199556

Listing 1. Sample Rez code supporting an entire suite

"Required Suite", /* The entire suite, as is */
"Terms that every application should support",
kCoreEventClass, /* 'reqd' */
1,
1,
{ /* array Events: 0 elements */
},
{ /* array Classes: 0 elements */
},
{ /* array ComparisonOps: 0 elements */
},
{ /* array Enumerations: 0 elements */
},

example, let’s say you implement only seven of the events in the Core suite (which
nearly everyone implements only partially; these seven are the minimum you should
support). You’ll create a new suite with a unique ID — your application’s signature,
perhaps, or, as used by the Scriptable Text Editor, 'CoRe' (note the alteration from all
lowercase, which prevents the whole Core suite from appearing automatically). Then
you’ll include the events and objects you want. Listing 3 shows how to do this in Rez
code. Note that you should retain the original suite ID of 'core' for the individual
Apple events (except for Open, Print, and Quit, which get 'aevt', as mentioned earlier
in “Registry Suites”), both in your 'aete' and in your Apple event handlers.

The format for Rez listings in Inside Macintosh puts one element on each line, as
I’ve done in Listings 1 and 2. To conserve space, I’ll now begin putting more elements
on each line, which is also a permissible format.•

USING EXTENDED TERMS
Whenever possible in your scripting implementation, you should use constructs and
terms that are already in use. But sometimes you need to express concepts unique to
your application. When you do, it’s important to keep in mind the style of what’s
already been done in the AppleScript language, and in other applications.

The terms you create that aren’t in the standard suites are actually extensions to
AppleScript. The nature of these terms will directly affect the experience your users
will have in scripting your application. You should create terms that give users the
feeling that they’re working within a unified language.

DESIGNING A SCRIPTING IMPLEMENTATION 57

Listing 2. Sample Rez code supporting an entire suite to be modified

"Standard Suite", /* The entire suite, plus an extra parameter */
"Common terms for most applications",
kAECoreSuite, /* 'core' */
1,
1,
{ /* array Events: 1 element */

/* [1] */
"print", /* This is the event being extended. */
"Print the specified object(s)",
kCoreEventClass,
kAEPrint,
...
{ /* array OtherParams: 1 element */

/* [1] */
"copies", /* This is the parameter being added. */
'NCOP',
'shor',
"The number of copies to print",
...

}
},
{ /* array Classes: 0 elements */
},
{ /* array ComparisonOps: 0 elements */
},
{ /* array Enumerations: 0 elements */
},

Keep in mind that creating new object classes or properties is generally better than
creating new verbs. If you do need to create your own verbs or use terms unique to
your application, it’s better to try to do it in the spirit of what’s been done before
instead of inventing your own “language within a language.” Users shouldn’t feel as
if they’re jumping between what appear to be separate “pseudo-languages” for each
application.

Although early documentation from Apple suggested creating one custom suite
containing your Core suite subset lumped together with your custom verbs, I don’t
always recommend this. If you’re adding a lot of vocabulary, either new events or
objects, you can make your dictionary more understandable by keeping the Core
subset in one suite and defining your own new verbs in a separate suite. In fact, it’s
OK to make more than one custom suite if you have a great many new verbs or
objects and if you can separate them into distinct functional groupings.

Make sure that the names for your new suites clearly indicate that they’re custom
suites or specific to your application. And when you create ID codes for your new
events, objects, and such, remember that Apple reserves the use of all 4-byte codes

d e v e l o p Issue 21 March 199558

Listing 3. Sample Rez code supporting a partial suite

"Subset of the Standard Suite", /* Only seven of the Core events */
"Common terms used in this application",
'CoRe', /* Note uppercase alteration of the 'core' suite ID. */
1,
1,
{ /* array Events: 7 elements */

/* [1] */
"count", "Return number of elements of a particular class ...",
kAECoreSuite, kAECountElements, ...
/* [2] */
"delete", "Delete an element from an object",
kAECoreSuite, kAEDelete, ...
/* [3] */
"exists", "Verify if an object exists",
kAECoreSuite, kAEDoObjectsExist, ...
/* [4] */
"get", "Get the data for an object",
kAECoreSuite, kAEGetData, ...
/* [5] */
"make", "Make a new element",
kAECoreSuite, kAECreateElement, ...
/* [6] */
"quit", "Quit an application program",
kCoreEventClass, /* Open, Print, and Quit have 'aevt' suite ID. */
kAEQuitApplication, ...
/* [7] */
"set", "Set an object's data",
kAECoreSuite, kAESetData, ...

},
{ /* array Classes ...
},
...

that contain only lowercase letters, so you should use at least one uppercase letter in
the codes. There isn’t yet a way to register your codes, but the Webster project
(described at the end of this article in “Resources”) aims to serve that end.

CONVENTIONS, TIPS, AND TRICKS
Here are some concepts and techniques that you can use to make your vocabulary
more helpful to the script writer. Included are well-known tricks as well as techniques
that aren’t often considered. Adhering to these guidelines will make scripting cleaner
and promote a consistent language “look and feel” across applications.

STYLISTIC CONVENTIONS
Begin terms with lowercase.
Begin all the terms in your dictionary with lowercase letters, except for proper names
like PowerTalk. It may seem trivial, but it’s actually quite important. If you use
uppercase letters to begin your object names, for example, you’ll end up with strange-
looking commands that contain a mixture of uppercase and lowercase letters:

make new History
set the Title of the first History to ...

Using all lowercase letters gives a more consistent look:

make new history
set the title of the first history to ...

Separate all terms.
If you have terms that consist of more than one word, separate the words. Don’t turn
them into Pascal-like names:

ReplaceAll
set the TransferProtocol to ConvertFromMainframe

Instead, make them flow naturally:

DESIGNING A SCRIPTING IMPLEMENTATION 59

One of the easiest methods of gaining the appearance of
scriptability is to implement the Do Script event. Do Script
enables users to pass statements or groups of statements
written in your own internal scripting language to your
application for execution. If you have an internal scripting
language already, Do Script can be OK as a first step.
Just don’t stop there — in the end, it’s useful as a
supplement to the rest of your scriptability, but not as a
substitute.

The drawbacks to Do Script are that (1) new users
must learn a new language — yours — in addition
to AppleScript, and (2) Do Script is a one-way
communication in most cases — the script can control
your application, but it acts much more like a puppeteer
than a team leader. In the end, Do Script defeats the

purpose of a single language for controlling all
applications.

Another easy method of appearing to be scriptable is to
implement a Do Menu event, in which a user can simulate
pulling down a menu and selecting menu items. Again,
this is no substitute for real scriptability.

By the way, if you’re thinking about creating a new
scripting language internal to your application, think
again. The world doesn’t need yet another private
application-specific language. AppleScript is there for
you, with all of its rich expressiveness, to use as your
own. The benefit is that by the time you complete your
scripting support, many of your users will already be
familiar with AppleScript.

A WORD ABOUT DO SCRIPT AND DO MENU — DON’T!

replace all
set the transfer protocol to convert from mainframe

Use familiar terms, but avoid reserved words.
Generally speaking, you’ll want to identify your object classes with terms your users
are already familiar with. When it comes to your verbs, you can use many of your
menu items, and for the rest use terms that will be familiar and that lend themselves
to starting clean and natural statements. Plain human language is always preferable to
C- or Pascal-style identifiers.

On the other hand, when you attempt to use familiar terms, keep in mind that the list
of words that could potentially conflict with your dictionary is constantly growing
and also depends on which scripting additions and applications are currently running
on a particular computer. As a result, there’s no official list of reserved words to avoid.
Choose your terms with extreme care — remember, you’re actually extending the
language and what you do here will affect the future.

In summary, try to provide words that are familiar to users without running into
conflicts with existing terminology. Don’t make up new terms to express something
when there’s a clean way to do it using existing terminology: where possible, use
terms analogous to those already in use to represent constructs (verbs, parameters,
objects, properties, and enumerators) in your application. Conversely, don’t use
existing terms to represent something that differs from a term’s accepted use.

ENUMERATIONS, LISTS, RECORDS, AND TYPE DEFINITIONS
Use lots of enumerations.
Very few developers have made effective use of enumerations. An enumeration is a set
of constants, usually representing a fixed set of choices. In AppleScript, these
constants, known as enumerators, are identified (like everything else) by 4-byte ID
codes. Use an enumeration as the type for a parameter or property whenever there’s a
choice to be made from a specific list of possibilities, and make sure you use natural
language.

For example,

set status to 1

or

set status to "warm"

isn’t as helpful to the script writer as

set status to warm

This subtle change makes a great deal of difference. In the dictionary, the
enumeration is displayed as “hot|warm|cool|cold,” as opposed to “integer” or
“string,” and the user can easily see there’s a choice. To accomplish this, you would
create an enumeration with the enumerators hot, warm, cool, and cold, and use the
4-byte enumeration ID as the type for the status property of the class, as shown in
Listing 4. The dictionary entry for this property will read “status hot|warm|cool|cold,”
instead of “status integer” or “status string.”

It’s an extremely common mistake among developers to try using ordinal values as
enumerators, but it simply won’t work. Unlike in C or Pascal, you can’t use ordinal
values — you must use 4-byte ID codes.

d e v e l o p Issue 21 March 199560

Set the list flag to indicate lists in parameters and properties.
If you’re normally expecting a list of items as a parameter or a property, set the list
flag (kAEUTListOfItems) in the parameter or property definition flags; the
dictionary entry will then show “list of <whatever>.” (Note that this is different from
defining a parameter’s or a property’s type as list, which you should do when you
want to indicate a mixed-type list or a list of lists.) An interesting possibility is to
combine lists with enumerations, to indicate that the user can specify more than one
choice, as in

set the applicability of filter 1 to {incoming, outgoing, ...}

Define record labels in a record definition.
To document the labels for the elements that make up a record, create a record
definition in your dictionary. A record definition is actually a fake “class” in which the
“properties” represent the labels in the record. Although there won’t really be any
objects in your application with this record type’s class, your users can determine
what labels are appropriate in order to fill in a record used as a parameter or a
property value. Record definitions can also be helpful for users to interpret a record
passed back as a result.

To create a record definition, invent a name for your record type and create a new
class in your 'aete' resource with the record type name as the class name. Define all
the possible labels as properties. As an example, Listing 5 shows the “class” definition
you would create in your 'aete' resource for a record that looks like the following:

DESIGNING A SCRIPTING IMPLEMENTATION 61

Listing 4. Creating and using an enumeration

{ /* array Properties: ...
/* [1] */
"status",
'Psta', /* Note uppercase in your IDs. */
'Esta', /* The enumeration's ID */
"the status",
reserved,
singleItem,
enumerated, /* Use "enumerated" */
...

},
...
{ /* array Enumerations: 1 element */

/* [1] */
'Esta',
{ /* array Enumerators: 4 elements */

/* [1] */
"hot", 'Khot', "A hot condition",
/* [2] */
"warm", 'Kwrm', "A warm condition",
/* [3] */
"cool", 'Kcoo', "A cool condition",
/* [4] */
"cold", 'Kfrz', "A cold condition"

}
},

{name:"Fred", age:3, status:warm}

In this case, you would also define the enumeration for status with the enumerators
hot, warm, cool, and cold. The record type would appear in the dictionary as
follows:

class person info: A record containing information about a person
person info

name string -- the name
age short integer -- age in years
status hot|warm|cool|cold -- current status

Since a record definition is an “abstract class,” it should be placed in the Type
Definitions suite, described in the next section.

Put abstract class and primitive type definitions in special suites.
There are two suites you can use to organize your dictionary better: the Type
Definitions suite and the Type Names suite. These suites are used in special situations
where you want to define object and type classes that are used in your terminology
but that won’t ever be actual instantiable objects in your application.

In the case of the record definition classes described in the previous section, you
need to define abstract classes that don’t refer to real objects. You’ll also need to do
this in the case of extra classes defined for property inheritance, which aren’t
instantiable as objects in your application. To include these record or type definitions,
create a Type Definitions suite (also known as an Abstract Class suite) with the ID
'tpdf' (kASAbstractClassSuite; note that this constant isn’t defined in any .r files, so
you’ll need to define it yourself) and include your abstract class and record
definitions.

d e v e l o p Issue 21 March 199562

Listing 5. Class definition for our sample record definition

{ /* array Classes: 1 element */
/* [1] */
"person info", 'CPIN',
"A record containing information about a person",
{ /* array Properties: 3 elements */

/* [1] */
"name", 'pnam', 'itxt', "the name",
reserved, singleItem, notEnumerated,
...
/* [2] */
"age", 'AGE ', 'shor', "age in years",
reserved, singleItem, notEnumerated,
...
/* [3] */
"status", 'Psta', 'Esta', "current status",
reserved, singleItem, enumerated,
...

},
{ /* array Elements: 0 elements */
},

}

On some occasions you may want to add terms to your vocabulary that you don’t
want to show up in your dictionary. For example, you might need to provide the
terms for primitive types, such as integer and point, to make AppleScript work
properly, but users are already familiar with these elemental terms and don’t need to
see them defined. In this case, make a Type Names suite with the ID 'tpnm'
(kASTypeNamesSuite) and include your types as classes in this suite. Well-behaved
editors such as Apple’s Script Editor and Scripter from Main Event will suppress the
display of this suite.

To sum up, if you want these definitions to be visible to the user, include them in
your Type Definitions suite. If you want them to be hidden, include them in the
Type Names suite. Use of these suites will help keep the rest of your suites less
cluttered.

NOTES ON DIRECT OBJECTS
Be explicit about direct objects.
Some developers have relied on a default or current target, such that commands that
don’t include a specific object target will act on the frontmost window or the last
explicitly set object. There are three reasons to be careful here:

• Users of multiple applications may be confused by different
assumptions surrounding the notion of a current object used as the
target.

• If your Apple events act just on the current object, your users can
only act on some other object by explicitly making it the current
object. In the case where the current object is considered to be the
frontmost window, there’s no way to script other windows.

• Another script (or the user!) could make a different object the
current object while a script is running.

The moral of this story is that it’s best to be explicit at all times about the object that
will be acted on.

Make the target the direct object.
One of our goals in scripting is to maintain a natural imperative command style
throughout. However, there’s one situation in which a technical issue might make it
difficult to preserve this style. From the scripting point of view, you’d really like to
allow the user to write something like the following:

attach <document-list> to <mail-message-target>

The problem is that OpenDoc requires the target to be in the direct parameter. In
the preceding script, the target is in the to parameter, not the direct parameter. To
make this compatible with OpenDoc, you’ll need to change the attach verb to attach
to and swap the direct parameter and the to parameter, like this:

attach to <mail-message-target> documents <document-list>

Help your users figure out which objects to use with a verb.
Due to limitations in the 'aete' resource, there’s no provision for indicating which
Apple events can act on which objects. The AppleScript compiler will accept any
combination of verbs and objects, even though some of these combinations have no
meaning to your application and will result in runtime errors. To help your users
determine which objects work with which verb, you can use the following trick.

DESIGNING A SCRIPTING IMPLEMENTATION 63

Define the parameter’s type as an enumeration instead of an object specifier. Use a #
as the first character of the 4-byte ID for the enumeration. Then define the
enumerators as the object classes that are appropriate for the event. You can use the
same enumeration for more than one event; you can define different enumerations
with different sets of object enumerators for different events; and you can even
indicate the same object class in more than one enumeration. For example, instead of

close reference

a dictionary entry incorporating this technique would read

close window|connection|folder

This entry indicates to the user that the only object classes that make sense for the
close command are window, connection, and folder.

OTHER TIPS AND TRICKS
Think carefully about objects versus properties.
Often, most of the work in a script is accomplished through creating objects and
setting and getting properties, so use properties liberally. Be mindful that in certain
cases, what initially might seem to be good candidates for objects might, on more
careful examination, be represented as properties of another object, particularly when
there’s only one of such an object in your application. On the other hand, don’t make
something a property just because there’s only one of it (such as a single object class
belonging to an application or a containing object).

It’s not always clear which is the better way to go — object or property. Some
examples may help you understand how to decide this. Certain Finder objects have
properties but are themselves properties of the application or the desktop container.
The selection, an object of the abstract “selection-object” class, has properties such as
the selection’s contents. However, the selection-object class is never actually used in
scripts; selection is listed as a property of the application and other selectable objects,
so that a script writer doesn’t need to form an object specifier, and the class name can
be used as the object itself (“selection” instead of “selection 1”).

As another example, a tool palette, which would normally be an object class, might be
one of several objects of the palette class, or it might be better listed as a property of
the application. This would depend on whether you had several named palettes
(palette “Tools,” palette “Colors”) or wanted separate identifiers for each palette (tool
palette, color palette). It could also depend in part on whether there were properties
(and perhaps elements) of the palettes. In this particular case, using the tool palette
and color palette properties is more localizable than including the name of the
palette in the script. If you translate the program into some other language, it’s a fair
bet that the tool palette won’t be named “Tools” anymore. However, your 'aete'
resource will have been localized and thus tool palette will be transformed into the
correct name for the object.

Try to be careful when deciding whether to make something a property or an object
— users can end up writing

<property> of <property> of <object>

or even

<property> of <object> of <property> of <object>

d e v e l o p Issue 21 March 199564

and may become confused by real objects that appear to be datalike or that normally
would be elements but are presented as properties. Make something a property only
when it’s meaningful rather than for convenience; otherwise, the concept of an object
model hierarchy becomes eroded.

Whether something is a property or an object really depends on the specifics of your
application. Still, in a large number of cases, objects are things that can be seen or
touched, while properties are characteristics of the objects or the application. A good
rule of thumb is: If the item in question is a characteristic of something else, it’s
probably a property.

Use inheritance to shrink your 'aete'.
If you’ve got a large 'aete' resource, or large groups of properties used in multiple
classes, you can reduce the size and repetitiousness of your 'aete' by defining those
sets of properties in an abstract or base class. Then classes that include those property
definitions can include an inheritance property, with the ID code 'c@#^' (pInherits),
as their first property. The human name for this property should be <Inheritance>
(be sure to include the angle brackets as part of the name). The inclusion of this
property will indicate to the user that this class inherits some or all of its properties
from another class.

As an example, in QuarkXPress, several of the object classes have a large number of
properties. Without inheritance, there would have been up to a hundred properties in
the dictionary’s list of properties for some of the classes! By creating abstract base
classes in the 'aete' (defined in the application’s Type Definitions suite) and inheriting
from these, the application uses the same sets of properties (some quite large) in
several different classes. The size of the 'aete' resource was reduced from 67K to 44K,
and the lists of properties for many of the classes were reduced to just a few, including
the inheritance property.

On the other hand, because this method produces a hierarchy that’s smaller but more
complex (and therefore slightly more confusing), I recommend using it only in
situations where inheritance applies to more than one class. If you plan to use
inheritance in only one place in your 'aete', or if your 'aete' isn’t particularly large, it’s
probably better just to repeat all the properties in each class without using
inheritance.

Be cautious when you reuse type codes.
If you use the same term for more than one “part of speech” in your dictionary, use
the same 4-byte code. For example, if you use input as a parameter, again as a
property, and later as an enumerator, use the same type code for each of the various
uses.

By contrast — and this is very important because it’s the single most common
source of terminology conflicts — don’t use the same type code for more than one
event, or more than one class, and so on. If you do, AppleScript will change the script
to show the last event or class defined with that code, changing what the user wrote
in the script. This is usually not the desired effect, unless you specifically want
synonyms.

If you do want synonyms, you can create them this way. For instance, in HyperCard
the term “bkgnd field” is defined before “background field.” The former can be typed
and will always be transformed into the latter at compile time, so that the latter is
always displayed. Just be careful not to have the script appear to change terminology
indiscriminately — it’s unsettling to the user.

DESIGNING A SCRIPTING IMPLEMENTATION 65

The section “ID Codes and the Global Name Space” later in this article discusses
additional considerations having to do with type codes.

Avoid using is in Boolean property and parameter names.
Because is can be used to mean “=” or “is equal to,” and because it’s a reserved word,
you should avoid using it in human names for properties and parameters, such as is
selected, is encrypted, or is in use. It’s better, and less awkward, to use selected,
encrypted, and in use or used. In a script, writing

if selected of thing 1 then ...

or

tell thing 1
if selected then...

end tell

is better than writing

if is selected of thing 1 then ...

or

tell thing 1
if is selected then ...

end tell

However, it’s OK to use has or wants (which have none of the problems presented by
is), as in

if has specs then ...

or

set wants report to true

When you name your Boolean parameters, keep in mind that AppleScript will change
true and false to with and without. If the user writes

send message "Fred" queuing true

it compiles to

send message "Fred" with queuing

Control the number of parameters.
Sometimes you may find yourself implementing a verb that contains lots of options,
for which you might be tempted to make separate Boolean parameters. When the
number of parameters is small, it looks good to be able to say “with a, b, and c.”
Excessive use of this technique, however, can lead to unwieldy dictionary entries for
these events with long lists of parameters.

There are two solutions to this:

• Make a parameter or parameters that accept a list of enumerators
for the option or set of options.

d e v e l o p Issue 21 March 199566

• Break the command into separate commands with more focused
functionality, reducing the number of options for each event.

For example, suppose a statistics package creates a single command to perform any
type of analysis with lots of parameters, like this:

analyze <reference> 75 Boolean parameters indicating various
analysis options

It would be better to split the analysis capability into multiple commands, followed by
small groups of Boolean parameters, forming a suite, such as

cluster <reference> small number of Boolean parameters indicating
clustering options, or list of enumerators

correlate <reference> small number of Boolean parameters indicating
correlation options, or list of enumerators

fit curve <reference> small number of Boolean parameters indicating
curve-fitting options, or list of enumerators

and so on.

Use replies meaningfully.
In your dictionary, including a reply in an event’s definition helps the user understand
the behavior of an application-defined command and its role in the communication
between a script and your application. However, you shouldn’t include a reply
definition if the only possible reply is an error message (except in the rare case where
the error message is a normal part of the event’s behavior).

When you return an object specifier as a reply, as in the case of the make command,
it’s up to you to decide which reference form to use. Reference forms (the various ways
objects can be described in a script), also known as keyforms, include the following:

• name ("Fred", "Untitled 1")

• absolute (first, second, middle, last)

• relative (after word 2, behind the front window)

• arbitrary (some)

• ID (ID 555)

• range (4 through 6)

• test (whose font is "Helvetica")

For more information on reference forms, see Inside Macintosh:
Interapplication Communication and the AppleScript Language Guide.•

Most scriptable applications to date implement the absolute reference form, such as
window 1, as the reply to a make command. If your users are likely to change the
position of this object during a script, you might consider using the name form
instead. When you absolutely want a unique value, reply with the ID form, as in
window ID -5637. The ID reference form ensures a unique value but usually means
much less to the user.

Deciding which reference forms to use for object specifiers comes into play in
applications that are recordable, as well.

DESIGNING A SCRIPTING IMPLEMENTATION 67

APPROACHES TO RECORDING COMMANDS
If your application will be recordable, take note. Some early adopters of AppleScript
recordability assumed that their users would only record an action and play it back to
see an example of how to script it. Their early scripting implementations were done
quickly, often without supporting the object model. Later they realized that users
would actually write scripts, sometimes from scratch, using the dictionary as their
guide. As a result, most have redone their implementations to clean them up or use
the object model. Don’t use recordability as an excuse to take the easy route and
implement quickly. You’ll end up wanting to redo it later, but you won’t be able to
because your installed base will be too large. Instead, implement the object model the
first time.

There are two approaches to recording commands. One approach is to send
something as close as possible to what the user would write to the recorder. This isn’t
necessarily a mirror image of the user’s actions but produces recorded statements that
more closely resemble what a user will write.

open folder "Goofballs" in disk "Razor"

The other approach is to duplicate the actions of users. This is the method used in
the Scriptable Finder. In this method, what’s recorded is that the user makes a
selection and then acts on that selection.

select folder "Goofballs" in disk "Razor"
open selection

In the first case, the recorded statement helps the user understand how to write the
command (my personal favorite). In the other case, there’s a relationship between
what the user did and what was recorded. Either method is useful — it depends on
your objectives.

As is the case with returning object specifiers as replies (discussed above), you decide
which reference forms to use for object specifiers that get recorded.

ID CODES AND THE GLOBAL NAME SPACE
One of the areas of greatest confusion among AppleScript developers is AppleScript’s
global name space and its implications for choosing ID codes for properties and
enumerators. In this name space are all the terms used in all the scripting additions
installed on a user’s computer (see “If You’re Writing a Scripting Addition . . .”) and
all the terms defined by AppleScript as reserved words. Properties and enumerators
must have either unique or identical codes, depending on the situation. (Events,
parameters, and classes that are defined within an application’s dictionary aren’t
affected by this requirement.)

As noted earlier, you can reuse terms for different “parts of speech” — for example,
for a parameter, a property, and an enumerator — but then you must use the same
4-byte ID code. By extension, if the term you want to use for a property or an
enumerator is defined in the global name space, you must use the 4-byte code already
defined there. For example, if you want to use the property modification date, you
must use the code 'asmo', which is defined in the File Commands scripting addition.
This applies across different parts of speech, so if, for instance, the term you want to
use for a parameter is already defined in the global name space as a property, you
must use the same code. If you use a different code, scripts that include your term
may not compile, or they may compile but send the wrong code to your application
when executed.

d e v e l o p Issue 21 March 199568

Conversely, if you make up a new 4-byte ID code for your own property or
enumerator, you need to take reasonable precautions to avoid using a code that
corresponds to another term in the global name space. If you don’t use a completely
new code, you can’t be sure which term is represented by that code in scripts that
contain the code. So, for example, you shouldn’t use the code 'asmo' unless you’re
referring to the modification date property.

How can you identify potential conflicts? One way is by using a script editor,
MacsBug (with the aevt dcmd and the atsend macro), and the templates on the
AppleScript Developer CD, notably the templates for the Apple Event Manager
traps. Together, these tools enable you to catch an Apple event as it’s sent and to
examine it. Here’s what you do:

1. Use the Formatting menu item in the editor to set the colors of
the AppleScript styles so that you can see whether a term parses as
an application-defined term or as a script-defined variable.

DESIGNING A SCRIPTING IMPLEMENTATION 69

Scripting additions (otherwise known as osaxen, the
plural of osax, for OSA extension) add new core
functionality to AppleScript by extending the AppleScript
language. If you’re writing a scripting addition, either for
general purposes or for use with a particular application,
you should be aware of a growing problem: the
increasingly crowded name space for commands. When
the number of additions was small, it was simple; each
command (term) generally had only one usage. Now the
situation is beginning to get out of hand.

The problem stems from three issues:

• Unlike applications, which generally go through a
fairly significant development cycle, many osaxen
have been written by programmers who aren’t
commercial application developers. As a result, there
tend to be a great many more osaxen than scriptable
applications.

• The name space for osax terminology is global in the
sense that these gems are accessible from any script
running on your computer. You might think of all the
osax dictionaries being lumped together as though
they were a single large application’s dictionary
(really a “system-level” dictionary). So when two or
more osaxen use the same terms in slightly (or
radically) different ways, trouble abounds. Only one
of them will capture AppleScript’s attention, and you,
the osax author, can’t control which will win out.

• If an application command is named the same as an
osax command, the application command will be
invoked inside a tell block, while the osax will be
invoked outside the tell block. On the other hand, an
osax command executed inside a tell block for an

application that doesn’t define the same command
name will invoke the osax. Users writing scripts will
undoubtedly make errors.

It’s impossible to completely avoid every term used in
every application, but where possible, try not to use terms
that are likely to be used by application developers.
Remember that a user may load up a computer with any
number of osax collections, without realizing that there
are four different rename file osaxen among the horde
(or should I say herd?).

In addition, remember that if, for example, you define an
open file command as an osax, the command

open file "curly"

is ambiguous. A user might want the Open event

open (file "curly")

or an osax command,

(open file) "curly"

Again, be extra careful when defining system-level terms.

A different problem exists in the special case where a set
of osaxen is marketed for use with a special application,
such as plug-ins or database connectivity. In this case, you
should name your commands so that they are unmistakably
associated with their host application. One possible
solution is to begin the command names with a prefix
indicating that they should only be used with the
particular application.

IF YOU’RE WRITING A SCRIPTING ADDITION . . .

2. Type in your desired terminology and compile.

3. If it parses as a script-defined variable, it’s free and you can use it
with your own unique code to represent your own term. If it
parses as an application-defined term, go on to the next step.

4. Break into MacsBug, type “atsend,” and go. Execute the script,
and the code for the property or enumerator will be displayed.
You can then use this term in a manner consistent with standard
terminology or definitions in scripting additions — the appropriate
ID code will be generated by AppleScript. You must still include
this term, along with the ID code you just discovered, in your
'aete' resource so that users will see the term in your dictionary.
Then things will still work if the scripting addition that defines the
term is subsequently removed.

IT’S NOT TOO LATE TO CLEAN UP YOUR ACT
Let’s say you took a first stab at scriptability, implemented it in your application, and
shipped it. Perhaps you did the expedient thing and didn’t implement the object
model. Or maybe you implemented totally new terms in your dictionary. Don’t be
afraid to redo some of your scripting implementation — it’s still early enough in the
scripting game to clean up your vocabulary or to go the distance and support the
object model. It’s much better to do it now, when there are only 50 or 100 people
struggling to script your application. The overwhelming majority of your users will
breathe a sigh of relief and thank you profusely for making their lives easier, even if
they have to modify some of their existing scripts.

Two well-known developers have each recently done a relatively full scripting
implementation and have indicated to their users that this is the first version, that
some of it is experimental and is likely to change. A number of others have retraced
their steps, rethinking their approach, and on occasion switched to object model
support. I’ll give two examples of applications where changing a scripting
implementation made a significant difference.

EUDORA: CLEANING UP VOCABULARY
As one of the most widely distributed applications in the history of the Macintosh,
Eudora by Qualcomm is used by a vast number of people to manage their Internet
mail. Eudora originally used completely nonstandard terms. For example, this script
created a new message and moved it to a specific mail folder:

tell application "Eudora"
CreateElement ObjectClass message InsertHere mailfolder "Good stuff"
Move message 1 InsertHere mailfolder "Other stuff"

end tell

This was an easy cleanup job, involving mostly just changes to the dictionary.
Standard human terms were substituted for Apple event constructs, as can be seen
in this script that now accomplishes the same thing as the preceding script:

tell application "Eudora"
make new message at mail folder "Good stuff"
move message 1 to mail folder "Other stuff"

end tell

Your terms don’t have to be quite this far afield for you to consider a scripting facelift.

d e v e l o p Issue 21 March 199570

STUFFIT: SWITCHING TO THE OBJECT MODEL
By contrast, in the case of StuffIt from Aladdin, the developer revamped the
application, replacing a non–object model implementation with one that supports the
object model. This revision produced a dramatic increase in the ease of scriptability.

Here’s a synopsis of the original implementation:

• Required suite: OpenApp, OpenDocs, PrintDocs, QuitApp

• StuffIt suite: Stuff, UnStuff, Translate, Copy, Paste, Clear, Get
Max Number of Archives, Get Current Number of Archives, Stack
Windows, Tile Windows, Get Version

• Selection suite: Select, Select All, DeSelect All, Select By Name,
View Selected Items, Rename Selected Items, Delete Selected
Items, Get Selected Count, Get Selected Name . . .

• Archive suite: New Archive, Create New Folder, Open Archive,
Close Archive, Verify Archive, Get Archive Pathname, Get
Archive Name, Set/Get Archive Comment, Set/Get Archive View,
Stuff Item, UnStuff Item, Change Parent, Save

• Item suite: Get Item Count, Get Item Type, Get Item Name (and
14 others beginning with “Get Item”), Rename Item, Delete Item,
Copy Items, Move Items

Notice the redundancy of Set, Get (more than 20 occurrences), Rename, Delete,
Stuff, UnStuff, and Select. Also, notice that the command names look much like
Apple event names. It was extremely hard to figure out how to script this application.

Once the object model was implemented, the scheme became a lot simpler:

• Required suite
Events: open, print, quit, run

• Core suite
Events: make, delete, open, and so on (the 14 main events)
Classes: application, document, window

• StuffIt suite
Miscellaneous events: cut, copy, paste, select
Custom events: stuff, unstuff, view, verify, segment, convert
Classes: archive, item, file, folder

• Type Definitions suite
3 special record types used as property types in other classes

Each of the classes has a multitude of properties, where most of the action takes
place. All the redundancies have been removed (the verbs can be remembered and
used naturally), and statements can be written that resemble those written for other
applications. The entries in the Type Definitions suite are record types used for
properties. The result of this redesign is that the dictionary is now smaller and more
understandable. A script to access all the items in an archive that was originally 68
lines long is now only 20 lines!

THE JOURNEY BEGINS
Making your application scriptable is an art. Think of AppleScript as a living,
growing human language. As you’ve seen, there are standard terms and object
model constructs that you can use when designing your application’s scripting
implementation, for those capabilities that are common to many or all applications.

DESIGNING A SCRIPTING IMPLEMENTATION 71

In the end, though, a unique treatment is usually necessary to fully express the
particular capabilities of each application, and your scripting implementation should
be carefully constructed accordingly.

I hope this article has convinced you to do the following:

• Make AppleScript your application’s language. Remember that
AppleScript isn’t just for programmers — many users will want to
write and record scripts to control your application.

• Develop a sense of style. Consider the nature of what your users
will end up writing in their scripts. “Clean and elegant” (like a user
interface) will serve your users well. Use human terms that can be
easily understood by a nonprogrammer.

• Strive for consistency. Follow the conventions, suggestions, and
general guidelines outlined here, for the sake of semantic
consistency across applications.

• Choose your terms carefully. Consider whether and how the terms
you use in your vocabulary will affect the name space for
AppleScript.

On the other hand, if you aren’t comfortable designing a semantic vocabulary or if
you’re having trouble formulating a clear picture in your mind of a natural-language
sentence structure, don’t attempt to do it yourself. As in the case of graphic and
interface design, it might be better to engage the services of an expert.

If you do undertake designing a scripting implementation yourself, you’ll find it to be
a rewarding experience, one that can enable your users to accomplish things never
before possible. Happy implementing!

d e v e l o p Issue 21 March 199572

Thanks to our technical reviewers C. K. Haun,
Don Olson, and Jon Pugh, and to Michael
Bayer.•

RESOURCES
• Inside Macintosh: Interapplication Communication (Addison-Wesley, 1993),

Chapters 3 through 10. (Inside Macintosh Volume VI is not recommended.)

• “Apple Event Objects and You” by Richard Clark, develop Issue 10.

• “Better Apple Event Coding Through Objects” by Eric M. Berdahl, develop Issue 12.

• Apple Event Registry: Standard Suites, available on this issue’s CD or in print from
APDA.

• AppleScript Software Development Toolkit, available from APDA.

• AppleScript Language Guide (Addison-Wesley, 1993). Also in the AppleScript
Software Development Toolkit.

• The Webster Project. This master database, containing terms used in scriptable
applications and scripting additions, assists in resolving naming collisions across
applications and serves to regularize the common terms used by applications of
different types. I’m designing and implementing this; contact me at AppleLink
MAIN.EVENT for more information.

One of the great features of QuickDraw GX is that it
provides the printer driver developer with default
implementations of commonly used routines. For
example, just by specifying a few parameters in your
driver’s 'comm' (gxDeviceCommunicationsType)
resource, your printer driver can connect to a printer
either serially or through the Printer Access Protocol
(PAP). You don’t need to write a single line of
communications code!

Another powerful feature of QuickDraw GX is that you
can ignore the default implementations of printer
driver routines and write your own routines instead.
This feature enables you to tailor your printer driver so
that it can accommodate unique situations. The ability
to modify bits and pieces of the printing system is
especially useful when it comes to writing printer
drivers with custom communications code or buffering
routines.

In general, to create custom communications code, you
configure your driver’s 'iobm' (gxUniversalIOPrefsType)
resource, create a “not connected” 'comm' resource,
and then override certain QuickDraw GX messages.
For SCSI printers, however, you don’t need to create
the “not connected” resource, because a SCSI format
of the 'comm' resource is already defined. We’ll talk
more about when you would want to use custom
communications code, and how to write it, later in this
column.

Also covered is how to write custom buffering routines.
You may want to use custom buffering if, for example,
you already have code that you want to use or you want
to increase printer performance by taking advantage of
a hardware buffer that you have available.

On this issue’s CD, you’ll find a sample printer driver
called CustomWriter that illustrates how to implement
“not connected” custom I/O and buffering. In addition,
there’s a sample LaserWriter IISC printer driver that
shows how to create custom I/O code for a SCSI
printer.

CUSTOM I/O — WHO NEEDS IT?
The default communications code in QuickDraw GX
handles asynchronous communications for serial and
PAP printers and QuickDraw GX shared printers.
Even so, you may want to override this code in some
cases, such as if your printer communicates using a
protocol that QuickDraw GX doesn’t support (like 200
Kbits/second serial), or if you have your own PAP code
that you’d like to continue using.

QuickDraw GX also supports the special cases of “not
connected” printers and SCSI printers. If you’re
writing a driver using either of these two types of
connections, you’ll need to write some custom I/O
code. In fact, the “not connected” communications
method is provided specifically for the developer
writing a driver containing custom communications
code. What does this type of communications method
do? In the default implementation, nothing at all. In a
minute, you’ll see how to use this to your advantage.

The only SCSI support currently built into QuickDraw
GX handles filling out the Chooser list with your
devices’ SCSI addresses and saving updated 'comm'
resources for any desktop printers that are created.
Otherwise, QuickDraw GX doesn’t actually open
connections or try to send commands, such as
SCSIRead or SCSIWrite, to the printer. SCSI printers
usually have unique command sets, and trying to
provide a generic mechanism to support all of these
devices is unrealistic. As a result, you must provide your
own communications code if you’re writing a SCSI
driver.

Finally, if your device is connected through a hardware
interface that QuickDraw GX doesn’t provide default
support for (such as a NuBus™ card), you’ll need to
provide all of the communications code for your driver.

HOW TO GET STARTED
The first step in writing a driver with custom
communications code is to configure your driver’s
'iobm' resource. This is a very easy (and very critical)
exercise.

PRINT HINTS

Writing
QuickDraw GX
Drivers With
Custom I/O and
Buffering

DAVE HERSEY

PRINT HINTS: WRITING QUICKDRAW GX DRIVERS WITH CUSTOM I/O AND BUFFERING 73

DAVE HERSEY (AppleLink HERSEY) left Apple’s Developer
Technical Support (DTS) group about six months ago to join the
Print Shop software development group. He now fixes the

QuickDraw GX bugs that he reported while in DTS, and works on
QuickDraw GX 2.0 — the “knock your socks off” release.•

d e v e l o p Issue 21 March 199574

'iobm' stands for “Input/Output and Buffering preferences.”
So what does the “m” stand for? Great question. As it turns out,
if you set up this resource incorrectly, it becomes an “I/O
BooM” resource. (The system crashes.) The “m” is silent as long
as the resource is set up correctly.•

The 'iobm' resource tells QuickDraw GX how your
driver wants its communications and buffering
environment set up. This resource has the following
format:

type gxUniversalIOPrefsType {
longint standardIO = 0x00000000,

customIO = 0x00000001;
longint; // number of buffers to allocate,

// 0 = none
longint; // size of each buffer
longint; // number of IO requests that can

// be pending at any one time
longint; // open/close time-out in ticks
longint; // read/write time-out in ticks

};

The 'iobm' resource was described in the develop Issue
20 Print Hints column about QuickDraw GX
buffering. Rather than reiterate that information here,
we’re going to briefly focus on the first three fields of
the resource.

The first item in the 'iobm' resource (standardIO or
customIO) tells QuickDraw GX whether you want to
use its built-in communications code. You must specify
customIO if you want to use your own custom I/O
code. When customIO is specified, QuickDraw GX
won’t go through the overhead of initialization and data
allocation for the internal communications routines; as
a result, you must override certain messages, as
described in a following section. When you specify
customIO, the last three longint fields of this resource
are ignored.

The two fields in the 'iobm' resource that follow the
I/O type field indicate the number and size of the
buffers your driver would like QuickDraw GX to
create. Note that you can use QuickDraw GX’s
built-in buffering even if you’re writing your own
communications code. If, however, you’re creating and
disposing of your own buffers, you should set the
“number of buffers” field to 0, so that QuickDraw
GX won’t waste time and memory allocating buffers
that are never used. For code that communicates
synchronously, multiple buffers don’t improve
performance, so you should set this field to 1.

Later in this column we’ll take a closer look at what’s
required to create and manage your own I/O buffers.

WHEN “NOT CONNECTED” MEANS “CONNECTED”
Unless you’re writing custom I/O routines to support a
SCSI printer, you’ll want to create a “not connected”
'comm' resource for your driver. Below is the
declaration of a 'comm' resource for the “not
connected” case.

For the full description of a 'comm' resource, see Inside
Macintosh: QuickDraw GX Printing Extensions and Drivers.•

type gxDeviceCommunicationsType {
unsigned longint = 'nops';

};

There’s not a whole lot to it, is there? When you
specify customIO in your 'iobm' resource, QuickDraw
GX never does anything with your desktop printer’s
'comm' resources other than examine the first longint.
So, all sorts of possibilities become apparent. As long as
that first longint is 'nops', you can extend the definition
of this resource to suit your needs. Whether to change
the definition of the resource in the PrintingResTypes.r
interface file or not is up to you. Instead, you could just
resize the resource when you update it at desktop
printer creation time, as we’ll discuss momentarily.

CUSTOM I/O — THE MESSAGES
When you supply your own I/O routines, there are
several messages that you need to override. Some of
these messages will always need to be totally overridden,
meaning that your overrides for these messages should
never forward the messages. Other messages should be
partially overridden, in which case the message is
forwarded at some point in your override code.

Now we’ll look at the messages you need to override.
(Table 1 summarizes these messages and the ones to
override for custom buffering.) If you want more
information on writing message overrides, see Sam
Weiss’s article, “Developing QuickDraw GX Printing
Extensions,” in develop Issue 15, and Inside Macintosh:
QuickDraw GX Printing Extensions and Drivers.

Always override (partially)

• GXOpenConnection

• GXCloseConnection

• GXCleanupOpenConnection

• GXWriteData

When you override these messages, you should first
forward the message, then execute your added code.
Your overrides for the first three messages should
contain code to open and close a connection to your
device.

PRINT HINTS: WRITING QUICKDRAW GX DRIVERS WITH CUSTOM I/O AND BUFFERING 75

GXCloseConnection is sent to close a connection if no
errors occur during the device communications phase
of printing; GXCleanupOpenConnection is sent if an
error does occur during this time. The goal for both of
these overrides is to “undo” any data allocation or
initialization that occurred in the GXOpenConnection
override. Often, your GXCleanupOpenConnection
message override can simply execute the same code as
your GXCloseConnection override.

The GXWriteData override should forward the message
(with a nil pointer and a length of 0) to flush any data
that’s buffered, and then send the data to the printer.

Always override (totally)

• GXDumpBuffer

Your override for this message should execute code that
sends the indicated data to your printer. When this
message is sent, a connection to your device will
already have been established through the successful
execution of your GXOpenConnection override. The
GXDumpBuffer message is used to send data to the
printer whenever an I/O buffer becomes full.

Usually override (partially)

• GXDefaultDesktopPrinter

• GXChooserMessage

When QuickDraw GX creates a desktop printer, it
stores in it a 'comm' resource that specifies how to
communicate with the printer. By default, this 'comm'
resource is just a filled-in copy of one of your driver’s
'comm' resources. Depending on the setting in the
Chooser’s “Connect via:” menu, the 'comm' resource is
updated with information about the printer, such as the
selected serial port, SCSI address, and network address
for an AppleTalk printer. If your driver uses a “not
connected” 'comm' resource (as described earlier), it

will be copied verbatim, without updated information
about the selected printer. As a result, you might need
to step in and fill out the resource yourself.

To update the 'comm' resource, you need to override
the GXDefaultDesktopPrinter message as shown in
Listing 1. Here we forward the message so that
QuickDraw GX completes creation of the desktop
printer; then we retrieve the 'comm' resource from the
desktop printer, update it, and replace the old version
with the updated version.

When you update the 'comm' resource, you need to
know which printer the user selected, as well as its
addressing information and so forth. You can find this
information by overriding GXChooserMessage, which
is sent by the GXHandleChooserMessage API call. In
this override, possibly with some help from your
Chooser PACK’s LDEF, you can determine the
relevant information about the selected printer.

For example, you can store this information in a
column of cells that’s appended to the printer list. Or
you can store it in the list record’s userHandle or, by
using PC-relative addressing, in a data storage area
following your jump table. When you retrieve this data
in your GXChooserMessage override, simply store it
using one of QuickDraw GX’s global data functions for
printing. Finally, retrieve the information from your
GXDefaultDesktopPrinter override and store it in the
desktop printer’s 'comm' resource.

It’s important to note that you can’t use any of the
functions GetMessageHandlerInstanceContext,
SetMessageHandlerInstanceContext, GXGetJobRefCon,
GXSetJobRefCon, and NewMessageGlobals for the
example in Listing 1, because the GXChooserMessage
and GXDefaultDesktopPrinter messages are sent to
two different message handler instances. Therefore,
you should use GetMessageHandlerClassContext,

Table 1. Overriding QuickDraw GX messages

When to Override Custom I/O Custom Buffering
Always override (partially) GXOpenConnection GXOpenConnection

GXCloseConnection GXCloseConnection
GXCleanupOpenConnection GXCleanupOpenConnection
GXWriteData

Always override (totally) GXDumpBuffer GXBufferData
GXWriteData

Usually override (partially) GXDefaultDesktopPrinter
GXChooserMessage

Sometimes override (totally) GXFreeBuffer

SetMessageHandlerClassContext, or some other
method that works across message handler instances.

Sometimes override (totally)

• GXFreeBuffer

If your communications code runs asynchronously, you
must override GXFreeBuffer so that QuickDraw GX
can tell when operations on a buffer have completed.
The GXFreeBuffer message is sent to make sure that
all the data in the buffer has been processed before the
buffer is used again. When GXFreeBuffer returns, the
indicated buffer is ready to accept more data. An
override for this message should loop (calling
GXJobIdle) until I/O on the specified buffer is
complete, and then return.

USING YOUR OWN BUFFERING SCHEME
At this point, we’ve discussed everything that’s needed
to handle your own custom I/O code. Now we’ll take a
quick look at what’s required if you want to create and
maintain your own buffers, instead of using those that
the default implementation provides.

First things first. Go back to your 'iobm' resource, and
set the number of buffers to 0. This tells QuickDraw
GX not to waste time and memory allocating buffers
that you aren’t going to use.

When you implement your own buffering scheme, you
can use any sort of internal representation for your
buffers that you want to. However, since some of the
buffering messages take a pointer to a gxPrintingBuffer,
you’ll need to use that format for passing your buffers
between certain messages. But as far as the actual buffer
structures go, you can use a handle, a linked list, or any
other configuration that’s convenient or necessary to
use.

To support custom buffering code, you’ll need to
override the following messages.

Always override (partially)

• GXOpenConnection

• GXCloseConnection

• GXCleanupOpenConnection

d e v e l o p Issue 21 March 199576

Listing 1. Updating a 'comm' resource when a desktop printer is created

OSErr MyDefaultDesktopPrinter (Str31 dtpName) {
OSErr anyErrors;
Handle theCommResource;

// Forward the message so that the desktop printer is created.
anyErrors = Forward_GXDefaultDesktopPrinter(dtpName);
nrequire(anyErrors, Abort);

// Load the data for the 'comm' resource that was stored in the desktop printer.
anyErrors = GXFetchDTPData(dtpName, gxDeviceCommunicationsType, gxDeviceCommunicationsID,

&theCommResource);
require_action(theCommResource != nil, Abort, anyErrors = resNotFound;);

// Update the 'comm' data with info about the selected printer, and store the updated copy
// back in the desktop printer.
MyUpdateCommResource(theCommResource);
anyErrors = GXWriteDTPData(dtpName, gxDeviceCommunicationsType, gxDeviceCommunicationsID,

theCommResource);

// Finally, dispose of the handle we received from GXFetchDTPData. It's a detached resource
// handle, so DON'T USE RELEASERESOURCE!!
DisposeHandle(theCommResource);

Abort:
return anyErrors;

}

PRINT HINTS: WRITING QUICKDRAW GX DRIVERS WITH CUSTOM I/O AND BUFFERING 77

The partial overrides for these messages should
forward the messages and then allocate or dispose of
your internal buffer structures. If you’re using custom
I/O, you already provide overrides of these messages.
In that case, simply add this new code to the existing
overrides.

Always override (totally)

• GXBufferData

• GXWriteData

Provide an override of GXBufferData that stores the
passed data in your next available buffer. If a buffer
becomes full, call Send_GXDumpBuffer. Before you
attempt to add data to this buffer again, call
Send_GXFreeBuffer to make sure that all of the
buffer’s data has been sent to the printer.

Your override for the GXWriteData message should
flush all data from your buffers and then immediately
send the passed data to the printer. To do this, call

Send_GXDumpBuffer on all buffers, followed by
Send_GXFreeBuffer on all buffers. If you’re performing
custom I/O, just add this code to your existing
override.

You may wonder why you don’t need to override the
GXDumpBuffer message when you perform custom
buffering. Unlike the messages listed above,
GXDumpBuffer takes a pointer to a gxPrintingBuffer.
Whenever your code calls Send_GXDumpBuffer, you
must pass data in a gxPrintingBuffer structure,
regardless of the internal buffer representation that
you’re using. Since the buffered data is passed in the
format that GXDumpBuffer already expects, there’s no
need to override the message.

DRIVE SAFELY
That’s all there is to it. So, the next time someone
asks, “Can you write QuickDraw GX printer drivers
for my 200 Kbits/second serial typesetter, my SCSI
copier/printer, and my NuBus-interfaced cutter
plotter?” tell them, “Yoooooooou betcha!”

Thanks to Tom Dowdy, David Hayward, and Nick Thompson for
reviewing this column.•

Speed Your Way to
OpenDoc Development

Apple Developer University’s
“Programming with OpenDoc” shortens the

learning curve and launches you into working
with this new development paradigm.

Courses are offered in Cupertino, California, and
Portsmouth, New Hampshire.

For the latest schedule and complete course
description, call (408)974-4897.

DEVELOPER�

UNIVERSITY�

D�U�

The article “Displaying Hierarchical Lists” in develop Issue 18
showed how to use the List Manager to build and display lists of
hierarchical data with triangular “twist-down” buttons for expanding
and collapsing sublists (similar to the ones the Finder uses for displaying
and hiding the contents of folders in a list view). In this article, we take
an object-oriented approach to implementing these and other custom
lists, using the PowerPlant application framework by Metrowerks.
Using subclass inheritance to build small classes on top of each other
makes incremental development easy and straightforward.

Recently, I found myself working on a project that needed hierarchical lists: a remote
debugger for a network-based software distribution application. The product,
FileWave, creates a “virtual disk” volume on the user’s client machine and manages its
contents remotely from a central server. The debugger, called TheRaven, can retrieve
file and folder information from the client machine and display it in a Finder-like
hierarchical view (see Figure 1).

Martin Minow’s article “Displaying Hierarchical Lists” (develop Issue 18) was an
excellent starting point, but Martin’s implementation had some features that made
it unsuitable for my particular application. Most important, Martin built his
hierarchical lists completely in memory before displaying them — not very practical
when working over a network. I could have modified Martin’s code to remove that
restriction, but the result wouldn’t have been very clean. Since we were using the
object-oriented PowerPlant application framework by Metrowerks, I decided to try
to develop an object-oriented implementation for hierarchical lists.

One of the advantages of object-oriented programming is that it enables you to build
up your implementation in incremental steps. PowerPlant’s collection of small,
independent classes can be combined to build new classes with rich features,
providing a strong foundation for software development. And, of course, using
PowerPlant gave me an opportunity to try out the great Metrowerks CodeWarrior
programming environment.

JAN BRUYNDONCKX

An Object-Oriented Approach
to Hierarchical Lists

d e v e l o p Issue 21 March 199578

JAN BRUYNDONCKX (AppleLink WAVE.BEL)
works at Wave Research in Belgium, trying to
create the killer application that will revolutionize
software distribution across networks. When not
peering at TMON windows and telling everyone
how “interesting” they look, Jan can be found
jumping off cliffs with a parasail. (If parasails had

a real operating system, they wouldn’t crash into
trees — but they’d also be less fun!) Jan’s idea of
a holiday is hiking through the Sahara Desert or
climbing mountains in Nepal. His favorite
conversation topic at parties is the similarities
between classical opera and hard rock.•

This issue’s CD contains some of the results of my development efforts. On it, you’ll
find a collection of general-purpose classes for implementing lists with icons,
hierarchical lists, and other useful possibilities. You can use these as a basis for
developing more specialized subclasses of your own; the CD includes some examples
of those, as well.

The CD contains two project files: one for creating a 680x0 application and one
for the native PowerPC version. In both projects, only the main segment contains my
own code; all the other source files are taken from the PowerPlant development
framework.•

This article assumes that you understand the List Manager and how to use it, and
that you have at least a casual acquaintance with object-oriented programming in
general and C++ in particular.

BASIC BUILDING BLOCKS
In PowerPlant, everything that appears on the screen is a pane, an instance of the
built-in class LPane. Like a view in MacApp, a pane can be anything from a plain
rectangle to a scroll bar, a picture, or a radio button. A control is a pane, as is an icon
button, a static text item, or a scrolling picture. Even LWindow, the class to which
windows themselves belong, is a subclass of LPane.

Typically, a window consists of an instance of class LWindow with one or more
subpanes derived from LPane. In our examples, our windows will have only one pane,
an instance of PowerPlant’s built-in class LListBox. This type of pane uses the
Macintosh List Manager to display a list of objects. Each of our examples will define a
new subclass of LListBox with additional or modified properties and behavior. All it
takes to define such a class is to select an existing class, override its drawing method
(and maybe a couple of others), and possibly create a new resource template.

AN OBJECT-ORIENTED APPROACH TO HIERARCHICAL LISTS 79

Figure 1. TheRaven

EASY LISTS
Our first example implements a simple window showing the list of words “One”
through “Five” (see Figure 2). This may not seem like a big deal, but it’s a good
illustration of the power of object-oriented programming.

If we started from scratch, how many lines of code would this application take? Well,
we’d have to set up a menu, create a window, and then write an event loop to handle
dragging, window resizing, and so on. Add in the List Manager calls, and we’d be
lucky to do it all in fewer than 100 lines. With PowerPlant, all those details are
handled for us by the predefined class LApplication. All we need to do is define a
subclass, CListApp, with a menu command for creating our list window. One line of
code in our subclass’s ObeyCommand method suffices to create the window:

LWindow::CreateWindow(EasyList_PPob, this);

This invokes a static method of class LWindow to create the window from a template
resource. EasyList_PPob is the resource ID; the exact description of the window is
contained in the resource, isolated from the code itself.

The resource definitions (Listing 1) give the details on the window’s structure and
appearance. The familiar window template resource ('WIND') is accompanied by a
PowerPlant object resource ('PPob') giving extra information on the window and the
panes it encloses (see “'PPob' Resources”). The 'PPob' is simply a list of views and
panes, each specified with the keyword ObjectData. Panes can be nested to any
depth, with each new level delimited by the keywords BeginSubs and EndSubs. In
our case, the window view encloses just one pane, representing the list box.

An object-oriented application framework like PowerPlant is so powerful that these
two resources are all we need to describe our window and its list pane. With just one
line of code to create the window, we get all the standard behavior for free: dragging
and resizing the window, scrolling the list, and selecting items with the mouse. We
can have multiple windows with the same list, and can use the List Manager for
manipulations like adding or removing items.

But, of course, we won’t stop there. In the following examples, we’ll override the
standard behavior by creating a series of subclasses. The resources in each case will be
minor variations on the ones in Listing 1; the main difference is that we’ll use a
subclass instead of one of the standard classes.

d e v e l o p Issue 21 March 199580

Figure 2. An easy list

CUSTOM LISTS
The previous example used the standard behavior of PowerPlant’s built-in class
LListBox. We can make our list much more attractive by adding an icon in front of
each element. To do this, we’ll define two new subclasses of LListBox.

Actually, one subclass would have been enough to do the job. But the most important
thing I learned in my university software engineering courses was, “Be a toolsmith.”
Following this advice, I’ve chosen to define two subclasses instead of just one. The
first, CCustomListBox, is a versatile, general-purpose tool that allows a list to hold
any kind of data instead of just text. The items in the list can be structures of arbitrary
size holding any kind of information we want. The CCustomListBox class includes
methods for displaying this information easily and conveniently.

AN OBJECT-ORIENTED APPROACH TO HIERARCHICAL LISTS 81

Listing 1. Resources for easy list

resource 'WIND' (EasyList_WIND, purgeable) {
{47, 17, 247, 317},
documentProc, // standard window with size box
visible, goAway,
0x0, // refCon
"Easy List",
noAutoCenter

};

resource 'PPob' (EasyList_PPob, purgeable) {{

ObjectData {Window {
EasyList_WIND,
regular, hasCloseBox, hasTitleBar, hasResize, hasSizeBox, noZoom,
hasShowNew, enabled, hasTarget, hasGetSelectClick,
noHideOnSuspend, noDelaySelect, hasEraseOnUpdate,
100, 100, // minimum width, height
screenSize, screenSize, // maximum width, height
screenSize, screenSize, // standard width, height
0 // userCon

}},

BeginSubs {},
ObjectData {ListBox {

1001, // paneID
{302, 202}, // {width, height}
visible, enabled,
bound, bound, bound, bound, // edges bound to superview
-1, -1, 0, // left, top, userRefCon
defaultSuperView,
hasHorizScroll, hasVertScroll, hasGrowBox, noFocusBox,
0, kGeneva10_Txtr, // double-click msg, text traits
textList, // LDEF ID
{"One", "Two", "Three", "Four", "Five"} // some sample data

}},
EndSubs {}

}};

The second subclass, CMyCustomListBox, is just a demo class to show off the
capabilities of the first. It inherits the general behavior of CCustomListBox and
specializes it to hold two pieces of information for each list item: an icon (actually,
just the icon’s resource ID) and a piece of text (see Figure 3).

CREATING A LIST
The template ('PPob') resource for our list pane has the same format as the standard
one shown in Listing 1, but without the sample data (the strings “One” through
“Five”), since we’re now allowing the list to contain any kind of data instead of just
text. This time, though, we want the window’s list pane to be an instance of our
custom class, CMyCustomListBox, instead of PowerPlant’s predefined class LListBox.

d e v e l o p Issue 21 March 199582

Resources of type 'PPob' (PowerPlant object) represent
objects that belong to PowerPlant’s predefined class
LPane and its derived subclasses. Their structure is fully
described in the section “Creating Panes” (Chapter 9 in
the August 1994 release) of the PowerPlant manual
supplied on the CodeWarrior CD. Each 'PPob' resource
describes an entire containment hierarchy — for example,
an enclosing pane, then a scrollable “view,” scrollers,
and the window’s buttons, list boxes, text fields, and
radio button groups. You can also add new types to
represent your own custom subclasses of LPane.

Object layering makes 'PPob' resources too complex for
ResEdit’s template mechanism, so you have to use Apple’s
Rez, Metrowerks’ PowerPlant Constructor (provided on
the CodeWarrior CD), or Mathemaesthetics’ Resorcerer
to edit them. The listings in this article are in Rez format.
Note that Rez files must be compiled separately to be
included in a CodeWarrior project, as the current version
of CodeWarrior cannot compile them automatically.

Resorcerer provides a forms-based interface. To use it,
copy the file PowerPlant Resorcerer TMPLs from the
PowerPlant Resources folder to Resorcerer’s Private
Templates folder. The 'PPob' editor will be available the
next time you start Resorcerer.

PowerPlant Constructor uses more of a point-and-click
interface to display the user view for each object in a
'PPob' resource. You can edit the values in the Attributes
palette and Field windows and view the results on the
screen. For instructions on the specific menu items
involved, see the Constructor User’s Guide on the
CodeWarrior CD.

Using PowerPlant and the 'PPob' resources together, you
can create clean, standard interfaces for your programs,
using the best of Apple’s new technologies. This allows
you to be more creative about the design of your
programs and concentrate on adding new features to
make the best possible applications.

'PPOB' RESOURCES
BY AVI RAPPAPORT

Figure 3. A custom list

The job of creating a new window at run time from a template resource is handled by
a part of the PowerPlant system called the reanimator. We need to tell the reanimator
to use our own creator method when creating the window’s list pane from the
template, in place of the standard one for class LListBox.

We establish the connection between our template resource and the creator method
that will use it by assigning the template a unique tag. We then register the tag with
the PowerPlant registrar, telling it to associate that tag with a particular creator
method. We create the tag by adding the line

ClassAlias {'mlst'},

to our 'PPob' resource, before the definition of the list pane. (All we need is an alias,
because the resource defining our custom class has the same structure as that of the
standard LListBox class.) We then define a constant to represent this tag in our
CMyCustomListBox class:

public:
enum {

classID = 'mlst'
};

Now we can register the tag with the PowerPlant registrar as part of our application’s
initialization code:

URegistrar::RegisterClass(CMyCustomListBox::classID,
(ClassCreatorFunc) CMyCustomListBox::CreateFromStream);

(A convenient place to do this is in our application object’s constructor method,
CListApp::CListApp.) Later, when we use our template to create a new object —

LWindow::CreateWindow(CustomList_PPob, this);

— PowerPlant’s reanimator will recognize the tag and will call the specified creator
method, CMyCustomListBox::CreateFromStream, to create an instance of our class.
We define the creator method as follows:

CMyCustomListBox* CMyCustomListBox::CreateFromStream (LStream *inStream)
{

return (new CMyCustomListBox(inStream));
}

This simply passes along the parameter it receives, inStream, to the class constructor
method, CMyCustomListBox::CMyCustomListBox. This method in turn calls the
superclass constructor method, CCustomListBox::CCustomListBox, and then adds
some further initialization of its own:

CMyCustomListBox::CMyCustomListBox(LStream *inStream) :
CCustomListBox(inStream)

{
// Additional initialization for class CMyCustomListBox
...

}

The extra initialization code calls the Macintosh List Manager to add cells to the list
and initializes the contents of each cell. In some cases (though not in this example), it

AN OBJECT-ORIENTED APPROACH TO HIERARCHICAL LISTS 83

might need to read in additional resource data. This is also the ideal place to initialize
the new object’s member variables.

CUSTOMIZING THE LIST DEFINITION PROCEDURE
The List Manager calls a list definition procedure to display each cell of a list on the
screen (see Inside Macintosh: More Macintosh Toolbox, Chapter 4). The procedure is
supplied as a code resource of type 'LDEF'. In our case, we want to keep the display
code inside the application, so that we can define it as a method of our custom
subclass. Figure 4 illustrates our scheme for accomplishing this.

The LDEF that we supply to the List Manager is just a stub that calls the real one
defined in our application. We use the refCon field of the list record to hold a
“callback pointer” to the real definition procedure; the userHandle field holds a
pointer back to the list object. The initialization method CCustomListBox::init sets
all this up:

if (callerLDEFUPP == NULL)
// Create UPP for LDEF callback.
callerLDEFUPP = NewListDefProc(LDefProc);

// Put callback address in refCon.
(*mMacListH)->refCon = (long) callerLDEFUPP;

// Keep a pointer to self.
(*mMacListH)->userHandle = (Handle) this;

mMacListH is a member variable of LListBox containing a handle to the list record.
First we create a universal procedure pointer (UPP) to our callback function,
LDefProc, and store it in the list record’s refCon field; then we save a pointer to the
list object itself (“this”) in the userHandle field. Finally, we load the stub LDEF from
the resource file, save its handle in the listDefProc field of the list record, and make it
unpurgeable from the heap.

Listing 2 shows the code of our callback function and the subsidiary methods it calls.
The callback function, LDefProc, sets up the A5 world, looks in the list’s data for
the contents of the cell to be drawn, and calls the list object’s member function

d e v e l o p Issue 21 March 199584

mMacListH

ListRec

refCon

userHandle

listDefProc

DrawElement

LDefProc

CCustomListBox

CallerLDEF�
(stub)

Figure 4. Customizing the list definition procedure

AN OBJECT-ORIENTED APPROACH TO HIERARCHICAL LISTS 85

Listing 2. Custom list definition procedure for CCustomListBox

static pascal void LDefProc (short lMessage, Boolean lSelect,
Rect *lRect, Cell lCell,
unsigned short lDataOffset,
unsigned short lDataLen,
ListHandle lHandle)

// Custom list definition procedure for CCustomListBox.
// Called by the LDEF stub; returns control back to class method
// DrawElement to do the actual drawing.
{

// Ignore init and dispose messages.
if ((lMessage == lInitMsg) || (lMessage == lCloseMsg))

return;

// Set up application's A5 so that we can access global variables.
long savedA5 = ::SetCurrentA5();

// Get pointer to list object from userHandle field of list record.
CCustomListBox *self = (CCustomListBox*) (*lHandle)->userHandle;

// Get handle to cell data.
Handle h = (*self->mMacListH)->cells;
char saveState = ::HGetState(h);
::HLock(h);

// Find and draw cell contents.
void *lElement = (void*) (*h + lDataOffset);
self->DrawElement(lMessage, lSelect, lRect, lElement, lDataLen);

// Restore previous handle state and A5.
::HSetState(h, saveState);
::SetA5(savedA5);

}

void CCustomListBox::DrawElement (const short lMessage,
const Boolean lSelect,
const Rect *lRect,
const void *lElement,
const short lDataLen)

// Member function for responding to LDEF calls.
// Calls DrawElementSelf to draw a list element.
{

switch (lMessage) {

case lDrawMsg:
::EraseRect(lRect);
if (lDataLen == 0)

break;
DrawElementSelf(lRect, lElement, lDataLen);
if (!lSelect)

break;

(continued on next page)

DrawElement to draw it. DrawElement clears the cell’s rectangle to prepare for
drawing, makes sure that the cell’s contents aren’t empty, and calls another member
function, DrawElementSelf, to do the actual drawing. Then DrawElement checks its
lSelect parameter to see whether to highlight the cell and, if so, inverts the cell’s
rectangle.

The default version of DrawElementSelf, defined in our CCustomListBox class, just
draws a simple piece of text for the contents of a cell. More specialized subclasses,
such as CMyCustomListBox, can override this method to draw other types of cell
contents or to display them in different ways. (In unusual cases, a subclass might want
to override the calling method, DrawElement — to redefine the way highlighting is
done, for example.) Both DrawElement and DrawElementSelf are defined as virtual
methods, ensuring that all calls are directed to the proper version for a particular class
of list. This allows our application to support list boxes of many different kinds
simultaneously, with each going through the same general LDEF, but ultimately
calling its own specialized version of the drawing method.

As an example, Listing 3 shows the DrawElementSelf method for our class
CMyCustomListBox. Each cell of the list displays both a small icon and a text label,
as we saw earlier in Figure 3. The cell data in the List Manager’s list record structure
consists of the icon’s resource ID (resource type 'SICN') and a Pascal-format string
specifying the text:

typedef struct {
short iconID;
Str255 name;

} MyCustomDataRec, *MyCustomDataRecPtr;

The DrawElementSelf method calculates a 16-by-16-pixel rectangle for the icon,
plots it with CopyBits, and then draws the text. There’s no need to override the
DrawElement method, since the standard form of highlighting is all we need.

HIERARCHICAL LISTS
Our next example is a hierarchical “twist-down” list like those in Martin Minow’s
Issue 18 article. Our version lacks a few of the more advanced features of Martin’s —

d e v e l o p Issue 21 March 199586

case lHiliteMsg:
::InvertRect(lRect);
break;

}
}

void CCustomListBox::DrawElementSelf (const Rect *lRect,
const void *lElement,
const short lDataLen)

// Draw contents of a single list element on the screen.
// Default version just draws text; override for other types of data.
{

::MoveTo(lRect->left + 2, lRect->top + 9);
::DrawText(lElement, 0, lDataLen);

}

Listing 2. Custom list definition procedure for CCustomListBox (continued)

for instance, it can’t accommodate script systems like Hebrew and Arabic by
displaying its twist-down buttons on the right instead of the left — but it’s essentially
similar. The important implementation difference is that a sublist doesn’t have to be
present in memory before it’s displayed: the contents are fetched when the sublist is
expanded.

Figure 5 shows the basic data structure representing a twist-down list. Each cell has
an indentation level and a flag byte, followed by a variable-length field holding the
cell’s data. The kHasSubList flag in the flag byte tells whether the cell has a sublist
associated with it; if so, the kIsOpened flag indicates whether the sublist is currently
open (expanded) or closed (collapsed). Cells with a sublist will be drawn with a
triangular twist-down button pointing to the right if the sublist is currently closed,
or down if it’s open.

To expand or collapse a cell’s sublist when the user clicks the triangular button, we
override the list’s ClickSelf method (inherited from the built-in PowerPlant class
LListBox). Expanding a cell adds new cells to the list following it, with an indentation
level that’s 1 greater than its own. Collapsing a cell scans forward through the list and
removes all immediately succeeding cells with higher indentation levels. The detailed
code is too involved to show here, but if you’re interested, you can find it on the CD
in the file CTwistDownListBox.cp.

AN OBJECT-ORIENTED APPROACH TO HIERARCHICAL LISTS 87

Listing 3. Drawing method for CMyCustomListBox

void CMyCustomListBox::DrawElementSelf (const Rect *lRect,
const void *lElement,
const short lDataLen)

{
Rect sicnBox;
MyCustomDataRecPtr cellData = (MyCustomDataRecPtr) lElement;

sicnBox.left = lRect->left + 3;
sicnBox.top = lRect->top - 1;
sicnBox.right = sicnBox.left + 16;
sicnBox.bottom = sicnBox.top + 16;

Handle h = ::GetResource('SICN', cellData->iconID);
if (h != NULL) {

char saveState = ::HGetState(h);
::HLock(h);

BitMap srcBits = { *h, 2, // baseAddr, rowBytes
{0, 0, 16, 16} }; // bounds

GrafPtr port;
::GetPort(&port);
::CopyBits(&srcBits, &(*port).portBits, &srcBits.bounds, &sicnBox,

srcCopy, NULL);

::HSetState(h, saveState);
}
::MoveTo(lRect->left + 24, lRect->top + 10);
::DrawString(cellData->name);

}

Listing 4 shows the redefined version of the DrawElementSelf method, inherited
from CCustomListBox. First we check the cell’s flags to see if it has a sublist; if so, we
draw the triangular button in the appropriate form, depending on whether the sublist
is open, closed, or in transition. The actual drawing of the cell’s contents is factored
out into a separate method, DrawTwistedElement: this allows subclasses to override
just the drawing routine itself, without having to duplicate the logic for drawing the
triangle as well.

A SIMPLE EXAMPLE
The class CMyHierListBox is a subclass of CTwistDownListBox, strictly for
demonstration purposes. It isn’t a particularly realistic example, but it does show
how to specialize CTwistDownListBox to implement a simple hierarchical list. Each
level of the hierarchy just consists of the words “One” through “Five” (see Figure 6).

d e v e l o p Issue 21 March 199588

Basic list element

indent flags

0 0

0 kHasSubList + kIsOpened

1 0

1 kHasSubList

data

data

data

data

data

0 0 data

Figure 5. Structure of a hierarchical list

Figure 6. A hierarchical list

Every cell automatically has a sublist; you can keep opening sublists as long as you
like, to unlimited depth (or until you run out of memory, anyway!).

The only method CMyHierListBox needs to redefine is ExpandElement (see
Listing 5). The new version simply adds five new rows of dummy data following
the cell being expanded. We don’t have to override any other methods, since the
superclass, CTwistDownListBox, already implements text elements by default. (For
simplicity and clarity, we’ve simply hard-coded the words “One” through “Five”
directly into the program itself; in real life, we would want to define them as
resources to make modification and localization easier.)

A MORE INTERESTING EXAMPLE
This example is borrowed directly from Martin Minow’s article. CMyDiskListBox is
a subclass of CTwistDownListBox that displays the folder and file hierarchy on all
currently mounted disk volumes, with each line preceded by a small icon as in our
earlier CMyCustomListBox example (see Figure 7).

AN OBJECT-ORIENTED APPROACH TO HIERARCHICAL LISTS 89

Listing 4. Drawing method for CTwistDownListBox

void CTwistDownListBox::DrawElementSelf (const Rect *lRect,
const void *lElement,
const short lDataLen)

// Draw a single list cell on the screen.
// Checks flags and draws triangular button if needed;
// calls DrawTwistedElement to draw cell contents.
{

TwistDownRecPtr twistElement = (TwistDownRecPtr) lElement;

if (TestTDFlag(twistElement->flags, kHasSubList)) {
PolyHandle aPoly = NULL;
aPoly = TestTDFlag(twistElement->flags, kIsOpened) ?

sOpenedPoly : sClosedPoly;
if (TestTDFlag(twistElement->flags, kDrawIntermediate))

aPoly = sIntermediatePoly;
if (aPoly)

DrawTriangle(aPoly, TestTDFlag(twistElement->flags,
kDrawFilled), lRect->top + 1,
lRect->left + kTriangleOutsideGap);

}

// Adjust pen position for triangle and indent.
::MoveTo(lRect->left + triangleWidth + 2 +

twistElement->indent * kIndentOffset, lRect->top + 10);
DrawTwistedElement(lRect, twistElement, lDataLen);

}

void CTwistDownListBox::DrawTwistedElement (const Rect *lRect,
const TwistDownRecPtr twistElement,
const short lDataLen)

// Draw contents of a single list element.
// Default version just draws text; override for other types of data.
{

::DrawText(twistElement->data, 0, lDataLen - TwistDownRecSize);
}

d e v e l o p Issue 21 March 199590

Listing 5. Cell expansion method for CMyHierListBox

static StringPtr myElements[] = {
"\pOne", "\pTwo", "\pThree", "\pFour", "\pFive"

};

void CMyHierListBox::ExpandElement (const Cell theCell)
{

short num = sizeof(myElements) / sizeof(StringPtr),
i,
indent = 0;

Cell cell = {0, 0};
Byte buffer[100];
TwistDownRecPtr thisTwist = (TwistDownRecPtr) GetCellPtr(theCell);
TwistDownRecPtr anElement = (TwistDownRecPtr) buffer;

if (thisTwist)
indent = thisTwist->indent + 1;

::LAddRow(num, theCell.v + 1, mMacListH);

for (cell.v = theCell.v + 1, i = 0; i < num; i++, cell.v++) {
anElement->indent = indent;
anElement->flags = 0x01; // has sublist
::memcpy(anElement->data, myElements[i] + 1, *myElements[i]);
::LSetCell(anElement, sizeof(TwistDownRec) - 2 + *myElements[i],

cell, mMacListH);
}

}

Figure 7. A disk list

The following structure contains the data for each cell of the list:

typedef struct {
TwistDownHeader hd;
long refNum;
char vRefNum;
Byte tag;
char name[2];

} DiskListRec, *DiskListPtr;

The data structure in the first field, TwistDownHeader, is inherited from the
superclass (CTwistDownListBox) and contains the indentation level and the flag byte.
Next come the file and volume reference numbers. The tag byte identifies this item
as either a file, a folder, or a volume. The name field actually has variable length:
when drawing the cell’s contents, we know the total length of the cell data, so we can
deduce the true length of the name.

Space is at a premium when dealing with the List Manager, because of its 32K
limit on the total size of a list record and its associated cell data. That’s why we’ve
saved a little space in the definition of the DiskListRec structure by making the
vRefNum field a character instead of a short integer. This sacrifices a bit of speed
when retrieving or storing the volume reference number, but avoids wasting an extra
byte for word alignment. For the same reason, we also specify 68000 alignment in
our Power Macintosh implementation.•

Because CMyDiskListBox draws more than just text in each cell of the list, it must
override the DrawTwistedElement method inherited from CTwistDownListBox.
Listing 6 shows the new version, which reads in the appropriate small icon from the
system resource file, calls a subsidiary function, PlotSICN, to draw it, and then draws
the text to go with it.

We also need to override the ExpandElement operation to look up the contents of a
folder, using the file system calls PBHGetVInfo and PBGetCatInfo, and insert them
in the list. (Our constructor method calls this same function to initialize a newly
created list to the set of currently mounted volumes.) You’ll find the code for this
operation in the file CMyDiskListBox.cp on the CD. The new ExpandElement
method doesn’t allocate memory or do anything else that needs to be cleaned up
later, so there’s no need to override its companion method, CollapseElement.

There’s a change in the resource file, too: instead of just using a class alias, as we did
for our other example classes, we define our own resource template for
CMyDiskListBox.

case DiskListBox:
key literal longint = 'dlst';
PP_ListBoxData;

This definition is placed in a separate template file, which must be defined in the tool
server script and exported, so that it will be included with PowerPlant’s own
templates. We can then refer to our template by name when defining the 'PPob'
resource in our main resource description (.r) file:

ObjectData {DiskListBox {
...

}}

AN OBJECT-ORIENTED APPROACH TO HIERARCHICAL LISTS 91

In this case, defining our own template yields the same results as using a class alias, so
it’s just a matter of taste. But if you want flexibility, defining your own templates is the
way to go: you can add or change existing resource definitions to suit your own
classes. Just look at the various LPane subclass implementations in PowerPlant to see
how easy it is!

d e v e l o p Issue 21 March 199592

Listing 6. Drawing method for CMyDiskListBox

const short sicnID[] = { // system icon IDs
-3995, // tag_disk
-3999, // tag_folder
-4000 // tag_file

};

const Size DiskListRecSize = sizeof(DiskListRec) - 2;
// don't count the name field

void CMyDiskListBox::DrawTwistedElement (const Rect *lRect,
const TwistDownRecPtr lElement,
const short lDataLen)

// Draw contents of a single list element, including icon.
{

Point pen;

::GetPen(&pen);

Handle h = ::GetResource('SICN', sicnID[DiskListPtr(lElement)->tag]);
if (h != NULL) {

Rect box = {lRect->top - 2, pen.h, lRect->top + 16 - 2,
pen.h + 16};

::PlotSICN(&box, h);
}
::Move(21, 0);
::DrawText(DisListPtr(lElement)->name, 0,

lDataLen - DiskListRecSize);
}

static void PlotSICN (Rect *rect, Handle sicnList)
// Draw the icon for a list element.
{

GrafPtr port;
char saveState = ::HGetState(sicnList);
::HLock(sicnList);

BitMap srcBits = { *sicnList, 2, // baseAddr, rowBytes
{0, 0, 16, 16} }; // bounds

::GetPort(&port);
::CopyBits(&srcBits, &(*port).portBits, &srcBits.bounds, rect,

srcCopy, NULL);

::HSetState(sicnList, saveState);
}

YOU TAKE IT FROM HERE
I hope you can see by now that the object-oriented approach makes it easy to define
new kinds of hierarchical lists for your applications. The examples in this article are
just a starting point: the rest is up to you.

If you’re a true object aficionado, you’ll want to make your list elements full-fledged
objects instead of just simple data structures. You could modify our disk list example
to display its icons in color instead of black and white, or to use each application or
document’s actual icon instead of the generic ones from the system resource file. Or
how about letting the user drag and drop files from one folder to another within the
list box? (PowerPlant provides predefined classes to support drag and drop, so
building it into your application is easier than you might think. I know, because I’ve
done it.)

The possibilities are limited only by your imagination. So get to work and see what
you can dream up!

AN OBJECT-ORIENTED APPROACH TO HIERARCHICAL LISTS 93

Thanks to our technical reviewers Nitin
Ganatra, Martin Minow, Avi Rappaport, and
Jeroen Schalk.•

Yearn no more: write for develop. We’re always looking for people
who might be interested in submitting an article or a column. If
you’d like to spotlight and distribute your code to thousands of
developers of Apple products, here’s your opportunity.

If you’re a lot better at writing code than writing articles, don’t
worry. An editor will work with you. The result will be something
you’ll be proud to show your colleagues (and your Mom).

So don’t just sit on those great ideas; feel the thrill of seeing them
published in develop!

For Author’s Guidelines, editorial schedule, and information
on our incentive program, send a message to DEVELOP on
AppleLink, develop@applelink.apple.com on the Internet, or
Caroline Rose, Apple Computer, Inc., One Infinite Loop,
M/S 303-4DP, Cupertino, CA 95014.

Do you yearn for the adulation of your colleagues?

YOUR NAME HERE

YOUR PHOTO HERE

As described in Chapter 3 of Inside Macintosh:
QuickTime, the Image Compression Manager performs
compression and decompression by invoking image
compressor and decompressor components. These
components, called codecs, present a standard interface
to the Image Compression Manager using the
Component Manager. But each codec is unique
because each implements a different compression and
decompression algorithm. Codecs can vary greatly in
the three major characteristics that are used to judge
image compression algorithms: compression ratio,
compression speed, and image quality. QuickTime 2.0
ships with eight codecs that can be selected for use by
your QuickTime application under various conditions.
In addition, users or third-party products can install
custom codecs into the system by simply placing them
in the Extensions folder.

With all the choices for image compression and
decompression, the only way to choose the best codec
for a particular purpose is to have some understanding
of all the codecs available on your system. Inside
Macintosh provides general descriptions of the standard
QuickTime codecs, but detailed information is
important in making an intelligent codec selection.
The way to find this detailed information is to
communicate programmatically with the codec and
request its capabilities through the codec call
CDGetCodecInfo. As described in Inside Macintosh:
QuickTime Components, this call returns a compressor
information structure.

For example, information about what pixel depths a
compressor supports for storing image data is
important to choosing the right codec. If your

application creates and compresses a picture, the
decision of whether to create the picture in 8-bit, 16-
bit, or 32-bit color can be based partially on what pixel
depths the compressor supports. If the compressed data
can store only 16 bits of color information, it would be
inefficient to create a picture with 32 bits of color.

Accompanying this column on this issue’s CD is the
sample application GetCodecInfoApp, which (by
calling CDGetCodecInfo) allows you to easily obtain
detailed information about codecs installed in your
system. I’ll discuss GetCodecInfoApp and point out
some characteristics that should be considered in
choosing a codec.

USING CODECS
There are actually two separate parts to a codec: one
for the compression and one for the decompression.
Not all codecs provide both; nevertheless, all
compressor and decompressor combinations are
referred to as codecs. One example of a decompression-
only codec is the codec that comes with the QuickTake
100 digital camera from Apple. The hardware in the
QuickTake 100 camera performs the compression and
downloads compressed data to the Macintosh. The
Macintosh only needs to perform decompression.

A compressor is a component of type compressor-
ComponentType ('imco') and a decompressor is a
component of type decompressorComponentType
('imdc'). Detailed information on writing a codec is
provided in Chapter 4 of Inside Macintosh: QuickTime
Components. But to select the appropriate codec to use,
you don’t need to do any programming; you can simply
use GetCodecInfoApp, without any need to understand
how it was written. This application creates a text file
containing a report of all the codec components
installed in your system. For example, the output for
the Cinepak codec looks like this:

Compressor Name: Cinepak

- version = 1
- revisionLevel = 1
- vendor = appl
- compressionAccuracy = 128
- compressionLevel = 128
- minimum height = 1
- minimum width = 1
- compress pipeline latency = 0

SOMEWHERE IN
QUICKTIME

Choosing the
Right Codec

JOHN WANG

d e v e l o p Issue 21 March 199594

JOHN WANG (AppleLink WANG.JY) used to be a proud
member of the PIGs (Printing, Imaging, and Graphics group) in
Apple’s Developer Technical Support group. But he decided that
there are other challenges in life and programming. So now John
spends his entire day waiting for MPW to compile code that he’s

writing in his software engineering role in the Image Capture
group. Just in case you fail to notice, we’re sure he’d like us to
point out that he makes a gratuitous plug for his group’s product,
the QuickTake 100 digital camera, in this column.•

- compression capabilities:
directly compresses 32-bit pixel maps
supports temporal compression
can recompress images without accumulating

errors
can rate constrain to caller defined limit

- compression format:
can store images in 24-bit color
can store images in 8-bit grayscale
can store custom color table
compressed data requires non-key frames to be

decompressed in same order as compressed
- estimated compression speed:

640x480 32-bit RGB = 11485 milliseconds

Decompressor Name: Cinepak

- version = 1
- revisionLevel = 1
- vendor = appl
- decompressionAccuracy = 128
- minimum height = 1
- minimum width = 1
- decompress pipeline latency = 0
- decompression capabilities:

directly decompresses into 32-bit pixel maps
supports temporal compression
can recompress images without accumulating

errors
can rate constrain to caller defined limit

- decompression format:
can decompress images from 24-bit color

compressed format
can decompress images from 8-bit grayscale

compressed format
can store custom color table
compressed data requires non-key frames to be

decompressed in same order as compressed
- estimated decompression speed:

640x480 32-bit RGB = 56 milliseconds

GetCodecInfoApp gets information about codecs by
calling the codec’s CDGetCodecInfo function, which
all codecs must support; if you’re writing a codec, it’s
important to report your capabilities with this function.
To measure the codec’s speed, the application actually
passes it an image to compress or decompress, and
reports the result.

The Image Compression Manager function GetCodecInfo
can also be used to obtain information about codecs, but only
for compressor codecs; you won’t be able to get information
about decompression-only codecs with GetCodecInfo.•

An example of a characteristic you can determine
with GetCodecInfoApp is what pixel depths the

decompressor can decompress directly into. This is
important because it affects the speed of the image
decompression. If the codec can’t decompress directly
into the destination pixel map, the Image Compression
Manager will have to decompress into an offscreen
buffer and move the image data into the destination
after converting the pixel depth. This results in
additional memory and processor bandwidth
requirements. If you know exactly what pixel depths a
decompressor supports, you can set up the destination
for the best performance.

Most codecs support only a limited number of pixel
depths for the compressed data storage format. For
example, the Video Compressor will store image data
only in 16-bit color. If you compress a 32-bit color
image, you’ll lose information, since the compressed
format will store the equivalent of 16 bits of data. The
pixel depth for the compressed data storage format also
determines which of the different compression settings
are available — for example, the pixel depth pop-up
menu for Compression Settings displayed by the
standard image-compression dialog component (used,
for example, by Picture Compressor, an application
that’s part of the QuickTime Starter Kit) will only
allow you to choose Color for the Video Compressor.
The Animation Compressor is one of the few
compressors that will store compressed data in nearly
all pixel depth formats: Black and White, 4 Grays, 4
Colors, 16 Grays, 16 Colors, and so on.

When compressing movies, you’ll often want to select
a codec that supports temporal compression; not all
codecs do. Temporal compression is the use of frame
differencing to compress consecutive image frames by
skipping data that doesn’t change from frame to frame.
Temporal compression is useful only for sequences of
images stored as QuickTime movies. Knowing which
codecs support temporal compression will allow you to
choose the best codec for compressing sequences.

If you’re compressing pictures with scientific data, it
may be extremely important that there be no image
quality loss. In this case, you’ll want to look for a codec
that supports lossless compression. For example, the
Photo Compressor (JPEG codec) is a lossy codec
because even at the highest quality setting, there may
still be some loss of image quality. On the other hand,
the Animation Compressor is lossless at higher quality
settings and will preserve every pixel value.

There are many additional features a codec may
support that are important to know. For example,
certain codecs will support data spooling so that only
portions of the compressed data need to be read into
memory at any one time. This can be a requirement

SOMEWHERE IN QUICKTIME: CHOOSING THE RIGHT CODEC 95

when working with very large compressed images
that will be displayed in systems with limited memory.
Another example is support for stretching to double
size during decompression. This is extremely useful,
since the performance is much greater if the scaling is
performed during decompression rather than as a
separate step after decompression.

SOME RECOMMENDATIONS
For most video clips, the Cinepak Compressor is
the recommended codec. As you can see from
GetCodecInfoApp’s report, this codec is very slow in
compression. However, its decompression speed and
compression level are excellent, making it the best
choice for most video data for CD-ROM playback.

An alternative to Cinepak is the Video Compressor.
Since its compression speed is fairly quick, it’s better
for an application that requires fast compression.

If your source material is animation graphics in a
movie, there are several compressors that may do the

job. The Animation Compressor and Graphics
Compressor may be equally suitable. In this case, you
may need to experiment to determine which is the best
codec to use.

Finally, if you’re compressing photo images, the Photo
Compressor is the best codec to use. It has only
moderate compression and decompression speed, but
the compression ratio and quality are excellent and the
compression ratio scales accordingly with image
quality. If you want better image quality at the expense
of larger compressed data size, you can easily achieve
this with the Photo Compressor.

PRESSING ON
If you’re writing a codec, you can see from this column
that it’s very important to properly report the codec’s
capabilities; GetCodecInfoApp may be useful for you
to verify that your codec is doing this properly. For the
rest of you, I hope this column has provided some
insight on how to choose the right codec for producing
the best movies and compressed images.

d e v e l o p Issue 21 March 199596

Thanks to Peter Hoddie, Don Johnson, Kent Sandvik, and Nick
Thompson for reviewing this column.•

From Elvis, OK.

From your develop subscription, not OK. Because “return to sender” means you didn’t get the
articles, Q&As, sample code, Technical Notes, Inside Macintosh previews, and other documentation
we enclose four times a year.

Please take a moment to review your recent mailing label or statement. If you’ve moved, or
will be moving soon, let us know. You can e-mail your address change to us at AppleLink
DEV.SUBS, or write develop Customer Service, P.O. Box 531, Mount Morris, IL 61054-7858.
For fastest service, include your full name, mailing address, and account number on all subscription-related correspondence.

Q I’m about to write my first QuickDraw GX printer driver (for a laser printer) and
plan to base it on the sample code “Generic LaserWriter.” Is there anything I need to
know about that code?

A There are two bugs that you might need to know about, depending on which
version of the sample you’re using. Both are very easy to fix.

• In versions previous to those in the QuickDraw GX Developer’s Kit (which
is now part of the Mac OS Software Developer’s Kit), a device ID of $88 is
specified in the file ChooserSupport.a. For QuickDraw GX, the device ID
should always be $A9. (This bug also slipped through in the “LaserWriter--
custom dialogs” sample in the Developer’s Kit.)

• For all the versions of the code in the Developer’s Kit, we improved the file
ChooserSupport.c by adding better error handling, making everything
universal, and removing unnecessary code; however, we forgot to add ALRT
-4095 and DITL -4095 to the driver. If the Chooser code fails, it tries to put
up a “You’re hosed” alert, which doesn’t exist. You should still use this
improved version if you can; you can just copy the missing resources from
any of the other sample LaserWriter drivers in the Developer’s Kit.

Q I’ve just ported my application to the Power Macintosh and I want it to optionally use
the Speech Manager. But if I try to launch the application when the Speech Manager
isn’t installed, the Finder puts up a dialog that says “The application ‘GonzoApp’ could
not be opened because ‘SpeechLib’ could not be found.” How can I get my application to
launch in this case?

A The Finder refuses to launch your application because the Code Fragment
Manager (CFM) believes your application is “hard linked” to SpeechLib. The
CFM assumes your application can’t run at all without SpeechLib and that all
references to SpeechLib must be resolved. Since it can’t locate SpeechLib, it
refuses to launch your application.

To get around this, the CFM supports a concept called “weak linking.” In this
case, it allows references to the library to be unresolved at run time, and it’s up
to the application (that is, your code) to check that it’s safe to make calls to the
library. If you don’t check, your application will crash the first time it tries to
call the library.

The best way to check that a weak-linked library is installed is to check that the
address of a function in the library has been resolved. For example:

Boolean HasSpeechLib()
{

/*
* Check the address of some function in the library.
* SpeechManagerVersion is convenient.
* kUnresolvedSymbolAddress is defined in FragLoad.h.
*/
return (SpeechManagerVersion != kUnresolvedSymbolAddress);

}

Note that this is not a replacement for using Gestalt to determine whether
services are available; you should still use Gestalt to determine whether the
Speech Manager is installed. The above code is an additional check for native
applications, to ensure that the necessary library functions are available.

Macintosh
Q & A

d e v e l o p Issue 21 March 199598

How you weak-link your application to a particular library depends on your
development environment. Using the PPCC tools, you would specify weak
linking with the following option to MakePEF:

-l SpeechLib.xcoff=SpeechLib~

Note the tilde (~) character at the end: this specifies a weak-linked library. In
Metrowerks CodeWarrior, when you add SpeechLib to the project, the little
pop-up menu on the right side of the project window will have an “Import
weak” option that you can use to enable weak linking. Other development
environments may use different methods for designating a weak-linked library.

Q To make my application localizable, I want to use ExtendedToString and
StringToExtended to convert floats to strings and strings to floats. These routines,
though, use the SANE extended format, which is quite archaic. What’s the best way to
convert a float to an extended to pass to ExtendedToString? It should compile on both
680x0 and PowerPC machines with MPW, Metrowerks, and THINK C.

A On PowerPC machines, extended80 and extended96 do not exist, except as
structures. There are a number of (PowerPC-only) conversion routines in fp.h,
like x80told. Your formatting code can be written as follows:

#include <fp.h>
#include <TextUtils.h>

void LongDoubleToString (long double ld,
const NumFormatString *myCanonical,
const NumberParts *partsTable,
Str255 outString)

{
#if defined(powerc) || defined (__powerc)

extended80 x;

ldtox80(&ld, &x);
ExtendedToString(&x, myCanonical, partsTable, outString);

#else
#ifdef mc68881

extended80 x;

x96tox80(&ld, &x);
ExtendedToString(&x, myCanonical, partsTable, outString);

#else
ExtendedToString(&ld, myCanonical, partsTable, outString);

#endif
#endif
}

Note that long double is equivalent to extended80 or extended96 on 680x0,
and 128-bit double-double on PowerPC. If you want to format a double, just
pass it in and the compiler will take care of converting double to long double or
double to extended.

SANE.h is being replaced by fp.h, for both 680x0 and PowerPC. This issue’s
CD contains the libraries and interfaces for this new numerics package, which

MACINTOSH Q & A 99

implements the Floating-Point C Extensions (FPCE) proposed technical draft
of the Numerical C Extensions Group’s requirements (NCEG/X3J11.1).

For more information on how to convert a SANE program to PowerPC, see
Inside Macintosh: PowerPC Numerics, Appendix A. In principle, you should
replace all use of extended with double_t. The double_t type maps back to
long double for 680x0, which is the same as extended; for PowerPC, it maps
to 64-bit double, which is the fastest floating-point format. Only when you
read or write 80- or 96-bit SANE numbers to files, or when you want to use any
of the Toolbox routines that take an 80-bit extended parameter, do you need to
use conversion routines.

Q I’d like to automatically configure printing in portrait or landscape mode without
requiring the user to go through the Page Setup dialog. How do I go about doing this?

A The traditional Macintosh printing architecture provides no support for
changing the page orientation programmatically. At the time the Printing
Manager was designed (about ten years ago!), there was kind of an overreaction
regarding the principle of the user being in control, so we’ve had to live without
a dependable way of changing a print record without the user’s help. The good
news is the QuickDraw GX printing architecture does support changing print
dialogs programmatically, and QuickDraw GX will eventually be replacing the
old printing architecture.

If you’re interested in finding a workaround in the traditional printing
environment, the only one we can offer is to prepare a couple of print records
with the desired settings ahead of time and include them in your application.
Then you can select the appropriate one based on the high-order byte of the
TPrStl.wDev field of a validated print record. If the current printer driver has a
value you don’t know about, ask the user to go through the Page Setup dialog
once to set landscape mode. Your application can then save the print record
after it’s filled out by PrStlDialog (again, indexed by the high byte of the wDev
field).

The best method for saving the print record is to save it as a resource in your
document’s resource fork. Make your resource type something different from
those used by the Printing Manager, to prevent the Printing Manager from
getting confused and grabbing the wrong resource.

Remember, you need to be careful: watch the high byte of the wDev field, and
call PrValidate before passing a print record to PrOpenDoc. Also, take a look at
Inside Macintosh: Imaging With QuickDraw; pages 9-17 and 9-18 provide some
valuable information.

Q I want to create a mask for a picture, such that the mask is 0 wherever the picture’s
pixels are pure white, and 1 everywhere else. My first try was to simply use CopyBits to
copy the rectangle enclosing the PICT onto a same-sized rect in a 1-bit-deep offscreen
world. This didn’t work, however, as the yellows get transformed to 0, which is not
what I want. I tried various transfer modes with CopyBits (from 0 to 100) to no avail.
The SeedCFill and the CalcCMask routines don’t seem to be what I want either,
because it appears that their masks have to be keyed off a certain point or side(s). I can
take the brute force approach and go through the pixels of the PICT one by one,
checking to see if they’re white and setting the mask accordingly, but this seems insane.
Is there a good method for doing this?

d e v e l o p Issue 21 March 1995100

A The way to do this is to install a custom color search procedure, then call
CopyBits to copy into the 1-bit GWorld and let the search proc determine the
color to use. The search proc would simply look at the color asked for and
return white if it’s white or black if it’s nonwhite. See “Color Manager” in Inside
Macintosh: Advanced Color Imaging (on this issue’s CD and forthcoming in print
from Addison-Wesley).

Q I heard that you can use LaserWriter 8.1.1 with QuickDraw GX with some patch. Is
this true? If so, how?

A You can install an option called QuickDraw GX Helper. To do this, launch the
installer document for QuickDraw GX and choose Custom Install from the
pop-up menu in the top left of the window. A list appears with a bunch of
options, with checkboxes next to them. Click the small triangle next to the
QuickDraw GX Utilities option; then check the QuickDraw GX Helper option
below that.

After you install and reboot, Helper will be available to you. It works only with
old-style “classic” printing applications (though there’s nothing classic about the
old Printing Manager :-); if you’re using a QuickDraw GX–savvy application,
Helper won’t help. When you’re in a “classic” printing application, there’s a
new option, Turn Desktop Printing On (or Off) in the Apple menu.

Be aware that this is more than a patch. Literally, it’s an unpatch! It removes
some of the QuickDraw GX patches and is really a bit of a hack, provided for
convenience. Because of this, there isn’t much of an interface. For instance,
when desktop printing is turned off, the printer used is the one selected the last
time that “classic” driver was used. To change to a different printer, you need to
reboot without QuickDraw GX, choose a new printer in the Chooser, then
reboot again with QuickDraw GX.

Here are some additional things to note:

• Helper will choose LaserWriter 7.x over LaserWriter 8 (because LaserWriter
7.x was called “LaserWriter,” whereas LaserWriter 8.x is called “LaserWriter
8,” and the former is ordinally before the latter). As you probably know,
QuickDraw GX can’t tolerate multiple printer drivers with the same creator
codes, so it just picks the first one. Therefore, you should ensure that you
have only one driver of each type in your Extensions folder.

• Of course, before turning off desktop printing you need to ensure that you
have the appropriate desktop printer selected: if you want LaserWriter 8.1.1
selected when you turn off desktop printing, make sure a LaserWriter is the
selected desktop printer; if you want ImageWriter to be selected when you
turn off desktop printing, make sure an ImageWriter is the selected desktop
printer; and so on.

• Helper works only with Apple drivers. If you need to print with another
driver, rebooting without QuickDraw GX is the only option.

Q I’m trying to get a gxFont ID based on a given font name (for example, “Times”), and
I’ve run across a confusing situation using GXFindFonts. Below is the call I’m using,
and it gives an “inconsistent parameters” error. Can you tell me why this error occurs
and what I’m doing wrong? Using gxFullFontName doesn’t work in finding the font
in this case. Using gxNoFontName gives errors with or without the font family ID;
when should this indicator be used?

MACINTOSH Q & A 101

GXFindFonts(theFontFamilyID, // font family
gxNoFontName, // font name
gxMacintoshPlatform, // font platform
1, // default -> gxRomanScript
1, // default -> gxEnglishLanguage
strlen(name), // name length
(unsigned char*)name, // the name
1, // matching font
1, // number of matches
&fontID // font reference);

A GXFindFonts is the Swiss Army knife of font-finding routines. You can use it to
find one font or a set of fonts. You can have it base the search on nearly any
combination of family name, style name, script type, or other font properties.
Unfortunately, the combination of arguments it expects in order to work in its
myriad ways can be a bit confusing — it’s easy to cut your finger on one of the
blades and get an “inconsistent parameters” error.

The first argument passed (font family) is itself a gxFont structure. This
argument, if not nil, allows you to restrict the search to those fonts that have the
same family as the argument.

Each gxFont has several types of name string associated with it. As documented
on page 7-7 of Inside Macintosh: QuickDraw GX Typography, there’s a font family
string, style string, unique name string, full font name string, and so on for
each font. The second argument passed to GXFindFonts (the meaning
argument) is one of the gxFontNames constants listed on page 7-79. This
argument, if not gxNoFontName, specifies which of the font’s names to
compare with the seventh argument to determine a match. If the second
argument is gxNoFontName, GXFindFonts ignores the seventh argument and
assumes that you’re basing your search on other criteria, such as platform,
script, or language (arguments 3, 4, and 5, respectively).

The seventh argument (name), if not nil, is the name string that you want to
search for, and the sixth argument (nameLength) is the length of that string.

GXFindFonts may find more than one font that matches the criteria. The
eighth argument (index) is the index of the first of these fonts that you want
GXFindFonts to return. The ninth argument (count) is the maximum number
of fonts that you want GXFindFonts to return. So, for example, if you specify
criteria that match ten different fonts, but you want GXFindFonts to return
only the fifth, sixth, and seventh of these fonts, you’d pass 5 for the index and 3
for the count.

The tenth argument (fonts) is a pointer to a buffer in which GXFindFonts will
return the matches it finds. This argument can be nil if you don’t want the fonts
returned — for example, if you just want to find out the number of matches to
your desired search (the number of matches is returned as the function result).

You got an error because you passed in a string to search for (in the sixth and
seventh arguments) and yet specified gxNoFontName in the second argument.
These arguments are inconsistent; fortunately you were using the debugging
version of GX and received an error.

But, to return to my pocket knife analogy, sometimes it’s simpler and safer to
use a Buck knife instead of a Swiss Army knife (only one blade, and it locks!). If

d e v e l o p Issue 21 March 1995102

getting a font ID based on a font name is all you need to do, you should
consider using the FindCNameFont function in font library.c. With this routine
you can simply call

fontID = FindCNameFont(gxFullFontName, name);

instead of the nasty, multiple-parameter GXFindFonts. There are several other
useful tools in font library.c which are also worth a look.

Q Perhaps you can clear up a long-running dispute we’ve had in our office. Long ago I
read that the “Mac” in MacsBug doesn’t stand for Macintosh, but is an acronym for
something that starts with “Motorola.” Please put my mind to rest.

A MacsBug stands for Motorola advanced computer systems debugger.

Q My application is going to support only the four “required” Apple events plus one
custom event (the application will have an 'aete' resource). What’s the desired behavior
of the 'pdoc' event? The real question is, if the user selects a file type that this application
created and chooses Print from the File menu, should a dialog box be presented to the
user? Obviously, if the application receives the event from another application or a
scripting system, we don’t want to display the Print dialog (possibly on a remote
machine). Should the behavior be different if the Finder sends the event? Should there
be one or two ways of handling the event?

A Here’s how your application should behave upon receiving a 'pdoc' event: If all
you get is a 'pdoc', you should just print without user interaction. The user, or
whoever, is just using you as a service to print a document. Start your printing
without any dialogs, using whatever default print record you get from PrDefault.
You do not have to quit; the Finder will send you a 'quit' Apple event as the next
event you get.

If you’re already running (that is, you were started with an 'oapp' or 'odoc'
event) and you get a 'pdoc' event, you should treat that one in the same way as a
user Print menu selection. You might be required to put up a dialog. Always
remember to call AEInteractWithUser before putting up a print dialog (or any
dialog) to be sure you have the right to interact, and be prepared to use default
actions if you can’t interact.

Q The Macintosh Quadra 630 Developer Note, page 68, says “You should be familiar
with the ATA IDE specification, ANSI proposal X3T9.2/90-143, Revision 3.1.”
Where can I find this document?

A Apple’s implementation of IDE is documented in the Developer Notes for the
Macintosh Quadra 630 and the PowerBook 150. The ANSI IDE standard has
been renumbered as X3.221 Revision 4A, April 93. You can order it (and other
ANSI documents) from Global Engineering Documents; call 1-800-854-7179
in the U.S., or (303)792-2181 elsewhere. The cost is $25 plus shipping.

Q I’m trying to print a document with over 60 different fonts in it under QuickDraw
GX, and I get an (unknown) error -27881. The document doesn’t print. Is this a bug?
This document will, however, print on non–QuickDraw GX systems to the LaserWriter
8.1.1 driver and presumably other drivers as well. We haven’t been able to find an
equivalent to the non–QuickDraw GX “unlimited downloadable fonts” setting under

MACINTOSH Q & A 103

QuickDraw GX. Is there a workaround to this problem? I realize that it’s somewhat of
a ridiculous case, but people do actually do this.

A This is not a QuickDraw GX bug. It seems likely, given the error you’re seeing,
that this is a problem with one of the fonts you’re using.

If you use the gerror dcmd included with the QuickDraw GX Developer’s
Kit (or plow through the file graphics errors.h), you’ll see that the error is
font_scaler_streaming_aborted. This tells you that the streaming was aborted
for some reason; a common reason would be that the naming table in the font
is bad. You should be able to determine the exact cause of this using the
PSMirrorFile extension (which you can find in the Printing Extensions folder
in the Developer’s Kit). This extension will log to a file the dialog with a
PostScript printer; it really helps during debugging.

What all this implies is that one of the fonts you’re trying to use is bogus. You
need to determine which one is causing your problem and remove it. You may
be able to do this by successively dividing your document into halves until you
find the section of the document that’s causing the problem.

Q I’d like to know how to do chroma keying in QuickTime. I’m under the impression that
this is possible, but haven’t been able to figure out how by digging through Inside
Macintosh.

A All you need to do is call SetVideoMediaGraphicsMode, setting graphicsMode
to transparent and setting opColor to whatever color you want to be
transparent.

Media theMedia;
MediaHandler theHandler;
RGBColor theKeyColor;

... // Set up key color and get the track.

theMedia = GetTrackMedia(theTrack);
theHandler = GetMediaHandler(theMedia);
MediaSetGraphicsMode(theHandler, transparent, &theKeyColor);

Note that since QuickTime currently uses QuickDraw to do the compositing,
this approach can be rather slow.

Q I’d like to add a volume control style slider to my dialogs. I don’t really want to have to
implement my own CDEF since this must have already been done by many others. Is
there anywhere I can pick one up?

A In the Sample Code folder on this issue’s CD, as part of AppsToGo, there’s a
sample program called Kibitz that uses a slider CDEF. You can use that one as
the basis for writing your own control. You’ll have the source as well as the
object code. The code should be adaptable to your needs; if you don’t like the
way the slider looks, you can easily change it using a resource editor (the
resource type of slider parts is 'cicn').

Q I’m writing a real-time video application and would like to open file data forks for
reading/writing at interrupt time (in a deferred task). What’s the best call to do this?

d e v e l o p Issue 21 March 1995104

A You can open files at interrupt time as long as you make the PBHOpen,
PBHOpenDF, or PBHOpenRF call asynchronously. These calls are always safe
at interrupt time; they’ll get queued if the File Manager is busy with another
call, letting the current request complete before processing your request. See
the article “Asynchronous Routines on the Macintosh” in develop Issue 13 for
complete information. The article explains when, why, and how you should use
functions asynchronously on the Macintosh.

Q I was relying on sample code from Inside Macintosh to spool shapes when printing under
QuickDraw GX, but it seems to be causing my application to crash. The code I’m using
is in Inside Macintosh: QuickDraw GX Environment and Utilities, on page 1-22,
Listing 1-6. Is that code correct?

A The code is correct in the context in which it’s given, but shouldn’t be used for
printing. Calling GXDisposeShape from the spoolProc while printing is what
causes your crash: the QuickDraw GX printing mechanism disposes of the
shapes for you.

Q I’m trying to incorporate the minimal support for QuickDraw GX printing in my
application, and I’ve run into a problem. For a start, I’m using Simple Sample GX, the
sample code Dave Hersey wrote for his article “Adding QuickDraw GX Printing to
QuickDraw Applications” in develop Issue 19. I made necessary modifications to this
code for the printing method I’m using: our printing is basically 90% text output,
which is paginated on the fly based on the size of the print page that’s returned by the
printing code. Crashes occurred, however, and I finally narrowed them down to
DrawText or DrawString calls with only one character, or only one character followed
by a space. Is this a bug?

A Yes, it’s a bug in the glyph code. We expect to fix this in the 1.1 release of
QuickDraw GX (which should be available by the time you read this) but here’s
an easy workaround for QuickDraw GX 1.0.1 and 1.0: convert any glyph shapes
to path shapes. In your spoolProc, after you get the shape type (as in Simple
Sample GX), do this:

if (theShapeType == gxGlyphType)
GXSetShapeType(currentShape, (theShapeType = gxPathType));

This will convert any glyphs to paths, and will circumvent the problems in the
glyph code. I’ve verified that this works using Simple Sample GX and also in
your test case. Note also that you will lose any hinting information, so the text
may appear slightly different.

Q What’s the data that’s passed when the Drag Manager sends a catalog directory, of type
flavorTypeDirectory? The documentation says it’s a DSSpec, but it’s too small. Is it a
packedDSSpec?

A The documentation is wrong. It’s a packedDSSpec, as you thought.

Q Our application needed a source of uniform random numbers to generate statistical
distributions, and we used the built-in Random function for this. A number of our users
need to know the algorithm of Random because statisticians (as any mathematician)
need to produce a numerical audit trail to document their work. I looked at the assembly

MACINTOSH Q & A 105

code of the Random function and couldn’t recognize the method, although it looks
similar to a linear-congruent generator. Could you tell me the source of the Random
function? If you can cite a book, that would be great!

A The Random function in QuickDraw is based on the formula

randSeed := (randSeed * 16807) MOD 2147483647

It returns a signed 16-bit number, and updates the unsigned 32-bit low-memory
global randSeed. The reference used when implementing this random number
generator was Linus Schrage, “A More Portable FORTRAN Random Number
Generator,” ACM Transactions on Mathematical Software Vol. 5, No. 2, June
1979, pages 132–138.

The RandomX function in SANE uses the iteration formula

r = (7^5 * r) mod (2^31 - 1)

as documented on page 67 of the Apple Numerics Manual, Second Edition.

Q I want the users of my application to be able to grow the window without changing the
aspect ratio. Is there a way to call GrowWindow but somehow be able to monitor the
mouse position and modify the size of the rectangle while it’s being dragged?

A The best approach is to write your own custom replacement for GrowWindow
that does what you want (see the snippet called GridWindowGrow on this
issue’s CD for an example of a replacement GrowWindow routine). Another
option, easier but not really what you’re after, is to allow “free” dragging and
then enforce the aspect ratio in your subsequent call to SizeWindow.

Q We’re having a problem with MPW C++. We build our application requiring a 68020
processor or better and an FPU. The problem is that the MPW C++ compiler seems to
create a CODE segment called Static_Constructors. This segment contains FPU-specific
code and causes our program to crash on launch (ID 16) for machines without an FPU.
Looking through code, I notice that at launch __RTInit is called, which in turn calls
__CPlusInit. __CPlusInit loads the Static_Constructors segment and executes it, before
the main segment is ever called. Can we fix this? How?

A This is a known C++ problem and is mentioned in the Macintosh Technical
Note “MPW C++ Q&As” (PT 555) under “C++ static constructors and
checking for an FPU.” A workaround is mentioned in the note but not in much
detail; a little more information follows here.

You need to rename __CPlusInit to something else, and write your own
replacement that calls the real one only if the FPU checks are passed. You can
rename __CPlusInit (from RunTime.o) by using the Lib tool with the “-rn”
option. Write your own version like this:

extern "C" void __CPlusInit(void)
{

// Do the gestalt on FPU.
Renamed_CPlusInit();

}

d e v e l o p Issue 21 March 1995106

The extern "C" is relevant, since you don’t want a C++ mangled name to link
against.

Q Under WorldScript, the itlbValidStyles field of the 'itlb' resource governs what styles
can be applied to text, depending on the language of the font. I understand the
reasoning — underlining makes no sense for vertical scripts, extended text makes no
sense for cursive scripts, and so on. However, we need to underline Kanji text. How
should we do it?

A Underlining as implemented in QuickDraw was based on assumptions
appropriate for Roman text — specifically, that the underline should be just
below the baseline. Unfortunately, the Asian scripts don’t have the same
definitions for baseline, ascent, and descent, and this creates an irreconcilable
problem. Excluding the Roman characters and some punctuation, all the
characters in the Kanji font descend below the QuickDraw baseline, so when
QuickDraw tries to draw the regular underline it gets broken (in the same way
it does with Roman descenders like g, j, and p — only more so). Because it
looked so bad, underline was disabled for the two-byte script systems.
QuickDraw GX is the real solution to this complicated problem.

Barring that, you should just draw your own underlines manually, using
QuickDraw, somewhere near the descent line. Exactly where is a matter of style.
Because of that, we recommend that you do plenty of user testing, and be sure
to look at other applications that do the same thing (MacWrite, PageMaker,
QuarkXPress, WordPerfect, TurboWriter, and so on).

Two notes: First, Roman text that uses a Kanji font needs to follow this same
convention, so that the underlines are consistent. (There may still be a problem
when different fonts on the same line are underlined — the lines won’t
necessarily match up.) Also, if the text’s style is set to underline, PostScript will
still draw the underline in the traditional location, even though it’s not displayed
on the screen! If you’re printing to a PostScript printer, be sure the text’s style
isn’t underline or you’ll end up with two underlines. Good luck!

Q Why does a quarter have ridges on the edge?

A Several hundred years ago, certain enterprising souls would shave the edges off
of coins. They would then spend the coins as usual and sell the shavings as bulk
valuable metal. In an effort to combat this, governments began decorating the
sides of coins so that it would be apparent if the currency had been tampered
with. Any shaved coin could be refused by a merchant. The U.S. mint followed
suit and put edges on all silver and gold coinage (dollar denominations, half
dollar, quarter, and dime) to deter shavers. Although currency became silver-
copper clad in 1965, thereby making the metal much less valuable, the decision
was made to retain the edging for tradition’s sake.

MACINTOSH Q & A 107

These answers are supplied by the
technical gurus in Apple’s Developer Support
Center. Special thanks to Brian Bechtel, Mark
Harlan, David Hayward, Dave Hersey, Larry
Lai, Martin Minow, Dave Radcliffe, Jeroen
Schalk, and Nick Thompson for the material in
this Q & A column.•

Have more questions? Need more
answers? Take a look at the Macintosh Q & A
Technical Notes on this issue’s CD.•

According to the menu bar clock on my computer
screen, it was 1:38 A.M. My eyes were raw and stinging,
my neck was stiff, and my mind was jittery and frazzled.
I had to get some sleep soon, because the alarm clock,
glowing weakly red in the dark in the next room, right
there next to my soundly sleeping wife and animals,
was set to go off at 5:30. I’d been ready to stop two
hours ago, having lost yet another entire evening to the
computer, but I found that there was some obscure
system structure that wasn’t being disposed of when my
program quit, even though I never directly created or
used that structure in my code. Dang. I hate that.

The program I was writing is a kind of “magic graph
paper” that can help me figure out multiperson
juggling patterns. It was originally intended to be the
topic of this column, but it took a lot longer to write
than I thought it would, and it still isn’t done; it will
have to wait for some future column. So there I was,
deadline approaching, without a topic. I was whining
about my foiled plans to my friend Ned (a tolerant
listener), complaining loudly about the amount of time
and trouble it takes to write the simplest piece of code,
bitching and moaning about the trials and tribulations
of programming, and wondering out loud what I was
going to write about.

Then it dawned on me — write about the downside!
Write about the parts of programming that frustrate
you so much! Get those nasty feelings out on paper!
Purge! Catharse! I could even do another little
electronic survey, sort of the opposite of the “Why We
Do It” column in Issue 17. Hot dawg.

So that’s what this column is about: “What do people
hate about programming?” I posted this question to

various news groups on the Internet, and sent it out via
e-mail to a bunch of programmers I know, and got
some good responses. But before I tell you what other
people hate about programming, first it’s my turn, and
I’m ready to gripe.

Once upon a time, I loved programming. It was a
hobby, something I did for the sheer joy of it, something
that was fun. I welcomed the chance to learn all the
arcane and grungy details of the internal workings of
the computer. I binged, ignoring the demands of my
home life and my body. I dove willingly into the thick,
impenetrable books, joyfully grappling with myriad
problems that had nothing whatever to do with the
program I was writing. The program itself was in many
ways incidental: it was that continual solving of difficult
problems that was both the fuel and the reward, the
stick and the carrot combined.

Well, I still go on binges now and then, small ones, but
it’s much rarer. Before, I would pursue just about any
harebrained idea that crossed my feverish mind (and
abandon most of them later, half constructed, often
after I’d enthusiastically programmed myself into a
corner). Nowadays I abandon most ideas much sooner,
usually long before I even hit the keyboard. Now, every
time I think of a fun programming project (which still
happens often), I immediately quail at the thought of
sitting down and beginning. Knowing up front how
much time and effort is required to accomplish even
the simplest things just makes me want to go to sleep.
Call me a burnout, call me a wimp, call it growing
older, or call it growing up: you’ll be right on every
count.

But why? What changed? It used to be so different. It
used to be that I would dive in immediately at the first
glimmer of an idea, hacking and slashing my way
through the Toolbox with gleeful abandon, forgetting
to eat, forgetting to sleep, forgetting to check errors,
sitting in the same position for hours on end, staring,
typing, staring, typing, staring . . .

Wait a second. That’s something that bugs me about
programming. Even though the action in my head is
fast, furious, and fascinating, physically I just sit, stare,
and type. Maybe someday I’ll get enough RAM in my
Duo to actually do some coding outdoors, but I’ll still
be sitting, staring, and typing; I’ll just have a better
view on the rare occasions I remember to look up from
my lap. (Come to think of it, it might be even worse,

THE VETERAN
NEOPHYTE

The Downside

DAVE JOHNSON

d e v e l o p Issue 21 March 1995108

DAVE JOHNSON has an inordinate (some say irrational) love of
playground swings. He’s been a lover of swings and swinging as
long as he can remember, and still does backflips out of them from
maximum height, impressing mightily any kids who might be

watching. He’s also been known to suddenly stop the car and leap
out at the sight of a swing set he hasn’t visited before. No swing
shall be left unswung.•

since I’ll be forced to use electronic references as well:
I won’t even get the small breaks that I normally get
while flipping pages in some weighty tome of wisdom.)
So even though programming is fundamentally a
creative thing, teeming with meaning and craftsmanship
and beautiful logic, there’s a tradeoff. To partake of that
sweet creation, you have to be willing to mostly sit still,
stare at glowing humming boxes that make your face
look green, and type cryptic symbols in a very strict,
“filling out forms” kind of way. For hours. And hours.
And hours. I can almost feel my muscles turning to
liquid, my blood slowing and thickening, gravity slowly
pulling my withered flesh from my bones.

That’s something else annoying about programming,
and about computers in general: the amount of time
they require. They are infinite time sinks, no doubt
about it. Maybe time is just more precious to me now
than it was before, and I’m less and less willing to
spend it sitting at a computer. Writing software, in
particular, always takes too long. It takes much longer
than it reasonably ought to, and it takes much longer
than you think it possibly can. Every time. There’s a
common rule of thumb for estimating how long it will
take to complete a software project: come up with a
reasonable estimate of the time required; then double
it. Amazingly, even that doesn’t do it. I’ve heard
another, more tongue-in-cheek formula that says to
take your best estimate, double it, and then jump to the
next larger time unit. For example, if you think a
project will take 8 weeks, first double it to 16 weeks,
then change the time unit from weeks to months: 16
months is reasonable. Now that might actually be
accurate.

(I remember some time ago there was a seminar here at
Apple given by someone who had a system that was
carefully worked out to produce accurate estimates of
software projects. The system was entirely history
based; that is, the estimates weren’t based on the details
of the project or the estimates of the engineers involved
or the marketing plans for the product, but instead
were based on how long it had taken to complete past,
similar projects. It sounded very promising to me, but
you know what? The estimates thus produced were so
much longer than those arrived at by conventional
means that real adoption of that sort of system would
require a fundamental change in the way the software
business is run. I haven’t heard about it since.)

Part of the reason programming takes so long, of
course, is that much of the time is spent on tasks that
really have nothing to do with the program you’re
trying to write, but instead are about bookkeeping,
working around the limitations of the machine, trying
to figure out how to express your very clear ideas in the

hobbled, awkward prose of “modern” computer
languages, and so on. That’s another thing I hate about
programming: the mountains of mind-numbing and
irrelevant detail you have to wade through and deal
with to accomplish the simplest tasks. I don’t really give
a hoot about the details of the operation of the file
system, I just want to get some information onto the
disk; I don’t really want to know how scroll bars work,
I just want the user to be able to navigate an area larger
than the window. This is, naturally, a good argument
for using frameworks (among many other good
arguments), but the promise is still beyond the reality,
and even with a good framework there are still
mountains of irrelevant detail. They’re different
mountains, and they might be a little smaller, but
they’re still mountains, and they’re still irrelevant.

Another thing: software is never really done, just
shipped. That’s another aspect of the “infinite time
sink” thing. There’s always something more that can be
done to make a program better, and there are always
bugs that can be fixed. I’ve heard some artists and
writers say that they never actually finish a piece, they
just stop working on it (and, incidentally, that knowing
when to stop is where a lot of the art is). Software is
often the same way.

Programming is also addictive, and I hate that, too.
(I’m starting to feel like Andy Rooney here.) It
positively consumes me. There I’ll be in the umpteenth
hour, my eyes burning, my head aching, my neck stiff,
everyone else fast asleep, warm and cozy in their nice,
soft, analog beds. But I can’t stop, because there’s just
one more little wrinkle to iron out, one more small
problem to solve. And the solution to that problem
leads to another problem, and the solution to that one
leads to another, and . . .

Know what else I hate? Bugs. Not the plain old easy
to find kind of bugs, but the nasty, subtle, elusive,
intermittent kind that just don’t seem to have a
deterministic cause. They’re an unavoidable part of
programming, but I hate ’em anyway. (Seymour Papert,
in his book Mindstorms, made the excellent point that
programming is one of the few disciplines where
you’re expected to make mistakes, every time, and an
integral part of the process is going back over your
work, finding the inevitable mistakes, and fixing them.
This is in sharp and healthy contrast to most academic
subjects, where mistakes are thought of as unwelcome
anomalies rather than an inevitable part of the process.
An excellent reason, says Papert, to teach programming
to children: it introduces them to the fact that mistakes
are an integral part of real-world processes.) Knowing
that there really is a solution to the bug (and probably
an easy one) just pisses me off even more. If there’s an

THE VETERAN NEOPHYTE: THE DOWNSIDE 109

answer, why can’t I find it? And after spending days and
nights sleuthing my way to an eventual answer, do I
rejoice when I arrive? No, I’m just angry that I had to
waste so much time on something that didn’t really
move me further forward. Hope starts to fade; ennui
begins its inexorable descent.

And finally, well, programming hurts. It hurts my body,
and it also hurts my brain. It’s unnatural to think like
that, composing long strings of imperatives, with no
subtlety or nuance or fuzziness of meaning allowed,
especially for long, uninterrupted periods of time. It’s
somehow dehumanizing, because to program well you
have to assume the characteristics of the machine, you
have to think like one, you have to make your thoughts
linear and ordered. It’s just not normal.

All right, that’s probably enough personal griping. I do
feel a little better having gotten that off my chest, here
in public. Now let’s see what other people had to say.

In general I was surprised at the paucity of responses, at
least compared to the veritable flood of replies I got
when I asked what people liked about programming.
Of course, I was asking programmers, and since they
do it for a living they presumably don’t hate it too
much.

Of the responses I got, the most commonly hated thing
by far was bad or broken tools. This wasn’t surprising;
programmers love to complain about their tools. In
particular, buggy compilers were soundly thrashed
from all sides as the worst time wasters around. Dealing
with your own bugs is one thing; that’s a normal part of
the programming process. Dealing with bugs in your
tools, though, and having to work around them, is
something else entirely:

I LIKE programming. The only things that bother me
are things that are not under my control, like compiler
bugs. I hate that.

— Matt DiMeo

After a while, the tools got to me. Tools with bugs and
bad interfaces made the day-to-day work more like
digging a ditch than the artistic expression it maybe
could be. I don’t like to dig ditches, I like it to be
interesting.

— Bo3b Johnson, semiretired programmer (the
“3” is silent)

This is one of the things that came up over and over:
the primitive state of the tools available. Programmers
in particular, since they know intimately what the
machine is capable of, are appalled at the state of the

tools available for programming. Memory management
was cited often as a needless hassle — many C and C++
programmers actually mentioned dynamic languages in
a positive light, mostly because of the automatic
memory management and the banishing of the
compile-link-debug cycle.

Lots of folks also complained about the job of
programming, and most of those complaints fell into
the realm of “the nonprogrammers just don’t get it.”

The interactions with the management. You know,
these silly men with ties that say, “Well, you should
change that program to act THIS way, and not in the
way we agreed last week,” when you have the job half
done.

— Maurizio Loreti

Maybe that’s why geeks seem to congregate in groups:
only other geeks really get it.

Interestingly (from my Macintosh perspective), a
number of people mentioned interface programming as
something they hated:

I have a special hate mode for doing GUI programming.
It’s boring, it’s arcane, and it’s ill behaved. Give me
systems, give me new real terrain to learn and think
about, but leave the GUI programming to robots!

— Jeffrey Greenberg

This surprised me a little, I must admit, partly because
I really like that part of programming. Almost all of my
little toy projects involve lots of clicking and dragging
of widgets on the screen, and now that I think of it,
programming didn’t really begin to interest me until I
discovered the Macintosh and user interaction. But hey,
everyone’s entitled to an opinion.

Another frequently mentioned offender was lousy
APIs:

Number two: Poorly designed OS and peripheral
interfaces, where I have to keep track of a lot of
“moving parts” to do something that should be
straightforward.

— Tom Breton

That’s another example of something that seems
pervasive: complaints about the software layers that
surround most programs these days. It’s pretty much
unavoidable now; you can’t write a program without
depending heavily on the software environment you’re
programming for. Your software is controlled from the
outside by other software (typically a GUI these days),

d e v e l o p Issue 21 March 1995110

and in turn your software isn’t directly controlling
the machine like in the good old days, but is instead
calling other pieces of software (like the Toolbox or a
framework) to accomplish its tasks. So naturally it’s
annoying when the software you depend on is badly
designed or buggy. Unfortunately, it’s all too common
an occurrence.

A few also mentioned a lack of programming quality or
a lack of professionalism as a big downside:

I get really livid when I find a reckless patch or hack
in products, specifically those that make a nightmare
for future development and integration. They
demonstrate a selfish and irresponsible form of
engineering.

— Dave Evans

Unfortunately, most of the programmers I’ve been
around are immature and not well managed, so you
end up with these massive schedule and quality
problems. I claim it’s immaturity, because if we are
still stuck in low gear trying to impress our friends
with our tricky code, that’s high school behavior. That’s
mostly what I saw. “Ooh, I can save 12 bytes if I write
this in a stupid way. Aren’t I clever?” Too bad no one
can read it. Or, “Ooh, I can make this faster if I write
it obscurely. I’m so cool.” Never mind that it never
gets used. That sort of lack of professionalism is what
put me over the edge.

— Bo3b Johnson

Finally, and near and dear to my heart, is the issue of
being forced to interact with the machine:

I hate the actual typing in of all the stuff. After a
pleasant period of roaming around, scribbling down
nice little try-outs and possible solutions, just using old
pieces of paper, lying down on the couch, thinking a bit,

reading a bit, talking things over with a couple of
colleagues, there comes a long, boring period when I’m
almost chained to that silly desk, sitting in front of
that silly machine, banging that silly keyboard, trying
to express my illuminated thoughts in some sort of silly
programming language . . . I want my couch, I want
my can of beer, I want my cigarettes and my books;
THAT’S how I want to program.

— Jos Horsmeier

. . . spending the greater part of my life at a !#@!$*
keyboard, staring at a !$&*!# monitor.

— Anonymous

Yep, that’s the part that I hate the most, too; in order to
program I have to spend huge amounts of my time
sitting at the computer. You know, digging ditches is
starting to sound better and better. It’s tactile, it’s
immediate, it’s outdoors, it uses muscles beyond those
in your forearms, it doesn’t consume or pollute your
mind, there’s no irrelevant detail to deal with, and when
you’re done you’re done. Though I could be wrong, I
don’t think ditch digging is addictive, and I’m quite sure
that there’s no possibility of subtle and elusive bugs.
Sounds good.

Hey, that gives me an idea! With QuickDraw GX’s
great hit testing and picture hierarchies, I could write a
really cool ditch-digging simulator . . .

THE VETERAN NEOPHYTE: THE DOWNSIDE 111

RECOMMENDED READING
• Snow Crash by Neal Stephenson (Bantam Books,

1992).

• Chicken Soup, Boots by Maira Kalman (Viking,
1993).

Thanks to Jeff Barbose, Brian Hamlin, Bo3b Johnson, Lisa
Jongewaard, and Ned van Alstyne for their always enlightening
review comments.•

Dave welcomes feedback on his musings. He can be reached
at JOHNSON.DK on AppleLink, dkj@apple.com on the Internet, or
75300,715 on CompuServe.•

Q I’m trying to remove indexes that I’ve added to the names soup. But the code to do it is
kind of ugly. First I have to go through all the indexes to see if my index is in the soup.
Then if I find the index, I can remove it. Is there an easier way?

A Yes, there’s an easier way. Remember that a call to RemoveIndex will throw an
exception if it’s passed an invalid index. You can wrap your code in an exception
handler and prevent the invalid index exception from leaving your code:

ExceptionBasedRemoveIndex := func(theSlotsym, theSoupName)
begin

local theSoup;
foreach store in GetStores() do
begin

theSoup := store:GetSoup(theSoupName);
if theSoup then

try
theSoup:removeIndex(theSlotsym);

onexception |evt.ex.fr.store| do
if CurrentException().error <> -48013 then

ReThrow();
end;

end

This function will remove a particular index (specified by theSlotsym) from a
particular soup (specified by theSoupName) on all currently mounted stores. If
the index exists, it will be removed; otherwise, the exception thrown for trying
to remove an invalid index will be caught and ignored. If a different exception
occurs, it will be rethrown so that other exception handlers or the system can
deal with the exception.

Q I’m writing a utility that is an auto part. My utility needs preferences, but there’s no
application to add preferences to. Where should I put my preferences?

A The guidelines for preferences are simple:

• For any addition that has an icon in the extras drawer, the preferences
should be part of that application. Use the info button to access them.

• For something that has no icon in the extras drawer, add your preferences to
the system preferences roll.

See the sample “Preefer Madness” on this issue’s CD for more information.

Q When text gets pasted into my paragraph view, that text is highlighted. I want to be
able to detect when this happens and then be able to unselect the text. How do I do
that?

A When the text gets added, the viewChangedScript will get called with the slot
parameter set to 'text. You can use the SetHilite message to unhighlight the

Newton
Q & A:
Ask the
Llama

d e v e l o p Issue 21 March 1995112

The llama is the unofficial mascot of the
Developer Technical Support group in Apple’s
Personal Interactive Electronics (PIE) division.
Send your Newton-related questions to

NewtonMail DRLLAMA or AppleLink DR.LLAMA.
The first time we use a question from you, we’ll
send you a T-shirt.•

text. However, the viewChangedScript will get called before the underlying
implementation of the paragraph view has been changed. This means you need
to call SetHilite in a deferred action.

Q I’m writing a specialized application for a corporate customer. One of the requirements
is that the application launch when the Newton is turned on (a “turnkey” application).
Is there a way to do this with the Newton?

A You can use the installScript of your application to add a deferred action that
opens your application:

constant kAppSymbol := '|autoLaunch:PIEDTS|;
installScript := func(partFrame)
begin

AddDeferredAction(func() GetRoot().(kAppSymbol):Open(), []);
end;

This will launch your application whenever the Newton is restarted or a card
containing your application is inserted. Note that if the application is closed
before the Newton is restarted again, the application will not relaunch. Nor will
the user be prevented from accessing other features of the Newton such as
Names, Dates, or Extras Drawer; that’s a much harder problem.

Q I’ve been trying to use the protoRoll and protoRollItem to create a roll browser of my
own. Everything works fine until I scroll. For a couple of these items I need to tap the
down arrow twice for it to go to the next roll item. I see the scrolling view effect, but it
just scrolls to itself.

The height slot in each of the roll items has the same value as the height in their
viewBounds slot. If I move the roll items around when they’re added to the protoRoll
(dynamically from my own protos), they work fine. How can I fix this?

A The problem is that one of the protoRollItems in the items array is larger than
the protoRoll. If you make the roll browser larger than the largest roll item, all
will work fine; otherwise, you have to scroll the roll item twice to move to the
next roll item.

Also, since you imply that the entire large roll item is visible, I assume that the
protoRoll has vClipping turned off. If you’d had clipping on, you would
probably have noticed that the individual roll item was too large.

Q I’m having some problems with margins when I’m faxing. A fax without a cover page
has different margins than a printed page. The actual viewBounds is the same, but the
margins of the fax are different from the viewBounds.

Also, a fax with a cover page has even different margins. The viewBounds is different,
too (20 pixels shorter in height), but that’s OK. The problem is that the actual margins
when faxed are different from those specified by the viewBounds slot. Is this a known
problem?

A Faxes with a cover page have a header line at the top of the fax which takes up
those mysterious 20 pixels. In fact, it might be a bug that faxes without a cover

NEWTON Q & A: ASK THE LLAMA 113

page omit this header, but perhaps the only bug is not documenting that
protoPrintFormat (which provides the cover page) also adds that header.

The way to find the correct page bounds is to set the viewBounds of your base
print view to that of the parent. The base print view is usually a clView that is a
child of a print layout. You can use the following code in the viewSetupFormScript
of your base print view to set your bounds to those of your parent:

viewBounds := :Parent():LocalBox();

Q I’ve got an auto part that installs a template for the formulas roll. On the roll item I’ve
got a protoLabelInputLine for data entry, and a button that I want to use to clear the
input line. My buttonClickScript is very simple:

buttonClickScript := func()
begin

SetValue(myInputLine.entryLine, 'text, "");
end;

The first time the button is tapped, the input line gets cleared OK; after that it never
seems to work, no matter how I code it. Can you help?

A This is a very subtle problem. The answer will be revealed in stages, so that you
too can experience the “Aha!”

Observation 1: When you edit the text in any clParagraphView, no new strings
are generated. The existing string is destructively modified (excluding the usual
_proto copying, of course).

Observation 2: During the compile cycle, the Newton Toolkit will turn all your
strings into constants. Contrast this to using braces to construct a frame. As an
illustration, assume you have these three methods:

Method1 := func()
begin

return {slot1: "also string"};
end;

Method2 := func()
begin

return '{slot2: "also also string"};
end;

Method3 := func()
begin

return "a string";
end;

The braces specify a frame constructor. Each time you call Method1 it will
return a reference to a newly allocated frame, though not different contents.
For example, when the following is executed

myVar := call Method1() with ();

here’s what you get in memory:

d e v e l o p Issue 21 March 1995114

On the other hand, Method2 quotes the frame, which makes it a quoted
constant. In other words, each time you call Method2 it will return a reference
to the same frame. And Method3 does something else altogether: In the
Newton Toolkit, a string is treated like a quoted frame (or array). It’s a constant
object, so each time you call Method3 it will return a reference to the same
string. Note that this means that in both Method1 and Method2 the slot in each
frame will reference the same string. Diagrams that show what happens in
memory when each of these three methods is executed are provided on this
issue’s CD along with this Q & A column.

Observation 3: When you call SetValue, you’re actually copying the reference to
the empty string from your buttonClickScript into the text slot of the entry line.
You might think this would cause an error, because the string constant can’t be
modified. But clParagraphViews are smart: if the string can’t be modified (that
is, if it’s read-only), a copy is made.

Observation 4: I checked in the inspector, and your buttonClickScript is not read-
only. This means that the string constant "" in that script is also not read-only.

Observation 5: To prevent the grip of death on a card, you would need to call
EnsureInternal on your formula roll entry. This effectively makes a copy of the
entire template, including constants, in the NewtonScript heap. The following
illustration contrasts a Clone with a DeepClone (which is what EnsureInternal
uses). Note that the DeepClone creates a new read/write copy of the string.

Conclusion: You press the Clear Data button once. This sets the reference of
the input line string to point to the string constant in your buttonClickScript.
Since the string constant is no longer read-only, changing the input line string

NEWTON Q & A: ASK THE LLAMA 115

PackageMemory

RAM

Method1

"also string"

{slot1:• }

myVar

Clone(Method3)

PackageMemory

RAM

Method3

"a string"

DeepClone(Method3)

PackageMemory

RAM

Method3

"a string"

"a string"

Method3Method3

If you have questions, suggestions, or even gripes about develop, please don’t keep them to yourself.
Drop us a line and let us know what you think.

Send editorial suggestions or comments Send technical questions about develop
to AppleLink DEVELOP or to: to:

Caroline Rose Dave Johnson
Apple Computer, Inc. Apple Computer, Inc.
One Infinite Loop, M/S 303-4DP One Infinite Loop, M/S 303-4DP
Cupertino, CA 95014 Cupertino, CA 95014
AppleLink: CROSE AppleLink: JOHNSON.DK
Internet: crose@applelink.apple.com Internet: dkj@apple.com
Fax: (408)974-6395 CompuServe: 75300,715

Fax: (408)974-6395

Please direct all subscription-related queries to develop, P.O. Box 531, Mount Morris, IL 61054-
7858 or AppleLink DEV.SUBS (on the Internet, dev.subs@applelink.apple.com). You can also
call 1-800-877-5548 in the U.S., (815)734-1116 outside the U.S., or (815)734-1127 for fax.

How’re we doing?

✍

✍

destructively modifies the string constant. You may think that this would lead to
a bus error or worse, but thanks to NewtonScript, it works as it should. The
next time you press the Clear Data button, the input line string reference gets
replaced with a reference to the now modified string constant.

The solution is to change the SetValue call to

SetValue(dataItem.entryLine, 'text, Clone(""));

This will make a copy of the string constant and return a reference to the copy.

Q Just recently I came into possession of a sword. It was handed to me by a lady in a lake
whose arm was clad in the finest shimmering samite. I figure with this sign of divine
providence I should be able to wield supreme executive power. What do you think?

A Fortunately, strange women in ponds have not been used as the basis for a
system of government since the Dark Ages. These days supreme executive
power derives from a mandate from the masses, not from a farcical aquatic
ceremony. If I claimed to be President just because some aquatic gymnast threw
a sword at me, I’d be locked up for sure.

d e v e l o p Issue 21 March 1995116

Thanks to Don Gummow and our Newton
Partners for the questions used in this column,
and to jXopher Bell, Bob Ebert, Mike Engber,
Kent Sandvik, Jim Schram, and Maurice Sharp
for the answers.•

Have more questions? Need more answers?
Take a look at PIE Developer Info on AppleLink.•

See if you can solve this programming puzzle, presented in the form of
a dialog between Konstantin Othmer and guest puzzler Josh Horwich.
The dialog gives clues to help you. Keep guessing until you’re done; your
score is the number to the left of the clue that gave you the correct
answer. Even if you never run into the particular problems being solved
here, you’ll learn some valuable debugging techniques that will help you
solve your own programming conundrums. And please, make KON &
BAL’s day by submitting a puzzle of your own to AppleLink DEVELOP.

Josh Hey, KON, where’s BAL?

KON Hmmm. That’s a good one. Have you checked all the usual places: his
cube? the fitness center? prison?

Josh No sign. He won’t even return my calls.

KON Maybe his answering machine is on the fritz?

Josh Hold on! Finding BAL was not the puzzle I had in mind.

KON Well, I hope this is an easy one if I have to go it alone.

Josh It’s right up your alley. Let’s see if all that Sega programming has made
you soft. I have a Mac IIci with 8 MB of RAM, a late alpha version of
System 7.5, QuickDraw GX beta 3 . . .

KON Hold on, hold on! There’s the problem! Swap hard drives with a
machine that has working system software, and your bug, whatever it
is, goes away. While you’re at it, why don’t you buy a Mac with a little
more horsepower?

Josh Not so easy, KON. We’re here to solve these problems, to “learn some
valuable debugging techniques,” remember? Anyway, I’m printing from
Deneba’s Canvas to a LaserWriter Pro 630. My machine gets a bus
error while spooling a nasty sample document consisting of a bunch of
Ferrari F40s that Lance thoughtfully duplicated and rotated in Canvas.

KON OK, let’s isolate the offender here. What happens if you install GX
beta 3 on the IIci running System 7.1?

KON & BAL’S PUZZLE PAGE

Printing Pains

KON & BAL’S PUZZLE PAGE: PRINTING PAINS 117

JOSH HORWICH (Internet josh@catapent.com)
had the rare pleasure of running across this
particular bug during the two years he spent on
the QuickDraw GX Graphics team at Apple.
Now he’s working at Catapult Entertainment,
Inc., a Cupertino-based company developing

what KON affectionately calls a “modem” for
home video game consoles. Between Slurpee
runs to the 7-11 convenience store and games of
pinball, Josh can occasionally be found in front of
a logic analyzer, watching a single bit ruin his
whole day.•

JOSH HORWICH

Josh The problem goes away; the document prints beautifully. You even get
all those cool GX printing features, like document redirection and
printing extensions. Don’t you just love it?

KON It’s great! I can’t wait to install it. How about some more information
about the crash?

Josh What? You haven’t figured it out yet? OK, I’ll be nice, since BAL is
hiding out. Let’s install a debugging version of the beta 3 GX Graphics
INIT, and see what we can find. I’ll be even nicer and give you a
version with MacsBug symbols.

KON So where’s the crash?

100 Josh It looks like we don’t crash in GX itself. MacsBug heap checks reveal
nothing amiss in any heap. But we crash in a CMP.W (A2), D0
instruction, with A2 looking like garbage. What next?

KON How about a wh pc MacsBug command to see where we are?

90 Josh The PC is 1270 bytes into a locked, purgeable, relocatable block in the
system heap. The block even consists of legitimate code! It’s about
16K long, if that’s any help to you. A stack crawl reveals no interesting
MacsBug symbols, just to make things even tastier.

KON OK, let’s try to figure out who owns this block. Find the beginning of
the block and use dm to look around. Any clues?

Josh Nothing obvious, like the programmer’s name and phone number.
Only a few cowboys like you would leave such a nice trail. I do notice
some four-letter constants near the top, like 'mach', 'fpu ', and 'qd ',
but overall the block looks like a bunch of 680x0 opcodes, as one
would expect.

KON All right, let’s use il to look around the block and see if we can find any
telltale traps. Maybe from there we can guess what sort of code this is,
or even who owns it.

80 Josh Besides the smattering of Gestalts, HLocks, HUnlocks, and
GetTrapAddress traps, I notice a _ComponentDispatch and a
_SetComponentInstanceStorage call. Overall, this code has very few
traps, and lots of computational code.

KON I was told there would be no math! This code sounds like a
Component Manager–based code resource that went amuck. Given
that we’re dealing with printing from GX, I’d guess it’s ColorSync and
not QuickTime. Let’s be skanky and see how we got into this
wonderful code. Move the PC to the end of the function, and step us
out of here. What do we find?

70 Josh Getting warmer! After walking our way out of here in MacsBug by
placing the PC near the end of each function and tracing over the
UNLK A6 and RTS instructions, we discover that we are in fact inside
a component called by ColorSync! Continuing to step out in this
fashion reveals that the trap that was called was _ColorMatch. Didn’t
you write some of the slime we’re looking at now?

KON Nothing doing. It’s clearly a GX bug, just like the one from the last
Puzzle Page. You GX people like to pawn off your problems on
everyone else. What else can you tell me?

60 Josh OK, since I wrote much of the lovely code that has GX calling
ColorSync, I’ll even lend a hand. Let’s restart and do an atb

d e v e l o p Issue 21 March 1995118

ColorMatch and see what happens. After setting this up, we discover
that GX calls ColorSync to convert some colors from RGB to CMYK.
The data it passes to CWNewColorWorld looks fine — it’s merely the
14-inch Macintosh Color Display color profile. ColorSync returns
noErr, and we later crash when we actually try to match a color using
CWMatchColors.

KON What version of ColorSync are you running?

50 Josh 1.0.4. It’s the one where the code that actually does color matching has
been brought native for PowerPC. The folks over in Imaging told me
that all they did was massage the code slightly to compile for PowerPC.
I hear those IBM compilers are a little stricter than THINK C when it
comes to ANSI compliance.

KON Does it work with 1.0.3?

Josh Yep.

KON Hmmm. So what you’re saying is we’re crashing in ColorSync when
printing under GX and System 7.5 to the LaserWriter from Canvas,
but it works fine in System 7.1. I’d love to blame the whole thing on
7.5 and call it a day, but the code that dies only makes very standard
system calls, which factors the 7.5 code out of the equation. And
ColorSync 1.0.3 works. So the problem seems to be with ColorSync
1.0.4. Any other changes for 1.0.4?

40 Josh Since GX relies on ColorSync, we need to know whether it’s installed
before we install GX and patch out all of the Printing Manager.
System 7 loads extensions before INITs in control panels, so I talked
the ColorSync guys into making the INIT part of ColorSync live in a
separate extension file from the profile picker, which remains in the
control panel. Cool, huh?

KON Wonderful. Now the user has twice the chance of throwing the darn
thing away, right after getting rid of A/ROSE and DAL. I guess it
would be too hard to solve that problem right, and search the Control
Panels folder for ColorSync and determine whether or not it’s going to
load. Now you’ve created another weird, order-dependent nightmare
on the Macintosh. It should give you job security, if nothing else.

Josh Good point, KON. I suppose GX should be clairvoyant and know that
ColorSync will load just because it’s in the Control Panels folder. Next
thing you know, those extension-disabling utilities would be patching
the File Manager so that GX’s INIT code doesn’t find ColorSync
when the user disables it.

KON All right, all right. So what does the crashing code look like it’s trying
to do? Where did this horrible A2 value come from?

35 Josh ColorSync gets this value out of the middle of a relocatable block in
MultiFinder temp memory. From the disassembly, my guess is that it’s
doing a lookup in a hash table of some form.

KON Ah, yes. To speed things up, the matching code remembers recent
colors. This way we can avoid a whole lot of math. But why would the
block be in MultiFinder temp memory? When ColorSync allocates
memory, it first tries the current heap and system heap, and only if
there’s not enough space in either of those does it allocate the block in
MultiFinder temp memory. This seems to imply that you’re low on
memory.

KON & BAL’S PUZZLE PAGE: PRINTING PAINS 119

30 Josh Well, it’s just the system heap that’s low. Because GX Graphics doesn’t
want to move application heap memory, it sets the current heap to the
system heap before calling ColorSync.

KON It’s no surprise that you’re low on memory. You have all that System
7.5 garbage floating around in your machine. Tell me more about that
block it got the erroneous pointer from.

25 Josh It’s 10,054 bytes big, and from the look of things, it’s full of trash. I
wonder who’s ruining it?

KON Let’s see. When GX calls CWNewCWorld, ColorSync sets up some
memory. Reboot and break on _ColorMatch; once we hit that, break
on TempNewHandle. After the TempNewHandle, let’s step-spy to see
who trashes the location. As long as the block doesn’t move, we should
find out who’s ruining our hash table.

20 Josh A step-spy on a location in a relocatable block? I’ve got good news and
bad news. The good news is that the block doesn’t relocate between
the allocation and the crash, so the step-spy trick is valid. The bad
news is that the step-spy doesn’t catch anyone trashing our location.

KON Wait! The location isn’t touched at all? As in “uninitialized”? How can
that be? Right after calling TempNewHandle, I clear out the entire
block to 0. What happened here?

15 Josh You’re getting warmer! Here’s a listing of the code right after
TempNewHandle:

MOVE.L D7,-(A7)
CLR.L -(A7)
MOVE.L (A3),-(A7)
JSR *-$3B70

KON That looks right. Let’s step into the JSR and see what happens.

10 Josh It looks like a simple routine. In fact, it’s right out of Symantec’s ANSI
library:

MOVE.L $0004(A7),D0
MOVEA.L D0,A0
MOVE.B $0009(A7),D1
MOVE.L $000A(A7),D2
BRA.S *+$0006
MOVE.B D1,(A0)+
SUBQ.L #$1,D2
BNE.S *-$0004
RTS

Single-stepping through here reveals that nothing really happens at all.
It loads D0 with a pointer to our block, D1 gets 0, and D2 gets 0. It
branches to the BNE; then the BNE doesn’t loop. Whoops! I bet you
wanted to clear a few more bytes than that!

KON How did we end up there? I never even linked with the ANSI libraries
back in the 1.0 days! And how did someone screw this up? Let’s call up
Symantec and scream at them for a while.

5 Josh Not so fast! Let’s look at the prototype for memset. It can be found in
string.h in the C headers folder somewhere deep in the Symantec C++
folder hierarchy. It reads like this:

void *memset(void *, int, size_t);

d e v e l o p Issue 21 March 1995120

It looks like ColorSync thinks that the int is 4 bytes long! After
pushing things on the stack, what we’ve got is what you see on the left
here, but memset expects the stack to look like what you see on the
right. What’s wrong with this picture?

KON Of course! The THINK ANSI library comes with the “4-byte ints”
option disabled. When taking the matching code native, someone
must have decided to make the 680x0 build look as much like the
PowerPC build as possible and turned “4-byte ints” on, but didn’t
rebuild the libraries linked with the code. How does ColorSync 1.0.4
ever work at all on a 680x0 Mac?

Josh Good question, KON! Looking around the TempNewHandle call, we
see that ColorSync allocates a handle in one of three ways: with
NewHandleClear, with NewHandleSysClear, or with TempNewHandle
followed by the call to memset. It’s being kind by preflighting its
memory allocations and choosing a heap only if the allocation would
leave at least 32K free afterward. GX is an unknowing partner in
crime: it sets the current heap to the system heap before calling
ColorSync so that it doesn’t inadvertently cause relocatable blocks to
be purged or relocated across a GX Graphics call.

KON Rebuilding THINK’s ANSI library with 4-byte ints enabled will solve
the problem. So how come printing succeeded under System 7.1?

Josh When we printed under 7.5, which had every INIT ever written for
the Macintosh installed, and a few MS-DOS TSRs thrown in as well,
the system heap was pretty full, so ColorSync tried to allocate the
handle in temp memory, using TempNewHandle and memset. Crash!
Under 7.1, there was lots of system heap space, so ColorSync would
just call NewHandleClear and everything would work fine.

KON Nasty.

Josh Yeah.

KON & BAL’S PUZZLE PAGE: PRINTING PAINS 121

What memset expects

bytes to fill

fill value

address to fill

return address

A(SP)

8(SP)

4(SP)

(SP)

SCORING
80–100 What a fish story. How big was it?
50–70 Lie this much and you’ll end up being BAL’s cellmate.
25–40 No fair — this contest not available to the party or parties responsible for the bug in question.
5–20 You’re too honest! Don’t ever play cards with KON.•

Thanks to Luke Alexander, Tom Dowdy, KON (Konstantin Othmer), and BAL (Bruce Leak) for
reviewing this column.•

The stack

bytes to fill

address to fill

return address

C(SP)

8(SP)

4(SP)

(SP)

fill value

When it comes to the development of Artificial
Intelligence systems, scientists tend to conjecture that
man himself, encompassing the brain with its bazillion
synapses and neurons, is the paradigmatic super-
computer. “Computer?” you might ask, “Where are the
bits and bytes, the binaries that make it a true computer?”
Hold on; disclosure is only a paragraph away.

On a recent camping trip, I observed a friend of mine
making some strange gestures with his left hand. When
I inquired about this, he asked me whether I could
figure out how his raised middle finger represented a
binary 4. After getting over my initial surprise at the
gesture, I began to understand: it was finger-coded
binary (FCB).

THE BASICS OF FCB
The single- and triple-handed excepted, the averagely
handed human being is capable of producing a number
range of up to 2^10 by using his or her fingers. Every
finger represents a bit of information:

Left hand, thumb (L1): Bit 0, value 1
Left hand, index (L2): Bit 1, value 2
. . .
Left hand, little (L5): Bit 4, value 16
Right hand, little (R1): Bit 5, value 32
. . .
Right hand, middle (R3): Bit 7, value 128
Right hand, index (R4): Bit 8, value 256

or carry flag
Right hand, thumb (R5): Bit 9, value 512

or overflow flag

Though I prefer this style (palms facing in), your
personal style may vary.

To set a bit, you only have to raise the respective finger;
to clear a bit, bend the finger. LSL and LSR do the
same they did back in Apple II-land (“shift” your
fingers left or right), as do ADD and SUB. (To add,
look at each bit in the number you’re adding, least
significant bit first. If the bit is set, set that same bit in
the number you’re adding to. If a bit you’re trying to
set is already set, clear it and set the next higher bit
instead.) That’s all you need for basic mathematics.

Exercise: (3 + 6) * 2
Solution: Set L1, L2 —> 3

Clear L2, set L3 —> + 2
Clear L3, set L4 —> + 4
“Shift” fingers right 1 position —> * 2

Result: L1 clear, L2 set, L3, L4 clear, L5 set —> 18

Now think up some examples for yourself. Practice
hard and daily. Try to outperform your calculator.
Then challenge your old Apple II. Then get really
brave and challenge your Macintosh. Do it every
week. Do it until you excel Excel. When you’ve gone
that far, relax. Congratulations, you’re a human
supercomputer! Now you can go for the real thing.

CREATING REAL-WORLD APPLICATIONS
In general, nothing is prohibited. (If you’re not sure
whether showing the police your raised middle finger
while shouting “I have to raise four children, you
@#$%&!” is legally safe, consult your lawyer.)

In particular, here are some useful examples:

• Tell people your age. They’ll envy you for being able
to count your age on one hand (you may need two,
but that’s still amazing).

• Get a kick out of telling your friends your phone
number. If you animate your fingers fast enough,
you could even compete with QuickTime.

• Earn some extra money. Advertise yourself in any
local or national newspaper as either (a) a human
binary calculator, (b) a shadow puppeteer, or (c) a
lunatic. Finger food obligatory.

I’ll keep my bits . . . er . . . fingers crossed for you.

Oh, one last thing: If you want to expand your bit
range, you might also use your toes (imagine a gigantic
range of 2^20!) or even your ears (if you can wiggle
them) or eyes (unless of course you’re driving or are
otherwise mobile). Good luck!

THE ART OF
HUMAN
COMPUTING

Finger-Coded
Binary

TOBIAS ENGLER

d e v e l o p Issue 21 March 1995122

TOBIAS ENGLER is 19 years old, right-handed, and the
“subcaretaker” at a church in Erlangen, Germany, where he’s
doing his community service (as an alternative to military service).

When he’s not taking care of anything, he’s swimming or playing
soccer or badminton, or he’s on the road jamming with Rush, Dire
Straits, or Bad Religion.•

For a cumulative index to all issues of
develop, see this issue’s CD.•

#f (Boolean false) value (Dylan)
39

#key parameters (Dylan) 38
#rest parameter (Dylan) 38
#t (Boolean true) value (Dylan)

39
. (period), in PowerPC integer

instructions 24
<> (angle bracket) characters

(Dylan) 31
== (double equal sign) (Dylan) 38
` (backquote), MPW and 46

A
Abstract Class suite (Apple event

suite), and scripting
implementation 62–63

add. instruction (PowerPC) 24
AddMenu command, MPW and

44
addressing modes (PowerPC) 24
AEInteractWithUser, Macintosh

Q & A 103
aete editor stack (HyperCard) 53
'aete' resource (AppleScript) 49,

63
implementing standard

suites 56
shrinking with inheritance

65
tools for developing 53

'aeut' resource (AppleScript) 56
aggregate clip shape (OpenDoc) 7
Alias command, MPW and 44
Animation Compressor

(QuickTime) 96
pixel depth supported 95

ANSI IDE standard, Macintosh
Q & A 103

Apple Dylan 30, 33, 42
See also Dylan programming

language
Apple Event Registry 55
Apple events

object model 50–54, 68
object model hierarchy 49
registry suites 55
scripting and 49

Apple event suites 54–57
AppleScript

assembling a vocabulary
54–59

command anatomy 49–50
conventions, tips, and tricks

59–70, 72
designing a scripting

implementation 48–72
direct objects 63–64
extended terms 54, 57–59
global name space 68–70
ID codes 68–70
objects versus properties

64–65
recordability 68
scripting additions 69
scripting menu commands

52–53
standard terms 54, 56–57
stylistic conventions 59–60
syntactic statement structure

49–50
using replies 67

arithmetic instructions (PowerPC)
24–25

assembly language (PowerPC)
23–28

optimizing 27–28
ATA IDE specification, Macintosh

Q & A 103

B
“Balance of Power” (Evans),

introducing PowerPC assembly
language 23–28

bdnz instruction (PowerPC) 28
BeginSubs keyword (PowerPlant)

80
bl (branch with link) instruction

(PowerPC) 24
blr (branch to link register)

instruction (PowerPC) 24
Boolean parameter names

(AppleScript) 66
Boolean property names

(AppleScript) 66
branch instructions (PowerPC)

24, 26, 28
branch prediction (PowerPC) 26
Bruyndonckx, Jan 78

buffering routines (QuickDraw
GX), custom 73, 76–77

buttonClickScript, Newton Q & A
114–116

C
C++ programming language

compared with Dylan 29
static constructors

(Macintosh Q & A)
106–107

calling conventions (PowerPC)
26–27

canvas (OpenDoc) 6
case conventions (AppleScript) 59
CCustomListBox::CCustomListBox

(PowerPlant) 83
CCustomListBox class

(PowerPlant) 81
custom list definition

procedure 84–86
CCustomListBox::init

(PowerPlant) 84
CDGetCodecInfo, codecs and 94,

95
CheckOutDir command, MPW

and 44
Choose command, MPW and 45
chroma keying in QuickTime,

Macintosh Q & A 104
Cinepak Compressor (QuickTime)

94–95, 96
class allocation (Dylan) 34
classes (Dylan) 29, 31–32, 34

inheritance hierarchy 31
naming 31

Clear Data button, Newton
Q & A 114–116

ClickSelf method (PowerPlant)
87

clipping regions, and PostScript
printing 18, 19

clip shape (OpenDoc) 7
clParagraphView, Newton Q & A

114, 115
CMyCustomListBox class

(PowerPlant) 82
drawing method 87

CMyCustomListBox::CMyCustom-
ListBox (PowerPlant) 83

CMyCustomListBox::CreateFrom-
Stream (PowerPlant) 83

INDEX

INDEX 123

CMyDiskListBox class
(PowerPlant) 89–92

drawing method 92
CMyHierListBox class

(PowerPlant) 88–89
cell expansion method 90

codecs (QuickTime) 94–96
pixel depth supported 95

Code Fragment Manager (CFM),
SpeechLib and (Macintosh
Q & A) 98

cold boot, MPW and 46–47
Collaborative Information suite

(Apple event suite), and
scripting implementation 55

CollapseElement method
(PowerPlant) 91

Color QuickDraw, and OpenDoc
graphics 10

ColorSync
KON & BAL puzzle

118–121
and printing OpenDoc

graphics 18
commands (AppleScript),

recording 68
Command-Z, selecting MPW tool

output 44
'comm' resource (QuickDraw GX)

73, 74, 75
“not connected” 73, 74, 75
updating 76

compare instructions (PowerPC)
25–26

compressorComponentType
('imco') 94

compressors. See codecs
(QuickTime)

congruent methods (Dylan) 39
constants (Dylan) 35
containers (AppleScript) 51
content objects (AppleScript) 51
content transform (OpenDoc)

7–8
coordinate system scaling

(OpenDoc), altering 16–17
CopyBits, custom color search

procedure (Macintosh Q & A)
100–101

Core suite (Apple event suite), and
scripting implementation 55,
71

_CPlusInit, renaming (Macintosh
Q & A) 106–107

Creole cross-language extension
(Dylan) 30

“Creole: Using the Toolbox and
Other C Code from Within
Dylan Code” 30

cross-language calls (Creole) 30
CTwistDownListBox class

(PowerPlant) 88–89
drawing method 89

customIO (QuickDraw GX) 74
CustomWriter sample printer

driver (QuickDraw GX) 73

D
Database suite (Apple event suite),

and scripting implementation
55

data spooling, codec support for
95–96

dbnz autodecrementing
instruction (PowerPC) 28

dbzt instruction (PowerPC) 26
decompressorComponentType

('imdc') 94
decompressors. See codecs

(QuickTime)
define class statement (Dylan) 32
define constant statement

(Dylan) 35
define interface statement

(Creole) 30
define variable statement (Dylan)

34
“Designing a Scripting

Implementation” (Simone)
48–72

dictionary (AppleScript) 49
supporting standard suites

56
direct objects (AppleScript) 63–64
Do Menu event (AppleScript), and

scriptability 59
Do Script event (AppleScript), and

scriptability 59
DrawElement method

(PowerPlant) 86
DrawElementSelf method

(PowerPlant) 86, 87, 88, 89
DrawString, QuickDraw GX

printing and (Macintosh
Q & A) 105

DrawText, QuickDraw GX
printing and (Macintosh
Q & A) 105

DrawTwistedElement method
(PowerPlant) 88

overriding 91

Dylan Interim Reference Manual
30, 43

Dylan programming language
29–43

automatic memory
management 33

classes 29, 31–32, 34
compared with C++ 29
constants 35
filling slots in objects 34
functions 29, 35–40
method specificity 37–38
modules 29, 40–42
multiple inheritance 32, 37
multiple polymorphism

39–40
numeric types 34
objects 31, 33–34, 35
obtaining software and

information 43
polymorphism 36–37
type declarations 32–33, 34,

37
using the Toolbox and other

C code from within Dylan
code 30

variables 34–35

E
end class statement (Dylan) 32
EndSubs keyword (PowerPlant)

80
Engler, Tobias 122
EnsureInternal, Newton Q & A

115
enumerations (AppleScript)

60–61
enumerators (AppleScript) 60

ID codes for 68–70
Eudora (Qualcomm),

implementing scriptability 70
Evans, Dave 23
Exit variable (MPW) 46
ExpandElement method

(PowerPlant) 89, 90
overriding 91

Export command, MPW and 44
ExtendedToString, Macintosh

Q & A 99
external transform (OpenDoc)

7–8

F
facets (OpenDoc) 5, 6, 7–8, 9

multiple 9

d e v e l o p Issue 21 March 1995124

faxes, margins of (Newton Q & A)
113–114

FCB (finger-coded binary) 122
FindCNameFont, Macintosh

Q & A 103
finger-coded binary (FCB) 122
“First Look at Dylan, A: Classes,

Functions, and Modules”
(Strassmann) 29–43

floating windows 4
floats, converting to strings

(Macintosh Q & A) 99
FocusLib utility, OpenDoc and

10
frames (OpenDoc) 5–7, 9
frame shape (OpenDoc) 6–7
frame transform (OpenDoc) 8
functions (Dylan) 29, 35–40
#f (Boolean false) value (Dylan)

39

G
generic functions (Dylan) 29, 36,

39
Generic LaserWriter printer

driver, Macintosh Q & A 98
gerror dcmd (QuickDraw GX),

Macintosh Q & A 104
GetCodecInfo (Image

Compression Manager) 95
GetCodecInfoApp sample

application 94–96
get command (AppleScript) 51,

52
GetMessageHandlerClassContext

(QuickDraw GX) 75–76
GetMessageHandlerInstance-

Context (QuickDraw GX) 75
getter functions (Dylan) 35–36,

41
“Getting Started With OpenDoc

Graphics” (Piersol) 5–22
global name space (AppleScript)

68–70
glyph code (QuickDraw GX),

Macintosh Q & A 105
graphics, OpenDoc 5–22
Graphics Compressor

(QuickTime) 96
GridGrowWindow, Macintosh

Q & A 106
GrowWindow, Macintosh Q & A

106
GXBufferData, overriding 77

GXChooserMessage, overriding
75

GXCleanupOpenConnection,
overriding 74, 75, 76

GXCloseConnection, overriding
74, 75, 76

GXDefaultDesktopPrinter,
overriding 75

GXDisposeShape, Macintosh
Q & A 105

GXDumpBuffer, overriding 75
GXFindFonts, Macintosh Q & A

101–103
gxFontNames constants,

Macintosh Q & A 101, 102
GXFreeBuffer, overriding 76
GXGetJobRefCon 75
gxNoFontName, Macintosh

Q & A 101, 102
GXOpenConnection, overriding

74, 75, 76
gxPrintingBuffer, custom

buffering and 76, 77
GXSetJobRefCon 75
gxUniversalIOPrefsType resource.

See 'iobm' resource
(QuickDraw GX)

GXWriteData, overriding 75, 77

H
Helper (QuickDraw GX),

Macintosh Q & A 101
Hersey, Dave 73
hierarchical lists

custom lists 81–86
object-oriented 4, 78–93
structure diagram 88
twist-down lists 86–92

Horwich, Josh 117

I
IBM POWER instructions

(PowerPC) 28
ID codes (AppleScript) 68–70
IDE (ANSI standard), Macintosh

Q & A 103
“If You’re Writing a Scripting

Addition . . .” 69
Image Compression Manager, and

codecs 94, 95
indexes, removing (Newton

Q & A) 112
inherited keyword (Dylan) 34
init-function option (Dylan) 34
init-keywords (Dylan) 33–34

input line, clearing (Newton
Q & A) 114–116

installScript, Newton Q & A 113
instances (of a class) (Dylan) 33
integer instructions (PowerPC)

24
internal transform (OpenDoc)

7–8
interrupt time, opening files at

(Macintosh Q & A) 105
I/O (QuickDraw GX), custom

73–76
'iobm' resource (QuickDraw GX)

73, 74
specifying customIO 74

J
Johnson, Dave 108
JPEG codec. See Photo

Compressor

K
Kanji text, underlining (Macintosh

Q & A) 107
keyforms (AppleScript) 67
#key parameters (Dylan) 38
keyword parameters (Dylan) 38
kHasSubList flag, twist-down lists

and 87
Kibitz sample program, Macintosh

Q & A 104
kIsOpened flag, twist-down lists

and 87
“KON & BAL’s Puzzle Page”

(Horwich), Printing Pains
117–121

L
landscape mode, automatically

configuring (Macintosh Q & A)
100

LApplication predefined class
(PowerPlant) 80

LaserWriter 8.1.1, using with
QuickDraw GX (Macintosh
Q & A) 101

LaserWriter drivers, printing
OpenDoc graphics 18

lbzu autoincrementing instruction
(PowerPC) 28

LDefProc callback function
(PowerPlant) 84–86

list definition procedure (List
Manager), customizing 84–86

list flag (AppleScript) 61

INDEX 125

List Manager 91
and hierarchical lists 79, 80,

83–84
list definition procedure

84–86
LListBox built-in class

(PowerPlant) 79, 81
load instructions (PowerPC) 24,

25, 28
logical instructions (PowerPC)

24–25
lossless compression (QuickTime)

95
LPane built-in class (PowerPlant)

79, 82
LWindow built-in class

(PowerPlant) 79

M
Macintosh Q & A 98–107
Macintosh Toolbox. See Toolbox

(Macintosh)
Mail suite (Apple event suite), and

scripting implementation 55
make command (AppleScript) 51,

52, 67
make function (Dylan) 33–34, 38
Marlais interpreter (Dylan) 29,

30, 43
Maroney, Tim 44
memset, KON & BAL puzzle

120–121
menu commands, scripting

implementation 52–53
methods (Dylan) 36
method specificity (Dylan) 37–38
Miscellaneous Standards (Apple

event suite), and scripting
implementation 55

modules (Dylan) 29, 40–42
MountProject command, MPW

and 44
MPW C++, static constructors

(Macintosh Q & A) 106–107
MPW Shell

built-in variables 46
and compound statements

46
Quit script 44–46
redirection options 46
reducing launch time 44–47
Startup script 46–47

“MPW Tips and Tricks”
(Maroney), launching MPW
faster 44–47

mtctr instruction (PowerPC) 28
multiple inheritance (Dylan) 32,

37
multiple polymorphism (Dylan)

39–40
multiple return values (Dylan) 39
multiply polymorphic functions

(Dylan) 39–40
MyObject::Draw (OpenDoc) 11,

12–13

N
name method (Dylan) 36
namespaces (Dylan) 40, 42
NewHandleClear, KON & BAL

puzzle 121
NewHandleSysClear, KON &

BAL puzzle 121
NewMessageGlobals (QuickDraw

GX) 75
Newton, launching applications at

startup 113
Newton Q & A: Ask the Llama

112–116
next-method function (Dylan)

40
no-op instruction (PowerPC) 27
“not connected” communications

method 73, 74

O
ObeyCommand method

(PowerPlant) 80
object containment hierarchy

(AppleScript) 54
ObjectData keyword (PowerPlant)

80
object model 50–54, 68

designing 51–54
object containment

hierarchy 54
object model hierarchy (of Apple

events) 49
and properties 65

“Object-Oriented Approach to
Hierarchical Lists, An”
(Bruyndonckx) 78–93

object-oriented hierarchical lists
4, 78–93

object-oriented programming
78–79, 80

objects (AppleScript), versus
properties 64–65

objects (Dylan) 31, 33–34, 35
OpenDoc, scripting and 49

OpenDoc graphics 5–22
canvases 6
clip shape 7
content transform 7–8
coordinate system scaling

16–17
drawing 10
external transform 7–8
facets 5, 6, 7–8, 9
frames 5–7, 9
frame shape 6–7
frame transform 8
internal transform 7–8
parts 5, 9, 10–16
printing 18–22
rotating 13
scrolling 10–13, 14
shapes 6
transforms 6
used shape 7
windows 9
zooming 13, 15

OpenDoc layout model 5–6
OpenDoc objects 5
OpenDoc Software Development

Kit 5, 9, 10
osaxen (scripting additions) 69

P
packedDSSpec, Macintosh Q & A

105
pane (PlowerPlant) 79
parameters (AppleScript),

controlling quantity of 66–67
parts (OpenDoc) 5, 9

drawing 10
embedded, making visible

13, 15–16
scrolling 10–13, 14
zooming or rotating content

13, 15
PBGetCatInfo, hierarchical lists

and 91
PBHGetVInfo, hierarchical lists

and 91
PBHOpen, Macintosh Q & A

105
PBHOpenDF, Macintosh Q & A

105
PBHOpenRF, Macintosh Q & A

105
'pdoc' event, Macintosh Q & A

103
persistent representation

(OpenDoc) 5–6
See also frames (OpenDoc)

d e v e l o p Issue 21 March 1995126

Photo Compressor (JPEG codec)
(QuickTime) 95, 96

Piersol, Kurt 5
pixel depth, codec support for 95
PlotSICN function (PowerPlant)

91
polymorphic functions (Dylan)

36–37
portrait mode, automatically

configuring (Macintosh Q & A)
100

PostScript printers, printing
OpenDoc graphics 18–19

POWER instructions (PowerPC)
28

PowerPC 601 RISC Microprocessor
User’s Manual 23

PowerPC
addressing modes 24
branch prediction 26
calling conventions 26–27
instruction set 23–26
moving data 25
optimizing for speed 27–28
subroutine calls 27

PowerPC assembly language
23–28

PowerPlant Constructor
(Metrowerks), and 'PPob'
resources 82

PowerPlant development
framework (Metrowerks)
78–93

custom lists 81–86
resource definitions 80, 81,

82–84
twist-down lists 86–92

PPCAsm assembler (PowerPC)
23, 24

'PPob' resources (PowerPlant)
80, 82–84, 91

“ 'PPob' Resources” (Rappaport)
82

preferences files 3–4
Newton Q & A 112

preferences library, bug fixes 4
'pref' file type 3
print dialogs, changing

programmatically (Macintosh
Q & A) 100

printer drivers, QuickDraw GX
73–77

“Print Hints” (Hersey), writing
QuickDraw GX drivers with
custom I/O and buffering
73–77

printing, OpenDoc graphics
18–22

properties (AppleScript)
ID codes for 68–70
versus objects 64–65

protoPrintFormat, Newton Q & A
114

protoRoll, Newton Q & A 113
protoRollItems, Newton Q & A

113
PSMirrorFile extension

(QuickDraw GX), Macintosh
Q & A 104

Q
QuickDraw

printing OpenDoc graphics
18–22

underlining Kanji text
(Macintosh Q & A) 107

QuickDraw GX
and bogus fonts (Macintosh

Q & A) 103–104
buffer allocation 74
changing print dialogs

programmatically
(Macintosh Q & A) 100

default implementations 73
laser printer drivers

(Macintosh Q & A) 98
and OpenDoc graphics 10
overriding messages 74–76
printing OpenDoc graphics

20–21
spooling shapes (Macintosh

Q & A) 105
underlining Kanji text

(Macintosh Q & A) 107
using LaserWriter 8.1.1

(Macintosh Q & A) 101
writing drivers with custom

I/O and buffering 73–77
QuickDraw GX Helper

(Macintosh Q & A) 101
QuickTake 100 digital camera 94
QuickTime

choosing codecs 94–96
chroma keying (Macintosh

Q & A) 104
QuickTime 2.0, codecs included

with 94
QuickTime movies, temporal

compression 95
Quit script (MPW) 44–46

R
Random function (QuickDraw),

Macintosh Q & A 105–106
Random X function (SANE),

Macintosh Q & A 106
Rappaport, Avi 82
reanimator (PowerPlant) 83
record definition (AppleScript)

61–62
reference forms (AppleScript) 67
registrar (PowerPlant) 83
registry suites (Apple event) 55
RemoveIndex, Newton Q & A

112
required-init-keyword: option

(Dylan) 34
required parameters (Dylan) 38
Required suite (Apple event suite),

and scripting implementation
55, 56, 71

Resorcerer (Mathemaesthetics),
and 'PPob' resources 82

#rest parameter (Dylan) 38
return declarations (Dylan) 39
return parameters (Dylan) 39
Rez source files

developing an 'aete' 53
listings format 57
and 'PPob' resources 82
sample code 57, 58

RISC processors, versus CISC 23
rlwimi instruction (PowerPC) 28
root facet (OpenDoc) 9
root frame (OpenDoc) 9
root part (OpenDoc) 9
rotate instructions (PowerPC) 25
RTOC register (PowerPC) 27
runtime representation

(OpenDoc) 5, 6
See also facets (OpenDoc)

S
SANE programs, converting to

PowerPC (Macintosh Q & A)
100

Scheduling suite (Apple event
suite), and scripting
implementation 55

scriptable applications. See
AppleScript; scripting
implementation

scripting additions (osaxen) 69
scripting implementation 48–72

of menu commands 52–53
See also AppleScript

INDEX 127

scrolling, OpenDoc graphics
10–13, 14

semantic vocabulary (AppleScript)
49

Send_GXDumpBuffer
(QuickDraw GX) 77

Send_GXFreeBuffer (QuickDraw
GX) 77

Set command, MPW and 44, 46
set command (AppleScript) 51,

52
SetHilite message, unselecting text

(Newton Q & A) 112–113
SetKey command, MPW and 44
SetMessageHandlerClassContext

(QuickDraw GX) 75–76
SetMessageHandlerInstance-

Context (QuickDraw GX) 75
setter functions (Dylan) 35–36
setter: option (Dylan) 36
SetValue, Newton Q & A 115,

116
SetVideoMediaGraphicsMode,

Macintosh Q & A 104
shape (OpenDoc) 6
ShellDirectory variable (MPW)

46
SimMogul example classes (Dylan)

31–33
inheritance hierarchy 31

Simone, Cal 48
singletons (Dylan) 38
slider CDEF, Macintosh Q & A

104
slots (Dylan) 32
“Somewhere in QuickTime”

(Wang), choosing the right
codec 94–96

specializing methods (Dylan) 37
SpeechLib, Macintosh Q & A

98–99
Speech Manager, Macintosh

Q & A 98–99
spoolProc (QuickDraw GX),

Macintosh Q & A 105
standardIO (QuickDraw GX) 74
Startup script (MPW) 46–47
store instructions (PowerPC) 24,

25, 28
Strassmann, Steve 29
strings, converting to floats

(Macintosh Q & A) 99
StringToExtended, Macintosh

Q & A 99
StuffIt (Aladdin), supporting the

object model 71

superclass (Dylan) 32
symbols (Dylan) 38
syntactic statement structure

(AppleScript) 49–50
System Object suite (Apple event

suite), and scripting
implementation 55

T
Table suite (Apple event suite), and

scripting implementation 55
tag (PowerPlant) 83
Telephony suite (Apple event

suite), and scripting
implementation 55

template file (PowerPlant) 91
TempNewHandle, KON & BAL

puzzle 120–121
temporal compression

(QuickTime) 95
terminology (AppleScript) 49
text, unselecting (Newton Q & A)

112–113
Text suite (Apple event suite), and

scripting implementation 55
“The Art of Human Computing”

(Engler), Finger-Coded Binary
122

TheRaven debugger 78, 79
Toolbox (Macintosh), using from

within Dylan code 30
“Tools for Developing an 'aete'”

53
transform (OpenDoc) 6

content 7–8
external 7–8
frame 8
internal 7–8

transition vector (t-vector)
(PowerPC) 27

turnkey applications, Newton
Q & A 113

#t (Boolean true) value (Dylan)
39

twist-down hierarchical lists
86–92

type codes (AppleScript), reusing
65–66

type declarations (Dylan) 32–33,
34, 37

Type Definitions suite (Apple
event suite), and scripting
implementation 62–63, 71

Type Names suite (Apple event
suite), and scripting
implementation 62–63

U
used shape (OpenDoc) 7
UserStartup files (MPW) 47

V
variables (Dylan) 34–35
“Veteran Neophyte, The”

(Johnson), The Downside
108–111

Video Compressor (QuickTime)
96

pixel depth supported 95
viewBounds, Newton Q & A

113–114
viewChangedScript, Newton

Q & A 112–113
virtual allocation (Dylan) 34

W
Wang, John 94
warm boot, MPW and 46–47
weak linking (CFM), Macintosh

Q & A 98–99
“Why Implement Scriptability?”

49
windows, floating 4
windows (OpenDoc) 9

split 9
'WIND' resource 80

d e v e l o p Issue 21 March 1995128

