

E D I T O R I A L S T A F F

Editor-in-Cheek Caroline Rose

Managing Editor Toni Moccia

Technical Buckstopper Dave Johnson

Bookmark CD Leader Alex Dosher

Able Assistant Meredith Best

Our Boss Mark Bloomquist

His Boss Dennis Matthews

Review Board Brian Bechtel, Dave Radcliffe,
Jim Reekes, Bryan K. “Beaker” Ressler,
Larry Rosenstein, Andy Shebanow, Nick
Thompson, Gregg Williams

Contributing Editors Lorraine Anderson,
Patria Brown, Steve Chernicoff, Toni
Haskell, Judy Helfand, Cheryl Potter,
Joan Stigliani

Indexer Marc Savage

A R T & P R O D U C T I O N

Production Lisa Ferdinandsen, Diane Wilcox

Art Direction Paul Luiso

Technical Illustration Mary Prusmack Ching,
John Ryan, Laurie Wigham

Formatting Forbes Mill Press

Photography Sharon Beals

Cover Illustration Graham Metcalfe of
Metcalfe/Shuhert Design

ISSN #1047-0735. © 1995 Apple Computer, Inc.
All rights reserved. Apple, the Apple logo, APDA,
AppleLink, AppleScript, AppleShare, AppleTalk,
ColorSync, EtherTalk, HyperCard, HyperTalk,
LaserWriter, LocalTalk, Mac, MacApp, Macintosh,
MacTCP, MPW, MultiFinder, Newton, NewtonMail,
OpenDoc, PowerBook, Power Macintosh, QuickTime,
and TrueType are trademarks of Apple Computer, Inc.,
registered in the U.S. and other countries. A/ROSE,
develop, Dylan, eWorld, Finder, NewtonScript,
PowerTalk, QuickDraw, Sound Manager, and
ToolServer are trademarks of Apple Computer, Inc.
Adobe, Acrobat,and PostScript are trademarks of
Adobe Systems Incorporated or its subsidiaries and
may be registered in certain jurisdictions. PowerPC
is a trademark of International Business Machines
Corporation, used under license therefrom. UNIX is
a registered trademark of Novell, Inc. in the United
States and other countries, licensed exclusively through
X/Open Company, Ltd. All other trademarks are the
property of their respective owners.

T H I N G S T O K N O W

develop, The Apple Technical
Journal, a quarterly publication of
Apple Computer’s Developer Press
group, is published in March, June,
September, and December. develop
articles and code have been reviewed
for robustness by Apple engineers.

This issue’s CD. Subscription issues
of develop are accompanied by the
develop Bookmark CD. This CD contains
a subset of the materials on the monthly
Developer CD Series, available from
APDA. Included on the CD are this
issue and all back issues of develop along
with the code that the articles describe.
(The code is updated periodically, so
always use the most recent CD.) The
CD also contains Technical Notes,
sample code, and other documentation
and tools (these contents are subject to
change). Items referred to as being on
“this issue’s CD” are located on either
the Bookmark CD or the Reference
Library or Tool Chest edition of the
Developer CD Series. The develop issues
and code are also available in the
Developer Services areas on AppleLink
and eWorld and at ftp.info.apple.com.
Selected articles are on the World
Wide Web at http://www.apple.com,
in the Developer Services area.

Macintosh Technical Notes.
A designation like “(QT 4)” after a
reference to a Macintosh Technical
Note in develop indicates the category
and number of the Note on this issue’s
CD. (QT is the QuickTime category.)

E-mail addresses. Most e-mail
addresses mentioned in develop are
either AppleLink or eWorld addresses.
We’re currently in transition: a given
AppleLink address may no longer work
by the time this issue is published.
If that happens, try the equivalent
eWorld address. On the Internet,
AppleLink address XXX translates to
xxx@applelink.apple.com, eWorld
addresss XXX to xxx@eworld.com,
and NewtonMail address XXX to
xxx@online.apple.com.

C O N T A C T I N G U S

Feedback. Send editorial suggestions
or comments to Caroline Rose at
AppleLink CROSE, Internet
crose@applelink.apple.com, or fax
(408)974-6395. Send technical
questions about develop to Dave
Johnson at AppleLink JOHNSON.DK,
Internet dkj@apple.com, CompuServe
75300,715, or fax (408)974-6395. Or
write to Caroline or Dave at Apple
Computer, Inc., 1 Infinite Loop,
Cupertino, CA 95014.

Article submissions. Ask for our
Author’s Guidelines and a submission
form at AppleLink DEVELOP,
Internet develop@applelink.apple.com,
or fax (408)974-6395. Or write to
Caroline Rose at the above address.

Subscriptions and back issues.
You can subscribe to develop through
APDA (see ordering information
below) or use the subscription card in
this issue. You can also order printed
back issues from APDA. For all
subscription changes or queries,
contact APDA and be sure to include your
name, address, and account number as it
appears on your mailing label.

The one-year U.S. subscription price is
$30 (for 4 issues and 4 develop Bookmark
CDs), or U.S. $50 in other countries.
Back issues are $13 each. These prices
include shipping and handling. For
Canadian orders, the subscription price
includes GST (R100236199).

APDA. To order products from APDA
or receive the Apple Developer Tools
Catalog of all the products available
from APDA, call 1-800-282-2732 in
the U.S., 1-800-637-0029 in Canada,
(716)871-6555 internationally, or
(716)871-6511 for fax. Order
electronically at AppleLink APDA,
Internet apda@applelink.apple.com,
CompuServe 76666,2405, or America
Online APDAorder. Or write APDA,
Apple Computer, Inc., P.O. Box 319,
Buffalo, NY 14207-0319.

Printed on recycled paper

d e v e l o p

A R T I C L E S

6 Speeding Up whose Clause Resolution in Your Scriptable Application
by Greg Anderson
Although the Object Support Library will resolve complex AppleScript clauses for you, if you take on some
of the work yourself the performance gains can be dramatic.

30 Getting Started With OpenDoc Storage by Vincent Lo
OpenDoc storage is a departure from what you’re used to: it needs to support storing different kinds of data,
written by different part editors, in the same file or container.

45 Sound Secrets by Kip Olson
These less obvious features of the Sound Manager will help improve your application’s use of sound.

59 Guidelines for Effective Alerts by Paige K. Parsons
This article elaborates and expands on the guidelines for the consistent and correct usage of alerts.

72 Printing Images Faster With Data Compression by David Gelphman
PostScript Level 2 printers can accept JPEG-compressed image data directly, which can greatly improve
printing speed. Here’s what you need to know to take advantage of this ability.

84 The New Device Drivers: Memory Matters by Martin Minow
Using PrepareMemoryForIO to set up memory for data transfers to or from other devices is a complex —
but very important — process. This walkthrough points out traps and pitfalls along the way.

C O L U M N S

27 ACCORDING TO SCRIPT
Steps to Scriptability
by Cal Simone
A clear, step-by-step method for developing
your particular scripting implementation.

42 GRAPHICAL TRUFFLES
Making the Most of QuickDraw 3D
by Nick Thompson and Pablo Fernicola
A few tips for QuickDraw 3D that might make
your life a little easier.

56 BALANCE OF POWER
Advanced Performance Profiling
by Dave Evans
Some new and useful performance profiling
features of the PowerPC 604 processor.

69 MPW TIPS AND TRICKS
ToolServer Caveats and Carping
by Tim Maroney
All about ToolServer, a small, scriptable
application that can run MPW commands.

100 MACINTOSH Q & A
Apple’s Developer Support Center answers
queries about Macintosh product development.

110 THE VETERAN NEOPHYTE
The Right Tool for the Job
by Dave Johnson
Dynamic languages are the future of
programming. Or at least they ought to be.

112 NEWTON Q & A: ASK THE LLAMA
Answers to Newton-related development queries.

117 KON & BAL’S PUZZLE PAGE
Zoning Out
by Konstantin Othmer and Bruce Leak
The original Puzzlers return with another
merry romp through the guts of the machine.

Issue 24 December 1995

CONTENTS 1

2 EDITOR’S NOTE
3 LETTERS

123 INDEX

I was visiting my friends Helen and John one night when Helen started telling me
how excited about the World Wide Web John had become. He said, “Ask me
anything at all, and I can find the answer for you.” I asked what the new U.S. postal
rate for international air mail was, knowing it had recently gone up from $.50. He
delighted over finding a Web page for the Postal Service, and quickly found the rate:
$.50. Wrong.

Later John showed me a spiffy magazine called NewMedia, and in it an article by
longtime hypertext proponent Ted Nelson. Nelson expressed his joy that, with
HTML and the Web, hypertext’s time has finally come; we can now leave the
insanity of “paper simulation” behind and write in a way that lets information take on
its truer, interconnected form.

I found the article, and John’s enthusiasm over the Web, a bit disconcerting. The Web
is indeed a boon to humankind, but I don’t see it entirely replacing what came before.
The world’s love affair with the Web reminds me of the early days of TV (so I’m
told), when many people were sure that radio was dead. Out with the old, in with the
new. But in fact the old still had its place in the world. The virtues of the Web don’t
mean we no longer need to get information from flesh and blood people sometimes,
or from books and other media that we can hold in our hands. This may seem obvious,
but from the near hysteria surrounding the Web these days, I’m not sure it is.

A few days after my visit with Helen and John, with John still smarting from his
failed demonstration of the wonderfulness of the Web, Helen called and mentioned
that she needed the lyrics to “House of the Rising Sun.” I could hear John in the
background, tapping away as he searched for them online. I said I’d use old
technology and call back with them soon. The race was on.

After looking through my looseleaf binders full of song lyrics and a couple of big
songbooks, I dug through my tapes and found an ancient recording of Woody
Guthrie singing the song. After lots of rewinding and transcribing, I had more verses
than Helen ever dreamed existed. When I triumphantly called back, John (several
levels down in the Library of Congress) was mortified.

While old technology will typically not beat Web browsers in the search for nuggets
of information, it will not die, and it deserves proper respect. There are some things
we’ll learn only through person-to-person contact. And there are emotions we’ll
experience only from hearing or reading good old-fashioned sequential deliveries.
The World Wide Web is a valuable resource, but it is not, after all, the world.

CAROLINE ROSE

d e v e l o p Issue 24 December 19952

EDITOR’S NOTE

CAROLINE ROSE (AppleLink CROSE) enjoys
editing develop so much that she fears she may
forget to retire someday. She started out in
technical writing and editing eons ago,
eventually moving on to programming and even
management before returning to her original
calling. What seems to be calling her now is

the sea: Her last vacation took her up to Puget
Sound (stalking wild elk on the Olympic Peninsula
on the way), and her next will be in a sailboat in
the Bahamas. She may even have the opportunity
to cruise the Pacific in a few years but she’s not
sure she’ll be ready to leave develop, her cat, or
terra firma.•

Caroline Rose
Editor

PROJECTDRAG IMPRESSES
I’ve been working with Tim Maroney’s
ProjectDrag (Issue 23, “MPW Tips and
Tricks: Customizing Source Control
With SourceServer”), and I’m very
impressed. I’ve never found an adequate
way of using a revision control system
on the Macintosh (Projector is too
clumsy to use when you’re developing
with CodeWarrior), and I had written
off SourceServer completely after I had
such a miserable experience with it
under Symantec C++ 7.0. But Tim’s
article and software have given that dog
some new tricks. His programs are easy
to use and powerful at the same time.

Thank you very much for publishing
Tim’s work in this issue, and I hope to
see more about ProjectDrag in the
future.

— Phil Sulak

Thanks for the feedback; we’re happy to
know that you find ProjectDrag useful.

There were a few problems with the previous
version of ProjectDrag, so on this issue’s CD
you’ll find a new version with a few bug
fixes and enhancements. Also, the previous
version was missing the makefile; it’s now on
the CD.

— Caroline Rose

QTMA
I read the article on QTMA by David
Van Brink in Issue 23, and have a few
additional questions. As Director of
Audio for Human Code (an Austin
multimedia developer), I’m looking for
a way to convey an other-worldly quality
to the soundscape of a CD-ROM title
we’re developing.

First, is QTMA supported on the PC
platform? If it only works on the Mac
OS platform, I’m back to the drawing
board.

Also, is it possible to seed a bank of
custom-designed samples to be played
using standard MIDI files with QTMA?
If so, is there a developer’s guide
available for programming within
QTMA?

— John Malcolm Smith

First of all, you’ve probably noticed that
there were no changes to the Music
Architecture in QuickTime 2.1 after all.
These changes have been delayed until the
next release of QuickTime (which should
ship by early 1996). The code on this issue’s
CD has been revised so that it compiles with
the 2.0 or 2.1 headers.

On the PC side, QuickTime music tracks
are supported, but only inside movies. So,
compose your score on the Macintosh,
import it into a QuickTime movie using
MoviePlayer, and then save it flattened with
the “Playable On Non-Apple Computers”
box checked. This movie will play through
Windows’ multimedia extensions, according
to its MIDI setup.

As far as adding your own instruments,
you should be able to do this in the next
QuickTime release in two ways: by dropping
a component into the System Folder, to
make a sound library available to all
applications, or by inserting a sound into the
music track of a particular movie.

— David Van Brink

PUZZLE PAGE DOESN’T STINK
Re Lance Drake’s letter in Issue 22
entitled “Puzzle Page Stinks”: I strongly

LETTERS

LETTERS 3

IF YOU LIKE US, LET US KNOW
What do you like, or not like, about develop
(besides the Puzzle Page)? We welcome your
letters, especially regarding articles published in
develop. Letters should be addressed to Caroline
Rose — or, if technical develop-related questions,
to Dave Johnson — at AppleLink CROSE or

JOHNSON.DK. Or you can write to Caroline or
Dave at Apple Computer, Inc., 1 Infinite Loop,
Cupertino, CA 95014. All letters should include
your name and company name as well as your
address and phone number. Letters may be
excerpted or edited for clarity (or to make them
say what we wish they did).•

disagree. The Puzzle Page is the first
article I read. From it I’ve learned new
debugging tactics, and picked up cool
MacsBug tricks and how to do more
than just “G” from MicroBug. The fact
that the “scoring” shouldn’t be taken
literally is obvious; after all, KON &
BAL never get the answer till 10 or less.
Don’t let one humorless whiner ruin a
good thing.

Keep up the good work; develop is a
great resource.

— Steve Palmen

I wanted to let you know how much I
enjoy the Puzzle Page. I just graduated
and was lucky enough to land a job
programming on the Mac. Issue 22 is
my first and I’ve already looked back at
all of the previous Puzzles because I
enjoy reading about the deepest, darkest
Mac knowledge that I hope to stuff into
my brain one day. It’s refreshing to have
a technical journal that’s not afraid to
crack a joke every couple of pages. I
haven’t felt offended or mocked by your
Puzzle Page.

— Matt Glazier

I just want to let you know that there
are people out here who read and enjoy
the Puzzle Page. I try to follow every
twist and turn in the logic that leads to
the final result. I’ve tracked down a few
bugs in my own code that were complex
and obscure enough to end up on the
Puzzle Page, and it’s nice to see the
steps someone else follows.

— David Shayer

. . . WELL, MAYBE JUST A LITTLE
The letter from Lance Drake in Issue
22 about the Puzzle Page was, as you
wrote, a surprise to you. To me it wasn’t.

First I would like to state that the
Puzzle Page is by far the best column in
develop — technically very interesting
and also amusing. This explains the
good feedback you receive on it. Yet the
“scoring” tables are indeed belittling,

elitist, and intellectually arrogant. Even
worse, they are offending. This is a
detail, but it fully explains and justifies
Mr. Drake’s angry letter.

— Adriaan van Os

Many thanks for all the work you put
into develop. The production qualities
are superb. I have only one complaint:
get rid of KON & BAL’s Puzzle Page.
I always feel depressed after reading it.

— Andrew Trevorrow

FINGER-CODED BINARY
VARIATION
I’d like to comment on Tobias Engler's
Finger-Coded Binary column in Issue
21. Although I agree with most of what
he said, Tobias’s approach, the 10-bit
model, is far less natural than it needs to
be. I find it much easier (at least more
natural) to work with hands flat on the
side of a table, using all fingers except
thumbs — this results in the more
commonly used 8-bit model. You can
then use your thumbs for other things,
such as branch prediction, status
registers, or even complex instruction
execution.

I have one advantage over many people.
The fact that I’m missing part of my
right thumb enables me to do fractions.
No other digital system I know of can
do 0, 1/2, and 1 digits.

— Martin-Gilles Lavoie

There’s much more to the 10-bit model
than you seem to realize. Have you ever
had somebody tell you “You can eat as many
Snickers bars as you can count on your
hands”? Probably not. You wouldn’t want to
stop at 256, would you?

Concerning your fractional thumb: Your
technological advantage over conventional
digital systems will undoubtedly attract
many copyists, which may result in a lot of
unnecessary bloodshed. My advice to you is
go and get a patent!

— Tobias Engler

d e v e l o p Issue 24 December 19954

The Object Support Library provides convenient mechanisms for
scriptable applications to support complex expressions that may return
multiple results (such as every item of container "b" whose name
contains "a"). However, the performance of applications that rely on
the default behavior is nowhere near what it could be if the application
took on some of the work itself. This article shows you how to gain
ten- to a hundred-fold increases in the performance of whose clause
resolution in your scriptable application. If your application is not yet
scriptable, you’ll find that the foundation classes presented in this article
do most of the work required to support scripting.

One of the greatest strengths of AppleScript is its built-in ability to do complex
operations on groups of objects in a single line of script. For example, suppose you
have a set of shapes in a scriptable drawing program, and you’d like to change the
color of all the red shapes to green. In conventional programming languages, you’d
need to write a loop that iterates over each object in the set, tests to see if its color is
red, and then does a “set color to green” command for each red object that was
found. Using AppleScript, you can do the same operation with the single statement
set color of every shape whose color is red to green. In that statement, every
shape whose color is red is called a whose clause, and it’s the inclusion of whose
clauses that makes AppleScript the powerful language it is.

You may at first doubt that using a whose clause is much better than writing the
equivalent script with a loop. After all, the direction of modern processor design has
been toward simplicity of the instruction set; RISC chips are able to gain incredible
performance improvements by doing optimizations that aren’t possible in CISC
chips. Also, when all is said and done, the whose clause must finally execute the same
loop-and-compare algorithm that you’d be forced to use if you wrote the script with
the basic flow-of-control script commands, such as do-while and if-then.

Using a whose clause is, however, much more efficient than the alternative.
AppleScript is based on the client/server paradigm: typically your script, the client,
will be running in one application (usually the Script Editor or a script saved as a
miniapplication), with the application being scripted acting as a server. In this

GREG ANDERSON

Speeding Up whose Clause Resolution
In Your Scriptable Application

d e v e l o p Issue 24 December 19956

GREG ANDERSON is enjoying the hot days of
late summer as he writes this, but by the time this
issue is in your hands, he should be back on the
ski slopes earning his nickname, “Air Bear.” Greg
spends most of his skiing time looking for some

protrusion to jump or fall off of while wearing
his favorite polar bear hat. He sometimes works,
too; he recently moved to Japan to work on
international software for Apple Technologies in
Tokyo.•

situation, each script command that’s directed at the scriptable application needs to be
transferred between the two applications. A whose clause is a single script command,
but with the loop approach many commands would need to be sent. Furthermore,
AppleScript allows the scriptable application to reside on a different machine than the
application running the script; if your script is running on a machine in Cupertino,
California, and the server is on, say, Mars, reducing the number of round-trip
messages would have a profound impact on the performance of the script. Remember,
you can currently get only about 30 round-trip Apple events per second, so even if
you aren’t sending data to Mars, you’ll still do a lot better with fewer events than with
many.

There’s another, similar reason that using whose clauses is superior to the equivalent
loop-based script: AppleScript compiles scripts into byte codes that are interpreted
during execution, whereas the individual script commands (once interpreted) are
processed by a scriptable application typically written in a language that’s compiled
into machine code (be it 680x0 or PowerPC™). The loop-and-compare script will
execute several lines of script for every item that’s compared, whereas the whose
clause is but a single line of script that triggers processing in a compiled application.
It should be quite clear which will take less time to execute.

The Object Support Library (OSL) — the library that provides the API you use to
make your application scriptable — enables your application to support whose
clauses without requiring you to write a lot of additional code. You only need to
provide an object-counting function and an object comparison function, and the OSL
can resolve whose clauses for you. Since supporting whose clauses allows script
writers to write more efficient scripts, you should always do at least this much.
However, there are two other features of the OSL that can vastly increase the
performance of scriptable applications but are often ignored by application writers:
whose clause resolution (a way for your application to find the objects that match a
whose test without using the OSL) and marking (a mechanism for efficiently
handling collections of objects, such as those satisfying a whose clause). Using whose
clause resolution, with the help of marking, will enable you to get the most out of
your scriptable application. Resolving whose clauses can be a bit tricky, but with a
little help from this article, you’ll be on your way in no time.

If your application is not yet scriptable, you’ll find the sample code included with this
article (and on this issue’s CD) to be invaluable in getting you up and running —
particularly since it contains a lot of reusable code.

AN OVERVIEW OF THE OSL
Good descriptions of the OSL can be found in the develop articles “Apple Event
Objects and You” in Issue 10 and “Better Apple Event Coding Through Objects” in
Issue 12. If you need a quick review of the OSL and you don’t feel like putting down
this issue of develop to dig through your back issues, read on. If you can already
generate tokens and resolve object specifiers in your sleep, by all means skip ahead
to the next section.

When AppleScript is processing a script command such as delete paragraph 2 of
document "sample", it converts the command into an Apple event which it sends
to the scriptable application that’s referenced by the script. The Apple event’s event
class and message ID together specify the verb of the operation being performed —
in this case delete. The object being operated on is passed in the keyDirectObject
parameter of the Apple event, which is called, naturally enough, the direct parameter
of the event.

SPEEDING UP WHOSE CLAUSE RESOLUTION IN YOUR SCRIPTABLE APPLICATION 7

The direct parameter is almost always an object specifier — a descriptor of type
typeObjectSpecifier — although in some cases it may be something else. For
example, in addition to object specifiers, the Scriptable Finder accepts alias records
and file specifications in the direct parameter of events sent to it. If the direct
parameter of an event is not of type typeObjectSpecifier, you’re on your own to
convert it into some format that’s understood by your event handler. For descriptors
that are of this type, though, all you need to do is call the function AEResolve, and
the OSL will step in and help your application resolve the object specifier — that is,
locate the Apple event objects it describes.

Object specifiers are resolved through object accessor callbacks that your application
installs to allow the OSL to communicate with your application during object
resolution. The accessor callbacks must take the description of the object requested
by the OSL (for example, document "sample") and return a token that describes the
object in terms that the application can understand (for example, a pointer to a
TDocument object). Tokens are passed back to the OSL in an AEDesc, a structure
that contains a 32-bit descriptor type and a handle. Your application has complete
control over what it stores in the token, as long as the AEDesc is valid (that is, it was
created with AECreateDesc).

When the OSL calls your application’s object accessor callbacks, it always passes
either a token that represents the containing object (which it got from an earlier call
to one of your object accessors) or a representation of the default container of the
application, which is also called the null container of the application. So, to resolve
the object specifier paragraph 2 of document "sample", the OSL first asks for
document "sample" from the null container. Then it asks the application to provide
a token for paragraph 2 from the token the application provided in response to the
request for document "sample". The token that the application provides for
paragraph 2 is returned as the result of the AEResolve call; the application will
presumably use this token to process the Delete event.

Resolving object specifiers is explained in Chapter 6 of Inside Macintosh:
Interapplication Communication. A figure illustrating the process of resolving object
specifiers is on page 6-6.•

MARKING
Inside Macintosh: Interapplication Communication describes marking as a mechanism
whereby items to be operated on are marked with some flag during resolution (that
is, from the callbacks made by the AEResolve function); then, during execution, each
marked item is processed and the mark is cleared. As described, marking doesn’t
sound very interesting and appears to be useful only in fringe cases.

Marking is actually very well suited for use as a general-purpose collection mechanism
whenever the OSL needs to group tokens together to process an object resolution.
For example, if the OSL is resolving the whose clause every shape whose color is
red and there are multiple red shapes, the result of the call to AEResolve must be a
collection of all the tokens that represent red objects. If your application supports
marking, the OSL asks your application to create a special mark token to represent
this collection. After your application provides the OSL with a mark token, the OSL
will ask your application to add the tokens it provided for the red shapes to the mark
token’s collection. When AEResolve completes, the mark token is returned as the
result of the resolution.

If your application doesn’t support marking, the OSL will create collections of tokens
for you by copying the data from your tokens into a descriptor list (an AEDescList).

d e v e l o p Issue 24 December 19958

It calls the standard Apple Event Manager routines for creating descriptor lists, which
copy the data out of the data handle of the AEDesc and then store the token data
somewhere inside the data handle of the descriptor list; the descriptor type of the
AEDesc is similarly encapsulated.

Dealing with descriptor lists of tokens can be inconvenient, particularly if your
application already supports collections of objects in some other way. The OSL
marking mechanism gives you the flexibility to handle collections in any way that’s
convenient for your application.

To support marking, you must pass the flag kAEIDoMarking to AEResolve and
implement the three marking callbacks that are passed to AESetObjectCallbacks: the
create-mark-token callback (called just a “mark-token callback” in Inside Macintosh),
the object-marking callback, and the mark-adjusting callback. The create-mark-token
callback doesn’t need to do anything more than create an empty mark token. The
OSL will dispose of this token as usual by calling your token disposal callback when
the token is no longer needed. Listing 1 shows an example implementation of a
create-mark-token callback.

The object-marking callback is passed a mark token created from the create-mark-
token callback and some other token created by one of your application’s object
accessor callbacks. Your object-marking callback should add a copy of the other token
into the mark token (or apply a reference count to the token being added), because
the OSL will dispose of the token added to your collection shortly after calling your
object-marking callback. Listing 2 shows one implementation of an object-marking
callback.

The mark-adjusting callback is called to remove (“unmark”) tokens from the collection.
Oddly enough, its parameters specify which tokens in the range to keep; all tokens
outside the specified range should be discarded.

Implementing the marking callbacks is trivial. The only real work involved in
supporting marking is handling collections of tokens when they’re ultimately received
by one of your event handlers (handling Move events, for example). The amount of
code required to handle the marking callbacks and maintain your own collections is
minimal; in fact, the time you’ll save by not having to hassle with descriptor lists of
tokens will more than make up for the implementation cost. You’ll find more
information on handling collections of tokens later in this article. Don’t put off

SPEEDING UP WHOSE CLAUSE RESOLUTION IN YOUR SCRIPTABLE APPLICATION 9

Listing 1. Create-mark-token callback

pascal OSErr CreateMark(AEDesc containerToken, DescType desiredClass,
AEDesc* markTokenDesc)

{
TMarkToken* markToken;

markToken = new TMarkToken;
markToken->IMarkToken();
markTokenDesc->descriptorType = typeTokenObject;
markTokenDesc->dataHandle = markToken;

return noErr;
}

marking as an optimization to be done later; incorporate it into the design of your
application from the very beginning.

For more details on the marking callbacks, see Inside Macintosh:
Interapplication Communication, pages 6-53 to 6-54.•

WHOSE CLAUSE RESOLUTION
The only thing that a scriptable application needs to do to support whose clauses is
provide an object-counting function and an object comparison function — the OSL
will do the rest of the work. When the OSL does a whose clause resolution, however,
it has no choice but to iterate over every element in the search set, repeatedly calling
your application’s object accessor, object comparison, and token disposal callbacks.
Huge performance gains can be realized if you resolve whose clauses yourself,
because you’ll avoid the overhead the OSL requires to make these callbacks.

Passing the flag kAEIDoWhose to AEResolve tells the OSL that you’ll resolve the
whose clause yourself. The OSL calls your object accessor with the key form
formWhose (see Listing 3). The key data is a whose descriptor — that is, an AERecord
that describes the comparison to be performed in the search. Your application should
interpret the whose descriptor and test every element of the container token to see
if it matches the specified criteria. If the whose descriptor is too complex for your
application, you can return the error code errAEEventNotHandled from your object
accessor, and the OSL will do the resolution for you with the default techniques. This
is very useful, as it allows you to maximize the performance of the most common
whose clauses, yet still support complex whose descriptors that are likely to be
encountered only rarely.

The astute reader will notice that the scheme presented in Listing 3 is very similar to
the process that the OSL goes through to resolve whose clauses. There are still
optimizations that could be made to speed up the resolution further, but we’ll get to
those later. To resolve whose clauses as shown in Listing 3, your application must be
able to do the following:

d e v e l o p Issue 24 December 199510

Listing 2. Object-marking callback

pascal OSErr TAccessor::AddToMark(AEDesc tokenToAdd, AEDesc
markTokenDesc, long markCount)

{
AEDesc copyOfToken;
TMarkToken* markToken;

// We know that the OSL will only give us mark tokens created with
// our create-mark-token callback, but real code would do a test
// before typecasting.
markToken = (TMarkToken*) markTokenDesc.TokenObject();
// Add a copy of the token to the collection, because the OSL will
// dispose of tokenToAdd after passing it to you. A reference-
// counting scheme is good here.
copyOfToken = CloneToken(tokenToAdd);
markToken->AddToCollection(copyOfToken);

return noErr;
}

• Iterate over the elements of any token.

• Determine class membership of any token.

• Compare properties of the elements of any token.

• Convert a whose clause into some internal representation usable by your
application.

The first two operations are required of any scriptable application, so yours probably
can already do them. Comparing properties is something your application probably
doesn’t do yet, but in the worst case you could always write a few lines of code that
call your property object accessor function, retrieve the data from the resulting
property token, and then compare the descriptor that was returned. Obviously you
can do better than this in terms of performance, and later on we’ll investigate how.
First, though, we’ll look at how to interpret the contents of a whose descriptor.

THE CONTENTS OF A WHOSE DESCRIPTOR
Earlier I claimed that a whose descriptor was an AERecord, but I lied. A whose
descriptor is actually a descriptor of type typeWhoseDescriptor. Internally, a whose
descriptor is stored just like an AERecord, but you can’t extract its parameters unless
you first coerce it to type typeAERecord. In Apple events parlance, this type of
descriptor is called a coerced record; its basic type is typeAERecord, and its coerced
type is typeWhoseDescriptor.

SPEEDING UP WHOSE CLAUSE RESOLUTION IN YOUR SCRIPTABLE APPLICATION 11

Listing 3. Handling formWhose in the object accessor

pascal OSErr MyObjectAccessor(DescType desiredClass, AEDesc container,
DescType /*containerClass*/, DescType keyForm, AEDesc keyData,
AEDesc* resultToken, long /*hRefCon*/)

{
switch (keyForm) {

// case formAbsolutePosition, and so on
...
case formWhose:

// TWhoseDescriptor is a class that knows how to interpret
// a whose descriptor and test tokens for membership in the
// search set defined by the desired class and the whose
// descriptor.
TWhoseDescriptor whoseDesc(desiredClass, keyData);
// TTokenIterator is a class that knows how to iterate
// over the elements of a token.
TTokenIterator iter(container);
for (iter.Reset(); iter.More(); iter.Next()) {

AEDesc token = iter.Current();
if (whoseDesc.Compare(token) == kTokenIsInSearchSet) {

// Add token to the collection stored in resultToken.
AddTokenToResult(token, resultToken);

}
}
break;

}
return noErr;

}

The advantage of coerced records is that they allow clients of the Apple Event
Manager (for example, the OSL) to define new descriptor types for AERecords that
define the context in which the record will be used and specify (by convention) what
parameters the client can expect to find inside it. The disadvantage is that it requires
an extra memory allocation to coerce the descriptor back to typeAERecord before the
parameters of the coerced record can be accessed. This is unfortunate, as one of the
primary goals of performance optimization is to remove extraneous memory
allocations; coercing the descriptor back to typeAERecord is part of the current
design of the Apple Event Manager, though, so there’s nothing we can do about it.

There are two parameters inside a descriptor of type typeWhoseDescriptor:
keyAEIndex and keyAETest.

• The keyAEIndex parameter usually contains an enumeration whose value is
kAEAll; this corresponds to the word every in the whose descriptor every
item whose name contains "e". The other possible values are kAEFirst,
kAELast, kAEMiddle, and kAEAny for whose clauses that request the first,
last, middle, or any (random) item. The keyAEIndex parameter might also
be of type typeLongInteger or typeWhoseRange, to indicate a single item or
a range of items, respectively.

• The keyAETest parameter contains another coerced AERecord whose type
can be either typeCompDescriptor or typeLogicalDescriptor. In either
case, you must coerce the descriptor to type typeAERecord to access the
parameters inside it.

A comparison descriptor (typeCompDescriptor) contains three parameters: two
objects to compare (keyAEObject1 and keyAEObject2) and a comparison operation
to be performed on them (keyAECompOperator). Usually the first object to compare
is a special type of object specifier that indicates a property to compare (for example,
pName), and the second is a literal constant to compare it against (for example, "e").
The comparison operators include contains, begins with, ends with, equal, not
equal, greater than, and a bunch of other relational operators. Because comparison
descriptors can contain object specifiers (and usually do), they can become arbitrarily
complex. You won’t be able to resolve them all unless you reimplement the entire
functionality of the OSL, at which point you might as well not call AEResolve either
(thank goodness for errAEEventNotHandled, which allows you to fall back on the
OSL if your application cannot parse a whose descriptor).

Fortunately, logical descriptors are much simpler than comparison descriptors. A
logical descriptor contains two parameters: keyLogicalOperator and keyLogicalTerms.
The logical operator indicates the Boolean logic to apply on the contents of the
logical terms: and, or, or not. The logical terms descriptor is, as you may have guessed,
a list of descriptors whose type is either typeCompDescriptor or typeLogicalDescriptor.
Figure 1 shows the contents of a whose descriptor that corresponds to the script
every item whose name contains "e" and size is 0.

The contents of whose descriptors are described in Inside Macintosh:
Interapplication Communication, pages 6-42 to 6-45.•

PARSING WHOSE DESCRIPTORS
It may look like there can be a lot of different cases to handle in a whose descriptor,
but it actually doesn’t take too much code to convert a whose descriptor into a format
that your application can understand. The next few listings show how this might be
done. The code presented is somewhat simplified; it doesn’t look at the keyAEIndex
parameter of the whose descriptor (kAEAll is assumed), and it recognizes only very
specific formats of comparison descriptors. Even this much of an effort is very useful,

d e v e l o p Issue 24 December 199512

because it will cover about 90% of the whose clauses that your application is likely to
encounter, and it’s still possible to return errAEEventNotHandled and allow the OSL
to take over for the rest. If you’re expecting me to fall back on every develop author’s
favorite phrase, “This impossible task is left as an exercise for the reader,” you’re in
for a surprise. The sample code on the CD will parse any valid whose descriptor
passed to it and never falls back on the default handling provided in the OSL.

The top-level routine, ParseWhoseDescriptor, simply extracts the keyAETest
parameter and passes it to ParseWhoseTest, returning the resulting search
specification. These two routines are shown in Listing 4. (A search specification is an
application-defined object that knows how to test tokens for membership in the
search set defined by the whose descriptor; see the sample code on the CD for the
implementation of the search specifications used in these listings.) ParseWhoseTest

SPEEDING UP WHOSE CLAUSE RESOLUTION IN YOUR SCRIPTABLE APPLICATION 13

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

• • • • • • • • • • •

•
•

•
•

•
•

• •
•

•
•

keyAEIndex

keyLogicalOperator

keyLogicalTerms

and

Descriptor list

typeWhoseDescriptor

typeLogicalDescriptor

typeCompDescriptor

keyAETest

Logical descriptor

every

keyAEObject1

Name of object being examined

keyAECompOperator

contains

keyAEObject2

"e"

typeCompDescriptor

keyAEObject1

Size of object being examined

keyAECompOperator

equals

keyAEObject2

0

Figure 1. Contents of a whose descriptor

Listing 4. Interpreting the contents of a whose descriptor

TAbstractSearchSpec* ParseWhoseDescriptor(TDescriptor whoseDescriptor)
{

TAbstractSearchSpec* searchSpec = nil;
TDescriptor testDescriptor;

whoseDescriptor.CoerceInPlace(typeAERecord);
// Real code would call whoseDescriptor.GetDescriptor(keyAEIndex)
// and at the very least check to see that its value is kAEAll,
// and fail with errAEEventNotHandled if it isn't.

(continued on next page)

examines the type of the descriptor (either logical or comparison) and then extracts
the appropriate parameters and passes them to either ParseLogicalDescriptor or
ParseComparisonOperator, whichever is appropriate.

Since logical descriptor records can contain one or more terms, each of which is
either a comparison or a logical descriptor record, ParseLogicalDescriptor calls back
to ParseWhoseTest for each term in the record, creating a search specification for
each (see Listing 5). If there’s more than one term, ParseLogicalDescriptor compiles

d e v e l o p Issue 24 December 199514

testDescriptor = whoseDescriptor.GetDescriptor(keyAETest);
searchSpec = ParseWhoseTest(testDescriptor);
testDescriptor.Dispose();
return searchSpec;

}

TAbstractSearchSpec* ParseWhoseTest(TDescriptor whoseDesc)
{

TAbstractSearchSpec* searchSpec = nil;

switch (whoseDesc.DescriptorType()) {
case typeLogicalDescriptor:

TDescriptor logicalOpDesc, logicalTerms;
DescType logicalOp;

whoseDesc.CoerceInPlace(typeAERecord);
logicalOpDesc = whoseDesc.GetDescriptor(keyAELogicalOperator);
logicalOp = logicalOpDesc.GetEnumeration();
logicalTerms = whoseDesc.GetDescriptor(keyAELogicalTerms);
searchSpec = this->ParseLogicalDescriptor(logicalOp,

logicalTerms);
logicalOpDesc.Dispose();
logicalTerms.Dispose();
break;

case typeCompDescriptor:
TDescriptor compOperatorDesc, obj1, obj2;
DescType compOp;

whoseDesc.CoerceInPlace(typeAERecord);
compOperatorDesc = whoseDesc.GetDescriptor(keyAECompOperator);
compOp = compOperatorDesc.GetEnumeration();
obj1 = whoseDesc.GetDescriptor(keyAEObject1);
obj2 = whoseDesc.GetDescriptor(keyAEObject2);
searchSpec = this->ParseComparisonOperator(compOp, obj1, obj2);
compOperatorDesc.Dispose();
obj1.Dispose();
obj2.Dispose();
break;

}
return searchSpec;

}

Listing 4. Interpreting the contents of a whose descriptor (continued)

the resulting search specifications into a list and returns that; otherwise, it returns a
single search specification for the single term.

ParseComparisonOperator (Listing 6) first tests to make sure that the comparison
operator is of the correct format. (Again, the code in this listing recognizes only a
specific flavor of comparison operator; see the code on the CD for a more complete
example.) If the operator passes that test, a new search specification representing the
comparison is created and returned.

ABOUT THE SAMPLE APPLICATION
The code presented up to this point is the easy part: implementing the marking and
whose callbacks, parsing whose descriptors, and creating search specifications can all
be done with a small amount of isolated code. Doing a search on a set of elements or
performing a complex operation on a collection of tokens is a bit more involved,
though, and requires a well-integrated framework that supports these concepts
uniformly. You’re in luck — the sample application included on this issue’s CD has
such a framework.

SPEEDING UP WHOSE CLAUSE RESOLUTION IN YOUR SCRIPTABLE APPLICATION 15

Listing 5. Resolving logical descriptors

TAbstractSearchSpec* ParseLogicalDescriptor(DescType logicalOperator,
TDescriptor logicalTerms)

{
TAbstractSearchSpec* searchSpec = nil,

oneSpecification = nil;
TDescriptor oneTerm;
TSearchSpecList* specificationList = nil;

FOREACHDESCRIPTOR(&logicalTerms, oneTerm) {
oneSpecification = ParseWhoseTest(oneTerm);
if (specificationList == nil) {

if ((searchSpec == nil) && (logicalOperator != kAENot))
searchSpec = oneSpecification;

else {
specificationList = new TSearchSpecList;
if (searchSpec)

specificationList->Add(searchSpec);
specificationList->Add(oneSpecification);
searchSpec = nil;

}
}
else {

if (oneSpecification != nil)
specificationList->Add(oneSpecification);

}
}
if (specificationList != nil)

searchSpec = new TLogicalSpec(logicalOperator, specificationList);
if (searchSpec == nil)

FailErr(errAEEventNotHandled);
return searchSpec;

}

The sample application is called Scriptable Database. As its name implies, it’s a
database that’s fully scriptable; in fact, it’s usable only through AppleScript — it has
no user interface whatsoever. It’s no coincidence that the model the database uses
follows AppleScript’s element containment model very closely. The Scriptable
Database has documents that can be created, saved, and opened. Documents contain
elements; elements have properties and data and may contain more elements. The
database itself is completely generic; it doesn’t care what the classes of the elements
are or what properties they contain. To use it for a specific application, you’ll have to
edit Scriptable Database’s dictionary, also called its AppleScript terminology extension
('aete' resource), to add the terms you’ll need for your database.

AppleScript terminology extensions are described in Inside Macintosh:
Interapplication Communication, pages 7-15 to 7-20 and Chapter 8.•

All the techniques described in this article are implemented in the source code of the
Scriptable Database application — in particular, the application supports marking,
and it resolves whose clauses itself (very quickly, I might add). It’s an object-oriented
application written in C++ based on a set of reusable foundation class libraries that
you might find useful as a starting point in your own scriptable application. The
source code is divided into the following subprojects:

• The Database subproject contains a standalone C++ object database. The
code in this project is not discussed in this article, but you might find it
interesting to peruse.

d e v e l o p Issue 24 December 199516

Listing 6. Parsing comparison descriptors

TAbstractSearchSpec* ParseComparisonOperator(DescType comparisonOperator,
TDescriptor& object1, TDescriptor& object2)

{
TAbstractSearchSpec* searchSpec = nil;
TDescriptor desiredClassDesc, containerDesc,

keyFormDesc, keyData;

if ((object1.DescriptorType() != typeObjectSpecifier) ||
(object2.DescriptorType() == typeObjectSpecifier))
FailErr(errAEEventNotHandled);

object1.CoerceInPlace(typeAERecord);
desiredClassDesc = object1.GetDescriptor(keyAEDesiredClass);
containerDesc = object1.GetDescriptor(keyAEContainer);
keyFormDesc = object1.GetDescriptor(keyAEKeyForm);
keyData = object1.GetDescriptor(keyAEKeyData);
if (containerDesc.DescriptorType() != typeObjectBeingExamined)

FailErr(errAEEventNotHandled);
if (keyFormDesc.GetEnumeration() == formPropertyID)

searchSpec = new TGenericSearchSpec(keyData.GetDescType(),
comparisonOperator, object2);

desiredClassDesc.Dispose();
containerDesc.Dispose();
keyFormDesc.Dispose();
keyData.Dispose();
return searchSpec;

}

• The Base subproject contains pure C++ code that has no dependencies on
any Mac OS or Toolbox routines, or any code from any other subproject in
Scriptable Database.

• The Blue subproject contains C++ wrapper classes for Macintosh managers
used by Scriptable Database.

• The Foundation subproject contains the foundation classes that Scriptable
Database uses to implement scripting, and as such is the focal point of this
article.

• The Scripting subproject contains the object accessors and event handlers
needed to respond to the messages sent by AppleScript and the OSL.

• The Application subproject contains all the code that defines the Scriptable
Database application; in fact, all the code specific to Scriptable Database is in
this subproject. Every other subproject is also used in some other application
that I’ve worked on.

Note that these subprojects are layered such that each one uses code found only
within that subproject or in a more primitive subproject. The Database subproject is
used only by the Scripting and Application subprojects; all other subprojects are used
freely by any subproject listed below it. The foundation classes will be discussed in
depth in this article; comprehension of the rest of the sample code is left as an
exercise for the reader. (You didn’t think I could write an entire article and not say
that at least once, did you?)

ABOUT THE FOUNDATION CLASSES
The focal point of the foundation classes is the class TAbstractScriptableObject. This
class was designed to serve as a base class, but it may also be mixed into an existing
class hierarchy with multiple inheritance, as was done in the sample application (see
the class TScriptableDocument). Any object derived from TAbstractScriptableObject
can be used as a token for the OSL. Memory management of tokens must be done
carefully; note that in most instances, tokens passed to the OSL are temporary and
must be deleted when the token disposal callback is called. In other instances, though,
it may be more convenient to use an existing object that the application has already
created — for example, a document object.

Because of this, the token disposal callback must be able to unambiguously determine
the difference between the temporary objects and those objects it should not delete,
or disaster will result. Designators — objects that represent some portion of another
object — are used for the temporary objects. The class TAbstractScriptableObject
defines the methods CloneDesignator and DisposeDesignator, which do nothing
in the abstract case. Designators override these methods to copy and dispose of
themselves — sometimes in conjunction with a reference-counting scheme.

As you might expect, the methods of TAbstractScriptableObject are designed to
provide functionality that closely matches the features of the OSL. All objects derived
from this class have elements and properties and can be sent events generated
from an Apple event that the application receives. There are virtual methods in
TAbstractScriptableObject that you can override to provide each of these types of
behavior in your objects.

ELEMENTS OF A SCRIPTABLE OBJECT
A scriptable object exports its elements by providing an iterator object that knows
how to iterate over the appropriate set of objects. There are two methods that return
iterators, ElementIterator and DirectObjectIterator.

SPEEDING UP WHOSE CLAUSE RESOLUTION IN YOUR SCRIPTABLE APPLICATION 17

virtual TAbstractScriptableObject* ParentObject();
virtual TAbstractObjectIterator* ElementIterator();
virtual TAbstractObjectIterator* DirectObjectIterator();

The ParentObject method returns the object that this object is an element of. The
element iterator iterates over the elements of the object, as was previously mentioned;
the direct object iterator usually returns an iterator that knows about a single object
— the TAbstractScriptableObject that created it. If the object is actually a collection,
however, its direct object iterator will iterate over every element in the collection.
Once your application provides an iterator for the elements of its objects, the code
in the foundation classes can handle most of the standard access methods for you.
The access methods supported include formAbsolutePosition and formName, the
default ordinals (all, first, last, and so on), and ranges of items (for example, items 1
through 10).

Your application’s scriptable classes can support more specialized access methods by
overriding the appropriate method:

virtual TAbstractScriptableObject* Access(DescType desiredClass, DescType
keyForm, TDescriptor keyData);

virtual TAbstractScriptableObject* AccessByUniqueID(DescType desiredClass,
TDescriptor uniqueID);

virtual TAbstractScriptableObject* AccessByOrdinal(DescType desiredClass,
DescType ordinal);

The first method, Access, is the general object-accessor dispatch method that calls
the more specific access method appropriate for the keyForm parameter. You can
override this method to define custom access forms — for example, the Scriptable
Finder defined the forms formCreator (to access an application by its creator type)
and formAlias (to access a file or folder through an alias record). The method
AccessByUniqueID provides a mapping from a unique ID to an object; override this
method if your objects have unique IDs that scripts can use to access them. The
method AccessByOrdinal handles ordinal access. All ordinals defined in the Apple
Event Registry are supported by the implementation in the base class, so your
application will probably never need to override AccessByOrdinal.

PROPERTIES OF A SCRIPTABLE OBJECT
Every scriptable object has at least a few properties that it must support. Almost all
classes will have these five properties:

• pName, since most objects have names

• pClass, pBestType, and pDefaultType, since the Apple Event Registry
requires that all objects support these properties

• pContents, since the foundation classes handle Get Data and Set Data events
by using this property

To advertise the existence of a property, your scriptable classes can override the
methods BestType, DefaultType, and CanReturnDataOfType; these methods are
used by the Get Data event handler to determine what data type it should ask for
when it requests the property data from the object through GetProperty.

virtual DescType BestType(DescType propertyName);
virtual DescType DefaultType(DescType propertyName);
virtual Boolean CanReturnDataOfType(DescType propertyName,

DescType desiredType);

d e v e l o p Issue 24 December 199518

However, your application doesn’t have to override these methods to provide
information about every property of an object, since it’s also possible (and more
convenient) to describe the properties of an object in a property description table.
For example, the properties defined in TAbstractScriptableObject are shown in the
following property description table:

TPropertyDescription TAbstractScriptableObject::fPropertiesOfClass[] = {
{ pName, kReserved, typeChar, typeChar },
{ pClass, kReserved, typeType, typeType },
{ pDefaultType, kReserved, typeType, typeType },
{ pBestType, kReserved, typeType, typeType },
{ pID, kReserved, typeLongInteger, typeLongInteger },
{ pIndex, kReserved, typeLongInteger, typeLongInteger }

};

Each entry in this table consists of four long words: the property identifier, a long
word reserved for use by the class that defines the property, the property’s best type,
and the property’s default type. The property description table is referenced through
the class data table, so properties defined in one class are automatically inherited by
any class that derives from it. The methods BestType and DefaultType return
information from the property description table if an entry for the requested property
can be found, and the method CanReturnDataOfType returns true if the desired type
is the best type or the default type for a property.

See the files Object.cp and Object.h in the sample code for information on the
class data tables. The macros DeclareMinClassData and ImplementMinClassData are
used for classes that have no class properties; classes that do have class properties
use the macros DeclareClassData and ImplementClassData.•

The reserved long word from the property description table is always passed to the
GetProperty and SetProperty methods; it can be used to provide information to assist
in obtaining the data for the requested property.

virtual TDescriptor GetProperty(DescType propertyName, DescType desiredType,
unsigned long additionalInfo);

virtual void SetProperty(TTransaction* transaction, DescType propertyName,
TDescriptor& data, unsigned long additionalInfo);

The reserved long word can have nearly any value, but should not be greater than or
equal to the constant kReservedRangeForPropertyInfo (see AbstractScriptableObject.h).

In addition to making the application’s properties easier to implement, the property
description table is key in supporting the “properties” property (which returns the
current value of all the properties of an object, as specified by the property description
table). It’s also very useful for accessing properties of collections of tokens, as described
later.

The transaction parameter in the SetProperty method must be provided by the caller
but is not used by the foundation classes. It’s provided as a mechanism whereby
transaction-based applications (such as Scriptable Database) can make all changes
under the auspices of a transaction object. Once all changes are made successfully, the
transaction changes are committed back into the database. If anything goes wrong,
the transaction is aborted and all changes are backed out. To the foundation class,
TTransaction is just a named object that has no methods. The event handlers in the
Scripting subproject use code from the Database subproject to create a transaction to
pass to SetProperty (and other methods that can change the contents of the database),

SPEEDING UP WHOSE CLAUSE RESOLUTION IN YOUR SCRIPTABLE APPLICATION 19

and commit or back out of the changes as appropriate after the event completes
successfully or fails.

In some rare cases, it may be undesirable to include a property in the property
description table, or it may be inconvenient to implement all of the functionality of a
property strictly through the GetProperty and SetProperty methods. For example,
Scriptable Finder has a trash property that returns a reference to the Trash object on the
desktop. In such cases, your application should override the method AccessByProperty
to return an appropriate scriptable object that represents the property:

virtual TAbstractScriptableObject* AccessByProperty(DescType
propertyIdentifier);

The object returned by AccessByProperty can be any sort of scriptable object;
unlike properties described solely by the property description table, it can have
properties above and beyond the minimum (for example, pClass, pBestType, and
pDefaultType), and it can receive events (such as Empty Trash). Properties that are
returned through AccessByProperty can also appear in the property description
table, but if they do, the reserved long word should contain the magic constant
kNeverCreateGenericProperty.

SENDING EVENTS TO A SCRIPTABLE OBJECT
Most scriptable applications use one of two dispatch techniques for handling Apple
events: event-first or object-first dispatching. In event-first dispatching, an event is
first dispatched to an event handler, which resolves the direct parameter and passes it
a message appropriate to the Apple event being received. The advantage of event-first
dispatching is that the parameters of the event are well known and can be extracted
and passed to the object from the event handler, reducing the amount of duplicate
code scattered through the various object event handlers. The disadvantage is that
event-first dispatching requires a large number of very similar event handlers, and the
message-passing API is often large (one method per event).

Object-first dispatching attempts to solve this problem by providing a single event
handler that blindly resolves the direct parameter of the received Apple event and
passes the event to the resulting object. This technique is much simpler than event-
first dispatching, requires a smaller API, and usually does exactly the right thing. But
object-first dispatching doesn’t always do exactly the right thing. For example, an
Apple event that copies a set of objects to some destination container would send a
different Copy event to every item in the source; what you might prefer is to have
a single Copy event sent to the destination object, with the list of items to copy
included as a parameter to the event. You’d never get the latter with object-first
dispatching.

The Scriptable Database application uses a combination of event-first and object-first
dispatching. Most Apple events are processed by a common event handler that
resolves the direct parameter and passes the message along, in object-first dispatching
style. Certain special events, however, such as Move, Copy, and Create Element, are
processed in their own event handler, which can send a message to some object other
than the direct parameter of the Apple event. The two primary methods that events
are sent to are AECommand and CreateNewElement.

AECommand is defined as follows:

virtual TDescriptor AECommand(TTransaction* transaction, TAEvent ae,
TAEvent reply, long aeCommandID, TAbstractScriptableObject*
auxObjects = nil, long auxInfo = 0);

d e v e l o p Issue 24 December 199520

Both the Apple event message and the reply are passed to the event handler, just in
case they need to be accessed directly. The AECommand method should not put the
command result into the reply directly, though, as it might not be the only object
that’s receiving this message. Instead, it should return the result as the return value of
the method, and allow the event handler to collect all the results into a descriptor list
and package them in the reply.

The meaning of the parameters auxObjects and auxInfo depends on the event
handler that’s processing the message; the aeCommandID parameter implicitly
defines what the AECommand method should expect to find in these parameters.
For example, in the Move and Copy events, the auxObjects parameter contains the
set of objects that should be moved or copied. Providing a single method with
general-purpose, multiple-definition parameters allows different scriptable
applications that use the same foundation classes to define new events that have
custom parameters without requiring them to change or expand the API of the
foundation classes. This is one of the advantages of object-first dispatching that we
definitely want to keep in our design.

The Create Element event is special enough to warrant giving it its own dispatch
message:

virtual TAbstractScriptableObject* CreateNewElement(TTransaction*
transaction, TAEvent ae, TAEvent reply, DescType newObjectClass,
TDescriptor initialData, TDescriptor initialProperties, Boolean&
usedInitialData, Boolean& usedInitialProperties);

In most cases, classes that override CreateNewElement only need to look at the
newObjectClass parameter, create a new object of that class, and return a reference
to the newly created object. The event handler calls the SetData method of the new
object by using the with data parameter from the Create event, and then calls the
SetProperty method of the new object with each of the properties specified in the
with properties parameter from the Create event. The initial data and initial
properties for the new element are also provided as parameters to CreateNewElement
in case they’re needed at create time. If the usedInitialData or usedInitialProperties
parameter is set to true, the event handler is inhibited from calling SetData or
SetProperty, respectively, on the new object.

TOKEN COLLECTIONS
As previously mentioned, objects derived from TAbstractScriptableObject can be
grouped into collections of tokens that can be passed around as a single object. The
class that implements most of this functionality is TProxyToken, which is publicly
derived from TAbstractDesignator. (A collection object is a temporary object created
only to manage the collection of tokens and must be disposed of when the collection
is no longer needed; therefore, a proxy must be a designator.) There are a number of
different types of collections, each derived from the class TProxyToken.

The classes of proxies provided in the foundation classes include the following:

• TEveryItemProxy — every element of an object

• TEntireContents — every item in the entire deep hierarchy

• TMarkToken — a collection of tokens accumulated from the marking
callbacks or from resolving a whose clause

Other types of collections are also possible. For example, the selection token is a
proxy for the set of items that are currently selected, so the token for the selection

SPEEDING UP WHOSE CLAUSE RESOLUTION IN YOUR SCRIPTABLE APPLICATION 21

would also derive from TProxyToken (however, since the Scriptable Database has no
user interface, it has no selection object).

Sending a message to a proxy token usually does nothing more than pass the message
on to each of its delegates; for example, the open selection script would pass an Open
event to every selected item. In other cases, however, the proxy token handles the event
itself. For instance, set selection to item 1 doesn’t send a Set Data event to the selected
items; instead, it deselects the currently selected items and selects the items in the direct
parameter (such as item 1 in the previous example). The exact behavior of the proxy is
determined by the concrete class (for example, TEveryItemProxy) that derives from
the abstract class TProxyToken, but the proxy token does provide some mechanisms
that can be used by its descendants to control the meaning of certain messages.

Properties in particular are handled in a special way by proxies. Some properties will
apply to the proxy object itself, whereas other properties will refer to the delegates of
the proxy token. For example, the script default type of selection should return the
default data type for the selection object (which would be of type typeAEList),
whereas default type of every item whose name contains "e" should return a list
of default types, one for each item that matches the query every item whose name
contains "e". There is no heuristic that can be used to determine which properties
should apply to the proxy and which should apply to the proxy’s delegates; the only
solution is to list all the properties that should be sent to the proxy object in some
way. In the foundation classes, this is done with the method PropertyAppliesToProxy:

Boolean PropertyAppliesToProxy(DescType propertyName);

Each class that derives from TProxyToken should override PropertyAppliesToProxy
and return true for those properties that should be processed by the proxy object and
false for those that should be sent to the proxy’s delegates.

MORE ON SEARCH SPECIFICATIONS
Previous sections of this article described how a whose clause was received by the
object accessors of an application, converted into a search specification, and then
resolved with a simple element iterator. Now that you’re familiar with the capabilities
of the foundation classes, we can go into the workings of the search specifications in a
little more detail.

As you may recall, there are two types of search specification: logical and comparative.
The primary operation of a search specification is to take a token and return whether
or not that item is a member of the set specified by the comparator. A logical
specification contains a list of other specifications; it does nothing more than call
the comparator method of each, and either logically AND or logically OR the
results together. A comparative search specification needs to perform some test on a
property of an object that was passed to it; it does so by calling the CompareProperty
method of the object being tested.

virtual Boolean CompareProperty(DescType propertyIdentifier, DescType
comparisonOperator, TDescriptor compareWith);

The property identifier, the comparison operator, and the literal data to compare
with were all extracted from the whose descriptor, as described previously. The
default implementation of CompareProperty calls the object’s GetProperty method
and compares the result with the literal data by using the specified comparison
operator. (You’ll find a routine that compares two descriptors in the file MoreAEM in
the Blue subproject of the sample application.) Note, however, that calling GetProperty
involves a memory allocation to create a descriptor for holding the property data.

d e v e l o p Issue 24 December 199522

Memory allocations are something best avoided in the inner loop of an operation
that’s supposed to progress quickly, so the performance of a whose clause resolution
can be improved if you override CompareProperty and do common property
comparisons without a memory allocation.

FURTHER OPTIMIZATIONS
Using the techniques described up to this point, your application can resolve whose
clauses, and do so much faster than the OSL would. However, there are other
optimizations that you can make to further improve performance.

The techniques described so far perform better than the OSL for two primary
reasons:

• They limit the number of memory allocations needed, as much as possible.

• They reduce the number of callbacks that need to be made between the OSL
and your application. This is particularly important if your application is
PowerPC native but uses the emulated 680x0 OSL.

Also, note that if your implementation of access by index is O(N) rather than
constant time, the OSL’s whose clause resolution will be O(N2), since it will have to
call your O(N) access by index callback N times. Even if you ignore this article
completely and don’t resolve whose clauses yourself, you should as an absolute
minimum cache the last token returned by your formAbsolutePosition accessor and
ensure that the next call to the accessor can be done in constant time if the container
token and desired class are the same and the index is 1 greater. This will speed up
your whose clause resolution considerably.

However, even for all of the performance gains that these techniques provide, whose
clauses are still resolved according to the same basic algorithm used by the OSL. As
anyone who has dabbled in computer information-science theory knows, it’s often
more advantageous to switch algorithms completely and put off fine-tuning until
after the correct algorithm has been found.

Unfortunately, it’s not possible to do any better than what we’ve already done in the
general case (a direct linear search of the search space, comparing every item to the
search specification in order). Doing a binary search isn’t possible unless your search
space happens to be sorted by your search key — not very likely, and in any event it’s
impossible to know whether it is or not unless you have specific knowledge about the search
space. Searching the entire contents of a deep hierarchy — such as all the folders on a
disk — is one type of search space that can often be optimized.

In cases where the search space is well known, it’s often possible to abandon the idea
of direct iteration and use some other algorithm to search. For example, if you’re
writing code to search the entire contents of a disk, you would be much better off
calling PBCatSearch, which walks through the entries in the catalog record in the
order they happen to appear on the disk, ignoring the disk’s hierarchy. This technique
is so much faster than doing a deep traversal of the disk’s catalog that doing a deep
search of some subfolder on a disk is usually much better accomplished by searching
the entire disk and weeding out the matches that aren’t somewhere inside the search’s
root container. In cases where you have access to a search engine with characteristics
similar to PBCatSearch, you should go out of your way to try to use it. Of course,
this may well require yet another conversion of the search specification, but the
performance gains will outweigh the initial cost. The foundation classes presented in
this article have hooks that allow the incorporation of existing search engines to be
incorporated into the process of resolving whose clauses.

SPEEDING UP WHOSE CLAUSE RESOLUTION IN YOUR SCRIPTABLE APPLICATION 23

When a whose clause is being resolved, the task of doing the search is delegated to the
iterator object returned by the root of the search. Putting the method in the iterator
rather than in the object allows different types of iterators to provide different search
algorithms, each optimized to its own search space. The iterator returned by the
TEntireContents proxy has a special implementation of AccessBySearchSpec; instead
of using the implementation it inherits from TAbstractIterator, it uses a method called
SearchDeep in the element iterator of the root object. The default implementation of
SearchDeep does nothing more than compare every item in the deep hierarchy below
each of its elements, and add those that match to the collection. This is really no
different from what would happen if TEntireContents::AccessBySearchSpec just
called through to Inherited::AccessBySearchSpec, but it does provide a hook enabling
special iterators to insert their own search engines if they have a technique that will
do deep searches faster than a straightforward deep iteration.

Listing 7 shows the default implementation of SearchDeep; note that it does a
deep search on each of the elements of the iterator rather than simply a single deep
search. The reason for this is that iterators aren’t required to have a single root object
that one could conceivably search deep from; once you have an iterator, the only
knowledge at your disposal is the set of objects that the iterator “contains.” The
information as to where the iterator came from isn’t available to every iterator,
although some (such as TDeepIterator) do save a reference to it.

d e v e l o p Issue 24 December 199524

Listing 7. Doing a deep search

TAbstractScriptableObject* TDeepIterator::AccessBySearchSpec(DescType
desiredClass, TAbstractSearchSpec* searchSpec)

{
TObjectCollector collector;

TAbstractObjectIterator* iter = fRootItem->ElementIterator();
iter->SearchDeep(&collector, desiredClass, searchSpec);
iter->Release();
collector.CollectorRequest(kWaitForAsyncSearchesToComplete);
return collector.CollectionResult();

}

void TAbstractObjectIterator::SearchDeep(TAbstractCollector* collector,
DescType desiredClass, TAbstractSearchSpec* searchSpec)

{
TDeepIterator deepIter(nil);
for (this->Reset(); this->More(); this->Next()) {

TAbstractScriptableObject* elementToDeepSearch = this->Current();
deepIter.FocusOnNewRoot(elementToDeepSearch);
for (deepIter.Reset(); deepIter.More(); deepIter.Next()) {

TAbstractScriptableObject* token = deepIter.Current();
if (token->DerivedFromOSLClass(desiredClass) &&

searchSpec->Compare(token))
collector->AddToCollection(token);

else
token->DisposeDesignator();

token = nil;
}

(continued on next page)

In Listing 7, rather than having the deep search iterator create and return a collection
of tokens, a collector object is passed in and given the responsibility of making a
collection from the results of the search, which it’s passed one item at a time. This is
done so that other parts of your scriptable application can call SearchDeep to do
deep searches if they need to, and providing a collector object allows this code the
flexibility to process the search results one item at a time, as they are found, rather
than waiting for the entire search to complete.

Note the following line in Listing 7:

collector.CollectorRequest(kWaitForAsyncSearchesToComplete);

A search engine that’s hooked into this code path might, in a multithreaded
application, execute asynchronously under its own thread. In these instances, the
search engine needs a way to tell the collector that it’s still running, and might call
collector->AddToCollection with more search results at any time. The search engine
does this by attaching a dynamic behavior object to the collection that understands
the kWaitForAsyncSearchesToComplete message (see “What Is a Dynamic Behavior?”).
When this message is received, the search engine’s collector behavior must block the
current thread of execution until the search engine completes its search.

The use of a collector object and a dynamic behavior object allows the searching code
to be flexible, optimized independently of other search engines, and reusable, even to
other code that might not have exactly the same needs as the scripting code.

Also note the implementation of the functions TEveryItem::SearchDeep and
TMarkToken::SearchDeep. Both of these call the function RecursiveSearchDeep,
which calls SearchDeep on each of the elements of the iterator in turn. Without this
special code path, a script such as (entire contents of every disk) whose name
contains "mac" would end up using the slow deep-iteration search, and miss out on
the optimized SearchDeep method of each disk. Calling the SearchDeep method of
each disk independently enables different types of disks to have different types of
search engines; for example, searches of remote disks might be optimized differently
than searches of local disks, and not every type of volume supports PBCatSearch. In a
framework that has provisions for optimizations, flexibility of design is extremely
important.

WHAT WAS THIS ARTICLE ABOUT, ANYWAY?
It doesn’t take too much work to vastly improve the performance of your scriptable
application, and the techniques presented in this article will help you do just that.
Resolving whose clauses yourself can speed up the execution of your event
processing by a factor of ten to a hundred; a chance to gain that level of improvement
is hard to ignore.

SPEEDING UP WHOSE CLAUSE RESOLUTION IN YOUR SCRIPTABLE APPLICATION 25

if (elementToDeepSearch->DerivedFromOSLClass(desiredClass) &&
searchSpec->Compare(elementToDeepSearch))

collector->AddToCollection(elementToDeepSearch);
else

elementToDeepSearch->DisposeDesignator();
}

}

Listing 7. Doing a deep search (continued)

AppleScript is one of the most compelling technologies that Apple offers — the ability
to record scripts, modify them, and play them back later puts powerful automation
into the hands of programming novices. However, AppleScript is only as cool as the
scriptable applications available in the marketplace. If you’ve written a scriptable
application, thank you. If you haven’t yet taken the OSL plunge, by all means read
some of the material referred to in this article and dive in. (You might also want to
take a look at the “According to Script” column that follows this article.) In either
case, you should find the sample code on this issue’s CD to be a very useful aid in
implementing fast and complete scripting support in your Macintosh application.

d e v e l o p Issue 24 December 199526

A dynamic behavior is an object that can be attached to
some other object to change its behavior dynamically at
run time. Only objects that are specially written to accept
behaviors can have behaviors attached to them, and
only certain methods of that object can be dynamically
changed by the behavior object.

Methods that support dynamic behaviors contain additional
code that first dispatches to any behavior attached to the
object and then does the default action for that method. But
the actual flow of control is somewhat different from that.

Suppose you have an abstract class TObject that supports
behaviors, and an abstract class TBehavior that provides
an interface for an object that can dynamically change
the behavior of any TObject-derived object. If TObject
has a method called Command that the behavior could
modify, the implementation of TObject::Command would
look like this:

TObject::Command()
{

TBehavior* behavior;
behavior = this->FirstBehavior();

if (behavior)
behavior->CommandDynamicBehavior();

else
this->CommandDefaultBehavior();

}

TBehavior::CommandDynamicBehavior()
{

TBehavior* behavior;
behavior = this->NextBehavior();
if (behavior)

behavior->CommandDynamicBehavior();
else

this->Owner()->CommandDefaultBehavior();
}

Given this definition for the Command method, some class
derived from TBehavior could override the virtual method
TBehavior::CommandDynamicBehavior, and call Inherited
to execute the default action of the method it’s overriding.
This allows behaviors to do both pre- and post-processing.
The cost to supporting behaviors is additional dispatch
time, but the advantage is the powerful, dynamic
extensibility of your objects.

WHAT IS A DYNAMIC BEHAVIOR?

RELATED READING
• Inside Macintosh: Interapplication Communication (Addison-Wesley, 1993).

• “Apple Event Objects and You” by Richard Clark, develop Issue 10, and “Better
Apple Event Coding Through Objects” by Eric M. Berdahl, develop Issue 12.
These articles provide good descriptions of the OSL.

Thanks to our technical reviewers Dan Clifford,
Eric House, Arnoldo Miranda, and Jon Pugh.•

To wind up my first year of writing about scripting in
develop, this time I’ll solidify the sequence of steps
involved in making an application scriptable. A few of
these steps have been mentioned before, while some
material is new; here all the steps are organized so that
you can work out a strategy for implementing
scriptability. You may be surprised at what you’ll find.

THE WRONG WAY
In the past, a programmer who was responsible for
implementing Apple events support in a scriptable
application usually set about this task in one of two
ways:

• writing the code for the event handlers and object
accessor functions first, then, just before shipping,
deciding what to call things and throwing together
a dictionary at the last minute

• jumping into the design of an object model
hierarchy (in an attempt to implement the Core
suite), then writing the event handlers and object
accessor functions, and, again, putting together the
dictionary last

These methods were fine back in the days when Apple
events were used principally for direct communication
between two applications — one program was usually
the client of the other. But in today’s world of scripting,
it is users who are the clients. So in order to accomplish
the goal of creating a human-friendly scripting
vocabulary, developers need different methods for
development.

THE NEW, BETTER WAY
Since your scripting interface is also a user interface to
your application, it should be as full and rich as the

graphical interface, and should be as intuitive as you
can make it. In creating human-oriented scriptability,
your goal is to make it as natural and as easy as possible
for users to write sentences to communicate with and
control your application. You want users to be able to
write sentences that are as close as possible to the way
they might think about what they want to do. Prepare
to open up the full functionality of your application
through scripting — you’ll want to make it complete.

The following plan will help you develop a clean
vocabulary that allows users to easily work with your
application.

PRACTICE YOUR WRITING
The first set of steps will help you home in on the
terms you’ll use in your vocabulary.

Write down sentences. The very first thing to do is
to write down as many sentences as possible describing
actions that can be accomplished with your application.
At this stage, don’t try to make real scripting commands;
just write down basic ideas. For example:

play movies
grab the customer's profile
print pages 2 through 5
translate this book from English to French
send this message to Bob at the Redmond office
find all the records containing "University"
delete all paragraphs containing the word

"Windows"

Have users write sentences. Users think differently
about the way they accomplish things with applications
than programmers do. Invite users of your application
to write down some general sentences. Encourage them
to think about how they want to accomplish what they
do. Ask them to write the sentences as if they were
directing the computer by speaking to it. (You can do
this simultaneously with the above step.)

Include users who are experienced with earlier versions
of your application. These users don’t need AppleScript
experience. Consider inviting your documentation
writers and your support people to participate. You’ll
see quickly how users think about your application
from a task-oriented perspective.

Don’t attempt to write code yet or design your object
hierarchy around what users write. Just use this to help

ACCORDING TO
SCRIPT

Steps to
Scriptability

CAL SIMONE

ACCORDING TO SCRIPT: STEPS TO SCRIPTABILITY 27

CAL SIMONE (AppleLink MAIN.EVENT) wants your dictionary
for the Webster database. He will be analyzing the terms in
your vocabulary against others in search of similarities and

differences. Send your 'aete' resources to him on AppleLink or at
mainevent@his.com on the Internet.•

you think in broad terms about how something might
be accomplished.

Write some commands. Write more sentences, this
time attempting to make script commands. Try to fit
them into the context of a possible scripting vocabulary.
This is an iterative process, through which you can
distill your broad ideas into useful terms.

When writing commands, keep one eye open for
consistency — think a bit about existing AppleScript
commands and objects. At this juncture, it may help to
have some people with AppleScript experience write
sample sentences to describe how they want to control
your application.

The sentences should begin to take on the flavor of
AppleScript statements, with verbs followed by objects.
For instance:

tell "emailer" to send the file "Weekly Report"
to "Bob" at "Redmond"

tell "Mail Order Store" to order item "CW056"
with nextday delivery

tell the front window to select the first
paragraph containing "Macintosh"

WRITING ANALYSIS
In the next set of steps, you’ll develop your object
model hierarchy from your early command writing.

Analyze your initial commands. The consumers of
your product may surprise you. Some of the sentences
they write will be too large in scope, but others will be
highly focused to specific tasks. You’re likely to find
that they’ll focus on the action first, then the objects.
From those sentences, begin to determine the common
verbs and objects. For example:

• verbs: play, get, set, translate, send, print , select,
delete

• objects: movie, customer, paragraph, document,
record, message

• properties: profile, leading

• enumerators: English, French, PowerTalk

Make a crude object model hierarchy. Based on
the analysis of your commands, make a first cut at your
object model hierarchy. Although many object classes
in your vocabulary are types of objects that can be
physically manipulated by your application, objects in
scripting do not have to correspond to the objects on
your screen. Nor should they match the objects in your
internal code created by the programmers. Rather,
script objects should be the most natural representation

of what the user is trying to manipulate. Often these
three — scripting, onscreen, and internal — will be
nearly the same, but they don’t have to be.

Remember that consistency in a scriptable application
is often accomplished through the liberal use of setting
and getting properties instead of through large numbers
of verbs. For more information, read the section
“Designing Your Object Model Hierarchy” in my
article, “Designing a Scripting Implementation,” in
develop Issue 21.

WORK ON YOUR DICTIONARY
The key to a clean, intuitive scriptable application is its
dictionary. It’s now time to develop this all-important
“window” to your application’s soul.

Look at other application terminologies for
consistency. Creating the AppleScript interface is a lot
like creating the graphical interface. When designing
dialog boxes, for example, most developers look at
many other applications for examples of what works
and what doesn’t. Similarly, you should view and use
the AppleScript terminology of other applications to
see how well they work. Remember that AppleScript
hasn’t been around long enough for strong guidelines
to be developed. Often you can do better than another
application (in some cases, you can learn what not to
do), but you also want your application to share as
many elements as make sense with other applications
your users might be familiar with. (When in doubt,
refer to and practice with the Scriptable Text Editor;
it’s clean and simple.)

Make your first rough 'aete' and write commands.
When you’re ready, take a stab at making an 'aete'.
Don’t expect too much at this stage; just get comfortable
with the structure of this resource. Write some
commands with your crude 'aete'. You can even open
up your 'aete' in the Script Editor and check the syntax
of your commands against your dictionary. Even
though you won’t be able to execute the commands,
you’ll be able to practice writing sentences using the
terms in your early dictionary.

Adjust the 'aete'. Looking at the commands written
with your early terms, you’ll begin to see where the
sentences look more or less natural, and where they’re
awkward. Based on this, you can start improving on the
terms in your 'aete'.

Make more commands; have users write
commands. At this point, you’re ready to write some
serious commands. By now you should be able to write
real sentences that follow the AppleScript command
structure: verb [object] [keyword value] … These

d e v e l o p Issue 24 December 199528

sentences should be similar in structure to standard
commands that you can write for other scriptable
applications. They should “feel” like AppleScript:

play the movie "1984 Commercial"
get the profile of customer "Caroline Rose"
print pages 2 through 5
translate the document "Tech Manual" from English

to French
set the leading of paragraphs 1 through 3 to 10
send the document "Order 578" via PowerTalk

Note that the use of the word “the” is allowed in many
places in AppleScript. Many of your users will include
it in their commands. You should name your objects
and properties so that they won’t sound awkward when
preceded by the word “the.” And try to avoid property
names that start with a verb.

Give your sample 'aete' to users and ask them to begin
writing scripts to see how good your terminology feels
and how it integrates and interacts with other
applications. This interaction is crucial to understanding
the value of AppleScript. All this can be done before
any code is connected to the commands in the 'aete'.
(Be sure to tell them that they can’t run their scripts.)

NOW TO YOUR CODE
A well-conceived dictionary will serve as a specification
for programmers. Only after you’ve gotten your
vocabulary in fairly good shape and done some
preliminary testing with users should you (or your
programmers) begin to write the code behind the
vocabulary.

Write object accessor functions. It’s probably a good
idea to begin writing some of your object accessor
functions first, so that you’ll have something to test
your Apple event handlers against. Accessor functions
must cover all possible combinations of object classes
and containers. However, accessor functions can be
combined to handle more than one object class in a
container if the objects are similar or lend themselves
to code that can be shared.

For example, the Scriptable Text Editor has an accessor
function for document objects, such as windows, within
the application (the null container). It has another
accessor function for all text objects within documents,
such as characters, words, and paragraphs, and a third
accessor for text objects within other text objects, such

as characters within words, or words within paragraphs.
Characters, words, and paragraphs were combined
because the code to handle each of them was easily
shared.

Also consider the language, framework, and structure
of your existing code. Some frameworks, such as
MacApp, use internal object member functions that
are very similar to the accessor functions you’ll write,
lending themselves to individual accessors for each
object class. You’ll certainly want your accessor functions
to make use of the existing internal functions.

Write Apple event handlers. Now you’re ready to
write the code to handle the Apple events. Since you’ve
made the effort to lay the groundwork, this should be
relatively easy. If your dictionary contains a lot of
properties, consider implementing set and get early in
the game.

Test your code. AppleScript is very useful for testing
your Apple event code. You can easily write AppleScript
commands that accurately send Apple events to your
application. This is considerably easier than writing test
code to fake sending Apple events to yourself. Scripter
from Main Event makes an ideal tool for this task
because you can observe what’s going on in a script as it
happens.

Once the code is connected, let a wider audience try
your scripting. See how well the previously written
scripts perform.

Clean up your dictionary. After you’ve gotten
your code working, go back and carefully look over
your 'aete' one more time. Make sure that you’ve
organized the terms well and that your comments are
understandable and innovative. Use the guidelines in
my last column, “Thinking About Dictionaries,” in
Issue 23.

A NEW PLACE TO GET HELP
There’s now a resource on the Internet for posing
questions relating to scriptability issues. It’s a new
mailing list: applescript-implementors@abs.apple.com.
To subscribe, just send the following message to
listproc@abs.apple.com:

SUBSCRIBE applescript-implementors Your Name

As always, happy implementing!

ACCORDING TO SCRIPT: STEPS TO SCRIPTABILITY 29

Thanks to Eric Gundrum and C. K. Haun for reviewing this
column.•

OpenDoc’s structured storage model is an innovative departure from
the traditional storage scheme. As you make the move into OpenDoc
development, you need to understand the new storage model and its
implications for the way data is stored and retrieved. This article
introduces the new concepts and policies you’ll need to know in order
to use OpenDoc storage effectively.

In the traditional Macintosh user model, each application creates and maintains its
own documents, storing each document in a separate file. A file has one creator
signature and one file type, identifying the application it belongs to and the kind of
document it contains. In OpenDoc, by contrast, a document can have multiple parts,
created and maintained by different part editors (called part handlers in earlier versions
of OpenDoc), which are analogous to the standalone applications of the traditional
model. Because all of a document’s parts are stored together in the same container
(usually corresponding to a file), there has to be a way for separate part editors to
share access to the same container without interfering with each other.

OpenDoc meets this need by providing a structured model for persistent storage
(that is, for storing data from one session to the next). Each part is given its own
storage unit in which to store and retrieve data. The part can thus operate as a
standalone entity, independent of other parts and their storage. OpenDoc maintains
all of the storage units and notifies each part when to read or write its data.

The same techniques that are used in dealing with persistent storage also apply to the
various forms of data interchange between part editors, such as the Clipboard, drag
and drop, and linking. Because all of these mechanisms use the same data storage
medium (the storage unit), they all work essentially the same way from the part
editor’s point of view. For example, a part uses the same API calls to copy data to the
Clipboard that it would use in writing the data to a file container. The same is true
for drag and drop and for linking. Thus, once you learn how to work with OpenDoc
storage units for file storage, you can use the same techniques to implement data
interchange as well.

This article assumes that you’re already familiar with basic OpenDoc concepts and
terminology. If you need a quick introduction or refresher, see the article “The
OpenDoc User Experience” in develop Issue 22. You can find additional information
on some of OpenDoc’s technical basics in the articles “Building an OpenDoc Part

VINCENT LO

Getting Started With OpenDoc Storage

d e v e l o p Issue 24 December 199530

VINCENT LO is Apple’s technical lead for
OpenDoc. When he isn’t removing “unwanted
features” or participating in design meetings, he
divides his time equally among roller hockey, ice

hockey, and explaining to his friends why he
plays so much hockey. He has also been known
to apply his body checking techniques in intense
engineering discussions.•

Handler” in Issue 19 and “Getting Started With OpenDoc Graphics” in Issue 21.
Developer releases of OpenDoc include the definitive documentation, the OpenDoc
Programmer’s Guide and OpenDoc Class Reference. Developer releases are available
through a number of different sources, or you can request the latest release at
AppleLink OPENDOC or at opendoc@applelink.apple.com on the Internet. The
source code in this article is excerpted from a sample part included with the developer
release.

Because OpenDoc was developed jointly by a consortium of companies including
Apple, IBM, and Novell, its interfaces are designed for cross-platform compatibility,
using IBM’s platform-independent Standard Object Model (SOM). OpenDoc
method definitions, including the ones in this article, are commonly written in a
language-neutral Interface Definition Language (IDL). The SOM compiler converts
these into equivalent language-specific declarations for whatever source language you
happen to be using. The method definitions shown in this article, for instance, are
taken from the OpenDoc interface file StorageU.idl. To use these methods in your
program, you must include the corresponding language-specific binding file (such as
StorageU.xh for a C++ program).

DRAFTS, DOCUMENTS, AND CONTAINERS
The OpenDoc classes responsible for providing storage capabilities are ODContainer,
ODDocument, ODDraft, and ODStorageUnit. Collectively, a set of subclasses
derived from these four is known as a container suite. A container represents the physical
storage medium in which a document is stored, such as a disk file. Different container
suites share the same API, but may use different low-level storage mechanisms and
operate on different physical storage media. For example, the Bento container suite,
which will be shipped with OpenDoc 1.0, supports both file containers and in-memory
containers. A part editor can thus use the same code to store a part’s data either to a
file or in memory.

A single container may contain one or more documents, each of which in turn can
include one or more drafts. A part ordinarily works with a draft, rather than directly
with a document or its container. Each draft is a “snapshot” representing the state of
the document at a particular point in its development. Together, the drafts embody
the history of the document over time.

A part may need to interact with its draft for a variety of reasons:

• Persistent objects — Every persistent object (such as a part, a frame, or a
link) is created by a draft.

• Data interchange — A part asks its draft to copy transferred objects to and
from a data-interchange container, such as the Clipboard or a drag-and-drop
container.

• Linking — A part uses its draft to create link specifications and copy data to
and from link objects.

• Permissions — A part may need to find out whether it’s allowed to write to
the draft.

• Scripting — A part gets its scripting-specific identifier through its draft.

STORAGE UNITS
The basic entity of a container suite is the storage unit. Every persistent OpenDoc
object has a storage unit in which to store and retrieve its data. Figure 1 shows a
typical example.

GETTING STARTED WITH OPENDOC STORAGE 31

A storage unit consists of one or more properties, each of which in turn is associated
with one or more values containing the data itself. The storage unit shown in Figure
1, for instance, has properties named kODPropContents, kODPropPreferredKind,
and kODPropDisplayFrames; the kODPropContents property has values of types
kTextEditorKind and kODMacIText.

Using multiple values allows a property to represent the same data in different forms.
For example, a property holding a drawing may have three values representing the
same data: one as a Macintosh PICT, one as a Windows metafile, and one in TIFF
format. Although OpenDoc cannot enforce the principle, part developers are urged
to use multiple values within a property only for multiple representations of the same
data, not for storing unrelated data items.

The property names and value types shown in Figure 1 represent string constants
of type ODPropertyName and ODValueType, respectively. For cross-platform
extensibility, both of these types are defined as equivalent to an ISO string instead of
a traditional Macintosh OSType: that is, they’re 7-bit ASCII null-terminated strings,
as specified by the International Standards Organization (ISO). The string values
themselves are expected to follow a standard naming convention: for instance, the
constants kODPropDisplayFrames and kODWeakStorageUnitRefs stand for the
strings "OpenDoc:Property:DisplayFrames" and "OpenDoc:Type:StorageUnitRefs",
respectively. The OpenDoc interface files StdProps.idl and StdTypes.idl define name
constants for standard properties and value types; any property and type names that
you define for yourself should follow the same naming conventions.

FOCUSING A STORAGE UNIT
The OpenDoc operations for manipulating values don’t explicitly identify the value
to operate on. Instead, you have to focus the storage unit on the desired property or
value before invoking the operation. The method for setting the focus is defined in
class ODStorageUnit as follows:

ODStorageUnit Focus(in ODPropertyName propertyName,
in ODPositionCode propertyPosCode,
in ODValueType valueType,
in ODValueIndex valueIndex,
in ODPositionCode valuePosCode);

d e v e l o p Issue 24 December 199532

Storage unit

kODPropContents

kODPropDisplayFrames

kODWeakStorageUnitRefs

kODPropPreferredKind

kTextEditorKind

kODMacIText

kODISOStr

Figure 1. Structure of a storage unit

This allows you to set the storage unit’s focus in a variety of ways:

• to a property by name

• to a property by position relative to the current property

• to a value by type within a property

• to a value by position within a property

• to a value by position relative to the current value

Properties and values are ordered within the storage unit according to the sequence
in which they were added. Values within a property are indexed from 1: that is, the
first value has index 1, the second index 2, and so on. Positions relative to the current
focus are specified with a position code. The same position code can refer to either a
property or a value, depending on the current focus. For instance, if the storage unit
is currently focused on a property, the position code kODPosNextSib designates the
next property; if the current focus is on a value, kODPosNextSib designates the next
value.

Another way to set the focus of a storage unit is with a storage unit cursor:

ODStorageUnit FocusWithCursor(in ODStorageUnitCursor cursor);

The cursor identifies a property by name or a value by its property name and its index
or value type. Once created (with method CreateCursor or CreateCursorWithFocus
of class ODStorageUnit), the same cursor can be reused multiple times to refer to
properties or values within the storage unit.

Once you’ve focused a storage unit, you can create a storage unit view to refer to the
same property or value again later without having to reset the focus:

ODStorageUnitView CreateView();

The view responds to all the same access methods as the storage unit itself, but
applies them to the property or value that had the focus at the time the view was
created, rather than at the time the method is invoked. It does this by automatically
resetting the underlying storage unit to the original focus, then forwarding the
method call to the storage unit for processing.

MANIPULATING VALUE DATA
The operations for manipulating data within a storage value are stream-based, very
much like reading or writing to a sequential file. Each value has a current offset
position that controls where the next operation will take place, similar to the
file mark in the Macintosh file system. In addition to reading and writing data
sequentially, you can also insert or delete data at the current offset position.

Class ODStorageUnit defines the following methods for manipulating value data:

void SetOffset(in ODULong offset);
ODULong GetOffset();
void SetValue(in ODByteArray value);
ODULong GetValue(in ODULong length, out ODByteArray value);
void InsertValue(in ODByteArray value);
void DeleteValue(in ODULong length);

The ODByteArray structure is used to pass data to or from a storage unit.

GETTING STARTED WITH OPENDOC STORAGE 33

typdef struct {
unsigned long _maximum; /* size of buffer */
unsigned long _length; /* number of bytes of actual data */
octet* _buffer; /* pointer to buffer containing the data */

} _IDL_SEQUENCE_octet;

typedef _IDL_SEQUENCE_octet ODByteArray;

(An octet is simply the SOM term for an 8-bit byte.) Listing 1 shows how to
manipulate one of the values shown in Figure 1.

STORAGE UNIT REFERENCES
Storage unit references allow one storage unit to refer persistently to another. A part
can use this mechanism to access information stored in a storage unit (which may or
may not belong to it) across multiple sessions. A draft thus consists essentially of a
network of storage units connected to each other with persistent references.

When a storage unit is cloned (copied to a data-interchange container), any other
storage units it references are cloned along with it. Since all storage units in a draft
are interconnected, cloning any one of them may cause the whole draft to be cloned.
Because this may be an expensive and unnecessary operation, OpenDoc provides two
levels of storage unit reference: strong and weak. Only strongly referenced storage
units are copied when the unit that refers to them is cloned.

In Figure 2, frame A refers strongly to part A, which refers strongly to frame B, which
refers strongly to part B. Thus if frame A’s storage unit is cloned, all four storage units
will be copied. On the other hand, cloning frame B’s storage unit will copy those for
frame B and part B only, since frame B’s reference to frame A is weak rather than strong.

An object can use strong storage unit references to refer to other objects that are
essential to its functioning, such as embedded frames. Weak references are mainly for
informational or secondary purposes: a part might use them, for instance, to refer to
its display frames.

d e v e l o p Issue 24 December 199534

Listing 1. Adding data to a value

/* Focus the storage unit, using property name and value type. */
storageUnit->Focus(ev, kODPropContents, kODPosUndefined, kTextEditorKind,

0, kODPosUndefined);

/* Set up the byte array. */
ODByteArray ba;
ba._length = size;
ba._maximum = size;
ba._buffer = buffer;

/* Set the offset. (This step isn't really needed here, since the
Focus operation automatically sets the offset to 0. It's included
for illustrative purposes only.) */

storageUnit->SetOffset(ev, 0);

/* Add the value. */
storageUnit->SetValue(ev, &ba);

LIFE CYCLE OF A PART
Figure 3 shows the life cycle of a part and its associated storage unit. Because the
part’s lifetime may span multiple editing sessions, it must be able to externalize its
internal state (save it to persistent storage) in order to reconstruct itself from one
session to the next. The part’s InitPart method, called when the part is first created,
receives a storage unit as a parameter. The Externalize method can then use this
storage unit to save the part’s state. Once externalized, the part can be released
from memory and later reconstituted from external storage by a method named
InitPartFromStorage. Unlike InitPart, InitPartFromStorage can be called multiple

GETTING STARTED WITH OPENDOC STORAGE 35

Frame A Part A

Part BFrame B

Strong storage unit reference
Weak storage unit reference

Figure 2. Strong and weak storage unit references

Storage�
unit

Storage�
unit

Storage�
unit

Initial

Storage�
unit

Storage�
unit

Storage�
unit

Storage�
unit Part

Part
Modify part

Part Part

Modified

Part

InitPart

Externalize
Externalize

Release

Release

Modify part

InitPartFromStorage

Figure 3. Life cycle of a part

times during a part’s lifetime, whenever the part needs to be reconstructed from
external storage.

Notice that externalizing a part is not the same as cloning it. Externalizing means
writing the part’s data to persistent storage, using a storage unit associated with the
draft in which the part resides; cloning is transferring the part’s data to a data-
interchange container such as the Clipboard, using a storage unit associated with the
container. Although the two operations are different, they’re both based on the same
ODStorageUnit API and can share much of the same code.

Another related operation is purging, which reclaims memory space by eliminating
unnecessary runtime data structures such as caches. Because such structures can
usually be reconstructed from persistent data, many OpenDoc programmers believe
that a part’s Purge method should always begin by externalizing the part’s data before
deleting unused or unnecessary memory. While this might sound plausible in principle,
the externalization operation itself requires additional memory — the very thing
that’s in short supply during purging. As a general rule, the Purge method should
avoid invoking externalization unless it’s absolutely necessary.

All persistent objects carry a reference count, enabling OpenDoc to identify unused
objects and reclaim the memory they occupy. The Acquire method, which creates a
reference to a specified object, increments the object’s reference count; the Release
method destroys a reference and decrements the reference count. When the reference
count goes down to 0, OpenDoc can safely delete the object from memory.

INITIALIZATION
The initialization method InitPart is called only once, to set up a part’s initial state. It
should take the following actions:

1. Call the parent class’s InitPart method to perform any initialization required
at the parent level.

2. Save the incoming part wrapper object (discussed below) in an internal field.

3. Set up an internal permissions field to indicate that writing to the draft is
allowed.

4. Set up the part’s runtime data structures.

5. Set the part’s internal dirty flag to true.

Listing 2 shows an example. Notice that the SOM compiler, in translating the method
declaration from language-independent IDL into a specific source language, adds two
additional parameters at the beginning of the parameter list: a pointer to the object
executing the method (somSelf) and an environment pointer (ev) used for error
reporting. All of our example method definitions in this article begin with these two
parameters.

Parent initialization. It’s important for a part’s initialization method to call that of
its parent class. The parent’s initialization method will in turn call that of its parent
and so on up the inheritance chain, ensuring that all of the part’s inherited properties
are properly initialized. Inherited properties set up by ODPart and its parents, such
as ODPersistentObject, include the following:

• kODPropCreateDate contains the part’s creation date.

• kODPropModDate tells when the part’s storage unit was last externalized.

• kODPropModUser contains the name of the last user who modified the
part.

d e v e l o p Issue 24 December 199536

Part wrapper. Every part is wrapped by another object, called its part wrapper.
Clients of the part object deal with it indirectly, through the part wrapper, instead of
holding a direct pointer to the part object itself. The part wrapper receives all method
invocations and delegates them to the actual part. This insulation of the part object
allows the part editor to be changed at run time without affecting its clients.

The InitPart method should save the part wrapper object in an internal field. Then,
whenever the part needs to pass an object representing itself as a parameter, it should
pass the part wrapper in place of itself.

Draft permissions. A part editor needs to know whether a part is in a read-only
draft. If so, its functionality may be restricted: for example, the part may not allow the
user to change its contents, either through keyboard input or through menu operations
such as Cut and Paste. Also, if the draft is read-only, its Externalize method need
never be called on its parts or any persistent objects. When a part is created for the
first time, its draft is guaranteed to be writable, so it should initialize its read-only flag
to false.

GETTING STARTED WITH OPENDOC STORAGE 37

Listing 2. Initializing a part

SOM_Scope void
SOMLINK TextEditor__InitPart(SampleCode_TextEditor *somSelf,

Environment *ev,
ODStorageUnit *storageUnit,
ODPart *partWrapper)

{
SampleCode_TextEditorData *somThis =

SampleCode_TextEditorGetData(somSelf);
SOMMethodDebug("TextEditor", "InitPart");

SOM_TRY
// Call the parent class's InitPart method. The parent will in
// turn call its parent, and so on.
parent_InitPart(somSelf, ev, storageUnit, partWrapper);

// Store part wrapper object in an internal field.
_fSelf = partWrapper;

// Set a flag showing that this draft is not read-only.
_fReadOnlyStorage = kODFalse;

// Call common initialization code to set up our initial state.
somSelf->Initialize(ev);

// Set the dirty flag to true.
somSelf->SetDirty(ev);

SOM_CATCH_ALL
// No explicit code needed here: cleanup will be performed by the
// destructor, which is called automatically when an error is
// thrown.

SOM_ENDTRY
}

Dirty flag. The purpose of a dirty flag is to let the part’s Externalize method know
whether it needs to write out the part’s state to external storage. Externalization
(especially to disk) can be a time-consuming and expensive operation; using a dirty
flag can greatly improve performance by avoiding it whenever possible.

When a part is first created, its storage unit is empty. Since the state has not yet been
written out, the part should initialize its dirty flag to true; the flag should also be set
to true whenever the contents of the part are changed. After saving the state and
content data to external storage, the Externalize method should clear the flag to false,
indicating that the state need not be saved again unless the part’s contents are
changed.

EXTERNALIZATION
A part’s Externalize method can be called at any time. Typically, it’s called by the draft
when the user chooses to save the document. Since a part has no idea when this may
happen, it should always be ready to externalize itself.

The Externalize method should do the following:

1. Call the parent class’s Externalize method.

2. Check that all required properties exist; if not, add them to the storage unit.

3. Clean up the part’s contents if necessary.

4. Write out the part’s state information and contents.

5. Clear the part’s internal dirty flag to false.

Listing 3 shows an example.

The contents of a part must be written out to a special content property named
kODPropContents. Like other properties, the content property can contain multiple
values representing the same data in different forms. A value type used for content
data is referred to as a part kind. To facilitate data interchange, part editors are
encouraged to include one or more standard part kinds in their content property,
much the way traditional Macintosh applications use common data formats like
'TEXT' or 'PICT' when writing to the Clipboard.

Each value in the content property should be a complete representation of the
content data. A value may contain references to other storage units, but cannot
depend on other values in the content property or on other properties in the part’s
storage unit. Even if every other property and value were deleted from the storage
unit, the part editor should still be able to reconstruct the part using just that one
content value.

The ordering of values within the content property is completely determined by
the part editor. An important principle, however, is that values that represent the
underlying contents with greater fidelity should precede those of lesser fidelity:
formatted text, for instance, should precede plain (unformatted) text. The first value
should be the one that represents the content most faithfully.

When a part editor reconstructs a part from an external storage unit, there’s a
chance that the storage unit may have originally been written by some other part
editor. As a result, the content property may contain part kinds that the current part
editor doesn’t support, or the values may appear in the wrong fidelity order. In this
case, the part’s Externalize method should remove all existing values from the content
property so that it can write out its own content data in proper fidelity order.•

d e v e l o p Issue 24 December 199538

A standard property named kODPropPreferredKind identifies the part kind that the
user chooses to represent the data. If this property already exists, the part editor
shouldn’t tamper with it; if it doesn’t exist, the part editor may create it and give it a
value of type kODISOStr containing the name of the highest-fidelity part kind.
When writing out the content data, the part editor should be sure to include a value
in the format specified by this property.

RECONSTRUCTION
The InitPartFromStorage method is called whenever a part object needs to be
reconstructed from external storage. This method should do the following:

1. Call the parent class’s InitPartFromStorage method.

2. Save the incoming part wrapper object in an internal field.

3. Set up an internal permissions field to indicate whether writing to the draft is
allowed.

4. Set up the part’s runtime data structures.

GETTING STARTED WITH OPENDOC STORAGE 39

Listing 3. Externalizing a part

SOM_Scope void
SOMLINK TextEditor__Externalize(SampleCode_TextEditor *somSelf,

Environment *ev)
{

SampleCode_TextEditorData *somThis =
SampleCode_TextEditorGetData(somSelf);

SOMMethodDebug("TextEditor", "Externalize");

SOM_CATCH return;

// Ask parent classes to externalize themselves.
parent_Externalize(somSelf, ev);

// Check dirty flag.
if (_fDirty) {

// Get storage unit.
ODStorageUnit *storageUnit = somSelf->GetStorageUnit(ev);

// Verify that the storage unit has the appropriate properties;
// if not, add them.
somSelf->CheckAndAddProperties(ev, storageUnit);

// Validate storage unit's contents and clean up if necessary.
somSelf->CleanseContentProperty(ev, storageUnit);

// Write out state information and contents.
somSelf->ExternalizeStateInfo(ev, storageUnit, 0, kODNULL);
somSelf->ExternalizeContent(ev, storageUnit, kODNULL);

// Clear dirty flag.
_fDirty = kODFalse;

}
}

5. Read the content data from the storage unit into the runtime data structures.

6. Clear the part’s internal dirty flag to false.

Notice that these are essentially the same steps we listed earlier for the InitPart
method, except that the contents of the part’s runtime data structures are read in from
the storage unit instead of being initialized to standard values, and that the dirty flag is
cleared to false instead of true to show that the part’s contents agree with those in the
external storage unit. Listing 4 shows an example of an InitPartFromStorage method.

d e v e l o p Issue 24 December 199540

Listing 4. Reconstructing a part

SOM_Scope void
SOMLINK TextEditor__InitPartFromStorage

(SampleCode_TextEditor *somSelf,
Environment *ev,
ODStorageUnit *storageUnit,
ODPart *partWrapper)

{
SampleCode_TextEditorData *somThis =

SampleCode_TextEditorGetData(somSelf);
SOMMethodDebug("TextEditor", "InitPartFromStorage");

// Avoid initializing the part twice.
if (fSelf != kODNULL)

return;

SOM_TRY
// Call the parent class's InitPartFromStorage method. The parent
// will in turn call its parent, and so on.
parent_InitPartFromStorage(somSelf, ev, storageUnit, partWrapper);

// Store part wrapper object in an internal field.
_fSelf = partWrapper;

// Set a flag showing whether this draft is read-only.
_fReadOnlyStorage = (storageUnit->GetDraft(ev)->

GetPermissions(ev) == kDPReadOnly);

// Call common initialization code to set up our initial state.
somSelf->Initialize(ev);

// Read in state data from external storage.
somSelf->InternalizeStateInfo(ev, storageUnit);

// Read in content data from external storage.
somSelf->InternalizeContent(ev, storageUnit);

SOM_CATCH_ALL
// No explicit code needed here: cleanup will be performed by the
// destructor, which is called automatically when an error is
// thrown.

SOM_ENDTRY
}

As we’ve already noted, the storage unit from which a part is reconstructed may have
been created by a part editor other than the one reading it in. The OpenDoc binding
subsystem uses the part kinds found in the storage unit’s content property to
determine which part editor to invoke. If the original part editor cannot be found, the
binding subsystem will look for another editor capable of reading the available part
kinds. The contents of the storage unit may thus be very different from what the
current part editor expects. Here are a few points to note:

• If the storage unit identifies a preferred part kind (that is, if it contains the
property kODPropPreferredKind), the part editor should read its content
data from the indicated value of the content property. If no preferred kind is
specified (or if the part editor cannot handle a value of the specified kind), it
should iterate through the available values looking for one it can handle.
When it finds such a value, it should read the content data from that value
into its runtime data structures.

• The InitPartFromStorage method should not add its own properties to the
part’s storage unit, but should leave that task to the Externalize method
instead. This is because the user may close the document without modifying
any of its contents. If the InitPartFromStorage method modifies the storage
unit, the user will be prompted to save the document before closing it, even
though the document has not been modified.

• The part editor should not alter the part’s preferred-kind property
(kODPropPreferredKind).

WHAT NEXT?
Needless to say, the only real way to get familiar with OpenDoc programming is to
jump in and develop a part editor of your own. The techniques discussed in this
article will help you manage your storage needs effectively. The rest is up to you and
your imagination.

GETTING STARTED WITH OPENDOC STORAGE 41

Thanks to our technical reviewers Dave Bice,
Craig Carper, Ed Lai, and Steve Smith.•

RELATED READING
• “The OpenDoc User Experience” by Dave Curbow and Elizabeth Dykstra-Erickson,

develop Issue 22.

• “Getting Started With OpenDoc Graphics” by Kurt Piersol, develop Issue 21.

• “Building an OpenDoc Part Handler” by Kurt Piersol, develop Issue 19.

• OpenDoc Programmer’s Guide and OpenDoc Class Reference, available as part
of the OpenDoc developer releases.

• The latest news on OpenDoc can be found on the World Wide Web at
http://www.info.apple.com/opendoc or http://www.cilabs.org.

For those of us on Apple’s QuickDraw 3D team, the
highlight of SIGGRAPH ’95 (the annual conference
of the ACM’s computer graphics interest group) was
having the chance to work with developers who were
showing QuickDraw 3D products. Considering that we
only started working with developers in December
1994, the number of applications already up and running
is inspiring. By the time you read this column, 10 or 15
QuickDraw 3D products will be shipping, including
modeling and animation software, 3D hardware
accelerators, 3D model clip art, and games. More than
50 developers are actively working on products based
on QuickDraw 3D, and those will ship in 1996.

If you’re not yet a QuickDraw 3D developer and don’t
want to be left out, take a look at the develop articles
“QuickDraw 3D: A New Dimension for Macintosh
Graphics” in Issue 22 and “The Basics of QuickDraw
3D Geometries” in Issue 23. This column gives a
hodgepodge of additional information.

IMPROVING ACCELERATOR PERFORMANCE
One of the things that has attracted developers to
QuickDraw 3D is seamless access to hardware
acceleration. In addition to Apple’s PCI accelerator
card, hardware acceleration cards have been announced
by Matrox, Yarc, Radius, and Newer Technology. If you
really want your application to fly, you need to make
sure that you’re using the fastest renderer possible and
that if a hardware acceleration card is installed, you’re
using the card. If you use the QuickDraw 3D API,

QuickDraw 3D will take care of this for you, but there’s
something else you can do that might improve your
application’s performance.

Certain cards, including Apple’s accelerator card, will
yield better frame rates in some situations if you use
what we call double buffer bypass, an option enabled by a
flag. Double buffering causes all objects to be drawn
first into a back buffer; this entire buffer is then copied
to the front buffer (the window). If the scene you’re
rendering is simple and thus takes very little time to
redraw — say, less than 1/10 of a second — enabling
double buffer bypass is faster because it avoids having
to copy memory from the back buffer to the front
buffer. On the other hand, if you use this option with a
complex scene, tearing may occur. Therefore, you may
want to time a frame (and take into account the
complexity of your models) before using double buffer
bypass. To time a frame, call the Toolbox routine
Microseconds, draw the frame, call Q3Renderer_Sync
to make sure the frame has been fully drawn, and then
call Microseconds again and subtract the start time
from the end time.

If you’re using QuickDraw 3D’s interactive software
renderer, all the code you need to turn on double
buffer bypass is shown in Listing 1.

The interactive renderer can render using software
only or using hardware acceleration. The interactive
renderer is set by default to look for the best device
possible, so if a hardware accelerator is installed, the
accelerator will always be used. On occasion, though,
you may want to switch from using hardware to using
software (for demos or testing, for example). In this
case you must explicitly request the software rasterizer,
as follows:

Q3InteractiveRenderer_SetPreferences(myRenderer,
kQAVendor_Apple, kQAEngine_AppleSW);

INTERACTING WITH INPUT DEVICES
QuickDraw 3D provides an input device abstraction
layer that allows you to interact with different input
devices without having to write special code for each of
them. The sample application NewEra demonstrates

GRAPHICAL
TRUFFLES

Making the Most
of QuickDraw 3D

NICK THOMPSON AND
PABLO FERNICOLA

d e v e l o p Issue 24 December 199542

NICK THOMPSON (eWorld NICKT), transplanted English soccer
fan and member of Apple’s Developer Technical Support team,
thinks that this could be the year for the Arsenal Football Club.
With the acquisition of Dutch star Dennis Bergkamp and England
striker David Platt, things are looking up at Highbury. By the time
you read this, the Premier League standings will tell if this is the
dawning of a new era or more of the same “boring, boring,
Arsenal,” as those charming Spurs fans like to chant.•

PABLO FERNICOLA (eWorld EscherDude), of Apple’s Interactive
Multimedia Group, is much more relaxed since shipping QuickDraw
3D 1.0. He now has time to eat his dad’s great barbecue, dally
with his lovely wife, and sleep — although the latter entails the
challenge of trying to get his golden retriever, aptly named Mac,
to give up some of the space he takes up in the bed. Pablo’s latest
research project is to find out exactly what the purpose is for those
orange balls that one finds on high power transmission lines.•

interaction with tablets and other input devices; this
application is available on the CD that comes with the
book 3D Graphics Programming With QuickDraw 3D,
and a newer version can be found on this issue’s CD.

To take advantage of QuickDraw 3D’s input device
layer, you need to create a tracker object and associate
it with a controller object (created by an input device
driver), as Listing 2 does. Once you’ve set up your
tracker, you can poll it to get its new position and
orientation, as shown in Listing 3. To reflect the
change in your scene, you apply the values returned by
the tracker to a transform object, affecting either a
particular geometry or group (if an object was selected
and being manipulated) or the camera, depending on
the interaction model for your application.

QuickDraw 3D’s input device abstraction layer also
makes writing input device drivers easier. For example,
it took us about three days to write a driver for the
Magellan device from Logitech, Inc., a 3D input device

with six degrees of freedom. As illustrated in Figure 1,
this device enables movement along the x, y, and z axes,
as well as rotation about the three axes.

SETTING THE CORRECT FILE TYPE
When saving QuickDraw 3D metafiles, you should set
the file type as '3DMF', regardless of how the contents
of the file are formatted (as plain-text or binary, or any
combination of the different types of organization, such
as database or stream). This will enable the file to be
read or opened by other QuickDraw 3D applications. If
you’d like your end users to read a file as text, add an
Export As Text option to your application and then set
the file type to 'TEXT'. This is helpful for debugging
(and for sending questions or bugs to Developer
Technical Support).

HAVING FUN WITH CUSTOM ATTRIBUTES
By taking advantage of QuickDraw 3D’s custom
attributes and extensible metafile format, you can have
objects that encapsulate specialized data relevant to

GRAPHICAL TRUFFLES: MAKING THE MOST OF QUICKDRAW 3D 43

Listing 1. Turning on double buffer bypass

// Create the renderer.
if ((myRenderer = Q3Renderer_NewFromType(kQ3RendererTypeInteractive)) != nil) {

if ((myStatus = Q3View_SetRenderer(myView, myRenderer)) == kQ3Failure) { // Handle the error.
...

} // Set bypass.
Q3InteractiveRenderer_SetDoubleBufferBypass(myRenderer, kQ3True);

}

Listing 2. Creating a tracker object and attaching it to a controller object

theDocument->fPositionSN = 0;
theDocument->fRotationSN = 0;
theDocument->fTracker = Q3Tracker_New(NULL);
myStatus = Q3Controller_Next(NULL, &controllerRef);
while (controllerRef != NULL && myStatus == kQ3Success) {

Q3Controller_SetTracker(controllerRef, theDocument->fTracker);
myStatus = Q3Controller_Next(controllerRef, &controllerRef);

}

Listing 3. Updating position and orientation

// We received a null event; grab a new position and orientation for the model.
TQ3Boolean positionChanged;
TQ3Boolean rotationChanged;

Q3Tracker_GetPosition(doc.fTracker, &doc.fPosition, NULL, &positionChanged, &doc.fPositionSN);
Q3Tracker_GetOrientation(doc.fTracker, &doc.fRotation, NULL, &rotationChanged, &doc.fRotationSN);

your application. For instance, to navigate through the
World Wide Web in 3D, you can attach Web data (like
URLs) to QuickDraw 3D objects as custom attributes.
When those objects or scenes are read into one of the
many viewers supporting the URL custom attribute,
the viewer can communicate through Apple events
with applications like Netscape (or your favorite Web
browser) to produce 3D navigation. You’ll find a sample
application that shows how to do this on this issue’s CD.

Custom attributes also enable you to associate sound
and other data with objects in your 3D scene.

DEBUGGING
There are two really handy techniques that you can
use to diagnose problems you may be having with
your QuickDraw 3D application. For both of these
approaches to debugging your software, you’ll want to
make sure that you have MacsBug installed on your
machine and that you’re using the debugging version
of the QuickDraw 3D extension supplied with the
QuickDraw 3D development software.

The first technique is to install error and warning
handlers, described in our article in develop Issue 22.
Error and warning handlers are particularly useful for
telling you of potential problems with your use of the
QuickDraw 3D library. If you don’t install error and
warning handlers, you won’t know if you’re doing
something that the library identifies as erroneous.
Although we stated this in our original article, many

developers missed its significance and thus have
experienced longer debugging times than necessary
and a great deal of frustration.

The second technique is to use a software tool, the 3D
debugger, included on this issue’s CD. This application
enables you to examine the QuickDraw 3D heap and
look at the different objects, their attributes, and their
reference count. Please note that you’re looking under
the hood, so you may encounter untyped blocks, and
the reference count for objects may reflect references
internal to the QuickDraw 3D system.

LOOKING AHEAD
We’ll continue to release great new QuickDraw 3D
features, so bring your applications along for the ride.
By early 1996 we expect to have all major existing 3D
applications on the Macintosh using QuickDraw 3D,
along with applications that developers port from other
platforms. Many 2D applications will be making use of
the 3D Viewer as well.

Watch develop for further articles about other aspects of
QuickDraw 3D. Meanwhile, you may want to check
out the Addison-Wesley book 3D Graphics Programming
With QuickDraw 3D (which includes the QuickDraw
3D development software) and see this issue’s CD for
the development software and the latest versions of the
sample code and utility applications. And for the latest
news on QuickDraw 3D, see our Web page at
http://www.info.apple.com/qd3d.

d e v e l o p Issue 24 December 199544

Figure 1. Magellan: a six-degrees-of-freedom input device (courtesy of Logitech)

For more information on making your application work with
Magellan, contact Stephan Ilberg at Logitech by sending a message
to stephan_ilberg@logitech.com.•

Thanks to Robert Dierkes and Fábio Pettinati for reviewing this
column, and a special thanks to Dan Venolia and David Vasquez
for supplying some of the code and applications discussed.•

The Sound Manager is one powerful multimedia tool for the Macintosh,
but no one has ever accused it of being too obvious. This article explores
some of the more subtle Sound Manager features, showing some simple
ways to improve your application’s use of sound. A sample application
demonstrates features such as volume overdrive and easy continuous
sound.

The Sound Manager has a long and distinguished career on the Macintosh. First
released in 1987, it was completely revised in 1993 with the release of Sound
Manager 3.0. The introduction of Sound Manager 3.1 in the summer of 1995
brought native PowerPC performance, making the Sound Manager one of the most
powerful multimedia tools around. However, getting the most out of the Sound
Manager often means wading through many pages of Inside Macintosh: Sound.

This article pulls together valuable information about the Sound Manager,
focusing on some of its little-known features that will ease your development of
multimedia applications. The tips and techniques come straight from the Sound
Manager development team at Apple and cover diverse areas of developer interest,
including

• parsing sound resources

• displaying compression names

• maximizing performance

• adjusting volume

• controlling pitch

• playing continuous sounds

• compressing audio

Two of these topics, controlling pitch and compressing audio, require the use of
Sound Manager 3.1, which is included on this issue’s CD. You’ll also find the
SoundSecrets application and its source code on the CD. SoundSecrets demonstrates
many of the techniques described in the article. To get the most out of this article,
you should be familiar with the Sound Manager command interface and concepts
such as sound channels, as described in Inside Macintosh: Sound.

So, let’s get started unlocking some of those sound secrets!

KIP OLSON

Sound Secrets

SOUND SECRETS 45

KIP OLSON was recently dispatched to the
Copland team at Apple with orders to rewrite
the Sound Manager (again). To keep things

interesting, he promises to add even more obscure
features.•

FIND WHAT YOU’RE LOOKING FOR
On the Macintosh, sounds can be stored in a variety of formats, including 'snd '
resources, AIFF (Audio Interchange File Format) files, and QuickTime movies.
Applications often need to read these files directly and extract their sound data, which
can be a daunting task, especially when you begin to deal with some of the new
compressed sound formats introduced in Sound Manager 3.1 — for example, IMA 4:1.

Fortunately, Sound Manager 3.0 introduced a couple of routines to help you navigate
these tricky waters — GetSoundHeaderOffset and GetCompressionInfo. Let’s take a
look at these routines, and put them to work with an example of parsing an 'snd '
resource taken from the SoundSecrets application.

The 'snd ' resource format is described fully in Inside Macintosh: Sound, so we won’t go
into detail here, except to say that embedded in the resource is a sound header and
the audio samples themselves. Finding this embedded sound header is the job of
GetSoundHeaderOffset. It takes a handle to an arbitrary 'snd ' resource and returns
the offset of the sound header data structure within that handle.

However, once you find the sound header, your work is not complete; you must
determine which of the three possible sound header structures it is. In the SoundSecrets
application, the sound header is represented as a union of the three structures
SoundHeader, ExtSoundHeader, and CmpSoundHeader. The encode field in these
structures determines which union member to use when examining the header.

After you’ve extracted the appropriate information from the sound header, you can
use the GetCompressionInfo routine to determine the sound format and the
compression settings. GetCompressionInfo fills out and returns a CompressionInfo
record, which contains the OSType format of the sound, samples per packet, bytes
per packet, and bytes per sample. You can use these fields to convert between
samples, frames, and bytes.

For a thorough discussion of GetCompressionInfo, see the Macintosh
Technical Note “GetCompressionInfo()” (SD 1).•

As shown in Listing 1, the SoundSecrets application uses GetSoundHeaderOffset to
find the sound header structure, and then uses a case statement based on the encode
field to extract the useful information from each type of header. The SoundSecrets
application calculates the number of samples in the sound using information returned
by GetCompressionInfo.

CHOOSE THE RIGHT NAME
Now that you’ve extracted the sound settings from an 'snd ' resource, the next thing
you’ll want to do is display this information to the user of your application. Settings
like sample rate and sample size are easy to display, but what if the sound is
compressed? All you’ve got is an OSType to describe the compressed sound data
format, and not too many users are going to get much out of seeing something like
'MAC3' displayed on their screen.

Fortunately, the Sound Manager makes it easy for you to find a string to display that
does make sense. Using the Component Manager, you can look up the name of the
audio codec used to expand the compressed sound, and use this name to describe the
compression format to the user.

This is done with the Component Manager routine FindNextComponent, which is
passed a ComponentDescription record. By setting the componentType field of this

d e v e l o p Issue 24 December 199546

SOUND SECRETS 47

Listing 1. Getting information from the sound header

typedef union {
SoundHeader s; // Plain sound header
CmpSoundHeader c; // Compressed sound header
ExtSoundHeader e; // Extended sound header

} CommonSoundHeader, *CommonSoundHeaderPtr;

OSErr ParseSnd(Handle sndH, SoundComponentData *sndInfo,
CompressionInfo *compInfo, unsigned long *headerOffsetResult,
unsigned long *dataOffsetResult)

{
CommonSoundHeaderPtr sh;
unsigned long headerOffset, dataOffset;
short compressionID;
OSErr err;

// Use GetSoundHeaderOffset to find the offset of the sound header
// from the beginning of the sound resource handle.
err = GetSoundHeaderOffset((SndListHandle) sndH,

(long *) &headerOffset);
if (err != noErr)

return (err);

// Get pointer to the sound header using this offset.
sh = (CommonSoundHeaderPtr) (*sndH + headerOffset);
dataOffset = headerOffset;

// Extract the sound information based on encode type.
switch (sh->s.encode) {

case stdSH: // Standard sound header
sndInfo->sampleCount = sh->s.length;
sndInfo->sampleRate = sh->s.sampleRate;
sndInfo->sampleSize = 8;
sndInfo->numChannels = 1;
dataOffset += offsetof(SoundHeader, sampleArea);
compressionID = notCompressed;
break;

case extSH: // Extended sound header
sndInfo->sampleCount = sh->e.numFrames;
sndInfo->sampleRate = sh->e.sampleRate;
sndInfo->sampleSize = sh->e.sampleSize;
sndInfo->numChannels = sh->e.numChannels;
dataOffset += offsetof(ExtSoundHeader, sampleArea);
compressionID = notCompressed;
break;

case cmpSH: // Compressed sound header
sndInfo->sampleCount = sh->c.numFrames;
sndInfo->sampleRate = sh->c.sampleRate;
sndInfo->sampleSize = sh->c.sampleSize;
sndInfo->numChannels = sh->c.numChannels;

(continued on next page)

record to kSoundDecompressor, the componentSubType field to the OSType of the
compressed sound data format, and the remaining fields to 0, you can search for the
sound component that will decompress the sound. Once you have the component,
you can use GetComponentInfo to obtain the component name, which is the
descriptive string that makes sense to the user. The routine from SoundSecrets shown
in Listing 2 finds the name of any compressed sound format.

MAXIMIZE YOUR POTENTIAL
The Sound Manager is almost always used in conjunction with other operations on
the Macintosh. For example, QuickTime uses the Sound Manager to play a sound
track while it’s drawing the frames of a movie, and games play sound effects and
background music while animating the screen. That’s why the performance of the
Sound Manager is of such great concern to many programmers: if the Sound
Manager takes too much time to do its work, QuickTime will begin to drop video
frames and games or animations will run slower.

To get the best performance out of the Sound Manager, you first need to understand
a little about how it plays a sound. The Sound Manager’s major function is to convert
the sounds played by an application into the audio format required by the sound
hardware on a particular computer. For example, the sound hardware on the Power
Macintosh 8100 requires a stream of 16-bit, stereo, 44.1 kHz audio samples, so the
Sound Manager must convert all sounds to this format during playback.

d e v e l o p Issue 24 December 199548

dataOffset += offsetof(CmpSoundHeader, sampleArea);
compressionID = sh->c.compressionID;
sndInfo->format = sh->c.format;
break;

default:
return (badFormat);
break;

}

// Use GetCompressionInfo to get the data format of the sound and
// the compression information.
compInfo->recordSize = sizeof(CompressionInfo);
err = GetCompressionInfo(compressionID, sndInfo->format,

sndInfo->numChannels, sndInfo->sampleSize, compInfo);
if (err != noErr)

return (err);

// Store the sound data format and convert frames to samples.
sndInfo->format = compInfo->format;
sndInfo->sampleCount *= compInfo->samplesPerPacket;

// Return offset of header and audio data.
*headerOffsetResult = headerOffset;
*dataOffsetResult = dataOffset;

return (noErr);
}

Listing 1. Getting information from the sound header (continued)

It does this by examining the format of the sound to be played, and setting up the
proper conversion steps needed to convert it to the hardware format. These steps
might include decompression, sample size adjustment, sample rate conversion,
volume adjustment, and mixing, all of which take time away from your application.

Therefore, the best way to maximize Sound Manager performance is to simply supply
it with sounds that are already in the format required by the sound hardware. This
way, the Sound Manager doesn’t have to spend a lot of time processing, and your
application will have more time to do other operations. Fortunately, Sound Manager

SOUND SECRETS 49

Listing 2. Finding the name of a compressed sound format

OSErr GetCompressionName(OSType compressionType, Str255 compressionName)
{

ComponentDescription cd;
Component component;
Handle componentName;
OSErr err;

// Look for decompressor component.
cd.componentType = kSoundDecompressor;
cd.componentSubType = compressionType;
cd.componentManufacturer = 0;
cd.componentFlags = 0;
cd.componentFlagsMask = 0;

component = FindNextComponent(nil, &cd);
if (component == nil) {

err = siInvalidCompression;
goto FindComponentFailed;

}

// Create handle for name.
componentName = NewHandle(0);
if (componentName == nil) {

err = MemError();
goto NewNameFailed;

}

// Get name from the Component Manager.
err = GetComponentInfo(component, &cd, componentName, nil, nil);
if (err != noErr)

goto GetInfoFailed;

// Return name.
BlockMoveData(*componentName, compressionName,

GetHandleSize(componentName));

GetInfoFailed:
DisposeHandle(componentName);

NewNameFailed:
FindComponentFailed:

return (err);
}

3.1 provides a new routine, SndGetInfo, that helps you determine the current sound
hardware settings, so maximizing performance is a snap. (Of course, this technique
applies only to sounds the application generates itself, since otherwise you have no
control over their format.)

SndGetInfo is a selector-based routine that returns information about the sound
channel. You pass in an OSType selector, and it returns a data structure of information.
(This is similar to the operation of the SPBGetDeviceInfo routine in the Sound Input
Manager, and in fact they use the same selectors.) Once you know the sound hardware
sample rate, sample size, and number of channels, you know the kind of sounds that
will be played back most efficiently.

The SoundSecrets application demonstrates how to determine the hardware settings
and then find the sound with the correct format. It uses the GetHardwareSettings
routine, which determines the hardware settings, and the FindMatchingSound
routine, which chooses the right sound to play to maximize performance.

Listing 3 shows how to use SndGetInfo to return the current hardware settings.

PUMP UP THE VOLUME
Most sound programmers have heard (literally) about the venerable ampCmd
command, which lets you scale the volume of all sounds on a channel from a minimum
of 0 (silence) to 255 (full volume). However, only the truly righteous know that
Sound Manager 3.0 added an even more powerful command for manipulating sound
volume — volumeCmd.

d e v e l o p Issue 24 December 199550

Listing 3. Getting the current hardware settings

OSErr GetHardwareSettings(SndChannelPtr chan,
SoundComponentData *hardwareInfo)

{
OSErr err;

err = SndGetInfo(chan, siNumberChannels, &hardwareInfo->numChannels);
if (err != noErr)

return (err);

err = SndGetInfo(chan, siSampleRate, &hardwareInfo->sampleRate);
if (err != noErr)

return (err);

err = SndGetInfo(chan, siSampleSize, &hardwareInfo->sampleSize);
if (err != noErr)

return (err);

if (hardwareInfo->sampleSize == 8)
hardwareInfo->format = kOffsetBinary;

else
hardwareInfo->format = kTwosComplement;

return (noErr);
}

The volumeCmd command does three things. First, like ampCmd, it allows you to
scale the volume from silence to full volume. However, volumeCmd doesn’t stop
there; like that revolutionary amplifier in the movie Spinal Tap that could go all the
way to 11, it lets you go beyond full volume to overdrive the sound volume. And
finally, it allows you to control the volume of the left and right channels
independently, providing complete stereo control over your sounds.

All this is possible because the volumeCmd command represents the sound volume
in 16-bit fixed-point notation. By using the most significant 8 bits to represent the
integer portion of the volume and the least significant 8 bits for the fractional
portion, it provides very precise volume settings. And overdriving the sound is a
cinch. By combining the left and right volume settings into one 32-bit quantity,
volumeCmd gives you full control over how loud you can blast your speakers.
Another command, getVolumeCmd, returns the current volume setting, in case you
forgot what you set it to.

A new interaction between the volumeCmd and ampCmd commands was
added in Sound Manager 3.1. Previously, ampCmd would clobber the separate left
and right settings made by volumeCmd, setting them to the same value. Starting with
Sound Manager 3.1, volumeCmd now specifies a base volume for a channel, and
ampCmd scales against that base, which lets ampCmd and volumeCmd coexist better
when playing the system alert beep.•

Table 1 gives some examples of values you can pass to volumeCmd and their effect.
Remember, once you’ve changed the volume setting with volumeCmd, the setting
is applied immediately to the current sound that’s playing (if any) and to every
subsequent sound played on that channel.

The SoundSecrets sample program included on the CD demonstrates the usefulness
of volumeCmd by providing a slider control to adjust left and right volume separately,
with volume overdrive up to two times the normal full volume.

ACHIEVE PERFECT PITCH
One of the trickiest things to do with the Sound Manager is to play a sound at just
the right pitch. While the frequencyCmd command lets you trigger a sound at a

SOUND SECRETS 51

Table 1. Sample values for volumeCmd

volumeCmd Right Channel Left Channel
Setting Decimal Value Decimal Value Effect

0x01000100 1.0 1.0 Full volume out both channels
(the default)

0x00000000 0.0 0.0 Silence out both channels

0x01000000 1.0 0.0 Full volume out right channel;
silence out left

0x00000100 0.0 1.0 Silence out right channel; full
volume out left

0x02000200 2.0 2.0 Double the full volume out both
channels

0x01800040 1.5 0.25 One and a half times full
volume out right channel; one
quarter out left

given MIDI note value, and the rateCmd command gives you limited control over
the pitch of the sound currently playing, before Sound Manager 3.1 there was no
good way to just play a sound at an arbitrary pitch, short of generating the samples
yourself. So Sound Manager 3.1 introduced the rateMultiplierCmd command, which
gives you perfect pitch every time.

The concept behind rateMultiplierCmd is very simple. Using a Fixed value, you can
apply a multiplier to the playback rate of all sounds played on a channel. This allows
you to vary the sample rate of the sound being played, and thus control its pitch.
(Of course, changing the rate also changes the duration of the sound.) You can use
getRateMultiplierCmd to return the current rate multiplier setting.

Like any great concept, it’s most easily understood with an example, so Table 2 gives
some values you can pass to rateMultiplierCmd and their effect. Remember, as with
volumeCmd, once you change the rate multiplier with this command, the setting is
applied immediately to the current sound that’s playing (if any) and to every
subsequent sound played on that channel. Our helpful SoundSecrets application
demonstrates the rateMultiplierCmd command with a slider control to adjust the
playback rate of the sound from 0.0 to 2.0.

PLAYING SOUND THE QUICKTIME WAY
Something that vexes nearly everyone using the Sound Manager is attempting to play
continuous sound. Many applications break sounds up into chunks as they’re read off
the disk, and most games have background music that’s continuously generated and
mixed with sound effects. After spelunking through Inside Macintosh: Sound, you’ll
eventually come across the SndPlayDoubleBuffer routine, which looks like the
answer to your prayers. However, SndPlayDoubleBuffer has some serious limitations
that you need to consider.

First of all, SndPlayDoubleBuffer ping-pongs between just two buffers, and the
location of those buffers can’t be changed once the sound is started, which can be
really inconvenient when you’re trying to piece together a lot of sound buffers off the
disk. In addition, the format of the sound being played can’t be changed once the
sound is started, and the headers describing the sound must be attached to the sound
data itself.

There has got be a better way, right? Well, QuickTime uses a strategy involving
sound callbacks that’s much more flexible and doesn’t make you scratch your head
over when to use that lastBuffer flag in SndPlayDoubleBuffer. Once you read about
the QuickTime way, you’ll probably want to use it too.

d e v e l o p Issue 24 December 199552

Table 2. Sample values for rateMultiplierCmd

rateMultiplierCmd Decimal
Setting Value Effect

0x00010000 1.0 Play sounds at the normal pitch setting (the default)

0x00020000 2.0 Play sounds at a pitch shifted up one octave

0x00008000 0.5 Play sounds at a pitch shifted down one octave

0x00018000 1.5 Play sounds at a pitch shifted up half an octave

0x00000000 0.0 Repeat the last audio sample indefinitely, which
effectively pauses playback on this channel

With the QuickTime strategy you trigger all your sounds with a plain old bufferCmd
command, and set up callBackCmd to call you when that buffer is done playing. This
has two big advantages:

• Because bufferCmd takes a pointer to a sound header as its only parameter,
you can queue up a different buffer for every callback if you want, freeing
you from that pesky two-buffer limit.

• Because the sound header records contain a pointer to the audio data, you
have a lot more flexibility in buffer management, and you can dynamically
adjust the buffer sizes to any values that make sense to you.

This technique is demonstrated by Listing 4, taken from the SoundSecrets
application on the CD. Basically, the interrupt routine just plays the next buffer and
then queues up a callback, which keeps the sound playing continuously. The
application has a slider that lets you adjust the size of the buffer dynamically.

Remember, callBackCmd calls your application at interrupt time, so it’s up to you to
set up your A5 world if you want to use globals. You can’t call Toolbox routines like
those in the Memory Manager from within the callback; however, you can call most
Sound Manager routines (see Inside Macintosh: Sound for information on individual
routines). To make things easier, you can pass an application-defined value to the
callback routine in param2 of callBackCmd. Also, to ensure correct queue processing,
it’s very important that you use SndDoImmediate to send bufferCmd, and
SndDoCommand to send callBackCmd.

COMPRESS WITH THE BEST
While Sound Manager 3.0 included an architecture for decompressing arbitrary
sounds (described in the article “Make Your Own Sound Components” in develop
Issue 20), no method was provided to compress sounds. However, with the arrival of
Sound Manager 3.1 and QuickTime 2.1, creating compressed sound files became as
easy as opening a movie.

SOUND SECRETS 53

Listing 4. Playing continuous sound

// Issue bufferCmd to play the sound, using SndDoImmediate.
sndCmd.cmd = bufferCmd;
sndCmd.param1 = 0;
sndCmd.param2 = (long) &globals->sndHeader;

err = SndDoImmediate(globals->sndChannel, &sndCmd);
if (err != noErr)

return (err);

// Issue callBackCmd using SndDoCommand so that we get called back
// when the buffer is done playing.
sndCmd.cmd = callBackCmd;
sndCmd.param1 = 0;
sndCmd.param2 = (long) globals;

err = SndDoCommand(globals->sndChannel, &sndCmd, true);
if (err != noErr)

return (err);

The compression technique demonstrated here uses the import/export facility built
into QuickTime. Movie import components allow you to convert other files into
QuickTime movies, while movie export components let you save QuickTime movies
in other formats. QuickTime 2.1 provides an export component that works with
Sound Manager 3.1 to let you save the audio in a QuickTime movie to an AIFF file in
any format you please.

QuickTime does this by calling the Sound Manager to mix all the tracks together,
converting them to the sample rate and size you specify, and even compressing the
data with any of the compression algorithms provided by Sound Manager 3.1. The
resulting AIFF file can then be played by any other Sound Manager routine, or
converted back into a movie. The export component provides a dialog to let the user
select the sample rate, sample size, and compression format of the AIFF file, as shown
in Figure 1.

Listing 5 demonstrates the process of converting a movie to an AIFF file, displaying
the Sound Export Options dialog to let the user control the conversion process. The
SetMovieProgressProc routine displays a progress dialog while the movie is being
converted. The code is taken from ExportAIFF on this issue’s CD.

d e v e l o p Issue 24 December 199554

Figure 1. Sound Export Options dialog

Listing 5. Converting a movie to an AIFF file

OSErr ConvertMovieToAIFF(FSSpec *inputFile, FSSpec *outputFile)
{

short fRef;
Movie theMovie;
OSErr err;

err = OpenMovieFile(inputFile, &fRef, fsRdPerm);
if (err != noErr)

goto OpenMovieFileFailed;

err = NewMovieFromFile(&theMovie, fRef, nil, nil, 0, nil);
if (err != noErr)

goto NewMovieFromFileFailed;

(continued on next page)

SOUNDING OFF
Now that this article has revealed some of the best-kept secrets of the Sound Manager,
you can go out and create great applications on your own. Consider all your new
skills — parsing and displaying sound resources, improving playback performance,
adjusting volume and pitch, playing continuous sounds, and compressing audio. Now
that the Sound Manager is your friend, you can focus on making your applications
insanely great, instead of having the Sound Manager drive you insane!

SOUND SECRETS 55

SetMovieProgressProc(theMovie, (MovieProgressUPP) -1L, 0);

err = ConvertMovieToFile(theMovie, nil, outputFile, 'AIFF', 'sSnd',
0, nil, showUserSettingsDialog, nil);

DisposeMovie(theMovie);

NewMovieFromFileFailed:
CloseMovieFile(fRef);

OpenMovieFileFailed:
return (err);

}

RELATED READING
• Inside Macintosh: Sound (Addison-Wesley, 1994).

• Macintosh Technical Note “GetCompressionInfo()” (SD 1).

• “Make Your Own Sound Components” by Kip Olson, develop Issue 20.

Thanks to our technical reviewers Bob Aron,
Peter Hoddie, Kevin Mellander, and Jim Reekes.•

Listing 5. Converting a movie to an AIFF file (continued)

There’s little that compares to diving headfirst toward
the ground at 120 miles per hour. I may have been
going even faster when I last went skydiving. Tucking
my arms in tightly, with my head back and legs even, I
heard a deafening roar from the wind as I sped toward
terminal velocity. “Terminal” would have been a good
word for the situation if it weren’t for the advances that
have been made in parachute technology.

Parachutes have come a long way since their debut,
when they were billowy round disks of silk sewn with
simple cords stretching to a harness. They were greatly
improved when the square parachute was invented
thirty years ago. The square parachutes look like an
airplane’s wing, and they create lift in much the same
way. Until recently, however, square parachutes weren’t
improved upon much. Perhaps their superiority over
round parachutes left everyone satiated. That lack of
progress was unfortunate; if recent improvements —
like many-celled parachutes and automatic activation
devices — had been pursued many years ago, skydiving
would be even safer today.

The moral from this is to question satisfaction, and that
will be our mantra for this column. In particular, I want
you to question the performance gains you’ve seen by
moving to native PowerPC code. In this column we’ll
look at improved tools for examining PowerPC code
performance, and you’ll see how such questioning can
really enlighten you.

ILLUSIONS
The PowerPC processors can issue multiple instructions
at once. You therefore may think they’ll tear through
your code, executing many instructions per cycle.

While this is sometimes true, a number of hurdles keep
the PowerPC processors from completing even one
instruction per cycle. These hurdles include instruction
cache misses, data cache misses, and processor pipeline
stalls.

What may surprise you is how often the processor sits
idle because of these hurdles. I did some tests and
found that while opening new windows in one popular
application, a Power Macintosh 8500’s processor
completed an average of only one instruction for every
two cycles. This is not very efficient, considering its
PowerPC 604 processor can complete up to four
instructions per cycle.

Much of that inefficiency is from instruction and data
cache misses. As PowerPC processors reach faster
clock rates, these cache misses will have an increasing
impact. By minimizing cache misses we could realize
a significant performance improvement.

Simply recompiling your 680x0 code to native PowerPC
code doesn’t typically generate efficient code. Many
designs and data structures for the 680x0 architecture
work very poorly when ported to PowerPC code.
When you port native, you should carefully examine
your code. Tuning for a cached RISC architecture is
very different than for the 680x0 family. Here are some
important things to consider:

• Redesign your data structures. Use long word–sized
elements. Keep commonly used elements together,
and keep everything aligned on double long word
boundaries.

• Keep results in local variables, instead of recomputing
or calling subroutines to retrieve global variables.

BETTER PROFILING
Until recently you couldn’t measure cache misses unless
you had a logic analyzer or other expensive hardware.
The PowerPC 604 processor, however, includes an
extremely useful performance measurement feature:
two special registers (plus a register to control them)
that can count most events that occur in the processor.
Each of these registers can count about 20 events, and
there are five basic events that both registers can count.

Here are just a few examples of what you can count
with these registers: integer instructions that have
completed; mispredicted branch instructions; data

BALANCE OF
POWER

Advanced
Performance
Profiling

DAVE EVANS

d e v e l o p Issue 24 December 199556

DAVE EVANS likes to go skydiving when he can get away from
his job gluing together the Mac OS software at Apple. He has gone
a few times now, but he’ll always cherish the memory of his first
jump. Friends on the ground that day claim to have clearly heard

his scream, although he was nearly a mile above them when he left
the plane. On his second leap, if he hadn’t opened the chute while
upside down and then watched it deploy through his legs, he might
have noticed more of the surrounding countryside.•

cache misses; and floating-point instructions that have
been issued.

To use the performance profiling that the PowerPC
604 processor provides, you’ll need to have one of the
newer Macintosh models that include this processor,
such as the Power Macintosh 9500 or 8500. This will
cost less than a logic analyzer yet allow you to get
detailed performance profiles.

Although these registers will show your software’s
performance only on a 604-based Power Macintosh,
your software’s cache usage and efficiency should be
similar on other PowerPC processors. Use the 604’s
special abilities to profile your code and you’ll benefit
on all Power Macintosh models.

For more accurate performance measurements, you
may want to use the DR Emulator control panel, which
is provided on this issue’s CD. With this control panel
you can turn off the dynamic recompilation feature of
the new emulator; this feaure, which is described in the
Balance of Power column in Issue 23, can affect the
performance of your tests over time.

Also provided on the CD is the POWER Emulator control
panel. This control panel lets you turn off the Mac OS support
for RS/6000 POWER instructions and thus check for these
instructions in your code (they’ll cause a crash).•

THE 4PM PERFORMANCE TOOL
To use the new 604 performance registers, you don’t
need to program in PowerPC assembly language. On
this issue’s CD we’ve included a prototype application
called 4PM. This tool, which was developed by engineer
Tom Adams in Apple’s Performance Evaluation Group,
uses the PowerPC 604–specific registers to provide
various types of performance data.

4PM is very simple to use. It presents three key menus:
Control, Config, and Tests, as shown in Figure 1. You
use these menus to select the type of performance
measurement and an application you’d like to run the

tests on. The application you’re testing is launched by
4PM, and you can gather data either continuously or,
using a “hot key,” exactly when you want.

Once a test completes, 4PM fills a window with the
results — a tabular summary with a different test run
on each line. The Save command in the File menu will
write the results to a file of type 'TEXT'.

The Control menu. Use the Launch command in this
menu to select an application and run it, gathering the
test data specified with the Config or Tests menu.
The default configuration will measure cycles and
instructions completed between when the application
launches and when it quits. The Launch Again command
simply relaunches the last application you tested.

Check Use Hotkey if you’d like to control exactly when
data is gathered. With this option, you start and stop
collecting data by holding down the Command key
while pressing the Power key. (This key combination is
the same way to force entry to MacsBug, which you’ll
be unable to do during the tests.)

The Repeats command is just a shortcut that’s handy if
you’re repeating a test multiple times. If you specify a
repeat value with this command, your test application
will be relaunched that many times after you quit it.

The Intervals command allows you to collect data
points at regular intervals; a dialog box offers the
choices 10 milliseconds, 100 milliseconds, 1 second,
or Other. Normally just a total is collected, but by
specifying an interval time you’ll instead receive a
spreadsheet of timings. This will show what your code’s
performance was as the test progressed.

The Config menu. The commands in the Config
menu allow you to tailor the test data by specifying
exactly which events each register will count. The
Count Select command lets you specify the machine
states to collect data in; set this to “User Only” since
you’ll be tuning application code.

BALANCE OF POWER: ADVANCED PERFORMANCE PROFILING 57

Figure 1. 4PM menus

The Tests menu. The commands in the Tests menu
are for generating typical reports. Use the calibrate
command to count the five basic events that are
common to both 604 performance registers, including
cycles and instructions completed; with this test
selected, the Launch command will run your
application five times, successively counting each of
these events. You can use one of the remaining tests to
collect more specific measurements. The caches,
load/store, execution units, and special instructions
tests each generate a report for the corresponding
aspect of 604 performance. The Describe command
displays a window describing which events are counted
in the selected test. Use the New command to create
your own tests. These new tests are automatically
saved; you can use the Delete command to remove any
that you’ve added.

ASSEMBLY USAGE
If you want finer results, you should read and write to
the 604 performance registers directly. This requires
writing in PowerPC assembly language, but it allows
you complete control over what data you’ll collect for
your time-critical code.

You’ll be accessing three new special-purpose registers:
MMCR0, PMC1, and PMC2. MMCR0 controls which
events will be recorded and when exactly to record.
The performance monitor counter registers, PMC1
and PMC2, are the registers in which you’ll read the
results. I’ll give a brief summary of how to use these
registers, but you’ll need to read Chapter 9 of the
PowerPC 604 RISC Microprocessor User’s Manual for
details.

MMCR0 is a 32-bit register that specifies all the
options for performance measurement. Most of these
options aren’t important to your application profiling,
and you should at first leave the high 19 bits of
MMCR0 set to 0. The low 13 bits, however, specify
which events you want counted in PMC1 and PMC2.
Bits 19 through 25 select PMC1, and bits 26 through
31 select PMC2. See Chapter 9 of the 604 user’s
manual to learn which specific bits to set.

Here’s an example of how to measure data cache misses
per instruction:

.eq PMC1_InstructionsCompleted 2 << 6

.eq PMC2_DataCacheMisses 6

.eq MMCR0_StopAllRecording $80000000

li r0, MMCR0_StopAllRecording
mtspr MMCR0, r0 ; stop all recording
li r0, 0
mtspr PMC1, r0 ; zero PMC1
mtspr PMC2, r0 ; zero PMC2
li r0, PMC1_InstructionsCompleted +

PMC2_DataCacheMisses
mtspr MMCR0, r0 ; start recording

Notice that we load MMCR0 with only the most
significant bit set to turn off all recording. This holds
PMC1 and PMC2 at their current values and allows us
to also zero PMC1 and PMC2 before we start recording.
When you’re done measuring, follow with this code:

li r0, MMCR0_StopAllRecording
mtspr MMCR0, r0 ; stop all recording
mfspr PMC1, r3 ; r3 is number of

; instructions completed
mfspr PMC2, r4 ; r4 is data cache misses

Notice again that we turn off recording before reading
the results. Otherwise the very act of reading the
registers would affect the results; it will slow your code
slightly, since the mtspr and mfspr instructions take
multiple cycles to complete.

Don’t record over very long periods of time, because
the PMC1 and PMC2 registers can overflow. To measure
over long periods, you should periodically read from
the registers, add the result to a 64-bit number in
memory, and clear the registers to prevent this overflow.

Don’t ship any products that rely on these performance
registers. They’re supported only in the current 604
processor, and they’re not part of the PowerPC
architecture specification.

COMPLACENCY
The moral is the same as for my tale of the square
parachutes: question satisfaction. Don’t become
complacent about the performance of your new native
PowerPC applications. The profiling tools described
here should help you more accurately measure and
identify bottlenecks in your PowerPC code. Use that
information to tune — especially paying attention to
memory usage — and you’ll be surprised how much
faster your product will run. Macintosh users
consistently hunger for faster computers and more
responsive software; spend some serious time tuning,
and they’ll thank you for it.

d e v e l o p Issue 24 December 199558

Thanks to Tom Adams, Geoff Chatterton, Mike Crawford, and
Dave Lyons for reviewing this column.•

This article expands on the Macintosh Human Interface Guidelines
for making attractive, helpful alerts (and dialogs) with a standard
appearance and behavior. Standardization is important, because the
more familiar an alert looks to users, the more easily they can concentrate
on the message. Using the Finder as a source of good alerts, we provide
examples of different alert types and discuss how to make alerts user-
friendly.

Alerts are an in-your-face way of getting the user’s attention. It’s hard for a user to
ignore alerts because they block all other input to the application until the user
dismisses them. These little windows are powerful stuff. When used correctly, alerts
are a helpful way to inform the user of a serious condition that requires immediate
attention. When used incorrectly or capriciously, alerts are annoying and disruptive;
since they must constantly be swatted out of the way, their content is often ignored.

This article discusses when to use alerts, describes the different types of alerts, and
gives tips for designing alert boxes. It elaborates and expands on alert guidelines in
the Macintosh Human Interface Guidelines. At the end of the article, you’re encouraged
to try your hand at evaluating some real-life alerts.

Though not implemented as such in the system, alert boxes are essentially a type of
modal dialog box. This article focuses on alerts, but the guidelines can be applied to
other dialog boxes as well. We specifically cover status dialogs here because there are
guidelines that are unique to that type of dialog.

For information on implementing alerts and dialogs in your application, see
Inside Macintosh: Macintosh Toolbox Essentials.•

ALERTS IN GENERAL
Alerts provide information about error conditions and warn users about potentially
hazardous situations. They should be used only when the user’s participation is
essential; in all other cases, try using another mechanism to get your point across. For
example, consider an error or output log if the messages are something that the user
may want to save.

PAIGE K. PARSONS

Guidelines for Effective Alerts

GUIDELINES FOR EFFECTIVE ALERTS 59

PAIGE K. PARSONS (parsons@apple.com) is
a Human Interface Specialist at Apple. For two
years she worked on the user interface of the
Apple Dylan Development Environment. She
recently began working at Apple’s Human
Interface Design Center, where she is responsible

for software user interface issues in the PowerBook
division. Favorite diversions include maintaining
a Web site for the House Rabbit Society
(http://www.psg.lcs.mit.edu/~carl/paige/HRS-
home.html) and trolling used record shops in
Berkeley for vintage vinyl.•

The Macintosh Human Interface Guidelines haven’t caught up yet with the main
recommendation in this article: that alerts be movable and application modal. The
current interface guidelines and system software don’t allow alerts to be movable, but
this may change in future versions of the Mac OS. Until then, you can implement
your alerts as movable modal dialogs.

Making alerts movable is helpful in case an alert is covering information on the screen
that the user would like to see before responding to the alert. Another advantage to
movable alerts is that they have a title, which gives the user a context for the error.

Application modal means the alert is modal in the current application only: the user
can’t interact with this application while the alert is on the screen, but can switch to
another application. This is especially useful when the user needs to get information
from another application in order to respond to the alert. (System modal, on the other
hand, means the user can’t interact with the system at all except within the alert box.)

TYPES OF ALERTS
Alerts come in three varieties, each of which is geared to a different situation. This
section provides a few examples of each type, and also takes a look at status dialogs.

NOW HEAR THIS: NOTE ALERTS
A note alert simply conveys information, informing the user about a situation that has
no drastic effects and requires no further action. For example, if a user selects a word
and executes a spell check, an alert saying that the word is spelled correctly would be
a note alert. Rather than provide a smorgasbord of options, a note alert contains a
single button to dismiss the alert.

Don’t use an alert to signify completion of a task; use alerts only for situations that
require the user to acknowledge what has occurred. For example, the following note
alerts are inappropriate and get in the user’s way:

• The Trash has finished emptying.

• The 3,432 files you selected have been copied.

WATCH OUT! CAUTION ALERTS
Caution alerts warn users of potentially dangerous or unexpected situations. You
should use them, for example, to be sure the user wants to proceed with a task that
might have undesirable results. In this case the alert normally contains only two
buttons — one that cancels the operation and one that confirms it. Here are two
caution alert messages:

• An item named “READ ME” already exists in this location. Do you want to
replace it with the one you’re moving?

• The Trash contains 1 item. It uses 102K of disk space. Are you sure you want
to permanently remove it?

Don’t use alerts to confirm operations that would cause only a minor inconvenience if
performed by mistake. Here are two examples of unnecessary caution alerts:

• Do you really want to eject the disk “Installer”?

• Do you really want to duplicate the selected item?

Caution alerts are also used when an unexpected situation occurs and the user needs
to decide what to do next. The following examples contain only two buttons, for

d e v e l o p Issue 24 December 199560

canceling or confirming the operation, but such an alert may present several choices
if appropriate.

• The document “Calendar” is locked, so you will not be able to save any
changes. Do you want to open it anyway?

• The item “Calendar” could not be deleted, because it contains items that are
in use. Do you want to continue?

Before deciding to use this type of alert, double-check to see if it’s really needed;
superfluous alerts are a bad idea because users will get in the habit of dismissing alerts
and possibly let an important one go by. It’s better to have a user make choices with
commands instead of alerts. For example, the Finder has separate Shut Down and
Restart commands (in its Special menu) instead of having only a Shut Down command
with an alert asking “Restart after shutting down?”

HOLD IT: STOP ALERTS
Use a stop alert when calling attention to a serious problem that prevents an action
from being completed. They typically have only one button, to dismiss the alert.
Here are two good examples of stop alerts:

• You cannot copy “Calendar” onto the shared disk “Zippy” because the disk is
locked.

• The alias “Calendar” could not be opened, because the original item could
not be found.

It’s especially important in stop alerts to give enough detail about the problem to help
the user prevent it in the future. The following alert message doesn’t convey much
useful information:

• You cannot rename the item “Zowie”.

This alternative is more helpful:

• The name “Zowie” is already taken. Please use a different name.

Similarly, if the chosen name is too long, it’s more helpful for the message to state the
maximum number of characters a filename can have.

EVERYTHING IS OK: STATUS DIALOGS
Status dialogs inform the user when an application is busy and the user cannot
continue working in the application until the operation finishes. In the Finder, these
operations include copying, moving, and deleting files. Status dialogs should be
displayed whenever the application is busy for more than about five seconds (unless
posting and updating the dialog would take most of that time). During this time the
application should also change the pointer to the standard wristwatch.

A status dialog differs from an alert in that the user doesn’t need to explicitly dismiss
the dialog; it goes away on its own once the task has completed. The dialog should
contain a message that describes the status of the operation and a progress indicator
to show how much of the job has been completed. A status dialog may change
messages depending on the stage of operation. Figure 1 shows a status dialog at two
stages of a copy operation.

A sense of completion is important, so the application should be sure not to remove
the status dialog until the progress indicator shows that the operation is done (such as
by completely filling up the status bar in the example in Figure 1).

GUIDELINES FOR EFFECTIVE ALERTS 61

ICONS IN ALERT BOXES
Alert boxes always contain an icon that identifies the type of alert, as shown in Figure
2. (Status dialogs contain no icon.) If you implement your alerts as movable modal
dialogs, there’s no Toolbox infrastructure set up for getting the correct icon
automatically, so you’ll need to remember which one to use.

A note on OpenDoc and alert icons: OpenDoc part editors aren’t as visible to
the user as today’s applications, but at times it may be important for users to make the
connection between a running editor and its stored representation on disk. One such
time is when the editor is reporting an error about itself, such as an incompatible
version; for these errors, the alert should contain the icon of the editor instead of a
note, caution, or stop icon.•

WRITING ALERT MESSAGES
The alert message is the most important component of an alert. You want users to
read and respond to your alerts easily and then continue smoothly with their work.
This section gives tips on structure, content, tone, and other important factors in
writing effective alert messages.

SITUATION, REASON, SOLUTION
Every alert message should start by describing the situation that led to the alert,
letting the user know what’s wrong. This is usually followed by the reason the
problem occurred and a proposed solution to the problem.

When describing the situation that caused an alert, be as specific as possible, to help
the user understand the problem.

Giving the reason the alert occurred is especially helpful when the application can’t
do something because it’s dependent on some other operation that it can’t control.
For example, compare these messages:

• The alias “Warne” could not be opened.

• The alias “Warne” could not be opened because the shared disk “Beatrix”
could not be found on the network.

d e v e l o p Issue 24 December 199562

Before copying During copying

Figure 1. Status dialog during a copy operation

Note alert Caution alert Stop alert

Figure 2. Icons for specific alert types

The first message doesn’t give the user any information about why the problem
occurred. Is the application that created the document missing? Is the file corrupted?
The second message is much better because it tells the user why the operation could
not be completed.

Whenever possible, alerts should indicate a solution for the user. Users become
extremely frustrated when an alert says something is wrong but doesn’t offer a
remedy to the problem. Even worse is an alert that tells the user something is wrong
when the application could have fixed the problem itself. The following would be a
bad message because the Finder is capable of quitting all the applications on its own:

• You must quit all running applications before shutting down your Macintosh.

In cases where the application can perform the action itself, consider whether doing
so may surprise the user; if so, presenting a caution alert may be more appropriate.
For example, if the user attempts to shut down a Macintosh while other users have it
mounted as a server, the Finder could just disconnect the other users automatically;
however, in this case it’s more helpful to present an alert confirming the shutdown.

BE CONSISTENT
Be sure your alert messages are consistent in tone, content, and structure with each
other as well as with other messages your software presents to the user. Are your
application’s alerts consistent with its status messages, for example? Do all your alerts
refer to the application in a consistent manner? Users pick up on small inconsistencies,
and even subtle differences can cause confusion.

BE BRIEF
Alert messages should be brief and to the point, to keep the user’s attention. If you
need to give a lot of information, consider writing it to an error log or providing a
brief message in the alert along with a button to get to the application’s help system.

If you absolutely have to put a long message in an alert, keep in mind that many people
have PowerBook computers or “classic” Macintosh computers with small screens. A
good rule of thumb is that an alert message must consist of no more than 150
characters to fit on a small screen. Also note that translation from English to other
languages tends to expand the length of the message. Even translations into languages
that use Roman characters can cause the message length to double or triple in size.

BE ENCOURAGING
Use a positive and constructive tone. After encountering a problem and being
presented with an alert, the last thing the user wants is an overly negative response
from the application.

Avoid assigning blame or offending users. Don’t accuse them of doing something
wrong or stupid. Instead, give the reason an action cannot be performed, or offer to
perform the action. Which message would you rather see?

• You forgot to save your changes!

• Save changes to access privileges for “Zippy”?

PHRASING AND TERMINOLOGY
Don’t use double negatives, such as “No items are not used.” They’re difficult for
users to understand and just bad English. Double negatives can be especially
confusing when combined with a Cancel button; the user rarely gets the expected
outcome.

GUIDELINES FOR EFFECTIVE ALERTS 63

Keep the situation and action in the present. This is clearer and usually requires
fewer words. For example, compare these two messages:

• An item named “READ ME” already existed in this location. Did you want
to replace it with the one you moved?

• An item named “READ ME” already exists in this location. Do you want to
replace it with the one you’re moving?

If there’s an implied subject of a message, it should be the application. For example, if
the user tries to open a document that the application can’t open (as when it runs out
of memory), the alert message might begin “Cannot open document.” Messages in
which the user or some other noun could be the implied subject are more likely to be
confusing — for example, “Have exceeded allotted network time. Try again later.”

Use terms that are familiar to the user. This often means avoiding computer jargon at
all costs. Remember, terms that seem common to you may be unfamiliar to many
Macintosh users. It depends on what type of user will be working with your
application. For example, the expression establishing a connection may be clearer than
handshaking to many users.

Use invalid instead of illegal. The user hasn’t broken the law, but has simply given the
application some information that it can’t handle.

PUNCTUATION AND CAPITALIZATION
Alert messages should always be complete sentences, beginning with a capital letter
and ending with a period or question mark. The closing punctuation gives a sense of
completion and lets the user know that the message hasn’t been truncated.

Don’t use colons when requesting that the user supply information; instead, use a
period. This makes your alerts consistent with other dialogs and user interface
elements in the system software.

Use an apostrophe (’), typed with Option-Shift-], rather than a single straight
quotation mark ('), and use curly (“ ”) rather than straight (") double quotation marks
— that is, Option-[and Option-Shift-[, rather than Shift-'.

Use double quotation marks around any names in the message that are variable, such
as names of documents, folders, and search strings. This lets the user know exactly
what part of the message is the name. Remember that Macintosh filenames can
contain spaces, which can make things really confusing without the quotes. Commas,
periods, and other punctuation characters should be placed outside the quotation
marks:

• You cannot duplicate the shared disk “Warne”, because the disk is locked.

Never use an exclamation point or all uppercase letters. It makes users feel as if
they’re being shouted at, as in this example:

• Revert to the saved version of “Map”? WARNING! All changes will be lost!

STATUS MESSAGES
In status dialogs, use an ellipsis (Option-semicolon, a character that looks like three
periods) to indicate that an intermediate process is under way:

• Preparing to copy…

• Scanning “My Document”…

d e v e l o p Issue 24 December 199564

For describing the status of a task, the terms canceled, failed, in progress, and complete
are good choices. Avoid computer jargon such as aborted, killed, died, or ack’ed.

ALERT TITLES
Every movable alert should have an informative title, to provide a context for the
alert. Users may be working on several tasks at the same time and may not remember
what action generated the alert. A well-chosen title helps the user figure out not only
which application caused the alert to appear, but also which action.

The title of the alert should be the same as, or closely related to, the command or
action that generated the alert. (If the command has an ellipsis in it, don’t include the
ellipsis in the alert title.) For example, when a user copies or duplicates an item in the
Finder, the associated status dialog has the title “Copy”; when the user chooses
Empty Trash, the title of the Finder’s status dialog is “Trash.”

Like menu commands, alert titles are capitalized like book titles. Capitalize every
word except articles (a, an, the), coordinating conjunctions (for example, and, or), and
prepositions of three or fewer characters (except when the preposition is part of a
verb phrase, as in “Turn Off”).

ALERT BUTTONS
Alerts contain buttons that dismiss the alert or allow the user to make choices
regarding how to proceed. The standard button height is 20 pixels.

Try to limit the number of buttons that appear in an alert. The more buttons, the
more difficult it is for the user to decide which is the “right” option. In addition,
screen size often limits the number of buttons. As a general rule, about three buttons
of ten or fewer characters will fit on a small screen. Button names should be simple,
concise, and unambiguous.

Capitalize button names like book titles (for example, Connect to Server). Never
capitalize all letters in the name (except for the OK button, which should always be
named OK and never ok, Ok, Okay, okay, OKAY, or any other strange variation).

On the Macintosh, ellipses are used after command names when the user needs to
provide additional information to complete the command. An ellipsis after a button
name indicates that the button leads to other dialogs, a rare but occasional
occurrence.

THE ACTION BUTTON
Alert boxes that provide the user with a choice should be worded as a short question
to which there is an unambiguous, affirmative response. The button for this
affirmative response is called the action button.

Whenever possible, label the action button with the action that it performs. Button
names such as Save, Quit, or Erase Disk allow experienced users to click the correct
button without reading the text of a familiar dialog. These labels are often clearer
than words like OK or Yes. Phrase the question to match the action that the user is
trying to perform.

If the action can’t be condensed conveniently into a word or two, use OK. Also use
OK when the alert is simply giving the user information without providing any
choices.

GUIDELINES FOR EFFECTIVE ALERTS 65

THE CANCEL BUTTON
Whenever possible, caution alerts should provide a button that allows the user to
back out of the operation that caused the alert. This button should be labeled
“Cancel” so that users can easily identify the safe escape hatch. Cancel means
“dismiss this operation with no side effects”; it doesn’t mean “done with the alert,”
“stop no matter what,” or anything else. Pressing Command-period or the Escape
key should have the same effect as clicking the Cancel button.

Don’t label the button Cancel when it’s impossible to return to the state that existed
before an operation began; instead, use Stop. Stop halts the operation before its
normal completion, accepting the possible side effects. Stop may leave the results of
partially completed tasks around, but Cancel never does. For example, a Cancel
button would be inappropriate for a copy operation in which some of the items may
have already been copied. Figure 1 (earlier in this article) illustrates using Stop in a
status dialog for a copy operation.

THE DEFAULT BUTTON
The default button represents the action performed when the user presses the Return
or Enter key. This button should perform the most likely action (if that can be
determined). In most cases, this means completing the action that the user started, so
the default button is usually the same as the action button.

The default button’s distinctive bold outline appears automatically around the
default button in alerts, but remember that in dialog boxes you need to outline the
button yourself.•

If the most likely action is dangerous (for example, it erases the hard disk), the default
should be a safe button, typically the Cancel button. If none of the choices are
dangerous and there isn’t a likely choice, there should be no default button; by
requiring users to select a button explicitly, you protect them from accidentally
damaging their work by pressing the Return or Enter key out of habit.

POP QUIZ
Now, for a bit of fun. I’ve been collecting some alerts that need improvement
(Figures 3, 4, and 5). Based on the information in this article, can you find the flaws
in each, and suggest improvements?

d e v e l o p Issue 24 December 199566

Figure 3. Poorly designed “danger alert”

The main problems with the alert in Figure 3 are as follows:

• Its title isn’t descriptive (and is overly alarming).

• The implied subject of the message is the user instead of the application.

• The word “caution” is in all uppercase letters, and the punctuation includes
an exclamation point.

Also, the buttons are slightly shorter than the standard height. Since the audience in
this case is programmers, the words kernel and runtime are acceptable, though the use
of runtime in this context is colloquial and can be more clearly stated with a simpler
word. To improve this alert, you could change the title to “Download” and the
message to “The code you are downloading redefines one or more kernel definitions.
Continuing the download may make the application unusable.” Also, the buttons
should be made 20 pixels high.

The alert in Figure 4 isn’t movable, so it has no title and can’t be repositioned. The
message, with its “If . . .” clause, isn’t direct and clear enough. Also, it’s not clear
which button provides a safe escape mechanism. Finally, the “Work offline” button
title has incorrect capitalization. To improve the alert, you could make it movable and
give it the title “Connect to Server.” The message should be “The public calendar
server selected in the Chooser is different from the one you used last. Connecting to
the new server will cause all public event information in your document to be lost.”
You could add a Quit button as an escape mechanism, giving the alert three buttons
— Quit, Connect, and Work Offline (the default).

The alert in Figure 5 doesn’t contain any title, icon, or buttons. Because there are no
buttons, it’s not clear how to get rid of the message without reading to the end of it.
Also, its message should be stated in the present (for example, is named). But the
biggest problem is that this is a nuisance alert: the success of the capture could have
been confirmed in an earlier step, when the user was asked to pick the filename. The
solution is to get rid of the alert altogether.

GUIDELINES FOR EFFECTIVE ALERTS 67

Figure 4. Poorly designed “server alert”

Figure 5. Poorly designed “finished alert”

THE PAYOFF
Spending some time thinking about the design of your application’s alerts makes
sense because it results in a better product. If you follow the simple guidelines
presented in this article, your alerts should be in really good shape. Your users will
have an easier time recovering from errors, adding to their positive experience with
your software.

d e v e l o p Issue 24 December 199568

RECOMMENDED READING
• Electronic Guide to Human Interface Design (Addison-Wesley, 1994). This CD

(available from APDA) combines the Macintosh Human Interface Guidelines and
its companion CD, Making It Macintosh.

• Macintosh Human Interface Guidelines, (Addison-Wesley, 1993). Available
separately from APDA in book form.

• Inside Macintosh: Macintosh Toolbox Essentials (Addison-Wesley, 1992), Chapter
6, “Dialog Manager.”

Thanks to our technical reviewers Pete Bickford,
Sharon Everson, Chris Forden, Elizabeth Moller,
and Mark Stern.•

MPW comes with dozens of useful tools and scripts.
They’re handy for a lot of things besides programming
— or would be, if you were willing to keep the MPW
Shell open all the time, and if they weren’t based on
command lines. Fortunately, the Shell is not the
only way to use them: a small application known as
ToolServer makes it possible to run MPW commands
in a standalone mode. You can write double-clickable
MPW scripts, give MPW commands from AppleScript,
and write front ends to tools in high-level programming
languages.

Using ToolServer isn’t exactly like using the MPW
Shell. There are caveats if you want to write scripts and
tools that will work in both environments. We’ll first
take a look at these issues and then explore how to
package commands for use with ToolServer.

MODULARITY AND FACTORING
Shell scripting languages such as sh and csh in UNIX®,
as well as MPW, have always taken a rather cavalier
approach to code organization. Most configuration is
achieved with a global namespace of environment
variables. This is a problem with ToolServer, because
you don’t want to load your entire set of MPW startup
scripts every time you run a command. Even if you
wanted to, you couldn’t — ToolServer doesn’t have
text editing, menu bar customization, or other user
interface elements of the MPW Shell, so it’s missing
several built-in commands. Your existing startup
scripts won’t work, and some utility commands may
also fail.

Three principles from structured software design are
useful here:

• Separate user interface code from core code.

• Use the “include” mechanism to provide modularity.

• Reduce dependencies between modules.

Let’s take a concrete example. Many of us cut our teeth
as programmers on UNIX. Initiates of this brilliant but
byzantine operating system tend to grow fond of its
command set, in much the same way that cabalists
become attached to bizarre metaphysical formulas
purporting to explain the universe. A UNIX wizard’s
MPW startup script usually contains a list of aliases to
translate between UNIX and MPW: Alias ls Files, Alias
cp Duplicate, and so on. These commands are then
used in all the wizard’s utility scripts as well. This
creates a problem with ToolServer: it can’t use these
startup scripts because they also customize the user
interface with commands like AddMenu and SetKey.
Without the aliases, though, the utility scripts won’t run.

One solution to this problem combines the first two
principles listed above. First, separate the aliases from
the user interface setup code, yielding two different
startup files. Both files are invoked by the MPW Shell
startup process but neither is invoked at ToolServer
startup. Second, instead of assuming a particular global
configuration, make each utility script explicitly include
whatever setup files it may require. MPW’s analog of
the #include directive of C is Execute, which executes
a file in the current namespace.

We can apply common C bracketing conventions to
avoid multiple inclusion of the same file. Assuming that
our UNIX wizard has split off his or her aliases into a
file named UNIXAliases, a script using these aliases
would start — after the header comment — as follows:

if {__UNIXALIASES__} == ""
execute UNIXAliases

end

The script file UNIXAliases would set the variable
__UNIXALIASES__ to something other than the
empty string, and decline to execute itself again if it
had already been executed, like so:

if {__UNIXALIASES__} == ""
set __UNIXALIASES__ "true"
... # the aliases go here

end # __UNIXALIASES__

MPW TIPS AND
TRICKS

ToolServer
Caveats and
Carping

TIM MARONEY

MPW TIPS AND TRICKS: TOOLSERVER CAVEATS AND CARPING 69

TIM MARONEY was discovered on the Isle of Wight by seal
farmers in the Year of Our Lord 1394, and again seventy years
later by Tasmanian basket twirlers out for a stroll in the Yukon. The
little tyke pursued a happy life of fun, freedom, and quantum

mechanics. He resurfaced in 1961, in the town of Holyoke,
Massachusetts. Tim played a magician in bondage in a class play
in the second grade, which may have prepared him for the
contract work he’s now doing at Apple.•

A different solution to the same problem involves the
third principle, reducing dependencies between
modules. Utility scripts don’t really need to use csh
commands, after all: the aliases are there mostly so that
the wizard can type them into the MPW Shell, his or
her fingers having long ago locked into an inflexible
pattern of TTY interaction. If scripts don’t assume the
availability of a different command set — that is, if they
stick with the MPW command names — the aliases
need not be included at all.

Independence is a good idea for another reason: you
may give your ToolServer scripts to other people at
some point in your long and happy life. The more your
commands depend on the global environment,
including ToolServer startup files, the more likely they
are to conflict with another user’s environment.

INPUT AND OUTPUT
ToolServer implements most of the MPW Shell’s I/O
system, which is based on the stdio library and UNIX-
style redirection. However, it doesn’t read keyboard
input or display text output. All of its I/O channels are
ultimately files, pipes, or the pseudodevice Dev:Null.

The only mechanisms for interacting with the user in
ToolServer are commands like Alert and Confirm that
display dialog boxes, and interface tools you write
yourself. Even these must be used with caution, since
ToolServer can run remotely over a network, and
hanging a server machine by bringing up a dialog box
is often regarded as undesirable.

It helps to separate user interface code from core code,
as already discussed. Commands you intend to run with
ToolServer should not have a user interface: they
should perform an action that’s completely specified by
their command line. An outermost user interface script
can present choices to the user, then invoke an innermost
command that has no user interface. The outermost
script is just for ToolServer; the inner script or tool is
suitable for both ToolServer and the MPW Shell.

You can detect when a command is running under
ToolServer and squelch its user interface by looking at
the environment variable BackgroundShell. This is the
empty string when running under the MPW Shell, but
it’s nonempty under ToolServer. Most user interactions
in MPW commands are just confirmation alerts, so
if execution reaches a Confirm command and
BackgroundShell is set, assume that the user would
answer “no.” All commands that require confirmation
should support the -y and -n options, which provide
answers on the command line, and these options should
be provided when the commands are used from
ToolServer.

Some MPW commands, such as Make and Backup,
write output to the Worksheet, and the user then
selects and executes the output. This model doesn’t
apply to the ToolServer environment since it has no
Worksheet. The easiest solution is to redirect the
command output to a temporary file, execute that file,
and then delete it. This is less selective than using the
Worksheet, which allows the user to decide which lines
to execute. If selectivity is important, you can write a
command that presents the lines of output to the user
and allows them to be independently accepted or
rejected.

We don’t live in the best of all possible worlds, St.
Thomas Aquinas and Dr. Pangloss to the contrary, and
so commands often return errors. These generate text
that’s directed to the standard error channel. In the
MPW Shell, error text goes to the frontmost window
by default, but in ToolServer, the default is a file named
command.err in the folder containing the command file.
This is very antisocial behavior, especially since
commands invoke other commands and the error file
could wind up buried at some arbitrary-seeming place
in your folder tree. Redirect the standard error channel
to save yourself from Sisyphean levels of frustration
whenever something goes just a little bit wrong.

There are two ways to redirect errors. First, you can
use the standard MPW error redirection characters ≥,
≥≥, ∑, and ∑∑ in your outermost user interface script.
For instance, the script line

Veeblefetzer ≥ "{Boot}"Veeblefetzer.Errors

would redirect errors to the file Veeblefetzer.Errors at
the top level of your startup disk. This does little or
nothing to bring the errors to your attention, though,
so your outermost script should look something like
this:

Set ErrorFile "{TempFolder}"MyUtility.Errors
Delete -i "{ErrorFile}"
Set Exit 0 # Don't bomb quietly on errors
Potrzebie ≥≥ "{ErrorFile}"
if {Status} == 0

Veeblefetzer ≥≥ "{ErrorFile}"
end
if `Exists "{ErrorFile}"`

Alert `Catenate "{ErrorFile}"`
Delete -i "{ErrorFile}"

end

The other way to redirect errors is to set the ToolServer
built-in variable BackgroundErr to the name of a file.
This will create that file whenever there’s an error. This
is somewhat less flexible than redirection, but it can be

d e v e l o p Issue 24 December 199570

set once and for all in a ToolServer startup script. That
would make the script above read like this:

Delete -i "{BackgroundErr}"
Set Exit 0 # Don't bomb quietly on errors
Potrzebie
if {Status} == 0

Veeblefetzer
end
if `Exists "{BackgroundErr}"`

Alert `Catenate "{BackgroundErr}"`
Delete -i "{BackgroundErr}"

end

Standard output can be controlled similarly, using
either redirection characters or the environment
variable BackgroundOut.

FORMS OF TOOLS
There are several ways to package commands for use
with ToolServer. The most basic and boring ways are:

• Use the Execute Script command in ToolServer’s
File menu to select and execute a script file.

• Drop a script file on the ToolServer application icon.

• Give the “ToolServer [script …]” command in the
MPW Shell.

There are more interesting deployment modes, but
they require a bit more explanation.

Standalone scripts. If you change the creator of a
script file to 'MPSX', double-clicking it in the Finder
will launch ToolServer and send it an Open Document
event, causing it to be executed. Use this approach for
your outermost user interface scripts. To change the
creator, use MPW’s “SetFile -c 'MPSX' file” command.

There is, alas, no such thing as a standalone tool, but
you can write a one-line script that invokes a tool with
any parameters or none.

AppleScript. ToolServer is fully scriptable. Aside
from the four required commands, it has only one
scripting command, the dreaded DoScript. This takes
a command written in another scripting language —
MPW command language in this case — and passes
the command to its script interpreter. DoScript is
discouraged in new applications because it’s unstructured,
but it’s very useful for pre-AppleScript applications that
have their own languages.

A simple AppleScript script confers few benefits over
a standalone ToolServer script. In fact, it’s better to
avoid mixing scripting languages if you can. However,
using FaceSpan or another AppleScript authoring tool,
you can use AppleScript to set up a conventional
application that relies on ToolServer as a workhorse.
Simply pass DoScript commands in response to user
actions, redirecting errors and output to temporary files
that you interpret in your AppleScript code.

Apple events. Finally, you can take AppleScript one
step further, driving ToolServer directly with Apple
events generated from compiled software. This delivers
the maximum in flexibility and performance. You could
even write a project-file development system based
on MPW compilers. Another possibility would be
HyperCard XCMDs, allowing MPW commands to be
invoked from HyperTalk. An Apple event front end
could be created for a particular MPW tool, allowing it
to be cleanly invoked from other scripts or compiled
software; this might also provide a simple user interface
for controlling it with dialogs and menus.

ToolServer accepts the required Apple events, as well as
DoScript and some special-purpose events related to
status checking, command canceling, and error and
output redirection. These are documented in Chapter
4 of the ToolServer Reference manual that comes with
MPW. In this column in the last issue of develop, I
provided sample code for interacting with SourceServer
(another Apple event–driven MPW Shell subset), and
that code can easily be adapted for ToolServer.

TOOLS FOR THE FUTURE?
Because it’s tied to a command-line interface, the
MPW toolset has come to seem rather archaic, but
there’s life in the old girl yet. ToolServer’s support for
Apple events and AppleScript allows innumerable
improvements in its interface. In the future, we may see
friendly front ends for various MPW tools, as well as
deeper support for compilation and other kinds of file
processing with MPW tools in third-party development
systems.

Ultimately, MPW’s command-line interface is destined
to become a fading memory. Although it confers some
advantages in power, it must give way to friendlier
approaches in the end. However, if we fail to move its
toolset forward into the post-command-line world, we
will be poorer for the loss.

MPW TIPS AND TRICKS: TOOLSERVER CAVEATS AND CARPING 71

Thanks to Deeje Cooley, Arno Gourdol, and Rick Mann for
reviewing this column.•

Using JPEG image compression techniques can dramatically improve
performance during printing to PostScript™ Level 2 printers; compressed
images are significantly smaller and take much less time to print. You
don’t need to write PostScript code or special-case your code for PostScript
printing; QuickTime and the printer driver do most of the work for
you. You don’t have to wait to get started, either. If you implement
JPEG image data compression techniques in your application, users
printing to PostScript Level 2 printers with the current LaserWriter
8.3 driver will see improvements in printing performance right away.

Many applications compress image data for storage and transmission, but
compressing images for printing is relatively uncommon. With the techniques
presented in this article, you can start printing with image data compression and
realize significant performance gains without a lot of effort. First we’ll explore the
concepts behind using image data compression for printing, and then go through
three sample applications that show you how to do it.

The first two samples demonstrate how to print existing compressed image data.
Applications that already deal with JPEG compressed data, such as Web browsers
and JPEG viewing applications, can benefit immediately from these techniques.
Developers whose applications handle other kinds of compressed data (such as fax)
can see how they might benefit in the future as printing software is enhanced to
handle other types of compressed data.

Some applications don’t already have compressed data to print. Painting applications,
for example, handle image data that may not be in a standard compressed format.
The third sample application shows you how to compress your data as you do your
print-time imaging.

To give you an idea of the performance gains you might expect with these techniques,
I printed the same images with and without JPEG image data compression and
compared print times and data sizes. The improvements are notable — compressed

DAVID GELPHMAN

Printing Images Faster With Data
Compression

d e v e l o p Issue 24 December 199572

DAVID GELPHMAN (gelphman@rbi.com)
seems to specialize in backwards-reading
programming languages. From FORTH he moved
into PostScript at Adobe Systems and then to
Telescript at General Magic. He does do most
other things in a more or less forward direction,
although he has been known to fall off a horse
backwards. David, together with his colleague

Richard Blanchard, co-designed Apple’s
LaserWriter 8 PostScript printer driver while
working at Adobe Systems. After a stint at
General Magic, David now works at RBI Software
Systems (http://www.rbi.com) as a contractor to
Apple and Adobe on their PostScript printer
drivers. He does other contracting work as well,
primarily in the area of PostScript printing.•

color images, for example, can print in less than half the time. You may find the
results so compelling that you’ll want to implement these techniques in your own
application.

This issue’s CD contains the sample applications as well as some images you can use
with them. It also contains a prerelease version of LaserWriter 8.3.1, which you may
find useful for testing your application as you implement printing with compression.

THE BASICS
Realistic images can be quite large, resulting in slow print times. Compression
algorithms such as JPEG, fax, and LZW are used to reduce the size of these images
for storage and transmission. Image data compressed in these formats can be
decompressed on PostScript Level 2 printers.

While many applications can handle compressed image data, at print time they
usually decompress the data and use CopyBits to draw the decompressed images.
Only a few applications use custom PostScript code to take advantage of the image
decompression available in PostScript Level 2 output devices.

QuickTime’s Image Compression Manager provides an API for applications to
compress and decompress still image data. By using the Image Compression Manager
functions, applications can draw JPEG compressed image data. If this drawing takes
place at print time, the application is effectively passing compressed image data to the
printer driver; this allows the driver to handle the compressed data appropriately for
the target output device, as described in the next section. The application doesn’t
need to know whether that device is a QuickDraw, PostScript Level 1, or PostScript
Level 2 device.

If your application handles only QuickDraw pictures, it doesn’t need to perform any
special action to take advantage of image data compression. QuickDraw pictures
containing JPEG compressed image data are available from various sources;
QuickTime can compress QuickDraw pictures transparently, and applications such as
Adobe™ Photoshop can create QuickDraw pictures containing JPEG compressed
image data. Applications that use DrawPicture to draw such pictures automatically
take advantage of printer drivers that have special handling of compressed image data.
All they need to do is let the QuickDraw low-level drawing routines do their normal
thing.

LaserWriter drivers starting with version 8.3 are savvy about JPEG compressed
images that are drawn with QuickTime. When the driver receives data that’s
compressed with JPEG compression and the PostScript output is destined for a
PostScript Level 2 device, the driver sends the compressed data directly to the
printer. Since JPEG compressed images can be as much as 1/10 to 1/40 the size of
uncompressed images, the amount of data sent to the printer is much smaller, which
drastically reduces print times.

HOW THE PRINTER DRIVER HANDLES COMPRESSED IMAGE DATA
In general, printer drivers intercept QuickDraw drawing through the QuickDraw
low-level bottleneck routines. When an application draws compressed image data
with the Image Compression Manager functions (or draws a compressed QuickDraw
picture with DrawPicture), QuickTime passes the compressed data to the low-level
QuickDraw drawing routines through the StdPix bottleneck routine. Normally,
StdPix decompresses the data and passes the decompressed data to the bitsProc
bottleneck routine for drawing.

PRINTING IMAGES FASTER WITH DATA COMPRESSION 73

StdPix is described in detail in Inside Macintosh: QuickTime, pages 3-137 to
3-139.•

The LaserWriter 8.3 driver installs custom bottleneck routines as replacements for
the standard bottlenecks, including bitsProc and StdPix. The custom StdPix
bottleneck is key to the special handling of compressed image data, as shown in
Figure 1. The driver installs the custom StdPix bottleneck in the printing graphics
port so that it can intercept calls to StdPix and examine the compressed data. If the
data is compressed with a compression type that the driver recognizes and knows the
printer is capable of receiving, the driver sends the data directly to the printer.
Otherwise, it calls the standard StdPix, which, as described above, sends the
decompressed data to the bitsProc bottleneck. Drivers that don’t have a custom
StdPix bottleneck (such as QuickDraw printer drivers and LaserWriter drivers
previous to version 8.3) will always have decompressed data passed to their bitsProc
bottleneck.

Using a custom StdPix bottleneck lets a printer driver handle different compression
types appropriately. It also allows for the generation of correct output both for
PostScript Level 2 output devices, all of which support JPEG, fax, and LZW
decompression, and for PostScript Level 1 devices, which don’t support any
decompression. For drivers like LaserWriter 8.3 that spool (for background printing
or as part of foreground printing), there’s another advantage: since the spool file can
contain compressed images instead of uncompressed images, users benefit from
smaller disk space requirements.

The techniques described here for handling compressed image data will work
correctly with any printer driver, not just PostScript drivers with this special
compressed image data handling. Of course, the performance benefits will be seen
only with drivers that do have it. Most QuickDraw printer drivers will not gain a
performance benefit because they ultimately render decompressed data on the host
system and send the rendered results to the printer. In fact, if the data is being
compressed on the host specifically for printing, there will a performance penalty.
A few QuickDraw drivers, such as Adobe’s Acrobat™ PDFWriter, create data files
that could potentially take advantage of image compression done by your application.

Note that this technique of using a custom StdPix bottleneck applies to printing to a
color graphics port on a Macintosh system that has Color QuickDraw built in (most
do). Black-and-white ports don’t have StdPix bottlenecks; later we’ll look at what to
do if you’re printing compressed data to a black-and-white port.

d e v e l o p Issue 24 December 199574

Decompressed�
image data

Custom�
StdPix�

bottleneck

Standard�
StdPix�

bottleneck
bitsProc�

bottleneck

Compressed�
data the printer�

can handle
Printer

Printer

All other�
compressed�

data

Compressed�
image data

Figure 1. Special handling of compressed image data in the LaserWriter 8.3 driver

WHY THE DRIVER DOESN’T DO COMPRESSION FOR YOU
You might be wondering: “If using image data compression for printing is so great,
why doesn’t the driver do it for me automatically?” It’s a good question and one that
deserves a good answer.

Different kinds of images, such as fax images, photographic images, and synthetic
images, have different characteristics. The best type of compression to apply depends
on the type of image. Printer drivers operate at too low a level to make good
decisions about image data compression. On the other hand, applications typically
have a good idea about the kind of data they handle.

Additionally, some compression algorithms, such as JPEG, can be “lossy” (that is,
they throw away information), and it would be inappropriate for the driver to apply
them without user control. The driver user interface isn’t well suited to specifying
compression preferences, particularly since such decisions should be on a document
by document basis or even on a per image basis within a document. The LaserWriter
8.x drivers do use PackBits compression for all image data passed to their low-level
bitsProc bottleneck, but that’s the only active compression done by the drivers and it
isn’t very effective for many types of image data.

PRINTING EXISTING COMPRESSED IMAGE DATA THAT FITS
IN MEMORY
As mentioned earlier, applications that use DrawPicture to draw QuickDraw pictures
containing JPEG data don’t need to do anything special to print the images. In this
section we’ll look at how applications can print compressed image data that is not in a
QuickDraw picture.

The JPEG Print sample application reads an existing compressed JPEG data file for
display and printing. In this application, the JPEG data must fit completely in
memory before it can be imaged. This is not a requirement for using compressed
data, but is the simplest approach to describe initially. Later we’ll talk about the case
where the data doesn’t all fit in memory at once.

At application startup, the JPEG Print sample code checks that QuickTime is installed.
The code also tests to make sure there’s a compression-decompression codec that can
handle the decompression of JPEG data; the codec is used to decompress the data on
the host if the data can’t be sent to the printer in a compressed form. Applications
that can already print compressed data without QuickTime and an appropriate codec
should continue using their existing code to print when QuickTime and the codec
aren’t present.

FILLING IN THE IMAGEDESCRIPTION DATA STRUCTURE
The QuickTime image decompression functions require a handle to an
ImageDescription data structure. This structure contains information about an
image, such as the compression type used, the number of bytes in the compressed
image, and the image height, width, and depth. QuickTime needs this data separate
from the compressed data itself.

In the case of JPEG compressed data, much of the information required in the
ImageDescription data structure is contained in the compressed JPEG data stream.
The JPEG Print application reads the JPEG data stream and extracts the width,
height, horizontal resolution, vertical resolution, and depth of the image. It then
uses this data to build up an ImageDescription structure for use with the Image
Compression Manager functions. The specifics of parsing a JPEG data stream for
image description information aren’t discussed here; this part of the sample code

PRINTING IMAGES FASTER WITH DATA COMPRESSION 75

comes almost directly from the sample JFIF Translator application in the Macintosh
OS Software Developer’s Kit, with little modification.

CHOOSING THE APPROPRIATE DECOMPRESSION ROUTINE
To draw compressed still images with QuickTime, you can use one of three functions:
DecompressImage, FDecompressImage, or the StdPix bottleneck routine. However,
the DecompressImage and FDecompressImage functions always call the standard
StdPix bottleneck; they do not call any custom StdPix bottleneck (including
LaserWriter 8’s) in the graphics port. Since we want our compressed image data to
pass through the driver’s StdPix bottleneck, we’ll just call the StdPix bottleneck
directly, as described in the next section.

For drawing to a black-and-white port, you’ll need to use DecompressImage or
FDecompressImage since a black-and-white port doesn’t have a StdPix bottleneck.
One of the arguments to DecompressImage and FDecompressImage (as specified
in the QuickTime documentation) is a handle to the pixel map in which the
decompressed image is to be displayed. In a black-and-white graphics port there is no
PixMapHandle available; instead, there is a BitMap data structure. DecompressImage
and FDecompressImage can accept a BitMap instead of a PixMapHandle as the
destination to draw to, and that’s what we pass to DecompressImage when drawing
to a black-and-white graphics port.

CALLING THE STDPIX BOTTLENECK DIRECTLY
The StdPix bottleneck is declared as follows:

pascal void StdPix(PixMapPtr src, Rect *srcRect, MatrixRecordPtr matrix,
short mode, RgnHandle mask, PixMapPtr matte, Rect *matteRect, short flags);

The first argument is a pointer to a PixMap “containing” the compressed image data.
This isn’t a PixMap in the normal QuickDraw sense; instead, it’s a PixMap data
structure that has compressed data “attached” to it with the QuickTime call
SetCompressedPixMapInfo. This call associates an ImageDescription data structure
and the corresponding compressed image data with a PixMap data structure. It’s
important that the compressed data not move in memory after you’ve associated it
with the PixMap. If you use a handle to your compressed data, as we do in the sample
code, you should lock the handle before your call to SetCompressedPixMapInfo and
keep it locked until after you’re done with the PixMap.

The next two arguments to StdPix specify a source rectangle and a transformation
matrix that describes the mapping between the source rectangle of the image data and
the destination rectangle. By specifying a source rectangle and a matrix rather than a
source and a destination rectangle, the StdPix interface allows for more general
coordinate transformations than just scaling and translation. Currently, however,
QuickTime supports only scaling and translation.

The mode argument specifies which QuickDraw transfer mode to use when drawing
the image. JPEG Print uses the ditherCopy mode. When printing to PostScript
printers, ditherCopy mode is treated by the LaserWriter 8.x driver exactly like
srcCopy mode, and the PostScript interpreter does any halftoning or dithering
appropriate for the PostScript output device. When imaging to QuickDraw output
devices, ditherCopy causes QuickDraw to dither the image, which usually yields
better results than using srcCopy.

StdPix also accepts mask and matte arguments to obtain special effects. The mask
argument has the same effect as clipping to a mask region as part of the imaging call.

d e v e l o p Issue 24 December 199576

The matte arguments allow for effects similar to those of Color QuickDraw’s
CopyDeepMask. Current LaserWriter 8.x drivers do not support clipping to bitmap
regions, or the CopyDeepMask-like effects available with the matte arguments.
Consequently, the mask and matte arguments are ignored by LaserWriter 8.x drivers.

The final argument to StdPix is a flags parameter. The relevant flags are callOldBits
and callStdBits; they work together to specify whether a call to StdPix results in a call
to the bitsProc bottleneck with decompressed data. When the callOldBits and
callStdBits flags are both set, StdPix will always call the bitsProc bottleneck with
decompressed data. If callOldBits is set and callStdBits is not, StdPix will call the
bitsProc bottleneck with the decompressed data only if the bitsProc bottleneck is not
StdBits, but a custom bitsProc routine.

The JPEG Print sample code uses a flags value of (callOldBits | callStdBits) to
specify the most conservative handling of compressed image data during printing.
Printer drivers that know how to handle compressed image data, such as LaserWriter
8.3, will have a custom StdPix bottleneck to intercept the call and adjust the flags
appropriately. Drivers that don’t know how to handle compressed image data will
always receive decompressed image data via their bitsProc bottleneck.

Once we’re ready to call the StdPix bottleneck, we don’t want to just call the function
StdPix; instead, we must be careful to use any custom StdPix bottleneck that has been
installed. To do this, the code must check the current graphics port for custom
QuickDraw bottlenecks, as shown in Listing 1. If there aren’t any, the code gets the
standard bottlenecks; otherwise, it gets the pointer to the CQDProcs record stored in
the graphics port. Once it has the appropriate bottlenecks, the code uses the procedure
pointer stored in the newProc1 field of the CQDProcs record; this is the StdPix
bottleneck.

USING DATA-LOADING TECHNIQUES TO PRINT LARGE
COMPRESSED IMAGES
The compressed image data you’re working with may not fit completely in memory.
QuickTime supports this case through the use of a data-loading function, which you

PRINTING IMAGES FASTER WITH DATA COMPRESSION 77

Listing 1. Calling the QuickDraw StdPix bottleneck directly

// Look to see if there are custom QuickDraw bottlenecks in the
// current graphics port.
if ((((CGrafPtr)qd.thePort)->grafProcs) == NULL) {

// Get the standard bottleneck procs.
SetStdCProcs(&myStdProcs);
// The newProc1 field is the StdPix bottleneck.
MyProcPtr = (StdPixProcPtr)myStdProcs.newProc1;

} else {
// Use the grafProcs record in the current port to obtain the custom
// bottleneck procs. The newProc1 field is the StdPix bottleneck.
MyProcPtr =

(StdPixProcPtr) ((CGrafPtr)qd.thePort)->grafProcs->newProc1;
}
// Now call the bottleneck.
CallStdPixProc(MyProcPtr, SpecialPixMapP, &srcRect, &theMatrix,

ditherCopy, NULL, NULL, NULL, flags);

supply. QuickTime calls this function as needed to obtain data during image
decompression. Data loading eliminates the need to have the full image in memory,
greatly reducing memory usage.

The use of a data-loading function is described in somewhat sketchy terms in Inside
Macintosh: QuickTime, pages 3-148 to 3-150. Basically, your application creates a
buffer that your data-loading function uses for passing data to QuickTime. In
preparation for the StdPix call, you call SetCompressedPixMapInfo with a pointer
to the beginning of the buffer, the buffer length, and your data-loading function.
When you call the StdPix bottleneck, QuickTime calls the data-loading function as
necessary to obtain the compressed image data.

The data-loading function is declared as follows:

pascal OSErr MyDataLoadingProc(Ptr *dataP, long bytesNeeded, long refcon);

The first argument is a pointer to a pointer into your data buffer (the one you supplied
in the call to SetCompressedPixMapInfo as described earlier). The bytesNeeded
argument tells your function how many bytes need to be available in the data buffer
pointed to by the pointer in *dataP after the function call returns. The refcon
argument lets you pass additional information to your data-loading function.

EXTENDING JPEG PRINT WITH A DATA-LOADING FUNCTION
The sample application JPEG Print with Dataload, an extended version of JPEG
Print, uses the function MyDataLoadingProc, shown in Listing 2. Code not included
here fills up the buffer with the first chunk of compressed data and sets up the data-
loading function so that the refcon passed to it is a pointer to our application-defined
DataLoad structure.

The data-loading function’s job is to ensure that when it’s called with a request for
bytesNeeded bytes of data, at least that many bytes are available in the buffer pointed
to by *dataP after the data-loading function returns. When MyDataLoadingProc is
called with dataP not NULL, the code first computes how many bytes remain in the
buffer from *dataP to the end of the buffer. If that number of bytes is greater than or
equal to bytesNeeded, there are enough bytes available and the function returns.
Otherwise, the data from *dataP to the end of the buffer is copied to the beginning of
the buffer, and the remainder of the buffer is filled up with new data. Once the buffer
is refilled, *dataP is set to point to the beginning of the buffer so that the caller starts
getting its data there.

TECHNIQUES FOR COMPRESSING AND PRINTING
UNCOMPRESSED DATA
Your application may not have compressed data to print. The third sample application
on this issue’s CD, PrintPICTtoJPEG, compresses 32-bit-deep image data and prints
it. To obtain a source of bits to compress, PrintPICTtoJPEG takes a PICT file and
images it into a 32-bit-deep offscreen bitmap. It then draws from this bitmap into the
current graphics port. During printing, the data in the offscreen bitmap is (optionally)
compressed using JPEG compression, and then printed using the techniques for
printing compressed data as discussed above for the JPEG Print application.

The PrintPICTtoJPEG application uses PICT data solely as a source of bits to use
to demonstrate compression. By no means are we advocating this technique as the
proper way to print QuickDraw pictures. QuickDraw pictures may contain line art,
text, custom PostScript code, and images of varying depths that will image and print
much better if you just use DrawPicture. A good portion of the PrintPICTtoJPEG

d e v e l o p Issue 24 December 199578

PRINTING IMAGES FASTER WITH DATA COMPRESSION 79

static pascal OSErr MyDataLoadingProc(Ptr *dataP, long bytesNeeded,
long refcon)

{
OSErr theErr = noErr;

if (dataP != NULL) {
DataLoadPtr theDataLoadPtr = (DataLoadPtr) refcon;
// refcon is a pointer to a structure that contains the locked
// handle to our buffer, a field with the buffer size, and a field
// with the file reference number of the image data file we are
// decompressing.
Ptr theDataBufferP =

StripAddress(*(theDataLoadPtr->theDataBufferH));
long theBufferSize = theDataLoadPtr->theBufferSize;
short theRefNum = theDataLoadPtr->theRefNum;

// Calculate the number of bytes left in our existing data buffer.
long bytesAvail = theBufferSize - (*dataP - theDataBufferP);

// Are there enough bytes in our buffer for this call? If so, we
// don't need to read any more data.
if (bytesNeeded > bytesAvail) {

// We don't have enough bytes of data in our buffer. Figure
// out how many bytes we should read to refill the buffer.
long bytesToRead = theBufferSize - bytesAvail;

// If there are bytes available at the end of our buffer, move
// them to the beginning of the buffer.
if (bytesAvail) BlockMove(*dataP, theDataBufferP, bytesAvail);

// Go ahead and fill up the rest of the buffer, starting just
// after the last valid byte in the buffer.
theErr = FSRead(theRefNum, &bytesToRead, theDataBufferP +

bytesAvail);
// Ignore end of file errors.
if (theErr == eofErr) theErr = noErr;

// Reset the data pointer used by the caller of the data-
// loading function so that it points to the first byte of
// valid data, which is now at the beginning of our buffer.
*dataP = theDataBufferP;

}
} else {

// The data mark reset case. This implementation doesn't know how
// to reset the stream, so we return an error. We haven't seen
// a data mark reset as part of JPEG decoding. (Note that not
// handling this case slows down PhotoCD significantly.)
theErr = -1;

}
return theErr;

}

Listing 2. The data-loading function

application is devoted to getting a QuickDraw picture and drawing it into the offscreen
bitmap as a source of bits. The interesting part of the application is the compression
and imaging of the bits once we have them, and that’s what we’ll discuss here.

The PrintPICTtoJPEG application compresses data only as part of printing it. Of
course, it isn’t necessarily true that you would compress data only during printing; it’s
very likely that you would maintain the data in a compressed form. Only you know
for sure how you want to handle it.

PrintPICTtoJPEG also does image compression on the data only if the printing port
is a color graphics port; otherwise, it just does the usual CopyBits. (If you already
have compressed image data, you can use FDecompressImage as in the JPEG Print
application to draw already compressed images to a black-and-white graphics port.
If you’re compressing strictly for printing, there’s no obvious benefit to do so for a
black-and-white port.)

USING COMPRESSIMAGE
The simplest way to compress image data is to use the QuickTime functions
CompressImage and FCompressImage. You call GetMaxCompressionSize to
determine the maximum compression size of your image, and then allocate a handle
of that size and pass it to CompressImage or FCompressImage, as shown in Listing 3.

GetMaxCompressionSize is likely to return a large size for full color images, perhaps
a larger amount of memory than the application can allocate out of its application
heap. To allow for this, PrintPICTtoJPEG first tries to allocate a handle in its
application heap by using NewHandle. If that fails, it attempts to allocate temporary
memory using the TempNewHandle function. In this way, the application can compress
images when temporary memory is available without requiring a large application
heap. If there isn’t enough memory available, you can use the FCompressImage
function with an application-supplied data-unloading function to write the data to
disk as it’s being compressed by QuickTime.

The sample code directly chooses JPEG image compression with any codec that
supports JPEG compression with a quality value of codecNormalQuality. The other
available constants for compression quality values are codecLosslessQuality,
codecMaxQuality, codecMinQuality, codecLowQuality, and codecHighQuality.
These constants give varying compression ratios and corresponding image fidelity.

PROVIDING A USER INTERFACE FOR COMPRESSION PREFERENCES
Although PrintPICTtoJPEG doesn’t do this, your application should provide the
user a way to specify compression parameters when using JPEG compression. This
is especially important when you’re applying a lossy compression method such as
JPEG, since there’s a tradeoff between compression size and image fidelity. Such a
decision is appropriate on a per document or even a per image basis.

The PrintPICTtoJPEG application knows that the data it’s working with is best suited
for JPEG compression. If your application has a good idea of what kind of image data
it’s working with, it can make the choice of which compression scheme to apply to the
data. If not, you should probably use the standard image-compression dialog to let
the user choose both the compression scheme and the compression parameters.

PERFORMANCE MEASUREMENTS
As part of developing the sample applications, I did some stopwatch time measurements
to see what kind of performance improvements we’d get with JPEG image data

d e v e l o p Issue 24 December 199580

compression. (The image files I used are included on this issue’s CD.) The results,
while carefully obtained, are obviously not comprehensive, but they’ll give you an
idea of what you can expect. All measurements were taken using a Power Macintosh
6100/66 as the computing host on relatively unloaded LocalTalk and EtherTalk
networks. Unless the application uses JPEG image compression, the LaserWriter 8.3
driver compresses the data using PackBits compression.

For comparison purposes, I used LaserWriter 8.3, which has the special support for
JPEG images described in this article, and LaserWriter 8.2.2, which does not. In both
cases, the application printing code was identical. LaserWriter 8.3 sends the compressed
JPEG data directly to a PostScript Level 2 printer; with LaserWriter 8.2.2, the data is
decompressed on the host Macintosh by QuickTime and passed to the driver’s

PRINTING IMAGES FASTER WITH DATA COMPRESSION 81

Listing 3. Compressing image data with CompressImage

CodecType theCodecType = 'jpeg';
CodecComponent theCodec = (CodecComponent) anyCodec;
CodecQ spatialQuality = codecNormalQuality;
short depth = 32;

// sPixMap is a handle to the pixel map to be compressed.
// bounds is a pointer to a rectangle specifying the portion of the
// image to compress.
if (theErr == noErr)

theErr = GetMaxCompressionSize(sPixMap, bounds, depth,
spatialQuality, theCodecType, theCodec, &maxCompressionSize);

if (theErr == noErr) {
// This allocation should be no problem.
theDescH =
(ImageDescriptionHandle) NewHandle(sizeof(ImageDescriptionHandle));

// This allocation is probably for a lot of memory.
compressedDataH = NewHandle(maxCompressionSize);
theErr = MemError();

// See if we allocated the ImageDescriptionHandle but not the memory
// to receive the compressed image.
if ((theDescH != NULL) && (theErr != noErr)) {

// See if we can get temporary memory instead. Since we're going
// to use the temporary memory as a real handle, we require
// System 7.0 or later.
compressedDataH = TempNewHandle(maxCompressionSize, &theErr);
// This probably can't happen, but just in case...
if (compressedDataH == NULL && theErr == noErr)

theErr = iMemFullErr;
}

}
if ((theErr == noErr) && (compressedDataH != NULL)

&& (theDescH != NULL)) {
MoveHHi(compressedDataH);
HLock(compressedDataH);
theErr = CompressImage(sPixMap, bounds, spatialQuality, theCodecType,

theDescH, StripAddress(*compressedDataH));
HUnlock(compressedDataH);

}

bitsProc bottleneck. Since the LaserWriter 8.2.2 driver is seeing uncompressed data,
it compresses the data with PackBits compression before sending it to the printer.

To measure print times for already existing compressed data, I used the JPEG Print
application to take an already compressed 186K JPEG image of a jaguar and print it
to a PostScript Level 2 printer. Table 1 shows the results.

Next I used the PrintPICTtoJPEG sample application to measure and compare
printing times both with and without compression on the host (Table 2). I used the
same jaguar image as before but saved as a PICT file, and a smaller PICT file I already
had on hand. Doing image compression on the host is time intensive: it routinely took
2 to 4 seconds to compress the large jaguar image. Even so, overall performance is
better because the data transfer times to the printer are so much smaller.

Table 3 compares the data sizes for JPEG and PackBits compression.

PRINTING WITH DATA COMPRESSION: CURRENT AND
FUTURE DRIVERS
Today’s LaserWriter 8.3 driver has direct support for handling JPEG compressed
images as described in this article. LaserWriter 8.3 supports JPEG compression only
when printing to Apple’s PostScript Level 2 printers. When printing to other
PostScript printers or to PostScript files on disk, the driver uses the JPEG
decompressor on the host to decompress the data, regardless of user settings.

d e v e l o p Issue 24 December 199582

Table 1. Jaguar JPEG image print times for already compressed data

Print Time, Print Time,
Printer Network PackBits JPEG
LaserWriter 320 LocalTalk 289 seconds 125 seconds
LaserWriter 16/600 EtherTalk 121 seconds 42 seconds

Table 2. PICT image print times when compressing data on the host

Print Time, Print Time, JPEG
Image File Printer Network PackBits Normal Quality

Jaguar LaserWriter 320 LocalTalk 288 seconds 129 seconds
(as PICT) LaserWriter 16/600 EtherTalk 116 seconds 44 seconds

Portrait.pict LaserWriter 320 LocalTalk 54 seconds 37 seconds
LaserWriter 16/600 EtherTalk 22 seconds 18 seconds

Table 3. Image compression data sizes

Image Size, Image Size, JPEG
Image File PackBits Normal Quality
Jaguar 2955K bytes 186K bytes
Portrait.pict 399K bytes 44K bytes

LaserWriter 8.3.1 and future LaserWriter 8.x drivers will take advantage of JPEG
compression when printing to all PostScript Level 2 printers as well as when saving
to disk with Level 2 Only selected in the standard file dialog. Adobe’s PostScript
printer driver for the Macintosh, PSPrinter, will soon take advantage of JPEG
compression, as will a future version of the PostScript printing system for
QuickDraw GX.

The prerelease version of LaserWriter 8.3.1 on this issue’s CD will enable you to test
your application with JPEG compression when printing to non-Apple printers or to
disk. Remember that JPEG compressed data will be written into the data stream only
when your application prints JPEG compressed data and the printer is a PostScript
Level 2 printer. If you’re saving PostScript files to disk, be sure to choose the Level 2
Only setting in the standard file dialog. Choosing the Level 1 Compatible setting
causes the driver to write uncompressed data into the output file. When you print
24-bit photo-realistic images using JPEG compression, files saved with the Level 1
Compatible setting will be about 10 to 40 times larger than files saved with the Level
2 Only setting.

Since PostScript Level 2 output devices also have fax and LZW decompression filters
available, Apple is considering adding support for these compression formats to a
future LaserWriter 8.x driver so that applications handling these types of data can
take advantage of the techniques described here. If you would take advantage of fax or
LZW support in the LaserWriter driver, let us know at AppleLink DEVFEEDBACK
or devfeedback@applelink.apple.com on the Internet.

LET’S GET STARTED!
JPEG images are now abundant, especially on the Internet where more and more
people encounter them each day. Let’s start printing these as compressed images!
By implementing the techniques presented here for printing JPEG compressed
image data, you can give your users immediate and substantial gains in printing
performance. Plus you’ll be well on your way to printing other kinds of compressed
data when printing software is enhanced to support it.

PRINTING IMAGES FASTER WITH DATA COMPRESSION 83

Thanks to Richard Blanchard, Paul Danbold,
Peter Hoddie, Kent Sandvik, and Nick Thompson
for reviewing this article.•

If you’re writing a device driver for the new PCI-based Macintosh
computers, you need to understand the relationship of the memory an
application sees to the memory the hardware device sees. The support
for these drivers (which will also run under Copland, the next
generation of the Mac OS) includes the PrepareMemoryForIO
function, as discussed in my article in Issue 22. This single coherent
facility connects the application’s logical view of memory to the
hardware device’s physical view. PrepareMemoryForIO has proven
difficult to understand; this article should help clarify its use.

If you managed to struggle through my article “Creating PCI Device Drivers” in
develop Issue 22, you probably noticed that it got rather vague toward the end when I
tried to describe how the PrepareMemoryForIO function works. There are a few
reasons for this: the article was getting pretty long and significantly overdue (the
excuse), and I really didn’t understand the function that well myself (the reason).
Things are a bit better now, thanks to the enforced boredom of a very long trip, the
need to teach this algorithm to a group of developers, and some related work I’m
doing on the SCSI interface for Copland.

My previous article showed the simple process of preparing a permanent data area
that might be used by a device driver to share microcode or other permanent
information with a device. This article attacks a number of more complex problems
that appear when a device performs direct memory access (DMA) transfers to or from a
user data area. It also explores issues that arise if data transfers are needed in
situations where the device’s hardware cannot use DMA.

A later version of the sample device driver that accompanied the Issue 22 article is
included in its entirety on this issue’s CD. Of course, you’ll need a hardware device to
use the driver and updated headers and libraries to recompile it. Included is the source
code for the DMA support library (files DMATransfer.c and DMATransfer.h), which
consists of several functions I’ve written that interact with PrepareMemoryForIO; the
revised sample device driver shows how this library can be incorporated into a
complete device driver for PCI-based Power Macintosh computers.

I’ll assume that you’ve read my earlier article (which you can find on the CD if you
don’t have it in print). That article gives an overview of the new device driver
architecture and touches on the PrepareMemoryForIO function, but for a

MARTIN MINOW

The New Device Drivers: Memory Matters

d e v e l o p Issue 24 December 199584

MARTIN MINOW is writing the SCSI plug-in for
Copland on a computer named “There must be a
pony here” and competes with his boss to see

who is more cynical about Apple management.
During the few moments he can escape from
meetings, he runs with the Hash House Harriers.•

comprehensive description of the architecture and details about the function, see
Designing PCI Cards and Drivers for Power Macintosh Computers (available from
APDA). I’ll also assume that you’re reasonably familiar with the basic concepts of a
virtual memory operating system, including memory pages and logical and physical
addresses; for a brief review, see “Virtual Memory on the Macintosh.”

PREPARING MEMORY FOR A USER DATA TRANSFER
At the beginning of a user data transfer (a data transfer on behalf of a program that’s
calling into your driver), the device driver calls PrepareMemoryForIO to determine
the physical addresses of the data and to ensure the coherency of memory caches. At
the end of the transfer, the driver calls the CheckpointIO function to release system
resources and adjust caches, if necessary. PrepareMemoryForIO performs three
functions that are necessary for DMA transfers: it locates data in physical memory; it
ensures that the data locations contain the actual data needed or provided by the
device; and, with the help of CheckpointIO, it maintains cache coherence.

Your device driver can call PrepareMemoryForIO from task level, from a software
interrupt, or from the mainline driver function (that is, DoDriverIO). CheckpointIO
can be called from task level, from a software interrupt, or from a secondary interrupt
handler. (For more on the available levels of execution, see “Execution Levels for
Code on the PCI-Based Macintosh.”) In a short while, we’ll see how the fact that
these functions must be called from particular points affects the transfer process.

If the data is currently in physical memory, PrepareMemoryForIO locks the memory
page containing the data so that it cannot be relocated. If the data isn’t in physical

THE NEW DEVICE DRIVERS: MEMORY MATTERS 85

Virtual memory on the Macintosh has two major functions:
it increases the apparent size of RAM transparently by
moving data back and forth from a disk file, and it remaps
addresses. Of the two, remapping addresses is more
relevant to device driver developers (and, incidentally,
much more of a headache).

When Macintosh virtual memory is turned on, the
processor and the code running on the processor always
access logical addresses. A logical address is used the
same way as a physical address; however, the Memory
Management Unit (MMU) integrated into the processor
remaps the logical address on the fly to a physical
address if the data is resident in memory. If the data isn’t
resident in memory, a page fault occurs; this requires
reading the desired data into memory from the disk and
possibly writing other, unneeded data from memory to the
disk to free up space in memory. (This explanation is
slightly simplified, of course.)

Since it would be impractical to have a mapping for each
byte address, memory is subdivided into blocks called
pages. A page is the smallest unit that can be remapped.
Memory is broken into pages on page boundaries, which

are page-size intervals starting at 0. The remapping allows
physical pages that are not actually contiguous in physical
memory to appear contiguous in the logical address space.

The Macintosh currently uses a page size of 4096 bytes;
however, future hardware may use a different page size.
You should call the GetLogicalPageSize function in the
Driver Services Library to determine the page size if you
need it.

DMA is performed on physical addresses since the MMU
of the processor is not on the address bus that devices
use. One of the functions of PrepareMemoryForIO is to
translate logical addresses into physical addresses so that
devices can copy data directly to and from the appropriate
buffers.

Many virtual memory systems provide multiple logical
address spaces to prevent applications from interfering
with each other. It appears to each application that it has
its own memory system, not shared with any other
application. The Macintosh currently has only one logical
address space, but future releases of the Mac OS will
support multiple logical address spaces.

VIRTUAL MEMORY ON THE MACINTOSH
BY DAVE SMITH

memory, PrepareMemoryForIO calls the virtual memory subsystem and a page fault
occurs, reorganizing physical memory to make space in it for the data. After the
transfer finishes, CheckpointIO releases the memory page locks.

PrepareMemoryForIO and CheckpointIO perform an important function related to
the use of caches. A cache is a private, very fast memory area that the CPU can access
at full speed. The processor runs much faster than its memory runs; to keep the
processor running at its best speed, the CPU copies data from main memory to a
cache. Both the PowerPC and the Motorola 68040 processors support caching,
although their implementation details differ. The important point is that a value of a
data item in memory can differ from the value for the same data item in the cache

d e v e l o p Issue 24 December 199586

Native code on PCI-based Macintosh computers may run
in any of four execution contexts: software interrupt,
secondary interrupt, primary interrupt, or task. All driver
code contexts have access to a driver’s global data. No
special work (such as calling the SetA5 function on any of
the 680x0 processors) is needed to access globals from
any of these contexts.

SOFTWARE INTERRUPT
A software interrupt routine runs within the execution
environment of a particular task. Running a software
interrupt routine in a task is like forcing the task to call a
specific subroutine asynchronously. When the software
interrupt routine exits, the task resumes its activities. A
software interrupt routine affects only the task in which it’s
run; the task can still be preempted so that other tasks can
run. Those tasks, in turn, can run their own software
interrupt routines, and a task running a software interrupt
routine can be interrupted by a primary or secondary
interrupt handler.

All software interrupt routines for a particular task are
serialized; they don’t interrupt each other, so there’s no
equivalent to the 680x0 model of nested primary interrupt
handlers.

Page faults are allowed from software interrupt routines.
A software interrupt routine is analogous to a Posix signal
or a Windows NT asynchronous procedure call. A
software interrupt routine running in the context of an
application, INIT, or cdev doesn’t have access to a
driver’s global data.

SECONDARY INTERRUPT
The secondary interrupt level is the execution context
provided to a device driver’s secondary interrupt handler.
In this context, hardware interrupts are enabled and
additional interrupts may occur. A secondary interrupt

handler is a routine that runs in privileged mode with
primary interrupts enabled but task switching disabled.

All secondary interrupt handlers are serialized, and they
never interrupt primary interrupt handlers; in other words,
they resemble primary interrupt handlers but have a
lower priority. Thus, a secondary interrupt handler queued
from a primary interrupt handler doesn’t execute until
the primary interrupt handler exits, while a secondary
interrupt handler queued from a task executes
immediately.

Page faults are not allowed at primary or secondary
interrupt level. A secondary interrupt handler is analogous
to a deferred task in Mac OS System 7 or a Windows NT
deferred procedure call. Secondary interrupt handlers,
like primary interrupt handlers, should be used only by
device drivers. Never attempt to run application, INIT, or
cdev code in this context or at primary interrupt level.

PRIMARY INTERRUPT
The primary interrupt level (also called hardware interrupt
level) is the execution context in which a device’s primary
interrupt handler runs. Here, primary interrupts of the
same or lower priority are disabled, the immediate needs
of the device that caused the interrupt are serviced, and
any actions that must be synchronized with the interrupt
are performed. The primary interrupt handler is the
routine that responds directly to a hardware interrupt. It
usually satisfies the source of the interrupt and queues a
secondary interrupt handler to perform the bulk of the
servicing.

TASK (NON-INTERRUPT)
The task level (also called non-interrupt level) is the
execution environment for applications and other
programs that don’t service interrupts. Page faults are
allowed in this context.

EXECUTION LEVELS FOR CODE ON THE PCI-BASED MACINTOSH
BY TOM SAULPAUGH

(called cache incoherence). Furthermore, you have to explicitly tell the PowerPC or
680x0 processor to synchronize the cache with memory.

Normally, the processor hardware prevents cache incoherence from causing data value
problems. However, for some processor architectures, DMA transfers access main
memory independently of the processor cache. PrepareMemoryForIO (for write
operations) and CheckpointIO (for read operations) synchronize the processor cache
with main memory. This means that DMA write operations write the valid contents
of memory, and the processor uses the valid data just read from the external device.

As noted earlier, some devices cannot perform DMA transfers; instead, they use
programmed I/O, in which the CPU moves data between logical addresses and the
device. PrepareMemoryForIO also returns the logical address that such devices
must use.

A SIMPLE MEMORY PREPARATION EXAMPLE
Listing 1 presents a very simple example that shows how a memory area may be
prepared for I/O.

To simplify listings, I’ve often omitted data type casting. Think of all data types as
unsigned 32-bit integers. Because of this omission, you can’t implement these listings
as written, but should base your code on the sample on this issue’s CD.•

PrepareMemoryForIO is called with one parameter, an IOPreparationTable. Among
other things, this table specifies one or more address ranges to prepare (only one, in
this example). Each address range is indicated by a starting logical address and a
count of the number of bytes in the range.

The IOPreparationTable also points to a logical mapping table and a physical mapping
table (gLogicalMapping and gPhysicalMapping in our example). The physical
mapping table is where PrepareMemoryForIO returns the page addresses that the
driver can use to access the client’s buffer during DMA. The logical mapping table
is the list of addresses that the driver must use for doing programmed I/O.

The simplest IOPreparationTable options — kIOMinimalLogicalMapping and
kIOLogicalRanges — are set in this example. The kIOMinimalLogicalMapping flag
indicates that only the first and last logical pages need to be mapped, while the
kIOLogicalRanges flag indicates that the data (here, the gMyBuffer vector) consists
of logical addresses.

Because kIOMinimalLogicalMapping is set, the logical mapping table requires two
entries for each address range; we have only one range, so our logical mapping table
needs a total of two entries. The physical mapping table requires one entry per page;
we set this to two entries because our 512-byte buffer may cross a page boundary.
When writing your driver, you can use the GetMapEntryCount function in the
DMA support library to compute the actual number of physical mapping table
entries needed for an address range.

If the preparation is successful, the driver performs the DMA transfer and calls
CheckpointIO to release internal operating system structures that were used by
PrepareMemoryForIO. PrepareMemoryForIO sets the kIOStateDone flag in the
IOPreparationTable’s state field if the entire area has been prepared.

If PrepareMemoryForIO can’t prepare the entire area, it doesn’t set the kIOStateDone
flag, and your driver needs to call PrepareMemoryForIO again with the firstPrepared

THE NEW DEVICE DRIVERS: MEMORY MATTERS 87

field updated to reflect the number of bytes prepared in this range of memory. The
recall must be done from a software interrupt routine; it cannot be performed from
an interrupt handler.

MORE ABOUT MAPPING
Address ranges to be prepared by PrepareMemoryForIO may cross one or more page
boundaries and thus may take up two or more pages in physical memory. Figure 1
shows what the physical mapping might look like for two address ranges: the first is
more than two pages long and crosses two page boundaries, while the second is an
even page long and crosses one page boundary.

Each address range maps to an area in physical memory that can be thought of as
having up to three sections: the beginning page, the middle pages, and the ending page.

d e v e l o p Issue 24 December 199588

Listing 1. Simplified memory preparation

#define kBufferSize 512
#define kMapCount 2
/* The buffer your driver or application is preparing */
UInt8 gMyBuffer[kBufferSize];
IOPreparationTable gIOTable;
/* Logical & physical mapping tables, filled in by PrepareMemoryForIO */
LogicalAddress gLogicalMapping[2];
PhysicalAddress gPhysicalMapping[kMapCount];

void SimpleMemoryPreparation(void)
{

OSStatus osStatus;

gIOTable.options =
(kIOMinimalLogicalMapping | kIOLogicalRanges | kIOIsInput);

gIOTable.state = 0;
gIOTable.addressSpace = kCurrentAddressSpaceID;
gIOTable.granularity = 0;
gIOTable.firstPrepared = 0;
gIOTable.lengthPrepared = 0;
gIOTable.mappingEntryCount = kMapCount;
gIOTable.logicalMapping = gLogicalMapping;
gIOTable.physicalMapping = gPhysicalMapping;
/* Set the logical address to be mapped and the length of the area

to be mapped. */
gIOTable.rangeInfo.range.base = (LogicalAddress) gMyBuffer;
gIOTable.rangeInfo.range.length = sizeof gMyBuffer;
/* Call PrepareMemoryForIO and process the preparation. */
do {

osStatus = PrepareMemoryForIO(&gIOTable);
if (osStatus != noErr)

break;
MyDriverDMARoutine(...);
CheckpointIO(gIOTable.preparationID, kNilOptions);
gIOTable.firstPrepared += gIOTable.lengthPrepared;

} while ((gIOTable.state & kIOStateDone) == 0);
}

• Every address range produces a beginning page. Your data may start at an
offset into this page, depending on the starting address of the range. This is
true for both address ranges in Figure 1. The address in the mapping table
for the beginning page points to the beginning of your data in the page.
Notice that for the second address range in our example, the logical address
for the start of the data, 0x4400, maps to the physical address 0x6400.

• If your address range maps to three or more pages, some number of middle
pages are completely filled with your data. The first address range in Figure
1 illustrates this.

• If your address range maps to two or more pages, the data on the ending
page begins at the beginning of the page, but it may cover only part of the
page, depending on the count in your address range.

Unfortunately, there’s no simple one-to-one correspondence between entries in the
physical and logical mapping tables and the address range (or ranges) that a driver
or application specifies when it calls PrepareMemoryForIO. Because of this, the
function that controls a driver’s DMA or programmed I/O process must iterate
through the input address ranges and output mapping tables to compute the address
and size of each data transfer segment. As you’ll see when you look at the DMA
support library on this issue’s CD, this turns out to be an extremely complex process.

The DMA support library functions iterate through the address ranges and mapping
tables, matching the two together to provide each data transfer segment in order.
The library recognizes when two physical pages are contiguous and extends the data
transfer length as far as possible.

When called for the example in Figure 1, the DMA support library returns five
physical transfer segments (this example doesn’t demonstrate logical alignment
problems). To learn how PrepareMemoryForIO’s algorithm works, I’d recommend
that you work out the actual addresses and segment transfer lengths using pencil and

THE NEW DEVICE DRIVERS: MEMORY MATTERS 89

Your program’s�
logical address space

Physical �
address space

Physical �
mapping table

0x0400�
0x3000�
0x2000�
0x6400�
0x5000

0

0x2000

0x1000

0x3000

0x4000

0x5000

0x6000

0

0x2000

0x1000

0x3000

0x4000

0x5000

0x6000

Address ranges
Starting�
address

Count�
(in bytes)

0x0400�
0x4400

0x2800�
0x1000

Figure 1. Mapping to multiple pages

paper. (When you look at the DMA support library in DMATransfer.c, you’ll see a
more mechanized approach that I strongly recommend if you’re developing complex
software.)

THE DATA TRANSFER PROCESS
Figure 2 illustrates how a data transfer might proceed through the system. It shows
the five steps involved in a transfer that requires partial preparation of a large chunk
of data that can’t be prepared in one gulp. The diagram also shows the proper
execution levels for each step. As we’ll see later, the process is considerably simpler
without partial preparation.

Here’s a breakdown of the steps in the data transfer:

1. The transfer starts at task (application or driver mainline) level. The driver
must call PrepareMemoryForIO from task level because PrepareMemoryForIO
may require virtual memory page faults and has to reserve system memory
for its own tables. After memory is prepared, the driver examines the logical
and physical mapping tables and starts the DMA operation. It then waits for
an interrupt. (Of course, the actual driver behavior depends on your
hardware.)

2. When the driver’s primary interrupt handler runs, it determines that another
DMA transfer is needed, but that no more data is prepared (because the
number of bytes transferred equals the value in the lengthPrepared field in
the IOPreparationTable). Since another partial preparation must be
performed, the primary interrupt handler queues a secondary interrupt and
exits the primary interrupt. The device is in a “frozen” state: it either has
data available (to read) or needs more data (to write) but cannot proceed at
this time. I’ll talk more about this problem later.

d e v e l o p Issue 24 December 199590

1. Call PrepareMemoryForIO.�
Start DMA operation.�
Wait for interrupt.

2. Queue secondary�
 interrupt.

3. Call CheckpointIO.�
 Call SendSoftwareInterrupt.

4. Call PrepareMemoryForIO.�
 Call SecondaryInterruptHandler2.

5. Restart DMA operation.

Time�
�

Task�
(Non-Interrupt)

Secondary�
Interrupt

Primary�
Interrupt

Figure 2. The progress of a data transfer with partial preparation

3. The driver’s secondary interrupt handler starts. It examines its internal state
and determines that a DMA transfer has been completed. It calls CheckpointIO
with the kMoreIOTransfers flag to complete the current partial transfer.
Since another data transfer will be needed, it begins the process of calling
PrepareMemoryForIO again, by calling SendSoftwareInterrupt to queue a
software interrupt routine. Then, with nothing more to do, the secondary
interrupt handler exits. The device is still frozen.

4. The software interrupt routine runs. It updates the firstPrepared field and
calls PrepareMemoryForIO to prepare the next segment (range of memory).
This may require a page fault, causing the virtual memory subsystem to
move data between main memory and the virtual memory disk file. When
PrepareMemoryForIO finishes, the logical and physical mapping tables are
updated and the lengthPrepared field contains the number of bytes that can
be transferred in the next segment. The software interrupt routine calls a
secondary interrupt handler (which is equivalent to queuing the handler).

5. The sequence returns to the secondary interrupt handler, and the DMA
operation is restarted. The partial preparation algorithm continues at step 2,
progressing through steps 2 to 5 until all data is transferred.

The device is frozen in steps 2 to 5; it cannot proceed on the current I/O request
until the partial preparation completes. But note that the page fault handler in step 4
may require disk I/O; consequently, any device that can service the page fault device
(such as the SCSI bus manager) cannot support partial preparation. Writers of disk
drivers and other SCSI-based interface software must understand these restrictions.

A CLOSER LOOK: SOME EXAMPLES
Unfortunately, as a result of some necessary constraints of PrepareMemoryForIO,
the code in Listing 1 isn’t usable in an actual device driver when the data transfer
results in the interruption of the hardware device by the CPU. In this section, I’ll
return to the five-step transfer process outlined above, with more detail on the way
that a driver interacts with memory preparation. I’ll illustrate the process with three
different examples: the simple case of a single DMA transfer; the more complicated
case where more than one DMA transfer is needed because the physical mapping
entries are discontiguous; and finally the full five-step transfer process, complete with
partial preparation.

A SIMPLE TRANSFER
Our first example uses the sample preparation shown in Figure 3. Here your
application or driver created a simple IOPreparationTable for an application data
buffer that’s 512 bytes long and begins at logical address 0x01B89F80.

In this case the transfer process consists of only three steps:

1. The buffer in our example crosses a physical page boundary, so two mapping
entries are needed. PrepareMemoryForIO fills in the logical and physical
mapping tables and sets the lengthPrepared field. Since it has successfully
prepared the entire buffer, it sets the kIOStateDone flag in the state field.
After your driver uses the NextPageIsContiguous macro (in DMATransfer.h)
to determine that the two physical mapping entries are contiguous, it puts
the first physical address, 0x0077EF80, and the entire byte count into the
DMA registers and starts the device.

2. When the transfer finishes, the driver’s primary interrupt handler runs. It
determines that the transfer has finished and queues a secondary interrupt to
complete processing.

THE NEW DEVICE DRIVERS: MEMORY MATTERS 91

3. The driver’s secondary interrupt handler calls CheckpointIO to complete the
transfer. It then completes the entire device driver operation by calling
IOCommandIsComplete.

DISCONTIGUOUS PHYSICAL MAPPING
The above example requires a single DMA transfer; however, if the physical mapping
entries are discontiguous, the first two steps of the process become more complicated:

1. After preparation, your driver determines that the two physical mapping
entries are not contiguous. Therefore, it puts the first physical address,
0x0077EF80, and the first byte count (128 bytes in this case) into the DMA
registers and starts the DMA operation.

2. When the transfer finishes, the driver’s primary interrupt handler runs. It
determines that the transfer has finished; however, another physical transfer
is needed and can be performed, so it loads the DMA registers with the new
physical address and the remaining byte count (384 bytes in this case),
restarts the DMA operation, and exits the primary interrupt handler.

After this DMA operation finishes, the operating system reenters the
primary interrupt handler. Upon the completion of the entire transfer, the
primary interrupt handler queues the secondary interrupt handler to finish
the entire operation.

PARTIAL PREPARATION
The example in Figure 3 requires only a single preparation, but in some cases
PrepareMemoryForIO cannot prepare the entire area at once and so requires partial
preparation. To illustrate this, I’ll change a few parameters in the IOPreparationTable.

d e v e l o p Issue 24 December 199592

512 bytes

Your application�
memory

0x01B89F80

Data buffer

Values set by�
your program

Values set by�
PrepareMemoryForIO

IOPreparationTable

options

state�
(kIOStateDone)

addressSpace

granularity�
(0)

firstPrepared�
(0)

lengthPrepared�
(512)

mappingEntryCount�
(2)

logicalMapping

physicalMapping

�

preparationID

rangeInfo.range.base�
(0x01B89F80)

rangeInfo.range.length�
(512)

0x01B89F80

0x01B8A000

0x0077EF80

0x0077F000

Figure 3. A simple IOPreparationTable

• The logical address of the buffer is 0x01B89F80.

• The transfer length is 20480 bytes.

• The transfer granularity is 8192 bytes. This value limits the length of the
longest preparation.

PrepareMemoryForIO performs partial preparation of the data three times, as shown
in Table 1.

The entire transfer requires these three repetitions of the five-step transfer process:

1. The driver prepares the first DMA operation for physical address
0x0077EF80, length 4224. After it interrupts, the primary interrupt handler
queues a secondary interrupt that, when run, calls CheckpointIO and causes
a software interrupt routine to run. This software interrupt routine updates
the firstPrepared field from 0 to 4224 (the amount previously prepared) and
calls PrepareMemoryForIO for the next partial preparation. When
PrepareMemoryForIO finishes, the software interrupt routine calls the
secondary interrupt handler.

2. The secondary interrupt starts the next transfer for physical address
0x00780000, length 8192. When this transfer finishes, the primary interrupt
queues the secondary interrupt, which, in turn, calls CheckpointIO and
causes the software interrupt routine to run a second time. This task calls
PrepareMemoryForIO for the next preparation and calls the secondary
interrupt handler again.

3. The secondary interrupt handler starts the final transfer. When it finishes,
the driver completes the entire preparation.

LOGICAL DATA TRANSFER: PROGRAMMED I/O
Some hardware devices do not support DMA but rather use programmed I/O, in
which the main processor moves data between program logical addresses and the
device. Programmed I/O is also needed when the device’s DMA hardware cannot use
DMA in a particular situation or context — for example, a one-byte transfer.

Some hardware devices cannot transfer data that isn’t properly aligned to some
hardware-specific address value. For example, the DMA controller on the Power
Macintosh 8100 requires addresses to be aligned to an 8-byte boundary; it can only
transfer to physical addresses in which the low-order three bits are set to 0. Also, data
transfers must be a multiple of 8 bytes. To handle such cases, the DMA support
library returns the logical addresses of unaligned segments so that a device driver can
transfer them with programmed I/O operations.

THE NEW DEVICE DRIVERS: MEMORY MATTERS 93

Table 1. Three partial preparations

Logical Mapping Physical Mapping Byte Count

First Preparation 0x01B9F80 0x0077EF80 4224
0x01BA000 0x0077F000

Second Preparation 0x01B8B000 0x00780000 8192
0x01B8C000 0x00782000

Third Preparation 0x01B8D000 0x00783000 8064
0x01B8E000 0x00784000

This restriction on logical alignment means that before starting a DMA transfer, the
driver must look at the low-order bits of the physical address and the low-order bits
of the count. The actual data transfer process is illustrated by the code in Listing 2,
which presumes 8-byte alignment and ignores a few additional complications. The
ugly stuff is in the ComputeThisSegment function, which examines the global
IOPreparationTable and handles multiple address ranges. The DMA support library
simplifies the procedure, as we’ll see in the next section.

PUTTING IT ALL TOGETHER
Here we’ll take a look at how your driver can use several of the functions in the DMA
support library to simplify dealing with PrepareMemoryForIO.

Before you can call any of the functions in the DMA support library to make a partial
preparation, you need to create the system context for a software interrupt. This
context is created by the CreateSoftwareInterrupt system routine, as shown in the
InitializePrepareMemoryGlobals function in Listing 3. CreateSoftwareInterrupt
must be called from your driver’s intialization routine because it allocates memory.
Your driver’s interrupt handler uses a software interrupt to start a task that can
call PrepareMemoryForIO (as described earlier in step 4 of the data transfer
process).

d e v e l o p Issue 24 December 199594

Listing 2. Data transfer with logical alignment

LogicalAddress thisLogicalAddress;
PhysicalAddress thisPhysicalAddress;
ByteCount thisByteCount, segmentByteCount;

ComputeThisSegment(&thisLogicalAddress, &thisPhysicalAddress,
&thisByteCount);

if ((thisPhysicalAddress & 0x07) != 0) {
/* Pre-alignment logical transfer */
segmentByteCount = 8 - (thisPhysicalAddress & 0x07);
if (segmentByteCount > thisByteCount)

segmentByteCount = thisByteCount;
DoLogicalTransfer(thisLogicalAddress, segmentByteCount);
thisByteCount -= segmentByteCount;
thisLogicalAddress += segmentByteCount;
thisPhysicalAddress += segmentByteCount;

}
if (thisByteCount > 0) {

/* Aligned physical transfer */
segmentByteCount = thisByteCount & ~0x07;
if (segmentByteCount != 0) {

DoPhysicalTransfer(thisPhysicalAddress, segmentByteCount);
thisByteCount -= segmentByteCount;
thisLogicalAddress += segmentByteCount;

}
}
if (thisByteCount != 0) {

/* Post-alignment logical transfer */
DoLogicalTransfer(thisLogicalAddress, thisByteCount);

}

The DMA support library contains two functions that a driver can use to simplify
processing the output from PrepareMemoryForIO: InitializeDMATransfer, which is
called once to configure the overall transfer operation, and PrepareDMATransfer,
which is called to set up each individual transfer.

The MyConfigureDMATransfer function in Listing 4 calls PrepareMemoryIO and
InitializeDMATransfer to configure the transfer. This function is called by the
mainline driver function (and by a software interrupt routine for partial preparation,
as we’ll see later).

If MyConfigureDMATransfer is successful, the driver initializes the hardware to
begin processing. I assume here that the hardware interrupts the process when it
requires a data transfer. The primary interrupt handler is shown in Listing 5.

THE NEW DEVICE DRIVERS: MEMORY MATTERS 95

Listing 3. Initialization for DMA

SoftwareInterruptID gNextDMAInterruptID;

/* This function is called once, when your driver starts. */
OSErr InitializePrepareMemoryGlobals(void)
{

OSErr status;

gLogicalPageSize = GetLogicalPageSize();
gPageMask = gLogicalPageSize - 1;
status = CreateSoftwareInterrupt(

PrepareNextDMATask, /* Software interrupt routine */
CurrentTaskID(), /* For my device driver */
NULL, /* Becomes the p1 parameter */
TRUE, /* Persistent software interrupt */
&gNextDMAInterruptID); /* Result is the task ID. */

return (status);
}

Listing 4. MyConfigureDMATransfer

/* In a production system, kPageCount should be retrieved from the
operating system by calling GetLogicalPageSize. */

#define kPageCount 4096
#define kLongestDMA 65536
#define kLogicalAlignment 8
#define kMappingEntries ((kLongestDMA + (kPageCount - 1)) / kPageCount)

DMATransferInfo gDMATransferInfo;
IOPreparationTable gIOTable;
LogicalAddress gLogicalMapping[2];
PhysicalAddress gPhysicalMapping[kMappingEntries];
AddressRange gThisTransfer;
Boolean gIsLogical;

(continued on next page)

When the primary interrupt handler determines that a data transfer is needed, it calls
the function MySetupForDataTransfer, which tries to continue a logical (programmed
I/O) transfer. If no logical transfer is appropriate, it calls PrepareDMATransfer, to
configure the next data transfer segment. This will be either a logical or a DMA
transfer, depending on the interaction between the user’s data transfer parameters and

d e v e l o p Issue 24 December 199596

OSErr MyConfigureDMATransfer(
IOCommandCode ioCommandCode, /* Parameter to DoDriverIO */
ByteCount firstPrepared /* Zero at first call */

)
{

OSErr status;

gThisTransfer.base = NULL; /* Setup for programmed I/O */
gThisTransfer.length = 0; /* Interrupt handler */
gIsLogical = FALSE;

if (firstPrepared == 0) {
/* This is an initial preparation for the transfer. */
gIOTable.preparationID = kInvalidID; /* Error exit marker */
switch (ioCommandCode) {

case kReadCommand: gIOTable.options = kIOIsInput; break;
case kWriteCommand: gIOTable.options = kIOIsOutput; break;
default: return (paramErr);

}
ioTable.ioOptions |=

(kIOLogicalRanges /* Logical input area */
| kIOShareMappingTables /* Share with OS kernel */
| kIOMinimalLogicalMapping /* Minimal table output */
);

gIOTable.state = 0;
gIOTable.addressSpace = CurrentTaskID();
gIOTable.granularity = kLongestDMA;
gIOTable.firstPrepared = 0;
gIOTable.lengthPrepared = 0;
gIOTable.mappingEntryCount = kMappingEntries;
gIOTable.logicalMapping = gLogicalMapping;
gIOTable.physicalMapping = gPhysicalMapping;
gIOTable.rangeInfo.range.base = pb->ioBuffer;
gIOTable.rangeInfo.range.length = pb->ioReqCount;

}
else { /* We were called to continue a partial preparation. */

gIOTable.firstPrepared = firstPrepared;
}

status = PrepareMemoryForIO(&gIOTable);
if (status != noErr)

return (status);
status = InitializeDMATransfer(&gIOTable, kLogicalAlignment,

&gDMATransferInfo);
return (status);

}

Listing 4. MyConfigureDMATransfer (continued)

the device’s logical alignment restrictions. If more data remains to be transferred,
MySetupForDataTransfer starts either a DMA transfer or another logical transfer;
otherwise, it returns a private status value that will eventually cause a software
interrupt routine to call PrepareMemoryForIO again to continue a partial
preparation.

THE NEW DEVICE DRIVERS: MEMORY MATTERS 97

Listing 5. The primary interrupt handler

InterruptMemberNumber MyInterruptHandler(InterruptSetMember member,
void *refCon,
UInt32 theIntCount)

{
OSErr status;

if (<device has or requires more data> == FALSE)
status = noErr; /* Presume I/O completion. */

else
status = MySetupForDataTransfer();

if (status != kIOBusyStatus)
/* This partial transfer (or device operation) is complete. */
QueueSecondaryInterruptHandler(DriverSecondaryInterruptHandler,

NULL, NULL, (void *) status);
return (kIsrIsComplete);

}

OSErr MySetupForDataTransfer(void)
{

OSErr status;

if (gIsLogical && gThisTransfer.length > 0) {
/* Continue a programmed I/O transfer. */
DoOneProgrammedIOByte(* ((UInt8 *) gThisTransfer.base));
gThisTransfer.base += 1;
gThisTransfer.length -= 1;
status = kIOBusyStatus;

}
else { /* We need another preparation segment. */

status = PrepareDMATransfer(&gDMATransferInfo, &gThisTransfer,
&gIsLogical);

if (status == noErr) { /* Do we have more data? */
status = kIOBusyStatus; /* Don't queue secondary task. */
if (gIsLogical) { /* Start a programmed I/O transfer. */

DoOneProgrammedIOByte(* ((UInt8 *) gThisTransfer.base));
gThisTransfer.base += 1;
gThisTransfer.length -= 1;

}
else /* Start a DMA transfer segment. */

StartProgrammedIOToDevice(&gThisTransfer);
}
else /* This preparation is done. Can we start another? */

status = kPrepareMemoryStartTask;
}
return (status);

}

Listing 6 shows the secondary interrupt handler — at least the part that handles the
DMA operation. The primary interrupt handler provides the operation status in the
p2 parameter; the secondary interrupt handler uses this parameter to determine
whether the operation is complete (in which case this is the final status), or whether
some intermediate operation is required.

Finally, Listing 7 shows the software interrupt routine that’s called when the driver
must call PrepareMemoryForIO again to perform a partial preparation.

d e v e l o p Issue 24 December 199598

Listing 6. The secondary interrupt handler

OSStatus DriverSecondaryInterruptHandler(void *p1,
void *p2)

{
OSStatus osStatus;

osStatus = (OSErr) p2;
switch (osStatus) {

case kPrepareMemoryStartTask: /* Need more preparation */
CancelDeviceWatchdogTimer();
osStatus = SendSoftwareInterrupt(gNextDMAInterruptID, 0);
if (osStatus != noErr) {

/* Handle error status by stopping the device. */
...

}
break;

case kPrepareMemoryRestart: /* Preparation completed */
osStatus = MySetupForDataTransfer();
break;

}
if (osStatus != kIOBusyStatus) { /* If I/O is complete */

CancelDeviceWatchdogTimer();
CheckpointIO(&ioTable, kNilOptions);
IOCommandIsComplete(ioCommandID, (OSErr) osStatus);

}
return (noErr);

}

Listing 7. A software interrupt routine for partial preparation

void PrepareNextDMATask(void *p1,
void *p2)

{
OSErr status;
ByteCount newFirstPrepared;

if ((gIOTable.state & kIOStateDone) != 0)
status = eofErr; /* Data overrun or underrun error */

else { /* Do the next partial preparation. */
newFirstPrepared =

gIOTable.firstPrepared + gIOTable.lengthPrepared;

(continued on next page)

YOUR TURN IN THE BARREL
At times, working through the complexity of this problem felt like going off Niagara
Falls in a barrel. There used to be a joke among the developers of the UNIX
operating system: “We never document our code: if it was hard to write, it should be
h a rd to understand.” The algorithms I’ve described here were hard to write, but I
hope I was able to document and clarify the most important features of the library
well enough that you don’t have to go through the same struggle I did.

THE NEW DEVICE DRIVERS: MEMORY MATTERS 9 9

status = MyConfigureDMATransfer(0, newFirstPrepared);
/* ioCommandCode is not used. */

}
QueueSecondaryInterruptHandler(DriverSecondaryInterruptHandler,

NULL, NULL, (void *) status);
}

Thanks to our technical reviewers David
Harrison, Tom Saulpaugh, Dave Smith, and
George Towner.•

Listing 7. A software interrupt routine for partial preparation (continued)

It’s not just the basics anymore!
Advanced courses from Developer University get you up
to speed quickly on new Apple technologies.

❒ OpenDoc

❒ PowerPC

❒ Newton

❒ Graphics/Imaging

For detailed information, check out http://www.info.apple.com/dev on the World Wide Web, or contact the
Apple Developer University Registrar at (408)974-4897 or fax (408)974-0544

Self-Paced Classroom Lecture Online

Courses are available as:

Developer University
Apple Computer, Inc.

1 Infinite Loop, M/S 305-1TU
Cupertino, CA 95014

Q How do I determine whether a Power Macintosh has PCI expansion slots?

A If there’s a Name Registry, you can use it to determine whether a PCI bus exists.
To determine whether the Name Registry exists, use the new Gestalt selector
gestaltNameRegistryVersion ('nreg'). If the Name Registry exists, the value
returned is the version number of the Registry; otherwise, gestaltUndefSelectorErr
is returned, and you can assume that the machine doesn’t have PCI slots.

If the Name Registry exists, call RegistryEntrySearch to look for an entry
having a property name of device_type and a propertyValue of pci. If an entry
is found, there is a PCI bus on the machine.

Q Our software doesn’t awaken properly on a PowerBook that has come out of sleep mode.
Are there any special handling requirements to recover from sleep mode?

A The changes to the system state when a PowerBook goes to sleep include the
following:

• All AppleTalk connections are lost, because the AppleTalk driver is turned off.

• The serial ports are entirely shut down to conserve power.

There are two Macintosh Technical Notes that relate to your situation: “Little
PowerBook in Slumberland” (HW 24), which provides a brief overview of the
sleep process, and “Sleep Queue Tasks” (HW 31), which presents additional
material regarding the sleep process. The second one includes sample code that
demonstrates a sleep queue task implementation. The sleep queue task enables
your program to save state information that otherwise might be lost. Typically,
this is important for a networked process that needs to reestablish a connection
upon awakening.

Q Can we define our own extensions to QuickTime’s ImageDescription structure? In other
words, can we just attach any kind of data to the end of the ImageDescription structure?
Our codec would use this data only on the Macintosh.

A Yes, you can add any extended data you like, with the utility routines provided
for this purpose (described in Inside Macintosh: QuickTime Components, starting
on page 4-65). You have complete control over how your codec interprets the
extensions. Therefore, as long as the default image description handle remains
intact (for the benefit of the various Movie Toolbox calls that depend on the
documented structure being there), you can add whatever information you like.
Note that Apple reserves all extension types consisting entirely of lowercase
letters.

Q We’re trying to write a QuickTime codec, but we’re having trouble because Inside
Macintosh: QuickTime Components was written before the universal headers, and the
sample codec source doesn’t build at all with the latest headers. Where can we get a
QuickTime codec that builds for PowerPC under the current universal headers?

A Until a PowerPC-native codec example becomes available, you can get the
information you need from the Macintosh Technical Note “Component
Manager version 3.0” (QT 5), which provides details on creating native
components. Note that you have to use Resorcerer or Rez to create the
component templates; ResEdit won’t suffice.

Macintosh
Q & A

d e v e l o p Issue 24 December 1995100

Q Our codec needs to provide more options to the user than the normal image-compression
dialog contains. The documentation suggests that it’s possible to provide an extra
Options button in the dialog, and I’ve seen some applications that do provide an Options
button for certain codecs. Is this a function of the application? How does the application
know to do this?

A If your codec component has an exported function named CDRequestSettings,
the standard image-compression dialog will automatically provide the specific
button. In other words, QuickTime checks the codec component, adds the
button (provided it’s available), tracks clicks in the button, and calls your
CDRequestSettings routine appropriately. For further details, see the
Macintosh Technical Note “QuickTime 1.6.1 Features” (QT 4) where
CDRequestSettings is documented.

Q We have a non-Macintosh device that creates and reads QuickTime movies, and we
need to pass additional information about the images between the non-Macintosh device
and our QuickTime codec. It seems that the logical place to put this information is in an
ImageDescription extension (within the sample description atom), since this is about all
that’s accessible to a codec. Is the format of this extension documented anywhere? We’ve
looked at the extension created by SetImageDescriptionExtension, and the format seems
simple, but it would be nice to know what the “official” format is.

A Chapter 4 of Inside Macintosh: QuickTime has a listing of the atoms and their
formats. Sample description atoms are described on page 4-35. Note that each
media format has its own sample description tables, which are not directly
accessible.

The official guideline is to use, if possible, the provided APIs for creating
sample description atoms. If you’re working on a platform for which there are
no Toolbox APIs, you’ll have to obtain a source-code license agreement to get
real source code showing how the atoms are constructed. (For details regarding
licensing part or all of the QuickTime source code, contact Apple Software
Licensing at AppleLink SW.LICENSE or (512)919-2645.)

Q Our application plays QuickTime movies. Some older movies played well in System 7.1,
but they don’t play properly in System 7.5 or 7.5.1. We happened to find the Apple
Multimedia Tuner, and it solves the problem. What is the Apple Multimedia Tuner,
who needs it, how does a customer get it, and can we distribute it?

A The real solution to your problem is just to preroll the movie before playing it,
which is what the Apple Multimedia Tuner is doing for you. QuickTime 2.1
incorporates all the Tuner improvements, so there’s no longer any need to
distribute the Tuner separately.

Q We have a problem when we draw to an offscreen GWorld under low-memory
conditions (when the system heap can’t grow) on a Power Macintosh. The GWorld
drawn contains digital noise. The same code works just fine in an 680x0 environment.
Any idea what’s happening?

A It sounds as if the Code Fragment Manager is unable to load the code from the
PowerPlug library into temporary memory. This will cause QuickTime to issue a
noCodecErr error. You should always try to catch QuickTime-generated errors,
checking, for instance, for playback errors after each MoviesTask call like this:

MACINTOSH Q & A 101

anErr = GetMoviesStatus(Movie theMovie, Track *problemTrack);

Here’s a possible workaround to your problem: Launch a small application that
has the QuickTimeLib (PowerPlug) library statically linked in, so that it’s
loaded. This application should launch the main application and then kill itself.
The second application could try to grow to a predefined size and handle low-
memory conditions in whatever way it wants, but the CFM libraries are already
in memory by then.

The Code Fragment Manager will never load fragments into an application
heap, because there’s a global registry of CFM libraries present. If another
application registers to use a CFM library that’s in an application heap that
subsequently goes away, this will obviously be a Bad Thing. In the 680x0
environment, the codecs are components, and the Component Manager will
always try to load components into the application heap if the system heap
doesn’t have any available space.

Q I need to add print items to a QuickDraw GX dialog box. In attempting to use the
Experiment no.9 sample, I found what appears to be a bug. This example uses
GXGetMessageHandlerResFile when it calls GXSetupDialogPanel, but it should call
CurResFile.

A You’re right. Applications should call CurResFile. GXGetMessageHandlerResFile
is reserved for extensions and drivers.

For additional code examples that add print items to a QuickDraw GX dialog
box, see the Worldwide Developers Conference 1995 Technology CD (or the
Mac OS Software Developer’s Kit). The Extension Shell, UserItems, and
Additions samples provide the basic item adding/handling code that you require.

Q Where can I find some good sample code that demonstrates the techniques required for a
“panel” with QuickDraw GX printing (as an application — not an extension)?

A There are two sample applications (“Experiment no.9” and “Banana Jr.”) that
show how to do this. In both of these applications, the panels appear in the
Custom Page Setup dialog. However, the sample code can easily be modified to
add panels to the Page Setup and Print dialogs.

Q How can I draw and print hairlines with QuickDraw GX? We use a picture comment
in the normal print code, but this seems to make QuickDraw GX fail. We get a -51
error (reference number invalid) when we call GXGetJobError after calling
GXFinishJob, and we sometimes get this error without the picture comment code.

We also tried calling GXSetShapePen in our spool procedure. When we set it to a
fractional value, we get a wide line, but when we set it to a wide value, such as 8, it
works properly. What do we need to do to print fractional widths?

A Here are two ways to get QuickDraw GX to draw hairlines when printing:

• Call GXSetShapePen(myShape, 0). This sets your pen width to 0, meaning
as thin as possible on the output device. QuickDraw GX always draws
hairlines at the resolution of the output device — one pixel wide.

• Call GXSetStylePen(myStyle, 0). This also sets your pen width to 0, with
the same result.

d e v e l o p Issue 24 December 1995102

When using GXSetShapePen and GXSetStylePen, don’t specify the pen width
as an integer: remember that it’s a fixed-point value. GXSetStylePen(myStyle, 1)
sets the pen width to 1/65536; GXSetStylePen(myStyle, ff(1)) sets it to 1.0.

QuickDraw GX uses a backing store file (an invisible file within the System
Folder) to send QuickDraw GX objects to disk when additional space is needed
within the QuickDraw GX heap. Almost all -51 errors from within QuickDraw
GX or an application using QuickDraw GX are caused by double-disposing of a
QuickDraw GX object (that is, a shape, ink, style, or transform). The -51 error
occurs because the double dispose causes QuickDraw GX to set the shape
attributes, which indicates that it has sent the object to disk. When it needs this
object, it goes to the backing store and tries to get it, but it’s not there. We’ve
found a few cases where QuickDraw GX itself was double-disposing of objects,
and these were fixed in QuickDraw GX version 1.1.

Before calling GXDrawShape, call GXValidateShape on the shape or shapes
you’re trying to print. This ensures that a shape is valid before it’s drawn or
printed. It slows things down a little, but you’ll be able to determine whether a
shape is still available before you attempt to draw it (you might be disposing of
a shape before you draw it). If you have an error handler installed, you usually
receive the “shape_already_disposed” message, but you may not receive this
message if something is wrong with the QuickDraw GX backing store.

It’s also possible that the hairline drawing problems you’re encountering are
related to the translation options you’re using. A translator takes your
QuickDraw drawing commands and converts them to QuickDraw GX objects,
based on options you provide. If you use the gxDefaultOptionsTranslation
setting, a QuickDraw line turns into a six-sided filled polygon. When your
object is a polygon, changing the pen width has no effect.

To avoid translation problems, call GXInstallQDTranslator with the
gxSimpleGeometryTranslation or the gxReplaceLineWidthTranslation option.

• gxSimpleGeometryTranslation turns on both the simple-lines and simple-
scaling translation options, and it translates QuickDraw lines into QuickDraw
GX lines with flat endcaps. The QuickDraw GX line shape runs along the
center of the original QuickDraw line, and it covers all the pixels of the
QuickDraw line and more.

• gxReplaceLineWidthTranslation turns a QuickDraw line into a QuickDraw
GX line with a width that is the average of the original pen’s width and
height. This option also affects the way the SetLineWidth picture comment
is interpreted.

Once you set the translation option, your calls to GXSetShapePen or
GXSetStylePen should behave as you expect them to, because they’re acting
on QuickDraw GX lines, not polygons. When you’ve installed a translator, be
sure to remove it with GXRemoveQDTranslator. To learn more about the
translation options, see Chapter 1 of Inside Macintosh: QuickDraw GX
Environment and Utilities.

Q I’m trying to send messages from within a QuickDraw GX message override. I want
to send GXWriteData to flush the buffer so that I can send the GXGetDeviceStatus
message. I override the GXHandlePanelEvent message. In my override, sending
messages causes the system to crash. What would cause this to happen?

MACINTOSH Q & A 103

A The crash is occurring because there’s no connection to the printer at the time
you’re sending the message. You have to send the GXOpenConnection,
GXWriteData, and GXCloseConnection messages. Note that when you send
GXOpenConnection, QuickDraw GX puts up the default job status dialog for
a short time. If you don’t want this dialog to appear, you can override the
GXJobStatus message to prevent it from being shown. See also Dave Hersey’s
Print Hints column, “Writing QuickDraw GX Drivers With Custom I/O and
Buffering,” in develop Issue 21.

Q I used the sample driver showing how to do custom dialogs as the basis for the
compatibility part of our QuickDraw GX PostScript driver, and I added an Options
dialog to it for our printer-specific features. I have two problems with it when using
applications that aren’t QuickDraw GX–aware. First, the paper-type always defaults
to the fifth paper-type listed in the resource file, so whichever paper-type is the fifth one
listed becomes the default paper-type in the QuickDraw GX compatibility driver. This
is, of course, reflected in the Page Setup dialog. Second, the driver always defaults to
having the “Print to File” checkbox on. What can I do about these problems?

A Both the quirks you describe (improper default paper-type and the “Print to
File” checkbox defaulting to on) can be fixed by modifying the 'PREC' 0
resource in the driver.

When an application using old-style printing calls PrintDefault to request the
default print record from the current printer driver, the driver gives it the
contents of the 'PREC' 0 resource. Then, when the application calls PrJobDialog
or PrStlDialog, it passes in that print record. In its overrides, the QuickDraw
GX printer driver interprets the contents of the old-style print record to set up
the states of the dialog’s buttons, checkboxes, and so on.

To determine which paper-type radio button to select in the Page Setup dialog,
QuickDraw GX compares the page rectangle specified in the old-style print
record to the rectangles of all the paper-types in the driver (or paper-type
extensions, such as “3-Hole Punch”), and tries to find the best match. Because
of the way that the old-style print record in the sample is defined, that best
match turns out to be the fifth paper-type in your list. So, to fix this quirk, all
you have to do is change the bounds setting in the 'PREC' 0 resource so that it
matches the bounds of the US Letter paper-type in the driver.

To determine the state of the “Print to File” checkbox, the driver looks at the
UlOffset field of the old-style print record. (You might not think to look here,
but old-style print records are limited to 120 bytes, and there was no better
place to store this information.) Because the 'PREC' 0 resource in this driver
has this field set to 1, the checkbox defaults to on. So, to fix this, all you have to
do is set the field to 0.

Q I want to create an extension for the Page Setup/Format dialog that performs
“flipping” functions. Is it feasible to create an extension for the Page Setup/Format
dialog rather than the Print dialog?

A There’s nothing to prevent you from creating an extension that adds a panel to
the Page Setup dialog. Most printing extensions add to the Print dialog because
in most cases this is the proper place to add a panel that affects the entire
output, and because what extensions usually do is best suited for the Print
dialog. Drivers and applications, on the other hand, typically add to the Format

d e v e l o p Issue 24 December 1995104

dialog. Note that if you’re trying to modify an existing sample extension so that
it adds to the Page Setup dialog, you have a bit of work to do.

There’s a way that you can test your flipping code without writing a new
extension, by the way. Applications can override the GXJobDefaultFormatDialog
or GXFormatDialog message. There are two examples (“Experiment no.9” and
“Banana Jr.”) that demonstrate overriding GXFormatDialog. You might try
adding your flipping code to one of these.

Q A car passed me the other day with one of those round white country stickers that said
WAL. Where was it from?

A Sierra Leone.

Q In QuickDraw 3D, when we have the interactive renderer on and we try to turn off
the draw context’s clearImageMethod (setting it to kQ3ClearMethodNone), it still
clears. This works properly with the wireframe renderer, but we need this feature in the
interactive renderer, since we’re pasting in background pictures that we want to act as a
backdrop to our 3D models. The interactive renderer always obliterates the background
with the clearImageColor. What can we do?

A Unfortunately, this is a renderer-dependent feature that’s supported by the
wireframe renderer, but not the interactive renderer. We intend to provide a
“Clear with picture” method in the next major release of QuickDraw 3D
(version 1.1).

Q The interactive renderer doesn’t draw flat surfaces that are parallel to the camera view
direction with the orthographic camera, but the wireframe renderer does. We put in a
“floor” of polygons, and when we look along the edge of the floor with the orthographic
camera, it totally disappears. With the wireframe renderer, we see a line where the floor
is, which is as expected. What gives?

A Filled primitives have no thickness, so when you look at them edge-on, they do
not appear. Lines, however, are a mathematical abstraction, so they always
appear to be one pixel thick (when you zoom in on a line, its thickness doesn’t
increase). While this may seem somewhat odd, it’s the way many libraries work.
To achieve the effect you want, make the floor a thin box, and texture-shade the
top surface. If the depth of the box is nonzero, it appears to be a slab-like
structure, and it won’t disappear when viewed edge-on.

Q If we iterate through the vertices in a mesh, will the vertices still be in the same order as
they were when they were added?

A Yes. The ordering of the vertices doesn’t change until you duplicate the mesh or
write it out. A duplicated mesh (or one that was written out and read back in)
doesn’t necessarily have the vertices in the same order as when they were added.

Q When I try to render models with different types of lights, the point light and the
directional light work correctly, but the spot light doesn’t. Any idea why?

A The spot light’s cone of light needs to touch a number of vertices for any effect
to be seen. If the light is attenuated, it may have insufficient intensity when it

MACINTOSH Q & A 105

strikes the surface. The cone of light also needs to be wide enough to cover a
significant area of the object being modeled for the renderer to draw a
reasonable effect.

Q What effect does the TQ3ViewObject parameter have in the bounding box calculating
routines (Q3View_StartBoundingBox and Q3View_EndBoundingBox)? The old
geometric-object routine descriptions refer to world space, but if this is so, there’s no need
for a view parameter. However, if the view’s camera is used, the bounding box is returned
in camera coordinates rather than view coordinates. Since both are useful, would it be
possible to have both sets of routines available? I can apply a rotation/translation
matrix to all of the items to be drawn to generate camera coordinates from a world
coordinate routine, but I need to find out if I need to do this or if this has already been
accomplished.

A The QuickDraw 3D routines return the bounding box or bounding sphere in
local coordinates. Part of the reason that the API was modified to use submit
calls, rather than having separate picking, rendering, and writing calls, is that
the transformations that are applied matter more than the camera. Since
these modifications were made, the submit calls for everything (including
transformations, if they’re not stored in the group) can be in one submission
function that’s called from inside the picking, rendering, or writing loop. If you
need the bounding box for a single geometry in its own coordinate space, this
is also easy to do — you can write a simple routine that performs bounds
calculations on a single object. For example:

Q3View_StartBoundingBox;
Q3xxx_Submit;
Q3View_EndBoundingBox;

Q Does QuickDraw 3D prefer meshes or NURB patches? Which kind of data yields better
performance?

A Meshes are convenient for editing, but they take quite a bit of memory, so the
tradeoff is time versus space. NURB patches are more convenient for dealing
with surfaces as a whole and for representing surfaces at different tessellations.

Although meshes exhibit better performance than NURB patches in the first
version of QuickDraw 3D, later versions may have improved patch performance.
In the meantime, consider experimenting with the tessellation factor for your
patches, since overtessellating reduces performance.

Q I’d like to make sure that I’m running under version 1.0.2 of QuickDraw 3D. When I
get the version from Q3GetVersion the major version is 1 and the minor version is 0,
but I can’t get the revision (the third number). Is there a Gestalt selector for this?

A Starting with version 1.0.2, there is a Gestalt selector to get the version of
QuickDraw 3D: gestaltQD3DVersion. The return value has two bytes for the
major version, a byte for the minor version, and a byte for the revision. So for
version 1.0.2 Gestalt will return 0x00010002. Note that this Gestalt selector
works only with QuickDraw 3D 1.0.2 and later.

Q The ColorSync documentation (in the reference section of Inside Macintosh: Advanced
Color Imaging) states that each color component in the L*a*b* color space is within the

d e v e l o p Issue 24 December 1995106

range of 0 to 65,280. Shouldn’t this be 0 to 65,535, since this is the value for the other
spaces and the value in the ICC Profile Format Specification?

A No. The correct maximum value for this particular color space is 65,280
(0xFF00). Note that the final documentation is now available as Advanced Color
Imaging on the Mac OS, published by Addison-Wesley.

Q What exactly are the internal parameters for the ColorSync quality settings? That is,
how large a lookup table is built for “draft” versus “normal” versus “best”?

A The quality flag bits provide a place in the profile for an application to indicate
the desired quality of a color match (potentially at the expense of speed and
memory). In ColorSync 2.0, these bits do not mandate the use of one algorithm
over another, or one lookup table size over another; they’re just recommendations
that a particular CMM may choose to ignore.

Let’s look at how the default Apple CMM uses the quality recommendations
specified in the flag bits. Other CMMs, of course, will have different
implementations.

When Apple’s CMM builds a color world from two or more profiles, and one
or more of these profiles contain TRC curves or A2Bx tables, the CMM also
builds a private, multidimensional lookup table. The quality flag bits determine
the resolution of this private table. Draft quality is treated the same as Normal
quality, so there are really only two effective settings, Normal/Draft and Best.
In most cases, the quality is only slightly better in Best mode, so the difference
is difficult to see, unless one of the profiles has a high gamma value. For high
gamma values, the extra resolution in the lookup table is helpful.

Best mode typically takes twice as long to build a color world (about two
seconds, versus one second in Normal/Draft mode). However, once the color
world is built, the time to use it is the same for either mode (approximately 1.5
MB/second on a Power Macintosh 8100/110).

Best mode also requires significantly more memory than Normal/Draft mode.
A color world typically requires 120K of heap space in Best mode versus 25K in
Normal mode, and the “high-water” memory requirement while a color world
is being built is typically 300K for Best mode versus 90K for Normal mode.

Note again that these guidelines apply only to the default Apple CMM. The
tradeoffs between speed, quality, and resources may be quite different for other
CMMs.

Q I want to go directly from an input CMYK space to an output CMYK space (without
going through an intermediate three-component space) to preserve the original
GCR/UCR settings. Can I create a “link” profile for this purpose? If I do, will I have
to write my own CMM to use it?

A You can build a CMYK-to-CMYK device-link profile for this purpose, and you
can use it without writing your own CMM.

Q I’m using the ColorSync call CWCheckBitMap to do gamut checking in a plug-in for
Photoshop. The result bitmap is not what I expected, and seems to be different every
time I try it. Any idea what could be going on?

MACINTOSH Q & A 107

A CWCheckBitMap sets each pixel in the result bitmap to black if the
corresponding pixel in the source bitmap is out of the gamut. It doesn’t,
however, set each pixel in the result bitmap to white if the pixel in the source
bitmap is in the gamut. If you aren’t erasing the bitmap before calling
CWCheckBitMap, that would explain what you’re seeing. Always erase the
result bitmap to white before calling CWCheckBitMap. (This is also true of
CWCheckPixMap and CWCheckColors.)

Q If I have a physical drive ID, how can I determine whether that drive is a network
volume? I’m not sure where to look, and I need to know whether the information is
dependable and not subject to change.

A Under the current Macintosh file system, there’s no completely dependable way
to determine whether a volume originates over a network or is implemented on
a local disk. This is the result of the way external file systems are implemented
— a third party can build a network file system in a variety of ways.

You can, however, easily determine whether a volume uses the AFP (AppleShare)
file system, which in many cases is adequate. To make this determination,
compare the driver refNum in the drive queue entry to the AppleShare client’s
refNum.

The following code enumerates the drive queue and displays the relevant
information:

main()
{

QHdrPtr drvQHdr = GetDrvQHdr();
DrvQElPtr dqeP;
short afpRefNum = 0;
OSErr errNo;

// Get the driver refNum for AFP.
errNo = OpenDriver("\p.AFPTranslator", &afpRefNum);
if (errNo != noErr)

return

// Scan each drive in the drive table.
dqeP = (DrvQElPtr) drvQHdr->qHead;
do {

// Is it an AFP volume or SCSI device?
if (dqeP->dQRefNum == afpRefNum) printf("AFP");

} while (dqeP =(DrvQElPtr) dqeP->qLink);
}

For other third-party file systems, such as DECNET and NFS, you have to
determine the name of the driver and then compare it to the AppleShare client’s
refNum.

Q I need to get a list of files in a particular directory. Should I use PBCatSearch, or
should I use indexed PBGetCatInfo or PBGetFInfo requests?

A The “Cat” in PBCatSearch stands for “Catalog” and that’s what PBCatSearch
searches: the whole volume catalog. You can specify that matches found by

d e v e l o p Issue 24 December 1995108

PBCatSearch be limited to a specific directory by setting the fsSBFlParID bit in
the ioSearchBits field of the parameter block, and then specify the directory to
match on by setting ioFlParID in ioSearchInfo1 and ioSearchInfo2 to the
directory ID you’re interested in. However, PBCatSearch may not be what you
want to use, for a couple of reasons:

• The matches PBCatSearch finds by matching based on ioFlParID are only
in that one directory, not in any of that directory’s subdirectories.

• Because the whole catalog file is searched, this is usually not the fastest way
to look through a specific directory’s contents.

If you need matches in both the directory and its subdirectories and you don’t
want to search the whole volume, there’s a routine in the MoreFiles sample code
named IndexedSearch that’s compatible with PBCatSearch’s parameter blocks,
except that IndexedSearch lets you specify what directory you want to search. It
uses indexed PBGetCatInfo calls to search a directory and its subdirectories.

If you need matches from only a single directory (and not from that directory’s
subdirectories), you can use the MoreFiles routine named GetDirItems. This
routine uses PBGetCatInfo to index through a directory’s entries and returns
FSSpecs to the entries found. In this case, making indexed PBGetCatInfo calls
is much faster than searching the whole catalog with PBCatSearch.

Q I need to nest two CustomGetFile dialogs, but I’m running into trouble. Under some
circumstances after the user dismisses the second dialog (usually via the Cancel button),
I lose all of the custom controls in the first dialog. What’s happening?

A The Standard File Package is not reentrant, so there really isn’t a way to nest
standard file dialogs that will work right. The real problem is in the resources
that the Standard File Package uses for the dialog items. When the second,
nested dialog closes, it releases resources that the first dialog is still using; that’s
why your items are getting messed up.

There’s a kludgy workaround, but it will break under future systems. You could,
however, use sequential calls to the Standard File Package instead of nesting
them. This is a bit of a pain, but should accomplish what you want. Here’s how:
Put up the first dialog. In your filter routine, when the user clicks the control
that is to bring up the nested dialog, set a flag in your application signifying
“bring up other,” and tell the Standard File Package that you’re done with the
first dialog by passing item 1 or 2 back. After you put up the second dialog and
process it, bring the original dialog back. This will be a little messy cosmetically
as the dialogs open and close, but it’s the only way to do it in a manner that will
remain compatible.

Q What’s the best way to remove an attached leech?

A The best way we know of is to rub a freshly cut lemon or lime on it. Most
leeches will detach immediately, and die a writhing, horrible death shortly
afterward. Fire and salt are also said to be effective.

MACINTOSH Q & A 109

These answers are supplied by the technical
gurus in Apple’s Developer Support Center.•

Have more questions? See the Macintosh
Technical Q&As on this issue’s CD. (Older Q&As
can be found in the Macintosh Q&A Technical
Notes on the CD.)•

Dynamic programming languages are cool. Once
you’ve tasted dynamic programming, it’s hard to go
back to the old, crusty, static way of doing things. But
the fact remains that almost all commercial software is
still written with static languages. Why?

Recently I took a class in Newton programming. For
me personally the Newton isn’t a very useful device,
only because I never carry around a notepad or calendar
or address book or to-do list and I don’t have a need to
collect any sort of data out in the field. But even
though it’s not terribly useful to me, it is very useful to
a lot of people — and useful or not, it’s a really cool
device. Programming the Newton, for those of you
who haven’t had the pleasure, is very, very different
from programming the Macintosh in C or C++ or
Pascal, and is incredibly attractive in a lot of ways.

The language that you use to program the Newton,
NewtonScript, is an example of an object-oriented
dynamic language, or OODL. (See? Even the acronym
is cool.) This means a number of things, but the upshot
is that it’s very programmer-friendly and very flexible.
Now, I don’t pretend to be an expert in languages, not
by a long shot, so I can’t offer any incisive comparisons
with other “modern” languages, but I can tell you what
it feels like for a dyed-in-the-wool C programmer to
leap into this new and different world. It feels great.

One well-known feature of dynamic languages is
garbage collection, the automatic management of
memory. Objects in memory that are no longer needed
are automatically freed, and in fact there is no way to

explicitly free them other than making sure that there
are no references to them any more, so that the
garbage collector can do its thing. I didn’t fully realize
how much time and effort and code it takes to deal
with memory management until I didn’t have to do it
anymore. There’s something almost naughty about it,
going around cavalierly creating objects in memory
without worrying about what to do with them later.
After a lifetime of living in mortal fear of memory leaks,
it feels deliciously irresponsible. I like it. I like it a lot.

NewtonScript’s object model is refreshingly simple and
consistent. There are the usual “simple” data types —
integers, real numbers, Booleans, strings, and so on —
and only two kinds of compound objects: arrays and
frames. An array, as you might expect, is simply a linear,
ordered group of objects, and the individual objects are
referenced by their index (their position in the array).
Frames are an unordered collection of items in named
slots; you refer to a particular item by the name of its
slot. Frames are also the only NewtonScript objects
that can be sent messages, and the message is simply
the name of a slot that contains a function.

Because NewtonScript is dynamic, variables or frame
slots or array members can hold any kind of data,
including other arrays or frames, or even functions, and
the kind of data can be changed at any time. The size
of the array or frame can be changed anytime, too; you
can add or delete items as needed, without worrying
about managing the changing memory requirements.
This kind of flexibility is a big chunk of what makes
dynamic languages so, well, dynamic. Such a thing is of
course unimaginable in a static language, where each
byte must be explicitly allocated before it’s needed,
carefully tracked while used, and explicitly deallocated
when you’re done with it.

NewtonScript is also introspective, meaning that all
objects “know” all about themselves. (Isn’t that a nice
term? I like the idea of a language being introspective —
sitting there, chin in hand, pondering itself.) The type
of a piece of data is stored with the data, and named
items keep their names. In fact, everything in memory
is coherent, with a well-defined identity; there is no
possibility of undifferentiated bits getting schlepped
around, no possibility of a dangling pointer or a string
being interpreted as a real number. In static languages,

THE VETERAN
NEOPHYTE

The Right Tool
for the Job

DAVE JOHNSON

d e v e l o p Issue 24 December 1995110

DAVE JOHNSON recently enrolled his smallest dog — named Io
(eye-oh) but affectionately called The Stinklet — in an agility class.
Dog agility is a sort of obstacle course for dogs, with ramps and
jumps and tunnels and poles to climb and leap over and crawl and
weave through. Dave got so involved that he started building
agility courses in the living room. He came to his senses, thankfully,
before creating any permanent installations.•

Dave is easing up on his working life: beginning with the next
issue, he’ll be working 3/4 time. He had to give up some things,
and it was decided (reasonably enough) that helping to edit the
rest of develop was more important than writing this column. Look
for guest Neophytes in coming issues, with perhaps the occasional
installment from Dave.•

of course, all that design-level information is thrown
out at compile time, and doesn’t exist in the running
program at all. There’s nothing but undifferentiated
bits, really. What a mess.

And that means that debugging, for the most part, has
to take place at the machine level. By the time the
program is running, it’s just a maze of pointers and
bytes and instructions, fine for a machine but nasty for
humans. Of course, to combat this we have elaborate,
complex programs called source-level debuggers. They
give you the sense that the names still exist, thank
goodness, but it’s just a trick, and depends on an
external file that correlates symbols with locations in
memory. If you don’t have the symbol file, you’re out of
luck. (Confession time: In my regular C programming
I avoid low-level debugging like the plague. Usually I’d
rather spend an hour in a source-level debugger than
spend five minutes in MacsBug — I know, I know, I’m
a wimp — precisely because all the information that
helps me to think about my program, the names and
so on, still “exist” in the source-level debugger. In
NewtonScript, there isn’t even such a thing as low-level
debugging! All that design information is right there in
the guts of the running program. Hallelujah!)

With dynamic languages like NewtonScript, you can
let go of the details of the machine’s operation, and deal
with your program’s operation instead — you can think
at the design level, not the machine level. And it’s an
incredible relief to float free of the bits and bytes and
pointers and handles and memory leaks and messy
bookkeeping. Most of the ponderous baggage that comes
along with writing a computer program goes away. I
mean really, how much longer must we approach the
machine on its terms when we want to build something
on it? Users were released from that kind of bondage to
the machine’s way of doing things long ago. So what
are we waiting for? Obviously we can’t program the
Macintosh in NewtonScript (more’s the pity) but why
aren’t we all chucking our C++ compilers in exchange
for Prograph or Lisp or Smalltalk or Dylan? Well,
some of us are. But I think there are two major hurdles
to overcome before dynamic languages become
mainstream: the need for speed, and inertia.

Dynamic languages carry their own baggage, of course.
In the same way that making the Macintosh easier for
people to use made it harder to program because the
complexity and bookkeeping were shunted behind the
scenes, making programming languages easier to use
also requires new behind-the-scenes infrastructure

and complexity. (Somebody has to do the memory
management, after all.) This usually results in a bigger
memory footprint and slower execution. For “normal”
operations, we’re long past the point where that
mattered: the hardware is beefy enough to handle it
without blinking. But software always pushes the limits
of the hardware. Consequently, there are still times
when it’s important to squeeze every drop of
performance out of the machine. And dynamic languages
are just not very good at that. (I don’t think you’d
want to write your QuickDraw 3D renderer in Lisp.)
So any dynamic language that hopes for mainstream
commercial acceptance had better have a facility for
running hunks of “external” code. That way you could
write the bulk of your program in a dynamic language,
but still be able to write any time-critical parts in your
favorite static language and plug them in. You’d lose
the protection of the dynamic language when running
the external code, but that’s a reasonable tradeoff.

Inertia is the other big problem. People, once they know
one way to do something, are often loath to change it,
especially if they’ve been doing it that way for a long
time. I’m guilty of this in my own small way: every time
I learn a spiffy, liberating new way to program I think
I’ll never go back to the “old” way. But the next time I
set off to write some code I automatically reach for the
familiar tools, not the new ones. (Lucky for me, the
only way to program the Newton is in NewtonScript.)

Fortunately, neither one of these hurdles will stop the
evolution of our tools. It’s unstoppable, if perhaps slower
than we might like. There’s already a whole spectrum
of tools available. From Assembler to AppleScript,
Pascal to Prograph, there are tools that allow anyone
with enough interest to teach their computers to do
new things. The line between users and programmers
continues to blur, and dynamic languages can only help
that process. I love the thought of putting programming
tools into the hands of “nonprogrammers” — kids,
artists, hobbyists — and seeing what they come up
with. You can bet it will be something new, something
that people tied to the machine would never have
thought of. I can’t wait.

THE VETERAN NEOPHYTE: THE RIGHT TOOL FOR THE JOB 111

Thanks to Lorraine Anderson, Jeff Barbose, Paul Dreyfus, Bo3b
Johnson, Lisa Jongewaard, and Ned van Alstyne for their always
enlightening review comments.•

Dave welcomes feedback on his musings. He can be reached
at JOHNSON.DK on AppleLink or eWorld, or dkj@apple.com on
the Internet.•

RECOMMENDED READING
• Unleashed: Poems by Writers’ Dogs, edited by

Amy Hempel and Jim Shepard (Crown, 1995).

Q The on-line discussion groups for Newton developers have a lot of references to
compatibility these days. My application works fine on the 120, 110, and 100 models.
Does that mean I’m compatible?

A Good question. Compatibility doesn’t mean your application works now, but
that it’s written in such a way that it will work on future Newton devices and
operating systems. There are several APIs and methods for doing things on the
120, 110, and 100 models that will work with them but are not necessarily
compatible with future releases of the operating system.

There are two main points to observe for the sake of compatibility:

• If it’s not documented, don’t use it.

• Catch exceptions; they can occur (especially if you ignore the first point).

Since compatibility is such an important question, it will be the focus of this
column. The rest of the column will cover the most common breaches of
compatibility. Where applicable, there will be an example of the incompatible
and compatible ways of doing things. After reading this and making copious
notes (especially where you find yourself saying “Oh dear” and “Oh no!”), you’ll
be in a position to make your code compatible. We also recommend that you try
out your application with the Compatibility App Package (which is on this
issue’s CD and is available from various on-line services).

Note that we refer often to the Newton Toolkit platform file functions. The
Toolkit documentation and platform file release notes describe these functions,
which are provided in lieu of future APIs. You should use these platform file
functions where applicable. Call the code directly and don’t modify it. That is,
use the call/with syntax; don’t place the code in a slot in your application and
use message sending.

UNDOCUMENTED GLOBAL FUNCTIONS
There are four common offenders here: CreateAppSoup, SetupCardSoups,
MakeSymbol, and GetAllFolders.

The function kRegisterCardSoupFunc in the platform file replaces CreateAppSoup
and SetupCardSoups. It’s much simpler to use than the undocumented functions:

// RIGHT way
constant kSoupName := "MySoup:MYSIG";
constant kSoupIndices := '[];
constant kAppObject := '["Item", "Items"];
call kRegisterCardSoupFunc with

(kSoupName, kSoupIndices, kAppSymbol, kAppObject);

// *** WRONG way ***
CreateAppSoup(kSoupName, kSoupIndices, EnsureInternal([appSymbol]),

EnsureInternal(kAppObject));
AddArraySlot(cardSoups, kSoupName);
AddArraySlot(cardSoups, kSoupIndices);
SetupCardSoups();

Newton
Q & A:
Ask the
Llama

d e v e l o p Issue 24 December 1995112

The llama is the unofficial mascot of the
Developer Technical Support group in Apple’s
Newton Systems Group. Send your Newton-related

questions to NewtonMail or eWorld DRLLAMA or
to AppleLink DR.LLAMA. The first time we use a
question from you, we’ll send you a T-shirt.•

The fix for MakeSymbol is to call the Intern function: it does the same thing as
MakeSymbol and it’s documented.

There’s no replacement function for GetAllFolders; just don’t call it.

UNDOCUMENTED GLOBAL VARIABLES
The three most common misused global variables are cardSoups, extras, and
userConfiguration.

There are two uses of cardSoups: one is to register a card soup; the other to
unregister it. Registering is taken care of with kRegisterCardSoupFunc (see above).
Unregistering is done with another platform file function, kUnRegisterCardSoupFunc:

// RIGHT way
call kUnRegisterCardSoupFunc with (kSoupName);

// *** WRONG way ***
SetRemove(cardSoups, kSoupName);
SetRemove(cardSoups, kSoupIndices);

You should never access the extras global variable. Not only is this variable
undocumented, but so is its format. Both are subject to major revisions. The
platform file function kSetExtrasInfoFunc is provided for setting information about
items in the extras drawer. The most common use of this function is to give your
application a different icon (see the ExtraChange DTS sample code on the CD).

There are also platform file functions to manipulate userConfiguration:

• kGetUserConfigFunc gets a slot from the userConfiguration soup
entry.

• kSetUserConfigFunc lets you set user configuration information.

• kFlushUserConfigFunc should be called when you’ve changed user
configuration information.

// RIGHT way
local userName := call kGetUserConfigFunc with ('name);
if userName then
begin

if StrEqual(userName, "Doctor") then
call kSetUserConfigFunc with ('name, "The Doctor");

call kFlushUserConfigFunc with ();
end;

// *** WRONG way ***
if userConfiguration.name AND

StrEqual(userConfiguration.name, "Doctor") then
userConfiguration.name := "The Doctor";

UNDOCUMENTED SLOTS AND METHODS
This is a broad category of problems. The most common is keyboardChicken in
the root view. But there are others, like cursor.current, paperRoll.dataSoup,
dockerChooser in the root view, UnionSoup:Add, and anything in a built-in
application. Unfortunately, there is no right way to access most of these. The
exceptions are cursor.current and Add.

NEWTON Q & A: ASK THE LLAMA 113

// RIGHT way
local currentEntry := cursor:Entry();
myUnionSoup:AddToDefaultStore(anEntry);

// *** WRONG way ***
local currentEntry := cursor.current;
myUnionSoup:Add(anEntry);

Also, don’t rely on the routing slips, such as mailSlip and printSlip, being in the
root view. You can, however, still use those symbols in your routing frame.

UNDOCUMENTED MAGIC POINTERS
If you use one of these, you know it. Just think what would happen if the magic
pointer changed from a view to a string: you would get some pretty bad behavior.
Note that most of this could be dealt with by catching exceptions.

STORE AND SOUP ASSUMPTIONS
All you can assume is that store 0 is the internal store. You can’t rely on there being
only one other store, nor can you rely on the position of a store in the array returned
by GetStores. Also, don’t assume that another store is a card or even that there is just
one store per card.

If you support moving or copying items between stores, you shouldn’t find the title
of the store. Use the constant ROM_cardAction as provided in the platform file:

// RIGHT way
routingFrame := {

print: ...
...
card: ROM_cardAction

}

In addition, don’t assume that your soup will exist on every store. Currently, if you
register your union soup, it’s automatically created on every store that enters the
Newton; however, this may change in the future:

// RIGHT way
GetUnionSoup(kSoupName):AddToDefaultStore(anEntry);

// *** WRONG way ***
aStore:GetSoup(kSoupName):Add(anEntry);

Remember that AddToDefaultStore or Add could throw exceptions. Wrap your calls
to these functions in exception handlers.

Finally, if you support the soup change mechanism, don’t assume that the change is
adding or deleting an entry. It could be something else, such as a soup being created
or removed from a store.

SCREEN SIZE
Don’t assume the screen is any particular size. It could be larger or smaller than
current devices. It could also be wider than it is tall. Your application size setup
routine (usually in the viewSetupFormScript) should take this into account. Have
maximum and minimum sizes. Close your application if it can’t handle the current
screen size.

d e v e l o p Issue 24 December 1995114

// Code to close your application
constant kUnsupportedScreenSize :=

"WiggyWorld does not support this screen size";

DefConst('closeMeFunc, func(x) x:Close());

:Notify(kNotifyQAlert, EnsureInternal(kAppName),
EnsureInternal(kUnsupportedScreenSize));

AddDeferredAction(closeMeFunc, [self]);

UNDOCUMENTED FEATURES OF DATA TYPES
Rely only on the features and details of built-in data types that are documented.
There are three common problem areas: order of slots in a frame, precision of
integers, and implementation of strings.

The order of slots in a frame is undefined. It just so happens that in the current
implementation the first 20 slots are returned in the order added. This is not a
documented feature, so don’t rely on it.

Integers are documented as having at least 30 bits of precision. This doesn’t mean
they’ll always be 30 bits; they could be wider (as anyone who has used compiled
NewtonScript can tell you). Note that compiled NewtonScript integers may not be
32 bits; they also follow the “at least 30 bits” rule.

The biggest offender is assumptions about how strings are implemented. Don’t rely
on strings being null terminated or being composed of two-byte Unicode characters.
The practical upshot is that you should use StrLen to find the length, and StrMunger
(or &) for length changes. Don’t use Length, SetLength, or BinaryMunger with
strings. Don’t use the array accessor to set a string; you can check a character, but
don’t set a character.

MISCELLANEOUS BITS
Don’t send messages directly to the IOBox; use the kSendFunc platform file function.
Nor should you read the items in the IOBox soups.

Also note that there are platform file functions to register and unregister for Find
that you should use.

Always use SetValue when you’re changing the view or other system values.

Use only the body slot in items that you route. Don’t assume that slots other than
body will survive the routing process. On a related note, don’t rely on the category
slot of fields in your SetupRoutingSlip method either.

Don’t rely on the closing order of views in the viewQuitScript. If you need to
do some ordered cleanup, you can initiate your own message (for example,
myViewQuitScript) from the view that first receives the viewQuitScript.

Replace system functions and messages at your peril. It’s possible they will support
other data types in the future (for example, to take NIL now where before they only
took a string).

Don’t assume anything about the built-in applications. Don’t assume that they exist,
or that their soups are there, or that the view structure will stay the same. If you do
need to use a system feature (for example, a particular prototype, global function, or
root method), test your assumptions.

NEWTON Q & A: ASK THE LLAMA 115

local cardFileExists := GetRoot().cardfile;

if cardFileExists then
begin

local cardFileSoup := GetUnionSoup(ROM_cardfilesoupname);
if cardFileSoup then

...
end;
// :-0
if GetRoot().keyboardChicken then
begin

...
end;

Current Newtons have two levels of Undo; this may change. There could be more or
fewer levels and it could change to Undo/Redo. It’s safest to call AddUndoAction
from inside your undo action; this will support Undo/Redo if we implement it, but
will do nothing if we do not.

d e v e l o p Issue 24 December 1995116

Thanks to our Newton Partners for the questions
used in this column, and to jXopher Bell, Henry
Cate, Bob Ebert, David Fedor, Stephen Harris,
Jim Schram, Maurice Sharp, James Speir, and
Bruce Thompson for the answers.•

Have more questions? Take a look at
Newton Developer Info on AppleLink.•

YOUR NAME HERE

YOUR PHOTO HERE

Do you have code that solves a problem other Macintosh
developers might be having? Why not show it off by writing
about it in develop? We’re always looking for people who might be
interested in submitting an article or a column. If you’d like to
spotlight and distribute your code to thousands of developers of
Apple products, here’s your opportunity.

If you’re a lot better at writing code than writing articles, don’t
worry. An editor will work with you. The result will be something
you’ll be proud to show your colleagues (and your Mom).

So don’t just sit on those great ideas; feel the thrill of seeing them
published in develop!

For Author’s Guidelines, editorial schedule, and information
on our incentive program, send a message to DEVELOP on
AppleLink, develop@applelink.apple.com on the Internet, or
Caroline Rose, Apple Computer, Inc., 1 Infinite Loop,
Cupertino, CA 95014.

See if you can solve this programming puzzle, presented in the form of
a dialog between Konstantin Othmer (KON) and Bruce Leak (BAL).
The dialog gives clues to help you. Keep guessing until you’re done; your
score is the number to the left of the clue that gave you the correct answer.
Even if you never run into the particular problems being solved here,
you’ll learn some valuable debugging techniques that will help you solve
your own programming conundrums. And you’ll also learn interesting
Macintosh trivia.

BAL I’ve got a small problem I’d like you to help me with.

KON Who’s paying the airfare this time?

BAL Nothing like that. It’s really quite straightforward, and surprisingly
reproducible. The problem is that sometimes when I’m using
Microsoft Word 5.1a and I pull down a menu, when I let go of the
menu there’s garbage on the screen where the menu was.

KON That was a problem they were having in the beta release, but I think
it’s fixed in the final version of Windows 95.

BAL Actually, this is on a Power Macintosh 6100, and I haven’t yet installed
Windows 95 on top of my SoftPC, which runs on my 68000, which is
being emulated by Gary’s emulator.

KON Microsoft is still in the loop.

BAL Well, it’s not just a Microsoft problem. I can’t seem to make it happen
with Word by itself. It only seems to happen if I run and quit cc:Mail
before running Word.

KON That darn Justice Department! Without them you could just be
running Microsoft mail, and you probably wouldn’t have this problem.

Try running Word; then launch and quit cc:Mail. Does it still
happen?

100 BAL Now Word is working fine. In fact, Word works in every case — at
least as far as this problem is concerned — unless I launch and quit
cc:Mail before launching and quitting Word. And the interesting thing
is that it only happens with the Modern Memory Manager on.

KON & BAL’S PUZZLE PAGE

Zoning Out

KON & BAL’S PUZZLE PAGE: ZONING OUT 117

KONSTANTIN OTHMER AND BRUCE LEAK
KON has been holding a steady job at Catapult
Entertainment for many months now, but he
spends more time playing soccer than working.

BAL is at the front of the self-employment line and
has finally moved out of his hotel and into a
house. Rumor has it that behind the house there’s
a big archery field.•

KONSTANTIN OTHMER
AND BRUCE LEAK

KON Just run your machine with the classic Memory Manager. I have
problems running THINK C’s debugger when I use the Thread
Manager and the Modern Memory Manager. There’s just too many of
these kinds of bugs to deal with!

BAL Not so fast, QuickDraw. The Modern Memory Manager gives you lots
of great new features. First of all, your machine will run faster. In
addition to being ported native, it also uses much more efficient
algorithms. It keeps track of free blocks in a separate list, keeps track of
heap zones to make RecoverHandle work better, and has a back
pointer so that blocks can be walked either way, drastically decreasing
heap-walking time and making things much more efficient —
especially when virtual memory is on. Also, the Modern Memory
Manager was designed to be bus error proof, in that it returns from
any internally generated exception by returning an error to its caller
(though this was changed in the latest version of the Modern Memory
Manager, as you may have read in the Balance of Power column in
develop Issue 23). Finally, in the old Memory Manager moving the
partition between the system and Process Manager heaps was a total
nightmare; this problem was solved in the Modern Memory Manager.

KON Anytime you port something native you have two choices: rewrite the
code directly, preserving internal algorithms and data structures, or
rethink and reimplement, preserving only the top-level application
interface. The first choice virtually guarantees compatibility but makes
it difficult to maintain in the future, while the second gives you slightly
less compatibility but a much better upgrade path, better maintainability,
and a much more efficient system. It sounds like they went with the
second choice, but at the obvious expense of some short-term
compatibility problems. And it seems like that’s what we’re dealing
with here.

BAL Thanks for the philosophy lesson. Are you going to solve the problem?

KON OK. Launch and quit cc:Mail and check all the heaps. Look for
orphaned memory, locked blocks being left around, or any other signs
of an application not properly cleaning up after itself.

BAL I need to install MacsBug to do that. I’ll install version 6.5d11 because
it has some new PowerPC features in case we need them.

KON I’m afraid we will.

90 BAL So after we quit cc:Mail, the system heap grew some, but all the heaps
seem fine. We have an extra 128-byte pointer, and we have five extra
handles for a total of almost 32K, but three of those (25K) are purgeable.

KON All this extra stuff lying around certainly explains why I have to reboot
every couple of hours.

BAL Yeah, and those OS engineers really worked on that problem. On
System 7.5 you get a pretty picture and a nice thermometer bar!

KON So try the patch dcmd. It will tell you what traps have been patched.
Before you run cc:Mail, type

patch s

to grab a snapshot of all the traps. When you’re in cc:Mail, just type

patch

d e v e l o p Issue 24 December 1995118

and you’ll get a list of all the traps that have been patched. It’s a great
way to find random skankiness.

BAL The only OS trap that they patch is _Rename, and they patch the
Toolbox traps _Pack8, _UserDelay, _SysErr, _LoadSeg, _UnloadSeg,
and _ExitToShell.

KON OK, and what’s still patched after the application quits?

BAL Nothing. It seems to totally clean up.

KON Wonderful. What does Word patch?

80 BAL The OS traps _Rename and _CompactMem, and the Toolbox traps
_Pack8, _UserDelay, _HiliteWindow, _FrontWindow, _SysError,
_LoadSeg, and _ExitToShell.

KON There seems to be a lot of overlap. We should check a do-nothing
generic application. I bet the system is magically patching some stuff
when it runs an application.

70 BAL It turns out that all those traps except _HiliteWindow, _FrontWindow,
_CompactMem, and _UnloadSeg are always getting patched.

KON It figures. Word is augmenting parts of the Memory Manager and
getting in on some Window Manager action, and cc:Mail is playing
games with the Segment Loader. Where’s that book on Macintosh
programming guidelines?

65 BAL I don’t think they read that in Redmond. By the way, even though
menu code is fairly boilerplate, this one’s a mixed bag. Netscape,
SimpleText, and FindFile work fine, but Word and THINK Reference
fail consistently.

KON Boy, times have changed. I remember when you used to just dive right
into MacsBug, disassemble a bunch of code, and get to the bottom of
these problems. Now you’re looking at what SimpleText does
compared to Word!

BAL I’m not the one who’s doing it. I don’t even touch the computer
anymore. It’s one of my henchmen, Paul Young.

KON Anyway, there are two ways the bits behind the menus get redrawn. If
plenty of memory is available, they get back-buffered and restored with
CopyBits. If there’s not much memory, an update event is generated.

BAL Since Word is the only application running at the time, we have plenty
of memory.

KON Set a breakpoint on CopyBits and pull a menu down. The first break
will be when the bits are being saved. Let’s look at the address, step
over the call, and make sure the right data was put there. When you let
the menu up, you’ll break on CopyBits again. Is the source data correct
— that is, is the source our previous destination?

BAL The base address when the bits are restored isn’t the same as the base
address when they get saved.

KON Where is the base address? Is it part of a handle that moved?

60 BAL The base address for the restore is $40810000.

KON Someone is dereferencing zero! It sounds like the bits are getting saved
in a handle, and somehow the handle is getting trashed. Let’s follow
the handle from the save and see what happens to it.

KON & BAL’S PUZZLE PAGE: ZONING OUT 119

55 BAL When the bits are being saved, the base address is part of a handle in
MultiFinder temporary memory. The handle is $438 bytes long.

KON What happens to that memory on the restore?

50 BAL The memory still exists, and the data is fine. It’s just that the PixMap
doesn’t point there anymore.

KON So we need to figure out where the Menu Manager is storing the
PixMap and why that location is getting trashed.

BAL The Menu Manager uses SaveBits and RestoreBits, which allocate
memory for the pixels using the offscreen buffer calls that return
PixMaps. The PixMap base address does double duty: when it’s
unlocked it’s a handle; when it’s locked it’s a pointer. There’s a flag in
rowBytes to indicate what state it’s in. To go from the locked state to
the unlocked state, the GWorld routines call RecoverHandle.

KON Let’s break on RecoverHandle and see what we get back.

45 BAL It returns 0. But why?

KON It’s kind of weird that this happens only with the Modern Memory
Manager. In the old Memory Manager, you had to set the heap zone
before calling RecoverHandle. The Modern Memory Manager
relaxed this restriction and keeps a tree of valid heaps. When you call
RecoverHandle, it walks the heap tree. If cc:Mail is somehow
corrupting the tree, RecoverHandle will fail.

BAL Nice theory. How are you going to test that?

KON E.T.O. 17 has a debugging version of the native Memory Manager
that will print out diagnostics anytime weird stuff happens. Let’s install
it and reboot.

40 BAL When you boot, you drop into MacsBug with the message “Bad
pointer being passed to RecoverHandle 00030020.” It looks like “PC
Exchange” was loading.

KON Let’s try booting with the extensions off. Use the Extensions Manager
so that you can keep MacsBug, the Memory control panel (so that
we’re sure we’re in the Modern Memory Manager), and the
Debugging Memory Manager.

35 BAL When I run the Extensions Manager, I break into MacsBug with the
message “Bad handle; are you unlocking a fake handle?”

KON A complete treatise on all the memory crimes committed in the
Macintosh is beyond the scope of this column.

BAL Without superfluous extensions, the problem at boot time goes away,
but we still have the problem in Word.

KON Well, let’s look at the zones and see if everything looks OK. Let’s do an
hz to list all the heap zones.

BAL OK. But hz doesn’t use the heap tree, so if you want to check the heap
tree you’ll have to do it manually.

KON Great. I’ll use the SmartFriends debugging trick and call Jeff to figure
out how to do that.

Jeff The heap tree is part of the zone header. The system zone starts at
$2800, and a pointer to the next zone starts at offset $20. $2820
contains $1672DF0.

d e v e l o p Issue 24 December 1995120

KON That should be the Process Manager zone. But that number is really
big. How could that be? How many fonts do you have installed?!

Jeff Since the system heap can grow, we put the Process Manager zone
header at the end of the block, so we don’t have to move the header
every time the heap size changes.

30 BAL The next zone in the Process Manager is nil, since at the top level there
are only two zones: the system zone and the Process Manager zone.

KON Let’s look at the child zones inside the Process Manager.

Jeff The child zones are pointed to by offset $24 in the zone header.

25 BAL The first child zone is the Word zone, which corresponds to what we
got from hz. And the Word zone header has no child zones.

KON So the world makes sense so far. Does the next zone pointer make
sense?

BAL It’s kind of wacky. It points inside the Word heap!

KON That’s a problem. Does that zone header look reasonable, at least?

20 BAL No. It’s trash. It looks like Word code.

KON What happens if you don’t run cc:Mail before running Word? And
how does the Memory Manager know how to update the zone
headers? There’s no call to explicitly destroy zones, only create
them.

BAL I’ll take the second question first. Zones are created by InitZone, and
they’re never explicitly destroyed. In the Modern Memory Manager,
there’s new logic in DisposeHandle that checks to see if the handle is
a zone; if so, it assumes the zone is destroyed and updates the heap
tree.

KON Will the skankiness ever end?

15 BAL If I run Word without first running cc:Mail, the heap tree is OK.

KON Now we just need to figure out why the heap tree is getting trashed.
Even though the tree update algorithm is implicit, it seems pretty
good at first blush. Let’s go through the failing scenario and compare
the heap zones to the tree and figure out when they diverge.

10 BAL When we run cc:Mail, hz doesn’t agree with the zone structure we get
by walking the heap tree. Here’s what the two structures look like:

KON & BAL’S PUZZLE PAGE: ZONING OUT 121

System zone System zone

Handle to cc:Mail process
Zone

ZoneZone

Process Manager zone Process Manager zone

Stack

KON So the cc:Mail zone is smaller than the handle of the memory it’s in.
Someone limited the size of the application zone. In the heap tree
view, it’s clear why: another zone is being allocated; 32K is left between
the zones, and that space is being used for the stack.

5 BAL The reason hz can’t find the second zone is that before the Modern
Memory Manager, no one kept explicit track of the zones. Basically,
the hz command has to search for the zones. It does this by starting
from the system zone, which is always pointed to by low memory (and
is usually located after the trap tables at $2800). From the system heap
zone header, it can find the zone trailer. Right after that block is the
Process Manager zone header. It walks all the blocks in a zone and
finds all the handles that look like other zones. It starts by assuming
that the handle contains a zone, and then checks to see if the zone
header points to a block that looks like a trailer and if the trailer points
back to the zone header. When it looks for zones inside other zones, it
assumes that they begin either at the start of the handle or right after
another zone. Since cc:Mail has its stack space between the two zones,
the hz command can’t find it.

KON OK. Unfortunately we’re not debugging the hz command. But that
probably gives us a clue as to why the Modern Memory Manager is
getting confused. It seems to keep pretty good track of the zones that
are getting created, since that’s easy by just watching InitZone. But it
gets confused when the zones are being disposed of, since it does that
by watching DisposeHandle.

BAL Exactly. The heap tree gets trashed when cc:Mail quits, since the
Modern Memory Manager assumes that there’s only one zone (and
perhaps its children) in any handle. So when it sees the dispose, it
throws away the first zone and all its children, but it doesn’t throw
away the second zone. It works fine with the old Memory Manager
since no one ever explicitly keeps track of all the zones. But the
Modern Memory Manager uses the heap tree for RecoverHandle, and
the tree is trashed, so either the machine crashes or you get garbage.

KON That’s pretty interesting. In this case, neither cc:Mail nor Word did
anything wrong. The way cc:Mail used the Memory Manager was
nonstandard, and when the algorithms in the Modern Memory Manager
changed, there were some interesting cases that fell through the cracks. I
think the newer version of cc:Mail no longer allocates zones this way.
And the Memory Manager will undoubtedly soon be smarter.

BAL Nasty.

KON Yeah.

d e v e l o p Issue 24 December 1995122

SCORING
70–100 In the end zone
50–65 Middle ground, the Twilight Zone
25–45 Out there in the ozone
5–20 Low memory, zoned out•

Thanks to Jeff Crawford and Bill Knott for reviewing this column. Special thanks to Rocket Scientist
Paul Young, who originally found this puzzler and had the tenacity to narrow it down to a reproducible
case.•

For a cumulative index to all issues of
develop, see this issue’s CD.•

A
accelerator performance

(QuickDraw 3D) 42
Access, scriptable objects and 18
AccessByOrdinal, scriptable

objects and 18
AccessByProperty, scriptable

objects and 20
AccessByUniqueID, scriptable

objects and 18
“According to Script” (Simone),

steps to scriptability 27–29
Acquire (OpenDoc) 36
action button, in alerts 65
Add, Newton Q & A 114
AddToDefaultStore, Newton

Q & A 114
AddUndoAction, Newton Q & A

116
AECommand, sending Apple

events to 20–21
AEDesc, OSL and 8
AEDescList. See descriptor lists

(OSL)
AEResolve, OSL and 8
AESetObjectCallbacks, OSL and 9
'aete' resource

for implementing
scriptability 28–29

for Scriptable Database 16
AFP (AppleShare) file system

(Macintosh Q & A) 108
AIFF files

converting QuickTime
movies to 54–55

Sound Manager and 54–55
alert buttons 65–66
alert messages 62–65
alerts 59–68

application modal 60
icons in 62
movable 60
and OpenDoc part editors 62

alert titles 65
ampCmd command (Sound

Manager) 50–51
Anderson, Greg 6
Apple event handlers, for

implementing scriptability 29

Apple events
sending to scriptable objects

20–21
ToolServer and 71

Apple Multimedia Tuner
(Macintosh Q & A) 101

AppleScript
scriptable applications and

26, 28
testing Apple event code 29
ToolServer and 71

AppleScript terminology extension,
for Scriptable Database 16

application modal alerts 60

B
BackgroundErr (ToolServer)

70–71
BackgroundOut (ToolServer) 71
BackgroundShell (ToolServer) 70
back issues of develop 5
“Balance of Power” (Evans),

advanced performance profiling
56–58

Best mode (ColorSync),
Macintosh Q & A 107

BestType, scriptable objects and 19
BinaryMunger, Newton Q & A

115
binding files, OpenDoc and 31
bitsProc bottleneck (QuickDraw)

74, 75, 77, 82body slot,
Newton Q & A 115

bufferCmd command (Sound
Manager) 53

C
cache 86–87

synchronizing with main
memory 87

cache incoherence 86–87
cache misses (PowerPC) 56

measuring 56–57, 58
callBackCmd command (Sound

Manager) 53
callOldBits flag (StdPix) 77
callStdBits flag (StdPix) 77
Cancel button, in alerts 66
CanReturnDataOfType, scriptable

objects and 19
cardSoups, Newton Q & A 113

caution alerts 60–61
CDRequestSettings, Macintosh

Q & A 101
CheckpointIO, PCI device drivers

and 85–87, 91, 92, 93
clearImageMethod (QuickDraw

3D), Macintosh Q & A 105
CloneDesignator,

TAbstractScriptableObject and
17

CMMs (ColorSync), Macintosh
Q & A 107

CmpSoundHeader 46
CMYK-to-CMYK device-link

profile (Macintosh Q & A) 107
codecs (Macintosh Q & A) 100,

101
Code Fragment Manager,

Macintosh Q & A 101–102
coerced records, Apple events and

11–12
collection object, token collections

and 21
collector objects, deep searches

and 25
ColorSync

L*a*b* color space
(Macintosh Q & A)
106–107

quality settings (Macintosh
Q & A) 107

CompareProperty, comparative
search specifications and 22–23

comparison descriptors 22
resolving 16
whose clause resolution and

12, 14–15
compressed audio (Sound

Manager) 46–48, 49, 53–55
CompressImage (QuickTime) 80,

81
ComputeThisSegment,

IOPreparationTable and 94
containers (OpenDoc) 30, 31
container suite (OpenDoc) 31
content property (OpenDoc) 38
CopyBits, KON & BAL puzzle

119
CreateAppSoup, Newton Q & A

112
Create Element event, dispatch

method for 21

INDEX

INDEX 123

create-mark-token callback, OSL
and 9

CreateNewElement, sending
Apple events to 20, 21

CreateSoftwareInterrupt,
PrepareMemoryForIO and
94–95

CurResFile (QuickDraw GX),
Macintosh Q & A 102

cursor.current, Newton Q & A
113–114

CWCheckBitMap (ColorSync)
107–108

D
data compression, printing images

with 72–83
data-loading function, printing

large compressed images
77–78, 79

data transfer process (PCI device
drivers) 90–94

with logical alignment 93–94
with partial preparation

90–91, 92–93, 98–99
See also DMA transfers

DeclareClassData, scriptable
objects and 19

DeclareMinClassData, scriptable
objects and 19

DecompressImage (QuickTime)
76

deep searches, whose clause
resolution and 24–25

default button, in alerts 66
DefaultType, scriptable objects

and 19
descriptor lists (OSL) 8–9
device drivers (PCI), preparing

memory for 84–99
dictionaries, for implementing

scripting 28–29
direct memory access. See DMA;

DMA transfers
DirectObjectIterator, scriptable

objects and 17–18
direct parameter, of Apple events 7
dirty flag (OpenDoc) 38
DisposeDesignator,

TAbstractScriptableObject and
17

ditherCopy transfer mode
(QuickDraw) 76

DMA (direct memory access) 84
DMA support library 84, 87, 89,

90, 94–99

DMA transfers 85–99
with discontiguous physical

mapping 92
initialization for 95
with partial preparation

90–91, 92–93, 98–99
simple 91–92

dockerChooser, Newton Q & A
113

DoDriverIO, PCI device drivers
and 85

DoScript (ToolServer) 71
double buffer bypass (QuickDraw

3D) 42, 43
draft permissions (OpenDoc) 37
drafts (OpenDoc) 31, 37
DR Emulator control panel,

PowerPC and 57
dynamic behavior objects,

scriptable objects and 25, 26
dynamic programming languages

110–111

E
ElementIterator, scriptable objects

and 17–18
encode field (Sound Manager) 46
errAEEventNotHandled, and

whose clause resolution 10,
12, 13

Evans, Dave 56
event-first dispatching, scriptable

objects and 20
“Execution Levels for Code on the

PCI-Based Macintosh”
(Saulpaugh) 86

ExportAIFF (Sound Manager) 54
Externalize (OpenDoc) 35, 37–39
externalizing parts (of OpenDoc

documents) 35–36, 37–39
extras, Newton Q & A 113
ExtSoundHeader 46

F
FCompressImage (QuickTime)

80, 81
FDecompressImage (QuickTime)

76
Fernicola, Pablo 42
FindMatchingSound (Sound

Manager) 50
FindNextComponent

(Component Manager), Sound
Manager and 46–48

focus (of OpenDoc storage units)
32–33

formAbsolutePosition, scriptable
objects and 18, 23

formName, scriptable objects and
18

formWhose key form 10
handling in the object

accessor 11
foundation classes, for

implementing scripting 17–23
4PM performance tool, PowerPC

and 57–58
frames (NewtonScript) 110
frequencyCmd command (Sound

Manager) 51–52

G
garbage collection, in dynamic

programming languages 110
Gelphman, David 72
gestaltQD3DVersion, Macintosh

Q & A 106
GetAllFolders, Newton Q & A

112–113
GetComponentInfo (Sound

Manager) 48
GetCompressionInfo (Sound

Manager) 46
Get Data event handler, methods

used by 18
GetDirItems (MoreFiles sample

code), Macintosh Q & A 109
GetHardwareSettings (Sound

Manager) 50
GetLogicalPageSize, virtual

memory and 85
GetMapEntryCount, PCI device

drivers and 87
GetMaxCompressionSize

(QuickTime) 80, 81
GetProperty, scriptable objects

and 18–20, 22
getRateMultiplierCmd command

(Sound Manager) 52
GetSoundHeaderOffset (Sound

Manager) 46
GetStores, Newton Q & A 114
“Getting Started With OpenDoc

Storage” (Lo) 30–41
getVolumeCmd (Sound Manager)

51
“Graphical Truffles” (Thompson

and Fernicola), making the
most of QuickDraw 3D 42–44

“Guidelines for Effective Alerts”
(Parsons) 59–68

d e v e l o p Issue 24 December 1995124

GWorld (offscreen), drawing to
(Macintosh Q & A) 101–102

GXDrawShape, Macintosh Q & A
103

GXFormatDialog, overriding
(Macintosh Q & A) 105

GXGetMessageHandlerResFile
(QuickDraw GX), Macintosh
Q & A 102

GXInstallQDTranslator,
Macintosh Q & A 103

GXJobDefaultFormatDialog,
overriding (Macintosh Q & A)
105

GXJobStatus, Macintosh Q & A
104

GXOpenConnection, Macintosh
Q & A 104

GXRemoveQDTranslator,
Macintosh Q & A 103

gxReplaceLineWidthTranslation,
Macintosh Q & A 103

GXSetShapePen, Macintosh
Q & A 102–103

GXSetStylePen, Macintosh Q & A
102–103

gxSimpleGeometryTranslation,
Macintosh Q & A 103

GXValidateShape, Macintosh
Q & A 103

H
hairlines, in QuickDraw GX

(Macintosh Q & A) 102–103
human interface guidelines, alerts

59–68
hz command, KON & BAL

puzzle 120, 121–122

I
Image Compression Manager

(QuickTime), compressing/
decompressing image data 73

ImageDescription (QuickTime)
75–76

extending (Macintosh
Q & A) 100, 101

ImplementClassData, scriptable
objects and 19

ImplementMinClassData,
scriptable objects and 19

IndexedSearch (MoreFiles sample
code), Macintosh Q & A 109

InitializeDMATransfer,
PrepareMemoryForIO and 95

InitializePrepareMemoryGlobals,
PrepareMemoryForIO and
94–95

InitPart (OpenDoc) 35, 36, 37
InitPartFromStorage (OpenDoc)

35–36, 39–41
InitZone, KON & BAL puzzle

121, 122
interactive renderer (QuickDraw

3D) 42
Macintosh Q & A 105

Interface Definition Language
(IDL), Open Doc and 31, 36

Intern, Newton Q & A 113
IOBox, Newton Q & A 115
IOCommandIsComplete,

PrepareMemoryForIO and 92
IOPreparationTable

ComputeThisSegment and
94

PrepareMemoryForIO and
87, 90, 92

J
Johnson, Dave 110
JPEG image compression

codecs supporting 80
performance measurements

80–82
printing images with 72–83

JPEG Print with Dataload sample
application 78

JPEG Print sample application
75, 82

K
kAEIDoMarking flag, OSL and 9
kAEIDoWhose flag, OSL and 10
keyAEIndex parameter

(typeWhoseDescriptor) 12
keyAETest parameter

(typeWhoseDescriptor) 12
keyboardChicken, Newton

Q & A 113
kFlushUserConfigFunc, Newton

Q & A 113
kGetUserConfigFunc, Newton

Q & A 113
kIOLogicalRanges flag,

PrepareMemoryForIO and 87
kIOMinimalLogicalMapping flag,

PrepareMemoryForIO and 87
kIOStateDone flag,

PrepareMemoryForIO and 87,
91

kMoreIOTransfers flag,
PrepareMemoryForIO and 91

kODPropPreferredKind property
(OpenDoc) 39

“KON & BAL’s Puzzle Page”
(Othmer and Leak), Zoning
Out 117–122

kRegisterCardSoupFunc, Newton
Q & A 112, 113

kSetExtrasInfoFunc, Newton
Q & A 113

kSetUserConfigFunc, Newton
Q & A 113

kUnRegisterCardSoupFunc,
Newton Q & A 113

kWaitForAsyncSearchesTo-
Complete message, deep
searches and 25

L
L*a*b* color space (ColorSync),

Macintosh Q & A 106–107
LaserWriter 8.2.2, printing JPEG

compressed images 81–83
LaserWriter 8.3, printing JPEG

compressed images 73–74,
81–83

Leak, Bruce 117
Length, Newton Q & A 115
Lo, Vincent 30
logical addresses, virtual memory

and 85
logical data transfer,

PrepareMemoryForIO and 87,
89, 93–94, 96, 97

logical descriptors 22
resolving 15
whose clause resolution and

12, 14–15
logical mapping tables,

PrepareMemoryForIO and 87,
88–90

logical terms descriptor, whose
clause resolution and 12

M
Macintosh Q & A 100–109
mailSlip, Newton Q & A 114
MakeSymbol, Newton Q & A

112–113
mapping tables, for address ranges

88–90
mark-adjusting callback, OSL and

9
marking, OSL and 7, 8–10

INDEX 125

mark token
OSL and 8, 9
See also tokens

mark-token callback, OSL and 9
Maroney, Tim 69
memory

preparing for I/O 87–88
See also

PrepareMemoryForIO
Memory Management Unit

(MMU), remapping logical
addresses 85

meshes (QuickDraw 3D)
Macintosh Q & A 106
order of vertices in

(Macintosh Q & A) 105
Microseconds (Toolbox) 42
Minow, Martin 84
MMCR0 register, PowerPC and

58
Modern Memory Manager, KON

& BAL puzzle 117–118, 120,
122

movable modal dialogs, as alerts
60, 62

MPW commands, running with
ToolServer 69–71

“MPW Tips and Tricks”
(Maroney), ToolServer Caveats
and Carping 69–71

MyConfigureDMATransfer,
PrepareMemoryForIO and
95–96

MyDataLoadingProc
(QuickTime) 78, 79

MySetupForDataTransfer,
PrepareMemoryForIO and
96–97

N
Name Registry (Macintosh

Q & A) 100
“New Device Drivers, The:

Memory Matters” (Minow)
84–99

NewEra sample application 42–43
NewHandle (QuickTime) 80
Newton compatibility 112–116
Newton Q & A: Ask the Llama

112–116
NewtonScript 110–111
Newton Toolkit platform file

functions 112
NextPageIsContiguous,

PrepareMemoryForIO and 91

Normal/Draft mode (ColorSync),
Macintosh Q & A 107

note alerts 60
NURB patches (QuickDraw 3D),

Macintosh Q & A 106

O
object accessor callbacks, OSL and

8
object accessor functions, for

implementing scriptability 29
object-first dispatching, scriptable

objects and 20
object-marking callback, OSL and

9, 10
object model hierarchy, for

implementing scripting 28
object specifiers (of Apple events),

resolving 8
Object Support Library (OSL) 7–8

marking 7, 8–10
whose clause resolution 7,

10–15
octet (SOM) 34
ODByteArray (OpenDoc) 33–34
ODContainer (OpenDoc) 31
ODDocument (OpenDoc) 31
ODDraft (OpenDoc) 31
ODPart (OpenDoc) 36
ODPersistentObject (OpenDoc)

36
ODPropertyName (OpenDoc) 32
ODStorageUnit (OpenDoc) 31,

32–33
manipulating value data 33

ODValueType (OpenDoc) 32
Olson, Kip 45
OpenDoc

data interchange 30, 31
structured storage model

30–41
OpenDoc part editors, alert icon

for 62
Othmer, Konstantin 117

P
PackBits compression, printing

images with 81–82
page boundaries

address ranges and 88
virtual memory and 85

page faults
and PCI-based Macintosh

computers 86
virtual memory and 85

pages
mapping address ranges to

88–90
mapping to multiple 89
virtual memory and 85

Page Setup dialog, adding a panel
to (Macintosh Q & A)
104–105

paperRoll.dataSoup, Newton
Q & A 113

ParentObject, scriptable objects
and 18

Parsons, Paige K. 59
part editors (OpenDoc) 30, 31

reconstructing parts 38,
39–41

part kind (OpenDoc) 38, 39
parts (of OpenDoc documents)

30, 35–41
cloning 34, 36
externalizing 35–36, 37–39
initializing 36–38
life cycle of 35
parent initialization 36
reconstructing 38, 39–41
wrapping of 37

part wrappers (OpenDoc) 37
PBCatSearch, Macintosh Q & A

108–109
pBestType property, of scriptable

objects 18, 19
PBGetCatInfo, Macintosh Q & A

109
PCI-based Macintosh computers

device drivers 84–99
execution levels for code 86

PCI bus (Macintosh Q & A) 100
PCI device drivers

data transfer process 90–94
DMA transfers 85–99
preparing memory for 84–99

PCI expansion slots (Macintosh
Q & A) 100

pClass property, of scriptable
objects 18, 19

pContents property, of scriptable
objects 18

pDefaultType property, of
scriptable objects 18, 19

permissions (OpenDoc) 31, 37
persistent objects (OpenDoc) 31,

36
persistent storage (OpenDoc) 30,

35
physical addresses, virtual memory

and 85

d e v e l o p Issue 24 December 1995126

physical mapping tables,
PrepareMemoryForIO and 87,
88–90

PMC1 register, PowerPC and 58
PMC2 register, PowerPC and 58
pName property, of scriptable

objects 18, 19
position code (OpenDoc) 33
PostScript Level 2 printers,

support for JPEG image
compression 82–83

POWER Emulator control panel,
PowerPC and 57

PowerPC
advanced performance

profiling 56–58
cache misses 56–57, 58

'PREC' 0 resource (QuickDraw
GX), Macintosh Q & A 104

PrepareDMATransfer,
PrepareMemoryForIO and 95,
96

PrepareMemoryForIO
DMA transfers 85–99
PCI device drivers and

84–99
and programmed I/O 87,

89, 93–94, 96, 97
user data transfers 85–87

primary interrupt handlers, PCI-
based Macintosh and 86, 93, 97

primary interrupt level, on PCI-
based Macintosh 86, 90

printing
compressing uncompressed

data 78–80
with JPEG image

compression 72–83
large compressed images

77–78, 79
“Printing Images Faster With

Data Compression”
(Gelphman) 72–83

PrintPICTtoJPEG sample
application 78–80, 82

printSlip, Newton Q & A 114
Process Manager zone, KON &

BAL puzzle 121–122
programmed I/O,

PrepareMemoryForIO and 87,
89, 93–94, 96, 97

ProjectDrag 3
properties (of OpenDoc storage

units) 32, 33
PropertyAppliesToProxy,

scriptable objects and 22

property description tables,
scriptable objects and 19–20

proxy tokens, token collections
and 21–22

Purge (OpenDoc) 36
purging (OpenDoc) 36

Q
Q3Renderer_Sync (QuickDraw

3D) 42
QTMA (QuickTime Music

Architecture) 3
QuickDraw 3D 42–44

custom attributes 43–44
debugging 44
getting version of

(Macintosh Q & A) 106
improving accelerator

performance 42
interacting with input

devices 42–43
interactive renderer

(Macintosh Q & A) 105
setting file type 43

QuickDraw GX
adding panels to dialogs

(Macintosh Q & A) 102
adding print items to dialogs

(Macintosh Q & A) 102
and hairlines (Macintosh

Q & A) 102–103
and message override

(Macintosh Q & A)
103–104

PostScript driver (Macintosh
Q & A) 104

QuickDraw pictures, image data
compression 73, 75

QuickDraw printer drivers, and
image data compression 74

QuickTime
codecs (Macintosh Q & A)

100, 101
compressing audio 53–55
converting movies to AIFF

files 54–55
data-loading function

77–78, 79
image data compression

75–78
Sound Manager and 52–55

R
rateCmd command (Sound

Manager) 52

rateMultiplierCmd (Sound
Manager 3.1) 52

reconstructing parts (of OpenDoc
documents) 38, 39–41

RecoverHandle, KON & BAL
puzzle 118, 120, 122

Release (OpenDoc) 36
ResolveComparisonOperator,

whose clause resolution and
14–15, 16

ResolveLogicalDescriptor, whose
clause resolution and 14

ResolveWhoseDescriptor, whose
clause resolution and 13

ResolveWhoseTest, whose clause
resolution and 13–14

ROM_cardAction, Newton Q & A
114

S
Saulpaugh, Tom 86
scriptability, implementing 27–29
scriptable applications 27–29

AppleScript and 26
foundation classes for 17–23
whole clause resolution 6–26

Scriptable Database sample
application

dispatching methods 20
for whose clause resolution

15–17
scriptable objects

access methods 18–20
class data tables 19
dynamic behavior 26
elements of 17–18
properties of 18–20
property description tables

19–20
search specifications 22–25
sending events to 20–21
token collections 21–22

Scriptable Text Editor 28, 29
scripting (OpenDoc) 31
SearchDeep, whose clause

resolution and 24–25
secondary interrupt handlers, PCI-

based Macintosh and 86, 93, 98
secondary interrupt level, on PCI-

based Macintosh 86, 90
SendSoftwareInterrupt,

PrepareMemoryForIO and 91
SetCompressedPixMapInfo

(QuickTime) 76, 78
SetData, scriptable objects and 21
SetLength, Newton Q & A 115

INDEX 127

SetProperty
scriptable objects and

19–20, 21
transaction parameter 19–20

SetupCardSoups, Newton Q & A
112

SetupRoutingSlip, Newton Q & A
115

SetValue, Newton Q & A 115
Simone, Cal 27
sleep mode (on a PowerBook),

Macintosh Q & A 100
Smith, Dave 85
SndDoCommand 53
SndDoImmediate 53
SndGetInfo (Sound Manager 3.1)

50
SndPlayDoubleBuffer 52
'snd ' resource format 46
software interrupt routines

for partial preparation of
memory 98–99

on PCI-based Macintosh
computers 86

Sound Export Options dialog 54
SoundHeader 46
Sound Manager 45–55

compressed audio 46–48,
49, 53–55

controlling pitch 51–52
controlling volume 50–51
determining hardware

settings 50
determining sound format 46
playing continuous sound 53
and QuickTime performance

48–50
using QuickTime to play

sounds 52–53
sound header 47–48

Sound Manager 3.1 45
“Sound Secrets” (Olson) 45–55
SoundSecrets application 45, 46,

50, 51, 52, 53
“Speeding Up whose Clause

Resolution In Your Scriptable
Application” (Anderson) 6–26

spot light (QuickDraw 3D),
Macintosh Q & A 105–106

standard file dialogs, nesting
(Macintosh Q & A) 109

Standard File Package, Macintosh
Q & A 109

Standard Object Model (SOM)
octet 34
Open Doc and 31, 36

status dialogs 59, 61–62
status messages 64–65
StdPix bottleneck (QuickDraw)

73–74, 76–77, 78
stop alerts 61
storage model (OpenDoc) 30–41
storage unit cursor (OpenDoc) 33
storage unit references (OpenDoc)

34–35
storage units (OpenDoc) 30,

31–35
cloning 34
focusing 32–33

storage unit views (OpenDoc) 33
structured storage model

(OpenDoc) 30–41
system modal alerts 60

T
TAbstractScriptableObject class

properties defined in 19
scripting and 17, 18

task (non-interrupt) level, on PCI-
based Macintosh 86, 90

TempNewHandle (QuickTime) 80
TEntireContents class 21, 24
TEveryItemProxy class 21
TEveryItem::SearchDeep 25
'TEXT' file type (QuickDraw 3D)

43
Thompson, Nick 42
3D debugger (QuickDraw 3D) 44
'3DMF' file type (QuickDraw 3D)

43
TMarkToken class 21
TMarkToken::SearchDeep 25
token collections, scriptable

objects and 8, 21–22
tokens (of object accessor

callbacks) 8, 17
grouping 8, 21–22
mark token 8, 9
memory management of 17
proxy tokens 21–22
removing 9, 17

ToolServer 69–71
Apple events and 71
AppleScript and 71
input and output 70–71
modularity and factoring

69–70
packaging commands for use

with 71
redirecting errors 70–71
standalone scripts and 71

TProxyToken class 21–22

tracker object (QuickDraw 3D) 43
typeCompDescriptor descriptor,

parameters contained in 12
typeObjectSpecifier descriptor,

OSL and 8
typeWhoseDescriptor descriptor,

typeAERecord and 11

U
Undo, Newton Q & A 116
UnionSoup:Add, Newton Q & A

113–114
userConfiguration, Newton

Q & A 113

V
values (of OpenDoc properties)

32, 33
adding data to 34
of content properties 38
manipulating value data

33–34
vertices in a mesh (QuickDraw

3D), Macintosh Q & A 105
“Veteran Neophyte, The”

(Johnson), The Right Tool for
the Job 110–111

virtual memory
PCI device drivers and 85
remapping addresses 85

“Virtual Memory on the
Macintosh” (Smith) 85

volumeCmd command (Sound
Manager) 50–51

sample values for 51

W
whose clause

OSL support for 7
speeding up resolution 6–26
versus loop-based scripts 6–7

whose clause resolution 6–26
optimizing 23–25
OSL and 7, 10–15
sample application 15–17
See also scriptable objects

whose descriptor 10
contents of 11–12, 13
interpreting the contents of

13–14
parsing 12–15

wireframe renderer (QuickDraw
3D), Macintosh Q & A 105

wrapping of parts (of OpenDoc
documents) 37

d e v e l o p Issue 24 December 1995128

E D I T O R I A L S T A F F

Editor-in-Cheek Caroline Rose

Managing Editor Toni Moccia

Technical Buckstopper Dave Johnson

Bookmark CD Leader Alex Dosher

Able Assistant Meredith Best

Our Boss Mark Bloomquist

His Boss Dennis Matthews

Review Board Jim Luther, Dave Radcliffe,
Jim Reekes, Bryan K. “Beaker” Ressler,
Larry Rosenstein, Andy Shebanow, Gregg
Williams

Contributing Editors Lorraine Anderson,
Toni Haskell, Judy Helfand, Tim Monroe,
Cheryl Potter, Joan Stigliani

Indexer Marc Savage

A R T & P R O D U C T I O N

Production Manager Diane Wilcox

Technical Illustration Mary Prusmack Ching,
Deb Dennis, John Ryan, Laurie Wigham

Formatting Forbes Mill Press

Photography Sharon Beals, Maggie Fishell,
Gretchen Linton

Cover Illustration Graham Metcalfe of
Metcalfe/Shuhert Design

ISSN #1047-0735. © 1995 Apple Computer, Inc. All
rights reserved. Apple, the Apple logo, APDA,
AppleLink, ColorSync, HyperCard, LaserWriter, Mac,
MacApp, Macintosh, MacTCP, MPW, Newton, Power
Macintosh, QuickTime, SANE, and TrueType are
trademarks of Apple Computer, Inc., registered in the
U.S. and other countries. AOCE, AppleScript,
A/ROSE, Balloon Help, develop, DocViewer, Dylan,
Finder, MessagePad, NewtonMail, NewtonScript,
OpenDoc, Power Mac, PowerTalk, and QuickDraw
are trademarks of Apple Computer, Inc. Adobe,
Acrobat, and PostScript are trademarks of Adobe
Systems Incorporated or its subsidiaries and may be
registered in certain jurisdictions. PowerPC is a
trademark of International Business Machines
Corporation, used under license therefrom. UNIX is a
registered trademark of Novell, Inc. in the United
States and other countries, licensed exclusively through
the X/Open Company, Ltd. NuBus is a trademark of
Texas Instruments. All other trademarks are the
property of their respective owners.

T H I N G S T O K N O W

develop, The Apple Technical
Journal, a quarterly publication of
Apple Computer’s Developer Press
group, is published in March, June,
September, and December. develop
articles and code have been reviewed
for robustness by Apple engineers.

This issue’s CD. Subscription issues
of develop are accompanied by the
develop Bookmark CD. This CD contains
a subset of the materials on the monthly
Developer CD Series, available from
APDA. Included on the CD are this
issue and all back issues of develop along
with the code that the articles describe.
(The code is updated periodically, so
always use the most recent CD.) The
CD also contains Technical Notes,
sample code, and other documentation
and tools (these contents are subject to
change). Items referred to as being on
“this issue’s CD” are located on either
the Bookmark CD or the Reference
Library or Tool Chest edition of the
Developer CD Series. The develop issues
and code are also available in the
Developer Services areas on AppleLink
and eWorld and at ftp.info.apple.com.
(Selected articles are on the World
Wide Web at http://www.apple.com,
in the Developer Services area.)

Macintosh Technical Notes.
Where references to Macintosh
Technical Notes in develop are followed
by something like “(QT 4),” this
indicates the category and number of
the Note on this issue’s CD. (QT is the
QuickTime category.)

E-mail addresses. Most e-mail
addresses mentioned in develop are
AppleLink addresses; to convert one of
these to an Internet address, append
“@applelink.apple.com” to it. For
example, DEVELOP on AppleLink
becomes develop@applelink.apple.com
on the Internet. Append “@eworld.com”
to eWorld addresses, and append
“@online.apple.com” to NewtonMail
addresses.

C O N T A C T I N G U S

Feedback. Send editorial suggestions
or comments to Caroline Rose at
AppleLink CROSE, Internet
crose@applelink.apple.com, or fax
(408)974-6395. Send technical
questions about develop to Dave
Johnson at AppleLink JOHNSON.DK,
Internet dkj@apple.com, CompuServe
75300,715, or fax (408)974-6395. Or
write to Caroline or Dave at Apple
Computer, Inc., 1 Infinite Loop, M/S
303-4DP, Cupertino, CA 95014.

Article submissions. Ask for our
Author’s Guidelines and a submission
form at AppleLink DEVELOP,
Internet develop@applelink.apple.com,
or fax (408)974-6395. Or write to
Caroline Rose at the above address.

Subscriptions and back issues.
You can subscribe to develop through
APDA (see ordering information
below) or use the subscription card in
this issue. You can also order printed
back issues from APDA. For all
subscription changes or queries,
contact APDA and be sure to include your
name, address, and account number as it
appears on your mailing label.

The one-year U.S. subscription price is
$30 (for 4 issues and 4 develop Bookmark
CDs), or $50 U.S. in other countries.
Back issues are $13 each. These prices
include shipping and handling. For
Canadian orders, the subscription price
includes GST (R100236199).

APDA. To order products from APDA
or receive the Apple Developer Tools
Catalog of all the products available
from APDA, call 1-800-282-2732 in
the U.S., 1-800-637-0029 in Canada,
(716)871-6555 internationally, or
(716)871-6511 for fax. Order
electronically at AppleLink APDA,
Internet apda@applelink.apple.com,
CompuServe 76666,2405, or America
Online APDAorder. Or write APDA,
Apple Computer, Inc., P.O. Box 319,
Buffalo, NY 14207-0319.Printed on recycled paper

d e v e l o p

A R T I C L E S

5 Music the Easy Way: The QuickTime Music Architecture by David Van Brink
The QuickTime Music Architecture lets you easily add music to your application, without having to learn
the intricacies of MIDI or sound production. Unleash the orchestra!

30 The Basics of QuickDraw 3D Geometries by Nick Thompson and Pablo Fernicola
Geometries are the backbone of any 3D graphics system. This article shows how the geometries in
QuickDraw 3D fit in with the rest of the system, and how to make good use of them.

55 Implementing Shared Internet Preferences With Internet Config
by Quinn “The Eskimo!”
This article examines a shared preferences solution for Internet applications: how to use it in your
applications, and also how it works, using the Component Manager as a robust shared library mechanism.

77 Multipane Dialogs by Norman Franke
Dialog boxes with multiple panes are becoming more and more common. This implementation uses a
scrolling list of icons to select panes.

94 Document Synchronization and Other Human Interface Issues by Mark H. Linton
The Macintosh Human Interface Guidelines say that a window’s title should match the corresponding
document’s name at all times. Here’s some code that will help you do that.

C O L U M N S

25 PRINT HINTS
Syncing Up With ColorSync 2.0
by David Hayward
ColorSync version 2.0 dramatically improves the
quality and performance of color management.

52 BALANCE OF POWER
Power Macintosh: The Next Generation
by Dave Evans
The latest Power Macintosh computers are
better than ever, as you’ll see from this overview
of new features.

72 MPW TIPS AND TRICKS
Customizing Source Control With
SourceServer
by Tim Maroney
SourceServer is a “scriptable Projector,” allowing
extensive source control customization.

90 ACCORDING TO SCRIPT
Thinking About Dictionaries
by Cal Simone
Tips on organizing your dictionary, and other
assorted bits of wisdom and advice.

103 MACINTOSH Q & A
Apple’s Developer Support Center answers
queries about Macintosh product development.

112 THE VETERAN NEOPHYTE
A Feel for the Thing
by Dave Johnson
Computers are getting more and more like
boomerangs. Goody.

114 NEWTON Q & A: ASK THE LLAMA
Answers to Newton-related development
questions, along with a bit of llama lore. Send
in your own questions for a chance at a T-shirt.

117 KON & BAL’S PUZZLE PAGE
Video Nightmare
by Ian Hendry and Eric Anderson
Another intricate and entertaining enigma, this
time from a pseudo KON & BAL.

Issue 23 September 1995

CONTENTS 1

2 EDITOR’S NOTE
3 LETTERS

123 INDEX

On this issue’s CD, all the files that used to be in Apple DocViewer format have been
converted to Adobe™ Acrobat™. Based on feedback that we’ve gotten from many of
you since we started using DocViewer, we trust you’ll be happy with this change. You
should find that Acrobat has better search features and resolves some other problems.
Because conversion is faster, the information can be more timely. Also, the files take
up less space. So we hope you’re satisfied — but you probably won’t be for very long.
It’s just not the nature of the computer-using beast.

Think about it: How long after you get an upgrade to some software or hardware
product do you start looking ahead to the next version? With the old problems
solved and your old needs satisfied, you go on to realize a set of new ones. When it
comes to computers, we always want more, and better.

I remember when the Macintosh was first designed, Steve Jobs kept saying it was to be an
appliance, like a toaster: you simply plug it in and it does what you want, reliably and
without fuss. (We’re not talking multi-attachment Cuisinart here.) As you no doubt recall
only too well, the options to add to the functionality of the first Macintosh were
intentionally limited. It was to be a simple “black box” (“beige box”?).

Now, I know you’re glad that that era didn’t last very long, but think for a moment about
all those non-nerds out there who haven’t yet seen fit to buy a computer — all those
potential customers Jobs was hoping to attract. They write things and add up numbers
sometimes just like we do, don’t they? So what are they waiting for?

I think the problem is that they want toasters — machines that work year after year
without always needing to be updated, upgraded, or extended. They see the computer as
a moving target, constantly advancing to satisfy some relatively insignificant new needs
they never even knew they had — doomed to instant obsolescence. Better they should use
a pen or pencil.

I suffer from this attitude myself to some degree, at least when I’m wearing my Home
User hat. There I use a little old Macintosh with old but reliable software that works
every time I do the paperwork on it that I’ve been doing for ten years now. But at
Apple, I become a Computer Professional monster with ravenous needs for the latest
and greatest software and hardware — downright insatiable.

So enjoy it while you can: have your fill of our new Acrobat files or whatever
innovation pleases you these days. But rest assured that you’ll be hungry again in no
time.

CAROLINE ROSE

d e v e l o p Issue 23 September 19952

EDITOR’S NOTE

CAROLINE ROSE (AppleLink CROSE) resisted
learning anything about computers in college,
where she majored in math, but she couldn’t
escape them in the real world. First she used
gigantic IBM machines at her statistical research
job in Manhattan. But California beckoned, and
with it came terminals spewing yellow paper

and, eventually, computers with display screens.
This was a big “Wow!” at first, but now Caroline
gets her excitement from non-computer endeavors,
such as travel. On her trip this year to the Big
Island of Hawaii, she kayaked among (breaching)
humpback whales and watched lava flow down
cliffs and into the Pacific. Hard to top that!•

Caroline Rose
Editor

FLOATING WINDOWS AGAIN
I’d like to use the library of functions
for floating windows described in
develop Issue 15 by Dean Yu (updated on
Issue 21’s CD). I’m using CodeWarrior
5.5, and when I try to compile the
sample project (or any other project that
includes the WindowExtensions.h file)
I get a “WindowRef redeclared” error.
There seems to be a conflict with the
universal headers.

Before I try to get rid of this error
myself (and probably make everything
wrong), I thought I’d ask if you could
suggest a simple and clean solution.

— Fred Klein

On this issue’s CD is a new version of the
floating windows library that fixes this
problem, and others. The problem was that
Apple finally “caught up” with Dean and
defined things in the universal headers that
he had defined, in his forward-looking way,
back when he first wrote the article.

Also on the CD you’ll find an even newer
version of the library that compiles with
STRICT_WINDOWS defined. This
necessitated a complete rewrite of some
portions of the code, so consider it risky.
Please try it and send me any bugs you find!

— Dave Johnson

POWERPC ASSEMBLY NITS
Great article on PowerPC™ assembly
language in develop Issue 21! It was clear,
and I learned a lot reading it. But I have
two nitpicks. On page 27 you show glue
code for a cross-TOC call. The second
instruction should be

stw RTOC,20(SP)

And the third instruction has a typo in
it. It should be

lwz r0,0(r12)

— David Shayer

Thanks for catching these. The interesting
thing is that the second instruction appears
that (wrong) way in the PPCAsm manual.
Whoops!

— Dave Evans

UP ON THE DOWNSIDE
I just wanted to tell you that I really
liked the Veteran Neophyte column in
Issue 21, about the downside of
programming. It struck a nerve with
me. The thing that goes through my
mind whenever I sit down to write some
code is “There has to be a better way!”
Alas, by the time there is a better way, I
will probably have moved on to some
other profession.

— Jamie Osborne

Your Veteran Neophyte column on the
pains of programming really struck a
nerve (and not just because I have carpal
tunnel syndrome). I often spend a while
putting things on paper, only to
abandon the project once I become
convinced that I’ve figured out the
solution and its implementation would
just be hours and hours of typing. Sort
of meta-programming.

— Tom Busey

I just finished reading the Veteran
Neophyte columns in Issue 17 and
Issue 21, “Why We Do It” and “The
Downside.” They were given to me by

LETTERS

LETTERS 3

KEEP US ON OUR TOES!
We welcome your nitpicking letters to the editors,
especially regarding articles published in
develop. Letters should be addressed to Caroline
Rose — or, if technical develop-related questions,
to Dave Johnson — at AppleLink CROSE or
JOHNSON.DK. Or you can write to Caroline

or Dave at Apple Computer, Inc., 1 Infinite Loop,
M/S 303-4DP, Cupertino, CA 95014. All letters
should include your name and company name as
well as your address and phone number. Letters
may be excerpted or edited for clarity (or to
make them say what we wish they did).•

a friend who is an avid programmer.
The type of things you described
sounded just like my friend; I think he
showed the columns to me to explain
why every time I see him he’s sitting in
front of the computer, and why he stays
up till all hours of the morning working
on programs that end up frustrating
him.

I thought I should let you know that
your columns were appreciated not only
by those who program, but by those
who are close to programmers and
wonder sometimes what unseen force
has gotten hold of them and sucked
them into their work.

— Greta Meussling

The “Downside” column seems to have hit
home with many people; I got a lot of
comments about it. It’s nice to be assured
that I’m not the only reluctant programmer
in the world, and that I’m not the only one
who thinks there ought to be a better way.

— Dave Johnson

ACROBAT: PRETTY DARN FINE
This probably isn’t the first time you’ve
heard this, but how about offering
develop in Acrobat (PDF format) as well?
For me, Acrobat is more convenient
than Apple DocViewer as an application
and, most important, its files are a lot
smaller. I routinely convert develop to
PDF and then add PDF hyperlinks and
bookmarks. For one issue I converted,
for instance, the DocViewer version
(without the index) is 2.9 meg, while the
PDF version is only 770K. It’s even
smaller than the StuffIt version of the
DocViewer document (1.2 meg). And
the onscreen appearance is identical.

I still like the HTML versions for their
immediacy, but for true WYSIWYG,
low conversion effort, and small file
size, you can’t beat PDF.

— Shannon Spires

We agree with you. You’ll notice that on this
issue’s CD, every issue of develop has been

converted to Acrobat — along with all the
other files on the CD that used to be in
Apple DocViewer format. Enjoy!

— Caroline Rose

UP ON THE WEB
Thanks for making both develop and
Apple Directions available on the World
Wide Web. We’re on a very tight
budget and can’t afford a subscription at
this time. The online versions allow us
to access the information and still come
out with a product on budget.

— Mattias Fornander

I’m a student who reads develop online
via the Internet through UCLA’s
(UNIX®) workstations. Your putting
develop on the World Wide Web is
great! Even though the comfort of
reading (and printing) develop online
will never equal the ease of the regular
version, I don’t have to fight with ftp
and MS-DOS floppy disks to read your
magazine. So please continue to publish
develop in HTML.

IMHO, your magazine is a service to
the Mac developer community, and you
would help Apple by letting every
possible programmer access it without
hassle. Thanks for this effort.

— Eric Gouriou

We’ve got articles from some issues of
develop on the World Wide Web now (at
http://www.apple.com, in the Developer
Services area) and are working on putting
more up there. This kind of feedback helps
make it happen — so thanks for writing.

Readers of the online version: Don’t confuse
printed develop with the monthly Apple
Developer Mailing; a subscription to the
monthly mailing (which includes a CD that
has develop on it) is rather costly, but it
costs only $30 for four quarterly printed
issues of develop (with Bookmark CD). See
the inside front cover of this issue for
ordering information. (Sorry, I couldn’t
resist this opportunity for a plug!)

— Caroline Rose

d e v e l o p Issue 23 September 19954

Music has become cheap and plentiful on the Macintosh, and many
applications are now making “casual” use of music. With the
QuickTime Music Architecture, or QTMA, including music in your
application has never been simpler. Its API is straightforward and easy
to use, and you don’t need intimate knowledge of MIDI protocols or
channel and voice numberings. Nor do you need an external MIDI
device; QTMA can play music directly out of the Macintosh’s built-in
speakers. And QTMA is widely available — it’s on every Macintosh
that has QuickTime 2.0 (or later) installed.

The QuickTime Music Architecture is perfect for adding a little bit of music to your
application. It has a set of well-supported high-level calls for playing musical notes
and sequences, it deals with MIDI protocols so that your application doesn’t have to,
and it handles timing for entire tunes. With QTMA, you can specify musical
instruments independent of device, and play music either directly out of built-in
speakers or through a MIDI synthesizer.

QTMA first became available with QuickTime 2.0 and offers some new features in
QuickTime 2.1, which should be available through APDA by the time you read this.
The code in this article is written for version 2.1; minor changes will be required for
2.0. (Before making use of the QuickTime 2.1 features, your code should call Gestalt
with the gestaltQuickTimeVersion selector and check the version number returned.)

This article shows how your application can use QTMA to play individual notes,
sequences of notes composed on the fly, or prescored sequences, and how to read
input from external MIDI devices. This issue’s CD contains all the sample code and a
THINK C project to build and run it. We’ll start with a look at QTMA in relation to
other ways of supporting music on the Macintosh; then we’ll get down to business
and play some music with QTMA.

QTMA IN CONTEXT — A LOOK AT MUSIC AND MIDI
SUPPORT ON THE MACINTOSH
Support for MIDI and musical applications on the Macintosh platform has a
somewhat checkered history. Developers have been faced with such options as writing
their own serial drivers, using the MIDI Manager, or using third-party operating
system extensions such as the Open Music System (OMS, formerly Opcode MIDI

DAVID VAN BRINK

Music the Easy Way: The QuickTime
Music Architecture

MUSIC THE EASY WAY: THE QUICKTIME MUSIC ARCHITECTURE 5

DAVID VAN BRINK lives in a tiny experimental
habitat overlooking the Denny’s parking lot in
Santa Cruz, California. He experiences life at

14,400 bits per second. See http://www.srm.com
for more information.•

System) and the Free MIDI System (FMS) from Mark of the Unicorn. None of these
are practical for adding just a little music to your application.

Writing a serial driver to send MIDI output to an Apple MIDI adapter or to any
third-party MIDI adapter isn’t that complicated if you enjoy writing low-level code
to access hardware registers on the SCC serial chip. I say this in all seriousness: that
kind of code really is fun to write! But it’s not the best way to do things, because
changes in the OS and hardware can render your work useless. And writing the low-
level serial code for MIDI input has additional complexities, primarily because of the
interrupt timings in many parts of the Mac OS.

The MIDI Manager is a slightly better tool to use for MIDI input and output.
Unfortunately, Apple’s support for this product has been less than consistent, and the
MIDI Manager itself has some inherent performance limitations, though these are
less critical on faster hardware (68030 processor or better).

Both OMS and FMS are quite appropriate for professional music scoring and
editing products. Among the facilities that these extensions provide is a “studio
configuration”; this lets the user describe to the system the various MIDI devices
attached to the computer so that different applications can access them.

All of these options have drawbacks for making casual use of music: you have to
access an external MIDI device, which most users don’t have, and you have to use
MIDI protocols to talk to that device. QTMA frees you from both of these
constraints. It also frees you from needing to know a lot about MIDI itself; if you
want to know anyway, check out the information in “A MIDI Primer.”

QTMA’S BASIC COMPONENTS
QTMA is implemented in three easy pieces, as QuickTime components for playing
individual notes, playing tunes (sequences of notes), and driving MIDI devices.

• The note allocator component is used to play individual notes. The calling
application can specify which musical instrument sound to use and exactly
which musical synthesizer to play the notes on. The note allocator
component also includes a utility that allows the user to pick the instrument.

• The tune player component can accept entire sequences of musical notes and
play them from start to finish, asynchronously, with no further need for
application intervention. This is handy if you’d like to play some infernally
irritating little melody, or perhaps threnody, during each game level of Boom
Three Dee or whenever.

• Individual music components act as device drivers for each type of synthesizer
attached to a particular computer. Two music components are provided with
QuickTime 2.0: the software synthesizer component, to play music out of
the built-in speaker, and the General MIDI component, to play music on a
General MIDI device attached to a serial port. QuickTime 2.1 supports a
small number of other popular synthesizers as well.

PLAYING NOTES WITH THE NOTE ALLOCATOR
Playing a few notes with the note allocator component is simple. To play notes that
have a piano-like sound, you need to open up the note allocator component, allocate
a note channel with a request for piano, and play. That’s it! If you’re feeling like a
particularly well-behaved software engineer, you might dispose of the note channel
and close the note allocator component when you’re done. We’ll get to the code in a
moment; first we’ll look at some important related data structures.

d e v e l o p Issue 23 September 19956

NOTE-RELATED DATA STRUCTURES
A note channel is analogous to a sound channel in that you allocate it, issue
commands to it to produce sound, and close it when you’re done. To specify details
about the note channel, you use a data structure called a NoteRequest (see Listing 1).
The NoteRequestInfo structure in the NoteRequest is new in QuickTime 2.1; it
simply encapsulates the first few fields of the old NoteRequest structure and splits the
first of those fields into two, flags and reserved (which are decribed in the
documentation accompanying the QuickTime 2.1 release).

The next two fields specify the probable polyphony that the note channel will be used
for. Polyphony means, literally, many sounds. A polyphony of 5 means that five notes
can be playing simultaneously. The polyphony field enables QTMA to make sure that
the allocated note channel can play all the notes you’ll need. The typicalPolyphony
field is a fixed-point number that should be set to the average number of voices the
note channel will play; it may be whole or fractional. Some music components use
this field to adjust the mixing level for a good volume.

The ToneDescription structure is used throughout QTMA to specify a musical
instrument sound in a device-independent fashion. This structure’s synthesizerType
and synthesizerName fields can request a particular synthesizer to play notes on.
Usually, they’re set to 0, meaning “choose the best General MIDI synthesizer.” The
gmNumber field indicates the General MIDI (GM) instrument or drum kit sound,
which may be any of 135 such sounds that are supported by many synthesizer
manufacturers. (All these sounds are available on a General MIDI Sound Module.)
The GM instruments are numbered 1 through 128, and the seven drum kits are
numbered 16385 and higher. A complete list of instrument and drum kit numbers is
provided in Table 1. For synthesizers that accept sounds outside the GM library, you

MUSIC THE EASY WAY: THE QUICKTIME MUSIC ARCHITECTURE 7

MIDI, or Musical Instrument Digital Interface, uses a serial
protocol and a standard 5-pin connector that you’ll find
on professional electronic music gear made after 1985 or
so. The connector’s relatively large size, about half an
inch in diameter, was chosen so that it could withstand
the rigors of the road — in other words, so that even
drummers could plug it in.

Because MIDI cables can carry signals in only one
direction, synthesizers have separate connectors for MIDI
input and MIDI output. (This differs from modem cables,
which carry signals in both directions.)

MIDI is a serial protocol running at 31250 baud, 8 data
bits, 1 stop bit, no parity. The command structure for a
MIDI stream is simple: each byte is either a status byte or
a data byte.

A status byte establishes a mode for interpreting the data
bytes that follow it. The high bit is set, and the next three
bits indicate the type of status byte. The low four bits are
typically used to specify a MIDI channel. Thus MIDI can
address up to 16 unique channels, each of which may

play a different musical instrument sound. Later extensions
to MIDI let you address more channels through the use of
escape codes and bank switching.

The most common status message is the Play Note message,
which has a value of 0x90 plus the MIDI channel number.
Each note is defined by a pitch and velocity. The pitch is
an integer from 0 to 127, where 60 is musical middle C
(61 is C sharp, 59 is B, 72 is the C above middle C, and
so on). The velocity is an integer from 0 to 127 that
describes how loud to play the note; 64 is average
loudness, 127 is very loud, 1 is nearly inaudible, and 0
means to stop playing the note.

So, to play a C-major chord on MIDI channel 0, you send
the seven bytes 0x90 0x3C 0x40 0x40 0x40 0x43 0x40
to begin the sound. After a suitable interval, you send
0x90 0x3C 0x00 0x40 0x00 0x43 0x00 to silence it.

All of this is exactly the sort of stuff you don’t need to
know if you use the QuickTime Music Architecture for your
music-playing needs. But you just can’t know too many
useless facts, right?

A MIDI PRIMER

can use the instrumentName and instrumentNumber fields to specify some other
sound.

THE NOTE-PLAYING CODE
The routine in Listing 2 plays notes in a piano-like sound with the note allocator
component. We start by calling OpenDefaultComponent to open up the component.
If this routine returns 0, the component wasn’t opened, most likely because QTMA
wasn’t present.

Next we fill in the NoteRequestInfo and ToneDescription structures, calling the note
allocator’s NAStuffToneDescription routine and passing it the GM instrument
number for piano. This routine fills in the gmNumber field and also fills in the other
ToneDescription fields with sensible values, such as the instrument’s name in text
form in the instrumentName field. (The routine can be useful for converting a GM
instrument number to its text equivalent.)

After allocating the note channel with NANewNoteChannel, we call NAPlayNote to
play each note. Notice the last two parameters to NAPlayNote:

ComponentResult NAPlayNote(NoteAllocator na, NoteChannel nc,
long pitch, long velocity);

The value of the pitch parameter is an integer from 1 to 127, where 60 is middle C,
61 is C sharp, and 59 is C flat, or B. Similarly, 69 is concert A, and is played at a
nominal audio frequency of 440 Hz. The velocity parameter’s value is also an integer
from 1 to 127, or 0. A velocity of 1 corresponds to just barely touching the musical
keyboard, and 127 indicates that the key was struck as hard as possible. Different
velocities produce tones of different volumes from the synthesizer. A velocity of 0
means the key was released; the note stops or fades out, as appropriate to the kind of
sound being played. Here we stop the notes after delaying an appropriate amount of
time with a call to the Delay routine.

d e v e l o p Issue 23 September 19958

Listing 1. Note-related data structures

struct NoteRequest {
NoteRequestInfo info; // • in post-QuickTime 2.0 only
ToneDescription tone;

};

struct NoteRequestInfo {
UInt8 flags;
UInt8 reserved;
short polyphony;
Fixed typicalPolyphony;

};

struct ToneDescription {
OSType synthesizerType;
Str31 synthesizerName;
Str31 instrumentName;
long instrumentNumber;
long gmNumber;

};

MUSIC THE EASY WAY: THE QUICKTIME MUSIC ARCHITECTURE 9

Table 1. The General MIDI instruments and drum kits

Piano Bass Reed Synth Effect
• 1 Acoustic Grand Piano 33 Acoustic Fretless Bass 65 Soprano Sax 97 Ice Rain

2 Bright Acoustic Piano • 34 Electric Bass Fingered • 66 Alto Sax 98 Sound Tracks
3 Electric Grand Piano 35 Electric Bass Picked 67 Tenor Sax 99 Crystal
4 Honky-tonk Piano 36 Fretless Bass 68 Baritone Sax 100 Atmosphere

• 5 Rhodes Piano • 37 Slap Bass 1 • 69 Oboe 101 Brightness
6 Chorused Piano 38 Slap Bass 2 70 English Horn 102 Goblins

• 7 Harpsichord 39 Synth Bass 1 71 Bassoon 103 Echoes
• 8 Clavinet 40 Synth Bass 2 • 72 Clarinet 104 Space

Chromatic Percussion Strings and Orchestra Pipe Ethnic
9 Celesta • 41 Violin 73 Piccolo • 105 Sitar

10 Glockenspiel 42 Viola • 74 Flute • 106 Banjo
11 Music Box 43 Cello 75 Recorder 107 Shamisen

• 12 Vibraphone 44 Contrabass • 76 Pan Flute 108 Koto
• 13 Marimba 45 Tremolo Strings 77 Bottle Blow 109 Kalimba

14 Xylophone 46 Pizzicato Strings 78 Shakuhachi 110 Bagpipe
15 Tubular bells 47 Orchestral Harp • 79 Whistle 111 Fiddle
16 Dulcimer • 48 Timpani 80 Ocarina 112 Shanai

Organ Ensemble Synth Lead Percussive
• 17 Hammond Organ • 49 Acoustic String Ensemble 1 81 Square Wave 113 Tinkle Bell

18 Percussive Organ 50 Acoustic String Ensemble 2 • 82 Saw Wave • 114 Agogo
19 Rock Organ 51 SynthStrings 1 83 Calliope • 115 Steel Drums
20 Church Organ 52 SynthStrings 2 84 Chiffer 116 Woodblock

• 21 Reed Organ • 53 Aah Choir 85 Charang 117 Taiko Drum
22 Accordion 54 Ooh Choir 86 Solo Vox • 118 Melodic Tom
23 Harmonica 55 Synth Vox • 87 5th Saw Wave 119 Synth Drum
24 Tango Accordion • 56 Orchestra Hit 88 Bass and Lead • 120 Reverse Cymbal

Guitar Brass Synth Pad Sound Effects
• 25 Acoustic Nylon Guitar • 57 Trumpet • 89 Fantasy 121 Guitar Fret Noise

26 Acoustic Steel Guitar 58 Trombone • 90 Warm 122 Breath Noise
27 Electric Jazz Guitar 59 Tuba • 91 Polysynth • 123 Seashore
28 Electric Clean Guitar 60 Muted Trumpet 92 Choir • 124 Bird Tweet
29 Electric Muted Guitar • 61 French Horn 93 Bowed • 125 Telephone Ring
30 Overdriven Guitar 62 Brass Section 94 Metal • 126 Helicopter

• 31 Distortion Guitar 63 Synth Brass 1 95 Halo 127 Applause
32 Guitar Harmonics 64 Synth Brass 2 96 Sweep • 128 Gunshot

GM Drum Kits
• 16385 Standard Kit
• 16393 Room Kit (a memory-reduced version of the Standard Kit)

16401 Power Kit
16409 Electronic Kit
16410 Analog Kit
16425 Brush Kit
16433 Orchestra Kit

• Bullets indicate the instruments and drum kits that are available for playing on the built-in synthesizer.

d e v e l o p Issue 23 September 199510

Listing 2. Playing notes with the note allocator component

void PlaySomeNotes(void)
{

NoteAllocator na;
NoteChannel nc;
NoteRequest nr;
ComponentResult thisError;
long t, i;

na = 0;
nc = 0;

// • Open up the note allocator.
na = OpenDefaultComponent(kNoteAllocatorType, 0);
if (!na)

goto goHome;

// • Fill out a NoteRequest using NAStuffToneDescription to help, and
// • allocate a NoteChannel.
nr.info.flags = 0;
nr.info.reserved = 0;
nr.info.polyphony = 2; // • simultaneous tones
nr.info.typicalPolyphony = 0x00010000; // • usually just one note
thisError = NAStuffToneDescription(na, 1, &nr.tone); // • 1 is piano
thisError = NANewNoteChannel(na, &nr, &nc);
if (thisError || !nc)

goto goHome;

// • If we've gotten this far, OK to play some musical notes. Lovely.
NAPlayNote(na, nc, 60, 80); // • middle C at velocity 80
Delay(40, &t); // • delay 2/3 of a second
NAPlayNote(na, nc, 60, 0); // • middle C at velocity 0: end note
Delay(40, &t); // • delay 2/3 of a second

// • Obligatory do-loop of rising tones
for (i = 60; i <= 84; i++) {

NAPlayNote(na, nc, i, 80); // • pitch i at velocity 80
NAPlayNote(na, nc, i+7, 80); // • pitch i+7 (musical fifth) at

// • velocity 80
Delay(10, &t); // • delay 1/6 of a second
NAPlayNote(na, nc, i, 0); // • pitch i at velocity 0: end note
NAPlayNote(na, nc, i+7, 0); // • pitch i+7 at velocity 0:

// • end note
}

goHome:
if (nc)

NADisposeNoteChannel(na, nc);
if (na)

CloseComponent(na);
}

Finally, being well behaved, we dispose of the note channel and close the note
allocator component.

LETTING THE USER PICK THE INSTRUMENT
Rather than specify the instrument sound itself, your application may want to let the
user pick it. For this purpose, a nifty instrument picker utility is provided in the note
allocator component. The instrument picker dialog, shown in Figure 1, enables users
to choose musical instruments from the available synthesizers and sounds.

The routine in Listing 3 shows one way that your application can use the
instrument picker. It’s nearly identical to the code in Listing 2, except that the
NAPickInstrument routine is called right after the call to NAStuffToneDescription.
As in Listing 1, NAStuffToneDescription fills out a ToneDescription record for a
particular GM instrument number; NAPickInstrument then invokes the instrument

MUSIC THE EASY WAY: THE QUICKTIME MUSIC ARCHITECTURE 11

In Listing 2, if you replace the code in the section labeled “Obligatory do-loop of
rising tones” with the following code, you’ll receive a secret treat.

i = 0;
while (!Button()) {

long j, v;
for (j = i % 13; j < 128; j+=13) {

v = j < 64 ? j * 2 : (127 - j) * 2;
NAPlayNote(na, nc, j, v);

}
Delay(13, &t);
for (j = i % 13; j < 128; j+=13)

NAPlayNote(na, nc, j, 0);
i++;

}

This snappy little melody was discovered by psychologist Roger Shepard in the 1960s.

ROGER SHEPARD’S MELODY

Figure 1. The instrument picker dialog

picker dialog and alters the passed ToneDescription to whatever instrument the user
selects.

ADDING EXPRESSIVENESS WITH CONTROLLERS
There’s much more to music than simply playing the right notes at the right times.
Although your code can simulate only a scant fraction of the expressiveness of a
skillfully played acoustic instrument, there are certain things the note allocator
component lets you do that help make your computer-synthesized music sound more
interesting.

As we’ve already seen, the NAPlayNote routine has parameters for specifying pitch
and velocity, the latter determining the volume of the note; changes in these
parameter values can affect the expressiveness of your music. You can also add
expressiveness to whatever notes are being played by using QTMA’s controllers.
A controller is a parameter that’s set independently of the notes being played, with a
call to the NASetController routine:

ComponentResult NASetController(NoteAllocator na, NoteChannel nc,
long controllerNumber, long controllerValue);

d e v e l o p Issue 23 September 199512

Listing 3. Using the instrument picker

void PickThenPlaySomeNotes(void)
{

... // • declarations and initialization

// • Open up the note allocator.
...

// • Fill out a NoteRequest using NAStuffToneDescription to help,
// • call NAPickInstrument, and allocate a NoteChannel.
nr.info.flags = 0;
nr.info.reserved = 0;
nr.info.polyphony = 2; // • simultaneous tones
nr.info.typicalPolyphony = 0x00010000;
thisError = NAStuffToneDescription(na, 1, &nr.tone); // • 1 is piano
thisError = NAPickInstrument(na, nil, "\pPick An Instrument:",

&nr.tone, 0, 0, nil, nil);
if (thisError)

goto goHome;
thisError = NANewNoteChannel(na, &nr, &nc);
if (thisError || !nc)

goto goHome;

// • Play some musical notes.
...

// • Obligatory do-loop of rising tones
...

goHome:
... // • Dispose of the NoteChannel and close the component.

}

Two simple controllers are the pitch bend controller and the volume controller. The pitch
bend controller alters the frequency of any notes being played. It’s like the whammy-
bar on an electric guitar, which tightens or loosens all the strings simultaneously. The
volume controller affects the sound of all notes similarly to the way key velocity
affects the sound of individual notes.

Let’s look at some source code that uses the pitch bend controller (Listing 4). This
routine plays a major-fifth interval for a half second, “bends” it up by three
semitones, holds it a half second, and then bends it back down to its original pitch.

Most QuickTime controller values are 16-bit signed fixed-point numbers (where the
lower eight bits are fractional) and have a range of 0 to 127, with a default value of 0.
However, the pitch bend controller has a range of -127 to 127, and the volume
controller has a default value of 127, or maximum volume.

The pan controller has a slightly different definition from the other controllers. “Pan”
refers to the position of the sound in the stereo field. Most synthesizers have audio

MUSIC THE EASY WAY: THE QUICKTIME MUSIC ARCHITECTURE 13

Listing 4. Using the pitch bend controller

void PlaySomeBentNotes(void)
{

... // • declarations and initialization

// • Open up the note allocator.
...

// • Fill out a NoteRequest using NAStuffToneDescription to help, and
// • allocate a NoteChannel.
...

// • If we've gotten this far, OK to play some musical notes. Lovely.
NAPlayNote(na, nc, 60, 80); // • middle C at velocity 80
NAPlayNote(na, nc, 67, 60); // • G at velocity 60
Delay(30, &t);

// • Loop through differing pitch bendings.
for (i = 0; i <= 0x0300; i+=10) { // • bend 3 semitones

NASetController(na, nc, kControllerPitchBend, i);
Delay(1, &t);

}
Delay(30, &t);
for (i = 0x0300; i >= 0; i-=10) { // • bend back to normal

NASetController(na, nc, kControllerPitchBend, i);
Delay(1, &t);

}
Delay(30, &t);
NAPlayNote(na, nc, 60, 0); // • middle C off
NAPlayNote(na, nc, 67, 0); // • G off

goHome:
... // • Dispose of the NoteChannel and close the component.

}

output for left and right; on such synthesizers, the pan value is interpreted as follows:
The default pan position (usually centered) is specified by a value of 0 to the pan
controller. To position the sound arbitrarily, values between 1 (0x0100) and 2
(0x0200) are used to range between left and right, respectively. For synthesizers with
n outputs, values between 1 and n are used to pan between each adjacent pair of
outputs. Note that the built-in synthesizer doesn’t currently support panning.

BUILDING A TUNE
As mentioned earlier, an application can use the tune player component to play entire
sequences of notes, or tunes. Applications often find it useful to play a tune that has
been precomposed and stored in the application; other times, it may be useful to
construct a tune at run time and then play it. In either case, the application must first
build the tune. Here we’ll take a look at the format of a tune and the routines and
macros we use for building one.

THE FORMAT OF A TUNE
The format for tunes is a series of long words, subdivided into bitfields. Your
application needs to build a tune header and tune sequence made up of different types of
“events.” The tune header contains one or more note request events, each a NoteRequest
data structure with some encapsulating long words. The tune sequence is made up of
note events that specify notes and durations, controller changes, and so on, as well as
rest events; it’s the musical score.

In the tune header, each note request event has the structure shown in Figure 2.
(It’s actually a general event, of the note request subtype.) Thus the first word is
0xFnnn0017, where nnn is the part number, and the last word is 0xC0010017. The
part number is referred to later on by note events in the tune sequence. For example,
given a header than contains a note request event specifying part 3, subsequent note
events that specify part 3 will play in a note channel allocated according to that
NoteRequest.

In the tune sequence, each note event includes the part, pitch, velocity, and duration
of the note; a rest event specifies only a duration (see Figure 3). A note event can have
either a short or an extended format. In a short note event, the pitch is limited to the
range 32 to 95 (which covers most musical notes) and the part number must be less

d e v e l o p Issue 23 September 199514

�
�

part.12type.4 message length.16 (with head and tail)

1 11 xxx1 x x x x x x x x x 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

�
�

NoteRequest data structure (21 long words total)

x xx xxxx x

�
�

(last long word of NoteRequest)

x xx xxxx x

�
�

event subtype = kGeneralEventNoteRequest message length.16 (with head and tail)

1 01 0000 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

Figure 2. A note request event

than 32. If either of these ranges is too small, or if you want to use a fixed-point pitch
value or a very long duration, the extended note format may be used. Much of the
time you can use the short format, to save space.

Both headers and sequences end with a marker event containing all zeroes (equivalent
to 0x60000000), shown in Figure 4.

THE TUNE-BUILDING CODE
Our sample code includes routines for building the tune header and tune sequence.
These routines use some handy event-stuffing macros that are defined in the file
QuickTimeComponents.h, and all have the form _StuffSomething(arguments).
BuildTuneHeader (Listing 5) uses the following macro:

_StuffGeneralEvent(w1, w2, part, subtype, length);

The _StuffGeneralEvent macro fills in the head and tail long words of a
particular type of general event — in our case, a note request event. Its arguments
are, in order: the head and tail long words; the part number; the event subtype
(kGeneralEventNoteRequest for a note request event); and the length in long words
of the entire event, counting the head and tail. Note that the first two arguments are
the head and tail themselves, not pointers — the macro expands to a direct
assignment of these arguments.

BuildTuneSequence (Listing 6) uses the _StuffNoteEvent and _StuffRestEvent
macros.

MUSIC THE EASY WAY: THE QUICKTIME MUSIC ARCHITECTURE 15

An extended note event

A rest event

A short note event

part.12 pitch.15

part.5 pitch.6 (32–95)

type.4

velocity.7 duration.11

�0 10 xxxx x

�1 00 xxx1 x x x x x x x x x 0 x x x x x x x x x x x x x x x

�1 00 xxxx x

�0 00 0000 0 0 0 0 0 x

type.3

type.4

unused.9 duration.20

velocity.7 duration.22

type.3

Figure 3. Note and rest events

�0 11 0000 0

type.3

Figure 4. A marker event

d e v e l o p Issue 23 September 199516

Listing 5. BuildTuneHeader

#define kNoteRequestHeaderEventLength \
(sizeof(NoteRequest) /sizeof(long) + 2) // • long words

#define our_header_length \
((2 * kNoteRequestHeaderEventLength + 1)) * sizeof(long) // • bytes

unsigned long *BuildTuneHeader(void)
{

unsigned long *header, *w, *w2;
NoteRequest *nr;
NoteAllocator na; // • just for the NAStuffToneDescription call
ComponentResult thisError;

header = 0;
na = 0;

// • Open up the note allocator.
na = OpenDefaultComponent(kNoteAllocatorType, 0);
if (!na)

goto goHome;

// • Allocate space for the tune header, rather inflexibly.
header = (unsigned long *) NewPtrClear(our_header_length);
if (!header)

goto goHome;
w = header;

// • Stuff request for piano polyphony 4.
w2 = w + kNoteRequestHeaderEventLength - 1; // • last long word of

// • note request event
_StuffGeneralEvent(*w, *w2, 1, kGeneralEventNoteRequest,

kNoteRequestHeaderEventLength);
nr = (NoteRequest *)(w + 1);
nr->info.flags = 0;
nr->info.reserved = 0;
nr->info.polyphony = 4; // • simultaneous tones
nr->info.typicalPolyphony = 0x00010000;
thisError = NAStuffToneDescription(na, 1, &nr->tone); // • 1 is piano
w += kNoteRequestHeaderEventLength;

// • Stuff request for violin polyphony 3.
w2 = w + kNoteRequestHeaderEventLength - 1; // • last long word of

// • note request event
_StuffGeneralEvent(*w, *w2, 2, kGeneralEventNoteRequest,

kNoteRequestHeaderEventLength);
nr = (NoteRequest *)(w + 1);
nr->info.flags = 0;
nr->info.reserved = 0;
nr->info.polyphony = 3; // • simultaneous tones
nr->info.typicalPolyphony = 0x00010000;
thisError = NAStuffToneDescription(na, 41, &nr->tone); // • violin
w += kNoteRequestHeaderEventLength;
*w++ = 0x60000000; // • end-of-sequence marker

(continued on next page)

_StuffNoteEvent(w, part, pitch, volume, duration);

The _StuffNoteEvent macro fills in a note event. Its arguments are, in order: the
long word to stuff; the part number; the pitch (where, as usual, 60 is middle C); the
volume (velocity); and the duration (usually specified in 600ths of a second). The
pitch must be between 32 and 95, and the part number must be less than 32. For
values outside these ranges, a fixed-point pitch value, or a very long duration, use
_StuffXNoteEvent.

_StuffXNoteEvent(w1, w2, part, pitch, volume, duration);

The _StuffXNoteEvent macro is for extended note events. It’s identical to
_StuffNoteEvent except that it provides larger ranges for pitch, part, and duration,
and the event itself takes two long words.

_StuffRestEvent(w, restDuration);

The _StuffRestEvent macro fills in a rest event. It takes two arguments: the long
word to stuff and the duration of the rest.

MUSIC THE EASY WAY: THE QUICKTIME MUSIC ARCHITECTURE 17

goHome:
if (na)

CloseComponent(na);
return header;

}

Listing 5. BuildTuneHeader (continued)

Listing 6. BuildTuneSequence

#define kNoteDuration 240 // • in 600ths of a second
#define kRestDuration 300 // • in 600ths -- tempo will be 120 bpm

#define our_sequence_length (22 * sizeof(long)) // • bytes
#define our_sequence_duration (9 * kRestDuration) // • 600ths

unsigned long *BuildTuneSequence(void)
{

unsigned long *sequence, *w;

// • Allocate space for the tune sequence, rather inflexibly.
sequence = (unsigned long *) NewPtrClear(our_sequence_length);
if (!sequence)

goto goHome;
w = sequence;
_StuffNoteEvent(*w++, 1, 60, 100, kNoteDuration); // • piano C
_StuffRestEvent(*w++, kRestDuration);
_StuffNoteEvent(*w++, 2, 60, 100, kNoteDuration); // • violin C
_StuffRestEvent(*w++, kRestDuration);
_StuffNoteEvent(*w++, 1, 63, 100, kNoteDuration); // • piano
_StuffRestEvent(*w++, kRestDuration);

(continued on next page)

It’s important to understand that the duration of a sequence equals the total durations of
all the rest events. The durations within the note events don’t contribute to the
duration of the sequence! If two note events occur in a row, each with a duration of
say 100, they’ll both start at the same time, not 100 time units apart. If the next event is
an end-of-sequence marker, the notes will immediately be stopped, having played for
zero time units. If, however, a rest event is placed between the note events and the
end marker, both notes will sound for the duration of the rest event, up to 100 time
units.

PLAYING A TUNE WITH THE TUNE PLAYER
Playing a tune with the tune player component is ideal if for some reason your
application will be constructing a tune at run time and then playing it. For prescored
music, however, the best solution is to create a QuickTime movie containing only a
music track and play it as a regular movie with the Movie Toolbox, as described below.

Using the tune player to play a tune without application intervention is straightforward,
as illustrated in Listing 7. After building the tune with BuildTuneHeader and
BuildTuneSequence, this routine opens up a connection to the tune player
component, calls TuneSetHeader with a pointer to the header information, and then
calls TuneQueue with a pointer to the sequence data. All the details of playback are
taken care of by the tune player. The tune will stop playing when it reaches the end
or when the tune player component is closed.

PLAYING PRESCORED MUSIC IN A QUICKTIME MOVIE
The best way to play prescored music is to create a QuickTime movie with just a
music track and play it with the Movie Toolbox, which takes care of details like
spooling multiple segments of sequence data from disk. This is currently the only way

d e v e l o p Issue 23 September 199518

_StuffNoteEvent(*w++, 2, 64, 100, kNoteDuration); // • violin
_StuffRestEvent(*w++, kRestDuration);

// • Make the 5th and 6th notes much softer, just for fun.
_StuffNoteEvent(*w++, 1, 67, 60, kNoteDuration); // • piano
_StuffRestEvent(*w++, kRestDuration);
_StuffNoteEvent(*w++, 2, 66, 60, kNoteDuration); // • violin
_StuffRestEvent(*w++, kRestDuration);
_StuffNoteEvent(*w++, 1, 72, 100, kNoteDuration); // • piano
_StuffRestEvent(*w++, kRestDuration);
_StuffNoteEvent(*w++, 2, 73, 100, kNoteDuration); // • violin
_StuffRestEvent(*w++, kRestDuration);
_StuffNoteEvent(*w++, 1, 60, 100, kNoteDuration); // • piano
_StuffNoteEvent(*w++, 1, 67, 100, kNoteDuration); // • piano
_StuffNoteEvent(*w++, 2, 63, 100, kNoteDuration); // • violin
_StuffNoteEvent(*w++, 2, 72, 100, kNoteDuration); // • violin
_StuffRestEvent(*w++, kRestDuration);
*w++ = 0x60000000; // • end-of-sequence marker

goHome:
return sequence;

}

Listing 6. BuildTuneSequence (continued)

to create QuickTime music that will also play under QuickTime for Windows. There
are many tools for authoring music into Standard MIDI Files, which are then easily
imported as QuickTime movies — but first let’s look at the more hard-core method
of creating your own sequence and header data and saving it as a QuickTime movie.

CREATING A QUICKTIME MUSIC TRACK
Creating a QuickTime music track is exactly the same as creating any other kind of
track. You create or open the movie you’re adding the track to, and then add a new
track and a new media followed by a sample description and the sample data. For a
music track, the sample description is the tune header information, and the data is
one or more tune sequences. The routine in Listing 8 constructs a QuickTime movie
with a music track and saves it to disk.

IMPORTING A STANDARD MIDI FILE AS A MOVIE
Most music content exists in a format called Standard MIDI File (SMF). All
sequencing and composition programs have an option to Save As or Export files to

MUSIC THE EASY WAY: THE QUICKTIME MUSIC ARCHITECTURE 19

Listing 7. Playing a tune with the tune player component

void BuildSequenceAndPlay(void)
{

unsigned long *header, *sequence;
TunePlayer tp;
TuneStatus ts;
ComponentResult thisError;

tp = 0;
header = BuildTuneHeader();
sequence = BuildTuneSequence();
if (!header || !sequence)

goto goHome;
tp = OpenDefaultComponent(kTunePlayerType, 0);
if (!tp)

goto goHome;
thisError = TuneSetHeader(tp, header);
thisError = TuneQueue(tp, sequence, 0x00010000, 0, 0x7FFFFFFF,

0, 0, 0);

// • Wait until the sequence finishes playing or the user clicks
// • the mouse.

spin:
thisError = TuneGetStatus(tp, &ts);
if (ts.queueTime && !Button())

goto spin; // • I use gotos primarily to shock the children.

goHome:
if (tp)

CloseComponent(tp);
if (header)

DisposePtr((Ptr) header);
if (sequence)

DisposePtr((Ptr) sequence);
}

d e v e l o p Issue 23 September 199520

Listing 8. Creating a QuickTime music track

void BuildMusicMovie(void)
{

ComponentResult result;
StandardFileReply reply;
short resRefNum;
Movie mo;
Track tr;
Media me;
unsigned long *tune, *header;
MusicDescription **mdH, *md;

StandardPutFile("\pMusic movie file name:", "\pMovie File", &reply);
if (!reply.sfGood)

goto goHome;
EnterMovies();

// • Create the movie, track, and media.
result = CreateMovieFile(&reply.sfFile, 'TVOD', smCurrentScript,

createMovieFileDeleteCurFile, &resRefNum, &mo);
if (result)

goto goHome;
tr = NewMovieTrack(mo, 0, 0, 256);
me = NewTrackMedia(tr, MusicMediaType, 600, nil, 0);

// • Create a music sample description.
header = BuildTuneHeader();
mdH = (MusicDescription **)

NewHandleClear(sizeof(MusicDescription) - 4 + our_header_length);
if (!mdH)

goto goHome;
md = *mdH;
md->descSize = GetHandleSize((Handle) mdH);
md->dataFormat = kMusicComponentType;
BlockMove(header, md->headerData, our_header_length);
DisposePtr((Ptr) header);

// • Get a tune, add it to the media, and then finish up.
tune = BuildTuneSequence();
result = BeginMediaEdits(me);
result = AddMediaSample(me, (Handle) &tune, 0, our_sequence_length,

our_sequence_duration, (SampleDescriptionHandle) mdH, 1, 0, nil);
result = EndMediaEdits(me);
result = InsertMediaIntoTrack(tr, 0, 0, our_sequence_duration,

(1L<<16));
result = OpenMovieFile(&reply.sfFile, &resRefNum, fsRdWrPerm);
result = AddMovieResource(mo, resRefNum, 0, 0);
result = CloseMovieFile(resRefNum);
DisposePtr((Ptr) tune);
DisposeMovie(mo);

goHome:
ExitMovies();

}

this format. QuickTime has facilities for reading an SMF file and easily converting it
into a QuickTime movie. (QuickTime 2.1 corrects some critical bugs in the 2.0
converter.) During any kind of conversion, the SMF file is assumed to be scored for
a General MIDI device, and MIDI channel 10 is assumed to be a drum track.

The conversion to a QuickTime movie can happen in several ways. Because the
conversion is implemented in a QuickTime 'eat ' component, it very often will
happen automatically. Any application that uses the StandardGetFile routine to
open a movie can also open 'Midi' files transparently, and can transparently paste
Clipboard contents of type 'Midi' into a movie that’s shown with the standard movie
controller. To explicitly convert a file or handle into a movie, an application can use
the Movie Toolbox routines ConvertFileToMovieFile and PasteHandleIntoMovie,
respectively.

For those of you who are hard-core MIDI heads, the following two MIDI system-
exclusive messages, new in QuickTime 2.1, may be useful for more precise control of
the MIDI import process. (Note that QuickTime data is divided into media samples.
Within video tracks, each video frame is considered one sample; in music tracks, each
sample may contain several seconds worth of musical information.)

• F0 11 00 01 xx yy zz F7 sets the maximum size of each media sample to the
21-bit number xxyyzz. (MIDI data bytes have the high bit clear, so they have
only seven bits of number.) This message can occur anywhere in an SMF file.

• F0 11 00 02 F7 marks an immediate sample break; it ends the current sample
and starts a new one. All messages after a sample break message will be
placed in a new media sample.

Applications can define their own system-exclusive messages of the form
F0 11 7F ww xx yy zz ... application-defined data ... F7, where ww xx yy zz is the
application’s unique signature with the high bits cleared. This is guaranteed not to
interfere with Apple’s or any other manufacturer’s use of system-exclusive codes.•

READING INPUT FROM A MIDI DEVICE
If the user has a MIDI keyboard attached to the computer, your application can use it
as an input device by calling QTMA routines that capture each event as the user
triggers it.

The default MIDI input is whichever MIDI port the user has chosen for a General
MIDI device from the QuickTime Music control panel, shown in Figure 5. (The
default MIDI input can also be specified with the NASetDefaultMIDIInput call in
the note allocator, but this call should be made only by music-configuration software,
such as the control panel.)

An application can receive MIDI events from the default MIDI input by installing a
readHook routine. This routine is called at interrupt level whenever MIDI data
arrives. It’s installed with the NAUseDefaultMIDIInput call (and later deinstalled
with NALoseDefaultMIDIInput).

pascal ComponentResult NAUseDefaultMIDIInput(NoteAllocator na,
MusicMIDIReadHookUPP readHook, long refCon, unsigned long flags);

The readHook routine is defined as follows:

typedef pascal ComponentResult (*MusicMIDIReadHookProcPtr)
(MusicMIDIPacket *mp, long myRefCon);

MUSIC THE EASY WAY: THE QUICKTIME MUSIC ARCHITECTURE 21

When the readHook routine is called, it’s passed its refCon (installed with the routine)
and a pointer to the MIDI packet. The MIDI packet structure is simply a list of bytes
of a MIDI message, preceded by a length:

struct MusicMIDIPacket {
unsigned short length;
unsigned long reserved;
UInt8 data[249];

};

The length field is the number of bytes in the MIDI message. (If you’re familiar with
the MIDI Manager definition of a MIDI packet or with OMS’s packet, note that their
length field is different from this one: Theirs is the length of both the header and the
packet data, so the minimum length would be 6; but in QuickTime’s packets, the
length field is only the number of bytes of MIDI data actually in the data array.)

In QuickTime 2.0, the reserved field must be set to 0, but in QuickTime 2.1, this
field takes on some additional meanings (as reserved fields occasionally do). When
an application is using the default MIDI input, it may occasionally lose the use of
that input, such as when another application tries to use it, or if the instrument
picker dialog box comes to the front. If the use of the input is lost, the reserved field
will have the value kMusicPacketPortLost = 1, and the length field will be 0: no
MIDI data. When the port is once again available, the readHook routine will receive
a packet with the reserved field set to kMusicPacketPortFound = 2, also with no
data.

The data array in the MIDI packet contains a raw MIDI message that your readHook
routine will have to parse. Our example code parses only the MIDI messages for note-
on events and note-off events; other messages, such as pitch-bend controls, are simply
ignored.

The note-on event message has three bytes, 9c pp vv (in hexadecimal), where c is the
MIDI channel that the musical keyboard is transmitting on, pp is a MIDI pitch from
0 to 127 (60 is middle C), and vv is the velocity with which the key was struck, from
1 to 127. If the velocity is 0, the message signifies a note-off event. Some devices,
however, use a separate message type for note-off events; it has the form 8c pp vv,
where c and pp are the channel and pitch, and vv is the velocity with which the key
was released. Nobody in the world pays attention to the release velocity, so in our

d e v e l o p Issue 23 September 199522

Figure 5. The QuickTime Music control panel

example we won’t either. When an 8c message is received, we’ll just set the velocity to
0 and pretend it was a 9c message.

Listing 9 shows a readHook routine and the routine that installs it. The main routine,
UseMIDIInput, allocates a note channel and then calls NAUseDefaultMIDIInput,
specifying a readHook routine that parses note-on or note-off event messages. These
messages are expanded into a chord that’s played on the note channel. Any packet
that isn’t of that type — that is, doesn’t contain three bytes or start with 0x8n or 0x9n
— is ignored.

MUSIC THE EASY WAY: THE QUICKTIME MUSIC ARCHITECTURE 23

Listing 9. Parsing MIDI messages in the readHook routine

pascal ComponentResult AReadHook(MusicMIDIPacket *mp, long refCon)
{

MIDIInputExample *mie;
Boolean major;
short status, pitch, vel;

mie = (MIDIInputExample *)refCon;
if (mp->reserved == kMusicPacketPortLost) // • port gone? make

// • channel quiet
NASetNoteChannelVolume(mie->na, mie->nc, 0);

else if (mp->reserved == kMusicPacketPortFound) // • port back?
// • raise volume

NASetNoteChannelVolume(mie->na, mie->nc, 0x00010000);
else if (mp->length == 3) {

status = mp->data[0] & 0xF0;
pitch = mp->data[1];
vel = mp->data[2];
switch (status) {

case 0x80:
vel = 0;

// • Falls into case 0x90.
case 0x90:

major = pitch % 5 == 0;
NAPlayNote(mie->na, mie->nc, pitch, vel);
NAPlayNote(mie->na, mie->nc, pitch+3+major, vel);
NAPlayNote(mie->na, mie->nc, pitch+7, vel);
break;

}
}
return noErr;

}

void UseMIDIInput(void)
{

ComponentResult result;
MIDIInputExample mie;
NoteRequest nr;

mie.na = OpenDefaultComponent(kNoteAllocatorType, 0);
if (!mie.na)

goto goHome;

(continued on next page)

GIVE QTMA A TRY
Sometimes a little music can make your application easier and more fun to use.
Adding music doesn’t have to be a complex task; QTMA takes care of all the hard
parts, like using MIDI protocols, so you can concentrate more on the music itself. So
go ahead, play some tunes and enjoy the music!

d e v e l o p Issue 23 September 199524

nr.polyphony = 2;
nr.typicalPolyphony = 0x00010000;
result = NAStuffToneDescription(mie.na, 1, &nr.tone); // • piano
result = NANewNoteChannel(mie.na, &nr, &mie.nc);
result = NAUseDefaultMIDIInput(mie.na, AReadHookUPP, (long) &mie, 0);
while (!Button());
result = NALoseDefaultMIDIInput(mie.na);

goHome:
if (mie.na)

CloseComponent(mie.na); // • disposes of NoteChannel, too
}

Listing 9. Parsing MIDI messages in the readHook routine (continued)

Thanks to our technical reviewers Peter Hoddie,
Duncan Kennedy, Jim Nitchals, Jim Reekes, and
Kent Sandvik.•

Add a New Dimension
to Your Applications
Apple Developer University’s newest class,

“Programming with QuickDraw 3D,” teaches
what you need to know to use the new

QuickDraw 3D graphics library in
your applications.

• Create, manipulate, and render 3D objects

• Learn the 3D Human Interface Guidelines

• Understand the metafile format for 3D objects

For class dates, schedule, and complete course
description, call (408) 974-4897.

DEVELOPER

UNIVERSITY

D
U

In March of this year, Apple announced a major
upgrade to the ColorSync extension and API: ColorSync
2.0. Like version 1.0, ColorSync 2.0 is a powerful color
management system that allows applications and device
drivers to produce consistent color across different
devices. However, ColorSync 2.0 dramatically
improves the quality, flexibility, and performance of
color management. This column focuses on the new
features of ColorSync 2.0 and how applications can
take advantage of them. (For a good review of
ColorSync 1.0 and color management in general, see
John Wang’s Print Hints column in develop Issue 14.)

WHAT IS COLORSYNC 2.0?
ColorSync 2.0 is an extension to the Mac OS that
provides a color management system for applications,
scanner drivers, printer drivers, and other components
of the OS such as QuickDraw and QuickDraw GX.
The objective of the color management system is to
provide consistent color across devices that have
different color ranges, or gamuts.

All the versions of QuickDraw GX that have shipped as
of this writing (v1.0.1 through v1.1.2) use the ColorSync 1.0
API. ColorSync 2.0 is backward compatible, so QuickDraw GX
will work fine if ColorSync 2.0 is installed. QuickDraw GX
version 1.2 will add full ColorSync 2.0 support.•

To understand the task of color management, consider
the process of scanning, displaying, editing, and
printing a color document: In a typical configuration, a
color document may interact with three devices —
scanner, monitor, and printer — each of which works
with color in different ways. A scanner contains a CCD
array, which is nonlinearly sensitive to specific

frequencies of red, green, and blue light. A monitor
hurls electrons at special phosphors to produce varying
amounts of red, green, and blue light. And a color
printer relies on a mixture of dyes, waxes, or toner to
subtract cyan, magenta, yellow, and black from white
paper. Because each of these devices uses different
physical systems in different color spaces with different
gamuts, providing consistent color is difficult. The goal
is to provide the best consistency given the physical
limitations of each device.

To meet this goal, ColorSync 2.0 requires detailed
information about each device and how it represents or
characterizes color. This information is encapsulated in
a device profile. A ColorSync-savvy scanner stores (or
“embeds”) its profile in the document it creates. A
ColorSync-savvy application uses the profile embedded
in the document and displays it according to the
monitor’s profile; a ColorSync-savvy printer renders
the document according to the printer’s profile.

DEVICE PROFILES
Device profiles are the key ingredient of any color
management system because they define the unique
color behavior of each device. They’re used by color
management module (CMM) components, which
perform the low-level calculations required to
transform colors from a source device color space to a
destination device color space.

CMM used to stand for color matching method. There
was disagreement with that name because a CMM component
does a lot more than just color matching. So we changed the
name to color management module to be more accurate.•

ICC profile format. ColorSync 2.0 uses a new profile
format defined by the International Color Consortium
(ICC), the founding members of which include Apple,
Adobe Systems, Agfa-Gevaert, Eastman-Kodak,
Microsoft, Silicon Graphics, Sun, and FOGRA
(honorary). The International Color Consortium Profile
Format Specification states the following in its
introduction:

The intent of this format is to provide a cross-platform
device profile format. Such device profiles can be used to
translate color data created on one device into another
device’s native color space. The acceptance of this format
by operating system vendors allows end users to
transparently move profiles and images with embedded

PRINT HINTS: SYNCING UP WITH COLOR SYNC 2.0 25

PRINT HINTS

Syncing Up With
ColorSync 2.0

DAVID HAYWARD

DAVID HAYWARD (AppleLink HAYWARD.D) has been working
in the Printing, Imaging, and Graphics group in Developer
Technical Support for over a year. His proudest achievement to
date is the ability to make his hour-long commute every morning

without waking up until he hits the speed bumps on Apple’s R&D
campus. Currently Dave is developing a ColorSync CMM for his
closet so that he no longer has to worry about mismatching his
clothes.•

profiles between different operating systems. For example,
this allows a printer manufacturer to create a single
profile for multiple operating systems.

The ICC profile format is designed to be flexible and
extensible so that it can be used on a wide variety of
platforms and devices. The profile structure is defined
as a header followed by a tag table followed by a series
of tagged elements that can be accessed randomly and
individually. In a valid profile, a minimal set of tags
must be present, but optional and private tags may be
added depending on implementation needs. Complete
definitions of the required tags can be found in the
profile format specification. Perhaps just as important,
Apple and Adobe have defined how profiles can be
embedded in the common graphics file formats PICT,
EPS, and TIFF.

There have been changes in the way ColorSync works
with profiles as a result of this new format. For
example, with ColorSync 1.0, the entire profile format
was compact enough to be used as a memory-based
data structure, whereas with ColorSync 2.0, profiles
can be much larger and typically are disk-based.
However, ColorSync 2.0 can still make use of old 1.0
profiles for backward compatibility.

Profile types. There are three main types of device
profile: input, display, and output. These types have the
following signatures:

• 'scnr' — input devices such as scanners or digital
cameras

• 'mntr' — display devices such as monitors or liquid
crystal displays

• 'prtr' — output devices such as printers

In addition to these basic types, three other device
profile types are defined:

• 'link' — Device link profiles concatenate into one
profile a series of profiles that are commonly used
together. A profile of this type can simplify and
expedite the processing of batch files when the same
combination of device profiles and non-device
profiles is used repeatedly.

• 'spac' — Color space conversion profiles are used by
CMMs to perform intermediate conversions
between different device-independent color spaces.

• 'abst' — Abstract profiles provide a generic method
for users to make subjective color changes to images
or graphic objects by transforming the color data.

Profile quality and rendering intent. Typically you
can think of a profile as a self-contained set of data that

contains all the information needed for a CMM to
perform a color match. Therefore, if an application
wants to embed a profile in a document, it shouldn’t
have to make any changes to the profile — the profile is
just a black box of data. This is true for the most part,
but there are a few attributes of a profile that an
application can change to modify the behavior of the
profile. So, it’s better to conceptualize a profile as a
black box of data with a few switches on the outside.
Before embedding a profile in a document, an
application can toggle any of these switches by setting
the appropriate bit or bits in the profile’s header. One
of the switches determines the profile’s quality and
another specifies its rendering intent:

• The quality flag bits provide a convenient place in
the profile for an application to indicate the desired
quality of a color match (potentially at the expense
of speed and memory) as normal, draft, or best
quality. In ColorSync 2.0 these qualities do not
mandate the use of one algorithm over another;
they’re just “recommendations” that the CMM may
choose to ignore or implement as it sees fit.

• The rendering intent determines how the CMM
performs the match. The possible intents are
photographic matching, saturation matching,
relative colormetric matching, and absolute
colormetric matching.

Profile header structure: CMAppleProfileHeader.
In the ColorSync 1.0 profile format, the first member
of the profile header structure (CMAppleProfileHeader)
is a CMHeader structure, which contains all the basic
information about the profile. Similarly, the ColorSync
2.0 profile begins with a CM2Header structure. The
fields of the CM2Header structure are slightly different
from those in the old CMHeader, to reflect some of the
improvements provided by the new ICC profile format.
However, to be backward-compatible with 1.0,
ColorSync 2.0 defines a union of the two header
structures. Because the version field is at the same offset
in both header structures, it can be used to determine
the version of the profile format.

Because ColorSync 2.0 provides support for ColorSync
1.0 profiles, your application should be prepared to
handle both formats. Your code should always check
the version field of the header before accessing any of
the other fields in the header or reading any of the
profile’s tags.

Profile location structure: CMProfileLocation.
ColorSync 2.0 profiles are typically disk-based files, but
they can also be memory-based handles or pointers. To
allow this flexibility, whenever a profile location needs
to be specified (as a parameter for CMOpenProfile, for

d e v e l o p Issue 23 September 199526

example) a CMProfileLocation structure is used. This
structure contains a type flag followed by a union of an
FSSpec, a handle, and a pointer.

Profile reference structure: CMProfileRef. Once a
profile has been opened, a private structure is created
by ColorSync to maintain the profile until it’s closed.
A CMProfileRef (defined as a pointer to the private
structure) can be used to refer to the profile.

COLOR WORLDS
A color world is a reference to a private ColorSync
structure that represents a unique color-matching
session. Although profiles can be large, a color world is
a compact representation of the mapping needed to
match between profiles. Conceptually, you can think of
a color world as a sort of “matrix multiplication” of two
or more profiles that distills all the information
contained in the profiles into a fast multidimensional
lookup table. A color world can be created explicitly
with low-level routines such as NCWNewColorWorld
or automatically with high-level routines like
NCMBeginMatching.

COLORSYNC 2.0 ROUTINES
Here I’ll briefly describe the most commonly used
ColorSync 2.0 routines, grouped according to purpose.

The API naming convention is as follows: Calls prefixed
with “CM” are high-level color management routines, while
those prefixed with “CW” are low-level routines that take a
color world as an argument. An “N” before “CM” or “CW”
indicates calls that are new to ColorSync 2.0, to distinguish
them from the old ColorSync 1.0 calls (which are still supported
for backward compatibility).•

Accessing profile files. There is a set of basic
routines to work with profiles as a whole. For example,
CMNewProfile, CMOpenProfile, CMCopyProfile,
and CMGetSystemProfile do what you would expect
from their names.

Accessing profile elements. These routines perform
more specific operations on profiles and profile
elements. CMValidateProfile checks whether a profile
contains all the needed tags, CMGetProfileElement
gets a specific tag type from a profile, and
CMGetProfileHeader gets the important header
information of a profile.

Embedding profiles. NCMUseProfile is a simple
routine for embedding a profile into a PICT. If you
need to extract a profile or embed a profile into a
different file format, you can use CMFlattenProfile to
embed or CMUnflattenProfile to extract.

QuickDraw-specific matching. These high-level
routines provide a basic API to simplify color matching
for QuickDraw drawing routines. NCMBeginMatching
tells Color QuickDraw to begin matching for the
current graphics device using the specified source and
destination profiles. NCMUseProfileComment inserts
a profile as a picture comment into an open picture.
NCMDrawMatchedPicture draws a picture using color
matching. CWMatchPixMap matches a PixMap using
the specified color world.

Low-level matching. These low-level routines
create color worlds and perform color matching.
NCWNewColorWorld creates a color world using
the specified source and destination profiles, while
CWConcatColorWorld creates one using an array of
two or more profiles. Using the specified color world,
CWMatchColors matches a list of colors and
CWMatchBitmap matches a generic bitmap.

Searching profile files. This set of routines allows
your application to search the ColorSync™ Profiles
folder for the subset of profiles that meets your needs.
For example, you could search for only printer profiles
and use the search result to provide a pop-up menu for
the user. CMNewProfileSearch searches the
ColorSync™ Profiles folder for all profile files that
match the supplied CMSearchRecord. The matches
aren’t returned to the caller, but the number of profiles
matched and a reference to the search result are
returned. The search result is a CMProfileSearch
structure that points to private structures maintained
by ColorSync and can be accessed with a call like
CMSearchGetIndProfile, which opens and returns a
CMProfileRef for the nth member of the search result.

PostScript code generation. This set of routines
allows your application or printer driver to generate
PostScript™ code that can be sent to a PostScript
Level 2 printer so that the actual matching calculations
will be performed in the printer instead of on the user’s
computer. CMGetPS2ColorRendering gets a color
rendering dictionary (CRD) for a specified source and
destination profile. CMGetPS2ColorSpace gets a color
space array (CSA) for a specified source profile.

BECOMING COLORSYNC-AWARE
At the very least, your application should respect any
embedded profiles in the documents it works with.
For example, if your application works with PICT files,
it shouldn’t do anything that would strip out the
ColorSync picture comments used for embedding.
Even though your application may choose not to make
use of the profiles, another application or printer driver
may be able to take advantage of them.

PRINT HINTS: SYNCING UP WITH COLOR SYNC 2.0 27

d e v e l o p Issue 23 September 199528

PRINTING WITH COLORSYNC
If your application prints QuickDraw data to a
ColorSync-savvy printer driver, you need do nothing to
get matched output. When the stream of QuickDraw
data sent to the driver contains an embedded profile in
picture comments, the ColorSync-savvy printer driver
will create a new color world to match from the
embedded profile to the printer’s profile. The driver
will then match subsequent QuickDraw operations
accordingly before sending them to the printer. If the
QuickDraw data stream doesn’t contain embedded
profiles, the driver will use the current system profile
(the profile that the user selected in the ColorSync
control panel) as the source profile. That way, the
printed output will match the screen display.

One example of a ColorSync-savvy printer driver is the
LaserWriter 8.3 driver. Whereas previous versions of
LaserWriter 8 allowed the user to choose between “Black
and White” and “Color/Grayscale” in the Print dialog,
this version adds two new choices. “ColorSync Color
Matching” tells the driver to use ColorSync to match an
image on the host Macintosh before sending it to the
printer. The other option, “PostScript Color Matching,”
instructs the driver to generate PostScript CSAs and
CRDs, which are sent to the printer so that the actual
matching is performed in the printer. (The ColorSync
API is used to generate the CSAs and CRDs according
to the source profiles that may be embedded in the
document and the destination profile of the printer.) In
either case, the LaserWriter 8.3 driver allows the user
to choose a printer profile from a list of printer profiles
installed in the ColorSync™ Profiles folder.

Because ColorSync-savvy printer drivers do much of
the work for you, it’s best if your application prints
documents with QuickDraw even if they’re not PICT
files. For example, if your application reads and prints
TIFF files, the best approach is to convert the TIFF
data (which may have a profile embedded in tags) to a
PicHandle (which would have the profile embedded in
picture comments). To print, you draw the PicHandle
with DrawPicture into the printer’s color graphics port.

If the printer’s driver doesn’t support ColorSync, your
application can still use ColorSync to produce matched
output as long as you have an appropriate profile for
the device. (There are several commercial tools that
build ICC profiles.) Given a source and destination
profile, you can use the ColorSync API to match the

image or, if your application must send PostScript data
directly to a printer, to generate CRDs.

WHAT ELSE A COLORSYNC-SAVVY APPLICATION
CAN DO
There is much that an application can do with
ColorSync that will help the user work with color. For
starters, an application could do the following:

• Provide the user with information on any profiles
embedded in a document, and possibly also allow
the user to change the quality and rendering intent
settings of embedded profiles.

• Include a print preview mode that shows a “soft
proof” of the matched output on the display. The
application accomplishes this by building a color
world with CWConcatColorWorld that matches
through three profiles: from the source profile
(which is embedded in the document) to the
printer’s profile (which you allow the user to pick
from a list of installed printer profiles) and back to
the screen profile (which is the current system
profile).

• Along with soft-proofing, it’s useful to show the user
what colors in the document are out of gamut
according to the current destination profile. Gamut
checking can be done with routines such as
CWCheckColors and CWCheckBitmap.

Note that the LaserWriter engineering team is
designing new PrGeneral code for the 8.3.1 version of
the driver. This will allow an application to determine
what profile is selected in the Print dialog.

WHERE TO GO FOR MORE
Everything you need to use ColorSync 2.0, including
interfaces, libraries, sample code, utilities, and the ICC
profile format specification, is on this issue’s CD and in
the Mac OS Software Developer’s Kit. The technical
reference for ColorSync 2.0 consists of several chapters
in the book Advanced Color Imaging on the Macintosh,
which is also included on this issue’s CD and will soon
be available in print from Addison-Wesley; this
documentation covers everything from a high-level
discussion of color management theory to a detailed
description of the ColorSync 2.0 API. Why not take a
closer look and see how you can take of advantage of
this new improved technology in your application?

Thanks to Paul Danbold, Steve Swen, Nick Thompson, and John
Wang for reviewing this column.•

No matter how realistic or sophisticated you want your 3D images to
be, you must always build objects with the primitive geometric shapes
provided by the graphics system. Our article in Issue 22 gave the basic
information you need to start developing applications with QuickDraw
3D. Here we delve deeper into the primitive geometric shapes provided
by QuickDraw 3D and show how to use them effectively. We also give
you some tips we’ve gained from working with developers.

Geometric shapes — or geometries — form the foundation of any 3D scene.
QuickDraw 3D provides a rich set of primitive geometric types that you use to define
the shapes of things. You can apply attributes (such as colors) to geometric objects,
collect geometric objects into groups, and copy, illuminate, texture, transform, or
otherwise modify them to attain the visual effects you want. In other words,
everything that’s drawn by QuickDraw 3D is either a geometry or a modification of
a geometry. So you need to know how to define geometries (and usually also how to
create and dispose of them) to work effectively with QuickDraw 3D. This article
describes the geometries available in QuickDraw 3D version 1.0 and shows how they
relate to other aspects of the QuickDraw 3D architecture (such as the class hierarchy).

We’re assuming that you’re already familiar with the basic capabilities of QuickDraw
3D. For a good introduction, see our article “QuickDraw 3D: A New Dimension for
Macintosh Graphics” in Issue 22 of develop (a copy is on this issue’s CD). In that
article, we provided an overview of QuickDraw 3D’s architecture and capabilities.
You can think of QuickDraw 3D as having three main parts: graphics, I/O (the
QuickDraw 3D metafile), and human interface guidelines. Here, we provide more
detail on the graphics portion of the QuickDraw 3D API and highlight some parts of
that API that could use clarification as you try to implement geometries.

NICK THOMPSON AND
PABLO FERNICOLA

The Basics of QuickDraw 3D Geometries

d e v e l o p Issue 23 September 199530

NICK THOMPSON (AppleLink NICKT) from
Apple’s Developer Technical Support group took a
trip to Las Vegas this year in a rented Cadillac. He
was impressed by some of the ancient architecture
on show in this fine city, such as the Pyramid of
Luxor, Excalibur’s Castle, and Caesar’s Palace (he
was surprised that the ancient Egyptians, King
Arthur, and the Roman emperor had all made it
that far west). He was also impressed by the free
food and drinks — all he had to do was sit at a
table and buy small plastic disks with green scraps
of paper that he got from a hole in the wall.
Having rented a Cadillac for this trip, Nick now
has his heart set on a 1968 Eldorado convertible.•

PABLO FERNICOLA (AppleLink PFF, eWorld
EscherDude), the short one in the picture, is the
brains behind the operation. His hobbies include
traveling to exotic places (such as the local
supermarket), eating fine cuisine, and talking to
his dog (who is almost as big as Nick, and
probably a lot smarter). He’s hard at work on
the next generation of QuickDraw 3D, which —
like Pablo — is bound to be even smarter. Pablo
says, “You can use QuickDraw 3D’s metafile
format everywhere, even for defining virtual
environments on the net. So get those
applications ready, won’t you?”•

To help you get started using geometries, this issue’s CD contains version 1.0 of the
QuickDraw 3D shared library and programming interfaces, sample code, and an
electronic version of the book 3D Graphics Programming With QuickDraw 3D,
which provides complete documentation for the QuickDraw 3D programming
interfaces.

A WORD ABOUT RENDERING AND SUBMITTING
Our previous article included an introduction to rendering; we’ll review a key
concept here — retained vs. immediate rendering. We’ll also elaborate on an
important point we glossed over in that article: submitting something to be rendered
rather than just rendering it. These concepts will help set the stage for what you’ll
learn here about working with geometries.

RETAINED VS. IMMEDIATE MODE RENDERING
A powerful feature of QuickDraw 3D is that it supports both retained and immediate
modes for rendering geometric data; you can even mix these modes within the same
rendering loop. In retained mode, the definition and storage of the geometric data are
kept internal to QuickDraw 3D — as abstract geometric objects. In immediate mode,
the application keeps the only copy of the geometric data; for efficiency, the
application should use QuickDraw 3D data structures to hold the data, but those
structures can be embedded in application-defined structures. Retained mode
geometric objects and immediate mode geometric data define the shapes of objects.
You’ll typically use one or more primitive geometric types provided by QuickDraw
3D (such as triangles or meshes) to build up a scene.

Whether you use retained or immediate mode to render geometries usually depends
on how much of a model changes from one rendering operation to the next. As we’ll
illustrate with examples in this section, we prefer to use retained geometries most of
the time and to use immediate mode only for temporary objects. Since our preference
for retained mode is a departure from the traditional QuickDraw way of drawing,
we’ll attempt to convince you that retained mode is a much more efficient method of
rendering geometries.

Immediate mode. When you use immediate mode rendering, the data that defines
a geometry is stored and managed by your application. For example, to draw a
triangle you would write code similar to that in Listing 1. If you wanted to draw this
triangle many times, or from different camera angles, you would have to maintain the
data in your application’s data structures.

Typically when using immediate mode, you stick to a single type of geometry
(triangles are popular with developers accustomed to lower-level 3D graphics

THE BASICS OF QUICKDRAW 3D GEOMETRIES 31

Listing 1. Rendering a triangle in immediate mode

TQ3TriangleData myTriangle;

// Set up the triangle with appropriate data.
...
// Render the triangle.
Q3View_StartRendering(myView);
do {

Q3Triangle_Submit(&myTriangle, myView);
} while (Q3View_EndRendering(myView) == kQ3ViewStatusRetraverse);

libraries). If you use multiple geometric types, you need to define a data structure to
manage the order of the geometries. An example of rendering several geometries in
immediate mode is shown in Listing 2.

If you wanted to apply transforms to a geometry as it’s being drawn, you would have
to add a new case to the switch statement. This gets complicated pretty quickly. As a
result, many developers, when given a choice, will use immediate mode only for
models that have a fixed geometry and are not being altered.

Retained mode. Creating geometric objects allows renderers to take advantage of
characteristics of particular geometries and thus optimize the drawing code. The
code in Listing 3 draws a triangle in retained mode.

SUBMITTING
You’ll notice that the routine to draw an object is Q3Object_Submit. This probably
seems a bit strange: why didn’t we call it Q3Object_Draw? The reason is that there
are four occasions in which you need to specify a geometry — when writing data to a
file, when picking, when determining the bounds of a geometry, and when rendering
— and QuickDraw 3D provides a single routine that you use in all of these cases. To
indicate which operation you want to perform, you call the Submit routine inside a
loop that begins and ends with the appropriate calls. For instance, to render a model,
you call Submit functions inside a rendering loop, which begins with a call to
Q3View_StartRendering and ends with a call to Q3View_EndRendering (as shown
in Listing 3). Similarly, to write a model to a file, you call Submit functions inside a
writing loop, which begins with a call to Q3View_StartWriting and ends with a call
to Q3View_EndWriting.

d e v e l o p Issue 23 September 199532

Listing 2. Rendering several geometries in immediate mode

typedef struct myGeometryStructure {
TQ3ObjectType type;
void *geom;
struct myGeometryStructure *next;

} myGeometryStructure;

myGeometryStructure *currentGeometry;
...
Q3View_StartRendering(myView);
do {

while (currentGeometry != NULL) {
switch (currentGeometry->type) {

case kQ3GeometryTypeTriangle:
Q3Triangle_Submit((TQ3TriangleData *) currentGeometry->geom,

myView);
break;
case kQ3GeometryTypePolygon:

Q3Polygon_Submit((TQ3PolygonData *) currentGeometry->geom,
myView);

break;
}
currentGeometry = currentGeometry->next;

}
} while (Q3View_EndRendering(myView) == kQ3ViewStatusRetraverse);

We recommend that you put all your Submit calls together within a single function
(such as the one shown in Listing 4) that you can then call from your rendering loop,
picking loop, writing loop, or bounding loop. Organizing your code in this fashion
will prevent a common mistake: creating rendering loops that are out of sync with
picking or bounding loops. It also simplifies your rendering and picking loops — you
just call your submitting function from within the loop. Here’s an example of calling
the function in Listing 4 from within a rendering loop:

Q3View_StartRendering((**theDocument).fView);
do {

theStatus = SubmitScene(theDocument);
} while (Q3View_EndRendering((**theDocument).fView) ==

kQ3ViewStatusRetraverse);

THE BASICS OF QUICKDRAW 3D GEOMETRIES 33

Listing 3. Rendering a triangle in retained mode

TQ3TriangleData triangleData;

// Set up the triangle with appropriate data.
...
// Create the triangle.
triangleObject = Q3Triangle_New(&triangleData);
// Render the triangle.
Q3View_StartRendering(myView);
do {

Q3Object_Submit(triangleObject, myView);
} while (Q3View_EndRendering(myView) == kQ3ViewStatusRetraverse);

Listing 4. A submitting function

// Submit the scene for rendering, file I/O, bounding, or picking.
TQ3Status SubmitScene(DocumentHdl theDocument)
{

TQ3Vector3D globalScale, globalTranslate;

globalScale.x = globalScale.y = globalScale.z =
(**theDocument).fGroupScale;

globalTranslate = *(TQ3Vector3D *)&(**theDocument).fGroupCenter;
Q3Vector3D_Scale(&globalTranslate, -1, &globalTranslate);
Q3Style_Submit((**theDocument).fInterpolation,

(**theDocument).fView);
Q3Style_Submit((**theDocument).fBackFacing, (**theDocument).fView);
Q3Style_Submit((**theDocument).fFillStyle, (**theDocument).fView);

Q3MatrixTransform_Submit(&(**theDocument).fRotation,
(**theDocument).fView);

Q3ScaleTransform_Submit(&globalScale, (**theDocument).fView);
Q3TranslateTransform_Submit(&globalTranslate, (**theDocument).fView);
Q3DisplayGroup_Submit((**theDocument).fModel, (**theDocument).fView);

return (kQ3Success);
}

QUICKDRAW 3D CLASS HIERARCHY
Even if you perform all your rendering in immediate mode — that is, without
creating any QuickDraw 3D geometric objects — you still need to create some
QuickDraw 3D objects, such as a view, camera, and draw context, in order to render
any image at all. So working with geometries in QuickDraw 3D means working with
at least some objects. Before going into detail about how to create and use QuickDraw
3D geometric objects, let’s review the object system and some of its basic classes.

QuickDraw 3D is an object-based system. We chose to implement the API with the
C language, which doesn’t support objects directly; nevertheless QuickDraw 3D is
organized into a definite class hierarchy. Figure 1 shows part of this hierarchy,
emphasizing the classes that are discussed in this article. At the top of the class
hierarchy is the basic QuickDraw 3D Object class. Geometries, such as the triangle,
polygon, and mesh classes, are at the bottom of the hierarchy.

The Object class is really named TQ3Object. This article uses shortened forms of
the QuickDraw 3D class names.•

You can determine the class in which a function is defined simply by looking at the
function’s name: function names have the form Q3class-name_method. For example,
the function Q3Shared_GetReference is defined in the Shared class and returns a
reference to the shared object that’s passed as an argument. The function
Q3Object_Dispose is defined in the Object class; it accepts any QuickDraw 3D
object as an argument (since Object is the root class) and disposes of it.

d e v e l o p Issue 23 September 199534

Triangle General�
polygon

Simple�
polygon Mesh Trigrid Box

Geometry TransformGroup Camera

Shape Draw�
context

...

Object

Shared View

Renderer Set

Attribute�
set

Light

Figure 1. Partial QuickDraw 3D class hierarchy

In the following sections, we’ll talk more about the classes shown in Figure 1 and
answer some questions developers have had about using them when working with
geometries. Then we’ll (finally!) talk about the geometric objects themselves and
provide sample code for using many of them.

THE SHARED CLASS
Generally speaking, drawing anything with QuickDraw 3D involves working with
objects that inherit from the Shared class. There can be multiple references to shared
objects (hence the name); the way QuickDraw 3D determines whether a shared
object is still referenced is by way of a reference count, initially 1. Developers new to
QuickDraw 3D are sometimes confused by reference counts, but they’re actually very
straightforward. When you create a shared object, its reference count is 1. For example:

myNewObject = Q3Mesh_New();
// myNewObject now has a reference count of 1.

When you get a shared object as a result of a Get call, or pass one as an argument in
an Add or Set call, the object’s reference count is incremented.

// The following calls increment the object's reference count.
Q3Group_GetPositionObject(myGroup, currentPosition, &myExistingObject);
...
Q3Group_AddObject(myGroup, myObject);
...
Q3View_SetDrawContext(myView, myDrawContext);

Passing a shared object as the argument to a Dispose call decrements its reference
count; only when the count goes to 0 does QuickDraw 3D actually dispose of the
memory occupied by the object. As a general rule, you should dispose of the object
before the scope of the variable expires. For example:

{ // Start of the block. Variables come into scope.
TQ3Object myObject = Q3Mesh_New(); // The start of myObject's scope

// Do something that manipulates myObject.
...
// The scope of myObject is going to end at the next closing brace,
// so dispose of it before we go out of scope.
Q3Object_Dispose(myObject);

} // End of the block.

If you were assigning an object reference to a global variable, you would dispose of
the object before calling Q3Exit and exiting your program.

Q: Why does my application crash when I call Q3Exit?
A: In the debugging version of QuickDraw 3D, Q3Exit generates a debugging
message for each remaining object. The default behavior is to display the message
with the DebugStr call; the message is displayed in MacsBug (or whatever debugger
you use). So your application isn’t crashing; it’s trying to tell you to tidy up after
yourself! To avoid this unscheduled trip into your debugger, you can install your own
error handler and log the message to a file. And, of course, you should fix your
application so that it doesn’t leak memory!•

Let’s take a closer look at what happens to reference counts when you create and
dispose of a shared object. Figure 2 shows the typical lifetime of a group of
QuickDraw 3D objects (we’ll talk more about groups later).

THE BASICS OF QUICKDRAW 3D GEOMETRIES 35

1. An application creates a geometric object. Its reference count is 1.

2. The application creates a group object. Its reference count is also 1.

3. The application adds the geometry to the group (by calling the function
Q3Group_AddObject), which increments the reference count of the
geometric object (to 2).

4. The application disposes of the geometric object (by calling the function
Q3Object_Dispose), which is safe to do once it’s added to the group. This
decrements the reference count of the geometry back to 1. The application
can then operate on the group (which now contains the geometry).

5. When it’s finished with the group, the application can dispose of the group
object. This lowers the reference count of the group to 0, which causes
QuickDraw 3D to dispose of the group and of all the objects within the
group. As you can see, the geometry is disposed of as a side effect of
disposing of the group.

THE VIEW CLASS
The view object ties together the elements required to draw a scene; it’s the central
object that holds the state information for rendering a scene. A scene consists of the
geometry being drawn (hereafter referred to as the model), together with the light,
camera, draw context, and other objects. Our previous article discussed how to set up
a view; we’ll expand on that discussion by describing how to create and manage
multiple scenes of a model.

To display a scene, you need at least one view object, and each view object must have
a camera associated with it. Each of your application’s windows usually has one view
object attached to it. When you need to display multiple scenes of the same model,
you can create multiple windows, each with its own view object. Then you simply

d e v e l o p Issue 23 September 199536

4a

Application

Geometry
reference count=1

Group
reference count=1

4b

Application

Dispose Geometry

Group
reference count=1

reference count=1

2

Create

Application

Geometry
reference count=1

Group
reference count=1

3

Application

Geometry

Add to group
reference count=2

Group
reference count=1Application

1

5a

Application

Geometry
reference count=1

Group
reference count=0

5b

Application

5c

Application

�
Create

Dispose
Dispose

Geometry
reference count=1

Geometry

Group
reference count=0

reference count=0

Figure 2. Reference counts in QuickDraw 3D

submit the model to the desired view. Alternatively, you can display multiple scenes
using a single view object by setting up several different cameras and draw contexts
and switching between them — manipulating the view’s camera to create each scene
(see Figure 3).

You can have only one active draw context and camera for each view object, so to
update one of your windows, you need to manually set the active draw context and
camera for the appropriate scene. For this reason, the first option (one view per
window) is usually simpler to implement.

THE GROUP CLASS
QuickDraw 3D provides a number of classes for grouping objects together. Groups
are useful because they provide a structure to your models, allowing you to express
the relationship between different geometric objects. Of course, if you want to use
your own data structures for storing your geometries, you can do so, but generally
it’s more work. Using QuickDraw 3D’s group classes, you can create hierarchies of
geometric data by nesting groups within other groups. Figure 4 shows the group
classes provided with QuickDraw 3D.

You can create a group object by calling Q3Group_New. This creates an object
belonging to the generic Group class. QuickDraw 3D provides the following
subgroups of the generic Group class, which are distinguished by the types of objects
you’re allowed to place in them:

• A light group places the light objects for a scene in a group, which simplifies
lighting management. For example, you could provide an iterator function to
loop through the group and turn all the lights on or off.

THE BASICS OF QUICKDRAW 3D GEOMETRIES 37

Camera 2

Camera 1

End projection

Side projection

Perspective projection

Draw�
context�

3

Draw�
context�

2

Draw�
context�

1

Camera 3

View

Figure 3. Multiple scenes of the same model

• A display group manages objects that are drawable, including geometries,
styles, and transforms. You can use the function Q3Object_IsDrawable to
confirm whether an object is drawable.

• An information group stores informational strings, such as the author,
copyright, trademark, and other human-readable information within a
metafile.

Because we want to talk about geometries, which are drawable objects, we’ll
concentrate on display group objects. In addition to “plain” display groups, there are
two specialized subclasses of the display group class: ordered and I/O proxy. For a
plain display group, the order in which items are placed in the group is the order in
which they’re drawn when the group is submitted, regardless of the class that the
objects belong to. For an ordered display group, objects in the group are sorted by
object type and are submitted (when you call Q3DisplayGroup_Submit) in the
following order: transforms, styles, attribute sets, shaders, geometric objects, groups.

Ordered display groups are most useful when you want to operate on a group of
objects as a single entity. For example, you know that transforms are always at the
start of the group, so you could manipulate the transform to alter the orientation of
the entire group. (If you were using a plain display group, you would have to search
for the transform, or otherwise store a reference to it, which makes life more
complicated.) Sometimes you’ll want to nest a number of ordered display groups
within a plain display group. If you were animating a robotic arm, for example, each
component of the arm could be an ordered display group that’s nested within a plain
display group.

You can use I/O proxy display groups to provide multiple representations of the same
data. This is useful when dealing with applications that aren’t based on QuickDraw
3D or that run on other platforms. For example, some applications might be able to
read only mesh objects; your application may want to use NURB patches (another
type of geometric object), but you want other applications to be able to read your
metafiles. In this case, you could write a NURB patch representation of your data,
followed by a mesh representation. To provide both representations of the same data
in a metafile, you would create an I/O proxy group that contains the NURB patch
object first and the mesh object second, and write the group to the metafile. When
you draw with QuickDraw 3D, the objects that appear first in the group are preferred
over later objects in the group.

d e v e l o p Issue 23 September 199538

Group

Display�
group

Ordered�
display�
group

I/O proxy�
display�
group

Light group Information�
group

Figure 4. Group classes provided by QuickDraw 3D

THE TRANSFORM CLASS
The Transform class enables you to change the position, orientation, or size of
geometries. When you specify the coordinates for the vertices that define a geometry,
the x, y, z values are expressed as floating-point values in local coordinates. Rendering,
however, and associated operations like backface removal and lighting are performed
in world coordinates. To transform a geometry from one space to another, QuickDraw
3D multiplies the local coordinates by a local-to-world matrix. The default value for
this matrix is the identity matrix, which leaves the original geometry unchanged. By
changing the value of the local-to-world matrix, you can transform geometries
without having to change the geometries’ coordinates.

Using an example from our previous article, let’s say that you have a model that
contains several boxes (see Figure 5). We could enter the coordinates for the points
that make up each of the four boxes, but that’s a lot of work (and if you’re creating an
object for each box, it’s a waste of memory). Instead, we define one box at a certain
location and call it the reference box. To get the effect of four boxes in different
locations, we draw the reference box four times — changing the local-to-world
matrix each time before drawing.

If you look in the file QD3DTransform.h, you’ll notice that there are several different
types of transforms. The most general type is the matrix transform, which is a 4 x 4
matrix. To use this transform, you supply the translation, rotation, and scale values in
the appropriate entries of the matrix, as shown in Figure 6. You can do any type of
transform that can be expressed as a 4 x 4 matrix. In the figure, you can see that the
upper 3 x 3 submatrix is a rotation matrix, with the entries in the main diagonal
containing the scale factors for x, y, and z. The lower row contains the translation
factors.

If you know which type of transform you’ll be applying, however, it’s better to use
one of the more specific types. In this way, QuickDraw 3D renderers and shaders
will be able to take advantage of the information contained in the transform; for
example, if your local-to-world matrix is just a translate transform, the renderer

THE BASICS OF QUICKDRAW 3D GEOMETRIES 39

Figure 5. Boxes drawn by changing the local-to-world matrix four times

doesn’t have to transform normals before performing the backface removal operation
(because directions are not affected by translations). Also, using the more specific
types provides a better abstraction and tends to make the logic of your code easier to
understand (and you don’t have to deal with all those pesky matrices).

When you change the local-to-world matrix by applying transforms, each transform
is concatenated as it’s applied through a Submit call. For example, if before drawing a
point object, we submit a translate transform, a rotate transform, a scale transform,
and then a point, the point will be transformed as follows:

p' = p * S * R * T

p' is the resulting transformed point and p is the original point. T is the matrix
containing the translate operation, R is the matrix containing the rotate operation,
and S is the matrix containing the scale operation.

You can apply transforms either by using immediate mode calls or by creating
transform objects — just as you do for geometries. Note that transforms accumulate;
that is, if you apply a translation, any objects drawn after that will be translated by the
same amount. If you want a transform to apply to a certain object only, you can use
the Q3Push_Submit and Q3Pop_Submit calls around it or place the object in a
group, since groups perform an implicit push and pop (you can change this behavior
if you want).

So, let’s build on what we’ve learned so far. We want to draw the model shown in
Figure 5. Let’s first do it by submitting new transforms in immediate mode, before
each box is drawn, as shown in Listing 5.

Alternatively, we could create the model of the four boxes as a group, as shown in
Listing 6.

THE ATTRIBUTE SET CLASS
Attributes affect the way an object is rendered in QuickDraw 3D. A view has a default
set of attributes, defined in the QD3DView.h file, that can be modified to suit a
particular application. If no attributes are supplied for the objects being rendered within
a view, the default view attributes are applied. Attributes can be applied in a number
of ways: by submitting them to a view object; by adding them to a group; or by
attaching them to a geometry, to a geometry’s face, or to each vertex of a geometry.

The order in which attribute sets are applied during rendering is based on a fixed
hierarchy, as illustrated in Figure 7. Attributes of the same type (such as diffuse color)
can override one another; they use the following preference hierarchy, from highest
to lowest precedence: vertex, face, geometry, group, view. For example, a specular
color attribute at the vertex level does not override a diffuse color attribute at the
geometry level, whereas a specular color attribute at the vertex level does override a

d e v e l o p Issue 23 September 199540

Sx * R0,0�
R1,0�
R2,0�
Tx�

�
Note: S is the scale transform, R is the rotate transform, and T is the translate transform.

R0,1�
Sy * R1,1�
R2,1�
Ty�

�

R0,2�
R1,2�
Sz * R2,2�
Tz�

�

0.0�
0.0�
0.0�
1.0

Figure 6. A matrix transform

specular color attribute at the geometry level (because they are attributes of the same
type). If attributes at any level are not supplied, the parent’s attributes apply. If there
are no attributes supplied anywhere in the hierarchy, the default attribute set for the
view will be used.

THE BASICS OF QUICKDRAW 3D GEOMETRIES 41

Listing 5. Using translate transforms in immediate mode

Q3View_StartRendering(viewObject);
do {

TQ3Vector3D translationX = {2.0, 0.0, 0.0},
translationY = {0.0, -2.0, 0.0};

Q3View_Push(viewObject);

// Note how we are using a retained mode geometry with immediate mode
// transforms. As we execute each of the calls, the boxes are drawn.

Q3Object_Submit(referenceBox, viewObject);
// Move to the right.
Q3TranslateTransform_Submit(&translationX, viewObject);
Q3Object_Submit(referenceBox, viewObject);
// The Pop will move back to the left.
Q3View_Pop(viewObject);
// Move down.
Q3TranslateTransform_Submit(&translationY, viewObject);
Q3Object_Submit(referenceBox, viewObject);
// Move to the right.
Q3TranslateTransform_Submit(&translationX, viewObject);
Q3Object_Submit(referenceBox, viewObject);

} while (Q3View_EndRendering(viewObject) == kQ3ViewStatusRetraverse);

Listing 6. Creating translate transform objects

TQ3GroupObject myModel;
TQ3Vector3D translationX = {2.0, 0.0, 0.0},

translationYAndNegativeX = {-2.0, -2.0, 0.0};
TQ3TransformObject xform_x, xform_yx;

// Note that as we execute these calls, nothing is drawn.

myModel = Q3Group_New();
xform_x = Q3TranslateTransform_New(&translationX);
xform_yx = Q3TranslateTransform_New(&translationYAndNegativeX);
Q3Group_AddObject(myModel, referenceBox);
Q3Group_AddObject(myModel, xform_x);
Q3Group_AddObject(myModel, referenceBox);
Q3Group_AddObject(myModel, xform_yx);
Q3Group_AddObject(myModel, referenceBox);
Q3Group_AddObject(myModel, xform_x);
Q3Group_AddObject(myModel, referenceBox);

// To draw the boxes, you would call Q3Object_Submit(myModel, myView)
// within a submitting loop.

Here are the six most commonly used predefined attribute types that you can specify
(there are 12 in all):

• The diffuse color is the actual color of the object.

• The specular color is the color of the light reflected by the object, which may
or may not be the same as the diffuse color.

• The specular control determines how much light of the specular color is
reflected.

• The ambient coefficient determines how much the ambient lighting affects the
object.

• The surface UV attribute specifies how a texture is mapped to a geometry’s
vertex.

• A texture shader can be applied to a surface that has UV parameterization
applied (more on this later).

You can also define your own custom attributes. Later, in the geometry code samples,
we’ll create attribute sets to affect the way the geometries are drawn.

BUILDING GEOMETRIES
Now we’re ready to look at the specific geometries and show how to build them.
QuickDraw 3D version 1.0 supports 12 geometries (illustrated in Figure 8). In the
code examples later in this article, we’ll cover the most commonly used geometries.

• A marker object is a bitmap that’s displayed face-on at any orientation —
similar to a sprite. It’s useful for denoting the position of objects and for
providing annotations, such as labels on objects in a 3D chart.

• A point object is the most basic object in QuickDraw 3D; it specifies discrete
points in a scene.

• A line object is a line between two points.

• A polyline object is a line that consists of multiple segments.

• A triangle object is a closed planar geometry defined by three intersecting
lines. It’s the simplest form of a polygon.

• A simple polygon object is a planar geometry described by a list of vertices; it’s
a figure formed by a closed chain of intersecting straight lines. A simple
polygon consists of a single convex contour and may not contain holes.

d e v e l o p Issue 23 September 199542

Geometry
Face 1

Face 2

Vertex 1
Vertex 2
Vertex 3

Attribute set

Attribute set
Attribute set
Attribute set
Attribute set

Attribute set

Group

ViewLower�
precedence

Higher�
precedence

Lower�
precedence

Higher�
precedence

Attribute set

Figure 7. Hierarchy of applying attributes to a geometry

• A general polygon object is a planar geometry that may contain holes, be
concave, and consist of one or more contours.

• A trigrid object is a grid whose surface consists of multiple triangles that
share edges and vertices.

• A box object is a three-dimensional rectangular object.

• A mesh object is a collection of vertices, faces, and edges that represent a
topological polyhedron. It’s sometimes referred to as a winged-edge
structure.

• A NURB curve object is a curve described by a NURB equation.

• A NURB patch object is a three-dimensional surface described by a NURB
equation.

NURB stands for nonuniform rational B-spline. A B-spline is a parametric curve
(a curve defined by coordinates derived from functions sharing a common parameter)
whose shape is determined by a series of control points whose influence is described
by basis functions.•

SIMPLE GEOMETRIES
Let’s start with some simple geometries first: lines, polylines, triangles, simple polygons,
and general polygons. In essence, these are the building blocks for QuickDraw 3D.
You can use combinations of these to construct your model, or you can use some of
the composite geometries, such as meshes and trigrids (described later).

Line and polyline objects. Lines are defined by two noncoincident points. If you
want to have multiple line segments, you can use polylines (see Listing 7). In
polylines, every vertex after the first one defines a new line. You can attach attributes
at the geometry level or at the vertex level (which is useful for having multicolored
lines, but remember that you need to use per-vertex interpolation when rendering in
order for the multiple colors to apply).

Triangle objects. Triangles are the most basic of the planar geometries in
QuickDraw 3D. Triangles are defined by three noncolinear, noncoincident vertices.

THE BASICS OF QUICKDRAW 3D GEOMETRIES 43

Marker Point Line Polyline Triangle Simple polygon

General polygon Trigrid Box Mesh NURB curve NURB patch

QuickDraw 3D

Figure 8. QuickDraw 3D geometries supplied in version 1.0

In Listing 8, we set a color attribute for the entire geometry and for the individual
vertices. When you draw the triangle with flat interpolation, the geometry color is
used; when you draw it with per-vertex interpolation, however, the vertex attributes
take precedence and you can see a color ramp on the triangle (see Figure 8, where the
color ramp is approximated in grayscale).

Simple polygon and general polygon objects. Simple polygons and general
polygons are planar objects with multiple vertices. Simple polygons must be convex,
but general polygons can be either convex or concave. In addition, general polygons
can be self-intersecting and have multiple contours.

As was shown in Figure 8, a general polygon can have a “hole” in it, but a simple
polygon never does. This is the primary difference between the two geometries.
Processing general polygons takes more time than processing simple polygons, so we
advise you to use simple polygons whenever possible.

If the geometry you’re creating is convex, you should use simple polygons to achieve
better performance. If your polygons always have three vertices, however, you should
opt for triangles. If you don’t know what your geometry looks like (for example, it’s
being built by the user on the fly and you don’t want to check the points), use general
polygons and set the complexity flag to kQ3GeneralPolygonShapeHintComplex (see
Listing 9). Renderers look at this flag as a hint on how to process the general polygon.

GETTING FANCY
There’s nothing wrong with using only simple geometries, as described above. You
can build any complex object just with triangles, but from a performance point of

d e v e l o p Issue 23 September 199544

Listing 7. Creating a polyline

TQ3ColorRGB polyLineColor;
TQ3PolyLineData polyLineData;
TQ3GeometryObject polyLineObject;

static TQ3Vertex3D points[4] = {
{ { -1.0, -0.5, -0.25 }, NULL }, // first vertex
{ { -0.5, 1.5, 0.45 }, NULL }, // second vertex
{ { 0.0, 0.0, 0.0 }, NULL }, // third vertex
{ { 1.5, 1.5, 1.0 }, NULL } // fourth vertex

};

// The polyline has four vertices.
polyLineData.numVertices = 4;
polyLineData.vertices = points;

// Add a color to the line as a whole.
polyLineData.polyLineAttributeSet = Q3AttributeSet_New();
Q3ColorRGB_Set(&polyLineColor, 0.4, 0.2, 0.9);
AttributeSet_AddDiffuseColor(polyLineData.polyLineAttributeSet,

&polyLineColor);

// Create the polyline.
polyLineObject = Q3PolyLine_New(&polyLineData);

Q3Object_Dispose(polyLineData.polyLineAttributeSet);

view that’s not always the best thing to do. When your object is made up of faces that
share vertices, it’s a good idea to use a representation that allows the graphics system
to reuse the vertex information (such as lighting calculations) for the shared vertices.

With a box, for example, each vertex is shared by three faces, where each face is made
up of two triangles. If we draw the box as a bunch of triangles, QuickDraw 3D would
have to perform the same lighting calculations on each vertex up to six times. If, on

THE BASICS OF QUICKDRAW 3D GEOMETRIES 45

Listing 8. Creating a triangle in a group

TQ3ColorRGB triangleColor;
TQ3GroupObject model;
TQ3TriangleData triangleData;
TQ3GeometryObject triangleObject;

static TQ3Vertex3D vertices[3] = {{ { -1.0, -0.5, -0.25 }, NULL },
{ { 0.0, 0.0, 0.0 }, NULL },
{ { -0.5, 1.5, 0.45 }, NULL }};

triangleData.vertices[0] = vertices[0];
triangleData.vertices[1] = vertices[1];
triangleData.vertices[2] = vertices[2];
triangleData.triangleAttributeSet = Q3AttributeSet_New();
Q3ColorRGB_Set(&triangleColor, 0.8, 0.5, 0.2);
AttributeSet_AddDiffuseColor(triangleData.triangleAttributeSet,

&triangleColor);

triangleData.vertices[0].attributeSet = Q3AttributeSet_New();
triangleData.vertices[1].attributeSet = Q3AttributeSet_New();
triangleData.vertices[2].attributeSet = Q3AttributeSet_New();
Q3ColorRGB_Set(&triangleColor, 1.0, 0.0, 0.0);
AttributeSet_AddDiffuseColor(triangleData.vertices[0].attributeSet,

&triangleColor);

Q3ColorRGB_Set(&triangleColor, 0.0, 1.0, 0.0);
AttributeSet_AddDiffuseColor(triangleData.vertices[1].attributeSet,

&triangleColor);

Q3ColorRGB_Set(&triangleColor, 0.0, 0.0, 1.0);
AttributeSet_AddDiffuseColor(triangleData.vertices[2].attributeSet,

&triangleColor);

// Create the triangle and group.
triangleObject = Q3Triangle_New(&triangleData);
model = Q3OrderedDisplayGroup_New();
if (triangleObject != NULL) {

Q3Group_AddObject(model, triangleObject);
Q3Object_Dispose(triangleObject);

}

Q3Object_Dispose(triangleData.vertices[0].attributeSet);
Q3Object_Dispose(triangleData.vertices[1].attributeSet);
Q3Object_Dispose(triangleData.vertices[2].attributeSet);
Q3Object_Dispose(triangleData.triangleAttributeSet);

d e v e l o p Issue 23 September 199546

Listing 9. Creating polygons

TQ3PolygonData polygonData;
TQ3GeneralPolygonData genPolyData;
TQ3GeometryObject polygonObject, generalPolygonObject;
TQ3GeneralPolygonContourData contours[2];
TQ3ColorRGB color;

static TQ3Vertex3D polyVertices[4] = {
{ { -1.0, 1.0, 0.0 }, NULL },
{ { -1.0, -1.0, 0.0 }, NULL },
{ { 1.0, -1.0, 0.0 }, NULL },
{ { 1.0, 1.0, 0.0 }, NULL }

},
genPolyHoleVertices[4] = {

{ { -0.5, 0.5, 0.0 }, NULL },
{ { -0.5, -0.5, 0.0 }, NULL },
{ { 0.5, -0.5, 0.0 }, NULL },
{ { 0.5, 0.5, 0.0 }, NULL }

};

polygonData.numVertices = 4; polygonData.vertices = polyVertices;
polygonData.polygonAttributeSet = NULL;
polygonObject = Q3Polygon_New(&polygonData);

contours[0].numVertices = 4; contours[0].vertices = polyVertices;
contours[1].numVertices = 4; contours[1].vertices = genPolyHoleVertices;
genPolyData.numContours = 2; genPolyData.contours = contours;
genPolyData.shapeHint = kQ3GeneralPolygonShapeHintComplex;
genPolyData.generalPolygonAttributeSet = Q3AttributeSet_New();
Q3ColorRGB_Set(&color, 1.0, 1.0, 1.0);
AttributeSet_AddDiffuseColor(genPolyData.generalPolygonAttributeSet,

&color);

polyVertices[1].attributeSet = Q3AttributeSet_New();
polyVertices[2].attributeSet = Q3AttributeSet_New();
Q3ColorRGB_Set(&color, 0.0, 0.0, 1.0);
AttributeSet_AddDiffuseColor(polyVertices[1].attributeSet, &color);
Q3ColorRGB_Set(&color, 0.0, 1.0, 1.0);
AttributeSet_AddDiffuseColor(polyVertices[2].attributeSet, &color);

genPolyHoleVertices[0].attributeSet = Q3AttributeSet_New();
genPolyHoleVertices[2].attributeSet = Q3AttributeSet_New();
Q3ColorRGB_Set(&color, 1.0, 0.0, 1.0);
AttributeSet_AddDiffuseColor(genPolyHoleVertices[0].attributeSet, &color);
Q3ColorRGB_Set(&color, 1.0, 1.0, 0.0);
AttributeSet_AddDiffuseColor(genPolyHoleVertices[2].attributeSet, &color);

generalPolygonObject = Q3GeneralPolygon_New(&genPolyData);
Q3Object_Dispose(genPolyData.generalPolygonAttributeSet);
Q3Object_Dispose(polyVertices[1].attributeSet);
Q3Object_Dispose(polyVertices[2].attributeSet);
Q3Object_Dispose(genPolyHoleVertices[0].attributeSet);
Q3Object_Dispose(genPolyHoleVertices[2].attributeSet);

the other hand, we represent the box as a box primitive or mesh object, the lighting
calculations are performed only once per vertex. (However, if you attach vertex colors
or face attributes, such as normals or colors, the calculations need to be performed
more often.)

Here we show how to use two composite geometries — trigrid and mesh objects —
as well as UV parameterization, which you may need to supply if you want to apply a
texture to a trigrid or mesh.

Trigrid objects. Trigrids are a collection of triangles that share vertices. We create a
trigid in Listing 10.

UV parameterization. Texturing allows you to have more realistic looking models.
For texturing to work, the geometry must have UV parameters on its vertices, which
may have to be supplied by you. The UV parameters are two floating-point values
(U and V) that correlate a location on the geometry to a point in the picture of the
texture (see Figure 9).

The convention for QuickDraw 3D is to start the UV parameters at 0.0,0.0 at the
bottom left, with U increasing toward the right and V increasing upward. You supply
the UV parameterization as a collection of vertex attributes.

THE BASICS OF QUICKDRAW 3D GEOMETRIES 47

Listing 10. Creating a trigrid

TQ3ColorRGB triGridColor;
TQ3GroupObject model;
TQ3TriGridData triGridData;
TQ3GeometryObject triGridObject;
unsigned long numFacets, i;

static TQ3Vertex3D vertices[12] = {{ { -1.0, -1.0, 0.0 }, NULL },
... // 10 more lines of vertex data
{ { 0.7, 1.0, 0.5 }, NULL }};

triGridData.numRows = 3; triGridData.numColumns = 4;
triGridData.vertices = vertices;
triGridData.triGridAttributeSet = Q3AttributeSet_New();
Q3ColorRGB_Set(&triGridColor, 0.8, 0.7, 0.3);
AttributeSet_AddDiffuseColor(triGridData.triGridAttributeSet,

&triGridColor);

numFacets = (triGridData.numRows - 1) * (triGridData.numColumns - 1)
* 2;

triGridData.facetAttributeSet =
malloc(numFacets * sizeof(TQ3AttributeSet));

for (i = 0; i < numFacets; i++) {
triGridData.facetAttributeSet[i] = NULL;

}
Q3ColorRGB_Set(&triGridColor, 1.0, 0.0, 0.5);
triGridData.facetAttributeSet[5] = Q3AttributeSet_New();
AttributeSet_AddDiffuseColor(triGridData.facetAttributeSet[5],

&triGridColor);

triGridObject = Q3TriGrid_New(&triGridData);

Once a UV parameterization has been applied to a surface’s vertices, the surface can
be texture mapped. There are several steps to texturing surfaces with QuickDraw 3D.
In general, you’ll already have a texture stored in a pixel map somewhere. What you
need to do is create a texture shader (of type TQ3TextureObject) and add it into your
display group before you add the geometry you want to shade.

Listing 11 is a general-purpose routine for adding a texture shader to a group. It’s
interesting for a number of reasons: it shows how to search a group for particular
objects (in this case, an existing shader that it will replace), how to edit items within a
group, and how to add new items.

d e v e l o p Issue 23 September 199548

0,0

0.0,0.0 0.5,0.0

1.0,0.0

1.0,0.5

1.0,1.0
0.5,1.00.0,1.0

0.5,0.50.0,0.5

U

V

Figure 9. UV parameters on a trigrid’s vertices for texture mapping

Listing 11. Routine to texture-map an object

TQ3Status AddTextureToGroup(TQ3GroupObject theGroup, TQ3StoragePixmap *textureImage)
{

TQ3TextureObject textureObject;
TQ3GroupPosition position;
TQ3Object firstObject;

// Create a texture object.
textureObject = Q3PixmapTexture_New(textureImage);
if (textureObject) {

if (Q3Object_IsType(theGroup, kQ3GroupTypeDisplay) == kQ3True) {
// If the group is a display group...
Q3Group_GetFirstPosition(theGroup, &position);
Q3Group_GetPositionObject(theGroup, position, &firstObject);
if (Q3Object_IsType(firstObject, kQ3SurfaceShaderTypeTexture) == kQ3True) {

TQ3TextureObject oldTextureObject;
TQ3StoragePixmap oldTextureImage;
// Replace existing texture by new one.
Q3TextureShader_GetTexture(firstObject, &oldTextureObject);
Q3PixmapTexture_GetPixmap(oldTextureObject, &oldTextureImage);
Q3Object_Dispose(oldTextureObject);
Q3TextureShader_SetTexture(firstObject, textureObject);
Q3Object_Dispose(textureObject);

(continued on next page)

THE BASICS OF QUICKDRAW 3D GEOMETRIES 49

} else {
TQ3ShaderObject textureShader;
// Create texture shader and add it to group.
textureShader = Q3TextureShader_New(textureObject);
if (textureShader) {

Q3Object_Dispose(textureObject);
Q3Group_AddObjectBefore(theGroup, position, textureShader);
Q3Object_Dispose(textureShader);

} else
return (kQ3Failure);

}
Q3Object_Dispose(firstObject);

} else if (Q3Object_IsType(theGroup, kQ3DisplayGroupTypeOrdered) == kQ3True) {
// If the group is an ordered display group...
TQ3ShaderObject textureShader;
Q3Group_GetFirstPositionOfType(theGroup, kQ3ShapeTypeShader, &position);
if (position) {

Q3Group_GetPositionObject(theGroup, position, &firstObject);
if (Q3Object_IsType(firstObject, kQ3SurfaceShaderTypeTexture) == kQ3True) {

TQ3TextureObject oldTextureObject;
TQ3StoragePixmap oldTextureImage;
// Replace existing texture by new one.
Q3TextureShader_GetTexture(firstObject, &oldTextureObject);
Q3PixmapTexture_GetPixmap(oldTextureObject, &oldTextureImage);
Q3Object_Dispose(oldTextureObject);
Q3TextureShader_SetTexture(firstObject, textureObject);
Q3Object_Dispose(textureObject);

} else {
// Create texture shader and add it to group.
textureShader = Q3TextureShader_New(textureObject);
if (textureShader) {

Q3Object_Dispose(textureObject);
Q3Group_SetPositionObject(theGroup, position, textureShader);
Q3Object_Dispose(textureShader);

} else
return (kQ3Failure);

}
} else {

// Create texture shader and add it to group.
textureShader = Q3TextureShader_New(textureObject);
if (textureShader) {

Q3Object_Dispose(textureObject);
Q3Group_AddObject(theGroup, textureShader);
Q3Object_Dispose(textureShader);

} else
return (kQ3Failure);

}
}

return (kQ3Success);
} else // If pixmap shader not created...

return (kQ3Failure);
}

Listing 11. Routine to texture-map an object (continued)

Mesh objects. Listing 12 shows the key components needed to create a simple mesh
geometry. We create a mesh consisting of two faces, with one of them having a hole.
We also add UV parameters to the vertices so that we can texture-map the mesh.
Figure 10 shows the texture map and the resulting textured mesh.

d e v e l o p Issue 23 September 199550

Listing 12. Creating a mesh

TQ3GroupObject BuildMesh(void)
{

TQ3ColorRGB meshColor;
TQ3GroupObject model;
TQ3Vertex3D vertices[9] = {

{ { -0.5, 0.5, 0.0 }, NULL }, { { -0.5, -0.5, 0.0 }, NULL },
{ { 0.0, -0.5, 0.3 }, NULL }, { { 0.5, -0.5, 0.0 }, NULL },
{ { 0.5, 0.5, 0.0 }, NULL }, { { 0.0, 0.5, 0.3 }, NULL },
{ { -0.4, 0.2, 0.0 }, NULL }, { { 0.0, 0.0, 0.0 }, NULL }

};
TQ3Param2D verticesUV[9] = {

{ 0.0, 1.0 }, { 0.0, 0.0 }, { 0.5, 0.0 },
{ 1.0, 0.0 }, { 1.0, 1.0 }, { 0.5, 1.0 },
{ 0.1, 0.8 }, { 0.5, 0.5 }, { 0.1, 0.4 }

};
TQ3MeshVertex meshVertices[9];
TQ3GeometryObject meshObject;
TQ3MeshFace meshFace;
TQ3AttributeSet faceAttributes;
unsigned long i;

meshObject = Q3Mesh_New();
Q3Mesh_DelayUpdates(meshObject);
for (i = 0; i < 9; i++) {

TQ3AttributeSet vertexASet;
meshVertices[i] = Q3Mesh_VertexNew(meshObject, &vertices[i]);
vertexASet = Q3AttributeSet_New();
AttributeSet_AddSurfaceUV(vertexASet, &verticesUV[i]);
Q3Mesh_SetVertexAttributeSet(meshObject, meshVertices[i],

vertexASet);
Q3Object_Dispose(vertexASet);

}
faceAttributes = Q3AttributeSet_New();
Q3ColorRGB_Set(&meshColor, 0.3, 0.9, 0.5);
AttributeSet_AddDiffuseColor(faceAttributes, &meshColor);
meshFace = Q3Mesh_FaceNew(meshObject, 6, meshVertices,

faceAttributes);
Q3Mesh_FaceToContour(meshObject, meshFace, Q3Mesh_FaceNew(meshObject,

3, &meshVertices[6], NULL));
Q3Mesh_ResumeUpdates(meshObject);
model = Q3OrderedDisplayGroup_New();
Q3Group_AddObject(model, meshObject);
Q3Object_Dispose(faceAttributes);
Q3Object_Dispose(meshObject);
return (model);

}

Q3Mesh_DelayUpdates and Q3Mesh_ResumeUpdates, used in Listing 12, are two
very important routines. Mesh objects can often contain hundreds and even
thousands of vertices. When you’re building a complex model, we advise that you
turn off updates to the internal ordering of the mesh data, so that building the mesh
takes as little time as possible. The difference between doing this and not doing this
can be, in the case of a complex model containing 3000 polygons, several minutes
when Q3Mesh_DelayUpdates is not called, compared with 3 seconds when it is
called (on a mid-level computer).

WHAT DO YOU WANT TO BUILD TODAY?
We hope that the hints in this article will save you some time and help you in your
development process. We’ve been pleasantly surprised by some of the applications in
which developers have been putting QuickDraw 3D to use; for example, a European
developer used QuickDraw 3D to produce 3D representations of his code profiler
application’s data. Learning the basics of QuickDraw 3D’s geometries is the first step
toward mining the rich seam of functionality that QuickDraw 3D offers.

THE BASICS OF QUICKDRAW 3D GEOMETRIES 51

Texture map Mesh with texture map applied

Figure 10. Texture map applied to a mesh

Thanks to our technical reviewers Tom Dowdy,
Tim Monroe, and Philip Schneider.•

The Power Macintosh computer just keeps moving
forward. The latest generation brings greatly improved
performance and adds the PCI expansion bus and the
PowerPC 603 and 604 processors. Software changes
that improve performance include the following:

• an improved 680x0 emulator

• a native Resource Manager

• native networking (Open Transport)

• native device drivers

• an improved Memory Manager

I’ll describe these new features and discuss how you can
maintain compatibility with the new Power Macintosh
computers and with future changes to the Mac OS.

THE IMPROVED EMULATOR
First delivered with the Power Macintosh 9500
computer, the new emulator improves on the original
in one key way: it actually recompiles 680x0 code into
native PowerPC code. Since large portions of the Mac
OS are still in 680x0 code, this new emulator speeds up
most common operations and offers significant
improvements for 680x0 code with tight loops.

Recompiling doesn’t mean converting 680x0
instructions one for one into PowerPC instructions.
Fully emulating a 680x0 instruction still takes a few
PowerPC instructions. But recompiled code is more
efficient and optimized. The original emulator had to
decipher each instruction every time it was executed,
but recompiled code from the new emulator is analyzed
once and then executed many times.

Because it takes extra time to recompile code, the
emulator doesn’t immediately translate all 680x0 code.
It operates just like its predecessor until it encounters a
loop or similar repetition. Then, instead of emulating
the same code repeatedly, it translates the instructions
into native code and caches the result. Subsequent calls
to that code simply execute the native translation,
greatly improving performance.

The cache of translated 680x0 code must stay coherent
with memory, much like the caches on the Motorola
68040 processor. Therefore, whenever your software
modifies code or changes application jump tables, you
should flush the instruction cache. (See the Macintosh
Technical Note “Cache as Cache Can” (HW 6) for a
more detailed description of cases where flushing the
instruction cache is necessary.) In the past you could
call Gestalt and check the processor type to flush only
on a 68040. Since the new emulator supports only the
68020 instruction set — and Gestalt will indicate that a
68020 is installed — you should now flush any time you
modify code or change jump tables.

The best way to flush 680x0 code in the cache is with
FlushCodeCacheRange, which flushes only the invalid
portion of the emulator’s cache. FlushInstructionCache
also works but can degrade performance by wastefully
purging recompiled code that’s still valid. These
routines are documented in Inside Macintosh: Memory.
The C prototype for FlushCodeCacheRange is as
follows:

OSErr FlushCodeCacheRange(void *address,
unsigned long count);

In 680x0 assembly, you would use

MyFlushCodeCacheRange Proc
; On entry A0 = address, D0 = # of bytes
; Trashes A0, A1, D0. Result in D0, Z bit set.
;
movea.l D0,A1 ; # bytes in A1
moveq #$9,D0 ; selector
_HWPriv ; A098
tst.w D0 ; result == noErr
rts

OTHER SOFTWARE CHANGES
The first Power Macintosh computer ported critical
portions of the Macintosh Toolbox to native PowerPC

BALANCE OF
POWER

Power Macintosh:
The Next
Generation

DAVE EVANS

d e v e l o p Issue 23 September 199552

DAVE EVANS and fellow Apple engineer Rus Maxham rode
2000 miles on their motorcycles this summer. They journeyed
through the lush Central Valley of California, the blistering heat of
the southern Arizona deserts, and the neon glitz of Las Vegas.

Along the way they enjoyed the camaraderie of fellow bikers and
were rescued in their hour of need by a sympathetic motorcycling
couple who housed them as Rus rebuilt his BMW’s rear drive
assembly.•

code. Ultimately we’ll take all of the Mac OS native,
but for now we’ve focused on areas that most increase
overall performance. So, starting with the Power
Macintosh 9500, we’ve added a native Resource
Manager, the native Open Transport networking stack,
and native device drivers. I’ll discuss each of these in
turn and then mention improvements to the Modern
Memory Manager.

Even though many calls to the Resource Manager are
bound by I/O bottlenecks, porting the Resource
Manager to native PowerPC code still substantially
improves performance. Often to complete a request the
Resource Manager need only look up existing
information and return it, and even if file I/O is
required the data is often in the system disk cache. For
these reasons, many Resource Manager calls will
execute much faster on the new machines.

Native Open Transport networking provides a stream-
based interface for networking that’s independent of
the network protocol. You can now implement a variety
of network solutions without concerning yourself with
protocol details. Documentation on Open Transport is
provided on this issue’s CD.

Native device drivers provide both a performance
improvement and an improved system programming
interface (SPI). This SPI is available with all PCI-based
Macintosh computers, starting with the Power
Macintosh 9500. For more information on these
drivers, see the article “Creating PCI Device Drivers”
in develop Issue 22 and Designing PCI Cards and Drivers
for Power Macintosh Computers, available from APDA.

Although not new, the native Modern Memory
Manager has been improved in two important ways:

• Many of the routines are now implemented as “fat”
binaries instead of all native code. When your 680x0
code calls the Memory Manager, it will now execute
680x0-based routines, eliminating the Mixed Mode
environment switch once needed to call the native
routines. Reducing the number of these switches can
measurably improve performance.

• The bus error handlers have been removed,
significantly increasing the performance of many of
the simple Memory Manager calls and allowing a
number of the calls to be made into fat traps. Bugs
discovered during the process of removing the
handlers have been fixed.

Handles passed to the Memory Manager now go
through a rigorous check before they can affect other
Memory Manager data structures; however, without

the nearly foolproof bus error handling, it’s a little
more likely that you’ll pass an invalid address and crash.
If you crash in the MemoryMgr code fragment while
testing on the new Power Macintosh computers, you
probably passed an invalid pointer or handle. You can
use the Debugging Modern Memory Manager to
aggressively catch these application errors.

Note also that the bus error handlers would allow
system (and even application) heaps to become
corrupted, deteriorating the overall user experience
without causing the machine to crash. This is much less
likely to happen now, but if structures do get corrupted
other than by the Memory Manager, a system crash
will result.

Also available starting with the latest Power Macintosh
machines is support for very large hard disk volumes.
In the past, only 2-gigabyte volumes were allowed; then
with System 7.5 we relaxed that restriction to 4-gigabyte
volumes. But many of you were still hungry for more,
so now we allow up to 2 terabytes (that’s 2000 gigabytes)
of file system address space per volume. Unless you’re
developing utilities and drivers compatible with the
new volume sizes, though, you really don’t need to pay
attention to the new large-volume support, because the
API remains unchanged. The only time an application
might want to take advantage of the new support is
when it wants to know before attempting to save to
disk whether there’s enough free space on the volume.
Even in this case, the application won’t be able to save a
file bigger than the existing limit of 2 GB, and the old
version of GetVInfo will return values that are “high-
water marked” at 2 GB for compatibility reasons, even
if more space is available.

If you really do want to know how much space is
available, you can do so through an extension to the
File Manager API. We extended the API because the
existing 32-bit size information was too small to
address volumes and files larger than 4 GB. You’ll use
the following new routine to get 64-bit sizes:

pascal OSErr PBXGetVolInfo(XVolumeParam
paramBlock, Boolean async);

This routine takes an extended VolumeParam
structure, named XVolumeParam, which you’ll find
declared in an updated Files.h interface file on the CD.
Before using this routine, be sure to call Gestalt with
the gestaltFSAttr selector; if the response parameter
has the gestaltFSSupports2TBVolumes bit set, the new
routine is available. Note that there are also extended
Read and Write calls for drivers that want to support
volumes larger than 4 GB.

BALANCE OF POWER: POWER MACINTOSH NEXT GENERATION 53

PCI AND NUBUS
Starting with the PCI-based Power Macintosh
computers, support for the NuBus™-specific Slot
Manager goes away. Some applications used to call the
Slot Manager directly to get video and other device
information. This will no longer work, so we’ve
provided better methods: the Display Manager API has
been extended for all the video device information
you’ll need, and the new Name Registry API will give
you device information independent of the specific
expansion bus implementation.

One example of the improved Display Manager API is
the way you get display modes for video devices. With
the Slot Manager this took a lot of code, but the
Display Manager gives you one encompassing routine:

pascal OSErr DMNewDisplayModeList(
GDHandle theGDevice,
unsigned long reserved,
unsigned long *modeCount,
DMListType *theDisplayModeList,
unsigned long modeListFlags);

With this and other new Display Manager routines,
you can avoid the Slot Manager altogether when
gathering display information. But if you must access
other device information, you can use the bus-neutral
Name Registry, which manages a tree of device objects
that you can access as a linked list. Look for the new
header files (Displays.h and NameRegistry.h) on this
issue’s CD.

MAINTAINING COMPATIBILITY
As Apple improves the Mac OS, compatibility with the
documented APIs and SPIs is ensured — but don’t
assume that if your application runs fine on existing
machines, it will continue to do so in the future. We
can’t ensure complete compatibility if application code
makes invalid assumptions or uses unsupported parts of
the Mac OS. There are some things you can do to help
ensure that your applications will run on future
versions of the Mac OS.

First, use only the officially documented APIs. For
example, don’t assume that the Z status bit will be set
correctly on exit from a trap unless it’s documented. As
we take more traps native, the 680x0 status register
becomes irrelevant and such checks break. Here’s an
example of 680x0 code that now breaks because it
assumes the Z status bit will be set by Get1Resource:

move.l #'DAVE',-(sp)
clr.w -(sp)
_Get1Resource
beq.s error ; BAD!

You also shouldn’t expect results in registers if the trap
isn’t documented to return them there. It’s true that
some traps used to accidentally exit with useful data in
register D0 or A0, but if that’s not documented as part
of the API it won’t be supported in the future.

Second, test your software using EvenBetterBusError,
the Debugging Modern Memory Manager, and any
other debugging tools that are appropriate (look in the
Testing & Debugging folder on the CD). Stress-testing
your software with these tools will catch many errors
that otherwise would go unnoticed. EvenBetterBusError
catches most stray references to nil, such as writing to
location 0 or using nil pointers and handles. The
Debugging Modern Memory Manager catches those
occasions when you damage a heap or pass invalid
addresses.

Finally, as I’ve said in previous columns, don’t use
RS/6000 POWER instructions in your native code.
Although the PowerPC 601 processor supports many
of them, the new 603 and 604 processors do not. We’ve
made an attempt to emulate the POWER instructions
in software for these new processors, but this emulation
is very expensive. When a 603 or 604 encounters one
of these now-illegal instructions, it stops everything
and calls our new illegal-instruction handler, which
recognizes the instruction that was used and attempts
to use a valid one instead. This operation is very time
consuming; if your performance-critical code includes
POWER instructions, you’ll see a severe slowdown. As
described in this column in develop Issue 21, you should
use the DumpXCOFF tool to check your code for any
POWER instructions.

NEW DIRECTIONS
Apple will continue to take advantage of RISC
technology and will both improve existing performance
and add new functionality. Make sure your code uses
documented interfaces so that it will stay compatible
and run on future generations of the Power Macintosh.
And be sure to check out Open Transport and PCI
device drivers — they’re exciting new directions that
will take you closer to the next generation of the Mac
OS today.

d e v e l o p Issue 23 September 199554

Thanks to Bill Knott, Eric Traut, and Jack Valois for reviewing this
column.•

Special thanks to Randy and Peggy Marlatt of Flagstaff,
Arizona, for road support.•

IMPLEMENTING SHARED INTERNET PREFERENCES WITH INTERNET CONFIG 55

Having to enter the same Internet preferences, such as e-mail address and
news server, into multiple applications is bothersome not just for users, but
also for developers who must create the user interface associated with
them. The Internet Configuration System (IC) provides a simple user
application for setting preferences, and an API for getting the preferences
from a database that’s shared by all applications. It’s easy to add IC
support to your application and take advantage of the flexibility gained
by IC’s use of the Component Manager — a valuable technique in itself.

Preferences, like nuclear weapons, proliferate. At times it seems that the major
developers are engaged in a “preferences race,” where each one tries to gain the
upper hand by adding a dozen new preferences in each new release. Like the arms
race, the preferences race is obviously counterproductive, even dangerous, and yet no
one knows how to stop it.

Some of the worst offenders are Internet-related applications. How many times have
you had to enter your e-mail address into a configuration window? And what about
your preferred type and creator for JPEG files? Doesn’t this just seem like a waste of
your time? The Internet Configuration System, or Internet Config for short, spares
everyone this trouble. And it spares developers the complexities of implementing
these preferences in each application.

This article takes you inside Internet Config. Take a good look at the design: IC
implements its shared library as a component, and uses switch glue to provide a
default implementation if the component is absent. Using the Component Manager
to implement shared libraries is a helpful technique not just for IC, but for other
APIs as well. Note too that Internet Config is useful for more than its name implies.
For example, the extension-to-file-type mapping database is useful for any program
that deals with “foreign” file systems. Indeed, IC is a perfectly valid mechanism for
storing private preferences that have nothing to do with the Internet.

Although IC is intended as an abstract API, all its source code is placed in the public
domain — a condition of its development. This lets me illustrate the text with

QUINN “THE ESKIMO!”

Implementing Shared Internet Preferences
With Internet Config

QUINN “THE ESKIMO!” (quinn@cs.uwa.edu.au)
has a first name but, when asked about it, his
usual response is “I could tell you but then I’d
have to kill you!” He programs for a living with
the Department of Computer Science at the
University of Western Australia, but on weekends
he gets together with Peter N. Lewis and

programs for fun. The Internet Configuration
System is a product of these misspent recreational
hours. Quinn writes in Pascal using a Dvorak
keyboard on a Macintosh Duo that he carries
around on his bicycle, and he’s still trying to
figure out how to use this minority status to his
economic advantage.•

snippets from the actual implementation and gives you full access to the source
code. Both the IC user’s kit and the IC developer’s kit, which contain code and
documentation, are included on this issue’s CD. Note that Internet Config was
developed independently and is not supported by Apple.

The latest versions of the kits are always available from the ftp sites
ftp://ftp.share.com/pub/internet-configuration/ and ftp://redback.cs.uwa.edu.au/
Others/Quinn/Config/. In addition, the user kit is available from UMich and
Info-Mac mirrors around the world.•

As with any new piece of software intended to be widely adopted, Internet Config
needs developer support in order to be successful. I hope this article raises the
awareness of IC in the developer community and prompts some of you to support it.

INTERNET CONFIG FROM THE OUTSIDE
Before going inside Internet Config, it’s important to know how the system works as
a whole. The best way to do this is to get a copy of the Internet Config application
and run it (there’s a copy on this issue’s CD), but if you’re too relaxed to do that right
now, keep reading for a description of the basics. We’ll look at IC first from the user’s
perspective and then from the programmer’s point of view.

THE USER’S PERSPECTIVE
To the user, Internet Config is a proper Macintosh application. It supports the
standard menu commands New, Open, Save, Save As, and so on. The only difference
is that the files it operates on are preferences files. Figure 1 shows Internet Config
and its related files.

The first time the Internet Config application is run, it installs the Internet Config
Extension into the Extensions folder and creates a new, blank Internet Preferences
file in the Preferences folder. It then displays the main window, shown in Figure 2,
which allows the user to edit the preferences.

Each of the buttons in the main window displays another window containing a group
of related preferences. For example, the Personal button brings up the window shown

d e v e l o p Issue 23 September 199556

Internet Config

Internet Config Extension

Internet Preferences

IC-aware applications

Figure 1. Internet Config and its related files — what the user sees

in Figure 3. The user enters preferences into each of these windows and then quits
and saves the preferences.

From this point on, the user never has to enter those preferences again. Any IC-
aware program the user runs simply accesses the preferred settings without requiring
them to be reentered. This makes the user very happy (we presume).

Users can even run IC-aware applications “out of the box” — they don’t have to
run Internet Config first. If the Internet Config Extension isn’t installed, IC-aware
client applications access the Internet Preferences file directly instead of through
the extension (as shown by the black arrows in Figure 1). The way this is done is
described later in the section “The Inner Workings of an API Routine.”

THE PROGRAMMER’S PERSPECTIVE
To programmers, Internet Config consists of a set of interface files that define the
API, and a library to be statically linked to their programs. IC can be used from all
of the common Macintosh development environments: MPW, THINK, and
Metrowerks; Pascal and C; and 680x0 and PowerPC. The examples in this article,
like IC itself, were written in THINK Pascal.

IMPLEMENTING SHARED INTERNET PREFERENCES WITH INTERNET CONFIG 57

Figure 2. The Internet Config application’s main window

Figure 3. The Personal preferences window

What’s in an IC preference. Before getting to the details of the API, you need to
know more about IC preferences. In IC, a preference is an item of information that’s
useful to the client application program. Each preference has three components: its
key, its data, and its attributes.

• The key is a Str255 that identifies the preference. You can use the key to
fetch the data and attributes.

• The data is an untyped sequence of bytes that represents the value of the
preference. The data’s structure is determined by the client program. The
structures of the common preferences are defined in the IC programming
documentation.

• The attributes represent information about the preference that’s
supplementary to the preference data, such as whether the preference is
read/write or read-only.

In the e-mail address preference, for example, the key is the string “Email”. If you
pass this string into IC, it returns the preference’s data and attributes. By convention,
the data for the key “Email” is interpreted as a Pascal string containing the user’s
preferred e-mail address.

IC’s core API routines. Internet Config has the following core API routines.
Although the API has a lot more depth, these four routines are all you need to
program with IC.

FUNCTION ICStart (VAR inst: ICInstance; creator: OSType): ICError;

FUNCTION ICStop (inst: ICInstance): ICError;

FUNCTION ICFindConfigFile (inst: ICInstance; count: Integer;
folders: ICDirSpecArrayPtr): ICError;

FUNCTION ICGetPref (inst: ICInstance; key: Str255; VAR attr: ICAttr;
buf: Ptr; VAR size: LongInt): ICError;

The ICStart routine is always called first. Here you pass in your application’s creator
code so that future versions of IC can support application-dependent preferences.
ICStart returns a value of type ICInstance; this is an opaque type that must be passed
to every other API call. ICStop is called at the termination of your application to
dispose of the ICInstance you obtained with ICStart.

ICFindConfigFile is called immediately after ICStart. IC uses this routine to support
applications with double-clickable user configuration files, a common phenomenon
among Internet applications. If you need to support these files, see the IC
programming documentation; otherwise, just pass in 0 for the count parameter and
nil for the folders parameter.

The ICGetPref routine takes a preference key and returns the preference’s attributes
in attr and its data in the buffer pointed to by buf. The maximum size of the buffer is
passed in as size, which is adjusted to the actual number of bytes of preference data.

The simplest example. The program in Listing 1 demonstrates the simplest
possible use of IC technology. All it does is write the user’s e-mail address to the
standard output. This program calls the four core API routines: it begins by calling
ICStart and terminates with an ICStop call; it calls ICFindConfigFile with the default
parameters and uses ICGetPref to fetch the value of a specific preference — in this
case the user’s e-mail address.

d e v e l o p Issue 23 September 199558

INSIDE INTERNET CONFIG
The IC API just described is really all you need to know to make your program IC-
aware; now we’ll get into the guts of Internet Config to see how it achieves its magic.
We’ll look first at its underlying design and then at how its internal structures work
together.

THE IC DESIGN: A SIMPLE, EXPANDABLE SYSTEM
The design requirements for Internet Config evolved during early discussions of
what an Internet configuration system might look like (see “How Internet Config
Came to Be”). These requirements guided the development process and form the
basic structure of Internet Config — an efficient, expandable system that’s easy to use
and easy to support.

Internet Config can accept sweeping changes while maintaining API compatibility,
and it allows for patches to support future extensions and bug fixes. We couldn’t
achieve such expandability with a simple shared preferences implementation, and the
consequent loss of simplicity caused a lot of debate during the development process.

The need for simplicity was implicit from the beginning. To add support for Internet
Config, application developers have to revise their code. Developers tend to be lazy

IMPLEMENTING SHARED INTERNET PREFERENCES WITH INTERNET CONFIG 59

Listing 1. The simplest IC-aware program

PROGRAM ICEmailAddress;
{ The simplest IC-aware program. It simply outputs the user's }
{ preferred e-mail address. }

USES
ICTypes, ICAPI, ICKeys; { standard IC interfaces }

VAR
instance: ICInstance; { opaque reference to IC session }
str: Str255; { buffer to read e-mail address into }
str_size: LongInt; { size of above buffer }
junk: ICError; { place to throw away error results }
junk_attr: ICAttr; { place to throw away attributes }

BEGIN
{ Start IC. }
IF ICStart(instance, '????') = noErr THEN BEGIN

{ Specify a database, in this case the default one. }
IF ICFindConfigFile(instance, 0, NIL) = noErr THEN BEGIN

{ Read the real name preferences. }
str_size := sizeof(str); { 256 bytes -- a similar construct }

{ wouldn't work in C }
IF ICGetPref(instance, kICEmail, junk_attr, @str, str_size)

= noErr THEN BEGIN
writeln(str);

END; { IF }
END; { IF }
{ Shut down IC. }
junk := ICStop(instance);

END; { IF }
END. { ICEmailAddress }

— hey, I mean that as a compliment — and generally prefer simple systems to
complicated ones. Developer support is critical for success, so we kept the system
simple. Still, it isn’t so simple as to compromise the need for expandability.

As we’ve already seen, IC has several other interesting design features. The API
supports applications with double-clickable user configuration files. The Internet
Config user application accesses all the Internet preferences through the API, and is
thereby isolated from the implementation details. IC-aware applications work even if
the Internet Config Extension isn’t installed. We even included support for System 6
(much as we resented it).

IC’S INTERNAL STRUCTURES
As you can see in Figure 4, the Internet Config application and IC-aware client
programs have very similar internal structures. In fact, except for a few artifacts

d e v e l o p Issue 23 September 199560

Designing Internet Config was a complicated business.
The process began in March 1994 with a discussion on
the Usenet newsgroup comp.sys.mac.comm. Many
people thought simplifying Internet configuration was a
good idea, but few agreed how best to achieve the goal,
or indeed what the goal was.

We set up a mailing list to swap ideas, and discussion
continued apace for weeks. One of the biggest issues was
the disparity between the problems we wanted to solve
and the ones we could solve given our limited resources.

After a week or two of thrashing out the requirements,
Peter N. Lewis, Marcus Jager, and I proposed the first
API. A few weeks later we shipped the first implementation
of the Internet Config Extension.

The problem IC solves is actually quite simple, so it didn’t
take long to implement the design. As usual, however, it
took some time to go from a working implementation to
a final product — we shipped Internet Config 1.0 in
December 1994. Though we’ve made minor additions
and changes, the initial design survives to this day.

HOW INTERNET CONFIG CAME TO BE

Application code Client program

Component wrapper

Standard resource file

Switch glue

Component glue Link-in �
implementation

Switch glue

Component glue Link-in �
implementation

Internet Config application IC-aware applications

Internet Config component

Internet Preferences file

Link-in implementation

Component ”smarts”

Figure 4. Inside the Internet Config entities — what the programmer sees

caused by implementing “safe saving,” the Internet Config application uses the
standard API to modify the Internet Preferences file. The Internet Config component,
which the user sees as the Internet Config Extension, is basically a shared library of
routines implemented as a component (see “The IC Component and Shared
Libraries on the Macintosh”).

The switch glue is a common interface that applications use to call IC. This glue
decides whether the Internet Config component is available and, if it is, routes all
calls through to it. If the component isn’t present, the calls are routed through to the
link-in implementation, which then does the work.

This switching mechanism satisfies two design requirements. It allows the API to be
patched by replacing or overriding the Internet Config component. It also allows IC-
aware programs to work even if the component isn’t installed; they simply fall back to
using the link-in implementation.

THE INNER WORKINGS OF AN API ROUTINE
Now we’ll look more closely at how the Start and GetPref routines are implemented
in each part of the Internet Config system. We’ll trace these two calls from the top
level, where they’re called by the client program, all the way down to the link-in
implementation, where the real action takes place.

This section is quite technical; if you’re not interested in the implementation details,
you might want to just skim through it. Many of the details are provided for
illustrative purposes only. Take heed! If you write client programs that rely on these
details, they will break in future revisions of IC. The public interface to IC is defined in
the IC programming documentation.

We’ll start with the switch glue and proceed through the standard call path. On the
way we’ll examine the component glue, wrapper, and “smarts,” and finally, the link-in
implementation. The path is convoluted but rewards you with both data and code
abstraction.

Start and GetPref appear in each part of the system, and each appearance has a
specific purpose, as we’ll see in a moment. To keep things straight, various instances

IMPLEMENTING SHARED INTERNET PREFERENCES WITH INTERNET CONFIG 61

The Internet Config component is essentially a shared
library of routines. So why implement it as a component?
The answer lies in the confused state of shared libraries
on the Macintosh.

When we started writing IC we knew we’d need a shared
library. The problem was not that the system didn’t have a
shared library mechanism, but that it had too many. At
the time there were four Apple shared library solutions,
each with its unique drawbacks: the Component Manager
wasn’t a “real” shared library system; the Apple Shared
Library Manager (ASLM) had limited availability and
lacked PowerPC support and developer tools; the Code
Fragment Manager (CFM) lacked 680x0 support; and the
System Object Model (SOM) lacked any availability.

These days life is a little better. ASLM now works on the
PowerPC platform, CFM is being ported to the 680x0
platform, SOM is imminent, and Apple has issued a clear
statement of direction on shared libraries, centered on
CFM.

But statements of direction don’t solve problems — they
just clear up confusion. The shared library problem
persists. When I was writing this article someone asked
me for advice about which shared library mechanism to
use. My recommendation today is the same as at the start
of the IC project: use the Component Manager. It’s still the
only solution that has the developer tools, has 680x0 and
PowerPC support, and is already installed on most users’
machines.

THE IC COMPONENT AND SHARED LIBRARIES ON THE MACINTOSH

of the same routine are prefixed to denote which part of the system they’re in. The
prefixes are listed in Table 1, which shows the various specifications for the GetPref
routine as an example. (Note that these specifications vary only in the name’s prefix
and the type of the first parameter. The “R” in the ICR prefix indicates that these
routines actually use the Resource Manager to modify the preferences; all the other
routines are glue.)

THE SWITCH GLUE
The switch glue relies on ICRRecord, the central data structure of IC, shown in
Listing 2. The first field of ICRRecord, instance, is a ComponentInstance, which
normally holds the connection to the Internet Config component. If the component
is installed, the instance field holds the connection to it; the rest of the fields are
ignored because the component has a separate ICRRecord in its global variables. If
the component isn’t installed, the instance field is nil, and the link-in implementation
uses the rest of the fields to hold the necessary state (as we’ll see later).

The switch glue for the application’s Start routine, ICStart, is shown in Listing 3.
The first thing ICStart does is attempt to allocate an ICRRecord; if it succeeds, it
then tries to open a connection to the component with the component glue routine
ICCStart. ICCStart either succeeds, setting the internal instance field to the
connection to the component, or fails and returns an error. If ICCStart returns an
error, ICStart falls back to using the link-in implementation by calling ICRStart. If
ICRStart fails, Internet Config fails to start up; ICStart sets inst to nil and returns
an error.

d e v e l o p Issue 23 September 199562

Table 1. Routine name prefixes

Prefix Part of System First Parameter GetPref Specification

IC Standard API ICInstance FUNCTION ICGetPref (inst: ICInstance; key: Str255;
(switch glue) VAR attr: ICAttr; buf: Ptr; VAR size: LongInt): ICError;

ICC Component API ComponentInstance FUNCTION ICCGetPref (inst: ComponentInstance; key: Str255;
(component glue) VAR attr: ICAttr; buf: Ptr; VAR size: LongInt): ICError;

ICCI Component internal globalsHandle FUNCTION ICCIGetPref (inst: globalsHandle; key: Str255;
VAR attr: ICAttr; buf: Ptr; VAR size: LongInt): ICError;

ICR Link-in implementation VAR ICRRecord FUNCTION ICRGetPref (var inst: ICRRecord; key: Str255;
VAR attr: ICAttr; buf: Ptr; VAR size: LongInt): ICError;

Listing 2. ICRRecord

TYPE
ICRRecord = RECORD

{ This entire record is completely private to the }
{ implementation!!! Your code will break if you depend }
{ on the details here. You have been warned. }
instance: ComponentInstance;

{ nil if no component available; if not nil, }
{ then rest of record is junk }

... { other fields to be discussed later }
END;

ICRRecordPtr = ^ICRRecord;

The switch glue for GetPref, and all the other API routines for that matter, is very
simple. All it does is consult the internal instance field to determine whether ICStart
successfully connected to the component. If so, it calls through to the component
glue routine ICCGetPref; otherwise, it calls through to the link-in implementation
routine ICRGetPref. This is shown in Listing 4.

The switch glue implementations of both Start and GetPref do a lot of casting
between ICInstance and ICRRecordPtr, because the ICRRecordPtr type describes
details of the implementation that shouldn’t “leak out” to the client’s view of IC. The
client programs know only of ICInstance, which is an opaque type. The explicit casts
could have been avoided with some preprocessor tricks, but we decided to include
them longhand for clarity.

THE COMPONENT GLUE
The component glue calls the Internet Config component. In the component glue
for the Start routine, shown in Listing 5, Internet Config attempts to connect to the
IC component by calling the Component Manager routine OpenDefaultComponent.

IMPLEMENTING SHARED INTERNET PREFERENCES WITH INTERNET CONFIG 63

Listing 3. The switch glue for Start

FUNCTION ICStart (VAR inst: ICInstance; creator: OSType): ICError;
VAR

err: ICError;
BEGIN

inst := NewPtr(sizeof(ICRRecord));
err := MemError;
IF err = noErr THEN BEGIN

err := ICCStart(ICRRecordPtr(inst)^.instance, creator);
IF err <> noErr THEN BEGIN

err := ICRStart(ICRRecordPtr(inst)^, creator);
END; { IF }
IF err <> noErr THEN BEGIN

DisposePtr(inst);
inst := NIL;

END; { IF }
END; { IF }
ICStart := err;

END; { ICStart }

Listing 4. The switch glue for GetPref

FUNCTION ICGetPref (inst: ICInstance; key: Str255; VAR attr: ICAttr;
buf: Ptr; VAR size: LongInt): ICError;

BEGIN
IF ICRRecordPtr(inst)^.instance <> NIL THEN BEGIN

ICGetPref := ICCGetPref(ICRRecordPtr(inst)^.instance,
key, attr, buf, size);

END
ELSE BEGIN

ICGetPref := ICRGetPref(ICRRecordPtr(inst)^, key, attr, buf, size);
END; { IF }

END; { ICGetPref }

If the Internet Config component isn’t installed or can’t be opened for any other
reason, the routine sets inst to nil and fails with a badComponentInstance error.
Remember that the calling code, ICStart, will notice this error code and fall back to
the link-in implementation, as shown in Listing 4.

If the routine successfully opens a connection to the Internet Config component, it
calls the ICCStartComponent routine, which is standard Component Manager glue
that calls the component’s initialization routine.

The component glue version of GetPref is a lot simpler. It’s just a standard piece of
Component Manager glue, as shown in Listing 6. The inline instructions of the
component glue for GetPref translate into the piece of assembly code shown in
Listing 7.

You can read more about the Component Manager and its dispatch mechanism in
Inside Macintosh: More Macintosh Toolbox.

Calling components from PowerPC code is not described in this article or in
Inside Macintosh: More Macintosh Toolbox. You can find out how to do this by
reading the Macintosh Technical Note “Component Manager Version 3.0” (QT 5).•

d e v e l o p Issue 23 September 199564

Listing 5. The component glue for Start

FUNCTION ICCStartComponent (inst: ComponentInstance; creator: OSType):
ICError;

INLINE { standard Component Manager glue }
$2F3C, $04, $0, { move.l #$0004_0000,-(sp) }
$7000, { moveq.l #0,d0 }
$A82A; { _ComponentDispatch }

FUNCTION ICCStart (VAR inst: ComponentInstance; creator: OSType):
ICError;

VAR
err, junk: ICError;
response: LongInt;

BEGIN
inst := NIL;
IF Gestalt(gestaltComponentMgr, response) = noErr THEN BEGIN

inst := OpenDefaultComponent(internetConfigurationComponentType,
internetConfigurationComponentSubType);

END; { IF }
IF inst = NIL THEN BEGIN

err := badComponentInstance;
END
ELSE BEGIN

err := ICCStartComponent(inst, creator);
IF err <> noErr THEN BEGIN

junk := CloseComponent(inst);
inst := NIL;

END; { IF }
END; { IF }
ICCStart := err;

END; { ICCStart }

THE COMPONENT WRAPPER
Now let’s look inside the Internet Config component at the component wrapper
(Listing 8). The component wrapper’s basic function is to dispatch all of the IC
component’s routines based on the selector in params.what; it uses a big CASE
statement to determine the routine’s address and then calls the routine with the
Component Manager function CallComponentFunctionWithStorage. The
Component Manager is smart enough to sort out the parameters at this stage.

Most of the API routines are immediately dispatched by the component wrapper to
an internal routine that simply calls the link-in implementation to do the work. For
example, the ICCIGetPref routine, shown in Listing 9, calls through to ICRGetPref,
changing only the first parameter.

IMPLEMENTING SHARED INTERNET PREFERENCES WITH INTERNET CONFIG 65

Listing 6. The component glue for GetPref

FUNCTION ICCGetPref (inst: ComponentInstance; key: Str255;
VAR attr: ICAttr; buf: Ptr;
VAR size: LongInt): ICError;

INLINE { standard Component Manager glue }
$2F3C, $10, $6, { move.l #$0010_0006,-(sp) }
$7000, { moveq.l #0,d0 }
$A82A; { _ComponentDispatch }

Listing 7. Disassembling the component glue

move.l #$0010_0006,-(sp) ; push the routine selector (6) and the
; number of bytes of parameters (16)

moveq.l #0,d0 ; _ComponentDispatch routine selector to
; call a component function

_ComponentDispatch ; call the component through the Component
; Manager

Listing 8. Sections of IC’s component wrapper

FUNCTION Main (VAR params: ComponentParameters; storage: Handle):
ComponentResult;

{ Inside Macintosh has params as a value parameter when it should be }
{ a VAR parameter. Don't make this mistake. }

VAR
proc: ProcPtr;
s: SignedByte;

BEGIN
proc := NIL;
CASE params.what OF

{ Dispatch the routines required by the Component Manager. }
... { routines omitted for brevity }
{ Dispatch the routines that make up the IC API. }
kICCStart:

proc := @ICCIStart;

(continued on next page)

So you can see that there are two ways to call ICRGetPref, either from the
component’s internal routine ICCIGetPref or from the switch glue’s ICGetPref. This
is consistent with the design outlined in Figure 4. Of course, these routines call two
different copies of the code, one linked into the program and one linked into the
component.

THE COMPONENT “SMARTS”
The component “smarts” are wedged between the component wrapper and the link-in
implementation. Most component wrapper routines don’t have smarts; they call straight
through to the link-in implementation. Adding smarts to a routine allows it to work
better than its link-in cousin without the need to maintain two versions of the routine.

A good example of a smart routine is the component wrapper version of the Start
routine, ICCIStart (Listing 10). This fixes a potential localization problem associated
with the link-in implementation with a clever sleight of hand. ICCIStart is basically
the same as ICCIGetPref in that it immediately calls through to its link-in
implementation equivalent. But then it does something tricky: the component calls
itself to get the default filename for the Internet Preferences file. For the gory details
of why this is “smart,” see “Smart Components for Smart People.”

One thing to note is that when ICCIStart calls the component to get the default
filename, it doesn’t do so directly, but instead uses the component glue to call its
current_target global variable. Targeting is cool Component Manager technology

d e v e l o p Issue 23 September 199566

kICCGetPref:
proc := @ICCIGetPref;

... { remaining IC API routines omitted for brevity }
OTHERWISE

Main := badComponentSelector;
END; { case }
IF proc <> NIL THEN BEGIN

IF storage <> NIL THEN BEGIN
s := HGetState(storage);
HLock(storage);

END; { IF }
Main := CallComponentFunctionWithStorage(storage, params, proc);
IF (storage <> NIL) AND

(params.what <> kComponentCloseSelect) THEN BEGIN
HSetState(storage, s);

END; { IF }
END; { IF }

END; { Main }

Listing 9. The component wrapper for GetPref

FUNCTION ICCIGetPref (globals: globalsHandle; key: Str255; VAR attr:
ICAttr; buf: Ptr; VAR size: LongInt): ICError;

BEGIN
ICCIGetPref := ICRGetPref(globals^^.inst, key, attr, buf, size);

END; { ICCIGetPref }

Listing 8. Sections of IC’s component wrapper (continued)

that allows you to write override components (more on this later in “Override
Components”).

With each new version of Internet Config, the component implementation gets
smarter than the link-in implementation. Component smarts are used in IC 1.0 to
improve ease of localization; in IC 1.1, they’re also used to improve targetability. In a
future version of IC, component smarts may be used to implement a preference
cache.

THE LINK-IN IMPLEMENTATION
It may be hard to imagine, but everything you’ve seen so far is glue. The code that
does the real work in IC is the link-in implementation. The link-in implementation
sees a different view of the ICRRecord, one that contains enough fields to store all
the data that the implementation requires. This extended view of the ICRRecord is
shown in Listing 11.

The instance field is still there but the link-in implementation ignores it. It’s the
subsequent fields that are of interest. Most of them are easy to understand with the
help of their comments.

IMPLEMENTING SHARED INTERNET PREFERENCES WITH INTERNET CONFIG 67

Listing 10. A smart component wrapper

FUNCTION ICCIStart (globals: globalsHandle; creator: OSType): ICError;
{ Handle the start request, which is basically a replacement for the }
{ open because we need another parameter, the calling application's }
{ creator code. }

VAR
err: OSErr;

BEGIN
err := ICRStart(globals^^.inst, creator);
IF err = noErr THEN BEGIN

err := ICCDefaultFileName(globals^^.current_target,
globals^^.inst.default_filename);

END; { IF }
ICCIStart := err;

END; { ICCIStart }

Because Internet Config needs to know the default
filename of the Internet Preferences file when it creates a
new preferences file, and because all filenames should be
stored in resources so that they can be localized, the
default filename should be stored in a resource. This
approach is fine for the component, which can get at its
resource file with OpenComponentResFile, but doesn’t
work for the link-in implementation since it can be linked
in to a variety of applications.

We considered working around this by requiring all
applications to add a resource specifying the name, but

this would force all of our developers to add resources to
their applications, and the resource ID might clash with
their existing resources. The biggest disadvantage,
however, is that IC clients are not necessarily applications
and may not even have resource files associated with
them.

So we solved this problem by making the component
version of IC smarter than the link-in version. The link-in
version sets default_filename to “Internet Preferences” and
leaves it at that, while the component version calls itself to
get the correct filename from the resource file.

SMART COMPONENTS FOR SMART PEOPLE

The link-in implementation for the Start routine initializes the remaining
ICRRecord fields, as shown in Listing 12.

d e v e l o p Issue 23 September 199568

Listing 11. The full ICRRecord in the link-in implementation

TYPE
ICRRecord = RECORD

{ This entire record is completely private to the }
{ implementation!!! Your code will break if you depend }
{ on the details here. You have been warned. }
instance: ComponentInstance;

{ nil if no component available; if not nil, then rest }
{ of record is junk }

have_config_file: Boolean;
{ determines whether any file specification calls, that }
{ is, ICFindConfigFile or ICSpecifyConfigFile, have been }
{ made yet; determines whether the next field is valid }

config_file: FSSpec;
{ our chosen database file }

config_refnum: Integer;
{ a place to store the resource refnum }

perm: ICPerm;
{ the permissions the user opened the file with }

inside_begin: Boolean;
{ determines if config_refnum is valid }

default_filename: Str63;
{ the default IC filename }

END;
ICRRecordPtr = ^ICRRecord;

Listing 12. The link-in implementation for Start

FUNCTION ICRStart (VAR inst: ICRRecord; creator: OSType): ICError;
VAR

junk: ICError;
BEGIN

inst.have_config_file := false;
inst.config_file.vRefNum := 0;
inst.config_file.parID := 0;
inst.config_file.name := '';
inst.config_refnum := 0;
inst.perm := icNoPerm;
junk := ICRDefaultFileName(inst, inst.default_filename);
ICRStart := noErr;

END; { ICRStart }

FUNCTION ICRDefaultFileName (VAR inst: ICRRecord; VAR name: Str63):
ICError;

BEGIN
name := ICdefault_file_name;
ICRDefaultFileName := noErr;

END; { ICRDefaultFileName }

Finally, there’s the link-in implementation for GetPref, portions of which are shown
in Listing 13. The actual implementation is a bit long, so the listing leaves out a lot
of messing around with resources, bytes, pointers, attributes, and so on. The basic
operation of the routine is simple, however: it checks its parameters, opens the
preferences file (by calling ICRForceInside), gets the preference, closes the
preferences file, and returns.

TOWARD THE FUTURE
The future . . . where Macintosh applications glide along the information
superhighway, seamlessly perceiving the user’s every preference. You’d better hope
your applications are IC aware!

IMPLEMENTING SHARED INTERNET PREFERENCES WITH INTERNET CONFIG 69

Listing 13. The link-in implementation for GetPref

FUNCTION ICRGetPref (VAR inst: ICRRecord; key: Str255; VAR attr: ICAttr;
buf: Ptr; VAR size: LongInt): ICError;

VAR
err, err2: ICError;
max_size, true_size: LongInt;
old_refnum: Integer;
prefh: Handle;
force_info: Boolean;

BEGIN
max_size := size;
size := 0;
attr := ICattr_no_change;
prefh := NIL;
err := ICRForceInside(inst, icReadOnlyPerm, force_info);
IF (err = noErr) AND (inst.config_refnum = 0) THEN BEGIN

err := icPrefNotFoundErr;
END; { IF }
IF (err = noErr) AND ((key = '') OR

((max_size < 0) AND (buf <> nil))) THEN BEGIN
err := paramErr;

END; { IF }
IF err = noErr THEN BEGIN

old_refnum := CurResFile;
UseResFile(inst.config_refnum);
err := ResError;
IF err = noErr THEN BEGIN

... { lots of resource hacking here }
UseResFile(old_refnum);

END; { IF }
END; { IF }
IF prefh <> NIL THEN BEGIN

ReleaseResource(prefh);
END; { IF }
err2 := ICRReleaseInside(inst, force_info);
IF err = noErr THEN BEGIN

err := err2;
END; { IF }
ICRGetPref := err;

END; { ICRGetPref }

Internet Config is a very flexible system that can expand in several dimensions.
Indeed, some are already being explored — in particular, the use of components to
maintain and extend the system. And we’re looking forward to seeing IC extended in
ways we never anticipated.

OVERRIDE COMPONENTS
One of the coolest features of the Component Manager is targeting — one
component can capture another and override it. This effectively prevents external
programs from using the captured component, while still allowing it to be called by
the override component. Very much like inheritance in object-oriented design, this
technology lets you write a very simple component that captures the Internet Config
component so that you can patch just one routine. For example, the Internet Config
RandomSignature extension overrides the ICGetPref routine. If an IC client requests
the signature preference, the extension randomly chooses one from a collection of
signatures.

The possibilities for override components are endless. Let’s say your organization
wants to preconfigure all news clients to access a central news server. You can do this
by writing a simple override component that watches for programs getting the
NNTPHost preference and returns a fixed read-only preference value. This way, all
IC-aware news readers use the correct host but can’t change it. As we say in the
system software business, it’s a wonderful third-party developer opportunity.

TOTAL BODY SWAP
Because all client programs call Internet Config through a well-defined API, it’s
possible to write a replacement for IC and gain complete control of the system.
Imagine that you’re tired of having the same preferences in all your IC-aware
applications. You can change them by writing a replacement that conforms to the
existing API. First, replace the Internet Config component with a smarter one that’s
capable of storing a set of preferences for each application and returning the right
preferences to the right application. Then replace the Internet Config application
with a much more sophisticated application that can manage multiple sets of
preferences, and your job is done. All IC-aware programs will automatically benefit
without recompilation.

Or suppose you want to store your user preferences on a central server and access
them through some network protocol. Again, IC lets you do it. You could replace the
Internet Config component with a network-aware one, and establish the user’s
identity in some way, perhaps by requiring the user to log on before using any IC-
aware programs. You could then choose to use either a Macintosh application to
administer the server or tools from the server’s native environment.

STAYING CURRENT
No program is ever finished, nor is any program ever 100% bug free. Internet Config
is getting better all the time, and you can update to the newest, improved version
with a minimum of fuss. When the application detects that its version of the Internet
Config Extension is out of date, it simply installs the new one. Because all IC-aware
programs are dynamically linked to the component contained within this extension,
they automatically receive the update without having to be recompiled.

By the time you read this article, IC 1.1 should be released and busily updating old
versions of the Internet Config Extension around the globe. IC 1.1 offers many
improvements and bug fixes, including an extended API and a shell for writing
override components easily. Share and enjoy!

d e v e l o p Issue 23 September 199570

IMPLEMENTING SHARED INTERNET PREFERENCES WITH INTERNET CONFIG 71

If you want to find out more about Internet Config itself, the following documents may
be of interest:

• “Using the Internet Configuration System” by Quinn, MacTech Magazine, April
1995.

• Internet Configuration System: User Documentation and Internet Configuration
System: Programming Documentation by Quinn, in the IC User’s Kit and IC
Developer’s Kit, respectively (1994). These kits are provided on this issue’s CD.

• “Internet Config FAQ” by Quinn (1994–1995). Available from the ftp site
ftp://redback.cs.uwa.edu.au/Others/Quinn/Config/IC_FAQ.txt.

Here’s where you can find out more about components, the technology Internet
Config is based on:

• Inside Macintosh: More Macintosh Toolbox (Addison-Wesley, 1993).

• Macintosh Technical Note “Component Manager Version 3.0” (QT 5).

• “Be Our Guest: Components and C++ Classes Compared” by David Van Brink,
develop Issue 12.

• “Inside QuickTime and Component-Based Managers” by Bill Guschwan, develop
Issue 13.

• “Somewhere in QuickTime: Derived Media Handlers” by John Wang, develop
Issue 14.

• “Managing Component Registration” by Gary Woodcock, develop Issue 15.

Finally, if you’re interested in the mindset of Internet Config’s authors, you can do no
better than to read the following:

• He Died With a Felafel in His Hand by John Birmingham (The Yellow Press, 1994).

• The UNIX-HATERS Handbook by Simson Garfinkel, Daniel Weise, and Steven
Strassmann (IDG Books, 1994).

• http://www.cm.cf.ac.uk/Movies/

RECOMMENDED READING

Thanks to our technical reviewers Peter Hoddie,
Peter N. Lewis, Jim Reekes, and Greg Robbins.
Internet Config is a joint development by Peter N.
Lewis and Quinn, with design input from Marcus
Jager. We’d like to thank all of those on the
Internet Config mailing list and the developers
who are supporting the system.•

The Internet Config mailing list is
dedicated to discussing the technical details of
Internet Config. You can subscribe by sending
mail to listserv@list.peter.com.au with the body of
the message containing “subscribe config Your
Real Name.”•

When two engineers on a team edit the same source
file at the same time, the resulting chaos can be terrible
to behold. Source control was invented to mitigate the
problem. Most Macintosh programmers are familiar
with the MPW Shell’s Check In and Check Out
dialogs, and with its Projector commands. The next
frontier of custom source control involves SourceServer,
a nearly faceless application that implements most of
the Projector commands. MPW scripts are easy to
write, but they’re no match for the power, speed, and
friendliness of compiled software. SourceServer exports
Projector commands as Apple events, allowing source
control from compiled software without launching the
MPW Shell in all its pomp and splendor.

Popular third-party development environments often
send Apple events to SourceServer for integrated source
control. You can also use SourceServer to customize
Projector beyond what you might have thought possible.
For instance, you can drag source control, kicking and
screaming, into the modern world of user experience
with drop-on applications. In this column, I’ll show you
how to check a file in or out with a simple drag and
drop, and how to use SourceServer for other things as
well. The sample code is provided on this issue’s CD;
SourceServer is distributed, with documentation, on
the MPW Pro and E.T.O. CDs (available from APDA)
and with third-party development systems.

APPLE EVENTS FOR SOURCESERVER
Apple events have many faces, but they’re primarily a
way of communicating between different applications.

Each Apple event encapsulates a message as a command
with any number of input parameters; the receiver of
the message may return any number of result parameters
to the sender. The most basic unit of data is the Apple
event descriptor, which consists of a type code and a data
handle. Apple events are built out of descriptors and are
themselves special kinds of complex descriptors.

For an excellent introduction to Apple events, see
“Scripting the Finder From Your Application” by Greg Anderson
in develop Issue 20.•

SourceServer’s commands are represented as descriptor
lists. Its Apple events are exact duplicates of the MPW
Shell’s Projector commands, but to avoid the overhead
of a full command parser, both the command name and
each argument are descriptors in the descriptor list.
This saves you the trouble of putting quotes and
escapes into arguments that might contain spaces or
other special characters. The downside is that you have
to expand arguments yourself: you can’t pass in MPW
wildcard characters, backquoted commands for
expansion, or other special constructs.

Creating descriptor lists may sound harder than writing
MPW scripts, but that’s only because it is. I’ve provided
some utility routines to ease the way, though. Listing 1
shows the utilities and illustrates how to make a
command to check out a file for modification. As
illustrated in the CheckOut routine in this listing, you
call the CreateCommand routine first and then use the
AddXArg routines to add arguments.

Some of the utilities take Pascal strings, while others
take C strings, which could well be considered bad
programming practice. I chose this dubious method not
because I’m on drugs, but because Pascal strings and C
strings are used in different ways. SourceServer’s text
descriptors are C strings; when passed to these utilities
as string constants, they shouldn’t be converted from
Pascal format in place, since some compilers put
constants in read-only areas. If you’re internationally
savvy, you may have another objection: string constants
themselves are bad practice. However, for better or
worse, MPW scripts and tools are not internationalized.
Just like aliens in Star Trek, all MPW programmers are
assumed to speak English.

MPW TIPS AND
TRICKS

Customizing
Source Control
With SourceServer

TIM MARONEY

d e v e l o p Issue 23 September 199572

TIM MARONEY wrote TOPS Terminal and BackDrop, and has
been a major contributor to TOPS for Macintosh, FaxPro, and
Cachet. He has also contributed to Fiery, the Disney Screen Saver,
Ofoto, Colortron, and the Usenet Mac Programmer’s Guide. Tim
learned computer networking while working on the Andrew and
MacIP projects at Carnegie Mellon and studied compiler design in
graduate school at Chapel Hill. He has written for all three major

operating systems and a few minor ones. On the Macintosh, Tim’s
code has included applications, INITs, control panels, HyperCard
stacks, XCMDs, shared libraries, trap patches, plug-ins, scripts,
and things more difficult to characterize. Tim is currently doing
contract work at Apple, and is available for parties and special
events at a nominal cost.•

MPW TIPS AND TRICKS: CUSTOMIZING SOURCE CONTROL WITH SOURCESERVER 73

Listing 1. Creating SourceServer commands

OSErr CreateCommand(AEDesc *command, CString commandText)
/* Begin a new SourceServer command; name of command is in commandText. */
{

OSErr err = AECreateList(NULL, 0, false, command);
if (err != noErr) return err;
err = AddCStringArg(command, commandText);
if (err != noErr) (void) AEDisposeDesc(command);
return err;

}

OSErr AddCommentArg(AEDesc *command, StringPtr comment)
/* Add a "-cs comment" argument to a SourceServer command. */
{

OSErr err;
if (comment[0] == 0) return noErr;
err = AddCStringArg(command, "-cs");
if (err != noErr) return err;
err = AddPStringArg(command, comment);
return err;

}

/* Other SourceServer argument utilities */
OSErr AddDirArg(AEDesc *command, short vRefNum, long folderID);
OSErr AddProjectArg(AEDesc *command, StringPtr projectName);
OSErr AddUserArg(AEDesc *command, StringPtr userName);
OSErr AddFullNameArg(AEDesc *command, FSSpec *file);
OSErr AddPStringArg(AEDesc *command, StringPtr string);
OSErr AddCStringArg(AEDesc *command, CString string);

OSErr CheckOut(FSSpec *file, StringPtr userName, StringPtr projectName, StringPtr comment)
/* Create a "Check Out Modifiable" command for SourceServer: */
/* CheckOut -m -cs <comment> -d <dir> -project <project> -u <user> <file> */
{

OSErr err;
AEDesc command;
CStringHandle output = NULL, diagnostic = NULL;

err = CreateCommand(&command, "CheckOut");
if (err != noErr) return err;
err = AddCStringArg(&command, "-m");
if (err == noErr) err = AddCommentArg(&command, comment);
if (err == noErr) err = AddDirArg(&command, file->vRefNum, file->parID);
if (err == noErr) err = AddProjectArg(&command, projectName);
if (err == noErr) err = AddUserArg(&command, userName);
if (err == noErr) err = AddPStringArg(&command, file->name);
if (err == noErr) err = SourceServerCommand(&command, &output, &diagnostic);
(void) AEDisposeDesc(&command);
/* Display output or diagnostic text as desired. */
if (output != NULL) DisposeHandle((Handle) output);
if (diagnostic != NULL) DisposeHandle((Handle) diagnostic);
return err;

}

While on the subject of programming practice, I must
gently reprimand SourceServer for its approach to Apple
events, in which script commands are simulated through
a single 'cmnd' event. SourceServer’s idiosyncratic
convention dates from the earliest days of Apple events,
and modern guidelines discourage this type of design.
An application implementing its own Apple events
should designate a different command code for each
operation, treating arguments as keyword parameters.

Listing 2 shows how to send an Apple event to
SourceServer. It’s first necessary to find and perhaps
launch the SourceServer application. The snippet
called SignatureToApp (by Jens Alfke) on this issue’s
CD accomplishes this with a single function call.
Simply pass in the creator code of SourceServer, which
is 'MPSP'.

The event must be created before it can be sent. For
SourceServer, there’s a single parameter, named
keyDirectObject, which is the descriptor list containing
the command. After sending the event, you must
extract the results. The results of an Apple event are
returned as keyword parameters in a reply descriptor.
First there’s the standard keyErrorNumber parameter,
which returns an error code if delivery failed.
SourceServer returns three other parameters: The 'stat'
parameter contains a second error code; if it’s nonzero,
SourceServer tried to execute the command and failed.
When there’s an error, there will be diagnostic output
in the 'diag' parameter, a handle containing text from
the MPW diagnostic (error) channel. Finally, there’s
standard output — a handle specified by keyDirectObject
— which contains explanatory text.

PROJECTDRAG — DRAG AND DROP SOURCE
CONTROL
The Macintosh has always had a drag and drop user
experience, but the true power and generality of
dragging has been widely recognized only recently.
The drag paradigm can even be used for source
control. To turn Projector into a drag-savvy system,
I’ve written a set of utilities called ProjectDrag (source
code and documentation are provided on this issue’s
CD). You simply drag and drop icons onto the
following miniapplications that make up ProjectDrag,
and the corresponding function is performed:

• Check In and Check Out, for checking files in and out

• ModifyReadOnly, for editing a file without checking
it out

• Update, for bringing a file or folder up to date, as
well as canceling checkouts and modify-read-only
changes

• ProjectDrag Setup, for configuring the system

These utilities are based on a drop-on application
framework called DropShell (written by Leonard
Rosenthol and Stephan Somogyi), also on the CD.
When a file is dropped onto an application, the
application receives an Open Documents ('odoc')
event. DropShell takes care of the rigmarole of
receiving this and other required Apple events. The
ProjectDrag miniapplications pull the file specifications
out of 'odoc' events and create SourceServer
commands that operate on the files and folders that
were dropped on their icons.

DropShell is also available on the Internet at
ftp://ftp.hawaii.edu/pub/mac/info-mac/Development/src/
and at other Info-Mac mirror sites.•

Some setup is required. ProjectDrag needs to know the
locations of Projector databases. It maps between
project names and Projector database files by keeping
aliases to database folders in its Preferences folder. To
start using a project, simply drag its ProjectorDB file or
the enclosing folder onto ProjectDrag Setup. Projector
also needs to know your user name, and your initials or
a nickname are used in change comments at the start of
files. These are stored in a text file in the Preferences
folder. ProjectDrag asks you for this information if it
can’t find it, or you can launch ProjectDrag Setup and
give the Set User Name command.

ProjectDrag is scriptable, unlike SourceServer and the
MPW Shell. The miniapplications have an Apple event
terminology resource ('aete') to advertise their events
to scripting systems. This allows you to add source
control commands to any application that lets you add
AppleScript scripts to its menus.

ProjectDrag is able to run remotely over a network.
This circumvents a limitation of SourceServer, which
can only be driven locally. ProjectDrag can receive
remote Apple events and then drive a copy of
SourceServer that’s local to it. Among other uses, this
could support an accelerator for Apple Remote Access.
Checking a file in or out over ARA takes a few minutes,
which is fine, especially for those who find tedium
particularly enjoyable. Copying files is faster. With
local AppleScript front ends for remote ProjectDrag
miniapplications, you could copy files to and from a
remote “shadow folder” and initiate SourceServer
commands at the remote location, where they would
execute over a fast network such as Ethernet.

I like to think that I can solve user interface problems
in my sleep. When I was writing ProjectDrag, I had a
dream of a better user experience. Instead of
miniapplications, ProjectDrag would be a magical
system extension that would put a single small icon at

d e v e l o p Issue 23 September 199574

MPW TIPS AND TRICKS: CUSTOMIZING SOURCE CONTROL WITH SOURCESERVER 75

Listing 2. Sending commands to SourceServer

OSErr SourceServerCommand(AEDesc *command, CStringHandle *output, CStringHandle *diagnostic)
{

AppleEvent aeEvent;
AERecord aeReply;
AEDesc sourceServerAddress, paramDesc;
ProcessSerialNumber sourceServerProcess;
FSSpec appSpec; /* SignatureToApp requires this due to a minor bug */
long theLong, theSize;
DescType theType;
OSErr err;

*output = *diagnostic = NULL; /* default replies */

/* Find the SourceServer process and make a descriptor for its process ID. */
err = SignatureToApp('MPSP', NULL, &sourceServerProcess, &appSpec, NULL,

Sig2App_LaunchApplication, launchContinue + launchDontSwitch);
if (err != noErr) return err;
err = AECreateDesc(typeProcessSerialNumber, (Ptr) &sourceServerProcess,

sizeof(ProcessSerialNumber), &sourceServerAddress);
if (err != noErr) return err;

/* Create and send the SourceServer Apple event. */
err = AECreateAppleEvent('MPSP', 'cmnd', &sourceServerAddress, kAutoGenerateReturnID,

kAnyTransactionID, &aeEvent);
(void) AEDisposeDesc(&sourceServerAddress); /* done with the address descriptor */
if (err != noErr) return err;
err = AEPutParamDesc(&aeEvent, keyDirectObject, command); /* add the command */
if (err != noErr) { (void) AEDisposeDesc(&aeEvent); return err; }
err = AESend(&aeEvent, &aeReply, kAEWaitReply + kAENeverInteract, kAENormalPriority,

kNoTimeOut, NULL, NULL);
(void) AEDisposeDesc(&aeEvent); /* done with the Apple event */
if (err != noErr) return err;

/* Check for an error return in the keyErrorNumber parameter. */
err = AEGetParamPtr(&aeReply, keyErrorNumber, typeInteger, &theType, &theLong,

sizeof(long), &theSize);
if (err == noErr && (err = theLong) == noErr) {

/* Get the standard output from the keyDirectObject parameter. */
err = AEGetParamDesc(&aeReply, keyDirectObject, typeChar, ¶mDesc);
if (err == noErr) *output = (CStringHandle) paramDesc.dataHandle;
/* Get the diagnostic output from the 'diag' parameter. */
err = AEGetParamDesc (&aeReply, 'diag', typeChar, ¶mDesc);
if (err == noErr) *diagnostic = (CStringHandle) paramDesc.dataHandle;
/* Get the MPW status from the 'stat' parameter -- it becomes our error return. */
err = AEGetParamPtr(&aeReply, 'stat', typeInteger, &theType, &theLong,

sizeof(long), &theSize);
if (err == noErr) err = theLong;

}

(void) AEDisposeDesc(&aeReply); /* done with the reply descriptor */
return err;

}

some convenient place on the screen. When you
dragged a file onto this icon, it would pop open into a
temporary window and show you icons for the various
options. Dreams are great for creativity, but it’s easier
to weigh alternatives when you’re awake. After I woke
up, I realized that miniapplications will be able to do
the same thing.

Here’s how: In Copland, the next generation of the Mac
OS, the Finder will spring-load folders so that they
open automatically when you drag onto them. It will
also let you stash commonly used folders at the bottom
of the screen, where they appear as short title bars. Drag
the ProjectDrag folder to the bottom of the screen and
you’re set! Since the Finder will be providing my dream
interface, there’s no point in a lot of trap patching and
extensibility infrastructure to accomplish the same thing.

Copland will bring another user experience benefit to
ProjectDrag: it’s planned that document windows will
have a draggable file icon in their title bar, so you’ll be
able to use ProjectDrag on an open document by
dragging the icon from its window.

YOU TAKE IT FROM HERE
You can create programs that use SourceServer for
many other tasks. On cross-platform projects, Projector
is sometimes used to control both platforms’ source
folders. This can lead to baroque and error-prone
processes. With SourceServer, you can create front
ends that do the right thing. They could copy to remote
folders over a network, or lock read-only files since the
other platform doesn’t see Projector’s 'ckid' resources.

Quality is an interesting area for source control
applications. A quality tool could query Projector
databases for the frequency and scope of changes at
various stages of the project, correlating them with bug
tracking to develop project metrics. Along similar lines,
a tool could measure the change rate of various files to
assist in what the quality gods refer to as root-cause
analysis.

SourceServer is much more than a way for development
systems to provide integrated source control. It’s great
for structuring your internal development process as
well!

d e v e l o p Issue 23 September 199576

Thanks to Greg Anderson, Arno Gourdol, and B. Winston
Hendrickson for reviewing this column.•

Special thanks to Jens Alfke, Jon Pugh, Leonard Rosenthol, and
Stephan Somogyi.•

Do you have code that solves a problem other Macintosh
developers might be having? Why not show it off by writing
about it in develop? We’re always looking for people who might be
interested in submitting an article or a column. If you’d like to
spotlight and distribute your code to thousands of developers of
Apple products, here’s your opportunity.

If you’re a lot better at writing code than writing articles, don’t
worry. An editor will work with you. The result will be something
you’ll be proud to show your colleagues (and your Mom).

So don’t just sit on those great ideas; feel the thrill of seeing them
published in develop!

For Author’s Guidelines, editorial schedule, and information
on our incentive program, send a message to DEVELOP on
AppleLink, develop@applelink.apple.com on the Internet, or
Caroline Rose, Apple Computer, Inc., 1 Infinite Loop, M/S
303-4DP, Cupertino, CA 95014.

Want to show off your cool code?

YOUR NAME HERE

YOUR PHOTO HERE

MULTIPANE DIALOGS 77

As applications grow in power and complexity, so does the tendency to
present users with numerous cluttered dialog boxes. To simplify the user
interface, developers are moving increasingly to dialogs with multiple
panes. This article describes how to implement multipane dialogs that
users navigate by clicking in a scrolling list of icons.

Dialog boxes with multiple panes (“pages” of controls) are an increasingly popular
element of the Macintosh user interface. Like simple dialogs, multipane dialogs can
be presented when users need to indicate preferences, set attributes of text or graphic
objects, or give specifications for complex operations such as searches or formatting,
among other things. By grouping related options and providing a single point of
interaction for manipulating them, multipane dialogs simplify life for the user and the
developer.

Five different kinds of controls for navigating multipane dialogs are in general use:
the scrolling list of icons, the pop-up menu, index tabs (simulating the look of tabs on
the tops of file folders in a file cabinet), Next/Previous buttons, and icon button sets.
Although there aren’t any hard-and-fast rules about when you should use one over
another, these considerations (suggested by Elizabeth Moller of Apple’s Human
Interface Design Center) generally apply:

• Novice users have trouble with pop-up menus, so choose a different kind of
control if your target audience includes large numbers of these users.

• Index tabs work well for small numbers of panes, but they may not work well
when the tabs start overlapping or the number of panes is variable.

• Next/Previous buttons are a good choice when there’s more than one
mandatory pane. They make it easy for users to step through mandatory and
optional panes in sequence.

The sample application MPDialogs on this issue’s CD demonstrates the use of a
multipane preferences dialog navigated by clicking in a scrolling list of icons, similar
to the Control Panel in System 6 and print dialogs in QuickDraw GX. After
describing the user interface presented by this sample program, I’ll go into the details
of how to implement a similar multipane dialog in your own application. Source code
for the routines I’ll discuss is also included on the CD. This code requires System 7
and is compatible with both black-and-white and color displays.

NORMAN FRANKE

Multipane Dialogs

NORMAN FRANKE misses the large electrical
storms and green things of his native Pennsylvania,
but not the humidity. He’s using the B.S. in
computer science he earned from Carnegie
Mellon as he writes Macintosh software for a

large national laboratory in northern California.
Now working on an M.S. in computer science at
Stanford, he enjoys writing sound manipulation
software for his Macintosh and watching classic
and action/adventure movies in his spare time.•

WHAT THE USER INTERFACE LOOKS LIKE
To experience how multipane dialogs work, run the sample program MPDialogs. When
you choose Preferences from the File menu, you’ll be presented with the interface
shown in Figure 1. This is a good illustration of the elements of a multipane dialog.

The long vertical rectangle on the left side of the dialog box contains the pane
selection icon list. Each icon in this scrolling list has a one-word label under it for
identification and represents one pane of the dialog, which is displayed when the user
clicks the icon. If you click the Defense icon, for instance, you’ll see the pane shown
in Figure 2. The arrow and tab keys on the keyboard can also be used to change the
pane selection; however, if the current pane contains multiple editable text fields, the
tab key will work as in a normal dialog and move the cursor to the next text field.

d e v e l o p Issue 23 September 199578

Icon list

Pane-local�
buttons

Global�
buttons

Pane�
controls

Figure 1. The Communications pane of the sample multipane dialog

Figure 2. The Defense pane of the sample multipane dialog

The bottom portion of the dialog below the line contains two buttons that act on the
dialog as a whole: Cancel and OK. The OK button accepts the settings and Cancel
aborts all changes and closes the dialog. The two buttons above the line act only on
the current pane and are optional: Revert restores the control values in the current
pane to what they were when that pane was last opened, and Use Defaults resets the
control values in that pane to factory defaults.

The large region above the buttons is where the pane’s controls are placed. The
sample code supplied on the CD handles actions for checkboxes, radio button groups,
and pop-up menus. Command-key equivalents can be used to toggle checkboxes and
radio buttons, in addition to the standard keyboard equivalents for OK (Return/Enter)
and Cancel (Escape/Command-period). After experimenting with making changes to
the control values in the sample program, you can choose Display from the File menu
to see the results of your changes.

A couple of custom capabilities can be added to a pane through optional procedures:

• taking special action such as dimming or undimming other controls when
items are clicked

• performing data validation such that if validation fails, the user isn’t
permitted to change panes or exit the dialog with the OK button

These two capabilities are demonstrated in the sample multipane dialog. When you
click the Enable Self-Destruct checkbox in the Defense pane, the Self-Destruct
checkbox is undimmed. When you enter nondigits in the editable text field in the
Communications pane, data validation fails and you’re unable to change panes or
click OK.

Note that multipane dialogs, like simple dialogs, can take one of three forms:

• standard modal dialog — a dialog that has a border around it and no title bar,
that can’t be moved around on the screen, and that stays frontmost as long as
it’s open

• movable modal dialog — a dialog that has a border around it and a title bar,
that can be moved around on the screen, and that stays frontmost as long as
it’s open and the application is frontmost

• modeless dialog — a dialog that looks and behaves like a normal document
window with a title bar and a close box, and that isn’t always frontmost

The sample program displays a movable modal dialog, but the code provided
supports all three forms.

That’s all there is to the interface. For some words of wisdom about things to take
into account as you design your own multipane dialogs, see “Tips for Designing
Multipane Dialogs.” Now we’ll move along to the details of how to incorporate the
multipane dialog routines on the CD into your own application: the resources you
need to define, the calls to make to the main routines to open the dialog and handle
events, and the customizing you can do with optional procedures.

DEFINING NEEDED RESOURCES
The first step in incorporating the multipane dialog routines is to define the custom
resources the code needs. You’ll find ResEdit TMPL templates for all the needed
resources on the CD. You can put these in the ResEdit Preferences file to make them
available at all times or leave them in the application you’re editing.

MULTIPANE DIALOGS 79

The first resource that needs to be created is the main DLOG and its associated
DITL, which will form the basis for the dialog. A sample is provided in the file
MPDialogs Resources that you can simply copy into a new project’s resource file.
The DITL should include six items, numbered as follows:

1. OK button

2. Cancel button

3. Revert button

4. Use Defaults button

5. a user item that defines the icon list rectangle

6. a hidden static text field for default Command-key equivalents

The Revert and Use Defaults buttons can be moved offscreen to make either of them
unavailable. (Alternatively, the buttons can be removed and the control #defines in
the main header file, MPDialogs.h, can be changed to reflect the new numbering.)
The icon list is always displayed vertically, and the rectangle doesn’t include the scroll
bar. The sample application provides the standard Command-key equivalents for OK
and Cancel. The standard equivalents for OK are handled in the code; those for
Cancel are handled by means of the hidden static text field, which defines default
Command-key equivalents for the rest of the controls in the dialog as well.

A DITL needs to be created for each pane. The first item is a hidden static text field
that defines Command-key equivalents for the items in the pane; this is in addition to
the default list in the main DITL. See “Code for Dialog Command-Key Equivalents”
for details of the syntax.

d e v e l o p Issue 23 September 199580

A multipane dialog is appropriate only when the panes
you’re presenting are obviously related to one another in
some way. With that caveat in mind, here are some
suggestions for making your multipane dialogs easy to
understand and use:

• Provide a sentence or title to help clarify your intent.
For example, you might precede a scrolling list of
icons in a preferences dialog with a sentence like
“Select items from this list to set your SurfWriter
preferences.”

• If you use an icon list, label the icons in your list to
help users recognize them.

• Visually separate buttons that apply only to the current
pane from those that work on all panes (like OK and
Cancel in a modal dialog).

• Don’t change the size of the dialog or window as the
user navigates from pane to pane. Pick a size that
accommodates the pane with the most controls.

• Design the dialog so that changing the settings in one
pane doesn’t change the settings in another. For

example, clicking a checkbox in one pane shouldn’t
disable a checkbox in another pane, because the user
won’t see the latter action occur and thus won’t
understand the cause and effect.

• Be consistent in your use of controls. If you use a
particular type of control to mean “choose a setting,”
for instance, don’t use the same type of control to
mean “navigate between panes” in the same dialog.
Users should be able to easily distinguish controls that
navigate through multiple panes from controls that
make choices in the dialog.

• Order the panes from mandatory to optional, by
frequency of use, from general to specific, or, when no
other order is apparent, alphabetically. If there are
mandatory fields and controls, be sure to put them in
the first pane or step the user through mandatory
panes before optional ones.

• When the dialog is closed, remember the pane that
was last used, unless there are mandatory controls in a
pane. If there is a mandatory pane, it should always
be displayed when the dialog reopens.

TIPS FOR DESIGNING MULTIPANE DIALOGS
BY ELIZABETH MOLLER OF APPLE’S HUMAN INTERFACE DESIGN CENTER

The items are numbered local to each DITL, so that, for example, the first control
would be item 2. All user items in the DITL are set to the DrawGray procedure,
which outlines the item’s rectangle with either the gray color or a stippled gray
pattern, depending on the user’s monitor.

Next, a DTL# resource should be created with the same resource ID as the main
DLOG resource. It contains a list of the resource IDs of the DITLs that comprise a
specific multipane dialog and the text displayed under each icon in the list. Then the
icon groups are created; they have the same resource ID as the DITL to which they
correspond. Small versions of the icons aren’t needed, but color versions should be
created for display on color-capable Macintosh computers.

Optional DGRP resources can be created for specifying radio button groups. The
resource ID is the same as that of the corresponding pane’s DITL. Each DGRP can
contain multiple groups per pane, if desired; however, a particular radio button
should only be used in a single group. Like the per-pane Command-key equivalent
strings, items are numbered local to the DITL.

You should also copy the following:

• the pseudo-CDEF with resource ID 251, which provides support for using
the icon list as a control (in the file MPDialogs Resources)

• the LDEF with resource ID 130, which implements the icon list definition
for the List Manager (in the file Icon LDEF in the LDEF folder)

• optionally, the 'hdlg' resource and corresponding STR# resource for Balloon
Help support (in the file MPDialogs Resources)

You can add Balloon Help to a multipane dialog by adding two help items to the
individual DITL resources that make up each pane. One is for the controls in the

MULTIPANE DIALOGS 81

The Command-key equivalent code I provide in the sample
uses a modified version of KeyEquivFilter, a routine in
Utilities.c, which is part of DTS Lib on the CD. It takes
these two additional parameters:

• The ID of the static text item that contains the mappings.
My dialog code calls this routine twice, once for the
bottom buttons and a second time for the items in the
pane.

• An offset to add to the item numbers when a hit
occurs. This allows the code to use relative item
numbering for easier specification of Command-key
equivalents in panes.

The static text item is an item-match string that follows the
general format =cxxyyzz or ccxxyyzz. The =c matches the
character c, and cc matches the character by its ASCII
value. The next number, xx (a flag byte with the bits set to
specify the modifier keys you’re checking for), is logically
ANDed with the modifier flags from the key-down event
and compared to yy (a flag byte with the bits set to

specify the values of the modifier keys — for example,
you can force the Control key to be up). If this comparison
is true and if the character c matches the character the
user typed, the item zz is returned as being hit.

Each item-match string is eight characters long and is
separated from other such strings that follow by a comma.
The numbers in the strings are hexadecimal and case is
significant for character matches.

For example, the hidden static text field that’s checked for
each pane in the sample application is

=.190102,1B190102,1B190002

The first item-match string checks for a period and for
the Control, Option, and Command keys. If only the
Command key has been pressed, item 2 is returned as
being hit. Similarly, the next item-match string handles
Command-Escape (Escape is 1B) and the last item-match
string handles Escape by itself.

CODE FOR DIALOG COMMAND-KEY EQUIVALENTS

main DITL and uses an 'hdlg' resource and an STR# resource with the same ID.
The second help item is an 'hdlg' resource for each pane’s DITL; it should start at
item 8 for the first control in the pane. See the file MPDialogs.µ.rsrc on the CD for a
sample 'hdlg' resource for the first pane.

CALLING THE MAIN ROUTINES
Now we’ll review the calls your application needs to make to the main routines in
order to open and close the multipane dialog, handle events, and access the values of
the controls in the dialog. But first, let’s look at the data your application needs to
maintain.

POINTERS AND HANDLES
Your application must maintain a DialogPtr for each dialog used. You also need to
declare a handle for storing the returned settings. Passing a pointer to NULL causes
the code to allocate a new handle and return it to the caller; otherwise, a handle to an
existing record must be provided. For a preferences dialog, this data should be
maintained in the application’s preferences file in the Preferences folder.

Implementing preferences files is discussed in the article “The Right Way to
Implement Preferences Files” in develop Issue 18.•

The sample code internally allocates an MPDHdl for each open multipane dialog for
storing state information. The handle is stored in the refCon of the dialog.

OPENING, HANDLING EVENTS, AND CLOSING
Your application should call OpenMPDialog for each desired multipane dialog,
taking any actions necessary when a dialog is opened, such as disabling menus. This
call is passed the resource ID of the DLOG for the dialog, a reference to the handle
that stores the returned settings, and four optional parameters, which are described
later.

Here’s an example:

DialogPtr prefDlog = NULL;
Handle thePrefs = NULL;

prefDlog = OpenMPDialog(kPrefDLOG, NULL, NULL, NULL, NULL, &thePrefs);
if (prefDlog) SetMenusBusy(); // If NULL, the dialog couldn't be opened.

The main event loop should call DoMPDialogEvent after each event is returned
from WaitNextEvent. If DoMPDialogEvent returns true, the multipane dialog
routines have handled the event; your application should inspect the DialogPtr to
determine whether the dialog has been closed, so that the application can recover
from the dialog state. A return value of false indicates that your application should
process the event as it would normally. For example:

if (DoMPDialogEvent(&prefDlog, &mainEventRec)) {
// A NULL DialogPtr means the dialog has been closed.
if (!prefDlog)

SetMenusIdle();
} else {

// Process the event as usual.
...

}

d e v e l o p Issue 23 September 199582

To dispose of the dialog without user interaction, your application can call
CloseMPDialog:

CloseMPDialog(prefDlog);

After the dialog has been closed, it’s the application’s responsibility to dispose of or
save the data handle created with the call to OpenMPDialog. The code I’ve provided
assumes this handle is maintained by the application after creation.

ACCESSING CONTROL VALUES
The following two routines are provided for accessing the control values stored in the
data handle:

• GetMPDItem retrieves the value of the control corresponding to the pane
and item specified and stores it in a buffer.

• SetMPDItem stores in the handle a value retrieved from a buffer.

Both of these routines assume that the caller knows the length and type of the
control’s data representation. Items are numbered differently from in the DITL
resource — only items that have a value are included, and the values for radio button
groups come after those for all other controls in the data. The values of checkboxes,
enabled buttons in radio button groups, and pop-up menus are stored as 16-bit
integers. Return codes are defined in the header file. Errors are returned for invalid
pane and item numbers and buffer lengths.

The routines are declared as follows:

short GetMPDItem(Handle theData, short pane, short item, Ptr ptr, short len)

short SetMPDItem(Handle theData, short pane, short item, Ptr ptr, short len)

The sample application, in the code for DialogDisplay, provides a basic example of
the use of these routines to display the current settings of the controls in the
previously closed dialog.

Normally, these routines should be sufficient to access the data in the handle.
However, those applications for which it would be more efficient to manipulate the
handle directly can use the following format:

Last Open Pane
Offset to Pane 1, Offset to Pane 2, ..., Offset to Pane n, NULL
(Pane 1) Length of Item 1, Data for Item 1, ..., Length of Item m, Data

for Item m, NULL
...
(Pane n) Length of Item 1, Data for Item 1, ..., Length of Item m, Data

for Item m, NULL

The Last Open Pane and the Offset to Pane fields are all long integers and the
Length of Item fields are all short integers. The Length of Item value doesn’t include
the length of itself; to get to the next field you would add

Length of Item + sizeof(short)

to the pointer. The Last Open Pane field allows the multipane dialog code to display
the dialog with the last pane the user had open as the current pane.

MULTIPANE DIALOGS 83

That’s all you need to know to make basic use of my multipane dialog code. But you
can also go a step further: you can customize certain aspects of a multipane dialog by
using the four optional parameters to OpenMPDialog mentioned above.

CUSTOMIZING WITH OPTIONAL PROCEDURES
The second through fifth parameters to OpenMPDialog can indicate action
procedures that customize dialog behavior by responding to certain events. A value of
NULL for any of these parameters tells the application to use the default behavior.
To provide custom behavior, you would pass a universal procedure pointer instead of
NULL. The procedures can also be changed dynamically, with the InstallAction
routine.

The action procedures and the default actions are as follows:

• The Set Defaults action procedure (parameter 2) provides factory defaults
for controls. The default action is to set them to 0.

• The Click action procedure (parameter 3) enables you to customize the
actions resulting from clicking a control, such as dimming or undimming
other controls or performing data validation. The default action is to toggle
checkboxes and handle radio buttons via the Radio Group action procedure.

• The Edit action procedure (parameter 4) enables special handling of editable
text fields, such as converting the string to an integer. The default action is
to store the entire string as a Str255.

• The Radio Group action procedure (parameter 5) enables you to customize
the behavior of radio button groups, such as how the values are stored. The
default action is to store the value as the index number of the radio button
that’s enabled in the group; the default value is 1 (the first radio button in the
group).

All the action procedure pointers are declared as UniversalProcPtrs for compatibility
in case of PowerPC compilation, so they must be allocated before use. The sample
program does this by declaring a UniversalProcPtr for each desired action procedure.
For example, the one for the Click action procedure is declared as follows:

ClickActionUPP myClickAction = NULL;

It’s initialized in the main routine of the application like this:

myClickAction = NewClickActionProc(MyClickAction);

Depending on what you want to do in the action procedures, you may need to make
use of the MPDHdl stored in the dialog’s refCon, mentioned earlier. This is a handle
to an MPDRec (shown in Listing 1), which is the main data structure used by the
multipane dialog code for state information. None of the elements of this structure
should be modified by user code. The four UPP fields can be manipulated via calls to
InstallAction and RemoveAction.

The baseItems field will be the most useful in the action procedures. It holds the
item number of the first item in the pane, which is the hidden static text item used for
Command-key equivalents. Thus, if dataH is of type MPDHdl, the index of the first
real control (the second DITL entry) in the pane will be (*dataH)->baseItems + 1.

Now let’s take a closer look at each of the action procedures.

d e v e l o p Issue 23 September 199584

THE SET DEFAULTS ACTION PROCEDURE
The Set Defaults action procedure provides factory defaults for checkboxes and other
controls, except for radio button groups (handled in the Radio Group action
procedure). It’s called with a pointer to — and the length of — a buffer holding the
internal representation of the value of a single control corresponding to a specific
pane and item number. You can call DefaultAction to take the default action for items
your code doesn’t handle.

The procedure is declared like this:

void MySetDefAction(Ptr theData, short len, short iType, short pane,
short item)

The Set Defaults action procedure’s defaults for radio buttons apply only to those
that aren’t part of a radio button group. But using single radio buttons is definitely
not advised; all radio buttons should be in groups to be consistent with the Macintosh
Human Interface Guidelines.

THE CLICK ACTION PROCEDURE
The Click action procedure enables you to customize the actions resulting from
clicking a control. For instance, this procedure can handle dimming or undimming
other items when certain controls are clicked. It can also provide validation for
control settings when the user tries to change the pane or click OK, to ensure that
the entered settings make sense.

The procedure receives a DialogPtr and the pane and item numbers. It’s declared as
follows:

short MyClickAction(short mType, DialogPtr dlog, short pane, short item)

The mType parameter specifies the message to process when the action procedure is
called. The procedure is called with a kInitAction message right after the control is
set when the pane is first displayed; this gives you an opportunity to set up the initial
state of the dialog. The procedure is called with a kClickAction message after the user

MULTIPANE DIALOGS 85

Listing 1. The MPDRec structure

typedef struct MPDRec {
short numPanes; // Number of panes in the dialog
short currentPane; // Current pane being displayed
short baseItems; // Item number of first item in panes
short *paneIDs; // List of IDs for the pane's DITLs
short paneDirty; // Whether Revert should be enabled
RadioGroupPt radio; // Linked list of radio button groups
Handle theData; // Actual storage for dialog values
Handle tmpData; // Temporary storage for dialog values
Handle *IconHandles; // List of icon suites
ListHandle theList; // List Manager list for the icon list
ClickActionUPP ClickAction; // Action procedures
EditActionUPP EditAction;
GroupActionUPP GroupAction;
DefActionUPP DefAction;

} MPDRec, *MPDPtr, **MPDHdl;

has released the mouse button in a control. A kValidateAction message is received for
data validation; it’s the responsibility of the Click action procedure to put up an alert
to notify the user if a setting is unacceptable.

Listing 2 is a Click action procedure from the sample application that undims the
third checkbox in the Defense pane (Self-Destruct) if the second checkbox (Enable
Self-Destruct) is checked. It also ensures that the editable text field in the
Communications pane contains only digits; if this field contains nondigits, the
validation fails and the user can’t change panes or click OK.

The default Click action procedure, DefaultClickAction, calls the Radio Group
action procedure to handle buttons in a radio button group; thus, actions in response
to a click in a radio button group should be handled there. Call DefaultClickAction
to inherit default functionality for controls not handled in your customization
procedure.

d e v e l o p Issue 23 September 199586

Listing 2. A sample Click action procedure

short MyClickAction(short mType, DialogPtr dlog, short pane, short item)
{

MPDHdl dataH;
short iType, val = 0;
Rect iRect;
Handle iHandle;

// Obtain multipane dialog state record.
dataH = (MPDHdl) GetWRefCon(dlog);

// Handle the second item validation.
if (mType == kValidateAction) {

// Validation fails if nondigits are in the field.
if (pane == kCommPane &&

item == kFrequency + (*dataH)->baseItems) {
GetDialogItem(dlog, item, &iType, &iHandle, &iRect);
GetDialogItemText(iHandle, theStr);
val = VerifyDigits(theStr);
if (val)

StopAlert(ALERT_Invalid, NULL);
}
// All other items validate OK.
return val;

}

// If this isn't the second checkbox, handle things the default way.
if (pane != kMiscellaneousPane ||

item != kEnableSelfDestruct + (*dataH)->baseItems)
return (DefaultClickAction(mType, dlog, pane, item));

// Initialize and Click messages are handled almost the same.
// Dim the third checkbox based on the value of the second.
GetDialogItem(dlog, item, &iType, &iHandle, &iRect);
val = GetControlValue((ControlHandle) iHandle);

(continued on next page)

THE EDIT ACTION PROCEDURE
The Edit action procedure enables special handling of editable text fields. A common
implementation is to store the field’s string as a long integer, converting the string
value to and from this form as needed.

This procedure receives a pointer to a buffer for storage of the control’s internal
value, a handle to the control, and the pane and item numbers; it returns the length
of the space required for the text field. The first parameter is a message that informs
the procedure whether to calculate the storage size for this field, initialize the value,
or copy the value to or from the field.

The procedure is declared as follows:

short MyEditAction(short mType, Ptr hPtr, Handle iHandle, short pane,
short item)

The kCalcAction message requests the amount of storage required for the
representation of the field value in memory. The kInitAction message requests that
the value of the field be initialized. The kP2TAction message requests that the code
retrieve the value of the field and store it in memory (in other words, that the
permanent storage value be transferred to the temporary storage area — P2T is
shorthand for “permanent to temporary”). Conversely, the kT2PAction message
(“temporary to permanent”) requests that the code set the field to the value indicated
by the representation in memory. Default behavior can be maintained by calling
DefaultEditAction, if desired.

Listing 3 is an Edit action procedure from our sample application. Normally, the
procedure should check the item and pane numbers to distinguish between different
text fields, but the sample application has only one such field.

THE RADIO GROUP ACTION PROCEDURE
To simplify using radio button groups, a single value is stored for the entire group.
This value is the relative item number of the enabled button in the group. For
example, the value of a group of three radio buttons with the second one enabled
would be 2.

MULTIPANE DIALOGS 87

switch (mType) {
// Toggle the item in response to the user click.
case kClickAction:

val = !val;
SetControlValue((ControlHandle) iHandle, val);
// Fall through!

// In either case, enable/disable next checkbox.
case kInitAction:

AbleDItem(dlog, kSelfDestruct + (*dataH)->baseItems, val);
break;

}

// Initialize and Click messages should never fail.
return 0;

}

Listing 2. A sample Click action procedure (continued)

In the sample program, radio button groups are stored in a linked list starting from
the radio field of the MPDRec structure. The RadioGroup structure is defined as
shown in Listing 4.

The next field points to the next radio button group, to enable traversing the linked
list of groups. The pane field is the pane number this group belongs to. The num
field holds the number of items that make up this radio button group. The relative
item numbers of these radio buttons are stored in the items array.

d e v e l o p Issue 23 September 199588

Listing 3. A sample Edit action procedure

short MyEditAction(short mType, Ptr hPtr, Handle iHandle, short pane,
short item)

{
short ret = 0;
long val;
Str255 textStr;

Assert(hPtr != NULL);
switch (mType) {

case kP2TAction: // Save value of control.
GetItemDialogText(iHandle, textStr);
StringToNum(textStr, &val);
*(long *) hPtr = val;
ret = sizeof(long);
break;

case kT2PAction: // Set value of control.
val = *(long *) hPtr;
NumToString(val, textStr);
SetIText(iHandle, textStr);
ret = sizeof(long);
break;

case kInitAction: // Initialize value.
*(long *) hPtr = 0;
ret = sizeof(long);
break;

case kCalcAction: // How much storage do we need for this?
ret = sizeof(long);
break;

}
return ret;

}

Listing 4. The RadioGroup structure

typedef struct RadioGroup {
struct RadioGroup *next;
short pane;
short num;
short items[1];

} RadioGroup, *RadioGroupPtr;

The Radio Group action procedure enables you to customize the behavior of radio
button groups. For instance, an application could choose to store radio button group
values differently from the default or handle dimming or undimming of items in
response to the user’s actions. The Radio Group action procedure receives the same
messages as the Edit action procedure. It returns the length of the space required for
the radio button group’s internal storage; the default is four bytes per group, two for
the number of radio buttons and two for the value as a short integer.

Like the Edit action procedure, the Radio Group action procedure is called with the
kInitAction and kCalcAction messages. However, these messages occur before the
dialog is opened, so the DialogPtr will be NULL at that time. The procedure is
declared like this:

short MyGroupAction(short mType, RadioGroupPtr group, Handle dataH,
DialogPtr dlog, Ptr hPtr, short pane, short item)

Note that in response to the kInitAction message, the action procedure is expected to
store the number of radio buttons in the group in the first two bytes of the internal
storage. Here’s an example from the default Radio Group action procedure (dataH is
of type MPDHdl):

for (i = 0; i < group->num; i++) {
if (GetCheckOrRadio(dlog, group->items[i] + (*dataH)->baseItems - 1))

*(short *) hPtr = i + 1;
}

To obtain the actual item number for the control in the dialog, you just add

(*dataH)->baseItems - 1

to the relative number stored in the items array, as shown in the above code. As
mentioned earlier, the baseItems field of dataH is the number of the first pane-
specific item in the dialog.

NOW WHAT?
The code that accompanies this article on this issue’s CD provides an easy-to-
implement method for adding icon-selected multipane dialogs to any application.
(The routines for managing radio button groups could be extracted without much
difficulty and used elsewhere.) The sample program also provides an example of using
the AppendDITL and ShortenDITL routines. So experiment with the sample
application and then try out multipane dialogs as a way of simplifying the user
interface in your own application.

MULTIPANE DIALOGS 89

Thanks to our technical reviewers Tim Craycroft,
Nitin Ganatra, C. K. Haun, and Elizabeth Moller.

Thanks also to Eric Soldan for ListControl and
KeyEquivFilter from DTS Lib.•

I’ve been thinking lately about the purpose of this
column, which debuted in the previous issue of develop.
Permit me to take a moment to say something about
that before I get down to some tips about dictionaries.

During the first couple of years after the birth of the
Macintosh, there was a period of chaos, when
application developers were figuring out how to extend
the basic user interface. For example, some of the most
commonly used menu commands appeared in different
locations in various applications, and, more important,
keyboard shortcuts varied or sometimes weren’t present
at all. After a while, though, things settled down and
almost everyone adopted the standards that were
eventually documented in the Macintosh Human
Interface Guidelines.

AppleScript is the alternate user interface to your
application. Now that AppleScript has been available
for two years, it’s time to move out of the “free-for-all”
and develop the same consistency we’ve all come to
enjoy and expect from the Macintosh experience.
That’s what this column (and the work I do in the
AppleScript development community) is all about —
encouraging consistency. The tips I offer here reflect
undocumented conventions followed by many
developers I’ve worked with, as well as my own
thinking about scriptability. Until the time when
standards are documented in a “Macintosh Human
Scriptability Guidelines,” I encourage you to adopt the
techniques suggested here.

Though I’ve said it before, I’ll say it one more time:
adopting the object model is the single most important

factor contributing to consistency in the AppleScript
language across applications of different types. One
developer I know resists using the object model year
after year, arguing that it “isn’t appropriate for
everything.” But the fact is that the object model
has been successfully applied to a whole range of
applications. Every major C++ framework now supports
it or has add-ons to support it, and up-and-coming
languages will support it. Even if your application has
only one object (such as the dictionary of a small
paging program I’ve seen), just do it!

ORGANIZING YOUR DICTIONARY
So far in the scripting world, various developers have
used different schemes in their dictionaries for
organizing the events in a suite, the parameters in an
event, the properties in an object, and so forth. Some
organize them according to their function, others
order them alphabetically, and still others don’t seem
to have any scheme whatsoever (probably because
scripting support was added a bit at a time or as an
afterthought). For the sake of consistency across
different scriptable applications, using some standard
scheme is preferable.

If you’re including an entire standard suite (such as
the Core suite) from AppleScript’s system dictionary
(listed in the Rez files named EnglishTerminology.r,
FrenchTerminology.r, and so on) and then overriding
or extending the suite to add your own terms, make
sure that your overrides appear in the same order as
they do in the system dictionary and that extensions
come after all the overrides. If you’re implementing
your own terminology, either as extensions to existing
suites or in your own suites, organize it as described in
the following paragraphs.

When you’re adding new terms to a previously created
dictionary (for example, when upgrading your
application to provide deeper scripting support),
remember to insert the new terms according to the
same scheme or schemes you originally implemented.
It’s a good idea to keep some notes in your internal
design documents describing the ordering schemes
you used, so that you can be consistent with your
earlier work (unless you’re redoing your scripting
implementation from scratch — for instance, when
you’re converting from an old non–object model
implementation to the object model).

ACCORDING TO
SCRIPT

Thinking About
Dictionaries

CAL SIMONE

d e v e l o p Issue 23 September 199590

CAL SIMONE (AppleLink MAIN.EVENT) works way too hard at
Main Event Software in Washington DC. He took his last summer
vacation five years ago; it’s been so long, he’s forgotten what a
vacation is like, and he can’t imagine where he’d go. He’s been
to beautiful mountainous places like Colorado, Alaska, British

Columbia, and Switzerland, and to a few islands like Saint
Thomas and the Bahamas. Cal would really like to hear your
suggestions on possible future topics for this column, as well as
your ideas for good vacation spots.•

Suites. So that your dictionary is consistent with
dictionaries in other applications, include the standard
Registry suites first (Required suite first, then the Core
suite, then any other Registry suites). Then include any
custom suites you create.

Events. Order commands that correspond to events in
one of four ways: by likelihood of use, according to
function, chronologically, or alphabetically. The method
you choose will depend on how your application is used
and the nature of your users. As an example of each of
these schemes, I’ll show how some of the Core suite
verbs might be organized.

If certain commands are to be used more frequently
than others, order them according to likelihood of use.
Present those commands that will be used most
frequently at the beginning and those seldom used at
the end:

get (more of these than anything else)
set (quite a few of these, too)
count (a fair amount of counting)
make (sometimes new objects are created)
open (sometimes they’re opened)
close (and closed)
print (printing isn’t done as frequently)
delete (neither is deleting)
quit (quitting is done only occasionally)

If your users will logically group the operations, use an
ordering according to function. Group together
commands that are related in some way:

make (make and delete)
delete
open (open and close)
close
set (set and get)
get
count (the rest are unrelated)
print
quit

If the commands are normally used in a certain order,
choose a chronological ordering. First present the
commands that will be used first, followed by the
commands that will be used later:

make (this often comes first)
open (or else opening comes first)
set (then setting properties)
get (and later getting properties)
count (counting comes in the middle)
print (printing happens later)
close (then comes closing)

delete (deleting is near the end)
quit (last, we bail out)

If the commands aren’t going to be used in any
particular order, or you don’t know what that order is
likely to be, and there’s no logical grouping, list the
commands alphabetically, as the Core suite does.
Although alphabetical order isn’t as helpful as the other
schemes, script writers will at least be able to find
commands more easily in your application’s dictionary.

Parameters. Make an effort to list parameters in
an order that encourages the writing of natural,
grammatically correct sentences for commands. For
example:

make new <type class>
[at <location reference>]
[with data <anything>]
[with properties <record>]

If the order of an event’s parameters doesn’t matter as
far as sentence style is concerned, order them
according to the frequency of likely use.

close <reference>
saving <yes|no|ask>
saving in <file specification>

Object classes and properties. I’d suggest placing
the outermost objects in your containment hierarchy
first, objects contained in the outermost objects next,
and objects that don’t contain any other objects last.
Remember that every object class representing an
actual object must be listed as an element of some other
object, eventually leading back to the application class
(the null container). Primitive class definitions and
record definitions (which aren’t part of the containment
hierarchy) and abstract classes (which aren’t instantiable
objects but are used to hold lists of inherited properties)
should be placed in the Type Definitions or Type
Names suite, and clearly labeled as a record definition
or abstract class. (See my article, “Designing a
Scripting Implementation,” in develop Issue 21.)

Properties of objects can be ordered according to one
of the schemes described above for events.

WHEN YOU ALLOW MULTIPLE VALUE TYPES
Occasionally in your dictionary you might need to
specify a parameter or property for which any of several
types is acceptable. Using the wild card ('****') as the
type of a parameter or property tells your user that
you’ll accept anything (or at least a wide variety of
mixed types). Don’t do this to be lazy or to finish your
dictionary quickly; do it only if you mean it. If you

ACCORDING TO SCRIPT: THINKING ABOUT DICTIONARIES 91

accept only one type, explicitly indicate so. If you allow
two different types, you can either create a compound
“type” or use identical keyword entries.

Defining a compound “type.” One way of handling
cases where you can accept two different value types for
a parameter or property is to make up a new “type” to
represent a combination of acceptable types in your
dictionary. This isn’t a real type that you’d have to
check for or deal with in your application’s code, but
instead just serves to indicate in your dictionary that
your application will handle either type. This works
particularly well when the value types are simple. For
example:

class reference or string: Either a reference or
a name can be used.

You can use your new “type” in a parameter or property
definition as follows:

class connection
properties:

window <reference or string> -- the
connection’s window can be referred to
either by a reference or by its name

To define a new type, make a new object class and place
it in the Type Names suite (see my article in Issue 21).

Using identical keyword entries. You can also use
multiple entries with identical keywords to specify
alternative ways of filling in a parameter or property
value. This works well when the value types are
complex or are highly dissimilar. For example, the
display dialog command has two with icon listings,
one for specifying the icon by its resource name or ID
and the other for displaying the stop, note, or caution
icon:

display dialog <anything> -- title of dialog
... other parameters
[with icon <anything>] -- name or id of the

icon to display
[with icon <stop|note|caution>] -- or display

one of these system icons

Note the use of “or” in the second entry’s comment:
make sure you use the same 4-byte ID for both
parameter entries.

Although you could have many entries to show every
possible individual type that a parameter or property
takes, this might become confusing to the user. So I’d
recommend that you use this sparingly, and when you
do use it, try to limit the number of similar entries to 2.

MAKING USE OF THE COMMENT AREA
You can use the comment area (available for each suite,
event, parameter, class, and property entry) to help
clarify how your vocabulary is to be used. Since your
dictionary is often the initial “window” through which
a user looks to figure out what to do, descriptive
comments can make the user’s task a lot easier. And
remember that your users aren’t necessarily
programmers, so you should avoid terms like FSSpec
in your comments. I’ll give some examples to show
you what I mean.

• For Boolean parameters and properties, if there are
two possible states, include a description of the true
and false conditions, such as “true if the script will
modify the original images, false if the images will
be left alone.”

• If the possible states are on and off, you need only
include the true condition (“If true, then screen
refresh is turned on”) or ask a question (“Is the
window zoomed?”).

• For enumerations, include a general description of
what the parameter or property represents; the
individual enumerators should be self-explanatory.
For example, “yes|no|ask -- Specifies whether or
not changes should be saved before closing.”

• Don’t use the comment field to explain a set of
possible numeric values when an enumeration (with
descriptive enumerators) is better. Instead of
“0=read, 1=unread, ...” use “read|unread|...”

• For compound “types,” describe the parameter or
property, as well as the choices for value types listed:
“the connection’s window (either a reference or
name can be used).”

• For “anything” (unless you actually allow any type
the user can think of), describe which specific types
you allow: “[... descriptive info] (a string, file
reference, alias, or list is allowed).”

• If you allow either a single item or a list, indicate so:
“the file or list of files to open.”

• If the parameter or property has a default value
(used when the user doesn’t include an optional
parameter or set the property), mention it (this
applies to values of any type): “replacing yes|no|ask
-- Replace the file if it exists? (defaults to ask).”

Keep in mind that if you include an entire standard
suite (such as the Core or Text suite), your own
comments should reflect the style of the comments in
that suite. See the Scriptable Text Editor’s dictionary as
an example of fairly good comment style; it shows the
standard versions of the Required, Core, and Text
suites and adds some of its own terminology.

d e v e l o p Issue 23 September 199592

A COUPLE MORE DICTIONARY TIPS
While I’m on the subject of dictionaries, here are a
couple of extra tidbits.

Use only letters and numbers for terms in dictionaries.
Don’t use a hyphen (-), a slash (/), or any other
nonalphanumeric characters in your dictionary entries.
For example, if you use Swiss-German, AppleScript
will treat it as Swiss - German (subtraction), which is
not what you want; if you use Read/write, it will be
treated as Read / write (division). Note that
Read/write is in the standard Table suite, but it won’t
compile properly.

All terms must start with letters. Using 9600 as an
enumerator won’t work; you would have to use
something like baud9600.

Finally, pick names for your terms that are descriptive
for a user, especially a nonprogrammer. If you pick a
term like x, users won’t be allowed to use x as a variable
name in their scripts. For instance, instead of “x <small

integer> -- the x coordinate” use “horizontal coordinate
<small integer> -- the x coordinate.”

IT’S YOUR THING
Unlike writing code, designing a scripting vocabulary
isn’t an exact science. It’s up to you to decide in what
manner (and how effectively) humans will interact with
this new interface. Applying “programming language”
concepts and standards won’t always work. You need to
keep an eye toward the human aspects of the AppleScript
language and to work out a scheme that reflects careful
attention to your users.

You may occasionally see guidelines here that aren’t
completely clear-cut or that even conflict with each
other, and every so often I’ll adjust what I’ve said in
an earlier column. This is the nature of an evolving
language. If you’re not completely at home with this,
seek out an expert in scriptability design for advice.
But remember, vocabulary design is by nature as much
art as science.

ACCORDING TO SCRIPT: THINKING ABOUT DICTIONARIES 93

Thanks to Sue Dumont and C. K. Haun for reviewing this column.•

If you have questions, suggestions, or even gripes about develop, please don’t keep them to yourself.
Drop us a line and let us know what you think.

Send editorial suggestions or comments Send technical questions about develop
to AppleLink DEVELOP or to: to:

Caroline Rose Dave Johnson
Apple Computer, Inc. Apple Computer, Inc.
1 Infinite Loop, M/S 303-4DP 1 Infinite Loop, M/S 303-4DP
Cupertino, CA 95014 Cupertino, CA 95014
AppleLink: CROSE AppleLink: JOHNSON.DK
Internet: crose@applelink.apple.com Internet: dkj@apple.com
Fax: (408)974-6395 CompuServe: 75300,715

Fax: (408)974-6395

Please direct all subscription-related queries to develop, P.O. Box 319, Buffalo, NY 14207-0319 or
AppleLink APDA (on the Internet, apda@applelink.apple.com). You can also call 1-800-282-2732
in the U.S., 1-800-637-0029 in Canada, or (716) 871-6555 from all other locations.

How’re we doing?

✍

✍

One of the things the Finder does best is maintain the illusion that an
icon and its window represent a single object. Using the routines
described in this article, your application can help maintain that
illusion. You can ensure that when the user renames an open document,
the change is reflected in the document window’s title. You can also
gracefully handle problems that may arise if the document file is moved.
Other improvements that make your application’s interface more
consistent with the Finder’s include preventing a second window from
opening when an open document’s icon is double-clicked and adding a
pop-up navigation menu to the document window’s title bar.

To rename a folder or file in the Finder, you click the icon name, type a new name,
and press Return. For folders, if the window is open, the change is reflected right
away in the window’s title bar. But for files, if the document is open in your
application, its window may not reflect the name change. Try this little experiment:
Create a document in your application and save it. Switch to the Finder, find your
document, and change its name. What did your application do? If it’s like most
applications, nothing happened: the document window has the same name as before.
Go ahead and try to use Save As to give the file the same name you gave it in the
Finder. You probably get an error message. Now try to save the document under the
original name. Do you still get an error message? Quit your application and read on
for a way out of this frustration.

The only convenient way for a user to rename a document is with the Finder. (The
Save As command doesn’t rename a document; it creates a copy of the document
with a new name.) As you’ve just seen, name changes made in the Finder aren’t
automatically reflected in an open document window. Another change that’s often
not picked up by the application is when the user moves the document to a different
folder. The code in this article helps synchronize your application’s documents with
their corresponding files, so that a document will respond to changes made outside
the application to its file’s name or location.

This article also describes how to prevent a duplicate window from being opened if
the user opens an already open document in the Finder and how to add a pop-up
menu to the document title bar to help the user determine where the file is stored. All

MARK H. LINTON

Document Synchronization and Other Human
Interface Issues

d e v e l o p Issue 23 September 199594

MARK H. LINTON (mhl@hrb.com) lives in
Centre Hall, Pennsylvania, with his wife Gretchen.
When he isn’t jetting around the globe or meeting
with some high government officials as part of his

job as senior engineer at HRB Systems, he can be
found in his log cabin at the base of Mount
Nittany playing with his Macintosh.•

the code for implementing these features is provided on this issue’s CD, along with a
sample application that illustrates its use.

DOCUMENT SYNCHRONIZATION
The Electronic Guide to Macintosh Human Interface Design says that applications should
“match the window title to the filename.” Specifically, when a user changes the
document name in the Finder, you should update all references to the title. The guide
also refers to the Macintosh Human Interface Guidelines, page 143, where it says, “The
document and its corresponding window name must match at all times.”

When I first started looking at the problem of document synchronization, I assumed
that the animated example in the Electronic Guide to Macintosh Human Interface Design
was the way to go. In this animation, the application checks for a name change when
it receives a resume event. However, I became uncomfortable with this approach,
because it would cause a delay between the user’s changing the name of the document
in the Finder and the application’s updating the window title. Using a resume event
relies on a separate action by the user, namely, bringing the application to the
foreground. This seemed nonintuitive and didn’t support the illusion that a window
and its icon represent a single object. Also, it’s possible that with Apple events and
AppleScript an application could be launched, do some work, and quit without ever
being frontmost — that is, without ever receiving a resume event.

The truth is that these days, with multiple applications running at the same time,
with networked, shared disks everywhere, and with applications and scripts pulling
the puppet strings as often as users, a file’s name or location may change at any time,
whether the application is in the foreground or the background. A script might move
or rename a file or, if the file is on a shared volume, another user on the network
could move or rename it or even put the file in the Trash — all behind the
application’s back. The only solution I found under the current system software was
to regularly look at the file to see if its name or location has changed. In other words,
the application has to poll for changes.

Polling is generally a bad idea, but there are cases when it’s the only reasonable way
to accomplish a task, and this is one of them. However, I tried to keep the polling
very “lightweight” and low impact by using the following guidelines:

• An application shouldn’t poll any more often than it absolutely needs to.
Waking up an application causes a context switch, and context switches take
a significant amount of time. Forcing the system to wake up an application
every few ticks just so that it can look for file changes would be a bad idea,
especially when the application is in the background. Instead, the application
should poll only when an event has already been received — that is, when
the application is awake. Set your WaitNextEvent sleep time appropriately,
and wait at least a second or two between “peeks.” (The Finder, for instance,
polls for disk changes every five seconds or so.)

• Avoid any polling that causes disk or network access; if at all possible,
examine only information that’s in RAM on the local machine. Network
access in particular can be a real drain on performance.

The sample code follows this advice, doing everything it can to be unobtrusive.
It polls for file changes only once every second while in the foreground. In the
background, the application’s WaitNextEvent sleep time is set to ten seconds, so it
only wakes up — and thus polls — every ten seconds if nothing else is going on.
To detect changes to files, I chose to examine the volume modification date of the
volume containing the file, since this information is always available in local RAM,

DOCUMENT SYNCHRONIZATION AND OTHER HUMAN INTERFACE ISSUES 95

even for a shared volume. If that date changes, I look deeper to see if the change is
one I’m interested in. As you dip into the code, you’ll see the details.

I use the file reference number to track files because it survives changes in
the name and parent directory. However, this requires that the files be kept open. If
you can’t keep your files open, you might want to look at John Norstad’s excellent
NewsWatcher application, which uses alias records to synchronize files. NewsWatcher
is on this issue’s CD; its official source can be found at ftp://ftp.acns.nwu.edu/pub/
newswatcher/.•

Friendly as it is, this polling solution is appropriate only for the current system
software; future system software versions (such as Copland, the next generation of the
Mac OS) will provide a much better way to detect changes. Your application will be
able to subscribe to notification of changes that it’s interested in. In fact, polling the
current file system structures will be unfriendly behavior under Copland, which will
have demand-paged virtual memory and a completely new file system. For this
reason, the sample code is designed to work only under System 7. You’ll be able to
easily retrofit the code to run under Copland once the details of the correct way to
detect file changes have been worked out.

THE HEART OF THE MATTER
Every Macintosh programmer eventually comes to grips with how to keep track of all
the information associated with a document. I use a structure called a document list
and I have a set of routines that support it. The document list reverses some common
assumptions used by developers. Developers often use the window list to track their
windows and attach their document data to it, but this limits Apple’s ability to
redefine the window list. My recommendation is to create a document list (almost
identical to the window list) containing the document data and attach the windows to
it. In this way, the actual structure of the window list is not a concern. You’ll find my
implementation of the document list and its supporting routines on this issue’s CD.

While the code presented here is specific to my implementation, you can easily
generalize it as needed. The code below shows how your application might call
DSSyncWindowsWithFiles, a routine that keeps your documents synchronized with
the Finder by checking for and handling changes made outside the application to file
names or locations. Call the routine from within your main event loop when you
receive an event (including null events). Note that error checking has been removed
from the code shown in the article, but it does appear on the CD.

while (!done) {
gotEvent = WaitNextEvent(everyEvent, &theEvent, gSleepTime,

theCursorRegion);
if (gotEvent)

DoEvent(&theEvent);
DSSyncWindowsWithFiles(kDontForceSynchronization);

}

This minor change does most of the work for your application. The machinery that
makes it happen lies within DSSyncWindowsWithFiles (see Listing 1). This routine
first checks to make sure that enough time has passed since the last check for changes.
If so, or if the caller requested immediate synchronization, it iterates through each of
the windows registered in the document list, calling DSSyncWindowWithFile to
process each of these windows.

DSSyncWindowWithFile, shown in Listing 2, begins by getting the file reference
number for the window from the document list. If it’s appropriate to continue

d e v e l o p Issue 23 September 199596

(DoSyncChecks returns true), DSSyncWindowWithFile calls three other routines to
handle name changes, changes that move the file to a different folder, and changes
that move the file to the Trash.

THE CHECKPOINT
The DoSyncChecks routine (Listing 3) checks for changes to the volume that the
file is on. If the volume has been modified, DoSyncChecks returns true to
DSSyncWindowWithFile, which consequently calls the next three routines —
HandleNameChange, HandleDirectoryChange, and HandleMoveToTrash.

A FILE BY ANY OTHER NAME
After determining that the volume containing the file has been modified,
DSSyncWindowWithFile calls HandleNameChange (Listing 4). This simple routine
compares the names of the window and the file; if they’re not exactly the same, it
updates the window to reflect the new filename. A minimal implementation of
document synchronization might include only this routine.

DOCUMENT SYNCHRONIZATION AND OTHER HUMAN INTERFACE ISSUES 97

Listing 1. DSSyncWindowsWithFiles

#define kCheckTicks 60

pascal void DSSyncWindowsWithFiles(Boolean forceSync)
{

WindowPtr theWindow;
static long theTicksOfLastCheck = 0;
long theTicks;

theTicks = TickCount();
if (theTicks > (theTicksOfLastCheck + kCheckTicks) || forceSync) {

theTicksOfLastCheck = theTicks;
for (theWindow = DSFirstWindow(); theWindow != nil;

theWindow = DSNextWindow(theWindow)) {
DSSyncWindowWithFile(theWindow);

}
}

}

Listing 2. DSSyncWindowWithFile

pascal void DSSyncWindowWithFile(WindowPtr aWindow)
{

short theFRefNum;

DSGetWindowDFRefNum(aWindow, &theFRefNum);
if (DoSyncChecks(theFRefNum, aWindow)) {

HandleNameChange(theFRefNum, aWindow);
HandleDirectoryChange(theFRefNum, aWindow);
HandleMoveToTrash(theFRefNum, aWindow);

}
}

Have you been wondering where the magical file management calls that
DoSyncChecks and HandleNameChange use come from — for example,
GetVolumeModDate and GetNameOfReferencedFile? See the file EvenMoreFiles.c on the
CD for details. This is my tribute to Jim Luther’s excellent MoreFiles collection. Whenever
I need a routine that’s not in the standard header, I write it and add it to the collection.
Someday we’ll be up to SonOfMoreFiles and NightOfTheLivingMoreFiles.•

MOVING TO A NEW NEIGHBORHOOD
After checking, and possibly synchronizing, the filename, DSSyncWindowWithFile
calls HandleDirectoryChange (Listing 5) to see whether the file has been moved.
This routine starts out by comparing the old parent directory to the new parent
directory. If they’re not the same, the file has been moved and the routine stores the
file’s new parent directory for later use by the application. It’s possible that the file
was moved to a parent for which the user doesn’t have access privileges. In that case, a
later Save will fail and revert to a Save As.

GETTING TRASHED
Finally, DSSyncWindowWithFile calls HandleMoveToTrash (Listing 6) to see if the
file is in the Trash. If it is, HandleMoveToTrash gets the FSSpec corresponding to
the file reference number, which will be needed later. If the application is running in

d e v e l o p Issue 23 September 199598

Listing 3. DoSyncChecks

static Boolean DoSyncChecks(short aRefNum, WindowPtr aWindow)
{

Boolean doCheck = false;
unsigned long theLastDate, theDate;
short theVRefNum;

if (aRefNum != 0) {
DSGetWindowFileVRefNum(aWindow, &theVRefNum);
GetVolumeModDate(theVRefNum, &theDate);
DSGetWindowVLsBkUp(aWindow, &theLastDate);
if (theLastDate != theDate) {

DSSetWindowVLsBkUp(aWindow, theDate);
doCheck = true;

}
}
return doCheck;

}

Listing 4. HandleNameChange

void HandleNameChange(short aFRefNum, WindowPtr aWindow)
{

Str255 theTitle, theName;

GetWTitle(aWindow, theTitle);
GetNameOfReferencedFile(aFRefNum, theName);
if (!EqualString(theTitle, theName, true, true))

SetWTitle(aWindow, theName);
}

DOCUMENT SYNCHRONIZATION AND OTHER HUMAN INTERFACE ISSUES 99

Listing 5. HandleDirectoryChange

void HandleDirectoryChange(short aFRefNum, WindowPtr aWindow)
{

long theOldParID, theNewParID;

DSGetWindowFileParID(aWindow, &theOldParID);
GetFileParID(aFRefNum, &theNewParID);
if (theOldParID != theNewParID)

DSSetWindowFileParID(aWindow, theNewParID);
}

Listing 6. HandleMoveToTrash

static void HandleMoveToTrash(short aFRefNum, WindowPtr aWindow,
Boolean *inTrashCan)

{
FSSpec theFile;
Boolean inBackground;
short theResponse;
EventRecord theEvent;

FileInTrashCan(aFRefNum, inTrashCan);
if (*inTrashCan)

GetFileSpec(aFRefNum, &theFile);
if ((aFRefNum != 0) && *inTrashCan) {

if (DSIsWindowDirty(aWindow)) {
InBackground(&inBackground);
if (inBackground) {

DSNotify();
do {

InBackground(&inBackground);
if (WaitNextEvent(everyEvent, &theEvent, gSleepTime, nil))

DoEvent(&theEvent);
FileInTrashCan(aFRefNum, inTrashCan);

} while (inBackground && *inTrashCan);
DSRemoveNotice();

}
if (*inTrashCan) {

ParamText(theFile.name, "\p", "\p", "\p");
theResponse = Alert(rCloseAlert, nil);
switch (theResponse) {

case kSave:
DoSave(aWindow);
/* Fall through */

case kDontSave:
ZoomWindowToTrash(aWindow);
DoCloseCommand(aWindow);
break;

(continued on next page)

the background, and there are unsaved changes to the document, the routine notifies
the user (with the Notification Manager) that the application needs assistance. While
waiting for the user to respond to the request for assistance, HandleMoveToTrash
handles events normally and also checks to see whether the user has moved the
document back out of the Trash. After all, there’s no sense in asking the user what to
do about a file in the Trash if it’s no longer there. If the user responds to the request,
or moves the file out of the Trash while the application is still in the background,
HandleMoveToTrash removes the notification. If the file is still in the Trash when
the application becomes frontmost, an alert appears asking the user what to do.

Now if this were the Finder, there would be no question of what to do in this
situation. When the user drags the icon for a folder to the Trash, the folder is
essentially gone, so the associated window doesn’t remain on the desktop. In the
application world, life is a little more problematic. What happens if there are unsaved
changes in the document? If the application blindly closes the document when the
user drags the icon to the Trash, data could be lost. This would be a Bad Thing.

My mother always told me, “When in doubt, ask.” So if there are unsaved changes to
the file, an alert gives the user three choices: Don’t Save, Remove From Trash, and
Save. The Save and Don’t Save options are simple: each closes the window as
expected. Remove From Trash is a little tricky and takes advantage of the Scriptable
Finder and Apple events.

The Remove From Trash case is similar to the Finder situation in which the user
decides not to throw the document in the Trash and chooses Put Away from the File
menu. HandleMoveToTrash handles this change of mind the same way the Finder
handles it with Put Away: it sends the Finder a Put Away Apple event specifying the
file in question as the target. (If the Scriptable Finder isn’t available, the same action
can be simulated manually; see the code on the CD for details.)

HOW CAN YOU BE IN TWO PLACES AT ONCE?
That’s all there is to document synchronization. Now let’s take a look at some other
ways you can make your application’s interface more consistent with the Finder’s.

Many applications create a new window when an already open document is opened
again in the Finder. But if the Finder were to open a second copy of a folder when
you double-click the icon of a folder that’s already open, wouldn’t you be surprised?
One of the guiding principles of human interface design is consistency; if your
application doesn’t perform the same action as the Finder (in this case, bring an
already open window to the front), the user must learn and remember what will

d e v e l o p Issue 23 September 1995100

case kPutAway:
DSAESendFinderFS(kAEFinderSuite, kAEPutAway, &theFile);
*inTrashCan = false;
break;

}
}

} else /* Window is clean; just close it */
DoCloseCommand(aWindow);

}
}

Listing 6. HandleMoveToTrash (continued)

happen in each particular situation. This detracts from the user’s happiness with your
application.

Making your application notice that the document is already open is easy if you’re
using the document list. The following code would appear where you normally call
your open-file routine. When the application receives an event to open a file, it
checks to see if the file is already registered in the document list. If it’s registered, the
application simply brings it to the front instead of opening it again.

if (DSFileInDocumentList(aFile, &theWindow))
SelectWindow(theWindow);

else
DoOpenFile(aFile);

POP-UP NAVIGATION
A nifty feature introduced with the System 7 Finder is the pop-up menu in the title
bar that allows the user to determine the location of an open folder and to navigate
the file system without having to resort to browsing (see Figure 1). The user simply
holds down the Command key and presses on the window title to see the menu. The
computer knows where your document is; it just needs a good way to present the
information. If you have Metrowerks CodeWarrior, you’ll find that it does something
similar to the System 7 Finder. Your application can provide the same interface.

To provide a pop-up navigation menu for your document windows, replace the
existing call to FindWindow in your mouse-down event handler with a call to the
DSFindWindow routine. DSFindWindow is simply a wrapper for the Window
Manager’s FindWindow routine. If FindWindow returns inDrag, DSFindWindow
does some additional checking to determine whether the window is frontmost, the
Command key is down, and the mouse is in the window title area. If the mouse-down
event meets these conditions, DSFindWindow calls DSPopUpNavigation, which
implements the menu and returns inDesk as the window part, telling the application
to ignore the click.

Note that DSPopUpNavigation makes an assumption about the location of the
window’s title that may not be true for nonstandard window types or in future
versions of the system software. In such cases the pop-up menu will still work fine,
though it may not be cosmetically correct. This is another area of the code that
should be revisited when Copland becomes available.

CONSISTENCY PAYS OFF
Consistency is one of the key principles that make using the Macintosh the wonderful
experience that it is. If your program responds to the user’s actions in the same way
that the Finder does — in particular, maintaining the illusion that an icon and its
window represent a single object — your users can explore your application with

DOCUMENT SYNCHRONIZATION AND OTHER HUMAN INTERFACE ISSUES 101

Figure 1. The Finder’s pop-up navigation menu

skills they’ve already acquired. The techniques presented here show how to provide
that extra measure of consistency with the Finder that keeps the Macintosh interface
clean, consistent, and seamless. They’re not too hard to implement, they’re fun, and
they just happen to be useful!

d e v e l o p Issue 23 September 1995102

RECOMMENDED READING
• Electronic Guide to Human Interface Design (Addison-Wesley, 1994). This CD

(available from APDA) combines the Macintosh Human Interface Guidelines and
its companion CD, Making It Macintosh, into one easy-to-swallow capsule. Take
one every night before going to bed, and wake up with a more consistent user
interface.

• Macintosh Human Interface Guidelines, (Addison-Wesley, 1993). Available
separately from APDA in book form.

• Polya, G., How to Solve It (Princeton University Press, 1945). This book explains a
logical approach to problem solving. Very simply, the approach is: understand the
problem, compare it to a related problem that has been solved before to arrive at
a plan, carry out the plan, and examine the solution. That’s what I’ve done with
the subject of this article.

Thanks to our technical reviewers Jens Alfke,
Greg Anderson, Arno Gourdol, Bill Keenan, Jim
Luther, and Elizabeth Moller.•

Q How do I create a menu with an icon as its title?

A Set the menu title to 0x0501handle, where handle is the result of calling
GetIconSuite. An example snippet of code follows; this code assumes that the
menu title is already five bytes long.

void ChangeToIconMenu()
{

Handle theIconSuite = nil;
MenuHandle menuHandle;

GetIconSuite(&theIconSuite, cIcon, svAllSmallData);
if (theIconSuite) {

menuHandle = GetMenuHandle(mIcon);
if (menuHandle) {

// Second byte must be 1, followed by the icon suite handle.
(**menuHandle).menuData[1] = 0x01;
*((long *)&((**menuHandle).menuData[2])) = (long)theIconSuite;
// Update display (typically you do this on startup).
DeleteMenu(mIcon);
InsertMenu(menuHandle, 0);
InvalMenuBar();

}
}

}

Q We’re drawing palette icons with a loop that consists basically of the following:

GetIcon...
HLock...
CopyBits...
ReleaseResource...

Our native PowerPC version seems to draw these icons a lot more slowly than even our
680x0 version running under emulation, which suggests a Mixed Mode Manager
slowdown. Which of these routines are currently native on the PowerPC? GetIcon and
ReleaseResource together seem to take over 90% of the time.

A As you suspected, the Resource Manager calls you’re using aren’t native, and
they generally call File Manager routines, which aren’t native either. But be
careful: what’s native and what isn’t is changing over time, and you shouldn’t
design your application based on today’s assumptions.

That said, relying on the Resource Manager to be fast is generally not a good
idea, native or not. One approach is to “cache” the icons, making sure they’re in
RAM at all times. (In general, you should do this for any user interface element
that will be redrawn repeatedly while your application is open.) You can load
your icons as one of the first few operations in your initialization code, just after
calling MaxApplZone (possibly moving them high and locking them, since you
don’t want them to move during a CopyBits operation). This technique yields
very good performance on the redraws that the palette needs, in exchange for a
few kilobytes of memory. Don’t forget to mark the resources as nonpurgeable.

Even better, if it will suit your purposes, would be to use the Icon Utilities to
retrieve and draw your icons (as documented in Inside Macintosh: More Macintosh

Macintosh
Q & A

MACINTOSH Q & A 103

Toolbox) and to build an icon cache. Using the Icon Utilities helps your
application do the right thing for different screen depths. Also, the icon-
drawing routines have been optimized to perform well under a variety of
conditions.

Q How can we detect that our application is already running and bring it to the front?

A Simply iterate through the currently running processes with GetNextProcess,
calling GetProcessInformation for each one and comparing its process signature
with your application’s (for an example, see the article “Scripting the Finder
From Your Application” in develop Issue 20, page 67, Listing 1). If your
application is running, call SetFrontProcess to bring it to the front.

Q WindowShade is causing a problem for our application, which saves the window position
and size when it saves a document to disk. If our application’s windows are “rolled up”
with WindowShade, its windows appear to have zero height. Is there any way to
determine whether a window is rolled up? If so, can we determine its true size and the
global coordinates of the top left corner of the content region, so that we can restore and
reposition the window when the document is reloaded from disk?

A When WindowShade “rolls up” a window, it hides the content region of the
window. You can tell a window is rolled up when its content region is set to an
empty region and its structure region is modified to equal the new “shaded”
window outline. WindowShade doesn’t do anything with the graphics port,
though, so if you need to store the window’s dimensions before closing it, use
the window’s portRect.

With regard to the window’s position, WindowShade modifies the bottom
coordinates of the structure and content regions of the window, but the top, left,
and right coordinates are not changed. These are global coordinates, so you can
use the top and left coordinates to track and save the global position of the
window on the screen regardless of whether the window is rolled up.

Q Sometimes balloons won’t show up when I call HMShowBalloon; I get a paramErr
(-50) instead. The hmmHelpType is khmmTEHandle. HMShowBalloon calls
TextWidth on the hText of my TEHandle (the result of which is 1511, the width of
338 characters), then multiplies that by the lineHeight (12), yielding 18132. It then
compares this to 17000, doesn’t like the result, puts -50 into a register, and backs out of
everything it has done previously. What’s the Help Manager doing?

A The Help Manager checks against 17000 to ensure that the Balloon Help
window will always be smaller than a previously determined maximum size.
Currently, you’re limited to roughly the same number of characters with a
styled TEHandle as you are with a Pascal string: 255 characters.

Keep your help messages small by using clear, concise phrases. If you absolutely
need more text in a balloon, you can create a picture of it and use khmmPict or
khmmPictHandle to specify it for your help message. This is not recommended,
however; “picture text” has the disadvantage of being difficult to edit or
translate to other languages.

Q Is there any way I can stop LClick from highlighting more cells when the user drags the
cursor outside the list’s rView area? My program allows users to select more than one

d e v e l o p Issue 23 September 1995104

item from a list and then drag and drop these selected items into another list. But I run
into a problem with the LClick function: when I drag these items outside the list’s
rView area, it still highlights other cells. What can I do?

A If you want to use LClick and not change the highlighting of cells when the
cursor leaves the rView of the list, you should install a click-loop procedure that
tracks the mouse. When the mouse is outside your list’s rectangle, return false
to tell the List Manager that the current click should be aborted. It turns out
that this is a nice way to start a drag as well, since you know that the mouse has
left the rectangle. It might look like this:

GetMouse(&localPt);
if (PtInRect(localPt, &(*list)->rView) == false)

return false; // We're out of the list.
else

return true;

Q I’m developing a Color QuickDraw printer driver and want to match colors using
ColorSync 1.0.5 with a custom CMM. I was told that for efficiency I should manually
match colors inside my Stdxxx bottlenecks, instead of calling DrawMatchedPicture. Is
this really more efficient? Why?

A Surprising as it may be, it is more efficient for printer drivers to manually match
colors inside Stdxxx bottlenecks than to call DrawMatchedPicture. This is
because ColorSync 1.0’s DrawMatchedPicture doesn’t use bottlenecks as you
expected. It does install a bottleneck routine that intercepts picture comments
(so that it can watch the embedded profiles go by), but it doesn’t do the actual
matching in bottleneck routines. Instead, it installs a color search procedure in
the current GDevice. Inside the search procedure, each color is matched one at
a time.

While this implementation has some advantages, it’s painfully slow on PixMaps,
because even if the PixMap contains only 16 colors, each pixel is matched
individually. This has been changed in ColorSync 2.0. To boost performance,
PixMaps (which are, after all, quite common) are now matched in the
bottlenecks instead of with a color search procedure. (See the Print Hints
column in this issue of develop for more on ColorSync 2.0.)

Q I need to add some PostScript comments to the beginning of the PostScript files
generated by the LaserWriter GX driver. On page 4-119 of Inside Macintosh:
QuickDraw GX Printing Extensions and Drivers, it says that you can override the
GXPostScriptDoDocumentHeader message to do this. I wrote a QuickDraw GX
printing extension to implement this, assuming that all I had to do was to override the
GXPostScriptDoDocumentHeader message and buffer the desired data with
Send_GXBufferData. Here’s an example of my code:

OSErr NewPostScriptDoDocumentHeader(gxPostScriptImageDataHdl hImageData)
{

OSErr theStatus = noErr;
char dataBuffer[256];
long bufferLen;

strcpy(dataBuffer, "%%DAVE'S TEST DATA");
bufferLen = strlen(dataBuffer);

MACINTOSH Q & A 105

theStatus = Send_GXBufferData((Ptr) dataBuffer, bufferLen,
gxNoBufferOptions);

if (theStatus != noErr)
return theStatus;

theStatus = Forward_GXPostScriptDoDocumentHeader(hImageData);
return theStatus;

}

Unfortunately, this causes a bus error when Send_GXBufferData is called, even if I
put Send_GXBufferData after the call to Forward_GXPostScriptDoDocumentHeader.
Why doesn’t this work?

A The override in your extension is basically correct, but the order of your code
needs to be slightly different:

// Note that the string is terminated with a return character:
#define kTestStr "%%DAVE'S TEST DATA\n"

OSErr NewPostScriptDoDocumentHeader(gxPostScriptImageDataHdl hImageData)
{

OSErr theStatus = noErr;
char dataBuffer[256];
long bufferLen;

theStatus = Forward_GXPostScriptDoDocumentHeader(hImageData);
if (theStatus != noErr)

return theStatus;

// Note that we do (sizeof(...) - 1) below to strip off the C string
// null terminator for the string defined.
theStatus = Send_GXBufferData(kTestStr, (sizeof(kTestStr) - 1, 0);
return theStatus;

}

Make sure that the string is terminated with a return character. If you’re using a
#define to allocate static space for the string (which is not recommended),
remember that it allocates the string plus a null terminator; sizeof then returns
the size of the string, so you need to subtract 1 from the total. This string
should come from a resource or a file.

If you want to add to the header from an application (to avoid writing the
extension), you can add an item of type 'post' to the job collection, using the tag
gxPrintingTagID. If the first character of this item is a % character, it will
appear in the job header.

Q Our application has multiple QuickDraw GX shapes layered on top of each other. The
bottom object is a graphic, and the objects on top of it are text shapes. The text objects are
transparent, permitting the underlying graphic to show through. Are there functions in
QuickDraw GX to facilitate refreshing the background shapes when characters are
deleted in the text layout shapes above it? We need to refresh the graphic with minimal
flicker and want to avoid resorting to the standard CopyBits routing.

A QuickDraw GX doesn’t have any direct functions to facilitate refreshing or
redrawing only a portion of a shape covered by another shape. However, there
are a few methods that can be used in conjunction with various QuickDraw GX

d e v e l o p Issue 23 September 1995106

and QuickDraw calls to accomplish your goals. Here are three approaches that
might work for you:

• As you know, you can have QuickDraw GX draw directly into a GWorld,
and use CopyBits to update the appropriate area. This approach is good if
you need to draw QuickDraw and QuickDraw GX objects in the same
window.

• If you merge multiple shapes into a QuickDraw GX picture, you can use the
picture’s clip shape to update the area in question. Make your graphic shape
the bottom shape in the picture’s hierarchy. This forces QuickDraw GX to
draw the graphic as the first shape, with the other shapes drawn on top.
QuickDraw GX pictures are smart, in the sense that they respect the clip
shapes associated with the picture and all of the shapes contained within the
picture.

To update the smallest possible area, convert the QuickDraw update region
to a QuickDraw GX path. Then get the current clip shape of the picture
with GXGetShapeClip, and save it for later restoring. Use the path as the
“new” clip shape of the picture and draw. Finally, restore the picture’s clip
shape.

• Create a QuickDraw GX offscreen bitmap to perform flicker-free updating
in a manner similar to using CopyBits. This method, though, is based
completely on QuickDraw GX. When updating the screen, clip your
drawing to the area you want to update. For an example, see the “3 circles -
hit testing” sample that ships with QuickDraw GX.

Q I’m using a layout shape to represent an area for editable text that will have a fixed
position, style, font, size, and width. This layout shape has some default text that the
user is prompted to change (text content only, no other attributes). Each time text is
added (the new text replaces the previous text string), the user interface code checks
whether the size of the new string goes beyond the defined width. I do this by comparing
the width of the local bounds with the width given within the layout shape geometry. In
all cases, the justification setting is 0, but the flush setting varies (left/0, center/0.5,
right/1.0).

Sometimes the width of the local bounds reaches a point where it’s wider than the width
defined by the shape; in other cases, it approaches the width but never reaches or
surpasses it. In this situation, the text is updated and begins to compress itself within the
defined width. How can I allow text to be entered till the width is reached, but not
compressed?

A The problem you describe was fixed in QuickDraw GX 1.1.1 with a new API
call:

Fixed GXGetLayoutJustificationGap (gxShape layout);

This function returns information that was always generated during layout’s
justification processing but was never made publicly visible before. It represents
the signed difference between the specified width for the layout and the
measured (unjustified) width.

By setting a width in the layout options, but leaving the justification factor at 0,
you can keep adding text until the results of the GXGetLayoutJustificationGap
call changes sign from positive to negative. At that point, the text starts to
compress, so you should prohibit new text entry. It’s a very fast call (since its

MACINTOSH Q & A 107

result is cached as part of the layout process anyway), so calling it on every
typed character shouldn’t slow things down at all.

Some examples may help clarify the use of this call: Suppose you create a layout
with the width field of the gxLayoutOptions set to 500 points and the
justification factor set to fract1 (full justification). If the unjustified width of the
layout is only 450 points, GXGetLayoutJustificationGap returns +50 points; if
the unjustified width is 525 points, this function returns -25 points. A positive
value means the line will be typographically stretched to fill the specified width,
while a negative value means the line will be typographically condensed.

Note that the justification factor in the gxLayoutOptions doesn’t have to be
fract1 in order for this function to return useful results. For instance, if you set
a width value but leave the justification factor at 0, the line will not be justified
unless its unjustified width exceeds the specified width. In this case, layout will
typographically shrink the line. A client program that wants to determine when
the end of a line is reached (for line-breaking purposes) can call this function
after every character is added (as the user types, for example); as soon as the
value becomes negative, the client knows that the margin has been reached.

Q There are three options on the General panel of the QuickDraw GX Print dialog —
Collate Copies, Paper Feed, and Quality — that we would like to move to one of our
own panels. We have solutions that differ from the default ones, and we want to rename
these solutions and associate them with our printer. How can I eliminate those options
from the General panel?

A There’s no mechanism in QuickDraw GX to remove panel items from the
standard Print panels, except for the Quality item. The Quality collection item
(gxQualityTag = 'qual'), whose structure is defined in PrintingManager.h, has a
Boolean field called disableQuality. To eliminate the Quality item from the
panel, specify true for the disableQuality field in your driver. Although you
cannot remove the other items, you can disable them (dim them in the panel)
by getting the collection item and setting the locked attribute with
SetCollectionItemInfo.

Q Do I need to call GXCloneColorProfile before calling GXConvertColor? Since the color
passed into GXConvertColor by ColorSync is destroyed, should the color profile passed in
as part of the color be disposed of? If not, isn’t that a memory leak?

A Calling GXCloneColorProfile isn’t necessary, and it would require additional
work that doesn’t need to be done. The gxColor structure is a public data
structure, not an object: the application, not QuickDraw GX, handles adding
and maintaining references to objects with respect to gxColors (and gxBitmaps).
QuickDraw GX maintains owner counts when the profile is attached to another
QuickDraw GX object (using GXNewBitmap, GXSetInkColor, and so on).
This is not a memory leak.

For example, consider this scenario: When an application gets a shape’s color,
the ink’s profile has two owners — the shape and the application. Therefore, the
application can reference the profile in gxColor structures, even if the shape is
disposed of. Once the application calls GXDisposeColorProfile, the reference is
no longer valid. Cloning the color profile does nothing except to require that
GXDisposeColorProfile be called afterward. As a result, all that happens is that
time is wasted as the owner count goes from a positive number to that number
plus 1, and then back down.

d e v e l o p Issue 23 September 1995108

Q Does QuickDraw GX send the GXDoesPaperFit message when I’m setting up input
tray dialogs, or is the driver supposed to do this? If QuickDraw GX doesn’t, it’s possible
for users to request completely invalid paper sizes, which can violently crash most raster
drivers.

A QuickDraw GX sends the GXDoesPaperFit message in the default
implementation of the input trays dialog to constrain the configuration options,
and drivers that perform their own input trays dialog should do the same. A
driver should override this message if it needs other than the default logic,
which responds that everything fits.

The packing buffer size specified in the 'rpck' resource is set to the expected
maximum size needed. Unfortunately, this is far smaller than what’s needed
when handling larger than expected paper sizes. To work around this, you can
set the packing buffer size so that it can accommodate the largest paper size the
printer can use.

Q I’ve been experimenting to see what happens when a print job is canceled part of the
way through. If I cancel when GXOpenConnection and GXStartSendPage have
both completed successfully, I get unexpected GXCleanupOpenConnection and
GXCleanupStartSendPage messages. If I cancel at another point in the job (for
example, during rendering via the Remove button in the desktop printer status
window), GXCleanupStartSendPage and GXCleanupOpenConnection messages
are passed through after ImageDocument exits. This behavior seems very odd, and
it doesn’t appear to be discussed anywhere in the documentation. Shouldn’t
GXCleanupOpenConnection and GXCleanupStartSendPage be called only if their
respective routines return an error?

A The unexpected GXCleanupOpenConnection and GXCleanupStartSendPage
messages are coming from the default implementations of ImageJob and
ImagePage. The ImageJob code calls Send_GXSetupImageData, and if
an error occurs, it sends GXCleanupOpenConnection. ImagePage calls
Send_GXRenderPage and sends GXCleanupStartSendPage if an error occurs.
If GXStartSendPage or GXOpenConnection doesn’t complete successfully, the
respective cleanup calls are not sent. Although the documentation states
otherwise, this behavior is correct.

Q Is the layout of the PostScript printer preferences ('pdip') resource documented correctly
in Inside Macintosh: QuickDraw GX Printing Extensions and Drivers?

A No. There’s a bug in the documentation for the 'pdip' resource on page 6-88 of
Inside Macintosh: QuickDraw GX Printing Extensions and Drivers. The render
options field is in fact a long word. The resource is defined correctly in the
interfaces (PrintingRezTypes.r) and in the MPW 411 files for QuickDraw GX.

Q Is there a simple way to detach a QuickTime movie from its original file? I’m trying to
place a copy of a QuickTime movie in my application’s resource fork.

A See John Wang’s QuickTime column in develop Issue 17. You can use the
technique presented in that column to extract a movie and put it into the
resource fork of a different file. You’ll find the column and the accompanying
sample code, MultipleMovies, on this issue’s CD.

MACINTOSH Q & A 109

Q How can I determine whether QuickTime 2.0’s MIDI music function is available and
whether the larger set of 41 instruments is available? If the MIDI function is available,
we need to add code to enable the music portion of our game.

A The QuickTime Music Architecture became available in QuickTime 2.0 (as
described in David Van Brink’s article in this issue of develop), so checking the
QuickTime version in a Gestalt call (selector gestaltQuickTimeVersion) will tell
you if the MIDI function is present.

When the QuickTime Musical Instruments Extension is installed in your
System Folder, it gives you the musical instruments supported by Apple. This
extension is actually a component. If you need to know whether the instruments
are present, call FindNextComponent, searching for a component that has a
type of 'inst' and a subtype of 'ss '. Here’s a code snippet:

pascal Boolean AreQuickTimeMusicInstrumentsPresent(void)
{

ComponentDescription aCD;

aCD.componentType = 'inst';
aCD.componentSubType = 'ss ';
aCD.componentManufacturer = 'appl';

if (FindNextComponent((Component)0, &aCD) != NULL)
return true;

else
return false;

}

Q Are there any known compatibility problems between QuickTime 2.0 and QuickTime
for Windows? I’m creating a dual-platform application and want to use QuickTime 2.0
for the video. Is there anything that I should avoid on either platform, or anything I
should watch out for?

A In most cases, you don’t have to be concerned about using the same movie for
playback on both platforms, as long as the movie is in a flattened format and in
a single-fork file. To be sure your movie files are single-fork files, select “Make
cross-platform” in the MoviePlayer application when saving your movies (or do
something analogous in other applications that produce cross-platform movies).

QuickTime supports sound, video, text, music (MIDI), and MPEG tracks under
both Windows and the Mac OS. One difference between the two versions is
that you can have only one of each track open under Windows (except for the
number of sound tracks; starting with QuickTime for Windows 2.0.1, you can
enable/disable multiple sound tracks).

The biggest difference between the two versions is the API: QuickTime for
Windows 2.0 doesn’t support all the API calls available under the Mac OS.
Nearly all of the movie controller APIs are supported, as well as many of the
basic calls, but the calls to create manipulable movie tracks are missing. You
can’t create specific media handlers with QuickTime for Windows 2.0, but you
can write data handlers and codecs for the Windows environment.

While working with QuickTime for Windows, you’ll have to keep track of all
the possible configuration issues that users might encounter. We distribute

d e v e l o p Issue 23 September 1995110

README files with the latest information about compatibility and
configurations (video/sound cards, drivers, and so on).

For additional information, the Mac OS Software Developer’s Kit includes
detailed documentation regarding API and architecture issues concerning
QuickTime and QuickTime for Windows. Also see How to Digitize Video by
Weiskamp and Johnson (Wiley Press) for another good source of information
regarding the practical issues of both QuickTime and AVI movie creation.
Although this book is a bit out of date in the details (it was written to cover
QuickTime 1.6.1 and QuickTime for Windows 1.1.1), much of it is still valid.

Q Can we use a different A5 world with QuickTime? Our plug-in architecture uses A5
for global access, but we allow the A5 world to move. QuickTime doesn’t seem to be able
to deal with this, and it doesn’t realize that EnterMovies was called once the A5 world
moves. We currently work around this by locking down our A5 world, but we would
rather not do this. If we need to keep doing this, is locking down the A5 world an
adequate fix, and can you recommend another solution?

A You can use a different A5 world with QuickTime, but whatever A5 world you
use, you’ll have to lock it down. QuickTime allocates a new set of state variables
for each A5 world that’s active when EnterMovies is called. However, since
QuickTime uses A5 to identify each QuickTime client, if A5 changes (your A5
world moves), QuickTime won’t recognize that you’ve called EnterMovies for
that client.

Q How do I determine the correct time values to pass to GetMoviePict to get all the
sequential frames of a QuickTime movie?

A The best way to determine the correct time to pass to get movie frames is to call
the GetMovieNextInterestingTime routine repeatedly. The first time you call
GetMovieNextInterestingTime, its flags parameter should have a value of
nextTimeMediaSample + nextTimeEdgeOK to get the first frame. For
subsequent calls, the value of flags should be nextTimeMediaSample, and the
whichMediaTypes parameter should be VisualMediaCharacteristic ('eyes') to
include only tracks with visual information.

Q I noticed that certain commercial candies have no taste when they initially hit my
tongue. It’s only after I start sucking them that the flavor appears. I think there’s some
sort of coating on them. What is it? Is it harmful?

Also, what is it that creates that beautiful high gloss I get with my car wax and floor
wax? I just love the way it shines after a good hard buffing.

A Carnauba wax is the answer, in both cases. It’s a hard wax obtained from the
leaves of a Brazilian palm tree (Copernicia prunifera), and is used a lot in polishes
of all types. It really does buff up beautifully, doesn’t it? It also is completely
tasteless and nontoxic, and makes a dandy confectioner’s glaze, used to keep the
candy from sticking to itself.

MACINTOSH Q & A 111

These answers are supplied by the
technical gurus in Apple’s Developer Support
Center.•

Have more questions? See the new
Macintosh Technical Q&As on this issue’s CD.
(Older Q&As can be found in the Macintosh
Q&A Technical Notes on the CD.)•

I used to think there was no room for mystery in the
world of computers. I didn’t think there was any use for
fudge factors or rules of thumb or hunches in the clean,
exact, hermetically sealed bubble of logic we all spend
so much time diddling and poking. That stuff belongs
to “real world” engineering, not software engineering,
right? Software is always bounded and orderly, always
understood completely from top to bottom, with no
dangling ends, no frayed edges, and no baling wire and
duct tape holding things together. There’s never a need
for vague, hand-waving explanations of how it all
works, because we know how it works.

That’s what I used to think. I’m not so sure anymore.

Ultimately, of course, the operation of computers is
deterministic and absolutely predictable. There’s
guaranteed to be a complete explanation for any event
on the computer; the search for an answer will always
find one. It’s like playing Go Fish with a deck of cards
that contains only threes — “Got any threes?” “Yep.”
“Got any threes?” “Yep.” “Got any threes?” “Yep.”
The answer itself, of course, may be convoluted and
difficult, and is often way too much trouble to actually
track down (“Have you tried rebooting?”), but it’s
always there. The world inside computers has a
definite, impermeable bottom, like a swimming pool.

The real world, on the other hand, is more like being out
in the middle of the ocean: the bottom is nowhere in
sight, and in fact is so far away that it may as well not
exist at all. Trying to completely explain things in the real
world is generally an exercise in futility, though one
that humans seem to have a capacious appetite for (that’s
what science is all about, after all). The real world is so
vast and complex that our explanations are never really
complete. The answers always lead to more questions,

and the edges of our knowledge remain frayed and
ragged and crumbling, even though the center may
have a seemingly solid, well supported integrity.

The thing that got me thinking about all this is
boomerangs. I’ve been learning to throw boomerangs
lately, and it’s extremely satisfying — and somehow
endlessly novel — to throw something away from
yourself as hard as you can, and have it return several
seconds later, hovering gently down into your waiting
hands like a bird coming home to roost. (Such a perfect
flight, of course, is a rare thing for a novice like me.
More often, if the boomerang comes anywhere near
me, it’s slicing past at a frightening rate of speed while I
cringe, covering my head.) While I’ve been learning to
throw boomerangs, I’ve also been trying to watch
myself learn to throw boomerangs — sort of meta-
boomeranging — and I noticed that a complete
explanation of what was happening was not only absent,
but completely unnecessary: I don’t need to know how
boomerangs work to learn to throw them well.

Boomerang throwing is one of those real-world
activities — there are many of them — that are governed
by rules of thumb, by approximation and estimation,
and by “feel.” There are lots of variables involved in
producing a good boomerang flight, and they’re all sort
of woven together, interconnected and interdependent.
The direction of the throw, the angle of the boomerang
as it leaves your hand, the forward power of the throw,
and the amount of spin all contribute to the flight
characteristics, but the way they combine and interact
is complex and nonobvious. How’s a poor, bewildered
boomerang neophyte to make any sense of it all?

Well, the only way to learn to throw boomerangs is to
get yourself a decent boomerang (very important!),
read a little about it or get a lesson from someone, and
then just get out there and start throwing. You need to
experience it; you need to feel the smooth, flat weight
of the thing, notice the way it slices the wind as it leaves
your hand, and watch as it spins and swoops. Every
throw you make adds to a growing store of knowledge
about boomerang behavior. Slowly, you begin to sense
the structure of the rules that govern the flight of the
boomerang, to get a feel for it, to gain some control. But
no matter how long you work at it, there’s always more
you can learn about boomerangs. Boomerang throwing,
like most things in the real world, has no bottom.

But even though things in the real world are webby,
tangled, and complex, with no real bottom and no real

THE VETERAN
NEOPHYTE

A Feel for the
Thing

DAVE JOHNSON

d e v e l o p Issue 23 September 1995112

DAVE JOHNSON has an ever-lengthening list of life goals, things
that he’d like to accomplish or experience before leaving this mortal
coil. Some recent additions include making marshmallows from

scratch, milking a cow, and hugging a full-grown bear. (Is bear
breath better than dog breath? There’s only one way to find out!) If
you have a cow or bear Dave could visit, please let him know.•

center, and even though complete understanding is out
of our reach, that doesn’t stop us from getting things
done. Even though we may not understand exactly
what’s going on when we throw a boomerang, we can
learn to throw them anyway, and can actually learn to
throw them with incredible skill. Scientists don’t have a
complete understanding of fluid mechanics, but we can
still design hydraulic lifts that lift, toilets that flush, and
airplanes that fly.

Though it seemed profound when I first thought of it
that way, it really isn’t anything remarkable at all. It’s
the stuff our everyday sensory world is made of. It’s our
standard, animal mode of operation. We depend
heavily on trial and error, on finding and keeping
strategies that work. We invent myths and superstitions
to explain things we don’t understand, we guess, we
fake it, we operate by feel. And it works just fine.

But we don’t need that sort of thing in the clean,
deterministic world of computers, right? If we know
the answer is within our reach, then why gloss over it?
There’s one very good reason: it’s gotten to the point
where it’s often really hard to reach the answer.
Computers have become so complex that finding the real
answer is often a Herculean feat requiring great effort
and stamina. The things that we’re “growing” in the
machine are getting very deep and webby and complex,
just like things in the real world. That nice smooth
bottom we all know and love is getting pretty remote
and hard to see, and in fact trying to keep it in sight
often holds us back.

The truth is, we need fakery, or myth, or something
similar, to avoid being hopelessly mired in complexity,
and to let us feel cozy even in the face of something too
deep to comfortably understand. The idea that an icon
in the Finder, a document window in an application,
and a file on the hard disk are all “the same thing” is a
fiction, an illusion created from smoke and mirrors,
and one that users don’t even think about anymore
(unless, of course, an application screws up the illusion;
see Mark Linton’s article in this issue for some code to
help you avoid such a faux pas). But it’s precisely that
kind of myth and abstraction that lets people ignore all
the underlying complexity and just go about their
everyday business. Without that kind of trickery most
people would be lost.

Humans have a deep need for some sort of explanation,
and we’ll often ignore aspects of a situation, or even
make stuff up out of thin air, if it helps us to find an

“answer.” Remember the frictionless inclined planes
and perfect vacuums of college physics? Without that
kind of glossing over of details, we’d have been helpless.
(A college housemate of mine and I used to joke about
running a college physics stockroom: boxes of
frictionless, massless pulleys on the shelves; gallon jugs
of zero-viscosity liquid at our feet; coils of infinite and
semi-infinite wires hanging neatly on the pegboard wall.
Those wires have no thickness or mass, thank goodness,
or the storage requirements would be prohibitive.) This
need for explanation is what has led us to science, and
to religion, and to superstition. These are not the same
thing, of course, but they can all serve the same purpose:
a soothing, protective balm on the raw edges of our
incomplete knowledge. They give us a ground to stand
on, a rail to hold on to, as we totter along in the
darkness, going who knows where, hoping the batteries
will hold out long enough to get an answer.

Now that I think about it, I’m happiest with a generous
helping of myth and fiction stirred into my computing.
It can help make the computer — which, let’s face it, is
essentially a gritty, sharp-edged, and hostile machine —
feel more rounded and friendly. It can provide a useful
disguise, like a plastic nose and glasses on something
seething and alien, making it recognizable, familiar, even
comforting and amusing. If it’s done well, it can even let
me learn to use a computer in much the same way I learn
to throw a boomerang: by picking it up and trying it, by
mucking around and getting a feel for it, by discovery.

Maybe best of all, it lets computers keep a little of their
mystery. The mystery and magic of the Macintosh are
why many of us are programmers, after all. Mysterious
things, things that don’t have clean and obvious
boundaries, are inevitably more interesting and more
fun. There’s no denying that computers have a dull,
featureless, dreary bottom. But in the other direction
there seems to be no boundary; the top, if there is one,
is as far away as the sky. So yes, I think there’s plenty of
room for mystery in the world of computing. Plenty of
room indeed.

THE VETERAN NEOPHYTE: A FEEL FOR THE THING 113

RECOMMENDED READING
• Many Happy Returns: The Art and Sport of

Boomeranging by Benjamin Ruhe (Viking, 1977).

• How to Hide Almost Anything by David Krotz
(William Morrow and Company, 1975).

Thanks to Lorraine Anderson, Jeff Barbose, Brian Hamlin, Mark
“The Red” Harlan, Bo3b Johnson, Lisa Jongewaard, and Ned van
Alstyne for their always enlightening review comments.•

Dave welcomes feedback on his musings. He can be reached
at JOHNSON.DK on AppleLink, dkj@apple.com on the Internet, or
75300,715 on CompuServe.•

Q I have a program that communicates with the desktop. Part of the information sent is
real numbers. I’ve found functions to stuff almost every other type of data into a binary
object except real numbers. How do I do that?

A You have two choices. First, you could just print the real number as a string
(using SPrintObject), send the string, and convert it back on the other side.
Clearly this isn’t a good idea if you want to maintain a high degree of precision.
The other choice is to construct the correct type of binary object for the target
desktop machine. In other words, take the Newton real representation and
convert it into, say, IEEE floating point. Then you can use BinaryMunger to
stuff the binary object into whatever packet of data you’re constructing.

Note that Newton uses SANE representation for real numbers that are in the
representable range. However, the representation of exceptions (such as NAN
and infinity) are different and undocumented. At this time you should avoid
converting these types of real numbers.

Q Can you give me a short and clear description of the different types of Newton memory?

A There are three important “pools” of so-called internal memory, each with
different tradeoffs.

The NewtonScript heap (about 90K to 96K on current devices) is where all the
runtime data from NewtonScript lives. Any result from the Clone family of calls
will take up NewtonScript heap space. The view frame made at run time from
your application templates will take up this heap space. NewtonScript heap
space is very precious, so you should try to use as little of it as possible,
especially when your application’s base view isn’t open.

The user store (192K in the MessagePad 100, larger on other devices) is where
application packages stored internally live, and where soups are located. The
entries in the soups are located in this space. While not quite as precious as the
NewtonScript heap, this space can certainly run out. This is the space that’s
“extended” when a RAM PCMCIA card is inserted.

There is also some system heap space, which is used for, well, everything else.
The viewCObjects and drawing objects live here. Recognition uses memory
from here. You can run out of this space (in which case you get the Cancel/Restart
dialog) but it’s less of a programming issue.

Q I have an application that uses a protoRollBrowser. When I expand the items, they have
lines separating them. I can’t seem to get rid of them. Is this a bug?

A What you’re seeing is part of the default definition of a protoRollItem. It
includes a 1-pixel border. You can remove that border by modifying the
viewFormat of your rollItems. In addition, you may want to set the fill to white.

Q I’m using a protoRoll (not protoRollBrowser) in my application. But it never shows up.
What’s the problem?

Newton
Q & A:
Ask the
Llama

d e v e l o p Issue 23 September 1995114

The llama is the unofficial mascot of Developer
Technical Support in Apple’s Newton Systems
Group. Send your Newton-related questions to

NewtonMail DRLLAMA or AppleLink DR.LLAMA.
The first time we use a question from you, we’ll
send you a T-shirt.•

A You need to give it a viewFlags slot and make sure the Visible bit is checked.
The default is Application and Clipping, but this won’t make the protoRoll
visible if it’s included inside another view.

Q I have a text view that the user can use to enter text. I wanted to extend a selection.
I knew the insertion caret was at the end of the selection, so I called SetHilite(newPoint,
newPoint, nil), where newPoint is the new position for the selection extension, but I got
no highlight. What’s going wrong?

A The behavior is actually perfectly correct. There’s a not quite obvious
interaction between the caret and SetHilite. As shown in the table below, how
SetHilite behaves depends on four things: the start and end character positions
(the first two arguments) being equal, the value of unique (the third argument),
the presence of a previously highlighted selection, and the presence of the caret.
Note that the following explanation refers to the case of a single paragraph view,
in which there can be only one selection; if there are multiple paragraph views,
it’s possible (with unique nil) to have multiple discontiguous selections.

Q I have an application that uses ADSP to connect to a server on the desktop. I want the
server to handle multiple Newtons connected simultaneously. Unfortunately, if a
connection fails after it’s opened, the server doesn’t seem to be able to identify it as a new
connection when the Newton reconnects. This causes problems in the server’s ability to
handle multiple connections. Can you help?

A We’ll assume that the Newton tries to reconnect shortly after losing the
connection. In that case, the Newton doesn’t generate a new connection ID, so
your server probably acts as if the connection didn’t close, while the Newton is
acting as if it’s establishing a new connection. Currently the only solution is to
force the Newton to wait three minutes after an improper disconnect before
trying to reconnect.

Q I have a communications program that always sends a string of the same size to the
desktop. The string is quite large, and I would like to preallocate it and fill it with a
particular value. What’s the best way to do this?

A As with all things in programming, the answer is a tradeoff between space and
time. Let’s assume that you want a string of 2K characters filled with the
character A, and that you control the contents of the string (that is, if you get
user input, you make sure the input is a string). The first option is to allocate
the string at compile time. Note that you shouldn’t allocate your string constant
with a double-quoted string ("a string"), since typing 2K (less the terminator)
characters is monotonous and error prone. The way to allocate the string is with
the following SetLength trick:

NEWTON Q & A: ASK THE LLAMA 115

Highlight and unique When start = end When start <> end
No previous highlight, If there’s a caret, move caret; Create new highlight from start
unique true or nil otherwise, no effect to end

Previous highlight, Clear highlight and, if there’s Create new highlight from start
unique true a caret, move caret to end (remove old highlight)

Previous highlight, Extend highlight to include Extend highlight to include
unique nil start/end start/end

constant kNumberOfUnicodeCharsForString := 2048; // 2K chars
DefConst('kMyBigString, call func()

begin
// SetLength uses bytes; Unicode chars are 2 bytes each
local aStr := SetLength("",

2 * kNumberOfUnicodeCharsForString + 2);
// initialize the string
for i := 0 to k1KUnicodeChars - 1 do

aStr[i] := $A;
return aStr;

end with ());

At run time you can clone kMyBigString and do what you need to fill it with
characters. Note that the object is not a string; you would need to use StuffByte
to put in individual characters.

The advantage of this method is that it’s very fast: it averages less than one tick
(60th of a second) for the clone. The disadvantage is that it puts a 4K object in
your package (Unicode strings are two bytes per character). If you can’t afford
the 4K in your package, you need to generate the string at run time. Using the
above code at run time averages 52 ticks.

Another possible runtime method is to use smart strings, which allow you to
preallocate strings and concatenate them in a more efficient way. The first
attempt at doing this seems to be inefficient, at an average of 175 ticks:

// defined constant somewhere in your project
constant kNumberOfUnicodeCharsForString := 2048;

local s := SmartStart(2 * kNumberOfUnicodeCharsForString + 2);
local l := 0;
for i := 1 to kNumberOfUnicodeCharsForString do

l := SmartConcat(s, l, "A");
SmartStop(s, l);

However, simply concatenating two characters at a time reduces the average to
88 ticks; four characters reduces it to 44; and so on. A lesson here is that testing
and measurement are your friends.

Q I’d like to train my dog to code in NewtonScript. How can I do that?

A I’m afraid the prospect isn’t promising. Dr. J. L. Fredericks at SITAP (Stanford
Institute for Training Animal Programmers) has been trying for ten years to
train different animal species to program computers. Although he’s had some
success training dogs to do simple programs, he says, “Anything more than a
simple statement is beyond them. No loops, no conditionals.” Besides which,
paws don’t work well for moving mice. For Newton programming the best he
has been able to achieve is training a rat to reset the Newton on command. As
Dr. Fredericks says, “Never underestimate the usefulness of a ratset.”

d e v e l o p Issue 23 September 1995116

Thanks to our Newton Partners for the questions
used in this column, and to jXopher Bell, Bob
Ebert, David Fedor, Neil Rhodes, Jim Schram,
Maurice Sharp, and Bruce Thompson for the
answers. Thanks especially to Bob Ebert for the
Newton memory description.•

Have more questions? Take a look at
Newton Developer Info on AppleLink.•

KON & BAL’S PUZZLE PAGE: VIDEO NIGHTMARE 117

See if you can solve this programming puzzle, presented in the form of
a dialog between a pseudo KON (Ian Hendry) and BAL (Eric
Anderson). The dialog gives clues to help you. Keep guessing until
you’re done; your score is the number to the left of the clue that gave
you the correct answer. Even if you never run into the particular
problems being solved here, you’ll learn some valuable debugging
techniques that will help you solve your own programming
conundrums. And you’ll also learn interesting Macintosh trivia.

BAL I’ve got one for you, KON: I just updated to System 7.5 on my
8100/80 AV. Everything seemed OK for a while. I was comparing
Scenery Animator to Vistapro and I noticed that my cool new desktop
pattern had disappeared. It was there when I booted, but just as the
Finder was coming up, the desktop changed to a black-and-white
pattern.

KON That’s easy. Go back to System 7.1 and the world will be fine again.
Next.

BAL Hey, 7.5 is the source of much wonderment. It’s really a lot of fun!

KON I don’t know that much about 7.5. Metrowerks and THINK C seem to
run fine on 7.1. Is this part of that new puzzle CDEV that was added
to spruce up the system?

BAL Quit trying to change the subject. My desktop pattern went away and
I’m not happy about it.

KON Hmm. Did you change anything on your machine?

BAL I turned on VM for the memory-hungry rendering stuff.

KON So turn off VM and see if the problem goes away.

KON & BAL’S PUZZLE PAGE

Video Nightmare

IAN HENDRY AND ERIC
ANDERSON

IAN HENDRY (AppleLink HENDRY; Internet
hendry@apple.com) gets paid by Apple to work
on video stuff. His hobbies include shipping
products and collecting new Engineering
managers. He can be found skipping meetings to
play Ultimate and working all hours to make up
for it. Ian’s going to be a dad soon, and though
he has been in rigorous sleep-deprivation training
for years, he’s hoping (but still not certain) that
he’s ready for what he’s gotten himself into.•

ERIC ANDERSON (AppleLink ERIC3) skipped
out on the OS Services group at Apple to get
away from the chore of working on VM and the
Thread Manager. Now he works as Ian’s evil twin
on video-related Mac OS issues — and he gets
bugs assigned to him that state, “When using a
multisync monitor with my threaded test app while
VM is on, this funny thing happens.” Seeing that
there’s no escape, Eric wants more than ever to
move to Hawaii and build boats.•

BAL Wow, that worked great. Now all I have to do is buy $1800 worth of
tariff-enhanced RAM so I can render my flyby of the Pentagon.

KON I won’t ask what you’re up to these days. My recent stock dealings have
left me low on bail money. Did you try it on 7.1.2?

100 BAL It didn’t happen on straight 7.1.2, but I installed System Update 3.0
and it happened. VM must have changed in this update.

KON Sounds like a VM problem all right. Paste the older VM resources into
the new system. (I love component software.)

BAL The problem is still there. Does this let VM off the hook?

KON VM is never off the hook, but if your only problem is that the desktop
pattern is black and white, maybe you should stop whining and do
your work.

95 BAL No, this is more serious. I opened the Monitors control panel and
there was no depth list and no monitor tile in the rearrange section.

KON Well, this should be pretty straightforward. Does it happen every
time?

90 BAL No such luck. This one is really evil. I’ve been trying to get a
reproducible case for days. Sometimes it happens right away,
sometimes it goes away for hours. Once it starts happening, it seems to
keep happening across restarts. It doesn’t happen as reliably across
shutdowns. It seems to happen more in millions of colors but will
happen at other depths too. Switching the display back and forth
between a 13-inch and a multiple-scan display sometimes causes the
problem to show up. Changing VM and RAM disk settings seems to
affect the reproducibility.

KON Cool! The random bugs are always the most fun. Let’s get our trusty
MacsBug and see if we can find where it’s going bad. Look at the video
driver and GDevice.

85 BAL When I try to enter MacsBug, the mouse freezes but MacsBug doesn’t
come up.

KON Dang, I hate it when the tools don’t work.

BAL Perhaps we should devote this column to model rocketry and video
games instead.

KON Now there’s a thought. If I type Command-G, does the mouse
unfreeze, or do I have to reboot?

BAL The machine comes back when you hit Command-G.

KON So MacsBug is there; you just can’t see it. I’ll use log foo to dump the
output to a file named foo, followed by

dm @@thegdevice gdevice

Then I’ll use drvr to see if the video driver is alive.

BAL Nice log trick, KON! The GDevice is fine, and the driver looks as if
it’s loaded and active.

KON Drivers and VM sometimes don’t get along. Maybe the driver is doing
something wrong. Did you try other video cards?

80 BAL It seems to happen only on Power Macintosh AV models.

d e v e l o p Issue 23 September 1995118

KON It’s the nasty “fungus” problem from Issue 17 all over again, or maybe
your card has gone bad.

BAL Well, I’m pretty sure there was no “fungus” around when the AV card
was developed, so it’s probably not that. Besides, we’re sticking to
production software in this column from now on. Anyway, I thought it
might be my card, too, so I borrowed your card. Thanks for the loaner.
I turned on VM and it worked like a champ . . . for a while. Now I’ve
got the same problem again.

KON You killed my card?

BAL Admittedly, it’s a computer that can do anything. But for the purposes
of this column, that idea is pretty far-fetched.

KON Here’s what might be happening: Early in the boot process, VM isn’t
present. For each card, the system calls the card’s PrimaryInit code and
creates a GDevice. When VM loads, it changes the logical address
mappings. When the driver is called again, it assumes a one-to-one
logical-to-physical mapping of RAM, so the card starts responding to
bogus address cycles. This confuses the card’s bus translator, and . . .

75 BAL Whatever. Any other stabs in the dark? Lose five points and try again.

KON OK. Perhaps there are subtle timing variations when VM is present,
and the video card might have borderline hardware that’s affected by
these timing dependencies. Or maybe the card’s controller gets into a
state where it no longer responds to its address space.

70 BAL You’re getting desperate. It’s not a hardware problem. The declaration
ROM is there and everything looks fine. You can’t blame this on the
hardware. Let’s once again follow the software decision tree.

KON Yeah, you’re probably right. Now that I think about it, those ideas
seem really out there.

So what you’re telling me is that the desktop pattern is black and
white, MacsBug isn’t working, and the Monitors control panel doesn’t
show depths or a monitor tile. Let’s find out when MacsBug stops
working.

65 BAL When the machine boots, MacsBug is working, but by the time you
get to the Finder, it’s gone. It seems to vanish early in the boot
process.

KON See if you get to the first Display Manager call with an atb
DisplayDispatch or atb ABEB.

BAL OK. MacsBug is still alive.

KON I’ll set a breakpoint just after the first Display Manager call and then
go.

BAL Yep. There doesn’t seem to be a problem now. But the weird thing is,
if you trace over the Display Manager call and then type go, MacsBug
will eventually go away.

KON Wacky. Sounds like a Display Manager bug.

BAL Earlier you said it was a VM bug.

KON Both have been convicted criminals in the past, so you can’t blame me
for thinking they’re suspects. I’ll bet you a buck it turns out to be
neither! Do an atb on the Display Manager call and trace from there
until MacsBug goes away; it shouldn’t take too long.

KON & BAL’S PUZZLE PAGE: VIDEO NIGHTMARE 119

60 BAL Sorry, MacsBug never goes away. The problem isn’t reproduced.

KON So what you’re telling me is that if I trace over the Display Manager
call and then go, I can’t get into MacsBug after I’m done booting. But
if I keep tracing, the machine boots fine and MacsBug is always
available.

BAL That’s right. Let me help you along a little bit. There’s an
SSecondaryInit call (which runs SecondaryInit code for the video
cards) just a few 680x0 instructions after the first Display Manager
call. Does that help at all?

KON What happens if we do an atb on SSecondaryInit?

55 BAL I can’t reproduce the problem. If I set a breakpoint just after the
Display Manager call and go, the problem disappears. If I do an atb on
the Display Manager call, and either go from there or trace over it and
go, the problem happens. If I trace over it for a few instructions and
go, the problem doesn’t happen.

KON So, what are the “few” instructions? It looks like they’re the ones
whacking the video driver.

50 BAL No, they’re just a few MOVE instructions to innocuous RAM
locations — nothing that should touch video.

KON What does this Display Manager call do? Could it be hosing anything
in the slots?

45 BAL I don’t think so. I used MacsBug to skip it entirely and the problem
still happens.

KON This isn’t getting us anywhere. Maybe the desktop pattern problem
has some better clues. The General Controls control panel in System
7.5 has an INIT resource that calls HasDepth to decide whether to use
the color pattern. It then sets a PRAM bit to remember whether to use
a color pattern across restarts. When the desktop pattern is black and
white, I’ll use the log trick to find out what the HasDepth call is
returning.

40 BAL It returns an error.

KON Aha! Since HasDepth returns an error, the INIT resource thinks it’s
on a display that can support only one bit per pixel (black and white),
so it disables the color desktop pattern and resets the PRAM bit; the
color desktop pattern is now gone forever.

BAL OK.

KON Let’s trace HasDepth and find out what’s wrong.

35 BAL It looks as if the Slot Manager returns the correct values for the active
functional sResource of the card but fails to find the depth. It returns
-316, an smInitStatVErr. According to Errors.h, this error indicates
that the siInitStatusV field was “negative after primary or secondary
init.” This means the card’s PrimaryInit or SecondaryInit code
returned an error.

KON We can bet it’s not PrimaryInit, because the GDevice is good. If the
error had happened in PrimaryInit, QuickDraw would have gotten an
smInitStatVErr when it called the Slot Manager to build the GDevice.

30 BAL You’re finally making some progress!

d e v e l o p Issue 23 September 1995120

KON MacsBug also makes Slot Manager calls (when it tries to switch
depths), which explains why it fails. That means the problem must be
with the SSecondaryInit call. Once the Slot Manager gets this error,
most Slot Manager calls return errors.

BAL But this doesn’t explain what’s causing the Slot Manager to fail to
begin with, or why the problem goes away every time we get close to
it with MacsBug.

KON Maybe we should try this with a BootBug card. Can you still get one?

BAL Maybe, but we’re doing pretty well here. Let’s keep going a little
longer.

KON Let’s try to figure it out by brute logic. What does the SecondaryInit
code look like on this card?

25 BAL MOVE.L A0,A0.

KON That’s it? Two bytes? No RTS? Cool! A bug in the AV card ROM!
Does this mean we all get new cards with the new 2.0 ROM? Maybe
they can simplify that complicated Monitors control panel Options
dialog at the same time. How does it boot at all?

20 BAL Good question. Designing Cards and Drivers for the Macintosh Family
says that the SecondaryInit entry on a video card is an SExecBlock,
which is a header followed by actual code. The Slot Manager validates
the header before it executes the code. The first byte of an SExecBlock
is the revision number, and the Slot Manager checks for a revision byte
of 0x02. Since MOVE.L A0,A0 is 0x2048 in hex, the first byte of the
AV card’s SecondaryInit entry is 0x20, which is a bogus entry, and the
Slot Manager will never try to execute the SecondaryInit code.

KON So it’s pretty lame, but it should work, right?

BAL Yes. Remember, we added SecondaryInit to the boot process because
some machines didn’t have 32-bit QuickDraw in ROM. On a machine
without 32-bit QuickDraw in ROM, video cards have to disable their
functional sResources with direct bit depths (16 and 32) in their
PrimaryInit code, because the PrimaryInit code runs before the disk
is up and the cards can’t tell if the system has 32-bit QuickDraw
installed. SecondaryInit was added to give these cards a chance to
reenable those direct depths after 32-bit QuickDraw was loaded from
disk. Power Macs obviously have 32-bit QuickDraw in ROM, and this
card only runs on a Power Mac, so it doesn’t need SecondaryInit.

KON Let’s walk through the SSecondaryInit call and see what it does. Why
does VM make a difference? And why is MacsBug causing the problem
to go away if you set breakpoints?

BAL You’re just full of questions, aren’t you? You’re supposed to be giving
the answers!

KON Let’s walk through SSecondaryInit.

15 BAL For each card, it looks for a SecondaryInit entry in the card’s ROM.
The entry contains a header followed by the SecondaryInit code. If
there’s no SecondaryInit entry on the card, SSecondaryInit bails out
early. If there is a SecondaryInit on the card, the Slot Manager tries to
execute it with SExec and then checks the status from the SExec call.
If the status is negative (an error), the Slot Manager marks the slot
with that evil -316 error, and the slot is bad from there on out.

KON & BAL’S PUZZLE PAGE: VIDEO NIGHTMARE 121

KON So who is responsible for setting the error?

10 BAL The code executed by SExec, in this case the SecondaryInit code,
should set the status error. If the header is bad, the code never gets run
and the status never gets set.

KON Let me guess: the boot code never initializes the status before calling
SExec.

5 BAL Yep. And it’s allocated on the stack as a local variable, which means
that the status is set to whatever garbage is left on the stack. At this
point in the boot process you’re still in supervisor mode, so MacsBug
is sharing your stack. When MacsBug is used, it pushes stuff onto the
stack and then pops it off when it leaves (changing the garbage below
the stack in the process). That’s why setting breakpoints and tracing
mask the problem. BootBug also uses the stack, so it too would have
interfered with the bug.

Between the first Display Manager call and the SSecondaryInit, the
system allocates stack space for the SPBlock parameter for the
SSecondaryInit call. After the SPBlock is allocated, the stack pointer
is very close to where the local variables for SSecondaryInit will be
allocated. At this point MacsBug’s stack usage will affect those never-
initialized local variables.

This is something else to add to your list of gotchas for MacsBug: If
you’re in supervisor mode (as you are at this point in the boot process)
and you set breakpoints, MacsBug is sharing your stack, and its use of
the stack may affect uninitialized variables. Later in the boot process,
VM switches the machine to user mode; from then on, MacsBug and
applications use different stacks and MacsBug will not interfere with
uninitialized variables on the stack.

KON The garbage that VM leaves on the stack (sometimes) happens to be
negative. When the boot code gets to SecondaryInit and allocates
variables on the stack, it happens to use an area of the stack affected
by VM.

BAL Well, I never turn VM on, so I’m always in supervisor mode, and
MacsBug always shares my stack. But now I’ve finally found a good use
for VM: turn it on when I have a bug that’s hard to reproduce when
MacsBug gets involved, and see if it becomes reproducible.

KON That’ll slow your machine down.

BAL Nasty.

KON Yeah.

d e v e l o p Issue 23 September 1995122

SCORING
75–100 Excellent; you probably have a video-in jack built right into your head.
50–70 Maybe we should be working for you.
25–45 Maybe you should be working for us.
5–20 Maybe you should stick to television.•

Thanks to Rich Collyer, Kent Miller, Mike Puckett, John Yen, KON (Konstantin Othmer), and BAL
(Bruce Leak) for reviewing this column.•

For a cumulative index to all issues of
develop, see this issue’s CD.•

'****' wild card, in scripting
dictionaries 91

A
A5 world, with QuickTime

(Macintosh Q & A) 111
'abst' device profile type

(ColorSync) 26
“According to Script” (Simone),

thinking about dictionaries
90–93

AddXArg (MPW) 72
ambient coefficient attribute type

(QuickDraw 3D) 42
Anderson, Eric 117
Apple event descriptor 72
Apple events, for SourceServer

72–74
AppleScript 90

overriding standard suites
90

ARA (Apple Remote Access),
ProjectDrag and 74

attributes (of preferences), IC and
58

Attribute Set class (QuickDraw
3D) 40–42

B
“Balance of Power” (Evans),

Power Macintosh: The Next
Generation 52–54

Balloon Help
Macintosh Q & A 104
in multipane dialogs 81–82

baseItems field (multipane
dialogs) 84, 89

“Basics of QuickDraw 3D
Geometries, The” (Thompson
and Fernicola) 30–51

binary objects, Newton Q & A
114

box objects (QuickDraw 3D) 43,
45–47

B-splines (QuickDraw 3D) 43
BuildTuneHeader (QTMA) 15,

16–17
BuildTuneSequence (QTMA) 15,

17–18

C
CallComponentFunctionWith-

Storage (Component Manager),
IC and 65

Cancel button, in multipane
dialogs 79, 80

CheckIn (MPW) 74
CheckOut (MPW) 72, 74
Click action procedure (multipane

dialogs) 84, 85–87
CloseMPDialog (multipane

dialogs) 83
CM2Header 26
CMAppleProfileHeader 26
CMCopyProfile 27
CMFlattenProfile 27
CMGetProfileElement 27
CMGetProfileHeader 27
CMGetPS2ColorRendering 27
CMGetPS2ColorSpace 27
CMGetSystemProfile 27
CMHeader 26
CMM. See color management

module
CMNewProfile 27
CMNewProfileSearch 27
CMOpenProfile 27
CMProfileLocation 26–27
CMProfileRef 27, 27
CMProfileSearch 27
CMSearchGetIndProfile 27
CMSearchRecord 27
CMUnflattenProfile 27
CMValidateProfile 27
color management, with

ColorSync 2.0 25–28
color management module

(CMM) (ColorSync) 25, 26
Color QuickDraw

ColorSync 2.0 and 27, 28
printer drivers (Macintosh

Q & A) 105
ColorSync 2.0 25–28

API naming convention 27
color worlds 27
device profiles 25–27
PostScript code generation

27, 28
printing with 28
QuickDraw-specific

matching 27
color worlds (ColorSync) 27, 28

complexity flag (QuickDraw 3D)
44

component glue (Internet Config)
63–65

disassembling 65
for ICGetPref 64–65
for ICStart 63–64

ComponentInstance (Internet
Config) 62

Component Manager
implementing shared

libraries 55, 61
targeting 66–67, 70

component “smarts” (Internet
Config) 66–67

component wrapper (Internet
Config) 65–66

ConvertFileToMovieFile (Movie
Toolbox) 21

Copland, ProjectDrag and 76
CreateCommand (MPW) 72
CWCheckBitmap 28
CWCheckColors 28
CWConcatColorWorld 28
CWMatchPixMap 27

D
data (of preferences), IC and 58
data byte (MIDI) 7
Debugging Modern Memory

Manager, Power Macintosh and
53, 54

DefaultAction (multipane dialogs)
85

DefaultClickAction (multipane
dialogs) 86

DefaultEditAction (multipane
dialogs) 87

Delay (QTMA) 8
descriptor (Apple event) 72
descriptor lists (SourceServer) 72,

74
desktop pattern, KON & BAL

puzzle 117–118, 120
device drivers, Power Macintosh

and 53
device profiles (ColorSync)

25–27, 28
accessing 27
accessing elements 27
embedding 27
header structure 26

INDEX

INDEX 123

location structure 26–27
profile types 26
quality flag bits 26, 28
reference structure 27
rendering intents 26, 28
searching 27

DGRP resources, for multipane
dialogs 81

'diag' parameter (SourceServer)
74

DialogDisplay (multipane dialogs)
83

dialogs, multipane 77–89
dictionaries (scripting) 90–93

adding new terms 90
comment area 92
defining a compound “type”

92
identical keyword entries in

92
multiple value types in

91–92
object classes and properties

in 91
ordering commands in 91
ordering parameters in 91
syntax of terms 93

diffuse color attribute type
(QuickDraw 3D) 42

disableQuality (Macintosh Q & A)
108

display groups (QuickDraw 3D)
38

Display Manager
KON & BAL puzzle

119–120, 122
Power Macintosh and 54

Displays.h header file 54
DITL resource, for multipane

dialogs 80–81
DLOG resource, for multipane

dialogs 80
document lists, document

synchronization and 96
document synchronization

95–100
“Document Synchronization and

Other Human Interface Issues”
(Linton) 94–102

document windows, preventing
duplication of 100–101

DoMPDialogEvent (multipane
dialogs) 82

DoSyncChecks, document
synchronization and 97, 98

drag and drop source control
74–76

DrawGray procedure, in
multipane dialogs 81

DrawMatchedPicture, Macintosh
Q & A 105

DropShell, ProjectDrag and 74
DSFindWindow, document

synchronization and 101
DSPopUpNavigation, document

synchronization and 101
DSSyncWindowsWithFiles,

document synchronization and
96–97

DSSyncWindowWithFile,
document synchronization and
96–97

DTL# resource, for multipane
dialogs 81

DumpXCOFF tool 54

E
'eat ' component (QuickTime) 21
editable text fields, in multipane

dialogs 84, 87, 88
Edit action procedure (multipane

dialogs) 84, 87, 88
EPS file format, and the ICC

profile format 26
Evans, Dave 52
EvenBetterBusError, Power

Macintosh and 54
EvenMoreFiles.c file 98

F
factory defaults, for multipane

dialogs 84
Fernicola, Pablo 30
file reference number, tracking

files with 96
Files.h interface file 53
FindNextComponent, Macintosh

Q & A 110
FindWindow (Window Manager)

101
floating windows 3
FlushCodeCacheRange (Power

Macintosh) 52
FlushInstructionCache (Power

Macintosh) 52
FMS (Free MIDI System) 6
Franke, Norman 77

G
gamuts (ColorSync) 25

checking 28
general event (QTMA) 14
General MIDI (GM) 7–8

table of GM instruments 9
General MIDI component

(QTMA) 6
general polygon objects

(QuickDraw 3D) 43, 44, 46
geometries (QuickDraw 3D)

30–51
building 42–51
class hierarchy 34–42
composite 47–51
texturing 47–49
See also QuickDraw 3D

GetIconSuite (Macintosh Q & A)
103

GetMovieNextInterestingTime,
Macintosh Q & A 111

GetMoviePict, Macintosh Q & A
111

GetMPDItem (multipane dialogs)
83

GetNextProcess (Macintosh
Q & A) 104

GetProcessInformation
(Macintosh Q & A) 104

GetVolInfo, Power Macintosh and
53

gmNumber field
(ToneDescription) (QTMA) 7

Group class (QuickDraw 3D)
37–38

GXCleanupOpenConnection,
Macintosh Q & A 109

GXCleanupStartSendPage,
Macintosh Q & A 109

GXCloneColorProfile, Macintosh
Q & A 108

GXDisposeColorProfile,
Macintosh Q & A 108

GXDoesPaperFit, Macintosh
Q & A 109

GXGetLayoutJustificationGap,
Macintosh Q & A 107–108

gxLayoutOptions, Macintosh
Q & A 108

GXOpenConnection, Macintosh
Q & A 109

GXPostScriptDoDocumentHeader,
Macintosh Q & A 105–106

GXStartSendPage, Macintosh
Q & A 109

d e v e l o p Issue 23 September 1995124

H
HandleDirectoryChange,

document synchronization and
98, 99

HandleMoveToTrash, document
synchronization and 98,
99–100

HandleNameChange, document
synchronization and 97, 98

Hayward, David 25
'hdlg' resource, for multipane

dialogs 82
Hendry, Ian 117
hidden static text fields, in

multipane dialogs 80
HMShowBalloon (Macintosh

Q & A) 104
hyphens (-), in scripting

dictionaries 93

I
IC. See Internet Config
ICCGetPref 63
ICCIGetPref 65–66
ICCI prefix (Internet Config) 62
ICCIStart 66–67
ICC prefix (Internet Config) 62
ICC profile format, ColorSync 2.0

and 25–26
ICCStart 62
IC developer’s kit 56
ICFindConfigFile 58, 59
ICGetPref 58, 59, 61–62

component glue for 64–65
link-in implementation for

69
overriding 70
switch glue for 63, 66

ICInstance 58, 63
Icon Utilities (Macintosh Q & A)

103–104
IC prefix (Internet Config) 62
ICRForceInside 69
ICRGetPref 63, 65–66
ICR prefix (Internet Config) 62
ICRRecord 62, 67, 68
ICRRecordPtr 63
ICRStart 62
ICStart 58, 59, 61–62

component glue for 63–64
link-in implementation for

68
switch glue for 62–63

ICStop 58, 59
IC user’s kit 56

illegal-instruction handler, Power
Macintosh and 54

ImageJob, Macintosh Q & A 109
ImagePage, Macintosh Q & A 109
immediate mode rendering

(QuickDraw 3D) 31–32
translate transforms 41
versus retained mode 31

“Implementing Shared Internet
Preferences With Internet
Config” (Quinn) 55–71

index tabs, in multipane dialogs 77
information group (QuickDraw

3D) 38
InstallAction (multipane dialogs)

84
instruction cache (Power

Macintosh), flushing 52
instrumentName field

(ToneDescription) (QTMA)
7–8

instrumentNumber field
(ToneDescription) (QTMA)
7–8

instrument picker utility (QTMA)
11–12

International Color Consortium
(ICC). See ICC profile format

International Color Consortium
Profile Format Specification
24–26

Internet Config (IC) 55–71
development history 60
IC preferences 58
internal structure 60–61
link-in implementation

67–69
main window 57
override components 70
routine name prefixes 62
and shared libraries 61
switch glue 61, 62–63
updating 70
See also Internet Config

component
Internet Config component 63

component glue 63–65
component “smarts” 66–67
component wrapper 65–66
replacing 70
and shared libraries 61

Internet Config Extension 56, 57,
61

Internet Configuration System
(IC). See Internet Config

Internet preferences, shared
55–71

Internet Preferences file 56, 57, 61
default filename of 67

I/O proxy display groups
(QuickDraw 3D) 38

J
Johnson, Dave 112

K
keyDirectObject (SourceServer) 74
keyErrorNumber (SourceServer)

74
keys (of preferences), IC and 58
kGeneralEventNoteRequest

(QTMA) 15
kMusicPacketPortFound (QTMA)

22
kMusicPacketPortLost (QTMA)

22
“KON & BAL’s Puzzle Page”

(Hendry and Anderson), Video
Nightmare 117–122

kQ3GeneralPolygonShapeHint-
Complex (QuickDraw 3D) 44,
46

L
LaserWriter 8.3 driver, ColorSync

2.0 and 28
layout shapes, for editable text

(Macintosh Q & A) 107–108
LClick (Macintosh Q & A)

104–105
light group (QuickDraw 3D) 37
line objects (QuickDraw 3D) 42,

43
'link' device profile type

(ColorSync) 26
link-in implementation (Internet

Config) 67–69
Linton, Mark H. 94
local coordinates (QuickDraw 3D)

39
local-to-world matrix (QuickDraw

3D) 39–40

M
Macintosh Q & A 103–111
marker event (QTMA) 15
marker objects (QuickDraw 3D)

42
Maroney, Tim 72

INDEX 125

matrix transform (QuickDraw 3D)
40

media samples (QuickTime) 21
Memory Manager, Power

Macintosh and 53
mesh objects (QuickDraw 3D)

43, 50–51
MIDI (Musical Instrument Digital

Interface) 5–6, 7
converting SMF files to

QuickTime movies 19–21
default MIDI input 21
MIDI packet structure 22
parsing MIDI messages

23–24
reading input from MIDI

devices 21–24
release velocity 22–23
system-exclusive messages

21
MIDI connector 7
MIDI Manager 5, 6
'mntr' device profile type

(ColorSync) 26
modeless dialog, as multipane

dialog 79
models (QuickDraw 3D) 36
Modern Memory Manager, Power

Macintosh and 53
ModifyReadOnly (ProjectDrag) 74
Moller, Elizabeth 77, 80
movable modal dialog, as

multipane dialog 79
MPDHdl (multipane dialogs) 82,

84
MPDialogs sample application

77, 78, 80
MPDRec (multipane dialogs) 84,

85
'MPSP' (SourceServer) 74
MPW (Macintosh Programmer’s

Workshop), customizing source
control 72–76

“MPW Tips and Tricks”
(Maroney), Customizing
Source Control With
SourceServer 72–76

multipane dialogs 77–89
accessing control values

83–84
action procedures 84–89
closing 83
controls for navigating 77
custom capabilities 79
customizing 84–89
defining resources for 79–82

handling events 82
opening 82
pointers and handles 82
tips for designing 80
user interface 78–79

“Multipane Dialogs” (Franke)
77–89

music, adding with QTMA 5–24
music components (QTMA) 6
“Music the Easy Way: The

QuickTime Music Architecture”
(Van Brink) 5–24

N
NALoseDefaultMIDIInput

(QTMA) 21
Name Registry, Power Macintosh

and 54
NameRegistry.h header file 54
NANewNoteChannel (QTMA) 8
NAPickInstrument (QTMA)

11–12
NAPlayNote (QTMA) 8, 12
NASetController (QTMA) 12
NASetDefaultMIDIInput

(QTMA) 21
NAStuffToneDescription

(QTMA) 8, 11
NAUseDefaultMIDIInput

(QTMA) 21, 23
NCMBeginMatching 27
NCMDrawMatchedPicture 27
NCMUseProfile 27
NCMUseProfileComment 27
NewsWatcher application 96
Newton memory (Newton Q & A)

114
Newton Q & A: Ask the Llama

114–116
Next/Previous buttons, in

multipane dialogs 77
NNTPHost preference (Internet

Config) 70
nonuniform rational B-spline. See

B-splines; NURB curve objects;
NURB patch objects

note allocator component
(QTMA) 6

note-playing code 8–11
pitch parameter 8, 12
playing notes with 6–14
using controllers 12–14
velocity parameter 8, 12,

22–23
note channel (QTMA) 6, 7
note event (QTMA) 14–15

note-off event (MIDI) 22
note-on event (MIDI) 22
note-playing code (QTMA) 8–11
NoteRequest structure (QTMA)

7, 8, 14
polyphony field 7

note request event (QTMA) 14
NURB curve objects (QuickDraw

3D) 43
NURB patch objects (QuickDraw

3D) 38, 43

O
Object class (QuickDraw 3D) 34
object model (AppleScript) 90
'odoc' events, ProjectDrag and 74
OK button, in multipane dialogs

79, 80
OMS (Open Music System) 5, 6
OpenComponentResFile, IC and

67
OpenDefaultComponent

(Component Manager)
IC and 63
QTMA and 8

OpenMPDialog (multipane
dialogs) 82, 84

Open Transport networking,
Power Macintosh and 53

ordered display groups
(QuickDraw 3D) 38

override components (Internet
Config) 70

P
palette icons (Macintosh Q & A)

103–104
pan controller (QTMA) 13–14
PasteHandleIntoMovie (Movie

Toolbox) 21
'pdip' resource, Macintosh Q & A

109
PICT file format

ColorSync 2.0 and 27, 28
and the ICC profile format

26
pitch bend controller (QTMA) 13
polling, document synchronization

and 95
polygon objects (QuickDraw 3D)

42, 43, 44, 46
polyline objects (QuickDraw 3D)

42, 43, 44
pop-up menus, in multipane

dialogs 77
pop-up navigation menus 101

d e v e l o p Issue 23 September 1995126

PostScript code, ColorSync 2.0
and 27, 28

PostScript comments, Macintosh
Q & A 105–106

Power Macintosh 52–54
680x0 emulator 52
Display Manager 54
hard disk support 53
illegal-instruction handler 54
Modern Memory Manager

53
Name Registry 54
native device drivers 53
native Open Transport

networking 53
PCI-based 54
Resource Manager 53
Slot Manager 54
Z status bit 54

PowerPC code
calling components from 64
recompiling 680x0 code into

52
preferences, Internet Config 55–71
printer drivers

Color QuickDraw 105
ColorSync-savvy 28

“Print Hints” (Hayward), syncing
up with ColorSync 2.0 25–28

printing, with ColorSync 2.0 28
print objects (QuickDraw 3D) 42
ProjectDrag, SourceServer and

74–76
ProjectDrag Setup 74
Projector commands (MPW) 72,

76
ProjectDrag and 74–76

protoRollItem, Newton Q & A
114–115

'prtr' device profile type
(ColorSync) 26

Q
Q3Exit 35
Q3Group_AddObject 36
Q3Group_New 37
Q3Mesh_DelayUpdates 51
Q3Mesh_ResumeUpdates 51
Q3Object_Dispose 34, 36
Q3Object_Submit 32
Q3Pop_Submit 40
Q3Push_Submit 40
Q3Shared_GetReference 34
Q3View_EndRendering 32
Q3View_EndWriting 32
Q3View_StartRendering 32

Q3View_StartWriting 32
QD3DTransform.h file

(QuickDraw 3D) 39
QD3DView.h file (QuickDraw

3D) 40
QTMA (QuickTime Music

Architecture) 5–24
basic components of 6
building tunes 14–18
instrument picker utility

11–12
Macintosh Q & A 110
MIDI and 5–6, 7
playing tunes 18–21
and QuickTime movies

18–21
reading input from MIDI

devices 21–24
using controllers 12–14
See also note allocator

component; tune player
component

quality flag bits (ColorSync) 26, 28
QuickDraw 3D

attributes 40–42
building geometries 42–51
class hierarchy 34–42
geometries 30–51
groups 37–38
reference counts 35–36
rendering 31–33
scenes 36–37
submitting 32–33
texture-mapping objects

47–51
transforms 39–40

QuickDraw GX
ColorSync and 25
layered shapes (Macintosh

Q & A) 106–107
removing panel items

(Macintosh Q & A) 108
QuickTime 2.0, compatibility with

QuickTime for Windows
(Macintosh Q & A) 110–111

QuickTime 2.1, QTMA and 5
QuickTimeComponents.h file

(QTMA) 15
QuickTime movies

creating music tracks 18–21
detaching from files

(Macintosh Q & A) 109
getting sequential frames

(Macintosh Q & A) 111
QuickTime Musical Instruments

Extension 110

QuickTime Music Architecture.
See QTMA

QuickTime Music control panel
21, 22

QuickTime for Windows,
compatibility with QuickTime
2.0 (Macintosh Q & A)
110–111

Quinn “The Eskimo!” 55

R
radio button groups, in multipane

dialogs 84, 87–89
RadioGroup structure (multipane

dialogs) 88
Radio Group action procedure

(multipane dialogs) 84, 87–89
RandomSignature (Internet

Config) 70
readHook, QTMA and 21–22,

23–24
real numbers, Newton Q & A 114
reference counts (QuickDraw 3D)

35–36
Registry suites (AppleScript),

scripting dictionaries and 91
RemoveAction (multipane dialogs)

84
Remove From Trash option,

document synchronization and
100

renaming documents 94, 95–100
rendering (QuickDraw 3D)

31–33
immediate mode 31–32, 41
retained mode 31, 32, 33

rendering intents (ColorSync) 26,
28

ResEdit TMPL templates, for
multipane dialogs 79

Resource Manager
Macintosh Q & A 103
Power Macintosh and 53

rest event (QTMA) 14–15, 18
retained mode rendering

(QuickDraw 3D) 31, 32, 33
versus immediate mode 31

Revert button, in multipane
dialogs 79, 80

RS/6000 POWER instructions,
Power Macintosh and 54

S
scenes (QuickDraw 3D) 36–37
'scnr' device profile type

(ColorSync) 26

INDEX 127

Send_GXBufferData, Macintosh
Q & A 105–106

server connections (Newton
Q & A) 115

Set Defaults action procedure
(multipane dialogs) 84, 85

SetFrontProcess (Macintosh
Q & A) 104

SetHilite, Newton Q & A 115
SetLength, Newton Q & A

115–116
SetMPDItem (multipane dialogs)

83
Shared class (QuickDraw 3D)

35–36
shared libraries, IC component

and 61
SignatureToApp (SourceServer) 74
Simone, Cal 90
simple polygon objects

(QuickDraw 3D) 42, 44
680x0 emulator (Power

Macintosh) 52
slashes (/), in scripting dictionaries

93
Slot Manager

KON & BAL puzzle
120–121

Power Macintosh and 54
smart strings (Newton Q & A) 116
SMF files. See Standard MIDI

Files
software synthesizer component

(QTMA) 6
source control

customizing with
SourceServer 72–76

drag and drop 74–76
SourceServer

Apple events for 72–74
creating commands 73
customizing source control

72–76
descriptor lists 72, 74
sending commands to 75

'spac' device profile type
(ColorSync) 26

specular color attribute type
(QuickDraw 3D) 42

specular control attribute type
(QuickDraw 3D) 42

SPI (system programming
interface), Power Macintosh
and 53

SSecondaryInit, KON & BAL
puzzle 120, 121–122

StandardGetFile, QTMA and 21
Standard MIDI files (SMF),

converting to QuickTime
movies 19–21

standard modal dialog, as
multipane dialog 79

standard output handle
(SourceServer) 74

'stat' parameter (SourceServer) 74
status byte (MIDI) 7
strings, allocating (Newton

Q & A) 115–116
_StuffGeneralEvent macro

(QTMA) 15, 16
_StuffNoteEvent macro (QTMA)

15, 17–18
_StuffRestEvent macro (QTMA)

15, 17–18
_StuffXNoteEvent macro

(QTMA) 17
Submit functions (QuickDraw 3D)

32–33
submitting (QuickDraw 3D) 32–33
surface UV attribute type

(QuickDraw 3D) 42
switch glue (Internet Config) 61,

62–63
for ICGetPref 63, 66
for ICStart 62–63

synthesizerName field
(ToneDescription) (QTMA) 7

synthesizerType field
(ToneDescription) (QTMA) 7

T
targeting (Component Manager)

66–67, 70
TEHandle (Macintosh Q & A)

104
text descriptors (SourceServer) 72
texture-mapping objects

(QuickDraw 3D) 47–51
texture shader attribute type

(QuickDraw 3D) 42, 47–49
Thompson, Nick 30
TIFF file format

ColorSync 2.0 and 28
and the ICC profile format

26
“Tips for Designing Multipane

Dialogs” (Moller) 80
ToneDescription structure

(QTMA) 7–8
Transform class (QuickDraw 3D)

39–40

translate transform objects
(QuickDraw 3D), creating 41

translate transforms (QuickDraw
3D), in immediate mode 41

triangle objects (QuickDraw 3D)
42, 43–44, 45

trigrid objects (QuickDraw 3D)
43, 47

tune-building code (QTMA)
15–18

tune header (QTMA) 14, 15
tune player component (QTMA) 6

building tunes 14–18
playing tunes 18–21
tune-building code 15–18

tune sequence (QTMA) 14, 15

U
UniversalProcPtr, in multipane

dialogs 84
Update (ProjectDrag) 74
Use Defaults button, in multipane

dialogs 79, 80
user interface, for multipane

dialogs 78–79
UV parameters (QuickDraw 3D)

47–48, 50

V
Van Brink, David 5
“Veteran Neophyte, The”

(Johnson), A Feel for the Thing
112–113

View class (QuickDraw 3D) 36–37
viewFlags slot, Newton Q & A 115
VM, KON & BAL puzzle

117–118, 122
volume controller (QTMA) 13

W
WaitNextEvent, document

synchronization and 95
WindowShade (Macintosh Q & A)

104
world coordinates (QuickDraw

3D) 39

X
XVolumeParam, Power Macintosh

and 53

Z
Z status bit, Power Macintosh and

54

d e v e l o p Issue 23 September 1995128

