

E D I T O R I A L S T A F F

Editor-in-Cheek Caroline Rose

Managing Editor Toni Moccia

Technical Buckstopper Dave Johnson

Bookmark CD Leader Alex Dosher

Able Assistant Meredith Best

Our Boss Mark Bloomquist

His Boss Dennis Matthews

Review Board Brian Bechtel, Dave Radcliffe,
Jim Reekes, Bryan K. “Beaker” Ressler,
Larry Rosenstein, Andy Shebanow, Nick
Thompson, Gregg Williams

Contributing Editors Lorraine Anderson,
Patria Brown, Steve Chernicoff, Toni
Haskell, Judy Helfand, Cheryl Potter,
Joan Stigliani

Indexer Marc Savage

A R T & P R O D U C T I O N

Production Lisa Ferdinandsen, Diane Wilcox

Art Direction Paul Luiso

Technical Illustration Mary Prusmack Ching,
John Ryan, Laurie Wigham

Formatting Forbes Mill Press

Photography Sharon Beals

Cover Illustration Graham Metcalfe of
Metcalfe/Shuhert Design

ISSN #1047-0735. © 1995 Apple Computer, Inc.
All rights reserved. Apple, the Apple logo, APDA,
AppleLink, AppleScript, AppleShare, AppleTalk,
ColorSync, EtherTalk, HyperCard, HyperTalk,
LaserWriter, LocalTalk, Mac, MacApp, Macintosh,
MacTCP, MPW, MultiFinder, Newton, NewtonMail,
OpenDoc, PowerBook, Power Macintosh, QuickTime,
and TrueType are trademarks of Apple Computer, Inc.,
registered in the U.S. and other countries. A/ROSE,
develop, Dylan, eWorld, Finder, NewtonScript,
PowerTalk, QuickDraw, Sound Manager, and
ToolServer are trademarks of Apple Computer, Inc.
Adobe, Acrobat,and PostScript are trademarks of
Adobe Systems Incorporated or its subsidiaries and
may be registered in certain jurisdictions. PowerPC
is a trademark of International Business Machines
Corporation, used under license therefrom. UNIX is
a registered trademark of Novell, Inc. in the United
States and other countries, licensed exclusively through
X/Open Company, Ltd. All other trademarks are the
property of their respective owners.

T H I N G S T O K N O W

develop, The Apple Technical
Journal, a quarterly publication of
Apple Computer’s Developer Press
group, is published in March, June,
September, and December. develop
articles and code have been reviewed
for robustness by Apple engineers.

This issue’s CD. Subscription issues
of develop are accompanied by the
develop Bookmark CD. This CD contains
a subset of the materials on the monthly
Developer CD Series, available from
APDA. Included on the CD are this
issue and all back issues of develop along
with the code that the articles describe.
(The code is updated periodically, so
always use the most recent CD.) The
CD also contains Technical Notes,
sample code, and other documentation
and tools (these contents are subject to
change). Items referred to as being on
“this issue’s CD” are located on either
the Bookmark CD or the Reference
Library or Tool Chest edition of the
Developer CD Series. The develop issues
and code are also available in the
Developer Services areas on AppleLink
and eWorld and at ftp.info.apple.com.
Selected articles are on the World
Wide Web at http://www.apple.com,
in the Developer Services area.

Macintosh Technical Notes.
A designation like “(QT 4)” after a
reference to a Macintosh Technical
Note in develop indicates the category
and number of the Note on this issue’s
CD. (QT is the QuickTime category.)

E-mail addresses. Most e-mail
addresses mentioned in develop are
either AppleLink or eWorld addresses.
We’re currently in transition: a given
AppleLink address may no longer work
by the time this issue is published.
If that happens, try the equivalent
eWorld address. On the Internet,
AppleLink address XXX translates to
xxx@applelink.apple.com, eWorld
addresss XXX to xxx@eworld.com,
and NewtonMail address XXX to
xxx@online.apple.com.

C O N T A C T I N G U S

Feedback. Send editorial suggestions
or comments to Caroline Rose at
AppleLink CROSE, Internet
crose@applelink.apple.com, or fax
(408)974-6395. Send technical
questions about develop to Dave
Johnson at AppleLink JOHNSON.DK,
Internet dkj@apple.com, CompuServe
75300,715, or fax (408)974-6395. Or
write to Caroline or Dave at Apple
Computer, Inc., 1 Infinite Loop,
Cupertino, CA 95014.

Article submissions. Ask for our
Author’s Guidelines and a submission
form at AppleLink DEVELOP,
Internet develop@applelink.apple.com,
or fax (408)974-6395. Or write to
Caroline Rose at the above address.

Subscriptions and back issues.
You can subscribe to develop through
APDA (see ordering information
below) or use the subscription card in
this issue. You can also order printed
back issues from APDA. For all
subscription changes or queries,
contact APDA and be sure to include your
name, address, and account number as it
appears on your mailing label.

The one-year U.S. subscription price is
$30 (for 4 issues and 4 develop Bookmark
CDs), or U.S. $50 in other countries.
Back issues are $13 each. These prices
include shipping and handling. For
Canadian orders, the subscription price
includes GST (R100236199).

APDA. To order products from APDA
or receive the Apple Developer Tools
Catalog of all the products available
from APDA, call 1-800-282-2732 in
the U.S., 1-800-637-0029 in Canada,
(716)871-6555 internationally, or
(716)871-6511 for fax. Order
electronically at AppleLink APDA,
Internet apda@applelink.apple.com,
CompuServe 76666,2405, or America
Online APDAorder. Or write APDA,
Apple Computer, Inc., P.O. Box 319,
Buffalo, NY 14207-0319.

Printed on recycled paper

d e v e l o p

A R T I C L E S

6 Speeding Up whose Clause Resolution in Your Scriptable Application
by Greg Anderson
Although the Object Support Library will resolve complex AppleScript clauses for you, if you take on some
of the work yourself the performance gains can be dramatic.

30 Getting Started With OpenDoc Storage by Vincent Lo
OpenDoc storage is a departure from what you’re used to: it needs to support storing different kinds of data,
written by different part editors, in the same file or container.

45 Sound Secrets by Kip Olson
These less obvious features of the Sound Manager will help improve your application’s use of sound.

59 Guidelines for Effective Alerts by Paige K. Parsons
This article elaborates and expands on the guidelines for the consistent and correct usage of alerts.

72 Printing Images Faster With Data Compression by David Gelphman
PostScript Level 2 printers can accept JPEG-compressed image data directly, which can greatly improve
printing speed. Here’s what you need to know to take advantage of this ability.

84 The New Device Drivers: Memory Matters by Martin Minow
Using PrepareMemoryForIO to set up memory for data transfers to or from other devices is a complex —
but very important — process. This walkthrough points out traps and pitfalls along the way.

C O L U M N S

27 ACCORDING TO SCRIPT
Steps to Scriptability
by Cal Simone
A clear, step-by-step method for developing
your particular scripting implementation.

42 GRAPHICAL TRUFFLES
Making the Most of QuickDraw 3D
by Nick Thompson and Pablo Fernicola
A few tips for QuickDraw 3D that might make
your life a little easier.

56 BALANCE OF POWER
Advanced Performance Profiling
by Dave Evans
Some new and useful performance profiling
features of the PowerPC 604 processor.

69 MPW TIPS AND TRICKS
ToolServer Caveats and Carping
by Tim Maroney
All about ToolServer, a small, scriptable
application that can run MPW commands.

100 MACINTOSH Q & A
Apple’s Developer Support Center answers
queries about Macintosh product development.

110 THE VETERAN NEOPHYTE
The Right Tool for the Job
by Dave Johnson
Dynamic languages are the future of
programming. Or at least they ought to be.

112 NEWTON Q & A: ASK THE LLAMA
Answers to Newton-related development queries.

117 KON & BAL’S PUZZLE PAGE
Zoning Out
by Konstantin Othmer and Bruce Leak
The original Puzzlers return with another
merry romp through the guts of the machine.

Issue 24 December 1995

CONTENTS 1

2 EDITOR’S NOTE
3 LETTERS

123 INDEX

I was visiting my friends Helen and John one night when Helen started telling me
how excited about the World Wide Web John had become. He said, “Ask me
anything at all, and I can find the answer for you.” I asked what the new U.S. postal
rate for international air mail was, knowing it had recently gone up from $.50. He
delighted over finding a Web page for the Postal Service, and quickly found the rate:
$.50. Wrong.

Later John showed me a spiffy magazine called NewMedia, and in it an article by
longtime hypertext proponent Ted Nelson. Nelson expressed his joy that, with
HTML and the Web, hypertext’s time has finally come; we can now leave the
insanity of “paper simulation” behind and write in a way that lets information take on
its truer, interconnected form.

I found the article, and John’s enthusiasm over the Web, a bit disconcerting. The Web
is indeed a boon to humankind, but I don’t see it entirely replacing what came before.
The world’s love affair with the Web reminds me of the early days of TV (so I’m
told), when many people were sure that radio was dead. Out with the old, in with the
new. But in fact the old still had its place in the world. The virtues of the Web don’t
mean we no longer need to get information from flesh and blood people sometimes,
or from books and other media that we can hold in our hands. This may seem obvious,
but from the near hysteria surrounding the Web these days, I’m not sure it is.

A few days after my visit with Helen and John, with John still smarting from his
failed demonstration of the wonderfulness of the Web, Helen called and mentioned
that she needed the lyrics to “House of the Rising Sun.” I could hear John in the
background, tapping away as he searched for them online. I said I’d use old
technology and call back with them soon. The race was on.

After looking through my looseleaf binders full of song lyrics and a couple of big
songbooks, I dug through my tapes and found an ancient recording of Woody
Guthrie singing the song. After lots of rewinding and transcribing, I had more verses
than Helen ever dreamed existed. When I triumphantly called back, John (several
levels down in the Library of Congress) was mortified.

While old technology will typically not beat Web browsers in the search for nuggets
of information, it will not die, and it deserves proper respect. There are some things
we’ll learn only through person-to-person contact. And there are emotions we’ll
experience only from hearing or reading good old-fashioned sequential deliveries.
The World Wide Web is a valuable resource, but it is not, after all, the world.

CAROLINE ROSE

d e v e l o p Issue 24 December 19952

EDITOR’S NOTE

CAROLINE ROSE (AppleLink CROSE) enjoys
editing develop so much that she fears she may
forget to retire someday. She started out in
technical writing and editing eons ago,
eventually moving on to programming and even
management before returning to her original
calling. What seems to be calling her now is

the sea: Her last vacation took her up to Puget
Sound (stalking wild elk on the Olympic Peninsula
on the way), and her next will be in a sailboat in
the Bahamas. She may even have the opportunity
to cruise the Pacific in a few years but she’s not
sure she’ll be ready to leave develop, her cat, or
terra firma.•

Caroline Rose
Editor

PROJECTDRAG IMPRESSES
I’ve been working with Tim Maroney’s
ProjectDrag (Issue 23, “MPW Tips and
Tricks: Customizing Source Control
With SourceServer”), and I’m very
impressed. I’ve never found an adequate
way of using a revision control system
on the Macintosh (Projector is too
clumsy to use when you’re developing
with CodeWarrior), and I had written
off SourceServer completely after I had
such a miserable experience with it
under Symantec C++ 7.0. But Tim’s
article and software have given that dog
some new tricks. His programs are easy
to use and powerful at the same time.

Thank you very much for publishing
Tim’s work in this issue, and I hope to
see more about ProjectDrag in the
future.

— Phil Sulak

Thanks for the feedback; we’re happy to
know that you find ProjectDrag useful.

There were a few problems with the previous
version of ProjectDrag, so on this issue’s CD
you’ll find a new version with a few bug
fixes and enhancements. Also, the previous
version was missing the makefile; it’s now on
the CD.

— Caroline Rose

QTMA
I read the article on QTMA by David
Van Brink in Issue 23, and have a few
additional questions. As Director of
Audio for Human Code (an Austin
multimedia developer), I’m looking for
a way to convey an other-worldly quality
to the soundscape of a CD-ROM title
we’re developing.

First, is QTMA supported on the PC
platform? If it only works on the Mac
OS platform, I’m back to the drawing
board.

Also, is it possible to seed a bank of
custom-designed samples to be played
using standard MIDI files with QTMA?
If so, is there a developer’s guide
available for programming within
QTMA?

— John Malcolm Smith

First of all, you’ve probably noticed that
there were no changes to the Music
Architecture in QuickTime 2.1 after all.
These changes have been delayed until the
next release of QuickTime (which should
ship by early 1996). The code on this issue’s
CD has been revised so that it compiles with
the 2.0 or 2.1 headers.

On the PC side, QuickTime music tracks
are supported, but only inside movies. So,
compose your score on the Macintosh,
import it into a QuickTime movie using
MoviePlayer, and then save it flattened with
the “Playable On Non-Apple Computers”
box checked. This movie will play through
Windows’ multimedia extensions, according
to its MIDI setup.

As far as adding your own instruments,
you should be able to do this in the next
QuickTime release in two ways: by dropping
a component into the System Folder, to
make a sound library available to all
applications, or by inserting a sound into the
music track of a particular movie.

— David Van Brink

PUZZLE PAGE DOESN’T STINK
Re Lance Drake’s letter in Issue 22
entitled “Puzzle Page Stinks”: I strongly

LETTERS

LETTERS 3

IF YOU LIKE US, LET US KNOW
What do you like, or not like, about develop
(besides the Puzzle Page)? We welcome your
letters, especially regarding articles published in
develop. Letters should be addressed to Caroline
Rose — or, if technical develop-related questions,
to Dave Johnson — at AppleLink CROSE or

JOHNSON.DK. Or you can write to Caroline or
Dave at Apple Computer, Inc., 1 Infinite Loop,
Cupertino, CA 95014. All letters should include
your name and company name as well as your
address and phone number. Letters may be
excerpted or edited for clarity (or to make them
say what we wish they did).•

disagree. The Puzzle Page is the first
article I read. From it I’ve learned new
debugging tactics, and picked up cool
MacsBug tricks and how to do more
than just “G” from MicroBug. The fact
that the “scoring” shouldn’t be taken
literally is obvious; after all, KON &
BAL never get the answer till 10 or less.
Don’t let one humorless whiner ruin a
good thing.

Keep up the good work; develop is a
great resource.

— Steve Palmen

I wanted to let you know how much I
enjoy the Puzzle Page. I just graduated
and was lucky enough to land a job
programming on the Mac. Issue 22 is
my first and I’ve already looked back at
all of the previous Puzzles because I
enjoy reading about the deepest, darkest
Mac knowledge that I hope to stuff into
my brain one day. It’s refreshing to have
a technical journal that’s not afraid to
crack a joke every couple of pages. I
haven’t felt offended or mocked by your
Puzzle Page.

— Matt Glazier

I just want to let you know that there
are people out here who read and enjoy
the Puzzle Page. I try to follow every
twist and turn in the logic that leads to
the final result. I’ve tracked down a few
bugs in my own code that were complex
and obscure enough to end up on the
Puzzle Page, and it’s nice to see the
steps someone else follows.

— David Shayer

. . . WELL, MAYBE JUST A LITTLE
The letter from Lance Drake in Issue
22 about the Puzzle Page was, as you
wrote, a surprise to you. To me it wasn’t.

First I would like to state that the
Puzzle Page is by far the best column in
develop — technically very interesting
and also amusing. This explains the
good feedback you receive on it. Yet the
“scoring” tables are indeed belittling,

elitist, and intellectually arrogant. Even
worse, they are offending. This is a
detail, but it fully explains and justifies
Mr. Drake’s angry letter.

— Adriaan van Os

Many thanks for all the work you put
into develop. The production qualities
are superb. I have only one complaint:
get rid of KON & BAL’s Puzzle Page.
I always feel depressed after reading it.

— Andrew Trevorrow

FINGER-CODED BINARY
VARIATION
I’d like to comment on Tobias Engler's
Finger-Coded Binary column in Issue
21. Although I agree with most of what
he said, Tobias’s approach, the 10-bit
model, is far less natural than it needs to
be. I find it much easier (at least more
natural) to work with hands flat on the
side of a table, using all fingers except
thumbs — this results in the more
commonly used 8-bit model. You can
then use your thumbs for other things,
such as branch prediction, status
registers, or even complex instruction
execution.

I have one advantage over many people.
The fact that I’m missing part of my
right thumb enables me to do fractions.
No other digital system I know of can
do 0, 1/2, and 1 digits.

— Martin-Gilles Lavoie

There’s much more to the 10-bit model
than you seem to realize. Have you ever
had somebody tell you “You can eat as many
Snickers bars as you can count on your
hands”? Probably not. You wouldn’t want to
stop at 256, would you?

Concerning your fractional thumb: Your
technological advantage over conventional
digital systems will undoubtedly attract
many copyists, which may result in a lot of
unnecessary bloodshed. My advice to you is
go and get a patent!

— Tobias Engler

d e v e l o p Issue 24 December 19954

The Object Support Library provides convenient mechanisms for
scriptable applications to support complex expressions that may return
multiple results (such as every item of container "b" whose name
contains "a"). However, the performance of applications that rely on
the default behavior is nowhere near what it could be if the application
took on some of the work itself. This article shows you how to gain
ten- to a hundred-fold increases in the performance of whose clause
resolution in your scriptable application. If your application is not yet
scriptable, you’ll find that the foundation classes presented in this article
do most of the work required to support scripting.

One of the greatest strengths of AppleScript is its built-in ability to do complex
operations on groups of objects in a single line of script. For example, suppose you
have a set of shapes in a scriptable drawing program, and you’d like to change the
color of all the red shapes to green. In conventional programming languages, you’d
need to write a loop that iterates over each object in the set, tests to see if its color is
red, and then does a “set color to green” command for each red object that was
found. Using AppleScript, you can do the same operation with the single statement
set color of every shape whose color is red to green. In that statement, every
shape whose color is red is called a whose clause, and it’s the inclusion of whose
clauses that makes AppleScript the powerful language it is.

You may at first doubt that using a whose clause is much better than writing the
equivalent script with a loop. After all, the direction of modern processor design has
been toward simplicity of the instruction set; RISC chips are able to gain incredible
performance improvements by doing optimizations that aren’t possible in CISC
chips. Also, when all is said and done, the whose clause must finally execute the same
loop-and-compare algorithm that you’d be forced to use if you wrote the script with
the basic flow-of-control script commands, such as do-while and if-then.

Using a whose clause is, however, much more efficient than the alternative.
AppleScript is based on the client/server paradigm: typically your script, the client,
will be running in one application (usually the Script Editor or a script saved as a
miniapplication), with the application being scripted acting as a server. In this

GREG ANDERSON

Speeding Up whose Clause Resolution
In Your Scriptable Application

d e v e l o p Issue 24 December 19956

GREG ANDERSON is enjoying the hot days of
late summer as he writes this, but by the time this
issue is in your hands, he should be back on the
ski slopes earning his nickname, “Air Bear.” Greg
spends most of his skiing time looking for some

protrusion to jump or fall off of while wearing
his favorite polar bear hat. He sometimes works,
too; he recently moved to Japan to work on
international software for Apple Technologies in
Tokyo.•

situation, each script command that’s directed at the scriptable application needs to be
transferred between the two applications. A whose clause is a single script command,
but with the loop approach many commands would need to be sent. Furthermore,
AppleScript allows the scriptable application to reside on a different machine than the
application running the script; if your script is running on a machine in Cupertino,
California, and the server is on, say, Mars, reducing the number of round-trip
messages would have a profound impact on the performance of the script. Remember,
you can currently get only about 30 round-trip Apple events per second, so even if
you aren’t sending data to Mars, you’ll still do a lot better with fewer events than with
many.

There’s another, similar reason that using whose clauses is superior to the equivalent
loop-based script: AppleScript compiles scripts into byte codes that are interpreted
during execution, whereas the individual script commands (once interpreted) are
processed by a scriptable application typically written in a language that’s compiled
into machine code (be it 680x0 or PowerPC™). The loop-and-compare script will
execute several lines of script for every item that’s compared, whereas the whose
clause is but a single line of script that triggers processing in a compiled application.
It should be quite clear which will take less time to execute.

The Object Support Library (OSL) — the library that provides the API you use to
make your application scriptable — enables your application to support whose
clauses without requiring you to write a lot of additional code. You only need to
provide an object-counting function and an object comparison function, and the OSL
can resolve whose clauses for you. Since supporting whose clauses allows script
writers to write more efficient scripts, you should always do at least this much.
However, there are two other features of the OSL that can vastly increase the
performance of scriptable applications but are often ignored by application writers:
whose clause resolution (a way for your application to find the objects that match a
whose test without using the OSL) and marking (a mechanism for efficiently
handling collections of objects, such as those satisfying a whose clause). Using whose
clause resolution, with the help of marking, will enable you to get the most out of
your scriptable application. Resolving whose clauses can be a bit tricky, but with a
little help from this article, you’ll be on your way in no time.

If your application is not yet scriptable, you’ll find the sample code included with this
article (and on this issue’s CD) to be invaluable in getting you up and running —
particularly since it contains a lot of reusable code.

AN OVERVIEW OF THE OSL
Good descriptions of the OSL can be found in the develop articles “Apple Event
Objects and You” in Issue 10 and “Better Apple Event Coding Through Objects” in
Issue 12. If you need a quick review of the OSL and you don’t feel like putting down
this issue of develop to dig through your back issues, read on. If you can already
generate tokens and resolve object specifiers in your sleep, by all means skip ahead
to the next section.

When AppleScript is processing a script command such as delete paragraph 2 of
document "sample", it converts the command into an Apple event which it sends
to the scriptable application that’s referenced by the script. The Apple event’s event
class and message ID together specify the verb of the operation being performed —
in this case delete. The object being operated on is passed in the keyDirectObject
parameter of the Apple event, which is called, naturally enough, the direct parameter
of the event.

SPEEDING UP WHOSE CLAUSE RESOLUTION IN YOUR SCRIPTABLE APPLICATION 7

The direct parameter is almost always an object specifier — a descriptor of type
typeObjectSpecifier — although in some cases it may be something else. For
example, in addition to object specifiers, the Scriptable Finder accepts alias records
and file specifications in the direct parameter of events sent to it. If the direct
parameter of an event is not of type typeObjectSpecifier, you’re on your own to
convert it into some format that’s understood by your event handler. For descriptors
that are of this type, though, all you need to do is call the function AEResolve, and
the OSL will step in and help your application resolve the object specifier — that is,
locate the Apple event objects it describes.

Object specifiers are resolved through object accessor callbacks that your application
installs to allow the OSL to communicate with your application during object
resolution. The accessor callbacks must take the description of the object requested
by the OSL (for example, document "sample") and return a token that describes the
object in terms that the application can understand (for example, a pointer to a
TDocument object). Tokens are passed back to the OSL in an AEDesc, a structure
that contains a 32-bit descriptor type and a handle. Your application has complete
control over what it stores in the token, as long as the AEDesc is valid (that is, it was
created with AECreateDesc).

When the OSL calls your application’s object accessor callbacks, it always passes
either a token that represents the containing object (which it got from an earlier call
to one of your object accessors) or a representation of the default container of the
application, which is also called the null container of the application. So, to resolve
the object specifier paragraph 2 of document "sample", the OSL first asks for
document "sample" from the null container. Then it asks the application to provide
a token for paragraph 2 from the token the application provided in response to the
request for document "sample". The token that the application provides for
paragraph 2 is returned as the result of the AEResolve call; the application will
presumably use this token to process the Delete event.

Resolving object specifiers is explained in Chapter 6 of Inside Macintosh:
Interapplication Communication. A figure illustrating the process of resolving object
specifiers is on page 6-6.•

MARKING
Inside Macintosh: Interapplication Communication describes marking as a mechanism
whereby items to be operated on are marked with some flag during resolution (that
is, from the callbacks made by the AEResolve function); then, during execution, each
marked item is processed and the mark is cleared. As described, marking doesn’t
sound very interesting and appears to be useful only in fringe cases.

Marking is actually very well suited for use as a general-purpose collection mechanism
whenever the OSL needs to group tokens together to process an object resolution.
For example, if the OSL is resolving the whose clause every shape whose color is
red and there are multiple red shapes, the result of the call to AEResolve must be a
collection of all the tokens that represent red objects. If your application supports
marking, the OSL asks your application to create a special mark token to represent
this collection. After your application provides the OSL with a mark token, the OSL
will ask your application to add the tokens it provided for the red shapes to the mark
token’s collection. When AEResolve completes, the mark token is returned as the
result of the resolution.

If your application doesn’t support marking, the OSL will create collections of tokens
for you by copying the data from your tokens into a descriptor list (an AEDescList).

d e v e l o p Issue 24 December 19958

It calls the standard Apple Event Manager routines for creating descriptor lists, which
copy the data out of the data handle of the AEDesc and then store the token data
somewhere inside the data handle of the descriptor list; the descriptor type of the
AEDesc is similarly encapsulated.

Dealing with descriptor lists of tokens can be inconvenient, particularly if your
application already supports collections of objects in some other way. The OSL
marking mechanism gives you the flexibility to handle collections in any way that’s
convenient for your application.

To support marking, you must pass the flag kAEIDoMarking to AEResolve and
implement the three marking callbacks that are passed to AESetObjectCallbacks: the
create-mark-token callback (called just a “mark-token callback” in Inside Macintosh),
the object-marking callback, and the mark-adjusting callback. The create-mark-token
callback doesn’t need to do anything more than create an empty mark token. The
OSL will dispose of this token as usual by calling your token disposal callback when
the token is no longer needed. Listing 1 shows an example implementation of a
create-mark-token callback.

The object-marking callback is passed a mark token created from the create-mark-
token callback and some other token created by one of your application’s object
accessor callbacks. Your object-marking callback should add a copy of the other token
into the mark token (or apply a reference count to the token being added), because
the OSL will dispose of the token added to your collection shortly after calling your
object-marking callback. Listing 2 shows one implementation of an object-marking
callback.

The mark-adjusting callback is called to remove (“unmark”) tokens from the collection.
Oddly enough, its parameters specify which tokens in the range to keep; all tokens
outside the specified range should be discarded.

Implementing the marking callbacks is trivial. The only real work involved in
supporting marking is handling collections of tokens when they’re ultimately received
by one of your event handlers (handling Move events, for example). The amount of
code required to handle the marking callbacks and maintain your own collections is
minimal; in fact, the time you’ll save by not having to hassle with descriptor lists of
tokens will more than make up for the implementation cost. You’ll find more
information on handling collections of tokens later in this article. Don’t put off

SPEEDING UP WHOSE CLAUSE RESOLUTION IN YOUR SCRIPTABLE APPLICATION 9

Listing 1. Create-mark-token callback

pascal OSErr CreateMark(AEDesc containerToken, DescType desiredClass,
AEDesc* markTokenDesc)

{
TMarkToken* markToken;

markToken = new TMarkToken;
markToken->IMarkToken();
markTokenDesc->descriptorType = typeTokenObject;
markTokenDesc->dataHandle = markToken;

return noErr;
}

marking as an optimization to be done later; incorporate it into the design of your
application from the very beginning.

For more details on the marking callbacks, see Inside Macintosh:
Interapplication Communication, pages 6-53 to 6-54.•

WHOSE CLAUSE RESOLUTION
The only thing that a scriptable application needs to do to support whose clauses is
provide an object-counting function and an object comparison function — the OSL
will do the rest of the work. When the OSL does a whose clause resolution, however,
it has no choice but to iterate over every element in the search set, repeatedly calling
your application’s object accessor, object comparison, and token disposal callbacks.
Huge performance gains can be realized if you resolve whose clauses yourself,
because you’ll avoid the overhead the OSL requires to make these callbacks.

Passing the flag kAEIDoWhose to AEResolve tells the OSL that you’ll resolve the
whose clause yourself. The OSL calls your object accessor with the key form
formWhose (see Listing 3). The key data is a whose descriptor — that is, an AERecord
that describes the comparison to be performed in the search. Your application should
interpret the whose descriptor and test every element of the container token to see
if it matches the specified criteria. If the whose descriptor is too complex for your
application, you can return the error code errAEEventNotHandled from your object
accessor, and the OSL will do the resolution for you with the default techniques. This
is very useful, as it allows you to maximize the performance of the most common
whose clauses, yet still support complex whose descriptors that are likely to be
encountered only rarely.

The astute reader will notice that the scheme presented in Listing 3 is very similar to
the process that the OSL goes through to resolve whose clauses. There are still
optimizations that could be made to speed up the resolution further, but we’ll get to
those later. To resolve whose clauses as shown in Listing 3, your application must be
able to do the following:

d e v e l o p Issue 24 December 199510

Listing 2. Object-marking callback

pascal OSErr TAccessor::AddToMark(AEDesc tokenToAdd, AEDesc
markTokenDesc, long markCount)

{
AEDesc copyOfToken;
TMarkToken* markToken;

// We know that the OSL will only give us mark tokens created with
// our create-mark-token callback, but real code would do a test
// before typecasting.
markToken = (TMarkToken*) markTokenDesc.TokenObject();
// Add a copy of the token to the collection, because the OSL will
// dispose of tokenToAdd after passing it to you. A reference-
// counting scheme is good here.
copyOfToken = CloneToken(tokenToAdd);
markToken->AddToCollection(copyOfToken);

return noErr;
}

• Iterate over the elements of any token.

• Determine class membership of any token.

• Compare properties of the elements of any token.

• Convert a whose clause into some internal representation usable by your
application.

The first two operations are required of any scriptable application, so yours probably
can already do them. Comparing properties is something your application probably
doesn’t do yet, but in the worst case you could always write a few lines of code that
call your property object accessor function, retrieve the data from the resulting
property token, and then compare the descriptor that was returned. Obviously you
can do better than this in terms of performance, and later on we’ll investigate how.
First, though, we’ll look at how to interpret the contents of a whose descriptor.

THE CONTENTS OF A WHOSE DESCRIPTOR
Earlier I claimed that a whose descriptor was an AERecord, but I lied. A whose
descriptor is actually a descriptor of type typeWhoseDescriptor. Internally, a whose
descriptor is stored just like an AERecord, but you can’t extract its parameters unless
you first coerce it to type typeAERecord. In Apple events parlance, this type of
descriptor is called a coerced record; its basic type is typeAERecord, and its coerced
type is typeWhoseDescriptor.

SPEEDING UP WHOSE CLAUSE RESOLUTION IN YOUR SCRIPTABLE APPLICATION 11

Listing 3. Handling formWhose in the object accessor

pascal OSErr MyObjectAccessor(DescType desiredClass, AEDesc container,
DescType /*containerClass*/, DescType keyForm, AEDesc keyData,
AEDesc* resultToken, long /*hRefCon*/)

{
switch (keyForm) {

// case formAbsolutePosition, and so on
...
case formWhose:

// TWhoseDescriptor is a class that knows how to interpret
// a whose descriptor and test tokens for membership in the
// search set defined by the desired class and the whose
// descriptor.
TWhoseDescriptor whoseDesc(desiredClass, keyData);
// TTokenIterator is a class that knows how to iterate
// over the elements of a token.
TTokenIterator iter(container);
for (iter.Reset(); iter.More(); iter.Next()) {

AEDesc token = iter.Current();
if (whoseDesc.Compare(token) == kTokenIsInSearchSet) {

// Add token to the collection stored in resultToken.
AddTokenToResult(token, resultToken);

}
}
break;

}
return noErr;

}

The advantage of coerced records is that they allow clients of the Apple Event
Manager (for example, the OSL) to define new descriptor types for AERecords that
define the context in which the record will be used and specify (by convention) what
parameters the client can expect to find inside it. The disadvantage is that it requires
an extra memory allocation to coerce the descriptor back to typeAERecord before the
parameters of the coerced record can be accessed. This is unfortunate, as one of the
primary goals of performance optimization is to remove extraneous memory
allocations; coercing the descriptor back to typeAERecord is part of the current
design of the Apple Event Manager, though, so there’s nothing we can do about it.

There are two parameters inside a descriptor of type typeWhoseDescriptor:
keyAEIndex and keyAETest.

• The keyAEIndex parameter usually contains an enumeration whose value is
kAEAll; this corresponds to the word every in the whose descriptor every
item whose name contains "e". The other possible values are kAEFirst,
kAELast, kAEMiddle, and kAEAny for whose clauses that request the first,
last, middle, or any (random) item. The keyAEIndex parameter might also
be of type typeLongInteger or typeWhoseRange, to indicate a single item or
a range of items, respectively.

• The keyAETest parameter contains another coerced AERecord whose type
can be either typeCompDescriptor or typeLogicalDescriptor. In either
case, you must coerce the descriptor to type typeAERecord to access the
parameters inside it.

A comparison descriptor (typeCompDescriptor) contains three parameters: two
objects to compare (keyAEObject1 and keyAEObject2) and a comparison operation
to be performed on them (keyAECompOperator). Usually the first object to compare
is a special type of object specifier that indicates a property to compare (for example,
pName), and the second is a literal constant to compare it against (for example, "e").
The comparison operators include contains, begins with, ends with, equal, not
equal, greater than, and a bunch of other relational operators. Because comparison
descriptors can contain object specifiers (and usually do), they can become arbitrarily
complex. You won’t be able to resolve them all unless you reimplement the entire
functionality of the OSL, at which point you might as well not call AEResolve either
(thank goodness for errAEEventNotHandled, which allows you to fall back on the
OSL if your application cannot parse a whose descriptor).

Fortunately, logical descriptors are much simpler than comparison descriptors. A
logical descriptor contains two parameters: keyLogicalOperator and keyLogicalTerms.
The logical operator indicates the Boolean logic to apply on the contents of the
logical terms: and, or, or not. The logical terms descriptor is, as you may have guessed,
a list of descriptors whose type is either typeCompDescriptor or typeLogicalDescriptor.
Figure 1 shows the contents of a whose descriptor that corresponds to the script
every item whose name contains "e" and size is 0.

The contents of whose descriptors are described in Inside Macintosh:
Interapplication Communication, pages 6-42 to 6-45.•

PARSING WHOSE DESCRIPTORS
It may look like there can be a lot of different cases to handle in a whose descriptor,
but it actually doesn’t take too much code to convert a whose descriptor into a format
that your application can understand. The next few listings show how this might be
done. The code presented is somewhat simplified; it doesn’t look at the keyAEIndex
parameter of the whose descriptor (kAEAll is assumed), and it recognizes only very
specific formats of comparison descriptors. Even this much of an effort is very useful,

d e v e l o p Issue 24 December 199512

because it will cover about 90% of the whose clauses that your application is likely to
encounter, and it’s still possible to return errAEEventNotHandled and allow the OSL
to take over for the rest. If you’re expecting me to fall back on every develop author’s
favorite phrase, “This impossible task is left as an exercise for the reader,” you’re in
for a surprise. The sample code on the CD will parse any valid whose descriptor
passed to it and never falls back on the default handling provided in the OSL.

The top-level routine, ParseWhoseDescriptor, simply extracts the keyAETest
parameter and passes it to ParseWhoseTest, returning the resulting search
specification. These two routines are shown in Listing 4. (A search specification is an
application-defined object that knows how to test tokens for membership in the
search set defined by the whose descriptor; see the sample code on the CD for the
implementation of the search specifications used in these listings.) ParseWhoseTest

SPEEDING UP WHOSE CLAUSE RESOLUTION IN YOUR SCRIPTABLE APPLICATION 13

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

• • • • • • • • • • •

•
•

•
•

•
•

• •
•

•
•

keyAEIndex

keyLogicalOperator

keyLogicalTerms

and

Descriptor list

typeWhoseDescriptor

typeLogicalDescriptor

typeCompDescriptor

keyAETest

Logical descriptor

every

keyAEObject1

Name of object being examined

keyAECompOperator

contains

keyAEObject2

"e"

typeCompDescriptor

keyAEObject1

Size of object being examined

keyAECompOperator

equals

keyAEObject2

0

Figure 1. Contents of a whose descriptor

Listing 4. Interpreting the contents of a whose descriptor

TAbstractSearchSpec* ParseWhoseDescriptor(TDescriptor whoseDescriptor)
{

TAbstractSearchSpec* searchSpec = nil;
TDescriptor testDescriptor;

whoseDescriptor.CoerceInPlace(typeAERecord);
// Real code would call whoseDescriptor.GetDescriptor(keyAEIndex)
// and at the very least check to see that its value is kAEAll,
// and fail with errAEEventNotHandled if it isn't.

(continued on next page)

examines the type of the descriptor (either logical or comparison) and then extracts
the appropriate parameters and passes them to either ParseLogicalDescriptor or
ParseComparisonOperator, whichever is appropriate.

Since logical descriptor records can contain one or more terms, each of which is
either a comparison or a logical descriptor record, ParseLogicalDescriptor calls back
to ParseWhoseTest for each term in the record, creating a search specification for
each (see Listing 5). If there’s more than one term, ParseLogicalDescriptor compiles

d e v e l o p Issue 24 December 199514

testDescriptor = whoseDescriptor.GetDescriptor(keyAETest);
searchSpec = ParseWhoseTest(testDescriptor);
testDescriptor.Dispose();
return searchSpec;

}

TAbstractSearchSpec* ParseWhoseTest(TDescriptor whoseDesc)
{

TAbstractSearchSpec* searchSpec = nil;

switch (whoseDesc.DescriptorType()) {
case typeLogicalDescriptor:

TDescriptor logicalOpDesc, logicalTerms;
DescType logicalOp;

whoseDesc.CoerceInPlace(typeAERecord);
logicalOpDesc = whoseDesc.GetDescriptor(keyAELogicalOperator);
logicalOp = logicalOpDesc.GetEnumeration();
logicalTerms = whoseDesc.GetDescriptor(keyAELogicalTerms);
searchSpec = this->ParseLogicalDescriptor(logicalOp,

logicalTerms);
logicalOpDesc.Dispose();
logicalTerms.Dispose();
break;

case typeCompDescriptor:
TDescriptor compOperatorDesc, obj1, obj2;
DescType compOp;

whoseDesc.CoerceInPlace(typeAERecord);
compOperatorDesc = whoseDesc.GetDescriptor(keyAECompOperator);
compOp = compOperatorDesc.GetEnumeration();
obj1 = whoseDesc.GetDescriptor(keyAEObject1);
obj2 = whoseDesc.GetDescriptor(keyAEObject2);
searchSpec = this->ParseComparisonOperator(compOp, obj1, obj2);
compOperatorDesc.Dispose();
obj1.Dispose();
obj2.Dispose();
break;

}
return searchSpec;

}

Listing 4. Interpreting the contents of a whose descriptor (continued)

the resulting search specifications into a list and returns that; otherwise, it returns a
single search specification for the single term.

ParseComparisonOperator (Listing 6) first tests to make sure that the comparison
operator is of the correct format. (Again, the code in this listing recognizes only a
specific flavor of comparison operator; see the code on the CD for a more complete
example.) If the operator passes that test, a new search specification representing the
comparison is created and returned.

ABOUT THE SAMPLE APPLICATION
The code presented up to this point is the easy part: implementing the marking and
whose callbacks, parsing whose descriptors, and creating search specifications can all
be done with a small amount of isolated code. Doing a search on a set of elements or
performing a complex operation on a collection of tokens is a bit more involved,
though, and requires a well-integrated framework that supports these concepts
uniformly. You’re in luck — the sample application included on this issue’s CD has
such a framework.

SPEEDING UP WHOSE CLAUSE RESOLUTION IN YOUR SCRIPTABLE APPLICATION 15

Listing 5. Resolving logical descriptors

TAbstractSearchSpec* ParseLogicalDescriptor(DescType logicalOperator,
TDescriptor logicalTerms)

{
TAbstractSearchSpec* searchSpec = nil,

oneSpecification = nil;
TDescriptor oneTerm;
TSearchSpecList* specificationList = nil;

FOREACHDESCRIPTOR(&logicalTerms, oneTerm) {
oneSpecification = ParseWhoseTest(oneTerm);
if (specificationList == nil) {

if ((searchSpec == nil) && (logicalOperator != kAENot))
searchSpec = oneSpecification;

else {
specificationList = new TSearchSpecList;
if (searchSpec)

specificationList->Add(searchSpec);
specificationList->Add(oneSpecification);
searchSpec = nil;

}
}
else {

if (oneSpecification != nil)
specificationList->Add(oneSpecification);

}
}
if (specificationList != nil)

searchSpec = new TLogicalSpec(logicalOperator, specificationList);
if (searchSpec == nil)

FailErr(errAEEventNotHandled);
return searchSpec;

}

The sample application is called Scriptable Database. As its name implies, it’s a
database that’s fully scriptable; in fact, it’s usable only through AppleScript — it has
no user interface whatsoever. It’s no coincidence that the model the database uses
follows AppleScript’s element containment model very closely. The Scriptable
Database has documents that can be created, saved, and opened. Documents contain
elements; elements have properties and data and may contain more elements. The
database itself is completely generic; it doesn’t care what the classes of the elements
are or what properties they contain. To use it for a specific application, you’ll have to
edit Scriptable Database’s dictionary, also called its AppleScript terminology extension
('aete' resource), to add the terms you’ll need for your database.

AppleScript terminology extensions are described in Inside Macintosh:
Interapplication Communication, pages 7-15 to 7-20 and Chapter 8.•

All the techniques described in this article are implemented in the source code of the
Scriptable Database application — in particular, the application supports marking,
and it resolves whose clauses itself (very quickly, I might add). It’s an object-oriented
application written in C++ based on a set of reusable foundation class libraries that
you might find useful as a starting point in your own scriptable application. The
source code is divided into the following subprojects:

• The Database subproject contains a standalone C++ object database. The
code in this project is not discussed in this article, but you might find it
interesting to peruse.

d e v e l o p Issue 24 December 199516

Listing 6. Parsing comparison descriptors

TAbstractSearchSpec* ParseComparisonOperator(DescType comparisonOperator,
TDescriptor& object1, TDescriptor& object2)

{
TAbstractSearchSpec* searchSpec = nil;
TDescriptor desiredClassDesc, containerDesc,

keyFormDesc, keyData;

if ((object1.DescriptorType() != typeObjectSpecifier) ||
(object2.DescriptorType() == typeObjectSpecifier))
FailErr(errAEEventNotHandled);

object1.CoerceInPlace(typeAERecord);
desiredClassDesc = object1.GetDescriptor(keyAEDesiredClass);
containerDesc = object1.GetDescriptor(keyAEContainer);
keyFormDesc = object1.GetDescriptor(keyAEKeyForm);
keyData = object1.GetDescriptor(keyAEKeyData);
if (containerDesc.DescriptorType() != typeObjectBeingExamined)

FailErr(errAEEventNotHandled);
if (keyFormDesc.GetEnumeration() == formPropertyID)

searchSpec = new TGenericSearchSpec(keyData.GetDescType(),
comparisonOperator, object2);

desiredClassDesc.Dispose();
containerDesc.Dispose();
keyFormDesc.Dispose();
keyData.Dispose();
return searchSpec;

}

• The Base subproject contains pure C++ code that has no dependencies on
any Mac OS or Toolbox routines, or any code from any other subproject in
Scriptable Database.

• The Blue subproject contains C++ wrapper classes for Macintosh managers
used by Scriptable Database.

• The Foundation subproject contains the foundation classes that Scriptable
Database uses to implement scripting, and as such is the focal point of this
article.

• The Scripting subproject contains the object accessors and event handlers
needed to respond to the messages sent by AppleScript and the OSL.

• The Application subproject contains all the code that defines the Scriptable
Database application; in fact, all the code specific to Scriptable Database is in
this subproject. Every other subproject is also used in some other application
that I’ve worked on.

Note that these subprojects are layered such that each one uses code found only
within that subproject or in a more primitive subproject. The Database subproject is
used only by the Scripting and Application subprojects; all other subprojects are used
freely by any subproject listed below it. The foundation classes will be discussed in
depth in this article; comprehension of the rest of the sample code is left as an
exercise for the reader. (You didn’t think I could write an entire article and not say
that at least once, did you?)

ABOUT THE FOUNDATION CLASSES
The focal point of the foundation classes is the class TAbstractScriptableObject. This
class was designed to serve as a base class, but it may also be mixed into an existing
class hierarchy with multiple inheritance, as was done in the sample application (see
the class TScriptableDocument). Any object derived from TAbstractScriptableObject
can be used as a token for the OSL. Memory management of tokens must be done
carefully; note that in most instances, tokens passed to the OSL are temporary and
must be deleted when the token disposal callback is called. In other instances, though,
it may be more convenient to use an existing object that the application has already
created — for example, a document object.

Because of this, the token disposal callback must be able to unambiguously determine
the difference between the temporary objects and those objects it should not delete,
or disaster will result. Designators — objects that represent some portion of another
object — are used for the temporary objects. The class TAbstractScriptableObject
defines the methods CloneDesignator and DisposeDesignator, which do nothing
in the abstract case. Designators override these methods to copy and dispose of
themselves — sometimes in conjunction with a reference-counting scheme.

As you might expect, the methods of TAbstractScriptableObject are designed to
provide functionality that closely matches the features of the OSL. All objects derived
from this class have elements and properties and can be sent events generated
from an Apple event that the application receives. There are virtual methods in
TAbstractScriptableObject that you can override to provide each of these types of
behavior in your objects.

ELEMENTS OF A SCRIPTABLE OBJECT
A scriptable object exports its elements by providing an iterator object that knows
how to iterate over the appropriate set of objects. There are two methods that return
iterators, ElementIterator and DirectObjectIterator.

SPEEDING UP WHOSE CLAUSE RESOLUTION IN YOUR SCRIPTABLE APPLICATION 17

virtual TAbstractScriptableObject* ParentObject();
virtual TAbstractObjectIterator* ElementIterator();
virtual TAbstractObjectIterator* DirectObjectIterator();

The ParentObject method returns the object that this object is an element of. The
element iterator iterates over the elements of the object, as was previously mentioned;
the direct object iterator usually returns an iterator that knows about a single object
— the TAbstractScriptableObject that created it. If the object is actually a collection,
however, its direct object iterator will iterate over every element in the collection.
Once your application provides an iterator for the elements of its objects, the code
in the foundation classes can handle most of the standard access methods for you.
The access methods supported include formAbsolutePosition and formName, the
default ordinals (all, first, last, and so on), and ranges of items (for example, items 1
through 10).

Your application’s scriptable classes can support more specialized access methods by
overriding the appropriate method:

virtual TAbstractScriptableObject* Access(DescType desiredClass, DescType
keyForm, TDescriptor keyData);

virtual TAbstractScriptableObject* AccessByUniqueID(DescType desiredClass,
TDescriptor uniqueID);

virtual TAbstractScriptableObject* AccessByOrdinal(DescType desiredClass,
DescType ordinal);

The first method, Access, is the general object-accessor dispatch method that calls
the more specific access method appropriate for the keyForm parameter. You can
override this method to define custom access forms — for example, the Scriptable
Finder defined the forms formCreator (to access an application by its creator type)
and formAlias (to access a file or folder through an alias record). The method
AccessByUniqueID provides a mapping from a unique ID to an object; override this
method if your objects have unique IDs that scripts can use to access them. The
method AccessByOrdinal handles ordinal access. All ordinals defined in the Apple
Event Registry are supported by the implementation in the base class, so your
application will probably never need to override AccessByOrdinal.

PROPERTIES OF A SCRIPTABLE OBJECT
Every scriptable object has at least a few properties that it must support. Almost all
classes will have these five properties:

• pName, since most objects have names

• pClass, pBestType, and pDefaultType, since the Apple Event Registry
requires that all objects support these properties

• pContents, since the foundation classes handle Get Data and Set Data events
by using this property

To advertise the existence of a property, your scriptable classes can override the
methods BestType, DefaultType, and CanReturnDataOfType; these methods are
used by the Get Data event handler to determine what data type it should ask for
when it requests the property data from the object through GetProperty.

virtual DescType BestType(DescType propertyName);
virtual DescType DefaultType(DescType propertyName);
virtual Boolean CanReturnDataOfType(DescType propertyName,

DescType desiredType);

d e v e l o p Issue 24 December 199518

However, your application doesn’t have to override these methods to provide
information about every property of an object, since it’s also possible (and more
convenient) to describe the properties of an object in a property description table.
For example, the properties defined in TAbstractScriptableObject are shown in the
following property description table:

TPropertyDescription TAbstractScriptableObject::fPropertiesOfClass[] = {
{ pName, kReserved, typeChar, typeChar },
{ pClass, kReserved, typeType, typeType },
{ pDefaultType, kReserved, typeType, typeType },
{ pBestType, kReserved, typeType, typeType },
{ pID, kReserved, typeLongInteger, typeLongInteger },
{ pIndex, kReserved, typeLongInteger, typeLongInteger }

};

Each entry in this table consists of four long words: the property identifier, a long
word reserved for use by the class that defines the property, the property’s best type,
and the property’s default type. The property description table is referenced through
the class data table, so properties defined in one class are automatically inherited by
any class that derives from it. The methods BestType and DefaultType return
information from the property description table if an entry for the requested property
can be found, and the method CanReturnDataOfType returns true if the desired type
is the best type or the default type for a property.

See the files Object.cp and Object.h in the sample code for information on the
class data tables. The macros DeclareMinClassData and ImplementMinClassData are
used for classes that have no class properties; classes that do have class properties
use the macros DeclareClassData and ImplementClassData.•

The reserved long word from the property description table is always passed to the
GetProperty and SetProperty methods; it can be used to provide information to assist
in obtaining the data for the requested property.

virtual TDescriptor GetProperty(DescType propertyName, DescType desiredType,
unsigned long additionalInfo);

virtual void SetProperty(TTransaction* transaction, DescType propertyName,
TDescriptor& data, unsigned long additionalInfo);

The reserved long word can have nearly any value, but should not be greater than or
equal to the constant kReservedRangeForPropertyInfo (see AbstractScriptableObject.h).

In addition to making the application’s properties easier to implement, the property
description table is key in supporting the “properties” property (which returns the
current value of all the properties of an object, as specified by the property description
table). It’s also very useful for accessing properties of collections of tokens, as described
later.

The transaction parameter in the SetProperty method must be provided by the caller
but is not used by the foundation classes. It’s provided as a mechanism whereby
transaction-based applications (such as Scriptable Database) can make all changes
under the auspices of a transaction object. Once all changes are made successfully, the
transaction changes are committed back into the database. If anything goes wrong,
the transaction is aborted and all changes are backed out. To the foundation class,
TTransaction is just a named object that has no methods. The event handlers in the
Scripting subproject use code from the Database subproject to create a transaction to
pass to SetProperty (and other methods that can change the contents of the database),

SPEEDING UP WHOSE CLAUSE RESOLUTION IN YOUR SCRIPTABLE APPLICATION 19

and commit or back out of the changes as appropriate after the event completes
successfully or fails.

In some rare cases, it may be undesirable to include a property in the property
description table, or it may be inconvenient to implement all of the functionality of a
property strictly through the GetProperty and SetProperty methods. For example,
Scriptable Finder has a trash property that returns a reference to the Trash object on the
desktop. In such cases, your application should override the method AccessByProperty
to return an appropriate scriptable object that represents the property:

virtual TAbstractScriptableObject* AccessByProperty(DescType
propertyIdentifier);

The object returned by AccessByProperty can be any sort of scriptable object;
unlike properties described solely by the property description table, it can have
properties above and beyond the minimum (for example, pClass, pBestType, and
pDefaultType), and it can receive events (such as Empty Trash). Properties that are
returned through AccessByProperty can also appear in the property description
table, but if they do, the reserved long word should contain the magic constant
kNeverCreateGenericProperty.

SENDING EVENTS TO A SCRIPTABLE OBJECT
Most scriptable applications use one of two dispatch techniques for handling Apple
events: event-first or object-first dispatching. In event-first dispatching, an event is
first dispatched to an event handler, which resolves the direct parameter and passes it
a message appropriate to the Apple event being received. The advantage of event-first
dispatching is that the parameters of the event are well known and can be extracted
and passed to the object from the event handler, reducing the amount of duplicate
code scattered through the various object event handlers. The disadvantage is that
event-first dispatching requires a large number of very similar event handlers, and the
message-passing API is often large (one method per event).

Object-first dispatching attempts to solve this problem by providing a single event
handler that blindly resolves the direct parameter of the received Apple event and
passes the event to the resulting object. This technique is much simpler than event-
first dispatching, requires a smaller API, and usually does exactly the right thing. But
object-first dispatching doesn’t always do exactly the right thing. For example, an
Apple event that copies a set of objects to some destination container would send a
different Copy event to every item in the source; what you might prefer is to have
a single Copy event sent to the destination object, with the list of items to copy
included as a parameter to the event. You’d never get the latter with object-first
dispatching.

The Scriptable Database application uses a combination of event-first and object-first
dispatching. Most Apple events are processed by a common event handler that
resolves the direct parameter and passes the message along, in object-first dispatching
style. Certain special events, however, such as Move, Copy, and Create Element, are
processed in their own event handler, which can send a message to some object other
than the direct parameter of the Apple event. The two primary methods that events
are sent to are AECommand and CreateNewElement.

AECommand is defined as follows:

virtual TDescriptor AECommand(TTransaction* transaction, TAEvent ae,
TAEvent reply, long aeCommandID, TAbstractScriptableObject*
auxObjects = nil, long auxInfo = 0);

d e v e l o p Issue 24 December 199520

Both the Apple event message and the reply are passed to the event handler, just in
case they need to be accessed directly. The AECommand method should not put the
command result into the reply directly, though, as it might not be the only object
that’s receiving this message. Instead, it should return the result as the return value of
the method, and allow the event handler to collect all the results into a descriptor list
and package them in the reply.

The meaning of the parameters auxObjects and auxInfo depends on the event
handler that’s processing the message; the aeCommandID parameter implicitly
defines what the AECommand method should expect to find in these parameters.
For example, in the Move and Copy events, the auxObjects parameter contains the
set of objects that should be moved or copied. Providing a single method with
general-purpose, multiple-definition parameters allows different scriptable
applications that use the same foundation classes to define new events that have
custom parameters without requiring them to change or expand the API of the
foundation classes. This is one of the advantages of object-first dispatching that we
definitely want to keep in our design.

The Create Element event is special enough to warrant giving it its own dispatch
message:

virtual TAbstractScriptableObject* CreateNewElement(TTransaction*
transaction, TAEvent ae, TAEvent reply, DescType newObjectClass,
TDescriptor initialData, TDescriptor initialProperties, Boolean&
usedInitialData, Boolean& usedInitialProperties);

In most cases, classes that override CreateNewElement only need to look at the
newObjectClass parameter, create a new object of that class, and return a reference
to the newly created object. The event handler calls the SetData method of the new
object by using the with data parameter from the Create event, and then calls the
SetProperty method of the new object with each of the properties specified in the
with properties parameter from the Create event. The initial data and initial
properties for the new element are also provided as parameters to CreateNewElement
in case they’re needed at create time. If the usedInitialData or usedInitialProperties
parameter is set to true, the event handler is inhibited from calling SetData or
SetProperty, respectively, on the new object.

TOKEN COLLECTIONS
As previously mentioned, objects derived from TAbstractScriptableObject can be
grouped into collections of tokens that can be passed around as a single object. The
class that implements most of this functionality is TProxyToken, which is publicly
derived from TAbstractDesignator. (A collection object is a temporary object created
only to manage the collection of tokens and must be disposed of when the collection
is no longer needed; therefore, a proxy must be a designator.) There are a number of
different types of collections, each derived from the class TProxyToken.

The classes of proxies provided in the foundation classes include the following:

• TEveryItemProxy — every element of an object

• TEntireContents — every item in the entire deep hierarchy

• TMarkToken — a collection of tokens accumulated from the marking
callbacks or from resolving a whose clause

Other types of collections are also possible. For example, the selection token is a
proxy for the set of items that are currently selected, so the token for the selection

SPEEDING UP WHOSE CLAUSE RESOLUTION IN YOUR SCRIPTABLE APPLICATION 21

would also derive from TProxyToken (however, since the Scriptable Database has no
user interface, it has no selection object).

Sending a message to a proxy token usually does nothing more than pass the message
on to each of its delegates; for example, the open selection script would pass an Open
event to every selected item. In other cases, however, the proxy token handles the event
itself. For instance, set selection to item 1 doesn’t send a Set Data event to the selected
items; instead, it deselects the currently selected items and selects the items in the direct
parameter (such as item 1 in the previous example). The exact behavior of the proxy is
determined by the concrete class (for example, TEveryItemProxy) that derives from
the abstract class TProxyToken, but the proxy token does provide some mechanisms
that can be used by its descendants to control the meaning of certain messages.

Properties in particular are handled in a special way by proxies. Some properties will
apply to the proxy object itself, whereas other properties will refer to the delegates of
the proxy token. For example, the script default type of selection should return the
default data type for the selection object (which would be of type typeAEList),
whereas default type of every item whose name contains "e" should return a list
of default types, one for each item that matches the query every item whose name
contains "e". There is no heuristic that can be used to determine which properties
should apply to the proxy and which should apply to the proxy’s delegates; the only
solution is to list all the properties that should be sent to the proxy object in some
way. In the foundation classes, this is done with the method PropertyAppliesToProxy:

Boolean PropertyAppliesToProxy(DescType propertyName);

Each class that derives from TProxyToken should override PropertyAppliesToProxy
and return true for those properties that should be processed by the proxy object and
false for those that should be sent to the proxy’s delegates.

MORE ON SEARCH SPECIFICATIONS
Previous sections of this article described how a whose clause was received by the
object accessors of an application, converted into a search specification, and then
resolved with a simple element iterator. Now that you’re familiar with the capabilities
of the foundation classes, we can go into the workings of the search specifications in a
little more detail.

As you may recall, there are two types of search specification: logical and comparative.
The primary operation of a search specification is to take a token and return whether
or not that item is a member of the set specified by the comparator. A logical
specification contains a list of other specifications; it does nothing more than call
the comparator method of each, and either logically AND or logically OR the
results together. A comparative search specification needs to perform some test on a
property of an object that was passed to it; it does so by calling the CompareProperty
method of the object being tested.

virtual Boolean CompareProperty(DescType propertyIdentifier, DescType
comparisonOperator, TDescriptor compareWith);

The property identifier, the comparison operator, and the literal data to compare
with were all extracted from the whose descriptor, as described previously. The
default implementation of CompareProperty calls the object’s GetProperty method
and compares the result with the literal data by using the specified comparison
operator. (You’ll find a routine that compares two descriptors in the file MoreAEM in
the Blue subproject of the sample application.) Note, however, that calling GetProperty
involves a memory allocation to create a descriptor for holding the property data.

d e v e l o p Issue 24 December 199522

Memory allocations are something best avoided in the inner loop of an operation
that’s supposed to progress quickly, so the performance of a whose clause resolution
can be improved if you override CompareProperty and do common property
comparisons without a memory allocation.

FURTHER OPTIMIZATIONS
Using the techniques described up to this point, your application can resolve whose
clauses, and do so much faster than the OSL would. However, there are other
optimizations that you can make to further improve performance.

The techniques described so far perform better than the OSL for two primary
reasons:

• They limit the number of memory allocations needed, as much as possible.

• They reduce the number of callbacks that need to be made between the OSL
and your application. This is particularly important if your application is
PowerPC native but uses the emulated 680x0 OSL.

Also, note that if your implementation of access by index is O(N) rather than
constant time, the OSL’s whose clause resolution will be O(N2), since it will have to
call your O(N) access by index callback N times. Even if you ignore this article
completely and don’t resolve whose clauses yourself, you should as an absolute
minimum cache the last token returned by your formAbsolutePosition accessor and
ensure that the next call to the accessor can be done in constant time if the container
token and desired class are the same and the index is 1 greater. This will speed up
your whose clause resolution considerably.

However, even for all of the performance gains that these techniques provide, whose
clauses are still resolved according to the same basic algorithm used by the OSL. As
anyone who has dabbled in computer information-science theory knows, it’s often
more advantageous to switch algorithms completely and put off fine-tuning until
after the correct algorithm has been found.

Unfortunately, it’s not possible to do any better than what we’ve already done in the
general case (a direct linear search of the search space, comparing every item to the
search specification in order). Doing a binary search isn’t possible unless your search
space happens to be sorted by your search key — not very likely, and in any event it’s
impossible to know whether it is or not unless you have specific knowledge about the search
space. Searching the entire contents of a deep hierarchy — such as all the folders on a
disk — is one type of search space that can often be optimized.

In cases where the search space is well known, it’s often possible to abandon the idea
of direct iteration and use some other algorithm to search. For example, if you’re
writing code to search the entire contents of a disk, you would be much better off
calling PBCatSearch, which walks through the entries in the catalog record in the
order they happen to appear on the disk, ignoring the disk’s hierarchy. This technique
is so much faster than doing a deep traversal of the disk’s catalog that doing a deep
search of some subfolder on a disk is usually much better accomplished by searching
the entire disk and weeding out the matches that aren’t somewhere inside the search’s
root container. In cases where you have access to a search engine with characteristics
similar to PBCatSearch, you should go out of your way to try to use it. Of course,
this may well require yet another conversion of the search specification, but the
performance gains will outweigh the initial cost. The foundation classes presented in
this article have hooks that allow the incorporation of existing search engines to be
incorporated into the process of resolving whose clauses.

SPEEDING UP WHOSE CLAUSE RESOLUTION IN YOUR SCRIPTABLE APPLICATION 23

When a whose clause is being resolved, the task of doing the search is delegated to the
iterator object returned by the root of the search. Putting the method in the iterator
rather than in the object allows different types of iterators to provide different search
algorithms, each optimized to its own search space. The iterator returned by the
TEntireContents proxy has a special implementation of AccessBySearchSpec; instead
of using the implementation it inherits from TAbstractIterator, it uses a method called
SearchDeep in the element iterator of the root object. The default implementation of
SearchDeep does nothing more than compare every item in the deep hierarchy below
each of its elements, and add those that match to the collection. This is really no
different from what would happen if TEntireContents::AccessBySearchSpec just
called through to Inherited::AccessBySearchSpec, but it does provide a hook enabling
special iterators to insert their own search engines if they have a technique that will
do deep searches faster than a straightforward deep iteration.

Listing 7 shows the default implementation of SearchDeep; note that it does a
deep search on each of the elements of the iterator rather than simply a single deep
search. The reason for this is that iterators aren’t required to have a single root object
that one could conceivably search deep from; once you have an iterator, the only
knowledge at your disposal is the set of objects that the iterator “contains.” The
information as to where the iterator came from isn’t available to every iterator,
although some (such as TDeepIterator) do save a reference to it.

d e v e l o p Issue 24 December 199524

Listing 7. Doing a deep search

TAbstractScriptableObject* TDeepIterator::AccessBySearchSpec(DescType
desiredClass, TAbstractSearchSpec* searchSpec)

{
TObjectCollector collector;

TAbstractObjectIterator* iter = fRootItem->ElementIterator();
iter->SearchDeep(&collector, desiredClass, searchSpec);
iter->Release();
collector.CollectorRequest(kWaitForAsyncSearchesToComplete);
return collector.CollectionResult();

}

void TAbstractObjectIterator::SearchDeep(TAbstractCollector* collector,
DescType desiredClass, TAbstractSearchSpec* searchSpec)

{
TDeepIterator deepIter(nil);
for (this->Reset(); this->More(); this->Next()) {

TAbstractScriptableObject* elementToDeepSearch = this->Current();
deepIter.FocusOnNewRoot(elementToDeepSearch);
for (deepIter.Reset(); deepIter.More(); deepIter.Next()) {

TAbstractScriptableObject* token = deepIter.Current();
if (token->DerivedFromOSLClass(desiredClass) &&

searchSpec->Compare(token))
collector->AddToCollection(token);

else
token->DisposeDesignator();

token = nil;
}

(continued on next page)

In Listing 7, rather than having the deep search iterator create and return a collection
of tokens, a collector object is passed in and given the responsibility of making a
collection from the results of the search, which it’s passed one item at a time. This is
done so that other parts of your scriptable application can call SearchDeep to do
deep searches if they need to, and providing a collector object allows this code the
flexibility to process the search results one item at a time, as they are found, rather
than waiting for the entire search to complete.

Note the following line in Listing 7:

collector.CollectorRequest(kWaitForAsyncSearchesToComplete);

A search engine that’s hooked into this code path might, in a multithreaded
application, execute asynchronously under its own thread. In these instances, the
search engine needs a way to tell the collector that it’s still running, and might call
collector->AddToCollection with more search results at any time. The search engine
does this by attaching a dynamic behavior object to the collection that understands
the kWaitForAsyncSearchesToComplete message (see “What Is a Dynamic Behavior?”).
When this message is received, the search engine’s collector behavior must block the
current thread of execution until the search engine completes its search.

The use of a collector object and a dynamic behavior object allows the searching code
to be flexible, optimized independently of other search engines, and reusable, even to
other code that might not have exactly the same needs as the scripting code.

Also note the implementation of the functions TEveryItem::SearchDeep and
TMarkToken::SearchDeep. Both of these call the function RecursiveSearchDeep,
which calls SearchDeep on each of the elements of the iterator in turn. Without this
special code path, a script such as (entire contents of every disk) whose name
contains "mac" would end up using the slow deep-iteration search, and miss out on
the optimized SearchDeep method of each disk. Calling the SearchDeep method of
each disk independently enables different types of disks to have different types of
search engines; for example, searches of remote disks might be optimized differently
than searches of local disks, and not every type of volume supports PBCatSearch. In a
framework that has provisions for optimizations, flexibility of design is extremely
important.

WHAT WAS THIS ARTICLE ABOUT, ANYWAY?
It doesn’t take too much work to vastly improve the performance of your scriptable
application, and the techniques presented in this article will help you do just that.
Resolving whose clauses yourself can speed up the execution of your event
processing by a factor of ten to a hundred; a chance to gain that level of improvement
is hard to ignore.

SPEEDING UP WHOSE CLAUSE RESOLUTION IN YOUR SCRIPTABLE APPLICATION 25

if (elementToDeepSearch->DerivedFromOSLClass(desiredClass) &&
searchSpec->Compare(elementToDeepSearch))

collector->AddToCollection(elementToDeepSearch);
else

elementToDeepSearch->DisposeDesignator();
}

}

Listing 7. Doing a deep search (continued)

AppleScript is one of the most compelling technologies that Apple offers — the ability
to record scripts, modify them, and play them back later puts powerful automation
into the hands of programming novices. However, AppleScript is only as cool as the
scriptable applications available in the marketplace. If you’ve written a scriptable
application, thank you. If you haven’t yet taken the OSL plunge, by all means read
some of the material referred to in this article and dive in. (You might also want to
take a look at the “According to Script” column that follows this article.) In either
case, you should find the sample code on this issue’s CD to be a very useful aid in
implementing fast and complete scripting support in your Macintosh application.

d e v e l o p Issue 24 December 199526

A dynamic behavior is an object that can be attached to
some other object to change its behavior dynamically at
run time. Only objects that are specially written to accept
behaviors can have behaviors attached to them, and
only certain methods of that object can be dynamically
changed by the behavior object.

Methods that support dynamic behaviors contain additional
code that first dispatches to any behavior attached to the
object and then does the default action for that method. But
the actual flow of control is somewhat different from that.

Suppose you have an abstract class TObject that supports
behaviors, and an abstract class TBehavior that provides
an interface for an object that can dynamically change
the behavior of any TObject-derived object. If TObject
has a method called Command that the behavior could
modify, the implementation of TObject::Command would
look like this:

TObject::Command()
{

TBehavior* behavior;
behavior = this->FirstBehavior();

if (behavior)
behavior->CommandDynamicBehavior();

else
this->CommandDefaultBehavior();

}

TBehavior::CommandDynamicBehavior()
{

TBehavior* behavior;
behavior = this->NextBehavior();
if (behavior)

behavior->CommandDynamicBehavior();
else

this->Owner()->CommandDefaultBehavior();
}

Given this definition for the Command method, some class
derived from TBehavior could override the virtual method
TBehavior::CommandDynamicBehavior, and call Inherited
to execute the default action of the method it’s overriding.
This allows behaviors to do both pre- and post-processing.
The cost to supporting behaviors is additional dispatch
time, but the advantage is the powerful, dynamic
extensibility of your objects.

WHAT IS A DYNAMIC BEHAVIOR?

RELATED READING
• Inside Macintosh: Interapplication Communication (Addison-Wesley, 1993).

• “Apple Event Objects and You” by Richard Clark, develop Issue 10, and “Better
Apple Event Coding Through Objects” by Eric M. Berdahl, develop Issue 12.
These articles provide good descriptions of the OSL.

Thanks to our technical reviewers Dan Clifford,
Eric House, Arnoldo Miranda, and Jon Pugh.•

To wind up my first year of writing about scripting in
develop, this time I’ll solidify the sequence of steps
involved in making an application scriptable. A few of
these steps have been mentioned before, while some
material is new; here all the steps are organized so that
you can work out a strategy for implementing
scriptability. You may be surprised at what you’ll find.

THE WRONG WAY
In the past, a programmer who was responsible for
implementing Apple events support in a scriptable
application usually set about this task in one of two
ways:

• writing the code for the event handlers and object
accessor functions first, then, just before shipping,
deciding what to call things and throwing together
a dictionary at the last minute

• jumping into the design of an object model
hierarchy (in an attempt to implement the Core
suite), then writing the event handlers and object
accessor functions, and, again, putting together the
dictionary last

These methods were fine back in the days when Apple
events were used principally for direct communication
between two applications — one program was usually
the client of the other. But in today’s world of scripting,
it is users who are the clients. So in order to accomplish
the goal of creating a human-friendly scripting
vocabulary, developers need different methods for
development.

THE NEW, BETTER WAY
Since your scripting interface is also a user interface to
your application, it should be as full and rich as the

graphical interface, and should be as intuitive as you
can make it. In creating human-oriented scriptability,
your goal is to make it as natural and as easy as possible
for users to write sentences to communicate with and
control your application. You want users to be able to
write sentences that are as close as possible to the way
they might think about what they want to do. Prepare
to open up the full functionality of your application
through scripting — you’ll want to make it complete.

The following plan will help you develop a clean
vocabulary that allows users to easily work with your
application.

PRACTICE YOUR WRITING
The first set of steps will help you home in on the
terms you’ll use in your vocabulary.

Write down sentences. The very first thing to do is
to write down as many sentences as possible describing
actions that can be accomplished with your application.
At this stage, don’t try to make real scripting commands;
just write down basic ideas. For example:

play movies
grab the customer's profile
print pages 2 through 5
translate this book from English to French
send this message to Bob at the Redmond office
find all the records containing "University"
delete all paragraphs containing the word

"Windows"

Have users write sentences. Users think differently
about the way they accomplish things with applications
than programmers do. Invite users of your application
to write down some general sentences. Encourage them
to think about how they want to accomplish what they
do. Ask them to write the sentences as if they were
directing the computer by speaking to it. (You can do
this simultaneously with the above step.)

Include users who are experienced with earlier versions
of your application. These users don’t need AppleScript
experience. Consider inviting your documentation
writers and your support people to participate. You’ll
see quickly how users think about your application
from a task-oriented perspective.

Don’t attempt to write code yet or design your object
hierarchy around what users write. Just use this to help

ACCORDING TO
SCRIPT

Steps to
Scriptability

CAL SIMONE

ACCORDING TO SCRIPT: STEPS TO SCRIPTABILITY 27

CAL SIMONE (AppleLink MAIN.EVENT) wants your dictionary
for the Webster database. He will be analyzing the terms in
your vocabulary against others in search of similarities and

differences. Send your 'aete' resources to him on AppleLink or at
mainevent@his.com on the Internet.•

you think in broad terms about how something might
be accomplished.

Write some commands. Write more sentences, this
time attempting to make script commands. Try to fit
them into the context of a possible scripting vocabulary.
This is an iterative process, through which you can
distill your broad ideas into useful terms.

When writing commands, keep one eye open for
consistency — think a bit about existing AppleScript
commands and objects. At this juncture, it may help to
have some people with AppleScript experience write
sample sentences to describe how they want to control
your application.

The sentences should begin to take on the flavor of
AppleScript statements, with verbs followed by objects.
For instance:

tell "emailer" to send the file "Weekly Report"
to "Bob" at "Redmond"

tell "Mail Order Store" to order item "CW056"
with nextday delivery

tell the front window to select the first
paragraph containing "Macintosh"

WRITING ANALYSIS
In the next set of steps, you’ll develop your object
model hierarchy from your early command writing.

Analyze your initial commands. The consumers of
your product may surprise you. Some of the sentences
they write will be too large in scope, but others will be
highly focused to specific tasks. You’re likely to find
that they’ll focus on the action first, then the objects.
From those sentences, begin to determine the common
verbs and objects. For example:

• verbs: play, get, set, translate, send, print , select,
delete

• objects: movie, customer, paragraph, document,
record, message

• properties: profile, leading

• enumerators: English, French, PowerTalk

Make a crude object model hierarchy. Based on
the analysis of your commands, make a first cut at your
object model hierarchy. Although many object classes
in your vocabulary are types of objects that can be
physically manipulated by your application, objects in
scripting do not have to correspond to the objects on
your screen. Nor should they match the objects in your
internal code created by the programmers. Rather,
script objects should be the most natural representation

of what the user is trying to manipulate. Often these
three — scripting, onscreen, and internal — will be
nearly the same, but they don’t have to be.

Remember that consistency in a scriptable application
is often accomplished through the liberal use of setting
and getting properties instead of through large numbers
of verbs. For more information, read the section
“Designing Your Object Model Hierarchy” in my
article, “Designing a Scripting Implementation,” in
develop Issue 21.

WORK ON YOUR DICTIONARY
The key to a clean, intuitive scriptable application is its
dictionary. It’s now time to develop this all-important
“window” to your application’s soul.

Look at other application terminologies for
consistency. Creating the AppleScript interface is a lot
like creating the graphical interface. When designing
dialog boxes, for example, most developers look at
many other applications for examples of what works
and what doesn’t. Similarly, you should view and use
the AppleScript terminology of other applications to
see how well they work. Remember that AppleScript
hasn’t been around long enough for strong guidelines
to be developed. Often you can do better than another
application (in some cases, you can learn what not to
do), but you also want your application to share as
many elements as make sense with other applications
your users might be familiar with. (When in doubt,
refer to and practice with the Scriptable Text Editor;
it’s clean and simple.)

Make your first rough 'aete' and write commands.
When you’re ready, take a stab at making an 'aete'.
Don’t expect too much at this stage; just get comfortable
with the structure of this resource. Write some
commands with your crude 'aete'. You can even open
up your 'aete' in the Script Editor and check the syntax
of your commands against your dictionary. Even
though you won’t be able to execute the commands,
you’ll be able to practice writing sentences using the
terms in your early dictionary.

Adjust the 'aete'. Looking at the commands written
with your early terms, you’ll begin to see where the
sentences look more or less natural, and where they’re
awkward. Based on this, you can start improving on the
terms in your 'aete'.

Make more commands; have users write
commands. At this point, you’re ready to write some
serious commands. By now you should be able to write
real sentences that follow the AppleScript command
structure: verb [object] [keyword value] … These

d e v e l o p Issue 24 December 199528

sentences should be similar in structure to standard
commands that you can write for other scriptable
applications. They should “feel” like AppleScript:

play the movie "1984 Commercial"
get the profile of customer "Caroline Rose"
print pages 2 through 5
translate the document "Tech Manual" from English

to French
set the leading of paragraphs 1 through 3 to 10
send the document "Order 578" via PowerTalk

Note that the use of the word “the” is allowed in many
places in AppleScript. Many of your users will include
it in their commands. You should name your objects
and properties so that they won’t sound awkward when
preceded by the word “the.” And try to avoid property
names that start with a verb.

Give your sample 'aete' to users and ask them to begin
writing scripts to see how good your terminology feels
and how it integrates and interacts with other
applications. This interaction is crucial to understanding
the value of AppleScript. All this can be done before
any code is connected to the commands in the 'aete'.
(Be sure to tell them that they can’t run their scripts.)

NOW TO YOUR CODE
A well-conceived dictionary will serve as a specification
for programmers. Only after you’ve gotten your
vocabulary in fairly good shape and done some
preliminary testing with users should you (or your
programmers) begin to write the code behind the
vocabulary.

Write object accessor functions. It’s probably a good
idea to begin writing some of your object accessor
functions first, so that you’ll have something to test
your Apple event handlers against. Accessor functions
must cover all possible combinations of object classes
and containers. However, accessor functions can be
combined to handle more than one object class in a
container if the objects are similar or lend themselves
to code that can be shared.

For example, the Scriptable Text Editor has an accessor
function for document objects, such as windows, within
the application (the null container). It has another
accessor function for all text objects within documents,
such as characters, words, and paragraphs, and a third
accessor for text objects within other text objects, such

as characters within words, or words within paragraphs.
Characters, words, and paragraphs were combined
because the code to handle each of them was easily
shared.

Also consider the language, framework, and structure
of your existing code. Some frameworks, such as
MacApp, use internal object member functions that
are very similar to the accessor functions you’ll write,
lending themselves to individual accessors for each
object class. You’ll certainly want your accessor functions
to make use of the existing internal functions.

Write Apple event handlers. Now you’re ready to
write the code to handle the Apple events. Since you’ve
made the effort to lay the groundwork, this should be
relatively easy. If your dictionary contains a lot of
properties, consider implementing set and get early in
the game.

Test your code. AppleScript is very useful for testing
your Apple event code. You can easily write AppleScript
commands that accurately send Apple events to your
application. This is considerably easier than writing test
code to fake sending Apple events to yourself. Scripter
from Main Event makes an ideal tool for this task
because you can observe what’s going on in a script as it
happens.

Once the code is connected, let a wider audience try
your scripting. See how well the previously written
scripts perform.

Clean up your dictionary. After you’ve gotten
your code working, go back and carefully look over
your 'aete' one more time. Make sure that you’ve
organized the terms well and that your comments are
understandable and innovative. Use the guidelines in
my last column, “Thinking About Dictionaries,” in
Issue 23.

A NEW PLACE TO GET HELP
There’s now a resource on the Internet for posing
questions relating to scriptability issues. It’s a new
mailing list: applescript-implementors@abs.apple.com.
To subscribe, just send the following message to
listproc@abs.apple.com:

SUBSCRIBE applescript-implementors Your Name

As always, happy implementing!

ACCORDING TO SCRIPT: STEPS TO SCRIPTABILITY 29

Thanks to Eric Gundrum and C. K. Haun for reviewing this
column.•

OpenDoc’s structured storage model is an innovative departure from
the traditional storage scheme. As you make the move into OpenDoc
development, you need to understand the new storage model and its
implications for the way data is stored and retrieved. This article
introduces the new concepts and policies you’ll need to know in order
to use OpenDoc storage effectively.

In the traditional Macintosh user model, each application creates and maintains its
own documents, storing each document in a separate file. A file has one creator
signature and one file type, identifying the application it belongs to and the kind of
document it contains. In OpenDoc, by contrast, a document can have multiple parts,
created and maintained by different part editors (called part handlers in earlier versions
of OpenDoc), which are analogous to the standalone applications of the traditional
model. Because all of a document’s parts are stored together in the same container
(usually corresponding to a file), there has to be a way for separate part editors to
share access to the same container without interfering with each other.

OpenDoc meets this need by providing a structured model for persistent storage
(that is, for storing data from one session to the next). Each part is given its own
storage unit in which to store and retrieve data. The part can thus operate as a
standalone entity, independent of other parts and their storage. OpenDoc maintains
all of the storage units and notifies each part when to read or write its data.

The same techniques that are used in dealing with persistent storage also apply to the
various forms of data interchange between part editors, such as the Clipboard, drag
and drop, and linking. Because all of these mechanisms use the same data storage
medium (the storage unit), they all work essentially the same way from the part
editor’s point of view. For example, a part uses the same API calls to copy data to the
Clipboard that it would use in writing the data to a file container. The same is true
for drag and drop and for linking. Thus, once you learn how to work with OpenDoc
storage units for file storage, you can use the same techniques to implement data
interchange as well.

This article assumes that you’re already familiar with basic OpenDoc concepts and
terminology. If you need a quick introduction or refresher, see the article “The
OpenDoc User Experience” in develop Issue 22. You can find additional information
on some of OpenDoc’s technical basics in the articles “Building an OpenDoc Part

VINCENT LO

Getting Started With OpenDoc Storage

d e v e l o p Issue 24 December 199530

VINCENT LO is Apple’s technical lead for
OpenDoc. When he isn’t removing “unwanted
features” or participating in design meetings, he
divides his time equally among roller hockey, ice

hockey, and explaining to his friends why he
plays so much hockey. He has also been known
to apply his body checking techniques in intense
engineering discussions.•

Handler” in Issue 19 and “Getting Started With OpenDoc Graphics” in Issue 21.
Developer releases of OpenDoc include the definitive documentation, the OpenDoc
Programmer’s Guide and OpenDoc Class Reference. Developer releases are available
through a number of different sources, or you can request the latest release at
AppleLink OPENDOC or at opendoc@applelink.apple.com on the Internet. The
source code in this article is excerpted from a sample part included with the developer
release.

Because OpenDoc was developed jointly by a consortium of companies including
Apple, IBM, and Novell, its interfaces are designed for cross-platform compatibility,
using IBM’s platform-independent Standard Object Model (SOM). OpenDoc
method definitions, including the ones in this article, are commonly written in a
language-neutral Interface Definition Language (IDL). The SOM compiler converts
these into equivalent language-specific declarations for whatever source language you
happen to be using. The method definitions shown in this article, for instance, are
taken from the OpenDoc interface file StorageU.idl. To use these methods in your
program, you must include the corresponding language-specific binding file (such as
StorageU.xh for a C++ program).

DRAFTS, DOCUMENTS, AND CONTAINERS
The OpenDoc classes responsible for providing storage capabilities are ODContainer,
ODDocument, ODDraft, and ODStorageUnit. Collectively, a set of subclasses
derived from these four is known as a container suite. A container represents the physical
storage medium in which a document is stored, such as a disk file. Different container
suites share the same API, but may use different low-level storage mechanisms and
operate on different physical storage media. For example, the Bento container suite,
which will be shipped with OpenDoc 1.0, supports both file containers and in-memory
containers. A part editor can thus use the same code to store a part’s data either to a
file or in memory.

A single container may contain one or more documents, each of which in turn can
include one or more drafts. A part ordinarily works with a draft, rather than directly
with a document or its container. Each draft is a “snapshot” representing the state of
the document at a particular point in its development. Together, the drafts embody
the history of the document over time.

A part may need to interact with its draft for a variety of reasons:

• Persistent objects — Every persistent object (such as a part, a frame, or a
link) is created by a draft.

• Data interchange — A part asks its draft to copy transferred objects to and
from a data-interchange container, such as the Clipboard or a drag-and-drop
container.

• Linking — A part uses its draft to create link specifications and copy data to
and from link objects.

• Permissions — A part may need to find out whether it’s allowed to write to
the draft.

• Scripting — A part gets its scripting-specific identifier through its draft.

STORAGE UNITS
The basic entity of a container suite is the storage unit. Every persistent OpenDoc
object has a storage unit in which to store and retrieve its data. Figure 1 shows a
typical example.

GETTING STARTED WITH OPENDOC STORAGE 31

A storage unit consists of one or more properties, each of which in turn is associated
with one or more values containing the data itself. The storage unit shown in Figure
1, for instance, has properties named kODPropContents, kODPropPreferredKind,
and kODPropDisplayFrames; the kODPropContents property has values of types
kTextEditorKind and kODMacIText.

Using multiple values allows a property to represent the same data in different forms.
For example, a property holding a drawing may have three values representing the
same data: one as a Macintosh PICT, one as a Windows metafile, and one in TIFF
format. Although OpenDoc cannot enforce the principle, part developers are urged
to use multiple values within a property only for multiple representations of the same
data, not for storing unrelated data items.

The property names and value types shown in Figure 1 represent string constants
of type ODPropertyName and ODValueType, respectively. For cross-platform
extensibility, both of these types are defined as equivalent to an ISO string instead of
a traditional Macintosh OSType: that is, they’re 7-bit ASCII null-terminated strings,
as specified by the International Standards Organization (ISO). The string values
themselves are expected to follow a standard naming convention: for instance, the
constants kODPropDisplayFrames and kODWeakStorageUnitRefs stand for the
strings "OpenDoc:Property:DisplayFrames" and "OpenDoc:Type:StorageUnitRefs",
respectively. The OpenDoc interface files StdProps.idl and StdTypes.idl define name
constants for standard properties and value types; any property and type names that
you define for yourself should follow the same naming conventions.

FOCUSING A STORAGE UNIT
The OpenDoc operations for manipulating values don’t explicitly identify the value
to operate on. Instead, you have to focus the storage unit on the desired property or
value before invoking the operation. The method for setting the focus is defined in
class ODStorageUnit as follows:

ODStorageUnit Focus(in ODPropertyName propertyName,
in ODPositionCode propertyPosCode,
in ODValueType valueType,
in ODValueIndex valueIndex,
in ODPositionCode valuePosCode);

d e v e l o p Issue 24 December 199532

Storage unit

kODPropContents

kODPropDisplayFrames

kODWeakStorageUnitRefs

kODPropPreferredKind

kTextEditorKind

kODMacIText

kODISOStr

Figure 1. Structure of a storage unit

This allows you to set the storage unit’s focus in a variety of ways:

• to a property by name

• to a property by position relative to the current property

• to a value by type within a property

• to a value by position within a property

• to a value by position relative to the current value

Properties and values are ordered within the storage unit according to the sequence
in which they were added. Values within a property are indexed from 1: that is, the
first value has index 1, the second index 2, and so on. Positions relative to the current
focus are specified with a position code. The same position code can refer to either a
property or a value, depending on the current focus. For instance, if the storage unit
is currently focused on a property, the position code kODPosNextSib designates the
next property; if the current focus is on a value, kODPosNextSib designates the next
value.

Another way to set the focus of a storage unit is with a storage unit cursor:

ODStorageUnit FocusWithCursor(in ODStorageUnitCursor cursor);

The cursor identifies a property by name or a value by its property name and its index
or value type. Once created (with method CreateCursor or CreateCursorWithFocus
of class ODStorageUnit), the same cursor can be reused multiple times to refer to
properties or values within the storage unit.

Once you’ve focused a storage unit, you can create a storage unit view to refer to the
same property or value again later without having to reset the focus:

ODStorageUnitView CreateView();

The view responds to all the same access methods as the storage unit itself, but
applies them to the property or value that had the focus at the time the view was
created, rather than at the time the method is invoked. It does this by automatically
resetting the underlying storage unit to the original focus, then forwarding the
method call to the storage unit for processing.

MANIPULATING VALUE DATA
The operations for manipulating data within a storage value are stream-based, very
much like reading or writing to a sequential file. Each value has a current offset
position that controls where the next operation will take place, similar to the
file mark in the Macintosh file system. In addition to reading and writing data
sequentially, you can also insert or delete data at the current offset position.

Class ODStorageUnit defines the following methods for manipulating value data:

void SetOffset(in ODULong offset);
ODULong GetOffset();
void SetValue(in ODByteArray value);
ODULong GetValue(in ODULong length, out ODByteArray value);
void InsertValue(in ODByteArray value);
void DeleteValue(in ODULong length);

The ODByteArray structure is used to pass data to or from a storage unit.

GETTING STARTED WITH OPENDOC STORAGE 33

typdef struct {
unsigned long _maximum; /* size of buffer */
unsigned long _length; /* number of bytes of actual data */
octet* _buffer; /* pointer to buffer containing the data */

} _IDL_SEQUENCE_octet;

typedef _IDL_SEQUENCE_octet ODByteArray;

(An octet is simply the SOM term for an 8-bit byte.) Listing 1 shows how to
manipulate one of the values shown in Figure 1.

STORAGE UNIT REFERENCES
Storage unit references allow one storage unit to refer persistently to another. A part
can use this mechanism to access information stored in a storage unit (which may or
may not belong to it) across multiple sessions. A draft thus consists essentially of a
network of storage units connected to each other with persistent references.

When a storage unit is cloned (copied to a data-interchange container), any other
storage units it references are cloned along with it. Since all storage units in a draft
are interconnected, cloning any one of them may cause the whole draft to be cloned.
Because this may be an expensive and unnecessary operation, OpenDoc provides two
levels of storage unit reference: strong and weak. Only strongly referenced storage
units are copied when the unit that refers to them is cloned.

In Figure 2, frame A refers strongly to part A, which refers strongly to frame B, which
refers strongly to part B. Thus if frame A’s storage unit is cloned, all four storage units
will be copied. On the other hand, cloning frame B’s storage unit will copy those for
frame B and part B only, since frame B’s reference to frame A is weak rather than strong.

An object can use strong storage unit references to refer to other objects that are
essential to its functioning, such as embedded frames. Weak references are mainly for
informational or secondary purposes: a part might use them, for instance, to refer to
its display frames.

d e v e l o p Issue 24 December 199534

Listing 1. Adding data to a value

/* Focus the storage unit, using property name and value type. */
storageUnit->Focus(ev, kODPropContents, kODPosUndefined, kTextEditorKind,

0, kODPosUndefined);

/* Set up the byte array. */
ODByteArray ba;
ba._length = size;
ba._maximum = size;
ba._buffer = buffer;

/* Set the offset. (This step isn't really needed here, since the
Focus operation automatically sets the offset to 0. It's included
for illustrative purposes only.) */

storageUnit->SetOffset(ev, 0);

/* Add the value. */
storageUnit->SetValue(ev, &ba);

LIFE CYCLE OF A PART
Figure 3 shows the life cycle of a part and its associated storage unit. Because the
part’s lifetime may span multiple editing sessions, it must be able to externalize its
internal state (save it to persistent storage) in order to reconstruct itself from one
session to the next. The part’s InitPart method, called when the part is first created,
receives a storage unit as a parameter. The Externalize method can then use this
storage unit to save the part’s state. Once externalized, the part can be released
from memory and later reconstituted from external storage by a method named
InitPartFromStorage. Unlike InitPart, InitPartFromStorage can be called multiple

GETTING STARTED WITH OPENDOC STORAGE 35

Frame A Part A

Part BFrame B

Strong storage unit reference
Weak storage unit reference

Figure 2. Strong and weak storage unit references

Storage�
unit

Storage�
unit

Storage�
unit

Initial

Storage�
unit

Storage�
unit

Storage�
unit

Storage�
unit Part

Part
Modify part

Part Part

Modified

Part

InitPart

Externalize
Externalize

Release

Release

Modify part

InitPartFromStorage

Figure 3. Life cycle of a part

times during a part’s lifetime, whenever the part needs to be reconstructed from
external storage.

Notice that externalizing a part is not the same as cloning it. Externalizing means
writing the part’s data to persistent storage, using a storage unit associated with the
draft in which the part resides; cloning is transferring the part’s data to a data-
interchange container such as the Clipboard, using a storage unit associated with the
container. Although the two operations are different, they’re both based on the same
ODStorageUnit API and can share much of the same code.

Another related operation is purging, which reclaims memory space by eliminating
unnecessary runtime data structures such as caches. Because such structures can
usually be reconstructed from persistent data, many OpenDoc programmers believe
that a part’s Purge method should always begin by externalizing the part’s data before
deleting unused or unnecessary memory. While this might sound plausible in principle,
the externalization operation itself requires additional memory — the very thing
that’s in short supply during purging. As a general rule, the Purge method should
avoid invoking externalization unless it’s absolutely necessary.

All persistent objects carry a reference count, enabling OpenDoc to identify unused
objects and reclaim the memory they occupy. The Acquire method, which creates a
reference to a specified object, increments the object’s reference count; the Release
method destroys a reference and decrements the reference count. When the reference
count goes down to 0, OpenDoc can safely delete the object from memory.

INITIALIZATION
The initialization method InitPart is called only once, to set up a part’s initial state. It
should take the following actions:

1. Call the parent class’s InitPart method to perform any initialization required
at the parent level.

2. Save the incoming part wrapper object (discussed below) in an internal field.

3. Set up an internal permissions field to indicate that writing to the draft is
allowed.

4. Set up the part’s runtime data structures.

5. Set the part’s internal dirty flag to true.

Listing 2 shows an example. Notice that the SOM compiler, in translating the method
declaration from language-independent IDL into a specific source language, adds two
additional parameters at the beginning of the parameter list: a pointer to the object
executing the method (somSelf) and an environment pointer (ev) used for error
reporting. All of our example method definitions in this article begin with these two
parameters.

Parent initialization. It’s important for a part’s initialization method to call that of
its parent class. The parent’s initialization method will in turn call that of its parent
and so on up the inheritance chain, ensuring that all of the part’s inherited properties
are properly initialized. Inherited properties set up by ODPart and its parents, such
as ODPersistentObject, include the following:

• kODPropCreateDate contains the part’s creation date.

• kODPropModDate tells when the part’s storage unit was last externalized.

• kODPropModUser contains the name of the last user who modified the
part.

d e v e l o p Issue 24 December 199536

Part wrapper. Every part is wrapped by another object, called its part wrapper.
Clients of the part object deal with it indirectly, through the part wrapper, instead of
holding a direct pointer to the part object itself. The part wrapper receives all method
invocations and delegates them to the actual part. This insulation of the part object
allows the part editor to be changed at run time without affecting its clients.

The InitPart method should save the part wrapper object in an internal field. Then,
whenever the part needs to pass an object representing itself as a parameter, it should
pass the part wrapper in place of itself.

Draft permissions. A part editor needs to know whether a part is in a read-only
draft. If so, its functionality may be restricted: for example, the part may not allow the
user to change its contents, either through keyboard input or through menu operations
such as Cut and Paste. Also, if the draft is read-only, its Externalize method need
never be called on its parts or any persistent objects. When a part is created for the
first time, its draft is guaranteed to be writable, so it should initialize its read-only flag
to false.

GETTING STARTED WITH OPENDOC STORAGE 37

Listing 2. Initializing a part

SOM_Scope void
SOMLINK TextEditor__InitPart(SampleCode_TextEditor *somSelf,

Environment *ev,
ODStorageUnit *storageUnit,
ODPart *partWrapper)

{
SampleCode_TextEditorData *somThis =

SampleCode_TextEditorGetData(somSelf);
SOMMethodDebug("TextEditor", "InitPart");

SOM_TRY
// Call the parent class's InitPart method. The parent will in
// turn call its parent, and so on.
parent_InitPart(somSelf, ev, storageUnit, partWrapper);

// Store part wrapper object in an internal field.
_fSelf = partWrapper;

// Set a flag showing that this draft is not read-only.
_fReadOnlyStorage = kODFalse;

// Call common initialization code to set up our initial state.
somSelf->Initialize(ev);

// Set the dirty flag to true.
somSelf->SetDirty(ev);

SOM_CATCH_ALL
// No explicit code needed here: cleanup will be performed by the
// destructor, which is called automatically when an error is
// thrown.

SOM_ENDTRY
}

Dirty flag. The purpose of a dirty flag is to let the part’s Externalize method know
whether it needs to write out the part’s state to external storage. Externalization
(especially to disk) can be a time-consuming and expensive operation; using a dirty
flag can greatly improve performance by avoiding it whenever possible.

When a part is first created, its storage unit is empty. Since the state has not yet been
written out, the part should initialize its dirty flag to true; the flag should also be set
to true whenever the contents of the part are changed. After saving the state and
content data to external storage, the Externalize method should clear the flag to false,
indicating that the state need not be saved again unless the part’s contents are
changed.

EXTERNALIZATION
A part’s Externalize method can be called at any time. Typically, it’s called by the draft
when the user chooses to save the document. Since a part has no idea when this may
happen, it should always be ready to externalize itself.

The Externalize method should do the following:

1. Call the parent class’s Externalize method.

2. Check that all required properties exist; if not, add them to the storage unit.

3. Clean up the part’s contents if necessary.

4. Write out the part’s state information and contents.

5. Clear the part’s internal dirty flag to false.

Listing 3 shows an example.

The contents of a part must be written out to a special content property named
kODPropContents. Like other properties, the content property can contain multiple
values representing the same data in different forms. A value type used for content
data is referred to as a part kind. To facilitate data interchange, part editors are
encouraged to include one or more standard part kinds in their content property,
much the way traditional Macintosh applications use common data formats like
'TEXT' or 'PICT' when writing to the Clipboard.

Each value in the content property should be a complete representation of the
content data. A value may contain references to other storage units, but cannot
depend on other values in the content property or on other properties in the part’s
storage unit. Even if every other property and value were deleted from the storage
unit, the part editor should still be able to reconstruct the part using just that one
content value.

The ordering of values within the content property is completely determined by
the part editor. An important principle, however, is that values that represent the
underlying contents with greater fidelity should precede those of lesser fidelity:
formatted text, for instance, should precede plain (unformatted) text. The first value
should be the one that represents the content most faithfully.

When a part editor reconstructs a part from an external storage unit, there’s a
chance that the storage unit may have originally been written by some other part
editor. As a result, the content property may contain part kinds that the current part
editor doesn’t support, or the values may appear in the wrong fidelity order. In this
case, the part’s Externalize method should remove all existing values from the content
property so that it can write out its own content data in proper fidelity order.•

d e v e l o p Issue 24 December 199538

A standard property named kODPropPreferredKind identifies the part kind that the
user chooses to represent the data. If this property already exists, the part editor
shouldn’t tamper with it; if it doesn’t exist, the part editor may create it and give it a
value of type kODISOStr containing the name of the highest-fidelity part kind.
When writing out the content data, the part editor should be sure to include a value
in the format specified by this property.

RECONSTRUCTION
The InitPartFromStorage method is called whenever a part object needs to be
reconstructed from external storage. This method should do the following:

1. Call the parent class’s InitPartFromStorage method.

2. Save the incoming part wrapper object in an internal field.

3. Set up an internal permissions field to indicate whether writing to the draft is
allowed.

4. Set up the part’s runtime data structures.

GETTING STARTED WITH OPENDOC STORAGE 39

Listing 3. Externalizing a part

SOM_Scope void
SOMLINK TextEditor__Externalize(SampleCode_TextEditor *somSelf,

Environment *ev)
{

SampleCode_TextEditorData *somThis =
SampleCode_TextEditorGetData(somSelf);

SOMMethodDebug("TextEditor", "Externalize");

SOM_CATCH return;

// Ask parent classes to externalize themselves.
parent_Externalize(somSelf, ev);

// Check dirty flag.
if (_fDirty) {

// Get storage unit.
ODStorageUnit *storageUnit = somSelf->GetStorageUnit(ev);

// Verify that the storage unit has the appropriate properties;
// if not, add them.
somSelf->CheckAndAddProperties(ev, storageUnit);

// Validate storage unit's contents and clean up if necessary.
somSelf->CleanseContentProperty(ev, storageUnit);

// Write out state information and contents.
somSelf->ExternalizeStateInfo(ev, storageUnit, 0, kODNULL);
somSelf->ExternalizeContent(ev, storageUnit, kODNULL);

// Clear dirty flag.
_fDirty = kODFalse;

}
}

5. Read the content data from the storage unit into the runtime data structures.

6. Clear the part’s internal dirty flag to false.

Notice that these are essentially the same steps we listed earlier for the InitPart
method, except that the contents of the part’s runtime data structures are read in from
the storage unit instead of being initialized to standard values, and that the dirty flag is
cleared to false instead of true to show that the part’s contents agree with those in the
external storage unit. Listing 4 shows an example of an InitPartFromStorage method.

d e v e l o p Issue 24 December 199540

Listing 4. Reconstructing a part

SOM_Scope void
SOMLINK TextEditor__InitPartFromStorage

(SampleCode_TextEditor *somSelf,
Environment *ev,
ODStorageUnit *storageUnit,
ODPart *partWrapper)

{
SampleCode_TextEditorData *somThis =

SampleCode_TextEditorGetData(somSelf);
SOMMethodDebug("TextEditor", "InitPartFromStorage");

// Avoid initializing the part twice.
if (fSelf != kODNULL)

return;

SOM_TRY
// Call the parent class's InitPartFromStorage method. The parent
// will in turn call its parent, and so on.
parent_InitPartFromStorage(somSelf, ev, storageUnit, partWrapper);

// Store part wrapper object in an internal field.
_fSelf = partWrapper;

// Set a flag showing whether this draft is read-only.
_fReadOnlyStorage = (storageUnit->GetDraft(ev)->

GetPermissions(ev) == kDPReadOnly);

// Call common initialization code to set up our initial state.
somSelf->Initialize(ev);

// Read in state data from external storage.
somSelf->InternalizeStateInfo(ev, storageUnit);

// Read in content data from external storage.
somSelf->InternalizeContent(ev, storageUnit);

SOM_CATCH_ALL
// No explicit code needed here: cleanup will be performed by the
// destructor, which is called automatically when an error is
// thrown.

SOM_ENDTRY
}

As we’ve already noted, the storage unit from which a part is reconstructed may have
been created by a part editor other than the one reading it in. The OpenDoc binding
subsystem uses the part kinds found in the storage unit’s content property to
determine which part editor to invoke. If the original part editor cannot be found, the
binding subsystem will look for another editor capable of reading the available part
kinds. The contents of the storage unit may thus be very different from what the
current part editor expects. Here are a few points to note:

• If the storage unit identifies a preferred part kind (that is, if it contains the
property kODPropPreferredKind), the part editor should read its content
data from the indicated value of the content property. If no preferred kind is
specified (or if the part editor cannot handle a value of the specified kind), it
should iterate through the available values looking for one it can handle.
When it finds such a value, it should read the content data from that value
into its runtime data structures.

• The InitPartFromStorage method should not add its own properties to the
part’s storage unit, but should leave that task to the Externalize method
instead. This is because the user may close the document without modifying
any of its contents. If the InitPartFromStorage method modifies the storage
unit, the user will be prompted to save the document before closing it, even
though the document has not been modified.

• The part editor should not alter the part’s preferred-kind property
(kODPropPreferredKind).

WHAT NEXT?
Needless to say, the only real way to get familiar with OpenDoc programming is to
jump in and develop a part editor of your own. The techniques discussed in this
article will help you manage your storage needs effectively. The rest is up to you and
your imagination.

GETTING STARTED WITH OPENDOC STORAGE 41

Thanks to our technical reviewers Dave Bice,
Craig Carper, Ed Lai, and Steve Smith.•

RELATED READING
• “The OpenDoc User Experience” by Dave Curbow and Elizabeth Dykstra-Erickson,

develop Issue 22.

• “Getting Started With OpenDoc Graphics” by Kurt Piersol, develop Issue 21.

• “Building an OpenDoc Part Handler” by Kurt Piersol, develop Issue 19.

• OpenDoc Programmer’s Guide and OpenDoc Class Reference, available as part
of the OpenDoc developer releases.

• The latest news on OpenDoc can be found on the World Wide Web at
http://www.info.apple.com/opendoc or http://www.cilabs.org.

For those of us on Apple’s QuickDraw 3D team, the
highlight of SIGGRAPH ’95 (the annual conference
of the ACM’s computer graphics interest group) was
having the chance to work with developers who were
showing QuickDraw 3D products. Considering that we
only started working with developers in December
1994, the number of applications already up and running
is inspiring. By the time you read this column, 10 or 15
QuickDraw 3D products will be shipping, including
modeling and animation software, 3D hardware
accelerators, 3D model clip art, and games. More than
50 developers are actively working on products based
on QuickDraw 3D, and those will ship in 1996.

If you’re not yet a QuickDraw 3D developer and don’t
want to be left out, take a look at the develop articles
“QuickDraw 3D: A New Dimension for Macintosh
Graphics” in Issue 22 and “The Basics of QuickDraw
3D Geometries” in Issue 23. This column gives a
hodgepodge of additional information.

IMPROVING ACCELERATOR PERFORMANCE
One of the things that has attracted developers to
QuickDraw 3D is seamless access to hardware
acceleration. In addition to Apple’s PCI accelerator
card, hardware acceleration cards have been announced
by Matrox, Yarc, Radius, and Newer Technology. If you
really want your application to fly, you need to make
sure that you’re using the fastest renderer possible and
that if a hardware acceleration card is installed, you’re
using the card. If you use the QuickDraw 3D API,

QuickDraw 3D will take care of this for you, but there’s
something else you can do that might improve your
application’s performance.

Certain cards, including Apple’s accelerator card, will
yield better frame rates in some situations if you use
what we call double buffer bypass, an option enabled by a
flag. Double buffering causes all objects to be drawn
first into a back buffer; this entire buffer is then copied
to the front buffer (the window). If the scene you’re
rendering is simple and thus takes very little time to
redraw — say, less than 1/10 of a second — enabling
double buffer bypass is faster because it avoids having
to copy memory from the back buffer to the front
buffer. On the other hand, if you use this option with a
complex scene, tearing may occur. Therefore, you may
want to time a frame (and take into account the
complexity of your models) before using double buffer
bypass. To time a frame, call the Toolbox routine
Microseconds, draw the frame, call Q3Renderer_Sync
to make sure the frame has been fully drawn, and then
call Microseconds again and subtract the start time
from the end time.

If you’re using QuickDraw 3D’s interactive software
renderer, all the code you need to turn on double
buffer bypass is shown in Listing 1.

The interactive renderer can render using software
only or using hardware acceleration. The interactive
renderer is set by default to look for the best device
possible, so if a hardware accelerator is installed, the
accelerator will always be used. On occasion, though,
you may want to switch from using hardware to using
software (for demos or testing, for example). In this
case you must explicitly request the software rasterizer,
as follows:

Q3InteractiveRenderer_SetPreferences(myRenderer,
kQAVendor_Apple, kQAEngine_AppleSW);

INTERACTING WITH INPUT DEVICES
QuickDraw 3D provides an input device abstraction
layer that allows you to interact with different input
devices without having to write special code for each of
them. The sample application NewEra demonstrates

GRAPHICAL
TRUFFLES

Making the Most
of QuickDraw 3D

NICK THOMPSON AND
PABLO FERNICOLA

d e v e l o p Issue 24 December 199542

NICK THOMPSON (eWorld NICKT), transplanted English soccer
fan and member of Apple’s Developer Technical Support team,
thinks that this could be the year for the Arsenal Football Club.
With the acquisition of Dutch star Dennis Bergkamp and England
striker David Platt, things are looking up at Highbury. By the time
you read this, the Premier League standings will tell if this is the
dawning of a new era or more of the same “boring, boring,
Arsenal,” as those charming Spurs fans like to chant.•

PABLO FERNICOLA (eWorld EscherDude), of Apple’s Interactive
Multimedia Group, is much more relaxed since shipping QuickDraw
3D 1.0. He now has time to eat his dad’s great barbecue, dally
with his lovely wife, and sleep — although the latter entails the
challenge of trying to get his golden retriever, aptly named Mac,
to give up some of the space he takes up in the bed. Pablo’s latest
research project is to find out exactly what the purpose is for those
orange balls that one finds on high power transmission lines.•

interaction with tablets and other input devices; this
application is available on the CD that comes with the
book 3D Graphics Programming With QuickDraw 3D,
and a newer version can be found on this issue’s CD.

To take advantage of QuickDraw 3D’s input device
layer, you need to create a tracker object and associate
it with a controller object (created by an input device
driver), as Listing 2 does. Once you’ve set up your
tracker, you can poll it to get its new position and
orientation, as shown in Listing 3. To reflect the
change in your scene, you apply the values returned by
the tracker to a transform object, affecting either a
particular geometry or group (if an object was selected
and being manipulated) or the camera, depending on
the interaction model for your application.

QuickDraw 3D’s input device abstraction layer also
makes writing input device drivers easier. For example,
it took us about three days to write a driver for the
Magellan device from Logitech, Inc., a 3D input device

with six degrees of freedom. As illustrated in Figure 1,
this device enables movement along the x, y, and z axes,
as well as rotation about the three axes.

SETTING THE CORRECT FILE TYPE
When saving QuickDraw 3D metafiles, you should set
the file type as '3DMF', regardless of how the contents
of the file are formatted (as plain-text or binary, or any
combination of the different types of organization, such
as database or stream). This will enable the file to be
read or opened by other QuickDraw 3D applications. If
you’d like your end users to read a file as text, add an
Export As Text option to your application and then set
the file type to 'TEXT'. This is helpful for debugging
(and for sending questions or bugs to Developer
Technical Support).

HAVING FUN WITH CUSTOM ATTRIBUTES
By taking advantage of QuickDraw 3D’s custom
attributes and extensible metafile format, you can have
objects that encapsulate specialized data relevant to

GRAPHICAL TRUFFLES: MAKING THE MOST OF QUICKDRAW 3D 43

Listing 1. Turning on double buffer bypass

// Create the renderer.
if ((myRenderer = Q3Renderer_NewFromType(kQ3RendererTypeInteractive)) != nil) {

if ((myStatus = Q3View_SetRenderer(myView, myRenderer)) == kQ3Failure) { // Handle the error.
...

} // Set bypass.
Q3InteractiveRenderer_SetDoubleBufferBypass(myRenderer, kQ3True);

}

Listing 2. Creating a tracker object and attaching it to a controller object

theDocument->fPositionSN = 0;
theDocument->fRotationSN = 0;
theDocument->fTracker = Q3Tracker_New(NULL);
myStatus = Q3Controller_Next(NULL, &controllerRef);
while (controllerRef != NULL && myStatus == kQ3Success) {

Q3Controller_SetTracker(controllerRef, theDocument->fTracker);
myStatus = Q3Controller_Next(controllerRef, &controllerRef);

}

Listing 3. Updating position and orientation

// We received a null event; grab a new position and orientation for the model.
TQ3Boolean positionChanged;
TQ3Boolean rotationChanged;

Q3Tracker_GetPosition(doc.fTracker, &doc.fPosition, NULL, &positionChanged, &doc.fPositionSN);
Q3Tracker_GetOrientation(doc.fTracker, &doc.fRotation, NULL, &rotationChanged, &doc.fRotationSN);

your application. For instance, to navigate through the
World Wide Web in 3D, you can attach Web data (like
URLs) to QuickDraw 3D objects as custom attributes.
When those objects or scenes are read into one of the
many viewers supporting the URL custom attribute,
the viewer can communicate through Apple events
with applications like Netscape (or your favorite Web
browser) to produce 3D navigation. You’ll find a sample
application that shows how to do this on this issue’s CD.

Custom attributes also enable you to associate sound
and other data with objects in your 3D scene.

DEBUGGING
There are two really handy techniques that you can
use to diagnose problems you may be having with
your QuickDraw 3D application. For both of these
approaches to debugging your software, you’ll want to
make sure that you have MacsBug installed on your
machine and that you’re using the debugging version
of the QuickDraw 3D extension supplied with the
QuickDraw 3D development software.

The first technique is to install error and warning
handlers, described in our article in develop Issue 22.
Error and warning handlers are particularly useful for
telling you of potential problems with your use of the
QuickDraw 3D library. If you don’t install error and
warning handlers, you won’t know if you’re doing
something that the library identifies as erroneous.
Although we stated this in our original article, many

developers missed its significance and thus have
experienced longer debugging times than necessary
and a great deal of frustration.

The second technique is to use a software tool, the 3D
debugger, included on this issue’s CD. This application
enables you to examine the QuickDraw 3D heap and
look at the different objects, their attributes, and their
reference count. Please note that you’re looking under
the hood, so you may encounter untyped blocks, and
the reference count for objects may reflect references
internal to the QuickDraw 3D system.

LOOKING AHEAD
We’ll continue to release great new QuickDraw 3D
features, so bring your applications along for the ride.
By early 1996 we expect to have all major existing 3D
applications on the Macintosh using QuickDraw 3D,
along with applications that developers port from other
platforms. Many 2D applications will be making use of
the 3D Viewer as well.

Watch develop for further articles about other aspects of
QuickDraw 3D. Meanwhile, you may want to check
out the Addison-Wesley book 3D Graphics Programming
With QuickDraw 3D (which includes the QuickDraw
3D development software) and see this issue’s CD for
the development software and the latest versions of the
sample code and utility applications. And for the latest
news on QuickDraw 3D, see our Web page at
http://www.info.apple.com/qd3d.

d e v e l o p Issue 24 December 199544

Figure 1. Magellan: a six-degrees-of-freedom input device (courtesy of Logitech)

For more information on making your application work with
Magellan, contact Stephan Ilberg at Logitech by sending a message
to stephan_ilberg@logitech.com.•

Thanks to Robert Dierkes and Fábio Pettinati for reviewing this
column, and a special thanks to Dan Venolia and David Vasquez
for supplying some of the code and applications discussed.•

The Sound Manager is one powerful multimedia tool for the Macintosh,
but no one has ever accused it of being too obvious. This article explores
some of the more subtle Sound Manager features, showing some simple
ways to improve your application’s use of sound. A sample application
demonstrates features such as volume overdrive and easy continuous
sound.

The Sound Manager has a long and distinguished career on the Macintosh. First
released in 1987, it was completely revised in 1993 with the release of Sound
Manager 3.0. The introduction of Sound Manager 3.1 in the summer of 1995
brought native PowerPC performance, making the Sound Manager one of the most
powerful multimedia tools around. However, getting the most out of the Sound
Manager often means wading through many pages of Inside Macintosh: Sound.

This article pulls together valuable information about the Sound Manager,
focusing on some of its little-known features that will ease your development of
multimedia applications. The tips and techniques come straight from the Sound
Manager development team at Apple and cover diverse areas of developer interest,
including

• parsing sound resources

• displaying compression names

• maximizing performance

• adjusting volume

• controlling pitch

• playing continuous sounds

• compressing audio

Two of these topics, controlling pitch and compressing audio, require the use of
Sound Manager 3.1, which is included on this issue’s CD. You’ll also find the
SoundSecrets application and its source code on the CD. SoundSecrets demonstrates
many of the techniques described in the article. To get the most out of this article,
you should be familiar with the Sound Manager command interface and concepts
such as sound channels, as described in Inside Macintosh: Sound.

So, let’s get started unlocking some of those sound secrets!

KIP OLSON

Sound Secrets

SOUND SECRETS 45

KIP OLSON was recently dispatched to the
Copland team at Apple with orders to rewrite
the Sound Manager (again). To keep things

interesting, he promises to add even more obscure
features.•

FIND WHAT YOU’RE LOOKING FOR
On the Macintosh, sounds can be stored in a variety of formats, including 'snd '
resources, AIFF (Audio Interchange File Format) files, and QuickTime movies.
Applications often need to read these files directly and extract their sound data, which
can be a daunting task, especially when you begin to deal with some of the new
compressed sound formats introduced in Sound Manager 3.1 — for example, IMA 4:1.

Fortunately, Sound Manager 3.0 introduced a couple of routines to help you navigate
these tricky waters — GetSoundHeaderOffset and GetCompressionInfo. Let’s take a
look at these routines, and put them to work with an example of parsing an 'snd '
resource taken from the SoundSecrets application.

The 'snd ' resource format is described fully in Inside Macintosh: Sound, so we won’t go
into detail here, except to say that embedded in the resource is a sound header and
the audio samples themselves. Finding this embedded sound header is the job of
GetSoundHeaderOffset. It takes a handle to an arbitrary 'snd ' resource and returns
the offset of the sound header data structure within that handle.

However, once you find the sound header, your work is not complete; you must
determine which of the three possible sound header structures it is. In the SoundSecrets
application, the sound header is represented as a union of the three structures
SoundHeader, ExtSoundHeader, and CmpSoundHeader. The encode field in these
structures determines which union member to use when examining the header.

After you’ve extracted the appropriate information from the sound header, you can
use the GetCompressionInfo routine to determine the sound format and the
compression settings. GetCompressionInfo fills out and returns a CompressionInfo
record, which contains the OSType format of the sound, samples per packet, bytes
per packet, and bytes per sample. You can use these fields to convert between
samples, frames, and bytes.

For a thorough discussion of GetCompressionInfo, see the Macintosh
Technical Note “GetCompressionInfo()” (SD 1).•

As shown in Listing 1, the SoundSecrets application uses GetSoundHeaderOffset to
find the sound header structure, and then uses a case statement based on the encode
field to extract the useful information from each type of header. The SoundSecrets
application calculates the number of samples in the sound using information returned
by GetCompressionInfo.

CHOOSE THE RIGHT NAME
Now that you’ve extracted the sound settings from an 'snd ' resource, the next thing
you’ll want to do is display this information to the user of your application. Settings
like sample rate and sample size are easy to display, but what if the sound is
compressed? All you’ve got is an OSType to describe the compressed sound data
format, and not too many users are going to get much out of seeing something like
'MAC3' displayed on their screen.

Fortunately, the Sound Manager makes it easy for you to find a string to display that
does make sense. Using the Component Manager, you can look up the name of the
audio codec used to expand the compressed sound, and use this name to describe the
compression format to the user.

This is done with the Component Manager routine FindNextComponent, which is
passed a ComponentDescription record. By setting the componentType field of this

d e v e l o p Issue 24 December 199546

SOUND SECRETS 47

Listing 1. Getting information from the sound header

typedef union {
SoundHeader s; // Plain sound header
CmpSoundHeader c; // Compressed sound header
ExtSoundHeader e; // Extended sound header

} CommonSoundHeader, *CommonSoundHeaderPtr;

OSErr ParseSnd(Handle sndH, SoundComponentData *sndInfo,
CompressionInfo *compInfo, unsigned long *headerOffsetResult,
unsigned long *dataOffsetResult)

{
CommonSoundHeaderPtr sh;
unsigned long headerOffset, dataOffset;
short compressionID;
OSErr err;

// Use GetSoundHeaderOffset to find the offset of the sound header
// from the beginning of the sound resource handle.
err = GetSoundHeaderOffset((SndListHandle) sndH,

(long *) &headerOffset);
if (err != noErr)

return (err);

// Get pointer to the sound header using this offset.
sh = (CommonSoundHeaderPtr) (*sndH + headerOffset);
dataOffset = headerOffset;

// Extract the sound information based on encode type.
switch (sh->s.encode) {

case stdSH: // Standard sound header
sndInfo->sampleCount = sh->s.length;
sndInfo->sampleRate = sh->s.sampleRate;
sndInfo->sampleSize = 8;
sndInfo->numChannels = 1;
dataOffset += offsetof(SoundHeader, sampleArea);
compressionID = notCompressed;
break;

case extSH: // Extended sound header
sndInfo->sampleCount = sh->e.numFrames;
sndInfo->sampleRate = sh->e.sampleRate;
sndInfo->sampleSize = sh->e.sampleSize;
sndInfo->numChannels = sh->e.numChannels;
dataOffset += offsetof(ExtSoundHeader, sampleArea);
compressionID = notCompressed;
break;

case cmpSH: // Compressed sound header
sndInfo->sampleCount = sh->c.numFrames;
sndInfo->sampleRate = sh->c.sampleRate;
sndInfo->sampleSize = sh->c.sampleSize;
sndInfo->numChannels = sh->c.numChannels;

(continued on next page)

record to kSoundDecompressor, the componentSubType field to the OSType of the
compressed sound data format, and the remaining fields to 0, you can search for the
sound component that will decompress the sound. Once you have the component,
you can use GetComponentInfo to obtain the component name, which is the
descriptive string that makes sense to the user. The routine from SoundSecrets shown
in Listing 2 finds the name of any compressed sound format.

MAXIMIZE YOUR POTENTIAL
The Sound Manager is almost always used in conjunction with other operations on
the Macintosh. For example, QuickTime uses the Sound Manager to play a sound
track while it’s drawing the frames of a movie, and games play sound effects and
background music while animating the screen. That’s why the performance of the
Sound Manager is of such great concern to many programmers: if the Sound
Manager takes too much time to do its work, QuickTime will begin to drop video
frames and games or animations will run slower.

To get the best performance out of the Sound Manager, you first need to understand
a little about how it plays a sound. The Sound Manager’s major function is to convert
the sounds played by an application into the audio format required by the sound
hardware on a particular computer. For example, the sound hardware on the Power
Macintosh 8100 requires a stream of 16-bit, stereo, 44.1 kHz audio samples, so the
Sound Manager must convert all sounds to this format during playback.

d e v e l o p Issue 24 December 199548

dataOffset += offsetof(CmpSoundHeader, sampleArea);
compressionID = sh->c.compressionID;
sndInfo->format = sh->c.format;
break;

default:
return (badFormat);
break;

}

// Use GetCompressionInfo to get the data format of the sound and
// the compression information.
compInfo->recordSize = sizeof(CompressionInfo);
err = GetCompressionInfo(compressionID, sndInfo->format,

sndInfo->numChannels, sndInfo->sampleSize, compInfo);
if (err != noErr)

return (err);

// Store the sound data format and convert frames to samples.
sndInfo->format = compInfo->format;
sndInfo->sampleCount *= compInfo->samplesPerPacket;

// Return offset of header and audio data.
*headerOffsetResult = headerOffset;
*dataOffsetResult = dataOffset;

return (noErr);
}

Listing 1. Getting information from the sound header (continued)

It does this by examining the format of the sound to be played, and setting up the
proper conversion steps needed to convert it to the hardware format. These steps
might include decompression, sample size adjustment, sample rate conversion,
volume adjustment, and mixing, all of which take time away from your application.

Therefore, the best way to maximize Sound Manager performance is to simply supply
it with sounds that are already in the format required by the sound hardware. This
way, the Sound Manager doesn’t have to spend a lot of time processing, and your
application will have more time to do other operations. Fortunately, Sound Manager

SOUND SECRETS 49

Listing 2. Finding the name of a compressed sound format

OSErr GetCompressionName(OSType compressionType, Str255 compressionName)
{

ComponentDescription cd;
Component component;
Handle componentName;
OSErr err;

// Look for decompressor component.
cd.componentType = kSoundDecompressor;
cd.componentSubType = compressionType;
cd.componentManufacturer = 0;
cd.componentFlags = 0;
cd.componentFlagsMask = 0;

component = FindNextComponent(nil, &cd);
if (component == nil) {

err = siInvalidCompression;
goto FindComponentFailed;

}

// Create handle for name.
componentName = NewHandle(0);
if (componentName == nil) {

err = MemError();
goto NewNameFailed;

}

// Get name from the Component Manager.
err = GetComponentInfo(component, &cd, componentName, nil, nil);
if (err != noErr)

goto GetInfoFailed;

// Return name.
BlockMoveData(*componentName, compressionName,

GetHandleSize(componentName));

GetInfoFailed:
DisposeHandle(componentName);

NewNameFailed:
FindComponentFailed:

return (err);
}

3.1 provides a new routine, SndGetInfo, that helps you determine the current sound
hardware settings, so maximizing performance is a snap. (Of course, this technique
applies only to sounds the application generates itself, since otherwise you have no
control over their format.)

SndGetInfo is a selector-based routine that returns information about the sound
channel. You pass in an OSType selector, and it returns a data structure of information.
(This is similar to the operation of the SPBGetDeviceInfo routine in the Sound Input
Manager, and in fact they use the same selectors.) Once you know the sound hardware
sample rate, sample size, and number of channels, you know the kind of sounds that
will be played back most efficiently.

The SoundSecrets application demonstrates how to determine the hardware settings
and then find the sound with the correct format. It uses the GetHardwareSettings
routine, which determines the hardware settings, and the FindMatchingSound
routine, which chooses the right sound to play to maximize performance.

Listing 3 shows how to use SndGetInfo to return the current hardware settings.

PUMP UP THE VOLUME
Most sound programmers have heard (literally) about the venerable ampCmd
command, which lets you scale the volume of all sounds on a channel from a minimum
of 0 (silence) to 255 (full volume). However, only the truly righteous know that
Sound Manager 3.0 added an even more powerful command for manipulating sound
volume — volumeCmd.

d e v e l o p Issue 24 December 199550

Listing 3. Getting the current hardware settings

OSErr GetHardwareSettings(SndChannelPtr chan,
SoundComponentData *hardwareInfo)

{
OSErr err;

err = SndGetInfo(chan, siNumberChannels, &hardwareInfo->numChannels);
if (err != noErr)

return (err);

err = SndGetInfo(chan, siSampleRate, &hardwareInfo->sampleRate);
if (err != noErr)

return (err);

err = SndGetInfo(chan, siSampleSize, &hardwareInfo->sampleSize);
if (err != noErr)

return (err);

if (hardwareInfo->sampleSize == 8)
hardwareInfo->format = kOffsetBinary;

else
hardwareInfo->format = kTwosComplement;

return (noErr);
}

The volumeCmd command does three things. First, like ampCmd, it allows you to
scale the volume from silence to full volume. However, volumeCmd doesn’t stop
there; like that revolutionary amplifier in the movie Spinal Tap that could go all the
way to 11, it lets you go beyond full volume to overdrive the sound volume. And
finally, it allows you to control the volume of the left and right channels
independently, providing complete stereo control over your sounds.

All this is possible because the volumeCmd command represents the sound volume
in 16-bit fixed-point notation. By using the most significant 8 bits to represent the
integer portion of the volume and the least significant 8 bits for the fractional
portion, it provides very precise volume settings. And overdriving the sound is a
cinch. By combining the left and right volume settings into one 32-bit quantity,
volumeCmd gives you full control over how loud you can blast your speakers.
Another command, getVolumeCmd, returns the current volume setting, in case you
forgot what you set it to.

A new interaction between the volumeCmd and ampCmd commands was
added in Sound Manager 3.1. Previously, ampCmd would clobber the separate left
and right settings made by volumeCmd, setting them to the same value. Starting with
Sound Manager 3.1, volumeCmd now specifies a base volume for a channel, and
ampCmd scales against that base, which lets ampCmd and volumeCmd coexist better
when playing the system alert beep.•

Table 1 gives some examples of values you can pass to volumeCmd and their effect.
Remember, once you’ve changed the volume setting with volumeCmd, the setting
is applied immediately to the current sound that’s playing (if any) and to every
subsequent sound played on that channel.

The SoundSecrets sample program included on the CD demonstrates the usefulness
of volumeCmd by providing a slider control to adjust left and right volume separately,
with volume overdrive up to two times the normal full volume.

ACHIEVE PERFECT PITCH
One of the trickiest things to do with the Sound Manager is to play a sound at just
the right pitch. While the frequencyCmd command lets you trigger a sound at a

SOUND SECRETS 51

Table 1. Sample values for volumeCmd

volumeCmd Right Channel Left Channel
Setting Decimal Value Decimal Value Effect

0x01000100 1.0 1.0 Full volume out both channels
(the default)

0x00000000 0.0 0.0 Silence out both channels

0x01000000 1.0 0.0 Full volume out right channel;
silence out left

0x00000100 0.0 1.0 Silence out right channel; full
volume out left

0x02000200 2.0 2.0 Double the full volume out both
channels

0x01800040 1.5 0.25 One and a half times full
volume out right channel; one
quarter out left

given MIDI note value, and the rateCmd command gives you limited control over
the pitch of the sound currently playing, before Sound Manager 3.1 there was no
good way to just play a sound at an arbitrary pitch, short of generating the samples
yourself. So Sound Manager 3.1 introduced the rateMultiplierCmd command, which
gives you perfect pitch every time.

The concept behind rateMultiplierCmd is very simple. Using a Fixed value, you can
apply a multiplier to the playback rate of all sounds played on a channel. This allows
you to vary the sample rate of the sound being played, and thus control its pitch.
(Of course, changing the rate also changes the duration of the sound.) You can use
getRateMultiplierCmd to return the current rate multiplier setting.

Like any great concept, it’s most easily understood with an example, so Table 2 gives
some values you can pass to rateMultiplierCmd and their effect. Remember, as with
volumeCmd, once you change the rate multiplier with this command, the setting is
applied immediately to the current sound that’s playing (if any) and to every
subsequent sound played on that channel. Our helpful SoundSecrets application
demonstrates the rateMultiplierCmd command with a slider control to adjust the
playback rate of the sound from 0.0 to 2.0.

PLAYING SOUND THE QUICKTIME WAY
Something that vexes nearly everyone using the Sound Manager is attempting to play
continuous sound. Many applications break sounds up into chunks as they’re read off
the disk, and most games have background music that’s continuously generated and
mixed with sound effects. After spelunking through Inside Macintosh: Sound, you’ll
eventually come across the SndPlayDoubleBuffer routine, which looks like the
answer to your prayers. However, SndPlayDoubleBuffer has some serious limitations
that you need to consider.

First of all, SndPlayDoubleBuffer ping-pongs between just two buffers, and the
location of those buffers can’t be changed once the sound is started, which can be
really inconvenient when you’re trying to piece together a lot of sound buffers off the
disk. In addition, the format of the sound being played can’t be changed once the
sound is started, and the headers describing the sound must be attached to the sound
data itself.

There has got be a better way, right? Well, QuickTime uses a strategy involving
sound callbacks that’s much more flexible and doesn’t make you scratch your head
over when to use that lastBuffer flag in SndPlayDoubleBuffer. Once you read about
the QuickTime way, you’ll probably want to use it too.

d e v e l o p Issue 24 December 199552

Table 2. Sample values for rateMultiplierCmd

rateMultiplierCmd Decimal
Setting Value Effect

0x00010000 1.0 Play sounds at the normal pitch setting (the default)

0x00020000 2.0 Play sounds at a pitch shifted up one octave

0x00008000 0.5 Play sounds at a pitch shifted down one octave

0x00018000 1.5 Play sounds at a pitch shifted up half an octave

0x00000000 0.0 Repeat the last audio sample indefinitely, which
effectively pauses playback on this channel

With the QuickTime strategy you trigger all your sounds with a plain old bufferCmd
command, and set up callBackCmd to call you when that buffer is done playing. This
has two big advantages:

• Because bufferCmd takes a pointer to a sound header as its only parameter,
you can queue up a different buffer for every callback if you want, freeing
you from that pesky two-buffer limit.

• Because the sound header records contain a pointer to the audio data, you
have a lot more flexibility in buffer management, and you can dynamically
adjust the buffer sizes to any values that make sense to you.

This technique is demonstrated by Listing 4, taken from the SoundSecrets
application on the CD. Basically, the interrupt routine just plays the next buffer and
then queues up a callback, which keeps the sound playing continuously. The
application has a slider that lets you adjust the size of the buffer dynamically.

Remember, callBackCmd calls your application at interrupt time, so it’s up to you to
set up your A5 world if you want to use globals. You can’t call Toolbox routines like
those in the Memory Manager from within the callback; however, you can call most
Sound Manager routines (see Inside Macintosh: Sound for information on individual
routines). To make things easier, you can pass an application-defined value to the
callback routine in param2 of callBackCmd. Also, to ensure correct queue processing,
it’s very important that you use SndDoImmediate to send bufferCmd, and
SndDoCommand to send callBackCmd.

COMPRESS WITH THE BEST
While Sound Manager 3.0 included an architecture for decompressing arbitrary
sounds (described in the article “Make Your Own Sound Components” in develop
Issue 20), no method was provided to compress sounds. However, with the arrival of
Sound Manager 3.1 and QuickTime 2.1, creating compressed sound files became as
easy as opening a movie.

SOUND SECRETS 53

Listing 4. Playing continuous sound

// Issue bufferCmd to play the sound, using SndDoImmediate.
sndCmd.cmd = bufferCmd;
sndCmd.param1 = 0;
sndCmd.param2 = (long) &globals->sndHeader;

err = SndDoImmediate(globals->sndChannel, &sndCmd);
if (err != noErr)

return (err);

// Issue callBackCmd using SndDoCommand so that we get called back
// when the buffer is done playing.
sndCmd.cmd = callBackCmd;
sndCmd.param1 = 0;
sndCmd.param2 = (long) globals;

err = SndDoCommand(globals->sndChannel, &sndCmd, true);
if (err != noErr)

return (err);

The compression technique demonstrated here uses the import/export facility built
into QuickTime. Movie import components allow you to convert other files into
QuickTime movies, while movie export components let you save QuickTime movies
in other formats. QuickTime 2.1 provides an export component that works with
Sound Manager 3.1 to let you save the audio in a QuickTime movie to an AIFF file in
any format you please.

QuickTime does this by calling the Sound Manager to mix all the tracks together,
converting them to the sample rate and size you specify, and even compressing the
data with any of the compression algorithms provided by Sound Manager 3.1. The
resulting AIFF file can then be played by any other Sound Manager routine, or
converted back into a movie. The export component provides a dialog to let the user
select the sample rate, sample size, and compression format of the AIFF file, as shown
in Figure 1.

Listing 5 demonstrates the process of converting a movie to an AIFF file, displaying
the Sound Export Options dialog to let the user control the conversion process. The
SetMovieProgressProc routine displays a progress dialog while the movie is being
converted. The code is taken from ExportAIFF on this issue’s CD.

d e v e l o p Issue 24 December 199554

Figure 1. Sound Export Options dialog

Listing 5. Converting a movie to an AIFF file

OSErr ConvertMovieToAIFF(FSSpec *inputFile, FSSpec *outputFile)
{

short fRef;
Movie theMovie;
OSErr err;

err = OpenMovieFile(inputFile, &fRef, fsRdPerm);
if (err != noErr)

goto OpenMovieFileFailed;

err = NewMovieFromFile(&theMovie, fRef, nil, nil, 0, nil);
if (err != noErr)

goto NewMovieFromFileFailed;

(continued on next page)

SOUNDING OFF
Now that this article has revealed some of the best-kept secrets of the Sound Manager,
you can go out and create great applications on your own. Consider all your new
skills — parsing and displaying sound resources, improving playback performance,
adjusting volume and pitch, playing continuous sounds, and compressing audio. Now
that the Sound Manager is your friend, you can focus on making your applications
insanely great, instead of having the Sound Manager drive you insane!

SOUND SECRETS 55

SetMovieProgressProc(theMovie, (MovieProgressUPP) -1L, 0);

err = ConvertMovieToFile(theMovie, nil, outputFile, 'AIFF', 'sSnd',
0, nil, showUserSettingsDialog, nil);

DisposeMovie(theMovie);

NewMovieFromFileFailed:
CloseMovieFile(fRef);

OpenMovieFileFailed:
return (err);

}

RELATED READING
• Inside Macintosh: Sound (Addison-Wesley, 1994).

• Macintosh Technical Note “GetCompressionInfo()” (SD 1).

• “Make Your Own Sound Components” by Kip Olson, develop Issue 20.

Thanks to our technical reviewers Bob Aron,
Peter Hoddie, Kevin Mellander, and Jim Reekes.•

Listing 5. Converting a movie to an AIFF file (continued)

There’s little that compares to diving headfirst toward
the ground at 120 miles per hour. I may have been
going even faster when I last went skydiving. Tucking
my arms in tightly, with my head back and legs even, I
heard a deafening roar from the wind as I sped toward
terminal velocity. “Terminal” would have been a good
word for the situation if it weren’t for the advances that
have been made in parachute technology.

Parachutes have come a long way since their debut,
when they were billowy round disks of silk sewn with
simple cords stretching to a harness. They were greatly
improved when the square parachute was invented
thirty years ago. The square parachutes look like an
airplane’s wing, and they create lift in much the same
way. Until recently, however, square parachutes weren’t
improved upon much. Perhaps their superiority over
round parachutes left everyone satiated. That lack of
progress was unfortunate; if recent improvements —
like many-celled parachutes and automatic activation
devices — had been pursued many years ago, skydiving
would be even safer today.

The moral from this is to question satisfaction, and that
will be our mantra for this column. In particular, I want
you to question the performance gains you’ve seen by
moving to native PowerPC code. In this column we’ll
look at improved tools for examining PowerPC code
performance, and you’ll see how such questioning can
really enlighten you.

ILLUSIONS
The PowerPC processors can issue multiple instructions
at once. You therefore may think they’ll tear through
your code, executing many instructions per cycle.

While this is sometimes true, a number of hurdles keep
the PowerPC processors from completing even one
instruction per cycle. These hurdles include instruction
cache misses, data cache misses, and processor pipeline
stalls.

What may surprise you is how often the processor sits
idle because of these hurdles. I did some tests and
found that while opening new windows in one popular
application, a Power Macintosh 8500’s processor
completed an average of only one instruction for every
two cycles. This is not very efficient, considering its
PowerPC 604 processor can complete up to four
instructions per cycle.

Much of that inefficiency is from instruction and data
cache misses. As PowerPC processors reach faster
clock rates, these cache misses will have an increasing
impact. By minimizing cache misses we could realize
a significant performance improvement.

Simply recompiling your 680x0 code to native PowerPC
code doesn’t typically generate efficient code. Many
designs and data structures for the 680x0 architecture
work very poorly when ported to PowerPC code.
When you port native, you should carefully examine
your code. Tuning for a cached RISC architecture is
very different than for the 680x0 family. Here are some
important things to consider:

• Redesign your data structures. Use long word–sized
elements. Keep commonly used elements together,
and keep everything aligned on double long word
boundaries.

• Keep results in local variables, instead of recomputing
or calling subroutines to retrieve global variables.

BETTER PROFILING
Until recently you couldn’t measure cache misses unless
you had a logic analyzer or other expensive hardware.
The PowerPC 604 processor, however, includes an
extremely useful performance measurement feature:
two special registers (plus a register to control them)
that can count most events that occur in the processor.
Each of these registers can count about 20 events, and
there are five basic events that both registers can count.

Here are just a few examples of what you can count
with these registers: integer instructions that have
completed; mispredicted branch instructions; data

BALANCE OF
POWER

Advanced
Performance
Profiling

DAVE EVANS

d e v e l o p Issue 24 December 199556

DAVE EVANS likes to go skydiving when he can get away from
his job gluing together the Mac OS software at Apple. He has gone
a few times now, but he’ll always cherish the memory of his first
jump. Friends on the ground that day claim to have clearly heard

his scream, although he was nearly a mile above them when he left
the plane. On his second leap, if he hadn’t opened the chute while
upside down and then watched it deploy through his legs, he might
have noticed more of the surrounding countryside.•

cache misses; and floating-point instructions that have
been issued.

To use the performance profiling that the PowerPC
604 processor provides, you’ll need to have one of the
newer Macintosh models that include this processor,
such as the Power Macintosh 9500 or 8500. This will
cost less than a logic analyzer yet allow you to get
detailed performance profiles.

Although these registers will show your software’s
performance only on a 604-based Power Macintosh,
your software’s cache usage and efficiency should be
similar on other PowerPC processors. Use the 604’s
special abilities to profile your code and you’ll benefit
on all Power Macintosh models.

For more accurate performance measurements, you
may want to use the DR Emulator control panel, which
is provided on this issue’s CD. With this control panel
you can turn off the dynamic recompilation feature of
the new emulator; this feaure, which is described in the
Balance of Power column in Issue 23, can affect the
performance of your tests over time.

Also provided on the CD is the POWER Emulator control
panel. This control panel lets you turn off the Mac OS support
for RS/6000 POWER instructions and thus check for these
instructions in your code (they’ll cause a crash).•

THE 4PM PERFORMANCE TOOL
To use the new 604 performance registers, you don’t
need to program in PowerPC assembly language. On
this issue’s CD we’ve included a prototype application
called 4PM. This tool, which was developed by engineer
Tom Adams in Apple’s Performance Evaluation Group,
uses the PowerPC 604–specific registers to provide
various types of performance data.

4PM is very simple to use. It presents three key menus:
Control, Config, and Tests, as shown in Figure 1. You
use these menus to select the type of performance
measurement and an application you’d like to run the

tests on. The application you’re testing is launched by
4PM, and you can gather data either continuously or,
using a “hot key,” exactly when you want.

Once a test completes, 4PM fills a window with the
results — a tabular summary with a different test run
on each line. The Save command in the File menu will
write the results to a file of type 'TEXT'.

The Control menu. Use the Launch command in this
menu to select an application and run it, gathering the
test data specified with the Config or Tests menu.
The default configuration will measure cycles and
instructions completed between when the application
launches and when it quits. The Launch Again command
simply relaunches the last application you tested.

Check Use Hotkey if you’d like to control exactly when
data is gathered. With this option, you start and stop
collecting data by holding down the Command key
while pressing the Power key. (This key combination is
the same way to force entry to MacsBug, which you’ll
be unable to do during the tests.)

The Repeats command is just a shortcut that’s handy if
you’re repeating a test multiple times. If you specify a
repeat value with this command, your test application
will be relaunched that many times after you quit it.

The Intervals command allows you to collect data
points at regular intervals; a dialog box offers the
choices 10 milliseconds, 100 milliseconds, 1 second,
or Other. Normally just a total is collected, but by
specifying an interval time you’ll instead receive a
spreadsheet of timings. This will show what your code’s
performance was as the test progressed.

The Config menu. The commands in the Config
menu allow you to tailor the test data by specifying
exactly which events each register will count. The
Count Select command lets you specify the machine
states to collect data in; set this to “User Only” since
you’ll be tuning application code.

BALANCE OF POWER: ADVANCED PERFORMANCE PROFILING 57

Figure 1. 4PM menus

The Tests menu. The commands in the Tests menu
are for generating typical reports. Use the calibrate
command to count the five basic events that are
common to both 604 performance registers, including
cycles and instructions completed; with this test
selected, the Launch command will run your
application five times, successively counting each of
these events. You can use one of the remaining tests to
collect more specific measurements. The caches,
load/store, execution units, and special instructions
tests each generate a report for the corresponding
aspect of 604 performance. The Describe command
displays a window describing which events are counted
in the selected test. Use the New command to create
your own tests. These new tests are automatically
saved; you can use the Delete command to remove any
that you’ve added.

ASSEMBLY USAGE
If you want finer results, you should read and write to
the 604 performance registers directly. This requires
writing in PowerPC assembly language, but it allows
you complete control over what data you’ll collect for
your time-critical code.

You’ll be accessing three new special-purpose registers:
MMCR0, PMC1, and PMC2. MMCR0 controls which
events will be recorded and when exactly to record.
The performance monitor counter registers, PMC1
and PMC2, are the registers in which you’ll read the
results. I’ll give a brief summary of how to use these
registers, but you’ll need to read Chapter 9 of the
PowerPC 604 RISC Microprocessor User’s Manual for
details.

MMCR0 is a 32-bit register that specifies all the
options for performance measurement. Most of these
options aren’t important to your application profiling,
and you should at first leave the high 19 bits of
MMCR0 set to 0. The low 13 bits, however, specify
which events you want counted in PMC1 and PMC2.
Bits 19 through 25 select PMC1, and bits 26 through
31 select PMC2. See Chapter 9 of the 604 user’s
manual to learn which specific bits to set.

Here’s an example of how to measure data cache misses
per instruction:

.eq PMC1_InstructionsCompleted 2 << 6

.eq PMC2_DataCacheMisses 6

.eq MMCR0_StopAllRecording $80000000

li r0, MMCR0_StopAllRecording
mtspr MMCR0, r0 ; stop all recording
li r0, 0
mtspr PMC1, r0 ; zero PMC1
mtspr PMC2, r0 ; zero PMC2
li r0, PMC1_InstructionsCompleted +

PMC2_DataCacheMisses
mtspr MMCR0, r0 ; start recording

Notice that we load MMCR0 with only the most
significant bit set to turn off all recording. This holds
PMC1 and PMC2 at their current values and allows us
to also zero PMC1 and PMC2 before we start recording.
When you’re done measuring, follow with this code:

li r0, MMCR0_StopAllRecording
mtspr MMCR0, r0 ; stop all recording
mfspr PMC1, r3 ; r3 is number of

; instructions completed
mfspr PMC2, r4 ; r4 is data cache misses

Notice again that we turn off recording before reading
the results. Otherwise the very act of reading the
registers would affect the results; it will slow your code
slightly, since the mtspr and mfspr instructions take
multiple cycles to complete.

Don’t record over very long periods of time, because
the PMC1 and PMC2 registers can overflow. To measure
over long periods, you should periodically read from
the registers, add the result to a 64-bit number in
memory, and clear the registers to prevent this overflow.

Don’t ship any products that rely on these performance
registers. They’re supported only in the current 604
processor, and they’re not part of the PowerPC
architecture specification.

COMPLACENCY
The moral is the same as for my tale of the square
parachutes: question satisfaction. Don’t become
complacent about the performance of your new native
PowerPC applications. The profiling tools described
here should help you more accurately measure and
identify bottlenecks in your PowerPC code. Use that
information to tune — especially paying attention to
memory usage — and you’ll be surprised how much
faster your product will run. Macintosh users
consistently hunger for faster computers and more
responsive software; spend some serious time tuning,
and they’ll thank you for it.

d e v e l o p Issue 24 December 199558

Thanks to Tom Adams, Geoff Chatterton, Mike Crawford, and
Dave Lyons for reviewing this column.•

This article expands on the Macintosh Human Interface Guidelines
for making attractive, helpful alerts (and dialogs) with a standard
appearance and behavior. Standardization is important, because the
more familiar an alert looks to users, the more easily they can concentrate
on the message. Using the Finder as a source of good alerts, we provide
examples of different alert types and discuss how to make alerts user-
friendly.

Alerts are an in-your-face way of getting the user’s attention. It’s hard for a user to
ignore alerts because they block all other input to the application until the user
dismisses them. These little windows are powerful stuff. When used correctly, alerts
are a helpful way to inform the user of a serious condition that requires immediate
attention. When used incorrectly or capriciously, alerts are annoying and disruptive;
since they must constantly be swatted out of the way, their content is often ignored.

This article discusses when to use alerts, describes the different types of alerts, and
gives tips for designing alert boxes. It elaborates and expands on alert guidelines in
the Macintosh Human Interface Guidelines. At the end of the article, you’re encouraged
to try your hand at evaluating some real-life alerts.

Though not implemented as such in the system, alert boxes are essentially a type of
modal dialog box. This article focuses on alerts, but the guidelines can be applied to
other dialog boxes as well. We specifically cover status dialogs here because there are
guidelines that are unique to that type of dialog.

For information on implementing alerts and dialogs in your application, see
Inside Macintosh: Macintosh Toolbox Essentials.•

ALERTS IN GENERAL
Alerts provide information about error conditions and warn users about potentially
hazardous situations. They should be used only when the user’s participation is
essential; in all other cases, try using another mechanism to get your point across. For
example, consider an error or output log if the messages are something that the user
may want to save.

PAIGE K. PARSONS

Guidelines for Effective Alerts

GUIDELINES FOR EFFECTIVE ALERTS 59

PAIGE K. PARSONS (parsons@apple.com) is
a Human Interface Specialist at Apple. For two
years she worked on the user interface of the
Apple Dylan Development Environment. She
recently began working at Apple’s Human
Interface Design Center, where she is responsible

for software user interface issues in the PowerBook
division. Favorite diversions include maintaining
a Web site for the House Rabbit Society
(http://www.psg.lcs.mit.edu/~carl/paige/HRS-
home.html) and trolling used record shops in
Berkeley for vintage vinyl.•

The Macintosh Human Interface Guidelines haven’t caught up yet with the main
recommendation in this article: that alerts be movable and application modal. The
current interface guidelines and system software don’t allow alerts to be movable, but
this may change in future versions of the Mac OS. Until then, you can implement
your alerts as movable modal dialogs.

Making alerts movable is helpful in case an alert is covering information on the screen
that the user would like to see before responding to the alert. Another advantage to
movable alerts is that they have a title, which gives the user a context for the error.

Application modal means the alert is modal in the current application only: the user
can’t interact with this application while the alert is on the screen, but can switch to
another application. This is especially useful when the user needs to get information
from another application in order to respond to the alert. (System modal, on the other
hand, means the user can’t interact with the system at all except within the alert box.)

TYPES OF ALERTS
Alerts come in three varieties, each of which is geared to a different situation. This
section provides a few examples of each type, and also takes a look at status dialogs.

NOW HEAR THIS: NOTE ALERTS
A note alert simply conveys information, informing the user about a situation that has
no drastic effects and requires no further action. For example, if a user selects a word
and executes a spell check, an alert saying that the word is spelled correctly would be
a note alert. Rather than provide a smorgasbord of options, a note alert contains a
single button to dismiss the alert.

Don’t use an alert to signify completion of a task; use alerts only for situations that
require the user to acknowledge what has occurred. For example, the following note
alerts are inappropriate and get in the user’s way:

• The Trash has finished emptying.

• The 3,432 files you selected have been copied.

WATCH OUT! CAUTION ALERTS
Caution alerts warn users of potentially dangerous or unexpected situations. You
should use them, for example, to be sure the user wants to proceed with a task that
might have undesirable results. In this case the alert normally contains only two
buttons — one that cancels the operation and one that confirms it. Here are two
caution alert messages:

• An item named “READ ME” already exists in this location. Do you want to
replace it with the one you’re moving?

• The Trash contains 1 item. It uses 102K of disk space. Are you sure you want
to permanently remove it?

Don’t use alerts to confirm operations that would cause only a minor inconvenience if
performed by mistake. Here are two examples of unnecessary caution alerts:

• Do you really want to eject the disk “Installer”?

• Do you really want to duplicate the selected item?

Caution alerts are also used when an unexpected situation occurs and the user needs
to decide what to do next. The following examples contain only two buttons, for

d e v e l o p Issue 24 December 199560

canceling or confirming the operation, but such an alert may present several choices
if appropriate.

• The document “Calendar” is locked, so you will not be able to save any
changes. Do you want to open it anyway?

• The item “Calendar” could not be deleted, because it contains items that are
in use. Do you want to continue?

Before deciding to use this type of alert, double-check to see if it’s really needed;
superfluous alerts are a bad idea because users will get in the habit of dismissing alerts
and possibly let an important one go by. It’s better to have a user make choices with
commands instead of alerts. For example, the Finder has separate Shut Down and
Restart commands (in its Special menu) instead of having only a Shut Down command
with an alert asking “Restart after shutting down?”

HOLD IT: STOP ALERTS
Use a stop alert when calling attention to a serious problem that prevents an action
from being completed. They typically have only one button, to dismiss the alert.
Here are two good examples of stop alerts:

• You cannot copy “Calendar” onto the shared disk “Zippy” because the disk is
locked.

• The alias “Calendar” could not be opened, because the original item could
not be found.

It’s especially important in stop alerts to give enough detail about the problem to help
the user prevent it in the future. The following alert message doesn’t convey much
useful information:

• You cannot rename the item “Zowie”.

This alternative is more helpful:

• The name “Zowie” is already taken. Please use a different name.

Similarly, if the chosen name is too long, it’s more helpful for the message to state the
maximum number of characters a filename can have.

EVERYTHING IS OK: STATUS DIALOGS
Status dialogs inform the user when an application is busy and the user cannot
continue working in the application until the operation finishes. In the Finder, these
operations include copying, moving, and deleting files. Status dialogs should be
displayed whenever the application is busy for more than about five seconds (unless
posting and updating the dialog would take most of that time). During this time the
application should also change the pointer to the standard wristwatch.

A status dialog differs from an alert in that the user doesn’t need to explicitly dismiss
the dialog; it goes away on its own once the task has completed. The dialog should
contain a message that describes the status of the operation and a progress indicator
to show how much of the job has been completed. A status dialog may change
messages depending on the stage of operation. Figure 1 shows a status dialog at two
stages of a copy operation.

A sense of completion is important, so the application should be sure not to remove
the status dialog until the progress indicator shows that the operation is done (such as
by completely filling up the status bar in the example in Figure 1).

GUIDELINES FOR EFFECTIVE ALERTS 61

ICONS IN ALERT BOXES
Alert boxes always contain an icon that identifies the type of alert, as shown in Figure
2. (Status dialogs contain no icon.) If you implement your alerts as movable modal
dialogs, there’s no Toolbox infrastructure set up for getting the correct icon
automatically, so you’ll need to remember which one to use.

A note on OpenDoc and alert icons: OpenDoc part editors aren’t as visible to
the user as today’s applications, but at times it may be important for users to make the
connection between a running editor and its stored representation on disk. One such
time is when the editor is reporting an error about itself, such as an incompatible
version; for these errors, the alert should contain the icon of the editor instead of a
note, caution, or stop icon.•

WRITING ALERT MESSAGES
The alert message is the most important component of an alert. You want users to
read and respond to your alerts easily and then continue smoothly with their work.
This section gives tips on structure, content, tone, and other important factors in
writing effective alert messages.

SITUATION, REASON, SOLUTION
Every alert message should start by describing the situation that led to the alert,
letting the user know what’s wrong. This is usually followed by the reason the
problem occurred and a proposed solution to the problem.

When describing the situation that caused an alert, be as specific as possible, to help
the user understand the problem.

Giving the reason the alert occurred is especially helpful when the application can’t
do something because it’s dependent on some other operation that it can’t control.
For example, compare these messages:

• The alias “Warne” could not be opened.

• The alias “Warne” could not be opened because the shared disk “Beatrix”
could not be found on the network.

d e v e l o p Issue 24 December 199562

Before copying During copying

Figure 1. Status dialog during a copy operation

Note alert Caution alert Stop alert

Figure 2. Icons for specific alert types

The first message doesn’t give the user any information about why the problem
occurred. Is the application that created the document missing? Is the file corrupted?
The second message is much better because it tells the user why the operation could
not be completed.

Whenever possible, alerts should indicate a solution for the user. Users become
extremely frustrated when an alert says something is wrong but doesn’t offer a
remedy to the problem. Even worse is an alert that tells the user something is wrong
when the application could have fixed the problem itself. The following would be a
bad message because the Finder is capable of quitting all the applications on its own:

• You must quit all running applications before shutting down your Macintosh.

In cases where the application can perform the action itself, consider whether doing
so may surprise the user; if so, presenting a caution alert may be more appropriate.
For example, if the user attempts to shut down a Macintosh while other users have it
mounted as a server, the Finder could just disconnect the other users automatically;
however, in this case it’s more helpful to present an alert confirming the shutdown.

BE CONSISTENT
Be sure your alert messages are consistent in tone, content, and structure with each
other as well as with other messages your software presents to the user. Are your
application’s alerts consistent with its status messages, for example? Do all your alerts
refer to the application in a consistent manner? Users pick up on small inconsistencies,
and even subtle differences can cause confusion.

BE BRIEF
Alert messages should be brief and to the point, to keep the user’s attention. If you
need to give a lot of information, consider writing it to an error log or providing a
brief message in the alert along with a button to get to the application’s help system.

If you absolutely have to put a long message in an alert, keep in mind that many people
have PowerBook computers or “classic” Macintosh computers with small screens. A
good rule of thumb is that an alert message must consist of no more than 150
characters to fit on a small screen. Also note that translation from English to other
languages tends to expand the length of the message. Even translations into languages
that use Roman characters can cause the message length to double or triple in size.

BE ENCOURAGING
Use a positive and constructive tone. After encountering a problem and being
presented with an alert, the last thing the user wants is an overly negative response
from the application.

Avoid assigning blame or offending users. Don’t accuse them of doing something
wrong or stupid. Instead, give the reason an action cannot be performed, or offer to
perform the action. Which message would you rather see?

• You forgot to save your changes!

• Save changes to access privileges for “Zippy”?

PHRASING AND TERMINOLOGY
Don’t use double negatives, such as “No items are not used.” They’re difficult for
users to understand and just bad English. Double negatives can be especially
confusing when combined with a Cancel button; the user rarely gets the expected
outcome.

GUIDELINES FOR EFFECTIVE ALERTS 63

Keep the situation and action in the present. This is clearer and usually requires
fewer words. For example, compare these two messages:

• An item named “READ ME” already existed in this location. Did you want
to replace it with the one you moved?

• An item named “READ ME” already exists in this location. Do you want to
replace it with the one you’re moving?

If there’s an implied subject of a message, it should be the application. For example, if
the user tries to open a document that the application can’t open (as when it runs out
of memory), the alert message might begin “Cannot open document.” Messages in
which the user or some other noun could be the implied subject are more likely to be
confusing — for example, “Have exceeded allotted network time. Try again later.”

Use terms that are familiar to the user. This often means avoiding computer jargon at
all costs. Remember, terms that seem common to you may be unfamiliar to many
Macintosh users. It depends on what type of user will be working with your
application. For example, the expression establishing a connection may be clearer than
handshaking to many users.

Use invalid instead of illegal. The user hasn’t broken the law, but has simply given the
application some information that it can’t handle.

PUNCTUATION AND CAPITALIZATION
Alert messages should always be complete sentences, beginning with a capital letter
and ending with a period or question mark. The closing punctuation gives a sense of
completion and lets the user know that the message hasn’t been truncated.

Don’t use colons when requesting that the user supply information; instead, use a
period. This makes your alerts consistent with other dialogs and user interface
elements in the system software.

Use an apostrophe (’), typed with Option-Shift-], rather than a single straight
quotation mark ('), and use curly (“ ”) rather than straight (") double quotation marks
— that is, Option-[and Option-Shift-[, rather than Shift-'.

Use double quotation marks around any names in the message that are variable, such
as names of documents, folders, and search strings. This lets the user know exactly
what part of the message is the name. Remember that Macintosh filenames can
contain spaces, which can make things really confusing without the quotes. Commas,
periods, and other punctuation characters should be placed outside the quotation
marks:

• You cannot duplicate the shared disk “Warne”, because the disk is locked.

Never use an exclamation point or all uppercase letters. It makes users feel as if
they’re being shouted at, as in this example:

• Revert to the saved version of “Map”? WARNING! All changes will be lost!

STATUS MESSAGES
In status dialogs, use an ellipsis (Option-semicolon, a character that looks like three
periods) to indicate that an intermediate process is under way:

• Preparing to copy…

• Scanning “My Document”…

d e v e l o p Issue 24 December 199564

For describing the status of a task, the terms canceled, failed, in progress, and complete
are good choices. Avoid computer jargon such as aborted, killed, died, or ack’ed.

ALERT TITLES
Every movable alert should have an informative title, to provide a context for the
alert. Users may be working on several tasks at the same time and may not remember
what action generated the alert. A well-chosen title helps the user figure out not only
which application caused the alert to appear, but also which action.

The title of the alert should be the same as, or closely related to, the command or
action that generated the alert. (If the command has an ellipsis in it, don’t include the
ellipsis in the alert title.) For example, when a user copies or duplicates an item in the
Finder, the associated status dialog has the title “Copy”; when the user chooses
Empty Trash, the title of the Finder’s status dialog is “Trash.”

Like menu commands, alert titles are capitalized like book titles. Capitalize every
word except articles (a, an, the), coordinating conjunctions (for example, and, or), and
prepositions of three or fewer characters (except when the preposition is part of a
verb phrase, as in “Turn Off”).

ALERT BUTTONS
Alerts contain buttons that dismiss the alert or allow the user to make choices
regarding how to proceed. The standard button height is 20 pixels.

Try to limit the number of buttons that appear in an alert. The more buttons, the
more difficult it is for the user to decide which is the “right” option. In addition,
screen size often limits the number of buttons. As a general rule, about three buttons
of ten or fewer characters will fit on a small screen. Button names should be simple,
concise, and unambiguous.

Capitalize button names like book titles (for example, Connect to Server). Never
capitalize all letters in the name (except for the OK button, which should always be
named OK and never ok, Ok, Okay, okay, OKAY, or any other strange variation).

On the Macintosh, ellipses are used after command names when the user needs to
provide additional information to complete the command. An ellipsis after a button
name indicates that the button leads to other dialogs, a rare but occasional
occurrence.

THE ACTION BUTTON
Alert boxes that provide the user with a choice should be worded as a short question
to which there is an unambiguous, affirmative response. The button for this
affirmative response is called the action button.

Whenever possible, label the action button with the action that it performs. Button
names such as Save, Quit, or Erase Disk allow experienced users to click the correct
button without reading the text of a familiar dialog. These labels are often clearer
than words like OK or Yes. Phrase the question to match the action that the user is
trying to perform.

If the action can’t be condensed conveniently into a word or two, use OK. Also use
OK when the alert is simply giving the user information without providing any
choices.

GUIDELINES FOR EFFECTIVE ALERTS 65

THE CANCEL BUTTON
Whenever possible, caution alerts should provide a button that allows the user to
back out of the operation that caused the alert. This button should be labeled
“Cancel” so that users can easily identify the safe escape hatch. Cancel means
“dismiss this operation with no side effects”; it doesn’t mean “done with the alert,”
“stop no matter what,” or anything else. Pressing Command-period or the Escape
key should have the same effect as clicking the Cancel button.

Don’t label the button Cancel when it’s impossible to return to the state that existed
before an operation began; instead, use Stop. Stop halts the operation before its
normal completion, accepting the possible side effects. Stop may leave the results of
partially completed tasks around, but Cancel never does. For example, a Cancel
button would be inappropriate for a copy operation in which some of the items may
have already been copied. Figure 1 (earlier in this article) illustrates using Stop in a
status dialog for a copy operation.

THE DEFAULT BUTTON
The default button represents the action performed when the user presses the Return
or Enter key. This button should perform the most likely action (if that can be
determined). In most cases, this means completing the action that the user started, so
the default button is usually the same as the action button.

The default button’s distinctive bold outline appears automatically around the
default button in alerts, but remember that in dialog boxes you need to outline the
button yourself.•

If the most likely action is dangerous (for example, it erases the hard disk), the default
should be a safe button, typically the Cancel button. If none of the choices are
dangerous and there isn’t a likely choice, there should be no default button; by
requiring users to select a button explicitly, you protect them from accidentally
damaging their work by pressing the Return or Enter key out of habit.

POP QUIZ
Now, for a bit of fun. I’ve been collecting some alerts that need improvement
(Figures 3, 4, and 5). Based on the information in this article, can you find the flaws
in each, and suggest improvements?

d e v e l o p Issue 24 December 199566

Figure 3. Poorly designed “danger alert”

The main problems with the alert in Figure 3 are as follows:

• Its title isn’t descriptive (and is overly alarming).

• The implied subject of the message is the user instead of the application.

• The word “caution” is in all uppercase letters, and the punctuation includes
an exclamation point.

Also, the buttons are slightly shorter than the standard height. Since the audience in
this case is programmers, the words kernel and runtime are acceptable, though the use
of runtime in this context is colloquial and can be more clearly stated with a simpler
word. To improve this alert, you could change the title to “Download” and the
message to “The code you are downloading redefines one or more kernel definitions.
Continuing the download may make the application unusable.” Also, the buttons
should be made 20 pixels high.

The alert in Figure 4 isn’t movable, so it has no title and can’t be repositioned. The
message, with its “If . . .” clause, isn’t direct and clear enough. Also, it’s not clear
which button provides a safe escape mechanism. Finally, the “Work offline” button
title has incorrect capitalization. To improve the alert, you could make it movable and
give it the title “Connect to Server.” The message should be “The public calendar
server selected in the Chooser is different from the one you used last. Connecting to
the new server will cause all public event information in your document to be lost.”
You could add a Quit button as an escape mechanism, giving the alert three buttons
— Quit, Connect, and Work Offline (the default).

The alert in Figure 5 doesn’t contain any title, icon, or buttons. Because there are no
buttons, it’s not clear how to get rid of the message without reading to the end of it.
Also, its message should be stated in the present (for example, is named). But the
biggest problem is that this is a nuisance alert: the success of the capture could have
been confirmed in an earlier step, when the user was asked to pick the filename. The
solution is to get rid of the alert altogether.

GUIDELINES FOR EFFECTIVE ALERTS 67

Figure 4. Poorly designed “server alert”

Figure 5. Poorly designed “finished alert”

THE PAYOFF
Spending some time thinking about the design of your application’s alerts makes
sense because it results in a better product. If you follow the simple guidelines
presented in this article, your alerts should be in really good shape. Your users will
have an easier time recovering from errors, adding to their positive experience with
your software.

d e v e l o p Issue 24 December 199568

RECOMMENDED READING
• Electronic Guide to Human Interface Design (Addison-Wesley, 1994). This CD

(available from APDA) combines the Macintosh Human Interface Guidelines and
its companion CD, Making It Macintosh.

• Macintosh Human Interface Guidelines, (Addison-Wesley, 1993). Available
separately from APDA in book form.

• Inside Macintosh: Macintosh Toolbox Essentials (Addison-Wesley, 1992), Chapter
6, “Dialog Manager.”

Thanks to our technical reviewers Pete Bickford,
Sharon Everson, Chris Forden, Elizabeth Moller,
and Mark Stern.•

MPW comes with dozens of useful tools and scripts.
They’re handy for a lot of things besides programming
— or would be, if you were willing to keep the MPW
Shell open all the time, and if they weren’t based on
command lines. Fortunately, the Shell is not the
only way to use them: a small application known as
ToolServer makes it possible to run MPW commands
in a standalone mode. You can write double-clickable
MPW scripts, give MPW commands from AppleScript,
and write front ends to tools in high-level programming
languages.

Using ToolServer isn’t exactly like using the MPW
Shell. There are caveats if you want to write scripts and
tools that will work in both environments. We’ll first
take a look at these issues and then explore how to
package commands for use with ToolServer.

MODULARITY AND FACTORING
Shell scripting languages such as sh and csh in UNIX®,
as well as MPW, have always taken a rather cavalier
approach to code organization. Most configuration is
achieved with a global namespace of environment
variables. This is a problem with ToolServer, because
you don’t want to load your entire set of MPW startup
scripts every time you run a command. Even if you
wanted to, you couldn’t — ToolServer doesn’t have
text editing, menu bar customization, or other user
interface elements of the MPW Shell, so it’s missing
several built-in commands. Your existing startup
scripts won’t work, and some utility commands may
also fail.

Three principles from structured software design are
useful here:

• Separate user interface code from core code.

• Use the “include” mechanism to provide modularity.

• Reduce dependencies between modules.

Let’s take a concrete example. Many of us cut our teeth
as programmers on UNIX. Initiates of this brilliant but
byzantine operating system tend to grow fond of its
command set, in much the same way that cabalists
become attached to bizarre metaphysical formulas
purporting to explain the universe. A UNIX wizard’s
MPW startup script usually contains a list of aliases to
translate between UNIX and MPW: Alias ls Files, Alias
cp Duplicate, and so on. These commands are then
used in all the wizard’s utility scripts as well. This
creates a problem with ToolServer: it can’t use these
startup scripts because they also customize the user
interface with commands like AddMenu and SetKey.
Without the aliases, though, the utility scripts won’t run.

One solution to this problem combines the first two
principles listed above. First, separate the aliases from
the user interface setup code, yielding two different
startup files. Both files are invoked by the MPW Shell
startup process but neither is invoked at ToolServer
startup. Second, instead of assuming a particular global
configuration, make each utility script explicitly include
whatever setup files it may require. MPW’s analog of
the #include directive of C is Execute, which executes
a file in the current namespace.

We can apply common C bracketing conventions to
avoid multiple inclusion of the same file. Assuming that
our UNIX wizard has split off his or her aliases into a
file named UNIXAliases, a script using these aliases
would start — after the header comment — as follows:

if {__UNIXALIASES__} == ""
execute UNIXAliases

end

The script file UNIXAliases would set the variable
__UNIXALIASES__ to something other than the
empty string, and decline to execute itself again if it
had already been executed, like so:

if {__UNIXALIASES__} == ""
set __UNIXALIASES__ "true"
... # the aliases go here

end # __UNIXALIASES__

MPW TIPS AND
TRICKS

ToolServer
Caveats and
Carping

TIM MARONEY

MPW TIPS AND TRICKS: TOOLSERVER CAVEATS AND CARPING 69

TIM MARONEY was discovered on the Isle of Wight by seal
farmers in the Year of Our Lord 1394, and again seventy years
later by Tasmanian basket twirlers out for a stroll in the Yukon. The
little tyke pursued a happy life of fun, freedom, and quantum

mechanics. He resurfaced in 1961, in the town of Holyoke,
Massachusetts. Tim played a magician in bondage in a class play
in the second grade, which may have prepared him for the
contract work he’s now doing at Apple.•

A different solution to the same problem involves the
third principle, reducing dependencies between
modules. Utility scripts don’t really need to use csh
commands, after all: the aliases are there mostly so that
the wizard can type them into the MPW Shell, his or
her fingers having long ago locked into an inflexible
pattern of TTY interaction. If scripts don’t assume the
availability of a different command set — that is, if they
stick with the MPW command names — the aliases
need not be included at all.

Independence is a good idea for another reason: you
may give your ToolServer scripts to other people at
some point in your long and happy life. The more your
commands depend on the global environment,
including ToolServer startup files, the more likely they
are to conflict with another user’s environment.

INPUT AND OUTPUT
ToolServer implements most of the MPW Shell’s I/O
system, which is based on the stdio library and UNIX-
style redirection. However, it doesn’t read keyboard
input or display text output. All of its I/O channels are
ultimately files, pipes, or the pseudodevice Dev:Null.

The only mechanisms for interacting with the user in
ToolServer are commands like Alert and Confirm that
display dialog boxes, and interface tools you write
yourself. Even these must be used with caution, since
ToolServer can run remotely over a network, and
hanging a server machine by bringing up a dialog box
is often regarded as undesirable.

It helps to separate user interface code from core code,
as already discussed. Commands you intend to run with
ToolServer should not have a user interface: they
should perform an action that’s completely specified by
their command line. An outermost user interface script
can present choices to the user, then invoke an innermost
command that has no user interface. The outermost
script is just for ToolServer; the inner script or tool is
suitable for both ToolServer and the MPW Shell.

You can detect when a command is running under
ToolServer and squelch its user interface by looking at
the environment variable BackgroundShell. This is the
empty string when running under the MPW Shell, but
it’s nonempty under ToolServer. Most user interactions
in MPW commands are just confirmation alerts, so
if execution reaches a Confirm command and
BackgroundShell is set, assume that the user would
answer “no.” All commands that require confirmation
should support the -y and -n options, which provide
answers on the command line, and these options should
be provided when the commands are used from
ToolServer.

Some MPW commands, such as Make and Backup,
write output to the Worksheet, and the user then
selects and executes the output. This model doesn’t
apply to the ToolServer environment since it has no
Worksheet. The easiest solution is to redirect the
command output to a temporary file, execute that file,
and then delete it. This is less selective than using the
Worksheet, which allows the user to decide which lines
to execute. If selectivity is important, you can write a
command that presents the lines of output to the user
and allows them to be independently accepted or
rejected.

We don’t live in the best of all possible worlds, St.
Thomas Aquinas and Dr. Pangloss to the contrary, and
so commands often return errors. These generate text
that’s directed to the standard error channel. In the
MPW Shell, error text goes to the frontmost window
by default, but in ToolServer, the default is a file named
command.err in the folder containing the command file.
This is very antisocial behavior, especially since
commands invoke other commands and the error file
could wind up buried at some arbitrary-seeming place
in your folder tree. Redirect the standard error channel
to save yourself from Sisyphean levels of frustration
whenever something goes just a little bit wrong.

There are two ways to redirect errors. First, you can
use the standard MPW error redirection characters ≥,
≥≥, ∑, and ∑∑ in your outermost user interface script.
For instance, the script line

Veeblefetzer ≥ "{Boot}"Veeblefetzer.Errors

would redirect errors to the file Veeblefetzer.Errors at
the top level of your startup disk. This does little or
nothing to bring the errors to your attention, though,
so your outermost script should look something like
this:

Set ErrorFile "{TempFolder}"MyUtility.Errors
Delete -i "{ErrorFile}"
Set Exit 0 # Don't bomb quietly on errors
Potrzebie ≥≥ "{ErrorFile}"
if {Status} == 0

Veeblefetzer ≥≥ "{ErrorFile}"
end
if `Exists "{ErrorFile}"`

Alert `Catenate "{ErrorFile}"`
Delete -i "{ErrorFile}"

end

The other way to redirect errors is to set the ToolServer
built-in variable BackgroundErr to the name of a file.
This will create that file whenever there’s an error. This
is somewhat less flexible than redirection, but it can be

d e v e l o p Issue 24 December 199570

set once and for all in a ToolServer startup script. That
would make the script above read like this:

Delete -i "{BackgroundErr}"
Set Exit 0 # Don't bomb quietly on errors
Potrzebie
if {Status} == 0

Veeblefetzer
end
if `Exists "{BackgroundErr}"`

Alert `Catenate "{BackgroundErr}"`
Delete -i "{BackgroundErr}"

end

Standard output can be controlled similarly, using
either redirection characters or the environment
variable BackgroundOut.

FORMS OF TOOLS
There are several ways to package commands for use
with ToolServer. The most basic and boring ways are:

• Use the Execute Script command in ToolServer’s
File menu to select and execute a script file.

• Drop a script file on the ToolServer application icon.

• Give the “ToolServer [script …]” command in the
MPW Shell.

There are more interesting deployment modes, but
they require a bit more explanation.

Standalone scripts. If you change the creator of a
script file to 'MPSX', double-clicking it in the Finder
will launch ToolServer and send it an Open Document
event, causing it to be executed. Use this approach for
your outermost user interface scripts. To change the
creator, use MPW’s “SetFile -c 'MPSX' file” command.

There is, alas, no such thing as a standalone tool, but
you can write a one-line script that invokes a tool with
any parameters or none.

AppleScript. ToolServer is fully scriptable. Aside
from the four required commands, it has only one
scripting command, the dreaded DoScript. This takes
a command written in another scripting language —
MPW command language in this case — and passes
the command to its script interpreter. DoScript is
discouraged in new applications because it’s unstructured,
but it’s very useful for pre-AppleScript applications that
have their own languages.

A simple AppleScript script confers few benefits over
a standalone ToolServer script. In fact, it’s better to
avoid mixing scripting languages if you can. However,
using FaceSpan or another AppleScript authoring tool,
you can use AppleScript to set up a conventional
application that relies on ToolServer as a workhorse.
Simply pass DoScript commands in response to user
actions, redirecting errors and output to temporary files
that you interpret in your AppleScript code.

Apple events. Finally, you can take AppleScript one
step further, driving ToolServer directly with Apple
events generated from compiled software. This delivers
the maximum in flexibility and performance. You could
even write a project-file development system based
on MPW compilers. Another possibility would be
HyperCard XCMDs, allowing MPW commands to be
invoked from HyperTalk. An Apple event front end
could be created for a particular MPW tool, allowing it
to be cleanly invoked from other scripts or compiled
software; this might also provide a simple user interface
for controlling it with dialogs and menus.

ToolServer accepts the required Apple events, as well as
DoScript and some special-purpose events related to
status checking, command canceling, and error and
output redirection. These are documented in Chapter
4 of the ToolServer Reference manual that comes with
MPW. In this column in the last issue of develop, I
provided sample code for interacting with SourceServer
(another Apple event–driven MPW Shell subset), and
that code can easily be adapted for ToolServer.

TOOLS FOR THE FUTURE?
Because it’s tied to a command-line interface, the
MPW toolset has come to seem rather archaic, but
there’s life in the old girl yet. ToolServer’s support for
Apple events and AppleScript allows innumerable
improvements in its interface. In the future, we may see
friendly front ends for various MPW tools, as well as
deeper support for compilation and other kinds of file
processing with MPW tools in third-party development
systems.

Ultimately, MPW’s command-line interface is destined
to become a fading memory. Although it confers some
advantages in power, it must give way to friendlier
approaches in the end. However, if we fail to move its
toolset forward into the post-command-line world, we
will be poorer for the loss.

MPW TIPS AND TRICKS: TOOLSERVER CAVEATS AND CARPING 71

Thanks to Deeje Cooley, Arno Gourdol, and Rick Mann for
reviewing this column.•

Using JPEG image compression techniques can dramatically improve
performance during printing to PostScript™ Level 2 printers; compressed
images are significantly smaller and take much less time to print. You
don’t need to write PostScript code or special-case your code for PostScript
printing; QuickTime and the printer driver do most of the work for
you. You don’t have to wait to get started, either. If you implement
JPEG image data compression techniques in your application, users
printing to PostScript Level 2 printers with the current LaserWriter
8.3 driver will see improvements in printing performance right away.

Many applications compress image data for storage and transmission, but
compressing images for printing is relatively uncommon. With the techniques
presented in this article, you can start printing with image data compression and
realize significant performance gains without a lot of effort. First we’ll explore the
concepts behind using image data compression for printing, and then go through
three sample applications that show you how to do it.

The first two samples demonstrate how to print existing compressed image data.
Applications that already deal with JPEG compressed data, such as Web browsers
and JPEG viewing applications, can benefit immediately from these techniques.
Developers whose applications handle other kinds of compressed data (such as fax)
can see how they might benefit in the future as printing software is enhanced to
handle other types of compressed data.

Some applications don’t already have compressed data to print. Painting applications,
for example, handle image data that may not be in a standard compressed format.
The third sample application shows you how to compress your data as you do your
print-time imaging.

To give you an idea of the performance gains you might expect with these techniques,
I printed the same images with and without JPEG image data compression and
compared print times and data sizes. The improvements are notable — compressed

DAVID GELPHMAN

Printing Images Faster With Data
Compression

d e v e l o p Issue 24 December 199572

DAVID GELPHMAN (gelphman@rbi.com)
seems to specialize in backwards-reading
programming languages. From FORTH he moved
into PostScript at Adobe Systems and then to
Telescript at General Magic. He does do most
other things in a more or less forward direction,
although he has been known to fall off a horse
backwards. David, together with his colleague

Richard Blanchard, co-designed Apple’s
LaserWriter 8 PostScript printer driver while
working at Adobe Systems. After a stint at
General Magic, David now works at RBI Software
Systems (http://www.rbi.com) as a contractor to
Apple and Adobe on their PostScript printer
drivers. He does other contracting work as well,
primarily in the area of PostScript printing.•

color images, for example, can print in less than half the time. You may find the
results so compelling that you’ll want to implement these techniques in your own
application.

This issue’s CD contains the sample applications as well as some images you can use
with them. It also contains a prerelease version of LaserWriter 8.3.1, which you may
find useful for testing your application as you implement printing with compression.

THE BASICS
Realistic images can be quite large, resulting in slow print times. Compression
algorithms such as JPEG, fax, and LZW are used to reduce the size of these images
for storage and transmission. Image data compressed in these formats can be
decompressed on PostScript Level 2 printers.

While many applications can handle compressed image data, at print time they
usually decompress the data and use CopyBits to draw the decompressed images.
Only a few applications use custom PostScript code to take advantage of the image
decompression available in PostScript Level 2 output devices.

QuickTime’s Image Compression Manager provides an API for applications to
compress and decompress still image data. By using the Image Compression Manager
functions, applications can draw JPEG compressed image data. If this drawing takes
place at print time, the application is effectively passing compressed image data to the
printer driver; this allows the driver to handle the compressed data appropriately for
the target output device, as described in the next section. The application doesn’t
need to know whether that device is a QuickDraw, PostScript Level 1, or PostScript
Level 2 device.

If your application handles only QuickDraw pictures, it doesn’t need to perform any
special action to take advantage of image data compression. QuickDraw pictures
containing JPEG compressed image data are available from various sources;
QuickTime can compress QuickDraw pictures transparently, and applications such as
Adobe™ Photoshop can create QuickDraw pictures containing JPEG compressed
image data. Applications that use DrawPicture to draw such pictures automatically
take advantage of printer drivers that have special handling of compressed image data.
All they need to do is let the QuickDraw low-level drawing routines do their normal
thing.

LaserWriter drivers starting with version 8.3 are savvy about JPEG compressed
images that are drawn with QuickTime. When the driver receives data that’s
compressed with JPEG compression and the PostScript output is destined for a
PostScript Level 2 device, the driver sends the compressed data directly to the
printer. Since JPEG compressed images can be as much as 1/10 to 1/40 the size of
uncompressed images, the amount of data sent to the printer is much smaller, which
drastically reduces print times.

HOW THE PRINTER DRIVER HANDLES COMPRESSED IMAGE DATA
In general, printer drivers intercept QuickDraw drawing through the QuickDraw
low-level bottleneck routines. When an application draws compressed image data
with the Image Compression Manager functions (or draws a compressed QuickDraw
picture with DrawPicture), QuickTime passes the compressed data to the low-level
QuickDraw drawing routines through the StdPix bottleneck routine. Normally,
StdPix decompresses the data and passes the decompressed data to the bitsProc
bottleneck routine for drawing.

PRINTING IMAGES FASTER WITH DATA COMPRESSION 73

StdPix is described in detail in Inside Macintosh: QuickTime, pages 3-137 to
3-139.•

The LaserWriter 8.3 driver installs custom bottleneck routines as replacements for
the standard bottlenecks, including bitsProc and StdPix. The custom StdPix
bottleneck is key to the special handling of compressed image data, as shown in
Figure 1. The driver installs the custom StdPix bottleneck in the printing graphics
port so that it can intercept calls to StdPix and examine the compressed data. If the
data is compressed with a compression type that the driver recognizes and knows the
printer is capable of receiving, the driver sends the data directly to the printer.
Otherwise, it calls the standard StdPix, which, as described above, sends the
decompressed data to the bitsProc bottleneck. Drivers that don’t have a custom
StdPix bottleneck (such as QuickDraw printer drivers and LaserWriter drivers
previous to version 8.3) will always have decompressed data passed to their bitsProc
bottleneck.

Using a custom StdPix bottleneck lets a printer driver handle different compression
types appropriately. It also allows for the generation of correct output both for
PostScript Level 2 output devices, all of which support JPEG, fax, and LZW
decompression, and for PostScript Level 1 devices, which don’t support any
decompression. For drivers like LaserWriter 8.3 that spool (for background printing
or as part of foreground printing), there’s another advantage: since the spool file can
contain compressed images instead of uncompressed images, users benefit from
smaller disk space requirements.

The techniques described here for handling compressed image data will work
correctly with any printer driver, not just PostScript drivers with this special
compressed image data handling. Of course, the performance benefits will be seen
only with drivers that do have it. Most QuickDraw printer drivers will not gain a
performance benefit because they ultimately render decompressed data on the host
system and send the rendered results to the printer. In fact, if the data is being
compressed on the host specifically for printing, there will a performance penalty.
A few QuickDraw drivers, such as Adobe’s Acrobat™ PDFWriter, create data files
that could potentially take advantage of image compression done by your application.

Note that this technique of using a custom StdPix bottleneck applies to printing to a
color graphics port on a Macintosh system that has Color QuickDraw built in (most
do). Black-and-white ports don’t have StdPix bottlenecks; later we’ll look at what to
do if you’re printing compressed data to a black-and-white port.

d e v e l o p Issue 24 December 199574

Decompressed�
image data

Custom�
StdPix�

bottleneck

Standard�
StdPix�

bottleneck
bitsProc�

bottleneck

Compressed�
data the printer�

can handle
Printer

Printer

All other�
compressed�

data

Compressed�
image data

Figure 1. Special handling of compressed image data in the LaserWriter 8.3 driver

WHY THE DRIVER DOESN’T DO COMPRESSION FOR YOU
You might be wondering: “If using image data compression for printing is so great,
why doesn’t the driver do it for me automatically?” It’s a good question and one that
deserves a good answer.

Different kinds of images, such as fax images, photographic images, and synthetic
images, have different characteristics. The best type of compression to apply depends
on the type of image. Printer drivers operate at too low a level to make good
decisions about image data compression. On the other hand, applications typically
have a good idea about the kind of data they handle.

Additionally, some compression algorithms, such as JPEG, can be “lossy” (that is,
they throw away information), and it would be inappropriate for the driver to apply
them without user control. The driver user interface isn’t well suited to specifying
compression preferences, particularly since such decisions should be on a document
by document basis or even on a per image basis within a document. The LaserWriter
8.x drivers do use PackBits compression for all image data passed to their low-level
bitsProc bottleneck, but that’s the only active compression done by the drivers and it
isn’t very effective for many types of image data.

PRINTING EXISTING COMPRESSED IMAGE DATA THAT FITS
IN MEMORY
As mentioned earlier, applications that use DrawPicture to draw QuickDraw pictures
containing JPEG data don’t need to do anything special to print the images. In this
section we’ll look at how applications can print compressed image data that is not in a
QuickDraw picture.

The JPEG Print sample application reads an existing compressed JPEG data file for
display and printing. In this application, the JPEG data must fit completely in
memory before it can be imaged. This is not a requirement for using compressed
data, but is the simplest approach to describe initially. Later we’ll talk about the case
where the data doesn’t all fit in memory at once.

At application startup, the JPEG Print sample code checks that QuickTime is installed.
The code also tests to make sure there’s a compression-decompression codec that can
handle the decompression of JPEG data; the codec is used to decompress the data on
the host if the data can’t be sent to the printer in a compressed form. Applications
that can already print compressed data without QuickTime and an appropriate codec
should continue using their existing code to print when QuickTime and the codec
aren’t present.

FILLING IN THE IMAGEDESCRIPTION DATA STRUCTURE
The QuickTime image decompression functions require a handle to an
ImageDescription data structure. This structure contains information about an
image, such as the compression type used, the number of bytes in the compressed
image, and the image height, width, and depth. QuickTime needs this data separate
from the compressed data itself.

In the case of JPEG compressed data, much of the information required in the
ImageDescription data structure is contained in the compressed JPEG data stream.
The JPEG Print application reads the JPEG data stream and extracts the width,
height, horizontal resolution, vertical resolution, and depth of the image. It then
uses this data to build up an ImageDescription structure for use with the Image
Compression Manager functions. The specifics of parsing a JPEG data stream for
image description information aren’t discussed here; this part of the sample code

PRINTING IMAGES FASTER WITH DATA COMPRESSION 75

comes almost directly from the sample JFIF Translator application in the Macintosh
OS Software Developer’s Kit, with little modification.

CHOOSING THE APPROPRIATE DECOMPRESSION ROUTINE
To draw compressed still images with QuickTime, you can use one of three functions:
DecompressImage, FDecompressImage, or the StdPix bottleneck routine. However,
the DecompressImage and FDecompressImage functions always call the standard
StdPix bottleneck; they do not call any custom StdPix bottleneck (including
LaserWriter 8’s) in the graphics port. Since we want our compressed image data to
pass through the driver’s StdPix bottleneck, we’ll just call the StdPix bottleneck
directly, as described in the next section.

For drawing to a black-and-white port, you’ll need to use DecompressImage or
FDecompressImage since a black-and-white port doesn’t have a StdPix bottleneck.
One of the arguments to DecompressImage and FDecompressImage (as specified
in the QuickTime documentation) is a handle to the pixel map in which the
decompressed image is to be displayed. In a black-and-white graphics port there is no
PixMapHandle available; instead, there is a BitMap data structure. DecompressImage
and FDecompressImage can accept a BitMap instead of a PixMapHandle as the
destination to draw to, and that’s what we pass to DecompressImage when drawing
to a black-and-white graphics port.

CALLING THE STDPIX BOTTLENECK DIRECTLY
The StdPix bottleneck is declared as follows:

pascal void StdPix(PixMapPtr src, Rect *srcRect, MatrixRecordPtr matrix,
short mode, RgnHandle mask, PixMapPtr matte, Rect *matteRect, short flags);

The first argument is a pointer to a PixMap “containing” the compressed image data.
This isn’t a PixMap in the normal QuickDraw sense; instead, it’s a PixMap data
structure that has compressed data “attached” to it with the QuickTime call
SetCompressedPixMapInfo. This call associates an ImageDescription data structure
and the corresponding compressed image data with a PixMap data structure. It’s
important that the compressed data not move in memory after you’ve associated it
with the PixMap. If you use a handle to your compressed data, as we do in the sample
code, you should lock the handle before your call to SetCompressedPixMapInfo and
keep it locked until after you’re done with the PixMap.

The next two arguments to StdPix specify a source rectangle and a transformation
matrix that describes the mapping between the source rectangle of the image data and
the destination rectangle. By specifying a source rectangle and a matrix rather than a
source and a destination rectangle, the StdPix interface allows for more general
coordinate transformations than just scaling and translation. Currently, however,
QuickTime supports only scaling and translation.

The mode argument specifies which QuickDraw transfer mode to use when drawing
the image. JPEG Print uses the ditherCopy mode. When printing to PostScript
printers, ditherCopy mode is treated by the LaserWriter 8.x driver exactly like
srcCopy mode, and the PostScript interpreter does any halftoning or dithering
appropriate for the PostScript output device. When imaging to QuickDraw output
devices, ditherCopy causes QuickDraw to dither the image, which usually yields
better results than using srcCopy.

StdPix also accepts mask and matte arguments to obtain special effects. The mask
argument has the same effect as clipping to a mask region as part of the imaging call.

d e v e l o p Issue 24 December 199576

The matte arguments allow for effects similar to those of Color QuickDraw’s
CopyDeepMask. Current LaserWriter 8.x drivers do not support clipping to bitmap
regions, or the CopyDeepMask-like effects available with the matte arguments.
Consequently, the mask and matte arguments are ignored by LaserWriter 8.x drivers.

The final argument to StdPix is a flags parameter. The relevant flags are callOldBits
and callStdBits; they work together to specify whether a call to StdPix results in a call
to the bitsProc bottleneck with decompressed data. When the callOldBits and
callStdBits flags are both set, StdPix will always call the bitsProc bottleneck with
decompressed data. If callOldBits is set and callStdBits is not, StdPix will call the
bitsProc bottleneck with the decompressed data only if the bitsProc bottleneck is not
StdBits, but a custom bitsProc routine.

The JPEG Print sample code uses a flags value of (callOldBits | callStdBits) to
specify the most conservative handling of compressed image data during printing.
Printer drivers that know how to handle compressed image data, such as LaserWriter
8.3, will have a custom StdPix bottleneck to intercept the call and adjust the flags
appropriately. Drivers that don’t know how to handle compressed image data will
always receive decompressed image data via their bitsProc bottleneck.

Once we’re ready to call the StdPix bottleneck, we don’t want to just call the function
StdPix; instead, we must be careful to use any custom StdPix bottleneck that has been
installed. To do this, the code must check the current graphics port for custom
QuickDraw bottlenecks, as shown in Listing 1. If there aren’t any, the code gets the
standard bottlenecks; otherwise, it gets the pointer to the CQDProcs record stored in
the graphics port. Once it has the appropriate bottlenecks, the code uses the procedure
pointer stored in the newProc1 field of the CQDProcs record; this is the StdPix
bottleneck.

USING DATA-LOADING TECHNIQUES TO PRINT LARGE
COMPRESSED IMAGES
The compressed image data you’re working with may not fit completely in memory.
QuickTime supports this case through the use of a data-loading function, which you

PRINTING IMAGES FASTER WITH DATA COMPRESSION 77

Listing 1. Calling the QuickDraw StdPix bottleneck directly

// Look to see if there are custom QuickDraw bottlenecks in the
// current graphics port.
if ((((CGrafPtr)qd.thePort)->grafProcs) == NULL) {

// Get the standard bottleneck procs.
SetStdCProcs(&myStdProcs);
// The newProc1 field is the StdPix bottleneck.
MyProcPtr = (StdPixProcPtr)myStdProcs.newProc1;

} else {
// Use the grafProcs record in the current port to obtain the custom
// bottleneck procs. The newProc1 field is the StdPix bottleneck.
MyProcPtr =

(StdPixProcPtr) ((CGrafPtr)qd.thePort)->grafProcs->newProc1;
}
// Now call the bottleneck.
CallStdPixProc(MyProcPtr, SpecialPixMapP, &srcRect, &theMatrix,

ditherCopy, NULL, NULL, NULL, flags);

supply. QuickTime calls this function as needed to obtain data during image
decompression. Data loading eliminates the need to have the full image in memory,
greatly reducing memory usage.

The use of a data-loading function is described in somewhat sketchy terms in Inside
Macintosh: QuickTime, pages 3-148 to 3-150. Basically, your application creates a
buffer that your data-loading function uses for passing data to QuickTime. In
preparation for the StdPix call, you call SetCompressedPixMapInfo with a pointer
to the beginning of the buffer, the buffer length, and your data-loading function.
When you call the StdPix bottleneck, QuickTime calls the data-loading function as
necessary to obtain the compressed image data.

The data-loading function is declared as follows:

pascal OSErr MyDataLoadingProc(Ptr *dataP, long bytesNeeded, long refcon);

The first argument is a pointer to a pointer into your data buffer (the one you supplied
in the call to SetCompressedPixMapInfo as described earlier). The bytesNeeded
argument tells your function how many bytes need to be available in the data buffer
pointed to by the pointer in *dataP after the function call returns. The refcon
argument lets you pass additional information to your data-loading function.

EXTENDING JPEG PRINT WITH A DATA-LOADING FUNCTION
The sample application JPEG Print with Dataload, an extended version of JPEG
Print, uses the function MyDataLoadingProc, shown in Listing 2. Code not included
here fills up the buffer with the first chunk of compressed data and sets up the data-
loading function so that the refcon passed to it is a pointer to our application-defined
DataLoad structure.

The data-loading function’s job is to ensure that when it’s called with a request for
bytesNeeded bytes of data, at least that many bytes are available in the buffer pointed
to by *dataP after the data-loading function returns. When MyDataLoadingProc is
called with dataP not NULL, the code first computes how many bytes remain in the
buffer from *dataP to the end of the buffer. If that number of bytes is greater than or
equal to bytesNeeded, there are enough bytes available and the function returns.
Otherwise, the data from *dataP to the end of the buffer is copied to the beginning of
the buffer, and the remainder of the buffer is filled up with new data. Once the buffer
is refilled, *dataP is set to point to the beginning of the buffer so that the caller starts
getting its data there.

TECHNIQUES FOR COMPRESSING AND PRINTING
UNCOMPRESSED DATA
Your application may not have compressed data to print. The third sample application
on this issue’s CD, PrintPICTtoJPEG, compresses 32-bit-deep image data and prints
it. To obtain a source of bits to compress, PrintPICTtoJPEG takes a PICT file and
images it into a 32-bit-deep offscreen bitmap. It then draws from this bitmap into the
current graphics port. During printing, the data in the offscreen bitmap is (optionally)
compressed using JPEG compression, and then printed using the techniques for
printing compressed data as discussed above for the JPEG Print application.

The PrintPICTtoJPEG application uses PICT data solely as a source of bits to use
to demonstrate compression. By no means are we advocating this technique as the
proper way to print QuickDraw pictures. QuickDraw pictures may contain line art,
text, custom PostScript code, and images of varying depths that will image and print
much better if you just use DrawPicture. A good portion of the PrintPICTtoJPEG

d e v e l o p Issue 24 December 199578

PRINTING IMAGES FASTER WITH DATA COMPRESSION 79

static pascal OSErr MyDataLoadingProc(Ptr *dataP, long bytesNeeded,
long refcon)

{
OSErr theErr = noErr;

if (dataP != NULL) {
DataLoadPtr theDataLoadPtr = (DataLoadPtr) refcon;
// refcon is a pointer to a structure that contains the locked
// handle to our buffer, a field with the buffer size, and a field
// with the file reference number of the image data file we are
// decompressing.
Ptr theDataBufferP =

StripAddress(*(theDataLoadPtr->theDataBufferH));
long theBufferSize = theDataLoadPtr->theBufferSize;
short theRefNum = theDataLoadPtr->theRefNum;

// Calculate the number of bytes left in our existing data buffer.
long bytesAvail = theBufferSize - (*dataP - theDataBufferP);

// Are there enough bytes in our buffer for this call? If so, we
// don't need to read any more data.
if (bytesNeeded > bytesAvail) {

// We don't have enough bytes of data in our buffer. Figure
// out how many bytes we should read to refill the buffer.
long bytesToRead = theBufferSize - bytesAvail;

// If there are bytes available at the end of our buffer, move
// them to the beginning of the buffer.
if (bytesAvail) BlockMove(*dataP, theDataBufferP, bytesAvail);

// Go ahead and fill up the rest of the buffer, starting just
// after the last valid byte in the buffer.
theErr = FSRead(theRefNum, &bytesToRead, theDataBufferP +

bytesAvail);
// Ignore end of file errors.
if (theErr == eofErr) theErr = noErr;

// Reset the data pointer used by the caller of the data-
// loading function so that it points to the first byte of
// valid data, which is now at the beginning of our buffer.
*dataP = theDataBufferP;

}
} else {

// The data mark reset case. This implementation doesn't know how
// to reset the stream, so we return an error. We haven't seen
// a data mark reset as part of JPEG decoding. (Note that not
// handling this case slows down PhotoCD significantly.)
theErr = -1;

}
return theErr;

}

Listing 2. The data-loading function

application is devoted to getting a QuickDraw picture and drawing it into the offscreen
bitmap as a source of bits. The interesting part of the application is the compression
and imaging of the bits once we have them, and that’s what we’ll discuss here.

The PrintPICTtoJPEG application compresses data only as part of printing it. Of
course, it isn’t necessarily true that you would compress data only during printing; it’s
very likely that you would maintain the data in a compressed form. Only you know
for sure how you want to handle it.

PrintPICTtoJPEG also does image compression on the data only if the printing port
is a color graphics port; otherwise, it just does the usual CopyBits. (If you already
have compressed image data, you can use FDecompressImage as in the JPEG Print
application to draw already compressed images to a black-and-white graphics port.
If you’re compressing strictly for printing, there’s no obvious benefit to do so for a
black-and-white port.)

USING COMPRESSIMAGE
The simplest way to compress image data is to use the QuickTime functions
CompressImage and FCompressImage. You call GetMaxCompressionSize to
determine the maximum compression size of your image, and then allocate a handle
of that size and pass it to CompressImage or FCompressImage, as shown in Listing 3.

GetMaxCompressionSize is likely to return a large size for full color images, perhaps
a larger amount of memory than the application can allocate out of its application
heap. To allow for this, PrintPICTtoJPEG first tries to allocate a handle in its
application heap by using NewHandle. If that fails, it attempts to allocate temporary
memory using the TempNewHandle function. In this way, the application can compress
images when temporary memory is available without requiring a large application
heap. If there isn’t enough memory available, you can use the FCompressImage
function with an application-supplied data-unloading function to write the data to
disk as it’s being compressed by QuickTime.

The sample code directly chooses JPEG image compression with any codec that
supports JPEG compression with a quality value of codecNormalQuality. The other
available constants for compression quality values are codecLosslessQuality,
codecMaxQuality, codecMinQuality, codecLowQuality, and codecHighQuality.
These constants give varying compression ratios and corresponding image fidelity.

PROVIDING A USER INTERFACE FOR COMPRESSION PREFERENCES
Although PrintPICTtoJPEG doesn’t do this, your application should provide the
user a way to specify compression parameters when using JPEG compression. This
is especially important when you’re applying a lossy compression method such as
JPEG, since there’s a tradeoff between compression size and image fidelity. Such a
decision is appropriate on a per document or even a per image basis.

The PrintPICTtoJPEG application knows that the data it’s working with is best suited
for JPEG compression. If your application has a good idea of what kind of image data
it’s working with, it can make the choice of which compression scheme to apply to the
data. If not, you should probably use the standard image-compression dialog to let
the user choose both the compression scheme and the compression parameters.

PERFORMANCE MEASUREMENTS
As part of developing the sample applications, I did some stopwatch time measurements
to see what kind of performance improvements we’d get with JPEG image data

d e v e l o p Issue 24 December 199580

compression. (The image files I used are included on this issue’s CD.) The results,
while carefully obtained, are obviously not comprehensive, but they’ll give you an
idea of what you can expect. All measurements were taken using a Power Macintosh
6100/66 as the computing host on relatively unloaded LocalTalk and EtherTalk
networks. Unless the application uses JPEG image compression, the LaserWriter 8.3
driver compresses the data using PackBits compression.

For comparison purposes, I used LaserWriter 8.3, which has the special support for
JPEG images described in this article, and LaserWriter 8.2.2, which does not. In both
cases, the application printing code was identical. LaserWriter 8.3 sends the compressed
JPEG data directly to a PostScript Level 2 printer; with LaserWriter 8.2.2, the data is
decompressed on the host Macintosh by QuickTime and passed to the driver’s

PRINTING IMAGES FASTER WITH DATA COMPRESSION 81

Listing 3. Compressing image data with CompressImage

CodecType theCodecType = 'jpeg';
CodecComponent theCodec = (CodecComponent) anyCodec;
CodecQ spatialQuality = codecNormalQuality;
short depth = 32;

// sPixMap is a handle to the pixel map to be compressed.
// bounds is a pointer to a rectangle specifying the portion of the
// image to compress.
if (theErr == noErr)

theErr = GetMaxCompressionSize(sPixMap, bounds, depth,
spatialQuality, theCodecType, theCodec, &maxCompressionSize);

if (theErr == noErr) {
// This allocation should be no problem.
theDescH =
(ImageDescriptionHandle) NewHandle(sizeof(ImageDescriptionHandle));

// This allocation is probably for a lot of memory.
compressedDataH = NewHandle(maxCompressionSize);
theErr = MemError();

// See if we allocated the ImageDescriptionHandle but not the memory
// to receive the compressed image.
if ((theDescH != NULL) && (theErr != noErr)) {

// See if we can get temporary memory instead. Since we're going
// to use the temporary memory as a real handle, we require
// System 7.0 or later.
compressedDataH = TempNewHandle(maxCompressionSize, &theErr);
// This probably can't happen, but just in case...
if (compressedDataH == NULL && theErr == noErr)

theErr = iMemFullErr;
}

}
if ((theErr == noErr) && (compressedDataH != NULL)

&& (theDescH != NULL)) {
MoveHHi(compressedDataH);
HLock(compressedDataH);
theErr = CompressImage(sPixMap, bounds, spatialQuality, theCodecType,

theDescH, StripAddress(*compressedDataH));
HUnlock(compressedDataH);

}

bitsProc bottleneck. Since the LaserWriter 8.2.2 driver is seeing uncompressed data,
it compresses the data with PackBits compression before sending it to the printer.

To measure print times for already existing compressed data, I used the JPEG Print
application to take an already compressed 186K JPEG image of a jaguar and print it
to a PostScript Level 2 printer. Table 1 shows the results.

Next I used the PrintPICTtoJPEG sample application to measure and compare
printing times both with and without compression on the host (Table 2). I used the
same jaguar image as before but saved as a PICT file, and a smaller PICT file I already
had on hand. Doing image compression on the host is time intensive: it routinely took
2 to 4 seconds to compress the large jaguar image. Even so, overall performance is
better because the data transfer times to the printer are so much smaller.

Table 3 compares the data sizes for JPEG and PackBits compression.

PRINTING WITH DATA COMPRESSION: CURRENT AND
FUTURE DRIVERS
Today’s LaserWriter 8.3 driver has direct support for handling JPEG compressed
images as described in this article. LaserWriter 8.3 supports JPEG compression only
when printing to Apple’s PostScript Level 2 printers. When printing to other
PostScript printers or to PostScript files on disk, the driver uses the JPEG
decompressor on the host to decompress the data, regardless of user settings.

d e v e l o p Issue 24 December 199582

Table 1. Jaguar JPEG image print times for already compressed data

Print Time, Print Time,
Printer Network PackBits JPEG
LaserWriter 320 LocalTalk 289 seconds 125 seconds
LaserWriter 16/600 EtherTalk 121 seconds 42 seconds

Table 2. PICT image print times when compressing data on the host

Print Time, Print Time, JPEG
Image File Printer Network PackBits Normal Quality

Jaguar LaserWriter 320 LocalTalk 288 seconds 129 seconds
(as PICT) LaserWriter 16/600 EtherTalk 116 seconds 44 seconds

Portrait.pict LaserWriter 320 LocalTalk 54 seconds 37 seconds
LaserWriter 16/600 EtherTalk 22 seconds 18 seconds

Table 3. Image compression data sizes

Image Size, Image Size, JPEG
Image File PackBits Normal Quality
Jaguar 2955K bytes 186K bytes
Portrait.pict 399K bytes 44K bytes

LaserWriter 8.3.1 and future LaserWriter 8.x drivers will take advantage of JPEG
compression when printing to all PostScript Level 2 printers as well as when saving
to disk with Level 2 Only selected in the standard file dialog. Adobe’s PostScript
printer driver for the Macintosh, PSPrinter, will soon take advantage of JPEG
compression, as will a future version of the PostScript printing system for
QuickDraw GX.

The prerelease version of LaserWriter 8.3.1 on this issue’s CD will enable you to test
your application with JPEG compression when printing to non-Apple printers or to
disk. Remember that JPEG compressed data will be written into the data stream only
when your application prints JPEG compressed data and the printer is a PostScript
Level 2 printer. If you’re saving PostScript files to disk, be sure to choose the Level 2
Only setting in the standard file dialog. Choosing the Level 1 Compatible setting
causes the driver to write uncompressed data into the output file. When you print
24-bit photo-realistic images using JPEG compression, files saved with the Level 1
Compatible setting will be about 10 to 40 times larger than files saved with the Level
2 Only setting.

Since PostScript Level 2 output devices also have fax and LZW decompression filters
available, Apple is considering adding support for these compression formats to a
future LaserWriter 8.x driver so that applications handling these types of data can
take advantage of the techniques described here. If you would take advantage of fax or
LZW support in the LaserWriter driver, let us know at AppleLink DEVFEEDBACK
or devfeedback@applelink.apple.com on the Internet.

LET’S GET STARTED!
JPEG images are now abundant, especially on the Internet where more and more
people encounter them each day. Let’s start printing these as compressed images!
By implementing the techniques presented here for printing JPEG compressed
image data, you can give your users immediate and substantial gains in printing
performance. Plus you’ll be well on your way to printing other kinds of compressed
data when printing software is enhanced to support it.

PRINTING IMAGES FASTER WITH DATA COMPRESSION 83

Thanks to Richard Blanchard, Paul Danbold,
Peter Hoddie, Kent Sandvik, and Nick Thompson
for reviewing this article.•

If you’re writing a device driver for the new PCI-based Macintosh
computers, you need to understand the relationship of the memory an
application sees to the memory the hardware device sees. The support
for these drivers (which will also run under Copland, the next
generation of the Mac OS) includes the PrepareMemoryForIO
function, as discussed in my article in Issue 22. This single coherent
facility connects the application’s logical view of memory to the
hardware device’s physical view. PrepareMemoryForIO has proven
difficult to understand; this article should help clarify its use.

If you managed to struggle through my article “Creating PCI Device Drivers” in
develop Issue 22, you probably noticed that it got rather vague toward the end when I
tried to describe how the PrepareMemoryForIO function works. There are a few
reasons for this: the article was getting pretty long and significantly overdue (the
excuse), and I really didn’t understand the function that well myself (the reason).
Things are a bit better now, thanks to the enforced boredom of a very long trip, the
need to teach this algorithm to a group of developers, and some related work I’m
doing on the SCSI interface for Copland.

My previous article showed the simple process of preparing a permanent data area
that might be used by a device driver to share microcode or other permanent
information with a device. This article attacks a number of more complex problems
that appear when a device performs direct memory access (DMA) transfers to or from a
user data area. It also explores issues that arise if data transfers are needed in
situations where the device’s hardware cannot use DMA.

A later version of the sample device driver that accompanied the Issue 22 article is
included in its entirety on this issue’s CD. Of course, you’ll need a hardware device to
use the driver and updated headers and libraries to recompile it. Included is the source
code for the DMA support library (files DMATransfer.c and DMATransfer.h), which
consists of several functions I’ve written that interact with PrepareMemoryForIO; the
revised sample device driver shows how this library can be incorporated into a
complete device driver for PCI-based Power Macintosh computers.

I’ll assume that you’ve read my earlier article (which you can find on the CD if you
don’t have it in print). That article gives an overview of the new device driver
architecture and touches on the PrepareMemoryForIO function, but for a

MARTIN MINOW

The New Device Drivers: Memory Matters

d e v e l o p Issue 24 December 199584

MARTIN MINOW is writing the SCSI plug-in for
Copland on a computer named “There must be a
pony here” and competes with his boss to see

who is more cynical about Apple management.
During the few moments he can escape from
meetings, he runs with the Hash House Harriers.•

comprehensive description of the architecture and details about the function, see
Designing PCI Cards and Drivers for Power Macintosh Computers (available from
APDA). I’ll also assume that you’re reasonably familiar with the basic concepts of a
virtual memory operating system, including memory pages and logical and physical
addresses; for a brief review, see “Virtual Memory on the Macintosh.”

PREPARING MEMORY FOR A USER DATA TRANSFER
At the beginning of a user data transfer (a data transfer on behalf of a program that’s
calling into your driver), the device driver calls PrepareMemoryForIO to determine
the physical addresses of the data and to ensure the coherency of memory caches. At
the end of the transfer, the driver calls the CheckpointIO function to release system
resources and adjust caches, if necessary. PrepareMemoryForIO performs three
functions that are necessary for DMA transfers: it locates data in physical memory; it
ensures that the data locations contain the actual data needed or provided by the
device; and, with the help of CheckpointIO, it maintains cache coherence.

Your device driver can call PrepareMemoryForIO from task level, from a software
interrupt, or from the mainline driver function (that is, DoDriverIO). CheckpointIO
can be called from task level, from a software interrupt, or from a secondary interrupt
handler. (For more on the available levels of execution, see “Execution Levels for
Code on the PCI-Based Macintosh.”) In a short while, we’ll see how the fact that
these functions must be called from particular points affects the transfer process.

If the data is currently in physical memory, PrepareMemoryForIO locks the memory
page containing the data so that it cannot be relocated. If the data isn’t in physical

THE NEW DEVICE DRIVERS: MEMORY MATTERS 85

Virtual memory on the Macintosh has two major functions:
it increases the apparent size of RAM transparently by
moving data back and forth from a disk file, and it remaps
addresses. Of the two, remapping addresses is more
relevant to device driver developers (and, incidentally,
much more of a headache).

When Macintosh virtual memory is turned on, the
processor and the code running on the processor always
access logical addresses. A logical address is used the
same way as a physical address; however, the Memory
Management Unit (MMU) integrated into the processor
remaps the logical address on the fly to a physical
address if the data is resident in memory. If the data isn’t
resident in memory, a page fault occurs; this requires
reading the desired data into memory from the disk and
possibly writing other, unneeded data from memory to the
disk to free up space in memory. (This explanation is
slightly simplified, of course.)

Since it would be impractical to have a mapping for each
byte address, memory is subdivided into blocks called
pages. A page is the smallest unit that can be remapped.
Memory is broken into pages on page boundaries, which

are page-size intervals starting at 0. The remapping allows
physical pages that are not actually contiguous in physical
memory to appear contiguous in the logical address space.

The Macintosh currently uses a page size of 4096 bytes;
however, future hardware may use a different page size.
You should call the GetLogicalPageSize function in the
Driver Services Library to determine the page size if you
need it.

DMA is performed on physical addresses since the MMU
of the processor is not on the address bus that devices
use. One of the functions of PrepareMemoryForIO is to
translate logical addresses into physical addresses so that
devices can copy data directly to and from the appropriate
buffers.

Many virtual memory systems provide multiple logical
address spaces to prevent applications from interfering
with each other. It appears to each application that it has
its own memory system, not shared with any other
application. The Macintosh currently has only one logical
address space, but future releases of the Mac OS will
support multiple logical address spaces.

VIRTUAL MEMORY ON THE MACINTOSH
BY DAVE SMITH

memory, PrepareMemoryForIO calls the virtual memory subsystem and a page fault
occurs, reorganizing physical memory to make space in it for the data. After the
transfer finishes, CheckpointIO releases the memory page locks.

PrepareMemoryForIO and CheckpointIO perform an important function related to
the use of caches. A cache is a private, very fast memory area that the CPU can access
at full speed. The processor runs much faster than its memory runs; to keep the
processor running at its best speed, the CPU copies data from main memory to a
cache. Both the PowerPC and the Motorola 68040 processors support caching,
although their implementation details differ. The important point is that a value of a
data item in memory can differ from the value for the same data item in the cache

d e v e l o p Issue 24 December 199586

Native code on PCI-based Macintosh computers may run
in any of four execution contexts: software interrupt,
secondary interrupt, primary interrupt, or task. All driver
code contexts have access to a driver’s global data. No
special work (such as calling the SetA5 function on any of
the 680x0 processors) is needed to access globals from
any of these contexts.

SOFTWARE INTERRUPT
A software interrupt routine runs within the execution
environment of a particular task. Running a software
interrupt routine in a task is like forcing the task to call a
specific subroutine asynchronously. When the software
interrupt routine exits, the task resumes its activities. A
software interrupt routine affects only the task in which it’s
run; the task can still be preempted so that other tasks can
run. Those tasks, in turn, can run their own software
interrupt routines, and a task running a software interrupt
routine can be interrupted by a primary or secondary
interrupt handler.

All software interrupt routines for a particular task are
serialized; they don’t interrupt each other, so there’s no
equivalent to the 680x0 model of nested primary interrupt
handlers.

Page faults are allowed from software interrupt routines.
A software interrupt routine is analogous to a Posix signal
or a Windows NT asynchronous procedure call. A
software interrupt routine running in the context of an
application, INIT, or cdev doesn’t have access to a
driver’s global data.

SECONDARY INTERRUPT
The secondary interrupt level is the execution context
provided to a device driver’s secondary interrupt handler.
In this context, hardware interrupts are enabled and
additional interrupts may occur. A secondary interrupt

handler is a routine that runs in privileged mode with
primary interrupts enabled but task switching disabled.

All secondary interrupt handlers are serialized, and they
never interrupt primary interrupt handlers; in other words,
they resemble primary interrupt handlers but have a
lower priority. Thus, a secondary interrupt handler queued
from a primary interrupt handler doesn’t execute until
the primary interrupt handler exits, while a secondary
interrupt handler queued from a task executes
immediately.

Page faults are not allowed at primary or secondary
interrupt level. A secondary interrupt handler is analogous
to a deferred task in Mac OS System 7 or a Windows NT
deferred procedure call. Secondary interrupt handlers,
like primary interrupt handlers, should be used only by
device drivers. Never attempt to run application, INIT, or
cdev code in this context or at primary interrupt level.

PRIMARY INTERRUPT
The primary interrupt level (also called hardware interrupt
level) is the execution context in which a device’s primary
interrupt handler runs. Here, primary interrupts of the
same or lower priority are disabled, the immediate needs
of the device that caused the interrupt are serviced, and
any actions that must be synchronized with the interrupt
are performed. The primary interrupt handler is the
routine that responds directly to a hardware interrupt. It
usually satisfies the source of the interrupt and queues a
secondary interrupt handler to perform the bulk of the
servicing.

TASK (NON-INTERRUPT)
The task level (also called non-interrupt level) is the
execution environment for applications and other
programs that don’t service interrupts. Page faults are
allowed in this context.

EXECUTION LEVELS FOR CODE ON THE PCI-BASED MACINTOSH
BY TOM SAULPAUGH

(called cache incoherence). Furthermore, you have to explicitly tell the PowerPC or
680x0 processor to synchronize the cache with memory.

Normally, the processor hardware prevents cache incoherence from causing data value
problems. However, for some processor architectures, DMA transfers access main
memory independently of the processor cache. PrepareMemoryForIO (for write
operations) and CheckpointIO (for read operations) synchronize the processor cache
with main memory. This means that DMA write operations write the valid contents
of memory, and the processor uses the valid data just read from the external device.

As noted earlier, some devices cannot perform DMA transfers; instead, they use
programmed I/O, in which the CPU moves data between logical addresses and the
device. PrepareMemoryForIO also returns the logical address that such devices
must use.

A SIMPLE MEMORY PREPARATION EXAMPLE
Listing 1 presents a very simple example that shows how a memory area may be
prepared for I/O.

To simplify listings, I’ve often omitted data type casting. Think of all data types as
unsigned 32-bit integers. Because of this omission, you can’t implement these listings
as written, but should base your code on the sample on this issue’s CD.•

PrepareMemoryForIO is called with one parameter, an IOPreparationTable. Among
other things, this table specifies one or more address ranges to prepare (only one, in
this example). Each address range is indicated by a starting logical address and a
count of the number of bytes in the range.

The IOPreparationTable also points to a logical mapping table and a physical mapping
table (gLogicalMapping and gPhysicalMapping in our example). The physical
mapping table is where PrepareMemoryForIO returns the page addresses that the
driver can use to access the client’s buffer during DMA. The logical mapping table
is the list of addresses that the driver must use for doing programmed I/O.

The simplest IOPreparationTable options — kIOMinimalLogicalMapping and
kIOLogicalRanges — are set in this example. The kIOMinimalLogicalMapping flag
indicates that only the first and last logical pages need to be mapped, while the
kIOLogicalRanges flag indicates that the data (here, the gMyBuffer vector) consists
of logical addresses.

Because kIOMinimalLogicalMapping is set, the logical mapping table requires two
entries for each address range; we have only one range, so our logical mapping table
needs a total of two entries. The physical mapping table requires one entry per page;
we set this to two entries because our 512-byte buffer may cross a page boundary.
When writing your driver, you can use the GetMapEntryCount function in the
DMA support library to compute the actual number of physical mapping table
entries needed for an address range.

If the preparation is successful, the driver performs the DMA transfer and calls
CheckpointIO to release internal operating system structures that were used by
PrepareMemoryForIO. PrepareMemoryForIO sets the kIOStateDone flag in the
IOPreparationTable’s state field if the entire area has been prepared.

If PrepareMemoryForIO can’t prepare the entire area, it doesn’t set the kIOStateDone
flag, and your driver needs to call PrepareMemoryForIO again with the firstPrepared

THE NEW DEVICE DRIVERS: MEMORY MATTERS 87

field updated to reflect the number of bytes prepared in this range of memory. The
recall must be done from a software interrupt routine; it cannot be performed from
an interrupt handler.

MORE ABOUT MAPPING
Address ranges to be prepared by PrepareMemoryForIO may cross one or more page
boundaries and thus may take up two or more pages in physical memory. Figure 1
shows what the physical mapping might look like for two address ranges: the first is
more than two pages long and crosses two page boundaries, while the second is an
even page long and crosses one page boundary.

Each address range maps to an area in physical memory that can be thought of as
having up to three sections: the beginning page, the middle pages, and the ending page.

d e v e l o p Issue 24 December 199588

Listing 1. Simplified memory preparation

#define kBufferSize 512
#define kMapCount 2
/* The buffer your driver or application is preparing */
UInt8 gMyBuffer[kBufferSize];
IOPreparationTable gIOTable;
/* Logical & physical mapping tables, filled in by PrepareMemoryForIO */
LogicalAddress gLogicalMapping[2];
PhysicalAddress gPhysicalMapping[kMapCount];

void SimpleMemoryPreparation(void)
{

OSStatus osStatus;

gIOTable.options =
(kIOMinimalLogicalMapping | kIOLogicalRanges | kIOIsInput);

gIOTable.state = 0;
gIOTable.addressSpace = kCurrentAddressSpaceID;
gIOTable.granularity = 0;
gIOTable.firstPrepared = 0;
gIOTable.lengthPrepared = 0;
gIOTable.mappingEntryCount = kMapCount;
gIOTable.logicalMapping = gLogicalMapping;
gIOTable.physicalMapping = gPhysicalMapping;
/* Set the logical address to be mapped and the length of the area

to be mapped. */
gIOTable.rangeInfo.range.base = (LogicalAddress) gMyBuffer;
gIOTable.rangeInfo.range.length = sizeof gMyBuffer;
/* Call PrepareMemoryForIO and process the preparation. */
do {

osStatus = PrepareMemoryForIO(&gIOTable);
if (osStatus != noErr)

break;
MyDriverDMARoutine(...);
CheckpointIO(gIOTable.preparationID, kNilOptions);
gIOTable.firstPrepared += gIOTable.lengthPrepared;

} while ((gIOTable.state & kIOStateDone) == 0);
}

• Every address range produces a beginning page. Your data may start at an
offset into this page, depending on the starting address of the range. This is
true for both address ranges in Figure 1. The address in the mapping table
for the beginning page points to the beginning of your data in the page.
Notice that for the second address range in our example, the logical address
for the start of the data, 0x4400, maps to the physical address 0x6400.

• If your address range maps to three or more pages, some number of middle
pages are completely filled with your data. The first address range in Figure
1 illustrates this.

• If your address range maps to two or more pages, the data on the ending
page begins at the beginning of the page, but it may cover only part of the
page, depending on the count in your address range.

Unfortunately, there’s no simple one-to-one correspondence between entries in the
physical and logical mapping tables and the address range (or ranges) that a driver
or application specifies when it calls PrepareMemoryForIO. Because of this, the
function that controls a driver’s DMA or programmed I/O process must iterate
through the input address ranges and output mapping tables to compute the address
and size of each data transfer segment. As you’ll see when you look at the DMA
support library on this issue’s CD, this turns out to be an extremely complex process.

The DMA support library functions iterate through the address ranges and mapping
tables, matching the two together to provide each data transfer segment in order.
The library recognizes when two physical pages are contiguous and extends the data
transfer length as far as possible.

When called for the example in Figure 1, the DMA support library returns five
physical transfer segments (this example doesn’t demonstrate logical alignment
problems). To learn how PrepareMemoryForIO’s algorithm works, I’d recommend
that you work out the actual addresses and segment transfer lengths using pencil and

THE NEW DEVICE DRIVERS: MEMORY MATTERS 89

Your program’s�
logical address space

Physical �
address space

Physical �
mapping table

0x0400�
0x3000�
0x2000�
0x6400�
0x5000

0

0x2000

0x1000

0x3000

0x4000

0x5000

0x6000

0

0x2000

0x1000

0x3000

0x4000

0x5000

0x6000

Address ranges
Starting�
address

Count�
(in bytes)

0x0400�
0x4400

0x2800�
0x1000

Figure 1. Mapping to multiple pages

paper. (When you look at the DMA support library in DMATransfer.c, you’ll see a
more mechanized approach that I strongly recommend if you’re developing complex
software.)

THE DATA TRANSFER PROCESS
Figure 2 illustrates how a data transfer might proceed through the system. It shows
the five steps involved in a transfer that requires partial preparation of a large chunk
of data that can’t be prepared in one gulp. The diagram also shows the proper
execution levels for each step. As we’ll see later, the process is considerably simpler
without partial preparation.

Here’s a breakdown of the steps in the data transfer:

1. The transfer starts at task (application or driver mainline) level. The driver
must call PrepareMemoryForIO from task level because PrepareMemoryForIO
may require virtual memory page faults and has to reserve system memory
for its own tables. After memory is prepared, the driver examines the logical
and physical mapping tables and starts the DMA operation. It then waits for
an interrupt. (Of course, the actual driver behavior depends on your
hardware.)

2. When the driver’s primary interrupt handler runs, it determines that another
DMA transfer is needed, but that no more data is prepared (because the
number of bytes transferred equals the value in the lengthPrepared field in
the IOPreparationTable). Since another partial preparation must be
performed, the primary interrupt handler queues a secondary interrupt and
exits the primary interrupt. The device is in a “frozen” state: it either has
data available (to read) or needs more data (to write) but cannot proceed at
this time. I’ll talk more about this problem later.

d e v e l o p Issue 24 December 199590

1. Call PrepareMemoryForIO.�
Start DMA operation.�
Wait for interrupt.

2. Queue secondary�
 interrupt.

3. Call CheckpointIO.�
 Call SendSoftwareInterrupt.

4. Call PrepareMemoryForIO.�
 Call SecondaryInterruptHandler2.

5. Restart DMA operation.

Time�
�

Task�
(Non-Interrupt)

Secondary�
Interrupt

Primary�
Interrupt

Figure 2. The progress of a data transfer with partial preparation

3. The driver’s secondary interrupt handler starts. It examines its internal state
and determines that a DMA transfer has been completed. It calls CheckpointIO
with the kMoreIOTransfers flag to complete the current partial transfer.
Since another data transfer will be needed, it begins the process of calling
PrepareMemoryForIO again, by calling SendSoftwareInterrupt to queue a
software interrupt routine. Then, with nothing more to do, the secondary
interrupt handler exits. The device is still frozen.

4. The software interrupt routine runs. It updates the firstPrepared field and
calls PrepareMemoryForIO to prepare the next segment (range of memory).
This may require a page fault, causing the virtual memory subsystem to
move data between main memory and the virtual memory disk file. When
PrepareMemoryForIO finishes, the logical and physical mapping tables are
updated and the lengthPrepared field contains the number of bytes that can
be transferred in the next segment. The software interrupt routine calls a
secondary interrupt handler (which is equivalent to queuing the handler).

5. The sequence returns to the secondary interrupt handler, and the DMA
operation is restarted. The partial preparation algorithm continues at step 2,
progressing through steps 2 to 5 until all data is transferred.

The device is frozen in steps 2 to 5; it cannot proceed on the current I/O request
until the partial preparation completes. But note that the page fault handler in step 4
may require disk I/O; consequently, any device that can service the page fault device
(such as the SCSI bus manager) cannot support partial preparation. Writers of disk
drivers and other SCSI-based interface software must understand these restrictions.

A CLOSER LOOK: SOME EXAMPLES
Unfortunately, as a result of some necessary constraints of PrepareMemoryForIO,
the code in Listing 1 isn’t usable in an actual device driver when the data transfer
results in the interruption of the hardware device by the CPU. In this section, I’ll
return to the five-step transfer process outlined above, with more detail on the way
that a driver interacts with memory preparation. I’ll illustrate the process with three
different examples: the simple case of a single DMA transfer; the more complicated
case where more than one DMA transfer is needed because the physical mapping
entries are discontiguous; and finally the full five-step transfer process, complete with
partial preparation.

A SIMPLE TRANSFER
Our first example uses the sample preparation shown in Figure 3. Here your
application or driver created a simple IOPreparationTable for an application data
buffer that’s 512 bytes long and begins at logical address 0x01B89F80.

In this case the transfer process consists of only three steps:

1. The buffer in our example crosses a physical page boundary, so two mapping
entries are needed. PrepareMemoryForIO fills in the logical and physical
mapping tables and sets the lengthPrepared field. Since it has successfully
prepared the entire buffer, it sets the kIOStateDone flag in the state field.
After your driver uses the NextPageIsContiguous macro (in DMATransfer.h)
to determine that the two physical mapping entries are contiguous, it puts
the first physical address, 0x0077EF80, and the entire byte count into the
DMA registers and starts the device.

2. When the transfer finishes, the driver’s primary interrupt handler runs. It
determines that the transfer has finished and queues a secondary interrupt to
complete processing.

THE NEW DEVICE DRIVERS: MEMORY MATTERS 91

3. The driver’s secondary interrupt handler calls CheckpointIO to complete the
transfer. It then completes the entire device driver operation by calling
IOCommandIsComplete.

DISCONTIGUOUS PHYSICAL MAPPING
The above example requires a single DMA transfer; however, if the physical mapping
entries are discontiguous, the first two steps of the process become more complicated:

1. After preparation, your driver determines that the two physical mapping
entries are not contiguous. Therefore, it puts the first physical address,
0x0077EF80, and the first byte count (128 bytes in this case) into the DMA
registers and starts the DMA operation.

2. When the transfer finishes, the driver’s primary interrupt handler runs. It
determines that the transfer has finished; however, another physical transfer
is needed and can be performed, so it loads the DMA registers with the new
physical address and the remaining byte count (384 bytes in this case),
restarts the DMA operation, and exits the primary interrupt handler.

After this DMA operation finishes, the operating system reenters the
primary interrupt handler. Upon the completion of the entire transfer, the
primary interrupt handler queues the secondary interrupt handler to finish
the entire operation.

PARTIAL PREPARATION
The example in Figure 3 requires only a single preparation, but in some cases
PrepareMemoryForIO cannot prepare the entire area at once and so requires partial
preparation. To illustrate this, I’ll change a few parameters in the IOPreparationTable.

d e v e l o p Issue 24 December 199592

512 bytes

Your application�
memory

0x01B89F80

Data buffer

Values set by�
your program

Values set by�
PrepareMemoryForIO

IOPreparationTable

options

state�
(kIOStateDone)

addressSpace

granularity�
(0)

firstPrepared�
(0)

lengthPrepared�
(512)

mappingEntryCount�
(2)

logicalMapping

physicalMapping

�

preparationID

rangeInfo.range.base�
(0x01B89F80)

rangeInfo.range.length�
(512)

0x01B89F80

0x01B8A000

0x0077EF80

0x0077F000

Figure 3. A simple IOPreparationTable

• The logical address of the buffer is 0x01B89F80.

• The transfer length is 20480 bytes.

• The transfer granularity is 8192 bytes. This value limits the length of the
longest preparation.

PrepareMemoryForIO performs partial preparation of the data three times, as shown
in Table 1.

The entire transfer requires these three repetitions of the five-step transfer process:

1. The driver prepares the first DMA operation for physical address
0x0077EF80, length 4224. After it interrupts, the primary interrupt handler
queues a secondary interrupt that, when run, calls CheckpointIO and causes
a software interrupt routine to run. This software interrupt routine updates
the firstPrepared field from 0 to 4224 (the amount previously prepared) and
calls PrepareMemoryForIO for the next partial preparation. When
PrepareMemoryForIO finishes, the software interrupt routine calls the
secondary interrupt handler.

2. The secondary interrupt starts the next transfer for physical address
0x00780000, length 8192. When this transfer finishes, the primary interrupt
queues the secondary interrupt, which, in turn, calls CheckpointIO and
causes the software interrupt routine to run a second time. This task calls
PrepareMemoryForIO for the next preparation and calls the secondary
interrupt handler again.

3. The secondary interrupt handler starts the final transfer. When it finishes,
the driver completes the entire preparation.

LOGICAL DATA TRANSFER: PROGRAMMED I/O
Some hardware devices do not support DMA but rather use programmed I/O, in
which the main processor moves data between program logical addresses and the
device. Programmed I/O is also needed when the device’s DMA hardware cannot use
DMA in a particular situation or context — for example, a one-byte transfer.

Some hardware devices cannot transfer data that isn’t properly aligned to some
hardware-specific address value. For example, the DMA controller on the Power
Macintosh 8100 requires addresses to be aligned to an 8-byte boundary; it can only
transfer to physical addresses in which the low-order three bits are set to 0. Also, data
transfers must be a multiple of 8 bytes. To handle such cases, the DMA support
library returns the logical addresses of unaligned segments so that a device driver can
transfer them with programmed I/O operations.

THE NEW DEVICE DRIVERS: MEMORY MATTERS 93

Table 1. Three partial preparations

Logical Mapping Physical Mapping Byte Count

First Preparation 0x01B9F80 0x0077EF80 4224
0x01BA000 0x0077F000

Second Preparation 0x01B8B000 0x00780000 8192
0x01B8C000 0x00782000

Third Preparation 0x01B8D000 0x00783000 8064
0x01B8E000 0x00784000

This restriction on logical alignment means that before starting a DMA transfer, the
driver must look at the low-order bits of the physical address and the low-order bits
of the count. The actual data transfer process is illustrated by the code in Listing 2,
which presumes 8-byte alignment and ignores a few additional complications. The
ugly stuff is in the ComputeThisSegment function, which examines the global
IOPreparationTable and handles multiple address ranges. The DMA support library
simplifies the procedure, as we’ll see in the next section.

PUTTING IT ALL TOGETHER
Here we’ll take a look at how your driver can use several of the functions in the DMA
support library to simplify dealing with PrepareMemoryForIO.

Before you can call any of the functions in the DMA support library to make a partial
preparation, you need to create the system context for a software interrupt. This
context is created by the CreateSoftwareInterrupt system routine, as shown in the
InitializePrepareMemoryGlobals function in Listing 3. CreateSoftwareInterrupt
must be called from your driver’s intialization routine because it allocates memory.
Your driver’s interrupt handler uses a software interrupt to start a task that can
call PrepareMemoryForIO (as described earlier in step 4 of the data transfer
process).

d e v e l o p Issue 24 December 199594

Listing 2. Data transfer with logical alignment

LogicalAddress thisLogicalAddress;
PhysicalAddress thisPhysicalAddress;
ByteCount thisByteCount, segmentByteCount;

ComputeThisSegment(&thisLogicalAddress, &thisPhysicalAddress,
&thisByteCount);

if ((thisPhysicalAddress & 0x07) != 0) {
/* Pre-alignment logical transfer */
segmentByteCount = 8 - (thisPhysicalAddress & 0x07);
if (segmentByteCount > thisByteCount)

segmentByteCount = thisByteCount;
DoLogicalTransfer(thisLogicalAddress, segmentByteCount);
thisByteCount -= segmentByteCount;
thisLogicalAddress += segmentByteCount;
thisPhysicalAddress += segmentByteCount;

}
if (thisByteCount > 0) {

/* Aligned physical transfer */
segmentByteCount = thisByteCount & ~0x07;
if (segmentByteCount != 0) {

DoPhysicalTransfer(thisPhysicalAddress, segmentByteCount);
thisByteCount -= segmentByteCount;
thisLogicalAddress += segmentByteCount;

}
}
if (thisByteCount != 0) {

/* Post-alignment logical transfer */
DoLogicalTransfer(thisLogicalAddress, thisByteCount);

}

The DMA support library contains two functions that a driver can use to simplify
processing the output from PrepareMemoryForIO: InitializeDMATransfer, which is
called once to configure the overall transfer operation, and PrepareDMATransfer,
which is called to set up each individual transfer.

The MyConfigureDMATransfer function in Listing 4 calls PrepareMemoryIO and
InitializeDMATransfer to configure the transfer. This function is called by the
mainline driver function (and by a software interrupt routine for partial preparation,
as we’ll see later).

If MyConfigureDMATransfer is successful, the driver initializes the hardware to
begin processing. I assume here that the hardware interrupts the process when it
requires a data transfer. The primary interrupt handler is shown in Listing 5.

THE NEW DEVICE DRIVERS: MEMORY MATTERS 95

Listing 3. Initialization for DMA

SoftwareInterruptID gNextDMAInterruptID;

/* This function is called once, when your driver starts. */
OSErr InitializePrepareMemoryGlobals(void)
{

OSErr status;

gLogicalPageSize = GetLogicalPageSize();
gPageMask = gLogicalPageSize - 1;
status = CreateSoftwareInterrupt(

PrepareNextDMATask, /* Software interrupt routine */
CurrentTaskID(), /* For my device driver */
NULL, /* Becomes the p1 parameter */
TRUE, /* Persistent software interrupt */
&gNextDMAInterruptID); /* Result is the task ID. */

return (status);
}

Listing 4. MyConfigureDMATransfer

/* In a production system, kPageCount should be retrieved from the
operating system by calling GetLogicalPageSize. */

#define kPageCount 4096
#define kLongestDMA 65536
#define kLogicalAlignment 8
#define kMappingEntries ((kLongestDMA + (kPageCount - 1)) / kPageCount)

DMATransferInfo gDMATransferInfo;
IOPreparationTable gIOTable;
LogicalAddress gLogicalMapping[2];
PhysicalAddress gPhysicalMapping[kMappingEntries];
AddressRange gThisTransfer;
Boolean gIsLogical;

(continued on next page)

When the primary interrupt handler determines that a data transfer is needed, it calls
the function MySetupForDataTransfer, which tries to continue a logical (programmed
I/O) transfer. If no logical transfer is appropriate, it calls PrepareDMATransfer, to
configure the next data transfer segment. This will be either a logical or a DMA
transfer, depending on the interaction between the user’s data transfer parameters and

d e v e l o p Issue 24 December 199596

OSErr MyConfigureDMATransfer(
IOCommandCode ioCommandCode, /* Parameter to DoDriverIO */
ByteCount firstPrepared /* Zero at first call */

)
{

OSErr status;

gThisTransfer.base = NULL; /* Setup for programmed I/O */
gThisTransfer.length = 0; /* Interrupt handler */
gIsLogical = FALSE;

if (firstPrepared == 0) {
/* This is an initial preparation for the transfer. */
gIOTable.preparationID = kInvalidID; /* Error exit marker */
switch (ioCommandCode) {

case kReadCommand: gIOTable.options = kIOIsInput; break;
case kWriteCommand: gIOTable.options = kIOIsOutput; break;
default: return (paramErr);

}
ioTable.ioOptions |=

(kIOLogicalRanges /* Logical input area */
| kIOShareMappingTables /* Share with OS kernel */
| kIOMinimalLogicalMapping /* Minimal table output */
);

gIOTable.state = 0;
gIOTable.addressSpace = CurrentTaskID();
gIOTable.granularity = kLongestDMA;
gIOTable.firstPrepared = 0;
gIOTable.lengthPrepared = 0;
gIOTable.mappingEntryCount = kMappingEntries;
gIOTable.logicalMapping = gLogicalMapping;
gIOTable.physicalMapping = gPhysicalMapping;
gIOTable.rangeInfo.range.base = pb->ioBuffer;
gIOTable.rangeInfo.range.length = pb->ioReqCount;

}
else { /* We were called to continue a partial preparation. */

gIOTable.firstPrepared = firstPrepared;
}

status = PrepareMemoryForIO(&gIOTable);
if (status != noErr)

return (status);
status = InitializeDMATransfer(&gIOTable, kLogicalAlignment,

&gDMATransferInfo);
return (status);

}

Listing 4. MyConfigureDMATransfer (continued)

the device’s logical alignment restrictions. If more data remains to be transferred,
MySetupForDataTransfer starts either a DMA transfer or another logical transfer;
otherwise, it returns a private status value that will eventually cause a software
interrupt routine to call PrepareMemoryForIO again to continue a partial
preparation.

THE NEW DEVICE DRIVERS: MEMORY MATTERS 97

Listing 5. The primary interrupt handler

InterruptMemberNumber MyInterruptHandler(InterruptSetMember member,
void *refCon,
UInt32 theIntCount)

{
OSErr status;

if (<device has or requires more data> == FALSE)
status = noErr; /* Presume I/O completion. */

else
status = MySetupForDataTransfer();

if (status != kIOBusyStatus)
/* This partial transfer (or device operation) is complete. */
QueueSecondaryInterruptHandler(DriverSecondaryInterruptHandler,

NULL, NULL, (void *) status);
return (kIsrIsComplete);

}

OSErr MySetupForDataTransfer(void)
{

OSErr status;

if (gIsLogical && gThisTransfer.length > 0) {
/* Continue a programmed I/O transfer. */
DoOneProgrammedIOByte(* ((UInt8 *) gThisTransfer.base));
gThisTransfer.base += 1;
gThisTransfer.length -= 1;
status = kIOBusyStatus;

}
else { /* We need another preparation segment. */

status = PrepareDMATransfer(&gDMATransferInfo, &gThisTransfer,
&gIsLogical);

if (status == noErr) { /* Do we have more data? */
status = kIOBusyStatus; /* Don't queue secondary task. */
if (gIsLogical) { /* Start a programmed I/O transfer. */

DoOneProgrammedIOByte(* ((UInt8 *) gThisTransfer.base));
gThisTransfer.base += 1;
gThisTransfer.length -= 1;

}
else /* Start a DMA transfer segment. */

StartProgrammedIOToDevice(&gThisTransfer);
}
else /* This preparation is done. Can we start another? */

status = kPrepareMemoryStartTask;
}
return (status);

}

Listing 6 shows the secondary interrupt handler — at least the part that handles the
DMA operation. The primary interrupt handler provides the operation status in the
p2 parameter; the secondary interrupt handler uses this parameter to determine
whether the operation is complete (in which case this is the final status), or whether
some intermediate operation is required.

Finally, Listing 7 shows the software interrupt routine that’s called when the driver
must call PrepareMemoryForIO again to perform a partial preparation.

d e v e l o p Issue 24 December 199598

Listing 6. The secondary interrupt handler

OSStatus DriverSecondaryInterruptHandler(void *p1,
void *p2)

{
OSStatus osStatus;

osStatus = (OSErr) p2;
switch (osStatus) {

case kPrepareMemoryStartTask: /* Need more preparation */
CancelDeviceWatchdogTimer();
osStatus = SendSoftwareInterrupt(gNextDMAInterruptID, 0);
if (osStatus != noErr) {

/* Handle error status by stopping the device. */
...

}
break;

case kPrepareMemoryRestart: /* Preparation completed */
osStatus = MySetupForDataTransfer();
break;

}
if (osStatus != kIOBusyStatus) { /* If I/O is complete */

CancelDeviceWatchdogTimer();
CheckpointIO(&ioTable, kNilOptions);
IOCommandIsComplete(ioCommandID, (OSErr) osStatus);

}
return (noErr);

}

Listing 7. A software interrupt routine for partial preparation

void PrepareNextDMATask(void *p1,
void *p2)

{
OSErr status;
ByteCount newFirstPrepared;

if ((gIOTable.state & kIOStateDone) != 0)
status = eofErr; /* Data overrun or underrun error */

else { /* Do the next partial preparation. */
newFirstPrepared =

gIOTable.firstPrepared + gIOTable.lengthPrepared;

(continued on next page)

YOUR TURN IN THE BARREL
At times, working through the complexity of this problem felt like going off Niagara
Falls in a barrel. There used to be a joke among the developers of the UNIX
operating system: “We never document our code: if it was hard to write, it should be
h a rd to understand.” The algorithms I’ve described here were hard to write, but I
hope I was able to document and clarify the most important features of the library
well enough that you don’t have to go through the same struggle I did.

THE NEW DEVICE DRIVERS: MEMORY MATTERS 9 9

status = MyConfigureDMATransfer(0, newFirstPrepared);
/* ioCommandCode is not used. */

}
QueueSecondaryInterruptHandler(DriverSecondaryInterruptHandler,

NULL, NULL, (void *) status);
}

Thanks to our technical reviewers David
Harrison, Tom Saulpaugh, Dave Smith, and
George Towner.•

Listing 7. A software interrupt routine for partial preparation (continued)

It’s not just the basics anymore!
Advanced courses from Developer University get you up
to speed quickly on new Apple technologies.

❒ OpenDoc

❒ PowerPC

❒ Newton

❒ Graphics/Imaging

For detailed information, check out http://www.info.apple.com/dev on the World Wide Web, or contact the
Apple Developer University Registrar at (408)974-4897 or fax (408)974-0544

Self-Paced Classroom Lecture Online

Courses are available as:

Developer University
Apple Computer, Inc.

1 Infinite Loop, M/S 305-1TU
Cupertino, CA 95014

Q How do I determine whether a Power Macintosh has PCI expansion slots?

A If there’s a Name Registry, you can use it to determine whether a PCI bus exists.
To determine whether the Name Registry exists, use the new Gestalt selector
gestaltNameRegistryVersion ('nreg'). If the Name Registry exists, the value
returned is the version number of the Registry; otherwise, gestaltUndefSelectorErr
is returned, and you can assume that the machine doesn’t have PCI slots.

If the Name Registry exists, call RegistryEntrySearch to look for an entry
having a property name of device_type and a propertyValue of pci. If an entry
is found, there is a PCI bus on the machine.

Q Our software doesn’t awaken properly on a PowerBook that has come out of sleep mode.
Are there any special handling requirements to recover from sleep mode?

A The changes to the system state when a PowerBook goes to sleep include the
following:

• All AppleTalk connections are lost, because the AppleTalk driver is turned off.

• The serial ports are entirely shut down to conserve power.

There are two Macintosh Technical Notes that relate to your situation: “Little
PowerBook in Slumberland” (HW 24), which provides a brief overview of the
sleep process, and “Sleep Queue Tasks” (HW 31), which presents additional
material regarding the sleep process. The second one includes sample code that
demonstrates a sleep queue task implementation. The sleep queue task enables
your program to save state information that otherwise might be lost. Typically,
this is important for a networked process that needs to reestablish a connection
upon awakening.

Q Can we define our own extensions to QuickTime’s ImageDescription structure? In other
words, can we just attach any kind of data to the end of the ImageDescription structure?
Our codec would use this data only on the Macintosh.

A Yes, you can add any extended data you like, with the utility routines provided
for this purpose (described in Inside Macintosh: QuickTime Components, starting
on page 4-65). You have complete control over how your codec interprets the
extensions. Therefore, as long as the default image description handle remains
intact (for the benefit of the various Movie Toolbox calls that depend on the
documented structure being there), you can add whatever information you like.
Note that Apple reserves all extension types consisting entirely of lowercase
letters.

Q We’re trying to write a QuickTime codec, but we’re having trouble because Inside
Macintosh: QuickTime Components was written before the universal headers, and the
sample codec source doesn’t build at all with the latest headers. Where can we get a
QuickTime codec that builds for PowerPC under the current universal headers?

A Until a PowerPC-native codec example becomes available, you can get the
information you need from the Macintosh Technical Note “Component
Manager version 3.0” (QT 5), which provides details on creating native
components. Note that you have to use Resorcerer or Rez to create the
component templates; ResEdit won’t suffice.

Macintosh
Q & A

d e v e l o p Issue 24 December 1995100

Q Our codec needs to provide more options to the user than the normal image-compression
dialog contains. The documentation suggests that it’s possible to provide an extra
Options button in the dialog, and I’ve seen some applications that do provide an Options
button for certain codecs. Is this a function of the application? How does the application
know to do this?

A If your codec component has an exported function named CDRequestSettings,
the standard image-compression dialog will automatically provide the specific
button. In other words, QuickTime checks the codec component, adds the
button (provided it’s available), tracks clicks in the button, and calls your
CDRequestSettings routine appropriately. For further details, see the
Macintosh Technical Note “QuickTime 1.6.1 Features” (QT 4) where
CDRequestSettings is documented.

Q We have a non-Macintosh device that creates and reads QuickTime movies, and we
need to pass additional information about the images between the non-Macintosh device
and our QuickTime codec. It seems that the logical place to put this information is in an
ImageDescription extension (within the sample description atom), since this is about all
that’s accessible to a codec. Is the format of this extension documented anywhere? We’ve
looked at the extension created by SetImageDescriptionExtension, and the format seems
simple, but it would be nice to know what the “official” format is.

A Chapter 4 of Inside Macintosh: QuickTime has a listing of the atoms and their
formats. Sample description atoms are described on page 4-35. Note that each
media format has its own sample description tables, which are not directly
accessible.

The official guideline is to use, if possible, the provided APIs for creating
sample description atoms. If you’re working on a platform for which there are
no Toolbox APIs, you’ll have to obtain a source-code license agreement to get
real source code showing how the atoms are constructed. (For details regarding
licensing part or all of the QuickTime source code, contact Apple Software
Licensing at AppleLink SW.LICENSE or (512)919-2645.)

Q Our application plays QuickTime movies. Some older movies played well in System 7.1,
but they don’t play properly in System 7.5 or 7.5.1. We happened to find the Apple
Multimedia Tuner, and it solves the problem. What is the Apple Multimedia Tuner,
who needs it, how does a customer get it, and can we distribute it?

A The real solution to your problem is just to preroll the movie before playing it,
which is what the Apple Multimedia Tuner is doing for you. QuickTime 2.1
incorporates all the Tuner improvements, so there’s no longer any need to
distribute the Tuner separately.

Q We have a problem when we draw to an offscreen GWorld under low-memory
conditions (when the system heap can’t grow) on a Power Macintosh. The GWorld
drawn contains digital noise. The same code works just fine in an 680x0 environment.
Any idea what’s happening?

A It sounds as if the Code Fragment Manager is unable to load the code from the
PowerPlug library into temporary memory. This will cause QuickTime to issue a
noCodecErr error. You should always try to catch QuickTime-generated errors,
checking, for instance, for playback errors after each MoviesTask call like this:

MACINTOSH Q & A 101

anErr = GetMoviesStatus(Movie theMovie, Track *problemTrack);

Here’s a possible workaround to your problem: Launch a small application that
has the QuickTimeLib (PowerPlug) library statically linked in, so that it’s
loaded. This application should launch the main application and then kill itself.
The second application could try to grow to a predefined size and handle low-
memory conditions in whatever way it wants, but the CFM libraries are already
in memory by then.

The Code Fragment Manager will never load fragments into an application
heap, because there’s a global registry of CFM libraries present. If another
application registers to use a CFM library that’s in an application heap that
subsequently goes away, this will obviously be a Bad Thing. In the 680x0
environment, the codecs are components, and the Component Manager will
always try to load components into the application heap if the system heap
doesn’t have any available space.

Q I need to add print items to a QuickDraw GX dialog box. In attempting to use the
Experiment no.9 sample, I found what appears to be a bug. This example uses
GXGetMessageHandlerResFile when it calls GXSetupDialogPanel, but it should call
CurResFile.

A You’re right. Applications should call CurResFile. GXGetMessageHandlerResFile
is reserved for extensions and drivers.

For additional code examples that add print items to a QuickDraw GX dialog
box, see the Worldwide Developers Conference 1995 Technology CD (or the
Mac OS Software Developer’s Kit). The Extension Shell, UserItems, and
Additions samples provide the basic item adding/handling code that you require.

Q Where can I find some good sample code that demonstrates the techniques required for a
“panel” with QuickDraw GX printing (as an application — not an extension)?

A There are two sample applications (“Experiment no.9” and “Banana Jr.”) that
show how to do this. In both of these applications, the panels appear in the
Custom Page Setup dialog. However, the sample code can easily be modified to
add panels to the Page Setup and Print dialogs.

Q How can I draw and print hairlines with QuickDraw GX? We use a picture comment
in the normal print code, but this seems to make QuickDraw GX fail. We get a -51
error (reference number invalid) when we call GXGetJobError after calling
GXFinishJob, and we sometimes get this error without the picture comment code.

We also tried calling GXSetShapePen in our spool procedure. When we set it to a
fractional value, we get a wide line, but when we set it to a wide value, such as 8, it
works properly. What do we need to do to print fractional widths?

A Here are two ways to get QuickDraw GX to draw hairlines when printing:

• Call GXSetShapePen(myShape, 0). This sets your pen width to 0, meaning
as thin as possible on the output device. QuickDraw GX always draws
hairlines at the resolution of the output device — one pixel wide.

• Call GXSetStylePen(myStyle, 0). This also sets your pen width to 0, with
the same result.

d e v e l o p Issue 24 December 1995102

When using GXSetShapePen and GXSetStylePen, don’t specify the pen width
as an integer: remember that it’s a fixed-point value. GXSetStylePen(myStyle, 1)
sets the pen width to 1/65536; GXSetStylePen(myStyle, ff(1)) sets it to 1.0.

QuickDraw GX uses a backing store file (an invisible file within the System
Folder) to send QuickDraw GX objects to disk when additional space is needed
within the QuickDraw GX heap. Almost all -51 errors from within QuickDraw
GX or an application using QuickDraw GX are caused by double-disposing of a
QuickDraw GX object (that is, a shape, ink, style, or transform). The -51 error
occurs because the double dispose causes QuickDraw GX to set the shape
attributes, which indicates that it has sent the object to disk. When it needs this
object, it goes to the backing store and tries to get it, but it’s not there. We’ve
found a few cases where QuickDraw GX itself was double-disposing of objects,
and these were fixed in QuickDraw GX version 1.1.

Before calling GXDrawShape, call GXValidateShape on the shape or shapes
you’re trying to print. This ensures that a shape is valid before it’s drawn or
printed. It slows things down a little, but you’ll be able to determine whether a
shape is still available before you attempt to draw it (you might be disposing of
a shape before you draw it). If you have an error handler installed, you usually
receive the “shape_already_disposed” message, but you may not receive this
message if something is wrong with the QuickDraw GX backing store.

It’s also possible that the hairline drawing problems you’re encountering are
related to the translation options you’re using. A translator takes your
QuickDraw drawing commands and converts them to QuickDraw GX objects,
based on options you provide. If you use the gxDefaultOptionsTranslation
setting, a QuickDraw line turns into a six-sided filled polygon. When your
object is a polygon, changing the pen width has no effect.

To avoid translation problems, call GXInstallQDTranslator with the
gxSimpleGeometryTranslation or the gxReplaceLineWidthTranslation option.

• gxSimpleGeometryTranslation turns on both the simple-lines and simple-
scaling translation options, and it translates QuickDraw lines into QuickDraw
GX lines with flat endcaps. The QuickDraw GX line shape runs along the
center of the original QuickDraw line, and it covers all the pixels of the
QuickDraw line and more.

• gxReplaceLineWidthTranslation turns a QuickDraw line into a QuickDraw
GX line with a width that is the average of the original pen’s width and
height. This option also affects the way the SetLineWidth picture comment
is interpreted.

Once you set the translation option, your calls to GXSetShapePen or
GXSetStylePen should behave as you expect them to, because they’re acting
on QuickDraw GX lines, not polygons. When you’ve installed a translator, be
sure to remove it with GXRemoveQDTranslator. To learn more about the
translation options, see Chapter 1 of Inside Macintosh: QuickDraw GX
Environment and Utilities.

Q I’m trying to send messages from within a QuickDraw GX message override. I want
to send GXWriteData to flush the buffer so that I can send the GXGetDeviceStatus
message. I override the GXHandlePanelEvent message. In my override, sending
messages causes the system to crash. What would cause this to happen?

MACINTOSH Q & A 103

A The crash is occurring because there’s no connection to the printer at the time
you’re sending the message. You have to send the GXOpenConnection,
GXWriteData, and GXCloseConnection messages. Note that when you send
GXOpenConnection, QuickDraw GX puts up the default job status dialog for
a short time. If you don’t want this dialog to appear, you can override the
GXJobStatus message to prevent it from being shown. See also Dave Hersey’s
Print Hints column, “Writing QuickDraw GX Drivers With Custom I/O and
Buffering,” in develop Issue 21.

Q I used the sample driver showing how to do custom dialogs as the basis for the
compatibility part of our QuickDraw GX PostScript driver, and I added an Options
dialog to it for our printer-specific features. I have two problems with it when using
applications that aren’t QuickDraw GX–aware. First, the paper-type always defaults
to the fifth paper-type listed in the resource file, so whichever paper-type is the fifth one
listed becomes the default paper-type in the QuickDraw GX compatibility driver. This
is, of course, reflected in the Page Setup dialog. Second, the driver always defaults to
having the “Print to File” checkbox on. What can I do about these problems?

A Both the quirks you describe (improper default paper-type and the “Print to
File” checkbox defaulting to on) can be fixed by modifying the 'PREC' 0
resource in the driver.

When an application using old-style printing calls PrintDefault to request the
default print record from the current printer driver, the driver gives it the
contents of the 'PREC' 0 resource. Then, when the application calls PrJobDialog
or PrStlDialog, it passes in that print record. In its overrides, the QuickDraw
GX printer driver interprets the contents of the old-style print record to set up
the states of the dialog’s buttons, checkboxes, and so on.

To determine which paper-type radio button to select in the Page Setup dialog,
QuickDraw GX compares the page rectangle specified in the old-style print
record to the rectangles of all the paper-types in the driver (or paper-type
extensions, such as “3-Hole Punch”), and tries to find the best match. Because
of the way that the old-style print record in the sample is defined, that best
match turns out to be the fifth paper-type in your list. So, to fix this quirk, all
you have to do is change the bounds setting in the 'PREC' 0 resource so that it
matches the bounds of the US Letter paper-type in the driver.

To determine the state of the “Print to File” checkbox, the driver looks at the
UlOffset field of the old-style print record. (You might not think to look here,
but old-style print records are limited to 120 bytes, and there was no better
place to store this information.) Because the 'PREC' 0 resource in this driver
has this field set to 1, the checkbox defaults to on. So, to fix this, all you have to
do is set the field to 0.

Q I want to create an extension for the Page Setup/Format dialog that performs
“flipping” functions. Is it feasible to create an extension for the Page Setup/Format
dialog rather than the Print dialog?

A There’s nothing to prevent you from creating an extension that adds a panel to
the Page Setup dialog. Most printing extensions add to the Print dialog because
in most cases this is the proper place to add a panel that affects the entire
output, and because what extensions usually do is best suited for the Print
dialog. Drivers and applications, on the other hand, typically add to the Format

d e v e l o p Issue 24 December 1995104

dialog. Note that if you’re trying to modify an existing sample extension so that
it adds to the Page Setup dialog, you have a bit of work to do.

There’s a way that you can test your flipping code without writing a new
extension, by the way. Applications can override the GXJobDefaultFormatDialog
or GXFormatDialog message. There are two examples (“Experiment no.9” and
“Banana Jr.”) that demonstrate overriding GXFormatDialog. You might try
adding your flipping code to one of these.

Q A car passed me the other day with one of those round white country stickers that said
WAL. Where was it from?

A Sierra Leone.

Q In QuickDraw 3D, when we have the interactive renderer on and we try to turn off
the draw context’s clearImageMethod (setting it to kQ3ClearMethodNone), it still
clears. This works properly with the wireframe renderer, but we need this feature in the
interactive renderer, since we’re pasting in background pictures that we want to act as a
backdrop to our 3D models. The interactive renderer always obliterates the background
with the clearImageColor. What can we do?

A Unfortunately, this is a renderer-dependent feature that’s supported by the
wireframe renderer, but not the interactive renderer. We intend to provide a
“Clear with picture” method in the next major release of QuickDraw 3D
(version 1.1).

Q The interactive renderer doesn’t draw flat surfaces that are parallel to the camera view
direction with the orthographic camera, but the wireframe renderer does. We put in a
“floor” of polygons, and when we look along the edge of the floor with the orthographic
camera, it totally disappears. With the wireframe renderer, we see a line where the floor
is, which is as expected. What gives?

A Filled primitives have no thickness, so when you look at them edge-on, they do
not appear. Lines, however, are a mathematical abstraction, so they always
appear to be one pixel thick (when you zoom in on a line, its thickness doesn’t
increase). While this may seem somewhat odd, it’s the way many libraries work.
To achieve the effect you want, make the floor a thin box, and texture-shade the
top surface. If the depth of the box is nonzero, it appears to be a slab-like
structure, and it won’t disappear when viewed edge-on.

Q If we iterate through the vertices in a mesh, will the vertices still be in the same order as
they were when they were added?

A Yes. The ordering of the vertices doesn’t change until you duplicate the mesh or
write it out. A duplicated mesh (or one that was written out and read back in)
doesn’t necessarily have the vertices in the same order as when they were added.

Q When I try to render models with different types of lights, the point light and the
directional light work correctly, but the spot light doesn’t. Any idea why?

A The spot light’s cone of light needs to touch a number of vertices for any effect
to be seen. If the light is attenuated, it may have insufficient intensity when it

MACINTOSH Q & A 105

strikes the surface. The cone of light also needs to be wide enough to cover a
significant area of the object being modeled for the renderer to draw a
reasonable effect.

Q What effect does the TQ3ViewObject parameter have in the bounding box calculating
routines (Q3View_StartBoundingBox and Q3View_EndBoundingBox)? The old
geometric-object routine descriptions refer to world space, but if this is so, there’s no need
for a view parameter. However, if the view’s camera is used, the bounding box is returned
in camera coordinates rather than view coordinates. Since both are useful, would it be
possible to have both sets of routines available? I can apply a rotation/translation
matrix to all of the items to be drawn to generate camera coordinates from a world
coordinate routine, but I need to find out if I need to do this or if this has already been
accomplished.

A The QuickDraw 3D routines return the bounding box or bounding sphere in
local coordinates. Part of the reason that the API was modified to use submit
calls, rather than having separate picking, rendering, and writing calls, is that
the transformations that are applied matter more than the camera. Since
these modifications were made, the submit calls for everything (including
transformations, if they’re not stored in the group) can be in one submission
function that’s called from inside the picking, rendering, or writing loop. If you
need the bounding box for a single geometry in its own coordinate space, this
is also easy to do — you can write a simple routine that performs bounds
calculations on a single object. For example:

Q3View_StartBoundingBox;
Q3xxx_Submit;
Q3View_EndBoundingBox;

Q Does QuickDraw 3D prefer meshes or NURB patches? Which kind of data yields better
performance?

A Meshes are convenient for editing, but they take quite a bit of memory, so the
tradeoff is time versus space. NURB patches are more convenient for dealing
with surfaces as a whole and for representing surfaces at different tessellations.

Although meshes exhibit better performance than NURB patches in the first
version of QuickDraw 3D, later versions may have improved patch performance.
In the meantime, consider experimenting with the tessellation factor for your
patches, since overtessellating reduces performance.

Q I’d like to make sure that I’m running under version 1.0.2 of QuickDraw 3D. When I
get the version from Q3GetVersion the major version is 1 and the minor version is 0,
but I can’t get the revision (the third number). Is there a Gestalt selector for this?

A Starting with version 1.0.2, there is a Gestalt selector to get the version of
QuickDraw 3D: gestaltQD3DVersion. The return value has two bytes for the
major version, a byte for the minor version, and a byte for the revision. So for
version 1.0.2 Gestalt will return 0x00010002. Note that this Gestalt selector
works only with QuickDraw 3D 1.0.2 and later.

Q The ColorSync documentation (in the reference section of Inside Macintosh: Advanced
Color Imaging) states that each color component in the L*a*b* color space is within the

d e v e l o p Issue 24 December 1995106

range of 0 to 65,280. Shouldn’t this be 0 to 65,535, since this is the value for the other
spaces and the value in the ICC Profile Format Specification?

A No. The correct maximum value for this particular color space is 65,280
(0xFF00). Note that the final documentation is now available as Advanced Color
Imaging on the Mac OS, published by Addison-Wesley.

Q What exactly are the internal parameters for the ColorSync quality settings? That is,
how large a lookup table is built for “draft” versus “normal” versus “best”?

A The quality flag bits provide a place in the profile for an application to indicate
the desired quality of a color match (potentially at the expense of speed and
memory). In ColorSync 2.0, these bits do not mandate the use of one algorithm
over another, or one lookup table size over another; they’re just recommendations
that a particular CMM may choose to ignore.

Let’s look at how the default Apple CMM uses the quality recommendations
specified in the flag bits. Other CMMs, of course, will have different
implementations.

When Apple’s CMM builds a color world from two or more profiles, and one
or more of these profiles contain TRC curves or A2Bx tables, the CMM also
builds a private, multidimensional lookup table. The quality flag bits determine
the resolution of this private table. Draft quality is treated the same as Normal
quality, so there are really only two effective settings, Normal/Draft and Best.
In most cases, the quality is only slightly better in Best mode, so the difference
is difficult to see, unless one of the profiles has a high gamma value. For high
gamma values, the extra resolution in the lookup table is helpful.

Best mode typically takes twice as long to build a color world (about two
seconds, versus one second in Normal/Draft mode). However, once the color
world is built, the time to use it is the same for either mode (approximately 1.5
MB/second on a Power Macintosh 8100/110).

Best mode also requires significantly more memory than Normal/Draft mode.
A color world typically requires 120K of heap space in Best mode versus 25K in
Normal mode, and the “high-water” memory requirement while a color world
is being built is typically 300K for Best mode versus 90K for Normal mode.

Note again that these guidelines apply only to the default Apple CMM. The
tradeoffs between speed, quality, and resources may be quite different for other
CMMs.

Q I want to go directly from an input CMYK space to an output CMYK space (without
going through an intermediate three-component space) to preserve the original
GCR/UCR settings. Can I create a “link” profile for this purpose? If I do, will I have
to write my own CMM to use it?

A You can build a CMYK-to-CMYK device-link profile for this purpose, and you
can use it without writing your own CMM.

Q I’m using the ColorSync call CWCheckBitMap to do gamut checking in a plug-in for
Photoshop. The result bitmap is not what I expected, and seems to be different every
time I try it. Any idea what could be going on?

MACINTOSH Q & A 107

A CWCheckBitMap sets each pixel in the result bitmap to black if the
corresponding pixel in the source bitmap is out of the gamut. It doesn’t,
however, set each pixel in the result bitmap to white if the pixel in the source
bitmap is in the gamut. If you aren’t erasing the bitmap before calling
CWCheckBitMap, that would explain what you’re seeing. Always erase the
result bitmap to white before calling CWCheckBitMap. (This is also true of
CWCheckPixMap and CWCheckColors.)

Q If I have a physical drive ID, how can I determine whether that drive is a network
volume? I’m not sure where to look, and I need to know whether the information is
dependable and not subject to change.

A Under the current Macintosh file system, there’s no completely dependable way
to determine whether a volume originates over a network or is implemented on
a local disk. This is the result of the way external file systems are implemented
— a third party can build a network file system in a variety of ways.

You can, however, easily determine whether a volume uses the AFP (AppleShare)
file system, which in many cases is adequate. To make this determination,
compare the driver refNum in the drive queue entry to the AppleShare client’s
refNum.

The following code enumerates the drive queue and displays the relevant
information:

main()
{

QHdrPtr drvQHdr = GetDrvQHdr();
DrvQElPtr dqeP;
short afpRefNum = 0;
OSErr errNo;

// Get the driver refNum for AFP.
errNo = OpenDriver("\p.AFPTranslator", &afpRefNum);
if (errNo != noErr)

return

// Scan each drive in the drive table.
dqeP = (DrvQElPtr) drvQHdr->qHead;
do {

// Is it an AFP volume or SCSI device?
if (dqeP->dQRefNum == afpRefNum) printf("AFP");

} while (dqeP =(DrvQElPtr) dqeP->qLink);
}

For other third-party file systems, such as DECNET and NFS, you have to
determine the name of the driver and then compare it to the AppleShare client’s
refNum.

Q I need to get a list of files in a particular directory. Should I use PBCatSearch, or
should I use indexed PBGetCatInfo or PBGetFInfo requests?

A The “Cat” in PBCatSearch stands for “Catalog” and that’s what PBCatSearch
searches: the whole volume catalog. You can specify that matches found by

d e v e l o p Issue 24 December 1995108

PBCatSearch be limited to a specific directory by setting the fsSBFlParID bit in
the ioSearchBits field of the parameter block, and then specify the directory to
match on by setting ioFlParID in ioSearchInfo1 and ioSearchInfo2 to the
directory ID you’re interested in. However, PBCatSearch may not be what you
want to use, for a couple of reasons:

• The matches PBCatSearch finds by matching based on ioFlParID are only
in that one directory, not in any of that directory’s subdirectories.

• Because the whole catalog file is searched, this is usually not the fastest way
to look through a specific directory’s contents.

If you need matches in both the directory and its subdirectories and you don’t
want to search the whole volume, there’s a routine in the MoreFiles sample code
named IndexedSearch that’s compatible with PBCatSearch’s parameter blocks,
except that IndexedSearch lets you specify what directory you want to search. It
uses indexed PBGetCatInfo calls to search a directory and its subdirectories.

If you need matches from only a single directory (and not from that directory’s
subdirectories), you can use the MoreFiles routine named GetDirItems. This
routine uses PBGetCatInfo to index through a directory’s entries and returns
FSSpecs to the entries found. In this case, making indexed PBGetCatInfo calls
is much faster than searching the whole catalog with PBCatSearch.

Q I need to nest two CustomGetFile dialogs, but I’m running into trouble. Under some
circumstances after the user dismisses the second dialog (usually via the Cancel button),
I lose all of the custom controls in the first dialog. What’s happening?

A The Standard File Package is not reentrant, so there really isn’t a way to nest
standard file dialogs that will work right. The real problem is in the resources
that the Standard File Package uses for the dialog items. When the second,
nested dialog closes, it releases resources that the first dialog is still using; that’s
why your items are getting messed up.

There’s a kludgy workaround, but it will break under future systems. You could,
however, use sequential calls to the Standard File Package instead of nesting
them. This is a bit of a pain, but should accomplish what you want. Here’s how:
Put up the first dialog. In your filter routine, when the user clicks the control
that is to bring up the nested dialog, set a flag in your application signifying
“bring up other,” and tell the Standard File Package that you’re done with the
first dialog by passing item 1 or 2 back. After you put up the second dialog and
process it, bring the original dialog back. This will be a little messy cosmetically
as the dialogs open and close, but it’s the only way to do it in a manner that will
remain compatible.

Q What’s the best way to remove an attached leech?

A The best way we know of is to rub a freshly cut lemon or lime on it. Most
leeches will detach immediately, and die a writhing, horrible death shortly
afterward. Fire and salt are also said to be effective.

MACINTOSH Q & A 109

These answers are supplied by the technical
gurus in Apple’s Developer Support Center.•

Have more questions? See the Macintosh
Technical Q&As on this issue’s CD. (Older Q&As
can be found in the Macintosh Q&A Technical
Notes on the CD.)•

Dynamic programming languages are cool. Once
you’ve tasted dynamic programming, it’s hard to go
back to the old, crusty, static way of doing things. But
the fact remains that almost all commercial software is
still written with static languages. Why?

Recently I took a class in Newton programming. For
me personally the Newton isn’t a very useful device,
only because I never carry around a notepad or calendar
or address book or to-do list and I don’t have a need to
collect any sort of data out in the field. But even
though it’s not terribly useful to me, it is very useful to
a lot of people — and useful or not, it’s a really cool
device. Programming the Newton, for those of you
who haven’t had the pleasure, is very, very different
from programming the Macintosh in C or C++ or
Pascal, and is incredibly attractive in a lot of ways.

The language that you use to program the Newton,
NewtonScript, is an example of an object-oriented
dynamic language, or OODL. (See? Even the acronym
is cool.) This means a number of things, but the upshot
is that it’s very programmer-friendly and very flexible.
Now, I don’t pretend to be an expert in languages, not
by a long shot, so I can’t offer any incisive comparisons
with other “modern” languages, but I can tell you what
it feels like for a dyed-in-the-wool C programmer to
leap into this new and different world. It feels great.

One well-known feature of dynamic languages is
garbage collection, the automatic management of
memory. Objects in memory that are no longer needed
are automatically freed, and in fact there is no way to

explicitly free them other than making sure that there
are no references to them any more, so that the
garbage collector can do its thing. I didn’t fully realize
how much time and effort and code it takes to deal
with memory management until I didn’t have to do it
anymore. There’s something almost naughty about it,
going around cavalierly creating objects in memory
without worrying about what to do with them later.
After a lifetime of living in mortal fear of memory leaks,
it feels deliciously irresponsible. I like it. I like it a lot.

NewtonScript’s object model is refreshingly simple and
consistent. There are the usual “simple” data types —
integers, real numbers, Booleans, strings, and so on —
and only two kinds of compound objects: arrays and
frames. An array, as you might expect, is simply a linear,
ordered group of objects, and the individual objects are
referenced by their index (their position in the array).
Frames are an unordered collection of items in named
slots; you refer to a particular item by the name of its
slot. Frames are also the only NewtonScript objects
that can be sent messages, and the message is simply
the name of a slot that contains a function.

Because NewtonScript is dynamic, variables or frame
slots or array members can hold any kind of data,
including other arrays or frames, or even functions, and
the kind of data can be changed at any time. The size
of the array or frame can be changed anytime, too; you
can add or delete items as needed, without worrying
about managing the changing memory requirements.
This kind of flexibility is a big chunk of what makes
dynamic languages so, well, dynamic. Such a thing is of
course unimaginable in a static language, where each
byte must be explicitly allocated before it’s needed,
carefully tracked while used, and explicitly deallocated
when you’re done with it.

NewtonScript is also introspective, meaning that all
objects “know” all about themselves. (Isn’t that a nice
term? I like the idea of a language being introspective —
sitting there, chin in hand, pondering itself.) The type
of a piece of data is stored with the data, and named
items keep their names. In fact, everything in memory
is coherent, with a well-defined identity; there is no
possibility of undifferentiated bits getting schlepped
around, no possibility of a dangling pointer or a string
being interpreted as a real number. In static languages,

THE VETERAN
NEOPHYTE

The Right Tool
for the Job

DAVE JOHNSON

d e v e l o p Issue 24 December 1995110

DAVE JOHNSON recently enrolled his smallest dog — named Io
(eye-oh) but affectionately called The Stinklet — in an agility class.
Dog agility is a sort of obstacle course for dogs, with ramps and
jumps and tunnels and poles to climb and leap over and crawl and
weave through. Dave got so involved that he started building
agility courses in the living room. He came to his senses, thankfully,
before creating any permanent installations.•

Dave is easing up on his working life: beginning with the next
issue, he’ll be working 3/4 time. He had to give up some things,
and it was decided (reasonably enough) that helping to edit the
rest of develop was more important than writing this column. Look
for guest Neophytes in coming issues, with perhaps the occasional
installment from Dave.•

of course, all that design-level information is thrown
out at compile time, and doesn’t exist in the running
program at all. There’s nothing but undifferentiated
bits, really. What a mess.

And that means that debugging, for the most part, has
to take place at the machine level. By the time the
program is running, it’s just a maze of pointers and
bytes and instructions, fine for a machine but nasty for
humans. Of course, to combat this we have elaborate,
complex programs called source-level debuggers. They
give you the sense that the names still exist, thank
goodness, but it’s just a trick, and depends on an
external file that correlates symbols with locations in
memory. If you don’t have the symbol file, you’re out of
luck. (Confession time: In my regular C programming
I avoid low-level debugging like the plague. Usually I’d
rather spend an hour in a source-level debugger than
spend five minutes in MacsBug — I know, I know, I’m
a wimp — precisely because all the information that
helps me to think about my program, the names and
so on, still “exist” in the source-level debugger. In
NewtonScript, there isn’t even such a thing as low-level
debugging! All that design information is right there in
the guts of the running program. Hallelujah!)

With dynamic languages like NewtonScript, you can
let go of the details of the machine’s operation, and deal
with your program’s operation instead — you can think
at the design level, not the machine level. And it’s an
incredible relief to float free of the bits and bytes and
pointers and handles and memory leaks and messy
bookkeeping. Most of the ponderous baggage that comes
along with writing a computer program goes away. I
mean really, how much longer must we approach the
machine on its terms when we want to build something
on it? Users were released from that kind of bondage to
the machine’s way of doing things long ago. So what
are we waiting for? Obviously we can’t program the
Macintosh in NewtonScript (more’s the pity) but why
aren’t we all chucking our C++ compilers in exchange
for Prograph or Lisp or Smalltalk or Dylan? Well,
some of us are. But I think there are two major hurdles
to overcome before dynamic languages become
mainstream: the need for speed, and inertia.

Dynamic languages carry their own baggage, of course.
In the same way that making the Macintosh easier for
people to use made it harder to program because the
complexity and bookkeeping were shunted behind the
scenes, making programming languages easier to use
also requires new behind-the-scenes infrastructure

and complexity. (Somebody has to do the memory
management, after all.) This usually results in a bigger
memory footprint and slower execution. For “normal”
operations, we’re long past the point where that
mattered: the hardware is beefy enough to handle it
without blinking. But software always pushes the limits
of the hardware. Consequently, there are still times
when it’s important to squeeze every drop of
performance out of the machine. And dynamic languages
are just not very good at that. (I don’t think you’d
want to write your QuickDraw 3D renderer in Lisp.)
So any dynamic language that hopes for mainstream
commercial acceptance had better have a facility for
running hunks of “external” code. That way you could
write the bulk of your program in a dynamic language,
but still be able to write any time-critical parts in your
favorite static language and plug them in. You’d lose
the protection of the dynamic language when running
the external code, but that’s a reasonable tradeoff.

Inertia is the other big problem. People, once they know
one way to do something, are often loath to change it,
especially if they’ve been doing it that way for a long
time. I’m guilty of this in my own small way: every time
I learn a spiffy, liberating new way to program I think
I’ll never go back to the “old” way. But the next time I
set off to write some code I automatically reach for the
familiar tools, not the new ones. (Lucky for me, the
only way to program the Newton is in NewtonScript.)

Fortunately, neither one of these hurdles will stop the
evolution of our tools. It’s unstoppable, if perhaps slower
than we might like. There’s already a whole spectrum
of tools available. From Assembler to AppleScript,
Pascal to Prograph, there are tools that allow anyone
with enough interest to teach their computers to do
new things. The line between users and programmers
continues to blur, and dynamic languages can only help
that process. I love the thought of putting programming
tools into the hands of “nonprogrammers” — kids,
artists, hobbyists — and seeing what they come up
with. You can bet it will be something new, something
that people tied to the machine would never have
thought of. I can’t wait.

THE VETERAN NEOPHYTE: THE RIGHT TOOL FOR THE JOB 111

Thanks to Lorraine Anderson, Jeff Barbose, Paul Dreyfus, Bo3b
Johnson, Lisa Jongewaard, and Ned van Alstyne for their always
enlightening review comments.•

Dave welcomes feedback on his musings. He can be reached
at JOHNSON.DK on AppleLink or eWorld, or dkj@apple.com on
the Internet.•

RECOMMENDED READING
• Unleashed: Poems by Writers’ Dogs, edited by

Amy Hempel and Jim Shepard (Crown, 1995).

Q The on-line discussion groups for Newton developers have a lot of references to
compatibility these days. My application works fine on the 120, 110, and 100 models.
Does that mean I’m compatible?

A Good question. Compatibility doesn’t mean your application works now, but
that it’s written in such a way that it will work on future Newton devices and
operating systems. There are several APIs and methods for doing things on the
120, 110, and 100 models that will work with them but are not necessarily
compatible with future releases of the operating system.

There are two main points to observe for the sake of compatibility:

• If it’s not documented, don’t use it.

• Catch exceptions; they can occur (especially if you ignore the first point).

Since compatibility is such an important question, it will be the focus of this
column. The rest of the column will cover the most common breaches of
compatibility. Where applicable, there will be an example of the incompatible
and compatible ways of doing things. After reading this and making copious
notes (especially where you find yourself saying “Oh dear” and “Oh no!”), you’ll
be in a position to make your code compatible. We also recommend that you try
out your application with the Compatibility App Package (which is on this
issue’s CD and is available from various on-line services).

Note that we refer often to the Newton Toolkit platform file functions. The
Toolkit documentation and platform file release notes describe these functions,
which are provided in lieu of future APIs. You should use these platform file
functions where applicable. Call the code directly and don’t modify it. That is,
use the call/with syntax; don’t place the code in a slot in your application and
use message sending.

UNDOCUMENTED GLOBAL FUNCTIONS
There are four common offenders here: CreateAppSoup, SetupCardSoups,
MakeSymbol, and GetAllFolders.

The function kRegisterCardSoupFunc in the platform file replaces CreateAppSoup
and SetupCardSoups. It’s much simpler to use than the undocumented functions:

// RIGHT way
constant kSoupName := "MySoup:MYSIG";
constant kSoupIndices := '[];
constant kAppObject := '["Item", "Items"];
call kRegisterCardSoupFunc with

(kSoupName, kSoupIndices, kAppSymbol, kAppObject);

// *** WRONG way ***
CreateAppSoup(kSoupName, kSoupIndices, EnsureInternal([appSymbol]),

EnsureInternal(kAppObject));
AddArraySlot(cardSoups, kSoupName);
AddArraySlot(cardSoups, kSoupIndices);
SetupCardSoups();

Newton
Q & A:
Ask the
Llama

d e v e l o p Issue 24 December 1995112

The llama is the unofficial mascot of the
Developer Technical Support group in Apple’s
Newton Systems Group. Send your Newton-related

questions to NewtonMail or eWorld DRLLAMA or
to AppleLink DR.LLAMA. The first time we use a
question from you, we’ll send you a T-shirt.•

The fix for MakeSymbol is to call the Intern function: it does the same thing as
MakeSymbol and it’s documented.

There’s no replacement function for GetAllFolders; just don’t call it.

UNDOCUMENTED GLOBAL VARIABLES
The three most common misused global variables are cardSoups, extras, and
userConfiguration.

There are two uses of cardSoups: one is to register a card soup; the other to
unregister it. Registering is taken care of with kRegisterCardSoupFunc (see above).
Unregistering is done with another platform file function, kUnRegisterCardSoupFunc:

// RIGHT way
call kUnRegisterCardSoupFunc with (kSoupName);

// *** WRONG way ***
SetRemove(cardSoups, kSoupName);
SetRemove(cardSoups, kSoupIndices);

You should never access the extras global variable. Not only is this variable
undocumented, but so is its format. Both are subject to major revisions. The
platform file function kSetExtrasInfoFunc is provided for setting information about
items in the extras drawer. The most common use of this function is to give your
application a different icon (see the ExtraChange DTS sample code on the CD).

There are also platform file functions to manipulate userConfiguration:

• kGetUserConfigFunc gets a slot from the userConfiguration soup
entry.

• kSetUserConfigFunc lets you set user configuration information.

• kFlushUserConfigFunc should be called when you’ve changed user
configuration information.

// RIGHT way
local userName := call kGetUserConfigFunc with ('name);
if userName then
begin

if StrEqual(userName, "Doctor") then
call kSetUserConfigFunc with ('name, "The Doctor");

call kFlushUserConfigFunc with ();
end;

// *** WRONG way ***
if userConfiguration.name AND

StrEqual(userConfiguration.name, "Doctor") then
userConfiguration.name := "The Doctor";

UNDOCUMENTED SLOTS AND METHODS
This is a broad category of problems. The most common is keyboardChicken in
the root view. But there are others, like cursor.current, paperRoll.dataSoup,
dockerChooser in the root view, UnionSoup:Add, and anything in a built-in
application. Unfortunately, there is no right way to access most of these. The
exceptions are cursor.current and Add.

NEWTON Q & A: ASK THE LLAMA 113

// RIGHT way
local currentEntry := cursor:Entry();
myUnionSoup:AddToDefaultStore(anEntry);

// *** WRONG way ***
local currentEntry := cursor.current;
myUnionSoup:Add(anEntry);

Also, don’t rely on the routing slips, such as mailSlip and printSlip, being in the
root view. You can, however, still use those symbols in your routing frame.

UNDOCUMENTED MAGIC POINTERS
If you use one of these, you know it. Just think what would happen if the magic
pointer changed from a view to a string: you would get some pretty bad behavior.
Note that most of this could be dealt with by catching exceptions.

STORE AND SOUP ASSUMPTIONS
All you can assume is that store 0 is the internal store. You can’t rely on there being
only one other store, nor can you rely on the position of a store in the array returned
by GetStores. Also, don’t assume that another store is a card or even that there is just
one store per card.

If you support moving or copying items between stores, you shouldn’t find the title
of the store. Use the constant ROM_cardAction as provided in the platform file:

// RIGHT way
routingFrame := {

print: ...
...
card: ROM_cardAction

}

In addition, don’t assume that your soup will exist on every store. Currently, if you
register your union soup, it’s automatically created on every store that enters the
Newton; however, this may change in the future:

// RIGHT way
GetUnionSoup(kSoupName):AddToDefaultStore(anEntry);

// *** WRONG way ***
aStore:GetSoup(kSoupName):Add(anEntry);

Remember that AddToDefaultStore or Add could throw exceptions. Wrap your calls
to these functions in exception handlers.

Finally, if you support the soup change mechanism, don’t assume that the change is
adding or deleting an entry. It could be something else, such as a soup being created
or removed from a store.

SCREEN SIZE
Don’t assume the screen is any particular size. It could be larger or smaller than
current devices. It could also be wider than it is tall. Your application size setup
routine (usually in the viewSetupFormScript) should take this into account. Have
maximum and minimum sizes. Close your application if it can’t handle the current
screen size.

d e v e l o p Issue 24 December 1995114

// Code to close your application
constant kUnsupportedScreenSize :=

"WiggyWorld does not support this screen size";

DefConst('closeMeFunc, func(x) x:Close());

:Notify(kNotifyQAlert, EnsureInternal(kAppName),
EnsureInternal(kUnsupportedScreenSize));

AddDeferredAction(closeMeFunc, [self]);

UNDOCUMENTED FEATURES OF DATA TYPES
Rely only on the features and details of built-in data types that are documented.
There are three common problem areas: order of slots in a frame, precision of
integers, and implementation of strings.

The order of slots in a frame is undefined. It just so happens that in the current
implementation the first 20 slots are returned in the order added. This is not a
documented feature, so don’t rely on it.

Integers are documented as having at least 30 bits of precision. This doesn’t mean
they’ll always be 30 bits; they could be wider (as anyone who has used compiled
NewtonScript can tell you). Note that compiled NewtonScript integers may not be
32 bits; they also follow the “at least 30 bits” rule.

The biggest offender is assumptions about how strings are implemented. Don’t rely
on strings being null terminated or being composed of two-byte Unicode characters.
The practical upshot is that you should use StrLen to find the length, and StrMunger
(or &) for length changes. Don’t use Length, SetLength, or BinaryMunger with
strings. Don’t use the array accessor to set a string; you can check a character, but
don’t set a character.

MISCELLANEOUS BITS
Don’t send messages directly to the IOBox; use the kSendFunc platform file function.
Nor should you read the items in the IOBox soups.

Also note that there are platform file functions to register and unregister for Find
that you should use.

Always use SetValue when you’re changing the view or other system values.

Use only the body slot in items that you route. Don’t assume that slots other than
body will survive the routing process. On a related note, don’t rely on the category
slot of fields in your SetupRoutingSlip method either.

Don’t rely on the closing order of views in the viewQuitScript. If you need to
do some ordered cleanup, you can initiate your own message (for example,
myViewQuitScript) from the view that first receives the viewQuitScript.

Replace system functions and messages at your peril. It’s possible they will support
other data types in the future (for example, to take NIL now where before they only
took a string).

Don’t assume anything about the built-in applications. Don’t assume that they exist,
or that their soups are there, or that the view structure will stay the same. If you do
need to use a system feature (for example, a particular prototype, global function, or
root method), test your assumptions.

NEWTON Q & A: ASK THE LLAMA 115

local cardFileExists := GetRoot().cardfile;

if cardFileExists then
begin

local cardFileSoup := GetUnionSoup(ROM_cardfilesoupname);
if cardFileSoup then

...
end;
// :-0
if GetRoot().keyboardChicken then
begin

...
end;

Current Newtons have two levels of Undo; this may change. There could be more or
fewer levels and it could change to Undo/Redo. It’s safest to call AddUndoAction
from inside your undo action; this will support Undo/Redo if we implement it, but
will do nothing if we do not.

d e v e l o p Issue 24 December 1995116

Thanks to our Newton Partners for the questions
used in this column, and to jXopher Bell, Henry
Cate, Bob Ebert, David Fedor, Stephen Harris,
Jim Schram, Maurice Sharp, James Speir, and
Bruce Thompson for the answers.•

Have more questions? Take a look at
Newton Developer Info on AppleLink.•

YOUR NAME HERE

YOUR PHOTO HERE

Do you have code that solves a problem other Macintosh
developers might be having? Why not show it off by writing
about it in develop? We’re always looking for people who might be
interested in submitting an article or a column. If you’d like to
spotlight and distribute your code to thousands of developers of
Apple products, here’s your opportunity.

If you’re a lot better at writing code than writing articles, don’t
worry. An editor will work with you. The result will be something
you’ll be proud to show your colleagues (and your Mom).

So don’t just sit on those great ideas; feel the thrill of seeing them
published in develop!

For Author’s Guidelines, editorial schedule, and information
on our incentive program, send a message to DEVELOP on
AppleLink, develop@applelink.apple.com on the Internet, or
Caroline Rose, Apple Computer, Inc., 1 Infinite Loop,
Cupertino, CA 95014.

See if you can solve this programming puzzle, presented in the form of
a dialog between Konstantin Othmer (KON) and Bruce Leak (BAL).
The dialog gives clues to help you. Keep guessing until you’re done; your
score is the number to the left of the clue that gave you the correct answer.
Even if you never run into the particular problems being solved here,
you’ll learn some valuable debugging techniques that will help you solve
your own programming conundrums. And you’ll also learn interesting
Macintosh trivia.

BAL I’ve got a small problem I’d like you to help me with.

KON Who’s paying the airfare this time?

BAL Nothing like that. It’s really quite straightforward, and surprisingly
reproducible. The problem is that sometimes when I’m using
Microsoft Word 5.1a and I pull down a menu, when I let go of the
menu there’s garbage on the screen where the menu was.

KON That was a problem they were having in the beta release, but I think
it’s fixed in the final version of Windows 95.

BAL Actually, this is on a Power Macintosh 6100, and I haven’t yet installed
Windows 95 on top of my SoftPC, which runs on my 68000, which is
being emulated by Gary’s emulator.

KON Microsoft is still in the loop.

BAL Well, it’s not just a Microsoft problem. I can’t seem to make it happen
with Word by itself. It only seems to happen if I run and quit cc:Mail
before running Word.

KON That darn Justice Department! Without them you could just be
running Microsoft mail, and you probably wouldn’t have this problem.

Try running Word; then launch and quit cc:Mail. Does it still
happen?

100 BAL Now Word is working fine. In fact, Word works in every case — at
least as far as this problem is concerned — unless I launch and quit
cc:Mail before launching and quitting Word. And the interesting thing
is that it only happens with the Modern Memory Manager on.

KON & BAL’S PUZZLE PAGE

Zoning Out

KON & BAL’S PUZZLE PAGE: ZONING OUT 117

KONSTANTIN OTHMER AND BRUCE LEAK
KON has been holding a steady job at Catapult
Entertainment for many months now, but he
spends more time playing soccer than working.

BAL is at the front of the self-employment line and
has finally moved out of his hotel and into a
house. Rumor has it that behind the house there’s
a big archery field.•

KONSTANTIN OTHMER
AND BRUCE LEAK

KON Just run your machine with the classic Memory Manager. I have
problems running THINK C’s debugger when I use the Thread
Manager and the Modern Memory Manager. There’s just too many of
these kinds of bugs to deal with!

BAL Not so fast, QuickDraw. The Modern Memory Manager gives you lots
of great new features. First of all, your machine will run faster. In
addition to being ported native, it also uses much more efficient
algorithms. It keeps track of free blocks in a separate list, keeps track of
heap zones to make RecoverHandle work better, and has a back
pointer so that blocks can be walked either way, drastically decreasing
heap-walking time and making things much more efficient —
especially when virtual memory is on. Also, the Modern Memory
Manager was designed to be bus error proof, in that it returns from
any internally generated exception by returning an error to its caller
(though this was changed in the latest version of the Modern Memory
Manager, as you may have read in the Balance of Power column in
develop Issue 23). Finally, in the old Memory Manager moving the
partition between the system and Process Manager heaps was a total
nightmare; this problem was solved in the Modern Memory Manager.

KON Anytime you port something native you have two choices: rewrite the
code directly, preserving internal algorithms and data structures, or
rethink and reimplement, preserving only the top-level application
interface. The first choice virtually guarantees compatibility but makes
it difficult to maintain in the future, while the second gives you slightly
less compatibility but a much better upgrade path, better maintainability,
and a much more efficient system. It sounds like they went with the
second choice, but at the obvious expense of some short-term
compatibility problems. And it seems like that’s what we’re dealing
with here.

BAL Thanks for the philosophy lesson. Are you going to solve the problem?

KON OK. Launch and quit cc:Mail and check all the heaps. Look for
orphaned memory, locked blocks being left around, or any other signs
of an application not properly cleaning up after itself.

BAL I need to install MacsBug to do that. I’ll install version 6.5d11 because
it has some new PowerPC features in case we need them.

KON I’m afraid we will.

90 BAL So after we quit cc:Mail, the system heap grew some, but all the heaps
seem fine. We have an extra 128-byte pointer, and we have five extra
handles for a total of almost 32K, but three of those (25K) are purgeable.

KON All this extra stuff lying around certainly explains why I have to reboot
every couple of hours.

BAL Yeah, and those OS engineers really worked on that problem. On
System 7.5 you get a pretty picture and a nice thermometer bar!

KON So try the patch dcmd. It will tell you what traps have been patched.
Before you run cc:Mail, type

patch s

to grab a snapshot of all the traps. When you’re in cc:Mail, just type

patch

d e v e l o p Issue 24 December 1995118

and you’ll get a list of all the traps that have been patched. It’s a great
way to find random skankiness.

BAL The only OS trap that they patch is _Rename, and they patch the
Toolbox traps _Pack8, _UserDelay, _SysErr, _LoadSeg, _UnloadSeg,
and _ExitToShell.

KON OK, and what’s still patched after the application quits?

BAL Nothing. It seems to totally clean up.

KON Wonderful. What does Word patch?

80 BAL The OS traps _Rename and _CompactMem, and the Toolbox traps
_Pack8, _UserDelay, _HiliteWindow, _FrontWindow, _SysError,
_LoadSeg, and _ExitToShell.

KON There seems to be a lot of overlap. We should check a do-nothing
generic application. I bet the system is magically patching some stuff
when it runs an application.

70 BAL It turns out that all those traps except _HiliteWindow, _FrontWindow,
_CompactMem, and _UnloadSeg are always getting patched.

KON It figures. Word is augmenting parts of the Memory Manager and
getting in on some Window Manager action, and cc:Mail is playing
games with the Segment Loader. Where’s that book on Macintosh
programming guidelines?

65 BAL I don’t think they read that in Redmond. By the way, even though
menu code is fairly boilerplate, this one’s a mixed bag. Netscape,
SimpleText, and FindFile work fine, but Word and THINK Reference
fail consistently.

KON Boy, times have changed. I remember when you used to just dive right
into MacsBug, disassemble a bunch of code, and get to the bottom of
these problems. Now you’re looking at what SimpleText does
compared to Word!

BAL I’m not the one who’s doing it. I don’t even touch the computer
anymore. It’s one of my henchmen, Paul Young.

KON Anyway, there are two ways the bits behind the menus get redrawn. If
plenty of memory is available, they get back-buffered and restored with
CopyBits. If there’s not much memory, an update event is generated.

BAL Since Word is the only application running at the time, we have plenty
of memory.

KON Set a breakpoint on CopyBits and pull a menu down. The first break
will be when the bits are being saved. Let’s look at the address, step
over the call, and make sure the right data was put there. When you let
the menu up, you’ll break on CopyBits again. Is the source data correct
— that is, is the source our previous destination?

BAL The base address when the bits are restored isn’t the same as the base
address when they get saved.

KON Where is the base address? Is it part of a handle that moved?

60 BAL The base address for the restore is $40810000.

KON Someone is dereferencing zero! It sounds like the bits are getting saved
in a handle, and somehow the handle is getting trashed. Let’s follow
the handle from the save and see what happens to it.

KON & BAL’S PUZZLE PAGE: ZONING OUT 119

55 BAL When the bits are being saved, the base address is part of a handle in
MultiFinder temporary memory. The handle is $438 bytes long.

KON What happens to that memory on the restore?

50 BAL The memory still exists, and the data is fine. It’s just that the PixMap
doesn’t point there anymore.

KON So we need to figure out where the Menu Manager is storing the
PixMap and why that location is getting trashed.

BAL The Menu Manager uses SaveBits and RestoreBits, which allocate
memory for the pixels using the offscreen buffer calls that return
PixMaps. The PixMap base address does double duty: when it’s
unlocked it’s a handle; when it’s locked it’s a pointer. There’s a flag in
rowBytes to indicate what state it’s in. To go from the locked state to
the unlocked state, the GWorld routines call RecoverHandle.

KON Let’s break on RecoverHandle and see what we get back.

45 BAL It returns 0. But why?

KON It’s kind of weird that this happens only with the Modern Memory
Manager. In the old Memory Manager, you had to set the heap zone
before calling RecoverHandle. The Modern Memory Manager
relaxed this restriction and keeps a tree of valid heaps. When you call
RecoverHandle, it walks the heap tree. If cc:Mail is somehow
corrupting the tree, RecoverHandle will fail.

BAL Nice theory. How are you going to test that?

KON E.T.O. 17 has a debugging version of the native Memory Manager
that will print out diagnostics anytime weird stuff happens. Let’s install
it and reboot.

40 BAL When you boot, you drop into MacsBug with the message “Bad
pointer being passed to RecoverHandle 00030020.” It looks like “PC
Exchange” was loading.

KON Let’s try booting with the extensions off. Use the Extensions Manager
so that you can keep MacsBug, the Memory control panel (so that
we’re sure we’re in the Modern Memory Manager), and the
Debugging Memory Manager.

35 BAL When I run the Extensions Manager, I break into MacsBug with the
message “Bad handle; are you unlocking a fake handle?”

KON A complete treatise on all the memory crimes committed in the
Macintosh is beyond the scope of this column.

BAL Without superfluous extensions, the problem at boot time goes away,
but we still have the problem in Word.

KON Well, let’s look at the zones and see if everything looks OK. Let’s do an
hz to list all the heap zones.

BAL OK. But hz doesn’t use the heap tree, so if you want to check the heap
tree you’ll have to do it manually.

KON Great. I’ll use the SmartFriends debugging trick and call Jeff to figure
out how to do that.

Jeff The heap tree is part of the zone header. The system zone starts at
$2800, and a pointer to the next zone starts at offset $20. $2820
contains $1672DF0.

d e v e l o p Issue 24 December 1995120

KON That should be the Process Manager zone. But that number is really
big. How could that be? How many fonts do you have installed?!

Jeff Since the system heap can grow, we put the Process Manager zone
header at the end of the block, so we don’t have to move the header
every time the heap size changes.

30 BAL The next zone in the Process Manager is nil, since at the top level there
are only two zones: the system zone and the Process Manager zone.

KON Let’s look at the child zones inside the Process Manager.

Jeff The child zones are pointed to by offset $24 in the zone header.

25 BAL The first child zone is the Word zone, which corresponds to what we
got from hz. And the Word zone header has no child zones.

KON So the world makes sense so far. Does the next zone pointer make
sense?

BAL It’s kind of wacky. It points inside the Word heap!

KON That’s a problem. Does that zone header look reasonable, at least?

20 BAL No. It’s trash. It looks like Word code.

KON What happens if you don’t run cc:Mail before running Word? And
how does the Memory Manager know how to update the zone
headers? There’s no call to explicitly destroy zones, only create
them.

BAL I’ll take the second question first. Zones are created by InitZone, and
they’re never explicitly destroyed. In the Modern Memory Manager,
there’s new logic in DisposeHandle that checks to see if the handle is
a zone; if so, it assumes the zone is destroyed and updates the heap
tree.

KON Will the skankiness ever end?

15 BAL If I run Word without first running cc:Mail, the heap tree is OK.

KON Now we just need to figure out why the heap tree is getting trashed.
Even though the tree update algorithm is implicit, it seems pretty
good at first blush. Let’s go through the failing scenario and compare
the heap zones to the tree and figure out when they diverge.

10 BAL When we run cc:Mail, hz doesn’t agree with the zone structure we get
by walking the heap tree. Here’s what the two structures look like:

KON & BAL’S PUZZLE PAGE: ZONING OUT 121

System zone System zone

Handle to cc:Mail process
Zone

ZoneZone

Process Manager zone Process Manager zone

Stack

KON So the cc:Mail zone is smaller than the handle of the memory it’s in.
Someone limited the size of the application zone. In the heap tree
view, it’s clear why: another zone is being allocated; 32K is left between
the zones, and that space is being used for the stack.

5 BAL The reason hz can’t find the second zone is that before the Modern
Memory Manager, no one kept explicit track of the zones. Basically,
the hz command has to search for the zones. It does this by starting
from the system zone, which is always pointed to by low memory (and
is usually located after the trap tables at $2800). From the system heap
zone header, it can find the zone trailer. Right after that block is the
Process Manager zone header. It walks all the blocks in a zone and
finds all the handles that look like other zones. It starts by assuming
that the handle contains a zone, and then checks to see if the zone
header points to a block that looks like a trailer and if the trailer points
back to the zone header. When it looks for zones inside other zones, it
assumes that they begin either at the start of the handle or right after
another zone. Since cc:Mail has its stack space between the two zones,
the hz command can’t find it.

KON OK. Unfortunately we’re not debugging the hz command. But that
probably gives us a clue as to why the Modern Memory Manager is
getting confused. It seems to keep pretty good track of the zones that
are getting created, since that’s easy by just watching InitZone. But it
gets confused when the zones are being disposed of, since it does that
by watching DisposeHandle.

BAL Exactly. The heap tree gets trashed when cc:Mail quits, since the
Modern Memory Manager assumes that there’s only one zone (and
perhaps its children) in any handle. So when it sees the dispose, it
throws away the first zone and all its children, but it doesn’t throw
away the second zone. It works fine with the old Memory Manager
since no one ever explicitly keeps track of all the zones. But the
Modern Memory Manager uses the heap tree for RecoverHandle, and
the tree is trashed, so either the machine crashes or you get garbage.

KON That’s pretty interesting. In this case, neither cc:Mail nor Word did
anything wrong. The way cc:Mail used the Memory Manager was
nonstandard, and when the algorithms in the Modern Memory Manager
changed, there were some interesting cases that fell through the cracks. I
think the newer version of cc:Mail no longer allocates zones this way.
And the Memory Manager will undoubtedly soon be smarter.

BAL Nasty.

KON Yeah.

d e v e l o p Issue 24 December 1995122

SCORING
70–100 In the end zone
50–65 Middle ground, the Twilight Zone
25–45 Out there in the ozone
5–20 Low memory, zoned out•

Thanks to Jeff Crawford and Bill Knott for reviewing this column. Special thanks to Rocket Scientist
Paul Young, who originally found this puzzler and had the tenacity to narrow it down to a reproducible
case.•

For a cumulative index to all issues of
develop, see this issue’s CD.•

A
accelerator performance

(QuickDraw 3D) 42
Access, scriptable objects and 18
AccessByOrdinal, scriptable

objects and 18
AccessByProperty, scriptable

objects and 20
AccessByUniqueID, scriptable

objects and 18
“According to Script” (Simone),

steps to scriptability 27–29
Acquire (OpenDoc) 36
action button, in alerts 65
Add, Newton Q & A 114
AddToDefaultStore, Newton

Q & A 114
AddUndoAction, Newton Q & A

116
AECommand, sending Apple

events to 20–21
AEDesc, OSL and 8
AEDescList. See descriptor lists

(OSL)
AEResolve, OSL and 8
AESetObjectCallbacks, OSL and 9
'aete' resource

for implementing
scriptability 28–29

for Scriptable Database 16
AFP (AppleShare) file system

(Macintosh Q & A) 108
AIFF files

converting QuickTime
movies to 54–55

Sound Manager and 54–55
alert buttons 65–66
alert messages 62–65
alerts 59–68

application modal 60
icons in 62
movable 60
and OpenDoc part editors 62

alert titles 65
ampCmd command (Sound

Manager) 50–51
Anderson, Greg 6
Apple event handlers, for

implementing scriptability 29

Apple events
sending to scriptable objects

20–21
ToolServer and 71

Apple Multimedia Tuner
(Macintosh Q & A) 101

AppleScript
scriptable applications and

26, 28
testing Apple event code 29
ToolServer and 71

AppleScript terminology extension,
for Scriptable Database 16

application modal alerts 60

B
BackgroundErr (ToolServer)

70–71
BackgroundOut (ToolServer) 71
BackgroundShell (ToolServer) 70
back issues of develop 5
“Balance of Power” (Evans),

advanced performance profiling
56–58

Best mode (ColorSync),
Macintosh Q & A 107

BestType, scriptable objects and 19
BinaryMunger, Newton Q & A

115
binding files, OpenDoc and 31
bitsProc bottleneck (QuickDraw)

74, 75, 77, 82body slot,
Newton Q & A 115

bufferCmd command (Sound
Manager) 53

C
cache 86–87

synchronizing with main
memory 87

cache incoherence 86–87
cache misses (PowerPC) 56

measuring 56–57, 58
callBackCmd command (Sound

Manager) 53
callOldBits flag (StdPix) 77
callStdBits flag (StdPix) 77
Cancel button, in alerts 66
CanReturnDataOfType, scriptable

objects and 19
cardSoups, Newton Q & A 113

caution alerts 60–61
CDRequestSettings, Macintosh

Q & A 101
CheckpointIO, PCI device drivers

and 85–87, 91, 92, 93
clearImageMethod (QuickDraw

3D), Macintosh Q & A 105
CloneDesignator,

TAbstractScriptableObject and
17

CMMs (ColorSync), Macintosh
Q & A 107

CmpSoundHeader 46
CMYK-to-CMYK device-link

profile (Macintosh Q & A) 107
codecs (Macintosh Q & A) 100,

101
Code Fragment Manager,

Macintosh Q & A 101–102
coerced records, Apple events and

11–12
collection object, token collections

and 21
collector objects, deep searches

and 25
ColorSync

L*a*b* color space
(Macintosh Q & A)
106–107

quality settings (Macintosh
Q & A) 107

CompareProperty, comparative
search specifications and 22–23

comparison descriptors 22
resolving 16
whose clause resolution and

12, 14–15
compressed audio (Sound

Manager) 46–48, 49, 53–55
CompressImage (QuickTime) 80,

81
ComputeThisSegment,

IOPreparationTable and 94
containers (OpenDoc) 30, 31
container suite (OpenDoc) 31
content property (OpenDoc) 38
CopyBits, KON & BAL puzzle

119
CreateAppSoup, Newton Q & A

112
Create Element event, dispatch

method for 21

INDEX

INDEX 123

create-mark-token callback, OSL
and 9

CreateNewElement, sending
Apple events to 20, 21

CreateSoftwareInterrupt,
PrepareMemoryForIO and
94–95

CurResFile (QuickDraw GX),
Macintosh Q & A 102

cursor.current, Newton Q & A
113–114

CWCheckBitMap (ColorSync)
107–108

D
data compression, printing images

with 72–83
data-loading function, printing

large compressed images
77–78, 79

data transfer process (PCI device
drivers) 90–94

with logical alignment 93–94
with partial preparation

90–91, 92–93, 98–99
See also DMA transfers

DeclareClassData, scriptable
objects and 19

DeclareMinClassData, scriptable
objects and 19

DecompressImage (QuickTime)
76

deep searches, whose clause
resolution and 24–25

default button, in alerts 66
DefaultType, scriptable objects

and 19
descriptor lists (OSL) 8–9
device drivers (PCI), preparing

memory for 84–99
dictionaries, for implementing

scripting 28–29
direct memory access. See DMA;

DMA transfers
DirectObjectIterator, scriptable

objects and 17–18
direct parameter, of Apple events 7
dirty flag (OpenDoc) 38
DisposeDesignator,

TAbstractScriptableObject and
17

ditherCopy transfer mode
(QuickDraw) 76

DMA (direct memory access) 84
DMA support library 84, 87, 89,

90, 94–99

DMA transfers 85–99
with discontiguous physical

mapping 92
initialization for 95
with partial preparation

90–91, 92–93, 98–99
simple 91–92

dockerChooser, Newton Q & A
113

DoDriverIO, PCI device drivers
and 85

DoScript (ToolServer) 71
double buffer bypass (QuickDraw

3D) 42, 43
draft permissions (OpenDoc) 37
drafts (OpenDoc) 31, 37
DR Emulator control panel,

PowerPC and 57
dynamic behavior objects,

scriptable objects and 25, 26
dynamic programming languages

110–111

E
ElementIterator, scriptable objects

and 17–18
encode field (Sound Manager) 46
errAEEventNotHandled, and

whose clause resolution 10,
12, 13

Evans, Dave 56
event-first dispatching, scriptable

objects and 20
“Execution Levels for Code on the

PCI-Based Macintosh”
(Saulpaugh) 86

ExportAIFF (Sound Manager) 54
Externalize (OpenDoc) 35, 37–39
externalizing parts (of OpenDoc

documents) 35–36, 37–39
extras, Newton Q & A 113
ExtSoundHeader 46

F
FCompressImage (QuickTime)

80, 81
FDecompressImage (QuickTime)

76
Fernicola, Pablo 42
FindMatchingSound (Sound

Manager) 50
FindNextComponent

(Component Manager), Sound
Manager and 46–48

focus (of OpenDoc storage units)
32–33

formAbsolutePosition, scriptable
objects and 18, 23

formName, scriptable objects and
18

formWhose key form 10
handling in the object

accessor 11
foundation classes, for

implementing scripting 17–23
4PM performance tool, PowerPC

and 57–58
frames (NewtonScript) 110
frequencyCmd command (Sound

Manager) 51–52

G
garbage collection, in dynamic

programming languages 110
Gelphman, David 72
gestaltQD3DVersion, Macintosh

Q & A 106
GetAllFolders, Newton Q & A

112–113
GetComponentInfo (Sound

Manager) 48
GetCompressionInfo (Sound

Manager) 46
Get Data event handler, methods

used by 18
GetDirItems (MoreFiles sample

code), Macintosh Q & A 109
GetHardwareSettings (Sound

Manager) 50
GetLogicalPageSize, virtual

memory and 85
GetMapEntryCount, PCI device

drivers and 87
GetMaxCompressionSize

(QuickTime) 80, 81
GetProperty, scriptable objects

and 18–20, 22
getRateMultiplierCmd command

(Sound Manager) 52
GetSoundHeaderOffset (Sound

Manager) 46
GetStores, Newton Q & A 114
“Getting Started With OpenDoc

Storage” (Lo) 30–41
getVolumeCmd (Sound Manager)

51
“Graphical Truffles” (Thompson

and Fernicola), making the
most of QuickDraw 3D 42–44

“Guidelines for Effective Alerts”
(Parsons) 59–68

d e v e l o p Issue 24 December 1995124

GWorld (offscreen), drawing to
(Macintosh Q & A) 101–102

GXDrawShape, Macintosh Q & A
103

GXFormatDialog, overriding
(Macintosh Q & A) 105

GXGetMessageHandlerResFile
(QuickDraw GX), Macintosh
Q & A 102

GXInstallQDTranslator,
Macintosh Q & A 103

GXJobDefaultFormatDialog,
overriding (Macintosh Q & A)
105

GXJobStatus, Macintosh Q & A
104

GXOpenConnection, Macintosh
Q & A 104

GXRemoveQDTranslator,
Macintosh Q & A 103

gxReplaceLineWidthTranslation,
Macintosh Q & A 103

GXSetShapePen, Macintosh
Q & A 102–103

GXSetStylePen, Macintosh Q & A
102–103

gxSimpleGeometryTranslation,
Macintosh Q & A 103

GXValidateShape, Macintosh
Q & A 103

H
hairlines, in QuickDraw GX

(Macintosh Q & A) 102–103
human interface guidelines, alerts

59–68
hz command, KON & BAL

puzzle 120, 121–122

I
Image Compression Manager

(QuickTime), compressing/
decompressing image data 73

ImageDescription (QuickTime)
75–76

extending (Macintosh
Q & A) 100, 101

ImplementClassData, scriptable
objects and 19

ImplementMinClassData,
scriptable objects and 19

IndexedSearch (MoreFiles sample
code), Macintosh Q & A 109

InitializeDMATransfer,
PrepareMemoryForIO and 95

InitializePrepareMemoryGlobals,
PrepareMemoryForIO and
94–95

InitPart (OpenDoc) 35, 36, 37
InitPartFromStorage (OpenDoc)

35–36, 39–41
InitZone, KON & BAL puzzle

121, 122
interactive renderer (QuickDraw

3D) 42
Macintosh Q & A 105

Interface Definition Language
(IDL), Open Doc and 31, 36

Intern, Newton Q & A 113
IOBox, Newton Q & A 115
IOCommandIsComplete,

PrepareMemoryForIO and 92
IOPreparationTable

ComputeThisSegment and
94

PrepareMemoryForIO and
87, 90, 92

J
Johnson, Dave 110
JPEG image compression

codecs supporting 80
performance measurements

80–82
printing images with 72–83

JPEG Print with Dataload sample
application 78

JPEG Print sample application
75, 82

K
kAEIDoMarking flag, OSL and 9
kAEIDoWhose flag, OSL and 10
keyAEIndex parameter

(typeWhoseDescriptor) 12
keyAETest parameter

(typeWhoseDescriptor) 12
keyboardChicken, Newton

Q & A 113
kFlushUserConfigFunc, Newton

Q & A 113
kGetUserConfigFunc, Newton

Q & A 113
kIOLogicalRanges flag,

PrepareMemoryForIO and 87
kIOMinimalLogicalMapping flag,

PrepareMemoryForIO and 87
kIOStateDone flag,

PrepareMemoryForIO and 87,
91

kMoreIOTransfers flag,
PrepareMemoryForIO and 91

kODPropPreferredKind property
(OpenDoc) 39

“KON & BAL’s Puzzle Page”
(Othmer and Leak), Zoning
Out 117–122

kRegisterCardSoupFunc, Newton
Q & A 112, 113

kSetExtrasInfoFunc, Newton
Q & A 113

kSetUserConfigFunc, Newton
Q & A 113

kUnRegisterCardSoupFunc,
Newton Q & A 113

kWaitForAsyncSearchesTo-
Complete message, deep
searches and 25

L
L*a*b* color space (ColorSync),

Macintosh Q & A 106–107
LaserWriter 8.2.2, printing JPEG

compressed images 81–83
LaserWriter 8.3, printing JPEG

compressed images 73–74,
81–83

Leak, Bruce 117
Length, Newton Q & A 115
Lo, Vincent 30
logical addresses, virtual memory

and 85
logical data transfer,

PrepareMemoryForIO and 87,
89, 93–94, 96, 97

logical descriptors 22
resolving 15
whose clause resolution and

12, 14–15
logical mapping tables,

PrepareMemoryForIO and 87,
88–90

logical terms descriptor, whose
clause resolution and 12

M
Macintosh Q & A 100–109
mailSlip, Newton Q & A 114
MakeSymbol, Newton Q & A

112–113
mapping tables, for address ranges

88–90
mark-adjusting callback, OSL and

9
marking, OSL and 7, 8–10

INDEX 125

mark token
OSL and 8, 9
See also tokens

mark-token callback, OSL and 9
Maroney, Tim 69
memory

preparing for I/O 87–88
See also

PrepareMemoryForIO
Memory Management Unit

(MMU), remapping logical
addresses 85

meshes (QuickDraw 3D)
Macintosh Q & A 106
order of vertices in

(Macintosh Q & A) 105
Microseconds (Toolbox) 42
Minow, Martin 84
MMCR0 register, PowerPC and

58
Modern Memory Manager, KON

& BAL puzzle 117–118, 120,
122

movable modal dialogs, as alerts
60, 62

MPW commands, running with
ToolServer 69–71

“MPW Tips and Tricks”
(Maroney), ToolServer Caveats
and Carping 69–71

MyConfigureDMATransfer,
PrepareMemoryForIO and
95–96

MyDataLoadingProc
(QuickTime) 78, 79

MySetupForDataTransfer,
PrepareMemoryForIO and
96–97

N
Name Registry (Macintosh

Q & A) 100
“New Device Drivers, The:

Memory Matters” (Minow)
84–99

NewEra sample application 42–43
NewHandle (QuickTime) 80
Newton compatibility 112–116
Newton Q & A: Ask the Llama

112–116
NewtonScript 110–111
Newton Toolkit platform file

functions 112
NextPageIsContiguous,

PrepareMemoryForIO and 91

Normal/Draft mode (ColorSync),
Macintosh Q & A 107

note alerts 60
NURB patches (QuickDraw 3D),

Macintosh Q & A 106

O
object accessor callbacks, OSL and

8
object accessor functions, for

implementing scriptability 29
object-first dispatching, scriptable

objects and 20
object-marking callback, OSL and

9, 10
object model hierarchy, for

implementing scripting 28
object specifiers (of Apple events),

resolving 8
Object Support Library (OSL) 7–8

marking 7, 8–10
whose clause resolution 7,

10–15
octet (SOM) 34
ODByteArray (OpenDoc) 33–34
ODContainer (OpenDoc) 31
ODDocument (OpenDoc) 31
ODDraft (OpenDoc) 31
ODPart (OpenDoc) 36
ODPersistentObject (OpenDoc)

36
ODPropertyName (OpenDoc) 32
ODStorageUnit (OpenDoc) 31,

32–33
manipulating value data 33

ODValueType (OpenDoc) 32
Olson, Kip 45
OpenDoc

data interchange 30, 31
structured storage model

30–41
OpenDoc part editors, alert icon

for 62
Othmer, Konstantin 117

P
PackBits compression, printing

images with 81–82
page boundaries

address ranges and 88
virtual memory and 85

page faults
and PCI-based Macintosh

computers 86
virtual memory and 85

pages
mapping address ranges to

88–90
mapping to multiple 89
virtual memory and 85

Page Setup dialog, adding a panel
to (Macintosh Q & A)
104–105

paperRoll.dataSoup, Newton
Q & A 113

ParentObject, scriptable objects
and 18

Parsons, Paige K. 59
part editors (OpenDoc) 30, 31

reconstructing parts 38,
39–41

part kind (OpenDoc) 38, 39
parts (of OpenDoc documents)

30, 35–41
cloning 34, 36
externalizing 35–36, 37–39
initializing 36–38
life cycle of 35
parent initialization 36
reconstructing 38, 39–41
wrapping of 37

part wrappers (OpenDoc) 37
PBCatSearch, Macintosh Q & A

108–109
pBestType property, of scriptable

objects 18, 19
PBGetCatInfo, Macintosh Q & A

109
PCI-based Macintosh computers

device drivers 84–99
execution levels for code 86

PCI bus (Macintosh Q & A) 100
PCI device drivers

data transfer process 90–94
DMA transfers 85–99
preparing memory for 84–99

PCI expansion slots (Macintosh
Q & A) 100

pClass property, of scriptable
objects 18, 19

pContents property, of scriptable
objects 18

pDefaultType property, of
scriptable objects 18, 19

permissions (OpenDoc) 31, 37
persistent objects (OpenDoc) 31,

36
persistent storage (OpenDoc) 30,

35
physical addresses, virtual memory

and 85

d e v e l o p Issue 24 December 1995126

physical mapping tables,
PrepareMemoryForIO and 87,
88–90

PMC1 register, PowerPC and 58
PMC2 register, PowerPC and 58
pName property, of scriptable

objects 18, 19
position code (OpenDoc) 33
PostScript Level 2 printers,

support for JPEG image
compression 82–83

POWER Emulator control panel,
PowerPC and 57

PowerPC
advanced performance

profiling 56–58
cache misses 56–57, 58

'PREC' 0 resource (QuickDraw
GX), Macintosh Q & A 104

PrepareDMATransfer,
PrepareMemoryForIO and 95,
96

PrepareMemoryForIO
DMA transfers 85–99
PCI device drivers and

84–99
and programmed I/O 87,

89, 93–94, 96, 97
user data transfers 85–87

primary interrupt handlers, PCI-
based Macintosh and 86, 93, 97

primary interrupt level, on PCI-
based Macintosh 86, 90

printing
compressing uncompressed

data 78–80
with JPEG image

compression 72–83
large compressed images

77–78, 79
“Printing Images Faster With

Data Compression”
(Gelphman) 72–83

PrintPICTtoJPEG sample
application 78–80, 82

printSlip, Newton Q & A 114
Process Manager zone, KON &

BAL puzzle 121–122
programmed I/O,

PrepareMemoryForIO and 87,
89, 93–94, 96, 97

ProjectDrag 3
properties (of OpenDoc storage

units) 32, 33
PropertyAppliesToProxy,

scriptable objects and 22

property description tables,
scriptable objects and 19–20

proxy tokens, token collections
and 21–22

Purge (OpenDoc) 36
purging (OpenDoc) 36

Q
Q3Renderer_Sync (QuickDraw

3D) 42
QTMA (QuickTime Music

Architecture) 3
QuickDraw 3D 42–44

custom attributes 43–44
debugging 44
getting version of

(Macintosh Q & A) 106
improving accelerator

performance 42
interacting with input

devices 42–43
interactive renderer

(Macintosh Q & A) 105
setting file type 43

QuickDraw GX
adding panels to dialogs

(Macintosh Q & A) 102
adding print items to dialogs

(Macintosh Q & A) 102
and hairlines (Macintosh

Q & A) 102–103
and message override

(Macintosh Q & A)
103–104

PostScript driver (Macintosh
Q & A) 104

QuickDraw pictures, image data
compression 73, 75

QuickDraw printer drivers, and
image data compression 74

QuickTime
codecs (Macintosh Q & A)

100, 101
compressing audio 53–55
converting movies to AIFF

files 54–55
data-loading function

77–78, 79
image data compression

75–78
Sound Manager and 52–55

R
rateCmd command (Sound

Manager) 52

rateMultiplierCmd (Sound
Manager 3.1) 52

reconstructing parts (of OpenDoc
documents) 38, 39–41

RecoverHandle, KON & BAL
puzzle 118, 120, 122

Release (OpenDoc) 36
ResolveComparisonOperator,

whose clause resolution and
14–15, 16

ResolveLogicalDescriptor, whose
clause resolution and 14

ResolveWhoseDescriptor, whose
clause resolution and 13

ResolveWhoseTest, whose clause
resolution and 13–14

ROM_cardAction, Newton Q & A
114

S
Saulpaugh, Tom 86
scriptability, implementing 27–29
scriptable applications 27–29

AppleScript and 26
foundation classes for 17–23
whole clause resolution 6–26

Scriptable Database sample
application

dispatching methods 20
for whose clause resolution

15–17
scriptable objects

access methods 18–20
class data tables 19
dynamic behavior 26
elements of 17–18
properties of 18–20
property description tables

19–20
search specifications 22–25
sending events to 20–21
token collections 21–22

Scriptable Text Editor 28, 29
scripting (OpenDoc) 31
SearchDeep, whose clause

resolution and 24–25
secondary interrupt handlers, PCI-

based Macintosh and 86, 93, 98
secondary interrupt level, on PCI-

based Macintosh 86, 90
SendSoftwareInterrupt,

PrepareMemoryForIO and 91
SetCompressedPixMapInfo

(QuickTime) 76, 78
SetData, scriptable objects and 21
SetLength, Newton Q & A 115

INDEX 127

SetProperty
scriptable objects and

19–20, 21
transaction parameter 19–20

SetupCardSoups, Newton Q & A
112

SetupRoutingSlip, Newton Q & A
115

SetValue, Newton Q & A 115
Simone, Cal 27
sleep mode (on a PowerBook),

Macintosh Q & A 100
Smith, Dave 85
SndDoCommand 53
SndDoImmediate 53
SndGetInfo (Sound Manager 3.1)

50
SndPlayDoubleBuffer 52
'snd ' resource format 46
software interrupt routines

for partial preparation of
memory 98–99

on PCI-based Macintosh
computers 86

Sound Export Options dialog 54
SoundHeader 46
Sound Manager 45–55

compressed audio 46–48,
49, 53–55

controlling pitch 51–52
controlling volume 50–51
determining hardware

settings 50
determining sound format 46
playing continuous sound 53
and QuickTime performance

48–50
using QuickTime to play

sounds 52–53
sound header 47–48

Sound Manager 3.1 45
“Sound Secrets” (Olson) 45–55
SoundSecrets application 45, 46,

50, 51, 52, 53
“Speeding Up whose Clause

Resolution In Your Scriptable
Application” (Anderson) 6–26

spot light (QuickDraw 3D),
Macintosh Q & A 105–106

standard file dialogs, nesting
(Macintosh Q & A) 109

Standard File Package, Macintosh
Q & A 109

Standard Object Model (SOM)
octet 34
Open Doc and 31, 36

status dialogs 59, 61–62
status messages 64–65
StdPix bottleneck (QuickDraw)

73–74, 76–77, 78
stop alerts 61
storage model (OpenDoc) 30–41
storage unit cursor (OpenDoc) 33
storage unit references (OpenDoc)

34–35
storage units (OpenDoc) 30,

31–35
cloning 34
focusing 32–33

storage unit views (OpenDoc) 33
structured storage model

(OpenDoc) 30–41
system modal alerts 60

T
TAbstractScriptableObject class

properties defined in 19
scripting and 17, 18

task (non-interrupt) level, on PCI-
based Macintosh 86, 90

TempNewHandle (QuickTime) 80
TEntireContents class 21, 24
TEveryItemProxy class 21
TEveryItem::SearchDeep 25
'TEXT' file type (QuickDraw 3D)

43
Thompson, Nick 42
3D debugger (QuickDraw 3D) 44
'3DMF' file type (QuickDraw 3D)

43
TMarkToken class 21
TMarkToken::SearchDeep 25
token collections, scriptable

objects and 8, 21–22
tokens (of object accessor

callbacks) 8, 17
grouping 8, 21–22
mark token 8, 9
memory management of 17
proxy tokens 21–22
removing 9, 17

ToolServer 69–71
Apple events and 71
AppleScript and 71
input and output 70–71
modularity and factoring

69–70
packaging commands for use

with 71
redirecting errors 70–71
standalone scripts and 71

TProxyToken class 21–22

tracker object (QuickDraw 3D) 43
typeCompDescriptor descriptor,

parameters contained in 12
typeObjectSpecifier descriptor,

OSL and 8
typeWhoseDescriptor descriptor,

typeAERecord and 11

U
Undo, Newton Q & A 116
UnionSoup:Add, Newton Q & A

113–114
userConfiguration, Newton

Q & A 113

V
values (of OpenDoc properties)

32, 33
adding data to 34
of content properties 38
manipulating value data

33–34
vertices in a mesh (QuickDraw

3D), Macintosh Q & A 105
“Veteran Neophyte, The”

(Johnson), The Right Tool for
the Job 110–111

virtual memory
PCI device drivers and 85
remapping addresses 85

“Virtual Memory on the
Macintosh” (Smith) 85

volumeCmd command (Sound
Manager) 50–51

sample values for 51

W
whose clause

OSL support for 7
speeding up resolution 6–26
versus loop-based scripts 6–7

whose clause resolution 6–26
optimizing 23–25
OSL and 7, 10–15
sample application 15–17
See also scriptable objects

whose descriptor 10
contents of 11–12, 13
interpreting the contents of

13–14
parsing 12–15

wireframe renderer (QuickDraw
3D), Macintosh Q & A 105

wrapping of parts (of OpenDoc
documents) 37

d e v e l o p Issue 24 December 1995128

