
Generating
QuickTime VR
Movies From
QuickDraw 3D

Flicker-Free
Drawing With
QuickDraw GX

NURB Curves:
A Guide for the
Uninitiated

Using C++
Exceptions in C

Country Stringing:
Localized Strings
for the Newton

Issue 25 March 1996

d e v e l o p
T h e A p p l e T e c h n i c a l J o u r n a l

$10.00

GX Breaks the Space Hack • Display Manager • Using ToolServer From CodeWarrior

E D I T O R I A L S T A F F

Editor-in-Cheek Caroline Rose

Managing Editor Toni Moccia

Technical Buckstopper Dave Johnson

Bookmark CD Leader Alex Dosher

Able Assistant Meredith Best

Our Boss Mark Bloomquist

His Boss Dennis Matthews

Review Board Brian Bechtel, Dave Radcliffe,
Jim Reekes, Bryan K. “Beaker” Ressler,
Larry Rosenstein, Andy Shebanow, Nick
Thompson, Gregg Williams

Contributing Editors Lorraine Anderson,
Steve Chernicoff, Linda Fogel, Toni Haskell,
Judy Helfand, Cheryl Potter, Joan Stigliani

Indexer Marc Savage

A R T & P R O D U C T I O N

Art Direction Lisa Ferdinandsen

Technical Illustration John Ryan, Laurie
Wigham

Formatting Forbes Mill Press

Production Diane Wilcox

Photography Sharon Beals, Naomi Chesler

Cover Illustration Graham Metcalfe of
Metcalfe/Shuhert Design

ISSN #1047-0735. © 1996 Apple Computer, Inc.
All rights reserved. Apple, the Apple logo, APDA,
AppleLink, AppleScript, ColorSync, HyperCard,
LaserWriter, Mac, MacApp, MacBrowser, Macintosh,
MacTCP, MPW, MultiFinder, Newton, NewtonMail,
OpenDoc, PhotoFlash, PlainTalk, PowerBook, Power
Mac, Power Macintosh, QuickTime, TrueType, and
WorldScript are trademarks of Apple Computer,
Inc., registered in the U.S. and other countries.
AOCE, A/ROSE, develop, Dylan, eWorld, Finder,
NewtonScript, PowerTalk, QuickDraw, and ToolServer
are trademarks of Apple Computer, Inc. Adobe,
Acrobat, and PostScript are trademarks of Adobe
Systems Incorporated or its subsidiaries and may be
registered in certain jurisdictions. PowerPC is a
trademark of International Business Machines
Corporation, used under license therefrom. UNIX is a
registered trademark of Novell, Inc. in the United
States and other countries, licensed exclusively through
X/Open Company, Ltd. NuBus is a trademark of Texas
Instruments. All other trademarks are the property of
their respective owners.

T H I N G S T O K N O W

develop, The Apple Technical
Journal, a quarterly publication of
Apple Computer’s Developer Press
group, is published in March, June,
September, and December. develop
articles and code have been reviewed
for robustness by Apple engineers.

This issue’s CD. Subscription issues
of develop are accompanied by the
develop Bookmark CD. This CD contains
a subset of the materials on the monthly
Developer CD Series, available through
the Apple Developer Catalog. Included
on the CD are this issue and all back
issues of develop along with the code
that the articles describe. (The code is
updated periodically, so always use the
most recent CD.) The CD also
contains Technical Notes, sample code,
and other documentation and tools
(these contents are subject to change).
Items referred to as being on “this
issue’s CD” are located on either the
Bookmark CD or the Reference
Library or Tool Chest edition of the
Developer CD Series. Much of the CD
contents, including the develop issues
and code, are also available in the
Developer Services area on AppleLink
and at ftp.info.apple.com. See also the
World Wide Web site for Apple
Developer Services and Products, at
http://dev.info.apple.com.

Macintosh Technical Notes.
A designation like “(QT 4)” after a
reference to a Macintosh Technical
Note or Macintosh Technical Q&A in
develop indicates the category and
number of the Note on this issue’s CD.
(QT is the QuickTime category.) The
new (uncategorized) Technotes are
designated by number alone.

E-mail addresses. Many e-mail
addresses that are mentioned in develop
are AppleLink addresses. On the
Internet, AppleLink address XXX
translates to xxx@applelink.apple.com.
NewtonMail address XXX translates to
xxx@online.apple.com.

C O N T A C T I N G U S

Feedback. Send editorial comments
or suggestions to Caroline Rose at
AppleLink CROSE, Internet
crose@applelink.apple.com, or fax
(408)974-6395. Send technical
questions about develop to Dave
Johnson at AppleLink JOHNSON.DK,
Internet dkj@apple.com, CompuServe
75300,715, or fax (408)974-6395. Or
write to Caroline or Dave at Apple
Computer, Inc., 1 Infinite Loop,
Cupertino, CA 95014.

Article submissions. Ask for our
Author’s Guidelines and a submission
form at AppleLink DEVELOP,
Internet develop@applelink.apple.com,
or fax (408)974-6395. Or write to
Caroline Rose at the above address.

Subscriptions and back issues.
You can subscribe to develop through
the Apple Developer Catalog (see
ordering information below) or use
the subscription card in this issue.
You can also order printed back issues
through the catalog. The one-year U.S.
subscription price is $30 (for 4 issues and
4 develop Bookmark CDs), or U.S. $50 in
other countries. Back issues are $13
each. These prices include shipping
and handling. For Canadian orders,
the subscription price includes GST
(R100236199).

Apple Developer Catalog. To
order develop or other products through
the catalog, or to make subscription-
related queries, call 1-800-282-2732 in
the U.S., 1-800-637-0029 in Canada,
(716)871-6555 internationally, or
(716)871-6511 for fax. You can send
e-mail to AppleLink APDA, Internet
apda@applelink.apple.com, America
Online APDAorder, or CompuServe
76666,2405. Or write Apple Developer
Catalog, Apple Computer, Inc., P.O. Box
319, Buffalo, NY 14207-0319. For all
subscription changes or queries, please
be sure to include your name, address, and
account number as it appears on your mailing
label.Printed on recycled paper

d e v e l o p

A R T I C L E S

5 Generating QuickTime VR Movies From QuickDraw 3D by Pete Falco and
Philip McBride
QuickTime VR movies don’t have to be created with a real camera; you can instead generate the necessary
images with a 3D graphics system like QuickDraw 3D. Here’s how.

29 Flicker-Free Drawing With QuickDraw GX by Hugo M. Ayala
This article discusses the causes of flicker in graphics and animation applications and presents a package for
doing memory-efficient, flicker-free drawing with QuickDraw GX.

48 NURB Curves: A Guide for the Uninitiated by Philip J. Schneider
QuickDraw 3D includes NURB curves among its geometries, but you need to understand a little about the
underlying NURB model to use them effectively. This intuitive treatment of NURB curves tells you what
you need to know.

78 Using C++ Exceptions in C by Avi Rappoport
Exceptions in C++ provide a powerful and useful way to handle errors and other unexpected conditions. But
C programmers can take advantage of them as well, since C is (mostly) a subset of C++.

90 Country Stringing: Localized Strings for the Newton by Maurice Sharp
Although version 1.5 of the Newton Toolkit provides some built-in support for localizing strings, organizing
the different sets of strings is still problematic. Or rather, it was until now.

C O L U M N S

26 PRINT HINTS
QuickDraw GX Breaks the Space Hack
by Dave Polaschek
With QuickDraw GX around, downloading
fonts to PostScript printers is a little different.

44 GRAPHICAL TRUFFLES
The Display Manager
by Mike Marinkovich
The Display Manager simplifies gathering
information about the computer’s displays, and
also lets you track changes made by the user.

75 ACCORDING TO SCRIPT
Properties and Preferences
by Cal Simone
Some advice on two problematic areas of
scripting support.

87 MPW TIPS AND TRICKS
Using ToolServer From CodeWarrior
by Tim Maroney
Combining ToolServer with CodeWarrior’s new
plug-in compiler architecture proves fruitful.

99 NEWTON Q & A: ASK THE LLAMA
Answers to Newton-related development
questions; you can send in your own.

103 THE VETERAN NEOPHYTE
Killing Time Killers
by Bo3b Johnson
Are computers taking up too much of your
time? Here are some tips to help get it back.

108 MACINTOSH Q & A
Apple’s Developer Support Center answers
queries about Macintosh product development.

117 KON & BAL’S PUZZLE PAGE
Printing, Patching, and Fonts
by Dave Hersey and Cameron Esfahani
Is there no end to the mystery, intricacy, and
depth of the Macintosh? Apparently not.

Issue 25 March 1996

CONTENTS 1

2 EDITOR’S NOTE
3 LETTERS

123 INDEX

I’d like to make some general comments on user interface that I’ve been collecting
for a while. Please understand I don’t claim to be an expert on the subject — and, as
always, the usual disclaimer applies that my opinions aren’t necessarily those of Apple
Computer the corporate entity. I’m just one person who has the luxury (as well as the
burden) of filling an editorial page, and this is what’s on my mind.

First I’d like to make a pitch for a more obvious and responsive channel for users to
give feedback on the experience of working with your software: What bugs them
about it? Do they have suggestions for improvement? It seems that such feedback
gets lost if it’s delivered through the usual customer support (bug-reporting) vehicle.
Or maybe it gets delivered to the wrong person, like the engineer who designed and
implemented that feature in the first place and can give 99 excellent reasons for why
it was done that way. When I first returned to Apple from NeXT and had to use a lot
of new applications, I encountered a number of interface glitches that were short of
being bugs but made using the applications unnecessarily awkward. I suggested a
few simple fixes through the customer support line, sensing some interest but the
assignment of a low priority. Alas, those annoying features are all still there five years
and a couple of upgrades later.

This ties in with a peeve that I share with many of my computer-using friends who
don’t work in this industry and so have that valuable perspective of a pure end user:
Please avoid making spurious interface “improvements” that change the basic way
I work with your application. Be sure there’s a real benefit to the user before you
change command names, rearrange them in menus, or put new features in my face
rather than making them options I can explore at will. You may think you’re making
the interface friendlier, but in fact you may be alienating your existing customer base.
The changes that I most appreciate are those that smooth out the rough spots of
the interface as it is, so that, for example, I won’t have to resize every mail window
to fit my screen, or select the text in the Find box every time I do a new search. I
want these nuisances eliminated; instead, I find the upgrade to be just another big
nuisance.

We interrupt this list of grievances to announce another list we just learned about:
develop has been chosen by Internet Valley, Inc. as one of the top 100 computer-related
magazines and journals on the Web (http://www.internetvalley.com/top100mag.html).
I’m happy enough about this to quit my griping about user interface for now —
though I do see a tie-in here: we’ve always encouraged and responded to comments
from our readers, and we’ve tweaked our content and format accordingly rather than
done a complete overhaul. Thanks for all the valuable feedback over the years; please
keep it coming so that we can keep improving.

CAROLINE ROSE

d e v e l o p Issue 25 March 19962

EDITOR’S NOTE

CAROLINE ROSE (AppleLink CROSE) has been
a technical editor for so long that she says she
can do it with her eyes closed. And that’s exactly
what she did after being felled by a detached
retina during her last vacation. Lying down for
over two weeks with her lids shut and not much to

do except listen to books on tape, she welcomed
the occasional phone call on a develop-related
editorial question. Getting back to work and
realizing how much catching up she had to do
was a real eye-opening experience.•

Caroline Rose
Editor

WEB FIRST, THEN PRINTED COPY
develop is absolutely the coolest
publication for a Mac developer. I
thought I would drop a line to say
“thanks” for putting the next issue up
on the Web a full month before it will
arrive at my home. At least this way I
can get a partial fix!

Good job!

— Rob Newberry

I just noticed that you’ve released
develop Issue 24 online. I’m a subscriber,
yet I have to call or send e-mail to you
each time to remind you to send my
issue!

Your magazine is terrific, but the service
is quite the opposite.

— Carl Limisco

As a service to developers who may want
access to content as soon as it’s finalized,
develop content is uploaded to the Web
within three days of issue completion.
The print and CD-ROM production
processes, however, consume more time
and thus result in the delay between when
you may first see content on the Web and
when you receive your copy with its CD
in the mail.

In the case of Issue 24, this period was
extended due to technical difficulties with
generating the mailing information.
Starting with Issue 23, we switched to
APDA for distribution of develop. There
have been a few snags in the transition,
but we’re confident that subscribers will
experience improved service. Meanwhile,
we apologize for any problems.

— Diane Wilcox

PUZZLE PAGE SLIP-UP
When I received develop Issue 24, I was
shocked to find a bug in the Puzzle
Page. When BAL is explaining how
LockPixels and UnlockPixels work, he
mentions that the PixMap baseAddr can
be either a handle or a pointer, and that
a flag in rowBytes identifies which state
the baseAddr is in. This is wrong; that
information is stored in the pmVersion
field of the PixMap. There aren’t any
bits to spare in rowBytes.

Other than that, it was a great Puzzle
Page, as usual.

— Cameron Esfahani

You’re right; you caught this slip-up by the
puzzlemeisters themselves. Say, if you’re so
good, why not write your own Puzzle Page?
[Readers: See the puzzle Cameron coauthors
in this issue.]

— Caroline Rose

MULTIPANE FIXES — AND
ABOUT USING OUR CODE
The code accompanying Norman
Franke’s article on multipane dialogs
(develop Issue 23) is great. I had it up and
running in a PowerPlant application in
less than an hour. But I found some
bugs; for example, in the routines
T2PMPDAction and friends, you lock
down theData, and I suspect you should
be locking down tmpData. Before I get
down and dirty, I was wondering if you
knew of any other bugs already present.

Also, the code needs an extra routine
to generate the data handle without
displaying the dialog so that one might
set the initial values (as opposed to
using factory defaults).

LETTERS

LETTERS 3

SEND US YOUR EXCUSE FOR NOT WRITING
Well, actually, we’d rather receive letters regarding
articles published in develop. Letters should be
addressed to Caroline Rose — or, if technical
develop-related questions, to Dave Johnson — at
AppleLink CROSE or JOHNSON.DK (Internet
crose@applelink.apple.com or dkj@apple.com).

All letters should include your name and company
name as well as your address and phone number.
Letters may be excerpted or edited for clarity (or
to make them say what we wish they did). Please
send all subscription-related queries to AppleLink
APDA (Internet apda@applelink.apple.com).•

When I get the PowerPlant classes
working and debugged, I’d like to
distribute them on the Internet (free).
May I include your code (possibly
modified)?

Again, thanks for a great article.

— Gordon Watts

Norman has provided a newer version of his
code as of Issue 24’s CD. He’s fixed a lot of
bugs and also now provides PowerPlant
classes; see the README file for details.

You may redistribute the MPDialogs source
if you like, as long as it’s part of your own
thing and not just a redistribution of the
original package. For instance, you’ll
probably not be distributing Norman’s
sample or its source, but just the files
MPDialogs.c and MPDialogs.h. Please
include a pointer to where they came from,
since presumably the code will change over
time (bug fixes and so on).

By the way, you can contact Norman
directly at franke@eworld.com.

— Dave Johnson

d e v e l o p Issue 25 March 19964

The observant among you will notice a change in
Technical Notes on this issue’s CD (and on the World
Wide Web and the other myriad places where they can
be found). The old Macintosh Technical Notes are still
around, but now there are also new Notes, going simply
by the name “Technotes.” The old Notes will eventually
evolve into the new scheme. We talked with Technote
leader Tom Maremaa, from Apple’s Developer Technical
Support group, for the scoop on this.

“The old Notes have a rich and varied history at Apple,
and have served developers well in the past,” Tom said.
“We wanted to continue that tradition –– but with
changes, something on the order of Technotes: The Next
Generation.”

First, Tom hopes you’ll agree that the biggest improvement
is in the quality of the new Technotes. They receive far
more review by Apple engineers than the old Notes did,
and they’re better edited and formatted, so you should
find them a lot more readable and reliable. Technotes will
also be timelier: more of them will focus on hot new
technologies, such as QuickTime VR and QuickDraw 3D,
with updates and additions posted regularly on the Web
at http://dev.info.apple.com/technotes/Main.html.
They’ll migrate to develop’s CD and other such locations,
but you’ll no longer have to wait that long for the latest
and greatest information.

You’ll notice that Technotes are numbered sequentially,
starting from 1001, rather than divided into functional
categories. Tom found that placing a Note into a single
category was becoming increasingly difficult and arbitrary;
often a topic would span more than one category or
wouldn’t quite fit into any existing category. Locating a

Note on a particular subject is easier than ever thanks to
the improved searching tools that are now available: you
can use Acrobat’s search mechanism on the CD or the
excellent search facility provided on Apple’s Web pages.

“Providing developers with the ability to search fast and
effectively through the whole body of Technotes,
particularly on the Web,” said Tom, “has been a major
goal in the project. It’s there now. Check it out!”

The old Macintosh Technical Notes are gradually being
cleaned up: over time they’ll be updated and worked into
the new scheme, or deleted if obsolete. Should you look
for an old Note by category and number, you’ll find a
“stub” indicating its current status if it’s been revised or
removed. In particular, the old Q&A Technical Notes are
being discontinued; new Q&As are being released as
“Macintosh Technical Q&As” (they’re on the Web at
http://dev.info.apple.com/techqa/Main.html).

For those of you who like to have Notes in printed form,
you can still order a printed copy (of both the old and the
new Notes). See the Technotes Web page or the latest
Apple Developer Catalog for details.

Finally, Tom would like to point out that Technotes can be
submitted by outside authors (although Caroline asks that
you first consider whether develop might be a more
appropriate vehicle for your handiwork :-). If your Note is
published, you’ll receive YATS (Yet Another T-Shirt) along
with some other goodies, including a chance to participate
in Apple developer kitchens and other special events. For
more information, or just to let us know what you think of
all these changes, write to AppleLink DEVFEEDBACK
(devfeedback@applelink.apple.com).

TECHNOTES AND Q&AS: BETTER THAN EVER

QuickTime VR is a new technology from Apple that provides users
with a virtual reality experience through interactive panoramic and
object movies. You can generate images for QuickTime VR movies
with either a real camera or a three-dimensional rendering system
such as QuickDraw 3D. Here you’ll learn how to create images from
QuickDraw 3D models and generate movies from these images with
the QuickTime VR Authoring Tools Suite version 1.0.

QuickTime VR lets you create two kinds of interactive virtual reality movies:
panoramic movies and object movies. In a panoramic movie, users can interactively view
a scene at nearly all camera angles from a particular point in space, which gives them
the impression of being there and looking around. In an object movie, users can
interactively spin an object around and thereby see it from all sides. Panoramic and
object movies can be linked together or used separately.

QuickTime VR has several advantages over three-dimensional modeling systems for
making interactive movies. Its movie files are much smaller than complex 3D models
in situations where complete interactivity with the scene isn’t necessary, or where the
scene contains complex objects or large numbers of textures. With QuickTime VR,
the complexity of the scene and the number of textures used are irrelevant to runtime
performance, so even users with lower-end machines can effectively interact with the
scene. Finally, a QuickTime VR scene needs only a few megabytes of free space in
memory, much less than the enormous amount of RAM usually taken up by complex
3D scenes.

You can create QuickTime VR movies using either digitized images captured from
a real camera or synthetic images generated by a 3D rendering system, such as
QuickDraw 3D. In this article, you’ll learn how to generate images with QuickDraw
3D and convert them to QuickTime VR movies. To make a panoramic movie, you
create a panoramic image from a 3D scene, generate a linear QuickTime movie from
the image, and convert the linear movie to an interactive panoramic movie using the

PETE FALCO AND
PHILIP MCBRIDE

Generating QuickTime VR Movies From
QuickDraw 3D

GENERATING QUICKTIME VR MOVIES FROM QUICKDRAW 3D 5

PETE FALCO (AppleLink FALCOP) is a member of
Apple’s QuickTime VR team. Since finishing school
at Rensselaer Polytechnic Institute in upstate New
York, where he spent the last six years in the
rainy, snowy weather of Troy, he’s found the
sunny weather of California a welcome treat and
vows he’ll never leave this area. His latest
projects include working on the next release of
QuickTime VR as well as integrating all of Apple’s
multimedia technologies with QuickTime VR.•

PHILIP MCBRIDE (mcbride@apple.com) has been
working on multimedia tools and the underlying
media technologies since he’s been at Apple. Most
recently this included helping to add QuickTime
VR to Apple Media Tool 2.0. While not working
with digital multimedia, Philip likes to work with
real multimedia by sculpting. In fact, he’s been
developing a new product that will involve clay, a
mouse, and a bottle of cabernet. The details are
sketchy, but he has a cool T-shirt for it.•

QuickTime VR Authoring Tools Suite (ATS). (The ATS is a set of tools that you use
from within MPW, the Macintosh Programmer’s Workshop.) To create an object
movie, you generate a series of images from a 3D model, add the images to a linear
QuickTime movie, and then use the QuickTime VR ATS to convert the linear movie
to an interactive object movie.

Before we get into the specifics of making movies, we’ll explore the basic concepts of
QuickTime VR. We assume you have a general understanding of QuickDraw 3D,
which you can get by reading “QuickDraw 3D: A New Dimension for Macintosh
Graphics” in develop Issue 22 and “The Basics of QuickDraw 3D Geometries” in
develop Issue 23. You can learn all about QuickDraw 3D in the book 3D Graphics
Programming With QuickDraw 3D.

This issue’s CD contains all the code necessary to generate panoramic images and
linear object movies from QuickDraw 3D models. For brevity, the listings in the
article omit error handling; the code on the CD includes the complete versions of
these functions.

QUICKTIME VR BASICS
The basic components of QuickTime VR movies are panoramas, nodes, objects, and
scenes.

• A panorama is an image spanning 360° or less in a real or virtual scene. The
image is viewed from a particular location in the scene, called a node. A
single-node panoramic movie enables a user to look in all directions from
that location.

• An object is an interactive item that can be viewed from all angles. Object
movies can be linked to panoramic movies in a scriptable authoring
environment, enabling a user to pick up and turn the objects from within a
panorama. Object movies can also be used independently of panoramic
movies.

In our case, the object of the movie is generated from a QuickDraw 3D
model, which contains a single geometric object (or group of objects); we’ll
use the term model in this article to refer to the object in a QuickTime VR
object movie.

• A scene is a collection of several panoramas or nodes, a panorama with one
or more objects, or several panoramas and objects all linked together by
interactive hot spots. In a multinode scene, a user can navigate from node to
node to move about the scene.

SHOOTING AN OBJECT
For object movies, you need to photograph the model (or the real object) from all
directions, as shown in Figure 1. All vertical camera positions above the center of the
model are considered positive, and all positions below it are considered negative. The
vertical position with the camera directly above the model looking down at it is called
vertical pan 90°; the vertical position directly below and looking up is called vertical
pan -90°. Vertical pan 0° is at the model’s center (equator). Horizontal positions are
measured in degrees from horizontal pan 0° to 360°. Horizontal pan 0° is typically at
the back of the model.

Images must be stored as frames in row order from top to bottom in a linear QuickTime
movie. For best results, we (along with the QuickTime VR documentation) recommend
that you have a frame every 10° between positions in both the horizontal and vertical
direction. If you shoot at increments greater than 10°, the motion of the model in the

d e v e l o p Issue 25 March 19966

QuickTime VR movie will be choppier when the user turns it. If you shoot at
increments of less than 10°, the motion will be smoother, but you’ll need more disk
space to store all the frames. Whatever increment you choose, it should be consistent
between all horizontal and vertical frames for the object and divide evenly into the
horizontal and vertical pan ranges.

Your first frame at each horizontal position should be of the back of the model, so
that the frame showing the front of the model is halfway through the series at that
horizontal position. This improves disk access time at run time since the user will
most likely be looking at the front of the model.

SHOOTING A PANORAMA
If you’re using a real camera to shoot a panorama, you need to take the appropriate
number of equally spaced pictures in a circle, as shown in Figure 2.

Although this sounds simple, there are a few things you must be aware of. First, you
need to make sure you’re taking the right number of shots for the lens you’re using
(see Chapter 6 in Volume 1 of the QuickTime VR ATS documentation for a full
explanation of this). The entire camera rig should be level at all times, and the nodal
point of the lens should be directly over the point of rotation of the rig. For best

GENERATING QUICKTIME VR MOVIES FROM QUICKDRAW 3D 7

90°

–90°

0°Horizontal pan Vertical pan

Figure 1. Shooting a model (or a real object)

Figure 2. Shooting a panorama

results, you should also have a consistent overlap between images; the more overlap,
the better (30% to 50% is recommended). Finally, you should maintain consistency
between images in each panorama by using similar exposure and a fixed focus.

Because this can get quite complicated, Apple strongly recommends the use of a
professional photographer for making any production-quality titles. However, one
way around this is to use rendered data, as we do in this article. The programmatic
control we have over the “virtual” camera in a 3D environment such as QuickDraw
3D eliminates all of the problems just mentioned.

MAKING MOVIES WITH THE SAMPLE CODE
The sample code on this issue’s CD enables you to make object and panoramic movies
from any 3DMF file (a file that conforms to the QuickDraw 3D Object Metafile
standard). For either type of movie, the code creates a new document record structure,
reads in the model from a 3DMF file, renders the images, and writes out the images
in a form that the QuickTime VR tools can work with.

Here we’ll look at the first few steps, which are common to both types of movies.
The other steps for making QuickTime VR movies — rendering and writing out the
images and converting linear movies to interactive movies — are different for object
and panoramic moviemaking and are described later.

CREATING A NEW DOCUMENT
All of our scene information is stored in a document record structure, shown in
Listing 1.

The MyNewDocument function (Listing 2) creates the document record structure
and sets up the view, camera, and other elements associated with the scene. It also
adds the background buffer and window used to display the rendered images of the
scene.

CREATING THE CAMERA
The camera used to render the images for the movies is created by the MyNewCamera
function, shown in Listing 3.

For object movies, we set the field of view to approximately 30°. This is not a fixed
number; you can use any number that you see fit, based generally on the aspect ratio
of your viewing window and how much information you’d like to display inside it.

d e v e l o p Issue 25 March 19968

Listing 1. The document record structure for a scene

typedef struct _DocumentRecord {
CWindowPtr theWindow; // Display window
FSSpec theFileSpec; // Model file specification
short fRefNum; // and reference
GWorldPtr drawContextOffScreen; // Offscreen buffer
TQ3GroupObject documentGroup; // Main group for the document
TQ3ViewObject theView; // The document's view object
TQ3Matrix4x4 modelRotation; // The model transform
TQ3Point3D documentGroupCenter; // Center of the model
... // Miscellaneous view, model, and QuickTime file details

} DocumentRecord, *DocumentPtr, **DocumentHandle;

GENERATING QUICKTIME VR MOVIES FROM QUICKDRAW 3D 9

Listing 2. Creating a new document record structure

DocumentPtr MyNewDocument()
{

DocumentPtr theDocument;
CWindowPtr theWindow;
TQ3DrawContextObject theDrawContext;
Rect myBounds = kMyBoundsRect;
TQ3CameraObject camera = NULL;
RGBColor blackColor = kMyBlackColor;
...

theDocument = (DocumentPtr)NewPtrClear(sizeof(DocumentRecord));

// Create the window for the document record and add references to
// the document record.
theWindow = (CWindowPtr)NewCWindow(0L, &myBounds,

"\pRendering Window", true, documentProc, (WindowPtr)-1L,
true, NULL);

theDocument->theWindow = theWindow;

// Create and set up the offscreen GWorld/context.
// ** Notice that QuickDraw 3D prefers direct color. **
NewGWorld(&theDocument->drawContextOffScreen, 32,

&theWindow->portRect, nil, nil, 0L);
...
SetGWorld(theDocument->drawContextOffScreen, nil);
EraseRect(&theDocument->drawContextOffScreen->portRect);
...

// Create the new pixmap draw context.
theDrawContext = MyNewDrawContext(theDocument);

// Create the view and set up the view attributes.
...
// Initialize the model rotation and transitions used for object
// movie rotations.
Q3Matrix4x4_SetIdentity(&theDocument->modelRotation);

// Add more model and view properties to the document record.
...
// Create the camera and add it to the view.
camera = MyNewCamera(theDocument->theWindow);
Q3View_SetCamera(theDocument->theView, camera);
Q3Object_Dispose(camera);

// Add the renderer to the view. Set the window's GWorld.
Q3View_SetRendererByType(theDocument->theView,

kQ3RendererTypeInteractive);
SetGWorld(theWindow, nil);

return (theDocument);
}

For panoramic movies, we set the field of view to 74°. This matches the horizontal
field of view of a 15mm lens for our image. We specify the horizontal rather than
vertical field of view since our image is taller than it is wide (768 x 512 pixels), and
QuickDraw 3D requires the field of view to be specified as that of the shorter side of
the image (whether width or height). We calculate the horizontal field of view based
on the size of our image and the known vertical field of view of a 15mm lens (97°, as
specified in Chapter 9 of the QuickTime VR ATS documentation).

READING IN THE MODEL
For the model to be read from a 3DMF file, you must first create 3D file and storage
objects associated with that file. Once they’ve been created, you build up the model
by reading in all the drawable objects from the file and adding them to a group, as
shown in Listing 4.

If the model includes any lighting, we use those lights; otherwise we create our own
lighting for the model.

d e v e l o p Issue 25 March 199610

Listing 3. Creating the rendering camera

TQ3CameraObject MyNewCamera(CWindowPtr theWindow)
{

TQ3ViewAngleAspectCameraData perspectiveData;
TQ3CameraObject camera;
// For object movies, we set the field of view to 30 degrees (or
// 30.0*kQ3Pi/180.0 radians). For panoramic movies, we set it to
// 74 degrees (or 74*kQ3Pi/180.0 radians). QuickDraw 3D requires
// angles to be in radians, while QuickTime VR requires them to
// be in degrees.
float fieldOfView = 30.0*kQ3Pi/180.0;
TQ3Status returnVal = kQ3Failure;

// Assign default placement.
perspectiveData.cameraData.placement.cameraLocation = kMyDefaultFrom;
perspectiveData.cameraData.placement.pointOfInterest = kMyDefaultTo;
perspectiveData.cameraData.placement.upVector = kMyDefaultUp;
perspectiveData.cameraData.range.hither = kMyDefaultHither;
perspectiveData.cameraData.range.yon = kMyDefaultYon;

// Assign standard view port.
perspectiveData.cameraData.viewPort.origin.x = -1.0;
perspectiveData.cameraData.viewPort.origin.y = 1.0;
perspectiveData.cameraData.viewPort.width = 2.0;
perspectiveData.cameraData.viewPort.height = 2.0;

perspectiveData.fov = fieldOfView;
perspectiveData.aspectRatioXToY =

(float) (theWindow->portRect.right - theWindow->portRect.left) /
(float) (theWindow->portRect.bottom - theWindow->portRect.top);

camera = Q3ViewAngleAspectCamera_New(&perspectiveData);

return (camera);
}

GETTING THE DIMENSIONS OF THE MODEL
We must know the dimensions of the entire model as well as its center in order to place
the camera in its initial position and to guide both camera and model transformations.
You obtain the dimensions and center of an already constructed model by getting the
model’s bounding sphere with the function MyGetBoundingSphere (Listing 5). The
bounding sphere is another 3D object that fully surrounds the model and has as its
center the exact center of the model.

For object movies, the bounding sphere has an additional purpose. Although a 3D
model from a QuickDraw 3DMF file may contain more than one geometric object,

GENERATING QUICKTIME VR MOVIES FROM QUICKDRAW 3D 11

Listing 4. Reading in the model

TQ3Status MyReadScene(TQ3FileObject file, DocumentPtr theDocument)
{

TQ3Object object;
TQ3Boolean isEOF;
TQ3ViewObject view;
TQ3Object model;
TQ3GroupObject lightGroup = NULL;

// Create the new model and get the view.
model = Q3DisplayGroup_New();
theDocument->documentGroup = model;
view = theDocument->theView;

// Collect all drawable objects (into the model) and collect any
// lights (into the lightGroup).
while ((isEOF = Q3File_IsEndOfFile(file)) == kQ3False) {

object = Q3File_ReadObject(file);

if (Q3Object_IsDrawable(object))
Q3Group_AddObject(model, object);

if (Q3Object_IsType(object, kQ3SharedTypeViewHints))
if (view)

Q3ViewHints_GetLightGroup((TQ3ViewHintsObject)object,
&lightGroup);

if (object != NULL)
Q3Object_Dispose(object);

}

// Add any lights found to the view. Otherwise create default lights.
if (lightGroup) {

Q3View_SetLightGroup(view, lightGroup);
Q3Object_Dispose(lightGroup);

}
else

MyNewLights(theDocument);

Q3File_Close(file);
return kQ3Success;

}

a QuickTime VR object movie has only one geometric object or one group of objects.
Thus, we use the bounding sphere to get the dimensions of the entire group of objects.

MAKING A QUICKTIME VR OBJECT MOVIE
Now we’ll get into the specifics of making a QuickTime VR object movie. The
MyConvert3DMFToObject function (shown in Listing 6) drives the entire process,
from creating the new document to generating the linear object movie. You use the
QuickTime VR ATS to generate an interactive object movie from this linear movie.

d e v e l o p Issue 25 March 199612

Listing 5. Getting the model’s bounding sphere

void MyGetBoundingSphere(TQ3ViewObject viewObject, TQ3GroupObject
mainGroup, TQ3BoundingSphere *viewBSphere)

{
TQ3Status status;

Q3View_StartBoundingSphere(viewObject, kQ3ComputeBoundsApproximate);
do {

status = Q3DisplayGroup_Submit(mainGroup, viewObject);
} while (Q3View_EndBoundingSphere(viewObject, viewBSphere) ==

kQ3ViewStatusRetraverse);
}

Listing 6. Converting 3DMF files to linear object movies

void MyConvert3DMFToObject(FSSpec *myFSS)
{

DocumentPtr theDocument;

// Create the document record and make the view, camera, lights,
// window, and so on.
theDocument = MyNewDocument();

// Read in the model and add it to the document record's group.
MyOpenFile(myFSS);

// Set up the initial camera position.
MyInitObjCamera(theDocument);

// Draw initial view to the screen.
MyDrawOffScreen(theDocument);
MyDrawOnScreen(theDocument);

// Assign the codec type.
theDocument->theCodecType = kMyCodec;

// Generate all the images and add them to the movie.
MyGenerateObjImages(theDocument, 36, 19, 360, 0, 90, -90);

...
}

DOING THE MODEL AND CAMERA WORK
Photographing a real object involves using a spherical camera rig to rotate a camera
around the object. For 3D models, it’s just as easy to rotate the model in front of a
stationary camera. Furthermore, since the camera doesn’t move in this case, the
lighting is easier to manage because it doesn’t need to be rotated with the camera
(unless you want the object to appear to be lighted from a certain angle).

In our case, we’ll render images of the model by rotating the model around two of its
axes while the camera views it from the third axis; thus the camera gets a view of the
model from every angle. In our case, we’ll place the camera along the z axis and
rotate the model around the x and y axes. The initial positions of the camera and the
model can be seen in Figure 3.

The initial placement of the camera for an object movie is performed by the function
MyInitObjCamera, shown in Listing 7. First we get the bounding sphere of the
drawable group of the model. From this we can get the center 3D point of the
drawable group (as the origin of the bounding sphere) and the radius. From the
center point we place the camera a distance of five times the radius down the z axis
from the object.

We rotate the model by repeatedly modifying the model’s transform object. The
function MyRotateObjectX rotates the object around its x axis (see Listing 8). An
analogous function that’s not shown here, MyRotateObjectY, rotates it around the
y axis.

We step through the model rotations to create the images needed for the linear
object movie with the MyGenerateObjImages function, shown in Listing 9. In this
function, we iterate over y angles (rotating around the x axis) while iterating over
x angles (rotating around the y axis). This stepping takes us from the position
yAngle = maxVPan, xAngle = minHPan to the position yAngle = minVPan,
xAngle = maxHPan – minHPan. At each step in the x and y angles, the model is

GENERATING QUICKTIME VR MOVIES FROM QUICKDRAW 3D 13

 Model’s coordinate system

Model

Bounding sphere

x

z

y

Figure 3. Initial positions of the camera and the model for object movies

d e v e l o p Issue 25 March 199614

Listing 7. Setting the initial camera position for an object movie

TQ3Point3D MyInitObjCamera(DocumentPtr theDocument)
{

TQ3BoundingSphere viewBSphere;
float viewRadius;

// Get the bounding sphere of the drawable group (the entire model)
// in the view.
MyGetBoundingSphere(theDocument->theView, theDocument->documentGroup,

&viewBSphere);

// Get the bounding sphere's center and radius.
theDocument->documentGroupCenter = viewBSphere.origin;
viewRadius = viewBSphere.radius;

// Position the camera down the z axis from the bounding sphere based
// on the center and the radius.
MyPlaceCamera(theDocument, theDocument->documentGroupCenter.x,

theDocument->documentGroupCenter.y,
theDocument->documentGroupCenter.z +

kMyDistanceFactor*viewRadius + 1.0,
theDocument->documentGroupCenter.x,
theDocument->documentGroupCenter.y,
theDocument->documentGroupCenter.z +

kMyDistanceFactor*viewRadius);

return (theDocument->documentGroupCenter);
}

Listing 8. Rotating the model for object rendering

void MyRotateObjectX(DocumentPtr theDocument, float angle)
{

TQ3Matrix4x4 tempMatrix;

Q3Matrix4x4_SetTranslate(&tempMatrix,
-theDocument->documentGroupCenter.x,
-theDocument->documentGroupCenter.y,
-theDocument->documentGroupCenter.z);

Q3Matrix4x4_Multiply(&theDocument->modelRotation, &tempMatrix,
&theDocument->modelRotation);

Q3Matrix4x4_SetRotate_XYZ(&tempMatrix, angle, 0.0, 0.0);
Q3Matrix4x4_Multiply(&theDocument->modelRotation, &tempMatrix,

&theDocument->modelRotation);

Q3Matrix4x4_SetTranslate(&tempMatrix,
theDocument->documentGroupCenter.x,
theDocument->documentGroupCenter.y,
theDocument->documentGroupCenter.z);

Q3Matrix4x4_Multiply(&theDocument->modelRotation, &tempMatrix,
&theDocument->modelRotation);

}

rotated and then rendered. The resulting images are added to a previously created
movie, as described in the next section. Note that QuickTime VR likes angles
in degrees and QuickDraw 3D likes angles in radians, so we have to do these
conversions.

CONSTRUCTING THE LINEAR OBJECT MOVIE
The destination movie is an ordinary QuickTime movie. The movie file, track, and
track media need to be set up before rendered images can be added to the movie. The
images are added as frames to a track. (See Inside Macintosh: QuickTime for more details
about this process.) The movie is constructed in the function MyPrepareDestMovie,
shown in Listing 10.

We add the rendered images to the movie with the QuickTime function
AddMediaSample, which is called from within the function MyAddImageToMovie
(Listing 11). MyAddImageToMovie is called after each model rendering, as seen
earlier in the MyGenerateObjImages function.

GENERATING QUICKTIME VR MOVIES FROM QUICKDRAW 3D 15

Listing 9. Generating images for the linear object movie

void MyGenerateObjImages(DocumentPtr theDocument, short rows, short
columns, long maxHPan, long minHPan, long maxVPan, long minVPan)

{
float xStart, yStart, xStep, yStep, xAngle, yAngle;

// Assign stepping angles.
yStep = ((float)(maxVPan-minVPan))/(float)(rows-1);
xStep = ((float)(maxHPan-minHPan))/(float)(columns-1);

MyPrepareDestMovie(theDocument);

for (yAngle = maxVPan; yAngle >= minVPan; yAngle -= yStep) {
for (xAngle = 0; xAngle <= maxHPan-minHPan; xAngle += xStep) {

// Rotate the object to the correct position.
xStart = (-kQ3Pi*(xAngle -

((float)(maxHPan-minHPan))/2.0))/180.0;
yStart = kQ3Pi*((float)yAngle)/180.0;
MyRotateObjectY(theDocument, xStart);
MyRotateObjectX(theDocument, yStart);

// Render the model (to get a PixMap image).
MyDrawOffScreen(theDocument);
MyDrawOnScreen(theDocument);

// Add the rendered PixMap image to the movie.
MyAddImageToMovie(theDocument);

// Undo the rotation.
MyRotateObjectX(theDocument, -yStart);
MyRotateObjectY(theDocument, -xStart);

}
}
MyCloseDestMovie(theDocument);

}

d e v e l o p Issue 25 March 199616

Listing 10. Creating the destination linear object movie

OSErr MyPrepareDestMovie(DocumentPtr theDocument)
{

long keyFrameRate, compressedFrameSize;
short frameRate, width, height, i;
CodecComponent theCodec;
FSSpec theFSSpec;
TimeScale dstTimeScale;
TimeValue duration;
CodecQ spatialQuality;
Str255 movieName = "\pObjectMovie";

keyFrameRate = 1; // Every frame must be a key frame. If
// not, we'll get garbage around the edges
// of our objects when we rotate them.
// QuickTime refreshes only key frames
// completely.

theCodec = anyCodec; // We'll use what's there
spatialQuality = codecHighQuality; // and make it look pretty.
frameRate = 10; // This can be any value.
dstTimeScale = 600; // This can be any value that's a multiple

// of frameRate.
duration = dstTimeScale/frameRate;

width = theDocument->theWindow->portRect.right -
theDocument->theWindow->portRect.left;

height = theDocument->theWindow->portRect.bottom -
theDocument->theWindow->portRect.top;

theFSSpec = theDocument->theFileSpec;
BlockMove(movieName, theFSSpec.name, movieName[0]+1);

CreateMovieFile(&theFSSpec, creatorType, 0,
createMovieFileDeleteCurFile, &theDocument->dstMovieRefNum,
&theDocument->dstMovie);

theDocument->dstTrack = NewMovieTrack(theDocument->dstMovie,
((long)width) << 16, ((long)height) << 16, 0);

theDocument->dstMedia = NewTrackMedia(theDocument->dstTrack,
VideoMediaType, dstTimeScale, 0, 0);

BeginMediaEdits(theDocument->dstMedia);

GetMaxCompressionSize(theDocument->drawContextOffScreen->portPixMap,
&theDocument->drawContextOffScreen->portRect, 32,
spatialQuality, theDocument->theCodecType, theCodec,
&compressedFrameSize);

theDocument->compressedData = NewHandle(compressedFrameSize);
theDocument->compressedDataPtr =

StripAddress(*(theDocument->compressedData));
HLock(theDocument->compressedData);
theDocument->idh = (ImageDescriptionHandle)NewHandle(4);
...

}

GENERATING THE INTERACTIVE OBJECT MOVIE
To generate the interactive object movie, open the linear movie you just created with
the Navigable Movie Player application (in the QuickTime VR ATS) and choose the
Add Navigable Data menu item. This brings up the dialog shown in Figure 4. Fill
in the fields with the values shown and click OK to change the linear movie to an
interactive movie. Turn the model to the position you want it to be in at the
beginning of the interactive movie, choose the Set Poster View menu item, and
you’re done!

GENERATING QUICKTIME VR MOVIES FROM QUICKDRAW 3D 17

Listing 11. Adding images to the linear object movie

OSErr MyAddImageToMovie(DocumentPtr theDocument)
{

CodecQ spatialQuality;
TimeValue duration, currentTime;

spatialQuality = codecHighQuality;
duration = 60;

LockPixels(theDocument->drawContextOffScreen->portPixMap);
CompressImage(theDocument->drawContextOffScreen->portPixMap,

&theDocument->drawContextOffScreen->portRect, spatialQuality,
theDocument->theCodecType, theDocument->idh,
theDocument->compressedDataPtr);

UnlockPixels(theDocument->drawContextOffScreen->portPixMap);

AddMediaSample(theDocument->dstMedia, theDocument->compressedData, 0,
(**(theDocument->idh)).dataSize, duration,
(SampleDescriptionHandle)theDocument->idh, 1, 0, ¤tTime);

...
}

Figure 4. The Add Navigable Data dialog

MAKING A QUICKTIME VR PANORAMIC MOVIE
There are two approaches to creating panoramic movies. One way is to simulate a
real camera, rotate the camera to generate a series of images, and then “stitch” the
images together into a single 360° panoramic PICT file with the QuickTime VR
stitching tool. This panoramic picture file can be converted first to a linear movie and
then to an interactive movie with the QuickTime VR ATS. This is the technique
we’ll look at first. You can also render a single panoramic image directly; this avoids
the need for the stitching tool and enables us to convert the image into an interactive
panoramic movie with only one line of script. The setup is similar for both approaches.

Throughout the QuickTime VR documentation, examples and references assume a
vertically oriented, 360° full panorama that’s 768 pixels across by 2496 pixels high,
captured with a 15mm lens using portrait orientation. This is exactly the panorama
we’ll create.

Before you begin making the movie, you need to determine the number of shots
required to make your panorama. For a real 360° panorama, the number of shots is
a function of the length of your lens and the amount of overlap between the shots.
For a rendered panorama, however, the number of shots is a function only of the
horizontal field of view. Because the camera position and lighting conditions are
controlled in the code, overlap between the shots isn’t necessary. You can specify any
amount of overlap, but theoretically a one-pixel overlap is all that’s required.

In our case, we’ll simulate the camera that’s recommended in the QuickTime VR
documentation — that is, a camera with a 15mm lens. To be consistent with the
examples in the documentation, we’ll shoot 12 pictures, each 30° apart. This will give
us an overlap of about 50%.

The function MyConvert3DMFToPano (Listing 12) drives the entire panoramic
moviemaking process. Much like MyConvert3DMFToObject, this function creates
a document, reads in the model, and renders the appropriate images.

DOING THE MODEL AND CAMERA WORK
The initial placement of the camera is performed by the function MyInitPanoCamera
(Listing 13). It first gets the bounding sphere of the model’s drawable group, and
from the bounding sphere gets the center 3D point of the group (as the origin of the
bounding sphere). Of course, you can place your camera anywhere you like in the
scene. For simplicity, we placed our camera in the center. From that position, the
camera is rotated to create the images.

For panoramic rendering, we rotate the camera around its y axis with the function
MyRotateCameraY, shown in Listing 14. To do the rotation, we do the equivalent of
translating to local coordinates, rotate, and then translate back to world coordinates.
We do the transformation by making a rotation matrix about the local y axis (the up
vector) at our location, getting our local z axis (by subtracting the point of interest
from the current location), and then rotating the z vector around the y axis. We then
apply this transformation to get a new point of interest. The rectangles encircling the
camera in Figure 2 represent the images rendered after each camera rotation.

To create a series of images, we step through the camera rotations with the
MyGeneratePanoFrames function (Listing 15). Here we rotate the camera 30° at a
time, render an image, and write the image to a PICT file. This gives us 12 PICT
files named 01 through 12 that can be used in a very straightforward manner by the
QuickTime VR ATS. To create a single panoramic image, you use the function
MyGeneratePanoMovieDirect, as shown later.

d e v e l o p Issue 25 March 199618

GENERATING QUICKTIME VR MOVIES FROM QUICKDRAW 3D 19

Listing 12. Converting 3DMF files to panoramic images

void MyConvert3DMFToPano(FSSpec *myFSS)
{

DocumentPtr theDocument;

// Create the document record.
theDocument = MyNewDocument();

// Read the model into the document record.
MyOpenFile(myFSS);

// Set up the initial camera position.
MyInitPanoCamera(theDocument);

// Draw initial view to the screen.
MyDrawOffScreen(theDocument);
MyDrawOnScreen(theDocument);
...
// Create a series of images to stitch together into a panorama.
MyGeneratePanoFrames(theDocument);

// To create a single panoramic image, call MyGeneratePanoMovieDirect
// instead of MyGeneratePanoFrames.
...

}

Listing 13. Setting the initial camera position for a panoramic movie

TQ3Point3D MyInitPanoCamera(DocumentPtr theDocument)
{

TQ3BoundingSphere viewBSphere;
float viewRadius;

// Get the bounding sphere of the drawable group (the entire model)
// in the view.
MyGetBoundingSphere(theDocument->theView, theDocument->documentGroup,

&viewBSphere);

// Get the bounding sphere's center and radius.
theDocument->documentGroupCenter = viewBSphere.origin;
viewRadius = viewBSphere.radius;

// Position the camera in the center of the bounding sphere.
MyPlaceCamera(theDocument, theDocument->documentGroupCenter.x,

theDocument->documentGroupCenter.y,
theDocument->documentGroupCenter.z,
theDocument->documentGroupCenter.x,
theDocument->documentGroupCenter.y,
theDocument->documentGroupCenter.z + 1.0);

return (theDocument->documentGroupCenter);
}

d e v e l o p Issue 25 March 199620

Listing 14. Rotating the camera for panoramic rendering

void MyRotateCameraY(DocumentPtr theDocument, float dY)
{

TQ3CameraObject camera;
TQ3CameraPlacement cameraPos;
TQ3Matrix4x4 myRotation;
TQ3Vector3D initialVector, rotatedVector;

Q3View_GetCamera(theDocument->theView, &camera);
Q3Camera_GetPlacement(camera, &cameraPos);

// Get the z vector.
Q3Point3D_Subtract(&cameraPos.pointOfInterest,

&cameraPos.cameraLocation, &initialVector);

// Rotate around the y axis.
Q3Matrix4x4_SetRotateAboutAxis(&myRotation,

&cameraPos.cameraLocation, &cameraPos.upVector, dY);

// Rotate the z vector around the y axis.
Q3Vector3D_Transform(&initialVector, &myRotation, &rotatedVector);

// Get the point of interest from the rotated vector. The upVector
// doesn't change.
Q3Point3D_Vector3D_Add(&cameraPos.cameraLocation, &rotatedVector,

&cameraPos.pointOfInterest);

Q3Camera_SetPlacement(camera, &cameraPos);
Q3View_SetCamera(theDocument->theView, camera);
Q3Object_Dispose(camera);

}

Listing 15. Generating a series of images for a panoramic movie

void MyGeneratePanoFrames(DocumentPtr theDocument)
{

PicHandle thePict;
float zAngle;
long counter = 0;
Str255 fName;
GWorldPtr gw;
GDHandle gd;
FSSpec outSpec;

GetGWorld(&gw, &gd);
SetGWorld(theDocument->theWindow, nil);

outSpec = theDocument->theFileSpec;
for (zAngle = 360; zAngle >0; zAngle -= 30) {

short i;

(continued on next page)

GENERATING THE INTERACTIVE PANORAMIC MOVIE
You use the MPW tools and scripts provided in the QuickTime VR ATS to generate
your interactive panoramic movie. (See the QuickTime VR ATS documentation for
more information.)

Stitching the images. The stitching tool, called by the Stitch768 script, joins the
series of computer-rendered images of your panorama into a single 360° panoramic
PICT file. It’s also used to stitch digitized photographic images together. The
following example shows a portion of a stitch worksheet, with appropriate values set
for each of the input variables. The stitching tool will use images numbered from 01
to 12 located on the drive named HappyMac.

set panInFolder "HappyMac:RenderedFrames:"
set panOutFolder "HappyMac:RenderedFrames:"
set panRotate 0
set panX 100
set panDX 20
set panY 0
set panDY 10
export panInFolder panOutFolder panRotate panX panDX panY panDY
Stitch768 01-12 MyPano.srcPict

This script stitches your images into a vertically oriented, 360° full panorama that’s
768 pixels across by 2496 pixels high, named MyPano.srcPict.

Dicing the image into a linear movie. The SrcPictToMovie script calls the dicing
tool, which compresses your PICT file and divides it into equal-sized sections called
tiles. For example, a standard-size panorama is “diced” into 24 tiles, 1 across by 24

GENERATING QUICKTIME VR MOVIES FROM QUICKDRAW 3D 21

MyRotateCameraY(theDocument, -30.0*kQ3Pi/180.0);
SetGWorld(theDocument->theWindow, nil);
MyDrawOffScreen(theDocument);
MyDrawOnScreen(theDocument);

SetGWorld(theDocument->drawContextOffScreen, nil);
thePict =

OpenPicture(&theDocument->drawContextOffScreen->portRect);

LockPixels(theDocument->drawContextOffScreen->portPixMap);
CopyBits((BitMap*)&theDocument->drawContextOffScreen->portPixMap,

(BitMap*)&theDocument->drawContextOffScreen->portPixMap,
&theDocument->drawContextOffScreen->portRect,
&theDocument->drawContextOffScreen->portRect,
srcCopy, NULL);

UnlockPixels(theDocument->drawContextOffScreen->portPixMap);
ClosePicture();
... // Set up the outSpec for the next image.
MySavePICT(thePict, &outSpec);
KillPicture(thePict);

}
...

}

Listing 15. Generating a series of images for a panoramic movie (continued)

down. Since we haven’t included hot spots in our movie, our worksheet will include
only one line, which calls the SrcPictToMovie script:

SrcPictToMovie "HappyMac:RenderedFrames:MyPano.srcPict" ∂
"HappyMac:RenderedFrames:MyPano.srcMoov"

This script dices your 360° panoramic PICT into a standard QuickTime linear movie
using 1-by-24 tiling and the Cinepak compressor.

Converting the linear movie to an interactive movie. The MakeSingleNodeMovie
script takes the linear movie we just created and generates an interactive panoramic
movie. Since we’re creating a very standard type of interactive movie, this script does
everything we need.

This example creates a single-node interactive panoramic movie file named
My3DMovie:

MakeSingleNodeMovie "MyPano.srcMooV" "My3DMovie"

RENDERING YOUR PANORAMA DIRECTLY
You can avoid using the stitching tool by rendering your panorama directly. However,
since QuickDraw 3D supports rendering directly to a plane but not to a cylinder, we
have to approximate cylindrical rendering with a “slit” approach, using the cameras
available to us.

The slit approach is the equivalent of using a real panoramic slit camera, which spins
around, taking very thin pictures and laying them next to each other on the film.
When simulating cylindrical rendering, we do the camera work described earlier,
but instead of rotating 30° at a time and grabbing each frame, we rotate a very
small amount each time and just grab a slit out of the middle of each frame, thus
approximating a cylinder. The narrower the slit width, the closer we get to a true
cylinder. If you’re curious about the mathematics of slit sizes, see “Calculating the
Optimal Slit Width.”

In our case, the largest slit size that gives us a very small amount of error is 32, so we
use this number to generate our panorama (Listing 16). To try different sizes, simply
put in a different number for the slit size constant, which we’ve called factor.

The PICT file you get from this operation is oriented horizontally. However, the
QuickTime VR tools expect the stitching tool output to be vertical, so you first
need to rotate your PICT clockwise 90° using a PICT editor such as Photoshop or
PhotoFlash. You then use the SrcPictToMovie and MakeSingleNodeMovie scripts
as described above to turn the PICT into an interactive panoramic movie.

THE NEXT STEPS
So far we’ve made QuickTime linear object movies and panoramic PICT files that
can be converted to interactive movies with the QuickTime VR ATS. There are a
number of directions you can go from here. If you have your own panoramic renderer,
you may want to substitute it for our slit-based rendering. Or you may want to build
a full interface to allow the user to place the camera and set up all the parameters
involved in QuickTime VR moviemaking. We hope to write a future article about the
QuickTime VR movie file formats and how to write out QuickTime VR movie files.

QuickTime VR movies already have several diverse uses. Developers with extensive
collections of 3D data sets can generate QuickTime VR movies from their data sets

d e v e l o p Issue 25 March 199622

GENERATING QUICKTIME VR MOVIES FROM QUICKDRAW 3D 23

Listing 16. Rendering the panorama directly

#define factor 32.0
void MyGeneratePanoMovieDirect(DocumentPtr theDocument)
{

PicHandle thePict;
float zAngle;
short i;
GWorldPtr gw, largeGW;
GDHandle gd;
FSSpec outSpec;
Rect sourceRect, destRect, largeRect = {0, 0, 768, 2496};

GetGWorld(&gw, &gd);
SetGWorld(theDocument->theWindow, nil);
outSpec = theDocument->theFileSpec;

NewGWorld(&largeGW, 32, &largeRect, nil, nil, useTempMem);
LockPixels(largeGW->portPixMap);
SetGWorld(largeGW, nil);
EraseRect(&largeRect);
sourceRect = destRect = largeRect;
sourceRect.left = 256 - factor/2.0;
sourceRect.right = sourceRect.left + (short)factor;
destRect.left = 0;
destRect.right = (short)factor;

for (zAngle = 360.0; zAngle > 0.0; zAngle -= 360.0/(2496.0/factor)) {
MyRotateCameraY(theDocument, -2*kQ3Pi/(2496.0/factor));

SetGWorld(theDocument->theWindow, nil);
MyDrawOffScreen(theDocument);
MyDrawOnScreen(theDocument);

SetGWorld(largeGW, nil);
LockPixels(theDocument->drawContextOffScreen->portPixMap);
CopyBits((BitMap*)&theDocument->drawContextOffScreen->portPixMap,

(BitMap*)&largeGW->portPixMap, &sourceRect, &destRect,
srcCopy, NULL);

UnlockPixels(theDocument->drawContextOffScreen->portPixMap);
destRect.left = destRect.left + (short)factor;
destRect.right = destRect.right + (short)factor;

}

SetGWorld(largeGW, nil);
thePict = OpenPicture(&largeGW->portRect);
CopyBits((BitMap*)&largeGW->portPixMap, (BitMap*)&largeGW->portPixMap,

&largeGW->portRect, &largeGW->portRect, srcCopy, NULL);
ClosePicture();
UnlockPixels(largeGW->portPixMap);
DisposeGWorld(largeGW);
MySavePICT(thePict, &outSpec);
...

}

to show to potential customers; the movies display the modeled objects more
effectively than a 2D representation and don’t compromise the data in the process.
Archaeologists can use QuickTime VR movies to record site information during
digs, realtors can use them to give clients virtual tours through the property they’re
offering, and cities can use them to provide tourist information on kiosks. Museums

d e v e l o p Issue 25 March 199624

In the slit approach to simulating cylindrical rendering
for QuickTime VR panoramic movies, narrower slits
approximate cylinders better than wider ones. In our
calculations, the size of the error shows us the effect of
increasingly wide slits.

Our error is defined as the vertical distance between the
top of our projection plane at the maximum vertical field
of view and the top of the cylinder we’re trying to
approximate. We consider an error of less than 0.5 pixels
to be acceptable. Since fractional pixels can’t be drawn,
errors greater than 0.5 will round up to be a full pixel error.
Because this error is so small, we can use the same field
of view for generating both the slits and the entire frame.

To determine the vertical error, we must first determine the
maximum horizontal distance between the plane and the
cylinder. This distance, labeled y, can be seen in the top
view of our camera and cylinder, as shown in Figure 5.
The two triangles formed are identical (except for their
orientation). The width of our slit is 2x.

Given that 2x is the width of the slit, y is the distance
between the plane and the cylinder, r is the radius of the
cylinder, and α is the angle:

Therefore, where r is the radius of the cylinder and c is
the circumference:

Since we know the final panorama we end up with is 2496
pixels wide, we can use this as our circumference, and

However, this only gives us the slit width for a given
distance y, so we must concern ourselves next with the
important error, the vertical error, labeled Ev. A side
view of the panorama showing this error appears in
Figure 6.

Ev is the distance in pixels between the pixel we see on
the plane and the pixel we see on the cylinder for a given
field of view. Since we already have an equation for y in
terms of our slit width (2x), and we know that the vertical
field of view (FOVv) of the lens we’re using is 97°, we can
easily determine this error using the tangent equation

Since we know that our FOVv is 97°, we have

which leaves us with a final equation of

The slit widths for various vertical errors are as follows:

Vertical error (Ev) Slit width (2x)
0.14228682 20
0.20490732 24
0.27892462 28
0.36434438 32
0.4611731 36
0.56941818 40

For a slit width of about 38, we have an error of less than
0.5. Theoretically, this should yield accurate pictures.
Therefore, for panoramas that are 2496 pixels wide, like
ours, the optimal slit width is 32 (the largest factor of
2496 that’s still less than 38).

Ev = 397.25 (1–cos (sin–1(397.25))) tan (48.5)x

Ev = y tan (48.5)

Ev = y tan (FOVv)
2

(FOVv)2Ev = 397.25 (1–cos (sin–1 (397.25))) tan x

y = 397.25 (1–cos (sin–1(397.25)))x

2π

α = sin–1 = cos–1

y = r (1– cos (sin–1 (x)))

cy = c (1– cos (sin–1 (2πx)))

r
x() ()r

y1–

r

c = 2π r

sin α =

r = 2π
 c

r
x

r
ycos α = r

r–y

α = sin–1(x)

α = = 1–

r

cos–1()r
y1–

CALCULATING THE OPTIMAL SLIT WIDTH

can archive or display their collections with QuickTime VR movies. For example,
Apple and the Asian Art Museum of San Francisco have put together a virtual
walkthrough of one of the museum’s special exhibits; you can check it out on the
World Wide Web at http://sfasian.apple.com. Also, for the latest information on
QuickTime VR, see http://qtvr.quicktime.apple.com. Use your imagination — the
possibilities are endless!

GENERATING QUICKTIME VR MOVIES FROM QUICKDRAW 3D 25

r
y

x

x

r

α
α

α = angle�
r = radius�
2x = width of the slit�
y = distance between the plane and the cylinder

Figure 5. Determining y, the distance between the
plane and the cylinder

Ev

Cylinder �
(panorama)

Plane (slit)

FOVv

FOVv/2

r – y

y

Ev = vertical error�
FOVv = vertical field of view�
r = radius�
y = distance between the plane and the cylinder

Figure 6. Determining Ev, the vertical error

Thanks to our technical reviewers Eric Chen,
Michael Chen, Ken Doyle, Ian Small, and Nick

Thompson. Special thanks to Chris Flick and
Pablo Fernicola.•

RECOMMENDED READING
• “QuickDraw 3D: A New Dimension for Macintosh Graphics” by Pablo Fernicola

and Nick Thompson, develop Issue 22.

• “The Basics of QuickDraw 3D Geometries” by Nick Thompson and Pablo
Fernicola, develop Issue 23.

• 3D Graphics Programming With QuickDraw 3D (Addison-Wesley, 1995).

• Inside Macintosh: QuickTime and Inside Macintosh: QuickTime Components
(Addison-Wesley, 1993).

• One Hundred Years of Solitude by Gabriel García Márquez (Harper & Row,
1970). This won’t directly help you with QuickTime VR or QuickDraw 3D, but it’s
Philip’s favorite novel.

Before QuickDraw GX, when an application that
generated its own PostScript™ code wanted to make sure
the printer could print a particular font, it could send
one space character in the needed font. The LaserWriter
driver would check the printer to see if the font was
available, and if not, the driver would send the font to
the printer so that it would be available to print the
space character — and any other characters in that font
that the application-generated PostScript code might
require. The reason for using a space was simple: you
didn’t want to mark the page just to get a font to the
printer, and a space wouldn’t mark it. This technique,
first described in “The Perils of PostScript” back in
develop Issue 1, became known as the “space hack.”

Unfortunately, the space hack doesn’t work with
QuickDraw GX. This column describes a new way for
applications that generate their own PostScript code to
send fonts to the printer. The code to do this is
provided on this issue’s CD.

QUICKDRAW GX CHANGES THE PICTURE
QuickDraw GX has a really cool imaging model,
supports all kinds of whizzy features, and to top it off,
introduces the long-awaited new printing architecture.
But it has one snag: after all the years you’ve spent
getting your PostScript printing tuned just the way you
like it, QuickDraw GX breaks the space hack.

The space hack depends on a font’s entire character set
being sent to the printer in response to the need for a
single character (the space character). But QuickDraw
GX sends only the needed characters in a font to a
printer, because it’s trying to conserve memory on the
printer and also because sending less data means faster
transmission of that data. This isn’t such a big issue

with Roman fonts, where there are only 256 characters
at most, but in the case of two-byte fonts such as
Chinese, Japanese, and Korean fonts, where there can
be tens of thousands of characters and the font can be
tens of megabytes in size, sending only the required
characters makes a big difference in speed.

Incidentally, with QuickDraw GX you don’t need a
specialized printer to print two-byte fonts. It divides
fonts with more than 256 characters into several
smaller fonts with new encodings containing just the
characters you need, so you can print characters from
the font on any PostScript printer.

THE NEW WAY TO DOWNLOAD FONTS
So QuickDraw GX has lots of advantages over
QuickDraw, but the space hack is broken. What’s the
poor programmer to do?

You can use a new font downloading method based on
calling GXFlattenFont, a handy function introduced
with QuickDraw GX, to convert the font to a form
that’s easily sent to the printer. GXFlattenFont is
intended to convert any font present on your Macintosh
into the output font format of your choice. (Conversion
is limited by the capabilities of the scalers present, as
explained in “QuickDraw GX Font Scalers.”)

PRINT HINTS

QuickDraw GX

Breaks the

Space Hack

DAVE POLASCHEK

d e v e l o p Issue 25 March 199626

DAVE POLASCHEK recently relocated to California to join
Apple’s Developer Technical Support group. He’s been told that
supporting printing leads to hair loss and insanity. Dave previously

lived in beautiful sunny Minnesota, and wonders if he’ll get used to
the harsh San Francisco Bay Area winters before he’s bald and
crazy, or if it’s already too late.•

QUICKDRAW GX FONT SCALERS
The QuickDraw GX Open Font Architecture accepts
drop-in font scalers. A font scaler is a bit of code that
takes a font of a given type and converts it to bitmaps
for display. It also converts fonts to outline format and
can optionally convert a font to another font format.
QuickDraw GX includes three default scalers:

• the bitmap scaler, which is essentially the same as
in QuickDraw

• the TrueType GX scaler, which supports the
TrueType GX format

• the Type 1 scaler, which is part of Adobe™ Type
Manager

All of these default scalers are capable of generating
bitmaps for screen display and PostScript fonts for
printing. Only the TrueType GX scaler can generate
downloadable TrueType fonts.

GXFlattenFont can produce Type 1 data that’s ready to
be sent to your PostScript printer with no problem.

Now let’s turn to the code that replaces the old space
hack. The rough idea is to call GXFlattenFont on a
QuickDraw font reference and a set of characters
(an encoding) that you need to print, and return the
result in a form that’s easy to send to the printer. For
simplicity, if no encoding is present, we use the
standard Macintosh encoding. Listing 1 shows a font-
downloading routine, FontToPict, that uses this
technique if QuickDraw GX is installed. (This is a
somewhat simplified version; see the CD for the full
code of FontToPict and its related utility functions.)

FontToPict starts by checking to see if QuickDraw GX
is installed. If not, it uses the old hack of printing a space;
otherwise, it calls MakePSHandle (Listing 2), which
calls the utility function ConvertQDFontToGXFont
to convert the QuickDraw font reference into a
QuickDraw GX font reference. MakePSHandle then
checks to see if an encoding has been passed in; if not,
it builds the standard Macintosh encoding. Next it
calls FontToHandle, which is just a wrapper for
GXFlattenFont. GXFlattenFont converts the specified
font to the Type 1 format. Error-handling and cleanup

code is last. Simplicity itself! The result, whether
QuickDraw GX is present or not, is a PICT that you
can send to the printer by calling DrawPicture once the
printer port has been opened.

When calling MakePSHandle, you should specify an
encoding array that contains the characters you intend
to actually print. This prevents QuickDraw GX from
sending the entire font to the printer and becomes very
important when you make your application WorldScript
aware. There’s an #ifdef in the code on the CD that
generates only the encoding array you need in order to
use a portion of the font. As mentioned earlier, with
Chinese, Japanese, and Korean fonts, sending only the
characters you need can make the difference between
sending a few kilobytes or many megabytes of data to
the printer. If you don’t use the entire font, remember
to encode the characters that you want to draw,
using the same encoding that you passed in to the
MakePSHandle function.

You may want to have HandleSpoolProc (which is
called by GXFlattenFont and included on the CD)
spool directly to the printer via picture comments. This
way you won’t need memory available to hold the font
data at the intermediate steps.

PRINT HINTS: QUICKDRAW GX BREAKS THE SPACE HACK 27

Listing 1. FontToPict

PicHandle FontToPict(short qdFont, short qdStyle)
{

Rect theRect = {0, 0, 1, 1};
PicHandle thePict = OpenPicture(&theRect);
const short kPostScriptHandle = 192;

if (GXInstalled()) { // If QuickDraw GX is installed, use the new method.
Handle piccommentHdl;
unsigned short *myEncoding = nil;

MakePSHandle(qdFont, qdStyle, myEncoding, &piccommentHdl);
PicComment(kPostScriptHandle, GetHandleSize(piccommentHdl), piccommentHdl);

} else { // If QuickDraw GX isn't installed, use the old method.
Point penPoint;

// We would normally set the clip here, but since we're just drawing a space there's no need.
GetPen(&penPoint); // Save the pen location.
TextFont(qdFont);
TextFace(qdStyle);
DrawChar(' ');
MoveTo(penPoint.h, penPoint.v); // Restore the pen location.

}
ClosePicture();
return (thePict);

)

DOWNLOADING HAPPINESS
The new font downloading method takes a little more
work but produces better results in your printer font
handling. You can easily send needed fonts to the
printer, either the whole font or only the characters
you’ll be using. As a side benefit, you get support for
two-byte font systems without having to write custom

code for handling the large fonts or, worse yet, having
to depend on the fonts being installed on the printer in
a specific manner. Even if you’re not ready to add
QuickDraw GX imaging to your application today,
adding QuickDraw GX compatibility improves the
printing experience for your customers.

d e v e l o p Issue 25 March 199628

Thanks to Dan Lipton for providing the idea and core code
illustrating the new font downloading method, and to Pete “Luke”

Alexander, Dave Hersey, and Dan Lipton for reviewing this
column.•

Listing 2. MakePSHandle

OSErr MakePSHandle(short qdFont, char qdStyle, unsigned short *encodingArray, Handle *outputHandle)
{

OSErr status = noErr;
gxFont theFont;
unsigned short *myEncoding;
Boolean madeEncoding = false;

theFont = ConvertQDFontToGXFont(qdFont, qdStyle); // Convert to a QuickDraw GX font reference.

// If no encoding, create the standard Macintosh encoding.
if (!encodingArray) {

long returnLength;

myEncoding = (unsigned short *)NewPtrClear(256 * sizeof(short));
returnLength = MakeMac8BitEncoding(theFont, myEncoding);
if (returnLength != 256) {

DebugStr("\pHmm. We didn't get a full encoding.");
return (returnLength); // Pass the error along.

}
madeEncoding = true;

} else {
myEncoding = encodingArray;

}

*outputHandle = FontToHandle(theFont, myEncoding);
if (madeEncoding) DisposePtr((Ptr)myEncoding);

status = MemError();
if (status == noErr) {

status = GXGetGraphicsError(nil);
if (status != noErr) {

DisposeHandle(*outputHandle);
*outputHandle = nil;

}
}
return (status);

}

Does your QuickDraw GX application have a look reminiscent of the
old silent movies? If so, it suffers from flicker. But don’t despair — help
is as near as this issue’s CD, where you’ll find a ready-to-use library for
doing memory-efficient, flicker-free drawing inside a window. This
article explores the problem of flicker and its solutions and walks you
through the code.

My first encounter with the idea of flicker-free drawing happened when I was a
12-year-old kid reading my father’s copy of Nibble, a journal about programming the
Apple II. A review of new products mentioned a program that had impeccable
animation and guessed that the programmer was most likely using “page switching”
to produce flicker-free drawing. Page switching (or page flipping) took advantage of
the fact that the Apple II could use more than one location in memory (more than
one page) to hold the screen image. Given enough memory, a programmer could set
things up so that there was a second “offscreen” page to draw into while the first was
being shown on the screen. Switching back and forth between these two pages made
flicker-free drawing possible.

Today’s hardware bears little resemblance to the Apple II, but the technique for doing
flicker-free drawing is essentially the same. It involves double buffering (also known as
screen buffering) — causing all objects to be drawn first into an offscreen buffer and
then copying that entire buffer to the front buffer (the window). Both this and the
Apple II method eliminate the need to erase the old position of a moving image
directly on the screen before drawing its new position, which is the primary cause of
flicker.

The library that accompanies this article manages an offscreen buffer for a
QuickDraw GX view port. Using it will enable you to give your QuickDraw GX
application a more professional feel by removing flicker. You could use the offscreen
library provided with QuickDraw GX to do screen buffering, but because it’s a much
more general-purpose tool, you would have to handle most of the minutiae of
examining screen devices, filling out the bitmap data structures, and allocating and

Flicker-Free Drawing With QuickDraw GX

FLICKER-FREE DRAWING WITH QUICKDRAW GX 29

HUGO M. AYALA (hugo@mit.edu, http://
web.mit.edu/hugo/www) spent five years
working on QuickDraw GX as a development
engineer at Apple before returning to MIT to
pursue a Ph.D. in mechanical engineering. His
current research interest is how to design the
undercarriage of large earth-moving equipment
so that it doesn’t get thrashed so fast by rocks and
dirt. To pay for the Ph.D., he moonlights doing

computer graphics work, which has been his
hobby since he was a lad. After finishing his
Ph.D., Hugo plans to branch off into drawing
comic strips, like the one that he’s been drawing
for his school newspaper. If you ever try to give
Hugo directions, you need to know that he’s
directionally challenged — he really can’t tell his
left from his right.•

HUGO M. AYALA

releasing the memory yourself. The library provided on this issue’s CD does all of
that for you.

I’ll walk you through the library code, illustrated by the sample application called
Flicker Free on the CD, but first I’ll give some background on the problem of flicker
and its solutions. This article assumes that you already know a thing or two about
QuickDraw GX; if you don’t, see the article “Getting Started With QuickDraw GX”
in develop Issue 15. The essential references are Inside Macintosh: QuickDraw GX
Objects and Inside Macintosh: QuickDraw GX Graphics.

FLICKER — ITS CAUSES AND SOLUTIONS
For a dramatic illustration of flicker, run the sample application Flicker Free (you’ll
need a color Macintosh with QuickDraw GX installed). You’ll see a window filled
with fifty circles bouncing around in different directions (see Figure 1).

The Drawing menu in the Flicker Free application offers a choice of buffering
methods: full screen buffering, no screen buffering, and half and half. The program
starts up in half-and-half mode: the left side of the window (the side with the Apple
menu, for those like me who can’t tell left from right) is being buffered, while the
other side isn’t. Switch among the buffering choices to get a sense of the difference
that flicker or its absence makes in how you experience the animation.

What causes flicker? In our case, the shapes on the right are being erased and then
redrawn over and over again as they move across the screen. And although the
rendering of the shapes is very fast (your mileage may vary according to CPU speed),
the act of constantly drawing and erasing them makes the whole thing look like an
old silent movie. In places where circles overlap, pixels are made to take on different
colors as each shape is drawn. In the resulting blur of colors, it’s hard to see which
shape is in front.

d e v e l o p Issue 25 March 199630

Figure 1. The startup screen from the sample application Flicker Free

The key to avoiding flicker is to avoid erasing pixels on the screen needlessly between
two stages of a drawing and to change only the color of those pixels that need to
change. The left side of our sample application window is being double buffered,
meaning that each circle is drawn into an offscreen buffer and then the whole scene is
transferred onto the screen. Because at each step in the animation only the pixels that
need to change color do, the movement of the circles is rendered flicker free. With
double buffering there’s no problem telling which circles are in front. Shapes move
neatly past each other.

Figure 2 shows two frame-by-frame drawing sequences illustrating the difference
between an update full of flicker and a flicker-free update.

The upper set of frames in Figure 2 shows what happens without double buffering.
The screen is erased (in frame 2 and then again, out of view, in frame 7) and then
each circle is added to the screen in its new position. The whole assembly of circles
appears on the screen only briefly before they’re erased and the process is started
again. The lower set of frames in the figure shows the update process during double
buffering. The offscreen image is transferred to the screen in a sweep replacing the
previous image. You can see the sweep line as a very subtle horizontal break in the
frame.

The sample application gives a dramatic demonstration of how flicker affects
animation. But even if your QuickDraw GX application isn’t an animation package,
it probably suffers from some form of flicker when update events are serviced. The
most common and most annoying flicker occurs when applications engage in some
form of user interaction — for example, dragging marquees, manipulating shapes,
and editing text.

BUFFERING TRADEOFFS
When you’re considering using screen buffering, it’s important to understand the
tradeoff with drawing speed. In the sample application, the speed at which the circles
travel is a function of the number of circles in the window, the size of the window,
and your choice of screen buffering. Given the same window size and number of
shapes, drawing with screen buffering is always slower than with no screen buffering. Screen
buffering involves the same amount of work as screen drawing plus the additional
step of transferring the offscreen image onto the screen.

FLICKER-FREE DRAWING WITH QUICKDRAW GX 31

1

Update with flicker

2 43 5 6

1 2 43 5 6

Flicker-free update

Figure 2. An update full of flicker vs. a flicker-free update

When the window contains one circle, the unbuffered performance is at least three
times faster than that of the buffered case (again, your mileage may vary depending
on your CPU speed). As more shapes are added, the performance in both cases
goes down, but so does the performance gap between the two: the unbuffered
performance doesn’t have as much of an advantage over the buffered performance.
This is because the speed at which the offscreen buffer is transferred to the screen is
independent of the complexity of the shape it contains; it’s purely a function of its
size. As the complexity of the shape being buffered increases, the relative cost of
shape buffering decreases.

Now, this doesn’t mean that you should buffer only complex shapes that take a
long time to draw. What it means is that when you add screen buffering to your
application, you have to be mindful of what constitutes a reasonable tradeoff between
buffering and drawing performance. You should try things out and see if screen
buffering is the technique best suited to your needs. Alternatives to screen buffering
that enable flicker-free drawing include the use of transfer modes and geometric
operations. I hope to discuss these in a future develop article.

Meanwhile, we’ll take a look at the screen buffering library that accompanies this
article, which is ready for you to incorporate into your QuickDraw GX application.
I wrote the library with performance issues in mind. Thus, it takes advantage of the
fact that in the QuickDraw GX graphics object model, information that’s needed to
render a shape can be computed once, stored in a drawing cache, and reused every
time that shape is drawn. The library is very careful to check before making calls
that invalidate drawing caches, so the overhead of offscreen drawing is kept to a
minimum.

A LOOK AT THE SCREEN BUFFERING LIBRARY
Everything you need in order to use the screen buffering library is defined in the
interface file. The library consists of four major routines: the routine that creates the
view port buffer object, the one that disposes of it, the one that updates it, and the
one that uses it to actually buffer screen drawing. The four corresponding calls
should parallel the drawing loop inside your application.

The include file defines only one data type:

typedef struct viewPortBufferRecord **viewPortBuffer;

The internals of the data type are private to the “screen buffering.c” file and are as
follows:

struct viewPortBufferRecord {
gxViewGroup group; /* The offscreen's view group. */
gxViewDevice device; /* The offscreen's view device. */
gxViewPort view; /* The offscreen's view port. */
gxShape buffer; /* The bitmap of the offscreen's view device. */
gxBitmap bits; /* Source structure for the buffer shape. */
Handle storage; /* A temp handle to the bits of the bitmap. */

gxTransform offxform; /* This draws into the offscreen. */
gxTransform on_xform; /* This draws onscreen. */
gxShape eraser; /* Erases offscreen to background color. */
gxShape marker; /* Used to draw into the offscreen. */
gxShape updatearea; /* Represents the area to update. */

d e v e l o p Issue 25 March 199632

short usehalftone; /* True if screen has a halftone. */
WindowPtr window; /* The window of the view port. */
gxViewPort parent; /* The parent's view port. */
gxViewPort screenview; /* The view port to buffer. */
gxShape page; /* The shape that we're asked to draw. */

gxRectangle bounds; /* The offscreen's bounds. */
gxMapping invmap; /* The inv offscreen view port map. */
gxPoint viewdelta; /* The last delta for the offscreen. */

};

typedef struct viewPortBufferRecord viewPortBufferRecord;

You don’t need to understand all of the fields in the viewPortBufferRecord data
structure to use the library. However, if you start having problems getting things to
work inside your application and find that you need to modify the screen buffering
library, see “The viewPortBufferRecord Data Structure” for some additional helpful
information.

In general terms, the code works by allocating a number of QuickDraw GX objects
and reusing them as required. Memory for the offscreen buffer is allocated from the
MultiFinder temporary memory heap (Temp Mem). Allocation of the storage block
is postponed until the last possible moment, and the block is kept locked and
nonpurgeable only during the drawing operation. That is, after the resulting image
has been transferred to the screen, the block is unlocked and marked purgeable but
not disposed of. This permits the same block to be reused in case the memory for the
buffer isn’t purged.

While most users will keep their windows entirely within the bounds of one screen,
it’s important to handle the case where a window spans more than one device. Each
time the DrawShapeBuffered routine is called (as described later), the code walks the
device list checking to see if the area that needs to be buffered intersects a given
screen. If it does, the code creates a buffer with the right settings and draws into that
device. The process is repeated for each screen.

CREATING AN OFFSCREEN BUFFER
You’ll need one view port buffer for each window in your program. To create a view
port buffer, use the NewViewPortWBuffer routine.

viewPortBuffer NewViewPortWBuffer(WindowPtr window, gxViewPort view,
const gxColor *backgroundColor);

Look at the Initialize routine in the file “flicker free.c” for an example of how to use
NewViewPortWBuffer. Here’s a description of the parameters:

window The window that the buffering code should draw into.

view The view port created by your application to draw into the
given window. Note that this is different from the object
obtained by calling GXNewWindowViewPort, in that this view
port should have the window view port set to be its parent.

backgroundColor A pointer to a gxColor data structure indicating which color
should be drawn to erase the offscreen buffer. Passing nil is
equivalent to specifying white as the background color.

FLICKER-FREE DRAWING WITH QUICKDRAW GX 33

Let’s look at what it takes to create an offscreen buffer in the NewViewPortWBuffer
routine (Listing 1). In QuickDraw GX, the place where drawing occurs (for example,
the screen or an offscreen buffer) is described by a view device, so the primary
purpose of the routine is to create a view device and store it in the device field of the
viewPortBufferRecord data structure. Because we want the offscreen device that we
specify to be as close as possible to the one into which we will eventually be drawing,
you might think that we would go ahead and set all of the attributes of the view
device now. But in fact, all that we want to concern ourselves with right now is
allocating the gxViewDevice object. Later, when we get to the drawing part, we’ll
check the screen and our offscreen device and update the gxViewDevice object
accordingly.

d e v e l o p Issue 25 March 199634

The following is an accounting of all of the fields of the
viewPortBufferRecord data structure.

• group, device, view — These are the three elements of
an offscreen drawing environment in QuickDraw GX.
We need one of each to draw offscreen.

• buffer, bits, storage — These objects represent the
bits of the offscreen device in decreasing order of
abstraction. The field buffer is a bitmap shape that
represents the “screen” of the view device. The field
bits parallels the contents of buffer and is used to
keep information about the offscreen bitmap around
between invocations of DrawShapeBuffered, the
routine that draws the buffered shape. Finally, the
storage field is the handle in Temp Mem (the
MultiFinder temporary memory heap) that contains
the offscreen data.

• offxform, on_xform — These are QuickDraw GX
transform objects. offxform has a view port list that
contains just the view port for the offscreen device.
on_xform has a view port list for the parent of the view
port that’s being buffered. You may expect that the view
port list would be the view port being buffered and not
its parent, but when drawing onscreen we’ve already
taken into account all of the transformation and clips of
the view port we’re buffering, and we just need to
copy the end result to the screen. This is why we use
the view port’s parent and not the view port proper.

• eraser, marker — These are the auxiliary shapes used
to erase the offscreen buffer and to draw the incoming
shapes. The shape eraser is of type gxFullType (a “full”
shape) and is the color of the background. The marker
(so named to complement eraser) is a picture shape
that will be used to draw into the offscreen buffer. The
reason for using the marker rather than swapping in
the transform of the incoming shape to be offxform
(thereby causing the shape to draw offscreen) is that
the swapping operation would invalidate the caches

for the incoming shape. Instead we use the property of
picture shapes of redirecting any drawing to their view
port list instead of the shape’s own in order to cause
incoming shapes to render offscreen. Furthermore, if
the incoming shape is the same for every invocation of
DrawShapeBuffered, we can test for it and not change
the contents of the marker.

• updatearea — This is a rectangle shape used to
compute the size of the offscreen buffer that is to be
generated and what devices it falls on.

• usehalftone — This is a Boolean indicating whether to
use a halftone in the offscreen buffer.

• window, parent, screenview, page — These fields
hold incoming parameters to the library. The window
field is the window in which drawing will occur. The
parent field is a cache for the parent of the view port
being buffered (see page 7-18 of Inside Macintosh:
QuickDraw GX Objects to learn more about view port
hierarchies). The screenview field indicates the view
port that will be buffered. The page field is a reference
to the last shape passed to DrawShapeBuffered.

• bounds — This field indicates the visible area of the
screenview in the coordinate space of that view port.

• invmap — This is a mapping for translating between
the coordinate system of the shapes being drawn in
the window and the space of the window itself. If your
view is zoomed in at 2x magnification, this mapping
will be at 1/2 scale.

• viewdelta — This is the position of the upper left corner
of the area being buffered, in the local coordinate
system of the window. This parameter is used to adjust
the drawing in the offscreen buffer so that only the
correct part of the shape being buffered is drawn, and
to position the content of the offscreen buffer when it’s
being transferred onto the screen.

THE VIEWPORTBUFFERRECORD DATA STRUCTURE

FLICKER-FREE DRAWING WITH QUICKDRAW GX 35

Listing 1. NewViewPortWBuffer

viewPortBuffer NewViewPortWBuffer(WindowPtr window, gxViewPort view,
const gxColor *backgroundColor)

{
Handle sbHdl;

if (sbHdl = NewHandleClear(sizeof(viewPortBufferRecord))) {
gxInk background;
gxHalftone halftone;
viewPortBufferRecord *sbPtr;

HLock(sbHdl);
sbPtr = * (viewPortBufferRecord **) sbHdl;
sbPtr->window = window;
sbPtr->screenview = view;
sbPtr->parent = GXGetViewPortParent(view);

/* We don't allocate storage until we need it. */
sbPtr->storage = nil;
sbPtr->buffer = GXNewShape(gxBitmapType);
sbPtr->group = GXNewViewGroup();
sbPtr->view = GXNewViewPort(sbPtr->group);
sbPtr->device = GXNewViewDevice(sbPtr->group, sbPtr->buffer);
if (sbPtr->usehalftone = GXGetViewPortHalftone(view, &halftone))

GXSetViewPortHalftone(sbPtr->view, &halftone);
sbPtr->offxform = GXNewTransform();
GXSetTransformViewPorts(sbPtr->offxform, 1, &sbPtr->view);
sbPtr->on_xform = GXNewTransform();
GXSetTransformViewPorts(sbPtr->on_xform, 1, &sbPtr->parent);

background = GXNewInk();
if (backgroundColor)

GXSetInkColor(background, backgroundColor);
else {

gxColor backcolor;

backcolor.space = gxRGBSpace;
backcolor.profile = nil;
backcolor.element.rgb.red =

backcolor.element.rgb.green =
backcolor.element.rgb.blue = 0xFFFF;

GXSetInkColor(background, &backcolor);
}
sbPtr->eraser = GXNewShape(gxFullType);
GXSetShapeInk(sbPtr->eraser, background);
GXDisposeInk(background);

/* The initial bounds for the offscreen is the entire window. */
sbPtr->bounds.left = ff(window->portRect.left);
sbPtr->bounds.top = ff(window->portRect.top);
sbPtr->bounds.right = ff(window->portRect.right);
sbPtr->bounds.bottom = ff(window->portRect.bottom);

(continued on next page)

To create a view device we need a view group and a bitmap. Eventually we’ll want to
fill in all of the values of the gxBitmap object to match the screen, but for now the
default values assigned to the bitmap by calling GXNewShape are sufficient.

The NewViewPortWBuffer routine also allocates a number of auxiliary objects that
will be needed during the operation of the offscreen buffer. These include the
following:

• a gxShape object to be used to erase the offscreen buffer

• a pair of gxTransform objects to direct drawing of incoming shapes
to the offscreen buffer and of the content of the offscreen buffer to
the screen

Because we’ll use these objects throughout the life of the offscreen buffer, we’ll do
best by allocating them now and releasing them at the end. Whenever possible,
you’ll want to allocate objects that you’ll use throughout the life of your application
up front, work with them by changing their attributes, and dispose of them at the
end.

DISPOSING OF THE BUFFER
When you’ve finished using the window and want to deallocate the memory being
used by the view port buffer, you should call DisposeViewPortWBuffer.

void DisposeViewPortWBuffer(viewPortBuffer sb);

sb The object previously returned from NewViewPortWBuffer.

As shown in Listing 2, DisposeViewPortWBuffer just runs through the
viewPortBufferRecord data structure and disposes of all of the objects allocated
by NewViewPortWBuffer.

UPDATING THE BUFFER
When some aspect of the window in which you’re drawing changes, you need to call
UpdateViewPortWBuffer. In particular, if you change the clip shape or the mapping

d e v e l o p Issue 25 March 199636

sbPtr->updatearea = GXNewRectangle(&sbPtr->bounds);
GXSetShapeViewPorts(sbPtr->updatearea, 1, &sbPtr->parent);
sbPtr->marker = GXNewShape(gxPictureType);
GXSetShapeTransform(sbPtr->eraser, sbPtr->offxform);
GXSetShapeTransform(sbPtr->marker, sbPtr->offxform);
GXSetShapeTransform(sbPtr->buffer, sbPtr->on_xform);
ResetMapping(&sbPtr->invmap);

/* The rest of the fields in the block are initialized to 0 */
/* by the "Clear" in the NewHandleClear used to allocate this */
/* block. */

HUnlock(sbHdl);
}
return ((viewPortBuffer) sbHdl);

}

Listing 1. NewViewPortWBuffer (continued)

of the viewPort object that you originally passed to NewViewPortWBuffer, you need
to call UpdateViewPortWBuffer. Typically, you’ll need to change the clip shape of
the view port to keep QuickDraw GX from drawing shapes over the scroll bar area,
and you’ll need to change the mapping in order to zoom in or scroll.

void UpdateViewPortWBuffer(viewPortBuffer sb, gxShape clip,
gxMapping *displaymap);

sb The object previously returned from NewViewPortWBuffer.

clip The clip shape that should be applied when drawing into the
window previously passed to NewViewPortWBuffer. Passing nil
leaves the current clip shape untouched. The initial setting is for
drawing to occur in the entire contents of the window (including
the area typically assigned to scroll bars).

displaymap The parameter used to update the view port buffer if you change the
mapping of your window view port in order to zoom in or scroll. If
nil, the current mapping is left untouched. The initial setting is the
identity mapping.

DRAWING ON THE SCREEN
Now we get to the real substance of the library — the buffering routine and its
supporting code.

When you want to draw on the screen, you’ll call DrawShapeBuffered instead of
GXDrawShape. If the memory is available to double buffer your drawing,
DrawShapeBuffered will result in a flicker-free update; otherwise the routine will
simply call GXDrawShape.

FLICKER-FREE DRAWING WITH QUICKDRAW GX 37

Listing 2. DisposeViewPortWBuffer

void DisposeViewPortWBuffer(viewPortBuffer sb)
{

viewPortBufferRecord *sbPtr;

HLock((Handle) sb);
sbPtr = *sb;

/* We need to dispose of all of the things that we allocated. */
GXDisposeShape(sbPtr->marker);
GXDisposeShape(sbPtr->eraser);
GXDisposeTransform(sbPtr->on_xform);
GXDisposeTransform(sbPtr->offxform);
GXDisposeViewDevice(sbPtr->device);
GXDisposeViewPort(sbPtr->view);
GXDisposeViewGroup(sbPtr->group);
GXDisposeShape(sbPtr->buffer);
if (sbPtr->storage) DisposeHandle(sbPtr->storage);

HUnlock((Handle) sb);
DisposeHandle((Handle) sb);

}

void DrawShapeBuffered(viewPortBuffer sb, gxShape page,
const gxRectangle *updatebounds);

sb The object previously returned from NewViewPortWBuffer.

page The shape that you want to draw inside the window. This is typically
a QuickDraw GX picture shape into which all of the shapes that
make up a document have been collected.

updatebounds A pointer to a QuickDraw GX rectangle indicating what area of the
document is to be updated. The location of the rectangle is given in
the coordinate system of the window’s portRect. If nil, the code draws
the area inside the clip shape passed to UpdateViewPortWBuffer.

As shown in Listing 3, the first thing that the buffering routine does is to compute
the global bounds of the view port that’s being buffered. Optionally, you could specify
what area inside the view port you want to have buffered. Otherwise the routine
attempts to draw all of the view port that’s visible on the screen.

d e v e l o p Issue 25 March 199638

Listing 3. DrawShapeBuffered

void DrawShapeBuffered(viewPortBuffer sb, gxShape page,
const gxRectangle *updatebounds)

{
viewPortBufferRecord *sbPtr;
gxRectangle bounds;

HLock((Handle) sb);
sbPtr = *sb;

if (updatebounds) {
gxMapping map;

GXGetViewPortMapping(sbPtr->screenview, &map);
bounds = *updatebounds;
bounds.left = bounds.left & 0xFFFF0000;
bounds.right = (bounds.right + 0xFFFF) & 0xFFFF0000;
bounds.top = bounds.top & 0xFFFF0000;
bounds.bottom = (bounds.bottom + 0xFFFF) & 0xFFFF0000;
MapPoints(&map, 2, (gxPoint *) &bounds);
bounds.left = bounds.left & 0xFFFF0000;
bounds.right = (bounds.right + 0xFFFF) & 0xFFFF0000;
bounds.top = bounds.top & 0xFFFF0000;
bounds.bottom = (bounds.bottom + 0xFFFF) & 0xFFFF0000;

/* We remove the fractional part BEFORE the call to MapPoints */
/* because we're rounding to enclose all pixels intersected */
/* by the rectangle. Pixels are integers. Coordinates are */
/* fractional. */

}
else

bounds = sbPtr->bounds;

(continued on next page)

If you haven’t caught on to the fact that you can connect multiple screens to your
Macintosh, the last part may be a little confusing. Once the routine has figured the
global bounds of the visible part of the view port that it’s buffering, it walks the device
list checking to see if those bounds intersect each of the devices connected to the
CPU and then calls the routine that performs the drawing (BufferDrawing, shown in
Listing 4). Since most of the time a window will be completely contained within one
screen, the BufferDrawing routine will be called only once per invocation of
DrawShapeBuffered. The nice thing about breaking up the code this way is that the
BufferDrawing routine can assume that it’s drawing to a single device and therefore
it’s safe to make assumptions about the device’s capabilities.

This approach of walking the device list is preferred to maintaining a buffer for each
screen and having a routine to update the buffer list every time a window is moved.
The latter approach would result in only minor performance improvements, and only
when the window intersected more than one device. Since this is a rare case, the
additional housekeeping isn’t worth the trouble.

The key to understanding DrawShapeBuffered is the equivalence between the
QuickDraw data type GDHandle and a QuickDraw GX view device. To walk the
device list, the code uses the QuickDraw routines GetDeviceList and GetNextDevice.
The GXGetShapeDeviceBounds routine converts a GDHandle to a view device.
From the view device we can find out which area of the screen intersects the area that
we’re being asked to update.

The Display Manager can help you walk the device list, as discussed in the
Graphical Truffles column in this issue of develop.•

FLICKER-FREE DRAWING WITH QUICKDRAW GX 39

/* The above given bounds is in the window space -- just right. */
GXSetRectangle(sbPtr->updatearea, &bounds);

/* Check to see that the shape is actually visible on the screen */
/* and then proceed to draw. */
if (bounds.left < bounds.right && bounds.top < bounds.bottom) {

GDHandle screen;

if (sbPtr->page != page) {
GXSetPicture(sbPtr->marker, 1, &page, nil, nil, nil);
sbPtr->page = page;

}

if (screen = GetDeviceList()) {
do {

gxViewDevice device = GXGetGDeviceViewDevice(screen);

/* Note that we reuse the bounds in here. */
if (GXGetShapeDeviceBounds(sbPtr->updatearea, sbPtr->parent,

device, &bounds))
BufferDrawing(sbPtr, &bounds, device);

} while (screen = GetNextDevice(screen));
}

}
}

Listing 3. DrawShapeBuffered (continued)

d e v e l o p Issue 25 March 199640

Listing 4. BufferDrawing

static void BufferDrawing(viewPortBufferRecord *sbPtr,
const gxRectangle *boundsPtr, gxViewDevice target)

{
gxRectangle bounds = *boundsPtr;
long depth, size, gxstatus;
gxMapping map, savemap;
gxShape devsh;
gxBitmap devbits;
OSErr status;
gxPoint viewloc;
gxBitmap oldbits = sbPtr->bits;

/* Fill in all the values of sbPtr->bits. */
...

viewloc.x = bounds.left; /* These numbers are already in */
viewloc.y = bounds.top; /* local space. */

/* Compute the onscreen location of the buffer. */
...

/* This is the important part, allocating the actual bits. */
size = sbPtr->bits.rowBytes * sbPtr->bits.height;
check(size > 0);
if (sbPtr->storage) {

if ((* (sbPtr->storage)) != nil)
SetHandleSize(sbPtr->storage, size);

else {
ReallocHandle(sbPtr->storage, size);
nrequire(status = MemError(), TempBufferFailed);

}
}
else

require(sbPtr->storage = TempNewHandle(size, &status),
TempBufferFailed);

HNoPurge(sbPtr->storage);
HLock(sbPtr->storage);
sbPtr->bits.image = * ((void **) sbPtr->storage);

/* See if we need to invalidate all of the world when we do this. */
if (oldbits.image != sbPtr->bits.image ||

oldbits.width != sbPtr->bits.width ||
oldbits.height != sbPtr->bits.height ||
oldbits.rowBytes != sbPtr->bits.rowBytes ||
oldbits.pixelSize != sbPtr->bits.pixelSize ||
oldbits.space != sbPtr->bits.space ||
(oldbits.set != sbPtr->bits.set && oldbits.set &&
GXEqualColorSet(oldbits.set, sbPtr->bits.set) == false) ||

(oldbits.profile != sbPtr->bits.profile && oldbits.profile &&
GXEqualColorProfile(oldbits.profile, sbPtr->bits.profile)

== false)) {

(continued on next page)

In BufferDrawing, all of the parameters needed to create an offscreen bitmap as
required by the given device are finally computed. Note that in the BufferDrawing
routine there are no calls that create new objects; there are only calls that modify
objects that were created when NewViewPortWBuffer was called. The modifications
are done only if needed. For example, before calling GXSetTransformMapping,
the library checks to see if the mapping has changed and merits updating. Without
this check, the transform cache would be needlessly invalidated some of the time.
Similarly, the code checks to see if any of the parameters of the bitmap for the
offscreen view device have changed before calling GXSetBitmap and
GXSetViewDeviceBitmap.

Changing the bitmap for the view device is one of the most expensive operations in
QuickDraw GX because it invalidates most of the drawing caches. Fortunately, the
check to see if the bitmap needs to be updated executes very quickly in spite of its
length, and the cost of rebuilding all of the shape caches is avoided if possible.

The most confusing thing in the BufferDrawing routine is the call to the
GXGetDeviceBitmap routine (omitted from Listing 4; see the full code on the CD
for details) and the subsequent call to GXDisposeShape for the same object. This
routine obtains a copy of the read-only object in QuickDraw GX that represents the
bitmap for a given screen. There are two important points about this. The first is that

FLICKER-FREE DRAWING WITH QUICKDRAW GX 41

GXSetBitmap(sbPtr->buffer, &sbPtr->bits, nil);
GXSetViewDeviceBitmap(sbPtr->device, sbPtr->buffer);

}
else { /* We test this one instead */

sbPtr->bits.set = oldbits.set; /* of the disposed one. */
sbPtr->bits.profile = oldbits.profile; /* Ditto */

}

/* Erase the offscreen bitmap, draw the shape into it, and then */
/* copy it onscreen. */
GXDrawShape(sbPtr->eraser); /* Erase. */
GXDrawShape(sbPtr->marker); /* Buffer. */
GXDrawShape(sbPtr->buffer); /* Transfer -- done. */
HUnlock(sbPtr->storage);
HPurge(sbPtr->storage);
if (devsh)

GXDisposeShape(devsh); /* Dispose of the device bitmap. */
GXGetGraphicsError(&gxstatus);
ncheck(gxstatus);
if (gxstatus)

goto DrawingFailed;
return;

TempBufferFailed:
GXDisposeShape(devsh); /* Dispose of the device bitmap. */

DrawingFailed:
GXDrawShape(sbPtr->updatearea);
GXDrawShape(sbPtr->page);

}

Listing 4. BufferDrawing (continued)

since we’re being given a copy and not the object itself, we have to dispose of the
object after we’re finished with it. You may think that it would be more efficient to
get the object during the initialization routine and then dispose of it when we’re all
done. But that’s the other important point. Since the object that we have is a copy of
the original, our copy would not be updated if the depth of the monitor was changed
or the color table for the device had been updated. As a result of these two points,
we’re forced to allocate an object every time through our drawing loop, something
that should be avoided in general.

THE REST OF THE ROUTINES
The rest of the routines in the offscreen buffering library provide support and access
to some of the internal fields of the viewPortBufferRecord data structure. If you need
more information on how to use these, look at the sample code included on this
issue’s CD.

I’ll mention one other routine here. Because the internal view port created by the
library is inaccessible from the outside, the routine SetViewPortWBufferDither is
provided to change the dither level of the view port. If you need to change other
attributes of the offscreen view port, use the SetViewPortWBufferDither routine as
a template.

void SetViewPortWBufferDither(viewPortBuffer sb, const long ditherlevel);

sb The object previously returned from NewViewPortWBuffer.

ditherlevel The dithering level to set the offscreen view port to.

THINGS TO TRY IN THE CODE
If the code presented so far doesn’t meet your particular needs, you may want to try
changing or fine tuning it. Here are some suggestions and observations about things
that you may want to try.

BITMAP ALLOCATION
Currently the code looks for memory in the MultiFinder temporary memory heap
(Temp Mem) and will back down in case it can’t obtain the memory for the offscreen
buffer. If you need to guarantee that your drawing will be screen buffered, you’ll need
to change the memory allocation code inside the BufferDrawing routine.

INTEGRATED ERROR HANDLING
There are two places where memory allocation can trip the screen buffering library.
If the library fails to allocate enough memory to hold its data structures, it will return
nil from NewViewPortWBuffer. You may need to change this to better fit in with
your application’s error model.

The library will handle a failure to allocate the offscreen bitmap by resorting to
drawing with GXDrawShape. If you want something different, see “Bitmap
Allocation” above.

DEEP POCKETS
If the original data that you’ll be working with requires more bits than are on the
display that you’re running on, you may want to create an offscreen buffer that’s
deeper than the screen and then take advantage of the dithering or halftoning
mechanisms in QuickDraw GX to allow user manipulation. The code that checks

d e v e l o p Issue 25 March 199642

for changes in the screen view port’s halftone should give you a good idea of how to
do that.

STEADY, NOW
Now you understand how to use double buffering to prevent flicker in your
QuickDraw GX application. You may need to do some fine tuning of the screen
buffering library to fit your purposes, but the result will be worth it. Users will
appreciate the more professional look of your application and their eyes won’t tire
as quickly as they peer at a flicker-free screen.

FLICKER-FREE DRAWING WITH QUICKDRAW GX 43

Thanks to our technical reviewers Dave Bice,
Brian Chrisman, Tom Dowdy, David Hayward,
and Ingrid Kelly.•

RELATED READING
• “Getting Started With QuickDraw GX” by Pete “Luke” Alexander, develop Issue 15.

• Inside Macintosh: QuickDraw GX Objects and Inside Macintosh: QuickDraw GX
Graphics (Addison-Wesley, 1994).

Add 3D to Your Applications

Take Developer University’s 3-day Programming
with QuickDraw 3D class and add a new dimension

to your Macintosh applications. Learn how to
use Apple’s exciting new QuickDraw 3D graphics

library. This course teaches you the basics of
creating, manipulating, and rendering three-

dimensional objects in your applications. You’ll also
learn about the new 3D human interface guidelines,

and Apple’s new metafile format for reading and
writing 3D objects.

Dates Offered:
May 20-22, 1996

Turn Your Applications Into
Virtual Reality

Take Developer University’s 3-day Multimedia
Development with QuickTime VR class and learn to

create the next generation of multimedia
applications using QuickTime VR, Apple’s new

non-linear panoramic movie format. You’ll learn and
use the tools, techniques, and production processes
involved in creating QuickTime VR scenes. As part

of a team, you’ll plan scenes, photograph
panoramas, activate your scenes, and use the

QuickTime VR tools to create a finished product.

Dates Offered:

Call to register now at (408)974-4897 or send e-mail to devuniv@applelink.apple.com. Courses are offered in Cupertino,
Califonia and Portsmouth, New Hampshire. Both courses are $900 each. Dates are subject to change.

DEVELOPER

UNIVERSITY

D
U

DV396

April 16-18, 1996
May 21-23, 1996
June 17-21, 1996

A major change is taking place on the screen, which
your application might not even know about! With the
help of the Display Manager, the user can use the
Monitors control panel to rearrange displays, make
resolution switches, add or remove a display, and move
the menu bar from one display to another — all
without rebooting. However, the ease of changing a
display for the user poses new challenges for the
developer if an application relies on a graphics device’s
bounding rectangle to position, zoom, and grow its
windows.

To meet this challenge, the Display Manager provides
several new functions that make it easier to gather
information about the display environment and
implement changes. I’ll describe some of the more
commonly used functions in this column. I’ll also
discuss how to use a notification event to find out when
a display has changed (an example is included on this
issue’s CD).

Two versions of the Display Manager are currently
implemented in the system software. The information
in this column applies to both versions. Display
Manager version 1.0 is available on all PowerPC™

processor–based Macintosh computers and Color
QuickDraw–capable Macintosh computers running
System 7.5. Display Manager 2.0 is available on PCI-
based computers running System 7.5.2. To determine
whether the Display Manager is available, call Gestalt
with the selector gestaltDisplayMgrAttr and check the
gestaltDisplayMgrPresent bit of the response. To
determine which version you have, call Gestalt with
the selector gestaltDisplayMgrVers.

MORE FUNCTIONS, LESS CODE
The Display Manager includes several new functions
that greatly simplify tasks that used to take a lot of
code. For example, many applications need to query
screen devices for bounding rectangles, pixel depths,
and a variety of other things. Prior to the Display
Manager, an application could use the GetDeviceList
function to retrieve the first graphics device record in
the device list and call GetNextDevice for subsequent
devices in the list. The application would then need to
use the Device Manager to determine whether the
device was a screen device and whether it was active.
With the Display Manager, you can do all this with
two functions: DMGetFirstScreenDevice and
DMGetNextScreenDevice.

GDHandle aDevice;

aDevice =
DMGetFirstScreenDevice(dmOnlyActiveDisplays);

while (aDevice != nil) {
// Do something with the device.
...
// Get the next device in the list.
aDevice = DMGetNextScreenDevice(aDevice,

dmOnlyActiveDisplays);
}

The Display Manager also introduces two functions
that make it easier to retrieve information about the
attached displays and to change their characteristics:
DMCheckDisplayMode and DMSetDisplayMode.

DMCheckDisplayMode determines whether a
specific display mode and pixel depth are supported
by the supplied graphics device. (A display mode is
a combination of several interrelated display
characteristics, such as resolution and scan timing.)
This function has two output parameters: modeOk
and switchFlags. If the Boolean modeOk parameter is
true, the screen device supports the requested display
mode. The switchFlags parameter contains two flag
bits that should be checked with the constants
kNoSwitchConfirmBit and kDepthNotAvailableBit.

• If kNoSwitchConfirmBit isn’t set, the requested
mode is an optional mode and is only shown in the
mode list of the Monitors control panel when the
Option key is pressed (an optional mode requires
confirmation from the user before it’s allowed).

GRAPHICAL
TRUFFLES

The Display
Manager

MIKE MARINKOVICH

d e v e l o p Issue 25 March 199644

MIKE MARINKOVICH (marink@apple.com) is a member of the
Printing, Imaging, and Graphics (PIGS) group in Developer
Technical Support at Apple. He’s been whiling away his days (and
many of his evenings) coming to grips with the Display Manager
and other QuickDraw-related esoterica. When not indulging in his

hobby, which also happens to be playing around with the Toolbox
and programming his Macintosh, Mike spends his time exploring
the San Francisco Bay Area in his trusty Subaru. Mike’s from
Seattle and misses the rain.•

• kDepthNotAvailableBit indicates whether the
requested pixel depth is available with the requested
display mode.

Once your application knows that the requested display
mode and pixel depth are available, you can use the
DMSetDisplayMode function to reconfigure the video
display. If you pass 0 for the mode parameter, the
Display Manager uses the device’s current display
mode.

If you like to change the display mode and pixel depth
often, you can save the configuration and retrieve it at
startup with the DMSaveScreenPrefs function. This
function requires three parameters, which all take the
value of NULL since they’re private to the Display
Manager. (Go figure.)

Identifying displays. Many of the Display Manager
functions require a display ID (type DisplayIDType)
as a parameter. A display ID is a long integer that
uniquely identifies a screen display. Affiliating a display
ID with a graphics device can be useful in cases where
the graphics device might change or isn’t available.
You can obtain a display ID with the function
DMGetDisplayIDByGDevice, which requires a
graphics device as a parameter. Or you can retrieve the
graphics device corresponding to a given display ID by
calling DMGetGDeviceByDisplayID. Both functions
require the Boolean parameter failToMain.

• If you set failToMain to true and the routine can’t
find what it’s looking for (either the graphics device
or the display ID), the routine returns information
about the main graphics device rather than returning
an error.

• If you set failToMain to false and the routine
can’t find what it’s looking for, it will return
kDMDisplayNotFoundErr. (For example, when a
PowerBook goes to sleep, the display might be
removed.)

KEEPING UP WITH THE CHANGES
Now that the user is able to change a screen display
without restarting, your application may want to
reposition and resize its windows, update internal
display-related data structures, or update nonstandard
window definitions on the fly.

If desired, the Display Manager can automatically
adjust the positions of the windows that were onscreen
before the change to keep them onscreen after the
change, but it may not put them in the best possible
positions. However, if you want to reposition and
resize your windows yourself, you need to set the
isDisplayManagerAware flag in your application’s SIZE

resource and install a callback procedure or an Apple
event handler in your application so that you’ll know
when a display has changed.

Your application registers a callback procedure with the
Display Manager function DMRegisterNotifyProc.
The display notification procedure takes a Display
Notice Apple event parameter describing the changes
that were made to the display. The notification callback
is especially useful for control panels and other
instances where high-level event handling in an event
loop isn’t possible. Another benefit of the notification
callback is that your application is informed on a more
timely basis than through a high-level event, thus
giving the appearance of seamless integration with the
Display Manager.

If you’re using Display Manager 1.0, you’re not notified
about depth changes, and A5 isn’t restored when you receive
the notification callback.•

You can also receive and process Display Notice events
through an Apple event handler. Display Notice event
handlers are installed like any other Apple event
handlers, with the AEInstallEventHandler function:

err = AEInstallEventHandler(kCoreEventClass,
kAESystemConfigNotice,
NewAEEventHandlerProc(DoAEDisplayConfigChange),
0, false);

To enable high-level events in your application, you
need to set the isHighLevelEventAware flag in the
SIZE resource. (You’ll also need to support the
required Apple events described in Inside Macintosh:
Interapplication Communication.)

Whether your application uses a notification callback
or a high-level event handler, a Display Notice Apple
event is passed to your routine. You can obtain a list of
descriptor records (an AEDescList) from the Display
Notice event with the AEGetParamDesc function.
Each descriptor record holds two additional keyword-
specific descriptor records:

• keyDisplayOldConfig, which is a record of the
display’s previous state

• keyDisplayNewConfig, which is a record of the
display’s current state

You can obtain these records one at a time with the
function AEGetNthDesc.

To move and resize your application’s windows, you
need to know which graphics device was affected, the
old and new bounding rectangles of the device, and

GRAPHICAL TRUFFLES: THE DISPLAY MANAGER 45

d e v e l o p Issue 25 March 199646

Listing 1. Handling the Display Notice event

OSErr HandleNotification(AppleEvent *event)
{

OSErr err;
GrafPtr oldPort;
AEDescList displayList, aDisplay;
AERecord oldConfig, newConfig;
AEKeyword tempWord;
DisplayIDType displayID;
unsigned long returnType;
long count;
Rect oldRect, newRect;

GetPort(&oldPort);

// Get a list of the displays from the Display Notice Apple event.
err = AEGetParamDesc(event, kAEDisplayNotice, typeWildCard, &DisplayList);

// How many items in the list?
err = AECountItems(&displayList, &count);

while (count > 0) {
// Loop through the list.
err = AEGetNthDesc(&displayList, count, typeWildCard, &tempWord, &aDisplay);

// Get the old rect.
err = AEGetNthDesc(&aDisplay, 1, typeWildCard, &tempWord, &oldConfig);
err = AEGetKeyPtr(&oldConfig, keyDeviceRect, typeWildCard, &returnType, &oldRect, 8, nil);

// Get the display ID so that we can get the GDevice later.
err = AEGetKeyPtr(&oldConfig, keyDisplayID, typeWildCard, &returnType, &displayID, 8, nil);

// Get the new rect.
err = AEGetNthDesc(&aDisplay, 2, typeWildCard, &tempWord, &newConfig);
err = AEGetKeyPtr(&newConfig, keyDeviceRect, typeWildCard, &returnType, &newRect, 8, nil);

// If the new and old rects are not the same, we can assume that the GDevice has changed,
// and the windows need to be rearranged.
if (err == noErr && !EqualRect(&newRect, &oldRect))

HandleDeviceChange(displayID, &newRect);

count--;
err = AEDisposeDesc(&aDisplay);
err = AEDisposeDesc(&oldConfig);
err = AEDisposeDesc(&newConfig);

}

err = AEDisposeDesc(&displayList);
SetPort(oldPort);

return err;
}

possibly the pixel depth. All the information about the
affected graphics device can be obtained from the
descriptor list with keyword-specific descriptor
constants, which are defined in the Displays.h universal
header file. You call AEGetKeyPtr with the various
descriptor constants to extract the information you
need. In particular, the constant keyDeviceRect extracts
the bounding rectangle, and keyDisplayID extracts the
display ID. As previously mentioned, you can convert
a display ID to a graphics device with the function
DMGetGDeviceByDisplayID.

Listing 1 shows an example of what to do after receiving
a Display Notice event from a notification callback or a
high-level event handler.

WHAT TO DO NOW
The sample code on this issue’s CD should provide a
starting point for how to handle display notification

events in your application. Additional documentation
and sample code for the Display Manager are provided
in the Display Manager Development Kit, which is also
on the CD.

The Mac OS Software Developer’s Kit incudes the
Display Manager Development Kit along with a lot of other
development software. The Mac OS SDK is now part of the
Developer CD Series (included in the Apple Developer Mailing,
which is available through the Apple Developer Catalog).•

To learn more about what the Display Manager can do
for you, you should also take a look at the Displays.h
universal header file.

Now there’s no excuse for your application to be in the
dark about changes taking place on the screen. So why
not keep your users happy and take advantage of the
help that the Display Manager can give you?

GRAPHICAL TRUFFLES: THE DISPLAY MANAGER 47

Thanks to Eric Anderson, David Hayward, and Ian Hendry for
reviewing this column.•

Mac OS SDK Edition

The Developer CD Series now features a new edition.

Every quarter, along with the System Software edition and
other vital information, the Apple Developer Mailing will
include the Mac OS SDK, a collection of over 30 individual
Software Developer Kits. Look to this CD for tools vital to
writing software that takes advantage of Macintosh Toolbox
services.

Each Mac OS SDK CD contains:
• system software extensions • programming interfaces
and libraries • sample code • technical documentation

In addition to the Developer CD Series, the Developer Mailing will bring you
Apple Directions and other timely materials from Apple’s developer support groups.

For more information on the Developer Mailing or to subscribe, call
1-800-282-2732 in the U.S. 1-800-637-0029 in Canada (716)871-6555 elsewhere

NEW
!

QuickDraw 3D supports a mathematical model for arbitrary curves
and surfaces known as NURB (nonuniform rational B-splines). NURB
curves are flexible and powerful, but using them effectively requires
some understanding of the underlying mathematical theory. This article
presents an intuitive introduction to the mathematical concepts of the
NURB model and how to use them in your QuickDraw 3D programs.

One of the more powerful features of QuickDraw 3D is its ability to work with
curves and surfaces of arbitrary shape. The mathematical model it uses to represent
them is known as NURB, for nonuniform rational B-splines. The NURB model is
flexible and powerful, but for those unfamiliar with the mathematics, it can appear
dauntingly complex. The existing books and articles on the subject tend to be
rigorous, lengthy, and theoretical, and often seem to require that you already
understand the subject in order to follow the explanations.

The mathematics really aren’t so frightening, though, once you understand them.
The aim of this article is to give you an intuitive understanding of how NURB curves
work. Later in the article, we’ll look at some code to show you how you can start
using NURB curves in your own programs — but you really do need to understand
the theory before you can start putting it to practical use. So please be patient while
we slog through the mathematical concepts: I promise we’ll get around to some
actual programming before we’re through. Note also that this article is only about
NURB curves; perhaps a future article will cover NURB surfaces and how to use
curves and surfaces together.

Some writers also use the s from “spline,” resulting in the acronym NURBS — but
most avoid this usage because phrases like “a NURBS curve” sound awkward, and “a
NURBS surface” sounds perfectly hideous.•

WHY NURB CURVES?
Like any graphics package, QuickDraw 3D offers low-level geometric primitives for
objects such as lines, points, and triangles. Because the representations of these

PHILIP J. SCHNEIDER

NURB Curves: A Guide for the Uninitiated

d e v e l o p Issue 25 March 199648

PHILIP J. SCHNEIDER (pjs@apple.com) is the
longest-surviving member of the QuickDraw 3D
team. He lives with his wife Suzanne and son
Dakota out in the middle of a redwood forest in
the Santa Cruz mountains, pretending he does so
because “it’s more affordable.” People who are
taken in by that malarkey probably also believe
he doesn’t like driving a two-lane country

highway to work every day, and would rather be
stuck in traffic jams on the interstate freeway with
flatlanders. His current projects include trying to
single-handedly bring up the worldwide level of
computer technology to what he finds in the
science fiction novels he reads voraciously, and
teaching his 18-month-old son to change his own
wet diapers in the middle of the night.•

objects are mathematically exact — lines being defined by their two endpoints,
triangles by their three vertices, and so forth — they’re resolution independent and
unaffected by changes in position, scale, or orientation.

The low-level primitives can also be used to define arbitrarily shaped objects, such
as a football or an automobile hood, but at the cost of these desirable mathematical
properties; for example, a circle that’s approximated by a sequence of line segments
will change its shape when rotated. One of the advantages of NURB curves is that
they offer a way to represent arbitrary shapes while maintaining mathematical
exactness and resolution independence. Among their useful properties are the
following:

• They can represent virtually any desired shape, from points, straight lines,
and polylines to conic sections (circles, ellipses, parabolas, and hyperbolas) to
free-form curves with arbitrary shapes.

• They give you great control over the shape of a curve. A set of control points
and knots, which guide the curve’s shape, can be directly manipulated to
control its smoothness and curvature.

• They can represent very complex shapes with remarkably little data. For
instance, approximating a circle three feet across with a sequence of line
segments would require tens of thousands of segments to make it look like
a circle instead of a polygon. Defining the same circle with a NURB
representation takes only seven control points!

In addition to drawing NURB curves directly as graphical items, you can use them
in various other ways that exploit their useful mathematical properties, such as for
guiding animation paths or for interpolating or approximating data. You can also use
them as a tool to design and control the shapes of three-dimensional surfaces, for
purposes such as

• surfaces of revolution (rotating a two-dimensional curve around an axis in
three-dimensional space)

• extruding (translating a curve along a curved path)

• trimming (cutting away part of a NURB surface, using NURB curves to
specify the cut)

CURVES 101
Before we go into the specifics of NURB curves, let’s review some of the basics of
curve representation in general.

Although QuickDraw 3D supports three-dimensional NURB curves, we’ll limit all of
our examples and discussions here to two dimensions. But everything we say about
two-dimensional curves applies in three dimensions as well — the two-dimensional
versions are just easier to visualize and easier to draw.

A BIT OF HISTORY
Back in the days before computers, architects, engineers, and artists would draw their
designs for buildings, roads, machine parts, and the like by using pencil, paper, and
various drafting tools. These tools included rulers and T-squares for drawing straight
lines, compasses for drawing circles and circular arcs, and triangles and protractors
for making precise angles.

Of course, a lot of interesting-shaped objects couldn’t be drawn with just these simple
tools, because they had curved parts that weren’t just circles or ellipses. Often, a curve

NURB CURVES: A GUIDE FOR THE UNINITIATED 49

was needed that went smoothly through a number of predetermined points. This
problem was particularly acute in shipbuilding: although a skilled artist or draftsman
could reliably hand-draw such curves on a drafting table, shipbuilders often needed to
make life-size (or nearly life-size) drawings, where the sheer size of the required
curves made hand drawing impossible. Because of their great size, such drawings
were often done in the loft area of a large building, by a specialist known as a
loftsman. To aid in the task, the loftsman would employ long, thin, flexible strips of
wood, plastic, or metal, called splines. The splines were held in place with lead
weights, called ducks because of their resemblance to the feathered creature of the
same name (see Figure 1).

The resulting curves were smooth, and varied in curvature depending on the position
of the ducks. As computers were introduced into the design process, the physical
properties of such splines were investigated so that they could be modeled
mathematically on the computer.

DIRECT FUNCTIONS
Our goal is to represent curves in a mathematically precise fashion. One simple way is
to think of the curve as the graph of a function:

y = f(x)

Take a simple one like the trigonometric sine function:

y = sin x

By plotting the value of the function for various values of x and connecting them
smoothly, we obtain the curve shown in Figure 2.

d e v e l o p Issue 25 March 199650

Figure 1. A draftsman’s spline

1

1

0.5

– 0.5

–1

2 3 4 5 6

Figure 2. Plot of sine function values

In the case of curves drawn by the spline method, it turned out that with some
reasonable simplifying assumptions, they could be mathematically represented by a
series of cubic (third-degree) polynomials, each having the form

y = Ax3 + Bx2 + Cx + D

At this point, the standard references typically go into a long, involved development
of this idea into what are known as cubic spline curves, eventually leading to the theory
of NURB curves. Such explanations are interesting, but not terribly intuitive. If
you’re interested in pursuing this subject further, you’ll find a good discussion in
Mathematical Elements for Computer Graphics. (Complete information on this and
other literature references in this article can be found in the bibliography at the end.)

PARAMETRIC FUNCTIONS
Using direct functions to represent a curve fits our criterion of being mathematically
exact, but it has one serious drawback: since we can have only one value of y for each
value of x, our curves can’t loop back on themselves. Thus, although we can make
some nice smooth curves this way, there are a lot of interesting curves we can’t make
— not even something as simple as a circle.

An alternative method, and the one we’ll be using, is to define the curve with a
parametric function. In general, such functions have the form

Q(t) = {X(t), Y(t)}

where X(t) and Y(t) are functions of the parameter t (hence parametric). Given a value
of t, the function X(t) gives the corresponding value of x, and Y(t) the value of y. One
way to understand such functions is to imagine a particle traveling across a sheet of
paper, tracing out a curve. If you think of the parameter t as representing time, the
parametric function Q(t) gives the {x, y} coordinates of the particle at time t. For
example, defining the functions X(t) and Y(t) as

X(t) = cos t
Y(t) = sin t

produces a circle, as you can verify by plugging in some values of t between 0 and 2π
and plotting the results.

SMOOTHNESS
One very important motivation for using NURB curves is the ability to control
smoothness. The NURB model allows you to define curves with no kinks or sudden
changes of direction (such as an airplane-wing cross section) or with precise control
over where kinks and bends occur (sharp corners of machined objects, for instance).

We all know (or think we do) what a nice, smooth curve looks like: it has no kinks or
corners. If we were to sit on that moving particle as it traces out a parametric curve,
we would experience a nice smooth ride with no stopping, restarting, or sudden
changes in speed or direction: we wouldn’t be heading north, say, and then turn
completely east in an instant. This intuitive notion can be expressed in precise
mathematical terms: Imagine an arrow that always points in the direction in which
our hypothetical particle is traveling as it moves along the curve. Mathematically, the
direction arrow corresponds to the tangent of the curve, which can be computed as
the derivative of the curve’s defining function with respect to the time parameter t:

Q'(t)

NURB CURVES: A GUIDE FOR THE UNINITIATED 51

In Figure 3, for example, the point on the curve corresponding to time tA is labeled as
Q(tA), and the direction vector (tangent) at that point as Q'(tA). If the tangent doesn’t
jump suddenly from one direction to another, the curve’s function is said to have
first-derivative continuity, denoted by C1: this corresponds to our intuitive notion of
smoothness.

Now look at the point marked Q(tB), where there’s a visible kink in the curve. The
direction vector just a tiny bit to the left of that point, Q'(tB–α), is wildly different
from the one just a tiny bit to the right, Q'(tB+α). In fact, the direction vector jumps
instantaneously from one direction to another at point Q(tB). Mathematically, this is
called a discontinuity.

Many of you will recall from your college calculus that the derivative of a function is
also a function, whose degree is one less than that of the original function. For
example, the derivative of a fourth-degree function is a third-degree function. The
derivative of the derivative, called the second derivative, will then be of degree 2.
This second derivative may or may not be continuous: if it is, we say that the original
function has second-derivative continuity, or C2. As the first derivative describes the
direction of the curve, the second derivative describes how fast that direction is
changing. The second derivative thus characterizes the curve’s degree of curvature,
and so a C2-continuous curve is said to have curvature continuity. We’ll come back to
these important concepts after we’ve introduced NURB curves themselves.

NURB CURVES
Now that we know how parametric functions work, let’s see how we can use them to
build up a definition for NURB curves. If we call our function Q, the left side of our
equation will look like this:

Q(t) =

where t is a parameter representing time. By evaluating this function at a number of
values of t, we’ll get a series of {x, y} pairs that we can use to plot our curve, as shown
in Figure 4. Now all we have to do is define the right-hand side.

CONTROL POINTS
One of the key characteristics of NURB curves is that their shape is determined by
(among other things) the positions of a set of points called control points, like the ones
labeled Bi in Figure 5. As in the figure, the control points are often joined with
connecting lines to make them easier to see and to clarify their relationship to the
curve. These connecting lines form what’s known as a control polygon. (It would

d e v e l o p Issue 25 March 199652

Q(tA) Q'(tA)

Q(tB)

Q'(tB –α)

Q'(tB+α)

Figure 3. Tangent (derivative) of a curve

actually make more sense to call it a “control polyline,” but the other is the
conventional term.)

The second curve in Figure 5 is the same curve, but with one of the control points
(B7) moved a bit. Notice that the curve’s shape isn’t changed throughout its entire
length, but only in a small neighborhood near the changed control point. This is a
very desirable property, since it allows us to make localized changes by moving
individual control points, without affecting the overall shape of the curve. Each
control point influences the part of the curve nearest to it but has little or no effect
on parts of the curve that are farther away.

One way to think about this is to consider how much influence each of the control
points has over the path of our moving particle at each instant of time. At any time t,
the particle’s position will be a weighted average of all the control points, but with the
points closer to the particle carrying more weight than those farther away. We can
express this intuitive notion mathematically this way:

NURB CURVES: A GUIDE FOR THE UNINITIATED 53

Q(4)

Q(5)

Q(6)

Q(9)

Q(8)

Q(7)

Q(3)

Q(0)

Q(1)
Q(2)

Figure 4. Plotting a parametric function

B0

B1

B2 B3

B4

B5

B6

B7

B8

B9

B11

B10

B0

B1

B2 B3

B4

B5

B6

B7

B8

B9

B11

B10

Figure 5. Defining a curve with control points

In other words, to find the position of the moving particle at a particular time, add
up the positions of all the control points (Bi) but vary the strength of each point’s
contribution over time (Ni,k(t)). We’ll explain the meaning of the subscript k shortly.

The bounding volume returned by QuickDraw 3D for all other geometric
primitives is a volume that encloses the primitive itself. For NURB curves, however, the
returned bounding volume encloses the curve’s control points, rather than the curve itself.
This is done for historical reasons, and is the normal practice in 3D graphics packages.•

BASIS FUNCTIONS
The function Ni,k(t), which determines how strongly control point Bi influences
the curve at time t, is called the basis function for that control point. In fact, the B in
“B-splines” stands for “basis.” The value of this function is a real number such as
0.5, so that a particular point Q(t) can be defined as, say, 25% of one control point’s
position, plus 50% of another’s, plus 25% of yet a third’s. To complete our NURB
equation, we have to specify the basis function for each control point.

So how do we go about defining the basis functions? Remember that we want each
region of the NURB curve to be a local average of some small number of control
points close to that region. When the moving particle is far away from a given
control point, that control point has little influence on it; as the particle gets closer,
the control point affects it more and more. Then the effect diminishes again as the
particle recedes past the control point.

Up to now, we’ve been using the words “near” and “far” in a rather vague way, but
the time has come to pin them down more rigorously. Because we’ve defined our
curve parametrically with respect to time, we can regard what we’ve been calling a
“part” or “region” of the curve as a portion of the time interval the curve covers. For
example, if our curve goes from time t = 0.0 to t = 10.0, we can specify a particular
region as extending from, say, t = 3.3 to t = 7.5. So we can say, for instance, that a
control point Bi is centered at time t = 5.0 and has an effect in the range from t = 3.3
to t = 7.5.

Figure 6 shows a typical example of what a basis function might look like: it has its
maximum effect at some definite point in time and tapers off smoothly as it gets
farther away from that point. If you were awake during your college statistics course,
you might recognize this as the familiar “bell curve” that we all learned to know and
loathe. The curve Ni,k(t) in the figure shows that control point Bi has its greatest
effect (about 95%) at time t = 3.0 and tapers off to about 50% at t = 1.7 and t = 4.3.

Since each control point has its own basis function, a NURB curve with, say, five
control points will have five such functions, each covering some region of the curve
(that is, some interval of time). At time t = 2.3 in Figure 7, for example, control point
B0 has a weight of about 0.2, B1 about 0.7, and B2 about 0.05. As t goes from 0.0 to
7.0, each control point’s effect on the shape of the curve is initially 0, increases
gradually to a maximum, and then gradually tapers off again to 0 as we reach the end
of its effective range.

KNOTS
Notice that all of the basis functions in Figure 7 have exactly the same shape and
cover equal intervals of time. In general, we’d like to be able to vary the width of the

�Q(t) =
n –1

i = 0
∑ BiNi,k(t)

d e v e l o p Issue 25 March 199654

intervals (so that some control points affect a larger region of the curve and others a
smaller region) and the maximum height of the curves (so that some control points
affect the shape of the curve more strongly than others). That’s where the NU in
NURB comes from: it stands for nonuniform.

The solution is to define a series of points that partition the time into intervals, which
we can then use in the basis functions to achieve the desired effects. By varying the
relative lengths of the intervals, we can vary the amount of time each control point
affects the particle. The points demarcating the intervals are known as knots, and the
ordered list of them is a knot vector (Figure 8). The knot vector for the basis functions
shown in Figure 7 is {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}. This is an example of a
uniform knot vector, which is why all the functions in the figure cover equal intervals of
time. Figure 9 shows an example of a curve created with such a knot vector.

NURB CURVES: A GUIDE FOR THE UNINITIATED 55

Time (t)

C
on

tri
bu

tio
n

25%

50%

75%

100%

21 3 4 5 6

Ni , k(t)

Figure 6. Basis function for a control point

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8 N0, k(t) N1, k(t) N2, k(t) N3, k(t) N4, k(t)

Figure 7. Uniform basis functions for a set of control points

0 1 2 3 4 5 6 7
Time (t)

Figure 8. A knot vector

If we change the knot vector to {0.0, 1.0, 2.0, 3.75, 4.0, 4.25, 6.0, 7.0}, we get a set of
nonuniform basis functions like the ones shown in Figure 10, and a curve that looks
like Figure 11 (using the same set of control points as in Figure 9). Notice that the
basis functions N2,3(t) and N3,3(t), associated with control points B2 and B3, respectively,
are taller and narrower than the others. If you compare Figures 9 and 11, you’ll see
that the curve in Figure 11 is pulled more strongly toward control points B2 and B3
than the one in Figure 9. This is because the basis functions for these control points
have a greater maximum value. Also, the curve rapidly approaches these control
points and rapidly moves away: compare how tightly curved it is near these points,
relative to the curve in Figure 9. This is a result of the narrower basis functions for
these two control points: intuitively, our moving particle has to traverse more space in
relatively less time. Looking at the knot vector, you can see that the knot intervals for
these two control points are narrower than the others — {3.75, 4.0} and {4.0, 4.25} —
meaning that their effects on the curve are concentrated in shorter time intervals.

d e v e l o p Issue 25 March 199656

B0

B1

B2

B3

B4

Figure 9. NURB curve with uniform knot vector

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8
N0, 3(t)

N1, 3(t) N4, 3(t)

N2, 3(t) N3, 3(t)

Figure 10. Nonuniform basis functions for a set of control points

DEFINING THE BASIS FUNCTIONS
We’re now ready to complete our definition of a NURB curve by giving an exact
specification of the basis functions. In some respects, we’re free to use any sort of
functions we’d like, but by choosing them carefully, we can get certain desirable
effects. The definitions we’ll be using are as follows:

where xi is the conventional notation for the ith knot in the knot vector.

This definition has a lot of stuff in it, and lots of subscripts — we’re getting into the
real theoretical aspects of NURB curves here. Notice that the functions for higher
values of the subscript k (called the order of the basis function) are built up recursively
from those of lower orders. If k is the highest order of basis function we define, the
resulting NURB curve is said to be of order k or of degree k–1. At the very bottom of
the hierarchy, the functions of order 1 are simply 1 if t is between the ith and (i+1)st
knots, and 0 otherwise.

The specifics of this particular set of basis functions, and how they came to be this
way, are beyond the scope of this article; if you’re interested in learning more, you’ll
find all the detail you could possibly want (and then some) in An Introduction to Splines
for Use in Computer Graphics and Geometric Modeling. However, we can at least mention
a number of important characteristics that this choice of basis functions exhibits:

• At any time t, the values of all the basis functions add up to exactly 1.

• If all control points have positive weights, the curve is contained within a
bounding region known as the convex hull. (See the book cited above for
details.)

• At any time t, no more than k basis functions affect the curve, where k is the
order of the curve.

• A curve of order k is defined only where k of the basis functions are nonzero.

�Ni,1(t) = 1�
0

if xi ≤ t < xi+1�
otherwise

Ni,k(t) =
(t – xi)Ni,k–1(t) (xi+k–t)Ni+1,k–1(t)

xi+k–1
_ xi xi+k

_ xi+1
 +

NURB CURVES: A GUIDE FOR THE UNINITIATED 57

B4

B3

B1

B0

B2

Figure 11. NURB curve with nonuniform knot vector

This last characteristic is of more than theoretical interest: a cubic (degree-3 or
order-4) NURB curve with a knot vector of, say, {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}
only goes from t = 3.0 to t = 4.0! The rule is that the curve begins at the kth knot
from the beginning of the knot vector and ends at the kth knot from the end.

KNOTS AND KINKS
I should point out here that nonuniform knot vectors aren’t really very useful for
controlling the shape of a curve. (In fact, moving control points around directly isn’t
that useful, either — but we’ll get to that later.) Instead, nonuniform knot vectors
have two important uses:

• You’ve probably noticed that all of our NURB curves so far have had their
endpoints just “floating in space”; that is, the curve’s endpoints don’t coincide
with any control point. In real life, though, we generally want to be able to
control the exact placement of the endpoints, and most often we want them
to coincide exactly with the first and last control points.

• You may also have noticed that the curves displayed so far are quite smooth.
While this is usually a good thing, we sometimes need to create a curve with
a kink or corner.

We can accomplish both of these goals by using a rather extreme case of nonuniformity:
giving several consecutive knots the same value of t! For example, a knot vector like
{0.0, 0.0, 0.0, 3.0, 4.0, 5.0, 6.0, 7.0} produces a set of basis functions like those in
Figure 12 and a curve (using the same control points as before) that looks like Figure
13. Looking at Figure 12, you can see that at t = 0, the basis functions associated with
all but the first control point have a 0 value — so basis function N0,3(t) (the one for
control point B0) has total control over the curve. Thus the curve at t = 0 coincides
with the first control point.

If we bunch up some knots in the middle of the knot vector {0.0, 1.0, 2.0, 3.0, 3.0, 5.0,
6.0, 7.0}, we get the basis functions shown in Figure 14 and the curve in Figure 15. At
t = 3.0, all the basis functions except N2,3(t) have a 0 value — so control point B2 is the
only one to affect the curve at that instant, and thus the curve coincides with that
control point.

d e v e l o p Issue 25 March 199658

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1.0 N0,3(t)

N1,3(t)

N2,3(t)

N3,3(t) N4,3(t)

Figure 12. Basis functions for a curve with multiple identical knots at the beginning

In mathematical terms, continuity (smoothness) is an issue only at the joints defined
by the curve’s knots, where two segments of the curve meet; between the joints, the
curve is perfectly smooth and continuous. A typical curve, in which each joint
corresponds to a single knot, has continuity Cn–1 where n is the degree of the curve.
So a cubic (degree-3 or order-4) curve has second-derivative continuity (C2) at each
joint if all the knots are distinct. If two knots coincide, the continuity at that joint
goes down by one degree; if three coincide, the continuity goes down another degree;
and so on.

This means you can put a kink in the curve at a particular point by adding knots to
the knot vector at that point. Later, we’ll look at some code that shows how to do
this. We’ll also see how you can use this same technique of knot insertion to convert a
curve from NURB to Bézier representation.

NURB CURVES: A GUIDE FOR THE UNINITIATED 59

B4

B3

B1

B0

B2

Figure 13. NURB curve with multiple identical knots at the beginning

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1.0

N0,3(t)
N1,3(t)

N2,3(t)

N3,3(t)

N4,3(t)

Figure 14. Basis functions for a curve with multiple identical knots in the middle

RATIONAL CURVES
Now that we’ve learned all about control points and knots and basis functions,
we understand NUB (nonuniform B-spline) curves. But what about the rest of
the acronym? We’re still missing the R in NURB. It’s time to talk about rational
curves.

If you’ve sneaked a peek at QuickDraw 3D’s NURB definitions, you may have
wondered why it uses a four-dimensional representation for three-dimensional
control points: {x, y, z, w} instead of just {x, y, z}. The reason for the extra coordinate
is that it allows us to exactly represent conic curves (circles, ellipses, parabolas, and
hyperbolas), as well as giving us more control over the shape of other curves. The
fourth coordinate, w, is customarily referred to as the weight of the control point.
Ordinarily, each control point carries a weight of 1.0, meaning that they all have
equal influence on the shape of the curve. Increasing the weight of an individual
control point gives it more influence and has the effect of “pulling” the curve toward
that point (see Figure 16).

d e v e l o p Issue 25 March 199660

B4

B3

B1

B0

B2

Figure 15. NURB curve with multiple identical knots in the middle

B5

B4

w = 2.5

w = 1.0

w = 0.25

B3

B1

B0

B2

Figure 16. Increasing the weight of a control point

Curves that are defined in this way, with a weight w for each control point, are called
rational curves. Mathematically, such curves are defined in four-dimensional space
(since the control points have four components) and are projected down into three-
dimensional space. Visualizing objects in four dimensions is a bit difficult (let alone
drawing them in a diagram), but we can understand the basic idea by considering
rational two-dimensional curves: that is, curves defined in three-dimensional space
and projected onto a plane, as shown in Figure 17.

This is essentially the same process as projecting a three-dimensional model onto a
two-dimensional screen with a perspective camera. The basic method for such
perspective projection is to divide by the homogeneous component of the vertex (that
is, w); we use an analogous approach to project our four-dimensional rational curve
into three-dimensional space. Mathematically, then, we must incorporate this division
into our earlier definition for a B-spline curve:

The Bi are the projections of the four-dimensional control points and the wi are their
weights.

There are two different conventions for representing the control points in terms of
their four-dimensional coordinates {x, y, z, w}:

• Homogeneous, in which the coordinates represent the point’s position in four-
dimensional space. To project it into three dimensions, the components must
all be divided through by w. Thus the point’s three-dimensional position is
actually {x/w, y/w, z/w}. (Note that w/w is always 1.)

Q(t) = n –1

n –1

i = 0

i = 0

∑ BiwiNi,k(t)

∑ wiNi,k(t)

NURB CURVES: A GUIDE FOR THE UNINITIATED 61

Projection line

z axis

x axis

y axis

Projection line

Projection line

Projection plane (w = 1)

Figure 17. Projecting a three-dimensional curve into two dimensions

• Weighted Euclidean, in which the coordinates are already considered to have
been divided through. Thus the first three components {x, y, z} directly
represent the point’s position in three-dimensional space and the fourth (w)
represents its weight.

QuickDraw 3D uses homogeneous representation, as do most technical papers and
other graphics libraries.

CONIC SECTIONS
I said earlier that we could use the rational aspect of NURB curves to create conic
sections (such as circles and ellipses). Conic sections are so called because they’re the
curves we get by intersecting a cone with a plane; the angle at which the plane
intersects the cone determines whether the resulting curve is a circle, an ellipse, a
parabola, or a hyperbola. Strictly speaking, hyperbolas and parabolas are of infinite
extent — but infinite curves are generally not useful in graphics applications (besides
being very hard to compute a bounding box for). So we’ll restrict our discussion to
conic arcs.

Since conic curves are quadratic, we can represent them by quadratic (degree-2 or
order-3) NURB curves. The practical question, of course, is which NURB curve.
Although the proof is beyond the scope of this article, the following method
(illustrated in Figure 18) can be used to generate conic arcs:

• The curve is defined by three control points. The first and last are the
endpoints of the conic arc, while the placement of the inner control point
helps determine the shape of the curve.

• The weights of the first and last control points are 1.0.

• A weight less than 1.0 for the inner control point generates an ellipse; a
weight equal to 1.0 generates a parabola; a weight greater than 1.0 generates
a hyperbola.

• The knot vector is {0.0, 0.0, 0.0, 1.0, 1.0, 1.0}.

Probably the most common form of conic arc, particularly in modeling and design
applications, is a circular arc. Since a circle is simply a special case of an ellipse, the
method for constructing a circular arc is a special case of the general method for
elliptical arcs:

• The legs of the control polygon are of equal length (that is, the control
triangle is isosceles).

d e v e l o p Issue 25 March 199662

Elliptical arc Parabolic arc Hyperbolic arc

w = 0.25 w = 1.0 w = 3.0

Figure 18. Constructing conic arcs

• The chord connecting the first and last control points meets each leg at an
angle θ equal to half the angular extent of the desired arc (for instance, 30°
for a 60° arc).

• The weight of the inner control point is equal to the cosine of θ.

• The knot vector is {0.0, 0.0, 0.0, 1.0, 1.0, 1.0}, just as before.

Figure 19 illustrates this construction. (In this case, the control triangle is equilateral,
so the angle θ is 60° and the resulting arc is 120°, or one-third of a circle.)

Note that the foregoing method can only produce circular arcs less than 180°; for
larger arcs, we have to piece together several NURB curves. So to draw a complete
circle we could combine three 120° arcs, or four 90° arcs. However, it’s possible to
represent these three or four separate arcs as a single curve and to make a circle with
only one NURB curve. Figures 20 and 21 show how to do it with three and four arcs,
respectively.

NURB CURVES: A GUIDE FOR THE UNINITIATED 63

w = cos θ

θ

Figure 19. Constructing a circular arc

knots = 0, 0, 0, 1, 1, 1

B5 = {1, 1.732, 0.5}

B2 = {2, 0, 0}B1 = {0, 0, 0.5}

B0 = B6 = {1, 1.732, 1} B4 = {3, 1.732, 1}

B3 = {2, 0, 0.5}

1
3 ,_ 1

3 ,_
3 ,_2

3 ,_2

Figure 20. Constructing a circle with three arcs

NURB CURVES IN QUICKDRAW 3D
By now you’re probably saying, “Enough theory already — how does all this relate to
Macintosh programming?” So let’s finally look at QuickDraw 3D’s data structures
and routines for working with NURB curves.

DATA STRUCTURES
If you’ve been following the discussion so far, you can probably guess the contents of
the data structure representing a NURB curve: the order of the curve, its control
points, and its knots. There’s also the usual QuickDraw 3D attribute set, so you can
draw your curves in, say, fuchsia or vermilion. Here are the definitions:

typedef struct TQ3RationalPoint4D {
float x;
float y;
float z;
float w;

} TQ3RationalPoint4D;

typedef struct TQ3NURBCurveData {
unsigned long order; // Order of the curve
unsigned long numPoints; // Number of control points
TQ3RationalPoint4D *controlPoints; // Array of control points
float *knots; // Array of knots
TQ3AttributeSet curveAttributeSet; // QuickDraw 3D attributes

} TQ3NURBCurveData;

Most of this is pretty straightforward, but here are a few things to keep in mind:

• The order of the curve must be between 2 and 16, inclusive. Order 2 gives
you a polyline effect; the most common orders are 3 (quadratic) and 4 (cubic).

• The control points are represented in homogeneous form, meaning that you
have to divide the x, y, and z components by the w component to find the
point’s actual position in three-dimensional space.

• The w component of each control point must be positive.

d e v e l o p Issue 25 March 199664

knots = 0, 0, 0, 1, 1, 1

B2 = { 0, 1, 1}

B6 = { 0, –1, 1}

B4 = {–1, 0, 1} B0 = B8 = {1, 0, 1}

B7 =

1
4 ,_ 1

4 ,_
4 ,_3

4 ,_3
2 ,_1

2 ,_1

2 ,_2
2 ,_2

2 �_2–

B1 =
2 ,_2

2 ,_2
2 �_2

B5 =
2 ,_2

2 ,_2
2 �_2––

–B3 =
2 ,_2

2 ,_2
2 �_2

Figure 21. Constructing a circle with four arcs

• The number of control points must be equal to or greater than the order.

• The number of knots must be equal to the number of control points plus the
order of the curve.

• The knots must be specified in nondecreasing order.

• If k is the order of the curve, there can’t be more than k–1 knots with the
same value (except at the beginning or end of the sequence, where k
consecutive equal knots are allowed).

• The attribute set should contain only attributes that make sense for a curve.
Most often, the attribute set will either be NULL or simply contain a color.

RENDERING A NURB CURVE
If you’re familiar with QuickDraw 3D, you know that there are two ways to render a
graphical entity (called a geometry in QuickDraw 3D terminology): retained mode and
immediate mode. In retained mode, you first create an object representing the figure
you want to draw, then use this retained object to do your drawing. (See the article “The
Basics of QuickDraw 3D Geometries” in develop Issue 23 for more on this.) Listing 1
shows how this works for a NURB curve. First we initialize a TQ3NURBCurveData
structure describing the curve to be drawn; we use this structure to create a retained

NURB CURVES: A GUIDE FOR THE UNINITIATED 65

Listing 1. Rendering a NURB curve in retained mode

TQ3GeometryObject curveObject;
TQ3NURBCurveData curveData;

static TQ3RationalPoint4D controlPoints[4] = {
{ 0, 0, 0, 1 },
{ 1, 1, 0, 1 },
{ 2, 0, 0, 1 },
{ 3, 1, 0, 1 }

};
static float knots[8] = {

0, 0, 0, 0, 1, 1, 1, 1
};

// Initialize the data structure.
curveData.order = 4;
curveData.numPoints = 4;
curveData.controlPoints = controlPoints;
curveData.knots = knots;
curveData.curveAttributeSet = NULL;

// Make a retained object.
curveObject = Q3NURBCurve_New(&curveData);

// Use the retained object to render the curve.
Q3View_StartRendering(view);
do {

Q3Geometry_Submit(curveObject, view);
} while (Q3View_EndRendering(view) == kQ3ViewStatusRetraverse);

// Dispose of the curve object.
Q3Object_Dispose(curveObject);

object with the QuickDraw 3D function Q3NURBCurve_New, and then we pass the
resulting object to Q3Geometry_Submit to render the curve. Finally, we dispose of
the retained object we created.

The equivalent drawing operation in immediate mode uses exactly the same code up
to the point where the object is created. Instead of creating the retained object, we
simply pass the TQ3NURBCurveData structure directly to the QuickDraw 3D
function Q3NURBCurve_Submit to be rendered immediately:

// Render the curve directly.
Q3View_StartRendering(view);
do {

Q3NURBCurve_Submit(&curveData, view);
} while (Q3View_EndRendering(view) == kQ3ViewStatusRetraverse);

CONTROLLING SUBDIVISION
QuickDraw 3D doesn’t render NURB curves directly — as it does, say, lines or
triangles. To draw a NURB curve, the renderer has to break it up into a sequence of
lines or polylines. The more lines it’s broken up into, the smoother it looks, but of
course the longer it takes to render. Before rendering a curve, you have to tell the
renderer how finely you want it subdivided.

There are three ways of doing this, denoted by the values of an enumerated data type:

typedef enum TQ3SubdivisionMethod {
kQ3SubdivisionMethodConstant,
kQ3SubdivisionMethodWorldSpace,
kQ3SubdivisionMethodScreenSpace

} TQ3SubdivisionMethod;

• The first method, kQ3SubdivisionMethodConstant, says to subdivide the
curve into a polyline with a specified number of segments between each pair
of joints.

• The second method, kQ3SubdivisionMethodWorldSpace, says to subdivide
the curve so that the length of each line segment is no longer than a specified
value, measured in world space.

• The third method, kQ3SubdivisionMethodScreenSpace, is similar to the
second, but the measurement is done in screen space.

The following data structure specifies the subdivision method to use and the relevant
parameter values:

typedef struct TQ3SubdivisionStyleData {
TQ3SubdivisionMethod method;
float c1;
float c2;

} TQ3SubdivisionStyleData;

NURB curves use only the c1 component; the other is for NURB surfaces. A couple
of things to note:

• You should set both c1 and c2 to legitimate values. QuickDraw 3D doesn’t
know whether a curve or a surface is coming up, so it always checks both
parameters for validity. If you’re only drawing a curve, you may as well set c2
to the same value as c1.

d e v e l o p Issue 25 March 199666

• If you specify an unreasonable value for either parameter, QuickDraw 3D
will substitute a more reasonable one and issue a warning. It won’t let you
subdivide a curve at a million positions!

• For method kQ3SubdivisionMethodConstant, c1 should be a whole number
greater than 0; fractional values will be truncated.

• If you don’t specify a subdivision style, the default value will be used.

Expanding on our example of immediate mode rendering, the following code
will render our NURB curve with a five-segment polyline between each pair of
knots:

TQ3SubdivisionStyleData subdivData;
...
subdivData.method = kQ3SubdivisionMethodConstant;
subdivData.c1 = subdivData.c2 = 5;
...
Q3View_StartRendering(view);
do {

Q3SubdivisionStyle_Submit(&subdivData, view);
Q3NURBCurve_Submit(&curveData, view);

} while (Q3View_EndRendering(view) == kQ3ViewStatusRetraverse);

EDITING NURB CURVES
If you’re rendering your curve in immediate mode, you can edit the curve by
simply modifying its control points, weights, and knot vectors directly in the
TQ3NURBCurveData structure. If you’re using retained mode, QuickDraw 3D
provides calls to retrieve and set individual control points and knots:

TQ3Status Q3NURBCurve_GetControlPoint(TQ3GeometryObject curve,
unsigned long pointIndex, TQ3RationalPoint4D *point4D);

TQ3Status Q3NURBCurve_SetControlPoint(TQ3GeometryObject curve,
unsigned long pointIndex, const TQ3RationalPoint4D *point4D);

TQ3Status Q3NURBCurve_GetKnot(TQ3GeometryObject curve,
unsigned long knotIndex, float *knotValue);

TQ3Status Q3NURBCurve_SetKnot(TQ3GeometryObject curve,
unsigned long knotIndex, float knotValue);

Because we’re not interacting with items that are objects themselves, there are no
reference counts involved and no need to dispose of any data structures. Note,
however, that if you edit a knot, the resulting knot vector must remain nondecreasing
and follow the limitations described earlier for multiple knots.

You may have noticed that there are no calls to add, delete, or reorder control points
or knots. Instead, QuickDraw 3D provides calls for retrieving and replacing the
entire TQ3NURBCurveData structure from the retained object:

TQ3Status Q3NURBCurve_GetData(TQ3GeometryObject curve,
TQ3NURBCurveData *nurbCurveData);

TQ3Status Q3NURBCurve_SetData(TQ3GeometryObject curve,
const TQ3NURBCurveData *nurbCurveData);

NURB CURVES: A GUIDE FOR THE UNINITIATED 67

If you want to change the number of control points and knots in a curve, you have to
make a local copy of the data structure you obtain from Q3NURBCurve_GetData
(making sure to allocate extra space for the new knots and control points), modify the
arrays in the local copy, and store it back into the object with Q3NURBCurve_SetData.
You must then call the following routine to dispose of the data you received from
Q3NURBCurve_GetData:

TQ3Status Q3NURBCurve_EmptyData(TQ3NURBCurveData *nurbCurveData);

However, if you’re going to be modifying the NURB curve frequently, you should
probably be working in immediate mode and not using a retained object at all.

KNOT INSERTION
In general, the more control points we define for a NURB curve, the more control
we have over its shape. It would seem reasonable that we could add more control
points without changing the shape of the curve, and in fact this turns out to be true.
Remember, though, that there’s a fundamental relationship among the knots, the
control points, and the order of the curve: the number of knots is equal to the
number of control points plus the order. For example, a cubic curve (order 4) with 9
control points will require 13 knots. So every time we add a control point, we also
have to add an extra knot — and make sure all the control points are in the correct
locations to keep the curve’s shape the same as before.

In practice, we actually take the reverse approach: we decide where to add a new
knot, then compute the location of the corresponding new control point (as well as
the new locations of some of the existing ones). For example, if we take the curve
depicted earlier in Figure 9 and insert a new knot at t = 3.6, we get a new curve with
exactly the same shape but with a new set of control points (Figure 22).

This operation of knot insertion is a fundamental one in working with NURB curves.
It’s directly useful in both modifying (editing) and rendering curves, and can also be
used to convert a NURB curve to Bézier representation. After a brief discussion of
the mathematical algorithm for inserting a knot, we’ll look at some example C code
for implementing it.

d e v e l o p Issue 25 March 199668

ˆ
B0 = B0

B5 = B4
ˆ

B4 = B3
ˆ

B2

B2

B3
ˆ

B1 = B1
ˆ

ˆ

Figure 22. Inserting a knot

THE ALGORITHM
We start with a NURB curve represented by

with a knot vector {x0, x1, . . . , xn+k–1}. Suppose we want to add a new knot xnew, where
xi < xnew ≤ xi+1. The new knot vector x̂ is simply the old knot vector with xnew inserted
between xi and xi+1. The new curve will be defined by

with knot vector x̂.

Now we have to figure out not only where the new control point is located and where
it goes in the ordered vector of control points, but also how to adjust some of the
existing control points to keep the shape of the curve unchanged; this process yields
the new control point vector, B̂. It turns out that the relationship between the old and
new control points is

where α is defined by

The proof of this is relatively simple, but we don’t have the time or space to go into it
here. For a full discussion, see Curves and Surfaces in Computer Aided Geometric Design.

THE IMPLEMENTATION
Listing 2 shows a function to implement this basic algorithm. The function, which is
included on this issue’s CD, accepts a QuickDraw 3D NURB-curve data structure as
an argument, along with the value of the new knot to insert, and returns a new data
structure representing the same curve with the new knot inserted. For brevity, the
function performs no range checking on the inserted knot, but simply assumes that
it falls within the legal range and that the resulting knot vector obeys the usual
limitations on multiple knots. Note also that the code shown here does no checking
on the results of memory allocation requests, though of course you should always
perform such checks in real life.

EVALUATING NURB CURVES
Recall from our earlier discussion that if we have two knots at the same location, we
lose one degree of continuity; with three identical knots, we lose two degrees of
continuity; and so on. This process can be repeated until, when we reach k–1
identical knots (where k is the order of the curve), we have no continuity at all at the
given point. In this case, the curve at that point coincides directly with a control
point, as we saw in Figure 15.

�αj = i–k+2 ≤ j ≤ i
xnew– xj
xj+k–1– xj

1 j ≤ i–k+1

0 j ≥ i+1

�Bj = (1– αj)Bj–1 + αjBj
ˆ

�Q(t) =
n –1

i = 0
∑ BiNi,k(t)�ˆ ˆ

�Q(t) =
n –1

i = 0
∑ BiNi,k(t)

NURB CURVES: A GUIDE FOR THE UNINITIATED 69

d e v e l o p Issue 25 March 199670

Listing 2. Inserting a knot

static TQ3NURBCurveData *InsertKnot
(TQ3NURBCurveData *oldCurveData, // Old curve
float tNew) // Knot to insert

{
TQ3NURBCurveData *newCurveData; // New curve after adding knot
unsigned long k; // Order of curve
unsigned long n; // Number of control points
TQ3RationalPoint4D *b; // Old control point vector
TQ3RationalPoint4D *bHat; // New control point vector
float *x; // Old knot vector
float *xHat; // New knot vector
float alpha; // Interpolation ratio
unsigned long i; // Knot to insert after
unsigned long j; // Knot index for search
TQ3Boolean foundIndex; // Insertion index found?

// Set up local variables for readability.
k = oldCurveData->order;
n = oldCurveData->numPoints;
x = oldCurveData->knots;
b = oldCurveData->controlPoints;

// Allocate space for new control points and knot vector.
bHat = malloc((n + 1) * sizeof(TQ3RationalPoint4D));
xHat = malloc((n + k + 1) * sizeof(float));

// Allocate data structure for new curve.
newCurveData = malloc(sizeof(TQ3NURBCurveData));
newCurveData->order = k;
newCurveData->numPoints = n + 1;
newCurveData->controlPoints = bHat;
newCurveData->knots = xHat;
newCurveData->curveAttributeSet =

(oldCurveData->curveAttributeSet == NULL)
? NULL
: Q3Object_Duplicate(oldCurveData->curveAttributeSet);

// Find where to insert the new knot.
for (j = 0, foundIndex = kQ3False; j < n + k; j++) {

if (tNew > x[j] && tNew <= x[j + 1]) {
i = j;
foundIndex = kQ3True;
break;

}
}

// Return if not found.
if (!foundIndex) {

return (NULL);
}

(continued on next page)

We’ve just seen that we can add a knot xnew and calculate the new control points. If
we take this “new” curve (really just the old one with more knots) and add in that
same knot again and again, until we have k–1 knots in the same place, we’ll end up
with a control point that lies exactly at Q̂(xnew). We can use this technique to calculate
the location of a particular point on the NURB curve: simply keep inserting knots at
the point of interest until there are k–1 of them, at which time the newest control
point created will lie at the desired point on the curve.

We can also use this approach to render a curve: by adding enough knots at some
number of successive points in time t, we’ll end up with a list of evaluated points on
the curve, which we can then render as a polyline. The greater the number of

NURB CURVES: A GUIDE FOR THE UNINITIATED 71

// Copy knots to new vector.
for (j = 0; j < n + k + 1; j++) {

if (j <= i) {
xHat[j] = x[j];

} else if (j == i + 1) {
xHat[j] = tNew;

} else {
xHat[j] = x[j - 1];

}
}

// Compute position of new control point and new positions of
// existing ones.
for (j = 0; j < n + 1; j++) {

if (j <= i - k + 1) {
alpha = 1;

} else if (i - k + 2 <= j && j <= i) {
if (x[j + k - 1] - x[j] == 0) {

alpha = 0;
} else {

alpha = (tNew - x[j]) / (x[j + k - 1] - x[j]);
}

} else {
alpha = 0;

}

if (alpha == 0) {
bHat[j] = b[j - 1];

} else if (alpha == 1) {
bHat[j] = b[j];

} else {
bHat[j].x = (1 - alpha) * b[j - 1].x + alpha * b[j].x;
bHat[j].y = (1 - alpha) * b[j - 1].y + alpha * b[j].y;
bHat[j].z = (1 - alpha) * b[j - 1].z + alpha * b[j].z;
bHat[j].w = (1 - alpha) * b[j - 1].w + alpha * b[j].w;

}
}

return (newCurveData);
}

Listing 2. Inserting a knot (continued)

evaluation points, the more segments the polyline will have, and the more closely the
resulting image will approximate the curve.

This isn’t the most efficient algorithm; a number of better alternatives are
available. For example, see An Introduction to Splines for Use in Computer Graphics
and Geometric Modeling for a description of the Oslo algorithm, which is significantly
more efficient if you’re adding more than a few knots.•

NURB CURVES AND BÉZIER CURVES
If you’re familiar with Bézier curves, you may be wondering how they relate to NURB
curves. In particular, if your application currently uses Bézier curves, how can you
draw them when QuickDraw 3D currently only supports NURB curves? Although a
thorough treatment of the subject is beyond the scope of this article, you’ll be happy
to learn that Bézier curves can actually be viewed as a subset of NURB curves. As a
result, converting from Bézier to NURB representation turns out to be trivial.

CONVERTING BÉZIER TO NURB CURVES
Here’s all it takes to convert a Bézier curve to NURB format:

1. Use the Bézier control points as the NURB control points. If the Bézier
control points are rational (that is, if they have four components {x, y, z, w}),
make sure they’re in homogeneous rather than weighted Euclidean form. If
they’re nonrational (have no w component), simply set w = 1.0 for each
NURB control point.

2. Set the order of the NURB curve to the number of control points. Bézier
curves typically have three or four control points, corresponding to quadratic
(order-3) or cubic (order-4) NURB curves, respectively.

3. Create a knot vector with 2k elements, where k is the order of the curve. Set
the first k knots to 0.0 and the last k to 1.0.

Listing 3 shows a function to perform the conversion (it’s included on this issue’s
CD). The Bézier curve is assumed to be represented by a data structure of the form

typedef struct BezierCurve {
unsigned int order;
Point3D *controlPoints;

} BezierCurve;

where the number of control points is equal to the order of the curve. The function
returns a TQ3NURBCurveData structure representing the equivalent NURB curve.
Once again, we’ve saved code space by leaving out the necessary checks on the results
of memory allocation requests.

CONVERTING NURB TO BÉZIER CURVES
Converting a NURB curve to Bézier format is more complicated than the other way
around. As we’ve just seen, any Bézier curve can be represented by a particular type of
NURB curve, having half its knots at one end and half at the other. The converse,
however, isn’t true: an arbitrary NURB curve can’t, in general, be represented by a
single Bézier curve. In fact, it generally requires several Béziers to represent a single
NURB curve: one for each distinct segment of the curve, as defined by its knot vector.

Recall that each segment of a NURB curve is affected by some subset of the control
points. If we take each segment and add knots to both ends, generating a new set of
control points each time, until each end has a number of knots equal to the order of

d e v e l o p Issue 25 March 199672

the curve, the result will be a Bézier representation of that particular segment. Do
this for each segment, and we’ll end up with a series of Bézier curves that, taken
together, look exactly like the original NURB curve.

DESIGNING WITH NURB CURVES
The topic of how to use NURB curves in design could easily fill a book; we’ll have to
be content with just a brief discussion, along with some pointers for further reading.

The most obvious capabilities an application program can offer for creating and
modifying NURB curves are

• interactive placement and movement of control points

• interactive placement and movement of knots

• interactive setting and modification of control-point weights

NURB CURVES: A GUIDE FOR THE UNINITIATED 73

Listing 3. Converting a Bézier curve to NURB format

TQ3NURBCurveData *BezierToNURBCurve(BezierCurve *bezCurve)
{

TQ3NURBCurveData *nurbCurveData; // NURB curve data structure
unsigned long k; // Order of curve
Point3D *b; // Bezier control point vector
unsigned long i; // Control point or knot index

// Set up local variables for readability.
k = bezCurve->order;
b = bezCurve->controlPoints;

// Allocate data structure for new curve.
nurbCurveData = malloc(sizeof(TQ3NURBCurveData));
nurbCurveData->order = k;
nurbCurveData->numPoints = k;
nurbCurveData->controlPoints = malloc(k*sizeof(TQ3RationalPoint4D));
nurbCurveData->knots = malloc(2*k*sizeof(float);

// Create the control points.
for (i = 0; i < k; i++) {

TQ3RationalPoint4D_Set(&nurbCurveData->controlPoints[i],
b[i].x, b[i].y, b[i].z, 1.0);

}

// Create the knots.
for (i = 0; i < k; i++) {

nurbCurveData->knots[i] = 0.0;
nurbCurveData->knots[i + k] = 1.0;

}

// Set attributes here, if desired.
nurbCurveData->nurbCurveAttributes = NULL;

return (nurbCurveData);
}

These capabilities can be moderately effective, but actually using them to model a
desired shape turns out to be difficult and awkward. In addition, modifying a control
point, knot, or weight will generally affect parts of the curve that the user wants to
remain unchanged.

One problem that has been explored extensively is that of automatically creating a
curve that goes through (interpolates) a given set of points, which may have been
interactively placed by the user or perhaps obtained by some sort of data sampling.
Indeed, it might be said that this was one of the original motivations for the
mathematical development of spline curves. The first straightforward attempts
yielded less than satisfactory results, but later efforts weren’t too bad and may be
useful if the curve must pass exactly through the given points. Often, however, we
only need to approximate the given set of points with a spline curve. The points may
have been obtained by sampling the user’s freehand drawing with a mouse or tablet,
or perhaps by measuring a physical object or extracting edge information from a
glyph in a bitmapped font. In these cases, we probably want to preserve features such
as endpoints and corners, but the remaining data samples may be noisy or nonsmooth
and need not be fitted exactly. Techniques for both exact and approximate fitting can
be found in Phoenix: An Interactive Curve Design System Based on the Automatic Fitting
of Hand-Sketched Curves and A User Interface Model and Tools for Geometric Design.
These techniques can also be adapted for use in modifying an existing curve, whether
it was generated in the usual way or via one of these fitting algorithms.

CURVING ON
Well, there you have it: more than you probably wanted to know about NURB
curves, plus some free code to boot. Look for a possible upcoming article on NURB
surfaces, and how NURB curves and surfaces can be used together for designing
objects and controlling motion.

d e v e l o p Issue 25 March 199674

This article only scratches the surface of the theory
underlying NURB curves. The following is a list of books
and articles referred to in this article, as well as others
you may want to investigate for further information.

• Curves and Surfaces for Computer Aided Geometric
Design: A Practical Guide by Gerald Farin (Academic
Press, 1990).

• Curves and Surfaces in Computer Aided Geometric
Design by Fujio Yamaguchi (Springer-Verlag, 1988).

• Fundamentals of Computer Aided Geometric Design
by Josef Hoschek and Dieter Lasser (A. K. Peters, 1993).

• An Introduction to Splines for Use in Computer
Graphics and Geometric Modeling by Richard H.
Bartels, John C. Beatty, and Brian A. Barsky (Morgan
Kaufman Publishers, 1987).

• Mathematical Elements for Computer Graphics by David
F. Rogers and J. Alan Adams (McGraw-Hill, 1976).

• NURB Curves and Surfaces from Projective Geometry
to Practical Use by Gerald Farin (A. K. Peters, 1995).

• Phoenix: An Interactive Curve Design System Based on
the Automatic Fitting of Hand-Sketched Curves by
Philip J. Schneider (master’s thesis, University of
Washington, 1988).

• “A Survey of Curve and Surface Methods in CAGD”
by Wolfgang Böhm, Gerald Farin, and Jürgen
Kahman, in Computer Aided Geometric Design,
volume 1 (1984).

• A User Interface Model and Tools for Geometric
Design by Michael J. Banks (master’s thesis, University
of Utah, 1989).

BIBLIOGRAPHY AND RECOMMENDED READING

Thanks to our technical reviewers Pablo
Fernicola, Jim Mildrew, Klaus Strelau, and Nick
Thompson.•

On the way to implementing scripting support in your
applications, you’re bound to confront a variety of
issues. In this column, I’ll give you some pointers for
devising and testing property names and discuss the
techniques for handling preferences through scripting.

PROPERTIES
In an application’s scripting vocabulary, a property is an
attribute of an object. Properties can replace variables
in if and repeat statements, as well as in expressions,
and a script writer normally uses the AppleScript verbs
set and get with them. Here I’ll give some guidelines
for coming up with human-language names for
properties and testing the viability of those names
within the overall natural style of the AppleScript
language.

It’s important that properties have names that users can
easily become familiar with. Ideally, users should be
able to refer to properties in a script the way they think
or speak about them.

Don’t start property names with verbs. Starting
property names with verbs leads to confusion when the
property appears in the middle of a sentence. For
example, naming a property disable call waiting leads
to commands that don’t read smoothly:

set disable call waiting to true
if disable call waiting then ...

This is somewhat clearer:

set call waiting enabled to false
if not call waiting enabled ...

In fact, in the above case, it would be even better to
name the property call waiting and use an enumeration
as its value type (for a discussion of enumerations, see
my article “Designing a Scripting Implementation” in
develop Issue 21). The choices enabled and disabled
allow grammatically correct sentences, as in the
following:

set call waiting to enabled
if call waiting is disabled ...

A little creative thinking goes a long way in making it
easy for users to work with the language.

The “the” test. AppleScript allows you to add or
remove the word the almost anywhere in a script
without changing the meaning of the script. Many
script writers precede object and property names with
the word the to make their scripts easier to read.
Writing your test scripts in this way helps you
determine the degree to which your property names
facilitate forming natural sentences.

set the service to "America Online"
if the priority is high then ...

Don’t confuse attributes and actions. Sometimes
setting a property can cause an immediate change on
the screen. In deciding whether to use a property in
this situation, a helpful rule is: When an action is
initiated, use a verb; when an attribute changes (even if
it produces immediate visible results), use a property.
Another way of looking at this is if a visible change is
immediate, it’s OK to use a property, but if an action
has a duration, use a verb.

As an example, the following command causes an
immediate change on the screen:

set the font of the third paragraph to "Courier"

Even though setting the font property creates a visible
change, the font is still an attribute of the text, not an
action. On the other hand, naming a property or
enumerator playing, as shown in the next two
commands, is a poor choice, because playing actually
initiates an action:

set playing to true
set [the] status to playing

ACCORDING TO
SCRIPT

Properties and
Preferences

CAL SIMONE

ACCORDING TO SCRIPT: PROPERTIES AND PREFERENCES 75

CAL SIMONE (AppleLink MAIN.EVENT, Internet mainevent@his.com)
wants your dictionary for the Webster database, which will be
used to help resolve human-name conflicts between different
applications and scripting additions. He’ll be analyzing the terms

in your vocabulary against others in search of similarities and
differences. Send your 'aete' resources to Cal via AppleLink or
the Internet.•

The playing enumerator value in the second command
is fine for obtaining state information, but a status
property should be read-only. Instead of creating a
property to control an action, use a verb. Verbs such as
play or start playing are better suited for actions, as
shown here:

play the movie "Wowie Zowie"
start playing the movie "Wowie Zowie"

Note that the commands are play and start playing,
not play movie or start playing movie. In an
application based on the object model, movie would be
an object class.

The properties property. A properties property
enables script writers to obtain all the properties for a
given object in the form of a record by using a get
properties construct. (I first suggested using records
in this column in develop Issue 22.) The properties
property can also be set with the set command. The
sample properties property shown in Listing 1 can be
included as a property of any object for which you
allow the setting of more than one property at a time.

Don’t require the user to supply all the properties when
setting the properties property — allow the setting of
just one or a few properties.

get the properties of the fourth paragraph
-- returns font, size, style, and so on

set the properties of the fourth paragraph to ¬
{font:"Helvetica", size:14}

PREFERENCES
Developers use a variety of techniques to allow users to
set preferences through scripts. I’ll describe three
common and easily implemented approaches for
dealing with preference properties in your application

class. (These same approaches can be used to
implement document settings or group properties
for individual objects within your application.)

Separate properties for each preference.
Implementing preferences as individual properties
works well when you have only a few preferences. For
example:

set the connect sound to "Shriek"
set the receive folder to alias "HD:Drop Folder"

If you have many preferences, it’s inefficient for the
user to have to set each property individually. To solve
this, you can implement your preferences as individual
properties (usually in your vocabulary’s application class
definition) and also include a preferences property,
described next.

A property that includes all the preferences. You
can make a single preferences or settings property,
which is a record that’s defined elsewhere in your
vocabulary. To define the elements of the record, create
a fake “class” in your vocabulary, preferably in your
Type Definitions Suite, to serve as the definition of the
element labels in a record definition. In the comment
field for your “class,” be sure to document clearly that
this is a record definition, not an object class. Listing 2
illustrates this technique; for more information, see the
section “Define Record Labels in a Record Definition”
in “Designing a Scripting Implementation” in develop
Issue 21.

Lists and records are the two principal constructs in
AppleScript that don’t lend themselves to human
sentence structure. They are, however, an integral part
of the language and can occasionally help to make the
script writer’s life easier. When you use a record to
create a preferences property, it’s OK to stray a little
from strict natural-language style. Of course, when
referring to elements of a list or record, you should use
natural-language style.

As with the properties property described earlier, don’t
require the user to set all the individual preferences at
once. Allow the setting of just one or a few preferences
at a time:

set the preferences to ¬
{connect sound:"Shriek", ¬
receive folder:alias "HD:Drop folder"}

A user can address individual preferences as if they
were defined as separate application properties. To
allow for varying user experience with AppleScript,
your application should always accept property

d e v e l o p Issue 25 March 199676

Listing 1. A sample properties property

{ /* array Properties: 5 elements */
/* [5] */
"properties",
'Prop',
'reco',
"Property that allows setting of a list

of properties.",
reserved, singleItem, notEnumerated,
readWrite, reserved,
...

},

specifications for individual preferences using the
technique described above, regardless of whether the
user includes the qualifying phrase of the preferences.

For example, both of the following statements should
be allowed:

set the receive folder of the preferences to ¬
alias "HD:Drop Folder"

set the receive folder to alias "HD:Drop Folder"

Multiple “group” properties for grouping
preferences. If you have many preferences or want to
group the preferences according to similar functionality,
such as those often found in multipaneled dialog boxes,
you can create separate properties for groups of
preferences or settings (using the record definition
technique just described). The properties can reflect
the groupings you’ve set up in your graphical interface:

set the compiler preferences to ¬
{warnings included:true, ¬
default integer size:short integer}

set the drawing settings to ¬
{pen size:{1,2}, shape:circle}

A user addresses an individual preference by including
in the object property specification the record that the
preference is an element of, as follows:

the pen size of the drawing settings
set the shape of the drawing settings to ¬

rectangle
set the default integer size of the compiler ¬

preferences to short integer

PARTING WORDS
Following these guidelines in implementing scriptability
in your applications makes it easier for users to write
scripts. Although they may seem like small points, it’s
the details that mean the difference between frustration
and smooth sailing for the script writer. Remember to
think about the way a user would write or speak about
accomplishing what they want to do. Until next time, I
remain your obedient servant on the AppleScript front.
I’ll see you on applescript-implementors@abs.apple.com,
the mailing list for scriptability.

ACCORDING TO SCRIPT: PROPERTIES AND PREFERENCES 77

Listing 2. A sample preferences property

/* First, define this application property. */
{ /* array Properties: 5 elements */

/* [5] */
"preferences",
'Pref',
'cprf, /* for "preferences class" */
"Property that allows setting some or all

of your preferences.",
reserved, singleItem, notEnumerated,
readWrite, reserved,
... /* more reserved items */

},
... /* more property definitions */

/* Later, in your Type Definitions Suite, */
/* create a fake class. */
{ /* array Classes: 1 element */
/* [1] */
"preferences record",
'cprf',
"A record containing individual preferences",
{ /* array Properties: 10 elements */

/* [1] */
"connect sound", 'CSND', 'itxt',
"the name of the sound to use when

connected",
reserved, singleItem, notEnumerated,
...
/* [2] */
"receive folder", 'RFLD', 'alis',
"the folder to place files when received",
reserved, singleItem, notEnumerated,
...

},
{ /* array Elements: 0 elements */
}

Thanks to Eric Gundrum, Jon Pugh, and Derrick Schneider for
reviewing this column.•

Exception handling in C++ offers many advantages over error handling
in C. Using the techniques outlined here, you can implement C++
exceptions in your C code without a lot of effort. The payback is
streamlined debugging that can result in more error-free code. When
your program encounters errors, it jumps to the appropriate error-
handling section, rather than dealing with the error locally. This
simplifies your design and helps you concentrate on the normal flow of
control. Centralized error handling also makes it easier to improve
your reporting and feedback mechanisms incrementally.

I wrote a few little XCMDs in C and after the fifteenth crash of the day, I decided
that I’d better add some error handling. So I looked at Dartmouth XCMDs, but I
wasn’t impressed. Each check for an error meant another indentation in the code,
and I was worried about disposing of handles correctly as I passed errors up the call
chain. Since I’d been looking at a lot of C++ lately, I wondered whether I couldn’t use
part of the C++ exception-handling mechanism to avoid problems in my code. It
worked pretty well, so I thought I’d share my results.

For part of my solution, I used some Metrowerks macros. Metrowerks has graciously
allowed these helpful exception and debugging source, header, and resource files
to be included on this issue’s CD, so you can use them without purchasing its
CodeWarrior CD. The files contain macros that provide convenient tools for
implementing exceptions and debugging signals, as well as an alert resource that can
provide information during debugging.

Although I’ve used C++ exception handling in my C code with great results, I’d like
to offer you one word of caution before you use them. Realize that C++ is not strictly
an extension of C; as a result, in some cases it’s possible that the program may not
behave as you think it should.

BASIC ERROR-HANDLING REQUIREMENTS
All programs must respond to system and subroutine failures somehow. For example,
many Macintosh Toolbox routines return a variable of type OSErr, while others

AVI RAPPOPORT

Using C++ Exceptions in C

d e v e l o p Issue 25 March 199678

AVI RAPPOPORT has degrees in medieval
studies and library/information studies, so she
feels well qualified to work in the Macintosh
software industry. In her job as user advocate and
publications coordinator at Metrowerks, she spent
her time documenting PowerPlant, making

conference calls, and frantically trying to check
CodeWarrior CDs before they were burned. Avi
now works at StarNine as product manager for
messaging products. She lives in Berkeley,
California, with her Mac/Web scripter husband
and their four-year-old son — all BMUG members.•

require that you call Toolbox routines (such as MemError and ResError) to retrieve
the error. If you ignore system and subroutine failures, your program is practically
guaranteed to crash.

Good error handling allows you to cope with many kinds of problems. Your checks
can trigger other code that deals with the problem (for example, by freeing memory).
During debugging, error checking should notify you that something has gone wrong.
And since you can’t, unfortunately, catch all the bugs during testing, you must also set
up an error-reporting mechanism to notify your users when something has gone
wrong. In the worst case, your error handling should at least ensure that your
program exits gracefully, without losing or corrupting user data.

THROWING EXCEPTIONS
The American National Standards Institute (ANSI) has defined a mechanism for C++
compilers that allows code to “throw” exceptions. When the compiler encounters a
throw statement, it jumps to the nearest catch statement. (The “nearest” catch
statement is the one associated with the current try statement, whether it’s in the
current routine or farther up the call chain.) The catch statement can deal with the
error, pass it up the call chain, or both. A throw statement should appear only within
a try or catch statement or in code called from within a try statement. Listing 1
shows these basic components.

As shown in Listing 1, exceptions are dealt with in catch blocks, which take an
appropriate action depending on the error. For serious errors, this means cleaning up
and terminating the program. For less serious errors, the catch block could continue
without making a fuss, or make changes based on the error and again call the routine
that threw the error; sometimes you might want to throw a more generic error, which
is caught and interpreted in a higher-level catch block. I also recommend using the
Metrowerks signal macros (described later) within your catch blocks to help you
locate errors during debugging.

USING C++ EXCEPTIONS IN C 79

Listing 1. Throwing exceptions

OSErr theErr = noErr;

// Try block.
try {

// Do something.
...
// If error, throw an exception.
if (theErr != noErr)

throw (theErr);
}
// Catch blocks.
catch (OSErr theErr) {

// Do something with the error.
...

}
catch (...) {

// Catch anything else.
...

}

The three dots in catch (...) are actually in the code; the other such dots that
appear in these listings are ellipses representing code that isn’t shown.•

When carefully designed, C++ exception handling in your program can deal with
problems at an appropriate level. As you may already have guessed, this feature is
both powerful and dangerous. The advantage is that you don’t have to mess around
with returning errors for every routine or indenting deeply. However, if you allocate
memory, you must be careful to dispose of it at the right time or it will cause a leak.

ADDING C++ EXCEPTIONS TO YOUR CODE
To add C++ exceptions to your code, you must do the following:

• Force the use of the C++ compiler.

• Create a top-level exception handler in your main routine.

• Define try blocks and catch blocks, and call throw at appropriate times.

• Add the C++ library (CPlusPlus.lib, CPlusPlusA4.lib, or MWCRuntime.Lib)
to your project.

The Metrowerks macros that you’ll see in the code that follows make implementing
exception handling much easier than it would be otherwise. I’ll talk about them later.

USING C++
To use C++ exceptions, you have to force the use of the C++ compiler. In Metrowerks
CodeWarrior, the easiest way is to select the Activate C++ Compiler checkbox in the
C/C++ Language panel. You should also make sure that the Enable C++ Exceptions
checkbox is selected, because it enables throwing exceptions rather than direct
destruction (one of those weird C++ things). An alternative way to invoke the
compiler is to change the extension on your source code files to “.cp” or by changing
the Target panel preferences; however, the checkbox method is the easiest.

C++ is stricter about automatic parameter conversion than C, so selecting the MPW
Pointer Type Rules checkbox in the C/C++ Language panel avoids a bunch of errors
(it forces the compiler to allow some implicit char* casts). But you’ll get errors for
other parameters and return values, so you have to clean them up as indicated by the
compiler. For example, the following is an error message returned by a C++ compiler:

HC2RTF.c line 224 textLen = strlen(textString);
Error : cannot convert
'unsigned char *' to
'char *'

To fix this problem, you can change the code to

textLen = strlen((char *) textString)

The CodeWarrior C++ compiler puts special C++ information into function names
(this is called name mangling). C doesn’t do this, so header files for C functions should
be surrounded by #extern "C" statements to tell the compiler not to mangle these
names (see Listing 2). The Macintosh Toolbox header files take care of this already.

CREATING A TOP-LEVEL EXCEPTION HANDLER IN MAIN
In your main loop or function, you should specify the top-level exception handler.
This should catch serious errors, report them, and exit gracefully. Listing 3 shows the
simplest possible exception handler (which you’ll understand better as you read on).

d e v e l o p Issue 25 March 199680

DEFINING TRY BLOCKS
When you use a try statement, it tells the compiler that the following code might
have exceptions thrown in it. All functions that throw exceptions must be within a try
block, either in the current function or in a calling function. It’s pretty easy to set up
try blocks before catch blocks. This is good, because you do have to do it: any throws
that aren’t caught will automatically abort the program.

DEFINING CATCH BLOCKS
You should have catch blocks for each error type. So, for example, you might define
catch (OSErr theErr), catch (errStruct errRecord), and catch (Str255 theErr).
You should also have a generic catch, catch (...), which doesn’t have any parameters,
to catch exceptions of all other types. Although it’s better to use typed catches that
handle specific errors, always add at least one generic catch and have it signal an error
with an alert or break to the debugger. This will help you catch exception mistakes
during your debugging and testing phase. Listing 4 shows examples of these types of
catch blocks.

The compiler automatically routes the error to the appropriate catch statement,
depending on the parameter passed to the throw statement. In Listing 4, both the
StringPtr and OSErr types are caught specifically, after which they’re reported. The
OSErr catch rethrows the error as well. Any other types of errors are caught by the

USING C++ EXCEPTIONS IN C 81

Listing 2. Preventing name mangling

#ifdef __cplusplus
extern "C" {
#endif

long FindBreak(char* buffer, short len);
// More declarations here
...

#ifdef __cplusplus
}
#endif

Listing 3. Simple top-level exception handler

pascal void main(XCmdPtr paramPtr)
{

long oldA4 = SetCurrentA4();

try {
CreateFile(paramPtr);
WriteFile(paramPtr);

}
catch (...) {

ReportError("\pSerious error occurred.")
// XCMDs do not have to use ExitToShell.

}
SetA4(oldA4);

}

generic catch, which calls a signal macro to display a message and then exits the
program.

You can, and often should, continue after catching an error. For example, after a disk
full error, you should allow the user to choose a different volume. Note that the
program will continue after the catch block, rather than in the location where the
exception was thrown.

MOVING DEEPER — HANDLING EXCEPTIONS IN THE
CALL CHAIN
Many of your low-level routines may call the Macintosh Toolbox or otherwise
interact with the Mac OS. They should throw an exception if there’s an error, as
shown in Listing 5.

So where do you catch these exceptions? Remember, they percolate up the call chain
until they find a catch statement, so you don’t have to take care of them in the
immediate calling function (unless you’ve allocated memory or done other things that
need undoing). When you catch them, you can, and sometimes should, throw the
error again. You can either report errors in mid-level routines or rethrow them up to
a higher-level error reporting mechanism.

In addition to these catch statements, be sure to add a catch statement in circumstances
where you need to do any of the following:

• Dispose of handles and otherwise deallocate memory.

• Shut down something you started in the try block, such as opening a file.

• Change the error thrown.

For your own functions, you should throw errors in situations that can cause serious
problems or crash the machine. For instance, if you’re providing a function that
accesses a variable-length array that contains 16 members and the caller asks for the
17th member, you can throw a range error. There’s no hard-and-fast rule about when
to put the error checking into a function and when to require it before calling — it

d e v e l o p Issue 25 March 199682

Listing 4. Specific and generic catch blocks

catch (StringPtr errString) {
// If HandleError throws, it will be caught above this catch.
HandleError(errString);

}
catch (OSErr theErr) {

Str255 errString;
ConvertErrToString(theErr, errString);
ReportError(errString);
throw (theErr); // Rethrow to handle error.

}
// Forces the application to quit after the message.
catch (...) {

SignalPStr_("\pUntyped error occurred in prefs.")
ExitToShell();

}

depends on the situation. For example, if you’re calling a function inside a tight graphics
loop only and you want speed, you can probably check the parameters sufficiently in
the calling function. However, if you have a utility routine that’s called from several
sections of your code, adding error checking will help you remember its requirements,
such as parameters, memory, and other system states, to avoid problems later on.

Handling exceptions in libraries is tricky because you don’t know much about the
calling program. Think carefully about what you should report to the user and what
you should simply return to calling functions.

As your programs become more sophisticated, you can start working around certain
errors — for example, by using temporary memory when the application’s heap is full.
You’ll also need to design interactive error reporting, allowing your users to take
action (such as unlocking a locked disk) when they can. Then your application can
continue properly.

EXCEPTIONS AND DEBUGGING WITH THE METROWERKS
MACROS
The Metrowerks PowerPlant UDebugging and UException files, included on this
issue’s CD, provide convenient tools for throwing common exceptions and alerting
you during debugging. To use them, put the folder in your project folder, add the

USING C++ EXCEPTIONS IN C 83

Listing 5. Throwing exceptions for Macintosh Toolbox errors

void MakeMyResFile(Str32 fileName)
{

CreateResFile(fileName);
// Could also use the Metrowerks ThrowIfResError_ macro.
err = ResError();
if (err <> noErr)

throw (err);
// Continue with execution.
...

}

// Call the function.
MakeThisFile()
{

...
try {

MakeMyResFile(thisFile);
}
catch (OSErr theErr) {

if (theErr == dupFNErr) {
// Do something; file already exists.
...

}
else

throw (theErr); // Rethrow the error.
} // End catch statement.
...

}

sources and the “PP DebugAlerts.rsrc” resource file to your project, and include the
headers in your source files.

The UException.h file includes macros that automate common exception conditions.
The UException.cp file includes an abort function. The UDebugging.h file defines
some macros that make locating problems easier by allowing you to specify a signal, a
debugging string displayed when the macro is invoked.

If your project includes an ANSI library you don’t need to add UException.cp.
The abort function will conflict.•

SETTING GLOBAL VARIABLES FOR DEBUGGING
You need to set the global variables gDebugThrow and gDebugSignal in UDebugging.h
to specify the debugging actions for throws and signals. By default, they’re set to do
nothing at all. Other options include displaying a dialog, dropping into the source-
level debugger, or dropping into the low-level debugger.

To activate the macros, be sure to define Debug_Signal in your precompiled header
or UDebugging.h.

The following are the global variable options:

• debugAction_Nothing — Do nothing.

• debugAction_Alert — Display an alert box with an exception code (described
later), filename, and line number where the throw or signal was made. For
this to work, you must include the file “PP DebugAlerts.rsrc” in your
project.

• debugAction_SourceDebugger — Break into the source-level debugger. For
the Metrowerks source-level debugger, execution will stop with the arrow
pointing to the line containing the throw statement. The exception code
isn’t displayed. You can check the display of variable values in the source-
level debugger for that information. (I’ve tested this with the Metrowerks
debugger only.) If you aren’t running under the source-level debugger,
debugAction_SourceDebugger will break into the low-level debugger on
PowerPC processor–based machines, but might crash on 680x0 systems.

• debugAction_LowLevelDebugger — Break into MacsBug and display the
exception code as a string. In MacsBug, the console will display two lines:

User Break at routine + offset
exception code

Note that if you don’t have a low-level debugger installed, your program will
crash with an unimplemented trap error if it tries to break into the low-level
debugger.

THE THROW MACROS
UException.h defines several useful macros that automatically perform tests and
throw exceptions if a test failed. It also defines a type, ExceptionCode (a long), and
two standard exceptions, err_AssertFailed ('asrt') and err_NilPointer ('nilP'), which
are treated as type ExceptionCode. Here are the throw macros:

• ThrowIf_(test) — Throws an exception if test is true, where test is a Boolean or
the result of a Boolean condition. The exception code will be err_AssertFailed.

• ThrowIfNot_(test) — Throws an exception if test is false. The exception code
will be err_AssertFailed.

d e v e l o p Issue 25 March 199684

• ThrowIfOSErr_(err) — Throws an exception if err isn’t equal to noErr.

• ThrowOSErr_ (err), FailOSErr_ (err) — Throws an exception with err as
the exception code.

• ThrowIfNULL_(ptr), ThrowIfNil_(ptr), FailNil_(ptr) — If ptr is NULL (or
nil), throws an exception with err_NilPointer as the exception code.

• ThrowIfMemError_() — Calls the Toolbox routine MemError and throws
an exception if it returns a result that’s not equal to noErr; the MemError
return becomes the exception code.

• ThrowIfMemFail_(p) — Throws an exception if p (a pointer or a handle) is
nil. The MemError routine is used to check the success or failure of the last
Memory Manager call. If MemError returns a result that’s not equal to
noErr, the exception code is set to the return value of the MemError call.
If MemError returns noErr, the exception code is set to memFullErr, a
constant defined by Apple.

• ThrowIfResError_() — Calls the Toolbox routine ResError and throws an
exception if it returns a result that’s not equal to noErr; the result becomes
the exception code. ResError is used to check the success or failure of the
last Resource Manager call.

• ThrowIfResFail_(h) — Throws an exception if h (a handle to a resource) is
nil. If ResError returns a result that’s not equal to noErr, the exception code
is set to that result. If ResError returns noErr, the exception code is set to
resNotFound, a constant defined by Apple.

You can use all of the macros within if-else clauses, as they’re designed to be self-
contained. For example:

if (err != fnfErr)
ThrowIfOSErr_(err);

THE SIGNAL MACROS
UDebugging.h defines macros for raising signals, also known as asserts. These will
stop the execution of the program and report errors. You can use them to check for
nil pointers, out-of-range offsets, excess length, division by zero, and other problems.
If you remove the definition of Debug_Signal, the entire set of macros is converted to
white space and takes no runtime overhead whatsoever.

The macros are defined to check gDebugSignal for the action to take on execution, as
described previously.

The following are the signal macros:

• SignalPStr_(pstr) takes a Pascal string argument. The string can be a literal
Pascal string (in double quotes beginning with \p) or a StringPtr variable
(and its variants, such as Str255).

• SignalCStr_(cstr) takes a literal C string argument. The string must be
a literal (text within double quotes) and can’t be a char*. Because the
underlying Toolbox routines take Pascal strings, the SignalPStr_ macro
is more efficient.

• SignalIf_(test), SignalIfNot_(test) each take a Boolean condition as an
argument and raise a signal depending on whether the condition is true
or false.

• Assert_(test) is a synonym for SignalIfNot_(test).

USING C++ EXCEPTIONS IN C 85

STRESS REDUCTION WITH EXCEPTION HANDLING
C++ exceptions and these Metrowerks macros make error handling reasonably easy to
add to most programs. With a little thought, you can design a clean structure for
dealing with Mac OS errors and internal errors — a structure that’s easily extensible
to new code. You can avoid stress during testing by adding signal macro calls for
common errors throughout your code. They’re much easier to debug than system
crashes. And yes, thank you, my XCMDs are much better now!

d e v e l o p Issue 25 March 199686

RELATED READING
• For a more in-depth examination of exceptions in C++, consult the article “Try

C++ Exception Handling” by Kent Sandvik (MacTech Magazine, October 1995).
For another view of C exceptions, see “Living in an Exceptional World” by Sean
Parent in develop Issue 11.

• For information on the return values of Macintosh Toolbox routines and the error
codes, see the Inside Macintosh series, Macintosh Programmer’s Toolbox
Assistant, and THINK Reference. You can also look at the header file Errors.h.

Because C has no objects, when you read these publications, you can ignore all
discussions of object throwing, exception objects, construction, and destruction.

Thanks to Greg Dow, Pete Gontier, Tom
Lippincott, and Jon Wätte for their C++ wizardry

and personal patience, and to Pete and Tom for
reviewing this article.•

Last issue’s column discussed various ways of using
ToolServer. I looked forward to deeper integration of
MPW scripts into other development systems, in a
stirring plea that must have brought tears to the eyes of
many an overly sensitive reader. In this column, I’ll
show just how self-fulfilling a prophecy can be: I’ll
explain how to use a generic ToolServer plug-in
compiler with the popular Metrowerks CodeWarrior
development system.

BEYOND THE WORKSHEET
CodeWarrior already comes with ToolServer support
in the form of an integrated Worksheet window, similar
to the MPW Shell Worksheet. Simply choose Start
ToolServer from the Tools menu and you can issue all
kinds of shell commands. It’s like a miniature MPW
Shell inside CodeWarrior. What more could you ask for?

Ten bonus points for reading skills if you could tell that
that wasn’t really a rhetorical question. The Worksheet
is useful but it falls short of full integration. True, you
can execute a Make command from CodeWarrior’s
Worksheet, but it would be even better to integrate
MPW tools and scripts into the default CodeWarrior
build sequence.

Let’s say you have a SOM build — that is, you’re using
IBM’s System Object Model as implemented on the
Macintosh in the form of “SOMObjects for MacOS™”.
Before too long, it’s likely that the current preprocessing
approach to SOM will be just a fading (though still
traumatic) memory, and that CodeWarrior and MPW
will have direct-to-SOM compilers. For now, though,
building with SOM requires running MPW tools and

scripts to generate include files which are then
processed by the C or C++ compiler.

Error prevention is one of the basic principles of user
friendliness. You can invoke the SOM compiler from
a makefile and run it in the CodeWarrior worksheet
before you build, but if you’re like me, short-term
memory loss from a misspent youth will cause you to
forget to run the makefile from time to time, leading to
bizarre errors and gratuitous hair-tearing behaviors.
MPW makefiles provide another rich source of errors
by requiring you to track your own include files.

It’s more convenient to simply give the single menu
command Make than to bring up the Worksheet, enter
“BuildProgram MyBuildFile”, wait for the build to
finish, and then give the Make menu command. One
could only wish that CodeWarrior had a built-in SOM
compiler.

A BUILT-IN SOM COMPILER (AND MORE)
Thanks to CodeWarrior’s new plug-in compiler
architecture (available starting with CW7), you can add
build rules that invoke ToolServer scripts automatically
to compile “.idl” files, or any other type of file. I’ve
created a generic ToolServer plug-in for CodeWarrior
(found on this issue’s CD) that allows you to set up
different command lines for different filename
extensions. It will automatically track include files as
well, if you want it to. It should be powerful enough for
most applications, but if you need something different,
you can take the source code and hack it endlessly to
your own nefarious purposes.

To install the plug-in compiler, put the compiler file
ToolFrontEnd into the Compilers folder of the
CodeWarrior Plugins folder of your CodeWarrior
application folder, and the preferences file ToolFrontEnd
Panel into the Preferences folder of CodeWarrior
Plugins. To set it up, first decide which filename
extensions you want to run through ToolServer; in this
example, we’ll be doing the “.idl” files used by SOM.
Give the Preferences menu command in CodeWarrior,
go to the Targets panel, and attach the ToolFrontEnd
compiler to source files of the appropriate type and
extension.

Finally, go to the new ToolFrontEnd panel in
Preferences and enter the command line you want to

MPW TIPS AND
TRICKS

Using ToolServer
From CodeWarrior

TIM MARONEY

MPW TIPS AND TRICKS: USING TOOLSERVER FROM CODEWARRIOR 87

TIM MARONEY depends on calcium for his structural integrity
and potassium for the generation of axonic spikes in his nervous
system. His recent reading includes Mysticism and Philosophy by
W. T. Stace, Popper Selections edited by David Miller, Seth, God
of Confusion by H. Te Velde, Abrahadabra by Rodney Orpheus,

Hathor and Thoth by Dr. C. J. Bleeker, Making Monsters by
Rochard Ofshe and Ethan Watters, and Soul Music by Terry
Pratchett. A thoroughgoing nominalist, Tim doesn’t believe in
either tables or natural laws, but his contract work at Apple
remains stubbornly limited by his desk and by the flow of time.•

execute for files of this extension. The ToolFrontEnd
panel is shown in Figure 1. Like all software, this is a
work in progress, so it may look slightly different by
the time it reaches you.

The pop-up menu allows you to enter different
commands for different filename extensions. Bind each
extension to the ToolFrontEnd compiler from the
Target panel.

The Script Include File will be executed before your
command line. This lets you set up variables and aliases
that may be useful for your scripts and tools. The
same include file is used for all filename extensions.
The include file can be anywhere in the project’s
access paths. Here I’m using an include file named
“cwtsinclude,” which sets up a few handy variables.
You don’t need to specify any include file if you don’t
want one.

Your source file can be preprocessed to find include
files. I’ve provided a default preprocessor that deals
with #include specifications. You can add other
preprocessors — see the documentation and sample
code that come with the software. Each include file will
be added to CodeWarrior’s internal list of dependencies
for the source file, so the source file will automatically
be rebuilt when an include file changes. If you don’t
want to scan for include files, choose None from the
pop-up menu.

All include files should be in the CodeWarrior project’s
access paths. The project’s access paths will be combined

into the IncludeFiles variable, prefixed with the Path
Parameter shown in the panel. This variable is available
to all scripts executed from the plug-in.

All commands will be executed in the ToolServer
context, so they’ll use any startup scripts you’ve
installed. See the notes from last issue’s column
about minimizing dependencies, though; all your
requirements should be fulfilled by files you explicitly
execute or by the Script Include File specified in the
panel. Otherwise you’ll run into configuration
synchronization problems when restoring archived
builds or sharing sources with your team members.

When the plug-in compiler executes scripts, ToolServer’s
current directory will have been set to the folder
containing the project file. The following variables
will be set up:

• {IncludeFiles} — the parameterized include path list

• {ProjectFolder} — the full pathname of the folder
containing the current project file

• {SourceFile} — the full pathname of the source file
being compiled

• {SourceFileStem} — the root or stem of the
name of the source file (for instance, the stem of
“MyPanels.idl” would be “MyPanels”)

Generally speaking, you’ll probably want to create a
front-end script for the plug-in compiler, rather than
enter a raw MPW command line in the panel. This
allows you to specify any number of parameters,

d e v e l o p Issue 25 March 199688

Figure 1. The ToolFrontEnd preferences panel

redirections, and so on in a script file without worrying
about the text editing limits in the modal dialog. The
command line you specify can be up to 255 characters
long. The SOM compiler has a lot of options, so I’ve
put all the ones I use into a script file named “cwsomc.”

All diagnostic output will appear in the CodeWarrior
error window. All standard output will be ignored.
Internal errors in the plug-in will appear as alerts.

Due to a limitation in the current plug-in API,
CodeWarrior doesn’t know about dependencies
involving compilers that put out source files. While the
SOM compiler will emit, for instance, a “.xh” include
file that will be included by a “.cp” file later in the build
process, there is currently no way for CodeWarrior to
know that the “.cp” file depends on the “.idl” file from
which the “.xh” file was generated. This will be fixed in
a future version of the API, and I’ll add functionality to
the ToolFrontEnd plug-in to support this feature when
it becomes available. For now, since CodeWarrior
compiles files in the order they appear in the project
file, just put “.idl” files above “.cp” files.

UNDER THE HOOD
Source code is provided with ToolFrontEnd, so you can
get a detailed peek at its insides and mutate it to your
own needs. A quick overview may be useful here, though.

ToolFrontEnd sends commands to ToolServer in the
form of Apple events, as described in last issue’s column.
It builds a command in memory that is a short multiline
script with semicolons separating the commands. The
last command of this script is the one you typed in
the preferences panel. At the start of the script are
commands that set the four variables described above.
The diagnostic output is extracted from the 'diag'
parameter of the reply Apple event returned from
ToolServer, and the error code is extracted from the 'stat'
parameter. All this is done using a slightly modified
version of the sample code for communicating with
SourceServer that I provided in this column in Issue 23;
the Apple event conventions of SourceServer and
ToolServer are much the same.

The plug-in was built by starting with the sample code
provided with CodeWarrior. I didn’t have to make any
large-scale changes to the structure — Metrowerks
deserves kudos for the quality of their sample code and
their clean API. There are two code modules to be
built, one for the preferences panel and one for the
compiler itself. Library routines are provided for
common operations like registering a dependency and
getting a stored preferences record. The sample compiler
already contained an include file parser, which I broke
out into a separate module to allow customization for
different file types.

THE BEST OF TWO WORLDS
Though I’ve shown just one example, many different
things can be done with the ToolFrontEnd plug-in.
One of my friends is using a third-party version of the
UNIX™ tool yacc (Yet Another Compiler-Compiler),
which is delivered as an MPW tool. Thanks to this
plug-in, he no longer has to switch between the MPW
Shell and CodeWarrior constantly. You could also
define your own macro language to preprocess your
source files, or add your own original compilers. And of
course, using ToolServer scripts from the compiler is
fully compatible with using the CodeWarrior ToolServer
Worksheet window for other tasks such as installing
software. The Worksheet is also useful for testing and
debugging scripts you’ll use with ToolFrontEnd. I
haven’t provided a linker plug-in, but the API is similar
and the compiler plug-in could easily be adapted to
this purpose.

With ToolFrontEnd, the friendliness of CodeWarrior
and the power of MPW celebrate a hieros gamos (or
sacred union, if that’s Greek to you). The fruit of this
union is an all-in-one development environment from
which you can execute your entire build process, no
matter how complicated, without changing contexts
or inviting errors. Those whose souls are devoid of
romance may prefer to contemplate the consequences
of increased productivity for their next performance
review — in either case, enjoy in good humor and
good health!

MPW TIPS AND TRICKS: USING TOOLSERVER FROM CODEWARRIOR 89

Thanks to Rick Mann and Greg Robbins for reviewing this
column.•

Newton products are currently available localized for English, French,
German, and Swedish. Thus, to take full advantage of the market,
Newton applications must be developed for four languages. As of
Newton Toolkit version 1.5, there’s a mechanism for localizing strings
at compile time but no built-in support for organizing all the categories
of strings across the different languages (unlike on the Macintosh,
where you can use resources). This article presents a couple of ways to
organize localized strings in your Newton application.

Until Newton Toolkit 1.5, developing an application for English, French, German,
and Swedish required four different application projects or many skanky contortions.
This was tedious, to say the least, but necessary for those who wanted to take full
advantage of the worldwide market for Newton products.

Newton Toolkit 1.5 provides support (with the SetLocalizationFrame and LocObj
calls) for localizing your applications from just one project. But this is useful only at
compile time, and it doesn’t provide an infrastructure for organizing and categorizing
the localized objects. In other words, you can have different strings for four locales,
but how you keep track of what strings you have and which ones need localizing is up
to you. Macintosh developers don’t have this problem because all strings can reside in
resources; changing the strings in the resources changes them in the application.

This article presents two ways to organize your localized strings. Both methods are
meant to be used at compile time, but there’s also information on changing strings at
run time. Before reading this article, you should be familiar with the information in
the Newton Programmer’s Guide on localizing Newton applications.

STRINGING YOU ALONG WITHOUT RESOURCES
In a Macintosh application you can keep localized strings in the 'STR#' resource of
the resource fork. This isn’t an option in a Newton application for two reasons:
ResEdit doesn’t directly support Unicode strings, and, more important, a Newton
application doesn’t have a resource fork. All your strings have to reside somewhere in
your application package.

MAURICE SHARP

Country Stringing: Localized Strings
for the Newton

d e v e l o p Issue 25 March 199690

MAURICE SHARP is a truly multinational
person. He was born in England, naturalized to
Canada, and now lives in California. He hopes
to visit the United States someday as well. His
multinational background makes him a bit
psychotic when it comes to beer. He’s never sure

if he should order it warm or cold, or just have
water. This is why he prefers sake. Maurice is one
of the original members of Newton Developer
Technical Support and is still there (remember, we
said he was a bit psychotic).•

A first cut at a solution to the problem of how to organize localized strings in your
Newton application would be to have a viewSetupFormScript or TextSetup method
(where applicable) that sets a particular string based on some application-global
setting. This solution has several disadvantages, such as spreading localized strings
throughout the code (resulting in multiple copies of strings) and requiring all strings
for all countries to be included.

If you’ve programmed the Newton for a while, you might think of taking advantage
of dead code stripping and using an if statement that switches on a compile-time
constant. This would eliminate unused localized strings but is still awkward.

The best idea is a technique that lets you keep all your strings together. You can do
this by defining a frame in your Project Data with one slot per string that you want to
localize. You can even use nested frames. For example:

constant kUSStrings := '{
AppName: "World Ready!",
ExtrasName: "World!",
HelloWorld: "Hello World",
Dialogs: {

OK: "OK",
Cancel: "Cancel",
Yes: "Yes",
No: "No",

},
};
constant kFrenchStrings := ...

In Newton Toolkit 1.5 and later, you can use this frame with SetLocalizationFrame.
Unfortunately, there’s no specification for how to build up the frame, which is essential
to organizing your strings in a sane way. Also, SetLocalizationFrame is meant only
for compile-time localizations. With some extra effort you can organize the strings in
a way that allows them to be localized at run time as well. As the next section shows,
the key is using the Load command in combination with a few constant functions.

LINGUA FRAMA — CREATING THE LANGUAGES FRAME
In the previous section, we defined a frame that can be used for each target language.
Each of those target language frames can be nested into an outer frame, called the
languages frame. Each target language subframe contains the localized strings in that
language. These subframes can in turn contain other subframes, enabling you to
group strings into logical categories such as strings used in filing, strings used in
searching, and so on. Each of the frames at the top level of the languages frame
must have the same structure. If you have a path in the USEnglish frame of
Entries.Names.Phones.Home, that path will also need to exist in French, German,
and any other languages your application supports.

The overall structure of the languages frame is as follows:

{USEnglish: {
AppName: "World Ready!",
Dialogs: {

Cancel: "Cancel",
OK: "OK",
// ... and so on

},

COUNTRY STRINGING: LOCALIZED STRINGS FOR THE NEWTON 91

French: {
AppName: "Prêt pour le Monde!",
Dialogs: {

OK: "OK",
Cancel: "Annuler",
// ... and so on

},
German: {
AppName: "Welt Ready!",
Dialogs: {

OK: "OK",
Cancel: "Absagen",
// ... and so on

},
// ... and so on
}

This is the format of the frame you would pass to SetLocalizationFrame as well as of
a constant that can be used in runtime localization. Typically, the languages frame
would be kept in a text file or in your Project Data. The problem with this is that the
frame is rather large, and adding or changing an entry in a language subframe can be
difficult. Also, several entries are identical (such as the string for OK).

A better solution is to separate the localized strings by category. This article uses the
target languages as the categories, though you could also employ similar techniques
with other categories. Once the strings are split, you can use the Load command to
assemble the languages frame.

There are two main schemes for organizing the strings. One uses simple text files and
works on both the Mac OS and Windows platforms. The other uses compile-time
functions to read the strings from some other format; on the Macintosh platform, this
method can be used to construct the languages frame from a resource file. We’ll look
at each of these methods in turn.

LOADING FROM TEXT FILES
In the first scheme, you separate each language into a different text file. Remember
that Load will return the result of the last statement it executes in the specified file.
This means that each text file will specify one frame. For example, the contents of
your French text file might look like this:

{
AppName: "Prêt pour le Monde!",
Dialogs: {

OK: "OK",
Cancel: "Annuler",
// ... and so on

}
};

You could then modify your Project Data to build the localization frame:

SetLocalizationFrame({French: Load(HOME & "FrenchStrings.f"), ...

It’s also helpful to have some string constants that can be used in multiple places. A
good example is the string for OK, which is the same in some languages. To do this,
you should load some general constants before constructing the individual languages

d e v e l o p Issue 25 March 199692

that make up the languages frame. So the overall process for building the languages
frame would be as follows:

1. Load a file of string constants.

2. Construct an empty languages frame.

3. For each language, build the individual target language frame and add it to
the languages frame.

You only need predefined constants if you aren’t using object combination.
Object combination, a feature that exists as of Newton Toolkit version 1.6, would
solve the problem of multiple instances of a single string (such as “OK”).•

The above description smells of an algorithm. Since you can run NewtonScript at
compile time, you can call a function to load a languages frame from text files (see
Listing 1). The main trick of this function is that it uses the language symbol to
create a pathname for Load.

You can define this function in a text file (say, WorldStrings.f) that you add to your
project. Note that you must compile this file before you load your international strings.

You could use the languages frame directly as the argument to SetLocalizationFrame;
however, as we’ll see later in this article, there are better ways to use the frame.

LOADING FROM RESOURCES
The second scheme creates the languages frame from a resource file. You can apply
the methodology to other non–text file sources as well. To take advantage of the code
below, you’ll need Newton Toolkit 1.6 or later. One important point: all of this code
works only for Roman-based languages.

To make life easier, we’ll define a template in ResEdit that shows all the localized
versions of a particular string. The template defines a resource of type 'LOC#', which
is loosely based on the 'STR#' resource (see Table 1). Because we’re using a template,
the number of languages must be defined in advance; we’ll choose 5 as a nice arbitrary
number. You can find the 'LOC#' template in the sample code on this issue’s CD.

You can now use the 'LOC#' resource to enter all of your strings, grouped into
categories that make sense to you. The advantage of this resource is that the path
expression in the languages frame and all localized strings for that path expression are
grouped together.

COUNTRY STRINGING: LOCALIZED STRINGS FOR THE NEWTON 93

Listing 1. CreateLanguagesFrameFromText

global CreateLanguagesFrameFromText(GlobalsFilePath, LanguagesSymArray)
begin

if GlobalsFilePath then
Load(GlobalsFilePath);

local langFrame := {};

foreach sym in LanguagesSymArray do
langFrame.(sym) := Load(HOME & sym & "Strings.f");

langFrame;
end;

You may be wondering why the 'LOC#' template contains an English string. If you
use LocObj, the first argument is a string that’s taken as the English localization. For
the case where you’re only localizing at compile time, the English string is redundant.
But if you want to localize at run time, you’ll need the English string around.

If you’re familiar with the resource calls in the Newton Toolkit, you will have spotted
a potential problem: there’s no way to query for the available resource IDs of a
particular resource. The basic solution to this problem is to try reading a resource
and to catch the exception that the Newton Toolkit throws if the resource isn’t
present. Unfortunately, iterating through all possible resource IDs while catching
exceptions takes several minutes.

So we impose these restrictions: there can be any number of 'LOC#' resources but
they must be numbered consecutively, and the first resource ID must be either 0
(because programmatically generated resources are likely to start with 0) or 128
(because those created in ResEdit will start with 128). The code in Listing 2 generates
an array of resources of a given type based on these criteria.

Once you have an array of 'LOC#' resources, you need to parse these resources into
NewtonScript path expressions and strings. The code in Listing 3 gets all the 'LOC#'
resources and generates a languages frame.

Unlike the text method, the resource method has to assume a certain number of base
languages. The first thing the code does is to check that there are exactly five language
symbols. If not, the code throws an exception. The result is a typical Newton Toolkit
error dialog with the string specified in the code.

In reality, we could be a bit more forgiving. The code won’t create entries in the
languages array for items that are empty strings. So if a developer were careful not to
fill out entries for particular languages, the restriction could be relaxed to no more than
five languages. You could also make the code a bit more complex and just not add
strings for undefined languages. This is left as an exercise for the masochistic reader.

An even better approach would be to create some other resource (say 'LOCi') that
contains information on how many languages are defined by the 'LOC#' template
and the language symbols. It would require slightly more complex code for
CreateLanguagesFrameFromRsrc, but it would provide more flexibility later on.
The CD contains modified code that uses an 'LOCi' resource.

As you can see, this is considerably more complex than the function used for text files.
Also note that this methodology can’t use constants for common strings. There are ways
to massage the data to use constants, but that’s left as another exercise for the reader.

d e v e l o p Issue 25 March 199694

Table 1. The 'LOC#' template

Item Number Label Type
1 NumStrings OCNT
2 ***** LSTC
3 path CSTR
4 English CSTR
5 French CSTR
6 German CSTR
7 Other1 CSTR
8 Other2 CSTR
9 ***** LSTE

COUNTRY STRINGING: LOCALIZED STRINGS FOR THE NEWTON 95

Listing 2. GetAllResources

global GetAllResources(ResType, NewtType)
begin

local result := [];
local atID := 0;

// See if we can read in resource ID 0. If so, increment the
// next resource ID; if not, set the ID to 128.
try

AddArraySlot(result, GetResource(ResType, atID, NewtType));
atID := 1;

onexception |evt.ex.msg| do
atID := 128;

// Start at the current resource ID (either 1 or 128) and
// continue reading in resources until an exception occurs.
loop
begin

try
AddArraySlot(result, GetResource(ResType, atID, NewtType));
atID := atID + 1;

onexception |evt.ex.msg| do
break;

end;
result;

end;

Listing 3. CreateLanguagesFrameFromRsrc

global CreateLanguagesFrameFromRsrc(ResFilePath, LanguagesSymArray)
begin

// Throw if there aren't exactly 5 languages.
if Length(LanguagesSymArray) <> 5 then

Throw('|evt.ex.msg|,
"The LanguagesSymArray must be exactly 5 elements long.");

// The languages frame array that will be returned
local langFrame := {};
foreach sym in LanguagesSymArray do

langFrame.(sym) := {};

// Could use a constant since currently must be exactly 5 languages.
local numLanguages := Length(LanguagesSymArray);
local r := OpenResFileX(ResFilePath);
local locResourceArray := GetAllResources("LOC#", 'binaryObject);

/* Process the LOC# resources. The format of the resource is:
16-bit count of number of string sets
string set 1
string set 2...
string set n

(continued on next page)

d e v e l o p Issue 25 March 199696

string set:
pathexpression as C string
English as C string
French as C string
German as C string
other1 as C string
other2 as C string

*/

local numStringSets;
local pathExpr;
local tempString;
local atIndex;

foreach locResource in locResourceArray do
begin

// Get the number of string sets.
numStringSets := ExtractWord(locResource, 0);

atIndex := 2;

// Grab each string set.
for stringSet := 1 to numStringSets do
begin

// Grab the C string that is the path.
pathExpr := ExtractCString(locResource, atIndex);

// Update index counter.
atIndex := atIndex + StrLen(pathExpr) + 1;

// Create path expression for following strings.
pathExpr := call Compile("'" & pathExpr) with ();

// Get the language strings and jam them.
// WARNING: This code will ignore zero-length strings.
// There are rare cases where you actually want an empty
// string for a particular translation; in this case, you
// could modify the code to throw an evt.ex.msg with the
// appropriate error.
foreach langSym in LanguagesSymArray do
begin

tempString := ExtractCString(locResource, atIndex);
if StrLen(tempString) > 0 then

langFrame.(langSym).(pathExpr) := tempString;
atIndex := atIndex + Length(tempString) + 1;

end;
end;

end;

CloseResFileX(r);
langFrame;

end;

Listing 3. CreateLanguagesFrameFromRsrc (continued)

PUTTING IT ALL TOGETHER
Once you’ve created the languages frame, you can use SetLocalizationFrame and
LocObj in your project to localize your strings. The sample on this issue’s CD
(Compile Time Strings) uses the code shown in Listing 4. This code is more general
than you may need, in that it creates the frame from either text files or resources. The
last line sets up a constant for the English (that is, the default) language frame. You
can use the constant English strings as part of the first argument to LocObj.

The LocObj mechanism can be used with any object, not just strings. This article
looks only at strings, though the text-based method will work for most types of objects.•

You’re probably wondering why we don’t create a wrapper function to generate the
correct LocObj call. Unfortunately, LocObj is a special type of call in the Newton
Toolkit; it’s evaluated as soon as the compiler hits it and it must return a constant value.

CHANGING STRINGS AT RUN TIME
The LocObj mechanism is designed for compile-time customization of your
application. In other words, the LocObj function exists only in the compile-time
environment of the Newton Toolkit; you can use it only in places that will be
evaluated at compile time. In some circumstances you may want to change localized
strings at run time. One example would be a language translator application where
you want the interface strings to be displayed in the current source language.

COUNTRY STRINGING: LOCALIZED STRINGS FOR THE NEWTON 97

Listing 4. Calling SetLocalizationFrame

// Create the languages frame, either by text or by resource.
constant kFromText := nil;

// Create the kLanguagesArray constant for the languages.
// The text method requires only as many languages as there are
// text files; the resource method requires a 5-element array.
DefConst('kLanguagesArray,

call func(isText)
if isText then

'[English, French, German];
else

'[English, French, German, Other1, Other2]
with (kFromText));

if kFromText then
DefConst('kLangFrame,

CreateLanguagesFrameFromText(
HOME & "StringsCommon.f", kLanguagesArray));

else
DefConst('kLangFrame,

CreateLanguagesFrameFromRsrc(
HOME & "strings.rsrc", kLanguagesArray));

SetLocalizationFrame(kLangFrame);

// Define a constant for the English language frame.
constant kStrings := kLangFrame.English;

The raw data for the runtime strings exists in the languages frame. The frame can be
included in your package so that you have access to all the localized strings. This will
add a significant amount of space to your package; at worst, it will take up two bytes
per character in the unique strings, plus the storage occupied by the symbols and
frame structure.

You’ll need to add some runtime support for switching language elements of the
interface. The main task is to decide what views need to be updated when a language
is switched. The simplest way to do this is to recursively propagate a conditional
message send through the application’s view children:

// In application base view ...
myApp.PropagateLanguageChange := func()
begin

// ... conditionally recur through all the kids.
foreach child in :ChildViewFrames() do

// "x.y exists" only checks for y using proto inheritance.
if child.PropagateLanguageChange exists then

child:PropagateLanguageChange();
end;

This code won’t send to all children. To do that you would remove the exists test and
just send the message, which will always be found since the top-level parent defines it.
If you make this change, you should add some sort of conditional check for a message
that does the real work of updating (like “if child.DoLanguageChange exists then ...”).

An alternative is to keep track of which views need updates. How you do it depends
on your application’s structure. Typically, you would maintain an array of the declared
views that need updating. If the views that need updating are well known, you’re
better off using the latter method.

Each view that requires an update will need to perform three tasks: change the text
based on the source language; usually change the viewBounds based on the new text;
and redraw or refresh based on the new viewBounds and text. Since it’s very likely that
the viewBounds will change, most of the work can be done in the viewSetupFormScript
method of the view. Remember that redisplaying with a new viewBounds requires
sending a SyncView, which has the side effect of sending all viewSetup messages.

This means that you can use the SyncView call as your message to indicate that
the source language has changed. When a view opens by normal means it will also
use the correct source language. Note that in some cases you may want to use
RedoChildren, which has the same basic effect as SyncView sent to all children.

One caveat is that both SyncView and RedoChildren are expensive calls. You should
limit the places where the language can change. An example of runtime customization
(Run Time Strings) is provided on the CD.

READY TO ROCK AND ROLL
With the code from this article, you can now make all your applications world ready.
If you’re just starting an application, take the time and use LocObj where you should.
If you already have a project, retrofit it. Then take the code samples, customize them
to your heart’s content, and code away. Today English, tomorrow the world.

d e v e l o p Issue 25 March 199698

Thanks to our technical reviewers Bob Ebert, Mike
Engber, David Fedor, and Martin Gannholm.•

Q Now that Newton 2.0 is shipping, what has changed?

A A fair question, and one that’s been much on my mind. Newton 2.0 solves some
of the problems previously presented in this column in much better ways. So
I’ve gone back over old questions to see what has changed. I’ll start out this time
by revisiting those questions that have new answers. (Questions that dealt with
subsystems whose APIs on the Newton 2.0 OS are drastically different will not
be covered; most of these have to do with routing, which has undergone a
significant change for the better, while some have to do with communications.)

Q How do I create my own class of binary object? (Issue 18)

A In the Newton 1.x OS you had to use SetClass on a string object to make some
other binary object. In 2.0 you can just call the new function MakeBinary. So
the line of code to define the canonical CharID object (see the original answer)
changes to

DefConst('kDefaultCharIDOBj, MakeBinary(4, 'CharID));

Q I would like to add a [button|view|Llama] to [Notes|Dates|Names| etc.]. How can I
do that safely? (Issue 19)

A In the Newton 1.x OS there was no supported way to add items to the built-in
applications. In 2.0 there are a few ways you can do this.

For general changes, you can add new stationery to Notes, Dates, and Names.
For example, you could add graph paper to Notes. You could also define new
card styles or views of a person in Names.

Names and Dates also let you add whole new classes of things. For instance, you
could add a Pet type of names entry that would appear in the New pop-up
menu along with Person, Company, and Group.

The Dates application has an API to add new types of meetings. It also lets you
add items to its Info button.

In addition, there’s a general API to register buttons that can show up in the
“blessed” application’s status bar. It’s up to each application to decide whether
and how it will display registered buttons. You should no longer use the
unsupported keyboardChicken hack.

Note that on the Newton 2.0 platform there’s still no support for adding
buttons to built-in slips. For example, if you wanted to add something to the
alarm picker for a meeting, you would need to add a new type of stationery
that’s a superset of the alarm picker.

Q I’ve written my own IsASCIIAlpha, IsASCIINumeric, etc. functions. They seem to be
really slow. Why is that? Here’s my IsASCIIAlpha: [code not repeated here; all the
functions work on strings] (Issue 20)

Newton
Q & A:
Ask the
Llama

NEWTON Q & A: ASK THE LLAMA 99

The llama is the unofficial mascot of the
Developer Technical Support group in Apple’s
Newton Systems Group. Send your Newton-related

questions to NewtonMail or eWorld DRLLAMA or
to AppleLink DR.LLAMA. The first time we use a
question from you, we’ll send you a T-shirt.•

A Most of the comments from the original answer still hold. However, in the
Newton 2.0 OS the string could be a rich string; that is, there could be an ink
character inside the string. That means the compare functions have to check
whether a particular character was kInkChar.

Q When I try to add an index to my soup I sometimes get an exception -48019, but not
always. What’s going on? (Issue 22)

A In early versions of Newton, if you added an index on a slot, and an entry in that
soup had a value of nil for that slot, you would get an error. As of the Newton
2.0 OS this is no longer a problem. You can add an index even if there are
entries with nil values for the slot in the soup.

Q I have an application that uses ADSP to connect to a server on the desktop. I want the
server to handle multiple Newton devices connected simultaneously. Unfortunately, if a
connection fails after it’s opened, the server doesn’t seem to be able to identify it as a new
connection when the Newton device reconnects. This causes problems in the server’s
ability to handle multiple connections. Can you help? (Issue 23)

A In the Newton 2.0 OS this no longer occurs. The Newton device will generate
a new ID for the connection.

Q Since there are changes between Newton 1.x and 2.0, what features in 2.0 can I rely
on? What is the core set that defines Newton 2.0?

A At this time there is no published core set of NewtonScript-level features that
you can rely on. We’re confident that you can rely on the features of the
NewtonScript language and major components like the view system and
communication endpoint interface. However, you can’t count on individual
protos or even the internal applications being there. Since we license Newton
technology to other companies, they could produce a Newton device that
doesn’t include Names, Dates, or other built-in features. They may also
produce Newton devices that have features that aren’t present in Apple
products.

The key is to test the features you rely on. If you find that some of the features
you need are missing, you can either run in a less-featured mode or just not
open your application. As a simple example, suppose your application runs only
in a limited set of screen sizes and aspect ratios. You can give your base
application view a viewSetupFormScript that looks something like this:

myBaseView.viewSetupFormScript := func()
begin

local screenSize := GetAppParams();
local aspectRatio := screenSize.appAreaWidth /

screenSize.appAreaHeight;

// very simplistic test, no MINIMUM even!
if aspectRatio > 1.0 then // landscape
begin

local maxHeight := kMaxAppWidth;
local maxWidth := kMaxAppHeight;

end;

d e v e l o p Issue 25 March 1996100

else begin // portrait or square
local maxHeight := kMaxAppHeight;
local maxWidth := kMaxAppWidth;

end;

if screenSize.appAreaWidth <= maxWidth AND
screenSize.appAreaHeight <= maxHeight then

begin
self.viewBounds := RelBounds(...);
// other setup stuff
...

end
else begin

// cannot operate at screen size
:Notify(kNotifyAlert, EnsureInternal(kAppName),

EnsureInternal(kErrorWrongScreenSize));
AddDeferredSend(self, 'Close, nil);

end;
end;

For global functions and variables, you can use the GlobalFnExists and
GlobalVarExists utility functions. To find out whether a built-in application
exists, you can check the root view with the appropriate symbol:

// check for Dates
if GetRoot().calendar then

...
// check for Names
if GetRoot().cardfile then

...
// check for Extras
if GetRoot().extrasDrawer then

...

For protos, you can try to access the proto and catch a frame reference
exception. If the exception occurs, the proto is not present.

In general, it’s a wise idea to do all your existence testing as your application is
launching. Set flags in your base application so that you test for existing features
only once.

Q Is there a hardware-unique ID that I can access on a Newton device?

A At this time there’s no built-in hardware-unique ID, nor is there an API for
accessing one if it existed. However, this doesn’t rule out having such an API in
future Newton devices.

Q I’m using a Newton 2.0 protoSoupOverview and I want to change the font style. How
do I do that?

A This is one of those things that are obvious once you make the connection. You
use the Abstract method of protoSoupOverview (and protoOverview, for that
matter) to build the shape that’s displayed for a particular soup entry. Notice
that you’re returning a shape, with all that entails. The chapter on drawing in
the Newton Programmer’s Guide says you can include a styles entry in a shape

NEWTON Q & A: ASK THE LLAMA 101

array, allowing you to specify things like font style. See the DTS Sample Code
Checkbook on the Newton Developer CD for an example.

Q I noticed that some of the built-in applications have keyboards in their slips — for
example, the new name editor in the Names file. Is this stationery based? Is there a
magic slot I can set? Is there a proto?

A Those keyboards are just views based on protoKeypad that are laid out as a
child view of the slip. All you need to do is lay out your own protoKeypad and
set up the definitions appropriately. There is no supported magic slot.

Q I’m trying to use a protoListPicker to display a soup structure that has nested frame
entries. I can’t get the listPicker to work. Am I doing something wrong?

A No. The default listPicker proto doesn’t work with items that are accessed via
path expressions. However, if you make the following three changes, your
listPicker should work fine.

First, you have to specialize the GetObjSlot method of your pickerDef:

GetObjSlot: func(item, fieldPath)
begin

if ClassOf(fieldPath) <> 'pathExpr then
// if not a path expression, return the inherited value
return inherited:GetObjSlot(item, fieldPath);

// otherwise, if there is no item, return nil
if not item then

return nil;

// there is an item, so get the real value, since the item
// could be a NameRef or an Entry
if IsNameRef(item) then

local val := EntryFromObj(item);
else

val := item;

// assuming we have a real thing, access the real data via the
// path expression in fieldPath
if val then

val.(fieldPath);
end

Second, if you specify a validation frame in for your listPicker, the nesting of
that frame must match the nesting of your soup entry.

Finally, modify your pickerDef so that the column that displays the data based
on the index path uses the appropriate index path.

d e v e l o p Issue 25 March 1996102

Thanks to our Newton Partners for the questions
used in this column, and to jXopher Bell, Henry
Cate, Bob Ebert, David Fedor, Jim Schram,
Maurice Sharp, and Bruce Thompson for the
answers.•

If you need more answers, check out
http://dev.info.apple.com/newton on the World
Wide Web or look at Newton Developer Info on
AppleLink.•

So I’m sitting at my desk, mouse in hand, digging
through the guts of my Mac, trying to track down yet
another pathetic bug. The only trouble is, this is
getting dull. I’ve done it a thousand times, and I always
win; it’s just a question of how much time the old ball
and chain is going to eat up this time. Worse, the wind
is blowing 20 knots right outside my window, and for
the windsurfers in the crowd, you know the exquisite
torture of good wind that you aren’t allowed to
transform into mind-blowing speed.

Maybe for you it’s that you’d like to get home to see
your insanely great mate. Or you’ve got kids whose
names you can’t pronounce. It’s even likely that some of
you just graduated from college and are still astonished
that they pay you for something that’s so much fun. But
you’re thinking, “If I can get this bug fixed quickly, I
can get back to writing that rad Marathon hack to make
the other net players slower than me.” Perhaps your
boss has started to notice that you spend a lot of time
on the job but you don’t really get very much done.
Getting a little nervous? What if he’s thinking of pulling
the plug on your baby because you’re too slow?

Or maybe you shipped the 1.0 version, but it had a few
too many bugs, and MacWEEK was so incensed that
they broke with the tradition of objective journalism
and are calling for your head. People who bought your
software with actual money have been calling every day,
filling your answering machine with unveiled threats. It
seems that you left a bug in there that just cost several
thousand people each about two weeks of valuable time,
reentering their data.

In particular, recognize that the wasted time from
programming errors and bugs gets exponentially more
expensive the further into the process you get. If I make
a syntax error, I just fix it and recompile. If I toss buggy
code over the fence to the testers, now I’m wasting
their time. If I ship software with occasional crashing
bugs that I just can’t quite track down, I’m wasting
thousands of people’s time.

The point is, there are lots of ways to waste time while
programming. I’m here today to offer some ideas on
how to save time through better programming habits,
so that you can take up windsurfing, or maybe the
electric guitar, or learn how to pronounce your kids’
names, or gain “the power to crush the other kids”
while playing Marathon. Whenever I mention
windsurfing, substitute your favorite quality-of-life
enhancer.

I’ll use some real life examples, and we’ll see what sorts
of lessons we can learn from them. I’ve categorized
these ideas in three ways. First, there are some obvious
time wasters that can be eradicated; these aren’t really
bug related, just daily time wasters. Considering how
much time bugs cost, the second category consists
of high-value rules that can find bugs quickly and
painlessly. Finally, there are the super-value rules that
prevent bugs from happening at all. Be sure to consider
how these ideas might apply in your specific
circumstances.

RIGOROUS, YET REUSABLE
OK, I’m in the midst of writing the MMU tables for
Blat, and I realize that I’ve already got a similar table.
Not being a fool, I know not to rewrite code I’ve
already written, so I open that file and casually copy
and paste the table into my current work. Oh no, not
another copy and paste casualty! Apparently I missed
changing those two table entries, and with MMU tables
that means the machine hangs before MacsBug loads.
Seems like every time I paste in code there’s something
I miss, making it not compile — or worse, causing a
malfunction.

Even with small chunks of code, I’ve found it helps to
review the pasted code line by line, carefully, and not
to assume that since it ran before, it’ll run now. Some
subtle assumptions may have changed, and even though

THE VETERAN
NEOPHYTE

Killing Time Killers

BO3B JOHNSON

THE VETERAN NEOPHYTE: KILLING TIME KILLERS 103

BO3B JOHNSON (bo3b@rahul.net) is completely whacked out
about windsurfing, and takes summers off in order to windsurf
every day. But since it’s winter, he’s doing consulting so that he can
pay for his next windsurf board and windsurf trip to Aruba. Bo3b
prefers to be addressed as “Bob,” since the 3 is silent.•

Where’s Dave? That other Johnson, who usually writes this
column, is probably at the public library researching his obsession
du jour, taking his dogs for very long walks, or reclining on the
couch reading a book. Since he’s cut back his working hours,
we’re having guest Neophytes write this column. We can’t promise
they’ll all be Johnsons, however.•

d e v e l o p Issue 25 March 1996104

reusing code is certainly superior to writing it again,
don’t be misled into thinking this is risk free. A more
powerful technique is to seriously modularize code, so
that when I copy and paste I take an entire routine, not
just a few lines. With a well-defined interface, the
chances of blowing it are greatly reduced. This means
adopting the habit of writing each routine with the idea
that I’m going to reuse it later. This radically improves
every routine I write.

New rule: Reuse code modules, not code fragments. If
the code has to be altered, inspect it as if it were new
(which it is).

VERBOSE, YET LUCID
While in the guts of Font/DA Mover, I ran across some
very strange code that didn’t make any sense to me at
all — and it wasn’t documented. It was never executed
as far as I could determine, but I painstakingly figured
out that it was looking for System file 3.2 and, if found,
would patch the OS to fix a font bug. I would have
saved a full day of effort had there been a comment in
that funny little splat of code. Like I’m supposed to
know what the bugs in System 3.2 are off the top of my
head?

Comments really are necessary to make code reusable
and maintainable. I always write “strategy” comments,
which say what the routine is trying to do, and avoid
writing “tactical” comments, like what it’s doing line by
line. Remember, sometimes the time savings occur in
the future, not at the moment. I’ve found that skipping
comments is being penny wise and pound foolish.
Usually the strategy comments help clarify my thinking
on the routine as well, so there actually is a short-term
gain.

New rule: Always write strategy comments. It’s possible
to decipher intent from the code, but why not just
explicitly say it?

PLUMP, YET HONED
I used to think it was important to save every line of
assembly code that was possible. The first program
I wrote for the Mac was Anaclock, an analog clock
program, and I remember thinking that if I changed
the order of some routines I could save code. Don’t we
all get into that mode sometimes? If I just change these
two lines, I can save an assignment, and blah blah. It
must come from the old 128K Macs and Apple IIs.

Well, guess what? These machines are so stuffed full of
junk nowadays that saving just one or two lines is as
meaningless an effort as trying to decide how many
demons fit on the head of a transistor. Worse, I spent

my own valuable time deciding something that has zero
impact. Sorry, no can do anymore. My philosophy now
is: write it straightforward, easy to read, vanilla. I want
to save my windsurfing time, not pretend that I know
up front what needs optimizing. In the Anaclock
example, the computer had an entire second between
screen updates. When I actually measured execution
time, all the time was spent in CopyBits updating the
screen, and waiting in the main event loop for the next
second to arrive. There was zero measurable time in
my entire clock calculation and offscreen drawing code.

New rule: No premature optimization. Measure with
performance tools first. Then optimize only where it
counts.

TEMPERAMENTAL, YET DISCRIMINATING
During System 7 development, we once tracked down
a bug, taking seven hours in the middle of the night to
find it, and it wound up being a bad parameter passed
to a ROM routine. Incredibly, I could have found that
bug in about 15 seconds if I’d used the Discipline tool.
Nowadays, I never debug something by hand unless it
has passed all the debugging tools that Fred Huxham
and I talked about in our article in develop Issue 8.

There are lots and lots of tools available now, and I use
all of them. I don’t care how hard they are to use; if
they can find a bug in seconds that might take me
hours or days, then I win. This includes such notorious
tools as Blat and Jasik’s debugger. I know Blat’s a pain,
since it doesn’t work on all machines, but hey, it’s too
valuable to skip. Same with Jasik’s debugger. Sure it’s
confusing, but it’s got features no one else provides.
Before throwing the software over to the testers, I
make sure it passes all the tools.

High-value rule: Use the best tools, all the time. Don’t
spend time in a debugger when a test tool will hand
you the answer on a silver platter.

SPECULATIVE, YET REWARDING
As part of a contract, my job was to make a program
to save, print, and display 300 dpi bitmaps that were
scanned in from a fax machine through new hardware.
This was to be a low-cost scanner, and my software
would be the initial scan-and-display code. Nothing
too fancy, but it still required basic functionality. I bid
15 hours for the entire program. Was I crazy? Well, of
course, but not for this reason. I used MacApp to give
me the application functionality, and the FracApp300
sample program was a good starting point for 300 dpi
bitmap handling. All I really did was add an object to
talk to the scanning hardware, and I came in under
bid!

Sometimes learning those new tough coding tools can
really pay off. I generally try to sample every new tool
and coding advance that comes along to see if it can
help me save time. MacApp was clearly a massive win,
because it focused my programming onto teensy parts
to be added instead of all the Toolbox calls of a typical
application. In addition, it was fully debugged and very
robust, giving me a more solid final application. I try
not to be wedded to any given style or approach; I just
want to use the best stuff currently available.

High-value rule: Try new things. New ideas, approaches,
tools, and programming styles can be like winning the
free-time lottery.

PAVLOVIAN, YET TRAINABLE
Sometimes it takes a while to recognize bad habits for
what they are. While writing Bowser, which turned
into Mouser and then MacBrowser, I wrote the source
code parser by hand, to look for keywords. This was
not a good strategy. It was quick and dirty, and stayed
dirty, and was less quick all the time. It would be
reasonable to expect that after modifying the parser
for the eighth or ninth time to handle some stupid
language exception, I would have gotten a clue that this
was not the right approach. The right answer was to
learn how the lex and yacc tools worked, since parsers
for both Object Pascal and C++ already existed in that
format.

After seeing similar bugs go by several times, it
becomes clear that something must be done to stop
that kind of bug. I don’t want to spend time fixing the
same problem over and over again, so now my goal is
to permanently fix bugs so that they can’t happen again.
By this I mean changing how I do things, so that that
specific bug will either be caught quickly or never
happen again. It can be as simple as adding a test to a
test suite to ensure that bugs of that form are caught
immediately, or adding an assert to catch that error. Or
it can be as hard as changing my programming habits
to never use pointer math. Whatever it takes, I try to
learn from each bug and make sure it can’t happen
again. Especially after I’ve done something twice, it’s
time to write a tool to fix that problem.

High-value rule: Learn from mistakes. If my dog gets
bonked on the nose every time he gets near the door,
he learns to avoid the door. I want to be at least as
smart as my dog.

FASTIDIOUS, YET NOBLE
Another slant on the Bowser problem is that I wasn’t
really trying to make the parser right. If I’d been a little
more quality conscious, I wouldn’t have gone that

route, because it was clear that the hand-built parser
was clunky.

As noted before, the longer a bug survives, the more
expensive it will be. Early bug extinction is my goal, so
I consciously try to write with quality in mind. Examples
are: using the strictest coding rules, not using any
tricky features of the compiler, using type-suggestive
variable names, insisting on type checking, not using
raw pointer variables, avoiding type coercion, adopting
a simple easy-to-read style, writing clear module
interfaces, and using full warnings in the compiler.

Since I started noticing how much time bugs cost, I’ve
changed my mindset on them. I no longer automatically
accept that code will just have bugs. I hate ’em. I want
to kill ’em. Better, I want to kill ’em before they hatch.
Since they take up my personal time, I feel it’s only
proper to take it personally when they show up.

Super-value rule: Write with quality in mind. As they
say, the inner game of programming is so important.

UGLY, YET EVOLVED
Once upon a time, I was asked to fix a couple of bugs
in Font/DA Mover and make it work with TrueType
fonts, as an interim solution before System 7. The
program was so disgusting to me that I just had to go
in and clean it up. Move this here, change these names,
document some pieces, take out the redundant code,
modularize some pieces — ah, how aesthetically
pleasing. Oops . . . I just introduced a couple of bugs
while I was “improving” the code. It felt like progress,
but actually it was just motion. You know, like company
reorgs.

What to do? Don’t “improve” code, unless it’s never
been debugged. Any fully debugged code, no matter
how shoddily written, is superior to newly written
code, no matter how pristine. It went against my
grain, but the right answer was to leave it gross. That
heavily used Font/DA Mover code had thousands of
hours of value in it, with literally millions of testers,
that were all lost when I rewrote it. Rewriting it took
time that I wanted to spend on something more
valuable, like fixing the last few remaining bugs —
and then getting outside and windsurfing! Once I
rewrote the code, it was like a new program, and thus
needed a full development/testing/debugging cycle.
I backed off to an earlier “skanky” version and just
debugged that.

Super-value rule: Never rewrite something that’s
been fully tested. It may be ugly, but evolution is on
its side.

THE VETERAN NEOPHYTE: KILLING TIME KILLERS 105

BORING, YET ELEGANT
We all know about the “cool” things that C can do, and
some tricky ways of using it, but sometimes isn’t it a bit
like juggling live weasels? When I found that using a
#define had added an extra unwanted character to each
place I used it, it no longer seemed so clever, and felt
more like I was playing tricks on myself. Or how about
that favorite of putting an actual assignment in an if
statement? It’s cleverly camouflaged, but there aren’t
any natural predators here, so I’m not sure this is needed.
These simple examples obviously don’t do justice to the
possible tricks that we’ve all seen, but they all cost time
and rarely add value.

OK, so it’s clear that being “clever” often winds up
being a way to play tricks on myself. Is there anything
wrong with doing it simply, in a straightforward, vanilla
style? I know for sure I’ll get it done sooner and, even
better, the programmer who has to maintain this code
won’t have to waste a bunch of time understanding
mindless tricks (remembering of course that that
maintenance programmer might very well be me, two
years after I forgot what tricks I was playing). And let’s
just forget the malarkey about it saving code. Is it really
worth saving 10 whole bytes out of a 16 meg machine,
at the expense of wasting my time? I want to count
cycles and bytes only in places where it makes a
measurable difference.

Super-value rule: Write vanilla code. Doing it simply,
and the same way each time, also makes it more likely
to be correct.

ASSERTIVE, YET FRIENDLY
Back in the deep dark Macintosh past, I wrote the
driver for an external RAM disk called DASCH.
This high-speed serial link required some different
debugging tactics than I’d used previously, because I
couldn’t step through the code; it was time critical.
Any slight perturbation in speed would overrun and
cause an error, but I still needed to debug it. It was like
a “look Mom, no hands” type of debugging. Code
inspection is OK, but I wanted to be sure it worked as
I read it. Have you ever read a piece of code that took
a branch you didn’t expect?

The answer, although I didn’t use the name at the time,
was to use asserts. These have been talked about a fair
amount, and you’ve probably used primitive asserts
under the name of DebugStr. Nowadays, the most
powerful combination I’ve used is to hook together

asserts with a failure handler like MacApp’s catch/fail
mechanism. Asserts make it easy to build a debug-only
version that checks every stupid thing that can go
wrong and lets me know right up front during testing,
but doesn’t compile into the final version. The
catch/fail stuff makes it easy to handle every possible
error in a graceful way. (See the article “Using C++
Exceptions in C” in this issue.)

If something absolutely positively cannot fail, I use a
debugging-version assert to catch the occasional times
when it does fail, so that I can surprise myself early and
not spend hours tracking down the “impossible” error.
One great thing to check with asserts is input parameters,
to catch those inevitable times when some routine
passes in rubbish.

Super-value rule: Use asserts along with a failure handler.
Catching bugs as they happen is vastly superior to
backtracking 15 miles after the program crashes.

ENDING, YET BEGINNING
I’m not going to pretend that this is all there is to the
idea of saving time, but hopefully the idea seems worth
pursuing. It has certainly helped me get better at my
carving jibes and, not incidentally, better at programming
at the same time. Higher-quality code, fewer bugs,
earlier ship dates, happier customers, and more free
time. Yup, I’d say it’s been worth it.

If you’ve got some additional time-saving ideas, I’d
naturally be interested in trying them too, so write me
at bo3b@rahul.net.

d e v e l o p Issue 25 March 1996106

Thanks to Jeff Barbose, Jim Friedlander, Brian Hamlin, Fred
Huxham, Dave Johnson, Jim Reekes, and Patty Walters for their
terribly helpful review comments.•

RECOMMENDED READING
• Writing Solid Code by Steve Maguire (Microsoft

Press, 1993).

• Debugging the Development Process by Steve
Maguire (Microsoft Press, 1995).

• “Macintosh Debugging: A Weird Journey Into the
Belly of the Beast” by Bo3b Johnson and Fred
Huxham, develop Issue 8, and “Macintosh
Debugging: The Belly of the Beast Revisited” by
Fred Huxham and Greg Marriott, develop Issue 13.

• Zen and the Art of Windsurfing by Frank Fox
(Amberco Press, 1988).

Are there issues of develop that have passed you by? If you’d like to complete your develop collection, full-color,
bound copies are available for $13 per issue, including shipping and handling. (Back issues are also on the develop
Bookmark CD and the Developer CD Series Reference Library edition, as well as on AppleLink and the Internet.)
For more information about how to order printed back issues (and where to find them online), see the inside
front cover of this issue. Supplies are limited. Please allow 4 to 6 weeks for delivery.

Issue 1 Color; Palette Manager; Offscreen Worlds;
PostScript; System 7; Debugging Declaration ROMs

Issue 2 C++ (Objects; Style Guide); Object Pascal;
Memory Manager; MacApp; Object-Based Design

Issue 3 ISO 9660 and High Sierra; Accessing CD Audio
Tracks; Comm Toolbox; 8•24 GC Card; PrGeneral

Issue 4 Device Driver in C++; Polymorphism in C++;
A/ROSE; PostScript; Apple IIGS Printer Driver

Issue 5 (Volume 2, Issue 1) Asynchronous Background
Networking; Palette Manager; Macintosh Common Lisp

Issue 6 Threads; CopyBits; MacTCP Cookbook

Issue 7 QuickTime 1.0; TrueType; Threads and Futures;
C++ Objects in a World of Exceptions

Issue 8 Curves in QuickDraw; Date and Time Entry in
MacApp; Debugging; Hybrid Applications for A/UX

Issue 9 Color on 1-Bit Devices; TextBox You’ve Always
Wanted; Sound; Terminal Manager; Debugging Drivers

Issue 10 Apple Event Objects; Enhancements for the
LaserWriter Font Utility; GWorlds; The Optimal Palette

Issue 11 Asynchronous Sound; Multibuffering Sounds;
Exceptions; NetWork: Distributed Computing

Issue 12 Components; Time Bases; Apple Event Coding
Through Objects; Globals in Standalone Code

Issue 13 Asynchronous Routines; QuickTime and
Components; Debugging; Color Printing; DeviceLoop

Issue 14 Writing Localizable Applications; 3-D Rotation
Using a 2-D Input Device; Video Digitizing Under
QuickTime; Making Better QuickTime Movies

Issue 15 QuickDraw GX (Getting Started; Printing
Extensions; PostScript); Component Registration;
Floating Windows; Working in the Third Dimension

Issue 16 Making the Leap to PowerPC; PowerTalk;
Drag and Drop From the Finder; Color Matching With
QuickDraw GX; International Number Formatting

Issue 17 Proto Templates on the Newton; Standalone
Code on PowerPC; Debugging on PowerPC; Thread
Manager; Window Zooming

Issue 18 Apple Guide; Open Scripting Architecture;
Graphics Speed on the Power Macintosh; Displaying
Hierarchical Lists; Preferences Files

Issue 19 OpenDoc Part Handlers; PowerPC Memory
Usage; Designing for the Power Macintosh; QuickDraw
GX (Printing; Bitmaps); Inheritance in Scripts

Issue 20 AOCE; Make Your Own Sound Components;
Scripting the Finder; NetWare on PowerPC

Issue 21 OpenDoc Graphics; Dylan; Designing a
Scripting Implementation; Object-Oriented Hierarchical
Lists; Introducing PowerPC Assembly Language

Issue 22 QuickDraw 3D; Copland; PCI Device Drivers;
Custom Color Search Procedures; The OpenDoc User
Experience; Futures

Issue 23 QuickTime Music Architecture; QuickDraw
3D Geometries; Internet Config; Multipane Dialogs;
Document Synchronization; ColorSync 2.0

Issue 24 Speeding Up whose Clause Resolution;
OpenDoc Storage; Sound; Alert Guidelines; Printing
Images Faster With Data Compression; The New Device
Drivers and Memory

Missing
something?

Q I’m having problems with our caching drivers on the Power Macintosh 9500. Our
drivers allocate a large amount of RAM (up to 4 MB) early in the boot process. If I set
the driver’s cache size to 4 MB, the computer locks up as soon as the driver is executed.
If I set the cache size to 2 MB, the driver loads and executes properly, but the computer
gets a bus error much later in the boot process (after MacsBug loads and after the Mac
OS screen is displayed, but before the Finder executes). If I set the cache size to 1 MB,
everything runs properly. What’s going on here?

A Because of Open Firmware requirements, the boot stack on the new Power
Macintosh 9500 CPUs was changed to 4 MB. As a result, you can’t grow the
system heap past 4 MB or a system crash will occur. If possible, try to defer
allocating memory until INIT time. The 'sysz' mechanism is supported by the
enabler ('boot' 3) when INITs are being loaded.

Q We want to maximize our throughput across the PCI bus between Macintosh memory
and a block of static RAM on our card. This static RAM is also accessible from an on-
card DSP, which constantly reads/modifies RAM. The DSP isn’t directly on the PCI
bus, so it can’t easily participate in cache coherency schemes. What’s the best way to get
data across the PCI bus to and from this memory?

A The PowerPC processor can only burst to and from a cacheable memory space.
Your best option is to use BlockMoveDataUncached. This doesn’t use burst
transfers, but rather uses floating-point loads and stores. You may want to
design your own algorithms, using the double declaration in C to get compilers
to translate BlockMoveDataUncached into floating-point loads and stores.
For more information, see Chapter 9 of Designing PCI Cards and Drivers for
Power Macintosh Computers, and Technote 1008, “Understanding PCI Bus
Performance.”

Q The Power Macintosh 9500 Developer Note says that the sound-in port for the 9500
has 4-conductor requirements. What is the 4-conductor pinout? Does the PlainTalk
microphone work on the 9500?

A The 9500 has stereo in (supporting left, right, power, and ground) and requires
a mini stereo plug that you can buy today — no wacky new pinouts. The
PlainTalk microphone works fine on the 9500.

Q Is there any information on writing native SCSI disk drivers for the PCI-based Power
Macintosh computers? In particular, what’s the proper way to install a native driver on
a SCSI disk: is there a special partition type for a native driver, or should there be a
standard SCSI disk driver that loads a PowerPC code fragment?

A Apple doesn’t support native SCSI drivers yet (this will be a feature of Copland,
the next generation of the Mac OS). You can write a native SCSI Interface
Module (SIM). Remember that a driver is the software that handles a particular
SCSI device, while a SIM is responsible for SCSI controllers (for example, PCI
or NuBus™ cards).

Normally, SCSI 4.3 drivers are loaded off the Apple_Driver43 partition, and
SIMs are typically loaded from the disk controller firmware (PCI card). If you
want to load a native SIM off of the disk, you’ll have to encapsulate the code
fragments and read and link them in from your standard 680x0 driver.

Macintosh
Q & A

d e v e l o p Issue 25 March 1996108

Q We have SCSI routines that transfer 64K data blocks (to get the highest transfer
rates possible with the tape drive we’re using). On the Power Macintosh (8100/80
or 8100/100), if the mouse is moved during a 64K transfer, the cursor is jumpy.
Lowering the cache size to 16K reduces the problem to an acceptable level but kills the
transfer rates. We’re using SCSI Manager 4.3. How do we avoid the jumpy cursor
while maintaining maximum throughput?

A Your jumpy cursor is an indication that you aren’t properly implementing SCSI
direct memory access (DMA). When using the 8100 (and PCI-based machines)
for DMA transfer efficiency, you should ensure the following:

• Your data is aligned on 8-byte block boundaries. Since the DMA hardware
can’t do odd transfers, it must perform programmed I/O to handle at least
part of the transfer if the data isn’t aligned.

• Your physical memory buffer is contiguous (which you ensure by calling
LockMemoryContiguous). Otherwise, the DMA transfer will have to be
broken up; this will especially be a problem if virtual memory is turned on.

Also, if you have disconnects enabled in your device or driver, it’s possible that
the transfer is getting broken up and some VBL activity is occurring. The
bottom line is that you don’t want a SCSI disconnect to occur during your
transfer.

Q Is it possible to create and resolve aliases asynchronously?

A No, you can’t resolve aliases asynchronously because the Alias Manager uses all
synchronous File Manager and Device Manager requests.

Q Is there a QuickTime codec for converting QuickDraw GX pictures to QuickDraw
PICT format? If so, can you provide this?

A At a session during Apple’s 1995 Worldwide Developers Conference, a new
technique for exporting QuickDraw GX pictures as QuickDraw PICT files was
demonstrated. The method makes use of QuickTime and a new codec that’s
included in the QuickDraw GX extension version 1.1 and later. With this codec,
you can embed a flattened QuickDraw GX picture into a PICT file (or a
QuickTime movie). We recommend that you use this method if you want to
allow your QuickDraw GX application to exchange pictures with existing
QuickDraw applications. You can find sample code demonstrating the use of
this codec in the Macintosh Technical Q&A “Embedding a GX Picture into a
PICT” (GX 07).

One important feature of this codec is that it does not convert QuickDraw GX
pictures to QuickDraw PICTs in the traditional sense of the word “convert.”
What it allows is the embedding of QuickDraw GX objects inside a PICT file.
The advantage of this is that it allows QuickDraw GX pictures to be viewed (but
not edited) in any application that can open a PICT file. Although “embedding”
is very useful, it’s quite different from “conversion.”

Strictly speaking, it’s not possible to convert QuickDraw GX pictures to
QuickDraw PICTs without loss of information, because QuickDraw GX has
much greater functionality than traditional QuickDraw. You can, of course,
draw the QuickDraw GX picture offscreen and capture the result in a QuickDraw
PICT, but you’ll lose much of the information. There’s no way to represent

MACINTOSH Q & A 109

complex transfer modes, perspective, advanced typography, and so on under the
QuickDraw imaging model. By using the new codec, you don’t lose any of the
QuickDraw GX features.

Note that this technique is quite different from that used in the older
PicturesAndPICTLibrary.c, which embeds a QuickDraw GX shape into a
PICT by using picture comments. We recommend that you use the codec
instead because picture comments have several weaknesses, including these:

• They’re limited to 32K.

• Many applications strip out any picture comments they don’t recognize.

• DrawPicture ignores all picture comments.

Using the codec to embed the QuickDraw GX picture avoids these problems.

Q How can I find out which printer is selected in the Chooser?

A Under the old printing architecture, you can locate the driver for the currently
selected printer by accessing the 'STR ' -8192 or 'alis' -8192 resource in the
System file. The 'STR ' -8192 resource contains the name of the current driver
and the 'alis' resource contains an alias record that will take you right to the
driver. Note that with older system software the 'alis' resource doesn’t appear in
the System file. If the 'alis' resource is present, resolve it; if not, look in the
Extensions folder and in the System Folder for a file with the same name as
'STR ' -8192.

With QuickDraw GX installed, the 'STR ' -8192 resource still exists for
backward compatibility with applications that don’t use QuickDraw GX
printing. In this case the 'STR ' -8192 resource gives the name of the default
desktop printer file. For applications that are QuickDraw GX savvy, the concept
of a default printer isn’t important because the user can pick any printer from
the QuickDraw GX Print dialog.

Once you’ve located the 'STR ' -8192 resource and you have the name of the
current printer, you can then determine the printer’s zone and type using the
'PAPA' -8192 resource in the driver (if the traditional printing architecture is
in use) or by accessing the printer’s 'comm' resource (if the QuickDraw GX
printing architecture is in use). Sample code demonstrating this can be found in
the Macintosh Technical Q&A “Locating the Selected Printer” (GXPD 36).

Q When I call FDecompressImage during printing, it appears that the custom StdPix
bottleneck of the LaserWriter 8.3 driver isn’t called. Why not?

A FDecompressImage doesn’t call through the StdPix bottleneck. The workaround
is to directly call the StdPix bottleneck in the current graphics port (or the
StdPix obtained from calling SetStdCProcs if there are no custom bottlenecks
in the current graphics port). For more information, see “Printing Images
Faster With Data Compression” in develop Issue 24.

Q When I attempt to open the built-in Ethernet driver with the OpenDriver call on a
PCI-based Macintosh, the call fails. What’s the correct way to access the built-in driver
on these new Macintosh computers?

d e v e l o p Issue 25 March 1996110

A The new PCI-based Power Macintosh computers use Open Transport for
network services. This architecture is a precursor to the changes expected for
Copland. Since Open Transport is PowerPC-native, there’s no longer a
dependence on the 680x0-based Device Manager and Slot Manager. To
maintain compatibility for the built-in Ethernet driver, an ENET shim was
implemented so that applications that called the Ethernet driver directly could
continue to work. (Note that the ENET shim is missing from the original
Power Macintosh 9500 release, but became available with later software updates.)

The ENET shim opens when OpenSlot is called to open the Ethernet driver in
NuBus slot 0. The shim intercepts this request and loads a .ENET driver entry
into the driver table. Subsequently, applications that call OpenDriver will get
the driver reference number for the shim driver, which then handles the various
Control calls it receives. The shim works only for the built-in Ethernet device,
not for an installed PCI Ethernet card.

For some code demonstrating how to do this, see the Macintosh Technical
Q&A “Ethernet Error on a PowerMac” (NW 14).

Q How can I check whether the Open Transport IP protocol stack is loaded?

A Open Transport provides the option to delay the complete loading of the
protocol stack. This reduces the use of system memory for the IP protocol stack
until a TCP/IP application is launched. To check whether the stack is loaded,
call OTInetGetInterfaceInfo. If it returns an IP address, the stack is loaded. If
the returned address is 0 or the call fails, the stack is not yet loaded. Note that
the call to OTInetGetInterfaceInfo doesn’t force the load of the IP stack.

Q When we call DirFindRecordGet, we get the message kOCEInvalidCommand (-1501).
Is there another way to get all records from a given catalog?

A The catalog about which you’re attempting to get record information doesn’t
support the DirFindRecordGet function (few out there actually do). To check
whether a particular catalog supports this function, you need to first call
DirGetDirectoryInfo and check the features flags that are returned. Check the
kSupportsFindRecordBit (see Inside Macintosh: AOCE Application Interfaces, page
8-31) to see if this call is supported. If it’s not supported, you’ll have to use
DirEnumerateGet instead to get all the records from a catalog.

You might want to look at the DTS Catalog Peek sample code on the Mac OS
Software Developer’s Kit, which uses the DirEnumerateGet call.

Q Sometimes, after I copy an HFS volume one-to-one to a CD-ROM, aliases that look
perfectly fine on the source volume are disconnected on the CD-ROM — the Alias
Manager claims that it can’t find the volume. What should I do to detect and fix a
possible disconnected alias before writing it to CD-ROM?

A Sometimes, when aliases move from hard drives to CD-ROMs, volume
information changes, rendering the alias unresolvable. The Alias Manager
requires the following pieces of information in order to identify a volume:

• the volume’s name

• the volume’s creation date (which should be a unique number)

MACINTOSH Q & A 111

• the volume’s kind (ejectable, nonejectable, floppy disk, or foreign file system)

The Alias Manager expects all three pieces of information to match. If they
don’t all match, the Alias Manager attempts to identify the volume by matching
two of the three items, trying for a volume match in this order:

• by name and creation date

• by creation date and volume kind (if the volume name changed)

• by name and volume kind (if the creation date is not stable, as with some
network file systems)

When pressing a CD-ROM, you’re moving aliases from a hard drive (nonejectable
volume kind) to an ejectable volume kind. If the volume name or creation date
of the hard drive changes after alias creation, the aliases may not resolve
properly. You can avoid this problem by ensuring that the volume name of the
hard disk doesn’t change while you’re building a CD-ROM’s content. Also, do
not back up, reformat, or restore a hard disk while you’re building a CD-ROM’s
content, so that the creation date doesn’t change.

Sometimes, valid-looking aliases fail to resolve. Because the Finder creates alias
files, the Finder is responsible for resolving them. The Finder doesn’t always
check and update aliases as carefully as you might. Additionally, the Finder
always uses a relative search path when resolving aliases.

You might want to test to see whether installing QuickTime makes a difference
in the cases where perfectly valid looking aliases fail to resolve. QuickTime
includes patches that make the Alias Manager work better.

Q What does holding the Shift key down at startup turn off under System 7?

A This information isn’t documented; the following list isn’t guaranteed complete
or accurate and is certain to change in the future. Under System 7.0 through
System 7.5 the following files are explicitly skipped:

• A/ROSE

• Virtual memory

• Files of type 'scri' (Roman still works), 'cdev', 'RDEV', 'INIT', 'cbnd',
'fbnd', 'tbnd', 'adev', 'ddev', 'appe', 'fext', 'AINI', and 'thng'

• Finder Startup and Shutdown items (since the Finder Scripting Extension
controls these tasks)

MacsBug will not load under System 7.0, but it will load under System 7.5 if
both the Option and Shift keys are held down. In addition, System 7.0 sets the
disk cache to 64K, while System 7.5 sets it to 96K.

Q What does turning everything off in the Extension Manager actually turn off?

A The only files the Extension Manager turns off are those that it shows. Which
files will be turned off isn’t documented; the following list isn’t guaranteed
complete or accurate and is certain to change in the future.

There are four creator types that the Extension Manager doesn’t show: 'mntr',
'DMOV', 'extE', and '8INI'. Items of type 'extE' and '8INI' aren’t shown

d e v e l o p Issue 25 March 1996112

because the Extension Manager extension has the creator of 'extE' and the
Extension Manager control panel has the creator of '8INI'. This prevents you
from using the Extension Manager to disable itself.

Also, the Extension Manager won’t show any items of type 'INIT', 'RDEV', or
'cdev' if they have the “no INITs” Finder flag set.

The Extension Manager shows only items of type 'INIT', 'RDEV', 'cdev',
'PRES', 'PRER', 'adev', 'fext', 'scri', 'cbnd', 'fbdn', 'tbnd', 'ddev', 'appe', 'gc24',
'adrp', 'dbgr', 'dfil', 'APPL', 'FFIL', 'pext', and 'vbnd'.

Q Do I always need to call PrJobDialog to print a document? Why?

A Yes, you do. The reason for this is that many drivers (notably LaserWriter 8)
don’t initialize the job-specific settings until PrJobInit is called. Without this
call, they fall back on the default, which is usually stored in the driver in the
PREC 0 resource.

The normal definition of the PREC (which maps to a TPrint structure) doesn’t
have as much space as LaserWriter 8 needs. Because of this, LaserWriter 8
stores some settings in this PREC 0 resource and others in the LaserWriter 8
Prefs file. This separation of LaserWriter settings can wreak havoc on a job run
without the PrJobDialog call.

If you absolutely must avoid displaying the job dialog box, there are two ways
to work around it. Note that these are not supported methods, and by using
either of them you’ll make your application hostile to QuickDraw GX and to
Copland.

• Have users invoke the Print dialog as part of their preferences setup, and
save the resulting print record. Every time you print, merge that print
record in with a call to PrJobMerge. This way each document can have its
own page setup, accommodating things like printing on A4 paper instead
of US letter.

• “Display” the job dialog, but never let the user see it. You can accomplish
this by calling PrJobInit, moving the resulting dialog offscreen, patching
ModalDialog, and calling PrDlgMain. Your patched version of ModalDialog
can return 1 for the OK button immediately, and you’ve got the added
benefit of actually calling all the code and having a relatively normal print
loop.

Q I’m writing a printer driver, and I’ve noticed that when I print a window from the
Finder with my driver the icons don’t show up. What gives?

A What you’ve uncovered is an “optimization” in the Icon Utilities. When
drawing an icon, the Icon Utilities use CopyMask rather than go through the
standard bottlenecks. This is true unless you’re saving to a PICT or you set a
certain low-memory global (which isn’t well documented) indicating that
CopyBits should be used.

The following two macros tell the Icon Utilities to use CopyBits instead of
CopyMask:

#define setPrinting() {*((short *)0x948) = 0;}
#define clearPrinting() {*((short *)0x948) = -1;}

MACINTOSH Q & A 113

Call setPrinting in your PrOpenPage function and clearPrinting in your
PrClosePage function, and all should be well.

Q Which LaserWriter drivers are ColorSync aware?

A Currently, LaserWriter driver 8.3 is the only ColorSync-aware LaserWriter
driver; versions earlier than 8.3 are not.

Q What does the 7.5.2 Printing Update 1.1 update? Why do I need it?

A This extension fixes a printing problem that may occur on Power Macintosh
7200, 7500, 8500, and 9500 computers using System 7.5.2. Without this fix,
your computer may freeze if you attempt to print on a network-based printer
that’s busy.

The update contains a new version of the LaserWriter driver (8.3.2) and also a
fix to serial DMA. The changes fix the ATP and PAP networking protocol
layers.

An updated version of the PAP.WrkStation.o library will be distributed on a
future version of the Mac OS Software Developer’s Kit; developers who have
licensed the library will be notified when the new library is available.

Q Do QuickDraw 3D mesh contours run in the same or the opposite direction as the face?
For example, if the face runs clockwise, will the contour run counterclockwise?

A The exterior face needs to be defined in a counterclockwise direction, but the
contours defining holes can run in either direction. The mesh code is able to
identify holes in a face.

Q I’m using QuickDraw 3D 1.0 on a Power Macintosh 7100. If I try to launch my
application when QuickDraw 3D is disabled with the Extension Manager, I get a
message that the application couldn’t be opened because QuickDraw 3D could not be
found. Since the application has to run even if the user doesn’t have QuickDraw 3D,
what should I do ?

A You’re “hard linking” to the QuickDraw 3D shared library. You need to “weak
link” to the library instead. With Metrowerks CodeWarrior this is trivial:
simply select the project window, click the small triangle to the right of the
library in the window, and choose the Import Weak option from the pop-up
menu. In your code, use the Gestalt selector for QuickDraw 3D to determine
whether the library exists. If it does, you should additionally check at least one
symbol in the library against kUnresolvedCFragSymbolAddress to be sure the
library was linked successfully, as described in Inside Macintosh: PowerPC System
Software on page 1-25. It’s possible for Gestalt to indicate that the library is
available even though the weak link failed — for example, if there isn’t enough
memory available.

Q I’ve been trying to use QuickTime to step through a movie of PICTs activated by
keyboard input (that is, press a key and the next frame is displayed). My problem is that
I can’t consistently step one frame at a time. What’s the easiest way to move to the next
frame?

d e v e l o p Issue 25 March 1996114

A The easiest way is to use a movie controller to accomplish this. You can send
mcActionStep to the controller to bump the movie to a new frame. A little more
work, but perhaps more suitable for you if you don’t want to use a controller, is
to use GetMovieNextInterestingTime to find the next frame.

Q Is there any way to ask QuickTime, at the operating system level, whether any movies
are currently playing?

A No, there’s no supported way to do this.

Q We’re writing a screen saver that plays QuickTime movies. Our WaitNextEvent loop is
very basic. We’ve noticed that other background applications don’t get any time, even if
we use WaitNextEvent and make sure that MoviesTask doesn’t spend too much time
playing the movie. However, if we add code to track update events with BeginUpdate
and EndUpdate the problem goes away. Why?

A QuickTime and other parts of the operating system are sending update events
to your application. If these events aren’t handled, they’re resent, resulting in no
time yield to other applications. By calling BeginUpdate and EndUpdate or
otherwise taking care of the update event inside your event loop, you allow
yielding to other applications. See Macintosh Technical Note “Pending Update
Perils” (TB 37) for more information.

Q Is the data rate stored somewhere in a QuickTime movie? If not, how can I compute it?

A The data rate isn’t stored in the movie, because a QuickTime movie isn’t
required to have a constant data rate: it can change over the duration of the
movie. Typically, in the case of video, one sample equals one frame; in the case
of sound and other media, this one-to-one relationship doesn’t necessarily hold.
Additionally, none of the video samples in a continuous stream are exactly the
same size, even if in practical terms this is often assumed.

There are several possible methods of measuring the rate of samples, but the
quickest and easiest is to do what Movie Player does: for each track, get the
media size and divide by the media duration. This provides a rough estimate of
the data rate that should be suitable for most purposes and works for all types of
movies, video and otherwise.

Q It’s critical in my CD project to be able to load small QuickTime loop movies entirely
into RAM. This is still not supported in QuickTime for Windows 2.0.3. Will this
functionality be available soon, or should I focus on developing a workaround?

A Support for loading a movie into and playing it from RAM will not be in
QuickTime for Windows 2.1. It is, however, still on Apple’s to-do list. For now,
you can improve performance by copying your small movie to a temporary file
on the hard drive. From there you can force it into the disk cache or DOS
buffers by opening and reading all of it yourself.

Q How can I place blue-screen video over a QuickTime VR panorama?

A For starters, you need to know the exact view over which you want to place the
video. Note that if you’re only warping in one dimension, it may be a bit tricky.

MACINTOSH Q & A 115

To get a very close match, take the following steps:

1. Push each individual frame of the video sequence through the Stitcher
(assuming that the motion fits within a single photograph) with wrap turned
off, and the same vfov set as for the panorama. The resulting images will be
warped into the same space as your complete panorama.

2. Either turn your single-frame image into a partial panoramic movie or
replace the appropriate part in your background panorama with the single
frame.

3. Run the image through the p2mv and msnm tools, and use QuickTime VR
to dewarp it with warpMode 1 with the precise hpan, vpan, and zoom data
set. You may want to use p2mv with the “raw” compressor to maximize your
image quality.

4. Capture the image from the screen.

5. If you do this for every image (it can be automated with scripting), you
should get a completely matched motion sequence that you can turn into a
QuickTime movie with standard tools. This is where you should do your
compression (not at step 3).

This should mostly take machine time, not your time. Steps 1 and 3 can be
scripted in MPW. Step 2 can be scripted in AppleScript using PhotoFlash or in
DeBabelizer, and step 4 in HyperCard or Director. Step 5 uses ConvertToMovie.
Once you develop these scripting tools the first time, each sequence should be
pretty quick to fire up.

Q My cat exhibits a behavior I hope you can explain. Every now and again, he’ll sniff
something with particular attention and intensity — the bend of my wrist, say, or a
spot on the rug. So far so good. But then when he lifts his head, he holds his mouth open,
his lower jaw hanging stupidly. It looks ridiculous! And he seems totally unaware of it,
invariably sitting there for several seconds, mouth gaping, looking around blithely as if
there’s nothing out of the ordinary, before finally licking his chops and closing his mouth.
What’s going on? Is there any way I can curb this behavior? It’s embarrassing.

A First off, don’t worry. Your cat is perfectly normal. All cats do this, and there’s
nothing wrong with it (except of course that it looks silly). Your cat is simply
making use of a little-known sensory organ called the vomeronasal organ, or
Jacobson’s organ. It’s a second scent organ, located far forward on the roof of
the mouth, and is supplemental to — but distinct from — the nose. It’s even
wired into slightly different areas of the brain, areas dealing with feeding and
complex sexual behaviors. Many other animal species have a Jacobson’s organ,
from rattlesnakes to bighorn sheep, but humans don’t.

The behavior you’ve noted is called the flehmen reaction (flehmen is a German
word with no satisfactory English translation). By holding his mouth open and
not breathing, your cat is concentrating the molecules to be sensed over his
Jacobson’s organ, allowing it to do its job. The behavior is exhibited by all cats,
domestic and wild, large and small.

d e v e l o p Issue 25 March 1996116

These answers are supplied by the technical
gurus in Apple’s Developer Support Center. For
more answers, see the Macintosh Technical Q&As
on this issue’s CD or on the World Wide Web at

http://dev.info.apple.com/techqa/Main.html.
(Older Q&As can be found in the Macintosh
Q&A Technical Notes on the CD.)•

See if you can solve this programming puzzle, presented in the form of
a dialog between guest puzzlers Dave Hersey and Cameron Esfahani
(cam). The dialog gives clues to help you. Keep guessing until you’re
done; your score is the number to the left of the clue that gave you the
correct answer. Even if you never run into the particular problems
being solved here, you’ll learn some valuable debugging techniques that
will help you solve your own programming conundrums.

Dave Hey cam, it’s kinda quiet. Where are KON and BAL?

cam Since the local salad bar closed, I haven’t seen KON. BAL disappeared
after he left the video game industry. Have you been getting enough
sleep? You look tired.

Dave I’ve been under a lot of pressure to track down this bug.

cam Maybe I can help. What’s the problem?

Dave I have a Power Mac 6100/66 running System 7.5 with QuickDraw GX
1.1. When I try to print from a word processor, I get the message
“The application has unexpectedly quit, because an error of type 11
occurred.” What’s an error of type 11?

cam That’s an unhandled exception from native code. What word processor
are you using?

Dave Um, a very large one in a very large office suite from a very large
company up north.

cam Have you updated to version 1.1.3 of QuickDraw GX?

Dave Yeah. The problem still happens.

cam Does it happen on any other machine?

100 Dave Yes. It crashes on any Power Mac but works fine on 680x0 machines.

cam Hmm. Is the word processor native on the Power Mac?

Dave Yes — it’s fat.

KON & BAL’S PUZZLE PAGE

Printing, Patching, and Fonts

KON & BAL’S PUZZLE PAGE: PRINTING, PATCHING, AND FONTS 117

DAVE HERSEY (AppleLink HERSEY) works in the
QuickDraw GX PrintShop level 4 bio-containment
facility, thousands of feet beneath the Cupertino
R&D campus. There, he develops PowerPC-native
QuickDraw GX printing code, works on Copland,
and relaxes by dabbling with an occasional hot
agent over lunch.•

CAMERON ESFAHANI (AppleLink DIRTY,
Internet dirty@powertalk.apple.com) is the
shortest member of the Graphics team at Apple.
To add a few more inches to his height, he
sometimes wears roller blades in meetings. If that
doesn’t help, he has been known to don his large
purple hat with sparkles.•

DAVE HERSEY AND
CAMERON ESFAHANI

cam It sure is. But I have the same version of system software and the same
word processor, yet my machine doesn’t crash.

90 Dave Well, I have a standard system installed, but I added a bunch of whizzy
fonts.

cam If I install one of your fonts, will my machine crash?

Dave Sometimes. If you install all my fonts, it crashes all the time.

cam That’s easy, then: bad fonts. Here, take out this Thingamajigs font.

80 Dave No way, man. This is a standard bitmap-only font. It should work.
Ike’s machine doesn’t have Thingamajigs on it and his machine still
crashes.

cam Does he have bitmap-only fonts installed?

Dave Yes.

cam At what point in the printing process do you crash?

Dave The crash occurs just as the application starts spooling the print file.

cam Is this word processor QuickDraw GX–aware?

70 Dave Yes. It has support for the new QuickDraw GX print dialogs, and it
calls the QuickDraw GX translator to translate QuickDraw drawing
commands into QuickDraw GX shapes during printing.

cam Good for them. Have you tried to reproduce the crash with other
QuickDraw GX–aware applications?

Dave Yup. I tried to reproduce it with several QuickDraw GX–aware and
QuickDraw GX–savvy applications. No luck.

cam Try running the 680x0 version of this program on your Power Mac. It
will be slow and piggy, but try it anyway.

60 Dave The problem went away! So, the crash seems to have something to do
with the PowerPC code in this application.

cam Hmm. Let’s install MacsBug and take a look at this from the debugger.

Dave I tried that before, but I couldn’t see any symbols in the PowerPC
code where it crashes. I couldn’t tell which routine the PC was in.

cam You should install the new version of MacsBug. Version 6.5.2
understands native exceptions and can use embedded symbols.

Dave Nifty. . . . OK, I’ve done that. But I still crash.

cam Why do you crash? Type how.

Dave MacsBug claims that there was a “PowerPC access exception at
001DB030 ConstructNFNTDirectory+002B4.”

cam What does ConstructNFNTDirectory do? Hey, wait, there’s Alex
Beaman. Alex, can you help us out here?

50 Alex Sure. QuickDraw GX views all fonts as type 'sfnt'. It’s really elegant:
ConstructNFNTDirectory will make an NFNT font appear to have
an 'sfnt' directory. It can build either just the directory header or the
entire directory, and this is controlled by a Boolean parameter passed
into the function. OK, gotta run!

Dave Thanks, Alex. When I disassemble ConstructNFNTDirectory with
MacsBug, I get this:

d e v e l o p Issue 25 March 1996118

ilp ConstructNFNTDirectory
Disassembling PowerPC code from ConstructNFNTDirectory
ConstructNFNTDirectory
+00000 001DAD7C stmw r14,-0x0048(SP)
+00004 001DAD80 mflr r0
+00008 001DAD84 clrlwi r27,r5,0x18
+0000C 001DAD88 addi r28,r3,0x0000
+00010 001DAD8C mfcr r12
...
+00060 001DADDC addi r3,r30,0x0000
+00064 001DADE0 addi r4,r28,0x0000
+00068 001DADE4 bl GetNoLoadResource
...
+000E4 001DAE60 addi r3,r20,0x0000
+000E8 001DAE64 bl ComputeSearchFields
+000EC 001DAE68 crmove cr7_SO,cr7_SO
+000F0 001DAE6C cmpwi cr2,r27,0x0000
...
+002B4 001DB030 *lwzx r5,r19,r5
...
+002F0 001DB06C lhz r5,0x0004(r20)
+002F4 001DB070 li r16,0x0001
+002F8 001DB074 addic r5,r5,0x0001
+002FC 001DB078 sth r5,0x0004(r20)
+00300 001DB07C beq cr2,ConstructNFNTDirectory+00324
...
+003C8 001DB144 addic SP,SP,0x00A0
+003CC 001DB148 mtcrf 0x38,r12
+003D0 001DB14C mtlr r0
+003D4 001DB150 lmw r16,-0x0040(SP)
+003D8 001DB154 blr

cam An access exception means we’re trying to read or write to an invalid
address. That, of course, could be caused by many things, such as
uninitialized variables or trashed memory. Let’s check the heaps with
hc.

Dave Both the system heap and the application heap are fine.

cam OK, I restart the program and use brp in MacsBug to set a breakpoint
at ConstructNFNTDirectory. brp is just like br, except it works for
PowerPC code. After I start printing and the breakpoint is hit, I step
through this function to follow the code flow.

45 Dave At offset 0x0300 you don’t take that branch, and you eventually begin
executing code that will corrupt the QuickDraw GX heap.

cam But that’s wrong — we should’ve taken that branch. The caller didn’t ask
ConstructNFNTDirectory to create the entire directory, just its header;
it didn’t allocate enough space for all of it. Check the heaps again.

Dave The heaps seem fine. QuickDraw GX allocates out of its own heap,
which MacsBug doesn’t know about. Even if it did know about it, it
wouldn’t be able to tell us if the heap was corrupt, as QuickDraw GX
has its own memory manager.

cam Darn, memory corruption bugs are the worst. You can trash memory
and not see the effects of it until you’re miles away from that code.
OK, why didn’t it take the branch at offset 0x0300?

KON & BAL’S PUZZLE PAGE: PRINTING, PATCHING, AND FONTS 119

40 Dave Well, CR2 is true, so the branch won’t be taken.

cam How can you tell that CR2 is true?

Dave The PowerPC chip has eight condition register fields, CR0 through
CR7, stored in nibbles in a 32-bit condition register (Dave Evans
talked about this in his column in develop Issue 21). So the value of
CR2 would be bits 8 through 11 of the condition register. The chip
has its bits numbered from 0 through 31, from left to right. We can
tell that CR2 contains a true value because its second logical bit isn’t
set. That bit corresponds to the equals operator, so the fact that it’s 0
means the operation that set this register was not equal.

cam Who sets up CR2?

Dave The code at offset 0x00F0. As Alex mentioned, one of the parameters
to this function is a Boolean that controls whether the whole directory
is created or only the header. Because this parameter is a Boolean, the
PowerPC processor can just compare it against 0 and use the result as
a flag for later branches. Parameters passed in PowerPC code are put
from left to right into registers R3 through R10; since this parameter
is the third parameter to the function, it’s passed to the routine in
register R5. (A much better description of this is in Inside Macintosh:
PowerPC System Software.)

cam I love this chip. I’ll reexecute the program and get back to the start of
this function and examine CR2.

35 Dave It starts out false.

cam So someone’s trashing it along the way. Well, we can’t use some of our
normal tricks for detecting when memory gets trashed. One problem
is that step spy doesn’t work yet for PowerPC. Another problem is that
we would want to step spy on CR2, which is a register, and step spy
never worked on registers. We’ll have to do this the hard way: let’s
step through this function, watching CR2 to see just when it gets
changed.

30 Dave The subroutine GetNoLoadResource at offset 0x0068 changes CR2
from false to true. GetNoLoadResource is a wrapper to GetResource.

cam I restart the program and trace over the GetResource call.

Dave Yep, that’s the function that trashes CR2.

cam Is it legal for the compiler to rely on CR2 being preserved across
function calls?

25 Dave Yes. According to the PowerPC ABI (Application Binary Interface)
documentation — section 3.6 in the first edition — CR2 through CR5
are nonvolatile and need to be saved across function calls.

cam Look at the code for GetResource. Since in System 7.5 GetResource is
a native trap with a routine descriptor, I can use the MacsBug dcmd
drd to dump that out. Here’s what I get:

drd GetResource
The RoutineDescriptor at: 011EDFEC

Mixed Mode Magic Trap: AAFE, version: 07,
routine descriptor flags: 00 (NotIndexable),
loadLocation: 00000000, reserved2: 00,
selectorInfo: 00 (No Selector),
routine count: 0000

d e v e l o p Issue 25 March 1996120

--- Routine Record 00000000 -----
procInfo: 000002F0, reserved1: 00, ISAType: 01 (kPowerPCISA),
Routine Flags: 0004 (IsAbsolute, IsPrepared, NativeISA,

PassSelector, IsNotDefault), procPtr: 01219EEC,
storedOffset: 00000000, selector: 00000000

20 Dave There’s only one routine associated with the trap and it’s the native
implementation.

cam Where’s that function? On the Power Mac, every ProcPtr is actually a
data structure that contains the routine’s real address and TOC. This
is called a TVector (transition vector). This allows every fragment to
have its own globals, because the correct TOC gets loaded for each
routine by the runtime environment. So, to find the routine’s address,
you need to dereference the ProcPtr.

wh 1219eec^
Address 00E77B78 is in the “Porky WordProcessor” heap at 00DFC430
The address is in a CFM fragment “Porky WordProcessor” [non-write exec]
It is 00073058 bytes into this heap block:
Start Length Tag Mstr Ptr Lock Prg Type ID File Name

• 00E04B20 003D35D8+0C N

15 Dave Apparently it’s in the heap of the application.

cam So this program is patching GetResource. At least they have a native
patch — a good habit these days because you don’t know what traps
will go native from now on. If you’re patching native PowerPC code
with 680x0 code, performance-sensitive code will run slower. For this
reason, you should make all of your patches fat. Let’s disassemble the
patch on GetResource.

ilp 1219eec^
Disassembling PowerPC code from 1219eec^
No procedure name

00E77B78 stwu SP,-0x0058(SP)
00E77B7C mflr r12
00E77B80 stw r12,0x0060(SP)
00E77B84 stmw r26,0x0040(SP)
00E77B88 stw r3,0x0070(SP)
00E77B8C sth r4,0x0074(SP)
00E77B90 extsh r4,r4
00E77B94 lis r5,0x4D42
00E77B98 ori r5,r5,0x4446
00E77B9C cmplw cr2,r3,r5
...
00E77C10 lmw r26,0x0040(SP)
00E77C14 lwz r12,0x0060(SP)
00E77C18 mtlr r12
00E77C1C addic SP,SP,0x0058
00E77C20 blr

10 Dave At 0x00E77B9C they do a compare and store the result in CR2.
However, they don’t save and restore CR2 across this function, so it’s
trashed when we return to ConstructNFNTDirectory.

cam OK, I restart the program and manually save and restore the value of
CR2 across the GetResource calls. I do this by futzing with bit 2 in CR2.

KON & BAL’S PUZZLE PAGE: PRINTING, PATCHING, AND FONTS 121

5 Dave Everything prints fine.

cam It looks like a compiler bug. Either they shouldn’t be using CR2 or
they should be preserving it. In any case, the GetResource patch is
trashing CR2, and that changes a Boolean which causes us to read in
extra data. The caller never allocated enough space for the extra data,
so the QuickDraw GX heap gets corrupted.

Dave Holy cow! A compiler bug. Shouldn’t we notify the compiler
developer?

cam Well, this company has their own in-house development tools group.
They write their own compilers, linkers, and debuggers. We should
contact them anyway, so that they can create a patch that fixes this
problem. [This patch, “Office4.2x Update for Power Mac,” is now available
on most online services.]

Dave Why are they patching GetResource?

cam It looks like they were looking for resources of type 'MBDF' (menu
bar definition procedures). I can tell this from the instructions at
addresses 0x00E77B94 through 0x00E77B9C. The PowerPC
architecture has a limitation of 16 bits on the size of an immediate
constant. So, if you wanted to compare a value against a 32-bit
constant, you would have to build the 32-bit value with two
instructions. This is what occurs at addresses 0x00E77B94 and
0x00E77B98, where they insert 0x4D42 and 0x4446 together into a
32-bit value. If you look at the ASCII of this constant, it’s 'MBDF'. At
address 0x00E77B9C, they compare this constant to the resource type
parameter passed to GetResource. Since that parameter is the first
parameter, it will be in register R3.

Dave Why didn’t we crash when we had only one NFNT font installed?

cam This patch would cause ConstructNFNTDirectory to always
overwrite the buffer passed in. But that wouldn’t always cause your
machine to freak out. By adding enough NFNT fonts, we trashed the
QuickDraw GX heap significantly enough to cause the crash.

Dave Wow, all this and it was an application patch that caused the problem!
It sure would have been cool if we could have used the patch dcmd.

cam Yeah. The patch dcmd does works on the Power Mac — but we didn’t
know that was the problem when we started.

Dave It’s interesting that it was an application bug. That would explain why I
crash in a spreadsheet application by the same company. They share
the same patch.

cam Nasty.

Dave Yeah.

d e v e l o p Issue 25 March 1996122

SCORING
80–100 You could have a promising career writing compilers for a company up north.
45–70 Dr. MacsBug could always use another assistant.
25–40 Don’t worry, it took us a while to figure it out too.
5–20 Visual Basic fan, are you?•

Thanks to Alex Beaman, Tom Dowdy, Ron Voss, KON (Konstantin Othmer), and BAL (Bruce Leak) for
reviewing this column.•

For a cumulative index to all issues of
develop, see this issue’s CD.•

A
“According to Script” (Simone),

properties and preferences
75–77

AddMediaSample (QuickTime)
15

Add Navigable Data dialog,
QuickTime VR and 17

AEGetKeyPtr, Display Manager
and 47

AEGetNthDesc, Display Manager
and 45

AEGetParamDesc, Display
Manager and 45

AEInstallEventHandler, Display
Manager and 45

aliases
resolving (Macintosh Q & A)

111–112
resolving asynchronously

(Macintosh Q & A) 109
Alias Manager, resolving aliases

(Macintosh Q & A) 109,
111–112

AppleScript
attributes versus actions

75–76
preferences 76–77
properties 75–76
the “the” test 75

asserts 106
See also signal macros

ATS (Authoring Tools Suite)
(QuickTime VR) 6, 12, 21

Ayala, Hugo M. 29

B
back issues of develop 107
baseAddr (PixMap) 3
basis functions (of control points)

nonuniform 56
NURB curves and 54–58
order of 57

BeginUpdate (QuickTime)
(Macintosh Q & A) 115

Bézier curves
converting NURB curves to

72–73

converting to NURB curves
72, 73

representing NURB curves
as 68

binary objects (Newton Q & A)
99

bitmap scaler (QuickDraw GX)
26

bits field (viewPortBufferRecord)
34

BlockMoveDataUncached
(Macintosh Q & A) 108

bounding sphere (of a model)
(QuickTime VR) 11–12, 13,
18

bounding volume (QuickDraw
3D), NURB curves and 54

bounds field
(viewPortBufferRecord) 34

BufferDrawing (QuickDraw GX)
39–42

buffer field
(viewPortBufferRecord) 34

C
C++ exception handling 78–86

adding C++ exceptions to
code 80–82

in the call chain 82–83
in libraries 83
throwing exceptions 79–80
top-level exception handler

80–81
catch blocks (C++) 79

defining 81–82
specific and generic 82

catch statement (C++) 79, 81–82
CharID (Newton) 99
Chooser, identifying selected

printer (Macintosh Q & A)
110

CodeWarrior. See Metrowerks
CodeWarrior

ColorSync, LaserWriter drivers
(Macintosh Q & A) 114

comments (in code), value of 104
conic sections, NURB curves and

62–64
ConstructNFNTDirectory, KON

& BAL puzzle 118–119, 122

control points (of NURB curves)
49, 52–54

basis functions for 54–58
homogenous representation

of 61, 64
inserting new 68
weighted Euclidean

representation of 62
weight of 60–61

control polygon, NURB curves
and 52–53

ConvertQDFontToGXFont
(QuickDraw GX) 27

convex hull, NURB curves and 57
CopyBits (Macintosh Q & A) 113
CopyMask (Macintosh Q & A)

113
“Country Stringing: Localized

Strings for the Newton”
(Sharp) 90–98

C programming language
adding C++ exceptions to

code 80–82
header files 80
using C++ exceptions 78–86

CR2 condition register field
(PowerPC), KON & BAL
puzzle 120, 121–122

CreateLanguagesFrameFromRsrc
(Newton) 94, 95–96

CreateLanguagesFrameFromText
(Newton) 93

cubic spline curves 51
curvature continuity, NURB

curves and 52
cylindrical rendering (QuickTime

VR), simulating 22, 23–25

D
Dates (Newton Q & A), adding

items to 99
dead code stripping (Newton) 91
debugging tools 104
Debug_Signal (C++) 84, 85
develop back issues 107
develop online 3
device field

(viewPortBufferRecord) 34
'diag' parameter (ToolServer),

CodeWarrior and 89
dicing tool (QuickTime VR)

21–22

INDEX

INDEX 123

DirEnumerateGet (Macintosh
Q & A) 111

DirFindRecordGet (Macintosh
Q & A) 111

DirGetDirectoryInfo (Macintosh
Q & A) 111

discontinuity, NURB curves and
52

display ID (Display Manager) 45
Display Manager 44–47

determining version 44
identifying displays 45
walking the QuickDraw GX

device list 39
Display Manager 1.0 44, 45
Display Manager 2.0 44
DisplayManagerAware flag,

Display Manager and 45
Display Manager Development

Kit 47
Display Notice events, Display

Manager and 45, 46
DisposeViewPortWBuffer

(QuickDraw GX) 36, 37
DMA (direct memory access),

SCSI data transfers (Macintosh
Q & A) 109

DMCheckDisplayMode (Display
Manager) 44–45

DMGetDisplayIDByGDevice
(Display Manager) 45

DMGetFirstScreenDevice
(Display Manager) 44

DMGetGDeviceByDisplayID
(Display Manager) 45, 47

DMGetNextScreenDevice
(Display Manager) 44

DMRegisterNotifyProc (Display
Manager) 45

DMSaveScreenPrefs (Display
Manager) 45

DMSetDisplayMode (Display
Manager) 44, 45

document record structure (of a
scene) (QuickTime VR) 8, 9

double buffering (QuickDraw GX)
29, 31

versus drawing speed 31–32
DrawShapeBuffered (QuickDraw

GX) 33, 37–42
ducks 50

See also NURB curves

E
EndUpdate (QuickTime)

(Macintosh Q & A) 115
eraser field

(viewPortBufferRecord) 34
Esfahani, Cameron 117
exception handling (C++). See C++

exception handling
Extension Manager, turning off

files (Macintosh Q & A)
112–113

F
failToMain

(DMGetDisplayIDByGDevice)
45

failToMain
(DMGetGDeviceByDisplayID)
45

Falco, Pete 5
FDecompressImage (Macintosh

Q & A) 110
first-derivative continuity, NURB

curves and 52
“Flicker-Free Drawing With

QuickDraw GX” (Ayala) 29–43
Flicker Free sample application

30–31
font scalers (QuickDraw GX) 26
FontToPict (QuickDraw GX) 27

G
gDebugSignal global variable

(C++) 84, 85
gDebugThrow global variable

(C++) 84
GDHandle data type

(QuickDraw), and QuickDraw
GX view device 39

“Generating QuickTime VR
Movies From QuickDraw 3D”
(Falco and McBride) 5–25

get (AppleScript) 75
GetAllResources (Newton) 95
GetDeviceList (QuickDraw) 39,

44
GetMovieNextInterestingTime

(Macintosh Q & A) 115
GetNextDevice (QuickDraw) 39,

44
GetResource, KON & BAL

puzzle 120–122
GlobalFnExists (Newton Q & A)

101

GlobalVarExists (Newton Q & A)
101

“Graphical Truffles”
(Marinkovich), the Display
Manager 44–47

group field
(viewPortBufferRecord) 34

GXDisposeShape 41–42
GXDrawShape 37, 42
GXFlattenFont 26–27
GXGetDeviceBitmap 41–42
GXGetShapeDeviceBounds 39
GXNewShape 36
GXNewWindowViewPort 33
GXSetBitmap 41
GXSetTransformMapping 41
GXSetViewDeviceBitmap 41
gxShape object 36
gxTransform object 36
gxViewDevice object 34

H
Hersey, Dave 117
homogenous representation of

control points (NURB curves)
61, 64

horizontal pan (QuickTime VR) 6

I
immediate mode rendering

(QuickDraw 3D), of NURB
curves 65, 66

IncludeFiles variable
(CodeWarrior) 88

interactive movies. See object
movies; panoramic movies;
QuickTime VR

invmap field
(viewPortBufferRecord) 34

isHighLevelEventAware flag,
Display Manager and 45

J
job dialog, avoiding display of

(Macintosh Q & A) 113
Johnson, Bo3b 103

K
kDepthNotAvailableBit

(DMCheckDisplayMode) 45
kDMDisplayNotFoundErr

(DMGetDisplayIDByGDevice)
45

d e v e l o p Issue 25 March 1996124

kDMDisplayNotFoundErr
(DMGetGDeviceByDisplayID)
45

keyDeviceRect constant, Display
Manager and 47

keyDisplayID constant, Display
Manager and 47

keyDisplayNewConfig, Display
Manager and 45

keyDisplayOldConfig, Display
Manager and 45

kInkChar (Newton Q & A) 100
kinks (in NURB curves) 58–60
kNoSwitchConfirmBit

(DMCheckDisplayMode) 44
knots (of NURB curves) 49,

54–57, 58–60
editing 67
insertion of 68–72
number of 68

knot vector
nonuniform 57
NURB curves and 55, 58

“KON & BAL’s Puzzle Page”
(Hersey and Esfahani),
Printing, Patching, and Fonts
117–122

kQ3SubdivisionMethodConstant
(QuickDraw 3D) 66, 67

kQ3SubdivisionMethodScreenSpace
(QuickDraw 3D) 66

kQ3SubdivisionMethodWorldSpace
(QuickDraw 3D) 66

L
languages frame (Newton) 91–96

changing strings at run time
97–98

loading from resources
93–96

loading from text files
92–93

LaserWriter 8.3, ColorSync aware
(Macintosh Q & A) 114

linear object movies (QuickTime
VR). See object movies
(QuickTime VR)

listPicker (Newton Q & A) 102
Load command (Newton) 91, 92
'LOC#' resources (Newton)

93–96
'LOC#' template (Newton) 94
LockMemoryContiguous

(Macintosh Q & A) 109
LocObj (Newton) 90, 94, 97, 98

M
McBride, Philip 5
Macintosh Q & A 108–116
Macintosh Technical Notes 4
Macintosh Technical Q&As 4
Macintosh Toolbox, throwing

exceptions for errors 83
MacsBug, loading under System 7

(Macintosh Q & A) 112
MakeBinary (Newton) 99
Make command (CodeWarrior)

87
MakePSHandle (QuickDraw GX)

27, 28
MakeSingleNodeMovie

(QuickTime VR) 22
Marinkovich, Mike 44
marker field

(viewPortBufferRecord) 34
Maroney, Tim 87
'MBDF' resources, KON & BAL

puzzle 122
mcActionStep (Macintosh Q & A)

115
MemError (Macintosh Toolbox)

85
Metrowerks CodeWarrior

built-in SOM compiler
87–89

include files 88–89
using C++ 80
using ToolServer from

87–89
“weak linking” to

QuickDraw 3D 114
Metrowerks PowerPlant,

UDebugging and UException
files 83–84

ModalDialog (Macintosh Q & A)
113

model (QuickTime VR) 6, 13–15
getting the dimensions of

11–12
reading from 3DMF files

10–11
See also object movies

modeOK
(DMCheckDisplayMode) 44

Monitors control panel 44
“MPW Tips and Tricks”

(Maroney), using ToolServer
from CodeWarrior 87–89

multinode scene (QuickTime VR)
6

multipane dialogs 3–4

MyAddImageToMovie
(QuickTime VR) 15, 17

MyConvert3DMFToObject
(QuickTime VR) 12

MyConvert3DMFToPano
(QuickTime VR) 18, 19

MyGenerateObjImages
(QuickTime VR) 13–15

MyGeneratePanoFrames
(QuickTime VR) 18, 20–21

MyGeneratePanoMovieDirect
(QuickTime VR) 18

MyGetBoundingSphere
(QuickTime VR) 11, 12

MyInitObjCamera (QuickTime
VR) 13, 14

MyInitPanoCamera (QuickTime
VR) 18, 19

MyNewCamera (QuickTime VR)
8, 10

MyNewDocument (QuickTime
VR) 8, 9

MyPrepareDestMovie
(QuickTime VR) 15, 16

MyRotateCameraY (QuickTime
VR) 18, 20

MyRotateObjectX (QuickTime
VR) 13, 14

MyRotateObjectY (QuickTime
VR) 13, 14

N
name mangling (C++) 80

preventing 81
Names (Newton Q & A), adding

items to 99
Navigable Movie Player

application 17
Newton

adding an index (Newton
Q & A) 100

adding items to built-in
applications (Newton
Q & A) 99

localized strings for 90–98
multiple Newton devices

(Newton Q & A) 100
Newton 2.0 (Newton Q & A)

99–101
Newton Q & A: Ask the Llama

99–102
Newton Toolkit 1.5, localized

strings and 90
NewViewPortWBuffer

(QuickDraw GX) 33–36, 41,
42

INDEX 125

node (QuickTime VR) 6
nonuniform rational B-splines. See

NURB curves
Notes (Newton Q & A), adding

items to 99
NURB curves 48–74

basis functions of control
points 54–58

Bézier representation of 68
conic arcs 62–64
controlling subdivision of

66–67
control points 49, 52–54
converting Bézier curves to

72, 73
converting to Bézier curves

72–73
data structures in

QuickDraw 3D 64–65
designing with 73–74
editing 67–68
evaluating 69–72
kinks 58–60
knot insertion 68–72
knots 49, 54–57, 58–60
Oslo algorithm 72
parametric functions and 51
in QuickDraw 3D 64–68
rendering 65–68
smoothness of 51–52, 59
three-dimensional 49
useful properties of 49

“NURB Curves: A Guide for the
Uninitiated” (Schneider)
48–74

NURB surfaces 48, 74
See also NURB curves

O
object (QuickTime VR) 6

rotating 13, 14
shooting an object 6–7,

13–15
object combination (Newton) 93
object movies (QuickTime VR) 5,

6, 8–17
adding rendered images to

15, 17
constructing 15–17
converting 3DMF files to

12
generating 17
generating images for 15
rotating the model for object

rendering 13, 14

setting initial camera
position 13, 14

“Office4.2x Update for Power
Mac” 122

offxform field
(viewPortBufferRecord) 34

on_xform field
(viewPortBufferRecord) 34

OpenDriver (Macintosh Q & A)
110–111

Open Transport (Macintosh
Q & A) 111

IP protocol stack 111
Oslo algorithm, for inserting knots

into NURB curves 72
OTInetGetInterfaceInfo

(Macintosh Q & A) 111

P
page field (viewPortBufferRecord)

34
panorama (QuickTime VR) 6

placing blue-screen video
over (Macintosh Q & A)
115–116

shooting a panorama 7–8
panoramic movies (QuickTime

VR) 5, 6, 8–12, 18–22
converting the linear movie

to an interactive movie
22

converting 3DMF files to
18, 19

dicing the image into a linear
movie 21–22

generating 21–22
generating images for 18,

20–21
rendering directly 22, 23
rotating the camera for

panoramic rendering 18,
20

setting initial camera
position 18, 19

simulating cylindrical
rendering 22, 23–25

slit-based rendering 22,
23–25

stitching the images 18, 21
'PAPA' -8192 resource (Macintosh

Q & A) 110
parametric functions, NURB

curves and 51
parent field

(viewPortBufferRecord) 34

patch dcmd, KON & BAL puzzle
122

pickerDef (Newton Q & A) 102
PICT movies, stepping through

(Macintosh Q & A) 114–115
PlainTalk microphone (Macintosh

Q & A) 108
Polaschek, Dave 26
PostScript, downloading fonts

with QuickDraw GX 26–27
Power Macintosh 9500

memory allocation
(Macintosh Q & A) 108

sound-in port (Macintosh
Q & A) 108

“PP DebugAlerts.rsrc” (C++) 84
PrClosePage (Macintosh Q & A)

114
PrDlgMain (Macintosh Q & A)

113
preferences (AppleScript) 76–77

grouping 77
preferences property

(AppleScript) 76–77
“Print Hints” (Polaschek),

QuickDraw GX Breaks the
Space Hack 26–28

Printing Update 1.1 (System 7.5.2)
(Macintosh Q & A) 114

PrJobDialog (Macintosh Q & A)
113

PrJobInit (Macintosh Q & A) 113
PrJobMerge (Macintosh Q & A)

113
PrOpenPage (Macintosh Q & A)

114
properties (AppleScript) 75–76

multiple “group” properties
77

properties property (AppleScript)
76

protoKeypad (Newton Q & A)
102

protoSoupOverview (Newton
Q & A), changing font style
101–102

Q
Q3NURBCurve_GetData

(QuickDraw 3D), editing
NURB curves 68

Q&A Technical Notes 4
QuickDraw 3D

controlling subdivision of
NURB curves 66–67

d e v e l o p Issue 25 March 1996126

data structures for NURB
curves 64–65

editing NURB curves 67–68
generating QuickTime VR

movies from 5–25
immediate mode rendering

65, 66
mesh contours (Macintosh

Q & A) 114
NURB curves 64–68
rendering NURB curves

65–68
retained mode rendering

65–66
“weak linking” to

(Macintosh Q & A) 114
See also NURB curves;

3DMF files
QuickDraw GX

double buffering 29, 31–32
downloading PostScript

fonts 26–27
exporting pictures as

QuickDraw PICTs
(Macintosh Q & A)
109–110

flicker-free drawing 29–43
font scalers 26
offscreen buffer 33–37
screen buffering library

32–42
space hack 26
two-byte fonts 26, 27

QuickDraw PICT files, converting
QuickDraw GX pictures to
109–110

QuickTime for Windows,
loading/playing movies in RAM
(Macintosh Q & A) 115

QuickTime movies, data rate
(Macintosh Q & A) 115

QuickTime VR 5–25
Authoring Tools Suite (ATS)

6, 12, 21
placing blue-screen video

over a panorama
(Macintosh Q & A)
115–116

versus 3D models 5
QuickTime VR movies

creating a new document 8,
9

creating the camera 8–10
See also object movies;

panoramic movies

R
Rappoport, Avi 78
rational curves, NURB curves and

60–62
RedoChildren (Newton) 98
rendering camera (QuickTime

VR)
creating 8–10
for linear object movies

13–15
for panoramic movies 18–21

ResError (Macintosh Toolbox) 85
retained mode rendering

(QuickDraw 3D), of NURB
curves 65–66

rowBytes (PixMap) 3

S
scene (QuickTime VR) 6

document record structure
for 8, 9

Schneider, Philip J. 48
screen buffering (QuickDraw GX)

29, 31
versus drawing speed 31–32

screenview field
(viewPortBufferRecord) 34

Script Include File (CodeWarrior)
88

SCSI direct memory access
(DMA) (Macintosh Q & A)
109

SCSI drivers, native (Macintosh
Q & A) 108

SCSI Interface Module (SIM),
native (Macintosh Q & A) 108

second-derivative continuity,
NURB curves and 52

set (AppleScript) 75, 76
SetLocalizationFrame (Newton)

90, 91, 97
SetStdCProcs (Macintosh Q & A)

110
settings property (AppleScript)

76–77
SetViewPortWBufferDither

(QuickDraw GX) 42
Sharp, Maurice 90
signal macros (Metrowerks

PowerPlant) 85
Simone, Cal 75
slit-based rendering (QuickTime

VR) 22, 23–25
calculating the optimal slit

width 24, 25

SOM (System Object Model)
(IBM), CodeWarrior and
87–89

space hack (QuickDraw) 26
splines 50

See also NURB curves
SrcPictToMovie (QuickTime VR)

21–22
'stat' parameter (ToolServer),

CodeWarrior and 89
status property (AppleScript) 76
StdPix bottleneck (Macintosh

Q & A) 110
Stitch768 script (QuickTime VR)

18, 21
stitching tool (QuickTime VR)

18, 21
storage field

(viewPortBufferRecord) 34
'STR ' -8192 resource (Macintosh

Q & A) 110
switchFlags

(DMCheckDisplayMode) 44
SyncView (Newton) 98
System 7, startup with the Shift

key down (Macintosh Q & A)
112

System 7.5.2, Printing Update 1.1
(Macintosh Q & A) 114

T
Technotes 4
TextSetup (Newton) 91
3DMF files (QuickDraw)

converting to linear object
movies 12

converting to panoramic
movies 18, 19

creating QuickTime VR
movies from 8–22

reading models from 10–11
throwing exceptions (C++) 79–80

for Macintosh Toolbox
errors 83

throw macros (Metrowerks
PowerPlant) 84–85

throw statement (C++) 79, 80, 84
ToolFrontEnd file (CodeWarrior)

87, 89
ToolFrontEnd panel

(CodeWarrior) 87–88
ToolServer, using from

CodeWarrior 87–89
top-level exception handler (C++)

80–81

INDEX 127

TQ3NURBCurveData
(QuickDraw 3D)

converting Bézier curves to
NURB curves 72

editing NURB curves 67
TrueType GX scaler (QuickDraw

GX) 26
try blocks (C++), defining 81
try statement (C++) 79, 81
two-byte fonts (QuickDraw GX)

26, 27
Type 1 scaler (QuickDraw GX)

26

U
UDebugging file (Metrowerks

PowerPlant) 83–84
global variable options 84
signal 84
signal macros 85

UException file (Metrowerks
PowerPlant) 83–84

throw macros 84–85
uniform knot vector, NURB

curves and 55–56

updatearea field
(viewPortBufferRecord) 34

UpdateViewPortWBuffer
(QuickDraw GX) 36–37

usehalftone field
(viewPortBufferRecord) 34

“Using C++ Exceptions in C”
(Rappoport) 78–86

V
vertical pan (QuickTime VR) 6
“Veteran Neophyte, The”

(Johnson, Bo3B), Killing Time
Killers 103–106

viewBounds (Newton) 98
viewdelta field

(viewPortBufferRecord) 34
view field (viewPortBufferRecord)

34
viewPortBufferRecord data

structure (QuickDraw GX) 33,
34, 42

viewSetupFormScript (Newton)
91, 98, 100–101

virtual reality. See QuickTime VR

W
weight (of control points), NURB

curves and 60
weighted Euclidean representation

of control points (NURB
curves) 62

window field
(viewPortBufferRecord) 34

Worksheet window
(CodeWarrior) 87

d e v e l o p Issue 25 March 1996128

YOUR NAME HERE

YOUR PHOTO HERE

Do you have code that solves a problem other Macintosh
developers might be having? Why not show it off by writing
about it in develop? We’re always looking for people who might be
interested in submitting an article or a column. If you’d like to
spotlight and distribute your code to thousands of developers of
Apple products, here’s your opportunity.

If you’re a lot better at writing code than writing articles, don’t
worry. An editor will work with you. The result will be something
you’ll be proud to show your colleagues (and your Mom).

So don’t just sit on those great ideas; feel the thrill of seeing them
published in develop!

For Author’s Guidelines, editorial schedule, and information
on our incentive program, send a message to DEVELOP on
AppleLink, develop@applelink.apple.com on the Internet, or
Caroline Rose, Apple Computer, Inc., 1 Infinite Loop,
Cupertino, CA 95014.

Apple provides a wealth of information,

products, and services to assist developers.

The Apple Developer Catalog and Apple

Developer University are open to anyone

who wants access to development tools

and instruction. Additional information

and services are available through

Apple’s Developer Programs.

The Apple Developer Catalog
This complimentary catalog offers
worldwide access to development
tools, resources, training products,
and information for anyone
interested in developing applications
on Apple platforms. It features
hundreds of Apple and third-party
development products and offers
convenient payment and shipping
options, including site licensing.

Apple Developer University
(DU) provides courses to get you
started programming on Apple
platforms and Mac OS–compatible
hardware, as well as advanced, in-
depth training on new technologies
such as QuickTime VR, QuickDraw
3D, OpenDoc, Apple Guide, and
Newton. In addition to classroom
training, multimedia self-paced
courses and low-cost mini-course
tutorials are available through the
Apple Developer Catalog.

Macintosh Developer Programs
Macintosh developers have a choice
of three programs, each providing
technology seeding, development
software, technical information,
discounts on equipment, and more.
The programs vary in the level of
technical support provided.

The Macintosh Associates Program is a
low-cost self-support program for
Macintosh developers who don’t
need programming-level technical
support from Apple.

The Macintosh Associates Plus Program
enables Macintosh developers to
have up to ten programming-level
technical support questions
answered (via e-mail) per year.

The Macintosh Partners Program is
for developers who need unlimited
programming-level technical
support (via e-mail).

Newton Developer Programs
Newton developers have a choice
of three programs, each providing
technical information as well as
discounts on equipment and
developer training. The programs
vary in the level of technical support
provided.

The Newton Associates Program is a
low-cost self-support program for
Newton developers who don’t need
programming-level technical
support from Apple.

The Newton Associates Plus Program
enables Newton developers to have
up to ten programming-level
technical support questions
answered (via e-mail) per year.

The Newton Partners Program offers
Newton developers unlimited
programming-level technical
support (via e-mail) along with
additional hardware purchasing
privileges and platform seeding
opportunities.

R E S O U R C E S

Apple Developer Catalog To order
products or receive a catalog, call 1-800-
282-2732 in the U.S., 1-800-637-0029 in
Canada, (716)871-6555 internationally,
or (716)871-6511 for fax. You can also
send e-mail to AppleLink APDA, Internet
apda@applelink.apple.com, America Online
APDAorder, or CompuServe 76666,2405.
Or write Apple Developer Catalog, P.O.
Box 319, Buffalo, NY 14207-0319.

Apple Developer University (DU)
Course descriptions and schedules can be
found in the Developer Services areas on
AppleLink (Developer Support) and the World
Wide Web (http://dev.info.apple.com). You
can also call (408)974-4897, fax (408)974-
0544, send e-mail to AppleLink DEVUNIV,
or write to DU at Apple Computer, Inc.,
1 Infinite Loop, M/S 305-1TU, Cupertino,
CA 95014.

Apple Developer Programs Call the
Developer Support Center at (408)974-4897,
send e-mail to AppleLink DEVSUPPORT, or
write Developer Support, Apple Computer,
Inc., 1 Infinite Loop, M/S 303-2T, Cupertino,
CA 95014, for information or an application
form. Developers outside the U.S. and
Canada should instead contact the Apple
office in their country for information about
developer programs.

