
Planning for
Mac OS 8
Compatibility

Connecting Users
With QuickTime
Conferencing

OpenDoc Parts and
SOM Dynamic
Inheritance

Adding Custom Data
to QuickDraw 3D
Objects

64-Bit Integer
Math on 680x0
Machines

$10.00

Dynamic Display Dilemmas • Attaching and Embedding Scripts • Scripted Text Editing

T h e A p p l e T e c h n i c a l J o u r n a l Issue 26 June 1996

E D I T O R I A L S T A F F

Editor-in-Cheek Caroline Rose

Managing Editor Toni Moccia

Technical Buckstopper Dave Johnson

Bookmark CD Leader Alex Dosher

Able Assistant Meredith Best

Our Boss Mark Bloomquist

His Boss Dennis Matthews

Review Board Brian Bechtel, Dave Radcliffe,
Quinn “The Eskimo!”, Jim Reekes,
Bryan K. “Beaker” Ressler, Larry Rosenstein,
Nick Thompson, Gregg Williams

Contributing Editors Lorraine Anderson,
Linda Fogel, Toni Haskell, Judy Helfand,
Cheryl Potter

Indexer Marc Savage

A R T & P R O D U C T I O N

Art Direction Lisa Ferdinandsen

Technical Illustration John Ryan

Formatting Forbes Mill Press

Production Diane Wilcox

Photography Sharon Beals, Josephine Tsen,
Socorro Anaya

Cover Illustration Graham Metcalfe of
Metcalfe/Shuhert Design

ISSN #1047-0735. © 1996 Apple Computer, Inc.
All rights reserved. Apple, the Apple logo, AppleLink,
AppleScript, AppleTalk, ColorSync, LaserWriter, Lisa,
MacApp, Macintosh, MacTCP, MovieTalk, MPW,
Newton, OpenDoc, PowerBook, Power Macintosh,
PowerShare, PowerTalk, QuickTime, SANE, and
TrueType are trademarks of Apple Computer, Inc.,
registered in the U.S. and other countries. AOCE,
A/ROSE, develop, Dylan, Finder, Mac, NewtonScript,
and QuickDraw are trademarks of Apple Computer,
Inc. Adobe and PostScript are trademarks of Adobe
Systems Incorporated or its subsidiaries and may be
registered in certain jurisdictions. PowerPC is a
trademark of International Business Machines
Corporation, used under license therefrom. SOMobjects
is a licensed trademark of International Business
Machines Corporation. Netscape Navigator is a
trademark of Netscape Communications Corporation.
UNIX is a registered trademark of Novell, Inc. in the
United States and other countries, licensed exclusively
through X/Open Company, Ltd. All other trademarks
are the property of their respective owners.

T H I N G S T O K N O W

develop, The Apple Technical
Journal, a quarterly publication
of Apple Computer’s Developer
Press group, is published in March,
June, September, and December.
It provides developers of Apple-
platform products with technical
articles and code that have been
reviewed for robustness by Apple
engineers.

This issue’s CD. Subscription issues
of develop are accompanied by the develop
Bookmark CD. This CD contains a
subset of the materials on the Developer
CD Series, which is part of the Apple
Developer Mailing available through
the Apple Developer Catalog. Included
on the CD are this issue and all back
issues of develop along with the code
that the articles describe. (The code is
updated periodically, so always use
the most recent CD.)

The CD also contains Technotes,
sample code, and other documentation
and tools (these contents are subject to
change). Items referred to as being on
“this issue’s CD” are located on either
the Bookmark CD or the Reference
Library or Tool Chest edition of the
Developer CD Series.

Much of the CD contents, including
the develop issues and code, is also
available at ftp://ftpdev.info.apple.com
and in the Developer Services area on
AppleLink. See also the Web site for
Apple Developer Services and Products,
at http://dev.info.apple.com.

Macintosh Technical Notes.
A designation like “(CS 06)” after a
reference to a Macintosh Technical
Note or Macintosh Technical Q&A
indicates its category and number on
this issue’s CD or on the Internet.
(CS is the ColorSync category.) The
new (uncategorized) Technotes are
designated by number alone.

C O N T A C T I N G U S

Feedback. Send editorial comments
or suggestions to Caroline Rose at
crose@apple.com or AppleLink
CROSE. Technical questions about
develop should be directed to Dave
Johnson at dkj@apple.com, AppleLink
JOHNSON.DK, or CompuServe
75300,715. You can send a fax to
Caroline or Dave at (408)974-9423 or
write to them at Apple Computer, Inc.,
1 Infinite Loop, Cupertino, CA 95014.

Article submissions. Ask for our
Author’s Guidelines and a submission
form at develop@apple.com or
AppleLink DEVELOP.

Subscriptions and back issues.
You can subscribe to develop through
the Apple Developer Catalog (see
ordering information below) or use
the subscription card in this issue.
You can also order printed back issues
through the catalog. The one-year U.S.
subscription price is $30 (for four issues
and four develop Bookmark CDs), or U.S.
$50 in other countries. Back issues are
$13 each. These prices include shipping
and handling. For Canadian orders, the
subscription price includes GST
(R100236199).

Apple Developer Catalog. To
order develop or other products through
the catalog, or to make subscription-
related queries, call 1-800-282-2732 in
the U.S., 1-800-637-0029 in Canada,
(716)871-6555 internationally, or
(716)871-6511 for fax. You can send
e-mail to order.adc@applelink.apple.com
or AppleLink ORDER.ADC, or write
Apple Developer Catalog, Apple Computer,
Inc., P.O. Box 319, Buffalo, NY 14207-
0319. For all subscription changes or
queries, please be sure to include your name,
address, and account number as it appears on
your mailing label.

Printed on recycled paper by
Stream International, USA

A R T I C L E S

5 Planning for Mac OS 8 Compatibility by Steve Falkenburg
Mac OS 8 brings changes that may affect your code. This article discusses the compatibility ramifications of
Mac OS 8 and gives some sound advice for how to get your code ready now.

33 Connecting Users With QuickTime Conferencing by Dean Blackketter
QuickTime Conferencing allows users to share time-based data such as video and sound. Here are the basics.

60 OpenDoc Parts and SOM Dynamic Inheritance by Éric Simenel
Although you don’t need to know much about SOM to write OpenDoc parts, with a little knowledge about
this underlying technology you can do some very useful things.

80 Adding Custom Data to QuickDraw 3D Objects by Nick Thompson, Pablo Fernicola, and
Kent Davidson
By defining your own attribute and element types, you can attach custom data to QuickDraw 3D objects.
This flexibility opens up a world of new possibilities, a few of which are explored in this article.

101 64-Bit Integer Math on 680x0 Machines by Dale Semchishen
There’s a 64-bit library built into the Toolbox on the Power Macintosh, and there’s also one built into
QuickDraw GX. Finally, here’s a library that will work on any Macintosh, using built-in routines if available.

C O L U M N S

27 GRAPHICAL TRUFFLES
Dynamic Display Dilemmas by Kent Miller
and Cameron Esfahani
How your application can live copacetically with
the Display Manager.

57 MPW TIPS AND TRICKS
Scripted Text Editing by Tim Maroney
An overview of MPW’s powerful, scriptable text
editing capabilities.

76 ACCORDING TO SCRIPT
Attaching and Embedding Scripts
by Cal Simone
Integrating scripts in your application can have
a big payoff for your users.

99 PRINT HINTS
The Top 10 Printing Crimes Revisited
by Dave Polaschek
Despite our best efforts, developers continue to
commit printing crimes. We’re not giving up.

110 BALANCE OF POWER
Sleuthing Through Your Code by Dave Evans
Debugging is a lot like being a detective.

115 MACINTOSH Q & A
Apple’s Developer Support Center answers
questions about Macintosh product
development.

123 THE VETERAN NEOPHYTE
Manual Labor by Jim Mensch
Lots of activities have hidden lessons that can
be applied to programming — for example,
rebuilding a car engine.

125 NEWTON Q & A: ASK THE LLAMA
Answers to Newton-related development
questions. Send in your own questions for a
chance at a T-shirt.

130 KON & BAL’S PUZZLE PAGE
New World Order
by Cameron Esfahani and Alex Rosenberg
Playing Marathon during work hours is not only
justifiable but can actually prove fruitful.

2 EDITOR’S NOTE
3 LETTERS

138 INDEX

Issue 26 June 1996

CONTENTS 1

A couple of issues ago, I told a story here about how my friend John had failed to
find some song lyrics on the Web before I managed to locate them by old-fashioned,
real-world means. A few of you wrote to say how easily you found those same lyrics
on the Web. Maybe they were posted after the incident I related, or maybe John just
didn’t look in the right place, but my point was a general one: the Web is not the world.

At first I thought that editorial would be controversial, but before it was published I
noticed similar remarks starting to appear elsewhere, along the lines of the Internet
and the Web being overrated. Since then I’ve seen even more critical articles on the
subject — the inevitable backlash, I suppose. Now that such kvetching has become
socially acceptable, I should probably turn to another subject, but alas...

My main complaint is with the quality of a lot of what’s posted online. I don’t mind
so much if someone’s personal home page is a bit rough, but large corporations that
should do better seem not to be doing even minimal copyediting and fact checking
on what they post to the Web. It’s gotten to the point where, to some people, being
published on the Internet is becoming synonymous with being low quality. I even
came across this sentiment in a review of a book (not related to computers) in the
New York Times: after criticizing the book for sloppy editing, the reviewer wrote, “If
this is the way books are going to be published, we may as well just shove the typing
onto the Internet and forget about bound volumes altogether.”

Why is it that the highest-quality online publications are those that are also published
in print? It’s as if “committing” something to print makes it seem more respectable,
more enduring. As a provider of not only develop content but also a newsletter of my
own on the Web, I find this ironic. Ever since my publications have been made so
easily available online, reader feedback indicates that many more people have been
referring to back issues; they treat all the content — past and present — as a single,
timeless body of information. This timelessness argues for the same attention to
quality online as in the print medium, or at least for more efforts in that direction.

I think one problem may be the confusion about where to put Web publishing in an
organization. Most Web-related job descriptions I’ve seen ask for a content provider,
formatter/designer, and HTML expert all rolled into one. That’s like having authors
of develop articles design the page layout and produce the printed product. Ask one
person to do it all and what do you expect?

You may not care about minor errors, but inattention to quality will extend, web-like,
beyond punctuation and grammar into the more critical realms of coherency and
accuracy. So please, take a second look at your Web pages and other online content
with this in mind. The world will thank you.

CAROLINE ROSE

develop Issue 26 June 19962

EDITOR’S NOTE

CAROLINE ROSE (crose@apple.com, AppleLink
CROSE) finds her most difficult editing job to be
rephrasing her work history for her bio in develop.
There are only so many ways to say she’s been
working in the computer industry for a very long
time, in various writing, editing, and programming

capacities. The good news is that, having edited
develop for five years, she finally qualifies for a
sabbatical, which she’ll be taking by the time you
read this. She’s sorry to miss Apple’s Worldwide
Developers Conference but decided that springtime
in Tuscany was a fair tradeoff.•

Caroline Rose
Editor

TOOLFRONTEND FIXES
Thanks to Tim Maroney for his excellent
column on ToolServer and CodeWarrior
(develop Issue 25). But there’s a bug in
ToolFrontEnd that causes CodeWarrior
IDE 1.5b2 to throw away the preferences
every time I use it. In case you’re
interested, I have the solution to the
problem. In addition, I’ve fixed a dialog
for the CodeWarrior 8 API and cleaned
up the code for the new API.

This bug aside, this excellent little utility
has helped me a lot in my development.

— Andreas Magnusson

Thank you for the bug report. I’ve created a
new version of ToolFrontEnd that contains
your bug fixes and others; it can be found on
this issue’s CD. The plug-in API was in a
state of flux when I wrote ToolFrontEnd —
the new API documentation arrived on the
day of my deadline for the CD, so there was
no opportunity to adapt my first release for it.

I’m glad to have helped in your development;
that’s the real reason I write these things.

— Tim Maroney

FONTTOPICT SNAFU
Regarding this code in FontToPict in
Issue 25’s Print Hints column:

MakePSHandle(qdFont, qdStyle,
myEncoding, &picCommentHdl);

PicComment(kPostScriptHandle,
GetHandleSize(picCommentHdl),
piccommentHdl);

I recall that the second argument to
PicComment is a word, which means
you can’t have a picture comment

bigger than 32767 bytes. I think Type 1
fonts are usually quite close to this size.
Should people be worried about this?

— Lawrence D’Oliveiro

Color me stupid. You’re right, people should
be worried about this when they’re sending
the whole font. Hopefully you’ll be sending
only the portion of the font that you’ll
actually need, so the data requirements will
be less. But if you’re not, you need to break
up the font data or use another mechanism
to send it to the printer. Sorry about that.

— Dave Polaschek

SCRIPTABLE DATABASE UPDATE
When I try to use CodeWarrior 7 to
compile Greg Anderson’s Scriptable
Database 1.0a11 (from his article on
whose clause resolution in develop Issue
24), I get the following link error:

: mpwexit.c: '__cleanupandexit__'
referenced from '_exit' is undefined

How can I fix this?

— Jean Jourdain

You can’t fix it; that version of the Scriptable
Database won’t compile with CodeWarrior
7, only with CodeWarrior 6 (I’ll spare you
the gory details). But the new version on
this issue’s CD (1.0a15) has been updated so
that it works fine with CodeWarrior 7 and
later. Sorry for any inconvenience.

— Dave Johnson

GOOD TIMING
Thanks to Martin Minow for his
“Timing on the Macintosh” article on
develop’s CD. It saved me from having to

LETTERS

LETTERS 3

ALL OPINIONS ARE INVITED
We welcome your letters to the editor, especially
regarding articles published in develop. Write to
Caroline Rose (crose@apple.com or AppleLink
CROSE) or, if technical develop-related questions,
to Dave Johnson (dkj@apple.com or AppleLink
JOHNSON.DK). All letters should include your

name and company name as well as your address
and phone number. Letters may be excerpted or
edited for clarity (or to make them say what we
wish they did). Address subscription-related queries
to order.adc@applelink.apple.com or AppleLink
ORDER.ADC.•

hunt down and strangle whoever wrote
“you must write an application-defined
routine that calculates the elapsed time”
in Inside Macintosh: OS Utilities and then
didn’t supply one.

— Isidore Ducasse

Inside Macintosh can’t supply code for
everything; I’m glad develop could help fill
the gap. Note that the Timing article has
been updated on the CD.

— Caroline Rose

OODL(E)S OF SPEED IN LISP
Dave Johnson’s excellent column on
OODLs in Issue 24 is informative and
straight to the point. When he’s talking
about the overhead associated with
dynamic languages, however, he’s not
quite up to date. Dynamic languages
need not be slower than static languages.
They can be, if the programmer isn’t
interested in speed. But on the other
hand, numerical code in a modern LISP
is every bit as fast as FORTRAN or C
code, if the programmer cares to add a
few declarations. There’s no need to add
external modules for speed nowadays.

True, some dynamic languages have a
lot of runtime overhead, but LISP isn’t
one of them. This fact needs to be

emphasized to programmers, not the
obsolete idea that LISP is a slow and
memory-hungry dinosaur. Interpreted
LISP might have been slow 15 years
ago, but so was BASIC. Unfortunately,
many programmers still think LISP is
interpreted, and the comparison between
a compiled language such as modern C
or Pascal with an ancient interpreted
LISP implementation is simply not fair,
nor is it correct. With Common LISP,
lexical scoping, and modern compiler
technology, LISP can be just as fast as
any static language. So, your example of
a QuickDraw 3D renderer in LISP is in
fact an excellent idea.

— Peter Bengtson

You’re right, of course. Writing time-critical,
number-crunching code in LISP is eminently
practical now. Among dynamic languages,
LISP in particular has matured in a big
way and is now almost a hybrid language:
full dynamism if you want it (with some
accompanying overhead) or, with appropriate
declarations and “explicitness of purpose” by
the programmer, the speed (and brittleness!)
of a static language. In a sense, it’s the best
of both worlds, letting the programmer
decide what best fits the situation. So yes,
my example was flawed, though I hope the
spirit of it came through despite this.

— Dave Johnson

develop Issue 26 June 19964

We’re happy to announce that develop has won top
honors in the STC’s 1995 Northern California Technical
Communications competition. STC is the Society for
Technical Communication, an international organization
of more than 18,000 writers, editors, and other technical
communicators. In its category of Monthly or Quarterly
Magazines, develop won not only the highest-level
award, Distinguished Technical Communication, but also
Best of Category. It then went on to win a Merit award in
the STC’s International Technical Publications Competition.

We’re going to indulge ourselves here and list some of
the judges’ comments that we’re particularly fond of.

The writing was very focused and stuck to the article’s
point. All articles seemed very informative.

Very well organized and well laid out.

The voice is very personable without being overly
familiar.

The articles use humor appropriately. The material is
very readable.

develop is a very polished, engaging publication from
beginning to end.

It’s nice to get feedback like this from the competition
judges, but you, our readers, are the judges who count
the most. You’re the ones we want to be sure are happy
with develop. We’d like to take this opportunity to thank
you for the valuable input you’ve given us over the six
and a half years of develop’s existence, and to ask you
to please keep it coming. Without your support and
encouragement — and your critical feedback — we
wouldn’t be what we are today.

TOOTING OWN OUR HORN: develop WINS BIG IN COMPETITION

STEVE FALKENBURG

Planning for Mac OS 8 Compatibility

PLANNING FOR MAC OS 8 COMPATIBILITY 5

One of the most important goals for Mac OS 8 (formerly known by the
development name “Copland”) is the preservation of compatibility with
existing applications. Customers consistently rank compatibility as a
critical factor in their decision whether to upgrade to a new OS release,
with good reason. This article sheds light on what will and won’t be
compatible, and gives developers a road map for ensuring compatibility
with the Mac OS 8 release.

As one of the driving forces behind Mac OS 8, compatibility is at the forefront of the
minds of Apple engineers hard at work on this system software release. Given the
track record of nearly seamless compatibility with the Power Macintosh, customers
will expect their existing applications to run under Mac OS 8 with few or no problems.
Apple is working hard to deliver on this promise, and we’re beginning to succeed.
Most of the specific information for this article was learned the hard way — by
getting many existing applications up and running.

Of course, tradeoffs must be made to move the platform forward. If Mac OS 8 were
to remain compatible with all Macintosh software, the performance, reliability, and
stability of the system would suffer. While some customers have been impressed by
the stability of System 7, others would like to experience even fewer crashes and are
willing to upgrade some of their software in the process. Apple’s system software
needs to be more stable, while still maintaining compatibility with most applications.

Luckily, there are quite a few techniques that you can use today and guidelines that
you can follow to ensure compatibility with Mac OS 8. This way, you can impress
your friends (and confuse your enemies) at compatibility labs by installing your software
for the first time under Mac OS 8, and walking away 15 minutes later saying, “Gee,
that was easy, everything works!” This is when following all of those Inside Macintosh
chapters, develop articles, and Technotes will finally pay off.

Don’t panic: Mac OS 8 isn’t the compatibility “day of reckoning” that you’ve had
nightmares about. I’m sure many of you have been told by Developer Technical
Support, “Here’s a really cool trick, but it may break in the future.” In some cases,
“the future” is in fact Mac OS 8, but on the other hand many techniques that are
no longer being recommended (which we of course like to call “sick hacks”) will
continue to work.

STEVE FALKENBURG has worked on Mac OS 8
for several different groups at Apple, starting with
being the Mac OS 8 liaison in Developer Technical
Support, then moving into the Mac OS 8 High-Level
Toolbox group, and finally finding a home in the

Mac OS 8 Program Office Engineering Team.
Steve is hoping to help ship Mac OS 8 without
changing offices or groups again; then he plans
to take a long vacation with his wife, Nancy, that
doesn’t involve computers or moving boxes.•

Remember that Mac OS 8 is just the first step in modernizing the Macintosh.
Subsequent system releases will include features such as separate address spaces and
full preemption for all applications. In the future, discouraged techniques will become
areas of incompatibility; so even if your application runs under Mac OS 8, it’s worth
cleaning it up in preparation for future systems.

In this article, I’ll go over a few things that will no longer work under Mac OS 8 as
well as some of the techniques that will continue to work under Mac OS 8 but will
break in future systems. For the more heinous examples of these techniques, I won’t
give code samples — I don’t want people saying “Hey, I did it just like they did in
develop” as an excuse. I’ll also discuss some specific case histories of application
compatibility problems, to further illustrate the need to be proactive when planning
for compatibility.

For an overview of Mac OS 8, see http://www.macos.apple.com/macos8 on
the World Wide Web, or the article “Copland: The Mac OS Moves Into the Future” in
develop Issue 22. Other introductory documents can be found on this issue’s CD. Please
keep in mind when reading these materials, as well as this article, that the terminology
has evolved over time and some of it may change again by the time you read this.•

WHAT WORKS AND WHAT DOESN’T
Before diving into guidelines, warnings, and examples, we’ll start with an overview of
exactly which types of software will be compatible with Mac OS 8, which will need to
be updated, and which will need to be redesigned. This article focuses on applications,
but an overview of compatibility in general is helpful to set the stage.

First, the good news: Well-written applications conforming to Macintosh development
guidelines should run without any modification. This includes PowerPC™-native
applications as well as emulated applications. Theoretically, you could have written a
Macintosh Solitaire game in 1984 that would also run under Mac OS 8. There are, of
course, caveats to application compatibility, which will be discussed later in this article.

Component software is becoming an important part of the Macintosh experience,
and Mac OS 8 will support OpenDoc part editors as well as application-specific plug-
ins — again, without any modification. Depending on the “parent” application, there
may be issues with plug-in compatibility (as discussed later).

Now, the bad news: Existing extensions, control panels, desk accessories, ASLM
libraries, and most drivers are unsupported for the Mac OS 8 release. Compatibility
tradeoffs needed to be made in these areas to move the system forward and improve
system reliability.

Macintosh power users often try to impress each other by comparing how many
extensions load at startup, gracing their “Welcome to Macintosh” screen with
several rows of happy little icons. The proliferation of INITs has made life as a
Macintosh user exciting, if a little hazardous. With Mac OS 8, we’re trying to attack
the system stability problem head on by providing new, more reliable mechanisms for
extensibility and patching. While the original Macintosh was presented as a complete
solution, the Mac OS 8 team has realized that third-party extensibility is part of what
makes the system great. This has led us to make ease of extensibility a key goal of the
system.

As with extensions, for each existing code type that’s not supported under Mac OS 8,
a new and much improved mechanism will be provided. In other words, we’ll still
have MacHack entries for years to come, and they’ll be just as cool but more reliable.

develop Issue 26 June 19966

Other, less common software types are also unsupported. These include Text Services
Manager input methods, FSM external file system modules, and debuggers. This
article focuses on application-level issues, so I won’t go into a lot of detail in these
areas, but a section on migration paths is included in the article.

APPLICATION TAXONOMY
For the Mac OS 8 release, the types of applications that developers write can be split
into several major categories. These categories have been defined by the Mac OS 8
project teams, and work is being done to ensure that each of the application types is
fully supported by the Mac OS 8 design. This article doesn’t cover each type in detail,
but we’ll use the classifications as guideposts for migration and compatibility plans.

USER INTERFACE APPLICATIONS
The first, and most familiar, application type is the user interface application. This type
makes up the majority of applications on the Macintosh. These applications use
windows, menus, and dialogs and are usually document-centric. Examples include
ClarisWorks, Quicken, and Microsoft Excel. There are three variants of this
application type: Mac OS 8–savvy, minimal-adoption, and Mac OS 8–compatible.

Mac OS 8–savvy applications. A Mac OS 8–savvy application is just what you’d
think it would be: an application that takes significant advantage of Mac OS 8 features,
such as preemptive tasking, improved event delivery, and new user interface features.
Because these APIs aren’t available under System 7, a Mac OS 8–savvy application
will not run under pre–Mac OS 8 system releases. Note that Mac OS 8–savvy
applications still must maintain a cooperatively scheduled task so that they can call
the Macintosh Toolbox, and this cooperative task lives in the same address space with
all other System 7 and Mac OS 8–savvy applications. It’s possible to have other
portions of the application run in separate address spaces, and servers (such as file
sharing) are completely protected from applications.

Minimal-adoption applications. Not all developers may want to or be able to
make the move to a Mac OS 8–only application immediately. The minimal-adoption
application type is intended for these situations. The characteristics of this category
include “fitting in” with the Mac OS 8 look and feel while still maintaining
compatibility with System 7. Some subset of Mac OS 8 features (not APIs) will be
available to these applications, such as the removal of the fixed-size Memory Manager
heap limitation, and the new-look, theme-specific, user interface elements. This
application type is distinguished from System 7 applications by its correct appearance
under Mac OS 8 and its adoption of Mac OS 8 features on a runtime-check basis.

Mac OS 8–compatible applications. Well-written applications authored originally
for pre–Mac OS 8 systems will continue to work under Mac OS 8. If you follow
the guidelines in this article and adhere to documented Macintosh application
programming practices, your application should be Mac OS 8 compatible. Of course,
to take advantage of Mac OS 8 features in your application, you may need to release a
new version.

REAL-TIME APPLICATIONS
Real-time applications are applications that have time constraints on aspects of their
behaviors. If these constraints aren’t met, the application either fails or needs to adapt
gracefully to these operating conditions. Examples include data collection applications
such as LabView, multimedia applications such as Premier, and games such as
Marathon. Under Mac OS 8, real-time applications may choose to take advantage of
enhanced timing services and preemptive scheduling to improve their performance.

PLANNING FOR MAC OS 8 COMPATIBILITY 7

In some ways, however, Mac OS 8 provides new challenges to these applications,
since virtual memory is always enabled and preemptive scheduling may cause the
application to lose control of the CPU in unforeseen situations. That said, performance
will be vastly improved from the System 7 Virtual Memory Manager, so this shouldn’t
be a concern for most developers.

OPENDOC PART EDITORS
OpenDoc part editors are a relatively new application type. OpenDoc will continue
to be an important direction for document-oriented applications under the Mac OS 8
release. As you’ll see throughout this article, OpenDoc is also a suggested migration
path for several types of existing applications.

SERVERS
Servers are a new concept introduced in Mac OS 8. They’re preemptively scheduled
and run in their own protected address spaces. These features provide independence
from the cooperative Toolbox environment and mean that servers have greatly
enhanced stability, surviving the crashes of applications or other, ill-behaved servers.
New reentrant services are provided in Mac OS 8 to make servers possible, including
tasking, messaging, memory allocation, file system access, and networking. Only a
subset of the Mac OS 8 APIs are available to servers, and this subset does not include
the Macintosh Toolbox calls (Window Manager, Menu Manager, QuickDraw, and so
on). This means that servers cannot present a user interface. Candidates for servers
include World Wide Web Internet servers, virus checkers, and high-end publishing
print servers.

UTILITY APPLICATIONS
Utility applications manage a single window for user interface and have no menu bar.
To the user, they aren’t usually considered a separate application. Mac OS 8 will
support utility applications as a generalized application type, unlike previous system
releases. An additional use of utility applications is to present a user interface on
behalf of a server. For example, a utility application could be used to configure an
e-mail forwarding server with the proper e-mail addresses. Other examples of this
application type include Apple Guide and configuration control panels.

OTHER NON-APPLICATION CLASSIFICATIONS
Three other classifications that are useful to our discussions but don’t refer to
applications are extension libraries, patch libraries, and drivers.

Extension libraries. Extension libraries allow additional code to be introduced into
the Code Fragment Manager (CFM) closure for an application. An example use of
an extension library would be to track software launches and quits through CFM
initialization and termination routines to perform software auditing.

Patch libraries. Patch libraries allow patches to be installed into applications through
data-driven means, simplifying the customization process. Patch libraries apply their
patches in only one context, but can be combined with extension libraries to achieve
global-effect patching. The Get/SetTrapAddress methods of the past have proven
difficult or impossible to maintain and have resulted in greatly decreased system
reliability. The patch library mechanism, with associated extension libraries, provide
a more than capable replacement for the pre–Mac OS 8 patching methods.

Drivers. Under Mac OS 8, the device driver mechanism has been rearchitected to
ensure a high-throughput and flexible I/O system. Pre–Mac OS 8 'DRVR'-style
drivers are not supported and so need to be rewritten. As we’ll discuss below, some
software written as a driver today may be better written as another application type.

develop Issue 26 June 19968

MIGRATION PATHS FOR EXISTING APPLICATIONS
The first step in preparing for Mac OS 8 is determining the migration path your
application will follow. Depending on what type of application you have today, this
could mean a complete rewrite, minor tweaks, or no changes at all.

The most important point along the Mac OS 8 migration path is the first one:
compatibility. Before determining the best way of moving your application forward,
you should ensure that it runs out of the box on Mac OS 8. We’ll discuss
compatibility specifics in a later section.

Each System 7 application type has a unique migration path; the sections below cover
the available options.

USER INTERFACE APPLICATIONS
As shown in Figure 1, a System 7–based user interface application has several
alternatives for migration. The simplest alternative is not to revise the application
at all, or, if needed, do the minimum required to make the application Mac OS 8
compatible.

Another alternative is to convert the application into an OpenDoc part editor. I’m
not going to go into OpenDoc in this article; if you choose this route, see the article
“The OpenDoc User Experience” in develop Issue 22 for a good overview of how part
editors work from the user’s perspective.

If having a single binary for both System 7 and Mac OS 8 is important, the minimal-
adoption option may be appropriate. By migrating to minimal adoption, you ensure
user interface consistency and may be able to take advantage of a limited number of
Mac OS 8 features. For example, more efficient memory management is possible if
you restrict yourself to a subset of the Macintosh Memory Manager API and don’t
access Memory Manager heap structures directly.

The most ambitious path for migration is to make the application Mac OS 8 savvy.
This will mean that the same binary won’t run under both System 7 and Mac OS 8.
If the application is made Mac OS 8 savvy, it can take advantage of the wide range of
preemptive tasking services, efficient event handling, and an object-oriented version
of the Macintosh Toolbox.

REAL-TIME APPLICATIONS
The migration path for a real-time application is more straightforward than for a user
interface application (see Figure 2). Either the application can move to Mac OS 8
without changes or it can take advantage of additional real-time features provided by

PLANNING FOR MAC OS 8 COMPATIBILITY 9

Mac OS 8–savvy�
application

Minimal-adoption�
application

Mac OS 8–compatible�
application

OpenDoc�
part editor

User interface�
application

Figure 1. The migration path for a user interface application

Mac OS 8, becoming a Mac OS 8–specific real-time application. Which path is taken
depends on whether the existing application performs properly under Mac OS 8
without changes. For example, the developer of an application that was using Time
Manager tasks for accuracy-critical timing would want to consider migrating to take
advantage of the improved timing services of Mac OS 8.

OPENDOC PART EDITORS
As shown in Figure 3, existing OpenDoc part editors will be compatible with Mac OS 8,
but a part editor can be updated to take advantage of new Mac OS 8 APIs if the
developer chooses. Both Mac OS 8–savvy and existing OpenDoc part editors can
work on the same OpenDoc documents without problems.

FACELESS BACKGROUND APPLICATIONS
Faceless background applications (FBAs), also known as background-only applications,
are supported under Mac OS 8, but the natural migration path for most FBAs leads
to the server application type (see Figure 4).

The preemptive nature of servers makes them easier to write than FBAs, since file
system and networking calls can block until completion instead of being written
with asynchronous calls and chained completion routines. More important, the
enhanced reliability of servers makes this transition an easy decision. One drawback
of servers is that they cannot access the cooperative Toolbox environment, since
they’re preemptively scheduled.

DESK ACCESSORIES AND CONTROL PANELS
We’ll cover desk accessories and control panels together, since they share many of the
same user interface characteristics. Most user interaction for these types takes place
in a single window, and neither type maintains a full menu bar. All existing desk
accessories and control panels are unsupported under Mac OS 8 and so need to be
rewritten. As shown in Figure 5, the two suggested replacement application types are
utility applications and OpenDoc part editors.

develop Issue 26 June 199610

Figure 2. The migration path for real-time applications

Mac OS 8–compatible�
application

Mac OS 8 real-time�
application

Real-time�
application

Mac OS 8–compatible�
OpenDoc part editor

OpenDoc�
part editor

Mac OS 8–savvy�
OpenDoc part editor

Figure 3. The migration path for OpenDoc part editors

Faceless�
background�
application

Mac OS 8 server

Figure 4. The migration path for faceless background applications

DRIVERS
Figure 6 shows the migration path for drivers. On pre–Mac OS 8 systems, drivers
were typically written for a variety of reasons. The most straightforward use of old-
style drivers was to control hardware devices. With Mac OS 8, a newly designed
driver architecture has been provided for these hardware control drivers.

Another common reason for writing a driver was to get periodic time from the system,
or to present a common interface for other drivers or applications through the
PBControl call. Mac OS 8’s server mechanism is a much more capable solution for
these types of products. Servers can get reliable periodic time through the Mac OS 8
kernel’s timing services, and messaging or Apple events can be used to communicate
with other servers or applications.

Certain existing drivers will be compatible with Mac OS 8. Display and networking
drivers developed in strict accordance with the guidelines in Designing PCI Cards and
Drivers for Power Macintosh Computers will work under Mac OS 8 without modification.

Finally, non–QuickDraw GX printer drivers are not supported under Mac OS 8.
Since the printing mechanism for Mac OS 8 is an improved version of QuickDraw
GX, existing non-GX printer drivers need to be updated to the QuickDraw GX
printer driver model.

EXTENSIONS
Extensions, in the form of both individual INITs and INITs packaged within control
panels, are not supported under Mac OS 8. These extensions, for the most part, can
be divided into two categories: those that need periodic time from the system and
those that operate through global-effect patching. The former will typically be
replaced by servers, while the latter will migrate to either the built-in extensibility
services or the extension library mechanism (as shown in Figure 7).

For extensions that patch traps such as SystemTask to get periodic time to run “on
the dime” of other applications, the Mac OS 8 server model provides a much more
straightforward mechanism. The only drawback to using servers in this way is that
the cooperative Toolbox environment is not available to preemptive callers, so an old-
style faceless background application may be another migration alternative.

PLANNING FOR MAC OS 8 COMPATIBILITY 11

Mac OS 8 server

Mac OS 8 driver

QuickDraw GX �
printer driverDriver

Figure 6. The migration path for drivers

Utility application

OpenDoc �
part editor

Desk accessory

Control panel

Figure 5. The migration path for desk accessories and control panels

As mentioned earlier, hooks for extensibility have been designed into the Mac OS 8
system. For this reason, patching is no longer necessary in most cases. These built-in
extensibility hooks should accommodate most former clients of patching.

Since we can’t forecast every possible way of extending the system, the extension
library and patch library mechanisms have been provided. Through data-driven
means, patches can be installed on a per-application basis to control behaviors. Super
Boomerang, for example, could be rewritten in this way.

Some items located in the System 7 Extensions folder will continue to work under
Mac OS 8. These include CFM shared libraries, 'appe' background applications,
Communications Toolbox tools, Chooser extensions, and Apple Guide guide files.
Note that no INITs associated with these extension types will be loaded by Mac OS 8,
which could impact compatibility for these products.

Several types of non-INIT Apple extensions are not supported, however, and so
need to be rewritten. These include sound sifters, inline input methods, and FSM
modules.

APPLICATION PLUG-INS
By application plug-ins, we’re referring to products like Kai’s Power Tools for
Photoshop. There shouldn’t be any compatibility issues specific to plug-ins operating
in existing applications. There are, however, compelling reasons for application
developers to update the way they present plug-in interfaces. Figure 8 shows the
migration path. For applications that present their plug-in model in an object-oriented
fashion, the System Object Model (SOM) should be used. Its many advantages
include strong type checking, object-oriented interfaces, and a solution to the fragile
base-class problem. For developers who want to maintain a functional interface, the
Code Fragment Manager is the best option.

There are some potential pitfalls related to plug-in compatibility with Mac OS 8.
Although mixing Mac OS 8 APIs with System 7 APIs is permitted, there may be
problems running System 7 plug-ins with Mac OS 8–savvy versions of applications.
For instance, Photoshop could choose to take advantage of new memory management
services provided in Mac OS 8. For the payoff of not having a fixed-size Memory
Manager heap, they promise not to make certain Memory Manager calls. If a System 7

develop Issue 26 June 199612

Figure 7. The migration path for extensions

Mac OS 8 server

Extension library

Extensibility�
servicesExtension

Application�
plug-in

SOM-based�
plug-in

CFM-based�
plug-in

Figure 8. The migration path for application plug-ins

Photoshop plug-in makes any of these disallowed Memory Manager calls, Photoshop
may not work.

For this reason, we’re suggesting that all applications that support a plug-in model
provide isolation for these plug-ins from system calls. If the plug-in needs to allocate
memory, for example, it should call the application to do so, instead of calling the
Memory Manager directly. In this way, plug-ins can take advantage of new Mac OS 8
features without ever being updated.

Several existing plug-in mechanisms are either not available or not encouraged for
use under Mac OS 8. The Apple Shared Library Manager, as we’ll discuss later, is not
available. The Component Manager is available but is not recommended for use,
since the Code Fragment Manager and SOM are now the preferred mechanisms.

PREPARING FOR MAC OS 8 TODAY
There are quite a few steps you can take to ensure application compatibility with
Mac OS 8. You’ve heard a lot of these suggestions before, while some are new. All are
important techniques that can save you many hours of debugging.

You’ll find that in the Mac OS 8 release, a debugging version of the system has been
provided that will assert via the debugger whenever your application performs a
questionable behavior. Hopefully, if you follow the guidelines in this article, you
won’t ever have to see these assertions.

For each suggestion, we’ll show a snippet of code or an example of the technique
where appropriate. Each one of these techniques can be put into action today.

USE THE LATEST UNIVERSAL INTERFACES
Within Apple, all Macintosh development is now done using the same set of universal
interfaces. These interfaces are periodically released to developers on the MPW Pro
disk and online, and are also available on this issue’s CD. Some third-party tools,
such as Metrowerks CodeWarrior, also ship with the latest interfaces. By using these
interfaces, you’ll be developing with the same C, Pascal, and assembly headers as
Apple engineers, which ensures that you’ll be up to date with the latest changes from
Apple.

Over time, the universal interfaces will have Mac OS 8 features conditionally added.
For example, several compile-time switches will be added to indicate which calls are
available in certain situations.

PORT YOUR APPLICATION TO POWERPC CODE
Mac OS 8 is, at heart, a PowerPC processor–based system. Porting only performance-
critical sections of your application to PowerPC code and leaving the rest in 680x0
code will begin to become more of a liability than an advantage under Mac OS 8.
New API calls introduced in Mac OS 8 will not have traps associated with them.
They’ll be made available only through CFM and SOM-based interfaces. This means
that 680x0 code will not be able to access these new services. Note, however, that
680x0 applications are still fully supported under Mac OS 8 for compatibility.

USE A SUPPORTED FRAMEWORK
Considering all the changes coming for developers in the Mac OS 8 release, you may
choose to move your application to a well-supported Macintosh framework. Apple is
already working closely with several framework providers, and you may decide to take
advantage of their efforts. One word of caution is that using a framework doesn’t

PLANNING FOR MAC OS 8 COMPATIBILITY 13

guarantee compatibility. If that framework “breaks the rules,” or if your own
application code uses unsupported behaviors, you still have compatibility concerns.

SUPPORT ONLY SYSTEM 7 AND LATER
While getting a variety of applications running on the Mac OS 8 release, we’ve found
that many developers have obsolete code buried in their applications. For instance,
several developers used the code shown in Listing 1 to check for the availability of
certain system traps. Note the function ToolboxTrapTableSize. This code checks
to see if the application is running on a Macintosh with an expanded Toolbox trap
table — but this has been the case ever since Color QuickDraw was introduced.
Considering that the applications performing this check were PowerPC native, this
check is overkill and so can be removed.

Other examples of long-obsolete behaviors include using old SFGetFile-style
Standard File calls and relying on HFS working directories to make file system calls.
In other words, you can safely assume that Apple will not introduce a PowerPC
processor–based Macintosh that runs System 6.

MINIMIZE PATCHING
Many applications use patching to excess. A well-written PowerPC-native application
should not have to patch any traps. Along the lines of removing old code, consider
removing patches installed simply to work around a long-fixed bug, at least
conditionally.

develop Issue 26 June 199614

Listing 1. Obsolete code for checking trap availability

Boolean IsTrapAvailable(short theTrap)
{

TrapType trapType;
Boolean available;

if ((theTrap & 0x0800) > 0)
trapType = ToolTrap;

else
trapType = OSTrap;

if (trapType == ToolTrap) {
theTrap &= 0x07FF;
if (theTrap >= ToolboxTrapTableSize())

theTrap = _Unimplemented;
}
available = NGetTrapAddress(theTrap, trapType)

!= GetToolTrapAddress(_Unimplemented);
return available;

}

short ToolboxTrapTableSize(void)
{

if (GetToolTrapAddress(_InitGraf) == GetToolTrapAddress(0xAA6E))
return 0x0200;

else
return 0x0400;

}

We found a particularly bad example of application trap patching when bringing up a
major word processing application. The application called the Alert routine to display
an alert to the user. The developers decided that they wanted a cool 3D button
instead of the Macintosh-standard button, so they patched NewControl and watched
for NewControl to be called from NewDialog (itself called from Alert) with the
expected pushButProc procID. When this call was intercepted, they substituted their
3D button procID, and the alert was displayed with their button. Of course, they
could have simply called the Dialog Manager and Control Manager themselves,
thereby avoiding the trap patch entirely. There’s no law that says you need to call
Alert, after all.

We can’t stress enough the importance of patch minimization. Relying on side effects
that are undocumented, such as the fact that Alert will end up calling NewControl,
may cause your application to break unexpectedly with any new system release. We
found out about the above example because the Mac OS 8 Dialog Manager used its
new modern mechanisms within Alert. To maintain compatibility with this application,
we had to back off from this and revert to the existing mechanisms. In many key
areas, Apple can’t innovate as much as developers would like because of the behaviors
of many existing applications.

FACTOR YOUR APPLICATION
As has been common for some time with cross-platform development, it’s a useful
exercise to separate your application into several distinct parts in preparation for
Mac OS 8. At least two of these parts should be the user interaction component and
the compute engine component. Separating all Macintosh-specific calls such as disk
access and networking into modules may also be helpful.

Mac OS 8 provides several new facilities to make factoring your application easier.
Tasking and synchronization services provided by the system allow you to divide
computation into several tasks, resulting in greatly improved CPU usage. Unlike the
Thread Manager, Mac OS 8’s new tasking services provide preemptive multitasking.
In addition, the Apple event mechanism has been significantly improved in both
performance and functionality. The Apple Event Manager can be called by both
preemptive and cooperative tasks, and is the preferred method of communication
among an application’s factored tasks.

The reasons for factoring your application are twofold. First, the separation will
allow you to more easily bridge the gap between your Mac OS 8 source base and your
System 7 source base. You could separate your core functionality (such as an image
processing algorithm) from your user interface code, thereby allowing you to write
a new Mac OS 8–savvy user interaction module. Or, under Mac OS 8, you could
choose to run your image processing module preemptively in another task. This
modularity could make it possible to substitute Mac OS 8–specific file system calls,
for example, to achieve better throughput.

The second reason has a more immediate payoff. Factoring your application will
help make it scriptable and recordable with AppleScript. With Mac OS 8, the event
routing mechanism will change from a polling to a delivery mechanism, with high-
level synthetic events being produced from lower-level user actions. This new model
is just a short step from a System 7 AppleScript-recordable application.

USE STANDARD DEFINITION PROCEDURES WHEREVER POSSIBLE
With Mac OS 8, the Macintosh user experience will get a major facelift. Any number
of user-selectable themes can be chosen to alter the appearance of windows, menus,
and controls. Some examples of theme-specific windows are shown in Figure 9.

PLANNING FOR MAC OS 8 COMPATIBILITY 15

As you can see, the appearance of themes can vary greatly. The big compatibility
challenge here is that many developers have lost patience with Apple in the area of
user interface look enhancements, and have implemented their own unique application
appearances already. A user who switches the theme on his or her Macintosh will
expect the appearance of all applications to change. The new Apple-supplied theme-
specific appearances are tied to Apple-standard Toolbox definition procedures. If an
application developer uses a custom 3D button or checkbox, it will look the same no
matter which theme is selected. Needless to say, this can create combinations no
graphic artist would ever approve of.

To prevent this situation, we’re suggesting that you avoid using custom WDEFs,
CDEFs, and MDEFs wherever possible, and if you must use them for competitive
reasons, give the user the option of turning them off to revert to the system
appearance. We realize that there are some cases where Apple doesn’t provide a look
that meets your needs, and in these cases custom definition procedures will still need
to be used. Apple has provided some additional definition procedures recently, such
as the floating palette window WDEF 124 with System 7.5 (note that this WDEF
doesn’t provide the floating behavior, only the correct appearance).

USE OPEN TRANSPORT WHEN AVAILABLE
Open Transport is the native networking stack for Mac OS 8. The traditional Device
Manager AppleTalk and MacTCP calls are still supported for backward compatibility,
but for maximum networking performance with Mac OS 8, Open Transport should
be used directly. By adopting a factored approach to your application, you should be
able to support both Open Transport and the traditional APIs in a single binary.

SUPPORT QUICKDRAW GX PRINTING
The native printing implementation for Mac OS 8 is based on QuickDraw GX,
although the non-GX printing API is supported for compatibility. This means that
your application is much more likely to print faster and more reliably if you support
the QuickDraw GX printing API. Again, it’s fairly easy to maintain support for both
traditional and QuickDraw GX print loops — and again, traditional printing calls are
supported for backward compatibility. (See the article “Adding QuickDraw GX
Printing to QuickDraw Applications” in develop Issue 19.)

USE THE LOW-MEMORY ACCESSORS
With the advent of the Power Macintosh, new calls were added to provide access to
supported low-memory locations. By migrating to the LMGet/LMSet accessor
functions today, you can be assured that you aren’t relying on any undocumented
low-memory globals. The existing LMGet/LMSet calls will eventually be migrated
to the individual owner components, where they’ll be made into full-fledged API

develop Issue 26 June 199616

Figure 9. Theme-specific windows

calls, and their connection with low memory will be broken. Note that in Mac OS 8,
the LMGet/LMSet calls still do access the global low-memory area.

BE VIRTUAL MEMORY FRIENDLY
In the instruction manuals of many popular Macintosh software applications, you’ll
find the directive to turn virtual memory off for optimal performance. This is not an
option for Mac OS 8, but fortunately the memory usage of the system and the virtual
memory architecture have been substantially improved for much better performance.
Given that virtual memory is always on, competing with it by designing your own
virtual memory system would be unwise. If you have your own memory management
system, count on doing some performance tuning once you get your application up
and running.

LOCATE SPECIAL FOLDERS WITH FINDFOLDER
This tip is along the lines of the “System 7 and later” directive above. FindFolder,
which has been available since System 7, can be used to locate the System Folder,
Preferences folder, Extensions folder, and other system-created folders. A corollary
of this guideline is always to store all user-specific preference information in the
Preferences folder. By using FindFolder and correctly storing your preferences, you’ll
be compatible with the workspaces mechanism in Mac OS 8, which allows different
system users to have their own sets of application settings.

USE DEBUGGING VERSIONS OF SYSTEM COMPONENTS
Several portions of the system are already available in debugging versions. These
special versions will flag questionable behaviors, allowing you to correct problems
that would otherwise go undetected. Currently, debugging versions of both the
Modern Memory Manager and QuickDraw GX are available for use with System 7.5.
These tools should save valuable time in the Mac OS 8 application debugging process.

SPECIFY YOUR STACK SIZE IN THE CODE FRAGMENT RESOURCE
If your application needs additional stack space above and beyond the default stack
size, it should use the application stack size field provided in the code fragment ('cfrg')
resource. Calls to GetApplLimit and SetApplLimit have no effect on PowerPC-native
applications in Mac OS 8. Applications compiled for 680x0 systems should still use
these calls to adjust their stack size.

PREPARE FOR MAC OS 8 MEMORY MANAGEMENT
A major problem for Macintosh applications, in terms of both performance and
efficiency, is the way that they manage memory. The Macintosh Memory Manager,
whose fundamental structure was designed for the original 128K Macintosh, is
woefully out of date, especially when used in Mac OS 8’s demand-paged virtual
memory environment.

To address this problem, the Mac OS 8 designers have provided two new ways to
manage memory. For developers who don’t want to redesign their memory usage
model, a transitional API, based on a subset of the old Memory Manager entry
points, is provided. Developers who are fully adopting Mac OS 8 APIs can use a
completely new, modern memory management service. You won’t have to adopt
any new memory management techniques to make your application compatible with
Mac OS 8; not adopting them just means that your application won’t benefit from
memory enhancements such as unbounded application heaps.

To prepare your application for Mac OS 8 from a memory management standpoint,
you should avoid certain uses of the Memory Manager. Some steps you can take

PLANNING FOR MAC OS 8 COMPATIBILITY 17

today are listed below; this list is not exhaustive, and you may need to do additional
work to take advantage of the transitional API.

• Don’t dispose of pointers and handles that are allocated indirectly by the
Toolbox. For example, don’t call DisposeHandle on a control allocated with
NewControl.

• Don’t access handles, pointers, or heap zones outside the application heap or
system heap.

• Don’t allow application plug-ins to call the Memory Manager directly.
Instead, have them call back into the application to manage memory. This
way, you can be sure any plug-ins for your application also follow the new
Memory Manager requirements.

• Avoid allocating memory in the system heap or in temporary memory.
Temporary memory is still supported for compatibility, but the transitional
memory API is based on the classic Memory Manager API, which doesn’t
encompass temporary memory.

• Avoid or abstract the use of the following Memory Manager calls, which
will all be unsupported in the transitional memory API: InitApplZone,
SetApplBase, InitZone, GetApplLimit, SetApplLimit, MaxApplZone,
MoreMasters, NewHandleSys, NewHandleSysClear, NewEmptyHandleSys,
HandleZone, RecoverHandle, NewPtrSys, NewPtrSysClear, PtrZone,
FreeMem, MaxMem, CompactMem, ReservMem, PurgeMem, TopMem,
GrowZoneProcs, and PurgeProcs.

UNSUPPORTED BEHAVIORS UNDER MAC OS 8
We’re making every effort to maintain compatibility with existing applications for the
Mac OS 8 release, but unfortunately we’re not able to support some behaviors that
may work under current system releases. We’re trying to get the word out early on
these unsupported behaviors so that developers have plenty of time to correct the
problems.

DON’T USE ASLM
The Apple Shared Library Manager is not available under Mac OS 8. Applications
that rely on ASLM as a shared library mechanism or to maintain plug-ins will need to
be redesigned. If an object-oriented shared library mechanism is still required, SOM
should be used; in cases where object-oriented interfaces aren’t necessary, the Code
Fragment Manager can be used.

DON’T ACCESS THE TRAP TABLE DIRECTLY
Some applications access the trap table directly, either to call traps without going
through the trap dispatcher or to apply patches. This is no longer allowed, since
under Mac OS 8 the trap table is no longer maintained by the same mechanism.
Attempts to write to or read from the trap table directly will not produce the
expected results. An example of code that won’t work is shown in Listing 2.

DON’T USE A GNEFILTER TO INTERCEPT EVENTS GLOBALLY
A common programming technique under System 7 is to install a GetNextEvent
filter procedure into the GNEFilter low-memory location (0x29A). This behavior is
documented in the Macintosh Technical Note “GetNextEvent; Blinking Apple Menu”
(TB 11). Mac OS 8 supports the GNEFilter mechanism on a per-context basis only.
The code in Listing 3 shows a sample GNEFilter faceless background application
that beeps whenever a key is pressed. Under Mac OS 8, this code would not work,
since background applications don’t receive key-down events, and a GNEFilter

develop Issue 26 June 199618

installed by a particular application is called only for events received by that
application.

DON’T CALL PPOSTEVENT
Some pre–Mac OS 8 applications post fake keyboard or mouse events into the event
queue with PPostEvent. The call works by posting an empty event into the
application’s event queue and returning a pointer to that queue element. PPostEvent
is not supported under Mac OS 8, since the Event Manager no longer maintains the
event queue in this way. The code in Listing 4 shows a typical use of PPostEvent.

PLANNING FOR MAC OS 8 COMPATIBILITY 19

Listing 3. An unsupported GetNextEvent filter procedure

// UNSUPPORTED!
GNEFilterUPP gOldGNEFilter;
Boolean gContinue;

void main(void)
{

EventRecord ev;

gContinue = true;
gOldGNEFilter = LMGetGNEFilter();
LMSetGNEFilter(NewGetNextEventFilterProc(MyEventFilter));
while (gContinue)

WaitNextEvent(everyEvent, &ev, 60, NULL);
LMSetGNEFilter(gOldGNEFilter);
ExitToShell();

}

void MyEventFilter(EventRecord *theEvent, Boolean *result)
{

if (theEvent->what == keyDown) {
SysBeep(1);
if (theEvent->modifiers & controlKey) {

gContinue = false;
}

}
CallGetNextEventFilterProc(gOldGNEFilter, theEvent, result);

}

Listing 2. Unsupported trap table access

// UNSUPPORTED!
void PatchSysBeep(void)
{

long trapTableBase, sysBeepOffset, *sysBeepAddress;

(void) Gestalt(gestaltToolboxTable, &trapTableBase);
sysBeepOffset = (_SysBeep & 0x03ff) * sizeof(long);
sysBeepAddress = (long *) (trapTableBase + sysBeepOffset);
*sysBeepAddress = (long) MySysBeep;

}

DON’T ACCESS PRIVATE TRAPS OR PRIVATE LOW MEMORY
As we’ve been warning developers for years, relying on private traps and private low-
memory globals can cause compatibility problems for applications. All private traps
have been removed from the Mac OS 8 trap table, since the system software no
longer calls other services via the trap mechanism. This means that any emulated
application that calls a private trap, or any native application that calls GetTrapAddress
on a private trap and then CallUniversalProc on that address, will break under Mac OS 8.
(See Listing 5.)

DON’T LINK AGAINST PRIVATEINTERFACELIB
Enterprising Macintosh hackers have realized that there’s a CFM library on the
PowerPC processor–based Macintosh systems named PrivateInterfaceLib. This

develop Issue 26 June 199620

Listing 4. An unsupported PPostEvent call

// UNSUPPORTED!
void PostMouseDown(Point *mouseDownPoint)
{

EvQElPtr eventQueueElement;

(void) PPostEvent(mouseDown, 0, &eventQueueElement);
eventQueueElement->evtQWhere = *mouseDownPoint;

}

Listing 5. Calling private traps in an unsupported way

// UNSUPPORTED!
#if GENERATING680x0

extern pascal OSErr InitDogCow(short moofCount)
ONEWORDINLINE(0xA89F);

void main(void)
{

(void) InitDogCow(2);
}

#else
enum {

uppInitDogCowProcInfo = kPascalStackBased
| RESULT_SIZE(SIZE_CODE(sizeof(OSErr)))
| STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(short)))

};

void main(void)
{

UniversalProcPtr initDogCowUPP;

initDogCowUPP = GetToolboxTrapAddress(_InitDogCow);
(void) CallUniversalProc(initDogCowUPP, uppInitDogCowProcInfo, 2);

}
#endif

library contains CFM entry points for private system calls. Under Mac OS 8,
PrivateInterfaceLib no longer exists. Applications that link against PrivateInterfaceLib
will not work under Mac OS 8.

DON’T ACCESS CERTAIN PUBLIC LOW-MEMORY GLOBALS
Certain public low-memory globals are no longer supported under Mac OS 8. If a
low-memory global is no longer supported, accessing it should be benign. For
example, the low-memory global AuxWinHead is no longer used by the Window
Manager, so calling LMGetAuxWinHead will return NULL.

DON’T RELY ON FILE SYSTEM HOOKS OR PATCHES
The existing file system hooks ExtFSHook and FSQueueHook are not supported
under Mac OS 8. In addition, patching the existing API as documented in Inside
Macintosh: Files is allowed from within an application, but the patch will only affect
file system calls made from within the cooperative task of the application.

DON’T USE COMPRESSED RESOURCES
Compressed resources may not be supported by the Mac OS 8 Resource Manager,
so your application and its files should not contain any compressed resources. The
resource compression mechanism has never been public and should be avoided.

DON’T ALLOCATE ALL OF TEMPORARY MEMORY
Since Mac OS 8 is a demand-paged system, it grows the virtual memory space as
necessary to accommodate additional applications or memory allocations. For this
reason, asking how much temporary memory is available and then allocating all of it,
or all but a certain amount, is a bad idea. This would just consume all your available
disk space, giving you far more memory than you wanted.

DON’T ALLOCATE ALL HARD DRIVE SPACE
Similarly, allocating all hard drive free space is a bad idea, since you may be consuming
all possible storage for virtual memory swap space, and this will immediately lead to
major system problems.

DON’T SHARE TOOLBOX STRUCTURES BETWEEN APPLICATIONS
With the Mac OS 8 release, Apple is beginning to partition applications from one
another. Although applications still run in the same address space, the individual
Mac OS 8 managers maintain structures on a per-application basis. For this reason,
creating a menu, for example, in one application and attaching it to the menu bar in
another application will not work correctly under Mac OS 8. The same is true for
other system structures, such as windows, dialogs, controls, resource refNums, file
refNums, and working directory IDs, among others. Memory Manager structures
such as handles and pointers can still be shared across applications.

DON’T HARD-CODE FONT USAGE
Mac OS 8 allows users to customize the system’s appearance. Among the settings they
control is which font to use for the system font and for the application font. For this
reason, applications should use the calls GetSysFont and GetAppFont instead of
hard-coding font selections (to, for example, Chicago 12).

DON’T WRITE TO YOUR APPLICATION’S DATA FORK
Many existing applications prompt users for their name and serial number the first
time the application is launched. Several PowerPC-native applications store this
information directly into the application’s data fork, while the application is running.

PLANNING FOR MAC OS 8 COMPATIBILITY 21

Under pre–Mac OS 8 systems, this is allowed because of a loophole in the system
software. Under Mac OS 8, PowerPC-native applications are always file-mapped read
only with exclusive access. This means that an application will get an error from the
file system when it tries to open its data fork with write access. Instead, applications
should store their personalization information in either a resource or a preferences
file. If this information must be stored in the data fork, it will need to be written by
another application, such as the Installer.

DON’T ACCESS HARDWARE DIRECTLY
Some applications access hardware directly under pre–Mac OS 8 systems. With
Mac OS 8, only applications executing in supervisor mode, such as drivers, may access
hardware. This limitation greatly improves system stability. An example of unsupported
hardware access is an application that accesses the GPI serial pin directly to detect
phone rings.

DON’T ASSUME THE SYSTEM STATE IN NOTIFICATION MANAGER
COMPLETION ROUTINES
Some developers have noticed that when a Notification Manager completion routine
is called, they can make certain assumptions about the state of the system. For example,
they assume that the routine will always be called in the context of the frontmost
application, and they either access that application’s window list or create a window
or dialog of their own (as shown in Listing 6). Under Mac OS 8, these assumptions
are no longer true.

DON’T CHANGE THE WINDOW LIST DIRECTLY
Before Mac OS 8, the Window Manager didn’t support floating windows. Some
developers implemented floating windows by manipulating the window list directly
rather than calling the Window Manager API. Under Mac OS 8, the Window Manager
maintains the window list separately from the nextWindow field, so changing this
field directly will cause problems. Instead, BringToFront and SendBehind should be
used to maintain the window list. See the article “Floating Windows: Keeping Afloat
in the Window Manager” in develop Issue 15 if you need to maintain floating windows
on pre–Mac OS 8 systems.

DON’T SET THE GLOBAL SHARE BIT IN A CFM LIBRARY THAT CONTAINS CODE
Linking against a per-context library from within a global library can create problems
for that per-context library. The per-context library may end up with a different copy
of its per-context globals than it expects. To avoid this problem, you should never set
the global share bit in any CFM library that contains code. If you need to maintain
systemwide global data, you should do so in a separate library that only contains data
and doesn’t link against any other libraries.

With the initial Power Macintosh system software, the InterfaceLib CFM shared
library had its data section globally shared across all applications. Under Mac OS 8,
however, the notion of CFM per-context data is used widely by all system components.
For example, the File Manager tracks which files each application has opened via per-
context globals in the Files shared library.

The global share bit is accessible in Metrowerks CodeWarrior from the “share data
section” checkbox in the PPC Pef preferences pane, and from the -s option in the
MakePef MPW tool.

DON’T RELY ON THE STRUCTURE OF SYSTEM MEMORY
Relying on information such as where certain code is loaded or where memory is
allocated may cause compatibility problems under Mac OS 8. The relative locations

develop Issue 26 June 199622

of the system heap, application heap, and application stacks may change. For
example, if you assume that loaded CFM data will appear in your application heap,
and check a pointer to that data against the heap’s boundaries, your application will
not work properly.

DON’T RELY ON AOCE INTERFACES
Not all currently available AOCE interfaces may be available under Mac OS 8. Because
of this, if you use AOCE in your application, you should be sure to weak-link against
the AOCE library, and check Gestalt for the availability of any AOCE features.

SUPPORTED BUT DISCOURAGED BEHAVIORS
Some questionable techniques are still supported under Mac OS 8 to maintain
compatibility with existing applications. Although supported, they’re discouraged from
use and may not continue to be compatible with future system software releases.

There’s also a new concept in Macintosh programming called deprecation, whereby
certain API calls are discouraged from use in preparation for their future removal; see
“Deprecation” for more about this.

PLANNING FOR MAC OS 8 COMPATIBILITY 23

Listing 6. Unsupported Notification Manager hacking

// UNSUPPORTED!
NMRec gNMRec;

void PostWindowInFrontApplication(void)
{

gNMRec.qType = nmType;
gNMRec.nmMark = 0;
gNMRec.nmIcon = NULL;
gNMRec.nmSound = NULL;
gNMRec.nmStr = NULL;
gNMRec.nmResp = NewNMProc(HackResponseRoutine);
gNMRec.nmRefCon = GetCurrentA5();
(void) NMInstall(&gNMRec);

}

pascal void HackResponseRoutine(NMRecPtr nmReqPtr)
{

long savedA5;
WindowPtr aWindow;
Rect bounds;
Str32 windowTitle;

(void) NMRemove(nmReqPtr);

savedA5 = SetA5(nmReqPtr->nmRefCon);
BlockMoveData("\pSurprise!", windowTitle, 10);
SetA5(savedA5);
bounds.top = bounds.left = 40;
bounds.bottom = bounds.right = 350;
aWindow = NewWindow(NULL, &bounds, windowTitle, true, documentProc,

(WindowRef)-1L, true, 0);
}

DRAWING TO THE SCREEN DIRECTLY
Applications that write directly to the base address of the screen will continue to work
properly under Mac OS 8. As before, ShieldCursor and ShowCursor should be used
to ensure that the mouse pointer isn’t overwritten; for more on this, see the Graphical
Truffles column in develop Issue 11. Also see the Graphical Truffles column in this issue
(Issue 26) of develop for some additional warnings about writing directly to the screen.

PATCHING WITHIN AN APPLICATION
Although existing INITs aren’t supported, patching within an application is still allowed,
via both SetTrapAddress and the new patch library mechanism. As mentioned above
in the “Preparing for Mac OS 8 Today” section, you should try to minimize your use
of patching, since it lowers overall system reliability and introduces compatibility risks.

ACCESSING MEMORY IN OTHER APPLICATIONS
Some applications may pass pointers to data to each other through Apple events,
Gestalt routines, or other means. This is definitely not the recommended way of
exchanging data between applications, because in future system software releases
each application will run in its own protected address space. However, since under
Mac OS 8 all traditional applications (not servers or drivers) run in the same address
space, sharing data across applications is supported. If it’s absolutely necessary for two
applications to share memory, allocating the memory in the system heap will enhance
future compatibility.

READING OR WRITING LOW MEMORY DIRECTLY
Some developers aren’t using the LMSet/LMGet accessor functions from within
their PowerPC-native applications. Since under Mac OS 8 the LMSet/LMGet calls
still change low-memory locations, writing and reading directly from low memory is
still supported; however, it will stop working in future releases.

USING A CUSTOM MBDF
As stated in Inside Macintosh: Macintosh Toolbox Essentials on page 3-87, Apple
recommends that you always use the standard menu bar definition procedure. Under
Mac OS 8, custom MBDFs are supported to a limited extent only. Your custom
MBDF will be called only to process requests not related to drawing. The current

develop Issue 26 June 199624

In many areas of the Mac OS 8 system, new API calls
have been provided to replace existing mechanisms. For
example, the files API described in Inside Macintosh: Files
was designed with the old pre–Mac OS 8 interrupt model
in mind and does not translate well to usage in a
preemptive environment. For this reason, a new File
Manager API has been introduced for Mac OS 8. The old
files API is still available, but it’s deprecated, meaning
that it’s no longer the preferred way of performing file
system operations. In fact, new technical documentation
that replaces the old Inside Macintosh will not include
references to deprecated calls.

In the universal interfaces, several preprocessor definitions
can be used to control API availability. By setting either of

these first two, your application can still access functions
that have been deprecated:

• BUILDING_FOR_SYSTEM7 — Code is intended to run
on a System 7 machine or earlier.

• BUILDING_FOR_SYSTEM7_AND_SYSTEM8 — Code
is intended to run on System 7 or Mac OS 8.

Setting either of the following means that deprecated calls
will not be available to your application:

• BUILDING_FOR_SYSTEM8 — Code is intended to run
on Mac OS 8 only.

• BUILDING_PREEMPTIVE_CODE — Code is intended to
run as a Mac OS 8 server or driver.

DEPRECATION

theme, as selected by the user, maintains control of the menu bar and menu border
appearances.

PATCHING TOOLBOX DEFINITION PROCEDURES
Some developers have discovered that it’s possible to customize the behavior of
windows, menus, or controls without writing an entire custom WDEF, MDEF, or
CDEF. Instead, they write handlers for only the definition procedure messages they
want to customize (wDraw for WDEFs, for example) and then call back into the
standard definition procedure for all other messages.

Although not in the original spirit of the Toolbox design, this behavior is supported
under Mac OS 8. “Stub” definition procedures have been provided for all standard
WDEFs, CDEFs, and MDEFs (and the standard MBDF), which call back into the
appropriate Toolbox managers to finish the definition procedure processing.

CASE STUDIES IN (IN)COMPATIBILITY
In the process of getting existing applications running on Mac OS 8, we’ve come across
some interesting bugs in shipping applications that may provide insight to other
developers. Not all of these bugs prevent the applications from running, but some do.

Of course, Apple cares about its developers, so the names have been omitted to
protect the guilty. When we find a bug in an application, we’re sure to let the
application developer know so that it can be corrected in the next version. In any
case, it’s interesting what you find when you rewrite the system from scratch.

FAILING TO CALL INITDIALOGS
This application was crashing when it displayed a Standard File dialog. After much
debugging, we realized that when the Standard File dialog was displayed, it contained
several ParamText strings, even though ParamText had never been called. Further
analysis led us to discover that the Dialog Manager had garbage values for the
ParamText strings, and accessing these strings caused a crash. We finally determined
that the Mac OS 8 Dialog Manager initialized these ParamText strings in InitDialogs,
which the application did not call.

FAILING TO CALL INITMENUS
This application always crashed when it tried to draw the menu bar. After some poking
around, we figured out that it was assuming that InitWindows called InitMenus as a
side effect. The completely new Mac OS 8 implementations of windows and menus
no longer have this behavior.

ACCESSING LOCATION 0
This application accessed location 0 by accident, treating it as a pointer to a C string.
At startup, due to an obscure bug in their C++ code structure, the developers passed
NULL as the parameter to a routine expecting a string. They then tried to copy this
string to another buffer, which was 240 bytes in length. Under System 7.5, it just so
happens that there’s usually a 0 byte in the first 240 bytes of memory (some of the
ROM vectors contain 0 bytes). Under Mac OS 8, the low-memory globals area
contains, by default, -1 (0xFF) in every location, so there were no 0 bytes to be found.
The string copy overwrote the buffer and crashed the machine.

CALLING SETITEMMARK WITH NULL
During launch, this application was accidentally calling SetItemMark on a NULL
MenuHandle. It turns out that the developers iterated one item too far in a list of

PLANNING FOR MAC OS 8 COMPATIBILITY 25

menus. Under System 7.5, there’s an undocumented check in the Menu Manager that
exits if the menu is NULL. The Mac OS 8 Menu Manager, written to the Inside
Macintosh spec, didn’t have this check. This led to a crash, until the check was added
back into the Mac OS 8 code.

CREATING MENUS WITHOUT THE MENU MANAGER
This application cached the contents of the Font menu across launches. It stored this
information in a resource, but not one of type 'MENU'. To read the cached information
back, it called GetResource on this resource and then called CountMenuItems on the
handle. The Menu Manager had no idea that this was a menu, since it wasn’t created
with either NewMenu or GetMenu.

TREATING ROM85 AS A POINTER
Within a WDEF, this application checked to see which version of the ROM was
installed by checking the low-memory global ROM85. Unfortunately, the developers
accessed ROM85 as if it were a pointer to a ROM version number, but in reality it’s a
value, not a pointer. This caused them to dereference 0x3FFF, which on Mac OS 8
was not a mapped memory address.

CALLING OPENSLOTSYNC BY ACCIDENT
This application, which was converted to PowerPC code from 680x0 assembly, called
OpenSlotSync when it instead meant to call HOpenSync. The reason for the confusion
was that both calls use exactly the same trap word (0xA200) but don’t share the same
CFM entry point. The 680x0-to-PowerPC converter converted A200 to OpenSlotSync,
while the application wanted HOpenSync.

MAC OS 8 COMPATIBILITY STARTS TODAY
Using the techniques and guidelines outlined in this article, application developers
should be able to begin working toward 100% Mac OS 8 compatibility immediately.
By laying the groundwork for compatibility early, you’ll find the preliminary releases
of Mac OS 8 much more valuable, and you’ll be able to concentrate on adding great
new functionality to your software.

Compatibility is one of the critical factors for Mac OS 8’s success in the marketplace.
We’re counting on developers to help us ensure that Mac OS 8 compatibility is not
simply a promise, but also a reality.

develop Issue 26 June 199626

• “Copland: The Mac OS Moves Into the Future” by Tim Dierks, develop Issue 22.

• Designing PCI Cards and Drivers for Power Macintosh Computers (Apple
Computer, 1995). This book is available through the Apple Developer Catalog.

RELATED READING

Thanks to our technical reviewers Ken Bereskin,
Paul Black, Jeff Cobb, Sharon Everson, Winston
Hendrickson, Matt Mora, and Mike Neil.•

GRAPHICAL TRUFFLES: DYNAMIC DISPLAY DILEMMAS 27

In the Dark Ages, an application could examine the
graphics environment once and gather all the
information it needed to know. After the System 7.1.2
Renaissance, the Display Manager made the graphics
environment dynamic, which provided many new
features (and introduced a few implementation issues).
In Issue 24 of develop, the Graphical Truffles column
described some important features of the Display
Manager. Here we’ll discuss some common pitfalls that
can cause an application to fail in a dynamic display
environment — and ways you can overcome them.

If you use QuickDraw routines in an existing application,
your application may already support some aspects of
the Display Manager without requiring any extra work
on your part. An example we touch on in this column is
the graphics mirroring feature, which allows users to
make two graphics devices display the same image.
QuickDraw, whose routines have already been updated
to support the Display Manager, accomplishes graphics
mirroring by overlapping the gdRects (global bounds)
of the graphics devices. QuickDraw’s internal version of
DeviceLoop behaves correctly by detecting when
devices overlap, then rendering the image properly for
each device. This allows overlapping devices to have
different color tables or bit depths and still be imaged
correctly.

On this issue’s CD, we’ve included a sample application,
SuperFly, which illustrates several techniques you can
use to support a dynamic environment in your

application. Some of the sample code in this column is
excerpted from SuperFly.

COMMON ERRORS
When we were integrating the Display Manager into
new system software releases, we encountered some
common problems that existing applications had when
running in a dynamic display environment. Here’s a list
of suggestions regarding things that might have worked
in the past but won’t work now; we’ll examine each
error in turn and suggest a solution.

• Don’t forget to account for mirrored graphics
devices when walking the device list.

• Don’t assume that just because your application uses
only one logical display, it’s drawing on only one
physical device.

• Don’t cache the graphics devices and their state on
application startup.

• Don’t assume that the menu bar will never move.

• Don’t assume that menus will be drawn on only one
display.

• Don’t draw directly to the screen and bypass
QuickDraw without checking for the mirrored case.

• Don’t assume that certain 680x0 registers will
contain the same values inside a DeviceLoop
drawing procedure as when DeviceLoop was called.

Don’t forget to account for mirrored graphics
devices when walking the device list.
When writing applications in the past, some
programmers assumed that graphics devices would
never overlap. For example, you might assume that if a
certain rectangle is fully contained within a gdRect, it
isn’t on any other device. To implement highlighting,
your application might walk the device list and invert
the selection if the global rectangle of what you want to
highlight intersects the gdRect of that device. However,
when there are two displays with the same gdRect in
the device list, the first inversion accomplishes the
highlighting but the second inversion restores the
highlighted area to the original — unhighlighted —
state.

KENT “LIDBOY” MILLER, in a recent attempt to reshape the
course of history, has renounced the use of caffeine on a by-minute
basis. Lidboy hails from the halls of Apple, where he can be seen
pacing in his fuzzy bear slippers. He considers the pinnacle of
western culture to have been achieved by the rock group known as
Rancid, although he occasionally reads from literary quarterlies on
the sly. Were Lidboy to be granted one wish, a side of rice from
Taco Bell would no doubt be involved. The single most used word
in his vocabulary is “Salsa!”•

CAMERON ESFAHANI (cameron_esfahani@powertalk.apple.com,
AppleLink DIRTY) began his career in the spaghetti westerns of
Sergio Leone. Industry analysts felt that by going off into that area
he would cut himself off from the mainstream and ruin his career,
but Cameron felt it was more important to follow his dreams. Now
at Apple Computer and looking back, he feels that his spaghetti
western period was one of the most exciting and rewarding of his
life. He therefore dedicates this column to the memory of Sergio
Leone.•

GRAPHICAL
TRUFFLES

Dynamic Display
Dilemmas

KENT MILLER AND
CAMERON ESFAHANI

Solution: Use DeviceLoop for your drawing. If you
want to write your own version of DeviceLoop for some
reason, make sure that it handles overlapping displays.
You could solve the inverting problem by designing an
algorithm to guarantee that each rectangle in global
space is highlighted only once. The MyHiliteRect
routine in Listing 1 is an example of a suitable algorithm.

The code in Listing 1 solves the highlighting problem
by keeping track of the global area that has been
highlighted. When DMGetNextScreenDevice returns

a mirrored device (which will already have been
highlighted by the first QuickDraw call), the SectRgn
will fail and that device will not be highlighted again.

Another solution is given in the sample code in the
GDeviceUtilities.cp file on this issue’s CD. The function
BuildAListOfUniqueDevices builds a list of all graphics
devices but eliminates mirrored devices. An application
could cache this list and use it for highlighting.
However, the list could be invalidated if the user
changes the device configuration. The application

develop Issue 26 June 199628

Listing 1. Highlighting a global rectangle only once

OSErr MyHiliteRect(Rect* hiliteRect)
{

RgnHandle hiliteRgn, gdRectRgn, tempRgn;
GDHandle theGDevice;

hiliteRgn = NewRgn();
if (hiliteRgn == nil)

return (QDError());
gdRectRgn = NewRgn();
if (gdRectRgn == nil)

return (QDError());
tempRgn = NewRgn()
if (tempRgn == nil)

return (QDError());

// Make hiliteRect into a region.
RectRgn(hiliteRgn, hiliteRect);

// Get the first screen device from the Display Manager.
// Tell it to return only active screen devices so that we won't have to check here.
theGDevice = DMGetFirstScreenDevice(true);

// Loop until we run out of hiliteRgn or GDevices.
while ((theGDevice) && (!EmptyRgn(hiliteRgn)) {

// Does this device's rect intersect hiliteRgn?
RectRgn(&(**theGDevice).gdRect, gdRectRgn);
SectRgn(hiliteRgn, gdRectRgn, &tempRgn);
// If it does, highlight it.
if (!EmptyRgn(tempRgn)) {

// Highlight the area described by tempRgn.
...
// Take the area we just highlighted out of the region to highlight.
DiffRgn(hiliteRgn, tempRgn, hiliteRgn);

}
theGDevice = DMGetNextScreenDevice(theGDevice, true);

}
DisposeRgn(hiliteRgn);
DisposeRgn(gdRectRgn);
DisposeRgn(tempRgn);

}

should register with the Display Manager so that it will
be notified (through a notification callback or an Apple
event) if the graphics world has changed.

Don’t assume that just because your application
uses only one logical display, it’s drawing on
only one physical device.
Some applications assume that they’re using only one
piece of graphics hardware when they’re actually using
multiple physical devices. An example of this is a
multimedia player that searches through graphics
devices and uses the first device it finds that meets its

criteria for bit depth or size. This technique causes a
problem when the application uses Toolbox calls specific
to one physical graphics device, such as using SetEntries
to animate the color table. If mirroring is turned on,
this changes the color table of only one device; the
second physical device still has the old color table.

Solution: If you use Toolbox calls specific to one physical
graphics device, make sure you do it for all devices that
overlap your application’s windows and not just the first
one you find. As shown in Listing 2, you could use
DeviceLoop to accomplish this by calling SetEntries in

GRAPHICAL TRUFFLES: DYNAMIC DISPLAY DILEMMAS 29

Listing 2. Calling SetEntries for overlapping devices

OSErr MySavvySetEntries(WindowRef aWindow, CTabHandle newColorTable)
{

RgnHandle tempWindowStructRgn;
DeviceLoopDrawingUPP setEntriesDeviceLoopRD;
OSErr theErr = noErr;

tempWindowStructRgn = NewRgn();
// Was there a problem making the region?
if ((theErr = QDError()) != noErr)

return (theErr);
GetWindowStructureRgn(aWindow, tempWindowStructRgn);

// We want to get called for every display that intersects our window.
setEntriesDeviceLoopRD = NewDeviceLoopDrawingProc(SetEntriesDeviceLoop);
DeviceLoop(tempWindowStructRgn, setEntriesDeviceLoopRD, (long) newColorTable, singleDevices);
DisposeRoutineDescriptor(setEntriesDeviceLoopRD);
DisposeRgn(tempWindowStructRgn);
return (theErr);

}

static pascal void SetEntriesDeviceLoop(short depth, short deviceFlags, GDHandle targetDevice,
long userData)

{
#pragma unused(depth, deviceFlags)

CTabHandle newColorTable = (CTabHandle) userData;
GDHandle savedCurrentGDevice;

// Since we'll be changing the current GDevice, we need to save and restore it.
savedCurrentGDevice = GetGDevice();

// SetEntries applies to the current GDevice, so make targetDevice the current GDevice.
SetGDevice(targetDevice);

// Insert the entire table into targetDevice. Do it in indexed mode.
SetEntries(-1, 255, &(**newColorTable).ctTable[0]);

// Restore the old current GDevice.
SetGDevice(savedCurrentGDevice);

}

your DeviceLoop drawing procedure. Or you could use
the Palette Manager instead of SetEntries.

Don’t cache the graphics devices and their state
on application startup.
With the Display Manager, many things about the
graphics world can change, such as the following:

• Users can change resolutions on multiple-scan
displays.

• Users can deactivate displays with the Monitors &
Sound control panel (system software version 7.5.2
and later).

• Graphics mirroring could be off when the
application is launched and turned on while it’s
running.

• Users can put their PowerBooks to sleep and attach
or remove an external display.

If your application doesn’t respond to these changes, it
might present an inconsistent interface to the user. For
example, the MPW Shell used to cache the gdRect of
the main display and pass it to SizeWindow and
MoveWindow. So if users changed the resolution of a
display, they couldn’t grow or move windows beyond
the previous size of the display.

Solution: If the Display Manager is present, you should
watch for Display Manager notifications to detect
changes in the graphics world. (See “Receiving and
Responding to Display Manager Events.”) Specialized
pieces of code, such as extensions or components, can
register a callback procedure with the Display Manager.
To avoid problems, you should use this method instead
of patching to determine when the display environment
changes. (Display Manager 2.0 and later even notifies
you when the bit depth changes.) Better yet, don’t
cache device information at all unless your code
absolutely needs the extra ounce of performance.

The Display Manager passes all the information about
the old and new display configurations to the application
when the world changes. The Apple event–handling
code on this issue’s CD shows some ways to handle
Display Manager events. For instance, to detect whether
any of the graphics devices have moved, we parse the
Apple event and compare the old and new gdRects:

AEGetNthDesc(&DisplayID, 1, typeWildCard,
&tempWord, &OldConfig);

AEGetKeyPtr(&OldConfig, keyDeviceRect,
typeWildCard, (UInt32 *) &returnType,
&oldRect, sizeof(Rect), nil);

AEGetNthDesc(&DisplayID, 2, typeWildCard,
&tempWord, &NewConfig);

AEGetKeyPtr(&NewConfig, keyDeviceRect,
typeWildCard, (UInt32 *) &returnType,
&newRect, sizeof(Rect), nil);

if (!EqualRect(&oldRect, &newRect))
HandleGDevicesMoved();

Don’t assume that the menu bar will never move.
This is especially a problem with games or multimedia
applications that would like to hide the menu bar.
Most applications hide the menu bar by adding the
menu bar area to the gray region. (The pointer to the
gray region is stored in the GrayRgn global variable
and can be retrieved with the Window Manager
function GetGrayRgn.) When the user moves the
menu bar from one display to another (using the
Monitors or Monitors & Sound control panel), the
Display Manager reconstructs the gray region. If the
application wants to show the menu bar again, it
removes the old menu bar area from the rebuilt gray
region, but this will not accurately reflect the available
screen real estate. This top strip, where the menu bar
was, would be lost.

As shown in Figure 1, the menu bar was on the display
on the left before the application was launched. The

develop Issue 26 June 199630

The Display Manager has been available since System 7
and is built into system software version 7.1.2 and later.
If the Display Manager isn’t around, the application can
count on devices not moving around and changing sizes.

An application must set the isDisplayManagerAware flag
in its 'SIZE' resource to receive Display Manager events in
its main event loop. If your application sets this flag, it’s
responsible for moving its windows if the graphics world
changes, making sure that the windows all remain visible.

If it doesn’t set this flag, the Display Manager will
automatically move windows for your application. Even
if your application lets the Display Manager handle its
windows automatically, it can still register for Display
Manager events by using a callback procedure. The
callback procedure is passed an Apple event that the
application has to parse.

The Graphical Truffles column in develop Issue 25 describes
this in more detail.

RECEIVING AND RESPONDING TO DISPLAY MANAGER EVENTS

application saved the menu bar location and added it to
the gray region so that it could draw there. As shown in
Figure 2, when the application quit, it subtracted the
old menu bar area back out of the gray region. Since
the menu bar was moved, this part of the gray region is
now lost. No desktop is drawn where the menu bar
used to be (the black rectangle).

Solution: Become Display Manager–aware and get
notified by the Display Manager when the menu bar
moves.

Don’t assume that menus will be drawn on only
one display.
In the past, it was a safe assumption that the menu bar
would be drawn on only one device at a time, so
anything that wanted to draw in the menu bar (such as
an MDEF) needed to know about only one display and
a single bit depth. Since developers typically don’t use
DeviceLoop to draw menus or draw in the menu bar,
sometimes images are drawn incorrectly when there
are overlapped displays, especially on displays with
different bit depths. An example would be a menu that
contains color, like the Label menu in the Finder.

Solution: If you draw directly to the menu bar or to
your menus and bypass QuickDraw, use DeviceLoop.

Note that drawing in the menu bar with standard
QuickDraw calls works fine in the mirrored case
because QuickDraw takes care of the overlapping case
for you.

Don’t draw directly to the screen and bypass
QuickDraw without checking for the mirrored
case.
Obviously, if an application draws directly to the screen
and mirroring is on, the other displays will not reflect
any of the drawing.

Solution: Always allow the user to go back to a more
“compatible” mode that uses QuickDraw. If the
application detects that mirroring is on (by calling
DMIsMirroringOn), consider falling back to CopyBits
to get your data to the screen.

Don’t assume that certain 680x0 registers will
contain the same values inside a DeviceLoop
drawing procedure as when DeviceLoop was
called.
We discovered this bug when we made DeviceLoop
PowerPC-native for mirroring performance. Some
developers who write their DeviceLoop drawing
procedure in 680x0 assembly language rely on the fact
that the value of A6 when the drawing procedure was

GRAPHICAL TRUFFLES: DYNAMIC DISPLAY DILEMMAS 31

Figure 2. Gray region lost because menu bar moved

Figure 1. Original location of menu bar

called is the same as when DeviceLoop was called.
Application developers relied on this to enable them to
share stack frames between the caller of DeviceLoop
and the DeviceLoop drawing procedure. This will not
work if a PowerPC-only version of DeviceLoop is
present, so it will not work under Mac OS 8. If you
write your DeviceLoop drawing procedure in a high-
level language like C, however, you don’t have to worry
about this problem.

Solution: If you want to share data with your DeviceLoop
drawing procedure, use the userData refCon supplied
with DeviceLoop. If you need to rely on A6 remaining
constant, one solution would be to pass in the A6 of the
DeviceLoop caller in the userData parameter and set
that to the A6 of the DeviceLoop drawing procedure.

Be sure to save and restore the original A6 of the
DeviceLoop drawing procedure.

SUCCEEDING IN A CHANGING GRAPHICS WORLD
The Display Manager offers many new features that
enable users to configure their graphics devices
dynamically. However, this dynamic display environment
invalidates certain assumptions that developers might
have made when programming in a static graphics
environment. This column should start you thinking
about these issues. Although the Display Manager
does attempt to preserve compatibility with existing
applications by moving windows around and preserving
graphics device information, it can’t fix everything.
Your application needs to be able to function in a
changing graphics world.

develop Issue 26 June 199632

Thanks to Tom Dowdy, Ian Hendry, Mike Marinkovich, and Mike
Puckett for reviewing this column.•

Mac OS 8 Revealed by Tony Francis

Mac OS 8 Revealed is the first authoritative look at this exciting
new operating system. The companion CD-ROM contains
demonstrations of the new features of Mac OS 8. This book is a
must for Macintosh developers who want to make their software
compatible with Mac OS 8 and for system administrators who need
to plan for the upgrade of their systems.
352 pages w/CD-ROM 0-201-47955-9 $34.95 Coming in July

from APPLE PRESS AND ADDISON-WESLEY

An inside look at the newest version of Mac OS

Watch out for...

Available at fine technical bookstores in your area, or call 1-800-822-6339 to order.

Newton Human Interface Guidelines shows how to develop
Newton applications that have a consistent user interface.
200 pages 0-201-48838-8 $24.95 Available now
Newton Programmer’s Guide is Apple’s guide to developing
Newton applications. The CD-ROM contains an electronic quick reference for the
Newton API as well as the Newton development toolkit.
700 pages w/CD-ROM 0-201-47947-8 $44.95 Coming in July

Cyberdog Programmer’s Kit is the official guide for developers who
want to make customizable Internet access available to all Macintosh users.
400 pages w/CD-ROM 0-201-18375-7 $34.95 Coming in July

▲ ▲▲

MISS THE RUSH AND ORDER NOW!Addison-Wesley Publishing Co.

Apple Press, a new publishing effort from Apple Computer, brings you the latest information on Apple technology. Apple Press publishes books and book/CD packages that appeal to
a wide market—from developers and programmers, to educational professionals, and to the home and business markets.

QuickTime Conferencing (QTC) is a new Apple technology that helps
developers add real-time sharing of sound, video, and data to their
applications. This overview suggests the different ways you can use
QTC to help users collaborate. The article describes the components that
most developers will need to use to take advantage of QTC and discusses
Watcher and Caster, two QTC applications that enable users to tune
into network broadcasts and create broadcasts for others to view.

Video telephones abound in science fiction movies. From Buck Rogers to Star Trek,
visions of the future show people communicating visually over long distances. This
futuristic technology is available to Macintosh developers and users now. QuickTime
Conferencing provides a platform for developers to easily enable users to share
sound, video, and data across a variety of networks.

QTC ships with selected Power Macintosh computers and with some hardware
bundles, and can be licensed by developers to ship with their applications. Apple
provides a basic videoconferencing application, Apple Media Conference (AMC),
and developers are encouraged to create QTC applications that interoperate with
AMC and add cool new collaborative features.

This article will give you background information on the QTC architecture, tell you
about the components that make up that architecture, and then describe in detail the
workings of two simple QTC applications, Watcher and Caster, that enable the user
to watch audio and video and to broadcast them onto a network. This issue’s CD
contains the source code for these applications as well as the QTC documentation
and the extension and header files.

QUICKTIME CONFERENCING — THE BIG PICTURE
QuickTime Conferencing provides a platform for building Macintosh applications
that can send and receive audio, video, and data between computers connected on a
network. QTC supports basic two-way audio communication and a video “telephone”
type of connection, and it supports a wide variety of other models as well. One of the
goals of QTC is to provide developers with a set of tools that make it easy to add
real-time media sharing across a number of different kinds of networks.

This opens up the possibility of adding sound and video to multiuser applications
where it would have been prohibitively difficult before — and these don’t have to be

Connecting Users With QuickTime
Conferencing

CONNECTING USERS WITH QUICKTIME CONFERENCING 33

DEAN BLACKKETTER (dean@artemis.com) used
to work for Apple in the Advanced Technology
Group. He now has a gig with Artemis Research

working on “the next big thing.” He plays in San
Francisco with his wife, their cat, and the scary
elf who lives on top of the fridge.•

DEAN BLACKKETTER

conventional telephony-style applications. Imagine a flight simulator that allows you
to talk with your fellow squadron members, or a groupware document-markup
application that lets your fellow editors see your expression upon examining the latest
changes. Picture a regional educational system that enables dozens of students to tune
into an 8 A.M. lecture from their dorm rooms across campus or across the state. This
isn’t the stuff of science fiction anymore.

QTC uses many of the services provided by QuickTime itself and shares an
architectural basis in the Component Manager. QTC takes advantage of the Image
Compression Manager for video compression and decompression, the sequence
grabber components for capturing media, and the Movie Toolbox for recording
movies to disk. When new features and improvements are added to QuickTime, they
often can be used by QTC immediately. For example, components created for video
or sound compression in QuickTime are automatically available to QTC.

CONFERENCE CONFIGURATIONS
QTC’s basic metaphor for real-time media connections is that of a conference.
Conferences are quite flexible and can be configured in a variety of ways. They can
have one, a few, or many members, connected symmetrically or asymmetrically. As
illustrated in Figure 1, connections can take one of three forms: point to point, for two-
way conferences; multipoint, for virtual meetings and groupware applications; or
broadcast, for transmitting from one member to many others.

Members can send or receive sound, video, or data. Media types can be added,
removed, or changed during a conference. Members can join or leave a conference
at any time. Conferences can be merged, and data can be sent to one or all of the
conference members.

Depending on the application, you may want to give users a single configuration —
say, a two-way audio and video connection — or allow them to modify the conference
configuration themselves. QTC was designed to support a wide variety of conference
configurations and to leave it up to developers to decide which features they need.
Indeed, some applications may need to switch between different configurations
within a single conference. The applications described later in this article each
operate in a single configuration; one can broadcast video and sound to an unlimited
number of recipients and the other can tune into one or more broadcast conferences.

NETWORK, PROTOCOL, AND MEDIA INDEPENDENCE
QTC is network, protocol, and media independent. This means that applications
don’t have to know the specifics of a particular network to set up a QTC conference.
QTC 1.0.2 ships with support for TCP/IP and AppleTalk networks; third parties and
Apple are working on adding new networks like ISDN, isoEthernet, and ATM to the
list. QTC 1.0.2 supports a new media-oriented network protocol, called MovieTalk,
but can also support other media protocols such as the ITU H.320 standard and the
emerging standards used on the Internet Multicast Backbone (MBONE).

The media that flows between conference members is organized into one or more
streams of a particular media type. QTC 1.0.2 supports sound and video streams,
which can be compressed with any sound or video compressor. Future versions of
QTC will be able to support other media types, such as music and text, to parallel
the different track types that can be stored in a QuickTime movie.

THE CONFERENCING EXPERIENCE
QTC provides some of the basic user interface elements called for in a conferencing
application. For example, each member of a conference can be represented on the

develop Issue 26 June 199634

screen with a stream controller, in much the same way that a QuickTime movie
controller provides a control representation for a QuickTime movie. In fact, the
stream controller and the movie controller share a similar user interface, so that a
user who has some experience with one can apply that knowledge to the other.

QTC also provides a standard user interface enabling users to choose who to call and
include in a QTC conference, in the form of browser components. Browsers work
a bit like the Standard File Package that allows users to open and save files: they
provide a standard interface for choosing fellow users or searching through PowerTalk
catalogs to find other conference members and place calls to them.

CONNECTING USERS WITH QUICKTIME CONFERENCING 35

control

media

Point to Point

Multipoint

Broadcast

Figure 1. The three types of conference connections

QUICKTIME CONFERENCING COMPONENTS
QTC, like much of QuickTime, is built of Component Manager components. Apple
provides a basic suite of components that enable the user to share data and send and
receive compressed video and audio on a few different networks. Before we dive into
our example applications, let’s go over some of the component types that make up the
QTC component suite.

There are three main types of QTC components that most developers will need to
know about to add QTC support to their applications: the conference component, the
stream controller component, and the browser component. I’ll describe these in some
detail. Developers who want to do fancier things will probably need to know about
some of the other components; the key ones are briefly described later.

Because of the modular architecture of QTC, developers can add, extend, or replace
features and components. For example, a developer who wants to add support for a
new network multimedia protocol can create a new transport component and register
it with the Component Manager. Applications can then find that component and
specify its use in a conference. Developers who want to improve on the QTC stream
controller can capture the standard controller, delegate many of the functions, and
replace the ones of interest.

THE CONFERENCE COMPONENT
The conference component is the key player in a QTC conference. It acts as a central
hub and does the bulk of the work required to orchestrate the comings and goings of
the conference. It’s responsible for listening in on the various networks, placing and
answering calls, managing and merging multiple conferences, and more. The
conference component can also provide some higher-level functionality, such as
setting up media capture, handling user events, and even creating and managing
conference windows.

Applications create a conference component instance and let the conference
component do much of the work needed to create, manage, and end conferences.
Applications can then tell the conference component to listen on the networks for
incoming calls or to place a call to another member.

Conference components create conference events when they need to express some
change in a conference to the application. For example, when an incoming call is
made to a conference, the conference component will generate an event of type
mtIncomingCallEvent to notify the application of the call. Applications call the
component routine MTConferenceGetNextEvent periodically to get the events
from the conference component, much as applications call the system routine
WaitNextEvent to get user and system events from the Event Manager.

In response to these conference events, applications work with the conference
component to respond appropriately — for example, creating a window to display a
new conference member or send messages to other conference members. Details of
working with the conference component will be discussed later when we look at our
sample applications, Watcher and Caster.

THE STREAM CONTROLLER COMPONENT
Stream controllers are responsible for handling the default user interface for
controlling QTC media streams as well as managing their display on the screen and
through the speaker. The conference component is responsible for creating and
managing stream controller components. Applications are passed references to the

develop Issue 26 June 199636

stream controllers by the conference component so that they can keep track of where
and how the media is being displayed.

The standard stream controller looks quite a bit like the standard QuickTime movie
controller, with buttons to control the flow of media, resize the visual portion of the
stream, and adjust the sound levels. The stream controller adds some utility buttons
that the movie controller doesn’t have: a snapshot button for capturing the current
image displayed in the controller and a record button that provides a standard way for
a user to record the media in a stream controller. (The conference component or the
application is responsible for actually handling the snapshots or recorded movies after
the controller has initiated them.)

Controllers associated with the sending side of a media stream (known as source
controllers) have a slightly different appearance and behavior from those associated
with the receiving side (known as sink controllers), as shown in Figure 2. The source
controller may have a microphone “gain” button that’s animated to indicate the level
of the audio being sent across the connection. Users who click this button can adjust
the volume of the sound being sent across the connection. On the receiving end, the
sink controller may display a volume control button that behaves like the speaker
button on the standard movie controller, allowing the user to adjust the volume of the
incoming stream.

THE BROWSER COMPONENT
To place a call or add another member to a conference, the user needs to specify the
other member to call. Browser components provide a simple way for users to browse
the network and identify other members. Browser components come in two flavors:
network-specific browsers and the PowerTalk browser. The PowerTalk browser and
browsers specific to TCP/IP and AppleTalk are shown in Figure 3.

For each different network type — such as TCP/IP or AppleTalk — unique browser
components are provided that allow the user to specify a network-specific address.
For example, as shown in Figure 3, the AppleTalk browser presents the user with a
Chooser-style interface whereby the user can choose the zone and then the registered
name within that zone on an AppleTalk network, similar to using the Chooser to pick

CONNECTING USERS WITH QUICKTIME CONFERENCING 37

Application-�
specific area

Source controller Sink controller

Source or�
sink view

Controller

Resize boxSnapshot button
Record button

Pause/play button
Gain control button

Resize boxSnapshot button
Record button

Pause/play button
Volume control button

Figure 2. Source and sink controller user interfaces

a LaserWriter on an AppleTalk network. The TCP/IP browser provides a simple
type-in interface that can accept TCP/IP addresses in numerical or text form.

The PowerTalk browser, on the other hand, is considered a generic or universal
browser, not tied to a particular network or addressing scheme. Users who have
PowerTalk installed can take advantage of the various PowerTalk catalogs and
business cards; these provide an integrated way for users to organize and find other
QTC users in the same way that they access electronic mail addresses via PowerTalk.
The PowerTalk browser allows the user to choose a business card from a PowerTalk
catalog that contains a QTC entry (provided by the QTC PowerTalk Template).

develop Issue 26 June 199638

AppleTalk

TCP/IP

PowerTalk

Figure 3. Browsers

This works for local user catalogs and catalogs provided by PowerShare servers, as
well as the generic AppleTalk network catalog, which allows the user to look out onto
the network and into AppleTalk zones for other users. Users can edit their personal
catalogs from within the Finder, consistent with the standard PowerTalk human
interface.

OTHER QUICKTIME CONFERENCING COMPONENTS
QTC defines and uses many other kinds of components besides the three just
mentioned. Several of these component types may be of interest to developers who
want to add support for new networks or new media protocols; others may be of use
to developers who want to have more control over their conferences. Some of these
are listed here.

• Stream director components are responsible for managing the media streams
that flow between conference members. Stream directors are of two types:
source stream directors and sink stream directors. Source stream directors
work with media sources, such as QuickTime sequence grabbers, to capture
audio and video data to be sent across the network. Sink stream directors are
responsible for setting up and displaying incoming media data: video to the
screen and sound to the speaker. Conference components and controller
components handle most of the management and control of stream directors.

• Transport components are responsible for implementing the network protocol
that communicates media data, formats, and control information. MovieTalk,
the default QTC protocol, is implemented as a transport component. Apple’s
H.320/ISDN conferencing card adds another transport type that supports
the ITU H.320 video conferencing standard. Developers who want to
support new media protocols can create new transport components to
translate the control messages from a conference into messages appropriate
for the new protocol and vice versa.

• Network components contain code specific to a given network type. QTC 1.0.2
provides network components for AppleTalk and TCP/IP. Future versions of
QTC will provide direct OpenTransport network interfaces as well as others.
Network components can provide access to multicast services on some
shared networks so that media data can be sent to multiple recipients without
having to send out multiple copies of that data. (See “About AppleTalk
Multicast” for a discussion of one such multicast service.) The conference
component automatically takes advantage of multicast network services when
they’re available.

• Recorder components attach to stream directors and provide a mechanism to
record to disk the media sent or received within a conference. Apple provides
a recorder component that records media into QuickTime movies and can
attach to multiple members via stream directors to create movies of entire
conferences at once.

Several other components are used within QTC, including player components, flow
control components, and others of interest to developers who want to extend QTC
to support new networks, protocols, and media. Figure 5 shows how a number of
QTC components typically work together within the all-encompassing conference
component. For information on all of the components that make up QTC, check out
the QTC documentation on this issue’s CD.

TUNING IN WITH WATCHER
Probably the best way to show how to use QTC in an application is with some
examples, so we’ve created Watcher and Caster. Watcher lets the user tune into

CONNECTING USERS WITH QUICKTIME CONFERENCING 39

broadcasts on AppleTalk networks, while Caster enables the user to create broadcasts
that can be watched by others on the AppleTalk network. Watcher and Caster are
compatible with Apple Media Conference (AMC), the QTC application that Apple
ships with selected CPUs and product packages, so you can use Watcher to watch a
broadcast that’s being sent by AMC or Caster, and you can use Caster to create
broadcasts that can be received by Watcher and AMC.

develop Issue 26 June 199640

Digital video and sound can generate a great deal of
data, even when compressed. Hard disk space is getting
to be quite cheap, but network bandwidth is still an
expensive and shared commodity. To keep your fellow
users and network administrators happy, we developed
multicast extensions to AppleTalk that allow a single copy
of QuickTime Conferencing media sent out onto a
network to be received and displayed by any number
of users.

AppleTalk Multicast consists of a special packet format
and a routing protocol that makes efficient use of the
network bandwidth. On a single network segment,

AppleTalk Multicast uses multicast packets that can be
received by anyone on that local network. On an
AppleTalk internet, multicast-aware routers communicate
with each other with a new protocol called SMRP, the
Simple Multicast Routing Protocol, as shown in Figure 4.
The routers deliver copies of the media data only to other
networks in which there’s a user who wants to receive that
data. Networks with no users interested in the broadcast
aren’t burdened with the network usage.

Apple has licensed AppleTalk Multicast and the SMRP
protocol to Cisco Systems, Inc. Cisco’s router software as
of version 11.0 supports this multimedia protocol.

ABOUT APPLETALK MULTICAST

QuickTime Conferencing workstations

Ethernet�
networks

AppleTalk�
Multicast–�
aware router

QuickTime Conferencing workstations

Multicast�
packet

Copy�
and route

Multicast�
packet

Figure 4. AppleTalk Multicast routing

Note that in several places in Watcher and Caster, we do some work manually
that otherwise could be done automatically by the conference component. We do
this extra work to demonstrate how you can customize an application if the behavior
that you want is different from the default behavior offered by the conference
component.

HOW WATCHER WORKS
Watcher is a relatively simple Macintosh application. After setting up the application
environment, Watcher sets up the conference component that will place calls and
manage the incoming media. Then, within the event loop, the application checks for
user and system events and also checks the conference component for conference
events, which indicate changes in the conference state and may require responses
from the application.

The overall flow of Watcher or any QTC application that uses the conference
component is as follows:

CONNECTING USERS WITH QUICKTIME CONFERENCING 41

Video channel�
component

Sound channel�
component

Video in Sound in Video out Sound out

Conference component

Sequence grabber

Flow control Flow control

Transport�
component

Network

Source stream �
director

Sink stream�
director

Video stream�
player

Network�
component

Sound stream�
player

Compression�
Manager

Sound�
Manager

Figure 5. How QTC components work together within the conference component

QTCApp()
{

SetupApplication();
SetupConferenceComponent();
StartListening();
do {

ProcessUserEvents();
ProcessConferenceEvents();

} while (!gQuit);
CleanUpConferenceComponent();
CleanUpApplication();
ExitToShell();

}

Below, I’ll go into more detail about the three major application responsibilities —
setting up the conference component, handling conference events, and cleaning up at
the end of the conference — showing the core routines that deal directly with the
conference component. Check out the full source code to see them in the context of
the entire application.

SETTING UP A CONFERENCE
Listing 1 shows how the conference component is created and initially configured.
The Component Manager call OpenDefaultComponent is used to create and open

develop Issue 26 June 199642

Listing 1. CreateWatchConference

ComponentResult CreateWatchConference(MTCString63 userName)
{

ComponentResult err;

/* Create a conference record. */
err = NewConference(&gConference);
if (err == noErr) {

gConference->confComponent = OpenDefaultComponent(kMTConferenceType, kMTMovieTalkSubType);
if (gConference->confComponent) {

/* Tell the conference component that we only want to receive media, not send. */
err = MTConferenceSetMode(gConference->confComponent, mtReceiveMediaModeMask);
/* Tell the conference component to prepare to use AppleTalk.

The funky C string tells the conference component:
mtlk = use the MovieTalk transport component
atlk = use the AppleTalk network component
NoIncomingCalls = the AppleTalk-specific NBP type that's used for listening;
i.e., there will be no incoming calls

*/
if (err == noErr)

err = MTConferenceListen(gConference->confComponent, userName /* User name */,
userName /* Service name */,
(MTCString)"mtlkatlk\tNoIncomingCalls\x0D");

}
else

err = couldntGetRequiredComponent;
}
return err;

}

an instance of the conference component; then the conference component mode is
set to indicate that the conference will be used to receive media. Finally, the component
is told what networks to prepare for connections on — AppleTalk in this case — and
how to identify itself on that network.

MTConferenceListen (as well as MTBrowserBrowse, a call we’ll encounter a little
later) uses a C string of type MTCString to describe the network and transport
configurations. In Listing 1, the string “mtlkatlk\tNoIncomingCalls\x0D” indicates
that the conference component should listen for calls that have a transport subtype
of 'mtlk' (the component subtype for the MovieTalk transport component) and a
network subtype of 'atlk' (the subtype for AppleTalk networks). The “\t” delimits the
subtypes from the network-specific configuration data that follows. For AppleTalk
networks, this is the Name Binding Protocol (NBP) type “No Incoming Calls.”
Finally, the configuration is terminated with a carriage return (“\x0D”). You can
string together multiple configuration strings (each terminated with a carriage return)
to listen in on multiple networks for calls. Check out the full documentation for a
more complete explanation of the configuration strings.

BROWSING THE NETWORK
Now that the conference is set up, we can place a “call” out onto the network to the
broadcaster that the user wants to watch. We’ll use the AppleTalk browser component
to pick a registered broadcaster.

The BrowseName routine (Listing 2) opens the browser component and uses the
MTBrowserBrowse component call to specify which kind of network entity to look
for. In this case it’s a MovieTalk entity registered on an AppleTalk network with the
NBP type of “Multicaster”; this type identifies broadcasts from Caster and AMC.
MTBrowserBrowse then presents users with the browser dialog, where they can
“surf” the network and find the appropriate broadcaster. Some browsers (like the

CONNECTING USERS WITH QUICKTIME CONFERENCING 43

Listing 2. BrowseName

ComponentResult BrowseName(MTNamePtr name)
{

MTNameListPtr allNames = 0;
ComponentResult err;
MTBrowserComponent browser = nil;

browser = OpenDefaultComponent(kMTBrowserType, kMTAppleTalkSubType);
if (browser) {

err = MTBrowserBrowse(browser, 0, nil,
(MTCString)"mtlkatlk\tMulticaster\x0D", 0, &allNames);

CloseComponent(browser);
}
else

err = couldntGetRequiredComponent;
if ((allNames != 0) && (err == noErr)) {

/* Copy the first name record; that's all we're interested in. */
*name = allNames->list[0];
/* Dispose of the list of names. */
DisposePtr((Ptr)allNames);

}
return err;

}

PowerTalk browser) can return multiple names in an MTNameList. We’re only
interested in the one AppleTalk broadcast picked by the user, so we pick off the first
MTName from the MTNameList.

TUNING IN
CallMember (Listing 3) is the code needed to tell the conference component to place
a call to the broadcaster. The calling routine passes in the MTName (obtained from
BrowseName) and a pointer to the window in which the broadcast is to appear (and
that window’s size). The resize parameter will be used later to determine whether to
resize the window automatically to the dimensions of the video being broadcast.
CallMember returns a pointer to a new MemberRecord data structure, where the
information about each broadcast-watching window is kept. The important conference
component call here is MTConferenceCall, which is passed a reference to the
conference component, an arbitrary name for the conference, and the MTName
describing the party whose broadcast we want to watch.

Note that the conference component manages each independent connection to a
broadcaster as a unique conference. That’s just fine for our application, since the
broadcast windows are really independent. In multiparty connections, however,
conferences can be joined and then individual members can belong to the same
conference. In that case the conference name parameter in MTConferenceCall
(“Watcher” in Listing 3) may have more meaning and may be used to distinguish
independent conferences. In our case, we give them all the same name.

TURNING ON
Now that the conference call has been placed, we need to check the conference
component periodically to find out about changes in the conference. Listing 4
shows the routine CheckConferenceEvents, which is intended to be called within
the main event loop of the application. Each time through the loop, we call
MTConferenceGetNextEvent. Most of the time this will return false, indicating
that there are no new events. When some state in the conference has changed, it

develop Issue 26 June 199644

Listing 3. CallMember

ComponentResult CallMember(MTName* name, WindowPtr wind, Rect* box,
Boolean resize, MemberRecord** member)

{
MemberRecord* mr;
ComponentResult err;

/* Create a new member record. */
err = NewMember(&mr);
if (err == noErr) {

mr->member = MTConferenceCall(gConference->confComponent,
(MTCString)"Watcher", name);

mr->box = *box;
mr->window = wind;
mr->resize = resize;
if (member)

*member = mr;
}
return err;

}

will return true, and we should then parse the event (with HandleConferenceEvent)
to see what the correct response is.

The MTConferenceEvent data structure, also known as an event record, has several
fields that we’ll use in the following listings. The what field indicates the type of
event; depending on this, HandleConferenceEvent (Listing 5) switches to the
individual subroutines corresponding to each event. The surprise field, if not set to
0, contains a handle to data that’s associated with the event and needs to be disposed
of after use. The other fields, who, err, and bonus, contain references to the members,
error codes, and event-specific data, respectively. See the documentation for details
on the meanings of these fields for all event types.

CONNECTING USERS WITH QUICKTIME CONFERENCING 45

Listing 5. HandleConferenceEvent

ComponentResult HandleConferenceEvent(MTConferenceEventPtr confEvent)
{

ComponentResult err = noErr;

/* Like a user event handler, we switch on the different conference
events. */

switch (confEvent->what) {
case mtConferenceReadyEvent:

err = DoConfReady(confEvent);
break;

case mtMemberReadyEvent:
err = DoMemberReady(confEvent);
break;

case mtMemberTerminatedEvent:
err = DoMemberTerminated(confEvent);
break;

case mtMemberJoiningEvent:
err = DoMemberJoining(confEvent);
break;

case mtPhoneRingingEvent:
err = DoPhoneRinging(confEvent);
break;

Listing 4. CheckConferenceEvents

ComponentResult CheckConferenceEvents(void)
{

MTConferenceEvent confEvent;
ComponentResult err;

if (MTConferenceGetNextEvent(gConference->confComponent, &confEvent))
err = HandleConferenceEvent(&confEvent);

return err;
}

(continued on next page)

After a call has been placed and a connection has been established with the remote
side, an event of type mtMemberJoiningEvent is returned by the conference
component. Upon receiving this event our application calls DoMemberJoining
(Listing 6) and simply makes a record of this new member and adds it to our list of
members. The conference component will continue to establish the connection and
will notify us further when the connection has been completely brought up.

Once the connection has been fully established, the conference component sends us
an event of type mtMemberReadyEvent. Now we have a little more work to do. In
this case, the application needs to create a controller and place that controller into a

develop Issue 26 June 199646

Listing 6. DoMemberJoining

struct MemberRecord {
MTControllerComponent controller;
MTDirectorComponent director;
MTConferenceMember member;
WindowPtr window;
Boolean resize;
Rect box;
MemberRecord* next;

};
...
ComponentResult DoMemberJoining(MTConferenceEventPtr confEvent)
{

MemberRecord* currMember;
ComponentResult err = noErr;

err = NewMember(&currMember);
if (err != noErr) {

currMember->member = confEvent->who;
AddMember(gConference, currMember);

}
return err;

}

case mtRefusedEvent:
case mtFailedEvent:

err = confEvent->err;
break;

default: /* Ignore all others. */
break;

}

/* If there's data associated with this event, free it. */
if (confEvent->surprise)

DisposeHandle(confEvent->surprise);
return err;

}

Listing 5. HandleConferenceEvent (continued)

window for incoming media to be displayed. The conference component can do
much of this work for you, including creating a controller (and its associated stream
director) as well as creating a window and even handling user events for that window,
with the MTConferenceNewPreparedController call. For many applications this
method is perfectly adequate, but if you need more control over event handling and
window management in your application, you’ll want to do this work manually, as
we do in Watcher and Caster. Use of MTConferenceNewPreparedController is
demonstrated in the SeeWorld sample applications included on this issue’s CD; check
out the Rogues and Guardian examples in particular.

DoMemberReady (Listing 7) first checks to see if we can expect media to be sent by
the new member. (If the member isn’t sending media, there’s no point in setting up a
window.) If the member is sending media, we create a controller component and a
stream director component, which are responsible for displaying the media data.
After this, we call MTControllerNewAttachedController to connect the controller

CONNECTING USERS WITH QUICKTIME CONFERENCING 47

Listing 7. DoMemberReady

ComponentResult DoMemberReady(MTConferenceEventPtr confEvent)
{

ComponentResult err = noErr;
MemberRecord* currMember;
Point where = {0, 0};
Boolean aTrue = true;

if (confEvent->bonus & mtReceiveMediaModeMask) {
currMember = FindMember(gConference, confEvent->who);
if (currMember == nil)

return noErr;
currMember->controller =

OpenDefaultComponent(kMTControllerType, kMTMovieTalkSubType);
if (currMember->controller == 0)

err = couldntGetRequiredComponent;
if (err == noErr) {

currMember->director = OpenDefaultComponent(
kMTSinkStreamDirectorType, kMTPlayerType);

if (currMember->director == 0)
err = couldntGetRequiredComponent;

}
if (err == noErr)

err = MTControllerNewAttachedController(currMember->controller,
currMember->director, currMember->window, where);

if (err == noErr)
err = MTControllerSetActionFilter(currMember->controller,

actionFilterUPP, (long)currMember);
if (err == noErr)

err = MTConferenceActivateMember(gConference->confComponent,
confEvent->who, currMember->controller);

if (err == noErr)
err = MTControllerDoAction(currMember->controller,

mtControllerActionPlay, &aTrue);
}
return err;

}

to the stream director and point it at a window for display. We then do one more
thing to the controller before activating it in the conference: we set an action filter
for it. The action filter is a callback routine that the controller calls whenever any
important action happens within the controller. In our application, the only action
that we care about is the resizing of the media data so that we can resize the window.
The action filter routine is shown in Listing 8.

Finally, DoMemberReady calls MTConferenceActivateMember to activate the
member, and we pass MTConferenceActivateMember the newly created controller.
Before exiting, we call MTControllerDoAction to tell the controller component to
begin playing the incoming media as soon as it begins. (Controllers are by default in
a paused state when they’re created.)

DROPPING OUT
When the user has decided to close down the reception of the broadcast (say, by
closing a broadcast window), the application calls CloseWatch (Listing 9).
CloseWatch will find the member record corresponding to the conference member
and obtain the conference token associated with that member. (Remember, each
member is part of a unique conference, so the member has both a conference token
and a unique ConferenceMember identifier.) Then we begin to terminate the
conference by calling MTConferenceTerminate.

develop Issue 26 June 199648

Listing 8. MyControllerActionFilter

pascal Boolean MyControllerActionFilter(MTControllerComponent mtc,
MTControllerActionType action,
void* params, long refCon)

{
void* unused1 = params;
long unused2 = refCon;
RgnHandle controllerRgn;
Boolean handled = false;
Rect box;
WindowPtr controllerWindow =

(WindowPtr)MTControllerGetControllerPort(mtc);

switch (action) {
case mtControllerActionControllerSizeChanged:

/* Find out how big the controller is. */
controllerRgn = MTControllerGetWindowRgn(mtc,

controllerWindow);
/* Resize the window accordingly. */
if (controllerRgn != nil) {

box = (**controllerRgn).rgnBBox;
DisposeRgn(controllerRgn);
SizeWindow(controllerWindow, box.right, box.bottom, true);

}
break;

default:
break;

}
return handled;

}

The conference isn’t completely terminated until we receive an event of type
mtMemberTerminatedEvent, which is handled by DoMemberTerminated (Listing
10). DoMemberTerminated is called when the conference connection for this
member has been completely terminated, either by an MTConferenceTerminate call
or by the remote side closing down. In response, we’ll close down the controller and
stream director components and the associated window, then free up our application’s
MemberRecord for this member.

That’s it for the key QTC routines in Watcher. Check out the source code on the CD
to see the entire package come together.

CONNECTING USERS WITH QUICKTIME CONFERENCING 49

Listing 10. DoMemberTerminated

ComponentResult DoMemberTerminated(MTConferenceEventPtr confEvent)
{

MemberRecord* member;
ComponentResult err;

member = FindMember(gConference, confEvent->who);
if (member == nil)

return noErr;
RemoveMember(gConference, member);
if (member->controller)

CloseComponent(member->controller);
if (member->director)

CloseComponent(member->director);
if (member->window)

CloseWindow(member->window);
err = DisposeMemberRecord(member);
return err;

}

Listing 9. CloseWatch

ComponentResult CloseWatch(WindowPtr window)
{

ComponentResult err = noErr;
MTConferenceToken theConference;
MemberRecord* theMember;

theMember = FindMemberWindow(gConference, window);
if (theMember == nil)

err = paramErr;
if (err == noErr) {

theConference = MTConferenceGetMemberConference(
gConference->confComponent, theMember->member);

err = MTConferenceTerminate(gConference->confComponent,
theConference);

}
return err;

}

BROADCASTING WITH CASTER
Caster, the broadcasting side of this networked multimedia system, is similar to
Watcher in many ways. It uses a conference component (see Figure 6) and processes
conference events, but it handles the other side of the conference establishment:
setting up and transmitting media and accepting incoming calls. In some ways, Caster
is simpler: since it broadcasts to anybody who wants to tune in, it doesn’t need to
keep track of each member individually.

SETTING UP THE SEQUENCE GRABBER
Probably the trickiest part of Caster is the code that sets up the sequence grabber to
capture video and sound. The call MTConferenceNewPreparedController from the
conference component could be used to set up the sequence grabber (as well as the
controller and stream director) in many cases, but as mentioned earlier for Watcher,
this call won’t be adequate if you need more control.

In the SetupSequenceGrabber routine (Listing 11), we first create the sequence grabber
component by calling OpenDefaultComponent. Once the component is initialized
with SGInitialize, we create the individual sound and video channels. We can use
other calls in the sequence grabber component API to adjust settings, like frame rate
and compressor type. We also need to call SGSetChannelUsage to tell the controller
that the channels can be used for preview and record and that they will play through
during recording (seqGrabPreview + seqGrabRecord + seqGrabPlayDuringRecord).

ATTACHING THE SEQUENCE GRABBER
Now that we have the sequence grabber created as a source for captured data, we
need to hook it up to the stream director and controller and create a pipeline for the
media, which will eventually be fed into the conference component and out onto the
network. OpenCast (Listing 12) takes a sequence grabber and a window to display it
in, creates a source stream director and controller, and configures them.

After the source stream director and controller are created, we attach a controller
action filter routine (as we did before for Watcher) and connect the sequence grabber
to the stream director with the MTDirectorSetMediaComponent call. The value of

develop Issue 26 June 199650

Sequence�
grabber

Broadcasting Macintosh Receiving Macintosh 1

Receiving Macintosh 2

AppleTalk network

Stream controller�
component

Stream controller�
component

Conference�
component

control

media

Conference�
component

Conference�
component

Figure 6. A QTC broadcaster and two watchers

the source stream director subtype is the same as the value of the sequence grabber
type, indicating that this source stream director has a sequence grabber as its source.
We then call MTControllerNewAttachedController to attach the controller to the
stream director; MTControllerDoAction with mtControllerActionSetShowSnapshot,
passing in false to hide the snapshot button (not the default behavior); and finally
MTControllerSetControllerBoundsRect to give the controller an initial bounds size.

STARTING TO BROADCAST
Now that we’re ready to start broadcasting, we’ll create the conference component
and have it start listening for incoming calls from watchers, as shown in Listing 13.
MTConferenceSetMode indicates to the controller that we’ll want to send media
(which we didn’t want to do with Watcher) and that we expect to share a single
director/controller source with multiple members of a conference. We won’t actually

CONNECTING USERS WITH QUICKTIME CONFERENCING 51

Listing 11. SetupSequenceGrabber

ComponentResult SetupSequenceGrabber(SeqGrabComponent* sg, SGChannel* soundChannel,
SGChannel* videoChannel)

{
ComponentResult err = noErr;
SeqGrabComponent grabber = nil;

*soundChannel = nil;
*videoChannel = nil;
grabber = OpenDefaultComponent(SeqGrabComponentType, 0);
if (grabber == nil)

err = couldntGetRequiredComponent;
else {

err = SGInitialize(grabber);
if (err == noErr) {

err = SGNewChannel(grabber, SoundMediaType, soundChannel);
if (err == noErr)

SGSetChannelUsage(*soundChannel, seqGrabPreview + seqGrabRecord);
err = SGNewChannel(grabber, VideoMediaType, videoChannel);
if (err == noErr) {

SGSetFrameRate(*videoChannel, 0);
/* 'rpza' is the Apple Video Compressor. */
SGSetVideoCompressorType(*videoChannel, 'rpza');
SGSetChannelUsage(*videoChannel,

seqGrabPreview + seqGrabRecord + seqGrabPlayDuringRecord);
}
/* Reset in case we had a problem opening a channel (e.g., there was no digitizer). */
err = noErr;

}
}
if (err != noErr) {

if (grabber)
CloseComponent(grabber);

grabber = nil;
}
*sg = grabber;
return err;

}

develop Issue 26 June 199652

Listing 12. OpenCast

typedef struct {
WindowPtr window;
SeqGrabComponent sg;
MTConferenceComponent confComponent;
MTControllerComponent controller;
MTDirectorComponent director;
Boolean casting;
MTConferenceToken conference;

} CastRecord;
...

ComponentResult OpenCast(WindowPtr window, SeqGrabComponent sg, CastRecord** cr)
{

ComponentResult err = noErr;
CastRecord* newRecord = nil;
Point origin = {0,0};
/* Specify the default window bounds for a 160-by-120 video window; add 16 to the height

to make space for the controller. */
Rect bounds = {0, 0, 120 + 16, 160};
Boolean aFalse = false;

newRecord = (CastRecord*)NewPtrClear(sizeof(CastRecord));
if (newRecord == nil)

err = MemError();
if (err == noErr) {

newRecord->window = window;
newRecord->sg = sg;
newRecord->director = OpenDefaultComponent(kMTSourceStreamDirectorType, kMTGrabberSubType);
if (newRecord->director == nil)

err = couldntGetRequiredComponent;
}
if (err == noErr) {

newRecord->controller = OpenDefaultComponent(kMTControllerType, kMTMovieTalkSubType);
if (newRecord->controller == nil)

err = couldntGetRequiredComponent;
}
if (err == noErr)

err = MTControllerSetActionFilter(newRecord->controller, actionFilterUPP, 0);
if (err == noErr)

err = MTDirectorSetMediaComponent(newRecord->director, sg);
if (err == noErr)

err = MTControllerNewAttachedController(newRecord->controller, newRecord->director, window,
origin);

if (err == noErr)
err = MTControllerDoAction(newRecord->controller, mtControllerActionSetShowSnapshot, &aFalse);

if (err == noErr)
err = MTControllerSetControllerBoundsRect(newRecord->controller, &bounds);

if (err == noErr)
*cr = newRecord;

else
CloseCast(newRecord);

return err;
}

attach the controller/director/sequence grabber chain to the conference component
until somebody calls in.

Finally, we begin listening with the call to MTConferenceListen, passing it the C
string indicating the transport, network, and configuration information. In this case
the transport type is 'mtlk' for the MovieTalk protocol transport component, the
network type is 'atlk' for AppleTalk, and the configuration string is “Multicaster”; the
latter will be used by AppleTalk as an NBP type. This is the AppleTalk NBP type that
the browser in Watcher looked for while browsing the network. (This is also the type
that AMC uses, so we’ll be able to watch Caster broadcasts with it, too.)

ANSWERING THE CALLS WHEN THEY COME IN
Once the conference component has been set up, Caster periodically checks it for
conference events, just as Watcher does. Some of the behavior in response to these
events is a little different, mainly because Caster is receiving incoming calls and
sending media. Listing 14 shows the routines that get called in response to the
following conference events: mtIncomingCallEvent, mtConferenceReadyEvent,
mtMemberReadyEvent, and mtConferenceTerminatedEvent.

In response to an mtIncomingCallEvent, the DoIncomingCall routine simply invokes
the conference component’s MTConferenceReply function to essentially answer the
call immediately. A more complex version of this routine might check the caller’s
identity to determine whether the caller has permission to watch the broadcast.
Caster will take all callers and reply immediately.

Upon receipt of the mtConferenceReadyEvent, passed when the conference has been
fully established, we’ll take one of two courses of action:

• If this is the first incoming caller, and therefore the first conference, we’ll
save the conference token (in the conference event’s who field) and activate
the conference with the MTConferenceActivateConference function. This
is where we connect up the controller/stream director/sequence grabber
configuration by passing in a reference to the source controller.

CONNECTING USERS WITH QUICKTIME CONFERENCING 53

Listing 13. StartCasting

ComponentResult StartCasting(CastRecord* cr, Str63 name)
{

MTCString63 cName;
ComponentResult err = noErr;

PToCString(name, cName);
cr->confComponent = OpenDefaultComponent(kMTConferenceType, kMTMovieTalkSubType);
if (cr->confComponent == nil)

err = couldntGetRequiredComponent;
if (err == noErr)

err = MTConferenceSetMode(cr->confComponent, mtSendMediaModeMask + mtShareableModeMask);
if (err == noErr)

err = MTConferenceListen(cr->confComponent, cName, cName,
(MTCString)"mtlkatlk\tMulticaster\x0D");

if (err == noErr)
cr->casting = true;

return err;
}

• If this is the second or later watcher tuning in, this watcher will join as a new
member in a new conference. We’ll call MTConferenceMerge to merge this
new conference with the original conference so that the new member is sent
the media.

Now that the conference is set up, we should expect to receive an event of type
mtMemberReadyEvent. Here we simply activate the member to start receiving the
broadcast. Then we call a special function designed to help us take advantage of
multicast network services if available, MTConferenceDetachMember. This function
will “detach” the member from a direct point-to-point connection and will rely on
multicast services to get the member its data. In this case the receiving side and
Caster can’t send reliable messages to each other, but for our application that’s just
fine; we’d rather minimize the network traffic.

develop Issue 26 June 199654

Listing 14. Routines for responding to conference events

ComponentResult DoIncomingCall(CastRecord* cr, MTConferenceEventPtr confEvent)
{

return MTConferenceReply(cr->confComponent, confEvent->who, 0);
}

ComponentResult DoConferenceReady(CastRecord* cr, MTConferenceEventPtr confEvent)
{

ComponentResult err = noErr;

if (cr->conference == 0) {
cr->conference = confEvent->who;
err = MTConferenceActivateConference(cr->confComponent, cr->conference, cr->controller);

}
else

err = MTConferenceMerge(cr->confComponent, cr->conference, confEvent->who);
return err;

}

ComponentResult DoMemberReady(CastRecord* cr, MTConferenceEventPtr confEvent)
{

ComponentResult err = noErr;

err = MTConferenceActivateMember(cr->confComponent, confEvent->who, 0);
if (err == noErr)

err = MTConferenceDetachMember(cr->confComponent, confEvent->who);
return err;

}

ComponentResult DoConferenceTerminated(CastRecord* cr, MTConferenceEventPtr confEvent)
{

ComponentResult err = noErr;

if (cr->conference == confEvent->who) {
cr->conference = 0;
MTControllerDoAction(cr->controller, mtControllerActionPlay, &aTrue);

}
return err;

}

Finally, when a watcher disconnects, for whatever reason, we’re notified with an
mtConferenceTerminatedEvent and call DoConferenceTerminated. If this is the first
conference, we forget about it by resetting our conference token to 0. (We also get
termination events for conferences that were merged, so we just ignore those.) When
the connection is torn down the media is stopped by the stream director, so to
continue the preview for the user we tell the controller to start playing again with the
MTControllerDoAction function.

ADJUSTING THE PICTURE
Typically, developers want to enable users to change media settings of the sequence
grabber when it’s connected to the other components and even when we’re sending
to a conference. In Listing 15, we use the sequence grabber SGSettingsDialog
function to present users with a configuration dialog so that they can change the
video or audio settings. It’s not really safe to talk to the sequence grabber directly
without warning the other parts of the connection that the media formats will
change.

We surround the call to SGSettingsDialog with calls to the controller function
MTControllerChangedStreams. The second parameter is a Boolean that indicates
whether we’ve finished changing the streams. Calling MTControllerChangedStreams
with this parameter set to false pauses the media in the connection and makes it safe
to change the setting. Then after the sequence grabber has been adjusted, we call
MTControllerChangedStreams again with this parameter set to true to indicate that
we’re done. This in turn starts the process of “renegotiating” the media formats
across the connection safely.

CONNECTING FURTHER
There’s a wealth of documentation available to help you add QTC support to your
new and existing applications.

Inside Macintosh: QuickTime Conferencing can be found on this issue’s CD, documenting
the API for all of the QTC components as well as the MovieTalk protocol. The rest
of the QTC documentation, including more sample code, human interface notes, and
documentation on AppleTalk Multicast, can be found on the Mac OS SDK edition of
the Developer CD Series. To learn about the intricacies of the sequence grabber and
other media- and component-related topics, check out Inside Macintosh: QuickTime
and Inside Macintosh: QuickTime Components.

CONNECTING USERS WITH QUICKTIME CONFERENCING 55

Listing 15. CastChannelSettings

ComponentResult CastChannelSettings(CastRecord* cr, SGChannel channel)
{

ComponentResult err = noErr;

err = MTControllerChangedStreams(cr->controller, false);
if (err == noErr) {

err = SGSettingsDialog(cr->sg, channel, 0, nil, 0, nil, nil);
MTControllerChangedStreams(cr->controller, true);

}
return err;

}

Come visit us on the World Wide Web at http://qtc.quicktime.apple.com/; you’ll
find abundant QTC information there, including developer documentation and
free software. To share your ideas about uses for QTC, you can reach the QTC
team at movietalk@applelink.apple.com (AppleLink MOVIETALK). To get the
licensing terms for QTC, contact Apple’s Software Licensing department at
sw.license@applelink.apple.com (AppleLink SW.LICENSE) or (512)919-2645, or
write to Apple Computer, Inc., 2420 Ridgepoint Drive, M/S 198-SWL, Austin, TX
78754.

I hope that I’ve been able to give you an idea of what QuickTime Conferencing is all
about and how to get started using this exciting new technology. No longer just the
stuff of science fiction, videophone and other multimedia connections can be part of
the Macintosh experience for everyone.

develop Issue 26 June 199656

Thanks to our technical reviewers Eric Carlson,
Brian Cox, Godfrey DiGiorgi, Kevin Gong, Eric
Hoffert, and Guy Riddle.•

You don’t need a crystal ball
to see where multimedia is going.

What you need is a box.

©1996 Apple Computer, Inc. All rights reserved. Apple, the Apple logo and Macintosh are registered trademarks of Apple Computer, Inc. This ad was created using Macintosh personal computers.

The Apple Multimedia Program.Welcome to the world
of Macintosh® multimedia, where what you see here is far more than just
a box. In fact, our Starter Kit is your entree to the Apple® Multimedia
Program and your link to the future of multimedia. So, whether you’re a
designer, developer, educator, publisher or marketer–or just looking to
get involved–you should get with the Apple Multimedia Program. An
annual membership fee connects you to some of the best minds and
most successful members of the multimedia community. We’ll send you
the Apple Multimedia Starter Kit, plus an ongoing supply of valuable
tools, information and updates–not to mention product discounts,
marketing tips, techniques, how-to guidebooks and advice from proven
developers. For an application or worldwide program informa-
tion, you can find us at http://www.amp.apple.com, or call
408-974-4897. That way, the future can’t happen without you. ®

MPW TIPS AND TRICKS: SCRIPTED TEXT EDITING 57

The MPW Shell contains a full-strength, high-speed
text editor with scripting capabilities. It’s nothing to
write love letters with, because it’s targeted at the
ASCII format of compiler source files, but it provides
the power to automate complex and repetitive tasks in
ASCII text. The key to the system lies in a few editing-
related commands, together with its regular expressions
and selection expressions.

REGULAR EXPRESSIONS
In the MPW Shell, any search command can take one
of two kinds of arguments. The first is a plain string,
which matches exactly its contents and nothing else,
using a simple character-by-character match. The other
is a regular expression, which is a pattern that can be
recognized by a finite state machine. You can’t parse
programming languages with regular expressions, but
you can use them to recognize many patterns, including
wildcards, repeating sequences, and sets of characters.

Regular expressions are bracketed with either slashes
or backslashes, for searching forward or backward
respectively. So, for instance, the regular expression
\wombat\ would search backward from the current
location for the string “wombat”.

There are about 20 special constructs within regular
expressions, all of which are cryptically described when
you execute the command line “Help Patterns” within
the MPW Shell. I’ll mention some of the more useful
ones here. The wildcard characters are the question
mark (?) and the equivalence symbol (≈, Option-X).
The question mark matches any one character except
the end of a line, while the equivalence symbol matches

any number of such characters. For instance, /w?mb≈t/
would match “wombat” as well as “wambiklort” and
“wymbt”, but not “wafkambiliot”, nor “wkmb” at the
end of a line. Restricted sets of symbols can be given in
brackets; for instance, you can search for alphanumeric
characters with the pattern [a-zA-Z0-9]. The reverse
of a set can be specified with the “not” symbol (¬,
Option-L); for instance, /[¬a-z]/ finds any character
except a lowercase letter. The start of a line can be
specified with the bullet symbol (•, Option-8) and the
end of a line with the infinity symbol (∞, Option-5).

These keyboard shortcuts are for American QWERTY
keyboards. Other keyboards have different layouts. For
instance, on a direct neural interface keyboard, think “blue
wildebeest” and raise your right ear to type the bullet symbol.•

Repeating patterns can be specified in three ways.
Following any pattern with a plus sign (+) means one or
more instances of that pattern; for instance, the regular
expression /[0-9]+/ would match any sequence of
digits. An optional repeating pattern can be similarly
specified with an asterisk (*), which means zero or more
repetitions. The rarely seen double angle brackets can
be used to specify exactly how many repetitions of a
pattern are allowed. They’re typed as Option-backslash
(«) and Option-Shift-backslash (») and enclose a single
number to mean exactly that many repetitions, or two
numbers separated by a comma to specify a minimum
and maximum number of repetitions, or a single number
followed by a comma to mean at least that many
repetitions. For instance, the pattern /[a-zA-Z]«3,7»/
would find all strings composed of alphabetical
characters and from three to seven letters long.

There are a number of ways of “escaping” special
characters when you want to look for something that
has special meaning within regular expressions, such as
a question mark or plus sign. You can escape any
character with the lowercase delta (∂, Option-D), or
use single or double quotes to escape strings. To find
the string “wombat+”, for instance, you’d need to
escape the plus sign: /wombat∂+/.

Finally, one of the most useful constructs consists of a
tagged regular expression. This allows you to associate
a number between 0 and 9 with a pattern that’s
matched, referring to it later with the “registered”
symbol (®, Option-R) followed by a digit. This is very
handy when you’re doing replacements. For instance,

TIM MARONEY recently changed his Apple badge color from
green to white: he’s gone from contract programming to a
technical leadership role developing user interface software. Tim
entertains himself in a variety of ways, such as straining his
surgically altered eyeballs on the small print of obscure footnotes

and collectible trading card games, and contorting his limbs in
yogic asanas. He designed the iron crystal that now resides at the
core of the earth and contributed significant ideas to the original
(now obsolete) implementation of Planck-scale gravitational
phenomena in the universe.•

MPW TIPS AND
TRICKS

Scripted Text
Editing

TIM MARONEY

develop Issue 26 June 199658

you can replace any angle-bracketed string with a
parenthesized string with the following command,
which would turn “<wombat>” into “(wombat)”:

Replace /<([¬<>]*)®1>/ (®1)

This searches for any number of characters (except
angle brackets) that are between angle brackets, assigns
them the number 1, and then replaces the angle
brackets with parentheses. Note that the syntax of
tagged patterns requires the pattern to be parenthesized.

SELECTION EXPRESSIONS
Many editing commands (such as Replace) can take
selection expressions as well as regular expressions.
Selection expressions provide more ways to select text
than the string matching provided by regular expressions.
Common selection expressions include the following:

• The bullet symbol, meaning the start of a file.

• The infinity symbol, meaning the end of a file.

• The current selection, denoted by § (Option-6).
This might have been selected with the mouse or by
a Find command. § by itself indicates the selection
in the target window (which I’ll explain later), while
pathname:§ means the selection in the file indicated
by the pathname.

• A line number, specified simply as a number.

• The name of a marker, specified by the Mark
command.

• A range between two selection expressions,
separated by a colon (:).

The above expressions require no special delimiters
(they’re not directional like regular expressions).
Regular expressions are actually a kind of selection
expression and are delimited by slash or backslash
characters as usual.

Some character-skipping variants of these options are
also provided, such as the position that’s one character
after the selection, denoted by following a selection
expression with an uppercase delta (Δ, Option-J). These
are useful in dealing with context; for instance, you may
want to select a string when it’s followed by another
character, but not include the following character in the
selection. (An example is given later in the Subword
script.) Text emitted by a program like a table generator
may be in a known format, such as a columnar
arrangement, in which case skipping a certain number
of characters will take you to the selection you need.

Again, the MPW Shell will give you a terse summary of
selection expressions when you execute the command

line “Help Selections”. I’m not going to list all the minor
variants here, but feel free to while away the hours in
rapturous contemplation of their mysteries on your own.

EDITING COMMANDS
The most common editing commands are two that you
probably use already: Find and Replace. Dialogs that
stand in for these commands are built into the MPW
Shell and accessible from the Find menu. You can give
any selection expression as a search pattern in either of
these dialogs by clicking the Selection Expression radio
button instead of the default Literal button.

The same commands are the basis of most editing
scripts. As tools, Find and Replace take a selection
expression as their primary argument. Don’t confuse
Find and Search! The Search command puts out its
results as text, while Find actually changes the selection.
In addition, Search takes a pattern — that is, a regular
expression — while Find takes any selection expression.
For example, to go to the start of a file in a script, you
could give the command “Find •”, but not “Search •”.

Find is the basic navigation command in most editing
scripts. For instance, you can simulate the Select All
command in the Edit menu like so:

Find •:∞ # select from start to end of target

The commands File and Open, along with the variables
Target and Active, determine the files your scripts will
work on. “File” is actually an alias for the real command
name, Target. The File command opens a file and makes
it the target window — the window behind the frontmost
window. The target window is an important notion in
MPW. It exists so that you can use the Worksheet
window to type commands that affect another window;
since the Worksheet would be in front, the window
being affected would need to be behind the Worksheet.
During scripting, you may prefer to use the Open
command, which opens a file and makes it the
frontmost window. The target window is referred to as
{Target} in scripts, while the frontmost window is
called {Active}. Editing commands work on the target
window if you don’t specify a window explicitly.

The Line command may also be used for navigation: it
selects the numbered line in the target window and then
brings that window to the front. You probably know
this command already if you use compilers in the MPW
Shell, since they put out error messages in this form:

File "gwork.c"; Line 418 # Syntax error

Executing this command takes you to the line in your
code where the error was detected.

MPW TIPS AND TRICKS: SCRIPTED TEXT EDITING 59

The Position command returns the current position in
the target window, as a line number, a character range,
or both. The position could be saved to a variable for
later use as follows, using the backquote mechanism to
execute a command and insert its output inline:

Set SavedLineNumber `Position -l`

There are dozens of commands pertaining to text editing
in the MPW scripting language. Help on all of them is
available in the MPW Shell. The usual Macintosh text-
editing menu commands are available in the MPW
scripting language, including New, Open, Close, Save,
Revert, Print, and the standard Edit menu commands.

StreamEdit is a standalone editing tool that’s rich and
strange enough to deserve its own column. It’s a
structured search and replacement language based on
the UNIX® command sed.

Some simpler standalone editing tools are provided.
Sort has a rich function set and can be used for many
text-editing tasks. Canon takes a file of search and
replace strings and applies them to a file. It’s used to
automate terminology changes, such as the work that
was done to make the Mac OS API use fewer acronyms
and abbreviations when the new Inside Macintosh books
were written. Translate, like the UNIX command tr,
maps characters onto other characters.

Text indentation can be handled with four tools: Adjust,
Align, Entab, and Format. Adjust shifts a line to the right
or left by a specified number of spaces. Align sets the
margin of a range of selected lines to the margin of the
first selected line. Entab converts runs of spaces to tabs,
and Format sets the column width used for tabs in a text
document, as well as other settings like font and size.
(These settings are saved in a resource in the file, which
many ASCII text editors can recognize.)

Text-editing scripts often create temporary files, split
single files into multiple files, and perform other file-
related tasks. MPW provides commands to help you
manage files. It has commands corresponding to almost
all Finder operations, such as Duplicate, Move, Delete,
and NewFolder. There are also some specialized file
commands: FileDiv splits a file into multiple files based
on a byte or line count or on embedded form feed
characters inserted during a previous editing pass;
Catenate does the opposite, joining files together.

A text-editing script often takes search and substitution
text as parameters on the command line. A few

commands related to parameters are worth a quick
mention here. Echo is handy for concatenating
parameters with other text. Quote is similar to Echo but
adds quote marks as needed to preserve the word breaks
in its parameters. MPW scripting requires quotes
around any string that is meant to be a single parameter
but contains spaces (which would break the string into
multiple parameters). Echo puts out its arguments in a
way that allows them to be broken up, while Quote
preserves the original word breaks by inserting quotes.

Echo "Richard Loves Pat"
Richard Loves Pat
Quote "Bill Loves Everyone"
'Bill Loves Everyone'

AN EXAMPLE SCRIPT
Here’s a script I’ve found useful for some years. It’s
called Subword and it replaces a word by another string
everywhere it occurs in the target window.

Set Sep "[¬a-zA-Z_0-9]" # word separators
Find • "{Target}" # start at top of file
Replace -c ∞ "Δ/{Sep}{1}{Sep}/!1:Δ/{Sep}/" ∂

"{2}" "{Target}"

The selection in this Replace command is probably
about as clear as the U.S. tax code, so allow me to
explain. The Δ means one character before the selection.
The !1 means one character past the selection. The
colon denotes everything between the selections
(inclusively). So this pattern says, in a nutshell, select
the pattern in the first parameter ({1}) when it’s
bracketed by separators, but exclude the separators.

Normally I don’t use this script directly. I incorporate it
into other scripts as a utility. The bulk of the work of
converting between similar languages like Pascal and C
can be done by an editing script, for example. Subword
can be used to convert keywords, as could Canon. I use
another script which is essentially Subword without the
separators for changing symbols like equality operators.

Scripts to preconvert between Pascal and C can be
found on this issue’s CD. They don’t generate compiler-
ready text, but I’ve found that they facilitate a manual
conversion at the rate of hundreds of lines per hour,
allowing source bases in the thousands of lines to be
accurately translated in a day or three. So the next time
you’re faced with a dull text-processing task, look over
the tools MPW gives you, and see whether you can
save yourself a few days of tedious manual labor!

Thanks to Dave Evans, Scott Fraser, Arno Gourdol, and Alex
McKale for reviewing this column.•

OpenDoc, Apple’s compound-document architecture, isn’t just for
desktop publishing. The underlying IBM System Object Model (SOM)
can be used to implement dynamic inheritance within and between
applications, giving you the benefits of object-oriented programming
while avoiding code duplication and the need to rebuild inherited parts
when modifying the base part. The basic mechanism is described and
illustrated in this article, which also serves as a starting point for
developers who want to write OpenDoc extensions and thus require
knowledge of SOM.

The problem is as old as programming: you want to reuse code in your applications
in order to reduce development costs. The idea of linked libraries was a first step
toward a solution but introduced the issue of code duplication. The advent of object-
oriented programming reduced somewhat the complexity of the problem of reusing
code but didn’t make it go away completely: a bug fix or other modification to a base
class still necessitated a rebuild of all projects using it. Dynamic shared libraries solve
the issue of code duplication, but they don’t support object-oriented programming.

Now SOM, the object-oriented technology that underlies OpenDoc and enables part
editors to communicate with one another, offers a complete solution. With SOM,
you can have a dynamic shared library, which means that you don’t have code
duplication and, in case of a bug fix or other modification, you don’t need to rebuild
projects that use the library — and you can also have inheritance, enabling you to
take advantage of the awesome strength of object-oriented programming.

SOMobjects™ for Mac OS is the Apple implementation for the Macintosh of the
IBM SOM technology. “SOM” is the name of the technology, and “SOMobjects™ for
Mac OS” is the name of the Macintosh extension file that provides it.•

This article explains how to construct an OpenDoc part object that serves as a base
class to be inherited from in your own applications and by others, if you so desire. I
use the example of creating scrollable lists, something almost all developers have to
bother with at one time or another. My sample base class (or base part, as I prefer to
call it), named ListPart, doesn’t do anything by itself but is inherited from by three

ÉRIC SIMENEL

OpenDoc Parts and SOM Dynamic Inheritance

develop Issue 26 June 199660

ÉRIC SIMENEL worked from 1988 until recently
for Apple Computer France in Developer Technical
Support, where he was in charge of evangelism
and technical support for system software,
imaging, and OpenDoc. He now works for DTS
at Apple in Cupertino. When he’s not coding or

supporting, he can be seen browsing the back
issues boxes in the comic book shops of the San
Francisco Bay Area. His Silver Age comics
collection has already reached the 20,000 mark,
and he’s read each of them at least three times.
The question is: When does he sleep?•

other parts (ListEx1Part, ListEx2Part, and ListEx3Part) that produce lists of varying
complexity and that we’ll examine in some detail. Since the goal of this article is to
highlight the inheritance aspects, I won’t describe much about how the list itself is
managed by the base part. If you’re interested, see the source code on this issue’s CD.

If you want to write OpenDoc extensions, you’ll have to dive into SOM, so this
article is a good starting point for you, too.

OpenDoc developer releases are available at http://www.opendoc.apple.com
on the Web and on CD through a number of different sources. These releases include
the OpenDoc Programmer’s Guide, the IBM SOM manual, and the SOMobjects for
Mac OS manual, the best documentation available on SOM and dynamic inheritance.•

A LOOK AT THE BASE PART
We’ll start with a look at the process of building an OpenDoc part, which is really a
SOM object. Since we currently don’t have a direct-to-SOM compiler on the
Macintosh, the process consists of two steps:

1. We first write the .idl source file, which is the SOM interface for our object,
describing fields and methods and how the new part inherits from ODPart.
Then, with the SOM compiler (currently distributed as an MPW tool), we
generate the .xh, .xih, and .cpp source files, which will be used as a bridge
between SOM and C++.

2. We write in C++ the body of the methods described in the .idl source file.

We then have all the necessary files to build the whole project and get the OpenDoc
part. Because the first step is always the same for simple parts, most developers never
bother with it themselves, but instead use PartMaker to automatically generate the
files associated with this step (.idl, .xh, .xih, and .cpp) and then work mainly with the
constructed C++ object. Thus, they seldom open the subfolder containing the SOM
source files, and they modify these files even less often.

But if you want to inherit from a part other than ODPart, you’ve got to take things
into your own hands. What PartMaker would otherwise do for you, you’ve got to do
for yourself. It’s easier than it sounds, as you’ll see in the following pages. We’ll look
at how to create the .idl, .xh, .xih, and .cpp source files, plus a .cpp source file that
manages the initializations for SOM and the Code Fragment Manager, and the .h
and .cpp source files containing the C++ class and its methods.

For the inheritance mechanism to be widely used by developers, it has to be simple. In
an ideal world, you would provide only the base part itself, its interface (the .idl source
file), and a little documentation describing the methods to be called or overridden. But
since we’re in the real world, you may also want to provide a .xh source file; this can
be regenerated from the .idl file by the SOM compiler, but it’s a good idea to provide
it to simplify the work of developers willing to inherit from your part. I’ll discuss
these necessary files and then make some remarks about how the base part works.

STARTING WITH THE .IDL SOURCE FILE
The complete class name for our sample base part is ACF_DevServ_som_ListPart.
The first step in creating this base part is generating the .idl source file. Listing 1
shows only the differences from the .idl file generated by PartMaker.

SOM objects are passed into methods via pointers, so when generating the C++
implementation function for a SOM method, the SOM compiler adds an asterisk (*) to
the type of each SOM object being passed to those methods. When you use a SOM

OPENDOC PARTS AND SOM DYNAMIC INHERITANCE 61

develop Issue 26 June 199662

Listing 1. Extract from the som_ListPart.idl source file

module ACF_DevServ
{

interface som_ListPart : ODPart
{
// To call

void ShowMe(in ODFacet facet, in short theLine);
short GetNbLines();
void SetNbLines(in short newNbLines);
short GetSel();
void SetSel(in ODFacet facet, in short theLine);

// To override
ODISOStr GetTheRealPartKind();
ODSLong OverrideBeginUsingLibraryResources();
void OverrideEndUsingLibraryResources(in ODSLong ref);
void SetUpGraphics(in void* theGWorld);
void FillCell(in short theLine, in Rect* theRect);
void FillHilCell(in short theLine, in Rect* theRect);
void ClickInActive(in ODFacet facet, in ODEventData* event,

in Rect* theRect);
void CloseOpenedCell(in ODFacet facet);
void IdleOpened(in ODFacet facet);
short KeyInActive(in ODFacet facet, in ODEventData* event);
short KeyShortCut(in char theChar);
void GotDoubleClick(in ODFacet facet, in short theLine);
void ExternalizeListData(in ODStorageUnit storageUnit);
void InternalizeListData(in ODStorageUnit storageUnit);
void SetUpListData(in ODStorageUnit storageUnit);
void InitializeListData(in short* pNbLines, in short*

pLineHeight, in short* pLineWidth, in short* pLineDepth,
in short* pKind,in short* pAutoThumb, in short* pWantKey,
in short* pListIndex, in short* pSel, in char** pMul);

#ifdef __SOMIDL__
implementation
{
...
override:

somInit, somUninit, ..., WriteActionState, ReadActionState;

releaseorder:
ShowMe, GetNbLines, SetNbLines, GetSel, SetSel,
GetTheRealPartKind, OverrideBeginUsingLibraryResources,
OverrideEndUsingLibraryResources, SetUpGraphics, FillCell,
FillHilCell, ClickInActive, CloseOpenedCell, IdleOpened,
KeyInActive, KeyShortCut, GotDoubleClick, ExternalizeListData,
InternalizeListData, SetUpListData, InitializeListData;

...
};

#endif
};

}; //# Module ACF_DevServ

class name such as ODFacet and what you want is ODFacet*, you only have to write
ODFacet. If you write ODFacet* you’ll get ODFacet**. (In Listing 1, ODEventData
isn’t a class but a struct; thus the asterisk on the end is correct.)•

Most field names in the .h and .idl source files are explicit enough — fNbLines,
fLineHeight, fLineWidth, fLineDepth, fGWorld — but these might need further
explanation:

• fListIndex is the number of the first line displayed.

• fAutoThumb tells whether we want live scrolling with the thumb.

• fKind specifies the kind of list we want, where

1 = no selection
2 = single selection (stored in fSel)
3 = live single selection (stored in fSel), where users can edit the line in place
4 = multiple selection (stored in fMul)

• fWantKey tells whether we provide the user with keyboard shortcuts to
navigate in the list.

These methods are only to be called and not overridden:

• ShowMe, which scrolls the list to a desired position

• GetNbLines and SetNbLines

• GetSel and SetSel, which return and set the currently selected line

These methods are to be overridden if necessary:

• SetUpGraphics, which gives you a chance to further initialize the offscreen
buffer as you want (with default font and font size, for example)

• FillCell, which draws the content of one line

• FillHilCell, which draws the content of a selected line

• ClickInActive, CloseOpenedCell, IdleOpened, and KeyInActive, which deal
with the editing in place of a live selected line

• KeyShortCut, which scrolls the list according to the given character

• GotDoubleClick, which enables you to take appropriate actions in response
to a double click

• SetUpListData, ExternalizeListData, and InternalizeListData, which deal
with the storage unit

• InitializeListData, which asks for the initial values of the fields described
above

• GetTheRealPartKind, which returns the part kind usually defined in
xxxxPartDef.h and is necessary for the storage units to store the right owner

• OverrideBeginUsingLibraryResources and OverrideEndUsingLibraryResources,
which deal with resource management in inherited parts

Using only GetTheRealPartKind, InitializeListData, and FillCell, we can get a
complete working list. This will be illustrated in ListEx1Part. Meanwhile, it’s
essential to keep in mind that in dynamic inheritance we’re dealing with SOM
objects, not C++ objects. The implications of this are described in “SOM Objects
vs. C++ Objects.”

OPENDOC PARTS AND SOM DYNAMIC INHERITANCE 63

GENERATING AND ADAPTING OTHER NEEDED FILES
We use the MPW SOM compiler to automatically generate the .xh, .xih, and .cpp
files, with this command line:

somc -other "-S 100000" -m chkexcept -m cpluscpp {SOMCEmitXIHOptions} ∂
-p -e xih,xh,xc som_ListPart.idl -o : -I "{OpenDoc_IDL_Interfaces}"

The .xh and .xih files are regenerated from scratch each time we compile the .idl file.
The .cpp file, on the other hand, is modified (not rewritten) by the SOM compiler,
preserving all the modifications we’ve made to it.

Now that we’ve got the .cpp file, we have to adapt it to our needs. We simply fill the
near-empty new methods in the same way PartMaker did with the old ones. For
example, for the method FillCell, we add

_fPart->FillCell(ev, theLine, theRect);

after the ACF_DevServ_som_ListPartMethodDebug call in this SOM-generated code:

SOM_Scope void SOMLINK som_ListPart__FillCell(ACF_DevServ_som_ListPart
*somSelf, Environment *ev, short theLine, Rect* theRect)

{
ACF_DevServ_som_ListPartData *somThis =

ACF_DevServ_som_ListPartGetData(somSelf);
ACF_DevServ_som_ListPartMethodDebug("ACF_DevServ_som_ListPart",

"som_ListPart__FillCell");
SOM_TRY

_fPart->FillCell(ev, theLine, theRect);
SOM_CATCH_ALL
SOM_ENDTRY

}

develop Issue 26 June 199664

An OpenDoc part is really a SOM object (in our example,
ACF_DevServ_som_ListPart) and is known to OpenDoc as
such. The C++ object generated by PartMaker (in our
example, ListPart) is a wrapper that serves to simplify the
data management and the code writing in the absence of
a direct-to-SOM C++ compiler. In fact, the C++ object is
just a field (in our example, fPart) of the SOM object.
We’ve written our SOM object’s implementation so that it
simply delegates all messages to its C++ object.

For instance, a call to FillCell or FacetAdded in our base
class object (ACF_DevServ_som_ListPart) would go through
fPart and thus to the C++ method FillCell or FacetAdded,
as illustrated in Figure 1. The C++ field fsomSelf (initialized
in the InitPart and InitPartFromStorage methods, as shown
in som_ListPart.cpp and ListPart.cpp) points, in this case,
to the ACF_DevServ_som_ListPart SOM object.

What happens in response to an OpenDoc call when a
SOM object inherits from our SOM base class? Say our

SOM object of class ACF_DevServ2_som_ListEx1Part,
inheriting from ACF_DevServ_som_ListPart, contains no
data and only two methods — InitializeListData and
FillCell. As shown in Figure 2, a call to FillCell will go to
the FillCell method in som_ListEx1Part, because the FillCell
method in som_ListPart is overridden. A call to FacetAdded,
though, will go to the FacetAdded method inherited from
som_ListPart, since this method isn’t overridden, and it will
call the C++ method FacetAdded. In this case, fsomSelf
points to the SOM object ACF_DevServ2_som_ListEx1Part.

Thus, if you want a method to be overridden, you must
not call your C++ wrapper class’s method directly. For
example, if you call the C++ wrapper class’s FillCell
method directly, it will be understood as this->FillCell and
will always call the C++ FillCell method of the base part.
You have to call it as fsomSelf->FillCell, where fsomSelf is
the SOM object that’s your part. If FillCell is overridden in
an inherited part, the FillCell method of that part will be
called.

SOM OBJECTS VS. C++ OBJECTS

And that’s all there is to generating our base part. As I mentioned earlier, it doesn’t do
anything by itself, so when we launch it we see the message shown in Figure 3.

OPENDOC PARTS AND SOM DYNAMIC INHERITANCE 65

 �
�
 �
�
ODPart★ fsomSelf�
�
...�
�
InitializeListData�
�
FillCell�
�
...�
�
FacetAdded�
�
...�

SOM object:�
ACF_DevServ_som_ListPart

C++ object:�
ListPart

 �
�
 �
�
ListPart★ fPart�
�
...�
�
InitializeListData�
�
FillCell�
�
...�
�
FacetAdded�
 �
...

a call to FillCell

a call to FacetAdded

Figure 1. Calls to base class object, no inheritance

 �
�
 �
�
ODPart★ fsomSelf�
�
...�
�
InitializeListData�
�
FillCell�
�
...�
�
FacetAdded�
�
...�

SOM object:�
ACF_DevServ2_som_ListEx1Part C routines

�
�
�
...�
�
ListPart★ fPart�
�
...�
�
InitializeListData�
�
FillCell (overridden)�
�
...�
�
FacetAdded�
 �
...

a call to FillCell

a call to FacetAdded

 �
�
InitializeListData�
�
FillCell

InitializeListData�
�
FillCell

C++ object: �
ListPart

Methods inherited from�
ACF_DevServ_som_ListPart

Figure 2. Calls to base class object, with inheritance

Figure 3. Message upon launching the base part

WHY USE AN OFFSCREEN BUFFER?
Our scrollable list appears in a facet, and when several facets are made visible (as
when View in Window is chosen), it seems that a simple CopyBits operation could
replace calling the FillCell method again. The same thing applies to situations where
the user scrolls just one or a few lines, so that most of the previously displayed lines
still appear.

But we can’t use CopyBits to transfer the lines from the screen because the following
could happen: If two monitors with different depths are stacked one on top of the
other, and the user places the list across them and then scrolls the lines from the
monitor with the lesser depth to the other, the result won’t be satisfactory if we’re
using CopyBits to transfer the lines from the screen. For this reason and because of
performance issues, I use an offscreen buffer in which the lines are drawn by FillCell
or FillHilCell; the content of the offscreen buffer is then transferred to the facet with
CopyBits in the Draw method.

MANAGING THE CONTROLHANDLE
At first I placed the fListCtl field in my part, and when I chose View in Window a
second scroll bar appeared, but it appeared in the document window (where the first
facet was) and in a strange place. It seems that because my part had only a single
scroll bar, all the facets, wherever they might be, were using it. So I realized that I had
to associate an fListCtl field with each facet. The best way to do this is to store this
field in the partInfo field of the facet. In fact, since I needed some other fields too, the
partInfo field contains the address of a structure that contains all my values; this
structure is allocated in the FacetAdded method and deleted in the FacetRemoved
method.

Of course, what’s true for a ControlHandle is also true for any Macintosh Toolbox
object that depends on a graphics port, such as a TextEdit record, for example.

NEGOTIATING THE FRAME SIZE
For aesthetic reasons, I surround the scrolling lines with a white margin and try to
negotiate a size with my container that’s a round number of lines plus the margin.
The negotiation takes place in the FrameShapeChanged method (and some others as
well).

In all cases, before frameShape is sent to the RequestFrameShape method, I add after
the PartMaker-provided line

TempODShape frameShape = frame->AcquireFrameShape(ev, kODNULL);

the following code:

ODRect odrct;
Rect rct;

frameShape->GetBoundingBox(ev, &odrct);
odrct.AsQDRect(rct);
MyAdjustRectFacet(ev, &rct);
odrct = (rct);
frameShape->SetRectangle(ev, &odrct);

The rectangle size adjustment is done in the MyAdjustRectFacet method, which gives
back a rectangle respecting my wishes and smaller or equal to the given one to
maximize the chances of a successful negotiation.

develop Issue 26 June 199666

AND NOW, LET’S INHERIT
Our base part is ready to be inherited from. I’ll give three examples of scrollable lists
inherited from ListPart. ListEx1Part is a very simple list without data. ListEx2Part is
a more ambitious list with data and live in-place editing. ListEx3Part is even more
interesting, with data and a completely different kind of data management.

You’ll notice that both ListEx1Part and ListEx3Part are written in plain C, while
ListEx2Part is written in C++. This is to make the point that because all the
complexity of dealing with SOM is contained in the source files belonging to the
SOM subfolder of the project, which operate as a bridge between SOM and C++,
your code can be written in Pascal or FORTRAN or whatever. The problem is
reduced to a simple linker problem between C++ and your chosen language. This
also implies that a base part can be written in C++, an inherited part can be written
in Pascal, and a double-inherited part can be written in C++ or Pascal or C or
FORTRAN or whatever.

A few words first about three special methods that should always be overridden: For
the storage units managed by the base class (ListPart) to be associated with the right
inherited part (yours), the code in ListPart.cpp calls fsomSelf->GetTheRealPartKind(ev)
every time it needs to access the part kind. Your GetTheRealPartKind method should
simply return the part kind defined in xxxxPartDef.h (an example of this is shown
later in Listing 5). If you want to use your part’s resources (if only for your great
“About” box), you also have to override both OverrideBeginUsingLibraryResources
and OverrideEndUsingLibraryResources, which call BeginUsingLibraryResources
and EndUsingLibraryResources. These latter calls, provided by the OpenDoc utilities,
identify the correct resource file to use by first identifying the code fragment in use at
the time they’re called.

LISTEX1PART
ListEx1Part represents a very simple case of inheritance from ListPart. It’s only
about 500 bytes of code and took 15 or 20 minutes to write. The scrollable list it
generates is shown in Figure 4. You can select multiple lines, scroll while selecting or
deselecting, go to the first selected line with Command-click, extend selections with
Shift-click, select all with Option-Shift-click, deselect all with Option-click, and
scroll with the arrow and PageUp, PageDown, Home, and End keys. You can also
choose View in Window if you embed the part in a container, so that you can see the
synchronization between the two facets.

OPENDOC PARTS AND SOM DYNAMIC INHERITANCE 67

Figure 4. The list generated by ListEx1Part

We use PartMaker to help us generate the project and its source files, but then we
make modifications because som_ListEx1Part inherits not from ODPart but from
som_ListPart. The sequence of steps, stated in general terms so that you can apply
this to your own experiments, is as follows:

1. Use PartMaker as usual.

2. Remove and delete all sources but xxxxPart.cpp, som_xxxxPart.cpp, and
som_xxxxPartInit.cpp (SOM stub).

3. Add the OpenDoc shared library component ListPart.

4. Modify the .idl source file to suit your needs (see Listing 2).

5. Compile the .idl file with the SOM compiler, generating .xh, .xih, and .cpp
files.

6. Modify som_xxxxPart.cpp (see Listing 3).

7. Clear all contents of xxxxPart.h and xxxxPart.cpp.

8. Write the contents of xxxxPart.h (Listing 4) and xxxxPart.cpp (Listing 5).

Then build and admire your inherited part.

develop Issue 26 June 199668

Listing 2. som_ListEx1Part.idl

module ACF_DevServ2
{

interface som_ListEx1Part : som_ListPart
{

#ifdef __SOMIDL__
implementation
{

majorversion = currentMajorVersion;
minorversion = currentMinorVersion;
functionprefix = som_ListEx1Part__;

override:
GetTheRealPartKind, OverrideBeginUsingLibraryResources,OverrideEndUsingLibraryResources,
InitializeListData, FillCell;

};
#endif

};
}; //# Module ACF_DevServ2

Listing 3. som_ListEx1Part.cpp

SOM_Scope ODISOStr SOMLINK som_ListEx1Part__GetTheRealPartKind(ACF_DevServ2_som_ListEx1Part *somSelf,
Environment *ev)

{ return (GetTheRealPartKind(ev)); }

SOM_Scope ODSLong SOMLINK som_ListEx1Part__OverrideBeginUsingLibraryResources(
ACF_DevServ2_som_ListEx1Part *somSelf, Environment *ev)

{ return (OverrideBeginUsingLibraryResources(ev)); }

(continued on next page)

OPENDOC PARTS AND SOM DYNAMIC INHERITANCE 69

SOM_Scope void SOMLINK som_ListEx1Part__OverrideEndUsingLibraryResources(
ACF_DevServ2_som_ListEx1Part *somSelf, Environment *ev, ODSLong ref)

{ OverrideEndUsingLibraryResources(ev, ref); }

SOM_Scope void SOMLINK som_ListEx1Part__InitializeListData(ACF_DevServ2_som_ListEx1Part *somSelf,
Environment *ev, short* pNbLines, short* pLineHeight, short* pLineWidth, short* pLineDepth,
short* pKind, short* pAutoThumb, short* pWantKey, short* pListIndex, short* pSel, char** pMul)

{ InitializeListData(ev, pNbLines, pLineHeight, pLineWidth, pLineDepth, pKind, pAutoThumb, pWantKey,
pListIndex, pSel, pMul); }

SOM_Scope void SOMLINK som_ListEx1Part__FillCell(ACF_DevServ2_som_ListEx1Part *somSelf,
Environment *ev, short theLine, Rect* theRect)

{ FillCell(ev, theLine, theRect); }

Listing 4. ListEx1Part.h

ODISOStr GetTheRealPartKind(Environment* ev);
ODSLong OverrideBeginUsingLibraryResources(Environment* ev);
void OverrideEndUsingLibraryResources(Environment* ev, ODSLong ref);
void InitializeListData(Environment *ev, short* pNbLines, short* pLineHeight, short* pWantKey,

short* pLineWidth, short* pLineDepth, short* pKind, short* pAutoThumb,
short* pListIndex, short* pSel, char** pMul);

void FillCell(Environment *ev, short theLine, Rect* theRect);

Listing 5. ListEx1Part.cpp

ODISOStr GetTheRealPartKind(Environment* ev)
{ return kListEx1PartKind; }

ODSLong OverrideBeginUsingLibraryResources(Environment* ev)
{ return BeginUsingLibraryResources(); }

void OverrideEndUsingLibraryResources(Environment* ev, ODSLong ref)
{ EndUsingLibraryResources(ref); }

void InitializeListData(Environment *ev, short* pNbLines, short* pLineHeight, short* pLineWidth,
short* pLineDepth, short* pKind, short* pAutoThumb, short* pWantKey, short* pListIndex,
short* pSel, char** pMul)

{
*pNbLines = 1000;
*pLineHeight = 18;
*pLineWidth = 400;
*pLineDepth = 8;
*pKind = 4;
*pAutoThumb = 1;
*pWantKey = 1;
*pListIndex = 50;
*pMul = (char *)NewPtrClear(*pNbLines);

}

(continued on next page)

Listing 3. som_ListEx1Part.cpp (continued)

LISTEX2PART
Now let’s be a little more ambitious and provide live editing in place. Just for fun, let’s
also override the FillHilCell method so that we can have a form of highlighting other
than InvertRect. ListEx2Part consists of 3K bytes and 136 lines of code and generates
the list shown in Figure 5.

We proceed the same way as for ListEx1Part but override more methods in the .idl
source file (see Listing 6). Unlike in ListEx1Part, where we didn’t have to override
somInit and somUninit since we had nothing special to do in these methods, in
ListEx2Part (and ListEx3Part also) we need to override these methods since we have
additional initializations to provide. With SOM, like any other object-oriented
language, a good programmer overrides only what’s useful. And this time, since we’re
going to manage some data, we add a C++ object as a field in the SOM object. (We’ll
see another way of managing data in ListEx3Part.)

What needs to be perfectly understood here is that the C++ class ListEx2Part doesn’t
inherit from the C++ class ListPart, whereas the SOM class som_ListEx2Part inherits
from the SOM class som_ListPart. In fact, if you look at the declaration of ListEx2Part
in the .h file, you’ll see that it’s just a simple class, inheriting from nothing. Remember,

develop Issue 26 June 199670

void FillCell(Environment *ev, short theLine, Rect* theRect)
{

Str255 aStr;
RGBColor myBlack = {0, 0, 0},

myLightBlue = {0xB000, 0xB000, 0xE000},
myLightYellow = {0xE000, 0xE000, 0xB000};

PenState thePnState;

::PenNormal();
::EraseRect(theRect);
::RGBForeColor(((theLine & 1) == 0)?(&myLightBlue):(&myLightYellow));
::PaintRect(theRect);
::RGBForeColor(&myBlack);
::NumToString(theLine, aStr);
::MoveTo(theRect->left+1, theRect->bottom-3);
::DrawString(aStr);
::SetPenState(&thePnState);

}

Figure 5. The list generated by ListEx2Part

Listing 5. ListEx1Part.cpp (continued)

the SOM objects are real, while the C++ objects are there only to simplify the coding
and aren’t known by OpenDoc.

The modifications made to som_ListEx2Part.cpp, ListEx2Part.h, and ListEx2Part.cpp
are very similar to those made in the previous example, so I won’t discuss them in
detail. I invite you, though, to take a look at the source code. I do want to point out a
couple of aspects of the code.

First, the myself field is of type ACF_DevServ3_som_ListEx2Part and thus is a SOM
object. In fact, this is the SOM object. The SOM field fPart2 declared in the .idl file
points to the C++ object, while the C++ field myself declared in the .h file points to
the SOM object. We need the field myself to be able to call the nonoverridden
method GetSel in som_ListPart (see the C++ method ClickInActive), or any other
nonoverridden method belonging to the inheritance hierarchy (som_ListPart >>
ODPart >> ODPersistentObject and so on) that we can see in the .xh or .xih source
file. We initialize the field myself in som_ListEx2Part.cpp in the method somInit (or
rather som_ListEx2Part__somInit).

Second, take a look at the ExternalizeListData, InternalizeListData, and SetUpListData
methods. As shown in Listing 7, there’s no real pain here, since the way we deal with
storage units isn’t specific to this example. (Of course, commercial product developers
should use a more graceful way than DebugStr to signal a problem to the user.)

OPENDOC PARTS AND SOM DYNAMIC INHERITANCE 71

Listing 6. som_ListEx2Part.idl

#ifdef __PRIVATE__
typedef somToken ListEx2Part;

#endif

module ACF_DevServ3
{

interface som_ListEx2Part : som_ListPart
{

#ifdef __SOMIDL__
implementation
{
...
override:

somInit, somUninit,
GetTheRealPartKind, OverrideBeginUsingLibraryResources,
OverrideEndUsingLibraryResources, FillCell, FillHilCell,
ClickInActive, CloseOpenedCell, IdleOpened, KeyInActive,
ExternalizeListData, InternalizeListData, SetUpListData,
InitializeListData;

#ifdef __PRIVATE__
passthru C_xih = "class ListEx2Part;";

ListEx2Part* fPart2;
#endif

};
#endif

};
}; //# Module ACF_DevServ3

LISTEX3PART
In the previous example, we saw one way to manage data — the way that PartMaker
creates for us. But we can also manage data directly in the SOM object. That’s what
happens in ListEx3Part, which generates the list shown in Figure 6.

develop Issue 26 June 199672

Listing 7. The xxxListData methods in ListEx2Part.cpp

void ListEx2Part::ExternalizeListData(Environment* ev, ODStorageUnit* storageUnit)
{

ODSUForceFocus(ev, storageUnit, kODPropListEx2Data, kListEx2Data);
ODULong oldSize = storageUnit->GetSize(ev);
StorageUnitSetValue(storageUnit, ev, TABSIZE, gBigTab);
ODULong newSize = storageUnit->GetOffset(ev);
if (newSize < oldSize)

storageUnit->DeleteValue(ev, oldSize - newSize);
}

void ListEx2Part::InternalizeListData(Environment* ev, ODStorageUnit* storageUnit)
{

long theSize;
if (ODSUExistsThenFocus(ev, storageUnit, kODPropListEx2Data, kListEx2Data))

if ((theSize = storageUnit->GetSize(ev)) != TABSIZE)
DebugStr("\pStorage size for gBigTab is wrong !");

else StorageUnitGetValue(storageUnit, ev, TABSIZE, gBigTab);
}

void ListEx2Part::SetUpListData(Environment* ev, ODStorageUnit* storageUnit)
{

if (!storageUnit->Exists(ev, kODPropListEx2Data, kODNULL, 0))
storageUnit->AddProperty(ev, kODPropListEx2Data);

if (!storageUnit->Exists(ev, kOPPropListEx2Data, kListEx2Data, 0)) {
storageUnit->Focus(ev, kODPropListEx2Data, kODPosUndefined, kODNULL, 0, kODPosAll);
storageUnit->AddValue(ev, kListEx2Data);

}
}

Figure 6. The list generated by ListEx3Part

Let’s back up a minute to see how the SOM field fPart2 is managed in som_ListEx2Part
and how the SOM field fPart in som_ListPart is managed by PartMaker. We see that
fPart is initialized to NULL in somInit, deleted in somUninit, and allocated in both
InitPart and InitPartFromStorage. Because those last two methods aren’t overridden
in som_ListEx2Part, fPart2 is allocated in somInit and deleted in somUninit.

As shown in Listing 8, som_ListEx3Part needs three fields:

• one that’s just a pointer and that will be initialized to NULL in somInit

• a second that’s an array of string pointers (see Listing 9)

• a third that’s a big block to store strings

Through the .xih source file, we get the following definitions:

#define _gContainingPart (somThis->gContainingPart)
#define _gListArray (somThis->gListArray)
#define _charArray (somThis->charArray)

To use these fields, for instance in FillCell, we just add the line that gets somThis:

SOM_Scope void SOMLINK som_ListEx3Part__FillCell(
ACF_DevServ4_som_ListEx3Part *somSelf, Environment *ev, short theLine,
Rect* theRect)

{
ACF_DevServ4_som_ListEx3PartData *somThis =

ACF_DevServ4_som_ListEx3PartGetData(somSelf);
FillCell(ev, theLine, theRect, _gListArray);

}

OPENDOC PARTS AND SOM DYNAMIC INHERITANCE 73

Listing 8. som_ListEx3Part.idl

module ACF_DevServ4
{

interface som_ListEx3Part : som_ListPart
{

#ifdef __SOMIDL__
implementation
{
...
override:

somInit, somUninit,
GetTheRealPartKind, OverrideBeginUsingLibraryResources,
OverrideEndUsingLibraryResources, FacetAdded, InitializeListData,
SetUpGraphics, FillCell;

ODPart gContainingPart;
char** gListArray;
char* charArray;

};
#endif

};
}; //# Module ACF_DevServ4

Of course, the line that gets somThis should be added only to the methods that really
need it. If you look at the complete source code for som_ListEx3Part.cpp, you’ll see
that many methods don’t need it and thus don’t have this line. The MPW SOM
compiler adds it automatically to all methods, so you have to manually remove it if it’s
not used. The size of the generated code can be greatly decreased in this way.

Now let’s take a good look at FacetAdded. It’s implemented in som_ListEx3Part.cpp
like this:

SOM_Scope void SOMLINK som_ListEx3Part__FacetAdded(
ACF_DevServ4_som_ListEx3Part *somSelf, Environment *ev, ODFacet* facet)

{
ACF_DevServ4_som_ListEx3PartData *somThis =

ACF_DevServ4_som_ListEx3PartGetData(somSelf);
ACF_DevServ4_som_ListEx3PartMethodDebug("ACF_DevServ4_som_ListEx3Part",

"som_ListEx3Part__FacetAdded");

FacetAdded(ev, facet, &(_gContainingPart), _gListArray, _charArray);
ACF_DevServ4_som_ListEx3Part_parent_ACF_DevServ_som_ListPart_FacetAdded

(somSelf, ev, facet);
}

Thus, we can still get the normal behavior for FacetAdded that’s contained in
ListPart and have a chance to add the specialized behavior that we want for
ListEx3Part.

A NOTE ON USING GLOBALS
Let’s not forget that if OpenDoc is based on SOM, SOM is based on the Code
Fragment Manager (CFM), and this greatly simplifies such programming aspects as
management of globals. Indeed, with the CFM architecture, there’s no more need for

develop Issue 26 June 199674

Listing 9. somInit and somUninit in som_ListEx3Part.cpp

SOM_Scope void SOMLINK som_ListEx3Part__somInit(ACF_DevServ4_som_ListEx3Part *somSelf)
{

ACF_DevServ4_som_ListEx3PartData *somThis = ACF_DevServ4_som_ListEx3PartGetData(somSelf);
ACF_DevServ4_som_ListEx3PartMethodDebug("ACF_DevServ4_som_ListEx3Part",

"som_ListEx3Part__somInit");
ACF_DevServ4_som_ListEx3Part_parent_ACF_DevServ_som_ListPart_somInit(somSelf);
_gListArray = (char **)NewPtr(NBLINES * sizeof(char *));
_charArray = (char*)NewPtr(50000);
_gContainingPart = 0L;

}

SOM_Scope void SOMLINK som_ListEx3Part__somUninit(ACF_DevServ4_som_ListEx3Part *somSelf)
{

ACF_DevServ4_som_ListEx3PartData *somThis = ACF_DevServ4_som_ListEx3PartGetData(somSelf);
ACF_DevServ4_som_ListEx3PartMethodDebug("ACF_DevServ4_som_ListEx3Part",

"som_ListEx3Part__somUninit");
DisposePtr((Ptr)_gListArray);
DisposePtr((Ptr)_charArray);
ACF_DevServ4_som_ListEx3Part_parent_ACF_DevServ_som_ListPart_somUninit(somSelf);

}

SetUpA5, SetCurrentA5, SetA5 (or even SetUpA4, provided by some environments);
when you need a global, you declare a global, then you use the global, period. When
we’re building a part, we’re in fact building a CFM shared library, but that doesn’t
prevent us from declaring and using the string globals found in ListEx3Part.cpp, for
example. The only trick we’ve got to pay attention to is this: since OpenDoc loads
the library fragment only once when the first part is instantiated, with the kLoadLib
flag set and not the kLoadNewCopy flag, globals declared in the library will be
shared by all instances of the class in that process.

CLOSING REMARKS
I hope you now have a better understanding of the workings of OpenDoc, SOM, and
PartMaker. Dynamic inheritance is a powerful tool. You can easily construct your
own useful base parts to be inherited from by yourself and by others. The advantages
are that you won’t suffer from code duplication, you’ll get the benefits of object-
oriented programming, and you won’t need to rebuild inherited parts when
modifying the base part.

When I first wrote ListPart, I put it in a container document, to which I subsequently
added ListEx1Part, then another simple part, and then ListEx2Part. In the course of
writing ListEx2Part I discovered that I didn’t design my base part as well as I first
thought. To correctly implement live editing in place, I had to thoroughly modify
ListPart, adding methods, deleting methods, changing method names, changing
method parameters, and so on. All the way through my testing, ListEx1Part and the
other simple part kept on working in the document without having to be rebuilt.

As long as you don’t change the methods used by the inherited parts (in my case, only
InitializeListData and FillCell), you’re safe. This is because SOM, through the .idl
file, completely separates the interface from the implementation of the methods.
Suppose I distribute the current version of ListPart for developers to inherit from,
and then later I provide a new version of ListPart. As long as I don’t modify the
methods contained in the current .idl file, I can add new methods and fields to the
.idl file and modify the C++ class without anybody being the wiser. All inherited parts
developed by others will continue to work fine and will benefit automatically from
the new features.

In fact, I expect to provide progressively more refined versions of ListPart to be
included on the OpenDoc Developer Release CDs. I plan, for instance, to implement
drag and drop, copy and paste, dynamic links, display of information from the
container (more useful), and hierarchical lists (the kind with a triangle symbol
pointing to the next level).

You get the idea. Why not give SOM dynamic inheritance a try yourself? Then
spread the word that OpenDoc isn’t just for desktop publishing.

OPENDOC PARTS AND SOM DYNAMIC INHERITANCE 75

Thanks to our technical reviewers Jens Alfke,
Erik Eidt, and Kurt Rodarmer.•

One of the least-implemented powerful capabilities you
can add to your application is attaching and embedding
scripts. In this column I’ll give you an idea of how to do
this, and clear up some confusion along the way.

ATTACHING VS. EMBEDDING
The term attach has been used to refer to both attaching
and embedding. Allow me to set the record straight by
offering definitions of the two terms as they apply to
scripting.

• An attached script is a compiled script or script
application that’s associated with a menu item in an
application; the script is executed when the user
chooses that command. This type of script usually
resides in a particular place, such as a Scripts folder.
Script attachment can be implemented quickly and,
at its most basic level, doesn’t require your
application to be scriptable.

• An embedded script is a compiled script that’s
associated with an interface element belonging to
an application or with a document. The script can
be stored with the application’s data, often in a
special file known to the application, or embedded
within the data for a document file.

ATTACHING SCRIPTS TO MENU ITEMS
Attached scripts are useful for two reasons. You, or
your users (depending on what’s appropriate for your
application), can do the following:

• Execute scripts to communicate with and control
other scriptable applications without leaving your
application. This is useful whether or not your
application is scriptable.

• Use scripts as an means of extending the functions
or options available in your application. If your
application itself is scriptable, script attachment
leverages off the work you’ve already done.

By allowing users to keep a menu of their favorite
scripts, you enable them to build a library of expanded
functionality for your application. The Mac OS and
Finder accomplish this with the Automated Tasks
submenu in the Apple menu. You can do this with a
Scripts menu that appears as the last (or next to last) of
your application’s menus.

Here are the steps for implementing this attachable
behavior:

1. In the resource file included with your application,
include a menu resource with the title “Scripts.”

2. In the startup code for your application, locate the
Scripts folder in your application’s folder, creating it
if it isn’t there.

3. Walk the files in the Scripts folder, checking for
compiled scripts (file type 'osas') and script
applications (file type 'APPL', creator 'aplt' or
'dplt'). Add the names of these files to your Scripts
menu.

4. When a user selects a script name from the Scripts
menu, load the script resource ('scpt' 128) and
execute the script, as shown in Listing 1.

Before executing a script, you must establish a
connection to a scripting component. The easiest
thing to do is to connect to the generic scripting
component with OpenDefaultComponent. When
you’re done, disconnect from the component with
CloseComponent. Depending on how you design your
application, you can open this connection and keep it
open while your program is running, or you can open
and close the connection each time you load and
execute a script. For more information on choosing
and connecting scripting components, see Inside
Macintosh: Interapplication Communication, Chapter 10.

EMBEDDED SCRIPTS IN APPLICATION DATA OR
DOCUMENT FILES
Embedded scripts can be used in two ways:

• Interface elements belonging to an application, such
as tool palette icons, menu items, and buttons, can
have scripts associated with them.

ACCORDING TO
SCRIPT

Attaching and
Embedding Scripts

CAL SIMONE

develop Issue 26 June 199676

CAL SIMONE (mainevent@his.com, AppleLink MAIN.EVENT)
Few people know it, but before Cal was in the software business,
he used to produce records (the musical kind) in Washington DC
and New York. At a time when computers were used mostly to

make robotic dance music, Cal was one of the first to painstakingly
create “human” performances in pop records with about 60 MIDI
synthesizers and, of course, a Macintosh. He now works toward a
day when every application will be scriptable.•

• Scripts can be associated with individual documents.
Unlike the above case, you can trigger the script
with any method that’s appropriate for your
application.

Embedding scripts can be extremely powerful. For
example, you can associate scripts with elements of a
form to supply a field’s editing rules, or with a button

to perform calculations. Replace a script and you
change the rules or the formula! Depending on your
particular application, you can use this technique
yourself or allow users to do their own replacement.

If you reserve this technique for your own use, you can
revise your software simply by replacing scripts with
corrected or enhanced versions. Or, if you allow your

ACCORDING TO SCRIPT: ATTACHING AND EMBEDDING SCRIPTS 77

Listing 1. Loading and executing a script from a file

FUNCTION RunAttachedScript(theAlias: AliasHandle): OSAError;
VAR

fileSpec: FSSpec;
scriptRes: Handle;
scriptDesc: AEDesc;
scriptID, resultID: OSAID;
myErr, ignoredErr: OSAError;
savedRes, refNum: Integer;
specChanged: Boolean;

BEGIN
(* Get the file specification corresponding to the menu item chosen. *)
myErr := ResolveAlias(NIL, theAlias, fileSpec, specChanged);
IF myErr <> noErr THEN MyErrorProc(myErr);

(* Open the resource fork and grab the script resource. *)
savedRes := CurResFile;
refNum := FSpOpenResFile(fileSpec, fsRdPerm);
IF refNum = -1 THEN MyErrorProc(-1);
UseResFile(refNum);
scriptRes := Get1Resource(kOSAScriptResourceType, 128);
IF ResError <> noErr THEN MyErrorProc(ResError);

(* Prepare and run the script. *)
myErr := AECreateDesc(typeOSAGenericStorage, scriptRes^, GetHandleSize(scriptRes),

scriptDesc);
IF myErr <> noErr THEN MyErrorProc(myErr);
myErr := OSALoad(gGenericComponent, scriptDesc, kOSAModeNull, scriptID);
IF myErr <> noErr THEN MyErrorProc(myErr);
myErr := OSAExecute(gGenericComponent, scriptID, kOSANullScript, kOSAModeNull, resultID);
ignoredErr := OSADispose(gGenericComponent, scriptID);
ignoredErr := AEDisposeDesc(scriptDesc);
IF myErr <> noErr THEN MyErrorProc(myErr);

(* Finish up. *)
ReleaseResource(scriptRes);
CloseResFile(refNum);
UseResFile(savedRes);

(* You might want to do something with the result. *)
IF resultID <> kOSANullScript THEN MyDealWithResult(resultID);
RunAttachedScript := myErr;

END;

users to change the embedded scripts, your application
becomes easily customizable: users can modify or
augment your application’s capabilities simply by
substituting scripts. You could even ship your application
with replacement scripts, which users can substitute for
default scripts that you provide.

RETRIEVING EMBEDDED SCRIPTS
There are three methods of retrieving embedded
scripts from files, depending on where they’re stored.
Regardless of which method you choose, it’s important
to remember that your program should never try to
interpret the bytes of a compiled script. However, as
long as you keep the bytes intact, you can do whatever
you want with them and the script will remain intact.

Aliases to script files. This is the same technique as
described above for attached scripts. This method is
used primarily for maintaining a list of scripts. You’d
use it, for instance, if you kept a collection of scripts in
a folder on disk. I don’t recommend this technique if
the scripts are associated with actual interface elements,
because the links that aliases provide to the script files
can too easily be broken.

In the document’s resource fork. Storing the scripts
as resources is convenient because you can easily use
your favorite resource editor to copy a script resource
from a compiled script or script application and paste it
into the special application file or the document. It also
makes it easy to grab the scripts for loading and
executing, using the method shown in Listing 1 (though
in this situation I’d suggest using an ID number other

than 128 for the script resource). The drawback is that
your users can get their hands on the script with their
favorite resource editor.

In the document’s data fork. Maintaining the
scripts within the data for a document is a more secure
method, since it makes it harder for users to extract the
scripts. It’s also more difficult for you, though, because
you may have to keep track of the location within the
document’s data, and then convert the script into the
form required for execution. You’ll want to store three
pieces of information: the four-character ID 'scpt'
(typeOSAGenericStorage), the length of the script data
that follows, and the script data itself. The ID isn’t
essential, but it may come in handy, especially if there
are other types of data present or if you load your
document’s data sequentially.

There are many ways to keep track of multiple types
of data in a document file. If you have a lot of different
types of data in the file, you can even develop a small
database for the data, complete with a directory, so that
you can gain quick access to particular types of data,
including the script. A simpler way is to maintain the
data in one long stream, embedding the script data
within the stream. If you know the location of the
script within the stream, you can just load and execute
it when a user wants to run it. One developer I know
reads all the data in the data fork (including scripts)
sequentially when the file is opened, so that he doesn’t
need to keep track of the script’s location within the
file. Listing 2 shows an example of loading script data
from the data fork of a document file.

develop Issue 26 June 199678

Listing 2. Extracting script data from a document’s data fork

FUNCTION RunEmbeddedScriptFromDataFork(theAlias: AliasHandle; scriptLoc: LongInt): OSAError;
VAR

fileSpec: FSSpec;
scriptData: Handle;
scriptDesc: AEDesc;
dataType: DescType;
scriptID, resultID: OSAID;
myErr, ignoredErr: OSAError;
refNum: Integer;
scriptLen, readLen: LongInt;
specChanged: Boolean;

BEGIN
(* Open the file. *)
myErr := ResolveAlias(NIL, theAlias, fileSpec, specChanged);
IF myErr <> noErr THEN MyErrorProc(myErr);

(continued on next page)

GIVING IT AWAY
The information in this column is not offered as a
complete solution, but is intended to get you moving
with implementing attachability. There are many other
issues surrounding attachability that are worth exploring,
such as getting time during script execution, using
attached scripts to allow users to tinker with some of
the core functionality of your application, and providing
a consistent way for your users to edit attached and

embedded scripts. I plan to delve into these other issues
in upcoming columns.

Making your application capable of attaching or
embedding scripts puts new power into your users’
hands, giving them unprecedented ability to develop
custom solutions to their problems. It’s not hard to do,
and the benefits are enormous. Do it today.

ACCORDING TO SCRIPT: ATTACHING AND EMBEDDING SCRIPTS 79

myErr := FSpOpenDF(fileSpec, fsRdPerm, refNum);
IF myErr <> noErr THEN MyErrorProc(myErr);

(* Grab the data. *)
IF MemError <> noErr THEN MyErrorProc(MemError);
myErr := SetFPos(refNum, fsFromStart, scriptLoc);
readLen := sizeof(dataType);
IF myErr = noErr THEN myErr := FSRead(refNum, readLen, @dataType);
(* dataType should be typeOSAGenericStorage. *)
readLen := sizeof(scriptLen);
IF myErr = noErr THEN myErr := FSRead(refNum, readLen, @scriptLen);
IF myErr = noErr THEN scriptData := NewHandle(scriptLen);
IF MemError <> noErr THEN MyErrorProc(MemError);
myErr := FSRead(refNum, scriptLen, scriptData^);
IF myErr <> noErr THEN MyErrorProc(myErr);
myErr := FSClose(refNum);

(* Prepare and run the script. *)
myErr := AECreateDesc(typeOSAGenericStorage, scriptData^, GetHandleSize(scriptData),

scriptDesc);
DisposeHandle(scriptData);
IF myErr <> noErr THEN MyErrorProc(myErr);
myErr := OSALoad(gGenericComponent, scriptDesc, kOSAModeNull, scriptID);
IF myErr <> noErr THEN MyErrorProc(myErr);
myErr := OSAExecute(gGenericComponent, scriptID, kOSANullScript, kOSAModeNull, resultID);
ignoredErr := OSADispose(gGenericComponent, scriptID);
ignoredErr := AEDisposeDesc(scriptDesc);
IF myErr <> noErr THEN MyErrorProc(myErr);

(* You might want to do something with the result. *)
IF resultID <> kOSANullScript THEN MyDealWithResult(resultID);
RunEmbeddedScriptFromDataFork := myErr;

END;

Thanks to Sue Dumont, Greg Friedman, Eric Gundrum, Wayne
Malkin, Jon Pugh, and Derrick Schneider for reviewing this column.•

Listing 2. Extracting script data from a document’s data fork (continued)

Custom attributes and elements provide a way to attach data such as
scaling information, sound, and strings to QuickDraw 3D objects. In
this article we explain how to create and attach custom attributes and
elements. We illustrate the process by showing you how to attach a
string containing a World Wide Web URL to a QuickDraw 3D object
to enable 3D navigation through the Web. We also describe six new
custom elements with implementations included on this issue’s CD.

In QuickDraw 3D, attribute objects (known more simply as attributes) generally
store information about the surface properties of objects in a model, such as color
and transparency. QuickDraw 3D defines 12 basic attribute types, and it also allows
you to define custom attribute and element types so that you can attach data different
from the predefined types to QuickDraw 3D objects. Your custom data need not
apply to the appearance of objects or to how objects are drawn, although it can.

For example, with custom attributes and elements you can add scaling information,
directional information, or sound to objects in your 3D scene. You can add a string
containing a name for a QuickDraw 3D object, so that you can refer to that object by
name and control it from a scripting language in your application. Your application can
enable users to navigate through the World Wide Web in 3D, by attaching a URL to
a QuickDraw 3D object, as illustrated by the code discussed in this article and included
on this issue’s CD. These are just a few of the ways you can extend the functionality of
QuickDraw 3D and add value to your 3D application by adding custom data to objects.

Before we explain and illustrate how to create custom attributes and elements, and how
to attach them to QuickDraw 3D objects, we’ll look at how attributes and elements
relate to each other and to other QuickDraw 3D objects. To get the most from this
article, you should already be familiar with the basics of QuickDraw 3D, as presented
in the previous develop articles “QuickDraw 3D: A New Dimension for Macintosh
Graphics” (Issue 22) and “The Basics of QuickDraw 3D Geometries” (Issue 23). The

NICK THOMPSON,
PABLO FERNICOLA, AND
KENT DAVIDSON

Adding Custom Data to QuickDraw 3D
Objects

develop Issue 26 June 199680

NICK THOMPSON (nickt@applelink.apple.com,
AppleLink NICKT) is still looking for new ways to
make the rest of the QuickDraw 3D team members
think about Mac OS 8. Nick is working on
integrating the award-winning QuickDraw 3D
software into Mac OS 8, taking maximum
advantage of the modern OS features. When not
immersed in the future of QuickDraw 3D, this
former Developer Technical Support engineer is
immersed in water, surfing off the Northern
California coast.•

PABLO FERNICOLA (EscherDude@aol.com,
AppleLink PFF) has been really busy since you last
heard from him. At MACWORLD San Francisco
in January he was busy explaining to developers
and users what QuickDraw 3D means to them. As
we write this, he’s busy planning the next three
releases of QuickDraw 3D with the team. As
technical lead of the QuickDraw 3D team, he
misses life without meetings, but is totally stoked
that the team has won awards from Byte,
Macworld, and MacUser.•

book 3D Graphics Programming With QuickDraw 3D, included on this issue’s CD,
provides complete documentation for the QuickDraw 3D programming interfaces.

ABOUT ATTRIBUTES AND ELEMENTS
Attributes and elements are types of QuickDraw 3D objects used to store information
about objects they’re attached to. Each consists of a type and some associated data.
You apply attributes and elements to objects by creating an instance of a specific type
of attribute or element, defining its data, adding it to a set, and then attaching the set
to an object (if the set isn’t already attached).

Note that attributes and elements are attached to objects, as opposed to simply being
added to a group. The reason for binding data to objects is that both QuickDraw 3D
and the 3DMF format maintain a strong data encapsulation model. For example, this
allows QuickDraw 3D objects to be moved from file to file without losing data.

ATTRIBUTES AND ELEMENTS IN THE QUICKDRAW 3D HIERARCHY
To better understand how attributes and elements relate to each other and to other
QuickDraw 3D objects, take a look at the partial class hierarchy shown in Figure 1.

ADDING CUSTOM DATA TO QUICKDRAW 3D OBJECTS 81

KENT DAVIDSON (dbunny@apple.com,
AppleLink DBUNNY), a.k.a. 3DMF Dude, Object
Dude, and “The Man” (by the dudes in Marketing),
is the guy who keeps the core of QuickDraw 3D
humming. Outside of commuting from San

Francisco to the ’burbs of Cupertino, he spends
his time rock climbing, skiing, and hanging out.
He’s currently wracking his brain over the plug-in
renderer architecture, which he’ll finish as soon
as everyone leaves him alone.•

Mesh NURB

Style Transform

File

...

...

...

Object

Shared Element

Set Attribute

Attribute�
set

Triangle

Shape

Geometry

You can add �
an element or an
attribute to a set �
or an attribute set.

You can attach �
a set to a shape.

You can attach an �
attribute set to a geometry.

Figure 1. Partial QuickDraw 3D class hierarchy, showing set and attribute set attachment

As you can see, an attribute is actually a type of element (that is, it’s a subclass of
the Element class, TQ3ElementObject). An element is any QuickDraw 3D object
that can be part of a set. In contrast with shared objects (objects of the class
TQ3SharedObject), elements aren’t shared (that is, they can’t be referenced by
multiple objects or the application at the same time) and are always removed from
memory whenever they’re disposed of. An attribute has all of these properties but
also can be inherited by subclasses of the object it’s attached to.

Custom data to be attached to an object can be stored in an element or an attribute.
So how do you decide which to use? Use an attribute when you want your custom
data to be inherited. For example, suppose we create a custom attribute named
Temperature and we want to be able to assign a different temperature to an entire
geometry, a face, or a vertex. During a view traversal loop, our attribute will be
inherited along with the other attributes. This becomes extremely important with the
introduction of plug-in renderers, which will be available in a future QuickDraw 3D
release. A particular renderer might take advantage of this inherited attribute by
coloring each vertex according to the temperature inherited.

SETS AND ATTRIBUTE SETS
We mentioned earlier that attributes and elements are usually collected in sets. A set
is an instance of the Set class (TQ3SetObject), which in turn is a subclass of the Shared
class (TQ3SharedObject), as shown in Figure 1. A set collects zero or more different
elements or attributes and their associated data; it can contain only one element or
attribute of a given type. An attribute set is a type of set; in fact, TQ3AttributeSet is
the only subclass of the class TQ3SetObject. An attribute set has all the properties of
a set but also allows inheritance.

Both elements and attributes can be collected in sets and attribute sets. Since the
AttributeSet class is derived from the Set class, you can call Q3Set_XX on an attribute
set, but you can’t call Q3AttributeSet_XX on a set. In the text that follows, be sure to
pay attention to whether we’re talking about sets or attribute sets; we don’t use the
terms interchangeably.

Sets and attribute sets can’t be attached to just any QuickDraw 3D object, but only to
those objects for which it makes sense to store additional data in this way. Attribute
sets can be attached to view objects, group objects, and geometric objects, plus most
of the parts of a geometric object: faces, vertexes, mesh edges, and mesh corners. (See
“How to Attach Attribute Sets” for details.) In contrast, sets can be attached only to
objects in the Shape class or subclasses of the Shape class. (Attaching a set to a shape
is fairly straightforward; we give an example of how to do this later, in Listing 3.) The
Shape class actually has a class field of type set, meaning that any class derived from
Shape has a set object. The Geometry class has a class field of type set (inherited
from the Shape class) plus a class field of type attributeSet, meaning that any class
derived from Geometry has both a set object and an attribute set object.

Currently, the renderers shipped with QuickDraw 3D ignore custom data attached to
shape objects, but when plug-in renderers become available, they may pay attention
to such data and use it to control certain rendering features. For example, a ray tracer
renderer may need custom data about surfaces to render them with bump mapping.

ATTRIBUTES AND INHERITANCE
When the objects in a view are rendered, attributes attached to the objects are applied
according to a strict hierarchy. The attribute sets of objects higher in the view
hierarchy are inherited by objects below them, unless some other attribute set
overrides them. Inheritance proceeds from view to group to geometric object to face

develop Issue 26 June 199682

to mesh edge to vertex to mesh corner. In other words, in the hierarchy, view
attributes are always inherited unless a group contains overriding attributes; group
attributes can be overridden by geometric object attributes, which can be overridden
by face attributes, and so on.

When you define a custom attribute, you can specify that you want it to be inherited
by including an attribute inheritance method in your metahandler. (More on
metahandlers later.) Inheritance happens when you call Q3AttributeSet_Inherit:

TQ3Status Q3AttributeSet_Inherit(TQ3AttributeSet parent,
TQ3AttributeSet child, TQ3AttributeSet result);

This call takes three attribute sets: the parent, the child, and a result attribute set to
store results in, which becomes the effective attribute set after inheritance. During
inheritance, any attribute in the parent that’s not in the child is copied into the result,
and all child attributes are copied into the result, as illustrated by the example in
Figure 2. As mentioned earlier, only attributes can be inherited; elements, such as the
name element “Jane” in this example, can exist in an attribute set but aren’t inherited.

WORKING WITH CUSTOM ATTRIBUTES AND ELEMENTS
Now that you have a sense of how custom attributes and elements relate to each
other and to other QuickDraw 3D objects, we’ll outline how you define, register, and
attach your custom data to the QuickDraw 3D objects of your choice. We’ll further
illustrate the process later in our example of attaching a URL to a QuickDraw 3D
object.

DEFINING AND REGISTERING YOUR CUSTOM DATA
To define a custom attribute or element type, you need to provide a definition of the
data associated with that type and write a metahandler to define a set of attribute-
or element-handling methods. Once you’ve defined and registered your custom
attribute or element type, you manipulate objects of that type exactly as you
manipulate the standard QuickDraw 3D attributes. For example, you create a new
attribute set by calling Q3AttributeSet_New, and you add custom attributes to the

ADDING CUSTOM DATA TO QUICKDRAW 3D OBJECTS 83

It may be news to you that attribute sets can be attached
to views or groups, because how to do this is less than
obvious. We’ll tell you how.

To attach an attribute set to a view object, use the
Q3View_GetDefaultAttributeSet routine to get the default
attribute set (all view objects have one), and then use
Q3AttributeSet_Add to add attributes to that set. For
example, the following code shows how to apply a
default specular color to all objects submitted to a view.

Q3View_GetDefaultAttributeSet(theDocument
->theView, &viewSet);

Q3AttributeSet_Add(viewSet,
kQ3AttributeTypeSpecularColor, &clearColor);

Q3Object_Dispose(viewSet);

You can still override the default behavior of the view by
attaching attributes to objects before submitting them. If
you write the view hints out in 3DMF format using the
QuickDraw 3D API, the attribute set for the view will also
be written out. You can preserve these settings by looking
in and using the view hints when you read the 3DMF data
back in.

To attach an attribute set to a group object, just add the
attribute set to the group before you add the object you
want it to be applied to.

Attaching an attribute set to a geometric object or a part
of a geometric object is much more obvious, so we won’t
go into details here. Later in this article, Listing 2 gives an
example of how to do it.

HOW TO ATTACH ATTRIBUTE SETS

attribute set by calling Q3AttributeSet_Add. Finally, you attach the attribute set to an
object by calling an appropriate QuickDraw 3D routine.

Before you can use your custom element or attribute, you must register it with
QuickDraw 3D by calling Q3ElementClass_Register or Q3AttributeClass_Register:

TQ3ObjectClass Q3ElementClass_Register(TQ3ElementType elementType,
const char *name, unsigned long sizeOfElement, TQ3MetaHandler metaHandler);

TQ3ObjectClass Q3AttributeClass_Register(TQ3AttributeType attributeType,
const char *name, unsigned long sizeOfElement, TQ3MetaHandler metaHandler);

The functions take these parameters:

• elementType (or attributeType) — The type constant used in the binary
metafile and in accessing your element (or attribute) from a set.

• name — The string constant used to write your custom element or attribute
in a text metafile. You should register your attribute or element types and
names with Apple’s Developer Support Center to prevent name space
collisions. In general, you should name your custom elements and attributes
in the form “Company:DataType”; for instance, if you work at Sun, you
might name an attribute “Sun:JavaCode.”

• sizeOfElement — The memory size that your element or attribute uses
internally. QuickDraw 3D needs to know this when copying your element or
attribute, because the data describing the element or attribute is copied from
the public side of the API to internal storage.

• metaHandler — A pointer to the metahandler for your element or attribute.

A metahandler is an application-defined function that returns the addresses of the
methods associated with the custom attribute or element type. QuickDraw 3D calls

develop Issue 26 June 199684

DiffuseColor�
(1, 0, 0)

DiffuseColor�
(1, 0, 0)

TransparencyColor�
(.2, .2, .2)

SpecularControl�
(10)

NameElement�
("Jane")

TempAttribute�
(451.0)

Attribute Element

FooElement�
(101)

Parent attribute set Child attribute set Result attribute set

SpecularControl�
(4)

SpecularControl�
(4)

TransparencyColor�
(.2, .2, .2)

TempAttribute�
(451.0)

Figure 2. Attribute inheritance

these methods at certain times to handle operations on sets and attribute sets that
contain your custom data. Particular methods are required for each QuickDraw 3D
object type, and QuickDraw 3D asks the metahandler repeatedly for these required
methods. Your metahandler should, by default, return NULL for unrecognized
methods; this allows Apple to add methods in the future without breaking the
implementation of old versions of elements and attributes.

A metahandler can define some or all of the methods indicated by the constants listed
below. Custom elements or attributes that are to be read from and written to files
should support the I/O methods associated with objects (those methods beginning
with “kQ3MethodTypeObject” in the following list). The metahandler can also
support all the methods associated with elements (those methods beginning with
“kQ3MethodTypeElement” in the list) and attributes (those methods beginning with
“kQ3MethodTypeAttribute”). Note that the copy methods always take the source as
the first parameter (from) and the destination as the second parameter (to), although
what these point to differs for each copy method. All of the following method types
are optional. If you supply no method for a particular attribute or element type, your
attribute or element will inherit the default behavior of the parent class.

• kQ3MethodTypeObjectReadData — Reads the data from a file object, gathers
any subobjects, and adds the element to a set.

• kQ3MethodTypeObjectTraverse — Calculates the size of the data to be written
out, submits any subobjects, and gathers any state needed from the view object.

• kQ3MethodTypeObjectWrite — Actually writes the data to the file. Data is
written through one of the low-level calls provided by QuickDraw 3D for basic
data types. If your data size is always 0, no ObjectWrite method is required.

• kQ3MethodTypeElementCopyAdd — Called when an application calls
Q3Set_Add or Q3AttributeSet_Add on your element and the element wasn’t in
the set. The from parameter is whatever the user passes in as the data pointer
in Q3Set_Add. The to parameter is a pointer to an uninitialized block of
sizeOfElement (from the Register call) bytes. If this method isn’t supplied, the
default is to copy sizeOfElement bytes from the source to the destination.

• kQ3MethodTypeElementCopyReplace — Called when an application calls
Q3Set_Add or Q3AttributeSet_Add on your element and the element already
exists in the set. The from parameter is whatever the user passes in as the data
pointer in Q3Set_Add. The to parameter is a pointer to a block of sizeOfElement
bytes that contains the element data to be replaced. You must reuse or delete any
data in the destination before copying over it. If this method isn’t supplied, the
default is to call ElementDelete on the to parameter, then CopyAdd(from, to).

• kQ3MethodTypeElementCopyGet — Called when an application calls Q3Set_Get
or Q3AttributeSet_Get on your element. The from parameter is a pointer to the
block of element data to get. The to parameter is a pointer to whatever the user
passes in as the data pointer in Q3Set_Get. If this method isn’t supplied, the
default is to copy sizeOfElement bytes from the source to the destination.

• kQ3MethodTypeElementCopyDuplicate — Called when an application calls
Q3Object_Duplicate on a set or attribute set, or duplicates an object containing
a set. The from parameter is a pointer to the block of element data to duplicate.
The to parameter is a pointer to an uninitialized block of sizeOfElement bytes.
If your element contains objects, call Q3Object_Duplicate to create an identical
copy. If this method isn’t supplied, the default is to copy sizeOfElement bytes
from the source to the destination.

• kQ3MethodTypeElementDelete — Called when an application deletes a set
containing your element, or clears your element with Q3Set_Clear or

ADDING CUSTOM DATA TO QUICKDRAW 3D OBJECTS 85

Q3AttributeSet_Clear. It takes a pointer to the block of element data. It should
deallocate any data in your custom element. If this method isn’t supplied, the
default is a no-op.

• kQ3MethodTypeAttributeInherit — Your metahandler should return a
TQ3Boolean value for this method. Returning kQ3True indicates that this
attribute should be inherited in the hierarchy, kQ3False that it should not. The
default is kQ3False.

• kQ3MethodTypeAttributeCopyInherit — Called when your attribute is
inherited in the view stack (during rendering) or when the user calls
Q3AttributeSet_Inherit with an attribute set containing your attribute. The
from parameter is a pointer to the block of attribute data to inherit. The to
parameter is a pointer to an uninitialized block of sizeOfElement bytes. The
semantics of this call are similar to kQ3MethodTypeElementCopyDuplicate,
although you should avoid duplicating data unless required. For example, if
your attribute contains pointers to shared objects, you should copy them by
calling Q3Shared_GetReference instead of Q3Object_Duplicate. If this method
isn’t supplied, the default is to copy sizeOfElement bytes from the source to the
destination. This method should be implemented to be as fast as possible, as it
occurs during rendering.

Listing 1 shows a typical metahandler for a custom element in QuickDraw 3D. Take
a look at the QuickDraw 3D header file QD3DIO.h to see the object methods and at
QD3DSet.h to see the element and attribute methods.

ATTACHING YOUR CUSTOM DATA
Now we’ll show you how to add the custom data you’ve defined to a set or an
attribute set and then attach that set or attribute set to an object. Note that when you

develop Issue 26 June 199686

Listing 1. A typical metahandler for a custom element

TQ3FunctionPointer MyMetaHandler(TQ3MethodType methodType)
{

switch (methodType) {
case kQ3MethodTypeObjectTraverse:

return (TQ3FunctionPointer) MyElementTraverse;
case kQ3MethodTypeObjectWrite:

return (TQ3FunctionPointer) MyElementWrite;
case kQ3MethodTypeObjectReadData:

return (TQ3FunctionPointer) MyElementReadData;
case kQ3MethodTypeElementCopyAdd:

return (TQ3FunctionPointer) MyElementCopyAdd;
case kQ3MethodTypeElementCopyReplace:

return (TQ3FunctionPointer) MyElementCopyReplace;
case kQ3MethodTypeElementCopyGet:

return (TQ3FunctionPointer) MyElementCopyGet;
case kQ3MethodTypeElementCopyDuplicate:

return (TQ3FunctionPointer) MyElementCopyDuplicate;
case kQ3MethodTypeElementDelete:

return (TQ3FunctionPointer) MyElementDelete;
default:

return (TQ3FunctionPointer) NULL;
}

}

want to attach custom data to a geometric object or some part of a geometric object,
you actually have a choice of where to attach the data. You can add the data to an
attribute set and attach it to the geometry or some part of the geometry, or you can
add the same data to a set and attach that set to a shape, since the geometry inherits
from the shape. Where and how data is attached to an object is really up to the
semantics of your application. Just be sure to consistently attach data in the same
place on all objects, and document what you’ve done, especially if you want your
custom element or attribute to be used by other developers.

To illustrate this concept, Listing 2 creates a new attribute set, adds our custom data
to the attribute set, and attaches the attribute set to a mesh vertex. This is a fine way
to customize a geometric object or some part of a geometric object. But if you want
to add your custom data to some other subclass of the Shape class, you’ll want to add
the data to a set and attach that set to the shape. Listing 3 does just that.

A CASE IN POINT: ATTACHING A URL TO AN OBJECT
Now we’re going to illustrate how to define, register, and attach a custom element to
a QuickDraw 3D object, and how to extract and use that custom data. Our custom
element is a string containing a URL (uniform resource locator, a popular way of
specifying the location of an online resource on the Web); we’ll attach it to a
geometry object. We make it an element rather than an attribute because it doesn’t
need to be inheritable. When the object we attach the custom element to is read into
one of the many viewers that support custom elements, the viewer can communicate
through Apple events with applications like Netscape Navigator™ (or your favorite
Web browser) to produce 3D navigation. A sample application that illustrates the idea
is included on this issue’s CD. See “3D Web Content Using 3DMF and Netscape
Navigator” for more details.

The custom attribute we define and use here, W3Anchor, is one of the six custom
elements described later in this article.

ADDING CUSTOM DATA TO QUICKDRAW 3D OBJECTS 87

Listing 2. Attaching an attribute set to a vertex

/* Get the existing attribute set (if any). */
Q3Mesh_GetVertexAttributeSet(mesh, someVertex, &theAttrSet);

/* If there's no attribute set we get back NULL and create one. */
if (theAttrSet == NULL) {

/* Create a new empty attribute set. */
theAttrSet = Q3AttributeSet_New();
if (theAttrSet == NULL)

return kQ3Failure;
Q3Mesh_SetVertexAttributeSet(mesh, someVertex, theAttrSet);

}

/* Add the custom data to the attribute set. */
if (Q3AttributeSet_Add(theAttrSet, kMyCustomDataType, &myCustomData)

== kQ3Failure) {
Q3Object_Dispose(theAttrSet);
return kQ3Failure;

}
Q3Object_Dispose(theAttrSet);
return kQ3Success;

DEFINING OUR DATA STRUCTURE
We first need to define the internal structure of the data associated with our custom
element type. We’ll use the W3AnchorData structure, defined like this:

typedef enum W3AnchorOptions {
kW3AnchorOptionNone = 0,
kW3AnchorOptionUseMap = 1

} W3AnchorOptions;

typedef struct W3AnchorData {
char *url;
TQ3StringObject description;
W3AnchorOptions options;

} W3AnchorData;

The url field is a C string consisting of the URL data. The description object is
information that the application must present to users to enable them to decide
whether the site or data pointed to by the URL is worth examining (since the process
could take some time). Note that since the description is a string object, it can be
specified in a script other than Roman. The options field specifies whether the
position (x,y) that was clicked should be passed back to the Web viewer.

REGISTERING OUR CUSTOM ELEMENT
Before we can use our custom element, we need to tell QuickDraw 3D that we’ve
defined it, by implementing a registration routine. There may be occasions when we
want to recognize a custom element for only a limited period of time, so an unregister
routine can also be implemented.

We need to define a couple of parameters before we can register our custom element:
an object type, which is a four-character identifier packed into a long word, and a
string, which is used to help uniquely identify the element. As mentioned earlier, both

develop Issue 26 June 199688

Listing 3. Attaching a set to a shape

/* Get the existing set (if any). */
Q3Shape_GetSet(shape, &theSet);

/* If there's no set, add one. */
if (theSet == NULL) {

theSet = Q3Set_New();
if (theSet == NULL)

return kQ3Failure;
Q3Shape_SetSet(shape, theSet);

}

/* Add the custom data to the set. */
if (Q3Set_Add(theSet, kMyCustomDataType, &myCustomData)

== kQ3Failure) {
Q3Object_Dispose(theSet);
return kQ3Failure;

}
Q3Object_Dispose(theSet);
return kQ3Success;

ADDING CUSTOM DATA TO QUICKDRAW 3D OBJECTS 89

With the advent of Netscape Navigator 2.0 and its plug-
in architecture, you can extend content on the Web to
handle multimedia or 3D media. The ease of publishing
3D content will make Apple’s 3DMF data format
ubiquitous on the Web. A sample Netscape plug-in,
Whurlplug, on this issue’s CD shows what a 3D plug-in
based on QuickDraw 3D might look like.

Whurlplug uses the QuickDraw 3D Viewer shared library
as its interface for displaying 3D Web content. The
Viewer gives users of Whurlplug a seamless integration
with the current metaphors for handling 3D content on the
Mac OS. Whurlplug also tries to use the same human
interface metaphors and behaviors as Netscape.

Whurlplug can be embedded in a Hypertext Markup
Language (HTML) page or take over the whole window
(as in the URL example in this article). If the plug-in is
embedded, it will assume the same background color as
the HTML page it’s embedded in. Holding down the
mouse button on the Viewer toolbar will pop up a menu
allowing you to set the Viewer options and save the Web-
based 3DMF object to disk, so it’s consistent with other
elements of the Netscape browser’s user interface.

There are a number of ways to present a 3D scene to a
Web user. You can enable the user to fly through a 3D
world, or simply to view an HTML page with 3D content.
To handle the different ways that Whurlplug might be
used, we extended the HTML syntax that the plug-in
understands if it’s embedded in a page. Here’s the Embed
command syntax:

<EMBED SRC="3DObject.3dmf" WIDTH=100 HEIGHT=200>

Six more arguments for this extension to HTML can be
used in a description of a 3DMF object:

• ACTIVE — If this is set to true, the user can examine
the 3D object through the controls provided by the
QuickDraw 3D Viewer and keyboard navigation. If it’s
false, the user can interact with the 3D object only if it
has URL links to other pages inside it.

• BGCOLOR — Allows the page author to set the
background color of the plug-in or model to the color
supplied. BGCOLOR="#ffffff" would set the background
color to white. The string is defined as a number
consisting of six hexadecimal digits, each pair of
which describes the red, blue, and green components
(in that order).

• SPIN — If this is set to true, the 3D object will spin
about a moving axis defined by Whurlpug; otherwise,
the object won’t spin.

• ROTATE — This also allows the 3D object to spin when
viewed, but the page author defines the axis of
rotation. The syntax is ROTATE="x y z" where x, y,
and z are floating-point values from –180.0 to 180.0
defining the axis of rotation.

• TOOLBAR — If this is set to false, the toolbar at the
bottom of the viewer isn’t shown. The default is true.

• RENDER — Tells the plug-in which renderer to use.
RENDER=interactive (the default) indicates the
interactive software renderer; RENDER=wireframe
indicates the wireframe renderer that ships with
QuickDraw 3D.

Whurlplug understands 3D models that have URL or
anchor links in them. If the cursor moves over a 3D object
that has an anchor link in it, the object flashes red and the
URL is displayed in Netscape’s toolbar. Clicking on that
object causes Netscape to go to that URL, which could be
anything from another QuickDraw 3D object to any type
of page that Netscape understands. Currently, the only
way to add anchors to a QuickDraw 3D object is through
the applications BeWhurled (on this issue’s CD), 3D
World, and Studio Pro Blitz, but the URL example in this
article shows how you can add the anchor custom
attribute to data in your own 3D application.

The mime type and subtype for 3DMF are x-world/x-3dmf.
The extensions that Whurplug understands are .3dmf,
.3dm, .qd3d, and .qd3. Your Web server has to either set
the mime type and subtype of 3D files to x-world/x-3dmf
or name the files so that the extension is one of those
Whurlplug understands.

Following is a trivially simple HTML description of a Web
page that uses this viewer. By the time you read this, there
will be (we hope) a number of sites with 3DMF data on
their Web pages that can be viewed in Netscape. Check
out the QuickDraw 3D Web page for more details.

<TITLE> A 3D Web page <\TITLE>
<EMBED SRC="3DObject.3dmf" WIDTH=200 HEIGHT=200

SPIN=true ACTIVE=false>
<P>
Click here for a full

view

3D WEB CONTENT USING 3DMF AND NETSCAPE NAVIGATOR
BY JOHN LOUCH

of these need to be registered with the Developer Support Center to avoid name
space collisions, and each must be unique within their respective name spaces.

#define kElementTypeW3Anchor \
((TQ3ElementType) Q3_OBJECT_TYPE('w','w','w','a'))

#define kElementNameW3Anchor "W3Anchor"

Now we register the custom element:

TQ3Status W3Anchor_Register(void)
{

gW3AnchorClass = Q3ElementClass_Register(kElementTypeW3Anchor,
kElementNameW3Anchor, sizeof(W3AnchorData), W3Anchor_MetaHandler);

return (gW3AnchorClass == NULL ? kQ3Failure : kQ3Success);
}

When you register custom attributes or elements with Q3ElementClass_Register,
the name you use doesn’t have to be the exact same name used by other developers
for that type. As an example, the W3Anchor type is defined as 'wwwa' and its
name is “W3Anchor.” An Apple implementation of this attribute might be
registered as Q3ElementClass_Register('wwwa', "Apple:W3Anchor"), and a third
party’s implementation might be registered as Q3ElementClass_Register('wwwa',
"Microspot:W3Anchor"). The name is unimportant; because both of the
implementations have the same type, data written by one will, if the implementation
of both is the same, be read by the other.

DEFINING OUR METAHANDLER
Whenever QuickDraw 3D needs to operate on the data encapsulated by our custom
element, it will call our metahandler, which we supplied a pointer to in the
registration routine. Our metahandler (Listing 4) returns the addresses of the

develop Issue 26 June 199690

Listing 4. The metahandler for our custom element

static TQ3FunctionPointer W3Anchor_MetaHandler(TQ3MethodType methodType)
{

switch (methodType) {
case kQ3MethodTypeObjectTraverse:

return (TQ3FunctionPointer) W3Anchor_Traverse;
case kQ3MethodTypeObjectWrite:

return (TQ3FunctionPointer) W3Anchor_Write;
case kQ3MethodTypeObjectReadData:

return (TQ3FunctionPointer) W3Anchor_ReadData;
case kQ3MethodTypeElementCopyAdd:
case kQ3MethodTypeElementCopyGet:
case kQ3MethodTypeElementCopyDuplicate:

return (TQ3FunctionPointer) W3Anchor_CopyAdd;
case kQ3MethodTypeElementCopyReplace:

return (TQ3FunctionPointer) W3Anchor_CopyReplace;
case kQ3MethodTypeElementDelete:

return (TQ3FunctionPointer) W3Anchor_Delete;
default:

return (TQ3FunctionPointer) NULL;
}

}

methods associated with our element type. We supply object I/O methods to preserve
our element during I/O, and copy methods to allocate and manage the string
memory. We return NULL by default, to indicate that unknown methods aren’t
supported and that a default method should be used. The definition for each of the
routines is on this issue’s CD.

IMPLEMENTING THE METHODS
Listing 5 shows how the three element methods — W3Anchor_CopyAdd,
W3Anchor_CopyReplace, and W3Anchor_Delete — are implemented. Note in
Listing 4 that the same function, W3Anchor_CopyAdd, is used for the CopyAdd,
CopyGet, and CopyDuplicate methods. This means that the data pointer passed
into Q3Set_Add and Q3Set_Get is a pointer to the same structure as the internal
structure. If you want to see how the I/O methods are implemented, look at the
source code for our custom element on the CD.

ADDING CUSTOM DATA TO QUICKDRAW 3D OBJECTS 91

Listing 5. Implementing the element methods

/* W3Anchor_CopyAdd adds the WWW data from src to dst. */
static TQ3Status W3Anchor_CopyAdd(W3AnchorData *src, W3AnchorData *dst)
{

long i;

/* Check to see if src is a valid W3Anchor. */
if (src->url == NULL)

return kQ3Failure;

/* We need to allocate memory for the string that belongs to dst. */
i = strlen(src->url);
if (i == 0)

return kQ3Failure;
dst->url = (char *) malloc(i + 1);
if (dst->url == NULL)

return kQ3Failure;

/* Copy the string from src to dst. */
strcpy(dst->url, src->url);

/* Check to see if src had a description. */
if (src->description) {

TQ3StringObject stringReference;
/* Get a reference to src's description object. */
stringReference = Q3Shared_GetReference(src->description);
if (stringReference == NULL)

return kQ3Failure;
dst->description = stringReference;

} else
dst->description = NULL;

/* Just copy the options, since they're just values. */
dst->options = src->options;
return kQ3Success;

}

(continued on next page)

develop Issue 26 June 199692

/* W3Anchor_CopyReplace substitutes the WWW data in src for the data
in dst. */

static TQ3Status W3Anchor_CopyReplace(W3AnchorData *src,
W3AnchorData *dst)

{
long i;
char *c;

/* Check to see if src is a valid W3Anchor. */
if (src->url == NULL)

return kQ3Failure;

/* We need to have enough memory for the string from src. */
i = strlen(src->url);
if (i == 0)

return kQ3Failure;
c = (char *) realloc(dst->url, i + 1);
if (c == NULL)

return kQ3Failure;

dst->url = c;
strcpy(dst->url, src->url);
if (src->description) {

TQ3StringObject stringReference;

/* Get a reference to src's description object. */
stringReference = Q3Shared_GetReference(src->description);

if (stringReference == NULL)
return kQ3Failure;

if (dst->description)
Q3Object_Dispose(dst->description);

dst->description = stringReference;
} else

dst->description = NULL;
dst->options = src->options;
return kQ3Success;

}

/* W3Anchor_Delete cleans up the references and memory allocations. */
static TQ3Status W3Anchor_Delete(W3AnchorData *myURLData)
{

if (myURLData->url != NULL) {
free(myURLData->url);
myURLData->url = NULL;

}
if (myURLData->description != NULL) {

Q3Object_Dispose(myURLData->description);
myURLData->description = NULL;

}
return kQ3Success;

}

Listing 5. Implementing the element methods (continued)

ATTACHING THE CUSTOM ELEMENT
Once we’ve set up our metahandler and associated routines, we can use the normal
set and attribute set routines to add elements and attributes of our custom type.
Listing 6 shows how we add our custom element to a set and attach the set to a shape
object. Our geometric object will then inherit the set from the shape.

GETTING THE CUSTOM DATA FROM THE OBJECT
At some point your application will want to extract the custom data you’ve attached
to an object. In our sample application, that point is reached when the user clicks on
an object or the cursor passes over an object. The W3Anchor_GetFromObject
routine (Listing 7) gets custom data from an object passed into the routine, using the
QuickDraw 3D routines Q3Set_Contains and Q3Set_Get.

W3Anchor_GetFromObject includes a workaround for an interesting problem. In
QuickDraw 3D before version 1.0.4, if an element or attribute type was unknown
(in other words, if a metahandler wasn’t installed for the element or attribute), the
element or attribute would be read as an unknown object. When a set was defined as
part of an object derived from the Shape class, the set was written out to the metafile
just fine; but when the set was read from the metafile into the shape’s set, it was read
as an unknown object, resulting in an additional, unnecessary level of containment, as
illustrated in Figure 3. If you’re reading custom elements or attributes from 3DMF
files, you need to ensure that your users have version 1.0.4 or later, or you’ll need to
work around this issue.

ADDING CUSTOM DATA TO QUICKDRAW 3D OBJECTS 93

Listing 6. Adding our custom element to a set and attaching the set to an object

TQ3AttributeSet theSet;
W3AnchorData QD3DHomePage;

theSet = Q3Set_New();
if (theSet) {

char *description = "Apple QuickDraw 3D Home Page",
*url = "http://www.info.apple.com/qd3d";

QD3DHomePage.url = malloc(strlen(url) + 1);
if (QD3DHomePage.url) {

strcpy(url, QD3DHomePage.url);
QD3DHomePage.description = Q3CString_New(description);
QD3DHomePage.options = 0;

/* Add the anchor data to the set. */
Q3Set_Add(theSet, kElementTypeW3Anchor, &QD3DHomePage);

/* The data has been copied and objects referenced, so we need to
clean up after ourselves. */

free(QD3DHomePage.url);
Q3Object_Dispose(QD3DHomePage.description);

}

/* Attach the set to a shape. */
Q3Shape_SetSet(aShape, theSet);
Q3Object_Dispose(theSet);

}

develop Issue 26 June 199694

Listing 7. Getting our custom data from the object

TQ3Boolean W3Anchor_GetFromObject(TQ3Object object, W3AnchorData *data)
{

TQ3SetObject set;
TQ3Boolean result;

W3Anchor_Empty(data);
data->url = NULL;
data->description = NULL;
set = NULL;

/* The object passed in must be a shape or a geometry. */
if (Q3Object_IsType(object, kQ3ShapeTypeGeometry) == kQ3True) {

Q3Geometry_GetAttributeSet(object, &set);
if (set != NULL) {

result = W3Anchor_GetFromSet(set, data);
Q3Object_Dispose(set);
if (result == kQ3True)

return result;
set = NULL;

}
}
if (Q3Object_IsType(object, kQ3SharedTypeShape) == kQ3True) {

Q3Shape_GetSet(object, &set);
if (set != NULL) {

result = W3Anchor_GetFromSet(set, data);
Q3Object_Dispose(set);
return result;

}
}
return kQ3False;

}

TQ3Boolean W3Anchor_GetFromSet(TQ3SetObject set, W3AnchorData *data)
{

TQ3Object unkObj;
TQ3Boolean result;
TQ3GroupPosition position;

result = kQ3False;

/* Ideally, you'll find one of these. */
if (Q3Set_Contains(set, kElementTypeW3Anchor) == kQ3True) {

if (Q3Set_Get(set, kElementTypeW3Anchor, data) == kQ3Failure)
return kQ3False; /* Error: Contains, but can't get! */

return kQ3True;
}

/* But due to a bug in QuickDraw 3D versions prior to 1.0.4, the
element may be contained within another set in the unknown
element. */

(continued on next page)

Similarly, if a metafile containing an object with a custom element attached to it is
read by an application that doesn’t know about that custom element, when the object
is written out its associated custom element will be written out as an unknown object.
The moral of this story is that you should check inside an unknown object to see if
the type of attribute it contains is the one you’re looking for.

SENDING THE URL TO A BROWSER
Once we’ve extracted the URL from our custom element, we want to send it to
Netscape Navigator or a similar browser. Listing 8 shows the basics of how to do this
(we’ve left out the proper error handling in the interest of saving space).

A more complete example on this issue’s CD shows how to detect whether
Netscape Navigator is running and, if not, to launch the application. It shows other
cool uses for custom elements and attributes as well.•

ADDING CUSTOM DATA TO QUICKDRAW 3D OBJECTS 95

if (Q3Set_Contains(set, kQ3ElementTypeUnknown) == kQ3True) {
if (Q3Set_Get(set, kQ3ElementTypeUnknown, &unkObj) == kQ3Failure)

return kQ3False; /* Error: Contains, but can't get! */
if (unkObj == NULL)

return kQ3False;
/* Unknown objects may contain one object or a group. */
if (Q3Object_IsType(unkObj, kQ3SharedTypeSet) == kQ3True)

result = W3Anchor_GetFromSet(unkObj, data);
else if (Q3Object_IsType(unkObj, kQ3ShapeTypeGroup) == kQ3True) {

Q3Group_GetFirstPositionOfType(unkObj, kQ3SharedTypeSet,
&position);

if (position != NULL) {
Q3Group_GetPositionObject(unkObj, position, &set);
result = W3Anchor_GetFromSet(set, data);

}
}
Q3Object_Dispose(unkObj);

}
return result;

}

Listing 7. Getting our custom data from the object (continued)

Custom element in memory�
and after writing

Custom element after reading

Set object

Shape object

Unknown object

Set object
Custom�
element

Set object

Shape object

Custom�
element

Figure 3. The problem with reading a set from a metafile

NEW CUSTOM ELEMENTS AND ATTRIBUTES
In future releases of QuickDraw 3D, you’ll be able to ship your custom elements and
attributes as a shared library that plugs into QuickDraw 3D, as opposed to having to
compile the code within your application. This will allow for the custom elements
and attributes to be valid for all QuickDraw 3D applications running on the machine.

In the meantime, for your custom element or attribute to be shared and understood
by other applications, you can propose it to the Developer Support Center
(devsupport@applelink.apple.com or AppleLink DEVSUPPORT), and they’ll pass
the information on to the QuickDraw 3D team. Be sure to specify the data format,
describe how the object is to be used, and include a C-based implementation. We
want to avoid the problems experienced with QuickDraw’s picture comments, where
the behavior or meaning of the data was often not clear. If enough developers request
similar attributes or elements, we’ll add them to the next release of QuickDraw 3D,
so that they get registered at startup time. In any case, we’ll make the specifications
for custom attributes and elements available on the Developer CD Series, the develop
Bookmark CD, and the Web (http://www.info.apple.com/qd3d).

Following are descriptions of six new custom elements that address needs expressed
by several of our developers. Implementations for these are provided on the CD, in
the file CustomAttribute_Lib.c. (Yes, these are elements, even though we on the
QuickDraw 3D team have been in the sloppy habit of referring to them as attributes,
and both the filename and the names of some of the elements reflect that habit. Just
make sure that you’re more precise in your use of the terms element and attribute, now
that you know what the difference is from reading this article.) In addition, the CD
contains a Technote describing some custom elements and attributes defined by our
developer community.

develop Issue 26 June 199696

Listing 8. Sending the URL to a browser

Boolean OpenURL(char *name)
{

AppleEvent theAppleEvent, theReply;
OSErr err;

/* If Netscape isn't around, get out. */
if (Find_Netscape() == false)

return false;

/* Netscape is here; let's send them an Apple event. */
err = AECreateAppleEvent('WWW!', 'OURL', &theAddressDesc,

kAutoGenerateReturnID, kAnyTransactionID, &theAppleEvent);
err = AEPutParamPtr(&theAppleEvent, keyDirectObject, typeChar, name,

strlen(name));
err = AESend(&theAppleEvent, &theReply, kAEWaitReply,

kAENormalPriority, kNoTimeOut, NewAEIdleProc(MyIdle),
NewAEFilterProc(MyFilter));

if (err == noErr)
return true;

else
return false;

}

NAMEATTRIBUTE
This element contains a string object. It can be attached to any object in the Shape
class or any subclass of the Shape class. It can also be added to an attribute set and
assigned to a geometry or faces. (In future releases we’ll have other subclasses to the
String class, allowing you to use non-ASCII characters.)

Written out in a 3DMF text metafile, this element appears as follows:

Container (
NameAttribute ()
CString ("1 meter box")

)

SCALEATTRIBUTE
This element, of type double, determines the relation between one unit in the model
and one meter. For example, if one unit in your model is equivalent to 10 meters, the
scale should be set to 10.

This element, and all the elements whose descriptions follow, should be attached only
to groups or geometry objects. Also, for each of these elements, traversal to find the
element should be top down; this means that if it’s attached to a group, there’s no
need to traverse the objects within the group.

If you add objects that have a scale element to a group, make sure that the objects are
transformed (placed in a group with a transform and then added to the main group)
so that the scale for the group is uniform.

ScaleAttribute (1.0)

UPVECTOR AND FORWARDDIRECTION
These elements, of type TQ3Vector3D, specify the up vector and forward direction
for a model. They’re used to ensure that the orientation of an object read from a
metafile is correct (that is, that it has the right side up and faces the right way). As for
ScaleAttribute, if you add objects that have either of these elements to a group, make
sure that the objects are transformed.

UpVector (0.0 1.0 0.0)

ForwardDirection (1.0 0.0 0.5)

W3ANCHOR
This element contains a URL in the form of a C string (ASCII only), an option field,
which can be set to kURLReferenceOptionUseMap (meaning that the application
should attach a pointer to the URL before sending the URL to the server), and a
string object to encapsulate the description of the site pointed to by the URL (note
that this allows for non-ASCII descriptions in the future).

In the following 3DMF text, the “0” signifies that there’s no map. “Apple's home
page” is shown as a CString when it’s actually a TQ3StringObject, because that’s how
we decided to represent strings in the metafile.

Container (
W3Anchor ("http://www.info.apple.com" 0)
CString ("Apple's home page")

)

ADDING CUSTOM DATA TO QUICKDRAW 3D OBJECTS 97

W3INLINE
This element contains a URL in the form of an C string (ASCII only). The group or
geometry that this element is attached to acts as a proxy for the data pointed to by the
URL. This allows the application to perform the URL data retrieval on a separate
thread or in the background, or delay the operation until the user expresses interest
in the proxy. Once the URL data is retrieved, the data should replace the object that
holds the element.

W3Inline ("http:www.info.apple.com")

CUSTOMIZING YOUR WORLD
This article has given an overview of what you can do with custom elements and
attributes. With your imagination and a few simple routines, you can extend the rich
capabilities of QuickDraw 3D. Have fun with custom elements and attributes, and
don’t forget to tell us about them if you want other developers to be able to use yours!

develop Issue 26 June 199698

Thanks to our technical reviewers Rick Evans,
Robin Landsbert, Philip McBride, Klaus Strelau,

and David Vasquez, and also to the entire
QuickDraw 3D team.•

• “QuickDraw 3D: A New Dimension for Macintosh Graphics” by Pablo Fernicola
and Nick Thompson, develop Issue 22, and “The Basics of QuickDraw 3D
Geometries” by Nick Thompson and Pablo Fernicola, develop Issue 23.

• 3D Graphics Programming With QuickDraw 3D (Addison-Wesley, 1995).

• http://www.info.apple.com/qd3d — the QuickDraw 3D home page, containing
links to sites with inline 3DMF data.

RELATED READING

Charles Fisher, Editor
EDUCATION AND TECHNOLOGY
Reflections on a Decade of Experience in the Classroom
To commemorate the tenth anniversary of the Apple Classrooms of Tomorrow project,
Education and Technology brings together a diverse group of educators to reflect on what
we know about computer-aided instruction. From the latest research findings to
practical classroom experience, this book provides an overview of the promise and
prospects for technology in education. While the authors recognize that technology
itself is not a panacea for schooling’s problems, they do shed light on the ways in which
it can serve as a catalyst for educational innovation.

JOSSEY-BASS PUBLISHERS
350 Sansome Street, San Francisco CA 94104 • Fax toll-free: 800.605.2665
Call toll-free: 800.956.7739 • Visit our web site at http ://www.josseybass.com

To order, call toll-free: 800.956.7739

PRIORITY CODE:P9662

New from Jossey-Bass and Apple Press

PRINT HINTS: THE TOP 10 PRINTING CRIMES REVISITED 99

They say some things never change. Although it’s been
four years since Pete “Luke” Alexander wrote about
the top 10 printing crimes in develop, people are still
committing some of the same crimes. There are also a
few new crimes to add to the list. So, here they are, the
updated top 10 printing crimes (ordered on a combined
frequency and hideousness scale):

10. Having insufficient free memory at print time.

9. Coloring outside the lines.

8. Misusing the PostScriptHandle picture comment.

7. Calling PrintDefault or PrValidate before PrOpen.

6. Avoiding the print dialogs, especially PrJobDialog.

5. Accessing undocumented fields in the print record.

4. Not checking error return values.

3. Making low-level Printing Manager calls.

2. Not using QuickDraw GX print dialogs if
QuickDraw GX is present.

1. Adding printing to your application last.

Now let’s look at how to avoid these crimes. The
solutions are relatively easy.

SOLVING THE PRINTING CRIMES

10. Having insufficient free memory at print time.

Some printer drivers use a lot of memory. When a
driver runs out of memory, the results are usually pretty
bad, so you should give printer drivers as much memory
as possible. Unfortunately, memory requirements vary
from driver to driver, so it’s hard to predict how much
memory a driver will need.

Solution: Unload all unneeded code and resources
before printing.

9. Coloring outside the lines.

Many applications draw outside the printable area of
the page when printing. This can happen if the user has
extended objects beyond the printable area. Drawing
unneeded objects causes extra work for the driver and
the printer, which affects performance. In some cases,
the driver also needs to allocate extra memory to hold
the objects or the enclosing rectangle.

Solution: Draw only the portions of objects that will
appear on the page. This can be determined by looking
at the rPage field in the printer information record
(which is in the prInfo field of the print record).

8. Misusing the PostScriptHandle picture comment.

The PostScriptHandle picture comment is designed to
add PostScript™ code to a page containing QuickDraw
graphics. It’s not designed to send multiple pages of
pre-generated PostScript code to a printer (for that,
you need to use the Pap.WorkStation.o library).

Solution: Use the PostScriptHandle picture comment
only to draw a self-contained image, which will be
added to any QuickDraw graphics already on the page.
If the PostScript code needs to change the graphics
state, it should save and restore the state. Think of the
picture comment as a way to include an EPS image,
with all the restrictions placed on EPS by Adobe™ (as
specified in Appendix H of the PostScript Language
Reference Manual, second edition). The PostScript code
should be compatible with both Level 1 and Level 2
PostScript, and you should include a QuickDraw
version of the graphic so that your users can print to
a non-PostScript printer.

For more information on how to use the PostScriptHandle
picture comment, see Technote 1032, “Mixing QuickDraw &
PostScript Printing from Your App: Some Gotchas,” and
Appendix B of Inside Macintosh: Imaging With QuickDraw.•

7. Calling PrintDefault or PrValidate before PrOpen.

The documentation for the Printing Manager (Chapter
9 of Inside Macintosh: Imaging With QuickDraw) mentions
that you need to call PrOpen before calling any other
Printing Manager functions. Unfortunately, the
descriptions for PrintDefault and PrValidate don’t
repeat this warning.

PRINT HINTS

The Top 10
Printing Crimes
Revisited

DAVE POLASCHEK

DAVE POLASCHEK supports printing and font-related issues in
Apple’s Developer Technical Support group. Dave was last seen

wandering the halls muttering, “This will all be better in Mac OS 8”
and laughing maniacally.•

develop Issue 26 June 1996100

Solution: Always call PrOpen before calling any other
Printing Manager calls.

6. Avoiding the print dialogs, especially PrJobDialog.

Some applications try to avoid print dialogs because
either user interaction isn’t possible or the developer
thinks the user will make a mistake. Because all of the
many options for the current drivers, most notably
LaserWriter 8, cannot be stored in the print record,
you need to call PrJobDialog so that the driver can
read in the options from where they’re stored (usually
in the preferences file). If you don’t call PrJobDialog,
the driver can’t set up the print record correctly, and
you might not get the output you expected. The solution
should be to call PrJobMerge, but in many drivers
PrJobMerge does a less than perfect job.

Solution: Call PrJobDialog before printing to set up
your print record correctly, or use QuickDraw GX,
which supports dialog-free printing.

5. Accessing undocumented fields in the print record.

Many of the fields in the print record are undocumented
or documented as private. Printer drivers can use these
fields however they choose. What works for one driver
might cause another to crash or to print zillions of
pages you don’t want.

Solution: Use only the fields in the print record that are
documented as public in Chapter 9 of Inside Macintosh:
Imaging With QuickDraw.

4. Not checking error return values.

After any call to a Printing Manager function, you
should check PrError. If you’re calling PrGeneral, you
should also check the iError field in the TGnlData
structure. Be aware that newer drivers return errors
that older drivers didn’t. For example, PrStlDialog in
LaserWriter 8 can return an error if the preferences file
is missing or corrupted; many applications don’t check
for this error, and later crash when they’ve pushed the
driver completely off the cliff.

Solution: Always check and handle printing errors. See
the Macintosh Technical Note “A Printing Loop That
Cares...” (PR 10) and the article “Meet PrGeneral” in
develop Issue 3.

3. Making low-level Printing Manager calls.

The low-level Printing Manager routines, such as
PrDrvrOpen, are obsolete and unsupported.

Solution: Never call the low-level routines.

2. Not using QuickDraw GX print dialogs if
QuickDraw GX is present.

When you call the classic Printing Manager functions
and QuickDraw GX is active, the user gets the old-style
“compatibility dialogs,” which lack many of the features
that are provided in the QuickDraw GX print dialogs.
There are two problems with this: the user doesn’t have
access to all of the QuickDraw GX features; and when
some applications call the QuickDraw GX print dialog
functions and others don’t, two very different printing
experiences are presented to the user.

Solution: Call the QuickDraw GX print dialog functions
in your print loop if QuickDraw GX is present. For
help, see the article “Adding QuickDraw GX Printing
to QuickDraw Applications” in develop Issue 19. The
complete documentation can be found in Inside
Macintosh: QuickDraw GX Printing.

1. Adding printing to your application last.

Four years later, this is still the number-one printing
crime. A lot of developers leave printing until near the
end of the product development cycle. When problems
are encountered, Developer Technical Support gets
messages like: “My application can’t print, and I’ve got
to ship today. Please answer as soon as possible.”

Solution: Hook up your print loop as early as possible.
As you add each new feature to your application, print a
page or two. Make sure that things are still working as
expected. When you take this approach, any features
that cause printing problems get noticed early, and
you’ll have time to fix them.

A CLOSING NOTE
If you’re committing any of the crimes on this list, your
customers are probably seeing things they don’t like
when they print. This list is also far from comprehensive,
as people continue to find new and unique ways to
abuse the Macintosh print architecture.

Looking ahead, printing will be changing in a big way.
Mac OS 8 will use QuickDraw GX as the printing
model. As changes occur, there will be Technotes,
develop articles, and other sources of information. So
keep your eyes open, and remember, don’t commit too
many printing crimes. Crime doesn’t pay.

Thanks to Pete “Luke” Alexander, Paul Danbold, Dave Hersey,
and Jim Zandee for reviewing this column.•

64-Bit Integer Math on 680x0 Machines

64-BIT INTEGER MATH ON 680x0 MACHINES 101

When an application has to perform integer arithmetic with numbers
larger than 32 bits on both the PowerPC and 680x0 platforms, you
could use the floating-point types of the SANE and PowerPC Numerics
libraries. But if all you really need is a larger integer, a better choice is
to use the existing 64-bit math routines available on the PowerPC
platform and write an equivalent library for the 680x0 Macintosh.
This article presents just such a library.

Developers of PowerPC applications that need 64-bit math can simply call the various
“wide” Toolbox routines. These routines perform addition, subtraction, multiplication,
division, square root, and a few other operations. On the 680x0-based Macintosh, some
of these same routines are available in QuickDraw GX. But if you can’t assume your
customers have QuickDraw GX installed, you need a library that supports 64-bit math.

The Wide library presented in this article works on both platforms and has exactly
the same interface and types as the wide routines in the Toolbox on PowerPC
machines. The library also provides some new routines such as 32-bit to 64-bit add
and subtract and a 64-bit-to-string conversion function. The library is included on
this issue’s CD, along with its source code.

All the routines use the 64-bit data type defined in the header file Types.h, which is
the standard type used for signed 64-bit integers on both the PowerPC and 680x0
Macintosh:

struct wide {
Sint32 hi; /* upper 32 bits (signed) */
Uint32 lo; /* lower 32 bits (unsigned) */

};
typedef struct wide wide, *WidePtr;

THE WIDE ROUTINES
Before plunging into the Wide library, let’s see what 64-bit math routines I’ll be
talking about. First, I’ll introduce those that are available on PowerPC machines,
then those you’ll find on a 680x0 Macintosh with QuickDraw GX, and finally the
routines in the Wide library.

DALE SEMCHISHEN (Dale_Semchishen
@mindlink.net) lives in Vancouver, British Columbia,
with his wife Josephine. He works for Glenayre
Technologies as a paging software developer
(they make the control systems that send messages

to your belt beeper). Recently, he had to accept
the fact that the world is changing when his
retired father started talking about his Internet
provider.•

DALE SEMCHISHEN

POWERPC TOOLBOX
In the header file FixMath.h, the routines listed in Table 1 are defined for 64-bit
math on the PowerPC platform.

680X0 QUICKDRAW GX
On 680x0 machines that have QuickDraw GX installed, all the wide routines for the
PowerPC platform listed in Table 1 are available, with the exception of WideBitShift.
The QuickDraw GX header file GXTypes.h defines the wide routine types and
function prototypes in exactly the same way that the header file FixMath.h does for
PowerPC machines.

In addition, QuickDraw GX on 680x0 machines has a routine that the PowerPC
platform doesn’t have: WideScale. This function returns the bit number of the
highest-order nonzero bit in a 64-bit number. The Wide library implements this
function on the PowerPC platform.

THE WIDE 64-BIT LIBRARY
The Wide 64-bit integer math library on this issue’s CD provides all the wide
routines that are available on PowerPC machines and on 680x0 machines with
QuickDraw GX, plus a few extras. The extra routines, which are available on both
the PowerPC and 680x0 platforms, are listed in Table 2.

WideAssign32, WideAdd32, WideSubtract32. These routines are self-
explanatory.

WideToDecStr. This routine converts a signed 64-bit integer to the SANE string
type decimal, which is also defined by the PowerPC Numerics library. This string
structure is a good intermediate format for final conversion to a string format of your
choosing.

develop Issue 26 June 1996102

Table 1. Wide routines in the PowerPC Toolbox

Routine Operation
WideAdd Add two 64-bit integers
WideCompare Compare two 64-bit integers
WideNegate Negate a 64-bit integer
WideBitShift Shift a 64-bit integer
WideShift Shift a 64-bit integer with rounding
WideSquareRoot Calculate the square root of a 64-bit integer
WideSubtract Subtract two 64-bit integers
WideMultiply Multiply two 32-bit integers
WideDivide Divide a 32-bit integer into a 64-bit integer (32-bit quotient)
WideWideDivide Divide a 32-bit integer into a 64-bit integer (64-bit quotient)

Table 2. Extra routines in the Wide library

Routine Operation
WideAssign32 Set a 64-bit integer to the value from a 32-bit integer
WideAdd32 Add a 32-bit integer to a 64-bit integer
WideSubtract32 Subtract a 32-bit integer from a 64-bit integer
WideToDecStr Convert a 64-bit integer to a SANE decimal string
WideInit Initialize the library (optional)

Since WideToDecStr calls the SANE library to generate the string, SANE must be
linked with your 680x0 application. The SANE library is included with all the major
development systems.

To convert the string returned by WideToDecStr to a Pascal string, call the SANE
routine dec2str.

If you want to generate a localized number, take a look at the article
“International Number Formatting” in develop Issue 16. You could call the
LocalizeNumberString function from that article after converting the output of
WideToDecStr to a Pascal string, or you could modify LocalizeNumberString to
accept the output of WideToDecStr.•

WideInit. The library is self-initializing; the first time you call any wide routine,
WideInit is also called. If the execution speed of your first runtime call to a wide
routine is important, you have the option of calling WideInit during your
application’s startup to avoid that overhead.

The purpose of WideInit is to determine what processor is being used, or emulated;
it calls Gestalt to make this determination. If your Macintosh has a 68020–68040
CPU (68020, 68030, or 68040), the library will use the 64-bit multiply and divide
instructions available on that processor; otherwise, the library will have to call
software subroutines for those operations. On 68000 machines, such as the Macintosh
Plus and SE, the processor’s multiply instruction is limited to 32 bits and the library
has no choice but to use the slower algorithmic approach for multiplication and
division.

SOURCE CODE ON A PLATTER
The library can be compiled on the 680x0 and PowerPC platforms using either the
Metrowerks CodeWarrior or Symantec C development system. The library tests
which development system is compiling it and, if it’s not CodeWarrior or Symantec,
the preprocessor displays an error message saying the library needs to be ported to
your environment. This is necessary because there’s some inline assembly language in
the source file, as discussed later in this section, and different C compilers handle
assembly language differently.

While the interface routines to our 64-bit library are the same on the PowerPC and
680x0 machines, when you compile the library a different subset of routines is linked
in, depending on your environment:

• If you build the library for a 680x0 machine without QuickDraw GX
headers, all the Wide library routines are defined.

• If you build the library for a 680x0 machine and include the QuickDraw
GX header file GXTypes.h or GXMath.h before the Wide library’s Wide.h
header file, the extra routines and the WideBitShift routine are defined.
The other wide routines are already available via the QuickDraw GX
traps.

• When you compile for the PowerPC platform, only the five extra routines
(WideAssign32, WideAdd32, WideSubtract32, WideToDecStr, and
WideInit) are defined in the library. All the other wide routines already
exist in the PowerPC Toolbox. Additionally, if GXTypes.h or GXMath.h
isn’t included, WideScale is defined.

Table 3 summarizes where the wide routines can be found on the different platforms.

64-BIT INTEGER MATH ON 680x0 MACHINES 103

Note that the Wide library decides at compile time which routines to use. When
QuickDraw GX header files are not included, the Wide library routines are called. If
your application needs to make a runtime decision about whether to use QuickDraw
GX, you’ll need to make some changes to the library. One solution is to rename the
Wide library routines and remove the conditional compilation tests for QuickDraw
GX from the source. Then at run time you can decide which version to call — the
QuickDraw GX routines if they’re available, or the internal Wide library routines
if not.

UNIVERSAL HEADERS
The Wide library was compiled with version 2.1 of Apple’s universal headers. The
latest headers are available on this issue’s CD. You should make sure you have a recent
version of these headers, because the library uses the constant GENERATING68K.
If the header file ConditionalMacros.h doesn’t contain this constant, your version of
the universal headers is too old.

680X0 ASSEMBLY LANGUAGE
Some of the routines in the library are written in assembly language to take advantage
of the 64-bit multiply and divide instructions on 68020–68040 machines, because on
these machines the C language will use only 32-bit multiply and divide instructions.
On PowerPC machines, the Wide library doesn’t need assembly language because the
64-bit multiply and divide routines are provided by the Toolbox.

The library’s source file Wide.c contains both C and assembly language. It has been
successfully compiled by Symantec C 7.0.4 and CodeWarrior 7. If you want to
compile the library on any other development system, you may have to do a little
work porting it. Most of the changes will be confined to the conditional compilation
statements at the beginning of Wide.c where the differences in SANE types and
inline assembly language are handled.

A CLOSER LOOK AT SOME WIDE ROUTINES
Now let’s look at a couple of the more interesting routines in the Wide library to see
how they work. See the source code on the CD for full implementations of all the
routines.

develop Issue 26 June 1996104

Table 3. Where to find wide routines

680x0 with
Routine 680x0 QuickDraw GX PowerPC
WideInit Wide.c Wide.c Wide.c
WideAdd Wide.c QuickDraw GX PowerPC Toolbox
WideAdd32 Wide.c Wide.c Wide.c
WideAssign32 Wide.c Wide.c Wide.c
WideBitShift Wide.c Wide.c PowerPC Toolbox
WideCompare Wide.c QuickDraw GX PowerPC Toolbox
WideDivide Wide.c QuickDraw GX PowerPC Toolbox
WideMultiply Wide.c QuickDraw GX PowerPC Toolbox
WideNegate Wide.c QuickDraw GX PowerPC Toolbox
WideScale Wide.c QuickDraw GX Wide.c or QuickDraw GX
WideShift Wide.c QuickDraw GX PowerPC Toolbox
WideSquareRoot Wide.c QuickDraw GX PowerPC Toolbox
WideSubtract32 Wide.c Wide.c Wide.c
WideSubtract Wide.c QuickDraw GX PowerPC Toolbox
WideToDecStr Wide.c Wide.c Wide.c
WideWideDivide Wide.c QuickDraw GX PowerPC Toolbox

WIDEMULTIPLY
WideMultiply (Listing 1) performs a 32-by-32-bit multiply and produces a 64-bit
result. The first and second parameters are the two signed 32-bit integers to be
multiplied together. The return value is a pointer to the 64-bit result that’s also
returned via the third parameter.

WideMultiply first tests whether the library has been initialized yet; if not, it calls
WideInit. Next the routine tests whether the 64-bit multiply instruction is available
on the current CPU by examining the global variable gWide_64instr (which was set
by the initialization routine WideInit). If the instruction is available, WideMultiply
calls the assembly-language function Wide_MulS64 to take advantage of it (as
described later); otherwise, WideMultiply calls the Toolbox routine LongMul to
perform the multiplication, as would be the case on 68000 machines.

WIDESQUAREROOT
The WideSquareRoot function (Listing 2) takes a 64-bit unsigned number as input
and returns a 32-bit unsigned result. All possible results can be expressed in 32 bits,
so overflow isn’t possible.

For this routine I decided to let the SANE library do the work of generating the
square root. The routine converts the 64-bit input number to an 80-bit floating-point
number and then calls the SANE library function sqrt to calculate the square root.
Finally, WideSquareRoot converts the resulting 80-bit floating-point number back to
a 64-bit integer and returns the low-order half of the result.

When a 64-bit integer is converted to an 80-bit floating-point number, no loss in
precision occurs. An 80-bit floating-point number is made up of three parts — the
sign (1 bit), the exponent (15 bits), and the fractional part (64 bits). As you can see, a
64-bit integer exactly fits in the fractional part.

64-BIT INTEGER MATH ON 680x0 MACHINES 105

Listing 1. The multiply routine

wide *WideMultiply (
long multiplicand, /* in: first value to multiply */
long multiplier, /* in: second value to multiply */
wide *target_ptr) /* out: 64 bits to be assigned */

{
/* Initialize Wide library if not already done. */
if (!gWide_Initialized) WideInit();

/* If the 64-bit multiply instruction is available... */
if (gWide_64instr) {

/* Execute the assembly-language instruction MULS.L */
Wide_MulS64(multiplicand, multiplier, target_ptr);

}
else {

/* Call the Toolbox to perform the multiply. */
LongMul(multiplicand, multiplier, (Int64Bit *) target_ptr);

}

return (target_ptr);
}

Two differences between the CodeWarrior and Symantec development systems that
show up in the Wide library’s WideSquareRoot function are the 80-bit floating-point
types and the parameters of the SANE library’s square root function. Under
CodeWarrior, the Wide library internal type Extended_80 is defined as the type
extended80, and Sqrt returns the result to the same location as the input number.
Under Symantec C, Extended_80 is defined as the type extended, and sqrt returns
the result as a function return value.

INTERNAL ASSEMBLY-LANGUAGE ROUTINES
The Wide library uses internal assembly-language routines to execute 64-bit multiply
and divide instructions on machines that support those instructions. In case you’re
interested, here are the details.

Symantec and CodeWarrior handle the asm keyword differently, so I used some
preprocessor commands (#defines) to handle the differences between the two
development systems. Near the beginning of the Wide.c source file there are four
#defines that differ depending on which development system you’re using, as shown
in Table 4.

WIDE_MULS64
Wide_MulS64 (Listing 3) is an internal assembly-language routine that WideMultiply
calls to execute the 64-bit multiply instruction on the 68020–68040 CPUs. It starts
with ASM_FUNC_HEAD, as mentioned in Table 4. The three definitions at the

develop Issue 26 June 1996106

Listing 2. The square root routine

unsigned long WideSquareRoot (
const wide *source_ptr) /* in: value to take the square root of */

{
wide work_integer;
Extended_80 extended_80_number;

/* Initialize Wide library if not already done. */
if (!gWide_Initialized) WideInit();

/* Convert "wide" number to "extended" format. */
Wide_ToExtended(&extended_80_number, source_ptr);

/* If compiling with CodeWarrior, the parameter to sqrt is a
pointer instead of a value, as defined in PowerPC Numerics. */

#ifdef __MWERKS__
Sqrt(&extended_80_number);

#else
extended_80_number = sqrt(extended_80_number);

#endif

/* Convert "extended" format to "wide" number. */
Wide_FromExtended(&work_integer, &extended_80_number);

/* OK to ignore work_integer.hi as it's always 0. */
return (work_integer.lo);

}

start of the function (MULTIPLICAND, MULTIPLIER, and OUT_PTR) are the
byte offsets to the parameters. Although in Symantec C it’s possible to refer to
function parameters by name via A6, this isn’t possible in CodeWarrior. I had to give
up accessing the parameters by name and use #defines instead.

To execute the 64-bit multiply instruction I had to define it with a DC.W directive
that generates the desired object code. This was necessary because the Symantec C
inline assembler supports only the 32-bit multiply instruction and won’t recognize
the 64-bit assembly opcode.

WIDE_DIVIDEU
If the 64-bit divide instruction isn’t available, the library calls the internal assembly-
language routine Wide_DivideU (Listing 4) to perform the division using an
algorithm. The algorithm is basically a binary version of the paper and pencil method
of doing long division that all of us learned in school. It’s a loop that executes once
for each bit in the size of the divisor, which is 32 in our case. The Wide_DivideU
subroutine actually handles only unsigned division, but the library function that calls
it will take care of converting the input parameters to positive values and, if required,
converting the result to a negative value.

64-BIT INTEGER MATH ON 680x0 MACHINES 107

Table 4. Wide.c #defines

Name Where used Symantec CodeWarrior
ASM_FUNC_HEAD Just before the function definition Not defined asm
ASM_BEGIN Just before the first assembly-language statement asm { LINK A6, #0

in the function
ASM_END Just after the last assembly-language statement } UNLK A6

in the function
ASM_TAIL Just after the function definition Not defined RTS

Listing 3. 64-bit multiply instruction

ASM_FUNC_HEAD static void Wide_MulS64 (
long multiplicand, /* in: first value to multiply */
long multiplier, /* in: second value to multiply */
wide *out_ptr) /* out: 64 bits to be assigned */

{
#define MULTIPLICAND 8
#define MULTIPLIER 12
#define OUT_PTR 16

ASM_BEGIN
MOVE.L MULTIPLICAND(A6),D0 //
DC.W 0x4C2E,0x0C01,0x000C // MULS.L multiplier(A6),D1-D0
MOVE.L OUT_PTR(A6),A0 //
MOVE.L D0,WIDE_LO(A0) //
MOVE.L D1,WIDE_HI(A0) //

ASM_END
ASM_FUNC_TAIL
}

The top of the assembly-language loop starts at the @divloop label. For each loop,
the algorithm shifts the quotient and the remainder left one bit position before trying
to subtract the divisor from the remainder. If the subtraction can be done, the least-
significant bit in quotient.lo is set; otherwise, the subtraction is undone by the add
instruction near the @div50 label. Then, if the divisor is greater than the loop bits
that are accumulating in register D4, the least-significant bit in quotient.hi is set.

develop Issue 26 June 1996108

Listing 4. 64-bit unsigned division algorithm

ASM_FUNC_HEAD static void Wide_DivideU (
wide *dividend_ptr, /* in/out: 64 bits to be divided */
long divisor, /* in: value to divide by */
long *remainder_ptr) /* out: the remainder of the division */

{
#define DIVIDEND_PTR 8
#define DIVISOR 12
#define REMAINDER_PTR 16

ASM_BEGIN
MOVEM.L D2-D7,-(SP) // save work registers
CLR.L D0 //
CLR.L D1 // D0-D1 is the quotient accumulator
MOVE.L DIVIDEND_PTR(A6),A0 //
MOVE.L WIDE_HI(A0),D2 //
MOVE.L WIDE_LO(A0),D3 // D2-D3 = remainder accumulator
CLR.L D4 //
MOVE.L D2,D5 // D5 = copy of dividend.hi
MOVE.L DIVISOR(A6),D6 // D6 = copy of divisor

MOVEQ.L #31,D7 // FOR number of bits in divisor
@divloop:

LSL.L #1,D0 // shift quotient.hi accum left once
LSL.L #1,D1 // shift quotient.lo accum left once
LSL.L #1,D4 //
LSL.L #1,D3 //
ROXL.L #1,D2 // shift remainder accum left once
SUB.L D6,D2 // remainder -= divisor
BCS @div50 // If CS, remainder is negative
BSET #0,D1 // quotient.lo |= 1
BRA.S @div77 //

@div50:
ADD.L D6,D2 // remainder += divisor

@div77:
BTST D7,D5 //
BEQ @div90 // If EQ, bit not set in dividend.hi
BSET #0,D4 //

@div90:
CMP.L D6,D4 //
BCS @div99 // If CS, divisor < D4
SUB.L D6,D4 // D4 -= divisor
BSET #0,D0 // quotient.hi |= 1

@div99:
DBF D7,@divloop // loop until D7 == -1

(continued on next page)

Notice that the first assembly-language statement in Wide_DivideU is a MOVEM.L
instruction that saves on the stack all the registers that the division loop uses; the last
instruction is a MOVEM.L instruction that restores these registers. Fortunately, this
subroutine can place all its working variables in registers and avoid the stack for its
loop, thus improving performance.

WORLDS APART
There you have it. Now 64-bit integer math can be handled with the same API on
both the 680x0 and PowerPC platforms. Having the same function-level interface on
these two very different processors makes life a lot easier for application programmers.
Don’t you wish all libraries had the same interface regardless of the CPU or system
software version?

64-BIT INTEGER MATH ON 680x0 MACHINES 109

MOVE.L DIVIDEND_PTR(A6),A0 // output the remainder
MOVE.L D0,WIDE_HI(A0) //
MOVE.L D1,WIDE_LO(A0) //
MOVE.L REMAINDER_PTR(A6),A0 // output the remainder
MOVE.L D2,(A0) //
MOVEM.L (SP)+,D2-D7 // restore work registers

ASM_END
ASM_FUNC_TAIL
}

Listing 4. 64-bit unsigned division algorithm (continued)

Thanks to our technical reviewers Dave Evans,
Quinn “The Eskimo!”, and Dave Radcliffe.

Special thanks to Dave Johnson for software
testing.•

DEVELOPER

UNIVERSITY

D
U

Learn how software components allow you
to simplify the way you develop software.

Take Developer University’s Creating OpenDoc Parts class
to learn how to create parts using the OpenDoc Framework.

5 days, $1500.
May 20-24, June 24-28.

Call Developer University to register now at (408)974-4897 or e-mail
devuniv@applelink.apple.com. Courses are offered in Cupertino, California.

The night was well advanced, but the bright glow of
fluorescent lamps misrepresented time. As I sat back in
my comfortable chair, rubbing tired eyes, I wondered
what the venerable but fictional Mr. Sherlock Holmes
would offer me as advice. Perhaps because I was so weary
from the long hours of debugging, I easily imagined
Mr. Holmes sitting near me in a tweed suit smoking his
pipe. Certainly he would address me as he once
addressed his compatriot Dr. Watson, with a slightly
condescending tone, and he would tell me that in my
debugging I was missing the key iota of information.

At that moment, a solitary number seemed brighter on
my monitor. Perhaps I have an overactive imagination,
but it seemed as if MacsBug were magically illuminating
that crucial, overlooked information. My computer
was at interrupt level 2, yet it was waiting for a driver
request to complete. How could I have missed the
interrupt level earlier? It was no wonder that the
computer froze. My software had most likely called the
driver synchronously at exactly the wrong time. The
voice of Mr. Holmes rang again in my ears. This time
he quoted from that unfortunate story “A Case of
Identity” when he said, “It has long been an axiom of
mine that the little things are infinitely the most
important.”

Sir Arthur’s famous detective was unsurpassed as an
observer of detail. He believed that keen attention to
all things — even the mundane — was the key to good
detective work. In debugging software, I’ve found this
advice is also true. Although many software bugs can
be solved quite easily, the most challenging problems
demand more attention. This is especially true of
crashes or freezes in your software. To find the detail
we need for those, we often have to go below source-
level tools and get comfortable with lower-level aids.

In this column I’ll take you through some low-level
debugging techniques. I’ll start with basic strategy
and then discuss particular methods and examples.
Although many details will be PowerPC-specific, much
of the information here is useful on all Macintosh
computers.

THE STRATEGY OF A SLEUTH
The experienced engineer starts with a basic strategy
when faced with a troublesome software crash or freeze.
The strategy is similar to Mr. Holmes’s approach to
solving difficult crimes. Using the scientific method, he
starts by collecting key information and details. When
he has finished researching, he begins to analyze the
information and eliminates hypothesis after hypothesis.
Once close to a solution, he seeks out more detail to
narrow his suspects to a single culprit. Similarly, your
strategy for debugging software should start with
careful observation and research. Then you should
hypothesize, test your theories, and collect more detail.
This narrowing approach will draw you closer to the
pernicious coding error in your software.

It’s tempting when faced with a difficult crash to
experiment instead of researching it first. But beware!
Don’t just reimplement your code with new approaches
until it stops crashing. Though some may cynically
suggest that that’s the Macintosh way to program, don’t
be lulled into this strategy. I’ve found that it usually
produces unstable code and ultimately takes longer
than researching the original problem.

In researching a crash or a freeze, the private bug
detective should first ask these few basic questions:

1. What kind of crash or freeze is this?

2. What code did the computer stop in?

3. How did I get to that code?

For these, you’ll need a low-level debugger (such as
MacsBug). Let’s look at each one in turn.

GET YOUR BEARINGS
The first step is to determine the kind of problem you’ve
got. For crashes there are a number of possible problems,
including the all-too-familiar illegal instruction and bus
errors. Note that PowerPC exception handlers don’t
currently distinguish between these or other types. In
MacsBug the correct type will be reported, but your
debugger may instead describe all crashes as general
spurious interrupts or type 11 errors.

BALANCE OF
POWER

Sleuthing Through
Your Code

DAVE EVANS

develop Issue 26 June 1996110

DAVE EVANS still works at Apple in the Mac OS System
Software group. He always enjoyed Sherlock Holmes stories while
he was growing up, and he was excited to learn that most of the

stories are no longer protected under copyright and are easily
accessible on the Internet (see the 221B Baker Street Web page at
http://www.contrib.andrew.cmu.edu/u/mset/holmes.html).•

If your crash is from an illegal instruction error, it’s
possible that the processor jumped to an invalid address
or the intended code moved in memory. In this case
you’ll notice (in a disassembly where execution stopped)
that most instructions are invalid or nonsense. This can
also occur if the emulator tries to emulate PowerPC
code, or if the processor tries to execute 680x0 code as
PowerPC code. Try disassembling memory as both
PowerPC code (using ipp pc) and 680x0 code (using
ip pc).

If your crash is from a bus error, the most likely cause is
an invalid address in some register. Disassemble memory
where execution stopped and examine the instructions.
If there are instructions that dereference registers,
inspect those registers for addresses that aren’t in a
valid range. If you’re debugging 680x0 code on a Power
Macintosh, you’ll need to look at all the instructions
near the crash, because the 680x0 emulator won’t tell
you exactly which instruction caused the error.

Researching a freeze requires a different approach. If
the freeze prevents you from using any debugging tools,
you must isolate the offending code by watching the
computer execute up to the freeze. Setting breakpoints,
tracing, and stopping execution at known locations will
bring you closer. This approach is slow but will lead
you to the code that caused the error or to the state
that prompted it. If the computer is frozen but you can
still use debugging tools, it’s very possible that you’re in
an infinite loop.

THE LAYOUT OF THE CRIME SCENE
Sherlock Holmes sometimes astonished readers by
deducing crimes just from hearing second-hand details.
He was also known, however, to walk the back alleys of
London and gumshoe the scene of a crime when
necessary. Learning the layout of the crime scene was
crucial for a number of his deductions. When staring at
your newly crashed software, do you recognize the
code that your debugger is displaying? Disassemble
memory near the location of the crash and snoop around
for clues. Check for the following to determine how
your computer came to this final resting place:

• If you’re using MacsBug, use the wh pc command to
check where the code is.

• Display memory and disassemble from the
beginning of the code’s block of memory.

• Does the code nearby reference strings or Gestalt
selectors?

• Look for text symbols and strings in the code.

If you’ve crashed in PowerPC code, most low-level
debuggers will give great information about where you

are. This is because most PowerPC code is registered
and linked using the Code Fragment Manager, which
these debuggers can access for hints. For example, if you
use the wh pc command in MacsBug, after crashing in
PowerPC code you’ll see something like this:

Address 000BAE34 is in the System heap
at 00002800 at NQDColor2Index+00018

The address is in a CFM fragment "NQD"

It is 0001AD28 bytes into this heap block:
Start Length Tag Mstr Ptr Lock

• 000A00F0 0003DB00+04 R 00002AC4 L

Here we see that the computer crashed at a location 24
bytes from the beginning of the NQDColor2Index
routine. This routine is in the NQD (or Native
QuickDraw) code fragment. Since this address is close
to the beginning of the routine, we can disassemble
from its start and examine the six instructions that
executed before the crash for more clues:

Disassembling PowerPC code from bae00
NQDColor2Index
+00000 000BAE00 li r5,0x0000
+00004 000BAE04 lwz r4,TheGDevice(r0)
+00008 000BAE08 sth r5,QDErr(r0)
+0000C 000BAE0C stw r31,-0x0004(SP)
+00010 000BAE10 lwz r5,0x0000(r4)
+00014 000BAE14 addi r31,r3,0x0000
+00018 000BAE18 *lwz r3,0x000C(r5)

A bus error at NQDColor2Index+00018 would occur if
register R5 contained an invalid address. Look at the
register display to validate that hypothesis. Notice in
the code that R5 is a dereference of R4, which comes
from the low-memory global TheGDevice. Here we
crashed because TheGDevice had become invalid, so
now your investigation turns toward that global.

A freeze will typically occur because of a double page
fault or exception or because of an infinite loop.
Synchronous driver calls will also freeze if called when
the interrupt level is above 0. A double fault or exception
is common only if you’re writing driver software. Your
computer can handle only one page fault or exception
at a time. A double fault or exception occurs when
software that services a fault subsequently causes a
second fault. For example, disk drivers are sometimes
called by the Virtual Memory Manager to help service
page faults; therefore, if you develop a disk driver you
must take care not to cause page faults since you may
be asked to service one as well.

A good way to detect infinite loops is to trace for a few
instructions using your debugger. If you notice the

BALANCE OF POWER: SLEUTHING THROUGH YOUR CODE 111

same set of instructions being repetitively executed, you
could be in an infinite loop. Look at branch instructions
for clues to why the loop isn’t completing. A special
case of these loops is the vSyncWait routine. It looks
like this:

MOVE.W $0010(A0),D0
BGT.S *-6

This tight loop is waiting for the two-byte value located
16 bytes from register A0 to become 0 or negative.
This is a standard sequence to wait for a driver request
to complete. The driver request is described in an
IOParam record pointed to by register A0. When the
driver is done servicing the request, it will interrupt the
loop and modify the ioResult field 16 bytes into that
record. It will then return from the interrupt, and the
loop will complete normally. A freeze in this loop means
the driver isn’t servicing the request. If you typed dm a0
iopb in MacsBug, you might see something like this:

Displaying IOParamBlockRec at 000003A4
000003A4 qLink NIL
000003A8 qType 0002
000003AA ioTrap A003
000003AC ioCmdAddr NIL
000003B0 ioCompletion NIL
000003B4 ioResult 0001
000003B6 ioNamePtr NIL
000003BA ioVRefNum 0008
000003BC ioRefNum FFDF
000003BE ioVersNum #0
000003BF ioPermssn #23
000003C0 ioMisc NIL
000003C4 ioBuffer 01C7E2B0
000003C8 ioReqCount 00010000
000003CC ioActCount 00010000
000003D0 ioPosMode 0001
000003D2 ioPosOffset 1B84AA00

Take note of the ioTrap and ioRefNum fields. In this
case, ioTrap is $A003, which is the synchronous Read
trap. Using the drvr dcmd in MacsBug, you’ll find that
the driver with refNum $FFDF is .ASYC00, which is
the SCSI driver. This hang, then, occurs during a
synchronous Read call to the SCSI driver. Perhaps I
should next check the current interrupt level.

HOW DID WE GET THERE?
After a long, ponderous silence, while sharply focused on
the current enigma, Holmes might startle you by saying,
“Let us reconstruct, Watson.” Then he would describe
the probable series of events that preceded that particular
criminal act. If the reconstruction wasn’t adequate to
identify a perpetrator, at least it would review the crucial
discoveries so far. It would show Holmes’s appreciable

progress toward a solution. Similarly, while in the midst
of a difficult debugging task, you should reconstruct the
turn of events to gain extremely helpful information.

Figuring out what happened, once the computer is
stopped cold in a crash or a freeze, isn’t easy. In effect,
you’re looking for footsteps in the sand that are often
obscured or covered with other false marks. For this
task, the technique we most often use is the stack crawl.

Procedural programming on the Macintosh uses a
stack. For each procedure call, the stack is added to,
and vital clues such as return addresses and stack frame
pointers are left for us to find. In PowerPC code, the
link register adds to our clues and is guaranteed to
point back to the penultimate procedure of interest.
Your low-level debugger will certainly have a stack
crawl tool to use as well.

In MacsBug, the sc and sc7 commands are your basic
stack-crawling aids. Start your search with the sc
command, which looks for stack frames. Frames are
structures found on the stack containing both the return
address and a pointer to the previous frame. In PowerPC
code the frames also contain a standard area to preserve
basic registers. Fortunately, frames are required in
PowerPC code and follow a standard format. Most 680x0
compilers will generate stack frames as well, although
much of the 680x0 system software was written in
assembly language without frames. If during your crash
you have a valid stack frame address in register A6 or
R1, the sc command will show you a history of which
code execution preceded your software’s demise.
Listing 1 shows a basic sc command’s result.

In this example the first two links are in a CODE
resource from file number $0F6E. Use the MacsBug
file command to determine which file they were loaded
from. It’s likely that they’re from the current application,
and the return addresses displayed in the Caller column
(01C139CA and 01C132EA) are most likely in the
application’s binary. The return addresses listed are
crucial to your sleuthing. They not only point out
where execution would have returned to but, more
important, they show which instructions were recently
executed: the ones just before the return address.
Those addresses are your footprints in the sand. They
are clues in your reconstruction, and they hint to the
turn of events that led to the crash or freeze.

Note the third and fourth lines in Listing 1, which
show return addresses in an 'scod' resource. Those
'scod' resources implement the Process Manager. It’s
possible that the application binary, probably at the
instruction just before address 1C132EA, made a call to
the Process Manager.

develop Issue 26 June 1996112

The fifth and sixth lines of the display show return
addresses in the Macintosh ROM. The symbols are
shown because I’ve installed a ROM map file in my
MacsBug Preferences folder. You should use the
provided ROM map file for your computer, because it
will often give you better stack crawl information. You
can also deduce that these return addresses are in the
ROM from the addresses themselves. Most Macintosh
ROMs begin at memory address $40800000. PCI-based
Macintosh ROMs currently begin at $FFC00000, and
PowerPC processor–based PowerBook ROMs at
$40000000. You can determine the beginning address
of your ROM by looking at the ROMBase low-memory

global. In MacsBug, for example, type dl ROMBase to
display the beginning ROM address.

The sc7 command in MacsBug gives you less precise
information. In cases when you don’t have stack frames,
you can ask your debugger to display all possible return
addresses on the stack. Your debugger will intelligently
guess which values on the stack are possible return
addresses, but most of the information displayed will be
extraneous. You must pick through this information for
clues — an arduous task. The stack frame–based crawl
is neat and tidy, whereas the same situation would
produce the sc7 display shown in Listing 2. I’ve added

BALANCE OF POWER: SLEUTHING THROUGH YOUR CODE 113

Listing 1. Display from the sc command

Calling chain using A6/R1 links
Back chain ISA Caller
01C8A0AC 68K 01C139CA 'CODE 0001 0F6E Main'+03A1A
01C8A0A0 68K 01C132EA 'CODE 0001 0F6E Main'+0333A
01C89F4A 68K 00058748 'scod BFB1 011C'+01A38
01C89E6A 68K 00064090 'scod BFB1 011C'+0D380
01C89E40 68K 408787FC CHECKUPDATESEARCH+0003E
01C89E16 68K 40878426 __GETSUBWINDOWS+000D6

Listing 2. Display from the sc7 command

Return addresses on the stack
Stack Addr Frame Addr ISA Caller
01C8A0B0 68K 01C16D62 'CODE 0001 0F6E Main'+06DB2c
01C8A0A4 01C8A0A0 68K 01C139CA 'CODE 0001 0F6E Main'+03A1A *
01C8A094 68K 40849116 UNLOADSEG+00046
01C8A06A 01C8A066 68K 409CFFFC DISPTABLE+8D0BC
01C8A018 68K 4087EAF0 GETRESOURCE+000B2
01C8A00E 68K 408806F6
01C8A008 PPC 00094BE8 EmToNatEndMoveParams+00014
01C89FF8 68K 0011ACDA
01C89FE0 68K 4087ECFE VRMGRSTDENTRY+000B0
01C89FDC 68K 4087ECFE VRMGRSTDENTRY+000B0
01C89FD8 68K 0011A5B4
01C89F4E 01C89F4A 68K 01C132EA 'CODE 0001 0F6E Main'+0333A *
01C89F4A 68K 01C8A09E
01C89F22 01C89F1E 68K 00058748 'scod BFB1 011C'+01A38 *
01C89F1E 68K 01C89F48
01C89EDE 01C89EDA 68K 00163E30
01C89EDA 68K 01C89F1C
01C89E62 68K 01C8AFBE
01C89E44 01C89E40 68K 00064090 'scod BFB1 011C'+0D380 *
01C89E1A 01C89E16 68K 408787FC CHECKUPDATESEARCH+0003E *
01C89DF4 01C89DF0 68K 40878426 __GETSUBWINDOWS+000D6 *
01C89DE2 68K 4087876E CALCANCESTORRGNS+0002A
01C89DDE 68K 001191E6

an asterisk (*) on each line that’s also in the sc command’s
display.

In this example, there were a number of values on the
stack that might have been valid return addresses. The
six we saw in the sc command’s display are there. Many
of the other lines will not be relevant return addresses,
because many procedures reserve space on the stack but
don’t always use it or initialize it. There will often be
old return addresses in that unused part of the stack.
These old return addresses are like very faint footprints
in the sand — from some previous execution — and
they may tell you what occurred much earlier in time.
More often, though, they’ll just be distracting and
irrelevant to your search.

Be very wary of an sc7 command when tracing through
PowerPC code. PowerPC code typically has large stack
frames, at least 56 bytes for each procedure, and the
code often doesn’t use all those bytes. This will cause
many old return addresses to stay in the unused parts of
the stack frame, and those old addresses will appear in
your sc7 command’s display.

Sometimes you’ll notice that the sc and sc7 commands
fail to work. In MacsBug, you may see the error

Bad stack: stack pointer must be even and
<= stack base

There’s more than one stack that the system uses, but
the stack base that MacsBug refers to in this error is the
application stack’s base or top address. The sc and sc7
commands first check to see if the A6, A7, and R1
registers point to locations below the application stack’s
base. If they don’t, MacsBug returns this error. The
executing code may be using a different stack, however.
Many parts of the Mac OS system software use separate
stacks. To force MacsBug to execute a stack crawl
anyway, specify the register to use and the amount of
memory to search through. For example, the MacsBug
commands sc7 a7 4000 and sc a6 4000 will execute a
stack crawl even if the A6 and A7 registers point above
the application stack’s base.

System stacks vary in size from about 8000 bytes up to
48000 bytes. There’s no easy way to determine the
base of a system stack that’s in use. If you don’t get
interesting clues from 16384 bytes ($4000 in hex), vary
the number of bytes you specify and compare your
results.

ELEMENTARY, OF COURSE
Don’t be pacified by source-level debuggers. Lower-
level tools give you a much better understanding of the
Mac OS and your code. These tools also give you the
ability to research the most complicated problems.
Strive to be a software sleuth, and you’ll gain some
truly useful expertise.

develop Issue 26 June 1996114

Thanks to Geoff Chatterton, Doug Clarke, Michael Dautermann,
and Tim Maroney for reviewing this column.•

YOUR NAME HERE

YOUR PHOTO HERE

Do you have code that solves a problem other Macintosh
developers might be having? Why not show it off by writing
about it in develop?

If you’re a lot better at writing code than writing articles, don’t
worry. An editor will work with you. The result will be something
you’ll be proud to show your colleagues (and your Mom).

So don’t just sit on those great ideas; feel the thrill of seeing them
published in develop! To receive our Author’s Guidelines, editorial
schedule, and information about our incentive program, please
send a message to develop@apple.com or AppleLink DEVELOP,
or write Caroline Rose, Apple Computer, Inc., 1 Infinite Loop,
Cupertino, CA 95014.

Q Can I assume that the value of the ColorSync CMWorldRef parameter returned by the
NCWNewColorWorld routine isn’t NULL if the routine was successful? I’d like to
determine whether a color world exists before trying to use it.

A Yes, you can assume that if no error is returned, the CMWorldRef parameter
will be valid.

Q Can ColorSync 2.0 profiles be embedded in EPS images?

A Yes, you can embed ColorSync profiles into EPS, as well as into PICT and
TIFF formats. For more information on how to do this, see the Macintosh
Technical Q&A “Embedding ICC Profiles” (CS 06). There are also details on
how to embed profiles in PICTs, along with sample code, in Advanced Color
Imaging on the Mac OS, page 4-34.

Q How can I determine whether SCSI Manager 4.3 has been loaded by an extension at
startup time?

A Drivers or applications that intend to call the asynchronous SCSI Manager
must check that it’s present by checking for the presence of the _SCSIAtomic
trap (0xA089).

While this is sufficient by itself for applications, driver writers must keep in
mind that if the asynchronous SCSI Manager is loaded as a system extension,
the driver may be running before the _SCSIAtomic trap is installed (this is true
for the startup device driver), so simply checking for the existence of the trap
when your driver starts up isn’t sufficient. The extension loading process needs
to be completed before you make the check.

One way to do this is to use the accRun mechanism. If you set the dNeedTime
flag in your driver, it will get an accRun call at SystemTask time. You can test
for _SCSIAtomic then, set a flag indicating that you’ve discovered it, and then
optionally reset the dNeedTime flag so that your driver doesn’t get called after
you’ve completed your discovery process. (Note that this technique is only
suitable for old-style drivers, type 'DRVR'. New PCI-compatible drivers, type
'ndrv', can’t use the accRun mechanism.)

This method isn’t foolproof, however. It’s possible for your driver to get an
accRun call before all the extensions are loaded, such as when a dialog is
presented from an extension that calls, for instance, ModalDialog (which will
eventually dispatch SystemTask). This results in the driver receiving an accRun
call even though there may be more extensions to follow.

So, in addition to simple determination of the presence of _SCSIAtomic, you
need a way to test that the Finder (or some other application process) has been
launched. You can do this by checking the length of CurApName. CurApName
has a -1 length at startup and becomes positive when a process (such as the
Finder) gets launched.

An alternative is to queue up a Notification Manager task without specifying
an icon or sound, but only a response procedure. The procedure will get called
after the extensions finish loading. You can then check for the _SCSIAtomic
trap.

Macintosh
Q & A

MACINTOSH Q & A 115

Q I’m writing a QuickDraw GX printer driver that supports SCSI and PrinterShare
(server) connection types. I can connect multiple printers to one Macintosh on the
SCSI bus, and I’ve seen that I can have active print jobs printing on all of them
simultaneously. My question is: Do I have to be concerned about reentrancy when
coding my message overrides?

A There are a few issues you’ll need to keep in mind. One is that each copy of your
driver must store any data it needs in its own data space. You can do this by using
the GetMessageHandlerInstanceContext and SetMessageHandlerInstanceContext
functions. If there is common global data that all copies of your driver will
need to access, you can use the functions SetMessageHandlerClassContext and
GetMessageHandlerClassContext. These are documented in Chapter 6 of
Inside Macintosh: QuickDraw GX Environment and Utilities.

For each instance of your driver, you’ll also need to watch out for insufficient
memory. You shouldn’t need to add much code if you’re already checking for error
conditions when attempting to allocate memory within your driver, but if there
are places where you’re not checking to make sure that the allocation was actually
successful, you’ll need to add code (it’s a good idea to always check anyway).

You’ll also need to confirm that you don’t have multiple instances of your driver
trying to write to the same printer at the same time. There are any number of
ways you can confirm this, including using a shared (ClassContext) data block
with a semaphore to mark whether an instance of your driver was in the middle
of a GXWriteDTPData call. Each instance could then first check that semaphore
before attempting to read or write data from the desktop printer. Be sure to
include file locking while your driver is reading or writing other files.

Finally, if you’re writing a PostScript driver, be aware that the PostScript font
downloading code is not reentrant.

In general, you should use these techniques to write any QuickDraw GX printer
driver, whether or not you expect it to need reentrancy.

Q I want to program with Open Transport. What libraries should I link with?

A Here are descriptions of the libraries that come with Open Transport, and why
you might need to link with them.

Let’s look first at linking Open Transport with PowerPC code. The basic
libraries to link with are OpenTransportLib and OpenTransportAppPPC.o.
If you need AppleTalk services, also link with OpenTptAppleTalkLib and
OpenTptATalkPPC.o. If you need Internet services, also link with
OpenTptInternetLib and OpenTptInetPPC.o.

The OpenTransportUtilLib and OpenTptUtilsAppPPC.o libraries may provide
a smaller footprint if your application deals only with ports. Once you’ve got it
working, try replacing OpenTransportLib and OpenTransportAppPPC.o with
these and see if your application still links.

The OpenTransportExtnPPC.o and OpenTptUtilsExtnPPC.o libraries replace
OpenTransportAppPPC.o and OpenTptUtilsAppPPC.o if you’re writing a
standalone code resource, CFM fragment, or ASLM shared library.

develop Issue 26 June 1996116

Note that if your code is meant to run on machines with and without Open
Transport (that is, you revert to Classic AppleTalk or MacTCP if Open Transport
isn’t available), you should make sure to weak-link with the libraries ending in
“Lib.” Otherwise the system will refuse to launch your application when Open
Transport isn’t installed.

Now let’s take a look at linking Open Transport with 680x0 code. The basic
libraries to link with are OpenTransport.o and OpenTransportApp.o. If you
need AppleTalk services, also link with OpenTptATalk.o. If you need Internet
services, also link with OpenTptInet.o.

The OpenTptUtils.o library may provide a smaller footprint if your application
deals only with ports. Once you’ve got it working, try replacing OpenTransport.o
with this and see if it still links.

The OpenTransportExtn.o library replaces the OpenTransportApp.o if you’re
writing a standalone code resource or ASLM shared library.

In addition, the following libraries are identical to their similarly named
counterparts except that they’re suitable for linking with MPW model-near
clients: OpenTransport.n.o, OpenTransportApp.n.o, OpenTptATalk.n.o,
OpenTptInet.n.o, OpenTptUtils.n.o, and OpenTransportExtn.n.o.

Q How do I use Open Transport with CFM-68K?

A The short answer is that you don’t, at the moment.

To get a better answer to this you must first specify what you want to do: use
CFM-68K to build Open Transport modules (plug-ins like device drivers and
protocols), or call the Open Transport API from a CFM-68K application or
library (an OpenDoc part, for example).

Building Open Transport modules with CFM-68K is not currently supported
nor is it likely to be supported. The Apple Shared Library Manager is your only
alternative for building 680x0 modules.

Support for calling Open Transport from a CFM-68K application or library is
likely to be incorporated in the next major release of Open Transport. This is in
line with Apple’s shared library strategy, as outlined in the DLL Statement of
Direction document (ftp://seeding.apple.com//ess/public/aslm/DLL_directions),
which indicates a move away from ASLM in general.

Q I wanted an extension to load last in the initialization or startup sequence, so I put the
backquote character (`) as the first character in its name. But when I did this, it actually
loaded near the beginning. What happened?

A If you view the contents of any folder by name, you’ll see that items whose names
begin with a backquote appear last (or nearly last) in the list. To sort the list, the
Finder calls PACK 6, which uses the international sorting routines; these sorting
routines order words beginning with a backquote near the end of the list.

During extension loading, however, PBHGetFInfo is called, and it in turn calls
RelString. RelString is called with case insensitivity and diacritical sensitivity
turned on. Unfortunately, due to a bug that HFS relies on, backquote sorts

MACINTOSH Q & A 117

between a and b. This means that extensions beginning with a backquote load after
extensions beginning with a (or A) and before those beginning with b (or B).

There are no plans to fix this problem, because of the need to maintain
compatibility with old HFS volumes (which were created before this bug was
discovered and which use this sorting order).

Interestingly, UpperString converts a backquote to an a, but leaves all other
nonletters unchanged.

If you want to make sure that your extension is loaded last in the initialization
process, use the tilde (~) as the first character of its name.

Q When I’m printing and I call PrClosePage at the end of a page, I get a paramErr
(-50) error. What does that mean?

A There are two ways to get this error. The most common is to pass a bad
graphics port to PrClosePage. If you don’t pass back the port you got from
PrOpenPage, you will (rightfully) get an error.

The second way to get paramErr from PrClosePage is more esoteric. If you’ve
hidden the menu bar before printing, and you leave it hidden, some drivers will
report a paramErr error when PrClosePage is called. What’s happening is that
somewhere deep in the Printing Manager, one of the Printing Manager routines is
calling a QuickDraw function with the menu bar’s rectangle as the parameter. This
QuickDraw function sees the empty rectangle (because you’ve hidden the menu
bar) and sets QDError to paramErr. The driver checks QDError when it’s done
printing, sees the error, and sets PrError to the error. Note that this happens
only on 680x0 machines, not on PowerPC machines, which is ironic since 680x0
QuickDraw does much less error checking, and seldom sets QDError.

Q Are there any tools to help me debug my QuickDraw 3D project?

A During your development process, you should use the debugging version of
QuickDraw 3D. To install it, just place the three extension files in the Extensions
folder (in the System Folder) and restart your computer. The debugging version
has a larger footprint and lower performance, but it has more extensive error
checking. Using the debugging version will help you find problems with your
code; it posts notices in addition to the errors and warnings posted by the
optimized version. You’ll also want to check out the 3Debug application; it
graphically displays QuickDraw 3D memory usage, which can be very helpful.
3Debug and the debugging version of QuickDraw 3D are provided with the
QuickDraw 3D release.

Q I have a sample program compiled in MPW with Symantec’s SC compiler. When I try
to link the sample program, I get the following linker error:

Link: Error: Undefined entry, name: (Error 28) "qd"
Referenced from: main in file: :Obj 68K:FIFDECO.c.o

qd is the QuickDraw global variable. If I declare the global, as in

QDGlobals qd;

develop Issue 26 June 1996118

the error goes away. This is confusing, because the global is supposed to be declared for
PowerPC code, but should automatically be declared for 680x0 files. In fact, this same
code compiles and links correctly with Symantec C++ v7.0 IDE, as well as Metrowerks
CodeWarrior. Is there some new library I need to include to get the 680x0 global
declared? Or has some subtle change been made to the header files?

A Recently there has in fact been a change: The MPW libraries for the classic
Macintosh runtime architecture now require that the QuickDraw global qd be
defined in the global space of your code, the same as in the MPW libraries for
the other Macintosh runtime architectures (namely, the PowerPC and CFM-
68K runtime architectures). If you’re working in the MPW environment, a
simple definition such as the following is all that will be necessary:

QDGlobals qd;

If you’re working in multiple environments (say, MPW, Metrowerks, and
Symantec) use a preprocessor conditional such as this:

#if GENERATINGCFM
QDGlobals qd; // Required for all CFM environments

#else
#if !defined(SYMANTEC_C) && !defined(SYMANTEC_CPLUS)

#define __MPW_ONLY__
#endif
#if defined(__SC__) && defined(__MPW_ONLY__)

QDGlobals qd; // Required for SC in MPW compilations
#endif

#undef __MPW_ONLY__
#endif

For more details on the use of QDGlobals and qd, see Technote 1016, “Where
Has my qd gone? And How Do I Use qd and QDGlobals Correctly?”

Q I’m confused about the implementation of the AutoStart feature that was announced
with the QuickTime 2.1 release. Can you tell me how to create a CD with this feature
that will work cross-platform?

A The AutoStart feature first documented in the release notes for QuickTime 2.1
has been available since the release of QuickTime 2.0. This means that any CD
title you release today with an AutoStart application or document will work
with most users’ current installation of software, since QuickTime 2.0 has been
available for well over a year. (Of course, there are other benefits to using
QuickTime 2.1 over 2.0, but that’s beside the point.)

The AutoStart feature is available only on HFS volumes, because it relies on
information located in block 0 of an HFS disk or partition. The first two bytes
in the sector of block 0 should be 0 or LK, although this realistically should be
limited to 0 since LK designates an HFS boot volume. The name of the
AutoStart file is stored in the area allocated for the Clipboard name. This area
begins 106 bytes into the sector of block 0, with the first four bytes at that offset
containing the hex value 0x006A7068. This value indicates that an AutoStart
filename follows. After this 4-byte tag, 12 bytes remain, starting at offset 110. In
these 12 bytes, the name of the AutoStart file is stored as a Pascal string, giving
you up to 11 characters to identify the file. The file must reside in the root
directory of the HFS volume or partition.

MACINTOSH Q & A 119

You may designate either an application or a document as the AutoStart file. If
you choose an application, it may be visible or invisible in the root directory of
the volume. However, document files must be visible. Additionally, you may
select an alias file as the AutoStart file, but it too must be visible in the root
directory of the volume or partition. If the AutoStart file is a document or an
alias to a document, QuickTime will ask the Finder to launch the document as
if it had been double-clicked from the Finder. If the creating application isn’t
available, the Finder will issue its normal warnings or use Macintosh Easy Open
if available.

The real goal of the AutoStart feature in QuickTime is for users to be
immediately engaged, upon insertion of a CD-ROM product, in an experience
of the developer’s choice, whether it’s jumping right into a multimedia program
or reading an important “ReadMe” document. Because there’s no way for the
user to bypass the launch of the AutoStart file (except for disabling QuickTime
at startup), you, the developer, must determine what user experience you want
to capture and decide whether or not the AutoStart feature makes sense for your
project.

Creation of the AutoStart block 0 information is dependent on the CD-ROM
mastering software that you use. Most of today’s CD-ROM mastering software
is capable of writing the AutoStart information. To be certain, however, it’s best
if you check with the developer of your CD-ROM mastering software if you
aren’t sure of its capabilities.

Note that the AutoStart feature wasn’t implemented in QuickTime for Windows.
This is primarily because new CD-ROM drivers are needed; the current drivers
don’t know when a new CD is inserted. When producing a cross-platform CD
title, you’ll need to create a hybrid disk that has an HFS partition if you want to
use the AutoStart feature. You can create an HFS/ISO 9660 hybrid disk with
your Macintosh project on the HFS partition and your cross-platform files on
the ISO 9660 partition for use by both the Macintosh and PC main programs.
Of course this means that you wouldn’t have any AutoStart features on the PC
platform unless you implemented a PC solution (like the Windows 95 auto-play
feature) on the ISO 9660 partition.

Q The kATAOfflineEvent and kATARemovedEvent documentation in the various
Developer Notes for IDE-compatible Macintosh computers seems incomplete. Is it?

A Yes, it is. Updated ATA Manager documentation is in progress. In the
meantime, the documentation is supplemented here.

• kATAOnlineEvent (code 1) — This event notifies clients when an ATA or
ATAPI device becomes available for use. The event occurs either when a
new device is connected to the bus or when a previously unavailable device
becomes available again (as in system wakeup when power is restored to the
device).

If the device has a registered driver, only that driver will be notified of the
event; otherwise, each registered default driver will be notified until a driver
responds favorably (that is, with a noErr response to the event). Note that
for newly connected devices a driver loaded from the device is given priority.

Drivers should keep track of whether the device coming online is a newly
connected device or one that’s currently offline (that is, connected but
not unavailable). A device should be considered connected until a
kATARemovedEvent event for the device occurs.

develop Issue 26 June 1996120

• kATAOfflineEvent (code 2) — This event notifies the registered driver of an
ATA or ATAPI device that the device is now unavailable for use (offline).
The device, however, is still connected to the bus and the offline state is
assumed to be temporary. This event will occur at system sleep when power
is removed.

Currently, this event is generated only when the ATA Manager receives a
PM_SUSPEND event (essentially the same as a Power Manager sleep demand
event) from the PC Card Manager. Drivers receiving kATAOfflineEvent
events most likely will want to maintain control of the device but deny
access to the device from its clients. In addition, the driver should note that
the device may need to be reconfigured when it comes online again (a
kATAOnlineEvent event will be generated when this happens).

• kATARemovedEvent (code 3) — This event notifies the registered driver of
an ATA or ATAPI device that the device has been removed. The removal
may be either controlled (for example, a software eject command to the ATA
Manager) or uncontrolled (or example, a forced removal by the user). Note
that the device may have been in either an online or an offline state before
the removal. If the state was online before the removal, a kATAOfflineEvent
event is not generated, since the removal implies that an offline condition
had to occur.

• kATAResetEvent (code 4) — This event notifies the registered driver of an
ATA or ATAPI device that the device has been reset. The device may need
to be reconfigured by the driver before it can be used again. This event was
created for use with multiple devices per bus (ATA Master/Slave mode),
since reset applies to all devices on the bus and not to a specific device.
Apple currently doesn’t implement multiple devices per bus with ATA, so
this event isn’t implemented. It’s advised, however, that drivers support this
event now to prevent problems later on when the event is implemented.

• kATAOfflineRequest (code 5) — This event is obsolete. It was defined for
the early stages of the PC Card Manager which would echo the Power
Manager sleep events to its clients. The ATA Manager would in turn echo
the request to its clients. This event was like the sleep request event. The
current PC Card Manager allows only for an event akin to a sleep demand
event, which does not permit rejection by the client.

• kATAEjectRequest (code 6) — This event notifies the registered driver of an
ATA or ATAPI device that a request has been made to eject the device. If the
response to the request is 0, the device will be ejected and a subsequent
kATARemovedEvent event will be generated when the ejection is successful.
The kATAEjectRequest event serves as a protection mechanism to alert
drivers of a pending ejection. Drivers will most likely want to reject the
request unless they initiated the request, since ejection will remove the
device from the bus.

Note also that the kATAResetEvent, kATAOfflineRequest, and kATAEjectRequest
events are not currently implemented in the ATA Manager.

Q How do I convert Macintosh Simplified Chinese encoding to the relevant GB standard?

A The Macintosh encoding for Simplified Chinese is a shifted GB2312. To convert
from GB2312 to Macintosh encoding, just add 0x8080 to each character. To
convert from the Macintosh encoding to GB2312, subtract 0x8080 from each
character. For example, an ideographic comma (Unicode code point 0x3001) is
0x2122 in GB, and 0xA1A2 on the Macintosh.

MACINTOSH Q & A 121

The only subranges of characters you need to worry about are the Roman
characters. Below is some code that illustrates how to do the conversion.

// Returns true if the character needed conversion, or false if it was a
// one-byte character (meaning that only the first byte was processed).
// (That is, a false return means the character was a Roman character.)
boolean MacToGB2312(unsigned char first, unsigned char second,

unsigned short *output)
{

if (first < 0x81) {
*output = first;
return false;

} else {
unsigned short temp;
temp = (first - 0x80) << 8;
temp += (second - 0x80);
*output = temp;
return true;

}
}

// This will always convert, so we don't need to get the bytes separately
// nor do we need to return a Boolean saying whether we converted.
void GB2312ToMac(unsigned short input, unsigned short *output)
{

*output = input + 0x8080;
}

As you can see from the code, you need to modify both bytes of a two-byte
character. This is done so that it’s obvious whether a character is part of a two-
byte character or is a one-byte Roman character.

For more information, see Understanding Japanese Information Processing by Ken
Lunde. See also Ken Lunde’s Web page at http://jasper.ora.com/lunde/; while it
contains mostly information about Japanese text processing and standards, there
are pointers to more information about Chinese and Korean information
processing as well.

Q I know that homonyms are words that are pronounced alike (and are often spelled the
same) but have different meanings, and I know that synonyms are words that have the
same or nearly the same meanings. But there are also words that are spelled alike but
are pronounced differently and have different meanings. For instance, “row” (rhymes
with “go”) meaning things arranged in a line, and “row” (rhymes with “cow”)
meaning a fight. What do you call words like these?

A Heteronyms.

develop Issue 26 June 1996122

These answers are supplied by the technical
gurus in Apple’s Developer Support Center. For
more answers, see the Macintosh Technical Q&As
on this issue’s CD or on the World Wide Web at

http://dev.info.apple.com/techqa/Main.html.
(Older Q&As can be found in the Macintosh
Q&A Technical Notes on the CD.)•

THE VETERAN NEOPHYTE: MANUAL LABOR 123

As a 14-year Apple veteran, why would I be writing a
“neophyte” column? It’s true that I’ve written system
software for many Apple computers and I’ve been in
every tech support capacity that Apple has ever dreamed
of. I’m writing this because I’m in fact still wet behind
the ears; I learn new things every day here at Apple.
Most of what I learn involves problem solving and
debugging. I believe that creative problem solving is
the one trait that separates a great programmer from an
average programmer. Great programmers must hone
their problem-solving skills all the time, whether at a
computer or not. In fact, sometimes examining how day-
to-day problems are solved can help us develop proper
coding and debugging skills at work. Here I’d like to
relate a little fable to illustrate this point (the names
have been changed to protect my automotive pride).

A FABLE
Bob and Stu were working on a primo 1963 Dodge
Dart that they had just bought. It was a classic: push-
button transmission, cherry upholstery, straight body.
A classic car with a classic problem: it had been run dry
of oil and the engine needed to be rebuilt. Flush with
confidence (having just completed an engine rebuilding
course at the local community college), Bob said, “No
problem, man. Let’s rebuild it ourselves; how hard can
it be?” That, I suppose, was the first mistake.

So, Bob and Stu set out to rebuild the engine, using all
new parts. A scant two months later, the ten-hour job
was finished. Finally they were ready to install the
engine. Struggling to get the 1000-pound engine into
the car and onto two very small bolts that hold it at an
angle too obtuse to allow it to drop in straight, they
were cussing and cutting themselves constantly.

After a while it dawned on them that things were not
going as planned. In a moment of brilliance, Stu said,
“Hey, what does the manual say about installing this
thing?” The manual! Every good car mechanic has a
manual and follows it. Why didn’t I — er, Bob — think
of that? Reading the manual, they found that the
torque converter (a big heavy round thing with teeth
on it) was supposed to be mounted not to the engine
but to the transmission!

They pulled out the engine and struggled for an hour
to get the converter mounted to the transmission. After
this the engine went in relatively easily (with the help
of Thom the helpful Brit). Having connected all the
hoses, belts, doodads, and whatnots, our intrepid pair
looked at each other with giddy anticipation. “Could it
be that we’re ready to start this thing?” they wondered.
So they tried to start it — and they failed to start it. Just
as with every major programming project, they had put
in countless hours, and when the time came to fire the
baby up, nothing happened.

It was time to debug this problem. “Hmm. Seems like
a compression problem. Do we have compression?”
asked Stu. “Yup, it’s low, about 60%, but I guess that’s
because the engine hasn’t been broken in yet,” replied
Bob. Were the plugs firing? Ground one side, turn out
the lights, look for the blue spark: of course they were
firing. Was the gas getting to the carburetor? Not yet,
so they siphoned some up and tried again. Still no go.

So they started looking at the esoteric stuff. Was the
timing chain on correctly? Well, we have compression,
and it seems that we shouldn’t if the timing is wrong.
Three hours later, after Bob browbeat Stu into agreeing
that the timing must be correct, Stu browbeat Bob into
testing it anyway, since while Bob talked a good game it
was always possible that he was wrong. They partly
disassembled the engine and watched the little valve
bits go up and down, and sure enough the timing was
right. A victory for Bob, hollow as it may have been.

They continued to argue about what the problem could
be, and finally decided to let it rest a while. This went
on for weeks, until one day Bob remembered something
that his teacher told him in class: a tablespoon of oil in
every cylinder will get the seals sealing so that an engine
could start. Could it be that easy? Could it be that the
first thing that they had looked at — the compression
— was in fact what was preventing the engine from
starting? Bob put a little oil in each spark plug hole and

JIM MENSCH (mensch@applelink.apple.com, AppleLink MENSCH)
has spent the last 14 years as a wage slave at Apple. Before that
he did real work that involved cleaning and lifting and toting stuff
and working with tools. While his mother is his real inspiration in

life, he looks to the relaxed masses for guidance. An avid book
collector and cook, he has absolutely no time for computers when
he’s not at work. His personal motto is “Eat more beets.”•

THE VETERAN
NEOPHYTE

Manual Labor

JIM MENSCH

develop Issue 26 June 1996124

the mighty engine roared to life! Our heroes stood
dumbfounded at first, then quietly patted themselves
on the back for such a fine job. Months after they had
started their odyssey, they finally got the beast running.

YOU’RE NEVER TOO SMART TO READ THE MANUAL
The first thing to notice is that reading the manual was
not the first step Bob and Stu took toward solving their
problem. Neglecting to read the manual cost them
hours of avoidable frustration and rework. Like Inside
Macintosh, automotive manuals contain many hidden
gems that are there for the asking. For instance, the
shop manual didn’t explicitly say, “Don’t be a moron;
the torque converter stays attached to the transmission!”
but it did say, “Step 9. Remove torque flex plate screws,
leaving converter attached to transmission.”

Inside Macintosh contains many such tidbits waiting to
be found. For instance, I was recently asked by a
developer why a particular call to close a window wasn’t
causing the window behind it to redraw properly (it was
leaving a desktop-patterned hole behind). Examining
the problem a little further, we found that a resource
that was needed had been purged and wasn’t being
reloaded. The code was smart enough not to crash
when the purged resource was discovered, but it didn’t
seem to be able to reload the thing. As it turns out, the
developer was using a rather strange strategy for
manipulating the ResLoad attribute of the Resource
Manager. He was turning it off when he wanted it off
but not turning it back on again right away; instead he
would turn it back on when he needed it on. I pointed
out to the him that this was the problem, and he said,
“I’ve been programming the Mac for almost 10 years
and I’ve never read anywhere that the Window
Manager assumes ResLoad is TRUE!”

While he’s right about this on the surface, if we look we
find that Inside Macintosh warns in the SetResLoad
description that “If you call SetResLoad with the load
parameter set to FALSE, be sure to . . . set [it] to
TRUE as soon as possible. Other parts of system
software that call the Resource Manager expect this
value to be TRUE.” (This has been in there so long
that Caroline Rose wrote the first draft of it!) Since the
WDEF is system software, it assumed that ResLoad
would in fact be TRUE. After I pointed this out, the
developer decided it was time to break out those
manuals that had been collecting dust for so many
years, and revisit some of the documentation he
thought he had remembered.

YOUR FIRST INSTINCT IS USUALLY THE BEST
Another lesson to learn is that when problems arise,
don’t spend hours plodding through esoteric logic. First
think, “What’s the most obvious cause of this problem?”
You might recall that Stu was right when he suspected a
compression problem. By discarding the obvious without
first examining it fully, we risk costing ourselves days of
work only to find out that we were right all along. As a
seasoned programmer, you’ll learn that you can get a
feel for why a problem exists. You may not have any
ready logic to explain why an event occurred, but you
might have a feeling anyway. Go with that feeling. The
obvious things are the easiest to check (but don’t make
it too easy and stare past the real trouble). They’re also
usually the quickest to fix. Looking there first can save
time, effort, aggravation, and lots of cussing. In my 14
years of problem solving for Apple, I’ve found that the
simple, obvious solution is right 90% of the time.

CONFIRM YOUR LOGIC WITH REAL EXAMPLES
Why did Bob and Stu retest the timing, anyway?
Experienced troubleshooters, they realized that simply
arguing about a point may lead to a conclusion, but any
conclusion that can be tested should be. Logic dictates
that the cam shaft can be 180° out of phase (for every
rotation of the cam shaft, the crankshaft rotates twice
and thus will be in the same position at 0° cam rotation
as 180° cam rotation), but you should check it anyway if
you’re stuck. It’s easy to get your logical conclusions
backwards and get your crankshaft 180° out of phase.
On a car this might result in outright failure, while on
a computer it can mean more insidious things.

I recently needed to use the Power Manager to control
screen dimming, drive spindown, and CPU sleep. All of
the calls had a “get” function that returned a Boolean,
TRUE if the feature was on or FALSE if it was off.
Strangely enough, two of the “set” calls required a
value of TRUE to enable the feature but one required
TRUE to disable the feature. I spent hours looking at
the complex logic of IF statements before I simply
watched it all go by in MacsBug and noticed that I was
sending a TRUE value to a call named Disable. Going
back through my logic again brought the error right out.

BACK TO WORK
If you’ve learned anything from the above tale, good.
Remember, manuals contain quite a lot of information
and they’re a good place to start. Also remember that
this isn’t rocket (or automotive) science. Think simple
thoughts; don’t create extra work for yourself.

If you have any questions about why writing system software
is like nailing your head to a board, or why your car grinds at high
speeds, drop Jim a line.•

Thanks to Meg Bailey, Cameron Birse, Brian Hamlin, Mark
Harlan, Bo3b Johnson, and Dave Johnson for reviewing this
column.•

Q I have a slip in my application that edits part of my application preferences. I use
GetAppPrefs to get the preferences frame, and then set a pointer to a subframe in my
slip:

myAppPref.viewSetupFormScript := func()
begin

local prefs := GetAppPrefs(kAppSymbol, kDefaultPrefFrame);
self.target := prefs.defaultNames;
inherited:?viewSetupFormScript();

end

The user makes the change and I use EntryChangeXmit, but sometimes I lose the
change. Any hints?

A It looks as if you’re encountering an interaction between soup entries and
garbage collection. In your viewSetupFormScript, you use GetAppPrefs to
load the soup entry corresponding to your application preferences into the
NewtonScript heap. Then you set a target slot in your preferences slip to the
defaultNames slot in that preferences frame. I assume that some time later,
probably in the viewQuitScript, you reload your preferences frame (with
GetAppPrefs again) and call EntryChangeXmit on the frame returned by that
call.

The problem occurs because you use a local variable to point to your preferences
entry. Once the viewSetupFormScript is completed, this local goes away, so the
preferences entry is subject to garbage collection. This may seem unintuitive
since soups are where you store persistent data. However, there’s a difference
between the data that comprises an entry in a soup and an actual entry in the
NewtonScript heap. When you request a soup entry, the data from the soup is
swapped into the heap so that you can access it as a frame. The entry on the
heap is a copy of the data in the soup, not the real data. Changes to that heap
copy aren’t written to the soup until you call EntryChangeXmit.

After your call to GetAppPrefs, the heap looks like Figure 1. Then your
viewSetupFormScript returns and the prefs local goes away, so your heap looks
like Figure 2.

Newton
Q & A:
Ask the
Llama

NEWTON Q & A: ASK THE LLAMA 125

The llama is the unofficial mascot of the
Developer Technical Support group in Apple’s
Newton Systems Group. Send your Newton-

related questions to dr.llama@applelink.apple.com
(AppleLink DR.LLAMA). The first time we use a
question from you, we’ll send you a T-shirt.•

Figure 1. Heap after GetAppPrefs

self.targetprefs

{defaultNames:�
 ...}

[, ...]�
�

"Calgary" "Banff"

.

. .

Figure 2. Heap after viewSetupFormScript

self.target

{defaultNames:�
 ...}

[, ...]�
�

"Calgary" "Banff"

.

. .

Notice in Figure 2 how there is nothing referencing the preferences entry, but
there is something referencing the defaultNames subobject. As far as the system
is concerned, the preferences entry frame is now available for garbage collection.
The next time the preferences entry is loaded in, an entire new copy of that
entry is made, including the defaultNames subobject. So self.target points to a
valid NewtonScript array that’s different from the new copy of your preferences
entry.

This explains why the information doesn’t get updated, but not why this doesn’t
happen every time. It doesn’t happen every time because the soup system will
cache the frame representation of a requested entry. When you request an entry,
the first thing the soup system does is check for a cached entry. If it exists, it’s
used, in which case the defaultNames subobject is the same one that self.target
is referencing — that is, no new copy of the preferences entry is loaded into the
heap.

So, what happens is that once the user finishes editing the entry, you call
GetAppPrefs, which may return the cached preferences entry. If garbage
collection has occurred, your target slot will point to the edited version of the
defaultNames structure, but not to the defaultNames slot value from the new
preferences frame. Figure 3 shows the heap after garbage collection has occurred.
After your call to GetAppPrefs, you get the situation shown in Figure 4. Your
local prefs variable points to a new heap copy of the preferences entry, but your
target slot points to the old defaultNames value. The EntryChangeXmit call will
affect the new copy of the soup entry, leaving it apparently unchanged.

There are two ways to fix this: you could put the edited defaultNames structure
into the preferences frame before calling EntryChangeXmit, or you could hold
a reference to the application preferences in your slip (or in your base view) for
the duration of the edit. The first way is more memory efficient.

The lesson is that keeping around references to objects inside soup entries
is a dangerous practice. The safe thing to do is read in your entry, do the
modifications, save the entry, and set the reference to nil.

Q I have an application that may print or fax many pages of information. I need to draw
a lot of the content of those pages. I know that in 1.x viewDrawScripts, faxing needed to
be fast. How about in 2.0? Are there better ways to go?

A The main thing missing in Newton 1.x OS is a method that gets called before
the fax connection is made. In Newton 2.0 OS, the formatInitScript method of

develop Issue 26 June 1996126

Figure 3. Heap after garbage collection

self.target

[, ...]�
�

"Calgary" "Banff"

. .

Figure 4. Heap after GetAppPrefs

self.target

[, ...]�
�

"Calgary" "Banff"

. .

prefs

{defaultNames:�
 ...}

[, ...]�
�

"Calgary" "Banff"

.

. .

your print format will be called before the connection is made. You can use this
script to do time-consuming drawing and cache the results for later use.

An extension of this technique is to render all your pages into a Virtual Binary
Object and then access the appropriate place in that object during printing or
faxing. The advantage of this is that you save heap space, since a VBO is paged
in to a system heap (not the NewtonScript heap). For some devices this is the
only way to print large numbers of pages.

Q The setup application uses some nifty embedded keyboards. I checked the beta version of
the Newton Programmer’s Guide for a prototype, but there doesn’t appear to be one. Is
this an oversight? How can I make these keyboards?

A There are several, as yet undocumented, ROM prototypes for embedded
keyboards. They will appear in the final Newton Programmer’s Guide, but for
now they’re in the Newton Toolkit platform file:

• protoAlphaKeys — alphanumeric keypad

• protoNumericKeys — numeric keypad

• protoTouchtonePad — minimal phonepad

• protoPhonePad — phonepad plus punctuation and arrow keys

All of these embedded keyboards will send input to the current key view. All
you have to do is draw one in your layout and make sure the target view is the
current key view. See the Newton DTS Q&A document on the Newton
Developer CD for instructions on how to use an afterScript to set the proto of
a view.

Q I’m porting my code from Newton 1.x OS to Newton 2.0 OS. When I build my project
using Newton Toolkit 1.6 and the 2.0 platform file, I get an error telling me that
k<insertNameHere>Func is undefined. What’s the problem?

A The chances are that your 1.x code is using one of the platform file functions
that either have been incorporated into ROM or are obsolete. However,
developers may want to write code that works on both Newton 2.0 and 1.x
devices. To enable this, we provide the old functions but we mark them as
deprecated, which means they shouldn’t be used in Newton 2.0–savvy applications,
but can be used for compatibility reasons.

For example, in 1.x platform files there’s a kRegisterCardSoupFunc function; in
the 2.0 platform file, this is called kRegisterCardSoupDeprecatedFunc since
there’s a new and better way to register soups in Newton 2.0 OS. See the platform
file release notes for a list of deprecated functions, protos, and so on.

Q How are reals represented in the package format? The data field for 12.345 is
represented as 0x4028B0A3D70A3D71, for example.

A NewtonScript uses the Apple SANE double format (basically the IEEE format)
for floating-point numbers. These are implemented as 8-byte binary objects of
class real and contain a sign bit, 11 bits of biased exponent, and 52 bits of fraction.

0x4028B0A3D70A3D71 is the binary data (8 bytes) of the SANE representation
of 12.345. It’s the same data that’s used to hold the number on the Newton itself.

NEWTON Q & A: ASK THE LLAMA 127

Q I would like to add a separator line followed by some new application-specific actions.
I proceeded to register a frame with the title as the symbol pickSeparator. It worked,
except that the separator was selectable. All I’m trying to achieve is an eye-pleasing
separation between the system actions and my actions. I also tried returning in the
GetTitle routine a frame with

{item: 'pickSeparator, pickable: nil}

but that resulted in a blank entry. Is there a way to do what I’m trying to do — that is,
to have a pickSeparator that isn’t selectable in the action button?

A In the routeScripts array, you can use a nil value instead of a frame. That will
add another pickSeparator at that position in the routeScripts. Note that the
system will fill in the separator between the items that are routing transports
(like Print) and the items that are actions (such as Delete). If you need to add
this separator dynamically, you can provide your own GetRouteScripts method
that dynamically returns the routeScripts frame.

That said, please check the latest Newton 2.0 User Interface Guidelines to make
sure that you’re putting a separator in a valid spot.

Q I’m profiling my application to see why it takes so long to open. However, of the time it
takes to open, only a small percentage is spent in my code. I’m measuring from the start
of the viewSetupFormScript to the end of the viewSetupDoneScript in my base view.

A There are a few things you can do. The first is to make sure you’re profiling
system functions to see if that’s where the time is going. It may be that you’re
doing things in your startup process that would be better done at a later time.

You may also be running into low-memory conditions. Run the HeapShow
utility that comes with Newton Toolkit and look at the frames heap and free
system space (handles and pointers). You can do this in combination with NS
Debug Tools to step through your code and track memory usage. Note that the
Newton Toolkit inspector will use a fair bit of system space, so you may want to
get a baseline memory usage without the inspector connected.

Q I’m having two problems with a protoPicker view. First, when I open a protoPicker
view (whose vFloating flag I haven’t turned off) it’s obscured by a textButton in the
main view. I can’t figure out why it doesn’t float over this plain vanilla textButton.

Also, I can’t select some of the items in the picker. The inaccessible items appear last in
the list, from the portion of the picker view that extends beyond the picker’s parent view
or the slip’s main view.

The only unusual thing I can see here is that the protoPicker view is not a sibling of the
textButton. The view hierarchy looks like this:

slipMainView
clusterView

protoPicker
textButton

Can you help?

develop Issue 26 June 1996128

A It looks like the protoPicker is being opened as a child of the clusterView. This
means that the active (tappable) area of the protoPicker will be clipped to the
bounds of the clusterView. It also sounds like the clipping viewFlag of the
clusterView isn’t set. That allows the protoPicker to be drawn outside of its
parent, so you may think it’s clickable even when it isn’t.

There are three possible solutions:

• Resize the protoPicker so that it’s no larger than the clusterView.

• Make the protoPicker a child of a view higher up in the hierarchy
(for example, the slipMainView).

• If your protoPicker is larger than the application base view, use
BuildContext to attach it to the root view.

Q How do I reset a protoTextList so that when I change the listItems and redisplay, the
display starts at the first item again? Right now if I’ve scrolled the text list and then I
reset it, the top item is wrong.

A The documentation mentions a SetupList method that you call when you
initialize the view. However, this is not enough if you’re changing the listItems
after you’ve opened the textList. Since the current implementation of textList
scrolls by offsetting the origin, you also need to reset the origin.

Here’s a method that you can add to your own protoTextList that will add a text
item and redraw the list correctly:

myProtoTextList.AddItem := func()
begin

// make sure listItems is an array
if NOT listItems then

listItems := [];

local newItem := GetRandomWord(5, 10);
// insert in sorted order for strings
BInsert(listItems, newItem, '|Str<|, nil, nil);

// redisplay based on new data
// this will reset the list to the top item
:SetOrigin(0, 0);
:SetupList();
:RedoChildren();

end;

Q Can you write a funny Q&A ?

A Yes.

NEWTON Q & A: ASK THE LLAMA 129

Thanks to jXopher Bell, Henry Cate, Bob Ebert,
Mike Engber, David Fedor, Ryan Robertson, Jim
Schram, Maurice Sharp, and Bruce Thompson for
these answers. Special thanks to Bob Ebert for the
answer on the format of reals.•

If you need more answers, check out
http://dev.info.apple.com/newton on the World
Wide Web or look at Newton Developer Info on
AppleLink.•

develop Issue 26 June 1996130

See if you can solve this programming puzzle, presented in the form of
a dialog between Cameron Esfahani (cam) and Alex Rosenberg. The
dialog gives clues to help you. Keep guessing until you’re done; your score
is the number to the left of the clue that gave you the correct answer.
Even if you never run into the particular problems being solved here,
you’ll learn some valuable debugging techniques that will help you solve
your own programming conundrums. And you’ll also learn interesting
Macintosh trivia.

Alex Hey cam, Marathon crashed in a weird manner when I tried to play it
under an early version of Mac OS 8.

cam Working hard, eh? I suppose you’ll tell me this was compatibility
testing.

Alex Yeah, well, it makes a good demo.

cam Hey, wait a minute! If it’s an early version of Mac OS 8, Puzzle Page
readers won’t ever find this bug, and they’ll write nasty letters to the
editor about it.

Alex Well, they should know that they’ll learn some valuable debugging
techniques that they can apply to their own programming
conundrums. Don’t they read the intro to the Puzzle Page?

cam I guess not. Anyway, back to your problem. So, in what way does it fail?

Alex Just after launch, the machine freezes. This happens every time; it’s
100% reproducible. I can’t seem to get into MacsBug.

cam Philistine! We use the one true debugger, the Macintosh Debugger
for PowerPC. Mac OS 8 debugging is generally done from a second
machine over a serial cable. You’re probably frozen because the
program has crashed and the debugger has halted the machine, waiting
to start a debugging session.

Alex What? I thought I gave that up with my Lisa. This is a Macintosh,
after all.

KON & BAL’S PUZZLE PAGE

New World Order

CAMERON ESFAHANI
AND ALEX ROSENBERG

CAMERON ESFAHANI (cameron_esfahani
@powertalk.apple.com, AppleLink DIRTY) SWM,
24, 5' 7", 180 pounds, brown hair, brown eyes.
Apple engineer. Loves movies and music. Plays
golf and tennis, rollerblades, ice-skates, and is
learning to ski again. Enjoys life but has a serious

side. Likes cooking, reading, shopping. Once a
dog guy, now a definite cat man. Believes the
American musical of the ’50s and ’60s to be the
second greatest invention of the twentieth century.
Favorites include West Side Story, The Sound of
Music, Music Man, and Singin’ in the Rain.•

cam Kernel-based operating systems are typically developed with two-
machine debuggers. Besides, think of the wonderful third-party
opportunity!

100 Alex Um, yeah. Anyway, you’ve hooked up the serial cable and are running
the debugger on the second machine. After watching a progress bar for
a while, you see a dialog that says “Access Fault.”

cam An access fault is caused by an attempt to access an illegal address. The
PC is at the instruction that caused the fault.

Alex There’s a Show PC command in the debugger’s Extras menu. It puts
me at 0x626FDE50.

cam Right. We need to isolate whether this fault occurred in application
code or in the system. Choose Show Fragment Info from the Views
menu and type that address into it.

Alex I can’t type anything; the machine is crashed. Oh, I get it: I have to
keep switching my head back and forth between machines like a
spectator at a tennis match. What fun. So, how long does this barber
pole thingy spin for, anyway? Hey look, the Fragment Info window
highlighted the Marathon code fragment. The PC is in Marathon’s code.

cam What does the code around the PC look like?

95 Alex It looks like this:

626FDE34 mflr r0
626FDE38 stw r0,0x0008(SP)
626FDE3C stwu SP,-0x0038(SP)
626FDE40 lwz r4,0x0000(r3)
626FDE44 lha r3,0x0000(r4)
626FDE48 bl _eGetDCtlEntry
626FDE4C lwz RTOC,0x0014(SP)

* 626FDE50 lwz r12,0x0000(r3)
626FDE54 lbz r3,0x0028(r12)
626FDE58 extsb r3,r3
626FDE5C lwz r0,0x0040(SP)
626FDE60 addic SP,SP,56
626FDE64 mtlr r0
626FDE68 blr

R3 is the return value from the function call to _eGetDCtlEntry and
apparently contained a bad address.

cam Choose Show Registers from the Views menu. This will show all the
registers of the current process.

90 Alex It looks like the return value for _eGetDCtlEntry was 0. The lwz
instruction is dereferencing R3 and putting the result in R12.

cam If you select the R12 register and choose Show Memory from the
Views menu, you can see the memory at that address.

KON & BAL’S PUZZLE PAGE: NEW WORLD ORDER 131

ALEX ROSENBERG (alexr@bungie.com) Alex’s
left brain works on everything from communications
software to the latest 3D graphics tricks. His right
brain is constantly thinking up interesting T-shirts
that Apple’s Marketing folks don’t approve of.
While working as a member of the Mac OS 8

“Ministry of Information,” he experimented with
optimization for PowerPC, worked closely with
Apple’s compiler team, and contributed to IBM’s
The PowerPC Compiler Writer’s Guide. Now one
of the minions at Bungie Software, Alex recently
decided that eating is overrated.•

85 Alex That entire area of memory is full of 0xEEEEEEEE’s.

cam That’s unmapped memory. Is _eGetDCtlEntry the internal name of
the routine GetDCtlEntry?

Alex Yes, the debugger is able to pick up that name by using a “trace-back
table,” which is the PowerPC equivalent of MacsBug symbols. I guess
the next step would be to figure out why GetDCtlEntry is returning
nil. What is it supposed to be doing?

cam According to Inside Macintosh: Devices, GetDCtlEntry returns the device
control entry for the device specified by the value passed in refNum.
If we look at the rest of the code in this function, right before we call
GetDCtlEntry, we seem to be getting the refNum from the first 16
bits of some “handle” (or some other kind of pointer to a pointer),
which is getting passed into this function.

80 Alex All right, but we’re going to have to restart. Any information passed
into this function has been lost because we’re after the call to
GetDCtlEntry.

cam To restart we’ll need to remember the offset into the Marathon
fragment where the fault will occur, because the Marathon fragment
could be loaded in a different address range.

75 Alex The offset can be calculated by subtracting the faulting address from
the beginning address for the fragment, which was shown in the
Fragment Info window. For this address, the offset is 0x4832C.

cam Right, but we’d like to get control a little before the actual crash.
The offset to the beginning of that function is 0x48310. Restart the
system, and hold down the Control key when you relaunch Marathon.
On a debugging system, this will break into the debugger after it has
completely loaded the application but just before it begins to execute it.

Alex All right. The machine seems to have stopped at that point. The new
start of the Marathon code fragment is 0x6337D6A0. Adding in the
offset of 0x48310, we get an address of 0x633C59B0.

cam Bring up the Show Instructions window and enter 0x633C59B0 as
the address. It will be exactly the same code as what we saw before.
Set a breakpoint at the first instruction in this function — the mflr
instruction — and run.

Alex We’ve reached that breakpoint.

cam Do a stack crawl and see who called us. Head over to the ever useful
Views menu; there’s a Show Stack Crawl command.

70 Alex All right. Apparently the caller is address 0x633988E0.

cam OK, let’s step through this function and see what they end up passing
to GetDCtlEntry for the refNum.

65 Alex It looks like they’re passing in 0 for the refNum.

cam Well, there’s your problem: 0 is not a valid refNum. It seems that
they’re getting an invalid refNum from some part of the system and
passing that to GetDCtlEntry. GetDCtlEntry is returning nil and
we’re crashing by dereferencing nil.

Alex Uh, that’s great, but I still can’t play Marathon.

cam Where does the caller of this function, 0x633988E0, get the “handle”
from?

develop Issue 26 June 1996132

60 Alex I’ll bring up an instruction window at that address:

63398778 mflr r0
...
633987B0 lwz r24,-0x0218(RTOC)
...
633988D8 lwz r3,0x0000(r24)
633988DC addic r3,r3,0x001C
633988E0 bl $+0x2D340 ; 0x633C5C20
633988E4 nop
633988E8 stw r3,0x0000(r30)

R3 seems to be loaded from a global. Let’s figure out where this global
gets initialized. The “handle” lives inside a structure that’s pointed to
by the global at -0x218(RTOC). This pointer has the “handle” stored
at offset 0x1C within it.

cam We could try to track down where the field at offset 0x1C gets
initialized. A pointer wouldn’t move around, so we wouldn’t have to
worry about relocation. We can use the Data Breakpoint window
feature of the Macintosh Debugger. The PowerPC 601 has a special
register that allows you to stop execution whenever a specified address
is read or written to. It’s like hardware support for our old friend step
spy.

Alex Sounds like a plan. So, I bring up the Data Breakpoint window and
will break whenever someone writes to that address.

cam Of course, you realize that just as the code fragment could be loaded
in a different place each time it’s launched, the RTOC could have a
different value as well.

Alex Good point. I’ll be sure to use the new RTOC value when I restart
Marathon.

cam What happens after we set up the data breakpoint?

55 Alex It’s kind of strange. We seem to be stopping a lot, but people aren’t
writing to offset 0x1C in this structure; they seem to be writing 32 bits
to offset 0x1A and overwriting 0x1C.

cam I don’t understand. The routine that called the crashing routine was
passing in a value at offset 0x1C.

Alex Apparently we calculated something wrong.

cam I don’t know where we could have gone wrong. Wait a second. Look at
address 0x633988E0; it says we’re branching to address 0x633C5C20,
but the routine we’re crashing in is at 0x633C59B0.

50 Alex Well, maybe it’s just a call to a different code fragment, a “cross-TOC”
call, and it has to use some indirection to get to the crashing function.

cam No, it can’t be a cross-TOC call, for two reasons: first, there’s no TOC
reload after the function call, and second, the routine we crashed in is
in the Marathon fragment. You saw the Fragment Info results.

Alex I’ll buy that. Now let’s set our breakpoint just before this function call
to the unknown address. We can step through that code.

cam All right. After we hit the breakpoint, step into that function.

45 Alex Holy cow! It’s some totally different piece of code.

KON & BAL’S PUZZLE PAGE: NEW WORLD ORDER 133

cam Look through the instruction disassembly of this new routine. Is there
anywhere in there where they call the crashing function?

633C5C98 bl 0x6337E150
633C5C9C lwz RTOC,0x0014(SP)
633C5CA0 ori r31,r3,0x0000
...
633C5CDC ori r3,r31,0x0000

* 633C5CE0 bl 0x633C59B0

40 Alex Yeah. At address 0x633C5CE0, they call our crashing function with a
parameter obtained from R31. Working further back in the instruction
disassembly, we see that a function call is made and the result of that is
put in R31. This occurs at 0x633C5C98. It calls a routine at address
0x6337E150.

cam And looking at that, it appears to be a cross-TOC call. I restart
Marathon and step into the routine at 0x6337E150.

Alex It appears to be cross-TOC glue:

6337E150 lwz r12,-0x0A90(RTOC)
6337E154 stw RTOC,0x0014(SP)
6337E158 lwz r0,0x0000(r12)
6337E15C lwz RTOC,0x0004(r12)
6337E160 mtctr r0
6337E164 bctr

cam So apparently Marathon is calling another library to get this mystical
“handle.”

35 Alex Yep. Whenever you’re going to go from one library context to another,
you need to save and restore the TOC. That’s one of the things this
glue code does. As you can see, R12 is loaded from -0x0A90(RTOC).
R12 will contain a pointer to a transition vector, which contains an
address of a routine and a new TOC value. The transition vector is
imported from the library we’re linking against.

cam So we should be able to plop the transition vector address into the
Fragment Info window and figure out which library that comes from,
right?

30 Alex Good idea. Dumping the address at -0x0A90(RTOC) we get the
following:

0200CC0C: 01FC9D98 01FC9DA4 01FC9DB0 01FC9DBC
0200CC1C: 01FC9DE0 01FC9DEC 01FC9D80 01FC9D74
...

cam I use the Fragment Info window to find out which fragment contains
the address 0x01FC9D98.

25 Alex It seems to live in the QuickDraw data section, which makes sense,
since a transition vector is data.

cam Aha! QuickDraw! That figures. And you wondered why they call it
KON & BAL’s Puzzle Page. I use the Show Exports button in the
Fragment Info window to list all of the exports of the QuickDraw
library.

develop Issue 26 June 1996134

Alex I was wondering when we were going to use that button. You end up
getting a long list of all the routines exported by QuickDraw, sorted
alphabetically.

cam But I have an address I want to match. If you click on the Address
column title, that list will get resorted by address. I search through the
list for address 0x01FC9D98.

20 Alex That address is the address of the GetDeviceList transition vector.

cam That makes sense. This “handle” we’ve been worrying about has a
refNum in the first 16 bits of the structure, and a GDHandle has the
refNum of the associated driver stored in the first field in the structure.
I bring up a memory window and examine the device list stored in low
memory to see if the gdRefNum is 0.

Alex It is. Who’s responsible for initializing the GDevice record?

cam NewGDevice and InitGDevice. NewGDevice will pass the refNum to
InitGDevice. Let’s disassemble the code for NewGDevice.

15 Alex Apparently it does a NewHandleClear to allocate the GDHandle, and
never initializes the refNum.

cam Whoops. Ah, the joys of pre-alpha software. Well, it should be
reasonably easy to get one of the QuickDraw engineers to fix this bug.
I install a fixed version of the QuickDraw shared library. We should be
rockin’ now!

Alex Not so fast! When I restart Marathon, I crash. If I do a stack crawl and
examine the code, I seem to be crashing in exactly the same place.
GetDCtlEntry still seems to return nil.

cam Just another day at the salt mines. OK, it’s time to step through
GetDCtlEntry. I put a breakpoint just before we call it.

Alex The refNum from the GDHandle is -51.

cam That looks like a valid refNum. Step into GetDCtlEntry.

Alex We first go through the cross-TOC glue and eventually get into
GetDCtlEntry.

cam What does GetDCtlEntry look like?

10 Alex It seems fine, but when you step through the routine and actually fetch
the DCtlHandle from the unit table, it ends up being nil.

...
626FC79C cntlzw r3,r3
626FC7A0 srwi r3,r3,5
...

cam That obviously shouldn’t happen. There’s a driver entry in the table
and the refNum seems valid. What is the code at 0x626FC79C doing?

5 Alex It’s performing a logical NOT operation on R3. Groovy, huh?

cam But the bitwise NOT of the refNum should be used as the index into
the unit table, not the logical NOT!

Alex So, you claim that GetDCtlEntry is looking at the wrong place in the
unit table to get the DCtlHandle. Are you sure?

cam Let’s go to the source. What does Inside Macintosh: Devices say?

KON & BAL’S PUZZLE PAGE: NEW WORLD ORDER 135

Alex It says, “The device reference number is the one’s complement (logical
NOT) of the unit number.” But the logical NOT isn’t the one’s
complement; the bitwise NOT is.

cam Um, OK, what does Inside Macintosh Volume II say?

Alex It claims that the unit number is “equal to -1 * (refNum + 1).”

cam And that’s a bitwise NOT. So it seems that Inside Macintosh: Devices is
wrong. Weird, wacky stuff. But I still don’t understand why the stack
crawl we did earlier pointed us to the wrong place.

Alex We did the stack crawl when we had just entered the crashing
function, even before it executed the mflr instruction. The debugger,
when it does a stack crawl, is going to look for stack frames to see
where the callers are. Since we hadn’t allocated a stack frame in the
crashing function yet, we were still using the caller’s stack frame. So
that was the stack frame the debugger started from. If we had stepped
a few more instructions in and allocated our stack frame, the debugger
would have figured it out. It would be interesting to see if the
debugger could actually detect the case of a nonexistent stack frame
and use the link register to work back to the caller.

cam That also explains why the data breakpoint stuff didn’t work. We
thought that the data structure we were watching held the GDHandle.
It didn’t; it contained something totally unrelated, which was passed
into the function that called the crashing routine.

Alex So, because NewGDevice didn’t initialize the gdRefNum and
GetDCtlEntry was returning the wrong entry from the unit table, I
don’t get to teach the Pfhor about large caliber, high-velocity rounds.

cam Nasty.

Alex Yeah.

develop Issue 26 June 1996136

SCORING
Your performance compares to these memorable screen roles:

80–100 Chuck Heston in El Cid
55–75 Anne Parillaud in La Femme Nikita
30–50 Chow Yun-Fat in Hard Boiled
5–25 Richard Roundtree in Shaft •

Thanks to Tom Dowdy, Wayne Meretsky, Mike Neil, Tom Saulpaugh, KON (Konstantin Othmer), and
BAL (Bruce Leak) for reviewing this column.•

Issue 1 Color; Palette Manager; Offscreen Worlds;
PostScript; System 7; Debugging Declaration ROMs

Issue 2 C++ (Objects; Style Guide); Object Pascal;
Memory Manager; MacApp; Object-Based Design

Issue 3 ISO 9660 and High Sierra; Accessing CD Audio
Tracks; Comm Toolbox; 8•24 GC Card; PrGeneral

Issue 4 Device Driver in C++; Polymorphism in C++;
A/ROSE; PostScript; Apple IIGS Printer Driver

Issue 5 (Volume 2, Issue 1) Asynchronous Background
Networking; Palette Manager; Macintosh Common Lisp

Issue 6 Threads; CopyBits; MacTCP Cookbook

Issue 7 QuickTime 1.0; TrueType; Threads and Futures;
C++ Objects in a World of Exceptions

Issue 8 Curves in QuickDraw; Date and Time Entry in
MacApp; Debugging; Hybrid Applications for A/UX

Issue 9 Color on 1-Bit Devices; TextBox You’ve Always
Wanted; Sound; Terminal Manager; Debugging Drivers

Issue 10 Apple Event Objects; Enhancements for the
LaserWriter Font Utility; GWorlds; The Optimal Palette

Issue 11 Asynchronous Sound; Multibuffering Sounds;
Exceptions; NetWork: Distributed Computing

Issue 12 Components; Time Bases; Apple Event Coding
Through Objects; Globals in Standalone Code

Issue 13 Asynchronous Routines; QuickTime and
Components; Debugging; Color Printing; DeviceLoop

Issue 14 Localizable Applications; 3-D Rotation;
QuickTime (Video Digitizing; Making Better Movies)

Issue 15 QuickDraw GX; Component Registration;
Floating Windows; Working in the Third Dimension

Issue 16 Making the Leap to PowerPC; PowerTalk;
Drag and Drop From the Finder; Color Matching With
QuickDraw GX; International Number Formatting

Issue 17 Proto Templates on the Newton; Standalone
Code on PowerPC; Debugging on PowerPC; Thread
Manager; Window Zooming

Issue 18 Apple Guide; Open Scripting Architecture;
Graphics Speed on the Power Macintosh; Displaying
Hierarchical Lists; Preferences Files

Issue 19 OpenDoc Part Handlers; PowerPC Memory
Usage; Designing for the Power Macintosh; QuickDraw
GX (Printing; Bitmaps); Inheritance in Scripts

Issue 20 AOCE; Make Your Own Sound Components;
Scripting the Finder; NetWare on PowerPC

Issue 21 OpenDoc Graphics; Dylan; Designing a
Scripting Implementation; Object-Oriented Hierarchical
Lists; Introducing PowerPC Assembly Language

Issue 22 QuickDraw 3D; Copland; PCI Device Drivers;
Custom Color Search Procedures; The OpenDoc User
Experience; Futures

Issue 23 QuickTime Music Architecture; QuickDraw
3D Geometries; Internet Config; Multipane Dialogs;
Document Synchronization; ColorSync 2.0

Issue 24 Speeding Up whose Clause Resolution;
OpenDoc Storage; Sound; Alert Guidelines; Printing
Images Faster With Data Compression; The New Device
Drivers and Memory

Issue 25 Generating QuickTime VR Movies From
QuickDraw 3D; Flicker-Free Drawing With QuickDraw
GX; NURB Curves; C++ Exceptions in C; Localized
Strings for the Newton

develop

�

 VR m
 ral di
 with e
 3D dat
 QuickTim
 movies from their da
 to show potential cu
 the movies display th
 objects more effective
 representation and co
 the data in the process
 Archaeologists can Q
 VR movies to record sit
during digs, realtors can

Looking to complete
the set?
If you’re looking for a complete develop collection, full-color, bound copies are
available for $13 per issue, including shipping and handling. (Back issues are also on
the develop Bookmark CD and the Developer CD Series Reference Library edition, as
well as on AppleLink and the Internet.) For more information about how to order
printed back issues (and where to find them online), see the inside front cover of
this issue. Supplies are limited. Please allow 4 to 6 weeks for delivery.

For a cumulative index to all issues of
develop, see this issue’s CD.•

A
“According to Script” (Simone),

attaching and embedding
scripts 76–79

“Adding Custom Data to
QuickDraw 3D Objects”
(Thompson, Fernicola, and
Davidson) 80–98

AOCE interfaces, Mac OS 8 and
23

Apple Media Conference (AMC),
QTC and 33

Apple Shared Library Manager
(ASLM), Mac OS 8 and 18

AppleTalk browser (QTC) 37–38
AppleTalk Multicast, QTC and

40
application plug-ins

and Mac OS 8 memory
management 18

migration path to Mac OS 8
12–13

application trap patching, and Mac
OS 8 compatibility 14–15, 24

ASCII text, scripted editing
57–59

ASM_BEGIN (Wide.c) 107
ASM_END (Wide.c) 107
ASM_FUNC_HEAD (Wide.c)

106–107
asm keyword, in assembly-

language routines 106
ASM_TAIL (Wide.c) 107
attached scripts 76

vs. embedded scripts 76
attributes (QuickDraw 3D)

81–87, 96
attaching custom data

86–87
defining and registering

custom data 83–86
and inheritance 82–83, 84
new custom attributes

96–98
registering custom attributes

96
attribute sets (QuickDraw 3D) 82

attaching to objects 83, 87,
88, 93

AutoStart (QuickTime),
Macintosh Q & A 119–120

B
background-only applications. See

faceless background applications
back issues of develop 137
backquote (`), extension loading

order (Macintosh Q & A)
117–118

“Balance of Power” (Evans),
Sleuthing Through Your Code
110–114

base part (OpenDoc) 60–66, 75
calls to 65
inheritance from 67–74

BeginUsingLibraryResources
(OpenDoc) 67

Blackketter, Dean 33
BringToFront, Mac OS 8 and 22
broadcast conferences (QTC) 34,

35, 50–55
BrowseName (QTC) 43
browser components (QTC) 35,

37–39
BuildAListOfUniqueDevices

(Display Manager) 28–29
BUILDING_FOR_SYSTEM7,

deprecated calls and 24
BUILDING_FOR_SYSTEM7_

AND_SYSTEM8, deprecated
calls and 24

BUILDING_FOR_SYSTEM8,
deprecated calls and 24

BUILDING_PREEMPTIVE_
CODE, deprecated calls and
24

bus errors, debugging 111

C
C++ objects, SOM objects vs. 64
CallMember (QTC) 44
CastChannelSettings (QTC) 55
Caster sample application (QTC)

33, 39–41, 50–55
CFM per-context data, Mac OS 8

and 22

'cfrg' resource, specifying stack
size 17

CheckConferenceEvents (QTC)
44–45

ClickInActive (OpenDoc) 63
CloseComponent (Component

Manager), attaching scripts and
76

CloseOpenedCell (OpenDoc) 63
CloseWatch (QTC) 48–49
clusterView, Newton Q & A 129
Code Fragment Manager (CFM),

SOM and 74–75
ColorSync 2.0 profiles, embedding

in EPS images (Macintosh
Q & A) 115

Component Manager, QTC and
34, 36

compressed resources, Mac OS 8
and 21

conference components (QTC)
36, 41–49, 51

conference events (QTC) 36
“Connecting Users With

QuickTime Conferencing”
(Blackketter) 33–56

ControlHandle (OpenDoc) 66
control panels

Mac OS 8 compatibility 6
migration path to Mac OS 8

10–11
Copland. See Mac OS 8
.cpp source file (SOM) 61, 64
CreateWatchConference (QTC)

42
cross-TOC calls, KON & BAL

puzzle 133–134
CustomAttribute_Lib.c file

(QuickDraw 3D) 96

D
Data Breakpoint window

(Macintosh Debugger), KON
& BAL puzzle 133

data fork
embedding scripts in 78–79
extracting script data from

78–79
Mac OS 8 and 21–22

Davidson, Kent 81
debugging

low-level 110–114
stack crawling 112–114

defaultNames, Newton Q & A
126

INDEX

develop Issue 26 June 1996138

deprecation
Mac OS 8 and 23–24
Newton 2.0 OS and

(Newton Q & A) 127
desk accessories

Mac OS 8 compatibility 6
migration path to Mac OS 8

10–11
develop back issues 137
DeviceLoop (QuickDraw),

Display Manager and 27–28,
29–30, 31–32

Display Manager 27–32
caching graphics devices 30
highlighting graphics 28
QuickDraw and 31
receiving and responding to

events 30
DMGetNextScreenDevice

(Display Manager) 28
DMIsMirroringOn (Display

Manager) 31
DoConferenceTerminated (QTC)

55
DoIncomingCall (QTC) 53
DoMemberJoining (QTC) 46
DoMemberReady (QTC) 47–48
DoMemberTerminated (QTC)

49
double format (SANE), Newton

Q & A 127
drivers

Mac OS 8 compatibility 8
migration path to Mac OS 8

11
dynamic displays, Display

Manager and 27–32
dynamic inheritance (SOM),

OpenDoc parts and 60–75
dynamic shared libraries, SOM

and 60

E
Echo command (MPW Shell) 59
editing commands (MPW Shell)

58–59
elements (QuickDraw 3D) 81–87,

96
attaching custom data

86–87, 93
defining the data structure

88
defining metahandlers for

custom elements 90–91
defining and registering

custom data 83–86

implementing element
methods 91–92

new custom elements 96–98
registering custom elements

88–90, 96
vs. shared objects 82

embedded keyboards, Newton
Q & A 127

embedded scripts 76–79
retrieving 78–79

EndUsingLibraryResources
(OpenDoc) 67

EntryChangeXmit, Newton
Q & A 125–126

Esfahani, Cameron 27, 130
Evans, Dave 110
extension libraries, Mac OS 8

compatibility 8, 12
extensions

loading order (Macintosh
Q & A) 117–118

Mac OS 8 compatibility 6
migration path to Mac OS 8

11–12
ExternalizeListData (OpenDoc)

63, 71
ExtFSHook, Mac OS 8 and 21

F
faceless background applications

(FBAs), migration path to
Mac OS 8 10

FacetAdded (OpenDoc) 64, 66,
74

FacetRemoved (OpenDoc) 66
Falkenburg, Steve 5
Fernicola, Pablo 80
file command (MacsBug) 112
File command (MPW Shell) 58
file system hooks, Mac OS 8 and

21
FillCell (OpenDoc) 63, 64, 66,

73, 75
FillHilCell (OpenDoc) 63, 66, 70
Find command (MPW Shell) 58
FindFolder, Mac OS 8 and 17
FixMath.h header file 102
fListCtl field (OpenDoc) 66
FontToPict (QuickDraw GX) 3
formatInitScript, Newton Q & A

126–127
ForwardDirection (QuickDraw

3D) 97
FrameShapeChanged (OpenDoc)

66
FSQueueHook, Mac OS 8 and 21

G
GDeviceUtilities.cp file, Display

Manager and 28–29
GDHandle, KON & BAL puzzle

135–136
gdRects (global bounds),

overlapping 27
GENERATING68K constant,

and 64-bit integer math
routines 104

GetAppFont, Mac OS 8 and 21
GetApplLimit, Mac OS 8 and 17
GetAppPrefs, Newton Q & A

125–126
GetDCtlEntry, KON & BAL

puzzle 131–132, 135–136
GetMessageHandlerClassContext

(Macintosh Q & A) 116
GetMessageHandlerInstance-

Context (Macintosh Q & A)
116

GetNbLines (OpenDoc) 63
GetNextEvent filter, Mac OS 8

and 18–19
GetSel (OpenDoc) 63
GetSysFont, Mac OS 8 and 21
GetTheRealPartKind (OpenDoc)

63, 67
GetTrapAddress, Mac OS 8 and

20
global share bit (CFM library),

Mac OS 8 and 22
GNEFilter mechanism, Mac OS 8

and 18–19
GotDoubleClick (OpenDoc) 63
“Graphical Truffles” (Miller and

Esfahani), Dynamic Display
Dilemmas 27–32

graphics mirroring (Display
Manager) 27

GXMath.h header file 103
GXTypes.h header file 102, 103

H
HandleConferenceEvent (QTC)

45–46
handles, Mac OS 8 and 18
hard drive space, Mac OS 8 and

21
HeapShow utility (Newton

Toolkit) 128
heap zones, Mac OS 8 and 18
HOpenSync, Mac OS 8 and 26
.h source file (SOM) 61, 63

field names 63

INDEX 139

HTML (Hypertext Markup
Language), extending for
3DMF objects 89

I
IdleOpened (OpenDoc) 63
.idl source file (SOM) 61–63, 75

field names 63
illegal instruction errors,

debugging 111
Image Compression Manager,

QTC and 34
infinite loops, detecting 111–112
InitDialogs, Mac OS 8 and 25
InitGDevice, KON & BAL puzzle

135
InitializeListData (OpenDoc) 63,

75
InitMenus, Mac OS 8 and 25
InitPart (OpenDoc) 73
InitPartFromStorage (OpenDoc)

73
INITs. See extensions
Inside Macintosh 124
InternalizeListData (OpenDoc)

63, 71
isDisplayManagerAware flag

(Display Manager) 30

K
kATAEjectRequest (ATA Manager),

Macintosh Q & A 121
kATAOfflineEvent (ATA Manager),

Macintosh Q & A 121
kATAOfflineRequest (ATA

Manager), Macintosh Q & A
121

kATAOnlineEvent (ATA Manager),
Macintosh Q & A 120

kATARemovedEvent (ATA
Manager), Macintosh Q & A
121

kATAResetEvent (ATA Manager),
Macintosh Q & A 121

KeyInActive (OpenDoc) 63
KeyShortCut (OpenDoc) 63
“KON & BAL’s Puzzle Page”

(Esfahani and Rosenberg), New
World Order 130–136

kQ3MethodTypeAttributeCopy-
Inherit (QuickDraw 3D) 86

kQ3MethodTypeAttributeInherit
(QuickDraw 3D) 86

kQ3MethodTypeElementCopyAdd
(QuickDraw 3D) 85

kQ3MethodTypeElementCopy-
Delete (QuickDraw 3D) 85–86

kQ3MethodTypeElementCopy-
Duplicate (QuickDraw 3D) 85

kQ3MethodTypeElementCopyGet
(QuickDraw 3D) 85

kQ3MethodTypeElementCopy-
Replace (QuickDraw 3D) 85

kQ3MethodTypeObjectReadData
(QuickDraw 3D) 85

kQ3MethodTypeObjectTraverse
(QuickDraw 3D) 85

kQ3MethodTypeObjectWrite
(QuickDraw 3D) 85

L
Line command (MPW Shell) 58
LISP, time-critical code in 4
ListEx1Part.cpp (OpenDoc)

69–70
ListEx1Part example list

(OpenDoc) 61, 67–70, 75
ListEx1Part.h (OpenDoc) 69
ListEx2Part.cpp (OpenDoc) 71

xxxListData methods 72
ListEx2Part example list

(OpenDoc) 61, 67, 70–71, 75
ListEx2Part.h (OpenDoc) 71
ListEx3Part example list

(OpenDoc) 61, 67, 72–74
list generated by 72

ListPart (OpenDoc) 60–61, 64,
67, 75

inheritance from 60–61, 67
LMGet/LMSet, Mac OS 8 and

16–17, 24
LocalizeNumberString,

WideToDecStr and 103
LongMul (Toolbox) 105
Louch, John 89
low-level debugging 110–114

M
Macintosh Debugger for PowerPC,

KON & BAL puzzle 130
Macintosh Q & A 115–122
Macintosh Simplified Chinese,

converting to GB standard
(Macintosh Q & A) 121–122

Mac OS 8
accessing hardware 22
application plug-ins 12–13,

18
control panels 6, 10–11
custom definition procedures

16

debugging version 13, 17
desk accessories 6, 10–11
discouraged behaviors

23–25
drivers 8, 11
extension libraries 8, 12
extensions 6, 11–12
faceless background

applications 10
factoring applications for 15
incompatible behaviors

25–26
locating special folders 17
memory management

17–18, 24
OpenDoc part editors 6, 8,

9, 10
patch libraries 8, 12, 24
planning for compatibility

5–26
preparing for 13–18
real-time applications 7–8,

9–10
servers 8, 10, 11
sharing data across

applications 24
sharing Toolbox structures

between applications 21
supported frameworks

13–14
tasking services 15
theme-specific windows

15–16
unsupported behaviors

18–23
user interface applications

7, 9
utility applications 8
virtual memory 17

Mac OS 8-compatible applications
7

Mac OS 8-savvy applications 7, 9
MacsBug, low-level debugging

110–114
Maroney, Tim 57
MBDFs, custom, Mac OS 8 and

24–25
MemberRecord (QTC) 44, 49
memory management (Mac OS 8)

17–18, 24
Memory Manager, Mac OS 8 and

17–18
Mensch, Jim 123
menu bar, Display Manager and

30–31

develop Issue 26 June 1996140

menu items, attaching scripts to
76

Menu Manager, Mac OS 8 and 26
menus, Display Manager and 31
metahandlers (QuickDraw 3D)

84–86
for a custom element 86,

90–91
metfiles, reading custom data from

95
Miller, Kent 27
minimal-adoption applications

Mac OS 8 compatibility 7
migration path to Mac OS 8

9
mirrored graphics. See graphics

mirroring
Modern Memory Manager,

debugging version 17
Movie Toolbox, QTC and 34
MPW Shell

declaring QuickDraw globals
(Macintosh Q & A)
118–119

editing commands 58–59
file management commands

59
regular expressions 57–58
scripted text editing 57–59
selection expressions 58
standalone editing tools 59

MPW SOM compiler 74
“MPW Tips and Tricks”

(Maroney), scripted text editing
57–59

MTBrowserBrowse (QTC)
43–44

MTConferenceActivateConference
(QTC) 53

MTConferenceActivateMember
(QTC) 48

MTConferenceCall (QTC) 44
MTConferenceDetachMember

(QTC) 54
MTConferenceEvent (QTC) 45
MTConferenceGetNextEvent

(QTC) 36, 44–45
MTConferenceListen (QTC) 43,

53
MTConferenceMerge (QTC) 54
MTConferenceNewPrepared-

Controller (QTC) 47, 50
mtConferenceReadyEvent (QTC)

53–54
MTConferenceReply (QTC) 53

MTConferenceSetMode (QTC)
51

MTConferenceTerminate (QTC)
48–49

mtConferenceTerminatedEvent
(QTC) 53, 54, 55

mtControllerActionSetShow-
Snapshot (QTC) 51

MTControllerChangedStreams
(QTC) 55

MTControllerDoAction (QTC)
48, 51, 55

MTControllerNewAttached-
Controller (QTC) 47–48, 51

MTControllerSetController-
BoundsRect (QTC) 51

MTDirectorSetMediaComponent
(QTC) 50

mtIncomingCallEvent (QTC) 53,
54

mtMemberJoiningEvent (QTC)
46

mtMemberReadyEvent (QTC)
46, 53, 54

mtMemberTerminatedEvent
(QTC) 49

MTName (QTC) 44
MTNameList (QTC) 44
multipoint conferences (QTC)

34, 35
MyAdjustRectFacet (OpenDoc)

66
MyControllerActionFilter (QTC)

48

N
NameAttribute (QuickDraw 3D)

97
NCWNewColorWorld

(ColorSync), Macintosh Q & A
115

Netscape Navigator, 3D Web
content and 89

network components (QTC) 39
network-specific browser (QTC)

37–38
NewGDevice, KON & BAL

puzzle 135–136
Newton 1.x OS, porting code to

Newton 2.0 OS (Newton
Q & A) 127

Newton Q & A: Ask the Llama
125–129

Notification Manager, Mac OS 8
and 22, 23

O
ODPart (OpenDoc) 61
OpenCast (QTC) 50, 52
Open command (MPW Shell) 58
OpenDefaultComponent

(Component Manager)
attaching scripts and 76
QTC and 42–43, 50

OpenDoc developer releases 61
OpenDoc part editors

Mac OS 8 compatibility 6, 8
migration path to Mac OS 8

9, 10
OpenDoc parts, SOM dynamic

inheritance and 60–75
“OpenDoc Parts and SOM

Dynamic Inheritance”
(Simenel) 60–75

OpenSlotSync, Mac OS 8 and 26
Open Transport

with CFM-68K (Macintosh
Q & A) 117

linking to libraries
(Macintosh Q & A)
116–117

Mac OS 8 and 16
OverrideBeginUsingLibrary-

Resources (OpenDoc) 63, 67
OverrideEndUsingLibrary-

Resources (OpenDoc) 63, 67

P
Palette Manager (Display

Manager) 30
paramErr (-50) error, Macintosh

Q & A 118
partInfo field (OpenDoc) 66
PartMaker (OpenDoc) 61, 64, 68
patch libraries, Mac OS 8

compatibility 8, 12, 24
PBHGetFInfo (Macintosh Q & A)

117
pickSeparator, Newton Q & A

128
“Planning for Mac OS 8

Compatibility” (Falkenburg)
5–26

pointers, Mac OS 8 and 18
point-to-point conferences (QTC)

34, 35
Polaschek, Dave 99
Position command (MPW Shell)

59
PostScript, adding to QuickDraw

graphics 99

INDEX 141

PostScriptHandle picture
comment 99

PowerPC, Mac OS 8 compatibility
13

PowerPC Toolbox, wide routines
101, 102, 104

PowerTalk browser (QTC) 37,
38–39

PPostEvent, Mac OS 8 and 19–20
PrClosePage, Macintosh Q & A

118
prefs local variable, Newton

Q & A 125–126
PrError (Printing Manager) 100
PrGeneral (Printing Manager)

100
PrintDefault (Printing Manager)

99
printer drivers

Mac OS 8 compatibility 8
migration path to Mac OS 8

11
“Print Hints” (Polaschek), The

Top 10 Printing Crimes
Revisited 99–100

printing
memory requirements 99
top 10 crimes 99–100

Printing Manager, low-level
routines 100

PrivateInterfaceLib, Mac OS 8
and 20–21

private low-memory globals, Mac
OS 8 and 20

private traps, Mac OS 8 and 20
PrJobDialog (Printing Manager)

100
PrJobMerge (Printing Manager)

100
PrOpen (Printing Manager)

99–100
protoAlphaKeys, Newton Q & A

127
protoNumericKeys, Newton

Q & A 127
protoPhonePad, Newton Q & A

127
protoPicker, Newton Q & A

128–129
protoTextList, Newton Q & A

129
protoTouchtonePad, Newton

Q & A 127
PrValidate (Printing Manager) 99
public low-memory globals,

Mac OS 8 and 21

Q
Q3AttributeClass_Register

(QuickDraw 3D) 84
Q3AttributeSet_Add (QuickDraw

3D) 83, 84, 85
Q3AttributeSet_Clear

(QuickDraw 3D) 85–86
Q3AttributeSet_Get (QuickDraw

3D) 85
Q3AttributeSet_Inherit

(QuickDraw 3D) 83, 86
Q3AttributeSet_New (QuickDraw

3D) 83
Q3ElementClass_Register

(QuickDraw 3D) 84, 90
Q3Object_Duplicate (QuickDraw

3D) 85, 86
Q3Set_Add (QuickDraw 3D) 85,

91
Q3Set_Clear (QuickDraw 3D)

85–86
Q3Set_Contains (QuickDraw 3D)

93
Q3Set_Get (QuickDraw 3D) 85,

91, 93
Q3Shared_GetReference

(QuickDraw 3D) 86
Q3View_GetDefaultAttributeSet

(QuickDraw 3D) 83
QD3DIO.h header file

(QuickDraw 3D) 86
QD3DSet.h header file

(QuickDraw 3D) 86
QDGlobals (QuickDraw),

Macintosh Q & A 118–119
qd global variable (QuickDraw),

Macintosh Q & A 118–119
QuickDraw

adding PostScript code to
QuickDraw graphics 99

Display Manager and 31
QuickDraw 3D

adding anchors to
QuickDraw 3D objects
89

adding custom data to
QuickDraw 3D objects
80–98

attributes 81–87
class hierarchy 81
debugging version

(Macintosh Q & A) 118
elements 81–87
extracting custom data from

QuickDraw 3D objects
93–95

QuickDraw GX
debugging version 17
Mac OS 8 printer driver

compatibility 11
Mac OS 8 printing 16
print dialogs 100
printer drivers (Macintosh

Q & A) 116
wide routines 102, 104

QuickTime 2.1, AutoStart feature
(Macintosh Q & A) 119–120

QuickTime Conferencing (QTC)
33–56

broadcasting 50–55
browsing the network 43–44
conference configurations

34, 35
conferencing components

36–39
media protocols supported

34
setting up a conference

42–43
Quote command (MPW Shell) 59

R
real numbers, in package format

(Newton Q & A) 127
real-time applications

Mac OS 8 compatibility 7–8
migration path to Mac OS 8

9–10
recorder components (QTC) 39
regular expressions (MPW Shell)

57–58
tagged 57–58

RelString (Macintosh Q & A) 117
Replace command (MPW Shell)

58
RequestFrameShape (OpenDoc)

66
ResLoad (Resource Manager) 124
ROM85, Mac OS 8 and 26
Rosenberg, Alex 131
routeScripts, Newton Q & A 128

S
sc7 command (MacsBug)

112–114
ScaleAttribute (QuickDraw 3D)

97
sc command (MacsBug) 112–114
Scriptable Database, compiling

with CodeWarrior 3
scripted text editing (MPW Shell)

57–59

develop Issue 26 June 1996142

scripts
attaching and embedding

76–79
extracting script data from

data fork 78–79
loading and executing from

files 77
storing as resources 78

_SCSIAtomic trap (Macintosh
Q & A) 115

SCSI Manager, determining if
loaded (Macintosh Q & A) 115

Search command (MPW Shell)
58

SeeWorld sample applications
(QTC) 47

selection expressions (MPW Shell)
58

Semchishen, Dale 101
SendBehind, Mac OS 8 and 22
sequence grabber, QTC and 34,

50–51
servers (Mac OS 8) 8, 10, 11
SetApplLimit, Mac OS 8 and 17
SetEntries (Display Manager)

29–30
SetItemMark, Mac OS 8 and

25–26
SetMessageHandlerClassContext

(Macintosh Q & A) 116
SetMessageHandlerInstanceContext

(Macintosh Q & A) 116
SetNbLines (OpenDoc) 63
sets (QuickDraw 3D) 82
SetSel (OpenDoc) 63
SetTrapAddress, Mac OS 8 and

24
SetUpGraphics (OpenDoc) 63
SetUpListData (OpenDoc) 63,

71
SetupSequenceGrabber (QTC)

50, 51
SGInitialize (sequence grabber),

QTC and 50
SGSetChannelUsage (sequence

grabber), QTC and 50
SGSettingsDialog (sequence

grabber), QTC and 55
ShieldCursor, Mac OS 8 and 24
ShowCursor, Mac OS 8 and 24
ShowMe (OpenDoc) 63
Siminel, Éric 60
Simone, Cal 76
Simple Multicast Routing

Protocol (SMRP), QTC and
40

Simplified Chinese, converting to
GB standard (Macintosh
Q & A) 121–122

sink controllers (QTC) 37
sink stream directors (QTC) 39
64-bit integer math, on 680x0

machines 101–109
“64-Bit Integer Math on 680x0

Machines” (Semchishen)
101–109

680x0 applications, Mac OS 8
compatibility 13

680x0 machines, 64-bit integer
math 101–109

'SIZE' resource (Display
Manager) 30

SOM dynamic inheritance,
OpenDoc parts and 60–75

somInit (som_ListEx3Part.cpp)
(OpenDoc) 74

som_ListEx1Part.cpp (OpenDoc)
68–69

som_ListEx1Part.idl (OpenDoc)
68

som_ListEx2Part.cpp (OpenDoc)
71

som_ListEx2Part.idl (OpenDoc)
71

som_ListEx3Part.cpp (OpenDoc)
74

som_ListEx3Part.idl (OpenDoc)
73

som_ListPart.idl source file
(OpenDoc) 62, 68

SOM objects 61–63
vs. C++ objects 64
See also OpenDoc parts

SOMobjects™ for Mac OS 60
somUninit (som_ListEx3Part.cpp)

(OpenDoc) 74
source controllers (QTC) 37
source stream directors (QTC) 39
special characters (MPW Shell),

searching 57
sqrt (SANE) 105, 106
stack-crawling debugging

112–114
StartCasting (QTC) 53
stream controller components

(QTC) 36–37
stream director components

(QTC) 39
StreamEdit tool, MPW Shell and

59
“stub” definition procedures, Mac

OS 8 and 25

SuperFly sample application 27
System 7, and Mac OS 8

compatibility 7, 9
System 8. See Mac OS 8
system memory, Mac OS 8 and

22–23

T
TCP/IP browser (QTC) 37–38
temporary memory, Mac OS 8 and

21
theme-specific windows (Mac OS

8) 15–16
Thompson, Nick 80
3Debug application, Macintosh

Q & A 118
3DMF data format

3D Web content and 89
reading custom data from

93
“3D Web Content Using 3DMF

and Netscape Navigator”
(Louch) 89

tilde (~), extension loading order
(Macintosh Q & A) 118

Toolbox definition procedures,
Mac OS 8 and 25

Toolbox structures
Mac OS 8 and 21
See also PowerPC Toolbox

ToolboxTrapTableSize, Mac OS 8
compatibility and 14

ToolFrontEnd (CodeWarrior) 3
TQ3ElementObject class

(QuickDraw 3D) 82
TQ3SetObject class (QuickDraw

3D) 82
TQ3SharedObject class

(QuickDraw 3D) 82
transport components (QTC) 39
trap availability, checking for 14
trap table, Mac OS 8 and 18, 19
Types.h header file 101

U
uniform resource locator (URL)

attaching to a QuickDraw
3D object 87–96

extracting from a
QuickDraw 3D object
93–95

sending to a browser 95–96
universal headers, and 64-bit

integer math routines 104
universal interfaces, and preparing

for Mac OS 8 13, 24

INDEX 143

UpperString, Macintosh Q & A
118

UpVector (QuickDraw 3D) 97
URL. See uniform resource locator
user interface applications

Mac OS 8 compatibility 7
migration path to Mac OS 8

9
utility applications, Mac OS 8

compatibility 8

V
“Veteran Neophyte, The”

(Mensch), Manual Labor
123–124

viewSetupFormScript, Newton
Q & A 125–126

View in Window (OpenDoc) 66,
67

Virtual Binary Object (VBO),
Newton Q & A 127

virtual memory, Mac OS 8 and 17

W
W3Anchor (QuickDraw 3D) 97
W3Anchor_CopyAdd

(QuickDraw 3D) 91–92

W3Anchor_CopyReplace
(QuickDraw 3D) 91–92

W3AnchorData (QuickDraw 3D)
88

W3Anchor_Delete (QuickDraw
3D) 91–92

W3Anchor_GetFromObject
(QuickDraw 3D) 93

W3Inline (QuickDraw 3D) 98
Watcher sample application

(QTC) 33, 39–49
Web. See World Wide Web
wh pc command (MacsBug) 111
Whurlplug sample Netscape

plug-in 89
WideAdd32 (Wide library) 102,

103
WideAssign32 (Wide library)

102, 103
WideBitShift (PowerPC) 102,

103
Wide.c source file 104, 106, 107
Wide_DivideU 107–109
Wide.h header file 103
WideInit (Wide library) 103, 105
Wide_MulS64 105, 106–107
WideMultiply (Wide library) 105,

106

WideScale (QuickDraw GX) 102,
103

Wide 64-bit integer math library
101, 102–103

assembly-language routines
104, 106–109

location of wide routines
104

universal headers 104
WideSquareRoot (Wide library)

105–106
WideSubtract32 (Wide library)

102, 103
WideToDecStr (Wide library)

102–103
wildcard characters (MPW Shell)

57
window list, Mac OS 8 and 22
Window Manager, Mac OS 8 and

22
World Wide Web

and 3D 87–96

X
.xh source file (SOM) 61, 64
.xih source file (SOM) 61, 64, 73

develop Issue 26 June 1996144

If you have questions, suggestions, or even gripes about develop, please don’t keep them to yourself.
Drop us a line and let us know what you think.

Send editorial suggestions or comments Send technical questions about develop
to develop@apple.com or to: to:

Caroline Rose Dave Johnson
Apple Computer, Inc. Apple Computer, Inc.
1 Infinite Loop 1 Infinite Loop
Cupertino, CA 95014 Cupertino, CA 95014
Internet: crose@apple.com Internet: dkj@apple.com
AppleLink: CROSE AppleLink: JOHNSON.DK
Fax: (408)974-9423 CompuServe: 75300,715

Fax: (408)974-9423

Please direct all subscription-related queries to Apple Developer Catalog, P.O. Box 319, Buffalo,
NY 14207-0319 or to order.adc@applelink.apple.com (AppleLink ORDER.ADC). You can also call
1-800-282-2732 in the U.S., 1-800-637-0029 in Canada, or (716)871-6555 elsewhere.

How’re we doing?

✍

✍

Apple provides a wealth of information,

products, and services to assist developers.

The Apple Developer Catalog and Apple

Developer University are open to anyone

who wants access to development tools

and instruction. Additional information

and services are available through

Apple’s Developer Programs.

The Apple Developer Catalog
offers worldwide access to
development tools, resources,
training products, and information
for anyone interested in developing
applications on Apple platforms.
This complimentary catalog features
hundreds of Apple and third-party
development products and offers
convenient payment and shipping
options, including site licensing.

Apple Developer University
(DU) provides courses to get you
started programming on Apple
platforms and Mac OS–compatible
hardware, as well as advanced, in-
depth training on new technologies
such as QuickTime VR, QuickDraw
3D, OpenDoc, Apple Guide, and
Newton. In addition to classroom
training, self-paced courses and
tutorials are available through the
Apple Developer Catalog.

The Macintosh Developer
Program provides members with
ongoing Macintosh-related technical
information and services. It includes:

• The monthly Apple Developer
Mailing, which includes the
Developer CD Series.

• Macintosh technology seeding.

• Programming-level technical
support via e-mail. Apple offers a
number of options for varying
levels of technical support.

The Newton Developer Program
provides ongoing Newton-related
technical information and services.
It includes:

• The monthly Newton Developer
Mailing.

• The quarterly Newton Developer
CD.

• Newton development class
discounts.

• Programming-level technical
support via e-mail. Apple offers a
number of options for varying
levels of technical support.

The Apple Multimedia Program
(AMP) provides resources to keep
multimedia developers up-to-date
on Apple’s offerings for authoring
and playback. It includes:

• The quarterly Apple Multimedia
Information Mailing.

• Access to a special members-only
area on the AMP Web site
(http://www.amp.apple.com).

• Invitations to special events and
participation in Apple events such
as trade shows.

• Seeding opportunities.

• The Interactive Music Track, an
extension of the AMP designed
specifically for musicians, music
industry members, and interactive
music developers.

R E S O U R C E S

Apple Developer Catalog To order a
product or receive a catalog, call 1-800-
282-2732 in the U.S., 1-800-637-0029 in
Canada, (716)871-6555 internationally, or
(716)871-6511 for fax. You can also send
e-mail to order.adc@applelink.apple.com
(AppleLink ORDER.ADC), or write Apple
Developer Catalog, P.O. Box 319, Buffalo,
NY 14207-0319. The catalog is on the
Web at http://www.devcatalog.apple.com.

Apple Developer University Course
descriptions and schedules can be found
on the Web at http://dev.info.apple.com
and in the Developer Services area on
AppleLink. You can also call (408)974-
4897, fax (408)974-0544, send e-mail to
devuniv@applelink.apple.com (AppleLink
DEVUNIV), or write Developer University,
Apple Computer, Inc., 1 Infinite Loop, M/S
305-1TU, Cupertino, CA 95014.

Apple Developer Programs These
programs vary on a country-by-country basis.
For more information on any of Apple’s
developer support programs worldwide, call
(408)974-4897, fax (408)974-7683, send
e-mail to devsupport@applelink.apple.com
(AppleLink DEVSUPPORT), or write Developer
Support, Apple Computer, Inc., 1 Infinite
Loop, M/S 303-2T, Cupertino, CA 95014.

