
The Speech
Recognition
Manager

Adding Speech
Recognition to an
Application
Framework

Working With
OpenDoc Part Kinds

Using Apple Guide
2.1 With OpenDoc

Mac OS 8 Assistants
in System 7
Applications

Game Controls for
QuickDraw 3D

$10.00

LaserWriter Driver Version 8.4 • Part Editor Unloading • Traversing GX Paths

Issue 27 September 1996

E D I T O R I A L S T A F F

Editor-in-Cheek Caroline Rose

Editor-in-Cheek’s Clothing (during
Caroline’s sabbatical) Lorraine Anderson

Managing Editor Toni Moccia

Technical Buckstopper Dave Johnson

Bookmark CD Leader Alex Dosher

Able Assistants Meredith Best, Beth Runciman

Bosses Mark Bloomquist, Garry Hornbuckle,
Steve Strong

Review Board Brian Bechtel, Dave Radcliffe,
Quinn “The Eskimo!”, Jim Reekes,
Bryan K. “Beaker” Ressler, Larry Rosenstein,
Nick Thompson, Gregg Williams

Contributing Editors Lorraine Anderson,
Linda Fogel, Toni Haskell, Tim Monroe,
Cheryl Potter, Erik Sea, George Truett

Indexer Marc Savage

A R T & P R O D U C T I O N

Art Direction Lisa Ferdinandsen

Technical Illustration John Ryan

Formatting Forbes Mill Press

Production Diane Wilcox

Photography Sharon Beals, Lisa Ferdinandsen

Cover Illustration Graham Metcalfe of
Metcalfe/Shuhert Design

ISSN #1047-0735. © 1996 Apple Computer,
Inc. All rights reserved. Apple, the Apple logo,
AppleScript, AppleTalk, Bento, ColorSync,
HyperCard, LaserWriter, MacApp, Macintosh,
MacTCP, MessagePad, MPW, Newton,
OpenDoc, PlainTalk, PowerBook, Power
Macintosh, PowerTalk, QuickTime, and
TrueType are trademarks of Apple Computer,
Inc., registered in the U.S. and other countries.
AOCE, A/ROSE, Balloon Help, Cyberdog,
develop, Dylan, Finder, Mac, MacinTalk,
NewtonScript, and QuickDraw are trademarks
of Apple Computer, Inc. PostScript is a
trademark of Adobe Systems Incorporated or its
subsidiaries and may be registered in certain
jurisdictions. PowerPC, SOM, and SOMobjects
are trademarks of International Business
Machines Corporation, used under license
therefrom. All other trademarks are the
property of their respective owners.

T H I N G S T O K N O W

develop, The Apple Technical
Journal, a quarterly publication
of Apple Computer’s Developer
Relations group, is published in
March, June, September, and
December. It provides developers
of Apple-platform products with
technical articles and code that have
been reviewed for robustness by
Apple engineers.

Electronic develop. This issue and
all back issues of develop, along with
the code they describe, can be found
on the develop Bookmark CD or the
Reference Library edition of the
Developer CD Series (see below), or at
http://dev.info.apple.com/develop/
or ftp://ftpdev.info.apple.com/
Developer_Services/Periodicals/
develop/. The code is updated regularly,
so always use the latest version.

This issue’s CD. Subscription issues
of develop are accompanied by the develop
Bookmark CD. This CD contains a
subset of the materials on the Developer
CD Series, which is part of the Apple
Developer Mailing available through
the Apple Developer Catalog. The CD
also contains Technotes, sample code,
and other documentation and tools
(these contents are subject to change).
Items referred to as being on “this
issue’s CD” are located on either the
Bookmark CD or the Reference
Library or Tool Chest edition of the
Developer CD Series. The Bookmark
CD contents can also be accessed
from http://dev.info.apple.com/
or from ftp://ftpdev.info.apple.com/
Developer_Services/.

Macintosh Technical Notes. A
designation like “(CS 06)” after a
reference to a Macintosh Technical
Note or Macintosh Technical Q&A
indicates its category and number.
(CS is the ColorSync category.) The
new (uncategorized) Technotes are
designated by number alone.

C O N T A C T I N G U S

Feedback. Send editorial comments
or suggestions to Caroline Rose at
crose@apple.com. Technical questions
about develop should be directed to
Dave Johnson at dkj@apple.com or
CompuServe 75300,715. You can also
send a fax to Caroline or Dave at
(408)974-9423, or write to them at
Apple Computer, Inc, 1 Infinite Loop,
Cupertino, CA 95014.

Article submissions. Ask for our
Author’s Guidelines and a submission
form at develop@apple.com.

Subscriptions and back issues.
You can subscribe to develop through
the Apple Developer Catalog (see
ordering information below, or use the
subscription card in this issue). Back
issues, in addition to being available
electronically, can also be ordered
through the catalog. The one-year U.S.
subscription price is $30 (for four issues
and four develop Bookmark CDs), or U.S.
$50 in other countries. Back issues are
$13 each. These prices include shipping
and handling. For Canadian orders,
the subscription price includes GST
(R100236199).

Apple Developer Catalog. To
order develop or other products through
the catalog or to make subscription-
related queries, call 1-800-282-2732 in
the U.S., 1-800-637-0029 in Canada,
(716)871-6555 internationally, or
(716)871-6511 for fax. You can send
e-mail to order.adc@applelink.apple.com,
use the catalog on the Web at http://
www.devcatalog.apple.com, or write Apple
Developer Catalog, Apple Computer, Inc.,
P.O. Box 319, Buffalo, NY 14207-0319.

For all subscription changes or queries,
please be sure to include your name, address,
and account number as they appear on your
mailing label.

Printed on recycled paper by
Stream International, USA

A R T I C L E S

6 The Speech Recognition Manager Revealed by Matt Pallakoff and Arlo Reeves
22 Adding Speech Recognition to an Application Framework by Tim Monroe

With these two articles, you’ll have your application recognizing speech in no time. The first is an introduction
to the long-awaited API for speech recognition, and the second is an example of adding basic speech
recognition capabilities to a PowerPlant application. Listen up!

37 Working With OpenDoc Part Kinds by Tantek Çelik and Dave Curbow
Part kinds are like file types, only more so, and the choices you make about which part kinds to support will
have a profound effect on users’ experiences with your part editor.

53 Using Apple Guide 2.1 With OpenDoc by Peter Commons
Apple Guide 2.1 has been extended to work well in OpenDoc’s brave new world of compound documents
and processes within processes. Here’s a look at the new features and how to take advantage of them.

72 Mac OS 8 Assistants in System 7 Applications by José Arcellana and Arno Gourdol
Assistants will provide interview-based help in Mac OS 8, guiding users through complex tasks. This article
gives some tips on designing an assistant and shows how you can implement one now, under System 7.

87 Game Controls for QuickDraw 3D by Philip McBride
First-person 3D applications, whether games or 3D modeling systems, need to constantly move the camera
to reflect the changing point of view of the player. You too can inflict vertigo on your users.

C O L U M N S

34 PRINT HINTS
The All-New LaserWriter Driver Version 8.4
by Dave Polaschek
The new version of the LaserWriter driver is
way different. Will your application break?

69 THE OPENDOC ROAD
Facilitating Part Editor Unloading
by Vincent Lo
Part editors are unloaded automatically when
they’re not needed, but your editor can help.

82 BALANCE OF POWER
Stalking the Wild Defect
by Dave Evans
A tour through the dangerously twisted jungle
of the Power Macintosh. Please keep your head
and arms inside at all times.

98 GRAPHICAL TRUFFLES
A Library for Traversing Paths
by Daniel I. Lipton
Parsing QuickDraw GX geometric shapes takes a
bit of code, but it’s already been written for you.

102 MACINTOSH Q & A
Answers from Apple’s Developer Support
Center — lots on Open Transport this time.

111 THE VETERAN NEOPHYTE
Your Friend the Drill Sergeant
by Dave Johnson
Learning to shoot pool isn’t anything like
learning to program computers. Right?

113 NEWTON Q & A: ASK THE LLAMA
Answers to Newton-related development queries.

118 KON & BAL’S PUZZLE PAGE
QuickTime Quandary
by Konstantin Othmer and Bruce Leak
More Macintosh madness from the MacsBug
mentors. There’s a possibility you might
actually score on this one!

2 EDITOR’S NOTE
3 LETTERS

123 INDEX

Issue 27 September 1996

CONTENTS 1

As I write this our esteemed Editor-in-Cheek is off on sabbatical, indulging in a little
global gallivanting and some well deserved (and completely unstructured) hanging
around. Thus it falls to me to write this editorial, making this only the second issue of
develop that has had two pictures of me in it (trivia question: which was the other?),
and also marking the first time (and hopefully the last time) my signature has been
aired in public. (Yes, I know it’s illegible, and I confess: I never really learned to write
cursive. So it’s only a rough approximation. Even my printing is barely legible. Thank
goodness for keyboards.)

Unaccustomed as I am to editorial speaking, I was having a hard time thinking of
something to write about. Fortuitously, Apple’s Worldwide Developers Conference
occurred just about the time I needed to settle on a topic, and as always the developers
I talked with at the conference brought up several issues about what we on the develop
staff do and why we do it that way.

One issue that came up is conveniently editorial in nature. We’re often applauded for
the better-than-usual (at least for a technical journal) writing in our articles and
columns. It’s quite true that in addition to trying to make sure everything in the
magazine is correct, we also put a lot of effort into making it read well. This is great
for you, the reader, but as with any way of doing things there’s a downside. In this
case, it means more trouble and more work for those who generate the content of the
journal. Occasionally an author thinks it’s a hassle, all that fussing over finding the
right word or phrase, all that questioning and worrying over something that’s “off the
topic” as far as they’re concerned. For others, of course, it’s a real blessing, having our
highly trained team of crackerjack editors swarming over their work, nipping and
tucking and polishing it until it’s snug and smooth and gleaming. While I naturally
tend to side with the latter, everybody’s entitled to an opinion.

Those of us here at develop believe that it’s absolutely worth it. It’s a truism about
technical writing that if it’s done well no one notices it. That’s our goal, and always
has been, and I think it’s a good and important one. If you have to read a sentence
twice or three times to figure out what it means, or if you have to backtrack a page to
make sense of something you just read, or if you can’t find a constant in Inside Macintosh
because it’s spelled wrong in the article, then the writing will be noticed, because it’s
getting in your way. That’s something we’re proud to avoid more often than not, even
though it takes longer, and even though it’s a lot more work. We hope you agree.

So that’s my editorial. An easy out, some might say, simply restating our editorial
philosophy rather than coming up with new thoughts. But it’s something that’s often
lost in all the noise, and I think it’s good — both for us and for you — to be reminded
once in a while why it is we do what we do.

DAVE JOHNSON
FOR CAROLINE ROSE

develop Issue 27 September 19962

EDITOR’S NOTE

DAVE JOHNSON (dkj@apple.com) and his
wife Lisa have a tiny but thriving mask-making
business in San Francisco, selling masks for a
one-month period each year around Halloween.
In 1994 they had sales of $344 and gross profits
were $159. (There was a write-down of $188

that year for retooling, resulting in a net loss of
$29.) In 1995 they had total profits of $287 on
sales of $330. If this explosive profit growth keeps
up, this small garage business could, in time, be
worth literally hundreds of millions of dollars.
Dave is rubbing his hands in anticipation.•

Dave Johnson
Editorial Pretender

NURB CURVES TYPO
I’m an M.S. student in the Department
of Industrial Engineering at Bogazici
University, Istanbul, Turkey. My thesis is
about pattern recognition using implicit
polynomials in CAD applications. While
I was surfing the Internet, I found the
article “NURB Curves: A Guide for the
Uninitiated” in develop Issue 25 and read
it. It’s a very good resource for those (like
me) with minimal knowledge of NURB
curves and representations, and I liked it
a lot.

But in Figure 20 there’s a mistake, I
think. Control point B2 has coordinates
{2, 0, 0}, but I believe the last index (w)
should be 1. Is that right?

— Ugur Murat Erdem

Yes, in fact you’ve found a typographical
error in the figure you mention: B2 should
be {2, 0, 1}. We had a very good editor and
several reviewers, but none of them caught
this. I hope it doesn’t mislead anyone too
much. Thanks for pointing it out.

— Philip Schneider

TECHNICAL Q&A: WHERE?
In the Issue 25 Macintosh Q&A, you
explain a new method for embedding GX
pictures into QuickDraw PICT files. It
says that we can find sample code in the
Macintosh Technical Q&A “Embedding
a GX Picture into a PICT” (GX 07).
Unfortunately, I haven’t found this file
on any developer CD I have. Could you
please help me locate this information?

— Michel Renon

That Q&A can be found on the Web at
http://dev.info.apple.com/techqa/qdgx/

gx07.html. In general, the Web site http://
dev.info.apple.com/techqa/Main.html has
the latest and greatest Macintosh Technical
Q&As. They sometimes take a while to find
their way to the CDs, and that was the case
here. That Q&A is now available on the
CDs as well. Sorry for any inconvenience.

— Dave Johnson

TIME-SAVING TIPS
I really enjoyed Bo3b Johnson’s Veteran
Neophyte column in Issue 25 about
ways to avoid wasting time. After
programming the Mac for 10 years, I’m
finally learning many of the things he
talked about. It’s funny looking back at
all the mistakes I’ve made while thinking
I was so smart.

I worked at Berkeley Systems on After
Dark. One of the first things I did was
write the Warp (or starfield) screen saver.
I came up with a really cool assembly
routine that, given an x and y, would
draw the pixel on any monitor at any bit
depth. It was a complicated routine
(remember, I’m very smart) that used
lots of shifts, multiplies, and divides.
Even though I commented it, I still had
to sit down and work through it each
time I needed to make a change. Finally
a coworker asked why I didn’t just write
a separate routine for each bit depth. I
scoffed and said my routine was really
cool. Needless to say, I rewrote it into
separate routines; it was really easy, and
is easy to maintain and change as well.

These days, instead of banging my head
trying to come up with a “smart” way
to do things, I just code in the most
straightforward way I know how. I’m
finding that I have better things to do
than screw around with a triply linked
list that looked good in Dr. Dobbs but

LETTERS

LETTERS 3

TELL US WHAT YOU THINK (PLEASE)
We welcome your letters to the editor, especially
regarding articles published in develop. Write to
Caroline Rose at crose@apple.com or, if technical
develop-related questions, to Dave Johnson at
dkj@apple.com. All letters should include your

name and company name as well as your address
and phone number. Letters may be excerpted or
edited for clarity (or to make them say what we
wish they did). Address subscription-related
queries to order.adc@applelink.apple.com.•

isn’t really appropriate for my problem.
I hate reliance on C-isms that aren’t
obvious: if you have to pull out the
ANSI C book to figure it out, it isn’t
good code.

By the way, another good book is The
Psychology of Computer Programming by
Gerald M. Weinberg. It was written in
1971 but has some very interesting views
on programming and programmers.

— Bruce Burkhalter

I’m not a windsurfer, but I am a Mac
developer, so I read Bo3b Johnson’s
column in Issue 25 with great interest.
My boss (Markus Fest, the programmer
of Toast CD-ROM Pro) told me it was a
Pflichtlektüre (something you just gotta
read). He was right.

There’s a book that should have been in
your Recommended Reading section:
Code Complete by Steve McConnell
(Microsoft Press, 1993). It’s worth
checking out. Enjoy!

— Florian Dejako

It’s amusing to look back and see how we
learned the things we did, and how they’ve
helped or hindered us. That introspection is
actually what spawned the column: I realized
that maybe others could avoid those mistakes
if they read about them in advance.

To this day I run into arguments about using
the full “power” of C/C++. I hate to see
people writing code just to use some feature
of C++ like operator overloading. If they can
redirect that creative energy to figuring out
a better algorithm, it’s a total win.

I think restrictions can actually be liberating,
by freeing you from having to think about
everything. If the brace style in code were
enforced, how many hours of wasted brain
time would we get back? Having the
meaningless stuff like brace style fixed in
stone makes it easier to apply cleverness to
the things that matter, like the quality of the
software.

And Florian: thanks. I’ve never been called
a Pflichtlektüre before, but I kinda like it.

— Bo3b Johnson

develop Issue 27 September 19964

DEVELOPER

UNIVERSITY

D
U

Learn how software components allow you to
simplify the way you develop software.

Take Developer University’s Creating OpenDoc Parts class and
learn how to create parts using the OpenDoc Framework.

5 days, $1500
September 16 - 20

October 28 - November 1
December 9 - 13

For more information, please visit Developer University's Web site at
http://dev.info.apple.com/du.html or call our registrar at 408-974-4987.

All courses offered in Cupertino, CA.

Issue 1 Color; Palette Manager; Offscreen Worlds;
PostScript; System 7; Debugging Declaration ROMs

Issue 2 C++ (Objects; Style Guide); Object Pascal;
Memory Manager; MacApp; Object-Based Design

Issue 3 ISO 9660 and High Sierra; Accessing CD Audio
Tracks; Comm Toolbox; 8•24 GC Card; PrGeneral

Issue 4 Device Driver in C++; Polymorphism in C++;
A/ROSE; PostScript; Apple IIGS Printer Driver

Issue 5 (Volume 2, Issue 1) Asynchronous Background
Networking; Palette Manager; Macintosh Common Lisp

Issue 6 Threads; CopyBits; MacTCP Cookbook

Issue 7 QuickTime 1.0; TrueType; Threads and Futures;
C++ Objects in a World of Exceptions

Issue 8 Curves in QuickDraw; Date and Time Entry in
MacApp; Debugging; Hybrid Applications for A/UX

Issue 9 Color on 1-Bit Devices; TextBox You’ve Always
Wanted; Sound; Terminal Manager; Debugging Drivers

Issue 10 Apple Event Objects; Enhancements for the
LaserWriter Font Utility; GWorlds; The Optimal Palette

Issue 11 Asynchronous Sound; Multibuffering Sounds;
Exceptions; NetWork: Distributed Computing

Issue 12 Components; Time Bases; Apple Event Coding
Through Objects; Globals in Standalone Code

Issue 13 Asynchronous Routines; QuickTime and
Components; Debugging; Color Printing; DeviceLoop

Issue 14 Localizable Applications; 3-D Rotation;
QuickTime (Video Digitizing; Making Better Movies)

Issue 15 QuickDraw GX; Component Registration;
Floating Windows; Working in the Third Dimension

Issue 16 Making the Leap to PowerPC; PowerTalk;
Drag and Drop From the Finder; Color Matching With
QuickDraw GX; International Number Formatting

Issue 17 Newton Proto Templates; PowerPC (Standalone
Code; Debugging); Thread Manager; Window Zooming

Issue 18 Apple Guide; Open Scripting Architecture;
Graphics Speed on the Power Macintosh; Displaying
Hierarchical Lists; Preferences Files

Issue 19 OpenDoc Part Handlers; PowerPC Memory
Usage; Designing for the Power Macintosh; QuickDraw
GX (Printing; Bitmaps); Inheritance in Scripts

Issue 20 AOCE; Make Your Own Sound Components;
Scripting the Finder; NetWare on PowerPC

Issue 21 OpenDoc Graphics; Designing a Scripting
Implementation; Dylan; Object-Oriented Hierarchical Lists

Issue 22 QuickDraw 3D; Copland; PCI Device Drivers;
Custom Color Search Procedures; The OpenDoc User
Experience; Futures

Issue 23 QuickTime Music Architecture; QuickDraw
3D Geometries; Internet Config; Multipane Dialogs;
Document Synchronization; ColorSync 2.0

Issue 24 Speeding Up whose Clause Resolution;
OpenDoc Storage; Sound; Alert Guidelines; Printing
Faster With Data Compression; The New Device Drivers

Issue 25 QuickTime VR Movies From QuickDraw 3D;
Flicker-Free Drawing With QuickDraw GX; NURB
Curves; C++ Exceptions in C; Localized Strings for Newton

Issue 26 Mac OS 8 Compatibility; QuickTime
Conferencing; OpenDoc Parts and SOM Dynamic
Inheritance; Adding Custom Data to QuickDraw 3D
Objects; 64-Bit Integer Math on 680x0 Machines

develop

�

 VR m
 ral d
 with
 3D dat
 QuickTim
 movies from their da
 to show potential cu
 the movies display th
 objects more effective
 representation and co
 the data in the process
 Archaeologists can Q
 VR movies to record si
during digs, realtors can

Looking to complete
the set?
If you’re looking for a complete develop collection, full-color, bound copies are
available for $13 per issue, including shipping and handling. (Back issues are also on
the develop Bookmark CD and the Developer CD Series Reference Library edition, as
well as on the Internet.) For more information about how to order printed back
issues (and where to find them online), see the inside front cover of this issue.
Supplies are limited. Please allow 4 to 6 weeks for delivery.

As any Star Trek fan knows, the computer of the future will talk and
listen. Macintosh computers have already been talking for a decade,
using speech synthesis technologies such as MacinTalk or the Speech
Synthesis Manager. Now any Power Macintosh application can use
Apple’s new Speech Recognition Manager to recognize and respond to
spoken commands as well. We’ll show you how easy it is to add speech
recognition to your application.

Speech recognition technology has improved significantly in the last few years. It
may still be a long while before you’ll be able to carry on arbitrary conversations with
your computer. But if you understand the capabilities and limitations of the new
Speech Recognition Manager, you’ll find it easy to create speech recognition
applications that are fast, accurate, and robust.

With code samples from a simple speech recognition application, SRSample, this
article shows you how to quickly get started using the Speech Recognition Manager.
You’ll also get some tips on how to make your application’s use of speech recognition
compelling, intuitive, and reliable. For everything you need in order to use the
Speech Recognition Manager in your application (including SRSample and detailed
documentation), see this issue’s CD or Apple’s speech technology Web site at
http://www.speech.apple.com.

WHAT THE SPEECH RECOGNITION MANAGER CAN AND
CANNOT DO
The Speech Recognition Manager consists of an API and a recognition engine.
Under System 7.5, these are packaged together in version 1.5 or later of the Speech
Recognition extension. (This packaging may change in future OS versions.)

The Speech Recognition Manager runs only on Power Macintosh computers with
16-bit sound input. Speech recognition is simply too computation-intensive to run

MATT PALLAKOFF AND
ARLO REEVES

The Speech Recognition Manager Revealed

develop Issue 27 September 19966

MATT PALLAKOFF (mattp@apple.com), Apple’s
Speech Recognition engineering manager, likes
to talk to inanimate objects. He has spent the last
several years helping Apple’s speech group pull
speech recognition technology kicking and
screaming over a threshold of usability that (as of
PlainTalk 1.4) finally allows Power Macintosh
users to leave speech recognition on and use it in
simple ways every day. He denies ever having
worked in the field of Artificial Intelligence.•

ARLO REEVES (arlo@apple.com) has had a
varied employment history that includes baby-
sitting young Peregrine falcons in Yosemite,
studying variable stars from Nantucket, and
adding two-dimensional FFT capabilities to NIH
Image. Lately he’s been helping Matt and the
speech team at Apple bring the Speech
Recognition Manager into existence. Arlo lives in
Santa Cruz, California, where he enjoys spending
his free time out of doors with his friends.•

well on most 680x0 systems. The installed base of Power Macs is growing by about
five million a year, however, so plenty of machines — including the latest PowerPC™

processor–based PowerBooks — can run speech recognition.

The current version of the Speech Recognition Manager has the following
capabilities and limitations:

• It’s speaker independent, meaning that users don’t need to train it before
they can use it.

• It recognizes continuous speech, so users can speak naturally, without —
pausing — between — words.

• It’s designed for North American adult speakers of English. It’s not localized
yet, and in general it won’t work as well for children.

• It supports command-and-control recognition, not dictation. It works well
when your application asks it to listen for at most a few dozen phrases at a
time; however, it can’t recognize arbitrary sentences and its accuracy
decreases substantially if the number of utterances it’s asked to listen for
grows too large. For example, it won’t accurately recognize one name out of
a list of five thousand names.

OVERVIEW OF THE SPEECH RECOGNITION MANAGER API
To use the Speech Recognition Manager, you must first open a recognition system,
which loads and initializes the recognition toolbox. You then allocate a recognizer,
which listens to a speech source for sound input. A recognizer might also display a
feedback window that shows the user when to speak and what the recognizer thinks
was said.

To define the spoken utterances that the recognizer should listen for, you build a
language model and pass it to the recognizer. A language model is a flexible network
of words and phrases that defines a large number of possible utterances in a compact
and efficient way. The Speech Recognition Manager lets your application rapidly
change the active language model, so that at different times your application can listen
for different things.

After the recognizer is told to start listening, it sends your application a recognition
result whenever it hears the user speak an utterance contained in the current language
model. A recognition result contains the part of the language model that was
recognized and is typically sent to your application via Apple events. (Alternatively,
you can request notification using callbacks if you cannot support Apple events.) Your
application then processes the recognition result to examine what the user said and
responds appropriately.

Figure 1 shows how the Speech Recognition Manager works. Note that the
telephone speech source is not supported in version 1.5 of the Speech Recognition
extension.

SPEECH OBJECTS
The recognition system, recognizer, speech source, language models, and recognition
results are all objects belonging to classes derived from the SRSpeechObject class,
in accordance with object-oriented design principles. These and other objects are
arranged into the class hierarchy shown in Figure 2. The class hierarchy gives the
Speech Recognition Manager API the flexibility of polymorphism. For example, you
can call the routine SRReleaseObject to dispose of any SRSpeechObject.

THE SPEECH RECOGNITION MANAGER REVEALED 7

The most important speech objects are as follows:

• SRRecognitionSystem — An application typically opens one of these at
startup (by calling SROpenRecognitionSystem) and closes it at shutdown
(by calling SRCloseRecognitionSystem). Applications allocate other kinds
of objects by calling routines like SRNewWord, which typically take the
SRRecognitionSystem object as their first argument.

• SRRecognizer — An application gets an SRRecognizer from an
SRRecognitionSystem by calling SRNewRecognizer. The SRRecognizer
does the work of recognizing utterances and sending recognition results
back to the application. It begins doing this whenever the application calls
SRStartListening and stops whenever the application calls SRStopListening.

• SRLanguageModel, SRPath, SRPhrase, SRWord — An application builds
its language models from these object types, which are all subclasses of
SRLanguageObject. (A phrase is a sequence of one or more words, and a path
is a sequence of words, phrases, and language models.) A language model, in
turn, describes what a user can say at any given moment. For example, if an
application displayed ten animals and wanted to allow the user to say any of
the animals’ names, it might build a language model containing ten phrases,
each corresponding to an animal’s name.

develop Issue 27 September 19968

Speech source

Microphone

Telephone

Recognition system

Application

Feedback window

Recognizer

Active language�
model

More language�
models Apple event handler

pascal OSErr MyAEHandler (...)�
{ �
 ...�
}

AIFF file

AIFF

Figure 1. How the Speech Recognition Manager works

SRSpeechObject

SRRecognitionSystem

SRRecognizer

SRSpeechSource

SRLanguageObject

SRWord

SRPhrase

SRPath

SRLanguageModel

SRRecognitionResult

Figure 2. The speech object class hierarchy

• SRRecognitionResult — When an utterance is recognized, an
SRRecognitionResult object is sent (using either an Apple event or a
callback routine, whichever the application prefers) to the application that
was listening for that utterance. The SRRecognitionResult object describes
what was recognized. An application can then look at the result in several
forms: as text, as SRWords and SRPhrases, or as an SRLanguageModel,
which can assist in quickly interpreting the uttered phrase.

Each class of speech object has a number of properties that define how the objects
behave. For example, all descendants of SRLanguageObject have a kSRSpelling
property that shows how they’re spelled. Your application uses the SRSetProperty
and SRGetProperty routines to set and get the various properties of each these
objects.

RELEASING OBJECT REFERENCES
You create objects by calling routines like SRNewRecognizer and SRNewWord.
When you’ve finished using them, you dispose of them by calling SRReleaseObject.
You can also acquire references to existing objects by calling routines like
SRGetIndexedItem (for example, to get the second word in a phrase of several
words).

The Speech Recognition Manager maintains a reference count for each object.
An object’s reference count is incremented by SRNew… and SRGet… calls, and is
decremented by calls to SRReleaseObject. An object gets disposed of only when
its reference count is decremented to 0. Thus, to avoid memory leaks, your application
must balance every SRNew… or SRGet… call with a call to SRReleaseObject.

A SIMPLE SPEECH RECOGNITION EXAMPLE
It’s easy to add simple speech recognition capabilities to your application. All you
need to do is perform a small number of operations in sequence:

1. Initialize speech recognition by determining whether a valid version of the
Speech Recognition Manager is installed, opening an SRRecognitionSystem,
allocating an SRRecognizer, and installing an Apple event handler to handle
recognition result notifications.

2. Build a language model that specifies the utterances your application is
listening for.

3. Set the recognizer’s active language model to the one you built and call
SRStartListening to start listening and processing recognition result
notifications.

We’ll describe each of these operations in more detail.

INITIALIZING SPEECH RECOGNITION
First, you must verify that a valid version of the Speech Recognition Manager is
installed on the target machine. Listing 1 shows how to do this. Note that only
versions 1.5 and later of the Speech Recognition Manager adhere to the API used in
this article.

Listing 2 shows how to open an SRRecognitionSystem, allocate an SRRecognizer,
and install your Apple event handler. All of this happens when your application
starts up. The Apple event handler HandleRecognitionDoneAE is shown later (in
Listing 4).

THE SPEECH RECOGNITION MANAGER REVEALED 9

develop Issue 27 September 199610

Listing 1. Determining the Speech Recognition Manager version

Boolean HasValidSpeechRecognitionVersion (void)
{

OSErr status;
long theVersion;
Boolean validVersion = false;
const unsigned long kMinimumRequiredSRMVersion = 0x00000150;

status = Gestalt(gestaltSpeechRecognitionVersion, &theVersion);
if (!status)

if (theVersion >= kMinimumRequiredSRMVersion)
validVersion = true;

return validVersion;
}

Listing 2. Initializing the Speech Recognition Manager

/* Our global variables */
SRRecognitionSystem gRecognitionSystem = NULL;
SRRecognizer gRecognizer = NULL;
SRLanguageModel gTopLanguageModel = NULL;
AEEventHandlerUPP gAERoutineDescriptor = NULL;

OSErr InitSpeechRecognition (void)
{

OSErr status = kBadSRMVersion;

/* Ensure that the Speech Recognition Manager is available. */
if (HasValidSpeechRecognitionVersion()) {

/* Open the default recognition system. */
status = SROpenRecognitionSystem(&gRecognitionSystem,

kSRDefaultRecognitionSystemID);

/* Use standard feedback window and listening modes. */
if (!status) {

short feedbackNeeded = kSRHasFeedbackHasListenModes;

status = SRSetProperty(gRecognitionSystem,
kSRFeedbackAndListeningModes, &feedbackNeeded,
sizeof(feedbackNeeded));

}

/* Create a new recognizer. */
if (!status)

status = SRNewRecognizer(gRecognitionSystem, &gRecognizer,
kSRDefaultSpeechSource);

/* Install our Apple event handler for recognition results. */
if (!status) {

status = memFullErr;

(continued on next page)

Notice in Listing 2 how we call SRSetProperty to request Apple’s standard feedback
and listening modes for the recognizer. To have a successful experience with speech
recognition, users need good feedback indicating when the recognizer is ready for
them to talk and what utterances the recognizer has recognized (for more on giving
feedback, see “Speech Recognition Tips”). In addition, because of the recognizer’s
tendency to misinterpret background conversation and noises as speech, it’s usually a
good idea to let the user tell the recognizer when to listen by pressing a predefined
key (the “push-to-talk” key). Your application can get all of this important behavior
for free, simply by setting the kSRFeedbackAndListeningModes property.

With Apple’s Speech control panel (which comes bundled on new Macintoshes and
with system updates), users can tailor this behavior to suit their needs, choosing
preferred feedback characters (that is, the cartoon faces displayed in the feedback
window) and preferred push-to-talk keys.

BUILDING A SIMPLE LANGUAGE MODEL
Your application needs to build a language model — gTopLanguageModel in our
sample code — that specifies what the recognizer is listening for. The routine in
Listing 3 shows how your application can create a simple language model. (We’ll
discuss fancier language models later in this article.) Even simple language models
should avoid using phrases that sound similar to one another; just like a human
listener, the recognizer may have a hard time distinguishing between similar-
sounding phrases.

A recognizer returns a special speech object, called the rejection word, if it hears an
utterance but cannot recognize it. Listing 3 sets the reference constant of the top-
level language model to a predefined value to be able to distinguish that model from
the rejection word.

Note in Listing 3 that we add the phrases “Hello,” “Goodbye,” and “What time is it?”
to our gTopLanguageModel using the call SRAddText, a convenient shortcut for the
sequence of calls SRNewPhrase, SRAddLanguageObject, and SRReleaseObject.
SRAddText also sets the kSRRefCon property of each added phrase. We’ll use this
reference constant when we examine the recognition result to help determine what
was said.

HANDLING RECOGNITION RESULT NOTIFICATIONS
Now let’s look at how your application would process result notifications given this
simple language model.

THE SPEECH RECOGNITION MANAGER REVEALED 11

gAERoutineDescriptor =
NewAEEventHandlerProc(HandleRecognitionDoneAE);

if (gAERoutineDescriptor)
status = AEInstallEventHandler(kAESpeechSuite, kAESpeechDone,

gAERoutineDescriptor, 0, false);
}

}

return status;
}

Listing 2. Initializing the Speech Recognition Manager (continued)

In Listing 4, HandleRecognitionDoneAE, our Apple event handler, uses the routine
AEGetParamPtr to extract the status of the result as well as the recognizer and
recognition result objects from the Apple event.

At this point, the Apple event handler could easily get the text of what was heard by
getting the kSRTEXTFormat property of the recognition result. But a more useful
form of the result is the kSRLanguageModelFormat. This language model parallels
the language model gTopLanguageModel, but instead of containing all of the phrases
“Hello,” “Goodbye,” and “What time is it?” it contains only a copy of the phrase

develop Issue 27 September 199612

Speech recognition is a completely new input mode, and
using it properly isn’t always as straightforward as it
might seem. While we don’t yet have a complete set of
human interface guidelines to guarantee a consistent and
intuitive speech recognition user experience, there are a
few simple rules that all speech recognition applications
should follow.

GIVE FEEDBACK
Your application must always provide feedback to let
users know when they can speak, when their utterance
has been recognized, and how it was interpreted. The
feedback services in the Speech Recognition Manager
perform this for you, using the standard feedback window
shown in Figure 3. (The user’s recognized utterances are
shown in italics, and the displayed feedback is in plain
text. The string under the feedback character’s face
indicates the push-to-talk key.) All you need to do is set the
kSRFeedbackAndListeningModes property as shown in
Listing 2.

Your application should use this standard feedback
behavior unless you have a very good reason to provide
your own feedback and custom push-to-talk options.
(Fast action games that take over the entire screen and
don’t call WaitNextEvent are examples of applications
that wouldn’t use the standard feedback.) Not only will
users enjoy the benefits of consistent behavior, but as
Apple improves the feedback components, your speech

recognition applications will automatically inherit this
improved behavior without having to be recompiled.

SHOW WHAT CAN BE SAID
Successful speech recognition applications always let the
user know what he or she can say. The way they achieve
this depends on the application, but one good example is
a Web browser that makes all visible hyperlinks speakable.
This lets the user know what can be said while restricting
the size of the language model to improve recognition
accuracy.

CONSTRAIN THE LANGUAGE MODEL
The recognition technology currently used by the Speech
Recognition Manager works best when it’s listening for a
small number of distinct utterances. The longer an
utterance is, the more easily it can be distinguished from
other utterances. For example, distinguishing the isolated
words hot, cut, and quit is difficult and error prone.
Recognition performance also decreases as the language
model grows. The larger the language model, the more
time the recognizer must spend searching for a matching
utterance and the larger the likelihood of two utterances
in the language model sounding similar. For best results,
limit the size of the language model to fewer than a
hundred phrases at any time and avoid including phrases
that are easily confused when spoken, like “wreck a nice
beach” and “recognize speech.”

DO SOMETHING DIFFERENT
Compelling applications of speech recognition are often
novel ones. Instead of simply paralleling an application’s
graphical user interface with a spoken one (making all
menu items speakable, for example), do something
different — something that takes advantage of the unique
properties of speech. Combine speech synthesis with
speech recognition to engage the user in a brief dialog.
Use efficient language models to allow a single utterance
to trigger a series of commands that might otherwise
require interaction with dialog boxes. Let the power of
speech recognition augment the graphical interface your
users are already familiar with. Use your imagination!

SPEECH RECOGNITION TIPS

Figure 3. Standard feedback window

THE SPEECH RECOGNITION MANAGER REVEALED 13

Listing 3. Building a simple language model

OSErr BuildLanguageModel (void)
{

OSErr status;
const char kLMName[] = "<Top LM>";

/* First, allocate the gTopLanguageModel language model. */
status = SRNewLanguageModel(gRecognitionSystem, &gTopLanguageModel, kLMName, strlen(kLMName));
if (!status) {

long refcon = kTopLMRefcon;

/* Set the reference constant of our top language model so that when we process our */
/* recognition result, we'll be able to distinguish it from the rejection word, "???". */
status = SRSetProperty(gTopLanguageModel, kSRRefCon, &refcon, sizeof(refcon));
if (!status) {

const char *kSimpleStr[] = { "Hello", "Goodbye", "What time is it?", NULL };
char **currentStr = (char **) kSimpleStr;
long refcon = kHelloRefCon;

/* Add each of the strings in kSimpleStr to the language model, and set the refcon to */
/* the index of the string in the kSimpleStr array. */
while (*currentStr && !status) {

status = SRAddText(gTopLanguageModel, *currentStr, strlen(*currentStr), refcon++);
++currentStr;

}

/* Augment this simple language model with a fancier one. */
if (!status)

status = AddFancierLanguageModel(gTopLanguageModel);
}

}
return status;

}

Listing 4. Handling the recognition-done Apple event

pascal OSErr HandleRecognitionDoneAE (AppleEvent *theAEevt, AppleEvent *reply, long refcon)
{

OSErr recognitionStatus = 0, status;
long actualSize;
DescType actualType;

/* Get recognition result status. */
status = AEGetParamPtr(theAEevt, keySRSpeechStatus, typeShortInteger, &actualType,

(Ptr) &recognitionStatus, sizeof(recognitionStatus), &actualSize);

/* Get the SRRecognizer. */
if (!status && !recognitionStatus) {

SRRecognizer recognizer;
status = AEGetParamPtr(theAEevt, keySRRecognizer, typeSRRecognizer, &actualType,

(Ptr) &recognizer, sizeof(recognizer), &actualSize);

(continued on next page)

that was recognized. For example, if the user said “Goodbye,” the language model
returned in the kSRLanguageModelFormat property would contain one phrase,
which would have a kSRSpelling property of “Goodbye” and a kSRRefCon property
of 1 (the value passed for that phrase in the SRAddText call in Listing 3). The
ProcessRecognitionResult routine (Listing 5) uses the language model to determine
what was said by getting the kSRRefCon property of the spoken phrase and
responding appropriately.

This example uses the SRSpeakAndDrawText routine to respond to recognition
events. The Speech Recognition Manager uses the Speech Synthesis Manager to
speak the string, and the animated feedback character (displayed in Apple’s standard
feedback window) lip-synchs with the synthesized text. The Speech Recognition
Manager also displays the response text in the feedback window. (You can use other
routines to simply speak a string through the feedback window without displaying it,
or to display a string without speaking it.)

SETTING THE ACTIVE LANGUAGE MODEL AND STARTING TO LISTEN
All we need to do now is make the language model we’ve built, gTopLanguageModel,
the active language model and tell our recognizer to start listening. First we call the
SRSetLanguageModel function, which associates gTopLanguageModel with the
SRRecognizer we’ve allocated, gRecognizer:

OSErr status = SRSetLanguageModel(gRecognizer, gTopLanguageModel);

develop Issue 27 September 199614

/* Get the SRRecognitionResult. */
if (!status) {

SRRecognitionResult recResult;
status = AEGetParamPtr(theAEevt, keySRSpeechResult, typeSRSpeechResult, &actualType,

(Ptr) &recResult, sizeof(recResult), &actualSize);

/* Extract the language model from the result. */
if (!status) {

SRLanguageModel resultLM;
long propertySize = sizeof(resultLM);

status = SRGetProperty(recResult, kSRLanguageModelFormat, &resultLM, &propertySize);

/* Process the language model. */
if (!status) {

status = ProcessRecognitionResult(resultLM, recognizer);

/* What we SRGot we must SRRelease! */
SRReleaseObject(resultLM);

}
/* Also release the recognition result. */
SRReleaseObject(recResult);

}
}

}
return noErr;

}

Listing 4. Handling the recognition-done Apple event (continued)

THE SPEECH RECOGNITION MANAGER REVEALED 15

Listing 5. Processing a recognition result

OSErr ProcessRecognitionResult (SRLanguageModel resultLM, SRRecognizer recognizer)
{

OSErr status = noErr;

if (resultLM && recognizer) {
long refcon;
long propertySize = sizeof(refcon);

/* Get the refcon of the root object */
status = SRGetProperty(resultLM, kSRRefCon, &refcon, &propertySize);

/* Is the resultLM a subset of our top language model or is it the rejection word, "???"? */
if (!status && refcon == kTopLMRefcon) {

SRLanguageObject languageObject;
propertySize = sizeof(languageObject);

/* The resultLM contains either an SRPhrase or an SRPath. We use the refcon property */
/* set in our language model building routine to distinguish between the results. */

/* Get the phrase or path. */
status = SRGetIndexedItem(resultLM, &languageObject, 0);
if (!status) {

long refcon;
propertySize = sizeof(refcon);

/* Get the refcon of the language object. */
status = SRGetProperty(languageObject, kSRRefCon, &refcon, &propertySize);
if (!status) switch (refcon) {

case kHelloRefCon:
case kGoodbyeRefCon:
case kWhatTimeIsItRefCon:

{
const char *kResponses[] = { "Hi there!", "Don't leave now!",

"It's time to use the Speech Recognition Manager!"
};

/* Speak and display our response using the feedback character. */
/* Use the refcon as an index into our response array. */
status = SRSpeakAndDrawText(recognizer, kResponses[refcon],

strlen(kResponses[refcon]));
}
break;

case kCompanyRefCon:
status = ProcessFancierLanguageModel(languageObject, recognizer);
break;

}
/* Always SRRelease what we SRGot. */
status = SRReleaseObject(languageObject);

}
}

}
return status;

}

You can build as many language models as you like, but there is always just one that’s
active. You can make another language model active (and thereby deactivate the one
that was previously active), or you can enable and disable parts of the active language
model. Typically this is done in response to a speech-detected Apple event, sent to
the application when recognition is about to begin.

For a good example of making your language model dynamically conform to
the context of your application, see the article “Adding Speech Recognition to an
Application Framework” in this issue of develop.•

Once we’ve set the active language model, we start the recognition process by calling
SRStartListening, as follows:

if (!status)
status = SRStartListening(gRecognizer);

Now we can start speaking to our application. When an utterance is recognized as
belonging to our language model, our Apple event handler, HandleRecognitionDoneAE,
will be called and the recognition result will be processed. It’s that easy!

CLEANING UP
Listing 6 shows how to clean up when your application quits. In general, you should
release the speech objects in the order shown.

BUILDING FANCIER LANGUAGE MODELS
The Speech Recognition Manager provides several routines that your application can
use to create and manipulate fancier language models than the one created earlier in
Listing 3. For example, suppose you wanted to create an application that responds to
users when they say, “Tell me the price of <company> stock,” where <company> is
one of several company names.

To create a language model like this, your application needs to create an SRPath
object that consists of the phrase “Tell me the price of” followed by an embedded
language model representing the company names, followed by the word “stock.” The
AddFancierLanguageModel function creates this path and adds it to the language
model created in Listing 3. (Note that the embedded company language model is
simply a list of phrases, just like the language model we created in Listing 3.)

Figure 4 shows the structure of the entire language model. We’ve limited the number
of companies to three here for simplicity. The top half of each box shows the spelling
and refcon properties of each object; the lower half indicates the object type.

Take a look at the AddFancierLanguageModel function (not shown, but included
with our sample code) to see how to build the fancier language model. (Don’t worry if
this routine seems like a lot of code just to add the command “Tell me the price of
<company> stock”; below we’ll describe the SRLanguageModeler tool, which makes
the creation of complicated static language models very easy.) Listing 7 shows how
your application would process results given this fancier language model.

Speech recognition applications that support utterances like “Tell me the price of
<company> stock” or “Call <name>,” while limiting <company> or <name> to a few
dozen items, can be more compelling than those that just respond to simple phrases.
They’re nicely limited in scope, yet they allow the user to invoke actions more easily
than would be possible with a graphical user interface. What other technology does
that?

develop Issue 27 September 199616

THE SPEECH RECOGNITION MANAGER REVEALED 17

Listing 6. Terminating speech recognition

void TerminateSpeechRecognition (void)
{

OSErr status = noErr;

/* If we have an active language model, release it. */
if (gTopLanguageModel) {

status = SRReleaseObject(gTopLanguageModel);
gTopLanguageModel = NULL;

}

/* If we have a recognizer, release it. */
if (gRecognizer) {

status = SRStopListening(gRecognizer);
status = SRReleaseObject(gRecognizer);
gRecognizer = NULL;

}

/* If we have a recognition system, close it. */
if (gRecognitionSystem) {

status = SRCloseRecognitionSystem(gRecognitionSystem);
gRecognitionSystem = NULL;

}

/* Remove our Apple event handler and dispose of the handler's */
/* routine descriptor. */
if (gAERoutineDescriptor) {

status = AERemoveEventHandler(kAESpeechSuite, kAESpeechDone,
gAERoutineDescriptor, false);

DisposeRoutineDescriptor(gAERoutineDescriptor);
gAERoutineDescriptor = NULL;

}
}

SRLanguageModel
<Top LM> SRPhrase

Goodbye

SRPhrase
Hello

SRPath

SRPhrase
What time is it?

SRLanguageModel
<company LM>

SRPhrase
Tell me the price of

SRWord
stock

SRPhrase
Netscape

SRPhrase
Apple

SRPhrase
Pepsi

1

0

100

3

2

1

0

2

Figure 4. Language model built by calling BuildLanguageModel

MANIPULATING LANGUAGE MODELS
The Speech Recognition Manager contains several more routines and properties for
manipulating language models. We’ll look at a few of them here.

Your application can create a large language model and then use the SRSetProperty
function to disable and enable parts of it quickly on the fly, as shown in Listing 8. By
enabling only parts of a language model, you can minimize the number of utterances
that the recognizer is listening for.

Your application can change, clear, or rebuild parts of a language model dynamically
to reflect the current context of your program. Listing 9 clears and then rebuilds the
company language model that was originally built by the AddFancierLanguageModel
function.

develop Issue 27 September 199618

Listing 7. Processing a recognition result given a fancier language model

OSErr ProcessFancierLanguageModel (SRPath resultPath, SRRecognizer recognizer)
{

OSErr status = noErr;

if (resultPath && recognizer) {
SRLanguageModel companyLM;

/* Get the second item in the path -- it's the company language model. */
status = SRGetIndexedItem(resultPath, &companyLM, 1);
if (!status && companyLM) {

SRPhrase companyName;

/* In the result language model, the company language model contains just one phrase. */
status = SRGetIndexedItem(companyLM, &companyName, 0);
if (!status) {

long refcon;
long propertySize = sizeof(refcon);

/* Get the refcon from the company name. It's our index into the response array. */
status = SRGetProperty(companyName, kSRRefCon, &refcon, &propertySize);
if (!status) {

const char *kResponses[] =
{ "Apple stock is priced to move!",

"Netscape is trading at fifty dollars.",
"Why would you want to know that?"

};
status = SRSpeakAndDrawText(recognizer, kResponses[refcon],

strlen(kResponses[refcon]));
}
/* What we SRGot we must SRRelease. */
status = SRReleaseObject(companyName);

}
status = SRReleaseObject(companyLM);

}
}
return status;

}

At any given moment, the active language model should be relatively small, but your
application can change the set of active phrases at any time. For example, if a Web
browser application made its links speakable, at any given moment there would only
be a few dozen visible links, so there would only be a few dozen phrases active. But if
you spent a couple of hours surfing the Web with that browser, you would have seen
many thousands of links throughout the session, and you could have spoken any one
of them while it was visible.

THE SPEECH RECOGNITION MANAGER REVEALED 19

Listing 8. Disabling a part of a language model

/* Disable the stockPath part of the gTopLanguageModel. */
/* The stock path is the fourth item in this language model. */

SRPath stockPath;
OSErr status = SRGetIndexedItem(gTopLanguageModel, &stockPath, 3);

if (!status) {
Boolean enabled = false;
status = SRSetProperty(stockPath, kSREnabled, &enabled,

sizeof(enabled));

/* Balance SRGet call. */
status = SRReleaseObject(stockPath);

}

Listing 9. Emptying and refilling the company language model

/* Empty and refill the embedded company language model. */
/* Assume that stockPath has already been initialized. */

/* The companyLM is the second item in the stock path. */
SRLanguageModel companyLM;
OSErr status = SRGetIndexedItem(stockPath, &companyLM, 1);

if (!status) {
/* This releases each phrase in the company language model. */
status = SREmptyLanguageObject(companyLM);

/* Now rebuild the company language model with new companies. */
if (!status) {

const char *kNewCompanies[] = { "I B M", "Motorola",
"Coca-Cola", NULL };

char **company = (char **) kNewCompanies;
long refcon = 0;

while (*company && !status) {
status = SRAddText(companyLM, *company, strlen(*company),

refcon++);
++company;

}
}
SRReleaseObject(companyLM);

}

In addition to enabling and disabling parts of your language model, the SRSetProperty
function allows your application to make words, phrases, paths, or language models
repeatable (so that the user can say that item one or more times in a row) or rejectable
(so that if the user says something else for that item, the recognizer will fill it in with
a special rejection word with a spelling of “???”).

Your application can also make any word, phrase, path, or language model
optional by setting the corresponding object’s kSROptional property to true. In
AddFancierLanguageModel, we’ve set the kSROptional property of the SRWord
“stock” to true, so the recognizer is ready for the user to say, “Tell me the price of
Apple” as well as “Tell me the price of Apple stock.”

Your application doesn’t have to build language models from scratch each time it
runs. The Speech Recognition Manager provides routines for saving and loading
language objects (for example, the SRPutLanguageObjectIntoHandle and
SRNewLanguageObjectFromDataFile routines). Listing 10 shows an example.

Apple provides a very handy developer tool, called SRLanguageModeler, that you can
use to quickly create, test, and save language models into resources or data files. You
can find this tool, and documentation for it, with the other Speech Recognition
Manager developer information on this issue’s CD and on the speech technology
Web site. SRLanguageModeler lets you write out a language model in a relatively
simple text form and then try it out to see how well its phrases can be recognized and
discriminated from one another. It lets you save the language models into a binary
resource or file format that you can ship with your application. Your application can
load the language model at run time with SRNewLanguageObjectFromHandle or
SRNewLanguageObjectFromDataFile. SRLanguageModeler will eliminate a lot of
the code you would otherwise have to write to construct the static parts of your
language models.

develop Issue 27 September 199620

Listing 10. Saving a language model into a resource

/* Allocate a handle of size 0 to store our language model in; */
/* SRPutLanguageObjectIntoHandle will resize it as needed. */
Handle lmHandle = NewHandle(0);
OSErr status = MemError();

if (!status) {
status = SRPutLanguageObjectIntoHandle(gTopLanguageModel, lmHandle);
if (!status) {

/* Save the language model as a resource in the current */
/* resource file. Pick a reasonable resource type and ID. */
AddResource(lmHandle, 'LMDL', 100, "\pTop Language Model");

/* Make sure it gets written to disk. */
if (!(status = ResError())) {

WriteResource(lmHandle);
DetachResource(lmHandle);

}
}

DisposeHandle(lmHandle);
}

SPEECH: THE FINAL FRONTIER
If you’ve understood this article, you’ll have no problem making practical use of
speech recognition in your application. From the basics of checking for the proper
version of the Speech Recognition Manager to some of the finer details of building
language models, we’ve shown you everything you need to know to get started. Be
sure to take a look at the SRSample application, which uses many of the listings in
this article.

To dig even deeper, check out the Speech Recognition Manager documentation and
the SRLanguageModeler tool. For tips on using the Speech Recognition Manager
within an application framework and dynamically changing your language model, see
the article “Adding Speech Recognition to an Application Framework” in this issue of
develop. Then have fun turning your application into a good listener.

THE SPEECH RECOGNITION MANAGER REVEALED 21

RELATED READING
• “Speech Recognition Manager,” on this issue’s CD and on Apple’s speech

technology Web site, http://www.speech.apple.com.

• “Adding Speech Recognition to an Application Framework” by Tim Monroe, in
this issue of develop.

Thanks to our technical reviewers Mike Dilts, Eric
“Braz” Ford, Tim Monroe, and Guillermo Ortiz.•

Pla
inT

alk

Now,
let’s talk.

™

Apple’s Speech Development Kits are online and
free! Create speech-savvy applications that engage
your customers and draw them into rich,
immersive environments. Apple’s Speech APIs let
you incorporate speech recognition and synthesis
into your applications quickly and easily. Master the
power of Apple’s speech technology today.
Download the free Speech Development Kits at
http://www.speech.apple.com.
The Apple Speech Development Kits include the Speech
Recognition Manager, the Speech Synthesis Manager, APIs,
extensions, sample code, libraries, and documentation.
(Online service and computer not included.)

Make your products
stand out from the crowd.

Add a new dimension to your products with
Apple’s speech technologies.

©1996 Apple Computer, Inc. All rights reserved. Apple, the Apple logo, PlainTalk and Power Macintosh are registered trademarks of Apple Computer, Inc. Mac is a trademark of Apple Computer, Inc.

It’s easy to add speech recognition capabilities to an application built with
an object-oriented framework, with minimal disruption to your existing
code. To illustrate the process, this article shows one way to add basic
speech recognition capabilities to an application built with PowerPlant,
Metrowerks’ popular C++-based application framework. You can use
the same strategy with other application frameworks as well.

Speech recognition capabilities, such as those provided by Apple’s Speech Recognition
Manager, promise to revolutionize the way people use computers. The reason for this
is simple: it’s often a lot easier to say what you want done than to actually do it, even
in the “user-friendly” environment provided by the Macintosh graphical user interface.
So the time you spend making your application speakable is time very well spent.
Happily, if you’ve built your application with a framework such as PowerPlant or
MacApp, you can add basic speech recognition capabilities quickly and easily.

To show how to add speech recognition to an application built with a framework, we’ll
modify the PowerPlant DocDemo sample provided with the CodeWarrior 8 release
to add speech support for the File menu commands. Of course, there’s nothing special
about DocDemo: you should be able to drop the code we provide into any PowerPlant
application. Moreover, although this code is specific to PowerPlant, you should be
able to use similar techniques with other application frameworks as well.

Before reading this article, you should be familiar with the basic operations of the
Speech Recognition Manager and with the PowerPlant application framework. For
an overview of the Speech Recognition Manager, see the article “The Speech
Recognition Manager Revealed” in this issue of develop. As mentioned in that article,
you’ll find everything you need to use the Speech Recognition Manager — including
detailed documentation (written by yours truly) — on this issue’s CD and on Apple’s
speech technology Web site at http://www.speech.apple.com. For basic information
about PowerPlant, see The PowerPlant Book or other Metrowerks documentation.

THE BASIC STRATEGY
We want to add speech support for the File menu commands in the DocDemo
application. This isn’t the highest or best use of speech recognition capabilities (see

TIM MONROE

Adding Speech Recognition to an Application
Framework

develop Issue 27 September 199622

TIM MONROE (monroe@apple.com) is a
technical writer for Apple’s Developer Relations
group. He’s written more Inside Macintosh books
and chapters than he cares to remember and is
currently working with the QuickDraw 3D and
QuickTime VR teams, as well as the speech
recognition team, to bring the excitement of

interactive media to Macintosh applications
everywhere. He’s rumored to have an office in
Cupertino but prefers to spend his time in his
converted garage in Oakland living the quiet life
of a telecommuting “cybermonk.” That way, he’s
never too far from his wife, his kids, or his model
train layout.•

“Speakable Menus?”), but it makes a simple example for us to focus on. In a nutshell,
we’ll define a custom C++ class and create a single instance of that class to handle all
the required speech recognition processing (such as installing a language model and
responding to recognition results sent to it via Apple events). Here are the steps we’ll
follow:

1. Add a few lines of code to the main application source code file,
CDocDemoApp.cp. In part, this code creates a single instance of our
custom class CDocSpeech.

2. Design a set of language models that describe the words and phrases we
want to listen for.

3. Add resources containing string representations of those words and
phrases to the application’s resource file.

4. Write Apple event handlers for the two speech recognition events.

The following sections explain these steps in detail, though not strictly in this order.
All the code provided here is also included on this issue’s CD.

HOOKING UP WITH THE MAIN APPLICATION
All the speech recognition processing for our PowerPlant-based application will be
handled by a single custom object of type CDocSpeech. The main application code
needs only to create (and later delete) that custom object. We’ll start by adding
these lines of code to the beginning of the main application source code file,
CDocDemoApp.cp:

#include "CDocSpeech.h"
extern CDocSpeech *gDocSpeechObj;
Boolean gHasSpeechRecog;

The external reference is to an instance of the CDocSpeech class, and the Boolean
global variable indicates whether the Speech Recognition Manager is available in the
current operating environment. To set that variable and create our custom object, we
add the code in Listing 1 to the constructor CDocDemoApp::CDocDemoApp.

We’ll also need to delete gDocSpeechObj when our application quits. We do this by
adding the following code to the destructor CDocDemoApp::~CDocDemoApp:

ADDING SPEECH RECOGNITION TO AN APPLICATION FRAMEWORK 23

While it’s fairly easy to make your application’s menus
speakable, this isn’t necessarily the best use of speech
recognition technology and it’s definitely not what Apple’s
speech engineers would like to see you focus your
attention on. Most File and Edit menu commands are just
too short to be easily distinguished by the recognizer
(“quit” sounds a lot like “cut,” for example).

In addition, since menus can’t be seen without pulling
them down, novice users probably won’t know which
menu commands are available until they click in the
menu bar; at that point, they may as well just use the
menu.

However, there is some value in knowing how to make
menus speakable. For one thing, the techniques used in
this article can easily be extended to handle more
complex utterances that have nothing to do with menus.
Also, there is real value in making tool palettes — which
are really just graphical menus that happen to float on
the desktop — speakable; for an example, see the demo
program PlacMac on this issue’s CD.

So the moral is: make your menus speakable if you think
there is value for the user, but don’t just make your menus
speakable. Do something creative and compelling with
speech recognition.

SPEAKABLE MENUS?

// Shut down speech recognition, if it's running.
if (gHasSpeechRecog)

delete gDocSpeechObj;

Those are all the modifications we need to make to our existing source code! The rest
of the speech processing is handled by the custom speech recognition object created
by our main application code.

DEFINING A SPEECH RECOGNITION CLASS
The header file CDocSpeech.h, shown in Listing 2, defines a number of constants
specifying the 'STR#' resources (and indices within those resources) that contain the
names of the language models we want to create and the actual words or phrases we
want to listen for. We’ll use these constants later, when we create the various
language models.

develop Issue 27 September 199624

Listing 1. Creating a custom speech recognition object

// Determine whether the Speech Recognition Manager is available;
// if it's available, create a custom speech recognition object.
long theVersion;
OSErr theErr;

gHasSpeechRecog = false;
theErr = ::Gestalt(gestaltSpeechRecognitionVersion, &theVersion);
// Version must be at least 1.5.0 to support API used here.
if (!theErr)

if (theVersion >= 0x00000150) {
gHasSpeechRecog = true;
gDocSpeechObj = new CDocSpeech();

}

Listing 2. Specifying 'STR#' resources and declaring CDocSpeech

#include "SpeechRecognition.h"

// Language model names
const ResIDT rSTR_LMNames = 400; // ID of STR# resource
const short kStr_GApplLM = 1; // Indices within resource
const short kStr_GUnivLM = 2;
const short kStr_GDocuLM = 3;
const short kStr_UFileLM = 4;
const short kStr_DFileLM = 5;

// Universal file command phrases
const ResIDT kSTR_UFileCmds = 500; // ID of STR# resource
const short kStr_New = 1; // Indices within resource
const short kStr_Open = 2;
const short kStr_PageSetup = 3;
const short kStr_Quit = 4;

(continued on next page)

CDocSpeech.h also contains the declaration of the custom CDocSpeech class.
CDocSpeech is extremely simple: it contains a constructor, a destructor, and two
Apple event handlers. It also defines a private method, MakeLanguageModels, that
creates the language models used by DocDemo. MakeLanguageModels is called by
the constructor when an instance of the CDocSpeech class is created.

All the remaining code is found in the file CDocSpeech.cp. Listing 3 shows the
beginning of that file, which declares all the global variables and function prototypes.

ADDING SPEECH RECOGNITION TO AN APPLICATION FRAMEWORK 25

// Document file command phrases
const ResIDT kSTR_DFileCmds = 501; // ID of STR# resource
const short kStr_Close = 1; // Indices within resource
const short kStr_Save = 2;
const short kStr_SaveAs = 3;
const short kStr_Revert = 4;
const short kStr_Print = 5;
const short kStr_PrintOne = 6;

// Apple menu command phrases
const ResIDT kSTR_UApplCmds = 503; // ID of STR# resource
const short kStr_About = 1; // Indices within resource

#define kEnableObj true
#define kDisableObj false

class CDocSpeech {
public:

CDocSpeech();
virtual ~CDocSpeech();
static pascal OSErr HandleSpeechBegunAppleEvent (AppleEvent

*theAEevt, AppleEvent *reply, long refcon);
static pascal OSErr HandleSpeechDoneAppleEvent (AppleEvent

*theAEevt, AppleEvent *reply, long refcon);
private:

OSErr MakeLanguageModels (void);
};

Listing 2. Specifying 'STR#' resources and declaring CDocSpeech (continued)

Listing 3. Declaring global variables and function prototypes

#include "CDocSpeech.h"

// Global variables
SRRecognitionSystem gSystem;
SRRecognizer gRecognizer;
SRLanguageModel gGApplLM, gGDocuLM;
SRPhrase gRevert;
CDocSpeech *gDocSpeechObj = nil;

// Function prototypes
void SetLanguageObjectState (SRLanguageObject inObj, Boolean isEnabled);

The constructor method, shown in Listing 4, performs all the necessary startup
associated with speech recognition. Much of this code should already be familiar to
you from the article “The Speech Recognition Manager Revealed.”

Now we just need to write the MakeLanguageModels function called by the
CDocSpeech constructor, and the two Apple event handlers.

develop Issue 27 September 199626

Listing 4. Starting up speech recognition

CDocSpeech::CDocSpeech()
{

OSErr theErr = noErr;

// Open a recognition system.
theErr = ::SROpenRecognitionSystem(&gSystem, kSRDefaultRecognitionSystemID);

// Set recognition system properties to user-selected feedback and listening modes.
if (!theErr) {

short theModes = kSRHasFeedbackHasListenModes;
theErr = ::SRSetProperty(gSystem, kSRFeedbackAndListeningModes, &theModes, sizeof(theModes));

}

// Create a recognizer with default speech source.
if (!theErr)

theErr = ::SRNewRecognizer(gSystem, &gRecognizer, kSRDefaultSpeechSource);

// Set recognizer properties. We want to receive notifications when recognition begins and ends.
if (!theErr) {

unsigned long theParam = kSRNotifyRecognitionBeginning | kSRNotifyRecognitionDone;
theErr = ::SRSetProperty(gRecognizer, kSRNotificationParam, &theParam, sizeof(theParam));

}

// Install Apple event handlers.
if (!theErr) {

theErr = ::AEInstallEventHandler(kAESpeechSuite, kAESpeechDetected,
NewAEEventHandlerProc(HandleSpeechBegunAppleEvent), 0, false);

theErr = ::AEInstallEventHandler(kAESpeechSuite, kAESpeechDone,
NewAEEventHandlerProc(HandleSpeechDoneAppleEvent), 0, false);

}

// Make our language models.
if (!theErr)

theErr = MakeLanguageModels();

// Install initial language model and release our reference to it.
if (!theErr) {

theErr = ::SRSetLanguageModel(gRecognizer, gGApplLM);
::SRReleaseObject(gGApplLM);

}

// Have the recognizer start processing sound.
if (!theErr)

theErr = ::SRStartListening(gRecognizer);
}

CONSTRUCTING THE LANGUAGE MODELS
Probably the most time-consuming part of adding speech recognition to an application
is defining the language models that describe the words and phrases you want to listen
for. The process is straightforward, but it requires careful attention to the various
states your application can be in. This is because you want the active language model
to include only utterances that make sense at any given time. For instance, if no
document window is open, it makes no sense to listen for the Close or Save command.
Similarly, if a document isn’t dirty (that is, if it hasn’t changed since it was most recently
saved), you probably don’t want the user to be able to execute the Revert command.

This should remind you, of course, of the context-specific menu enabling and disabling
that’s a standard part of any good Macintosh application. For our demonstration
application, we’ll handle context sensitivity by creating a number of embedded
language models that we’ll enable or disable according to context.

The commands in the File menu fall into two main categories: those that can be issued
at any time (such as New or Open) and those that apply to a specific document (such
as Save or Close). Accordingly, we’ll construct two language models, one for each type
of command. Let’s call the first variety universal file commands and the second variety
document file commands. In addition, we want to make the About DocDemo command
utterable. Here’s a Backus-Naur Form (BNF) diagram of our top-level language model:

<Menu Commands> = <Universal Commands> | <Document Commands>;
<Universal Commands> = <Universal File Commands> | About DocDemo;
<Universal File Commands> = New | Open | Page Setup | Quit;
<Document Commands> = <Document File Commands>;
<Document File Commands> = Close | Save | Save As | Revert | Print |

Print One;

As you can see, the top-level language model Menu Commands consists of two
embedded language models, one for commands that can be issued at any time and one
for commands that require a document window to be open. Each of these embedded
language models contains other language objects. The Universal Commands language
model contains the phrase “About DocDemo” and the language model that contains
the universal file commands. The Document Commands language model contains
only the language model that contains the document file commands; you would
add other document-specific models here (for instance, document-specific editing
commands). In all, we’ll create five language models. (Note that the Page Setup
command is in the universal file commands language model; that’s because DocDemo
allows you to choose that command even if no document window is open.)

Listing 5 shows the code defining the MakeLanguageModels function (error
checking has been removed for the sake of readability). Apple provides a utility,
SRLanguageModeler, that you can use to build and test language models described
with BNF diagrams like that shown above. SRLanguageModeler can also save those
language models into resources or files, from which your application can load the
models at run time. Here, however, we build the language models on the fly to
demonstrate the Speech Recognition Manager routines for doing so.

MakeLanguageModels begins by calling SRNewLanguageModel five times to create
the five new, empty language models. (As indicated earlier, the names of the language
models are read from the application’s resource fork.) Then MakeLanguageModels
creates a language object for the single word revert, as follows:

::GetIndString(theStr, kSTR_DFileCmds, kStr_Revert);
::SRNewPhrase(gSystem, &gRevert, &theStr[1], theStr[0]);

ADDING SPEECH RECOGNITION TO AN APPLICATION FRAMEWORK 27

develop Issue 27 September 199628

Listing 5. Creating the language models

OSErr CDocSpeech::MakeLanguageModels (void)
{

OSErr theErr = noErr;
Str255 theStr;
SRLanguageModel myGUnivLM, myUFileLM, myDFileLM;

// Make the language models (which are initially empty).
::GetIndString(theStr, rSTR_LMNames, kStr_GApplLM);
::SRNewLanguageModel(gSystem, &gGApplLM, &theStr[1], theStr[0]);
::GetIndString(theStr, rSTR_LMNames, kStr_GUnivLM);
::SRNewLanguageModel(gSystem, &myGUnivLM, &theStr[1], theStr[0]);
::GetIndString(theStr, rSTR_LMNames, kStr_UFileLM);
::SRNewLanguageModel(gSystem, &myUFileLM, &theStr[1], theStr[0]);
::GetIndString(theStr, rSTR_LMNames, kStr_GDocuLM);
::SRNewLanguageModel(gSystem, &gGDocuLM, &theStr[1], theStr[0]);
::GetIndString(theStr, rSTR_LMNames, kStr_DFileLM);
::SRNewLanguageModel(gSystem, &myDFileLM, &theStr[1], theStr[0]);

// Make any other language objects we'll need.
::GetIndString(theStr, kSTR_DFileCmds, kStr_Revert);
::SRNewPhrase(gSystem, &gRevert, &theStr[1], theStr[0]);

// ****<Universal File Commands>****
::GetIndString(theStr, kSTR_UFileCmds, kStr_New);
::SRAddText(myUFileLM, &theStr[1], theStr[0], cmd_New);
::GetIndString(theStr, kSTR_UFileCmds, kStr_Open);
::SRAddText(myUFileLM, &theStr[1], theStr[0], cmd_Open);
::GetIndString(theStr, kSTR_UFileCmds, kStr_PageSetup);
::SRAddText(myUFileLM, &theStr[1], theStr[0], cmd_PageSetup);
::GetIndString(theStr, kSTR_UFileCmds, kStr_Quit);
::SRAddText(myUFileLM, &theStr[1], theStr[0], cmd_Quit);

// ****<Document File Commands>****
::GetIndString(theStr, kSTR_DFileCmds, kStr_Close);
::SRAddText(myDFileLM, &theStr[1], theStr[0], cmd_Close);
::GetIndString(theStr, kSTR_DFileCmds, kStr_Save);
::SRAddText(myDFileLM, &theStr[1], theStr[0], cmd_Save);
::GetIndString(theStr, kSTR_DFileCmds, kStr_SaveAs);
::SRAddText(myDFileLM, &theStr[1], theStr[0], cmd_SaveAs);
unsigned long theRefCon = cmd_Revert;
::SRSetProperty(gRevert, kSRRefCon, &theRefCon, sizeof(theRefCon));
::SRAddLanguageObject(myDFileLM, gRevert);
::GetIndString(theStr, kSTR_DFileCmds, kStr_Print);
::SRAddText(myDFileLM, &theStr[1], theStr[0], cmd_Print);
::GetIndString(theStr, kSTR_DFileCmds, kStr_PrintOne);
::SRAddText(myDFileLM, &theStr[1], theStr[0], cmd_PrintOne);

// ****<Document Commands>****
::SRAddLanguageObject(gGDocuLM, myDFileLM);

(continued on next page)

We treat the Revert command specially because we want to listen for it only when an
open document has a file associated with it (and, of course, when the document is
dirty). Even when the Document Commands language model is active, the Revert
command might need to be disabled.

Next, MakeLanguageModels builds the two language models Universal File Commands
and Document File Commands. In both cases, it simply adds the relevant words or
phrases, read from resources, to the language model, like this:

::GetIndString(theStr, kSTR_UFileCmds, kStr_New);
::SRAddText(myUFileLM, &theStr[1], theStr[0], cmd_New);

SRAddText sets the reference constant property of the specified language object to the
value passed in its fourth parameter. In this example, the reference constant for the
New command is set to the value cmd_New, which is a constant defined by PowerPlant.
As you’ll see later, we’ll use that value to get PowerPlant to react appropriately to the
user’s utterances. If you don’t use SRAddText, you need to explicitly set an object’s
reference constant property, as is done for the Revert command:

unsigned long theRefCon = cmd_Revert;
::SRSetProperty(gRevert, kSRRefCon, &theRefCon, sizeof(theRefCon));
::SRAddLanguageObject(myDFileLM, gRevert);

Once the two main language models have been created, the hierarchy displayed in the
BNF diagram is established by a series of calls to SRAddLanguageObject.

ENABLING AND DISABLING THE LANGUAGE MODELS
When a user begins speaking, your application is notified via a speech-detected
Apple event. In general, your speech-detected event handler should determine what
state your application is in and set the active language model accordingly. As we’ve
mentioned, we’ll use this opportunity to enable or disable embedded language models
(or even single words) to limit the recognizable utterances to those that make sense at
the time. Listing 6 shows our speech-detected Apple event handler.

ADDING SPEECH RECOGNITION TO AN APPLICATION FRAMEWORK 29

// ****<Universal Commands>****
::SRAddLanguageObject(myGUnivLM, myUFileLM);
::GetIndString(theStr, kSTR_UApplCmds, kStr_About);
::SRAddText(myGUnivLM, &theStr[1], theStr[0], cmd_About);

// ****<Menu Commands>****
::SRAddLanguageObject(gGApplLM, myGUnivLM);
::SRAddLanguageObject(gGApplLM, gGDocuLM);

// Release any embedded language models we won't need later.
::SRReleaseObject(myDFileLM);
::SRReleaseObject(myUFileLM);
::SRReleaseObject(myGUnivLM);

return theErr;
}

Listing 5. Creating the language models (continued)

The event handler, HandleSpeechDetectedAppleEvent, calls the PowerPlant utility
function UDesktop::FetchTopRegular to get the top document window. If there’s an
open document window, HandleSpeechDetectedAppleEvent calls the application-
defined function SetLanguageObjectState to enable the Document Commands
language model. Otherwise, if no document window is open, the event handler calls
SetLanguageObjectState to disable that language model. Listing 7 shows the simple
function SetLanguageObjectState.

develop Issue 27 September 199630

Listing 6. Handling speech-detected Apple events

pascal OSErr CDocSpeech::HandleSpeechDetectedAppleEvent
(AppleEvent *theAEevt, AppleEvent *reply, long refcon)

{
#pragma unused(reply, refcon)

long actualSize;
DescType actualType;
OSErr theErr = 0, recStatus = 0;
SRRecognizer theRec;
LWindow *theWindow;

// Get status and recognizer.
theErr = ::AEGetParamPtr(theAEevt, keySRSpeechStatus,

typeShortInteger, &actualType, (Ptr)&recStatus,
sizeof(recStatus), &actualSize);

if (!theErr && !recStatus)
theErr = ::AEGetParamPtr(theAEevt, keySRRecognizer,

typeSRRecognizer, &actualType, (Ptr)&theRec,
sizeof(theRec), &actualSize);

if (theErr)
if (!theRec)

return theErr;

// Figure out what state we're in; then enable or disable the
// appropriate language models.
theWindow = UDesktop::FetchTopRegular(); // Look for a doc window.
if (theWindow != nil) { // There is a doc window.

SetLanguageObjectState(gGDocuLM, kEnableObj);

// Turn off "Revert" if there's no file or it isn't dirty.
Boolean isEnabled, outUsesMark;
Char16 outMark;
Str255 outName;

LCommander::GetTarget()->FindCommandStatus(cmd_Revert, isEnabled,
outUsesMark, outMark, outName);

SetLanguageObjectState(gRevert, isEnabled);
} else // There is no doc window.

SetLanguageObjectState(gGDocuLM, kDisableObj);

// Now tell the recognizer to continue.
theErr = ::SRContinueRecognition(theRec);
return theErr;

}

Notice that if a document window is open, we need to determine whether to enable
the Revert command. HandleSpeechDetectedAppleEvent cleverly calls the document
window’s FindCommandStatus function to determine this.

Instead of disabling the Revert command when it isn’t relevant, we could just let the
recognizer keep listening for it but ignore it when the frontmost document, if any,
isn’t dirty or has no file. This alternate strategy has some advantages. In particular, if
the user says “revert” but we aren’t listening for that command, the recognizer might
think the user has uttered some other command (like “quit” or “print”). These
misfires are much less likely to occur if the recognizer is listening for “revert” in
addition to the other document file commands.

If you think that a user is apt to utter a particular command at an inappropriate time,
it’s probably better to ignore it than to disable it. On the other hand, we don’t want to
make the active language model too big, and one way to keep its size manageable is to
enable or disable parts of it according to context. That’s the strategy we’ve adopted
for this article. Our sample application doesn’t listen for the Revert command unless
it’s appropriate, to illustrate how to enable and disable language objects.

HANDLING RECOGNITION RESULTS
So far, we’ve defined our language models and set up the mechanism by which
relevant parts of the language models are enabled or disabled according to context.
All that remains is to do the right thing when the recognizer recognizes an utterance.
Our application is informed of successful recognitions via recognition-done Apple
events. Listing 8 shows the DocDemo recognition-done event handler.

ADDING SPEECH RECOGNITION TO AN APPLICATION FRAMEWORK 31

Listing 7. Enabling or disabling a language object

void SetLanguageObjectState (SRLanguageObject inObj, Boolean isEnabled)
{

Boolean theState = isEnabled;

::SRSetProperty(inObj, kSREnabled, &theState, sizeof(theState));
}

Listing 8. Handling recognition-done Apple events

pascal OSErr CDocSpeech::HandleRecognitionDoneAppleEvent
(AppleEvent *theAEevt, AppleEvent *reply, long refcon)

{
#pragma unused(reply, refcon)

long actualSize;
DescType actualType;
OSErr theErr = 0, recStatus = 0;
SRRecognitionResult recResult = nil;
Size theLen;
SRPath thePath;
SRSpeechObject theItem;
long theRefCon; // Reference constant of item

(continued on next page)

The interesting thing in this event handler is how utterly simple the important code
is: all it does is extract the reference constant value of the recognized utterance and
send that value up the PowerPlant chain of command. For example, if the recognized
utterance is the word new, the reference constant is the value cmd_New, which is sent
to a commander. In this case, the DocDemo application creates a new document. In
effect, the CDocSpeech object does its work by calling code already in the DocDemo
application.

THE LAST WORD
As you’ve seen, it’s easy to add basic speech recognition for File menu commands to a
PowerPlant application, largely because our custom speech object can simply issue
the same commands that would be issued in response to a menu choice. You should
now be able to add speech support for Edit menu commands and for any other menu
commands supported by your application.

Only one method remains to discuss, the destructor for the CDocSpeech class. The
destructor simply stops recognizing utterances and closes down the recognition
system opened by the constructor, as shown in Listing 9.

develop Issue 27 September 199632

// Get status.
theErr = ::AEGetParamPtr(theAEevt, keySRSpeechStatus,

typeShortInteger, &actualType, (Ptr)&recStatus,
sizeof(recStatus), &actualSize);

// Get result.
if (!theErr && !recStatus)

theErr = ::AEGetParamPtr(theAEevt, keySRSpeechResult,
typeSRSpeechResult, &actualType, (Ptr)&recResult,
sizeof(recResult), &actualSize);

// Get command from result by reading the reference constant
// of the relevant object.
if (!theErr && !recStatus) {

::SRGetProperty(recResult, kSRPathFormat, &thePath, &theLen);
theErr = ::SRGetIndexedItem(thePath, &theItem, 0);
if (!theErr) {

theLen = sizeof(theRefCon);
::SRGetProperty(theItem, kSRRefCon, &theRefCon, &theLen);
::SRReleaseObject(theItem);

}
// Release recognition result, since we're done with it.
::SRReleaseObject(recResult);
::SRReleaseObject(thePath);

}

// Send the reference constant up the chain of command.
LCommander::GetTarget()->ObeyCommand((MessageT)theRefCon, nil);

return theErr;
}

Listing 8. Handling recognition-done Apple events (continued)

’Nuff said.

ADDING SPEECH RECOGNITION TO AN APPLICATION FRAMEWORK 33

Listing 9. Shutting down speech recognition

CDocSpeech::~CDocSpeech()
{

::SRStopListening(gRecognizer);
::SRReleaseObject(gRecognizer);
::SRReleaseObject(gGDocuLM);
::SRReleaseObject(gRevert);
::SRCloseRecognitionSystem(gSystem);

}

RELATED READING
• “The Speech Recognition Manager Revealed” by Matt Pallakoff and Arlo Reeves,

in this issue of develop.

• “Speech Recognition Manager,” on this issue’s CD and on Apple’s speech
technology Web site, http://www.speech.apple.com.

• The PowerPlant Book by Jim Trudeau, in Inside PowerPlant for CW8 (Metrowerks,
1995).

Thanks to our technical reviewers Mike Dilts,
Guillermo Ortiz, Matt Pallakoff, Arlo Reeves, and
Brent Schorsch.•

YOUR NAME HERE

YOUR PHOTO HERE

Do you have code that solves a problem other Macintosh
developers might be having? Why not show it off by writing
about it in develop?

If you’re a lot better at writing code than writing articles, don’t
worry. An editor will work with you. The result will be something
you’ll be proud to show your colleagues (and your Mom).

So don’t just sit on those great ideas; feel the thrill of seeing them
published in develop!

To receive our Author’s Guidelines, editorial schedule, and
information about our incentive program, please send a message
to develop@apple.com, or write Caroline Rose, Apple Computer,
Inc., 1 Infinite Loop, Cupertino, CA 95014.

develop Issue 27 September 199634

By the time you read this, version 8.4 of the LaserWriter
8 printer driver will have shipped. This driver —
LaserWriter version 8.4, for short — is not the same
old LaserWriter driver: it has new features that
developers have been asking for, sports a new user
interface, and beats earlier versions of the driver in the
quarter mile.

Here I’ll outline some of the changes — a few minor,
a few major — that you need to be aware of for
compatibility reasons. Even if you don’t want to take
advantage of any of the great new features, you’ll at
least need to address compatibility issues if any of the
changes cause problems with your application.

To help you implement the new features, this column
is backed up with detailed documentation on this
issue’s CD.

THE EXTENDED PRINT RECORD
The 120-byte print record in the previous driver
version doesn’t have as many free bits available as some
programmers would like. So to let you save all possible
printing information about a document, Apple decided
to allow for extensible print records.

If all you want to do is maintain compatibility with the
new driver version, you shouldn’t need to change your
application at all. But if you want to take advantage of
the extended print record — and implement attractive
features such as access to a larger number of paper
sizes, tray handling that works with the PrJobMerge
function, and the ability to reliably save more user
settings from the Page Setup dialog — you do need
to make some minor changes, along the following
lines:

• Because the extended print record can be any size
larger than 120 bytes, your application must not
make any assumptions about the record’s size.

• Although the locations of fields that are currently
defined within the TPrint structure won’t change,
you should use PrGeneral with the extended print
record opcodes (described below) to access any
additional fields.

• When using an extended print record, you’ll need
to call the extendPrDefault and extendPrValidate
functions where you previously would have called
the functions PrintDefault and PrValidate. (The
new extend functions really just call PrGeneral with
specific opcodes, but are more convenient to use
than PrGeneral itself.) See “Extending the Print
Record” on this issue’s CD for more information
on the extend functions and how they use the new
PrGeneral opcodes.

Those who break the rules might need to make more
changes. See the Print Hints column in develop Issue 26
(“The Top 10 Printing Crimes Revisited”) for more
information.

NEW PRGENERAL OPCODES
LaserWriter version 8.4 adds three new PrGeneral
opcodes for dealing with the extended print record:
kExtendPrintRecOp (which extends the print record),
kGetExtendedPrintRecOp, and kSetExtendedPrintRecOp.

Table 1 gives a complete list of all the PrGeneral
opcodes as of June 1996 (but be aware that printing in
Mac OS 8 might not implement all of these). These
opcodes are all planned to be supported by LaserWriter
version 8.4, except for the ones that aren’t used by
LaserWriter 8 (as noted in the table). Refer to the
article “Meet PrGeneral” in develop Issue 3 for more
information about PrGeneral.

NEW PRINT DIALOGS
The print dialogs have been completely redesigned
for LaserWriter version 8.4. Applications that use the
approved method of extending the print dialogs will
continue to function. But if your application uses a
nonstandard method of extending the print dialogs,
it’s in trouble. The definitive source about how to
extend a print dialog is PDlog Expand, available as
sample code on this issue’s CD and included with the
Macintosh Technical Note “Print Dialogs: Adding
Items” (PR 09).

PRINT HINTS

The All-New
LaserWriter Driver
Version 8.4

DAVE POLASCHEK

DAVE POLASCHEK (dpolasch@apple.com) continues to be
confused by California. There’s nice weather when it isn’t baseball
season, the earth moves even when he’s alone, and it’s easier to

find good wine than good beer. Dave works in Developer
Technical Support (DTS) at Apple. If you’d like more details, look
at http://www.best.com/~davep/.•

PRINT HINTS: THE ALL-NEW LASERWRITER DRIVER VERSION 8.4 35

The new print dialogs have a pop-up menu that lets the
user select between multiple panes of the dialog. In
Figure 1, the General pane has been selected from the

pop-up menu. When an application adds items to the
print dialog, they’re added to a pane that has the name
of the application. Because of this new multipane
dialog, applications that extend the print dialogs in a
nonstandard manner will cause many problems, such as
dialog items appearing in the wrong locations, standard
items being overwritten within the dialog, and standard
items being drawn incorrectly.

Applications also shouldn’t assume that the print dialog’s
foreground color is black or that the background color
is white. Furthermore, when applications exit their
CDEFs or user items, they should be careful to leave
the foreground and background colors as they found
them. Other items in the dialog rely on these colors, so
if you change them the standard controls in the print
dialog could take on unusual colors.

ONE-PASS PRINTING
With LaserWriter version 8.4, when background
printing is disabled, printing is one-pass. This means
that there are no longer any big spool files to fill up
your hard drive, and the first printed page comes out
of the printer more quickly (because it doesn’t have to
wait for the entire document to spool). The downside
is that because the LaserWriter driver isn’t making two
passes over the data to be printed, it might not be able
to perform the same optimizations on the PostScript™

code as when background printing is enabled. As a
result, jobs printed with background printing disabled
might print more slowly, and in a few cases the final
quality could suffer.

Figure 1. The new multipane print dialog

Table 1. The PrGeneral opcodes

Opcode Operation
4 getRslDataOp
5 setRslOp
6 draftBitsOp
7 noDraftBitsOp
8 getRotnOp
9 NoGrayScl (not used by LaserWriter 8)

10 getPSInfoOp
11 PSIntentionsOp
12 enableColorMatchingOp
13 registerProfileOp (ColorSync 1 only; not used

by LaserWriter 8)
14 PSAdobeOp
15 PSPrimaryPPDOp
16 kLoadCommProcsOp
17 kUnloadCommProcsOp
18 kExtendPrintRecOp (LaserWriter version 8.4

and later only)
19 kGetExtendedPrintRecOp (LaserWriter version

8.4 and later only)
20 kPrinterDirectOpCode (not used by any

LaserWriter driver)
21 kSetExtendedPrintRecOp (LaserWriter version

8.4 and later only)

With the advent of one-pass printing, if your application
has its own PostScript LaserPrep dictionary, it should
use the PREC 103 mechanism for this dictionary. With
this mechanism, the driver downloads to the printer
the PostScript dictionary contained in the PREC 103
resource before it’s needed by application-generated
PostScript code. If the application doesn’t do this and
defines its own PostScript procedures at the page level,
these procedures will be undefined as part of the one-
pass font-handling mechanism and you’ll get PostScript
errors (mostly undefined operators, because the
operators you defined aren’t there).

PORTIONS OF THE CODE IN SHARED LIBRARIES
Some of the functionality of LaserWriter version 8.4
has been broken out into shared libraries, including the
following:

• Converter library — generation of PostScript code

• PPD library — parsing of the PostScript printer
description file

• Preferences and Collection libraries — storage and
retrieval of preferences file data

• Downloader library — downloading of PostScript
and EPS files to a printer

• PostScript Utilities library — PostScript utility
functions

• Communications library — communications

In the future, Apple may provide APIs to these shared
libraries for third parties.

CHANGES TO PARSING AND HANDLING OF
PPD FILES
If you’re a printer developer, you should know that the
way PPD files are parsed and handled has changed in
LaserWriter version 8.4. Previous versions of the driver
would supply a “Printer’s Default” choice so that the
user could choose not to decide about a certain feature
and accept the default setting of the printer. With
version 8.4, the driver will no longer provide this
option. If PPD creators want to continue to have a
Printer’s Default option for a user interface feature
(called UIFeature in the PPD specification), they’ll
have to add it to the PPD file in the list of options for
that feature.

Also, common features available through the PPD file
will be added to the correct pane of the print dialog.

Features that aren’t recognized or that are vendor-
specific will be placed in their own pane. This can cause
problems: if you use a nonstandard naming convention
for a common feature, it will be placed with all other
unknown features, and if you use a standard name for
a nonstandard feature, it will probably end up in the
wrong location.

One other change is that you can specify the graphic
elements you’d like to use for UI features specified
within the PPD file. See “LaserWriter 8.4 PPDs” on
the CD for information about how to design your own
pane for use with LaserWriter version 8.4. The latest
Apple PPD files are the best examples of how to
implement the new features.

NEW ERROR CODES
LaserWriter 8 introduced a number of new error codes,
but they haven’t been documented — until now, that
is. See the unofficial documentation “LaserWriter 8
Errors” on the CD. Future versions of this document
will be released as Technotes.

These error codes are provided for debugging purposes.
Be aware that they may change in the future, so you
probably don’t want your application to depend on them.

WRAPPING IT UP
That’s a quick rundown of the new features of the
newest version of the LaserWriter driver. These features
should make printing a better experience for the user,
should give the developer more flexibility, and should
require no changes to most applications. And to top it
all off, they’re cool!

develop Issue 27 September 199636

Thanks to Rich Blanchard, Paul Danbold, Ingrid Kelly, Dan Lipton,
and Steve Simon for reviewing this column. Special thanks to Matt
Deatherage.•

RELATED READING
• “Print Hints: The Top Ten Printing Crimes Revisited”

by Dave Polaschek, develop Issue 26.

• “Meet PrGeneral, the Trap that Makes the Most of
the Printing Manager” by Pete “Luke” Alexander,
develop Issue 3.

• Macintosh Technical Note “Print Dialogs: Adding
Items” (PR 09).

• “Extending the Print Record,”“LaserWriter 8.4
PPDs,” and “LaserWriter 8 Errors,” all on this
issue’s CD.

If you’re ready to create your first full-featured OpenDoc part editor
but have some questions about part kinds and how to work with them,
you’ll find the answers here. We explain how your choice of part kinds
will affect whether users will be able to read your content with different
part editors and even across different platforms. We also discuss some
human interface principles and describe how to handle the most common
user actions having to do with part kinds.

We imagine that every computer user on earth has had the experience of trying to
open a document created by someone else but not being able to because the
application it was created with is missing. In the context of OpenDoc, users can run
into this when the part editor that created a part is missing. OpenDoc provides
several ways to mitigate this “missing editor” problem. One way is for developers to
create and freely distribute part viewers for all the kinds of parts that they support; a
part viewer is a subset of its corresponding editor’s code that displays and prints a
part’s contents but can’t be used to create or edit a part.

But suppose a user doesn’t have either an editor or a viewer for a particular part.
That’s where part kinds come in. A part kind is a data format in which a part’s intrinsic
content is stored, analogous to a file type in a traditional application. OpenDoc
allows a part editor to support multiple part kinds — that is, to store the same content
in multiple data formats — to increase the probability that a user will be able to see
and copy the contents of a part. A user who doesn’t have the same part editor that
created a part may have a different part editor that can read at least one of the data
formats in which that part is stored. Alternatively, one or more of the data formats
can perhaps be translated into a part kind for which the user has an editor or viewer.

What this means to you is that your choice of part kinds to support is a crucial step in
developing a part editor. This article discusses how to choose which part kinds to
support — standard (to Macintosh or across platforms) or proprietary — and whether

TANTEK ÇELIK AND
DAVE CURBOW

Working With OpenDoc Part Kinds

WORKING WITH OPENDOC PART KINDS 37

TANTEK ÇELIK (tantek@6prime.com) was until
recently an OpenDoc technical lead at Apple.
After shipping OpenDoc 1.0 and determining that
it was good, he helped found 6prime corporation
(http://www.6prime.com), an OpenDoc software
consulting firm. Tantek prides himself on his multiple
modes of alternative transportation, including inline
skating, bicycling, and motorcycling. He likes to
occasionally spend time writing applications in
HyperCard, night skating in San Francisco, or
turning a profit shorting Microsoft options.•

DAVE CURBOW (curbow@apple.com) was until
recently the OpenDoc human interface lead. He
has transferred to Apple Research Labs, where
he’s working on something really neat — but he
can’t tell you about it yet. When he isn’t toiling
away at Apple or planning his next trip to Europe,
Dave likes to work in his Japanese-style garden.
All he needs now is a book that clearly explains
how to twist black pines into interesting shapes.•

to support one or multiple part kinds. We also discuss how to decide which category
your part kinds fit into, some human interface principles having to do with part kinds,
and what to do in a few key situations in which user actions cause your editor to have
to deal with part kinds.

If you’re not already familiar with the OpenDoc human interface, you should first
read “The OpenDoc User Experience” in develop Issue 22 to get up to speed. This
article also requires you to know something about OpenDoc storage and how to use
the ODStorageUnit class. “Getting Started With OpenDoc Storage” in develop Issue
24 is a good introduction; further details can be found in the OpenDoc Programmer’s
Guide for the Mac OS and its accompanying OpenDoc Class Reference CD.

CHOOSING YOUR PART KINDS AND CATEGORY
In developing your part editor, you first need to decide which part kind or kinds to
support. This choice is worthy of careful consideration. The decision you make about
whether to support standard vs. proprietary part kinds and how many part kinds to
support will affect the number of users able to read your content across documents
and platforms. We’ll look at the tradeoffs here. We’ll also give you the information
you need in order to decide which category or categories your part kinds fit into.

STANDARD VS. PROPRIETARY PART KINDS
First, you need to decide whether to support standard or proprietary part kinds, or
some combination of each. Standard part kinds are those data formats that, either
through an official decree or by some de facto means, have become widely used and
accepted. There are industry-standard part kinds, which are standard across more
than one platform, and standard Macintosh part kinds.

Because new data formats are being created all the time, we can’t give you a complete
list, but here’s a sample:

• industry standards — ASCII, TIFF, GIF, JPEG, MPEG

• Macintosh standards — TEXT, PICT, stxt, MOOV, 3DMF

Part kinds are usually specified as ISO strings (null-terminated ASCII strings using
7-bit characters) for manipulation by OpenDoc. As you can see from our list, standard
Macintosh part kinds are actually today’s standard Macintosh file types, except that
instead of being file-type signatures they’re ISO strings, which can be derived by
using methods of the class ODTranslation. (See the Data Interchange recipes on the
OpenDoc Class Reference CD for more details on how to properly support a standard
Macintosh part kind based on a standard Macintosh file type.) Your part editor needs
to provide user-readable names for part kinds in a name-mapping resource; more on
this later.

The ASCII standard is actually pretty loosely defined. It doesn’t specify whether
you should use 7- or 8-bit encoding, nor does it say whether you should use LF, CR, or
CRLF for line separators. In the near future, Unicode, which OpenDoc uses internally,
is likely to become the standard. In the meantime, your part may need to be prepared
to handle several variants on the ASCII standard without failure.•

If the part kind you choose to support is an industry standard, users will benefit
because they’ll be more likely to avoid the missing editor problem mentioned earlier.
Furthermore, supporting standard part kinds enables your part editor to support
more of the content that’s already out there. Let’s face it — data formats don’t live
forever, but the standard ones have a much better chance of being long-lived than any
proprietary kinds you create.

develop Issue 27 September 199638

On the other hand, if there’s no standard for the content your part editor creates, or if
the standard won’t suffice to capture the functionality your part editor offers, you’ll
need to create a proprietary part kind. You must weigh the advantages of using a
proprietary part kind against the disadvantage of users possibly not being able to read
your part’s content.

In any case, don’t redefine an existing standard. For example, the TEXT part kind
should be used only for plain text, not for some data format that uses text as part of its
definition, such as PostScript, HTML, or BinHex. These data formats should be part
kinds in their own right. Otherwise, there will be confusion when OpenDoc needs to
find a substitute part editor for a part that claims to be TEXT but is in fact another
kind such as HTML. The user won’t be happy with the result.

If you decide to use an industry-standard part kind, the Bento container suite (part
of the storage system in OpenDoc 1.0) can help you solve internal byte-ordering
problems and ensure that a document written on any OpenDoc platform can be read
and written on any other OpenDoc platform. However, your part editor is responsible
for proper byte ordering of the values in the content property of your storage unit.
(Data formats typically specify byte ordering, so OpenDoc stays out of your way
here.) The Standard Type I/O utilities (see the file StdTypIO.h and the functions
declared there) solve the byte-ordering problem for a variety of simple data formats.
These utilities can be used in combination to build up more complex data formats.

SUPPORTING MULTIPLE PART KINDS
As we’ve said, your editor can support one or more part kinds. If it supports more than
one part kind, one of these will be the preferred kind. Users implicitly indicate the
preferred kind when they choose a stationery pad or cut and paste content. They can
also change the preferred kind in the Part Info dialog if they desire; more on this later.

Supporting multiple part kinds increases the probability that other users can see the
contents of a part created with your editor, even if they don’t have your part editor
(see “Editor Substitution Explained” for why this is so). Your choice of part kinds to
support comes into play both when the user saves a document with parts created by
your editor and when the user transfers data with a paste or drop operation.

When deciding how many part kinds to support when your editor is saving its parts
of a document, you’ll want to consider the tradeoff between portability and the space
required to store your part as multiple kinds. The most transportable part kind (that
is, the standard one) may not be the most compact or the one that will represent the
underlying contents with the greatest fidelity. Typically, you’ll want to store only the
one preferred part kind, or the preferred kind and one standard part kind. If there isn’t
a standard kind that’s roughly equivalent to your preferred kind, consider also storing
a TEXT or PICT representation, simply to maximize the chances that the user will
be able to see something for your part. For example, if your part’s preferred kind is
3DMF, there isn’t an equivalent standard kind, so you should also store a PICT
representation. You might want to present the user with a Settings or Preferences
dialog giving a choice of part kinds to store in addition to the preferred kind. See
pages 476 and 479 of the OpenDoc Programmer’s Guide for implementation details.

When your editor is providing data for a data transfer operation (such as a copy to
the Clipboard), you may want to write out a greater number of standard part kinds
than during a save operation. This is because during data transfer it’s more likely that
the user is trying to move content to a different editor or application. Providing
standard part kinds in this situation is therefore even more important. On the other
hand, remember that the user can use the Paste As command to get more options,
including translation, so you needn’t go overboard in supporting lots of kinds.

WORKING WITH OPENDOC PART KINDS 39

develop Issue 27 September 199640

When a user tries to open a document or edit a part and
the editor that created it is missing, OpenDoc searches for
a substitute. This occurs as part of OpenDoc’s binding
process — the process of assigning the correct part editor
to a given part. When a document is opened, the
OpenDoc binding subsystem binds editors to all parts that
need to be displayed. During execution, OpenDoc binds
editors to part data when a part is read in or when its
editor is explicitly changed.

Let’s look at a simplified example of editor substitution.
Suppose we’ve created a text editor named SurfWriter
that stores its content in three formats: a proprietary part
kind (SurfWriter Text) and two standard part kinds (RTF
and TEXT). And suppose that SurfWriter Text is the
preferred kind. When OpenDoc tries to display the part,
its binding subsystem looks first for SurfWriter — the last
editor that was used. If that isn’t found, the binding
subsystem looks for an editor that can read SurfWriter
Text — the preferred kind. If that can’t be found, it looks
for one that can read RTF or TEXT. Thus, storing multiple
part kinds increases the probability that users will be able
to read your content with different part editors and across
different platforms.

Now let’s look at editor substitution in a little more detail.
When attempting to find an editor to bind to a part,
OpenDoc looks first for the editor that last edited the part,
specified in the kODPropPreferredEditor property in the

part’s storage unit. If this editor isn’t present on the user’s
system, the binding subsystem examines each of the part
kinds in the stored part and the list of kinds supported by
the editor or editors installed on the user’s system, looking
for a match. For each supported kind, there’s a default
editor. The user can inspect and modify the list of default
editors in the Editor Setup control panel (Figure 1).

During the matching process, the binding subsystem looks
first for the default editor for the preferred kind. If this
editor isn’t present, it looks for the default editor for the
preferred kind’s category, and finally for any editor that
can read the preferred kind. If such an editor can’t be
found, the binding subsystem repeats the whole process
for each of the remaining part kinds in the part, from
highest fidelity to lowest.

If no editor for any of the part kinds is installed on the
user’s machine, the part remains unviewable and
uneditable. But OpenDoc still binds an editor to the part
— the “editor of last resort.” This editor is always
available and represents the part as an icon within the
document, so that there’s never a blank spot in the
document where a part can’t be displayed. The user can
examine the part’s kind in the Part Info dialog, which
gives a clue as to which editor or viewer should be
installed, although if there’s no editor for the part, there’s
probably no user string for the preferred kind. The user
can also decide to translate the part to another part kind.

EDITOR SUBSTITUTION EXPLAINED

Figure 1. The Editor Setup control panel

CATEGORY CONSIDERATIONS
After you’ve chosen the part kinds to support, you need to determine which category
or categories these belong to. A part category is a set of part kinds that are conceptually
similar. You might think of it as a generic term for several “brand name” variants. For
example, the kODCategoryStyledText category might include the part kinds SurfWriter
Text 3.0, SurfWriter Text 2.0, and others.

OpenDoc looks at a part’s category to decide which part editors or part viewers can
be substituted if an editor is missing and whether to merge or embed data when
content is copied from one part into another. Categories are specified by your editor
in a name-mapping resource and can’t be changed by the user.

Categories for existing part kinds have already been determined and should be
adhered to; this set of categories is broad enough to include most new part kinds as
well. A list of the predefined categories is given in Table 1. This list can be found in
the OpenDoc Programmer’s Guide on pages 477–478, but note that a new category has
been added since the publication of the book: kODCategoryArchive.

The majority of the entries in the list (such as kODCategoryPlainText and
kODCategoryStyledText) are self-explanatory, but a few need some clarification.

WORKING WITH OPENDOC PART KINDS 41

Table 1. Predefined part categories

Part category Explanation
kODCategoryPlainText Plain ASCII text
kODCategoryStyledText Styled text
kODCategoryDrawing Object-based graphics
kODCategory3DGraphic 3D object-based graphics
kODCategoryPainting Pixel-based graphics
kODCategoryMovie Movies or animations
kODCategorySampledSound Simple sampled sounds
kODCategoryStructuredSound Sampled sounds with additional information
kODCategoryChart Chart data
kODCategoryFormula Formula or equation data
kODCategorySpreadsheet Spreadsheet data
kODCategoryTable Tabular data
kODCategoryDatabase Database information
kODCategoryQuery Stored database queries
kODCategoryConnection Network-connection information
kODCategoryScript User scripts
kODCategoryOutline Outlines created by an outliner program
kODCategoryPageLayout Page layouts
kODCategoryPresentation Slide shows or other presentations
kODCategoryCalendar Calendar data
kODCategoryForm Forms created by a forms generator
kODCategoryExecutable Stored executable code
kODCategoryCompressed Compressed data
kODCategoryControlPanel Data stored by a control panel
kODCategoryControl Data stored by a control, such as a button
kODCategoryPersonalInfo Data stored by a personal information manager
kODCategorySpace Stored server, disk, or subdirectory data
kODCategoryProject Project-management data
kODCategorySignature Digital signatures
kODCategoryKey Passwords or keys
kODCategoryUtility Data stored by a utility function
kODCategoryMailingLabel Mailing labels
kODCategoryLocator Locators or addresses, such as URLs
kODCategoryPrinter Stored printer data
kODCategoryTime Stored clock data
kODCategoryArchive Archive or partial archive data such as TAR

• kODCategoryOutline — Use this category when your part’s content has
some hierarchy — that is, when the content is assigned to different nested
levels. For example, the Cyberdog Notebook, an excerpt from which is
shown in Figure 2, presents a collection of URLs in hierarchical form and
thus is an outline.

• kODCategorySpace — Use this category when the content has no intrinsic
order, as in the case of server, disk, or subdirectory (folder) data. For
example, in a pre–System 7 Finder folder, the order of the contents depends
entirely on the settings of the View menu. A part with content like this
would belong to this category.

• kODCategoryPersonalInfo — Use this category for the various kinds of
information represented in personal information management (PIM)
applications.

• kODCategoryPageLayout — Use this instead of kODCategoryDrawing
when the part contains only embedded content. In contrast, the category
kODCategoryDrawing is for a drawing that has intrinsic content, such as
circles and rectangles.

Some of the categories seem as though they could be subsets of other categories —
for instance, kODCategoryPlainText could be a subset of kODCategoryStyledText,
and kODCategory3DGraphic could be a subset of kODCategoryDrawing. But
categories aren’t hierarchical — that is, one category can’t include others.

When you’re considering which category or categories your part kinds should belong
to, ask yourself the following question for each of the categories: If users pasted my
kind of data into a part belonging to this category, would they expect the content to
be merged, or embedded as a separate part? If they would expect the content to be
merged, that’s a category your part kind should belong to. (Note that whether a part
kind supports embedding doesn’t affect which category it’s in.)

For example, if users pasted a slide (a part belonging to the kODCategoryPresentation
category) into some text (a part belonging to the kODCategoryStyledText category),
they would expect the slide to be embedded within the text because the operations on
slides and text are very different. But if they pasted one slide into another slide, they
would expect the contents of the first slide to be merged into the destination slide;
thus, the two parts should belong to the same category.

Consider another example. If users pasted a picture from a Web page into a part
belonging to the category kODCategoryPainting, they would probably expect it
to be merged. But if they pasted the picture into a part belonging to the category
kODCategoryDrawing or kODCategory3DGraphic, they would probably expect it

develop Issue 27 September 199642

Figure 2. Example of an outline from the Cyberdog Notebook

to be embedded, because the operations available in a painting part are usually very
different from those in a drawing part. Thus, the picture should belong to the
category kODCategoryPainting.

You need to choose one or more categories for each of the part kinds that your part
editor supports. A part kind can be in multiple categories; for example, a part that can
shift its view from table to chart should have a preferred kind that’s a member of both
categories. The same category can be specified for a part kind that represents a single
object and a part kind that represents a collection of those objects; for example, you
can specify kODCategoryDatabase for a part kind that represents a single database
record and for a part kind that represents a collection of such records.

As mentioned earlier, when your part editor provides content to the Clipboard or a
drag and drop object, you may want to write out a greater number of standard part
kinds than during a save operation, to increase the probability of being able to
interchange data with other parts. In fact, it will help if you support kinds in more
than one category. Here’s an example: Suppose a user copies some spreadsheet cells
and pastes them into a chart. Because the operations on cells and charts are different,
the user will expect the spreadsheet cells to be embedded. However, if the spreadsheet
provides its copied data in a format that the chart is prepared to merge, the user gets
a higher level of interoperability. If the spreadsheet and the chart both support kinds
that are in the kODCategoryPlainText category, for instance, the chart can take the
content of the spreadsheet and chart it instead of embedding the spreadsheet.

Here are some more examples of part kinds and the categories they fit into:

• PostScript — This page description language is used to define images
in a structured fashion. The PostScript format might fit into either
kODCategoryPageLayout or kODCategoryDrawing. We recommend
kODCategoryDrawing because a part in PostScript format has intrinsic
content like a drawing, such as arcs and clip shapes.

• HTML — Hypertext Markup Language (HTML) is similar to PostScript in
that it defines a page layout. However, when HTML is displayed it typically
looks more like styled text than like a drawing. Therefore, the appropriate
category for HTML is kODCategoryStyledText.

• BinHex — Like many other formats that claim to be text but are only
making use of text to define some richer format, BinHex is actually an
archive format. Hence BinHex belongs in kODCategoryArchive.

• URL — Another kind that uses text to define some richer format, a URL
should be in kODCategoryLocator.

If your part kinds don’t appear to fit in any of the predefined categories, you can
request a new category. The list of predefined categories is maintained by CI Labs, a
consortium that coordinates cross-platform OpenDoc development. See the CI Labs
Web page http://www.cilabs.org/categories for instructions on how to request a new
category.

RESOURCES REQUIRED
Both part kinds and part categories are assigned in your part editor’s name-mapping
('nmap') resources. You can learn how to construct these resources by looking at the
Dynamic Binding recipes on the OpenDoc Class Reference CD. These resources are
required:

• EditorKinds — lists every part kind your editor supports, except standard
Macintosh part kinds

WORKING WITH OPENDOC PART KINDS 43

• EditorPlatformKind — lists the standard Macintosh part kinds your editor
supports

• KindCategories — lists the category or categories your part kinds belong to

• KindUserString — lists the part kind user strings

If you request a new category and CI Labs approves your request, you’ll also need a
CategoryUserString resource listing your category user strings. OpenDoc already
contains user strings for predefined categories.

Listing 1 shows an EditorPlatformKind resource indicating that your editor supports
TEXT files and TEXT scrap data. Listing 2 demonstrates how a part editor would
declare two part kinds that are in the same category in a KindCategories resource.

At run time, if you need to convert a Mac OS file type such as 'TEXT' to an ISO
type, first get the translation object from the session:

ODTranslation* translation = session->GetTranslation(ev);

Then call the translation object to convert the Mac OS file type, or what we call the
platform kind (a platform-neutral term), to an ISO type:

ODValueType valueType =
translation->GetISOTypeFromPlatformType('TEXT', kODPlatformFileType);

develop Issue 27 September 199644

Listing 1. An example EditorPlatformKind resource

resource kODNameMappings (kPlatformEditorKindMapId)
{

kODEditorPlatformKind,
{ /* array KeyList: 1 element */

/* [1] */
kYourEditorID,
kODIsPltfmTypeSpac
{ /* array PltfmTypeSpacList: 2 elements */

{
/* [1] */
kODPlatformFileType,
'TEXT',
smRoman,
langEnglish,
"Plain Text",
kODCategoryPlainText,
/* [2] */
kODPlatformDataType,
'TEXT',
smRoman,
langEnglish,
"Plain Text",
kODCategoryPlainText,

}
}

}
};

You’ll find kODPlatformFileType defined in StdDefs.xh, ODTranslation defined in
Translt.xh, and ODSession defined in ODSessn.xh. Use kODPlatformDataType
instead of kODPlatformFileType if you’re converting a scrap type from the Clipboard
as opposed to a file type from the file system.

SOME HUMAN INTERFACE PRINCIPLES
There are some important human interface principles regarding part kinds that you
should incorporate in the design of your part editor. They boil down to maintaining
the fidelity of parts as they pass through various operations.

One key principle of the user model is that editors shouldn’t change the part kind of
content without warning, because the translation may cause information to be lost.
Only the user should be able to change the preferred kind of a part, and then only
through an explicit action. This supports the concept that content copied into or out
of an OpenDoc document should retain its fidelity. For example, when the user drags
a drawing document from the desktop into an OpenDoc document and then back to
the desktop, the initial document and the final document should be identical, as far as
the user is concerned. The final document should have the same part kind as the
original document, unless the user elects to change the part kind. (See the recipe for
promising a non-OpenDoc file on the OpenDoc Class Reference CD for more details.)

Users can change the preferred kind of a part with the Part Info (or Document Info)
command in the Edit menu. This command brings up a dialog like the one shown in
Figure 3. A pop-up menu offers a list of part kinds supported by the current editor,
plus the possibility of translating to a different format with the “Translate to”
command.

WORKING WITH OPENDOC PART KINDS 45

Listing 2. An example KindCategories resource

resource kODNameMappings (kKindCategoryMapId)
{

kODKind,
{ /* array kinds: 2 elements */

/* [1] */
kStyledTextKind1,
kODIsAnISOStringList
{

{ /* array categories: 1 element */
/* [1] */
kODCategoryStyledText

}
},
/* [2] */
kStyledTextKind2,
kODIsAnISOStringList
{

{ /* array categories: 1 element */
/* [1] */
kODCategoryStyledText

}
}

}
};

When the user wants to save a document, your editor should write it out in the format
of the preferred kind. The highest-fidelity kind that your editor writes should be the
preferred kind. Don’t change the preferred kind, because that would be implicit
translation, or translating formats behind the user’s back — not a good idea, although
some applications behave this way today. Perhaps you’ve seen this: the application
claims to read or write a particular data format, but when a document of that file type
is opened with that application and then saved, the application converts the document
to its own proprietary format. Users are left wondering why their documents can’t
stick with the format they were created with.

To maximize interchange between OpenDoc, traditional applications, and system
software, OpenDoc does not arbitrarily promote platform kinds (which, remember, is
our platform-neutral term for Mac OS file types) to OpenDoc part kinds.•

In today’s applications, this unexpected format change is also often associated with the
creation of a new document named “Untitled x” or “FooDocument - converted.” In
OpenDoc, parts don’t have control over the name of the document, so this errant
behavior is prevented. The name of the document, just like the preferred kind of a
part, should be considered a user setting. Editors shouldn’t tamper with user settings.

There are situations where it’s appropriate for the editor to query the user about
changing a part kind. If the user tries some operation, or tries to add some content,
that’s not supported in the current kind but is supported in another kind that the editor
understands, it’s appropriate to suggest changing to the kind with more functionality.

As an example of the first situation, suppose the user is editing a plain-text document
with an editor that supports styled text. If the user selects some text and tries to
change it to bold, the part editor must allow this change but should warn the user
that the operation will require a change in the part kind — and the user must be
allowed to veto this operation before it’s done. In this situation the part editor should
display an alert like the one shown in Figure 4.

develop Issue 27 September 199646

Figure 3. The Part Info dialog

As an example of the second situation, suppose the user now pastes some text that
includes a page break and an indentation, which isn’t supported in styled text but is
supported in a proprietary format the part editor uses. The part editor should allow
this change but present an alert (see Figure 5) and let the user veto the change.

HANDLING USER ACTIONS
A number of user actions require your editor to deal with part kinds and categories,
though in most cases this interaction is transparent to the user. For example, when a
user pastes content into a part, the editor of the part where the content is about to be
pasted examines the part kinds and categories of the content being pasted. The editor
decides which, if any, of the multiple part kinds available will be pasted. In this case,
as in many others, the user doesn’t realize what’s going on behind the scenes with part
kinds and categories.

We’ll discuss in detail what your editor should do with part kinds and categories in
response to each of the following user actions:

• creating a document

• opening a document

• saving a document

• transferring data

• changing the preferred kind

• translating or converting a part

CREATING A DOCUMENT
To create a document, the user double-clicks on a stationery pad that you supply with
your part editor. You must provide at least one stationery pad for each part category
that your editor supports. For example, if your editor supports the “styled text”

WORKING WITH OPENDOC PART KINDS 47

Figure 4. Warning the user that an operation requires the part kind to be changed

Figure 5. Warning the user that adding content requires the part kind to be changed

category and the SurfWriter Text, AcmeWriter Text, and RTF part kinds, you must
supply (and your product’s installer must install on the user’s system) a stationery pad
for at least one of these part kinds. Typically, you’ll install a stationery pad for the
highest-fidelity part kind that you support.

You can optionally provide more than one stationery pad. When users decide to
double-click on one stationery pad instead of another, they’ve made an explicit
decision about the preferred kind of the document they want to be created.

Rules and conventions for installing part editors and stationery pads can be found in
the OpenDoc Programmer’s Guide, Appendix C, “Installing OpenDoc Software and
Parts.”

OPENING A DOCUMENT
Whenever a user opens a document containing one of your parts, your part must be
reconstituted from external storage by your InitPartFromStorage method, described
in detail in the article “Getting Started With OpenDoc Storage” in develop Issue 24.
Your editor needs to find out the preferred kind and read in the content data
accordingly.

If your editor supports any platform kinds (Mac OS file types), you should first check
for the HFSFlavor value type in the content property (kODPropContents) of the
part’s storage unit. If it’s there, you’ve been bound to an empty storage unit that’s
pointing to a file that you should use to internalize from. This binding can happen in
one of two ways: the user may have dragged and dropped a traditional Macintosh file
onto an OpenDoc document and your part editor was bound to the drop, or the user
may have opened a traditional Macintosh file with the OpenDoc launcher application.
For detailed information on how to make this work, see the Drag and Drop Recipes
on the OpenDoc Class Reference CD, specifically the section “Incorporating Data From
a Non-OpenDoc Document.” Also, see the section “Accepting Non-OpenDoc Data”
on page 371 of the OpenDoc Programmer’s Guide.

If your editor doesn’t support any platform kinds, follow these steps:

1. Get the preferred kind — that is, read the value from the kODPropPreferredKind
property of the part’s storage unit. If this property doesn’t exist, the editor can
assume that the preferred kind of the part is the value type of the first value
in the content property. Keep the preferred kind in a field, as shown in the
following example using utility functions from StdTypIO and TempObj:

#include <StdTypIO.h>
#include <TempObj.h>
...
// The following code belongs in your InitPartFromStorage method.
ODStorageUnit* su = self->GetStorageUnit(ev);
TempISOStr preferredKind = ODGetISOStrProp(ev, su, kODPropPreferredKind,

kODISOStr, kODNULL);
if (preferredKind == kODNULL) {

su->Focus(ev, kODPropContents, kODPosUndefined, kODNULL, 1,
kODPosUndefined);

preferredKind = su->GetType(ev);
}

2. Focus your part’s storage unit to the value of the content property whose
value type is the preferred kind.

self->GetStorageUnit(ev)->Focus(ev, kODPropContents, kODPosUndefined,
preferredKind, 0, kODPosUndefined);

develop Issue 27 September 199648

3. Read the contents of that value and create the in-memory data structures
necessary to represent that content. Use the ODStorageUnit method
GetValue to accomplish this step.

Note that it’s possible for your editor to be bound to a part that previously had a
different editor, as described earlier in “Editor Substitution Explained.” In this case,
the OpenDoc binding subsystem will automatically notify the user. If your editor
doesn’t support the preferred kind, use the highest-fidelity kind in the content
property that your editor does support as the de facto preferred kind. Do not update
the preferred kind property until Externalize or ChangeKind is called on your part.

SAVING A DOCUMENT
Whenever a user saves the document, your part must be written out to the storage
unit, or externalized, by your Externalize method, described in detail in the article
“Getting Started With OpenDoc Storage” in develop Issue 24. Your editor should
write out the preferred kind, at a minimum; you may also decide to write out one
or more alternate part kinds, as discussed earlier under “Supporting Multiple Part
Kinds.”

The first two steps that are required have to do with preparing the storage unit for
clean externalization from your part editor, also known as “prepping the storage
unit.” You should only have to do this the first time Externalize is called on your
part.

1. Clean up the storage unit by removing any values that you won’t be
updating. This means calling the Remove method for any values in the
content property that have value types (part kinds) that your editor doesn’t
support or that your editor won’t externalize.

2. Add values if necessary. Use AddValue to create or recreate the value types
that you want to externalize in proper fidelity order (from highest fidelity to
lowest fidelity). Fidelity ordering is important because OpenDoc looks at it
to determine which editor would best edit any given part.

3. Externalize your content in the format of the preferred kind that your editor
kept track of in a local field.

4. Optionally, write out alternative part kinds. As mentioned earlier, the typical
part editor should by default write out only the one preferred kind, or the
preferred kind and one standard part kind. If you present users with a
Settings or Preferences dialog to indicate a set of alternative part kinds to
store, write out the alternative kinds indicated there.

Your Externalize method may be called at times other than when the user saves a
document. For example, depending on the Save model of the current document and
the idle-time optimizations that may or may not be present, your part may be told to
externalize only when the user saves a document or as often as every minute.
Therefore, your editor shouldn’t have preconceived notions about why it’s asked to
write out your part. As an optimization, your editor should keep an fDirty flag that’s
set whenever the user changes the part’s content and cleared whenever externalization
is completed. If your fDirty flag is clear, your Externalize method should be a no-op.

TRANSFERRING DATA
Whenever the user transfers data with Cut, Copy, Paste, Paste As, or drag and drop,
your CloneInto method is called. See the section “The CloneInto Method of Your
Part Editor” on pages 327–329 of the OpenDoc Programmer’s Guide for the precise
details of implementing the CloneInto method.

WORKING WITH OPENDOC PART KINDS 49

For the purposes of multiple part kind support, however, your editor should do the
following:

1. Write the same part kinds you would if you were externalizing, plus any
standard part kinds you support. As explained earlier, it’s more important to
write out standard part kinds during CloneInto than Externalize because the
user is more likely to be trying to move content to a different editor or
application.

2. Call SetPromiseValue for each part kind if you’re using promises (explained
in the OpenDoc Programmer’s Guide).

If your part editor is a container, it’s important for it to treat pasted content
appropriately. When your container receives a Paste command or is the destination
of a drag and drop, it should check the preferred kind of the incoming content to
decide whether to merge or embed that content. If the category of the preferred kind
of the incoming content is the same as the category of your content’s kind, merge the
incoming content; otherwise, embed the incoming content into a new part.

As mentioned earlier, it’s possible for kinds to belong to more than one category. If
the incoming content’s kind or your content’s kind belongs to multiple categories, or
if both do, as long as they share at least one category they can be said to be of the
same category. If the incoming content isn’t an OpenDoc part, simply use the data
type that’s closest to your own content kind as the de facto preferred kind for the
incoming content.

If the user drops a part onto your part that you determine should be merged, and you
find there’s no content when you try to merge it, the operation will appear to be a
no-op, which is very confusing to the user. You may want to actually embed an empty
part in this case rather than merging nothing, so that the user at least receives some
feedback.

You also should be aware of a concern about format fidelity that arises if the user
attempts a paste or drop operation with your editor that involves content with other
content embedded. Some data or formatting may be lost if one or more of the part
kinds supported by your part editor is of lesser fidelity and can’t handle embedded
content, and at the time of the paste or drop the destination part editor can work only
with the lower-fidelity kind. In this case, the destination part editor can’t know that
it’s losing the embedded content.

What can you do to minimize these cases, or at least make them easier on the user?
We strongly recommend that your part editor support embedding. If it doesn’t, it
shouldn’t claim to support a kind that includes embedding. For example, the part
editor that’s the destination for a paste or drop shouldn’t strip embedded content or
links out of the data format. If your editor can’t preserve the fidelity of the paste or
drop, it must choose a lower-fidelity part kind; if there are no other kinds present
that your editor supports, it shouldn’t allow the paste or accept the drop. The only
exception to this is when a plain-text editor receives a paste of styled text; in this case,
it can use only the text and ignore the style information. Because text is so ubiquitous,
it’s handled differently from other kinds of content.

If your part editor supports embedding, it should allow the user to embed
any content that can’t be merged; it shouldn’t restrict the kinds that can be embedded.•

Remember that if your part editor supports data interchange, it must completely
support Undo, so that if data or formatting is lost in a transfer operation, the user
can undo and recover what was lost. Although most of today’s applications don’t alert

develop Issue 27 September 199650

the user when data or formatting is lost, users seem to recognize with ease when
they’ve experienced such a loss and need to choose Undo to recover. With the
multiple-level Undo support in OpenDoc, recovering from a loss of data or formatting
is much easier.

CHANGING THE PREFERRED KIND
Whenever the user changes the preferred kind of a part, your ChangeKind method
is called. This is usually done from the Part Info (or Document Info) dialog shown
earlier, but you shouldn’t assume that that will be the only user interface that can
cause this method to be called.

Your editor should do the following:

1. Externalize the part in the new preferred data format. Make sure that the
fidelity order of the values in your content property is maintained by
creating the values for the supported part kinds in the right order. You may
need to prep your storage unit again and recreate the values to ensure that
they’re in the proper fidelity order. It’s up to your part editor whether you
keep the previous preferred kind or not.

2. Write the new preferred kind into the preferred kind property of the part, as
shown in the following example using utility functions from StdTypIO and
TempObj:

#include <StdTypIO.h>
#include <TempObj.h>
...
// The following code belongs in your ChangeKind method; the kind
// that the user selected is passed in the changeKind parameter.
ODStorageUnit* su = self->GetStorageUnit(ev);
ODSetISOStrProp(ev, su, kODPropPreferredKind, kODISOStr, changeKind);

TRANSLATING OR CONVERTING A PART
The user can force translation of a part with the Part Info (or Document Info)
command in the Edit menu, which brings up a dialog like the one shown earlier in
Figure 3. The part kind pop-up menu in the dialog, in addition to listing part kinds
supported by the current editor, offers the possibility of choosing “Translate to” and
then choosing a part kind from the Translate To dialog. The part kind pop-up menu
shown in Figure 6 illustrates a number of different ways that picture data can be
stored on the Macintosh, including standard MIME types, standard Macintosh file
types, and standard Macintosh data types. Of course, most part editors won’t support
this many different kinds.

WORKING WITH OPENDOC PART KINDS 51

Figure 6. The part kind pop-up menu

There are also data interchange utilities, such as converters and grinders, that convert
parts or entire documents to different part kinds. This operation involves asking each
part in the original document to externalize itself in a set of standard part kinds. The
user may initiate this action by dropping a document on a converter or grinder icon
(like the one shown in Figure 7) on the desktop. Your ExternalizeKinds method is
called in response.

ExternalizeKinds is passed a list of kinds to externalize. Your part editor doesn’t need
to write other values it might ordinarily write in addition to the preferred kind. Your
editor should do the following in its ExternalizeKinds method:

1. Externalize the set of part kinds specified. Make sure that the fidelity order
of the values in your content property is maintained by creating the values
for these part kinds in the right order. You may need to prep your storage
unit again and recreate the values to ensure that they’re in the proper fidelity
order. Be sure to write out these kinds in addition to the preferred kind, not
instead of the preferred kind.

2. Ignore any part kinds in the set that you don’t support.

PARTING WORDS
By now you should have a good idea of all the ramifications of choosing the part
kinds to support with your part editor. We hope that by spelling out what the
tradeoffs are and suggesting how your part editor should respond to various user
actions related to part kinds, we’re helping to promote a consistent approach to
working with part kinds. This is bound to result in more portable parts and happier
users.

develop Issue 27 September 199652

Figure 7. A converter icon

Thanks to our technical reviewers Craig Carper,
Elizabeth Dykstra-Erickson, and Kurt Piersol.•

• OpenDoc Programmer’s Guide for the Mac OS by
Apple Computer, Inc. (Addison-Wesley, 1995). This
book is accompanied by the OpenDoc Class Reference
CD and includes the OpenDoc human interface
guidelines.

• OpenDoc Cookbook for the Mac OS by Apple
Computer, Inc. (Addison-Wesley, 1995).

• “The OpenDoc User Experience” by Dave Curbow
and Elizabeth Dykstra-Erickson, develop Issue 22.

• “Getting Started With OpenDoc Storage” by Vincent
Lo, develop Issue 24.

• Byte Guide to OpenDoc by Andrew MacBride and
Joshua Susser (Osborne McGraw-Hill, 1996),
http://www.splash.net/books/opendoc.

• The OpenDoc World Wide Web pages. Apple’s page
is at http://www.opendoc.apple.com, and the CI Labs
page is at http://www.cilabs.org/opendoc.html. These
include updated recipes, technical notes, and the like.

RELATED READING

You’ve helped create an Apple Guide guide for your standalone
application. Now your company is writing an OpenDoc part editor, but
it’s not obvious how Apple Guide can be used in the context of parts and
compound documents. The answer is Apple Guide 2.1, which extends
the original version to allow easy use of Apple Guide features, including
Help menu management, coachmarks, and context checks, in the world
of OpenDoc. This article introduces the new features of Apple Guide
2.1 and explains in detail how to use them with OpenDoc.

The world of OpenDoc isn’t like the world of the standalone “behemoth” application
— a fact that hasn’t escaped the notice of developers who want to provide online
help. An application developer can easily provide complete online help since the
application is a single self-contained unit that will run in its own window. On the
other hand, the developer of an OpenDoc part editor never knows what other part
editors will be running along with it during an OpenDoc session. Users can have any
number of part editors running in any number of windows at the same time. All the
editors might belong to a package written by one company, or, more likely, it might
be a conglomeration written by a number of different companies. Under these
circumstances, providing help gets a little more complicated.

Since Apple Guide is such a powerful help system, wouldn’t it be nice if it could be
applied to the new world of OpenDoc? Enter Apple Guide 2.1 (released right on the
heels of Cyberdog, Apple’s new integrated suite of OpenDoc part editors for the
Internet). The raison d’être of Apple Guide 2.1 is to support Apple Guide for OpenDoc,
with particular emphasis on Cyberdog. This version includes a number of new
features, some of which are specific to OpenDoc and some of which aren’t. Among
these new features are the following:

• a combined Full Access window (known as a Merged Access window) that
contains all the guide topic areas and index terms for OpenDoc part editors
currently running

• a similar ability to merge guides in conventional applications

• the ability to specify a list of applications for which a particular guide is
intended

• support for a whole new series of OpenDoc-related context checks

PETER COMMONS

Using Apple Guide 2.1 With OpenDoc

USING APPLE GUIDE 2.1 WITH OPENDOC 53

PETER COMMONS (commons@guideworks.com)
is the vice president of engineering at guideWorks,
LLC. He lives happily with his wife, Claire, their
dog, Chet, and their cats, “fat cat” Clyde and

“brat cat” Oliver, in Sunnyvale, California, and
wonders if he’ll ever finish writing updates to
Spaceward Ho!•

In this article, I’ll describe how Apple Guide behavior has changed in the world of
OpenDoc, and I’ll also tell you about some new features of Apple Guide 2.1 that you
can use in conventional applications. I’ll go over the simple steps you must take to add
a guide to an OpenDoc part editor, and then I’ll cover some of the things you could
do, depending on the kinds of help you want to provide for your part editor. You’ll
find samples of the resources mentioned in the article on this issue’s CD.

If you haven’t worked with Apple Guide before, you might want to read “Giving
Users Help With Apple Guide” in develop Issue 18 before tackling the new concepts
presented here. Apple Guide Complete is the definitive reference, though the current
(1995) edition doesn’t cover Apple Guide 2.1.

HOW APPLE GUIDE BUILDS THE HELP MENU
From the beginning, one of the strengths of Apple Guide has been that it enables
guide authors to create guides without requiring modification of the application
being guided. While most other new Toolbox managers were saying, “To support me,
just add a NewManagerIdle call in your main event loop,” Apple Guide said simply,
“I work just fine without any modifications to your application at all!” One of the key
elements enabling Apple Guide to work without requiring changes to any code is
Apple Guide’s automatic population of the Help menu.

The Help menu has also been called the Guide menu at certain times in its history,
but both names refer to the same menu (the one labeled with a question mark).•

The algorithm Apple Guide uses to determine how to populate the Help menu,
although simple on the surface, has a number of subtleties. With each new release,
the algorithm has been extended somewhat. To understand how the Help menu
is populated in Apple Guide 2.1, let’s look at how the population algorithm has
developed over time. You Apple Guide experts might even discover some little-known
features.

Table 1 presents a summary of how the different versions of Apple Guide populate
the Help menu; details follow.

develop Issue 27 September 199654

Table 1. How populating the Help menu has evolved

Apple Guide version Candidates Exclusions Placement in menu

Original Apple Guide Guide files in Based on <App Creator>, Based on type (About, Tutorial, Help,
application’s <Gestalt>, 'QLfy'. Shortcuts, Other). There can be only one
folder. guide file of each type except Other.

Apple Guide 2.0 Add guide files No changes. Guide files in application’s folder take
in Global Guide precedence over those in Global Guide
Files folder. Files folder.

Apple Guide 2.1 For OpenDoc shell Add an exclusion check Multiprocess guide files ('prts' for OpenDoc,
documents, change based on resources of type 'mlti' for others), if present, are accessed
application’s folder 'prts' (for OpenDoc) and through the “Process Name Guide” item in
to mean document’s 'apsg' (for applications). the Help type menu position. Guide files
folder. with the 'apsg' resource appear in the Help

menus of multiple applications.

Note: All candidates are determined when the Help menu is built. Exclusions are applied at the time the menu is built, except for the
'prts' resource test, which is applied when Apple Guide is launched.

“ORIGINAL” APPLE GUIDE
The general process of populating the Help menu hasn’t changed since Apple Guide
was first introduced. At application launch time, Apple Guide does the following:

1. creates a list of possible guide file candidates

2. excludes any candidates that don’t match required criteria

3. puts the names of all remaining guide files in their requested positions in the
Help menu

For the original version of Apple Guide (any version before Apple Guide 2.0), the list
of candidates is created by searching for all guide files that are in the same folder as
the application being launched and that aren’t Mixin guide files (see Apple Guide
Complete, page 2-14, for details about Mixin guide files). A guide file with an alias in
the application’s folder would also be added to the list of candidates.

Apple Guide then sees if any candidates should be excluded by subjecting them to
these tests:

1. If the guide file contains an <App Creator> command specifying a value that
doesn’t match the signature of the current application, it’s excluded (see
Apple Guide Complete, page 10-8).

2. If the guide file specifies one or more <Gestalt> checks and no <Gestalt>
selector returns its required value, the guide file is excluded (see Apple Guide
Complete, page 10-10).

3. If the guide file specifies exactly one <Gestalt> check whose selector is
'QLfy', Apple Guide looks in the guide file’s resource fork for a resource of
type 'QLfy' with a resource ID equal to the requiredValue parameter of the
<Gestalt> command. If it finds such a resource, it assumes it’s a 680x0 code
resource that takes no parameters and returns a short in register D0 (standard
C calling conventions). It calls the resource code and, if the result is 0, the
guide file is excluded (see develop Issue 18, page 19).

Apple Guide then tries to place the name of each remaining candidate in the position
it requested with the helpType parameter of the <Help Menu> command (see Apple
Guide Complete, page 10-14). Placement of the names of different types of guide files
is shown in Figure 1. If two or more final candidate guide files have the same type
and that type isn’t Other, Apple Guide includes the name of the first guide file of that
type (by alphabetical order) and excludes the others. The names of all guide files of
type Other appear in the Help menu.

USING APPLE GUIDE 2.1 WITH OPENDOC 55

About

Tutorial
Help

Shortcuts

Other

Figure 1. Placement of Help menu items by type in original Apple Guide

APPLE GUIDE 2.0
Apple Guide 2.0 (an update to System 7.5 but backward-compatible with System 7
and 7.1) added some logic to the Help menu population algorithm that hasn’t been
widely documented. The crux was adding a new place to look for candidate guide
files, called the Global Guide Files folder. The Global Guide Files folder resides in
the Extensions folder and, as its name suggests, is a place where you can put guide
files to make them available to all applications.

When Apple Guide 2.0 is creating its list of candidate guide files for an application, it
looks both in the folder containing the application and in the Global Guide Files
folder. When looking to exclude candidates, Apple Guide 2.0 works almost exactly
like the original Apple Guide — it excludes any guide files from its candidate list that
don’t pass the <App Creator>, <Gestalt>, and 'QLfy' tests.

The only difference is in how Apple Guide 2.0 selects an item for the Help menu if
there are multiple candidates. In the original Apple Guide, if two guide files passed all
the tests and were of the same type (aside from type Other), the one sorting first
alphabetically would be chosen for inclusion. In Apple Guide 2.0, if there are two or
more guide files of the same type, the first one alphabetically is still chosen for
inclusion, but any guide file in the application’s folder is chosen over any guide file in
the Global Guide Files folder. So, for example, if there are Tutorial guide files in the
application’s folder and also in the Global Guide Files folder, those in the Global
Guide Files folder will be ignored, and the one that’s first alphabetically in the
application’s folder will be chosen for inclusion. Names of guide files of type Other
are added from both the application folder and the Global Guide Files folder.

APPLE GUIDE 2.1
Apple Guide 2.1 adds two new mechanisms to the process of building the Help menu:

• the ability to define multiprocess guide files (with an 'mlti' or a 'prts' resource)
and to access these files as a group through a single menu item that presents
the user with a combined Full Access window (available in both OpenDoc
part editors and conventional applications)

• the ability to specify a list of application signatures that your guide supports
(with an 'apsg' resource), so that the name of your guide will appear in the
Help menu for each of those applications

We’ll look at these new mechanisms in more detail in the next section.

In addition, Apple Guide 2.1 supports document-specific help. Recall that when
creating a list of candidate guide files, Apple Guide 2.0 looks in the same folder as the
application and in the Global Guide Files folder. Apple Guide 2.1 behaves exactly the
same way for conventional applications, but for OpenDoc documents launched via
the OpenDoc shell application, Apple Guide 2.1 treats the document’s folder as the
“application’s folder,” so it looks in the same folder as the document for guide files,
rather than in the same folder as the OpenDoc shell application (besides searching
the Global Guide Files folder). As a result, the names of guide files in the same folder
as the OpenDoc shell application never appear in the Help menu; the names of guide
files in the same folder as an OpenDoc document can appear in the Help menu for
that document.

A CLOSER LOOK AT APPLE GUIDE 2.1
Apple Guide 2.1 introduces a new concept: the multiprocess guide file. A multiprocess
guide file is specified by including in the guide file an 'mlti' resource for conventional
applications or a 'prts' resource for OpenDoc part editors. Because these two are so

develop Issue 27 September 199656

similar, I’ll discuss them together. I’ll also tell you more about the new 'apsg' resource,
which when added to a guide file means that the guide file’s name will appear in the
Help menus of multiple applications.

USING MULTIPROCESS GUIDE FILES
Before multiprocess guide files, the name of every guide file that met Apple Guide’s
criteria for inclusion in the Help menu appeared as its own menu item. Multiprocess
guide files are different. All multiprocess guide files that are candidate guide files and
that aren’t excluded for any reason (other than that there’s more than one of them)
get grouped together with the Help guide file (if there is one). This group is accessed
through a single Help menu item labeled “Process Name Guide,” where Process Name
is the document name for OpenDoc and the application name for conventional
applications. This item is placed in the menu position that the name of the Help
guide file would otherwise occupy. Figure 2 shows a Help menu with a multiprocess
guide item for a Cyberdog document called Peter’s Notebook.

When users choose the multiprocess guide menu item from the Help menu in a
conventional application, they get a combined Full Access window, known as a
Merged Access window, with these features:

• Topic areas for each multiprocess guide and for the Help guide, listed under
the guide file’s name in the order specified in the guide’s topic area list (see
Figure 3).

USING APPLE GUIDE 2.1 WITH OPENDOC 57

Multiprocess guide�
menu item

Figure 2. A Help menu with a multiprocess guide item

Figure 3. Merged Access window with topic areas

• Index terms for each multiprocess guide, combined, alphabetized, and with
duplicates merged. When an index term is selected in the left pane, all topics
associated with the term are listed on the right for all guides (Figure 4).

• “Look For” search capability, which can search all multiprocess guide files
independently and return a list combining all the topics that match in each
guide file (Figure 5).

If a guide file has an 'mlti' or a 'prts' resource, Apple Guide 2.1 ignores the guide file
type specified by the <Help Menu> command. However, for backward compatibility,
you probably should declare your multiprocess guides as type Other using the <Help

develop Issue 27 September 199658

Figure 4. Merged Access window with index terms

Figure 5. Merged Access window with “Look For” search

Menu> command so that Apple Guide versions before 2.1 will list them individually
in the Help menu.

As I mentioned before, if there are both multiprocess guide files and a Help guide
file, the Help guide gets treated as if it were another multiprocess guide and gets
merged with them. If there’s only a Help guide file and no multiprocess guide files for
an application, the name of the Help guide file appears in its appointed slot in the
Help menu, just as in previous versions of Apple Guide. Note that if there are any
multiprocess guides, the Help guide, if supplied, must be a Full Access window guide
to be listed in the Merged Access window with the multiprocess guide files.

Multiprocess guide files aren’t mixins, as explained in “Mixin vs. Multiprocess Guide
Files.” For one thing, multiprocess guide files are treated independently by Apple
Guide and thus won’t have resource conflicts with other multiprocess guide files
(unlike mixins). Furthermore, all multiprocess guides must have topic areas and index
terms (that is, they must be Full Access window guides); if they don’t, as you might
expect, they won’t be accessible in the Merged Access window.

The 'prts' resource introduced in Apple Guide 2.1 is expressly for OpenDoc. If the
current process is an OpenDoc process (any process that supports OpenDoc part
embedding), guide files with a 'prts' resource (like those with an 'mlti' resource) are
grouped together in a Merged Access window when the user chooses the Document
Name Guide item from the Help menu.

But before Apple Guide adds multiprocess guide files for an OpenDoc process, it
performs one more exclusion check — and unlike all the other exclusion criteria, this
one is applied each time Apple Guide is launched and not when the Help menu is
built. Apple Guide compares the list of part editor names in the 'prts' resource with
the list of part editors currently in the active process and adds the guide file only if it
finds a match. Thus, even though the Global Guide Files folder will likely contain
multiprocess guide files for every OpenDoc part editor on the user’s machine, the
user will see help only for editors currently in the active process — sort of a “dynamic”
Merged Access window. If the 'prts' resource is empty — that is, if it lists no part
editor names — the guide will always be added to the Merged Access window if the
current process is an OpenDoc process.

USING APPLE GUIDE 2.1 WITH OPENDOC 59

You might be asking, “What about mixins? Aren’t they
kinda like multiprocess guide files? When would I use
mixins instead?”

Mixin guide files are used to add, delete, or replace
content in existing guide files. Multiprocess guide files
can’t do this. Mixins work best for small, incremental
changes, but they require good resource management.
They also require a main guide file to modify.

Multiprocess guide files in OpenDoc never know which
other guide files, if any, will be there when OpenDoc
is loaded, so you can’t use a mixin in place of a
multiprocess guide file — there may not be a main guide
file to modify. Also, you don’t know which other mixins
might be there, so resource conflicts could easily occur.

But you can use a mixin to modify your own multiprocess
guide if you do the following:

• Put the <Mixin> command as the first line in your mixin
source and be sure to reference your multiprocess
guide file’s .sym file to avoid resource conflicts.

• Add all the same exclusions as in your multiprocess
guide file. Add additional exclusions if your mixin
should activate only in special situations.

• Add an 'mlti' or a 'prts' resource to your mixin if your
main guide file has one.

• Make sure your Mixin and your multiprocess guide
files both use the <Mixin Match> command so that
your Mixin guide file mixes only into your multiprocess
guide file.

MIXIN VS. MULTIPROCESS GUIDE FILES

USING ONE GUIDE FOR SEVERAL APPLICATIONS
Recall that if you specify a creator code in a guide with the <App Creator> command,
the guide file will be removed from the candidate list unless the application’s creator
code matches. But what if you have a guide for a suite of applications and you want it
to appear in the Help menu for each of those applications?

Until now, the only way to do this was to have all the applications in the same
folder as the guide file or to have a copy of the guide file (or an alias to it) in each
application’s folder. With Apple Guide 2.1, you can get the desired result much
more cleanly and easily by adding to your guide file an 'apsg' resource listing the
application signatures that your guide supports. Then, with your guide file in the
Global Guide Files folder, the Help menu will be appropriately populated for every
listed application.

If you specify an 'apsg' resource and use an <App Creator> command, Apple Guide
2.1 uses only the resource. If there’s no resource, the <App Creator> specification is
used, if it exists. If you specify neither and you put your guide file in the Global Guide
Files folder, it will appear in the Help menu for every application (which might not be
what you want and could greatly annoy your users).

That brings us to the present in the evolution of Apple Guide. Now we’ll look at the
details of getting your guide file to work with OpenDoc. You’ll see how to make help
for an OpenDoc part editor accessible to users, and how to add coachmarks, context
checks, and events once your guide is up and running.

GETTING A PART EDITOR’S GUIDE INTO THE HELP MENU
Now that you know the history of Apple Guide and the Help menu, you’ve probably
got a pretty good idea of how to get your part editor’s guide to appear where you
want it. Let’s outline the preferred method to accomplish this:

1. Add a 'prts' resource to your guide file. Use the 'prts' resource to specify all
the OpenDoc part editors your guide should go with — that is, the editors
that when active should have your guide appear in the Merged Access
window. Normally, you’ll specify only a single part editor, but if you’re
writing a guide for a collection of related editors, you may list more. If you
want your guide to show up no matter which part editors are in the current
process, use an empty 'prts' resource (actually two bytes of zeros).

2. Make your guide an Other guide file and specify a creator code of 'odtm', the
signature of the OpenDoc shell. This ensures that your guide won’t appear
in conventional applications if it ever ends up on a machine with an older
version of Apple Guide.

3. Install your guide file in the Global Guide Files folder so that it’s available to
all OpenDoc processes, regardless of how OpenDoc was launched. As
mentioned earlier, since OpenDoc is document-centered rather than
application-centered, guide files become candidates if they’re in the Global
Guide Files folder or the same folder as the document the user double-clicks
to launch OpenDoc, so guide files in the OpenDoc shell application’s folder
won’t normally be considered.

Unless for some reason you want your guide to appear as a multiprocess guide in
conventional applications, you don’t need and shouldn’t add an 'mlti' resource.

Guide Maker doesn’t support the new resources yet, so they must be created by hand
where required. For the 'prts' resource needed by OpenDoc, I recommend creating a

develop Issue 27 September 199660

file named MyGuideOpenDocResource that you can then reference from your Guide
Script source file with the line

<Resource> "MyGuideOpenDocResource", ALL

A file on this issue’s CD includes samples of these resources and ResEdit templates.
For the details, in Rez format, see “New Apple Guide Resources.”

You can provide access to your guide in ways other than Apple Guide’s automatic
population of the Help menu if you don’t mind a little code modification — all of the
Apple Guide API calls still work just fine in OpenDoc, so you can add a Guide button
or a Help menu item to your part editor and then call AGOpen when the user clicks
or chooses that item. (See “Giving Users Help With Apple Guide” in develop Issue 18
for a detailed description of the Apple Guide API.)

Don’t modify the Help menu from within your part editor with the Toolbox calls
HMGetHelpMenuHandle and AppendMenu (although it’s perfectly acceptable to do
this from within an application — even an application that supports OpenDoc
embedding). The system, OpenDoc, and Apple Guide don’t support this kind of use
and many problems will occur.•

If all you need is a simple “book” guide for your part editor, with no coachmarks,
context checks, or Apple events, you don’t need to do anything else — carrying out
the three steps listed above is enough to make Apple Guide help for your part editor
accessible within OpenDoc. If you want to provide more elaborate help, read on.

GIVING MORE ELABORATE HELP IN OPENDOC
Once your guide is up and running and the user has selected a topic, Apple Guide 2.1
looks and acts just like previous versions of Apple Guide. The guide window appears
on top of the application, and users can click through the guide’s panels as they work

USING APPLE GUIDE 2.1 WITH OPENDOC 61

Apple Guide 2.1 introduces the 'mlti', 'prts', and 'apsg'
resources to support its new features. These resources
must be created by hand.

The 'mlti' resource, by its mere existence, means the file is
a multiprocess guide file. This resource is four bytes of
zeros.

type 'mlti' {
longint = 0;

};

The 'prts' resource is just like an 'STR#' resource — a short
specifying the number of part editor names, followed by
the names.

type 'prts' as 'STR#';

The 'apsg' resource is a long specifying the number of
application signatures, followed by those signatures.

type 'apsg' {
longint = $$Countof(SigArray);
array SigArray {

literal longint;
};

};

Here are some examples of using these Rez templates:

// Multiprocess guide file -- conventional app
resource 'mlti' (1000) {};
// Multiprocess guide for OpenDoc to be merged
// when 'Test Clock' is in the active process
resource 'prts' (1000) {{

"Test Clock"
}};
// Guide only these two applications
resource 'apsg' (1000) {{

'ttxt', 'MSWD'
}};

NEW APPLE GUIDE RESOURCES

in the application. But when the guide tries to communicate with the outside world,
some things become more complicated. Specifically, you may have to take additional
steps when you try to do any of the following:

• Use a coachmark on a part.

• Get context information (perform context checks) on a part editor.

• Send Apple events to a part editor.

The good news is that sending events to other applications such as Apple Guide or
the Finder, or getting system context information (such as how many monitors the
computer has) or anything else not specified above, works just the same, so I won’t
talk about those things. Before reviewing the specific changes required to use
coachmarks, perform context checks on part editors, and send your part editor Apple
events, I need to discuss the biggest difference in approach required to use Apple
Guide with OpenDoc: I call it the “target application” problem.

Apple Guide was written to be very System 7 friendly, so almost everything Apple
Guide does relies on Apple events. Most of the Apple Guide API calls (such as
AGInstallContextHandler) secretly use Apple events to get their work done.
Unfortunately, when Apple events were designed, OpenDoc wasn’t around. Apple
events rely on targeting specific processes (usually identified by application
signature). Apple Guide assumes that every application has a unique static signature
and that only one instance of the application will be running at a time. (If you launch
a second document for an application, the second document is opened in the same
process as the first one.) Neither of these assumptions holds for OpenDoc.

The process signature for an OpenDoc process is the application signature for the
root application. For documents launched with the OpenDoc shell, that signature is
'odtm'. For documents opened into other applications that support embedded parts
(as ClarisWorks will soon), the signature is that of the host application. So if, for
example, you target a coachmark at the 'odtm' process and your current OpenDoc
session is running in ClarisWorks, the coachmark won’t fire.

And there can be more than one process with the same signature running. If you
already have an OpenDoc document open and go to the Finder to launch a second
document, it launches as a separate process. So if both documents are launched using
the OpenDoc shell, there will be two processes with the 'odtm' signature running
concurrently. Then, for example, if you target a context check at the 'odtm' process,
you have no idea which of the two processes will handle the request.

Even if you somehow could manage to target the correct OpenDoc process, a single
OpenDoc process can have a number of part editors running inside it — possibly
multiple instances of the same part editor. How do you target a specific editor inside
a particular process?

Don’t abandon hope — all is not lost! But do keep this issue in mind as I describe the
steps you need to take to use some of the cooler Apple Guide features.

PROVIDING COACHMARKS
There are two things you need to do to use coachmarks in OpenDoc: always use the
Guide Script constant FRONT (I’ll give examples in a moment), and then use
context checks to ensure that your panel is displayed only when the user is in the
right process (that is, you need to ensure that the process you want to coachmark is
the front process). For the most part, you’ll find that coachmarks, except object
coaches (because of the target limitation), work just fine in OpenDoc.

develop Issue 27 September 199662

MENU COACHES
Menu coaches are used to highlight a particular menu and menu item. You can refer
to a menu name and item by number or name.

Menu coaches work fine in OpenDoc. The only recommendation I have (whether or
not you’re in OpenDoc) is always to specify menu titles and items by name and not
by number. This is especially important in OpenDoc, because individual OpenDoc
part editors can add menus and menu items at will (check out Cyberdog for a great
example of this). For example, to coach the Drafts item in the Document menu, use
something like this:

<Define Menu Coach> "DocumentDrafts", FRONT, REDUNDERLINE, "Document",
"Drafts…", RED, UNDERLINE

WINDOW COACHES
Window coaches mark static items in windows. They work in OpenDoc as in
applications. For example, you could coach the user to close the window called Log
with the following:

<Define Window Coach> "CloseBox", FRONT, REDCIRCLE, "Log", CLOSEBOX

But to have a window coach highlight a particular element of a part in a window is
usually impractical in OpenDoc, because the location of a part in a window isn’t
predetermined. A part could be all by itself in its own window or anywhere inside a
container window. An exception to this is when a part is viewed only in a situation
where the offset from the window edges is known. A good example of this is the
Cyberdog Web browser part, shown in Figure 6. The URL (Uniform Resource
Locator) field is always in the same place because the Web browser is always in its
own window, so in this case you could coach the URL field with the following
window coach:

<Define Window Coach> "WebURLField", FRONT, REDARROW(1,4), FRONT,
Rect(0,0,125,100)

ITEM COACHES
Item coaches are used in Apple Guide to coachmark items specified by dialog ID or
balloon ID.

USING APPLE GUIDE 2.1 WITH OPENDOC 63

Figure 6. The Cyberdog Web browser window

Dialog IDs work if your OpenDoc part editor brings up a standard dialog with
standard dialog items. Or you can use dialog IDs to coachmark items in the OpenDoc
shell dialogs. For example, to coach the Save Draft button in the Drafts dialog, you
could use the following item coach:

<Define Item Coach> "SaveDraftButton", FRONT, REDCIRCLE, DialogID(1)

You’ll find that because standard Balloon Help doesn’t work in OpenDoc except
under special circumstances, balloon IDs are probably too tricky to use. The reason
for this problem is conflicting assumptions in OpenDoc and Apple Guide about the
accessibility of resources. Apple Guide expects all the balloon resource information to
be available in the current resource chain. Logically, one would store balloon resources
for a part editor in its resource fork, but, due to the intricacies of OpenDoc, a part
editor’s resource fork isn’t available when Apple Guide needs it. Since Apple Guide
can’t get at the Balloon Help resources, it can’t look up a balloon ID’s rectangle, and
thus you can’t easily use balloon IDs to coachmark items in OpenDoc.

OBJECT COACHES
Object coaches rely on guide code inside a process to return the coaching rectangle.
The name of the desired object to be coached is passed to the specified target
application, which responds with the coaching rectangle.

Unfortunately, Apple Guide allows only one object coach handler per process. If two
part editors in one OpenDoc process both try to install object coach handlers, the
second one will override the first one (that is, any object coaches will be handled by
the second editor and never by the first). This means you can’t use object coaches
reliably with OpenDoc processes.

If you decide to use object coaches in your part editor because you know that
yours will be the only one installing an object coach handler, be sure to use the
OpenDoc API to do the installation.•

This obstacle to using object coaches in OpenDoc has been noted as a serious concern
by many people, including Apple Guide authors and those on the Apple Guide and
OpenDoc teams. Some possible solutions have been proposed. We can hope that
updated versions of Apple Guide and OpenDoc will support one of them in the near
future (although nothing has been promised yet).

APPLESCRIPT COACHES
AppleScript coaches don’t require a target application at all, so they don’t suffer directly
from the target application problem. To determine the target rectangle, though, the
script itself usually has to communicate with one or more OpenDoc part editors. You
can make part editors scriptable, but remember to use OpenDoc’s scripting API, not
the regular AppleScript calls.

PERFORMING CONTEXT CHECKS
There are three sources of context checks for guides written for OpenDoc:

• the standard suite of context checks (part of the Standard Includes package
on most Apple Guide CDs)

• a new suite of standard OpenDoc context checks (designed expressly for
OpenDoc)

• any custom context checks you write for your OpenDoc part editor only

develop Issue 27 September 199664

THE STANDARD SUITE OF CONTEXT CHECKS
The standard suite of context checks includes ways of testing basic elements of the
traditional Macintosh interface. Here are some examples of these context checks:

• Is a window with a given name the frontmost window?

• Does this Macintosh have more than one monitor?

• Is the Open item in the File menu enabled?

The context check definitions and the resources you must include in your guide to
use them are on any Apple Guide authoring CD (such as the CD that comes with
Apple Guide Complete, the Custom Solutions CD, or the Mac OS SDK CD).

These context checks work pretty well in OpenDoc processes. All of the system
information context checks work (bit depth, printer info, file sharing info, and so on),
because they all target the Finder for their information. The application information
context checks work (again, you’ll have to target these with FRONT), except for
menu item checks, since OpenDoc controls how the menus are stored and displayed.
At present, if you’re using the standard context checks in an OpenDoc process, you
can’t determine whether a menu item is enabled, is checked, or exists at all (though
you can write a custom context check to do this).

The process context checks do work, but they aren’t very helpful because they’re based
on target application signatures. For example, asking if the current active process is
'odtm' will tell you if the active process is the regular OpenDoc shell but won’t help
you determine whether it’s some other OpenDoc process (because the user could
have some other OpenDoc shell application). Nor will this confirm that the active
process is the desired process (since there could be several OpenDoc processes
running).

THE STANDARD OPENDOC CONTEXT CHECKS
To provide guide authors with tools to answer questions about OpenDoc processes, a
suite of OpenDoc context checks has been written. For these context checks to work,
the user must have an OpenDoc shell plug-in called AppleGuidePlugIn correctly
installed. This plug-in is installed automatically when Apple Guide 2.1 is installed. If the
plug-in isn’t installed, all OpenDoc standard context checks will always return FALSE.

Before we look at the available OpenDoc standard context checks, you should note
that for every one of these context checks that takes the name of a part editor as one
of its parameters, there are two variations: if the second SHORT parameter is 0, the
editor names must match exactly; if the second SHORT parameter is 1, the actual
editor name need only contain the text specified in the context check. Both variations
exist for all context checks that take a part editor name. All of these functions return a
Boolean result (TRUE or FALSE).

Is the Apple Guide plug-in available?

<Define Context Check> "IsPlugInAvailable", 'odag', FRONT, SHORT:1

This context check is a way to make sure that the plug-in has been installed correctly
and is available to run when the next OpenDoc process runs, thus ensuring that any
standard OpenDoc context check will return a correct result. The only catch is that
the plug-in isn’t actually installed until the first OpenDoc process has been launched,
so this check will return FALSE if no OpenDoc process has yet been run, even if the
plug-in is available. With this limitation in mind, you can define this context check,
which ties an Apple Guide context check name to one of the resources you included
above. Then you might use it this way:

USING APPLE GUIDE 2.1 WITH OPENDOC 65

<Define Sequence> "How do I do something?"
<If> IsPlugInAvailable()

instruction panels
<Else>

panel saying that this guide requires Apple Guide 2.1
<End If>
<End Sequence>

You probably won’t need to use this context check and will just assume that the Apple
Guide plug-in was installed correctly.

Is OpenDoc active and frontmost?

<DCC> "IsOpenDocActiveAndFrontmost", 'odag', FRONT, SHORT:2

Use this context check to see whether the active process is an OpenDoc process. It
isn’t application signature based and thus will return TRUE for any OpenDoc process,
no matter what the host application is.

Is the part editor named “MyPart 1.0” installed?

<DCC> "PartEditorInstalled", 'odag', FRONT, SHORT:4, SHORT:O, LPSTRING
<DCC> "PartEditorInstContains", 'odag', FRONT, SHORT:4, SHORT:1, LPSTRING

To determine whether a particular part editor is installed in the OpenDoc Editors
folder and is available, use this context check. It has nothing to do with whether an
instance of the part editor is currently in the active process. You might use a call like
PartEditorInstalled("MyPart 1.0") to make sure that a particular part editor has been
installed on the machine before you tell users to do something that depends on the
part editor’s being available. This is one of the functions that takes a part editor name
as its argument; you could use the less specific version of the function by calling
PartEditorInstContains("MyPart"), but take care — you might end up matching
someone else’s part editor if you’re too general!

Is the part editor named “MyPart 1.0” in the active process?

<DCC> "PartInActiveProcess", 'odag', FRONT, SHORT:6, SHORT:O, LPSTRING

This is a way to check whether an instance of the specified part editor is in the active
(frontmost) process. The corresponding part may or may not be in the active (frontmost)
window.

Is a “MyPart 1.0” part in the active window or in a nonactive window?

<DCC> "PartInActiveWindow", 'odag', FRONT, SHORT:7, SHORT:O, LPSTRING
<DCC> "PartInNonActiveWindow", 'odag', FRONT, SHORT:8, SHORT:O, LPSTRING

These two context checks enable you to see whether there’s an instance of the part
either in or not in the active (frontmost) window.

Is a “MyPart 1.0” part in the active document or in a nonactive document?

<DCC> "PartInActiveDoc", 'odag', FRONT, SHORT:14, SHORT:O, LPSTRING
<DCC> "PartInNonActiveDoc", 'odag', FRONT, SHORT:15, SHORT:O, LPSTRING

An OpenDoc process can contain multiple documents. A particular document in a
process might have more than one window. These two context checks enable you to
see if an instance of the specified part is in any of the active document’s windows or
any windows of a nonactive document. It’s unlikely you’ll need these checks — most
of the time you’ll want to check whether a part is in the active window or the active
process.

develop Issue 27 September 199666

Is a “MyPart 1.0” part the active part (the active frame)?

<DCC> "PartIsActiveFrame", 'odag', FRONT, SHORT:10, SHORT:O, LPSTRING

This is a way to check whether an instance of the specified part is the currently active
part. This is useful to know because a part editor’s menus are usually available only
when the part is active.

Is the active part the root part?

<DCC> "ActivePartIsRoot", 'odag', FRONT, SHORT:9

If you need to determine whether the active part is the root part for the active
document, use this check.

Does the active part allow embedding?

<DCC> "ActivePartAllowsEmbedding", 'odag', FRONT, SHORT:5

With this check you can determine whether the active part is a container part and
allows other parts to be embedded inside it. You might use this if, as part of a task,
you need to get the user to drag a new instance of a part into the active container part.

Is the active document bundled?

<DCC> "ActiveDocumentIsBundled", 'odag', FRONT, SHORT:3

This is a way to check whether the active document is bundled. Bundling a document
prevents any subparts in the document from being activated; clicking on a subpart in
a bundled document will select the subpart but won’t activate it. In essence, this
makes all subparts in the document read-only.

Is the active document dirty?

<DCC> "ActiveDocumentIsDirty", 'odag', FRONT, SHORT:11

This is a way to check whether the active document is dirty (needs to be saved). If this
context check returns TRUE, the Save menu item is enabled. You might use this to
tell the user to save changes if necessary.

CUSTOM CONTEXT CHECKS
If you still need more specific part information that isn’t available through the standard
suite of context checks or the OpenDoc standard context checks, just as with standard
applications you’ll need to write custom context checks.

To define and use a custom context check, you must work around two difficulties. The
first is the target application issue we’re now so familiar with. As before, it’s easy to
work around: when writing the <Define Context Check> command for your custom
context check, you’ll need to use the FRONT constant for the target application. The
second problem concerns the fact that you could have multiple instances of a part
editor running at the same time, in either the same or a different OpenDoc process.
This is a problem for both the guide author and the custom context check writer.

The primary concern is for the guide author: if there are multiple instances of the same
part editor in one or more currently running OpenDoc processes, it’s impossible for
your guide to identify which part editor you’re providing help for. Let’s look at an
example. Before step 1 of your task, you use the standard OpenDoc context checks to
make sure an instance of your part is active. You then tell the user to do step 1. Step 2
requires step 1 to have been completed, so you want to do a custom context check to
see if step 1 has been done. However, if there are two instances of your part around,
which instance the custom context check queries is unknown. Users may have

USING APPLE GUIDE 2.1 WITH OPENDOC 67

successfully completed step 1, but the context check may come back saying they
haven’t. In this case, they’ll be stuck at this point and won’t be able to continue.

The context check writer has similar concerns. The way a part editor would install and
remove a context check handler would probably be to call AGInstallContextHandler
in its constructor and AGRemoveContextHandler in its destructor. If it’s done this way,
anytime a new instance of the part is created it overrides (and removes) the previous
context handler, so the last instance of the part to be created is the one that will supply
context information, no matter which process it’s in. In addition, when a part editor calls
AGRemoveContextHandler, it will remove whichever handler is currently installed; if
one of two instances of the part is destroyed, the context handler will be removed,
leaving no context handler for the remaining instance.

Unfortunately, there’s no simple answer to these concerns at this time. There are
partial solutions for particular cases, though. For example, if you know that your part
editor will definitely have exactly one instance, you might just take your chances. If
you always want to have the context check respond about the currently active instance
of the part (if the active frame is the desired part), you can write an 'extm' context
check that you install in your guide that asks OpenDoc for the currently active frame,
and if the part behind that frame is your part, do some context checking on it. As
more people try to tackle custom context checking, better solutions will evolve,
perhaps using the ODExtension mechanism of OpenDoc.

APPLE EVENTS AND APPLESCRIPT
Sometimes you also want to send Apple events or launch AppleScript scripts from your
guide when a user clicks a particular button or goes to a particular panel. As I’ve said
before, this is still possible in OpenDoc part editor guides. The only thing that’s more
challenging is when you want to send an event to your part editor. OpenDoc supports
Apple event handling for part editors by overriding a number of the standard Apple
event Toolbox routines and by providing a way to target a particular part editor.
Explaining how to do this is beyond the scope of this article; for more information, read
the OpenDoc Programmer’s Guide, especially Chapter 9, “Semantic Events and Scripting.”

REACH OUT AND GUIDE SOMEONE
As you can see, Apple Guide 2.1 provides a number of new features, both for standard
guides and guides written for OpenDoc part editors. And despite a few limitations,
writing guides for part editors is as easy as writing them for standalone applications.
So try it out! Users and reviewers seem to agree: Apple Guide — and thus any
application or part editor that has guides — is in a class by itself.

develop Issue 27 September 199668

Thanks to our technical reviewers Sharon
Everson, Troy Gaul, Devon Hubbard, James
Miyake, John Powers, and Melissa Sleeter.•

• Apple Guide Complete: Designing and Developing
Onscreen Assistance by Apple Computer, Inc.
(Addison-Wesley, 1995).

• “Giving Users Help With Apple Guide” by John
Powers, develop Issue 18.

• OpenDoc Programmer’s Guide for the Mac OS by Apple
Computer, Inc. (Addison-Wesley, 1995). Available on
the OpenDoc Developer Release CD and other places.

• The guideWorks World Wide Web page, located at
http://www.guideworks.com.

RELATED READING

In the traditional application model, the code for an
application typically remains loaded until the process
quits. In OpenDoc, starting with version 1.0.1, a part
editor is loaded when it’s needed during a session and
unloaded when it’s not. As a result, valuable memory
space can be reclaimed and reused by other part editors.

Even though part editor unloading is mostly transparent
to part editors, there are a few things a part editor
should do to ensure the success of this scheme. I’ll
describe these things after giving you a closer look at
how part editor unloading works. Pay careful attention,
because the crash you prevent may be your own.

HOW PART EDITOR UNLOADING WORKS
The part editor unloading mechanism is enabled by
facilities provided by SOMobjects™ for Mac OS (the
Apple implementation for the Macintosh of the IBM
SOM™ technology). The basis of part editor unloading
is a reference-counting system that enables OpenDoc
to keep track of which part objects are in use. I’ll explain
reference counting and then give the gory details of
how part libraries are unloaded, which differs for static
and dynamic classes.

Every persistent object (part, frame, link, and so on) in
OpenDoc is given a reference count by the draft that
creates it. When the object is first created or acquired,
its reference count is initialized to 1. Whenever the
object is acquired after that (through either the draft’s
or the object’s Acquire method), its reference count is
incremented by 1. Whenever the object is released (by
a call to the object’s Release method), its reference
count is decremented by 1.

When all clients have released their references to an
object, the reference count of the object is 0, and at this

point the draft can delete the object to regain the
memory it occupies. However, deletion may not be
immediate when the object’s reference count drops to
0. In actuality, object deletion is deferred until the
purge mechanism of the draft is triggered. Typically, a
purge is initiated by the storage system (for example,
during a save operation) or by the document shell (such
as when the document shell realizes that memory is
running low).

In response to a purge request, the draft deletes all the
persistent objects and storage units that aren’t in use —
that is, objects whose reference count is 0. When all the
part objects belonging to a certain part editor are
deleted, SOM calls the Code Fragment Manager
(CFM) to unload the part editor library. The CFM
calls the CFMTerminate routine of the part editor
library, and both the code and data sections of the
library are destroyed. Some details of how the library
is unloaded depend on the kind of SOM class it
contains — either static or dynamic.

Objects created using new className and SOM kernel
services (somNewObject, somNewClassReference, and
SOMobject::somGetClass) are static class objects. Most
(if not all) objects created by a part editor fall into this
category. A static class is unloaded when the code that
created the static class object is unloaded. Therefore,
when a part editor is unloaded, all static classes in the
same library are unloaded as well. Other interdependent
libraries may also be unloaded; there will be more on
this later.

Objects created using the runtime name or ID class-
lookup services of SOM (for example, SOMClassMgr::
somFindClass, somNewObjectByName, or
somGetDynamicClassReference) are dynamic class
objects. OpenDoc parts are dynamic class objects, since
they’re created by name. Extension objects are also
dynamic because ODExtension is implemented as a
dynamic class; subclasses of ODExtension inherit its
dynamic property as long as they call the parent’s
InitExtension method. Other OpenDoc classes will be
converted to dynamic classes as the need arises; check
the notes accompanying future OpenDoc releases for a
listing of these.

A dynamic class guarantees that its code and the code
for its inherited classes won’t be unloaded until the last
object of the class is deleted. When the last instance of
a part class is deleted, SOM unloads the CFM library
containing the part class.

THE OPENDOC
ROAD

Facilitating
Part Editor
Unloading

VINCENT LO

THE OPENDOC ROAD: FACILITATING PART EDITOR UNLOADING 69

VINCENT LO is Apple’s technical lead for OpenDoc. In his leisure
time, he loves to travel and sample exotic food. Living in Hong

Kong for many years convinced him that no food can scare him,
but he’ll continue to trot the globe to seek out gustatory challenges.•

REFERENCE-COUNTING GOTCHAS
Every persistent object must have a correct reference
count for the part editor unloading mechanism to
work. If a part object has a reference count that’s higher
than the correct count, the object will remain valid
throughout the session even though it’s no longer being
used. This object will keep its associated part editor
library from being unloaded until the process quits.
Conversely, if an object has a reference count that errs
on the low side, the object may be deleted, causing its
library to be unloaded. Referencing an invalid object
pointer usually results in a crash.

The best way to avoid reference-count errors is to
familiarize yourself with OpenDoc persistent objects
and follow the recipes outlined in the OpenDoc
Programmer’s Guide for the Mac OS. Be sure to pay
special attention to the following potential trouble
spots.

Avoid self-referencing. If a part object keeps a
reference to itself, its reference count will be at least 1
and its part editor library won’t be unloaded until the
session ends. Since a reference to the part is passed in
as an argument in every ODPart method, a part
shouldn’t need to store a reference to itself.

Break circular references between parts and
frames. Each display frame has a reference to its part
(after the part has been internalized). Even though a
part isn’t required to keep a reference to its display
frames, most parts do so for convenience. This creates
a circular reference between a part and its display
frames, so the reference count alone won’t indicate when
deleting a part is appropriate. The situation becomes
more complicated when the part has embedded frames
and also keeps references to them.

To break these circular references, OpenDoc offers the
Close and Remove protocols.

• The Close protocol is triggered when a containing
part decides to get rid of its runtime-embedded
frame objects. The containing part calls the
embedded frame’s Close method. The frame first
calls its part’s DisplayFrameClosed method, which
should release its reference to the display frame and
close its embedded frames (if any) before releasing
its reference to the part.

• The Remove protocol works similarly to the Close
protocol. However, the protocol is triggered when a
containing part decides to remove its embedded
frames from both runtime storage and persistent
storage. The Remove protocol is propagated
through the ODPart::DisplayFrameRemoved and
ODFrame::Remove methods.

Unregister frames and parts when idle time is no
longer needed. When a part registers its frame with
the OpenDoc dispatcher for idle time, the dispatcher
retains a reference to the frame. Until the part editor
unregisters the frame object from the dispatcher, the
object will remain resident in memory with a reference
count greater than 0. This will prevent the object from
being deleted and its library from being unloaded. The
part editor should unregister the frame when the
Remove or Close protocol is triggered.

On rare occasions, a part may have a display frame
that’s not in the frame hierarchy originated from the
root frame. For example, a part may have some frames
stored for the View in Window command. Don’t
internalize those frames and register them for idle time
until the frames are actually used.

A part may also register itself with the OpenDoc
dispatcher for idle time. As in the case of registered
frames, the dispatcher retains a reference to the part
object. To ensure that the object is deleted and that its
library is unloaded at the earliest possible time, the part
editor must unregister itself from the dispatcher as
soon as idle time is no longer needed. This usually
occurs when all the part’s display frames have been
closed or removed.

Watch extensions for reference-counting problems.
OpenDoc’s extension mechanism enables separate parts
in a document to communicate with each other directly.
By creating an associated extension object, a part editor
can extend its part interface to satisfy special needs. To
enable efficient communication, the extension object
maintains a reference to the part object that created it;
the part typically keeps a reference to the extension so
that it can give out the same extension object again if
it’s requested.

In general, an extension object is released before its
creator, thus preventing any reference-counting
problem for the part. But if the reference count of the
extension object isn’t maintained correctly, or if the
client of the extension object refuses to release it, the
part object can detach the extension object from itself
by calling ODExtension::BaseRemoved. A well-behaved
extension object should then report errors to clients
when it’s being accessed. An even better idea is to avoid
using the base removal mechanism and instead to
define the scope and lifespan of an extension.

A LIBRARY-UNLOADING GOTCHA
When a part editor is unloaded, SOM unloads the
CFM library associated with the part editor. Moreover,
if there’s another library in the same library closure as
the part editor, the CFM will unload it if it doesn’t

develop Issue 27 September 199670

Designed for content developers and the creative community,
the Apple Media Program is your online information
source for technology, tools, and resources.

Get up-to-date industry trends on video, film,
music, broadcasting, Internet publishing,
print media, and game development markets.

For an application form, visit the “Get with the Program” area at http://www.amp.apple.com or call 408.974.4897.

belong to another library closure. (A library closure is a
group of shared libraries whose interdependencies
cause them to be loaded together by the CFM.) This
means that code other than the part editor residing in
the same CFM library closure is unloaded as well. If
the developer hasn’t foreseen this possibility, it can lead
to unfortunate consequences.

Let’s consider a typical example. A part editor creates a
SOM object from a static class that resides in the same
library closure as the part editor. The part editor then
installs the object in a name space so that others can
access it. If this object doesn’t hold a reference to the
part, the part may be deleted (and its library closure
unloaded) when the object reference is still in the name
space. The next time this object is used, a crash will
likely occur because the code associated with the object
has been unloaded with the part editor.

To prevent this from happening, you should ensure that
no class whose code resides in the same library closure
as the part editor outlives the part itself. If an object
must outlive the part that creates it, the object should

be created dynamically. OpenDoc provides a utility
function, ODNewObject, to create objects by name.
The code in Listing 1 illustrates how a dynamic object
is created with ODNewObject.

As mentioned earlier, parts and extensions are dynamic
objects and thus don’t require ODNewObject.
ODNewObject is used mainly on SOM classes that a
part developer has created.

Once a class has been accessed dynamically, the class
remains dynamic until the process exits or the use
count of the class maintained by SOM goes to 0. Until
then, all object references created for the class are
considered dynamic by SOM.

COUNTING ON YOU
Part editor unloading in OpenDoc is a great scheme
for managing memory efficiently. But its success
depends on the cooperation of each and every part
editor. If you keep in mind the gotchas detailed in this
column, your part editor will avoid the pitfalls and reap
the benefits of wise resource use.

THE OPENDOC ROAD: FACILITATING PART EDITOR UNLOADING 71

Thanks to Dave Bice, Erik Eidt, and Troy Gaul for reviewing this
column.•

Listing 1. Creating a dynamic object with ODNewObject

#include "ODNewObj.h"

ODObjectNameSpace* objNameSpace = (ODObjectNameSpace*) nameSpMgr->CreateNameSpace(ev,
kOSAScriptingTool, kODNULL, 1, kODNSDataTypeODObject);

Sample_ScriptRunnerAgent* agent = (Sample_ScriptRunnerAgent*)
ODNewObject("Sample::ScriptRunnerAgent");

objNameSpace->Register(ev, kOSAScriptingTool, agent);

www.amp.apple.com

Apple
MediaProgram

Assistants are a key part of the Mac OS 8 help system. An assistant
makes an application’s features easier to use and more readily accessible.
In anticipation of Mac OS 8, this article will show you how to build
Mac OS 8–style assistants into your System 7 applications, from design
to implementation. We illustrate this with a sample assistant developed
for the Internet Configuration System.

Developers are constantly pursuing two goals that seem to be at cross-purposes:
making applications more powerful and making them easier to use. All too often,
power brings complexity, when in fact power can be used to simplify things for the
user. Assistants can make the powerful features you’re building into your applications
easier to access and handle.

An assistant offers the user an alternate interface. It focuses on a specific activity that
the average user is likely to want to do and frames the application’s functionality to
support that activity. The defining aspect of an assistant is the interview, in which the
user is asked to supply information about preferences and typical activities
accomplished with the application.

Although assistants can be implemented under System 7, they’ll be able to do more
using Mac OS 8 technologies. In this article, we talk about what Mac OS 8 assistants
are and give some general guidelines for designing an interview. We also provide an
example of how to implement an interview in System 7. Our sample assistant helps
users with the Internet Configuration System (Internet Config), a utility for setting
preferences for Internet applications. Internet Config is described in detail in the
article “Implementing Shared Internet Preferences With Internet Config” in develop
Issue 23. The source code for the Internet Setup Assistant is included on this issue’s CD.

The final name for assistants, which have also been called experts, has not
been decided at the time of this writing. Whichever the final name, the interview-
based interaction that forms the basis of assistants will be an integral part of the
Mac OS 8 help system.•

JOSÉ ARCELLANA AND
ARNO GOURDOL

Mac OS 8 Assistants in System 7 Applications

develop Issue 27 September 199672

JOSÉ ARCELLANA (arcellan@apple.com) is a
human interface designer working on Mac OS 8
assistants, Apple Guide, and related technologies.
He lives a rich analog life with his wife, their four-
year-old child, and a yellow Labrador retriever in
an 86-year-old Craftsman bungalow in Oakland.
The house has lots of books, four guitars, and
no television.•

ARNO GOURDOL (arno@apple.com) has been
spotted on top of various San Francisco Bay Area
chthonic protrusions with a merry group of Moof
hikers in a futile attempt to cure his acrophobia.
He has recently been engrossed by the Epic of
Gilgamesh and would love to find someone with
a good copy of the twelve tablets. In his spare
time, Arno is the technical lead of the Mac OS 8
assistance and related technologies team.•

INTRODUCING ASSISTANTS
An assistant is a small single-purpose application that can do any or all of the
following:

• frame computer-based tasks in terms of real-world activity

• hide details from the user by filtering out options that aren’t applicable

• pull together elements from different parts of the user interface to support a
single activity

• manage tasks so that they’re executed on demand or when a specific
condition becomes true

• help the user provide the information needed by conducting interviews

• make reasonable assumptions, based on user context and user activity, that
work for the vast majority of users

For example, a resumé-formatting assistant would ask the user how formal or casual
the resumé should be. It would then make assumptions, hiding such details as
typeface selection and paragraph formatting. An assistant for maintaining a computer
would use task scheduling to check for viruses when it makes sense, optimize the hard
disk when it needs to, and so on.

At first glance, assistants might seem to resemble Microsoft’s wizards. Currently,
however, there are differences between them. Wizards don’t make reasonable
assumptions based on user context and user activity. Instead of filtering out options
that aren’t applicable, they present all options. While assistants provide an alternate
interface to an application or set of applications, wizards might be the only user
interface to a task, and they aren’t capable of pulling together elements from other
places in the interface. Wizards also can’t schedule tasks for later execution.

WHEN TO USE ASSISTANTS
Assistants are meant to augment and not replace the more direct ways to control your
application. They shouldn’t be used to cover up a flawed user interface design, such as
dialog boxes or commands that are too difficult to figure out. Users should always be
able to do directly in the program’s primary interface whatever an assistant does for
them indirectly, though it might take more steps to accomplish the task in the
primary interface.

How do you determine when a specific area of the user interface needs a redesign and
when it could use an assistant? In general, an assistant is most effective when it
supports an activity that many users want to perform with your application but that
can only be accomplished if the user has a better-than-average familiarity with your
application’s feature set and user interface. For example, we developed an assistant for
Internet Config because it takes several steps in different places of the interface to set
up your Internet preferences for the first time.

THE INTERVIEW
An assistant conducts a brief interview, consisting of a series of simple questions, to
get the information it needs from the user. The interview should be:

• Short. Ask as few questions as possible. To minimize the number of questions,
the assistant should make as many reasonable assumptions as possible.

• Simple. Make the questions easy to answer. If a difficult question needs to be
asked, the interview should provide information that helps the user answer
the question.

MAC OS 8 ASSISTANTS IN SYSTEM 7 APPLICATIONS 73

• Concise. No words should be wasted, even when providing information to
help the user answer a question.

• Neutral. The tone should be conversational and friendly, not too familiar or
too cold.

Note that an interview isn’t a dialog box, nor is it a dialog box taken apart and presented
in a series of smaller dialog boxes. Adding “Assistant” to the name of a command that
calls up a dialog box doesn’t make the dialog box an interview or the command an
assistant. Finally, the interview isn’t a way to give the computer a personality.

THE INTERVIEW WINDOW
The assistant interview takes place in a fixed-size, movable window. Whether it’s a
regular (document) window, a modal window, or a floating window depends on the
context from which you anticipate it being invoked. Assistants should be accessible from
appropriate places in your user interface, such as through a menu item or a button in
a dialog box. They should be accessible by name (so that the name of the menu item or
button is the name of the assistant) or, if the context is clear, by the words “Assist Me.”

The interview window contains header, content, and navigation areas, as you can see
in Figure 1.

• If the interview window is a document window, the assistant’s name appears
in the title bar and the header area displays the interview phase that the user
is in. If it’s not a document window, the header area displays the assistant’s
name followed by a colon and the interview phase.

• The content area contains text (usually a question and a brief explanation)
and editable text fields and other controls that are used to answer questions
and enter information.

• The navigation area contains buttons that help the user move through the
interview, such as left and right arrow buttons, which lead to the previous or
next panel, and a Go Back button that takes the user back to the context from
which the assistant was opened. A number between the left and right arrow
buttons indicates how many panels the user has been through (see Figure 1).

DESIGNING AN ASSISTANT FOR INTERNET CONFIG
To demonstrate how to add an assistant to your application, the rest of this article
describes how we designed and implemented an assistant for Internet Config, a
popular shareware utility program.

With Internet Config, the user can create a single file that stores preferences and
settings for all Internet services. As long as an e-mail program, Web browser, or other
Internet application uses the Internet Config preferences file, the user doesn’t have to
reenter Internet preferences for each program.

Internet Config’s central location for user interaction is the window shown in Figure
2. Clicking each button in the main window brings up a window in which the user
enters information and sets preferences.

Internet Config enables users to store a broad range of preferences, from e-mail
addresses to file conversion formats. Most users never need to set many of these
preferences, but the dedicated Internet habitué probably finds them all useful. Internet
Config risks being overwhelming for the sake of completeness — a perfect opportunity
for an assistant. Our assistant makes Internet Config easier to use by helping the user
create a preferences file that stores only the preferences that are most commonly set.

develop Issue 27 September 199674

DECIDING WHAT THE ASSISTANT WILL DO
In designing an assistant, you need to determine what most of your users will want to
do. In the case of Internet Config, recent market studies show that most people use
the Internet for e-mail, browsing, and downloading files. Given that information, the
Internet Config assistant’s functionality should be limited to setting preferences in
those areas. The power-surfer minority that wants, for example, to change the default
text editor can still do so directly through Internet Config’s interface.

Assistants should be made available from wherever they make sense. For the Internet
Setup Assistant, it would be helpful to add an Assist Me button to the main Internet
Config window and an Internet Setup Assistant command to the Help menu.
Application programs that use Internet Config could have a similar button in logical
places in their user interfaces. In addition, the Internet Setup Assistant could be
automatically displayed the first time the user launches Internet Config.

THE INTERNET CONFIG INTERVIEW
Our interview will elicit the information we need in order to store a simplified set
of preferences for the user. As shown in Figure 3, the interview begins with an
introduction that tells the user in plain language the type of questions that will be
asked and describes what the assistant will do (or not do) based on the user’s answers.

MAC OS 8 ASSISTANTS IN SYSTEM 7 APPLICATIONS 75

Header�
area

Content�
area

Navigation�
area

Figure 1. A typical assistant interview window

Figure 2. Internet Config’s main window

The next panel, titled “Personal Information,” was shown earlier in Figure 1. This
panel poses two questions that are easy to answer: it asks for the user’s name (filling in
a default supplied by the file sharing setup) and company or organization. This starts
the interview off smoothly while still obtaining necessary information.

The remaining interview panels that ask questions are listed below (in the order they
appear) and are shown in Figure 4. Note that for a few of the questions, the assistant
provides some information because the questions might be too difficult for some
users to answer. The goal is to keep the interview self-contained, so that the user
doesn’t need to go to Apple Guide or a manual to figure out what to do.

• Geographic Location — This panel asks a question that doesn’t directly
relate to what the assistant does for the user. Many users might be confused
if asked to select an FTP server; instead, the interview asks for the user’s
location and then the assistant uses the answer to make a reasonable guess as
to what the user’s default FTP servers are.

• E-mail Address and Password — The password appears as bullets when
typed and is encrypted.

• E-mail Account and Host Computer

• Signature — This panel asks for a “signature” to be appended to the user’s
e-mail messages. A line of hyphens is supplied as the default.

• World Wide Web Home Page — In Internet Config, setting the Web home
page preference takes place in the Other Services window, listed among less
commonly used preferences such as the WAIS gateway and the Whois host.
Many users might be stumped by these options and not find what they’re
looking for. Since we’ve determined that most users are interested in setting
their Web site, the interview covers setting this preference. The default Web
site entered is taken from the Web browser program.

• Newsgroup Host Computer

develop Issue 27 September 199676

Figure 3. The Internet Setup Assistant introduction

MAC OS 8 ASSISTANTS IN SYSTEM 7 APPLICATIONS 77

Geographic Location

Signature

E-mail Address and Password

World Wide Web Home Page

E-mail Account and Host Computer

Newsgroup Host Computer

Figure 4. Internet Setup Assistant interview questions

When a user types an answer that’s clearly wrong (such as an e-mail address that doesn’t
include the @ character), we recommend that you integrate the error trapping into
the flow of the interview questions, rather than presenting an alert box. For example,
when the user clicks the right arrow button and there are invalid values in the current
panel, the next panel should point out the error and restate the question. The goal is
to preserve the question-and-answer, conversational characteristics of the interview.

Finally, when the assistant has asked all the questions, it presents the conclusion panel
(Figure 5). The user can see more details by clicking the Show Details button (which
then changes to Hide Details); the assistant shows the information it will use in
creating the Internet preferences file (name, organization, e-mail address, and so on),
summarizing the user’s interview responses.

That’s it: ten questions in seven panels, plus an introduction and a conclusion.

IMPLEMENTING THE INTERVIEW
You can use your favorite application framework to develop an assistant, or write it
from scratch as a small application. On this issue’s CD, we provide sample code for
developing an assistant. We don’t recommend using Apple Guide to conduct the
interviews. Assistants and Apple Guide are different components of the help system;
they should look related but still different from each other. Also, Apple Guide is a
less-than-efficient tool for implementing assistant interviews.

The programming techniques used in this example are specific to System 7 but will
continue to work under Mac OS 8. As long as you avoid using undocumented features
or directly accessing data structures that have an accessor routine, your code should
work fine under Mac OS 8. In addition, if you insulate your code from specifics of the
Macintosh Toolbox, it will be easier to add Mac OS 8 features later on. For some
details about Mac OS 8 compatibility, see the article “Planning for Mac OS 8
Compatibility” in develop Issue 26.

develop Issue 27 September 199678

Figure 5. The Internet Setup Assistant conclusion

Our assistant is based on a simple framework that provides a lightweight object-
oriented coating on top of the Macinosh Toolbox. For example, we have classes that
provide an object-oriented layer on top of Point (CPoint), Rect (CRect), WindowPtr
(CWindow), DialogPtr (CDialog), and so on. We also have a simple application shell,
TApplication. Those files are grouped in the framework folder.

The classes aren’t dependent on each other, so you can use them easily in your
existing application. You can create an assistant dialog by using an object of a
TAssistant subclass and sending it the appropriate events. Your usual framework
can still be used for handling your event loop and your application’s windows. To
implement the appearance of assistants using your own framework, check out the
TAssistant class to see how we’ve done it.

The interview is presented in a dialog by a TAssistant object. The class TAssistant is a
subclass of CMultiDialog, which allows you to have subdialogs that can be switched
in and out as needed. You could use a similar technique to switch among multiple
panels in a preferences dialog. Our implementation uses the ShortenDITL and
AppendDITL routines, as shown in Listing 1. For another way to change panels, see
the article “Multipane Dialogs” in develop Issue 23.

MAC OS 8 ASSISTANTS IN SYSTEM 7 APPLICATIONS 79

Listing 1. Changing panels in the assistant’s interview

void CMultiDialog::SetSubDialog(SInt16 subDialogID)
{

if (GetWindowRef() == NULL)
CreateWindow();

if (GetSubDialog() != subDialogID) {
// Save parameters in current panel.
for (int i = 0; i < kDialogParametersCount; i++) {

if (fParameters[i].dialogItem != 0)
GetItemText(fParameters[i].dialogItem, fParameters[i].value);

}

// Remove items from current dialog.
if (fSubDialogID > 0)

ShortenDITL(GetDialogRef(),
CountDITL(GetDialogRef()) - fCommonItems);

fSubDialogID = subDialogID;

{
// Add new dialog items to the dialog.
Handle items = GetResource('DITL', GetSubDialog());
assert(items != NULL);
AppendDITL(GetDialogRef(), items, overlayDITL);
ReleaseResource(items);

}

// Prepare the items in the dialog.
DoPrepareDialog();

}
}

When dialogs are displayed in assistants, you often need to capture the information
the user enters so that you can put it back if the user goes back to that panel. You
need to be able to do this until the user clicks the Go Ahead button in the last panel.
To simplify this task, we substitute a key string, which is stored in the DITL of the
dialog, for a string that can change dynamically. The substitution is done each time
the dialog is displayed. Listing 2 shows how to substitute parameters in the dialog by
replacing any instance of a key that appears in a static or editable text dialog item
with a corresponding value. In addition, if an editable text item contains only a key,
the value entered in the dialog will be associated with the key. This is an extended
version of the ^0 parameter substitution done by the Dialog Manager.

develop Issue 27 September 199680

Listing 2. Substituting parameter values in dialogs

void CDialog::SubstituteParameters(void)
{

LazyHandle substitutionText, itemText;

// Reset the association between parameters and dialog items.
for (int i = 0; i < kDialogParametersCount; i++)

fParameters[i].dialogItem = 0;

// Loop through all dialog items.
for (int item = 1, itemCount = CountDITL(GetDialogRef()); item <= itemCount; item++) {

SInt16 itemType = GetItemType(item);

// If it's a static or editable text item...
if (itemType == kEditTextDialogItem || itemType == kStaticTextDialogItem) {

Boolean itemTextChanged = false;

// Copy the text to a handle.
Str255 itemTextString;
GetItemText(item, itemTextString);
itemText.Set(&itemTextString[1], itemTextString[0]);

// Loop through the parameters.
for (int j = 0; j < kDialogParametersCount; j++) {

// If the parameter is used as a nonempty key...
if (fParameters[j].key[0] != 0) {

if (itemType == kEditTextDialogItem &&
::IdenticalString(itemTextString, fParameters[j].key, NULL) == 0) {

// If the edit field contains only the key, associate the item index with the
// parameter. The parameter value is updated when the text changes.
fParameters[j].dialogItem = item;

}
{

// Replace the key with the parameter value, using the Script Manager.
substitutionText.Set(&fParameters[j].value[1], fParameters[j].value[0]);
if (::ReplaceText(itemText, substitutionText, fParameters[j].key) > 0)

itemTextChanged = true;
}

}
}

(continued on next page)

When the assistant starts up, we try to capture as much information as possible about
the user’s environment. For example, we use Internet Config information that the
user has previously entered.

When the user has entered all the information we ask for and clicked the Go Ahead
button, we again use Internet Config, this time to set the user’s preferences. The
CInternetConfig class provides a C++ wrapper to the Internet Config API. See the
details in the source code.

THE POWER OF ASSISTANCE
As you can see, the Internet Setup Assistant doesn’t try to do everything for all users.
Instead, it helps complete tasks in a way that a majority of users will find useful and
valuable.

This sample assistant, though a relatively unambitious demonstration, should start
you thinking about how to design and develop assistants for your own applications.
Nothing is quite as powerful as simplicity.

MAC OS 8 ASSISTANTS IN SYSTEM 7 APPLICATIONS 81

if (itemTextChanged) {
// The item text has changed. Put the modified text back in the dialog item.
Str255 s;
s[0] = itemText.GetSize();
BlockMoveData(*itemText, &s[1], s[0]);
SetItemText(item, s);

}
}

}
}

Listing 2. Substituting parameter values in dialogs (continued)

RELATED READING
• “Implementing Shared Internet Preferences With Internet Config” by Quinn “The

Eskimo!”, develop Issue 23.

• “Multipane Dialogs” by Norman Franke, develop Issue 23.

• “Planning for Mac OS 8 Compatibility” by Steve Falkenburg, develop Issue 26.

• Mac OS 8 Revealed by Tony Francis (Addison-Wesley, 1996), Chapter 13,
“Assistance Services.”

Thanks to our technical reviewers Deeje Cooley,
Winston Hendrickson, Rick Mann, Jim Palmer,
and Jim Rodden.•

Once again I found myself bleary eyed and fighting
sleep, yet I continued to search for understanding.
Having already struck down two possible causes for my
enigma, I was now searching for new clues. I stubbornly
refused to rest until I had flushed out the software defect.

My journey had begun modestly enough as I chanced
upon a capricious crash in my software. I wondered
which assumption or logic was at fault. Armed with
only my low-level debugger, I began a hunt that would
consume me into the dead of night. On this adventure
through the dark Mac OS interior, I crossed rivers of
mode switches, hopped islands of cross-TOC glue, and
set snares in a jungle of native PowerPC code.

In this column I’ll walk you through one facet of that
relentless pursuit, pointing out the key landmarks I
used to navigate and demonstrating the tools I used to
survive. This should help guide you through your own
future explorations of the innards of PowerPC code.

ON THE HUNT
Programming for a Power Macintosh may appear
similar to your efforts on a 680x0-based Macintosh, but
on close inspection you’ll find PowerPC code far more
interesting to debug. The relatively simple landscape of
a 680x0 world gives way to confusing and insidious
terrain on a Power Macintosh. Routine descriptors,
dual assembly languages, and native glue are obstacles
that impede your progress.

My subject was a crash that occurred when PowerPC
applications called MaxApplZone. I was certain the
problem was in my recent system software changes, but
I needed to see what happened right before the crash to

understand it. I started by setting a breakpoint when an
application called MaxApplZone. (Later I’ll describe a
good technique for setting these breakpoints.) Then
I traced through the system routine and looked for
anything startling.

One application executed the following code just before
calling MaxApplZone:

0093B260 mflr r0
0093B264 stw r31,-0x0004(SP)
0093B268 stw r30,-0x0008(SP)
0093B26C stw r29,-0x000C(SP)
0093B270 stw r0,0x0008(SP)
0093B274 stwu SP,-0x0050(SP)
0093B278 lwz r30,-0x3940(RTOC)
0093B27C bl MaxApplZone

The preamble to MaxApplZone saves registers R29 to
R31 on the stack, creates a stack frame, and loads a local
variable into R30 from the application’s TOC globals
before calling the routine. If we trace through this and
then step into the bl (branch and link) instruction to
MaxApplZone, we find the following:

0094CBFC lwz r12,-0x7E60(RTOC)
0094CC00 stw RTOC,0x0014(SP)
0094CC04 lwz r0,0x0000(r12)
0094CC08 lwz RTOC,0x0004(r12)
0094CC0C mtctr r0
0094CC10 bctr

This code is standard cross-TOC glue. The caller of a
routine has the responsibility to set the TOC register
(RTOC) correctly for it. Routines imported from other
code fragments will have a different TOC value than the
application. The PowerPC Code Fragment Manager
supplies the correct TOC value and the address of the
imported routine in a pair of long words called a
transition vector, or TVector. In this case, the TVector is
stored as global data at the application’s TOC value
minus $7E60 bytes. This glue code loads the TVector’s
address in R12 and then uses that to load the address of
the routine in R0 and the new TOC value. It uses the
counter register and the bctr (branch to counter register)
instruction to jump to the correct address, so the return
address in the link register will not be changed.

After tracing through this glue code, we find ourselves
in a different kind of glue. The MaxApplZone TVector
points to a routine in the InterfaceLib code fragment,

BALANCE OF
POWER

Stalking the
Wild Defect

DAVE EVANS

develop Issue 27 September 199682

DAVE EVANS and fellow Apple engineer Rus Maxham took
another adventure by motorcycle this summer. This time they
journeyed to Utah and skirted the Great Salt Lake. Turning north,
they discovered the beautiful and unspoiled vistas of Idaho.

Cottonwood flower petals rained on them as they crossed into
Washington. Hectares of wheat farms and the blustery Columbia
River guided them to Oregon. One cracked tailpipe and two
quarts of oil later, they finally arrived home in California.•

as listed below. On this computer, you can guess that
the code fragment is in ROM because the address of
the routine is very high, $40A0E30C in this case. Since
the routine is in ROM, you can’t effectively set a
breakpoint at its beginning.

MaxApplZone
+00000 40A0E30C mflr r0
+00004 40A0E310 stwu SP,-0x0040(SP)
+00008 40A0E314 stw r0,0x0048(SP)
+0000C 40A0E318 lis r0,0x0001
+00010 40A0E31C subic r5,r0,0x5F9D
+00014 40A0E320 lwz r3,MaxApplZone(r0)
+00018 40A0E324 li r4,0x3802
+0001C 40A0E328 bl CallOSTrapUniversalProc
+00020 40A0E32C lwz RTOC,0x0014(SP)
+00024 40A0E330 lwz r12,0x0048(SP)
+00028 40A0E334 addic SP,SP,0x0040
+0002C 40A0E338 mtlr r12
+00030 40A0E33C blr

You might expect the real MaxApplZone routine to do
much more than what appears in this routine. In fact,
this routine is simply glue for the 680x0 A-trap table: it
gets the address of MaxApplZone from that trap table
(don’t try this yourself without GetOSTrapAddress,
kids) and then uses the CallOSTrapUniversalProc
routine to call the address.

Most of the routines in InterfaceLib are actually just like
this glue routine for the trap table. Because the routines
go through the trap table, PowerPC applications will
be affected by patches to the trap table; if they were to
bind directly with the system code fragments, patches
would be bypassed.

To continue with our tracing, we must step up to and
then into CallOSTrapUniversalProc. This takes us to
more cross-TOC glue:

40A06D10 lwz r12,0x0008(RTOC)
40A06D14 stw RTOC,0x0014(SP)
40A06D18 lwz r0,0x0000(r12)
40A06D1C lwz RTOC,0x0004(r12)
40A06D20 mtctr r0
40A06D24 bctr

Since CallOSTrapUniversalProc is part of the Mixed
Mode Manager, it’s implemented in the MixedMode
code fragment. This cross-TOC glue finds the TVector
for that routine and calls through to it. When we step
through this and over the last bctr instruction, we’re
magically transferred not to the Mixed Mode Manager
but instead to 680x0 code. Wow! MacsBug knew we
were calling a universal procedure pointer, so it spared
us the trace through the mode switch and took us

directly to the location of the universal procedure
pointer, in this case the following 680x0 code:

0031B160 MOVE.L ApplLimit,D0
0031B164 MOVE.L HeapEnd,D1
0031B168 SUB.L D1,D0
0031B16A MOVEQ #$14,D1
0031B16C CMP.L D0,D1
0031B16E BLE.S *+$000A
0031B170 MOVEQ #$00,D0
0031B172 MOVE.W D0,MemErr
0031B176 RTS
0031B178 JMP $00167FCC

From my experience tracing through the system, I’d
guess that this 680x0 code is a patch on top of the real
MaxApplZone, because it compares two numbers and
in one of only two cases jumps to an absolute address.
The absolute address was probably set when this code
was installed as a patch, and it points to either the real
MaxApplZone routine or another patch.

The patch appears to check whether the value of the
ApplLimit low-memory global is within 20 bytes of the
value of HeapEnd. If so, it simply returns noErr in the
low-memory global MemErr without calling through
to the real MaxApplZone. This patch is probably part
of the system software, designed to fix a bug in the
ROM without having to replace the entire real
MaxApplZone routine.

Now if we trace through this patch and visit the absolute
address $167FCC from the patch, we find the following:

No procedure name
00167FCC *_MixedModeMagic
00167FCE BTST D3,D0
00167FD0 ORI.B #$00,D0
00167FD4 ORI.B #$00,D0
00167FD8 ORI.B #$3002,D0
00167FDC ORI.B #$04,D1
00167FE0 ORI.B #$8274,D7
00167FE4 ORI.B #$00,D0
00167FE8 ORI.B #$00,D0
00167FEC ORI.B #$A036,D0

Aha! This ugly disassembly is actually a routine
descriptor in disguise. The _MixedModeMagic trap
invokes the Mixed Mode Manager from 680x0 code,
and it always appears at the beginning of a routine
descriptor. Since this trap is at the beginning of each
routine descriptor, you can simply construct a routine
descriptor and then jump to it in 680x0 code. The drd
dcmd in MacsBug will let you see this routine descriptor
in a meaningful way. When I typed drd pc in this case,
I saw the contents of Listing 1.

BALANCE OF POWER: STALKING THE WILD DEFECT 83

Notice the number of fields displayed in Listing 1. For
simple routine descriptors like this one, you’ll only need to
look at the ProcPtr entry on the last line of the display. More
complicated routine descriptors have an array of routines, and
you’ll need to look for a passed selector to determine which
one is actually used.•

The last line of the listing shows a ProcPtr value of
$00078274. This is the address of the TVector for
MaxApplZone in the MemoryMgr code fragment.
Since the TVector structure has the routine address as
its first element, dereferencing that address once will
produce the address of the actual routine. Typing ilp
@78274 to dereference the TVector and disassemble
PowerPC code showed me this:

__MaxApplZone
+00000 000CA1A8 mflr r0
+00004 000CA1AC stwu SP,-0x0040(SP)
+00008 000CA1B0 stw r0,0x0048(SP)
+0000C 000CA1B4 bl __HSetStateQ+0073C
+00010 000CA1B8 crmove cr7_SO,cr7_SO
+00014 000CA1BC extsh r4,r3
+00018 000CA1C0 li r3,0x0000
+0001C 000CA1C4 bl SetEmulatorRegister
+00020 000CA1C8 lwz RTOC,0x0014(SP)
+00024 000CA1CC lwz r12,0x0048(SP)
+00028 000CA1D0 addic SP,SP,0x0040
+0002C 000CA1D4 mtlr r12
+00030 000CA1D8 blr

This is the MaxApplZone routine in the Memory
Manager. It appears to call more substantial subroutines
when it branches to __HSetStateQ+0073C, but this is
the actual routine.

WALKING BACK OUT
We’ve braved routine descriptors, glue, and patches to
make it this far. I won’t dive further into the Memory
Manager for this illustration, but let’s try an instructive
walk back out from the MaxApplZone routine.

After tracing through this routine, we step over the blr
instruction to branch back to the link register address.
To our surprise we not only switch back to 680x0
emulation mode but we appear to be lost in darkness.
The following 680x0 F-line instruction will be executed
next:

No procedure name
0162D0A0 DC.W $FE02

We switched back to 680x0 emulation mode because
we’re returning from the 680x0 patch call to a routine
descriptor. Typing ip to disassemble at the current
location shows what appears to be garbage, however:

No procedure name
0162D08C NEGX.L D7
0162D08E EOR.W D3,(A0)+
0162D090 BCHG D0,-(A2)
0162D092 DC.W $D0F0
0162D094 DC.W $FFFF
0162D096 ORI.B #$00,D4
0162D09A DC.W $FFFF
0162D09C ORI.B #$A063,D0
0162D0A0 *DC.W $FE02
0162D08C NEGX.L D7
0162D08E EOR.W D3,(A0)+
0162D090 BCHG D0,-(A2)
0162D092 DC.W $D0F0
0162D0A2 ORI.B #$9C,D0
0162D0A6 BCLR D0,D3
0162D0A8 BCHG D0,-(A2)
0162D0AA ADD.B D0,(A0)

Here’s the secret: The $FE02 F-line instruction is very
much like the _MixedModeMagic trap in that it can
signal the transition from emulated 680x0 code to
PowerPC code. Just as with the routine descriptor that
we saw earlier, executing the $FE02 instruction will in
this case cause us to switch back to PowerPC native
mode and will bring us to a completely different
address.

develop Issue 27 September 199684

Listing 1. Displaying a routine descriptor

drd: 00167fcc
MixedModeMagic: 0xAAFE, version: #7, flags: 0x00 (NotIndexable)
LoadLoc: 0x00000000, reserved2: 0x00000000, SelectorInfo: 0x00 (No Selector)
Routine Count (zero-based): 0x0000 (#0)
---- Routine Record 0x0000 (#0) at 0x00167fd8 ----

ProcInfo: 0x00003002, Reserved1: 0x00000000, ISA: #1 (PowerPC)
Record Flags: 0x0004 (Absolute, IsPrepared, NativeISA, PassSelector, IsNotDefault)
ProcPtr: 0x00078274, offset: 0x00000000, selector: 0x00000000

Truly perceptive readers might have noticed that the
program counter at the $FE02 instruction is actually
on the stack. Listing 2 shows a memory dump of the
first 48 bytes of the stack at this time. Notice that the
word at the beginning of the third line (at $162D0A0)
is the $FE02 instruction we’re about to execute.

As we trace over that $FE02 instruction, we find
ourselves back inside the InterfaceLib glue routine for
MaxApplZone. Tracing through those last instructions
finally takes us back to the application code where we
started, as shown here:

MaxApplZone
+00020 40A0E32C lwz RTOC,0x0014(SP)
+00024 40A0E330 lwz r12,0x0048(SP)
+00028 40A0E334 addic SP,SP,0x0040
+0002C 40A0E338 mtlr r12
+00030 40A0E33C blr
No procedure name
0093B280 lwz RTOC,0x0014(SP)
0093B284 li r31,0x0001

Notice that when we returned to a previous code
fragment, we immediately restored the TOC register
to a value saved on the stack. Not only is the caller
responsible for setting the TOC register before calling
a routine, it’s also responsible for restoring this register
when the call returns.

This concludes our romp through the wilderness of the
modern PowerPC environment. We traced from an
application’s code fragment, through the InterfaceLib
fragment and then a patch in the trap table, to a routine
descriptor for the real MaxApplZone routine, and
ultimately back again.

CATCHING POWERPC CALLS
Earlier I glossed over how to set a breakpoint and catch
an application as it calls MaxApplZone. Now I’ll describe
a good trick for doing this.

The MacsBug debugger doesn’t implement 680x0
A-trap break commands for PowerPC code yet. But you
can easily mimic the A-trap break feature in PowerPC
code, using the FindSym, PlayMem, and PPCJump

MacsBug macros. You can use those macros if you
install the file “PowerPC dcmds” (which you’ll find on
this issue’s CD) into your MacsBug Preferences folder.

Say, as an example, that you’d like to catch all PowerPC
code that calls the Toolbox routine ReleaseResource.
PowerPC code fragments access this routine by
importing its entry point from the InterfaceLib code
fragment. Typing FindSym ReleaseResource on my
Power Macintosh 8100 produces the following:

findsym: "ReleaseResource"
"ReleaseResource" #1796 TVec 0001acc0
(40a15978,0001ea14) in "InterfaceLib"

FindSym is case sensitive. When looking for an entry in
InterfaceLib, for example, you must spell the routine name
exactly and capitalize letters perfectly; typing “releaseresource”
rather than “ReleaseResource” will not work.•

This tells us a few things. ReleaseResource’s TVector
is located at the address $0001ACC0. That vector
contains the address for the routine at $40A15978 and
the InterfaceLib’s TOC value, which is $0001EA14.
FindSym will return TVector addresses for each
application or fragment bound to the routine. In
System 7 these will usually all be the same TVector.

If I need to catch callers to ReleaseResource, I could
then simply type brp 40a15978 to set a PowerPC
breakpoint at the beginning of the InterfaceLib code.
On the Power Macintosh 8100, however, this address is
in ROM. Setting breakpoints in ROM is more difficult
for MacsBug, which returns this message:

Warning: This requires stepping through each
instruction

Your Macintosh might become unusable if MacsBug is
forced to single-step through all the code. Because
MacsBug can set a breakpoint in RAM with less
difficulty, we’ll now use the PlayMem and PPCJump
macros to set an equivalent breakpoint in RAM.

PlayMem is a MacsBug variable that points to 512 bytes
of scratch memory in RAM. The PPCJump macro

BALANCE OF POWER: STALKING THE WILD DEFECT 85

Listing 2. The stack upon return to PowerPC code

Displaying memory from sp
0162D080 DDDD DDDD DDDD DDDD 7FFF 7FFF 4087 B758 –†••••••••�•�•@á
0162D090 0162 D0F0 FFFF 0004 0000 FFFF 0000 A063 ∑X•b–•••••••••••
0162D0A0 FE02 0000 009C 0183 0162 D110 0000 3802 †c•••••ú•É•b—•••

expands to a set of PowerPC instructions for jumping
to an absolute address. So the command

sl PlayMem PPCJump 40a15978

writes the following instructions to MacsBug’s scratch
memory:

lis r0,40a1 | 3C0040A1
ori r0,r0,5978 | 60005978
mtctr r0 | 7C0903A6
bctr | 4E800420

Now I’ll replace the value of the TVector with our new
code in scratch space, by typing sl 0001acc0 PlayMem.
PowerPC code bound with InterfaceLib will now call
my new code instead of ReleaseResource, but my code
will then correctly pass control to ReleaseResource.

Finally, typing brp PlayMem will set the PowerPC
breakpoint we want.

When PowerPC code tries to call the ReleaseResource
trap via InterfaceLib, execution will stop at my
breakpoint in PlayMem. At that point, typing ipp lr
will list PowerPC instructions around the address in
the link register, quickly showing me which code was
calling the trap.

AFTER THE HUNT
Although I seriously doubt I would find enjoyment in
hunting live animals, I’ve found the hunt for software
defects truly rewarding. Some problems are a definite
challenge, and I often learn something new about the
Mac OS with each riddle solved. I hope that knowing
the details of my pursuit will help you in your own
future quests.

develop Issue 27 September 199686

Thanks to Nitin Ganatra, Pete Gontier, Jim Luther, and Alex Rangel
for reviewing this column.•

Cyberdog Programmer’s Kit
Cyberdog is the compelling new Internet-access technology that gives
users flexible and fully extensible access to the World Wide Web,
news groups, e-mail, and many other network services. The
Cyberdog Programmer’s Kit offers everything you need to create
Cyberdog-aware components—tutorials and code examples, a
complete reference to the Cyberdog C++ classes and methods, and
the Cyberdog software development kit on the accompanying CD-
ROM.

with Apple Press and Addison-Wesley

Available at fine technical bookstores in your area, or call 1-800-822-6339 to order.
For international orders fax 617-942-2829.

OpenDoc Programmer’s Guide, Apple Computer’s official reference, gives
an overview of OpenDoc development and describes OpenDoc programming in detail.
The accompanying CD-ROM contains the OpenDoc Class Reference, the complete
reference to the OpenDoc programming interface.
• 688 pages w/CD-ROM • $44.95 • 0-201-47954-0

OpenDoc Cookbook, a companion volume to OpenDoc Programmer’s Guide,
provides tutorials and code samples that show you how to create OpenDoc software
components for the Mac OS platform.
• 206 pages • $24.95 • 0-201-47956-7

▲ ▲▲ http://www.aw.com/devpress/
Addison-Wesley Publishing Co.

Apple Press, a new publishing effort from Apple Computer, brings you the latest information on Apple technology. Apple Press publishes books and book/CD packages that appeal to
a wide market—from developers and programmers, to educational professionals, and to the home and business markets.

Explore OpenDoc

Whether the user is navigating a starship or examining a model of the
DNA helix, your first-person 3D application must allow user control of
the camera movements in a scene. You must keep changing the camera’s
position and orientation in response to what the user wants to see. Here
you’ll learn how to create those camera movements and handle the user’s
directions. As part of the bargain, you’ll even get a refresher course in
the associated geometry.

Letting the user control the movement of the camera (and thus the view) is critical
to first-person interactive 3D games and extremely useful in 3D modeling systems.
Through QuickDraw 3D’s camera functions and supporting mathematical functions,
you can create game controls that direct the position and orientation of a camera. In
general, game controls take user input from any input device and control the camera
in ways that emulate movements of players, such as people or aircraft. Game controls
are useful for any type of 3D viewer application, including 3D Internet browsers.

You’ll start your career as a camera operator by learning about the basic moves you
can make with the camera. Then you’ll create the various camera movements, keep
the camera movements smooth, and translate user inputs to move the camera. The
sample code (which is provided on this issue’s CD) is a 3D viewer application with
camera movements activated by the keyboard or the mouse. In all of the code, the
geometry has been kept as simple as possible, but if you need to brush up, you’ll find
a refresher course on calculating points and vectors in 3D space.

For an overview of QuickDraw 3D, turn to “QuickDraw 3D: A New Dimension for
Macintosh Graphics” in develop Issue 22. That article discusses topics like reading
models, using a viewer, creating a camera, and managing documents that have 3D
information. To learn more about those and related topics, see the list of recommended
reading at the end of this article.

MOVING THE CAMERA
We’ll be controlling camera movements based on first-person viewing, so the camera
will be our eyes. But before we move through a scene, let’s take a look at the kind of
camera moves we plan to use.

PHILIP MCBRIDE

Game Controls for QuickDraw 3D

GAME CONTROLS FOR QUICKDRAW 3D 87

PHILIP MCBRIDE (mcbride@apple.com) is
currently adding QuickDraw 3D and QuickTime
VR to HyperCard 3.0. He used to spend time
contemplating the meaning of the universe until
he figured it out. Now he can be seen wandering
the halls at Apple and mumbling something about

needing more content. Lately, Philip has been
looking into investing in anteaters after learning
that a full 20% of the earth’s biomass is made up
of ants and termites. Just think about that
overcrowding the next time someone says we
don’t need to invest in space travel.•

The camera movements you would create in a 3D game for a person who is driving a
vehicle or walking on level ground are examples of ground movements. These camera
moves include moving forward, backward, sideways to the left, and sideways to the
right, plus turning to the left (pan or yaw left) and turning to the right (pan or yaw
right). Figure 1 illustrates these basic ground movements.

You can also go airborne with a variety of camera movements. These fancier camera
moves are changes that might be typical of an aircraft. They include ascending and
descending (moving upward and downward), pitching (tilting) up and down, and
rolling (tilting) left and right. Figure 2 illustrates these moves.

Now to the fun part — let’s get that camera moving! What you must do to achieve
the previously described camera movements, both ground and air, involves some
geometry. If you’re like most of us and have forgotten your 3D geometry, see “3D
Geometry 101” for a refresher course. The 3D geometry for our camera moves is
quite simple; it will stick to the kinds of calculations illustrated in “3D Geometry
101.”

First, let’s take a look at our world. In Figure 3, we have an object in the world
coordinate system and a camera looking at the object. The camera has its own
coordinate system defined by its location (in world coordinates), up vector, and point
of interest.

We’ll be dealing with the vectors making up the camera’s coordinate system for many
of our movement functions, so let’s keep these in our application’s document
structure. We’ll keep the camera placement data there as well.

The document structure looks like this:

develop Issue 27 September 199688

Left

Forward

Right

Right turn

Left turn

Backward

Figure 1. Ground movements

Ascend

Descend

Roll right Roll left

Pitch down

Pitch up

Figure 2. Air movements

typedef struct _DocumentRecord {
...
TQ3Point3D cameraLocation;
TQ3Point3D pointOfInterest;
TQ3Vector3D xVector;
TQ3Vector3D yVector; // up vector
TQ3Vector3D zVector;
...

} DocumentRecord, *DocumentPtr;

The first time we set up our camera, we’ll set the values in our document to correspond
to the initial camera position. Then with each subsequent movement of the camera,
we’ll update these fields. The initial camera data is constructed by the code in Listing
1. In the function MyGetCameraData, we do some of our geometric calculations to
get the x and z vectors. We subtract the two endpoints (the initial and final points) of
the z vector to get that vector. And we get the x vector by cross-multiplying the y and
z vectors.

GAME CONTROLS FOR QUICKDRAW 3D 89

x

z

y

World coordinate system

Point of interest

Up vector

Camera coordinate system

Figure 3. Our world

Listing 1. Initializing the camera data

void MyGetCameraData(DocumentPtr theDocument, TQ3CameraObject theCamera)
{

TQ3CameraPlacement cameraPlacement;

// Get the camera data.
Q3Camera_GetPlacement(theCamera, &cameraPlacement);

// Set the document's camera data.
theDocument->cameraLocation = cameraPlacement.cameraLocation;
theDocument->pointOfInterest = cameraPlacement.pointOfInterest;
theDocument->yVector = cameraPlacement.upVector;

// Calculate the x and z vectors and assign them to the document.
Q3Point3D_Subtract(&theDocument->pointOfInterest,&theDocument->cameraLocation,

&theDocument->zVector);
Q3Vector3D_Cross(&theDocument->zVector, &theDocument->yVector, &theDocument->xVector);

}

develop Issue 27 September 199690

If you’re new to 3D programming (and perhaps a little
rusty on your math), here’s a brief introduction to some of
the 3D concepts you’ll find in this article’s code.

A point is represented in 3D space by x, y, and z values
in a coordinate system. A vector is a magnitude (length)
and direction; it’s represented by an initial point (usually
the origin of the coordinate system) and a final point
{x, y, z}. Figure 4 illustrates a point and a vector in 3D
space.

To add a vector and a point, you place the vector’s initial
point on that point (keeping the vector’s direction and
magnitude). The new final point of the moved vector is the
point resulting from the addition. (See Figure 5.)

To subtract a vector from a point, you place the vector’s
final point on that point (keeping the vector’s direction
and magnitude). The new initial point of the moved vector
is the result (Figure 6).

To create a vector between two points, you subtract the
vectors defined by the points (called position vectors). To
do this, you first reverse (turn around) the second vector
and place its initial point on the final point of the first
vector. Then you make a new vector from the first vector’s
initial point to the second vector’s new final point. This
new vector has the direction and magnitude of the vector
between the two points (Figure 7).

Figure 4. A point and a vector in 3D space

x

z

y
{x, y, z}

Vector {x, y, z}

Figure 7. Creating a vector between two points

x

Vector a

–Vector a

Vector b

z

y

Result vector

Point a

Point b

{xb, yb, zb} – {xa, ya, za} = {xb–xa, yb–ya, zb–za}

Figure 6. Subtracting a vector from a point

x

z

y

Result point

Point p

Vector

{xp, yp, zp} – {xv, yv, zv} = {xp–xv, yp–yv, zp–zv}

Figure 5. Adding a vector and a point

x

z

y

Vector

{xp, yp, zp} + {xv, yv, zv} = {xp+xv, yp+yv, zp+zv}

Result point

Point p

3D GEOMETRY 101

GAME CONTROLS FOR QUICKDRAW 3D 91

A translation of a point or a vector by Tx, Ty, and Tz
values moves the point or the vector by adding the T
values to its own values (Figure 8).

In Figure 8, the translation value T is really from the
translation part of a transformation matrix. A transformation
matrix is used to transform a point or a vector by
translation, rotation, and scaling. The transformation
matrix you use is 4 x 4 — with the upper-left 3 x 3
portion acting as the rotation matrix, the bottom-left 1 x 3
portion acting as the translation matrix, and the top-left to
bottom-right diagonal of the rotation matrix acting as the
scaling matrix. The following transformation matrix has
elements labeled for translation (T), rotation (R), and
scaling (S). The fourth column is ignored for simplicity.

When you apply a transformation to a point or a vector,
you multiply by the matrix, as in the following formula for
our point {x, y, z} and a transformation matrix:

[{Sx*R0,0*x + R1,0*y + R2,0*z + Tx},
{R0,1*x + Sy*R1,1*y + R2,1*z + Ty},
{R0,2*x + R1,2*y + Sz*R2,2*z + Tz}]

As you can see from this formula, if you only want the
matrix to apply a translation (the T ’s), the 3 x 3 rotation

matrix will be all 0’s except for the scaling diagonal,
which will be all 1’s.

A rotation of a vector through an arbitrary angle about
different axes will use various R elements (the 3 x 3
rotation matrix of the transformation matrix), depending
on which axis you’re rotating about. For rotations of θ
about the x axis, you get the matrix

For rotations about the z axis, you get

And for rotations about the y axis, you get the following
matrix:

So to apply a rotation about an axis, you simply multiply
the appropriate rotation matrix by the vector. In Figure 9,
the vector on the right is rotated 90° about the z axis in
the {x, y} plane.

1 0 0�
0 cos sin�
0 –sin cos�

cos sin 0�
–sin cos 0�
0 0 1�

Sx*R0,0 R0,1� R0,2� 0�
R1,0� Sy*R1,1 R1,2 � 0�
R2,0� R2,1 Sz*R2,2 0�
Tx � Ty Tz 1

cos 0 –sin�
0 1 0�
sin 0 cos

Figure 8. Translating a point or a vector by T

x

z

y Vector or point

Translated by T

{xp, yp, zp}(T) = {xp+Tx, yp+Ty, zp+Tz}

Figure 9. Rotating a vector about an axis

x

z

y
Rotate 90° about z

{x, y, z}(Rz) = {–y, x, z}

After the fields in our document have been updated by some camera movement
function, we’ll want to reset the camera to that new data with the function
MySetCameraData (Listing 2).

With that camera infrastructure, we’re ready to move the camera around a bit.
You can find the code for all the moves on this issue’s CD. Here you’ll find only the
code for those movements that are unique. Code for those moves not shown (but
previously mentioned) is almost identical to one of the functions shown in the
listings.

To move the camera along the z axis either forward or backward, we call the function
MyMoveCameraZ (Listing 3). This function translates the camera location and point
of interest by the given delta. Note that the associated z vector isn’t changed.

To move the camera along the x axis (right or left) or along the y axis (ascending or
descending), you use code similar to Listing 3. The only difference is that you base
the translation on the change in x or y instead of the change in z. In both cases, the
associated vectors don’t change.

Next, to rotate the camera right or left about the y axis, we call the function
MyRotateCameraY (Listing 4). This function first creates a transformation matrix
whose rotation matrix represents rotating about the y axis. It then transforms both
the z and x vectors by that rotation (thus rotating those two vectors about the y axis).
From the rotated z vector, we obtain the point of interest by adding the camera
location to the vector.

Rotating the camera about the x axis (pitching up or down) or about the z axis (rolling
left or right) is similar to rotating it about the y axis. The main difference is in how the
rotation matrix is constructed (from the axis in question) and which axes are rotated (the
other two). The only other difference is that when rotating the camera about the z axis,
you don’t have to update the point of interest because it doesn’t change.

SMOOTH SAILING
To see what we’ve done to our world, we need a rendering loop, which you’ll find in
the code on the CD. Since we don’t do anything special in our rendering loop, we’ll
skip the details. For an explanation of rendering loops, see the article “QuickDraw
3D: A New Dimension for Macintosh Graphics” in develop Issue 22.

develop Issue 27 September 199692

Listing 2. Setting the camera data after a move

void MySetCameraData(DocumentPtr theDocument, TQ3CameraObject theCamera)
{

TQ3CameraPlacement cameraPlacement;

// Set the camera placement data.
cameraPlacement.cameraLocation = theDocument->cameraLocation;
cameraPlacement.pointOfInterest = theDocument->pointOfInterest;
cameraPlacement.upVector = theDocument->yVector;

// Set the camera data to the camera.
Q3Camera_SetPlacement(theCamera, &cameraPlacement);

}

GAME CONTROLS FOR QUICKDRAW 3D 93

Listing 3. Moving the camera along the z axis

void MyMoveCameraZ(DocumentPtr theDocument, float dZ)
{

TQ3ViewObject theView;
TQ3CameraObject theCamera;
TQ3Vector3D scaledVector;
TQ3Point3D newPoint;

// Get the view and the camera objects.
theView = theDocument->theView;
Q3View_GetCamera(theView, &theCamera);

// Scale the z vector to make it dZ longer.
Q3Vector3D_Scale(&theDocument->zVector,

dZ/Q3Vector3D_Length(&theDocument->zVector), &scaledVector);
// Move the camera position and direction by the new vector.
Q3Point3D_Vector3D_Add(&theDocument->cameraLocation, &scaledVector,

&newPoint);
theDocument->cameraLocation = newPoint;
Q3Point3D_Vector3D_Add(&theDocument->pointOfInterest, &scaledVector,

&newPoint);
theDocument->pointOfInterest = newPoint;

// Set the updated camera data to the camera.
MySetCameraData(theDocument, theCamera);

// Update the view with the changed camera and dispose of the camera.
Q3View_SetCamera(theView, theCamera);
Q3Object_Dispose(theCamera);

}

Listing 4. Rotating the camera about the y axis

void MyRotateCameraY(DocumentPtr theDocument, float dY)
{

TQ3ViewObject theView;
TQ3CameraObject theCamera;
TQ3Vector3D rotatedVector;
TQ3Matrix4x4 rotationMatrix;

// Get the view and the camera objects.
theView = theDocument->theView;
Q3View_GetCamera(theView, &theCamera);

// Create the rotation matrix for rotating about the y axis.
Q3Matrix4x4_SetRotateAboutAxis(&rotationMatrix,

&theDocument->cameraLocation, &theDocument->yVector, dY);

// Rotate the z vector about the y axis.
Q3Vector3D_Transform(&theDocument->zVector, &rotationMatrix,

&rotatedVector);

(continued on next page)

The real issue for us in viewing our camera movements is how smooth and fast those
moves appear. The factors that determine how smoothly and quickly the moves work
are the sizes (scales) of the deltas (the arguments to the movement functions) and the
speed of the machine (and therefore the subsequent speed of the rendering loop).
Adjusting for the speed of the machine is beyond the scope of this article.

The sizes of the deltas determine the size of the jumps taken by each camera movement.
If the deltas are very small, the camera will move very slightly. And if these movements
are repeated, the camera will appear to move slowly over time. If the deltas are large,
the camera will appear to move fast.

If you move the camera too slowly, the movement will appear jumpy because the user
will see the delays in rendering time. If you move the camera too fast, the movement
will appear jumpy because, well, you’re making the camera take big jumps. To find
just the right speed, you need to experiment with the sizes of the deltas. The main
thing to notice is that you should correlate the deltas to the size of the model.

Listing 5 shows how you might set up the delta multipliers (called factors here)
that are used to help control movement. From the model’s bounding box, the
MyInitDeltaFactors function determines the size of the largest dimension. This
model size is then used to generate the various factors for different movement
functions. Since accelerating the movements (say, by a control key) is quite useful,
this function sets that up too.

Your mileage may vary, so it’s a good idea to take your camera out for a spin and see
what factors work for your application.

CONTROLLING THE CONTROLS
Now that you have the means of moving the camera this way and that, you need to
have something controlling those movements. Our application will use the keyboard
and the mouse.

develop Issue 27 September 199694

theDocument->zVector = rotatedVector;

// Rotate the x vector about the y axis.
Q3Vector3D_Transform(&theDocument->xVector, &rotationMatrix,

&rotatedVector);
theDocument->xVector = rotatedVector;

// Update the point of interest from the new z vector.
Q3Point3D_Vector3D_Add(&theDocument->cameraLocation,

&theDocument->zVector, &theDocument->pointOfInterest);

// Set the updated camera data to the camera.
MySetCameraData(theDocument, theCamera);

// Update the view with the changed camera and dispose of the camera.
Q3View_SetCamera(theView, theCamera);
Q3Object_Dispose(theCamera);

}

Listing 4. Rotating the camera about the y axis (continued)

To take input from the keyboard or the mouse, or both, we don’t do anything unusual.
For the keyboard, we take the key-down events as they happen and determine whether
any other keys were held down at the time of the event (for multiple key inputs). For
the mouse, we just continually track it.

In both cases, the user can indicate movement along more than one dimension. For
example, if moving the mouse forward means “forward” and moving the mouse left
means a combination of “turn left” and “roll left,” a mouse movement that’s both
forward and to the left is a combination of three camera movements.

Based on whether the user input is simple or complex, our code makes calls to the
appropriate camera movement functions. In the case of the mouse, the speed of the
mouse (the difference between the last position and the current position) is also used
to adjust the deltas for the camera movement. Listing 6 shows the code used for
mouse tracking, but without the error handling and some details of GWorlds and
local coordinates (see this issue’s CD for the full source code). Here we’ve hard coded
the meanings of the different mouse movements and control keys for simplicity.
Ideally, you would have this stored in preference data that the user can set.

The code for handling keyboard input is even simpler. See the CD for that part of the
code.

Many other input devices are also applicable, especially 3D input devices. The proper
way to handle such input devices is through the QuickDraw 3D Pointing Device
Manager with its controllers and trackers. To use this approach, we would need to
define a tracker for our camera and assign it to the available controllers. We would
also change the camera movement functions so that they took deltas of both position
and orientation. See the book 3D Graphics Programming With QuickDraw 3D and the
Graphical Truffles column “Making the Most of QuickDraw 3D” in develop Issue 24

GAME CONTROLS FOR QUICKDRAW 3D 95

Listing 5. Creating delta factors based on the model’s dimensions

void MyInitDeltaFactors(DocumentPtr theDocument)
{

TQ3BoundingBox viewBBox;
TQ3Vector3D diagonalVector;
float maxDimension;

// Get the bounding box and find the scene dimension.
MyGetBoundingBox(theDocument, &viewBBox);
Q3Point3D_Subtract(&viewBBox.max, &viewBBox.min, &diagonalVector);
maxDimension = Q3Vector3D_Length(&diagonalVector);

// Now set the delta factors.
theDocument->xRotFactor = kXRotFactorBase * maxDimension;
theDocument->yRotFactor = kYRotFactorBase * maxDimension;
theDocument->zRotFactor = kZRotFactorBase * maxDimension;
theDocument->xMoveFactor = kXMoveFactorBase * maxDimension;
theDocument->yMoveFactor = kYMoveFactorBase * maxDimension;
theDocument->zMoveFactor = kZMoveFactorBase * maxDimension;

// Set up the control factor.
theDocument->controlFactor = kControlFactorBase * maxDimension;

}

develop Issue 27 September 199696

Listing 6. Tracking the mouse

void MyDoMouseMove(WindowPtr theWindow, EventRecord *theEvent)
{

DocumentPtr theDocument;
Point newMouse;
long dx, dy, oldX, oldY;
float xRot, yRot;
short usingControl = false;

// Get the document from the window.
theDocument = MyGetDocumentFromWindow(theWindow);

// Get the current mouse position.
GetMouse(&newMouse);
oldX = newMouse.h;
oldY = newMouse.v;

// If the control key is down, we're in depth mode.
if (theEvent->modifiers & controlKey)

usingControl = true;

// Loop, moving the camera while the mouse is down.
while (StillDown()) {

// Get the next mouse position.
GetMouse(&newMouse);

// Calculate the difference from the last mouse position.
dx = newMouse.h - oldX;
dy = oldY - newMouse.v;

// If there's some difference, move the camera.
if ((dx != 0) || (dy != 0)) {

// Calculate the rotation about the y axis (pan) and rotate.
yRot = ((float) dx * (kQPi / 180.0)) / theDocument->width;
MyRotateCameraY(theDocument, -yRot * theDocument->yRotFactor);

// If the control key is down, move along the z axis; otherwise, rotate about the x axis.
if (usingControl) {

// Move the camera along the z axis (change in mouse's y).
MyMoveCameraZ(theDocument, dy * theDocument->zMoveFactor);

} else {
// Calculate the rotation about the x axis (pitch) and rotate.
xRot = ((float) dy * (kQPi / 180.0)) / theDocument->height;
MyRotateCameraX(theDocument, xRot * theDocument->xRotFactor);

}
// Update the screen for each move.
MyUpdateScreen(theDocument);

}
// Set the current mouse position as the old mouse position for the next update.
oldX = newMouse.h;
oldY = newMouse.v;

}
}

for more on controllers and trackers. (As of now, QuickDraw 3D doesn’t have built-
in controllers for the mouse and the keyboard, so this code handles them directly.)

AIMING FOR EFFICIENCY
To make the geometry and the code for this article clearer, some efficiency issues
were ignored. But for most applications, the time spent in moving the camera will be
minimal when compared to the time spent rendering and displaying each frame.

However, if the time used for the rendering-rastering phase is minimal and the camera
movements use a more significant percentage of the total time, there are a number of
solutions. The ultimate efficiency solution is to avoid making any multiplications or
divisions in the camera movements by using finite differencing techniques when
calculating the moves. This strategy involves keeping more information about each
intermediate change and making only the incremental calculations necessary for the
next move. This approach is similar to operator reductions in compilers.

MAKING YOUR NEXT MOVE
A number of applications can use game controls like those discussed here, not just
first-person 3D games. Another application that’s a good candidate for the kinds of
game controls presented here would be a 3D Internet browser. You would want
similar 3D controls, but you would also want some controls for selecting Web hot
spots that would take you to another 3D Web site.

So now the next move is up to you.

GAME CONTROLS FOR QUICKDRAW 3D 97

Thanks to our technical reviewers Rick Evans,
Richard Lawler, John Louch, Tim Monroe, Nick
Thompson, and Dan Venolia.•

• “QuickDraw 3D: A New Dimension for Macintosh Graphics” by Pablo Fernicola
and Nick Thompson, develop Issue 22.

• “Graphical Truffles: Making the Most of QuickDraw 3D” by Nick Thompson and
Pablo Fernicola, develop Issue 24.

• 3D Graphics Programming With QuickDraw 3D by Apple Computer, Inc. (Addison-
Wesley, 1995).

• Mathematical Elements for Computer Graphics, 2nd Edition, by David F. Rogers
and J. Alan Adams (McGraw-Hill, 1990).

• Tricks of the Mac Game Programming Gurus by Jamie McCornack and others
(Hayden Books, 1995).

RECOMMENDED READING

The QuickDraw GX graphics system is based on shape
objects that are used by reference. An application
creates a shape object such as a path or a polygon by
passing in data that represents the geometric points of
the shape to be drawn or otherwise manipulated. The
QuickDraw GX graphics system then stores this
information in its internal database and returns to the
application a reference to the shape object. This
reference is then passed to the various QuickDraw GX
routines that perform operations on the shape.

Since the QuickDraw GX graphics system is maintaining
the original data in its database, the application often
won’t keep this data around. Also, an application may
not even have created the geometric points in the first
place, as in the case of converting text into a path.

It’s often desirable, for a variety of purposes, for an
application to retrieve the geometric information from
a shape object. Given the richness of geometric
information that these objects can contain, it can be a
nontrivial task to read back the information. This
column describes a C library that any application can
incorporate for the purpose of traversing the geometric
information in QuickDraw GX paths.

WHAT’S IN A QUICKDRAW GX PATH OBJECT
The QuickDraw GX graphics system provides several
types of graphics primitives with which to create visual
content: lines, curves, polygons, paths, typography, and
bitmaps. In this system, curves are quadratic Béziers
that can be defined by three control points, the middle
point being off the curve and the other two being on.
Figure 1 depicts a single quadratic curve segment.

A QuickDraw GX path object is just a conglomeration
of curve and line segments, resulting from an array of

points. The object can contain multiple contours, each
contour being a group of connected segments.

The question arises, if we look at a specific point in a
path structure, whether the point is part of a line
segment or part of a curve segment. The answer is that
in addition to the points themselves, a path contains an
array of flags, one for each point, indicating whether
the point is on or off the path. To represent a single
contour for a path object, QuickDraw GX uses the
gxPath data structure:

struct gxPath {
long vectors;
long controlBits[1];
struct gxPoint vector[1];

};
typedef struct gxPath gxPath;

The vectors field is an integer that specifies the number
of points in the contour, the controlBits field is a bit
array representing the on-curve/off-curve flags, and the
vector field is an array of points for the contour.

To represent a path object, QuickDraw GX uses the
gxPaths data structure:

struct gxPaths {
long contours;
struct gxPath contour[1];

};
typedef struct gxPaths gxPaths;

The contours field is an integer specifying the number
of contours, and the contour field is an array of gxPath
structures, one for each contour.

Hence we have enough information to figure out what
the points mean. If we see two on-path points in a row,
we know that represents a line. If we see an on-path

GRAPHICAL
TRUFFLES

A Library for
Traversing Paths

DANIEL I. LIPTON

develop Issue 27 September 199698

DANIEL I. LIPTON (daniel_lipton@powertalk.apple.com) has
worked at Apple for seven years and is one of the original

QuickDraw GX team members. In his spare time, Dan runs a small
business repairing perpetual motion machines.•

Point 3 (on curve)Point 1 (on curve)

Point 2 (off curve)

Figure 1. A QuickDraw GX quadratic curve segment

point followed by an off-path point followed by an on-
path point, we know that’s a quadratic curve segment.

So to read the QuickDraw GX path object to determine
the actual shape, all we have to do is get a point and
then get the next point. According to the previous
description, it would be safe to assume that the very
first point in a contour is an on-path point. Then, if the
next one were also on the path, we’d have a line; if it
were off, we’d know that we’d have to read a third one
(which by definition would have to be on) and we’d
have a curve.

The only trouble is that those assumptions aren’t
necessarily true. The design of QuickDraw GX could
have restricted applications to using only those patterns
of on-path/off-path points, disallowing two consecutive
off-path points and requiring the first point and the last
point in a contour to be on the path; however, it didn’t.

In the interest of saving memory, QuickDraw GX
allows two consecutive off-path points to imply a middle
on-path point — known as an implicit point — exactly
halfway between the off-path points. An example of this
is shown in Figure 2.

For each implicit point there’s a memory savings of
8 bytes in QuickDraw GX. This allows us to define
geometries in less space than would be required in
other popular graphics models that use cubic Bézier
curves without implicit points, but it does complicate
traversing the path.

QuickDraw GX also allows the first or the last point of
a contour to be off the curve, in the case where the
contour is closed. This further complicates path
traversal.

THE SHAPEWALKER LIBRARY
You can use the ShapeWalker library (which is included
on this issue’s CD) to avoid having to write a huge blob
of code to deal with all those points and flags discussed
above. It allows an application to pass in a QuickDraw
GX shape object and be sent back (via callbacks) each
line and curve segment in the shape. All implicit points
are resolved by the library, so the client sees only
complete line or curve segments.

The header file to be used with the library defines types
for four callbacks and a prototype for the ShapeWalker
function:

// Function is called to move to a new point
// (start new contour).
typedef Boolean (*TpwMovetoProc)(gxPoint *p,

void* refcon);

// Function is called to draw a line from
// current point to p.
typedef Boolean (*TpwLinetoProc)(gxPoint *p,

void* refcon);

// Function is called to draw a curve from
// current point (which will be p[0]) through
// p[1] to p[2].
typedef Boolean (*TpwCurvetoProc)(gxPoint p[3],

void* refcon);

// Function is called to close a contour.
typedef Boolean (*TpwClosepathProc)

(void* refcon);

// Return result will be true if path walking
// was terminated by one of the callbacks.
Boolean ShapeWalker(gxShape theShape,

TpwMovetoProc DoMoveto,
TpwLinetoProc DoLineto,
TpwCurvetoProc DoCurveto,
TpwClosepathProc DoClosepath,
void* refcon);

When using the library, you provide four callbacks and
a refcon. Each callback will get passed the refcon and
possibly point information. It’s suggested that the client
maintain whatever state information is necessary for
the purpose at hand. The refcon can be a pointer to a
structure containing the state information. One typical
component of such information that most clients would
need is the notion of the current point. The current
point is the piece of the path we’ve looked at most
recently, representative of the state of processing the
shape. This current point should be updated as segments
come through the callbacks. (We’ll see this in a moment
in our sample application.)

GRAPHICAL TRUFFLES: A LIBRARY FOR TRAVERSING PATHS 99

Point 3 (off curve)

Point 1 (on curve)

Point 2 (off curve)

Point 4 (on curve)

Implicit point (on curve)

Figure 2. A QuickDraw GX quadratic path

Each callback must also return a result of type Boolean,
giving the client a mechanism for causing the library to
terminate traversal of the shape before completion.
Return false and the shape walker will continue on to
the next segment; return true and it will terminate
early. This can be used to catch errors in processing the
points, or to terminate processing if you’ve finished
with the shape before the last point is reached.

The four callbacks are as follows:

• DoMoveto — This procedure is called at the start of
each new contour in the shape. It gets passed a
single point and the refcon. The point identifies the
location of the beginning of the contour. If the client
is maintaining a current point via the refcon, it
should be updated to the point passed in.

• DoLineto — This procedure is called for each line
segment in the contour. It gets passed a single point
and the refcon. The point represents the end point
of the line segment. The start point of the line
segment is whatever point we last saw; that will be

the current point if one is being maintained. If the
client is maintaining a current point via the refcon, it
should be updated to the point passed in.

• DoCurveto — This procedure is called for each
quadratic curve segment in the contour. It gets passed
an array of three points and the refcon. The three
points correspond to the control points of the curve.
The first point in the array will be the current point
if one is being maintained. The current point should
then be updated to reflect the third point in the array.

• DoClosepath — This procedure is called at the end of
every contour if the QuickDraw GX shape is closed
(has the gxClosedFrameFill shape fill attribute).
Closing a contour implies connecting the last point in
the contour (whatever the current point is when this
function is called) with the first point in the contour
(the point passed into the DoMoveto function).

The code shown in Listing 1 is a sample application
(SamplePathWalker.c) that converts a piece of text to a
path and then uses the ShapeWalker library to read the

develop Issue 27 September 1996100

Listing 1. Sample application using the ShapeWalker library

// The following structure is used to maintain a state while walking a shape.
typedef struct {

gxPoint currentPoint; // current point
gxPoint firstPoint; // first point in contour

} TestWalkRec;

#define fix2float(x) ((double)x / 65536.0)

Boolean TestMoveto(gxPoint *p, TestWalkRec* pWalk);
Boolean TestMoveto(gxPoint *p, TestWalkRec* pWalk)
{

printf("Begin new contour: %f, %f\r\n", fix2float(p->x), fix2float(p->y));
pWalk->currentPoint.x = p->x;
pWalk->currentPoint.y = p->y;
pWalk->firstPoint.x = p->x;
pWalk->firstPoint.y = p->y;
return (false);

}

Boolean TestLineto(gxPoint *p, TestWalkRec* pWalk);
Boolean TestLineto(gxPoint *p, TestWalkRec* pWalk)
{

printf("Line from %f, %f to %f, %f\r\n", fix2float(pWalk->currentPoint.x),
fix2float(pWalk->currentPoint.y), fix2float(p->x), fix2float(p->y));

pWalk->currentPoint.x = p->x;
pWalk->currentPoint.y = p->y;
return (false);

}

(continued on next page)

points from the result. In this example the callback
procedures are used only to print out the points in the
segments, but of course they can be used to do a lot of
other things as well.

WALKING THE PATH
The files PathWalking.h and PathWalking.c are all that
are required to use the ShapeWalker library in your
application (for the sake of brevity, PathWalking.c isn’t
shown in this column). This library should make it easy
for your application to process QuickDraw GX path
objects. For completeness, the library will also process

curve objects, line objects, rectangle objects, and polygon
objects in a similar manner. All other shape types will
result in the posting of the “illegal_type_for_shape”
graphics error. (Graphics errors can be polled with the
GXGetGraphicsError function.)

The ShapeWalker library is actually based on the same
code used by QuickDraw GX in its built-in GX-to-
PostScript translator for printing. The library’s
versatility means that its uses in your application are
limited only by your imagination, so get creative and
try it out!

GRAPHICAL TRUFFLES: A LIBRARY FOR TRAVERSING PATHS 101

Boolean TestCurveto(gxPoint p[3], TestWalkRec* pWalk);
Boolean TestCurveto(gxPoint p[3], TestWalkRec* pWalk)
{

printf("Curve from %f, %f through %f, %f, to %f, %f\r\n", fix2float(p[0].x), fix2float(p[0].y),
fix2float(p[1].x), fix2float(p[1].y), fix2float(p[2].x), fix2float(p[2].y));

pWalk->currentPoint.x = p[2].x;
pWalk->currentPoint.y = p[2].y;
return (false);

}

Boolean TestClosepath(TestWalkRec* pWalk);
Boolean TestClosepath(TestWalkRec* pWalk)
{

printf("Closing the contour\r\n\r\n");
pWalk->currentPoint.x = pWalk->firstPoint.x;
pWalk->currentPoint.y = pWalk->firstPoint.y;
return (false);

}

main()
{

gxShape theShape;
gxPoint location = {ff(100), ff(100)};
TestWalkRec walker;
Boolean result;

theShape = GXNewText(5, "Hello", &location);
GXSetShapeTextSize(theShape, ff(50));
GXSetShapeType(theShape, gxPathType);
GXSetShapeFill(theShape, gxClosedFrameFill);

result = ShapeWalker(theShape, TestMoveto, TestLineto, TestCurveto, TestClosepath, &walker);
GXDisposeShape(theShape);

}

Listing 1. Sample application using the ShapeWalker library (continued)

Thanks to Dave Hersey, Ingrid Kelly, and Dave Polaschek for
reviewing this column.•

Q What books and articles would you recommend that provide strategies for debugging?

A Here’s a list of resources that can help you with debugging on the Macintosh:

• How to Write Macintosh Software by Scott Knaster and Keith Rollin
(Addison-Wesley, 1992). This book describes how to find all the bugs you
wrote when you used memory manipulation in C.

• Debugging Macintosh Software With MacsBug, by Konstantin Othmer and Jim
Straus (Addison-Wesley, 1991), and MacsBug Reference and Debugging Guide
by Apple Computer, Inc. (Addison-Wesley, 1990). These books don’t
describe the latest version of MacsBug; check the MacsBug 6.5.2 release
notes for additional details.

• “Macintosh Debugging: A Weird Journey Into the Belly of the Beast” by
Bo3b Johnson and Fred Huxham, develop Issue 8, and “Macintosh Debugging:
The Belly of the Beast Revisited” by Fred Huxham and Greg Marriott,
develop Issue 13.

• “Debugging on PowerPC” by Dave Falkenburg and Brian Topping, develop
Issue 17.

• “Balance of Power: MacsBug for PowerPC” by Dave Evans and Jim
Murphy, develop Issue 22.

• “KON & BAL’s Puzzle Page,” in every issue of develop since Issue 9.

Q I have a customer who’s encountering a problem using my product. Can you suggest a
way to use MacsBug to diagnose problems at a customer site?

A Yes. Here, in a few easy steps, is a technique for using MacsBug to diagnose
problems in the field:

1. Install a clean copy of the latest MacsBug.

2. Create a file using ResEdit (or Resorcerer, or whatever) containing an
'mxbm' resource (which contains MacsBug macro definitions) and install it
into the MacsBug Preferences folder.

3. In this 'mxbm' resource, define the macro everytime to call the stdloginto
macro as follows:

stdloginto 'Send to the programmer'

This way, if MacsBug is ever invoked due to a program error, a log of what
occurred will be automatically generated. The log, named “Send to the
programmer,” will appear on the desktop.

4. Have your customer send you the log file created by the above steps.

See page 219 of the MacsBug Reference and Debugging Guide by Apple Computer,
Inc. (Addison-Wesley, 1990) for details of the everytime macro. For details of
what the stdloginto macro does, look at the 'mxbm' resource named “log stuff”
in MacsBug’s resource fork.

Q We’re developing an application that uses Apple Guide. It’s working well on 680x0
Macintosh computers but is presenting a problem on the Power Macintosh, because of
AppleGuideGlue. If we import this library as “weak,” the program runs but crashes
when we call any Apple Guide routines. If we import “strong,” the program simply
refuses to run. What can we do?

Macintosh
Q & A

develop Issue 27 September 1996102

A Linking with the .xcoff file produces a reference to a shared library named
AppleGuideGlue. Unfortunately, the Apple Guide extension provides a library
named AppleGuideGlueLib instead, so the reference isn’t resolved and the
application fails to launch.

The AppleGuideGlue.xcoff file has been changed to AppleGuideGlueLib.xcoff
on the latest Mac OS SDK CD. You can use that one, or just rename the one
you have before including it in your project.

In MPW, you can rename the library in the link process. If you’re using Symantec
C or C++ or CodeWarrior, however, the name of the file has to be correct for
the matching library to be found at run time. Note that CodeWarrior ignores
the “.xcoff” suffix if it’s present in the filename, while Symantec must have the
“.xcoff” suffix to properly include the file in the project.

Q My QuickDraw GX printer driver has a 'ptyp' of “A4 portrait” as the default paper
type (via the isDefaultPaperType flag). But when a user chooses my driver from the
Page Setup dialog, A4 is selected as the default paper type in the desktop printer, though
my driver has no 'ptyp' named A4. How can I set my own paper type (A4 portrait) as
the default?

A The paper-matching code is working incorrectly. QuickDraw GX internally
adds the standard paper types (such as A4 and US Letter) to the options for
your driver. The bug is that QuickDraw GX thinks it’s finding a better fit for
the current page dimensions than the assigned A4 portrait paper type. It then
defaults to the internal A4 paper type.

The only workaround at this time is to remove the paper type that you’re
incorrectly defaulting to. If you’re defaulting to a nonstandard paper type, such
as Letterhead, Stationery, or Three-hole Punch, the best workaround is to remove
that type from the Extensions folder. If you’re defaulting to another paper type,
the easiest thing you can do is to open your driver with a resource editor and
remove or edit the 'ptyp' resource for the paper type that’s incorrectly matching.
(Open the resource and you’ll see the paper type name embedded in the data.)

Q I’m creating a QuickDraw GX page that contains a line of single-layer text shapes, with
each word a different color. The page displays correctly when it’s opened in SimpleText
but shows a bug when it’s printed to a PostScript printer: each line prints with one color
instead of each word being a different color. Any ideas?

A This is a bug that occurs only with single-layer text shapes that have a nil style
in their face layer. There’s a workaround that should be used anytime you do a
one-layer text face, except for italics — this workaround slows down italic drawing
but speeds up all other cases.

Create a “generic” style object (with GXNewStyle) to replace the nil style. Set
the text size to 1.0 (important) and the pen to 0 in the style. The other fields are
irrelevant to this fix. Set your text face’s style to this “generic” style and the
problem will disappear.

Q I’m having a problem, apparent at very small font sizes (6 points and below), with the
output quality of some fonts that emerge from a QuickDraw GX vector driver. My
application uses gxLayouts for text display and editing. If I create my output using

MACINTOSH Q & A 103

GXDrawShape to render the layout shapes, the small characters begin to look very
crude: character height varies by about 30% between some letters, and curved letter
forms degenerate to rough polygons. What can I do to improve the quality?

A Layouts (like all typographic shapes) have hints turned on by default. If the font
you’re using isn’t hinted at small point sizes, using hints messes up the appearance
of the text rather than helping it. Try using the layout shape and setting the
gxNoMetricsGridText and gxNoContourGridText bits in the text attributes.
The results at small sizes should be better.

Q I’m writing an Open Transport client program, and I’m confused about how to perform
an orderly release when I receive the T_ORDREL message. When I get the T_ORDREL
message I’m supposed to call OTRcvOrderlyDisconnect. The documentation for
OTRcvOrderlyDisconnect says that I can then continue to send data but that I can’t
read data without getting an “out of state” error (kOTOutStateErr). Is this correct?

A Yes, it is. Your confusion is due more to the dynamics and subtleties of X/Open
Transport Interface (XTI) programming than to Open Transport itself.

Let’s examine an orderly disconnect situation. Assume that two nodes have an
established TCP connection. Endpoint A has finished sending data and
indicates closure by invoking an OTSndOrderlyDisconnect call (this translates
into sending an end-of-file signal — FIN — over the wire). Endpoint B receives
a T_ORDREL message. If, however, B hasn’t finished receiving the data, B
must continue until it gets back kOTNoDataErr. At this point, B initiates an
OTRcvOrderlyDisconnect (which acknowledges A’s FIN). This is known as a
“half-close”; B can still send data to A (which will still receive T_DATA events),
but if A attempts to send to B, A will receive an “out of state” error.

A, of course, should also continue accepting data until receiving kOTNoDataErr.
A should then call OTRcvOrderlyDisconnect, thereby completing the other
side of the link teardown. Both sides can then unbind.

If, however, either endpoint’s network code is written such that T_ORDREL and
T_DATA events are handled at different priorities (for instance, the T_ORDREL
is handled at the notifier, but the T_DATA is deferred to SystemTask time), a
race condition can occur. Your program must ensure that all data has been read
before calling OTRcvOrderlyDisconnect.

There’s also a subtlety of XTI programming that you should be aware of. It’s
possible that OTSndOrderlyDisconnect or OTRcvOrderlyDisconnect will
return with a TLOOK error. This means that there’s another event pending;
your program must call OTLook to gather that event.

According to the XTI specification, the OTSndOrderlyDisconnect and
OTRcvOrderlyDisconnect calls can fail because of a pending T_DISCONNECT
event. XTI is trying to tell you that the connection to that endpoint broke. This
can happen easily in our modern, wacky, asynchronous world of networks, and
your program will have to call OTRcvDisconnect to acknowledge that your
endpoint dropped.

Q I’ve implemented a server endpoint that hands off the connection to a hand-off endpoint.
After the server processes a connect request with the OTAccept call, the asynchronous
handler for the hand-off endpoint is passed a T_DATA event. When the handler makes

develop Issue 27 September 1996104

the OTRcv call, however, it returns error -3168 (kOTStateChangeErr). Can you
explain this?

A This problem occurs only when there’s a hand-off (secondary) endpoint involved.
The way Open Transport is implemented, it’s possible for an asynchronous
hand-off endpoint to receive a T_DATA event before the connect mechanism is
completed. After accepting a connection, an asynchronous listener endpoint can
expect to receive a T_ACCEPTCOMPLETE call. The “accepting” or hand-off
endpoint can expect to receive the T_PASSCON event.

It’s possible for the hand-off endpoint to receive the T_DATA event before
receiving the T_PASSCON event, and this apparently is what’s happening to
you. When this happens, set a flag to defer receiving the data until later. After
the T_PASSCON event is received, check the flag and issue the OTRcv call if
the flag is set. (Note that after deferring the handling of the T_DATA event,
your handler won’t receive this event again until you process all of the data
presently available.)

Q What’s the relationship between the classic AppleTalk “self-send” variable and the one
in Open Transport AppleTalk?

A In version 1.1, Open Transport AppleTalk shares the self-send variable with
classic AppleTalk, so if you set the variable with the classic PSetSelfSend call,
the effects are seen by both AppleTalk and Open Transport clients. If you’re
using Open Transport, you can change the variable with an OTIoctl call, as
shown here:

enum {
kATalkFullSelfSend = MIOC_CMD(MIOC_ATALK, 47)

};

static OSStatus OTSetSelfSend(EndpointRef ep, Boolean enable_self_send)
{

OSStatus result;

result = OTIoctl(ep, kATalkFullSelfSend, (void *) enable_self_send);
if (result > 0)

result = 0;
return result;

}

Note that like the PSetSelfSend call, the OTIoctl call returns the previous value
of the self-send variable as either 0 (it was previously disabled) or 1 (it was
previously enabled). As in classic AppleTalk, it’s rarely appropriate to restore the
value of self-send when you’re done, so the code above maps both results to 0
(noErr).

Here’s why the value shouldn’t be restored. The self-send value is a Boolean,
not a counter. For example, imagine the following sequence:

1. Self-send starts out false.

2. Client A sets self-send to true and is returned false as the previous value.

3. Client B sets self-send to true and is returned true as the previous value.

4. Client A quits, “restoring” self-send to false.

MACINTOSH Q & A 105

In the end, client B is left with self-send set to false, which is incorrect.

For this reason, the standard practice is to set self-send if you need it and not
attempt to restore it when finished. Because many clients follow this convention,
it’s important that your program work even if self-send is true.

Future versions of Open Transport will most likely have self-send always on for
Open Transport native clients, and loop-back packets will be filtered out only
for classic clients if PSetSelfSend wasn’t called.

Q When I make a synchronous OTConnect call from a TCP client to a TCP server that’s
passively awaiting an incoming connection, I find that even before the server responds
with the OTListen and OTAccept calls, the OTConnect call completes with no error. At
this point, if I examine the client endpoint state, I find that it’s in the T_DATAXFER
state. Can you explain this?

A As mentioned in the XTI specification (available with the Open Transport
release), “TCP does not allow the possibility of refusing a connection indication.
Each connect indication causes the TCP transport provider to establish the
connection. Therefore t_listen() and t_accept() have a semantic which is slightly
different than that for ISO providers.” Consequently, the server will accept the
TCP connection request if the current number of connections allows it. The
XTI specification states that “when the transport detects a T_LISTEN, TCP
has already established the connection.” The client, whether in synchronous or
asynchronous mode, will receive notice that the connection was established. For
synchronous endpoints, TCP completes the three-way connection handshake.
For asynchronous endpoints, the OTRcvConnect call must be made to complete
the handshake.

Q In my Open Transport TCP-based server application, I use a specific socket for receiving
incoming connection requests. If I relaunch the server immediately after quitting, the
initialization calls complete without error, but the server never receives any incoming
connection requests. If I wait several minutes before relaunching the server, this problem
doesn’t occur. It appears that there’s some internal timeout for disconnected connections.
Is there a solution to this problem so that the server can be relaunched without waiting
for the timeout?

A TCP has a two-minute timeout on a binding after a connection has closed
before the same port can be bound to again. This prevents stale data from
corrupting a new connection. For this reason, you see a delay before you can
successfully bind to the port again.

There’s a way around this, using the IP_REUSEADDR option and the
OTOptionManagement call. Set this option on all of your listening endpoints
before you bind, and the problem should disappear.

Note that even after you use the IP_REUSEADDR option, at most one endpoint
that’s in a state less than connected (listening; unbound doesn’t count) may be
bound to a given port. Any number of connected or closing endpoints may be
so bound to other unique ports, however.

The following sample shows how to set this option. The function takes two
input parameters, the EndpointRef that you want to set the option for, and the
state of the option that you want, typically true. The function returns a result of

develop Issue 27 September 1996106

OSStatus: if negative, it’s the error returned from the OTOptionManagement
call; if positive, it’s the status field returned by OTOptionManagement (this
means the call completed successfully but the status field had a value other than
T_SUCCESS). If 0 (kOTNoError), then of course there was no error.

#include <OpenTransport.h> // Open Transport files
#include <OpenTptInternet.h>
/* input: reuseState (true: no delay, false: normal delay state)

output: if result less than kOTNoError, it's the error returned by
OTOptionManagement. Otherwise, the status value is returned as defined
in OpenTransport.h:

T_SUCCESS = 0x020, return kOTNoError if success
T_FAILURE = 0x040,
T_PARTSUCCESS = 0x100,
T_READONLY = 0x200,
T_NOTSUPPORT = 0x400

*/

OSStatus DoNegotiateIPReuseAddrOption(EndpointRef ep, Boolean reuseState)
{

UInt8 buf[kOTFourByteOptionSize]; // Buffer for fourByte option
TOption* opt; // Option ptr to make items

// easier to access
TOptMgmt req;
OSStatus err;
Boolean isAsync = false;

opt = (TOption*)buf; // Set option ptr to buffer.
req.opt.buf = buf;
req.opt.len = sizeof(buf);
req.opt.maxlen = sizeof(buf); // We're using req for the

// return result also.
req.flags = T_NEGOTIATE; // Negotiate for option dealing
opt->level = INET_IP; // with an IP-level function.
opt->name = IP_REUSEADDR;
opt->len = kOTFourByteOptionSize;
(UInt32)opt->value = reuseState; // Set the desired option

// level, true or false.
if (OTIsSynchronous(ep) == false) { // Check if ep is synchronous.

isAsync = true; // Set flag if async.
OTSetSynchronous(ep); // Set endpoint to sync.

}
err = OTOptionManagement(ep, &req, &req);
if (isAsync == true) // Restore ep state if necessary.

OTSetAsynchronous(ep);

// If no error, check the option status value.
if (err == kOTNoError) {

if (opt->status != T_SUCCESS) // If not T_SUCCESS, return
err = opt->status; // the status.

}
return err;

}

Q I’m implementing a passive TCP connection. Can I hand off the connection to a different
port address?

MACINTOSH Q & A 107

A No, the hand-off connection endpoint must be bound to the same address as
the endpoint that passed off the connection. This is an XTI requirement, as
discussed in Appendix B of the XTI specification, Section B.3.

Q I’d like my network client software to be able to abort an asynchronous OTConnect in
progress — to allow a user, for example, to recover from an attempted connection to a
nonexistent IP address. I’ve been calling OTSndDisconnect to abort it, but when I check
the return code, I get a kOTOutStateErr error. What gives?

A Using an OTSndDisconnect is the proper way to abort an OTConnect in
progress. After a successful call to OTConnect, the endpoint state will transition
from T_IDLE to T_OUTCON. Calling OTSndDisconnect returns the
endpoint state to T_IDLE.

You may be getting kOTOutStateErr for one of the following reasons:

• The original OTConnect failed. Determine this by checking the OTConnect
result.

• The connection broke and was asynchronously handled by your notifier. In
this case, your endpoint would no longer be in the T_OUTCON state
before you do the disconnect.

A good rule of thumb is always to confirm the endpoint state before doing the
OTSndDisconnect to ensure that the endpoint isn’t already disconnected.

Q I have a question regarding T_DATA event handling for multiple active endpoints.
Let’s say I have two endpoints open, endpoint 1 and endpoint 2. Data arrives for
endpoint 1, which then receives a T_DATA event. If data arrives for endpoint 2 before
the data for endpoint 1 is read, it’s my understanding that endpoint 2 won’t get a
T_DATA event until the data for endpoint 1 is read. Is that correct? In other words, does
Open Transport queue multiple T_DATA events corresponding to multiple endpoints?

A XTI or Open Transport endpoints are handled independently of each other.
Whatever events are pending on one endpoint have (for the most part) no effect
on any other endpoints.

Assume that endpoint 1 gets notified of a T_DATA event. Following this, a
separate T_DATA event is queued up for endpoint 2. As soon as the notifier for
endpoint 1 completes and returns to Open Transport, the notifier for endpoint 2
will be invoked. This behavior isn’t contingent upon whether endpoint 1
processed the event, although of course endpoint 1 won’t receive any more
T_DATA events until its current T_DATA event is cleared. Keep in mind that
waiting too long to process endpoint 1’s T_DATA event will result in the
exhaustion of buffers in the lower protocol layers.

Q Given an AppleTalk network and the node address of a Macintosh, how can I remotely
retrieve the Network Name specified in the Sharing Setup control panel?

A The only universal way to determine a Macintosh’s “flagship” name is to target
an NBP lookup of type “workstation” to that particular node. At first glance, it
would seem that we could get the desired result by calling PConfirmName
(since it allows us to direct the NBP LkUp to the specific node by using the
confirmAddr field, whereas PLookupName would broadcast it to an entire

develop Issue 27 September 1996108

zone). The PConfirmName call doesn’t return the NBP Tuple information to
the application, however: under classic AppleTalk, PConfirmName’s sole
purpose is to confirm or deny the existence of a registered NBP name. This
leaves you with several alternatives.

Under classic AppleTalk, you have two options. The first option is to use the
PLookupName call. This is a little complicated because PLookupName
requires that you specify the “zone name” of the target node. You have to call
GetZoneList and parse through the replies (illustrated in Inside Macintosh:
Networking, page 4-7) to extract a list of zone names that correspond to your
target’s network number. (Note that if you’re on an extended network, it’s
possible for an AppleTalk zone to have a range of network numbers.) Once you
have a list of suspected network zones that the target is on, you can then direct
a PLookupName to those zones and parse through the responses to find the
one that matches your target’s node address.

The second option under classic AppleTalk is to form the NBP LkUp packet
yourself and send it via DDP. You can open and register your own DDP listener
by using the POpenSkt call. You can then form your own NBP LkUp packet
and transmit it to the target node’s NBP listener socket (socket 2) with the
PWriteDDP call. The target will respond to you with an NBP LkUp-Reply,
which will cause your DDP socket listener to be called. You can parse the reply
there.

Writing a DDP socket listener is tricky, but it’s illustrated in the Network
Watch (DMZ) sample provided on this issue’s CD. Examine the doEcho
function in the files dMZAT.c and SktListener.a. Writing a socket listener for
the Power Macintosh can be challenging because of classic AppleTalk’s 680x0
roots. If you’re stuck with a classic AppleTalk system, however, this is the
recommended approach.

If your code is written to run under Open Transport, you’re in luck. You can
specify the target address in the TLookupRequest data structure used by the
OTLookupName function. Check out the DoSendLkUpReq function in
DDPSample.cp, found on any Open Transport SDK CD. Since the programming
model is so much simpler, you may want to investigate the Open Transport
approach.

Q I need to get the full pathname to a document in a callback where the only relevant piece
of information I have is the WindowPtr for the window that contains the document. I
can get the filename from the window title, but I don’t know the directory ID or volume
reference number. Is there any way to obtain the dirID and vRefNum from the
WindowRecord?

A No, there’s no way to extract the file system information you need from a
WindowRecord. A WindowRecord includes only structural human interface
information (which might include the filename as the window’s title) and has no
intrinsic tie to any file on the disk. As you’ve implied, you must have the
directory ID and volume reference number to extract a full pathname. Once
you know the vRefNum and the parent dirID, you’ll be able to use one of the
full path routines in the sample code MoreFiles on this issue’s CD to construct a
full pathname.

If the file is open and you have the refNum for its access path, you can call
PBGetFCBInfo to get the vRefNum and dirID (and then use them to get the

MACINTOSH Q & A 109

pathname). For more information on PBGetFCBInfo, see Inside Macintosh: Files,
pages 2-237 through 2-238.

Q We sell a game that incorporates our own proprietary 3D technology. We’d like to be
able to take advantage of 3D acceleration hardware, if it’s available on the user’s
system. What do you recommend we use?

A Use the Rendering Acceleration Virtual Engine (RAVE) application development
interface, which defines an abstract standardized hardware interface for
applications to communicate with and control 3D hardware. If you adapt your
game to draw to RAVE, it’ll be compatible with any hardware 3D accelerators
with RAVE-compatible drivers. RAVE is also a cross-platform specification, so
code you write for the Macintosh will be easier to port to Windows 95 or
Windows NT (if at some point in the future RAVE is implemented for Windows).

Q We created a QuickDraw 3D application similar to the TextureEyes demo distributed
by Apple: it maps a moving image texture onto a spinning cube. The display quality of
TextureEyes, however, is much better than ours. We’re using large high-quality textures
(480 x 320), but the image mapped onto the cube is quite chunky even with a 3D
accelerator card, and the animation seems to be slower and jerkier. What’s TextureEyes’
secret?

A No secrets: TextureEyes is a straightforward implementation of the texturing of
QuickDraw 3D geometries. The problem is that the quality of your textures is
actually too high!

QuickDraw 3D uses a trilinear MIP map algorithm to obtain the best possible
quality texture mapping. To create an MIP map from an image requires creating
subimages sized for every inverse power of 4 — that is, 1/4, 1/16, 1/64, and so
on. The process of creating an MIP map for every texture takes time, and larger
textures take longer. TextureEyes uses a 128 x 128 source for its movie and video
textures. For more information on MIP maps, see Computer Graphics: Principles
and Practice, by Foley, VanDam, Feiner, and Hughes (Addison-Wesley, 1996).

Q My quartz watch is eerily accurate. Why?

A A quartz watch uses the vibrations of a quartz crystal as its time reference. The
frequency of vibration in the crystal depends on three factors: voltage, pressure,
and temperature. To keep the watch accurate, all three of these must be kept
constant.

The electronics in the watch provide a nice constant voltage, and the atmosphere
provides a nice constant pressure. But what really ensures that the watch is
accurate is that it’s worn on your wrist: the constant temperature of your body
in contact with the watch ensures that the crystal operates at a constant
temperature.

develop Issue 27 September 1996110

These answers are supplied by the technical
gurus in Apple’s Developer Support Center. For
more answers, see the Macintosh Technical Q&As
on this issue’s CD or on the World Wide Web at

http://dev.info.apple.com/techqa/Main.html.
(Older Q&As can be found in the Macintosh
Q&A Technical Notes on the CD.)•

There are a ton of different ways to learn to shoot pool.
You can just bash the balls around, trying to pocket them,
and eventually you’ll get better at it. You can play games
with other people, which increases the motivation
somewhat, and probably learn a little faster. (Some
people claim you should always play for money, because
it makes it matter so much more.) But one of the most
powerful ways to practice pool is plain old drill: setting
up the same situation over and over, trying to make the
shot a little better, a little more accurate, every time.
Concentrated, repetitive drill is incredibly helpful in
the early stages of learning the game, but it doesn’t stop
there. Drill remains a useful practice method virtually
forever. Many experts who have been playing for 30
years still do regular drills, and still benefit from them.

But this stands in sharp contrast to programming,
another skill I like to exercise (and analyze). Drill can
be useful for programming neophytes, for learning
such things as typing and the syntax of the language.
But no experienced programmers I know engage in
regular drill. The thought is actually ludicrous. What
would you do? Write the same loop over and over, trying
to do it a little faster or more accurately each time?
Create a Hello World program from scratch 100 times
in a row so that it becomes automatic? I don’t think so.

So what’s the difference between learning programming
and learning pool? Why does drill have lasting value
for one but not the other?

A worthy question, I thought to myself. It’s deep
enough that the answer should take a while to find,
and interesting enough that the journey will keep my
attention. So I girded myself for a long and arduous
quest, set off smartly to find the answer, and stumbled
over it immediately: drill is useful for learning mechanics
— like high-precision muscular tasks — but it isn’t very

useful for learning high-level problem-solving skills.
Since experienced programmers spend most of their
time on problem solving and very little on mechanics,
drill just isn’t an effective tool for getting better at
programming once you’re past the early stages.

Well, jeez, that was too easy. Isn’t there more to it than
that? Surely there must be deep and profound differences
between learning to shoot pool and learning to program,
since the tasks themselves are so completely different.
Programming is like — well, you know what it’s like, or
you wouldn’t be reading develop. It’s mostly abstract and
logical, and most of the real action takes place deep in
your head or deep in the machine, far from the real
world. Shooting pool is something else altogether. It’s
unabashedly physical, it often defies logic, and the action
takes place where everyone can see it, on a huge table
made of wood and slate and rubber and cloth.

I started playing pool fairly seriously several months ago,
and I’m still embarrassingly terrible at it. In my typical
overenthusiastic, obsessive-compulsive fashion, I dove
in with both feet: I researched pool at the library, bought
and read pool books, studied pool videotapes, cruised
the Net for pool stuff, and jabbered about pool to anyone
who came within earshot. The result was perhaps
predictable. In no time, my knowledge of pool theory
completely outstripped my ability to put it into practice.
So although I could often see what to do in a certain
situation, I couldn’t actually do it. All bark, no bite.

To rectify this situation I started doing the only thing
that would help: practicing doggedly. I took a lesson
from a good instructor, and started hanging out at the
pool hall as much as possible, putting in the practice
time. Of course I was hoping that I’d suddenly make
remarkable improvements in my game. But remarkable
improvement is tough to come by in pool.

At first glance pool seems like it should be very
straightforward. You have nearly perfect spheres
undergoing nearly perfectly elastic collisions, so the
paths of the balls should be nearly perfectly predictable,
right? Wrong. Like most things that take place in the
real world (as opposed to inside a computer), there’s a
whole seething world of subtleties and nonlinearities
and complexities just beneath the surface. The actual
grungy details — the drag of the cloth, the spin of the
balls, the fleeting grip they have on each other when
they collide — all affect the paths of the balls profoundly,
and are so complex and intertwined that people argue
endlessly about what’s really going on. Superstitions,
theories, rough approximations, and empirical formulas

THE VETERAN
NEOPHYTE

Your Friend the
Drill Sergeant

DAVE JOHNSON

THE VETERAN NEOPHYTE: YOUR FRIEND THE DRILL SERGEANT 111

DAVE JOHNSON (dkj@apple.com) recently determined that
there are 6451 books currently in print whose titles begin with

“How to…” He’s wondering how he’ll ever find the time to read
them all.•

abound. And all this complexity is set in motion in one
tiny instant, by the impact of a chalked leather cue tip
on a smooth plastic ball for a few milliseconds. If you
ever needed an example of something with a sensitive
dependence on initial conditions, this is a doozy.

Because of its complexity and sensitivity, progress in
pool is slow no matter how you approach it. Playing pool
is one of those things you can do all your life and keep
getting better at, like playing a musical instrument. And
like learning an instrument, just playing is lots of fun,
and can be fine practice. But concentrated drill on the
basics, especially for a beginner like me, helps in a way
no other kind of practice can. When I started regularly
doing drills, the effect on my game was immediate and
tangible (if not as remarkable as I might have liked).

Good drill in pool involves intentional, conscious
moving of your muscles the same way over and over,
paying attention to the details of arm position, follow-
through, rhythm, aim, and so on. You’re trying to
consciously train your muscles to learn the motions,
so that those motions can be performed unconsciously
later. To use a handy computing metaphor (always a
good idea when talking to programmers), drill is like
programming an EPROM: it pushes something that
initially requires conscious control (the software) down
into the unconscious realm (the hardware). Drill helps
you deliberately “wear grooves” in your brain.

But that kind of “hardware” programming happens
with any learning experience; it’s not unique to drill. In
fact, that’s what learning is. Drill is just one kind of
focused, repetitive practice that helps you learn certain
things faster. All learning involves pushing stuff “down
into the hardware.” (And I mean that literally: scientists
are starting to identify the physical changes that happen
in brains when animals learn.) To muddle my metaphors
a little, learning is like climbing an endless terraced hill,
where what you learn becomes the ground you stand on
to reach the next level. Details that once required your
full attention get tucked down into the unconscious
realm and are hidden, in the same way that the details
of your code get tucked down into subroutines and are
forgotten. The point is this: once you learn anything,
you can climb up on top of it, and other things that
were unreachable before are brought within your grasp.

In my zeal to uncover the differences between learning
pool and learning programming, I failed to notice the
most remarkable thing of all: their similarity. The two
goals couldn’t be more different. Programming is the
crafting of precision machinery in a tightly controlled

environment; pool is poking a ball with a stick (albeit in
precise and skillful ways). Yet learning the two skills —
for that matter, learning anything — is the same process.
In fact, the more examples of learning I looked at,
trying to categorize and separate them, the more the
differences faded and the similarities came into focus.

In every case, learning is the same kind of journey. We
climb that tiered structure, that terraced hill, standing
on what we’ve learned before so that we can reach the
new stuff. We slowly convert tasks that initially require
our full attention into automatic, mechanical ones, and
that conversion to mechanics is what allows us to turn
our attention to more meaningful, higher-level tasks.

Attention seems to be the limiting factor here — we
don’t have much of it. Reaching once again for the low-
hanging fruit on the computational metaphor tree,
attention is like a single-threaded program with a tiny
stack: we can only pay attention to a small handful of
things at a time. The funny thing is that our brains
aren’t single threaded at all. Far from it! They are
unbelievably prodigious and capacious things, and they
actually are handling all the details, all the way down.
We just aren’t aware of it. And believe me, that’s a good
thing.

Without some way to convert conscious activities into
unconscious ones, to push the details down out of sight
— to program ourselves — we’d never get anywhere. Our
meager helping of attention would be used up in no
time. If we had to struggle with typing and syntax on
every line of code we wrote, we’d never get the program
written. If we had to consciously move each and every
muscle all the time, we actually wouldn’t be able to walk
and chew gum at the same time — plain old standing
around would probably be out of the question, much
less hitting the cue ball with a little right English to
sink the eleven ball and go two rails down table to get
position on the thirteen. Lucky for us, the ability to
program ourselves is built in. With a little desire and
disciplined practice, we can do truly amazing things.

And oh, I do want to sink that thirteen ball. I really,
really do…

develop Issue 27 September 1996112

Thanks to Lorraine Anderson, Jeff Barbose, Brian Hamlin, Bo3b
Johnson, and Ned van Alstyne for their review comments.•

Dave welcomes feedback on his musings, so please let him
know what you think.•

• Byrne’s Standard Book of Pool and Billiards by
Robert Byrne (Harcourt Brace, 1987).

RECOMMENDED READING

Q How can I open an application so that it displays a particular data item?

A If the target application supports Find, you can do that as long as three things
are true:

• You know the application symbol.

• You know the application soup name and data format.

• The application supports the ShowFoundItem message.

If all of these are true, you can send the application the ShowFoundItem message
with the appropriate arguments. Check the Newton Programmer’s Guide for the
arguments to ShowFoundItem. Be aware that not every application takes a soup
entry as one of the arguments. That’s why you need to know the application’s
data format. You can check whether the application supports the ShowFoundItem
message with the following code:

local theApp := GetRoot().(kAppSymbol);
if theApp AND theApp.ShowFoundItem exists then

// application installed and supports the message

Q We have an application for a Newton device that communicates with the desktop. Because
of the structure of our data, we’d like to be able to request a particular NewtonScript
object. We thought of sending the reference or address of the NewtonScript object to the
desktop and using that as the identifier, but we could find no way to do this. Are we
missing something?

A Unfortunately (or fortunately, depending on your point of view), Newton 2.0
OS doesn’t provide a way to get the memory address of an object. Actually, since
NewtonScript can relocate objects at will, providing an address would not be a
good idea. There’s an alternate approach: you can maintain an array of the
objects you want to export. The array index can be used in much the same way
as the address. As an example, in the code below, the memory “address” for
object2 would be 1. In other words, myObjectArray[1] would give you object2.

object1 := "foo";
object2 := {can: 'aid, eee: "an", a: "...yep"};
object3 := [1,2,3];
myObjectArray := [object1, object2, object3];

If you need to indicate that an object has already been transferred to the desktop,
you can simply replace the object at the relevant array index with NIL.

Q I’m designing my data structures. I figure I could use either two cursors onto two
different soups or two cursors onto the same soup. Which is the more efficient solution?

A You can measure efficiency in two relevant ways: by time or by memory usage
(or both). The time to create the two cursors will be the same regardless of the
number of soups, but more heap space will be required for two soups. With two
soups, it may take less time to find items that exist in just one soup than when

Newton
Q & A:
Ask the
Llama

NEWTON Q & A: ASK THE LLAMA 113

The llama is the unofficial mascot of the
Developer Technical Support group in Apple’s
Newton Systems Group. Send your Newton-

related questions to dr.llama@newton.apple.com.
The first time we use a question from you, we’ll
send you a T-shirt.•

searching a larger, combined soup. However, with two soups you won’t get as
much benefit from the operating system’s caching of the entries; there’s more
overhead information to swap in and out of the heap, which increases the time
required to get data.

The real answer is to test it with your actual data and see. Overall, two cursors
on one soup sounds like the more efficient way to go. Your question implies that
you’re going to have two completely different sets of data. You can do this in
one soup by using indexes, because entries with either no indexed slot or NIL in
an indexed slot won’t participate in that index. That is, when you create a cursor
that uses that index, entries with NIL values will be ignored by that cursor.

Something that might occur to you is using tags to implement the two different
sets of data (that is, each set would have a unique tag value), but this doesn’t
work as well as using an index. With an index, you can navigate to an entry in
O(log n) time, where n is the number of entries that are in that index. In other
words, the time taken to navigate to a particular entry will be directly related to
the log of the total number of entries. If your query includes a beginKey/endKey
or startExclKey/endExclKey subrange, the system finds that subrange very
quickly. It can then quickly step through entries in between.

The operating system gets the set of tags for an entry efficiently, but it has to
know which entries to get the tags for first. So with no other way to narrow the
search, it will check all the entries, assuming you aren’t using an index. Getting
the tags is actually very efficient, but indexes work better for subranging.

Q I’m trying to compile a program that works with both Newton 1.x and Newton 2.0 OS
devices; however, it won’t compile. Newton Toolkit complains that I have a bad magic
pointer, but I know that the value is defined in the MessagePad platform file. The
offending code is as follows:

local theCountries :=
call kGetUserConfigFunc with ('commonCountries);

if ClassOf(ROM_Countries) = 'frame then
// on a 1.x unit
labelCommands := foreach item in theCountries collect

ROM_Countries.(item).name;
else

This would give a nice pop-up menu of countries on a 1.x unit. Why doesn’t it work?

A This is a subtle problem. In Newton Toolkit 1.5 and later there are certain
functions called constant functions that will evaluate at compile time when their
arguments are constant. The most common ones are GetLayout, which will
return a reference to another Newton Toolkit layout, and LocObj. The ClassOf
function is another one of these.

At compile time, a magic pointer is considered a constant value. That means
that the ClassOf call in your conditional is executing at compile time. Of course,
there’s no Newton device around at compile time, so Newton Toolkit is unable
to dereference the magic pointer. Hence the error.

One workaround is to set a local to the value of the magic pointer and use that
local in your conditional. This works because the value of the argument to
ClassOf is no longer a constant, so it will not be called at compile time.

develop Issue 27 September 1996114

local mpCountries := ROM_Countries;
if ClassOf(mpCountries) = 'frame then

Q My communications program has a number of standard packets of information. I’m
trying to set up constants for each of these standard packets. However, for the packet

constant kHaltAndCatchFireMessage := "\u102cff1003";

Newton Toolkit complains that there’s an “odd number of digits between \u’s.” I count
ten, which looks even to me. Does Newton Toolkit need a remedial math course?

A Actually, Newton Toolkit is doing fine in math, but it should say “bytes” instead
of “digits.” There are ten hex digits in your string, but there are two hex digits
per byte, so your string is five bytes long. Since Unicode is a double-byte
representation, there are four hex digits per Unicode character. You have ten
hex digits, or two and a half Unicode characters, which is an invalid Unicode
string.

You can either add two more hex digits to your string or use the MakeBinary
and Stuff... functions. If you’re dealing with data that’s not strings, the latter
method is the best one for compatibility. It’s also likely to keep you saner.

Q I’m trying to dial the following number using a Newton Fax Modem with my
MessagePad 130: "18005551234,,,,,,,,1,,,,408-555-1234,,,,123-456-789-123,,,".
I get an error -16013 in my communications code whenever I do this. I need to use the
long string because it contains a calling card number. My modem dials correctly and the
modem at the other end picks up. I even hear the chirping whistle of exchanging bits.
But suddenly things just stop and the error occurs. Any clues?

A Yes. First star on the right, then straight on till morning. But that’s a different
story. In answer to your question, it looks as though you’re timing out on the
connection attempt. Modems have a set amount of time to establish a connection,
and the commas are reducing the time they have. Each of the commas will insert
a delay into the dialing. For most modems, the time for each comma is controlled
by register S08 and usually defaults to 2 seconds. You have 19 commas, so that’s
38 seconds, which leaves very little time for the modems to sync up (the chirping
whistle exchange you’re hearing).

The solution is to increase the timeout of the modem to a more reasonable
value. When you’re thinking about the timeout, remember that each digit will
take around 95 milliseconds to dial. There will also be a line connection time of
about 2 seconds, a ring time of a few seconds, and the final sync-up or negotiation
time of 2 to 15 seconds. You should increase your timeout values to at least 60
seconds. If that doesn’t work, add 30-second increments. You can do a binary
search to narrow it down to an optimal value.

To set the timeout for the modem, use 60 for the waitForCarrier (sixth) argument
of the kCMOModemDialing option. The following bit of code will do this:

// make a modem option data structure based on user preferences
local option := MakeModemOption();
// modify the timeout value
option.data.arglist[6] := 60;
// set that option in your endpoint
ep:Option(option);

NEWTON Q & A: ASK THE LLAMA 115

Q How can I tell whether a tap is the first of a double tap?

A Unfortunately, the RUM (Read User Mind) ASIC didn’t get completed in time
for Newton 2.0 OS, so we were unable to implement the IsFirstTap global
function. We also looked at a wireless link to one of the 900-number pay-by-
the-minute psychic lines but couldn’t figure out how to bill the user.

But seriously, you can’t tell. The best you can do is to hold off processing the
first tap for some amount of time. If you receive another tap in that time, it’s a
double tap. The drawback is that if it isn’t a double tap, you’ve lost the unit
parameter from the first tap, since you can’t save this parameter. The other
option is to follow a user interface guideline: Make the second tap an extension
of the functionality that happens with the first tap. Then there’s no need to
handle the first tap in a special way.

Q We have a problem with union soups. We have an application that creates soups and
transfers them to a PC. The soups can get sent down to a different MessagePad. If the
user inserts a storage card and selects it as the default store, we can’t successfully add an
item to the soup. Our code does a GetUnionSoupAlways, then tries to add an entry
using AddToDefaultStoreXmit. The Newton throws an exception that tells us there’s
no soupDef. We’re sure that the soup doesn’t exist on the store, but we thought that
GetUnionSoupAlways creates the soup if you try to add something. One thing we
thought of was to use RegUnionSoup, but our transfer application doesn’t know what
the soupDef is. Is there a way to copy a soupDef from one store to another or to get the
soupDef from an existing soup?

A Well, first you need some good onions, then some stale French bread, Gruyère
cheese…oh, sorry, I thought you said “onion soup.”

For a union soup to work properly in Newton 2.0 OS, a soupDef must exist in at
least one of two places: it can be registered with the OS via RegUnionSoup, or
it can exist within a soup that’s on a mounted store. GetUnionSoupAlways should
fail if there’s no soupDef present. However, in the current release of the Newton
2.0 OS ROMs it doesn’t. This means the problem is deferred until you first try
to add an entry, which is when the OS tries to create the soup but can’t find the
soupDef. That’s why you get the error on the call to AddToDefaultStoreXmit.
Of course, this doesn’t help you, but there are a few options:

• Make sure that a soupDef is registered, via RegUnionSoup.

• Make sure that an actual soup exists on some store and that that soup contains
an embedded soupDef. The soup doesn’t actually have to have any entries.
You can use the CreateSoupFromSoupDef function or the GetMember soup
message to do this. For example:

RegUnionSoup(kMySoupDef):GetMember(GetStores()[0]);

• Don’t use union soups; instead, have your download application just send
the store either the CreateSoupXmit or the GetSoup message.

• Write some smart code that checks to see if a soup with the same name
exists on any store and duplicate that soup on the new default store. If you
use GetIndexes/CreateSoupXmit and GetAllInfo/SetAllInfoXmit, you
should be able to make a reasonably similar soup.

Unfortunately, there’s no supported way to directly access the soupDef of an
existing soup.

develop Issue 27 September 1996116

Q I have an application that performs some lengthy initializations in the installScript. I
need a slip to come up and inform the user that this action is occurring. The problem is
that the BuildContext slip I create at the beginning of the installScript doesn’t show up
when the installScript is running. How can I get a slip to come up in my installScript?

A I assume that you do something like create the slip, send the slip an Open
message, and then do a tight loop with some initializations. If so, the system has
probably opened your view, but your installScript is still executing. That means
the system cannot refresh the display.

One possible approach is to call RefreshViews to force the system to update the
display. However, if your progress indication is dynamic, you’ll have to call
RefreshViews each time you change the progress slip. A better approach is to
use the DoProgress call, which provides a standard “Your Newton device is doing
something” interface for the user. You may also want to do your initialization in
a deferred action.

Q I’d like to add another item to the address picker pop-up list in my “To:,” “Cc:,” and
“Bcc:” pickers that would allow the user to create an e-mail address without adding it to
the Names soup. The user interface reasoning behind wanting to do this is to avoid
cluttering the Names soup with addresses that are used only once. I’ve successfully added
an item to the picker and caught the pickActionScript for it. The pick item that I want
to use to add this temporary name appears in the protoAddressPicker pop-up list. Now I
want to bring up an editor and add my temporary item. I tried the call

GetDataDefs('|nameRef.email|):New(tapInfo, self);

from my protoAddressPicker’s pickActionScript, but I got an exception: Object {class:
nameRef.email, name: "E-Mail addresses", preferredRouting: [string.email], ...} is
read-only. Why can’t I create a new data object with this?

A Usually answers to these questions are reasonably self-contained; this is an
exception. Before you can understand this answer, you really need to read up on
list pickers and data, or you’ll be tripped up by the subtle differences between
nameRefs and dataDefs.

The transport system uses a structure called a nameRef for information on where
to send things. It so happens that nameRefs use the data definition registry as a
repository. However, a nameRef is a different beastie from a dataDef. To create
a new empty nameRef structure, you can use the call

GetDataDefs('|nameRef.email|):MakeNameRef(tapInfo, self);

Then you can use some sort of floating editor to enter the values. I suggest using
a protoFloatNGo that contains a newtFalseEntryView and then appropriate slot
views for the fields of the nameRef that you want to edit.

NEWTON Q & A: ASK THE LLAMA 117

Thanks to jXopher Bell, Henry Cate, Bob Ebert,
David Fedor, Ryan Robertson, Jim Schram,
Maurice Sharp, and Bruce Thompson for these
answers.•

If you need more answers, check out
http://dev.info.apple.com/newton on the World
Wide Web.•

develop Issue 27 September 1996118

See if you can solve this programming puzzle, presented in the form of
a dialog between Konstantin Othmer (KON) and Bruce Leak (BAL).
The dialog gives clues to help you. Keep guessing until you’re done; your
score is the number to the left of the clue that gave you the correct answer.
Even if you never run into the particular problems being solved here,
you’ll learn some valuable debugging techniques that will help you solve
your own programming conundrums. And you’ll also learn interesting
Macintosh trivia.

KON So, BAL, it seems we need to increase our advertising budget to rope
in more guest Puzzle Page authors.

BAL People don’t realize the fame and fortune that comes with being part
of the Puzzle Page. I heard that one person had a lot of good luck
shortly after making her first Puzzle Page submission.

KON I heard that another person who thought about submitting a column
to the Puzzle Page, but then decided not to, lost some valuable files.

BAL Enough chain letter tactics. Maybe if we write another column about
QuickDraw or QuickTime, someone will be hungry enough for a
change of pace to submit his own Puzzle Page.

KON I figure we should talk about the Internet and then take the Puzzle
Page public! $10 to $12 a share sounds about right to me. Then we can
have some serious writing bounties!

BAL Maybe we’ll change the medium. Instead of printing it, we’ll deliver it
over TV.

KON OK, actually I do have a weird problem. It might be QuickTime-
related. I’m trying to do some video digitizing, but every time I bring

KONSTANTIN OTHMER AND BRUCE LEAK
dropped off this press release in lieu of the usual
biographical information:

PALO ALTO, California, April 1, 1996 — BalKon
Heavy Industries today announced PuzzleMill™,
a next-generation, low-cost, networked virtual
puzzle architecture for the World Wide Web,
corporate intranets, infinity, and beyond. “Along
with our industry-standard Puzzle Page column,
we’ve set the agenda for digital puzzling into the

next century,” said BAL, BalKon’s senior vice
president for corporate restructuring. BalKon’s
executive vice proconsul for corporate misconduct
KON will be acting as grist for the PuzzleMill
until a sack of flour can be found to replace him.
KON let spill that the beta version of PuzzleMill
can be downloaded free of charge from
http://www.always.balkon.com “until we
achieve critical mass, at which point we’ll charge
as much as we want for it, darn it.”•

KON & BAL’S PUZZLE PAGE

QuickTime Quandary

KONSTANTIN OTHMER
AND BRUCE LEAK

up the Video Settings dialog to choose a compression method, my
machine locks up.

BAL Locks up? How? Dead cursor, no MacsBug, the works?

100 KON The cursor is still alive. I can even go into MacsBug and choose Exit to
Shell and everything’s fine. But I can’t capture video since the dialog
just hangs.

BAL What does the dialog look like when it hangs? Can you click in other
applications?

95 KON The basic structure is there. It draws the outline of the Choose CODEC
pop-up menu, but there’s no text. You can click all you want, but no
context switch occurs. You’re stuck.

BAL I’ve never heard of that before. Why does this stuff always happen to
you, KON?

KON Believe me, I’d love to know the answer to that puzzle!

BAL With all your problems, you should write a book on debugging.

KON Anyway, back to my QuickTime nightmare. Any ideas?

BAL Clearly, that case has worked for millions of people for a long time.
Tell me more. There’s probably something funny about your machine.

90 KON I have a Power Macintosh 8100/80. I had an HPV card but then traded
Shannon for his AV card. I tried to buy an AV card, but it’s really hard
to get one.

BAL You always have weird hardware and other stuff. What version of the
system are you running? This isn’t some beta card again, is it?

KON I had version 7.1.2 originally, but as soon as I started having problems
with QuickTime I figured I’d take the opportunity to “upgrade” to
System 7.5. All my hardware is stock Apple stuff. I’ve written a lot of
crazy programs, the results of many of which have appeared in these
pages, but the hardware seems to be kosher.

BAL Which version of 7.5?

KON I started with plain 7.5. Then I heard about the fix release, so I
upgraded to 7.5.1. I put the project on hold for a while, and heard
about a fix for the fix, so I installed 7.5.2. There was a fix-cubed
release, so now I’m running 7.5.3 and it still happens. Maybe I should
wait for 7.5.4?

BAL Come on, KON. Clearly the problem isn’t related to a system release.
You did a clean install, right?

KON Last I heard, the magic incantation was to drag the Finder inside the
Preferences folder, rename the System Folder, jog around your chair
three times, and say a prayer.

BAL Did you sacrifice a frog?

85 KON Seriously, the system install is fine.

BAL What version of QuickTime is it?

80 KON QuickTime 2.1. That was the latest version I could find. Movies play
back OK — it’s just this capture thing that’s giving me fits.

BAL I guess you’ve tried replacing QuickTime. Does this happen in other
applications as well?

KON & BAL’S PUZZLE PAGE: QUICKTIME QUANDARY 119

KON I’ve tried three different applications. Every one has the exact same
symptoms: it locks up when it brings up the Video Settings dialog.

BAL On one level that makes sense. Applications just call QuickTime to put
up that dialog. But what doesn’t make sense is that you have a clean
system install, standard Apple hardware, and the latest QuickTime
version, and it hangs. That’s crazy. Any weird extensions or anything?

KON Nope. Totally clean install.

BAL Swap the hard drive.

70 KON Still happens.

BAL Swap the video card.

60 KON 60 and falling fast.

BAL The monitor?

KON Let’s leave sense-line bugs for a later date. Now that you’ve swapped
out the whole system except the motherboard, the TV repairman
approach is over.

BAL Fine. Give me MacsBug. I’ll break into the debugger when the system
hangs and try to figure out what’s going on.

50 KON It looks like you’re in the Font Manager routine RealFont, which is
being called from a loop in QuickTime. Here’s what it looks like:

Disassembling from 1C5B562
'CDEF 0064 0F6E'

+015B2 01C5B562 MOVEQ #$01,D0 |7001
+015B4 01C5B564 MOVE.W D0,-(A7) |3F00
+015B6 01C5B566 _TextFont ; 0019D0E4 |A887
+015B8 01C5B568 MOVEQ #$08,D6 |7C08
+015BA 01C5B56A BRA.S 'CDEF 0064 10E6'+015CA ; 01C5B57A |600E
+015BC 01C5B56C SUBQ.L #$2,A7 |558F
+015BE 01C5B56E MOVEQ #$01,D0 |7001
+015C0 01C5B570 MOVE.W D0,-(A7) |3F00
+015C2 01C5B572 ADDQ.W #$1,D6 |5246
+015C4 01C5B574 MOVE.W D6,-(A7) |3F06
+015C6 01C5B576 *_RealFont ; 408C2B2E |A902
+015C8 01C5B578 MOVE.B (A7)+,D7 |1E1F
+015CA 01C5B57A TST.B D7 |4A07
+015CC 01C5B57C BEQ.S 'CDEF 0064 10E6'+015BC ; 01C5B56C |67EE
+015CE 01C5B57E MOVE.W D6,-(A7) |3F06
+015D0 01C5B580 _TextSize ; 0019D18C |A88A

BAL Aha! It’s starting to sound a little like a QuickDraw bug to me! What
kind of nastiness did you put in that code, KON?

40 KON Not so quick, pal. RealFont is returning just fine. But the loop calling
it doesn’t terminate.

BAL Well, RealFont just tells you whether a particular font size exists.
QuickTime calls RealFont to make sure that the drawing operation in
the Video Settings dialog will look good: if the requested font size
doesn’t exist, things will scale and look really ugly. In that case,
QuickTime increments the font size and keeps looking.

KON OK.

develop Issue 27 September 1996120

BAL These dialogs should be drawn with the system font. Is there some
strange problem with your fonts that persists across system installs?
I thought I told you to swap hard drives.

30 KON I did a fresh install on a new hard drive and the problem continued.

BAL Hmm. It sounds like the bug is that QuickTime is searching for a
system font size that won’t be scaled — that is, that’s real. It probably
expects it to be there. If it’s not, QuickTime spins forever looking.

KON OK. So why can’t it find it?

BAL What font are you looking for?

20 KON The font ID passed into RealFont is 1 (AppFont), which RealFont
converts internally to the application font by reading the short at
0x984 (ApFontID).

BAL What font is it?

KON How do I figure that out?

BAL Call GetFontName. We don’t even need to write a program to do this.
You can hack the stack from MacsBug. First, go to some trap call so that
you know the proper registers are saved and all of that. Subtract 6 from
the stack. Put the address of where you want the name to end up at the
old stack address, and the fontNum, 1, after that. Put the address of the
GetFontName trap, 0xA8FF, at location 0, set the PC to 0, and trace.

KON You should probably turn off EvenBetterBusError when doing this
sort of thing.

BAL Well, yes, that’s true. Or, alternatively, we could find a large free block
somewhere and put the code there. Of course, we’d have to be sure
the call doesn’t move memory, or our code might be written over —
although for this single trap it doesn’t matter. Anyway, you get the idea.

KON The work you’ll go through to keep from writing any real code! Wait.
Where do I get the memory for the name?

BAL You have three choices: you could have subtracted another 255 bytes
or so from the stack and just used that. Better yet is to use some of
MacsBug’s internal buffer. When you use the dh command, MacsBug
puts the hex data in a buffer and disassembles it. The address in the
disassembly is the address of the MacsBug buffer. Finally, you could
look for a free block with lots of space and use that.

10 KON OK. The font name comes back 0.

BAL If you trust that, it means there’s no font with that fontNum. So it
makes sense that QuickTime would never find a RealFont at any size
for that fontNum.

KON So why didn’t the system install fix it?

BAL The system font ID is stored in PRAM and is put in a low-memory
global during startup. Apparently the install process doesn’t touch
PRAM. Zap your PRAM by holding Command-Option-Shift-P-R
during startup — user friendly!

KON OK. Now it works.

BAL So the installer should clear PRAM when a new system is installed. It
should keep your video card configuration and other settings, which
really belong on the hard disk as well, but should clear stuff like the

KON & BAL’S PUZZLE PAGE: QUICKTIME QUANDARY 121

default fonts since they may not exist, or they might be renumbered, in
the new install.

KON And QuickTime shouldn’t spin in an endless loop expecting something
to exist.

BAL PRAM is a holdover from the 128K Macintosh. It was designed as a
closed system that might never have a hard drive. At that time there
were only floppies, so it made a lot of sense to store system parameters
with the machine rather than the media. But since then, no one has
ever revisited whether PRAM is needed.

KON The machine still has a ROM, for crying out loud! I guess it’s too soon
to give up those silly incantations of rebuilding the desktop and zapping
PRAM. By the way, I understand the problem was worked around in
QuickTime 2.5 by aborting the font search loop at a maximum point
size of 36.

BAL Nasty.

KON Yeah.

develop Issue 27 September 1996122

SCORING
90–100 Yeah, sure. And you just had lunch with D. B. Cooper.
70–85 Congratulations! You’ve just qualified to write the next Puzzle Page.
40–60 Your spirit guides must be with you today.
10–30 Care to join our poker game?•

Thanks to Peter Hoddie, Josh Horwich, and Bo3b Johnson for reviewing this column.•

If you have questions, suggestions, or even gripes about develop, please don’t keep them to yourself.
Drop us a line and let us know what you think.

Send editorial suggestions or comments Send technical questions about develop
to develop@apple.com or to: to:

Caroline Rose Dave Johnson
Apple Computer, Inc. Apple Computer, Inc.
1 Infinite Loop 1 Infinite Loop
Cupertino, CA 95014 Cupertino, CA 95014
crose@apple.com dkj@apple.com
Fax: (408)974-9423 CompuServe: 75300,715

Fax: (408)974-9423

Please direct all subscription-related queries to Apple Developer Catalog, P.O. Box 319, Buffalo,
NY 14207-0319 or to order.adc@applelink.apple.com. You can also call 1-800-282-2732 in the
U.S., 1-800-637-0029 in Canada, or (716)871-6555 elsewhere.

How’re we doing?

✍

✍

For a cumulative index to all issues of
develop, see this issue’s CD.•

A
ActiveDocumentIsDirty (Apple

Guide 2.1) 67
ActivePartAllowsEmbedding

(Apple Guide 2.1) 67
ActivePartIsRoot (Apple Guide

2.1) 67
AddFancierLanguageModel

(Speech Recognition Manager)
16, 18, 20

“Adding Speech Recognition to an
Application Framework”
(Monroe) 22–33

AddToDefaultStoreXmit (Newton
Q & A) 116

AddValue (OpenDoc) 49
AEGetParamPtr, Speech

Recognition Manager and 12
AGInstallContextHandler (Apple

Guide 2.1) 68
AGOpen (Apple Guide 2.1) 61
AGRemoveContextHandler

(Apple Guide 2.1) 68
<App Creator> command (Apple

Guide) 55, 56, 60
AppendDITL, Mac OS 8

assistants and 79
AppendMenu, Apple Guide 2.1

and 61
Apple events, sending from Apple

Guide guides 68
Apple Guide

populating the Help menu
54–55

vs. Mac OS 8 assistants 78
Apple Guide 2.0, populating the

Help menu 56
Apple Guide 2.1

and Apple events 68
and AppleScript scripts 68
application signatures 56
building the Help menu

54–60
coachmarks 62–64
context checks 64–68
document specific help 56
multiprocess guide files

56–59
new features 53–54

new resources 61
placing a part editor’s guide

into the Help menu 60–61
populating the Help menu 56
using with OpenDoc 59–68

AppleGuideGlue, Macintosh
Q & A 102–103

AppleGuideGlueLib, Macintosh
Q & A 103

AppleGuideGlueLib.xcoff file,
Macintosh Q & A 103

AppleGuideGlue.xcoff file,
Macintosh Q & A 103

AppleGuidePlugIn, OpenDoc and
65

AppleScript, launching scripts
from Apple Guide guides 68

AppleScript coaches (Apple Guide
2.1) 64

AppleTalk
Network Name (Macintosh

Q & A) 108–109
self-send variable (Macintosh

Q & A) 105–106
application signatures (Apple

Guide 2.1) 56
ApplLimit low-memory global,

MaxApplZone and 83
'apsg' resource (Apple Guide 2.1)

56, 57, 60, 61
Arcellana, José 72
ASCII standard, OpenDoc and 38
assistants (Mac OS 8)

error trapping 78
interviews 73–74, 75–81
substituting parameter values

in dialogs 80–81
in System 7 applications

72–81
vs. Apple Guide 78
vs. Microsoft wizards 73

B
back issues of develop 5
“Balance of Power” (Evans),

Stalking the Wild Defect 82–86
ento container suite (OpenDoc)

39
BinHex part kind (OpenDoc) 43
breakpoints, setting in PowerPC

code 85

BuildLanguageModel (Speech
Recognition Manager) 17

C
CallOSTrapUniversalProc (Mixed

Mode Manager), MaxApplZone
and 83

camera movements (in QuickDraw
3D applications) 87–97

3D geometry 90–91
delta factors 94, 95
initializing camera data 89
keyboard/mouse controls

94–97
moving/rotating the camera

92–94
rendering loops 92
setting camera data 92

CategoryUserString resource
(OpenDoc) 44

CDocDemoApp::CDocDemoApp
constructor 23

CDocDemoApp::~CDocDemoApp
destructor 23, 32–33

CDocDemoApp.cp source file 23
CDocSpeech class 23, 25, 32
CDocSpeech.cp file 25–26
CDocSpeech.h header file 24–25
Çelik, Tantek 37
CFMTerminate 69
ChangeKind (OpenDoc) 51
CInternetConfig, Mac OS 8

assistants and 81
ClassOf (Newton Q & A) 114–115
CloneInto (OpenDoc) 49–50
Close (OpenDoc) 70
cmd_New constant (PowerPlant),

speech recognition and 29, 32
CMultiDialog, Mac OS 8

assistants and 79
coachmarks (Apple Guide 2.1)

62–64
Code Fragment Manager (CFM)

library closure 71
unloading OpenDoc part

editor libraries 69, 70–71
Commons, Peter 53
Communications library

(LaserWriter 8.4) 36
constant functions (Newton

Q & A) 114–115

INDEX

INDEX 123

context checks (Apple Guide 2.1)
64–68

application information 65
custom 67–68
process 65
standard OpenDoc suite

65–67
standard suite 65
system information 65

Converter library (LaserWriter
8.4) 36

CreateSoupFromSoupDef
(Newton Q & A) 116

CreateSoupXmit (Newton Q & A)
116

Curbow, Dave 37
Cyberdog

Apple Guide 2.1 and 53
Web browser window 63

D
dataRef (Newton Q & A) 117
DDP socket listener (AppleTalk),

Macintosh Q & A 109
debugging

onsite with MacsBug
(Macintosh Q & A) 102

PowerPC 82–86
resources on (Macintosh

Q & A) 102
develop back issues 5
dirID (Macintosh Q & A)

109–110
DocDemo (PowerPlant), adding

speech recognition to 22
DoClosepath (QuickDraw GX)

100
document file commands (File

menu), speech recognition and
27–29

document-specific help (Apple
Guide 2.1) 56

DoCurveto (QuickDraw GX) 100
DoLineto (QuickDraw GX) 100
DoMoveto (QuickDraw GX) 100
DoProgress (Newton Q & A) 117
DoSendLkUpReq (Open

Transport), Macintosh Q & A
109

double tap (Newton Q & A) 116
Downloader library (LaserWriter

8.4) 36
drd dcmd (MacsBug) 83–84
dynamic class objects (SOM),

OpenDoc and 69

E
EditorKinds resource (OpenDoc)

43
EditorPlatformKind resource

(OpenDoc) 44
Editor Setup control panel

(OpenDoc) 40
“Editor Substitution Explained”

(OpenDoc) 40
Evans, Dave 82–86
everytime macro (MacsBug),

Macintosh Q & A 102
experts. See assistants
extendPrDefault, LaserWriter 8.4

and 34
extendPrValidate, LaserWriter 8.4

and 34
Externalize (OpenDoc) 49
ExternalizeKinds (OpenDoc) 52
'extm' context check (Apple Guide

2.1) 68

F
fDirty flag (OpenDoc) 49
feedback window (Speech

Recognition Manager) 7, 12, 14
fidelity ordering (OpenDoc) 49
FindCommandStatus, for

document windows 31
FindSym (MacsBug) 85
“flagship name,” determining

(Macintosh Q & A) 108–109
FRONT Guide Script constant

(Apple Guide 2.1) 62–64, 65,
67

Full Access window (Apple Guide
2.1) 56–59

G
game controls (QuickDraw 3D)

87–97
3D geometry 90–91
controlling camera

movements 87–92
controlling the controls

94–97
See also camera movements

“Game Controls for QuickDraw
3D” (McBride) 87–97

gDocSpeechObj, deleting 23–24
<Gestalt> checks (Apple Guide)

55, 56
GetAllInfo/SetAllInfoXmit

(Newton Q & A) 116

GetFontName, KON & BAL
puzzle 121

GetIndexes/CreateSoupXmit
(Newton Q & A) 116

GetLayout (Newton Q & A) 114
GetMember (Newton Q & A) 116
GetOSTrapAddress,

MaxApplZone and 83
GetSoup (Newton Q & A) 116
GetUnionSoupAlways (Newton

Q & A) 116
GetValue (ODStorageUnit)

(OpenDoc) 49
GetZoneList (AppleTalk),

Macintosh Q & A 109
Global Guide Files folder (Apple

Guide) 56, 59, 60
Gourdol, Arno 72
“Graphical Truffles” (Lipton), A

Library for Traversing Paths
98–101

gTopLanguageModel (Speech
Recognition Manager) 11, 14

Guide Maker (Apple Guide 2.1)
60

Guide menu. See Help menu
GXDrawShape, Macintosh Q & A

104
GXGetGraphicsError 101
gxLayouts, Macintosh Q & A

103–104
GXNewStyle , Macintosh Q & A

103
gxNoContourGridText,

Macintosh Q & A 104
gxNoMetricsGridText, Macintosh

Q & A 104
gxPath structure 98
gxPaths structure 98

H
HandleRecognitionDoneAE

(Apple event handler), Speech
Recognition Manager and 9,
12, 13–14, 16

HandleSpeechBegunAppleEvent
(Apple event handler), speech
recognition and 30–31

Help menu
building with Apple Guide

54–60
with a multiprocess guide

item 57
placing a part editor’s guide

into 60–61

develop Issue 27 September 1996124

populating with Apple Guide
54–56

<Help Menu> command (Apple
Guide) 55, 58-59

HFSFlavor value type (OpenDoc)
48

HMGetHelpMenuHandle, Apple
Guide 2.1 and 61

HTML part kind (OpenDoc) 43

I
implicit points (QuickDraw GX)

99
InitPartFromStorage (OpenDoc)

48
installScript (Newton Q & A) 117
InterfaceLib, MaxApplZone and

83, 85
Internet Configuration System

(Internet Config)
creating Mac OS 8–style

assistants for 72–81
main window 75

Internet Setup Assistant 72,
75–78, 81

interview window, for Mac OS 8
assistants 74, 75

IP_REUSEADDR (Open
Transport), Macintosh Q & A
106–107

isDefaultPaperType flag
(QuickDraw GX), Macintosh
Q & A 103

IsOpenDocActiveAndFrontmost
(Apple Guide 2.1) 66

IsPlugInAvailable (Apple Guide
2.1) 65–66

item coaches (Apple Guide 2.1)
63–64

J
Johnson, Dave 2, 111

K
kCMOModemDialing (Newton

Q & A) 115
kExtendPrintRecOp (LaserWriter

8.4) 34
kGetExtendedPrintRecOp

(LaserWriter 8.4) 34
KindCategories resource

(OpenDoc) 44, 45
KindUserString resource

(OpenDoc) 44
kODCategoryArchive 41

kODCategoryDrawing 42
kODCategoryOutline 42
kODCategoryPageLayout 42
kODCategoryPersonalInfo 42
kODCategorySpace 42
kODPlatformDataType 45
kODPlatformFileType 45
kODPropContents 48
kODPropPreferredEditor 40
kODPropPreferredKind 48
“KON & BAL’s Puzzle Page”

(Othmer and Leak), QuickTime
Quandary 118–122

kOTNoDataErr (Open Transport),
Macintosh Q & A 104

kOTOutStateErr (Open Transport),
Macintosh Q & A 104, 108

kSetExtendedPrintRecOp
(LaserWriter 8.4) 34

kSRFeedbackAndListeningModes
property (Speech Recognition
Manager) 11, 12

kSRLanguageModelFormat
property (Speech Recognition
Manager) 12–14

kSROptional property (Speech
Recognition Manager) 20

kSRRefCon property (Speech
Recognition Manager) 11, 14

kSRSpelling property (Speech
Recognition Manager) 9, 14

kSRTEXTFormat property
(Speech Recognition Manager)
12

L
language models (Speech

Recognition Manager) 7, 8, 17
active 7, 14–16, 27
building 11, 13, 16–18,

27–29
constraining 12
embedded 16, 27
emptying and refilling 19
enabling/disabling (parts of)

18–20, 29–30
manipulating 18–20
saving into resources 20

language objects (Speech
Recognition Manager)

enabling/disabling 31
saving/loading 20
See also language models

LaserWriter driver version 8.4
34–36

error codes 36

extended print records 34
one-pass printing 35–36
PPD files and 36
PrGeneral opcodes 34–35
print dialogs 34–35
shared libraries 36

Leak, Bruce 118
library closure (CFM) 71
Lipton, Daniel I. 98
LocObj (Newton Q & A) 114
Lo, Vincent 69

M
McBride, Philip 87
Macintosh Q & A 102–110
“Mac OS 8 Assistants in System 7

Applications” (Arcellana and
Gourdol) 72–81

MacsBug, onsite debugging with
(Macintosh Q & A) 102

MakeBinary, Newton Q & A 115
MakeLanguageModels, speech

recognition and 25, 26, 27–29
MaxApplZone, PowerPC

debugging and 82–85
Memory Manager, MaxApplZone

and 84
menu coaches (Apple Guide 2.1)

63
Merged Access window (Apple

Guide 2.1) 57–59
_MixedModeMagic trap (Mixed

Mode Manager) 83, 84
Mixin guide files (Apple Guide

2.1) 55
vs. multiprocess guide files 59

<Mixin Match> command (Apple
Guide 2.1) 59

“Mixin vs. Multiprocess Guide
Files” (Apple Guide 2.1) 59

'mlti' resource (Apple Guide 2.1)
56–59, 60, 61

Monroe, Tim 22
multipane print dialog

(LaserWriter 8.4) 35
multiprocess guide files (Apple

Guide 2.1) 56–59
and Help guide files 59
vs. Mixin guide files 59

'mxbm' resource, MacsBug and
(Macintosh Q & A) 102

MyGetCameraData (QuickDraw
3D) 89

MyGuideOpenDocResource
(Apple Guide 2.1) 61

INDEX 125

MyInitDeltaFactors (QuickDraw
3D) 94, 95

MyMoveCameraZ (QuickDraw
3D) 92, 93

MyRotateCameraY (QuickDraw
3D) 92, 93–94

MySetCameraData (QuickDraw
3D) 92

N
nameRef (Newton Q & A) 117
NBP LkUp (AppleTalk),

Macintosh Q & A 108–109
NBP LkUp-Reply (AppleTalk),

Macintosh Q & A 109
Network Name (AppleTalk),

Macintosh Q & A 108–109
“New Apple Guide Resources”

(Apple Guide 2.1) 61
Newton 2.0, Newton 1.x

compatibility (Newton Q & A)
114–115

Newton Fax Modem, setting
timeout (Newton Q & A) 115

Newton Q & A: Ask the Llama
113–117

NewtonScript objects (Newton
Q & A) 113

O
object coaches (Apple Guide 2.1)

64
ODExtension 69
ODExtension::BaseRemoved 70
ODFrame::Remove 70
ODNewObject 71
ODPart 70
ODPart::DisplayFrameRemoved

70
ODSession 45
'odtm' creator code (Apple Guide

2.1) 60, 62, 65
ODTranslation 45
OpenDoc

circular references 70
part editors 37–52
part kinds 37–52
part viewers 37
persistent objects 70
reference counting 69–70
self-referencing 70
standard context checks for

Apple Guide 2.1 65–67
unloading part editors 69–71
using Apple Guide 2.1 with

59–68

See also part kinds
OpenDoc part kinds. See part kinds
Open Transport

determining Network Name
(Macintosh Q & A) 109

hand-off (secondary)
endpoints (Macintosh
Q & A) 104–105

orderly disconnect
(Macintosh Q & A) 104

TCP server connections
(Macintosh Q & A)
106–108

Open Transport AppleTalk, self-
send variable (Macintosh
Q & A) 105–106

OTAccept, Macintosh Q & A
104, 106

OTConnect, Macintosh Q & A
106, 108

Othmer, Konstantin 118
OTIoctl, Macintosh Q & A 105
OTListen, Macintosh Q & A 106
OTLook, Macintosh Q & A 104
OTLookupName, Macintosh

Q & A 109
OTOptionManagement,

Macintosh Q & A 106–107
OTRcv, Macintosh Q & A 105
OTRcvConnect, Macintosh

Q & A 106
OTRcvOrderlyDisconnect,

Macintosh Q & A 104
OTSndDisconnect, Macintosh

Q & A 108
OTSndOrderlyDisconnect,

Macintosh Q & A 104

P
Pallakoff, Matt 6
part categories (OpenDoc) 41–43

predefined 41–43
user strings 44

PartEditorInstalled (Apple Guide
2.1) 66

PartEditorInstContains (Apple
Guide 2.1) 66

part editors (OpenDoc) 37–52
adding Apple Guide guides

to 53–68
embedding support 50
placing a guide into the Help

menu 60–61
Undo support 50–51
unloading 69–71
See also part kinds

PartInActiveDoc (Apple Guide
2.1) 66

PartInActiveProcess (Apple Guide
2.1) 66

PartInActiveWindow (Apple
Guide 2.1) 66

Part Info dialog (OpenDoc)
changing preferred kind 51
part kind pop-up menu 51
specifying part kind 45–46
translating parts 51–52

PartInNonActiveDoc (Apple
Guide 2.1) 66

PartInNonActiveWindow (Apple
Guide 2.1) 66

PartIsActiveFrame (Apple Guide
2.1) 67

part kinds (OpenDoc) 37–52
binding process 40
changing 46–47
creating documents 47–48
editor substitution 40
handling user actions 47–52
human interface principles

45–47
opening documents 48–49
part categories 41–43
preferred kind 39, 45, 48,

51
resources required 43–45
saving documents 50
standard vs. proprietary

38–39
supporting multiple 39
transferring data 49–51
translating or converting

parts 51–52
See also part editors

part viewers (OpenDoc) 37
path (Speech Recognition

Manager) 8
path objects (QuickDraw GX)

98–99
PathWalking.c file (QuickDraw

GX) 101
PathWalking.h file (QuickDraw

GX) 101
PBGetFCBInfo (Macintosh

Q & A) 109–110
PConfirmName (AppleTalk),

Macintosh Q & A 108–109
PDlog Expand (LaserWriter 8.4)

34
phrase (Speech Recognition

Manager) 8
PlacMac sample program 23

develop Issue 27 September 1996126

platform kinds (OpenDoc) 44,
46, 48

PlayMem (MacsBug) 85–86
PLookupName (AppleTalk),

Macintosh Q & A 108–109
point (3D geometry) 90

translation of 91
Pointing Device Manager

(QuickDraw 3D) 95
Polaschek, Dave 34
POpenSkt (AppleTalk), Macintosh

Q & A 109
PostScript LaserPrep dictionary,

LaserWriter 8.4 and 36
PostScript part kind (OpenDoc) 43
PostScript Utilities library

(LaserWriter 8.4) 36
PowerPC

debugging 82–86
setting breakpoints in

PowerPC code 85
PowerPlant (Metrowerks), adding

speech recognition to
applications with 22–33

PPCJump (MacsBug) 85–86
PPD files, LaserWriter 8.4 and 36
PPD library (LaserWriter 8.4) 36
PRAM, KON & BAL puzzle

121–122
PREC 103 mechanism (PostScript),

LaserWriter 8.4 and 36
Preferences and Collection

libraries (LaserWriter 8.4) 36
preferred kind (OpenDoc) 39, 45,

48
changing 51

PrGeneral opcodes (LaserWriter
8.4) 34–35

“Print Hints” (Polaschek), The
All-New LaserWriter Driver
Version 8.4 34–36

PrJobMerge, LaserWriter 8.4 and
34

ProcPtr value, routine descriptors
and 84

proprietary part kinds. See part
kinds

protoFloatNGo (Newton Q & A)
117

'prts' resource (Apple Guide 2.1)
56–59, 60–61

'prts' resource test (Apple Guide)
54

PSetSelfSend (AppleTalk),
Macintosh Q & A 105–106

'ptyp' resource (QuickDraw GX),
Macintosh Q & A 103

push-to-talk key (Speech
Recognition Manager) 11, 12

PWriteDDP (AppleTalk),
Macintosh Q & A 109

Q
'QLfy' resource (Apple Guide)

55, 56
quadratic curve segments

(QuickDraw GX) 98–99
QuickDraw 3D

3D geometry 90–91
game controls 87–97
Macintosh Q & A 110
See also camera movements

QuickDraw GX
implicit points 99
quadratic curve segments

98–99
ShapeWalker library 99–101
small font sizes (Macintosh

Q & A) 103–104
traversing paths 98–101

QuickTime, KON & BAL puzzle
118–122

R
RealFont (Font Manager), KON

& BAL puzzle 120–121
recognition-begun Apple event

handler, speech recognition and
29–31

recognition results (Speech
Recognition Manager) 7, 31–32

notifications 11–14
processing 15, 18

recognition system (Speech
Recognition Manager) 7

recognizer (Speech Recognition
Manager) 7

Reeves, Arlo 6
reference counting (OpenDoc)

69–70
RefreshViews (Newton Q & A)

117
RegUnionSoup (Newton Q & A)

116
rejection word (Speech

Recognition Manager) 11, 20
ReleaseResource, PowerPC

debugging and 85–86
Remove (OpenDoc) 49, 70

Rendering Acceleration Virtual
Engine (RAVE), Macintosh
Q & A 110

Revert command, speech
recognition and 27, 29, 31

routine descriptor, displaying 84

S
SamplePathWalker.c sample

application (QuickDraw GX)
100–101

self-send variable (AppleTalk),
Macintosh Q & A 105–106

SetLanguageObjectState, speech
recognition and 30–31

SetPromiseValue (OpenDoc) 50
shape objects (QuickDraw GX) 98
ShapeWalker library (QuickDraw

GX) 99–101
ShortenDITL, Mac OS 8

assistants and 79
ShowFoundItem (Newton Q & A)

113
Show/Hide Details button (Mac

OS 8 assistants) 78
single-layer text shapes

(QuickDraw GX), Macintosh
Q & A 103

SOMobjects™ for MacOS
dynamic class objects 69
static class objects 69
unloading OpenDoc part

editors 69, 71
soupDef (Newton Q & A) 116
“Speakable Menus?” 23
Speech control panel 11
speech-done Apple event handler,

speech recognition and 31–32
speech objects (Speech

Recognition Manager) 7–9
speech recognition 6–33

adding to an application
framework 22–33

shutting down 33
starting up 26
See also Speech Recognition

Manager
Speech Recognition extension 6, 7
Speech Recognition Manager

6–21
building language models

11, 13, 16–18, 27–29
determining version 10
feedback services 7, 12, 14
hardware requirements 6–7
initializing 10–11

INDEX 127

initializing speech
recognition 9–11

manipulating language
models 18–20

processing recognition
results 15, 18

recognition result
notifications 11–14

releasing object references 9
speech objects 7–9
terminating speech

recognition 17
See also language models

“Speech Recognition Manager
Revealed, The” (Pallakoff and
Reeves) 6–21

speech recognition objects,
creating custom 24

“Speech Recognition Tips” 12
speech source (Speech

Recognition Manager) 7
telephone 7

Speech Synthesis Manager, Speech
Recognition Manager and 14

SRAddLanguageObject 11, 29
SRAddText 11, 29
SRCloseRecognitionSystem 8
SRGetIndexedItem 9
SRGetProperty 9
SRLanguageModel 8, 9
SRLanguageModeler tool 16, 20,

21, 27
SRLanguageObject 8
SRNewLanguageModel 27
SRNewLanguageObjectFromData-

File 20
SRNewLanguageObjectFrom-

Handle 20
SRNewPhrase 11
SRNewRecognizer 8, 9
SRNewWord 8, 9
SROpenRecognitionSystem 8
SRPath 8, 16
SRPhrase 8, 9
SRPutLanguageObjectIntoHandle

20
SRRecognitionResult 9
SRRecognitionSystem 8
SRRecognizer 8
SRReleaseObject 7, 9, 11
SRSample sample application 6,

21
SRSetLanguageModel 14
SRSetProperty 9, 11, 18–20
SRSpeakAndDrawText 14

SRSpeechObject 7–9
class hierarchy 7–8

SRStartListening 8, 9, 16
SRStopListening 8
SRWord 8, 9
standard part kinds. See part kinds
Standard Type I/O utilities

(OpenDoc) 39
static class objects (SOM),

OpenDoc and 69
stdloginto macro (MacsBug),

Macintosh Q & A 102
'STR#' resources

and the 'prts' resource 61
specifying 24–25

Stuff…, Newton Q & A 115

T
T_ACCEPTCOMPLETE (Open

Transport), Macintosh Q & A
105

TApplication, Mac OS 8 assistants
and 79

TAssistant, Mac OS 8 assistants
and 79

TCP server connections
Open Transport and

(Macintosh Q & A)
106–108

passive (Macintosh Q & A)
107–108

T_DATA (Open Transport),
Macintosh Q & A 104–105,
108

T_DISCONNECT (Open
Transport), Macintosh Q & A
104

Technical Q & A 3
TextureEyes, Macintosh Q & A

110
“The OpenDoc Road” (Lo),

Facilitating Part Editor
Unloading 69–71

3D acceleration hardware,
Macintosh Q & A 110

“3D Geometry 101” 90–91
3D geometry (QuickDraw 3D)

90–91
T_IDLE (Open Transport),

Macintosh Q & A 108
T_LISTEN (Open Transport),

Macintosh Q & A 104, 106
TLOOK error (Open Transport),

Macintosh Q & A 104
TLookupRequest (Open Transport),

Macintosh Q & A 109

T_ORDREL (Open Transport),
Macintosh Q & A 104

T_OUTCON (Open Transport),
Macintosh Q & A 108

T_PASSCON (Open Transport),
Macintosh Q & A 105

transformation matrix (3D
geometry) 91

transition vector (TVector)
MaxApplZone and 82, 84
ReleaseResource and 85–86

traversing paths (QuickDraw GX)
98–101

two cursors (Newton Q & A)
113–114

U
UDesktop::FetchTopRegular

(PowerPlant) 30
Unicode

Newton Q & A 115
OpenDoc and 38

union soups (Newton Q & A) 116
universal file commands (File

menu), speech recognition and
27–29

URL part kind (OpenDoc) 43
“Using Apple Guide 2.1 with

OpenDoc” (Commons) 53–68

V
vector (3D geometry) 90

rotation of 91
translation of 91

“Veteran Neophyte, The”
(Johnson), Your Friend The
Drill Sergeant 111–112

Video Settings dialog (QuickTime),
KON & BAL puzzle 119–122

vRefNum (Macintosh Q & A)
109–110

W
window coaches (Apple Guide 2.1)

63
WindowRecord, file system

information (Macintosh Q & A)
109

“Working With OpenDoc Part
Kinds” (Çelik and Curbow)
37–52

X
X/Open Transport Interface (XTI),

Macintosh Q & A 104, 106, 108

develop Issue 27 September 1996128

Apple provides a wealth of information,

products, and services to assist developers.

The Apple Developer Catalog and Apple

Developer University are open to anyone

who wants access to development tools

and instruction. Additional information

and services are available through

Apple’s Developer Programs.

The Apple Developer Catalog
offers worldwide access to
development tools, resources,
training products, and information
for anyone interested in developing
applications on Apple platforms.
This complimentary catalog features
hundreds of Apple and third-party
development products and offers
convenient payment and shipping
options, including site licensing.

Apple Developer University
(DU) provides courses to get you
started programming on Apple
platforms, as well as advanced, in-
depth training on new technologies
such as QuickTime VR, QuickDraw
3D, OpenDoc, Apple Guide, and
Newton. In addition to classroom
training, self-paced courses are
available through the Apple Developer
Catalog, and free introductory
tutorials are provided on the Web at
http://dev.info.apple.com/du.html.

The Macintosh Developer
Program provides members with
ongoing Macintosh-related technical
information and services. It includes:

• The monthly Apple Developer
Mailing, which includes the
Developer CD Series.

• Macintosh technology seeding.

• Programming-level technical
support via e-mail. Apple offers a
number of options for varying
levels of technical support.

The Newton Developer Program
provides ongoing Newton-related
technical information and services.
It includes:

• The monthly Newton Developer
Mailing.

• The quarterly Newton Developer
CD.

• Newton development class
discounts.

• Programming-level technical
support via e-mail. Apple offers a
number of options for varying
levels of technical support.

The Apple Multimedia Program
(AMP) provides resources to keep
multimedia developers up-to-date
on Apple’s offerings for authoring
and playback. It includes:

• The quarterly Apple Multimedia
Information Mailing.

• Access to a special members-only
area on the AMP Web site
(http://www.amp.apple.com).

• Invitations to special events and
participation in Apple events such
as trade shows.

• Seeding opportunities.

• The Interactive Music Track, an
extension of the AMP designed
specifically for musicians, music
industry members, and interactive
music developers.

R E S O U R C E S

Apple Developer Catalog To order a
product or receive a catalog, call 1-800-
282-2732 in the U.S., 1-800-637-0029 in
Canada, (716)871-6555 internationally, or
(716)871-6511 for fax. You can also send
e-mail to order.adc@applelink.apple.com,
or write Apple Developer Catalog, P.O. Box
319, Buffalo, NY 14207-0319. The Apple
Developer Catalog is also on the Web at
http://www.devcatalog.apple.com.

Apple Developer University Course
descriptions and schedules can be found at
http://dev.info.apple.com/du.html on the
Web. You can also call (408)974-4897,
fax (408)974-0544, send e-mail to
devuniv@applelink.apple.com, or write
Developer University, Apple Computer, Inc.,
1 Infinite Loop, M/S 305-1TU, Cupertino,
CA 95014.

Apple Developer Programs These
programs vary on a country-by-country basis.
For more information on any of Apple’s
developer support programs worldwide, call
(408)974-4897, fax (408)974-7683, send
e-mail to devsupport@applelink.apple.com,
or write Developer Support, Apple Computer,
Inc., 1 Infinite Loop, M/S 303-2T, Cupertino,
CA 95014.

