OpenDoc Memory Management ® Safe Printing ® Source Code Control

The Apple Technical Journal Issue 28 December 1996

Coding Your

Object for
vanced

Scriptability

New QuickDraw 3D
Geometries

QuickDraw GX
Line Layout:
Bending the Rules

MacApp Debugging
Aids

Chiropractic for
Your Misaligned
Data

tovelor 5

EDITORIAL STAFF

Editor-in-Cheek Caroline Rose
Managing Editor Stacy Fields, Toni Moccia
Technical Buckstopper Dave Fohnson
Our Boss Steve Strong

His Boss Garry Hornbuckle

Bookmark CD Leader Alex Dosher

Review Board Brian Bechtel, Dave Raddliffe,
Quinn “The Eskimo!”, Jim Reckes,
Bryan K. “Beaker” Ressler; Larry Rosenstein,
Nick Thompson, Gregg Williams

Contributing Editors Lorraine Anderson,
Toni Haskell, Cheryl Potter; Erik Sea,
George Truett

Indexer Marc Savage

ART & PRODUCTION

Art Direction Lisa Ferdinandsen
Technical Illustration Fobn Ryan
Formatting Forbes Mill Press
Production Diane Wilcox

Photography Sharon Beals, Leilani Coe,

Adrienne Gersnoviez

Cover Hlustration Cary Henrie

ISSN #1047-0735. © 1996 Apple Computer,
Inc. All rights reserved. Apple, the Apple logo,
AppleScript, AppleTalk, ColorSync, LaserWriter,
Mac, MacApp, Macintosh, Macintosh Quadra,
MacTCP, MessagePad, MPW, MultiFinder,
Newton, OpenDoc, Power Mac, Power Macintosh,
PowerTalk, QuickTime, StyleWriter; and
Truelype ave trademarks of Apple Computer,
Inc., registered in the U.S. and other countries.
AOCE, A/ROSE, Balloon Help, develop, Dylan,
Finder, NewtonScript, ToolServer, and
QuickDraw are trademarks of Apple Computer,
Inc. Adobe and PostScript are trademarks of
Adobe Systems Incorporated or its subsidiaries
and may be registered in certain jurisdictions.
QuickView is licensed from Altura Software, Inc.
PowerPC, SOM, and SOMobjects are trademarks
of International Business Machines Corporation,
used under license therefrom. UNIX is a
registered trademark in the United States and
other countries, licensed exclusively through
X/Open Company, Ltd. All other trademarks
are the property of their respective owners.

@ Printed on recycled paper by

Stream International, USA

THINGS TO KNOW

develop, The Apple Technical Journal, a quarterly publication of the
Apple Developer Relations group, is published in March, June, September, and
December. It provides developers of Apple-platform products with technical
articles and code that have been reviewed for robustness by Apple engineers.

All issues of develop, along with the code they describe, can be found on the develop
Bookmark CD, the Reference Library edition of the Developer CD Series, and the
Internet. The code is updated regularly, so always use the latest version.

This issue’s CD. Subscription issues of develop are accompanied by the develop
Bookmark CD. This CD contains a subset of the materials on the Developer CD Series,
which is part of the Apple Developer Mailing available through the Apple Developer
Catalog. The CD also contains Technotes, sample code, and other documentation
and tools (these contents are subject to change). Items referred to as being on “this
issue’s CD” are located either on the Bookmark CD or on the Reference Library or
Tool Chest edition of the Developer CD Series.

Subscriptions and back issues. You can subscribe to develop through the
Apple Developer Catalog (see below, or use the subscription card in this issue). Back
issues, in addition to being available electronically, can also be ordered through the
catalog. The one-year U.S. subscription price is $30 (for four issues and four develop
Bookmark CDs), or U.S. $50 in other countries. Back issues are $13 each. These prices
include shipping and handling. For Canadian orders, the subscription price includes
GST (R100236199).

WHERE TO FIND US

What Who/where

develop on the Web http://www.devworld.apple.com/develop/

and ftp ftp://ftpdev.info.apple.com/Developer_Services/
Periodicals/develop/

Bookmark CD contents http://www.devworld.apple.com/
ftp://ftpdev.info.apple.com/Developer_Services/

Technotes on the Web http://www.devworld.apple.com/dev/technotes.shtml
Editorial comments Caroline Rose, crose@apple.com, (408)974-0544 fax
or suggestions

Technical questions Dave Johnson, dkj@apple.com, (408)974-0544 fax
about develop

Article submissions develop@apple.com (ask for our Author’ Kit)

Apple Developer Catalog http://www.devcatalog.apple.com

(develop subscription, back order.adc@applelink.apple.com

issues, or other products) 1-800-282-2732 U.S., 1-800-637-0029 Canada
(716)871-6555 internationally, (716)871-6511 fax
Apple Developer Catalog, Apple Computer, Inc., PO. Box
319, Buffalo, NY 14207-0319

Subscription changes or order.adc@applelink.apple.com
queries Please be sure to include your name, addyess, and account
number as they appear on your mailing label.

Issue 28 December 1996

ARTICLES
4 Coding Your Object Model for Advanced Scriptability by Fon Reuter
Basic support for an Apple event object model isn’t too tough, but supporting more complex scripts takes some
planning, and can trip you up in subtle ways if you’re not careful. This advice will help you out.
32 New QuickDraw 3D Geometries by Philip J Schneider
QuickDraw 3D 1.5 includes several useful new geometric primitives. This article introduces the new primitives
and discusses the differences among the various polyhedral primitives, both new and old.
60 QuickDraw GX Line Layout: Bending the Rules by Daniel I. Lipton
The typographic capabilities of QuickDraw GX are without peer, but until now drawing that beautiful text
along an arbitrary path took a concerted effort. Here’s a library that makes it easy to do.
76 MacApp Debugging Aids by Conrad Kopala
Programming with a framework saves time and effort, but debugging can be difficult, since there’s a lot going
on beneath the surface. These techniques for detecting problems in MacApp programs can help.
91 Chiropractic for Your Misaligned Data by Kevin Looney and Craig Anderson
Misaligned data accesses on PowerPC processors can be very expensive. Two tools that will help you detect
misalignment problems are presented here, along with some advice on avoiding misalignment in the first place.
COLUMNS
28 THE OPENDOC ROAD 101 MACINTOSHQ & A
OpenDoc Memory Management and the Apple’s Developer Support Center answers
Toolbox queries about Macintosh product development.
by Troy Gaul and Vincent Lo
Managing memory allocation in your OpenDoc 110 THE VETERAN NEOPHYTE
part editor can be a little tricky. Confessions of a Veteran Technical Writer
by Tim Monroe
56 PRINT HINTS Enlightening trade secrets from someone who
Safe Travel Through the Printing Jungle writes the documentation we all depend on.
by Dave Polaschek
Printing is often much more complex than it 113 NEWTON Q & A: ASK THE LLAMA
needs to be. By keeping it simple and staying on Answers to Newton-related development
the well-trod path, you can protect yourself. questions. Send in your own questions for a
chance at a T-shirt.
72 BE OUR GUEST
Source Code Control for the Rest of Us 118 KON & BAL'S PUZZLE PAGE
by D. bohn Anderson and Alan B. Harper Folder Fun
Source control doesn’t need to be complex, as by Konstantin Othmer and Bruce Leak
the simple tools presented here will show. Is a puzzle without a solution really a puzzle?
Only you can decide. Those divas of debugging
88 MPW TIPS AND TRICKS run us through the wringer once again.

Automated Editing With StreamEdit
by Tim Maroney

The MPW tool StreamEdit provides you with 2 EDITOR’S NOTE
powerful, flexible, scriptable text editing, at the 3 LETTERS
price of just a little complexity. 123 INDEX

CONTENTS

EDITOR’S NOTE

CAROLINE ROSE

2 develop Isse28 December 1996

Regular readers of develop may know that, while I always use the latest hardware and
software at work, my home system is woefully out of date — at least it was until I
recently upgraded to a Power Mac. The initial setup wasn’t too hard, once I got used
to flipping back and forth between the manual for the computer, the manual for the
monitor, and the online updates; when all else failed, I relied on common sense. But
when I moved beyond hardware setup into software installation, it seemed as if I was
expected to know much more than I did. The modem software installer, for example,
would just name a software module and say “click OK if you want to install this,”
with no mention of which module(s) provided the basic modem capabilities (which is
all I wanted). What to do? I recently had this same feeling while trying to learn a new
e-mail application at work: though I immediately saw how to address mail to anyone
on any network in the known world with barely a keystroke, I couldn’t tell how to
simply enter an address for someone here at Apple. In these and many similar cases
I’ve encountered recently, I couldn’t figure out how to perform basic application
functions without the intervention of an experienced user. The manuals and online
help were somewhat helpful, but they were limited by the design of the software,
which was the problem in the first place. Common sense was no help at all.

Naturally I griped about this to my “friends in the industry.” I think one of them hit the
nail on the head when he said the problem is that too many products are being designed
by experts who, consciously or not, design for experts. Designing with experts in mind
ends up complicating everything, even the features that should be simple. Bud Tribble,
when he managed the software group at NeXT, used to tell programmers, “Simple things
should be simple, and complex things should be possible.” It seems increasingly true these
days that designers are trying to make complex things simple, but as a result are making
simple things complex. Design by experts for experts is not the answer: developers need to
find out what real users want, and focus on their needs.

Is develop guilty of a similar problem? When I looked at the feedback we gathered at
Apple’s Worldwide Developers Conference this year, I noticed that some develop readers
are asking for more entry-level articles, saying that a lot of what we publish is over their
heads. While we’re limited by what types of articles are submitted to us for publication,
the develop Review Board does get to say which ones are accepted or not, and the Board
is largely made up of “expert” programmers. Do we consequently tend to decide in
favor of the more advanced articles? We’ll keep an eye out for this from now on.

I often recall the days when Steve Jobs envisioned that the Macintosh would be as easy to
use as a home appliance. Sure, we don’t want to go back to that first oversimplified
product, but maybe we should all ponder whether we’ve gone a bit too far in the opposite
direction. I'd like to believe there’s still a place for common sense.

Corze

Caroline Rose
Editor

CAROLINE ROSE (crose@apple.com) has been many other formerly disgruntled employees, she

a Mac enthusiast ever since she started writing eventually returned. This year, again, a reorg
the original Inside Macintosh in 1982. After a happened that changed the entire managerial
reorganization that suddenly changed the entire hierarchy above Caroline. At least there’s some
managerial hierarchy above her (up to and stability in her home life, where her cat Cleo
including Steve Jbs), she left Apple, but like so remains the boss after 15 long years.”

LETTERS

GAME OUT OF CONTROL

When running the code from Philip
McBride’ article “Game Controls for
QuickDraw 3D” in Issue 27 of develop, 1
noticed in MySetCameraData that the
call to Q3Camera_SetPlacement gets
fouled up after a while. The fix shown
below was needed.

voi d MyGet Caner aDat a(
Docurnent Pt r theDocurent,
TCBCamer albj ect t heCamer a)

{

TQBCarrer aPl acenent camer aPl acenent ;

@BVect or 3D_Cr oss(
&t heDocunent - >zVect or,
& heDocurment - >y Vect or,
& heDocument - >zVect or) ;

/1 1 added this:

QBVect or 3D_Nor mal i ze(
&t heDocurrent - >x Vect or,
&t heDocument - >xVect or) ;

}
— Flip Phillips

You made the right call. QuickDraw 3D
requires all vectors to be of unit length
(normalized). So any changes to vectors that
could make them not normalized should be
followed by a call to normalize those vectors
(using Q3Vector3D_Normalize as you’ve
done). If QuickDraw 3D didn’t bave this
requirement, it would have to normalize
vectors itself internally, which would take

away from its efficiency.
— Pbhilip McBride

A SIDE ISSUE

In Steve Falkenburg’s article “Planning
for Mac OS 8 Compatibility” in develop
Issue 26, I read the following:

After some poking around, we figured
out that it was assuming that
InitWindows called InitMenus as a side
effect. The completely new Mac OS 8
implementations of windows and menus
no longer have this behavior.

However, Inside Macintosh Volume V
states, under the heading “InitWindows”
on page 208:

Since the menu bar definition procedure
('MBDEF") actually performs these
calculations, InitWindows now calls
InitMenus directly. InitMenus has been
modified so that it can be called twice

in a program without ill effect.

I advise the Mac OS 8 engineers to read
the “You’re never too smart to read the
manual” section of the Veteran Neophyte
column in the same issue of develop ;-).

— Reinder Verlinde

Your point is well taken. However, it’s
worth mentioning that Inside Macintosh:
Macintosh Toolbox Essentials (the more
current documentation) says no such thing,
and in fact says explicitly that InitMenus
should always be called after InitWindows.
As always, depending on a side effect, even
a documented one, is dangerous.

— Dave Jobnson

MORE GOOD STUFF

Look on thisissue’s CD and develop’s
Web site for Martin Minow’s article,
“Timing on the Macintosh,” which
was recently updated to include a
few Java timing techniques. You'll
also find some scripting vocabulary
advice from Cal Simone.

THINK THESE LETTERS ARE BORING?

Then why not write one of your own? We welcome

your letters to the editor, especially regarding
articles published in develop. Write to Caroline
Rose at crose@apple.com or, if technical
develop+elated questions, to Dave bhnson at

dkj@apple.com. All letters should include your
name and company name as well as your address
and phone number. Letters may be excerpted or
edited for clarity (or to make them say what we
wish they did). Address subscription+related
queries to order.adc@applelink.apple.com.”

LETTERS

Qoding Your Ghjedt Model for Advanaed

Sriptakility

\ el
RON REUTER

4 develop Issue28 December 1996

Implementing an Apple event object model makes your application
scriptable — that is, it enables users to control your application with
AppleScript or some other OSA-compliant language. You can provide
anything from a basic implementation of the object model that handles
only simple scripts to a full implementation that can handle the most
complex scripts. This article will belp you do the latter. It will show you
how to write object accessors and handlers that process lists of objects,
alert you to some common pitfalls, and suggest other features you can
add for completeness.

You’ve decided to give your users an alternate interface for controlling your application
by implementing an Apple event object model. You’ve read Richard Clark’s article,
“Apple Event Objects and You,” in develop Issue 10 to get an overview of the Apple
event object model and how to support it. As you’ve begun to think about your
scripting vocabulary, you've absorbed Cal Simone’s article, “Designing a Scripting
Implementation,” in develop Issue 21 and his According to Script column in Issue 24.
You’ve checked out the portions of Inside Macintosh: Interapplication Communication
that apply. You’ve read and understood the Apple Event Registry, which defines the
primary events and objects that you should support in a scriptable application, and
have paid particular attention to the Core, Text, and QuickDraw Graphics suites.

With this basic knowledge, you’re ready to read this article. Here you’ll learn how
to structure your code to handle more complex user scripts. After a brief review of
the components of an object model implementation, I'll focus on object accessors
and show you how to handle script statements that require your code to act on a list
of objects. Then I’ll describe in detail how to deal with three big “gotchas” that

are bound to trip you up unless you know about them. Finally, I'll tell you about
some other goodies you can implement for the sake of completeness. All of this is
illustrated in the sample application Sketch, which demonstrates object model
support for a subset of the QuickDraw Graphics suite. The code for Sketch, which
accompanies the article on this issue’s CD and develop’s Web site, contains many
functions that you can use when you get ready to code the object model for your own
application.

RON REUTER (rlreute@uswest.com) is a used across a fourteen-state region to build ads
software developer for USW EST Media Group, for USW EST Yellow Page directories. Programming
“a leading provider of Yellow Pages and is Pon’s sixth career; he’s also been a offset press
interactive multimedia information services” or, operator, a furniture maker, a luthier, a traveling
as it used to be known, the phone company. He’'s jewelry salesman, and a Zen student — but he’d
spent the last two years as technical lead on a rather be dancing beneath the diamond sky with

team that’s developing a graphics package to be one hand waving free.*

COMPONENTS OF AN OBJECT MODEL IMPLEMENTATION

The components of an object model implementation are outlined in the “Apple Event
Objects and You” article and discussed in great detail in Inside Macintosh: Interapplication
Communication. Here 'l briefly review the basic terms and concepts to refresh your
memory and to show how they apply in our sample program.

When a script statement asks your application to perform an action on some object,
such as closing document 1, the object specifier (document 1) must be resolved —
that is, the representation of the specified object must be located in memory. Your
application resolves the object specifier by way of an object accessor function that
converts the object specifier into a token. The token is then passed to an event
dispatcher for that object. I'll describe each of these components before reviewing
the process of resolving object specifiers and dispatching events.

Object accessors are functions you write and install in an accessor table. These functions
are called by the Object Support Library (OSL) function AEResolve when the Apple
Event Manager needs to find some object in your application’s data structures. Object
accessors receive a container, an object specifier for an object to locate inside that
container, and a result parameter into which a token is placed. When you install
accessors, you tell the Apple Event Manager that your application knows how to find
a certain kind of object in a certain kind of container. For instance, you know how to
find a rectangle object in a grouped graphic object or a word object in a paragraph
object. (More on containers in a minute.)

A token is an application-defined data structure that is populated in your object
accessors and is passed later to your object’s event dispatcher code, where it’s used to
find the object that an Apple event will be applied to. The structure and content of a
token are private to the application; neither the Apple Event Manager nor the OSL
attempts to interpret or use the contents of a token. The Sketch sample application
uses a single token structure, shown below, for all of its objects. Note that some fields
aren’t used for all object types and that the token doesn’t contain the object’s data or a
data value; it contains information about how to locate the object later. You can use a
single token structure in your implementation, or you may want to design a unique
token structure for each object you support.

typedef struct CoreTokenRecord {
DescType di spat ch ass; /1 class that will handle an event
DescType obj ect 0 ass; /'l actual class of this object
DescType propert yCode; /'l requested property code,
/1 or typeNull if not a property token

| ong document Nunber; // unique ID for the document, or 0
| ong el ement Nunber ; /'l unique ID for the element, or 0
WndowPtr wi ndow, /'l used for w ndow objects only

} CoreTokenRecord, *CoreTokenPtr, **CoreTokenHandl e;

Event dispatchers are application-defined functions that you call after you've called
AEResolve and your object accessors have returned a token for the target of the
Apple event. You call your event dispatchers and pass the token you created, the
original Apple event, and the reply Apple event you received in your Apple event
handler. The event dispatcher examines the Apple event, extracts the event ID, and
passes its parameters on to a specific event handler for the token object. The token is
used to identify the object or objects that the Apple event should act on.

Apple event handlers are functions you write and install that receive a specific Apple event

and a reply Apple event. Your event handlers extract parameters from the Apple event,
process the event using those parameters, and place the result in the reply Apple event.

CODING YOUR OBJECT MODEL FOR ADVANCED SCRIPTABILITY

6 develop Issue 28 December 1996

A single handler can be installed to handle many events. For example, one handler can
receive all events in the Core suite, except the Create Element event, if you specify
kAECoreSuite for the event class and typeWildCard for the event ID. Because
Create Element passes an insertion location instead of an object specifier in the direct
object parameter, Sketch installs a separate handler, AECreateElementEventHandler,
to handle this event for all Core suite objects.

The Sketch sample code resolves object specifiers and dispatches Core suite Apple
events by using the object-first approach. The object-first flow of control proceeds as
follows:

1. In the Core suite event handler, extract the parameter for the direct object of
the Apple event. Except in the case of the Create Element event, this is a
reference to some object the user is trying to access or modify.

2. Call AEResolve, which calls one or more of your object accessor functions,
each of which finds the requested object in a specified container and then
returns a token. AEResolve successively calls object accessors until one of the
following three conditions is met: you return a token for the specified object;
you return an error code; or AEResolve finds a container-element combination
for which there’s no installed accessor.

3. Examine the token to determine what kind of object it references and then
send the original event, the reply event, and the token to the event dispatcher

for that type of object.

4. In the object’s event dispatcher, extract the event ID and dispatch the event
and the token to the object’s event handler.

5. In the object’s event handler, apply the event to the object or objects
referenced by the token and return the results in the direct object of the
reply Apple event. You usually just unpack the parameters in your event
handler and then call lower-level functions you've written to do the
application-specific work.

Figure 1 shows how this approach is applied as Sketch processes the script statement
set fill color of rectangle 1 of document 1 to blue

Note that Sketch has one file for each type of scriptable object. Figure 1 shows
fragments of three files:

¢ AECoreSuite.c, which receives all Apple events from the Core suite, resolves
the direct object parameter, and dispatches the token and the Apple event to
the dispatcher for a specific object type

* OSLClassDocument.c, which contains accessors, a dispatcher, and event
handlers for document objects

* OSLClassGraphicObject.c, which contains accessors, a dispatcher, and event
handlers for all graphic objects

OBJECT ACCESSORS AND YOUR CONTAINMENT
HIERARCHY

How you implement your object model will depend largely on the nature of your
data and on your containment hierarchy. Your containment hierarchy specifies the
objects you support, how script statements should address those objects, and which
objects are contained by which other objects. Contained objects are called elements of
the container object. Each object also usually contains one or more properties, which

AECoreSuite.c OSlLClassDocument.c

AECoreSuiteEventHandler DocumentFromApplicationAccessor
CD Extract the direct Receives an application token and
object parameter. returns a document token.
Call AEResolve,

@) which calls three
object accessors.

Examine the token to OSlClassGraphicObject.c

determine which object
@) should handle the event.
It's a property of
rectangle token, so call
the event dispatcher for
graphic objects.

GraphicObjectFromDocumentAccessor
Receives a document token and
returns a rectangle token.

|

PropertyFromGraphicObjectAccessor
Receives a rectangle token and
returns a property of rectangle token.

GraphicObjectEventDispatcher
Examine the Apple event to get
@) the event ID. It's kAESetData, so

[— call this object's Set Data event
handler.
=0= Untitled 1 =[I= HandleSetData

Receives a token and a reply event.
The token contains a property code for
the fill color property of rectangle 1.

The keyData parameter of the event
contains the data representing “blue.”
5 Use the token data to change the

A

rectangle’s color to blue.

Figure 1. How Sketch processes set fill color of rectangle 1 of document 1 to blue

represent that object’s characteristics, such as font size or color. While an object can
contain many elements of a particular type, it contains only one of each of its
properties. A script identifies the object to inspect or change by way of an object
reference, which specifies the object’s location in the containment hierarchy.

Sketch has the containment hierarchy shown in Figure 2. The application object can
contain both windows and documents. Documents, in turn, contain objects defined in
the QuickDraw Graphics suite, such as rectangles, ovals, graphic lines, and graphic
groups. Graphic groups can contain any object from the QuickDraw Graphics suite,
including other graphic groups.

The following complete script navigates through Sketch’s containment hierarchy
from top to bottom to get a property of an object:

tell application "Sketch"
tell docunent "Sales Chart"
tell rectangle 1
get fill color
end tell
end tell
end tell

CODING YOUR OBJECT MODEL FOR ADVANCED SCRIPTABILITY

8 develop Issue28 December 1996

—I graphic object |

—I graphic line

—I graphic object

—I graphic group...

|
|
|
[gworogow H{ om]
|
|
|

- polygon
- dooument - rectangle
application [| rounded rectangle

— graphicline |
H oval |
— poygon |
— rectangle |
| rounded rectangle |

—I window |

Figure 2. The Sketch containment hierarchy

Throughout the rest of this article, I'll usually show script fragments consisting of a
single statement instead of complete scripts.

The desired object can be specified in one of several ways in a script statement, as
you’ll see later in the discussion of key forms. Theoretically, for each container-
element combination in your containment hierarchy, you need an object accessor
function that can find the element type in its container type. In reality, you frequently
can get by with a single object accessor function that can handle many container-
element pairs, rather than having to write and install a separate function for each one.

The Apple Event Registry lists the elements that can be contained within each object it
defines. Recursive definitions occur frequently in the Registry. For example, the word
object in the Text suite can contain characters, words, lines, paragraphs, and text.
While it seems reasonable that a word can contain a character, when would a word
contain a line or a paragraph? Suppose the script asked to do something to words 1
through 200. This is an example of a range specifier, which we’ll look at in more
detail later. Your application might resolve this range specifier into a list of 200 word
objects. Because there could be many paragraphs within that range, asking for
paragraph 2 of words 1 through 200 would make sense. It’s to support range specifiers
that every text object is required to be an element of every other text object.

The upshot of this is that to support the word object in the Text suite, you would need
to write object accessors to resolve all these possible containment scenarios: word-from-
character, word-from-word, word-from-line, word-from-paragraph, word-from-text,
and either word-from-document (for a text editor that supports one large text object
per document) or word-from-graphic-text (for a drawing application that supports
many text boxes per document). As mentioned earlier, though, you frequently can get
by with a single object accessor function that can handle many container-element
pairs. Sketch, for example, uses just two object accessors to support all objects in

the QuickDraw Graphics suite: GraphicObjectFromDocumentAccessor and

GraphicObjectFromGroupAccessor, both of which call GraphicObjectAccessor to do
the real work of finding a graphic object.

OBJECT ACCESSORS AND KEY FORMS

Script statements can ask for an object or a collection of objects in a variety of ways.
They can ask for a single object by its unique ID, by name, or by its absolute or
relative position in a container. A script can also ask not for an object, but for some
property of an object, such as the fill color of a rectangle or the font of a paragraph.
A script statement can ask for more than one object by using the word every, by
specifying a range between some object and some other object in a container, or by
specifying a test that the objects must satisfy. The method that’s used to reference an
object or objects in a script determines the keyForm parameter that an object
accessor function will receive when it comes time to resolve the object specifier.

When an object accessor receives one of the simple key forms and associated key data
types listed in Table 1, it returns a descriptor containing a token that references a
single object in your application. When it receives one of the complex key forms and
associated key data types listed in Table 2, it returns a descriptor containing a list of
tokens, each of which references a single object.

Table 1. Simple key forms

Key form Key data type Key data value

formUniquelD typelonginteger A unique number

formPropertyID typeEnumerated An identifier declared in your 'aete’
resource

formName typelntiText The name of an object, such as a
document

formAbsolutePosition typelonginteger A positive or negative number

typeAbsoluteOrdinal kAEFrst, KAEMiddle, kAELast, KAEAny
formRelativePosition typeEnumerated kAEN ext, kAEPrevious

Table 2. Complex key forms

Key form Key data type Key data value
formAbsolutePosition typeAbsoluteOrdinal kAEAII

formRange typeRangeDescriptor See section “Handling formRange.”
formTest See section “Handling formTest and formW hose.”

formW hose See section “Handling formTest and formW hose.”

Note that not all key forms are appropriate for all classes — a rectangle might not
have a name, for example, and some objects, such as a word or a paragraph, might not
have a unique ID. According to Inside Macintosh: Interapplication Communication, if a
key form isn’t supported for an object in one of your containers, you should return
errAEEventNotHandled. But you might want to return a more specific error code,
such as errAEBadKeyForm or errAENoSuchObject.

HANDLING SIMPLE KEY FORMS
Handling the simple key forms is mostly straightforward. Table 3 shows some
examples of script fragments using simple keys and their results. For these examples,

CODING YOUR OBJECT MODEL FOR ADVANCED SCRIPTABILITY

10 develop Issue28 December 1996

assume the script is looking at a text block that contains the words “Hi there” in
12-point Helvetica type. For the first two examples, formAbsolutePosition is the key
form,; for the third example, the key form is formPropertylD, and for the fourth
example it’s formRelativePosition.

Table 3. Script fragments using simple keys and their results

Script fragment Result type Example result
word 2 word "there"

character 1 of word 2 character "t

size of word 1 number (font size) 12

word before word 2 word "Hi"

Although formRelativePosition is a simple key form, there’s one aspect of handling it
that might not be obvious. The container parameter that your object accessor receives
in this case is a reference not to a container but to an object inside a container in
relation to another object inside that container. In other words, if a script asks for an
object before or after another object in a container, as in

get name of the window after w ndow "Sales Chart"

your object accessor will receive a keyForm parameter of formRelativePosition and a
keyData parameter that contains a constant, either kKAENext or kAEPrevious. Your
accessor must then find the object either before or after the “contained” object. This
means that to handle formRelativePosition, you’ll have to install an accessor that gets
an object of one type from another object of the same type.

Although the containment hierarchy for Sketch shows that windows don’t contain
other windows, you will need a window-from-window accessor installed to handle
formRelativePosition. If your accessors can find an object in a container, finding an
object either before or after that object should be relatively easy, as long as you
remember to install the accessor. Here’s how Sketch installs the accessor for its
window object:

error = AElnstal | Qbj ect Accessor (cW ndow, cW ndow,
NewOSLAccessor Proc(W ndowFr omAppl i cati onAccessor), OL, false);

HANDLING EVERY

If a script asks for every one of a certain kind of object, your accessor will receive a
keyForm parameter of formAbsolutePosition and a keyData parameter with a
descriptor type of typeAbsoluteOrdinal and a value of KAEAIL, and you’ll return a
descriptor that represents a collection of objects. The Sketch application returns an
AEList of tokens that reference each object. Some examples of script fragments using
every and their results are shown in Table 4. Again, assume the script is looking at a
text block that contains the words “Hi there” in 12-point Helvetica type.

Each every specifies another list level: one every will return a list, two will return a
list of lists, and so on. Consider, for instance, this statement that navigates through

the Text suite hierarchy:

get every character of every word of every paragraph of every docunent

Table 4. Script fragments using every and their results

Script fragment Result type Example result

every word List of words {"Hi", "there"}

character 1 of every word List of characters {"H", "t"}

every character of every word List of list of characters {H Ty ThY, e, Y, e)
font of character 1 of every word List of strings {"Helvetica", "Helvetica"}

size of every character of every word List of list of numbers {12,12}, {12, 12,12, 12, 12}}

An application could handle this statement by returning a descriptor containing a
four-level list of character tokens. Alternatively, an application could return a flat list
(a single-level list of objects all concatenated together), but I don’t recommend this
practice because it assumes that the information about the deep structure that’s
thrown away won’t be needed for any subsequent processing in the script, and there’s
really no way to know that reliably.

AEResolve and your individual object accessors have no way to know how deep a list
will end up being, but your code that handles the Apple event after the object
resolution has been completed must do the right thing with a descriptor referencing a
single object and with a descriptor that contains arbitrarily deep lists of such objects.

HANDLING FORMRANGE

If the script asks for objects between some object and some other object in a container,
your object accessor for that container will receive a keyForm parameter of formRange.
There are many ways to specify a range of objects in a script:

get the fill color of rectangles 1 through 3
get the location of windows fromw ndow "Hello" to w ndow 4
get the bounds of graphic objects fromoval 1 to rectangle 3

Note that the beginning and ending objects can be specified with different key forms
and that they might even be two different object types, as in the third example.
Regardless of how they’re specified, you need to resolve the two object specifiers and
return a descriptor containing a list of tokens for the objects from the first through
the last object in the range.

Your object accessors are called three times to completely resolve a formRange
statement. On the first call to an object accessor, you receive a key form of formRange
and key data that contains a typeRangeDescriptor record. In Sketch, this information
is passed on to the ProcessFormRange function, shown in Listing 1. ProcessFormRange
begins by coercing the range record into a regular record, which will then contain
two object specifiers. Next, it extracts the first descriptor from the record and calls
AEResolve, which calls your object accessors again to get a token for the first object
in the range. Finally, ProcessFormRange extracts the second descriptor and calls
AEResolve again to get a token for the last object in the range. ProcessFormRange is
called from your object accessor, and when it returns you’ll have tokens for the two
boundary objects in the range. Your object accessor then builds a list of all objects in
the range and returns that list in the result token.

HANDLING FORMTEST AND FORMWHOSE
If the script asks for objects that satisfy some test, such as

get the fill color of every rectangl e whose rotation is 45

CODING YOUR OBJECT MODEL FOR ADVANCED SCRIPTABILITY

11

12 develop Issuie28 December 1996

Listing 1. Resolving the boundary objects for a range request

OSErr ProcessFor mRange(AEDesc *keyData, AEDesc *start, AEDesc *stop)
{

OSErr error;

AEDesc ospec = {typeNul |, NULL};

AEDesc range = {typeNul |, NULL};

/1 Coerce the range record data into an AERecord.
error = AECoerceDesc(keyData, typeAERecord, &range);
if (error I'= noErr) goto G eanlp;

/1 Resolve the object specifier for the first object in the range.

error = AEGet KeyDesc(&range, keyAERangeStart, typeW!dCard, &ospec);

if (error == noErr && ospec.descriptorType == typeCbj ect Specifier)
error = AEResol ve(&ospec, kAElIDoM nimum start);

if (error = noErr) goto G eanlp;

AEDi sposeDesc(&ospec);

/1 Resolve the object specifier for the Iast object in the range.

error = AEGet KeyDesc(& ange, keyAERangeStop, typeW | dCard, &ospec);

if (error == noErr && ospec.descriptorType == typeQbj ect Specifier)
error = AEResol ve(&ospec, kAElI DoM ni mum stop);

Q eanUp:
AEDi sposeDesc(&ospec);
AEDi sposeDesc(&range) ;
return error;

you’ll return a descriptor containing a list of tokens referencing those objects.
Fortunately, once you’ve added support for list processing, you only need to install
two functions to gain the incredible power of whose statements: an object-counting
function and an object-comparison function. The object-counting function counts
the number of objects of a specified class in a specified container. Let’s say that your
document has three rectangles that are rotated to 45 degrees, and another three that
aren’t rotated. When the OSL calls your counting function, you return 6, the total
number of rectangles in the document container. Now the OSL knows that it has to
call your object-comparison function six times, once for each rectangle.

The object-comparison function is given two descriptors and a comparison operator
and returns true if the two descriptors satisfy the comparison operator, or false if they
don’t. For the example above, one descriptor will be an object specifier, such as
rotation of rectangle 1, and the second descriptor contains the raw data, 45. You need
to resolve the first descriptor, a formPropertylD reference, to get the rotation value
for that object. Then you use the comparison operator to compare the resolved
property value with the raw comparison data. If the comparison is valid, you return
true; otherwise, you return false. When you return true, the OSL adds the token
representing the rectangle under consideration to a list of objects that satisfy the test.
"To make sure the OSL handles formTest and formWhose for you in this way, be sure
to specify kKAEIDoMinimum as the second parameter to AEResolve.

Because you can have only one counting function and one comparison function
installed, they need to be able to work with all of your container types and all the

object types you support. The good news is that if you’ve added support for basic
object model scriptability, you’ve already got most of the functions spread around
that do most of the work you’ll need to do in your counting and comparison callbacks.
Sketch includes both an object-counting function and an object-comparison function,
plus a variety of comparison functions for different data types.

Depending on the OSL to handle whose clauses in this way has one drawback — it
can be inefficient when there are a large number of objects. The OSL will call your
accessors to find each object and then it will apply the comparison to each one. If you
find that this is too slow, you can go the extra mile and handle resolution of whose
clauses yourself. For details, see “Speeding Up whose Clause Resolution in Your
Scriptable Application” by Greg Anderson in develop Issue 24.

INTRODUCING THE THREE BIG GOTCHAS

Handling the key forms and the lists your object accessors can return goes a long way
toward making an object model implementation capable of handling complex user
scripts. But there’s more you need to do — namely, you have to know about the three
big gotchas so that you can avoid getting into trouble with them.

I first encountered the gotchas while I was taking the “Programming Apple Events”
course at Apple Developer University. The instructor, James Sulzen, was showing us
some slides when he boldly exclaimed, “And here is the most important slide in the
course!” It was the slide listing the gotchas I’'m about to describe. But I didn’t discover
just how correct his pronouncement was until sometime later, when I’d read the
Registry several times over and had started implementing an object model for a high-
end graphics package. Simply stated, the gotchas are these:

* Any Apple event parameter can be an object specifier.

* Any resolution can return either a descriptor containing a token for a single
object or a descriptor containing a list of tokens.

* The meaning of a token’s contents must be preserved during the execution of
an Apple event that uses that token.

I'll explain each of these and describe what you need to do in your code to deal with

them.

GOTCHA #1: THE “ANY PARAMETER” GOTCHA
Any Apple event parameter can be an object specifier.

"To help you grasp the implications of this gotcha, let’s look first at a script that results
in sending your application a keyData parameter that’s zot an object specifier:

set stroke size of rectangle 1 of graphic group 2 to 3

In your "aete' resource, you've included the QuickDraw Graphics suite that defines a
rectangle object and its stroke size property. When a script sends the above statement
to your application, your accessors will be called to find rectangle 1. In this example,
accessors for document-from-application, group-from-document, and rectangle-
from-group will be called. The last accessor, the one that actually finds the rectangle,
returns a token that will allow your event handler to find this specific rectangle later.
Next, since AEResolve has done its work, your Core suite dispatcher examines the
type of object the token refers to and dispatches it to the appropriate object’s event
dispatcher.

CODING YOUR OBJECT MODEL FOR ADVANCED SCRIPTABILITY

13

Your event dispatcher looks at the Apple event ID and determines that it’s a Set Data
event, so it calls the object’s Set Data event handler, passing in the token returned
from your object accessor, the original event, and the reply event. In the object’s
event handler, you examine the token to determine that it references the stroke size
property of a particular rectangle, and you examine the Apple event to extract the
keyData parameter, which contains the value 3. Finally, you update the data structure
that represents that rectangle, setting the stroke size to 3, and probably do something
to generate an update event so that the screen is redrawn to show the rectangle’s new
visual appearance.

Now, suppose the user typed a slightly different statement:
set stroke size of rectangle 1 to the stroke size of oval 2

This time the keyData parameter isn’t a simple number like 3 but is instead an object
specifier, stroke size of oval 2. There’s only one way to convert this to a value to use
to set the stroke size of rectangle 1 — you have to resolve the keyData parameter. You
first have to resolve the object specifier to acquire a token that references the stroke
size of oval 2, and then, since you need the actual value of that property for the Set
Data event, you must use that token and emulate a Get Data event to extract that
value from oval 2.

How to deal with gotcha #1. Again, gotcha #1 says any parameter to an Apple
event can be an object specifier. Since this is the case, we might as well write a generic
function that extracts parameters from an Apple event and that can handle parameters
that contain raw data as well as parameters that contain object specifiers. Sketch uses
this approach, calling its ExtractKeyDataParameter function from its Set Data event
handlers.

The ExtractKeyDataParameter function, shown in Listing 2, extracts the key data
from the Apple event without changing its form. It then passes that data to the
ExtractData function (Listing 3), which looks at the descriptor type and calls
AEResolve if it determines that the source parameter contains an object specifier.
ExtractData can receive an object specifier, an object token, a property token, or raw
data (text, number, and so on); it converts whatever it receives into raw data and
returns that. Besides being called from ExtractKeyDataParameter, it’s also called

by the OSLCompareObjectsCallback function, which is used to resolve whose
clauses.

Listing 2. Extracting the keyData parameter from an Apple event
OSErr Extract KeyDat aPar amet er (const Appl eEvent *appl eEvent,
AEDesc *dat a)
{
OSEr r error = nokrr;
AEDesc keyData = {typeNul |, NULL};
error = AEGet KeyDesc(appl eEvent, keyAEData, typeW|dCard, &keyData);
if (error == noErr)
error = ExtractData(8eyData, data);
AEDi sposeDesc(&keyDat a) ;
return error;
}

14 develop Issue28 December 1996

Listing 3. Extracting raw data from a descriptor

OSErr ExtractData(const AEDesc *source, AEDesc *data)
{

OSEr r error = nokrr;

AEDesc tenp = {typeNul |, NULL};

DescType di spat chd ass;

if ((source->descriptorType == typeNull) I
(source->dat aHandl e == NULL)) {
error = err AENoSuch(vj ect ;
goto O eanlp;

}

/1 1f it's an object specifier, resolve it into a token;
/'l otherwise just copy it.
if (source->descriptorType == type(hject Specifier)
error = AEResol ve(source, kAElIDoM nimum &t enp);
el se error = AEDuplicateDesc(source, & enp);
if (error = noErr) goto G eanlp;

/1 Next, determne which object should handle it, if any.
/1 1f it's a property token, get the dispatch class.
/]l Qtherwise, it's either an object token or raw data.
if (tenp.descriptorType == typeProperty)

di spatchCl ass = ExtractDi spat chCl assFroniToken(& enp) ;
el se di spatchC ass = tenp.descriptorType;

/1 1f it's a property token, get the data it refers to;
/'l otherwi se just duplicate it.
switch (dispatchC ass) {
case cApplication:
error = errAEEvent Not Handl ed;
br eak;
case cDocunent:
error = Get Dat aFromDocunent Qbj ect (& enp, NULL, data);
br eak;
case cW ndow:
error = Get Dat aFr omiN ndow(bj ect (& enp, NULL, data);
br eak;
case cG aphi cObj ect:
error = Get Dat aFr onGr aphi c(bj ect (& enp, NULL, data);
break;
defaul t:
/1 This is raw data or a nonproperty token.
error = AEDuplicateDesc(&t enp, data);
br eak;

}

C eanUp:
AEDi sposeDesc(&t enp) ;
return error;

CODING YOUR OBJECT MODEL FOR ADVANCED SCRIPTABILITY 1 5

16 develop Issue28 December 1996

There are some circumstances where extracting raw data isn’t the correct thing to do,
asin

set selection of application "Sketch" to oval 2

In this case, we just want to return the token for oval 2, not some property data as in
the previous example. To handle this case, ExtractData checks to make sure that the
token’s propertyCode field doesn’t contain typeNull before we dispatch the token to
one of the GetDataFrom functions. If it isn’t a property token, we just return the
token itself and not its data.

GOTCHA #2: THE “ANY RESOLUTION” GOTCHA
Any resolution can return either a descriptor containing a token for a single object or a
descriptor containing a list of tokens.

As noted earlier, the presence of every in a script statement, or a range request, or a
whose statement all require that you generate and return a descriptor containing a
list of tokens. Let’s look at a script statement and follow the resolution process as it
calls each of our accessors in turn. Here’s the statement:

get every character of word 2 of every line of paragraph 2 of document 1
Let’s assume document 1 looks like this:

Hello there!q

This text block contains three lines
and two of them are long but one
is not.q

In the Core suite, AEResolve works from the top of the containment hierarchy down
to the requested object, so in our example it first calls the document-from-application
accessor, which returns a token identifying the frontmost document. I'll introduce a
notation here, where a letter refers to the object type, and a number refers to an
index, so “D1” means “document 1.”

resol ve "document 1" => Di

Next, AEResolve asks us to find a paragraph by calling our paragraph-from-document
accessor, which returns a token for paragraph 2:

resol ve "paragraph 2 of document 1" => DIP2

Next, AEResolve calls our line-from-paragraph accessor. Because of the every keyword,
we must return a list of tokens:

resolve "every line of paragraph 2 of document 1" =>
{D1P2L1, D1P2L2, Di1P2L3}

Next, AEResolve asks for word 2 and calls our word-from-line accessor. In this case,
however, our accessor must be able to find a word in each token in a list of line
tokens. The accessor’s result is a list of word tokens. The list depth doesn’t change,
because the statement doesn’t ask for every word.

resolve "word 2 of every line of paragraph 2 of document 1" =>
{D1P2L1Ve, DiP2L2Ve, DiP2L3V2}

The final resolution asks for every character of each of those three words. Because
this is our second every in the statement, we know we’re going to return a list of lists:

resolve "every character of word 2 of every line of paragraph 2 of
docurent 1" =>
{{D1P2L1VC1, DiP2L1WeC2, Di1P2L1WC3, DiP2L1VRC4},
{D1P2L2VC1, DiP2L2WeC2, Di1P2L2VC3},
{D1P2L3VC1, DiP2L3WeC2, D1P2L3VRC3}}

or, as it would be displayed as an AppleScript result:
{{"tll’ ||e|l’ lIXIIy lltll}’ {lltll’ ||Wl’ |loll}’ {lln"Y ||ol|y Ilt"}}

A list of tokens can also be accumulated by the OSL in the course of handling a
whose clause. For example, consider the following statement:

resolve "every word of paragraph 2 of document 1 that contains "e"" =>
{"text", "three", "lines", "thent, "are", "one"}

When this statement is resolved, the OSL will call your object accessors for word 1
through word 16 of the token for paragraph 2 of document 1 and pass each word
token to your object-comparison function. Those tokens that match (words that
contain the letter ¢ in this example) are copied into an AEList with AEPutDesc, and
the original is disposed of with AEDisposeDesc. Tokens that don’t match are disposed
of with your token disposal callback if you’ve installed one, or with AEDisposeDesc
otherwise.

There’s a corollary to gotcha #2: Any token list can be or can contain an empty list or lists.
Given the statement

get every character of word 3 of every line of paragraph 2 of docunent 1

we must deal with the fact that line 3 (the last line) of paragraph 2 contains only two
words. What then should we do with “word 3 of line 3”? If this were a standalone
statement, we’d feel justified in returning an errAElllegallndex error to let the user
know that the requested word doesn’t exist. However, since we’re returning lists in
the more complex statement, we might want to return an empty list as part of our
result instead. For example:

(O ERRT TR A A N L AR 03!

Another example, again from the Text suite, involves words from paragraphs. Suppose
paragraph 2 is empty, as in the following block of text:

Hello there!q
1

How are you?{

What will you do with “get every word of every paragraph” in this case? If you decide
to support empty lists or empty sublists, all of your handlers will need to be able to
deal not only with a single token and arbitrarily deep lists of tokens, but also with an
empty list.

How to deal with gotcha #2. Designing your object accessors and your event

handlers to be list savvy enables your code to fully respond to script statements that
require you to return lists of objects or to apply Apple events to lists of objects.

CODING YOUR OBJECT MODEL FOR ADVANCED SCRIPTABILITY

17

18 develop Issuie28 December 1996

"To handle lists, an object accessor must be able to return a descriptor containing a
token that references a single object or a descriptor that contains a list of tokens. For
example, a property-from-object accessor must be able to receive a list of object
tokens and return a list of property tokens for those objects. For each object you
support, you need one of these property-from-object accessors. In Sketch, these
basically duplicate the token for the object and then stuff the requested property ID
into the token’s propertyCode data field.

An object’s event handler must also be able to receive a descriptor that contains a
single token or a descriptor that contains a list of tokens. It must then apply the event
to the object referenced by each token. In addition, the event handler must apply the
event to each object in a manner that addresses gotcha #3, discussed later.

If you’ve installed a token disposal callback function, it too must be able to handle an
AEList of tokens.

The Sketch sample handles this gotcha by implementing recursion in both its object
accessors and its event handlers. The basic structure of an accessor then consists of
three functions. For example, for the QuickDraw Graphics suite, the property-from-
object accessor uses these three functions, as shown in Listing 4:

* PropertyFromGraphicObjectAccessor — installed function that calls one of
the following two static functions, depending on whether it receives a token
or a token list

* PropertyFromListAccessor — always receives a list, and calls itself
recursively until it finds a token that doesn’t contain a list, when it calls
PropertyFromObjectAccessor

* PropertyFromObjectAccessor — always receives a token for a single object,
and returns a token representing a property of that object

Listing 4. Functions used by our propertyfrom-object accessor

pascal OSErr PropertyFronG aphi c(bj ect Accessor (DescType desiredC ass,
const AEDesc* cont ai ner Token, DescType cont ai nerd ass,
DescType keyForm const AEDesc* keyData, AEDesc* resultToken,
I ong refcon)

{
OSErr error;
i f (containerToken->descriptorType != typeAEList)
error = PropertyFronthject Accessor (desiredC ass,
cont ai ner Token, contai nerC ass, keyForm keyData,
resul t Token, refcon);
el se {
error = AECreateList(NULL, OL, false, resultToken);
if (error == noErr)
error = PropertyFronli st Accessor (desiredC ass,
cont ai ner Token, contai nerC ass, keyForm keyData,
resul t Token, refcon);
}
return error;
}

(continued on next page)

Listing 4. Functions used by our property-from-object accessor (continued)
static OSErr PropertyFronlistAccessor(DescType desiredC ass,
const AEDesc* contai ner Token, DescType contai nerC ass,
DescType keyForm const AEDesc* keyData, AEDesc* result Token,
I ong refcon)
{
OSErr error = nofrr;
| ong i ndex, numtens;
DescType keywor d;
AEDesc srcltem= {typeNul |, NULL);
AEDesc dstltem = {typeNul |, NULL};
error = AECount |t ens((AEDescLi st *) cont ai ner Token, &numltens);
if (error !=noErr) goto G eanlp;
for (index = 1; index <= numtens; index++) {
error = AECGet Nt hDesc(cont ai ner Token, index, typeW!dCard,
8keyword, &srcltem;
if (error !'=noErr) goto C eanlp;
if (srcltemdescriptorType != typeAEList) {
error = PropertyFronmbj ect Accessor (desi redC ass, &srcltem
contai ner O ass, keyForm keyData, &dstltem refcon);
}
el se {
error = AECreatelist(NULL, OL, false, &dstltem;
if (error == nofrr)
error = PropertyFronli st Accessor (desiredC ass, &srcltem
cont ai nerC ass, keyForm keyData, &dstltem refcon);
}
if (error !=noErr) goto C eanlp;
error = AEPut Desc(resul t Token, index, &dstltem;
if (error !'=noErr) goto C eanlp;
AEDi sposeDesc(&srcltem;
AEDi sposeDesc(&dstltem;
}
C eanlp:
AEDi sposeDesc(&srcltem;
AEDi sposeDesc(&dstitem;
return error;
}
static OSErr PropertyFronmbj ect Accessor (DescType desiredType,
const AEDesc* cont ai ner Token, DescType cont ai nerd ass,
DescType keyForm const AEDesc* keyData, AEDesc* result Token,
I ong refcon)
{
OSEr r error = noErr;
DescType requestedProperty = **(DescType**)(keyDat a- >dat aHandl e) ;
(continued on next page)

CODING YOUR OBJECT MODEL FOR ADVANCED SCRIPTABILITY 1 9

20 develop Issie28 December 1996

Listing 4. Functions used by our propertyfrom-object accessor (continued)

if (CanCet Property(container(ass, requestedProperty)
Il CanSet Property(containerC ass, requestedProperty)) {
error = AEDupli cat eDesc(cont ai ner Token, result Token);
if (error == nofrr) {
resul t Token->descri ptor Type = desiredType;
(**(CoreTokenHandl e) (resul t Token- >dat aHandl e)) . pr opert yCode
= request edProperty;
(**(CoreTokenHandl e) (resul t Token->dat aHandl e)) . obj ect O ass
= cont ai ner 0 ass;
}

}
el se error = err AEEvent Not Handl ed;

return error;

The event handlers use this same three-tiered mechanism to apply events to descriptors
that contain either a single token or a list of tokens. For example, the Get Data event
will eventually receive the property token returned by the property-from-object
accessor above and deal with it as shown in Listing 5.

Again, the event handler passes the first parameter on to GetDataFromGraphicObject,
which calls GetDataFromList if the parameter contains a list of tokens, or
GetDataFromObject if it contains a token for a single object. Both the object
accessor and the event handler use the same three-tiered mechanism to deal with
either lists or single tokens. Most of the work is done, in both cases, in the third tier,
and if you’ve already implemented simple object model scriptability, you’ve already
written most of the code for the third tier. To support lists, you just have to add the
switching code for the first and second tier, which is almost identical for all object
accessors and all event handlers. Using this mechanism, fully supporting lists of any
depth is nearly trivial.

Flattening lists. Sometimes, after your object resolution code has built an arbitrarily
deep list of lists to satisfy the tail end of a script statement, the final resolution might
require you to flatten it back into a single-level list. Sketch includes the FlattenAEList
function to perform this duty:

OSErr Fl attenAELi st (AEDescLi st *deepList, AEDescList *flatlList);
Here’s an example of when you might use it, again from the Text suite:

get text of every character of every word of every paragraph -
of every document

Since the Text class isn’t required to handle either formRange or the every construct,
you can return a string that spans from the first character in the list to the last
character in the list. A function to flatten a typeAEList token from an arbitrary depth
to a single list is useful for this purpose, and for use in your Apple event handlers,
such as the handlers for Count and Delete. For example, the statement

count every character of every word of every line of every paragraph

Listing 5. How a Get Data event handles a property token

static OSErr Handl eGet Dat a(AEDesc *token, const Appl eEvent *appl eEvent,
Appl eEvent *reply, long refcon)
{
OSEr r error = nokrr;
AEDesc data = {typeNul |, NULL};
AEDesc desiredTypes = {typeNul |, NULL};

AEGet Par anDesc(appl eEvent, keyAERequestedType, typeAEList,
&desiredTypes); // "as" is an optional parameter; don't check
/1 for error.
error = Get Dat aFronGr aphi cObj ect (t oken, &desiredTypes, &data);
if (error == noErr && reply != NULL)
error = AEPut KeyDesc(reply, keyDirect(bject, &data);

AEDi sposeDesc(&dat a) ;
AEDi sposeDesc(&desi redTypes);
return error;

}

OSErr Cet Dat aFr onGr aphi ¢Qbj ect (AEDesc *t okenOr TokenLi st
AEDesc *desiredTypes, AEDesc *data)

{
OSErr error = nokrr;
if (tokenOrTokenList->descriptorType != typeAEList)
error = Get Dat aFrombj ect (t okenOr TokenLi st, desiredTypes, data);
el se {
error = AECreateList(NULL, OL, false, data);
if (error == noErr)
error = GetDataFrondli st (tokenOr TokenLi st, desiredTypes, data);
}
return error;
}

is allowed, and your accessors will return a four-deep list of characters. The Count
event handler doesn’t care about the structure of the list, only about the number of
objects in its sublists, so rather than deal with recursion to step through the list
structure you can just flatten the list and then call AECountltems to get the number
of elements. This example is somewhat contrived, and although this script fragment
would be processed correctly, such processing might be very slow for a large number
of objects. This is a side effect of a strict object-first implementation. For some events,
such as Count, you may want to write custom counting code that short-circuits your
standard object resolution and dispatching mechanism.

GOTCHA #3: THE “PRESERVE A TOKEN’S MEANING” GOTCHA
The meaning of a token’s contents must be preserved during the execution of an Apple event
that uses that token.

You’re most likely to come up against this gremlin when one of your handlers receives

a list of tokens and some action needs to be performed on the objects referenced by
the tokens in the list. Consider, for example, the following statement:

CODING YOUR OBJECT MODEL FOR ADVANCED SCRIPTABILITY

21

29 develop Issue28 December 1996

del ete character 2 of every word

Let’s say all of your text tokens are implemented by storing a beginning offset and a
length, where the offset is measured from the beginning of a text block. Resolving the
above statement will return a list of tokens, with offsets for character 2 of each word
in the text block. Next, your handler iterates through the list of objects referenced by
the tokens and deletes the character referenced in each object. The first deletion works
just fine; you use the offset contained in the first token and delete character 2 of word
1. This causes every following character to move one position to the left to fill the
spot vacated by the deleted character. Uh oh! Now the offsets for the remainder of
your objects are all off by 1! The next deletion will use the now incorrect offsets, and
character 3 of word 2 will be deleted. The next call will delete character 4 of word 3,
and so on. This implementation has violated gotcha #3 — you received a single
Delete event, but that single event operates on multiple objects, and although your
object accessors computed the object tokens correctly at the time they were called,
your handler causes the meaning of the tokens to be inaccurate each time it processes
another object.

How to deal with gotcha #3. Here are several ways to solve the problem resulting
from processing the script statement above:

* You could construct your tokens as offsets from the end of the text block
instead of from its beginning. Then, as characters are deleted from the first
word to the last, since the end of the list is shrinking also, the offsets will still
be correct.

* You could have your handler keep track of the number of characters deleted
so far and adjust the offsets in your tokens as you go.

* You could step through the list in reverse order, from the last token down to
the first.

These methods all produce the correct results for the script statement above, but they
might produce incorrect results for other valid statements. For instance, suppose your
user built the word list herself and then reversed the list and sent it to your Delete
handler. With the last solution above, you cleverly work from the end of the list to
the beginning, but since the user has already reversed the list, you're really back to
deleting from the beginning of the text block toward its end, and you experience the
very problem you were trying to avoid!

If you’re implementing the Text suite, pay particular attention to gotcha #3. Test your
implementation with many different scripting constructs, and have people who write
scripts very differently from you test it also. If necessary, you may need to first
manipulate the order of the tokens in the list you receive to make sure you can preserve
the meaning of those tokens until the event has been applied to each one of them.

OTHER GOODIES FOR COMPLETENESS

Now you know how to handle lists and some ways to avoid the big gotchas. But there
are still a few more things you can do to make your object model implementation
more complete. Specifically, you can implement a “properties” property, implement a
property-from-property accessor, provide your own coercions, and return meaningful
error codes.

IMPLEMENTING A “PROPERTIES” PROPERTY
You should implement a “properties” property and return a record containing all the
properties for an object. This provides a real boon for the scripter, who can then set

or get several properties with a single statement, and it speeds up execution as well
since it avoids the need to send many events to get or set properties one at a time.

For instance, if the script says
get the properties of rectangle 1

the Get Data event should return a record containing the name and value of each
property for that object:

{bounds: {0, 0, 100, 200}, fill color: red, stroke size: 10, ...}
The script could also say something like

set properties of rectangle 1 -
to {stroke size: 3, fill color: blue, location: {20, 40}}

In Sketch, the Set Data event handler looks at the property token it receives. If the
token references a single property, it packages it into a record containing that property
and passes the record on to the SetProperties function. If, instead, it receives a record,
it just passes that record on to SetProperties. The SetProperties function always
receives a record; it examines the record for each property of the object and then
applies the value of each property it finds in the record to the object.

IMPLEMENTING A PROPERTY-FROM-PROPERTY ACCESSOR

If you implement the “properties” property, you should also implement a property-
from-property accessor. If you don’t, you won't be able to get a single property out of
the property record you've already built. The first statement below will work, but the
second one will generate an error:

get fill color of rectangle 1
get fill color of properties of rectangle 1 -- won't work

"To get around this, the script writer will need to first assign the results to a variable
and then depend on AppleScript to extract the property out of that variable:

set myProps to properties of rectangle 1
get fill color of nyProps

But since one of our goals should be to make scripting intuitive and not force the
script author into particular programming constructs when not absolutely necessary,
both methods of asking for the property should be handled in your code.

Another reason you may need a property-from-property accessor arises when, in the
process of defining your object containment hierarchy, you define two classes, make
one class an element of the other class, and then realize that the container can contain
one and only one instance of that element. For example, imagine a very limited
drawing program that allows many graphic objects but only one text block, an
instance of the QuickDraw Graphics graphic text class. If you stick with a straight
containment metaphor, the script author will need to use a statement like

graphic text 1 of document "G aphic Chart"

to reference the one and only text block. But why should the scripter have to specify
the index of 1 when there can be only one per document? This also invites the scripter

CODING YOUR OBJECT MODEL FOR ADVANCED SCRIPTABILITY

23

24 develop Issue 28 December 1996

to ask for graphic text 2, for which you would need to return an errAENoSuchObject
error.

One way to handle this case is to implement the singleton object as a property of an
object rather than a contained class. In your 'aete’ resource, define a property (say
“label” for the above example) of type graphic text, which is a class defined elsewhere
in your 'aete' resource. Now, the script statement

get the | abel of document "G aphic Chart"

doesn’t need to specify an index, since “label” is a property. What will that statement
return? You decide. You might just return the contents of the graphic text as a string.
But since the “label” property also references a class, you could return the properties
of the text object as a record, such as:

{contents: "Financial Results", font: "Tines", size: 12, ...}

By implementing a property-from-property accessor, you can also properly resolve a
statement like this:

get font of |abel of document "Gaphic Chart"

There’s an ongoing debate in the developer community about the best way to design
for this single-element situation. Some developers believe that the design discussed
above leads to intuitive script statements that make it easier for users to script your
application. Others contend that elements and properties serve very different
purposes, and that intermixing them in this way both corrupts the object design and
confuses the beginning script writer. You’ll have to decide for yourself how you want
to handle this in your application; there may not be one best design. In any case, if
you find yourself in this situation, take the advice Cal Simone gives in his According
to Script columns: write down script statements as part of your design and make sure
that they seem natural and intuitive before you write your code.

PROVIDING APPLICATION-SPECIFIC COERCIONS

Provide your own coercions. There are several places where these come in handy.
First, the Get Data event can take an optional parameter, keyAERequested Type, a list
of types that the user would like for the returned data. For instance, a fill color might
be represented as one of the following:

¢ typeEnumerated, such as red
¢ typeChar or typelntlText, such as "red"
¢ typeRGBColor, such as {32767, 0, 0}

"Thus, a scripter might ask for

fill color of rectangle 1 as constant
fill color of rectangle 1 as string
fill color of rectangle 1 as RGB col or

The Registry defines the type of the as parameter as typeAEList, indicating that the
first item in the list is the user’s preferred data type, the second is the user’s next most
preferred type, and so on. However, I haven’t been able to persuade AppleScript to
accept a list for this parameter. It seems as though get fill color of rectangle 1 as
string (or RGB color or constant) should work, but it won’t compile.

Note that there’s a bug in AppleScript 1.1 that generates an error when you implement
both lists and the kAERequested Type parameter. The following statement will expose
the error:

get fill color of every rectangle as string

The every statement causes you to generate a list of property tokens, which is then
passed to your graphic object’s Get Data event handler. There, you examine each
token, get the fill color from its rectangle, and convert it to a string (presumably the
name of the color), as specified in the as string part of the statement. Since you
received a list of tokens, you return a list of strings, as you should. You've done the
right thing, but AppleScript isn’t satisfied! It doesn’t realize that you've already
handled the as string coercion, so it tries to coerce the list of strings you returned
into a string and it reports a coercion error. There’s really nothing you can do in your
application to work around this bug; you’ll have to wait for it to be fixed in a future
version of AppleScript. There is a way that scripts can handle the error, however:

tell document 1 of application "Sketch"

try

set colorNames to fill color of every rectangle as string
on error nunber -1700 from of f endi ngVari abl e
set colorNanmes to of fendi ngVariabl e

end try
end tell

RETURNING USEFUL ERROR CODES
One last suggestion: Return a meaningful error code and error message if you don’t
or can’t handle an event, an object, or a data type. Table 5 presents a list of some of

the most common return codes, when to use them, and the error message that

AppleScript generates when one of these errors occurs.

Table 5. Common error codes and examples of when you might return them

Error to return
errAEEventN otHandled (—1708)

errAECoercionFail (-1700)

errAEN oSuchObject (—1728)
errAEN otASingleObject (-10014)

errAEN otAnBement (-10008)

errAEN otModifiable (-10003)

errAEW riteDenied (—10006)

Example of when to return it

Thisisn’t just a catch-all error; it has specific
side effects in certain situations. If your code
doesn’t handle an event, this is a signal for
the Apple Event Manager to give any system
handlers a shot at the event.

W hen you can’t coerce some data to the
requested type.

W hen the requested object doesn’t exist.

W hen a handler that doesn’t handle lists
receives a list.

W hen you get a request to delete a
property.

W hen the object can never be modified,
such as a read-only property. See also
errAEW riteDenied.

W hen the object can’t currently be modified,
such as a locked rectangle that can’t be
changed until it's unlocked. See also

errAEN otModifiable.

Error message

<obj ect -ref erence> doesn't
understand the <event> message.

Can't make sone data into the
expected type.

Can't get <object reference>.

Handl er only handl es single
obj ect s.

The specified object is a
property, not an el enent.

Can't set <property> to <val ue>.
Access not al | owed.

Can't set <property> to <val ue>.

(continued on next page)

CODING YOUR OBJECT MODEL FOR ADVANCED SCRIPTABILITY

25

Table 5. Common error codes and examples of when you might return them (continued)

Error to return
errAECantHandleClass (<10010)

errAHlllegalindex (-1719)

errAEImpossibleRange (—1720)

errAEWrongDataType (—1703)

errAETypeError (-10001)

errABBadKeyForm (-10002)

errAECantSupplyType (-10009)

26 develop Isse28 December 1996

Example of when to return it Error message

Handl er can't handl e objects of
this type.

W hen an event handler can’t handle objects
of this class, or when an objectcounting
callback receives an object type it can’t
count.

Can't get <object-reference>.
I'nvalid index.

W hen the scripter asks for an index greater
than the number of objects or less than 1.
Remember that negative indexes are legal,
so convert them to a positive index before
performing a range check.

W hen you process formRange and you can’t Invalid range.
return a list of objects between the boundary
objects — for example, when two rectangles

are specified and are in different documents.

W hen a descriptor contains an unexpected <value> is the wong data type.

data type, or when an objectcomparison
callback doesn’t know how to compare one
of the data types.

W hen you receive a Set Data event, and the <value> is the wong type.
descriptor isn’t of the expected type and

can’t be coerced into that type.

W hen an object is requested by a key form Invalid key form
that your accessor doesn’t support — for

example, rectangle by name.

Can't supply the requested type
for the data.

W hen you can’t return the type of data
specified in the as parameter of a Get Data
event.

Some error codes have a very generic error message as a default, but you can supply
additional parameters in the reply event so that the error message will be more
specific. For example, an errAECoercionFail message usually says, “Can’t make some
data into the expected type,” but if you add kOSAErrorOffendingObject and
kOSAErrorExpected Type parameters to the reply event, you'll get a much more
informative message, such as “Can’t make fill color of rectangle 1 into a string.”
These parameters can also be added to errAEWrongDataType and errAETypeError
replies. For more detail on giving better error messages using this technique, see
Developer Notes in the AppleScript Software Development Toolkit. You may want
to define additional error codes for your application, and if so you should be sure to
also set the error text in the reply event. Take a look at the PutReplyErrorNumber
and PutReplyErrorMessage functions in the Sketch source code to see how to do
this.

EXERCISING YOUR IMPLEMENTATION

"This article has described some things you can do to implement an Apple event
object model in your application so that it can handle complex scripts. Take a close
look at the code for the Sketch application to see how it uses the object-first method
to handle events and scriptable objects. Carefully examine the dictionaries of several
applications that are fully scriptable, such as QuarkXPress, the Scriptable Text Editor,
or PhotoFlash. Pay attention to how their 'aete’ resources are constructed, and read
the develop columns by Cal Simone (“According to Script”) to gain further insight
into how to organize both your 'aete' resource and your object model.

Then give your implementation a thorough workout to see if you can spot any
problems. Write AppleScript test cases to exercise the most complex AppleScript
scripts that you want to support. Use the key forms that return lists, and mix them
unmercifully in your test scripts. Exercise every gotcha. If your application stands up
to the test, shout “Ship it!”

RECOMMENDED READING

“Apple Event Objects and You” by Rchard Clark, develop Issue 10.

“Speeding Up whose Clause Resolution in Your Scriptable Application” by Greg
Anderson, develop Issue 24.

“Designing a Scripting Implementation” by Cal Simone, develop Issue 21. Also,
look for Cal’s According to Script columns starting with develop Issue 22.

Inside Macintosh: Interapplication Communication by Apple Computer, Inc.
(Addison‘Wesley, 1993).

Apple Event Registry: Standard Suites (Apple Computer, Inc., 1992).

AppleScript Language Guide by Apple Compuiter, Inc. (Addison-Wesley, 1993).
This book is included in the AppleScript Software Development Toolkit.

Thanks to our technical reviewers Greg C. K. Haun, and Jon Pugh for reviewing this
Anderson, Andy Bachorski, Greg Friedman, article.”

an Explained

Dylan™ (DYnamic LANguage) is a programming language invented by Apple
Computer and developed in collaboration with Harlequin, a Cambridge-based
software company, and Carnegie Mellon University.

Dylan Programming

Feinberg, Keene, Matthews, Tucker Withington

This tutorial from Harlequin introduces you to the features and functionalities of
Dylan, and shows you how to write your own Dylan programs.

+ 352 pages - $29.00 + 02014979641

The Dylan Reference Manual

Andrew Shalit

The Dylan Reference Manual is the first complete reference to
present all aspects of this unique language.

+ 488 pages - $37.61 + 0201442116

A ADDISON-WESLEY PUBLI
vv VWWWAWGOOM/DEVPRESS/

Available wherever comput er books are sold or by calling +80

CODING YOUR OBJECT MODEL FOR ADVANCED SCRIPTABILITY 27

THE OPENDOC
ROAD

TROY GAUL AND
VINCENT LO

OpenDoc has its own memory management system,
but OpenDoc part editors also need to interact with
the Macintosh Toolbox, which often does memory
management using its own system. This column will
point out potential pitfalls resulting from the interaction
of these two systems, and suggest strategies to avoid
them.

OpenDoc has adopted the well-tested Memory Manager
from the MacApp and Bedrock frameworks for its own
use. This memory manager was designed to provide
fast and efficient memory allocation to the framework,
and since OpenDoc’s memory requirements are similar
to those of a framework, it’s natural for OpenDoc to
reuse the code that has served the framework so well.
The OpenDoc Memory Manager (as we’ll call it here)
is installed with OpenDoc as a shared library and
handles most of the memory allocation and deallocation
in an OpenDoc process.

There are several reasons for OpenDoc to have its own
memory manager:

¢ The OpenDoc Memory Manager can improve upon
the memory manager of the underlying platform.
On Macintosh 7.x systems, for instance, a faster and
more space-efficient memory allocation algorithm
replaces the one provided by the Macintosh
Toolbox. In general, having a separate memory
manager for OpenDoc allows the platform
implementer to fine-tune OpenDoc performance.

¢ The OpenDoc Memory Manager provides a cross-
platform API for both platform implementers and
part developers, covering both nonrelocatable and
relocatable blocks. For platforms with no built-in
relocatable blocks, platform implementers could

provide relocatable blocks through the OpenDoc
Memory Manager API without changing the
underlying operating system.

¢ The OpenDoc Memory Manager is packaged as a
CFM shared library, so it can easily be replaced if a
new version is required for improved performance
or feature enhancements. Also, as Apple evolves the
Mac OS and its memory manager, OpenDoc will
adopt this new technology. Developers using the
OpenDoc Memory Manager API will reap the
benefits of the new system memory manager
without modifying or even recompiling their part
editors.

The OpenDoc Memory Manager defines a low-level
procedural API, which is described in the “Memory
Management” section of Appendix A in the OpenDoc
Cookbook. An OpenDoc utility library named
ODMemory (provided as source code) organizes the
low-level API into high-level functions. The major
difference between the underlying API and the
“wrapper” ODMemory API is that the latter signals
an exception when an error condition is encountered.
For more on exception handling in OpenDoc, see
“OpenDoc Exception Handling.”

"To ensure optimum usage of memory, part developers
should use the OpenDoc Memory Manager API or the
ODMemory utility library to satisfy their memory
needs. The only exception is when the part editor is
interacting with a Toolbox manager that requires
memory to be allocated in a certain memory heap.
We’ll go into more detail about this in a moment.

HOW THE OPENDOC MEMORY MANAGER WORKS
The OpenDoc Memory Manager allocates fixed-sized,
nonrelocatable blocks of memory and organizes them
into heaps. The memory allocated for these heaps may
come from the application heap, temporary memory, or
the system heap. These memory blocks (called allocation
segments) are subdivided into smaller memory blocks as
memory requests are made by OpenDoc objects and
part editors. When MMAllocate or ODNewPtr is
called to allocate a block of memory, the OpenDoc
Memory Manager returns a pointer to one of these
memory blocks in an allocation segment.

When an OpenDoc process is started up, the OpenDoc
Memory Manager allocates a small amount of memory
for a heap, which becomes the default heap. Clients of

TROY GAUL (tgaul@apple.com) has been writing OpenDoc parts
— er, Llive Objects — since starting at Apple last May. Having
created the Infinity Windoid WDEF in 1991, he has since appeared
in more About boxes than Blis.”

28 develop Issie 28 December 1996

VINCENT LO is Apple’s technical lead for OpenDoc. W hen he’s
not dealing with Live Objects, he’s frequently spotted at fine dining
establishments in the San Francisco Bay Area. One of his dreams is
to open up a Chinese restaurant in ltaly.*

OPENDOC EXCEPTION HANDLING

Handling exceptions in OpenDoc is a large topic, which
will only be touched on here. Readers should refer to the
“Exception Handling” section of Appendix A in the
OpenDoc Cookbook for more details.

In a nutshell, OpenDoc allows developers to choose their
own exception mechanisms while providing a convenient
utility to enable these exception mechanisms to work with
SOMobijects™ for Mac OS (the Apple implementation of
the IBM SOM™ technology), which underlies OpenDoc.

SOM propagates exceptions through the environment
parameter (commonly known as the ev parameter). It's
illegal to throw an exception out of a SOM method.
Instead, the exception code should be stuffed into the ev
parameter and returned to the caller. The caller should

examine the ev parameter to see whether an error has
been signaled in the called function. Since this checking
needs to be done after every SOM method invocation,
OpenDoc provides a utility to automatically check the ev
parameter. If an error has been signaled, the utility will
use the chosen exception mechanism (through the use of
macros) to propagate the exception.

The macros for the SOM exception handlers are prefixed
with “SOM_": SOM_TRY, SOM_CATCH_ALL, and
SOM_ENDTRY. These macros should not be confused with
TRY, CATCH_ALL, and ENDTRY. The non-SOM exception
handler macros do not propagate the exception
automatically unless RERAISE is called explicitly in the
catch block, and they can’t be used to propagate an
exception across a SOM boundary.

the OpenDoc Memory Manager can create extra heaps
and make any of these the default heap.

If a new block is requested and no allocation segments
have enough free space to satisfy the request, the
OpenDoc Memory Manager will trigger the creation
of another allocation segment, which has the effect of
growing the heap. Similarly, when all blocks in an
allocation segment are freed, the segment is freed as
well, shrinking the heap.

The OpenDoc Memory Manager and ODMemory
utility also provide a way to allocate relocatable blocks.
These blocks are not suballocated from the allocation
segments; instead, the OpenDoc Memory Manager
allocates them directly from the same operating system
heap zone that the OpenDoc heap allocates segments
from.

MEMORY PARTITION

Typically, several OpenDoc part editors run in the
single process associated with a document. There’s no
way to determine how many part editors are going to
be used in a document and how much memory each
part editor requires. Therefore, it’s impossible to

know how big the memory partition of the process
should be before opening the OpenDoc document. As
described above, the OpenDoc Memory Manager has
its own allocation scheme, which is not limited by the
application partition, so the memory partition becomes
less significant. (Currently the default heap is allocated
from temporary memory, but this may change in the
future.) The elimination of the need for the end user to
understand the concept of application heap and adjust

the memory partition is one of the design goals of
OpenDoc.

However, users familiar with OpenDoc might remember
that the Document Info dialog allows them to change
the partition size of the process. You might ask, “If the
OpenDoc Memory Manager does what it claims to,
why do I need to adjust the memory partition?”

Even though most of the memory allocation is done
through the OpenDoc Memory Manager, Toolbox
managers do allocate memory in the application heap,
and the amount required varies considerably depending
on the size of the data manipulated and the operations
performed. Changing the memory partition is needed
to accommodate these cases.

When a document is created, it’s opened into a process
of a default size. Users can change the default size for
the document by using the Document Info dialog.
There’s also a desktop utility called Infinity OpenDoc
Sizer that’s capable of changing either the partition size
of a particular document (without first having to open
it) or the default partition size used by all documents
that don’t already have custom partitions. It’s available
in the Developer Release area of the OpenDoc Web
site (http://www.opendoc.apple.com) and accompanies
this column on this issue’s CD and develop’s Web site.

MANAGING TOOLBOX MEMORY ALLOCATIONS
As your code makes calls into the Macintosh Toolbox,
you’ll find several places where the Toolbox allocates
memory for you. Generally, this memory is allocated
out of the current heap, which is usually the application

THE OPENDOC ROAD: OPENDOC MEMORY MANAGEMENT AND THE TOOLBOX 29

heap. Since the size of an OpenDoc document’s
application heap is limited (the default heap size leaves
only about 100K of space free after OpenDoc itself is
loaded), you need to be careful when calling Toolbox
routines that allocate in that heap. With some care, you
can control your allocations so that your users won’t
have to increase your document’s heap size in order to
use your part.

When you’re dealing with resources in particular, there
are a few techniques you can use to handle memory
allocations. Standard resource access routines such as
GetResource will generally cause the associated memory
to be allocated in the application heap. If you’re using a
resource for only a short period of time and it’s fairly
small, you can continue to use these routines to access
it and load it into the application heap.

For larger resources, however, this won’t work. Luckily,
OpenDoc provides the utility library UseRsrcM to help,
as described in the “Resource Handling” section of
Appendix A in the OpenDoc Cookbook. The utility routine
ODReadResource allows you to load resources from
your part’s shared library file into temporary memory.
"This works by determining the size of the resource,
allocating a relocatable block of this size in temporary
memory, and using ReadPartialResource to load the
resource directly into that block. (Note, however, that

resources read in by ODReadResource are detached;
you cannot, for instance, call ChangedResource to
write out modifications to them. Also, each call to
ODReadResource will return a new copy of the
resource.) If you need to access large resources from
files other than your part — for instance, for a sound-
editing part that needs to load an 'snd ' resource from
another file — you can use this same technique yourself.
A part editor must also ensure that its resource file is in
the resource chain before accessing its resources (see
“Resource File Access”).

There are times when the Toolbox loads resources for
you. In these cases, you generally can’t get them to be
loaded into temporary memory. In several cases, the
resources are small or are allocated for only a short
time, so there isn’t much to worry about. For instance,
when accessing resources such as string lists (STR#'),
cursors, and icon families, you can continue to use the
normal Toolbox routines. In these cases, the resource
is often accessed once and left around in memory.
Therefore, you’ll want to make sure these resources are
marked as purgeable so that they can be deallocated
automatically when more space is needed.

There are other times when larger resources (such as
pictures) are being accessed and problems can crop up
where you might not expect them. For instance, if you

RESOURCE FILE ACCESS

In an OpenDoc environment, parts must share access to
system services that applications normally own exclusively.
This adds some complications to the programming model
you're probably used to.

One such shared service is the resource chain. Since
there are potentially many parts all working in the active
document, the resource chain must be shared between
them. Also, because OpenDoc parts are shared libraries,
the resources in your part’s file aren’t automatically
available like those in an application.

The utility library UseRsrcM facilitates making your resource
file available and accessing resources from it. To open
and initialize access to your shared library’s resource file,
you call InitlibraryResources from your CAM initialization
routine. You also call CloselibraryResources from your
CPM termination routine to close the resource file when
you're done with it.

To access a resource from your part’s shared library, you
must first call BeginUsingLibraryResources. This adds the
part’s resource file to the resource chain and sets the top

of the chain to that file (so that calls such as Get1 Resource
will retrieve resources from the correct file). After

reading or writing the necessary resource, you call
EndUsinglibraryResources to remove the file from the
resource chain. For C++ users, a stack-based class named
CUsinglibraryResources is provided to do this for you
automatically.

There are a couple of implications about using this
mechanism for handling the resource chain. Because
Resource Manager routines are available only inside a
Begin.../ End... block, you must make sure your code and
the Toolbox aren’t trying to manipulate resources at other
times. You also have to be careful that LoadResource isn’t
called on a purged resource from a file that’s not in the
chain.

Other things, such as icons or Balloon Help in menus
(which are loaded while the menu is pulled down and the
partisn’tin control), can also cause problems. If you
understand the relationship between your resource file
and the resource chain, however, you can work around
these potential pitfalls.

30 develop Issue 28 December 1996

have a large picture that’s referenced by a dialog item
(like that 24-bit rendered image for the background of
your About box) and there isn’t sufficient memory
available when the dialog is displayed, the picture won’t
be shown. One solution to this is to create your own
heap zone, as discussed later. Another is to create a user
item procedure for the picture, handling the memory
allocation and spooling in of the picture yourself.

For resources such as menus and definition procedures
(WDEFs, CDEFs, and MDEFs), there is little you can
safely do. Most of these types of resources, although
they persist for a long time, are fairly small, so having
them allocated in the application heap isn’t terrible.

Another commonly used piece of memory allocated by
the Toolbox, but in this case not resource-based, is a
region. If you’re doing many region operations and the
regions aren’t being kept around, you can continue to
use NewRgn to allocate them in the application heap.
However, if you're keeping regions around for long
periods of time, there’s an ODMemory utility routine,
ODNewRgn, that you can call to allocate your regions
from the OpenDoc heap.

OTHER TECHNIQUES TO KEEP ALLOCATIONS OUT
OF THE APPLICATION HEAP

In some cases, the Toolbox allows you to specify that a
memory allocation come from temporary memory
rather than the application heap. Probably the most
common example of this is a GWorld. Passing the

use TempMem flag to NewGWorld or UpdateGWorld
will cause it to allocate the PixMap’s buffer in temporary
memory rather than in the application heap. Use these
opportunities when they present themselves.

Also, if you’re allowed to specify the location of memory
used by the Toolbox, such as for the WindowRecord

in calls to NewWindow and the sound channel in
SndNewChannel, you should take these opportunities
to allocate the memory with ODNewPtr rather than
allowing the Toolbox to do the allocation.

Another technique that you might consider for dealing
with large or long-term resources is loading them into
the system heap. This can be done by setting the
“system heap” flag in the resources’ attributes. This has
the advantage of being easy to do and working even for
resources allocated by the Toolbox. The disadvantage is
that increasing the system heap’s size can be bad for
performance if virtual memory is enabled. Since the
system heap is always paged into real memory space in

System 7, a large system heap means there isn’t much
space in RAM available for paging in the rest of memory.

Yet another technique that can sometimes be useful is
to create your own heap zone. To do this, create a block
in temporary memory using ODNewHandle, lock it,
and create a heap inside it by calling InitZone. This
technique shouldn’t be used for just any allocation, but
only if other methods don’t work and if the allocation is
ephemeral. One example we mentioned before where
this might be useful is for a dialog box with large picture
items. Note that you’ll have to make sure the heap is
large enough to hold not only the pictures but also the
other dialog-related resources, and you’ll want to leave
some room to spare. Also, you probably wouldn’t want
to have more than one of these heaps allocated at a
time. When locking #ny handle in temporary memory,
make sure you unlock it again as soon as possible.

Other parts of the Mac OS, such as QuickTime, will
require you to use these and other techniques to deal
effectively with memory. (In the case of QuickTime,
you can use SetZone to switch to the system heap.) In
such cases, it’s a good idea to use a tool such as
Metrowerks’ ZoneRanger to examine memory
allocated in the application heap and, if problems are
found, look for ways to move allocations elsewhere.

MEMORY MATTERS

In the future, a new system memory manager will allow
for heaps that can grow. When this becomes available,
many of these contortions will become unnecessary. In
the meantime, however, it’s important to remember
that you’re sharing the application heap with other
clients and to act accordingly.

RELATED READING

For more information on the memory manager in
OpenDoc and the utility libraries mentioned in this
column, check out the following references:

OpenDoc Rogrammer’s Guide for the Mac OS
by Apple Computer, Inc. (Addison-Wesley, 1995).

OpenDoc Cookbook for the Mac OSby Apple
Compuiter, Inc. (Addison-Wesley, 1995). In
particular, see Appendix A, “OpenDoc Utilities.”

The OpenDoc World Wide Web site, located at
http:/ / www.opendoc.apple.com.

Thanks to Jens Alfke, Dave Bice, and Steve Smith for reviewing
this column.”

THE OPENDOC ROAD: OPENDOC MEMORY MANAGEMENT AND THE TOOLBOX 3 1

New QuiddDraw 3D Geonetries

k]

PHILIP J. SCHNEIDER

32 develop Issie28 December 1996

A number of new QuickDraw 3D geometric primitives can save you

time as you create 3D objects — from footballs to the onion domes of the

Tiaj Mahbal. Most of these new primitives are very versatile, but this

versatility comes at the cost of some complexity. Here you’ll find a

discussion of their various features and uses, with special attention to

the differences among the features and structural characteristics of the
polybedral primitives. Being aware of these differences will help you
make the right choices when you’re using these primitives in a

particular application.

When QuickDraw 3D version 1.0 made its debut, it came with 12 geometric
primitives that you could use to model pretty much anything you wanted. With

applied cleverness, you could make arbitrary shapes by combining and manipulating
such primitives as polylines, polygons, parametric curves and surfaces, and polyhedra.
Because some shapes are so commonly used, recent versions of QuickDraw 3D have
added them as high-level primitives, including two new polyhedral primitives. This
frees each developer from having to reinvent them and ensures that the new primitives

are implemented in such a way as to fit nicely with the existing paradigm in

QuickDraw 3D.

We'll start by looking at how the new ellipse primitive was designed. A similar paradigm
was used in creating most of the other new high-level primitives. Understanding
their design will help you use them effectively. Later, we’ll move on to the two new
polyhedral primitives — the polyhedron and the trimesh — which you can use to
model very complex objects. We’ll also take a fresh look at the mesh and trigrid,
which have been around for a while, and compare the usefulness of all four polyhedral
primitives. Along the way, you’ll find some relevant background information about
the QuickDraw 3D team’s design philosophy.

I'm going to assume that you’re already familiar with the capabilities of QuickDraw
3D, including how to use the original 12 geometric primitives. But if you want more

PHILIP J. SCHNEIDER (pjs@apple.com) is still
the longest-surviving member of the QuickDraw
3D team (and in answer to an oftposed question,
no, not as in “surviving member of the Donner
Party”). One current task is to find a name for his
second son, which he and his wife expect in
January, that won’t eventually lead to a question
like “Why did you give my older brother a cool
name like Dakota, and then name me Bob?” He’s

given up trying to teach two-year-old Dakota to
change his own diapers and has instead begun
teaching him Monty Python’s “The Lumberjack
Song,” which isn’t nearly as useful a skill, but

is one at which he has a better chance of
succeeding. Philip’s original interest in geometry
began early, when an elementary school teacher
warned him that he could “put an eye out” with
a protractor.”

basic information, see the articles “QuickDraw 3D: A New Dimension for Macintosh
Graphics” in develop Issue 22 and “The Basics of QuickDraw 3D Geometries” in
Issue 23. The book 3D Graphics Programming With QuickDraw 3D has complete
documentation for the QuickDraw 3D programming interfaces for version 1.0.
Version 1.5 of QuickDraw 3D, which supports these new primitives, is now available.

"To get you started using the new primitives, the code listings shown here accompany
this article on this issue’s CD and develop’s Web site.

Aficionados of QuickDraw 3D use a variety of terms to refer to a geometric
primitive. But a geometric primitive by any other name (primitive geometric shape, basic
geometric object, geometric primitive object, or geometry) is still a geometric primitive.*

CONICS, QUADRICS, AND QUARTICS

One category of geometric primitives is conics, quadrics, and quartics; this class
includes such shapes as ellipses, disks, ellipsoids (the generalization of spheres), cones,
cylinders, and tori (doughnuts). Each of these shapes is a recently introduced primitive
that’s defined with a paradigm similar to the one already used in the box primitive. I'll
begin by explaining how the ellipse primitive works because the same basic approach
is used for the more complex geometries.

ELLIPSES

My article “NURB Curves: A Guide for the Uninitiated” in develop Issue 25 describes
how you can make circles and partial circles with NURB curves. Though you can
turther use NURB curves to make ellipses and elliptical arcs by manipulating the
locations of the control points, this isn’t necessarily the most convenient way to do it.
So QuickDraw 3D now provides an ellipse primitive.

"The data structure for the ellipse is as follows:

typedef struct TCBElipseData {

TQBPoi nt 3D origin;
TQBVect or 3D maj or Radi us;
TBVect or 3D m nor Radi us;
f1 oat uMn, ulBx;

TBAttributeSet el lipseAttributeSet;
} TQBEl i pseDat a;

Let’s assume we have a variable declared like this:
TCBEl | i pseData el lipseDat a;

As we go over the ellipse primitive, I'll explain the various fields in the data structure,
then fill them in as I tell you how they work. Let’s take for our example a special case
of an ellipse — a circle of radius 2 that lies in the {x, y} plane, with an origin at {3, 2, 0}
— and show how we’d define it in QuickDraw 3D.

For starters, a circle must have a center. One way QuickDraw 3D could do this is
always center the circle at the point {0, 0, 0} and then have us translate the circle to
the desired location. However, it seems a bit odd to be able to make, say, a line with
arbitrary endpoints, but not be able to make a circle with an arbitrary center. So, as
shown in Figure 1, a QuickDraw 3D circle follows the paradigm for primitives and
has an explicit center, called the origin in the data structure:

(BPoi nt 3D_Set (&el I'i pseData.origin, 3, 2, 0);

NEW QUICKDRAW 3D GEOMETRIES 33

34 develop Issie28 December 1996

minorRadius
/\ majorRadius
] /)

» \Cross product
_“ x

/origin

X

z z

Figure 1. Defining a circle’s origin, size, and plane

Of course, circles must have a size. Again, QuickDraw 3D could make all circles a
unit size (that is, have a radius of 1) and then require us to scale them appropriately.
But, for the same reason that the circle has an explicit center, it has an explicit size.

Given an origin and size, we have to specify the plane in which the circle lies in 3D
space. Though it would be possible for QuickDraw 3D to define a circle’s plane by
default — say, the {x, z} plane — and require us to rotate the circle into the desired
plane, QuickDraw 3D lets us define the radius with a vector whose length is the
radius. Then we similarly define a second radius perpendicular to the first radius.
The cross product of these two vectors (majorRadius and minorRadius) defines the
plane the ellipse lies in:

(@BVect or 3D_Set (&el | i pseDat a. maj or Radi us, 2, 0, 0);
(BVect or 3D_Set (&el | i pseDat a. m nor Radius, 0, 2, 0);

In other words, the plane the circle lies in passes through the origin of the circle, and
the cross product of the majorRadius and minorRadius vectors is perpendicular to the
plane (see Figure 1).

For a full circle, we need to set uMin to 0 and uMax to 1 (more on this later):

el lipseData.uMn
el | i pseDat a. uMax

0;
1;

As for the final field in the data structure, ellipseAttributeSet, QuickDraw 3D includes
this field so that we can, for instance, make screaming yellow ellipses:

ellipseData. el lipseAttributeSet = QBAttributeSet _New();

QBCol or RGB_Set (&color, 1, 1, 0);

(BAttributeSet _Add(ellipseData.ellipseAttributeSet,
kCGBAttri but eTypeDi f f useCol or, &color);

Finally, we create an ellipse object that describes the circle:

ellipse = QBEIlipse_New &l lipseData);

Or we can use the data structure in a Submit call in immediate mode (for rendering,
bounding, picking, or writing):

CBE! | i pse_Submi t (&el i pseData, view);

The ellipse comes with the usual array of calls for getting and setting individual
definitional properties, as well as the entire definition, just like the other primitives.

Why all of this power just for a circle? This power gives us flexibility. Let’s use some
of the object-editing calls to make some more interesting shapes. We’ll start by
making an ellipse out of the circle we’ve just constructed. If you recall, we originally
made the circle with majorRadius and minorRadius equal to 2. So to make an ellipse
instead of a mere circle, all we have to do is make majorRadius and minorRadius
different lengths. To get the first ellipse you see in Figure 2, we can use this:

(BVect or 3D_Set (&vector, 0, 1, 0);
CBEl I i pse_Set M nor Radi us(el |i pse, &vector);

“But wait,” you say, “vectors have direction as well as size!” Well, we can get really
carried away and make the two defining vectors nonperpendicular to get something

like the second ellipse shown in Figure 2:

(BVect or 3D_Set (&vector, 1, 2, 0);
CBEl I i pse_Set M nor Radi us(el |i pse, &vector);

y

minorRadius

N
@majorﬂadius

X

Hllipse with perpendicular vectors

Figure 2. Defining a regular and skewed ellipse

All we have left is how to define partial ellipses. We can do this by taking a parametric

/\majorRadius

/ minorRadius

X

Skewed ellipse with
nonperpendicular vectors

approach. Let’s say that an ellipse starts at # = 0 and goes to # = 1. Then we have to
define the starting point. Let’s make it be the same point that’s at the end of the

vector defining majorRadius in the first circle in Figure 3. To make a partial ellipse
(that is, an elliptical or circular arc), we specify the parametric values of the starting

and ending points for the arc:

CBEl | i pse_Set ParaneterLimts(ellipse, 0.05 0.3);

y
minorRadius
u=0.375 \ mai ;
/ jorRadius
@ u= 0, u=1
X
u=0.75
z z

Figure 3. Defining a partial ellipse

uMax=0.$

[|

\uMin=0.05

’ .. uMax=0.125
[]

-ZuMin=0.875
X

NEW QUICKDRAW 3D GEOMETRIES

35

36 develop Issie28 December 1996

"This gives us an elliptical (or in this case, circular) arc, as shown in Figure 3. (The
dotted line isn’t actually rendered — it’s just there for diagrammatic reasons.) Though
the starting and ending points must be between 0 and 1, inclusive, we can make the
starting point have a greater value than the ending point:

CBEl | i pse_Set ParameterLimts(ellipse, 0.875, 0.125);
As you can also see in Figure 3, this allows us to “wrap around” the point # = 0.

In version 1.5 of QuickDraw 3D, the feature for defining partials is not enabled,
so until it is, you must set the minimum and maximum parameter limitsto 0 and 1,
respectively.*

About now, you’re probably thinking that all this power and flexibility for just a simple
ellipse is overkill and that the preceding explanation is overkill, too. Sorry about that,
but there is a reason — it turns out that we can take this same approach to defining
disks, ellipsoids, cones, cylinders, and tori.

DISKS

If you go back over the past few pages and substitute disk for e/lipse, you pretty much
get everything you need to know. The data structure and functionality are analogous,
except that disks are filled primitives, like polygons, while ellipses are curvilinear
primitives, like polylines. So, partial disks are like pie slices rather than arcs. The only
other difference is that since disks are surfaces rather than curves, they have parameters
in two directions. Figure 4 illustrates the definition of a disk, including the U and V
parameters.

0,1) (1,1)

|

©,0)

minorRadius

majorRadius —

(1,0)
u—-—>

Figure 4. Defining a disk

Note that the UV surface parameterization for the disk is different from the parametric
limit values around the perimeter of the disk. The UV surface parameterization was
chosen so that an image applied as a texture would appear on the disk or end cap as if
it were applied as a decal. The values associated with positions around the perimeter
are used for making partial disks, just as we used them to make partial ellipses. The
distinct parametric limit values (uMin and uMax) are necessary so that the partial end
caps on partial cones and cylinders will properly match. If the surface parameterization
for the disk meant that the U direction went around the perimeter, you’d have a
nearly impossible time applying decal-like textures.

ELLIPSOIDS, CONES, CYLINDERS, AND TORI

Now, I want you to hold two thoughts in your head at the same time: recall that the
box primitive is defined by an origin and three vectors, which define the lengths and
orientations of the edges of the box, and then think about the definition of the ellipse.
Doing that, you should be able to imagine how we define, say, a sphere — we just add
another vector to the definition of the ellipse!

Figure 5 shows how an ellipsoid (a sphere), cone, cylinder, and torus are defined with
respect to an origin and three vectors (the labels being fields in the corresponding
data structures). Note that the torus requires one more piece of information to allow
for elliptical cross sections: the ratio between the length of the orientation vector
(which gives the radius of the “tube” of the torus in the orientation direction) and the

orientation
/ origin

minorRadius
orientation
\ /\ origin
majorRadius 9/ minorRadius

\

[— majorRadius
u

7
\

orientation

orientation

\

v origin
/ minorRadius
/ %
_ i\ orRadi minorRadius
§T_> majorRadius majorRadius
Hlipsoid Cone
Cylinder Torus

Figure 5. Creating four primitive objects and applying texture

NEW QUICKDRAW 3D GEOMETRIES 37

38 develop Issie28 December 1996

radius of the tube of the torus in the majorRadius direction. With the resulting torus
primitive, you can make a circular torus with an elliptical cross section, or an elliptical
torus with a circular cross section, or an elliptical torus with an elliptical cross section.
(Hmm...perhaps I was drinking too much coffee when I designed the torus.)

You use the U and V parameters to map a texture onto a shape. In Figure 5, the U
and V parameters have their origins and orientations relative to the surface in what
should be the most intuitive layout. If you apply a texture to the object, the image
appears as most people would expect.

¢ For the ellipsoid, the parametric origin is at the south pole, with V going
upward toward the north pole, and U going around the axis in a
counterclockwise direction (when viewed from the north pole).

¢ For the cone and cylinder, the parametric origin is on the bottom edge, at
the point where the majorRadius vector ends. V goes up while U goes
around in the direction shown by the arrows. The bottom of the cone, and
the top and bottom of the cylinder, are parameterized exactly like the disk.

¢ For the torus, the parametric origin is located at the point on the inner edge
where the majorRadius goes through it. V goes around as shown by the
arrow, and U goes around the “outside” of the entire torus.

By changing the relative lengths of the majorRadius, minorRadius, and orientation
vectors, you can get ellipsoids, cones, cylinders, and tori with elliptical cross sections,
similar to how we made a circle into an ellipse earlier.

So to make an ellipsoid that’s a sphere, you make the majorRadius, minorRadius, and
orientation vectors the same length as well as mutually perpendicular. To make an
elliptical cylinder, you can vary the lengths of the three vectors. Even more fun can be
had by making the vectors nonperpendicular — this makes skewed or sheared objects.
"This is easy to see with a cylinder (Figure 6).

Mutually perpendicular Nonperpendicular
vectors with varying lengths vectors with varying lengths

Figure 6. Creating an elliptical or sheared cylinder

You can make partial disks, cones, cylinders, and tori in a fashion analogous to what
we did with the ellipse (see Figure 7). Since these are surfaces, you can set a minimum
and maximum for each direction.

One important thing to notice is that the “wraparound” effect I showed with the
ellipse, by making uMin be greater than uMax, is possible with all the other primitives
in this category, but the equivalent feature in the V direction is possible only with the
torus. For example, the cone wraps around naturally in the U direction because the
face itself is one continuous surface in that direction, but the surface doesn’t wrap in
the V direction.

1] &

Figure 7. A partial cylinder and cone

Some of you must be wondering what we can do with the ends of cones and cylinders.
Do we want them left open so that the cones look like dunce caps and the cylinders
look like tubes? Or do we want them to be closed so that they appear as if they were
true solid objects? You may have already wondered about a similar issue when we used
the uMax and uMin parameter values to cut away part of the object. Do we make a
sphere look like a hollow ball, or like a solid ball that’s been cut into?

To take care of these issues, the ellipsoid, cone, cylinder, and torus have an extra field
in their data structures that you can use to tell the system which of these end caps to

draw:

t ypedef enum TQBEndCapMasks {

k@BEndCapNone = 0,

kQBEndCapMaskTop = 1<<0,
k@BEndCapMaskBot t om = 1 << 1,
k@BEndCapMasklnterior = 1 << 2

} TQBEndCapMasks;
t ypedef unsigned | ong TQBEndCap;

The end cap is a bit of a misnomer, asit refers to the end caps of the cone and
cylinder as well as to the “interior end caps’ that are the analog to the base and top
caps of the cylinder for the portion at the boundary of the cutaway.*

What about attributes? As for all other geometries in QuickDraw 3D, there is an
attribute set for the entire geometry, so you can make the entire cone, say, all one
color, or apply a texture to the entire object. But you’re probably wondering about all
these end caps. For example, you might want to have different textures for a solid
cylinder’s top end cap, face, and interior end caps, as shown in Figure 8. The data
structures for the ellipsoid, cone, cylinder, and torus have fields for storing these
types of attributes.

Figure 8. Cylinders with and without end caps or interior end caps

NEW QUICKDRAW 3D GEOMETRIES 3 Q)

A0 develop Issue28 December 1996

POLYHEDRAL PRIMITIVES

In version 1.5, QuickDraw 3D has four different types of shared-vertex primitives, or
polyhedral primitives — the mesh and trigrid, and the newer polyhedron and trimesh.
These primitives vary in such characteristics as memory use, rendering speed, and
suitability for representing models. To a great extent, their usefulness is governed by
how closely each primitive’s design follows the original QuickDraw 3D design
philosophy. (For some background, see the philosophical aside, “QuickDraw 3D
Design Principles.”) Of the four polyhedral primitives, the polyhedron and the trigrid
best conform to the design standards set out by the QuickDraw 3D team. I'll begin
by describing the design characteristics of the polyhedron, followed by discussion of
the other three. Then I'll compare the four primitives and discuss their best uses.

POLYHEDRA

One common way of making a polyhedral primitive is to have an array of points, with
a list of faces (often triangles) to organize the points. Each face usually consists of a
list of indices into the list of vertices, so basically this is a polygon with one level of
array-based indirection. If there is more than one face, the vertices can be shared by
simply reusing the same array indices in each face. This allows the graphics system to
run faster because the same point doesn’t have to be transformed or shaded more
than once, and it saves quite a lot of storage space. In addition, because two or more
faces share only one real vertex, this type of polyhedral primitive can make it easier to
program interactive editing.

The design philosophy for the geometry of type kQ3Geometry TypePolyhedron —
from now on, let’s call it the polybedron — was to implement this idea in a way that
was consistent with all the other QuickDraw 3D primitives. The basic entity for
polygonal primitives (line, triangle, polygon, and so forth) is TQ3Vertex3D, which is
an {x, y, 2} location with an attribute set. For consistency with the rest of the geometric
primitives, the polyhedron also uses this data structure for its vertices.

The vertices of adjacent triangular faces are shared simply by using the same vertex
indices. Also, sets of attributes may be shared like other objects in QuickDraw 3D:

vertex->attributeSet = (BShared_Get Ref erence(ot her Vertex->attributeSet);

Vertices can contain the same locations, but may or may not share attributes. This
can be quite useful, for example, if you have a polyhedron you want to be generally
smooth-looking, but it has some edges or corners where you want a discontinuity.
For example, consider the cross section of a polyhedral object in Figure 9. Each
location is shared, and vertices at positions A, B, D, and E share normals, while the
vertices at position C share the location but not the normal. So when smooth-shaded,
the object has an edge or corner at position C but appears smooth elsewhere.

Share /C

location
but not
the normal

Figure 9. A cross section of a polyhedron with all vertices sharing locations but not attributes

QUICKDRAW 3D DESIGN PRINCIPLES

The founders of the QuickDraw 3D team had as a
primary design tenet that retained mode and immediate
mode would be coequal in the AP in every “renderable”
component (geometric primitives, transforms, styles, and
attributes). Most other graphics systems support only one
mode or, if both, one is given short shrift in the APl. The
intention for QuickDraw 3D was to allow developers to
make decisions based on such things as their programming
style and preferences and their particular program needs.

This intention manifests itself in several ways. For example,
in most cases the calls that create an object take the
address of a public data structure as an argument, and
this argument is exactly the same as that for the immediate-
mode Submit call:

TQBCeonet r ybj ect pol yhedr on;
TQBPol yhedronData pol yhedr onDat a;
/* Fill in poly data structure here. */

/* Create a pol yhedron object... */
pol yhedron = QBPol yhedr on_New(&pol yhedr onDat a) ;

/* ...or use imred. node with same struct. */
@BPol yhedr on_Submi t (&pol yhedr onDat a, view);

Further, the Get and Set object-editing calls take arguments
that correspond to the part of the public data structure
being retrieved or modified (or both). Here, you see how
to retrieve the sixth vertex from the polyhedron and add a
normal to it:

TCBVert ex3D
TCBVect or 3D

vertex;
norml ={ 0, 1, 0 };

(BPol yhedron_Get Vertex(poly, 5, &vertex);

(BAttributeSet _Add(vertex.attributeSet,
k@BAttributeTypeNormal , &normal);

Bvj ect _Di spose(vertex.attributeSet);

It was also intended that the developer be able to mix
immediate mode and retained mode graphics freely and
use these modes alternately or even simultaneously for
one geometric primitive (fransform, and so forth). Thus,
you can easily use immediate mode for a triangle and
then later make it a retained object and place itin a
group. If you have a retained object, you can retrieve its
data structure and use it in an immediate-mode call.

The following code retrieves the representation from a
polyhedron object and then uses it to make an immediate-
mode rendering call:

TQBPol yhedronData pol yhedr onDat a;
@BPol yhedr on_Cet Dat a(pol yhedron, &pol yhedronDat a) ;
@BPol yhedr on_Submi t (&ol yhedronDat a, view);

This capability is important if an application uses
immediate mode but reads in models from 3DMF files
(which creates objects). The application can retrieve the
data structure from the object with a GetData call and
then dispose of the object with Q30bject_Dispose.

There’s also a rich set of editing calls for retained objects.
W hile this makes the AP rather large, it allows retained
mode to have much of the flexibility of immediate mode.
In some display-ist or object-oriented graphics systems (or
systems with both), such editing was often awkward to
program and inefficient. The design of QuickDraw 3D,
however, makes these operations easy, consistent, and
convenient.

Another design principle that pervades QuickDraw 3D is
that you define properties by creating attribute set objects
and locating them as close as possible (in the data
structures) to the item to which they apply. For example,
attribute sets for vertices are contained in a data structure
along with the location (coordinates):

typedef struct TQBVertex3D {
TQBPoi nt 3D poi nt ;
TCBAttributeSet attributeSet;
} TQBVert ex3D;

The consistent use of attribute sets for vertices, faces, and
entire geometric primitives has two significant benefits.
First, it allows for a reduction in space when the same
data isto be applied to a number of faces (or vertices or
geometries). For example, a shared texture needs to be
stored only once, and each face using it simply has a
reference (a pointer) to it. Second, only a single
modification to an attribute set is needed to change the
properties of all faces (or vertices or geometries) that have
a reference to that attribute set.

Not least, a notable design criterion was consistency in
naming, ordering, and structuring, because with an APl
so large it would be easy to get lost. For example, all of
the primitives that have explicit vertices (like polyhedra,
lines, triangles, polygons, and trigrids) use as the type of
their vertices TQ 3 Vertex3D (with the exception of the
trimesh). Also, the editing calls for all the objects are cut
from the same cloth.

NEW QUICKDRAW 3D GEOMETRIES

41

49 develop Issue28 December 1996

Another advantage to this approach is that values in an attribute set apply to all
vertices sharing that attribute set, so operations on it simultaneously affect all the
vertices to which it’s attached. Of course, this applies to attributes on faces as well.
For example, though you can texture an entire object by attaching the texture to the
attribute set for the object, you can more naturally associate a single texture with a
group of faces by simply having each face contain a shared reference to the texture-
containing attribute set. But for a single texture to span a number of faces, you need
to make sure their shared vertices share texture coordinates. You can do this by
simply having shared vertices of faces that are spanned by a single texture use the
same attribute set, which contains texture coordinates (see Figure 10).

Figure 10. Applying textures that span a number of faces

Rendering the edges. Since the geometric primitives are generally array-based, the
polyhedron needs an array of faces — and more information for a face. Besides an
attribute set for the face, the three vertices defining a face are in an array (of size 3).
The polyhedron also needs an enumerated type that tells us which edges are to be
drawn, and which not:

t ypedef enum TQBPol yhedr onEdgeMasks {
kQBPol yhedr onEdgeNone = 0,

kQBPol yhedr onEdge01 = 1<<0,
kQBPol yhedr onEdge12 = 1<« 1,
kQBPol yhedr onEdge20 = 1<<2,
kQBPol yhedr onEdgeAl | = kQBPol yhedr onEdge01 |

kQBPol yhedr onEdge12 |
kQBPol yhedr onEdge20
} TQBPol yhedr onEdgeMasks;

typedef unsigned | ong TQBPol yhedr onEdge;

That way, by OR-ing these flags together, you can select which edges of a particular
triangle you want drawn. For example, if you’re using a wireframe renderer to draw
an object like the one in Figure 11 (or you’re using a scan-line or z-buffer type
renderer that implements the “edges” fill style), you wouldn’t have to show the
“internal” edges, just the edges that represent the true border of the face. For face 0

in Figure 11, you could tell the system that you only want to display the edges
between vertices 0 and 1, and between vertices 2 and 0, and not draw the edge

between vertices 1 and 2. You’d do this by specifying (kQ3PolyhedronEdge01 |
kQ3PolyhedronEdge20) as the edge mask.

Edge not drawn 3 —— A face number

1

—— A vertex number

Wi ireframe rendering Hatshaded rendering

Figure 11. A wireframe and filled polyhedron

All this information is collected in this data structure:

typedef struct TQBPol yhedronTri angl eData {

unsi gned | ong vertexl ndi ces[3] ;
TQBPol yhedr onEdge edgeFl ag;
TCBAt t ri but eSet triangl eAttributeSet;

} TQBPol yhedronTri angl eDat a;

Of course, an alternative to using a mask to specify the edges would be to have a list
of edges for the entire polyhedron. This can be advantageous in that if the renderer
draws the edges (or lines, in the case of a wireframe renderer) from an edge list, the
renderer can transform the points just once each and draw each edge just once,
resulting in much faster rendering. So if you’re willing and able to generate this

representation of edges, there’s a way to do this. The renderer ignores the edge flags
in the face data structure if an array of these edges is present:

typedef struct TQBPol yhedronEdgeDat a {
unsi gned | ong vertexl ndi ces[2] ;
unsi gned | ong triangl el ndi ces[2];
TCBAt t ri but eSet edgeAttribut eSet;

} TQBPol yhedr onEdgeDat a;

As Figure 12 shows, the vertexIndices field specifies indices into the vertex array, one
for the vertex at each end of the edge. The triangleIndices field specifies indices into
the array of faces. You need to provide the indices to the faces that share this edge

because in order to perform proper backface removal, the edge is drawn only if at
least one of the faces that it’s part of is facing forward.

The edgeAttributeSet field allows the application to specify the color and other
attributes of the edges independently. If no attribute is set on an edge, the attributes
are inherited from the geometry, or if that’s not present, then from the view’s state.
Every edge must have two points, but edges may have one or two faces adjacent to
them — those with just one are on a boundary of the object. To represent this in an
array-based representation, you use the identifier kQ3ArrayIndexNULL as a face
index for the side of the edge that has no face attached to it. Note the relationship

NEW QUICKDRAW 3D GEOMETRIES

43

44 develop Issue28 December 1996

vertextindices[1]

trianglelndices[0] \\ ," trianglel

N

vertextindices[0]

Figure 12. A schematic for filling

ndices[1]

out the polyhedron edge data structure

between the face indices and vertex indices in Figure 12. Relative to going from the
vertex at index O to the vertex at index 1, the Oth face is to the left. If at all possible,

fill out your data structures to co
may want to traverse the edge lis
which side of each edge.

The polyhedron data structur
structure:

nform to this schematic. For example, an application
t and be assured of knowing exactly which face is on

e. Whew! Finally we’re ready for the entire data

typedef struct TQBPol yhedronData {

unsi gned | ong
TCBVert ex3D
unsi gned | ong
TQBPol yhedr onEdgeDat a
unsi gned | ong
TQBPol yhedronTri angl eDat a
TCBAt t ri but eSet

} TQBPol yhedr onDat a

nunmVertices;

*vertices;

nurEdges;

*edges;

nuniri angl es;
*triangles;

pol yhedronAttribut eSet ;

Creating a polyhedron. In Listing 1, you’ll find the code that creates the four-

faced polyhedron in Figure 11.

T@BCol or RGB

TQBPol yhedr onDat a
TQBCGeoret r ybj ect
TQBVect or 3D nor mal ;

static TQBVertex3D

{ {-1.0, 1.0, 0.0},
{{-1.0, -1.0, 0.0},
{{ 0.0 1.0 1.0},
{{ 0.0 -1.0, 1.0},
{{ 2.0, 1.0, 1.0},
{{ 2.0, -1.0, 0.0},
{{ 0.0 -1.0, 1.0},

Listing 1. Creating a fourfaced polyhedron
pol yhedr onCol or ;

pol yhedr onDat a;
pol yhedr on;

vertices[7] = {

NULL },
NULL },
NULL },
NULL },
NULL },
NULL },
NULL }

(continued on next page)

Listing 1. Creating a fourfaced polyhedron (continued)

TQBPol yhedronTri angl eData triangles[4] = {
{ [/* Face 0 */

{0 1 21}, /* vertexlndices */
kQBPol yhedr onEdge01 | kQBPol yhedr onEdge20, /* edgeFlag */
NULL /* triangleAttributeSet */
+
{ [/* Face 1 */
{13 2},
kQBPol yhedr onEdge01 | kQ3Pol yhedr onEdge12,
NULL
|3
{ [/* Face 2 */
{2 3 43},
kQBPol yhedr onEdgeAl |,
NULL
}
{ [/* Face 3 */
{6, 5 41},
kQBPol yhedr onEdgeAl |,
NULL
}
b
/* Set up vertices, edges, and triangular faces. */
pol yhedronDat a. numVertices = 7;
pol yhedronDat a. verti ces = vertices;
pol yhedr onDat a. nunEdges = 0;
pol yhedr onDat a. edges = NULL;
pol yhedronDat a. nunilri angles = 4;
pol yhedronDat a. tri angl es = triangles;

/* Inherit the attribute set fromthe current state. */
pol yhedr onDat a. pol yhedronAt tri but eSet = NULL;

/* Put a normal on the first vertex. */

@BVect or3D_Set (&normal, -1, 0, 1);

@BVect or 3D_Nor mal i ze(&nor mal, &normal) ;

vertices[0].attributeSet = QBAttributeSet _New();

(BAttributeSet _Add(vertices[0].attributeSet, k@AttributeTypeNormal,
&normal) ;

/* Same normal on the second. */
vertices[1].attributeSet =
(BShar ed_Get Ref erence(vertices[0].attributeSet);

/* Different normal on the third. */

@BVect or3D_Set (&normal, -0.5, 0.0, 1.0);

@BVect or 3D_Nor nal i ze(&nor mal , &normal) ;

vertices[2].attributeSet = QBAttributeSet _New();

(BAttributeSet _Add(vertices[2].attributeSet, k@AttributeTypeNormal,
&normal) ;

(continued on next page)

NEW QUICKDRAW 3D GEOMETRIES

45

46 develop Issue28 December 1996

Listing 1. Creating a fourfaced polyhedron (continued)

/* Same nornal on the fourth. */
vertices[3].attributeSet =
(BShar ed_Cet Ref erence(vertices[2].attributeSet);

/* Put a color on the third triangle. */
triangles[3].triangl eAttributeSet = QBAttributeSet_New();
@BCol or RGB_Set (&pol yhedronCol or, 0, 0, 1);
CBAttributeSet _Add(triangles[3].triangleAttributeSet,
kQBAttribut eTypeDi f f useCol or, &pol yhedronCol or);

/* Create the pol yhedron object. */
pol yhedron = @BPol yhedr on_New(&pol yhedr onDat a) ;

/* Dispose of attributes created and referenced. */

Listing 2 shows the code that you’d use to specify the edges of the polyhedron in Figure
11, but this time with the optional edge list. You would add this code to the code in
Listing 1, except that if you’re using the edge list, you should set the edge flags in the
triangle data to some legitimate value (like kQ3EdgeFlagAll), which will be ignored.

Listing 2. Using an edge list to specify the edges of a polyhedron

pol yhedr onDat a. nunEdges = 8;
pol yhedronDat a. edges = mal I oc(8 * sizeof (TQBPol yhedr onEdgeDat a)) ;

pol yhedr onDat a. edges|[0] . vert exI ndi ces][0] = 0;
pol yhedr onDat a. edges|[0] . vert exI ndi ces[1]
pol yhedronDat a. edges[0] . tri angl el ndi ces[0] = O0;

pol yhedronDat a. edges[0] . tri angl el ndi ces[1] = kQBArrayl ndexNULL;

1
—_

pol yhedronDat a. edges[0] . edgeAt t ri but eSet = NULL;
pol yhedr onDat a. edges|[1] . vert exI ndi ces|[0] = 2;
pol yhedr onDat a. edges[1] . vert exI ndi ces[1] = 0;

pol yhedronDat a. edges[1] . triangl el ndi ces[0] = O0;
pol yhedronDat a. edges[1] . triangl el ndi ces[1] = kQBArrayl ndexNULL;

pol yhedronDat a. edges[1] . edgeAt t ri but eSet = NULL;
pol yhedr onDat a. edges| 2] . vert exI ndi ces|[0] =1
pol yhedr onDat a. edges| 2] . vert exI ndi ces[1] = 3;

pol yhedronDat a. edges[2] . triangl el ndi ces[0] = 1;
pol yhedronDat a. edges[2] . tri angl el ndi ces[1] = kQBArrayl ndexNULL;

pol yhedronDat a. edges| 2] . edgeAt t ri but eSet = NULL;
pol yhedr onDat a. edges| 3] . vert exI ndi ces|[0] = 3;
pol yhedr onDat a. edges| 3] . vert exI ndi ces[1] = 2;
pol yhedronDat a. edges[3] . tri angl el ndi ces[0] = 1;
pol yhedronDat a. edges[3] . triangl el ndi ces[1] = 2;
pol yhedr onDat a. edges[3] . edgeAt t ri but eSet = NULL;

/* Specify the rest of the edges. */

Using the polyhedron to your best advantage. Before we leave the polyhedron,
let’s take a look at some of the characteristics that should make it the most widely
used polyhedral primitive.

Geometric editing operations, which change the positions of existing vertices, are easy
and convenient. In immediate mode, you simply alter the point’s position in the array
in the data structure, and rerender. For retained mode, you’ll find a number of function
calls that allow you to change vertex locations, as well as the usual assortment of Get
and Set calls for attributes, faces, face attributes, and so forth.

Topological editing operations change the relationships between vertices, faces, edges,
and the entire object. Though you can do these operations, the addition or deletion
of vertices, faces, or edges may require reallocation of one or more of the arrays.
Because the polyhedron has a public data structure, these operations are possible in
both immediate mode and retained mode. So long as such operations aren’t the
primary ones required for using the polyhedron, it’s not a problem; however, in the
case where they are, you should use the mesh primitive.

The polyhedron uses memory and disk space in a maximally efficient manner because
shared locations and attributes are each stored only once and only those parts that
logically require attributes need to have them. This results in generally excellent I/O
characteristics (though, as is true of all geometric primitives, the addition of textures
requires a great deal of space and can increase I/0O time significantly).

Finally, good to very good rendering speed is possible with the polyhedron, owing to
the shared nature of the vertices. In short, you can easily use the polyhedron to
represent almost any polyhedral object.

TRIMESHES

The trimesh primitive is similar to the polyhedron in that it has a list of points and a list
of triangular faces that contain indices into the list of points. Similarly, it also has an
optional edge list. However, beyond these general characteristics, the two primitives
differ greatly. Indeed, the trimesh primitive differs in style from every other geometric
primitive in QuickDraw 3D, and this significantly affects its applicability.

Three features characterize the design of the trimesh data structures:

¢ All the data is in explicit arrays — the locations of the vertices, vertex
attributes, triangle attributes, and edge attributes.

® Unlike with all other QuickDraw 3D geometries, attributes are not kept in
objects of type TQ3AttributeSet; rather, they’re kept as (arrays of) explicit
data structures. The exception to this is that the trimesh has a standard
attribute set for its entire geometry, just like all the other primitives.

* Again, unlike with all other QuickDraw 3D geometries, you must have the
exact same types of attributes on all vertices, faces, or edges, with the
exception of custom attributes.

The third of these features, which I'll call the uniform-attributes requirement, makes it
necessary for you to put, say, a color on every face if you want to put a color on just one
of the faces (and it’s similar for vertices and edges). For some types of models, this may
not be a problem, in which case the trimesh is a good choice. In addition, preexisting
applications that are to be ported to QuickDraw 3D and already use uniform attributes
(particularly in immediate mode) may find this the easiest polyhedral primitive to use,
as the “translation” is more direct. (This use was one of the motivations for creating
the trimesh primitive.) In such cases, the trimesh may be faster and more compact.

NEW QUICKDRAW 3D GEOMETRIES

47

A8 develop Issue28 December 1996

Diverging from the design philosophy. The triangular face of a trimesh is simply
a three-element array of indices into a location (T'Q3Point3D) array, and an edge
consists of indices into the location array and triangular face array:

typedef struct TQBTri MeshTriangl eData {
unsi gned | ong poi nt I ndi ces[3] ;
} TQ@BTri MeshTri angl eDat a;

typedef struct TQBTri MeshEdgeData {
unsi gned | ong poi nt I ndi ces[2] ;
unsi gned | ong triangl el ndices[2];
} TQBTri MeshEdgeDat a;

Note that this differs from the polyhedron, and most of the rest of the QuickDraw 3D
primitives, in that the attributes associated with a part of the geometry are not closely
attached to the geometric part. Instead, the normal — say, for vertex number 17 — is
contained in the 17th element of an array of vertex normals, and it’s the same for face
and edge attributes. Of course, because you might have more than one type of attribute
on a vertex, face, or edge, you might have an array of arrays of attributes. To keep things
organized, the trimesh has a data structure that contains an identifier for the type of the
attribute and a pointer to the array of values; so you actually will have an array of
structures of the following type that contains arrays of data defining the attributes:

typedef struct TQBTri MeshAttributeData {
TQBAttributeType attributeType;
voi d *dat a;
char *attributeUseArray;
} TQBTri MeshAttri but eDat a;

For example, if a trimesh has 17 vertices with normals on them, you would create a

data structure of this type, set attribute Type to kQ3Attribute TypeNormal, allocate a
17-element array of TQ3Vector3D, and then fill it in appropriately. For all but custom
attributes, the attributeUseArray pointer must be set to NULL. In the case of custom
attributes, you can choose whether or not a particular vertex has that attribute by (in our
example) allocating a 17-element array of 0/1 entries and setting to 1 the #th element if
the nth vertex has a custom attribute on it (and 0 otherwise). You would use the same
approach for vertex, face, and edge attributes.

The trimesh data structure. The data structure for the trimesh consists of the
attribute set for the entire geometry, plus pairs of (count, array) fields for points,
edges, and faces, and the attributes that may be associated with each:

typedef struct TQBTri MeshData {
TCBAtt ri but eSet tri MeshAttributeSet;
unsi gned | ong numfri angl es;
TQBTri MeshTriangl eData *triangl es;
unsi gned | ong nunilri angl eAttribut eTypes;
TQBTri MeshAttributeData *triangl eAttributeTypes;
unsi gned | ong nuntdges;
TQBTri MeshEdgeDat a *edges;
unsi gned | ong nunEdgeAt t ri but eTypes;
TQBTri MeshAttributeData *edgeAttributeTypes;
unsi gned | ong nunPoi nt s;
TQBPoi nt 3D *points;
unsi gned | ong nunVert exAttri but eTypes;
TQBTri MeshAttributeData *vertexAttributeTypes;
TQBBoundi ngBox bBox;

} TQBTri MeshDat a;

Trimesh characteristics. The uniform-attributes requirement and the use of arrays
of explicit data for attributes — as opposed to the attribute sets used throughout the
rest of the system — may be advantageous for some models and applications and
make the trimesh relatively easy to use. The simplicity of this approach, however,
makes it very hard to use this primitive to represent arbitrary, nonuniform polyhedra.
(You’ll learn more about this at the end of this article when I compare the
characteristics of the four polyhedral primitives.)

Geometric editing operations on the trimesh are similar to those on the polyhedron
in immediate mode: you simply alter the point’s position in the array in the data
structure and rerender. There are no retained-mode part-editing API calls for the
trimesh, as is befitting its design emphasis on immediate mode.

Topological editing in immediate mode is also similar to that on the polyhedron.
However, unlike the polyhedron, there are no retained-mode part-editing calls, so
editing an object topologically is not possible.

The uniform-attributes requirement for this primitive results in generally good I/O
characteristics. However, the redundant-data problem that’s inherent in this
requirement may cause poor I/O speeds due to the repeated transfer of multiple
copies of the same data (for example, the same color on every face). Rendering speed
for the trimesh is generally good to very good.

MESHES
Here I'll expand on the information about the mesh primitive that’s in 3D Graphics
Programming With QuickDraw 3D, focusing on its use.

Like the polyhedron and trimesh, the mesh is intended for representing polyhedra.
However, it was designed for a very specific type of use and has characteristics that
make it quite different from the polyhedron and trimesh (and all the other QuickDraw
3D primitives).

The mesh is intended for interactive topological creation and editing, so the
architecture and API were designed to allow for iterative construction and
topological modification. By iterative construction I mean that you can easily construct
a mesh by building it up face-by-face, rather than using an all-at-once method of
filling in a data structure and constructing the entire geometric object from that data
structure (which you do with all the other geometric primitives). By topological
modification I mean that you can easily add and delete vertices, faces, edges, and
components. A particularly notable feature of this primitive is that it has no explicit
(public) data structure, and so it has no immediate-mode capability, as do all the other
geometric primitives.

The mesh is specifically nor intended to be used for representation of large-scale
polyhedral models that have a lot of vertices and faces. If you use it this way, you get
extremely poor I/0 behavior, enormous memory usage, and less-than-ideal rendering
speed. In particular, individuals or companies creating 3DMF files should immediately
cease generating large models in the mesh format and instead use the polyhedron.
Modeling, animation, and design applications should also cease using the mesh and
begin using the polyhedron for most model creation and storage.

The reason for this is that meshes consist of one or more components, which consist
of one or more faces, which consist of one or more contours, which consist of a
number of vertices. To enable the powerful topological editing and traversal functions,
each of these entities must contain pointers not only to their constituent parts, but
also to the entity of which they are parts. So a face must contain a reference to the

NEW QUICKDRAW 3D GEOMETRIES

49

50 develop Issie28 December 1996

component of which it is a part, and references to the contours that define the face
itself. All of this connectivity information can significantly dwarf the actual
geometrical information (the vertex locations), so a nontrivial model can take up an
unexpectedly large amount of space in memory. The connectivity information (the
pointers between parts) can take up from 50% to 75% of the space. Further, when
reading a mesh, QuickDraw 3D must reconstruct all the connectivity information,
which is computationally expensive. Writing is relatively slow as well, primarily
because of the overhead incurred by the richly linked architecture. In addition,
models distributed in the mesh format do a tremendous disservice to subsequent
users of these models who might want to extract the data structure for immediate-
mode use. This won’t be possible because the mesh has no public data structure.

These somewhat negative characteristics don’t mean this isn’t a useful primitive. For
the purposes for which it was designed, it’s clearly superior to any other available
QuickDraw 3D geometric primitive. For example, if you have an application that uses
a 3D sampling peripheral (for instance, a Polhemus device) for digitizing physical
objects, the mesh would be ideal. You can easily use the mesh in such situations to
construct the digitized model face-by-face, merge or split faces, add or delete vertices,
and so forth. Doing this sort of thing with an array-based data structure would be
awkward to program and inefficient becuase of the repeated reallocation you’d be
forced to do.

"To give you an idea of the richness of the API and the powerful nature of this primitive,
you can expect to find routines to create and destroy parts of meshes, retrieve the
number of parts (and subparts of parts), get and set parts, and iterate over parts (and
subparts). And because the iterators are so essential to the editing API, you’ll find a
large set of convenient macros for common iterative operations.

Mesh characteristics. The mesh API richly supports both geometric and topological
editing operations, but only for retained mode because the mesh has no immediate-
mode public data structure — an inconsistency with the design goals of the QuickDraw
3D API. (You should use the polyhedron primitive if immediate mode is desired.)

In general, the rendering speed of meshes is relatively slow. In the case of the
polyhedron and trimesh, faster rendering is facilitated by the use of arrays of points,
which are presented to renderers in the form of a public data structure. The mesh,
having neither an array-based representation nor a public version of the same, must
be either traversed for rendering or decomposed into some other primitives that

are more amenable to faster rendering. However, traversing usually results in
retransformation and reshading of shared vertices (which tends to be extremely slow),
while decomposition may involve tremendous use of space as well as complex and
slow bookkeeping code.

Faces of meshes (unlike those in the polyhedron and trimesh) may have more than
three vertices, may be concave (though not self-intersecting), and may have holes by
defining a face with more than one contour (list of vertices).

Using the mesh. Listing 3 creates a mesh that’s geometrically equivalent to the
polyhedron created in Listing 1.

TRIGRIDS

Like the mesh, the trigrid has been around since the first release of QuickDraw 3D
and is quite simple, so I won’t go into a long discussion here. The basic idea is that

you have a list of items of type T'Q3Vertex3D, each representing a series of rows of
vertices in a topologically rectangular grid, as illustrated in Figure 13.

Listing 3. Creating a mesh

static TQBVertex3D vertices[7] = {

{{-1.0, 1.0, 0.0}, NULL },
{{-1.0, -1.0, 0.0}, NULL },
{{ 0.0, 1.0, 1.07}, NUL},
{{ 0.0, -1.0, 1.0}, NULL },
{{ 2.0, 1.0, 1.0}, NULL },
{{ 2.0, -1.0, 0.0}, NULL },
{{ 0.0, -1.0, 1.0}, NULL },
H
TGBMeshVer t ex meshVertices[7], tnp[4];
TQBCeonet rybj ect mesh;
T3MeshFace face01, face2, face3;
TBAt t ri but eSet faceAttributes;
unsi gned | ong i;
TQBCol or RCB col or;
TQBVect or 3D nor mal ;

/* Add normals to some of the vertices. */

vertices[0].attributeSet = CBAttributeSet _New();

@BVect or3D_Set (&normal, -1, 0, 1);

@BVect or 3D_Nor nal i ze(&normal, &nornal);

(BAttributeSet _Add(vertices[0].attributeSet, kQBAttributeTypeNornmal,
&normal) ;

vertices[1].attributeSet =
(BShar ed_Cet Ref erence(vertices[0].attributeSet);

vertices[2].attributeSet = QBAttributeSet _New();

@BVect or3D_Set (&normal, -0.5, 0.0, 1.0);

(BVect or 3D_Nor nal i ze(&nor mal , &normal) ;

(BAttributeSet _Add(vertices[2].attributeSet, kQBAttributeTypeNornal,
&normal) ;

vertices[3].attributeSet =
(BShar ed_Cet Ref erence(vertices[2].attributeSet);

/* Create the nesh. */
mesh = BMesh_New() ;

/* Create the nmesh vertices. */
for (i =0; i <7; i++) {

meshVertices[i] = GBMesh_VertexNew(mesh, &vertices[i]);
}

/* Create a quad equal to the first two triangles in the pol yhedron. */
tmp[0] = meshVertices[0];

tnp[1] = meshVertices[1];
tnp[2] = meshVertices[3];
tmp[3] = meshVertices[2];

face01 = CBMesh_FaceNew(mesh, 4, tmp, NULL);

(continued on next page)

NEW QUICKDRAW 3D GEOMETRIES

51

592 develop Issie 28 December 1996

Listing 3. Creating a mesh (continued)

/* Create other faces. */
tmp[0] = meshVertices[2];
tp[1] meshVertices[3];
tnp[2] = meshVertices[4];
face2 = (BMesh_FaceNew(mesh, 3, tnp, NULL);

tmp[0] = meshVertices[6];
tnp[1] = meshVertices[5];
tnp[2] = meshVertices[4];

face3 = BMesh_FaceNew(mesh, 3, tnp, NULL);

/* Add an attribute set to the last face. */

faceAttributes = (BAttributeSet _New();

@BCol or RGB_Set (&color, 0, 0, 1);

CBAttributeSet _Add(faceAttributes, kQBAttributeTypeDiffuseColor,
&col or);

(BMesh_Set FaceAttri but eSet (nesh, face, faceAttributes);

Figure 13. A trigrid

The numbers of rows and columns are part of the data structure, and there is an
optional array of type TQ3AttributeSet for face attributes.

"This primitive has a fixed topology, defined by the numbers of rows and columns.
Thus, the space in memory and in files is very efficiently used. I/O is relatively fast
because of the simplicity and efficiency of the primitive. Rendering can also be fast
because of the shared nature of the points and the fixed topology. However, the fixed
topology and the fact that shared locations must share attributes restrict the
generality and flexibility of this primitive.

COMPARING THE POLYHEDRAL PRIMITIVES

It should be clear that the four polyhedral primitives in QuickDraw 3D can be used
to represent the same sorts of shapes. It should also be clear that there are some
important differences in their generality, flexibility, style of programming,
performance, and compliance with the overall design goal of treating retained and
immediate mode programming as equivalent. To help you determine the usefulness
of these polyhedral primitives, Table 1 compares a number of their important
characteristics.

Table 1. Comparison of polyhedral primitives

Characteristic
Memory usage

File space usage
Rendering speed

Geometric object
editing

Topological object
editing

Geometric data
structure editing

Topological data
structure editing

I/ O speed
Rexibility/ generality
Suitability for general

Polyhedron
Very good

Very good
Good to very good
Very good

Poor
Very good
Fair

Good to very good
Good
Very good

Trimesh
Fair to very good

Fair to very good
Good to very good

Impossible (no AP calls)

Impossible (no AP calls)

Very good

Fair

Fair to very good
Poor
Fair

Mesh
Poor

Very good
Fair to good
Very good

Very good

Impossible (no
data structure)

Impossible (no
data structure)

Fair
Very good
Fair

model representation
and distribution

An upcoming release of QuickDraw 3D will have the capability of
generating one geometric primitive from another, but with a different type — for
example, getting a group of triangles that corresponds to a cone, or a mesh that’s
equivalent to a trimesh, or a polyhedron that’s equivalent to a mesh.”

Most of the characteristics in Table 1 were covered in greater detail in the sections
that described each primitive. So let’s look at the last characteristic — suitability for
general model representation and distribution — to help you determine when you
would use one of these primitives. We’ll look at the primitives one by one.

The polyhedron primitive. This polyhedral primitive is the primitive of choice for
the vast majority of programming situations and for the creation and distribution

of model files if editing of models is desired. Companies and individuals whose
businesses involve creation of, conversion to, distribution of, or sale of polyhedral
models should produce them in polyhedron format, rather than mesh or trimesh.
User-level applications such as modelers and animation tools should generally use the
polyhedron as well. Creators of plug-in renderers are required to support certain
basic primitives (triangles, points, lines, and markers) and are also very strongly urged
to support the polyhedron.

Let’s quickly recount some of the pluses for the polyhedron: it can easily represent
arbitrarily shaped polyhedral models in a space-efficient fashion, it’s amenable to fast
rendering, it’s highly consistent with the rest of the API, and attributes may be
attached in whatever combination is appropriate for the model. The polyhedron has
advantages over the mesh because of the mesh’s profligate use of space and lack of
immediate mode.

The mesh primitive. You should use the mesh primitive for interactive construction
and topological editing. The rich set of geometric and topological object editing calls,
the ability to make nontriangular faces directly, the allowance of concave faces and
faces with holes, and the consistent use of attribute sets make this primitive ideal for
those purposes. In addition, the 3DMF representation of a mesh is quite space

Trigrid

Very good

Very good

Good to very good
Very good

Impossible (fixed
topology)

Very good

Impossible (fixed
topology)

Good to very good
Poor (fixed topology)
Poor

NEW QUICKDRAW 3D GEOMETRIES

53

54 develop Issue 28 December 1996

efficient. However, because the mesh lacks an immediate mode, it requires a large
amount of memory and is generally “overkill” in terms of representation for other uses.

The trigrid primitive. Because of its fixed rectangular topology, the trigrid is a good
choice for objects that are topologically rectangular — for example, surfaces of
revolution, swept surfaces, and terrain models — and as an output primitive for
applications that want to decompose their own parametric or implicit surfaces. If the
situation matches one of these criteria and space is a serious issue, the trigrid is an
especially good choice because it’s more space efficient than the other primitives
discussed here and it’s very consistent with the rest of the QuickDraw 3D APIL.

The trimesh primitive. I promised earlier that I’d discuss the implications that the
uniform-attributes requirement has on the suitability of this primitive for representing
general polyhedral objects. Real objects have regions that are smoothly curved and
regions that are intentionally flat or faceted, and often have sharp edges, corners, and
creases. The vertices in the curved regions need normals that approximate the surface
normal at that vertex, but vertices at corners or along edges or that are part of a flat
region need none. On a polyhedron, mesh, or trigrid, you need only take up storage
(for the normal) on those vertices that actually require a normal, but on a trimesh you
would be required to place vertex normals on all the vertices, resulting in a tremendous
use of space.

This same problem can be seen for face attributes. Real objects often have regions
that differ in color, transparency, or surface texture. For example, a soccer ball has
black and white faces, and a wine bottle may have a label on the front, a different one
on the back, and yet another around the neck. The other polyhedral primitives
would, in the case of the soccer ball, simply create two attribute sets (one for each
color) and attach a reference to the appropriate attribute set to each face, thus sharing
the color information. In a trimesh, you would be required to create an array of colors,
thus using quite a lot of space to represent the same data over and over. If you wanted
to highlight one face, you couldn’t simply attach a highlight switch attribute to that
face (set to “on”) — you’d need to attach it to the rest as well (set to “off”). As for the
wine bottle, you would want to attach the label textures to the appropriate faces on
the bottle, which would require attaching texture parameters to the vertices of the
faces to which you attached the label texture. With a trimesh, this extremely useful
and powerful approach is simply not possible.

In using the trimesh for large polyhedral models, these problems can result in a rather
startling explosion of space, both on disk and in memory. Consider a 10,000-face
model whose faces are either red or green. The other polyhedral primitives would use
references to just two color attribute sets while the trimesh would use up 10,000 x 12
bytes = 120,000 bytes. Further, if the red faces were to be transparent, we would have
to use up yet another 120,000 bytes. Highlighting just one face would require another
40,000 bytes. This same sort of data explosion can occur with vertex attributes as
well. Note that these problems do not affect the other polyhedral primitives.

Thus, developers should carefully weigh the potentially negative consequences of the
trimesh’s characteristics when considering its use in applications. Its lack of object-
editing calls renders it almost useless for an object-oriented approach, and this
inconsistency with the rest of the QuickDraw 3D library may make its inclusion in a
program awkward. In addition, because the trimesh doesn’t use attribute sets (which
are the foundation of the rest of the geometric primitives) for vertices, faces, and
edges, it requires special-case handling in the application.

In spite of these features that limit the suitability of the trimesh for general-purpose
polyhedral representation, the uniform-attributes requirement makes it ideal for

models in which each vertex or face naturally has the same type of attributes as the
other vertices (or faces), but with different values. For example, if your application
uses Coons patches, it could subdivide the patch into a trimesh with normals on each
vertex. Games often are written with objects such as walls, or even some stylized
characters, that typically have just one texture for the entire thing and either no
vertex attributes or, more often, normals on every vertex. Multimedia, some demo
programs, and other “display-only” applications in which the user typically is unable
to modify objects may find the trimesh useful, at least for those primitives that don’t
suffer from the size problems described earlier.

DRAWING TO A CLOSE

Well, I have to say that I would have liked to have waxed eloquent a bit longer
regarding these “primitive creations” for QuickDraw 3D. But for the most part, you
have the long and short of it: some new high-level primitives to save you time and
two new polyhedral primitives. Use them well and wisely — and have fun doing it!

RELATED READING

“QuickDraw 3D: A New Dimension for Macintosh Graphics” by Pablo Fernicola
and Nick Thompson, develop Issue 22.

“The Basics of QuickDraw 3D Geometries” by Nick Thompson and Pablo
Fernicola, develop Issue 23.

“NURB Curves: A Guide for the Uninitiated” by Philip Jd Schneider, develop
Issue 25.

“Adding Custom Data to QuickDraw 3D Objects’ by Nick Thompson, Pablo
Fernicola, and Kent Davidson, develop Issue 26.

3D Graphics Programming W ith QuickDraw 3D by Apple Computer, Inc.
(AddisonWesley, 1995).

Thanks to our technical reviewers Rck Evans,
Pablo Fernicola, dm Mildrew, Klaus Strelau, and
Nick Thompson.®

NEW QUICKDRAW 3D GEOMETRIES

35

56 develop issue28 December 1996

PRINT HINTS

Sofe Travel

Throughthe
Printing Jungle

DAVE POLASCHEK

Implementing printing in a Macintosh application should
be pretty straightforward, right? There are currently 18
high-level printing calls (listed on pages 9-92 and 9-93
of Inside Macintosh: Imaging With QuickDraw), which is
only three more than were listed in Inside Macintosh
Volume II. Calling them in the right order gives you a
printing port that you can treat just like a graphics port
— and every Macintosh application knows (or at least
ought to know) how to draw into a graphics port.

But in spite of this apparent simplicity, there are an
astounding number of Macintosh applications that have
problems printing. (Even products from Apple make
the list once in a while.) I think one of the reasons for
this is that, while basic QuickDraw printing is simple,
printing is something that can be — and has been —
made more complex by various “extensions” to the
original printing architecture. These extensions offer
greater control of the printing process, allowing you to
take advantage of special features available on some
printers and to draw in more sophisticated ways than
QuickDraw allows. But they also introduce complexities
that can get you in trouble if you’re not careful. In this
column I'll give a few examples of places where control
comes only at the price of complexity, and therefore
places where you need to tread very carefully, if at all.

PICTURE COMMENTS

Picture comments are, on the face of it, wonderful
things. They let you embed commands in your output
that can take advantage of particular printer features if
they’re available, and they’re automatically ignored by
printer drivers that don’t support them. But there’s a
flip side: for every picture comment you use, you have
to provide an alternative for those printers that don’t

support it. There are also a number of picture comments
that should be avoided, as listed on page B-40 of Inside
Macintosh: Imaging With QuickDraw. As with any
complex and powerful tool, the potential for getting
things wrong with picture comments is ever-present.

The SetLineWidth picture comment is a perfect
example: not only is it supported by only a few printer
drivers, but it’s implemented slightly differently in each
of them. On some printers the value you pass for the
line width is used to modify the current line width (for
instance, passing 1/2 will halve the current line width),
and on others it’s used as an “absolute” value (passing
1/2 will set the line width to 1/2 point, regardless of the
previous width). To obtain the desired results, you have
to write your code very carefully, and even then the
SetLineWidth picture comment may not work on the
printer driver that the user happens to be using — and
there’s no QuickDraw alternative. The territory here is
treacherous. Unless you really need fractional line
widths, it may be better to take the nice safe QuickDraw
path.

PRGENERAL

The PrGeneral call added complexity to the Printing
Manager — and even more complexity could be added
by driver developers, often without accompanying
documentation. After all, since supporting the various
PrGeneral opcodes (in fact, supporting PrGeneral
itself) is optional, printer drivers can define their own
new opcodes and nobody need be the wiser — nobody,
that is, except for the one developer who needs the new
opcode and the functionality it provides. Things get
even more confusing when the same added functionality
is available via a different mechanism in a different
printer driver, so the application has to start using
special-case code for each printer driver it knows about.
If you find yourself writing special-case code for
particular printer drivers, stop! Back up and look for
another solution.

One commonly used PrGeneral capability, provided by
the getRslOp and setRslOp opcodes, is finding the
resolution(s) supported by the printer you’re using and
setting the resolution you want to print with. There’s
clearly a need for this sort of capability. An application
that shows graphs of curves or of raw data gathered
from some source wants the graphs to look good.
Plotting individual pixels at 72 dpi doesn’t make for
smooth-looking curves, so an application might be

DAVE POLASCHEK (davep@est.com), formerly of Apple’s
Developer Technical Support group, got so confused by the lack of
weather in California that he moved back to Minnesota. This
probably won’t seem like such a smart move when Celsius and

56 develop issue28 December 1996

Fahrenheit show the same temperature and Dave starts singing that
verse from Jmmy Buffett's “Boat Drinks’ that goes, “This morning, |

shot six holes in my freezer. | think I’'ve got cabin fever. Somebody

sound the alarm.””

justified in asking to print at the highest resolution the
printer is capable of. But is PrGeneral the right
approach?

A potential problem with using PrGeneral to get and
set resolutions is that you’re depending on the printer
driver to keep up with the times. The LaserWriter
driver, for example, is used for printers from the original
LaserWriter all the way up to high-end typesetters.
The driver reports that the maximum physical resolution
of the printer is 300 dpi, even if you're printing to a
typesetter that’s capable of 1270 or even 2540 dpi. The
reason for this is that reporting a higher resolution
could cause applications that create bitmaps at the
printer’s resolution to run into QuickDraw’s limitations,
such as the limit on rowBytes and the 32K maximum
region size. This is something that we plan to address
in future versions of LaserWriter 8, but currently an
application that wants to know a PostScript™ printer’s
real maximum resolution has to either parse the
PostScript Printer Description file (PPD) associated
with it or query the printer directly, both of which are
functions that the driver should have to worry about,
not the application.

In this case, there’s an alternative to PrGeneral: If you’re
going to be generating your data in a GWorld, just make
sure the GWorld’s resolution is whatever you need for
best results. Then take that same GWorld and use
CopyBits to copy the PixMap in it to the printer. If you
provide appropriate source and destination rectangles,
the implementation of CopyBits in the printer driver
will scale the PixMap, and you’ll be taking advantage of
the resolution of the printer without having to worry
about new coordinate systems.

Determining just what resolution you need is, however,
still a tricky issue. For example, if you’re printing a
color image to a LaserWriter that can print only black-
and-white images and only at 300 dpi, the color image
you’re displaying onscreen already has more detail than
the printer can reproduce, so you don’t need to worry
about sending a higher-resolution image at all. The
way to tell for sure if you have enough data is that your
pixel density (in dpi) should be between one and two
times the “screen frequency” (in 1pi) for the printer.
The default screen frequency for PostScript printers is
listed in the PPD file for the printer, and in the future
we’ll be providing access to the PPD file parsing code
that’s contained in LaserWriter 8’s PrintingLib, but for
now you may just want to ask the user rather than parse
it out yourself.

If you’re generating line art or other data that needs to
have “hard edges” in a GWorld that’s going to be sent
to the printer, you've got a different problem: unless

you specify the data at the printer’s resolution (or
higher), it will need to be scaled up to the printer’s
resolution, producing large, blocky pixels. Your users
will think you’re a bozo, unless of course your product
is supposed to make large, blocky pixels. The right
solution is to avoid sending data that needs to have
hard edges as bitmapped images, if at all possible. This
is the sort of data that really should be maintained as
objects. If you want to draw the letter A, for instance,
ask QuickDraw to draw it to the printer for you if
possible, rather than image it into a bitmap first. If you
really need to generate bitmaps of hard-edged data, be
aware that you’d better have your machete sharpened
and ready, since you’re heading into the brush. On the
other hand, this may be a great opportunity to generate
your own PostScript code.

POSTSCRIPT CODE

Generating your own PostScript code is another
powerful technique that can get your application into
trouble. In many cases, it’s the right answer to a thorny
dilemma; for instance, if you need drawing primitives
that QuickDraw doesn’t supply, this may be the only
way to get them. After all, cubic Bézier curves are neat
and powerful. The problem arises when the application
developer either doesn’t understand how to write
compatible PostScript code or takes shortcuts in the
PostScript code.

An excellent example is an old version of a certain very
popular graphics program that saved its pictures with
an EPS version of the graphic embedded in the PICT
data. Unfortunately, the PostScript code in the EPS
version depended on the md dictionary, a private
dictionary used by the LaserWriter driver. After warning
developers for years that the md dictionary was private,
Apple Engineering felt justified in changing it. When
the new version of the LaserWriter driver shipped,
suddenly many graphics quit printing. The problem
was made even worse by the fact that many of these
graphics had been shipped as clip art, and they still
occasionally pop up to bedevil us today.

The solution isn’t to avoid PostScript code entirely.
Just make sure that if you do generate it, the code is
compatible and portable. Obviously, it shouldn’t use
any of the LaserWriter driver’s private PostScript
operators. If you make graphics with PostScript code
embedded in them, be sure that the PostScript code
they contain conforms to the EPS specification that’s
described by Adobe™ in the PostScript Language
Reference Manual, Second Edition, Appendix H.
Also, be sure to send the PostScript code with the
PostScriptBegin, PostScriptHandle, and PostScriptEnd
picture comments, as described beginning on page
B-38 of Inside Macintosh: Imaging With QuickDraw.

PRINT HINTS: SAFE TRAVEL THROUGH THE PRINTING JUNGLE 57

Another thing application developers have tried over
the years (with mixed success) is to do their own
PostScript font management by talking directly to the
printer. This is something applications really need to
avoid. The LaserWriter driver knows how to handle
the PostScript fonts needed to print a page (or series of
pages). Applications that attempt to manage the fonts
themselves are more likely to get poor font management
for their efforts, since the LaserWriter driver (or the
LaserWriter GX driver) will have a much harder time
recognizing which fonts are needed on which page.
When this happens, the drivers err on the side of
safety: if there’s any doubt about when a font is used, it
will be included for the whole job, which is usually
exactly what the developer was trying to avoid. Let the
driver handle font management.

HAVE A SAFE TRIP

I've given a few of the more common examples of how
printing has grown in complexity over the years, and
how application developers can sometimes get in trouble
by trying to take advantage of it. Printing doesn’t need

to be much harder than drawing to the screen if you
stick to the rules, and even when you want to take
advantage of particular printer capabilities, you can
usually do so in safe, compatible ways. As tempting as it
sometimes is to wander off the known path and plunge
headlong into the uncharted jungle of possibilities,
doing so usually just results in trouble — for you and
for your users. In printing, as in all programming,
remember: keep it simple.

RECOMMENDED READING

Technote PR 10, “A PRinting Loop That Cares.”

Writing Solid Code by Steve Maguire (Microsoft
Press, 1993).

The History of the English-Speaking Peoples (4
volumes), by Sir Winston S. Churchill (Dodd,
Mead, & Co., 1958 & 1959).

Thanks to Rch Blanchard, Paul Danbold, Dan Lipton, and Steve
Simon for reviewing this column.*

DEVHLOFER

UNIVERSTY

NewOnline(asss
from Apple Developer Universty

Check out Developer University’s free
self-paced training on the Web.

We’'ve just added two new tutorials:
® Multimedia Authoring with Apple Media Tool
m Game Development with Sprockets

All of our classes can be found at:
http://www.devworld.apple.com/dev/du.shtml
in our online training center.

P

N\

58 develop Issie 28 December 1996

- ” QuickTi
' movies from their d:
to show potential ¢
the movies display t
objects more effectiv
representation and ¢
the data in the proces
Archaeologists can
VR movies to record s
@ during digs, realtors ca;

Issue 1 Color; Palette Manager; Offscreen Worlds;
PostScript; System 7; Debugging Declaration ROMs

Issue 2 C++ (Objects; Style Guide); Object Pascal;
Memory Manager; MacApp; Object-Based Design

Issue 3 ISO 9660 and High Sierra; Accessing CD Audio
Tracks; Comm Toolbox; 8224 GC Card; PrGeneral

Issue 4 Device Driver in C++; Polymorphism in C++;
A/ROSE; PostScript; Apple IIGS Printer Driver

Issue 5 (Volume 2, Issue 1) Asynchronous Background
Networking; Palette Manager; Macintosh Common Lisp

Issue 6 Threads; CopyBits; MacTCP Cookbook

Issue 7 QuickTime 1.0; TrueType; Threads and Futures;
C++ Objects in a World of Exceptions

Issue 8 Curves in QuickDraw; Date and Time Entry in
MacApp; Debugging; Hybrid Applications for A/UX

Issue 9 Color on 1-Bit Devices; TextBox You've Always
Wanted; Sound; Terminal Manager; Debugging Drivers

Issue 10 Apple Event Objects; Enhancements for the
LaserWriter Font Utility; GWorlds; The Optimal Palette

Issue 11 Asynchronous Sound; Multibuffering Sounds;
Exceptions; NetWork: Distributed Computing

Issue 12 Components; Time Bases; Apple Event Coding
Through Objects; Globals in Standalone Code

Issue 13 Asynchronous Routines; QuickTime and
Components; Debugging; Color Printing; DeviceLoop

Issue 14 Localizable Applications; 3-D Rotation;
QuickTime (Video Digitizing; Making Better Movies)

Issue 15 QuickDraw GX; Component Registration;
Floating Windows; Working in the Third Dimension

Issue 16 Making the Leap to PowerPC; PowerTalk;

Looking to complete
the set?

If you’re looking for a complete develop collection, full-color, bound copies are
available for $13 per issue, including shipping and handling. (Back issues are also on
the develop Bookmark CD and the Developer CD Series Reference Library edition, as
well as on the Internet.) For more information about how to order printed back
issues (and where to find them online), see the inside front cover of this issue.
Supplies are limited. Please allow 4 to 6 weeks for delivery.

Drag and Drop From the Finder; Color Matching With
QuickDraw GX; International Number Formatting

Issue 17 Newton Proto Templates; PowerPC (Standalone
Code; Debugging); Thread Manager; Window Zooming

Issue 18 Apple Guide; Open Scripting Architecture;
Graphics Speed on the Power Macintosh; Displaying
Hierarchical Lists; Preferences Files

Issue 19 OpenDoc Part Handlers; PowerPC Memory
Usage; Designing for the Power Macintosh; QuickDraw
GX (Printing; Bitmaps); Inheritance in Scripts

Issue 20 AOCE; Make Your Own Sound Components;
Scripting the Finder; NetWare on PowerPC

Issue 21 OpenDoc Graphics; Designing a Scripting
Implementation; Dylan; Object-Oriented Hierarchical Lists

Issue 22 QuickDraw 3D; Copland; PCI Device Drivers;
Custom Color Search Procedures; The OpenDoc User
Experience; Futures

Issue 23 QuickTime Music Architecture; QuickDraw
3D Geometries; Internet Config; Multipane Dialogs;
Document Synchronization; ColorSync 2.0

Issue 24 Speeding Up whose Clause Resolution;
OpenDoc Storage; Sound; Alert Guidelines; Printing
Faster With Data Compression; The New Device Drivers

Issue 25 QuickTime VR Movies From QuickDraw 3D;
Flicker-Free Drawing With QuickDraw GX; NURB
Curves; C++ Exceptions in C; Localized Strings for Newton

Issue 26 Mac OS 8; QuickTime Conferencing; OpenDoc
and SOM Dynamic Inheritance; Adding Custom Data to
QuickDraw 3D Objects; 64-Bit Integer Math on 680x0

Issue 27 Speech Recognition Manager; OpenDoc Part
Kinds; Apple Guide 2.1 With OpenDoc; Mac OS 8
Assistants; Game Controls for QuickDraw 3D

QuickDraw GX Line Layout:
Bending the Rules

DANIEL I. LIPTON

60 develop Issie28 December 1996

Many bigh-end drawing applications provide the user with a way to
draw text along an arbitrary path. Some of them even provide the means
to edit this text in place. The methods discussed here will illustrate how
to do both in a QuickDraw GX-based application. In fact, I'll show you
how QuickDraw GX enables your application to provide better line
layout capabilities than those currently available in mainstream graphics
arts applications.

One of the things that makes QuickDraw GX interesting is its amazing typography
— whatever else has been said about GX| its type capabilities are universally
acknowledged as the best. Besides aesthetics, a distinguishing attribute of QuickDraw
GX typography is not what is graphically possible, but the ease with which visual
content can be created. A user can create documents that are kerned or tracked or
have swashes, ligatures, and so on without QuickDraw GX, but achieving these
effects requires a great deal of manual labor, with lots of Shift-Option-Command key
combinations and switching to special fonts — assuming the developer has made the
effort to provide such a level of functionality. With QuickDraw GX, these effects are
features designed into the font itself, so all the user needs to do is type and the text
comes out beautifully. For different effects, the user just picks font features from a
dialog or palette. The time saved by the user can be 90% over a non-GX interface!

It simply has to be experienced to be appreciated.

All of this great typography is easy for the user to use because it’s easy for the
developer to implement. How many pre-GX drawing and illustration packages
support the same level of typographic quality as their pre-GX publishing package
counterparts? Not many, and of those that do, how much more memory do those
applications require than they would without the typography code? Thanks to
QuickDraw GX, we’re beginning to see drawing and illustration programs that
incorporate high-end #ypographic features and page layout programs that incorporate
high-end graphics features — all with lower overall memory requirements (when
compared with traditional non-GX applications) because the code is in the system
and is shared between applications.

Let me get to the real topic of this article. A favorite feature in illustration and page
layout programs is to enable the user to lay a line of text along an arbitrary path, be it
straight or curved. My goal here is to provide the developer with a way to do this,

DANIEL I. LIPTON (lipton@apple.com) achieve sentience on August 29, 1997. When
Although he’s a member of the QuickDraw GX not sleeping, Daniel can be found lost in San
team, Daniel has been secretly developing a next- Francisco traffic or buying critters at his local
generation PostScript printer (based on the latest aquarium shop.”

in artificial intelligence technology) that will

using QuickDraw GX, that’s familiar to those who have been using GX and enticing
to those who haven’t tried it yet. If you’ve written code to handle text on a path in a
non-GX application, consider the amount of code needed to do the editing on the
screen and the amount of code you had to write to make it print on a PostScript
printer. Then compare it to what’s presented here — I think the QuickDraw GX
advantage will be clear!

I'll assume you have some knowledge of typography and a working knowledge of
QuickDraw GX throughout my discussion. If you need to brush up on GX, there are
the Inside Macintosh: QuickDraw GX books; the Programmer’s Overview and Typography
volumes are most relevant here.

Accompanying this article on this issue’s CD and develop’s Web site is a library of code
called CurveLayout which very closely parallels the QuickDraw GX line layout
mechanism but with support for curved layouts. The functions of this library will be
described later.

SIMPLE INTERFACE TO DRAW TEXT ON A PATH

It turns out that QuickDraw GX provides an extremely simple method for drawing
text along a curve, since it lets us make any shape a dash outline for any other shape
— to dash a shape means to draw another shape in a repeating pattern along the
perimeter of the first shape (see Figure 1). The PostScript language, by comparison,
allow only simple dashing.

by
4 >
D4
D)
O
A\ O <

Multi-contour dash shape Shape to be dashed Result of drawing
Figure 1. Dashing a shape

Since QuickDraw GX text is a shape, you can draw text along a path by using
dashing, as shown in Listing 1.

Listing 1 demonstrates just how simple it can be to put text on a path in QuickDraw
GX. This method would also work with layout shapes in addition to text shapes
(although there’s a bug in GX 1.1.3 and earlier that may cause a crash if you do try to
dash with a layout). While dashing may be a simple interface for drawing text along a
curve, it isn’t an efficient solution for editing because of the overhead incurred by

QUICKDRAW GX LINE LAYOUT: BENDING THE RULES 61

62 develop Issie28 December 1996

Listing 1. Drawing text on a curve using dashing

voi d Put Text OnCur ve(gxShape nyPat h)
{
gxDashRecord aDash;
gxShape t ext Shape = GXNewText (5, "Hello", nil);

/1 Call primtive shape to convert text to glyph.

GXPri mitiveShape(text Shape); /1 Al dashes nust be prinitive.
aDash. dash = t ext Shape;

aDash. attributes = gxBreakDash; // Dash each letter separately.
aDash. advance = 0; /1 0 advance neans single repeat.

GXSet ShapeDash(nyPat h, &aDash);

GXDi sposeShape(t ext Shape) ; /1 Dash is now sol e owner of it.

GXSet ShapeFi | | (nyPath, gxFrameFill); // Dash only for framed shapes.
} /1 Put Text OnCurve

constantly rebuilding the dash every time the text changes. Additionally, the dashing
solution puts you at the mercy of the algorithms used for dashing — they weren’t
specifically designed for text or layout manipulation.

BEHIND CURVELAYOUT

The CurveLayout library discussed here provides the illusion of a new shape type for
QuickDraw GX which I affectionately call the “curve layout.” I wanted to continue
the object-oriented philosophy of GX by providing an API for drawing and editing
text along a curved path. The idea is to provide an efficient mechanism for adding
curve layouts to your application without forcing you to learn too much new stuff.
While the article will go into great detail concerning the algorithms used, you need
not understand them to incorporate curve layouts into your application using the
CurveLayout library.

THE GLYPH SHAPE

Before we go too much further, it’s worth discussing some things about our friend the
glyph shape. There are three different kinds of shapes for drawing text: the text shape,
the glyph shape, and the layout shape.

"Text shapes are the most familiar to those of us who have used QuickDraw or
PostScript. When a text shape is drawn, its appearance is the same as the result of
the DrawString call in QuickDraw or the show operator in PostScript: simply the
text itself.

The relationship between glyph and layout shapes can be compared to programming.
The layout shape is like a high-level language such as LISP — a very high-level,
powerful way of drawing text that produces beautiful results, but it makes specific
manipulations difficult. The glyph shape is more like assembly language — you can
control every aspect of how the text draws, but even simple things require a good deal
of programming effort. Nevertheless, it’s the direct control possible with the glyph
shape that enabled me to write CurveLayout.

A glyph shape allows the specification of individual positions and tangent vectors (and
even typographic style) of every typographic element drawn in a shape.

Figure 2 illustrates the power of the glyph shape for our purposes. At left is a typical
straight piece of text. The arrows represent the tangent vectors stored in the glyph
shape and the dots at the ends of the arrow lines show the positions. (Note that both
here and in Figure 3, the tangent vectors are drawn as normals — rotated 90 degrees
counterclockwise from their actual positions — since otherwise they would run
together and make a mess of the figures.) Beside that is the same text with different
tangents and positions showing how these attributes might be manipulated to draw
text along a path. The tangent vector specifies the scale and rotation of the glyph and
is stored in the glyph shape as a point. The x and y values of this point are used to
construct the mapping shown at the right in the figure. This mapping is applied to
the glyph to reposition it as desired.

123 .05

Figure 2. Glyph shape tangents, positions, and mapping matrix

| e
O < X
o><\<|
- oo
[—

But wait — while glyph shapes give us the control we need to flow our glyphs along a
path (by setting positions and tangents for each glyph in the shape), they’re still like
assembly language, and we don’t want to position every glyph ourselves if we don’t
need to. The good news is that QuickDraw GX provides a “compiler” to convert
layout shapes to glyph shapes, so we can use the high-level language (layout shape)
instead. Our compiler is the routine GXPrimitiveShape, which allows us to deal
mostly in the beautiful world of layouts and then convert them into glyph shapes that
can have their positions and tangents modified to flow along a path. Layout shapes
also provide us with the high-level abilities required for interactive editing (more on
this later).

Now we’ve seen how we can convert a line layout shape into a glyph shape, and how
the glyph shape can have its positions and tangents modified so that the glyphs draw
along a path, but how do we generare those positions and tangents?

POINTS ALONG A PATH

QuickDraw GX can evaluate points along paths. GXShapeLengthToPoint accepts a
distance and a polygon or path and returns the point along that polygon or path that’s
the specified distance along its perimeter. In addition to the point, the tangent vector
at that point (slope of the path or polygon) is returned, which is exactly what we need!
With this information, we can lay glyph shapes along a path by simply modifying the
tangents and positions appropriately.

The x coordinate of each glyph’s position represents the current linear offset of the
glyph in the layout (as if it were along a straight line). A glyph’s position can be
determined with the GXGetGlyphMetrics function and can be used as the length
along the path for GXShapeLengthToPoint. The returned point and tangent can
then be inserted into the glyph shape. The results of this technique are a/most what
we want, but consider the example shown in Figure 3.

In Figure 3, the arrows show the positions and tangents of glyphs that have been
rotated around their positions, which are typically on the bottom left (at least for
Roman fonts) rather than around their centers. Because of this, the text doesn’t look

QUICKDRAW GX LINE LAYOUT: BENDING THE RULES

63

64 develop Issue28 December 1996

Figure 3. Glyphs positioned on a curve using x position as length along curve

quite right — some of the wider glyphs even seem to leap off the curve! We can do
better than this. We can use the horizontal centers of the glyphs (that is, the center of
the glyph along its baseline) as the input rather than their positions. Unfortunately,
the point we put back in the glyph shape must be for the position of the glyph, not its
center, so we have a little work to do translating back and forth.

Given a glyph shape, the function GXGetGlyphMetrics gave us the position
information that we needed to compute the points and tangents for our first attempt.
This function can also be used to obtain the bounding box of a glyph, and from the
bounding box we can determine the horizontal center points of each glyph.

In Figure 4, we see the glyphs for the word “Pig.” The dots represent the glyph
positions obtained from GXGetGlyphMetrics and the starbursts represent the
horizontal center of each glyph along the x axis, determined by the bounding boxes,
which I've bisected for clarity. (Note that the position of a glyph doesn’t necessarily
fall on the left edge of the glyph’s bounding box.)

y

Figure 4. Glyph shape positions and horizontal centers

Listing 2 shows the loop for repositioning glyphs from CurveLayout. It illustrates
how to compute the new glyph position given the location and tangent returned from
GXShapeLengthToPoint, using the horizontal center to adjust the input length
rather than merely using the glyph’s x position. Before looping through the glyphs,
we get some necessary information about the glyph shapes: the tangents (the glyph
shape may have rotated glyphs to begin with, and we’d like to preserve them), the
positions, and the bounding boxes. Then, for each glyph we do the following:

1. Compute the horizontal center of the glyph’s bounding box.

2. Compute a vector that describes the glyph’s position relative to the
horizontal center of the bounding box (we’ll use this in step 4).

. Find out the position and tangent on the curve using the horizontal center of

the glyph as the length along the curve.

. Compute the new glyph position. Since earlier we described the glyph

position as a vector relative to the horizontal bounding box center, and the
point returned from GXShapeLengthToPoint is on the curve at the place
where we want the horizontal bounding box center; we can compute the new
glyph position as the vector we saved translated to the new position and
rotated by the angle described by the tangent.

. Compute the new tangent. This is the composition of the glyph’s original

tangent vector and the one from the path.

Listing 2. The Curvelayout glyph loop

/1 Get the positions, tangents, and bounding boxes of all glyphs.
GXCGet G yphs(thed yphs, nil, nil, nil, nil, tangents, nil, nil, nil);
GXCGet G yphMetri cs(the@ yphs, positions, glyphBoxes, nil);

/1 For each glyph, nove its position to the correct place on the curve.
for (idx = 0; idx < glyphCount; ++idx) {

}

/1 Conpute glyph's horizontal center.
poi nt ToMapOnCurve. x = gl yphBoxes[idx].left +

(gl yphBoxes[idx].right - glyphBoxes[idx].left) / 2;
poi nt ToMapOnCurve.y = 0;

/1 Conpute new gl yph position relative to horizontal center.
rel ativePosition.x = positions[idx].x - point ToMapOnCurve. x;
rel ativePosition.y = positions[idx].y - point ToMapOnCurve.y;

/1 Find the new | ocation and tangent for horizontal center.
GXShapeLengt hToPoi nt (t hePath, 0, poi nt ToMapOnCurve. x, &newPoi nt,
&newTangent) ;

/1 New position will be the glyph's position relative to the
/'l horizontal center rotated by the tangent. First rotate.
Reset Mappi ng(& Mappi ng) ;

aMappi ng. map[0] [0] = newTangent. x;

aMappi ng. map[1][0] = -newTangent.y;

aMappi ng. map[0] [1] newlangent . y;

aMappi ng. map[1] [1] newTangent . x;

MapPoi nt s(&Mappi ng, 1, &relativePosition);

/1 Now position this relative to the new point.

posi tions[idx].x = newPoint.x + relativePosition.x;
positions[idx].y = newPoint.y + relativePosition.y;

/'l Concatenate the new tangent with the ol d.

ol dTangent. x = tangents[idx].x;

ol dTangent.y = tangents[idx].y;

tangents[idx].x = FixedMul tiply(oldTangent.x, newTangent.x) -
Fi xedMil ti pl y(ol dTangent.y, newTangent.y);

tangents[idx].y = FixedMul tiply(oldTangent.x, newTangent.y) +
Fi xedMil ti pl y(ol dTangent.y, newTangent.X);

/1 end for

QUICKDRAW GX LINE LAYOUT: BENDING THE RULES

65

66 develop issue28 December 1996

The results of applying this algorithm are seen in Figure 5, where the round end of
the line denotes the horizontal center of the bounding box and the square end of the
line denotes the glyph position. On the left is a glyph with a line illustrating the
relative location of the glyph’s position and its horizontal bounding box center before
wrapping. On the right is that same glyph positioned on a curve using our algorithm.
You can see how the glyph here is positioned more naturally on the curve than was
the case in Figure 3.

Figure 5. Curvelayout repositioning of a glyph

I’'ve hand-drawn all the pictures so far using a QuickDraw GX-savvy draw program
(LightningDraw GX) to illustrate the development of CurveLayout. Figure 6 is a
picture generated with CurveLayout itself (see the test application that accompanies
this article). The baseline curve is shown for clarity. Notice that the “te” ligature — a
particularly wide glyph — in the word “pasteboard” is naturally tangent to the curve.
Also, since this is QuickDraw GX, we can apply a number of transforms to the wrapped
layout, such as the one shown in Figure 7.

Figure 6. Output of the Curvelayout routine

DRAWING ISN'T ENOUGH — WE WANT TO EDIT
QuickDraw GX’s ability to draw high-quality typographic content is only half of

what’s interesting about its line layout capabilities — GX also provides a number of
routines to facilitate writing code to do editing of these beautiful lines of text, as
follows:

¢ GXHitTestLayout for hit testing, to find out which character a given
location is nearest. It’s typically used for converting mouse clicks during
editing. A point is converted to a character index.

Figure 7. Curvelayout output with perspective transform applied

* GXGetLayoutCaret for computing the caret shape for a position between
two characters. This is used for drawing the insertion point caret. A character
index is converted into the caret shape.

* GXGetLayoutHighlight to compute the highlight shape for a run of
characters, used for selecting text. A starting index and ending index are
converted into a shape describing the highlight for the characters in the run.

CurveLayout wouldn’t be complete if we couldn’t provide these abilities. It’s
important for the user to be able to edit a layout on a curve in true WYSIWYG
fashion. These three functions implement much of what’s needed for a basic line
editor. Editing whole blocks of text is left as an exercise for the programmer and is
not a subject for this article!

HIT TESTING

"The first part of editing involves being able to convert a mouse click into a character
index. Since the function GXHitTestLayout does this for a normal line layout, we’d
like to use as much of it as possible. The input to that function is a point relative to
the layout. The important value of the point is the horizontal component. Provided
that the position is within the layout, the horizontal component determines which
character is nearest that value.

So, given a point on the curve, we want to undo the curvature to determine a value
to pass to GXHitTestLayout. If GXShapeLengthToPoint converts a distance into a
location, we need an inverse function that converts a location back to a distance.
Unfortunately, QuickDraw GX has no such function. Additionally, the location of
the mouse click may not be exactly oz the shape.

Given a point, we can find the closest point on a curve. Knowing a point on a curve,
we can determine the distance that point falls along the curve by doing a binary
search of GXShapeLengthToPoint:

1. Find the length of the shape (GXGetShapeLength).

2. Do a binary search for the point on the curve closest to the hit point by
calling GXShapeLengthToPoint, passing in lengths between 0 and the total
length of the curve, and systematically reducing the distance to the point you
seek until it’s as close as you choose.

The length determined by this method can then be passed into GXHitTestLayout.

QUICKDRAW GX LINE LAYOUT: BENDING THE RULES

67

It’s important to note that the algorithm above is simplified for the sake of brevity:

it works on a single quadratic curve or line segment. The code included in the
CurveLayout library implements the full functionality using the ShapeWalker library
described in my Graphical Truffles column in develop Issue 27. The ShapeWalker
library is used to determine each individual line or curve segment of a shape; the
distance from a hit point to each segment is determined and the smallest of them is
chosen (code comments illustrate the method more completely).

COMPUTING THE CARET IN CURVELAYOUT

"To compute the caret of a line layout, we call GXGetLayoutCaret. This returns a
shape describing the insertion position. If we take the resulting shape and use it to
dash the curve (with only one repetition), the result is the curve layout caret. It’s that
simple (see Listing 3).

Listing 3. Computing the curve layout caret

theFill = GXGet ShapeFill (thePath);
real Caret = GXGet Layout Caret (| ayout, offset, highlightType, caretType,
nil);

/1 Copy into caret passed in (if it's nil, the right thing happens).
result = GXCopyToShape(caret, thePath);

GXSet ShapePen(result, ff(1)) /1 V& don't want dashes to scale.
theDash. attributes = gxBreakDash;

t heDash. dash = real Caret;

t heDash. advance = 0 /1 W& want only one repeat.

t heDash. phase = ff(0);

theDash. scale = ff(1);

GXSet ShapeDash(resul t, &t heDash);

/1 Make sure we have a framed shape for the path.
if ((theFill != gxFrameFill) && (theFill != gxC osedFranmeFill))
GXSet ShapeFi | | (result, gxC osedFrameFill);

/1 Now apply the dash to get the caret on the path.
GXPrinitiveShape(result);

GXSet ShapeDash(result, nil);

GXDi sposeShape(real Caret);

USING DASHING TO HIGHLIGHT IN CURVELAYOUT

We can also use QuickDraw GX’s dashing ability to highlight the individual
characters in a curve layout. If we call GXGetLayoutHighlight for each individual
character in a specified range, each resulting shape can be used to build up a dash
shape. The dash shape built will have one contour per character, each contour
representing the highlight of that character. If we then dash the curve with these
contours, we get the desired effect.

Well, we almost get the desired effect — while the result does highlight the curved
layout’s text, the highlight has gaps. Achieving a contiguous highlight is a more
difficult problem. In fact, popular PostScript-based drawing applications highlight
text on a path with noncontiguous regions. Figure 8 compares noncontiguous
highlighting similar to that of many popular non-GX-based applications with the

68 develop Issie28 December 1996

contiguous highlighting obtainable by QuickDraw GX using CurveLayout. The
library supports both methods.

Non-GXbased application QuickDraw GX using Curvelayout
Figure 8. Two ways to highlight

The code in Listing 4 achieves the noncontiguous highlight of a curve layout. But

we can do better: the CurveLayout library implements contiguous highlighting using
QuickDraw GX’s ability to do hairline dashing or bend dashing. Rather than going on
and on, I’ll let the code in the library speak for itself.

Listing 4. Creating the highlight with dashing

oneCharHi ghlight = nil;
newH ghl i ght = GXNewShape(gxEnpt yType);

for (idx = startOfset; idx < endOfset; ++idx) {
oneChar Hi ghl i ght = GXGet Layout Hi ghli ght (t heLayout, idx, idx + 1,
hi li ght Type, oneCharHi ghlight);
if (oneCharH ghlight !'=nil) {
/1 Add highlight for individual character to highlight shape.
(GXSet ShapePart s(newHi ghli ght, 0, 0, oneCharHighlight,
gxBreakLeft Edi t);
} I/ endif
} I/ end for

GXDi sposeShape(oneChar Hi ghl i ght) ;

t heShape = GXCopyToShape(hi ghlight, thePath);

GXSet ShapePen(t heShape, ff(1)); // V& don't want dashes to scale.
GXSet ShapeFi | | (t heShape, gxFrameFill);

theDash. attributes = gxBreakDash;

t heDash. dash = newHi ghlight;

t heDash. advance = 0; /1 W want only one repeat.
t heDash. phase = ff(0);

theDash. scale = ff(1);

(GXSet ShapeDash(t heShape, &t heDash);

GXDi sposeShape(newHi ghl i ght);

GXPrimi tiveShape(theShape);

GXSet ShapeDash(t heShape, nil);

/1 Change the fill of the result to winding. Since when bent around,

/1 contours can overlap, we want the overlaps to fill, too. Wth

/1 even-odd, they wouldn't be filled and the highlight would I ook funny.
GXSet ShapeFi | | (t heShape, gxWndingFill);

QUICKDRAW GX LINE LAYOUT: BENDING THE RULES 69

CURVE MEASUREMENT

The current version of QuickDraw G X uses a numerical

approximation for certain functions that are relevant here.

The particular functions relate to the measurement of
quadratic Bézier curve segments and are used by

G XShapelengthToPoint, by GXGetShapelength, and

for dashing as invoked by either GXDrawShape or
GXPrimitiveShape. The implementation of these was
done as a numerical approximation to ensure sufficient
performance on 680x0 machines, where the use of a
closed mathematical equation would have been too slow.
The bad news is that while this method is accurate
enough for the original use intended (primarily dashing),
it's not accurate enough to produce good-ooking text
along a curve.

As you’ve seen in this article, the functions mentioned
above are heavily used in the Curvelayout library. The
inaccuracies will manifest themselves as characters
being spaced a little too far apart. To ensure high-quality
text layout, a library has been included with this article
that reimplements the low-evel quadratic ssgment

measurement functions using a floating-point closed
equation. On top of that code, I've built my own versions
of GXShapelengthToPoint, GXGetShapelength, and
GXPrimitiveShape, called AccurateShapelengthToPoint,
AccurateGetShapelength, and AccuratePrimitiveShape.
Wi ithin AccuratePrimitiveShape is an implementation of
all cases of dashing that the Curvelayout library requires.
All other cases of PrimitiveShape are dispatched to
GXPrimitiveShape; hence this call isn’t a complete
replacement for GXPrimitiveShape. The Curvelayout.c file
contains a compiletime conditional that can be defined to
use the library code instead of the builtin QuickDraw GX
code.

The low-evel math used by my library was written by
Jseph Maurer. He wrote measurement routines that
operate on individual quadratic curve segments. | built the
shape measurement and dashing functions by using the
ShapeWalker library described in my Graphical Truffles
column in develop Issue 27 to extract individual segments
from QuickDraw GX shapes.

70 develop Issue28 December 1996

USING THE CURVELAYOUT LIBRARY

CurveLayout is designed to look very much like the line layout functions you’re used
to — we want a curve layout to look as if it really were a new QuickDraw GX shape
type. All of the editing routines take the same parameters as the corresponding line
layout routines, so I won’t spend too much time describing those. See Inside
Macintosh: QuickDraw GX Typography for more information.

The most important functions in the CurveLayout library are as follows:

gxShape O NewCurvelLayout (gxShape theText, gxShape theShape);
void O Di sposeCurvelLayout (gxShape curvelLayout);

The CINewCurveLayout function creates the curve layout shape. The inputis a
normal line layout shape and a curve. Actually, the second parameter can be any kind
of shape: a line, a polygon, or a path. The resulting curve layout shape is the one that
will be passed to the other library functions for editing. It’s also the shape you’d draw
and to which you can attach transforms for achieving rotation or other effects. The
CIDisposeCurveLayout function destroys the shape.

Modification of the text in the layout (such as for editing) should be done on the
layout shape passed in. The path can be changed as well. If either of the two input
shapes is modified, you should call the ClChangedCurveLayout function before
redrawing. For example, this function should be called for each character inserted or
deleted from the original line layout shape.

The code accompanying this article also includes an application that demonstrates
using the CurveLayout library. While I'll certify the actual CurveLayout library as
ready for prime time, the test application is just a test application — not a model of
coding perfection! Also, as an extra bonus I've included the CurveLayoutGX control

panel. This control panel adds the basic curve layout feature to all of your existing
drawing applications by defining a key combination to activate it. (This is a bit of a
hack; use it at your own risk.)

All of the functions of the library are documented (as is the CurveLayout code itself)
in the header file, CurveLayout.h, so I won’t go further into the API. See “Curve
Measurement” for a few other details about the implementation.

LAYING IT ALL ON THE LINE

The library provided with this article should enable anybody writing a QuickDraw
GX application to add high-quality typography drawn along an arbitrary curve. If
you've already written code to edit QuickDraw GX line layouts, you’ll find the API in
this library very familiar. For those of you who haven’t thought about writing a GX-
based application, perhaps the simplicity of using CurveLayout as well as the quality
demonstrated by the output of this code will make you give GX another look. Without
QuickDraw GX, an application would have to include code similar to what’s in the
CurveLayout library in addition to the code the application would need to do ordinary
line layout, not to mention all of the additional code that would be required in the
application to print something like a curve layout shape.

CurveLayout provides developers with a way to provide distinctly superior user value
in their applications, while reducing code size and complexity at the same time —
what could be easier?

RELATED READING

+ “Graphical Truffles: A Library for Traversing Paths’ by Daniel Lipton, develop
Issue 27.

* Inside Macintosh: QuickDraw GX Programmer’s Overview and Inside Macintosh:
QuickDraw GX Typography by Apple Compuiter, Inc. (Addison-Wesley, 1994).

Thanks to our technical reviewers Alex Beaman, curve measurement routines that made accurate
Brian Chrisman, Dave Hersey, and Ingrid Kelly. text layout on curves possible.*
Special thanks to Joseph Maurer for the low-evel

ACOT Lessons Learned

Charles Fisher, David C. Dwyer, and Keith Yocam, Editors
EDUCATION AND TECHNOLOGY
Reflections on a Decade of Experience in the Classroom

To order, call toll-free: 800.956.7739

To commemorate the tenth anniversary of the Apple Classtooms of Tomorrow project, Ediucation and Technology
brings together a diverse group of educators to reflect on what we know about computer-aided instruction. From
the latest research findings to practical classroom experience, this book provides an overview of the promise and
prospects for technology in education. While the authors recognize that technology itself is not a panacea for
schooling’s problems, they do shed light on the ways in which it can serve as a catalyst for educational innovation.
Available now - 1SBN 0-7879-0238-1 - Hardmover - 346 pages - $28.95

JOSSEY-BASS PUBLISHERS
350 Sansome Street, San Francisco CA 94104 -« Fax toll-free: 800.605.2665

Call toll-free: 800.956.7739 «Visit our web site at http://www.josseybass.com FRCRTYGIERGR

QUICKDRAW GX LINE LAYOUT: BENDING THE RULES

VA

BE OUR GUEST

Souree G
Qontrd for the
Rest of Us

D. JOHN ANDERSON
AND ALAN B. HARPER

Imagine you’re working on a program than runs on
both Macintosh and Windows computers. Suppose you
aren’t the only programmer working on the project,
and you occasionally want to work from home. Seems
like a pretty common situation.

Soon everyone begins to make their own changes to
the program and you realize that you need some kind
of source code control. When people think of source
code control, they often picture a safe database that
keeps a history of every change to the project. Most
source control systems do a reasonable job of that. But
what surprisingly few people worry about is the much
greater need to merge each programmer’s changes into
the common code base. For some reason this is where
many popular source code control systems fall flat; here
we’ll tell you about one that doesn’t.

Many systems require that you check out a file before
modifying it. This is so that two people don’t modify
the same file at the same time. Unfortunately, this
makes global changes difficult. Something as simple as
changing a routine name from doQMFX to PrintFile
doesn’t get done because you need to check out every
file and someone else already has them checked out;
it’s just not worth the hassle. In the early stages of
development, when everyone is changing many files at
the same time, the check-in/check-out model can slow
you down even more. Some systems let a file be checked
out by several people, who must then merge their
changes into a single file. Even with the best tools, this
process of merging often requires you to look at every

individual change, presumably so that you can verify
each one. But you typically end up incorporating every
change anyway. Why not save a lot of time and
headaches by automating this process completely?

There are other annoying problems with some source
code control systems, such as limited cross-platform
support and difficult or impossible access to the
database from home. And with some systems that use a
database, you can’t do simple things like grep through
your files. These problems can really get in the way of
getting your work done.

If after reading this far you say, “Yeah, I hate source
code control. I wish I just had a bunch of files and
didn’t have to think about other people stepping on my
files,” then read on. If instead you say, “I don’t get what
he’s talking about. I don’t mind checking files out and
back in and merging them by hand,” then skip to the
next article.

OUR SOLUTION

Still with us? Great. To avoid these problems, we at
Eclectus have developed three tools based on the GNU
diff utility: Merge, Difference, and Undifference. They
accompany this column on this issue’s CD and develop’s
Web site.

Here’s an overview of how our scheme works:

1. We put all the files in the project in one directory
tree — named, say, HotApp-0. We mark all the files
read-only and put them on a shared server.

2. Each programmer makes a copy of HotApp-0 on his
or her local machine. They do all their work in their
own local copy, changing any file they want.

3. When everyone agrees that their changes are ready
to merge into a new version, we use Merge, which
automatically incorporates the changes into a new
source tree that we name HotApp-1. When two
people modify the same line, Merge reports a conflict
that we must look at and resolve. Surprisingly,
conflicts are rare. After fixing the conflicts by hand,
we make any changes necessary to compile the
application; then we mark each file read-only and
put HotApp-1 on the shared server.

D. JOHN ANDERSON (jander@c2.org) and Alan are Eclectus
Software. Together they write crossplatform applications for
Windows and the Mac OS. Someday they plan to rule the consumer
applications market. bohn livesin La Honda, California, where he
writes software outdoors in a large tent with its very own ISDN

line. At other times you might see him running or bicycling through
the redwoods. His latest hobby, casting molds from faces, was
inspired by the video “Better One-Fiece Head Molds From Life.”*

72 develop Issue28 December 1996

ALAN B. HARPER (aharper@dnai.com) learned recursive
descent from bhn 15 years ago. His latest accomplishment is a
fast crossplatform persistent object store — which means he can
now write programs without worrying about serialization, undo,
byte order, garbage collection, or running out of memory. In his off
hours, Alan can be seen with other volunteers of the Golden Gate
Raptor Observatory following radiotagged hawks as they migrate
through California.*

4. All programmers copy HotApp-1 to their local
machines and development continues.

Suppose I want to bring some work home with me. I
use Difference to create a difference script of changes
between the current version — say, HotApp-1 — and
my local working copy. This difference script is usually
small enough to put on a floppy disk or beam over a
modem. At home, where I also have a copy of HotApp-1,
I use Undifference to restore the working copy of my
project. I can copy my changes made at home back to
work the same way.

If I want a copy of the source for safekeeping, I either
copy HotApp-1 from the shared server or, if I really
care about space, I difference HotApp-1 against
HotApp-0 and compress the result, which is tiny.

If the machine I’'m working on doesn’t get backed up
automatically every day, I can use the same method to
back up my work. I just difference my working copy
against the most recent shared copy, compress it, and
put it in a safe place — like on a server that’s backed up
automatically. Compressed daily difference files are so
small that I can keep a year’s worth in only about 20 MB.

Because these tools are based on GNU diff, they’re
free (thanks to the Free Software Foundation), the
source code is available, and they’re extraordinarily fast.
Using Difference, Undifference, and Merge is
approximately as fast as copying an equivalent number
of files. We can do a complete nz-way merge — a merge
between 7 programmers — in less time than it used to
take to check out just a few files with competitive
alternatives. We can difference or undifference our
project (about 4 MB of source) in less than one minute
on a low-end Power Macintosh or a Windows N'T
computer, and merge two trees in less than two minutes.

Because the source is freely available, you can easily
tweak the tools to add your favorite features. Of course
you’ll have to share those features with everyone else,
but that just makes the tools better.

A REAL-LIFE EXAMPLE

At Eclectus, our current project is a program that runs
on both the Mac OS and Windows platforms, each
developed at a different location. Let’s say Alan and
John are each modifying their own copy of HotApp-0.

1. When they decide it’s time to merge their changes,
Alan beams John his diffs against HotApp-0 via
e-mail.

2. John uses Undifference on Alan’s diffs to reconstruct
Alan’s source code tree. Now both John’s source and
Alan’s source are on John’s machine.

3. John merges Alan’s source code with his own to
create a new version, naming it HotApp-1, and
makes any changes necessary to compile HotApp-1
on Windows.

4. John uses Difference on HotApp-1 against HotApp-0
and beams these diffs to Alan via e-mail.

5. Alan undifferences these diffs against HotApp-0 to
construct HotApp-1, the same new version John
now has. Alan might have to make some changes to
get HotApp-1 to compile on the Macintosh because
of John’s recent changes that were automatically
merged — for example, John might have forgotten
to ifdef a Windows-specific piece of code. These
changes will show up after the next merge of HotApp.

Development continues, and we repeat this process
whenever we feel it’s time to merge again. We usually
use a modem or e-mail to exchange the diffs, since
they’re small.

This process generalizes to more than two programmers
since the merge utility will handle any number of
modified versions. Deciding when to merge is up to all
the programmers. We usually merge when somebody
wants to make their changes available to everyone else
and nobody has totally broken their version. Sometimes
months pass between merges, sometimes we merge
twice a day. Near the end of a development cycle we
like to merge at least once a day so that a recent copy is
always available for testing.

DETAILS

Automatic merging, tiny diffs files, no time-consuming
file checkout? Sounds great, but there are a lot of details
you’re probably wondering about.

What do the merges look like?

"To merge changes, we use a command-line environment
(MPW, ToolServer, and so on). In the above example,
we would use the following Macintosh command to
merge changes:

mer ge : Hot App- 0 : Hot App-John : Hot App- Al an : Hot App- 1

In this example, HotApp-0 is a directory tree containing
the original code that both John and Alan started with.
HotApp-John is a directory tree containing John’s
version after his changes, and HotApp-Alan contains
Alan’s version. HotApp-1 will contain the result of the
merge when the command is finished. If we had more
programmers, we’d just include their directories after
Alan’s. (With several programmers, you might think
that the time involved in sending complete source trees
back and forth would be prohibitive, but remember
that the only thing that needs to be sent is a small diffs

BE OUR GUEST: SOURCE CODE CONTROL FOR THE REST OF US 73

file, and then the source tree can be rebuilt quickly and
locally.)

When conflicts occur in the merge, the conflicting files
are renamed by prefixing an exclamation point (!) to
the filename, and the conflicting lines of code are
marked in the merged file. Usually conflicts are solved
by editing the merged file and taking one person’s
changes. After conflicts are resolved, you rename the
file back to its original name.

Are automatic merges really safe?

Many programmers are suspicious of automatic merges.
What if Joe makes a change that’s incompatible with
Helen’s, but they don’t change the same line? Merge
doesn’t identify this snafu. To avoid or identify bugs
caused by incompatible changes, Joe and Helen must
talk to each other or look at all their changes. If you're
so inclined, you can give Merge an option that will list
all the changes everyone has made so that you can
review them individually.

Even so, after seeing automatic merges being used for
over 10 years in lots of different projects with lots of
programmers, we’ve found that the time saved and the
elimination of human error from manual merges more
than compensates for rare cases of incompatible changes.
Of course, as you near the shipping date, it makes sense
to have every change to the project carefully code-
reviewed.

Can | rename a file?

Yes, as long as you do it right after a merge, when
there’s only a single copy of the source tree; otherwise
Merge treats renamed files as new and they won’t get
properly merged with the previous source. But since
Merge identifies files that were added or deleted from
each person’s source tree, it’s easy to detect these
situations.

What happens to junk files?

Imagine you created some temporary file named Junk.
Merge lists this file as a newly created file found in your
source tree.

If you like, these tools can also ignore certain files
based on their filename extension. We like to put all
our derived files, like object files, in a subdirectory
named Derived.i and have Merge, Difference, and
Undifference ignore files and directories that end in
“.1”. Just edit a table in the source code to define which
extensions you want to ignore.

What happens if | rearrange a lot of code?
If two or more people modify the same routine and one
of them moves the routine to a new place, Merge won’t

74 develop Issue 28 December 1996

be able to merge the changes automatically. This case is
treated the same as if two or more people modified the
same line: you have to look at the changes and sort
them out by hand. We often delay rearranging a lot of
code until after a merge, but before we distribute the
merged version.

How do you pick up someone’s bug fix?

If someone has a fix to a bug that they’re not ready to
merge, but it’s holding up your work, you can just copy
their code containing the fix and put it in your project.
Merge doesn’t treat this as a conflict even though more
than one person changed the code, because their
changes were identical.

What about binary files?

Merge automatically handles one person changing a
binary file, but not more than one. In the latter case
you must merge by hand. For this reason, we try to
keep as much of our project as possible in text rather
than binary files.

Does this really work with more than two
programmers?

"T/Maker successfully used our tools for a number of
years while developing WriteNow For Macintosh with
five programmers. Various companies with many
programmers working on multiple projects have been
using successive automatic two-way merges for years.

What about cross-platform support?

Merge, Difference, and Undifference are written in C
and currently run on the Mac OS (MPW with
CodeWarrior 10 tools and libraries), Windows NT or
95 (Microsoft Visual C++ 4.0), and NeXT (GNU C).
If you need to support a new platform, these tools
should be easy to port as long as your platform has an
ANSI C compiler.

Some special issues arise when working on cross-
platform projects. Let’s suppose I have all the code for
a Macintosh project and I want to move it to Windows
NT or 95.

1. I difference my source code tree against an empty
directory on the Macintosh, resulting in a text file
that I move to Windows.

2. Windows uses different end-of-line characters, so I
run a little utility, MacToWin, to change the end-of-
line characters. Going in the opposite direction,
CodeWarrior IDE and BBEdit on Macintosh can
automatically change end-of-line characters.

3. I undifference against an empty directory on
Windows and my files are reconstructed. Even
binary files are transferred correctly.

4. Finally, I name the directory containing the code
HotApp-0 on both Windows and Macintosh.

We continue to develop as before, except we each have
a separate copy of HotApp-0 on our respective
platforms, rather than a shared copy on a single server.
If I were to share a single server from both platforms,

I would have two separate directory trees, one for each
platform, each with the correct end-of-line characters.
This would let you use tools like grep in each platform
to search through the files in the project. When you
need to synchronize the two source trees, you’ll convert
one of them to the other platform for the merge.

If you work on two different platforms at the same
time, you could make a separate copy on each platform
and treat each one as if it were owned by a different
programmer.

Better yet, if you use CodeWarrior or BBEdit for editing
on the Macintosh, the end-of-line problem goes away
completely and you can keep just one source tree for
both platforms.

What do you do with resource forks on a
Macintosh?

When you use Undifference and Merge on a Macintosh,
they take the resource fork for the new file from the
original directory tree — that is, HotApp-0 in the
above example. This means that after a merge, any
changes you made to the resource fork since the last
merge must be made by hand. However, once it’s in a
directory tree that everyone copies — HotApp-1 in the
example — the resource fork will automatically be
propagated to new versions by Undifference and Merge.

When you use Undifference and Merge on other
platforms to incorporate changes from a Macintosh,
resource forks are ignored. This means that you need
to store any resources that you regularly edit in a text
file and use a resource compiler like Rez.

What about changes to date and time?
Undifference preserves the date and time of a file in
a new modified directory tree when there were no

changes to the file. This means that you can iterate
through many merge cycles and files that weren’t
changed will still have the same dates and times.

What about non-ASCIl characters?

The Mac OS, Windows, and UNIX® platforms differ
in their interpretation of characters outside the 7-bit
ASCII range. These characters are usually not a problem
when they’re in a file used on only one platform.
However, when one of these characters occurs in a file
used on more than one platform, it’s often a bug.
Difference and Undifference identify files that contain
non-ASCII characters to help detect this potential
problem.

What about long filenames?
When developing on more than one platform, you're
limited to the lowest common denominator filename
length and path length, since the same file must have
the same name on all platforms.

What about change comments?

The tools don’t require you to add change comments.
If you want them, you must manually add them when
you edit your code.

What is the Free Software Foundation?

These tools exist because of the Free Software
Foundation. They provide the source code to many
useful programs, including the GNU utilities upon
which these tools were based. (GNU is short for
“GNU’s Not UNIX.”) Note that any modifications to
their code must be made freely available under the
same terms. You can contact them via e-mail at
gnu@prep.ai.mit.edu.

BEGGING TO DIFFER

These tools grew out of our frustration with existing
source code control systems. After using them for many
years, we’ve found them to be indispensable to our
development. They’ve served us well because they’re
simple, fast, and easy to adapt to new situations. We
hope that you’ll enjoy using them as much as we do —
and if you don’t, perhaps you’ll improve them.

Thanks to Helen Casabona, Pete Gontier, Andy Jffrey, and Tim
Maroney for reviewing this column.”

develop welcomes guest columns on a variety of subjects.
Please submit your column draft or idea to develop @apple.com.”

BE OUR GUEST: SOURCE CODE CONTROL FOR THE REST OF US

75

MacAp Debugging Aids

CONRAD KOPALA

76 develop Issue28 December 1996

While working on Twist Down Lists, a recordable MacApp
implementation of hierarchical lists, I developed several useful
debugging aids for detecting memory leaks and access faults and
managing memory usage problems. Here I describe how to use these

debugging aids for more trouble-free MacApp programming.

In the article “Displaying Hierarchical Lists” in develop Issue 18, Martin Minow
suggests that MacApp offers “flexible libraries for displaying and managing
structured data.” I accepted his challenge and decided to create a Twist Down Lists
application with MacApp version 3.3.1. As complete as MacApp is, you still have to
test your application to make sure it works. Among the problems I encountered,
perhaps none were more frustrating than the insidious memory leak and the dreaded
access fault. After discovering the nth memory leak and the mth access fault in my
Twist Down Lists application, I decided that the situation was unacceptable — there
had to be a better way!

To solve these problems, I developed several debugging techniques. These
techniques were useful to me, so I decided to share them with you in this article.
Here are some of them:

* Object counting lets you quickly discover memory leaks.

* Memory display helps you gauge the size of a memory leak.

Object display helps you identify the cause of a memory leak and an access
fault.

Object heap discipline helps your application manage tight memory situations
by allowing you to erect a barrier to further expansion of the object heap.

Fuailure bandling lets you force a failure in any spot in your code.

Accompanying this article on this issue’s CD and develop’s Web site is the complete
"Twist Down Lists application, which you can look at to see the implementation of all
the debugging aids described in this article. Also provided are two engineering notes,
“EN1 — Object Counting and Display” and “EN2 — Object Heap Discipline,” which
go into the gory details of implementing these debugging aids, and copies of the four
MacApp files UObject.h, UObject.cp, PlatformMemory.h, and PlatformMemory.cp,
which I modified to incorporate the debugging aids and which you can substitute for
the original files (or similarly modify them yourself).

CONRAD KOPALA (ckopala@aol.com) might know a smidgen about it. In the past,
believes you should never trust a computer you Conrad was an electrical engineering professor
can’t program. He’s been a student of MacApp and held positions with IBMi and MCI. Now he
for the last six years and just recently thinks he does whatever he wants.”

Most of these debugging techniques are specifically for MacApp version
3.3.1. later versions may already incorporate similar debugging features.”

OBJECT COUNTING

I've found object counting to be the fastest way to discover memory leaks. To
maintain a running count of the number of objects in existence, I use a global variable
named gObjectCount. Whenever a TObject is created or cloned, gObjectCount is
incremented; when a TObject is destroyed, gObjectCount is decremented. The
variable is incremented in the T'Object constructor or TObject::ShallowClone and is
decremented in the TObject destructor.

"To print the current value of gObjectCount, I use a global function named
PrintObjectCount. You can call this function at any point in the application where
you think it’s useful. In my experience, one of the best places to test the value of
gObjectCount is at the beginning of the function TYourApplication::DoSetupMenus.
That point represents a set of stable application states that you should always be able
to return to. By monitoring the value of gObjectCount as the application runs, you
can obtain a set of characteristic values for gObjectCount. Any variation in these
values should be investigated as a possible memory leak.

For example, for Twist Down Lists, the object count just after startup is 49. After a
twistDownDocument is opened and closed, this count increases to 52. This increase
is a consequence of adding a print handler to the view; a TPrintInfo and two
TDependencies objects are created but never freed. Then, if you change the font size
by choosing the Other menu item, the object count increases to 55. In this case, the
TDialogTEView, TAdornerList, and TScroller objects are created when a new font
size is entered in the TNumberText; they’re never freed. Thereafter, the quiescent
value of gObjectCount remains unchanged.

By using object counting, I've discovered T'Object-based memory leaks in just
minutes. To implement it, you need to make changes to UObject.h and UObject.cp,
as described in “EN1 — Object Counting and Display.” Or you can include the
substitute UObject.h and UODbject.cp files that I've provided.

MEMORY DISPLAY

My global function DisplayMemoryInfo displays the amount of free memory, the size
of the temporary reserve, the size of the permanent reserve, the object heap size, the
amount of memory available in the object heap, and the amount of object heap space
used. If you have a memory leak, this function can give you information about the
size of the leak. As with object counting, you can get a set of characteristic values as
you run the application. The most useful of these indicators is the amount of object
heap space used. In my experience, it makes the most sense to call this function at the
beginning of the function T YourApplication::DoSetupMenus when you also display
the object count.

Realize that each time the object heap is expanded, an overhead of 20 bytes is
incurred. As a result, the amount of object heap space slowly increases until the object
heap reaches its maximum size. So if you see the amount of space used in the object
heap increasing by some multiple of 20, it might just be attributable to object heap
overhead.

"To implement memory display, you need to make changes to UObject.h and

UODbject.cp, as described in “EN1 — Object Counting and Display.” Or you can
include the substitute UObject.h and UObject.cp files that I've provided.

MACAPP DEBUGGING AIDS

77

78 develop Issue28 December 1996

OBJECT DISPLAY

While object counting and memory display let you quickly discover a memory leak,
it’s object display that helps you to identify the cause of the memory leak or an access
fault. Turning on object display means that when a TObject-based object is constructed,
a message — including “who, what, and where” — appears in the debugging window.
Likewise, when the object is destroyed, a similar message appears.

You can use a Simple Input-Output Window (SIOW) instead of your
debugger’s log window to display this information if you prefer.*

When an object is created, if object display is on, the debugger log window displays a
message similar to the following:

Construct TSomeMacApp(hj ect @ 0x2D6ACA4 | d=74 Size=108 CbjCnt = 73
#Construct TMyCbj ect @ 0x2D6ACA4 1d=74 Size=108 bj Cnt = 73

When the object is destroyed, the log window displays a message like this:

#Destruct TMy(bj ect @ 0x2D6ACA4 | d=74 Si ze=108 (bjCnt = 73
Destruct TSonmeMacApp(bj ect @ 0x2D6ACA4 | d=74 Size=108 bj Cnt = 73

Each line gives the class name of the object, its location in the object heap, its class
ID, its size in bytes, and the current value of gObjectCount. In addition, the message
tells you whether the object was created or destroyed.

So why are there two lines for construction and destruction? When an object like
TMyObject is created, its TObject constructor is executed first, followed by the
constructors for any MacApp objects in the descendant chain, ending with the
constructor for TMyObject. In other words, objects are built from the bottom up. As
each constructor does its thing, it’s given the chance to display a message identifying
itself. So when a new object is created, a series of messages is displayed that identify
each stage of the construction process.

When the object TMyObject is destroyed, the process is reversed, with the
destructor for TMyObject first displaying a message identifying itself, followed by
the destructors for any MacApp objects in the descendant chain and ending with the
destructor for T'Object. Objects are destroyed from the top down.

Running an application with object display on provides a wealth of information about
what an application is doing — information that you can’t get any other way. It’s also
a great way to find out what MacApp is doing. As described later in the section
“Implementing Object Display,” you can use flags to specify how much information
to display.

DETECTING MEMORY LEAKS

Of course, when tracking down a memory leak, you'’re interested in finding an object
that was created but never destroyed. To find this object, it’s necessary to match
object destructions with constructions. The leftover construction is the offending
object that wasn’t destroyed. You match constructions and destructions by using the
addresses provided in the object display.

Be careful when matching object destructions and constructions, because
MacApp will reuse space in the object heap. I've often seen MacApp make a
TAppleEvent, shortly thereafter free it, and then go on to make another TAppleEvent
and store it at exactly the same address.”

If your debugger allows you to save the contents of the log window, sorting it on the
address field would bunch all items with the same address together. That would make
it much easier to match destructions with constructions. If you assign each object a

serial number in its constructor, it would be even easier to do the matching.

Consider a real example. The MacApp example application IconEdit has a memory
leak. (I found the leak because I used the application as a template.) Listing 1 shows

the offending code.

Listing 1. An example of a memory leak

voi d Tl conDocunent : : DoMenuCommand (ComrandNunber aConmandNunber)
{
switch (aCommandNunber) {
case cSet Col or:

{
CRGBCol or newCol or;
CStr255 thePronpt = "Pick a new color";
if (GetColor(kBestSystenlocation, thePronpt, fColor,
newCol or)) {
i f (TOSADI spat cher:: f gDi spat cher->Cet Def aul t Tar get ()
->l sRecordingOn()) {
TSet PropertyEvent *appl eEvent = new TSet PropertyEvent;
appl eEvent - >I Set Propert yEvent (gSer ver Addr ess,
kAENoRepl y, this, pColor);
CTenpDesc t heNewCol or;
t heNewCol or . Put RGBCol or (newCol or) ;
appl eEvent - >Wi t ePar anet er (keyAEDat a, theNewCol or);
appl eEvent->Send(); // <-- the problem
}
el se {
TSet Col or Conmmand *aSet Col or Command =
new TSet Col or Command() ;
aSet Col or Conmand- >| Set Col or Conmand(t hi s, newCol or);
Post Command(aSet Col or Conmand) ;
}
}
}
break;
defaul t:
I nherited: : DoMenuCommand(aCommandNunber) ;
break;

With object counting and display, it took only minutes to discover the leak and identify
the offending objects. Deciding how to eliminate the leak took a little longer. The
leak arises because TAppleEvent::Send returns a reply TAppleEvent and neither it
nor the TAppleEvent that was sent is freed. This leak is fixed by using the code snippet

TAppl eEvent * theReply = theEvent->Send();
Freel f Ooj ect (t heEvent);
Freel f Ooj ect (theRepl y);

MACAPP DEBUGGING AIDS

79

80 develop Issie 28 December 1996

in place of
appl eEvent - >Send() ;

Listing 1 is an example of a small memory leak, only 64 bytes. Because of its small
size, it’s virtually undetectable by means other than object display. These small memory
leaks are a very serious problem because they fragment the object heap. Suppose that
every time a command is executed, a 64-byte memory leak is created and they’re
uniformly distributed across the object heap. Now suppose the application needs to
create an object that’s too big to fit in any of the available gaps in the object heap.
Under these circumstances, the application would come to a grinding halt and the
only thing the user could do is quit and restart the application (if the computer
doesn’t crash).

DETECTING ACCESS FAULTS

Discovering access faults is easy. The Power Mac Debugger loudly, almost proudly,
proclaims, “Access Fault.” If luck is with you, your machine doesn’t crash or lock up.
Identifying the cause of an access fault is another matter.

If the access fault involves a TObject-based object, that means the application
attempted to access an object that doesn’t exist. There are two ways that can happen:
Perhaps the object was created, then destroyed, and now the application attempts to
access it. Or maybe it was never created in the first place.

Object display can help you identify the offending object by providing an ordered
record of what was created and what was destroyed. If you've been testing with object
display on, you will have become familiar with what your application is doing. Then
the trick is to single step up to the point of the access fault without failing. At that
point, you should know which object the application is attempting to access. You can
carefully examine the results of the object display to determine the source of the
problem.

Access fault of the first kind. One type of access fault, which I'll call an access
fault of the first kind, arises from creating a T'Object-based object, freeing it, and
then attempting to access it. Because it was freed, it no longer exists, so attempting
to access it causes an access fault.

When I was first teaching myself about MacApp’s scripting capability, I made the
mistake of taking some MacApp code out of context and using it as a template in
"Twist Down Lists. It was clearly the wrong thing to do because it resulted in an
access fault of the first kind. My mistake is illustrated by the following code, which
I wrote in T'TwistDownApp::GetContainedObject. I show it here so that you can
try it and see for yourself how object display helps you find the first type of access
fault.

TTwi st DownDocunent * t heTw st DownDocurment = NULL;

t heTwi st DownDocument = (TTwi st DownDocument *) aDocunent ;

t heTwi st DownVi ew = t heTwi st DownDocument - >f Twi st DownVi ew;

TOSADi spat cher : : f gDi spat cher - >AddTenpor ar yToken(t heTwi st DownVi ew) ;
result = theTw st DownVi ew;

return result;

Of course, in due time, MacApp freed the temporary token and, later on when the
application attempted to access f IwistDownView, an access fault was generated.
Running the application with object display on clearly showed twistDownView being
destroyed: you can’t miss it and you know it’s wrong. Then, a little bit of single

stepping led me to the culprit. I recognized that I shouldn’t have told fgDispatcher to
add fTwistDownView as a temporary token. I fixed this by deleting the statement that
tells fgDispatcher to add it, and then carried on.

Access fault of the second kind. Another kind of access fault, which I'll call an
access fault of the second kind, arises from attempting to access a T'Object-based
object that was never created. The only access fault of this kind that I've encountered
arose when I ran a script that asked the application to access a document when there
were no documents. In this case, TApplication::GetContainedObject doesn’t verify
that the document exists before attempting to use it.

For this situation, the problem was immediately obvious. It was easily fixed by
inserting into T TwistDownApp::GetContainedObject the code shown in Listing 2,
which makes sure the document exists before attempting to access it.

Listing 2. A solution to the GetContainedObject problem

else if (desiredType == cDocunment && sel ectionForm == formNane) {
CStr255 theName;
sel ectionData. Get String(theNane);
CNoGhost Docslterator iter(this);

for (TDocunment™ aDocument = iter.FirstDocument(); iter.Mre();
aDocunent = iter.NextDocument()) {
if (aDocument != NULL) {
CStr255 name = gEnptyString;
aDocunent ->CGet Ti t| e(nane) ;
if (name == theName) {
theTwi st DownDocunent = (TTwi st DownDocurment *) aDocurrent ;
result = theTw st DownDocunent ;
return result;

"This case demonstrates the wisdom of trying to break your application by attempting
to get it to do outlandish things that no sane person would try. That’s precisely how 1
stumbled on this one.

Access fault of the third kind. All other access faults I've defined as access faults of
the third kind: they are, strictly speaking, outside the scope of MacApp. They arise
from mistakes you made when working with the system software — for example,
failing to clear a parameter block before using it. As a result, object display isn’t quite
as helpful at tracking down these access faults as it is with finding access faults
involving TObject-based objects. If you’re lucky, object display will point you in the
general area of the problem.

The MacApp application IconEdit gives us an example. Along with the other files
that accompany this article, I've provided a test script, a modified version of the
IconEdit source code, and many IconEdit documents to help you conduct the
following experiment:

MACAPP DEBUGGING AIDS

81

82 develop Issie 28 December 1996

1. Set the partition size of IconEdit to its minimum of 1506.

2. Make and save about 25 IconEdit documents.

3. Quit IconEdit to quickly get rid of all the open documents.

4. Make a script that tells IconEdit to open all the saved documents.

5. Run the script.

When IconEdit runs out of memory while being driven by the script, it will generate
an access fault of the third kind and drop into MacsBug with a bus error. This should
occur after the 22nd document has been opened and the script is telling IconEdit to
open the 24th saved document. The 23rd document has failed to open for lack of
memory, and the application is attempting to recover, yet the script has gone beyond
that point and is telling the application to open the 24th document. (Note that you’d
need to use a lot more documents to duplicate this condition if you didn’t compile
with the substitute PlatformMemory files, which implement object heap discipline, as
described later.)

The problem occurs when the application attempts to return an out-of-memory
message to the script. Specifically, TAppleEvent:: WriteLong generates another error
when it attempts to complete the reply Apple event that’s supposed to tell the script
about the out-of-memory condition.

"This is a case where the techniques described in this article don’t help you very much
and may actually hinder you. I didn’t do anything wrong, but I did spend time
proving that I didn’t do anything wrong. Once I got assurance that all the T'Object-
descended objects in my application appeared to be OK, I decided to see if IconEdit
had the same problem. It did.

In due time, I noticed that the TServerCommand constructor sets fSuspend TheEvent
to FALSE. TServerCommand is an ancestor of TODocCommand, which is
responsible for opening existing documents. At that point, I had nothing to lose by
setting its value to TRUE. That fixed the problem.

Be warned that the experts will tell you that fSuspend TheEvent should never be set
to TRUE because doing so can be dangerous. I've disregarded their advice with no
better rationale than that it appears to allow IconEdit and Twist Down Lists to survive
without crashing when | run a script that sends open document commands until the
application fails for lack of memory. As of this writing | haven’t found a more
acceptable workaround.*

IMPLEMENTING OBJECT DISPLAY

"To implement object display, you can plug in the substitute UObject.h and UObject.cp
files. (Implementation details are provided in “EN1 — Object Counting and Display.”)
In addition, four new methods need to be added to TObject:

#if qDebug

void TQbject::PrintConstructorC asslnfo();
void TQbject::PrintDestructorC asslnfo();

voi d TObj ect:: PrintAppConstructord asslinfo();
voi d TQbj ect:: PrintAppDestructorC assinfo();
#endi f

The constructors and destructors of all objects for which you want to be able to
display object information must be modified to call the appropriate method. For
MacApp objects, use the following code in the constructor:

#if qDebug
thi s->Print ConstructorC asslnfo();
#endi f

and this code in the destructor:

#if qDebug
this->PrintDestructorC asslnfo();
#endi f

You may not want to call these methods in TEvent and T ToolboxEvent. The
Macintosh specializes in generating events, so displaying object information for them
can be overwhelming. In your application objects, use the following code in the
constructor:

#if qDebug
t hi s->Print AppConstructor G asslinfo();
#endi f

and this code in the destructor:

#if qDebug
t hi s->Print AppDestructor G asslnfo();
#endi f

These calls should always be placed in the same relative position in constructors and
destructors. The very beginning or the very end are the two most obvious choices.
Keep in mind that although constructors don’t generally make other objects,
destructors frequently free other objects. If these methods are invoked at random
places in the constructors and destructors, the resulting object information displayed
in the log window will be very hard to interpret.

There are three flags that you can use to control the amount of object information that’s
displayed: gPrintBaseClassInfo, gPrintMacAppClassInfo, and gPrintAppClassInfo.
These flags determine whether object information is displayed at the T'Object level, for
MacApp objects, or for your application’s objects, respectively. All three flags can be set
with scriptable menu commands. However, it’s probably best to set gPrintBaseClassInfo
programmatically to avoid being inundated with object information for every
TToolboxEvent that’s generated. Simply surround the suspect code as follows:

gPrintBaseC asslnfo = TRUE;
/1 suspect code here
gPrint BaseC asslnfo = FALSE;

In my experience, it’s usually enough to display object information at the application
level and the MacApp level. However, some MacApp objects don’t have constructors
and some don’t have destructors. If you suspect that those objects are the source of a
problem, it may be useful to display object information at the T'Object level.

OBJECT HEAP DISCIPLINE

MacApp uses its own object heap to store TObject-derived objects. The heap grows
as new objects are created — by taking memory from free memory. Once memory
has been allocated to the object heap, it’s never returned to free memory. As things
stand, the developer has little control over this situation.

MACAPP DEBUGGING AIDS

83

84 develop Issie 28 December 1996

According to conventional wisdom, the point of greatest memory usage occurs during
printing. With Twist Down Lists, memory usage problems occur when the application
runs out of memory while loading a hierarchical list, especially with 680x0 versions.
That meant I had two problems to deal with while testing recovery from an out-of-
memory condition when loading a list: the recovery itself and the lack of available
memory in which to load required code segments. I made the segment loading
problem go away by implementing object heap discipline, which let me concentrate
on testing failure recovery. Object heap discipline allows you to erect a barrier to
further expansion of the object heap right where you want it. At the same time, it
allows you to leave as much memory as is required to load code segments without
having to fuss with 'seg!" and 'res!" resources.

When the object heap runs out of space, a request for a new block of memory is made
with a call to the global function PlatformAllocateBlock(size_t size). The trick is to
force PlatformAllocateBlock to reject the request when you want it to.

"To do that, I created the global down-counter gOHRemainingIncrements to
maintain a count of the number of times the object heap will be allowed to expand.
Each time PlatformAllocateBlock allocates memory to the object heap, it decrements
gOHRemainingIncrements. When gOHRemainingIncrements reaches 0,
PlatformAllocateBlock will no longer honor requests for additional memory. The
revised version of PlatformAllocateBlock is shown in Listing 3.

Listing 3. Revised RatformAllocateBlock
void *PlatformAll ocat eBl ock(size_t size)
{
Bool ean heapPerm
if (gUMerorylnitialized)
heapPerm = Per mAl | ocat i on(TRUE) ;
void *ptr = NULL; /1 added
Il void *ptr = NewPtr(size); /] commented out
i f (gOHRemai ni nglncrements > 0) { // added
ptr = NewPtr(size); /] added
gOHRenai ni ngl ncrenent s- - ; /'] added
} /1 added
if (gUMerorylnitialized)
Per mAl | ocat i on(heapPerm ; I/ Reset permflag before
/'l possible Failure
Fai I NI L(ptr);
return ptr;
}

The initial value of gOHRemainingIncrements is set to 3 just to be safe. During
initialization, MacApp makes two allocations to the object heap; if
gOHRemainingIncrements is 0, the application doesn’t start up because of lack

of memory. The second of those allocations sets up the initial size of the object heap.
If your 'mem!’ resource specifies a small value for the initial size of the object heap,
the initial value of gOHRemainingIncrements might have to be larger than 3.

Immediately following the call to InitUMacApp in main, the value of
gOHRemainingIncrements is set with a call to the InitMaxObjectHeapSize global
function, which is shown in Listing 4.

gOHRemai ni ngl ncrements = | ni t Max(bj ect HeapSi ze() ;

Listing 4. Determining the number of times the object heap will be allowed to expand

short I nitMaxObj ect HeapSi ze()

{
long freeMem = FreeMem);
Size heapSizelncrement = gSizeHeapl ncrement;
short theNunber = 0;

if (freeMem > kFreeMenReserve)

t heNunber = (freeMem - kFreeMenReserve)/ heapSi zel ncrement;
if (theNunber >= 1)

t heNunber = theNunmber -1;
el se

t heNunmber = 0;

return theNumber; /1 The nunber of times we'll let the object heap
/1 be expanded

As you can see, I use a very simple algorithm to determine the number of times the
object heap will be allowed to expand and still leave in free memory at least the
number of bytes specified by kFreeMemReserve.

The changes you need to make to MacApp to implement object heap discipline
are described in detail in “EN2 — Object Heap Discipline.” The substitute
PlatformMemory.h and PlatformMemory.cp files are also provided.

FAILURE HANDLING

One very good reason to use MacApp is its integrated failure handling scheme. Of
course, all failure recovery paths must be tested. In a well-crafted application, failures
should occur only while the application is attempting to create a new object when
there’s insufficient space in the object heap for it. To test these situations, the
application must be forced to fail at selected points. It’s not enough to adjust the
partition size and hope for a failure.

Ideally, you would be able to set a failure point with a debugger in a similar manner
to setting a breakpoint. That’s not presently possible. Instead, in Twist Down Lists,
I added a global flag gFailHere, which is set and cleared with a scriptable menu
command. There are several ways to use this flag:

¢ Insert the following code at an appropriate place in the application (this is
the simplest way):

if (gFailHere)
Fai lure(errFail Here, 0);

* Force a failure just after a new object has been created:

MACAPP DEBUGGING AIDS

85

86 develop Issie 28 December 1996

TSome(bj ect * some(bj ect = new TSome(bj ect ;
Fai | NI L(someQbj ect) ;
somej ect - >| Sone(bj ect () ;
if (gFailHere)
Failure(errFail Here, 0);

* Force the failure in ISomeObject:

TSonme(bj ect : : | Someoj ect ()

{
this->l Qbject();
if (gFailHere)
Failure(errFailHere, 0);
}

Other ways of using this technique to force a failure require application-specific
knowledge. In the case of Twist Down Lists, it’s often convenient to give the name
FailHere to a file or folder on the volume you’re going to open. With the following
code, when a twistDownElement named FailHere is encountered, the failure will be
triggered:

if (gFailHere) {
CStr63 fail HereText = "Fail Here";
CStr63 displ ayedText = gEnmptyString;
t wi st DownEl enent - >Cet Di spl ayedText (di spl ayedText);
if (failHereText == displayedText)
Failure(errFailHere, 0);
}

It must be possible to set and clear the gFailHere flag from a script. An application
can encounter the same failure conditions whether driven from a script or from the
user interface. The failure recovery path is, however, a little different. When the
application is being driven by a script, an Apple event must be sent to the script
telling it that a failure was encountered and what the failure was. MacApp will handle
the overhead, but you must do your part: you must test it to make sure it works and
returns appropriate error information to the script.

Were it not for the fact that all the list processing methods in T TwistDownDocument
are recursive, [probably wouldn’t have felt the need to implement gFailHere.

Failure can occur if the application attempts to make a twistDownElement or a
twistDownControl when there isn’t enough memory in the object heap to do it and
the object heap can’t be further expanded. The failure might occur several levels into
the recursion. You can’t call ReSignal to handle the failure because you’ll jump all the
way up to the method that started the recursion. Instead, you must save the failure
information, work your way back up the recursion, and then signal the failure.

Using gFailHere turned out to be the best way to test the failure handling. Object
counting, memory display, and object display were very useful in testing recovery from
these kinds of failures. Object counting and memory display verified that everything
that needed to be freed was freed. Using object display to match constructions with
destructions gave further confirmation that the recovery was successful.

HAPPY DEBUGGING

The debugging aids I developed illustrate the power of MacApp. By modifying the
central organizing object, T'Object, you can make many new capabilities, such as
object counting, memory display, and object display, extend to the objects that inherit

from it. In addition, you can easily modify the memory management scheme of
MacApp, so implementing object heap discipline isn’t hard at all.

Now that I have these debugging aids, I no longer fear the dreaded memory leak and
access fault. Object counting, memory display, and object display don’t exactly sound
an alarm when there’s a TObject-based memory leak, but they come pretty close. And
without object display, finding an access fault was like looking for a needle in a haystack.

The faster you can fix your mistakes, the faster you can finish your applications. I
hope my debugging aids will help you get those applications out even quicker.

RELATED READING

Rogrammer’s Guide to MacApp (Apple Compuiter, Inc., 1996). Available on the
Web at hitp:/ / www.deviools.apple.com/ macapp.

“Displaying Hierarchical Lists” by Martin Minow, develop Issue 18, and “An Object-
Oriented Approach to Hierarchical Lists” by Jan Bruyndonckx, develop Issue 21.

“A Reassuring Progress Indicator for MacApp” by James PFamondon, FrameW orks
Volume 5, Number 3, June 1991, page 46.

Thanks to our technical reviewers Tom Becker,
Geoff Clapp, Mike Rossetti, Merwyn Welcome,
and Jason Yeo.*

Want to show of f your cool code?

Do you have code that solves a problem other Macintosh
developers might be having? Why not show it off by writing
about it in develop? We're always looking for people who might be
interested in submitting an article or a column. If you’d like to
spotlight and distribute your code to thousands of developers of
Apple products, here’s your opportunity.

If you’re a lot better at writing code than writing articles, don’t
worry. An editor will work with you. The result will be something
you’ll be proud to show your colleagues (and your Mom).

So don’t just sit on those great ideas; feel the thrill of seeing them
published in develop!

YOUR NAME HERE

To receive our Author’s Guidelines, editorial schedule, and
information about our incentive program, please send a message
to develop@apple.com, or write Caroline Rose, Apple Computer,
Inc., 1 Infinite Loop, Cupertino, CA 95014.

MACAPP DEBUGGING AIDS

87

MPW TIPS AND
TRICKS

Automated Editing
With Streanit

TIM MARONEY

In this column in Issue 26 of develop, I showed you a
wide range of scriptable editing commands available
from the MPW Shell. This time I’ll discuss a single
tool that provides a powerful self-contained text-editing
scripting language, StreamEdit.

Why would you want to use StreamEdit instead of the
other text-editing features of the MPW Shell?

¢ Performance — A StreamEdit script is faster than an
MPW script containing various Replace and Find
commands.

¢ Self-containment — Because StreamEdit is a self-
contained tool, you can run it from within ToolServer,
unlike the scriptable editing commands discussed in
Issue 26, which are available only in the MPW Shell
itself. This means you can use StreamEdit to create

lightweight drag-and-drop grinder AppleScript

scripts that send StreamEdit commands to ToolServer.

¢ Consistency — Keeping all your editing in a single
scripting language confers the elusive mystical boon
of code consistency, making your system easier to
maintain and modify in the future.

GETTING TO KNOW YOU

StreamEdit is based very closely on the hoary UNIX
tool named sed. If you already know sed, much of this
will be familiar, but StreamEdit isn’t directly compatible
with sed scripts.

An MPW version of sed is available as part of the
GNU free software project. One place you can find it is
http:/ / sunsite.cnam.fr/ packages/ gnu/ cygnus/ mac/ .*

StreamEdit implements a pattern-matching language.
Every time a particular pattern is matched, a sequence

of commands will be executed. As in most pattern-
matching languages, StreamEdit’s scripts are lists of
pattern/command pairs, with the pattern coming
before the command. The input file or files are read
through the script interpreter, which searches for
instances of the patterns and executes the corresponding
commands. Anything that doesn’t match a pattern is
passed through unchanged.

StreamEdit scans one line at a time through the input,
matching its current line to every pattern in its script.
After processing each line, it writes out the modified
line. The result is a concatenation of three internal
buffers: the insert buffer, then the edit buffer, and finally
the append buffer. The edit buffer gets filled with the
current line, while the other buffers are empty at the
start. The Insert and Append commands place text in
the insert and append buffers, allowing you to add text
to the beginning and end of the output line. The
Change, Delete, and Replace commands modify the
contents of the edit buffer.

SHARING ADDRESSES

As usual, MPW uses words in ways previously unknown
in human speech. In StreamEdit, patterns are referred
to as “addresses.” There are two kinds of addresses: line
numbers and regular expressions. Line numbers ought
to be self-explanatory, but it may help to note that the
numbers must be Arabic numerals rather than Roman,
and must be in base 10 rather than the hexadecimal or
sexagesimal number systems. There are three special
line numbers:

* the bullet symbol (¢, Option-8), meaning the point
before the first line (enabling you to add a line
before the first line, for example)

* the infinity symbol (e, Option-5), meaning the point
after the last line

* dollar sign ($), meaning the last line

The keyboard shortcuts, as always in this column, are for
American QW ERTY keyboards; if you’ve got some other type of
keyboard, you’re on your own.*

Regular expressions are expressions that manage their
diets sensibly. They can be used for searching, and were
explained in detail in Issue 26. In StreamEdit addresses,
though, regular expressions find the entire line
containing the pattern, rather than just the pattern.
Regular expressions are denoted by slashes. Only
forward slashes are used (StreamEdit doesn’t have a

TIM MARONEY has appeared professionally in newspapers,
magazines, compact discs, videotape, and of course, computer
software. Tim is a technical lead in human interface software at

88 develop Issie 28 December 1996

Apple and is editing a series of books for a horror publisher. His
skin burns easily in the sun and tans in the moon. He uses white
Tshirts only for house painting and car repair.”

backward search mode, having been frightened at an
early age by the legends of Eurydice and Lot’s wife).
Three new constructs have been added to regular
expressions in StreamEdit:

* ¢ (Option-C), which indicates a case-sensitive search

* /] (two slashes), which means the last regular
expression that was matched

* <variable= (a variable name embedded in inequality
operators, here overloaded as a special kind of angle
brackets, and typed as Option-comma and Option-
period), which means the text of an expanded
StreamEdit variable, treated as literal text to be
matched rather than as a regular expression

StreamEdit has variables that can be set with the Set
command (more on this later) or from the command
line using the -set variable [=value] option.

You can form more complex addresses using a few
operators. The Boolean and, or, and not operators are
the same as in C (& &, | | , and !, respectively).
Parentheses can be used for grouping within addresses.
The comma operator matches the range of lines
specified; for example, 3,5 matches lines 3 through 5.
A range address matches each of the lines in the range,
if any. It can be thought of as matching more than
once: it fires off the accompanying command on the
first line matched, the last one matched, and all lines in
between. If the termination condition is never met, the
address continues to match until the end of input. This
could happen if you specify a range of lines ending at
line 15, for instance, and there are only ten lines in the
file, or if your range termination condition is a regular
expression that doesn’t appear anywhere in the input.

TAKING ACTION

Matching patterns is very nice, but what do you do
once you match them? Statements in StreamEdit attach
actions to patterns. An action consists of one or more
commands, separated by semicolons or by the end of a
line. There’s no begin or end bracketing as in Pascal or
C. Addresses and commands are syntactically distinct,
so the script interpreter can figure out where the list of
commands for a pattern ends and the next pattern begins.

Editing commands

* Insert text [-n] — Adds the specified text to the start
of the line by putting it in the insert buffer. The -n
option (in this command and in Append and Change)
prevents adding a newline character when the line is
written out.

* Append text [-n] — Adds the specified text to the
end of the line by putting it in the append buffer.

¢ Change rext [-n] — Changes the line to the specified
text by replacing the contents of the edit buffer.

e Delete — Clears the edit buffer.

* Replace [-c count] /pattern/ text — Replaces the
pattern with the specified text. This is the second
part of a two-step matching process: first the address
matches a line, then Replace searches in the edit
buffer and replaces the pattern. The count argument
indicates the maximum number of times to perform
the replacement in the line. It can be a positive
integer or infinity (). The default count is 1.

Control commands

¢ Exit [status] — Stops StreamEdit with the given
error status. The default is 0, which means execution
completed with no errors. Any nonzero error status
indicates a problem, and unless the built-in MPW
variable Exit is set to something other than 0, this
will stop execution of the script (if any) from which
the StreamEdit command was executed.

* Next — Somewhat like the C keyword continue.
When a Next command is executed, all pending
changes are written out and no more addresses are
matched against the current line; that is, StreamEdit
immediately goes on to the next line without
matching the rest of the rules against the current

edit buffer.

o Set variable text [-i | -a] — Much like the MPW
Shell Set command. The variable is set to the
specified text. The -i and -a options allow text to be
added to any existing setting of the variable at the
start or the end, respectively.

Output commands

* Print [zext] [-appendto | -to file] — Writes output
to a specified file. If zexz is empty, the current line is
printed without modification. The -appendto and
-to options write at the end of the file or overwrite
the file, respectively. If no file is specified, standard
output is used. If the filename is empty, nothing gets
printed.

* Option AutoDelete — Deletes all input lines,
leaving only output from Next and Print commands.
You can get the same effect by specifying the -d
option on the StreamEdit command line or by
including this in the script:

/= Delete
The text arguments to these commands are usually

literal text, denoted by single or double quotes. There
are a few other forms as well:

MPW TIPS AND TRICKS: AUTOMATED EDITING WITH STREAMEDIT 89

* An unquoted variable name can be used, in which # Change corporate policy

case the variable is expanded; no brackets need be /1,8
(or even may be) supplied. Repl ace /capture market share/ 'survive'
* Aperiod means the current input line up to but not # Remove lines referring to obsol ete products
including the newline character at the end. I Power Tal k/' 11 /eVorl d/
¢ As discussed in Issue 26, you can use ® (Option-R) Delete
followed by a digit to mean the expression with that
number matched in the pattern. # Change devel oper relations strategy
[third-party devel opers/

* You can read text from a file with -from filename,
which reads the next line of text from the specified
file. The filename is usually literal text, but it could
also be a variable, the current input line (denoted by
a period), or a ® expression.

Repl ace /evangelize/ 'listen to'

Mark lines referring to old schedules with a
distinctive string at the start of the line
for manual editing |ater

11996/
A HYPOTHETICAL EXAMPLE Insert 'WHOOPS: '
Let’s say you’re the director of corporate communications
at a major computer maker and, without any warning # Add new final line of report
except for inventory backlogs larger than the gross ®
national products of many developing countries, you Append ' May God have nercy on our souls.'

experience a sudden transition in chief executive officers,

corporate policy, and product line. Your quarterly report CONTROL YOURSELF
(10-Q) is due in the SEC’s EDGAR database tomorrow.

Fortunately the SEC requires the cutting-edge ASCII
format for its filings, and you realize that you can
automate 90% of the tedious changes with a single
StreamEdit script.

StreamEdit is almost too powerful. People have used it
for everything, including pretty-printing source code,
converting files to HTML, and postprocessing object
files for dynamic linking tools. If you use it for finding
incriminating passages in coworkers’ e-mail, karma
may get you, but the limitations of the tool won’t. Use
your powers for good rather than evil, and a grateful
world will thank you.

Change ni ckname of CEO
/ Di esel /
Repl ace // 'Flyboy'

Thanks to Arno Gourdol, Alex McKale, and Robert Ulrich for

Vekeyour produds
dand out fromtheaond,

Add anew dimengon to your productswith
Apple’'s gpeach technologes
Apple’s Soeech Development Kits are online end fred

Create speech-savvy applications that engage your
customers and draw them into rich, immersive

Now,
let’s talk.

environments. Apple’s Soeech AHls let you incorporate '
peech recognition end gynthesis into your goplicdions —
quickly and eesily. Mester the power of Apple’s speech]
technology today. Downloed the free Speach Development -
Kitsa httpz//www.gpesch.gople.com i
The Apple Speech Development Kitsindude the Seach Recognition Menager, f
the Soeech Snthesis Meneger, AR extensions sample aode, libraries and ' -
documentetion. (Online senvice and computer not induded.) S f_\ = ¥
s <
&. Apple Computer, Inc. e o

Q0 develop Issie28 December 1996

Chirgpradicfor Your Misaligned Data

KEVIN LOONEY AND
CRAIG ANDERSON

Misalignment occurs when a program accesses data in a way that’s

not in sync with the processor’s internal paths. This can slow down
performance a little or a lot, depending on the CPU architecture. But
finding these areas in code can be very difficult. We’ll demonstrate the

cause and cost of alignment problems and then show you a couple of tools

you can use to detect them in your programs.

Sometimes Macintosh application performance is limited by architectural factors that
can’t be remedied, like the raw speed of the I/O or memory subsystem. But the
programmer does have control over some factors that affect the speed of the memory
subsystem and thus application performance — such as how data is aligned and
accessed within memory. By default, most compilers will do the appropriate alignment
for PowerPC™ code. However, alignment options offered for backward compatibility
with the 680x0 architecture can cause significant overhead.

Misalignment is a difficult performance problem to detect. Traditional debugging and
performance tools typically don’t help you find misaligned accesses. On top of this,
misalignment problems manifest themselves differently on different CPU architectures.

In this article, we’ll define misalignment, describe how it’s caused, discuss the overhead
penalties for accessing misaligned data on various microprocessors, and introduce
some tools designed to aid in the detection of misaligned accesses in code. These
tools accompany the article on this issue’s CD and develop’s Web site. Armed with
these tools and what you learn in this article, you can perform chiropractic
adjustments on your programs to solve their data alignment problems.

WHAT IS MISALIGNMENT AND WHY SHOULD | CARE?

A piece of data is properly aligned when it resides at a memory address that a
processor can access efficiently. If it doesn’t reside at such an address, it’s said to be

KEVIN LOONEY (looney@apple.com) is a
research scientist for Apple’s Performance
Evaluation Group, which does performance
analysis of applications, systems, and hardware.
He previously wrote performance and debugging
tools as part of the Core Tools Group at Apple.
Outside the confines of Apple, Kevin can be
found moonlighting as a pianist/ synthesist and
Web designer. He mainly ponders two questions
in life: why are things taking so long, and what
would cause someone with a degree in artificial
intelligence to study performance issues?’

CRAIG ANDERSON (c.s.anderson@eee.org)
was formerly a senior performance analyst for
Apple’s Performance Evaluation Group. He’s now
at a startup company. Before working at Apple,
he spent many years researching and writing his
bestselling work Improving the Performance of
BusBased Multiprocessors. Craig enjoys cooking
with Mollie Katzen and praticing katas with sensei
Huber. He also takes delight in reading fine
literature, such as The Gulag Archipelago, The
Shipping News, and It’s Obvious You Won’t
Survive by Your Wits Alone.”

CHIROPRACTIC FOR YOUR MISALIGNED DATA O]

09 develop Issue28 December 1996

misaligned. In the PowerPC architecture, 32-bit and 64-bit floating-point numbers
are misaligned when they reside at addresses not divisible by 4. Misalignment
exceptions are taken based on the specific microprocessor.

Whether a data item is aligned depends not only on its address and the processor
that’s performing the access, but also on the size of the item. In general, data of size s
is aligned if the least significant # bits of its address are 0, where 7 = log,(s). Hence,
1-byte items are always aligned, while 2-byte items are aligned on even addresses and
4-byte items are aligned if the address is evenly divisible by 4. This alignment policy
is often called natural alignment and is the recommended data alignment for code to
run well on all current and future PowerPC processors.

Accessing misaligned data can be quite costly, depending on the microprocessor your
program is running on. We’ll demonstrate just how costly in a minute, but in general,
misaligned memory accesses take from 2 to 80 times longer than aligned accesses on
603, 604, and future PowerPC microprocessors. A misaligned access can require
more time to perform for two reasons:

¢ It may require two requests to the memory system instead of just one.

* It may cause the processor to take an unaligned access exception, a costly

penalty.

WHAT CAUSES MISALIGNMENT?

Misaligned accesses can involve variables located on the stack or on the heap. The
type of compiler and the compiler settings that you use will determine whether
misaligned accesses occur. Improper structure placement and incorrect pointer
arithmetic can also cause misaligned accesses. These problems can be found with the
tools and techniques described below, but this article generally focuses on alignment
problems that aren’t caused by programmatic errors.

Most compilers for the Macintosh allow you to choose among various alignment
options. Some compilers default to 2-byte alignment so that data alignment in PowerPC
code mimics alignment on the 680x0 processor. While using this option means that
structures written to disk in binary format can be accessed easily by both architectures, it
also permits alignment problems in the PowerPC architecture. Both improper structure
padding and misaligned stack parameters can result in misaligned accesses.

IMPROPER STRUCTURE PADDING

When a float field occurs in a structure, improper padding by the compiler will cause
the float field to be misaligned. The example in Listing 1 uses MPW’s alignment
pragmas to illustrate this.

Listing 1. An example of a poorly aligned structure

#pragma options align=mac68k

typedef struct sPoorlyAlignedStruct {
char fCharFi el d;
fl oat f Fl oat Fi el d;
char f SecondChar Fi el d;

} sPoorl yAlignedStruct;

sPoor | yAl i gnedSt ruct gPoor | yAl i gnedStruct ;
#pragma options align=reset

In this example, a compiler that did no padding would align fFloatField on an offset
of one byte from the structure’s base address. Since compilers (and memory allocators)
usually align the base of a structure on a boundary of at least four bytes (and multiples
of four bytes), every access to fFloatField will cause a misalignment error. Also,
fFloatField will be misaligned in statically or dynamically allocated arrays, since the
lengths of structures are padded so that each structure that’s an array element starts
on a 4-byte aligned address.

A compiler with a 2-byte padding setting would align fFloatField on an even address,
but this would still cause misalignment when that address isn’t divisible by 4. Compilers
using the mac68k pragma (as shown in Listing 1) cause 2-byte alignment, putting
fFloatField on an even but often misaligned address for PowerPC processors.

A compiler with a 4-byte padding setting would always align the field properly.

MISALIGNED STACK PARAMETERS
Besides affecting the alignment of data in a structure, compiler settings can affect the
way data structures are placed on the stack. Consider this function declaration:

voi d FunctionFoo (sPoorlyAlignedStruct firstParam float floatParam

In this example, the parameters are placed on the stack (even though PowerPC
compilers use registers if possible). A compiler using a 680x0 2-byte padding option
may align firstParam.fFloatField on an even address, but if the address isn’t divisible
by 4 this will cause a misalignment every time that parameter field is accessed within
FunctionFoo. It won’t, however, change the alignment of other parameters on the
stack.

On the PowerPC processor, nonstructure parameters are usually placed in registers.
There are no alignment problems when accessing registers.

THE COST OF MISALIGNMENTS

"To demonstrate the cost of misalignments, we’ve written the code in Listing 2, which
generates both aligned and misaligned accesses in the course of a million iterations. It
accesses a byte array in different ways — data writes of integers, floats, and doubles
— and at different offsets. In a portion of the code not shown, accesses are confined
to within a single page of memory, and interrupts are turned off. Running this code
enabled us to calculate the difference in performance between aligned and misaligned
accesses. This code (with slight modifications for the various compilers) was compiled
with the Symantec, MrC, and Metrowerks compilers. All compilers behaved similarly.

"Table 1 shows the results. Overhead is calculated as the percentage difference between
the time required for aligned and misaligned accesses. Our experiments showed that
misaligned accesses at different offsets seemed to pay the same penalty (excluding
cases where the two accesses required to retrieve the data straddle a memory page
boundary, which is every 4K of memory).

Misaligned integer accesses result in a relatively small penalty for PowerPC 601, 603,
and 604 CPUs. However, there’s no guarantee that future microprocessors will
provide hardware support for integer misalignment. Floating-point misalignments
are severely penalized by the 604 implementation. In fact, while a misaligned access
takes 1.5 times as long as an aligned access on the 601, it takes more than 80 times as
long as an aligned access on the 604. The 601 pays a penalty only when an access
crosses a page boundary (this will be verified later). Misaligned accesses to doubles on
a 601 result in nearly double the overhead of misaligned accesses to floats. On the

CHIROPRACTIC FOR YOUR MISALIGNED DATA

93

Q4 develop Issue28 December 1996

Listing 2. Generating accesses for comparison of access time

#define kNumAccessesPer Cycle 200

#define kNunQycl es 5000
/1 Nunber of total accesses = kNumAccessesPerCycle * kNunCycl es
// 1000000 = 200 * 5000

#define kTabl eSize 1608 // Table size needed for 200 separate aligned
/1 accesses on the |argest data type (doubl es)

typedef enum ECType { elong, eFloat, eDouble };

voi d nai n(voi d)

{
doubl e Al'i gnedTi meFl oat = AlignLoop(0, eFloat);
doubl e M sal i gned1Ti meFl oat = AlignLoop(1, eFloat);
doubl e Overheadi1Fl oat = (((Msaligned1Ti meFl oat - AlignedTi meFl oat)
*100) / AlignedTi neFl oat);
doubl e avgOverhead1Fl oat = (M sal i gned1Ti meFl oat - AlignedTi meFl oat)
/' kNuniTot al Accesses;
}

/1 The function AlignLoop neasures the time of a |oop of "wites" to a
/1 byte array. The wites are either aligned or msaligned, based on the
/1 offset paraneter, which should be between 0 and 7. The type shoul d be
/'l elLong, eFloat, or eDouble.

doubl e AlignLoop(short offset, ECType type)

{
UnsignedWde startTime, stopTineg;
doubl e start, stop;
char byt et abl e[kTabl eSi ze] ;
| ong i, k;

/1 Get starting tinmestanp.
M croseconds(&startTine);

switch (type) {
case elong:
{
long *longPtr = (long *) &bytetabl e of fset];
for (j =0; j < kNunCycles; j++)
for (k = 0; k < kNumAccessesPerCycle; k++)

longPtr[k] = 1;
}
break;
case eFl oat:
{
float *floatPtr = (float *) &bytetable[offset];
for (j =0; j < kNunCycles; j++)
for (k = 0; k < kNumAccessesPerCycle; k++)
floatPtr{k] = 1.0;
}
br eak;

(continued on next page)

Listing 2. Generating accesses for comparison of access time (continued)

case eDoubl e:

{
doubl e *doubl ePtr = (double *) &bytetable[offset];
for (j =0; j < kNunCycles; j+4)
for (k =0; k < kNumAccessesPer Cycl e; k++)
doubl ePtr[k] = 1.0;
}
br eak;

}

/'l Get ending timestanp.
M croseconds(&st opTi re) ;

/1 Move the values to doubles.
start = (((double) ULONG MAX + 1) * startTime.hi) + startTine.lo;
stop = (((double) ULONG MAX + 1) * stopTine.hi) + stopTine.lo;

return stop - start;

Table 1. Misalignment overhead for basic data types, native PowerPC code

Aligned total Misaligned total
CPU and data access time (usec) access time (usec) Overhead
PowerPC 601 integers 113439 119573 5.4%
PowerPC 601 floats 63234 94505 50.0%
PowerPC 601 doubles 63251 113306 79.1%
PowerPC 604 integers 687 695 1.1%
PowerPC 604 floats 261 23753 9009.0%
PowerPC 604 doubles 262 22546 8509.5%

Note: Tests were run at 80 MHz on the PowerPC 601 and 132 MHz on the PowerPC 604.

604, however, doubles and floats suffer nearly the same overhead penalty. Misaligned
accesses for doubles occur on any address not divisible by 8 on the 601, and any
address not divisible by 4 on the 604. It’s important to note that all memory accesses
(aligned and misaligned) result in some timing penalty.

When we ran these experiments as emulated code (compiled for 680x0), float and
double accesses showed no significant overhead (less than 8%). The 68040LC
emulator doesn’t do PowerPC floating-point loads/stores when processing floating-
point data; it avoids alignment exceptions by doing integer emulation of a floating-
point unit and loading and storing data 16 bits at a time.

Our code paints a worst-case scenario; worst case or not, the results indicate that
there’s plenty of motivation to avoid misaligned accesses in native PowerPC code.
Perhaps the biggest problem facing the programmer, however, is the detection of
these problems in application code. We’ll look now at two tools that are useful for
detecting and pinpointing alignment problems.

CHIROPRACTIC FOR YOUR MISALIGNED DATA

95

TOOLS FOR DETECTING MISALIGNMENTS

Apple’s Performance Evaluation Group has developed two tools for detecting
misalignments that cause exceptions:

¢ PPClnfoSampler, a tool to detect high levels of misalignment exceptions
over general application workloads

* the Misalignment Instrument Library (MIL), a set of functions useful for
profiling misalignments in specific regions of code

PPClInfoSampler is useful for determining whether your code has misalignment
problems. If misaligned accesses are detected, the MIL can be used to pinpoint which
parts of your code are causing the misalignments. We’ll describe each tool in greater
detail before discussing how to correct misalignments that you identify.

PPCINFOSAMPLER

PPClnfoSampler is a control panel that when activated records information about
the PowerPC exception services and emulator at 100-millisecond intervals. The
information recorded includes counts of mode switches, interrupts, misalignment
exceptions, and page faults. See Table 2 for a list of PPCInfoSampler output categories.
The output saved from PPClnfoSampler is in tab-delimited format and is best viewed
from a spreadsheet program.

Table 2. PPCInfoSampler output categories

Output category

Time Delta (millis)
Microseconds time
Timebase Ticks
MixedMode switches
Data Page Faults
ExternallntCount
MisalignmentCount
FPUReloadCount
DecrementerintCount
EmulatedUnimpInstCount
Timebase Ticks 68k
Timebase Ticks PPC
Level n Int Ticks

Level n interrupts

Explanation

Elapsed milliseconds since last sample of “exception services’ registers
Microseconds (calculated from timebase) since PPCInfoSampler was enabled
A reading of the 64 it timebase register

Number of mode switches into PowerPC code

Number of page faults

Number of external processor interrupts

Number of misaligned accesses that caused an exception

Number of reloads of the FPU register state

Number of interrupts caused by the PowerPC decrementer register
Number of instructions that are emulated in exception services
Number of timebase ticks spent in 680x0 code

Number of timebase ticks spent in PowerPC code

Number of timebase ticks that expired per interrupt level

Number of interrupts that occurred at each interrupt level

Note: With the exception of microseconds time, each measurement is per sample and isn’t cumulative with the next interval.

To use PPClnfoSampler, you must first drop it into your Control Panels folder and
reboot. The tool installs code in the system heap that waits for an action to occur.
There are two ways to activate the sampling mechanism:

* You can use the keyboard shortcut Command-Option-Z to start the sampler

instantly at any time. When you start the sampler, an 8-pixel line will flash in
the upper left corner of your main screen. It will continue to flash for each
sample that’s recorded. To stop the sampler, use the keyboard shortcut again.

* You can use the control panel interface, as shown in Figure 1, to start, stop,
and save a sample.

For our purposes, let’s focus on the number of misalignment exceptions. To
determine in general whether you have misalignment problems in your application,

©O6 develop Issie28 December 1996

11T}

[JI== PPCInfoSampler =a—x

Status: Run finished

Sample Interval: 100 milliseconds

[Start] [Stop] [Save]

[Set Sample Interval]

© 1995 Apple Computer, Inc. by Jim Gochee

Figure 1. PPRCInfoSampler control panel interface

think of the operations or “workloads” (such as saving to disk) that force your
application to access many data structures. Run PPClnfoSampler during these
workloads to determine whether any misalignments are occurring. Any misalignment
count greater than 0 should be investigated and, if possible, corrected.

"Table 3 shows an example of a misalignment count generated by PPCInfoSampler. The
program that was being executed during this count displayed bursty misalignment
characteristics. That is, during some 100-millisecond intervals no misalignments were
happening; during other intervals, large numbers were happening.

Table 3. Sample output from PPCInfoSampler

Milliseconds Misalignment count
100 0

100 0

100 11652
100 43694
100 42931
100 43695
100 43679
100 43705
100 42942
100 31213
100 0

100 0

100 0

100 14510
100 44135
100 44667
100 44470
100 44347
100 44323
100 44303
100 6416
100 0

100 0

THE MISALIGNMENT INSTRUMENT LIBRARY
Where PPCInfoSampler allows you to detect misalignment activity in broad 100-
millisecond intervals, the Misalignment Instrument Library (MIL) allows you to then

CHIROPRACTIC FOR YOUR MISALIGNED DATA Q7

08 develop Issie28 December 1996

make educated guesses about where to further instrument your code to pinpoint
where the misalignment is happening. The MIL consists of two routines:

void initMsalignRegs(void); /1 Initializes our misalignment
/1 counter (do this only once)
unsi gned | ong get M sal i gnment s(voi d); /1 Returns the total number of

/1 misalignment exceptions since
/1 the initMsalignRegs call

With these calls to the MIL, you can profile strategic portions of your source for the
application’s workloads. Iteratively narrow the focus of your profile by moving the
instrumentation in the code until you can determine where the misaligned accesses
are and the structures that they’re associated with.

Listing 3 is a sample of application code instrumented with the MIL calls. In this
sample, we use the MIL to display the different floating-point exception-handling
properties of the 601 and 604 CPUs.

Listing 3. Sample application code using the MIL

#define kNumAccessesPer Cycl e 200

#define kNunCycl es 5000

#define kTabl eSize 804 // Table size needed for 200 separate aligned

/] accesses on the largest data type (floats)

unsi gned | ong gNunber O M sal i gnnents = 0; // Msalignments forced by
/1 program

unsi gned | ong gReportedM salignments = 0; // Msalignments reported
/'l by exception services

void main(voi d)

{
float MsalignedTine = msalignLoop(false);
printf(">*> Forced number of misalignnments: %\n",
gNurber O M sal i gnment s) ;
printf(">*> Reported nunber of nisalignments: %\n",
gReport edM sal i gnment s) ;
}

/1 The function nisalignLoop measures the time of a loop of "writes" to
/1 a byte array. The wites are either aligned or misaligned, based on
/1 the align paraneter.

doubl e mi sal i gnLoop(bool ean align)

{
UnsignedWde startTime, stopTine;
float start, stop;
short alignlndex = (align)?0:1;

/1« ML instrumentation code: initialize nisalignment counter.
initMsalignRegs();

/1 Get starting timestamp.
M croseconds(&startTine);

(continued on next page)

Listing 3. Sample application code using the MIL (continued)

for (longj =0; j < kNunCycles; j++) {
char byt et abl e[kTabl eSi ze] ;
float *floatPtr = (float *) &bytetable[alignlndex];
for (long k = 0; k < kNumAccessesPer Cycl e; k++) {
gNurber O M sal i gnment s++;
floatPtr[k] = 1;

}

/'l Get ending timestanp.
M croseconds(&st opTi e) ;

/1 + ML instrumentation code: get number of misalignnents.
gReportedM sal i gnments = get M sal i gnnent s();

/] Move the values to doubles.
start = (((double) ULONG MAX + 1) * startTime.hi) + startTine.lo;
stop = (((double) ULONG MAX + 1) * stopTime.hi) + stopTine.lo;

return stop - start;

The results of running this code are shown in Table 4. There’s a large discrepancy
between the number of misalignments generated and the number reported by the
MIL on the 601. The 601 architecture internally fixes float and double misalignments
in hardware. However, the 601 can’t fix misalignments across page boundaries, so it
takes a misalignment exception. Thus, only those page boundary cases are reported.
The 603/604 architecture doesn’t handle misalignments in hardware, and it takes an
exception in all cases.

Table 4. Number of misalignments generated and reported

Number of Reported number
CPU misalignments of misalignments
PowerPC 601 1000000 120
PowerPC 604 1000000 1000000

NOW FOR THE CHIROPRACTIC ADJUSTMENTS

You've determined with the help of PPCInfoSampler that you have misalignment
problems in your application. You’ve used the MIL to determine where the misaligned
accesses are and the structures that they’re associated with. Now it’s time to think
about these structures.

Is there a reason why they can’t be naturally aligned (as we described early in the
article)? If there are structures in the parameter block passed to a Toolbox call, fields
within these structures may not naturally align, but this is something the programmer
can’t do much about until the system provides an alternate API. Perhaps there are
binary data files created and accessed from 680x0 legacy code. Is it really necessary to
still be supporting data files formatted to 2-byte alignment? Can you provide a version

CHIROPRACTIC FOR YOUR MISALIGNED DATA Q0O

100 develop Issie28 December 1996

mechanism for your data files, such that newer versions write and read to natural
PowerPC alignment? Ask these questions, and naturally align structures as much as
possible.

You can ensure proper structure alignment by ordering the fields in your structures
by hand, from largest to smallest, instead of relying on a compiler to pad the fields.
"This will require you to do more work but will remove reliance on any particular
padding strategy.

Another possible scenario is the case where data files are shared across multiple
platforms. Alignment strategies on Intel and other x86 processors aren’t the same as
on PowerPC processors. There are two possible approaches to this scenario, given
an application on Windows and one on the Mac OS that share the same data files:

¢ Ty compiling structures on the Windows application with 4-byte alignment,
according to PowerPC natural alignment. This is a “least common
denominator” approach.

¢ Ifrebuilding a Windows application isn’t a viable option, load the data from
disk and convert the data structures to an aligned structure that’s used
internally. The performance tradeoff depends on how often the misaligned
structure is used.

IT’S THAT SIMPLE

Misaligned memory accesses can take a real toll on your application’s performance,
requiring from 2 to 80 times longer than aligned accesses on newer PowerPC
CPUs. If you do what we’ve described in this article, you can detect and pinpoint
misalignments and fix them so that your code will run efficiently now and on future
processors (which won’t include hardware to fix misaligned accesses for any
misaligned data type) and won'’t be penalized by the lack of hardware support in
future implementations of PowerPC architecture. Isn’t it worth a few simple
adjustments now to know that your code’s future is secure?

Thanks to our technical reviewers Justin Bishop, Apple’s Hardware Division), including Marianne
Dave Evans, and Jm Gochee. The authors would Hsiung, Tom Adams, and Scott McMahon. We'd
like to acknowledge the help given by members also like to thank Jm Gochee for his toolsets and
of the Performance Evaluation Group (a subgroup valuable insights.”

of the Architecture and Technology Group in

Madntosh
Q&A

Q

A

> 0

> 0

My application animates moving geometries in QuickDraw 3D. Recently I've been
seeing a lot of screen flicker; and faces of geometvies that should be bebind other faces are
showing through. What'’s going on?

The flickering problem is probably happening because double buffering is
turned off (call Q3DrawContext_SetDoubleBufferState to turn it on) or
because double buffer bypass is set on the interactive renderer and the scene is
taking longer than a screen refresh to render. See page 12-8 of 3D Graphics
Programming With QuickDraw 3D for more information.

Your second problem is likely the result of having an excessively large difference
between hither and yon (and, as a result, not having enough z resolution to
resolve depth differences). Experiment with greater hither values and smaller
yon values to see if the bleed-through goes away.

We’re using QuickDraw 3D and applying UV attributes to our geometries so that we
can texture-map them. There are, however, two sorts of UVs: surface UVs and shading
UVs. Which one should we use to get the textures to map corvectly and what does the
other one do?

At the time of this writing (QuickDraw 3D 1.5), only the surface UVs are
supported. The shading UVs will be used in a future version to support
advanced shading renderers.

What are view hints in the QuickDraw 3D metafile formar GDMF)?

The concept of view hints was included early on in the development of
QuickDraw 3D. It became apparent that the settings for determining how a
scene should be rendered aren’t always transportable from one application to
another (for example, settings such as the camera location, lighting, and camera
type). The idea of a view hint is that it sets up a series of hints that tell the
reading application how the author of a metafile intended the geometries within
the metafile to be rendered. The fact that these are hints implies that the
reading application can ignore them.

Rather than writing out the lighting information to the metafile as absolute
objects, we recommend creating a view in the normal manner, adding lighting,
camera, renderer, and other information as usual, and then extracting the view
hints from the view with Q3 ViewHints_New(theView). You pass in a view
object to this function, and it returns a view hints object that includes the view
configuration for the view you pass in. The Tumbler and Podium sample code
that comes with the QuickDraw 3D release illustrates how to use view hints
read from a metafile to configure a view. Look in the file Tumbler_document.c
for details.

What's the best way to do collision detection in QuickDraw 3D¢

QuickDraw 3D doesn’t directly provide collision detection, but you can use the
bounding boxes or bounding spheres of the geometries to determine whether
the bounds intersect. You can easily calculate bounding boxes and spheres on
either individual geometries or groups of geometries. If the bounds intersect,
you can either assume the objects have collided or test further, depending on
your application.

MACINTOSH Q & A

101

102 develop Issue28 December 1996

Q
A

Q

Q

A

In the TQ3CameraData record, is the position of the point of interest relative to the
camera location used for anything other than the view direction of the camera?

The point of interest is an absolute position — it’s not relative to anything. As
the camera’s location changes, the camera “turns” to keep the point of interest
in view.

TQ3HitData’s distance field is described for window-point picking as “the distance from
window point’s location on the camera frustum (in world space) to the point of
intersection with the picked object.” Does this refer to the center of the intersection of the
pixel’s frustum with the hither plane, or maybe the yon plane? Or is it the camera
location?

TQ3HitData’s distance field is the world space distance from the origin of the
picking ray to the intersection point. Effectively, this is the distance from the
camera’s location to the geometry intersection point in world coordinates.

When I print with background printing enabled, and PrintMonitor fires up and tries
to post an ervor; my application bangs, and no dialog ever appears. What can I do?

Make sure the bits in your SIZE resource are set correctly. This behavior
appears when you’ve got your “MultiFinder aware” bit set but don’t have your
“accepts Suspend/Resume events” bit set.

1 can’t figure out how to get the default settings for the features in a given QuickDraw
GX font. Any ideas?

A routine to do this, GXGetFontDefaultFeatures, was added after the release of
QuickDraw GX 1.0. This routine will retrieve those layout features defined as
default by a given font. It’s fully documented in Technote 1028, “Inside
Macintosh: GX Series Addenda.”

1 want to turn my font (generated with a third-party font design program) into a true
QuickDraw GX font with a customized features menu. How do I do this? What
programs are available for GX font design? Will I be able to add a features menu to my
font after generating it with a non-GX font design program?

For custom design of QuickDraw GX features in a font, you should use
TrueEdit, which is available (along with other font tools) in the QuickDraw GX
folder on the Mac OS SDK edition of the Developer CD Series, or via ftp in this
directory: ftp://ftpdev.info.apple.com/Developer_Services/Development_Kits/
QuickDraw_GX/Goodies/Font_Tools/.

The general process of designing a QuickDraw GX font starts with building all
the glyphs you’re interested in and hinting them, just as you would for a non-
GX font. Once you have the glyph repertoire, use TrueEdit to add all the GX
tables. You should be able to add the tables for the various menu features with
TrueEdit just fine after you've built the font with another font design program.

1 read somewbhere that you don’t have to call CloseOpenTransport if you’re writing an
application. Is this true?

A

A

Yes and no. The original Open Transport programming documentation stated
that calling CloseOpenTransport was optional for applications. There is,
however, a bug in Open Transport 1.1 and earlier whereby native PowerPC
applications aren’t properly cleaned up when they terminate unless
CloseOpenTransport is called.

Here are some rules of thumb:

* Nonapplication code must always call CloseOpenTransport when it
terminates.

e It’s best if 680x0 applications call CloseOpenTransport, but they’ll be
cleaned up automatically even if they don’t.

* Make sure that PowerPC applications running under Open Transport 1.1 or

earlier call CloseOpenTransport when terminating.

One way of ensuring that you comply with the third item is to use a CFM
terminate procedure in your main application fragment, like this:

static Boolean gOTlnited = fal se;
voi d CFMTer mi nat e(voi d)

{
if (gOTnited) {
gQOlinited = fal se;
(void) C oseQpenTransport();
}
}
voi d mai n(voi d)
{
OSStatus err;
err = InitQpenTransport();
gOllnited = (err == nofrr);
/1 the rest of your application
if (gOTinited) {
(void) O oseQpenTransport();
gQOlinited = fal se;
}
}

In general, when the Mac OS provides an automatic cleanup mechanism, it’s
normally intended as a “safety net.” It’s always a good idea to do your own
cleanup, at least for normal application termination.

Im using OTScheduleSystemlask to schedule a task to run at non-interrupt time.
Will this be cleaned up automatically when I call CloseOpenTransport?

No. You must explicitly clean up any pending system tasks by calling the routine
OTDestroySystemTask. See Technote 1059, “On Improving Open Transport
Network Server Performance,” for a good discussion of this.

Q How do I map Open Transport ervor numbers to their names?

MACINTOsHQ & A 103

104 develop Issue28 December 1996

A

Q

There are two ways to do this. The first is the OTErr MacsBug demd that ships
with the debugging version of Open Transport. This demd allows you to
quickly map an error number to a (hopefully) meaningful error name. Once you
install it in your Debugger Prefs file, you can type, for example, “oterr -3271” in
MacsBug and get the name for that error.

The second solution is to read the latest Open'Transport.h header (for Open
Transport version 1.1.1 or later), where the error numbers are now spelled out
in an easy-to-read format.

Im writing an Open Transport server product and will be implementing band-off
endpoints. What is the maximum qlen value that limits the number of hand-off
endpoints that can be implemented?

There’s a maximum glen value for each protocol, but maximum values that are
true today for Open Transport may change in the future, so we recommend that
you set the qlen value to a desired value. If the desired value is greater than the
number of hand-off endpoints that the underlying protocol can support, the
protocol can specify its own maximum glen value for the server endpoint. After
making the OTBind call, take a look at the glen field of the TBind structure to
see whether the protocol imposed a limit on the glen value.

I'm developing a plug-in (let’s call it MyPlugln) for an application (let’s say CoolApp).
I’d like to create a special icon for the documents my plug-in creates, but they’re really
CoolApp documents. However, if I add a BNDL resource to MyPlugln, all other
CoolApp plug-ins become MyPlugIn documents. What can I do?

A Just register a new, unique creator code and use that for the BNDL, but not for

> 0

> 0

the plug-in. Contrary to popular belief, the owner code for a BNDL doesn’t
have to match the creator code of the file it’s in.

Another possibility is to create custom icons for documents you create, but this
has a couple of drawbacks: it takes the Finder longer to display them, and you’d
be storing redundant data if the icons are all the same.

Finally, you should also add 'STR ' resources with IDs -16396 and -16397 so
that the Finder can display a meaningful message if an application can’t be
found to open the file. (See Inside Macintosh: Macintosh Toolbox Essentials, pages
7-27 to 7-30.)

Im using MPW and MacApp from E.T.0. 20. Where are the 411 belp files?

Starting with E.T.O. 20, the 411 files have been converted to QuickView™
format and can be accessed through the Info menu of the MPW Shell.

Why is Apple now making the latest versions of MacApp available under a “velease”
approach, instead of the previous “product” approach?

In response to the many messages we received from developers requesting early
access to new framework features and timely support for new technologies,
Apple has implemented a release approach with MacApp that allows us to get
new improvements and features in our frameworks into your hands more
quickly than was possible with the product approach.

Previously, our product approach required that we implement all planned features
before the MacApp product was considered final. We found that this was keeping
us from getting new features to you simply because other more time-consuming
work was delaying the completion of the product. Under the new approach, each
framework release will be made up of features at various levels of certification.
Most features will be of final quality, while others may be of beta or alpha
quality. You can choose the features to build your MacApp-based application
with, and by doing so you’ll choose the quality level of the resulting application.
Our build tools will indicate the quality level you’ve chosen from the build flags
you’ve passed to them. The release notes that accompany each MacApp release
will list the features included in the framework and their quality status.

Opver the course of multiple releases, every feature will proceed through alpha,
beta, and final quality phases. Some features will move rapidly from
development into final quality, perhaps in as little time as one release, while
other features may require several releases. This approach ensures that the
software features Apple provides to you are of the highest possible quality, while
still allowing you to experiment with new, unproved features. Apple will create a
new release version of MacApp approximately once every six to nine months,
and the MacApp product will ship once each E. T.O. delivery cycle. Releases of
MacApp that occur between E. T.O. shipment dates will be posted to the Web at
http://www.devtools.apple.com/macapp/.

Note that for each MacApp release, you should always refer to the release notes
for the quality status. For some releases, we recommend that you don’t build
applications that you intend to rely on as final-quality applications. Releases that

have final-quality status are suitable for building final-quality MacApp-based
applications.

When linking my application in MIPW] I get this error message:

Link: Error: Can't open object file for input. (Error 32)
ETO#19: Li braries: CLi braries: CSANELi b. o is not an object file.

Why am I getting this message?

If you look at the CSANELIb.o itself, you'll see that it’s really just a text file
containing this:

The library "CSANELi b. 0" is obsol ete beginning with the PreRel ease
environment of ETO 18 and the Latest environment on MPWPro 19.

Use the "{Libraries}MthLib.o" Iibrary instead.

" CSANELi b. 0" is inconpatible with the SC/ SCpp conpilers,
and is inconpatible with the new FPCE floating point nodel.
See the header file <fp.h> for nore details.

Pl ease read the rel ease notes.

You may safely delete this file when you are sure that all of your Mke
files have been updat ed.

In fact, as of E.T.O. 20, all of the following libraries are obsolete: Runtime.o,
Complex.o, Complex881.0, CPlusLib881.0, CPlusOldStreams881.o,

MACINTOSH Q & A

105

106 develop Issue28 December 1996

CPlusOStreams.o, CSANELib.o, CSANELib881.0, Math.o, Math881.0,
AppleScriptLib.xcoff, CPlusLib.o, InterfaceLib.xcoff, MathLib.xcoff,
ObjectSupportLib.xcoff, QuickTimeLib.xcoff, SpeechLib.xcoff, and
StdCLib.xcoff. These “libraries” are now text documents, similar to the above.
Each of them contains information about the libraries you should use instead.

I understand bow to use PrGeneral with the getRsIDataOp opcode to get the resolutions
that a printer supports, but when I ask the LaserWriter driver about resolutions, it
always tells me P'm talking to a 300 dpi printer; even when I know the printer is, say,
600 dpi. 1 want to print at the maximum resolution available. How can I do that?

Currently, the LaserWriter driver always returns a range of 25 to 1500 dpi for
valid resolutions, and a fixed resolution of 300 dpi. The range of 25 to 1500
means that your application can ask for any resolution in that range, and the
driver will allow it, as explained in Technote PR 07, “PrGeneral.” However,
given that LaserWriters and other PostScript printers can support only a
limited number of resolutions, you may not get optimal results if you pick the
wrong resolution for a printer, even if the driver lets you. You'll also end up
sending more data than is needed if you’re generating bitmaps at a higher
resolution than the printer can print, which can slow printing down significantly.
Furthermore, some extremely high-resolution devices may be able to print at a
resolution higher than 1500 dpi, but the range returned by PrGeneral was
chosen quite a while ago and hasn’t been changed for application compatibility
reasons.

Currently, the only way to get the actual resolution(s) supported by a PostScript
printer (short of querying the printer directly) is to ask the LaserWriter driver
for the PPD file and parse it yourself, looking for the valid resolutions. To get
the PPD file, call PrGeneral with the PSPrimaryPPDOp opcode, which is 15.
This is documented in the Macintosh Technical Q&A QD 01, “PPDs.” When
Apple makes the functions in LaserWriter 8.4’s PPD Library public, you’ll also
be able to use those functions to get the information from the PPD, but the API
to that library hasn’t yet been made available as of this writing.

"To parse the PPD file, you’ll need to consult the PPD specification maintained
by Adobe. That document can be found at Adobe’s ftp site, at the location
ftp://ftp.adobe.com/pub/adobe/devrelations/devtechnotes/psfiles/.

Rather than go to all that work, however, a better approach might be to change
your code so that you don’t need to know the printer’s resolution in order to
generate high-quality output. Some of the various ways to solve this problem
are listed below; the approach you take will depend on your application
requirements. Also, see the Print Hints column in this issue of develop, which
discusses this very problem (among others).

¢ Ifyour application is such that you require a PostScript printer, you could
generate your own PostScript code to achieve high-quality results.

* You could generate your own PostScript code but also use a QuickDraw
representation so that images will print correctly to StyleWriters and other
QuickDraw printers. This solution is recommended if you’re writing a
program that draws curves, such as a graphing program. For best results,
break down the curves you need to draw into small portions that can be
accurately represented by the QuickDraw primitives you have at your
command.

Q

A

Q

A

Q

A

Q

A

* You could use QuickDraw only, but draw in such a way that you’ll get high-
resolution results. To do this, use objects such as lines, ovals, and arcs rather
than bitmaps. The endpoints of the objects will be limited by the resolution
at which you draw, but the objects will be drawn at device resolution.

I noticed that several QuickTime Music Architecture routines (TuneResume, TuneFlush,
TuneGetState) are missing in the latest beaders. What gives?

The routines TuneResume, TuneFlush, and TuneGetState were poorly defined,
and in fact were unimplemented in QuickTime 2.0 and 2.1. They’ve been
removed from the headers.

_StuffXNoteEvent, a QuickTime Music Architecture macro, bas vanished from the
latest beaders. Why?

Whoops. A mistake was made, and _StuffXNoteEvent didn’t make it into the
final release header. You can copy the macro from the older header file if you
need it, but for consistency you should rename it qtma__StuffXNoteEvent.
Here it is as well:

#define qtma_Stuf f XNot eEvent (Wi, w2, instrument, pitch, volume, duration) \
wl = (kXNot eEvent Type << kXEvent TypeFi el dPos) \
I ((long)(instrument) << kXEvent|nstrumnentFiel dPos) \
I ((long)(pitch) << kXNot eEvent PitchFiel dPos), \
w2 = (kXEventLengthBits << kEventLengt hFi el dPos) \
I ((long)(duration) << kXNoteEvent Durati onFi el dPos) \
I ((long)(volume) << kXNoteEvent Vol umeFi el dPos)
Why did the old _EventLength (x) macro get split into two macros,
qtma_EventLengthForward(xF, ulen) and qtma_EventLengthBackward(xF, ulen)?

_EventLength(x) had to be changed because of some new event types. We needed
separate macros to determine the length from the first long word of a music event
and from the last one. Typically, you’ll be using qtma_EventLengthForward.

Inside Macintosh: QuickTime Components states that the limit on data transfer rates
for the base media bandler (and therefore all media bandlers derived from it) is 32
kilobits per second. Is that true?

Starting with QuickTime 2.0, when the data handler API became publicly
available, that statement is no longer accurate. In fact, QuickTime imposes no
limitation on performance at all; the hardware you’re using is the only limiting
factor.

I beard ar Apple’s Worldwide Developers Conference last May that the QuickTime for
Windows installer can be customized through a “.INI” file. Where can I get more
information about this?

Following is the format for the optional configuration file that can be used with
the installer for QuickTime for Windows version 2.1.2. If used, the file must be
named QTINSTAL.INI, and it must be located in the same directory as the
installer, QTINSTAL.EXE. (The 32-bit installer is called QT32INST.EXE,
and the corresponding “.INI” file must be called QT32INST.INI.)

MACINTOSH Q & A

107

108 develop Issue28 December 1996

For all of the options listed except DialogStyle, a value of 1 enables the option
and a value of 0 disables it. The default for all values is 1, unless otherwise
noted. Although all combinations of options are designed to work (that is, the
program will run correctly), not all combinations will yield a viable result. For
example, creating a program group without unpacking the files would probably
not be a good idea.

; ALl QTWinstaller options nust be in the follow ng section:

[Options]

; The Qui ckTi me background can be suppressed when QTINSTAL is to be

; called from another program

;1 - shows a background wi ndow with Qui ckTi me banner.

;0 - shows no background wi ndow.

St andAl one=1

; ADalog style may be specified by one of the follow ng val ues:

; 1 - Thin frane

; 2 - System nenu

; 3 - Thin frame and system nenu (defaul t)

Di al ogStyl e=3

; If the following option is set, the client area of all dialogs wll

; have a 3-D | ook.

Ct13D=1

; If the following option is set, the installer will display the QTW

; end-user |icense agreenment, with Agree/Disagree buttons.

Di spl ayLi censeAgr eement =1

; If the following option is set, an opening dialog will pronpt the user
; Whether to begin the installation or to exit.

Pr onpt ToBegi n=1

; If the following option is set, existing-version checking will be

; enabled and the installer will evaluate the PronptToDel et eVersions

; option. |f CheckExistingVersions is set to zero, the installer wll

; not check for existing versions.

CheckExi stingVersi ons=1

; |f CheckExistingVersions and the follow ng option are set, the

; installer will pronpt the user before doing a search operation for all
; out-of-date QTWinstallations on the machine. For each installation

; found, a dialog will ask the user whether to mark it for deletion. |If
; this option is set to zero, the search will be unconditional and all

; installations found will be marked for deletion.

Pr onpt ToDel et eVer si ons=1

; If the following option is set, a "do you want to continue" dialog will
; appear before any files are deleted or the hard disk is nodified in any
;way.

Pr onpt ToConpl et e=1

; If the following option is set, all files will be unpacked fromthe

; executable and witten to disk. Care and consideration should be used
; before setting this option to zero, since a zero value means no files
; will be installed.

UnpackFi | es=1

; If the following option is set, the Wndows IN files will be updated.
Updat el ni Fi | es=1

; If the following option is set, Program Manager groups will be created.
Creat eGroups=1

; If CreateGroups is set and the following option is used, the specified
; name will be used as the group name (that is, the name as it displays
; in the window titlebar, not the group filename) that the installer will

> 0

; use when installing the QuickTime icons. For exanple, the option shown
; would use the group name "My Group." |If the group does not exist it

; Will be created. This option can be used to add the QuickTime

; applications to an existing group file. The string used to specify a
; group name shoul d be tested in actual use, since there is a practical
upper limt to the nunber of characters Wndows will use in a w ndow
; title.

GroupNanme=My Group

; If the following optionis set, a success dialog will indicate whether
; the installation has conpleted successfully.

SuccessDi al og=1

; |1f SuccessDialog and the follow ng option are both set, the installer
; Will launch Movie Player with a sanple movie to verify that QTW has

; been installed successfully.

Pl aySanpl eMbvi e=1

The Installer also always creates a file in the Windows directory called
RESULT.QTW that looks like this:

[QWInstall 16]
Conpl et e=1
[QWInstall 32]
Corpl et e=1

If Complete equals 0, the installation didn’t finish for some reason (any reason,
such as the user canceling, or running out of disk space, or whatever). This
enables the title installer to tell whether the QuickTime for Windows
installation was successful and to respond appropriately.

DPm playing four QuickTime movies simultaneously from a Director project. Each movie
bas a single music track with no other video or sound tracks, and two of the movies use
more than one instrument. The Director project lets the user control the volume level of
each movie independently. The application works great on the Macintosh with QuickTime
2.1, but under Windows with QuickTime 2.11 only one music track plays at a time. Is
it possible to hear all four music tracks at once under QuickTime for Windows 2.11¢2

You can do live mixing of your four QuickTime movies only if your Windows
system has four MIDI output devices. Most systems have only one. All Windows
applications suffer from this limitation unless they’re clever enough to mix the
tracks on the fly, but none seem to do this. For now, you must pre-mix the four
music tracks from the four movies into one music track in one movie. You won’t
be able to do live mixing unless you write your own MIDI sequencer.

Why do my eyes water when I chop onions?

Onions contain sulfur compounds, and when you cut into them they release
sulfur dioxide. When the sulfur dioxide gas dissolves in your tears (which are
mostly water), sulfurous acid is produced: SO, + H,O —> H,SO;. The acid
burns your eyes, which respond by generating more tears in an attempt to flush
away the acid. See http://www.superscience.com/onions.html as well.

These answers are supplied by the technical ~ www.devworld.apple.com/ dev/ techga.shtm.
gurus in Apple’s Developer Support Center. For (Older Q&As can be found in the Q&A Technotes,
more answers, see the Technical Q&As on this which are those numbered in the 500s.)°

issue’s CD or on the World Wide Web at http://

MACINTOSH Q & A

109

110 develop Issue28 December 1996

macintosHaaAa 111

THE VETERAN
NEOPHYTE

Oofessions of a
Veteran Tedrmical
Writer

TIM MONROE

I’ve been a technical writer long enough to have learned
a few trade secrets, if you will, that guide me in my daily
work and (sometimes, I hope) help me to do it a little
better. Whether you’re reading manuals for content,
working with technical writers to document your own
software, or even writing documentation yourself,
understanding these secrets might be of value to you. I've
long had it in mind to write a book about these and other
topics, sort of a general discourse on technical thought
and how to do it better. Until I actually write that book,
however, the following confessions will have to do.

These confessions should help you understand some of
the tasks that some technical writers typically perform
and some of the conflicting forces that shape final
documents. (Note the profusion of the word somze: your
mileage may vary.) For fun — and for another reason
that I won’t tell you yet — each confession is introduced
by an appropriate palindrome (a word or phrase that
reads the same forward and backward).

MADAM, I’'M ADAM

As you probably know, Adam was given the task of
naming the plants and animals. In a way, Adam was the
first technical writer, for an important part of technical
writing is to systematize and regularize the nomenclature
used in some specific area of interest. It’s rare for the
engineers developing software to pay very close attention
to naming issues. Indeed, the rule is quite the contrary:
more often than not, the technical specifications written
by engineers are rife with conflicting, inconsistent
vocabulary. It nearly always falls to the writers and their
editors to clean things up and present the technology
using clear, regular, and concise terminology.

There’s a moderately foolproof way to discern which
writers take this job seriously and which do not: just look

at a document’s glossary. For my money, every draft of
every technical document should include a robust
glossary that defines the special terms and concepts used
in the document. You simply cannot write any significant
part of a technical document without grappling with
naming issues. A working, growing glossary is the
writer’s proof that he or she is actively thinking about
these issues and is developing a preferred vocabulary to
describe the technology being documented.

Don’t be misled by the fact that the glossary is usually
one of the last items in a book: as I see it, the glossary
ought to be written concurrently with the book, not
after it. (The index is another issue altogether: a book
cannot be properly indexed until it’s nearing completion.
“Trying to do an index while a document is still changing
usually results in tremendous frustration.)

SUE US, ONO, SUE US!

At some point in the distant past, Apple Computer
reached an agreement with the Beatle’s record company,
Apple Records, that allowed Apple Computer to use
the name “Apple” so long as it did not engage in certain
markets, such as music recording. At some later point
in the distant past, Apple Records sued Apple Computer,
alleging certain violations of that agreement. Suddenly,
the lawyers at Apple Computer were intensely interested
in the sound and music capabilities of the Macintosh
hardware and system software.

At that moment, I happened to be finishing up the Sound
Manager chapter of Inside Macintosh Volume VI. Apple’s
lawyers decided that a number of API elements smacked
too much of music and needed therefore to be changed.
For instance, it was thought that since music is composed
of individual notes, the word note should not occur
anywhere in the documentation in any sound-related
sense. As a result, what was hitherto known as the
noteCmd constant was changed to freqDurationCmd
(the idea being that playing a note is just playing a
frequency for a specific duration). The legal department
demanded a number of other changes, which led to
some last-minute rewriting and reindexing as the book
neared publication. And, of course, the engineers had
to issue new header files to reflect the new names.

I don’t imagine that Yoko Ono and other Apple
Records executives have spent much time reading Inside
Macintosh, so I doubt that my efforts were all that
critical. Nonetheless, I learned my lesson. I confess:
I’ve come to appreciate the difficult job done by the
Apple legal department. I now pay close attention to

TIM MONROE (monroe@apple.com) recently became a Senior
Software Engineer in the QuickTime VR group at Apple. He already
misses the smart rams and star rats in the technical writing group at

110 develop Issie28 December 1996

Apple Developer Relations. In his spare time, he likes to stack cats
and drive his race car to the local llama mall.”

the lists of trademarks distributed by the editors in our
department, and I’'m constantly on the lookout for API
elements that might step on someone’s copyrighted toes.

YAWN WAY

Let’s face it: technical writing isn’t creative writing. It’s
not designed to enthrall, just to educate and to serve as
a useful reference during your daily work. To be useful,
a technical document has to be complete. It also has to
be consistent in style and vocabulary with other similar
documents — in my case, with other Inside Macintosh
books. (“No manual is an island.”) Providing documents
that are both complete and consistent usually means
following a pretty strict set of rules and guidelines
governing the style, organization, and content of the
document. It can get to be drudgery, sometimes. Yawn.

On the upside, having rules and other established
methods to follow can be incredibly liberating. These
shackles free you from constantly having to rethink
major issues about a document you’re writing. Once
you figure out what goes where, in a general sense, you
almost don’t need to think any more. You just take the
API elements that need documenting, plug them into
the correct paragraph formats, and fill in the appropriate
information. It can get to be too easy, sometimes. Yawn.

Following rules, though laudable, is not without its
own problems. The requirement that every constant in
an API be precisely described can result in some pretty
silly stuft. For instance, page 2-33 in the book Inside
Macintosh: PowerPC System Software takes the trouble to
inform us that the constant kRegisterDO0 stands for the
register DO. Did anyone have any doubt about that? It
can get to be too dumb, sometimes. Yawn.

Have we reached the stage where the API is self-
documenting, where just the names of functions and
constants give us all the information we need to use
them effectively? I don’t think so. It’s just plain
dangerous to start having writers decide what’s too
obvious to need description and what isn’t. In my mind,
every element of an API should be fully documented,
even if we end up with a few odd cases where there
really is nothing more to say. Remember, degenerate
cases like these are a direct result of systematically
applying rules and established methods. They’re a clear
signal that the writer is doing things exactly right.

IF 1 HAD A HI-Fl...

...I’d play it real loud, and I’d turn the bass way up.
That’s the only way to play reggae music, which is what
I listen to mostly. My taste in music is quirky, but that’s
a problem of mine generally. I confess: I adopt methods
that help me get my work done, even if those methods
are quirky. I revel in quirks, because they often pay off.

So I'll confess another quirk of mine: I write my
documents backward. For each chapter, I start at the
end and write the summary first. This actually makes
good sense, since what I'm documenting is usually an
API, as defined by a header file. The summary is really
just an improved header file. It’s improved in part
because it attempts to impart more order and
consistency than you’ll find in a typical header file. It’s
important to keep in mind that header files are
designed for compilers, not for humans. There’ lots of
junk in these files that has absolutely no meaning to a
programmer. The summary provides an ordered
distillation of the header file to its key components.

Once I've written my summary, I have a good head start
on the reference section. That’s because the summary
already contains intelligent groupings and orderings for
the basic language elements. To write the reference
section, I simply need to “fill in the blanks” provided by
the summary: Each constant needs a precise definition.
Each data structure needs to have its use explained, and
each of its fields must be fully described. Each function
has parameters that need describing, and it probably
returns a value that must be described.

Only when I've finished the summary and reference
sections do I even think about the first parts of the
chapter, the About and Using sections. At that point, I
need to turn down the music and do some real thinking.

GOD? DOG?

Good technical writing is far too often simply taken for
granted. Partly that’s an occupational hazard: when it’s
done right, good documentation is unobtrusive: it
purposely doesn’t try to be cheeky or clever. More
important, good technical writing is unobtrusive because
it doesn’t jar the reader with confusing organization,
sloppy diction, or bad transitions from one topic to the
next. Its job is to conform to established styles and
norms, and to present information as straightforwardly
and clearly as possible. Nonetheless, it bugs me that I've
never seen a single review of any Inside Macintosh book.
Even magazines that are geared specifically at Macintosh
programmers, like MacTech Magazine, never actually
bother to review these important books. Third-party
books get plenty of discussion, but not the primary
documents they all draw on.

I see some other signs that technical writing is taken for
granted — like product managers who try to bring a
writer onto a project two weeks before the CDs are to
be pressed, and engineers who would rather have a root
canal than review the chapter describing the technology
they’ve slaved over for months or perhaps years. What
these people are missing is that good documentation can
add a considerable amount of value to an engineering

THE VETERAN NEOPHYTE: CONFESSIONS OF A VETERAN TECHNICAL WRITER l 1 l

product. Documentation is the first and most important
bridge between the engineers and the developers using
their technology. If the documentation paints a
compelling reason to adopt the technology and facilitates
that adoption by providing useful sample code and
complete descriptions of the API, the writer is a god.
Occasionally, the “wow” factor emerges: documentation
that is so compelling that it opens your eyes wider and
makes your fingers itchy for some coding.

The flip side of the “wow” factor is the “dud” factor:
documentation that is so patently bad it almost single-
handedly ensures limited adoption for the technology it
describes. I've seen some really good technologies
languish for years, for no other discernible reason than
that they’re tied to some really lousy documentation.
The best software technology and the best API cannot
survive a mauling by a dog technical writer.

“OTTO,” MY MOTTO

Palindromes delight us because they call attention to a
fairly rare phenomenon: a sequence of letters that is
meaningful and that reads the same forward or backward.
Language wasn’t designed to be palindromic, and there
is no cognitive benefit — no additional information —
in a particular phrase or sentence that happens to be
reversible. It’s usually a serendipitous accident that
some long sentence should be palindromic.

At their best, palindromes tweak our sense of order. As
I've suggested above, order itself is deceptive. The
linear order of presentation that you find in technical
documentation like Inside Macintosh reflects, in all
likelihood, neither the order in which the document
was written nor the order in which you’re most likely
to access the information in it. In fact, the principle
according to which most good documentation is
organized is a complex hybrid of at least two ordering
schemes.

On one hand, there is a principle governing how you
should be able to learn from a document: you should be
able to pick up a document (a book or a chapter) and
read it from start to finish with good comprehension.
Concepts should be explained in a clear, cumulative
order, and tasks should be explained in the order they
need to be performed. I like to call this a pedagogically
linear path through the document. The good writer
progressively reveals more and more of the technology
as he or she goes along. This is the main principle that
governs the opening sections of an Inside Macintosh
chapter (the About and Using sections).

On the other hand, there is a principle governing how
you should be able to find information in a document.
Technical documentation is, above all, a type of reference
material. You’re constantly jumping into the middle of
a chapter to find the meaning of a constant, or the type
of a parameter to a function, or some similar piece of
information. It’s common to call this 7andom access to
the information, but I prefer to avoid that term, since it
might suggest that the information itself is ordered
randomly. In my opinion, pure reference material (such
as that found in the reference and summary sections of
Inside Mac chapters) must be organized hierarchically,
where the items are intelligently divided into groups,
which are themselves further subdivided into groups,
until every item can be reached by a meaningful path
from the top of the hierarchy. I like to call this the
bierarchically linear path to the information. (For
reference material, the main competitor to a hierarchical
organization is the standard alphabetical organization,
which some of you might prefer. Personally, I like to
have things grouped by functional similarity, not
ordered — “one darn thing after another” — by name.)

The pedagogical order and the hierarchical order are
clearly different ways of organizing information. If you
follow a pedagogical path, you might not get where you
want to go very quickly, but you’ll get a complete picture
of the terrain as you pass through it. If you follow a
hierarchical path, you can get where you want to go
pretty quickly, but only if you already know where
you’re going. So, to use the hierarchical path, you must
already have traveled the pedagogical path. These two
ordering principles depend on each other and should
never be separated.

As you can see, order dominates my mind, at least
when I’'m writing technical documentation. That’s why
my motto is a palindrome. Attention to order — and
clearly understanding exactly what kind of order is
relevant to the task at hand — is the foundation of all
good technical writing.

RELATED READING

Go Hang a Salami! I'm a Lasagna Hog! and
Other Palindromes by Jon Agee (Farrar, Straus,
and Giroux, 1991).

Inside Macintosh by Apple Computer, Inc.
(AddisonWesley, 1992 and following).

Thanks to Dave Bice, Sharon Everson, and Antonio Padial for
reviewing this column.®

112 develop Issue28 December 1996

Newton
Q& A
Ask the
Lama

Q I was wondering why my autopart is taking up so much beap space after it’s installed.

The InstallScript and RemoveScript are quite small:
constant kG obal DataSym := "I d obal s: MYSI G ;

Install Script := func(partFranme, removeFrane) begin
if NOT Get@ obal s(). (kG obal DataSym) exists then
Get G obal s(). (Ensurel nternal (kG obal DataSym)) := {};
Get G obal s() . (kG obal Dat aSym) . (Ensur el nt er nal (kAppSyrbol))
= CetLayout ("M/Tool . t");
end;

RemoveScript := func(removeFranme) begin
local NGP := Getd obal s(). (k@ obal DataSym;
if hasSlot(NGP, kAppSymbol) then
RemoveS! ot (NGP, kAppSynbol) ;

end;

The template in My'lool.t is only a simple proto with a few slots in the base view: a
symbol, viewBounds, viewFlags, viewfustify, viewFormat, viewClickScript, and three
methods. When installed, the autopart takes up about 640 bytes of beap space. Is this
because of the physical representation in the extras drawer?

A minimal autopart with no RemoveScript will take up about 240 bytes. One
with a RemoveScript will take 350 bytes or more, depending on the size of the
RemoveScript. The 240 bytes are used by the system to keep track of the
package. This includes the name, the extras drawer entry, and any symbols that
you passed to Ensurelnternal.

"Trying your code showed that it used 444 bytes. Of course, we don’t have the
MyTool.t layout in the package, but that doesn’t matter since you don’t call
Ensurelnternal on the layout. Using 444 bytes isn’t out of line considering the
minimum size of an autopart.

Of course, you could make your code a little smaller. For example, in your
RemoveScript you check that kGlobalDataSym is a known global variable. This
isn’t required, since RemoveSlot will do the right thing if kAppSymbol isn’t in
your global data frame. Note that you may want to make sure your global data
frame exists:

RemoveScript := func(removeFrane)
RemoveS! ot (Cet G obal Var (kA obal Dat aSym), kAppSynbol);

Also, you use GetGlobals, which is a deprecated function for Newton OS 2.0.
You should be using GetGlobalVar, DefGlobalVar, and UnDefGlobal Var.

I'm using a protoPeoplePicker in Newton OS 2.0 and it keeps showing an “Untitled
Person.” Is this an opportunity to create someone or is there veally a gremlin inside the
machine?

The llama is the unofficial mascot of the related questions to dr.llama@newton.apple.com.
Developer Technical Support group in Apple’s The first time we use a question from you, we’ll
Newton Systems Group. Send your N ewton- send you a Tshirt.”

NEWTON Q & A: ASK THE LLAMA

113

114 develop Issue28 December 1996

A There are only two reasons for the appearance of the “Untitled Person” entry.

One is that you mistakenly entered that person in your card file, which can
happen if you edit an entry and accidentally erase the name. The more likely
reason is that this is your hacking Newton device. If so, you probably didn’t go
through the Setup application and set an owner. “Untitled Person” is the default
owner of the machine. We recommend that you set up a default hacking
MessagePad, back it up using NBU (Newton Backup Utility), and then use that
backup to create development units.

Pve read the article in Newton Technology Journal on package freezing and Im still a
bit confused. Can you confirm that the following questions and answers are right?

* Does my form part still bave a slot in the root after being frozen? No.
o Is the RemoveScript called when it’s frozen? Yes.

o Is the InstallScript called when it’s unfrozen? Yes.

o Cun I prevent freezing/unfreezing? No.

o Can I get a message indicating freezing vs. pulling the card? No.

o What happens when the user tries to put away an item routed to a frozen
application? A “can’t find application” error.

Congratulations, you understand package freezing correctly. And you win an
all-expenses paid visit to your nearest Green Giant food processing plant.

There are times in my application when I want to perform the same operation on a
whole bunch of soup entries. Right now the Xmit form of the calls takes quite a while
and results in a lot of messages flying around. Is there a better way to do this?

Yes. You can use nil for the argument that tells the system which application

is performing the change. This tells the system not to transmit the change
notification. Then you can use XmitSoupChange to send a whatT he notification.
"This will inform other applications that something changed, but not give
specifics of the change. As an example, here’s a code snippet to remove all
entries in a given cursor:

/] create a function we can map over
I ocal nyRenoveFunction := func(entry) EntryRenoveFronmSoupXnit(entry, nil);

/1 renove the entries
MapCur sor (renmoveCur sor, nyRenmoveFunction);

/1 now informregistered soups that something has changed
Xmi t SoupChange(kSoupNanre, kAppSynbol, 'what The, nil);

We’re baving a problem with compiled NewtonScript code. We have a function that
takes an int as a parameter. We use the int type indicator in the function definition.
However, it’s possible for the parameter to be nil. For compiled code this results in a type
mismatch error. Is there a workaround for this?

There is a way to work around this problem; however, you’ll pay a performance
penalty. It’s much better to redesign your API to accept only integers. If you do
want a workaround, you can use the type-checking functions to make sure the

parameter is an integer before you use it like one. Here’s some code that will
work:

func native(x) begin
local int intx;

if Islnteger(x) then begin
/1 now you can use intx and it'll be faster than using x
intx :=x;

end el se begin
/1 do whatever else is appropriate; it isn't an integer

end;
end;

Q In our application we sometimes have to show the user a big ervor message, which
unfortunately is too large for the Notify mechanism. Is there a way we can add a button
to the Notify slip? If not, is there some other mechanism we can use?

A The answer s simple: just don’t let your user generate such a large error. But
seriously, there is no way to modify the slip that comes up from Notify. Here
are two ways to solve your problem:

* Have the Notify message tell the user to click on some user interface element
in your application for more information. This is the recommended solution.

* Instead of Notify, use a dialog to inform the user of the error. Since you
control the dialog, you control which buttons are in it. You could set up such
a dialog with AsyncConfirm.

Q We need a way to find out whether a particular view inberits from a particular proto.
For example:

aView := {_proto: anotherView,
[l more slots...}

anot herView := {_proto: protoFloater,
/'l more slots...}

Is there a function I could call that would take aView and return true if it’s an instance
of protoFloater?

A There is no built-in function that will do this, but it’s relatively simple to write:

func(frame, prot) begin
while (frame AND (frame <> prot))
frame := frame. _proto;
return (frame < nil)
end;

Q How do I define a pickerDef column to be “lastname, firstname” in a single column?
A Youcan specify a Get method in your pickerDef and modify your columns

appropriately. As an example, take a look at the protoListPicker sample on the
Newton Developer CD. One of the subsamples is called ListPickerSoup. The

NEWTON Q & A: ASK THE LLAMA

115

116 develop issue28 December 1996

default is to display the first item in the first column and the second item in the
second column. The original pickerDef is defined as follows (from pickerDef.£):

Def Const (' kMyBasi cSoupDat aDef, {
_proto: protoNameRef Dat aDef, // required
val i dationFrame: nil, /1 used if editing is supported
nane: "Random Data ", /1 nanme at top left of picker if
/1 foldersTabs are present
Htltem func(taplnfo, context) begin
cont ext : Thi ngChosen(t apl nfo);
end,

1)
Then in myListPicker in the listPickerSoup.t layout file, the pickerDef slot is:

{_proto: kM/Basi cSoupDat aDef, /1 defined in the pickerDef.f file

class: 'nameRef, /1 al ways include
colums: [
/1 Colum A
{
fieldPath: 'first, /] field to display in colum
tapWdth: 100, /] width for checkbox & name combi ned,

/1 offset fromthe right margin
doRowHi | i te: true,

}7

/1 Colum 2

{
fieldPath: 'second, /1 field to display in colum
tapWdth: 0, /1 width frompreceding colum to

/1 right bounds
doRowH lite: true,

I,
}

"To modify this sample to show one column in the format “second, first”, you
would add the following Get method to kMyBasicSoupDataDef:

Get: func(object, fieldPath, format) begin
if fieldPath = 'second AND

(format = "text OR format = 'sortText) then
begi n
local realData := EntryFrombj (object);
if realData then /!l format is "second, first"
return (real Data.second & ", " & realData.first);
el se
return "- -";
end el se

i nherited: ?Get (obj ect, fieldPath, format);
end

This Get method will return the correct string for a column that displays the
slot 'second. It will also sort on a string that’s in the format “second, first”.

The other thing you need to do is modify the columns definition. Simply remove
the first column, so that the pickerDef in myListPicker looks like this:

{_proto: kM/Basi cSoupDat aDef, /1 defined in the pickerDef.f file

class: 'naneRef, /1 always include
col ums:
[
/1 Colum 2
{
fiel dPath: 'second, /1 slot to display in colum
tapWdth: 0, /1 width frompreceding colum to

/1 right bounds
doRowHi lite: true,

Q I have a pick list that takes quite a while to create. I'd like to use a weak array so that 1
don’t have to keep creating the list. That way I get garbage collection for free. But I
don’t want to make the arvay “weak” until after the pick list has been opened by the
picker so that items don’t accidentally get garbage collected. How do I turn a regular
array into a weak arvay? Or will this work at all?

A Youcan’tturna regular array into a weak array; an array is one or the other. But
using a weak array should work, with these minor modifications to your code:
Create a slot in your picker (say myWeakArray) and initialize it to a weak array.
Create your regular array of pick items as usual. Let the user pop up the picker;
then in either the pickCancelledScript or the pickActionScript, set the first
element of myWeakArray to the array of list items. Next time you want to
construct the pick list, check for the first element of myWeakArray. If it exists,
you have your pick list; if not, create a new one.

Q DPm using one of the newt name views to select & name. Whenever the people picker
comes up, it’s viewing “All Names.” How can 1 programmatically change the default
folder used by the picker?

A You need to change the Picker method of the newt name flavor as follows:

Pi cker: func()
pr ot oPeopl ePopup: New(' | nameRef . peopl el , nil, self,
{l abel sFilter: <synbol-for-desired-fol der>});

The final argument to the New method is a frame of options. Each slot/value pair
is used to set up a slot/value pair in the protoPeoplePicker. So grab the symbol for
the default folder that you want and set the labelsFilter of the protoPeoplePopup.

Q What is the path to true enlightenment and wisdom?

A Simple: Buy and read all the books that claim to show you such a path. As you
read, make a list of the major points. Take that list, cross off the contradictions,
take the inverse of what’s left, and then get a life. Alternatively, go and code
another thousand lines of NewtonScript.

Thanks to jXopher Bell, Henry Cate, Bob Bbert, If you need more answers, take a look at
David Fedor, Ryan Robertson, dm Schram, the Newton developer Web page, at hitp://
Maurice Sharp, Bruce Thompson, and Scott www.devworld.apple.com/ dev/ newtondev.shtml.”

Wright for these answers.”

NEWTON Q & A: ASK THE LLAMA

117

KON & BAL'S PUZZLE PAGE

Falder Aln

See if you can solve this programming puzzle, presented in the form of
a dialog between Konstantin Othmer (KON) and Bruce Leak (BAL).
The dialog gives clues to help you. Keep guessing until you’re done; your

score is the number to the left of the clue that gave you the correct

answer. Even if you never run into the particular problems being solved

here, you’ll learn some valuable debugging techniques that will help you

solve your own programming conundrums. And you’ll also learn

interesting Macintosh trivia.

KON
BAL
KON

BAL
KON
BAL

KON

KONSTANTIN OTHMER
AND BRUCE LEAK

BAL
100 KON

BAL
KON

It’s you again.
It seems our bid for drumming up Puzzle Page authors hasn’t gone well.

I guess everyone’s waiting for the Mac OS 8 release. From what I hear,
they’ll be waiting quite a while.

I’ve got a lot of work to do. Can we get on with this?
OK. Have you ever heard of Retrospect Remote?

Yeah, we run it. It’s that backup program. It slows your machine to a
crawl when it’s doing its thing, but we’ve never had a problem with it.
Our engineers don’t allow it on their machines, though.

Apparently someone went around one morning and installed it while
we were all sleeping. It’s been running great for the last year, but
suddenly one of the machines started showing an execution error.

Easy enough. Go check out the logs and see what it’s complaining about.

It says folders are nested too deep on that machine. Sure enough, the
machine has a folder called “<unknown name>,” and inside that folder
is another called “<unknown name>,” and so on. It was mixed in with
our project files.

What system are you running?

A Power Mac 7100/66 with 32 MB of RAM and an 800 MB hard disk,
running system version 7.1.2 — the “last trusted system,” according to
Chris Derossi.

KONSTANTIN OTHMER AND BRUCE LEAK the name for their daily diary of debugging. The
are cashing in on the enormous popularity of first issue will include hard-hitting articles like
the Puzzle Page by starting their own online “MacsBug: The Best Command-line Interface for
magazine. After rejecting titles like MacsBug Life the Mac?” and “Celebrity dcmds.” Watch for it
and Dead Mackerel, they’ve settled on Mired as soon in your local cybernews shop!”

118 develop Issue28 December 1996

90

80

70

60

55

BAL
KON
BAL
KON
BAL

KON

BAL
KON
BAL

KON
BAL
KON

BAL
KON
BAL
KON
BAL
KON
BAL

KON

BAL

KON
BAL
KON

BAL
KON

BAL

What happens when you use the Finder to get info on the folder?
It says there are 99 items inside this one for zero K of disk space.
Go in a level and try the same thing. Still 99 items?

Yep.

Go in a few more levels and rename one of the folders. Come back out
and go back in. Anything unusual?

Nope. The renamed folder kept its new name. The Finder tells you
there are 99 items inside it.

Just keep opening folders. How deep does it go?
After opening folders for a few minutes, you get too bored to continue.

Rename every tenth folder or so, to create some landmarks. Dig down
doing this. Can you Command-click on the window title and see the
whole hierarchy?

Yes. You're doing one heck of a test on the pop-up menu manager.
So, what happens?

After you do this about 150 times, the Finder displays the familiar “out
of memory” message. It says you might try closing some windows to
make more memory available. I have the feeling this might be one case
where that advice actually works!

Do a Get Info on the hard drive. How many items does it have?
16,774 items on disk.

Somehow I was expecting a larger number! Try copying the folder.
We crash.

Where? Any clues?

In CopyDoubler.

That sounds like a subject for another column. Hold down the Control
key when copying the folder to tell CopyDoubler to stay out of it.

The Finder puts up the copy dialog, waits about two minutes, advances
the thermometer the entire way in about three seconds, and then waits
another two minutes before finishing. The copy dialog says there are
100 items to be copied. You now have two folder hierarchies.

That’s interesting. I've seen the Finder copy way more than 100 items
at one time, but somehow its knowledge of folder nesting is limited to
99 or 100. Do a Get Info on the drive again and see how many new
items were created.

Now there are 18,679 items on disk — 1,905 new ones.
Copy it to a file server.

OK. Now the Finder does the copy the same as before, except after the
thermometer is finished, the dialog stays up, waiting for a long time.

How long?

Suppose we go to a long dinner at the Peppermill Lounge. When we
come back it still won’t be done.

Look at the folder hierarchy on the network from another Mac.

KON & BAL'S PUZZLE PAGE: FOLDER FUN 1 1 9

50

45

40

35

30

120 develop Issue28 December 1996

KON
BAL
KON

BAL
KON

BAL
KON
BAL
KON

BAL
KON
BAL
KON

BAL

KON
BAL

KON

BAL

KON
BAL

Paul

KON

While it’s still copying?
Sure.

You see a bunch of folders, as you’d expect, except the network is really
slow. Apparently the Finder is generating a lot of network traffic trying
to create all those directories.

Stop that file copy.

The Stop button in the copy dialog is highlighted (indicating that you
pressed it), and the network is back to normal, but the copy dialog
doesn’t go away.

Reboot and look at the folders in Standard File.
No new clues. How deep do you want do go?
Hmm. Try running Norton Utilities on the disk.

There were a few bundle bits that are wrong. But once those are fixed,
Norton says the disk is fine.

"Try DropStuffing the folder.
DropStuff crashes.
Try Disk First Aid.

It tells you that the folder nesting exceeds the Finder-recommended
nesting of 100. But other than that, it says the disk is fine.

I guess those folders are really there. The system is running into a
bunch of boundary conditions trying to deal with them. The question
is how they got there, and I'm not sure how we figure that out given
that all we have is a smoking gun.

Wit a second...the column isn’t supposed to end this way!

OK. I've got an idea. I'll try looking at these folders from MPW with
a files -r -¢ command.

MPW prints out a bunch of folders and then crashes. The interesting
thing is that it crashed right after printing out the 100th level down,
which we know from the “rename every tenth folder” exercise we did
earlier.

Well, there are some mysteries that we should be able to solve. Clearly,
some software on this machine created the folder called “<unknown
name>,” probably when a directory with a null name or some other
exception condition was encountered.

OK.

It’s probably the Finder, the File Manager, or one of the applications
that’s commonly used on the machine. Let’s ask Paul Mercer if he
knows anything about it.

First of all, the Finder isn’t going to rename a folder on you. And
second, even if it did, no one on the Finder team would give the
folder a name that contains an angle bracket — that’s just too
unpleasant aesthetically. Maybe the File Manager would do such a
thing, though.

We could try Dave Feldman. I’'m not sure he’d have the same issues
with angle brackets that Paul has.

25

20

15

10

Dave

BAL

KON

BAL

KON
BAL
KON

BAL

KON
BAL
KON
BAL

KON

BAL
KON

BAL

KON

BAL
KON

No issue with angle brackets here! But the File Manager doesn’t ever
attempt to detect or fix damaged catalog info. It will rebuild the volume
bitmap (that long pause when remounting a disk after a system crash),
but it leaves everything else alone. No matter how much it’s abused by
the Finder, the File Manager will never surreptitiously set a folder to
“<unknown name>.” Tell Paul I said what does he know, he’s been
gone from Apple long enough to have forgotten what little he once
knew about the File Manager. Furthermore, the File Manager doesn’t
care how deep you nest folders; that’s a Finder problem.

Well, the system hasn’t changed much since either of those guys left
Apple, so it’s probably something else. Maybe you can get someone at
Apple to search all the system sources and see if they can come up with
a hit on “unknown name.”

I talked to Jim Luther about it and he said it shows up in only one
place — the Alias Manager. Apparently the Alias Manager will store
the name of the user who created the alias as part of the alias record.
If a user who logs on as a guest creates an alias, the name of the alias
creator is set to “unknown name,” but there are no angle brackets.

Let’s grep the hard disk and see if we can find any hits on “<unknown
name>.”

How do you propose we do that?
Have you seen AltaVista?

You mean the search engine on the Internet? Totally awesome. When
you do a query they can instantly give you a list of the top hits from
any Web site. But what does that have to do with this puzzle?

Well, I figure they can search huge amounts of data way faster than we
could ever do it on our local machine. So we dump the entire contents
of the hard disk to a Web page, register it with AltaVista, and perform
the search.

A little unrealistic, but not a bad idea.
Ron Avitzur thought it up.
For those keeping score, you’re approaching 15.

OK, OK. I'll use Norton Disk Editor and search the whole volume for
the string “<unknown names>.”

The first hit is in the catalog. I get the feeling you’re going to find at
least 1905 of these on this disk, probably more since you duplicated
the folders so many times.

OK. Tty it on one of your other development machines.

The string is found in a bunch of places but the sectors aren’t owned
by a file. But then the needle in the haystack pokes your probing finger
— you find the string in the MPW Shell application.

Open up MPW Shell with ResEdit and find out which resource it’s in.

Duh! Wrong tool for the job! ResEdit can’t search the entire resource

fork.
OK. Use Resorcerer.
You find the string in CODE resource 27, called %AS5]Init.

KON & BAL'S PUZZLE PAGE: FOLDER FUN 1 2 1

122 develop Issie28 December 1996

BAL

5 Alex

BAL

Alex

KON

BAL
Alex

KON

BAL
KON

So, it sounds like we should contact someone in MPW land and see if
they know what’s going on. Here’s Alex McKale; maybe he can help us.

Sure enough, Projector will create folders with the name “<unknown
name>.” CheckOutDir creates a folder hierarchy that matches the
project hierarchy.

The project hierarchy on this machine is only three or four levels deep,
not 1905! Any explanation for that?

Did the machine ever crash while checking out? Maybe some script
got in an infinite loop, and you hit the reset button or crashed after

some time. This would mean the depth of the hierarchy is based on

how long the machine was running in the loop, rather than on some
magic number, such as everyone’s favorite year plus 1.

It happened on Richard’s machine. He says his Mac crashes all the
time, and he’d be hard pressed to tell you what it was doing during any
particular crash.

Hmm. I guess we just need a plausible explanation. Any ideas, Alex?

Your guess is as good as mine. CheckOutDir does very little error
checking, so if the project tree got munged — for example, if there was
no terminator in the project folder hierarchy — it would keep creating
folders called “<unknown name>” until it hit a terminator. Give me a
reproducible case, and this thing is dead meat.

No can do. I guess the exact cause will remain a mystery, along with
the true nature of consciousness, the details of Jimmy Hoffa’s demise,
and the location of my other red sock. Well, at least we managed to
narrow it down to Projector, so we can point both our accusatory
fingers in the same direction. If nothing else, maybe this will get the
Projector folks to add a little more error checking to CheckOutDir.

Nasty.
Yeah.

SCORING

70-100 Congratulations! You win free lifetime upgrades to MPW.
45-60 You win a free copy of Mac OS 8.

2540 You win a lifetime subscription to eWorld.

520 You win a dinner with Paul and Dave."

Thanks to Chris Derossi, Dave Feldman, Jm Luther, Alex McKale, and Paul Mercer for reviewing this

column.”

INDEX

For a cumulative index to all issues of
develop, see thisissue’s CD.*

A

access faults 76
detecting 80-82
object display and 80-82
AccurateGetShapeLength
(QuickDraw GX) 70
AccuratePrimitiveShape
(QuickDraw GX) 70
AccurateShapeLengthToPoint
(QuickDraw GX) 70
AFECoreSuite.c file (Sketch) 6, 7
AECountltems 21
AECreateElementEventHandler
(Apple event handler) 6
AEDisposeDesc (OSL) 17
AEList (OSL) 17, 18
AEPutDesc (OSL) 17
AFEResolve (OSL) 5,6, 11, 14
“any resolution” gotcha
16-21
Alias Manager, KON & BAL
puzzle 120-121
alignment of data. See misaligned
data
allocation segments (OpenDoc
Memory Manager) 28-29
Anderson, Craig 91
Anderson, D. John 72
append buffer (StreamEdit) 88
Append command (StreamEdit)
89
Apple Event Manager, object
accessors 5
Apple event object model. See
object model implementation
Apple Event Registry, recursive
definitions 8
Apple events
Apple event parameters as
object specifiers 13-16
extracting the keyData
parameter from 14
handlers and object model
implementation 5-6,
20-21
preserving the meaning of a
token’s contents 21-22
AsyncConfirm (Newton Q & A)
115

attribute sets (QuickDraw 3D)
41, 54
autopart (Newton Q & A) 113

back issues of develop 59

BeginUsingLibraryResources,
OpenDoc and 30

bend dashing (QuickDraw GX)
69

“Be Our Guest” (Anderson and
Harper), Source Code Control
for the Rest of Us 72-75

BNDL resource, and special icons
(Macintosh Q & A) 104

C

Change command (StreamEdit)
89
CheckOutDir (MPW), KON &
BAL puzzle 122
“Chiropractic for Your Misaligned
Data” (Looney and Anderson)
91-100
ClIChangedCurveLayout 70
CIDisposeCurveLayout 70
CINewCurveLayout 70
CloseLibraryResources, OpenDoc
and 30
CloseOpenTransport, Macintosh
Q& A 102-103
“Coding Your Object Model for
Advanced Scriptability”
(Reuter) 4-27
cones (QuickDraw 3D) 36-39
partial 38-39
conics (QuickDraw 3D) 33-39
containment hierarchy
elements (of container
objects) 6
object accessors and 6-9
object reference 7
properties (of container
objects) 6-7
CopyDoubler, KON & BAL
puzzle 119
Count Apple event handler 2021
Create Element (Apple event) 6
cross-platform development
long filenames 75
source code control 74-75

CSANELib.o (Macintosh Q & A)
105-106
CurveLayoutGX control panel
70-71
CurveLayout.h header file 71
CurveLayout library (QuickDraw
GX) 61-71
computing the curve layout
caret 67, 68
dashing a shape 61-62, 70
drawing curve layouts 62-66
editing curve layouts 66-69
glyph loop 64-66
glyph shape 62-63
important functions 70-71
points along a path 63-66
using dashing to highlight
67, 6869
curve measurement (QuickDraw
GX) 70
CUsingLibraryResources,
OpenDoc and 30
cylinders (QuickDraw 3D) 36-39
partial 38-39

D
dashing a shape

and curve measurement 70
with QuickDraw GX 61-62
using dashing to highlight
67, 6869
DefGlobalVar (Newton Q & A)
113
Delete command (StreamEdit) 89
develop back issues 59
Difference (GNU diff) 72-75
disks (QuickDraw 3D) 36
partial 38
DisplayMemorylInfo (MacApp) 77

edgeAttributeSet field
(QuickDraw 3D) 43
edit buffer (StreamEdit) 88
ellipse primitive (QuickDraw 3D)
33-36
partial and skewed ellipses
35-36
ellipsoids (QuickDraw 3D) 36-39
“EN1 — Object Counting and
Display” (MacApp) 76, 77, 82

INDEX

123

“EN2 — Object Heap Discipline”
(MacApp) 76, 85
end caps (QuickDraw 3D) 39
EndUsingLibraryResources,
OpenDoc and 30
errAEBadKeyForm (-10002) 26
for unsupported key forms 9
errAECantHandleClass (-10010)
26
errAECantSupplyType (-10009)
26
errAECoercionFail (-1700) 25,
26
errAEEventNotHandled (-1708)
25
for unsupported key forms 9
errAElIllegallndex (-1719) 17, 26
errAEImpossibleRange (-1720)
26
errAENoSuchObject (-1728) 24,
26
for unsupported key forms 9
errAENotAnElement (-10008) 25
errAENotASingleObject (-10014)
25
errAENotModifiable (-10003) 25
errAETypeError (-10001) 26
errAEWriteDenied (-10006) 25
errAEWrongDataType (-1703) 26
ev (environment) parameter
(SOM) 29
event dispatchers, object model
implementation and 5
_EventLength(x) macro
(QuickTime), Macintosh
Q& A 107
every statement, handling 9,
1011, 1617, 25
exception handling (OpenDoc) 29
Exit command (StreamEdit) 89
ExtractData (Sketch) 14-16
ExtractKeyDataParameter
(Sketch) 14-15

F

FailHere (MacApp) 85-86

failure handling (MacApp) 76,
85-86

fFloatField, improper structure
padding and 93

File Manager, KON & BAL
puzzle 120-121

FlattenAEList (Sketch) 20

float field, improper structure
padding and 92-93

124 develop Issue28 December 1996

formAbsolutePosition (key form)
9,10

formName (key form) 9

formPropertylD (key form) 9, 10,
12

formRange (key form) 9, 11

formRelativePosition (key form)
9,10

formTest (key form) 9, 11-13

formUniquelD (key form) 9

formWhose (key form) 9, 11-13

fSuspendTheEvent, fixing access
faults 82

G

Gaul, Troy 28
geometric primitives (QuickDraw
3D) 32-55
attributes of 39
end caps 39
GetContainedObject (MacApp)
80, 81
Get Data events
emulating 14
handling property tokens
2021
and keyAERequested Type
24,25
and the “properties”
property 23
GetDataFromGraphicObject
2021
GetDataFromList 20-21
GetDataFromObject 20-21
GetGlobalVar (Newton Q & A)
113
Get method (Newton Q & A)
115117
getMisalignments (MIL) 98
GetResource, OpenDoc memory
management and 30
getRslOp (PrGeneral) 56-57
gFailHere (MacApp) 85-86
glyph shapes (QuickDraw GX)
6263
loop for repositioning
6466
positioned on a curve 64
tangent vectors drawn as
normals 63
GNU diff utility (Free Software
Foundation) 72-73
gObjectCount (MacApp) 77, 78
gOHRemainingIncrements
(MacApp) 84-85

gPrintAppClassnfo, object display
and 83

gPrintBaseClassInfo, object
display and 83

gPrintMacAppClassInfo
(MacApp), object display and
83

GraphicObjectAccessor, object
accessor 9

GraphicObjectFromDocument-
Accessor, object accessor 8-9

GraphicObjectFromGroupAccessor,
object accessor 9

GWorld, printing resolution 57

GXDrawShape (QuickDraw GX)
70

GXGetFontDefaultFeatures
(QuickDraw GX), Macintosh
Q&A 102

GXGetGlyphMetrics (QuickDraw
GX) 63-64

GXGetLayoutCaret (QuickDraw
GX) 67, 68

GXGetLayoutHighlight
(QuickDraw GX) 67

GXGetShapeLength (QuickDraw
GX) 70

GXHitTestLayout (QuickDraw
GX) 66, 67-68

GXPrimitiveShape (QuickDraw
GX) 63, 70

GXShapeLengthToPoint
(QuickDraw GX) 63, 64-65,
67,70

H

hairline dashing (QuickDraw GX)
69

Harper, Alan B. 72

hither (QuickDraw 3D),
Macintosh Q & A 101

hit testing (QuickDraw GX) 66,
6768

IconEdit, detecting access faults
82

immediate mode (QuickDraw 3D)
41

Infinity OpenDoc Sizer 29

InitLibraryResources, OpenDoc
and 30

InitMaxObjectHeapSize (MacApp)
85

InitMenus, Mac OS 8 and 3

initMisalignRegs (MIL) 98

InitUMacApp (MacApp) 85
InitWindows, Mac OS 8 and 3
InitZone, OpenDoc and 31
insert buffer (StreamEdit) 88
Insert command (StreamEdit) 89
InstallScript Newton Q & A)
113, 114
int parameter (Newton Q & A)
114

K

keyData parameter 10, 13-16
extracting from Apple events
14
keyForm parameter 9, 10, 11
key forms
complex 9
and object accessors 9-13
simple 9-10
kMyBasicSoupDataDef (Newton
Q&A) 116-117
“KON & BALs Puzzle Page”
(Othmer and Leak), Folder Fun
118-122
Kopala, Conrad 76

L

layout shapes (QuickDraw GX)
62, 63

line layout (QuickDraw GX) 61

line numbers (StreamEdit) 88

Lipton, Daniel I. 60

LoadResource, OpenDoc and 30

Looney, Kevin 91

Lo, Vincent 28

M

MacApp
failure handling 76, 85-86
memory display 76, 77
object counting 76, 77
object display 76, 78-83
object heap discipline 76,
83-85
release approach (Macintosh
Q & A) 104-105
“MacApp Debugging Aids”
(Kopala) 76-87
majorRadius vector (QuickDraw
3D) 34-35, 38
Maroney, Tim 88
md dictionary, PostScript printing
and 57
memory display (MacApp),
memory leaks and 76, 77

memory leaks 76-80
detecting 78-80
memory display and 77
object counting and 76, 77
object display and 78-80
memory management, object heap
discipline and 76, 83-85
Memory Manager (OpenDoc)
28-31
Merge (GNU diff) 72-75
meshes (QuickDraw 3D) 49-52,
53-54
creating 51-52
iterative construction 49
topological modification 49
minorRadius vector (QuickDraw
3D) 34-35, 38
misaligned data 91-100
accessing 92
natural alignment 92,
99-100
performance penalty of
93-95
stack parameters 93
structure padding 92-93
tools for detecting 96-99
Misalignment Instrument Library
(MIL)
detecting misaligned data
96, 97-99
sample application code
98-99
MMAllocate (Memory Manager)
28
Monroe, Tim 110
MPW Shell, 411 help files
(Macintosh Q & A) 104
“MPW Tips and Tricks”
(Maroney), Automated Editing
With StreamEdit 88-90
myListPicker (Newton Q & A)
116117

N

NewGWorld, useTempMem flag
and 31

New method (Newton Q & A)
117

“New QuickDraw 3D Geometries”

(Schneider) 32-55
NewRgn (Toolbox) 31
newt name (Newton Q & A) 117
Newton Q & A: Ask the Llama
113117
Next command (StreamEdit) 89

nil parameter (Newton Q & A)
114
Notify (Newton Q & A) 115

o

object accessors
and the containment
hierarchy 6-9
handling every 9, 1011,
16-17, 25
handling range requests 11,
12
keyData parameter 10,
13-16
keyForm parameter 9, 10,
11
and key forms 9-13
object-comparison function
12-13
object-counting function
12-13
object model implementation
and 5,17
property-from-object
accessor functions 18-20
property-from-property
accessor 23-24
and whose clauses 1213,
14, 16-17
See also object model
implementation
object counting (MacApp),
memory leaks and 76, 77
object descriptors
extracting raw data from 15
See also object accessors;
object specifiers
object display (MacApp) 76
detecting access faults
80-82
detecting memory leaks
78-80
implementing 82-83
object heap discipline (MacApp),
memory management and 76,
83-85
object model implementation
'aete' resource 13, 24, 26
application-specific
coercions 24-25
components of 5-6
flattening lists 20-21
object-first approach 6, 26
“properties” property 22-23
resolving object specifiers
5-6

INDEX

125

the three big gotchas 13-22
useful error codes 25-26
See also object accessors
object models
coding for scriptability 4-27
See also object accessors;
object model
implementation
object specifiers
Apple event parameters as
13-16
resolving 5-6
See also object accessors
Object Support Library (OSL),
calling object accessors 5, 17
ODMemory utility library
(OpenDoc) 28, 29, 31
ODNewHandle (OpenDoc) 31
ODNewPtr (OpenDoc) 28, 31
ODNewRgn (OpenDoc) 31
ODReadPartialResource
(OpenDoc) 30
ODReadResource (OpenDoc) 30
OpenDoc
allocating regions 31
creating heap zones 31
Document Info dialog 29
exception handling 29
memory management and
the Toolbox 28-31
Memory Manager 28-31
memory partition 29
resource chain 30
resource file access 30
Web site 29
“OpenDoc Road, The” (Gaul and
Lo), OpenDoc Memory
Management and the Toolbox
28-31
Open Transport, mapping error
numbers (Macintosh Q & A)
103-104
OpenTransport.h header (Open
Transport), Macintosh Q & A
104
Option AutoDelete command
(StreamEdit) 89
OSLClassDocument.c file
(Sketch) 6, 7
OSLClassGraphicObject.c file
(Sketch) 6, 7
OSLCompareObjectsCallback 14
OTDestroySystemTask (Open
Transport), Macintosh Q & A
103

126 develop Issue28 December 1996

OTErrMacsBug demd (Open
Transport), Macintosh Q & A
104

OTScheduleSystemTask (Open
Transport), Macintosh Q & A
103

P

package freezing (Newton Q & A)
114
part editors (OpenDoc)
memory management
28-31
memory partition 29
pickerDef (Newton Q & A)
115117
picture comments, printing and
56
PlatformAllocateBlock (MacApp)
84
PlatformMemory.cp file (MacApp)
76, 85
PlatformMemory.h file (MacApp)
76, 85
Polaschek, Dave 56
polyhedral primitives (QuickDraw
3D) 40-55
comparing 52-55
polyhedron (QuickDraw 3D)
4047, 53
creating 44-46
data structure 44
geometric editing 47, 53
rendering the edges 42-44,
53
specifying the edges 46
topological editing 47, 53
PostScriptBegin picture comment
57
PostScript code
Macintosh Q & A 106
printing and 57-58
PostScriptEnd picture comment
57
PostScript font management 58
PostScriptHandle picture comment
57
PPClInfoSampler
control panel interface 97
detecting misaligned data
96-97
output categories 96
sample output 97
PPD file, and printer resolution
(Macintosh Q & A) 106
PrGeneral (Printing Manager)

Macintosh Q & A 106
and printer resolution
56-57

Print command (StreamEdit) 89

“Print Hints” (Polaschek), Safe
Travel Through the Printing
Jungle 56-58

PrintMonitor (Macintosh Q & A)
102

PrintObjectCount (MacApp) 77

ProcessFormRange, object
accessors and 11-12

Projector (MPW), KON & BAL
puzzle 122

PropertyFromGraphicObject-
Accessor 18-20

PropertyFromListAccessor 18-20

PropertyFromObjectAccessor
1820

protoListPicker (Newton Q & A)
115117

protoPeoplePicker (Newton
Q&A) 117

PutReplyErrorMessage (Sketch)
26

PutReplyErrorNumber (Sketch)
26

Q

Q3 Camera_SetPlacement
(QuickDraw 3D) 3
Q3DrawContext_SetDoubleBuffer-
State (QuickDraw 3D),
Macintosh Q & A 101
Q3Object_Dispose (QuickDraw
3D) 41
Q3Vector3D_Normalize
(QuickDraw 3D) 3
Q3ViewHints_New (QuickDraw
3D), Macintosh Q & A 101
qlen value (Open Transport),
Macintosh Q & A 104
QTINSTAL.INI (QuickTime for
Windows), Macintosh Q & A
107109
qtma_EventLengthBackward
(QuickTime), Macintosh
Q&A 107
qtma_EventLengthForward
(QuickTime), Macintosh
Q&A 107
quadrics (QuickDraw 3D) 33-39
quartics (QuickDraw 3D) 33-39
QuickDraw 3D
attribute sets 41

bleed-through (Macintosh
Q&A) 101
collision detection
(Macintosh Q & A) 101
conics, quadrics, and quartics
3339
design principles 41
polyhedral primitives 40-55
retained mode/immediate
mode 41
screen flicker (Macintosh
Q&A) 101
UV attributes (Macintosh
Q&A) 101
view hints (Macintosh
Q&A) 101
See also geometric primitives
(QuickDraw 3D)
QuickDraw GX
curve measurement 70
dashing a shape 61-62, 70
drawing curve layouts
62-66
drawing text on a curve using
dashing 62
editing curve layouts 6669
font design (Macintosh
Q&A) 102
hit testing 66, 67-68
line layout 60-71
points along a path 63-66
using dashing to highlight
67, 68-69
See also CurveLayout library
(QuickDraw GX)
“QuickDraw GX Line Layout:
Bending the Rules” (Lipton)
6071
QuickTime, data transfer rate
(Macintosh Q & A) 107
QuickTime for Windows
“.INT” file (Macintosh
Q & A) 107-109
mixing audio tracks
(Macintosh Q & A) 109

R

regular expressions (StreamEdit)
88-89

RemoveScript (Newton Q & A)
113, 114

RemoveSlot (Newton Q & A)
113

Replace command (StreamEdit)
89

resource chain (OpenDoc) 30

resource file access (OpenDoc) 30

retained mode (QuickDraw 3D)
41

Retrospect Remote, KON & BAL
puzzle 118

Reuter, Ron 4

S

Schneider, Philip J. 32
scriptability
coding your object model for
4-27
See also object models
sed tool (UNIX) 88
Set command (StreamEdit) 89
Set Data event handler 14
and the “properties”
property 23
SetLineWidth picture comment
56
SetProperties (Sketch) 23
setRslOp (PrGeneral) 56-57
SetZone, OpenDoc and 31
shading UVs (QuickDraw 3D),
Macintosh Q & A 101
ShapeWalker library (QuickDraw
GX) 68, 70
Simple Input-Output Window
(SIOW), MacApp debugging
and 78
SIZE resource (Macintosh Q & A)
102
Sketch sample application 4
containment hierarchy 7-8
object accessors 8-9
resolving object specifiers 6
token structure 5
SOMobjects for Mac OS,
OpenDoc exception handling
and 29
source code control 72-75
and cross-platform
development 74-75
non-ASCII characters 75
StreamEdit (MPW) 88-90
complex addresses 89
control commands 89
editing commands 89
internal buffers 88
output commands 89-90
pattern-matching language
88
setting variables 89
sharing addresses 88-89
text arguments to commands
89-90

ToolServer and 88
_StuffXNoteEvent (QuickTime),
Macintosh Q & A 107
Submit (QuickDraw 3D) 34, 41
surface UVs (QuickDraw 3D),
Macintosh Q & A 101

T

TAppleEvent, MacApp and 78
TAppleEvent::WriteLong,
MacApp and 82
technical writing tips 110112
text shapes (QuickDraw GX) 62
TObject-based memory leaks,
MacApp and 77, 87
T'Object-based objects (MacApp)
construction/destruction 78
detecting access faults
80-81
object heap discipline and
83-85
TObject::ShallowClone (MacApp)
77
tokens, object model
implementation and 5
"Toolbox, and OpenDoc memory
management 28-31
ToolServer, SteamEdit and 88
tori (QuickDraw 3D) 36-39
partial 38
TQ3AttributeSet (QuickDraw
3D) 41,47, 52
TQ3CameraData (QuickDraw
3D), Macintosh Q & A 102
TQ3HitData (QuickDraw 3D),
Macintosh Q & A 102
TQ3Point3D (QuickDraw 3D)
41, 48
TQ3Vector3D (QuickDraw 3D)
41, 48
TQ3Vertex3D (QuickDraw 3D)
40, 41, 50
trigrids (QuickDraw 3D) 50, 52,
53, 54
trimeshes (QuickDraw 3D)
47-49, 53, 54-55
data structure 48
geometric editing 49, 53
topological editing 49, 53
uniform-attributes
requirement 47, 54-55
TrueEdit (QuickDraw GX),
Macintosh Q & A 102
T'ServerCommand, fixing access
faults 82

INDEX

127

TTwistDownApp::GetContained
Object, MacApp and 80, 81
T'TwistDownDocument, MacApp

and 86
TuneFlush (QuickTime),
Macintosh Q & A 107
TuneGetState (QuickTime),
Macintosh Q & A 107
TuneResume (QuickTime),
Macintosh Q & A 107
Twist Down Lists, MacApp and
76, 77
TYourApplication::DoSetupMenus
(MacApp) 77

U

UnDefGlobalVar (Newton
Q&A) 113

Undifference (GNU diff) 72-75

“<unknown name>” folder, KON
& BAL puzzle 118-122

“Untitled Person” (Newton
Q&A) 113114

UODbject.cp file (MacApp) 76, 77,

82

UODbject.h file (MacApp) 76, 77,
82

UpdateGWorld, use TempMem
flag and 31

UseRsrcM utility library
(OpenDoc) 30

v

vertexIndices field (QuickDraw
3D) 43

“Veteran Neophyte, The”
(Monroe), Confessions of a
Veteran Technical Writer
110112

view hints (QuickDraw 3D),
Macintosh Q & A 101

view inheritance (Newton Q & A)
115

W
weak array (Newton Q & A) 117

whatT he notification (Newton
Q&A) 114
whose clauses
and object accessors 1213
resolving 14, 16-17

X

XmitSoupChange (Newton
Q&A) 114

Y

yon (QuickDraw 3D), Macintosh
Q& A 101

y 4

ZoneRanger (Metrowerks) 31

If you don’t tell us, who will?

We encourage your questions, suggestions, kind words, or even gripes about develop.

Please drop us a line and let us know what’s on your mind.

Send editorial comments to
develop@apple.com or to:

Send technical questions
about develop to:

Dave Johnson

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
dkj@apple.com

Fax: (408)974-0544

Caroline Rose

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
crose@apple.com

Fax: (408)974-0544

If you have a subcription-related query, please contact Apple Developer Catalog
at order.adc@applelink.apple.com, or call them at 1-800-282-2732 in the U.S.,
1-800-637-0029 in Canada, or (716)871-6555 elsewhere.

128 develop Issue28 December 1996

RESOURCES

Apple provides a wealth of information,
products, and services to assist developers.
The Apple Developer Catalog and Apple
Developer University are open to anyone
who wants access to development tools
and instruction. Additional information
and services are available through

Apple’s Developer Programss.

The Apple Developer Catalog
offers worldwide access to
development tools, resources,
training products, and information
for anyone interested in developing
applications on Apple platforms.
"This complimentary catalog features
hundreds of Apple and third-party
development products and offers
convenient payment and shipping
options, including site licensing.

Apple Developer University

(DU) provides courses to get you
started programming on Apple
platforms, as well as advanced, in-
depth training on new technologies
such as QuickTime VR, QuickDraw
3D, OpenDoc, Apple Guide, and
Newton.

In addition to classroom training,
self-paced courses are available
through the Apple Developer Catalog,
and free introductory tutorials are
provided on the DU Web site, at
http://www.devworld.apple.com/dev/
du.sheml.

The Macintosh Developer
Program provides members with
ongoing Macintosh-related technical
information and services. It includes:

¢ The monthly Apple Developer
Mailing, which includes the
Developer CD Series.

* Macintosh technology seeding.

* Programming-level technical
support via e-mail. Apple offers a
number of options for varying
levels of technical support.

The Newton Developer Program
provides ongoing Newton-related
technical information and services.
It includes:

¢ The monthly Newton Developer
Mailing.

¢ The quarterly Newton Developer
CD.

¢ Newton development class
discounts.

* Programming-level technical
support via e-mail. Apple offers a
number of options for varying
levels of technical support.

The Apple Media Program
(AMP) provides resources to keep
multimedia developers up-to-date
on Apple’s offerings for authoring
and playback. For more about the
benefits and resources of this
program, visit the AMP Web site
at http://www.amp.apple.com.

Apple Developer Catalog To order a
product or receive a catalog, call 1-800-
2822732 inthe U.S., 1-800-637-0029 in
Canada, (716)871-6555 internationally, or
(716)871-6511 for fax. You can also send
esmail to order.adc@applelink.apple.com,
or write Apple Developer Catalog, PO. Box
319, Buffalo, NY 14207-0319. The Apple
Developer Catalog is also on the Web at
http:/ / www.devcatalog.apple.com.

Apple Developer University Course
descriptions and schedules can be found

at http:/ / www.devworld.apple.conv dev/
du.shtml on the Web. You can also call
(408)974-4897, fax (408)974-0544, send
e-mail to devuniv@apple.com, or write
Developer University, Apple Computer, Inc.,
1 Infinite Loop, M/ S 305-1 TU, Cupertino,
CA 95014.

Apple Developer Programs These
programs vary on a country-by-country basis.
For more information on any of Apple’s
developer support programs worldwide, call
(408)974-4897, fax (408)974-7683, or
send e-mail to devsupport@apple.com. Also
see the Developer Programs Web site at
http:/ / www.devworld.apple.conv dev/
programs.shtml.

