
Designing Cards and Drivers
for -the Macintosh Family
by Apple Computer, Inc.

• Designing Cards and Drivers
for the Macintosh Family

Third Edition

....
~~

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid Sanjuan
Paris Seoul Milan Mexico City Taipei

• APPLE COMPUTER, INC.

© 1992, Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying,
recording, or otherwise, without
prior written permission of Apple
Computer, Inc. Printed in the
United States of America.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014-6299
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleTalk, A/UX,
EtherTalk, LaserWriter, Macintosh,
MPW, and SANE are trademarks of
Apple Computer, Inc., registered in
the United States and other countries.

Applecolor, Apple Desktop Bus,
A/ROSE, QuickDraw, and SuperDrive
are trademarks of Apple Computer,
Inc.

Adobe Illustrator and PostScript are
registered trademarks of Adobe
Systems Incorporated.

HyperCard is a trademark of Claris
Corporation.

IBM is a registered trademark of
International Business Machines
Corporation.

rrc Garamond and ITC Zapf
Dingbats are' registered trademarks of
International Typeface Corporation.

Microsoft is a registered trademark of
Microsoft Corporation.

Motorola is a registered trademark of
Motorola Corporation.

NuBus is a trademark of Texas
Instruments.

Sony is a registered trademark of
Sony Corporation.

Simultaneously published in the
United States and Canada.

ISBN 0-201-60855-3
1 2 3 4 5 6 7 8 9-MU-9695949392
First printing, April 1992

iIMITED WARRANTY ON MEDIA
AND REPlACEMENT

ALL IMPLIED WARRANTIES ON
TIllS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINEIT (90)
DAYS FROM TIlE DATE OF TIlE
ORIGINAL RETAIL PURCHASE
of TIllS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY OR
REPRESENTATION, EITHER
EXPRESS OR IMPLIED, WITH
RESPECT TO TIllS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABIIJIT, OR
FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, TIllS
MANUAL IS SOLD "AS IS," AND
YOU, TIlE PURCHASER, ARE
ASSUMING TIlE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND
REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU
OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent,
or employee is authorized to
make any modification, extension,
or addition to this warranty.

Some states do not allow the
exclusion or limitation of implied
warranties or liability for incidental
or consequential damages, so the
above limitation or exclusion may
not apply to you. This warranty
gives you specific legal rights, and
you may also have other rights
which vary from state to state.

Contents

Figures and tables / xix

Preface About This Book / xxxi
Design philosophy / xxxii
Conventions used in this book / xxxii

The Courier font / xxxiv
About the mechanical drawings and design guides / xxxv
About the Macintosh technical documentation / xxxv
How to get more information / xxxvii

APDA / xxxviii
User groups / xxxviii
Apple Developer Services / xxxix

Introduction Expansion Strategy for the Macintosh Family / 1
Limiting the number of expansion interfaces / 2
NuBus expansion / 3
Processor-direct slot (PDS) expansion / 3

The 68000 and 68020 Direct Slot expansion interfaces / 4
The 68030 Direct Slot expansion interface / 5
The 68040 Direct Slot expansion interface / 5
Recommended strategy for 68030 and 68040 Direct Slot expansion
card design / 6
Converting your designs / 7

Application-specific expansion / 7
Slot strategy summary / 7

iii

Part I The NuBus Expansion Interface / 9
About Part I / 10
Addressing design philosophy / 11
NuBus use and licensing requirements / 12

1 Overview of Macintosh Computers With the
NuBus Interface / 13
Major features / 14
Hardware architecture / 18

RAM / 28
ROM / 28
Device I/O / 29
Address/data bus / 30

Macintosh IIsi NuBus interface / 31
NuBus interface architecture / 31

Processor bus-to-NuBus state machine / 32
NuBus-to-processor bus state machines / 34

2 NuBus Overview / 37
NuBus features / 38
NuBus elements / 39
NuBus '90 features / 41
NuBus signal classifications / 41
NuBus timing / 44
NuBus terminology / 44

3 NuBus Data Transfer / 51
Utility signals / 52

Clock signals / 52
Reset signal / 52
Power fail warning signal/53
Nonmaster request signal/53
Serial bus signals / 54
Card slot identification signals / 54

Signal line determinacy / 55

iv Designing Cards and Drivers for the Macintosh Family

Data-transfer signals / 56
Control signals / 56
Address/data signals / 57
Bus parity signals / 57
Cache-coherency signals / 58

Data-transfer specifications / 58
Single data cycle transactions / 59

Read transactions / 60
Write transactions / 61
Acknowledge cycles / 63
Attention cycles / 63

Interrupt operations / 65
By write transaction / 65
By slots sharing a single NuBus /NMRQ line / 65
By a dedicated /NMRQ line from each slot / 65

IX block data transfers / 66
IX block read / 67
IX block write / 68
IX block transfer errors / 70

2X block data transfers / 70
Signal protocol for 2X block transfers / 71
2X block-transfer flow control / 72
2X block read transfer / 72
2X block write transfer / 75
2X block write transfer with delayed status indication / 79

Cache coherency / 81
Cache line states and sizes / 82
Read and write miss / 82
Snooping / 83
Cache-coherency transactions / 83

ReadShared / 84
ReadExclusive / 84
ReadInvalidate / 85
ReadNosnoop / 85
WriteExclusive / 85
WriteInvalidate / 85
WriteNosnoop / 86
AttentionShared / 86
AttentionExclusive / 86
AttentionInvalidate / 86

Contents v

Non-cache-coherent transactions to caching modules / 87
Cache-coherent states / 87
Cache-coherent masters / 90
Arbitration by cache-coherent modules / 92

Nonaligned microprocessor accesses / 93
Nonaligned reads / 94
Nonaligned writes / 94

Data caching / 94
Compliance categories / 94

4 NuBus Arbitration / 97
Arbitration overview / 98
Arbitration logic mechanism / 99
Arbitration timing overview / 101
Locking / 101

Bus locking / 103
Resource locking / 104

Bus parking / 105

5 NuBus Card Electrical Design Guide / 107
Electrical requirements / 108

Logical and electrical state relationships / 108
DC and AC specifications for line drive / 108
/PFW interaction with the power supply / 110
NuBus connector pin assignments / 111
Power supply specifications / 113
NuBus power budget / 114

Timing requirements / 116
Utility and data-transfer timing / 116
Arbitration timing / 117

vi Designing Cards and Drivers for the Macintosh Family

6 NuBus Card Physical Design Guide / 119
Card description / 120
NuBus connector description / 122
NuBus expansion card internal connectors / 125
Recommended heat disSipation guidelines / 127
NuBus slot ordering / 127
Physical implementation of the Macintosh IIsi NuBus adapter kit / 128

7 NuBus Card Memory Access / 131
NuBus address space / 132
Address allocations for Macintosh computers with NuBus / 134

Slot allocations / 136
NuBus bit and byte structure / 136

Byte smearing / 138

8 NuBus Card Firmware / 141
An introduction to the firmware / 142

The Slot Manager and the declaration ROM / 142
sResources / 143
How sResources are implemented / 144
The sRsrcType entry / 145
How to configure the sRsrcType fields for video card
sResources / 147

sRsrcType fields for a video card functional sResource / 147
sRsrcType fields for a video card board sResource I 148

How QuickDraw interacts with the Slot Manager and declaration
ROM / 149
Summary of firmware design objectives / 150
Obtaining card identification and sRsrcType values from
MacDTS / 151

Data types / 152

Contents vii

Firmware structure / 153
The format block / 156

ByteLanes / 158
Reserved / 159
TestPattern / 159
Format / 159
RevisionLevel / 159
CRC / 160
Length / 160
DirectoryOffset / 160

The sResource directory / 161
sResource structur~ / 162
Apple-defined sResource entries / 163

sRsrcType / 165
sRsrcName / 166
sRsrcIcon / 166
sRsrcDrvrDir / 166
sRsrcLoadRec / 167
sRsrcBootRec / 168
sRsrcFlags / 169
sRsrcHWDevld / 169
MinorBaseOS / 170
MinorLength / 170
MajorBas~OS / 170
MajorLength / 170
sRsrcCicn / 170
sRsrcIcl8 / 170
sRsrcIcl4 / 171
sMemory / 171

The board sResource / 174
Boardld / 175
PRAMlnitData / 176
Primarylnit / 176
STimeOut / 178
Vendorlnfo / 178
Secondarylnit / 179

NuBus block-transfer mode sResource entries / 180

viii Designing Cards and Drivers for the Macintosh Family

Additional firmware requirements of video cards / 182
Identifying direct devices / 183
Identifying 32-bit addressable configurations / 183
Icons / 184
Apple-defined video sResource entries / 185

sGammaDir / 185
sRsrcVidNames / 185

Gamma table data / 186
Video mode name directory / 186
Video card name / 187
Resolution / 187

Sample code / 187
Macintosh Coprocessor Platform / 188

9 NuBus Card Driver Design / 189
Storing the driver code for a NuBus card / 190
Specific and generic drivers / 190

Card-specific drivers / 190
Card-generic drivers / 191

The sDriver record / 193
Installing a driver at startup / 193
Calling a driver / 195
Slot device interrupts / i97

SIntInstall / 198
SIntRemove / 198
PollRoutine / 198

Video drivers / 200
Video declaration ROM information / 201

Video driver routines / 202
Video driver data structures / 204
Contedl routines / 205
Status routines / 211

Gamma correction in Macintosh computers / 213
How gamma correction works / 213
The gamma table data structure / 215
Using gamma correction / 216

Video driver example / 216
Summary / 217

Data types / 217

Contents ix

Interrupt queue routines / 218
Advanced control routines / 218
Status routines / 219
Assembly-language information / 219

Data structures / 219
Interrupt queue routines / 220

10 NuBus Design Examples / 221
NuBus Test Card / 222

Overview of operation / 222
Programming model / 222
Byte swapping and the NTC / 223
Programming the NTC / 225

Word read (Macintosh computer RAM) / 225
Halfword 0 write / 226

Hardware organization / 226
NuBus address/data buffers / 227
Address and Data registers / 227
Address comparison / 227
SLAVE PAL / 227
ARB PAL / 227
MASTER PAL / 228
MISC PAL / 228
NBDRVR PAL / 228

Slave operation / 230
Master operation / 230

SCSI-NuBus Test Card / 231
Software overview / 231
Hardware overview / 231

NuBus transceivers (ALS651's) / 234
Slot Decode (F86/F30) / 235
NuBus state machine (stNUBUS1 PAL) / 235
NuBus signal generator (stNUBUS2 PAL) / 235
Decode and timing (stMISC PAL) / 235
SCSI chip (NCR5380) / 235
Pseudo-ROM / 236
RAM / 236

PAL descriptions / 236

x Designing Cards and Drivers for the Macintosh Family

A simple disk controller / 236
System configuration / 236

Controller card block diagram / 237
Floppy disk controller logic / 239

NuBus interface logic / 239
Programmed I/O operations / 240
On-card DMA operations / 241

Memory map and the declaration ROM / 242

11 The Macintosh II Video Card / 245
Video card overview / 246
Functional operation / 247

Processor-to-video card interface / 248
Timing generation / 248
Frame Buffer Controller / 248
Video RAM / 249
Color look-up table / 252

Horizontal and vertical scan timing / 252
Declaration ROM operation / 255

Configuration data / 255
The driver / 256
The primary initialization code / 257

Firmware interfaces / 257
Card connectors / 259

Video connector / 259
External-signal connector / 260

Part II The Processor-Direct Slot Expansion Interface / 261
About Part II / 262

Contents xi

12 Overview of Macintosh PDS Computers / 265
Major features / 266
Hardware architecture / 268

RAM / 275
ROM / 276
Device I/O / 276

PDS expansion interface / 276
The 68000 Direct Slot / 277
The 68020 Direct Slot / 277
The 68030 Direct Slot / 278
The 68040 Direct Slot / 279
Additional support for expansion / 279

13 Electrical Design Guide for 68000 Direct Slot Expansion
Cards / 281
68000 Direct Slot expansion for the Macintosh SE / 282

Electrical description of the Macintosh SE expansion
connector / 282
Functional description of the Mc68000 signals in the
Macintosh SE / 288
Accessing the Macintosh SE electronics from an expansion card / 290

Accessing I/O devices from an expansion card / 290
Accessing RAM from an expansion card / 291
Deviating from the normal RAM access method / 294

Available Macintosh SE address space / 296
Power consumption guidelines for Macintosh SE PDS expansion
cards / 298

68000 Direct Slot expansion for the Macintosh Portable / 299
Electrical description of the Macintosh Portable expansion
connector / 299
Functional description of the Mc6sHCOOO signals in the Macintosh
Portable / 301
Power consumption guidelines for Macintosh Portable PDS
expansion cards / 302

xii Designing Cards and Drivers for the Macintosh Family

14 Electrical Design Guide for 68020 Direct Slot Expansion
Cards / 303
68020 Direct Slot expansion for the Macintosh LC / 304

Electrical description of the expansion connector / 304
Load/drive limits of the PDS expansion connector signals for the
Macintosh LC / 307

Electrical design guidelines for the Macintosh LC 68020 Direct Slot
expansion card / 310

Address decode and memory mapping / 310
Addressing guidelines / 311
Electrical design considerations / 311
Accessing I/O and memory devices from the Macintosh LC
expansion card / 312

Power consumption guidelines for Macintosh LC PDS expansion
cards / 313

15 Electrical Design Guide for 68030 Direct Slot Expansion
Cards / 315
68030 Direct Slot expansion / 316

68030 Direct Slot expansion card compatibility issues / 316
Electrical description of the Macintosh SE/30 and the Macintosh IIsi
68030 Direct Slot / 317
Electrical description of the Macintosh IIfx 68030 Direct Slot / 327

Functional description of the Mc68030 signals / 335
Macintosh SE/30 and Macintosh IIsi 68030 Direct Slot machine
specific signals / 338
Machine-specific signals for the Macintosh IIfx 68030 Direct
Slot / 339

Electrical design guidelines for Macintosh SE/30 and Macintosh IIsi PDS
expansion cards / 340

Memory and I/O access from a Macintosh SE/30 expansion
card / 340
Memory and I/O access from Macintosh IIsi expansion cards / 343

RAM access from a PDS expansion card in the
Macintosh IIsi / 344

Pseudoslot design guidelines for Macintosh SE/30 and Macintosh IIsi
expansion cards / 349
Interrupt handling for the Macintosh SE/30 and Macintosh IIsi 68030
Direct Slot / 351

Contents xiii

Design hints for Macintosh SE/30 and Macintosh IIsi expansion
cards / 352
Power consumption guidelines for Macintosh SE/30 and Macintosh
IIsi PDS expansion cards / 353

Macintosh IIfx expansion card design / 354
Pseudoslot design guidelines for Macintosh IIfx PDS
expansion cards / 355
Memory cycle termination in the Macintosh IIfx / 355
Interrupt handling for the Macintosh IIfx 68030 Direct Slot / 356
Bus master priority scheme for the Macintosh IIfx / 356
Effect of Macintosh IIfx clock speeds on PDS expansion card
design / 357
Using the Macintosh IIfx cache memory / 358
Additional design hints / 358
Power consumption guidelines for Macintosh IIfx PDS expansion
cards / 359

Macintosh IIsi PDS adapter card / 359
Macintosh IIsi adapter card cache signals / 361
Power consumption guidelines for the Macintosh IIsi
adapter card / 362

16 Electrical Design Guide for 68040 Direct Slot Expansion
Cards / 363
68040 Direct Slot expansion / 364

Electrical description of the 68040 Direct Slot / 364
Design considerations for 68040 Direct Slot expansion cards / 372

Bus master priority scheme / 373
Memory and I/O access for expansion cards / 374
Pseudoslot design guidelines for PDS expansion cards / 376
Timing considerations / 377
68040 Direct Slot interrupt handling / 377
Cache management / 379

Cache management by ROM / 379
Cache management by applications / 380

Design hints for PDS expansion cards in Macintosh Quadra-family
computers / 380
Power consumption guidelines for 68040 Direct Slot expansion
cards / 381

xiv Designing Cards and Drivers for the Macintosh Family

17 Physical Design Guide for Macintosh PDS Expansion
Cards / 383
Physical guidelines for Macintosh SE expansion cards / 384

The 68000 Direct Slot 96-pin connector for the Macintosh SE / 386
External connections for the Macintosh SE / 389

Physical guidelines for Macintosh Portable expansion cards / 392
Physical guidelines for Macintosh LC expansion cards / 395

Macintosh LC external access opening / 401
Expansion card installation for the Macintosh LC / 401

Physical guidelines for Macintosh SE/30 expansion cards / 401
The 68030 Direct Slot 120-pin connector for the
Macintosh SE/30 / 408
External connection for a Macintosh SE/30 expansion card / 410

Physical guidelines for Macintosh IIfx PDS expansion cards / 412
PhYSical guidelines for Macintosh IIsi Direct Slot expansion cards / 413

Physical implementation of the Macintosh IIsi 68030 Direct Slot
adapter kit / 413
External connections for the Macintosh IIsi PDS expansion
card / 414
Design considerations for Macintosh IIsi PDS expansion cards / 415
Macintosh IIsi adapter cards / 415

Physical guidelines for 68040 Direct Slot expansion cards / 417

18 Processor-Direct Slot Design Example / 419
Disk controller overview / 420
System configuration / 420
Interface card block diagram / 421
Floppy disk controller logic / 423
Macintosh SE interface logic / 423

Programmed I/O operations / 424
DMA operations / 426

Address allocation / 427

Contents xv

Part m Application-Specific Expansion Interfaces I 429
About Part III / 430

19 Application-Specific Expansion Interfaces for Macintosh
Computers I 43i
Major features / 432
Hardware architecture / 434

RAM / 441
ROM / 441
Device I/O / 441

20 lAM Expansion Interface I 443
Macintosh Portable RAM expansion / 444

Macintosh Portable RAM expa,{lsion address space / 444
RAM expansion cards for the Macintosh Portable / 447
RAM expansion cards for the backlit Macintosh Portable / 450

RAM expansion-slot timing for the backlit Macintosh
Portable / 451

Design considerations for RAM expansion in the backlit Macintosh
Portable / 453

Macintosh Classic RAM expansion / 453
Macintosh Classic RAM expansion address space / 453
Electrical description of the RAM expansion cards for the Macintosh
Classic / 454
Physical design guide for a Macintosh Classic RAM expansion
card / 457

RAM expansion for the PowerBook 140 and PowerBook 170 / 459
Expansion connector signals for the PowerBook 140 and
PowerBook 170 / 460
RAM expansion card design guide for the PowerBook 140 and
PowerBook 170 / 465

Macintosh PowerBook 100 RAM expansion / 467
RAM address space for the PowerBook 100 / 467
PowerBook 100 RAM expansion connector signals / 469
Design hints for the PowerBook 100 RAM expansion card / 473
PowerBobk 100 RAM expansion card design guide / 474

xvi Designing Cards and Drivers for the Macintosh Family

21 ROM Expansion Interface / 475
Macintosh Portable ROM expansion / 476

ROM expansion address space in the Macintosh Portable / 476
ROM expansion cards for the Macintosh Portable / 476
Design considerations for ROM expansion in the
Macintosh Portable / 479
MaCintosh Portable EDisks (electronic disks) / 480
the EDisk driver for the Macintosh Portable / 481

Data checksumming / 481
EDisk driver operation / 482
EDisk header format / 482

FPU/ROM expansion for the Macintosh Classic II computer / 484
Electrical description of the Macintosh Classic 1I FPU/ROM
expansion slot / 485
ROM expansion address space in the Macintosh Classic II
computer / 489
Physical design guidelines for the Macintosh Classic II FPU/ROM
expansion card / 491
Macintosh Classic II FPU/ROM expansion connector power
budget / 492

22 Modem Expansion Interface / 493
Macintosh Portable modem card / 494

Modem card hardware interface for the Macintosh Portable / 494
Modem connector electrical interface for the Macintosh
Portable / 496
Physical design guide for a Macintosh Portable modem card / 498
Modem power-control interface for the Macintosh Portable / 498

Power-up/power-down timing / 499
Ring detection / 501
Modem card power requirements / 501

Telephone network interface / 501

Cbntents xvii

Modem expansion cards for the PowerBook-family computers / 502
Modem card hardware interface for the PowerBook-family
computers / 502
Modem connector electrical interface for the PowerBook-family
computers / 505
Physical design guide for the PowerBook-family modem expansion
card / 507
Modem power-control interface for the PowerBook family / 509
Modem operation for the PowerBook family / 510

Power-up/power-down timing / 510
Ring detection / 513
Modem card power requirements / 513

Telephone network interface / 513
Standards information for reference /·514

Compatibility and modulation / 514
Transmit carrier frequencies / 514
Guard tone frequencies and transmit levels (CCITT only) / 515
Answer tone frequency / 515
Received signal frequency tolerance / 515

23 Macintosh Uei Cache Memory Expansion / 517
Cache memory expansion overview / 518

How the cache works / 519
Using the cache / 519

Gaining access to the cache card / 520
Electrical description of the cache connector / 521
Electrical design guidelines for the cache card / 527
Mechanical design guidelines for the cache card / 528
Power consumption guidelines / 530

A EMI, Heat Dissipation, and Product Safety Guidelines / 531
EMI guidelines for expansion cards / 532

Without external I/O connections / 532
With external I/O connections / 533

Heat dissipation guidelines / 534
Heat dissipation guidelines for NuBus cards / 534
Heat dissipation guidelines for PDS cards / 535

Product safety / 536

xviii Designing Cards and Drivers for the Macintosh Family

B Sample Video Card Firmware / 539

C Video Card Driver Example / 563

D PAL Listing for the NuBus Test Card / 591

E PAL Listing for the SCSI-NuBus Test Card / 601

Glossary / 605

Index / 613

Foldouts / 623

Contents xix

Figures and tables

Preface About This Book / xxxi

Table P-l Macintosh technical documentation / xxxvi

1 Overview of Macintosh Computers With the NuBus Interface / 13

Figure 1-1 Block diagram of the Macintosh II computer / 21
Figure 1-2 Block diagram of the Macintosh Ilx and Macintosh IIcx

Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8

computers / 22
Block diagram of the Macintosh llci computer / 23
Block diagram of the Macintosh Ilfx computer / 24
Block diagram of the Macintosh Ilsi computer / 25
Block diagram of the Macintosh Quadra 700 computer / 26
Block diagram of the Macintosh Quadra 900 computer / 27
Bus interface architecture for the Macintosh II, Macintosh

IIx, and Macintosh Ilcx computers / 33
Figure 1-9 NuBus-to-processor bus translation / 35

Table 1-1 Major features of Macintosh computers with the NuBus
interface / 14

2 NuBus Overview / 37

Figure 2-1
Figure 2-2
Figure 2-3

Table 2-1
Table 2-2

Table 2-3
Table 2-4

Simplified NuBus diagram / 40
NuBus signal timing / 44
Cycle and transaction relationships / 50

Design objectives and features / 38
Signal classifications in the original NuBus
implementation / 42
Classes of NuBus '90 signals / 43
NuBus expansion interface terminology / 45

xx Designing Cards and Drivers for the Macintosh Family

3 NuBus Data Transfer / 51

Figure 3-1 Words, halfwords, and bytes / 59
Figure 3-2 Timing of NuBus read transaction / 61
Figure 3-3 Timing of NuBus write transaction / 62
Figure 3-4 Timing of NuBus IX block read transaction / 67
Figure 3-5 Timing of NuBus IX block write transaction / 69
Figure 3-6 Timing of NuBus 2X block read transaction / 73
Figure 3-7 Timing of NuBus 2X block write transaction / 76
Figure 3-8 Timing of NuBus 2X block write with delayed status

indication / 79

Table 3-1 Transfer mode coding / 57
Table 3-2 Transfer status coding / 63
Table 3-3 Attention cycle coding / 64
Table 3-4 Block size and starting address coding for IX block

transfers / 66
Table 3-5 Block size and starting address coding for 2X block

transfers / 72
Table 3-6 Cache-coherent transactions / 83
Table 3-7 Cache-coherent transaction encodings / 88
Table 3-8 Cache-coherent master actions / 91

4 NuBus Arbitration / 97

Figure 4-1 Sample arbitration contest / 99
Figure 4-2 Typical bus arbitration logic / 100
Figure 4-3 NuBus arbitration and transaction timing, single master

and two masters / 102
Figure 4-4 Sample bus lock / 103
Figure 4-5 Read-modify-write indivisible bus operation / 105

5 NuBus Card Electrical Design Guide / 107

Figure 5-1 Data-transfer timing diagram / 116
Figure 5-2 Detailed arbitration timing / 118

Table 5-1 Logical state definitions / 108
Table 5-2 NuBus line drive requirements and load allowances / 109
Table 5-3 Connector pin assignments / 111
Table 5-4 NuBus '90 connector pin assignments / 112
Table 5-5 NuBus '90 signals on the Macintosh Quadra family~NuBus

connectors / 113

Figures and tables xxi

Table 5-6
Table 5-7

Table 5-8
Table 5-9

Power supply specifications / 113
Recommended current and capacitance limits for a
NuBus card / 114
Data -transfer timing parameters / '117
Bus arbitration timing parameters / 118

6 NuBus Card Physical Design Guide / 119

Figure 6-1
Figure 6-2
Figure 6-3

Figure 6-4

Figure 6-5

A 96-pin plug connector for a NuBus expansion card / 124
A 96-pin socket connector on main logic board / 125
Internal connector cabling slot for NuBus expansion
card / 126
NuBus slot ordering on Macintosh IIci, Macintosh
Quadra 700, Macintosh IIcx, Macintosh Quadra 900, and
Macintosh IIfx computers / 128
Installing a NuBus card and adapter on the Macintosh IIsi
main logic board / 129

7 NuBus Card Memory Access / 131

Figure 7-1
Figure 7-2
Figure 7-3

Table 7-1

Table 7-2
Table 7-3
Table 7-4

NuBus address space / 132
Byte-lane mapping / 138
Effect of byte smearing / 139

NuBus slot IDs and slot spaces for Macintosh
computers / 133
24-to-32-bit address translations / 134
NuBus address mapping / 135
Slot allocations / 136

8 NuBus Card Firmware / 141

Figure 8-1

Figure 8-2

Figure 8-3
Figure 8-4
Figure 8-5

Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9

Example of sRsrcType fields for a functional
sResource / 148
Example of sRsrcType fields for a board
sResource / 149
Formats of sBlock and SExecBlock data types / 152
Firmware structure of the Macintosh II Video Card / 154
Firmware structure of the Macintosh II EtherTalk
Interface Card / 155
Format block structure / 156
Format block examples / 158
sResource directory structure / 161
sResource structure / 162

xxii Designing Cards and Drivers for the Macintosh Family

Figure 8-10
Figure 8-11
Figure 8-12

Figure 8-13
Figure 8-14
Figure 8-15

Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 8-5
Table 8-6
Table 8-7
Table 8-8
Table 8-9

The sRsrcType format / 165
Typical sDri ver directory / 167
sMemory resource list for a generic Macintosh
Coprocessor Platform card / 173
Typical board sResource / 175
sPRAMlnit record structure / 176
General block-transfer information / 181

Data types / 152
Possible ByteLanes values / 159
Apple-defined sResource ID numbers / 164
sDriver directory ID numbers / 167
sMemory resource list / 171
Apple-defined board sResource ID numbers / 174
Vendorlnfo ID numbers / 178
Block-transfer information fields / 182
Apple-defined video sResource ID numbers / 185

9 NuBus Card Driver Design / 189

Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5

Table 9-1
Table 9-2

Card-specific driver / 191
Card-generic driver / 192
sDri ver record / 193
Color response without gamma correction / 213
Color response with gamma correction / 214

Video mode list spID values / 201
Video parameter record / 202

10 NuBus Design Examples / 221

Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4

Table 10-1
Table 10-2
Table 10-3
Table 10-4

Master transaction timing, normal and locked / 229
Schematic of SCSI-NuBus Test Card / 232
SCSI-NuBus timing diagram / 234
Floppy disk controller block diagram / 238

Master register interpretation / 223
Register addresses / 223
RAM access signals / 240
Device select decode addresses / 242

Figures and tables xxiii

11 The Macintosh II Video Card / 245

Figure 11-1
Figure 11-2
Figure 11-3

Figure 11-4

Figure 11-5

Table 11-1
Table 11-2

Video card block diagram / 247
Access to video RAM space / 251
Horizontal and vertical scan timing for high-resolution
RGB monitor / 253
Horizontal and vertical scan timing for the RS-170
monitor / 254
Firmware levels / 258

Pin assignments for the video output connector / 259
Pin assignments for the external-signal connector / 260

12 Overview of Macintosh PDS Computers / 265

Figure 12-1
Figure 12-2
Figure 12-3
Figure 12-4

Table 12-1

Block diagram of the Macintosh SE computer / 271
Block diagram of the Macintosh Portable computer / 272
Block diagram of the Macintosh SE/30 computer / 273
Block diagram of the Macintosh LC computer / 374

Major features of Macintosh computers with processor
direct slots / 266

13 Electrical Design Guide for 68000 Direct Slot Expansion
Cards / 281

Figure 13-1
Figure 13-2

Figure 13-3

Figure 13-4
Figure 13-5

Table 13-1

Table 13-2
Table 13-3
Table 13-4
'fable 13-5

Macintosh SE 68000 Direct Slot connector pinout / 284
Timing of video and Mc68000 accesses to RAM in the
Macintosh SE / 292
Timing for reading and writing RAM from a Macintosh SE
expansion card / 294
Macintosh SE address space / 297
Macintosh Portable 68000 Direct Slot connector
pinout / 300

Macintosh SE 68000 Direct Slot signals, loading or driving
limits / 285
Mc68000 signal descriptions / 288
Macintosh SE 68000 Direct Slot power budget / 298
Mc68HCOOO signal deSCriptions / 301
Macintosh Portable 68000 Direct Slot power budget / 302

xxiv Designing Cards and Drivers for the Macintosh Family

14 Electrical Design Guide for 68020 Direct Slot Expansion
Cards / 303

Figure 14-1
Figure 14-2

Table 14-1

Table 14-2

Table 14-3

Table 14-4
Table 14-5

Macintosh LC 68020 Direct Slot connector pinout / 305
Macintosh LC expansion card selection logic / 312

PDS expansion connector signal descriptions for the
Macintosh LC / 306
Non-processor-direct expansion connector signals for the
Macintosh LC / 307
Macintosh LC 68020 Direct Slot signals, loading or driving
limits / 308
Macintosh LC memory map summary / 310
Macintosh LC 68020 Direct Slot power budget / 313

15 Electrical Design Guide for 6~030 Direct Slot Expansion
Cards / 315

Figure 15-1

Figure 15-2

Figure 15-3
Figure 15-4
Figure 15-5
Figure 15-6
Figure 15-7

Table 15-1

Table 15-2

Table 15-3

Table 15-4
Table 15-5

Table 15-6
Table 15-7

Macintosh SE/30 and Macintosh IIsi 68030 Direct Slot
connector pinout / 318
Macintosh IIfx 68030 Direct Slot expansion connector
pinout / 329
Macintosh IIsi RAM burst-write timing / 345
Macintosh IIsi RAM random-write timing / 346
Macintosh IIsi RAM burst-read timing / 347
Macintosh IIsi RAM random-read timing / 348
Macintosh IIsi main logic board expansion
connector / 360

Macintosh SE/30 and Macintosh IIsi 68030 Direct Slot
connector signals / 319
Macintosh SE/30 68030 Direct Slot signals, loading or
driving limits / 324
Macintosh IIsi 68030 Direct Slot signals, loading or driving
limits / 326
Macintosh IIfx 68030 Direct Slot connector signals / 330
Macintosh IIfx 68030 Direct Slot signals, loading or
driving limits / 333
68030 Direct Slot common signals / 336
Macintosh SE/30 and Macintosh IIsi 68030 Direct Slot
machine-specific signals / 339

Figures and tables xxv

Table 15-8

Table 15-9
Table 15-10
Table 15-11
Table 15-12

Table 15-13

Table 15-14
Table 15-15

Macintosh IIfx machine-specific signals on the 68030
Direct Slot / 340
Macintosh SE/30 32-bit physical address spaces / 342
Macintosh IIsi 32-bit physical address spaces / 344
24-to-32-bit logical address translation map / 350
Pseudoslot address ranges for Macintosh SE/30 and
Macintosh IIsi expansion cards / 351
Power budget for a Macintosh SE/30 and Macintosh IIsi
expansion card / 354
Macintosh IIfx bus master priority scheme / 356
Macintosh IIsi custom adapter card signals / 361

16 Electrical Design Guide for 68040 Direct Slot Expansion
Cards / 363

Figure 16-1

Table 16-1
Table 16-2

Table 16-3
Table 16-4

Table 16-5

Table 16-6

Table 16-7

68040 Direct Slot expansion connector pinout / 365

68040 Direct Slot connector signals / 366
Restricted 68040 microprocessor signals on the Macintosh
Quadra 700 and Macintosh Quadra 900 PDS
connectors / 370
68040 Direct Slot signals, loading or driving limits / 371
Bus master priority scheme for the Macintosh Quadra
family computers / 374
Macintosh Quadra 700 and Macintosh Quadra 900 32-bit
physical address spaces / 375
Macintosh Quadra 700 and Macintosh Quadra 900 VIA2
interrupt lines / 378
Macintosh Quadra 700 and Macintosh Quadra 900
interrupt mapping / 378

17 Physical Design Guide for Macintosh PDS Expansion Cards / 383

Figure 17-1
Figure 17-2
Figure 17-3

Figure 17-4

Figure 17-5

Figure 17-6

Macintosh SE expansion card design guide / 384
An expansion card in the Macintosh SE assembly / 385
An expansion card and the Macintosh SE main logic
board / 386
A 96-pin plug connector for a Macintosh SE expansion
card / 387
Macintosh SE connector and mounting supports for an
expansion card / 388
Detail of 96-pin socket connector used on Macintosh SE
main logic board / 389

xxvi Designing Cards and Drivers for the Macintosh Family

Figure 17-7
Figure 17-8
Figure 17-9

Figure 17-10

Figure 17-11
Figure 17-12

Figure 17-13

Figure 17-14

Figure 17-15
Figure 17-16
Figure 17-17
Figure 17-18

Figure 17-19

Figure 17-20
Figure 17-21

Figure 17-22

Figure 17-23

Figure 17-24

Connector card mounting on Macintosh SE chassis / 391
Internal expansion cable routing for Macintosh SE / 392
Expansion connector location on Macintosh Portable
main logic board / 393
The Macintosh Portable 68000 Direct Slot expansion
card / 394
Macintosh LC expansion card design guide / 396
Macintosh LC expansion card component location and
height restrictions / 397
Design guide for Macintosh LC expansion card shield
plate / 398
Positioning the expansion card on the Macintosh LC main
logic board / 399
Plastic supports for Macintosh LC expansion cards / 400
Smallest allowable Macintosh SE/30 expansion card / 402
Largest allowable Macintosh SE/30 expansion card / 403
Largest allowable component heights for a Macintosh
SE/30 expansion card / 404
Expansion connector on the Macintosh SE/30 main logic
board / 405
An expansion card in the Macintosh SE/30 assembly / 406
Orientation of Macintosh SE/30 mounting
hardware / 407
A 120-pin plug connector for a Macintosh SE/30
expansion card / 408
Detail of 120-pin socket connector used on Macintosh
SE/30 main logic board / 409
Internal expansion cable routing for Macintosh
SE/30 / 411

Figure 17-25 Installing a PDS card and adapter on the Macintosh IIsi
main logic board / 414

Figure 17-26 Macintosh IIsi PDS adapter card outline / 416

18 Processor-Direct Slot Design Example / 419

Figure 18-1 Floppy disk controller block diagram / 422
Figure 18-2 Disk controller PIO timing / 425

Table 18-1
Table 18-2

Bus control signals / 423
Device select decode addresses / 427

Figures and tables xxvii

19 AppUcation-Specific Expansion Interfaces for Macintosh
Computers / 431

Figure 19-1
Figure 19-2
Figure 19-3

Figure 19-4

Table 19-1

Block diagram of the Macintosh Classic computer / 437
Block diagram of the Macintosh Classic II computer / 438
Block diagram of the Macintosh PowerBook 100
computer / 439
Block diagram of the Macintosh PowerBook 140 and
Macintosh PowerBook 170 computers / 440

Major features of Macintosh computers with application
specific expansions / 432

20 RAM Expansion Interface / 443

Figure 20-1
Figure 20-2

Figure 20-3

Figure 20-4

Figure 20-5

Figure 20-6

Figure 20-7

Figure 20-8

Figure 20-9

Figure 20-10

Figure 20-11
Figure 20-12

Figure 20-13

Macintosh Portable memory map / 446
Macintosh Portable RAM expansion connector
pinout / 448
Macintosh Portable RAM expansion card design
guide / 450
RAM expansion-slot timing for the backlit Macintosh
Portable / 452
Macintosh Classic RAM expansion connector
pinout / 455
RAM expansion card design guide for the Macintosh
Classic / 458
Macintosh Classic RAM expansion card
configuration / 459
Location and pin orientation of modem and RAM
expansion connectors on the PowerBook 140 and
PowerBook 170 computers / 460
RAM expansion connector pinout for the PowerBook 140
and PowerBook 170 computers / 461
RAM expansion card design guide for the PowerBook 140
and PowerBook 170 computers / 466
PowerBook 100 memory map / 468
Location and pin orientation of modem and RAM
expansion connectors on the PowerBook 100
computer / 469
RAM expansion connector pinout for the PowerBook 100
computer / 470

xxviii Designing Cards and Drivers for the Macintosh Family

21

22

Table 20-1

Table 20-2

Table 20-3
Table 20-4

Table 20-5

Macintosh Portable RAM expansion connector
signals / 449
RAM expansion connector signal differences for the
backlit Macintosh Portable / 450
Macintosh Classic RAM expansion connector signals / 456
RAM expansion connector signals for the PowerBook 140
and PowerBook 170 computers / 462
PowerBook 100 RAM expansion connector signals / 471

ROM Expansion Interface / 475
Figure 21-1 Macintosh Portable ROM expansion connector

pinout / 477
Figure 21-2 Macintosh Portable ROM expansion card design

guide / 479
Figure 21-3 Macintosh Classic II FPU /ROM expansion connector

pinout / 487
Figure 21-4 Design guide for a Macintosh Classic II FPU/ROM

expansion card / 491

Table 21-1 Macintosh Portable ROM expansion connector
signals / 478

Table 21-2 Macintosh Classic II FPU/ROM expansion slot
signals / 488

Table 21-3 Macintosh Classic II ROM address allocations / 490
Table 21-4 Macintosh Classic II memory map summary / 490

Modem Expansion Interface / 493
Figure 22-1
Figure 22-2

Figure 22-3

Figure 22-4

Figure 22-5

Figure 22-6

Figure 22-7
Figure 22-8

Modem interface for the Macintosh Portable / 495
Pinout of modem connector on the Macintosh
Portable / 496
Modem card design guide for the Macintosh
Portable / 498
Cold-start timing diagram for the Macintosh
Portable / 500
Warm-start timing diagram for the Macintosh
Portable / 500
Modem interface for the PowerBook 140 and
PowerBook 170 computers / 503
Modem interface for the PowerBook 100 computer / 504
Modem card design guide for the PowerBook
family / 508

Figures and tables xxix

Figure 22-9

Figure 22-10

Figure 22-11

Table 22-1
Table 22-2

Modem cold-start timing diagram for the PowerBook
family / 511
Modem warm-start timing diagram for the PowerBook
family / 511
Complete power-up/power-down sequence and timing
diagram for the PowerBook family / 512

Modem connector signal descriptions / 496
Modem connector signals for the PowerBook
family / 505

23 Macintosh llci Cache Memory Expansion / 517

Figure 23-1
Figure 23-2

Table 23-1
Table 23-2
Table 23-3
Table 23-4

Table 23-5

Macintosh IIci cache connector pinout / 522
Cache card design guide / 529

Cache memory address space / 520
Cache control trap / 520
Macintosh IIci cache connector signal descriptions / 523
Macintosh IIci cache connector signals, loading or driving
limits / 525
Comparison of current limits for a Macintosh IIci cache
card and a NuBus card / 530

Foldouts / 621

Foldout 1

Foldout 2

Foldout 3

Foldout 4

Foldout 5

Foldout 6
Foldout 7
Foldout 8

Foldout 9

Design guide for Macintosh family standard NuBus
cards / 623
Design guide for Macintosh Quadra-family NuBus and
PDS expansion cards / 625
NuBus card clearance requirements for Macintosh II,
Macintosh IIx, Macintosh IIfx, and Macintosh
Quadra 900 computers / 627
NuBuscard clearance requirements for Macintosh IIcx,
Macintosh IIci, and Macintosh Quadra 700
computers / 629
Design guide for oversized Macintosh Quadra 900 NuBus
card / 631
Connector shield for Macintosh II-family computer / 633
NuBus Test Card (NTC) schematic diagram / 635
Connector card design guide for Macintosh PDS
computers / 637
Design guide for Macintosh IIfx PDS expansion
card / 639

xxx Designing Cards and Drivers for the Macintosh Family

Preface About This Book

The purpose of this book is to provide you, the developer, with the
information that you need to develop expansion cards and device
drivers for the Apple Macintosh family of computers. The introduction
to this book discusses the Macintosh-family expansion strategy. It will
give you an insight into Apple's plans for current and future hardware
expansion for the Macintosh computer family. Following the
introduction, the book is divided into three parts.

Part I defines the specifications of the NuBuS™ expansion interface,
provides electrical and mechanical guidelines for designing NuBus
expansion cards, and supplies information that is vital to the design
of driver software.

Part II is devoted to the processor-direct slot (PDS) expansion
interface. This part defines the design criteria and provides electrical
and mechanical guidelines for designing expansion cards for Macintosh
computers with processor-direct slots.

Part III gives design specifications and provides electrical and
mechanical guidelines for expansion interfaces that have only one
specific purpose.

xxxi

Design philosophy

In keeping with the Macintosh design philosophy, it is incumbent upon you, the card
designer and driver writer, to make the installation of the card and its use by applications
as transparent as possible. To the greatest extent possible, an application should rely on
only a few high-level calls Of any) and not have to use low-level calls. To do otherwise
jeopardizes the broadest potential use of your product.

Conventions used in this book

The following visual cues are used throughout this manual to identify different types
of information:

• /yote: A note like this contains information that is interesting but is not essential for an
understanding of the main text.

D, Important A note like this contains information that is essential for an
understanding of the main text. /',

.. Warning A warning like this indicates a potential problem.

When new or specialized terms are defined, they appear in boldf~ce. Those terms are also
defined in the glossary at the back of the book. The glossary contains additional terms of
interest that are not boldfaced in the text.

Hexadecimal numbers are preceded by a dollar sign ($). For example, the hexadecimal
equivalent of decimal number 16 is written as $10.

xxxii Designing Cards and Drivers for the Macintosh Family

In Part I, a NuBus word consists of 32 bits and a NuBus halfword consists of 16 bits. In
Part II, a word consists of 16 bits and a longword consists of 32 bits. The two parts
follow a different convention for their terminology to be consistent with the outside
documentation to which each part is related: the Texas Instruments specification of the
NuBus for Part I and the Motorola documentation for the MC68000, MC68020, MC68030,
and MC68040 microprocessors for Part II.

Address ranges are given as "lower address through higher address" or "lower address
higher address'; in either form the range is inclusive of the given endpoints. For example,
an access range in memory is given in text as "$000000 through $3F FFFF," and in a table
as "$00 0000-$3F FFFF."

A preceding slash is used to designate an active-low signal, for example, / ACK. A range of
signals is designated like this, with the highest-numbered signal first: / AD31-/ ADO. If there
is more than one subrange in a set, the subranges are enclosed in angle brackets like this:
</AD31-/AD29, /AD7-/ADO>.

Macintosh resource types are designated by enclosing them in single straight quotation
marks, for example, I INIT I.

The term processor is often used instead of microprocessor or Cpu. Processor usually refers
to the primary microprocessor on the main logic board, and coprocessor refers to an
auxiliary processor such as the Mc68882 floating-point unit on the main logic board or
another processor on an expansion card.

The terms processor-direct slot, PDS, 68000 Direct Slot, 68020 Direct Slot, 68030 Direct
Slot, and 68040 Direct Slot are all used to identify the processor-direct expansion
interfCice associated with some Macintosh computers. Other documents may use a term
such as processor dependent slot to identify this interface.

Preface About This Book xxxiii

The following abbreviations are used:

K 1024
GB gigabyte
Kbit kilobit
KB kilobyte
kn kilohm
Mbit megabit
MB megabyte
J.IA. microampere
JlS microsecond
rnA milliampere
ms millisecond
ns nanosecond
n ohm
pF picofarad
RMS root mean square

The distinction between boards and cards is as follows: boards are a permanent part of
the computer (for example, the main logic board), whereas cards are insertable and can be
added or exchanged for functional expansion or reconfiguration of the system.

The Courier font

Throughout the book, the names of specific software structures or fields within a
structure are in the Courier font.

For example, suppose you see this sentence:

In the example of the SExecBlock data type, the RevisionLevel field is always 02,
the reserved field is always 00, and the CPUID field identifies the processor-01 for
the 68000, 02 for the 68020, 03 for the 68030, and 04 for the 68040.

The word SExecBlock is in the Courier font to indicate that it is the name of a
structure. The words RevisionLevel, reserved, and CPUID are in the Courier

font to indicate that they are fields within the SExecBlock structure.

xxxiv Designing Cards and Drivers for the Macintosh Family

About the mechanical drawings and design guides

Mechanical drawings of cards and connectors are provided in several chapters and in
foldouts in the back of the book. Some of these drawings are design guides used within
Apple Computer and were correct at the time of publication; they are, however, subject
to change in the future.

About the Macintosh technical documentation

Apple Computer, Inc., provides a suite of technical books that explain the hardware and
software of the Macintosh family of computers.

The original Macintosh documentation consisted of the first three volumes of Inside
Macintosh. Shortly after the introduction of the Macintosh Plus (with the 128 KB ROM),
Volume IV of Inside Macintosh was released as a delta guide. That is, Volume IV covered
only those aspects of the Macintosh Plus that were different from those in earlier
Macintosh computers. Later, a fifth volume was added, called Inside MaCintosh, Volume V.
It is also a delta guide, covering the new and different features of the Macintosh SE and
the Macintosh II computers. The latest volume, Inside MaCintosh, Volume VI, describes
the System 7 environment.

As the variety and the sophistication of Macintosh computers evolve, so does the
documentation. To provide information that is comprehensive-and that provides
answers to specific questions-Apple provides a whole family of books. Each of these
books gives complete information about a single subject and may include some
information that also appears in Inside Macintosh. Guide to the Macintosh Family
Hardware, second edition, and this book are two of the books in this family.

For programmers and developers who are new to the Macintosh world, Apple has created
two introductory books: Technical Introduction to the Macintosh Family and
Programmer's Introduction to the Macintosh Family.

In addition to the books about the Macintosh itself, there are books on related subjects.
Examples are a book about the user interface, a book about Apple's floating-point
numerics, and the reference books for the Macintosh Programmer's Workshop.

Table P-1 gives a brief description of many of the books in the Macintosh
technical documentation.

Preface About This Book xxxv

• Table P-l Macintosh technical documentation

Technical documentation

Inside Macintosh
Inside Macintosh, Volumes I-III

Inside Macintosh, Volume IV

Inside Macintosh, Volume V

Inside MaCintosh, Volume VI

Inside Macintosh X-Ref, revised edition

Introductory books
Technical Introduction to the
Macintosh Family

Programmer's Introduction to the
Macintosh Family

Single-subject books
Designing Cards and Drivers for the
Macintosh Family

Guide to the Macintosh Family Hardware

Reference material

Complete reference to the Macintosh
Toolbox and Operating System for the
original 64 KB ROM

Delta guide to the Macintosh Plus
(128 KB ROM)

Delta guide to the Macintosh SE and
Macintosh II (256 KB ROM)

Description of System 7

A single general index to eleven technical
reference books for the Apple Macintosh family
of computers: Inside Macintosh, Volumes I-VI;
Inside the Macintosh Communications Toolbox;
Programmers Introduction to the Macintosh
Family; Technical Introduction to the Macintosh
Family; Designing Cards and Drivers for the
Macintosh Family, second edition; and Guide to
the Macintosh Family Hardware, second edition

Introduction to the Macintosh software and
hardware; explains concepts and terminology
that are specific to the Macintosh family
of computers.

Introduction to programming the Macintosh
system for programmers who are new to it

Hardware and device-driver reference for the
expansion capabilities of the Macintosh
computer family

Hardware reference and developer's guide for
the Macintosh computer family

(continued)

xxxvi Designing Cards and Drivers for the Macintosh Family

• Table P-l Macintosh technical documentation (continued)

Technical documentation

Related books
Human Inteiface Guidelines:
The Apple Desktop Inteiface

Apple Numerics Manual

Macintosh Programmer's Workshop
3. 0 Reference

Apple Developer Notes

Macintosh I/si, LC,and Classic
DeveloperNotes, APDA publication
number M0991LIJ A

Macintosh Classic II,
MacintoshPowerBook Family, and
Macintosh Quadra Family Developer
Notes, APDA publication number
R0143LUA

How to get more information

Reference material

Detailed guidelines for developers
implementing the Macintosh user interface

Description of the Standard Apple Numerics
Environment (SANE), an IEEE-standard
floating-point environment supported by all
Apple computers

Workshop (MPW), Apple's software computers
development environment for all Macintosh

Interim hardware reference and
developer's guide for the Macintosh
IIsi, Macintosh LC, and Macintosh
Classic computers; obsolete when the
information has been incorporated
into the third edition of Guide to the
Macintosh Family Hardware

Interim hardware reference and
developer's guide for the Macintosh
Classic II, Macintosh PowerBook,
and Macintosh Quadra computers;
obsolete when the information has
been incorporated into the third
edition of Guide to the Macintosh
Family Hardware

Several organizations exist that provide support for Macintosh hardware and software
developers. This section tells you how to contact APDA, Apple user groups, and Apple
Developer Services.

Preface About This Book xxxvii

APDA

APDA offers convenient worldwide access to over three hundred development tools,
resources, and training products, and to information for anyone interested in developing
applications on Apple platforms. Customers receive the quarterly APDA Tools Catalog,
featuring the most current version of Apple development tools and the most popular
third-party development tools. Ordering is easy; there are no membership fees, and
application forms are not required for most of our products. APDA offers convenient
payment and shipping options, including site licensing.

To order products or get additional information, contact

APDA
Apple Computer, Inc.
20525 Mariani Avenue, MIS 33-G
Cupertino, CA 95014-6299

800-282-2732 (United States)
800-637-0029 (Canada)
408-562-3910 (International)
Fax: 1-408-562-3971
Telex: 171-576
AppleLink address: APDA

User groups

Apple user groups are associations of individuals who share information about Apple
computers and related products. For information about Apple user groups in your area,
call this toll-free number:

800-5 38-9696

Ask for extension 500.

xxxviii Designing Cards and Drivers for the Macintosh Family

Apple Developer Services

Apple's goal is to provide developers with the resources they need to create new Apple
compatible products. Apple offers two programs: the Partners Program, for developers
who intend to resell Apple-compatible products; and the Associates Program, for
developers who do not intend to resell Apple-compatible products and for other people
involved in the development of Apple-compatible products.

As an Apple Partner or Associate, you will receive monthly mailings including a newsletter,
Apple II and Macintosh Technical Notes, pertinent Developer Program information, and
all the latest news relating to Apple products. You will also receive the Macintosh Services
Directory and automatic membership in APDA. You'll have access to developer AppleLink
and to Apple's Developer Hotline for general developer information.

As an Apple Partner, you'll be eligible for discounts on equipment and you'll receive
technical assistance from the staff of Apple's Developer Technical Support department.

For more information about Apple's developer support programs, contact Apple
Developer Programs at the following address:

Apple Developer Programs
Apple Computer, Inc.
20525 Mariani Avenue, MIS 51-W
Cupertino, CA 95014-6299

Preface About This Book xxxix

Introduction Expansion Strategy for the
Macintosh Family

Apple has decided on an expansion strategy that limits the Apple
Macintosh family of computers to three distinctly different internal
architectural expansion configurations: the NuBuS™ expansion
interface, the processor-direct slot (PDS) expansion interface, and the
application-specific expansion interface. Limiting the expansion
architecture to three categories ensures that expansion card developers,
both internal and external to Apple, have some degree of predictability
and stability in their expansion card designs. Since Apple depends upon
you, the third-party hardware developer, to create the expansion cards
that enhance many Macintosh computers, it is important that you are
aware of this expansion strategy. This section gives you the information
you will need to make good decisions on what cards to develop, and for
what Macintosh models, both present and future.

1

Limiting the number of expansion interfaces

Apple's implementation of NuBus represents a mature expansion mechanism that has been
adopted as the primary expansion vehicle for the Macintosh family of modular computers
and can be supported across a variety of Macintosh products.

Macintosh computers such as the Macintosh SE, the Macintosh SE/30, and the Ma"cintosh
LC use the processor-direct slot (PDS) expansion interface. The Macintosh IIfx, the
Macintosh Quadra 700, and the Macintosh Quadra 900 all have a processor-direct slot, but
their primary expansion interface is the NuBus. The Macintosh IIsi has only one expansion
slot, but it is unique in that it supports either a NuBus card or a PDS card, depending on
which adapter card is installed. The Macintosh Portable also has a processor-direct slot,
but its usefulness is somewhat limited in comparison to that of the compact computers.
You can think of the PDS as an extension of the microprocessor used in a particular
Macintosh model. Because of this dependency on the microprocessor, the slot
configuration changes whenever a newel', more powerful processor is adopted. For
example, the Mc68000 microprocessor in the Macintosh SE uses a 96-pin PDS connector,
while the PDS connector in the Macintosh SE/30 has been expanded to 120 pins to take
advantage of the enhanced features of the MC68030 microprocessor. Therefore, in
addition to NuBus, the minimum number of processor-direct slot expansion interfaces
that you have to support is determined by the number of different microprocessors that
are implemented in the Macintosh family of computers.

Apple plans to limit the number of expansion interfaces by adopting a slot specification for
each microprocessor that is sufficiently comprehensive to apply to most of the Macintosh
computers that use the same microprocessor. You may fmd, however, that because of
electrical and physical design constraints, a card designed for one Macintosh will not work
in another Macintosh even though both computers use the same microprocessor.

The application-specific category refers to expansion interfaces that are dedicated to a
singular, unique purpose. Usually computers that provide this feature also have NuBus or a
processor-direct slot as their primary means of expansion. For example, in addition to its
processor-direct slot, the Macintosh Portable includes three other expansion connectors:
one for a ROM card, one for a RAM card, and one for a modem card. Although NuBus is
the primary means of expansion for the Macintosh llci, this machine includes an
expansion interface connector designed specifically for a cache memory card. In some
specific applications, you might find that the expansion connector is physically identical
to the connector used for the processor-direct slot, but it will probably not provide the
same functions.

2 Designing Cards and Drivers for the Macintosh Family

NuBus expansion

The NuBus is Apple's primary expansion interface for Macintosh computer products. It is
available in configurations of up to six identical slot connectors. The NuBus is a truly
powerful expansion vehicle providing features such as a small pin count, a large area for
card implementation, a versatile bus protocol, high data-transfer rates, variably sized
data transfers, and parallel bus arbitration.

The NuBus hardware requires a large space within the Macintosh case and usually requires
some additional circuitry. Therefore NuBus is inappropriate for compact designs
such as the Macintosh SE and the Macintosh SE/30. These designs are better suited for
PDS expansion.

Newer, more powerful Macintosh computers, such as the Macintosh Quadra 700 and the
Macintosh Quadra 900, support slave block-transfer modes and other NuBus
enhancements that were not supported on earlier Macintosh models. These enhancements
will not affect the capabilities of your current card designs, but will add more usability to
future designs.

Apple is committed to the NuBus expansion interface being the primary expansion
system for the Macintosh family and will continue to support it in the foreseeable future.
For a detailed description of the NuBus specification, as well as guidelines for designing
NuBus expansion cards, see Part I, "The NuBus Expansion Interface."

Processor-direct slot (PDS) expansion

Apple uses the processor-direct slot (PDS) expansion interface on compact, or small
footprint, Macintosh computers such as the Macintosh SE, the Macintosh SE/30, and the
Macintosh LC, or any design for which NuBus is inappropriate. The Macintosh IIfx, the
Macintosh Quadra 700, and the Macintosh Quadra 900 also include a processor-direct slot,
but their primary means of expansion is the NuBus interface. A PDS implementation
brings the microprocessor address, control, and data lines, along with clock, power, and a
few model-specific signals, to a single expansion connector on the main logic board. The
Macintosh Portable has a processor-direct slot, but only limited power is available from
the expansion connector.

Introduction Expansion Strategy for the Macintosh Family 3

An advantage of the PDS interface is that it provides an expansion mechanism that does
not burden the average user, who may not need the extensive expansion capabilities of
the NuBus configuration. Also, you can design a PDS expansion card with a smaller form
factor than a NuBus card, and since no additional circuitry is usually required for PDS
expansion, it costs less to implement than NuBus. Finally, a PDS expansion card has direct
access to the microprocessor, resulting in a speed advantage that allows support of some
tasks that cannot be done with a NuBus card.

A disadvantage of the PDS expansion interface is its inability to support the bus structure
across Macintosh products that use different microprocessors. Because the PDS
expansion interface is an extension of the microprocessor, the configuration of the slot
connector will change whenever a newer, more powerful microprocessor is used in the
Macintosh family. Other disadvantages include difficulty in extending the bus, the
inability to support more than one card, and the requirement that processor activity must
be suspended during bus activity.

Apple hopes to limit the number of PDS configurations that you must support. The goal is
to have the PDS specification remain constant within a microprocessor family and to
have a common physical form factor and electrical characteristics without compromising
the Macintosh design. Part II, "The Processor-Direct Slot Expansion Interface," defines
the PDS specifications and gives detailed electrical and physical guidelines for designing
PDS expansion cards.

The 68000 and 68020 Direct Slot expansion interfaces

The Macintosh SE was the first Macintosh computer offering processor-direct slot
expansion. The expansion interface to the Mc68000 microprocessor in the Macintosh SE
is a 96-pin connector. The 68000 Direct Slot expansion interface is flexible enough to allow
you to design coprocessor cards such as accelerators or to extend the I/O capabilities of
the computer. The 96-pin expansion connector on the Macintosh Portable is physically
identical to that of the Macintosh SE, but the pinout and signals available are different.

The 68020 Direct Slot expansion interface in the Macintosh LC is also a 96-pin connector
that is physically identical to that found in the Macintosh SE. However, the pinout and
signals are different, so that cards designed for the Macintosh SE or the Macintosh
Portable will not work in the Macintosh LC, and vice versa.

4 Designing Cards and Drivers for the Macintosh Family

The 68030 Direct Slot expansion interface

Both the Macintosh SE/30 and the Macintosh IIfx have a 120-pin expansion connector to
satisfy the requirements of the Mc68030 microprocessor used in these machines. Once a
Direct Slot adapter card is installed in the Macintosh IIsi, it also provides a 120-pin
expansion connector. The additional pins allow you to take full advantage of the
increased functionality of the processor, including its 32-bit address and data bus
capabilities. Although it is possible that the physical form factor could change on future
68030-based machines due to space limitations, the electrical characteristics should
remain the same. Due to the difference in physical form factors and electrical
characteristics, cards you design for other processors will not work in the 68030 Direct
Slot, and vice versa.

The 68040 Direct Slot expansion interface

The Macintosh Quadra 700 and the Macintosh Quadra 900 each have a 140-pin expansion
connector to satisfy the requirements of the powerful Mc68040 microprocessor used in
these machines. The electrical characteristics of the processor-direct expansion
connectors of the Macintosh Quadra 700 and the Macintosh Quadra 900 are identical so
that cards designed for one 68040-based computer will work in the other one as well.
Physically, the size of the processor-direct expansion card for the Macintosh Quadra 700
is the same size as a standard NuBus card, but you can design an oversized expansion card
for the Macintosh Quadra 900. Any processor-direct expansion cards that have been
designed for 68000-based, 68020-based, or 68030-based Macintosh computers will not
work in the Macintosh Quadra 700 and the Macintosh Quadra 900. Likewise, PDS
expansion cards designed for the Macintosh Quadra family will not work in other
Macintosh models.

Introduction Expansion Strategy for the Macintosh Family 5

Recommended strategy for 68030 and 68040 Direct Slot expansion card design

The 68030 and 68040 Direct Slot electrical specifications contain several types of signals
including power, data lines, address lines, control lines, clocks, and machine-specific
signals. Most of these signals are classified as common, meaning that they will be available
on all Macintosh computers that use the 68030 or 68040 Direct Slots. Others, however, are
classified as machine specific, meaning that they mayor may not be present on different
Macintosh computers that use the 68030 or 68040 Direct Slots. The intent is, with each
new version of the Macintosh, to identify those signals that are common to all machines,
to flag those signals that are machine specific, and to provide you with guidelines to
know when to use the machine-specific signals. Detailed signal descriptions are provided
in Chapter 15, "Electrical Design Guide for 68030 Direct Slot Expansion Cards," and
Chapter 16, "Electrical Design Guide for 68040 Direct Slot Expansion Cards."

Because of the scarcity of open areas in the memory maps of new Macintosh PDS
computers, you should design your expansion card to occupy an address location
corresponding to the 32-bit physical address ranges used by NuBus expansion cards
resident in Macintosh computers with the NuBus interface. This method of emulating
NuBus address space is called pseudoslot design. If you follow the pseudoslot method and
design your PDS expansion card along the lines of a NuBus card, the existing Slot Manager
ROM firmware controls your card as if it were a NuBus card, the only difference being that
the electrical signals arrive through the 68030 or 68040 PDS expansion interface, not the
NuBus expansion interface. This means that you can use the same device driver for both
your PDS expansion card and its NuBus equivalent. Chapter 15 provides more detailed
information on pseudoslot expansion card design.

If you don't take advantage of pseudoslot design, you have to do several things
differently. Apple has reserved a range of physical address spaces in the memory maps for
68030 and 68040 Direct Slot cards that do not emulate the NuBus address space. To gain
access to the reserved address space, the Macintosh must be in 32-bit mode, and your
card driver must be able to switch between 24-bit and 32-bit modes. This means that your
card driver must also include specific information to allow access to the card's address
space and that the Slot Manager routines cannot be used.

6 Designing Cards and Drivers for the Macintosh Family

Converting your designs

PDS expansion cards are electrically and mechanically different from NuBus expansion
cards. NuBus expansion cards will not work in PDS expansion card slots, and PDS
expansion cards will not work in NuBus slots. However, by using the pseudoslot design
features in your PDS expansion card, you can easily convert your 68030 or 68040 Direct
Slot expansion card to a NuBus card, or vice versa. The fundamental design, with the
exception of the bus interface circuitry, can be converted. This is one of the major
advantages of using pseudoslot design.

Application-specific expansion

The Macintosh computers that offer application-specific expansion usually have a NuBus
or a processor-direct slot as their primary means of expanding the system. By providing an
interface that is dedicated to a specific function, you free up a NuBus slot or the
processor-direct slot to accept cards that perform a variety of functions such as
coprocessing, networking, and so on. The application-specific expansion interface may
or may not directly access the processor. The cache memory expansion connector on the
Macintosh IIci does, but the ROM, RAM, and modem expansion connectors on the
Macintosh Portable, the Macintosh Classic, the Macintosh Classic II, the Macintosh
PowerBook 100, the Macintosh PowerBook 140, and the Macintosh PowerBook 170 do
not. Part III, "Application-Specific Expansion Interfaces," gives detailed electrical and
physical guidelines for designing application-specific expansion cards.

Slot strategy summary

In summary, the preferred expansion mechanism for the Macintosh family is NuBus. The
processor-direct slot is used on Macintosh computers with and without NuBus to provide
general system expansion. The application-specific expansion interface provides a
mechanism for specific functions such as memory expansion.

By designing NuBus cards, you will have access to the rapidly growing installed base of
Macintosh computers with NuBus expansion slots. By porting your NuBus design to the
68030 or 68040 Direct Slot via the pseudoslot method, you need to supply only one driver
for both the 68030 and 68040 Direct Slot cards and NuBus cards, and you can design cards
that will be usable in future Macintosh computers without NuBus.

Introduction Expansion Strategy for the Macintosh Family 7

Part I The NuBus Expansion Interface

About Part I

The Apple implementation of NuBus is the subject of Part I of this book. NuBus was
originally a Texas Instruments product described in their NuBus specification, document
number TI-2242825-0001*A, copyright 1983. The NuBus specification has since become an
ANSI (American National Standards Institute) standard. ANSI has published the latest
NuBus standard (referred to in this publication as NuBus '90) and distributed it for
comment. At the time of this publication, NuBus '90 is a draft standard, and some
features in it may change.

Several features of the original NuBus standard, most notably block data transfer and
system parity valid, are not supported in the full line of Macintosh computers. Other
features of the NuBus '90 draft standard, such as cache coherency, are not currently
implemented in any of the Macintosh computers with NuBus. These features have been
documented in this section, however, to provide a complete discussion of NuBus. The
instances where NuBus features are explained but not implemented are labeled.

Part I contains 11 chapters specifically dedicated to the NuBus expansion interface.
Following are brief descriptions of the major topics covered in each chapter.

Chapter 1 provides block diagrams of each Macintosh computer that offers a NuBus
expansion interface, compares major features, and gives an overview of computer
operation. The chapter then describes the NuBus interface architecture and the state
machines used to implement it.

Chapter 2 describes NuBus features, provides a Simplified diagram of the NuBus
hardware, defines many NuBus terms, classifies the signals used to implement
communication over the bus, and discusses the most basic timing and transaction
cycle relationships.

Chapter 3 details each signal, its timing, and its line characteristics. The chapter defines
various types of bus cycles, then describes the sequential combination of bus cycles to
perform transactions.

Chapter 4 gives the rules for arbitration to resolve the contention between cards for bus
mastership, so that all cards have access to the bus.

Chapter 5 provides an electrical design guide for NuBus expansion cards, focusing on the
electrical requirements of line drivers and receivers.

Chapter 6 provides the physical information you need to design NuBus expansion cards.

Chapter 7 describes how cards in NuBus slots can address memory in a Macintosh computer
with the NuBus interface.

Chapter 8 defines the firmware data structures typically stored on the card in ROM.

10 Designing Cards and Drivers for the Macintosh Family

Chapter 9 describes several driver options, driver installation, and the video driver
declaration ROM and routines. Pseudocode for an actual video card driver is provided.

Chapter 10 contains design examples, including schematics and PAL equations for three
NuBus cards that have been built and tested.

Chapter 11 concludes Part I of the book with a description of the Macintosh II Video Card.

In the back of this book, following Part III, there are five appendixes. Appendix A
provides information on electromagnetic interference (EM!), heat dissipation, and
product safety standards and applies to Part I, Part II, and Part III.

Appendix B contains a sample of the declaration ROM firmware code for the Macintosh II
Video Card, described in Chapter 8.

Appendix C contains a sample video card driver. This sample code supplements
information given in Chapter 9.

Appendix D contains the PAL listings for the NuBus Test Card, described in Chapter 10.

Appendix E contains the PAL listings for the SCSI-NuBus Test Card, described in Chapter 10.

Addressing design philosophy

Whenever possible, use 32-bit addressing conventions and methods. This is your best
guarantee of future software compatibility.

Part I The NuBus Expansion Interface 11

NuBus use and licensing requirements

NuBus is a trademark of Texas Instruments, Inc. Part I of this book describes the
implementation of NuBus by Apple Computer in Macintosh computers. Certain features
of the NuBus interface are not implemented in current Macintosh computers but may be
in future products; note is made of that fact where appropriate.

In addition to the NuBus information in this book, you should also refer to the
Standard for a Simple 32-Bit Backplane Bus: NuBus, ANSI/IEEE Std 1196-1987, and to
the NuBus '90 proposal, Standard for a Simple 32-Bit Backplane Bus: NuBus, ANSI/IEEE
Std 1196-1990. You can order these documents from

IEEE Service Center
445 Hoes Lane
Piscataway, NJ 08854
908-981-0060

Texas Instruments owns patents on the NuBus. If you wish to make devices for computers
with the NuBus interface (including Macintosh computers), you need to obtain a license
directly from Texas Instruments. For further details please send your request to

Texas Instruments, Inc.
12501 Research Boulevard
Austin, TX 78759
Attention: NuBus Licensing
MIS 2151

12 DeSigning Cards and Drivers for the Macintosh Family

Chapter 1 Overview of Macintosh Computers
With the NuBus Interface

This chapter provides an overview of the structure and
organization of the Macintosh computers that use NuBus as their
primary expansion interface. Included in this category are
the Macintosh II, the Macintosh IIx, the Macintosh IIcx, the
Macintosh llci, the Macintosh IIfx, the Macintosh IIsi, the
Macintosh Quadra 700, and the Macintosh Quadra 900. All use an
I/O bus based on the Texas Instruments NuBus to allow expansion
beyond the capabilities of the ports (connectors) on the back of
the machines; NuBus slots allow a wide variety of devices to be
connected. Read this chapter to place the NuBus interface in
context within the total computing machine.

Major features

Table 1-1 compares the major features of the Macintosh computers with NuBus.

• Table 1-1 Major features of Macintosh computers with the NuBus interface

Feature Macintosh II Macintosh Hx Macintosh IIcx Macintosh IIci

Processor Mc68020 Mc68030 Mc68030 MC68030
32-bit address bus 32-bit address bus 32-bit address bus 32-bit address bus
32-bit data bus 32-bit data bus 32-bit data bus 32-bit data bus

Processor clock 15.6672 MHz 15.6672 MHz 15.6672 MHz 25 MHz

Coprocessor Mc68881 floating- Mc68882 floating- Mc68882 floating- Mc68882 floating-
point unit point unit point unit point unit

Memory 24-to-32-bit address Mc68030 has a built-in Mc68030 has a built-in MC68030 has a built-in
management translation by Address paged Memory PMMU that allows true PMMU that allows true

Management Unit management Unit 32-bit address 32-bit address
(AMU); or logical-to- (PMMU) that allows translation with translation with
physical address true 32-bit address hardware page hardware page
translation by optional translation with replacement replacement
MC68851 Paged hardware page
Memory Management replacement
Unit (PMMU)

Video interface NuBus video card NuBus video card NuBus video card Built-in video with
with on-card screen with on-card screen with on-card screen main memory screen
buffer buffer buffer buffer or NuBus video

card

RAM Up to 64 MB of DRAM Up to 128 MB of Up to 128 MB of Up to 128 MB of
in eight 30-pin SIMMs DRAM in eight 30-pin DRAM in eight 30-pin DRAM in eight 30-pin

SIMMs SIMMs SIMMs; optional
DRAM parity with 9-bit
SIMMs

ROM 256 KB in four 256 KB standard in 256 KB standard in 512 KB standard in
512 Kbit ROM chips 64-pin ROM SIMM, 64-pin ROM SIMM, four 1 Mbit ROM

expandable to expandable to over chips, optional 64-pin
64MB 64MB ROM SIMM allows

expansion to 64 MB

(continued)

14 Designing Cards and Drivers for the Macintosh Family

• Table 1-1 Major features of Macintosh computers with the NuBus interface (continued)

Feature Macintosh IIfx Macintosh IIsi Macintosh Quadra 700 Macintosh Quadra 900

Processor MC68030 Mc68030 Mc68040 Mc68040
32-bit address bus 32-bit address bus 32-bit address bus 32-bit address bus
32-bit data bus 32-bit data bus 32-bit data bus 32-bit data bus

Processor clock 40 MHz 20 MHz 25 MHz bus clock 25 MHz bus clock
50 MHz CPU clock 50 MHz CPU clock

Coprocessor Mc68882 floating- Optional Mc68882 Mc6s040 has a built-in Mc68040 has a built-in
point unit available on NuBus high-performance high-performance

and 68030 Direct Slot floating-point unit floating-point unit
expansion card
adapters

Memory MC68030 has a built-in MC68030 has a built-in Mc68040 has a built-in Mc68040 has a built-in
management PMMU that allows true PMMU that allows true PMMU that allows true PMMU that allows true

32-bit address 32-bit address 32-bit address 32-bit address
translation with translation with translation with translation with
hardware page hardware page hardware page hardware page
replacement replacement replacement replacement

Video interface NuBus video card Built-in video with Built-in video with Built-in video with
with on-card screen main memory screen VRAM or NuBus video VRAM or NuBus video
buffer buffer or NuBus video card card

card

RAM Up to 128 MB of 1 MB soldered to Up to 20 MB of DRAM Up to 64 MB of DRAM
DRAM in 64-pin main logic board; up in 30-pin SIMMs in 30-pin SIMMs,
SIMMs; 32 KB of to 64 MB in 64-pin arranged in four
SRAM, fast RAM cache; SIMMs; 4 MB DRAM separate memory
optional DRAM parity banks
with 9-bit SIMMs

ROM 512 KB standard in 512 KB standard in 1 MB ROM SIMM, 1 MB ROM SIMM,
one ROM SIMM one ROM SIMM expandable to 4 MB expandable to 4 MB

(continued)

Chapter 1 Overview of Macintosh Computers With the NuBus Interface 15

Ii Table 1~1 Major features of Macintosh computers with the NuBus interface (continued)

Feature Macintosh II Macintosh IIX Macintosh ria Macintosh OCt

EXpansion slots Six NuBus slots Six NuBus slots Three NuBus slots Three NuBus sLots,
one cache card
connector

Keybdatd and moUse two Apple Desktop TWo ADB ports Two AD13 ports Two ADB ports
interlace Bus (ADB) ports

Serial ports TWo mini 8-pln Two mini 8-pin TWo mini B-piil Two mini B-pin
conilectors connectors connectors coonectors
Supporting RS-422 supporting RS-422 supporting RS-422 supporting RS-422
and AppleTalk and Appletalk and AppleTalk and AppleTalk

Floppy disk support Integrated \Voz Super Woz Integrated SWIM chip conttols SWIM chip controls
Machine (IWM) chip Machine (SWIM) chip orie internal 1.4 MB, one internal 1.4 MB,
controls two internal controls two internal 3.5" Supei'Drive and 3.5" SuperDrive and
BOO KB; 3.5" floppy 1.4 MB, 3.5" Apple one optional external one optional external
disk drives (one SuperDrives (one 1.4 MB SuperDrive 1.4 MB SuperDrive
standard, one standard, one optional)
optional)

SCSI ports One internal 50-pin, One internal 50-pin, One internal 50~pin, One internal 50-pin,
one external DB-25 one external DB-25 one external DB-25 orie external DB-25

Sound Apple Sound Chip Apple Sound Chip Apple Sound Chip Apple Sound Chip

Battery Lbng-life lithium Long-life lithium Long-life lithium Long-life lithium
battery battery battery battery

(continued)

16 Designing Cards and Drivers for the Macintosh Family

• Table 1·1 Major features of Macintosh computers with the NuBus interface (continued)

Feature Macintosh IIfx Macintosh fisi Macintosh QU. 700 Macintosh Quadra 900

Jixpansion slots Six NuBus slots or one One NuBus slot or Two NuBlIs slots or Five NuBus slots or
processor -direct slot one processor-direct one processor-direct one processor-direct
and five NuBus slots slot slot and one NuBus slot and four NuBus

slot slots

Keyboard and mouse Two ADB ports One ADB port Two ADB ports OneADB port
interface

Serial ports Two mini 8-pin Two mini 8-pin Two mini 8-pin Two mini 8-pin
connectors connectors connectors connectors
supporting RS-422 supporting RS-232, supporting RS-232, supporting RS-232,
and AppleTalk RS-422, and AppleTalk RS-422, and AppleTalk RS-422, and AppleTalk

Floppy disk support SWIM chip controls SWIM chip controls SWIM chip controls SWIM chip controls

two 1.4 MB, 3.5" one internal 1.4 MB, one internal 1.4 MB, one internal 1.4 MB,

SuperDrives (one 3.5" SuperDrive and 3.5" SuperDrive 3.5" SuperDrive

internal and one one optional external
optional external) 800 KB or 1.4 MB disk

drive

SCSI ports One internal 50-pin, One internal 50-pin, One internal 50-pin, Two internal 50-pin,
one external DB-25 one external DB-25 one external DB-25 one external DB-25

Sound Apple Sound Chip Apple Sound Chip Enhanced Apple Enhanced Apple
Sound Chip, DFAC Sound Chip, DFAC,
(Digitally Filtered and Sporty chip,
Audio Chip), and which provide Apple
Sporty chip, which Sound Chip
provide Apple Sound compatibility
Chip compatibility

Qattery Long-life lithium Long-life lithium Long-life lithillm Long-life lithium
battery battery battery battery

Chapter 1 Overview of Macintosh Computers With the NuBus Interface 17

Hardware architecture

The following discussion is brief and intended only to show the place of the NuBus in the
computer architecture. For a complete description of hardware operation, see the Guide to the
Macintosh Family Hardware, second edition (which supersedes the Macintosh Family Hardware
Reference). Also useful are the Macintosh IIsi, Le, and Classic Developer Notes and the Macintosh
Classic II, Macintosh Power Book Family, and Macintosh Quadra Family Developer Notes. The
Technical Introduction to the Macintosh Family contains a higher-level overview.

Block diagrams of the Macintosh computers that offer a NuBus expansion interface are
shown in Figures 1-1 through 1-7. The Macintosh II (Figure l-l) contains a Motorola
Mc68020 microprocessor driven by a 15.6672 megahertz (MHz) clock. The Macintosh IIx
and the Macintosh IIcx (Figure 1-2) contain the Motorola MC68030 microprocessor, which
is also driven by a 15.6672 MHz clock. The Macintosh IIci (Figure 1-3), the Macintosh IIfx
(Figure 1-4), and the Macintosh IIsi (Figure 1-5) use the Mc68030 microprocessor as well,
but the Macintosh IIsi is driven by a 20 MHz clock, the Macintosh IIci is driven by a
25 MHz clock, and the Macintosh IIfx is driven by a 40 MHz clock. The two latest
computers to offer a NuBus expansion interface include the Macintosh Quadra 700
(Figure 1-6) and the Macintosh Quadra 900 (Figure 1-7). Both use the more powerful
Mc68040 microprocessor, running at 25 MHz.

All Macintosh computers that provide a NuBus expansion interface use similar integrated
circuits (ICs) that enable the microprocessor to communicate with external devices.
These ICs are shown in the block diagrams of Figures 1-1 through 1-7 and include

• a Versatile Interface Adapter (VIAl) for communicating with the ADB transceiver,
which, in turn, communicates with the mouse and keyboard.

• another Versatile Interface Adapter (VIA2) for handling interrupts from the NuBus
slots (used only in the Macintosh II, Macintosh IIx, Macintosh Hcx, Macintosh
Quadra 700, and Macintosh Quadra 900).

• a SCSI (Small Computer System Interface) chip for high-speed data transfer with
the internal hard disk and any other SCSI device (integrated into the SCSI DMA chip
on the Macintosh IIfx). The SCSI chip is used in all Macintosh II models except the
Macintosh IIsi. On machines that use it, the SCSI chip is a 53C80 chip or derivative;
however, the Macintosh Quadra 700 and the Macintosh Quadra 900 use a 53C96.

• a Serial Communications Controller (SCC) for serial communications. In the
Macintosh Hsi, a new custom chip, Combo, combines the functions of the SCC and
the SCSI controller in a single device. This Combo chip includes a 53C80 device and is
completely software compatible with the SCC and SCSI chips it replaces.

18 Designing Cards and Drivers for the Macintosh Family

• an Apple custom chip, called the IWM (Integrated Woz Machine), for controlling
800 KB, 3.5-inch floppy disk drives in the Macintosh II; another Apple custom chip,
called the SWIM (Super Woz Integrated Machine), replaces the IWM chip in the
Macintosh IIx, Macintosh IIcx, Macintosh IIci, Macintosh IIsi, Macintosh IIfx,
Macintosh Quadra 700, and Macintosh Quadra 900. SWIM controls the 1.4 MB,
3.5-inch SuperDrives as well as 800 KB floppy disk drives.

• the Apple Sound Chip (ASC) sound generator; another Apple custom chip, the
Enhanced Apple Sound chip, replaces the ASC in the Macintosh Quadra 700 and the
Macintosh Quadra 900. The Enhanced Apple Sound chip continues to provide ASC
compatibility.

In addition, the Macintosh IIfx includes several Apple custom ICs that enable the
microprocessor to communicate with external devices. These ICs are shown in Figure 1-4
and include

• a SCSI DMA chip, which not only provides all of the functions of the SCSI chip used in
the other Macintosh II computers, but can also transfer data to and from the main
processor by direct-memory access (DMA) (The DMA capability is not supported by
current system software.)

• an SCC lOP (I/O processor) chip that provides an intelligent interface to the Serial
Communications Controller

• a SWIM-ADB lOP chip that provides an intelligent interface to the SWIM-ADB controller

• an FMC (fast memory controller) that supports high-speed cache memory, main RAM,
and ROM

• an OSS (Operating System Support) chip that handles interrupts and device decodes,
functions that are performed by the VIAs and the GLU chips in the other Macintosh
computers

In earlier Macintosh II computers, a NuBus expansion card was the only way to provide
video display. The Macintosh IIci and the Macintosh IIsi also provide the option of using
a NuBus video card, but their primary video interface is built into the computers. Video
signals are generated by the Apple custom RBV (RAM-based video) chip and are driven
through the VDAC (video digital-to-analog converter) and CLUT (color look-up table).

The Macintosh IIsi computer uses a microcontroller, which integrates the functions of the
ADB (Apple Desktop Bus) controller, RTC (real-time clock), PRAM (parameter RAM), soft
power control, power-on reset, keyboard reset, and NMI (nonmaskable interrupt). In
older Macintosh models, these functions were provided by separate devices on the main
logic board. Some new functions supported by the ADB microcontroller include
programmable wake-up and file server mode.

Chapter 1 Overview of Macintosh Computers With the NuBus Interface 19

The floating-point numeric coprocessors (MC68881 for the Macintosh II and Mc68882 for
the other Macintosh computers) use the coprocessor interfaces of their respective
microprocessors. Note that a floating-point coprocessor is not included with the
Macintosh IIsi as a standard feature; however, the FPU is available on the 68030 Direct
Slot and NuBus adapter cards. The floating-point units in the Macintosh Quadra family are
integrated into the Mc68040 main processor. There are some differences between the
floating-point unit in the Mc68040 and the Mc68881 and MC68882 FPUs used with the
68020-based and 68030-based Macintosh computers. However, the ROM software in the
Macintosh Quadra 700 and the Macintosh Quadra 900 includes new code to support these
differences.

In the Macintosh Quadra family, many new custom ICs have been introduced with their
new architecture. These ICs are shown in the block diagrams of the Macintosh Quadra 700
(Figure 1-6) and the Macintosh Quadra 900 (Figure 1-7).

• Along with the Enhanced Apple Sound chip, which replaces the ASC, the DF AC
(Digitally Filtered Audio Chip) and the Sporty chip provide the sound interface.
DFAC is a custom analog chip that provides most of the sound input functions,
and the Sporty chip is a custom analog chip that provides sound output functions.

• The Caboose is a custom processor that manages the keyswitch, system power, the
real-time clock, and PRAM (parameter RAM). The Caboose is used only in the
Macintosh Quadra 900.

• The Direct Access Frame Buffer (DAFB) is an integrated circuit that connects directly
to the system bus and controls the video RAM-based frame buffer.

• The Memory Control Unit (MCU) is a custom integrated circuit that connects to the
system bus and controls access to ROM. The MCU also supports the 68040 processor's
burst-mode data transfers.

• The Relayer and the Junction Data Bus QDB) chips are two integrated circuits that
make up the I/O adapter, connecting the data and control signals from the system
bus and the I/O bus.

• The custom integrated circuit YANCC (Yet Another NuBus Controller Chip) controls
the NuBus interface.

• Sonic is the Ethernet controller.

I 20 DeSigning Cards and Drivers for the Macintosh Family

• Figure 1-1 Block diagram of the Macintosh II computer

FPU

Mc68881

CPU

Mc68020

A31-23,.----....,

D31~

A4-1

A7-O

-
LA31--8 AMU/

PMMU

r

I Inte~Pt L
SWItch I

Address
bus

A31--8

Data
bus

D31-O

lL NuChip n TIT Tlf1ffrrrm 11!
A22-2 ~ IAD31-O III III III III III III

ceivers lll!i i ! II !! i !l i °ii ·,i -,'

Ei! n! I:: il! Iii s: ~~~~~~
0' $9 $A $B $C $D $E

A25-2 Address r-
MUXs RAM

D31-O '----..... 1 t08MB

256KB I i ADB

~ :==:::::~'-----"'"
o MA1IRC

D31-24
Al2-9 ----

VIAl
1 sec

interrupt RTC

Apple
Desktop
Bus ports

I~
~

INMI
~==~ VBL

rI-_-+~VIA2IR~71r- interrupt

A12-9 ~
Slot

interrupts
I

A31-24,22,
GLU - 20, 1(}-13, 1,0

VIA2

rL::==~::::l SLOTS
r- SCSIIRQ I interrupts

rt--+l--:D.,-!R=Q,.-!

~
GLU

/PWRIRQ it ~ Internal hard disk
- SCSI connector External

SCSI port I Power I
switch

A6-4

A12-9 IWM

......................... : .. : .. : /
Internal floppy Internal floppy
disk connector disk connector

::==~ Serial
'-_____ ___�~___II+/-SC-CI-RQ""f ports

I'Cgh~~~e1~AY-Dri,;;~)P~ort~A~

A2,1

t- Drivers (modem)·.· ••
~ SCC and

Ch~el B receivers Port B :~'.
(printer)

/SND :==:::::::H Sony
sound IC

n1 Internal External
[l\J speaker sound jack

\.9> ~ ASC
All-O H Sony

soundIC '----.....

Chapter 1 Overview of Macintosh Computers With the NuBus Interface 21

• Figure 1-2 Block diagram of the Macintosh Ilx and Macintosh Ilcx computers

A31-23,1 0
NuChip n

A22-2 NuBus
1: D31-D trans-
~ ceivers

FPU A4-1
9 -Mc68882
~

D31-D 0

A7-D
A25-3 Address

Address bus MUXs
CPU

A3l-8
Mc68030 D31-D

Data bus
D31-D

D31-D
A18--2 ROM

'<t< 256KB
'I' -~

::i: o !VIAlIRQ

IS:
.t:::: IInte~Pt~ VIAl

switch
Al2-9

!VIA2IRQ
A31-24,22,

GLU
20,16-13,1,0 A12-9 VIA2

f t + I
DRQ

SCSI

A6-4

SWIM
A12-9

/SCCIRQ

see
A2,1

/SND

ASe

NuBus connectors
~

~~~~~ 
III 
~ I i AD31-D 
ii: 
ii: 
ii: 
ii: 
iii 
~ 

$9 $A $B $C $0 $E 

~----.J 
Macintosh IIx ~ 

RAM 
1 to8MB 

Apple Deskto p 
Bus ports 

ADB .. . -
-

1 sec int RTe 

Slot 
VBLint interrupts 

J 
SLOTSint ~ 

SCSHRQ Internal hard disk 
connector External ......................... SCSI port ......................... . ............ ............ 
Internal floppy 
disk connector External Internal floppy 

disk connector (Macintosh Hcx only) floppy disk po 
:::::::::: :::::::::: (Macintosh Hex 0 

rt 
nly) .......... ......... 

Serial 

Channel A PortA 
ports ... 

Drivers (modem) .. 
ChannelB 

and PortB receivers 
... 

(printer) .. 
~Internal External 

~ sad: I 
speaker <f soun IC I 

~ sad: I soun IC I 

22 Designing Cards and Drivers for the Macintosh Family 



• Figure 1-3 Block diagram of the Macintosh IIci computer 

A31-O 
Device-select signals 

RABll-O MDU RAAll-O 

t t 
RAM r--- PGC t- RAM 

bankB (optional) bank A 

D31-O 

D31-O t L--

I FPU 
A4-1 Bus 

Mc6sSS2 buffers I--
RD31-O RBV 

A4,1,O r-

NMI 
IPL2-O 

-- .. ---------
Registers and 

D31-0 interrupts 
Video CPU D31-24 Video (0-8 bits) 

A31-O Sync signals 
port 

Mc6s030 VDAC ........ 
A4-2 R, G, andB / 

r--
D31-0 

'--- I/O and NuBus interrupt 

ROM 
A22-O 512 KB ~ Totan" 'P""''' 

CPU External sound ja 
signals Left channel Sony I "9 D31-24 sound IC I 

ASC Right channel Sony 
All-O sound IC I 

ck 

RAM cache 

~I I 
Apple Deskto 

connector 
D31-24 .. RTC Bus ports 

F,'fT 
VIAl 

·1 1 q ii: 
ii: A12-9 .. ADB :: : 
:: : D31-O :: : 
iii Internal hard disk -
ii: D31-24 ii: A31-0 connector External 
ii: 
iii SCSI 

j:' •••••••••••••••••••••••• SCSI port ......................... 
ii: A6-4 ............. i:: ............ 

p 

JJJ: Internal floppy disk External 
floppy 

D31-24 connector .......... disk port 
SWIM .......... 

A12-9 ......... 
Serial 

D31-24 Channel A 
Drivers 

ports 
Port A (modem) ••• 

A21 SCC Channel B 
and Port B (printer) 

receivers .. 
NuBus connectors 
F,lT ?,= ?,= 

A31- NuChip30 
iii iii ~ i i 
:: i i:: :: i 

23,1,0 :: i i:: :: i - ::: ::: ::: 
AD31-O : iii i: i i: 

A22-2 NuBus iii i:: : i: 
trans- iii i it : i: 

:: i : iii i i 
D31-O ceivers 2bllbllb 

$C $D $E 

Chapter 1 Overview of Macintosh Computers With the NuBus Interface 23 



• Figure 1-4 Block diagram of the Macintosh IIfx computer 

RQM 
031-0 031-0 

Cache data 
Al8-4 512KB A22-4 RAM 

A30, 031-0 
Cache tag 28-4 

031-0 RAM 

CPU A31-O 031-0 
A26-0 

~ 
Main RAM 

Mc68030 
CPU signals =-l FMC 

Processor-
direct slot 

Fast/slow buffers W 
DP24 II 

DP31-O DP31-O 

1 PA31-O PA31-O 

DP31-24 
- 1/0 and NuBus ~~ External 

AP31-O OSS interrupts speaker 
sound jack 

H Sony I 0 DP31 24 sound IC I 
ASC 

APll-O H Sony 
soundlC .1 

AP12-9 

DP31-O DP31-24 VIAl RTC I 
FPU 

AP4-1 Mc68882 Internal hard disk 
connector External ......................... SCSI port 

DP31-O 
......................... 

SCSI 
.:: .. : .. : •• : ........ J 

AP31-O DMA Apple Deskto 

I 
Bus ports 

ADB 

p 

DP31-O 
transceiver 1 Internal floppy L@ disk connectors 

lOP 

~ I :::::::::: -AP5-1 
SWIM 

I Serial .......... .......... 
ports 

DP31-24 

H 
Channel A I Drivers 

Port A (modem) .' ~"" 
SCC 

I AP5-1 lOP 8530 Channel B 
and Port B (printer) 

receivers """ 

I I 
NuBus connectors 

DP25, CGTO 

ill 
!iT Ffff 

m 
FIT! Tff 24,7"'-1 

III BIU30 lACK, ITMO, INUCLK III 

ill 
;;; 

AP31-24 :t: , .. 
AD31-O ill III 

ill III DP31-8 I ~ AP23-2 I BIUl .-c: ~ 
$9 $A $B $C $0 $E 

24 Designing Cards and Drivers for the Macintosh Family 



• Figure 1-5 Block diagram of the Macintosh IIsi computer 

CPU 

Mc6S030 

Processor
direct slot 

CPU interrupts 

A31-0 

D31-D 

CPU 
signals 

~----------~~ ~u 
A31-0 I I 

KABlHl r~JI 1,"-1 RAA 1H) 

BankB 
(4 SIMMs) 

A4 1 0 

, A22-0 

I 

RAM 
O-64MB 

DO-31 I F245 bus I 

RAM 
1 MB 

I 
I buffers I RD0-31 

D31-24 
ROM 

5-32 MB 

Video (8-0 bits) 

NMI 

Bank A 
S 256Kx4 

DRAMs 
soldered in 

Sync Signals 

RBV Video 

Registers and 
interrupts 

I/oand:J 
NuBus 

interrupts 

(8-0 bits) 

D31-0 Sync signals Video 
A4-2 VDAC 

port 
~_R_G_B __________________________ ,,~~~~~ 

D31 24 Left channel 

p;=::::;::: 
I w:Jrc ~ rntecml 'pm" 

Rigl1t channel External soun djack 
Sony I 0 

All-O 

"'r-----' 
~ ~ ~ 111 p..-... A ... 31 ... -... 0 ---91 

III n DlHl 

~I~ I 
Power 

and clock 

D31-24 

D31-24 
Al2-9 

D31-24 
A6-4 

D31-24 
A12-9 

ASC 

I FIFO and 
I ctllogic 

VIAl 

SCC 

85C80 
Combo 

chip 

SCSI 

SWIM 

I sound IC I 
Internal soun djack 

Sony I © soundIC I 
Apple Deskto p 

ADB 
Bus ports 

@ 
Internal hard disk 

connector External 
I::::::::::::::::::::::::: I SCSI port 

I \ ... ::::::::::: ) 
Serial 

Channel A 
ports 

I Drivers 
Port A (modem) © 

Channel B 
and Port B (printer) © 

receivers 

Internal floppy disk External 
connector floppy 
.......... disk port 

.......... ......... 

Chapter 1 Overview of Macintosh Computers With the NuBus Interface 25 



• Figure 1-6 Block diagram of the Macintosh Quadra 700 computer 

A31--O Memory RAM F- RAM 
Control 4MB 

0-16MB 
Unit (4 SIMMs) 

System bus D31--O I I 

CPU A22-2 ROM 
Adrlrp" -MC6S040 A31-0 1MB 

Data bus Bidirectional 0.5MBSIMMs 0.5 MB SIMMs 

D31-0 ~ bus BD31--O 
VRAM VRAM transceivers 

NuBus 
soldered SIMM 
O.5MB O.5MB 

connectors 

:If=-I ~ CLUT/DAC Illi 
YANCC A31-0 DAFB Video 

NuBus frame port 
controller buffer ~ ~ ....... 

controller 

Bidirectional 
bus 

Internal hard $E $D transceivers I::::::::::::::::::::::;:: I BA7-4 ......... SCSI disk connector 
Processor-
direct slot ............. External 

=r= 
A31--O ............ 

SCSI port 
D31,-0 D31--O 

I System bus 
Bidirectional ]DB Relayer 

I I_~~II bu~ • 
custom 

III 
custom 

II data bus control 
IIObus transceIVers adapter adapter 

I ~ Internal ; Enhanced Sporty speaker ! IOD31-24 ASC -@- custom Right channel 

I! IOAll--O DAC amplifier Left channel '© Sound out 

Jl I jack 
DFAC 

IOD31-24 ~ 
sound o Mic (sound 

Ethernet 
IOA12-9 input IC in jack) 

VlA2 
Sonic IOD31--O 

Ethernet Apple Desktop controller IOA31--O GIADB - - ADB 
Bus ports 

IOD31-24 
transceiver 

.. 
~ IOA12-9 VIAl L© ....... 

AAUI RIC -
IOD31-24 Internal floppy disk 

IOA12-9 SWIM connector 
I :::::::::: I 

Serial 

Channel A 
ports 

D31-24 I Drivers 
Port A (modem) @ 

A2-1 SCC and Port B (printer) 0 ChannelB receivers 

26 Designing Cards and Drivers for the Macintosh Family 



• Figure 1-7 Block diagram of the Macintosh Quadra 900 computer 

YANCC A31-0 
NuBus 

Bidirectional 
BD31-O D31-O bus 

controller _ transceivers 
I 

ROM 1MB I 
I 

4 RAM SIMMs-Bank A r 
I 

4 RAM SIMMs-Bank B l 
I f-- 0-16 MB 

4 RAM SIMMs-Bank C I per bank 

I 

4 RAM SIMMs-Bank D l 
I 

Video port 
_---I CLUT/DAC W"·::::::::::: 

I 
I 

VRAMSIMM-, f .... j 
NuBus connectors L.. if 

A31-O 
VRAM f.-! ..... : 

DAFB b-. 
-) 

frame buffer I I 
controller y 

I SCSI #0 

BA7-4 
SCSI #1 

][][][][ 1[=-+f-+_D..;,3_1-O-I 

:SIMMV.· ... · ..... ·.·j 
Internal hard 

disk connectors ......................... ......................... 
......................... ......................... External 

SCSI port $A $B $C $D $E 

= ~ 
AAUI 

System bus 
_ Bidirectionallmw" _'II.' bus ,w"*o 

I/O bus transceivers 

JOB 
custom 
data bus 
adapter 

Relayer Internal CD-ROM 

moo"", custom Imm 
• control ft." 

adapter r--D-FA-C~ 

sound 

~o ~Line ~inputs 

~L-__ -+--+---L_--{IO Mic 

10All-O I-- input IC 
1.~I£OA~3~I-O~Jt----1r---.~IEnhmcw 
I~ ASC Sporty 

Sonic 

(sound 
in jack) 

I-L....----.{O Sound 
out jack f---n1 Internal 

IOD31-24 I-- custom Audio 
Ethernet IOD31-O t~.;;.;;.~--~ amplifier I- DAC 
interface I-"';';;;~:";;'-+---I 

VIA2 

IOAI2-9 

IOD31-24 

L...._---l l.\j speaker 

IOAI2-9 VIAl Caboose 
RTC Keyswitch connector 

IOD31-24 I- f------f ••• r=--'L __ J L __ _ 

IOA5-1 

IOD31-24 

IOA5-1 

IOD31-24 

SWIM 

lOP 

Internal floppy 
~tor Apple 

Desktop 
Bus port 

Ii r ADB I--_----l~---© 
L-_---li ~ transceiver r 

Serial 

Channel A 

lOP I-- sec 
ChannelB 

ports 
. PortA ••• 

Dnvers I (modem) •• 
and 

receivers Port B 
(printer) •• 

Chapter 1 Overview of Macintosh Computers With the NuBus Interface 



RAM 

RAM is the working memory of the system. Its base address is $00. The first 1024 bytes of 
RAM (addresses $00 through $3FF) are normally used by the microprocessor as exception 
vectors; these are the addresses of the routines that gain control whenever an exception 
such as an interrupt or a trap occurs. RAM also contains the system and application heaps, 
the stack, and other information used by applications. 

On most of the Macintosh computers, the microprocessor's accesses to RAM are not 
interleaved (alternated) with the video display's accesses during the active portion of a 
screen scan line. On these computers, the screen buffer is located in video RAM on the 
main logic board or a separate NuBus video card. However, on the Macintosh IIci and the 
Macintosh IIsi, the microprocessor's accesses to RAM are interleaved with the video 
display's accesses. The screen buffer for these two computers is located in main memory. 

Video RAM can be located on the video card in a NuBus slot for most Macintosh 
computers. The Macintosh Quadra 700 and the Macintosh Quadra 900 have video RAM 
located on the main logic board. In the Macintosh Quadra family of computers, there 
can be up to four banks of video RAM. These computers also support VRAM-based 
NuBus cards. 

In the Macintosh IIci and the Macintosh IIsi, physical memory is not in one contiguous 
block, so the MMU of the 68030 joins the blocks of physical memory to present 
contiguous logical memory to application software. The address space is decoded by the 
same MDU custom chip found in the Macintosh llci; the MDU also supports burst-read 
mode directly to the 68030. 

The physical memory in the Macintosh Quadra family of computers is set up to be 
contiguous. The Macintosh Quadra 700 supports up to two banks of memory, and the 
Macintosh Quadra 900 supports up to four banks of memory. When the Macintosh 
Quadra-family computer is powered on, the start code in the ROM physically "stitches" 
the memory together so that all the bank addresses are contiguous. The Memory Control 
Unit in the Macintosh Quadra 700 and the Macintosh Quadra 900 supports all 68040 
memory-access types, including burst reads and burst writes. 

ROM 

ROM is the system's permanent read-only memory. Its base address is available in the 
global variable ROMBase. ROM contains the routines for the User Interface Toolbox and 
Macintosh Operating System, and the various system traps. 

Designing Cards and Drivers for the Macintosh Family 



The Macintosh Quadra 700 and Macintosh Quadra 900 are the first Macintosh computers 
to have 1 MB of ROM installed on the main logic board. The ROM software for the 
Macintosh Quadra family of computers is the latest in a series of ROM designs and is 
derived from the ROM for the Macintosh lIci, Macintosh IIfx, Macintosh lIsi, and 
Macintosh LC computers. 

Device I/O 

Computers in the Macintosh family use memory-mapped 1/0, which means that each 
device in the system is accessed by reading or writing to specific locations in the address 
space of the computer. The address space reserved for device I/O contains blocks 
devoted to each of the devices within the computer. Each device contains logic that 
recognizes when it's being accessed, and the device responds in the appropriate manner. 

For compatibility with Mc68000-based Macintosh computers, the Macintosh Operating 
System operates by default with 24-bit addressing. In System 7, however, you can choose 
to run with 32-bit addressing. New applications can take advantage of the full 
32-bit addressing mode for slot access, as explained in Chapter 7, "NuBus Card Memory 
Access." You must not assume the system software is operating in a specific mode. Please 
refer to the compatibility guidelines information in Inside Macintosh for more 
information about the addressing mode selector. 

Separate address spaces are reserved for processor access to cards in NuBus slots. For a 
device in NuBus slot number s, the address space in 32-bit mode begins at address 
$FsOO 0000 and continues through the highest address, $FsFF FFFF (where s is a constant in 
the range $9 through $E for the Macintosh II, the Macintosh IIx, and the Macintosh IIfx; 
$A through $E for the Macintosh Quadra 900; $9 through $B for the Macintosh IIcx; 
$C through $E for the Macintosh IIci; $D and $E for the Macintosh Quadra 700; and 
$9 for the Macintosh IIsi). 

The microprocessor can directly access 232 bytes, or 4 GB, of address space. In a 
Macintosh computer, this address space is partially accessible when the Macintosh 
Operating System is in 24-bit mode and totally accessible when it is in 32-bit mode. 

A driver must switch into the machine's boot mode (either 24-bit or 32-bit mode) before 
calling ROM routines. If the operating system has been booted in 24-bit mode, an 
application or a driver may switch to 32-bit mode but must switch back to 24-bit mode 
before calling most ROM routines. More information about the addressing mode selector 
can found in the compatibility guidelines information in Inside Macintosh. 

Chapter 1 Overview of Macintosh Computers With the NuBus Interface 



If an application needs access to a NuBus card in 32-bit mode (because it needs access to 
more than 1 MB of slot space, for example), it can use the system call SwapMMUMode to 
perform mode switching. Even if a machine is booted with 32-bit addressing, it is usually 
still necessary to call SwapMMUMode to ensure that the machine is in 32-bit mode. It is not 
correct to assume that a machine must boot with 32-bit addressing in order to work with a 
given driver. The SwapMMUMode call is described in the discussion on operating-system 
utilities in Inside Macintosh. 

Memory management in the Macintosh II is provided by the Address Management Unit. 
The main function of the AMU is to accomplish a 24-to-32-bit memory mapping 
translation. A bit in VIA2 controls the mode change. This method offers the direct use of 
all 32 bits in one mode and a mapped set of addresses in 24-bit mode. You must replace 
the AMU with the Mc68851 Paged Memory Management Unit (PMMU) if you are running 
virtual operating systems such as AlUX because AlUX runs entirely in 32-bit mode. The 
Mc68851 PMMU is also capable of ignoring the high 8 bits of the address in order for the 
Macintosh Operating System to run in 24-bit mode. 

Macintosh computers that use the MC68030 and Mc68040 microprocessors do not need 
an AMU or a PMMD. The microprocessors in these computers include a built-in memory 
management unit that provides all necessary memory management functions, including 
24-to-32-bit memory mapping translation and AlUX operating-system support. 

Chapter 7, "NuBus Card Memory Access," shows in detail how cards installed in NuBus 
slots address memory. 

Address/data bus 

The block diagrams in Figures 1-1 through 1-7 show the basic address/data bus 
architecture used in the Macintosh computers. Note that the address and data buses are 
separate on the microprocessor side of the NuBus interface (transceivers and controD, 
and that the addresses and data are multiplexed on the NuBus side of the interface. The 
NuBus utility, control, arbitration, and slot ID signals are described in detail in Chapter 2. 

The 32-bit-wide multiplexed address or data bus connects to the NuBus slot connectors. See 
the section "Address/Data Signals" in Chapter 3 for a description of the address/data bus. 

30 Designing Cards and Drivers for the Macintosh Family 



Macintosh IIsi NuBus interface 

The Macintosh IIsi is different from all other Macintosh computers in its expansion 
interface. The Macintosh IIsi offers a NuBus expansion interface and a processor-direct 
slot (PDS) expansion interface. However, to install either type of expansion card, you 
must first install a special adapter card for the Macintosh IIsi. 

There is a single 120-pin expansion connector on the main logic board. You can install a 
NuBus adapter card or a 68030 Direct Slot adapter card in the expansion connector. 
Both NuBus and PDS adapter cards include 68882 floating-point units for numeric 
coprocessing. If customers want numeric coprocessing but don't care about expansion, 
they still have to use an adapter card. Both adapter cards are user installable. 

A NuBus adapter kit, available from an authorized Apple dealer, allows a customer to 
install a NuBus card in the Macintosh IIsi computer and have it function exactly as if it 
were in any other Macintosh computer with a NuBus expansion. Information about the 
physical and electrical implementation of the NuBus adapter card for the Macintosh IIsi 
can be found in Chapters 5 and 6. 

NuBus interface architecture 

All Macintosh computers that offer the NuBus expansion use a similar interface 
architecture to communicate with the NuBus. The most noticeable difference is that as 
Macintosh computers have evolved, they have incorporated different NuBus control and 
data transceivers into their bus interface design. This section shows how the processor 
uses the bus interface control and transceiver logic to communicate with the NuBus. 

The Macintosh II, the Macintosh IIx, and the Macintosh IIcx computers all use the NuChip 
custom IC for their bus interface control function, as shown in Figures 1-1 and 1-2. In the 
Macintosh IIci (Figure 1-3) and the Macintosh IIsi adapter card, the bus interface control 
function is replaced by a NuChip 30 custom Ie. In the Macintosh IIfx (Figure 1-4), two 
custom ICs, the BIU30 and the BIU2, perform the control and transceiver functions. 

Chapter 1 Overview of Macintosh Computers With the NuBus Interface 31 



The Macintosh Quadra 700 (Figure 1-6) and the Macintosh Quadra 900 (Figure 1-7) use 
three chips for the interface between the system bus and the NuBus: the Y ANCC (Yet 
Another NuBus Controller Chip) IC and two 16-bit transceiver ICs. The transceiver ICs are 
the same type as the ones used in the Macintosh IIci. The features of the Y ANCC include 

• support for all types of single data transfers in either direction 

• a 32-bit buffer for pended writes from the Mc6s040 to the NuBus 

• support for block move transfers between NuBus masters and main memory 

• support for pseudoblock transfers between the Mc6s040 and NuBus slaves 

• support for some new functions defined in the latest NuBus specification (refer to 
Chapter 2 for more information about these new features) 

Unlike the NuBus controllers in previous Macintosh computers, the YANCC generates an 
interrupt when there is an error involving the write buffer. Software controls this interrupt 
by means of a control and status register in the Y ANCC. 

The NuBus interface in Figures 1-1 through 1-7 shows bidirectional bus interface blocks 
between the microprocessor bus and the NuBus. Figure I-S shows a further breakdown of 
the functional elements comprising the bus interface circuits. 

Figure I-S shows the bus interface architecture implemented in the Macintosh II, the 
Macintosh IIx, and the Macintosh IIcx. Although other Macintosh machines may vary from 
this design, the figure is meant primarily as an example. The bus interface control function 
is implemented as four state machines, three of which are shown in Figure I-S. The fourth 
state machine prevents the NuBus from indefinitely awaiting an acknowledge by 
generating an acknowledge cycle in response to /START after 256 bus cycles (25.6 J.!s). 
A wait this long occurs when the processor makes an access to nonfunctional addresses, 
perhaps because the card being addressed is not present in any of the NuBus slots. 

Processor bus-to-NuBus state machine 

The processor bus-to-NuBus state machine (see Figure 1-8) is activated whenever the 
microprocessor generates a physical address from $6000 0000 through $PFFF FFFF in the 
data or program address spaces (see the memQry map, Figure 1-9). The state machine 
synchronizes the request with the NuBus clock and presents the same address over the 
NuBus. If a slave device on NuBus responds, the data is transferred. If no slave responds, 
a NuBus time-out occurs and a bus error C/BERR) signal is sent to the processor. The 
processor can then determine the cause of the error. 

32 Designing Cards and Drivers for the Macintosh Family 



• Note: A special check is made for access to $FOxx xxxx, which is the main logic board's 
slot address; if attempted, a bus error signal is generated immediately and no NuBus 
transaction is attempted. 

• Figure 1-8 Bus interface architecture for the Macintosh II, Macintosh IIx, and 
Macintosh IIcx computers 

NuBus contro signa s 

IAD31-/ADO 
NuBus address/data bus -

A31-A24 

A23-A16 

A31-A1 

Processor 
address bus 

A15-A8 

A7-A2 
Al AO 

SIZ1-SIZO 
Encoderl I -decoder 

NuBus slave 
state machine 

ICLK - l> 

c16M 
(processor 

clock) 

- l> 

NuBus-to-
processor bus 
state machine 

-

.. 

r--

IAD31-/AD24 D7-DO 

IAD23-/AD16 D15-D8 

IADlS-/AD8 D23-D16 

IAD7-/ADO D31-D24 

ITMI-/TMO -

Processor bus-
ISTART, lACK, etc. to-NuBus 

state machine 

ICLK - t> 

.. Processor 
control signals 
(for example, 

IBR, lAS, !DSACKn) 

< 

D31-DO 

Processor 
data bus 

Processor 
control si gnals 

pie, 
BUS, 
n) 

(for exam 
i- IAS,/NU 

IDSACK 

'- C16M 

Chapter 1 Overview of Macintosh Computers With the NuBus Interface 33 



NuBus-to-processor bus state machines 

Two state machines, the NuBus slave and the NuBus to processor bus, control a 
NuBus-to-processor bus data transfer (see Figure 1-8). 

The NuBus-to-processor bus state machine controls accesses from the NuBus, through 
the processor bus, to RAM, ROM, and I/O. For example, if an address from $00000000 
through $3FFF FFFF is presented on the NuBus, then the NuBus-to-processor bus state 
machine requests the processor bus from the microprocessor and performs a RAM access 
to the same address. Similarly, if an access in address space $F080 0000 through 
$FOFF FFFF is made on the NuBus, an access in $4xOO 0000 through $4xFF FFFF on the 
processor bus is made to the ROM (see the map in Figure 1-9). Chapter 7 provides much 
more detailed information on memory access. See Table 7-2 in particular. 

A Warning The ability to access processor bus I/O devices is not intended for 
normal use. Access to anything other than ROM or RAM will probably 
not be supported on future systems .... 

The Macintosh II, the Macintosh IIx, and the Macintosh IIcx have only 256 KB of ROM; in these 
machines, only 18 bits of addressing is required to specify a ROM location. The hardware 
decode logic interprets any physical address whose upper 4 address bits (A31-A28) are equal to 
$4 as a ROM access. So there are 32 minus 4, or 28, bits available to access the locations in a 
ROM that requires only 18 bits of addressing. This means that 10 address bits are "don't cares" 
and that on the map of physical addresses there are 1024 (210) different addresses (aliases) that 
will access the same ROM location. (In some memory architectures, not all of these aliases are 
accessible from the main processor.) This act of gaining access to a memory location from 
several different addresses is called aliasing. It usually occurs in computer systems when an 
incomplete address decoding mechanism is used. 

34 Designing Cards and Drivers for the Macintosh Family 



The NuBus-to-processor bus state machine also monitors and records when the NuBus 
master initiates an attention-resource-lock cycle and controls the subsequent events of a 
resource-locked transaction, as described in the section "Bus Locking" in Chapter 4. 

The NuBus slave state machine is synchronous to the NuBus and tracks the state changes 
on the NuBus. 

• Figure 1·9 NuBus-to-processor bus translation 

Slots -

Slota -

Expansion 
address 

Unused -

NuBus 
access to 

RAM 

NuBus 
address space 

$EFFF FFFF 

$6000 0000 

$5FFF FFFF 

Processor 

32-bit physical 
address space 

NuBus 

I/O 

ROM 

RAM 

Chapter 1 Overview of Macintosh Computers With the NuBus Interface 35 





Chapter 2 NuBus Overview 

This chapter describes NuBus features, provides a simplified diagram of 
the NuBus hardware, defines many NuBus terms, classifies the signals 
used to implement communication over the bus, and discusses the most 
basic timing and transaction cycle relationships. 

37 



NuBus features 

The NuBus is used for expansion of a modular Macintosh computer beyond the 
capabilities of the ports (connectors) on the back of the machine. 

NuBus is a 32-bit-wide bus chosen by Apple to mechanize the multislot expansion of the 
Macintosh computers. Table 2-1 shows the highest-level design objectives and the 
supporting features of the NuBus. Apple chose the NuBus over competitors because it 
offered cost-effective high performance along with maturity of hardware design and 
production. 

The latest Macintosh computers with NuBus expansion interfaces, the Macintosh Quadra 
700 and the Macintosh Quadra 900, include enhancements to the NuBus implementation, 
such as block-transfer modes and new clock and serial bus signals. These changes 
correspond to the latest 1990 draft specification of NuBus, the Standard for a Simple 
32-Bit Backplane Bus: NuBus, ANSI/IEEE Std 1196-1990. 

• Table 2-1 Design objectives and features 

Design objective Supporting features 

System architecture independent 

High-speed data transfer 

Simplicity of protocol 

Small pin count 

Ease of system configuration 

Optimized for 32-bit transfers, but supports 8-bit and 
16-bit nonjustified transfers. Not based on the control 
structure of a particular microprocessor. 
10 MHz clock synchronizes bus arbitration and transfers 
of read/write data to a single 32-bit address space 
(block transfers are currently implemented only on the 
Macintosh Quadra family of computers). 
Reads and writes are the only operations used. I/O and 
interrupts are memory mapped. Single, large physical 
address space allows uniform access to all addressable 
cards or other resources. 
Multiplexed data and address lines. Simplified 
connection, only 51 signals plus power and ground lines. 
Geographical addressing eID lines) enables interface 
system to be free of DIP switches and jumpers. 
Distributed, parallel arbitration eliminates jumper wiring 
of slots with missing cards (daisy-chaining). 

38 Designing Cards and Drivers for the Macintosh Family 



NuBus elements 

The NuBus is a synchronous bus; all transitions and signal samplings are synchronized to a 
central system clock. However, it has many of the features of an asynchronous bus; 
transactions may be a variable number of clock periods long. This design provides the 
adaptability of an asynchronous bus with the design simplicity of a synchronous bus. 

Figure 2-1 is a simplified representation of a typical NuBus system. Keep in mind that the 
number of NuBus cards varies for each Macintosh computer: up to six in the Macintosh II, 
Ilx, and IIfx; five in the Macintosh Quadra 90; three in the Macintosh Ilcx and Ilci; and 
two in the Macintosh Quadra 700. In addition to the slot identification (ID), clock, 
address/data, and arbitration lines shown in the diagram, there are system reset, parity, 
power fail warning, nonmaster request, and data-transfer control lines. 

NuBus supports only read and write operations in a single address space, in contrast to 
some other bus designs. I/O and interrupts may be accomplished within these read and 
write mechanisms. In the Macintosh computers with NuBus, however, interrupts are 
detected through the nonmaster request line (see "Interrupt Operations" in Chapter 3). 

The cards in NuBus slots are peers; no card or slot is a default master. The exception is 
that only one card drives the system clock line; the clock is supplied by the main logic 
board. Each slot has an ID code hard-wired into the main logic board of the computer. 
This allows cards to differentiate themselves without the computer user having to arrange 
jumpers or adjust DIP switches. 

The NuBus supports multiprocessing and other sophisticated system architectures with a 
few simple mechanisms explained in Chapter 3, "NuBus Data Transfer." 

Chapter 2 NuBus Overview 39 



• Figure 2-1 Simplified NuBus diagram 

Representative NuBus cards 

I 
( 

Master Slave Master 
,--------------------------1 ,--------------------------1 

I 
I 
I 
I 
I 
I 
I 
I 
I 

NuBus 

40 Designing Cards and Drivers for the Macintosh Family 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Slave 
,---------------1 
I I 
I I 
I I 
I I 
I 
I 

I 
I 
I 
I 

___ -.J 



NuBus '90 features 

NuBus '90 is the 1990 proposal of the IEEE standard for the NuBus (Standard for a Simple 
32-Bit Backplane Bus: NuBus, ANSI/IEEE std 1196-1990). Two of the latest Macintosh 
computers, the Macintosh Quadra 700 and the Macintosh Quadra 900, provide the 
following new features in that proposal: 

• On the Macintosh Quadra 900, low current at +5 V is available on the new STDBYPWR 
pin when main power is off and the AC cord is plugged in. This signal is not available on 
the Macintosh Quadra 700. 

• NuBus '90 defines new signals ISBO and ISB1 for a serial bus on the formerly reserved 
pins A2 and C2. The serial signals are bused and terminated, but the main circuit board 
does not drive them. 

• New signals ITM2, ICLK2X, and ICLK2XEN support block transfers at double the 
standard rate. The Macintosh Quadra family of computers allows double-rate block 
transfers between NuBus cards, but does not support double-rate transfers to or from 
the main memory. 

• NuBus '90 defines new signals ICMO, ICM1, ICM2, and ICBUSY to support a cache
coherency protocol. Pins on the NuBus connector are assigned to those signals, but the 
Macintosh Quadra 700 and the Macintosh Quadra 900 do not support them. 

NuBus signal classifications 

There are some slight changes in the signal definitions in the original NuBus implementation 
and NuBus '90. Table 2-2 shows the NuBus signal classifications based on the original 
implementation of NuBus in Macintosh computers, and Table 2-3 shows the NuBus '90 signal 
classifications. In the first table, NuBus signals can be grouped into six classes based on the 
functions that they perform. For the NuBus '90 signal classes (Table 2-3), the signals are 
grouped into eight separate classes. There are also power and ground lines. 

Chapter 2 NuBus Overview 41 



• Table 2-2 Signal classifications in the original NuBus implementation 

Classification Signal Signal description Number of pins 

Addressl data IAD31-IADO Addressl data 32 

Arbitration I ARB3-1 ARB a Arbitration 4 
IRQST Request 1 

Control ISTART Start 1 
lACK Acknowledge 1 
ITMO Transfer mode 0 1 
ITMI Transfer mode 1 1 

Parity ISP System parity 1 
ISPV System parity valid 1 

Slot ID IID3-/IDO Slot identification 4 

Utility IRESET Reset 1 
ICLK Clock 1 
IPFW Power fail warning 1 
INMRQ Nonmaster request 1 

Total signals 51 
Power/ground +SV 11 

+12V 2 
-12V 2 
-S.2V (not supplied)t 8 
GND Ground 20 

Reserved Reserved 2 

Total pin count 96 
t These pins are wired together but not supplied with power from the computer. 

42 Designing Cards and Drivers for the Macintosh Family 



• Table 2-3 Classes of NuBus '90 signals 

Classification Signal Signal description 

Address/ data /AD31-/ADO Address/ data 

Arbitration / ARB 3-/ ARBO Arbitration 
/RQST Request 

Cache coherency /CBUSY Cache busy 
/CM2-/CMO Cache maintenance 

Control /START Start 
/ACK Acknowledge 
/TMO Transfer mode 0 
/TMI Transfer mode 1 
/TM2 Transfer mode 2 

Parity /SP System parity 
/SPV System parity valid 

Serial bus /SBl-/SBO Serial bus signals 

Slot ID /ID3-/ID0 Slot identification 

Utility /RESET Reset 
/CLK Clock 
/CLK2X Clock2X 
/CLK2XEN Clock2X enable 
/PFW Power fail warning 
/NMRQ Nonmaster request 

Total signals 
Power/ground +5V 

+12V 
-12V 
/STDBYPWRt Standby power 
GND Ground 

Total pin count 
t The /STDBYPWR signal is not supported in the Macintosh Quadra 700. 

6 Important The eight lines that were connected to the -5.2V signals in the 
original NuBus are now used for new features. Many older 
NuBus cards connect those eight lines together; the presence 
of such a card in the Macintosh Quadra family of computers 
will disable the new features of all installed NuBus cards that 
use those lines. All the other features of both the old and new 
cards will operate normally. D. 

Number of pins 

32 

4 
1 

1 
3 

1 
1 
1 
1 
1 

1 
1 

2 

4 

1 
1 
1 
1 
1 
1 

60 
11 
2 
2 
1 

20 

96 

Chapter 2 NuBus Overview 43 



NuBus timing 

The NuBus system clock has a lOO-nanosecond (ns) period with a 75 ns high, 25 ns low 
duty cycle. Figure 2-2 shows the basic timing for most NuBus signals. The low-to-high 
transition of /CLK is used to drive and release signals on the bus. Signals are sampled on 
the high-to-Iow transition of the clock. The asymmetric duty cycle of the clock provides 
75 ns for propagation and setup time. Bus skew problems are avoided by having 25 ns 
between the sample and drive edges. 

• Figure 2-2 NuBus signal timing 

Period 
I 

( lOOns I 
/eLK 

I 
I 

I 75 ns I 
25 ns I 

I 
I 
I 
I 
I 
I 
I 

/SIGNAL K > I I 
I I 
I I 
I 

j 
I 

I I 
I I 
I I 

Driving edges 1 1 
Sampling edge 

NuBus terminology 

Table 2-4 defines terms used throughout Part I that are used to describe the NuBus 
expansion interface. The relationships between some of these terms are illustrated in 
Figures 2-2 and 2-3. All NuBus signals are active (asserted) when low; a slash preceding a 
signal name indicates that it is active-low, for example, /START. 

44 Designing Cards and Drivers for the Macintosh Family 



• Table 2-4 NuBus expansion interface terminology 

Term Definition 

IX block transfer 

2X block transfer 

Acknowledge (ack) cycle 

Active 

Arbitration contest 

Asserted 

Attention cycle 

Bus lock 

A block transfer in which NuBus words are transmitted at a 10 
MHz rate. These types of data transfers are only implemented 
on the Macintosh Quadra family of computers. 

A block transfer in which NuBus words are transmitted at a 
20 MHz rate, sometimes referred to as double-rate block 
transfers. The Macintosh Quadra 700 and the Macintosh 
Quadra 900 computers allow double-rate block transfers 
between NuBus cards, but do not support them to or from 
the main memory. 
Last cycle of a transaction during which / ACK is asserted by 
a slave responding to a master. See Figure 2-3. 

For an active-low signal. Synonymous with asserted, low, 
and true. 

The mechanism used to choose which of two or more cards 
requesting control of the bus will become the next bus 
master. A complete arbitration contest requires two bus 
cycles (at 100 ns each). 

The logic state of an active-low signal line when the line is 
driven low. All NuBus signal lines are active-low. 
Synonymous with active, low, and true. 

A particular kind of start cycle, one in which both /START 
and / ACK are asserted. There are three types: attention-null, 
attention-resource-Iock, and attention-cache cycles. See 
"Resource Locking" in Chapter 4. 

A mechanism for providing continuing tenure (bus 
ownership) by a single card. The extended tenure may 
include multiple transactions or attention cycles. One type 
of attention cycle is an attention-resource-Iock (often 
shortened to resource lock); therefore a bus lock mayor 
may not include a resource lock. 

(continued) 

Chapter 2 NuBus Overview 45 



• Table 2·4 NuBus expansion interface terminology (continued) 

Tenn Definition 

Cache coherent The ability of a bus module to maintain a cache. The cache 
contains data and tags that can determine the ownership of 
data between multiple processors, and thus maintain 
coherency or agreement between data shared by processors 
and memory. Refer to Chapter 3 for a discussion of cache 
coherency. Cache coherency is supported on Macintosh 
computers; however, the NuBus method is not used. 

Card A printed circuit board connected to the bus in parallel with 
other cards. 

Clock cycle The sequence of events on the NuBus clock from one rising 
edge to the next, nominally 100 ns in duration and beginning 
at the rising edge. See Figure 2-2. 

Copyback A function in the NuBus cache-coherency protocol that is 
used to free up cache lines to service a read miss or write 
miss or to flush data into an I/O buffer. The copyback 
function may also be used during context switching. 

Data cycle Any period in which data is known to be valid and 
acknowledged. It includes acknowledge cycles, as well as 
intermediate data cycles within a block transfer. See 
Figure 2-3. 

Deasserted For an active-low signal. Synonymous with high, inactive, 
unasserted, false, and released. 

Double-rate block transfer A block transfer in which data NuBus words are transmitted 
at a 20 MHz rate, also referred to as 2X block transfers. The 
Macintosh Quadra 700 and the Macintosh Quadra 900 
computers allow double-rate block transfers between NuBus 
cards, but do not support them to or from the main 
memory. 

Doublet A 16-bit data item taken as a unit. Synonymous with a 
NuBus haifword. 

Drive To cause a bus signal line to be in a known, determinate state. 

Driving edge The rising edge (low to high) of the central system clock 
(lCLK). See Figure 2·2. 

False For an active-low signal. Synonymous with high, inactive, 
deasserted, unasserted, and released. 

46 Designing Cards and Drivers for the Macintosh Family 

(continued) 



• Table 2-4 NuBus expansion interface terminology (continued) 

Tenn Definition 

Global An attribute of NuBus cache-coherency transactions where 
the data is shared between multiple cache-coherent 
masters. 

High 

Inactive 

Low 

Master 

Master flow control 

M,E,S,I 

Minor slot space 

Open collector 

Parked 

Period 

For an active-low signal. Synonymous with inactive, 
deasserted, unasserted, false, and released. 

For an active-low signal. Synonymous with high, deasserted, 
unasserted, false, and released. 

For an active-low signal. Synonymous with active, asserted, 
and true. 

A card that initiates the addressing of another card or the 
processor on the main logic board. The card addressed is at 
that time acting as a slave. 

Used by the bus master to control the flow of data during 
2X block transfers. 

Modified, exclusive, shared, invalid. The set of NuBus 
cache-line states and protocols used to guarantee cache 
coherency on NuBus. 

An Apple-specific term that describes the first megabyte of 
the 16 MB standard slot space. If a Macintosh computer is 
operating in 32-bit mode, it can access all the address space 
in both the standard slot and super slot spaces of any slot 
card. In 24-bit mode, it can address only 1 MB of each 
card's standard slot space. In 24~bit mode, the computer 
hardware translates 24-bit addresses of the form $sx xxxx 
into 32-bit addresses of the form $FsOx xxxx, where s is a 
digit in the range $9 through $E. 

A bus driver that drives a line low or doesn't drive it at all. 

The condition when a bus master has completed a 
transaction and released /RQST, and before any other card 
has asserted /RQST. Bus parking is discussed in Chapter 4. 

The 100 ns duration of /CLK, the NuBus clock signal 
conSisting of a 75 ns high state and a 25 ns low state. 
See Figure 2-2. 

(continued) 

Chapter 2 NuBus Overview 47 



• Table 2-4 NuBus expansion interface terminology (continued) 

Term Definition 

Quadlet A 32-bit data item taken as a unit. Synonymous with a 
NuBUs word. 

Read miss This term is used with the NuBus cache-coherency protocol. 
When a processor attempts to read data, and the requested 
location within the cache is invalid, the initial read of the 
data in the cache fails. 

Released For an active-low signal. Synonymous with high, inactive, 
deasserted, unasserted, and false. 

Sampling edge The falling edge (high to low) of the central system clock 
(/CLK). See Figure 2-2. 

Slave 

Slave flow control 

Slot 

Slot ID 

A card that responds to being addressed by another card 
acting as a master. The main logic board in Macintosh 
computers may be either master or slave. Some cards may 
be slave-only in function because they lack the circuitry to 
arbitrate in a bus ownership contest. 

Used by the addressed slave to control the flow of data 
during all transactions. 

A connector attached to the bus. A card may be inserted 
into any of the slots when more than one is provided 
(Macintosh II, Macintosh IIx, and Macintosh IIfx have six 
slots; Macintosh Quadra 900 has five slots; Macintosh IIcx 
and Macintosh IIci have three slots; Macintosh Quadra 700 
has two slots; and Macintosh IIsi has one slot). 

The hex number ($9 through $E in the Macintosh II, 
Macintosh IIx, and Macintosh IIfx; $A through $E in the 
Macintosh Quadra 900; $9 through $B in the Macintosh 
IIcx; $C through $E in the Macintosh IIci; $D through $E in 
the Macintosh Quadra 700; and $9 in the Macintosh IIsi) . 
corresponding to each card slot. Each slot ID is established 
by the main logic board of the computer and 
communicated to the card through the JIDx lines. 

48 Designing Cards and Drivers for the Macintosh Family 

(continued) 



• Table 2-4 NuBus expansion interface terminology (continued) 

Term Definition 

Snarf An action taken by a cache-coherent master when it 
eavesdrops on a write-back transaction and absorbs the 
data. 

Snooping An action taken by cache-coherent bus modules to monitor 
cache-coherent transactions on the bus. 

Snooping module A module that snoops a cache-coherent transaction 
between a master and a slave. 

Standard slot space The upper one-sixteenth of the total address space. These 
addresses are in the form $Fsxx xxxx, where F, s, and x are hex 
digits of 4 bits each and s represents the specific slot number. 
This address space is geographically divided among the NuBus 
slots according to slot ID numbers. Each slot space is 16 MB. 

Start cycle 

Super slot space 

Tenure 

Transaction 

The first cycle of a transaction during which /START is 
asserted. See Figure 2-3. The start cycle is one bus clock 
period long; the transfer mode and the address are valid 
during this cycle. 

An Apple-specific term that describes the large portion of 
memory in the range $90000000 through $EFFF FFFF. NuBus 
addresses of the form $sxxx xxxx (that is, $5000 0000 
through $sFFF FFFF) address the super slot space that is 
assigned to the card in slot s, where s is an ID digit in the 
range $9 through $E. Each super slot space is 256 MB. 

A time period of unbroken bus ownership by a single 
master. A master may lock the bus and, during one tenure, 
perform several transactions. The concept of bus locking is 
further explained in Chapter 4 in the section "Locking." 

A complete NuBus operation such as read or write. In the 
Macintosh computers with NuBus, a transaction is made up 
of a start cycle, wait cycles as required by the responding 
card, and an acknowledge cycle. Start cycles are one clock 
period long and convey address and command information. 
Acknowledge cycles are also one clock period long and 
convey data and acknowledgment information. See 
Figure 2-3. 

(continued) 

Chapter 2 NuBus Overview 49 



• Table 2-4 NuBus expansion interface terminology (continued) 

Term Definition 

Tristate A bus driver that drives a line low or high or doesn't drive it 
at all. Also called three-state. 

True . For an active-low signal. Synonymous with active, asserted, 
and low. 

Unasserted For an active-low signal. Synonymous with high, deasserted, 
false, inCf,ctive, and released. 

Word In Part I, word refers to a NuBus word (quadleO and is 32 
bits long; a halfword (doubleO is 16 bits long (usage is 
consistent with the Texas Instruments NuBus 
specification). The data type "word," however, is 16 bits 
long; this inconsistency results from the difference between 
16- and 32-bit microprocessors. Part II of this book refers 
to a word as 16 bits and a longword as 32 bits. 

Write-back An action taken by a snooping module when it returns its 
modified data to shared memory. 

Write-back cache 

Write miss 

Write-through cache 

Also referred to as copyback cache. A cache that does not 
propagate all write cycles to memory, but holds the data in 
the cache until the cache line holding the data must be 
reused. 

This term is used with the NuBus cache-coherency protocol. 
When a processor attempts to write data, and the 
requested location within the cache is invalid or the data is 
shared, the initial write to the cache fails. 

A cache that propagates all write cycles to memory. 

• Figure 2-3 Cycle and transaction relationships 

Address/ 
Data 

Transaction Block transaction 
I I 

____ ~(-~ ~~1~ __ ~(-~ ~.~l ____ _ 

------!'1~Adr I ~~~] Data I I Adr I ~'~'~'~~EI~~~~~~~~~~~I~ Data ~I _ 
y y y y y 

Start Acknowledge Start Data Acknowledge 
Cycle Cycle cycle Cycle cycle 

50 Designing Cards and Drivers for the Macintosh Family 



Chapter 3 NuBus Data Transfer 

This chapter describes the utility signals, slot ID signals, and data-transfer 
signals; it then gives specifications for the process of transferring data 
over the NuBus interface from a master to a slave. 

... Warning This chapter is intended to give the developer an 
overview of the specific features of NuBus. It is not 
intended to be used as the sole technical reference for 
development of a NuBus card. If you are developing a 
NuBus card, please use the NuBus specification as your 
technical reference. • 

51 



Utility signals 

This section identifies the signal lines that serve utility functions for the NuBus interface. 
The main logic board of a Macintosh computer provides the structure and the slot 
connectors; it also provides the clock and reset signal sources and bus time-out circuitry. 

Clock signals 

The clock signal (/CLK) , driven from a single source, synchronizes bus arbitration and data 
transfers between system cards. The /CLK signal has an asymmetric duty cycle of 75% high 
and a constant nominal frequency of 10 MHz. In general, signals are changed at the rising 
(driving) edge of /CLK, and they are sampled at the falling (sampling) edge. 

Two additional clock signals have been defined for NuBus '90. These signals are provided 
only in the Macintosh Quadra 700 and the Macintosh Quadra 900. The /CLK2X signal 
synchronizes 2X block transfers between NuBus cards. The /CLK2X signal has a duty cycle 
of 50% and a constant nominal frequency of 20 MHz. During a 2X block transfer, modules 
drive new data on the assertion edge of /CLK2X and sample the data on the following 
assertion edge. 

Clock2X Enable (/CLK2XEN) is a sense line to detect conflicts with the NuBus '90 signals. 
If there are no boards that short this line to the other NuBus '90 lines, the line stays low, 
enabling the /CLK2X driver. 

Reset signal 

The reset signal (/RESET) is an open-collector line that is asserted asynchronously to the 
NuBus clock. When asserted/RESET causes a NuBus interface initialization for all cards 
(bus reset). 

Because of the design of the computer hardware and firmware, there is a slight deviation 
of the duration of the /RESET signal from that specified in the IEEE 1196 NuBus . 
standard. Durations and times are dependent on system clock frequency. 

52 Designing Cards and Drivers for the Macintosh Family 



As part of the startup code in the ROM, a reset instruction is executed shortly after the 
microprocessor comes out of hardware reset (nominally 200 ms). The execution of this 
reset instruction causes a subsequent 33 ~s assertion of /RESET. Thus, for each of the 
three ways in which reset occurs, the timing is as follows: 

• Initial power-on: Shortly after all power supplies have stabilized, the /RESET line is 
driven low for a nominal 200 ms. Then, about 3 ~s later and because of the startup 
code, /RESET is again driven low for 33 ~s. 

• Pressing the reset button: /RESET is asserted for as long as the button is held 
down, plus the nominal 200 ms. As in the power-on case, a subsequent 3 ~s 
de assertion is followed by an additional 33 ~s assertion. 

• Executing the restart command: The code for this menu item executes two reset 
instructions separated by about 3 ~s. Thus, /RESET is asserted for 33 ~s, deasserted 
for 3 ~s, and asserted again for 33 ~s. 

You should treat all assertions of /RESET (of any duration) identically. 

Power fail warning signal 

The power fail warning signal (/PFW) may be asserted asynchronous with respect to the 
driving edge of /CLK and indicates that the power is about to fail. In Macintosh 
computers, this signal is also used to control the power supply. Driving /PFW high turns the 
computer on; driving /PFW low turns it off. 

See Chapter 5, "NuBus Card Electrical Design Guide," for /PFW drive requirements if the 
card you are designing is to control the power supply through the NuBus. 

Nonmaster request signal 

The nonmaster request signal (/NMRQ) is asynchronous to /CLK and provides an interrupt 
mechanism for cards that are intended to be slave-only. Such cards avoid the cost of 
implementing arbitration logic. 

Chapter 3 NuBus Data Transfer 53 



Serial bus signals 

Two serial bus signals (lSBO and ISBl) have been defined in the NuBus '90 specification. 
These signal lines are defined only for the Macintosh Quadra 700 and the Macintosh 
Quadra 900. The signal lines are bused and terminated, but the main circuit board does 
not drive them. 

Card slot identification signals 

Identification signals 3 through 0 (lID3-/IDO) are binary coded to specify the physical 
location of each card. The highest-numbered slot ($F) has the four signals wired low. The 
lowest-numbered slot ($0) has all ID signals high. In the Macintosh II, Macintosh IIx, and 
Macintosh IIfx computers there are six slots numbered $9 through $E. The Macintosh 
Quadra 900 provides five slots numbered $A through $E. The Macintosh IIcx and 
Macintosh IIci have only three slots numbered $9 through $B and $C through $E, 
respectively. The Macintosh Quadra 700 has two slots numbered $D and $E, and the 
Macintosh IIsi has one slot, numbered $9. The main logi,c board is addressed as slot $0. 

6 Important You must tie the ID lines high through pull-up resistors or they will not 
work. For example, the Macintosh II Video Card described in 
Chapter 11 uses 3.3 kn pull-up resistors; you should, however, be able 
to use resistors as high as 10 kn safely. /':, 

The distributed arbitration logic uses the ID numbers to uniquely identify cards for 
arbitration contests. See Chapter 4, "NuBus Arbitration." 

The ID Signals are also used to allocate a small portion of the total address space to each 
card. The upper one-sixteenth (256 MB) of the entire 4 GB NuBus address space is called 
the standard slot space. If signals IID3-/IDO are used to specify NuBus address lines 
I AD27-1 AD24, each of the 16 possible NuBus card slots has an address of the form 
$Fsxx XXXX, where s is the 4-bit hex digit for a particular slot. This address range allocates 
16 MB of address space (one-sixteenth of 256 MB) per NuBus card slot, an address region 
called a slot. 

54 Designing Cards and Drivers for the Macintosh Family 



However, if bits IID3-/IDO are used in a different way, a second natural address decode 
of what is called super slot space can be easily performed. If bits IID3-/IDO are used to 
specify NuBus address lines I AD31-1 AD28, each of the 16 possible NuBus card slots has an 
address of the form $sxxx xxxx, where s is the 4-bit hex digit for a particular slot. This 
address range allocates 256 MB of address space (one-sixteenth of 4 GB) per NuBus card 
slot, an address region called a super slot. Thus each physical slot has allocated to it a 
standard slot space and a super slot space. 

This fixed address allocation, based solely on the slot location of a card, enables the 
design of systems that are free of jumpers and switches. Chapter 7, "NuBus Card Memory 
Access," discusses memory addressing in detail. 

Signal line determinacy 

The bus driving circuitry, the bus transmission line parameters, and the terminating 
impedances must be coordinated to make the signal lines determinate within the 
specified setup and hold times of the NuBus clock. 

A signal line is determinate by virtue of satisfying one of the following conditions: 

• If a signal is driven during the clock cycle (or half cycle) n, then it is determinate 
during the cycle (or half cycle) n. 

• If a signal is unasserted during cycle n and is not driven during cycle n + 1, then that 
signal is guaranteed to remain unasserted during cycle n + 1. 

• If an open collector signal is driven asserted during cycle n and is not driven during 
cycle n + 1, then it is guaranteed to be unasserted during cycle n + 1. 

• If a tristate signal is asserted during cycle n and is not driven during cycles 
n + 1 and n + 2, then the line is not guaranteed determinate during cycle n + 1 but is 
guaranteed to be unasserted during cycle n + 2. 

Chapter 3 NuBus Data Transfer 55 



Data-transfer signals 

The bus data-transfer signals, including control, address/data, and bus parity, are all tristate. 

Control signals 

This section describes the primary functions of the four NuBus control signals. 

Transfer start (/START) is driven for only one clock period by the current bus master at the 
beginning of a transaction. The ISTART signal indicates to the slaves that the 
addressl data signals are carrying a valid address. 

Transfer acknowledge (/ ACK) is driven for only one clock period by the addressed slave 
device and indicates the completion of the transaction. An exception to the foregoing is 
an attention cycle, when the bus master asserts both ISTART and lACK. See "Attention 
Cycles," later in this chapter. 

Three transfer mode signals are included in the NuBus definition: ITMO, ITMl, and ITM2. 
The ITM2 signal was introduced in the NuBus '90 specification and is provided only in the 
Macintosh Quadra 700 and the Macintosh Quadra 900. The transfer mode signals are 
driven by the current bus master during start cycles to indicate the type of bus operation 
being initiated. They are also driven by bus slaves during acknowledge cycles to denote 
the type of acknowledgment. The ITMx encoding for start cycles is given in Table 3-1. 

56 Designing Cards and Drivers for the Macintosh Family 



Address/data signals 

Address/data signals 0 through 31 (lAD31-/ADO) are multiplexed to carry a 32-bit 
byte address at the beginning of each transaction and up to 32 bits of data later in the 
transaction. Note that the / ADO and / ADI signals, along with the /TMx lines, carry transfer 
mode information during the start cycle. This transfer mode encoding is shown in Table 3-1. 

• Table 3-1 Transfer mode coding 

!fM2 !I'Ml !I'MO IADl IADO Type of cycle 

H L L L L Write byte 3 
H L L L H Write byte 2 
H L L H L Write byte 1 
H L L H H Write byte 0 
H L Ii L L Write halfword 1 
H L H L H IX block write 
H L H H L Write halfword 0 
H L H H H Write word 

H H L L L Read byte 3 
H H L L H Read byte 2 
H H L H L Read byte 1 
H H L H H Read byte 0 
H H H L L Read halfword 1 
H H H L H IX block read 
H H H H L Read halfword 0 
H H H H H Read word 
L L H L H 2X block write 
L H H L H 2X block read 

t ITM2 is used only in the Macintosh Quadra 700 and the Macintosh Quadra 900 and is not defmed 
for other Macintosh computers. 

Bus parity signals 

The system parity signal (lSP) transmits parity information between NuBus cards 
that implement NuBus parity checking. Future Apple products may employ this feature, 
but current Macintosh computers do not provide bus parity checking, so this line is 
pulled high. 

Chapter 3 NuBus Data Transfer 57 



The system parity valid signal (/SPV) indicates that the ISP bit is being used. Cards that 
do not generate bus parity never drive ISPV active, and cards that do not check parity 
ignore ISP and ISPV. Future Apple products may employ this feature, but in current 
versions of the Macintosh computers, this line is pulled high. 

• Note: The Macintosh IIci and the Macintosh IIfx have an optional feature that allows 
RAM parity checking when 9-bit SIMMs are installed; however, this capability is 
unrelated to NuBus parity checking. 

Cache-coherency signals 

NuBus '90 defines new signals ICMO, ICM1, ICM2, and ICBUSY to support a cache
coherency protocol. Pins on the Macintosh Quadra-family NuBus connectors are assigned 
to those signals, but the cache-coherency protocol defined in the NuBus '90 specification 
is not implemented. 

Data-transfer specifications 

The NuBus supports reads and writes of several different data sizes. Although optimized 
for transactions of words and blocks of words, the NuBus also supports byte and NuBus 
halfword transactions, as shown in Figure 3-1. The base unit of addressability is a NuBus 
word; I AD31-1 AD2 specify the appropriate word. The two least significant address bits 
(/ADl-/ADO), along with the ITM2-/TMO signals, specify the transfer mode; that mode 
determines which part of the addressed word is to be transferred, as shown in Table 3-1. 
The ITM2 signal is defined in the NuBus '90 specification and is only used for encoding the 
transfer mode on the Macintosh Quadra 700 and the Macintosh Quadra 900. For all other 
Macintosh computers with NuBus expansion interfaces, this signal is not defined and is 
not relevant to specifying the transfer mode. 

58 Designing Cards and Drivers for the Macintosh Family 



• Figure 3-1 Words, halfwords, and bytes 

Bit 31 Bit 0 

NuBusword 

Halfword 1 Halfword 0 

Byte 3 I Byte 2 Byte 1 I Byte 0 

All NuBus data transfers are unjustified. That is, a byte of data is conveyed on the same 
byte lane regardless of the transfer mode used to access it. Similarly, a halfword is 
conveyed on the same halfword lane regardless of the transfer mode used to access it. 
Therefore, bytes with address a modulo 4 are always carried by / ADO through / AD7, 
bytes 1 modulo 4 by / ADS through / AD15, bytes 2 modulo 4 by / AD16 through / AD23, and 
bytes 3 modulo 4 by / AD24 through / AD31. This unjustified data path approach allows 
straightforward connection of S-bit, 16-bit, and 32-bit devices. 

Single data cycle transactions 

The simplest transactions on the NuBus convey one data item and consist of a start cycle 
and a subsequent acknowledge cycle. These transactions are either reads or writes of 
bytes, halfwords, or words. 

All transactions are initiated by a bus master, which drives /START active while driving the 
/TMx, / ADO, and / ADI signals to define the cycle type. The remaining / ADx signals are also 
driven to convey the address. The transaction is completed when the responding slave 
drives / ACK active while driving status information on the /TMx lines. For write 
transactions, the master must switch the / ADx lines from address to data information in 
the second clock period and hold that data until acknowledged. In read cycles, the slave 
drives the data Simultaneously with the acknowledge cycle in the last period. 

The following abbreviations are used in the timing diagrams and step sequences in this section: 

R Rising (driving) edge of /CLK 
F Falling (sampling) edge of /CLK 

Chapter 3 NuBus Data Transfer 59 



Read transactions 

Figure 3-2 shows the timing for read bus transactions other than block transfers. Block 
transfers are implemented only in the Macintosh Quadra family of computers and are not 
available in other Macintosh computers. Read operations with data widths of 8, 16, and 
32 bits are selected by the transfer mode signals (lTMx) and the two low-order address 
signals (I ADl and I ADO), as shown in Table 3-1. The slave must put the requested data 
item on either 8, 16, or all 32 of the I AD31 through I ADO signals. Any bits other than the 
requested data may be driven either high or low by the slave; they must be determinate. 

Once the bus master has acquired the bus, a read bus transaction involves the following steps: 

R(1)t The bus master drives ISTART low, drives lACK high, and drives the I ADx and 

F(l)* 

R(2) 

ITMx lines with the appropriate values to initiate the transfer. 

The bus slave samples the I ADx and ITMx lines. 

The bus master releases the I ADx, ITMx, and ISTART lines and waits 
for lACK. 

R(n)§ The bus slave drives the requested data onto the IADx lines, drives 
the appropriate status code on ITMO and ITM1, and drives lACK low. 

F( n) The bus master samples the I ADx and ITMx lines to receive the data 
and note any error condition. 

R(n + 1) The bus slave releases the I ADx, lACK, and ITMx lines. This may be 
the R(1) of the next transaction. 

t R is the rising edge of /CLK. 
* F is the falling edge of /CLK. 
§ 2 :::; n < 256, the system-defined time-out period. 

60 Designing Cards and Drivers for the Macintosh Family 



• Figure 3-2 Timing of NuBus read transaction 

R(i) PO) R(2) 
S 

/CLK ~ U W 
I I I 
I I I 
I I I 
I I I 
I I I 

/ADx i< Address r-s s K 
I I 

Data >-
I I 

I 
I 
I I I I I 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

k /TMx Mode r-s S :< 
I I 

Status code >--
I I I 
I I I 
I I I 
I 

i~ s I !, I 

/START I 
I 

I ; I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I 

S S 
I 

I 

~ /ACK I 
I 
I I 
I I 

Write transactions 

Figure 3-3 shows the timing for write operations other than block transfers. Block 
transfers are implemented only in the Macintosh Quadra family of computers and are not 
supported in other Macintosh computers. Write operations with data widths of 8, 16, and 
32 bits are selected by the transfer mode signals (lTMx) and the two low-order address 
bits (I AD1 and / ADO). 

Chapter 3 NuBus Data Transfer 61 



• Figure 3-3 Timing of NuBus write transaction 

leLK ~ 
I I I 
I I I 
I I I 
I 

~ ~ 
I I 

IADx ~ Address X 1 
Data >-I 

I I I I 
I I I I 
I I I I 
I I I I 
I I I I 
I I I I 

ITMx ~ Mode ) S S k Status code >-I I I I I I I I I I I I I I I I I I I I S S I 
I 

ISTART ~ V I 
I 

I I 
I I I I I I I S S I 

I I !" V lACK I I I I I I 
! I ! I 

The bus master has the responsibility for aligning data onto the appropriate I ADx lines for 
halfword and byte writes. For example, a write of byte 3 requires that the data be placed 
on I AD24 through I AD31; all other I ADx lines are not defined and are driven to either a high 
or low state. 

Once the bus master has acquired the bus, a write bus transaction involves the following steps: 

RCl)t The bus master asserts ISTART and the appropriate I ADx and 
ITMx lines to initiate the transfer. 

F(1)* 

R(2) 

The bus slave samples the I ADx and /TMx lines. 

The bus master places the data to be written onto the I ADx lines, 
releases the ISTART and ITMx lines, and waits for lACK. 

F(2) - F(n)§ The bus slave samples the I ADx lines to capture the data. The data 
may be sampled before or during the assertion of lACK. 

R( n) The bus slave asserts lACK and places the appropriate status code 
on ITMO and ITM! when the data is accepted. 

F(n) The bus master samples lACK and ITMx to determine the end 
of the transaction. 

R( n + 1) The bus master releases the I ADx lines while the bus slave releases 
the lACK and ITMx lines. 

t R is the rising edge of ICLK. 
* F is the falling edge of ICLK. 
§ 2 :s; n < 256, the system-defmed time-out period. 

62 Designing Cards and Drivers for the Macintosh Family 



Acknowledge cycles 

During acknowledge cycles the addressed slave drives the /TMx lines while it drives 
/ ACK. The /TMx lines provide status information to the current bus master, as shown in 
Table 3-2. 

• Table 3-2 Transfer status coding 

11M! !TMO Type of acknowledge 

L L Bus transfer complete 
L H Error 
H L Bus time-out error 
H H Try again later 

Bus transfer complete: The bus transfer complete response indicates the normal valid 
completion of a bus transaction. 

Error: During a read or write operation, certain error conditions may occur. The 
transaction terminates in a normal manner, and the bus master has the responsibility for 
handling the error condition reported. 

Bus time-out error: If an unimplemented address location is accessed, or for any other 
reason a slave does not respond to a start cycle address, the attempted transaction is 
acknowledged with a bus time-out error response. This time-out response indicates that 
the system-defined time-out period has elapsed while the bus is busy (that is, the bus is 
between start and acknowledge cycles) and no data transfer acknowledge has occurred. 
Bus time-out support logic on the Macintosh main logic board enforces a period of 256 
clock periods, or 25.6 ~s, and assumes the role of the nonresponding slave; it generates an 
acknowledge cycle with a bus time-out error code. 

Try again later: This response status code indicates that a slave is unable to respond at 
this time to a data-transfer request from a bus master. The master should retry the 
transaction; slaves should be designed so that a large number of retries are not required. 

A Macintosh computer generates a processor bus error exception UTEA signal on 68040 
machines, /BERR signal on others) if its microprocessor attempts a NuBus access that is 
terminated with an error, a bus time-out, or a try-again-Iater response. 

Attention cycles 

An attention cycle is defined as a bus cycle during which both /START and / ACK are 
asserted. During an attention cycle, the /TMx lines have a different function. The available 
codings are shown in Table 3-3. 

Chapter 3 NuBus Data Transfer 63 



• Table 3-3 Attention cycle coding 

/TMl 

L 
L 
H 
H 

/TMO 

L 
H 
L 
H 

Type of attention cycle 

Attention-null 
Reserved 
Attention-resource-lock 
Attention-cache 

Attention cycles can be used to reinitiate bus arbitration (attention-null), to signal a 
resource lock (attention-resource-lock), or both. Refer to Chapter 4, "NuBus Arbitration," 
for a detailed explanation of bus arbitration and resource locking. 

Attention-null: The attention-null cycle has two uses: 

• to reinitiate arbitration after the bus has been requested and won, but the new bus 
owner decides not to transfer data (in this case, the new bus owner must generate an 
attention-null cycle) 

• to indicate the end of a data transfer using a locked resource 

During an attention-null cycle, the I ADx lines are ignored by all bus cards, and no data may 
be transferred. 

Attention-resource-Iock: An attention-resource-lock cycle occurs at the beginning of a 
sequence of locked transactions constituting a locked tenure of the current bus master. 
During this tenure, cards with lockable multipart resources lock them against access by 
local processors other than the NuBus master. That tenure is terminated by an attention
null cycle. During an attention-resource-lock cycle, the I ADx lines are ignored by all bus 
cards, and no data may be transferred. 

Attention-cache: The attention-cache cycle is used in cache-coherent transactions. The 
master drives the I ADx and ITMx lines with the desired address, block size, and transfer 
mode. The attention-cache cycle will reinitiate arbitration, but does not affect the state 
of any resource lock. NuBus cache-coherency transactions are not currently supported on 
any of the Macintosh computers. 

You should follow these implementation rules: 

• Masters must drive lACK high during their start cycle to guarantee that lACK is in the 
unasserted state and the start cycle is not interpreted as an attention cycle. 

• Masters must ensure that the first lACK terminates a transaction. An attention cycle 
immediately following the acknowledge cycle must not latch data. 

• Slaves must qualify ISTART with the logical complement of lACK to decode a start 
cycle. Otherwise, an attention cycle could be misinterpreted as a start cycle. 

64 Designing Cards and Drivers for the Macintosh Family 



Interrupt operations 

Three possible ways to handle NuBus interrupts are available, but only one way is used by 
the Macintosh computers with the NuBus interface. 

By write transaction 

Interrupts on the NuBus can be implemented as write transactions. Interrupts are not done 
this way on Macintosh computers. Interrupt operations require no unique signals or 
protocols. Any card on the NuBus that is capable of becoming bus master can interrupt a 
processor card by performing a write operation into an area of memory that is monitored 
by that processor. Any address range on the processor card can be defined as its interrupt 
space. This allows interrupts to be posted to individual processors and allows interrupt 
priority to be software specified by memory mapping the priority level. 

By slots sharing a single NuBus /NMRQ line 

The individual slot /NMRQ (nonmaster request) signals may drive a single NuBus line 
(/NMRQ), in which case, the system processor will have available only the wired-OR result 
of all of the slot /NMRQ signals. In this case, the software must poll the slots capable of 
generating the bus INMRQ signal to determine the source or sources of the interrupt. 
Interrupts are not done this way on Macintosh computers. 

By a dedicated /NMRQ line from each slot 

Macintosh computers with NuBus use a separate (non-NuBus) /NMRQ line from each slot 
to support interrupts (see Figures 1-1 through 1-7). Each card slot has a unique /NMRQ line 
driving an OR gate whose output is a real hardware interrupt signal to the microprocessor 
(through VIA2, or equivalent). In addition, each of the /NMRQ lines can be independently 
polled by the processor, to allow the software to communicate with the appropriate 
handlers for each of the cards asserting /NMRQ. NuBus expansion cards must keep the 
INMRQ signal asserted until the interrupt service routine gets called. The interrupt service 
routine must clear the interrupt. 

Chapter 3 NuBus Data Transfer 65 



IX block data transfers 

Single-rate block transfers, or IX block transfers, have not been implemented in most 
Macintosh computers with NuBus, and have only recently been provided in the Macintosh 
Quadra 700 and the Macintosh Quadra 900. Keep in miqg that the following discussion 
applies only to the NuBus implementation in the Macintosh Quadra family-computers. 

A IX block transfer is a read or write transaction in which multiple data values are 
transferred. A IX block transfer consists of a start cycle, multiple data cycles to or from 
sequential address locations, and an acknowledge cycle. The number of data cycles is 
controlled by the master and communicated during the start cycle. Allowed lengths of 
IX block transfers are 2, 4, 8, and 16 words. COnly 32-bit NuBus word transfers are 
supported in block-transfer mode.) 

The ITMx and I ADx encoding for IX block transfers is shown in Table 3-1. The starting 
address of the block must correspond to the size of the block and is encoded by the 
I AD2 through I AD5 lines, as shown in Table 3-4. 

During a IX block transfer, each data cycle is acknowledged by the responding slave. The 
intermediate acknowledges are data cycles where ITMO is asserted and ITMI and lACK are 
both unasserted. For intermediate acknowledgments, ITMO has the same significance and 
timing as the lACK signal for nonblock transfers. The acknowledgment of the final word 
transfer is a standard acknowledge cycle. Status codes are shown in Table 3-2. 

• Table 3-4 Block size and starting address coding for IX block transfers 

Block size Block 
IAD5 IAD4 IAD3 IAD2 (words) starting address 

H 2 CAD31-AD3)000 
H L 4 CAD31-AD4)0000 

H L L 8 CAD31-AD5)00000 
H L L L 16 CAD31-AD6)000000 
L L L L Error 

66 Designing Cards and Drivers for the Macintosh Family 



IX block read 

Figure 3·4 shows the timing for a NuBus 1X block read transaction. See Table 3-1 for the 
/TMx and I ADx encoding that initiates block reads. The I ADS through I AD2 lines 
determine the size and starting address of the transaction, as shown in Table 3-4. The 
responding slave drives data onto the bus, and the initiating bus master accepts the data 
on each intermediate or final acknowledge. Assertion of ITMO is used by the responding 
slave as an intermediate acknowledge, meaning that the next consecutive word of data is 
ready to be put on the bus. 

• Figure 3-4 Timing of NuBus 1X block read transaction 

ICLK ~ ~ ~ 
I I I I I I 
I I I I I I 
I I I I I I 

IAD31-/AD6 k Address :~ s k Data :>--5 S k Data :>-
I I I 
I I I I I I 

IAD5-/ADO k Block info >--5 s k Data ~ S K Data :>-
I I I 
I I st I I I I 

I S !r s I 

~ I 

~ !'\ Status code >-(I'MO I 
I I I i I I I 

I I I I I 
I I I 

k :>-rrMl I I 

S S I S S Status code :I I I I I 
I I I I 
I I I I I 
I I I I I 
I VS S I S S I I 

ISTART ~ 
I i 

I I I 
I I I 

I I I I 
I I 

S S 
I S S I I 

lACK I ~ V-I 
I 

: I 
! I 

t The addressed slave is responsible for driving (I'MO to the desired state between R(n) and R(b + 1), 

Chapter 3 NuBus Data Transfer 67 



Once the bus master has acquired the bus, a IX block read consists of these steps: 

R(1)t The bus master asserts ISTART and the appropriate IADx and ITMx 
lines to initiate the transfer. 

F(l)* 

R(2) 

R(n)§ 

F(n) 

R(n + 1) 

The bus slave samples the I ADx and ITMx lines. 

The bus master releases the I ADx, ITMx, and ISTART lines and waits 
for an intermediate acknowledge (lTMO asserted). 

The bus slave places the first word of requested data on the I ADx 
lines and asserts ITMO. 

The bus master samples the I ADx lines and ITMO to capture data. The 
ITMO signal is asserted and the first word of data is captured. 

If the next consecutive word of data is not ready to be put on the 
bus, the slave drives ITMO unasserted until the word is ready. 

The previous three steps are repeated for ascending addresses until B-1 words have been 
transferred, where B is the block size (2, 4, 8, or 16). 

R( b)'[ The bus slave places the final word of requested data onto the I ADx 
lines, asserts lACK, and places the appropriate status code on ITMO 
and ITMI. 

F(b) The bus master samples the IADx and ITMx lines to receive the data 
and note any error conditions. 

R( b + 1) The bus slave releases the I ADx, lACK, and ITMx lines. 

t R is the rising edge of /CLK. 
* F is the falling edge of /CLK. 
§ 2 ~ n < 256, the system-defined time-out period. 
'[ 2 ~ b ~ 256B. 

lX block write 

Figure 3-5 is a timing diagram for a NuBus IX block write operation. Block writes 
are similar to block reads except the bus master drives the data bus while the slave 
accepts data. The format for describing block size and starting address is the same as 
for block read. 

68 Designing Cards and Drivers for the Macintosh Family 



• Figure 3-5 Timing of NuBus lX block write transaction 

ICLK 

IAD31-/AD6 

IAD5-/ADO 

lIMO 

IIMI 

ISIARI 

lACK 

RO) FO) R(2) F(n-I) R(n) F(n) R(n + 1) F(b-1) R(b) F(b) R(b + I) 

~~~ 
: : ~: ~~: : ---K Address ~ Data ~ Data >-
~ BlockWo X1; : n,b ~ ; : ",ill ~
i~~t: : sk : ---Y' ! : : (Status code >--
I I I I
I I I I I I
I I I I I I

-----h i s ~ , Statuscode >-
~' : S: : SS: !

I : : I ; \
I I I I I I

I ISS I : s~: \
I I
I
I I

t The addressed slave is responsible for driving lIMO to the desired state between R(n) and R(b + 1).

Once the bus master has acquired the bus, a lX block write consists of these steps:

R(1)t The bus master asserts ISTART and the appropriate I ADx and ITMx
lines to initiate the transfer.

F(1)t

R(2)

R(n)§

F(n-1)

R(n + 1)

The bus slave samples the I ADx and ITMx lines.

The bus master places the data to be written onto the I ADx lines,
stops driving the lACK and ITMx lines, drives ISTART unasserted,
and waits for an intermediate acknowledge (lTMO asserted).

The bus slave asserts ITMO when the first word of data is accepted.

The bus slave samples the I ADx lines to capture the data being
written. The data may be sampled before or during the assertion of
ITMO.

The bus master places the next consecutive word of data on the bus.

Chapter 3 NuBus Data Transfer 69

The previous three steps are repeated for ascending addresses until B-1 words have been
transferred, where B is the block size.

R(b)<Jf The bus slave asserts lACK and places the appropriate status code on
ITMO and ITMI when the final word of data is accepted.

F(b-) The bus slave samples the I ADx lines to capture the data. The b
notation implies the data may be sampled before or during the
assertion of lACK.

R(b + 1) The bus master releases the I ADx lines while the bus slave releases the
lACK and ITMx lines.

t R is the rising edge of /CLK.
* F is the falling edge of /CLK.
§ 2 ::;; n < 256, the system-defined time-out period.
'J 2::;; b::;; 256B.

IX block transfer errors

Although the length of a IX block transfer is dictated by the master during the start cycle,
a IX block transfer may be cut short by an error acknowledgment from the slave at any
time. The standard status codes shown in Table 3-2 are used.

The speed of a IX block transfer is controlled by the slave; therefore, a master requesting
a IX block transfer must be capable of transferring data at the speed of the fastest slave in
the system. This could be one word per NuBus clock cycle (one word per 100 ns). If the
master is incapable of transfers at the speed the slave specifies, an undetectable overrun
(or underrun) occurs.

NuBus specifies that if a slave supports IX block transfers, it must support all types of
data transfer (byte, halfword, and word). In the case of a IX block transfer request to a
slave that cannot support block transfers, that slave should terminate the first transfer
with lACK and a normal status code. This is not considered an error condition. The data
should be ignored for read or write purposes, but the master shall not assume that the data
transfer did not take place.

2X block data transfers

A 2X block transfer, or double-rate transfer, is a read or write transaction that is twice the
speed of a IX block transfer. Double-rate block transfers are a new feature in the NuBus
'90 specification. Block transfers have only recently been provided in the Macintosh
Quadra 700 and the Macintosh Quadra 900, and although computers in the Macintosh
Quadra family allow double-rate block transfers between NuBus cards, they do not
support double-rate transfers to or from main memory.

70 Designing Cards and Drivers for the Macintosh Family

In 2X block transfers, two NuBus words are transferred in a single NuBus cycle, allowing a
word to be transferred every 50 ns. The 2X block-transfer protocol also provides several
new capabilities not available with the IX block-transfer protocol:

• longer transfer sizes (up to 256 words)

• autosizing, which allows a slave to prematurely terminate a transfer that is too long

• master flow control (slave flow control is available with both IX and 2X block transfers)

Signal protocol for 2X block transfers

Two additional signals, ICLK2X and ITM2, have been introduced for 2X block transfers:

• ICLK2X synchronizes the 2X block data transfers. The falling (assertion) edge of
ICLK2X is coincident with the rising edge of ICLK. During a 2X block transfer,
modules drive new data on the assertion edge of ICLK2X and sample the data on the
following assertion edge.

• In conjunction with the block read and block write encoding of the ITMx and I ADx
lines at the beginning of a bus transaction, the bus master asserts ITM2 to request
that the addressed slave perform a 2X block transfer. Unlike the ITMx lines, the
master continues to drive ITM2 during the remainder of the 2X block transfer, using it
as a "master flow control" signal for pairs of NuBus words.

The transfer mode signals, ITMO and ITMl, also participate in a 2X block transfer. After
the start cycle of a 2X block transfer, the slave asserts ITMI to indicate that it can
perform a 2X block transfer. The slave drives ITMI unasserted during all intermediate
acknowledges (when ITMO is asserted) if it is not capable of performing 2X block
transfers. At the end of the 2X block transfer, the addressed slave drives ITMI unasserted
to indicate that the next pair of words will be the last. This allows the slave to autosize, or
prematurely terminate, a 2X block transfer if it cannot transfer the requested amount of
data in a single transaction.

The start cycle and first word of a 2X block transfer use IX block-transfer timing. If the
slave indicates that it can perform a 2X transfer by asserting ITMl, subsequent words are
transferred as pairs, and the last word is transferred during the acknowledge cycle. The less
stringent timing for the first and last words provides additional time to establish the
direction of the data transfer.

The number of words transferred is controlled by the master and communicated to the
slave during the start cycle. The allowed lengths of 2X block transfers are 4, 8, 16, 32, 64,
128, and 256 words. Only word transfers are provided in 2X and IX block mode. Note that
the total duration of the transfer shall not exceed 256 ICLK cycles (or 25.6 Ils).

Chapter 3 NuBus Data Transfer 71

The size of the block to be transferred and its starting address are determined by an
encoding of the I ADx lines, as defined in Table 3-5. The encoding is identical to the one
used for IX block transfers except that two word transfers are not permitted and transfers
of 32, 64; 128, and 256 words are permitted.

• Table 3-5 Block size and starting address coding for 2X block transfers

/ADx lines Block size, Block

09 08 07 06 05 04 03 02 words starting address

H L 4 (AJ)31-AD4)0000
H L L 8 (AD31-AD5)00000

H L i L 16 (AD31-AD6)000000
H L L L L 32 (AD31-AD7)0000OOO

H L L L L L 64 (AD31-AD8)000OOOOO
H L L L L L L 128 (AD31-AD9)00000OOOO

H L L L L L L L 256 (AD31-AD 1 0)0000000000

2X block-transfer flow control

Master and slave flow control are provided duting 2X block transfers, whereas only slave
flow control is provided during IX block transfers. Allowing both the master and the slave
to control the transfer of data makes larger burst transfers possible without the need for
large buffers or frequent arbitration for NuBus and local board resources.

During 2X block transactions, both the master and the slave control the rate of transfer
using the ITM2 and ITMO lines, respectively. During a 2X block read transaction, the slave
uses the ITMO signal to indicate when it is ready to send the data, and the master useS the
ITM2 signal to indicate when it can receive the data. During a 2X block write transaction,
the bus master uses the ITM2 signal to indicate when it can send the data, and the slave
uses the ITMO signal to indicate when it can receive the data.

2X block read transfer

Figure 3-6 shows the timing diagram for a NuBus 2X block read transaction. See Table 3-1
for the ITMx, IADO, and IADI encoding that initiates 2X block reads. The IADx lines
determine the starting address of the transaction, as shown in Table 3-5.

72 Designing Cards and Drivers for the Macintosh Family

n
::;
~
'0
(; ,...,
'-.N

~
tJj
c
C/O

o
~

~
>-j ,...,
~ o
C/O
(t' ,...,

v!

/CLK

/CLK2X

/ADx

/TMO

/TMl

/TM2

/START

/ACK

~ ~
I I Yn I I

~ ~ ,
I I I I
I I I I
1 I I I I I I

~ Address h , X~ S1 06 ~---!-io-7---:'!C><Nextaddress>
I I I I I 51 I I I
1 I I I I I I I I I I

I I S ~ I l~ $ I I I I I I

m I '2' 'wait' :" 'ready' :/' : 'wait' \.. : 're~dy' S s: V Status 1
I I I 1 I
I I I I I
I I I I I I

m I 2 S 5-----t-\2X' c J II 'last !pair'S S~1------:':"-""'iS""ta::-:tu:7s:--~
I I ') ~ , I
I I I I I
I I I I I I

---l ~ '7V1 :.rS S ' S ~ , ;., :
I ~m' 'ready' : : i' walt S sY' 'ready' m
I : I:
I I t+ I

----1.. m : A S : s ~ s s: : ~
I~m- I I I I I
I I I I I I I
I I 1 I I I
I I I I I I

I 2S S:O ,S ~ S S: ~O 1/ m l I I I I I I
I I I I I
I I I I I
I I I I

Master's latched data ~ ~ ~

•
~

1·
~

~

>-j s·
s·

CJQ

o,

Z
C
to
C
'" N

><
u
0-
n
:>';'"

@
~
0..
q
~ o
C/O
~
n ,....
o·
o

Once the bus master has acquired the bus, a 2X block read consists of these steps:

D(1) The bus master asserts ISTART and the appropriate IADx and ITMx
lines to initiate the transfer.

5(1) The bus slave samples the I ADx and ITMx lines. Bus modules capable
of supporting 2X block transfers sample the ITM2 line.

D(2) The bus master stops driving the I ADx, TMx, and lACK lines. The
master drives ITM2 unasserted, indicating that it is ready to receive
the first pair of words. The master drives ISTART unasserted and
waits for an intermediate acknowledgment (lTMO asserted).

D(n1) The bus slave asserts ITMO when the first word of data is accepted. If
the slave is capable of supporting 2X block transfers, it asserts ITMI
and drives lACK unasserted.

If the bus master issues a 2X block-transfer request of 16 words or
less to a slave that can only support IX block transfers, the addressed
slave should respond by driving ITMI and lACK unasserted, with
ITMI unasserted during all intermediate acknowledges (when ITMO is
asserted), and the block transfer will be completed using the IX
block transfer.

If the bus master issues a 2X block -transfer request of 32 NuBus
words or more to a slave that cannot support 2X block transfers, the
slave issues an immediate acknowledgment cycle with a bus-transfer
complete status code.

D(n) The bus master drives ITM2 unasserted to indicate that it can accept
the next pair of words, or asserted to indicate that it cannot accept
the next pair of words.

The slave drives ITMO asserted to indicate that it can send the next
pair of words, or unasserted to indicate that it cannot send the next
pair of words.

The slave continues to assert ITMI until it is ready to transfer the last
pair of NuBus words. The slave drives ITMI unasserted (coincident
with the assertion of ITMO) if the next pair of words is the last pair to

be transferred.

yen) If the slave asserted ITMO during this cycle, the slave drives the first
word of the next pair on I ADx lines after an output hold delay.

74 Designing Cards and Drivers for the Macintosh Family

Sen) The bus master samples ITMO and the slave samples ITM2 to
determine if the next pair of NuBus words should be transferred.

x(n + 1) If ITMO is asserted and ITM2 is unasserted (data is transferred), the
master accepts the first word of the pair. After an output hold delay,
the slave drives the second word of the pair on I ADx lines.

yen + 1) If ITMO is asserted and ITM2 is unasserted, the master accepts the
second word of the pair. The slave drives the first word of the next
pair on I ADx lines after an output hold delay.

D(n + 1) If the slave is not ready to send the next pair of NuBus words, the
slave drives ITMO unasserted until it is ready to send the next pair
of words.

The previous steps starting at D(n) are repeated for ascending addresses until all but the
final pair of NuBus words have been transferred.

S(b-1) The master, driving ITM2 unasserted and responding to the assertion
of ITMO and ITM1 and lACK unasserted, accepts the last pair of
words as shown here:
x(b) The master accepts the first word of the final pair. After

an output hold delay, the slave drives the final NuBus
word on the I ADx lines.

y(b) The master accepts the final NuBus word. The slave
continues to drive the last word of data on the I ADx
lines.

D(b) In addition to transferring the last pair of words, the slave drives the
appropriate transfer response on ITMO and ITM1 and drives lACK
asserted.

S(b) The master samples ITM1 and ITMO to note any error conditions.

D(b + 1) The slave stops driving the I ADx, ITM1, ITMO, and lACK lines, and
the master stops driving the ITM2 line. The bus owner drives lACK to
a determinate state. This may be the DO) of the next transaction.

2X block write transfer

Figure 3-7 shows the timing diagram for a NuBus 2X block write transaction. See Table 3-1
for the ITMx, I AD1, and I ADO encoding that initiates 2X block writes. Double-rate block
writes are similar to block reads except the bus master drives the data bus while the slave
accepts the data. The format for describing block size and starting address is the same
for a 2X block read and is shown in Table 3-5.

Chapter 3 NuBus Data Transfer 75

(J,

o
(1)
en

00"

~"
n

~
2-
o
~"
Cil
0'

~
~
$»
(j

~"
~
~

~

/CLK

/CLK2X

/ADx Address

lIMO m

IIMl ml

/TM2

/START
I

/ACK ml

~
~

I I I I , I
I I I I I I
r I I I I I I I 1 I I I

~ DO i ~ ~ D4 ~X~ iD7 iXNenaddress)
I r I I I I I I I I
I I I I I t r r I I I I

: 2
~ I t :r~ I I I I I I I

'wait' : 're~dy'! i 7 'wait' ' \ ! 're~dy' S 51 II S~tus i
I I I I I t I I I I I
I I I I I I I t I I I

; 2

I I r I r I I I I I

~')X' '" " S5' "! , - ::' :I 'last pair': :\ Status ;
I I I 5 $ I. I I I
I r I I I r I I I
I I I I I I I I I

5' " S ~ '" , , 'ready' : :: :\, 'wait' S sV' 'ready' : m :
I I I I I I I
I I I I I I t I
r I I r I r I I
I I I t I I I I

5: :: S $: S 5: : K:::iii:£l
, I J I I I I I
I I I I I r I I
I I I I I I I I
I I I I I I J I

2S 5' " S ~ 's 5' , , iO i: I ,; r\O :/
I I I I I i
I I I I I I
I I I I I J

I I I r I I I J

Slave's latched data ~ ~ ~

•

f
~

~
JJ"
g,
~ g;
en
tv
:><
0-
0"
R-
~
~.

~
$»
Q.

§r

Once the bus master has acquired the bus, a 2X block write consists of these steps:

D(1) The bus master asserts ISTART and the appropriate I ADx and ITMx
lines to initiate the transfer. The master asserts ITM2 to request a 2X
block transfer.

S(l) The bus modules sample the I ADx and ITMx lines. Bus modules
capable of supporting 2X block transfers sample the ITM2 line.

D(2) The bus master drives the first NuBus word to be written on I ADx
lines and stops driving the ITMO, ITMl, and lACK lines. The master
drives ITM2 unasserted, indicating that it is ready to transmit the
first pair of data words. The master drives ISTART unasserted and
waits for an intermediate acknowledgment on ITMO.

D(nl) If the slave is capable of supporting 2X block transfers, it asserts
ITMI and drives lACK unasserted.

If the bus master issues a 2X block-transfer request of 16 words or
less to a slave that can only support IX block transfers, the addressed
slave should respond by driving ITMI and lACK unasserted, with
ITMI unasserted during all intermediate acknowledges (when ITMO is
asserted), and the block transfer will be completed using the IX
block transfer.

If the bus master issues a 2X block-transfer request of 32 words or
more to a slave that cannot support 2X block transfers, the slave
issues an immediate acknowledgment cycle with a bus-transfer
complete status code.

D(n) The slave drives ITMO asserted to indicate that it can accept the next
pair of NuBus words, or unasserted to indicate that it cannot accept
the next pair of words.

The slave continues to assert ITMI until it is ready to transfer the last
pair of words. The slave drives ITMI unasserted (coincident with the
assertion of ITMO) if the next pair of words is the last to be transferred.

The bus master drives ITM2 unasserted to indicate that it can send the
next pair of NuBus words, or asserted to indicate that it cannot send
the next pair of words.

yen) If the master drives ITM2 unasserted during this cycle, the master
drives the first word of the next pair on the I ADx lines after an output
hold delay.

Chapter 3 NuBus Data Transfer i7

SCn) The bus master samples ITMO, and the slave samples ITM2 to
determine if the next pair of words should be transferred.

x(n + 1) If ITMO is asserted and ITM2 is unasserted, the master drives the
second word of the pair on the I ADx lines.

yen + 1) If ITMO is asserted and ITM2 is unasserted, the slave accepts the
second word of the pair. The master drives the first word of the next
pair on the I ADx lines after an output hold delay.

D(n + 1) If the slave is not ready to accept the next pair of words, the slave
drives ITMO unasserted until a bus cycle in which it is ready to send
the next pair of words. If the master is not ready to send the next
pair of words, the master drives ITM2 asserted until a bus cycle in
which it is ready to send the next pair of words.

The previous steps, starting at D(n), are repeated for ascending addresses until all but the
final pair of words has been transferred.

S(b - 1) The master, driving ITM2 unasserted and responding to the assertion of
ITMO and ITM1 and lACK unasserted, sends the last pair of NuBu8
words as shown here:
x(b) The slave accepts the first word of the final pair. After

an output hold delay, the master drives the final word on
the I ADx lines.

y(b) The slave accepts the final word of data. The master
continues to drive the last word of data on the I ADx lines.

D(b) 111 addition to accepting the last pair of NuBus words, the slave
drives the appropriate transfer response on ITMO and ITM1 and
drives lACK asserted;

S(b) The master samples ITM1 and ITMO to note any error conditions.

DC b + 1) The master stops driving the I ADx and ITM2 lines, and the slave stops
driving the ITM1, ITMO, and lACK lines. The bus owner drives lACK to
a determinate state. This may be the D(1) of the next transaction.

78 Designing Cards and Drivers for the Macintosh Family

2X block write transfer with delayed status indication

To allow the slave to report parity errors on 2X block write transfers, the slave can defer
the acknowledgment cycle until the last word of the transfer has been received and its
parity has been evaluated. The capability is optional for 2X slaves, but all 2X bus masters
must be able to accept a deferred acknowledgment after a 2X block write transfer.
Deferred acknowledgments are not permitted after a 2X block read transfer. Figure 3-8
shows the timing diagram for a 2X block write with delayed indication.

• Figure 3-8 Timing of NuBus 2X block write with delayed status indication

/CLK

/CLK2X

/ADx

!1MO

/TMI

/TM2

/START

/ACK

~~
rLr-u---Lr~

I I I I
I I I t
I I' I

~5jD7 XNextaddress)
5,

I t I I

, : ,...; ,,"s'--~' ~=~-~s 'ready' " .! 'delay' K: Status
, " , " , " , , 5 $' --Y 'last pair' : : , " , " , " , , 55' :/m : m "":--+m-· ---

---r' " , " , , , ,
!m 5 I!!-S!---!------..-'-m--+ 1 -
, , , , , ,
: 5 S: " s /,---:s :'_ , , , , ,

Slave's latched data @)l(Ql)

Chapter 3 NuBus Data Transfer 79

Once the bus master has acquired the bus, a 2X block write with delayed status indication
consists of the following steps:

SCb-l)

D(b)

The master,. driving ITM2 unasserted and responding to the assertion of
/TMO and ITM1, and lACK unasserted, sends the last pair of data words
as shown here:
x(b) The slave accepts the first word of the final pair. After

an output hold delay, the master drives the final word
on the I ADx lines.

y(b) The slave accepts the final word of data. The master
continues to drive the last word of data on the I ADx lines.

In addition to accepting the last pair of data words, the slave drives
ITMO and ITM1, and lACK unasserted.

S(b) - S(c) The master, driving ITM2 lmasserted, waits until the slave asserts
lACK.

D(c) The slave drives the appropriate transaction response status on the
ITM1 and ITMO hnes and asserts lACK.

S(c) The master, driving ITM2 unasserted and responding to the assertion
of lACK by the slave, samples ITM1 and ITMO to note any error
conditions.

D(c + 1) The master stops driving the I ADx and ITM2 lines, and the slave stops
driving the ITM1, ITMO, and lACK lines. The bus owner drives lACK to
a determinate state. This may be the DO) of the next transaction.

Designing Cards and Drivers for the MacintOsh Family

Cache coherency

Cache coherency is an optional NuBus '90 protocol used to determine the ownership
of data between multiple processors with private caches and to maintain coherence,
or agreement, between data shared by the processors and shared memory. New
signals ICMO, ICM1, ICM2, and ICBUSY have been defined to support a NuBus
cache-coherency protocol.

6, Important NuBus cache-coherent transactions are not currently
implemented in any members of the Macintosh family, but they
may be implemented in future Apple products. Apple has
chosen to implement cache coherency differently. The
following discussion, although not pertinent to the Macintosh
computer, is provided for completeness in describing the
NuBus. An overview of cache coherency has been provided. For
more details, please refer to the NuBus '90 specification. 6.

Shared memory may be physically located on a processor module but can be accessed by
other processors via NuBus. In other implementations, the shared memory may be
physically located on an external memory module that is accessed only via NuBus.

The use of a cache memory for each processor can greatly reduce bus traffic since the
majority of memory references can be serviced by the cache. Bus traffic can be further
reduced by using a copyback cache, where the data in the cache is written to shared
memory only if the cache is full, or during a cache flush. Cache memories typically transfer
blocks of data, referred to as a cache line.

Since multiple caches can have simultaneous copies of data for a given memory location,
a cache-coherency protocol is required to ensure that all copies remain consistent.

In this section, you can find information about the cache line states, cache snooping,
transactions in the cache-coherency protocol, cache-coherent states, and arbitration by
cache-coherent modules.

Chapter 3 NuBus Data Transfer 81

Cache line states and sizes

A cache line can be iIi one of four states defined below.

• A cache line is modified if the data may be different from memory and there is only one
cached copy of the line in the system.

• A cache line is exclusive if the data is known to be the same as memory and there is only
one cached copy of the line in the system.

• A cache line is shared if the data is known to be the same as memory and another cached
copy of the line may exist somewhere in the system.

• A cache line is invalid if there is not an up-to-date copy of the line in the module's cache.

A cache line can be 4, 8, 16, 32, Or 64 bytes long, and caches with different cache line sizes
can be used at the same time; The addresses of cache lines are aligned to their cache size.

Read and write miss

When a processor issues a read and the requested location is exclusive, shared, or
modified, the operation is said to be a read hit. The processor can use the data in the
cache and no bus transaction is necessary. If the location is invalid, the operation is said
to be a read miss.

When a processor issues a write and the requested location is modified or exclusive, the
operation is said to be a write hit. The processor cart modify the data in the cache and
no bus transaction is necessary. If the location is shared or invalid, the operation is said to
be a write miss, even though the location may be valid.

82 Designing Cards and Drivers for the Macintosh Family

Snooping

A snooping module is one that snoops, or monitors, cache-coherent transactions between
a master and a slave. This can include cache tag comparison, reporting cache line status to
the master, and, if necessary, writing modified data to shared memory. Snooping modules
monitor the ICMx signal lines to detect the cache-coherence start cycle and monitor the
address and block size specified by the I ADx and ITMx lines. The response of the
snooping module is based on the initial state of the cache line (modified, exclusive,
shared, or invalid) and the transaction mode indicated by ICMl and ICM2. The response
of the snooping module does not depend on the type of data transaction. In some cases,
the snooping module may be required to write back a modified cache line to update
memory. After a snOoping module examines its cache line tags and performs a write-back
transaction (if necessary), it updates the cache line tag to its final state.

Cache-coherency transactions

Cache-coherent modules use the existing bus arbitration protocol to request bus
ownership and an additional protocol and signal line to ensure fair access to the bus by all
cache-coherent modules. Cache-coherent transactions are initiated by a master, are
observed by snooping modules, and are completed by the addressed slave. During the
cache-coherent start cycle, the ICMl and ICMO signal lines specify the cache-update
transaction, and the ITMx signal lines specify the data transaction. Table 3-6 summarizes
the cache-coherent transactions.

• Table 3-6 Cache-coherent transactions

/CMl /CMO II'Ml II'MO Transaction

L L H L ReadExclusive
L L H H AttentionExclusive
L L L WriteExclusive
L H H L ReadShared
L H H H AttentionShared
L H L (not used)
H L H L Readlnvalidate
H L H H Attentionlnvalidate
H L L Writelnvalidate
H H H L ReadNosnoop
H H H H (not used)
H H L WriteNosnoop

Chapter 3 NuBus Data Transfer 83

All cache-coherent transactions begin with a cache-coherent start cycle that is coincident
with the ISTART cycle of a data-transfer or attention-cache cycle. During the cache
coherent start cycle, the ICMO and ICMI signal lines specify the cache-update transaction
(exclusive, shared, invalidate, or nosnoop), and the ITMx lines specify the data
transaction (read, write, or attention).

Read and write transactions may use single word transfers or IX and 2X block transfers,
depending on the capabilities of the master and the slave. The attention transactions are
address-only transactions in which the master asserts both lACK and ISTART during the
same cycle. They can be used by processors accessing physically local but globally
coherent memory, for flushing or purging data, or in other situations where an initial read
or write data transaction is not required.

The initial read, write, or attention transaction may be followed by one or more data
transactions by snooping modules that write back modified data to shared memory
before the original master updates its cache with the updated data in memory.

The ReadExclusi ve, AttentionExclusi ve, and Wri teExclusi ve transactions
guarantee that at the end of the transaction the master has the only copy of the data. The
ReadShared and At tent ionShared transactions guarantee that at the end of the
transaction the master's copy of the data is the same as memory. The Readlnvalidate,

Attentionlnvalidate, and Writelnvalidate transactions guarantee that at the
end of the transaction no other cache in the system has a copy of the data. Finally, the
ReadNosnoop and WriteNosnoop transactions inhibit snooping by all modules that
could potentially snoop the transaction.

The following sections give a brief description of each transaction. For more information and
for timing diagrams for each transaction, please refer to the NuBus '90 draft specification.

ReadShared

A ReadShared transaction is used when a processor cache read miss occurs and data
must be read from an external shared memory module. At the end of the transaction, the
processor's cache and shared memory will contain valid copies of the data, and possibly
one or more external caches may contain valid copies of the data.

ReadExclusive

The ReadExc 1 us i ve transaction can be used to service a processor cache write miss by
ensuring that the cache line is exclusive before it is modified. The shared memory is
located on an external memory module.

84 Designing Cards and Drivers for the Macintosh Family

Readlnvalidate

The ReadInvalidate transaction may be used by a master to read shared memory and
invalidate any cache lines that reference data. The use of the ReadInval ida te

transaction assumes that the processor previously copied back to memory the set of
modified cache lines that correspond to areas of memory that will be read.

ReadNosnoop

The ReadNosnoop transaction may be used by a master, such as a DMA I/O controller, to
read shared memory with snooping inhibited. The used of the ReadNosnoop transaction
assumes that the processor has previously copied back to memory the set of modified
cache lines that correspond to areas of memory that will be read using the ReadNosnoop

transaction. Alternatively, the ReadNosnoop transaction can be used to read data from
areas of memory that use a write-through cache-coherence policy, where the cache
controller always writes to both the cache and main memory. Since snooping is inhibited,
the state of any cache lines is unaffected.

The ReadNosnoop transaction can also be used to access read-only data from memory,
such as instruction code and data that cannot be modified. After the transaction is
performed, the master marks its cache line shared.

WriteExclusive

The WriteExclusive transaction can be used for writing partial cache lines to external
shared memory. The master first writes the data, typically a single word, to shared
memory. If none of the snooping modules have modified data, the Wr it eExcl u s i ve

transaction is complete. Otherwise, the master waits until all snooping masters have
updated shared memory with their modified data, and then retries the original write
transaction. At the end of the transaction, the processor's cache line will be in the
exclusive state. An alternative to the Wr i teExcl usi ve transaction is a
ReadExclusive transaction followed by a WriteNosnoop Ccopyback) transaction.

Writeinvalidate

The WriteInvalidate transaction may be used by a master, such as a DMA I/O
controller, to invalidate all copies of the cache line and write a full cache line to memory.
The previous contents of the cache line are not needed since the entire cache line is
replaced by new data. At the successful completion of the transaction, no cache in the
system contains a valid copy of the cache line.

Chapter 3 NuBus Data Transfer 85

WriteNosnoop

The WriteNosnoop transaction may be used by a master, such as a DMA I/O controller,
to write to shared memory with snooping inhibited. The use of the Wri teNosnoop

transaction assumes that the processor has previously invalidated the set of cache lines
that correspond to areas of memory that will be written using the Wri teNosnoop

transaction. Since snooping is inhibited, the state of any cache lines is unaffected.

The WriteNosnoop transaction can also be used to copy back a modified cache line to
external shared memory to free up space in the cache. Snooping is not required since the
cache has an exclusive copy of the data. After the copyback operation is performed, the
master marks its cache line either invalid or exclusive.

AttentionShared

The AttentionShared transaction is similar to ReadShared except that it is used by
masters accessing physically local but globally coherent memory. The AttentionShared

transaction is used when a processor cache read miss occurs and data must be read from
shared memory physically located on the processor module. At the end of the transaction,
the processor's cache and shared memory will contain valid copies of the data, and
possibly one or more external caches will contain valid copies of the data.

AttentionExclusive

The AttentionExclusi ve transaction is similar to ReadExclusi ve except that it is used by
masters accessing physically local but globally coherent memory. The At t en t i onExc 1 us i ve

transaction can be used to service a processor cache write miss by ensuring the cache line is
exclusive before it is modified. The shared memory is physically located on the processor module.

AttentionInvalidate

The Attentionlnvalidate transaction is used by a caching master to service a write
hit to a shared cache line by invalidating all other caches and changing its cache line status
from shared to modified. All other caches are invalid after the completion of the
Attentionlnvalidate transaction.

86 Designing Cards and Drivers for the Macintosh Family

Non-cache-coherent transactions to caching modules

It is recommended that cache-coherent modules support accesses by noncaching bus
masters. This includes DMA I/O controllers and earlier bus master designs that can only
issue non-cache-coherent read and write transactions.

It is recommended that memory locations accessed by read transactions be consistent
with any cached copies of the data. The simplest approach is for caching processors to
use a write-through cache, where all processor write transactions are written to memory as
well as to the cache. This technique will work for caching processors accessing physically
local or external memory, and guarantees that data read from memory will be up-to-date.
If the shared memory is physically located on the processor module, a copyback cache
coherence policy can be used if the processor can snoop and supply its modified data to
external read transactions that reference its memory. Alternatively, cache coherency can
be enforced by software flushing the processor caches to memory prior to any read
transactions by noncaching masters.

It is recommended that memory locations accessed by nonglobal write transactions be
snooped by caches so that the data in the caches are up-to-date. Alternatively, cache
coherency can be enforced by software invalidating areas of memory prior to any write
transactions by non-cache-coherent masters.

Cache-coherent states

The cache-coherency protocol consists of several states that are defined by the current
and previous states of /CM2 and /CMl and the type of cache-coherent transaction
requested by the master. The cache-coherent transactions and their /CMx signal line
encodings are summarized in Table 3-7. All cache-coherent transactions are identified by
the assertion of /CM2 after /CM2 was previously unasserted. The state of /CMl during the
previous cycle identifies the actual start of the cache-coherent transaction and
subsequent write-back and retry transactions.

Chapter 3 NuBus Data Transfer

• Table 3-7 Cache-coherent transaction encodings

Bus cycle n-l Bus cyclen
/CM2t /CMl /eM2 /CMl /CMO Transaction

H H (cc-start) L L L ReadExclusive,
AttentionExclusive,
orWriteExclusive

H H (cc-start) L L H ReadSharedorAttentionShared
H H (cc-start) L H L Readlnvalidate,

Attentionlnvalidate,
orWritelnvalidate

H H (cc-start) L H H ReadNosnoop orWriteNosnoop
H L (nosnoop) L Write-back or retry (nosnoop)

t For all cache-coherent transactions starting at bus cycle n, /CM2 must have been unasserted high
during the previous bus cycle, n - 1, and /CM2 must be asserted low at bus cycle n.

The cache-coherency states are defined here.

• The cache-coherent idle cycle (cc-idle) is the inactive state of the cache-coherency
protocol where ICM2 and ICMl are both unasserted.

• The cache-coherent start cycle (cc-start) is a single bus cycle in which ICM2 is
asserted during the bus cycle immediately following a cc-idle cycle. The cc-start cycle
must be coincident with the ISTART cycle of a data-transfer or attention cycle.

• The cache-coherent snoop cycles (cc-snoop) assert ICM2 immediately after the
cc-start cycle if additional time is required to snoop the transaction and check for a
cache hit. As each snooping module determines the status of its cache tags, it
releases the ICM2 line and asserts its cache line status code on ICMl and ICMO.

• The cache-coherent acknowledge cycle (cc-ack) is a single bus cycle in which ICM2 is
unasserted after having been asserted during the cc-start and cc-snoop cycles. The
last snooping module to release the ICM2 line determines when the cc-ack cycle
occurs, and the bus master samples the cache st<\tus code on ICMl and ICMO.

During the cc-ack cycle, one or more snooping modules may have asserted ICMO to
indicate that they have a valid (shared or exclusive) copy of the data. If none of the
snooping caches contain modified data (/CMl unasserted), the protocol is considered to
be in the cc-ack/cc-idle state since ICM2 and ICMl are both unasserted and another
cache-coherent transaction may begin on the next cycle. The master updates its cache line
state with the Hshared" status information returned on ICMO.

88 Designing Cards and Drivers for the Macintosh Family

During the cc-ack cycle, one or more snooping modules may have asserted ICMl to
indicate that they will perform write-back transfers to return their modified data to
shared memory. In addition, the master may retry the original data transfer to update its
cache and cache line tags with the "shared" status information returned on ICMO during
the cc-ack cycle.

The ICMx signal lines are used to identify write-back and retry operations and to
determine when modules can request bus ownership. The master asserts ICMl immediately
after the cc-ack cycle if it intends to retry the original data transaction. Snooping
modules continue to assert ICMl and also assert ICMO immediately after the cc-ack cycle.
As each snooping module becomes bus owner and performs its write-back transaction,
the module releases both ICMl and ICMO. After all snooping modules have written back
their modified data to memory, ICMO will be in the unasserted state (and ICMl remains
asserted if the master intends to retry the original data transaction).

Sensing the unassertion of ICMO, the master can then retry the original data transaction to
update its cache. When the master begins the retry operation, it releases ICMl. Once
ICMl is released, other cache-coherent modules may request bus ownership.

There are several rules that govern the relationship between cache coherency and data
transaction protocols.

• The cache-coherent transaction must be coincident with the data or attention-cache
transaction's ISTART cycle.

• The cache-coherent acknowledge cycle can occur before, during, or after the data
transaction's acknowledge cycle.

• A cache-coherent cc-start cycle and associated data transaction ISTART cycle must
wait for the completion of the previous cache-coherent transaction.

• Any number of non-cache-coherent transactions may occur during a single cache
coherent transaction.

Chapter 3 NuBus Data Transfer 89

Cache-coherent masters

A cache-coherent master indicates the type of cache-coherent transactions on the ICMx
lines during the cc-start cycle. After the snooping modules have snooped the transaction,
the master notes the systemwide cache status on the ICMx lines reported during the cc-ack
cycle. The assertion of ICMl indicates that one or more caches have a modified copy of
data that will be returned to memory using the write-back transaction. The assertion of
ICMO indicates that one or more caches may have retained a shared copy of the data.

If ICMl was asserted during the cc-ack cycle, the master waits until all caches have
completed their write-back transactions. Then the master retries the read or write data
transfer driginally requested during the cache-coherent start cycle.

By retrying the read data transfer of a ReadExc 1 usi ve or ReadShared transaction, the
master can update its cache with formerly modified data from snooping caches. By retrying
the write data transfer of a Wr i t eExc 1 us i ve transaction, the master can write over
formerly modified data from snooping caches. In an optimization for ReadExc 1 us i ve

and ReadShared transactions, the master can snarf the write-back transactions and thus
eliminate the need to retry the original read data transfer.

At the conclusion of the cache-coherent transaction, the master updates its cache line
state according to Table 3-8.

90 Designing Cards and Drivers for the Macintosh Family

• Table 3-8 Cache-coherent master actions

Mode and initial statet cc-ack status Action and final state

Transaction mode Master state /CMl /CMO Action Master state

Exclusive S or I L H Retry I snarf M, E, S, or I
Exclusive S or I H H None M, E, S, or I
Shared I L L Retry I snarf S or I
Shared L H Retry I snarf E, S,orI
Shared H L None S or I
Shared H H None E, S, or I
Invalidate S or I H H None M, E, S, or I
ReadNosnoop I (DMA transfer) H H None I (data read)
ReadNosnoop All not M H H None S or I
WriteNosnoop I (DMA transfer) H H None I (data written)
Copyback M H H None E, S, or I
Invalidate M, E, S, or I L n/a Error
Nosnoop n/a H

M = modified, E = exclusive, S = shared, and I = invalid.
"Retry I snarf"
"None"
"All not M"
"Copyback"

"Error"

ICMl asserted during cc-ack cycle; master must retry snarf.
ICMl not asserted during cc-ack cycle; transaction completed.
No cache has a modified copy of the data, or read-only data.
A Wr i t eN 0 snoop transaction used to return modified data to memory
and free the cache line for later use.
ICMl and ICMO should not be asserted during the cc-ack cycle.

t The "initial" state of the master cache line is when the master becomes bus owner and begins
the cache-coherent transaction. The cache line may have been invalidated while arbitrating for
the bus.

Chapter 3 NuBus Data Transfer 91

Arbitration by cache-coherent modules

Cache-coherent modules use the existing bus arbitration protocol to acquire the bus
ownership. They also use an additional protocol and signal line, /CBUSY, to ensure that all
cache-coherent modules have fair access to the bus.

To perform a cache-coherent transaction, a cache-coherent module requests bus
ownership by driving the /RQST and /CBUSY lines asserted. The module continues to
assert both signals until it wins the arbitration contest and asserts /START. At this point,
the module can begin a cache-coherent transaction. Before doing so, it may be that the
module must perform a write-back transaction in response to another module's cache
coherent transaction. The cache-coherent module may also have to relinquish bus
ownership to permit other snooping modules to perform their write-back transactions or
to permit another master to retry its original data transaction.

Assuming that the cache-coherent module can begin its own transaction, it releases /RQST
and /CBUSY. If it must perform a write-back transaction or relinquish bus ownership, the
module releases /RQST when the write-back transaction is complete, or the bus ownership
has been relinquished. The module continues to assert /CBUSY until it actually starts its
originally intended cache-coherent transaction.

This protocol ensures that all cache-coherent transactions requested during the same bus
cycle will be serviced before any new cache-coherent requests can be made. The protocol
guarantees fair access to the bus by all cache-coherent modules and is similar to the
protocol used by /RQST to guarantee fair access to all modules.

92 Designing Cards and Drivers for the Macintosh Family

Nonaligned microprocessor accesses

The Mc68020, Mc68030, and Mc68040 bus interfaces allow accesses that do not fall into
natural NuBus transactions. For example, a microprocessor program can request a read of
a NuBus word at an odd-numbered location. This cannot be performed in a single NuBus
transaction since it falls across word boundaries.

The interface between a Macintosh computer and NuBus always translates an aligned
request into its counterpart on NuBus. However, that interface also provides support for
all nonaligned microprocessor accesses. On 68020-based and 68030-based machines, the
dynamic bus-sizing facilities of the microprocessor are used. However, on 68040-based
machines, the microprocessor will perform multiple aligned transfers to move a non
aligned access. The computer-to-NuBus interface responds to off-boundary
microprocessor requests with /DSACK (data transfer and size acknowledge) signals that
tell the processor that the bus is only 16 bits wide. This causes the processor to make
several cycles to fulfill the original request, using an incremented address and decremented
size. For each subsequent cycle, the NuBus interface generates an appropriate transaction
until the entire request is complete.

Nonaligned reads

Nonaligned reads are mapped into NuBus word (32 bit) reads. This feature provides
the required data in the fewest NuBus transactions. On 68020-based and 68030-based
computers, some nonaligned requests generate two NuBus cycles. For example, a NuBus
word read of $FsOO 0001 generates a word read to $FsOO 0000 and a byte read to
$FsOO 0004. The "extra" data provided by the word read is ignored. The reason for the
second read being a byte read instead of another word read is that the processor asks
for 1 byte to $FsOO 0004, which is a natural NuBus transaction.

On 68040-based Macintosh computers, a NuBus word read of $FsOO 0001 would generate
three accesses: a byte access to $FsOO 0001, a word access to $FsOO 0002, and a byte
access to $FsOO 0004.

Chapter 3 NuBus Data Transfer 93

Nonaligned writes

Nonaligned writes are supported by breaking the processor request into pieces that can
be executed by the NuBus. For example, a NuBus word write to $FsOO 0001 would be
performed in three pieces: a byte write to $FsOO 0001, a NuBus halfword write to
$FsOO 0002, and a byte write to $FsOO 0004.

Data caching

The MC68030 microprocessor used in some Macintosh computers includes a feature called
data caching. To support this feature, RAM-like cards should always supply all 32 bits,
regardless of the NuBus request. For example, if a NuBus request is presented for a byte,
the card should present data for all 4 bytes in the NuBus word.

Note that the caching of data can be controlled by software; that is, some address spaces
can be declared as noncacheable. (NuBus space is always noncacheable.) To declare a
RAM address space as noncacheable, your driver should use the LockMemory function.
This function is described in more detail with the memory management information in
Inside Macintosh. Any card that is not capable of supporting a full 32-bit read must have
its corresponding driver software set up the caching control appropriately.

A similar caveat concerns the nonaligned cases: if a card cannot support a full 32-bit read, the
software must ensure that only appropriately aligned and sized operations are requested.

Compliance categories

You may design cards that conform to the NuBus specification but do not support all
NuBus features. Masters and slaves do not need to support all transfer types. Any
combination of 8-, 16-, and 32-bit single data transfers, with the card acting as either
master or slave, is allowable. Masters need not support all possible block transfers.
However, slaves must support all block-transfer lengths if they support block transfer
at all.

The decisions about how nonaligned accesses work and the rules for data caching have
been made to provide the highest performance for 32-bit-wide cards. These cards may
have all the necessary logic and bus transceivers to support these rules.

94 Designing Cards and Drivers for the Macintosh Family

NuBus slot cards may be dumb. It is not required that all devices respond with an error
status code for transfer types that they do not handle; it is acceptable to merely respond
with an / ACK assertion.

Such dumb cards must be managed only by device drivers that are designed to
communicate with them appropriately. One of the functions of the declaration ROM is to
provide indications of the capabilities of the card. (The declaration ROM is described in
Chapter 8, "NuBus Card Firmware.")

Driver-supported cards are those that are accessed indirectly via a software driver. You
can write the driver to manage any idiosyncrasies of the card. For these types of cards,
you have relative freedom in the tradeoffs you make in the design of the hardware
because you can write the driver software to accommodate them.

Peer cards are cards that are designed to execute code that is not specialized to the
card-for example, two cards that execute cooperating processes to solve a problem.
These cards must be more general in their hardware design, because the code that
executes on them assumes no restrictions in types of access, size of data operands, and
so forth.

In general, peer cards must be designed to support the maximum size of transfer that any
of their peers are capable of supporting. In particular, a peer card that is designed to
cooperate with the MC68020, MC68030, or Mc68040 microprocessor on the main logic
board of a Macintosh computer must properly handle 32-bit (NuBus word) transfers. If
such a card contains, for example, an Mc68000 and has a local bus that is naturally 16 bits
wide, the card must provide the hardware support in its NuBus interface to handle such 32-
bit transfers. This would involve doing two local bus cycles for each NuBus word request.

A card with an Mc68000 processor must make two NuBus halfword requests to satisfy an
access to a NuBus word quantity (for example, a pointer value). A Macintosh computer
properly responds to these two requests. The same instruction when executed by the
MC68020, MC68030, or Mc68040 microprocessor makes one NuBus word request. If the
card with the Mc68000 does not respond with the correct 32-bit quantity, the program
obViously does not execute correctly.

You should clearly indicate in the card's documentation exactly which kind of card it is
and what types of accesses it supports.

Memory devices, however, must support all transfer types except for block transfer; the
devices should always respond with all 32 bits in the addressed NuBus word. This rule
allows RAM cards to be used as if they were on-board RAM in order to support nonaligned
transfers, 68020 bit-field instructions, 68030 caching, and so forth.

Chapter 3 NuBus Data Transfer 95

Chapter 4 NuBus Arbitration

This chapter discusses how the bus master is selected from among the
several cards likely to be competing for bus mastership, and how all the
other cards desiring service are accommodated.

Arbitration overview

The NuBus fair arbitration mechanism differs from strict priority arbitration in that it
prevents "starvation" of cards and distributes access to the bus evenly.

Arbitrate 3 to arbitrate 0 (/ ARB3-/ ARBO) are open-collector binary-coded lines driven by
contenders for the bus. They are used by the distributed arbitration logic to determine
bus mastership.

Bus request (/RQST) is an open-collector line driven low by contenders for the bus.

During arbitration, one or more cards contend for control of the NuBus. Cards that desire
ownership of the NuBus must first assert the /RQST line. The /RQST line may be asserted
only while it is in an unasserted state. All cards that assert /RQST place their ID codes on the
/ ARBx lines and contend for the bus. The arbitration logic distributed among the cards
determines which of the cards gets ownership of the NuBus. After two clock periods, signal
transients have settled and the contest mechanism is complete. The contender with the
highest ID code has its code on the / ARBx lines, has won bus ownership, and may initiate a
transaction (after completion of any transactions in progress).

Presuming that the winner does not desire to lock the bus, the winning card first removes
its /RQST and at the same time asserts /START (this begins a start cycle of the card's first
transaction). Then, after the start cycle, the card removes its / ARBx signals and continues
with the cycles required to complete the transaction.

The release of /START initiates another contest between any cards that originally
requested the bus in the same clock period, but that have not yet won. These cards will be
granted ownership in turn, from highest ID number to lowest ID number. The rule that
/RQST must be unasserted before a card may assert it keeps other cards from
participating in contests until aU the original requestors have been served.

Figure 4-1 shows a situation in which cards with ID codes $9 and $A request the bus at the
same clock period. Card $A wins the first arbitration contest, and then removes its
request after its start cycle (when the address is shown on the / ADx lines). In the
meantime, card $9 continues to assert /RQST. Card $E desires the bus as well but may not
request it because the /RQST line is already asserted by card $9. Contesting against no
one, card $9 wins the next contest and gains bus ownership. When card $9 releases /RQST,
card $E requests, arbitrates, and wins. Note that card $9 owns the bus only after it wins a
contest and the transaction in progress ends.

98 Designing Cards and Drivers for the Macintosh Family

• Figure 4-1 Sample arbitration contest

/ADx

/ARBx

/RQST

Master $A
transaction

Master $9
transaction

Master $E
transaction

Adr
----.-.-.----~

'-----::f---L __ - _ - __ - _ - t.::.L.

I
I

"~ __ ~~ ____ ~l~ /
I Because /RQST is unasserted,

master $E may assert it and contend.

Master $9 releases /RQST as
it initiates transaction.

Master $A removes /RQST
and takes its ID off / ARBx.

Master $E desires bus but cannot
contend because /RQST is asserted.

Master $9 and master $A desire bus
and assert /RQST and contend.

Arbitration logic mechanism

When a bus contest occurs, each card drives the / ARBx lines with its unique ID code and
then releases the / ARBx lines if it detects higher ID codes than its own on the / ARBx lines.
One possible implementation of this arbitration logic is diagrammed in Figure 4-2, for
illustrative purposes only.

Chapter 4 NuBus Arbitration 99

• Figure 4-2 Typical bus arbitration logic

IARB

GRANT

Note that the I ARBx lines are bused common to all cards, but the IIDx lines present a
unique binary code to each card slot. The signals I ARB and GRANT are card signals, not
NuBus signals: I ARB is an input to the arbitration logic that indicates whether the card is
contending for the bus, and\ GRANT is an output that indicates whether the I ARBx lines
currently match this card's IIDx lines. The following logic equations approximate how the
arbitration logic on any given card works:

I ARB3 = IID3 • I ARB
I ARB2 = /ID2 • I ARB • (lID3 + ARB3)
I ARBI = IIDI • I ARB • (lID3 + ARB3 • (lID2 + ARB2)
IARBO = lIDO • IARB • (lID3 + ARB3) • (lID2 + ARB2) • (/IDI + ARBI)

where • is logical AND, + is logical OR, and ARBx is the logical complement of I ARBx.

According to these equations, after a short delay (arbitration period) the I ARBx
lines will equal the ID code of the highest-priority contender, that is, the contender
with the largest integer for its ID code. See Appendix D for the PAL listing labeled
(ARB2) , NuBus arbitration logic; implementation of these equations accomplishes the
desired arbitration.

• Note: The signal names I ARB and GRANT are written here with capital letters,
consistent with the convention used in this book, but the Texas Instruments NuBus
documentation uses larb and grant, respectively.

100 Designing Cards and Drivers for the Macintosh Family

Arbitration timing overview

The details of arbitration timing are covered in Chapter 5, "NuBus Card Electrical Design
Guide." Arbitration events generally occur on driving edges and sampling edges,
synchronous to the system clock, with the same timing as the basic address/data, control,
and utility signals. For example, /RQST may be asserted on a particular driving edge only if
it is seen to be unasserted on the previous sample edge. However, the / ARBx lines differ
from all other NuBus signals in that their assertion timing is specified from the sample
edge of the bus clock. See Figures 4-3 and 5-2.

Arbitration contests last two clock periods by definition. On the second sampling edge
after a contest starts, all contenders sample their internal GRANT signal. The highest
priority contender will find its GRANT signal asserted. The winner may now take control of
the bus and assert /START on the next driving edge (25 ns after the contest's second
sampling edge) if the bus isn't in use.

If the bus is in use, the new winner asserts /START on the driving edge immediately after
the next sample edge where the current transaction's / ACK is asserted. The new winner
continues to assert its ID code on the / ARBx lines throughout the start cycle of its first
transaction. This facilitates bus lock detection and bus diagnostics.

.A. Warning

Locking

If there are many NuBus masters active at the same time, the
CPU, especially in the Macintosh IIfx, can be given too little
time to refresh memory. This problem is actually caused by the
"fair" NuBus arbitration scheme; no priority is given the CPU in
its bid for NuBus access. This can cause the computer to slow
down tremendously. On most Macintosh computers, the
symptom of this problem will be extremely slow or nonexistent
updates to the screen.

Although cards generally use the bus for a single transaction before allowing another
requesting card to become bus master, sometimes the bus must be held locked in an
extended tenure. For some local processor operations, it may be necessary to prevent any
NuBus requests from interfering with the access of the processor to its local bus.

Chapter 4 NuBus Arbitration 101

This might be the case, for example, when the processor is doing a floppy disk transfer,
which is inherently time critical. Such a processor must have some mechanism (for
example, a bus lock line) for locking itself, and its local bus, from NuBus intrusion. This
type of locking is called bus locking.

Another example of locking to prevent interference is an indivisible test-and-set
operation performed in a multiprocessor environment; this type of locking is called
resource locking.

6 Important The bus must not be held in a locked condition for more than four
transactions at a time. 6.

• Figure 4-3 NuBus arbitration and transaction timing, single master and two masters

Single master, bus idle

ICLK

Driving edge

I
, , , , , ,

Sampling edge
I

IRQST : l!--___ --! : , , , , , ,
IARB3-/ARBO --1C:)>-: ------------------, , ____ -i-_.-J,

, , , , , ,

: : ~' ----~-----------------, , ISTART
, , , , , ,

lACK

l~ __ ~~A~ ______ ~----~)
I I

Arbitration Transaction

Two masters ($9 & $A), one transaction each

ICLK

IRQST : ~l ________ ~, __ ~ ____ ~ :
I I I I

I ARB3-1 ARBO
I I I I --1C: *r::J[:::t:::t:::j~~_4--~-----,~, ________ .-J,~ ,

I I I I
I I I I

ISTART , , ' -------. ' : : I I
I I I I
I I I I
I I I I

lACK

l ~
I I

Arbitration Arbitration
($A wins) ($9 wins)

I I

Transaction ($A) Transaction ($9)

102 Designing Cards and Drivers for the Macintosh Family

Bus locking

Bus locking requires no added mechanism. To lock the bus, a master simply continues to
request (by keeping the / ARB lines driven with its ID code) and contend (continuing to
assert /RQST). Because it has the highest ID code of those cards present, it wins
subsequent contests. Figure 4-4 shows an example in which card $C locks the bus for two
transactions. Fairness in arbitration depends upon cards not locking the NuBus unless
required and locking it only for the shortest required tenure.

Any card or software that uses extended-tenure bus locking should clearly specify in the
documentation for the product the maximum number of bus cycles allowed.

Bus locking can be valuable for optimizing NuBus transfers. During a NuBus transfer, it is
not possible to determine when a transaction will complete because of a variance in
NuBus interrupt latency. The interrupt latency can be affected by such things as floppy
disk accesses and slot interrupts. The bus, therefore, can be locked for a small set of
transactions, then unlocked for rearbitration. It order to allow fairness, you should lock
the bus for as short a time as possible. It is also important that you provide sufficient
buffering on your NuBus card to allow for the variance in interrupt latency.

• Figure 4-4 Sample bus lock

/ADx

/ARBx

/RQST

$C tenure $A tenure $9 tenure
___ --'--- -- --- t

------+-...,.. -- --- ----- ..-----.----...----,~-
Adr

_____ -+_-+ __________ ..L.....----,~__I----L-- _~!___+-...--'-- ___ !I.-----'-_--'---

"~ __________________________ --J/

Master $C
keeps contesting.

Master $C, master $A, and master $9
desire bus and assert /RQST ($C desiring
two indivisible transactions).

Master $C removes /RQST
and takes ID off / ARBx.

t Tenure continues until another card asserts /RQST and the next arbitration contest commences.

Chapter 4 NuBus Arbitration 103

Resource locking

Resource locking is initiated by the bus owner driving both /START and / ACK to
commence an attention-resource-Iock cycle; this alerts all cards that a bus and resource
locked transaction is occurring. The bus lock is maintained as described in the previous
section. A bus owner that issues an attention-resource-Iock cycle as the first cycle of a bus
tenure must conclude that tenure with an attention-null cycle to inform all cards that the
tenure is complete.

Access to a resource must be controlled when that resource is accessible by both a local
processor and the NuBus. One example of such a shared resource is a dual-ported RAM.
Another, more specific, example is found in Macintosh computers, where the NuBus
interface circuitry uses the local processor bus to access the shared resource, RAM, as
shown in Figure 4-5.

All cards that have shared resources capable of being locked must monitor the NuBus for
an attention-resource-Iock cycle and must record the occurrence. A card does not have to
react to the occurrence of a bus tenure starting with an attention-resource-Iock cycle
unless it is addressed during that tenure; this allows multiple resources to be alerted and
locked during a single bus tenure.

Figure 4-5 may be helpful in discussing an indivisible bus operation. For example, suppose
the processor on the NuBus card is instructed to perform a read-modify-write cycle to
the RAM as part of executing a TAS (test and set) instruction. The NuBus card contends
for and wins bus ownership, then initiates an attention-resource-Iock cycle. On the
Macintosh Hcx, Macintosh IIci, Macintosh IIsi, Macintosh IIfx, Macintosh Quadra 700,
and Macintosh Quadra 900, the NuBus interface controller automatically performs an
attention-resource-Iock cycle before doing a read-modify-write cycle, and an attention
null cycle afterward.

The state machines in the BIU respond to the attention-resource-Iock cycle by setting a
flag. This flag indicates that if the RAM-shared resource is accessed by the processor on
the NuBus card, the BIU will lock the processor bus. The local processor will then be unable
to access the RAM and thereby interfere with the indivisible read-modify-write of a data
structure by the NuBus processor. Any bus owner that is programmed to perform an
indivisible bus operation should lock resources on any slaves to be addressed during that
operation, as well as locking any bus that provides an alternative path to those resources.
All cards should release the locked status when an attention-null cycle occurs.

A card is not required to provide locking of its local resources; it may do so on some
resources and not on others. Reliable TAS instructions may only be done on resources that
can be locked.

104 Designing Cards and Drivers for the Macintosh Family

• Figure 4-5 Read-modify-write indivisible bus operation

Bus parking

NuBus
card with

Bus interface logic

NuBus

A bus master that has released /RQST is considered parked on the bus and may use
it at any time (without rearbitration) until another card asserts /RQST. When /RQST
is finally asserted by another requester, the parked bus master finishes its current
transaction and relinquishes the bus to the new winner without commencing another
transaction. Bus parking reduces the average time to acquire the bus in systems with a
small number of contenders.

• Note: A bus owner is not allowed to go from a parked condition into a bus-locked
series of transactions without submitting to arbitration by asserting /RQST.

Chapter 4 NuBus Arbitration 105

Chapter 5 NuBus Card Electrical Design Guide

This chapter gives the electrical specifications and timing requirements for
NuBus cards, including power requirements, connector pin assignments, a
power budget, and timing diagrams. Refer to Appendix A for guidelines on
electromagnetic interference (EMI) , heat dissipation, and product safety.

107

Electrical requirements

This section provides the detailed electrical information that you need to design a NuBus
expansion card.

Logical and electrical state relationships

All NuBus signals are active when low. The relationship between logical states and
electrical signal levels for all NuBus lines is shown in Table 5-1.

• Table 5-1 Logical state definitions

Logical state

H (unasserted)
L (asserted)

Electrical signal level

> 2.0 V at the receiver
< 0.8 V at the receiver

DC and AC specifications for line drive

This section provides the drive requirements and the load allowance for each of the NuBus
lines. These lines can be divided into five basic types based on their electrical drive and
load characteristics:

• clock (/CLK)

• address/data (/ADx, /SP, /SPV)

• control (/START, / ACK, /TMx)

• open collector (/RESET, /RQST, / ARBx, /NMRQ, /CBUSyt, /CBxt)

• power control (/PFW)

t These signals were introduced in the NuBus '90 specification and are defined only in the
Macintosh Quadra 700 and the Macintosh Quadra 900.

Table 5-2 lists the specifications for these line (signal) types, from a NuBus card's point of
view. The columns labeled drive indicate the minimum requirements for card outputs,
while those labeled load specify the maximum load that may be presented by card inputs.
Negative currents indicate flow out of a node (sourcing), and positive currents indicate
flow into a node (sinking).

108 Designing Cards and Drivers for the Macintosh Family

• Table 5-2 NuBus line drive requirements and load allowances

ACdrive DC drive AC load DC load
IpD Ipu IOL lOB <1- ~L lIB

Signal type (mJn),mA (mln),mA (mln),mA (mln),mA (max), pF (max),mA (max),mA

Address/ data 80 40 24 -12mA 18 -0.5 0.1
@3.2V

Clockt 90 50 60 -30 18 -1.4 0.1 from
driver

Control 80 40 24 -12mA 18 -0.5 0.1
@3.2V

Open collector 80 N/A 60 N/A 18 -0.625 0.1

Power control
(/PFW)*

t Supplied by the Macintosh computer.
* The source of /PFW must be capable of sourcing 20 rnA at 3 V for 2 seconds when driving /PFW

high to tum the computing system on. See the next section.

The column headings in Table 5-2 have the following meanings:
IpD Transient pull-down current, required for one Tpd (NuBus delay period) whenever the

driver changes from unasserted to asserted.

lpu Transient pull-up current, required for one Tpd whenever the driver changes from
asserted to unasserted.

IOL Low-output drive current available at 0.5 V.

IOH High-output drive current available at specified voltage.

CL Capacitive load per slot.

IlL DC low-level input current.
1m DC high-level input current.

• Note: Each NuBus card input can present an AC load of up to 18 pF to the computer's
main logic board. This includes 2 pF for the NuBus connector and 16 pF for the card's
trace capacitance plus the input capacitance of all devices connected to that trace.
Also, the load presented by NuBus card inputs (and tristated outputs) affects those
NuBus signals as seen by the computer's main logic board and by any other installed
NuBus cards. To minimize NuBus signal degradation, it is best to buffer all card inputs
as close to the NuBus connector as possible, and to limit each signal to one LS load.
This is especially important for the NuBus clock signal, which, because of its critical
timing and high frequency, is easily damaged by the loading effect of a NuBus card.
For additional helpful design hints, see Appendix A, "EMl, Heat Dissipation, and
Product Safety Guidelines."

Chapter 5 NuBus Card Electrical Design Guide 109

/PFW interaction with the power supply

The /PFW signal is intended to serve two purposes:

1. To allow the power supply to be turned on and off by a low-voltage signal that can be
controlled by the logic board (or expansion card) circuitry and hence by software.

2. To allow the power supply to warn the computer of an impending power loss.

When /PFW is held between 3.0 and 6.8 V for at least 1.5 seconds, the power supply turns
on and the computer begins operating. Once the power supply turns on, its own +5V
output holds /PFW high so it can continue operating. If /PFW is pulled below 0.6 V, the
power supply will turn off; /PFW should be held below 0.6 V until the computer completely
shuts down. If some fault condition (such as AC line failure) causes the power supply to
turn off, the power supply will pull /PFW low at least 2 ms before the DC outputs fail.

There are many issues that restrict the circuitry that can be connected to /PFW. Here are a
few cautions and tips:

• The /PFW voltage may be greater than the +5V bus voltage for a second or two when
the computer is turned on.

• If /PFW is fed into a gate input, any internal diodes to the +5V (or any other power)
bus may prevent the computer from turning on because /PFW goes high before the
power supply outputs bring the power buses up to rated voltage.

• No pull-up may be added to the /PFW line or else there may be difficulty in turning
off the computer.

• Any circuitry connected to /PFW must present a high impedance when the power is
removed or it may prevent the computer from turning on and drain the battery.
Likewise, such circuitry must present a high-impedance load during normal operation
to prevent contention with other drivers of /PFW. The only time additional circuitry
should present a low-impedance load to the /PFW line is when it is intentionally and
temporarily controlling the /PFW signal.

110 Designing Cards and Drivers for the Macintosh Family

NuBus connector pin assignments

Table 5-3 gives the pin assignments for NuBus connectors on most of the Macintosh
computers with the NuBus interface. The order of the rows is given as viewed from the
front edge of the card. The NuBus '90 specification has changed several of these pin
assignments. Table 5-4 lists the connector pin assignments for NuBus connectors on the
Macintosh Quadra 700 and Macintosh Quadra 900. Table 5-5 lists and describes the new
signals defined in NuBus '90 and included in the Macintosh Quadra family.

• Table 5-3 Connector pin assignments

Pin Row A RowB RowC Pin Row A RowB RowC

1 -12V -12V IRE SET 17 lAD 23 GND IAD22
2 t GND t 18 lAD 25 GND IAD24
3 ISPV GND +5V 19 lAD 27 GND IAD26
4 ISP +5V +5V 20 /AD29 GND IAD28
5 ITMI +5V ITMO 21 IAD31 GND IAD30
6 lAD 1 +5V IADO 22 GND GND GND
7 IAD3 +5V lAD 2 23 GND GND IPFW
8 lADS t IAD4 24 IARBI t IARBO
9 IAD7 t IAD6 25 IARB3 t IARB2

10 IAD9 t IAD8 26 lID 1 t lIDO
11 lAD 11 t IADI0 27 IID3 t IID2
12 IAD13 GND IAD12 28 lACK +5V ISTART
13 IAD15 GND IAD14 29 +5V +5V +5V
14 IAD17 GND IAD16 30 IRQST GND +5V
15 lAD 19 GND IAD18 31 INMRQ GND GND
16 IAD21 GND IAD20 32 +12V +12V ICLK

t These pins are connected but not supplied with the -5.2 V described in the Texas Instruments
NuBus specification. This voltage could be supplied by a card, in which case -5.2 V would be
available to all cards.

* These pins are reserved in the IEEE 1196 standard and are grounded in all Macintosh computers
with the NuBus interface except for the Macintosh Quadra 700 and Macintosh Quadra 900.

Chapter 5 NuBus Card Electrical Design Guide 111

• Table 5-4 NuBus '90 connector pin assignments

Pin Row A RowB RowC Pin Row A RowB

1 -12V -12V IRESET 17 IAD23 GND
2 SBO GND SBI 18 IAD25 GND
3 ISPV GND +5V 19 IAD27 GND
4 ISP +5V +5V 20 IAD29 GND
5 ITMI +5V ITMO 21 IAD3l GND
6 lAD 1 +5V IADO 22 GND GND
7 IAD3 +5V lAD 2 23 GND GND
8 lAD 5 ITM2 IAD4 24 IARBI CLK2X
9 IAD7 ICMO IAD6 25 IARB3 STDBYPWR

10 IAD9 ICMl IAD8 26 lID 1 ICLK2XEN
11 lAD 11 ICM2 IADlO 27 IID3 ICBUSY
12 IADl3 GND IAD12 28 lACK +5V
13 IADlS GND lAD 14 29 +5V +5V
14 lAD 17 GND IAD16 30 IRQST GND
15 IADl9 GND IADl8 31 INMRQ GND
16 IAD21 GND IAD20 32 +12V +12V

D, Important The eight lines that were connected to the -5.2V signals in the
original NuBus specificatiori are now used for new features on
the Macintosh Quadra 700 and the Macintosh Quadra 900.
Many older NuBus cards connect those eight lines together; the
presence of such a card in the Macintosh Quadra 700 and
Macintosh Quadra 900 will disable the new features of all
installed NuBus cards that use those lines. All the other features
of both the old and new cards will operate normally. 6

112 Designing Cards and Drivers for the Macintosh Family

RowC

IAD22
IAD24
IAD26
IAD28
IAD30
GND
IPFW
IARBO
IARB2
lIDO
lID 2
ISTART
+5V
+5V
GND
ICLK

• Table 5-5 NuBus '90 signals on the Macintosh Quadra-family NuBus connectors

PIn number

A2
B8

B9
B10
B11

B24
B25

B26

B27
C2

Signal name

SBot
/TM2
/CMOt
/CM1t
/CM2t
/CLK2X
STDBYPWR

/CLK2XEN

/CBUSY
SB1t

Function

High-speed serial bus, defined in P1394 standard.
New transfer mode: requests double-speed transfer.
Controls cache-coherency operations.
Controls cache-coherency operations.
Controls cache-coherency operations.
Synchronizes double-speed block transfers.
Small current at +5 V when main power is off; enables a
card to tJ,lffi on main power by asserting /PFW signal.
This sig~al is defined only on the Macintosh Quadra 900
and not on the Macintosh Quadra 700.
If not connected to other NuBus '90 signals, this line
enables /CLK2X driver.
Used with cache-coherency operations.
High-speed serial bus, defined in P1394 standard.

t These signals are not driven or monitored by circuits in the Macintosh Quadra 700 or the
Macintosh Quadra 900.

Power supply specifications

Three voltages are specified on the NuBus: +5 V, + 12 V, and -12 V. These voltages are
listed in Table 5-6 with their specifications.

• Table 5-6 Power supply specifications

Combln«;d Maximum
Source Nominal Tolerance Hnearutload ripple, mV
1abeI value, V from nominal, % regulation, % (peak-peak)

~!

+5 5 ±3 0.3 50
+12 12 ±3 0.3 75
-12 -12 ±3 0.3 75

Chapter 5 NuBus Card Electrical Design Guide 113

NuBus power budget

You can determine the maximum current available to any NuBus card by dividing the
maximum current available to the entire NuBus by the number of NuBus slots. For
example, since a Macintosh II, Macintosh IIx, and Macintosh IIfx all have six NuBus slots,
the maximum current available to anyone NuBus card is one-sixth of that available to the
entire NuBus. And since a Macintosh IIcx and a Macintosh IIci have only three slots, the
maximum current available to anyone NuBus card is one-third of that available to the
entire NuBus. Worst case analysis for a fully loaded Macintosh computer, with equal
current allocation to each of the slots, yields the recommendations in Table 5-7. A similar
analysis, starting with the maximum capacitance for which the power supply operates
reliably and subtracting the maximum capacitance on the main logic board, yields the
card filter capacitance recommendations in the table.

• Note: The maximum current available to the entire NuBus in the Macintosh IIcx or
Macintosh IIci computer is one-half of the maximum current available to the entire
NuBus of a Macintosh II, Macintosh IIx, or Macintosh IIfx computer. Therefore, the
calculated maximum current allocation to each of the three slots in a Macintosh IIcx or
Macintosh IIci is the same as that shown in Table 5-7.

• Table 5-7 Recommended current and capacitance limits for a NuBus card

Nominal power

supply value, V

+5
+12
-12

Recommended maximum
current per card (slot), A

(continuous)

2.0
0.175
0.150

Recommended maximum
capacitance per card, IlF

1513
536
698

• Note: The current analysis assumes a hard disk 0.8 A rms max) and two floppy disk
drives (0.2 A typical) internal to the computer; if you choose to develop a card that
exceeds these recommendations, you should make the end user aware of any
limitations imposed on the system configuration.

The recommendations for maximum card capacitance are actual (not nominal)
capacitance. You must allow for the capacitance tolerances of the particular capacitors
being used in order to stay below the recommended maximum.

114 Designing Cards and Drivers for the Macintosh Family

The power allowed in all Macintosh computers except the Macintosh Quadra 900 is 13.3 W
per NuBus slot. The power supply in the Macintosh Quadra 900 is designed to provide
additional current on the +5V outputs for the NuBus slots, compared with other
Macintosh computers. The Macintosh Quadra 900 has enough power to support a total of
two 25 W cards and three 15 W cards. The total power budget for NuBus cards in the
Macintosh Quadra 900 shall not exceed 95 W.

If the amount of power used by NuBus expansion cards exceeds the total power budget,
the Macintosh computer cannot be booted. During startup, the power supply attempts to
turn itself on but cannot, and it continues the attempt over and over. When the computer
is in this state, you must unplug it and remove the offending expansion cards.

However, some NuBus cards may inherently require more power. If your card contains a
processor or a large amount of RAM, the card will probably need more power than is
allowed for each expansion card. In the rare case when you do need to consume the power
of multiple slots, you must make sure that the slot or slots adjacent to your card are not
used. While there may be many ways to prevent the installation of an adjacent card, three
possible solutions are provided here.

To prevent installation of an expansion card in an adjacent slot, you could create a
mechanical barrier attached to your expansion card. Alternatively, you could design your
NuBus expansion card as a multiple-card implementation. The NuBus cards could be
connected via an internal bus, using ribbon cables or another type of connector. As a third
suggestion, you could provide slot covers with your card. You must instruct the user to
install slot covers over the necessary adjacent slots and warn them that they could damage
their computers if the slot covers are not installed.

While all three suggestions solve the problem, there is one major drawback for the first
two suggestions: if the power budget for future Macintosh computers changes, your card
may no longer exceed the per slot power allocation. At that point, you may be wasting
space and available NuBus slots. The third suggestion avoids this potential waste, as the
slot covers would simply not be installed.

... Warning It is important that the 13.3 W power allocation not be
exceeded for NuBus expansion cards in the Macintosh IIsi.
Because the Macintosh IIsi has only one expansion slot, you
cannot "borrow" excess power from other slots that may not be
filled. Because the power supply in the Macintosh IIsi is
designed to drive only a single card, however, a NuBus card
that consumes more power than it is supposed to may damage
itself and possibly the Macintosh IIsi. A

Chapter 5 NuBus Card Electrical Design Guide 115

Timing requirements

To meet the following timing requirements, you must pay careful attention to card
construction practices. You must provide adequate design and manufacturing margins so
that cards manufactured by you and other developers may be interchangeably inserted in
any Macintosh computer with the NuBus interface and all communicate with each other
and the processor on the main logic board.

Utility and data-transfer timing

Figure 5-1 shows the clock, control, and address/data timing relationships during data
transfers. Table 5-8 lists the bus timing specifications for these signals. Control and
address/data signals are changed on the rising edge of /CLK and sampled on the falling
edge of /CLK. This timing gives protection from bus skew.

• Figure 5-1 Data-transfer timing diagram

Tcp
I

(Tcr !
('1!

/CLK 1,-------,1 Ton I I T off

r I 1 : r~----"----.,l

At driver ----ckxxxx: : :XXXx>
j Tsu j Th j

l (I t I ~
At receiver XXXXXXXXXX __ Ad~fQ.;:.;.e~T~' ,d;=~d=-~~n=o~o_l, --JXXXX

W
2T pd

T cp Clock period
T cw Clock width
Ton Tum-on time at driver
T off Tum-off time at driver
T su Setup time at receiver
Th Hold time at receiver
2T pd NuBus delay

116 Designing Cards and Drivers for the Macintosh Family

• Table 5-8 Data-transfer timing parameters

Parameter Description MJnimum,ns Maximum,ns

Tep Clock periodt 99.99 100.01
Tew Clock width 73 77
Ton Turn-on time 0 35
Toff Turn-off time 0 35
2Tpd NuBus delay

(16 loaded slots) 17
(8 loaded slots) 10

Tsu Setup time 21
Th Hold time Tep- Tew

t This clock period is the average period over a I-second interval. Jitter must be kept low enough
to avoid violations of other parameters.

Setup, hold, and other times are defined at the card-to-NuBus connectors. All card
internal delays must be taken into account while providing for the times specified
in the table.

Arbitration timing

Refer to Chapter 4, "NuBus Arbitration," for a description of the arbitration process. The
timing for the / ARBx signals is not the same as the timing of the data-transfer signals.
Arbitration begins on the falling (sampling) edge of /CLK before the assertion of /RQST
or, if /RQST is already active on the falling edge of /CLK, during /START. The contenders
assert their respective slot IDs on the / ARBx lines. The bus contest must be settled within
two cycles of /CLK following the assertion of /RQST or the negation of /START. By the
end of that interval, the / ARB lines will contain the ID code of the card winning the
arbitration contest.

Figure 5-2 details the / ARBx timing for an arbitration won by card $A following a/START
signal initiated by card $9. See Table 5-9 for the meaning of the abbreviations used in
Figure 5-2.

In the general case, contenders must wait for the preceding bus master to release the
/ ARBx lines before the succeeding bus arbitration can take place. Thus, the arbitration
turn-on time (Ton) for / ARBx signals is the turn-off time of the preceding master (Toff), plus
the bus propagation delay (2Tpd ' one reflection assumed), plus the time taken to react to
the change in logic levels (Ten)'

Table 5-9 lists the timing specifications for the / ARBx lines.

Chapter 5 NuBus Card Electrical Design Guide 117

• Figure 5-2 Detailed arbitration timing

ISTART / '~ ____ ~ ____ J~

•

lACK

ICLK

IARB3

IARB2

IARBI

IARBO

" '--_____ ..J/

I Tarb
I

I I
I I I

r Toff 2T pd Ten Tpd Tds 2T pd Ten Tpd Tsu 'i
I
I
I

I

r-=Th--'---~~

h :
VSZSZ\.'
I I
I I
I I

/ZZZZZ7
I I
I I
I I

/szsz,i

I ARBx lines settled at $A (arbitration winner)

Lines driven to$B=$(A+9)

Lines in tristate (during Toff) or $(A+9)

Lines driven to $E, bus master (assumed)

Table 5-9 Bus arbitration timing parameters

I I
I I
I I
I I
I I

:Th: n
I
I
I
I
I
I
I
I ,

I
I
I
I
I

la==

Parameter Description Minimwn,ns Maximum,ns

Tarb Arbitration time 200
Ton Arbitration turn-on time 10 83
Tds Arbitration disable time 26
Ten Arbitration enable time 26
Tsu Arbitration setup time 31
Th Hold time 10
Toff Turn-off time 10 40
2Tpd NuBus delay

16 loaded slots 17
8 loaded slots 10

118 Designing Cards and Drivers for the Macintosh Family

Chapter 6 NuBus Card Physical Design Guide

This chapter contains physical design guidelines for the development of
NuBus expansion cards for Macintosh computers. It describes the
physical characteristics, including the maximum allowable dimensions, of
a Macintosh NuBus card.

• Note: The NuBus specification also specifies a much larger, triple-height
card, but that card cannot be used in a Macintosh computer.

119

Card description

Foldout drawings in the back of the book show the pertinent design details and
installation requirements of a NuBus expansion card. If you would like to develop a
NuBus expansion card that will fit into more than one of the Macintosh computers, adhere
strictly to the NuBus specification. Most Macintosh computers, because of their physical
design, allow you to vary slightly from the NuBus standard. This, however, does not
guarantee that all future Macintosh computers with the NuBus interface will vary in the
same manner. If a NuBus card is developed according to the NuBus specification, it will
be guaranteed to fit into the entire line of Macintosh computers with the NuBus interface.

All Macintosh computers with the NuBus interface will accommodate a standard NuBus
card. Foldout 1 shows the overall dimensions and the placement of connectors on a
standard NuBus card viewed from the component side. The NuBus connector is on the
bottom, and the I/O connector is on the right side of the card.

• Note: Foldout 2 pertains only to the Macintosh Quadra family. The card in
Foldout 2 has identical physical dimensions to the card in Foldout 1, but since a
Macintosh Quadra-family computer uses the same size card for both NuBus
and PDS expansion, the card in Foldout 2 is shown with two connectors, one a
96-pin NuBus connector and the other a 140-pin PDS connector. If you are
designing a NuBus card, the PDS connector is omitted; if you are designing a
PDS card, the NuBus connector is omitted.

Foldout 3 gives the clearance dimensions for installing a NuBus card in a Macintosh II,
Macintosh IIx, Macintosh IIfx, or Macintosh Quadra 900. Foldout 4 gives the clearance
dimensions for installing a NuBus card in a Macintosh IIcx, Macintosh IIci, or Macintosh
Quadra 700.

... Warning The foldout drawings are from design guides used within Apple
Computer. These drawings were correct at the time of publication but
are subject to change. A

D Important To make sure that your NuBus card fits and functions in all Macintosh
computers, your physical design should adhere to the specifications in
the IEEE publication Standard for a Simple 32-Bit Backplane Bus:
NuBus, ANSI/IEEE Std 1196-1990. f:,

120 Designing Cards and Drivers for the Macintosh Family

According to the IEEE NuBus specification, a standard NuBus expansion card must
be 101.6 mm (4.0 inches) high and between 326.6 mm (12.858 inches) and 177.8 mm
(7.0 inches) long. Notice that the cards shown in the foldout drawings exceed the NuBus
specified maximum length of 326.6 mm (12.858 inches). This is permitted because the
physical design of the existing Macintosh computers allows a slight deviation from the
NuBus standard. If you follow the NuBus card design guidelines shown in the foldQuts,
your NuBus cards will work in current Macintosh models; but to ensure that your card will
work in all future Macintosh models, it is recommended that you adhere to the
dimensional tolerances in the ANSI/IEEE NuBus specification.

There is room in the Macintosh Quadra 900 that could be used for a NuBus expansion card
measuring 152.4 mm (6.0 inches) high and between 326.6 mm (12.858 inches) and 177.8
mm (7.0 inches) long. However, a card this size will fit in only the Macintosh Quadra 900
and is not guaranteed to fit in any future Macintosh computers. Foldout 5 shows this
oversized card viewed from the component side. Like on the standard NuBus card, the
NuBus connector is on the bottom edge of the card in the drawing, and the I/O connector
is on the right side.

D Important You should test all standard-size NuBus cards in the Macintosh
modular platforms: the Macintosh lIcx, the Macintosh lIci, and
the Macintosh Quadra 700. A standard-size NuBus card extends
326.6 mm (12.858 inches) and might interfere with the NMI and
reset buttons in these machines. /::,

Card thickness must be 1.575 ±0.1906 mm (0.0062 ±0.0075 inch). Warpage must be
controlled to within a 2.541 mm (0.10 inch) deviation from ideal.

Components may be placed anywhere within the unslashed area of the foldout drawing.
The prohibited area along the top edge in the drawing flPplies to cards of any length. The
five holes 3.38 mm (0.133 inch) in diameter are used only for Apple tooling purposes and
are optional to you.

Components may not extend beyond the edge of the card in any direction. Component
height must not be more than 15.246 mm (0.60 inch), measured from the card surface. No
component or wire lead is allowed to extend more than 2.541 mm (0.10 inch) beyond the
noncomponent side of the card.

The nominal spacing between centerlines of adjacent NuBus connectors is 22.869 mm
(0.900 inch) in the Macintosh II, Macintosh Ilx, Macintosh Ilfx, and Macintosh
Quadra 900 computers and 24.1395 mm (0.950 inch) in the Macintosh Ilcx, Macintosh
IIci, and Macintosh Quadra 700 computers.

Chapter 6 NuBus Card Physical Design Guide 121

The NuBus specification allows for an external connector plastics opening of only
74.55 mm by 11.90 mm. The Macintosh II and IIx allowed a significantly larger hole than
the specification (80.00 mm by 17.00 mm). The external connector opening in the
Macintosh IIcx is yet another size (75.61 by 14.00 mm), which is still larger than the NuBus
specification. There is no guarantee, however, that future Macintosh computers will
continue to have larger openings. Again, if you would like your cards to fit into more than
one Macintosh computer, your design should adhere to the NuBus specification.

In the Macintosh IIcx, the intercard spacing is also different from that in other Macintosh
computers with NuBus. Originally, in the Macintosh II and IIx, the intercard spacing was
set to the minimum space (22.86 mm) allowed by the NuBus specification. In the
Macintosh IIcx, this dimension was expanded to 24.13 mm. Because the intercard spacing
is likely to continue to vary in future Macintosh computers, you should adhere to the
NuBus specification to guarantee that your NuBus expansion card will fit in all Macintosh
computers with the NuBus interface.

NuBus connector description

The NuBus connector on the card must be a 603-2-IEC-C096-M connector. See Chapter 5
for NuBus connector pin assignments. Figure 6-1 shows the version of that connector used
on the Macintosh II Video Card. Figure 6-2 shows the NuBus mating connector on the main
logic board of a Macintosh computer. Note that this is the same as the PDS connector
used in the Macintosh SE and shown in Figure 17-6. For the Macintosh IIsi, the NuBus
mating connector is not found on the main logic board. Instead, you must first install a
NuBus adapter card, which is described in the section "Physical Implementation of the
Macintosh IIsi NuBus Adapter Kit" later in this chapter. Once the adapter card has been
installed, the NuBus mating connector will be present on the NuBus adapter card.

You can get Euro-DIN connectors meeting Apple specifications from

Amp Incorporated
Harrisburg, PA 17105

122 Designing Cards and Drivers for the Macintosh Family

Because of high-volume production requirements, Apple purchases specially modified
versions of the Euro-DIN connector from this vendor. However, you may purchase mating
connectors of standard configuration from this or other vendors.

For EMI protection, a metal shield surrounds the I/O connector on the rear of the card.
Appendix A, "EMI, Heat Dissipation, and Product Safety Guidelines," provides information
on EMI reduction when a Macintosh computer with the NuBus interface is expanded. See
Foldout 6 at the back of the book for a drawing of the I/O connector shield.

.&.Warning Foldout 6 is from a design guide used within Apple Computer. This
drawing was correct at the time of publication but is subject to change. ...

You can get the I/O connector shield meeting Apple specifications from

North American Tool and Die
San Leandro, CA 94577

The part number for the connector shield is 805-5101. Before ordering the connector
shield, however, you must first obtain authorization from Apple Macintosh Developer
Technical Support (MacDTS).

The type and number of I/O connectors (if required) are left to you, but they must meet
dimensional constraints of the shield.

If auxiliary connectors are used, they must be no longer than 76.23 mm (3.0 inches).
Please refer to the Standard for a Simple 32-Bit Backplane Bus: NuBus, ANSI/IEEE
Std 1196-1990, for information about the location of auxiliary connectors.

Chapter 6 NuBus Card Physical Design Guide 123

• Figure 6-1 A 96-pin plug connector for a NuBus expansion card

.. 88.9
(3.50)

4.9 I
(.193)

.1 L:= 78.74
• (3.100)

88.9 -----;.~I
(3.500)

2.54 I. 78.74 ----,
(.100)~ 1_ (3.100) 1

Rowe
RowB
Row A

ttJj; II ~~ii; =======I1~j~3~)X
(~2~~) 1 ----- (~;~) ------1 ·

Three-row pin connector
96 contact positions
2.54 mm (.100 inch) spacing pins
Gold plated, 20 microinches, over nickel plate

Dimensions are in millimeters with inches in parentheses.

124 Designing Cards and Drivers for the Macintosh Family

2.46 -- -
(.104)

• Figure 6-2 A 96-pin socket connector on main logic board

2.75
(.108)
max

~L21 D D D D ~
U U_ - U u r-t=

2.54 -l ~ 2.79
(.100) (.110) min

5.08
(.200)

..
.. 95.0 (3.74) max -I

90.0 (3.54) ~ I
85.0 (3.34) max ------1-1

00++++++++++++++++++++++++++++
00++++++++++++++++++++++++++++0

++++++++++++++++++++++++++++

2.54 2 holes @
(.100) 2.85 (.112)

Three-row socket connector
96 contact positions

31 x 2.54 (.100) = 78.74 (3.10)

2.54 mm (.100 inch) spacing sockets
Gold plated, 20 microinches, over nickel plate

Dimensions are in millimeters with inches in parentheses.

NuBus expansion card internal connectors

al
bl
c1

2.54
(.100)

3.95 (.155)
8.5 <.334) max
10.6 (.417)

Some NuBus card developers need to connect two expansion cards. The NuBus
specification allows for this need with an auxiliary connector at the top of the card next
to the no-component area. A ribbon cable must be used to connect the cards. The cable is
run over the top of the card, and you must provide a slot in the card into which the cable
fits. Figure 6-3 is an example of the correct way to implement your internal connector.

If you cut a slot at the top of your NuBus expansion card, you will have no problem with
future Macintosh computers that provide NuBus expansion. The slot needs to be deep
enough for the cable to be flush with the top of the card.

Chapter 6 NuBus Card Physical Design Guide 125

• Figure 6-3 Internal connector cabling slot for NuBus expansion card

I
Internal connector

External connector

111-----___________ -1-..) O()O

000 000 I
000 ...)1=-___

No-component area

The internal connector must have no parts that extend into the no-component area. If
your connector has lock and eject tabs, similar to the internal SCSI connector, the tabs
must be below the no-component area.

The no-component area is an area in which you may not put any component parts. The lid
of a Macintosh computer has two fingers that hold the NuBus cards into place. These
fingers are needed for stability, and they help to ensure that the cards will not be damaged
in the event that the computer is jarred. If there are components in the no-component
area, either the fingers will break the components or the lid will not fit correctly.

The no-component area is three-dimensional. As such, it covers the surface of the board as
well as the distance next to the card (22.86 mm). You must not violate this space with
either mounted parts or secondary logic boards.

126 Designing Cards and Drivers for the Macintosh Family

Recommended heat dissipation guidelines

Apple recommends that NuBus expansion cards dissipate a maximum of 13.3 W of power.
This total, which provides a comfortable margin for the major computer components, is
arrived at as follows:

+5 V @ 2.0 A = 10.0 W
+ 12 V @ 0.175 A = 2.1 W
-12 V @ 0.1 A = 1.2 W
Total power = 13.3 W

Dissipation of more than 13.3 W of power by a card may cause excessive temperature rise
on certain critical components. Apple studies indicate that at an ambient temperature of
about 24°C, 13.3 W of dissipated power from the expansion card will cause an acceptable
rise in average component case temperature to about 53°C. (Studies were conducted with
an internal hard disk drive installed.) For additional information, refer to the section
"Heat Dissipation Guidelines for NuBus Cards" in Appendix A.

NuBus slot ordering

The list of Macintosh computers that offer the NuBus expansion interface is growing, and the
variety of configurations is growing as well. There are Macintosh computers with one, two,
three, five, and six available NuBus slots.

For most of the Macintosh computers, when the main logic board is viewed from above, NuBus
slot ID ordering starts with a lower-number ID at the left side and increases from left to right.
However, on the Macintosh Quadra 700 and the Macintosh Quadra 900, the NuBus slot ID
ordering starts with higher ID numbers on the left and decreases from left to right. There should
be no compatibility problems due to the physical ordering of NuBus slots on computers in the
Macintosh Quadra family.

Figure 6-4 shows the slot ordering on the Macintosh Quadra 700 and the Macintosh Quadra 900,
as compared with that on the Macintosh IIci, the Macintosh lIcx, and the Macintosh IIfx.

Chapter 6 NuBus Card Physical Design Guide 127

• Figure 6-4 NuBus slot ordering on Macintosh IIci, Macintosh Quadra 700,
Macintosh lIcx, Macintosh Quadra 900, and Macintosh lIfx computers

___ 10 Connectors --.. ___ 10 Conne~tors --.. ___ 10 Connectors -----.,.

C D E CPU E D 9 A B CPU

~m ~
D
'030 ~~~

o
'030

Mac IIci Macintosh Quadra 700 Mac IIcx

___ 10 Connectors --.. ___ 10 Connectors --..

E D C B A

CPU

D
'030

Mac IIfx

Macintosh Quadra 900

Physical implementation of the Macintosh IIsi NuBus adapter kit

A NuBus adapter kit, available from an authorized Apple dealer, allows a customer to
install a NuBus card in the Macintosh lIsi computer and have it function exactly as if it
were in any oth~r Macintosh computer with the NuBus interface. The NuBus adapter card
includes two different connectors. One is a 120-pin plug connector that mates with the
Euro,DIN 120-pin socket connector on the left side (viewed from the front) of the main
logic board. The adapter card mounts vertically in this connector. The other is a 96-pin
socket connector (the same as the NuBus connectors on the main logic boards of other
Macintosh computers). The NuBus card plugs into this connector and is positioned
horizontally over the main logic board. .

128 Designing Cards and Drivers for the Macintosh Family

The NuBus vertical adapter card acts as a translator between the 68030 signals on the main
logic board and the signals on the NuBus expansion card. It contains the same custom
NuChip 30 that is found in the Macintosh IIci, other electrical components that make up
the NuBus interface logic, and a 20 MHz Mc68882 FPU. All the translation is transparent,
so that NuBus cards will work successfully in the Macintosh IIsi.

The adapter card also includes a bracket that adapts the NuBus card's connector to the
opening in the back of the Macintosh IIsi computer. This bracket provides both EMI
protection and support for the card. Two screWs are included in the adapter card kit to
secure the bracket to the opening in the chassis. The top cover of the Macintosh IIsi
computer includes grooves that hold the NuBus card in place when the cover is closed.
There is just enough gap between the top cover and bottom half of the case for a
1.575 mm thick card, which is Apple's specification for a NuBus card. Any size NuBus card
specified by Apple can be accommodated in the Macintosh IIsi computer.

Figure 6-5 is a sketch showing a NuBus card and its adapter card installed on the main logic
board of a Macintosh IIsi computer. Notice that, unlike the 68030 Direct Slot adapter
card specified in Chapter 15, the NuBus card has other electrical components in addition
to the FPU, including the custom NuChip 30 and associated transceiver chips that make
up the NuBus interface logic. Although functionally identical to that of the Macintosh lIsi,
the NuBus interface logic in other Macintosh computers is on the main logic board.

• Figure 6-5 Installing a NuBus card and adapter on the Macintosh lIsi main logic board

~===== NuBus expansion card

Macintosh IIsi main logic board

Chapter 6 NuBus Card Physical Design Guide 129

Chapter 7 NuBus Card Memory Access

This chapter describes how cards connected to a Macintosh computer
through the NuBus slots can access address space. The discussion is in
three sections:

• a general description of the NuBus address space and how it is
accessed in both 24-bit and 32-bit modes

• a discussion of how the NuBus address space is allocated, including
its mapping to the address space in a Macintosh computer

• a description of the bit structure of NuBus messages and how it
differs from the microprocessor bus architecture

In addition to the memory areas it uses for its own operations, every
NuBus card must contain a declaration ROM area. The declaration ROM
contains certain standard data structures that are used by the
Macintosh Slot Manager. These data structures are defined in Chapter 8,
"NuBus Card Firmware."

131

NuBus address space

The NuBus architecture allows full 32-bit addresses, providing 4 GB of address space. The
upper one-sixteenth (256 MB) of the NuBus address space is called the standard slot space.
As shown in Figure 7-1, this addressing region is further divided into 16 regions of 16 MB
apiece, each of which constitutes the standard slot space for one possible slot ID. NuBus
addresses of the form $Fsxx xxxx (that is, $FsOO 0000 through $FsFF FFFF) address the
standard slot space that belongs to the card in slot s, where s is an ID digit in the range $9
through $E. Because Macintosh computers with NuBus use only slot IDs $9 through $E, only
the six standard slot spaces $F9xx xxxx through $FExx xxxx are actually used.

• Figure 7-1 NuBus address space

4GB

31-38
------,~;.;,

Super slot
space

Standard slot
space

1
1 1
1 1
1 1

1 1
1 1
1 1

1 1
1 1
1 1
1 1

1 1
1 1

1 1

1 1
1 1
1 1

t "
.... -"

1 1

1 MB ! !
.... -t-/':

" "

" " " :
" " "
" " "

" " " " "

Slot
allocation

Typical alias

132 Designing Cards and Drivers for the Macintosh Family

For convenience, this section refers to a NuBus configuration of six slots represented by slot
IDs $9 through $E. However, not all Macintosh computers have six NuBus expansion slots.
Table 7-1 lists the slot IDs available for each Macintosh computer with the NuBus interface,
and their corresponding slot spaces.

• Table 7-1 NuBus slot IDs and slot spaces for Macintosh computers

Macintosh model

Macintosh lIcx
Macintosh lIci
Macintosh lIsit
Macintosh Quadra 700
Macintosh Quadra 900
Macintosh II, IIx, and IIfx

NuBus slot IDs

$9, $A, $B
$C, $D, $E
$9
$D, $E
$A, $B, $C, $D, $E
$9, $A, $B, $C, $D, $E

NuBus slot spaces

$F9xx xxxx-$FBxx xxxx
$FCxx xxxx-$FExx xxxx
$F9xxxxxx
$FDxx xxxx-$FExx xxxx
$FAxx xxxx-$FExx xxxx
$F9xx xxxx-$FExx xxxx

t A NuBus adapter card must be installed in the Macintosh IIsi before a NuBus expansion card
is installed.

This system of fixed address allocations, based solely on a card's slot location, makes it
possible for you to design cards that are free of jumpers and configuration switches.

£. Warning Whenever possible, use 32-bit addressing conventions and methods.
This will be your best guarantee of future software compatibility .•

When a NuBus card needs to address more than 16 MB, it can access an additional region
of the NuBus address space. The area from $9000 0000 through $EFFF FFFF is called super
slot space. It is divided into regions of 256 MB each. NuBus addresses of the form
$sxxx xxxx (that is, $sOOO 0000 through $sFFF FFFF) address the super slot space that
belongs to the card in slot s.

Figure 7-1 also shows the card's declaration ROM space, discussed in Chapter 8.

As explained in Inside MaCintosh, a Macintosh computer operates in either 32-bit or
24-bit mode. In 32-bit mode, it can access all the address space in both the standard slot
and super slot spaces of any slot card. In 24-bit mode, it can address only 1 MB of each
card's standard slot space. This first megabyte of standard slot space is called minor
slot space. In 24-bit mode, the computer hardware translates 24-bit addresses of the
form $sx xxxx into 32-bit addresses of the form $FsOx xxxx, where s is a digit in the range
$9 through $E.

Chapter 7 NuBus Card Memory Access 133

Addresses of the form $Fssx xxxx access the same NuBus slot in both 24-bit and 32-bit
modes. However, if you use an address of this form in 24-bit mode, the system will translate
it into a NuBus address of $FsOx xxxx. In 32-bit mode it will remain unchanged. Hence, if you
need less than 1 MB of address space to be accessible from NuBus, you should design your
card to use only bits / AD 19-/ ADO. By ignoring bits / AD 23-/ AD20, you guarantee that
addresses of the form $Fssx xxxx will be valid in both 24-bit and 32-bit modes.

The computer hardware translates other 24-bit addresses above $7F FFFF into different
32-bit addresses. The full translation algorithm is shown in Table 7-2.

• Table 7-2 24-to-32-bit address translations

24-bit address range

$00 0000-$7F FFFF
$80 0000-$8F FFFF
$sO OOOO-$sF FFFF
$PO OOOO-$FF FFFF

32-bit address range

$0000 0000-$007F FFFF
$4000 0000-$400F FFFF
$FsOO OOOO-$FsOF FFFF
$5000 0000-$500F FFFF

Notes

S in range $9 through $E

Address allocations for Macintosh computers with NuBus

All of the existing address space is accessible from NuBus. It is mapped onto the NuBus
address space as shown in Table 7-3.

When the microprocessor accesses 32-bit addresses in the range $6000 0000 through
$FFFF FFFF (except for $6000 0000 through $7FFF FFFF in the Macintosh IIfx and
$FOxx xxxx in all other Macintosh computers), it initiates a NuBus transaction. The
mapping shown in Table 7-3 is correct for current memb~rs of the Macintosh family.
Future Macintosh products may have different mappings.

134 Designing Cards and Drivers for the Macintosh Family

• Table 7-3 NuBus address mapping

24-bit addresses 32-bit addresses

from processor from processor NuBus address Used to access computer

$xxOO 0000 to $0000 0000 to $0000 0000 to Present RAM.
$xx7F FFFF $007F FFFF $007F FFFF

$0080 0000 to $0080 0000 to RAM expansion.
$3FFF FFFF $3FFF FFFF

$xx80 0000 to $4000 0000 to $F080 0000 to ROM (aliased).
$xx8F FFFF $4FFF FFFF $FOFF FFFF

$xxFO 0000 to $5000 0000 to $FOOO 000 to I/O (aliased). Do not access from a slot
$xxFF FFFF $5FFF FFFF $F070 FFFF card.

$6000 0000 to $6000 0000 to Slow PDS slot space for Macintosh IIfx
$6FFF FFFF $6FFF FFFF (presently unused for other CPUs).

$7000 0000 to $7000 0000 to Fast PDS slot space for Macintosh IIfx
$7FFF FFFF $7FFF FFFF (presently unused on other CPUs).

$8000 0000 to $8000 0000 to Presently unused.
$8FFF FFFF $8FFF FFFF

$9000 0000 to $9000 0000 to Super slot space, slots $9 to $E.
$EFFF FFFF $EFFF FFFF On Macintosh Quadra 700 and

Macintosh Quadra 900, $9 is used for
video slot space; on Macintosh IIsi, $E is
used for video slot space.

$xxFO 0000 to $FOOO 0000 to $FOOO 0000 to Slot $0 (Macintosh system)}
$xxFF FFFF $FOFF FFFFt $FOFF FFFF

$FIOO 0000 to $FlOO 0000 to These addresses are unaccessible.
$F8FF FFFF $F8FF FFFF

$xxsO 0000 to $FsOO 0000 to $FsOO 0000 to Standard slot space, slot s
$xxsF FFFF $FsOF FFFF $FsOF FFFF (s in the range $9-$E). On Macintosh

or or Quadra 700 and Macintosh Quadra 900,
$FsIO 0000 to $FsIO 0000 to $9 is used for video slot space; on
$FsFF FFFF $FsFF FFFF Macintosh IIsi, $E is used for on-board

video.

$FFOO 0000 to $FFOO 0000 to Presently unused.
$FFFF FFFF $FFFF FFFF

t If the microprocessor attempts to access addresses in this range, it will immediately generate a
bus error (/BERR) exception. No NuBus transaction will take place.

Chapter 7 NuBus Card Memory Access 135

Slot allocations

In 24-bit mode, the lower 1 MB of each card's standard slot space is mapped onto a part
of the 24-bit Macintosh address space. This address space is used for communication
between the card in that slot and the computer. For example, NuBus addresses $F900 0000
through $F90F FFFF correspond to 24-bit Macintosh addresses $90 0000 through $9F FFFF
and are used by slot $9. All the rest of each slot's NuBus address allocation is available for
other uses by the card in that slot and may also be addressed by Macintosh computers in
32-bit mode and by cards in other slots. These allocatiDns are listed in Table 7-4.

• Table 7-4 Slot allocations

Slot 24-bit addresses NuBus super slot space NuBus standard slot space

$9 $90 0000-$9F FFFF $9000 0000-$9FFF FFFF $F900 0000-$F9FF FFFF
$A $AO OOOO-$AF FFFF $AOOO OOOO-$AFFF FFFF $FAOO OOOO-$FAFF FFFF
$B $BO OOOO-$BF FFFF $BOOO OOOO-$BFFF FFFF $FBOO OOOO-$FBFF FFFF
$C $CO OOOO-$CF FFFF $COOO OOOO-$CFFF FFFF $FCOcl OOOO-$FCFF FFFF
$D $DO OOOO-$DF FFFF $DOOO OOOO-$DFFF FFFF $FDOO OOOO-$FDFF FFFF
$E $EO OOOO-$EF FFFF $EOOO OOOO-$EFFF FFFF $FEOO OOOO-$FEFF FFFF

Slot $0 corresponds to the Macintosh computer itself. It addresses the 16 MB of NuBus
slot space from $FOOO 0000 through $FOFF FFFF. The microprocessor cannot access slot $0.

NuBus bit and byte structure

The NuBus bit structure is not the same as the bit structure of the Mc68020 bus, the
MC68030 bus, or the Mc68040 bus. To achieve byte-addressing consistency, the
Macintosh computers perform byte swapping of data between the microprocessor and
the NuBus. This section explains the rationale and details of this implementation.

136 Designing Cards and Drivers for the Macintosh Family

Unfortunately, there is no universal agreement about what the significance of a given
addressed byte should be within a larger unit. For example, within a NuBus word, byte 3 is
the most significant byte; in the 68020, the 68030, and the 68040 microprocessors, byte 3
is the least significant byte of a longword C32-bit) value.

In designing the Macintosh family of computers, a choice had to be made about whether
to preserve the significance of bytes between the NuBus and the processor or to preserve
byte-addressing consistency. Note that this choice deals with how the 4 bytes within a
NuBus word and a processor longword are connected to each other.

Apple chose to preserve byte-address consistency; each of the 4 bytes of the processor is
connected to its corresponding NuBus byte lane. A byte lane is the route by which bytes are
transferred between the NuBus and the computer's microprocessor. That is, byte n of the
processor is connected to NuBus byte lane n, as shown in Figure 7-2. Byte lanes are numbered
to reflect the bytes they carry: that is, byte lane 0 carries byte 0, byte lane 1 carries byte 1,
and so on. NuBus encodes the least significant bits in its data word into byte ° and the most
significant bits into byte 3. The microprocessor does the reverse: it places its least
significant bits in byte 3 and its most significant bits in byte 0. Byte-lane routing is
performed automatically by Macintosh computers. Only the bytes are swapped, not bits
within bytes. Notice in Figure 7-2 that bit numbers do not have a direct correspondence
between the processor and the NuBus. For example, bits D31-D24 (byte 0) of the processor
are connected to bits AD7-ADO (byte lane 0) of the NuBus.

The significance of a byte within a larger item is reversed in this process. That is, the most
significant bit of a NuBus word is in byte lane 3, while the most significant bit of a 68020,
68030, or 68040 lortgword is in byte O. Thus, there is an apparent swapping of the bytes
between the world of the microprocessor and NuBus; this is referred to as byte swapping.

For many cards, byte swapping is not important. However, for cards that communicate
with processors of different byte ordering, very careful attention must be paid to the
NuBus interface. An Intel 80386 microprocessor, for example, has byte ordering identical
to that of NuBus; that is, the least significant bit of an 80386 word is byte 0, and the most
significant bit is byte 3.

Transferring data by bytes between such a processor and the NuBus always produces the
correct value. However, if the MC68020, Mc68030, or Mc68040 reads a NuBus word from
an 80386 on a card, it reads a value whose bytes are swapped in significance. For example,
a word read of a location within the 80386 card that contains a 32-bit value of $12345678
is seen as $7856 3412 by the Macintosh processor because of the byte swapping.

Chapter 7 NuBus Card Memory Access 137

• Figure 7-2 Byte-lane mapping

Byte number: 3

NuBus AD lines I Bits 31-24 I I
MSB

Byte lane 3

Byte lane 0

MSB

ProcessorDlines I Bits 31-24 I
Byte number: o

2

Bits 23-16 I

Byte lane 2

Byte lane 1

t
Bits 23-16

1

I
1

Bits 15-8 I

Bits 15--8 I
2

Communication between a Macintosh computer and a NuBus card may use any
combination of one or more byte lanes. This subject is discussed in more detail in the
section "The Format Block" in Chapter 8.

I

Although cards may communicate with each other over the NuBus in any format, all
communication with the computer (including communication between a card's
declaration ROM and the Macintosh Slot Manager) must conform to the microprocessor
bus format. This may require byte swapping when word and long data types are used.

Byte smearing

o
Bits 7-0

Bits 7-0

3

The Mc68020 and MC68030 processors share a characteristic that causes the data for byte
and word transfers to be duplicated, or smeared, across all 32 data lines. This feature is called
byte smearing. For more information about byte smearing, refer to the MC68020 16/32-Bit
Microprocessor User's Manual and the MC68030 32-Bit Microprocessor User's Manual.

138 Designing Cards and Drivers for the Macintosh Family

I
LSB

LSB

I

For an example of byte smearing, suppose your code includes the following instructions.
The instructions write 4 bytes of data into a 32-bit register, DO, and then attempt to write
a byte of that data into a memory location.

MOVE.L
MOVE.B

#$12345678,00
00,$102

Insert data into DO
Write a single byte of data from DO

The data actually placed on the data bus, with and without byte smearing, is shown in
Figure 7-3.

• Figure 7-3 Effect of byte smearing

With byte smearing

CPU bit 31 24 16 8 0

Byte data I $78 I $78 I $78 I $78 I
Byte address $100 $101 $102 $103

Without byte smearing

CPU bit 31 24 16 8 0

Byte data I xx I xx I $78 I xx I
Byte address $100 $101 $102 $103

With byte smearing, the byte of data is replicated across all the byte lanes. Without
smearing, the other bytes are undefined. A similar replication of data can occur with
word transfers.

D Important The byte-smearing feature does not exist on 68040-based
machines. If you have software or hardware that depends upon
byte smearing, you must revise it. Likewise, you should be
aware of this limitation if you are developing new hardware or
software. !':,

Chapter 7 NuBus Card Memory Access 139

Chapter 8 NuBus Card Firmware

This chapter describes the Slot Manager and the firmware that must be
included on cards that communicate with a Macintosh computer through
the NuBus protocol. Such firmware is normally in a ROM area on the card
called the declaration ROM (also known as the configuration ROM).

The discussion in this chapter is divided into the following parts:

• an introduction to the Slot Manager and the card's declaration
ROM firmware

• a list of data types used by the Slot Manager and the declaration
ROM firmware

• a description of the required internal structure of the declaration
ROM firmware

• a description of the additional internal data structures that are
unique to the declaration ROM of a video card

• a description of the Macintosh Coprocessor Platform and the A/ROSE
operating system, designed to run on intelligent NuBus cards

Sample code for a typical NuBus card has been included in Appendix B.
This sample code includes a sample of declaration ROM code, primary
initialization code, and secondary initialization code.

141

An introduction to the firmware

This section examines the relationship between the Slot Manager and the declaration
ROM, and explains some major concepts that you must understand before you can
implement the declaration ROM firmware. It is important that you read and comprehend
the information in this overview; if you understand the relationship of the Slot Manager to
the declaration ROM, and the concept of slot resources, you will find it much easier to
grasp the detailed information contained in the rest of this chapter.

• Note: In other chapters of this book, a distinction is made between board (a printed
circuit board that is a permanent part of the computer) and card (a printed-circuit
board that can be inserted and removed). However, because the firmware
terminology uses the term board to mean a removable card, that distinction is not
made in this chapter-both card and board mean a removable card.

The Slot Manager and the declaration ROM

The Slot Manager and declaration ROM have three main goals:

• to provide a standard mechanism for recognizing the presence of an expansion card
in the computer

• to describe data structures and provide a programmable interface that simplifies
access to information about the card's functionality, as well as to necessary data and
code to support each device

• to allow you to insert an expansion card into any slot without configuring switches or
installing special software

If a valid declaration ROM is present, then system software, applications, and drivers can
take advantage of the Slot Manager's library of routines to accomplish these goals.

The Slot Manager is a group of routines that communicate with the declaration ROM
firmware on an expansion card. It is located in the ROM of a Macintosh computer. The
Slot Manager originally only worked with NuBus expansion cards; but by using pseudoslot
design, the Slot Manager can also be used with processor-direct slot (PDS) expansion
cards. Pseudo slot design and PDS expansion cards are discussed in Part II of this book.

142 Designing Cards and Drivers for the Macintosh Family

The Slot Manager gets information from the declaration ROM and provides it to the
application program to identify an expansion card in a NuBus slot, to define the
functions that card can perform or to pass it other data. It does this by determining what,
if any, expansion cards are in the Macintosh computer at startup time and by fetching
identification, functional, and other information from the firmware of each card
identified. The Slot Manager places the information it gathers into data structures that
your application can access by using the Slot Manager routines. Slot Manager information
in Inside Macintosh describes these routines in detail.

The declaration ROM is an area on a NuBus expansion card that contains firmware
that identifies the card and its functions and that allows the card to communicate with
the computer through the Slot Manager routines. However, communication with the
Slot Manager is possible only if you configure your card's declaration ROM firmware
properly. The declaration ROM provides all the necessary data for you to install an
expansion card in a slot and ensure that it will work without setting any DIP switches
or loading any special software.

Your card's declaration ROM firmware can be implemented in any of three physical
widths: 8, 16, or 32 bits. It must include these elements:

• a format block

• an sResource directory

• an sResource (slot resource) for each function on the card plus one unique sResource
called a board sResource

The section "Firmware Structure," later in this chapter, defines each of these elements and
describes their firmware structure in detail. All of the elements are important; but before
you try to implement your firmware, you should become thoroughly familiar with two
major concepts: the sResource and the sRsrcType entry of an sResource.

sResources

The combination of the Slot Manager and declaration ROM identifies your expansion card
and allows the computer, and high-level applications and drivers, to communicate with it.
The way they do this is through one or more sResources (slot resources). The small s
indicates a slot resource as opposed to a real Macintosh resource. Don't confuse sResources
on expansion cards with standard Macintosh resources; they are different, although related
conceptually. The firmware in your card's declaration ROM defines these sResources.

While most sResources define a function or capability of the expansion card, some
sResources may contain only data-for example code, icons, special fonts, or vendor
defined data.

Chapter 8 NuBus Card Firmware 143

There is typically one sResource for each function a card can perform plus one (and only
one) unique sResource called a board sResource. An sResource relating to a specific
function a card can perform is called a functional sResource. It provides information
about that particular function to high-level applications that are interested in getting
access to the function. Functional resources are usually associated with a driver and are
used to point to the driver.

Most cards perform only one function. For example, a modem card might perform only a
modem function, a video card a video function, and so on-each of these cards would
have only one functional sResource. However, it is possible to build an expansion card
with many functions. An example is a multifunction card that contains a parallel port, a
serial port, and a modem. In this case, the card's declaration ROM could have three
functional sResources-one for each function-as well as the required board sResource.

You need a functional sResource for each of a card's functions so that higher-level
software (applications looking for the function or drivers wanting to communicate with
the card) can query the Slot Manager, which will find and return the location of the card.
This allows applications to use compatible cards (either later versions of cards made by
the same manufacturer or compatible cards made by other manufacturers), resulting in a
larger installed base for the application without having to make a revision each time a new
card capable of handling the particular function becomes available.

Although functional sResources are desirable and beneficial, you are not required to
include them in the declaration ROM; the board sResource, however, is always required. If
the board sResource is absent or invalid, the Slot Manager marks the slot where the card is
located as invalid, and Slot Manager calls to that slot do not work.

The board sResource is, in a sense, a special case of a functional sResource. It provides a
handy place to store card-related data that identifies the expansion card. This data includes
entries such as the primary initialization routine that is called at system startup time, the
board name, vendor identification, and anything else that you may want to identify.

How sResources are implemented

All sResources are implemented as lists of sResource entries terminated by a special
EndO fL i s t element. Each entry is a 32-bit record that consists of an 8-bit ID field and
a 24-bit field that consists of either data or a signed offset to another structure. To get
information from a declaration ROM, use the Slot Manager to find the beginning of the
sResource, searching by either the ID number or its type entry (see the next section).
Within each sResource list, the Slot Manager finds entries by searching in ascending order
for an ID that you specify.

144 Designing Cards and Drivers for the Macintosh Family

An sResource has several entries, some that are required and others that are optional,
depending on your needs. For example, an sResource always needs an sRsrcType

entry and an sRsrcName entry to identify it. If the sResource is device oriented, other
entries you might include are sRsrcIcon, sRsrcDrvrDir, sRsrcLoadRec, and so on.
The section "Apple-Defined sResource Entries," later in this chapter, describes all of these
sResource entries in detail. But for now, it's important that you focus your attention on
the sRsrcType entry. If you dQ not have correct information in the fields of this entry,
applications and drivers cannot recognize the function provided or the special features
of your card; the Slot Manager may even mark the slot as being empty.

The sRsrcType entry

Every sResource must include an sRsrcType entry whose fields identify that particular
sResource. When applications and drivers communicate (via the Slot Manager) with your
card's declaration ROM, they use the information in the fields of the sRsrcType entry of
each sResource to identify the functions the card performs (in the case of functional
sResources) or to identify the card itself (in the case of the board sResource).

The format of an sRsrcType entry consists of two 32-bit-long integers divided into four
major fields that are hierarchical in structure as shown here.

Category (bits 30-16; bit 31 is reserved for Apple's use)

cType (bits 15-0)

DrSW 06-31)

DrHW 05-0)

Chapter 8 NuBus Card Firmware 145

Following is a brief description of each of the sRsrcType fields in a typical
functional sResource.

Category

cType

DrSW

DrHW

The Category field identifies a unique broad functional category such
as Display, Network, or Memory. (There are many predefined
categories; these are just a few of them. Some cards can use predefined
categories, but others will need new categories defined for them.)

The cType field narrows down the Category field. Under a given
category, you use the cType field to identify a subtype of that
Category. For example, under Category Display there might be
cType entries such as Video and LCD. (For commonly predefined
Category types, there are often predefined cType entries.)

Continuing down the hierarchy, there are DrSW fields that identify the
driver software interfaces that apply to a given Category and cType.

The DrSW field identifies a driver for a particular resource. For example,
under Category Display and cType Video a typical predefined
driver software interface would be one defined by Apple to work with
QuickDraw using the Macintosh Operating System frame buffers. Note
that at this point in the hierarchy, a function's architecture has been
defined down to the software interface level.

Finally, under the DrSW field you use the DrHW field to identify a specific
hardware device, for example, the Apple Macintosh II Video Card.

• Note: Apple Macintosh Developer Technical Support (MacDTS) assigns alphanumeric
strings and hexadecimal values that define the fields in the sRsrcType entry of each
of your sResources. Instructions for obtaining these values are provided later in this
chapter in the section "Obtaining Card Identification and sRsrcType Values From
MacDTS."

MacDTS can assign new definitions and values to the sRsrcType fields of a card's
functional sResources if no predefined categories or types exist. For example, suppose
that the Widget company is developing a fractal card. Since there are no predefined
sRsrcType fields for a fractal card's functional sResource, MacDTS might assign
definitions such as CatComputational, TypFractal, DrSWWidget, and
DrHWWidget, along with corresponding hexadecimal values.

While the previous discussion shows that the values assigned to the sRsrcType fields of
functional sResources can vary for each function, it is important to remember that the values
assigned to the sRsrcType fields of a board sResource are fixed and cannot change.

146 Designing Cards and Drivers for the Macintosh Family

How to configure the sRsrcType fields for video card sResources

Because a QuickDraw-compatible video card is one of the most common expansion cards,
this section uses the Macintosh II Video Card as an example to explain how to configure the
sRsrcType fields for a video card's sResources. The Macintosh II Video Card satisfies the
requirements of QuickDraw and the Macintosh Operating System but does not perform any
unique functions that only a special-purpose application could benefit from .

• Note: In Chapters 8 through 11, reference is made to QuickDraw, Color
QuickDraw, and 32-bit QuickDraw. Color QuickDraw is an extension of the
original QuickDraw; it uses indexed color. After Color QuickDraw was made
available, 32-bit QuickDraw was introduced as a system extension (an' INIT '

resource) to handle direct color. (The difference between indexed and direct
color is discussed in the section "Identifying Direct Devices" later in this
chapter.) In System 7, however, the direct color features of 32-bit QuickDraw
have been included in Color QuickDraw, thus eliminating the need for a separate
system extension.

Assume that you are designing a video card. Since the card probably performs only one
function, its declaration ROM should include one functional sResource to declare the
video function plus the required board sResource to identify the card. The four
sRsrcType fields of the video card's functional sResource and board sResource are
explained and illustrated in the following sections.

sRsrcType fields for a video card functional sResource

Figure 8-1 illustrates the format and hierarchical structure of the fields in the sRsrcType

entry of a functional sResource that defines the display function of a QuickDraw
compatible video card. This example uses the values assigned to the Macintosh II Video
Card, often referred to as the TFB card. The combined value of the sRsrcType fields for the
Macintosh II Video Card is $0003 0001 0001 0001. The hierarchical structure is illustrated by
the indentations of the fields.

Notice that all of the hardware devices identified in Figure 8-1, starting with DrHWTFB,

adhere to the DrSWApple software interface, since they are nested under DrSWApple.

Thus, if a company decides to make a new video card that adheres to the Apple driver
software interface, MacDTS needs to assign it only a new DrHW value, for example,
DrHWproductE, to differentiate it from other video cards.

For more in-depth information on the video driver software interface, refer to the section
"Video Driver Routines" in Chapter 9.

Chapter 8 NuBus Card Firmware 147

• Figure 8·1 Example of sRsrcType fields for a functional sResource

31 16 15 o 31 16 15

I Category I cType I DrSW I
$0003 $0001 $0001

I I I
I

Equate values for Macintosh II Video Card

CatDisplay Equate value of $0003

TypVideo Equate value of $0001

DrSWApple Equate value of $0001

DrHWfFB Equate value of $0001

DrHWproductA Equate value of $0002

DrHWproductB Equate value of $0003

DrHWproductC Equate value of $0004

DrHWproductD Equate value of $0005

DrSWcompanyA Equate value of $0002

TypLCD Equate value of $0002

sRsrcType fields for a video card board sResource

o

DrHW I
$0001

I

Remember that a board sResource is nothing more than a unique type of sResource that
identifies the card rather than a function performed by the card. The board sResource
includes sRsrcType fields that identify its function as that of being an expansion card. The
format of these fields and their hierarchical structure are shown in Figure 8-2. Note that the
values assigned to the sRsrcType fields of a board sResource are always the same. For
example, Category is always $0001, and cType, DrSW, and DrHW are always $0000.

148 Designing Cards and Drivers for the Macintosh Family

• Figure 8-2 Example of sRsrcType fields for a board sResource

31 16 15

I Category I
$0001

CatBoard

TypBoard

DrSWBoard

DrHWBoard

cType

$0000

o 31 16 15

DrSW

$0000

Equate value of $0001

Equate value of $0000

Equate value of $0000

Equate value of $0000

DrHW

$0000

o

I

How QuickDraw interacts with the Slot Manager and declaration ROM

This section describes how QuickDraw and the Slot Manager use the sResource
information in the video card's declaration ROM.

When the system first comes up, the Start Manager makes a call to the Slot Manager
requesting all expansion cards whose sRsrcType fields include CatDisplay,

TypVideo, and DrSWApple. The QuickDraw software needs the information in these
fields from all QuickDraw-compatible video cards. (The DrHW field is masked to indicate
that QuickDraw does not care about this field and assumes that the card's video driver
will handle the specifics of the hardware.) QuickDraw is concerned only with the video
devices that conform to the Apple driver software interface. QuickDraw cannot support
incompatible driver software interfaces. If it tried, it might make an incorrect control
call, or use a wrong parameter, and so on. Thus, if you configure your DrSW field for a
proprietary driver software interface that is not Apple compatible, your card will not work
with QuickDraw

When the Slot Manager gets the request, it finds each video card that meets the above
sRsrcType requirements. For example, you could have a different manufacturer's video
card in each slot of a Macintosh II, and the Slot Manager would find all of them, because
Apple has predefined the DrSWApple field, and all of the existing video cards are
compatible with this driver software interface.

Chapter 8 NuBus Card Firmware 149

Apple manufactures the Macintosh II Video Card, whose DrHW field is identified as
DrHWTFB, but Apple (or any company) could make any number of new video cards and
each would have a different DrHW identification; since the driver software interface does
not change, QuickDraw would not be affected at all. This gives you the advantage of not
having to revise the software every time a new card becomes available as long as you
adhere to the predefined Apple driver software interface.

You can also apply the preceding concept to any manufacturer who wishes to define their
own Category, cType, and DrSW interface. When they do this, many different
applications can work with a given card or cards (for example, various communication
applications can run on one or more modem cards), or one application can work with a
variety of cards (as shown in our previous discussion of QuickDraw). As an example, a
customer could buy a new modem card, and instead of having to purchase a new
application, their existing application would still work without having to be upgraded.
Following this concept allows flexibility in your designs and broadens the market for your
cards and applications.

Sometimes the DrHW field is very important and should not be masked as "don't care." For
example, assume that a company found a bug in their expansion card's ROM and came out
with a software patch for it. The patching software would have to locate the card so that
it could apply the patch. To do this, the patching software would ask the Slot Manager to
find all cards whose sRsrcType fields match down to and including the DrHW level.
Without the DrHW field, the Slot Manager could not differentiate between two different
manufacturers' cards and would not know which ROM to patch.

Summary of ftrmware design objectives

Expansion cards for the Macintosh require a declaration ROM if they are to be recognized
by the system. This ROM contains both information that describes the capabilities of the
card and executable code that is customized for each card. Because all card-specific
code can be in the declaration ROM, a properly designed declaration ROM can often be
used upon installation, with no additional software configuration required. If the size of
the declaration ROM is limited, the code sections can be executed and their equivalents
loaded from disk when needed. Note that video and hard disk cards require that the
device driver be resident in the declaration ROM, since the startup devices in each of
these categories are opened before the file system is available. Packaging all device
specific code in the declaration ROM greatly simplifies the use of an expansion card.

The declaration ROM should be completely self-contained. But if necessary, most
executable sections can be easily and effectively overriden by an initialization file at
startup time.

150 Designing Cards and Drivers for the Macintosh Family

Properly designed applications should rarely need to search for a specific hardware variant
(DrHW). Cards that have the driver in ROM (or separate from the application) allow the
application program to mask off the DrHW field so that the application can work with
different versions of the card. This provides the advantage of less maintenance for the
application programmer, and a higher customer satisfaction level, since the application
will still run even if the customer buys a later version of your card.

Well-designed applications adhere to the driver specification and should have no direct
dependencies on the specific hardware implementation. By following the hierarchical
structure in the design of your card's declaration ROM, you ensure maximum
compatibility among the various products available, while allowing the user a great deal of
flexibility in configuring the system.

If you publicly define a driver software interface for your card (as Apple has done with the
video driver), then other manufacturers can develop applications that use your card because
they know your driver can support the underlying hardware no matter what it is. Also, other
manufacturers can make expansion cards that conform to the driver software interface, and
applications (including one you may write) should be able to work with them.

Obtaining card identification and sRsrcType values from MacDTS

Apple Macintosh Developer Technical Support (MacDTS) can assign card identification
and functional sRsrcType values. A HyperCard stack that will help you enter and send
the necessary information to MacDTS is available on the Developer Helper CD and on
AppleLink.

If you don't have access to the HyperCard stack, you must gather the following information:

• the functions the card performs

• the official product name (or code name) for the card

• the driver status (for example, whether the card will have a software driver other than
one that has been predefined, such as Apple's video driver)

• the driver location (whether the driver will be on board in ROM or will be installed at
initialization time, whether it will be in the application, and so on)

• the company address (postal and electronic mail addresses, if possible) and the name
and phone number of the person in the company responsible for the expansion card

With the above information, MacDTS can assign the values for Category, cType, DrSW,

and DrHW. All information you provide remains strictly confidential.

Chapter 8 NuBus Card Firmware .151

Data types

Table 8-1 shows the data types used for communication between the Slot Manager and the
card's declaration ROM firmware. Two of the data types are illustrated in Figure 8-3.

• Table 8-1 Data types

Data type Description

byte 8 bits, signed or unsigned
word 16 bits, signed or unsigned
long 32 bits, signed or unsigned
pointer 32 bits, signed or unsigned
cString One-dimensional array of bytes, the last of which has the value $00
offset 24 signed bits padded to 32 bits, representing a self-relative offset; only

bytes in valid byte lanes are counted
sBlock See Figure 8-3
SExecBlock See Figure 8-3

In both examples shown in Figure 8-3, the value of the physical block size field must be
the size of that field (4 bytes) plus the actual physical block size. For example, if the
data structure in the sBlock data type is 100 bytes long, then the value of the physical
block size must be 104 bytes. In the example of the SExecBlock data type, the
RevisionLevel field is always 02, the Reserved field is always 00, and the CPUID field
identifies the processor-01 for the 68000, 02 for the 68020, 03 for the 68030, and 04 for
the 68040.

• Figure 8-3 Formats of sBlock and SExecBlock data types

sBlock
31

Physical block size

Data structure

o
SExecBlock
31

ReviSionLevel!

Physical block size

CPUlD
!

Code offset

Code

152 Designing Cards and Drivers for the Macintosh Family

o

Reserved

• Note: Whenever offset values are used in the declaration ROM firmware, they count
only bytes in byte lanes actually being used. Hence these values may be less than the
arithmetic difference between the two addresses being offset. For a discussion of
byte lanes, see "NuBus Bit and Byte Structure" in Chapter 7.

Firmware structure

This section gives a detailed description of the elements of a generic NuBus card's
declaration ROM firmware. If you read the section "An Introduction to the Firmware" in
the beginning of this chapter, you should already have a good understanding of what an
sResource is and how you use the fields in an sRsrcType entry to define the sResource in
the firmware. The information on sResources in this section covers the same material but
is much more detailed.

Video cards are more complex than other NuBus cards. They require additional elements
in their firmware structure, which are described later in this chapter in the section
"Additional Firmware Requirements of Video Cards."

Every NuBus card's declaration ROM firmware must include a format block, an sResource
directory, and a board sResource. It should include at least one functional sResource that
identifies the card and its function. Figure 8-4 illustrates the relationship of these elements
in the declaration ROM of the Macintosh II Video Card. The firmware structure shown in
Figure 8-4 is also used in the sample code listing in Appendix B.

As a comparison, Figure 8-5 shows the simpler firmware structure of the Macintosh II
EtherTalk Interface Card.

• Note: To simplify Figure 8-4, only one functional video sResource is shown. However,
the Macintosh II Video Card is actually available in two different memory
configurations, and the ROM contains a functional video sResource for each
configuration. On startup, during the primary initialization routine, the configuration
that is not applicable is deleted, and the correct functional sResource is written into
the declaration ROM's slot resource table (a data structure that the Slot Manager
maintains in memory).

Chapter 8 NuBus Card Firmware 153

• Figure 8-4 Firmware structure of the Macintosh II Video Card

Format block Board sResource Code or data

ByteLanes 1 sRsrcType ~ CatBoard

Reserved 1 sRsrcName 1 TypBoard
1 T

TestPattern 1 Boardld 1 DrSWBoard

Format 1 Primarylnit ~ DrHWBoard 1 1
RevisionLevel 1 VertdorInfo 1

cString 1 1 CRC 1 1
Length 1 1 Y PrimarylnitRec

00 I DirectoryOffset 1 1 rl cString I 1 i VendorID

I 1 RevLevel H cString I 1 1
1 1 PartNumber IL-f cString I sResource directory 1 1
1 I~ CatDisplay
1 1

TypVideo Board sResource --+-- 1

Video4 sResource 1 Functional sResource 1 DrvrSWApple
1 1

DrvrHWTFB 1 1

1
sRsrcType ~ cS<ring

1 sRsrcName
1 sRsrcDrvrDir ~ Driver Driver code I
1

sRsrcHWDevld
1

1 ~ Video RAM Base
1 MinorBaseOS
1

MinorLength ~ Video RAM Length
1
1 OneBitMode4 ~ OneBitParms H 1 BitParms I 1

TwoBitMode4
1 sBlock

1 [I PageCount
1 FourBitMode4 1 DeviceType
1 1
1 14- TwoBitParms H 2BitParms I 1 1 sBlock
1 1 PageCount
1 1 DeviceType
1 1
1 4 FourBitParms H 4BitParms I 1 1 sBlock
1 1 PageCount
1 1 DeviceType
1 1

154 Designing Cards and Drivers for the Macintosh Family

• Figure 8-5 Firmware structure of the Macintosh II EtherTalk Interface Card

Format block Board sResource Code or data

ByteLanes sRsrcType :+- CatBoard

Reserved sRsrcName ~ TypBoard

TestPattern Boardld
1

DrSWBoard
1

Format Vendorlnfo 1 DrHWBoard

RevisionLevel
1

1 --I cString
CRC ~ 1 cString

Length
1 (EtherNet Card)
1

00 I DirectoryOffset +- VendorID tr
I

1 RevLevel
1 PartNumber ~ 1

1

I cString

I cString

sResource Directory 1-' CatNetwork
1 TypEtherNet

I 1
Board sResource 1 Functional sResource 1 DrvrSWApple

Funct sResource

~
1 DrvrHW3Com
1

sRsrcType ~ cString
1 sRsrcName
1 1 (Network_EtherNeCApp
1 MinorBaseOS Rr $OOOODOOO
1 EtherNet Address
1

1 1

1 1

1 1

1 ~ $02608C781750

(This value is unique to each card)

Chapter 8 NuBus Card Firmware 155

The format block

The format block allows the Slot Manager to find the ROM and validate it. The format
block starts at the highest address of the declaration ROM and follows at immediately
lower addresses, counting only those addresses accessed by valid byte lanes. Byte lanes
are discussed later in this section. The overall format block structure is shown in
Figure 8-6.

• Figure 8-6 Format block structure

Number
of bytes

ByteLanes 1
Reserved 1

TestPattern 4

Format 1
RevisionLevei

CRC 4

Length 4

00 DirectoryOffset 4

The first byte of the format block must reside at one of the 4 bytes at the end of the
standard slot space defined under "Slot Allocations" in Chapter 7-that is, the format
block must begin with a NuBus address in the range $FsFF FFFF through $FsFF FFFC, where
s is the slot number. The actual starting address used depends on the value of the
ByteLanes field, as discussed in the next section.

156 Designing Cards and Drivers for the Macintosh Family

When the computer is started up, the Slot Manager searches its slots for installed cards, as
described in the Device Manager information of Inside Macintosh. For each slot it first
searches NuBus addresses $FsFF FFFF through $FsFF FFFC (where s is the slot number),
looking for a valid ByteLanes value. If the Slot Manager finds a valid ByteLanes value,
it verifies this value by examining the Te s t Pa t t ern field. Once the Slot Manager verifies
the test pattern, it gets the eRe (cyclic redundancy check) value and checks the whole
ROM to see if it matches the eRe. If everything matches, the Slot Manager recognizes the
declaration ROM as valid.

If no valid ByteLanes and TestPattern values are found, the Slot Manager stores a
slot error in the corresponding sIn f 0 record, as described in the Slot Manager
information in Inside Macintosh.

The format block also contains format and identification information and ends with an
offset to the sResource directory.

Figure 8-7 shows two examples of the actual structure of a format block, with the addresses
that would be used if the card were installed in slot $9. The structure on the left assumes that
only byte lane 1 is used; the structure on the right assumes that byte lanes 0, 2, and 3 are used.
Typicallly ROM sits only on one byte lane.

The individual fields of the format block are discussed in the sections that follow.

Chapter 8 NuBus Card Firmware 157

• Figure 8-7 Format block examples

Byte lane 1 used Byte lanes 0,2,3 used

$F9FF FFFF --rn ByteLanes byte
F9FF FFFE -- 00 Reserved byte

ByteLanes byte D2 I-::=-rn} F9FF FFFB -- 2B
F9FF FFFA -- 93 TestPattern

Reserved byte 00 1-- F9FF FFF9 ---a F9FF FFF7 -- Format byte
F9FF FFF6 -- RevisionLevei byte

C7 1-- F9FF FFF5 F9FF FFF4-§
F9FF FFF3--
F9FF FFF2-- CRC

2B 1-- F9FF FFFl F9FF FFFO_§
Test pattern F9FF FFEF--

F9FF FFEE--
93 1-- F9FF FFED Length F9FFFFEC_§

F9FF FFEB--
F9FF FFEA--

5A 1-- F9FF FFE9
• F9FFFFEB_§ DirectoryOffset
• F9FF FFE7--
• F9FF FFE6--

• • • • • •

ByteLanes

The ByteLanes field tells the computer which of the four NuBus byte lanes to use when
communicating with an expansion card's declaration ROM. NuBus byte lanes are defined
under "NuBus Bit and Byte Structure" in Chapter 7. The value of ByteLanes is composed
by setting a bit in the low nibble for each byte lane used and then setting the high nibble
to the low nibble's complement. The location of the first bit set to 1 in the low nibble also
determines the address of ByteLanes, and hence the starting address of the format
block. Table 8-2 shows all the possible ByteLanes values and their corresponding format
block starting addresses (where s is the slot number). Notice that the ByteLanes byte
always occupies the highest address available in the byte lanes being used. The Slot
Manager doesn't recognize any ByteLanes values not shown in Table 8-2.

158 Designing Cards and Drivers for the Macintosh Family

• Table 8-2 Possible ByteLanes values

Bytelanes ByteLanes Address of
used value ByteLanes

° $E1 $FsFFFFFC
1 $D2 $FsFF FFFD
0,1 $C3 $FsFFFFFD
2 $B4 $FsFF FFFE
0,2 $AS $FsFF FFFE
1,2 $96 $FsFF FFFE
0,1,2 $87 $FsFF FFFE
3 $78 $FsFF FFFF
0,3 $69 $FsFF FFFF
1,3 $SA $FsFF FFFF
0,1,3 $4B $FsFF FFFF
2,3 $3C $FsFF FFFF
0,2,3 $2D $FsFF FFFF
1,2,3 $lE $FsFF FFFF
0,1,2,3 $OF $FsFF FFFF

Reserved

The Reserved field must be set to $00.

TestPattern

The TestPattern field identifies the format block. It must be set to $SA93 2BC7.

Format

The I-byte Format field identifies the declaration ROM format. A Format value of $01
designates the Apple format.

RevisionLevel

The I-byte Rev is i onLeve 1 field identifies the current ROM revision. The Slot Manager
accepts RevisionLevel values in the range 1-9. RevisionLevel values above 9 cause
it to generate a fatal error.

Chapter 8 NuBus Card Firmware 159

CRC

The 4-byte cyclic r~dundancy check (eRe) value constitutes a checksum to allow the Slot
Manager to validate the whole declaration ROM. It is computed by applying a 32-bit
rotate-Ieft-and-add function to the number of bytes specified by the Length field. Only
the bytes specified by the ByteLanes field are used to calculate the eRe value. For
example, if the value of ByteLanes is $El, the calculation would use only the bytes at
addre$ses $FsFF FFFC, $FsFF FFF8, $FsFF FFF4, and so on. In making the eRe

computation, the value of eRe itself is treated as O. Here is the basic algorithm:

Start pointer at bottom of ROM (top of ROM - Length)

Initialize sum to 0 (sum will be the calculated eRe value)
@l Rotate sum left by 1 bit (with ROL. L #1 instruction)

If pointer is poinUng to the eRe field in the format header, go to @2
Get the byte pointed to by pointer
Add the byte to sum

@2 Increment pointer to next data byte
Go to @l until done (as specified by Length bytes)

Length

The Length field contains a long value specifying the number of bytes from the
declaration ROM's starting address (as specified by the ByteLanes value) to the lowest
address byte of the sResource data structures.

DirectoryOffset

The long DirectoryOff set value specifies the self-relative signed offset from the
offset itself to the sResource directory. It counts only the bytes in the NuBus byte lanes
being used, not the absolute address difference. For example, if the directory address
appeared $1000 bytes before the DirectoryQffset field in the declaration ROM image
and the value of the ByteLanes field in the ROM was $El (meaning every fourth byte was
valid), then DirectoryOffset would equal-$1000 even though the directory appears,
to the central processor, to be $4000 bytes before the DirectoryOffset field. The Slot
Manager performs the necessary calculations, based on the byte lanes used, to determine
the address of the directory (in this case, it multiplies -$1000 by 4 to get -$4000).

160 Designing Cards and Drivers for the Macintosh Family

The sResource directory

The sResource directory is another major element in a NuBus card's declaration ROM.
The sResource directory lists all the sResources in the card firmware and provides an
offset (counting only valid byte lane bytes) to each one. Figure 8-4 shows an sResource
directory for two sResources: one sResource for a video function and one board
sResource.

Each sResource defined by a card designer must have a unique identification number in
the range 128-254. Identification number 255 is used as an end-of-list marker.

Identification numbers in the sResource directory and in every sResource listed must be in
ascending order.

• Note: Identification numbers in the range 0-127 are reserved for sResources that are
defined by Apple for all declaration ROMs. At present there is only one of these: the
board sResource, described later in this chapter.

Figure 8-8 shows the sResource directory structure.

• Figure 8-8 sResource directory structure

ID field Offset field

sRsrcId-O Offset

sRsrcId-l Offset

. •

sRsrcId-n Offset

End of list 0

Each entry in the sResource directory (except the end-of-list entry) points to an
sResource. Each entry consists of 32 bits, allocated as follows:

31-24 sResource identification number
23-0 Offset from the entry to the sResource, counting only valid byte lanes

Chapter 8 NuBus Card Firmware 161

The last entry in the sResource directory must have an offset of 0 and an identification
number of 255; that is, it must have the value $FFOO 0000.

sResource structure

If you read the section "An Introduction to the Firmware" at the beginning of this chapter,
you should already be familiar with sResources. Some of the information is repeated in
this section, but the information here is more detailed and may answer questions you have
regarding an sResource.

Each sResource contains a number of entries that refer to information about a single
capability or function of the expansion card. This information must include the type and
name of the resource; it may also include optional items such as the resource's icon, driver,
parameters, and so on. The driver is not optional if the sResource is a startup resource or
may be a startup video source. Figure 8-4 shows how an sResource defining a video
function relates to the other elements in a video card's declaration ROM. The general
structure of an sResource is shown in Figure 8-9.

• Figure 8-9 sResource structure

ID field Offset field

sRsrcType offset

sRsrcName Offset

sRsrclcon Offset or data

• • • • • •

End of list o I

162 Designing Cards and Drivers for the Macintosh Family

Each entry listed for an sResource must have one of the following three data type forms:

offset Bits 31-24 Identification number
Bits 23-0 Offset to long data, cString, sBlock, or another list

word Bits 31-24 Identification number
Bits 23-16 $00
Bits 15-0 Word data

byte Bits 31-24 Identification number
Bits 23-8 $00 00
Bits 7-0 Byte data

These data types are defined under "Data Types," earlier in this chapter. The last entry
listed in every sResource must have the value $FFOO 0000. Identification numbers for
sResource entries defined by the card designer must be in the range 128-254. They
identify items addressed by driver or application code. Identification numbers in the
range 0-127 are reserved by Apple; those currently assigned to certain Apple-defined
sResource entries are listed in the following sections.

To simplify construction of the sResource structures, Apple has defined two assembly
macros, Offset List Entry (OSLstEntry) and Data List Entry (DatLstEntry). These
macros are shown in the sample code in Appendix B.

Apple-defined sResource entries

Table 8-3 lists some of the Apple-defined sResource entries recognized by the Slot Manager,
and the sections following describe them. Notice that the sRsrcType and sRsrcName entries
are required; all others are optional. The entries must be listed in ascending numerical order.

Chapter 8 NuBus Card Firmware 163

• Table 8-3 Apple-defined sResource ID numbers

Name IDnumber Description

sRsrcType 1 Type of the sResource (required)

sRsrcName 2 Name of the sResource (required)

sRsrclcon 3 Icon for the sResource

sRsrcDrvrDir 4 Driver directory for the sResource

sRsrcLoadRec 5 Load record for the sResource

sRsrcBootRec 6 Boot record

sRsrcFlags 7 sResource flags

sRsrcHWDevld 8 Hardware device ID

MinorBaseOS 10 Offset from dCtlDevBase to the
sResource's hardware base in standard slot
space ($FssO 0000 for 24-bit mode,
$FsOO 0000 for 32-bit mode)

MinorLength 11 Length of the sResource's address space in
standard slot space

MajorBaseOS 12 Offset from dCtlDevBase to the
sResource's hardware base in super slot space

MajorLength 13 Length of the sResource in super slot space

sRsrcCicn 15 Color icon

sRsrclc18 16 8-bit icon data

sRsrclc14 17 4-bit icon data

sMemory 108 Resource list for NuBus expansion cards that
can act as NuBus masters; defines address
ranges from RAM, ROM, and devices

164 Designing Cards and Drivers for the Macintosh Family

sRsrcType

The type entry in an sResource is used by the Macintosh Operating System or by an application
or a driver to identify the function or capability of the sResource. It is a required sResource
entry. The actual value of the sRsrcType entry is an offset to an 8-byte format defined by
Apple. This format is designed to cover all possible devices that might be supported by a card
in the computer's expansion slot. However, a bit flag in the format allows the card designer to
substitute any other format. The format of the sRsrcType entry is shown in Figure 8-10.
Remember that the fields in the sRsrcType entry have a hierarchical structure.

... Warning Non-Apple sResource type formats may conflict with each other. If possible,
you should use only the Apple format and Apple-assigned values. 6.

• Figure 8-10 The sRsrcType format

31 1615 0 31 16 15 o

I Category I cType I DrSW I DrHW I

The fields in the Apple sRsrcType format are as follows:

Category

cType

DrSW

DrHW

Category is the most general classification of card
functions. Categories include display, network, terminal
emulator, serial, parallel, intelligent bus, and human input
devices.

The cType field is a subclass within a category. Within
display devices, for example, are video cards and graphics
extension processors; within networks, AppleTalk and
Ethernet.

The DrSW field identifies the driver software interface for
the sResource. It also specifies how parameters are stored
in the sResource.

The DrHW field identifies the hardware associated with the
sResource and its driver interface.

Chapter 8 NuBus Card Firmware 165

The value of each sRsrcType field is unique and is assigned by Apple. To obtain
sRsrcType values for the card you are designing, contact Apple Macintosh Developer
Technical Support. Refer to the section "Obtaining Card Identification and sRsrcType

Values From MacDTS," earlier in this chapter, for details.

sRsrcName

The sRsrcName entry in an sResource provides the name of the sResource. It is a required
sResource entry also. The actual value of the entry is an offset to a cString not more
than 254 characters long. By convention, the name is derived by stripping the prefixes
from the sRsrcType values and separating the fields by underscores. For instance, the
sRsrcName field for an sResource whose sRsrcType values are CatDisplay,

TypVideo, DrSWApple, and DrHWTFB becomes' Display_Video_Apple_TFB'.

The routine sGetDrvrName prefixes a period to the value of this cString and converts
its type to S t r 2 55. This name should also be embedded in the driver header of the card's
MacOS driver. The _Open routine uses this name to open a driver on disk if one is not
present in the ROM, or if the disk version is newer.

sRsrcIcon

The sRsrclcon entry in an sResource provides the icon for the sResource. The actual
value of the entry in the sResource is an offset to a resource of type' ICON' . This is an
optional sResource entry.

sRsrcDrvrDir

An sRsrcDrvrDir or an sRsrcLoadRec entry (described in the next section) is
required if the sResource needs a driver to be installed in the Macintosh Operating System
before system extensions are called. Otherwise, both are optional. An sRsrcDrvrDir

entry is required if the driver for the sResource resides in the card's declaration ROM; an
sRsrcLoadRec entry is required if the sResource resides in an extemallocation, such as a
hard disk attached to the card.

The actual value of the sRsrcDrvrDir entry in the sResource is an offset to an sDri ver

directory. Each entry in the sDriver directory contains an offset to an sDriver record
and an sBlock containing the driver code. The identification number for each entry
specifies which operating system supports the driver. Table 8-4 gives the standard
sDri ver directory identification numbers. Figure 8-11 shows the structure of a typical
sDri ver directory.

166 Designing Cards and Drivers for the Macintosh Family

• Table 8-4 sDri ver directory ID numbers

Name IDnumber Description

sMacOS68000 1 Driver will run on a Macintosh computer with Mc68000
microprocessor

sMacOS68020 2 Driver will run on a Macintosh computer with Mc68020
microprocessor

sMacOS68030 3 Driver will run on a Macintosh computer with MC68030
microprocessor

sMacOS68040 4 Driver will run on a Macintosh computer with Mc68040
microprocessor

• Note: Other identification numbers may be used for future Macintosh-family
operating systems.

• Figure 8-11 Typical sDri ver directory

ID field Offset field

sDrvrld-l Offset

sDrvrId-2 Offset

• • • • • •
sDrvrId-n Offset

End of list 0

sRsrcLoadRec

Either an sRsrcLoadRec entry or an sRsrcDrvrDir entry (but not both) is required if
the sResource needs a driver to be installed in the Macintosh Operating System before
system extensions are called; otherwise, both are optional. The sRsrcDrvrDir entry is
discussed in the preceding section.

Chapter 8 NuBus Card Firmware 167

The actual value of the sRsrcLoadRec entry is an offset to an sLoadDri ver record.
The sLoadDri ver record has the format of an SExecBlock and contains the code
necessary to load the appropriate driver. The SExecBlock is described under "Data
Types," earlier in this chapter.

sRsrcBootRec

The sRsrcBootRec entry in an sResource is an offset to art si3ootRecord. The
sBootRecord is needed whenever the computer starts from a NuBus card instead of
from the internal hard disk or floppy drive. Either the Macintosh Operating System or art
entirely different operating system can be installed from a card using sBootRecord.

The sBootRecord has the same format as an SExecBlock. The structure of the
SExecBlock is described under "Data Types," earlier in this chapter.

The computer attempts to start from a NliBus card only when certain values are set in its
parameter RAM. You can get access to these values by using the Start Manager, as
described in the Start Manager information in Inside Macintosh.

If an sResource with the specified ID in the speCified slot exists, and that sResource
has an sBootRecord, it is used for startup. Otherwise, the normal Macintosh startup
process occurs.

The sBootRecord code is first called early in the ROM-based startup sequence, before
any access to the internal drive. It is passed an seBlock pointed to by register AD. If a
non-Macintosh operating system is being installed, the sBootRecord can pass control to
it. In this case, control never returns to the normal start sequence in the Macintosh ROM.

When the Macintosh Operating System is started up, the sBootRecord is called twice.
The first time, when the value of seBootState is 0, the startup code tries to load and
open at least one driver for the card-based device and install it in the disk drive queue. It
returns the RefNum of the driver or an error status. That driver becomes the initial one
used to install the Macintosh Operating System. During the second call to the
sBootRecord, which happens after system patches have been installed but before
system extensions have been executed, the sBootRecord must open any remaining
drivers fot devices on the card.

The sBootRecord can use the _HOpen call to open the driver and install it in the unit
table. The _HOpen call will either fetch the driver from the sDri ver directory or call the
sLoadDri ver record if one exists. In any case, the driver's open code must install the
driver in the drive queue.

168 Designing Cards and Drivers for the Macintosh Family

The sBootRecord uses the following SExecBlock fields:

seBootState = 0
~ seSlot
~ seRsrcID
~ seDevice
~ sePartition
~ seOSType
~ seReserved
~ seBootState
~ seRefNurn
~ seStatus

seBootState = 1
~ seSlot
~ seRsrcID
~ seDevice
~ sePartition
~ seOSType
~ seRe served
~ seBootState

sRsrcFlags

The slot number (from PRAM)
The sResource ID (from PRAM)
The device number (from PRAM)
The partition number (from PRAM)
Type of operating system to boot (from PRAM)
A reserved field (from PRAM)
o
Returned Re fNurn of driver to boot with
Returned status (zero = good, negative = no driver loaded)

The slot number
The sResource ID
o
o
Type of operating system (from PRAM)
A reserved field (from PRAM)
1

Two flags are defined in the sRsrcFlags word; bit 1, called fOpenAtStart, and bit 2,
called f3 2 Bi tMode. Bit 1 set (true) tells the Start Manager to install and open the driver
at startup time; bit 1 clear (false) tells it to leave the driver closed. Bit 2 set tells the Slot
Manager to construct a base address in the form $FsOO 0000; when bit 2 is clear, a base
address of $FssO 0000 results. These base addresses are placed in the DCE (device control
entry) in the dCtlDevBase field. The DCE data structure is described in the Device
Manager information in Inside Macintosh. If there is no sRsrcFlags entry, both flags are
assumed to be clear (false) by default. All unused flags must be set to O.

sRsrcHWDevld

The sRsrcHWDevld byte entry identifies the sResource as a hardware device. If the
sResource is not a hardware device (for example, a data structure), this entry may be
omitted. Each hardware device must be given a unique ID.

Chapter 8 NuBus Card Firmware 169

MinorBaseOS

The MinorBaseOS entry contains an offset to a long value that defines the sResource's
base address in the slot space allocated to the slot its card is in. The long value is an offset
relative to NuBus address $FsOO 0000, where s is the slot number. Standard slot space and
super slot space are discussed under "NuBus Address Space" in Chapter 7.

MinorLength

The MinorLength entry contains an offset to a long value representing the number of
bytes of standard slot space occupied by the sResource.

MajorBaseOS

The Maj orBaseOS entry contains an offset to a long value that defines the sResource's
base address in the super slot space allocated to the slot its card is in. The long value is an
offset relative to NuBus address $sOOO 0000, where s is the slot number.

MajorLength

The Maj orLength entry contains an offset to a long value representing the number of
bytes of super slot space occupied by the sResource.

sRsrcCicn

The sRsreCien entry in an sResource provides the color icon for the sResource. To add a
color icon, include an OSLstEntry with splD = sRsreCien = 15 to your board
sResource entries. For more information on color icons, see the section "Icons" later in
this chapter. This is an optional sResource entry.

sRsrcIc18

The optional sRsrelcl8 entry provides 8-bit icon data for the sResource. The' leI8 '

resource is a 32 x 32 x 8-bit color icon in which each pixel is an index into the standard
8-bit system CLUI. A color icon of this form allows full 8-bit color without being penalized
by the space overhead requirements of a color table. To add this icon to your board
sResource entries, include an OSLstEntry with splD = sRsrele18 = 16.

170 Designing Cards and Drivers for the Macintosh Family

sRsrcIc14

The optional sRsrclcl4 entry provides 4-bit icon data for the sResource. This
I Ie 14 I resource is similar to an I Ie 18 I resource. It is a compact representation of a
32 x 32 x 4-bit color icon in which each pixel is an index into a standard 4-bit CLUT.
You can add this icon to your board sResources by including an OSLstEntry with
spID = sRsrclc14 = 17.

sMemory

The sMemory resource is a resource list that is provided on "intelligent" Apple NuBus
cards capable of being NuBus masters. This resource list provides the address ranges used
for RAM, ROM, and device registers for a particular card. This information is used by
software to allow intelligent cards in the NuBus to communicate as peers.

An intelligent card is any card with a CPU capable of being a NuBus master and providing
memory-like access to the RAM on the NuBus card. The Macintosh Coprocessor Platform
(MCP) and boards built upon this architecture will implement the sMemory resource list.
It is strongly recommended that the NuBus interfaces on intelligent cards fully support all
modes of NuBus access even if multiple local bus cycles are required to complete them.
You must not specify the sMemory resource for a NuBus card that does not support all
modes of NuBus access.

The sMemory list is currently defined as a second-level resource list. As a second
level resource list, it is not visible to the Slot Manager calls SNextsRsrc and
SNextTypeSRsrc, although they are accessible via the advanced-level Slot Manager
toolbox calls. In MCP cards, the resource list is an offset from the CPU resource list.

The sMemory resource list contains the required sRsrcType and sRsrcName resources
and one or more of the resources listed in Table 8-5.

• Table 8-5 sMemory resource list

Entry name ID number

MinorRAMAddr 128
MajorRAMAddr 129
MinorROMAddr 130
MajorROMAddr 131
MinorDeviceAddr 132
MajorDeviceAddr 133

Description

Minor RAM address ranges
Major RAM address ranges
Minor ROM address ranges
Major ROM address ranges
Minor device register address ranges
Major device register address ranges

Chapter 8 NuBus Card Firmware 171

In each case, the upper 8 bits holds the ID and the lower 24 bits provides an offset to a
block. The first longword of the block contains the length of the block followed by pairs
of entries. The first longword of each pair has the length of this address range in bytes. The
second longword has the offset from the major or minor base address, as appropriate, for
this space. See Figure 8-12 for an example of the block format.

The sMemory resource list can describe the architected memory structure of the card. It
does not have to reflect the actual memory present. For example, if 512 KB of RAM is
provided for, but only 128 KB of RAM is present, the resource list can indicate 512 KB of
RAM space even though the remaining 384 KB of address space may either mirror the first
128 KB or cause a bus error when accessed. This means that the declaration ROM need not
change when memory is expanded. The card must return either a bus error or a data
acknowledgment for any memory access within the architected memory range.

Figure 8-12 shows a typical sMemory resource list for a generic MCP card.

172 Designing Cards and Drivers for the Macintosh Family

• Figure 8-12 sMemory resource list for a generic Macintosh Coprocessor Platform card

" " " " ~<?a.r~ rype " "
Board name

~ "MCP"boa;d"rO"($D)"
...... - - _. _ ..

" " " "~r~a.r~ ip.\t "
Vendor info

Board sResource .. _ .. - _ .. _
CPU sResource

"" " "Cr~m">.e"" "

~
CPU name

"" " . - _ - _.
MinorBaseOS

" " " "MiricirLength" " "
" "sivIe~ofy"list ($6C) "

CatBoard ($1) r ::: t~!r~~~(~~~) : :
" " " D~rHW C$(l)" " "

~ I C Str ('Apple MCP NB') •

~ I Primary init block.

11. .••. j,~tW ... ~,C:7::~::=O.
Part number ~ '-____ iioiiiiii _ ... ""-" I C Str ('to be defined') •

CatsMemory ($A) :::: :type:(~~)::::

MinorRAMBlock length eSC)
" " Length" ($00400000)"
" " Offset ($00000000) "

MinorROMBlock length eSC)
" "Le~gth ($"OOi 000(0) "
" "Offset ($OOFFOO"OO) "

MinorDeviceBlock length ($C)

" " Length"($00400000)"
" " Offset ($0040"0000) "
: : t~ng~h:($~0200900):

Offset ($00800000)
" " Offset ($0020"0000) "
" "Length"ciOoAOOOOO)"
" " Offset ($OOOOOOOB) "

" Orfse"t ($"00(:00000) "

Chapter 8 NuBus Card Firmware 173

The board sResource

If you read the section "An Introduction to the Firmware" at the beginning of this chapter,
you are already familiar with a board sResource, a unique sResource that must be present
in the firmware of every card that communicates with the computer. This section repeats
some of the earlier information, but provides a more in-depth description of the board
sResource. Refer to Figure 8-4 to see how the board sResource relates to the other
elements in a video card's declaration ROM.

The entries in a board sResource provide the computer with a card's identification
number, vendor information, board flags, and initialization code. Table 8-6 lists the
standard identification numbers assigned to the Apple-defined entries in the board
sResource. These entries are described in detail later in this section.

• Table 8-6 Apple-defined board sResource ID numbers

Entry name

BoardId

PRAMInitData

PrimaryInit

STimeOut

Vendor Info

SecondaryInit

IDnumber

32
33
34
35
36
38

Description

Card design identification number
Data for initializing the PRAM bytes for the slot
Primary initialization code
TimeOut constant
Vendor part number, name, and so forth
Secondary initialization code

A board sResource must have entries for sRsrcType and sRsrcName, which are required
for every sResource. Refer to the section "sRsrcType Fields for a Video Card Board
sResource," earlier in this chapter, for a description of the fields in a board sResource's
sRsrcType entry. You can also add other Apple-defined sResource entries, such as
sRsrcIcon. Figure 8-13 shows the structure of a typical board sResource.

174 Designing Cards and Drivers for the Macintosh Family

• Figure 8-13 Typical board sResource

CatBoard

TypBoard

DrSWBoard

- DrHWBoard

sResource

sRsrcType Offset c0 cString I
sRsrcName Offset sPRAMInit

Boardld Data J
0 Physical block size

PRAMlnitData Offset 0 0 Byte 1 Byte 2

Primarylnit
Byte 3 Byte 4 ByteS 0

Offset -

End of list 0 PrimaryInit

~ 0 Physical block size

Rev CPU Reserved

Code offset

Code

Boardld

BoardId is a required entry; without it, the computer will log an error in the appropriate
sInfo record. The BoardId value is a word (2 bytes) assigned by Apple. To obtain one for
the card you are designing, contact Apple Macintosh Developer Technical Support.

Chapter 8 NuBus Card Firmware 175

PRAMlnitData

There are 6 bytes reserved in the parameter RAM (PRAM) of a Macintosh computer for
each slot. The PRAMlni tData entry lets you specify values other than 0 for these bytes.
If it is present in the board sResource, the PRAMlni tDa ta entry provides an offset to an
sBlock called an sPRAMlni t record, which contains PRAM initialization values. If it is
omitted from the board sResource, the PRAM bytes are initialized to O. Initialization
occurs when the Macintosh Operating System detects a card for the first time or when the
Slot Manager finds a Boardld entry in a board sResource that is different from the
Boardld entry in the corresponding sPRAMlnit record.

The structure of the sPRAMlni t record is shown in Figure 8-14.

• Figure 8-14 sPRAMlni t record structure

31 24 23 o
0 Physical block size

0 0 Byte 1 Byte 2

Byte 3 Byte 4 ByteS Byte 6

Primarylnit

The Pr imarylni t entry contains an offset to a Pr imarylnit record. The
Primarylni t record has the format of an SExecBlock containing the code necessary
to initialize the card. The structure of the SExecBlock is given under "Data Types,"
earlier in this chapter.

If the Pr imarylni t record is not present, the computer assumes that the card initializes
itself or does not require initialization.

A pointer to an seBlock is passed in register AO to the Primarylni t code. This
parameter block indicates the slot and sResource ID to the Primarylnit code.

176 Designing Cards and Drivers for the Macintosh Family

You must observe the following restrictions when writing code for the Pr imary Ini t record:

• The code may make no calls to the Macintosh ROM except for Slot Manager routines.
In fact, only the Slot Manager is active during Pr imary I ni t.

• The code's length must be less than 16 KB, but ideally should be 2 KB or less.

• The code's execution time should be less than 200 ms.

Initialization code that exceeds these requirements can be placed in the Open routine of
a driver provided for the card.

In addition to setting up the hardware, PrimaryIni t must determine the presence of
key software components in the computer's ROM. Based on this, the Pr imaryIni t

code can determine what sResource lists to retain. If the card's hardware is capable of
operating in 24-bit mode, the video sResource lists that describe this mode should be
included in case the system is not capable of using the full feature set. In most cases, this
involves duplication of the video sResource lists and the deletion of the extended buffer
modes. If the defmBaseOffset is the same for 24-bit and 32-bit modes, both sResource
lists can point to the same mvidParams block.

On current Macintosh computers, cards that operate in 24-bit mode should exit Pr imaryIni t

with those lists active. On Macintosh computers that include 32-bit QuickDraw in ROM,
PrimaryIni t can exit in either mode, where 32-bit mode would be preferred.

The PrimaryInit code is expected to return a status in the seStatus field of the
SExecBlock data structure. This value is saved in the si Ini tStatusV field of the
sInfo record for the slot. Zero or positive values indicate no error or nonfatal errors. A
value of $8001 causes the Slot Manager to defer system initialization of the card until
system patches are loaded. It means that 32-bit QuickDraw is not in ROM and that the
video card can operate only in 32-bit mode. This forces the Slot Manager to defer using
the card as a video device until later, when SecondaryIni t is run. Negative values
indicate that a fatal error occurred while initializing the card; they prevent the Slot
Manager from communicating with the card and set an error value in the siIni tStatusA

field of the sInfo record.

To summarize, here is the sequence of events that should happen in the PrimaryIni t code.

• Initialize hardware and disable interrupts. Set up CLUT and gray screen if appropriate.

• Determine the type of display connected, if possible.

• Read parameter RAM (PRAM) to determine if the configuration has changed. For
instance, has the RAM configuration changed, or is there a different display?

• Update PRAM to reflect the new configuration.

Chapter 8 NuBus Card Firmware 177

• Call_sversion to determine which version of the Slot Manager is present
in the ROM. If the call returns an error, then the old Slot Manager is in ROM,
and PrimaryInit should remove any 32-bit addressed sResour~e lists with
_sDeleteSRTRec. If no error is returned, the new Slot Manager routines are
available in the ROM.

• If the new Slot Manager and 32-bit QuickDraw are in the ROM, remove the 24-bit
sResource lists.

• If a valid sResource list is set, return a successful seResul t value to the Slot
Manager. Specifically, if the new Slot Manager is not present, a 24-bit addressed
sResource list must be returned. If the new Slot Manager is present, either a 24-bit or
32-bit addressed sResource list can be returned.

• If 32-bit QuickDraw is not in ROM, and the card can only operate in 32-bit addressed
mode, return $8001 in seResul t. This special result code tells the Slot Manager to
defer using this card as a video device until later when Secondary:tni t is rutL This
device will not display the "Welcome to Macintosh" message or be able to be a
MacsBug screen.

STimeOut

The STimeOut entry contains the TimeOut constant, an option for cards capable of
locking out the microprocessor. If the Slot Manager detects a lockout condition, it retries
the number of times specified by T imeOu t. The s T imeOu t entry is only recognized on
the Macintosh II, Macintosh IIx, and Macintosh IIcx computers.

VendorInfo

The optional Vendor Info entry in a board sResource contains an offset to a list of
Vendor Info IDs. These IDs are used only by a vendor and are not assigned by MacDTS.
Vendor information should be placed in cStrings and use the standard identification
numbers shown in Table 8-7.

• Table 8~7 VendorInfo ID numbers

Name IDnumber Description

VendorID 1 The card vendor's design identification
SerialNum 2 The individual card's serial number
RevLevel 3 The card design's revision level
PartNum 4 The part number of the card
Date 5 Last revision date of the card

178 Designing Cards and Drivers for the Macintosh Family

Secondarylnit

On Macintosh computers with version 1 or later of the Slot Manager (this includes the
Macintosh IIci, the Macintosh IIfx, and any machine with 32-bit QuickDraw), the
SecondaryIni t record is executed by the Slot Manager after all system patches have
been installed. (The original version of the Slot Manager could not execute
SecondaryInit records.) SecondaryInit gives expansion cards a second
opportunity to configure their sResources and any other associated RAM structures in
case new features were added by the system patch. The rules for SecondaryIni t are less
stringent than those for Primarylni t, since the machine is already up and running.
Generally, SecondaryIni t should focus on performing housecleaning functions on an
expansion card's sResources. For example, a video card with direct-mode capabilities
cannot be the startup device unless 32-bit QuickDraw is in ROM. This card may determine
whether 32-bit QuickDraw is in ROM at PrimaryIni t, and, if it is not, it may select an
alternative indexed mode that is supported by 32-bit QuickDraw. At SecondaryIni t
time, and after system patches have been made, the card can again test for 32-bit
QuickDraw, and, if it is now present, replace its old video sResource with a new one that
includes direct-mode information. In this way, the card can automatically configure itself
to the machine environment.

The Slot Manager searches for SecondaryIni t records only in those slots that had
successful PrimaryInit results. For video cards, a special seResult code ($8001)
indicates that no compatible video sResource was selected, but the SecondaryIni t
should be tried if the new Slot Manager and 32-bit QuickDraw were loaded in the startup
process. This allows cards that are only compatible with 32-bit QuickDraw to be used in
machines where 32-bit QuickDraw is not in ROM.

Unlike PrimaryIni t, SecondaryIni t has no size or time limits and executes with system
interrupts enabled. Also, SecondaryIni t can read and modify pertinent system variables.

Below is a summary of the SecondaryIni t activity, specifically for video cards. For
more information about the data structures and function calls in this summary, refer to the
chapters in Inside Macintosh that describe the Slot Manager and graphics devices.

• Call_sVersion to determine which version of the Slot Manager is present in the
comuter's ROM. If spResul t is returned as 2, the new Slot Manager is in ROM, and all
the appropriate configuration has already been done. In this case, return a successful
seResul t value. If spResul t is 1, however, the new Slot Manager was added via a
patch, and there is some outstanding cleanup to be done.

Chapter8 NuBus Card Firmware 179

• To perform cleanup, execute _GetTrapAddress on the unnamed 32-bit QuickDraw
trap ($AB03) and compare it with the address of _Unimplemented. It is possible,
though unlikely, that a system may have the new Slot Manager but not 32-bit
QuickDraw. If this is the case, leave the 24-bit addressed sResource lists. If the card
cannot operate in 24-bit mode, an seResult value indicating failure (-1) should be
returned. The card will then be inactive.

• If the card is the startup screen, call_sRsrcInfo to find the driver RefNum. The
spRe fNum in the parameter block will be 0 if the card is not the startup. The Re fNum
value may be used during SecondaryIni t. If 32-bit QuickDraw is present on your
machine, you may need to update the pixel base address in the gDevice structure.
The code example in Appendix B demonstrates this in the PrimaryIni t and
SecondaryIni t code.

• Remove the 24-bit version of the sResource list with sDeleteSRTRec.

• With the spRefNum still in the parameter block, verify that spParamData is 0 to enable
the sResource list, spID is set to the ID of the sResource list to add, and spsPointer is
NIL. Add the 32-bit sResource list using the _sInsertSRTRec function.

• If the card was the startup screen (spRefNum was nonzero), use _GetGDevice to
find the gDevice for the card. It will be the only gDevice present at this time.
Make sure the device returned by _GetGDevice is your device; it will not be if you
returned $8001 from PrimaryInit.

• If the card is the startup screen, set the 32-bit base address in the gpPMap field
(gDevice AA . gdPMapAA. pmBaseAddr). If necessary, correct the cached base address
in your driver's private storage.

• If the card supports video mode families, use _SetsRsrcState and
_sInsertSRTRec to add and enable or disable the appropriate lists.

• Return a successful seResul t value.

NuBus block-transfer mode sResource entries

The NuBus '90 draft specification defines two types of block transfers: IX block transfers
and 2X block transfers (or double-rate transfers). Block transfers have only recently been
provided in the Macintosh Quadra 700 and the Macintosh Quadra 900 computers. And
although the computers in the Macintosh Quadra family allow double-rate block transfers
between NuBus cards, they do not support double-rate transfers to or from main memory.
Chapter 3 describes block transfers in more detail.

To use the block-transfer capability of NuBus, you must register this capability through a
block-transfer sResource.

180 Designing Cards and Drivers for the Macintosh Family

Two longword sResource entries define the block-transfer capabilities of the board or
mode. The first describes general block-transfer information (SBlockTransferInfo),

and the second describes the maximum number of transactions for locked transfers
(sMaxLockedTrans ferCount) if the board supports them. If the entries specifying
block-transfer information are omitted, the bus master should assume that the target
board does not support block transfers and should not test for this capability when the
entries are not present.

The second word is not necessary if the board or mode does not support locked transfers.

In the NuBus specification, if a slave board does not support block transfers and if it
receives such a request, it should terminate the first transfer with / ACK. Boards that do
not support block transfers and do not implement an early / ACK block termination must
have the sResource block-transfer information present with the slave transfer size bits
set to O.

The format of the general block-transfer information is a longword whose structure is
shown in Figure 8-15. The fields are defined in Table 8-8. The format of the maximum
number of transactions for locked transfers is simply one longword.

• Figure 8-15 General block-transfer information

Master word

(

III ...
31 Til"",,, L Transfer size

Format
Locked transfer

Is Master

Slave word

L Tran~fer size

Chapter 8 NuBus Card Firmware 181

• Table 8-8 Block-transfer information fields

Field Value

IsMaster 1

IsSlave 1

LockedTransfer 1

TransferSize

Format

Meaning

The board can initiate transfers.

The board can accept transactions.

The board can initiate locked transfers.

Each bit indicates the number of longwords per block
transfer; bit set to 1 if the size is supported.

Reserved.

The longwords that describe the block-transfer capability are kept in a card's declaration
ROM. You can use the OSLstEntry (Offset List Entry) macro to describe both block
transfer-capability longwords.

Additional ftrmware requirements of video cards

The firmware structure of a video card's declaration ROM takes advantage of the power
of the Slot Manager. As a result, it is more complex than the declaration ROMs used on
most other NuBus cards. It must include data structures that support advanced video
functionality and newer drawing systems such as Color QuickDraw. The following sections
describe these additions.

• Note: Color QuickDraw, or 32-bit QuickDraw, is included in the ROMs of some of the
Macintosh computers. To determine if Color QuickDraw is present in your system, you
must test for it. For more information, refer to the information on compatibility
guidelines in Inside Macintosh.

182 Designing Cards and Drivers for the Macintosh Family

Identifying direct devices

The major focus of Color QuickDraw is to support direct video devices. A video card is
considered a direct device when the pixel value you place in the frame buffer directly implies
the color that will appear on the display without going through any intermediate stages of
color look-up. Direct video devices have screen depths of 16 bits and 32 bits per pixel.

Prior to Color QuickDraw, Apple supported ftxed video devices and indexed video
devices (or CLUT devices) that had screen depths of 1, 2, 4, and 8 bits per pixel. A video
card is classified as an indexed device when the values in the frame buffer can be used as
an index into a color look-up table (CLUT) to produce an arbitrary color on the display.
The color set itself in the indexed video device can be changed. The fixed video device is
similar to an indexed video device, except that the hardware colors cannot be changed.
The values in the frame buffer can still be used to index any color in the color set, but the
color set itself always remains the same.

Setting the mVidType field in the video mode parameters to DirectType (2) allows
Color QuickDraw to determine that a video card is operating in a direct mode (or as a
direct device). In addition, the mvidParams block of each video sResource should have
the following sets of special values for the 16-bit and 32-bit direct modes.

Fie1dName 16 bpp 32 bpp

vpPixelType ChunkyDirect ChunkyDirect

vpPixelSize 16 32

vpCmpCount 3 3

vpCmpSize 5 8

In the above list, Ch unkyD ire c t = 16. The values are the same as those found in a direct
pixel-map data structure and are used to construct the gdPMap descriptor in gDevice.

Identifying 32-bit addressable configurations

The Slot Manager uses a flag in the sRsrcFlags word (spID = 7) of each sResource to
calculate the frame buffer base address for all cards. The sResource flags were defined
earlier in this chapter in the section "sRsrcFlags." By setting f32BitMode (bit 2) in
this flag word, all references to the base address of the device are in the form $FsOO 0000,
where s represents the NuBus slot number of the card. A 24-bit addressed version of the
base address in the form of $FssO 0000 is returned if f 3 2 Bi tMode is clear.

Chapter 8 NuBus Card Firmware 183

The fOpenAtStart flag (bit 1) is normally set at startup time to instruct the Slot
Manager to open the slot device's driver at startup time. If this entry is omitted, the field
defaults to a value of 2. This default value indicates that the driver should be opened at
startup time with a 24-bit-compatible base address (which is the normal condition for
traditional video cards). The fOpenAtStart flag must be present for NuBus cards that
want to operate in the 16 MB NuBus super slot spaCe.

It is strongly recommended that applications never write directly to the frame buffer. If
your application must write directly to the frame buffer, it should operate in
32-bit addressing mode. Previously, cards aliased their frame buffer under 32-bit
addressing, as explained in Chapter 1 in the section "NuBus-to-Processor Bus State
Machines." If your application must know the addressing state (24-bit or 32-bit), it can
determine the device being written to by looking in the gDevice (graphics device)
record. For more information, refer to the information about graphics devices in
Inside Macintosh.

If your Macintosh computer does not have Color QuickDraw in ROM, and if your card is
intended as the startup device, make sure that you load Color QuickDraw before the card
presents a 32-bit base address to the system.

Icons

You can include manufacturer-specific black-and-white or color icons as an sResource
entry. This optional entry was defined earlier in this chapter in the section "sRsrclcon."

The I ICON I resource defines a black-and-white icon. The I cicn I resource defines a
color icon. If you include either of these resources in the Monitors extension file, the icon
is displayed in the Options dialog box of the Monitors control panel. If no icon is found,
Monitors displays a generic monitor icon. For more information on Monitors, see the
information about the Control Panel in Inside Macintosh.

If there is just one function or display associated with your card, an icon can be defined
at the board sResource level. However, more often than not, multiple functions or
multiple displays are associated with an individual card. For each function or display, a
separate icon can be defined. In this case, the icon would be defined at the functional
sResource level.

For a black-and-white icon, you can add an OSLstEntry with spID = sRsrclcon = 3.

This entry points to a standard 32 x 32 x I-bit image of an icon resource. You retrieve this
icon by first setting spsPointer to the sResource, spSi ze to 128, and spResul t to a
pointer to a 128-byte buffer, and then calling _sReadStruct. There is no mask.

184 Designing Cards and Drivers for the Macintosh Family

For a color icon, add an OSLstEntry with spID = sRsreCien = 15. Color icons are in
sBloek form because these structures are variably sized. The offset points to a longword
block header that contains the length of the color icon data followed by the image of a
standard' cien' resource.

Apple-defmed video sResource entries

Table 8-9 lists the Apple-defined video sResource entries recognized by the Slot Manager,
and the sections following describe them. These sResources are specific to video cards, and
less general in nature than those listed in Table 8-3.

• Table 8-9 Apple-defined video sResource ID numbers

Entry name

sGammaDir

sRsreVidNames

sGammaDir

IDnumber

64
65

Description

Gamma directory

Video mode name directory

The sGammaDir entry is an optional sResource entry that provides information about
gamma resources. It is used only with video cards. You can include this entry in your video
sResources by adding an OSLstEntry with spID = sGammaDir = 64. For more
information on the gamma table directory, see the next section, "Gamma Table Data."

sRsrcVidNames

The optional sRsrevidNames entry in a video card's board sResource allows access to
the video modes name directory. The video modes names directory identifies the various
mode possibilities of video cards that operate in more than one video mode.

Chapter 8 NuBus Card Firmware 185

Gamma table data

Each functional sResource of a video card can include an optional directory of gamma
resources for use with the SetGamma call. This gamma table directory, which is similar in
form to the driver directory, permits references to pertinent gamma table data located in
the ROM and in the Monitors extension file for the video card. A selector in the Options
dialogbox of the Monitors control panel presents the gamma table choices to the user.
Monitors loads 'g ama' resources from both the extension file and the ROM structure.
Ideally, each different monitor supported by the video card uses a specific gamma
correction table for the greatest color fidelity. Refer to the section "Gamma Correction in
Macintosh Computers," in Chapter 9, for a detailed description of gamma correction.

In each video sResource, an OSLstEntry with spID = sGammaDir = 64 points to a
gamma directory. A list of OSLstEntry macros in the directory points to the various
gamma table data structures. The gamma tables themselves are s B 1 0 c k structures-a
length field followed by data. The spID values for the gamma tables start at 128, the
default gamma for this video mode, and increase by 1 for each optional table present.
Since the directory entries are offsets, multiple sResources can point to the same data
block. When coUecting the data tables, Monitors reads them from the ROM until it
encounters an end-of-list entry.

The first field of each gamma block contains 2 ID bytes that are used to localize the name
of the gamma table. The next field is a cSt ring format that represents the domestic
name of the gamma table. The final field contains an image of the gamma table
(equivalent to a 'gama' resource, as defined in Inside Macintosh).

Names for gamma tables should reflect the name of the monitor they were intended for,
and they must be 35 characters or less in length. The Monitors control panel gamma
selector has a checkbox that allows the user to select a gamma table by name or to leave
the initial gamma table unchanged. When user selection of gamma is enabled, the control
panel creates an additional option, Uncorrected. This option tells the video driver to
build a linear gamma table, which in effect disables gamma correction.

Video mode name directory

Video cards that support more than one family of video modes can include an optional
directory of names that are used to identify the various mode possibilities. This directory
is structured almost identically to the gamma directory.

To access this directory, call_sFindStruct with spID = sRsrcvidNames = 65 in the
board sResource (not the functional video sResource). For each possible video sResource
SpID value there is a similarly numbered OSLstEntry pointing to the name data.

186 Designing Cards and Drivers for the Macintosh Family

Each name data sBlock contains a 2-byte localization ID followed by a cString
containing the name of the video mode. The video mode name should be concise and
consist of 35 characters or less.

Video card natne

The video card name is visible in the Monitors Options dialog box and must be limited to
35 characters or less.

Resolution

Although QuickDraw does not look at the gDevice resolution fields, new video card designs
should set the mHRe sand mVRe s fields to the approximate characteristics of the monitor.

Sample code

Appendix B provides a sample of the declaration ROM firmware code for the Macintosh II
Video Card. This sample uses the Macintosh Programmer's Workshop assembly language.
The sample code reflects the configuration of the declaration ROM's firmware shown in
Figure 8-4. Also included in the sample code in Appendix B are samples of the primary
initialization code and the secondary initialization code for a video card.

Chapter 8 NuBus Card Firmware 187

Macintosh Coprocessor Platform

When development of various networking and communications products for the
Macintosh started at Apple, the need became evident for a real-time operating system
that would boost processing power and operating-system capability. As a solution,
Apple created an "intelligent" NuBus card, with its own 68000 processor, its own working
space in RAM, and its own basic operating-system services. Apple developed this not
only as a basis for Apple's own products, but also as a tool for NuBus expansion card
developers. The result was the Macintosh Coprocessor Platform (MCP). Its operating
system, A/ROSE (Apple Real-time Operating System Environment), was designed to
respond to the needs of connectivity products, complement the capabilities of the
Macintosh Operating System, and yet be generic enough to become the foundation for
a new breed of message-based, distributed software architectures.

Developers can build on this platform in designing products for communications and
networking, data acquisition, and signal processing or for other applications that require
a substantial amount of processing. Time-consuming and time-critical tasks can be
off-loaded from the main logic board to a dedicated processor on the NuBus card. This
increases the overall computational speed, of course, and allows for faster response times
in the foreground applications. Moreover, A/ROSE provides the real-time, preemptive,
multitasking capabilities required for handling multiple communications protocols.

The A/ROSE operating system performs preemptive multitasking, with round-robin task
scheduling. It is also a real-time operating system, with 110 f...ls context switch time and 20 f...ls
of latency (guaranteed interrupt response time). The A/ROSE software can be present on
several cards, and it is completely autonomous and independent on each card. Tasks
defined by users and by A/ROSE communicate with each other-even across the NuBus to
other slots or the Macintosh Operating System-by means of messages.

For more information about the Macintosh Coprocessor Platform or A/ROSE, APDA offers
the Macintosh Coprocessor Platform Developer's Guide. APDA can also provide development
kits if you choose to make use of the Macintosh Coprocessor Platform and the A/ROSE
operating system on your NuBus expansion card.

188 Designing Cards and Drivers for the Macintosh Family

Chapter 9 NuBus Card Driver Design

General guidelines for writing drivers are given with the Device Manager
information in Inside Macintosh. This chapter supplements that
information with some specific notes about NuBus card drivers. An
example of a video card driver is given in Appendix C to supplement the
information provided in this chapter.

189

Storing the driver code for a NuBus card

You have three choices for storing the driver code for a NuBus card:

• It may be stored as an sDr i ver record in the card firmware. In this case, the driver
code is loaded onto the Macintosh system heap immediately before initialization
(, INIT ,) resources are executed, unless specifically inhibited by the
fOpenAtStart bit in the sRsrcFlags field being set to O. The sDri ver record is
described later in this chapter.

• It can be fetched by an sLoadDri ver record, in which case the driver code may be
stored virtually anywhere. The sLoadDri ver record is discussed under
"sRsrcLoadRec" in Chapter 8.

• It may be stored in an initialization resource in the System Folder on a disk that
accompanies the NuBus card. In this case, it is installed during system startup as
described in the information about the Device Manager in Inside Macintosh.

Regardless of where it is stored, a NuBus card driver may be written either for a specific
card or for a class of cards. These two approaches are discussed in the following section.

Specific and generic drivers

A NuBus card driver may be written in either of two ways:

• It may be hard-coded to refer to a specific card.

• It may be written to refer generically to cards of a certain class.

These two approaches are discussed in this section.

Card-specific drivers

A card-specific driver contains in its code all the critical information required for it to
drive a specific card. For example, if the driver is associated with a video card, it might
contain bits-per-pixel information and control register addresses. It could then be used to
drive only cards of a specific configuration, as specified by the sRsrcType field of the
sResource. The way such a driver would work with the card hardware and firmware is
diagrammed in Figure 9-1.

190 Designing Cards and Drivers for the Macintosh Family

• Figure 9-1 Card-specific driver

sResources

Hardware

Card-generic drivers

A card-generic driver interrogates the appropriate sResource in the card firmware to
determine the hardware configuration with which it must work. sResources are discussed
in Chapter 8. For example, a driver associated with a class of video cards might obtain
bits-per-pixel information and control register addresses from an sResource in the card's
declaration ROM, using Slot Manager calls. The Slot Manager is described in Chapter 8 and
in Inside Macintosh. The way such a driver would work with the card hardware and
firmware is diagrammed in Figure 9-2.

Chapter 9 NuBus Card Driver Design 191

• Figure 9-2 Card-generic driver

sResources

Hardware

• Note: You can easily design a video card declaration ROM that supports multiple video
devices-for example, devices that work with different types of video monitors. At
startup time, all sResources from the sResource directory are loaded into the slot
device table. During PrimaryIni t (and before any screen display), the code can
determine the type of monitor connected, delete all other sResources, and run
initialization code for the proper display.

192 Designing Cards and Drivers for the Macintosh Family

The sDriver record

When a driver is stored in the firmware of its associated card, it is placed in an s Dr i ve r

record. An sDri ver record is a record of type sBlock, as defined under "Data Types" in
Chapter 8. Its general form is shown in Figure 9-3. The specific structure of the driver
header and driver routine sections depends on the operating system with which the driver
works. For the Macintosh Operating System, this structure is described in detail with the
Device Manager information in Inside Macintosh.

• Figure 9-3 sDriver record

31 24 23 a
a I Physical block size

Driver header

Driver routines

Installing a driver at startup

During its startup process, the Macintosh Operating System searches the NuBus slots
looking for device drivers to install. As described in Chapter 8, the declaration ROM area
of each card contains an sResource directory that points to all the sResources in that
card's firmware. Each sResource that refers to a device may contain either actual device
driver code or code that allows a driver to be loaded from an external source.

• Note: The System file may contain drivers for current Apple-designed NuBus cards.
Card vendors who supply drivers should use initialization (I INIT I) resources to install
them during startup. The initialization resources are described with the Start Manager
information in Inside Macintosh.

Chapter 9 NuBus Card Driver Design 193

For each sResource, the search for drivers during startup takes place as follows:

1. The operating system looks for an sRs:t;cFlags field in the sResource.

2. If no sRsrcFlags field exists, or if an sRsrcFlags field exists and the field's
fOpenAtStart bit is set to 1, the operating system searches for a driver, as described
in steps 3 and 4. If the value of fOpenAtStart is 0, the operating system does not
search for a driver; it goes on to the next sResource.

3. The system searches the sResource for a driver load record (sRsrcLoadRec)-a
routine designed to copy a driver into the Macintosh system heap. If such a routine
exists, the system copies it from the card's ROM to the heap and executes it. The
system passes this routine a pointer in AO to the seBlock structure; on exit, the
routine must return a handle in the seResul t field of the same seBlock structure to
the driver it has loaded. If the value of the s eSt a t u s field is 0, the system then
installs the new driver.

4. If there is no driver load record, the system searches the sResource for a driver
directory entry (sRsrcDrvrDir). If there is such an entry and the directory contains
a driver of the type sMacOS68000, sMacOS68020, sMacOS68030, or
sMa cOS 6 8 0 4 0, the system reads the driver from the card's ROM and installs it in the
Macintosh system heap. These driver types are downward compatible; an Mc6s040
CPU can execute sMacOS68030, sMacOS6802 0, and sMacOS68000 drivers as well
as the sMacOS68040 driver.

This method lets you design a card with its driver in ROM on the card. The user can then
plug the card in the machine and use the device without running an installation program.
Should the driver in ROM later require updating, you can supply an initialization file to be
added to the user's System Folder. The initialization file can test the existing driver
version and overriqe it with a version contained in its own code, thereby substituting a
new driver for the old one.

• Note: For this method to work correctly, you must follow all the rules for expansion
card drivers. In particular, you must include the version number (word aligned)
immediately after the driver's name in the driver header structure.

The video driver used at the beginning of system startup (the one that makes the "happy
Macintosh" appear) must be taken from a video card's declaration ROM because the
System file is not yet accessible. If a system contains multiple video cards, the startup
screen is determined by parameter RAM (PRAM) or, if the card specified in PRAM is not
present, by selecting a different valid sResource. Note that connecting to a different
monitor or changing the amount of frame buffer RAM on a card may cause PRAM to
become invalid. If you physically move the card to a different slot, this will cause the
PRAM to become invalid as well.

194 Designing Cards and Drivers for the Macintosh Family

• Note: As a consequence of the foregoing, any video card that contains the only video
device in a system, or supplies the startup device, must have at least a minimal video
driver in its declaration ROM.

To install a driver, the ROM first loads it into the system heap and locks it if the dNeedsLock
bit in the driver flags (drvrFlags) word is set. It then installs the driver with a Drvrlnstall
system call and initializes it with an Open call. If the driver returns an error from the Open call, it
is marked closed, the RefNum field is cleared in the iOPararneter block, and the driver is
unlocked. Note that this procedure guarantees that driver initialization code will be executed
before the system starts executing applications.

Calling a driver

In Macintosh computers, the low-level PBOpen routine has been extended to let you open
devices in NuBus slots. If the slot serves a single device (not, for example, a chain of disk
drives), set the value of ioFlags to 0 and use the following parameter block:

~ 12 ioCompletion pointer
~ 16 ioResult word
~ 18 ioNarnePtr pointer
~ 24 ioRefNurn word
~ 27 iOPerrnssn byte
~ 28 ioMix pointer
~ 32 ioFlags word
~ 34 ioSlot byte
~ 35 iold byte

In the extension fields, ioMix is a long integer reserved for use by the driver Open
routine. The ioSlot parameter contains the slot number of the device being opened, in
the range $O-$F (where slot $0 is reserved for built-in video). The iold parameter
contains the sResource spID.

If the slot serves more than one device, set the value of ioF lags to fMult i and use the
following parameter block:

~ 12 ioCornpletion pointer
~ 16 ioResult word
~ 18 ioNarnePtr pointer
~ 24 ioRefNurn word
~ 27 iOPerrnssn byte
~ 28 ioMix pointer
~ 32 ioFlags word
~ 34 ioSEBlkPtr pointer

Chapter 9 NuBus Card Driver Design 195

Here the new parameter ioSEBlkPtr is a pointer to an external parameter seBlock

that is customized for the devices installed in the slot. The pointer value is passed to
the driver. The seBlock structure is described with the Slot Manager information in
Inside Macintosh.

When a driver serves a device that is plugged into a NuBus slot, it needs to know the slot
number, the sResource ID number, and the external device ID number within the slot. The
Slot Manager provides values for several new entries on the end of the device control entry
(DCE) data structure for each sResource. These new entries are

• a byte containing the slot number (dCtlSlot)

• a byte containing the sResource ID number for the sResource (dCtlSlotID)

• a pointer to the device base address (dCtlDevBase) for the driver to use

• a reserved pointer field for future use (dCtlReserved)

• a byte containing the external device ID (dCtlExtDev)

On a card with multiple instances of the same device, the driver can use dCtlDevBase to
distinguish among devices. Because the DCE address is passed to the driver on every call
from the Device Manager, the presence of this pointer in the DCE simplifies location of
the correct device. This pointer contains the sum of the dynamically determined base
address and MinorBaseOS or Maj orBaseOS. (MinorBaseoS and Maj orBaseOS are
described under "Apple-Defined sResource Entries" in Chapter 8.) This field is set up
before the first call to the driver. The address is always valid in 32-bit mode. The Slot
Manager constructs 24-bit or 32-bit compatible addresses based on the f3 2Bi tMode flag
described in Chapter 8. This frees the driver writer from the necessity of locating the
hardware for simple slot devices.

196 Designing Cards and Drivers for the Macintosh Family

Following is the data structure of the DCE. The DCE data structure is described with the
Device Manager information in Inside Macintosh.

; device control entry definition

AuxDCE = PACKED RECORD
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

ptr to ROM or handle to RAM driver
flags
driver's I/O queue
ptr to first queue element
ptr to last queue element
byte pos used by read/write calls
handle to RAM drivers priv. storage
RefNum of this driver
counter for timing systemTask calls
ptr to driver's window (if any)
number of ticks between systemTask calls
desk accessory event mask
menu ID associated with driver
device slot number
device ID within slot
base address of card for driver
ptr to task control block

dCtlDriver
dCtlFlags
dCtlQueue
dCtlQHead
dCtlQTail
dCtlPosition
dCtlStorage
dCtlRefNum
dCtlCurTicks
dCtlWindow
dCtlDelay
dCtlMask
dCtlMenu
dCtlSlot
dCtlSlotIdq
dCtlDevBase
dCtlOWner
dCtlExtDev

DS.L
DS.W
DS.W
DS.L
DS.L
DS.L
DS.L
DS.W
DS.L
DS.L
DS.W
DS.W
DS.W
DS.B
DS.B
DS.L
DS.L
DS.B
ALIGN
EQU
ENDR

1 external device ID
2

DeVCtlRecEnd *-DeVCtlRecord ; size

Slot device interrupts

Slot interrupts from NuBus cards usually enter a hardware register on the computer's main
logic board. One interrupt line is dedicated to each NuBus slot connector. The CPU can
quickly detect which card requested interrupt service, but not which device on a
multifunction card caused the interrupt. To allow proper handling of the interrupt, the Slot
Manager provides a slot polling procedure.

The Device Manager maintains an interrupt queue for each slot. Upon receipt of a slot
interrupt, the Device Manager goes through the slot's interrupt queue until it gets an
indication that the interrupt has been satisfied. If no such indication occurs, an error
dialog box, similar to that for system errors, is displayed.

Chapter 9 NuBus Card Driver Design 197

The format for a slot queue element is the following:

SQLink EQU 0 ;link to next element (pointer)
SQType EQU 4 ;queue type ID for validity (word)
SQPrio EQU 6 ;priority (low byte of word)
SQAddr EQU 8 ;interrupt service routine (pointer)
SQPann EQU 12 ;optional Al parameter (long)
SQSize EQU 16 ;length of slot queue element

The SQPrio field is an unsigned byte that determines the order in which interrupt routines
for a specific card's slot are called. Higher-value routines are called sooner. Priority values
200-255 are reserved for Apple devices.

The SQParm field is a value that is loaded into register Al before calling an interrupt
service routine. This value is set when the driver's interrupt handler is installed as a
parameter to SIntInstall. Often, it's useful to pass a handle to the DeE or to the
hardware base address (from dCtlDevBase) in this field.

The Device Manager in Macintosh computers provides two new routines to implement the
interrupt queue process just described: SIntInstall and SIntRemove.

SIntInstall

FUNCTION SIntInstall(sIntQElemPtr: SQElemPtr; theSlot: INTEGER): OsErr;

Trap macro SIntInstall

SIntInsta11 adds a new element (pointed to by sIntQElemPtr) to the interrupt
queue for the slot whose number is given in theSlot. Slots are numbered from $0 to $E.
SIntInsta11 returns an error if it is unsuccessful.

From assembly language, this routine has the following calling sequence:

LEA MySQEl,AO ;get slot queue element
LEA PollRoutine,Al ;get routine address
MOVE.L Al,SQAddr(AO) ;set address
MOVE.W #Prio, SQPrio (AO) ;set priority
MOVE.L AIPann,SQPann(AO) ; save Al parameter
MOVE.W Slot,DO ;set slot number

- SIntInstall ;do installation

This code causes the routine at label Po 11 Rou tine to be called as a result of an interrupt
from the specified slot ($O-$E). If two or more slots request an interrupt simultaneously,
they are handled in ascending order; that is, within each slot, the interrupt handler with the
highest-priority field is handled first.

198 Designing Cards and Drivers for the Macintosh Family

SIntRemove

FUNCTION SIntRemove(sIntQElemPtr: SQElemPtr; theSlot: INTEGER): OsErr;

Trap macro _SIntRemove

SIntRemove removes an element (pointed to by sIntQElemPtr) from the interrupt
queue for the slot whose number is given in theSlot. SIntRemove returns an error if
it is unsuccessful.

From assembly language, this routine has the following calling sequence:

LEA
_SIntRemove

MySQEI,AO ;pointer to queue element
;remove it

This routine lets you remove an installed driver containing an interrupt handler from the
system without causing a crash.

pollRoutine

Your driver polling routine is called with the following assembly-language code:

MOVE.L
MOVE.L
JSR

SQAddr(A2),AO
SQParm(A2) ,AI
(AO)

;get poll routine address
;stuff optional Al parameter
;call polling routine

Your polling routine should preserve the contents of all registers except Al and DO. It
should return to the Device Manager with an RTS instruction. DO should be set to zero to
indicate that the polling routine did not service the interrupt or to nonzero to indicate
that the interrupt has been serviced. The polling routine should not set the processor
priority below 2, and should return with the processor priority equal to 2. The Device
Manager resets the VIA2 interrupt flag and executes an RTE to the interrupted task when a
polling routine indicates that the interrupt is satisfied.

Chapter 9 NuBus Card Driver Design 199

Video drivers

If a NuBus card controls a video display device, there are additional requirements its
driver must satisfy. The operating system recognizes that a NuBus card has a video
capability by examining the sRsrcType fields of its sResources.

To be recognized by the Macintosh system, every video sResource must have an
associated driver in the system heap. This driver may be loaded from the card's ROM
by the Slot Manager or supplied separately on disk.

Besides using its driver, there are two other ways the system communicates with a
video card:

iI Its driver must provide a pointer to the card's video RAM, which QuickDraw then
accesses directly. Writing pixel information directly into RAM is faster than using
driVer calls.

• The Slot Manager retrieves information directly from a card's declaration ROM. Such
information may include definitions of its potential display modes, as well as data of
any kind placed there by the card designer. The declaration ROM data required in
video cards is defined in the next section.

Video card firmware normally contains an initialization routine, as described in
Chapter 11. The initialization routine should set the video card to a startup mode of 1 bit
per pixel, using page O. It should also clear the video RAM to either the color gray or a 50%
gray stipple pattern, and disable vertical retrace interrupts. The Start Manager searches for
video sResources, opens the device driver of each card it finds, performs an
Ini tGDevice call that sets up the RAM description of the card, and then issues driver
calls to set up appropriate screen depth, color table, and other properties.

Each NuBus slot has 8 bytes of dedicated PRAM. The first 2 bytes cannot be modified
and always contain the card's BoardID. Normally, the other 6 bytes are reserved for the
use of the device; but With video devices, the VendorUsel field Cbyte 2) of the slot's
PRAM is reserved by the system to hold the spID of the slot resource describing the last
screen pixel depth that this card was set to. The Ini tGDevice call passes this value to
the driver's SetMode routine to set the proper hardware pixel depth and uses this value to
determine the default color table for this depth. The Monitors Control Panel device sets
byte 2.

• Note: An expansion card's Pr imarylni t routine should be able to determine whether or
not a display is connected at startup time. If no display is connected, the Pr imarylni t

routine removes all video sResources and returns a successful seResul t code.

200 Designing Cards and Drivers for the Macintosh Family

Video declaration ROM information

The data structures required in the declaration ROM of any NuBus card are described in
Chapter 8. Among them is the sResource, which contains the sResource type, name, and
other information about a device. A video sResource should contain a mode list that has a
reference for each pixel depth it supports. Such references must begin at ID 128 and
continue in ascending order. ID 128 identifies the default mode if a mode is not specified
in the sPRAM record. The parameter IDs for mode list entries are shown in Table 9-1.

• Table 9-1 Video mode list spID values

Name ID number

mVidParams 1
mTable 2

mPageCnt 3

mDevType 4

Description

Video device record ID.
Offset to the device color table for fixed CLUT devices;
mTable has the same format as the cTabHandle structure,
described with the Color Manager information in Inside
Macintosh.
Number of video display pages for this mode
(expressed as a counting number).
Device type (0 = indexed CLUT device, 1 = indexed fixed
device, and 2 = direct device).

The declaration ROM for a video card defines any alternate operating modes for that
card. Each mode is completely identified by the following four parameters:

• the number of the slot in which it is installed

• the sResource identification number of the video device it drives

• the identification number of the mode

• the values in its video parameter record

Each distinct mode must have its own video parameter record, with the structure shown in
Table 9-2. This structure is the same as the PixMap structure described in the Color
QuickDraw information in Inside Macintosh, except that it describes the physical
configuration of a device, not a pixel image.

Chapter 9 NuBus Card Driver Design 201

• Table 9-2 Video parameter record

Name Size Description

vpBaseOffset long Offset from base of frame buffer to start of page 0
vpRowBytes word Width of each row of video memory (high bit clear)
vpBounds 4 words BoundsRect for the video display (gives dimensions)
vpVersion word PixelMap version number (always 1)
vpPackType word Reserved
vpPackSize word Reserved
vpHRes fixed Horizontal resolution of the display device (pixels per inch)
vpVRes fixed Vertical resolution of the display device (pixels per inch)
vpPixelType word Defines pixel type ($0 = ChunkyIndexed;

$10 = ChunkyDirect)

vpPixelSize word Number of bits in pixel (rounded upward to the next power
of 2 for ChunkyIndexed and ChunkyDirect pixels)

vpCmpCount word Number of components in pixel
vpCmpSize word Number of bits per component
vpPlaneBytes long Reserved

For general information about video card sResource entries, see the section "Apple-Defined
sResource Entries" in Chapter 8.

Video driver routines

General instructions for writing device drivers are given in the Device Manager information
in Inside Macintosh. This section discusses only requirements specific to video drivers.

Normally, a driver associated with a Nubus expansion card may reside either in the card's
declaration ROM or on disk. But video drivers differ from other drivers in that they should be
able to support screen displays soon after the system is started up, before any code is read
from disk. Hence, for video cards, at least a rudimentary driver should reside in the declaration
ROM. Such a driver would be loaded during initialization and should display at least 1 bit per
pixel. This would let the computer display messages during the startup process.

202 Designing Cards and Drivers for the Macintosh Family

At a minimum, any video driver must support Open, Close, control calls, and status calls
from the Macintosh Operating System. Your driver's Open routine must accomplish the
following:

• allocate any private data storage required by the driver

• store a handle to its private data space in the dCtlStorage field of the driver's
device control entry

• initialize any local variables that the driver uses

• install an interrupt handler for the driver

• enable VBL interrupts on the video card

• determine the configuration of the machine it is running on. This should be done by reading
the PRAM, assuming that the configuration is stored in PRAM during Primarylnit. Refer
to the Slot Manager description in Inside Macintosh for more information.

The operating system does not expect your driver's Open routine to set or change the
video mode. The Start Manager explicitly sets the appropriate video mode during startup
time as determined by PRAM or by an 'sern' resource (described in the information on
Color QuickDraw in Inside Macintosh).

• Note: All data and flags used by the driver should be stored in the dCtlStorage

handle rather than in the driver code segment.

Your video driver's Close routine must accomplish the following:

• disable VBL interrupts on the video card

• remove the interrupt handler used by the driver, replacing any changed interrupt vectors

• release any private data storage held by the driver

• turn off the video to avoid the persistence of the desktop image, especially during
reboots. If your video driver does not explicitly turn off the video, by disabling the
sync signal, for instance, you should return your display to its off state (white with no
backlighting on LCD-type displays or black with no pedestal on CRT-type displays).

• Note: Like other Macintosh drivers, video drivers need to expect that they will
be closed and reopened (possibly at times other than boot time). For this
reason, the C los e routine should phYSically and logically turn off the video Jar
the display that the video driver controls. Similarly, the Open routine must not
assume that Primarylni t has just been run.

Chapter 9 NuBus Card Driver Design 203

Video driver data structures

The Macintosh Operating System communicates with each video driver by means of
control and status calls that use the following data structures:
TYPE

VDParamBlockPtr = AVDParamBlock:

VDParamBlock = RECORD

qLink: QElemPtr:

qType: INTEGER:

ioTrap: INTEGER:

ioCmdAddr: Ptr:

ioCompletion: ProcPtr:

ioResult: OSErr:

ioNamePtr: Stringptr:

ioVRefNum: INTEGER:

ioRefNum: INTEGER:

csCode: INTEGER:

csParam: Ptr:

END:

VDEntRecPtr = AVDEntryRecord:

VDEntryRecord = RECORD

csTable: Ptr:

csStart: INTEGER;

csCount: INTEGER;

END:

VDGamRecPtr = AVDGammaRecord

VDGammaRecord = RECORD

csGTable: Ptr:

END:

VDPgInfoPtr = AVDPgInfo:

VDPgInfo = RECORD

csMode: INTEGER;

csData: LONGINT;

csPage: INTEGER:

csBaseAddr: Ptr:

END:

{standard I/O param block}

{video driver specifics}

{pointer to color table}

{start entry number}

{count number}

{pointer to gamma table}

{mode within device}

{data supplied by driver}

{page to switch in}

{base address of page}

204 Designing Cards and Drivers for the Macintosh Family

VDFlagptr = AVDFlagRec;

VDFlagRec = RECORD

flag: SignedByte;

END;

VDDefModeptr = AVDDefModeRec;

VDDefModeRec = RECORD

spID: SignedByte;

END;

{used in various ways}

{spID}

• Note: Video drivers follow the newest convention for returning status call information.
This convention may not be compatible with the glue code used in previous
development systems. For example, using the old convention, results from a _S tat u s

call were returned directly in the I/O parameter block. Using the new convention,
results from the _Status call are returned directly to cSParamBlock. However, in
certain cases where _Status is called, the glue code neglects to fill in the csParam

field of the parameter block. If you are interfacing to a device driver that requires
csParam for its status call, use the lower-level call PBStatus. It will return a valid
csParam field.

Slot information applicable to the card associated with your video driver is contained in
the device control entry, as described in the Device Manager information in Inside Macintosh.

Control routines

The Macintosh Operating System uses control calls to your video driver to set the video
card to different configurations. Configuration changes might include choosing a
different number of bits per pixel or changing the color table.

Video driver routines that respond to these control calls are described in this section. The
calls that all drivers must support are so identified; others are optional and may return a
NoErr code.

Throughout this section, you see references to video devices that operate in indexed pixel
mode (commonly called indexed video devices), devices that operate in direct pixel mode
(commonly called direct video devices), and devices that operate in fixed indexed pixel mode
(commonly called fixed video devices). The section "Additional Firmware Requirements of
Video Cards" in Chapter 8 describes indexed, direct, and fixed video devices and explains the
differences between them.

Chapter 9 NuBus Card Driver Design 205

• Note: If a specific driver has other hardware capabilities and you want to provide a driver
interface to them, you should give these control routines csCode selectors greater than or
equal to 128. .

csCode = 0

f
f
f-

csParam = VdPgInioPtt
c sMode mode selected
CsPage page after reset
csBaseAddr base address of video RAM

[Reset)
[Word]
[word]
[long]

This required control routine must reset the video card to its startup state. The startup
state of a video card should be its default pixel depth (preferably 1 bit per pixel), with the
default colors (if colors are supported) set. If the card supports multiple video pages in
the default mode, page 0 should be switched in.

Your driver should also reinitialize its private storage areas, including areas for
returned parameters.

csCode = 1 [KillIO]

This required control routine stops any I/O requests currently being processed and
removes any pending I/O requests. For most video cards, no change on the card is
required. If the card does not support asynchronous calls, this routine may return a
NoErr code.

csCode = 2
~

~

f-

csParam = VDPgInioPtt
c sMode mode within device
csPage desired display page
csBaseAddr base address of video RAM

[SetMode]
[word]
[word]
[long]

This required control routine sets the pixel depth of the screen. To improve the screen
appearance during mode changes, devices with settable color tables should set all entries
of the CLUT to 50% gray. If the video card supports 16-bit or 32-bit pixel depths, this
routine should set an internal flag to indicate direct mode operations.

• Note: QuickDraw requires that all screen depths have the same frame buffer base address.

The Monitor cdev stores the current video mode in the card's slot PRAM.

csCode = 3 csParam = VDEntRecPtt [SetEntries]
~ cSTable pointer to color specffication [long]

array
~ csStart first entry in table [word]
~ csCount number of entries to set [word]

206 Designing Cards and Drivers for the Macintosh Family

If the video card is an indexed device, this optional control routine should change the
contents of the card's CLUT. If the card does not have a look-up table, it will never receive this
call. If the value of csStart is ° or positive, the routine must install csCount entries starting
at that position. If it is -1, the routine must access the contents of the Val u e field in
csTable to determine which entries are to be changed. Both csStart and csCount are
zero based; their values are 1 less than the desired amount. For a description of the structure of
a CLUT, refer to the information on Color QuickDraw in Inside Macintosh. The SetEntries

control routine is also described in the Color Manager chapter of Inside Macintosh .

• Note: The csStart value refers to logical position, not physical position. In
4-bits-per-pixel mode, for example, csStart values will still run 0,1,2, ... , even
though physical card registers may not have this numbering sequence.

If the video card is a direct device, the system should never issue this call, but if it does,
SetEntries should return an error indication. If a direct device contains CLUT hardware, the
GrayScreen and Set Gamma routines are responsible for setting the hardware up properly.

In the 16-bit and 32-bit video modes associated with direct devices, the display color is
implied directly by the pixel value. Logically, the three DAC channels in the hardware are
completely independent and assumed to be ascending linear ramps in all channels. Since the
effect of the SetEntr ies routine (in the Color Manager) is to modify the QuickDraw
drawing environment, the SetEntries call has no meaning to a direct device.

• Note: The SetEntries control routine is a low-level function and should only be used
in special cases. You may find it easier to implement an equivalent higher-level call.
Refer to Device Manager and Color Manager information in Inside Macintosh for
information about alternate function calls.

csCode = 4
--7

csParam = VDGamRecPtr
csGTable pointer to gamma table

[SetGamma]
[long]

This optional control routine sets a gamma table in the driver that corrects RGB (red, green,
blue) color values. The gamma table compensates for nonlinearities in a display's color
response by providing either a function or a look-up value that associates each displayed
color with an absolute RGB value. The gamma table is described with the graphics devices
information in Inside Macintosh. Gamma correction is defined and explained later in this
chapter in the section "Gamma Correction in Macintosh Computers."

Chapter 9 NuBus Card Driver Design 207

To reduce visible flashes due to color table changes, the Set Gamma call works in conjunction
with a SetEntries call on indexed devices. The SetGamma call first loads new gamma
correction data into the driver's private storage, and then the next SetEntries call applies
the gamma correction as it changes the CLUT. If the hardware performs gamma correction
externally to the CLUT hardware, then the SetGamma call should take effect immediately.
SetGamma calls are always followed by SetEntries calls.

For direct devices, SetGamma first sets up the gamma correction data table. Next, it
synthesizes a black-to-white linear ramp in RGB. Finally, it applies the new gamma correction
to the ramp and sets the data directly in the hardware. Proper gamma correction is particularly
important to image-processing applications running on direct devices.

Displays that do not use gamma table correction tend to look oversaturated and dark.
Although determining the correct values for a gamma table can be difficult without special
tools, the table's contribution to image quality can be striking.

If NIL is passed for the csGTable value, the driver should build a linear ramp in the
gamma table to allow for an uncorrected display.

csCode = 5 csParam = VDPgInfoPtr [GrayScreen]
~ csPage page number [word]

This optional control routine should fill the specified video page with a dithered gray
pattern in the current video mode. The page number is zero based.

The purpose of this routine is to eliminate visual artifacts on the screen during mode changes.
When an application changes the screen depth, the contents of the frame buffer immediately
acquire a new color meaning. To avoid annoying color flashes, the SetMode control call (first
in the depth change sequence) sets the entire contents of the CLUT to 50% gray, so that all
possible indexes in either the old or new depth appears the same. This routine is called to fill
the frame buffer with the new 50% dither pattern. In the last step of the mode change
sequence, the color table is filled, making the 50% dither pattern visible.

For direct video devices, GrayScreen also builds a three-channel linear gray color table,
and after the table has been gamma corrected, it loads it into the color table hardware.
The base address is determined by the system software configuration. For example, if
32-bit QuickDraw is present, the base address may be a 32-bit address. If your card is
used in an earlier system that does not include 32-bit QuickDraw, the base address is a
24-bit address. To simplify the code, you should always write GrayScreen to the screen
in 32-bit addressing mode.

csCode = 6
~

csParam
csMode

VDFlagPtr
mode value

208 Designing Cards and Drivers for the Macintosh Family

[SetGray]
[byte]

This optional control routine is used with indexed devices to determine whether the
control routine with csCode = 3 (SetEntries) fills a card's CLUT with actual colors or
with the luminance-equivalent gray tones. For actual colors (the default case), the control
routine is passed a c sMode value of 0; for gray tones it is passed a c sMode value of 1.

Luminance equivalence should be determined by converting each RGB value into the hue
saturation-brightness system and then selecting a gray value of equal brightness. Mapping
colors to luminance-equivalent gray tones lets a color monitor emulate a monochrome
monitor exactly.

If the SetGray call is issued to a direct device, it sets the internal mapping state flag and
returns a Ct lGood result but does not cause the color table to be luminance mapped.
Short of using the control routine DirectSetEntries, there is no way to preview
luminance-mapped color images on the color display of a direct device.

csCode = 7

-7

csParam
csMode

= VDFlagPtr
enable/disable flag

[Setlnterrupt]
[byte]

This optional routine controls the generation of the VBL interrupts. To enable interrupts,
pass a csMode value of 0; to disable interrupts, pass a csMode value of 1.

csCode = 8
-7
-7
-7

csParam
csTable
csStart
csCount

VDEntRecPtr
pointer to color table
first entry in table
number of entries to set

[DirectSetEntries]
[long]
[word]
[word]

Normally, color table animation is not used on a direct device, but there are some special
circumstances under which an application may want to change the color table hardware.
This routine provides the direct device with indexed mode functionality identical to
the regular SetEntries call. The DirectSetEntries routine has exactly the same
functions and parameters as the regular SetEntries routine, but it works only on a
direct device. If this call is issued to an indexed device, it should return a CtlBad

error indication.

6" Important The application that calls the DirectSetEntries routine is
responsible for restoring the triple-linear-ramp direct-color
environment when it completes the color table animation. .6

The DirectSetEntries routine is implemented separately from the regular
SetEntries routine to prevent applications that get direct access to the driver
from indiscriminately changing the hardware and rendering the system unusable.

csCode = 9
-7

csParam
csID

VDDetModePtr
spID of video sResource

[SetDefaultMode]
[byte]

Chapter 9 NuBus Card Driver Design 209

A video card may support different configurations for a single display device. For
example, a card may support large or small screen sizes on a single monitor. When a card
supports different configurations for a single display device, it is said to have a video
mode family. Having a video mode family is different from supporting two different
monitors, since all members of the family can be displayed on a single display device.
The Slot Manager (version 1 and later) supports both video mode families and multiple
display devices.

The SetDefaultMode routine is used by both indexed and direct devices to specify the
selected member of a video mode family for the next restart. It does this by storing the
spID value of the new choice's sResource in the card's slot PRAM. The Monitors control
panel makes the SetDefaultMode call when selecting a new video mode. Monitors
searches for all video sResources associated with the card, both active and inactive, to
create a list of selections. (Note that all video sResources associated with other displays
are deleted at this time, but not inactivated.) After selecting a new video mode, Monitors
calls SetDefaultMode with the new selection's spID value as the parameter. The routine
stores this value somewhere in its slot PRAM, making this the new default configuration.
Monitors also collects the appropriate information from the sResource to construct a
valid' scrn' resource and takes care of all additional validation that is necessary to
make the new mode take effect at the next restart.

At Primarylni t time, the code should determine whether the spID value saved in slot
PRAM is compatible with the current environment. If it is, it should make the mode the
active gDevice.

• Note: On machines that do not have 32-bit QuickDraw in ROM, cards that can be
addressed in both 24-bit and 32-bit addressing modes may have to store additional
information in PRAM in order to remember the default correctly.

This routine records the default mode information in the slot's private PRAM. Remember
that the VendorUsel byte is reserved for system use, but the other 5 bytes are available
for the private use of the card software.

210 Designing Cards and Drivers for the Macintosh Family

Status routines

The Macintosh Operating System sends status calls to your video driver to determine the
current configuration of the video card.

Video driver routines that respond to these calls are described in this section. The driver
need process only pertinent status calls; others it can return with a status error.

• Note: If your driver supports other devices and you want to provide a driver interface
to them, you should give these status routines csCode selectors greater than 128.

The csCode values 0 and 1 are not implemented in video drivers and should return a
StatBad result code.

csCode = 2
~

~

~

csPatam = VDPgInfoPtt
c sMode mode within device
csPage display page
csBaseAddr base address of video RAM

[GetMode]
[word]
[word]
[long]

This required status routine must return the current video mode, page, and base address.

csCode = 3
H
~

~

csPatam
csTable
csStart
csCount

= VDEntRecPtt
color table data
first entry in table
number of entries to set

[GetEntries]
[long]
[word]
[word]

This required status routine must return the specified number of consecutive CLUT
entries, starting with the specified first entry. If gamma table correction is used, the
values returned may not be the same as the values originally passed by SetEntries. If
the value of csStart is 0 or positive, the routine must return csCount entries starting at
that position. If it is -1, the routine must access the contents of the Val u e fields in
csTable to determine which entries are to be returned. Both csStart and csCount are
zero based; their values are 1 less than the desired amount.

Although direct video modes do not have logical color tables, the GetEntries status
routine should continue to return the current contents of the CLUT, just as it would in an
indexed video mode.

• Note: The GetEntries control routine is a low-level function and should only be used
in special cases. You may find it easier to implement an equivalent higher-level call.
Refer to Device Manager and Color Manager information in Inside Macintosh for
information about alternate function calls.

Chapter 9 NuBus Card Driver Design 211

csCode = 4
f

~

csParam
csPage
csMode

= VDPgInfoPtr
number of pages
mode within device

[GetPages]
[word]
[word]

This required status routine must return the total number of video pages available in the current
video card mode (not the current page number). This is a counting number (not zero based).

csCode = 5
~

f-

csParam VDPgInfoPtr
csPage desired page
csBaseAddr base address of that page

[GetBaseAddr]
[word]
[long]

This required status routine must return the base address of a specified page in the current
mode. This allows video pages to be written to even when not displayed.

csCode = 6
f-

csParam
csMode

= VDFlagPtr
mode within device

[GetGray]
[byte]

This required status routine must return a value indicating whether the SetEntries

routine has been conditioned to fill a card's CLUT with actual colors or with the luminance
equivalent gray tones. For actual colors (the default case), the value returned by csMode

is 0; for gray tones it is 1. The value returned can be set by a control call with csCode = 6.

csCode = 7
f-

csParam
csMode

= VDFlagPtr
enable/disable flag

[Getlnterrupt]
[byte]

This optional status routine returns a value of 0 if VEL interrupts are enabled and a value of
1 if VBL interrupts are disabled.

csCode = 8
f-

csParam
csGTable

VDGaroRecPtr
pointer to gamma table

[GetGamma]
[long]

This status routine returns a pointer to the current gamma table. The calling application
cannot preallocate memory because of the unknown size requirement of the gamma
data structure.

csCode = 9
f-

csParam
csID

= VDDetModePtr
spID of video sResource

[GetDefaultMode]
[byte]

This status routine returns the current default value of a video sResource's spID entry. If
you have selected a new mode family, but have not yet rebooted the system, the default
returned will be different from that of the current video sResource. The parameter block is
the same as for the SetDefaultMode control call.

212 Designing Cards and Drivers for the Macintosh Family

Gamma correction in Macintosh computers

Color QuickDraw considers all colors specified by application programs as absolute
specifications; that is, from the application's point of view, a single color specification
appears as a uniform color across multiple display devices that have different color
responses. Macintosh computers operate with many different display screens. Since the
application cannot recognize the different screens and does not have the opportunity to
perform screen-by-screen corrections, the video driver for each display device configured in
the system must linearize the differences in color (or gray-scale) response. This is called
gamma correction.

How gamma correction works

As the beam from a video display's electron gun sweeps the scan lines, it strikes phosphors on
the face of the monitor tube and causes them to luminesce. If you increase the intensity of
the beam, the phosphor dots luminesce more brightly, and if you reduce the intensity of the
beam, the phosphor dots glow less brightly. Unfortunately, the luminescence output of the
phosphor dots is not directly proportional to the impinging beam strength but more closely
resembles the diagram in Figure 9-4.

• Figure 9-4 Color response without gamma correction

Electron beam strength

Chapter 9 NuBus Card Driver Design 213

In this drawing, the dotted line shows the ideal linear response, and the solid line
approximates the observed response ot a typical phosphor. This curved response
characteristic is due to physical phenomena and without gamma correction would cause
the colors on the screen to appear darker than expected. Based on this behavior, you can
apply an inverse gamma correction function that compensates for the nonlinear response.
Figure 9-5 illustrates color response with gamma correction.

• Figure 9-5 Color response with gamma correction

.............
.

.. ..
............. .. ~'

.'
Electron beam strength

In Figure 9-5 the solid line is again the observed response of the phosphor, the heavy
dotted line is the inverse gamma function, and the light dotted line is the linear color
response that results from the gamma correction.

Gamma correction can be performed by dedicated hardware. As an alternative, it can be
performed in the CLUT hardware by substitution in the SetEntries call. A number of
high-order bits are extracted from the red, green, and blue channels of the required colors
and used as an index into a table of corrected values. These values are then placed into the
hardware to yield the corrected output. The Macintosh II Video Card uses the high 8 bits
of each channel to reference the gamma table.

214 Designing Cards and Drivers for the Macintosh Family

The gamma table data structure

The following is the structure that supports gamma correction.
record GammaTbl of

gVersion : integer; {gtab version, currently O}

gType : integer; {drHWId value}

gFormulaSize : integer; {size of formula data below}

gChanCnt : integer; {# of component channels}

gDataCnt : integer; {# of values per channel}

gDataWidth : integer; {size of data in tables}

gFormulaData :array [O .. gFormula size]
of byte; {data for gamma calculation

formula}

gData :array [O .. gData Cnt]
of byte; {gamma correction look-up tables}

end;

In this data structure, the gVersion field represents the gamma table format version,
which is 0 for all current video cards. The gType field holds the drHWld value for this
video card to identify the card for which this table was measured. This means that even if
two different cards have the same CLUT response curve, they cannot share the same
gamma table. When the value in the gType field is 0, the card should respond by
examining the other fields in the table. The gFormulaSize field defines the number of
bytes occupied by the gFormulaData field.

The Apple video cards currently used in Macintosh computers perform gamma correction
by modifying the value loaded into the CLUT by the SetEntries control call to
approximate a linear response on the video display. The gamma correction acts as a final
look-up data table that translates the requested color into the closest available linearized
level. These gamma table values are determined empirically by measuring the output of a
calibrated display. The frame buffer of the Macintosh II Video Card uses a single
correction table for all three channels and performs no calculations on the incoming color
other than a simple look-up. The card remembers the specific monitor configuration at
the beginning of the gFormulaDa ta field, allowing it to identify and use only the gamma
tables developed for the attached monitor.

The gChanCnt field is the number of look-up tables in the gData field. The R, G, and B
tables follow each other, respectively, at the end of the structure if there is more than one
channel of gamma correction data. The gDataCnt field gives the number of discrete
look-up values included in each of the channel's correction tables.

The gDataWidth field describes the number of significant bits of information available
in each entry in a channel's correction table. Since it is rare to have devices with more than
8 bits of CLUT resolution, virtually all devices pack their correction data into bytes.

Chapter 9 NuBus Card Driver Design 215

The last field in the gamma table data structure, gDa ta, represents the actual correction
data. If more than one channel's information is present, a block of information for each
c;hannel appears in red, green, and, finally, blue channel order. Apple's video driver includes
only one table that is applied to all three output channels.

In addition to the gamma table data structure, there is a standard resource format
(resource type = I gama I) for gamma table resources. Like many other resource
templates, the gamma structure is an image of the RAM form stored in resource format.

Using gamma correction

The video driver is responsible for applying gamma correction. First, the Open routine
sets the default gamma table from the card's gamma directory. An _Ini tGraf call then
causes the I sern I screen configuration resource to be read from the System file. This
resource is described with the Resource Manager information in Inside Macintosh. The
resource includes information about the size and orientation of the different monitors
configured into the system, including their last video mode (pixel size), color table, and
gamma table. If no I gama I resource ID is specified, or if the specified ID is not present,
a default gamma table, I gama I = 0, is loaded from the System file and used as the table
for the Macintosh II Video Card. If the specified resource is found, the system loads the
resource and issues a control call to the driver to make this the current gamma table.

The standard video driver includes two routines, the SetGamma control routine, which
sets the gamma table, and the GetGamma status routine, which returns the pointer to the
current gamma table. The SetGamma routine (esCode = 4) and the GetGamma routine
CcsCode = 8) were defined earlier in this chapter in the sections "Control Routines" and
"Status Routines," respectively.

Video driver example

An example of a possible video driver is provided in Appendix C. The sample code is
written in Macintosh Programmer's Workshop assembly language.

216 Designing Cards and Drivers for the Macintosh Family

Summary

This section summarizes the video driver data structures, the slot interrupt queue
routines, and the advanced control and status routines. It also gives guidelines for using
assembly-language data structures, and installing and removing interrupt queue routines.

Data types

TYPE

VDParamBlockPtr = AVDParamBlock;

VDParamBlock = RECORD

qLink: QElemPtr;

qType: INTEGER;

ioTrap: INTEGER;

ioQndAddr: Ptr;

ioCompletion: ProcPtr;

ioResult: OSErr;

ioNamePtr: Stringptr;

ioVRefNurn: INTEGER;

ioRefNurn: INTEGER;

csCode: INTEGER;

csParam: Ptr;

END;

VDEntRecPtr = AVDEntryRecord;

VDEntryRecord = RECORD

csTable: Ptr;

csStart: INTEGER;

csCount: INTEGER;

END;

VDGamRecPtr = AVDGammaRecord

VDGammaRecord = RECORD

csGTable: Ptr;

END;

{standard I/O param block}

{video driver specifics}

{pointer to color table}

{start entry number}

{count number}

{pointer to gamma table}

Chapter 9 NuBus Card Driver Design 217

VDPgInfoPtr = AVDPgInfo;

VDPgInfo = RECORD

csMode: INTEGER;

csData: LONGINT;

csPage: INTEGER;

csBaseAddr: Ptr;

END;

VDFlagPtr = AVDFlagRec;

VDFlagRec = RECORD

flag: SignedByte;

END;

VDDefModeptr = AVDDefModeRec;

VDDefModeRec = RECORD

spID: SignedBytei

END;

Interrupt queue routines

{mode within device}

{data supplied by driver}

{page to switch ih}

{base address of page}

{used in various ways}

{SpID}

FUNCTION SIntInstall(sIntQElemPtr: SQElemPtr; theSlot: INTEGER): OsErr;

FUNCTION SIntRemove(sIntQElemPtr: SQElemPtr; theSlot: INTEGER): OsErr;

Advanced control routines

Code Name

0 Reset

1 KillIO

2 SetMode

3 Set Entries

4 SetGarnrnat

5 GrayScreent

6 SetGrayt

7 Set Interrupt

8 DirectSetEntriest

9 SetDefaultModet

t Denotes "optional.»

Param

VDPgInfoPtr

None
VDPgInfoPtr

VDEntRecPtr

VDGamRecPtr

VDPgInfoPtr

VDFlagPtr

VDFlagptr

VDEntRecPtr

VDDefModePtr

Effect

Resets card to startup state
Stops current and pending 1/0
Changes card's video mode (pixel depth)
Changes card's color table (if any)
Sets a gamma table
Fills video page with gray
Flags whether luminance mapping is onl off
Enablesl disables the interrupt handler
Changes color table (direct device only)
Sets spID of default configuration in
slot PRAM

218 Designing Cards and Drivers for the Macintosh Family

Status routines

Code Name Param

o and 1 N/A N/A
2 GetMode VDPgInfoPtr

3 GetEntries VDEntRecPtr

4 GetPages VDPgInfoPtr

5 GetBaseAddr VDPglnfoPtr

6 GetGray VDFlagPtr

7 Get Interrupt VDFlagPtr

8 GetGamrnat VDGamRecPtr

9 GetDefaultModet VDDefModeptr

t Denotes "optional."

Assembly-language information

Data structures

; use with Set/GetEntries

csFirst
csCount
csTable

EQU
EQU
EQU

o
csFirst+2
csCount+2

Effect

Not implemented in video drivers
Returns mode, page, and base address
Returns color table entries
Returns number of pages in mode
Returns base address of page
Returns whether luminance mapping is
on/off
Returns state of interrupt handler
Returns a pointer to set gamma table
Returns s pI D of last set default
configuration

[word] first color table entry
[word] number of entries to set
[long] pointer to color table
entry = value, r, g, b : INTEGER

use with control calls where csCode = 0, 2, 5, or 6
and with status calls where csCode = 2, 4, 5, or 6

csMode EQU
csData EQU
csPage EQU
csBaseAddr

o
csMode+2
csData+4
EQU csPage+2

; use with Set/GetGamma

csGTable EQU o

[word] mode within device
[long] data supplied by driver
[word] page to switch in
[long] base address of page

[long] pointer to gamma table

Chapter 9 NuBus Card Driver Design 219

Interrupt queue routines

; to

to

install a new queue element

LEA
MOVE.L
MOVE.W
MOVE.L
MOVE.W
_SIntlnstall

remove a queue

LEA
_SIntRemove

PollRoutine,Al
Al, SQAddr (AO)
Prio,SQPrio(AO)
AlParm,SQParm{AO)
Slot,DO

element

MySQEl,AO

;get routine address
;set address
;set priority
;save Al parameter
;set slot number
;do installation

;pointer to queue element
;remove it

220 Designing Cards and Drivers for the Macintosh Family

Chapter 10 NuBus Design Examples

This chapter contains performance-proven examples of design that you
can use to implement the NuBus interface in Macintosh computers.

• Note: The examples in this chapter were developed before the
NuBus '90 specification was written. Therefore, they do not make
use of the latest NuBus '90 features or signal lines. The design,
however, will work on the entire line of Macintosh computers that
offer a NuBus expansion interface.

221

NuBus Test Card

The NuBus Test Card (NTC) is an example of a complete master/slave NuBus slot card. In
use, this card allows the Macintosh computer's central processor (or other NuBus master
card) to test the functionality of the NuBus slave and master response logic. It provides
an example of the type of logic necessary to implement a NuBus master card.

This description is to assist a hardware engineer who wants to see how a typical NuBus
card is designed. No motivation for the design choices is given; it is intended as a
description of an existing design. You should already be familiar with NuBus, PALs,
and so forth.

Overview of operation

The NTC in slave mode is addressed by the microprocessor on the main logic board (or
any bus master) and properly written to, so that the three NTC registers are set up with
valid information. The microprocessor next addresses one of the registers to seek bus
mastership; the NTC waits a programmed number of clock cycles and then arbitrates to
become bus master. When it becomes bus master, the NTC accomplishes the read or write
to an address that was stored in the NTC Address register.

Programming model

This section describes how the NTC looks to a programmer.

The NTC provides three registers: Address, Data, and Master. The three registers can be
accessed by addressing the NTC as a slave. The first two registers, Address and Data, can
be read from and written to; they support only NuBus word (32 bit) operations. Both of
these registers can be used to test the basic data paths of the bus. However, these
registers are primarily intended to supply the address and data that will be used during the
NTC's master transaction when the NTC becomes bus master.

The 12-bit Master register is write only. When the Master register is written to, the NTC,
after a programmed delay, initiates a transaction in which it becomes the bus master. The
bits of the value written to the Master register are interpreted as shown in Table 10-1.

222 Designing Cards and Drivers for the Macintosh Family

Bits 11 and 10 contain the /TMl and /TMO values that (along with address bits / ADl
and / ADO) define the transfer mode of the master transaction (see "Data-Transfer
Specifications" in Chapter 3). Bits 7 through 0 contain the programmed time delay (in
one's-complement form).

• Table 10-1 Master register interpretation

Bit

D11

Dl0

D9
D8

D7-DO

Assigned meaning

/TMl value (1 means /TMl is asserted [low]), the read/write indicator

/TMO value (1 means /TMO is asserted [low]), the data item length
indicator

Lock bit (1 means execute a locked transaction)

o (zero)

A one's-complement Delay value

After the execution of the write to the Master register, the master cycle is delayed by the
number of clock periods specified by Delay. Delay is the value in the least significant
8 bits of the Master register; that value is incremented to $FF before the NTC becomes bus
master and initiates a transaction.

The register addresses are given in Table 10-2; s is the number of the slot into which the
card is inserted.

• Table 10-2 Register addresses

Address

$FssO 0000
$Fss40000
$Fss80000

Name

Address register
Data register
Master (write-only) register

Byte swapping and the NTC

Byte swapping is necessary when interacting with the NTC because of the design of the
NTC, the reordering of bytes when the computer transfers data across the NuBus, and the
byte ordering of the NuBus.

Chapter 10 NuBus Design Examples 223

As noted in Chapter 7, the NuBus interface performs a byte swapping of data values (see
Figure 7-2 and the bus interface logic in Figures 1-1 through 1-7). For example, the byte
containing bits D31-D24 of the microprocessor (referred to as byte 0) is swapped so that
the byte is transferr~d to NuBus byte lane 0 (lAD7-/ADO). This preserves·byte address
consistency between cards on the NuBus. Every NuBus interface must be designed so that
its byte 0 is placed on NliBus byte lane 0, byte 1 on byte lane 1, and so forth. If you
transfer a microprocessor word of $0011 2233 to the NuBus, then, on the NuBus, it will
appear as $3322 1100 (the bytes are displayed as most significant byte [msb] to least
significant byte Usb] in left-to-right order).

As can be seen on the schematic for the NTC (Foldollt 7 in the back of the book), the
Address and Data registers are connected so that a byte written to a given NuBus byte
lane will be placed back on the same byte lane when these registers are read from as· a
slave or when driven to as a master. That is, there is no byte swapping performed by the
NTC itself.

This design of the NTC has ramifications on how the values are written to its registers.
For example, an Address register value must be byte swapped when written from the
microprocessor. If we want the NTC to make a transaction to $1122 3344 (in NuBus
format), we must write the data so that the msb of the Address register contains the
$11 byte; this means that NuBus byte lane 3 must contain the $11. However, because
NuBus byte lane 3 is driven by byte 3 from the microprocessor, the value we write must
have the $11 in the lsb of the microprocessor value (where byte 3 belongs). Following this
logic for the rest of the bytes, it should be apparent that the appropriate value to be
written by the microprocessor to the NTC Address register is $4433 2211.

The same byte swapping must be done to values that are written to the Data register in
preparation for a NuBus write by the NTC. Remember, however, that data values that are
written to or read from the main logic board (for example, RAM) are byte swapped by the
bus interface logic as the transaction is made. Thus, data values that are destined for (or
read from) RAM will not look byte swapped. For example, suppose that we set up the NTC
to read a RAM location that contains $1234 5678 (microprocessor form). When we read
the Data register after the transaction is completed, we read $1234 5678. The reason is
that when the NTC did the read, the bus interface circuits placed the data onto NuBus as
$7856 3412 (due to the byte swapping of the bus interface). Then, when we read the Data
register, the value is byte swapped by the bus interface circuits (again) so that the
microprocessor sees the value as $1234 5678. If we wanted a NuBusvalue of $12345678,
then the appropriate microprocessor value would be $7856 3412.

D Important In terms of the Macintosh family, a value may be specified from the
perspective of the computer'S microprocessor or of the NuBus
interface. Values viewed from the NuBus interface need to be byte
swapped; values viewed from the microprocessor do not. /.'::;

224 Designing Cards and Drivers for the Macintosh Family

Programming the NTC

In the following discussions, values for various NuBus fields are specified. In all cases, the
values are the logical values; remember that these are the complements of the NuBus
signals. For example, if ITM1 is a 1, then that implies that ITM1 (the NuBus signal) will
be low. Also, all references to data width will be in NuBus terms-that is, NuBus word
(32 bit), halfword, and byte.

The following two steps are necessary for the NTC to perform a master cycle:

1. The Address register is set up with the desired master transaction's address; a byte
swapped value must be written to the Address register. The lower 2 bits of the
Address register become part of the NuBus transfer mode; the values of these 2 bits
must be modified to correspond to the desired transfer mode encoding, not what
the microprocessor program would use for the equivalent access.

If the master transaction is to be a write, then you must write data to the Data
register that will be transmitted when the NTC becomes bus master.

2. The proper ITM1-/TMO, Lock, and Delay values are written to the Master register. The
NTC waits for the number of clock periods specified by the Delay value, and then
makes the master transaction.

Included in this section are two examples of setting up the NTC to execute master
transactions. In these examples, references to the NuBus transfer mode will be given in
the 4-bit form </TM1,!TMO,! ADl,! ADO>, where the bit values represent the corresponding
NuBus signallevel-H for high and L for low. Values of the Master register bits for
IADl-/ADO and ITMI-/TMO are the logical values (0 and 1). Remember that a 0 written to
a register will be placed on the NuBus as an H (and a 1 as an L).

Word read (Macintosh computer RAM)

Suppose that you wish to cause the NTC to perform a word read transaction to location
$1234; this causes a read of the computer's RAM. The proper NuBus transfer mode for
reading a NuBus word is <HHHH>, as shown in Table 3-1. Thus the values written to
ITMI-/TMO and IAD1-/ADO are adjoined to form the 4-bit transfer mode code <0000>.
Hence, the microprocessor writes the following values into the registers:

$34120000 into Address
$0000 OOFF into Master

This causes the NTC to execute a word read (because ITM1-/TMO and I AD I-I ADO are all
0) from location 0 immediately (FF is the one's complement of 00, for a Delay value of
zero clock periods).

Chapter 10 NuBus Design Examples 225

Halfword 0 write

The proper transfer mode value is <LHHL>, from Table 3-1. Therefore, the value for
</TM1,1TMO,lAD1,1ADO> is <1001>, and the registers are programmed to be loaded
as follows:

$3512 00F9 into Address
$7856 xxxx into Data
$0000 08BF into Master (D ll-D8 in Table 10-1; binary 1000 is 8 in hex; $BF is the
one's complement of $40)

• Note: In the last nibble of $1234, $4 = 0100 in binary, so / AD1 = 0 and / ADO = O. But
/ AD1 and / ADO must be changed to encode the least significant 2 bits of the transfer
mode, so / ADO is changed to a 1 and now 0101 = $5. Then $F900 1235 becomes
$3512 00F9 when byte swapped. The address $F900 1234 on ~he NuBus is obtained by
writing $3512 00F9 into the Address register.

Data is written to the Data register so that when the master transaction is performed, the
data will be in the proper byte lanes. Halfword 0 data is contained in byte lanes 1 (msb)
and 0 (isb). Hence, you need to write the data from the microprocessor such that $56
(msb) is in byte 1 and $78 (msb) is in byte O. The microprocessor must write the value
$7856 XXXX.

Hardware organization

This section describes the hardware used to mechanize the NuBus Test Card. The
schematic is shown in Foldout 7 at the end of the book. PAL equations are displayed
in Appendix D.

The NTC consists of

• four NuBus address/data buffers (74ALS651's), Ul-U4 (also called transceivers)

• eight octal latches (74ALS374's), U5-Ul2, which implement the Address and
Data registers

• one 74F86, Ul4, and one 74F30, Ul5, which form an address comparator

• five PALs, Ul6-U20, which implement the control logic

• one ROM socket, Ul3, for the declaration ROM

• two 4-bit counters (74ALS161's), U23-U24, which implement the Delay counter

• one 74F04 inverter, U21

• one 74F02 NOR, U22

226 Designing Cards and Drivers for the Macintosh Family

NuBus addressl data buffers

The NuBus address or data buffers, Ul-U4, are grouped into two parts. Ul can be
independently driven onto the NuBus, while U2-U4 are latched into the NTC. This allows
the addresses for the ROM to be held during a ROM read cycle without additional parts.
For all other operations, all of the buffers are set for transferring data from or to the
bus in unison.

Address and Data registers

The two sets of latches (U5-U8, U9-Ul2) form the Address and Data registers. They are
latched during a write to the corresponding register and are enabled either upon a slave
read to the register or during a master transaction.

Address comparison

Ul4 and Ul5 are wired so that the output of Ul5 is low when an address of $Fsxx xxxx is
present on the I AD lines. This signal is used by the slave PAL to detect the start cycle to
the card.

SLAVE PAL

The slave PAL (SLAVE PAL) is the state machine for slave accesses to the NTC. It also
latches the state of IAD19-/AD18, which are used by other PALs.

ARB PAL

The arbitration PAL (ARB PAL) is responsible for performing the NuBus arbitration
process. When I ARBCY is asserted, the IID3-/IDO value drives the / ARB3-/ ARBO lines.
However, when / ARB detects that a higher-priority value is present on the / ARB3-/ ARBO
lines, it removes drive from its lower-priority lines, following the NuBus rules. The GRANT
signal is asserted when I ARB recognizes that its / ARB3-1 ARBO value is valid; GRANT is
used by the master PAL to detect that the NTC has won ownership of the bus.

Chapter 10 NuBus Design Examples 2'1:7

MASTER PAL

The master PAL (MASTER PAL) is responsible for controlling a master transaction on the
bus. It idles until it detects that both the MASTER and MASTERD (delayed MASTER)
input signals are true. It will then go through a state sequence to perform the transaction.
The master PAL can execute two types of transactions: normal and locked. The state
sequence is slightly different for each case. See the timing diagram in Figure 10-1 for the
sequences of each. Note that the diagram shows the shortest slave response. In actual use,
most accesses hold in the wait state (jDTACY asserted) while awaiting an / ACK for more
than one cycle.

MIse PAL

The miscellaneous PAL (MISC PAL) is used to decode the state machine signals and drive
on-card devices. The outputs control the gating of the 651's, 374's, and so forth.

NBORVR PAL

The NuBus driver PAL (NBDRVR PAL) is responsible for driving all NuBus signals. As in the
miscellaneous PAL, NBDRVR decodes the state machine signals to determine the timing
for these signals.

228 Designing Cards and Drivers for the Macintosh Family

• Figure 10-1 Master transaction timing, normal and locked

Arbitration
I

Start Wait(s) Ack
I I I

(
/CLK ~

Y Y y '\ t--"""Ut-' ---'Wt----'UI-----'Wl-----'WI----'L
, ,

/ARBCY -n , ,
/ADRCY

Outputs of /DTACY MASTER PAL

/OWNER

/LOCKED , ,
I ,

{~~ 11
Outputs of

, ,
NBDRVRPAL /START

I , ,
I , ,

Input to _ / ACK
MASTER PAL

Arbitration
I

(,
/CLK ~ LJ , ,

I ,
/ARBCY "'1l

, ,
, ,

/ADRCY

, , , , , , ,
, I

I , ,
, , , ,
:1"'1---

~----~--------~,
:1"'1---

~------~------~------~I·

Master transaction (normal)

Attention-lock
fI'Ml-fI'MO = HL

I

Attention-null
Start Wait(s) Ack fI'Ml-fI'MO = LL

I I I I y Y y y y '\
U~---,Wl----~----~Wt--.....,L

I I I I , , , '...----: : : :1 , ,
;I"'I------~,------~------~--------

~--~i· :
I ,

Outputs of /DTACY MASTER PAL ~-------+------~------~--------~il :I"'I------~---------------
, ------+'1

/OWNER

/LOCKED

{~ Outputs of
NBDRVRPAL /START

Input to _ / ACK
MASTER PAL

, , , , , , , , ,
n , , , , , , ,

, , ,
I

, ,
:1 I"'------~------~

~----+--------I~· ~--~
: r------
: t I ... ______ ~------~
, !

Master transaction (locked)

Chapter 10 NuBus Design Examples 1:1.9

Slave operation

During a slave access by another master, the operation of the NTC is determined by the
slave, miscellaneous, and NuBus driver PALs. The slave PAL determines that an access to
the NTC is being made (by looking at the slot decode, /START, and / ACK) and performs
timing. The miscellaneous PAL determines whether to clock (/ ACLK or /DCLK) or output
enable (/ AOE or /DOE) the 374's, enable the appropriate 651 direction, and so forth,
based upon the inputs from the slave PAL.

When the slave PAL detects that the Master register is being written to, it will finish the
slave access and set its MASTER output signal. During the data cycle of the Master register
write, the slave PAL latches the values of Dll-DlO and causes the values of D7-DO to be
latched into the 161 counters. During the subsequent master transaction, the slave PAL will
not respond until the /MSTDN signal is asserted.

Master operation

A master transaction is begun when the slave PAL sets the MASTER signal. After the 161's
have counted up to $FF, the master PAL begins the master state sequence.

After arbitration, the master PAL does its start cycle and waits for the acknowledge cycle.
When / ACK is detected, /MSTDN is Signaled; this causes the slave PAL to start looking for
new slave transactions to the NTC.

6, Important This design violates the letter of the law of NuBus in one regard;
however, this violation causes no problem in a real system. The
violation occurs at the end of a locked transaction. The /RQST signal
is held asserted during the final attention-null cycle; it should be
released during that cycle. No problem exists, because either the NTC
is the last request (/RQST) or it is not. If it is the last, then the only
effect is that new requestors must wait an additional clock cycle. If it
is not the last, then /RQST would stay asserted anyway. In either case,
the proper operation of the bus ensues. 6

230 Designing Cards and Drivers for the Macintosh Family

SCSI-NuBus Test Card

The SCSI-NuBus Test Card is an example of how a simple, 8-bit I/O chip may be
supported over NuBus. This card allows the test of declaration ROM images, in particular,
the Slot Manager. The card allows an image of a bootstrap program (contained in the
card's declaration ROM) to boot the Macintosh Operating System from an attached SCSI
drive. In addition, the card provides a small RAM, which is accessible in super slot space
for the testing of 32-bit address mode switching.

The ROM is really a RAM that you can write to at the assigned ROM address space. The
RAM chip may be replaced with a real ROM when desired.

Software overview

The software model of this card is essentially the same as that of the SCSI chip on the
main logic board, except that it is accessed via NuBus. The address offsets of the
registers and pseudo-DMA are the same as on a Macintosh SE or Macintosh Plus.

The SCSI chip can generate NuBus interrupts (via /NMRQ) from both IRQ and DRQ; this
interrupt can be disabled.

The declaration ROM is accessed at the top of the 1 MB address space. The SCSI chip is
accessed at the bottom of the space. The 8 KB of RAM is accessible only as a super slot.
Note that all of the devices are connected to byte lane 3 (bits / AD31-/ AD24) of NuBus.
They are thus addressed from the microprocessor as bytes at addresses with the least
significant 2 bits equal to 3 (I AD1 = / ADO = 1, low). See Table 3-1, Figure 7-1, and the
NuBus Test Card examples earlier in this chapter.

Hardware overview

This section describes the hardware components and how they function. Figure 10-2 is an
electrical schematic of the SCSI-NuBus Test Card; Figure 10-3 is the timing diagram. The
PAL equations are in Appendix E.

Chapter 10 NuBus Design Examples 231

• Figure 10~2 Schematic of SCSI-NuBus Test Card

IAD31- 4 A7 B7
IAD30- S A6 B6
IAD29- 6 AS BS
IAD28- 7 A4 B4
IA027- 8 A3 B3
IAD26- 9 A2 B2
IAD25-1O AI BI
IAD24~ 11 AO BO

GND -I CAB CBA
GND -2 SAB SBA
IIOR

13
GAB GBA

ALS6S1

IID3
IID2
/lDI
/lDO

IAD9- 4 A7 B7
IAD8- 5 A6 B6
IAD7- 6 AS B5
IAD6- 7 A4 B4
IADS- 8 A3 B3
IAD4- 9 A2 B2
IAD3-1O AI BI
IAD2~ II AO BO

ACLK - I CAB CBA
PUL 2 SAB SBA

3 GAB GBA

ALS6S1

ffMI- 4 A7 B7
IADl9- 5 A6 B6
IADI8- 6 A5 B5
IADI4- 7 A4 B4
IADI3- 8 A3 B3
IADI2- 9 A2 B2
IADII-IO AI BI
IADIO-ll AO BO

ACLK - I CAB CBA
PUL 2 SAB SBA

3 GAB GBA

ALS651

+5 -----./\,/V'v-- PU

IK

20 D7

19 D6

18 .-12L
17 D4

16 D3
15 D2

-m 14
13 DO

23 - DCLK
22 - PU

r 21 J

20
19
18
17
16
15
14
13

23

3K

-TMIL

- GND
22 -
21 -

GND
PU

20
19
18
17
16
15
14
13

23 - GNO
22 - GND
21 - PU

Al2
Al8
AJ4
AI3
A12
All
AI0

A9
A8
A7
A6
AS
A4
A3
A2

D7
6

DS
D4

D3

D2

01

DO

+S

AI4
A13
AI2
All
AIO
A9
A8
A7
A6
A5
A4
A3
A2

2
23
21
24
25
3
4
5
6
7
8
9

10

AJ4
AI3
AI2
All
AIO
A9
A8
A7
A6
AS
A4
A3
A2

2
23
21
24
25
3
4
5
6
7
8
9

10

74F86
PU

6: 6

9 : II

II : 12

74F86

28

Al2 VCC D7
All D6
AIO D5
A9 D4
A8 D3
A7 6264 D2
A6 8KX8 DI
AS RAM DO
A4
A3 WE
A2 OE
AI RAM CSI
AO CS2

GND

114

28

AI2 D7
All 06
AIO D5
A9 D4
A8 D3
A7 6264 D2
A6 DI
AS

8KX8
DO

A4 RAM

A3 WE
Ai OE
Al RAM CSI
AO CS2

GND

114

232 Designing Cards and Drivers for the Macintosh Family

8

8

74F30

19
18
17
16
15
13
12
II

D7
D6
DS
D4
m
D2
DI
DO

27 -/lOW
22 -/IOR
20 -/RAMCS
26

19
18
17
16
IS
13
12
11

-PU

27 -/IOW
22 -/IOR

D7
D6
DS
D4
D3
D2
DI
DO

20 -/RAMCS
26 -PU

(continued)

• Figure 10-2 Schematic of SCSI-NuBus Test Card (continued)

r ICLK I I liaR ISTART 2 st 19 ISLOT 2 st 19 - ACLK
lACK

mySLOT 3 N 18 ISUPER 3 N 18 - DCLK
4 17 4 17 - lACK

mySUPER
5

U
16

lSI
5

U
16 - ITMI B IS2 B

iTMI 6 U 15 6 U 15 - ITMO
-7 S 14 - 7 S 14 -
-8 1 13 DRQ - 8 2 13 -

IRESET 9 12 IRQ - 9 12 - INMRQ
11 - GND IINTENB - 11

ISLOT - I
ISUPER - 2 19 - ISCSI

lSI - 3 st 18 - IDACK

Pi~
IS2 - 4 M 17 - IROMCS

5 I 16 - lRAMCS
6 S 15 - IINTENB
7 C 14 -

TMIL - 8 13 -
9 12 - IIOW

IRESET - 11

+5 IN4001

31

Vdd
!DBP 10 18

34 D7 IDB7 2 16
35 D6 !DB6 3 14
36 D5 IDB5 4 12
37 D4 !DB4 5 10
38 D3 IDB3 6 8
39 D2 !DB2 7 6
40 Dl !DB! 8 4
I DO S C S I !DBO 9 2

~
33 A2 CTRLR 26

32 Al ISEL 12 44
A4 30 AO

IBSY 13 36
lACK 14 38

GND - 27 lEOP IATN 15 32
IDACK - 26 IDACK IRST 16 40

ISCSI - 21 ICS IlnO 17 50
liaR - 24 liaR ICnO 18 46

IIOW - 29 IIOW IMSG 19 42
IREQ 20 48

DRQ - 22 DRQ IRESET 28 -/RESET P2
IRQ - 23 IRQ

Gnd

11

Note: All Ie terminals and lines labeled Gnd or GND are connected to power ground.

Chapter 10 NuBus Design Examples 233

• Figure. . 10-3 SCSI-NuBus timing diagram
.---~

u u u U-
1
1
1

,ZSZSM
1
1
1

riL ~------------~--------------- 1
1
1
1
i
1
1

1 1
1 1
1 1

_

~~ ____ ~~ ____ ~' 1

II I . i
,~------,--~--~ 1
1 1 1
1 1 1

~------~--------~! ------~!~I ______ ~ !

NuBus transceivers (ALS651's)

Three 74ALS651's are used to implement the NuBus transceiver function.

1
1
1
1
i

.1
1
1
1
1
1
1
1

One of them is the clata transceiver; it connects to byte lane 3 (bits / AD31-/ AD24) and
serves to transmit and receive the bytewide data over NuB us. During idle states, the data
transceiver is also monitoring the bus to feed data into the slot decode logic.

Two 74ALS651's are used to latch addresses (/ADl4-/AD2, /AD18, /AD19) and the
write/read signal (/TMl) for the SCSI, ROM, and RAM accesses. These chips are clocked
by a signal from stNUBUS2 every falling edge of /CLK until stNUBUSl detects an access to
the card. They then hold onto the low-order address bits that were present during the
transaction's start cycle.

234 Designing Cards and Drivers for the Macintosh Family

Slot Decode (F86/F30)

The Slot Decode card uses a combination of a 74F86 and a 74F30 to perform slot
decoding. Two sets are used, one for the standard slot space decode ($Fsxx xxxx) and
the second for the super slot access decode ($sxxx xxxx).

NuBus state machine (stNUBUSl PAL)

The NuBus state machine PAL (16R8B) performs the basic NuBus timing for the card.
When either mySLOT or mySUPER is detected during a start cycle, the PAL generates
ISLOT or ISUPER and starts a 2-bit counter (/S2, IS1), which is used by s/TMISC. The value
of ITM1 during the start cycle is latched to form the IIOR signal, the assertion of which
indicates a read.

NuBus signal generator (stNUBUS2 PAL)

The NuBus signal generator PAL (16L8B) decodes the state of ISLOT, ISUPER, and
IS2 to generate the acknowledge cycle and control the latching of the 651's.

The stNUBUS2 PAL is also used to generate the open-collector INMRQ signal for
presentation of interrupts to the main logic board.

Decode and timing (stMISC PAL)

The decode and timing PAL (16L8B) generates the basic 1/0 strobes to the SCSI, ROM,
and RAM. It uses the ISLOT and ISUPER signals in addition to the latched address bits to
perform the decode.

The INTENB signal is a latch that controls the generation of INMRQ. It is set by
addressing $Fsx 820x; it may be cleared by addressing $Fsx 800x.

SCSI chip (NCR5380)

The SCSI chip is identical to that used in the Macintosh Plus. It connects to a SCSI bus via
the connector P2, which also supplies the TRMPWR signal for SCSI termination.

Chapter 10 NuBus Design Examples 235

Pseudo-ROM

The ROM of this card was designed to allow software designers quick update capability.
It is really an 8 KB x 8 RAM that can be written to using the ROM address space. However,
a real 8 KB x 8 ROM may be inserted instead.

RAM

The RAM chip is an 8 KB x 8 RAM that is accessible only by addressing super slot space.

PAL descriptions

The source code of the three PALs is in Appendix E. Refer to these PAL equations, along
with the timing diagram and schematic (Figures 10-2 and 10-3), for a more detailed
understanding of how the card works.

A simple disk controller

This section describes the electrical and interface characteristics of a slave-only disk
controller card that allows a Macintosh computer to communicate with a generic disk
drive through the NuBus.

The disk controller card plugs into any NuBus slot on the main logic board and connects to
a floppy disk drive located outside the computer. The disk controller card consists of a
disk controller IC and a disk interface IC, a sector buffer RAM, a declaration ROM, various
address and data buffers, and three 24-pin PALs. All controlling firmware exists in the
computer. The controller is memory mapped into a single NuBus slot space.

System configuration

The controller package consists of a disk controller card, a cable running from controller
to disk drive, and a floppy disk drive. The disk controller card connects the disk drive to
the computer's central processor through one of the slots on the main logic board. One
end of the cable connects to the controller card, and the two connectors on the other end
of the cable connect to the disk drive.

236 Designing Cards and Drivers for the Macintosh Family

Controller card block diagram

The controller card is made up of the following parts, shown in Figure 10-4:

Address/data bus transceivers: The address/data bus transceivers (74LS640-1's) buffer
the internal address/data bus of the controller from the NuBus address/data bus.

Address counters: The address counters (74LS169's) latch the RAM/ROM address from
the NuBus during RAM/ROM reads or writes and count down the RAM address during DMA
transfers to or from the disk.

RAM: The RAM is the 2048 x 8 sector buffer RAM. Data to be transferred to or from the
disk is placed here by the processor before disk transfers are initiated.

ROM: The ROM is the NuBus declaration ROM. The NuBus Slot Manager accesses this
ROM on power-up to determine the controller's type and modes of access.

Slot address decoder PAL: The slot address decoder PAL (PAL20LlO) determines if the
controller's slot address is selected. It uses the signal/START and address decoding to
compare if the upper nibble of the address is an $F and if the address lines A27-A24 and
D3-DO compare with the hard-wired slot ID address.

State machine PAL: The state machine PAL (P AL20XlO) generates the timing for
programmed I/O and internal DMA transfers on the controller.

State decoder PAL: The state number is decoded by the state decoder PAL to produce
control signals needed by the various parts of the controller.

Control/status driver: The control driver places the signals / ACK, /TMO, and /TM1 on the
NuBus at the end of a NuBus access of the controller. The status driver allows the
following Signals to be read by the processor: disk controller interrupt, internal operation
pending, and disk in place.

Chapter 10 NuBus Design Examples 237

• Figure 10-4 Floppy disk controller block diagram

NuBus
Address/data

Control

-ADO

/TMI
/RESET
/CLK
/START

lACK
ITMO

Four

74LS640-1

/ACKCY
IQ2 IINTRNOP
IQl DMAREAD
IQO

State
decoder

PAL t-------.!.!.l..!.---I

/MWE
1---- /MRD

/DECAD

/tMl Control
~~ __ ----JI----I and

status / ACKCY
driver

74LS240 /INTRNOP
..--- Idisk in place

INT

D---/ROMOE

DREQ

static
RAM

Disk

/Drive select 3
/Drive select 2
/Drive select 1
/Drive select 0
/Index
/Read data
/Write data

'-----+I interface 1'4:::~-'""':"':'

driver
74LS240 /Side 1

/Index
lDirection
/Step

1..---...1 /Write protect
/Track 00

+12V,+5V,+12V return,+5V return

238 Designing Cards and Drivers for the Macintosh Family

Floppy disk controller IC: The floppy disk controller LSI chip contains the circuitry
necessary to communicate with the generic disk drive. Coupled with the companion disk
interface IC chip, it handles all operations with the drive, including reading and writing
data, formatting, seeking, sensing drive status, and recalibrating.

Floppy disk interface IC: The floppy disk interface chip provides drive and timing
support to the disk controller Ie. It contains write precompensation and phase-locked
loop circuitry.

Disk interface driver: The disk interface driver buffers and provides current drive for
several signals coming from and going to the disk drive. It also is used as a multiplexer for
four signals: FLT/TRO, WP/TS, FR/STP, and LCT/DIR.

16 MHz crystal clock oscillator: The crystal clock oscillator provides a 16 MHz clock to
the disk interface IC for use in the drive interface.

Floppy disk controller logic

The disk interface is provided by the disk controller IC, the disk interface IC, and two
74LS240 drivers. The disk controller IC is the controlling chip and communicates with the
disk interface Ie. Details of this logic are not directly relevant to design of NuBus
interfaces and so are not given here.

NuBus interface logic

The controller connects to NuBus via several drivers and PALs. The address/data bus is
tied to four 74LS640-1 transceivers that invert each bit. Control signals such as ISTART,
the slot identification bits IID3-/IDO, and the mode bits ITM1-/TMO are used to time
data transfers to and from the NuBus. Status information is passed to the NuBus along
with the control signal lACK by the status driver (74LS240). DMA operations are controlled
by the state machine and state machine decoder PALs.

Key RAM access signals are described in Table 10-3.

Chapter 10 NuBus Design Examples 239

• Table 10-3 RAM access signals

Signal name

AO

/ACKCY
/ALD

/DACK
/DECAD

/DMAREAD
/DREQ
/FRD
/FWR
/INTRNOP
/MRD
/MWE
/SLOT
SR

Si~al description

Disk controller IC register select: 0 selects main status register;
1 selects data register
Gates /ACK and /TM1-/TMO
Used to load the RAM/ROM address into the address counters; gates the
clock signal into the synchronous counters
Acknowledges the DMA cycle requested
Enables the DMA address counters to decrement by one
memory location
Indicates a DMA read operation when asserted
Requests DMA cycle from disk controller IC or disk interface IC
Enables disk controller IC read enable
Enables disk controller IC write enable
When asserted, indicates internal DMA operation in process
Enables RAM memory read output
Enables RAM memory write
Signals that a NuBus cycle to the controller is active
Direction signal to bidirectional driver on the address/data bus:
o means write to NuBus, 1 means read from NuBus

Programmed I/O operations

Control and status information is passed to and from the controller using programmed I/O
(PIa) operations. PIa transfers include RAM and disk controller IC reads and writes, and
ROM reads. The /MotorOn and /RESET signals are asserted and de asserted using PIa
operations. Refer to Figure 10-4.

240 Designing Cards and Drivers for the Macintosh Family

A typical PIa transfer begins with the assertion of the signal/START. The slot address is
valid during the time /START is asserted and is recognized by the slot decode PAL. It
asserts the signals /SLOT and / ALD. The /SLOT signal indicates that the NuBus cycle is
currently active. The / ALD signal is used as a clock enable signal for loading the RAM or
ROM address into the counters. The / ALD signal is also used as a clock enable to latch
/TM1 and address bits A19/Dll, A18/D10, and A17 /D9. These are later used to assert the
signals /FRD, /FWR, /MWE, /MRD, SR, /ROMOE, and AO. The state machine, recognizing
/SLOT, begins sequencing through a NuBus cycle, going to states 1, 3, and then 2. In
state 2 it asserts / ACKCY, which in turn enables the status driver to assert /TM1-/TMO
and / ACK. The signals /FRD, /FWR, /MWE, /MRD, SR, /ROMOE, and AO are asserted
or deasserted according to the address on the address/data bus during /START and the
state number.

The signals /FRD, /FWR, and AO transfer data to and from the disk controller Ie.

RAM accesses are controlled by /MWE and /MRD. The ROM is read when /ROMOE is
active. The signal SR is used to control the direction of the 74LS640 transceivers.

On-card DMA operations

Direct memory access (DMA) operations transfer data to and from the sector buffer RAM.
On-card DMA operations are not done through the NuBus because this card is a slave only.

The state machine is placed in internal DMA mode by writing to an address in the range
$FssC 0000 through $FssF FFFF. See the next section, "Memory Map and the Declaration
ROM," for the rationale behind the ss in these addresses. DMA operations from the disk to
RAM require that the last command word to the disk controller IC be written to a location
in the range from $FssC 0000 through $FssD FFFF. .

DMA operations from RAM to the disk require that the last command word to the disk
controller IC be written to a location in the range from $FssE 0000 through $FssF FFFF.

After a DMA operation has been requested, transfers to or from the disk are then initiated and
controlled internally. After an operation is complete, the controller interrupts the processor.
The address bits A13-A2 are the beginning RAM memory location that the DMA operation
uses. This address is decremented until it reaches 0 and terminates the DMA operation.

An attempt to read or write to any address in the controller's address range during a DMA
operation is ignored, although the NuBus cycle is terminated with normal status.

When a DMA operation is requested, the signal /INTRNOP is asserted along with /DMAREAD if
the operation is a DMA read. A /SLOT or a /DACK signal causes the state machine to begin
sequencing. Because the /DACK signal holds off /SLOT, if both happen simultaneously, the
DMA operation is first completed, and then the NuBus cycle is acknowledged.

Chapter 10 NuBus Design Examples 241

The signal IDACK occurs on the first rising edge of ICLK after the signal DREQ is asserted,
and is held until the DMA cycle is complete. The disk-controller-IC/disk-interface-IC pair
initiates the DMA cycle by asserting DREQ.

Memory map and the declaration ROM

The controller's device select space ranges from $FssO 0000 to $FssF FFFF and is divided
into eight blocks. The designator ss is used to indicate the slot space where s is the slot
number and ranges from $9 through $E in the Macintosh family.

Table 10-4 summarizes the address decodes.

• Table 10-4 Device select decode addresses

Address range Device selected and action resulting

$FssO OOOO-$Fssl FFFF
$Fss2 0000-$Fss3 FFFF

$Fss4 0000-$Fss5 FFFF
$Fss6 0000-$Fss7 FFFF
$Fss8 0000-$Fss9 FFFF
$FssA OOOO-$FssB FFFF
$FssC OOOO-$FssD FFFF

$FssE OOOO-$FssF FFFF

Read status information from disk controller
Read control information from or write control
information to the disk controller
Begin internal DMA cycle reading data from disk
Begin internal DMA cycle writing data to disk
Enable RAM for reading or writing
Reserved
Turn drive motor on by writing; turn motor and
controller's reset signal off by reading (interrupts are
enabled when the motor is on)
Access ROM by reading; turn controller's reset signal on
by writing

242 Designing Cards and Drivers for the Macintosh Family

It is through the data register that commands, data, and values in status registers 0-3 are
passed. Any disk operation is initiated by passing the several commands required to the
disk controller IC via this register. If a format, read data, read deleted data, write data, or
write deleted data command is requested, the data or parameters required by the disk
controller IC during its execution phase must have been previously loaded into the sector
buffer RAM.

The final command code written to the disk controller IC is written via the DMA execute
addressing space. The read track operation is not supported because the quantity of data
transferred exceeds the sector buffer size. After the execute portion of an operation is
completed, the disk controller IC may give back status information in status registers 0-3.

To read the status of the disk controller, an additional status register is provided. This register is
accessed by a MOVE.W to the address space from $FssE 0000 through $FssF FFFF (ROM).

Chapter 10 NuBus Design Examples 243

Chapter 11 The Macintosh II Video Card

This chapter describes the video card designed by Apple for use in the
Macintosh II family of computers. The purpose of this information is to
provide you with an overview of good video card design, but not with
step-by-step instructions for actually implementing the design. It is
assumed that you have already read the NuBus design guidelines in
Chapters 2 through 10. Although the material presented in those chapters
is pertinent to all types of NuBus expansion cards, it is particularly
appropriate to the design of a video card.

The Macintosh II Video Card described in this chapter is no longer
available. For more information about the current Apple video cards,
contact APDA. Specifically, refer to the Display Card Developer Notes for
the Macintosh Display Cards 4-8, 8-24, and 8-24 GC, APDA publication
number M0857L/ A.

• Note: The examples in this chapter were developed before the
NuBus '90 specification was written. Therefore, they do not make
use of the latest NuBus '90 features or signal lines.

245

Video card overview

The original Macintosh II Video Card and the Macintosh II High-Resolution Video Card are
high-performance color video cards for use with the computers in the Macintosh II family.
These cards provide variable-depth color graphics at up to 8 bits per pixel. The cards contain
a color look-up table (CLUT) with a 16.8-million-color palette and an 8-bit digital-to-analog
converter (DAC) for each of three channels (red, green, and blue).

The original video card has several important features, including

• display resolution of 640 x 480 pixels

• refresh rate of 67 Hz for reduced flicker

• up to 256 colors out of 16.8 million possible

• support for 1-, 2-,4-, and 8-bit pixel modes

• frame buffer sizes of 256 KB and 512 KB, user upgradable

• plug-in-and-go operation-requires no special configuration of hardware or software

In addition to the above features, the high-resolution video card provides some features
not found on the original card. The new features are

• full support for RS-170 video monitors

• support for multiple screen sizes

• ability to recognize different monitors at startup time and automatically configure
itself appropriately

• full support for A!UX in the card's ROM

Unless specified, the information in the following sections pertains to both versions of
the video card. Firmware support is provided by the card's declaration ROM. The
declaration ROM contains a low-level card driver that performs all of the interface and
hardware management functions for the video card. The declaration ROM is described
later in this chapter. The firmware structure of the declaration ROM is described in more
detail in Chapter 8.

Operating-system support, as provided by Color QuickDraw, the Color Manager, and the
Slot Manager, is detailed in Inside Macintosh.

246 Designing Cards and Drivers for the Macintosh Family

6, Important In addition to the 256 KB to 512 KB of video memory that QuickDraw
manages, most of the video card features are subject to software
control through several control addresses. These addresses are all
located in the 16 MB slot space described in Chapter 7, "NuBus Card
Memory Access." Since there is a difference between NuBus address
allocation and the mapping of address space in Macintosh computers,
you must be aware of the byte swapping that takes place on the main
logic board of the computer. For more information on byte swapping,
refer to the section "NuBus Bit and Byte Structure" in Chapter 7 and
the section "Byte Swapping and the NTC" in Chapter 10. 6

Functional operation

The video card controls the output of data to a video device through the use of the Frame
Buffer Controller (FBC) and the color look-up table (CLUT). The declaration ROM provides
the interface between the card hardware and application software running on the cpu.

Figure 11-1 is a block diagram of the video card. The following paragraphs briefly describe
the function of each of the blocks shown in Figure 11-1.

• Figure 11-1 Video card block diagram

DATA

Processor-video '" Video
card interface

ADDR" RDATA
RAM

Frame
Buffer

i~ /" Controller
CLK CLK CaNT

~
(FBC)

I
.,.

1 r VCLK

I I Timing ~
generation \J.

Color
look-up VOUT

table ~
(CLUT)

Chapter 11 The Macintosh II Video Card 247

Proc~ssor~to-video card ~terface

The processor-ta-video card interface is implemented by a combination of hardware and
firmware. The hardware is the standard NuBus electrical interface, described in Chapters 1
through 7. The firmware is implemented in the declaration ROM, described later in this
chapter and in Chapter 8, "NuBus Card Firmware."

Tbning generation

The timing gener4tion circuitry includes pixel clock oscillators that define the time for a
single pixel. The latest version of the video card has two pixel clock oscillators, one for
the Macintosh II-family monitor (30.667 MHz) and another for the Apple IIGS (RS-170)
monitor (12.24 MHz). Only one of these clocks is active, as selected by firmware.

6 Important If the clock selected is not the right one for the type of monitor
connected to the card, the display will not be readable. The card's
firmware (Primary Init) stores information about the monitor so that
software can't switch to the wrong clock. 6.

The timing generation circuitry generates timing signals for other devices on the video
card, including

• the Frame Buffer Controller (FBC) interface signals

• the NuBus handshake and control signals

• other video card control signals

Frame Buffer Controller

The Frame Buffer Controller (FBC) is the most important single part of the card. It
manages the video RAM, generates the video sync signals, and contains the NuBus interface
circuitry. The PBC controls the transfer of data out of the serial port of the video RAM and
into the CLUT/DAC, where the pixel values are conv,erted into video display signals.

The FBC is a register-controlled CMOS gate array. The video card firmware controls the
FBC by loading its set of control registers with the parameters stored in the declaration
ROM. These registers are loaded during video card primary initialization and on certain
video driver control requests. These operations are described later in this chapter under
"Firmware Interfaces."

248 Designing Cards and Drivers for the Macintosh Family

The FBC uses the parameters stored in the control registers to generate and control video
data and timing signal output. Register contents determine video characteristics such as
bit depth and timing. The registers are also used for other control functions such as
selecting the appropriate pixel clock and reading the monitor sense line.

The various gated inputs on the FBC are used to execute RAM read/write and refresh
operations. RAM operations are more fully explained in the next section, "Video RAM."

The control registers used by the FBC are mapped into the computer's main memory in the
slot space assigned to the video card. The control address space is independent of the
frame buffer data space.

6. Important Your applications should never access the hardware directly because
the locations and functions of the registers may change (and also
because the control registers won't be compatible with other
manufacturers' cards). For this reason, the parameters stored in the
FBC control registers are not documented in this book. To maintain
product compatibility across a possible variety of Macintosh video
cards, and to allow for any future changes to the hardware, you are
strongly advised to always use software interfaces (driver routines) to
control the operation of the video card. 6.

Video RAM

The video RAM makes up the frame buffer: the memory dedicated to storage of the pixel
data for display. The frame buffer consists of two 256 KB banks of video RAM, Bank A
and Bank B. Each bank of video RAM consists of eight rcs, each of which is a 64 KB x 4
RAM device with 150 ns access time. On a card with 256 KB of video RAM, only Bank A is
populated; on 512 KB cards, video RAM chips are installed in both banks. The video card's
firmware performs a test at startup time to determine the amount of video RAM installed.

The video RAM rcs are dual ported: in addition to the normal parallel port for reading and
writing, each video RAM rc has a built-in shift register and separate serial port for video
data. QuickDraw writes into the video RAM through the parallel port, and the FBC
extracts the display data through the serial port. This separation of functions allows more
than 95% of the video RAM's bandwidth to be available to the processor.

Chapter 11 The Macintosh II Video Card 249

Of primary interest to you as a developer of a card or driver are NuBus operations to and
from video RAM. Bus operations to RAM (transactions) are of two types:

• video RAM space writes and reads

• control space writes and reads

Figure 11-2 shows a timing diagram for a processor access to video RAM space, for writing
and then reading. The typical sequence of functions is shown on the figure; also shown are
the start and acknowledge cycles that characterize a transaction, as described in
Chapter 2, "NuBus Overview," and Chapter 3, "NuBus Data Transfer."

Key elements of the sequence are as follows:

1. The current bus master drives ISTART to asserted (low), places the desired video
RAM space address on the IAD31-/AD2 bus, and drives </TM1-/TMO, IADl-/ADO>
with the transfer mode. The ITM1 signal is low when the first transaction in Figure 11-2
starts, indicating that a write transaction is under way.

2. Write output enable (/WROE) is asserted (low).

3. The video card decodes IID3-/IDO to determine whether it is in the slot currently
being accessed by the current bus master; if so, then the card's ISLOTSEL is asserted.

4. On the next rising (sampling) edge of the video clock (20M), RAM select (/RAMSEL)
is asserted; this indicates that a RAM access is to be initiated on the next driving
edge of the NuBus clock.

• Note: The video card clock (20M) is twice the frequency of the NuBus clock (/CLK).

5. The RAM timing chain is commenced, driven by a state machine going sequentially
through states 3, 2, 0, 1, and repeating; this machine controls a wait for the data from
the bus master/processor to become ready, initiates row and column address
strobes, and generates the RAM accesses to do the writing.

6. The bus master drives the / AD31-1 ADO lines with the data to be written and releases
the ITM1-/TMO lines and the lACK line.

7. The video card drives the transaction response status onto the ITMI-/TMO lines and
asserts acknowledge (/ ACK), notifying the bus master that the write transaction is
completed.

8. The bus master releases the I AD31-1 ADO lines and drives the lACK line to a
determinate state.

9. The video card releases the ITM1-/TMO lines and also releases lACK, completing the
write transaction.

250 Designing Cards and Drivers for the Macintosh Family

• Figure 11·2 Access to video RAM space

ICLK

NU70

MIDDLE

20M

ITM1

ISTART

ISLOTSEL

STATE

lRAMSEL

IPAS

!WROE

lACK

I

~

100 ns / RAM access starts

(") I I I I I I

I-----,U U LJ LJI---'Ul-I --'LJI---'LJI---'LJI---U
I I I I I
I I I I I

I I I
: I I

.... -+ ~i ~ ~ -il--~~~--.... ---+ --.... r-............ +-............ --
: r ::

'i rl::::::::::J iL:::::J I ! I
I I I I
I I I I

.... ~--~" kv~~-I'y-~~ ~~~ +-............ ~ ---+ -------
I I I""
I I I I
I I I I
I I I I

I : 0 ~1~ ~~1~ --~,~2r-.... '
I I I I I: ::

-----------~~ ~ ~"~i1~-----------------------
I I
I I

~i ~: // +-------~----~------~~ ~~:------~------~------~

l-----, ______)
I

Start
l cycle

I
Write

UH
I
I
I
I

I

a
I
I
I

~~
I
I
I
I

~
I
I
I

kn"'Z'''V''----
I
I
I
I

l_...,----'A_~) l,--...,----')
I I I

Acknowledge Start Acknowledge

cycle A_cy_c_le ___ ----,r-____ cy_cl_e ~)
I

Read

t Start of RAM timing chain.

Chapter 11 The Macintosh II Video Card 251

Color look-up table

The color look-up table (CLUT) is a device that converts the pixel data from the frame
buffer into the red, green, and blue video signals. It is actually a combination of a color
look-up table and three 8-bit digital-to-analog converters (DACs) integrated into one Ie.
The CLUT supports up to 256 simultaneous colors from a possible 16.8 million colors.

Color QuickDraw initializes the color-table RAM in the CLUT with default color values
using the video driver loaded from the declaration ROM. Color QuickDraw also provides
utilities (again by way of the video driver) to read and modify the information in the
color table.

The CLUT is the electrical interface between the FBC and the analog video output device.
In operation, the FBC controls the transfer of digital pixel data from the video RAM to the
CLUT. Inside the CLUT is a table of RGB triples, one for each currently available color.
Each pixel's worth 0, 2, 4, or 8 bits) of data from the frame buffer, acting as an index to
this table, selects an RGB triple to be sent through the DACs to the video outputs. The
table has storage for 256 RGB triples, enough to support up to 8 bits per pixel.

Each RGB triple from the table consists of three 8-bit values, one each for red, green,
and blue. Those values are sent to three 8-bit DACs to generate red, green, and blue
analog color signals. The outputs from the DACs provide RS-343-A-compatible or
RS-170-compatible RGB video signals to the video connector at the rear of the
video card.

Horizontal and vertical scan timing

Figures 11-3 and 11-4 show timing information for the two types of video monitors
supported by the video card: Macintosh II-family (high-resolution) RGB and Apple IIGS
(RS-170) RGB. These figures define the blanking, synchronizing, and active video regions
of the video scan waveforms in terms of dot or pixel times. A dot is the time required to
draw a single pixel. H is the time for one horizontal line, including retrace; likewise, V is
the time for a vertical scan.

252 Designing Cards and Drivers for the Macintosh Family

• Figure 11·3 Horizontal and vertical scan timing for high-resolution RGB monitor

Horizontal timing

0714v r;:J:~~.~;;~ ~ ~:
0.0\4 V T;~ !HSYNC ks--F"

0.286 V ----rt..J u

Sync pulse on
green channel only

, ,
I I

.. I I

! !
I :
: :
! ! ..

832 dots ..
640 dots ..

[I L_~"%dOO
Sync pulse width = 64 dots

Front porch = 64 dots

Vertical timing

0.714 V t ~~~~~~~~~~~~~~~ ~
: :: : :
! !! ! !
: I: : : ----+-i i i NSYNC i

! H ! ! u
i II iii 525 dots .. i
: :: : :
I I I I:: 'I:

! 1 ! 480 dots II' I' • "'ok po<ffi - 39 H • :

Sync pulse width = 3 H

Front porch = 3 H

l/dot = 30.24 MHz ± .1%.
All the timings are derived
from the dot clock and
have the same tolerance.

1 dot = 33.069 ns

White

~Black

1 H = 28.5714].1s
l/H = 35.00 KHz
1 V = 15.00ms
IN = 66.67 Hz

Chapter 11 The Macintosh II Video Card 253

• Figure 11-4 Horizontal and vertical scan timing for the RS-170 monitor

Horizontal timing

071;V r-J;----:;-~!-i~i~~!-----J~:
0.054 Vii IHSYNC

Sync pulse on
green channel only

~--~----------------~LJ
I :

.: !

! !
I I

! !
I ! ...

780 dots

640 dots ..

~L Back porch = 56 dots

Sync pulse width = 60 dots

Front porch = 24 dots

Vertical timing

I I
I I

I I
I :
! ! ...

262.5 dots

240 dots

~L Back porch = 16.5 H

Sync pulse width = 3 H

Front porch = 3 H

2;4 Designing Cards and Drivers for the Macintosh Family

..

.. !

11dot = 12.27 MHz ± .1%.
All the timings are derived
from the dot clock and
have the same tolerance.

1 dot = 81.5 ns

1 H = 63.57).1s
1/H = 15.7 KHz
1 V = 16.687 ms
IN =60Hz

Declaration ROM operation

The video card includes a declaration ROM that contains all the information the system
requires to identifY and use the card. The declaration ROM identifies the card as a video
device manufactured by Apple and identifies the particular model.

The declaration ROM incorporates three main elements:

• the configuration data

• the drivers

• the primary initialization code

These three elements allow the video card to be installed into a system, recognized, and
used without having to run any special configuration programs, and without adding any
code to the System file of the host system.

Configuration data

The declaration ROM provides a set of predefined video modes, each element of which
specifies all the parameters of the display unique to that mode, including horizontal and
vertical size, pixel size, rowbytes of a scan line, and the number of video pages available
at this screen resolution.

The video card is highly programmable, and, as a result, the number of possible video
modes is enormous. A subset of these video modes, optimized for various Apple display
devices, is included in the declaration ROM. The declaration ROM of the Macintosh II
Video Card has some unique features. Because the card is available in two
configurations-256 KB and 512 KB RAM-a number of mode conflicts arise. Most
notably, the 256 KB version of the card does not support 8-bit mode, and each common
mode has a different number of video pages available on the two cards. To resolve this
problem, the card includes two complete slot resources (sResources), one for the 256 KB
card and another for the fully stocked card. For a detailed description of sResources, see
Chapter 8, "NuBus Card Firmware."

chapter 11 The Macintosh II Video Card 255

At startup time, both slot resources are installed in the system's slot resource table. When
the primary initialization code of the video card is executed, in addition to initializing
the FBC, it performs a size test on the amount of available video RAM and removes the
slot resource that does not apply. The 256 KB version of the slot resource list includes
configuration information only for 1-, 2-, and 4-bit video modes as well as the appropriate
number of video pages available. Normally the video mode of a card in a Macintosh 11-
family computer is set using a Monitors control panel. See Inside Macintosh for more
information on Control Panel modules. Monitors finds the available video modes of a
video card by examining the declaration ROM's information. By implementing the
declaration ROM in the manner described here, a single declaration ROM serves both
configurations of the video card without Monitors having to verify device-dependent
information (such as memory size).

The driver

The parameter defining each video mode also specifies a software driver, specific to the
card hardware and located in the ROM, that is loaded into main memory by the Slot
Manager at startup time. This driver is equivalent to the firmware on traditional peripheral
cards. Chapter 9, "NuBus Card Driver Design," contains a code listing for a possible video
card driver.

• Note: Because the ROM may not appear on all 4 byte lanes, the driver is loaded into the
main memory for execution; object code is not normally executed over the bus.

The Macintosh II High-Resolution Video Card also contains a separate driver specifically
designed for video support under the A/UX operating system.

256 Designing Cards and Drivers for the Macintosh Family

The primary initialization code

The declaration ROM includes a special code, called the primary initialization code,
that performs key, one-time initialization to the card when executed.

The monitor connected to the high-resolution video card identifies itself by asserting a
predetermined combination of signals on the sense lines (SENSEO and SENSEI on the
video connector). The primary initialization code, executed at system startup, reads the
monitor sense lines and selects the appropriate pixel clock rate. Next, after sizing the
amount of installed video RAM, the code selects the appropriate sResource and installs it
in the Slot Manager's slot device table. This information informs Color QUickDraw about
the size and shape of the display, as well as the various pixel depths and number of video
pages available on this configuration of card and monitor.

By making this determination at startup time, the primary initialization code permits the
system code to be greatly simplified because only information pertinent to the
connected monitor is reported by the Slot Manager, and no information about the other
type of display is present in the slot device table. This feature greatly simplifies the use of
the video card because the display is always correct for the connected monitor, and the
monitor cannot be switched into modes where the screen is not readable.

Firmware interfaces

Usually, it is not necessary to access the slot information or the driver directly from the
application; instead, Color QuickDraw and the Color Manager in the Macintosh ROM
manage all transactions to the card and its driver. Figure 11-5 shows the way those ROM
routines mediate between the application and the hardware. For example, the
Ini tGDevice routine in Color QuickDraw (documented in the graphics devices
information in Inside Macintosh) issues all the appropriate calls to change the video mode,
load the CLUT, and perform other hardware maintenance tasks, as well as updating system
variables pertinent to the affected video device.

Selection of a video mode by the user is made possible by system software such as
Monitors and a Control Panel module that graphically presents all possible modes for a
video device (as enumerated in the declaration ROM) and allows interactive selection. By
always using system code such as QuickDraw and the Control Panel, you will find that
applications are simpler to write and present a more uniform interface to the user.

Chapter 11 The Macintosh II Video Card 257

• Figure 11-5 Firmware levels

Applications

Color QuickDraw

Video
card

hardware

Declaration ROM
firmware

Color
Manager

Applications

Application-level interface
Control Panel
Paint programs and so forth

System, level interface
Color QuickDraw
Color Manager
Palette Manager

Card-level interface
Primary initialization
System configuration
Video driver

258 Designing Cards and Drivers for the Macintosh Family

Card connectors

The latest version of the Macintosh II Video Card contains three connectors, one for
NuBus, one for video output, and one for external video signals. The connection to the
NuBus is through the 96-pin Euro-DIN connector described in Chapters 5 and 6 of this
book.

Video connector

The small DB-15 connector at the rear of the card is the video output connector. In
addition to the red, blue, and green video output signals and the sync signals, this
connector provides the sense lines that enable the card to determine the type of monitor
it is connected to. The pinout of the video output connector is shown in Table 11-1.

• Table 11-1 Pin assignments for the video output connector

PIn

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Signal

GND
RED
!CSYNCH
SENSEO
GREEN
GND
SENSEI
n.c.
BLUE
SENSE2
GND
!VSYNC
GND
GND
!HSYNC

Definition

Red ground
Red video
Color synchronization
Monitor sense line
Green video
Green ground
Monitor sense line
Not connected
Blue video
Monitor sense line
Ground
Vertical sync signal
Blue ground
Ground
Horizontal sync signal

Chapter 11 The Macintosh II Video Card 259

External-signal connector

The external-signal connector is a 14-pin connector that enables the card to accept external
sync signals from genlock and overlay cards. Table 11-2 shows the pinout of this connector.

• Table 11-2 Pin assignments for the external-signal connector

PIn

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Signal

GND
GND
GND
EXTCLK
GND
CLOCKSELECTt
GND
/CBLANK
GND
/VSYNC
GND
/HSYNC
VCC
/CLOCKSELECTt

Definition

Ground
Ground
Ground
External clock
Ground
Positive clock select
Ground
Blanking
Ground
Vertical synchronization
Ground
Horizontal synchronization
Power supply voltage
Negative clock select

t Note that both polarities of the clock select signal are present.

260 Designing Cards and Drivers for the Macintosh Family

Part II The Processor-Direct Slot
Expansion Interface

About Part II

The processor-direct slot (PDS) expansion interface is the subject of Part II of this book.
The seven chapters give you the information you need to design expansion cards for
Macintosh PDS computers. Computers that offer PDS expansion capabilities are the
Macintosh SE, Macintosh Portable, Macintosh SE/30, Macintosh LC, Macintosh IIfx,
Macintosh IIsi, Macintosh Quadra 700, and Macintosh Quadra 900.

Chapter 12 compares the major features of the Macintosh PDS computers and gives a general
overview of their operation. The chapter provides block diagrams of the Macintosh SE,
Macintosh Portable, Macintosh SE/30, and Macintosh LC computers, and then describes
the capabilities of the PDS expansion interface.

Chapter 13 contains the electrical information you need to design cards for the 68000
Direct Slot. The Macintosh SE and the Macintosh Portable both offer the 68000 PDS
expansion capabilities. Chapter 13 provides electrical design guidelines for the 68000
Direct Slot, including connector pinouts and signal descriptions, expansion card load
limits and drive requirements, instructions for accessing the computer electronics,
address spaces, and power consumption guidelines.

Chapter 14 discusses the electrical design gUidelines you need to design cards for the
68020 Direct Slot. The Macintosh LC offers a 68020 PDS expansion slot. The topics in
Chapter 14 include a discussion of the 68020 Direct Slot expansion connector pinouts and
signal descriptions, expansion connector load limits and drive requirements, power
consumption guidelines, memory and I/O access from an expansion card, a discussion of
pseudoslot design, and specific hints to be used for your 68020 expansion card.

Chapter 15 provides electrical guidelines for designing cards for the 68030 Direct Slot for
the Macintosh SE/30, the Macintosh IIfx, and the Macintosh IIsi. Topics include the
68030 Direct Slot expansion connector pinouts and signal descriptions, expansion
connector load limits and drive requirements, information on accessing the computer's
main logic board, I/O, and memory devices from an expansion card, pseudoslot design
information, specific hints for developers, and power consumption guidelines.

262 Designing Cards and Drivers for the Macintosh Family

Chapter 16 includes electrical design guidelines for the 68040 Direct Slot in the Macintosh
Quadra 700 and Macintosh Quadra 900 computers. Topics covered in Chapter 16 include
an electrical description of the 68040 expansion connector, the connector pinouts and the
signal descriptions, access to memory and I/O devices from 68040 Direct Slot expansion
cards, pseudoslot information, cache management techniques, interrupt handling for the
expansion cards, power consumption guidelines, and design hints for the 68040 Direct
Slot expansion cards.

Chapter 17 details the physical information you need to design Macintosh PDS expansion
cards for each of the current Macintosh PDS computers.

Chapter 18 describes a proven design of a simple disk controller card that uses the
Macintosh SE 68000 Direct Slot.

Part II The Processor-Direct Slot Expansion Interface 263

Chapter 12 Overview of Macintosh
PDS Computers

This chapter provides an overview of the structure and organization of
the Macintosh family of computers that use a single processor-direct slot
(PDS) as their primary expansion interface. Included in this category are
the Macintosh SE, the Macintosh Portable, the Macintosh SE/30, and the
Macintosh LC. The PDS expansion interface relates directly to the
microprocessor it supports. The Macintosh SE and the Macintosh
Portable are configured with 96-pin 68000 Direct Slots, the Macintosh LC
with a 96-pin 68020 Direct Slot, and the Macintosh SE/30 with a 120-pin
68030 Direct Slot.

Certain Macintosh computers use the NuBus as their primary expansion
interface and are not discussed here even though they offer PDS
expansion slots. The hardware overview of these computers-the
Macintosh IIfx, the Macintosh IIsi, the Macintosh Quadra 700, and
the Macintosh Quadra 900-is provided in Chapter 1, "Overview of
Macintosh Computers With the NuBus Interface."

This chapter places the internal microprocessor expansion bus and PDS
connector in context within the total computing machine. Subsequent
chapters provide the information needed to design expansion cards
compatible with the PDS configuration. This chapter assumes you're
familiar with the basic operation of microprocessor-based devices.

Major features

Table 12-1 compares the major features of all Macintosh computers that use the
processor-direct slot as their primary expansion interface.

• Table 12-1 Major features of Macintosh computers with processor-direct slots

Feature Macintosh SE Macintosh Portable Macintosh SE/30 Macintosh LC

Processor MC68000 Mc68HCOOO MC68030 MC68020
24-bit address bus, 24-bit address bus, 32-bit address bus, 29-bit address bus,
16-bit data bus 16-bit data bus 32-bit data bus 16-bit RAM data bus,

32-bit ROM data bus

Auxiliary Not applicable Power Manager IC Not applicable Not applicable
processor keyboard processor

Processor clock 7.8336 MHz 15.6672 MHz 15.6672 MHz 15.6672 MHz

Coprocessor Not applicable Not applicable Mc68882 FPU FPU possible on
expansion slot

Memory Not applicable Not applicable Mc68030 includes a built- Not applicable
management in PMMU that allows true

32-bit address translation
with hardware page
replacement

RAM 1 MB, expandable to 1 MB, expandable to 1 MB or 4 MB, 2 MB, expandable to
4 MB 5 MB, using SRAM, expandable to 8 MB 4 MB or 10 MB; 256 KB

PSRAM, and DRAM (expandable to 128 MB or 512 KB of VRAM
when higher-density
DRAM chips are
available)

ROM 256 KB 256 KB 256 KB 512 KB, optional
expansion to 4 MB

Expansion slot 68000 Direct Slot, 68000 Direct Slot, 68030 Direct Slot, 68020 Direct Slot,
96-pin 96-pin 120-pin 96-pin

Input device Two Apple Desktop Bus Built-in alphanumeric Two ADB ports for One ADB port, one audio-
interface (ADB) ports for keyboard, keyboard and trackball; keyboard, mouse, or input jack for microphone

mouse, or optional input ADB for optional input optional input device or line input
device devices

(continued)

266 Designing Cards and Drivers for the Macintosh Family

• Table 12-1 Major features of Macintosh computers with processor-direct slots (continued)

Feature Macintosh 5E Macintosh Portable Macintosh SE/30 Macintosh LC

Serial ports Two mini 8-pin connectors Two mini 8-pin connectors Two mini 8-pin connectors Two mini 8-pin
supporting RS-422 supporting RS-422 supporting RS-422 connectors supporting

RS-422

Floppy disk Two internal floppy disk SWIM controls two SWIM controls internal SWIM controls two
support drives, one standard, one internal 1.4 MB, 3.5" 1.4 MB, 3.5" SuperDrive; internal 3.5", 1.4 MB

optional. Super Woz SuperDrives Cone external floppy disk drive SuperDrives (one
Integrated Machine standard, one optional); port standard, one optional)
(SWIM) controls two 3.5", external floppy disk drive
1.4 MB SuperDrives; port
earlier models used
Integrated Woz Machine
(IWM) to control two 3.5",
1.4 MB SuperDrives

Hard disk Optional internal 20 or Optional internal 40 MB Internal 40 or 80 MB SCSI Optional internal 40 MB
40 MB SCSI hard disk; SCSI hard disk; optional hard disk, optional SCSI hard disk, optional
optional external SCSI external SCSI hard disk external SCSI hard disk external SCSI hard disk
hard disk

SCSI port One internal 50-pin; One internal 34-pin; One internal 50-pin; One internal 50-pin;
one external DB-25 one external DB-25 one external DB-25 one external DB-25

Sound Standard Macintosh sound Custom Apple Sound Chip Custom ASC V8 gate array provides a
chip CASC) subset of ASC

implementation

Video display Built-in 9" monochrome Built-in LCD, 9.8" flat Built-in 9" monochrome Optional 12" mono-
monitor, 512 x 342 pixels panel, 640 x 400 pixels monitor, 512 x 342 pixels chrome display, 12" RGB

display, or 13"
AppleColor High
Resolution display

Battery Long-life lithium battery Rechargeable, 8-hour, Long-life lithium battery Long-life lithium battery
backup lead-acid battery retains backup backup

RAM contents during
sleep state; 9 V battery
holds RAM contents while
the primary battery is
being replaced

Chapter 12 Overview of Macintosh PDS Computers 267

Hardware architecture

The following discussion is brief and intended primarily to show the place of the
processor-direct slot (PDS) expansion connector in the machine architecture. For a
complete description of hardware operation, see the Guide to the Macintosh Family
Hardware. Also useful would be the Macintosh /lsi, Ie, and Classic Developer Notes and the
Macintosh Classic II, Macintosh PowerBook Family, and Macintosh Quadra Family
Developer Notes. Or, if you are interested in a higher-level overview, see the Technical
Introduction to the Macintosh Family.

The Macintosh SE and the Macintosh SE/30 are similar in appearance to the original
Macintosh computer. The Macintosh SE contains a Motorola Mc68000 microprocessor
operating at 7.8336 MHz and a Euro-DIN 96-pin connector for hardware expansion.
The Macintosh Portable also has a Euro-DIN 96-pin expansion connector, but it is
electrically different from the expansion connector used on the Macintosh SE. In
addition, the Macintosh Portable has special low-power components throughout,
including an Mc68HCOOO microprocessor operating at 15.6672 MHz, and it incorporates
a built-in flat panel liquid crystal display (LCD).

The architecture of the Macintosh LC is based on the Macintosh IIci architecture and uses
a Motorola MC68020 microprocessor operating at 15.6672 MHz and a Euro-DIN 96-pin
connector for hardware expansion. The expansion connector, however, is electrically
different from that found in the Macintosh SE and the Macintosh Portable.

The Macintosh SE/30 is similar in external appearance to the Macintosh SE; and although
the interior is also very similar in appearance, the components on the main circuit board
of the Macintosh SE/30 are more closely related to those of a Macintosh IIx. The
Macintosh SE/30 has a Motorola MC68030 microprocessor that operates at 15.6672 MHz
and a Euro-DIN 120-pin connector for hardware expansion. Block diagrams of the
Macintosh SE, Macintosh Portable, Macintosh SE/30, and Macintosh LC computers are
shown in Figures 12-1 through 12-4.

268 Designing Cards and Drivers for the Macintosh Family

These PDS computers contain several common circuits, including random-access memory
(RAM), read-only memory (ROM), and some I/O chips that enable the microprocessor to
communicate with external devices. Following is a brief description of these I/O chips:

• Every Macintosh computer except the Macintosh LC has one or two Apple custom
Versatile Interface Adapter (VIA) chips. The Macintosh SE and the Macintosh
Portable each have one VIA chip. The VIA in the Macintosh SE supports the Apple
Desktop Bus (ADB) and the real-time clock (RTC). The VIA in the Macintosh
Portable provides the communication interface between the processor and the
Power Manager IC as well as interrupts for a number of internal functions. The
Macintosh SE/30 has two VIA chips, VIAl and VIA2. VIAl supports the same
functions as the Macintosh SE VIA, while VIA2 supports features such as expansion
card interrupts, Apple Sound Chip interrupts, and others.

• The Macintosh LC uses a new custom VLSI chip, the V8 gate array, to integrate timing,
address decode, video generation, clock generation, sound control, and GLU (general logic
unit) functions that were provided by individual chips in other Macintosh computers.

• A SCSI (Small Computer System Interface) chip provides high-speed parallel
communication with internal or external devices such as hard disks.

• A Serial Communications Controller (SCC) provides for high-speed, asynchronous
serial communication (also synchronous modem support). In the Macintosh LC, a
custom chip, Combo, combines the functions of the SCC and the SCSI controller in a
single device. This device is completely software compatible with the SCC and SCSI
chips it replaces.

• An Apple custom chip controls both internal and external floppy disk drives. Earlier
Macintosh SE models used an IWM (Integrated Woz Machine) chip to control 3.5-inch,
800 KB floppy disk drives. More recent models of the Macintosh SE, as well as the
Macintosh SE/30, the Macintosh LC, and the Macintosh Portable, use the SWIM (Super
Woz Integrated Machine) chip to control 3.5-inch, 1.4 MB high-density disk drives.

Chapter 12 Overview of Macintosh PDS Computers 269

• The Macintosh SE includes an Apple custom chip, called the BBU (Bob Bailey Unit),
for video and sound control and for generating device-select signals. The Macintosh
SE/30 and the Macintosh Portable use the custom Apple Sound Chip (ASC) to control
stereo sound and other enhancements not available on the Macintosh SE.

• The Macintosh Portable includes a custom integrated circuit called the Power
Manager IC that controls the distribution of power to all I/O deVices. Not all devices
can be addressed directly, and those that can require Power Manager IC cooperation
to ensure that power will be applied during the access time.

• The Macintosh LC also uses a microcontroller that integrates the functions of ADB
interface, real-time clock, power-on reset, parameter RAM storage, keyboard
controlled reset, and NMI (nonmaskable interrupt). This microcontroller is also used
in the Macintosh IIsi. On other Macintosh computers, the reset and NMI functions
are hardware controlled by the programmer's switch and the reset switch. The ADB
microcontroller also controls the DFAC (Digitally Filtered Audio Chip), a custom IC
that performs the analog processing functions of the sound system.

All Macintosh computers use memory-mapped I/O, which means that you can gain access
to each device in the system by reading from or writing to specific locations in the
address space of the computer.

The Mc68000 and the Mc68HCOOO processors used in the Macintosh SE and the Macintosh
Portable can directly access 16 M of address space. The MC68020 processor used in the
Macintosh LC and the Mc68030 processor used in the Macintosh SE/30 can directly access
128 MB of address space. This address space is divided into several areas allocated to
RAM, ROM, and various I/O devices.

270 Designing Cards and Drivers for the Macintosh Family

• Figure 12-1 Block diagram of the Macintosh SE computer

96-pin
processor
direct slot

rf'ff
: :i
i i:
iii
:: :
i it

~ i i
i ::

Jf:

D15-O

A23-1

(All the Mc68000
lines plus power

and clocks)

Address
bus

CPU A23-1

Mc68000 Data
bus

D15-O

/IPLl ~Inte~Pt I
switch

/IPLO

@u

1 SCSI interrupt I
mask I

A23-19,
17,9

A18,16-
10,&-1

015-0

D15-O

A17-1

/VIAIRQ

D15-8

A12-9

SCSIIRQ

D15-8

A6-4

07-0

A12-9

/SCCIRQ

015-8

A2,1

Built-in

m~

vidro §K
hoard

' V
~Im'=l External speaker

sound jack
Sony I 0 sound IC I r--

BBU DiskPWM (To external

~······1 floppy disk port)

Address I ~ RAM a addresses
MUXs · RA9-0 RAM · · · 1MBt04MB RAM: data

Data bus RDQ15-0
buffers

ROM
256KB Apple Deskto p

Bus ports
ADB -

VIA ..

G -

Internal hard disk
External SCSI connector

L:::::: ::::: ::: ::::::::::: J SCSI port

External Internal floppy Internal floppy
disk connector disk connector floppy

IWM I :::::::::: I I :::::::::: I disk port
.........

Serial
ports

Channel A PortA ... I Drivers (modem) ..
SCC and

ChannelB receivers PortB
(printer) ..

Chapter 12 Overview of Macintosh PDS Computers 271

• Figure 12-2 Block diagram of the Macintosh Portable computer

II

96-pin
processor-
direct slot

n+:= D15-0

ill ~1
(All the 68000

lines plus clocks)

Address
bus

CPU A3l--8

Mc68HCOOO Data
bus

D15-O

PLl i IIPL2

Flat panel
display

,~ 1
~ ~~~~ rlkl\==~

Video port
1-----\, : .. r------, I Interrupt

Al9--l6 ---j switch r----L-----, VD7-O r---
a..;;.;:.....;;;;.a..-../ Misc. GLU DO-15 ''''I Video

r---I----If---l HI 1---"'" RAM
IA"AlU4-::;l-L--.J VAl4-l 32 KB

.Q2:Q. CPUGLU

A2l-l
RAM

D15-0 data
bus

buffers
D15-O

A2l 2
D15-O ROM

A17-1 256KB

D15-0

A2l-2

RAM
data

RDl5-0

TI RAM ~
" . i' expansion
! i connector
.!!

A15-1

\I
II ROM
\I expansion
I ! connector

RAM

1MB

Apple Desktop
Bus port

~------~. .
~ CPU GLU II_---J._----I-.:-!VIAI--=::.:.RQ~----,~ Power Keyboard

Manager - processor

Battery charger
and power

supply

I
r Battery l

D15--8
A12-9

~
D15--8

A<H

D7-O

Al 2-9

ISCCIRQ

D15--8

A2,1

D15--8
A12-l

IASCIRQ

VIA

SCSI

SWIM

scc

ASC

f ~ Keyboard
II i! II I! and trackball
.:..:.!! .:..:.! I connectors

Internal hard disk
connector

:::: :::::::: ::: :::::::: :':

Internal floppy Internal floppy
disk connector disk connector

I :::::::::: I :::::::::: I

External
SCSI port

External
floppy

disk port

Serial

~
ports

Ch. A Misc. rr~=-l--..lP~orrrt~A~:: ••
GLU Drivers (modem)

. and P B
~Cdh!:... B~-t---l!r~ec~e~iv!!er~sj-'--i~o;rt~~ ...
I (printer) ••

II Modem
"-------1'1 connector

fToiiYl ~<, ~I---------{IO External
~ sound jack

"------'~ I rf1 '\J Internal speaker

Z72 Designing Cards and Drivers for the Macintosh Family

• Figure 12-3 Block diagram of the Macintosh SE/30 computer

120-pin .. (All the 68030
processor- ·"····""····"·····"······"·······:/1 lines plus power
direct slot

.. and docks)
Video

A31-24,16 logic ~Mt_m
VID0--7 mo~

Video RAM Video Video I
Al6-0 Video RAM address bus data bus

A4-1 address .. M<b.7 .. ~
board

FPU L/ MUXs
....

Mc68882
D31-O D31-24 Video

ROM

A25--3 Address
Address bus MUXs

CPU A31-O RAM:
1 to8MB

MC68030 D31-O

Data bus
031-0 031-0 Apple Oeskto Al8--2 ROM

'<I' 2S6KB Bus ports
p

:! ADD -«")

o !VIAliRQ ..
::i: -
-' IInte~Pt~ A12-9

VIAl 1 sec int RTC .,.,
<:::: sWitch

A31-24,22,
!VIA2IR\,.J

FromPOS VBLint - GLU 20,16--13,1,0 A12-9 and video
VIA2 IRQ6,3-1 I

t t • ~ r u SWTSint

DRQ SCSIIRQ Internal hard c\isk
External

SCSI connector ~ SCSI port
A6-4, : ,

Internal floppy Internal floppy External
disk connector disk connector floppy

SWIM r::::::::::l I :::::::::: I disk port
A12-9

Serial

/SCCIRQ Channel A PortA
ports

I Drivers [(modem) ..
and SCC ChannelB receivers PortB

A21 (printer) ..

IS---Q1 Internal External
Amp. speaker ~fk /SND f- SOld'

ASC
soun IC

Al1-O
f--- SOld'

soun IC

Chapter 12 Overview of Macintosh PDS Computers Z73

.. Figure 12-4 Block diagram of the Macintosh LC computer

CPU

MC68020 Main ROM I 2 SIMMs fo: I f-
128 K x 32-bit RAM expansion r- t-- VRAM

A21-2 ROM
110r2MBRAM I Four 1 Mbit soldered on PCB I 031-0. parts

031-16
I 2x74LS245

RAM data bus (16)

I Video
connector

A31 23-0 ~
Addr

RAM addrbus (12)
'-- Data aUT

V8
: ~

Filter
gate array : J

"\ Fixed gain Internal

~ I speaker amp speaker
- Serial interface

OFACchip o Headphone

6 I
AmpAGC

I © Mic input filter

jack

...

Serial
A2-1 ri 26LS30 r-

PortA
ports

sec
I 26LS30 ~ (modem) ..

85C80 Port B
031-24 Combo ---j 26LS32 ~

(printer) ..
chip

External
A6-4 SCSI ::::::::::::: I::::::::::: SCSI port

..... :: .. :: :::
Internal hard disk

connector

It
OFAC control

68HC05 Apple Desktop
'---- T micro- Bus port

I Battery I C controller .. -~I

Internal floppy Internal floppy
A129 disk connector disk connector

SWIM I
I

..........
03H4 I

~: ~:~ ,

96-pin processor-direct slot

274 Designing Cards and Drivers for the Macintosh Family

RAM

RAM is the working memory of the system. In the Macintosh SE computer, address space
from $00 0000 through $3F FFFF is reserved for RAM. In the Macintosh Portable computer,
address space from $00 0000 through $8F FFFF is reserved for RAM. Address space
$0000 0000 through $3FFF FFFF is reserved for RAM in the Mc68030-based Macintosh
computers. In the Macintosh LC, address space from $00 0000 through $9F FFFF is reserved
for RAM. The actual amount of address space used depends upon the amount of RAM
available in the system.

The processors in the Macintosh computers use the first 1024 bytes of RAM (addresses
$00 0000 through $00 03FF) as exception vectors; these are the addresses of the routines
that gain control whenever an exception such as an interrupt or a trap occurs. The vector
base register (VBR) also points to the beginning of the exception vector table. The first
256 bytes of the exception vectors are reserved for use by the operating system, and the
remainder are allocated for use by applications. RAM also contains the system and
application heaps, the stack, a copy of parameter RAM, various global variables and trap
handlers, and other information used by applications.

In addition, the following hardware devices share the use of RAM with the Mc68000 on the
Macintosh SE:

• the video display, which reads the information for the display from one of two
screen buffers

• the sound generator, which reads its information from a sound buffer

• the disk-speed controller (used only with an external, single-sided floppy disk drive),
which shares its data space with the sound buffer

The Macintosh Portable has separate RAM buffers for sound and video and does not have
a disk-speed controller; therefore, it does not share its system RAM with other devices.

In the Macintosh SE, the processor's accesses to RAM are interleaved with the video
display's accesses. In the Macintosh SE/30 and Macintosh Portable, the processor's
accesses to RAM are not interleaved with the video display's accesses because the video
circuitry includes memory that is used exclusively by the video display.

The Macintosh LC is shipped with 256 KB or 512 KB ofVRAM (video RAM). With this
configuration, main memory is not used for storing video data. If VRAM is not installed, it is
possible to use main memory for video storage, though it is not recommended. With this
configuration, main memory can only support the 640 x 480 monochrome video mode.

Chapter 12 Overview of Macintosh PDS Computers 275

ROM

ROM is the system's permanent read-only memory. When the Macintosh is first turned on,
a second image of ROM appears at $000000, so that ROM can supply the processor with
the exception vectors. Following the first access to the normal address ranges of ROM or
the SCSI controller, the image of ROM at $00 0000 is replaced by RAM.

The base address of ROM is stored in the global variable ROMBase. ROM contains the
routines for the User Interface Toolbox and the Macintosh Operating System, and the
various system traps.

Device I/O

Macintosh computers use memory-mapped I/O, which means that each device in the
system is accessed by reading from or writing to specific locations in the address space of
the computer. The address space reserved for the device I/O contains blocks devoted to
each of the devices within the computer. Each device contains logic that recognizes when
it's being accessed, and the device responds in the appropriate manner. Refer to the
section "Device 1/0" in Chapter 1, which covers this topic in more detail.

PDS expansion interface

The PDS expansion interface has been designed to help hardware developers add reliable and
elegant custom hardware to the Macintosh family of computers.

Following the design guidelines in Chapters 13 through 17, you may choose to offer cards
such as the following:

• custom video card

• network communication interface card

• modem card

• coprocessor or accelerator card

The foregoing list is not intended to limit or authorize, in any way, the types of expansion
cards that you may want to develop.

276 Designing Cards and Drivers for the Macintosh Family

The 68000 Direct Slot

The Macintosh SE was the first Macintosh computer to offer PDS expansion. A Euro-DIN
96-pin connector on the main circuit board provides unbuffered access to the Mc6sooo
processor bus, including all address, data, and control lines. In addition, extensive power
and grounding are provided in the expansion connector, as well as critical high-speed
timing signals. The 6sooo Direct Slot supports high-speed direct memory access into the
RAM, allows coprocessors to share the address and data bus, and allocates generous
portions of the address space for new peripherals. An expansion card in the 6sooo Direct
Slot can access system RAM and ROM at the same rates as the Mc6sooo microprocessor.
RAM accesses occur at 3.22 MB per second, and ROM accesses are at 3.92 MB per second.

The physical design of a Macintosh SE permits you to mount an expansion card of
approximately 4 inches by S inches in area in a position horizontal to the main board. The
96-pin expansion connector provides one mounting point for the expansion card, and
there are holes at the opposite side of the main logic board for two mounting posts. Both
the Macintosh SE logic board and the chassis have been designed to allow mounting and
removal of the logic board while it is joined to an expansion card.

Chapter 17 describes the physical provisions for mounting an expansion card in a
Macintosh SE 6sooo Direct Slot. See Figures 17-1 through 17 -S for drawings of these
mounting provisions.

The Macintosh Portable has the same Euro-DIN 96-pin connector as the Macintosh SE, but
connector pinouts are different, and there is no provision for accessing internal hardware
signals from outside the Macintosh Portable case. The expansion interface connector on the
Macintosh Portable is also referred to as a 6sooo Direct Slot even though this machine uses the
Mc6sHCOOO processor-a high-speed, low-power, CMOS version of the Mc6sooo processor.
Although this connector is available for expansion purposes, there are certain limitations that
may restrict you in designing expansion cards. These limitations are described in Chapter 13 in
the section "6sooo Direct Slot Expansion for the Macintosh Portable."

The 68020 Direct Slot

A Euro-DIN 96-pin socket connector provides the PDS expansion for the Macintosh LC.
This connector is physically, but not electrically, identical to the PDS connector used on
the Macintosh SE. The processor-direct expansion connector on the Macintosh LC
provides access to the Mc6s020 microprocessor's full 32-bit data bus and 29 address lines,
as well as to a selection of control signals.

Chapter 12 Overview of Macintosh PDS Computers m

The expansion card mounts parallel to the main logic board, component side facing
component side. The features that you implement in your design are limited only by the
size of the card, approximately 3 inches by 5.4 inches, and the available power. The 96-pin
expansion connector provides one mounting point for the expansion card, and there are
holes at the opposite side of the main logic board for two mounting posts.

An opening in the rear of the Macintosh LC case allows an expansion card to communicate
with external devices. This opening accommodates a DB-IS connector, which you can
include as an integral part of your expansion card design.

Chapter 17 describes the physical design guidelines for mounting an expansion card in the
Macintosh LC 68020 Direct Slot.

The 68030 Direct Slot

The 68030 Direct Slot expansion connector supports the 32-bit address and data bus
features of the Mc68030 microprocessor. The expansion hardware consists of a 120-pin
Euro-DIN expansion connector that provides access to the Mc68030 processor's address
and data bus signals, DMA and other processor control signals, interrupt signals, status
signals, and power and grounding for the expansion card.

The 68030 Direct Slot expansion feature is provided on the Macintosh SE/30, the
Macintosh IIfx, and the Macintosh IIsi. Though all three Macintosh computers use the
120-pin expansion connector, there are some differences. The Macintosh IIsi requires that
a 68030 Direct Slot adapter card be installed first before installing a processor-direct
expansion card. The expansion connector on the 68030 Direct Slot adapter card is
physically and electrically identical to the expansion connector found on the Macintosh
SE/30 main logic board. This allows expansion cards to work in both the Macintosh IIsi
and the Macintosh SE/30 without change, as long as the expansion cards can run at the
different clock speeds of both computers.

The Macintosh IIfx also uses the 120-pin expansion connector; however, it differs
electrically from the Macintosh IIsi and the Macintosh SE/30. Chapter 15 discusses the
electrical characteristics of the 68030 Direct Slot expansion. Chapter 17 provides
information about the physical characteristics of installing a PDS expansion card. Also
covered in these two chapters is a discussion of the Macintosh IIsi adapter card.

278 Designing Cards and Drivers for the Macintosh Family

The 68040 Direct Slot

On the Macintosh Quadra 700 and the Macintosh Quadra 900 computers, a 140-pin PDS
expansion connector is used to provide unbuffered access to the Mc68040
microprocessor's signals by way of the system bus. The system bus on the Macintosh
Quadra 700 and the Macintosh Quadra 900 is a high-performance synchronous bus that
runs at the same clock speed as the 68040 bus clock and includes new features such as
burst read and write. The PDS expansion connector supports the 32-bit address and data
bus features of the MC68040 microprocessor.

The 68040 PDS expansion slots for the Macintosh Quadra 700 and the Macintosh
Quadra 900 are pin-for-pin compatible. Any expansion cards developed for the Macintosh
Quadra 700 also work in the Macintosh Quadra 900.

In the Macintosh Quadra family of computers, a PDS card has the same dimensions as a
NuBus card. Because of this, a PDS card can be larger for the Macintosh Quadra 900. The
oversized card for the Macintosh Quadra 900 is approximately 6 inches high and between
7 and 12 inches wide. The size of the Macintosh Quadra 700 PDS expansion card, however,
must be smaller, the same size as a standard NuBus card. Foldouts 1, 2, and 5, included at
the back of this book, describe the dimensions for standard and oversized NuBus cards.

The PDS expansion cards for both the Macintosh Quadra 700 and the Macintosh
Quadra 900 can include a back-panel connector. For more information about physical
design guidelines for the 68040 PDS expansion cards, please refer to Chapter 17.

Additional support for expansion

The Macintosh SE and the Macintosh SE/30 have power supplies and fans that are
designed to provide additional power and cooling for the electronics on expansion cards.

Both the Macintosh SE and the Macintosh SE/30 include a feature that allows cables to be
routed from an expansion card to a bracket and an access opening at the rear of the case.
The bracket can hold custom connectors on a small connector board that may also
contain filter electronics. Chapter 17 contains drawings showing how to connect an
expansion card to external devices through the external device access opening.

Third-party products that adhere to the expansion guidelines in Chapters 13 through 17
and Appendix A, that use the Apple-supplied expansion features, and that do not require
physical alteration of the computer will not void the Apple Limited Warranty.

Chapter 12 Overview of Macintosh PDS Computers 279

Motorola has extensively documented its Mc68000 family of microprocessors. For a more
detailed understanding of the interface between your expansion card and the
microprocessor bus, please refer to the following documents:

• MC68000 16/32-Bit Microprocessor User's Manual, Motorola document
AD1814R5, March 1985

• MC68020 32-Bit Microprocessor User's Manual, Motorola document
MC68020UM/ AD

• MC68030 Enhanced 32-Bit Microprocessor User's Manual, Motorola document
MC68030UM/ AD

• MC68040 32-Bit Microprocessor User's Manual, Motorola document
Mc68040UM/ AD

In summary, PDS expansion is supported by these features:

• Euro-DIN type expansion connector C96-pin on the Macintosh SE, Macintosh
Portable, and Macintosh LC; 120-pin on the Macintosh SE/30, Macintosh IIsi, and
Macintosh IIfx; 140-pin on the Macintosh Quadra 700 and Macintosh Quadra 900)
that provides power, timing, and direct access to the computer's microprocessor bus

• stand-off mounting for card physical support

• main logic board layout and installation features improved from earlier
Macintosh models

• external device access opening (Macintosh SE, Macintosh SE/30, Macintosh LC,
Macintosh Quadra 700, and Macintosh Quadra 900) provided at rear of case for
installation of custom external connector

280 Designing Cards and Drivers for the Macintosh Family

Chapter 13 Electrical Design Guide for 68000
Direct Slot Expansion Cards

This chapter provides the electrical information you need to design
expansion cards for Macintosh computers with the 68000 Direct Slot
expansion interface. The chapter covers the following topics:

• electrical description of the 68000 Direct Slot expansion connectors
for the Macintosh SE and the Macintosh Portable

• signal mnemonics and descriptions

• accessing the Macintosh SE electronics from an expansion card

• available address space

• power consumption guidelines

281

68000 Direct Slot expansion for the Macintosh SE

This section gives the pinouts and describes the signal characteristics of the 68000 Direct
Slot expansion connector used on the Macintosh SE. Information and timing diagrams
show you how to access the computer's electronics from the expansion card. This section
also discusses available address space and describes the additional power required to
operate an expansion card in a Macintosh SE computer. Physical guidelines for designing a
Macintosh SE PDS expansion card are provided in Chapter 17.

Electrical description of the Macintosh SE expansion connector

Figure 13-1 gives the pinout for the 96-pin expansion connector (socket) on the Macintosh SE
main logic board, as viewed from above.

Table 13-1 gives signal descriptions and the load presented, or drive available, to each pin
on an expansion card inserted into the 96-pin expansion connector.

The last column in Table 13-1, labeled "Loading or Driving Limits," gives several
specifications. An example may be helpful in interpreting this column. The /RESET line is
shown as presenting a load of 300 ~A!6 rnA, 50 pF. This is the maximum expected load that
an expansion card must drive when sending a /RESET signal to the main logic board. The
DC load is given in the format signal high/signal low. This means that the expansion card
driver must drive a load of up to 300 ~A when it drives /RESET high (logic 1), and a load of
up to 6 rnA when it drives /RESET low (logic 0). The AC load is given as 50 pF, the
maximum capacitance to ground presented by the main logic board to AC signals (or
signal transitions) from the expansion card. The notation "Open collector; 1 kQ pull-up"
in the table means that the /RESET line is normally in the open collector state: it is only
driven low, and a 1 kQ pull-up resistor on the main logic board returns the line to a logic 1.

282 Designing Cards and Drivers for the Macintosh Family

Correspondingly, /RESET presents a drive of 40 f..lA/O.4 rnA, 30 pF. This is the maximum
amount of drive from the main logic board that is available to receiving integrated
circuits on an expansion card. The /RESET line can drive an expansion card DC load of up
to 40 f..lA in the high (logic 1) state, or up to 0.4 rnA in the low (logic 0) state. The AC drive
is given as 30 pF, the maximum capacitance to ground that an expansion card may present
to AC signals (or signal transitions) from the /RESET line.

The CSM and c16M clock outputs are specified to drive one 74LS input (a standard 74LS
input load is 20 f..lA high, 0.2 rnA low) and 20 pF. All other outputs have been specified to
drive two 74LS inputs, and 30 pF.

In most cases, these drive limitations are imposed to protect the noise and timing
margins of the main logic board. Expansion cards requiring more drive, or more than
about 2 inches of trace length, should buffer these signals before distributing them to the
effective loads on the card or to external devices connected through the external device
access opening.

Where "Load:" is in parentheses, the pin carries a signal that is usually an output driven by
the Mc6sooo but that is tristated by the Mc6sooo after responding to a bus request. When
tristated by the Mc6sooo, this pin may be driven by an expansion card.

Chapter 13 Electrical Design Guide for 6sooo Direct Slot ExpanSion Cards 283

• Figure 13-1 Macintosh SE 68000 Direct Slot connector pinout

J13

0
I

-12V 1-5V +12V 32

SQare I +12V +12V 31

GND I +12V GND 30
Dl5 IGND C16M 29

1
Dl4 IIEXT.DTK C8M

Dl3 Reserved E

Dl2 Reserved A23

Dll Reserved A22

28

27

26

25

To I/O ports DlO Reserved A21 24
at rear of machine D9 Reserved A20 23

D8 SQare A19 22

D7 IBERR A18 21

Db !IPL2 A17 20

D5 !IPLl Alb 19

D4 7iPLO A15 18

D~ +~V A14 17 Card
D2 +5V A13 16 edge
Dl +5V A12 15

DO +2V All 14

+5V +5V A10 13
/RESET lHALT A9 12

IPMCYC Reserved A8 11

lAS Reserved A7 10

IUDS GND Ab 9

lIDS GND A5 8

R!W GND A4 7

I!DTACK GND A3 6
IIBG GND A2

IIBGACK GND Al 4

IIBR GND FCO

I ;VMA GND FC1

I IVPA GND FC2

I

0
c B A

SIMMs

284 Designing Cards and Drivers for the Macintosh Family

• Table 13-1 Macintosh SE 68000 Direct Slot signals, loading or driving limits

Connector Signal Signal Input or Loading or driving
Row PIn name description output limits (higb/low)

A 1 FC2 Function code 2 Output Drive: 40 J,lA/0.4 rnA, 30 pF
(Input) (Load: 100 J.LA/100 J,lA, 50 pF)

A 2 FC1 Function code 1 Output Drive: 40 J,lA/0.4 rnA, 30 pF
(Input) (Load: 100 J.LA/100 J,lA, 50 pF)

A 3 FCO Function code 0 Output Drive: 40 J,lA/0.4 rnA, 30 pF
(Input) (Load: 100 J.LA/100 J,lA, 50 pF)

A 4-26 Al-23 Address 1-23 In/Out Load: 250 J,lA/1 rnA, 100 pF
Drive: 40 J,lA/0.4 rnA, 30 pF

A 27 E E (enable) clock Output Drive: 40 J,lA/0.4 rnA, 30 pF
A 28 C8M 7.8336 MHz Output Drive: 20 J,lA/0.2 rnA, 20 pF

Mc68000 clock
A 29 c16M 15.6672 MHz Output Drive: 20 J,lA/0.2 rnA, 20 pF

gate array and
IWM clock

A 30 GND Logic ground
A 31 +12V +12 volts Output Drive: 150 rnA total, from all

+12V pins
A 32 +12V +12 volts Output (See the section "Power

Consumption Guidelines for
Macintosh SE PDS Expansion
Cards" later in this chapter.)

B 1-9 GND Logic ground
B 10 Reserved For future Apple

use; do not
connect

B 11 Reserved For future Apple
use; do not
connect

B 12 /HALT Mc68000 halt In/Out Load: 300 J.LA/6 rnA, 50 pF
Drive: 0 J.LA/O J.lA
(connected to /RESET, pin C-12)

(continued)

Chapter 13 Electrical Design Guide for 68000 Direct Slot Expansion Cards 285

• Table 13·1 Macintosh SE 68000 Direct Slot signals, loading or driving limits (continued)

Connector Signal Signal Input or Loading or driving
Row Pit name description output Hmits (hlghIlow)

B 13-17 +5V +5 volts Output Drive: 1.5 A total, from all +5V
pins (See the section "Power
Consumption Guidelines for
Macintosh SE PDS Expansion
Cards" later in this chapter.)

B 18 /IPLO Interrupt level 0 In/Out Load: 100 ~2 rnA, 50 pF
(VIA, SCSLIRQ) Drive: 40 ~0.4 rnA, 30 pF

(Open collector; 3.3 kO
pull-up)

B 19 /IPLl Interrupt level 1 In/Out Load: 100 ~2 rnA, 50 pF
(SCC) Drive: 40 ~0.4 rnA, 30 pF

(Open collector; 3.3 kO
pull-up)

B 20 /IPL2 Interrupt level 2 In/Out Load: 100 /-LAl2 rnA, 50 pF
(NMI switch) Drive: 40 ~0.4 rnA, 30 pF

(Open collector; 3.3 kO
pull-up)

B 21 /BERR Bus error In/Out Load: 100 ~2 rnA, 50 pF
Drive: 40 ~0.4 rnA, 30 pF
(Open collector; 3.3 kO
pull-up)

B 22 Spare Not connected
B 23-27 Reserved For future Apple use;

do not connect
B 28 /EXT.DTK Extended /DTACK Input Load: 100 ~2 rnA, 50 pF

(tristates main (3.3 kO pull-up)
board's /DTACK)

B 29 GND Logic ground
B 30 +12V + 12 volts Output Drive: 150 rnA total, from all

+12V pins
B 31 +12V +12 volts Output (See the section "Power

Consumption Guidelines for
Macintosh SE PDS Expansion
Cards" later in this chapter.)

B 32 -5V -5 volts Output Drive: 100 rnA
(continued)

286 Designing Cards and Drivers for the Macintosh Family

• Table 13-1 Macintosh SE 68000 Direct Slot signals, loading or driving limits (continued)

Connector Signal Signal Input or Loading or driving
Row Pin name description output limits (high/low)

C 1 /VPA Valid peripheral Output Drive: 40 j.lA/0.4 rnA, 30 pF
address

C 2 /VMA Valid memory Output Drive: 40 j.lA/0.4 rnA, 30 pF
address (Input) (Load: 100 j.lA/lOO j.lA, 50 pF)

C 3 /BR Bus request Input Load: 100 j.lA/2 rnA, 50 pF
(3.3 kQ pull-up)

C 4 /BGACK Bus grant Input Load: 100 j.lA/2 rnA, 50 pF
acknowledge (3.3 kQ pull-up)

C 5 /BG Bus grant Output Drive: 40 j.lA/0.4 rnA, 30 pF
C 6 /DTACK Data transfer In/Out Load: 100 j.lA/2 rnA, 50 pF

acknowledge Drive: 40 j.lA/0.4 rnA, 30 pF
(3.3 kQ pull-up, /EXT.DTK low,
tristates main board's /DTACK)

C 7 R/W Read/write Output Drive: 40 j.lA/0.4 rnA, 30 pF
(Input) (Load: 200 j.lA/2 rnA, 50 pF)

C 8 /LDS Lower data Output Drive: 40 j.lA/0.4 rnA, 30 pF
strobe (Input) (Load: 100 j.lA/1 rnA, 50 pF)

C 9 IUDS Upper data Output Drive: 40 j.lA/0.4 rnA, 30 pF
strobe (Input) (Load: 100 j.lA/1 rnA, 50 pF)

C 10 /AS Address strobe Output Drive: 40 j.lA/0.4 rnA, 30 pF
(Input) (Load: 200 j.lA/3.2 rnA, 50 pF;

3.3 kQ pull-up)
C 11 /PMCYC Processor Output Drive: 40 j.lA/0.4 rnA, 30 pF

memory cycle (high during video access to
RAM)

C 12 /RESET System reset In/Out Load: 300 j.lA/6 rnA, 50 pF
Drive: 40 j.lA/0.4 rnA, 30 pF
(Open collector; 1 kQ pull-up;
connected to /HALT, pin B-12)

C 13 +5V +5 volts Output Drive: 1.5 A total, from all +5V
pins (See the section "Power
Consumption Guidelines for
Macintosh SE PDS Expansion
Cards" later in this chapter.)

(continued)

Chapter 13 Electrical Design Guide for 68000 Direct Slot Expansion Cards 287

• Table 13-1 Macintosh SE 68000 Direct Slot signals, loading or driving limits (continued)

Connector Signal Signal Input or Loading or driving
Row PIn name description output limits (high/low)

C 14-29 DO-15 Data bus, In/Out Load: 250 ~1 rnA, 100 pF
bits 0-15 Drive: 40 ~0.4 rnA, 30 pF

C 30 GND Logic ground
C 31 Spare Not connected
C 32 -12V -12 volts Output Drive: 100 rnA

Functional description of the MC6SQOO signals in the Macintosh SE

Table 13-2 lists the Mc68000 processor signals available at the Macintosh SE 68000 Direct
Slot expansion connector and describes their functions.

• Table 13-2 Mc68000 signal descriptions

Signal name

A1-A23
DO-D15
/AS
/BERR

/BG
/BGACK
/BR
c16M
C8M

Description

Address lines.
Data bus.
Address strobe.
Bus error. Generated by gate array due to SCSI access time-out.
(Actually, /BERR is generated whenever / AS remains low for more than
about 250 ms.)
Bus grant.
Bus grant acknowledge.
Bus request.
Gate array clock = 15.6672 MHz.
Microprocessor clock = 7.8336 MHz = c16M divided by 2.

288 Designing Cards and Drivers for the Macintosh Family

(continued)

• Table 13-2 Mc68000 signal descriptions (continued)

Signal name

/DTACK

E

/EX1.DTK

FCO-FC2
/HALT
/IPLO-/IPL2
/LDS
/PMCYC

/RESET
R/W
IUDS
/YMA
/YPA

Description

Data transfer acknowledge. In normal operation, / AS falls in S2 and the
gate array supplies /DTACK in S4 of accesses to any address in the range
$00 OOOO-$DF FFFF. If / AS falls after S3, /DTACK is supplied in SO of the
next access cycle (except for RAM accesses, which wait until S4 of the
next cycle). /DTACK may be held off to wait for DRQ (DMA request from
SCSI) in pseudo-DMA-mode SCSI accesses, to separate two successive
accesses to the SCC, or to wait for a RAM access by video. /DTACK is not
supplied for accesses to /VPA address space ($EO OOOO-$FF FFFF).
Gate array generation of /DTACK can be suppressed (put into a high
impedance state) by pulling the /EXT.DTK line low; this allows for
extended generation of the /DTACK signal by an expansion card.
E (enable) clock.
Pulled low to put the gate array's /DTACK output into a high-impedance
state. The expansion card is then responsible for generating the /DTACK
signal (as an output to the microprocessor, through the /DTACK signal
line).
Function code lines.
Halt. Wired directly to /RESET.
Interrupt priority level lines.
Lower data strobe.
Processor memory cycle. Used to synchronize with the gate array for RAM
accesses. /PMCYC is low when RAM is available for microprocessor
accesses and is high during video accesses. /PMCYC is always high during
SO. See timing diagram, Figure 13-2.
Reset. Wired directly to /HALT
Read/write.
Upper data strobe.
Valid memory address.
Valid peripheral address. Supplied by the gate array, coincident with / AS,
for any access to VPA space ($EO OOOO-$FF FFFF).

Chapter 13 Electrical Design Guide for 68000 Direct Slot Expansion Cards 289

Accessing the Macintosh SE electronics from an expansion card

An expansion card slave or a peripheral 1/0 device simply occupies an available spot in the
computer's address space, and the computer can then access the card just as it accesses
any of its own I/O devices. See Figure 13-4, later in this chapter, for the Macintosh SE
address space. The microprocessor on an expansion card (a coprocessor) has a more
complex task than the microprocessor on the main logic board. Of course, the
coprocessor can do its own work indefinitely, while the Mc6sooo continues to function
normally, provided the expansion card's electronics are sufficiently isolated from the
computer electronics. For meaningful results, however, most expansion card coprocessors
will eventually need to access the I/O devices and RAM on the main logic board. To do
this, the coprocessor requests the bus from the Mc6sooo (using IBR), the Mc6sooo grants
the request (using IBG) and tristates itself off the bus at the end of that bus cycle, and the
coprocessor then takes over as bus master (using IBGACK). At this point, the expansion
card's coprocessor has complete access to all of the computer electronics.

Accessing I/O devices from an expansion card

For most Macintosh I/O devices, the timing of an access is managed entirely by the
coprocessor. The coprocessor puts the device's address on the address bus and issues
address strobe (/ AS). For devices in the address range $000000 through $DF FFFF, the
custom gate array, the Bob Bailey Unit, responds by selecting the correct device and
issuing IDTACK. If you, the card designer, need to supply a different IDTACK on that line,
the gate array's IDTACK output can be put in tristate by pulling the IEXT.DTK line low.

When a device (the VIA, for example) is accessed in the range $EO 0000 through $FF FFFF,
the BBU supplies IVPA instead of IDTACK. In normal operation, the Mc68000 on the
Macintosh SE logic board then responds to IVP A by providing the VIA chip select /VMA,
timed correctly to the E clock. After removing itself from the bus by tristate control,
however, the Mc68000 continues to generate its E clock but no longer provide~ /VMA.
This means an expansion card coprocessor must correctly synchronize its VIA selection
(using /VMA) and VIA accesses to the timing of the Mc68000 E clock. The coprocessor
can accept /VPA as its /DTACK, or provide its own.

290 Designing Cards and Drivers for the Macintosh Family

Accessing RAM from an expansion card

When an expansion card coprocessor accesses the RAM on the Macintosh SE logic board,
the timing of these accesses is tightly constrained compared with accessing Macintosh
I/O devices. Even if an expansion card coprocessor has its own on-card RAM, it usually
needs to access the Macintosh SE RAM at least to update the information on the screen.
This activity is always necessary because the information displayed on the Macintosh
screen is always taken from the Macintosh RAM, regardless of any other RAM in the
system.

As the designer of an expansion card, you may wish to synchronize the card's Macintosh
RAM accesses (using /PMCYC) to avoid contention with the RAM accesses by Macintosh
video circuitry. During the active portion of a screen scan line, the video uses one out of
every four possible RAM accesses. These video accesses come at certain fixed times,
regardless of any other activity in the system such as an expansion card coprocessor
taking over the bus, or accesses to any I/O device or to the RAM itself. See Figure 13-2 for
the timing of video versus processor accesses. If a coprocessor begins an access to
Macintosh RAM during a video access, the coprocessor access is simply held off (/DTACK
is not provided) until the following RAM access time.

Furthermore, a coprocessor must synchronize its accesses to the state machine in the
BBU. This gate array is designed to generate all of the RAM control signals at the correct
times. The following information will help you synchronize an expansion card coprocessor
to the RAM electronics on the Macintosh SE logic board.

The BBU operates with an internal state machine that generates 16 states (SO to SF,
numbered in hex), clocked by c16M. This state machine comes up randomly, and then
counts through the 16 states continuously. The state counter is not affected by anything
else in the system.

Chapter 13 Electrical Design Guide for 68000 Direct Slot Expansion Cards 291

• Figure 13-2 Timing of video and Mc68000 accesses to RAM in the Macintosh SE

ILDS,/UDSt

RAMR!W

!RAM data bus
buffer enable

lRAS

ICAS's

IPMCYCt

IDTACKt

Video cycle CPU cycle CPU cycle CPU cycle
(always a (example shows (example shows (example shows

RAM read) RAM read) RAM write) RAM read)

(I Y I 'I I i..------L..-' -------I
SO Sl S2 S3 S4 S5 s6 S7 SO: Sl S2 S3 S4 S5 s6 S7 SO: Sl S2 S3 s4 S5 s6 S7 SO: Sl S2 S3 S4 S5 s6 S7 SO:

I I I I , , , , , , , , , , , , , ,

t This signal is available at the 96-pin expansion card connector.

There are two types of basic RAM access cycles: video/sound cycles and processor (CPU)
cycles. Either type of RAM access cycle occupies eight state machine states. When
video/sound cycles occur, they are always in states S8 to SF, whereas processor cycles can
be either in states SO to S7 or in states S8 to SF. To simplify discussion, however, the eight
states of any RAM access cycle are numbered SO to S7. See Figure 13-2.

292 Designing Cards and Drivers for the Macintosh Family

A video/sound cycle occurs as a result of specific counts of the video counter. A
video cycle reads two words of data from the video buffer in RAM into the gate
array's Video Shift register. A sound cycle is similar to a video cycle, except that a
single word from the sound/disk-speed buffer in RAM is loaded into the gate array's
sound and disk-speed counters.

A processor on the main logic board or on an expansion card may access RAM during a
processor cycle. A processor cycle can take place whenever a video/sound cycle is not
occurring. If a processor initiates a RAM access during a video/sound cycle, the
processor's RAM access is held off (lDTACK is not generated) until the video/sound cycle
is complete. A processor can access devices other than RAM at any time, even during
video/sound cycles.

The BBD requires that a processor must not begin RAM accesses at random times. In
normal operation, it expects any processor to behave more or less like an MC68000, which
asserts / AS in S2 (see Figure 13-3 for details). The Mc68000 in the Macintosh SE is
automatically synchronized to the state machine in the BBD by the processor's receipt of
/DTACK, which the gate array always asserts in S4. An expansion card can synchronize
itself to the state machine in the BBD by monitoring the signal /PMCYC. See Figure 13-2
for the operation of /PMCYC. /PMCYC always falls in SI of an eight-state processor cycle.
A falling-edge detector triggered by c16M can be used to find the falling edge of /PMCYC,
and therefore Sl.

Pertinent timing requirements from Figure 13-3 are as follows:

• Minimum address setup time before / AS (address strobe) falls is 15 ns.

• Minimum address setup time to start of S3 is 45 ns unless / AS falls after start of S3, in
which case the minimum address setup time to / AS is 45 ns.

• Address must remain valid through the first 5 ns of S7.

• / AS falling must occur not later than 20 ns into S3. If / AS has not fallen by that time,
/ AS must not fall until after the first 20 ns of S4 (data will be read or written in the
next RAM access).

• /DTACK rises 25 ns, maximum, following start of an odd S state after / AS rises.

• Write data to the RAM must be valid from the start of s6 through the first 30 ns of S7
(when /CAS falls).

• Read data from the RAM will be valid from 15 ns into S7 until /CAS rises at the end of
SO, or until / AS rises, whichever occurs first.

• Note: Clock C8M is shown only for its relation to the Mc68000 state sequence. Actually,
C8M is delayed relative to c16M by up to 30 ns.

Chapter 13 Electrical Design Guide for 68000 Direct Slot Expansion Cards 293

• Figure 13·3 Timing for reading and writing RAM from a Macintosh SE expansion card

c16M

C8M

I I I ,
I I I I : w ~ ~ ~: ~ ~: % ~:
I I I I

~rl ----~----~----~----~j ____ ~----~j ~I ---
I I AS must n~t fall : :

I I

i t"1"i\ iii
I I I I I

....;.-----;---~~~~:""'t"&~~~~ ! I~~~~~~I~~\\~~--i-! __ ;...- !
H ' I I I 1--:: :
I I I I I

:20ns :20ns:: :

lAS

I I I I I
I I I I I
I I I I I I
I I I I I I

Address ______ ..;.-__ ___.;.!.Jx iii i i X i
~ i i ! ~5ns!

45 ns : : I I I
I I I I I
I I I I t
I I I I I
I I I I I

! ! ! ~!
i f ~ Valid write :data x~-+l---
: : tv l :
! I <XiX><XX Valid rea1 data

Data

i ! r1 15ns !

294 Designing Cards and Drivers for the Macintosh Family

Deviating from the normal RAM access method

The coprocessor on an expansion card should operate very much like the Mc6sooo of the
Macintosh SE when accessing the Macintosh SE RAM. In normal operation, therefore, an
expansion card presents its addresses in Sl, asserts / AS in S2, and receives /DTACK in S4.
The following information is presented only for those designers who want to know, for
some reason, exactly how far they may deviate from this normal method of operation.

To speed up RAM access, the Macintosh SE gate array internally generates /RAS if it
decodes a RAM-space address anytime during S2 without waiting for / AS to indicate that
the address is valid. Then, if / AS falls before the end of S3 and a RAM-space address is still
present, /RAS is generated.

However, the RAM-address multiplexers switch from row addresses to column addresses
at the beginning of S4, regardless of when /RAS occurs. If / AS falls later than the first 20 ns
of S3, the RAM addresses will change too soon after /RAS, causing RAM errors.

Furthermore, if / AS has not fallen by the end of S3, /RAS is negated, a process that takes
the first 20 ns of S4. If / AS falls during that 20 ns, a /RAS spike is generated that can cause
RAM errors.

These restrictions mean that to avoid problems when addressing the Macintosh SE RAM,
expansion card logic must never let / AS fall during the period from 20 ns into S3 through
20 ns into S4. See Figure 13-3, There is one exception to this: If the gate array did not
decode a RAM-space address (even on a floating address bus) during S2 or the first 20 ns
of S3, then /RAS is not generated, and a RAM-space address decode and / AS any time
after the first 20 ns of S3 will not cause a /RAS until the usual point in the next RAM
access cycle.

The state machine in the gate array is synchronized to the 15.6672 MHz clock, c16M, from
which CSM is derived with a time delay of up to 30 ns. The Mc6sooo only issues / AS during
even-numbered states and is synchronized to the 7.S336 MHz clock, CSM. This difference
in timing sources assures that / AS in the Macintosh SE will not occur in the prohibited
time interval.

Chapter 13 Electrical Design Guide for 68000 Direct Slot Expansion Cards 295

Available Macintosh SE address space

The Macintosh SE address map in Figure 13-4 labels which portions of the total address
space are currently used by the Macintosh SE hardware (shaded regions). Any address
space not used by the Macintosh SE hardware is available for use by an expansion card.
There are, of course, some limitations to this:

• For any access to the address space $00 0000 through $DF FFFF, the Macintosh SE
gate array returns /DTACK in S4, following an address strobe (/ AS) in S2. If / AS falls
after S3, /DTACK is supplied in SO of the next access cycle (except for RAM accesses,
which wait until S4 of the next cycle). This space is best for fast, asynchronous
exchanges.

• FOr an access to the space $£0 0000 through $FF FFFF, the gate array returns /VPA
immediately following / AS, and the Mc6sooo then provides /VMA timed by the E clock.
This space is designed for accessing slower 6800-style synchronous peripherals.

• The Macintosh SE RAM, or multiple images of that RAM, always occupy the entire
address space $00 0000 through $3F FFFF.

• The Macintosh SE does not support the connection of more than one expansion card
or device, so no means are provided for arbitrating among multiple external
processors, or among cards that use the same address space.

• When a Macintosh SE main logic board is sent to an Apple service center for repair,
Apple's board-testing equipment runs test software in address ranges $50 0000 through
$51 FFFF and $FS 0000 through $F9 FFFF. Normally, those spaces may be used by an
expansion card, as any such card would be removed prior to testing at an Apple service
center. However, if a developer expects that customers will leave an expansion card
connected to the Macintosh SE logic board when that board is sent to Apple service,
such an expansion card should not use the Apple test software spaces.

• When servicing an interrupt, the Mc6so00 reads an address in the range $FF FFFO
through $FF FPFF. The Macintosh SE gate array returns /VPA, causing the processor to
ignore any data read and to jump to the appropriate autovector location in low
memory. The processor does an autovector jump only if it reads the address in
servicing an interrupt, so this space may be used by an expansion card device if that
device will not be confused by autovector reads.

296 Designing Cards and Drivers for the Macintosh Family

• Figure 13-4 Macintosh SE address space

Macintosh SE address space
.-----------r-- $1000000

f-----------+-- $FO 0000
VIA

f-----------+-- $E80000

f-----------+-- $EO 0000

IWM
f-----------+-- $DO 0000

f-----------+-- $CO 0000

SCCwrite
f--~~~~~~~~-+-- $BO 0000

~~~~~~~~~4-- $AO 0000 

SCCread 
f-----------+-- $90 0000 

__ $600000 

SCSI 
__ $58 0000 

__ $500000 

ROM 
__ $400000 

Chapter 13 Electrical Design Guide for 68000 Direct Slot Expansion Cards 297 



Power consumption guidelines for Macintosh SE PDS expansion cards 

The Macintosh SE power supply supports the addition of optional Apple Desktop Bus 
devices, an internal hard disk, and an expansion card. Table 13-3 gives the power budget 
for these additions. . 

• Table 13-3 Macintosh SE 68000 Direct Slot power budget 

Amps 

Macintosh SE device At+5V At-5V At +12 V At-12 V 

All Apple Desktop Bus devices 
Expansion cardt 
Internal SCSI hard disk 

0.5 
1,5 
1,5 

0.1 0.15 
0.9 

0.1 

t This is the allotted C\lrrent for the expansion card, but, for thermal considerations, the total power of the 
expansion card should not exceed 7 w. 

The power budget specification for the 96-pin connector allows 1.5 A to be used from all 
+5V pins combined. This limit is to control the heat dissipated in the restricted space 
over the Macintosh SE logic board, where an expansion card would be located. An 
additional 750 rnA can be used for powering a peripheral device that is located outside of 
the Macintosh SE case. 

The power budget specification for the 96-pin connector allows 0.15 A to be used from 
all +12V pins combined. Peak surge current up to 1.5 A can be tolerated briefly (up to 
10 seconds)-when starting up a disk drive, for example. 

298 Designing Cards and Drivers for the Macintosh Family 



68000 Direct Slot expansion for the Macintosh Portable 

This section describes the electrical characteristics of the 96-pin 68000 Direct Slot 
expansion connector used on the Macintosh Portable. Physical guidelines for designing a 
Macintosh Portable 68000 Direct Slot expansion card are provided in Chapter 17. In 
addition to its processor-direct slot, the Macintosh Portable contains connectors for 
ROM expansion cards and RAM expansion cards. The RAM and ROM expansion 
capabilities are described in Chapter 20 and Chapter 21. 

6,. Important Before designing an expansion card for the Macintosh Portable 
68000 Direct Slot, there are certain limitations that you should 
be aware of. First, although DC voltage and ground are available 
at the connector, the Macintosh Portable power budget allots 
no current for an expansion card. You should provide your own 
power supply to the expansion card. Second, in order to 
comply with FCC regulations on radio-frequency emissions, no 
connector or cable attached to an expansion card can 
penetrate the case of the Macintosh Portable. Finally, the small 
size of the card limits the size and number of components, thus 
severely restricting the number of features and capabilities that 
you can have in your design. 6 

If you are determined to design an expansion card for the Macintosh Portable Direct Slot 
and can live within the aforementioned design limitations, you can contact Apple 
Macintosh Developer Technical Support (MacDTS) for additional guidance. 

Remember, an expansion card designed for the Macintosh SE will not physically fit in the 
Macintosh Portable and vice versa. 

Electrical description of the Macintosh Portable expansion connector 

The Macintosh Portable expansion connector provides access to the same microprocessor 
signals as the Macintosh SE, but the pinout of the expansion connector is different. Figure 13-5 
gives the pinout of the 96-pin expansion connector (socket) on the Macintosh Portable main 
logic board. 

Chapter 13 Electrical Design Guide for 68000 Direct Slot Expansion Cards m 



• Figure 13-5 Macintosh Portable 68000 Direct Slot connector pinout 

GND 

+21': 

+:2V 

+:2V 

IDELAY.CS 

IVMA 

/BG 

ILDS 
GND 

A2 

A:2 

Front of machine AS 

All 

j 
AI4 

AIZ 

Reserved 

Reserved 

Reserved 

Reserved 

I DI 

D4 

D7 

DlO 

DI~ 

+:2/2·7V 

AI2 

A22 

FCO 

IIPLO 

I!!ERR 

GND 

GND 

A 

0 
I 

IGND 

1+:2V 

1+:2V 

1+5V 

I/SYS.PWR 

IIBR 

I liDTACK 

I I@s 

I 1+:2/0V 

1M 

IA6 

IA9 

IAI2 

IAI:2 

IAI8 

I Reserved 

I Reserved 

I Reserved 

1+12V 

1D2 

ID:2 

ID8 

IDIl 

IDI4 

1+:2V 

IA20 

1A2~ 
IFel 

IIIPLl 

liEXT.DTACK 

jJ6M 

IGND 

I 

0 
B 

GND 

+:2V 

+5v 

+:2V 

!:i.PA 

/BGACK 

RIW 
lAS 

Al 

A4 

A7 

AIO 

AI~ 

A16 

Reserved 

Reserved 

Reserved 

Reserved 

DO 

D~ 

D6 

!22 
Dl2 

DIS 
GND 

A21 

E 

Fe2 

IIPI2 

ISYS.RST 

GND 

GND 

c 

8 

9 
10 

Il 

12 

13 

14 

IS 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

300 Designing Cards and Drivers for the Macintosh Family 



Functional description of the Mc6sHCOOO signals in the Macintosh Portable 

Table 13-4 lists the MC68HCOOO processor signals available at the Macintosh Portable 
68000 Direct Slot expansion connector and describes their functions. Notice that most of 
the signals are the same as the Macintosh SE processor signals. 

• Table 13-4 Mc68HCOOO signal descriptions 

Signal name 

AI-A23 
DO-DI5 
16M 

+5/0V 

+5/3.7V 
/AS 
/BERR 

/BG 

/BGACK 

/BR 
/DELAY.CS 

/DTACK 
E 

/EXT.DTACK 

FCO-FC2 

GND 

/IPLO-/IPL2 
/LDS 
Reserved 

R/W 

Description 

Unbuffered address bus, bits 1 through 23. 

Unbuffered data bus, bits 0 through 15. 
16 MHz clock. 

+5 volts when system is active; 0 volts when system is in sleep mode. 

+5 volts when system is active; +3.7 volts when system is in sleep mode. 
Address strobe. 
Bus error signal, generated whenever / AS remains low for more than about 
250 ms. 
Bus grant. 

Bus grant acknowledge. 

Bus request. 
Input indicating that system is inserting wait states; can be used to gate 
chip selects. 
Data transfer acknowledge. 
E (enable) clock. 

Extended data transfer acknowledge. This signal is an input to the 
processor logic glue that allows for extended generation of the /DTACK 
signal. Asserting the signal will delay generation of the /DTACK signal. The 
/DTACK signal will automatically be generated when the /EXT.DTACK signal 
is released. 

Function code lines 0 through 2. 

Logic ground. 

Input priority level lines 0 through 2. 
Lower data strobe. 

For use by Apple. 
Defines bus transfer as read or write signal. 

(continued) 

Chapter 13 Electrical Design Guide for 68000 Direct Slot Expansion Cards 301 



• Table 13-4 Mc68HCOOO signal descriptions (continued) 

Signal name 

ISYS.PWR 

ISYS.RST 

IUDS 
NMA 
NPA 

Description 

A signal from the Power Manager IC that causes associated circuits to 
tristate their outputs and go into the idle state; ISYS.PWR is pulled high 
(deasserted) during sleep state. 
Signal that initiates a system reset. 
Upper data strobe. 
Valid memory access. 
Valid peripheral address. 

Power consumption guidelines for Macintosh Portable PDS expansion cards 

The power budget for the Macintosh Portable allocates a very limited amount of power to 
an expansion card in the processor-direct slot. The current available is given in Table 13-5. 
This current allocation is part of a worst-case current budget that is estimated to reduce 
the system operating time per battery charge by 50%. 

• Table 13-5 Macintosh Portable 68000 Direct Slot power budget 

Power supply 

+5 V, always on 
+5 V, switched 
+12 V 

Operating state, 
mAmaximum 

50 
sot 
25 

Sleep state, 
mAmaximum 

1 
o 
o 

t The 50 rnA maximum applies to the loads of the switched and unswitched +5 V supplies. 

302 Designing Cards and Drivers for the Macintosh Family 



Cha pter 14 Electrical Design Guide for 68020 
Direct Slot Expansion Cards 

This chapter provides the electrical information you need to design 
expansion cards for Macintosh computers with a 68020 Direct Slot 
expansion interface. The chapter covers the following topics: 

• electrical description of the 68020 Direct Slot expansion connectors 
for the Macintosh LC 

• signal mnemonics and descriptions 

• addressing issues and memory mapping 

• accessing I/O and memory devices from the expansion card 

• power consumption guidelines 

303 



68020 Direct Slot expansion for the Macintosh LC 

A 96-pin connector on the Macintosh LC main logic board permits an expansion card to 
communicate directly with the 68020 processor. This feature provides an opportunity for 
hardware developers to increase the functionality of the Macintosh LC computer by 
designing expansion cards such as coprocessors, video cards, and networking cards. 

This chapter gives the pinouts and describes the signal characteristics of the 68020 Direct 
Slot expansion connector used on the Macintosh LC. This section also provides information 
about the memory mapping, addressing guidelines, electrical design conSiderations, 
accessing the computer's electronics from the expansion card, and the power consumption 
gUidelines for the expansion card in the Macintosh LC. Physical guidelines for designing a 
Macintosh LC birect Slot expansion card are provided in Chapter 17. 

Electrical description of the expansion connector 

A Euro-DIN 96-pin socket connector provides processor-direct slot (PDS) expansion for the 
Macintosh LC computer. This connector is physically, but not electrically, identical to the 
PDS connector used on the Macintosh SE. The expansion connector provides access to the 
Mc68020 processor's full 32-bit data bus and 29 address lines, as well as to a selection of 
control signals. 

Figure 14-1 gives the pinout for the 96-pin expansion connector (socket) on the Macintosh 
LC main logic board, as viewed from above. 

Most of the expansion connector signals are processor direct, which means that they are tied 
directly to signals with identical names on the 68020 processor bus. Some of the signals do not 
tie directly to the processor but are used to satisfy other functional requirements of the 
Macintosh LC computer. Table 14-1 describes the functions of the processor-direct expansion 
connector signals. Table 14-2 describes the functions of non-processor-direct signals. 

304 Designing Cards and Drivers for the Macintosh Family 



• Figure 14-1 Macintosh LC 68020 Direct Slot connector pinout 

0 
I 

SND GND IFPU 

ISLOTIRQ RIW IDS 

lAS +5V IBERR 

IDSACK1 +5v IDSACKO 

!HALT SIZI SIZO 

6 FC2 GND FCI 

FCO CI6M /RESET 

IRMC GND IBG 

D~l D~O D22 

10 D28 D27 D26 

11 D25 D24 D2~ 

12 D22 D21 D20 

13 Dl2 DI8 I Dl7 

14 Dl6 D15 Dl4 

15 D13 D12 Dl1 

16 DlO D2 D8 

17 I IBGACK IBR Ao 
18 Al ~1 A27 

19 A26 A25 A24 
. 

Front of machine 20 A23 A22 A21 

~1 A20 IIPL2 IIPLl 

j 
22 

23 

24 

25 

26 

/IPLO D3 D4 

D2 D5 D6 

Dl DO D7 

1A4 A2 ~ 
A6 A12 A5 

27 All A1~ A7 

28 A2 I A8 AIO 

29 A16 I A15 A14 

30 A18 I A17 A12 

31 FAN I AIICLOCK FC~ 

32 +12V I GND -sv 

A B C 

I 

0 

Chapter 14 Electrical Design Guide for 68020 Direct Slot Expansion Cards 305 



• Table 14-1 PDS expansion connector signal descriptions for the Macintosh LC 

Signal name 

A~A27, A31 
D~D31 

/AS 

/BERR 

/BG 

/BGACK 

/BR 

/DS 

/DSACK~/DSACKI 

FC~FC2 

/HALT 

/IPLO-/IPL2 
/RESET 
/RMC 

R!W 

SIZO-SIZI 

Descriptioil 

Address lines. 
Data lines. 
Address strobe; tristate output signal indicating that valid 
address is on processor bus. 
Bus error; bidirectional signal indicating that invalid bus 
operation is being attempted. 
Bus grant; output signal indicating that external device can 
become bus master following completion of current processor 
bus cycle. 
Bus grant acknowledge; input signal indicating that external 
device has become bus master. 
Bus request; input signal indicating that external device wishes 
to become bus master. 
Data strobe; during read operation, /DS indicates that external 
device should place data on data bus; during write operation, 
/DS indicates that 68020 processor has placed valid data on the 
data bus. 
Data transfer acknowledge signals that indicate completion of 
data-transfer operation. 
3-bit function code used to identify address space of current 
bus cycle. 
Signal indicating that 68020 processor should suspend all bus 
activity. 
Interrupt priority level lines. 
Bidirectional signal that initiateS system reset. 
Tristate output signal that identifies current bus cycle as part 
of indivisible read-modify-write operation. 
Read/write; tristate output signal that defines bus transfer as 
read or write operation. 
Tristate output signals that work in conjunction with 
processor's dynamic bus sizing capabilities to indicate number 
of bytes remaining to be transferred during current bus cycle. 

306 Designing Cards and Drivers for the Macintosh Family 



• Table 14-2 

Signal name 

AIICLOCK 

c16M 
FAN 

/FC3 

/FPU 
/SLOTIRQ 

SND 

Non-processor-direct expansion connector signals for the Macintosh LC 

Description 

Pin that requires a 17.234 MHz clock input to generate timing for 
560 x 384 video mode. 
15.6672 MHz clock that runs CPU. 
Voltage, normally about 2 V, required to operate 
Macintosh LC fan. If your expansion card requires more 
cooling, you can ground this pin to speed up the fan. 
Function code bit that selects memory address map. Low 
selects 24-bit map; high selects 32-bit map. 
Select signal for optional floating-point unit. 
Signal that expansion card uses to generate interrupt request. 
When active low, this signal generates a level-2 interrupt if slot 
interrupt enable bit in V8 chip is set. (Similar to the /NMRQ line 
in Macintosh computers with NuBus.) 
Input to speaker amplifier that permits you to drive speaker 
from expansion card without involving cpu. 

Load! drive limits of the PDS expansion connector signals for the Macintosh LC 

Table 14-3 provides the load presented or drive available to each pin of an expansion card 
and indicates whether the signals are inputs or outputs. The load values in Table 14-3 are 
based on real load after incorporating the existing loads on the main logic board. 

In the column labeled "Input/Output" in Table 14-3, input refers to a signal from the 
expansion card to the processor and corresponds directly to the load shown in the column 
labeled "Load or Drive Limits." Output refers to a signal from the processor to the expansion 
card and corresponds directly to the drive shown in that column. An example may be helpful 
in interpreting the "Load or Drive Limits" column. The /RESET line is shown as presenting a 
load of 100 ~8 rnA, 200 pF. This is the maximum expected load that an expansion card 
must drive when sending a /RESET signal to the main logic board. The DC load is given in the 
format signal high/signal low. This means that the expansion card must drive a load of up to 
100 ~ when it drives /RESET high (logic 1) and a load of up to 8 rnA when it drives /RESET 
low (logic 0). The AC load is given as 200 pF, the maximum capacitance to ground presented 
by the main logic board to AC signals from an expansion card. 

In addition, /RESET presents a drive of 50 J,1A150 ~, 30 pF. This is the maximum amount of 
drive from the main logic board that is available to integrated circuits on the expansion card. 
The /RESET line can drive an expansion card DC load of up to 50 ~ in both the high state 
and the low state. The AC drive is given as 30 pF, the maximum capacitance to ground that an 
expansion card may present to AC signals from the /RESET line. 

Chapter 14 Electrical Design Guide for 68020 Direct Slot Expansion Cards 307 



• Table 14-3 Macintosh LC 6S020 Direct Slot signals, loading or driving limits 

Signal name 

A0-A31 

D0-D15 

Dl6-D23 

D24-D31 

All CLOCK 

/AS 

/BERR 

/BG 
/BGACK 

/BR 

c16M 
/DS 

/DSACK0-/DSACK1 

FAN 

In put/output 

In/Out 

In/Out 

In/Out 

In/Out 

Input 

In/Out 

In/Out 

Output 
Input 

Input 

Output 
In/Out 

In/Out 

Input 

Load or drive limits 

Load: 100 ~S rnA, 100 pF 
Drive: 50 ~ 400 JlA, 30 pF 
Load: 500 J.1A11 rnA, SO pF 
Drive: 40 ~.2 rnA, 30 pF 
Load: 500 ~1 rnA, 100 pF 
Drive: 40 J.1A1.2 rnA, 30 pF 
Load: 500 ~1 rnA, 130 pF 
Drive: 40 ~.2 rnA, 30 pF 
Load: 100 ~S rnA, 20 pF 
4.7 kQ pull-up 

Load: 100 ~S rnA, 75 pF 
Drive: 40 ~2 rnA, 30 pF 
4.7 kQ pull-up 

Load: 100 ~S rnA, 75 pF 
Drive: 100 ~1 rnA, 30 pF 
4.7 kQ pull-up 
Drive: 40 ~ 400 J.1A, 30 pF 
Load: 100 J.1A1S rnA, 75 pF 
4.7 kQ pull-up 

Load: 100 J.1A1S rnA, 75 pF 
4.7 kQ pull-up 

Drive: 100 ~100 JlA, 20 pF 
Load: 100 J.1A1S rnA, 50 pF 
Drive: 40 ~.4 rnA, 30 pF 
Load: 100 J.1A1S rnA, 75 pF 
Drive: 100 ~1 rnA, 30 pF 
4.7 kQ pull-up 
Pin that increases speed of the fan and improves 
thermal conditions when digitally grounded 

(continued) 

308 Designing Cards and Drivers for the Macintosh Family 



• Table 14-3 Macintosh LC 68020 Direct Slot signals, loading or driving limits (continued) 

Signal name 

FCO-FC2 

/FC3 
/FPU 
GND (analog only) 

/HALT 

/IPLO-/IPL2 

/RESET 

/RMC 
R/W 

SIZO-SIZ1 

/SLOTIRQ 

SND 

Input/output 

In/Out 

Output 
Output 
In/Out 

In/Out 

Output 

In/Out 

Output 
In/Out 

In/Out 

Input 

Input 

Load or drive limits 

Load: 100 ~8 rnA, 75 pF 
Drive: 100 ~1 rnA, 30 pF 
Drive: 1 mAIl rnA, 20 pF 
Drive: 100 ~100 ~, 30 pF 
The audio subsystem ground; not to be used 
for digital ground 
Load: 100 ~A!8 rnA, 75 pF 
Drive: 100 ~5 rnA, 50 pF 
4.7 kn pull-up 
Drive: 40 ~ 400 ~, 30 pF 
4.7 kn pull-up 
Load: 100 ~8 rnA, 200 pF 
Drive: 50 ~50 ~, 30 pF 
Drive: 100 ~2 rnA, 30 pF 
Load: 100 ~8 rnA, 100 pF 
Drive: 40 ~A!1 rnA, 30 pF 
Load: 100 ~100 ~, 75 pF 
Drive: 100 ~1 rnA, 30 pF 
Load: 100 ~8 rnA, 20 pF 
4.7 kn pull-up 
Use transistor with analog grounded emitter 
and series resistor (4.7 kn nominal) 
4.7 kn pull-up 

L Important Under no circumstances should you use the analog GND pin (Row B, 
pin 1) for a digital ground on an expansion card. Doing so will cause 
digital noise to be coupled into the audio system, resulting in degraded 
sound quality. 6. 

Chapter 14 Electrical Design Guide for 68020 Direct Slot Expansion Cards 309 



Electrical design guidelines for the Macintosh LC 68020 Direct Slot expansion card 

This section provides the electrical information you need to design an expansion card for the 
Macintosh LC computer. 

Address decode and memory mapping 

The Macintosh LC uses a new custom chip, the VB gate array. One of the VB gate array's most 
important functions is to provide address decode and memory-mapping functions for the 
Macintosh LC. The V8 implements two memory address-mapping modes, a 24-bit mode and 
a 32-bit mode. Table 14-4 lists the memory map in each mode. As in other Macintosh 
computers, a control bit determines which map is to be used. 

Notice that in the 24-bit mode, the highest address byte (8 bits) is not used, and all 
addressable devices appear in the 16 MB address space . 

• Table 14-4 Macintosh LC memory map summary 

Function 24-bitmode 32-bit mode 

RAM $00 0000-$9F FFFF $0000 0000-$009F FFFF 
ROM $AO OOOO-$DF FFFF $40AO 0000-$40DF FFFF 
Expansion space $EO OOOO-$EF FFFF $FEOO OOOO-$FEFF FFFF 
I/O space $FO OOOO-$FF FFFF $50FO 0000-$50FF FFFF 

VRAM $FC OOOO-$FF FFFF $50FC 0000-$50FF FFFF 

• Note: The Macintosh LC computer is shipped with 256 or 512 KB of VRAM installed in a 
SIMM socket. With this configuration, main memory is not used for storing video data. 
If VRAM is not installed, it is possible to use main memory for video storage but only to 
support the 640 x 480 monochrome video mode. This practice is not recommended. 

A bus error results if you try to access address $FF FFFF in the 24-bit mode or address 
$FFFF FFFF in the 32-bit mode. 

310 Designing Cards and Drivers for the Macintosh Family 



Addressing guidelines 

Although the Macintosh LC computer does not have the NuBus expansion interface, you 
should design your expansion card to occupy an address location corresponding to the 
32-bit address space that would be occupied by a NuBus card in slot space $E. This method 
of emulating NuBus address space is called pseudoslot design. The only additional 
constraints to your design are a need for a declaration ROM and adherence to some address
decoding rules. 

The expansion card address is a function of the memory map selected. The card appears in 
address space $EO 0000 through $EF FFFF in the 24-bit map and in address space $FEOO 0000 
through $FFFF FFFF in the 32-bit map. However, to allow the existing Slot Manager to control 
your card as though it were a NuBus card in slot $E, software must address the card as if it 
were in either the 16 MB standard slot space ($FEOO 0000 through $FEFF FFFF) or the 256 MB 
super slot space ($EOOO 0000 through $EFFF FFFF). This means that you will not have to 
develop a new software driver because the driver for the NuBus expansion interface will also 
work with your processor-direct expansion card. 

To ensure compatibility with future hardware and software, you should decode all the 
address bits to minimize the chance of address conflicts. To ensure that the Slot Manager 
recognizes your card, make sure that the declaration ROM resides at the upper address limit 
of the 16 MB address space. To find out more about the Slot Manager, refer to Chapter 8, 
"NuBus Card Firmware," in this book and the Slot Manager information in Inside Macintosh. 

Electrical design consideratio:ns 

When designing an expansion card for the Macintosh LC computer, you should make sure 
that your card's timing matches the timing requirements of the MC68020 microprocessor. For 
information on the processor's timing requirements, see the MC68020 32-Bit Microprocessor 
User's Manual. 

To protect the timing signal margins of the Macintosh LC computer's main logic board, your 
design should never extend the processor signals beyond their specified current load limits. 

Since most of the expansion connector signals connect to MaS (metal oxide 
semiconductor) devices, the DC load on the processor bus signals is minimal. Only one LS 
Clow-power Schottky) load is connected to the high 16 data lines (D31 to D16). All of the 
signals can drive at least one TTL (transistor-transistor logic) load (1.6 rnA sink current and 
400 f..LA source current). 

• Note: It is recommended that all devices that attach to the LC data bus signals be MaS or 
LS deVices to minimize the DC load. Do not pull up or pull down resistors on the data bus. 

Chapter 14 Electrical Design Guide for 68020 Direct Slot Expansion Cards 311 



Your expansion card must generate its own card select signal. Figure 14-2 shows a typical 
example of the required logic. Notice that a function code of 111 (CPU space) disables the 
card select signal. This action is important because it prevents the card from being selected 
during interrupt acknowledge cycles. 

• Figure 14-2 Macintosh LC expansion card selection logic 

Ml------~~~ ______ ~ 

~~~ Disable selection 
FC2 on interrupt

acknowledge cycles

Card
select

FC3 ==~~---.." FC23 }---------' 24-bit mode
FC22 select
Fe2l
FC20----d

A bus timer in the Macintosh LC computer generates a bus error (/BERR) signal if the
expansion card fails to transmit a data transfer acknowledge (/DSACK) signal within 45 to
90 ~s of the active low assertion of the address strobe (/ AS) signal. The /BERR signal is
generated after counting two clock cycles while / AS is low. Your expansion card design must
generate a /DSACK or other termination signal within this period. This action permits the Slot
Manager to determine whether an expansion card is in the slot. Since, in the 32-bit mode of
operation, address bit A31 :;= 1 selects the expansion card, it is not necessary for the Slot
Manager to search all NuBus slots for cards as it does in other Macintosh systems; only slot
space $E will be scanned. .

Accessing I/O and memory devices from the Macintosh LC expansion card

The expansion card's task of accessing resources on the main logic board is somewhat more
complex than the 68020 processor's task of accessing the electronics on an expansion card.
When the expansion card needs access to the Macintosh LC computer's resources, it
activates the bus request (/BR) signal to request the bus from the 68020 processor. The
processor grants the bus (/BG) and tristate~ itself off the bus at the end of that bus cycle.
The processor illso generates the bus grant acknowledge (/BGACK) signal to indicate that an
external device has become bus master. At this point, the expansion card coprocessor has
complete access to illl of the Macintosh LC electronics.

312 Designing Cards and Drivers for the Macintosh Family

The timing of an access is controlled by the V8 gate array for all devices on the main logic
board. Once the coprocessor is bus master, it asserts a valid address and an address strobe
(j AS) signal. The gate array detects the address, generates the necessary chip selects, and
activates the data transfer acknowledge (jDSACK) signals to inform the coprocessor of cycle
completion.

Power consumption guidelines for Macintosh LC PDS expansion cards

The power budget for the Macintosh LC allocates a limited amount of power to an expansion
card in the processor-direct slot. The current available is given in Table 14-5.

• Table 14-5 Macintosh LC 68020 Direct Slot power budget

Voltage, V

+5
-5

+12

Current load, rnA

800
20

200

Power restrictions in the Macintosh LC computer limit the amount of power that can be
dissipated by an expansion card to a maximum of 4 W. The entire 4 W can be from the
+5V supply, or from a combination of the three supply voltages, but the total shall not
exceed 4 W.

.... Warning Cards dissipating more than 4 W may overheat and damage the Macintosh LC
computer's circuitry or cause it to become inoperable

Chapter 14 Electrical Design Guide for 68020 Direct Slot Expansion Cards 313

Cha pter 15 Electrical Design Guide for 68030
Direct Slot Expansion Cards

This chapter provides electrical guidelines for designing PDS
expansion cards for the Macintosh SE/30, the Macintosh IIsi, and
the Macintosh IIfx. This section includes information on the
following topics:

• electrical implementation of the 68030 Direct Slot

• functional description of expansion connector signals

• accessing the main logic board electronics from an expansion card

• accessing I/O and memory devices from an expansion card

• pseudo slot expansion card design guidelines

• power consumption guidelines

• the Macintosh IIsi PDS adapter card

315

68030 Direct Slot expansion

The 68030 Direct Slot is used on compact, non-NuBus computers such as the Macintosh
SE/30, but is also used on modular machines such as the Macintosh IIsi and the Macintosh
IIfx that have both NuBus and PDS interfaces. To support the 32-bit address and data
buses of the Mc68030 microprocessor, the pin count of the 68030 Direct Slot expansion
connector was increased to 120 pins, as opposed to the 96-pin connector used on
Macintosh Mc68000-based and Mc68020-based machines.

The following sections discuss compatibility issues, describe the pin assignments, define
the signals, and provide signal load and drive information for the implementation of the
68030 Direct Slot on the Macintosh SE/30, the Macintosh IIsi, and the Macintosh IIfx
computers. This information is followed by two more sections that give specific design
guidelines for the Macintosh SE/30 expansion cards, the Macintosh IIsi expansion cards,
and the Macintosh IIfx expansion cards, respectively.

68030 Direct Slot expansion card compatibility issues

Although the PDS expansion connectors on the Macintosh SE/30, Macintosh IIsi, and
Macintosh IIfx are physically the same, there are some electrical differences between the
connectors. The pinouts of the expansion connectors used on the Macintosh SE/30 and
the Macintosh IIfx are nearly identical except for certain signals that are machine-specific
(unique) to each computer. Although Apple has made every attempt to make any
differences between the two connectors transparent to developers, expansion cards
designed for the Macintosh SE/30 and the Macintosh IIfx computers are not
interchangeable.

The Macintosh IIsi differs further from the Macintosh SE/30 and the Macintosh IIfx. To
install a PDS expansion card in the Macintosh IIsi, you must first install a PDS adapter
card. An Mc68030 Direct Slot adapter kit is available from an authorized Apple dealer.
This expansion scheme is similar to the NuBus expansion scheme for the Macintosh IIsi.
Once the PDS adapter card has been installed in the Macintosh IIsi, the expansion
connector is physically and electrically identical to the one found on the Macintosh SE/30.

316 Designing Cards and Drivers for the Macintosh Family

However, there are two major design differences between the Macintosh SE/30 and the
Macintosh IIsi. These differences may prevent PDS cards developed for one MC68030
computer from working in the other. The clock speeds of the Macintosh SE/30 and the
Macintosh IIsi are different, so that a PDS expansion card developed for the Macintosh
SE/30 must be able to run at the Macintosh IIsi clock speed of 20 MHz. The other
difference between the Macintosh IIsi and the Macintosh SE/30 is the way that RAM
accesses are structured. This difference has serious implications for MC68030 PDS master
cards. The Macintosh SE/30 responds to RAM accesses with /DSACKO and /DSACKl. The
Macintosh IIsi responds only with /STERM. Because of this difference, expansion cards,
especially PDS master cards, may not be interchangeable.

Electrical description of the Macintosh SE/30 and the Macintosh IIsi 68030
Direct Slot

• Note: The following description of the Macintosh IIsi assumes that you have
already installed the MC68030 Direct Slot adapter kit. To get more detailed
information about the expansion connector on the Macintosh IIsi main logic
board in which the adapter card fits, refer to the last section in this chapter,
"Macintosh IIsi PDS Adapter Card."

The PDS expansion card interfaces for the Macintosh SE/30 and the Macintosh IIsi are
identical. The only differences between the two expansion card connectors are the clock
speed and the load limits for each signal. Figure 15-1 gives the pinouts for the 120-pin
expansion connector on both the Macintosh SE/30 main logic board and the Macintosh
IIsi adapter card. Table 15-1 lists the pin assignments, gives the signal names, and briefly
describes each signal.

Chapter 15 Electrical Design Guide for 68030 Direct Slot Expansion Cards 317

• Figure 15-1 Macintosh SE/30 and Macintosh IIsi 68030 Direct Slot connector pinout

Front of machine
(only on Macintosh SE/30)

j

+12V

GND

CI6M

+5V

AO

~
A6

A8

All

IA14

I AI6

I AI2

I A22

A24

A27

~O

D~I

D28

D25

D2~

D20

DI7

DI5

Dl2 I

122
D7

D4

DI

lHALT

FCO

/BR

lAS

IRIW
ICBREQ

/RMC

/IPLO

/IRQ I

/TMOA

!NUBUS

PWROFF

c

0
I

-5V -12V

GND GND

ECIK CPUCIK

+5V +:iV

Al A2

A4 A5

GND A7

A2 AIO

AI2 AI~

+5V AI5

AI7 AI8

A20 A21

GND A2~

A2:i A26

A28 A22

+5V I A31

D~O I D22

D27 D26

GND D24

D22 D21

DI2 Dl8

+5V Dl6

Dl4 I Dl3

Dll I DlO

GND IDS
D6 D5

D3 D2

+5V DO

/BERR /RESET

FCI FC2

/BG /BGACK

SIZO SIZI

IDSACKO IDSACKI

ICBACK ISTERM

IDS ICIOUT

/IPLI /IPL2

/IRQ2 /IRQ~

/TMIA /BUSWCK

GND Reserved

Reserved Reserved

I

0
B A

318 Designing Cards and Drivers for the Macintosh Family

I

I

40

39

38
37

36
35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

• Table 15-1 Macintosh SE/30 and Macintosh IIsi 68030 Direct Slot connector signals

Connector Signal Signal
Row Pin name description

A 1 Reserved For use by Apple; this pin is different on the Macintosh IIsi
main logic board. Apple has chosen not to extend this signal
out to the PDS adapter card. See the section "Macintosh IIsi
PDS Adapter Card" later in this chapter.

A 2 Reserved For use by Apple; this pin is different on the Macintosh IIsi
main logic board. Apple has chosen not to extend this signal
out to the PDS adapter card. See the section "Macintosh IIsi
PDS Adapter Card" later in this chapter.

A 3 /BUSLOCK NuBus buslock
A 4 /IRQ3 Interrupt input 3
A 5 /IPL2 Interrupt priority 2
A 6 /CIOUT Cache inhibit out
A 7 /STERM Synchronous termination
A 8 /DSACK1 Data acknowledge 1
A 9 SIZ1 Transfer size bit 1
A 10 /BGACK Bus grant acknowledge
A 11 FC2 Function code 2
A 12 /RESET System reset
A 13 DO Data bit 0
A 14 D2 Data bit 2
A 15 D5 Data bit 5
A 16 D8 Data bit 8
A 17 D10 Data bit 10
A 18 D13 Data bit 13
A 19 D16 Data bit 16
A 20 D18 Data bit 18
A 21 D21 Data bit 21
A 22 D24 Data bit 24
A 23 D26 Data bit 26
A 24 D29 Data bit 29
A 25 A31 Address bit 31
A 26 A29 Address bit 29
A 27 A26 Address bit 26
A 28 A23 Address bit 23
A 29 A21 Address bit 21
A 30 A18 Address bit 18
A 31 A15 Address bit 15

(continued)

Chapter 15 Electrical Design Guide for 68030 Direct Slot Expansion Cards 319

• Table 15-1 Macintosh SE/30 and Macintosh IIsi 68030 Direct Slot connector signals (continued)

ConneCtor sIgnal signal
Row PIn name description

A 32 A13 Address bit 13
A 33 AlO Address bit 10
A 34 A7 Address bit 7
A 35 AS Address bit 5
A 36 A2 Address bit 2
A 37 +5V 5 volts
A 38 CrUCLK 15.6672 MHz CPU clock for the Macintosh SE/30j

20 MHz CPU clock for the Macintosh IIsi
A 39 GND Ground
A 40 -12V -12 volts
B 1 Reserved For use by Apple; this pin is different on the Macintosh IIsi

main logic board. Apple has chosen not to extend this signal
out to the PDS adapter card, See the section "Macintosh IIsi
PDS Adapter Card" later in this chapter.

B 2 GND Ground
B 3 /TMIA NuBus transfer mode bit 1
B 4 /IRQ2 Interrupt input 2
B 5 /IPLl Interrupt priority 1
B 6 /DS Data strobe
B 7 /CBACK Cache burst acknowledge
B 8 /DSACKO Data acknowledge 0
B 9 SIZO Transfer size bit 0
B 10 /BG Bus grant
B 11 FCI Function code 1
B 12 /BERR Bus error
B 13 +5V 5 volts
B 14 D3 Data bit 3
B 15 D6 Data bit 6
B 16 GND Ground
B 17 D11 Data bit 11
B 18 D14 Data bit 14
B 19 +5V 5 volts
B 20 D19 Data bit 19
B 21 D22 Data bit 22
B 22 GND Ground
B 23 D27 Data bit 27
B 24 D30 Data bit 30

(continued)

320 Designing Cards and Drivers for the Macintosh Family

ill Table 15-1 Macintosh SE/30 and Macintosh IIsi 68030 Direct Slot connector signals (continued)

Connector Signal Signal
Row PIn name description

B 25 +5V 5 volts
B 26 A28 Address bit 28
B 27 A25 Address bit 25
B 28 GND Ground
B 29 A20 Address bit 20
B 30 A17 Address bit 17
B 31 +5V 5 volts
B 32 A12 Address bit 12
B 33 A9 Address bit 9
B 34 GND Ground
B 35 A4 Address bit 4
B 36 Al Address bit 1
B 37 +5V 5 volts
B 38 ECLK E clock
B 39 GND Ground
B 40 ~5V -5 volts
C 1 PFwt Shutdown bit
C 2 /NUBUS NuBus space access
C 3 /TMOA NuBus transfer mode bit 0
C 4 /IRQ1 Interrupt input 1
C 5 /IPLO Interrupt priority 0
C 6 /RMC Read modify cycle
C 7 /CBREQ Cache burst request
C 8 /R/W Read/write
C 9 /AS Address strobe
C 10 /BR Bus request
C 11 FCO Function code 0
C 12 /HALT Halt
C 13 D1 Data bit 1
C 14 D4 Data bit 4
C 15 D7 Data bit 7
C 16 D9 Data bit 9
C 17 D12 Data bit 12
C 18 D15 Data bit 15
C 19 D17 Data bit 17
C 20 D20 Data bit 20
C 21 D23 Data bit 23

(continued)

Chapter 15 Electrical Design Guide for 68030 Direct Slot Expansion Cards 321

• Table 15-1 Macintosh SE/30 and Macintosh IIsi 68030 Direct Slot connector signals (continued)

Connj!ctor Signal Signal
Row Pin name description

C 22 D25 Data bit 25
C 23 D28 Data bit 28
C 24 D31 Data bit 31
C 25 A30 Address bit 30
C 26 A27 Address bit 27
C 27 A24 Address bit 24
C 28 A22 Address bit 22
C 29 A19 Address bit 19
C 30 A16 Address bit 16
C 31 A14 Address bit 14
C 32 All Address bit 11
C 33 A8 Address bit 8
C 34 A6 Address bit 6
C 35 A3 Address bit 3
C 36 AO Address bit 0
C 37 +5V 5 volts
C 38 c16M 15.6672 MHz clock
C 39 GND Ground
C 40 +12V + 12 volts

t On the Macintosh SE/30, this signal name has been referred to as PWROFF, but its function is the same on both the
Macintosh IIsi and the Macintosh SE/30.

Because the load limits for the signals on the Macintosh IIsi and the Macintosh SE/30
differ, there are separate tables that describe each. Table 15-2 provides the load
presented or drive available to each pin of an expansion card on the Macintosh SE/30 and
indicates whether the signals are inputs or outputs. The load or drive limits for each pin on
the Macintosh IIsi expansion card are described in Table 15-3.

322 Designing Cards and Drivers for the Macintosh Family

In the column labeled "Input/Output" in Table 15-2 and Table 15-3, input refers to a signal
from the expansion card to the processor and corresponds directly to the load shown in
the column labeled "Load or Drive Limits." Output refers to a signal from the processor to
the expansion card and corresponds directly to the drive shown in that column. An
example may be helpful in interpreting the "Load or Drive Limits" column. The /RESET line
is shown as presenting a load of 300 ~A!8 rnA, 50 pF. This is the maximum expected load
that an expansion card must drive when sending a /RESET signal to the main logic board.
The DC load is given in the format signal high/signal low. This means that the expansion
card must drive a load of up to 300 JlA when it drives /RESET high (logic 1) and a load of
up to 8 rnA when it drives /RESET low (logic 0). The AC load is given as 50 pF, the
maximum capacitance to ground presented by the main logic board to AC signals from an
expansion card. The notation "Open collector; 1 k,Q pull-up" in the table means that the
/RESET line is normally in the open collector state; it is only driven low, and a 1 kn pull-up
resistor on the main logic board returns the line to a logic 1.

In addition, /RESET presents a drive of 40 ~A!0.4 rnA, 30 pF. This is the maximum amount
of drive from the main logic board that is available to integrated circuits on the expansion
card. The /RESET line can drive an expansion card DC load of up to 40 JlA in the high state
or up to 0.4 rnA in the low state. The AC drive is given as 30 pF, the maximum capacitance
to ground that an expansion card may present to AC signals from the /RESET line.

Some of the expansion connector signals are specified to drive one 74LS input (a
standard 74LS input load is 20 JlA high, 0.2 rnA low); other signals can drive two 74LS
inputs. These strict limitations are imposed to protect the noise and timing margins of
the main logic board. All signals needed by an expansion card should be buffered at the
expansion connector. The use of newer logic families with very low input loading allows
you more margin and flexibility in your expansion card designs.

Where "Load:" is in parentheses, the pin carries a signal that is usually an output driven by
the MC68030 but that is tristated by the MC68030 after granting the bus to a DMA requester.
When tristated by the MC68030, this signal may be driven by an expansion card.

Chapter 15 Electrical Design Guide for 68030 Direct Slot ExpanSion Cards 323

• Table 15-2 Macintosh SE/30 68030 Direct Slot signals, loading or driving limits

Signal name

AO-A31

DO-D23

D24-D31

/AS

/BERR

/BG
/BGACK

/BR

/BUSLOCK
c16M
/CBACK
/CBREQ
/CIOUT
CPUCLK
/DS

/DSACKO-/DSACK1

ECLK
FCO-FC2

Input/output

In/Out

In/Out

In/Out

Output
(Input)

In/Out

Output
Input

Input

Input
Output
Input
Output
Output
Output
Output
(Input)

In/Out

Output
Output
(Input)

Load or drive limits

Load: 300 J,1A13 rnA, 100 pF
Drive: 40 J,1A10.4 rnA, 30 pF
Load: 150 J,1A1150 J,1A, 100 pF
Drive: 40 J,1A10.4 rnA, 30 pF
Load: 300 J,1A1300 J,1A, 100 pF
Drive: 20 J,1A10.2 rnA, 30 pF
Drive: 40 J,1A10.2 rnA, 30 pF
(Load: 100 J,1A18 rnA, 50 pF)
Open collector, 1 k.Q pull-up

Load: 100 J,1A18 rnA, 50 pF
Drive: 40 J,1A10.4 rnA, 30 pF
Open collector, 1 k.Q pull-up
Drive: 40 J,1A10.4 rnA, 30 pF
Load: 100 J,1A18 rnA, 50 pF
1 k.Q pull-up

Load: 100 J,1A1S rnA, 50 pF
1 k.Q pull-up
Load: 400 J,1A12 rnA, 50 pF
Drive: 40 J,1A10.4 rnA, 30 pF
Load: 100 J,1A1100 J,1A, 50 pF
Drive: 40 J,1A10.4 rnA, 30 pF
Drive: 40 J,1A10.4 rnA, 30 pF
Drive: 40 J,1A10.4 rnA, 30 pF
Drive: 40 J,1A10.4 rnA, 30 pF
Load: 100 J,1A1S rnA, 50 pF
Open collector, 1 k.Q pull-up
Load: 100 J,1A1S rnA, 50 pF
Drive: 40 J,1A10.2 rnA, 30 pF
Open collector, 1 k.Q pull-up
Drive: 40 J,1A10.4 rnA, 30 pF
Drive: 20 J,1A10.2 rnA, 30 pF
(Load: 100 JlA/S rnA, 50 pF)
Open collector, 1 k.Q pull-up

324 Designing Cards and Drivers for the Macintosh Family

(continued)

• Table 15-2 Macintosh SE/30 Direct Slot signals, loading or driving limits (continued)

Signal name Input/output Load or drive limits

/HALT In/Out Load: 100 ~A/8 rnA, 50 pF
Drive: 40 ~A/0.4 rnA, 30 pF
Open collector, 1 kn pull-up

/IPLO-/IPL2 In/Out Load: 100 ~A/100 ~A, 50 pF
Drive: 40 ~A/0.4 rnA, 30 pF

/IRQO-/IRQ3 Input Load: 400 ~ 4 rnA, 50 pF
/NUBUS Output Drive: 40 ~0.4 rnA, 30 pF
PFW Output Drive: 40 ~A/0.4 rnA, 30 pF
/RESET In/Out Load: 300 ~A/8 rnA, 50 pF

Drive: 40 ~0.4 rnA, 30 pF
Open collector, 1 kn pull-up

/RMC Output Drive: 40 ~A/0.4 rnA, 30 pF
R!W Output Drive: 40 ~0.4 rnA, 30 pF

(Input) (Load: 100 ~8 rnA, 50 pF)
Open collector, 1 kn pull-up

SIZO-SIZ1 Output Drive: 40 ~A/0.4 rnA, 30 pF
(Input) (Load: 100 ~100 ~A, 50 pF)

/STERM Input Load: 100 ~A/100~, 50 pF
/TMOA Input Load: 400 ~A/2 rnA, 50 pF
/TM1A Input Load: 400 ~A/2 rnA, 50 pF

Chapter 15 Electrical Design Guide for 68030 Direct Slot Expansion Cards 325

• Table 15-3 Macintosh IIsi 68030 Direct Slot signals, loading or driving limits

Signal name

AO-A31

DO-D23

D24-D31

/AS

/BERR

/BG
/BGACK

/BR

/BUSLOCK
c16M
/CBACK
/CBREQ
/CIOUT
CPUCLK
/DS

/DSACKO-/DSACK1

ECLK
FCO-FC2

Input/output

In/Out

In/Out

In/Out

Output
(Input)

In/Out

Output
Input

Input

Input
Output
Input
Output
Output
Output
Output
(Input)

In/Out

Output
Output
(Input)

Load or drive limits

Load: 300 ~A!5 rnA, 100 pF
Drive: 40 ~A!0.4 rnA, 30 pF
Load: 300 ~A!5 rnA, 100 pF
Drive: 40 ~A!0.4 rnA, 30 pF
Load: 300 ~A!5 rnA, 100 pF
Drive: 20 ~A!0.2 rnA, 30 pF
Drive: 40 ~A!0.2 rnA, 30 pF
(Load: 100 ~A!8 rnA, 50 pF)
Open collector, 1 kQ pull-up
Load: 100 ~A!8 rnA, 50 pF
Drive: 40 ~A!0.4 rnA, 30 pF
Open collector, 1 kQ pull-up
Drive: 40 ~A!0.4 rnA, 30 pF
Load: 100 ~A!8 rnA, 50 pF
1 kQ pull-up

Load: 100 ~A!8 rnA, 50 pF
1 kQ pull-up

Load: 400 ~/2 rnA, 50 pF
Drive: 40 ~A!0.4 rnA, 30 pF
Load: 100 ~A!100 ~A, 50 pF
Drive: 40 ~A!0.4 rnA, 30 pF
Drive: 40 ~A!0.4 rnA, 30 pF
Drive: 40 ~A!0.4 rnA, 30 pF
Drive: 40 ~A/O.4 rnA, 30 pF
Load: 1 00 ~A!8 rnA, 50 pF
Open collector, 1 kQ pull-up

Load: 100 ~A/8 rnA, 50 pF
Drive: 40 ~A!0.2 rnA, 30 pF
Open collector, 1 kQ pull-up

Drive: 40 ~A!0.4 rnA, 30 pF
Drive: 20 ~A!0.2 rnA, 30 pF
(Load: 100 ~A!8 rnA, 50 pF)
Open collector, 1 kQ pull-up

326 Designing Cards and Drivers for the Macintosh Family

(continued)

• Table 15-3 Macintosh IIsi 68030 Direct Slot signals, loading or driving limits (continued)

Signal name Input/output Load or drive limits

/HALT In/Out Load: 100 ~A!8 rnA, 50 pF
Drive: 40 ~A!0.4 rnA, 30 pF
Open collector, 1 kQ pull-up

/IPLO-/IPL2 In/Out Load: 100 ~A!8 rnA, 50 pF
Drive: 40 ~A!0.4 rnA, 30 pF

/IRQO-/IRQ3 Input Load: 400 ~A! 4 rnA, 50 pF
/NUBUS Output Drive: 40 ~A!0.4 rnA, 30 pF
PFW Output Drive: 40 ~A!0.4 rnA, 30 pF
/RESET In/Out Load: 300 ~A!8 rnA, 50 pF

Drive: 40 ~A!0.4 rnA, 30 pF
Open collector, 1 kQ pull-up

/RMC Output Drive: 40 ~A!0.4 rnA, 30 pF
R/W Output Drive: 40 ~A!0.4 rnA, 30 pF

(Input) (Load: 400 ~A!8 rnA, 50 pF)
Open collector, 1 kQ pull-up

SIZO-SIZ1 Output Drive: 40 ~A!0.4 rnA, 30 pF
(Input) (Load: 100 ~A!100 ~A, 50 pF)

/STERM Output Load: 100 ~A/8 rnA, 50 pF
(Input) (Load: 40 ~A!0.4 rnA, 30 pF)

Open collector, 1 kQ pull-up
/TMOA Input Load: 400 ~A!2 rnA, 50 pF
/TM1A Input Load: 400 ~A!2 rnA, 50 pF

Electrical description of the Macintosh IIfx 68030 Direct Slot

Figure 15-2 gives the pinout for the 120-pin expansion connector on the Macintosh IIfx
main logic board, as viewed from above.

Table 15-4 lists the pin assignments, gives the signal names, and briefly describes each
signal. Table 15-5 provides the load presented or drive available to each pin of an
expansion card and indicates whether the signals are inputs or outputs.

Chapter 15 Electrical Design Guide for 68030 Direct Slot Expansion Cards 31:7

The last column in Table 15-5, labeled "Load or Drive Limits," gives several specifications.
An example may be helpful in interpreting this column. The /CBREQ line is shown as
presenting a load of 100 JlA/5 inA, 50 pF. This is the maximum expected lbad that an
expansion card must drive when sending a /CEREQ signal to the main logic board. The
DC load is given in the format signal high/signal low. This means that the expansion
card must drive a load of up to 100 J..LA when it drives /CBREQ high (logic 1) and a
load of up to 5 inA when it drives /CBREQ low (logic 0). The AC load is given as 50 pF,
the maximum capacitance to ground presented by the main logic board to AC signals
from an expansion card. The parentheses around "In" and "Load" indicate that the
signal is usually driven by the MC68030 processor, but after granting the bus to a DMA
requester, the processor tristates the signal and ari expansion card may drive it. The
notation "Tristate, 1 k,Q pull-up" gives the value of the required pull-up resistor.

In addition, /CBREQ presents a drive of 40 /lAl1.2 inA, 50 pF. This is the maximum amount
of drive from the main logic board that is available to integrated circuits on the expansion
card. The /CBREQ line can drive an expansion card DC load of up to 40 J..LA in the high state
or up to 1.2 inA in the low state. The AC drive is given as 50 pF, the maximum capacitance to
ground that an expansion card may present to AC signals from the /CBREQ line.

Next, look at /BERR and you see that only the signal low value is given, which means the
expansion card must drive a load bf up to 48 inA when it drives /BERR low (logic 0). The
signal high value is not required because the notation "Open collector, 220 ,Q puil-up" in
the table means that the /BERR line is normally in the open collector state; it is only driven
low, and a 220 ,Q pull-up resistor on the main logic bOilrd returns the line to a logic 1. This
is true for all open collector signals in Table 15-5.

Sbme of the expansion connector signals are specified to drive one 74LS input (a standard
74LS input load is 20 J..LA high, 0.4 inA low); other signals can drive two 74LS inputs. This
differs from the Macintosh SE expansion connector guidelines described in Chapter 13.
These strict limitations are imposed to protect the noise and timing margins of the main
logic board. All signals needed by an expansion card should be buffered at the expansion
connector. The use of newer logic families with very low input loading allows you more
margin and flexibility in your expansion card designs.

328 DeSigning Cards and Drivers for the Macintosh Family

• Figure 15-2 Macintosh IIfx 68030 Direct Slot expansion connector pinout

Front of machine

j

0
J

I + 12V -sv

I GND /SLOT.E

CPUCLK Reserved

+sv +5V

AO Al

A3 A4

A6 GND

AS A9

All Al2

Al4 +5V

Al6 Al7

A19 A20

[A22 [I GND

I A24 I [A25

[A27 I A28

A30 I +sv

D31 [D30

D28 D27

D25 GND

D23 D22

D20 I Dl9

Dl7 +5V

Dl5 Dl4

Dl2 Dll

D2 GND

[D7 D6

I D4 D3

IDI +sv

[/HALT /BERR

FCO FCI

/BR /BG

/AS SIZO

/R/W /DSACKO

/CBREQ /CBACK

/RMC /DS

/IPLO /IPLI

/IRQ6 /IRQ15

/PDS.BR /PDS.BG

Reserved GND

/PFW /ECS

I

0
c B

I I -12V

I I GND

I I Reserved

I I +5V

'1 I A2

I I AS

I I A7

I IAlO

I I A13

[I Al5

[A18

A21

A23

A26

A22

A31

D22

D26

D24

I D21

I DIS

I Dl6

I Dl2

I DlO

[D8

D5

D2

I DO

/RESET

FC2

/BGACK

SIZI

/DSACKI

/STERM

[/CIOUT

I /IPL2

I Reserved

I Reserved

I /PDS.MASTER

I GND

A

I

I
[

I

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

IS

14

13

12

II

10

Chapter 15 Electrical Design Guide for 68030 Direct Slot Expansion Cards 329

• Table 15-4 Macintosh IIfx 68030 Direct Slot connector signals

Connector Signal Signal
Row PIn name description

A 1 GND Ground
A 2 /PDS.MASTER PDS replaces 68030 processor in bus arbitration scheme
A 3 Reserved For use by Apple
A 4 Reserved For use by Apple
A 5 /IPL2 Interrupt priority 2
A 6 /CIOUT Cache inhibit out
A 7 /STERM Synchronous termination
A 8 /DSACK1 Data acknowledge 1
A 9 SI21 Transfer size bit 1
A 10 /BGACK Bus grant acknowledge
A 11 FC2 Function code 2
A 12 /RESET System reset
A 13 DO Data bit 0
A 14 D2 Data bit 2
A 15 D5 Data bit 5
A 16 D8 Data bit 8
A 17 DlO Data bit 10
A 18 D13 Data bit 13
A 19 D16 Data bit 16
A 20 D18 Data bit 18
A 21 D21 Data bit 21
A 22 D24 Data bit 24
A 23 D26 Data bit 26
A 24 D29 Data bit 29
A 25 A31 Address bit 31
A 26 A29 Address bit 29
A 27 A26 Address bit 26
A 28 A23 Address bit 23
A 29 A21 Address bit 21
A 30 A18 Address bit 18
A 31 A15 Address bit 15
A 32 A13 Address bit 13
A 33 AI0 Address bit 10
A 34 A7 Address bit 7
A 35 AS Address bit 5
A 36 A2 Address bit 2
A 37 +5V 5 volts

(continued)

330 Designing Cards and Drivers for the Macintosh Family

• Table 15-4 Macintosh IIfx 68030 Direct Slot connector signals (continued)

Connector Signal Signal
Row PIn name description

A 38 Reserved For use by Apple
A 39 GND Ground
A 40 -12V -12 volts
B 1 IECS Early cycle start
B 2 GND Ground
B 3 IPDS.BG Bus grant used if IPDS.MASTER is active (low)
B 4 IIRQ15 Interrupt line if pseudoslot design is not used
B 5 IIPLl Interrupt priority 1
B 6 IDS Data strobe
B 7 ICBACK Cache burst acknowledge
B 8 IDSACKO Data acknowledge 0
B 9 SIZO Transfer size bit 0
B 10 IBG Bus grant to external device
B 11 FC1 Function code 1
B 12 IBERR Bus error
B 13 +5V 5 volts
B 14 D3 Data bit 3
B 15 D6 Data bit 6
B 16 GND Ground
B 17 Dll Data bit 11
B 18 D14 Data bit 14
B 19 +5V 5 volts
B 20 D19 Data bit 19
B 21 D22 Data bit 22
B 22 GND Ground
B 23 D27 Data bit 27
B 24 D30 Data bit 30
B 25 +5V 5 volts
B 26 A28 Address bit 28
B 27 A25 Address bit 25
B 28 GND Ground
B 29 A20 Address bit 20
B 30 A17 Address bit 17
B 31 +5V 5 volts
B 32 A12 Address bit 12
B 33 A9 Address bit 9
B 34 (iND Ground

(continued)

Chapter 15 Electrical Design Guide for 68030 Direct Slot Expansion Cards 331

• Table 15-4 Macintosh IIfx 68030 Direct Slot connector signals (continued)

Connector Signal Signal
Row PIn name description

B 35 A4 Address bit 4
B 36 Al Address bit 1
B 37 +5V 5 volts
B 38 Reserved For use by Apple
B 39 /SLOT.E When active (low), the 68030 Direct Slot replaces slot $E

in the address map
B 40 -5V -5 volts
C 1 /PFW Shutdown bit
C 2 Reserved For use by Apple
C 3 /PDS.BR Bus request used if /PDS.MASTER is active (low)
C 4 /IRQ6 PDS interrupt line for pseudoslot $E
C 5 /IPLO Interrupt priority 0
C 6 /RMC Read modify cycle
C 7 /CBREQ Cache burst request
C 8 /R/W Read/write
C 9 /AS Address strobe
C 10 /BR Bus request
C 11 FCO Function code 0
C 12 /HALT Halt
C 13 Dl Data bit 1
C 14 D4 Data bit 4
C 15 D7 Data bit 7
C 16 D9 Data bit 9
C 17 D12 Data bit 12
C 18 D15 Data bit 15
C 19 D17 Data bit 17
C 20 D20 Data bit 20
C 21 D23 Data bit 23
C 22 D25 Data bit 25
C 23 D28 Data bit 28
C 24 D31 Data bit 31
C 25 A30 Address bit 30
C 26 A27 Address bit 27
C 27 A24 Address bit 24
C 28 A22 Address bit 22
C 29 A19 Address bit 19
C 30 A16 Address bit 16

(continued)

332 Designing Cards and Drivers for the Macintosh Family

• Table 15-4 Macintosh IIfx 68030 Direct Slot connector signals (continued)

Connector Signal Signal

Row PIn name description

C 31 A14 Address bit 14
C 32 All Address bit 11
C 33 A8 Address bit 8
C 34 A6 Address bit 6
C 35 A3 Address bit 3
C 36 AO Address bit 0
C 37 +5V 5 volts
C 38 CPUCLK 20 MHz CPU clock
C 39 GND Ground
C 40 +12V + 12 volts

• Table 15-5 Macintosh IIfx 68030 Direct Slot signals, loading or driving limits

Signal name Input/output Load or drive limits

AO-A31 In/Out Load: 100 ~A/8 rnA, 150 pF
Drive: 40 ~A/1.2 rnA, 30 pF

DO-D23 In/Out Load: 100 ~A/8 rnA, 130 pF
Drive: 40 ~A/1.2 rnA, 30 pF

D24-D31 In/Out Load: 100 ~A/8 rnA, 150 pF
Drive: 40 ~A/1.2 rnA, 30 pF

/AS (In)/Out (Load: 100 ~A/5 rnA, 130 pF)
Drive: 80 ~A/2.4 rnA, 50 pF
Tristate, 1 kQ pull-up

BERR In/Out Load: 48 rnA, 120 pF
Drive: 6 rnA, 15 pF (critical)
Open collector, 220 Q pull-up

/BG Out Drive: 40 ~A/0.6 rnA, 30 pF
/BGACK In/Out Load: 10 rnA, 100 pF

Drive: 2 rnA, 30 pF
Open collector, 470 Q pull-up

/BR In Load: 100 ~A18 rnA, 50 pF
3.3 kQ pull-up

(continued)

Chapter 15 Electrical Design Guide for 68030 Direct Slot Expansion Cards 333

• Table 15-5 Macintosh IIfx 68030 Direct Slot signals, loading or driving limits (continued)

Signal name

/CBACK

/CBREQ

/CIOUT

CPUCLK
/DS

/DSACKO-/DSACK1

/ECS

FCO-FC2

/HALT

/IPLO-/IPL2
/PDS.BG

/PDS.BR
/PDS.MASTER
/PFW

Input/output

In/Out

(In)/Out

(In)/Out

Out
(In)/Out

In/Out

(In)/Out

(In)/Out

In/Out

Out
In

Out
In
Out

Load or drive Umits

Load: 10 rnA, 50 pF
Drive: .6 rnA, 30 pF
Open collector, 470 Q pull-up
(Load: 100 /lAl5 rnA, 50 pF)
Drive: 40 /lAl1.2 rnA, 50 pF
Tristate, 1 kQ pull-up
(Load: 40 /lAl1.6 rnA, 50 pF)
Drive: 20 /lAlo.6 rnA, 50 pF
Tristate, 3.3 kQ pull-up
Drive: 80 rnA; driven by an emitter follower
(Load: 100 /lAl5 rnA, 100 pF)
Drive: 80 /lAl2.4 rnA, 50 pF
Tristate, 1 kQ pull-up
Load: 5 rnA, 30 pF
Drive: 10 rnA, 50 pF
Open collector, 1 kQ pull-up
(Load: 100 /lAl5 rnA, 50 pF)
Drive: 20 /lAlo.6 rnA, 15 pf (critical)
Tristate, 1 kQ pull-up
(Load: 400 /lAi 4 rnA, 80 pF)
Drive: 80 /lAl2.4 rnA, 30 pF
Tristate, 3.3 kQ pull-up
Load: 48 rnA, 100 pF
Drive: 6 rnA, 15 pF (critical)
Open collector, 220 Q pull-up
Drive: 40 /lAlO.4 rnA, 30 pF
Load: 25 /lAl250 /lA, 50 pF
3.3 kQ pull-up
Drive: 100 /lAl8 rnA, 50 pF
Load: 25 /lAl250 /lA, 50 pF
Refer to the section "/PFW Interaction With
the Power Supply" in Chapter 5 for details

334 Designing Cards and Drivers for the Macintosh Family

(continued)

• Table 15-5 Macintosh IIfx 68030 Direct Slot signals, loading or driving limits (continued)

Slgnalname In putl output

/RESET In/Out

/RMC (In)/Out

R/W (In)/Out

SIZO-SIZ1 (In)/Out

/SLOT.E In

/STERM In/Out

Load or drive limits

Load: 18 !lA, 260 pF
Drive: 10 rnA, 50 pF
Open collector, 470 n pull-up
(Load: 40 /lN1.6 rnA, 50 pF)
Drive: 20 /lNO.6 rnA, 50 pF
Tristate, 3.3 kn pull-up
(Load: 100 /lN5 rnA, 150 pF)
Drive: 80 !lN2.4 rnA, 30 pF
Tristate, 1 kn pull-up

(Load: 100 /lN100 /lA, 100 pF)
Drive: 40 !lN1.2 rnA, 30 pF

Load: 25 !lN250 /lA, SO pF
3.3 kn pull-up
Load: 16 rnA, 100 pF
Drive: .6 rnA, 15 pF (critical)
Open collector, 330 n pull-up

Functional description of the MC6S030 signals

The Macintosh SE/30, the Macintosh IIsi, and the Macintosh IIfx computers share a
common set of address and data signals, and most of the same control, power, and
ground signals. Table 15-6 lists those signals that are common to the three machines as well
as future 68030-based PDS machines without NuBus. Two of the clock signals (ECLK and
C16M) shown in Table 15-6 are not used on the Macintosh IIfx. Features and exceptions
that pertain to the Macintosh IIfx only are explained in footnotes.

• Note: Your Macintosh IIfx expansion card design should include an oscillator for
general-purpose timing requirements. Due to loading constraints of the Macintosh IIfx
and other high-speed computers, it is impossible to route clock lines over the 111ain
logic board, especially to the expansion connector.

Chapter 15 Electrical Design Guide for 68030 Direct Slot Expansion Cards 335

In addition to their common signals, each computer includes a group of machine-specific
(unique) signals. The Macintosh SE/30 and the Macintosh IIsi share a common set of these
machine"specific signals. Pins that are currently defined as reserved may be added to the
lists of machine-specific signals on future machines.

• Table 15-6 68030 Direct Slot common signals

Signal name

AO-A31
DO-D31
lAS

IBERR

IBG

IBGACK

IBR

c16M

ICBACK

ICBREQ

ICIOUT

IDS

IDSACKO-/DSACK1

ECLK

Description

Address lines.
Data lines.
A tristate output signal indicating that a valid address is on
the bus.
A bus error signal indicating that an invalid bus operation is
being attempted. t
An output Signal indicating that an external device may become
bus master following completion of the current processor bus
cycle.
An input signal indicating that an external device has become
bus master.
An input signal indicating that an external device wishes to
become bus master.
A general-purpose 15.6672 MHz clock (not used on the
Macintosh IIfx).
An input signal indicating that the accessed device can
operate in burst mode.
A tristate output signal indicating a burst request for the
instruction or data cache.
A tristate output signal that inhibits the operation of an
external cacheJ
Data strobe signal. During a read, IDS indicates that an external
device should place valid data on the data bus; during a write,
IDS indicates MC68030 has placed valid data on the data bus.
Data transfer acknowledge signals that indicate the completion
of a data-transfer operation.
Main logic board VIA chip clock signal (not used on the
Macintosh IIfx).

336 Designing Cards and Drivers for the Macintosh Family

(continued)

• Table 15-6 68030 Direct Slot common signals (continued)

Sjgna1name

FCO-FC2

/HALT

/IPLO-/IPL2
/PFW

/RESET
/RMC

R/W

SIZO-SIZ1

/STERM

Description

Three-bit function code used to identify the address space of
current bus cycle.
A signal indicating that the processor should suspend bus
activity.t
Interrupt priority levellines.§
A status signal informing the expansion card that power will
be removed. See the section "/PFW Interaction With the Power
Supply" in Chapter 5 for details.
A bidirectional signal that initiates a system reset.
A tristate output signal that identifies the current bus cycle
as part of an indivisible read-modify-write operation.
A tristate output signal that defines the bus transfer as a read
or write cycle.
Tristate output signals indicating the number of bytes
remaining to be transferred during the current bus cycle.
A bus response signal indicating that the addressed port size is
32 bits and that data may be latched on the next falling clock
edge for a read cycle.t

t The maximum capacitive load allowed on these signal lines is 15 pF due to the high-speed nature of the
Macintosh.

* On the Macintosh IIfx, /CIOUT must not be used in conjunction with /CBREQ because the cache should
not be inhibited during burst mode cycles.

Although these signals are available at the Macintosh IIfx expansion connector, you should not use them
in your design. Instead use the PDS interrupt line, /IRQ6, which is tied into the Macintosh IIfx interrupt
scheme and can be prioritized, masked, and so on.

Chapter 15 Electrical Design Guide for 68030 Direct Slot ExpanSion Cards 337

Macintosh SE/30 and Macintosh llsi 68030 Direct Slot machine-specific signals

Table 15-7 lists the 68030 Direct Slot signals that are specific to the Macintosh SE/30
and Macintosh IIsi computers. All of the machine-specific signals listed in Table 15-7
(except the CPUCLK signal) emulate equivalent signals on the NuBus expansion interface.
Because of the limited amount of space available in the memory map of the Macintosh
SE/30 and Macintosh IIsi computers, you should design your 68030 Direct Slot expansion
card to occupy the same 32-bit physical address ranges occupied by NuBus cards in
Macintosh computers. This method of emulating NuBus expansion slot address space is
called pseudoslot design. The pseudoslot interrupt support lines allow the use of the
Macintosh Slot Manager driver routines and thus provide an easy software port for NuBus
designs. Pseudoslot design is the preferred expansion design strategy for Macintosh
computers with both processor-direct and NuBus slots. See the section "Pseudoslot
Design Guidelines for Macintosh SE/30 and Macintosh IIsi Expansion Cards," later in this
chapter, for more information on pseudoslot design.

Cards that take advantage of these pseudoslot features won't work in a Macintosh NuBus
slot because of bus conflicts with physical NuBus. These pseudoslot signal lines will be
available on future 68030-based Macintosh PDS computers without physical NuBus. A
slightly different pseudoslot signal configuration is used on machines that include both
the NuBus and PDS expansion interfaces.

By porting the NuBus design to the 68030 Direct Slot via pseudoslot, you need to supply
only one driver for both 68030 Direct Slot and NuBus cards and can design cards that will
be usable in future Macintosh computers without NuBus support.

338 Designing Cards and Drivers for the Macintosh Family

• Table 15-7 Macintosh SE/30 and Macintosh IIsi 68030 Direct Slot machine-specific signals

Signal name

IBUSLOCK

CPUCLK

IIRQ 1 ~/IRQ3

INUBUS

ITMOA-/TM1A

Description

NuBus status bit that goes low to signal that an alternate bus
master has acquired the bus. Currently not used. This signal is
common across Macintosh machines without physical NuBus.
Provides signal timing and synchronization to ensure
compatibility with future versions of the Macintosh. On the
Macintosh SE/30, this is a 15.6672 MHz clock, and on the
Macintosh IIsi, a 20 MHz clock.
General-purpose interrupts that correspond to the three pseudo
slot addresses. These signals are common across Macintosh
machines without physical NuBus.
Address decode of the memory range $6000 OOOO~$FFFF FFFF.
Note that this signal is active when the CPU accesses the
on-board video display. Expansion cards must further decode
the slot address ranges to avoid conflict with the video logic.
This signal is common across Macintosh machines without
physical NuBus.
Status input signals to VIA2 that are currently not used.

Machine-specific signals for the Macintosh IIfx 68030 Direct Slot

Table 15-8 lists the 68030 Direct Slot signals that are specific to the Macintosh nfx
computer. If you design your PDS expansion card so that the ISLOT.E signal is grounded
(low) when it is plugged into the slot, the card automatically looks like a NuBus card
occupying slot $E in the Macintosh IIfx address map. This is similar to the pseudoslot
design used with Macintosh SE/30 expansion cards, except your card occupies only the
32-bit address space of a NuBus card in slot $E. The Macintosh IIfx uses only one
dedicated interrupt line, IIRQ6, to support NuBus pseudoslot $E, while the Macintosh
SE/30 uses three interrupt lines to support its NuBus pseudoslot addresses. The Macintosh
IIfx also includes another interrupt line, IIRQ15, that you should use if your design does
not support the NuBus pseudoslot and you are providing a stand-alone, card-specific
software driver.

Chapter 15 Electrical Design Guide for 68030 Direct Slot Expansion Cards 339

• Table 15-8 Macintosh IIfx machine-specific signals on the 68030 Direct Slot

Slgnalname

/ECS
/IRQ15

/IRQ6

/PDS.BG

PDS.BR

/PDS.MASTER

/SLOT.E

Description

A signal from the Mc68030 indicating early cycle start.
An interrupt line that is used if the expansion card does not
support the NuBus pseudoslot.
A dedicated interrupt line, from the processor to the 68030
Direct Slot, that supports NuBus pseudoslot $E. To prevent
incompatibility on the Macintosh Hfx, use /IRQ6
instead of input priority level lines /IPLO through /IPL2.
Bus grant signal from PDS expansion card functioning as bus
master; it issues this signal to grant the bus to another requester.
Bus request signal received by PDS expansion card functioning
as bus master.
When this signal is active, the PDS expansion card replaces the
MC68030 in the bus arbitration scheme.
When active, this signal indicates that the PDS expansion card
is replacing NuBus slot $E in the Macintosh Hfx address map.

Electrical design guidelines for Macintosh SE/30 and
Macintosh IIsi PDS expansion cards

The following paragraphs provide information that you should become familiar with
before starting your expansion card design. Included are a description of how an
expansion card gains access to memory and I/O devices, information on pseudoslot
design, a description of how the interrupt-handling mechanism works, a summary of
design hints, and a discussion of Macintosh SE/30 and Macintosh Hsi expansion card
power requirements.

Memory and I/O access from a Macintosh SE/30 expansion card

An expansion card can occupy one of the available unused address locations in the
Macintosh SE/30 memory map. See Table 15-9 for a listing of the Macintosh SE/30
memory map's 32-bit physical address space assignments. The Macintosh SE/30 processor
can gain access to the expansion card in the same way that it gains access to any of the
computer's I/O devices.

340 Designing Cards and Drivers for the Macintosh Family

Compared with accessing the expansion electronics from the Macintosh SE/30 processor,
the task of accessing resources on the main logic board from an expansion card
coprocessor is a bit more complex. When an expansion coprocessor needs to access
Macintosh SE/30 resources, it requests the bus from the MC68030 using the bus request
signal (lBR). The MC68030 grants the bus (lBG) and tristates itself off the bus at the end
of that bus cycle. The coprocessor then takes over as bus master (lBGACK). At this point
the coprocessor has complete access to all Macintosh SE/30 electronics.

For all devices on the Macintosh SE/30 main logic board, the timing of an access is
controlled by the GLU gate array. Once the coprocessor has been given the bus, it asserts a
valid address and address strobe to the main logic board. The gate array detects the
address and generates the necessary chip selects for the devices. The gate array also
generates the /DSACKx signals to inform the coprocessor of cycle completion.

The Macintosh SE/30 design uses the Apple Sound Chip and the SWIM floppy disk
controller instead of the discrete sound circuits and the IWM used in the Macintosh SE.
Because of this, no extra cycles are required for loading the sound registers or floppy disk
speed parameters. Therefore, no special synchronization logic is required in the design of
an expansion card.

When accessing RAM and ROM resources on the Macintosh SE/30 logic board, the timing
and access requirements are the same as for I/O accesses. This differs from the
Macintosh SE because the video RAM is not shared with the system RAM but instead is a
separate device residing in a separate address space.

Chapter 15 Electrical Design Guide for 68030 Direct Slot Expansion Cards 341

• Table 15-9 Macintosh SE/30 32-bit physical address spaces

Address

$0000 OOOO-$OOOF FFFF
$0010 OOOO-$OOCF FFFF
$OODO 0000-$3FFF FFFF
$40000000-$4007 FFFF
$4008 0000-$4FFF FFFF
$50000000-$5000 1FFF
$ 5000 2000-$5000 3FFF
$50004000-$50005FFF
$ 5000 6000-$ 5000 7FFF
$5001 0000-$5001 1FFF
$5001 2000-$5001 3FFF
$5001 4000-$5001 5FFF
$5001 6000-$5001 7FFF
$5001 8000-$57FF FFFF
$5800 0000-$5FFF FFFF
$6000 OOOO-$EFFF FFFF
$FOOO 0000-$F8FF FFFF
$F900 OOOO-$FBFF FFFF
$FCOO OOOO-$FDFF FFFF
$FEOO OOOO-$FEOO FFFF
$FEFF OOOO-$FEFF FFFF
$FFOO OOOO-$FFFF FFFF

Description

RAM (minimum configuration)
RAM (expansion area)
RAM (undefined)
ROM bank 0 (minimum configuration)
ROM (undefined)
VIAl (x0200)
VIA2 (x0200)
SCC (x0002)
SCSI (handshake)
SCSI (x0010)
SCSI (pseudo-DMA)
Sound
SWIM
Undefined
68030 Direct Slot expansion (if pseudoslot is not used)
NuBus super slot space (256 MB per slot)
Expansion (undefined)
Expansion pseudoslot space (emulate NuBus)
Expansion (undefined)
Video RAM space
Video ROM space
Expansion (undefined)

• Note: When the overlay signal is true at boot time, the RAM is not accessible by the
processor and the ROM resides at address 0 and its normal location. When overlay is
false, the mapping in Table 15-9 is valid.

342 Designing Cards and Drivers for the Macintosh Family

Memory and 1/0 access from Macintosh IIsi expansion cards

An expansion card in the Macintosh IIsi can occupy 32-bit addresses from $F900 0000
through $FBFF FFFF. This is equivalent to geographic NuBus locations $9, $A, and $B. See
Table 15-10 for a listing of the Macintosh IIsi memory map's physical address space
assignments. If you are designing a new processor-direct expansion card for the
Macintosh IIsi, you should use the pseudoslot design method to emulate this NuBus
address space. The pseudo slot design method is discussed in a later section of this
chapter, "Pseudoslot Design Guidelines for Macintosh SE/30 and Macintosh IIsi
Expansion Cards."

Accessing resources on the main logic board from a Macintosh IIsi expansion card is
identical to accessing resources on the Macintosh SE/30. When an expansion coprocessor
needs to access Macintosh IIsi resources, it requests the bus from the Mc68030 using the
bus request signal (/BR). The Mc68030 grants the bus (/BG) and tristates itself off the bus
at the end of that bus cycle. The coprocessor then takes over as bus master (/BGACK). At
this point, the coprocessor has complete access to all Macintosh IIsi electronics.

Like the Macintosh SE/30, the Macintosh IIsi design uses the Apple Sound Chip and the
SWIM floppy disk controller instead of the discrete sound circuits and the IWM used in
the Macintosh SE. Because of this, no extra cycles are required for loading the sound
registers or floppy disk speed parameters. Therefore, no special synchronization logic is
required in the design of an expansion card.

Chapter 15 Electrical Design Guide for 68030 Direct Slot Expansion Cards 343

• Table 15-10 Macintosh IIsi 32-bit physical address spaces

Address

$0000 0000~$03FF FFFF
$0400 000~$07FF FFFF
$0800 000~$3FFF FFFF
$4000 000~$4FFF FFFF
$SOOO OOO~$SOOO 1FFF
$SOOO 200~$SOOO 3FFF
$SOOO 400~$SOOO SFFF
$ SOOO 600~$ SOOO 7FFF
$SOOO 8000-$SOOO FFFF
$S001 000~$5001 1FFF
$S001 200~$S001 3FFF
$S001 400~$S001 SFFF
$S001 6000-$S001 7FFF
$S001 800~$S002 3FFF
$S002 4000-$S002 SFFF
$S002 600~$S002 7FFF
$S002 800~$SFFF FFFF
$6000 OOO~$EFFF FFFF
$FOOO OOO~$FOFF FFFF
$F100 OOO~$FFFF FFFF

Description

RAM Bank A (minimum configuration)
RAM Bank B
RAM (expansion area)
ROM
VIAl
Reserved
SCC
SCSI (pseudo-DMA with DRO)
Reserved
SCSI (normal mode)
SCSI (pseudo-DMA with no DRO)
SOUND
SWIM
Reserved
VDAC
RBV
Reserved
NuBus super slots
Reserved
NuBus slots

RAM access from a PDS expansion card in the Macintosh IIsi

The memory cycle for a Macintosh IIsi processor-direct expansion card operating as bus
master is substantially different from that of a Macintosh SE/30 computer. It has been
changed to support burst transfers using the /STERM signal generated by the MDU rather
than the /DSACK signal generated by the general logic unit chip. If bus master cards look
only for /DSACK, they will not work. Figures lS-3 through lS-6 show the timing for both
burst and random writes to RAM and reads from RAM.

344 Designing Cards and Drivers for the Macintosh Family

• Figure 15-3 Macintosh IIsi RAM burst-write timing

Read: 7 8 9 0
Burst write: 0

CPUCLK

lAS IZl

/RAS

IRA '

ICAS IZI:

data ~

/STERM ~:

STERMOE ,

IDATAOE '
(Bank A only) ,

ICBREQ '

ICBACK ,

RAMR!W '

ISJ

~~:

tsi

Read or write: 0 1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 0

IZl ISJ

~: ~, ~,

N: IZI: N: IZI: N: IZI: N: IZI:

t><1 IX! t><1 IX!
, rxl p~ , , , , , , , , , I

~:
I ~: ~:

I ~: iSJ : VI: ~:
I ~:

vi isJ

VIDCYCLE :_fi--'--'>W:---'---'---'---'---'---'---'---'---'---'---'---'---'----'----'----'----'--'--'----'---'---'IZI"--l-J:L-...JIZI"'-J...J:

t
End of preceding
RAM read

Chapter 15

RAM (100 or 80 ns fast page mode)
20 MHz burst write
4-clock minimum initial access, 2-c1ock subsequent accesses
(specification for burst write by a coprocessor bus master)

t
Start of another
RAM read or write

Electrical Design Guide for 68030 Direct Slot Expansion Cards

• Figure 15-4 Macintosh IIsi RAM random-write timing

Read: 7 8 9 0 Write: 0 1 2 3 4 5 6 7 8 9 0
Write: 0 1 2 3 4 5 6 7 8 9 0 Read or write: 0

sO s1 s2 s3 s4 s5 s6 s7 sO s1 s2 s3 s4 s5 s6 s7 s8 ~ sO sl s2 s3 s4 s5

CPUCLK

CPUADR
, ,

lAS L2l lSI VI N VI N

0: f'J: [7): 1'\::1: .. p1. ~ lRAS , , , , ,

IRA ' ~~: ~: , ~~: ~: , ~~:

lCAS

~I t>4----t><I t><1 !><l data ,
, , I I I I i , , ,

ISTERM kJ: ~: , kJ: ~: , kJ:
STERMOE ~: VI: N: VI: N: ~

IDATAOE ~' 1'\::1: 171, 1'\::1: 171, ~ (Bank A only)
, ,
, , , , , , , , ,

ICBREQ ' ~

ICBACK ,

RAMR/W ' :~
,

VIDCYCLE :-=J'\IL-' -L....;:.u:'---'----L---L----,----,----,----,---,---,---,---,---,--,----,----,----,--,---,---,---",I/1....J....L..: ---",VI--,-,:

t
End of preceding
RAM read

RAM (100 or 80 ns fast page mode)
20 MHz random write
5-clock access (delayed by previous write cycle)
4-clock minimum initial access

346 Designing Cards and Drivers for the Macintosh Family

t
Start of another
RAM read or write

• Figure 15-5 Macintosh IIsi RAM burst-read timing

Read: 7 890 Read or write: 0 1

Burst read: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 0

CPUCLK

lAS IZI

lRAS

IRA '

lCAS IZI:

data 1:8]

ISTERM kJ:

STERMOE ,

IDATAOE '
(Bank A only) ,

ICBREQ '

ICBACK ,

R!W '

RAMR!W '

t

80 81 82 83 84 85 86 87 58 89 810 811 812 813 814 815 816 817 818 819 820 821 80 81 82 83

LnJ
I I I I

IS] VI lSI

P<J P<J :

L-N"-,:--,---,,C7Il"Jc...J : IZIlSI : IZIlSl : IZI:

IXtxl IXHXIXI IXRXI><l 1XHX1X1

I~ vi i~

t
End of preceding
RAM read

RAM (100 or 80 ns fast page mode)
20 MHz 68030 burst read
5-clock minimum initial access, 2-clock subsequent accesses

Start of another
RAM read or write

Chapter 15 Electrical Design Guide for 68030 Direct Slot Expansion Cards 347

• Figure 15-6 Macintosh IIsi RAM random-read timing

Write: 5 6 7 8 9 0 Read: 0 2 3 4 5 6 7 8 9 0

Read: 0 2 3 4 5 6 7 8 9 0 Read or write: 0 2

sO sl s2 s3 s4 s5 s6 s7 s8 s9 s10 sl1 sO sl s2 s3 s4 s5 s6 s7 s8 s9 sO sl s2 s3 s4

CPUCLK

lAS IZI lSI IZI lSI IZI lSI

lRAS ;.-' --7--!Ll

IRA ' P<I: P<I:

lCAS

ISTERM
,

STERMOE :-lSIL..:>I...J:'--l----L--L----l<v:...."Jl: N: 0: N' 0":: , ,

0: 1":1: 171 ~ , ,
, , , ,

IDATAOE ~,
(Bank A only) , ,

ICBREQ '

ICBACK ,

R!W ' VI

RAMR!W ,--' -,--..,.0<-1

~Dcrcrn ~~~~:--L~~~~~~~~~~~'--'--L--L~~~~~~0~:~0~:

t RAM (100 or 80 ns fast page mode) t
End of preceding 20 MHz 68030 random read Start of another
RAM write 6-clock access (delayed by preceding write) RAM read or write

5-clock minimum access

348 Designing Cards and Drivers for the Macintosh Family

Pseudoslot design guidelines for Macintosh SE/30 and Macintosh IIsi
expansion cards

If you are familiar with designing devices for the Mc68000 family of microprocessors, you
should find it relatively easy to use the pseudo slot method to design an expansion card
for the Macintosh SE/30 or the Macintosh IIsi. The only added constraints are the need for
a declaration ROM and adherence to some address decoding rules.

Many of the address locations correspond to address ranges used by NuBus expansion
cards resident in Macintosh computers that offer NuBus. The advantage of designing an
expansion card to occupy one of these unused addresses is that existing ROM firmware
with the ability to manage the NuBus slots is also present in your computer's system ROM.
Therefore, if an expansion card is designed along the lines of a NuBus card (for example,
with a declaration ROM and interrupt capability), the existing Slot Manager ROM
firmware controls this card as if it were a NuBus card but the electrical interface is via the
MC68030 bus. As a side benefit of this design, one software driver works on machines with
two different methods of expansion. To find out more about the Slot Manager, refer to
Chapter 8, "NuBus Card Firmware," in this book and the Slot Manager information in Inside
Macintosh.

If you do not use pseudo slot design, the area from $5800 0000 through $5FFF FFFF in the
Macintosh SE/30 and the Macintosh IIsi is reserved as the preferred location for 68030
Direct Slot expansion. If you use this area, your expansion card will work in future
Macintosh PDS machines that do not have NuBus. Note that to access this address space,
the Macintosh must be in 32-bit mode. It is the responsibility of the card driver to switch
between the 24-bit and 32-bit modes using the trap macros _SwapMMUMode and
_GetMMUMode, as defined in the operating-system utilities information in Inside
Macintosh. You will not be able to use the Slot Manager and must provide card-specific
drivers to use this memory area for card expansion. The conversion addresses for the
24-to-32-bit logical address translation are listed in Table 15-11.

Chapter 15 Electrical Design Guide for 68030 Direct Slot Expansion Cards 349

• Table 15-11 24-to-32-bit logical address translation map

24-bit address range

$00 0000-$7F FFFF
$80 0000-$8F FFFF
$90 0000-$9F FFFF
$AO OOOO-$AF FFFF
$BO OOOO-$BF FFFF
$CO OOOO-$CF FFFF
$DO OOOO-$DF FFFF
$EO OOOO-$EF FFFF
$FO OOOO-$FF FFFF

32-bit address range

$0000 0000-$007F FFFF
$4000 0000-$400F FFFF
$F900 0000-$F90F FFFF
$FAOO OOOO-$FAOF FFFF
$FBOO OOOO-$FBOF FFFF
$FCOO OOOO-$FCOF FFFF
$FDOO OOOO-$FDOF FFFF
$FEOO OOOO-$FEOF FFFF
$5000 0000-$500F FFFF

In many ways, designing an expansion card for the 68030 Direct Slot is simpler
than designing one for the NuBus. The 32-bit data bus of the Macintosh SE/30 and
Macintosh IIsi supports dynamic bus sizing, so I/O ports of 8, 16, or 32 bits can be
designed. Proper control of the /DSACKx signals informs the processor of the bus width,
so additional memory cycles can be executed to complete the transfer if necessary. There
is no byte swapping between the MC68030 and the expansion connector, and separate
address and data buses eliminate the need for address latches.

The Macintosh SE/30 and the Macintosh IIsi expansion slots provide three general
purpose interrupt inputs to the main logic. These interrupts correspond to the first three
NuBus slots of a Macintosh II. To have your expansion card reside in address spaces that
emulate the NuBus slots, design your card's hardware to use only the physical 32-bit space
address ranges shown in Table 15-12 and the software to operate only in the 32-bit mode.

D. Important If you are designing a video card, remember that the ROM in the
Macintosh SE/30 includes only the 24-bit version of Color QuickDraw.
To allow your video card to operate in 32-bit mode, you must bundle
the RAM-based version of 32-bit Color QuickDraw with your card. 6

To ensure compatibility with future hardware and software, you should decode all the
address bits to minimize the chance for address conflicts.

The declaration ROM must reside at the upper address limit of the 16 MB address space in
order for the Slot Manager code to recognize the card. Chapter 8, "NuBus Card Firmware,"
provides information to help you develop the necessary card firmware.

You are not required to follow the pseudo slot method for designing an I/O expansion
card. This method is provided as a means to simplify the design task and to minimize the
need for revisions of support software.

350 Designing Cards and Drivers for the Macintosh Family

• Table 15-12 Pseudoslot address ranges for Macintosh SE/30 and Macintosh IIsi expansion cards

Interrupt 32-bit address space.

$F900 0000-$F9FF FFFF
$FAOO OOOO-$FAFF FFFF
$FBOO OOOO-$FBFF FFFF

t The Macintosh IIsi can only map its PDS expansion card to the corresponding NuBus slot $9. The other two slots and
interrupts cannot be used for the Macintosh IIsi.

Interrupt handling for the Macintosh SE/30 and Macintosh IIsi 68030 Direct Slot

The interrupt-handling mechanism for the 68030 Direct Slot on the Macintosh SE/30 and
Macintosh IIsi is similar to the mechanism used in Macintosh computers with NuBus. Here is
how the mechanism works. First; the three general-purpose interrupt signals on the 68030
Direct Slot and the on-board video ihterrupt signal are routed through an OR gate to
generate a signal called /SLOTIRQ. This signal is connected to the CAl input of VIA2, the
second VIA chip on the logic board. This VIA generates a level 2 interrupt to the Mc68030.
This VIA can also generate an interrupt in response to SCSI requests, sound chip requests, or
VIA timer requests.

All interrupts to the Mc68030 are autovectored using addresses that contain the interrupt
vectors. When the Mc68030 is executing a level x interrupt, it first sets the interrupt mask
to level x, so further interrupts at level x and below will be ignored. Once the interrupt
handler is executed and an RTE instruction is processed, the interrupt mask is restored to
the value it had before the interrupt.

The first-level interrupt dispatcher determines which hardware device-SCSI, sound chip,
real-time clock, or expansion slot-is requesting the interrupt and dispatches code to the
appropriate interrupt handler. If the interrupt generated by the VIA is a slot interrupt, the
software polls the second VIA, bits PAO through PAS, to determine which slot generated
the interrupt. PAO is equal to IRQl, PAl is equal to IRQ2, and PA2 is equal to IRQ3. PAS is
equal to the video interrupt.

Once the software determines which pseudoslot generated the interrupt, the Slot Manager
software executes the interrupt handler for that slot device. The handler for that device
was installed at boot time, when the initialization software polled the possible slots and
identified the existence of a card in the slot by its ROM signature.

Chapter IS Electrical Design Guide for 68030 Direct Slot Expansion Cards 351

Since all interrupts to the MC68030 are autovectored, care must be exercised in the
detection of the processor's interrupt acknowledge. The Mc68030 starts an interrupt
acknowledge cycle before it checks the level of the A VEe Cautovector) pin. Once the
processor determines the AVEC pin is signaling an autovector, it aborts the bus cycle
without the assertion of /DSACK or /STERM. Hardware designers must be aware of this
abort cycle.

There is a delay between the assertion of a slot interrupt and the actual execution of the
interrupt handler. During this time, the software polls the actual slot /IRQ signal. The
recommended design practice is to latch the slot /IRQ signal so that once it is asserted,
the interrupt handler software for the card has the responsibility of clearing the interrupt.
This ensures that the slot /IRQ signal is asserted when polled and the Slot Manager is
dispatched correctly.

Design hints for Macintosh SE/30 and Macintosh IIsi expansion cards

When designing a card for the Macintosh SE/30 or Macintosh IIsi, you must generate
timing to match the requirements of the Mc68030 microprocessor. For further
information on the timing requirements of the microprocessor, refer to the Motorola
MC68030 Enhanced 32-Bit Microprocessor User's Manual.

There is an overriding watchdog timer on the Macintosh SE/30 and the Macintosh lIsf
main logic boards that generates a /BERR signal any time the address strobe is asserted
for longer than 44 /ls. You must guarantee that your design generates a /DSACKx, /BERR, or
other termination signal within this period.

Notice that there are two clock signals present on the expansion connector. The CPUCLK
signal should be used for signal timing and synchronization to ensure compatibility with
future versions of the Macintosh that may use a faster CPU clock. The C16M signal is a
general-purpose 15.6672 MHz clock that will be present in future machines. In the
Macintosh SE/30, these two clocks have the same freqllency and phase relationship;
however, the Macintosh IIsi uses a 20 MHz CPUCLK signal. In the future, the CPUCLK rate
may change further. Because the clock rate can vary, try to design expansion cards to be
asynchronous with respect to CPUCLK, or perhaps use a fixed 15.6672 MHz clock to be
compatible across different machines.

The data strobe signal is provided for developers of expansion cards that function as
DMA masters. The data strobe must be asserted when the DMA master is accessing devices
on the Macintosh SE/30 and the Macintosh IIsi main logic boards. The timing of the data
strobe should match the MC68030 data strobe signal.

352 Designing Cards and Drivers for the Macintosh Family

Notice that the /NUBUS signal (Table 15-7) is an address decode of the memory range
$60000000 through $FFFF FFFF. The / AS (address strobe) signal qualifies the assertion of the
/NUBUS signal. The /NUBUS signal is asserted a maximum of 26 ns after the / AS signal is
asserted, and is removed a maximum of 22 ns after the / AS signal is removed.

Remember that /NUBUS is valid when the processor is accessing the on-board video logic;
therefore, to avoid possible data bus conflicts, you must decode one of the pseudoslot
address ranges when using the /NUBUS signal as a qualifier.

The pseudo slot interrupt signals C/IRQ1 through /IRQ3) are active-low TIL-compatible
inputs to the main logic board. You do not have to use an open-collector style driver, but
if you do, you should provide a pull-up resistor on the expansion card.

If you are designing a bus master card and are accessing on-board devices such as RAM,
you must ensure that a DMA cycle is completed when the normal Mc68030 processor cycle
is completed.

Because of the dynamic bus sizing feature of the Mc68030, you can convert existing
Macintosh SE expansion cards to fit the Macintosh SE/30 32-bit slot with relative ease.
The mechanical changes are probably more extensive than the electrical changes. The
Macintosh SE/30 expansion card is mounted vertically rather than horizontally. You can
design an adapter card to convert the 120-pin expansion slot to a Macintosh SE
compatible 96-pin expansion slot. The Macintosh SE card could then be piggyback
connected to the adapter card. The logic to convert most simple Macintosh SE cards to
the 32-bit Macintosh SE/30 design is relatively straightforward and could prove a quick
and easy way to convert existing designs to the Macintosh SE/30.

Power consumption guidelines for Macintosh SE/30 and Macintosh IIsi PDS
expansion cards

The Macintosh SE/30 and Macintosh IIsi use the same power supply as the Macintosh SE.
Therefore, the same power consumption guidelines should be followed. The Macintosh SE
power budget is described in Chapter 13 in the section "Power Consumption Guidelines
for Macintosh SE PDS Expansion Cards." The Macintosh SE/30 and the Macintosh IIsi
main logic boards consume more power than the Macintosh SE main logic board, but if
you adhere to the following guidelines there is still enough power supply margin to ensure
reliability. Table 15-13 shows the allotted current for an expansion card.

• Note: For thermal considerations, the total power of the expansion card should not
exceed 7 W.

Chapter 15 Electrical Design Guide for 68030 Direct Slot Expansion Cards 353

• Table 15-13 Power budget for a Macintosh SE/30 and Macintosh IIsi expansion card

Voltage, V Current load, A

+5 1.5
-5 0.1

+ 12 0.15
-12 0.1

6 Important Seriously consider whether routing power outside the case is
necessary. If power is required outside the case, use a fast-acting fuse
to protect against an overcurrent load. A fast-acting fuse (1 A) retains
the product safety compliance designed jnto the Macintosh SE/30
and the Macintosh IIsi. 6.

Macintosh IIfx expansion card design

This section provides technical information that you need to design a PDS expansion card
for the Macintosh IIfx computer. Topics covered include pseudoslot design, termination
of m~mory cycles, the interrupt-handling mechanism, the bus priority scheme, the effect
of clock speeds on expansion card design, the use of cache memory, and power
consumption guidelines.

354 Designing Cards and Drivers for the Macintosh Family

Pseudoslot design guidelines for Macintosh IIfx PDS expansion cards

It is relatively easy to use the pseudoslot design method to design an expansion card for
the Macintosh IIfx 68030 Direct Slot. In addition to making sure that the /SLOT.E signal is
held low (grounded), the only constraints are the need for a declaration ROM and
adherence to address decoding rules. If you design your card along the lines of a NuBus
card (for example, so that it occupies slot $E and has a declaration ROM and interrupt
capability), the existing Slot Manager firmware in the system ROM controls the card as if
it were a NuBus card, but the electrical interface is via the 68030 Direct Slot. This means
that you do not have to develop another software driver; the driver for the NuBus
expansion interface will also work with your PDS expansion card.

If you do not use pseudoslot design, your expansion card can occupy either the slow slot
space area ($6000 0000 through $6FFF FFFF) or the fast slot space area ($7000 0000
through $7FFF FFFF) in the address map. However, your card cannot communicate with
the Slot Manager. You must provide a card-specific driver, and you should use /IRQI5 as
your interrupt line.

Memory cycle termination in the Macintosh Dfx

The 32-bit data bus of the Macintosh lIfx supports dynamic bus sizing, so I/O ports of 8,
16, or 32 bits can be designed. Proper control of the /DSACKx signals informs the
processor of the bus width, so additional memory cycles can be executed to complete the
transfer if necessary. There is no byte swapping between the MC68030 and the expansion
connector, and separate address and data buses eliminate the need for address latches.
Outgoing memory cycles from the Macintosh lIfx processor support dynamic bus sizing
and are terminated by the /DSACKO, /DSACKl, and /STERM signals on the PDS connector.
The reverse, however, is not true. Cycles incoming to the Macintosh IIfx memory are
32-bit synchronous and are terminated only by /STERM. Cycles from the PDS expansion
card to I/O devices are terminated by /DSACKI and /DSACKO, except to NuBus, where all
reads and aligned longword writes are terminated by /STERM.

An overriding timer on the main logic board generates a /BERR Signal anytime the
address strobe (/ AS) is asserted for longer than 16 ~s. Your expansion card design must
include a provision for generating /DSACK, /BERR, or other terminating
signals within this period.

Chapter 15 Electrical Design Guide for 68030 Direct Slot Expansion Cards 355

Interrupt handling for the Macintosh IIfx 68030 Direct Slot

The interrupt-handling mechanism for the Macintosh I1fx 68030 Direct Slot differs from
that of previous Macintosh computers with processor-direct slots. The major difference is
that the VIA2 in the earlier machines has been eliminated from the high-end Macintosh IIfx
computer architecture. It is replaced by the Operating System Support (OSS) chip, an
Apple custom IC with two dedicated interrupt lines, /IRQ6 and /IRQ15, to the 68030
Direct Slot. Your expansion card should no longer use interrupt priority lines /IPL2 through
/IPLO or it will be incompatible with the Macintosh IIfx firmware.

The levels of the /IRQ6 and /IRQ15 interrupt lines are fully programmable to provide
maximum design flexibility. If you use the pseudoslot method to design your card
and it is properly configured so that it can be recognized by the Slot Manager, then
the Slot Manager fields all interrupts on the /IRQ6 line as slot $E interrupts. If you do
not use the pseudoslot design method, all interrupts on the /IRQ15 line are fielded as
nonslot $E interrupts.

Bus master priority scheme for the Macintosh IIfx

It is possible to have multiple bus masters on the Macintosh IIfx processor bus. The
possible bus masters and their position in the priority scheme are shown in Table 15-14.
Note that the NuBus and SCSI interfaces allow DMA access to the 68030 Direct Slot.

Because the 68030 processor is the lowest-priority bus master, note that as each
expansion slot (NuBus and PDS slots) in the Macintosh IIfx is filled, the 68030 processor
performance is degraded.

• Table 15·14

Priority level

First (highest)
Second
Third
Fourth (lowest)

Macintosh IIfx bus master priority scheme

Bus master

68030 Direct Slot
NuBus
SCSI
MC68030 processor

356 Designing Cards and Drivers for the Macintosh Family

Effect of Macintosh nfx clock speeds on PDS expansion card design

The Macintosh IIfx computer consists of two subsystems, the memory (fast) subsystem
and the I/O (slow) subsystem. These subsystems are separated by fast/slow buffers. See
the block diagram in Figure 1-4.

Timing is provided by an 80 MHz oscillator whose output is divided by 2, r~sulting in a
40 MHz CPU clock for the memory subsystem. The output of the 80 MHz oscillator is
divided by 4 to provide a 20 MHz clock for the I/O subsystem.

Although the 68030 Direct Slot is in the I/O subsystem, it is still classified as a processor
direct slot because when an expansion card addresses the memory subsystem, that
subsystem responds in the same amount of time as if the Mc68030 processor had
addressed it. This same access speed is always maintained because the memory controller
speed is constant. Even though the clock supplied to the 68030 Direct Slot is only 20 MHz,
a PDS expansion card benefits from the high-speed design of the Macintosh Hfx.

The CPUCLK signal is provided to a PDS expansion card to allow the card to synchronize
to the computer. The timing interface looks exactly like the Mc68030 processor running at
20 MHz. Since the processor and memory subsystem CPU clock are actually running at 40
MHz, the processor slows down and synchronizes to the 20 MHz clock provided to the
68030 Direct Slot whenever an attempt is made to gain access to the expansion card.
This speed shift is transparent to the expansion card, but it can be controlled by the
address space that you choose when designing your card. The processor shifts speed
if your design uses pseudoslot address space $Exxx xxxx or $FExx xxxx. It also shifts
speed if you do not use pseudoslot address space but write your own driver and use
slow address space, $6xxx xxxx.

As an option, you may choose to write your own driver and use fast space, $7xxx xxxx. In
this case, the CPUCLK signal runs at 20 MHz, but the processor continues to run at 40 MHz
and does not slow down to synchronize with the expansion card's 20 MHz clock. You can
gain access to the expansion card faster, but design of the card will be more difficult since
the processor runs at 40 MHz and you have only a 20 MHz clock to work with. In this
configuration the processor-direct slot is phase synchronous with frequencies of 80 MHz
and 40 MHz.

As another option, you could include an oscillator on your card that runs at the desired
speed, and then double-rank synchronize all signals running between the processor and the
68030 Direct Slot. You can implement double-rank synchronization by running
asynchronous signals through two ranks of D type flip-flops that are being clocked at the
same frequency that the incoming signals are being synchronized to. The disadvantage of
this option is the loss of time created by the double-rank synchronization process.

Yet another design option you may want to consider is phase locking to the 40 MHz clock
of the memory subsystem.

Chapter 15 Electrical Design Guide for 68030 Direct Slot Expansion Cards 357

Using the Macintosh IIfx cache memory

The addition of the high-speed cache memory makes possible the high-performance
characteristics of the Macintosh IIfx computer. The cache is designed so that it is always
logically related to the main memory. The cache is fairly large, consisting of 32 KB in a
direct-mapped arrangement with 2000 lines of four longwords each. Writes are usually no
wait state cycles and always update the cache at the same time main memory is being
updated. Only burst reads are cached.

The memory subsystem in the Macintosh IIfx supports the 68030 cache burst protocol.
That is, a PDS expansion card in the 68030 Direct Slot can use /CBREQ to request the
main memory to supply four longwords in succession. See the Motorola MC68030
Enhanced 32-Bit Microprocessor User's Manual for detailed information and timing.
The cache cannot be inhibited during burst cycles, because /CBREQ and /CIOUT are
mutually exclusive.

In some systems thrashing can occur as the cache switches back and forth between the
68030 Direct Slot and the processor data, but this is not a problem in the Macintosh IIfx,
because of the large size of the cache.

The greatest data-transfer speeds are obtained if you write all code in aligned longwords.
The processor still supports bytes, words, misaligned words, and longwords, but the
processor must execute multiple cycles to gain access to code written in this manner. Also,
you should keep back-to-back writes on the same memory page. Since the fast-memory
controller in the Macintosh IIfx has a same-page detector, it does page mode writes if it
detects back-to-back writes on the same page, resulting in faster write operations.

Additional design hints

If you are designing a PDS card to operate as bus master and are accessing on-board
devices such as RAM, you must ensure that a DMA cycle is completed when the normal
MC68030 processor cycle is completed.

The data strobe signal is provided for expansion cards that function as DMA masters. The
/DS signal must be asserted when the DMA master is addressing devices on the main logic
board. The timing of the data strobe should match the MC68030 data strobe signal.

... Warning On the Macintosh IIfx, it is not possible for a PDS bus master
to read data from a NuBus expansion card.

358 Designing Cards and Drivers for the Macintosh Family

Power consumption guidelines for Macintosh IIfx PDS expansion cards

The power budget for a PDS expansion card in the Macintosh IIfx is identical to the
power budget for the NuBus card that it replaces. Refer to the section "NuBus Power
Budget" in Chapter 5 for details.

Macintosh Ilsi PDS adapter card

To install a processor-direct expansion card on the Macintosh lIsi, you must first install an
adapter card. An MC68030 adapter kit is available from authorized Apple dealers, though
you may decide to develop your own adapter card. If you decide to develop your own
custom adapter card for the Macintosh IIsi, refer to Figure 15-7 to see the expansion
connector on the main logic board in which the adapter fits. For a physical· description of
the Macintosh IIsi adapter card, refer to Chapter 17.

Chapter 15 Electrical Design Guide for 68030 Direct Slot Expansion Cards 359

• Figure 15-7 Macintosh IIsi main logic board expansion connector

0
I

I +12V I I -5V I I -12V

I GND [I GND I I GND

I c16M I VIACLK I I CPUCLK

I +5V I +5V I I +5V

lAO I Al I I A2

1M I A4 I I A5

A6 I GND I I A7

A8 I A9 I IAlO

All [AI2 [[AI3

AI4 [I +5V AI5

AI6 [I AI7 AlB

AI9 I A20 A21

A22 I GND A23

Front of machine
1

A24 I A25 A26

A27 I A28 A29

A~O I +5V A31

D:lI I D30 D29

028 I 027 D26

02:2 I GND 024

O2;l I 022 D21

020 I Dl9 DIS

Dl7 I +5V Dl6

Dl5 I Dl4 Dl3

Dl2 I DlI DlO

D2 I GND D8

D7 I D6 [D5

D4 [D3 [102
DI I +5V I I DO I
lHALT I IBERR I I IRESET

PCO [I FCI I I fC2

ILBR [I/LBG I [ILIlGACK

lAS [SIZO [SIZ1

[IRW [jDSACKO [IDSACKI

[ICBREQ I ICBACK ISTERM

IRMC I IDS ICIOUT

!IPLO I IIP11 IIPL2

IIRQI I IIRQ2 IRQ3

!TMOA I/TMIA IBUSLOCK

INUBUS [I CACHE /FPU

IPFW I I C40M IRBV I

I

0
c B A

360 Designing Cards and Drivers for the Macintosh Family

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

Most of the signals present in the expansion connector on the main logic board have
been connected to the PDS expansion slot on the Apple adapter card. The signals listed
in Table 15-15, however, are not present on the Macintosh IIsi Mc68030 PDS adapter card.
These signals should only be used for the development of the adapter card.

• Table 15-15 Macintosh IIsi custom adapter card signals

Pin number Signal

Al IRBV

A2 IFPU

B2 CACHE

Description

An active-low chip-select signal for the RAM-based video Ie.
This signal can be used, along with further decoding, to enable
signals for a cache circuit.
An active-low chip-select signal for the Motorola Mc68882
floating-point coprocessor. This device is decoded at a
base address of $0002 2000 in the CPU address space
(FC2 = FCI = FCO = 1). The AO and SIZE pins of the 68882 are
pulled high, signifying a 32-bit data bus.
An active-high signal asserted by an external cache to block
the logic board memory controller from executing a
memory cycle when the cache will provide the data. The
timing of this signal must meet the requirements of the
Macintosh IIci CACHE signal described in the section
"Electrical Design Guidelines for the Cache Card" in Chapter 23.

Macintosh IIsi adapter card cache signals

If you are developing a cache circuit, further decoding logic must be added to derive two
additional cache control signals, ICacheEnable and ICacheFlush. The decoding device can
be a PAL, such as a l6L8B. Below are the equations for these two cache control signals.

ICacheEnable (low) = IRBV • IRW • lAO • I Al • I A4 • IDO
ICacheEnable (high) = IRBV • IRW • lAO • I Al • I A4 • DO + RESET

ICacheFlush (low) = IRBV • IRW· lAO • IAI • IA4 • ID3
ICacheFlush (high) = IRBV • IRW • lAO • I Al • I A4 • D3

where • is Logical AND, + is Logical OR, and DO is the logical complement of IDO.

Chapter 15 Electrical Design Guide for 68030 Direct Slot Expansion Cards 361

All other combinations of inputs should not affect the ICacheEnable or ICacheFlush
outputs. The ICacheEnable signal should be set low when writing a ° to bit ° of the RBV
register 0, and should be set high when writing a 1 to bit ° of RBV register 0, or when the
RESET signal is asserted. The ICacheFlush signal should be set low when writing a ° to bit 3
of the RBV register 0, and should be set high when writing a 1 to bit 3 of RBV register 0, or
when the RESET signal is asserted.

Power consumption guidelines for the Macintosh IIsi adapter card

The allowable power consumption of an MC68030 processor-direct adapter card for the
Macintosh IIsi is 2.5 W, including the Mc68882 coprocessor. All of this power may be
drawn from +5V.

The use of AC termination on the address, data, and control signals improves signal quality and
is recommended by Apple. A series terminator with a 33 n resistor in series with a 120 pF
capacitor to ground on all address, data, and control signals provides reduced noise.

362 Designing Cards and Drivers for the Macintosh Family

Chapter 16 Electrical Design Guide for 68040
Direct Slot Expansion Cards

This chapter provides electrical guidelines for designing processor
direct expansion cards for the Macintosh Quadra 700 and Macintosh
Quadra 900 computers. This section includes information on the
following topics:

• electrical implementation of the 68040 Direct Slot

• functional description of expansion connector signals

• memory and I/O access for a 68040 expansion card

• interrupt processing

• power consumption guidelines

68040 Direct Slot expansion

The 68040 Direct Slot expansion connector, first used in the Macintosh Quadra 700 and
the Macintosh Quadra 900, takes advantage of the more powerful Mc68040
microprocessor. Like the 68030 Direct Slot expansion, the 68040 Direct Slot expansion
supports 32-bit address and data buses. The pin count of this connector has been
increased to 140 pins, as opposed to the 96 pins of the 68000 and 68020 PDS expansion
connectors and the 120 pins of the 68030 PDS expansion connectors.

The pinouts of the expansion connectors used on the Macintosh Quadra 700 and the
Macintosh Quadra 900 are identical. A PDS expansion card for the Macintosh Quadra
family of computers must be designed to work with the 68040 microprocessor. PDS cards
designed for computers that use the 68000, 68020, and 68030 will not work in the
Macintosh Quadra 700 and Macintosh Quadra 900 computers.

The following sections describe the pin assignments, define the signals, and provide signal
load and drive information for the implementation of the 68040 Direct Slot on the
Macintosh Quadra 700 and the Macintosh Quadra 900. This information is followed by
two more sections that give specific design guidelines for PDS expansion cards in the
Macintosh Quadra-family computers.

Electrical description of the 68040 Direct Slot

Figure 16-1 gives the pinout for the 140-pin expansion connector on the Macintosh
Quadra 700 and Macintosh Quadra 900 main logic boards, as viewed from above.

Table 16-1 lists the pin assignments, gives the signal names, and briefly describes each
signal. Table 16-2 shows two PDS signals that are connected to the microprocessor but
must not be connected to a coprocessor on a PDS expansion card. Table 16-3 provides
the load presented or drive available to each pin of an expansion card and indicates
whether the signals are inputs or outputs.

364 Designing Cards and Drivers for the Macintosh Family

• Figure 16-1 68040 Direct Slot expansion connector pinout

140 +5v +5V 70
139 69
138 68

137 67
136 TMS 66
135 TCK 65
134 GNO 64

133 +12V 12V 63
132 /PDS.SLOT.E.EN /IPL2 62

131 +5V /JPLl 61
130 TM2 I IIPLO 60
129 TMI I GNO 59
128 TMO I INMRQ6 58
127 I ANAWGRESET I n.c 57
126 TLNI I +5V 56
125 I TINO I IRSTO 55
124 GNO I IMEMRESET 54
123 TTl I ILOCK 53
122 TIO I IBB 52
121 +5V I IBR40SLOT 51
120 IBG.CPU I fBRCPU 50

119 IBG.40SLOT I GNO 49
118 /MI.SLOT I ICIOUT 48
117 IMI I ITRST 47
116 seo I SCI 46

115 ITS I IDLE 45
114 GNO I ITEA 44

113 (fA I n.c. 43
112 ffBI I (fIP.CPU 42
111 +5V I Rlw 41
110 SIZO I SIZI 40

109 DO I GNO 39
108 02 I 01 38
107 03 I +5V 37
106 05 I 04 36
105 07 I 06 3\
104 GND I 08 34
103 010 I 09 33
102 012 I 011 32
101 I +5V I 013 31
100 I 015 I 014 30
99 I 016 I GNO 29

98 I 018 I 017 28

97 I 020 I 019 27

96 I 021 I +5V 26

95 I 023 022 25
94 I GNO 024 24

93 I 026 025 23

92 I 028 027 22

91 I 030 029 21

90 I A30 031 20

89 I A28 A31 19
88 I A27 A29 18
87 I A25 A26 17
86 I GNO I A24 16

85 I A22 I A23 15
84 I A20 I AlI 14

83 I +5V I A19 13
82 I AJ) I A18 12
81 I A16 I GNO 11
80 I A14 I A15 10

79 I A12 I A13 9
78 I AIO I All
77 I A8 I A9
76 I GNO I A7
75 I A5 I A6
74 I +5V I A4
73 IAZ IAJ
72 I AO I Al
71 I AUX.CPUCLK I GNO

Chapter 16 Electrical Design Guide for 68040 Direct Slot Expansion Cards 365

• Table 16.1 68040 Direct Slot conr'lector signals

PIonumbel' SIgnal name signal description

1 GND Ground
2 Ai Address bit 1

3 A3 Address bit 3
4 A4 Address bit 4
5 A6 Address bit 6
6 A7 Address bit 7
7 A9 Address bit 9
8 All Address bit 11
9 A13 Address bit 13

10 A15 Address bit 15
11 GND Ground
12 A18 Address bit 18
13 A19 Address bit 19
14 A21 Address bit 21
15 A23 Address bit 23
16 A24 Address bit 24
17 A26 Address bit 26
18 A29 Address bit 29
19 A31 Address bit 31
20 D31 Data bit 31
21 D29 bata bit 29
22 D27 Data bit 27
23 D25 Data bit 25
24 D24 Data bit 24
25 D22 Data bit 22
26 +5V 5 volts
27 D19 Data bit 19
28 D17 Data bit 17
29 GND Ground
30 D14 Data bit 14
31 DB Data bit 13
32 Dll Data bit 11
33 D9 Data bit 9

(continued)

366 Designing Cards and Drivers for the Macintosh Family

• Table 16-1 68040 Direct Slot connector signals (continued)

Plnnwnber Signal name Signal description

34 D8 Data bit 8
35 D6 Data bit 6
36 D4 Data bit 4
37 +5V 5 volts
38 D1 Data bit 1

39 GND Ground
40 SIZ1 Transfer size bit 1
41 R!W Read/write
42 /TIP.CPU Transfer in progress
43 n.c. Not connected
44 /TEA Transfer error acknowledge
45 /DLE Data latch enable
46 SC1 Snoop control signal bit 1
47 /TRST Test reset
48 /CIOUT Cache inhibit out
49 GND Ground
50 /BR.CPU Bus request for main processor
51 /BR.40SLOTt Bus request for PDS card
52 /BB Bus busy
53 /LOCK Bus lock
54 /MEMRESETt Fast reset generated by JDB IC for Memory Control Unit

55 /RSTO Reset out
56 +5V 5 volts
57 n.c. Not connected
58 /NMRQ6t NuBus slot $E interrupt; also connected to

NuBus slot $E
59 GND Ground
60 /IPLO Interrupt priority 0
61 /IPLl Interrupt priority 1
62 /IPL2 Interrupt priority 2
63 -12V -12 volts
64 GND Ground
65 n.c. Not connected

(continued)

Chapter 16 Electrical Design Guide for 68040 Direct Slot Expansion Cards 367

• Table 16·1 68040 Direct Slot connector signals (continued)

Pin number Signal name Signal description

66 n.c. Not connected
67 n.c. Not connected
68 n.c. Not connected
69 n.c. Not connected
70 +5V 5 volts
71 AUX.CPUCLKt :auffered version of main processor's bus clock
72 AO Address bit 0

73 A2 Address bit 2
74 +5V 5 volts
75 AS Address bit 5
76 GND Ground
77 A8 Address bit 8
78 A10 Address bit 10

79 A12 Address bit 12
80 A14 Address bit 14
81 A16 Address bit 16
82 A17 Address bit 17
83 +5V 5 volts
84 A20 Address bit 20
85 A22 Address bit 22
86 GNP Ground
87 A25 Address bit 25
88 A27 Address bit 27
89 A28 Address bit 28
90 A30 Address bit 30
91 D30 Data bit 30
92 D28 Data bit 28

93 D26 Data bit 26
94 GND Ground
95 D23 Data bit 23
96 D21 Data bit 21

97 D20 Data bit 20
98 D18 Data bit 18

(continued)

368 Designing Cards and Drivers for the Macintosh Family

• Table 16-1 68040 Direct Slot connector signals (continued)

Pin number Signal name Signal description

99 D16 Data bit 16
100 D15 Data bit 15
101 +5V 5 vplts
102 D12 Data bit 12
103 D10 Data bit 10
104 GND Ground
105 D7 Data bit 7
106 D5 Data bit 5
107 D3 Data bit 3
108 D2 Data bit 2

109 DO Data bit 0
110 SIZO Transfer size bit 0
111 +5V 5 volts
112 ITBI Transfer burst inhibit

113 ITA Transfer acknowledge
114 GND Ground
115 ITS Transfer start
116 SCO Snoop control signal bit 0
117 IMI Memory inhibit
118 IMI.SLOTt Memory inhibit from PDS card to Memory Control Unit

119 IBG.40SLOTt Bus grant for PDS card
120 IBG,CPU Bus grant for main processor
121 +5V 5 volts
122 TTO Transfer type bit 0
123 Ttl Transfer type bit 1
124 GND Ground
125 TLNO Transfer line number bit 0
126 TLN1 Transfer line number bit 1
127 I ANALOGRESETt Enables the PDS to drive the system reset signal;

used only for testing
128 TMO Transfer mode bit 0
129 TM1 Transfer mode bit 1

130 TM2 Transfer mode bit 2

(continued)

Chapter 16 Electrical Design Guide for 68040 Direct Slot Expansion Cards 369

• Table 16·1 68040 Direct Slot connector signals (continued)

Pin ntlnJber Signal name Signal description

131 +5V 5 volts
132 IPDS.SLOT.E.ENt Notifies YANCC that PDS card is installed and is

using memory space assigned to NuBus slot $E
133 tl2V 12 volts
134 n.c. Not connected
135 TCK Test clock
136 TMS Test mode select
137 n.c. Not connected
138 n.c. Not connected

139 n.C. Not connected
140 +5V 5 volts

t These signals are nOnri1icroprocessor signals on the Macintosh Quadra 700 and the Macintosh Quadra 900 and are not
tied to any 68040 signal.

• Note: The AUX.CPUCLK line is terminated with a series resistor. To reduce reflections
on this line, all loads on the card should be lumped.

• Table 16·2 Restricted 68040 inicroprocessor signals on the Macintosh Quadra 700 and
Macintosh Quadra 900 PDS connectors

Signal name Direction

ITIP.CPU Output

IIPL2-IPLO Output

Function

From the 68040 on the main circuit board;
not connected to any other part of the computer
Interrupt priority lines from the PAL; not to be
used as wire-OR lines; can be monitored by a
PDS card

!:::, Important The signals on the Macintosh Quadra 700 and the Macintosh
Quadra 900 PDS expansion connectors are connected directly
to the 68040 with no buffers; that means the data and address
buses and AUX.CPUCLK on a 68040 PDS expansion card must
present capacitive loads of not mOre than 40 pF. All other
lines must present capacitive loads of not more than 20 pF. b,

370 Designing Cards and Drivers for the Macintosh Family

• Tabk 16,;3 68040 Direct Slot signals, loading or driving limits

Signaloame Input/output Load or drive Umits

AO-A31 Input/Output Load: 200 J.LA/2 rnA, 150 pF
Drive: 40 J.LA/.4 rnA, 40 pF

DO-D31 Input/Output Load: 200 J.LA/2 rnA, 120 pF
Drive: 40 J.LA/.4 rnA, 40 pF

/ ANALOG RESET Output Drive: 40 J.LA/.4 rnA, 20 pF
AUX.CPUCLK Output Drive: 40 J.LA/.4 rnA, 40 pF
/BB Input/Output Load: 100J.LA/4 rnA, 70 pF

Drive: 40 J.LA/.4 rnA, 20 pF
/BG.CPU Output Drive: 40 J.LA/.4 rnA, 20 pF
/BG.40SLOT Output Drive: 40 J.LA/.4 rnA, 20 pF
/BR.CPU Input Load: 100 J.LA/4 rnA, 40 pF
/BR.40SLOT Input Load: 100 J.LA/4 rnA, 40 pF
/CIOUT Output Drive: 40 J.LA/.4 rnA, 20 pF
/DLE Input Load: 100 J.LA/4 rnA, 25 pF
/IPLO-/IPL2 Output Drive: 40 J.LA/.4 rnA, 20 pF
/LOCK Input/Output Load: 100 J.LA/4 rnA, 25 pF

Drive: 40 J.LA/.4 rnA, 20 pF
/MEMRESET Output Drive: 40 J.LA/.4 rnA, 20 pF
/MI Input/Output Load: 100 J.LA/4 rnA, 25 pF

Drive: 40 J.LA/.4 rnA, 40 pF
/MI.SLOT Input Load: 100 J.1A14 rnA, 20 pF
/NM~Q6 Input Load: 100 J.LA/4 rnA, 40 pF
/PDS.SLOT.E.EN Input Load: 100 J.LA/4 rnA, 20 pF
/RSTO Output Drive: 40 J.LA/.4 rnA, 20 pF
RIW Input/Output Load: 100 J.LA/4 rnA, 100 pF

Drive: 40 J.LA/.4 rnA, 20 pF
SCO-SCI Input/Output Load: 100 J.LA/4 rnA, 40 pF

Drive: 40 J.LA/.4 rnA, 20 pF
SIZO-SIZI Input/Output Load: 100 J.LA/4 rnA, 90 pF

Drive: 40 J.LA/.4 rnA, 20 pF
/TA Input/Output Load: 100 J.LA/4 rnA, 100 pF

Drive: 40 J.LA/.4 rnA, 20 pF
(continued)

Chapter 16 Electrical Design Guide for 68040 Direct Slot Expansion Cards 371

• Table 16-3 68040 Direct Slot signals, loading or driving limits (continued)

Signal name Input/output Load or drive limits

/TBI Input/Output Load: 100 JlAl4 rnA, 100 pF
Drive: 40 JlAl.4 rnA, 20 pF

TCK Input Load: 100 JlAl4 rnA, 25 pF
/TEA Input/Output Load: 100 JlAl4 rnA, 100 pF

Drive: 40 JlAl.4 rnA, 20 pF
/TIP.CPU Output Drive: 40 JlA/'4 rnA, 20 pF
TLNO-TLN1 Output Drive: 40 JlA/.4 rnA, 20 pF
TMO-TM2 Output Drive: 40 JlAl.4 rnA, 20 pF
TMS Input Load: 100 JlAl4 rnA, 25 pF
/TRST Input Load: 100 JlAl4 rnA, 25 pF
/TS Input/Output Load: 100 JlAl4 rnA, 90 pF

Drive: 40 JlAl.4 rnA, 20 pF
TTO-TTl Input/Output Load: 100 JlA/4 rnA, 90 pF

Drive: 40 JlAl.4 rnA, 20 pF

• Note: Input denotes direction from PDS card to the main logic board, not
necessarily to the processor. Output denotes direction from main logic board,
and not necessarily from the processor, to the PDS card.

Design considerations for 68040 Direct Slot expansion cards

The following paragraphs provide information that you should become familiar with
before starting your expansion card design. Included are a description of how an
expansion card gains access to memory and I/O devices, a description of how the
interrupt-handling mechanism works, a summary of design hints, and a discussion of the
expansion card power requirements for the Macintosh Quadra 700 and the Macintosh
Quadra 900.

372 Designing Cards and Drivers for the Macintosh Family

Bus master priority scheme

For maximum performance, the processor-direct slot is connected directly to the 68040
microprocessor by way of the system bus. There are actually three buses in the Macintosh
Quadra 700 and the Macintosh Quadra 900: the system bus, the I/O bus, and the NuBus.

The system bus connects directly to the pins of the 68040 microprocessor and runs at the
processor's clock rate, 25 MHz. Five types of controller ICs are connected to the system
bus: the Memory Control Unit, a custom memory controller; YANCC, the NuBus controller;
DAFB, the frame buffer controller; the I/O adapter chips; and the SCSI controllers.

The I/O bus in the Macintosh Quadra-family computers is similar to the I/O bus in the
Macintosh IIfx and runs at a clock rate of 15.6672 MHz. The controller ICs that are
connected to the I/O bus include the Enhanced Apple Sound chip and the Sonic custom
IC as well as ICs shared with older Macintosh models.

Finally, the NuBus runs at a clock rate of 10 MHz and supports any NuBus expansion cards.
For more information about the NuBus expansion interface for the Macintosh Quadra 700
and the Macintosh Quadra 900, refer to Part 1.

It is possible to have multiple bus masters on the Macintosh IIfx processor bus. The
possible bus masters and their position in the priority scheme are shown in Table 15-14.
Note that the NuBus and SCSI interfaces allow DMA access to the 68030 Direct Slot.

The Macintosh Quadra-family computers can support up to four bus masters: three on the
system bus and one on the I/O bus. The Relayer ASIC contains the bus arbitration logic.
The possible bus masters and their position in the priority scheme are shown in Table 16-4.
The arbitration mechanism includes a degree of fairness that should keep devices from
becoming bus-starved. Keep in mind that the current bus master has complete control of
both the system bus and the I/O bus. For example, if the 68040 is the current bus master
and the Sonic Ethernet controller requests the bus, the Ethernet controller will have to wait
until the 68040 relinquishes control before it can drive the bus.

Chapter 16 Electrical Design Guide for 68040 Direct Slot Expansion Cards 373

• Table 16-4 Bus master priority scheme for the Macintosh Quadra-family computers

Priority Bus Device

First (highest) I/O bus Sonic Ethernet controller
Second System bus Y ANCC NuBus controller
Third System bus PDS
Fourth (lowest) System bus 68040

The 68040 is the lowest-priority device, but the arbiter does support bus parking, so the
average latency for 68040 bus access is minimized. If a system bus master attempts to
burst data to or from an I/O bus slave, the Relayer ASIC will invoke a 68040 fake burst by
asserting the 68040 ITBI signal.

Memory and I/O access for expansion cards

A PDS card can have memory locations in the upper part of the RAM memory space
($10000000 through $3FFF FFFF) or in the space assigned to NuBus slot $E ($FEOO 0000
through $FEFF FFFF or $EOOO 0000 t:htough $EFFF FFFF). See Table 16-5 for a listing
of the memory map physical address space assignments for the computers in the
Macintosh Quadra family. If you are designing a new processor-direct expansion
card for the Macintosh Quadra 700 or the Macintosh Quadra 900, you should use the
pseudoslot design method to emulate this NuBus address space. Pseudoslot design
is explained in the next section. The advantage of designing a PDS card to occupy
one of the unused NuBus addresses is that existing ROM firmware, which has the ability
to manage NuBus slots, is present in the system ROM. If you design your card along the
lines of a NuBus card (with a declaration ROM and interrupt capability), the Slot Manager
in ROM controls your card as if it were a NuBus card, but the electrical interface is
connected directly to the 68040 processor.

The Memory Control Unit (MCU) IC connects to the system bus and provides control and
timing signals for RAM and ROM on the Macintosh Quadra 700 and the Macintosh
Quadra 900. Among the features of the 68040 is the ability to mark different areas in
memory-both RAM and ROM-as cacheable or noncacheable. The MCV supports all
types of 68040 memory access, including burst modes.

374 Designing Cards and Drivers for the Macintosh Family

/
/

• Table 16-5 Macintosh Quadra 700 and Macintosh Quadra 900 32-bit physical
address spaces

Address

$0000 0000-$3FFF FFFF
$4000 0000-$4FFF FFFF
$50000000-$50001FFF
$5000 2000-$5000 3FFF
$5000 4000-$5000 7FFF
$5000 8000-$5000 9FFF
$5000 AOOO-$5000 BFFF
$5000 COOO-$5000 DFFF

$5000 EOOO-$5000 EFFF
$5000 FOOO-$5000 F3FF
$5000 F400-$5000 F7FF

$5000 F800-$5000 3FFF
$5001 4000-$5001 5FFF
$5001 6000-$5001 DFFF
$5001 EOOO-$5001 FFFF

$50020000-$50027FFF
$5002 8000-$5002 9FFF
$5002 AOOO-$5003 FFFF
$5004 0000-$53FF FFFF

$5400 0000-$5FFF FFFF
$6000 OOOO-$EFFF FFFF
$FOOO OOOO-$FOFF FFFF
$F100 OOOO-$FFFF FFFF

Description

RAM
ROM
VIAl
VIA2
Reserved for Apple
Ethernet PROM
Ethernet
lOP for SCC (Macintosh Quadra 900);
SCC (Macintosh Quadra 700)
Memory Control Unit controls
SCSI 0 (internal)
SCSI 1 (external) in the Macintosh Quadra 900;
reserved for Apple in the Macintosh Quadra 700
Reserved
Sound
Reserved for Apple
lOP for SWIM and ADB (Macintosh Quadra 900);
SWIM (Macintosh Quadra 700)
Reserved for Apple
Y ANCC controls
Reserved for Apple
Reserved (duplicate images of I/O space
$50000000-$5004 0000)
Reserved for Apple
NuBus super slots
Reserved
NuBus slots

Chapter 16 Electrical Design Guide for 68040 Direct Slot Expansion Cards 375

Pseudoslot design guidelines for PDS expansion cards

If you are familiar with designing devices for the Mc68000 family of microprocessors, you
should find it relatively easy to use the pseudo slot method to design an expansion card for the
Macintosh Quadra 700 and the Macintosh Quadra 900. The only added constraints are that you
need a declaration ROM and that you must adhere to some address decoding rules.

Many of the address locations correspond to address ranges used by NuBus expansion cards
resident in Macintosh computers that offer NuB us. The advantage of designing an expansion
card to occupy one of these unused addresses is that existing ROM firmware with the ability to
manage the NuBus slots is also present in your computer's system ROM. Therefore, if an
expansion card is designed along the lines of a NuBus card (for example, with a declaration ROM
and interrupt capability), the existing Slot Manager ROM firmware controls this card as if it were
a NuBus card, but the electrical interface is via the 68040 bus. As a side benefit of this design,
one software driver works on machines with two different methods of expansion. To find out
more about the Slot Manager, refer to Chapter 8, "NuBus Card Firmware," in this book and the
Slot Manager information in Inside Macintosh.

A PDS card in a Macintosh Quadra-family computer can have memory locations in the upper part
of the RAM memory space or in the space assigned to NuBus slot $E. If the card uses slot $E
addresses, it must decode all addresses in both the slot space and the super slot space, responding
to any access to an unused location with ITEA on the processor bus to indicate an illegal address.

A typical PDS card maps into the NuBus space and works with the system software's Slot
Manager. Such a card must notify the NuBus controller that it is using the NuBus space so that
the NuBus controller will ignore accesses to slot $E. To do that, the card asserts the signal
IPDS.SLOT.E.EN on the PDS connector by pulling the line low.

A PDS card that asserts the IPDS.SLOT.E.EN signal must issue a ITA (transfer acknowledge) or a
ITEA in response to all accesses to the $Exxx xxxx and $FExx xxxx address space. (This action
will keep the machine from hanging since there is no time-out timer for slot $E when the
IPDS.SLOT.E.EN signal is asserted.)

A PDS bus master card must drive all control signals to a known state when it requests the system
bus. Snoop control bits, in particular, must be driven to indicate no snoop.

By convention, all devices on the system bus, including a PDS card, must drive tristate signals
active for one-half of a clock cycle before going tristate. For example, a PDS card functioning as
the slave should drive ITA high after the address space is decoded, then drive it low for one
clock cycle, and finally drive it high at the end of that clock cycle. The ITA signal should go
tristate one-half clock cycle later. If you follow these guidelines in your PDS card design, the
control lines have cleaner edges and so your card operates more reliably.

The declaration ROM must reside at the upper address limit of the 16 MB address space in order
for the Slot Manager code to recognize the card. Chapter 8, "NuBus Card Firmware," provides
information to help you develop the necessary card firmware.

376 Designing Cards and Drivers for the Macintosh Family

You are not required to follow the pseudoslot method for designing an I/O expansion card.
This method is provided as a way of simplifying the design task and minimizing the need for
revisions of support software.

Timing considerations

Signal timing for the PDS connector is dependent on the clock speed of the 68040
microprocessor. Developers of PDS expansion cards should clearly indicate on the card
the maximum clock speed of the card.

The timing of a PDS card's output signals must be equal to or better than the worst-case
delay output timing of the 68040 microprocessor. Also, input signals to a PDS card cannot
expect more setup time than is required for a signal to set up on the 68040
microprocessor.

68040 Direct Slot interrupt handling

The interrupt-handling mechanism for the 68040 Direct Slot on the Macintosh Quadra 700
and the Macintosh Quadra 900 is similar to the one used in Macintosh computers with
NuBus. There are five NuBus slot interrupt signals on the Macintosh Quadra 900 and two
on the Macintosh Quadra 700. The interrupt signal for slot $E is shared by the 68040 Direct
Slot. The NuBus slot interrupt signals, the on-board video interrupt signal, and the
Ethernet controller interrupt signal are routed through an OR gate to generate a signal
called /SLOTIRQ. This signal is connected to the CAl input of VIA2, the second VIA chip
on the logic board. This VIA generates a level 2 interrupt to the 68040. This VIA can also
generate an interrupt in response to SCSI requests, sound chip requests, or VIA timer
requests.

All interrupts to the 68040 are autovectored. When the 68040 is executing a level x
interrupt, it first sets the interrupt mask to level x, so further interrupts at level x and below
will be ignored. Once the interrupt handler is executed and an RTE instruction is
processed, the interrupt mask is restored to the value it had before the interrupt.

The first-level interrupt dispatcher determines which hardware device-SCSI, sound chip,
real-time clock, or expansion slot-is requesting the interrupt and dispatches code to the
appropriate interrupt handler. If the interrupt generated by the VIA is a slot interrupt, the
software polls the second VIA, bits PAO through PA6, to determine which slot generated
the interrupt. Table 16-6 summarizes the interrupt lines for VIA2.

Chapter 16 Electrical Design Guide for 68040 Direct Slot Expansion Cards 377

• Table 16-6 Macintosh Quadra 700 and Macintosh Quadra 900 VIA2 interrupt lines

Address

PAO
PA1t
PA2t
PA3t
PA4
PAS
PA6

Description

Etherhet IRQ
Slot $A IRQ
Slot $B IRQ
Slot $C IRQ
Slot $D IRQ
Slot $E IRQ
Video IRQ

t The PAl, PA2, and PA3 interrupt lines on the MaCintosh Quadra 700 are not connected.

Once the software determines which pseudoslot generated the interrupt, the Slot Manager
software executes the interrupt handler for that slot device. The handler for that device
was installed at boot time, when the initialization software polled the possible slots and
identified the existence of a card in the slot by its ROM signature.

There is a delay between the assertion of a slot interrupt and the actual execution of the interrupt
handler. During this time, the software polls the actual slot /IRQ signal. The recommended design
practice is to latch the slot /IRQ signal so that once it is asserted, the interrupt-handler software
for the card has the responsibility of clearing the interrupt. This ensures that the slot /IRQ signal
is asserted when polled and the Slot Manager is dispatched correctly.

In addition to the standard Macintosh II functions, the VIAl includes 2 new bits. The first is a
software interrupt signal, and the second is the A!UX interrupt enable signal. When the
software interrupt bit is set, an interrupt will be passed to the 68040. When the A!UX interrupt
enable bit is set, the interrupt control PAL will remap the interrupts. Table 16-7 shows the
Macintosh and A!UX operating-system interrupts; where priority 0 is low and priority 7 is high.

• Table 16-7 Macintosh Quadra 700 and Macintosh Quadra 900 interrupt mapping

Interrupt

priority

o
1
2

3
4
S
6
7

Macintosh II

interrupt

VIAl
VIA2 (SCSI, sound, NuBus slots,

Ethernet, video)

SCC

NMIIY ANCC error

AlUX
interrupt

Software
VIA2 (SCSI, NuBus slots, video)

Ethernet
SCC
Sound
VIAl
NMIIYANCC error

378 Designing Cards and Drivers for the Macintosh Family

Cache management

The 68040 microprocessor has two internal caches, one for instructions and one for data.
The caches perform the same function as those on earlier processors, storing the contents
of recently addressed memory locations in anticipation that those contents will soon be
used again.

The data cache in the 68040 microprocessor has a new mode called CopyBack mode. That
mode is different from the Wri~eThru mode used by the caches in the Mc68020 and
Mc68030 microprocessors. CopyBack mode improves the overall performance because
the processor may write to a memory location several times before the data must be
flushed from the cache. Operating in CopyBack mode can increase the processor's
performance by up to 50% but also requires the operating system to manage some types
of data more carefully.

The difference between the WriteThru and CopyBack modes on the 68040 processor is
the way they deal with data being written to memory. In WriteThru mode, the 68040
writes the data to the cache and also updates main memory immediately. In CopyBack
mode, the 68040 writes directly to the cache; main memory is not immediately updated.
The cache writes the data to main memory when that portion of the data is selected for
replacement or when the data cache is flushed.

Cache management by ROM

One consequence of the use of CopyBack mode is that main memory does not always
contain the latest data. There could be a problem when an alternate bus master reads from
memory that is being cached by the main processor and the main memory has not been
updated. To prevent this problem from arising, the ROM software uses only pages marked
uncacheable when setting up communication areas with alternate bus masters.

Another way old data can cause a problem is when the microprocessor fills its instruction
cache from an area with old data. To prevent that problem, the ROM software flushes the
contents of the data cache to main memory after writing data that consists of instruction
code. Specifically, the software flushes the data cache to main memory after each of the
following operations:

• loading a resource into memory

• moving a heap block

• creating a jump table

• Note: The ROM software in the Macintosh Quadra-family computers also
invalidates the caches in the 68040 in the same places that the older ROM
software invalidated the caches in the 68020 and 68030.

Chapter 16 Electrical Design Guide for 68040 Direct Slot Expansion Cards 379

Cache management by applications

It has always been important to flush the caches on the 68020 and 68030 before executing
instructions that were recently written to memory. On the 68040, flushing only the
instruction cache in this situation is not sufficient. The instruction and data caches are
independent of each other, and there is a strong possibility that the instruction cache will
fill with old data from RAM while the new data has not yet been written to RAM from the
data cache.

To prevent this problem in your applications, you must use one or more of the calls
provided by the system software whenever you write data that will be executed as
instructions. You should use the _FlushlnstructionCache and _FlushDataCache

calls to flush each cache. Because the purpose of the _FlushlnstructionCache call is
to maintain cache coherency, its operation on the 68040 is to flush both the instruction
and data caches. Flushing both caches with one call also avoids problems in situations
where interrupts might occur while the caches are being flushed individually.

For more information about the _Fl ushlns truct ionCache and _F 1 ushDat aCache

function calls, contact Macintosh Developer Technical Support (MacDTS). In the future,
these function calls will be documented in Inside Macintosh.

6. Important Flushing the cache at certain times is critically important, but
don't flush the cache too often. Unnecessary flushing of the
cache impairs the performance of the 68040 microprocessor. 6.

Design hints for PDS expansion cards in Macintosh Quadra-famlly computers

When designing a card for the Macintosh Quadra 700 and the Macintosh Quadra 900, you
must generate timing to match the requirements of the 68040 microprocessor. For further
information on the timing requirements of the microprocessor, refer to the Motorola
MC68040 32-Bit Microprocessor User's Manual.

380 Designing Cards and Drivers for the Macintosh Family

The 68040 also has a new feature called bus snooping. Snooping is a hardware function
that allows the cache to monitor the bus activity by alternate bus masters. The snooping
function is a necessary part of cache coherency. Because snooping substantially slows the
processor down, however, it is not used in the Macintosh Quadra 700 and the Macintosh
Quadra 900 and is not supported by the software. Devices that transfer data on the
system bus, such as PDS bus masters, must drive the snoop control pins (SCO and SCl) to
indicate no snooping. Because snooping is not supported, cache coherency must be
maintained explicitly. Refer to the previous section for information about maintaining
cache coherency.

Starting with the Macintosh IIci computer, ROM software has provided some of the
virtual memory (VM) routines to allow programmers to manipulate the tables in the MMU.
The ROM software for the Macintosh Quadra-family computers includes modifications
to those routines to support the 68040, along with some enhancements to provide write
protection capability for the main memory.

Specifically, the existing routines LockMemory, LockMemoryContiguous, and
UnlockMemory can change the attributes of individual pages in the absence ofVM. The
ability to set the attributes of individual pages in memory becomes important with the
advent of the large internal caches of the 68040 and the common use of alternate bus
masters. For example, when an area in memory is used as a communication buffer between
the main processor and an alternate bus master, that area of memory must be marked
uncacheable to maintain cache coherency after writes from the alternate bus master. On
earlier machines that used the 68020 and 68030 processors, it was acceptable to turn off
the entire cache whenever any pages needed to be uncacheable, due to the small sizes of
the caches on those processors and the limited number of bus masters. On a machine with
a 68040 and on-board bus masters, such a practice would result in an unacceptable
degradation of performance.

Power consumption guidelines for 68040 Direct Slot expansion cards

The power budget for a PDS expansion card in the Macintosh Quadra 700 and Macintosh
Quadra 900 is identical to the power budget for the NuBus card that it replaces. Refer to
the section "NuBus Power Budget" in Chapter 5 for details.

Chapter 16 Electrical Design Guide for 68040 Direct Slot Expansion Cards 381

Chapter 17 Physical Design Guide for Macintosh
PDS Expansion Cards

This chapter contains physical design guidelines for developing
expansion cards for Macintosh computers with processor-direct slots.
Included in
this category are the Macintosh SE (68000 Direct Slot), the Macintosh
Portable (68000 Direct Slot), the Macintosh LC (68020 Direct Slot), the
Macintosh SE/30 (68030 Direct Slot), the Macintosh IIsi (68030 Direct
Slot), the Macintosh IIfx (68030 Direct Slot), and the Macintosh
Quadra 700 and Macintosh Quadra 900 (68040 Direct Slot) computers.

This chapter includes

• mechanical drawings showing expansion card dimensions and
mounting provisions

• descriptions of the mating 96-pin, 120-pin, and 140-pin connectors
on the expansion cards and logic boards

• mechanical drawings detailing electrical and physical requirements
for connecting expansion cards to external equipment

... Warning The drawings in this chapter are from mechanical design
guides used within Apple Computer. They were correct at
the time of publication but are subject to change. •

383

Physical guidelines for Macintosh SE expansion cards

Figures 17-1. through 17-3 show the spatial relationship between an expansion card and the
Macintosh SE main logic board .

.. Warning Figure 17-1 is from a design guide used within Apple Computer. This
drawing was correct at the time of publication but is subject to change. ...

• Figure 17-1 Macintosh SE expartsion card design guide

4 213.25
(8.396)
200.66 - -3.43 (7.90)

(.135)

..

16.00
(.630)
No components,
traces only

j16.80

o 3.86
(.152)

2 PL
1.60- -

(.063)

1
120.42
(4.741)

t
50.17

(1.975)
Expansion

card
110.11 t
(4.335) "'----- -Ifffi--~-----'---------~-+---

25.09
(.988) _-----195.29 ______ _

(7.689)

Component (top) view
Compliant pins on DIN 96

Dimensions are in millimeters with inches in parentheses.

384 Designing Cards and Drivers for the Macintosh Family

2.0x45° /
4PL

Main logic board
REF

• Figure 17-2

1558
(.614) max.

An expansion card in the Macintosh SE assembly

r-=------------------
(if T;;fi r~;?------l "~

!, ---f", ct __ -_, '------~ t -~:
I '1 f++ I~---_ 4.61 I ~~
I 'Y / ----- (.181) max. , J. :
, " / Chassis ---- , 9 I 'l I LJ-

"Ju r ---- I Expansion card 1 -ttl -I)
~t:--::E::=~~I ,,' I ~ r

T --~_.dJ
- _- - - --,.. -, - - - "'\....0- J-

Dimensions are
in millimeters with
inches in parentheses.

Main logic board

Suggested position of
connector for cable
to external port

Side view height restrictions

Chapter 17 Physical Design Guide for Macintosh PDS Expansion Cards 385

• Figure 17-3 An expansion card and the Macintosh SE main logic board

Rear

Main logic board

Front

The 68000 Direct Slot 96-pin connector for the Macintosh SE

Figure 17-4 shows a plug connector that mates with the Euro-DIN 96-pin socket connector
on the main logic board. The plug connector should hav~ compliant pins (force fit
insertion) rather than solder-type pins for connection to the expansion card if
components are to be mounted on the top side of the card.

Figure 17-5 shows the 96-pin socket connector and mounting supports on the
Macintosh SE main logic board assembly. Figure 17-6 is a detail of the sQcket connector
used on the main logic board.

You can order Euro-DIN 96-pin connectors meeting Apple specifications from

AMP Incorporated
Harrisburg, PA 17105 .

Because of high-volume production requirements, Apple purchases specially modified
versions of the Euro-DIN 96-pin connector from this vendor. However, you may purchase
a mating connector of standard cQnfiguration from this or other vendors.

386 Designing Cards and Drivers for the Macintosh Family

• Figure 17·4 A 96-pin plug connector for a Macintosh SE expansion card

95.0 (3.74) max

~ 900 (3 543) . 0.3
(.011 t =:c=

~~ooooooooooooooooooooooooooooooo~~- t 11.10 8.80
(.4[7) ~

00000000000000000000000000000000
t oooooooooooooooooooooooooooooooo~

8)

~
2 holes@ ..
2.85 (.112)

85.29 (3.385) .I~~~
wa
wb

Rowc

I -j r 2.54 (.100)
• 5.20 11.50

2.J94 C~I ~=~============An.~ (204L (,415
2
)

(.110)min.I ------------------~~== -
Three-row pi1l connector
96 contact positions
2.54 mm (.100 inch) spacing pins
Gold plated, 20 microinches, over nickel plate
Dimensions ate in millimeters with inches in parentheses.

-1 r- 5.08 (.200)

-1 H- 2.54 (.100)

~i14)

Chapter 17 Physical Design Guide for Macintosh PDS Expansion Cards 3fr7

• Figure 17-5 Macintosh SE connector and mounting supports for an expansion card

Reset
switch .upll

Mounting
holes for
expansion
card 50.17
supports (1.975)

o ____ ~~~~o============~============~~------~
03.86
(.152)
2 PL

~
I 5.72

- - (.225)

o
211.45
(8.325)

Dimensions are in millimeters with inches in parentheses.

206.38
(8.125)

388 Designing Cards and Drivers for the Macintosh Family

• Figure 17-6 Detail of 96-pin socket connector used on Macintosh SE main logic board

2.75
(.108)
max

(~~ ~~I-=------~------~----~=-~ m~ ~ 0 0 0

~U __________________ _
2.54 I I

(.100) -I I-
2.79

(.110) min

0:

5.08
(.200)

95.0 (3.74) max
90.0 (3.54)

85.0 (3.34) max
----------101

00++++++++++++++++++++++++++++
00++++++++++++++++++++++++++++0

++++++++++++++++++++++++++++0

2.54 2 holes @
(.100) 2.85 (.112)

Three-row socket connector
96 contact positions

31 x 2.54 (.100) = 78.74 (3.10)

2.54 mm (.100 inch) spacing sockets
Gold plated, 20 microinches, over nickel plate

Dimensions are in millimeters with inches in parentheses.

External connections for the Macintosh SE

* I

al
bl
c1

2.54
(.100)

3.95 (.155)
8.5 (.334) m~
10.6 (.417)

This section discusses both electrical and physical considerations required in making
connections to external equipment for the Macintosh SE.

The Macintosh SE has an external device access opening through which another piece of
equipment can be connected. Typically, a cable would be routed from the expansion card
upward through a cutout in the back of the chassis, and then to a connector on a
connector card you provide.

Mechanical drawings in this section show the provision Apple has made for connecting
your expansion card to devices external to the Macintosh SE.

• Note: FCC regulations on radio-frequency emissions prohibit the installation of an
external device access opening in the Macintosh Portable computer.

Chapter 17 Physical Design Guide for Macintosh PDS Expansion Cards 389

Figure 17-7 shows the Macintosh SE sheet metal and the structure for mounting your
connector and connector card. Figure 17-8 shows the recommended internal cable routing
paths for the Macintosh SE.

D Important If you design your expansion card's internal cable to be at least
220 mm (8.6 inches) long, it can also be used to connect an
expansion card to the Macintosh SE/30, the Macintosh IIsi,
and other future Macintosh computers. /':,

Foldout 8 at the end of the book is a design guide for the connector card. All areas of
significant importance are noted on the drawing. If you design a connector card that
adheres to the dimensions in Foldout 8, it can be used on the Macintosh SE, the Macintosh
SE/30, the Macintosh IIsi, and future versions of the compact Macintosh.

... Warning Foldout 8 is from a design guide used within Apple Computer. This
drawing was correct at the time of publication but is subject to change. ..

390 Designing Cards and Drivers for the Macintosh Family

• Figure 17-7 Connector card mounting on Macintosh SE chassis

Chassis opening
for connection between

connector card and
expansion card

M3.0xSmm
2PL

Use a nut and washer
if PEM is not used

Illustrative connector card --

Main logic board

Suggested position of
connector on expansion card

o
o

o

o 0

o
o

o

DODD
DODD
DODD
DODD

Connector area
for exit from
rear housing

Chapter 17 Physical Design Guide for Macintosh PDS Expansion Cards 391

.. Figure 17-8 Internal expansion cable routing for Macintosh SE

o lID

Alternate
ribbon cable r- Connector card

/ (connector location to
be determined by card
manufacturer)

- - om:I)- M3.0xSmm
2PL
Use a nut and washer
if PEM is not used

"---- Preferred ribbon

~~~t~~~~-~--~E--~" ----=--=- -=-_=_-J (shortest possible) ~ cable routing 

I Cutout in chassis Macintosh SE 
main logic board 

96-pin connector on 
main logic board 

Main logic board 

Suggested position of 
connector for cable 
to externaJ port 

Mating 96-pin connector 
on expansion card 

Physical guidelines for Macintosh Portable expansion cards 

Figure 17-9 shows the location of the 96-pin expansion connector on the Macintosh 
Portable main logic board. Figure 17-10 is a design guide showing the size of the card, the 
location of the 96-pin connector, and the maximum allowable component mounting 
height. The Macintosh Portable uses the same Euro-DIN 96-pin expansion connector 
described earlier in this chapter in the section "The 68000 Direct Slot 96-Pin Connector for 
the Macintosh SE." The connectors for the expansion card and the main logic board are 
the same as those shown for the Macintosh SE in Figures 17-4 and 17-6. 

• Note: Before designing an expansion card for the Macintosh Portable, make sure you 
are aware of the limitations described in the section "68000 Direct Slot Expansion for 
the Macintosh Portable" in Chapter 13. 

392 Designing Cards and Drivers for the Macintosh Family 



• Figure 17-9 Expansion connector location on Macintosh Portable main logic board 

ii rn ii 
Modem it i! 

:: II 
II :: 

o 
;;; Direct slot 
iii expansion connector 

!I m 
il in • • II ;;; 

II m I: ::: 
!I in CPU GLU CPU 

Expansion 
connectors 

Chapter 17 Physical Design Guide for Macintosh PDS Expansion Cards 393 



• Figure 17.10 The Macintosh Portable 68000 Direct Slot expansion card 

- ~ 6.00 (.236) ESD grounding strip 

57.00 
(2.244) 

10.00 
(,394) 

No components this area 
both sides of card 

-Pinl 

96-pin vertical Euro-DIN, 
three-row connector 

1.70 
(.067) 

71.00 
(2.795) 

Jj "'(-:i-~~-) -+-----:-----:---....--------:--~~~::=-11-
Dimensions are in millimeters with inches in parentheses. (solder side) 

394 Designing Cards and Drivers for the Macintosh Family 



Physical guidelines for Macintosh Le expansion cards 

This section provides the physical information you need to design an expansion card for 
the Macintosh LC computer. The information includes mechanical drawings showing 
dimensions and component mounting restrictions. 

Figure 17-11 gives the maximum length and width of the Macintosh LC expansion card and 
shows the location of the 96-pin connector. Figure 17-12 provides component location 
and height restrictions for the Macintosh LC expansion card. The Macintosh LC uses the 
same Euro-DIN 96-pin expansion connector described earlier in this chapter in the section 
"The 68000 Direct Slot 96-Pin Connector for the Macintosh SE." The connectors for the 
expansion card and the main logic board are the same as those shown for the Macintosh 
SE in Figures 17-4 and 17-6. 

.... Warning The component locations and height restrictions shown in 
Figure 17-12 are critical to your expansion card design. Failure 
to adhere to these specifications could cause card failure and 
possible damage to the main logic board. Jt.. 

Figure 17-13 is a design guide for the shield plate that is required with the Macintosh LC 
expansion card to maintain EMIIRFI (electromagnetic interference/radio-frequency 
interference) integrity. Figure 17-14 shows the steps for positioning the expansion card on 
the main logic board. Figure 17-15 shows the dimensions of the plastic supports used for 
expansion cards in the Macintosh LC. 

Chapter 17 Physical Design Guide for Macintosh PDS Expansion Cards 395 



• Figure 17-11 Macintosh LC expansion card design guide 

Tooling holes; used for standoff. 

Hole for standoff. 

96-pin connector. 

Shield plate required to maintain integrity of EMI/RFI seam. 

Connector must fit 
in this area. 

I ... ·~~~- 82.5~~~--· 

1 ... ·.--~-76.8----. 

2.0 -43.0- !/1103.4 
Connector must extend~__ 1_ 4.0 

2.0 ± 0.4 beyond edge \ 
of PC board. 

~----~==~~'~~~~~~----+.~ 
..--_-'-t _-+IL __ ~ G -

10.8 1-!-2.1-.::;1==4=.6--=! 1< ~O "I . 
t t ~B_\~ 

Dimensions are in millimeters. 

L Connector assembly must 
fit in this area. 

396 Designing Cards and Drivers for the Macintosh Family 

Tri ISO view 

£(2.0) 
Distance from edge of PCB 
to shield plate; connector must 
extend this amount from PCB edge. 



(") 
::r 
!» 

i ..... ....., 
--.J 

'"d 

-[ 
[ 
o 
(!> 
en 
~. 

2 
~ 
0' ..... 

~ sr 
8 
~ 

t3 
C/) 

~ 
~ 
§' 
(") 

~ 

~ 

r- , 
+IH 
:1111 

:111: 
11111 

:111: 
11111 

:]U 
&..J 

80.8 

76.1 

74.6 Connector edge 

Clearance = 1.35 

122.0 

116.2 

0 

102.2 

28.9 

I 
65.9-

Clearance = 1.35 

Unless noted clearance = 6.0 

DETAIL A 
Lead height restriction zones 
solder side of board 

Dimensions are in millimeters. 

1~ 120.6 

Clearance = 4.55 

Clearance = 6.55 

2X 
118.6 

2X 
106.6 

90.3 

84.3 

2X 
73.6 

2X 
68.6--' 

65.1 

-63.0-

Unless noted clearance = 14.0 

DETAIL B 
Component height restriction zones 
component side of board 

Connector edge 

5x clearance = 11.55 

f 
113.3 

I I ~lJ 78.9 

108.3 

l' 
Clearance = 6 .55 

I 
117.6 

2X 
122.6 

• 

f 
~ 

~ 
~ 
~ 

~ 
!» 
(j 

~. 

~ 
t-' 
(") 

~ 
~ O· 
==' 
(j 

a. 
(j 

o .g 
o 
~ g 
g 
!» 
O. 
o 
==' 
!» 
==' 0-

?r 
~ 
@ 
;4 
::l. 
&. 
o 
~ 



• Figure 17·13 Design guide for Macintosh LC expansion card shield plate 

N01'ES: Unless otherwise specified 
1. Interpret all dimensions and tolerances per ANSI Y14.5-1982. 
2. Ma.terial: 1.00 mm thick, AlSI type 1020, cold rolled steel. 

Finish: aluminum-silicon alloy coating, 
T125-T14 or Apple product design approved equivalent. 

3. Remove aU burrs and sharp edges. 

r 9.7. T . ; 25.0;·::1 '-------"--" -- "J 

Notch 'hould be <Je.,;gned into V 
shield so that connector leads 
do not contact EMI shield. 

-E 
44.4 .. 

3.1 .. 38.0 ~ 

I I 
f-- ~- _ ..... -.-...-_- -- - ,-

t 

I I 
0.8 

.l 
4.1 3.0 I I " t 

~6'8~fo'5 ~ Connector cutoUt mu '-4X 
fit Within this area. 

st R 2.0 

--10.3-

Dimensions are in millimeters. 

398 Designing Cards and Drivers for the Macintosh Family 



• Figure 17-14 Positioning the expansion card on the Macintosh LC main logic board 

8 

I~ 111 

Chapter 17 Physical Design Guide for Macintosh PDS Expansion Cards 399 



• Figure 17-15 Plastic supports for Macintosh LC expansion cards 

OIA 4.76 

jDIA4.37 

~DlA'''' 
OIA4.37 

1.22 

t 1 
3.58 

1.78 
15° 

I 

~ 3.76 

1 
t OIA 

1 1.78 3.58 
16.64 I • 
j 

4'f 

16.55mm 4.25mm 
1. Material: 6/6 nylon qr Apple engineering approved equivalent. 1. Material: 6/6 nylon or Apple engineering approved equivalent. 
2. Standoff for use in 3.86 diameter hole and 1.60 thick panel. 2. Standoff for use in 3.4 diameter hole and 1.60 thick panel. 

Dimensions are in millimeters. 

400 Designing Cards and Drivers for the Macintosh Family 



Macintosh LC external access opening 

An opening in the rear of the Macintosh LC case allows an expansion card to communicate 
with external devices. This opening accommodates a DB-IS connector, which you can 
include as an integral part of your expansion card design. The connector attaches to the 
expansion card in the area shown in Figure 17-11. 

Expansion card instillation for the Macintosh LC 

The expansion card mounts parallel to the Macintosh LC main logic board, with 
component sides facing each other (see Figure 17-14). It is important that you adhere to 
height restrictions and do not place hot components in those areas called out in Figure 
17-12. You maintain the EMI/RFI integrity of the system by installing the shield plate 
(Figure 17-13) between the card and the external access opening on the rear of the 
Macintosh LC case. 

Physical guidelines for Macintosh SE/30 expansion cards 

This section provides mechanical drawings that show the spatial relationship between an 
expansion card and the Macintosh SE/30 main logic board. 

Figures 17-16 through 17-18 show design considerations for expansion cards that can be 
used in the Macintosh SE/30 and possibly in future 68030-based machines. Notice that 
you can design your card in either of two different sizes: Figure 17-16 shows the smallest 
allowable card size, and Figure 17-17 shows the largest allowable card size. Figure 17-18 
shows the largest component heights allowed on the two different card sizes. 

Figure 17-19 is a design guide for the Macintosh 5E/30 main logic board. You should 
pay particular attention to the design of the main logic board and the Macintosh 5E/30 
chassis to make sure that components on your expansion card do not interfere with 
mounting hardware. 

Figure 17-20 shows how an expansion card mounts in the Macintosh SE/30 chassis. Figure 
17-21 shows how the expansion card mounting clips should be oriented for two different 
revision levels of the main chassis. 

Chapter 17 Physical Design Guide for Macintosh PDS Expansion Cards 401 



• Figure 17-16 Smallest allowable Macintosh SE/30 expansion card 

2PL 
2·80L 

155.15~ 
153.15 2 PL 

146.852PLr 
145.85~O.10 

142.35 
5.0 dia plated thru 

2PL 

See Detail E -

84.55 

74.50 
2PL 

Component side 

1.12±0.08 
dia thru 

120PL 
2.69±0.08 

diathru 
2PL 

No thru hole components, 
VIAS. 

~ 

.. 118.06 • 
REF 

• 112.00 • 

=~~~= 

~t 
.. 39 EQLSP 8 

0 2.54 = 99.06 
~ Tol nonaccum N r--

N '" '" 0; S ~ 

Pin one 

C\_~b~ ~~bG~~ 8.00Dia. . 
soldered pad for GND 

No components or 
traces, but solder 
pad on both sides 
2PL 

157.59 
REF 

See Detail F 

+ 

( 
4.98±0.25 

~. 
No thru hole components, 
VIAS 

, 
, 
'I.'. 

8.00 Dia . 
soldered pad for GND 

Top (compOnent side) Bottom Top (component side) Bottom 

Detail E Detail F 

Dimensions are in millimeters. 

402 Designing·Cards and Drivers for the Macintosh Family 



• Figure 17·17 Largest allowable Macintosh SE/30 expansion card 

1 .... 1--,-..---- 160.00 ------'-..---,.,.1 

Component side 

55.55 ----1-----. 

15.15 --"'"-+---

-2.85~ 
REF 

o 

Dimensions are in millimeters. 

REF 

r·· .... · .. ': 

~ 
........... 01 157.59 

REF 

-------..:....-

Chapter 17 Physical Design Guide for Macintosh PDS Expansion Cards 403 



• Figure 17-18 Largest allowable component heights for a Macintosh SE/30 expansion card 

12.0 max component height 

1-------- 160.00 -------
REF 22.00 max component height 

6° 

l25.20 

~~~~~~r7~7/r::2:J + Reference line 

12.5 max componentheight~~~~~.L--r~~
6°\

--=::b::: 25.20
L~L~~~~S~~~S~~ + Reference line

158.00
REF

8.5 max component height

Dimensions are in millimeters.

404 Designing Cards and Drivers for the Macintosh Family

• Figure 17·19 Expansion connector on the Macintosh SE/30 main logic board

oL
5.71

(.225)

201.73 (7.94)
pin 1

8.23 (.324) -1

o

33.680.326)
pin 1

f 77.28 (3.04)
REF

15.89 (.:~ 1;.-&
15.8A626) • R-----

RtF 15.89 (.~26) REF i I

I

o

Speaker
jack

Component
side

ill Indicated area represents space available for 31.50 (1.24) high (including socket) SIMMs module.

& Indicated area represents space available for 24.00 (.94) high (including socket) SIMMs module.

Dimensions are in millimeters with inches in parentheses.

Chapter 17 Physical Design Guide for Macintosh PDS Expansion Cards 405

• Figure 17-20 An expansion card in the Macintosh SE/30 assembly

I
I

I
I
I

I
I
I

I
I
I

I
I
I

I
I
I

I
I
I

I
I
I

I
I
I

I
I
I

I
I
I

Expansion card

o

406 Designing Cards and Drivers for the Macintosh Family

• Figure 17-21 Orientation of Macintosh SE/30 mounting hardware

Version 1
Snap rivet "'-

RICHCO part no. SR-3570 "-
(2 required)

Chassis "
Apple part no. 805-0938

~::s:::s::::;;:s:sSJ=:::j:::::j:::===:=:::t~3::;j

Nylon flat washer
Seastrom part no. 5610-33-31

(2 required)

Snaprivet~
RICHCO part no. SR-5045 "'-

(2 required)

Version 2
Hardware orientatioli
chassis at revision E

Chassis "
Apple part no. 805-0938

~::s:::s:::s::;;:sSJ=====*=======:::JS~3::;j

Expansion card

I

Expansion card

I

Chapter 17 Physical DeSign Guide for Macintosh PDS Expansion Cards 407

The 68030 Direct Slot 120-pin connector for the Macintosh SE/30

Figure 17-22 shows the plug connector that mates with the Euro-DIN 120-pin socket
connector on the main logic board. Figure 17-19 shows the location of the 120-pin
socket connector on the main logic board assembly. Figure 17-23 gives the prominent
details of the socket connector.

• Figure 17-22 A 120-pin plug connector for a Macintosh SE/30 expansion card

m:~ ~ , , " ~ i, l ; i: -
f-' f-' f-' f-' f-' '" ' , f-' '

'-- .---/

1-----109.2(4.30)--------Jr l

Three-row pin connector
120 contact positions
2.54 mm (.100 inch) spacing pins
Gold plated, 20 microinches, over nickel plate

Dimensions are in millimeters with inches in parentheses.

Rowe
RowB
Row A

6.4
(.252)

18.28 max

- 3.55
(.140) max

tllll!l::f='~
5.08 J1.37

(.200) (.054)
11.10

(.437) max

408 Designing Cards and Drivers for the Macintosh Family

• Figure 17-23 Detail of 120-pin socket connector used on Macintosh SE/30 main
logic board

5.08
(.200)

115.0 (4.53) max
110.31 (4.343)

105.20 (4.142) max

••
____________________ ~~I

00++++++++++++++++++++++++++++++++++++
0++++++++++++++++++++++++++++++++++++0

++++++++++++++++++++++++++++++++++++D

2.54 2 holes @

(.100) 2.79 (.110)

Three-row socket connector
120 contact positions
2.54 mm (.100 inch) spacing sockets

39 x 2.54 (.100) = 99.06 (3.90)

Gold plated, 20 microinches, over nickel plate

Dimensions are in millimeters with inches in parentheses.

-I

2.84
(.112)
max

al
bl
c1

2.54
(.100)

3.96 (.156)
8.53 (.335) max
10.49 (.413)

Chapter 17 Physical Design Guide for Macintosh PDS Expansion Cards 409

External connection for a Macintosh SE/30 expansion card

This section discusses both electrical and physical considerations required in making
connections to external equipment for the Macintosh SE/30.

The Macintosh SE/30 computer has an external device access opening through which
another piece of equipment can be connected. Typically, a cable would be routed from
the expansion card, upward through a cutout in the back of the chassis; and then to a
connector on a connector card you provide.

The drawing in Figure 17-7 shows the sheet-metal and Structural reqUirements for mounting
a connector card in a Macintosh SE. Figure 17-7 also applies to a Macintosh SE/30 except
that the expansion card on a Macintosh SE/30 is mounted vertically, not horizontally, as in
the Macintosh SE.

Figure 17~24 shows the recommended cable-routing paths for the Macintosh SE/30. Notice
that the minimum allowable length for the internal cable on a Macintosh SE/30 is 220 mm
(8.6 inches). If you adhere to this cable length, your internal cable can also be used to
connect expansion cards to a Macintosh SE, a Macintosh IIsi, and other Macintosh
computers.

Foldout 8 at the end of the book is a design guide for the connector card. All areas
of significant importance are noted on the drawing. If you design a connector card
that adheres to the dimensions in Foldout 8, it can be used on the Macintosh SE, the
Macintosh SE/30, and future versions of the compact Macintosh.

:& Warning Foldout 8 is from a design guide used within Apple Computer. This
drawing was correct at the time of publication but is subject to
change .•

410 Designing Cards and Drivers for the Macintosh Family

• Figure 17-24 Internal expansion cable routing for Macintosh SE/30

Expansion card

Ribbon cable
connector

Alternate ribbon
cable routing

/
Connector card
(connector location to
be detennined by card
manufacturer)

Use a nut and washer
if PEM is not used

¥~~~--~-~~~~-~-~-~--~-~~~~- -~-~Cu",utm_"
Macintosh SE/30 Mating 120-pin connector
main logic board Main logic board

on expansion card
Ribbon cable routing

120-pin connector on
main logic board

Note: The length of the ribbon cable must be 220 millimeters (8.6 inches) or longer between connectors.

Chapter 17 Physical Design Guide for Macintosh PDS Expansion Cards 411

Physical guidelines for Macintosh IIfx PDS expansion cards

The expansion card for the 68030 Direct Slot of a Macintosh IIfx computer is identical in
size to a NuBus card but uses a 120-pin plug connector instead of the 96-pin plug
connector used on a NuBus card. When installed in the computer, the PDS expansion card
takes the place of a NuBus card in slot $E and prevents it from using that address space.
The Macintosh IIfx can accommodate a maximum of either six NuBus cards, or five
NuBus cards and one PDS card.

Foldout 9 at the back of the book shows the pertinent physical details you need to design
a PDS expansion card for the Macintosh IIfx computer. This drawing shows the overall
dimensions and the connector placement and provides clearance dimensions for installing
the card in the Macintosh IIfx computer.

.. Warning Foldout 9 is from a design guide used within Apple Computer. This
drawing was correct at the time of publication but is subject to
change

The 120-pin plug connector used on a Macintosh IIfx PDS expansion card is physically
identical to the connector shown for the Macintosh SE/30 PDS expansion card in
Figure 17-22. The 120-pin socket connector used on the main logic board of the Macintosh
IIfx computer is physically identical to the connector shown for the main logic board of
the Macintosh SE/30 computer in Figure 17-23.

412 Designing Cards and Drivers for the Macintosh Family

Physical guidelines for Macintosh IIsi Direct Slot expansion cards

To install a 68030 Direct Slot expansion card in the Macintosh IIsi, you must first install a
Direct Slot adapter card. A 68030 Direct Slot adapter kit is available from an authorized
Apple dealer. The following sections describe the installation of the adapter card and the
Macintosh IIsi Direct Slot expansion cards.

Physical implementation of the Macintosh IIsi 68030 Direct Slot adapter kit

The 68030 Direct Slot adapter card for the Macintosh IIsi includes two 120-pin
connectors. One is a plug connector that mates with the Euro-DIN 120-pin socket
connector located on the left side Clooking from the front) of the computer's main logic
board. The adapter card mounts vertically in this connector. The other connector on the
adapter card is a 120-pin socket connector (the same as the main logic board connector)
into which the expansion card is installed. The expansion card is mounted horizontally
over the main logic board. Figure 17-25 is a sketch showing a processor-direct slot
expansion card and its adapter card installed on the main logic board of a Macintosh IIsi
computer.

The 68030 Direct Slot adapter kit includes a snap-in bracket that mounts to the power
supply frame to support the expansion card and secure it to the machine.

You can get the snap-in bracket that meets Apple specifications from

SPM, Inc.
Anaheim, CA 92806

The part number for the snap-in bracket is 815-6246. Before ordering the snap-in bracket,
however, you must first obtain authorization from Macintosh Developer Technical
Support (MacDTS).

Chapter 17 Physical Design Guide for Macintosh PDS Expansion Cards 413

• Figure 17-25 Installing a PDS card and adapter on the Macintosh IIsi main logic board

- 68030 Direct Slot adapter card

====== Processor-direct slot expansion card

Macintosh IIsi main logic board

External connections for the Macintosh IIsi PDS expansion card

The design of the Macintosh IIsi computer allows the use of existing hardware to connect
an expansion card to the external world. This hardware is supplied with the expansion card
and includes a small connector card, two screws, and a ribbon cable. You install the
connector card (which is the same size as that specified for a Macintosh SE or a
Macintosh SE/30 computer) to the opening in the rear of the Macintosh IIsi computer.
You then plug the ribbon cable into a connector on the expansion card and route it
underneath the expansion card to the connector card installed on the rear of the
Macintosh IIsi computer. Current Macintosh SE/30 cards will work if their ribbon cables
are at least 220 mm (8.6 inches) long between connectors.

• Note: The specifications for the connector card and ribbon cable have been chosen to
ensure compatibility with future Macintosh computers. Detailed information on
connector card specifications is provided in Foldout 8, "Connector Card Design Guide
for Macintosh PDS Computers."

414 Designing Cards and Drivers for the Macintosh Family

To mount a connector card in the Macintosh IIsi, you must include appropriate mounting
holes on your connector card as well as two screws for attaching the card to the chassis.
The required screw size is identical to the screw size for the Macintosh SE and is shown in
Figure 17-7.

Design considerations for Macintosh llsi PDS expansion cards

Some important factors should be considered when using existing PDS expansion cards or
designing new cards for the Macintosh IIsi computer.

• The fact that the ribbon cable from the expansion card to the connector card must
travel the entire length of the main logic board could have EMI implications for third
party cards. Therefore, at the very least, cards should be tested to make sure that they
still comply with FCC guidelines. In some cases, cables may need to be shielded or
include ferrite sleeves to avoid violating the FCC specifications. At worst, the layout or
design of an expansion card may need to be modified.

• Apple strongly recommends against designing cards to fit directly into the 120-pin
connector on the main logic board (without an adapter card) because the vertical
position of the expansion card may cause EMI or thermal problems.

• Any PDS expansion cards designed to fit in a Macintosh SE/30 computer can be used in
the Macintosh IIsi computer. Figures 17-16 through 17-18 are design guides for these
expansion cards.

Macintosh IIsi adapter cards

Even though Apple provides an MC68030 Direct Slot adapter kit, you may want to
develop your own adapter card for the Macintosh IIsi. The electrical specifications for
the adapter card are included in Chapter 15. Figure 17-26 shows the outline of the Mc68030
PDS adapter card.

Chapter 17 Physical Design Guide for Macintosh PDS ExpanSion Cards 415

• Figure 17-26 Macintosh IIsi PDS adapter card outline

9~ II--':'---sm-m __

Component height
restricted to 7.00 mm

Pin I-A

416 Designing Cards and Drivers for the Macintosh Family

:
-15.17mm

1
49.7mm

j
t

4.7mm

Physical guidelines for 68040 Direct Slot expansion cards

A 68040 Direct Slot expansion card for the Macintosh Quadra 700 and Macintosh
Quadra 900 computers has the same dimensions as a NuBus card and can include a back
panel connector. Foldout 2 provides information about the size of the expansion card
and the location of the 140-pin PDS connector. Foldout 2 also shows a NuBus connector;
however, you should omit this connector when designing a PDS expansion card for the
Macintosh Quadra 700 or Macintosh Quadra 900. Foldout 3 provides I/O clearance
dimensions for a NuBus card or a PDS card being installed in a Macintosh Quadra 900.
Foldout 4 provides similar requirements for a NuBus or a PDS card being installed in a
Macintosh Quadra 700. Refer to Chapter 6, "NuBus Card Physical Design Guide," for
more information about the physical specifications for NuBus cards in the Macintosh
Quadra 700 and the Macintosh Quadra 900.

Because NuBus cards for the Macintosh Quadra 900 can be oversized, 68040 Direct Slot
expansion cards can be oversized as well. Refer to Foldout 5 for the specifications for the
oversized Macintosh Quadra 900 NuBus and processor-direct expansion cards.

PDS expansion cards for the Macintosh Quadra-family computers must have a 140-pin
plug connector to fit in the 140-pin socket connector on the main logic board. The plug
connector should have compliant pins (force-fit insertion) rather than solder-type pins for
connection to the expansion card if components are to be mounted on the top side of
the card.

You can order 140-pin connectors meeting Apple specifications from

KEL Connectors, Incorporated
Sunnyvale, CA 94086

The connector on the Macintosh Quadra 700 and Macintosh Quadra 900 main circuit
boards is KEL part number 8817-140-170SH. The corresponding connector on the 68040
Direct Slot expansion card is KEL part number 8807 -140-170LH.

Chapter 17 Physical Design Guide for Macintosh PDS Expansion Cards 417

Chapter 18 Processor-Direct Slot Design Example

This chapter contains a performance-proven example of processor-direct
slot expansion card design. It describes the electrical and interface
characteristics of a simple disk controller card that allows the
Macintosh SE processor to communicate with a generic disk drive
through the 68000 Direct Slot.

419

Disk controller overview

The disk controller card allows for one drive to be connected to the Macintosh SE through
the cable supplied. The disk controller is inexpensive, but is capable of two software
selectable recording formats: frequency modulation (FM) and modified frequency
modulation (MFM). FM is an IBM 3740-compatible, single-density format. MFM is an
IBM System 34-compatible, double-density format.

The disk controller card plugs into the 96-pin expansion connector on the main logic
board of the Macintosh SE and connects to a floppy disk drive located outside the
Macintosh SE. The installation of this card and its associated cables is intended to be
done by dealers and not by end users. The disk controller card consists of a disk controller
IC and a disk interface IC, a DMA controller IC, some buffers, and three PALs. All
controlling firmware and sector-buffering RAM exist in the Macintosh SE.

The control registers are mapped into the address space of the Macintosh SE from
$800000 through $8F FFFF. No other address space is memory mapped to the controller.

System configuration

The controller package inside the Macintosh SE consists of a disk controller expansion
card, a 26-wire flat ribbon cable, and a connector card.

The disk controller card connects to the Macintosh SE processor through the 96-pin
expansion connector on the main logic board assembly. A 6-inch-Iong ribbon cable ties the
disk controller card to the connector card.

The connector card, which mounts to the bracket behind the external device access
opening, has two connectors. One connector is a 26-pin connector, which terminates the
6-inch ribbon cable from the internal controller card. The other connector is a DB-37 into
which the external disk drive can be plugged via the cable supplied with that drive. See
Figure 17-7, Figure 17-8, and Foldout 8 for drawings depicting the configuration.

420 Designing Cards and Drivers for the Macintosh Family

Interface card block diagrann

Figure 18-1 is a block diagram of the floppy disk controller. The controller card is made up
of the following parts:

Control PALs: The control PALs provide the address decoding and timing control for the
disk controller. They memory map the various control and status registers of the disk
controller into the Macintosh SE address space $80 0000 through $8F FFFF.

Data bus transceivers: The data transceivers provide multiplexing control and sufficient
current drive to and from the controller onto the data bus. During high-byte transfers data
is placed on lines D8-DI5, while during low-byte transfers the data goes on lines DO-D7.

Status driver: The status driver allows three signals to be read by the Macintosh SE: disk
drive selected, disk controller interrupt (INT) , and disk change.

Disk controller IC: The disk controller IC contains the circuitry necessary to connect to
the generic disk drive. Coupled with the companion disk interface IC, this LSI chip
handles all operations with the drive, including reading and writing data, formatting,
seeking, sensing drive status, and recalibrating.

Disk interface Ie: The disk interface IC provides drive and timing support to the disk
controller Ie. It contains write precompensation and phase-locked loop circuitry.

Disk interface driver: The disk interface driver buffers and provides current drive for
several signals coming from and going to the disk drive. It also is used as a multiplexer for
four of these signals.

16 MHz crystal clock oscillator: The 16 MHz crystal clock oscillator provides a 16 MHz
clock to the disk interface IC for use in the drive interface.

Dual-channel DMA controller PAL: The DMA controller handles all DMA data-transfer
operations between the disk controller IC and the Macintosh SE memory.

DMA address and data multiplexing logic: The dual-channel DMA controller has a
multiplexed address and data bus. The multiplexing logic is used to demultiplex this bus.
The logic consists of two 74LS373's and two 74LS245's.

Chapter 18 Processor-Direct Slot Design Example 421

• Figure 18-1 Floppy disk controller block diagram

68000 Direct Slot

~ Data
Control Status

74LS240

D3-DO INT disk drive selected

DI5-DO

A23-A19

lAS
R!W

IUDS
ILDS
lAS

Data
transceiver

74LS245

Address
decoder

PAL

PAL 20LS

Internal
control

PAL

DB7-DBO

IRST

C4M

IBACK

Disk
controller

IC

IDACK

PAL 20LlO AL--:::E-------j~

Disk

DMA
controller

A23-A16

DMA multiplexing

422 Designing Cards and Drivers for the Macintosh Family

IDisk change

16 MHz
crystal clock

oscillator

CLKIN

Disk
interface

IC

Disk
interface

driver
74LS240

IDrive select 3
IDrive select 2
/Drive select 1
IDrive select 0
IIndex
IRead data
IWrite data

IMotoron

/Write enable
/Side 1
/Index
/Direction
IStep
/Write protect
ITrack 00

2V, +5V, + 12V return, +5V return

Floppy disk controller logic

The disk drive control is provided by the disk controller IC, disk interface IC, and some
74LS240 drivers. The disk controller IC is the controlling chip and communicates with the
disk interface IC. Details of this logic are not directly relevant to the 68000 Direct Slot
interface and so are not given here.

Macintosh SE interface logic

The controller communicates with the 68000 Direct Slot via several drivers and PALs. The
controller follows the timing of the Mc68000 processor whether in PIO (programmed
input/output) or DMA (direct memory access) transfers. Certain key signals are described
in Table 18-1.

• Table 18-1 Bus control signals

Signal name

ALE

/AS
/BACK
/BG

/BR

/BREQ

/DACK
/DMACS
/DREQ
/DS

/DTACK

Signal description

Signals that the DMA controller is gating a valid address onto the
multiplexed address/data lines ADO-AD15
Indicates that a valid address is on the address bus
Indicates that the DMA controller has the processor bus
Signals to the controller that it owns the processor bus after
completion of the current bus cycle
Signals that the controller card would like to own the
processor bus in order to perform a DMA transfer
Indicates that the DMA controller would like to take the
processor bus
The DMA controller that acknowledges the disk interface IC's DMA request
Selects the DMA controller during PIO transfers
The disk interface IC that makes a DMA request to the DMA controller
Signals that data may be moved into or out of the DMA
controller on the multiplexed lines ADO-AD15
Signals that the data-transfer cycle is completed

(continued)

Chapter 18 Processor-Direct Slot Design Example 423

• Table 18-1 Bus control signals (continued)

Signal name

IEOP

FCO-FC2

ILDS

R/W

IUDS

Signal description

Signals that a disk read or write command has been terminated because
the data requested has been transferred
The Mc68000 processor status codes; serve to signal an
interrupt acknowledge cycle when they are all asserted high
Indicates that valid data is on the data bus DO-D7
Defines a cycle to be a read or a write cycle
Indicates that valid data is on the data bus D8-DIS

Programmed I/O operations

All control information is passed to the disk controI1~r and all status information is transferred
to the Mc68000 using programmed 1/0 (PIO) transfers (DMA is used for data transfer). The
Mc68000 host initiates the transfer by asserting signals lAS, R!W, IUDS, and ILDS. Data is then
transferred and IDTACK is asserted by the BBU gate array of the Macintosh SE. The PALs
decode the address from address lines Al8-A23 and thus select either the disk interface IC or
the DMA controller to read or write data. Control of the R!W signal determines whether the
cycle is a read or a write cycle. See Figure 18-2 for signal timing.

424 Designing Cards and Drivers for the Macintosh Family

• Figure 18-2 Disk controller PIO timing

125 ns

n
C8M

C4M
,
I
I
I
I

r
A23-AO

/AS

DIS-DO

IUDS or /LDS

R!W

/DMACS

/WR

/RD

SRO, SRI

/DTACK

,
Tl I

I

I I

t

PIO read cycle
I

T2
I

Valid

I
I
I
I y

Chapter 18

I I

T3 I Tl I
I I
I I y y

PIO write cycle
I

T2

Valid

Valid

I
I 13 I
I

t
I
I
I
I

i

I
I
I
I
I
I

'----'--_~--Jr
I
I

Processor-Direct Slot Design Example 425

DMA operations

All data infonnation is transferred to or from the host (MC68000 or a coprocessor) using
DMA transfers. After all control infonnation is written to set up both the disk interface IC
and the DMA controller, the DMA operation begins.

The disk controller IC requests each DMA transfer, via the signal IDREQ, and that request
is funneled through the DMA controller and through the PAL control logic. A bus request is
then made, and after the current bus operation has been completed the Mc68000 asserts
the signal IBG (bus grant). The PAL logic recognizes IBG and waits for any current bus
oper;ltion to be completed before it signals the disk controller Ie to begin a DMA.

As soon as it has taken over the bus, the DMA controller gates the target DMA address
onto the lines AD15-ADO and the lines A23-AI6. See Figure 18-1. Using the signal ALE as a .
reference, the PAL interface logic latches the address from ADIS-ADO with the signal
I ADDR. Because all DMA data-transfer operations must be synchronized to the signal
IPMCYC (processor memory cycle), the PALs wait for IPMCYC to go low, inserting wait
states in the transfer cycle of the DMA controller .

• Note: The IPMCYC signal is used to synchronize all processor-bus activity. The disk
controller waits for !PMCYC to go low before beginning a bus cycle. The signals lAS,
IUDS, ILDS, and R!W are not asserted until IPMCYC goes low. The memory timing of the
Macintosh SE is synchronized to IPMCYe. Detailed timing infonnation for the /PMCYC
signal is provided in Chapter 13. The disk controller is designed to present timing as
similar to the Mc68000 as possible during a bus cycle (jPMCYC low). IPMCYC goes high
during state 0 (SO) of the Mc68000 timing and during video memory accesses.

The PALs then assert I AS, IUDS, ILDS, and R!W after gating the address onto the address
bus. If a processor read operation (processor reading from the disk interface card) is
requested, the PALs gate the data to the correct byte of the data bus from the disk
interface IC and generate the proper disk controller read signal. If a processor write
operation (processor writing to the disk interface card) is requested, the PALs turn on the
correct transceiver to write the data and assef!: the proper write signal to the disk
controller Ie.

426 Designing Cards and Drivers for the Macintosh Family

Address allocation

The disk controller card's device select space ranges from $80 0000 through $8F FFFF and is
divided into four blocks. From $80 0000 through $83 FFFF the main status register within
the disk controller can be read. A write to this address turns on the signal RST (resets the
disk controller). From $840000 through $87 FFFF, control, status, and data information
may be read from or written to the disk controller data register. Writing in the area
$88 0000 through $8B FFFF turns on the drive motor; reading in this area turns both the
motor and RST off. The DMA controller is read to or written from via the addressing range
$8C 0000 through $8F FFFF. See Table 18-2.

• Table 18-2 Device select decode addresses

Decode address range

$80 0000--$83 FFFF

$84 0000-$87 FFFF

$88 0000-$8B FFFF

$8C 0000-$8F FFFF

Device selected and action resulting

Reads from the main status register of the disk
controller IC and reads an additional status register. The
main status register is on the least significant byte, and
the additional status register is on the most significant
byte. A write to the main status register resets the disk
controller Ie.

Reads or writes control, status, and data information to
the data register in the disk controller Ie.

A write turns drive motor to on; a read turns motor and
controller's reset signal off. (Interrupts are enabled when
the motor is on.)

Reads from or writes to DMA controller.

Data is normally read from and written to the disk controller card with Mc68000 MOVE. B

instructions. Additional status information may be obtained by reading anywhere in the
addressing range $80 0000 through $83 FFFF using MOVE. W instructions.

The status register within the disk controller IC may be read with a MOVE. B instruction in
the address range $800000 through $83 FFFF.

The data register within the disk controller IC may be read or written with a MOVE. B

instruction in the address range $840000 through $87 FFFF. It is through the data register
that commands, data, and the contents of status registers 0 through 3 are passed. Any
disk operation is initiated by passing the several commands required to the disk
controller IC via this register.

Chapter 18 Processor-Direct Slot Design Example 427

The read track operation allowed by the disk controller IC is supported on this disk
controller. After the execute portion of any operation is completed, the disk controller IC
may give back status information in status registers 0 through 3. '

Additional status information may be read with a MOVE.W instruction in the address space
$800000 through $83 FFFF.

The DMA controller is given commands via the chain control table that exists in
Macintosh SE RAM. The address of this table is loaded into the chain address register
before a chain load command is given to the DMA controller. The chain control table
consists of values needed by the DMA controller to transfer data.

Upon receiving a chain load command, the DMA controller loads its registers from the
chain control table. After the registers are loaded, the DMA controller is ready to transfer
data. Data transfers are then initiated, byte by byte, by the disk controller IC.

428 Designing Cards and Drivers for the Macintosh Family

Part III Application-Specific
Expansion Interfaces

About Part ill

Application-specific expansion interfaces are the subject of Part III of this book. These
are expansion interfaces that do not fall into the NuBus or processor-direct slot expansion
categories, but are designed with a singular, specific purpose in mind. The information in
Part III will help you design unique expansion cards that satisfy the requirements of these
application-specific interfaces. Part III contains five chapters, and is organized in the
same fashion as Part I and Part II.

Chapter 19 gives a hardware overview of the Macintosh computers that provide an
application-specific expansion interface but that don't provide a NuBus or a processor
direct expansion interface. Included in this category are the Macintosh Classic, Macintosh
Classic II, Macintosh PowerBook 100, Macintosh PowerBook 140, and Macintosh
PowerBook 170 computers. Features of each machine are listed, block diagrams are
shown, and RAM access, ROM access, and device I/O are discussed briefly.

Chapter 20 discusses the RAM expansion cards for the Macintosh Portable, the Macintosh
Classic, the PowerBook 100, the PowerBook 140, and the PowerBook 170 computers. It
includes information about address space, RAM expansion connector pinouts and signals,
and physical design guides for each computer. It also includes RAM access timing
diagrams for the portable Macintosh computers.

Chapter 21 provides information about the ROM expansion interfaces for the Macintosh
Portable and Macintosh Classic II computers. It includes information about the ROM
expansion address space, the electrical description, the physical design guide, design
considerations, and EDisks for the Macintosh Portable. For the Macintosh Classic II,
topics include the electrical description of the ROM expansion connector, the ROM
expansion address space, the physical design guide, and the power budget for the ROM
expansion card.

Chapter 22 focuses on the modem expansion capabilities of the Macintosh Portable, the
PowerBook 100, the Powerbook 140, and the PowerBook 170 computers. Topics include
the modem card hardware interface, the electrical characteristics of the modem
connector, the physical design guide, the modem power-control interface, and the
modem operation. Also included in this chapter is reference information for
communications standards for modem operation.

Chapter 23 describes the cache memory expansion capability of the Macintosh IIci
computer. It includes a description of how the cache works, information on using the
cache and accessing memory, cache connector pinouts, signal descriptions, load/drive
capabilities, and electrical and mechanical guidelines for designing a cache memory card.

430 Designing Cards and Drivers for the Macintosh Family

Chapter 19 Application-Specific Expansion
Interfaces for Macintosh Computers

This chapter provides an overview of the structure and organization
of a third type of Macintosh computer-one that does not provide a
NuBus or a general processor-direct expansion interface. These
computers provide application-specific expansion interfaces, such as
RAM, ROM, modem, and cache expansions. Included in this category are
the Macintosh Classic, the Macintosh Classic II, the Macintosh
PowerBook 100, the Macintosh PowerBook 140, and the Macintosh
PowerBook 170 computers.

The Macintosh Portable and the Macintosh IIci also provide application
specific expansion interfaces. However, because the Macintosh IIci also
offers the NuBus expansion, it is described in Chapter 1, "Overview of
Macintosh Computers With the NuBus Interface." Likewise, the hardware
overview for the Macintosh Portable is presented in Chapter 12, "Overview
of Macintosh PDS Computers," because it provides PDS expansion.

431

Major features

Table 19-1 compares the major features of all Macintosh computers that provide
application-specific expansion interfaces.

• Table 19·1 Major features of Macintosh computers with application-specific expansions

Macintosh Macintosh
Feature Classic Classic II PowerBook 100 PowerBook 140 PowerBook 170

Processor Mc68000 MC68030 Mc68HCOOO Mc68030 Mc68030
24-bit address bus 24-bit address bus 24-bit address bus 32-bit address bus 32-bit address bus
16-bit data bus 16-bit data bus 16-bit data bus 32-bit data bus 32-bit data bus

Processor 7.8336 MHz 15.6672 MHz 15.6672 MHz 15.6672 MHz 25 MHz
clock

Coprocessor Not applicable Floating-point unit Not applicable Not applicable 68882 FPU
(FPU) available on
expansion slot

Memory Not applicable The Mc68030 Not applicable The Mc68030 The Mc68030
management includes a built-in includes a built-in includes a built-in

MMU MMU MMU

RAM 1 MB, expandable 2 MB, expandable 1 or 2 MB of PSRAM 2 MB of PSRAM; 2 MB of PSRAM;
to 4 MB to 10 MB (pseudo-static RAM); expansions of 2, 4, expansions of 2, 4,

expansions of 2, 4 or 6 MB or 6 MB
or 6 MB

ROM 512 KB, expandable 512 KB, expandable 256 KB 1 MB 1 MB
to 2 MB to 4 MB

Expansion RAM FPU/ROM RAM, modem RAM, modem RAM, modem
capabilities

Input device One Apple Desktop One ADB port; One ADB port One ADB port; One ADB port;
interface Bus (ADB) port microphone jack for microphone jack for microphone jack for

sound input sound input sound input

(continued)

432 Designing Cards and Drivers for the Macintosh Family

• Table 19-1 Major features of Macintosh computers with application-specific expansions
(continued)

Macintosh Macintosh
Feature Classic Classic II PowerBook 100 PowerBook 140 PowerBook 170

Serial ports Two mini 8-pin Two mini 8-pin One external mini Two mini 8-pin Two mini 8-pin
connectors connectors 8-pin connector connectors; internal connectors; internal

supporting RS-422 supporting RS-422; 20-pin modem 20-pin modem
internal 20-pin connector connector
modem connector

Floppy disk Super Woz SWIM controls one SWIM controls one SWIM controls one SWIM controls one
support Integrated Machine internal 1. 4 MB, optional external internal 1.4 MB internal 1. 4 MB

(SWIM) controls one 3.5" SuperDrive and floppy disk drive, 19 mm SuperDrive 19 mm SuperDrive
internal 1. 4 MB one optional via the HDI-20 CHigh-
SuperDrive; one external floppy disk Density Interface,
optional external drive 20-pin) connector
port

Hard disk Optional internal 40 Internal 40 MB SCSI Internal 20 MB SCSI One internal 20 MB, One internal 40 MB,
MB SCSI hard disk hard disk; optional hard disk; optional 2.5" SCSI hard disk 2.5" SCSI hard disk

external SCSI hard external SCSI hard
disk disk

SCSI port One internal 50-pin; One internal 50-pin; One internal 40-pin; One internal HDI-30 One internal HDI-30
one external D B-25 one external DB-25 one external HDI-30 connector; one connector; one

connector external HDI-30 external HDI-30
connector connector

Sound Monaural sound via Monaural sound Apple Sound Chip Enhanced ASC and Enhanced ASC and
standard Macintosh output; Digitally CASC) DFAC DFAC
sound chip Filtered Audio Chip

eDF AC) provides
digital recording
feature

Video Built-in 9" mono- Built-in 9" mono- Built-in backlit, flat- Built-in backlit, flat- Built-in backlit, flat-

display chrome monitor, chrome monitor, panel LCD, panel Film panel active matrix
512 x 342 pixels 512 x 342 pixels 640 x 400 pixels SuperTwist Nematic LCD, 640 x 400

LCD, 640 x 400 pixels
pixels

Battery Long-life lithium Long-life lithium 2.5-ampere-hour 2.8-ampere-hour 2.8-ampere-hour
battery backu p battery backup SLA (sealed lead- NiCad rechargeable NiCad rechargeable

acid), rechargeable battery; 3 V lithium battery; 3 V lithium
battery; 3 V lithium battery backup battery backup
battery backup

Chapter 19 Application-Specific Expansion Interfaces for Macintosh Computers 433

Hardware architecture

The following discussion is brief and intended primarily to show the place of each
application-specific expansion interface in the machine architecture. For a complete
description of hardware operation, see the Guide to the Macintosh Family Hardware. Also
useful would be the Macintosh IIsi, Le, and Classic Developer Notes and the Macintosh
Classic II, Macintosh PowerBook Family, and Macintosh Quadra Family Developer Notes.
Or, if you are interested in a higher-level overview, see the Technical Introduction to the
Macintosh Family.

The Macintosh Classic is similar in appearance to the Macintosh SE. In fact, the Macintosh
Classic computer's main logic board is based on the Macintosh SE design. The Macintosh
Classic uses an Mc68000 microprocessor running at 7.8336 MHz and provides Macintosh
SE performance. The main architectural difference between the two computers is that the
Macintosh Classic offers a RAM expansion interface instead of the processor-direct
expansion interface of the Macintosh SE.

The Macintosh Classic II computer is also similar in appearance to the Macintosh SE;
however, its electrical design is based as much as possible on the Macintosh LC
architecture. Instead of the Mc68020 processor used by the Macintosh LC, the Macintosh
Classic II uses an MC68030 processor that runs at 15.6672 MHz. The Macintosh Classic II
offers optional FPU and ROM expansion. For more information, refer to Chapter 21,
"ROM Expansion Interface."

The PowerBook family of computers are the latest Macintosh portable computers. The
Macintosh PowerBook 100 is a new notebook-class, battery-operated, portable
computer. Its architecture is based on that of the Macintosh Portable. Both use the
Mc68HCOOO microprocessor and run at 15.6672 MHz. However, the PowerBook 100 does
not include an internal floppy disk drive or a processor-direct expansion slot like the
Macintosh Portable. The PowerBook 100, like the Macintosh Portable, however, does
provide RAM, ROM, and modem expansion interfaces.

The Macintosh PowerBook 140 and Macintosh PowerBook 170 computers are also based
on the original Macintosh Portable; however, they are considerably smaller. The
PowerBook 140 is a slightly less powerful version than the PowerBook 170. Both use the
MC68030 processor, but the PowerBook 170 runs at 25 MHz and the PowerBook 140 runs
at 15.6672 MHz. The PowerBook 170 also provides an FPU, whereas the PowerBook 140
does not. Both the PowerBook 140 and the PowerBook 170 computers provide RAM and
modem expansion interfaces.

Block diagrams of the Macintosh Classic, the Macintosh Classic II, the PowerBook 100,
the PowerBook 140, and the PowerBook 170 are shown in Figures 19-1 through 19-4.

434 Designing Cards and Drivers for the Macintosh Family

The computers that provide application-specific expansion interfaces contain several
common circuits, including RAM, ROM, and some I/O chips that enable the
microprocessor to communicate with external devices. The following is a brief
description of these I/O chips:

• Every Macintosh computer except the Macintosh Classic II has one or two Versatile
Interface Adapter (VIA) chips. The Macintosh Classic, the PowerBook 100, the
PowerBook 140, and the PowerBook 170 each have one VIA chip. The VIA in the
Macintosh Classic, the PowerBook 140, and the PowerBook 170 supports the real
time clock (RTC). The VIA in the PowerBook 100 provides the communication
interface between the processor and the Power Manager IC as well as interrupts for a
number of internal functions. VIA functions in the Macintosh Classic II are provided
in the Eagle gate array, described later in this section.

• A SCSI (Small Computer System Interface) chip provides high-speed parallel
communication with internal or external devices such as hard disks. A Serial
Communications Controller (SCC) provides for high-speed, asynchronous serial
communication (also synchronous modem support). These two chips are used only in
the Macintosh Classic. The Combo chip, used in the Macintosh Classic II, the
PowerBook 100, the PowerBook 140, and the PowerBook 170, combines the
functions of the SCC and SCSI chips. This device is completely software compatible
with the SCC and SCSI chips it replaces. It controls the two ports for serial
communications and SCSI ports for connection to hard disks.

• An Apple custom chip controls both internal and external floppy disk drives. The
Macintosh Classic, the Macintosh Classic II, and the PowerBook-family computers all
use the SWIM (Super Woz Integrated Machine) chip to control their floppy drives.

• The Macintosh Classic includes an Apple custom chip called the BBU (Bob Bailey
Unit), also used in the Macintosh SE, for video and sound control and for generating
device-select signals. The computers in the PowerBook family use the Apple Sound
Chip (AS C) to control stereo sound. The Digitally Filtered Audio Chip (DFAC) is a
custom IC that does the analog processing functions for the sound system. It is used
in the Macintosh Classic II, the PowerBook 140, and the PowerBook 170.

• The Power Manager IC was introduced in the Macintosh Portable to control the
distribution of power to all I/O devices. It is also used in the PowerBook-family
computers. In the PowerBook 140 and PowerBook 170, however, functions such as
the real-time clock (RTC) and the PRAM have been removed from the Power Manager
microprocessor and are now provided by an RTC chip.

• The PowerBook-family computers include two general logic unit chips, the CPU GLU
and the Miscellaneous GLU. These chips generate CPU clocks and data
acknowledgment signals, provide PSRAM chip select and refresh, do modem-serial
port multiplexing, and provide the interfaces to the rest of the system.

Chapter 19 Application-Specific Expansion Interfaces for Macintosh Computers 435

• A custom IC, the Eagle gate array, is included in the Macintosh Classic II computer. In
addition to providing the general logic unit functions, the Eagle provides timing,
video generation, memory mapping, sound, and clock generation. The Eagle
functionally replaces the RBV CRAM-based video) chip, the MDU (Memory Decode
Unit), the VIA chips, and the ASC.

• The DDC (Display Driver Chip) provides the interface to the LCD in the PowerBook-family
computers. Its function is similar to that of the video chip used in the Macintosh Portable,
except that the DDC supports FSTN (Film SuperTwist Nematic) displays as well as active
matrix (AM) displays. The DDC generates horizontal and vertical synchronization pulses,
and all other signals necessary to make the flat-panel display work.

436 Designing Cards and Drivers for the Macintosh Family

• Figure 19-1 Block diagram of the Macintosh Classic computer

Video

Brightness

Built-in
monitor

§'K 0 board
I

~ Internal Extern al
ack

Sound sont speaker soundj

ampli ler 0
-

(A23-19, 17,9)
DDU

I RAM
1MB

(A18, 16-10,8---1) Address RAM addresses built-in
Address MUXs -bus (RA 9-0)

CPU (A23-l) (D15-O) Data bus RAM data

MC68000 Data
buffers (ROl5-0) 144-p;" memory bus : : : expansion

Interrupts (015-0) ----I : : : connector
(015-0) : : : (0 to 3 MB)

(A17-1) ROM :: :
/IPLl /IPL2 Interrupt I 512KB

switch
Apple Deskto

·1 1

Bus port
/IPLO /IRQ ADD © ..

(015-8)

p

VIA

-I 1

(A12-9) RTC ..

Y SCSI interrupt I /IRQ
External mask I (015-8)

SCSI SCSI port
(A6-4)

Internal floppy External
(D7-O) disk connector floppy

SWIM disk port
(A12-9)

Serial

Channel A PortA
ports .. -I Drivers (015-8) SCC (modem) ..

ChannelB and
PortB (A2 1) .. - receivers

(printer) ..

Chapter 19 Application-Specific Expansion Interfaces for Macintosh Computers 437

• Figure 19-2 Block diagram of the Macintosh Classic II computer

CPU

Mc6S030

A21-2
D31-16

A21-2

D31-O

D31-16

A31 23-0

(5-wire bus)

FPU/ROM expansion connector
•••••••••••••••••••••••• ~ I

ROM
512 KB

: 2x74LS245 :
RAM data bus (16)

I
RAM address bus (12)

Addr Video

'-- Data Brightness

I 2 SIMMs for I
I RAM expansion

I RAM
2MB

board

I

Bui It-in
nitor §}<mo

: "
Filter Eagle

gate array

- Serial interface

- R 6SHC05

: J Fixed gain

~ I \ speaker amp

~ DFAC chip

!0 I
AmpAGC

I filter

Intern al
er speak

0 Headphone jack

© Mic input

DFAC con~~I··················]······· Appl~· ~esktop
T micro- Bus port

I Battery I- C controller ... "@
Reset: I I
NMI

A2-1 Channel A PortA SCC Drivers (modem) ..
and

ChannelB receivers PortB ...
D31-24 (printer) ..

Combo
External

A6-4
I ::::::::::::::::::::::::: I SCSI port SCSI

Internal hard disk
............

connector

External floppy
A12-9

I t·········· disk port

I
..........

SWIM :: : .. :: I D31-24 I Internal floppy
disk connector

43S Designing Cards and Drivers for the Macintosh Family

• Figure 19-3 Block diagram of the Macintosh PowerBook 100 computer

Address bus
ROM

CPU A2H
256KB

Mc68HCOOO Data bus 150 ns
015-0 Mask ROM

1 wait state

~ CPUGLU I Al9 1 Internal RAM

015-0
expansion
connector

1A19-1

Reset ~ Misc.GLU I pl5-0_ RAM

2MB
NMI 100 ns

PSRAM
o wait state Flat-panel

display
Display

AI4-1 0 backlight

014-0
Side-lit CCFL

Screen DDC HVideo RAM I
contrast 70ns
control SRAM

Screen L
brightness I

control

A12-9 rl Trackball I
01'i--B VIA

f-'--
Apple Deskt

I
Main battery

~
Bus port

Power
6.5V SLA Power- Manager -

control I Keyboard I Backup battery
circuit controller Keyboard J

3.5VX 3
cells lithium Al 2-9 External

D7-O SWIM
floppy - disk port

op

~
~

~ [Charger

I
Serial Printer

driver & I
port ..

~ receiver

I II Phone
jack --V

AG-l Combo Optional internal
~ SCSI & sec modem connector External

SCSI port
... : ::::::::

Internal hard disk
All-l connector

~
:::::::::::::::::::::::::

ASC

Sony o External sound

LuJ Internal speaker
driver sound jack

Chapter 19 Application-Specific Expansion Interfaces for Macintosh Computers 439

• Figure 19-4 Block diagram of the Macintosh PowerBook 140 and Macintosh PowerBook 170
computers

Flat-panel

Al4-1

0 DDC VD7-O
~ 031-16

,------- RAM
VAl4-0

display

A20-0 A12-9
A4-1 031-24 VIAl

FPU

Mc68882 ~ TI (not used on 031-0 A20-2 TIM/Lel RAM

031-0 II expansion
i! connector

Data ii

Address bus 031-0 buffers
A20 2 .:.:.

031-0 I PSRAM

I 031-0
CPU

A31-O 2MB

rl Trackball I
Mc68030 I/O data ~ Data bus 031-24 ROM

I buffer Al9--2 1MB Apple Desktop
031-0 031-24 Bus port

D25,24 Power I -
CPUGLU ,---1-

Manager Keyboard A31-13,1,0
Keyboard I Battery charger controller

and power
031 24 supply

Ii Internal modem
I Misc.GLU I :: connector

I Battery I Channel A Port A •••
I Drivers I (modem) ':.' Serial

and ports
A6-4, 2, 1 Channel B receivers Port B : ~'.

Combo 031 24 (punter) ••
SCC/SCSI

Internal floppy

A12-9 031-24 disk connector
SWIM

Internal hard disk External
connector SCSI port

I :;;:::::::::::::::::::::: I
External

sound jack

0
Sound

input jack
All-O Enhanced I OFAC 0

MC
I

Internal
I Filterlamp I speaker

440 Designing Cards and Drivers for the Macintosh Family

RAM

RAM is the working memory of the system. In the Macintosh Classic computer, address
space from $00 0000 through $3F FFFF is reserved for RAM. In the PowerBook 100,
address space from $00 0000 through $7F FFFF is reserved for RAM. Address space
$0000 0000 through $7FFF FFFF is reserved for RAM in the PowerBook 140 and the
PowerBook 170 computers. In the Macintosh Classic II, address space from $00 0000
through $9F FFFF is reserved for RAM. The actual amount of address space used depends
upon the amount of RAM available in the system.

The first 1024 bytes of RAM (addresses $000000 through $00 03FF) are used as storage for
exception vectors; these are the addresses of the routines that gain control whenever an
exception such as an interrupt or a trap occurs. The first 256 bytes are reserved for use by
the operating system, and the remainder are allocated for use by applications. RAM
contains the system heap, a copy of parameter RAM, various global variables and trap
handlers, application heaps, the stack, and other information used by applications.

ROM

ROM is the system's permanent read-only memory. When the Macintosh is first turned on,
a second image of ROM appears at $000000, so that ROM can supply the processor with
the exception vectors. Following the first access to the normal address ranges of ROM or
the SCSI controller, the image of ROM at $000000 is replaced by RAM.

The base address is available in the global variable ROMBase. ROM contains the routines
for the User Interface Toolbox and the Macintosh Operating System, and the various
system traps.

The PowerBook 140 and PowerBook 170 computers come equipped with 1 MB of ROM
on the main logic board. The ROM will support new features in the PowerBook 140 and
the PowerBook 170, such as power cycling, the Power Manager, modem support, the
backlit display, and the memory controller.

Device I/O

All Macintosh computers use memory-mapped I/O, which means that each device in the
system is accessed by reading from or writing to specific locations in the address space of
the computer. The address space reserved for the device I/O contains blocks devoted to
each of the devices within the computer. Each device contains logic that recognizes when
it's being accessed and allows the device to respond in the appropriate manner. For more
information about the address space for each computer covered in this section, please
refer to the next three chapters.

Chapter 19 Application-Specific Expansion Interfaces for Macintosh Computers 441

Chapter 20 RAM Expansion Interface

This chapter describes the RAM expansion interfaces provided in the
Macintosh Portable, the Macintosh Classic, the PowerBook 100, the
PowerBook 140, and the PowerBook 170 computers. It describes the
electrical characteristics of each RAM expansion connector and physical
specifications for installing a RAM expansion card in each type of
Macintosh computer.

Macintosh Portable RAM expansion

The RAM expansion interface in the Macintosh Portable computer is designed to support up
to 5 MB of CMOS static RAM. The Macintosh Portable comes equipped with a main memory
consisting of 1 MB of permanent RAM soldered to the main logic board. Because of the
increasing size of application programs, the Macintosh Portable is designed to accommodate
an expansion card that will provide up to 4 MB of additional RAM for the system.

There are actually two versions of the Macintosh Portable-the original Macintosh
Portable and the backlit Macintosh Portable. The backlit version is slightly different from
the original Macintosh Portable. Along with providing a backlit active matrix display,
some other improvements were made to the backlit Macintosh Portable:

• PSRAM (pseudostatic RAM) replaces the SRAM (static RAM) used in the original
Macintosh Portable.

• A shredded, more flexible cable provides easier access to the processor-direct
expansion slot.

• The RAM expansion connector has been keyed, and the pinout has been slightly
changed (two pins are different) from that of the original Macintosh Portable.

• Backlighting, which can be controlled by either a user (via the control panel's
Portable CDev) or third-party application software, has been added to improve the
backlit Macintosh Portable computer's display quality.

Like the Macintosh Portable, the backlit version is designed to accommodate a RAM
expansion card that can provide up to 4 MB of additional RAM for the system.

Differences between the original Macintosh Portable and the backlit Macintosh Portable
are pointed out in this section. Where no mention is made of differences for a particular
feature, you can assume the feature is identical in both machines.

Macintosh Portable RAM expansion address space

The 1 MB permanent RAM memory is arranged as a 512 K x 16-bit array. This RAM array is
located between addresses $00 0000 and $OF FFFF in the Macintosh Portable memory map
(Figure 20-1), and is overlaid by the system ROM after a system reset and before the first
ROM access.

444 Designing Cards and Drivers for the Macintosh Family

The 8 MB space between addresses $10 0000 and $8F FFFF is reserved for RAM expansion.
It is possible to expand RAM up to 8 MB; however, the zero wait state /DTACK signal is
generated only for the first 5 MB of RAM address space. (The 5 MB includes 1 MB on the
main logic board and 4 MB on a RAM expansion card.) You can design your expansion
card for any of a number of possible configurations of additional RAM. For example,
Apple has designed a 1 MB RAM expansion card. The 1 MB expansion card is arranged as a
512 K x 16-bit array and is located between addresses $10 0000 and $lF FFFF in the
memory map. You could design a 3 MB expansion card with memory arranged as a
1.5 M x 16-bit array. This configuration would be located between addresses $10 0000
and $3F FFFF in the memory map. The access time and cycle time for each of these
configurations are 100 ns. The size of the RAM array is determined by the type of RAM
chips you use. When your card is installed in the Macintosh Portable, the memory array is
always available and, unlike permanent main memory, is unaffected by the state of the
overlay bit.

Chapter 20 RAM Expansion Interface 445

• Figure 20-1 Macintosh Portable memory map

446 Designing Cards and Drivers for the Macintosh Family

RAM expansion cards for the Macintosh Portable

Your RAM expansion card connects to the Macintosh Portable through a single 50-pin
connector (slot) on the Macintosh Portable main logic board. Chapter 17 provides
information about the location of the connectors on the main logic board. Figure 20-2
shows the pinout of the RAM expansion connector.

All necessary address bus, data bus, and control signals from the Macintosh Portable are
provided to the expansion card through the RAM expansion connector. Table 20-1
provides the names and descriptions of each signal. Apple uses a custom IC to decode,
control, and buffer the signals going to the expansion card. You must remember to include
similar circuitry in your expansion card design. Buffering of the address bus and data bus
is important to reduce capacitive loading. You should also use CMOS devices, because
the maximum current allotted to the RAM expansion connector is only 25 rnA.

Chapter 20 RAM Expansion Interface 447

• Figure 20-2 Macintosh Portable RAM expansion connector pinout

t Pin 28 is defined as /RAM.CS in the backlit Macintosh Portable.

* Pin 32 is defmed as /REFRESH in the backlit Macintosh Portable.

448 Designing Cards and Drivers for the Macintosh Family

• Table 20-1 Macintosh Portable RAM expansion connector signals

Plnmunber Signal name Signal des<;ription

1 +5V +5-volt power supply
2-24 AI-A23 Unbuffered 68HCOOO address signals AI-A23
25-26 GND Logic ground
27 /SYS.PWR Controls whether the Macintosh Portable is in

the operating state or sleep state
28 /ASt 68HCOOO address strobe signal
29 R/W 68HCOOO read/write signal
30 IUDS Upper data strobe signal
31 /LDS Lower data strobe signal
32 /DELAY.CS* Signal generated by the CPU GLU chip to put

the RAM array into the idle mode
33-48 DO-DI5 Unbuffered 68HCOOO data signals DO-D15
49-50 +5V +5-volt power supply

t Pin 28 is defined as /RAM.CS in the backlit Macintosh Portable.
* Pin 32 is defined as /REFRESH in the backlit Macintosh Portable.

There is one 68HCOOO processor wait state when accessing memory locations in the
expansion RAM. This access requires a bus cycle of nominally 320 ns. Like permanent RAM,
there is no device contention for bandwidth other than the 68HCOOO processor; and,
because the memory array is static RAM, it does not have to be refreshed, as would be the
case for dynamic RAM.

Also, like permanent RAM, the expansion RAM is backed up by the battery when the
Macintosh Portable is in the sleep state. This means that the contents of the expansion
RAM are retained when the computer is not in use, as long as the battery is charged.

Figure 20-3 is a design guide providing the physical specifications you need to design a
RAM expansion card for the Macintosh Portable .

... Warning Figure 20-3 is from a design gUide used within Apple Computer. This
drawing was correct at the time of publication but is subject to change ...

Chapter 20 RAM Expansion Interface 449

• Figure 20-3 Macintosh Portable RAM expansion card design guide

4.0 (.157)
w/45° chamfer

This area to remain clear of components to
allow room for board stabilization from lid.
5 (0.1969) deep by 8 (0.157) wide .

Pin 1

50-pin connector (keyed)

.. 57.15 (2.25)

81.20
(3.197)

- 27.28(1.074)-- 1.45 (.057) ~ I --
10.11
(.398) fo-. ----------123.33(4.855) -----------......

Dimensions are in millimeters with inches in parentheses.

RAM expansion cards for the backlit Macintosh Portable

The RAM expansion connector (slot) is physically identical to the connector used on the
original Macintosh Portable with the exception that the backlit Macintosh Portable
connector is keyed. Electrically, however, there is a slight difference because two of the
pins have different assignments from those of the original Macintosh Portable. Table 20-2
lists the pin assignments that have changed.

450 Designing Cards and Drivers for the Maciqtosh Family ,.

• Table 20-2 RAM expansion connector signal differences for the backlit
Macintosh Portable

Plnnumber

28
32

Original Macintosh Portable

/AS
/DELAY.CS

Backlit Macintosh Portable

/RAM.CS
/REFRESH

The /RAM.CS signal is directly related to the /REFRESH signal. The /RAM.CS signal goes
high to signal that reading and writing are no longer valid, just before /REFRESH goes low
to refresh the RAM memory. The /REFRESH signal is normally high and goes low (active
state) approximately every 16 ~s. It remains low for 180 ns, during which time the RAM
memory is refreshed.

D. Important Because an Apple RAM expansion card does not fully decode RAM
expansion space, the card must be removed before additional third
party RAM can be added to the backlit Macintosh Portable. It is
possible to expand RAM up to 8 MB; however, the zero wait state
/DTACK signal and the /REFRESH signal are generated only for the first
5 MB of RAM address space. Apple does not recommend that you use
the PDS for RAM expansion; however, if you are planning to design a
processor-direct slot (PDS) expansion card for additional RAM, keep
in mind that timing, particularly the /DTACK signal, is critical. /',

RAM expansion-slot timing for the backlit Macintosh Portable

Unlike the original Macintosh Portable, which required one wait state, the backlit
Macintosh Portable requires zero wait states when its processor is accessing memory
locations in the expansion RAM. Figure 20-4 shows the RAM expansion-slot timing for the
backlit Macintosh Portable.

D. Important Inserting an additional 64 wait states between CLK cycles 4 and 5 (see
Figure 20-4) when the backlit Macintosh Portable is in idle mode
causes the processor timing to effectively slow down to 1 MHz. /',

Chapter 20 RAM Expansion Interface 451

• Figure 20-4 RAM expansion-slot timing for the backlit Macintosh Portable

U __ 3--U5
+ + H

1
7

CLK

lAS

R!W

IDS

lRAM.CS

lRAMR!W

10E

lEN 245

DIR245

ADDR

Notes:
1. Total length of cycle read or write 5 x 32 ns = 160 ns
2. Delay clock to lAS = 30 ns
3. Delay/ASto/RAM.CS=lOns
4. Delay through 74ac245 buffer = 7 ns
5. Setup before s7 = 5 ns
6. Delay s4 to /OS falling = 30 ns
7. Delay /OS to RAM R!W falling = 20 ns

Read timing:
160

Write timing:
Cycle Cycle 160
lAS 30 lAS 64
lRAM.CS 10 lRAM.CS 30
buffer 7 buffer 20
setup 5 setup 100
RAM 100 RAM 60

Margin 8ns Margin 30ns

Important:
When the Portable is in idle mode, an additional 64
wait states are added between clk 4 and 5, effectively
slowing the CPU timing down to 1 MHz. During
normal operation these wait states are not present.

452 Designing Cards and Drivers for the Macintosh Family

Design considerations for RAM expansion in the backlit Macintosh Portable

You must design your RAM expansion card to operate at zero wait states if you expect it
to work in the backlit Macintosh Portable computer.

Because of different pin functions and the requirement of zero wait states, a RAM card
designed for the backlit Macintosh Portable must have a keyed connector to prevent it
from being installed in the original Macintosh Portable. However, a RAM expansion card
designed for the original Macintosh Portable can be installed in the backlit Macintosh
Portable. For the card to function correctly in both machines, it must be designed to run
at zero wait states, and must not include a connection to the /DELAY.CS signal
(/REFRESH for backlit Macintosh Portable).

6.. Important Developers of expansion cards for the processor-direct slot must
remember that /EXT.DTACK will no longer delay /DTACK for accesses
to the first 5 MB of address space ($00 0000 through $4F FFFF). RAM
or other devices responding to addresses in the first 5 MB are required
to run at full speed with no wait states. 6

Macintosh Classic RAM expansion

The Macintosh Classic is equipped with 1 MB of RAM soldered to the main logic board. You
can design RAM expansion cards that can provide 2, 2.5, or 4 MB of additional memory.

This section describes the Macintosh Classic address space and the electrical and
mechanical information that you need to design a RAM expansion card.

Macintosh Classic RAM expansion address space

The 1 MB of RAM in the Macintosh Classic consists of eight 256 K x 4 dynamic random
access memory (DRAM) chips soldered to the main logic board. This RAM array is located
between addresses $00 0000 and $OF FFFF in the Macintosh Classic memory map. It is
overlaid by the system ROM after a system reset and before the first ROM access.

Chapter 20 RAM Expansion Interface 453

The 8 MB space in the Macintosh Classic between addresses $100000 and $3F FFFF is
reserved for RAM expansion. Because the Macintosh Classic is based on the design of the
Macintosh SE, the description of the Macintosh SE address space provided in Chapter 13
is the same for the Macintosh Classic.

Electrical description of the RAM expansion cards for the Macintosh Classic

Figure 20-5 gives the pinout for the 44-pin RAM expansion connector for the Macintosh Classic.
Table 20-3 provides the pinout and signal descriptions of the memory expansion connector.

A Programmed Array Logic (PAL) integrated circuit on the main logic board sends the
necessary column address strobe (CAS) signals to the expansion connector. Pins 12 and 11
on the connector indicate to the PAL whether an expansion card is installed and, if one is,
whether it contains SIMMs. Pin 12 (lEXP .IN) is the expansion input pin. This pin must be
grounded to indicate that a memory expansion card is installed. Pin 11 (lSIMM.lN) is the
SIMM input pin. If a memory card is installed, this pin must be grounded to indicate that
SIMMs are plugged into the card. The status of the /EXP.lN and /SIMM.lN signals also
determines which CAS lines are active. Input signals on the expansion connector do not
have to be pulled high.

"<.

454 Designing Cards and Drivers for the Macintosh Family

• Figure 20-5 Macintosh Classic RAM expansion connector pinout

Chapter 20 RAM Expansion Interface 455

• Table 20-3 Macintosh Classic RAM expansion connector signals

Pinmunber Name Description

1 GND Ground
2 GND Ground

3 +5V +5-volt power
4 +5V +5-volt power

5 /CASCH Bank C high-byte column address strobe
6 /CASCL Bank C low-byte column address strobe

7 /CASEL Bank E low-byte column address strobe
8 /CASEH Bank E high-byte column address strobe

9 /CASDH Bank D high-byte column address strobe
10 /CASDL Bank D low-byte column address strobe
11 /SIMM.IN SIMM input indicator
12 /EXP.IN Expansion input indicator
13 RD3 Data bit 3
14 RD2 Data bit 2
15 RDO Data bit 0
16 RDI Data bit 1
17 RD7 Data bit 7
18 RD6 Data bit 6

19 RD4 Data bit 4
20 RD5 Data bit 5
21 RD11 Data bit 11
22 RDI0 Data bit 10
23 RD8 Data bit 8
24 RD9 Data bit 9
25 FRA9 Address bit 9
26 FRA4 Address bit 4
27 FRA3 Address bit 3
28 FRA5 Address bit 5
29 FRA2 Address bit 2
30 FRA6 Address bit 6
31 FRAI Address bit 1
32 FRA7 Address bit 7

33 FRAO Address bit 0

(continued)

456 Designing Cards and Drivers for the Macintosh Family

• Table 20-3 Macintosh Classic RAM expansion connector signals (continued)

Pin number Name Description

34 FRA8 Address bit 8

35 /FRAS Row address strobe

36 /FRMRW Read/write

37 RD15 Data bit 15
38 RD13 Data bit 13

39 RD14 Data bit 14
40 RD12 Data bit 12
41 +5V +5-volt power
42 +5V +5-volt power

43 GND Ground
44 GND Ground

Physical design guide for a Macintosh Classic RAM expansion card

Your RAM expansion card connects to the Macintosh Classic via the 44-pin connector on
the main logic board. Figure 20-6 is a design guide showing the maximum allowable card
size and the location of pin 1 for installing the expansion card's 44-pin connector. Some
available 44-pin connectors are

• Part number 2-532955-4
AMP, Incorporated
Harrisburg, PA 17105

• Part number 15-44-6044
Molex, Incorporated
Lisle, IL 60532

Chapter 20 RAM Expansion Interface 457

• Figure 20-6 RAM expansion card design guide for the Macintosh Classic

119.3
(4.70

8
)

t
9.4

(.370)

t -

,Pinl

I· .-. • · .•.. · · • · • ••• • • • · ·1
•

7.62 -(0.3) 1 __ .. ---.-- 68.58 __ .1
(2.70)

Dimensions are in millimeters with inches in parentheses.

Apple Computer has developed its own unique memory expansion card for the Macintosh
Classic. Figure 20-7 provides details of the Apple memory expansion card's configuration.
The standard configuration of this memory expansion card consists qf 1 MB of additional
RAM, a 44-pin connector that mates with the connector on the main logic board, and two
SIMM connectors. The 1 MB of additional memory is provided by a bank of eight
256K x 4 DRAMs soldered onto the expansion card.

Installing 256 KB SIMMs in the two SIMM connectors increases total memory to 25 MB;
installing 1 MB SIMMs increases total memory to 4 MB. A jumper block on the expansion
card is used to indicate whether SIMMs are installed.

458 Designing Cards and Drivers for the Macintosh Family

• Figure 20-7 Macintosh Classic RAM expansion card configuration

SIMMs (two 256 KB
or two 1 MB)

Jumper block

----- 1 MB soldered-on RAM --- - Memory expansion card

Macintosh Classic main logic board

RAM expansion for the PowerBook 140 and PowerBook 170

This section provides information about RAM expansion cards for the Macintosh
PowerBook 140 and Macintosh PowerBook 170 portable computers. The PowerBook 140
and PowerBook 170 computers each come equipped with 2 MB of RAM soldered to the
main logic board. Because of the increasing size of application programs, the Power Book
140 and PowerBook 170 computers are designed to accommodate an expansion card that
will provide 2, 4, Or 6 MB of additional RAM for the system.

The RAM expansion interfaces for the PowerBook 140 and PowerBook 170 portable
computers are identical. A RAM expansion card designed for either of these computers
should work correctly in the other one, and also in the Macintosh PowerBook 100.

Chapter 20 RAM Expansion Interface 459

Topics in this section include a description of RAM expansion connector signals for the
PowerBook 140 and the PowerBook 170 and a physical design guide for the RAM
expansion cards.

Expansion connector signals for the PowerBook 140 and PowerBook 170

Your RAM expansion card connects to the PowerBook 140 and PowerBook 170
computers through a single 70-pin connector on the secondary logic board. Figure 20-8
shows the physical location and pin orientation of the RAM expansion connector for the
PowerBook 140 and PowerBook 170 computers. Figure 20-9 shows the pinout for the
RAM expansion connector. Table 20-4 provides the pin number, name, and description of
each of the RAM expansion connector signals for the PowerBook 140 and PowerBook 170
computers.

• Figure 20-8 Location and pin orientation of modem and RAM expansion connectors
on the PowerBook 140 and PowerBook 170 computers

Power on/off

70

1
2

RAM expansion
connector

Secondal)' logic board

BatteI)' sits here

Modem connector Charger connection

Floppy drive

Hard drive

Front

460 Designing Cards and Drivers for the Macintosh Family

• Figure 20-9 RAM expansion connector pinout for the PowerBook 140 and
PowerBook 170 computers

GND CD GND

A17 A20

A19 A18

/LLW A16

/LUW A14

A15 A9

AIO A8

All A7

A13 A6

/RAM.OE AS

A12 A4

/RAMACSI A3 Front of machine
MDATA23 A2 ..
MDATA22 MDATA16

MDATA21 MDATA17

MDATA20 MDATA18

/RAMACSI GND

MDATA19 MDATA4

MDATA3 MDATA2

MDATAI MDATAO

MDATA6 MDATA7

MDATA5 +5V.SH

+5V.SH /RAMACS3

/ULW /UUW

/RAMACS2 /ROM.CS.EXP

+5V.SH /RAMACS3

MDATA28 MDATA27

MDATA29 MDATA14

MDATA30 MDATA24

MDATA31 MDATA25

MDATA15 MDATA26

MDATA8 MDATA13

MDATA9 MDATA12

MDATAIO MDATAll

/RAMACS2 GND

Chapter 20 RAM Expansion Interface 461

• Table 20-4 RAM expansion connector signals for the PowerBook 140 and
PowerBook 170 computers

Plnnumbet Signal name Signal description

1 GND Ground
2 GND Ground

3 A20 Address bit 20 (unbuffered)
4 A17 Address bit 17 (unbuffered)

5 A18 Address bit 18 (unbuffered)
6 A19 Address bit 19 (unbuffered)
7 A16 Address bit 16 (unbuffered)
8 /LLW Lower write byte

9 A14 Address bit 14 (unbuffered)
10 /LUW Lower middle write byte
11 A9 Address bit 9 (unbuffered)
12 A15 Address bit 15 (unbuffered)

13 A8 Address bit 8 (unbuffered)
14 A10 Address bit 10 (unbuffered)
15 A7 Address bit 7 (unbuffered)
16 A11 Address bit 11 (unbuffered)

17 A6 Address bit 6 (unbuffered)
18 A13 Address bit 13 (unbuffered)
19 AS Address bit 5 (unbuffered)
20 /RAM.OE RAM output enable and refresh for 4 MB PSRAMs
21 A4 Address bit 4 (unbuffered)
22 A12 Address bit 12 (unbuffered)
23 A3 Address bit 3 (unbuffered)
24 /RAMACS1 PSRAM bank chip-select bit 1
25 A2 Address bit 2 (unbuffered)
26 MDATA23 Bit 23, 32-bit-wide memory data bus (buffered)
27 MDATA16 Bit 16, 32-bit-wide memory data bus (buffered)
28 MDATA22 Bit 22, 32-bit-wide memory data bus (buffered)

(continued)

462 Designing Cards and Drivers for the Macintosh Family

• Table 20-4 RAM expansion connector signals for the PowerBook 140 and
PowerBook 170 computers (continued)

Plnnumber Slgnalname Signal description

29 MDATA17 Bit 17, 32-bit -wide memory data bus (buffered

30 MDATA21 Bit 21, 32-bit-wide memory data bus (buffered)

31 MDATA18 Bit 18, 32-bit-wide memory data bus (buffered)

32 MDATA20 Bit 20, 32-bit-wide memory data bus (buffered)

33 GND Ground

34 /RAMACS1 PSRAM bank chip-select bit 1

35 MDATA4 Bit 4, 32-bit-wide memory data bus (buffered)

36 MDATA19 Bit 19, 32-bit-wide memory data bus (buffered)

37 MDATA2 Bit 2, 32-bit-wide memory data bus (buffered)

38 MDATA3 Bit 3, 32-bit-wide memory data bus (buffered)

39 MDATAO Bit 0, 32-bit-wide memory data bus (buffered)
40 MDATA1 Bit 1, 32-bit-wide memory data bus (buffered)
41 MDATA7 Bit 7, 32-bit-wide memory data bus (buffered)
42 MDATA6 Bit 6, 32-bit-wide memory data bus (buffered)
43 +5V.SH +5 volts (RAM power/shutdown plane)
44 MDATA5 Bit 5, 32-bit-wide memory data bus (buffere)
45 /RAMACS3 PSRAM bank chip-select bit 3
46 +5V.SH +5 volts (RAM power/shutdown plane)
47 /UUW Upper write byte
48 /ULW Upper middle write byte
49 /ROM.CS.EXP ROM chip select
50 /RAMACS2 PSRAM bank chip-select bit 2
51 /RAMACS3 PSRAM bank chip-select bit 3

52 +5V.SH +5 volt/O volt (awake/sleep plane)

53 MDATA27 Bit 27, 32-bit-wide memory data bus (buffered)
54 MDATA28 Bit 28, 32-bit-wide memory data bus (buffered)

55 MDATA14 Bit 14, 32-bit-wide memory data bus (buffered)

56 MDATA29 Bit 29, 32-bit-wide memory data bus (buffered)

(continued)

Chapter 20 RAM Expansion Interface 463

• Table 20-4 RAM expansion connector signals for the PowerBook 140 and
PowerBook 170 computers (continued)

Plnmunber SignaIname Signal description

57 MDATA24 Bit 24, 32-bit-wide memory data bus (buffered)
58 MDATA30 Bit 30, 32-bit-wide memory data bus (buffered)

59 MDATA25 Bit 25, 32-bit-wide memory data bus (buffered)
60 MDATA31 Bit 31, 32-bit-wide memory data bus (buffered)
61 MDATA26 Bit 26, 32-bit-wide memory data bus (buffered)
62 MDATA15 Bit 15, 32-bit-wide memory data bus (buffered)

63 MDATA13 Bit 13, 32-bit-wide memory data bus (buffered)
64 MDATA8 Bit 8, 32-bit-wide memory data bus (buffered)

65 MDATA12 Bit 12, 32-bit-wide memory data bus (buffered)
66 MDATA9 Bit 9, 32-bit-wide memory data bus (buffered)
67 MDATAll Bit 11, 32-bit-wide memory data bus (buffered)
68 MDATAI0 Bit 10, 32-bit-wide memory data bus (buffered)

69 GND Ground
70 /RAMACS2 PSRAM bank chip-select bit 2

• Note: If you are designing a RAM expansion card, you should normally consider pin 49
(/ROM.CS.EXP) as no connection, unless your expansion card includes its own ROM
and it is intended to replace system ROM.

If you design a RAM expansion card correctly, it will also work in the PowerBook 100
computer, a 68HCOOO-based portable computer. The PowerBook 100 RAM expansion
interface is discussed later in this chapter. The 68030-based PowerBook 140 and
PowerBook 170 computers have a 32-bit data bus, whereas the PowerBook 100 has only a
16-bit data bus. You should design the expansion card as a 32-bit device; but by correctly
partitioning the data lines and chip-select lines on the card, you can use the same card in
either machine without loss of performance. The card should have 32 data lines coming
out to its connector. The chip-select lines for the upper 16 data bits and the lower 16 data
bits should be separated to allow for individual selection of either the upper 16 bits or the
lower 16 bits of data. The separated chip-select lines are necessary for the 68HCOOO-based
machine because it can only get access to 16 bits at a time. A 68030-based machine does
not require separated chip-select lines, because it has a 32-bit data bus. Therefore, the
lines are tied back together on the main logic boards of the PowerBook 140 and the
PowerBook 170.

464 Designing Cards and Drivers for the Macintosh Family

As is the case with permanent RAM, only 4 Mbit chips are used for expansion RAM.
For example, a 4 MB RAM expansion card has eight 4 Mbit PSRAMs (512K x 8-bit chips
arranged as two banks of 32 bits), and a 6 MB card has twelve 4 Mbit PSRAMs
(512K x 8-bit chips arranged as three banks of 32 bits). Access and cycle times for these
devices are 100 ns.

Access to the RAM (both permanent and expansion RAM) from the main processor
requires two processor wait states (five clock cycles per RAM access). Unlike the SRAM in
the Macintosh Portable, the PSRAM in the PowerBook 140 and PowerBook 170
computers must be refreshed. The CPU GLU custom chip includes the necessary circuitry
to perform the refresh function.

D Important If you are designing a RAM expansion card for the PowerBook 140
or PowerBook 170, you don't have to include logic for address
decode or chip select, because all of the required signals (address,
data, chip select, and control) are available at the RAM expansion
connector. Data buffering is also provided by the PowerBook 140 and
PowerBook 170 computers to compensate for the extra loading
caused by the RAM expansion card chips. fj,

RAM expansion card design guide for the PowerBook 140 and PowerBook 170

Figure 20-10 is a design guide providing the physical information you will need to design a
RAM expansion card for the PowerBook 140 and PowerBook 170 computers.

• Note: Figure 20-10 is also applicable to the PowerBook 100 RAM expansion,
described in the next section.

Chapter 20 RAM Expansion Interface 465

• Figure 20-10 RAM expansion card design guide for the PowerBook 140 and
PowerBook 170 computers

.&
. 5.71 ~

1*102 ®IBlj

t f
21.0

toconn <i

~ ,
2.5J

REF

=;:===

.&
1-------47.54--'---....

1*10.2 ®IAI

__ 25.5_
toconn <i

Dimensions are in millimeters.

&. 3.00 maximum component height in indicated area.

£. 1.50 maxirhum component height in indicated area.

&. 1.00 maximum component height in indicated area.

&. No components pennitted in indicated area .

.&. AMP connector, PIN 104652-7 or Apple product
design engineering approved equivalent.

--- (16.0) --

I ~~===l
---l1.14 LJ /

&-J
REF

466 Designing Cards and Drivers for the Macintosh Family

Macintosh PowerBook 100 RAM expansion

The Macintosh PowerBook 100 computer is equipped with 2 MB of PSRAM, soldered to
the main logic board. The design of the PowerBook 100 allows you to develop an
expansion card that will provide up to 6 MB of additional RAM.

This section describes the electrical and mechanical information you will need to design a
RAM expansion card for the PowerBook 100 computer. It also provides some design hints
for the expansion card.

RAM address space for the PowerBook 100

The expansion RAM for the PowerBook 100 computer is located immediately above the
permanent RAM in the system memory map. The Miscellaneous GLU determines the
amount of permanent memory and maps the expansion RAM to the appropriate location.
The expansion RAM is mapped to occupy addresses from $20 0000 through $7F FFFF. For
example, a 2 MB expansion card would occupy address space $20 0000 through $3F FFFF, a
4 MB RAM card would occupy address space from $20 0000 through $5F FFFF, and a 6 MB
RAM card would occupy address space from $20 0000 through $7F FFFF. The memory
expansion address space is always available and, unlike the permanent memory, is not
affected by the state of the overlay bit.

Software always sees both the permanent RAM and the expansion RAM in continuous
locations on the bottom of the system memory map. There is no wraparound in the
memory, and a /DTACK (data transfer acknowledge) signal is generated for any accesses
within the address range of $00 0000 through $7F FFFF. You can get access to these
address spaces, where there is no RAM; and although a bus error will not occur, the data
would be meaningless.

Figure 20-11 shows the memory map for the PowerBook 100 computer.

Chapter 20 RAM Expansion Interface 467

• Figure 20-11 PowerBook 100 memory map

I/O
$FO 0000

Reserved
$EO 0000

Reserved
$DO 0000

Reserved
$COOOOO

Reserved
$BO 0000

Reserved
$AO 0000

$90 0000
ROM (256 KB)

Reserved
$80 0000

RAM expansion
(2 MB to 6 MB)

$20 0000

$10 0000 RAM (2 MB on board)

$00 0000
ROM (overlay = 1)

-

, , , , ,

, , ,

, , ,

, , ,

, , ,

, , , , , , ,

, , , ,
, , , ,

-

, , ,
, , ,
, , , , , ,

468 Designing Cards and Drivers for the Macintosh Family

Auto-vector read
$FFOOOO

Wait states: test
$FEOOOO

SCC
$FD 0000

ID register
$FC 0000

Sound
$FB 0000

Video
$FAOOOO

SCSI
$F9 0000

ROM diagnostic
$F8 0000

VIA
$F7 0000

SWIM
$F6 0000

Reserved
$F5 0000

Reserved
$F4 0000

Reserved
$F3 0000

Reserved
$F2 0000

Reserved
$FIOOOO

Reserved
$FO 0000

PowerBook 100 RAM expansion connector signals

The RAM expansion card connects to the PowerBook 100 through a single 70-pin
connector on the main logic board. Figure 20-12 shows the physical location and
pin orientation for the RAM expansion connector on the PowerBook 100. Figure 20-13
shows the pinout for the RAM expansion connector.

Table 20-5 provides the pin number, name, and description of each of the RAM expansion
connector signals on the PowerBook 100 computer.

• Figure 20-12 Location and pin orientation of modem and RAM expansion
connectors on the PowerBook 100 computer

Interrupt and restart switches
Power on/off

!

D
RAM expansion

connector

Modem connector Charger connection

Processor
board

Back

Keyboard and mouse

Front

!
20

2
---+-+--Modem

,..----"-----'------, cover

Hard disk drive

Chapter 20 RAM Expansion Interface 469

• Figure 20-13 RAM expansion connector pinout for the PowerBook 100 computer

GND CD GND

A19 A16
A17 A18
A15 ILW

A13 ILW

A8 A14
A7 A9
A6 AlO
A5 A12
A4 IOE.RFSH

A3 A11
A2 /EXP.CSO Front of machine
Al D7

j
DO D6
01 D5
D2 D4
GND IEXP.CS1

D4 D3
D2 D3
DO 01
D7 D6
+5V D5
/EXP.CS5 +5V
IUW IUW
n.c. /EXP.CS2
/EXP.CS4 n.c.

011 012
014 013
D8 014
D9 015
010 015
013 D8
012 D9
011 010
GND IEXP.CS3

470 Designing Cards and Drivers for the Macintosh Family

• Table 20-5 PowerBook 100 RAM expansion connector signals

Plnnumber signal name

1 GND
2 GND
3 A19
4 A16

5 A17
6 A18

7 A15
8 /LVV
9 A13
10 /LVV
11 A8

12 A14

13 A7
14 A9
15 A6

16 A10

17 A5
18 A12

19 A4

20 /OE.RFSH
21 A3
22 All
23 A2
24 /EXP.CSO
25 Al
26 D7
27 DO
28 D6
29 D1

30 D5
31 D2

Signal description

Ground
Ground
Address bit 19 (buffered)
Address bit 16 (buffered)
Address bit 17 (buffered)
Address bit 18 (buffered)
Address bit 15 (buffered)
Lower byte write strobe
Address bit 13 (buffered)
Lower byte write strobe
Address bit 8 (buffered)
Address bit 14 (buffered)
Address bit 7 (buffered)
Address bit 9 (buffered)
Address bit 6 (buffered)
Address bit 10 (buffered)
Address bit 5 (buffered)
Address bit 12 (buffered)
Address bit 4 (buffered)
RAM output enable and refresh
Address bit 3 (buffered)
Address bit 11 (buffered)
Address bit 2 (buffered)
Chip-select bit 0
Address bit 1 (buffered)
Data bit 7 (buffered) to and from main logic board
Data bit 0 (buffered) to and from main logic board
Data bit 6 (buffered) to and from main logic board
Data bit 1 (buffered) to and from main logic board
Data bit 5 (buffered) to and from main logic board
Data bit 2 (buffered) to and from main logic board

(continued)

Chapter 20 RAM Expansion Interface 411

• Table 20-5 PowerBook 100 RAM expansion connector signals (continued)

Plnmunber Signal name Signal description

32 D4 Data bit 4 (buffered) to and from main logic board

33 GND Ground
34 /EXP.CS1 Chip-select bit 1
35 D4 Data bit 4 (buffered) to and from main logic board

36 D3 Data bit 3 (buffered) to and from main logic board

37 D2 D:lta bit 2 (buffered) to and from main logic board
38 D3 Data bit 3 (buffered) to and from main logic board

39 DO Data bit 0 (buffered) to and from main logic board
40 D1 Data bit 1 (buffered) to and from main logic board
41 D7 Data bit 7 (buffered) to and from main logic board
42 D6 Data bit 6 (buffered) to and from main logic board
43 +5V +5 volts RAM power
44 D5 Data bit 5 (buffered) to and from main logic board
45 /EXP.CS5 Chip-select bit 5
46 +5V +5 volts RAM power
47 /UW Upper byte write strobe
48 /UW Upper byte write strobe
49 n.c. Not connected
50 /EXP.CS2 Chip-select bit 2
51 /EXP.CS4 Chip-select bit 4
52 n.c. Not connected
53 Dll Data bit 11 (buffered) to and from main logic board
54 D12 Data bit 12 (buffered) to and from main logic board
55 D14 Data bit 14 (buffered) to and from main logic board
56 D13 Data bit 13 (buffered) to and from main logic board
57 D8 Data bit 8 (buffered) to and from main logic board
58 D14 Data bit 14 (buffered) to and from main logic board

59 D9 Data bit 9 (buffered) to and from main logic board
60 DIS Data bit 15 (buffered) to and from main logic board
61 D10 Data bit 10 (buffered) to and from main logic board
62 DIS Data bit 15 (buffered) to and from main logic board
63 D13 Data bit 13 (buffered) to and from main logic board

(continued)

472 Designing Cards and Drivers for the Macintosh Family

• Table 20-5 PowerBook 100 RAM expansion connector signals (continued)

Pin number Signal name Signal description

64 D8 Data bit 8 (buffered) to and from main logic board
65 D12 Data bit 12 (buffered) to and from main logic board
66 D9 Data bit 9 (buffered) to and from main logic board
67 Dll Data bit 11 (buffered) to and from main logic board
68 D10 Data bit 10 (buffered) to and from main logic board
69 GND Ground
70 /EXP.CS3 Chip-select bit 3

Design hints for the PowerBook 100 RAM expansion card

The PowerBook 100 computer supports RAM expansion card sizes of 1 to 6 MB in 1 MB
increments. The main logic board does not have to be modified to change the RAM
configuration when an expansion card is installed.

If you design your RAM expansion card correctly, it will also work in the PowerBook 140
and the PowerBook 170, which are both 68030-based portable computers. The
PowerBook 140 and the PowerBook 170 computers are discussed earlier in this chapter.
The 68030-based machines have a 32-bit data bus, whereas the 68HCOOO in the
PowerBook 100 has only a 16-bit data bus. You should design the expansion card as a
32-bit device; but by correctly partitioning the data lines and chip-select lines on the card,
you can use the same card in all three machines without loss of performance. The card
should have 32 data lines coming out to its connector, and the chip-select lines for the
upper 16 data bits and the lower 16 data bits should be separated to allow for individual
selection of either the upper 16 bits or the lower 16 bits of data. The separated chip-select
lines are necessary for the PowerBook 100 because it can only get access to 16 bits at a
time. The 68030-based machines do not require separated chip-select lines because they
have a 32-bit data bus; therefore, the lines :ire tied back together on the computer's main
logic board.

As is the case with permanent RAM, only 4 Mbit chips are used for expansion RAM.
For example, a 2 MB RAM expansion card has four 4 Mbit PSRAMs (512K x 8-bit chips), a 4
MB RAM expansion card has eight 4 Mbit PSRAMs (512K x 8-bit chips), and a 6 MB card
has twelve 4 Mbit PSRAMs (51?K x 8-bit chips). Access and cycle times for these devices
are 100 ns.

Chapter 20 RAM Expansion Interface 473

Access to the RAM (both permanent and expansion RAM) from the main processor of the
PowerBook 100 requires no (zero) processor wait states, except during the 15 Jls refresh
cycle. In the PowerBook 100 computer, the Miscellaneous GLU includes special circuitry
that performs the refresh function. During sleep and shutdown modes, in which the main
processor is powered off and there is no bus access, the PSRAM enters a self-refresh mode
to save power.

If you are designing a RAM expansion card for the PowerBook 100, you do not have to
include logic for address decode or the chip-select signal, because all of the required
signals (address, data, chip select, and control) are available at the RAM expansion
connector. The PowerBook 100 also provides address buffering arid data buffering to
compensate for the extra loading caused by the RAM expansion card chips.

Like permanent main memory for the PowerBook 100, there are no processor wait states
when accessing memory locations in internal expansion RAM, with one exception. When
PSRAM is being refreshed once every 15 Jls, there will be a wait state. During sleep and
shutdown, when the processor is powered off and there is no bus access, the PSRAM is
placed into self-refresh mode to save power. In the self-refresh mode, no refresh cycle is
generated, and refresh is done internal to the RAM chips.

PowerBook 100 RAM expansion card design guide

The RAM expansion card design guide for the PowerBook 100 computer is identical to
the design guide for the PowerBook 140 and PowerBook 170 RAM expansion card. Refer
to Figure 20-10 for the physical information you will need to design a RAM expansion card
for the PowerBook 100 computer.

474 Designing Cards and Drivers for the Macintosh Family

Chapter 21 ROM Expansion Interface

This chapter describes the ROM expansion interface provided in the
Macintosh Portable and Macintosh Classic II computers. It describes
the electrical characteristics of each ROM expansion connector and
the physical specifications for installing a ROM expansion card in the
Macintosh Portable and the Macintosh Classic II computers. This
chapter also includes a discussion of electronic disks (EDisks) in the
Macintosh Portable.

475

Macintosh Portable ROM expansion

The Macintosh Portable computer is equipped with 256 KB of permanent ROM. The
design of the machine allows you to develop an expansion card that will provide up to
4 MB of additional ROM for the system.

This section describes the ROM expansion address space, defines the design criteria, and
provides the electrical and mechanical information you need to design a ROM expansion
card. It also explains the driver software requirements and provides details for
implementing EDisks.

ROM expansion address space in the Macintosh Portable

The 256 KB of processor ROM in the Macintosh Portable is fundamentally similar to the
ROM in the Macintosh SE. This ROM is located at the low end of the 1 MB RAM space
described in Chapter 20.

The 1 MB ROM space at locations $90 0000 through $9F FFFF is reserved by Apple primarily
as an upgrade path for future ROM code. The 4 MB ROM space at locations $AO 0000
through $DF FFFF is available for your ROM expansion cards.

t::, Important Although you could design a ROM expansion card to override the
existing 1 MB ROM space, it is strongly recommended that you do
not, because the machine using that card would be incompatible with
many software products. t:;

ROM expansion cards for the Macintosh Portable

Your ROM expansion card connects to the Macintosh Portable through a single 50-pin
connector (slot) on the Macintosh Portable main logic board. Chapter 17 provides
information about the location of the connectors on the main logic board. Figure 21-1
shows the pinout for the ROM expansion connector.

476 Designing Cards and Drivers for the Macintosh Family

• Figure 21·1 Macintosh Portable ROM expansion connector pinout

Chapter 21 ROM Expansion Interface 477

All necessary address bus, data bus, and control signals from the Macintosh Portable are
provided to the card through this ROM expansion connector. Table 21-1 provides names
and descriptions of each signal. When the expansion card receives these signals, they are
decoded into address selects and routed to address and data buffers. Buffering is
important to reduce capacitive coupling.

When you design your ROM expansion card, you must remember to include circuitry for
decoding, control, and buffering of the signals available at the expansion connector. You
should also use CMOS devices, since the maximum current allotted to the ROM expansion
connector is only 25 mAo Also, remember that the IDTACK (data transfer acknowledge)
signal generated by your card controls the number of wait states.

• Table 21-1 Macintosh Portable ROM expansion connector signals

Pin number

1
2-24
25-26
27
28
29

30
31

32

33-48
49-50

Signal name

+5V
A1-A23
GND
IDTACK
lAS
IROM.CS

c16M
IEXT.DTACK

IDELAY.CS

DO-D15
+5V

Signal description

+5-volt power supply
Unbuffered 68HCOOO address signals AI-A23
Logic ground
Data transfer acknowledge input to 68HCOOO
68HCOOO address strobe signal
Permanent ROM chip-select signals; select
range from $90 0000 through $9F FFFF
16 MHz system clock
Extended data transfer acknowledge signal
that delays generation of the IDTACK signal
Signal generated by the CPU GLU chip to put
the ROM expansion card into the idle mode by
inserting multiple wait states
Unbuffered 68HCOOO data signals DO-D15
+5-volt power supply

Figure 21-2 is a design guide providing the physical specifications you need to design a
ROM expansion card for the Macintosh Portable.

... Warning Figure 21-2 is from a design guide used within Apple Computer. This
drawing was correct at the time of publication but is subject to
change

478 Designing Cards and Drivers for the Macintosh Family

• Figure 21-2 Macintosh Portable ROM expansion card design guide

(3x)3.00 (.118)
ESD grounding
strip both sides 78.69

cl~ ~~
68.66

(2.703)
No components or traces.
This area for grounding rear
cover. Both sides.

5.37
(.211)

t

2.34 (.092)
50-pin connector

/-:- 27.28 (1
95.46 (3.758) ------~~ /

Dimensions are in millimeters with inches in parentheses.

Design considerations for ROM expansion in the Macintosh Portable

In the future, Apple may upgrade the ROM in the Macintosh Portable. Apple will probably
do this by producing a ROM expansion card that can override the hard-wired ROM code.
The Apple ROM expansion card will have the following characteristics. One side will
contain four 32-pin ROM sockets that are compatible with 128K x 8-bit or 512K x 8-bit
ROMs, a DIP (dual in-line package) switch for selecting 128 KB or 512 KB addressing sizes
for the ROM sockets, and appropriate decoupling capacitors. The other side will have
Apple expansion ROMs and any additional circuitry that is necessary.

If, in the meantime, you have already designed your own expansion card with hard-wired
ROM code, it would not be compatible with the Apple upgrade, and the user would have
to choose between the Apple upgrade and your expansion card.

t

Chapter 21 ROM Expansion Interface 479

You can avoid this problem by including standard 32-pin DIP socketed ROMs in your
expansion card design. Then if Apple produces a ROM upgrade expansion card, the user
can simply transfer the ROMs from your card to the empty sockets on the Apple ROM
expansion card. The empty ROM sockets on the Apple ROM expansion card allow you to
use either 512 KB or 2 MB of the 4 MB ROM space that is available.

By today's standards, the amount of address space provided for ROM in the Macintosh
Portable is large. Even so, the amount of space and the number of ROM chips on a ROM
expansion card are limited. When designing your ROM expansion card, therefore, use only
the space you really need and, if possible, leave room (address space and empty chip
sockets) to add other ROMs. This gives your customers more flexibility by allowing them
to insert other developers' ROMs in your expansion card rather than forgoing your card for
another design that offers them this flexibility.

Finally, you should make sure your ROM is relocatable. Just because your code is in ROM
does not mean it will always reside at a specific address. If your ROM has to be moved to
another card (an Apple upgrade or another third-party expansion card), there should be no
worry about which socket to place the ROM in or if your address range will conflict with
that of another product. Also, ROM expansion may be implemented in some future
product with expanded or different address space. Keeping your ROM relocatable could
be the difference between additional sales or having an incompatible card that requires an
expensive upgrade.

Macintosh Portable EDisks (electronic disks)

You may wish to design your expansion card to function as one or more EDisks
(dectronic disks) that appear to the user to be very fast, silent disk drives. EDisks use
RAM or ROM as their storage media, unlike floppy or hard disk drives, which record data
on rotating magnetically coated disks .

• Note: Third-party developers are currently limited to developing only ROM EDisks, not
RAM EDisks.

480 Designing Cards and Drivers for the Macintosh Family

The 4 MB address space allocated for ROM expansion can support a number of ROM
EDisks. They must start on a 64 KB boundary, but their size can exceed 64 KB. A ROM
EDisk behaves just like an internal RAM EDisk except that it is read-only and cannot be
resized.

The EDisk driver for the Macintosh Portable

The EDisk driver provides a system interface to EDisks similar to the Sony and SCSI disk
drivers. It supports 512-byte block I/O operations and creates a drive queue element for
each EDisk drive but does not support file system tags. It is a ROM I DRVR I resource with
an ID of 48, a refnum of -49, and a driver name of .EDisk. For information on the driver
calls, refer to the disk driver information in Inside Macintosh.

The rest of this section describes some of the implementation details, data formats, and
algorithms used by the EDisk driver that may be helpful to you if you are designing a ROM
expansion card for EDisks.

Data checksumming

To provide better data integrity, the EDisk driver supports checksumming of each data
block. The checksum is computed during every write operation to the data block and
checked during every read operation. For example, a 32-bit checksum is computed for
each 512-byte block by adding each longword in the block to a running longword
checksum that is initially 0, but is rotated left by 1 bit before each longword is added in.
The following assembly code example demonstrates the algorithm.

Lea TheBlock,AO AO is a pointer to the block
to checksum

Moveq.L #O,DO DO is the checksum,
initially zero

Moveq.L # (512/4) -1,D1 loop counter for 1 block
(4 bytes per iteration)

@Loop Rol.L #l,DO rotate the checksum
Add.L (AO) +,DO add data to the running

checksum
Dbra D1,@Loop loop through each longword

in the block

Chapter 21 ROM Expansion Interface 481

EDisk driver operation

When the EDisk driver is opened, it searches the address range from the base of the
system ROM to $OOFO 0000 for ROM EDisks. A ROM EDisk must begin with a valid EDisk
header block. (The header block must start on a 64 KB boundary but may be any size.) If a
valid header block is found, it is compared with all other headers that have been found,
and if it is identical to anyone of them it will be ignored, thus eliminating duplicates
caused by address wraparound. If the valid header block is unique, a drive queue entry is
created for it, and the EDisk driver will now support it. The number of ROM EDisks that
can be supported by the driver is limited only by the address space allocated for ROM.

EDisk header format

Associated with each ROM EDisk is a 512-byte header block that describes the layout of
the EDisk and uniquely identifies it. The EDisk header marks the beginning of an EDisk.
The header should occur at the beginning of the ROM space that is used for EDisk storage
(for example, starting at the first byte of a 64 KB ROM block).

The following assembly-language code example gives the general format of the header
block. The fields used in the header block are defined following the code example.
EDiskHeader

HdrScratch

HdrBlockSize

HdrVersion

HdrSignature
HdrDeviceSize
HdrFonnatTime

HdrFormatTicks

HdrCheckSumOff
HdrDataStartOff

HdrDataEndOff

HdrMediaIconOff

HdrDriveIconOff

HdrWhereStrOff

HdrDriveInfo

EDiskHeaderSize

Record O,increment

DS.B

DS.W

DS.W

DS.B
DS.L
DS.L

DS.L

DS.L
DS.L

DS.L

DS.L

DS.L

DS.L

DS.L

DS.B
EQU
ENDR

128

1

1

12
1
1

1

1
1

1

1

1

1

1

512-*

*

layout of EDisk signature block

scratch space for R/W testing and
vendor info
size of header block (512 bytes for
version 1)
header version number (this is
version 1)
45 44 69 73 6B 20 47 61 72 79 20 44
size of device, in bytes
time when last fonnatted (pseudo
unique ID)
ticks when last fonnatted (pseudo
unique ID)
offset to CheckSum table, if present
offset to the first byte of data
storage
offset to the last byte I of data
storage
offset to the media icon and mask, if
present
offset to the drive icon and mask, if
present
offset to the Get Info Where: string,
if present
longword for Return Drive Info call,
if present
rest of block is reserved
size of EDisk header block

482 Designing Cards and Drivers for the Macintosh Family

HdrScratch: The 128-byte HdrScratch field is used for read/write testing on RAM
EDisks to determine if the memory is ROM or RAM. On ROM EDisks, the vendor should fill
in a unique string to identify the version of the ROM EDisk. For example, you might use
something like "Copyright 1988, Apple Computer, Inc. System Tools 6.0.3, 12/19/88."

HdrBlockSize: The 2-byte HdrBlockSize field indicates the size of the EDisk
header block. The size is currently 512 bytes.

HdrVersion: The 2-byte HdrVersion field indicates the version of the EDisk. The
version number is currently $0001.

HdrSignature: The 12-byte HdrSignature field indicates a valid EDisk header
block. You must set the signature to these hexadecimal numbers: 45 44 69 73 6B 20 47
61 72 79 20 44.

HdrDeviceSize: The 4-byte HdrDeviceSize field indicates the size of the device
in bytes. This may be greater than the actual usable storage space. You might also think of
the device size as the offset (from the beginning of the header block) of the last byte of
the storage device.

HdrFormatTime: The 4-byte HdrForma t Time field indicates the time of day when
the EDisk was last formatted. The EDisk driver updates this field for RAM-based EDisks
when a Format control call is made. This information may be useful in uniquely
identifying a RAM-based EDisk.

HdrFormatTicks: The 4-byte HdrFormatTicks field indicates the value of the
system global ticks when the EDisk was last formatted. The EDisk driver updates this
field for RAM-based EDisks when a Forma t control call is made. This information may
also be useful in uniquely identifying a RAM-based EDisk.

HdrCheckSumOff: The 4-byte HdrCheckSumOff field indicates whether
checksumming should be performed on the EDisk. This field is set to 0 if checksumming
should not be performed on the EDisk. If checksumming is performed,
HdrCheckSumOf f is the offset (from the beginning of the header block) of the
checksum table.

HdrDataStartOff: The 4-byte HdrDataStartOff field is the offset (from the
beginning of the header block) of the first block of EDisk data.

HdrDataEndOff: The 4-byte HdrDataEndOff field is the offset (from the
beginning of the header block) of the byte after the end of the last block of EDisk data.

HdrMedialconOff: The 4-byte HdrMediaIconOff field is the offset (from the
beginning of the header block) of the 128-byte icon and the 128-byte icon mask that
represents the disk media. An offset of 0 indicates that the EDisk driver should use the
default media icon for this EDisk.

Chapter 21 ROM Expansion Interface 483

HdrDrivelconOff: The 4-byte HdrDri veIconOff field is the offset (from the
beginning of the header block) of the 128-byte icon and the 128-byte icon mask that
represents the disk drive physical location. An offset of 0 indicates that the EDisk driver
should use the default drive icon for this EDisk.

HdrWhereStrOff: The 4-byte HdrWhereStrOff field is the offset (from the
beginning of the header block) of the Pascal string that describes the disk location for the
FinderGetrnfo command. An offset of 0 indicates that the EDisk driver should use the
default string for this EDisk.

HdrDrivelnfo: The 4-byte HdrDri veInfo field should be returned by the
Dri veInfo control call. A value of 0 indicates that the EDisk driver should use the
default drive information for this EDisk.

FPU/ROM expansion for the Macintosh Classic II computer

The Macintosh Classic II computer is equipped with 512 KB of permanent ROM. The
design of the machine allows you to develop an expansion card that will provide up to
3 MB of additional ROM for the system.

This section contains the electrical description of the FPU/ROM expansion connector,
describes the ROM expansion address space, and provides the mechanical information
you need to design an FPU/ROM expansion card for the Macintosh Classic II computer.

484 Designing Cards and Drivers for the Macintosh Family

Electrical description of the Macintosh Classic II FPU/ROM expansion slot

You can design an FPU/ROM expansion card for the Macintosh Classic II computer that
can provide 2 MB or 3 MB of ROM, or a 68882 FPU (floating-point unit) coprocessor, or
both. The FPU/ROM expansion card connects to the Macintosh Classic II through a single
50-pin connector (slot) on the main logic board. All necessary signals, including address,
data, FPU select, expansion ROM enable, read/write, data strobe acknowledge, reset, and
the system clock, are provided to the FPU/ROM slot. Another signal, ROM SELECT, is
used in conjunction with a jumper on J9 to control the ROM configuration. Two
configurations are possible:

• If the jumper is not connected (default condition) and the ROM SELECT signal is
high, you can have 3 MB of additional ROM on the FPU/ROM card but only 1 MB of
main ROM socketed to the main logic board.

• If the jumper is connected and the ROM SELECT signal is low, you can have only 2 MB
of additional ROM on the FPU/ROM card and 2 MB of main ROM socketed to the
main logic board.

Figure 21-3 shows the pinout for the 50-pin socket connector. Table 21-2 gives the pin
number, name, description, and load capacity of each signal supplied to the FPU/ROM
expansion connector.

Chapter 21 ROM Expansion Interface 485

• Warning Apple strongly discourages the development of a third-party
FPU/ROM card for any type of internal expansion other than a
68882 FPU coprocessor or additional ROM. This includes any
internal hardware modifications such as clipping on to the main
processor. There are several reasons why you should not use the
FPU/ROM card for other types of internal development:

• The power budget for the Macintosh Classic II computer allows no
margin for additional internal devices.

• The Macintosh Classic II computer's cooling fan cannot dissipate
the excess heat that may result.

• Electromagnetic interference (EM!) testing did not take into
account the possibility of additional internal devices or the fact
that antennae are created whenever additional external cabling is
added.

• Any additional load on the Macintosh Classic II computer's data
lines could result in noise leading to data errors and unreliable
software.

• The address space assigned to the FPU/ROM connector was
Originally envisioned to support additional ROM; therefore it will
support only read access.

The development of an FPU/ROM card for any type of internal
expansion other than an FPU or a ROM will not be supported by
Apple Macintosh Developer Technical Support (MacDTS) and
may void Apple's customer warranty. ...

486 Designing Cards and Drivers for the Macintosh Family

• Figure 21-3 Macintosh Classic II FPU/ROM expansion connector pinout

+5V All

Al A12

A2 i; A13

A3 ! A14

A4 A15

A5 A16

A6 A17

A7 A18

A8 Ii A19

A9 i A20 ,

AlO A2l

+5V GND

IEXPROM I D3l

RIW D30

D16 D29

D17 : D28

D18 D27

D19 D26

D20 D25

D21 D24

D22 D23

IFPU.SEL IDSACKI
GND

,
c16M

GND IDS
lAS lRESET

Chapter 21 ROM Expansion Interface 487

• Table 21-2 Macintosh Classic II FPU/ROM expansion slot signals

Pin number Signal name Description Load capacity

1 +5V +5 volts 800mA
2 All Address bit 11 100 !lAI8mA

3 Al Address bit 1 100 !lAI8mA
4 A12 Address bit 12 100 !lAI8mA

5 A2 Address bit 2 100/lA/8mA
6 A13 Address bit 13 100 !lAI8mA
7 A3 Address bit 3 100 !lAI8mA
8 A14 Address bit 14 100!lAl8 mA
9 A4 Address bit 4 100!lAl8 mA

10 A15 Address bit 15 100/lA/8mA
11 AS Address bit 5 100/lA/8mA
12 A16 Address bit 16 100!lAl8 mA
13 A6 Address bit 6 100 !lAI8mA
14 A17 Address bit 17 100 !lAI8mA
15 A7 Address bit 7 100 /lA/8 mA
16 A18 Address bit 18 100 !lAI8mA
17 A8 Address bit 8 100 !lAI8mA
18 A19 Address bit 19 100 !lAI8mA
19 A9 Address bit 9 100!lAl8 mA
20 A20 Address bit 20 100!lAl8 mA
21 A10 Address bit 10 100/lA/8mA
22 A21 Address bit 21 100 !lAI8mA
23 +5V +5 volts 800mA
24 GND Ground 800mA
25 /EXPROM Expansion ROM enable 100 !lAI100 !lA
26 D31 Data bit 31 500!lAll mA
27 /R/W Read/write 100 !lAI8mA
28 D30 Data bit 30 500!lAll mA
29 D16 Data bit 16 500!lAll mA
30 D29 Data bit 29 500!lAll mA
31 D17 Data bit 17 500!lAll mA

(continued)

488 Designing Cards and Drivers for the Macintosh Family

• Table 21-2 Macintosh Classic II FPU/ROM expansion slot signals (continued)

Pinnmnber Signal name Description Load capacity

32 D28 Data bit 28 500~lniA

33 D18 Data bit 18 500~lniA

34 D27 Data bit 27 500~lniA

35 D19 Data bit 19 500~lniA

36 D26 Data bit 26 500~lniA

37 D20 Data bit 20 500~lniA

38 D25 Data bit 25 500~lniA

39 D21 Data bit 21 500 !lA/I niA
40 D24 Data bit 24 500~lniA

41 D22 Data bit 22 500~lniA

42 D23 Data bit 23 500~lniA

43 IFPU.SEL FPU chip select 100 ~100 JlA
44 IDSACKI Data strobe acknowledge 100~8niA

45 GND Ground 800 niA
46 c16M 16 MHz clock from Eagle 100~100!lA

gate array
47 GND Ground 800 niA
48 IDS Data strobe 100~8niA

49 lAS Address strobe 100 !lA/8 niA
50 IRESET System reset 100~8niA

ROM expansion address space in the Macintosh Classic II computer

The Macintosh Classic II computer's main ROM is implemented as four 32-pin,
128K x 8-bit les providing a standard configuration of 512 KB of ROM. By using a
configuration of four 256K x 8-bit ICs, you can fill the 1 MB address space that is reserved
for main ROM at locations $40AO 0000 through $40AF FFFF. The default condition for the
system ROM is 1 MB on the main logic board and 3 MB on an FPU/ROM expansion card.
By installing the ROM SELECT jumper on connector J9, you can change the allowable
configuration to 2 MB on the main logic board and 2 MB on an FPU/ROM expansion card.
The addresses allocated for main and expansion ROM in both the default and jumper
conditions are shown in Table 21-3.

Chapter 21 ROM Expansion Interface 489

• Table 21-3 Macintosh Classic II ROM address allocations

Condition

Default
With jumper

Main ROM

$40AO 0000-$40AF FFFF
$40AF FFFF-$40BF FFFF

Expansion ROM

$40BO 0000-$40DF FFFF
$40CO 0000-$40DF FFFF

The address decode and memory-mapping functions in the Macintosh Classic II computer
are provided by the Eagle gate array. The Eagle implements two memory address mapping
modes: a 24-bit mode and a 32-bit mode. As in other Macintosh computers, a function
code control bit determines which map is to be used in the Macintosh Classic II
computer. The addressing scheme for the Macintosh Classic II is similar to the one used in
the Macintosh LC. Table 21-4 shows the memory map for the Macintosh Classic II
computer.

• Table 21-4 Macintosh Classic II memory map summary

Function 24-bit mode 32-bitmode

RAM, MB
2 $00 OOOO-$lF FFFF $0000 OOOO-$OOIF FFFF
4 $00 0000-$3F FFFF $0000 0000-$003F FFFF
6 $00 OOOO-$SF FFFF $0000 OOOO-$OOSF FFFF

10 $00 0000-$9F FFFF $0000 0000-$009F FFFF
Video main page $9F 9ABO-$9F FOOO $009F 9ABO-$009F FOOO
ROM $AO OOOO-$AF FFFF $40AO 0000-$40AF FFFF
Expansion FPU/ROM $BO OOOO-$DF FFFF $40BO 0000-$40DF FFFF
I/O space $FO OOOO-$FF FFFF $SOFO OOOO-$SOFF FFFF

• Note: Table 21-4 shows the default condition-1 MB of built-in ROM and 3 MB of
expansion FPU/ROM slot address space. Refer to Table 21-3 for more details. When
the ROM SELECT signal is low (the jumper is installed), ROM addresses are located in
32-bit address space from $40AO 0000 through $40BF FFFF, and expansion FPU/ROM
addresses are located in 32-bit address space from $40CO 0000 through $40DF FFFF.

490 Designing Cards and Drivers for the Macintosh Family

Physical design guidelines for the Macintosh Classic II FPU/ROM expansion card

This section provides the physical information you will need to design an FPU/ROM
expansion card for the Macintosh Classic II computer. Figure 21-4 gives the maximum
length and width of the expansion card and shows the location of the 50-pin connector.

... Warning Figure 21-4 is from a design guide used within Apple Computer.
This drawing was correct at the time of publication but is
subject to change ...

• Figure 21-4 Design guide for a Macintosh Classic II FPU/ROM expansion card

119.38
(4.70)

- 1_ 3.0 -I 5.0 -
(.118) (,196)

"-- - - - - - -" - - - -" - - - - - - - - - - - - - - - - - - r--- -t-
18.0

(08)

r- f ~ir: 1_ - - - - - - - " - - - - - - - - - - - - - - - - - '-- -i-
9.39 ••

(.369)

, 12.0
(.472)

~+-----------------------------~--'--'-

t _I _3.81 1
"""'0 __ (._15_0) ____ 68.60 ____________ •

(2.70)

Dimensions are in millimeters with inches in parentheses.

Chapter 21 ROM Expansion Interface 491

Macintosh Classic n FPU/ROM expansion connector power budget

For the FPU/ROM expansion connector in the Macintosh Classic II computer, the +5 VDC
voltage that is supplied allows a maximum current load of 800 rnA. In addition, power
restrictions in the Macintosh Classic II limit the amount of power that can be dissipated
by the FPU/ROM expansion card to a maximum of 4 W.

.&Warning Cards dissipating more than 4 W may overheat and damage the
circuitry in the Macintosh Classic II computer or cause it to become
inoperable. ...

492 Designing Cards and Drivers for the Macintosh Family

Chapter 22 Modem Expansion Interface

This chapter describes the modem expansion interfaces found in the
Macintosh Portable, the Macintosh PowerBook 100, the Macintosh
PowerBook 140, and the Macintosh PowerBook 170 computers. This
chapter describes the physical and electrical characteristics of the
modem cards, the modem hardware interface, the modem power-control
interface, and the telephone network interface. It also provides
information about communications standards for modems.

493

Macintosh Portable modem card

The main logic board of the Macintosh Portable includes an IS-pin, internal modem
connector. The connector accommodates an Apple modem card or a compatible third
party modem card.

This section provides information you need if you are developing your own modem card
and software for the Macintosh Portable computer.

Modem card hardware interface for the Macintosh Portable

Figure 22-1 shows the hardware interface between a card installed in the modem connector
and the Macintosh Portable. Notice that when a compatible modem card is inserted in the
modem connector, the card is automatically connected to channel A, the modem port.
Although the Macintosh Portable hardware is designed to support operation of the
internal modem through either of the two external RS-422 serial ports (printer or modem),
the firmware supports operation only through the modem port.

494 Designing Cards and Drivers for the Macintosh Family

• Figure 22-1 Modem interface for the Macintosh Portable

SCC Misc. GLU
(Z85C30) gate array

Modem port
~

TxDAo
Drivers ~"§~ TxDA

TxD.MODEM and
receivers !lITl m[I]'1
(channel [TIm RxDAo

RxDA A) -=---
RxD

CTSA r
CTS

RTSA r
/RTS

DTRA r
/DTR

DCDA r
/DCD

" ~ Internal modem
connector

/MODEM.PWR /MODEM.PWR -<DCD- rl /RLEXT
/DCD
/RTS -® ·4
CTS Power -5VDC
RxD -cD Manager 6

/MODEM.INS TxD
circuitry MODEM. SOUND -(j) 8

/MODEM.BUSY -5VDC
/RI.EXT -(2) 10
/DTR
+5VDC -® 12
V3

MODEM. SOUND VI -@ 14
/MODEM.INS

MS. ENABLE V2 -@ 1
MS.ENABLE

Sound VI /MODEM.BUSY 17 18
circuitry

V2

V3

Chapter 22 Modem Expansion Interface 495

Modem connector electrical interface for the Macintosh Portable

The modem card connects to the Macintosh Portable through an I8-pin dual in-line
socket connector (slot). The data is at CMOS levels (VIL = 0 to 0.8 V; Vm = 3.5 to V+;
IOL = 1.6 rnA; IOH = -25 IlA). Figure 22-2 shows the pinout of the modem connector for the
Macintosh Portable. Table 22-1 provides the name and description of each signal available
at the modem connector. Chapter 17 provides more information about the location of
the modem connector on the main logic board.

• Figure 22-2 Pinout of modem connector on the Macintosh Portable

/MODEM.PWR GND

/RTS /DCD

RxD CTS

MODEM. SOUND TxD

/RI.EXT -5VDC

+5VDC /DTR

VI V3

V2 /MODEM.INS

/MODEM.BUSY MS.ENABLE

• Table 22-1 Modem connector signal descriptions

Pin Signal

number name

1 /MODEM.PWR

2 GND

3 /RTS

4 /DCD

5 RxD

Signal

direction

Output

Output

Input

Input

Signal description

Active-low signal from the Power Manager; see the
section "Modem Power-Control Interface for the
Macintosh Portable" later in this chapter.
Ground.
Request to send signal from the computer to the
modem.
Data carrier detect; the behavior of the /DCD signal
depends on the state of the &C command.
Data received; connected to the RxD pin on the SCc.

(continued)

496 Designing Cards and Drivers for the Macintosh Family

• Table 22-1 Modem connector signal descriptions (continued)

Pin Signal Signal

number name direction

6 CTS Input

7 MODEM.SOUND Input
8 TxD Output

9 /RI.EXT Input

10 -5VDCt

11

12

13

14

15

16

17

18

+5VDC

/DTR
VI

V3

V2

/MODEM.INS

/MODEM.BUSY

MS.ENABLE

Output
Output

Output

Output

Input

Input

Input

Signal description

Clear to send; asserted by the modem whenever it has
power.
Analog sound; output from the modem.
Transmit data; data and commands from the TxD pin
on the SCC.
Ring detect interrupt; the signal to the computer that
a ring is present. If the computer is in the sleep state,
assertion of this signal causes the computer to return
to the operating state and power up the modem.
-5 V power; the -5 V supply is guaranteed to be
present whenever the /MODEM.PWR signal is
asserted. This signal may float or go to ground any
time following the negation of /MODEM.PWR.
VCC power; whenever the host has power available,
this pin supplies +5.2 VDC ±5%.
Data terminal ready.
Least significant volume-control bit. This signal may
remain high following the negation of /MODEM.PWR.
Most significant volume-control bit. This signal may
remain high following the negation of /MODEM.PWR.
Second volume-control bit. This signal may remain
high following the negation of /MODEM.PWR.
Modem installed; always asserted by the modem while
the modem is installed in the computer.
Modem busy; asserted by the modem whenever the
modem is busy.
Modem sound enable; asserted by the modem to
enable the computer's speaker.

t Power on pin 10 is controlled by the Power Manager Ie.

Chapter 22 Modem Expansion Interface 497

Physical design guide for a Macintosh Portable modem card

Figure 22-3 provides the mechanical information you will need to design a modem card
for the Macintosh Portable, including the maximum dimensions and the location of the
1S-pin connector.

• Figure 22-3 Modem card design guide for the Macintosh Portable

70.67
(2.782)

This area used for grounding
to rear cover. Typical both sides,
6x 6 pads

Component side of modem card

52.24
I~-- (2.056) -----j~1

Pin 1

1 1--------- 123.33(4.855) ------~

Dimensions are in millimeters with inches in parentheses.

Modem power-control interface for the Macintosh Portable

Two signal lines, IMODEM.PWR and IMODEM.BUSY, control power to the modem
connector. A modem card can use the IMODEM.BUSY signal to indicate to the CPU that
any of the following is true:

• The modem is executing its power-up sequence.

• The modem is off-hook (for any reason).

• The modem is executing a command (if Hayes compatible).

83.20
(3.275)

17.44
(.686)

If the modem is executing any self-tests, it is considered to be executing a command and
therefore busy.

498 Designing Cards and Drivers for the Macintosh Family

Power-up/power-down timing

The Macintosh Portable includes a Power Manager IC that controls the /MODEM.PWR signal.
See Figures 22-4 and 22-5 for timing diagrams of the cold-start (initial power-up) and warm
start (wake-up) power sequences. If /MODEM.PWR is negated (high), the modem must
immediately initiate its power-off sequence regardless of what it is doing. The modem must
enter the sleep state within 500 ms following the negation of /MODEM.PWR; by that time the
modem must reduce its power consumption to meet the maximum power limitation for sleep
state. (For more information, see the section "Modem Card Power Requirements" later in this
chapter.) The modem can also use that 500 ms to set its outputs to a default state and store its
operating parameters and register values so that it can restore them when operation resumes.
Two of the lines to the modem, /DTR and TxD, go to ground potential within 50 ns of the
negation of /MODEM.PWR. While the computer is in the sleep state, the volume-control bits
VI, V2, and V3 are floating.

• Note: On the Macintosh Portable, the CTS line is always asserted (high) because flow
control is not provided. The /Rl.EXT signal always reflects the status of the incoming
ring signal. The /RTS signal, which is meaningless in full-duplex operation, is not
connected. When /MODEM.PWR is negated and the modem card prepares itself for
the sleep state, the card forces two of its outputs (lDCD and RxD) high and one of its
outputs (MS.ENABLE) low.

Usually, the Power Manager does not negate /MODEM.PWR if the modem has
/MODEM.BUSY asserted. However, there are times when the Power Manager IC must turn
the modem off even though it is busy (for example, when the battery reserve is too low).
If this occurs, the modem must stop its activity (for example, go on-hook) and perform
the necessary activities to prepare for switching to its sleep state. If the modem is
executing a command when /MODEM.PWR is negated, the modem can do one of two
things before switching to its sleep state: either finish executing the command or abort
execution and restore the state prior to the command, whichever takes the least amount
of time.

Chapter 22 Modem Expansion Interface 499

• Figure 22·4 Cold-start timing diagram for the Macintosh Portable

tlt
I

+5v I
I '

Vi OV +5V

r-------------------~s S

I I
I I

OV -5v
~------------------------~s s

+5v /MODEM.PWR
~--~~------------------~s s

t After tl, maximum overshoot is within 50 mV peak to peak.

• Figure 22-5 Warm-start timing diagram for the Macintosh Portable

OV

-5V

+5V
----------------------------~s S~-------------------

sleep" : Wake-up sequence. : r Sleep
-5V : t2 t ,: t6 ------l---.....,;'N.: I :::-:::/

IMOOEM.PWR

IMOOEM.BUSY

IOTR, TxO

lOCO, RxO

MS.ENABLE

VI, V2, V3

::: ~i ________ ~~
~ S 5 I I

\ t3 I : : :

I .. : tS* : ___ :i-----------
~: :---1 /: i

"f--+--5 S : r i : vvi
J _____ ------>,: : it'l---i-"'(:: rv

A : : ! ~"!---. _
. :

t1 Q 0 M ts* t6 t7 t8
Minimum 100 ms o 500 ms
Typical 2 ms 35 ms
Maximum 30 ms 70 ms 30 ms

t After t2, maximum overshoot is within 50 mV peak to peak.
* The Macintosh Portable may not obey this minimum time.

50ns 500ms

500 Designing Cards and Drivers for the Macintosh Family

Ring detection

The ring detect interrupt (lRI.EXT) signal is asserted during most of the AC cycle of a ring
and is used to signal the computer that a ring is taking place. Both ringing and pulsing can
trigger the ring detector. The microprocessor in your modem should be capable of
distinguishing between ring and pulse dialing by detecting the frequency of the incoming
signal. If the modem is turned off, the Macintosh Portable can power it up and determine
whether the IRI.EXT signal corresponds to a ring or a pulse by reading the appropriate
register or looking for the appropriate result code.

Modem card power requirements

A modem card must be able to operate on +5.2 VDC ±5% and -5.0 VDC ±5%. This voltage
is supplied through the modem connector by either the Macintosh Portable battery or a
combination of battery and charger. Maximum power consumption by the modem card
when fully operational is 750 mW; however, a modem card typically consumes 525 mWof
power when in the operating state. In the sleep state, power consumption is only 3 mW.

During normal operation, both +5 VDC and -5 VDC are provided to the modem card.
During the sleep state, only +5 VDC is supplied.

Telephone network interface

Your modem design may require a balanced, two-wire telephone interface meeting FCC
Part 68 and Part 15 Class B and DOC rules.

It should include one 8-wire RJ-ll jack, wired as follows:

• pin 3 for TIP signal

• pin 4 for RING signal

Pins 1, 2, 5, and 6 are not used.

Installing an RJ-ll jack on the rear of the modem card allows a common RJ-ll plug (used
on single-line telephone equipment) to be inserted, completing the connection of a
telephone to the modem.

Chapter 22 Modem Expansion Interface 501

Modem expansion cards for the PowerBook-famlly computers

The main logic boards on the Macintosh PowerBook 100, the Macintosh PowerBook 140,
and the Macintosh PowerBook 170 provide a 20-pin, internal modem connector. The
connector accommodates an Apple modem card or a compatible third-party modem card.

This section provides information that will help you in your development of a modem
card and software.

Modem card hardware interface for the PowerBook-famlly computers

Figure 22-6 shows the hardware interface for a card installed in the modem connector on the
PowerBook 140 and PowerBook 170 computers. Notice that when a compatible modem card
is inserted in the modem connector on the PowerBook 140 and PowerBook 170, the card is
automatically connected to channel A, the modem port. Although the hardware in the
PowerBook 140 and PowerBook 170 computers is designed to support operation of the
internal modem through either of the two external RS-422 serial ports (printer or modem), the
firmware supports operation only through the modem port.

Figure 22-7 shows the modem card hardware interface for the PowerBook 100 computer.
The modem connector for the PowerBook 100 is directly connected to channel A of the
Scc. The PowerBook 100 does not have an external modem port. Channel B (the printer
port) is the only external RS-422 serial port on the PowerBook 100.

502 Designing Cards and Drivers for the Macintosh Family

• Figure 22-6 Modem interface for the PowerBook 140 and PowerBook 170
computers

SCC
(Z85C30)

Power
Manager
circuitry

Sound
circuitry

Mise. GLU
logic

TxDA

RxDA

CTSA

IRTSA

IDTRA

IDCDA

II

/"

Mise. GLU
gate array

/
0-F<l-

/

r

/

Power I
supply I

~

Modem port
~

TxDAo
Drivers -

and
[§J[2J~

TxD -- rn rnrn receivers

RxDAo (channel rnrn
A) --RxD

ICTS

IRTS

IDTR

IDCD

Internal modem
connector

MODEM.PWR
MODEM.N5 00 IMODEM.BUSY

RxD ® 4 Il US5V -CD TxD 6

IRI.DETECT -cD 8 IDTR
MODEM.sOUND -® 10 IRTS
MS.ENABLE -® CTS 12

RESET
13 14

IMODEM.INSERT -® @- ~ MODEM.5V

@'@ I~ MODEM.5V
IDCD 19 20

Chapter 22 Modem Expansion Interface 503

• Figure 22-7 Modem interface for the PowerBook 100 computer

SCC
(Z85C30)

Power
Manager
circuitry

Sound
circuitry

Misc. GLU
logic

TxDA

RxDA

crSA

IRTSA

IDTRA

IDCDA

~

MODEM.PWR
MODF.M.N'i

IMODEM.BUSY

RxD

I
Power I US5V
supply I TxD

IRLnFTF.r.T
IDTR
MODEM.SOUND
IRTS
MS.ENABLE

x:::} leTS
RESET

IMODEM.INSERT
MODEM.5V

MODEM.5V
IDCD

504 Designing Cards and Drivers for the Macintosh Family

Internal modem
connector

<D0
cD 4

-cD 6

-(j) 8

-<V 10

-® 12

13 14

-® @-

@'@

19 20

Il

~

~

Modem connector electrical interface for the PowerBook-family computers

The modem card connects to the PowerBook-family computers through a 20-pin dual
in-line socket connector. The data is at CMOS levels (VIL = 0 to 0.8 V; VIH = 3.5 to V+;
IOL = 1.6 rnA; IOH = 25 IlA).

Figures 22-6 and 22-7 show the pinouts of the modem connector. Table 22-2 provides the
pin number, name, type, and description of each signal available at the modem connector
for the PowerBook-family computers.

• Table 22-2 Modem connector signals for the PowerBook family

Pin Signal name Signal type Signal description

1 MODEM.N5 -5 V power that is controlled by the host and provided
to the modem circuitry. This may float or go to ground
500 ms following the negation of MODEM PWR. This
signal is not used by the Apple modem.

2 MODEM.PWR Output Active-high signal, open collector output from the
Power Manager; see the section "Modem Power-
Control Interface for the PowerBook Family" later
in this chapter.

3 GND Electrical ground.
4 /MODEM.BUSY Input Modem busy; active-low signal asserted by the

modem and sent to the Power Manager whenever the
modem is busy.

5 US5V +5 V power; provides +5 VDC ±5% to the modem
whenever the computer has power available.

6 RxD Input Receive data; data received by the modem and then
sent to the computer via the RxD pin on the Scc.

7 /RLDETECT Input Ring detect; active-low signal sent to the Power
Manager to indicate that a ring is present. If the
computer is in a "sleep" mode, the assertion of this
signal causes the computer to awake and power up
the modem.

8 TxD Output Transmit data; data and commands that are sent from
the computer to the modem via the TxD pin on the
SCc.

(continued)

Chapter 22 Modem Expansion Interface 505

• Table 22-2 Modem connector signals for the PowerBook family (continued)

Pin

9

10

11

12

13

14

15

16
17
18

19

20

Signal name Signal type

MODEM. SOUND Input

IDTR Output

MS.ENABLE Input

IRTS Output

RESET Output

ICTS Input

IMODEM.INSERT Input

GND
GND
MODEM.5V

IDCD

MODEM.5V

Input

Signal description

Modem sound; analog sound high-impedance signal
sent by the modem to the computer's sound
circuitry.
Data terminal ready; an active-low signal whose
behavior depends on the state of the &D command.
Modem sound enable; an active-high signal asserted
that the modem sends to the computer's sound
circuitry whenever the modem's sound monitor is on.
Request to send; an active-low signal sent by the
computer to the modem via the IRTS pin on the Scc.
Reset; an active-high signal asserted by the Power
Manager for a minimal duration and sent to the
modem. Reset is asserted after the Power Manager
switches -5 V power to the modem or any time the
modem needs to be reset.
Clear to send; an active-low signal asserted by the
modem as a default option and sent to the computer
via the ICTS pin on the Scc.
Modem inserted; an active-low signal continuously
asserted by the modem, and sent to the Power
Manager, whenever the modem card is installed in the
computer.
Electrical ground.
Electrical ground.
+5 V power that is controlled by the Power Manager
and provided to the modem. This pin will float or go
to ground 500 ms after the MODEM.PWR signal goes
low (inactive).
Data carrier detect; an active-low signal, driven by the
modem, whose behavior depends on the state of the
&C command.
Same as pin 18.

• Note: If you're building a modem card for the PowerBook 100, the PowerBook
140, or the PowerBook 170, you must place a 10 kQ pull-up resistor between
MODEM.5V and MODEM.PWR.

506 Designing Cards and Drivers for the Macintosh Family

Physical design guide for the PowerBook-family modem expansion card

Figure 22-8 is a physical design guide giving you the mechanical specifications you will need,
including card size and connector location, to design a compatible modem card for the
PowerBook 100, PowerBook 140, and PowerBook 170 computers. For the physical location
and pin orientation of the modem connector, refer to Figure 20-8 for the PowerBook 140
and PowerBook 170 computers or Figure 20-12 for the PowerBook 100 computer.

Chapter 22 Modem Expansion Interface 507

• Figure 22-8 Modem card design guide for the PowerBook family

37.00-----

3.00~

2X
03.00

R4.00
MAX

o -----+l=-=-~*~~_P============±========~--- -1.50

~o~o III
f 0 l/"\ ~

t 13.52
I 7.27 MAX

_' ___ F~====~==========~~n7nry~~~=====~M~M~-L.

o

o •
3.00 ---------

I

r --- l:
I "

30.20 ---+-~

o 3.25 t 0.05
2X

-10.16

Dimensions are in millimeters.

508 Designing Cards and Drivers for the Macintosh Family

t 1.01:
PCB

ill Upper EMI shield

ffi Lower EMI shield

ill Molex connector, PiN 95001-5641,
or equivalent. & AMP connector, PiN 104652-2,
or equivalent. ffi Maximum allowable component
height in this area is 3.25 mm.

3
REF

Trimetric view
Scale: 1/1

Modem power-control interface for the PowerBook family

Two lines from the computer, US5V and MODEM.5V, provide +5 VDC power to the
modem. The US5V line is always present unless there is a hardware shutdown (following a
battery failure or if the computer's back-panel switch is turned am. The MODEM.5V
power is turned on or off depending on the current power mode of the modem and on
how the serial port is used. For example, MODEM.5V is turned off when the computer
enters the shutdown or sleep mode and when the serial driver is closed.

The modem has two power modes: power-on and standby. Power-on is the normal
operating mode. In standby mode, MODEM.5V is switched off, all modem circuits are
turned off, and the only source of power is USSV. This mode has very low power
consumption since only leakage current should be drawn.

Two signal lines, MODEM.PWR and /MODEM.BUSY, control power to the modem
connector from the Power Manager. The /MODEM.BUSY signal is sent to the Power
Manager to prevent the computer from removing power to the modem while the modem is
using the communication channel to the computer. A modem card uses the
/MODEM.BUSY signal to indicate to the computer that any of the following is true:

• The modem is executing its power-up sequence.

• The modem is off-hook (for any reason).

• The modem is executing a command where command execution begins with a
carriage return at the end of an AT command sequence or the repeat last command
sequence
("a/" or "AI").

• Note: If the modem is executing any self-tests, it is considered to be executing a
command and is therefore busy.

The Power Manager controls the MODEM.PWR signal. If the Power Manager negates
MODEM.PWR (signal goes low), it is designed to wait at least 500 ms before turning off
MODEM.5V. This delay gives the modem sufficient time to save the communication
parameters in EEPROM before MODEM.5V is switched off. Three of the modem interface
signals, /DTR, TxD, and /RTS, go to ground potential within 50 ns of the negation of
MODEM.PWR.

Chapter 22 Modem Expansion Interface 509

Usually, the Power Manager does not negate MODEM.PWR if the modem has
IMODEM.BUSY asserted. There are times, however, when the Power Manager must tum
the modem off even though it is busy-for example, when the battery reserve voltage
becomes too low. If this occurs, the modem stops its busy activity (for example, goes on~
hook) and performs the necessary activities for switching to standby. The modem can do
one of two things if it is executing a command when MODEM.PWR is negated: either
finish executing the command, or abort execution and restore the state prior to the
command, whichever takes less time.

Modem operation for the PowerBook family

When MODEM.5V power is turned on, the modem leaves standby mode and enters the
power-on sequence. A positive RESET signal from the Power Manager resets the modem's
microprocessor and begins the initialization sequence, which includes a memory check,
the restoration of communications parameters, and the generation of a beep.

If the modem is in standby mode and detects an incoming call (lRI.DETECT is asserted
low), the computer acknowledges the call and powers up the modem to check whether the
ring is valid. The Power Manager should power up the modem within 5 seconds after
IRI.DETECT is asserted.

Power-up/power-down timing

Timing diagrams for the modem's power-up and power-down sequences are shown in
Figures 22-9 through 22-11.

510 Designing Cards and Drivers for the Macintosh Family

• Figure 22-9 Modem cold-start timing diagram for the PowerBook family

nt
I I

+SV I I

Vi OV USSV

~------------------~s s
, , , ,

OV MODEM.5V
~~~--------------------~s s 

OV MODEM.NS* 
~~~~------------------~s s 

OV MODEM.PWR
--------------------------~s s

ttl = 2 IllS (typical), 30 ms (maximum). After tl, maximum
overshoot is less than SO mV peak to peak.

* MODEM.NS, although shown in this diagram, is not used
by the Apple modem.

• Figure 22-10 Modem warm-start timing diagram for the PowerBook family

USSV

+SV
S S

+5V

/i S s

'" MODEM.5V
ov , I , ,

MODEM.NSt
, , Standby : 12* : ov :"'i / -5V
, S S ,
!

~s MODEM.PWR " /MODEM.BUSY

VV
t MODEM.N5, although shown in this diagram, is not used

by the domestic version of the Apple modem.
* t2 = 35 IllS (typicai), 70 IllS (maximum). After t2, maximum

overshoot is less than 50 m V peak to peak.

Chapter 22 Modem Expansion Interface 511

• Figure 22-11 Complete power-up/power-down sequence and timing diagram for the
PowerBook family

Standby , ,
Standby

+5V ----~I~' ~ _______________ p_o_w_e_ro_n ____________________ ~r----
:. t5 :

MODEM.PWROurt
OV

+5V

MODEM.5V OV

MODEM.N5f OV
-sv

.......... : 1........... I
I' I I ,: ;..' -----------~s)'r------------.....,..,..i :d~:
I. ~

~~~:~:~·~:---------------~s )'r-----------------------i~~~: 
IRI.DETECT 

(wake up on ring) 

I: I I 

~-:l-~: 4 : 
, : : t9 : t : : t21: : t3 : 

MODEM.PWR 

RESET§ 

IMODEM.BUSY 

TxD, IDTR, IRTS 

IDcD, ICTS, RxD, 
and MS.ENABLE 

: ~ ~r' .... 1
1 

S )'r------+I'-" '---I.N-.r .~, ...................... " •• ~ I 
,: ,y 
I : I " : : i : '-_____ -_"'!--
: t6 i : : : :.. . ......... .,...... : :: 
I I I I 

I ) I' I 

, 

I 
I , , 

, , , 
:0: : t8 
: .... ~ S ) >-t:L 
, , '------------,.......I;,S )'r------------------- , , 
I I I I 
I I I I , 

---------,,1< ~ ~'r------X-. 

Time: to 
Minimum 

, , 

Maximum 5 sec 

t2 t3 t4 
01 500 ms 0 

t5 t6 
o Sms 

2ms 

t7 
o 

t8 
o 

t9 
o 

t MODEM.PWROUT is an internal CPU signal that turns MODEM.5V on and off. 
USSV is always on and is not shown on this diagram. 

f MODEM.N5, although shown in this diagram, is not used by the domestic version 
of the Apple modem. 

§ RESET may rise with MODEM.5V, but not before. 
1 t2 > 0 may not be obeyed by the cpu. 

512 Designing Cards and Drivers for the Macintosh Family 



Ring detection 

The ring detect (jRI.DETECT) interrupt signal is asserted during most of the AC cycle of a 
ring signal and is used to signal the computer that a ring is taking place. Both ringing and 
pulsing can trigger the ring detector. The microprocessor in your modem must be capable 
of distinguishing between ring and pulse dialing by detecting the frequency of the 
incoming signal. If the modem is turned off, the computer can determine whether the 
/RI.DETECT signal corresponds to a ring or a pulse by powering up the modem and 
reading the appropriate register or looking for the RING result code. 

Modem card power requirements 

A modem card must be able to operate on +5 VDC ±5% and -5 VDC ±5%. These voltages 
are provided through the modem connector by either the battery or a combination of 
battery and charger. Typically, a fully operational modem card has an optimized power 
consumption of 450 mW. 

Current drawn by the modem from the two +5 VDC pins on the modem connector should 
not exceed 

• 95 rnA typical when in full operation (on line) 

• 1 ~A when in standby mode and there is no incoming ring signal 

Telephone network interface 

Your modem design may require a balanced, two-wire telephone interface meeting FCC 
Part 68 and Part 15 Class B and DOC rules. 

It should include one 6-wire RJ-ll type jack wired as follows: 

• pin 3 for TIP signal 

• pin 4 for RING signal 

Pins 1, 2, 5, and 6 are not used. 

Installing the RJ-ll type jack on the rear of the modem card allows a common RJ-ll plug 
(used on single-line telephone equipment) to be inserted, completing the connection of a 
phone to the modem. 

Chapter 22 'Modem Expansion Interface 513 



Standards information for reference 

The following compilations of signal characteristics are provided for reference only. 

Compatibility and modulation 

Standard Speed (bps) Modulation Baud 

CCnt V.22 bis 2400 QAM 600 
CCITT V.22 1200 DPSK 600 
CCITT V.21 300/110 FSK 300/110 

Be1l212A 1200 DPSK 600 
Bell 103 300/110 FSK 300/110 

Transmit carrier frequencies 

V.22 bisiV.22/212A Transmit Carrier 

Originate 1200 Hz 
Answer 2400 Hz 

Bell 103 Mark Space 

Originate 1270 1070 
Answer 2225 2025 

V21 Mark Space 

Originate 980 1180 
Answer 1650 1850 

514 Designing Cards and Drivers for the Macintosh Family 



Guard tone frequencies and transmit levels (CCIIT only) 

1800 ±20 Hz at 6 ±1 dB below the transmit carrier level 
550 ±20 Hz at 3 ±1 dB below the transmit carrier level 

Answer tone frequency 

V.22 bisN.22N.21 
Bell103/212A 

2100 Hz 
2225 Hz 

Received signal frequency tolerance 

Offset frequency ±7 Hz 

Chapter 22 Modem Expansion Interface 515 





Chapter 23 Macintosh IIci Cache 
Memory Expansion 

This chapter provides the electrical and mechanical information 
you need to design a cache memory expansion card for the 
Macintosh IIci computer. 

517 



Cache memory expansion overview 

The Macintosh IIci is equipped with a special-purpose 120-pin Euro-DIN connector 
designed specifically as a processor-direct interface for a cache memory expansion card. 
The connector used on the cache card and the mating connector on the main logic board 
of the Macintosh IIci are physically the same as those used for the Macintosh SE/30 and 
are shown in Figures 17-22 and 17-23, respectively. The pinout, however, is different. The 
signals provided in the cache connector are optimized for cache design, not as a general
purpose interface, as is the case with the 68030 Direct Slot connector used on computers 
such as the Macintosh SE/30, Macintosh IIfx, and Macintosh IIsi. 

... Warning Cards designed for the Macintosh IIci cache connector are not 
compatible with cards designed for the general-purpose 68030 Direct 
Slot on other Macintosh computers. Their pinouts, form factors, clock 
speeds, and power budgets are different. Any attempt to interchange 
the cards may severely damage both the computer and the card. ... 

If you are determined to design an expansion card other than a cache memory card, you 
should be aware of the following limitations. 

• The cache connector has less power allotted to it than does the 68030 Direct Slot; 5 W 
of power is allocated at +5V, and + 12V is not available. 

• The Macintosh IIci case does not have sufficient space for an external device access 
opening. Therefore you cannot install a connector and cable that would allow your 
card to have access to external hardware. 

• The absence of some machine-specific Signals imposes severe restrictions on 
your design. 

D. Important Apple strongly recommends that the cache connector be used only for 
cache memory cards. f\.. 

518 Designing Cards and Drivers for the Macintosh Family 



How the cache works 

A memory cache is a relatively inexpensive hardware addition that improves CPU 
performance. It contains a very fast memory, usually SRAM (static random-access 
memory), that stores data likely to be used on a regular basis. You can think of the cache 
as a duplicate of a small portion of main memory in that it holds an image of what is in 
main memory. When the processor searches for a piece of information in main memory, 
the cache checks to see if it has the information in its data memory, and if it does, the 
cache immediately provides the information to the processor so that the processor does 
not have to wait for the slower main memory to provide it. 

Both the processor and the cache acquire new data when the main memory places it on 
the data bus. The entire memory access cycle takes slightly longer, since there is not only 
the time for a regular memory access but also the time it takes the cache to determine 
whether or not it has the requested data. Despite this increase in time, the cache design 
results in a noticeable increase in performance because the data that the processor needs 
is more often than not in the cache. 

Typically, the cache determines if the data it is storing is the same data that the processor 
requested by comparing the physical addresses that the processor places on the address 
bus with the addresses stored in the cache tag memory. (The tag memory contains the 
addresses of the information stored in the cache data memory.) If there is a valid 
comparison, the information in the cache data memory is sent to the processor. 

Using the cache 

Your cache expansion card should operate transparently to user programs. The cache is based 
on physical addresses; it has no access to the logical addresses inside the MC68030 processor, 
so cache coherency should not be a problem. Also, there is no reason to have to flush the cache 
unless it is being enabled or a /RESET signal is issued. The 68030 on-chip memory management 
unit marks the NuBus slot space and all I/O space of the Macintosh llci as noncacheable, and if 
the processor addresses them, data in these spaces is not cached. 

Your card should not attempt to cache data from accesses made by bus masters other 
than the Mc68030 processor, because other bus masters may not know how to retry. Apple 
strongly suggests that you use synchronous logic (clocked by the CPUCLK signal) in your 
cache card design. 

Chapter 23 Macintosh llci Cache Memory Expansion 519 



Gaining access to the cache card 

The 16 MB address space from $52000000 through $52FF FFFF in the Macintosh lIci 
memory map is reserved for cache memory. Table 23-1 shows the 8 MB address spaces 
that are reserved for the cache data and tag memories. 

• Table 23-1 Cache memory address space 

Cache memory type 

Data 
Tag 

From 

$52000000 
$52800000 

To 

$527F FFFF 
$52FF FFFF 

Since no select signal is provided on the cache expansion connector, your card design 
must include appropriate circuitry for decoding the address ranges. The card's address 
space is not accessible through the 24-bit memory map. Test software running in 24-bit 
mode must use the SwapMMUMode trap to enter the 32-bit mode before it can gain access 
to the cache card memory. 

ROM traps control the enabling, disabling, and flushing of the cache card. These functions 
are called using a selector from the HWPr i v (AO 9 8) trap. See Table 23-2. 

• Table 23-2 Cache control trap 

Function Selector 

EnableExtCache 

DisableExtCache 

FlushExtCache 

4 
5 
6 

The organization of a particular cache card's data and tag memory is determined by the 
card. System software does not make any assumptions about the card's organization, and 
only the card's test software should directly address cache card RAM. 

520 Designing Cards and Drivers for the Macintosh Family 



Electrical description of the cache connector 

The cache connector is a unique processor-direct slot whose pinout is specifically tailored 
for cache implementation. Figure 23-1 gives the pinout for the cache connector on the 
Macintosh IIci main logic board, as viewed from above. In addition to the functional 
signals required for operation of the cache, the connector provides some special signals 
for diagnostic testing. 

Diagnostic signals (/ROMOE, /DSACKO-fDSACKl, fIPLO-fIPL2, fBR, and CPUmS) are 
needed for Apple's internal use in debugging and for emulator support. They are 
documented so that third-party developers can easily make use of emulators or other 
hardware debugging tools. The diagnostic signals are not required for cache memory 
operations and may not be supported in future implementations of the cache connector. 

Table 23-3 lists the cache connector signal names and gives a brief description of each signal. 

Chapter 23 Macintosh IIci Cache Memory Expansion 521 



• Figure 23-1 Macintosh IIci cache connector pinout 

0 
I 

I A30 I lRESET 

I lHALT I A22 

A~1 A2:i 

A26 A27 

IRMC A24 

0~1 GNO 

O~O 022 

028 027 

026 025 

024 02,2 

022 021 

020 Dl2 

018 Dl7 

Dl6 +5V 

A22 A21 

A20 A12 

AI8 AI7 

AI6 AI5 

AI4 A13 

AI2 All 

AIO GNO 

FCI A2 

A8 n.c. 

I FC2 FCO 

I Dl5 Dl4 

I DI,2 I 012 

1011 I DlO 

I 02 108 

I 06 I/BGACK 

04 O~ 

DI 00 

IROMOE A7 

A5 A4 

A2 Al 

IBG +5V 

A2~ CPUOIS 

10SACKO lAS 

CPUCLK 10SACKI 

GNO +:!V 

GNO CACHE 

I 

0 
A B 

R!W 

ISTERM 

A28 

Vee 

ICFLUSH 

+:!v 

n.c. 

GND 

Vee 

GNO 

GNO 

IIPL2 

ICENABLE 

+5V 

+5V 

GNO 

n.c. 

GND 

+5V 

I n.c. 

I GNO 

+5V 

GNO 

ICIOUT 

II~L1 

IIPLO 

ICBREQ 

107 
05 

02 

+5V 

A6 

~ 

AO 

I ICBACK 

I /BR 

I lOS 

I IBERR 

I SIZI 

I SIZO 

c 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

I 
I 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

522 Designing Cards and Drivers for the Macintosh Family 



• Table 23-3 Macintosh IIci cache connector signal descriptions 

Slgnalname 

AO-A31 
DO-D31 
/AS 
/BERR 
/BG 
/BGACK 
/BR 
CACHE 
/CBACK 
/CBREQ 
/CIOUT 
/CENABLE 
/CFLUSH 
CPUCLK 
CPUDIS 
/DS 
/DSACKO-/DSACKl 
FCO-FC2 
GND 
/HALT 
/IPLO-/IPL2 
/RESET 
/RMC 
/ROMOE 
R/W 
SIZO-SIZ1 
/STERM 
n.c. 
+5V 

Signal description 

Address bus, bits 0 through 31 
Data bus, bits 0 through 31 
Address strobe 
Bus error 
Bus grant 
Bus grant acknowledge 
Bus request 
Memory controller for cache access 
Cache burst acknowledge 
Cache burst request 
Cache inhibit out 
Cache enable 
Cache flush 
25 MHz CPU clock 
CPU disable 
Data strobe 
Data transfer and size acknowledge, bits 0 and 1 
Function codes, bits 0 through 2 
Ground 
Halt 
Interrupt priority lines, bits 0 through 2 
System reset 
Read-modify-write cycle 
ROM output enable 
Read/write 
Transfer size, bits 0 and 1 
Synchronous termination 
Not connected 
+5 volts 

• Note: Special-purpose diagnostic signals are shown in boldface. 

Chapter 23 Macintosh IIci Cache Memory Expansion 523 



Table 23-4 indicates whether the signals are inputs or outputs, and provides the load presented 
or the drive available to each pin of a cache card inserted in the expansion connector. 

In the column labeled "Input/Output" in Table 23-4, In refers to a signal from the cache 
card to the processor and corresponds directly to the load presented. Out refers to a 
signal from the processor to the cache card and corresponds directly to the drive 
available. The last column in Table 23-4, labeled "Load or Drive Limits," gives several 
specifications. An example may be helpful in interpreting this column. The /BERR signal is 
shown as presenting a load of 100 J!A/8 rnA, 50 pF. This is the maximum expected load that 
the cache card must drive when sending a /BERR signal to the main logic board. The DC 
load is given in the format signal high/signal low. This means that the cache card must 
drive a load of up to 100 J..LA when it drives /BERR high (logic 1), and a load of up to 8 rnA 
when it drives /BERR low (logic 0). The AC load is given as 50 pF, the maximum 
capacitance to ground presented by the main logic board to AC signals (or signal 
transitions) from the cache card. The notation "1 kn pull-up" in the table means that the 
signal is driven low, and that a 1 kn pull-up resistor on the main logic board returns the line 
to a logic 1. 

Correspondingly, /BERR presents a drive of 40 J!A/0.4 rnA, 30 pF. This is the maximum 
amount of drive from the main logic board that is available to circuits on a cache memory 
expansion card. The /BERR signal can drive a cache card DC load of up to 40 J..LA in the high 
(logic 1) state, or up to 0.4 rnA in the low (logic 0) state. The AC drive is given as 30 pF, the 
maximum capacitance to ground that a cache expansion card may present to AC signals 
(or signal transitions) from the /BERR line. 

In Table 23-4, where a signal is shown in parentheses, it is usually an output that is driven 
by the MC68030 but is tristated by the processor after responding to a bus request. When 
tristated by the MC68030, this signal may be driven by the cache expansion card. 

The special-purpose diagnostic signals in Table 23-4 are shown in boldface. In addition to 
the special diagnostic signals, some of the functions shown in Table 23-4 are used only 
during diagnostic testing. A dagger following an input or output deSignation or a load or 
drive parameter indicates that that particular function is active during diagnostic 
operations only. For example, under the "Input/Output" column for the /CBACK signal, the 
word In is followed by a dagger. This means that for diagnostic test purposes only, the card 
can drive a load of up to 100 J..LA when it drives /CBACK high (logic 1), or a load of up to 8 rnA 
in the low (logic 0) state. Under normal cache operations, the /CBACK input signal is 
inactive. 

524 Designing Cards and Drivers for the Macintosh Family 



• Table 23-4 Macintosh lIci cache connector signals, loading or driving limits 

Signal name Input/output Load or drive limits 

AO-A29 (In)t/Out (Load: 300 ~A/1 rnA, 100 pF)t 
Drive: 40 ~A/0.4 rnA, 30 pF 

A30-A31 (In)t/Out (Load: 300 ~A/8 rnA, 100 pF)t 
Drive: 40 ~A/0.4 rnA, 30 pF 
1 kQ pull-up 

DO-D23 In/Out Load: 150 ~A/1 rnA, 100 pF 
Drive: 40 ~A/0.4 rnA, 30 pF 

D24-D31 In/Out Load: 300 ~A/1 rnA, 100 pF 
Drive: 20 ~A/0.2 rnA, 30 pF 

/RESET Int/Out Load: na/15 rnA, 50 pFt 
Drive: 20 ~A/0.2 rnA, 15 pF 
Open collector, 470 Q pull-up 

/BERR In/Out Load: 1 00 ~A/8 rnA, 50 pF 
Drive: 40 ~A/0.4 rnA, 30 pF 
1 kQ pull-up 

/HALT In/Out Load: 100 ~A/8 rnA, 50 pF 
Drive: 40 ~A/0.4 rnA, 30 pF 
1 kQ pull-up 

FCO-FC2 (In)t/Out (Load: 100 ~A/8 rnA, 50 pF)t 
Drive: 20 ~A/0.2 rnA, 15 pF 
1 kQ pull-up 

/BR Int Drive: 40 ~A/0.4 rnA, 30 pFt 
1 kQ pull-upt 

/BG Int/Out (Load: 100 11A/8 rnA, 50 pF)t 
Drive: 40 ~A/0.4 rnA, 30 pF 
1 kQ pull-up 

/BGACK Out Drive: 40 ~A/0.4 rnA, 30 pF 
SI20-SI21 (In)t/Out (Load: 40 ~A/0.4 rnA, 30 pF)t 

Drive: 40 ~A/0.4 rnA, 30 pF 
(continued) 

Chapter 23 Macintosh lIci Cache Memory Expansion 525 



• Table 23-4 Macintosh IIci cache connector signals, loading or driving limits (continued) 

Signal name Illput/ output 

/AS (In)t/Out 

/DSACKO-/DSACKI Int/Outt 

R/W (In)t/Out 

/STERM In/Outt 

/CBACK Int/Out 

/CBREQ Int/Out 

/CIOUT (In)t/Out 

/DS (In)t/Out 

/RMC (In)t/Outt 

/IPLO-/IPL2 Ou tt 

CPUCLK Out 

Load or drive Umits 

(Load: 300 J.lA/8 rnA, 100 pF)t 
Drive: 40 JlAlO.4 A, 30 pF 
1 kg pull-up 
Load: 100 J.lA/8 rnA, 50 pFt 
Drive: 40 J.lA/0.4 rnA, 30 pFt 
1 kg pull-upt 
(Load: 300 J.lA/8 rnA, 100 pF)t 
Drive: 40 J.lA/0.4 A, 30 pF 
1 kO pull-up 
Load: 100 J.lA/8 rnA, 50 pF 
Drive: 40 JlAlO.4 rnA, 30 pFt 
1 kg pull-up 
Load: 100 J.lA/8 rnA, 50 pFt 
Drive: 40 J.lA/0.4 A, 30 pF 
1 kg pull-up 
Load: 100 J.lA/8 rnA, 50 pFt 
Drive: 40 J.lA/0.4 rnA, 30 pF 
1 kO pull-up 
(Load: 100JlAl8 rnA, 50 pF)t 
Drive: 40 J.lA/0.4 A, 30 pF 
1 kg pull-up 
(Load: 100 J.lA/8 rnA, 50 pF)t 
Drive: 40 J.lA/0.4 rnA, 30 pF 
1 kO pull-upt 
(Load: 100 J.lA/8 rnA, 50 pF)t 
Drive: 40 J.lA/0.4 rnA, 30 pF 
1 kg pull-upt 

Drive: 40 J.lA/0.4 rnA, 30 pFt 
1 kg pull-upt 

Drive: 10 J.lA/1O !lA, 15 pF 

526 Designing Cards and Drivers for the Macintosh Family 

(continued) 



• Table 23-4 Macintosh IIci cache connector signals, loading or driving limits (continued) 

Signal name 

/ROMOE 

CPUDIS 

CACHE 

/CFLUSH 
/CENABLE 

Input/output 

Outt 
Int 

In 

Out 
Out 

Load or drive limits 

Drive: 40 ~A!0.4 rnA, 30 pFt 
Load: 8 mAIl rnA, 30 pFt 
1 kn pull-downt 

Drive: 8 mAIl rnA, 30 pF 
1 kn pull-down 

Drive: 40 ~A!O.4 A, 30 pF 
Drive: 40 ~A!O.4 A, 30 pF 

t Signal is used for debugging and emulation only. 

Electrical design guidelines for the cache card 

Most of the cache connector signals are specified to drive two 74LS inputs. (A standard 
74LS input load is 20 ~A high, 0.2 rnA low.) Some other signals, such as /RESET, the high
order data (D24-D31), and the function codes (FCO-FC2), drive only one 74LS input. The 
CPUCLK signal drives only a CMOS input (a standard CMOS load is 10 ~A high, 10 ~A low). 

CACHE and CPUDIS are the only unusual signals on the cache connector. CACHE, an 
active-high signal, disables the memory controller (MDU) so that it cannot start a memory 
cycle and allows the cache card to supply the data instead. The active-high transition of 
the CACHE signal must occur at the same time as the active-low transition of the / AS 
signal, or earlier. Asserting CACHE prevents the memory controller from beginning a RAM, 
ROM, or NuBus cycle. If CACHE is asserted after the memory controller has started a 
cycle, that cycle is not affected. Also, CACHE does not affect memory controller cycles 
for I/O devices. 

Since CACHE must be asserted at / AS, the cache controller leaves CACHE unasserted 
except when the cache is not active (that is, /CIOUT is asserted and /CENABLE is 
deasserted, or an alternate bus master owns the bus as indicated by an asserted 
/BGACK signal). 

Chapter 23 Macintosh IIci Cache Memory Expansion 527 



The CPUDIS signal is used during diagnostic testing to disable the Mc6s030 on the main 
logic board and tristate its outputs. An emulator in the cache card can assert CPUDIS and, 
after waiting for the end of the current bus cycle, drive all signals. 

• Note: NuBus cards can access each other without that transaction appearing on the 
CPU bus. This can lead to inconsistency between memory on the NuBus card, for 
example, and the cached version of that memory. For this reason, the Macintosh 
Operating System always marks the NuBus address space noncacheable, as controlled 
by the Mc6s030 processor's on-chip PMMU. 

The /BGACK signal is not driven high quickly enough by the main logic board to satisfy 
cache memory operations. Your card design should include a 2.2 kQ resistor to pull 
/BGACK up to +5 v, and a circuit to double-rank synchronize /BGACK before using it. You 
can double-rank synchronize /BGACK by putting it through two DQ flip-flops that are 
clocked by the CPUCLK signal, and using the output from the second flip-flop. 

D, Important Although the cache expansion connector is capable of other 
functions, Apple plans to support its use for RAM cache cards only. D 

Mechanical design guidelines for the cache card 

Figure 23-2 shows two views of the cache card. The larger drawing is a component-side 
view showing the maximum dimensions and the location of the 120-pin connector. 
Note that the location of the connector is given with reference to the edge of the 
connector, not to pin AI. The size limitation is required for proper cooling of the card. 
If you fail to adhere to these guidelines, your design could create a potential reliability 
problem for the customer. 

To the right is an end view (from the front of the computer) showing the card thickness 
and component placement. Notice that the maximum card thickness is 1.575 ±0.1906 mm 
(0.062 ±0.0075 inch). 

528 Designing Cards and Drivers for the Macintosh Family 



• Figure 23-2 Cache card design guide 

-,-_.-_________ ---,,..--__ --:-___________ ----, 1.575 ± ,01906 :11--
No-component zone (.062 ± ,0075) 

76,20 
(3,00) 

Component side 
(facing power supply) 

1120-pin connector ~~JPin A-I 
--.J~~===~-:~-:'-....",=~="....",,~==-=-=ooo 
fa 000---- ----00 -,., 

Dimensions are in millimeters with inches in parentheses, 

Back side 
of card 

(no active 
components) 

Here are some guidelines you should follow when designing your cache card hardware to 
ensure proper thermal dissipation and eliminate the possibility of electrical interference 
with the ROM SIMM. 

• Card warpage must be controlled to within a 2.541 mm (0.10 inch) deviation from 
the ideal. 

• You should place no components or traces in the top 3,811 mm (0.150 inch) of the 
card, on either the front (component) side or the back side. 

• Component height must not extend beyond the edge of the card in any direction. 

• Component height cannot exceed 10.164 mm (0.40 inch) on the front side of the 
board (toward the power supply). 

• No component or wire lead on the back side of the card (toward the ROM SIMM) 
may extend more than 2.541 mm (0.10 inch) from the surface of the card. 

• You should place all active components on the front (component) side of the card; 
you may place resistors and capacitors that do not exceed the height limitation on 
the back side of the card. 

(.40) max r 10.164 

Front 
(component) 
side of card 

Chapter 23 Macintosh lId Cache Memory Expansion 529 



Power consumption guidelines 

Table 23-5 gives current allocation for a cache card in the Macintosh IIci and compares it 
with the current allotted to each NuBus card. Exceeding these guidelines could create a 
potential reliability problem in the host system. 

• Table 23-5 Comparison of current limits for a Macintosh IIci cache card and a NuBus card 

Nominal power 
supply value, V 

+5 
+12 

-12 

Cache card 
maximum current, A 

1.0 

Not available 

Not available 

NuBus card 
maximum current, A 

2.0 

0.175 

0.150 

Most of the information in Appendix A on EMI, heat dissipation, and product safety also 
applies to a cache memory expansion card. One noticeable difference is that the 
maximum power disSipation for a Macintosh IIci cache card is 5 W versus the 7.5 W 
specified for an expansion card in a conventional PDS. 

530 Designing Cards and Drivers for the Macintosh Family 



Appendix A EMI, Heat Dissipation, and Product 
Safety Guidelines 

This appendix provides general information that you should become 
familiar with before you start your expansion card design. Guidelines are 
given for electromagnetic interference (EMI) , heat dissipation, and 
product safety standards. These guidelines apply to both NuBus and PDS 
expansion cards. 

531 



EMI guidelines for expansion cards 

Every Macintosh-family computer meets FCC radio and television electromagnetic 
interference (EMI) requirements as a stand-alone device, or when connected to a 
peripheral device such as a printer or modem. However, you should follow certain 
guidelines when designing your expansion card to avoid exceeding the mandatory FCC 
limits when the card is installed in the computer. This section provides EMI design 
guidelines for the following configurations: 

• when an expansion card is mounted internally with no external I/O connections 

• when an expansion card is mounted internally and external I/O connections are 
provided 

These guidelines apply equally to expansion cards designed for NuBus slots and 
processor-direct slots. 

Without external I/O connections 

The following gUidelines should enable you to build an add-on that does not degrade the 
computer to the extent that the combination product will not meet FCC regulations for 
Class B equipment. However, you are responsible for the FCC authorization of the 
combination product. Development testing should be undertaken as soon as you have 
completed a realistic expansion card in order to alert you, the developer, to any serious 
EMI problems. You can resolve these problems by rerouting signal conductors, filtering 
and bypassing, and terminating buses properly to eliminate excessive transient ringing 
(undershoot) on clocks and other signals. You must use appropriate emission control 
techniques on the card and on wiring to any connectors for external I/O. 

• Use cards with four layers (power and ground on two of the layers), or with extremely 
low impedance busing of power and ground lines, to reduce EMI pickup and 
emanations. 

• Buffer high-speed signals and separate them from lower-speed circuitry. 

• Buffer signals from the expansion connector as close to the connector as possible 
and limit the drive to one LS load with a maximum capacitance of 18 pF. 

• Make internal interconnecting cables as short as possible. Position cables such that 
inductive and capacitive coupling with the computer's subassemblies is minimized. 
You should not bundle conductors carrying high-speed signals with conductors 
carrying low-speed signals. In certain cases, you may have to use internal shielding or 
twisted pairs within cables. 

532 Designing Cards and Drivers for the Macintosh Family 



• Do not locate high-speed components such as clock oscillators and their signal lines 
near the expansion port connector and shield. 

• Provide good high-frequency decoupling in addition to adequate power supply 
filtering at the low-voltage power connectors of the card. These precautions 
avoid degrading the low emission levels conducted from the computer's 120 VAC 
power connector. 

With external I/O connections 

Macintosh computers with NuBus have external I/O connections for each NuBus slot. 
Macintosh computers that use a processor-direct slot for expansion have only one external 
I/O connection, called the external device access opening. In general, these guidelines 
apply equally to both configurations. When there are differences they are noted. 

Connecting a cable to an external I/O connector can seriously compromise the emissions 
integrity of the computer. You are likely to exceed allowable limits on conducted or 
radiated emissions unless you take care during construction and test the total system as it 
will be operated. The total system includes 

• the unmodified computer 

• the expansion card and all internal cables used to modify the computer (and, for a 
Macintosh SE, Macintosh SE/30, and Macintosh IIsi, a connector card) 

• the external cable and peripherals to be connected 

It is very important for you to do the following: 

• Follow all the guidelines given for internal expansion cards as described previously. 

• Include EMI filtering in each I/O line and power line going to or beyond (outside) the 
I/O connector. This is best achieved by using deglitch packs (RC or LC networks) or 
common mode chokes located directly at the connector. 

• Shape the spectrum of signals, especially video, in the frequency domain so that 
unrequired bandwidths and harmonics are not needlessly propagated. 
(Note: Computer designers tend to prefer very fast edges so that timing errors are 
never a problem, but it is these very fast edges that cause high-amplitude harmonics 
in the frequency domain and lead to emission problems.) 

Appendix A EMI, Heat Dissipation, and Product Safety Guidelines 533 



• Use a connector of high quality, one that has high-conductivity (electrical) plating 
and accepts a shielded plug. The tin-plated steel DB series of connectors is one 
obvious example. The connector on a NuBus card should be mechanically and 
electrically bonded to the metal I/O fence on the rear of the expansion card. The 
connector on a PDS card should be mechanically and electrically bonded to the metal 
chassis behind the external device access opening at the rear of the computer. An 
unsecured, unbonded connector protruding through the opening is almost sure to 
cause a major EMI problem. 

• External metal conductor cables must be shielded, without exception. Solder bond the 
entire circumference of the braided shield to provide a low-impedance path to the 
entire perimeter of the connector. 

• Interconnecting cables should be as short as possible. Do not bundle conductors 
carrying high-speed signals with conductors carrying low-speed signals. In certain 
cases, you may have to use internal shielding or twisted pairs within cables. 

Heat dissipation guidelines 

Macintosh expansion cards, by their own heat dissipation, produce increased 
temperatures within the computer. Because excessive heat can have a detrimental 
effect on performance and reliability, Apple has developed a general set of heat 
dissipation guidelines for each of the two categories of expansion cards, NuBus and 
processor-direct slot. 

Heat dissipation guidelines for NuBus cards 

You should follow these guidelines when designing NuBus cards for a Macintosh computer 
with the NuBus expansion interface: 

• Dissipation by a NuBus expansion card of up to 13.3 W of power provides a 
comfortable margin for the major components. This total is arrived at as follows: 

+5V @ 
+12V @ 
-12V @ 
Total power 

2.0A 
0.175 A 
0.1 A 

10.0W 
2.1 W 
1.2W 

13.3 W 

534 Designing Cards and Drivers for the Macintosh Family 



Dissipation of more than 13.3 W by a card may cause excessive temperature rise ori 
certain critical components. Apple studies indicate that at an ambient temperature 
of about 24°C, 13.3 W of dissipated power from the expansion card will cause an 
acceptable rise in average component case temperature to about 53°C. (Studies were 
conducted with an internal hard disk drive installed.) 

• You can achieve optimum cooling for both the logic board and expansion cards by 
keeping the expansion card as short as possible; the minimum possible is 7.0 inches 
(see the section "Card Description" in Chapter 6). In addition, placing larger 
components near the bottom side of the expansion card is desirable. 

• Place hot components on the expansion card directly against the card; they should 
have the widest possible printed wiring traces. This provides for better cooling as the 
airflow from the fan moves from the rear of the computer to the front. 

• Installation of an expansion card should not cause the case temperature of an internal 
hard disk to rise more than 20°C over external ambient air temperature. 

Heat dissipation guidelines for PDS cards 

You should follow these guidelines when designing an expansion card for a Macintosh 
computer with the PDS expansion interface: 

• Dissipation by the expansion card of up to 7.5 W provides a comfortable margin for 
the major computer components. Dissipation of more than 7.5 W may cause 
excessive temperature rise on certain critical components. Apple studies indicate 
that at an ambient temperature of about 24°C, 7.5 W of dissipated power from the 
expansion card will cause an acceptable rise in average component case temperature 
to about 53°C for the main logic board components located directly under the 
expansion card (studies were conducted with an internal hard disk drive installed). 
Note that the cache card in the Macintosh IIci is an exception: maximum heat 
dissipation for this card is only 5 W. 

• The most heat-sensitive logic board components include the microprocessor and the 
DRAM SIMM modules. The maximum recommended temperature for the center of the 
microprocessor case is 65°C. The maximum recommended temperature for the case 
of each component on the DRAM SIMM modules is 60°C. 

• You can achieve optimum cooling for both the logic board and expansion card in a 
Macintosh SE, for example, by positioning the expansion card as far above the logic 
board as possible (while still avoiding mechanical interference with the chassis); the 
suggested distance is 16.8 mm. In addition, you will get a more uniform temperature 
distribution in the Macintosh SE if you place the components on the top (away from 
the main logic board) rather than the bottom side of the card. 

Appendix A EMI, Heat Dissipation, and Product Safety Guidelines 535 



• Put hot components toward the rear of the expansion card, away from the front 
bezel, to get better cooling by the airflow from the fan. 

• An expansion card should not cause the case temperature of an internal hard disk to 
rise more than 15°C over external ambient air temperqture. 

Product safety 

Every Macintosh computer meets national and international product safety requirements. 
Therefore, any additional cards and components need careful safety consideration to 
maintain the same degree of electrical and mechanical safety. When you design an 
expansion card to fit inside a Macintosh computer, you must consider several product 
safety issues. 

American (Underwriters Laboratories-UL), Canadian (Canadian Standards Association
CSA) , and European (Institute for Industrial Research and Standards-IIRS) regulatory 
organizations give product safety approval to a Macintosh computer with a NuBus 
interface with dummy expansion cards in each NuBus slot. The same agencies give 
approval to a Macintosh computer with a PDS interface without any expansion card 
(including a dummy card) installed in the slot. When you change the design of either 
product by adding a functional expansion card, and resell the unit, the product becomes 
delisted. Technically, you should resubmit the computer with your card (or cards) installed 
and have the new (combination) product evaluated, The new product should have a new 
model number, and the computer essentially becomes a component of your system. 

You can maintain product safety if you follow these guidelines: 

• Stay within the maximum power specification of the expansion connector. 

• Use components that have been certified by the safety agencies. Components such 
as lithium batteries, power relays, tape drives, disk drives, fans, wires and cables, and 
other parts should have at least UL and CSA approvals. 

• Properly secure (mount) the components. Avoid mountings that depend on adhesive 
only or mountings that allow movement of components or cards. 

• Avoid using materials that could contribute to a fire. This includes PCB material, card 
guides, and other parts. In general, PCB material should be flame rated 94V-l or 
better; wire should be UL Listed/CSA Certified, flame rated VW-l; and plastic parts 
within the enclosure should be flame rated 94V-2 Qr better. 

• Place PCBs and other components so that they do not block vent openings or 
fan circulation. 

536 Designing Cards and Drivers for the Macintosh Family 



• Secure all wiring and provide chafing protection to prevent degradation of the 
insulation on moving parts or sharp edges. 

• Do not configure connectors such that a hazard is created if they are plugged in 
backward or into the wrong connector. 

• Verify that the installation or conversion kits are complete. Provide any special tools 
required for installation or conversion (for example, a special nut driver). Provide any 
special hardware; don't expect the installer to modify (bend or drill, for example) 
existing hardware. 

• Make sure installation or conversion instructions are complete. Provide a review by a 
person who is unfamiliar with the product to ensure that instructions are complete 
and accurate enough for that person to understand. 

• Avoid splicing wires. Your conversion kit should provide new harnesses if they 
are required. 

• Avoid soldering. If soldering is necessary, the connection should be made 
mechanically secure before soldering (no tack soldering). 

The following guidelines apply particularly to expansion cards that use high voltages. 

• Do not allow maintenance work to be performed by someone unfamiliar with the 
hazards involved. If the Macintosh has a built-in CRT, repair personnel must be aware 
of the dangers of shock from the primary, the charge stored on the CRT, and the 
implosion potential of the CRT. 

• Be careful to maintain proper through-air and over-surface spacings between the 
high-voltage components (power supply, relays, a built-in CRT, and so forth) and the 
logic circuitry. Remember that spacings are measured under worst-case conditions 
and that if a card can be moved, spacings will be measured with the card in the worst 
position. Spacing tables can be found in the following safety standards: UL478, CSA 
22.2 No. 154-M1983, CSA 22.2 No. 220-M1986, IEC 380, IEC 435, and IEC 950. 

• Maintain proper insulation thickness or layers between the high-voltage components 
and the logic circuitry. (Proper insulation is defined in the standards listed in the 
preceding item.) If a low-voltage circuit can contact a high-voltage wire, the low
voltage wire must also be insulated for the higher voltage. 

• Don't place components next to high-voltage parts. 

Appendix A EMI, Heat Dissipation, and product Safety Guidelines 537 





Appendix B Sample Video Card Firmware 

This appendix contains a sample of the declaration ROM firmware code 
for Macintosh video cards using Macintosh Programmer's Workshop 
assembly language. Notice that this sample code reflects the 
configuration of the declaration ROM's firmware shown in Chapter 8. 
Also included in this appendix are samples of the primary initialization 
code and the secondary initialization code for a video card. 

539 



i----------------------------------------------------- ------------------------

(c) Apple Computer, Inc. 
All rights reserved. 

1986-1991 

------------------------------------------------------------------------------, 

File: SampleRom.a 

This is a sample configuration ROM source for a NuBus and/or PDS Macintosh 
Video Card. It demonstrates most of the features and capabilities of video 
cards, including multiple monitor support, system feature identification, and 
manufacturer-specific data structures. 

This fictitious card supports the following modes: 

1) 640x480 at 1,2,4,8bpp 
2) 640x480 at 1,2,4,8,16,32bpp 
3) 640x480 at 1bpp fixed 

4) 640x870 at 1, 2,4, 8bpp 

( 8-bit QuickDraw) 
(32-bit QuickDraw) 
(Family mode for 2) 

(8/32-bit QuickDraw) 

i----------------------------------------------------- ------------------------

;Include files 

DclROM 

PRINT OFF 

INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 

INCLUDE 

PRINT ON 

MACHINE 

MAIN 

'SysEqu.a' 
'SysErr.a' 
'Traps.a' 
'VideoEqu.a' 
'ROMEqu.a' 
'QuickEqu.a' 
'SlotEqu.a' 

'DepVideoEqu.a' 

MC68020 

MPW Assembler Equates 

Left as an exercise for the reader 

i============================================================================= 
; Constants 
i============================================================================= 

sResource constants are in this form: sRsrc_Vidxyz. 

Where x 
y 
z 

size: S - 640x480, B - 640x870. 
addressing: 8-bit QD or 32-bit QD. 
option: F - family mode or none. 

540 Designing Cards and Drivers for the Macintosh Family 



These are the constants for the sRsrcs that are in the sRsrc directory. 
The numbering is developed in this fashion to facilitate PrimaryInit: 

Bit 7 
Bit 6 
Bit 5 
Bit 4 
Bit 3 
Bit 2 
Bit 1 
Bit 0 
(8-bit 

sRsrc_VidS8 
sRsrc_VidS32 
sRsrc_VidB8 
sRsrc_VidS32F 

1 always on for video sRsrc IDs (i.e., functional sRsrcs are ~ 128). 
1 if optional 1-bit only mode, 0 otherwise. 
o 
o 
1 if 640x870 screen, 0 for 640x480. 
o 
o 
1 if accessed in 32-bit mode (32-bit QD), else 0 for 24-bit mode 

QD) . 

EQU 

EQU 
EQU 
EQU 
EQU 

1 

$80 
$81 
$88 
$C1 

board sResource (>0 & <128) 

functional sResources 

;============================================================================= 
Directory (must be in ascending order!) 

i============================================================================= 

sRsrcDir 
OSLstEntry 
OSLstEntry 
OSLstEntry 
OSLstEntry 
OSLstEntry 
DatLstEntry 

sRsrc_Board,_sRsrc_Board 
sRsrc_VidS8,_sRsrc_VidS8 
sRsrc_VidS32,_sRsrc_VidS32 
sRsrc_VidB8,_sRsrc_VidB8 
sRsrc_VidS32F,_sRsrc_VidS32F 
EndOfList,O 

board sRsrc List 
video sRsrc List 
video sRsrc List 
video sRsrc List 
video sRsrc List 
end of list 

;============================================================================= 
sRsrc_Board list 

i============================================================================= 

STRING C 

OSLstEntry 
OSLstEntry 
OSLstEntry 
DatLstEntry 
OSLstEntry 
OSLstEntry 
OSLstEntry 
OSLstEntry 
DatLstEntry 

sRsrcType,_BoardType 
sRsrcName,_BoardName 
sRsrcName,_VidICON 
BoardId,SampleBoardID 
PrimaryInit,_sPInitRec 
VendorInfo,_VendorInfo 
SecondaryInit,_sSInitRec 
sRsrcvidNames,_sVidNameDir 
EndOfList,O 

offset to board descriptor 
offset to name of board 
offset to icon 
board ID # (assigned by DTS) 
offset to PrimaryInit exec blk 
offset to vendor info record 
offset to SecondaryInit block 
video name directory 
end of list 

Each NuBus/PDS board has a single board identifier, even if it contains 
mUltiple devices. 

_BoardType 

_BoardName 

DC.W 
DC.W 
DC.W 
DC.W 

DC.L 

CatBoard 
TypBoard 
o 
o 

'Sample Video Card' 

board sResource 

name of board 

Appendix B Sample Video Card Firmware 541 



You can optionally include an ICON, cicn, 
will display instead of its default ICON. 
it is the ICON for Classic Macintoshes. 

iclS, or icl4 sResource that Monitors 
We just have an ICON resource here 

_VidICON 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.):" 
DC.I., 

$3FFFEOOO,$40001000,$4FFF9000,$50005000 
$55505000,$50005000,$55005000,$50D07FFC 
$54004002,$50004FF2,$5000500A,$5000554A 
$4FFFDOOA,$4000550A,$3FFFDOOA,$OS00540A 
$3BFF500A,$2000540A,$3FFFDOOA,$0000500A 
$3FFE500A,$40014FF2,$4FF94002,$50053FFC 
$55050Sl0,$50057BDE,$54054002,$50057FFE 
$50050000,$4FF90000,$400l0000,$3FFEOOOO 

ICON sResource 

The video name directory associates an optional name string with each video sRsrc 
present. This name is read by Monitors and is presented in a video mode family 
selector in the Options dialog box. If your card does not have any mode families, 
it does not need a name directory, unless you would just like Monitors to identify 
your monitor type(s) by name. 

_sVidNamePir 

EndNameReg 

_sNameOption 

EndNameOption 

OSLstEntry 
OSLstEntry 
DatLstEntry 

DC.L 
DC.W 
DC.B 
ALIGN 2 

DC.L 
DC.W 
DC.B 
ALIGN 2 

sRsrc_VidS32,~sNameReg 
sRsrc_VidS32F,_sNameOption 
EndOfList,O 

EndNameReg-_sNameReg 
NameRegResID 
'Full Color Display' 

EndNameOpt ion-_sNameOpt ion 
NameOptResID 
'Black & White Only' 

name rcd for regular mode 
name rcd for special mode 

localization resID 

localization resID 

i==;~~==~~~~==~===~;======~=======~============;========;=================~=== 
Primarylnit record 

_sPlnitRec 

_EndsPlnitRec 

DC.L 
INC):.,UDE 
ALIGN 2 

_EndsPlnitRec-_sPlnitRec 
'SamplePrimarylnit.a' 

S42 Designing Cards and Drivers for the Macintosh Family 

physical block size 
the header/code 



i============================================================================= 
SecondaryInit record 

i============================================================================= 

_sSInitRec 

_EndsSInitRec 

DC.L 
INCLUDE 
ALIGN 2 

_EndsSInitRec-_sSInitRec 
'SampleSecondaryInit.a' 

physical block size 
the header/code 

i============================================================================= 
Vendor info record 

i============================================================================= 
, 
; The vendor information record allows the developer to include revision level and 
part ; number information in their ROMs. 

STRING 

_VendorInfo 
OSLstEntry 
OSLstEntry 
OSLstEntry 
OSLstEntry 
DatLstEntry 

_VendorId 
DC.L 

_RevLevel 
DC.L 

_PartNump 
DC.L 

_Date 
DC.B 

C 

VendorId,_VendorId 
RevLevel,_RevLevel 
PartNum,_PartNum 
Date,_Date 
EndOfList,O 

'Apple Computer, Inc. 

'Sample 2.0' 

'DAF/jmp' 

'&SysDate' 

, 

offset to vendor ID 
offset to revision 
offset to part number record 
offset to ROM build date 

vendor ID 

revision level 

part number 

date 

i============================================================================= 

i==========================================================================~== 

; Parameters 

OSLstEntry 
OSLstEntry 
OSLstEntry 
DatLstEntry 

OSLstEntry 
OSLstEntry 

OSLstEntry 

OSLstEntry 
OSLstEntry 
OSLstEntry 
OSLstEntry 
DatLstEntry 

sR§rcType,_videoType 
sRsrcName,_VideoName 
sRsrc_DrvrDir,_VidDrvrDir 
sRsrc_HWDevId,l 

MinorBaseOS,_MinorBase 
MinorLength,_MinorLength 

sGammaDir,_GammaDirS 

FirstVidMode,_OBMs 
SecondVidMode,_TBMs 
ThirdVidMode,_FBMs 
FourthVidMode,_EBMs 
EndOfList,O 

video type descriptor 
offset to driver name string 
offset to driver directory 
hardware device ID 

offset to frame buffer array 
offset to frame buffer length 

directory for 640x480 monitor 

offset to OneBitMode par~s 
offset to TwoBitMode parms 
offset to FourBitMode parms 
offset to EightBitMode parms 
end of list 

i------------------------~-------------~-------------- ------------------------

_sRsrc_VidS32 
OSLstEntry 
OSLstEntry 
OSLstEntry 
DatLstEntry 

sRsrcType,_VideoType 
sRsrcName,_VideoName 
sRsrc_DrvrDir,_VidDrvrDir 
sRsrcFlags,6 

Mac OS video type descriptor 
offset to driver Name string 
offset to driver directory 
f32BitMode & fOpenAtStart set 

Appendix B Sample Video Card Firmware 543 



DatLstEntry sRsrc_HWDeVId,l hardware device ID 

OSLstEntry MinorBaseOS,_MinorBase offset to frame butter array 
OSLstEntry MinorLength,_MinorLength off!3et to frame buffer length 

OSLstEntry sGammaDir,_GammaDirS directory for 640x480 monitor 

; Parameters 
OSLstEntry FirstVidMode,_OBMs offset to OneBitMode parms 
OSLstEntry SecondVidMode,_TBMs offset to TwoBitMode parms 
OSLstEntry ThirdVidMode,_FBMs offset to FourBitMode parms 
OSLstEntry FourthVidMode,_EBMs offset to EightBitMode parms 
OSLstEntry FifthVidMode,_D16BMs offset to SixteenBitMode parms 
OSLstEntry SixthVidMode,_D32BMs offset to ThirtyTwoBitMode 

parms 
Dat~stEntry EndOfList,O end of list 

j----------------------------------------------------- ------------------------

; Parameters 

OSLstEntry 
OSLstEntry 
OSLstEntry 
DatLstEntry 

OSLstEntry 
OSLstEntry 

OSLstEntry 

OSLstEntry 
OSLstEntry 
OSLstEntry 
OSLstEntry 
DatLstEntry 

sRsrcType,_videoType 
sRsrcName,_VideoName 
sRsrc_DrvrDir,_VidDrvrDir 
sRsrc_HWDevId,l 

MinorBaseOS,_MinorBase 
MinorLength,_MinorLength 

sGammaDir,_GammaDirB 

FirstVidMode,_OBMb 
SecondVidMode,_TBMb 
ThirdVidMode,_FBMb 
FourthVidMode,_EBMb 
EndOfList,O 

Mac OS video type descriptor 
offset to driver name string 
offset to driver directory 
hardware device ID 

offset to frame buffer array 
offset to frame buffer length 

directory for 640x870 monitor 

offset to OneBitMode parms 
offset to TwoBitMode parms 
offset to FourBitMode params 
offset to EightBitMode params 
end of list 

j----------------------------------------------------- ------------------------
; 
; This video sResource demonstrate!3 video family modes. As an alternate to the full 
; function resource above, it doesn't make too much senSe, but this alternate could 
; have had different screen size or display characteristics. Although 32-bit 
addressing 
; is not required for a one-bit only display, the new Slot Manager is required to 
allow 
; alternate video sResources. Also, note that we are pointing to a different set of 
; parameters for this mode. Since this is a black & white device only, we are 
; pretending that it is a fixed-CLUT device. 

sRsrc_vidS32F 
OSLstEntry 
OSLstEntry 
OSLstEntry 
DatLstEntry 
DatLstEntry 

; Parameters 

OSLstEntry 
OSLstEntry 

OSLstEntry 

OSLstEntry 
DatLstEntry 

sRsrcType,_VideoType 
sRsrcName,_VideoName 
sRsrc_DrvrDir,_VidDrvrDir 
sRsrcFlags,6 
sRsrc_HWDevId,l 

MinorBaseOS,_MinorBase 
MinorLength,_MinorLength 

sGammaDir,_GammaDirS 

FirstVidMode,_OBMFs 
EndOfList,O 

Mac OS video type descriptor 
offset to driver name string 
offset to driver directory 
f32BitMode & fOpenAtStart set 
hardware device ID 

offset to frame buffer array 
offset to frame buffer length 

directory for 640x480 monitor 

offset to OneBitMode fixed parms 
end of list 

i---~------------------------------------------------- ------------------------

544 Designing Cards and Drivers for the Macintosh Family 



STRING C 

_videoType 
DC.W CatDisplay <Category> 
DC.W TypVideo <Type> 
DC.W DrSwApple <DrvrSw> 
DC.W DrHwSample <DrvrHw> 

_videoName 
DC.L 'Display_Video_Apple_Samp'; video drive name 

_MinorBase 
DC.L defMinorBase frame buffer offset 

_MinorLength 
DC.L defMinorLength ; frame buffer length 

;============================================================================= 
Driver directories 

i============================================================================= 

_vidDrvrDir 

_sMacOS68020 

_End020Drvr 

OSLstEntry sMacOS68020,_sMacOS68020 
DatLstEntry EndOfList,O 

DC.L 
INCLUDE 

_End020Drvr- sMacOS68020 
'SampleDrvr.a' 

driver directory for Mac OS 

physical block size 
driver code 

i============================================================================= 
Gamma directories 

;============================================================================= 

_GammaDirS 

_GammaDirB 

_SmallGamma 

STRING 

OSLstEntry 
DatLstEntry 

OSLstEntry 
DatLstEntry 

DC.L 

DC.W 
DC.B 
ALIGN 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 

DC.L 
DC,L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 

C 

128,-,-SmallGamma 
EndOfList,O 

128,_BigGamma 
EndOfList,O 

_EndStdGamma-_StdGamma 

SGammaResID 
'Small Gamma' 
2 
$0000 
drHwSample 
$0000 
$0001 
$0100 
$0008 

for the 640x480 monitor 

for the 640x870 monitor 

Monitors name 

gVersion 
gType 
gFormulaSize 
gChanCnt 
gDataCnt 
gChanWidth 

$0005090B,$OE101315,$17191B1D,$lE202224 
$2527282A,$2C2D2F30,$31333436,$37383A3B 
$3C3E3F40,$42434445,$4748494A,$4B4D4E4F 
$50515254,$55565758,$595A5B5C,$5E5F6061 
$62636465,$66676869,$6A6B6C6D,$6E6F7071 
$72737475,$76777879,$7A7B7C7D,$7E7F8081 
$81828384,$85868788,$898A8B8C,$8C8D8E8F 

Appendix B Sample Video Card Firmware 545 



DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 

_EndSmallGamma 

_BigGamma 
DC.L 
DC.W 
DC.B 
ALIGN 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 

DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 

DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 

$90919293,$94959596,$9798999A,$9B9B9C9D 
$9E9FAOA1,$A1A2A3A4,$A5A6A6A7,$A8A9AAAB 
$ABACADAE,$AFBOBOB1,$B2B3B4B4,$B5B6B7B8 
$B8B9BABB,$BCBCBDBE,$BFCOCOC1,$C2C3C3C4 
$C5C6C7C7,$C8C9CACA,$CBCCCDCD,$CECFDODO 
$D1D2D3D3,$D4D5D6D6,$D7D8D9D9,$DADBDCDC 
$DDDEDFDF,$EOE1E1E2,$E3E4E4E5,$E6E7E7E8 
$E9B9EAEB,$ECECEDEE,$EEEFFOF1,$F1F2F3F3 
$F4F5F5F6,$F7F8F8F9,$FAFAFBFC,$FCFDFEFF 

_EndBigGamma-_Big~~mma 
BGammaResID' 
'Big Gamma' 
2 
$0000 
drHwSample 
$0000 
$0003 
$0100 
$0008 

Monitors name 

gVersion 
gType 
gFormulaSize 
gCh,:mCnt 
gDataCnt 
gChanWidth 

$0005090B,$OE101315,$17191B1D,$lE202224 
$2527282A,$2C2D2F30,$31333436,$37383A3B 
$3C3E3F40,$42434445,$4748494A,$4B4D4E4F 
$50515254,$55565758,$595A5B5C,$5E5F6061 
$62636465,$66676869,$6A6B6C6D,$6E6F7071 
$72737475,$76777879,$7A7B7C7D,$7E7F8081 
$81828384,$85868788,$898A8B8C,$8C8D8E8F 
$90919293,$94959596,$9798999A,$9B9B9C9D 
$9E9FAOA1,$A1A2A3A4,$A5A6A6A7,$A8A9AAAB 
$ABACADAE,$AFBOBOB1,$B2B3B4B4,$B5B6B7B8 
$B8B9BABB,$BCBCBDBE,$BFCOCOC1,$C2C3C3C4 
$C5C6C7C7,$C8C9CACA,$CBCCCDCD,$CECFDODO 
$D1D2D3D3,$D4D5D6D6,$D7D8D9D9,$DADBDCDC 
$DDDEDFDF,$EOE1E1E2,$E3E4E4E5,$E6E7E7E8 
$E9E9EAEB,$ECECEDEE,$EEEFFOF1,$F1F2F3F3 
$F4F5F5F6,$F7F8F8F9,$FAFAFBFC,$FCFDFEFF 

$0005090B,$OE101315,$17191B1D,$lE202224 
$2527282A,$2C2D2F30,$31333436,$37383A3B 
$3C3E3F40,$42434445,$4748494A,$4B4D4E4F 
$50515254,$55565758,$595A5B5C,$5E5F6061 
$62636465,$66676869,$6A6B6C6D,$6E6F7071 
$72737475,$76777879,$7A7B7C7D,$7E7F8081 
$81828384,$85868788,$898A8B8C,$8C8D8E8F 
$90919293,$94959596,$9798999A,$9B9B9C9D 
$9E9FAOA1,$A1A2A3A4,$A5A6A6A7,$A8A9AAAB 
$ABACADAE,$AFBOBOB1,$B2B3B4B4,$B5B6B7B8 
$B8B9BABB,$BCBCBDBE,$BFCOCOC1,$C2C3C3C4 
$C5C6C7C7,$C8C9CACA,$CBCCCDCD,$CECFDODO 
$D1D2D3D3,$D4D5D6D6,$D7D8D9D9,$DADBDCDC 
$DDDEDFDF,$EOE1E1E2,$E3E4E4E5,$E6E7E7E8 
$E9E9EAEB,$ECECEDEE,$EEEFFOF1,$F1F2F3F3 
$F4F5F5F6,$F7F8F8F9,$FAFAFBFC,$FCFDFEFF 

546 Designing Cards and Drivers for the Macintosh Family 

red channel 

green channel 



_EndBigGamma 

DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 
DC.L 

$0005090B,$OE101315,$17191B1D,$lE202224 
$2527282A,$2C2D2F30,$31333436,$37383A3B 
$3C3E3F40,$42434445,$4748494A,$4B4D4E4F 
$50515254,$55565758,$595A5B5C,$5E5F6061 
$62636465,$66676869,$6A6B6C6D,$6E6F7071 
$72737475, $76777879, $7A7B7C7D, $7E7F8081 
$81828384,$85868788,$898A8B8C,$8C8D8E8F 
$90919293,$94959596,$9798999A,$9B9B9C9D 
$9E9FAOA1,$A1A2A3A4,$A5A6A6A7,$A8A9AAAB 
$ABACADAE,$AFBOBOB1,$B2B3B4B4,$B5B6B7B8 
$B8B9BABB,$BCBCBDBE,$BFCOCOC1,$C2C3C3C4 
$C5C6C7C7,$C8C9CACA,$CBCCCDCD,$CECFDODO 
$D1D2D3D3,$D4D5D6D6,$D7D8D9D9,$DADBDCDC 
$DDDEDFDF,$EOE1E1E2,$E3E4E4E5,$E6E7E7E8 
$E9E9EAEB,$ECECEDEE,$EEEFFOF1,$F1F2F3F3 
$F4F5F5F6,$F7F8F8F9,$FAFAFBFC,$FCFDFEFF 

blue channel 

Appendix B Sample Video Card Firmware 547 



j============================================================================= 
One-bit per pixel parameters 

j============================================================================= 

_OBVParms 

_EndOBVParms 

OSLstEntry 
DatLstEntry 
DatLstEntry 
DatLstEntry 

OSLstEntry 
OSLstEntry 
DatLstEntry 
DatLstEntry 
DatLstEntry 

OSLstEntry 
DatLstEntry 
DatLstEntry 
DatLstEntry 

DC.L 

DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 
DC.L 
DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 

_OBVFixedCLUT 
DC.L 

DC.L 
DC.W 
DC.W 

DC.W 
DC.W 

_EndOBVFixedCLUT 

_OBVParmb 
DC.L 

DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 
DC.L 
DC.L 
DC.W 
DC.W 
DC.W 

mVidParams,_OBVParms 
mPageCnt,Pagesls 
mDevType,CLUTType 
EndOfList,O 

mVidParams,_OBVParms 
mTable,_OBVFixedCLUT 
mPageCnt,Pagesls 
mDevType,FixedType 
EndOfList,O 

mVidParams,_OBVParmb 
mPageCnt,Pageslb 
mDevType,CLUTType 
EndOfList,O 

_EndOBVParms-_OBVParms 

offset to vid parameters 
number of video pages 
device type 
end of list 

offset to vid parameters 
offset to fixed table 
number of video pages 
device type 
end of list 

offset to vid parameters 
number of video pages 
device type 
end of list 

physical block size 

defmBaseOffset QuickDraw base offset 
RBIs ; physRowBytes 
defmBounds_Ts, defmBounds_Ls, defmBounds_Bs, defmBounds_R s 
defVersion bmVersion 
o packType not used 
o packSize not used 
defmHRes bmHRes 
defmVRes bmVRes 
ChunkyIndexed bmPixelType 
1 bmPixelSize 
1 bmCmpCount 
1 bmCmpSize 
defmPlaneBytes bmPlaneBytes 

_EndOBVFixedCLUT-_OBVFixedCLUT ; physical block size 

$0000 
$0000 
$0001 

$0000, $FFFF,$FFFF,$FFFF 
$0001, $0000,$0000,$0000 

_EndOBVParmb-_OBVParmb 

ctSeed 
ctFlags 
ctSize (n - I) 

value, r,g,b (white entry) 
value, r,g,b (black entry) 

physical block size 

defmBaseOffset QuickDraw base offset 
RBlb ; physRowBytes 
defmBounds_Tb,defmBounds_Lb,defmBounds_Bb,defmBounds_Rb 
defVersion bmVersion ° packType not used ° packSize not used 
defmHRes bmHRes 
defmVRes bmVRes 
Chunky Indexed bmPixelType 
1 bmPixelSize 
1 bmCmpCount 

548 Designing Cards and Drivers for the Macintosh Family 



_EndOBVParmb 

DC.W 
DC.L 

1 
defmPlaneBytes 

bmCmpSize 
bmPlaneBytes 

i============================================================================= 
Two-bit per pixel parameters 

j============================================================================= 

TBVParms -

_EndTBVParms 

TBVParmb -

_EndTBVParmb 

OSLstEntry 
DatLstEntry 
DatLstEntry 
DatLstEntry 

OSLstEntry 
DatLstEntry 
DatLstEntry 
DatLstEntry 

DC.L 

DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 
DC.L 
DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 

DC.L 

DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 
DC.L 
DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 

mVidParams,_TBVParms 
mPageCnt,Pages2s 
mDevType,CLUTType 
EndOfList,O 

mvidParams,_TBVParmb 
mPageCnt,Pages2b 
mDevType,CLUTType 
EndOfList,O 

_EndTBVParms-_TBVParms 

offset to vid parameters 
number of video pages 
device type 
end of list 

offset to vid parameters 
number of video pages 
device type 
end of list 

physical block size 

defmBaseOffset QuickDraw base offset 
RB2s ; physRowBytes 
defmBounds_Ts,defmBounds_Ls,defmBounds_Bs,defmBounds_Rs 
defVersion bmVersion 
o packType not used 
o packSize not used 
defmHRes bmHRes 
defmVRes bmVRes 
Chunkylndexed bmPixelType 
2 bmPixelSize 
1 bmCmpCount 
2 bmCmpSize 
defmPlaneBytes bmPlaneBytes 

_EndTBVParmb-_TBVParmb physical block size 

defmBaseOffset QuickDraw base offset 
RB2b ; physRowBytes 
defmBounds_Tb,defmBounds_Lb,defmBounds_Bb,defmBounds_Rb 
defVersion bmVersion 
o packType not used 
o packSize not used 
defmHRes bmHRes 
defmVRes bmVRes 
Chunkylndexed bmPixelType 
2 bmPixelSize 
1 bmCmpCount 
2 bmCmpSize 
defmPlaneBytes bmPlaneBytes 

j============================================================================= 
Four-bit per pixel parameters 

;============================================================================= 

OSLstEntry 
DatLstEntry 
DatLstEntry 
DatLstEntry 

mVidParams,_FBVParms 
mPageCnt,Pages4s 
mDevType,CLUTType 
EndOfList,O 

offset to vid parameters 
number of video pages 
device type 
end of list 

Appendix B Sample Video Card Firmware 549 



_FBVParms 

_EndFBVParms 

_F13VParmb 

_EndFBVParmb 

OSLstEntry 
DatLstEntry 
DatLstEntry 
DatLstEntry 

DC.L 

DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 
DC.L 
DC.L 
DC.W 
DC .• W 
DC.W 
DC.W 
DC.L 

DC.L 

DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 
DC.L 
DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 

mVidParams,_FBVparmb 
mPageCnt,Pages4b 
mDevType,CLUTType 
EndOfList,O 

_EndFBVParms-_FBVParms 

offs~t to vid parameters 
number of video pages 
device type 
end of list 

physical block size 

defrnBaseOffset QuickDraw base offset 
RB4s ; physRowBytes 
defmBounds_Ts,defmBounds_Ls,defmBounds~BS,defmBounds_Rs 
defVersion bmVersion 
o packType not used 
o packSize not used 
defmHRes bmHRes 
defmVRes bmVRes 
Chunky Indexed bmPixelType 
4 bmPixelSize 
1 bmCmpCount 
4 bmCmpSize 
defmPlaneBytes bmPlan~Bytes 

physical block size 

defmBaseOffset QuickDraw base offset 
RB4b ; physRowBytes 
d~fmBounds_Tb.defmBounds_Lb,defmBounds_Bb,defmBounds_Rb 
defVersion bmVersion 
o packType not used 
o packSize not used 
defmHRes bmHRes 
defmVRes bmVRes 
Chunkylndexed 1 bmPixelType 
4· bmPixelSize 
1 bmCrnpCount 
4 bmcmpSize 
defmPlaneBytes bmPlaneBytes 

SSG Designing Cards and Drivers for the Macintosh Family 



i========================~===================~================================ 
Eight-bit per pixel parameters 

i==========================================================~==~======~======== 

EBVParms 

_EndEBVParms 

_EBVParmb 

_EndEBVParmb 

OSLstEntry 
DatLstEntry 
DatLstEntry 
DatLstEntry 

OSLstEntry 
DatLstEntry 
DatLstEntry 
DatLstEntry 

DC.L 

DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 
DC.L 
DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 

DC.L 

DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 
DC.L 
DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 

mVidParams,_EBVParms 
mPageCnt,PagesBs 
mDevType,CLUTType 
EndOfList,O 

mvidParams,_EBVParmb 
mPageCnt,PagesBb 
mDevType,CLUTType 
EndOfList,O 

_EndEBVParms-_EBVParms 

offset to vid parameters 
number of video pages 
device type 
end of list 

offset to vid parqmeters 
number of video pages 
device type 
end of list 

physical block size 

defmBaseOffset QuickDraw base offset 
RBBs ; physRowBytes 
defmBounds_Ts,defmBounds_Ls,defmBounds_Bs,defmBounds_Rs 
defVersion bmVersion . ° packType not used ° packSize not used 
defmHRes bmHRes 
de fmVRes bmVRes 
Chunky Indexed bmPixelType 
B bmPixelSize 
1 bmCmpCount 
B bmCmpSize 
defmPlaneBytes bmPlaneBytes 

_EndEBVParmb-_EBVParmb physical block size 

defmBaseOffset QuickDraw base offset 
RBBb ; physRawBytes 
defmBounds_Tb,defmBounds_Lb,defmBounds_Bb,defmBounds_Rb 
defVersion bmVersion ° packType not used ° packSize not used 
defmHRes bmHRes 
defmVRes bmVRes 
ChunkyIndexed bmPixelType 
B bmPixelSize 
1 bmCmpCount 
B bmCmpSize 
defmPlaneBytes bmPlaneBytes 

Appendix B Sample Video Card Firmware ;51 



;============================================================================= 
Direct mode (16-bit per pixel) parameters 

;============================================================================= 

_D16BMs 

_DB16VParms 

OSLstEntry 
DatLstEntry 
DatLstBntry 
DatLstEntry 

DC.L 
DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 
DC.L 
DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 

_EndDB16VParms 

mVidParams,_DB16VParms 
mPageCnt,Pages16s 
mDevType,DirectType 
EndOfList,O 

offset to vid parameters 
number of video pages 
direct device type 
end of list 

_EndDBVParms-_DB16VParms physical block size 
defmBaseOffset QuickDraw base offset 
RB16s ; physRowBytes 
defmBounds_Ts, defmBounds_Ls , defmBounds_Bs , defmBounds_R s 
defVersion bmVersion 
o packType not used 
o packSize not used 
defmHRes bmHRes 
defmVRes bmVRes 
ChunkyDirect bmPixelType 
16 bmPixelSize 
3 bmCmpCount 
5 bmCmpSize 
defmPlaneBytes bmPlaneBytes 

;============================================================================= 
Direct mode (32-bit per pixel) parameters 

,-----------------------------------------------------------------------------

_D32BMs 

_DB32VParms 

OSLstEntry 
DatLstEntry 
DatLstEntry 
DatLstEntry 

DC.L 
DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 
DC.L 
DC.L 
DC.W 
DC.W 
DC.W 
DC.W 
DC.L 

_EndDB32VParms 

mvidParams,_DBVParms 
mPageCnt,Pages32s 
mDevType,DirectType 
EndOfList,O 

offset to vid parameters 
number of video pages 
direct device type 
end of list 

_EndDB32VParms-_DB32VParms ; physical block size 
defmBaseOffset 
RB32s ; physRowBytes 
defmBounds_Ts , defmBounds_Ls, defmBounds_Bs , defmBounds_R s 
defVersion bmVersion 
o packType not used 
o packSize not used 
defmHRes bmHRes 
defmVRes bmVRes 
ChunkyDirect bmPixelType 
32 bmPixelSize 
3 bmCmpCount 
8 bmCmpSize 
defmPlaneBytes bmPlaneBytes 

552 Designing Cards and Drivers for the Macintosh Family 



i============================================================================= 
Format/header block 

i============================================================================= 

WITH 
ORG 

DC.L 
DC.L 
DC.L 
DC.B 
DC.B 
DC.L 
DC.B 
DC.B 

ENDWITH 
END 

FHeaderRec 
ROMSize-FHeaderRec.fhBlockSize 

{_sRsrcDir-*)**$OOFFFFFF 
ROMSize 
o 
2 
AppleFormat 
TestPattern 
o 
$E1 

;offset to sResource directory 
;length of declaration data 
;CRC {Patched by crcPatch} 
;revision (1-9) 
; format 
;test pattern 
;reserved byte 
;ByteLanes: 1111 0001 

Appendix B Sample Video Card Firmware 553 



.------------------~------~--------------------------- -------------------------------, 

(c) Apple Computer, Inc. 
All rights reserved. 

1986-1991 

;--------------------------------------------------~--------------------~------------

File: SamplePrimaryInit.a 

This is the primary initialization code for the Sample Video Card 
source. PrimaryInit for video cards serves a number of functions: 

1) initializes the video frame buffer and video output 
2) disables VBL interrupts 
3) displays a 50% dithered gray pattern on the screen 
4) performs any maintainence on Slot Manager structures 

This sample card supports a number of configurations. These include 
640x480 (for both 8-bit & 32-bit QuickDraw), 640x870, and, on machines 
that have 32-bit QD in ROM, a 640x480 mode that supports only one-bit 
per pixel to demonstrate video mode families. This fictitious card 
can detect the two different types of displays or the lack of any 
connected monitor via hardware sense lines. 

Of particUlar interest are the sections where the code determines 
that the configuration has changed, the way it selects new defaults, 
and the relationship with SecondaryInit when running 32-bit addressed 
sResources. 

Sections that are hardware-sp~cific are not included in this listing; 
their place in code is marked with the tag <DEVICE-SPECIFIC>. 

:------------------------------------------------------------------------------------

Header 
;----------------------------------------------------- ---------------------------~---

Begin1stInit 

DC.B 
DC.B 
DC.W 
DC.L 

WITH 

sExec_2 
sCPU_68020 
o 
Begin1stInit-* 

seBlock,spBlock 

Set initial vendor status 

MOVE.W #seSuccess,seStatus(AO) 

554 Designing Cards and Drivers for the Macintosh Family 

code revision 
CPU type is 68020 
reserved 
offset to code 

assume a good return 



Form 32-bit base address ihto AI. 
mode before using this address.) 

(Make sure to swap into 32-bit addressing 

MOVE.L 
MOVE.B 
BFINS 
MOVE.L 

<DEVtCE~SPECIFIC> 

#$FOOOOOOO,Dl 
seSlot(AO),DO 

DO,Dl{4:4} 
. Dl,Ai 

Dl <- FOOOOOOO 
get slot number 
Dl <- FsOQOOQQ 
copy to address reg 

Disable VBL inte:(rupts here. They will be reactivated at _Open time. 

BSR Disab1eVBLs left as an exercise for the 
reader 

<DEVICE-SPECIF!C> 

Read the connected display type. This may be from sense lines that identify 
the connected monitor, DIP switches on the card, or setup information in the 
slot PRAM (note that the System file is not open yet). Often video 
generated at the wrong timing is not viewable, so dynamically reading the 
connected monitor is always preferred. Also, it is desirable to identify 
the absence of a connected monitor so that it will not show up on the 
desktop. 

In this example, we assume that the display type.will be returned in Dl. If 
the display is 640x480, Dl=$80; if 640x870, Dl:$88. These are the 24-bit 
(a-bit QD) flavored spIDs for small and large display sRsrc lists. If no display 
is connected, this routine returns Pl=$FF, which is not an applicable spID. Later, 
we will set the spID to disabled in P7, so set it to $FF for now. 

BSR ReadSenseLines left as an exercise for the 
reader 

<DEVICE-SPECIFIC> 

Initialize the video generation and CLUT here. You may init to any video mode, 
but it is preferable to initialize to ibpp mode if the card has that 
capability, or to the default screen depth as called out in your video 
sResource. Also, gray the screen with a 50% dithered gray pattern. Note that 
this routine should probably do nothing when Pl=$FF (i.e., no-connect). 

BSR InitScreen left as an exercise for the 
reader 

Set up a slot parameter block for sRsrc pruning. At startup, all sResources 
in the sResource directory are loaded. After Primarylnit, only one active 
video sResource must be present, so all others must be removed. 

SUBA 
MOVE.L 
MOVE.B 
CLR.B 

#spB10ckSize,SP 
SP,AO 
pQ,spSlot(AO) 

SpExtPev(AO) 

make an spB10ck 
get pointer to parms 
identify the slot 
external device = 0 

Read the slot pRAM to determine what the currently saved mode is. The first 
word is the board ID, followed by the default pixdepth. This code keeps the 

Appendix B Sample Video Card Firmware 555 



spID of the video sResource in VendorUse2. This is an important part of 
the implementation of video mode families. Later, in PrimaryInit, this mode 
is tested for compatibility with the current display, and, if it is, it is 
made the enabled mode. 

since we can always have a 24-bit addressed (8-bit QD) video sRsrc, we simply match 
the monitor type if 32-bit QuickDraw isn't around. If this frame buffer can only 
work in 32-bit addressing, then we return a magic value ($8001) in seResult, which 
disables this card until SecondaryInit if the new Slot Manager is loaded as a 
system patch. 

The boot screen (the one the happy Mac is on) is set to the depth in VendorUsei 
before the System file is open. The other screens are set up per the 'scrn' 
resource by the system. 

SUBA #SizesPRAMRec,SP block for PRAM record 
MOVE.L SP, spResult (AO) point to it 

sReadPRAMRec read it 
MOVE.B VendorUse2(SP) ,D4 get default spID 

BTST #3,D4 was this a big screen? 
BNE.S @isBig yes 
CMP.B #$80,Di compare to actual display 
BEQ.S SetUp monitor hasn't changed 
BRA.S Changed 

@isBig 
CMP.B #$88,Dl compare to actual display 
SEQ.S SetUp monitor hasn't changed 

If we got here, then the monitor isn't the same type that we had last time. 
We need to resetup PRAM and perform other invalidations. 

Changed 

block 

MOVE.B 
MOVE.B 
MOVE.B 

MOVE.L 

_SPutPRAMRec 

ADDA 

Di,D4 ; copy the default to D4 
Di,VendorUse2(SP) ; make it the default 
#FirstVidMode,VendorUsei(SP) select default depth 

spResult(AO),spsPointer(AO) set up parameter 

write the new record out 

#SizesPRAMRec,SP eliminate PRAM block 

Let's go for it. We've invalidated as necessary. The 24-bit spID for the 
desired configuration is in D4. We will test for the presence of 32-bit 
QuickDraw and the new Slot Manager. If 32-bit QD is not in ROM (remember, 
the System file is not yet open), then we will convert to using the 24-bit 
addressed spID and fix it in SecondaryInit. If the new Slot Manager is 
present in ROM, then we will also add the i-bit only sRsrc as an alternate, 
disabled mode. 

556 Designing Cards and Drivers for the Macintosh Family 



SetUp 

i Here is the 32-bit QuickOraw 10 sequence 

MOVE.L 
_GetTrapAddress 
MOVE.L 

#$A89F,00 
,NewTool 

AO,Ol 
#$AB03,00 

,NewTool 
MOVE.L 
_GetTrapAddress 
CMPA.L Dl,AO 

Make32 
#0,04 
SlotTst 

BNE.S 
BCLR 
BRA.S 

_unimplemented trap 

save result 
now test for new QO 
get it too 
are they the same? 
if 'F-, then Q032 
if no Q032, then clear bit 

i If the 32-bit stuff is present, then pick the enhanced mode 

Make32 

@1 

CMP.B 
BEQ.S 
MOVE.B 
MOVE.B 
BRA.S 

MOVE.B 

#sRsrc_VidS32F,04 
@1 

#sRsrc_VidS32 ,04 
#sRsrc_VidS32F,D7 

SlotTst 

#sRsrc_vidS32 ,07 

is it the special mode? 
yes 
set 32-bit mode as active 
make one-bit the alternate 

set full mode the alternate 

Here is the Slot Manager version 10. If the original Slot Manager is present, 
then this routine returns an error code in DO. If we don't have the new Slot 
Manager, then set 07 back to $FF, since we can't disable. 

SlotTst 
SVersion 

BEQ.S 

MOVE.B 

Prune 

#$FF,D7 

what Slot Manager do we have? 
new, so continue 

make disable invalid 

Time to massage the sRsrc directory. The spIOs for all modes are concatenated into 
a long word of possible modes. Each byte is compared to 04, and if not the valid 
mode, its sRsrc is deleted. In addition, each nybble is tested to see if it 
should be disabled. 

Prune 

@O 

@2 

@5 
@10 

MOVE.L 
MOVEQ 
MOVE.B 
LSR.L 
CMP.B 
BNE.S 
MOVE.B 
MOVE.L 

#3, Dl 

#8,06 
07,00 
2 

_SetsRsrcState 

#$808188C1,06 

06,00 

DO, spIO (AO) 
#l,spParamOata(AO) 

CLR.L spParamOata(AO) 
BRA.S @10 
CMP.B 04,00 
BEQ.S @10 
MOVE.B OO,sp10(AO) 

sOeleteSRTRec 
OBRA 01,@0 

clean up spBlock on stack 

the mode list (four modes) 
counter in D1 (zero based) 
get lowest byte 
rotate list 
should this mode be disabled? 
if not, then continue 
mark this 10 for disabling 
set to one to disable 
disable it 
no longer needed 
and continue 
is this the valid mode? 
yup, so skip deletion 
set the mode 
remove the invalid entry 

Appendix B Sample Video Card Firmware 557 



CleanUp 
ADDA #spBlockSize,SP 

return to Ybur regularly scheduled start code 

RTS 

ENDW!TB 

558 Designing Cards and Drivers for the Macintosh Family 

flush the block 



6 ________________________________________ ~ ____________________________________________ ~ __ 

, 

(c) Apple Computer, Inc. 
All rights reserved. 

1986-1991 

6 _____________________________________________________ ____________________________ ~ _____ _ , 

File SampleSecondarylnit.a 

This is the secondary initialization code for the Sample Video Card 
source. Secondarylnits are one-time initialization code that run 
immediately after the system patches have been loaded. Video cards 
may want to perform certain reconfigurations now that the new 
Slot Manager and 32-bit QuickDraw have had an opportunity to load. 

At this point in the boot process, the boot screen has been opened 
and has a gDevice, but the other displays have only had Primarylnit. 
For many cards, this code only performs housekeeping tasks with 
declaration structures. Hardware setup is generally complete at 
Primarylnit. 

Video mode families depend upon inactivated video sResource lists 
to be present. Since this is a new Slot Manager feature, 
older machines will depend upon the addition of inactive modes 
at Secondarylnit after the Slot Manager patch is loaded. 

Remember that interrupts are enabled for the boot device, but not 
for other devices that have not yet been opened, 

.--------------------~-----------------------~-------------------~-----------------------, 
Header 

._---------------------------------------------------------------------------------------, 

DC.B 
DC.B 
DC.W 
DC.L 

WITH 

sExec_2 
sCPU_68020 
o 
Begin2ndlnit-* 

seBlock,spBlock 

code revision 
CPU type is 68020 
reserved 
offset to Secondary Init code 

Begin2ndlnit 

Always a successful return 

MOVE.W #seSuccess, seStatus (AO) VendorStatus <- 1 

Calculate the 32-bit base address now while we have the slot number. 
(Make sure to swap into 32-bit addressing mode before using this address.) 

MOVE.L 
MOVE.B 
BFINS 
MOVE.L 

#$FOOOOOOO,D1 
seSlot(AO) ,DO 

DO,D1{4:4} 
D1,A1 

Set up a slot parameter block 

SUBA 
MOVE.L 
MOVE.B 
CLR.B 

#spBlockSize,SP 
SP,AO 
DO,spSlot(AO) 

spExtDev (AO) 

Dl <- FOOOOOOO 
get slot number 
D1 <- FsOOOOOO 
copy to address reg 

make a slot Parameter block 
get pointer to parm block now 
put slot in pBlock 
no external devices 

Appendix B Sample Video Card Firmware 559 



If the new Slot Manager was present in ROM, then activations and deactivation have 
already been performed. We also reverify that 32-bit QuickDraw is around. 

~sVersion 
CMP.L 
BEQ.S 

#2,spResult(AO) 
SecInitDone 

MOVE.L 
_GetTrapAddress 
MOVE.L 

#$A89F,DO 
, NewTool 

AO,Dl 
#$AB03,DO 

, NewTool 
DI,AO 

SecInitDone 

MOVE.L 
_GetTrapAddress 
CMPA.L 
BEQ.S 

find the Slot Manager version 
get the result (I=RAM, 2=ROM) 
if in ROM, done 

the unimplemented trap 
get its address 
save it 
the 32-bit QD trap 
get it address 
if not implemented 
then no QD32 

Find the currently active video sResource. This is the one that was active upon 
completion of PrimaryInit. It may be either 24- or 32-bit addressed. 

MOVE.L SP,AO 
CLR.B pID(AO) 
CLR.B spTBMask(AO) 
MOVE.W #catDisplay,spCategory(AO) 
MOVE.W #typVideo,spCType(AO) 
MOVE.W #drSwApple,spDrvrSW(AO) 
MOVE.W #drHwSample,spDrvrHW(AO) 
_sNextTypesRsrc 
BNE.S SecInitDone 
MOVE.W spRefNum(AO),D5 

point at spBlock again 
start search at id=O 
we're going for ah exact match 
look for: Display, 

Video, 
Apple, 
Sample. 

get the spsPointer 
(If failed, we're in trouble.) 
save driver refNum for later 

If the big screen sResource is installed, then we are done since it doesn't have 
a 32-bit addressed counterpart. 

CMP.B 
BEQ.S 

#sRsrc_VidB8,spID(AO) 
SecInitDone 

is it the big screen? 
yes, so done 

Read the slot pRAM rec to find out the current desired mode. The VendorUse2 byte of 
slot PRAM contains the spID of the target video sRsrc list, which will be either 
the full-function sResource or the I-bit only ohe. We will delete the 24-bit 
sRsrc list and add the other lists, enabled or disabled appropriately. We know 
that it will not already be set to a 32-bit sRsrc since we would have done that in 
PrimaryInit if the new Slot Manager were present. 

SUBA #SizesPRAMRec,SP 
MOVE.L SP, spResult (AO) 
_sReadPRAMRec 
MOVE.B VendorUse2(SP),D4 
ADDA.W #SizesPRAMRec,SP 

allocate block for PRAM record 
point to it 
read it 
get the current spID 
free PRAM record buffer 

Delete the 24-bit version (its spID is still in the spBlock) 

_sDeleteSRTRec 

Insert the desired mode (its spID is in D4) as an active sResource 

560 Designing Cards and Drivers for the Macintosh Family 



, 

MOVE.B D4,spID(AO) 
CLR.L spParamData(AO) 
CLR.L spsPointer(AO) 

sInsertSRTRec 

add this sRsrc in 
clear to enable activation 
add back an sRsrc in directory 
add it back in 

We can determine the spID of the alternate mode by flipping bit 6. We know we need 
to add this mode in deactivated. 

BCHG 
MOVE.L 
MOVE.B 

#6,D4 

sInsertSRTRec 

#l,spParamData(AO) 
D4,spID(AO) 

get the alternate mode 
set up to disable it 
put in block 
insert and disable 

Test if we are the boot screen. If we are, we need to update the gDevice. The 
dCtlDevBase is fixed by the Slot Manager. 

SUBQ #4,SP 
_GetDeviceList 
MOVE.L (SP}+,AO 

(AO) ,AO 
gdRefNum(AO) ,D5 
SecInitDone 

MOVE.L 
CMP.W 
BNE.S 

MOVE.L 
MOVE.L 
MOVE.L 

gdPMap(AO) ,AO 
(AO) ,AO 
Al,pmBaseAddr(AO) 

Return to your regularly scheduled start code 

make room for function return 
get the boot gDevice 
get the gdHandle 
get pointer to gDevice 
was this the boot device 
no, so quit 

get pixMap handle 
get pixMap ptr 
save new base address 

SecInitDone 
ADDA 
RTS 
ENDWITH 

#spBlockSize,SP flush the block 

Appendix B Sample Video Card Firmware 561 





Appendix C Video Card Driver Example 

This appendix provides an example of a possible video card driver, 
written in Macintosh Programmer's Workshop assembly language. 



i----------------------------------------------------- ------------------------

(c) Apple Computer, Inc. 1986-1991 
All rights reserved. 

;-----------------------------------------------------------------------------

File : SampleDrvr.a 

This file contains a sample video driver for use by the Macintosh 
as in MPW 3.x format. It is structured as a normal slot device driver. 
It is included as part of the declaration ROM image, so this file does 
not have its own INCLUDE statements. 

Hardware-specific sections of the driver are not included here; their place 
in code is marked with the tag <DEVICE~SPECIFIC>. 

This fictitious video card supports 1-, 2-, 4-, 8-, 16-, and 32-bit/pixel on 
640x480 and 1-, 2-, 4-, and 8-bpp on 640x870 displays. Also, in systems that 
have the new version of the Slot Manager and 32-bit QuickDraw, there is a i-bit 
only sRsrc for the 640x480 display, implemented as a video mode family. The system 
configuration and capabilities were determined at Primarylnit and Secondarylnit, 
so the driver performs only minimal identification. 

BLANKS 
STRING 
MACHINE 

ON 
ASIS 

MC68020 

;-----------------------------------------------------------------------------
Local data storage declarations and flag word equates 

i----------------------------------------------------- ------------------------

; This is device storage that is stored in the dCtlStorage field of the DCE 

VidLocals RECORD 
saveMode DS.W 
savePage DS.W 
saveBaseAddr DS.L 
address 
saveSQE1Ptr DS.L 
elem 
saveGammaptr DS.L 
table 
saveVidParms DS.L 
GFlags DS.W 
VidLocalSize EQU 

ENDR 

; Flags within GFlags word 

GrayFlag EQU 
IntDisFlag EQU 
DirectFlag EQU 

0 
1 
1 
1 

1 

1 

1 
1 

*-VidLocals 

15 
14 
13 

the current mode setting 
the current video page setting 
the current screen base 

ptr to slot interrupt queue 

pointer to the current gamma 

pointer to video config data 
flags word 
size of this record structure 

luminance mapped if set 
interrupts disabled if set 
direct type pixel mode if set 

;-----------------------------------------------------------------------------
Video driver header 

i---~-----------------------------------------~------- ------------------------

vidDrvr DC.W 
DC.W 

Entry point offset table 

DC.W 

$4COO 
0,0,0 

videoOpen-vidDrvr 

564 Designing Cards and Drivers for the Macintosh Family 

ctl, status, needsLock 
not an ornament, 

open routine 



DC.W 
DC.W 
DC.W 
DC.W 

VidDrvr-VidDrvr 
VideoCtl-VidDrvr 
VideoStatus-VidDrvr 
VideoClose-VidDrvr 

no prime 
control 
status 
close 

It is important to include the driver version number here. The card driver is 
opened using the VideoName string in the declaration ROM structures. The _Open 
call looks in the current resource chain, and if it finds an appropriately named 
driver (resource type 'DRVR', resID does not matter) with a higher version number, 
then it substitutes that driver's code for the driver included in the video ROM. 
Third-party developers cannot generally utilize this mechanism for overrides, 
since their driver would have to be in the System file, but should support this 
driver version number mechanism in their own system extensions. Note also that 
the driver's name is a Pascal string in the driver, but is a C string with the 
leading period omitted in the configuration data. 

Pascal 
videoTitle 

STRING 
DC.B 
STRING 
ALIGN 
DC.W 

'.Display_Video_Apple_Samp ; video driver name 
ASIS 

2 
DrvrROMVersion 

make sure word aligned 
driver version number 

i----------------------------------------------------- ------------------------
, 
; videoOpen allocates and initializes private storage for the device. It identifies 
the; configuration set up at Primary/SecondaryInit. It installs the default gamma 
table. ; Finally, it installs the interrupt handler and enables the interrupts. 

Entry: AO csParam block pointer 
Al = DCE pointer 

i----------------------------------------------------- ------------------------

WITH vidLocals, SlotIntQElement, spBlock 

videoOpen 

Allocate private storage (since block is CLEAR, GFlags are zeroed) and get a 
pointer to it in A3 

MOVEQ 
_ResrvMem 
MOVEQ 
_NewHandle 
BNE 
MOVE.L 
_HLock 
MOVE.L 

#vidLocalSize, DO 
,SYS 

#VidLocalSize, DO 
,SYS,CLEAR 

OpError 
AO,dCtlStorage(Al) 

(AO) ,A3 

get size of parameters 
make room as low as possible 
get size of parameters 
get some memory for VidLocals 
=> return an error in open 
save returned handle in DCE 
and lock it down 
get a pointer to it 

Appendix C Video Card Driver Example 565 



Find the current video spID by using the Slot Manager to search for this device, 
which was set up at boot by PrimaryInit. This will identify the exact hardware and 
software configuration that we are running with at this time. 

from the 

match 

SUBA #spBlockSize,SP ; get a slot parameter block 
; pointer 

MOVE.L 
MOVE.B 

SP,AO ; get pointer to block in AO 
dCtlSlot (A1) , spSlot (AO) copy the slot number 

, CLR.B 
CLR.B 
CLR.B 
CLR.B 

SpID(AO) 
spExtDev(AO) 
spHWDev(AO) 
spTBMask(AO) 

MOVE.W #catDisplay,spCategory(AO) 
MOVE.W #typVideo,spCType(AO) 
MOVE.W #drSwApple,spDrvrSW(AO) 
MOVE.W #drHwSample,spDrvrHW(AO) 
_sNextTypesRsrc 
BNE OpError1 

DCE 
start looking at spID=O 
no external devices 
only one hardware device here 
we're going for an exact 

look for:Display, 
Video, 
Apple, 
Sample. 

get the spsPointer 
if ~, then there has been a 

serious error 

Point to the appropriate set of video parameters for this mode. We contrived the 
spIDs so that if 32-bit QD is available bit 0 is set, if the 640x870 display is 
connected then bit 3 is set, and if we are in the special one-bit only 640x480 
mode, then bit 6 is set. 

screen 

@RealSmall 

@Medium 

@ThinkBig 

@cont1 

MOVE.B 
BTST 
BNE.S 
BTST 
BNE.S 

BTST 

BNE.S 
LEA 

BRA.S 

LEA 

BRA.S 

LEA 

BRA.S 
LEA 

MOVE.L 

spID(AO) ,DO 
#6,DO 
@RealSmall 
#3,DO 
@ThinkBig 

#O,DO 

@Medium 
Small24Parms, A2 

@contl 

OneParms,A2 

@cont1 

Sma1l32Pa.rms, A2 

@cont1 
BigParms,A2 

A2,saveVidParms(A3 

get the spID 
test the special bit 
if set, then special mode 
test the big screen bit 
if ~, then we have a big 

is it the 32-bit or 34-bit 
fla.vor? 

general parameters for 640:x:480 
displays 

general parameters for 1-bit 
only mode 

general parameters for direct 
; mode display 

general parameters for 640x870 
displays 

save these in private storage 

Load the default gamma table from the slot resource list. Each video sRsrc list 
includes a directory of gamma tables that are appropriate for this mode. We ~ill 
set the default gamma table from this directory, which always has an spID of 128. 
AO still contains the current video sResource information. If no gamma directory 
is present, the software should just make an uncorrected, linear gamma table. 

;66 Designing Cards and Drivers for the Macintosh Family 



MOVE.B 
sFindStruct 

MOVE.B 
_sGetBlock 

#sGammaDir,spID(AO); look for the gamma directory 
get gamma directory's 
spsPointer 

#128,spID(AO) get default gamma table 
we want a ptr in sysheap 

skip over gamma table header 

@Name 

MOVE.L 
ADDA 
TST.B 
BNE.S 
ADDA 
MOVE.L 
AND.L 
MOVE.L 
ADDA 

#2,AO 
(AO)+ 
@Name 
#l,AO 

spResult (AO) ,AO 

AO,DO 
#$FFFFFFFE,DO 

DO,saveGammaPtr(A3 
#spBlockSize,SP 

point to head of the block 
skip resID 
skip over gamma name 

word align pointer 
get in d-reg 
round it 
put it in private storage 
release the Slot Manager block 

Get and install the interrupt handler. Call the Set Interrupt utility code to do 
this. This utility also starts the interrupts going. If there is an error 
condition, EnableVGuts returns with Z-bit set. 

cleared 

All done! 

EndOpen 

OpError2 

OpErrorl 

OpError 

MOVEQ 
_Newptr 

BNE.S 
MOVE.L 

BSR 
BNE.S 

MOVEQ 
RTS 

MOVE.L 

_DisposPtr 
MOVE.L 
_DisposHandle 
MOVE.L 
BRA.S 

ENDWITH 

#sqHDSize,DO 
,SYS,CLEAR 

OpErrorl 
AO,saveSQEIPtr(A3) 

EnableVGuts 
OpError2 

#noErr,DO 

saveSQEIPtr(A3),AO 

dCtlStorage(Al) ,AO 

#OpenErr, DO 
EndOpen 

allocate a slot queue element 
get it from system heap 

save the queue element 

do it 

no error 
return 

get slot interrupt queue 
element 
release it 
dispose the private storage 
release it 
say can't open driver 

Appendix C Video Card Driver Example 567 



i----------------------------------------------------- ------------------------

Video Driver Control Call Handler 

(0) Reset 
(1) KillIO 
(2) SetMode 
(3) SetEntries 
(4) SetGamrna 
( 5) GrayPage 
(6) SetGray 
(7) SetInterrupt 
(8) DirectSetEntries 
(9) SetDefaultMode 

Entry: AD 
Al 

10 parameter block pointer 
DCE pointer 

Uses: A2 
A3 

cs parameters (ie. A2 <- csParam(AO)) 
pointer to private storage 

Exit: 

A4 
DO-D3 

DO 

scratch (must be preserved) 
scratch (don't need to be preserved) 

= error code 

j----------------------------------------------------- ------------------------

VideoCtl 

parameters 

relative 

CtlJumpTbl 

CtlBad 

CtlGood 

CtlDone 

MOVE.L 

MOVE.W 
MOVE.L 

MOVE.L 
MOVE.L 

CMP.W 
BHI.S 
MOVE.W 

JMP 

DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 

AD,-(SP) 

csCode(AO) ,DO 
csParam(AO) ,A2 

dCtlStorage(Al) ,A3 
(A3) ,A3 

; save work registers 
(AO is saved 
because it is used by 
ExitDrvr) 

get the opCode 
A2 <- ptr to control 

get pointer to private storage 

#9,DO ; IF csCode NOT IN [0 .. 9] THEN 
CtlBad , error, csCode out of bounds 

CtlJumpTbl(PC,DO.W*2) ,DO ; get the routine's 

CtlJumpTbl(PC,DO.W) 

VidReset-CtlJumpTbl 
vidKillIO-CtlJumpTbl 
SetVidMode-CtlJumpTbl 
SetEntries-CtlJumpTbl 
SetGamma-CtlJumpTbl 
GrayPage-CtlJumpTbl 
SetGray-CtlJumpTbl 
SetInterrupt-CtlJumpTbl 
CtlBad-CtlJumpTbl 
SetDefaultMode-CtlJumpTbl 

MOVEQ #controlErr, DO 

offset 
jump to it 

$00 => VidReset 
$01 => VidKillIO 
$02 => SetVidMode 
$03 => SetEntries 
$04 => SetGamma 
$05 => GrayPage 
$06 => SetGray 
$07 => Set Interrupt 
$08 => DirectSetEntries 
$09 => SetDefault mode 

BRA.S CtlDone 
else say we don't do this one 
and return 

MOVEQ 

MOVE.L 
BRA 

#noErr, DO 

(SP)+,AD 
ExitDrvr 

return no errpr 

restore registers 

568 Designing Cards and Drivers for the Macintosh Family 



VidReset 
i----------------------------------------------------- -----------------------

Reset the card to its default. For the sample card, reset video to the 
default depth, page zero, and gray the screen. 

i----------------------------------------------------- -----------------------

WITH 

MOVE.W 
identifier 

MOVE.W 
MOVE.W 

MOVEQ 
MOVE.W 
MOVE.W 

BSR 
BSR 

MOVE.L 
MOVE.L 
MOVE.W 
BSR 

BRA.S 

ENDWITH 

VidKillIO 

VidLocals,VDPageInfo 

#O,DO 

#FirstVidMode,Dl 

Dl,csMode(A2) 
Dl,saveMode(A3) 

DO, save Page (A3) 
DO,csPage(A2) 

HWSetDepth 
HWSetPage 

get the default mode 

return default mode 
remember it 

get the default page value 
save page zero as current page 
return the page 

set the depth from Dl 
set the page from DO 

DO,saveBaseAddr(A3); save the new base address 
DO,csBaseAddr(A2) return the base address 
csPage(A2) ,DO setup DO for GrayScreen 

GrayScreen paint the screen gray 

CtlGood :;> no error 

i----------------------------------------------------- ------~----------------

This routine is not normally required by video cards, but if you support 
"asynchronous" writes to the CLUT ~!? part of your slot interrupt handler, then 
this call should be implemented to immediately flush the pending changes to the 
CLUT hardware and clear any state flags. 

i----------------------------------------------------- -----------------------

BRA.S CtlGood 

SetVidMode 
i----------------------------------------------~------ ---------------~-------

Set the card to the specified mode and page. 
If either is invalid, returns badMode error. 

If the card is already set to the specified mode, then do nothing. 

i----------------------------~------------------------ -----------------------

WITH vidLocals,VDPageInfo 

MOVE.W csMode(A2),Dl Dl = mode 
BSR ChkMode check mode 
BNE.S CtlBad => not a valid mode 

MOVE.W csPage(A2) ,DO DO = page 
BSR ChkPage check page 
BNE.S CtlBad => not a valid page 

Only set the mode if it has changed 

Appendix C Video Card Driver Example S69 



SetDepth 
MOVE.W 
CMP 
BEQ.S 

csMode(A2),D2 
saveMode(A3),D2 
ModeOKl 

D2 = mode 
has the mode changed? 
=> no, check the page 

Remember the newly requested mode 

@direct 

GoOn 

MOVE.W 
CMP.W 
BGE.S 
BCLR 
BRA.S 

BSET 

csMode(A2),saveMode(A3) ; remember requested mode 
#FifthVidMode,csMode(A2) is this l6/32bpp mode? 
@direct if not, then indexed mode 
#DirectFlag,GFlags(A3) clear the flag bit 
GoOn 

#DirectFlag,GFlags(A3) set the flag bi t 

In most cards, the actual CLUT position occupied by black and white changes with 
depth changes. This causes a number of unpleasant screen anomalies (pixels appear 
magnified when going to lower pixel depths, or colors appear when going into higher 

i depths). To solve this problem, the entire CLUT is set to 50% gray while the mode 
is 
; changed, which masks these problems. The SetMode call is followed by calls that 
; fill the frame buffer with a 50% dithered gray pattern, then set valid CLUT 
contents. 

gray 

ModeOKl 

NoChange 

BSR 

BSR 
MOVE.W 
BSR 

MOVE.L 
MOVE.L 
BRA 

ENDWITH 

GrayCLUT 

HWSetDepth 
DO, save Page (A3) 

HWSetPage 

set the entire CLUT to 50% 

set the depth (modeID in Dl) 
save the new page number 
set the video page 
(pageID in DO) 

DO,saveBaseAddr(A3) ; save the new base address 
saveBaseAddr(A3),csBaseAddr(A2) ; return the base address 
CtlGood 

570 Designing Cards and Drivers for the Macintosh Family 



Set Entries 
i----------------------------------------------------- -----------------------

Input : (A2) = csTable -> table of colorSpecs (NOT colortable!) 
csStart -> where to start setting, or -1 
csCount -> # of entries to change 

This call has two modes. In SEQUENCE mode, csCount entries are changed in the 
CLUT, ; starting at csStart. In INDEX mode, csCount entries are installed into the 
CLUT at 

the positions specified by their value fields. This mode is selected by passing 
csStart = -1. 

If the current screen depth is a direct pixel mode (16/32 bpp) , then this routine 
returns an error. 

This code is shared with DirectSetEntries, below. Since luminance mapping should not 
occur in direct modes, the code that sets the hardware should honor the setting of 
this flag in the device-specific code. 

If gamma correction is implemented by table look-up, then SetEntries will pick up 
the respective red, green, and blue values, and, using the GDataWidth field from 
the gamma table, perform a look-up on each of these channel values in the gamma 
table data. 

This routine can optionally be implemented to execute asynchronously by posting the 
CLUT change request in a table that is loaded as part of the slot interrupt handler. 
The Macintosh will NOT call this control call with the async variant of the trap; 
rather, the SetEntries call executes as a normal control call and delays its 
hardware activity until VBL. In doing this, a few extra rules must be followed: 

1) The driver should implement KillIO (see above). 
2) If SetEntries is entered while the interrupt level is 

nonzero, it should write immediately to the CLUT hardware. 

WITH 

MOVE. 
BEQ 
BTST 
BNE 

VidLocals 

csTable(A2) ,DO 
CtlBad 
#DirectFlag,GFlags(A3) 
CtlBad 

check for a nil pointer 

is this a direct video mode? 
if so, then exit with error 

i Get the gamma correction tables in registers 

SECore 

bits 

MOVEM.L 
MOVE.W 
MOVE.L 

MOVE.W 
LEA 
ADD 

MOVE.L 

MOVE.L 

MOVE 

CMP 
BEQ.S 

MOVE 
MOVE 
ADD 

A4-A6/D4-D7,-(SP) 
GFlags(A3),D5 
saveGammaPtr(A3),AO 

GFormulaSize(AO) ,DO 
GFormulaData(AO),A4 
DO,A4 

A4,A5 

A4,A6 

GDataWidth(AO),D7 

#l,GChanCnt(AO) 
WriteCLUT 

GDataCnt(A.O) ,DO 
D7,Dl 
#7,D1 

save registers for gamma 
get GFlags word in D5 
get pointer to gamma data 
structure 
get the size of formula data 
point to formula data 
red correction table starts 
here 
get default pointer to green 
data 
get default pointer to blue 
data 
get width of each entry in 

if only one table, we're set 
only one table, so continue 

get # entries in table . 
copy it to calculate offsets 
round to nearest byte 

Appendix C Video Card Driver Example 571 



WriteCLUT 

LSR 
MULU 

ADDA 
ADDA 
ADDA 

<DEVICE-SPECIFIC> 

#3,D1 
D1,DO 

DO,AS 
DO,A6 
DO,A6 

get bytes per entry 
get size of table in bytes 

calc base of green 
calc base of blue 
calc base of blue 

Hardware implementations vary greatly here. Usually, based on the csStart parameter, 
the code will separately implement sequential and indexed CLUT writes. If these 
routines use substantial stack space, they should be careful to check that this 
amount of space is available. 

Bsr HWWriteCLUT left as an exercise for the 
reader 

When the driver has been set to luminance map (convert from color to gray-scale 
equivalents), it should calculate the values based on a .30R/.S9G/.11B ratio. If all 
output channels are being set, the gamma correction factors should still be applied. 

If you share this code with DirectSetEntries, then this section of code should NOT 
apply luminance mapping if DirectFlag is set. 

MOVEM.L 
BRA.S 

ENDWITH 

(SP)+,A4-A6/D4-D7 
CtlGood 

572 Designing Cards and Drivers for the Macintosh Family 

restore saved registers 
exit with a good result 



SetGamma 
i----------------------------------------------------- -----------------------

Set the gamma table. This call copies the supplied gTable so the 
caller does not have to put the source on the system heap. 

GType in the incoming table should match the unique drHwId for this 
card to guarantee that the table is actually intended for this device. 
Optionally, a card may accept gamma tables with a GType of 0, if the 
standard format is supported on this device. 

If the gamma table ptr is NIL, then set the gamma table to be a linear ramp. 
This allows the full dynamic range of the CLUT to be used. 

Al ptr to DCE 
A2 ptr to cs parameter record 
A3 ptr to private storage 

i----------------------------------------------------- -----------------------

WITH VidLocals 

Get new gamma table and check that we know how to handle it 

table 

MOVE.L 
BEQ 

MOVE.L 
TST.W 
BNE 
TST.W 
BEQ.S 

CMP.W 
BNE 

csGTable{A2) ,DO 
LinearTab 

DO,A2 
GVersion{A2) 
CtlBad 
GType{A2) 
ChangeTable 

#drHwSample,GType{A2) 
CtlBad 

; If new table is different size, reallocate memory 

ChangeTable MOVE.L 
MOVE 
CMP 
BNE.S 
MOVE 
CMP 
BEQ.S 
BGT.S 

@NewSize _DisposPtr 
old 

CLR.L 
@GetNew MOVE 

MULU 
ADD 
ADD 
_Newptr 
BNE 
MOVE.L 
MOVE.L 
TST.L 
BEQ.S 
MOVE.L 
_DisposPtr 
MOVE.L 

saveGammaPtr{A3),AO 
GFormulaSize{A2) ,DO 
GFormulaSize(AO) ,DO 
@GetNew 
GChanCnt{A2) ,DO 
GChanCnt{AO) ,DO 
@SizeOK 
@GetNew 

saveGammaPtr{A3) 
GDataCnt(A2) ,DO 
GChanCnt{A2) ,DO 
GFormulaSize{A2) ,DO 
#GFormulaData,DO 
, Sys 
CtlBad 
saveGammaPtr(A3) ,DO 
AO,saveGammaPtr{A3) 
DO 
@SizeOK 

DO,AO 

saveGammaPtr{A3),AO 

Copy the gamma table header 

test for a NIL pointer 
if so, then set this table 
linear 
get pointer to new gamma table 
version = O? 
=> no, return error 
test the hardware ID 
if 0, we accept any gamma 

type = sample card? 
=> no, return error 

get current gamma in AO 
get size of formula in new 
same as current gamma table 
=>no, resize pointer 
get number of tables in new 
same as current gamma table? 
=> yes, data size ok 
=> new one is bigger, 

save old one 
if new one smaller, dispose 

flag it's been disposed 
get number of entries 
multiply by number of tables 
add size of formula data 
add gamma table header size 
and allocate a new pointer 
=> unable to allocate storage 
get old gamma table 
save new gamma table 
was there an old one? 
=> no, already disposed 
else get old table 
and dispose of old gamma table 
get new gamma table back 

Appendix C Video Card Driver Example ;73 



@SizeOK MOVE 
MOVE 
MOVE 
MOVE.L 
MOVE.L 
MOVE.L 

Copy the data 

@NxtByte 

SGExit 

OutOHere 

MULU 
ADD 
SUBQ 
MOVE.B 
MOVE.B 
DBRA 

BTST 
BEQ.S 
BSR 

BRA 

GChanCnt(A2) ,DO 
GFormulaSize(A2),D1 
gDataCnt(A2) ,D2 

DO,D2 
D1,D2 
#1,D2 

(A2 ) +, (AD) + 
(A2 ) +, (AD) + 
(A2 ) +, (AD) + 

(A2)+,DO 
DO,(AD)+ 

D2,@NxtByte 

#DirectFlag,GFlags(A3) 
OutOHere 
DirectCLUTRamps 

CtlGood 

get number of tables 
get size of formula data 
get number of entries 
copy gamma header 
which is 
12 bytes long 

multiply by number of tables 
add in size of formula data 
get count - 1 
get a byte 
move a byte 
=> repeat for all bytes 

is it in direct pixel mode? 

put RGB channels up in 
direct mode 

=> return no errOr 

Set up a linear gamma table. To prevent memory thrash, build this new one the same 
size as ; the existing one (one or three channel) 

LinearTab 

@ChanLoop 
@entryLoop 

MOVE.L 
MOVE.W 
MOVE.W 
SUBQ 
ADDA 
ADDA 
MOVE.W 
NOT.B 

DBRA 
DBRA 
BRA 

ENDWITH 

saveGammaPtr(A3) ,AO 
GFormulaSize(AO) ,DO 
GChanCnt(AO) ,D2 
#1,D2 
#GFormulaData,AO 
DO,AO 

#255,DO 
(AO)+ 

DO,@entryLoop 
D2,@ChanLoop 
SGExit 

574 Designing Cards and Drivers for the Macintosh Family 

get current gamma in AO 
get size of formula in new 
get the number of tables 
zero based, of course 
point to tables 
skip over formula data 
loop count within each channel 
invert it to make table 

ramp properly 
for each entry in channel 
and each channel 



GrayPage 
i-----~----------------------------------------------- ------------------------

Fill the specified page in the current mode to 50% dithered gray 

Al ptr to DCE 
A2 ptr to cs parameter record 
A3 ptr to private storage 

j----------------------------------------------------- ------------------------

WITH VidLocals,VDPageInfo 

MOVE saveMode(A3) ,Dl 
MOVE Dl,csMode(A2) 
BSR ChkMode 
BNE CtlBad 
MOVE cspage(A2) ,DO 
BSR ChkPage 
BNE CtlBad 

BSR GrayScreen 

BTST #DirectFlag,GFlags(A3) 
BEQ.S Leave 
BSR DirectCLUTRamps 

mode 

Dl = mode 
force current mode for ChkPage 
convert mode to depth in Dl 
=> not a valid depth 
DO = page 
check page 
=> not a valid page 

paint the screen gray 

is it in direct pixel mode? 

put RGB channels in direct 

Leave 
BRA CtlGood => return no error 

ENDWITH 

Set Gray 
i-------------------------------------~--------------- ------------------------

Set luminance mapping on (csMode = 1) or off (csMode = 0) 

When luminance mapping is on, RGB values passed to setEntries are mapped to 
gray-scale equivalents before they are written to the CLUT. 

Al ptr to DCE 
A2 ptr to cs parameter record 

j----------------------------------------------------- ------------------------

WITH 

MOVE.B 
BFINS 
BRA 

ENDWITH 

VidLocals 

csMode (A2) ,DO 
DO,GFlags(A3){0:1} 
CtlGood 

get flag value 
set flag bit 
all done 

Appendix C Video Card Driver Example 575 



Set Interrupt 
;--------~-------------------------------------------~~-----------------------

Enable (csMode = 0) or disable (csMode = 1) VBL interrupts. 

This routine enables and disables the interrupt source on the card, and 
installs or removes the slot queue interrupt element. It doesn't 
allocate or dispose memory. 

A1 ptr to DCE 
A2 ptr to cs parameter record 
A3 ptr to private storage 

;-------------------------------------------------~--- ------------------------

WITH VidLocals,VDPageInfo,SlotIntQElement 

MOVE. 
BFINS 
BNE.S 

csMode(A2) ,DO 
DO,GFlags(A3){1:1} 
DisableThem 

; get flag value 
; set flag bi t 
; if zero, then enable 

This code enables interrupts and installs the interrupt handler 

BSR.S 
BNE 
BRA 

EnableVGuts 
CtlBad 
CtlGood 

call common code 
error, flag problem 
and go home 

This code disables VBL interrupts, then re~oves the interrupt handler 

DisableThem BSR.S 
BRA 

DisableVGuts 
CtlGood 

jump to the disabling utility 
all done 

The following two routines are common code shared between the Open call and the 
Set Interrupt control call 

DisableVGuts 
CLR 
MOVE.B 

DO clear DO.W 
dctlSlot (A1) ,DO set up slot # for _SIntRemove 

<DEVICE-SPECIFIC> disable the NMRQ interrupt source here 

MOVE.L 
_SIntRemove 

RTS 

saveSQElPtr(A3),AQ 

576 Designing Cards and Drivers for the Macintosh Family 

get the SQ element pointer 
remove the interrupt handler 



EnableVGuts 
MOVE.L 
MOVE.W 
LEA 

MOVE.L 

MOVE.L 

saveSQEIPtr(A3),AO 
#SIQType,SQType(AO) 
BeginIH,A2 

A2 , SQAddr (AO ) 

A1,SQParm(AO) 

MOVE.B dctISlot(A1) ,DO 
_SIntInstall 
BNE.S IntBad 

get the queue element pointer 
set up queue ID 
get.pointer to interrupt 
handler 
set up int routine address 

this field is passed to the 
handler, and can be any 
convenient value 
(here, the DCTIHandle) 

and do install 

<DEVICE-SPECIFIC> enable the NMRQ interrupt source here 

RTS return home 

in the event there is a problem, return Z-flag off 

IntBad 
MOVEQ 
RTS 

ENDWITH 

#1,DO clear Z bit 

Appendix C Video Card Driver Example 517 



DirectSetEntries 
i---------,----~--------------~----------------------- ------------------------

This card allows specialized applications to change the color table hardware 
(if present) while in direct pixel modes. It has exactly the same 
interface as SetEntries, but does not return an error when called in 
direct mode. If the current mode is an indexed mode, then this routine 
returns CtlBad. 

Al 
A2 ::: 
A3 ::: 

ptr to DCE 
ptr to cs parameter record 
ptr to private storage 

i----------------------------------------------------- ------------------------

WITH 

BTST 

BEQ.S 
BRA 

ENDWITH 

SetDefaultMode 

VidLocals 

#DirectFlag,GFlags(A3) 

CtlBad 
SEC ore 

test if the mode is a 
direct one 

if not, then return an error 
call the SetEntries routine 

i-------------~--------------------------------------- -----------------------

Write the spID of the card's new default mode into slot PRAM. This routine 
is used to support video mode families. Via its monitor type sensing 
capabilities, PrimaryInit can decide which of the video sResource lists 
should be selected at startup. When the new Slot Manager is present, it is 
possible to designate inactive alternate video sRsrc lists as well as the 
primary list~ These alternate sRsrcs appear in the Options dialog box of the 
Monitors cdev, and allow the alternate mode to be selected as the primary 
display mode upon reboot. The selection of the default sRsrc list is set in 
slot PRAM by a call to this routine. Note that alternate sRsrcs should 
always generate video timing that is compatible with the connected monitor. 
Noncompatible timings should only be selected via monitor sense-line 
detection. 

Al ptr to DCE 
A2 ptr to cs parameter record 
A3 ptr to private storage 

i----------------------------------------------------- -----------------------

WITH VidLocals,spBlock,VDFlagInfo 

Set up a slot parameter block on the stack 

SUBA 
MOVE.L 
MOVE.B 
CLR.B 

#spBloc;kSize,SP 
SP,AO 

dCtISlot(Al) ,spSlot(AO) 
spExtDev(AO) 

make an spBlock on the stack 
get pointer to parm block now 
put slot in pBlock 
external device::: 0 

Read the slot PRAM to determine what the currently saved mode is. The first byte is 
the board ID, followed by the default screen depth. This sample keeps the default 
spID in VendorUse2. Remember that, for video cards only, VendorUsel is reserved for 
the system to identify the spID of the structure that contains the current screen 
depth. 

578 Designing Cards and Drivers for the Macintosh Family 



SUBA 
MOVE.L 

sReadPRAMRec 

#SizesPRAMRec,SP 
SP, spResult (AO) 

allocate block for PRAM record 
point to it 
read it 

The parameter list 10 (identifying the screen depth) in 2(SP) is still valid. 

It is very important that Monitors (or someone) invalidate and set up the screen 
resource if this call is exercised. The information on how to set up the 'scrn' 
resource for the next boot is all available with judicious use of the new Slot 
Manager routines. Monitors is also responsible for setting up the new default 
screen depth in PRAM. 

MOVE.B 

MOVE.L 
SPutPRAMRec 

ADDA 
BRA 

ENDWITH 

csMode(A2) ,3(SP) write the mode into PRAM 
buffer 

SP,spsPointer(AO) set up parameter block 
; write the new record out 

#SizesPRAMRec+spBlockSize,SP ; deallocate buffer 
CtlGood 

;---------------------------------------------~--------~---------------------

VideoClose releases the device's private storage and removes the interrupt handler. 

Entry: AO 
Al 

param block pointer 
DCE pointer 

i----------------------------------------------------- -----------------------
VideoClose WITH VidLocals 

MOVE. 
MOVE.L 
MOVE.L 

BSR 

MOVE.L 

_DisposPtr 

A3,-(SP) 
dCtlStorage(Al) ,A3 
(A3) ,A3 

DisableVGuts 

saveSQE1Ptr(A3),AO 

MOVE.L saveGammaPtr(A3),AO 
_DisposPtr 
MOVE.L dCtlStorage(Al),AO 
_DisposHandle 

MOVEQ 
MOVE.L 
RTS 
ENDWITH 

#0,00 
(SP)+,A3 

save A3 

get pointer to private storage 

deactivate interrupts 

get interrupt handler queue 
elem 
dispose it 
get pointer to gamma table 
dispose it 
dispose of the private storage 

no error 
restore A3 
and return 

Appendix C Video Card Driver Example 579 



i----------------------------------------------------- -----------------------

Video driver status call handler 

(0) Error 
(1) Error 
(2) GetMode 
(3) GetEntries 
(4) GetPage 
(5) GetPageBase 
(6) GetGray 
(7) GetInterrupt 
(8) GetGamma 
(9) GetDefaultMode 

Entry: AO param block 
A1 == DCE pointer 

Exit: DO error code 

;-----~----------------------------------------------- -----------------------

VideoStatus MOVEM.L 
MOVE.W 
MOVE.L 

parameters 
MOVE.L 
MOVE.L 
CMP.W 
BHI.S 

MOVE.W 
relative 

JMP 

StatJumpTbl DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 

StatBad MOVEQ 
BRA.S 

StatGood MOVEQ 
StatDone MOVEM.L 

BRA 

AO/D1!D2, - (SP) 
csCode(AO),DO 
csParam(AO),A2 

dCtlStorage(A1) ,A3 
(A3) ,A3 

#9,DO 
StatBad 

save some registers 
get the selector 
A2 <- ptr to control 

get pointer to private storage 
if csCode not in [0 .• 9] then 
error, csCode out of bounds 

StatJumpTbl(PC,DO.W*2),DO ; get the routine's 

; offset 
StatJumpTbl(PC,DO.W) ; jump to it 

StatBad-StatJumpTbl ;$00 => Error 
StatBad-StatJumpTbl ;$01 => Error 
GetMode-StatJumpTbl :$02 => GetMode 
GetEntries-StatJumpTbl :$03 => GetEntries 
GetPage-StatJumpTbl :$04 => GetPage 
GetPageBase-StatJumpTbl :$05 => GetPageBase 
GetGray-StatJumpTbl :$06 => GetGray 
GetInterrupt-StatJumpTbl :$07 => Get Interrupt 
GetGamma-StatJumpTbl :$08 => GetGamma 
GetDefaultMode-StatJumpTbl:$09 => GetDefaultMode 

#statusErr,DO 
StatDone 

#noErr,DO 
(SP)+,AO/D1/D2 
ExitDrvr 

else say we don't do this one 
and return 

return no error 
restore registers 

S80 Designing Cards and Drivers for the Macintosh Family 



GetMode 
j----------------------------------------------------- -----------------------

Return the current mode. 

Inputs A2 
A3 

pointer to csParams 
pointer to private storage 

i----------------------------------------------------- -----------------------

Get Entries 

WITH 

MOVE.W 
MOVE.W 
MOVE.L 
BRA.S 

ENDWITH 

VidLocals,VDPageInfo 

saveMode(A3) , csMode(A2) 
save Page (A3) ,csPage(A2) 
saveBaseAddr(A3),csBaseAddr(A2) 
StatGood 

return the mode 
return the page number 
and the base address 

i----------------------------------------------------- -----------------------

Read the current contents of the CLUT. This routine, unlike SetEntries, 
doesn't return an error if the device is in direct mode. No attempt 
is made to reverse the effects of gamma table adjustment. 

Inputs : A2 = pointer to csParams 

i----------------------------------------------------- -----------------------

WITH 

MOVE. 
BEQ.S 

<DEVICE-SPECIFIC> 

VidLocals 

csTable(A2) ,DO 
StatBad 

check for a nil pointer 

Hardware implementations vary greatly here. Usually, based on the csStart 
parameter, 

the code should support both sequential and indexed CLUT writes. If these routines 
use substantial stack space, they should be careful to check that this amount of 
space is available. 

BSR HWGetCLUT 

BRA StatGood 

ENDWITH 

left as an exercise for 
the reader 

=> return no error 

Appendix C Video Card Driver Example ;81 



GetPage 
i----------------------------------------------------- ------------------------

Return the number of pages in the specified screen depth. The number of 
pages is always a counting number, not zero-based. Page counts are 
only visible for the various depths in this video sResource. 

;-------~-------------------------------------~------------------------~------

GetPageBase 

WITH 

MOVE 
MOVE 
BSR 
BGT 
SUB 
MOVE.L 
MOVE.W 
MOVE.W 

ADD.W 
BRA 

ENDWITH 

VidLocals,VDPageInfo 

csMode(A2},Dl 
Dl,D2 
ChkMode 
StatBad 
#FirstVidMode,D2 
saveVidParms(A3} ,AO 
D_Pages(AO,D2*4} ,Dl 
Dl,csPage(A2} 

#1,csPage(A2} 
StatGood 

get the mode 
keep a copy 
is this mode OK? 
=> not a valid mode 
mode, zero-based 
get pointer to vid parameters 
get the number of video pages 
return page count (high byte 

o from ChkMode) 
turn into a counting number 
=> return no error 

i----------------------------------------------------- ------------~-----------

Return the base address for the specified page in the current mode . 

. --------------------------------------------~-------- ------------------------, 

ID 

@2 

WITH 

MOVE 
MOVE 

BSR 
MOVE.W 
BSR 
BNE 
MOVE 

SUB 
MOVE.L 
MULU 
MULU 
ADD.L 

ADD.L 
MOVE.L 
BRA 

ENDWITH 

vidLocals,VDPageInfo 

saveMode(A3},Dl 
Dl,csMode(A2} 

ChkMode 
csPage(A2} ,DO 
ChkPage 
StatBad 
saveMode(A3},Dl 

#OneBitMode,Dl 
saveVidParms(A3} ,AO 
(D_RowBytes,AO,Dl*2) ,DO 
D_Height(AO) ,DO 
#defmBaseOffset, DO 

dCtlDevBase(Al} ,DO 
DO,csBaseAddr(A2} 
StatGood 

582 Designing Cards and Drivers for the Macintosh Family 

get the current mode 
force current mode, just in 

case for ChkPage 
convert to depth in Dl 
get the requested page 
is the page valid? 
=> no, just return 
get the current screen depth 

make it zero based 
point to data table 
calc page * rowBytes 
calc page * rowBytes * height 
here's the QuickDraw offset 

value to be added 
add base address for card 
return the base address 
=> return no error 



GetGray 
._----------------------------------------------------------------------------, 

Return a Boolean, set true if luminance mapping is on. 

i----------------------------------------------------- ------------------------

Get Interrupt 

WITH 

BFEXTU 
MOVE.B 
BRA 

ENDWITH 

VidLocals,VDFlagInfo 

GFlags(A3){O:1},DO 
DO,csMode(A2) 
StatGood 

get the state of flag 
return value 
=> and return 

i----------------------------------------------------- ------------------------

Return a Boolean in csMode, set true if VBL interrupts are disabled. 

i----------------------------------------------------- ------------------------

GetGamma 

WITH 

BFEXTU 
MOVE.B 
BRA 

ENDWITH 

vidLocals,VDFlagInfo 

GFlags(A3) {l:l},DO 
DO,csMode(A2) 
StatGood 

get the state of flag 
return value 
=> and return 

i----------------------------------------------------- ------------------------

Return the pointer to the current gamma table. 

j----------------------------------------------------- ------------------------

WITH 

MOVE.L 
BRA 

ENDWITH 

VidLocals 

saveGammaPtr(A3) ,csGTable(A2) 
StatGood 

return the pointer 
and return a good result 

Appendix C Video Card Driver Example 583 



GetDefaultMode 
;--------------------~-------------------------------- ------------------------

Read the card default mode from slot PRAM. 

Al ptr to DCE 
A2 ptr to cs parameter record 
A3 ptr to private storage 

;------------~---------------------------------------- ------------------------

WITH spBlock,VDFlagInfo 

Set up a slot parameter block on the stack 

SUBA 
MOVE.L 
MOVE.B 
CLR.B 

#spBlockSize,SP 
SP,AO 
dCtlSlot(Al) ,spSlot(AO) 
spExtDev(AO) 

make an spBlock on stack 
get pointer to parm block now 
put slot in pBlock 
external device = 0 

Read the slot PRAM to determine what the currently saved mode is. The first byte is 
the board ID, followed by the default mode. This sample keeps the new default video 
mode in VendorUse2, which is what is returned as the result of this routine. 

SUBA #SizesPRAMRec,SP 

MOVE.L SP,spResult(AO) 
_sReadPRAMRec 

MOVE.B 
ADDA 
BRA 

ENDWITH 

3(SP),csMode(A2) 
#SizesPRAMRec+spBlockSize,SP 
StatGood 

allocate block for PRAM 
record 

point to it 
read it 

return the result 
release buffer 

.~----------------------~----------------------------- ------------------------, 

Exit from control or status. 

i----~------------------------~----------~------------ ------------------------

ExitDrvr 

GoIODone 

BTST 
BEQ.S 
RTS 

MOVE.L 
JMP 

#NoQueueBit,ioTrap(AO) 
GoIODone 

JIODone,AO 
(AO) 

584 Designing Cards and Drivers for the Macintosh Family 

no queue bit set? 
=> no, not immediate 
otherwise, it was an immediate 

call 

get the rODone address 
invoke it 



"-----------------------------------------------------------------------------, 

Utilities 

i----------------------------------------------------- -----------------~-------

ChkMode 
._----------------------------------------------------------------------------, 

verifies that the screen depth is available in this video sResource. 

-> Dl: mode 
-> A3: pointer to driver privates. 

Returns EQ if mode is valid. All registers preserved 

i----------------------------------------------------- ------------------------

ModeOK 
ModeBad 

ChkPage 

WITH 

MOVE.L 
CMP.W 
BMI.S 
MOVE.L 
CMP.W 

BGT.S 
CMP.W 

MOVE.L 

RTS 

ENDWITH 

VidLocals 

AO,-(SP) 
#FirstVidMode,D1 
ModeBad 
saveVidParms(A3) ,AO 
D_MaxDepthID(A3) ,D1 

ModeBad 
D1,D1 
(SP)+,AO 

save a register 
compare to lowest mode ($80) 
exit with bad mode 
point to parameters for this mode 
compare to depth range for this 

config 
exit if out of range 
get EQ 
restore saved register (doesn't 

af fect flags) 
EQ if valid depth 

i----------------------------------------------------- ------------------------

Checks to see if the page number in DO is valid for the depth in D1. 

-> DO: page 
-> D1: depth 
-> A3: pointer to driver privates 

Returns EQ if page is valid. All registers preserved . 

. _----------------------------------------------------------------------------, 

WITH 

MOVEM.L 
MOVE.W 
SUB.W 
MOVE. 
CMP.W 
SGT 
TST.B 
MOVEM.L 
RTS 
ENDWITH 

VidLocals 

D2/A1, - (SP) 
saveMode(A3) ,D2 
#OneBitMode,D2 
saveVidParms(A3) ,A1 
D_Pages(A1,D2*4) ,DO 
D2 
D2 
(SP) +, D2 / A1 

save work registers 
get offset to page data 
zero-based offset in D2 
get pointer to data tables 
compare to zero-based page count 
set flag if too big 
and test condition 
restore work registers 

Appendix C Video Card Driver Example 585 



HWSetDepth 
i----------------------~------------------------------ ------------------------

This utility sets the screen depth hardware. 

-> 01: new screen depth 10 (already verified) 
-> A1: DCE pointer 
-> A2: Parameter plock pointer 
-> A3: private storage pointer 

Preserves all registers. 

;----------------------------~------------------------ ------------------------

<DEVICE-SPECIFIC> 

Simply convert the screen depth +0 to information appropriate to performing a 
screen depth change here. 

RTS 
HWSetPage 
;-----------------------------------------------------------------------------

The base of a page is at dCtlDevBase + defmBaseOffset + (page * RowBytes * height). 

-> DO: new page number (already verified) 
-> 01: new screen depth 10 (already verified) 
-> A1: DCE pointer 
-> A2: parameter plock pointer 
-> A3: private storage pointer 

<- DO: return the base address 

j----------------------------------------------------- ------------------------

WITH 

MOVEM.L 
MOVE 
SUB 
MOVE. I. 
MUI.U 
MULU 
ADD.L 

<DEVICE-SPECIFIC> 

VidI.ocals 

AO/D1, - (SP) 
saveMode (.1-\3 ) ,01 
#oneBitMode, 01 
saveVidParms(A3) ,AO 
D_RowBytes(AO,D1*4) ,DO 
D_Height(AO) ,DO 
#defmBaseoffset, DO 

save some registers 
get the current 
make it zero based 
point to data table 
calc page * rowBytes 
calc page * rowBytes * height 
add QD offset 

Set the screen page based on this offset information here 

ADD;L 

MOVEM.L 
RTS 

ENDWITH 

dCtlDevBase(A1) ,DO 

(SP)+,AO/Pl 

586 Designing Cards and Drivers for the Macintosh Family 

add the card base address 

restore all registers 
and return 



GrayScreen 
i----------------------------------------------------- ------------------------

-> DO: page to gray 
-> A3: private storage pointer 

All registers are preserved . 

. --------------------------------~-------------------- ------------------------, 

@Continue32 

@NxtRow 
@NxtLong 

@LittlePix 

Pats 

WITH VidLocals 

MOVEM.L DO-D7/AO-Al,-(SP) 
MOVE saveMode(A3) ,Dl 
SUB #FirstVidMode,Dl 

LEA Pats,Al 

MOVE.L (Al,Dl*4) ,D5 
MOVE.L D5,D6 
NOT.L D6 
MOVE.L saveVidParms(A3) ,Al 
MOVE.W D_RowBytes(Al,Dl*4),D4 
MOVE.W D_Height(Al) ,D3 

MULU D4,DO 
MULU D3,DO 
MOVE.L DO,Al 
ADDA #defmBaseOffset,Al 

SUBQ #1, D3 

MOVE.L Al,AO 
LSR #2,D4 
SUBQ #LD4 

save all registers 
get the mode 
make it zero based 

get a pointer to the pattern 
table 
D5 = the proper pattern 
copy it 
and invert for 32bpp 
point to data table 
D4 rowbytes for the screen 
D3 = screen height 

rowbytes*page 
rowbytes*page*height 
get base address in A-reg 
add offset 

make height zero based 

point to the start 
get longs per row 
make count zero based 

LEA @Continue32,AO make the PC 32-bit clean 
get in DO MOVE.L AO,DO 

_StripAddress 
JMP (AO,DO) OK with the 68020 

MOVEQ #true32b,DO switch to 32-bit addressing 
mode 

_SwapMMUMode 

MOVE.L 
MOVE.L 

CMP.W 
BNE.S 
MOVE.L 

DBF 
NOT.L 
NOT.L 
DBF 

_SwapMMUMode 

D4,D2 
D5,(AO)+ 

flip to 32 

reload rowcount each time 
write longword pattern to 

; screen 
#sixthVidMode-FirstVidMode,Dl ; if we don't have 32bp 
@LittlePix go on 
D6, (AO)+ write longword pattern to 

D2,@NxtLong 
D5 
D6 
D3,@NxtRow 

screen 
for the entire line 
invert pattern 
for 32bpp, too 
do it for all screen lines 

flip back to previous 
addressing 

MOVEM.L (SP)+,DO~D7/AO-Al restore all registers 
and return RTS 

DC.L 
DC.L 

ENDWITH 

OneBitGray, TwoBitGray, FourBitGray, EightBitGray 
SixteenBitGray, ThirtyTwoBitGray 

Appendix C Video Card Driver Example 587 



GrayCLUT 
;--------------~-------------------------------------- ------------------------

This utility fills the entire CLUT with 50% gamma-corrected gray in support of 
video mode changes. 

All registers are preserved. 

j----------------------------------------------------- ------------------------

<DEVICE-SPECIF1C> 

Find the appropriate 50% gray level and load the CLUT such that all pixel values 
produce this color on the screen. 

RTS 
DirectCLUTRamps 
j----------------------------------------------------- ------------------------

This utility is called in direct pixel modes to fill the CLUT hardware with linear 
ramps in the R, G, and B channels. Note that these ramps run from ° to all ones 
ASCENDING rather than descending as is normal in indexed modes (black = {O,O,O} 
in direct modes). 

All registers are preserved. 

i----------------------------------------------------- ------------------------

<DEVICE-SPECIFIC> 

Generate a linear ramp from ° to all ones and set this ramp in each channel of the 
CLUT. These values should be gamma corrected (across all three channels) if possible. 

RTS 

588 Designing Cards and Drivers for the Macintosh Family 



;-----------------------------------------~---------------------------~-------

The slot interrupt handler 

i----------------------------------------------------- ------------------------

; On entry, Ai contains the SQParm value passed to _sIntInstall above 
; (in this case the DCE handle) 

BeginIH MOVE.L (Ai) ,AO ; deref the handle 

<DEVICE-SPECIFIC> 

Clear the NMRQ interrupt here 

MOVEQ 
MOVE.B 
MOVE.L 
JSR 

MOVEQ 
RTS 

#O,DO 
dCtlSlot (AO) , DO 
JVBLTask,AO 
(AO) 

#l,DO 

clear DO 
setup the slot number 
call the VBL task manager 
with slot # in DO 

signal that int was serviced 
and return to caller 

Appendix C Video Card Driver Example S89 



-- -~---------------------------------------------------- ---------------------, 

Data tables 

These tables contain information for the driver about available modes and screen 
size information. 

MaxDepthID = spID of maximum screen depth supported where: 

I-bit 
2-bit 
4-bit 
8-bit 

16-bit 
32-bit 

$80 FirstVidMode 
$81 SecondVidMode 
$82 ThirdVidMode 
$83 FourthVidMode 
$84 FifthVidMode 
$85 SixthVidMode 

Note: If your tables are very large, then you should consider making an 
sResource directory for them. This way you won't be filling up the system 
heap unnecessarily. The spID for your directory should be in the nonreserved 
range of your functional sRsrcs. 

----------------------------------------~-------------------------------~-----, 

Smal124Parms 
MaxDepth DC.W $83 maximum screen depth ID 
Height DC.W defmBounds ~Bs screen height 
Pages DC.W Pagesls number of screen pages 
RowBites DC.W RBIs rowbytes for this mode 

DC.W Pages2s,RB2s pages, rowbytes 
DC.W Pages4s,RB4s pages, rowbytes 
DC.W Pages8s,RB8s pages, rowbytes 

Smal132Parms 
DC.W $85 maximum screen depth ID 
DC.W defmBounds Bs screen height 
DC.W Pagesls,RBls pages, rowbytes 
DC.W Pages2s,RB2s pages, rowbytes 
DC.W Pages4s,RB4s pages, rowbytes 
DC.W Pages8s,RB8s pages, rowbytes 
DC.W Pages16s,RBl6s pages, rowbytes 
DC.W Pages32s,RB32s pages, rowbytes 

BigParms 
DC.W $83 maximum screen depth ID 
DC.W defmBounds Bb screen height 
DC.W Pageslb,RBlb pages, rowbytes 
DC.W Pages2b,RB2b pages, rowbytes 
DC.W Pages4b,RB4b pages, rowbytes 
DC.W Pages8b,RB8b pages, rowbytes 

OheParms 
DC.W $80 maximum screen depth ID 
DC.W defmBounds Bs screen height 
DC.W Pagesls,RBls pages, rowbytes 

D_MaxDepthID EQU MaxDepth-Smal124Parms 
D~Height EQU Height-Smal124Parms 
D~Pages EQU Pages-Smal124Parms 
D_RowBytes EQU RowBites-Smal124Parms 

590 Designing Cards and Drivers for the Macintosh Family 



Appendix D PAL Listing for the NuBus Test Card 

This is a listing of the PAL-implemented logic equations for the NuBus 
Test Card described in Chapter 10, "NuBus Design Examples." 

591 



.ident PAL16R8,B SLAVE, NuBus slave controller 
Version: 1.1 

. names 

/START 

A18D10L 

. equations 

/SLAVE 

/MASTER 

ROMOE 

romoel 

/CLK 
/ACK /MYStOT /RESET 
Gnd JOE 
A19DllL TM1L MASTER 
vcc 

RESET 
{ initialization} 

+ /SLAVE * /START 
+ /SLAVE * ACK 
+ /SLAVE * /MYSLOT 

/MSTDN /TM1 A19Dll 

/romoe1 /ROMOE /ACKCY 

{holding; DeMorgan of START * /ACK * MYSLOT} 
+ SLAVE * ACKCY 

{clearing term} 

RESET 
{initialization} 

+ /MASTER * /SLAVE 
+ /MASTER * /TM1L 
+ /MASTER * /A19Di1L 
+ /MASTER * A18D10L 

{holding term; D~Morgan of: 
SLAVE * TM1L * A18DllL * /A18D10L } 

+ MASTER * MSTDN 
{clearing term, at end of MASTER cycle} 

:= START * /ACK * MYSLOT * /TM1 * A19Dll * A18D10 
* /RESET 

{ latching term, when decoding a READ to us 
+ ROMOE * /ACKCY 

* /RESET 
{ holding term thru access } 

ROMOE 
{ simply a delayed ROMOE for cycle timing } 

592 Designing Cards and Drivers for the Macintosh Family 

A18D10 

SLAVE 



ACKCY 

/TMIL 

/A19DllL 

/AIBDlOL 

.notes 

+ 

START * /ACK * MYSLOT * TMl 
{fast cycle for WRITES} 

/ACKCY * SLAVE * /ROMOE 
{slow cycle for non-ROM READS} 

+ /ACKCY * ROMOE * romoel * /A19DIIL 
{slower cycle for ROM } 

RESET 
+ /TMl * START * /ACK * MYSLOT 

{setting term, during address cycle} 
+ /TMIL * /START 
+ /TMIL * 
+ /TMIL * 

ACK 
/MYSLOT 

/A19Dll * START * /ACK * MYSLOT * /MASTER 
{setting term, during SLAVE address cycle} 

+ /A19DIIL * SLAVE * /TMIL 
+ /A19DllL * SLAVE * TMIL * /A19DllL 
+ /A19DIIL * SLAVE * TMIL * 

{holding terms for SLAVE accesses} 
+ ROMOE * romoel 

{ timing term for ROM reads } 

A18DlOL 

+ /A19Dll * SLAVE * TMIL * A19DIIL * /AIBDIOL 
{setting term for MASTER start} 

+ /A19DIIL * MASTER 
{holding term for MASTER} 

.- /AIBDIO * START * /ACK * MYSLOT 
{setting term, during address cycle} 

+ /AIBDIOL * SLAVE * /TMIL 
+ /AIBDIOL * SLAVE * TMIL * /A19DIIL 
+ /A18DIOL * SLAVE * TMIL * AIBDIOL 

{holding terms for SLAVE accesses} 
+ /AIBDIO * SLAVE * TMIL * A19DIIL * /AIBDIOL 

{setting term for MASTER start} 
+ /AIBDIOL * MASTER 

{holding term for MASTER} 

This version corresponds to the new pin-out for the "official" 
test card. It also supports the ROM, with the ROMOE signal . 

. end 

Appendix D PAL Listing for the NuBus Test Card 593 



,ident PAL16L8,B (ARB2), Nubus Arbitration logie 

Version: 1.1 

. names 

ne1 IARB ne3 ne4 neS /ID3 IID2 /IDl /IDO 
gnd 

IARBOi IARBOo IARB1 IARB2 IARB3 arbOoe arb10e arb20e GRANT 
vee 

. equations 

· if [ ARB * ID3 1 
ARB3 '" vee; 

larb20e :::; /ID3 * ARB3 

· if [ ARB * arb20e * ID2 1 
ARB2 vee; 

larbloe ::;: /ID3 * ARB3 
+ IID2 * ARB2 

· if [ ARB * arb10e * IDl 1 
ARBl vee; 

larbOoe IID3 * ARB3 
+ IID2 * ARB2 
+ IID1 * ARB1 

.if[ ARB * arbOoe * IDO 1 
ARBOo '" vee; 

I GRANT :::; IID3 * ARB3 
+ IID2 * ARB2 
+ IIDl * ARB1 
+ /IDO * ARBOi 

.notes 

ARB is responsible for doing the NuBus arbitration logic. Upon 
detecting any higher priority ARB<3:0> value, it will defer its 
generation of lower ARB<3:0> bits. 

The GRANT signal must be timed externally to determine proper 
NuBus constraints. 

This version uses a new technique to minimize skews . 

. end 

594 Designing Cards and Drivers for the Macintosh Family 



.ident PAL16R8,B MASTER2, NuBus master controller for test card. 

Version: 1.3 

. names 

MASTER 

A17D9L 

. equations 

ARBCY 

ADRCY 

DTACY 

OWNER 

/CLK 
GRANT /RQST /START /ACK MASTERD /RESET A17D9 
gnd foe 
/LOCKED /arbdn /busy /OWNER /DTACY /ADRCY /ARBCY 
fcc 

.- MASTER * MASTERD * /OWNER * /ARCBY * /ADRCY * /DTACY * 
/RQST 

{wait for RQST* unsserted, while idle} 
+ MASTER * ARBCY * /OWNER 

* /RESET 
{non-locking, hold for START*} 

+ MASTER * ARBCY * LOCKED 
* /RESET 

{holding for locked access} 

.- /A17D9L * /OWNER * ARBCY * arbdn * GRANT * /busy * /START 
+ /A17D9L * /OWNER * ARBCY * arbdn * GRANT * busy * ACK 

{START* if not locking} 
+ OWNER * LOCKED * /ADRCY * /DTACY 

* MASTER * /RESET 
{START* for locking case, after LOCK-ATTN} 

ADRCY 
{assert after START*} 

+ DTACY * /ACK 
* MASTER * /RESET 

{hold until ACK*} 

.- ARBCY * arbdn * GRANT * /busy * /START 
+ ARBCY * arbdn * GRANT * busy * ACK 

{when bus is free, we own it next} 
+ OWNER * ADRCY 

* MASTER * /RESET 
{hold before DTACY} 

+ OWNER * DTACY * /ACK 
* MASTER * /RESET 

{non-locking, wait until ACK*} 
+ OWNER * LOCKED 

* MASTER * /RESET 
{for LOCKing case, hold fur NULL-ATTN} 

Appendix D PAL Listing for the NuBus Test Card 595 



busy 

arbdn 

LOCKED 

IA17D9L 

.notes 

.- Ibusy * START * lACK 
{beginning of transaction} 

+ busy * lACK 
* IRESET 

{hold during cycle} 

:= ARBCY */START 
{when arbitrating, force delay} 

.- A17D9L * ARBCY * arbdn * GRANT * Ibusy * ISTART 
+ A17D9L * ARBCY * arbdn * GRANT * busy * ACK 

{set for LOCK-ATN} 
+ LOCKED * IDTACY 

* MASTER * IRESET 
+ LOCKED * DTACY * lACK 

* MASTER * IRESET 
{clear on NULL-ATN} 

;= IA17D9 * lMASTER 
{latching term} 

+ IA17D9L * MASTER 
{holding term} 

+ LOCKED 
{clearing term, prevent another ADRCY} 

This version is for new pin-out of the "official" test card. MasterA 
handles the delayed feature of the card. Version 1.1 also fixes the timing for 
arbitration. 

This version is designed to work with the new ARB2 arbitration PAL, which 
has a. different sense for GRANT. It also fixes a minor timing overhang on 
DTACY for 2-cycle transactions. 

Version 1.3 fixes 2-cycle write by only allowing ADRCLY for 1 clock; we 
originally had overlap to try to eliminate decoding glitches . 

. end 

S96 Designing Cards and Drivers for the Macintosh Family 



. ident PAL16L8,B 

Version: 

. names 

CLK 

MASTER 

. equations 

GBA 

/CAB 

/GAB3 

/GAB210 

ACLK 

AOE 

MISC2, local bus/transceiver controls . 

1.2 

SLAVE TMIL A19D11L A18DIOL 
gnd 
GAB210 /GBA CAB /DOE 
vcc 

SLAVE * /TMIL 
{SLAVE read of card} 

+ MASTER * ADRCY 
{MASTER address cycle} 

+ MASTER * DTACY * A19DIIL{TM1} 

/ARBCY 

/AOE 

{MASTER data cycle, when writing} 

= SLAVE + /CLK 
{ DeMorgan of: /SLAVE * CLK } 

= SLAVE * /TMIL 
{any SLAVE read} 

+ MASTER * /ADRCY * /DTACY 
{MASTER loading address} 

+ MASTER * A19DIIL{TM1} 
{MASTER write} 

= SLAVE * /TMIL * /ROMOE 
{SLAVE, non-ROM, read} 

+ MASTER * /ADRCY * /DTACY 
{MASTER loading address} 

+ MASTER * A19DIIL{TM1} 
{MASTER write} 

ADRCY 

/DCLK 

= SLAVE * CLK * TMIL * /A19DIIL * /A18DIOL 
* /ROMOE 

{SLAVE write to address reg} 

SLAVE * /TMIL * /A19DIIL * /A18DIOL 
* /ROMOE 

{SLAVE read of address reg} 
+ MASTER * /ADRCY * /DTACY 

{MASTER address cycle} 

DTACY 

/ACLK 

Appendix D PAL Listing for the NuBus Test Card S'J7 

ROMOE 

GAB 3 



DCLK 

DOE 

.notes 

SLAVE * CLK * TM1L * /A19D11L * A18D10L 
* /ROMOE 

{SLAVE write to data reg} 
+ MASTER * DTACY * /A19Dl1L{/TM1} * CLK 

{MASTER read} 

SLAVE * /TM1L * /A19Dl1L * A18D10L 
* /ROMOE 

{SLAVE read of data reg} 
+ MASTER * DTACY * A19D11L{TM1} 

{MASTER write data} 

This version of PAL corresponds to the "official" NuBus test card. 
Version 1.2 reflects non-overlap of ADRCY with DTACY, which fixes problem 
with 2-cycle writes; 

. end 

598 Designing Cards and Drivers for the Macintosh Family 



.ident PAL16L8,B NBDRVR2, NuBus bus driver. 

Version: 1.3 

. names 

/ACKCY /ARBCY /ADRCY /DTACY /OWNER /LOCKED nc7 
Gnd 

A19DllL A18D10L 

ncll /TMO /TM1 /tmoe /MSTDN /rqstoe /ACK /START /RQST 
Vcc 

. equations 

rqstoe ARBCY * /ADRCY 

· if [ rqstoe 
RQST 

· if [ OWNER 
START 

tmoe 

· if [ tmoe 
ACK 

· if [ tmoe 
TM1 

{hold until START* for normal case} 
+ ARBCY * LOCKED 

{hold until NULL-ATTN for locked case} 

::: Vcc; 

/DTACY 
{START* for all non-DTA cycles} 

::: ACKCY 
{SLAVE response} 

+ OWNER * /ADRCY 
{for NULL-ATTN, LOCK-ATTN} 

ACKCY 
{SLAVE response} 

+ OWNER * /ADRCY 
{for NULL-ATTN, LOCK-ATTN} 

ACKCY 
{SLAVE response} 

+ OWNER * ADRCY * A19DllL 
{START* at address cycle} 

+ OWNER * /ADRCY * /LOCKED 
{set for NULL-ATTN} 

Appendix D PAL Listing for the NuBus Test Card 599 



.if[ tmoe 
TMO 

MSTDN 

.notes 

ACKCY 
{SLAVE response} 

+ OWNER * ADRCY * A18D10L 
{START* at address cycle} 

+ OWNER * /ADRCY 
{always set for xxxx-ATTN cycles} 

OWNEr * /LOCKED * DTACY * ACK 
{done at tail end of normal cycle} 

+ OWNER * /LOCKED * ARBCY * /ADRCY * /DTACY 
{done for locked cases} 

This version corresponds to the "official" test card. 
Note: due to overlap of states, RQST* is held one state too long at 

end of a LOCKED transaction. However, this causes no real problem. If we 
are the last winner of a RQST set, then the only result is that new RQST
ers are held off by one CLK. If there is another RQST-er left in our set, 
then it will still be driving RQST. It will properly arbitrate due to the 
NULL-ATTN and become the next winner. Thus, in either case, nothing bad 
happens, 

Version 1.3 reflects change to ADRCY, which is now held low only 
during the address cycle of a transaction . 

. end 

600 Designing Cards and Drivers for the Macintosh Family 



Appendix E PAL Listing for the SCSI-NuBus 
Test Card 

This is a listing of the PAL-implemented logic equations for the SCSI 
NuBus Test Card described in Chapter 10, "NuBus Design Examples." 

601 



.ident PAL16R8,B stNUBUSl, control for NuBus SCSI test card. 

Version: 1.1 

. names 

/START 

nc12 

. equations 

IOR 

SLOT 

SUPER 

Sl 

S2 

.notes 

clk 
/ACK /mySLOT /mySUPER /TMI nc7 nc8 
gnd joe 
nc13 
vcc 

+ 

+ 

.-

+ 

.-

+ 

.-
+ 
+ 

.-

nc14 /S2 /Sl /SUPER /SLOT 

START * /ACK * mySLOT * /TMI * /RESET 
START * /ACK * mySUPER * /TMI * /RESET 

{ set on READ to our SLOT } 
IOR * /S2 * /RESET 

{ hold until end of transaction 

START * /ACK * mySLOT * /RESET 
{ select when access to us } 

SLOT * /S2 * /RESET 
{ hold thruout cycle 

START * /ACK * my SUPER * /RESET 
{ select when access to us } 

SUPER * /S2 * /RESET 
{ hold thruout cycle } 

SLOT * /Sl * /RESET 
SUPER * /Sl * /RESET 
Sl * /82 * /RESET 

Sl * /S2 * /RESET 

/RE8ERT 

lIaR 

stNUBUSl is the main control circuit of the NuBus SCSI card. This 
version will decode both a SuperS lot and a normal Slot access. Notice 
that all bus transactions take the same time to simplify the logic . 

. end 

602 Designing Cards and Drivers for the Macintosh Family 



·ident PAL16L8,B stNUBUS2, control for NuBus SCSI test card. 

Version: 1.0 

. names 

/CLK nc2 /SLOT 
gnd 

/INTENB /NMRQ nc13 
vcc 

/SUPER /Sl 

/ackoe /TMO 

/S2 

/TMl 

nc7 DRQ 

/ACK DCLK 

. equations 

.if[ 

.if [ 

.if [ 

/ACLK SLOT 
+ SUPER 
+ /CLK 

{ DeMorgan of CLK * /(SLOT + SUPER) } 

/DCLK /S2 
{ clock in data on edge of ACK* } 

ackoe SLOT 
+ SUPER 

{ try to pull ACK* up before undriving } 

ackoe 
ACK S2 

ackoe 
TMl S2 

ackoe 
TMO S2 

IRQ 

ACLK 

{ assert ACK*, TM1*, TMO* during last state of cycle} 

. if [ INTENB 
NMRQ 

.notes 

IRQ 
+ DRQ 

{ drive NMRQ if either is ready } 

This PAL is driven by stNUBUSl (which provides decoding and 
timing); it generates the control signals used by the NuBus interface . 

. end 

Appendix E PAL Listing for the SCSI-NuBus Test Card 603 



.ident PAL16L8,B stMISC, control for NuBus SCSI test card. 

Version: 1.0 

. names 

/SLOT /SUPER /Sl /S2 A19 A18 A9 TM1L nc9 
gnd 

/RESET /IOW 
Vcc 

joe 
nc13 nc14 /INTENB /RAMCS /ROMCS /DACK /SCSI 

. equations 

SCSI SLOT * /A19 * /A18 * /A9 * /RESET 

DACK = SLOT * /A19 * /A18 * A9 * /RESET 

ROMCS SLOT * A19 * A18 * /RESET 

RAMCS SUPER * /RESET 

INTENB SLOT * A19 * /A18 * A9 * /RESET 
+ INTENB * /SLOT * /RESET 
+ INTENB * /A19 * /RESET 
+ INTENB * A18 * /RESET 
+ INTENB * A9 * /RESET 

row SLOT * TM1L * /S2 
+ SUPER * TM1L * /S2 

.notes 

This PAL actually generates the selects and R/W strobes to the chips 
on the ScSI test card. stNUBUSl does the basic slot decoding and cycle 
timing. We simply drive the signals based upon its information. 

Note that we create our own latch for INTENB. S2 behaves like the 
strobe signal; the addresses will stay around after S2 goes away . 

. end 

604 Designing Cards and Drivers for the Macintosh Family 



Glossary 

ack cycle: See acknowledge cycle. 

acknowledge cycle: Last cycle of a NuBus 
transaction during which / ACK is asserted by a 
slave responding to a master. Often shortened to 
ack cycle. 

active: See asserted. 

address: A number used to identify a location in 
the computer's address space. Some locations 
are allocated to memory, others to I/O devices. 

address bus: The path along which the 
addresses of specific memory locations are 
transmitted. The width of the path determines 
how many addresses can be accessed 
(addressed) directly by the computer. For an 
n-bit-wide address bus, the computer can make 
use of 2n locations in memory where information 
can be stored. In the Macintosh II, for example, 
the 32-bit address bus permits the processor to 
access 232 (4.3 billion) addresses. This is more 
than 250 times as many addresses as computers 
with a 24-bit bus (or the Macintosh II in 24-bit 
mode) can access (224 = 16 million). 

address mapping: The assignment of portions 
of the address space of the computer to specific 
devices. 

address space: A range of accessible memory. 
See also address mapping. 

aliasing: The act of gaining access to a memory 
location from several different addresses. This 
usually occurs in computing systems when an 
incomplete address decoding mechanism is 
used. For example, on the map of physical 
addresses for the Macintosh II, there are 1024 
(210) different addresses (aliases) that access the 
same ROM location. 

AMU (Address Management Unit): The Apple 
custom integrated circuit in the Macintosh II 
that performs 24-to-32-bit address mapping. It 
can be replaced by the optional Paged Memory 
Management Unit (PMMU). 

arbitration contest: The mechanism used to 
choose which of two or more cards requesting 
control of the bus will become the next bus 
master. For Macintosh computers with NuBus, 
the arbitration contest requires two bus periods 
(at 100 J.ls each). 

asserted: Indicates that a signal is active or true, 
independent of whether that logical condition is 
represented by a high or low voltage. 

assertion edge: The clock edge on which 
assertion of synchronous signals takes place. 

attention cycle: The name given to a particular 
kind of start cycle, one in which both /START 
and / ACK are asserted. There are two types: 
attention-resource-lock and attention-null 
cycles. 

attention-null: An attention cycle that indicates 
the new owner of the bus does not wish to 
transfer data and reinstate the bus for 
arbitration. It also indicates the end of a data 
transfer using a locked resource. 

attention-resource-lock cycle: An attention 
cycle that initiates a sequence of locked 
transactions that constitute a locked tenure of 
the current bus master. During this tenure, cards 
with lockable multiport resources lock them 
against access by local processors other than the 
NuBus master. 



block transfer: A transaction that consists of 
a start cycle, multiple data cycles from or to 
sequential address locations, and an 
acknowledge cycle. The number of data cycles 
is controlled by the bus master and is 
communicated during the start cycle. See also 
IX block transfer, 2X block transfer. 
board: A printed circuit board that is a built-in 
(permanent) part of the computer. Compare 
expansion card. 
board sResource: A unique sResource in an 
expansion card's declaration ROM that describes 
the card so that the Slot Manager can identify it. 
An expansion card can have only one board 
sResource. The board sResource entries include 
the card's identification number, vendor 
information, board flags, initialization code, 
and so on. 
boot: Another way to say start up. A computer 
boots by loading a program into memory from an 
external storage medium such as a disk. Starting 
up is often accomplished by first loading a small 
program, which then reads a larger program into 
memory. The program is said to "pull itself up by 
its own bootstraps"-hence the term 
bootstrapping or booting. 
bus: A path along which information is 
transmitted electronically within a computer. 
Buses connect short-distance networks of 
computer devices, such as processors, expansion 
cards, and physical RAM; information that travels 
along the bus is transmitted according to a set of 
rules known as a protocol. 
bus driver: The power output transistor and 
circuitry used to drive the input impedance of 
the bus, including the parallel loads of cards 
connected to the bus. 
bus interface logic: The electronics connecting 
the microprocessor bus to the NuBus in the 
Macintosh computers. 
bus locking: A mechanism for providing 
continuing tenure (bus ownership) by a single 
card. The extended tenure may include multiple 
transactions or attention cycles. One type of 
attention cycle is called a resource lock; therefore 
a bus lock mayor may not include a resource 
lock. 

bus specification: Describes the physical 
characteristics of the bus and the protocol that 
governs the use of the bus. For example, the 
NuBus specification defines the clock rate of 
the bus, the width of the bus (in bits), the 
maximum rate of information transfer, and so 
on. It also defines the protocol, or the set of 
commands used to transfer information among 
the devices using the bus. 
busy: The state of the bus between start and 
acknowledge cycles. 
byte lane: Any of 4 bytes that make up the 
NuBus data width. NuBus expansion cards may 
use any or all of the byte lanes to communicate 
with each other or with the Macintosh computer. 
byte smearing: A feature of Mc68020 and 
Mc68030 processors that causes the data for 
byte and word transfers to be replicated, or 
smeared,across all 32 data lines. 
byte swapping: The process by which the order 
of bytes in each 4-byte NuBus word is changed 
to conform to the byte order of certain 
processors. 
cache coherence: A property of a NuBus 
module to maintain a cache in which data and 
tags reside. These data and tags are used to 
determine the ownership of data between 
multiple processors and to maintain coherence, 
or agreement, between data shared by the 
processors and memory. 
cache line: Blocks of data transferred by cache 
memories. 
cache memory: A feature that allows frequently 
used data to be stored in a special buffer area 
(cache) and accessed by logical addresses. Cache 
memory improves overall performance by 
increasing the availability of the bus to external 
devices without degrading the performance of 
the microprocessor. 
cache snooping: See snooping. 
card: See expansion card. 
card-generic driver: A driver that is designed to 
work with a variety of plug-in cards. 
card-specific driver: A driver that is designed to 
work with a single model of plug-in card. 

606 Designing Cards and Drivers for the Macintosh Family 



color look-up table (CLUT): A device that 
converts pixel data from a video frame buffer 
into red, green, and blue video signals. The CLUT 
in the Macintosh II Video Card supports up to 
256 simultaneous colors from a possible 16.8 
million colors. 

Color QuickDraw: An extension of the previous 
8-bit color model that supports up to 32 bits per 
pixel on certain Macintosh models and allows 
these models to process and display full-color 
documents, images, and visual effects with 
startling color clarity. See also 32-bit 
QuickDraw. 

configuration ROM: See declaration ROM. 

coprocessor: An auxiliary processor that is 
designed to relieve the demand on the main 
processor by performing a few specific tasks. 

Generally, closely coupled coprocessors such as 
the Mc68881 in the Macintosh II or the Mc68882 
in the Macintosh IIx and the Macintosh IIcx 
handle tasks that could be performed by the 
main processor running appropriate software, 
but that would be performed much more slowly 
that way. Coprocessor architectures usually favor 
a certain set of operations, like floating-point 
calculations for graphics instruction looping, and 
therefore they can optimize the speed at which 
such operations are processed. 

A microprocessor on an expansion card can also 
function as a coprocessor to perform tasks such 
as running alternative operating systems. 

copyback: A NuBus transaction performed by a 
master to write modified cache lines to memory. 
It is typically used to free up cache lines to 
service a read or write miss or flush data into an 
I/O buffer. The copyback function can also be 
used during context switching. 

copyback cache: A cache that does not 
propagate all write cycles to memory, but holds 
the data in the cache until the cache line holding 
the data must be reused. 

CPU (central processing unit): See 
processor. 

cycle: For a Macintosh computer with the NuBus 
interface: one period of the NuBus clock, 
nominally 100 ns in duration and beginning at the 
rising edge. For a Macintosh computer with the 
processor-direct slot interface: one period of the 
processor bus clock. 

data bus: The path along which general 
information is transmitted within the computer. 
The wider the data bus, the more information 
can be transmitted at once. The Macintosh 
computers that use the Mc68000 processor have 
16-bit data buses. The Macintosh computers that 
use the Mc68020 and MC68030 processors have 
32-bit data buses. Thus, 32 bits of information 
can be transferred at a time, so that information 
is transferred twice as fast as in 16-bit computers 
(assuming equal system clock rates). 

data caching: A feature of the MC68030 
microprocessor that allows frequently used data 
to be stored in a special buffer area (cache) and 
accessed by logical addresses. Data caching 
improves overall performance by increasing the 
availability of the bus to external devices (in 
systems with more than one bus master, such as a 
processor and a DMA device) without degrading 
the performance of the microprocessor. 

data cycle: Any cycle in which data is known to 
be valid and acknowledged. It includes 
acknowledge cycles as well as intermediate data 
cycles within a block transfer. 

declaration ROM: A ROM on a NuBus expansion 
card that contains information identifying the 
card and its functions, and that may also contain 
code or other data. Proper configuration of the 
declaration ROM firmware will allow the card to 
communicate with the computer through the Slot 
Manager routines. 
DIP switches: Multiple single- or double-throw 
switches in a dual in-line package. 
direct video device: A video card whose pixel 
value, when placed in the frame buffer controller, 
directly implies the color on the display screen 
without indexing a color look-up table (CLUT). It 
will support screen depths of 16 and 32 bits per 
pixel. Compare indexed video device. 

Glossary W7 



DMA: Direct memory access. A technique for 
transferring large amounts of data into or out of 
memory without using the cpu. 
drive: The action of a card when it causes a bus 
signal line to be in a known, determinate state. 
driver-supported cards: Cards that are 
accessed indirectly via a software driver. 
driving edge: The rising edge (low to high) of 
the central system clock (lCLK). 
EDisks (electronic disks): Electronic disks 
that appear to the user to be very fast, silent disk 
drives but that use ROM or RAM for their storage 
media rather than floppy or hard disks. The ROM 
expansion card in a Macintosh Portable can 
function as one or more EDisks. 
expansion card: A removable printed circuit 
card that plugs into a connector (slot) in the 
computer's expansion interface and allows 
access to the computer's microprocessor bus. 
For example, the NuBus expansion interface of a 
Macintosh II accommodates up to six NuBus 
expansion cards. The processor-direct slot 
expansion interface of a Macintosh SE/30 or a 
Macintosh SE accommodates only one PDS 
expansion card. Expansion cards are also referred 
to as slot cards or simply as cards. Compare 
board. 
firmware: Programs permanently stored in ROM. 
fixed video device: A video device that has a 
color look-up table (CLUT) that cannot be 
modified. Compare hldexed video device. 

format block: An element in a declaration ROM's 
firmware structure that provides a standard entry 
point for other elements in the structure. The 
format block allows the Slot Manager to find the 
declaration ROM and validate it. 
FPU: Abbreviation for floating-point unit. 
frame buffer: A buffer memory that stores all the 
picture elements (pixels) of a frame of video 
information. 
Frame Buffer Controller (FBC): A register
controlled CMOS gate array used to generate and 
control video data and timing signals. 

frequency modulation (FM): An IBM 3740-
compatible, Single-density, disk-recording 
format. Compare modified frequency 
modulation (MFM). 
functional sResource; An sResource in an 
expansion card's declaration ROM that describes 
a specific function of the card, for example, a 
video sResource. . 
gamma correction: A function performed by 
the video driver of each display device 
configured in the system that linearizes the 
differences in color (or gray-scale) response. This 
is required because applications cannot 
recognize different display screens, and cannot 
perform screen-by-screen corrections. 
~amma table: A table that compensates for 
nonlinearities in a monitor's color response. 
geographical addressing: A methoo of 
identifying the physical location of a card on the 
NuBus by having four pins of each connector 
electrically wired to provide a one-of-sixteen 
code to each slot connector ($9 through $E for 
the Macintosh II, Macintosh IIx, and Macintosh 
IIfx; $A through $E for the Macintosh Quadra 
900; $9 through $B for the Macintosh IIcx; $C 
through $E for the Macintosh IIci; $D through $E 
for the Macintosh Quadra 700; and $9 fqr the 
Macintosh IIsi). A card inserted into a slot 
connector then has the code for that slot applied 
to its IID3-/IDO lines, without any manual 
setting of configuration switches as required in 
some bus systems. 

GLU: Acronym for general logic unit, a class of 
custom integrated circuits used as interfaces 
between different parts of the computer. 

halfword: An element of information half the 
length of a 32-bit NuBus or microprocessor word, 
therefore 16 bits long. A halfword for a 16-bit 
microprocessor word (from an Mc68000 
microprocessor, for example) is 8 bits long. 

heap: The area of memory in which space is 
oynamically allocated and released on demand 
using the Memory Manager. 

high: For an active-low signal, synonymous with 
inactive, deasserted, un(lsserted, false, and released. 

608 Designing Cards and Drivers for the Macintosh Family 



inactive: For an active-low signal, synonymous 
with high, deasserted, unasserted, false, and 
released. 

indexed video device: A video card whose 
frame buffer controller output indexes a color 
look-up table (CLUT) to define a potential color. 
Indexed video devices support screen depths of 
I, 2, 4, and 8 bits per pixel. Compare direct 
video device. 

intelligent card: A card containing one or more 
processors that can work independently from the 
main processor of the computer. Intelligent 
cards can serve as a medium for introducing new 
processor technologies into a system, but most 
personal computer bus architectures require too 
much support from the main processor for this to 
happen. NuBus, however, is a notable exception, 
because it was designed specifically to support 
multiple processors and, hence, intelligent cards. 

longword: As used in Part II of this book, an 
element of information consisting of 32 bits 
(two 16-bit words). 

low: For an active-low signal, synonymous with 
asserted. 

main logic board: The primary circuit board in a 
computer that holds the CPU, RAM, ROM, and 
other integrated circuits that perform the built-in 
logic functions of the computer. Compare 
expansion card. 

master: A card that initiates the addressing of 
another card or the processor on the main logic 
board. The card addressed is at that time acting 
as a slave. 

minor slot space: An Apple-specific term that 
describes the first megabye of the 16 MB 
standard slot space. 

modified frequency modulation (MFM): An 
IBM System 34-compatible, double-density, 
disk recording format. Compare frequency 
modulation (FM). 

modulo: The integer N measured modulo 4 will 

multiplex: to encode information so that fewer 
wires are needed to transmit it, and the same 
cable wires and connector pins can transmit 
different kinds of information. The NuBus 
multiplexes information so that 32-bit address 
and data communication can be performed using 
a single 96-pin connector and still have adequate 
pins available for other necessary functions. 
Specifically, 32 pins are used to transmit a 
memory address and the same 32 pins (at a 
different time) to transmit data. 

NuBus: A 32-bit-wide synchronous, multislot 
expansion bus used for interfacing expansion 
cards to some Macintosh computers. See also 
bus interface logic, NuBus expansion slot. 

NuBusexpansion slot: A connector on the 
NuBus in a Macintosh computet into which an 
expansion card can be installed. The Macintosh 
II, Macintosh IIx, and Macintosh IIfx have six 
NuBus expansion slots; the Macintosh Quadra 
900 has five; the Macintosh IIcx arid the 
Macintosh IIci have three; the Macintosh Quadra 
700 has two; and the Macintosh IIsi has one. 

null cycle: A type of attention cycle that 
reinitiates bus arbitration. 

1X block transfer: A block transfer in which 
NuBus words are transferred at a 10 MHz rate. 

open collector: A bus driver that drives a line 
low or doesn't drive it at alL 

Paged Memory Management Unit (PMMU): 
The Motorola Mc68851 chip, used in the 
Macintosh II computer to perform logical-to
physical address translation and paged memory 
management for virtual-memory operating 
systems such as AlUX. The PMMU can be installed 
as an option, replacing the AMD. 

PAL: An integrated circuit implementing 
programmable array logic. 

parked: A NuBus master that has released /RQST 
is said to be parked on the bus until another card 
asserts /RQST. 

be the remainder (0, 1, 2, or 3) froth division of N PDS: See processor-direct slot (PDS). 
by 4. 

Glossary 609 



peer cards: Cards that are designed to execute 
code that is not specialized to the card-for 
example, two cards that are executing 
cooperating processes to solve a problem. 

period: The 100 ns duration of the NuBus /CLK 
signal consisting of a 75 ns high state and a 25 ns 
low state. 

PIO (programmed input/output): An 
interfacing technique where the processor 
directly accesses registers assigned to I/O 
devices by executing processor instructions. 
Memory-mapped I/O port registers are 
addressed as memory locations. 

primary initialization code: A special code in 
an expansion card's declaration ROM that when 
executed performs key, one-time initialization 
of the card. 

processor: Same as CPU, where the term central 
processing unit may not be literally applicable. 
The processor contains an arithmetic and logic 
unit (ALU) and system control hardware. In 
Macintosh systems containing expansion cards, 
there may be two or more processors (or CPUs), 
with none being more central in function than the 
others; these are multiprocessor systems. 

processor-direct slot (PDS): The expansion 
interface architecture used on compact, or small
footprint, Macintosh computers such as the 
Macintosh SE and the Macintosh SE/30. It has a 
single connector that allows an expansion card 
direct access to all of the microprocessor signals. 

pseudoslot design: The recommended method 
of designing a 68030 Direct Slot expansion card 
to occupy an address location that corresponds 
to the 32-bit physical address ranges used by 
NuBus expansion cards in Macintosh computers. 

QuickDraw: The part of the Macintosh Toolbox 
that performs all graphics operations on the 
screen. 

read hit: An operation in which a processor 
successfully performs an initial read of data in 
the cache. A read hit occurs when the requested 
location within the memory cache is valid. 

read miss: An operation in which a processor 
fails to perform an initial read of data in the 
cache. A read miss occurs when the requested 
location within the memory cache is invalid. 

release: To do the opposite of drive to a signal 
line. 

released: For an active-low signal, synonymous 
with high, inactive, deasserted, unasserted, and 
false. 

resource locking: The action of a local 
processor operating in a multiprocessor 
environment to lock the bus from NuBus 
intrusion while using a resource that is accessible 
by both the local processor and the NuB us. 

sampling edge: The falling edge (high to low) of 
the central system clock. 

scaled pixel clock period: A normalizing 
parameter used in the description of video card 
operation. One scaled pixel clock period equals 
16 times the ratio of pixel clock period to the 
pixel depth (in bits per pixel). 

SCSI (Small Computer System Interface): An 
industry standard parallel bus that provides a 
consistent method of connecting computers and 
peripherals. 

SCSI devices: Devices, such as hard disks and 
tape backup units, that use the Small Computer 
System Interface. 

68000 Direct Slot: The 96-pin expansion 
interface connector used on Macintosh SE and 
Macintosh Portable computers to allow an 
expansion card direct access to the Mc68000 
microprocessor. The connectors are physically 
identical but electrically different. See also 
processor-direct slot (PDS). 

68020 Direct Slot: The 96-pin expansion 
interface connector used on Macintosh LC 
computers to allow an expansion card direct 
access to the Mc68020 microprocessor. See also 
processor-direct slot (PDS). 

610 Designing Cards and Drivers for the Macintosh Family 



68030 Direct Slot: The 120-pin expansion 
interface connector used on Macintosh SE/30 
and Macintosh nfx computers to allow an 
expansion card direct access to the MC68030 
microprocessor. The connectors are physically 
identical but electrically different. See also 
processor-direct slot (PDS). 

68040 Direct Slot: The 140-pin expansion 
interface connector used on the Macintosh 
Quadra 700 and Macintosh Quadra 900 
computers to allow an expansion card direct 
access to the Mc68040 microprocessor. The 
connectors are physically and electrically 
identical. See also processor-direct slot (POS). 

slave: A NuBus card that responds to being 
addressed by another card acting as a master. 
The Macintosh main logic board may be either 
master or slave. Some cards may be slave-only in 
function because they lack the circuitry to 
arbitrate in a bus ownership contest. 

sleep state: The time when the Macintosh 
Portable is not in use and most of the circuits are 
powered down, the screen is blank, and the hard 
disk stops spinning. This state extends battery 
life by reducing power consumption to almost 
nothing. 

slot: (1) A connector attached to the processor 
bus or the NuBus. A card may be inserted into 
any of the physical slots when more than one is 
provided (a Macintosh computer with NuBus 
provides from one to six slots). (2) A region in 
address space (standard slot space) allocated 
to a physical slot. 

slot card: See expansion card. 

slot ID: The hexadecimal number corresponding 
to each card slot. For the Macintosh computers 
with NuBus, each slot ID is established by the 
main logiC board of the computer and 
communicated to the card through the /IDx 
lines. 

Slot Manager: A set of Macintosh computer 
ROM routines that communicate with an 
expansion card's declaration ROM and allow an 
application to gain access to declaration ROM. 

slot resource: See sResource (slot resource). 

slot space: The address space assigned to 
NuBus expansion cards and PDS expansion cards 
that emulate NuBus cards in Macintosh 
computers. See also standard slot space, super 
slot space. 

snarf: An action taken by a cache-coherent 
master when it eavesdrops on a write-back 
transaction and absorbs the data. 

snooping: A hardware function that allows the 
cache to monitor bus activity by alternate bus 
masters. 

snooping module: A module that snoops a 
cache-coherent transaction between a NuBus 
master and slave. See also snooping. 

sResource (slot resource): An element in the 
firmware structure of an expansion card's 
declaration ROM that defines a function or 
capability of the card. The small s indicates a slot 
resource as opposed to a standard Macintosh 
resource. There is one functional sResource for 
each function a card can perform, but only one 
board sResource that identifies the card. 

sResource directory: An element in a 
declaration ROM's firmware structure that lists all 
the sResources and provides an offset to each 
one. 

sRsrcType: A required entry in every 
sResource, whose fields are used by the Slot 
Manager to identify the expansion card and the 
function it performs. An sRsrcType entry 
contains four major fields (category, type, driver 
hardware, and driver software), which are 
structured in hierarchical order. 

stack: The area of memory in which space is 
allocated and released in LIFO (last in, first out) 
order. 

standard slot space: The upper one-sixteenth 
of the total address space. These addresses are in 
the form $Fsxx xxxx, where F, s, and x are hex 
digits of 4 bits each. This address space is 
geographically divided among the NuBus slots 
according to slot ID number. Compare super 
slot space. 

Glossary 611 



start cycle: The first period of a transaction 
?uring which 1ST ART is asserted. The start cycle 
IS one bus clock period long; the address and 
transfer type are valid during this cycle. 

state machine: A block of logic implemented 
in hardware or software, that can' assume a finite 
number of values or states, and that makes a 
translation from one state to another in a set 
sequence in response to specific inputs. For each 
state, a state machine generates a specific 
output, or asserts or deasserts a specific signal. 

~uper slot space: The large portion of memory 
lfi the range $9000 0000 through $EFFF FFFF. 
NuBus addresses of the form $sxxx xxxx (that is 
$sOOO 0000 through $sFFF FFFF) address the sup~r 
slot space that belongs to the card in slot s 
where s is an ID digit in the range $9 through $E. 
Compare standard slot space. 

~nure: A period of unbroken bus ownership by a 
sm~le master. A master may lock the bus and, 
dunng one tenure, perform several transactions. 

32-bit QuickDraw: A system extension to handle 
direct color, as opposed to indexed color. In 
System 7, the features of 32-bit QuickDraw are 
included in Color QuickDraw. See also Color 
QuickDraw. 
time-out period: The time period that a bus 
master waits for a nonresponding slave to 
respond before generating a bus time-out error 
code. 

transaction: A complete NuBus operation such 
as. a read or write. In the Macintosh computers 
WIth NuBus, a transaction is made up of an 
address cycle, wait cycles as required by the 
responding card, and a data cycle. Address cycles 
are one clock period long and convey address 
and command information. Data cycles are also 
one clock period long and convey data and 
acknowledgment information. 

transfer mode: One of the 16 modes or 
encodings that specify which part of the 
addressed 32-bit word is to be transferred. 

tristate: A bus driver that drives a line low or high 
or that doesn't drive it at all. 

2X block transfer: A block transfer in which 
NuBus words are transferred at a 20 MHz rate. 

unasserted: For an active-low signal, 
synonymous with high, deasserted, false, inactive, 
and released. 

wired-OR: The physical connection of two or 
more i~put signal wires to provide a logical OR 
operatIon. If one or more of the input signals are 
true, the output is true. The output is false only 
when all of the input signals are false. 

word: An element of information. As used in Part 
I of this book, a NuBus word is 32 bits long, a 
NuBus halfword, 16 bits. As used in Part II of this 
book, an MC68000, MC68020, MC68030 and 
Mc68040 word is 16 bits long; a longwo~d, 32 bits 
long. 

write-back: An action taken by a NuBus 
snooping module when it returns, or writes back 
its modified data to shared memory. ' 

write-back cache: A cache that does not 
propagat~ all write cycles to memory, but holds 
the data lfi the cache until the cache line holding 
the data must be reused. A write-back cache or 
copyback cache, is used in the NuBus cache~ 
coherency protocol. 

write hit: An operation in which a processor 
successfully performs an initial write of data to 
the c~che. ~ ~rite hit occurs when the requested 
locatIon Wlthm the memory cache is invalid. 

~te miss: An operation in which a processor 
faIls to perform an initial write of data to the 
cach~. A v.:rit~ miss occurs when the requested 
locatIon Withlfi the memory cache is invalid or 
when the data is shared. 

612 Designing Cards and Drivers for the Macintosh Family 



Index 

IX block read, NuBus 
timing 67-68 

IX block transfer errors, NuBus 
70 

IX block write, NuBus 68-70 
68000 Direct Slot 4,277,281-302 

96-pin connector 386 
68020 Direct Slot 4,303-313 
68030 Direct Slot 5, 278, 315-362 

electrical description for 
Macintosh SE/30 317 

electrical description for 
Macintosh IIfx 327 

electrical description for 
Macintosh IIsi 317 

electrical design guide 315-
359 

120-pin connector 408 
68040 Direct Slot 5, 279, 363-381 

connector signals 365, 366-
370 

electrical design guide 363-
381 

interrupt handling 377 
interrupt mapping 378 
memory mapping 374 
snooping 381 
virtual memory 381 

68040 processor 379 
data cache 379 

A 

accessing I/O devices from an 
expansion card 276, 290, 
312,340,343,352,374 

accessing RAM from an 
expansion card 275, 291, 
312,340,344-348,358,374 

acknowledge cycles 32, 63 
bus time-out 63 
bus transfer complete 63 
defined 45 
error 63 

/ ACK signal 42-43 
active-low signal 44 
adapter card, Macintosh IIsi 31 
adapter kit, Macintosh IIsi 128, 

360 
address allocations 134 
addressing design philosophy, 

NuBus 11 
address space 

Macintosh LC 270,311 
Macintosh Portable 270 
Macintosh SE 270, 296-297 
Macintosh SE/30 270, 341 
Macintosh IIsi 343-351 
NuBus 132-134 
NuBus expansion 29,34,231 

address translations, 24-to-32-bit 
134 

aliasing 34 
Apple-defined sResource entries 

163-164 
video sResources 185 

application-specific expansion 
strategy 7 

arbitration, NuBus 92,97-105 
contests 45, 101 
logic mechanism 99 
overview 98 
signals 98 
timing 101, 102 

/ ARBx signals 42-43, 98 
A!ROSE operating system 186 
asserted, defined 44 
/ AS signal 288, 336 

attention cycles 
attention cache 64 
attention null 64 
attention-resource-lock 64, 

104 
coding 63 
defined 44, 63 
implementation rules 64 

autosizing 71 

B 

/BERR signal 32, 288, 336 
/BGACK signal 336 
/BG signal 336 
block data transfers, NuBus 3, 45, 

66-80 
block read, NuBus 67 

timing 73 
block write, NuBus 68 

timing 76, 79 
Boardld entry 174 
board sResource 144,174 

ID numbers 174 
/BR signal 336 
bus arbitration timing, NuBus 

117-118 
bus error signal (/BERR) 32, 288, 

336 
bus locking 45,103 
/BUSLOCK signal 339 
bus master priority, Macintosh 

Quadra-family computers 
374 

bus parking, NuBus 105 
bus request signal (/RQST) 98 
byte lanes, NuBus 137-138, 158 
byte swapping, NuBus 137 

613 



c 
cache card, Macintosh IIci 

electrical design guidelines 
527-528 

mechanical design guidelines 
528--529 

power budget 530 
cache coherency, NuBus 58, 

81-92 
defined 46 

cache connectors, Macintosh IIci 
electrical description 524 
pinout 522 
signal descriptions 523 
signal loading and driving 

525-527 
cache lines 82 
cache memory, defined 81 
cache memory expansion, 

Macintosh IIci 517-528 
address space 520 
cache connector 521 
control trap 520 
how cache works 519 
overview 518 

CACHE signal 361, 527 
timing 527 

cards, NuBus 
component placement 121 
defined 46 
description 121 
spacing 121 
thickness 121 

card selection logic, Macintosh LC 
312 

card-specific drivers, NuBus 190 
/CBACK signal 336 
/CBREQ signal 336 
C8M signal 288 
/CIOUT signal 336 
/CLK signal 42-43 
/CLK2XEN signal 52 
/CLK2X signal 43, 52, 71 
Close routine 203 
CLUT devices 183 
cold-start, modem 499, 511 
color look-up table (CLUT) 183, 

252 

Color QuickDraw 182, 183, 201, 
213 

communication standards, 
modem expansion 
interface 514 

compliance categories, NuBus 94 
driver-supported cards 95 
peer cards 95 

connector pin assignments 
Macintosh LC 68020 Direct Slot 

305 
Macintosh Portable 68000 

Direct Slot 300 
Macintosh SE 68000 Direct Slot 

284 
Macintosh SE/30 68030 Direct 

Slot 318 
Macintosh IIfx 329 
Macintosh IIfx 68030 Direct 

Slot 329 
Macintosh IIsi 68030 Direct 

Slot 318 
NuBus 111 
PowerBook 100 RAM 

expansion 469 
PowerBook 140 RAM 

expansion 460 
PowerBook 170 RAM 

expansion 460 
connectors 

Macintosh LC 68020 Direct Slot 
304 

Macintosh Portable 68000 
Direct Slot 299 

Macintosh SE 68000 Direct Slot 
282,284,386 

Macintosh SE/30 68030 Direct 
Slot 405 

NuBus 122 
68000 Direct Slot 96-pin 

386-389 
68030 Direct Slot 316, 408--409 
68040 Direct Slot 364-372,417 

control routines 205-210 
control signals, NuBus 56 
conversion addresses, 24-to-32-

bit logical address 
translation 349 

copyback, defined 46 
CPUCLK Signal 339 

614 Designing Cards and Drivers for the Macintosh Family 

CRC basic algorithm 160 
CRC field 160 
c16M signal 288, 336 

D 

data caching 94 
data cycle, defined 46 
data transfer, NuBus 56-95 

specifications 58 
deasserted, defined 46 
declaration ROM 141,142, 145, 

149,153,192,255,256,376 
data types 152 
design objectives 150, 151 
firmware structure 153 

definitions of NuBus interface 44-
50 

design considerations 
backlit Macintosh Portable 

453 
Macintosh LC 311 
Macintosh Portable ROM card 

479 
Macintosh Quadra 700 372 
Macintosh Quadra 900 372 
Macintosh SE/30 expansion 

cards 352 
Macintosh IIfx expansion 

cards 354 
Macintosh IIsi expansion 

cards 352 
design guides, electrical 

NuBus cards 107-113 
68000 Direct Slot expansion 

cards 281-302 
68020 Direct Slot expansion 

cards 303-313 
68030 Direct Slot expansion 

cards 315-359 
68040 Direct Slot expansion 

cards 363-381 
design guides, physical 

Macintosh PDS expansion 
cards 383 

Macintosh Portable modem 
card 498 

Macintosh Portable RAM card 
450 



design guides, physical 
(continued) 

Macintosh Portable ROM card 
478,479 

NuBus cards 119,125-127 
PowerBook 100 modem card 

507 
PowerBook 140 modem card 

507 
PowerBook 170 modem card 

507 
device I/O 

Macintosh computers 29 
Macintosh computers with 

application-specific 
expansion interfaces 
441 

Macintosh PDS computers 
276 

direct mode 183 
DirectoryOffset value 160 
direct pixel mode 205 
direct video devices 183, 205 
disk controller, Macintosh SE 

block diagram 421 
controller logic 423 
interface logic 423 
overview 420 
system configuration 420 

disk controller, NuBus 
block diagram 237 
interface logic 239 
memory map and 

declaration ROM 242 
on-card DMA operations 241 
programmed I/O operations 

240 
RAM access signals 240 
system configuration 236 

double-rate block transfers 70-80 
defined 46 

doublet, defined 46 
drive, defined 46 
drivers, NuBus card 

calling 195-197 
installing at startup 195 
sample 561 
specific 190 

driving edge, defined 46 
/DSACKx signal 336 
IDS signal 336 

E 

/ECLK signal 336 
/ECS signal 340 
EDisk driver 481 

checksumming 481, 482 
header format 482 

EDisks (electronic disks) 480-484 
electrical design guides 

NuBus cards 107-118 
68000 Direct Slot expansion 

cards 281-302 
68020 Direct Slot expansion 

cards 303-313 
68030 Direct Slot expansion 

cards 315-359 
68040 Direct Slot expansion 

cards 363-381 
electrical specifications 

Macintosh LC 68020 Direct Slot 
304,310 

Macintosh Portable 68000 
Direct Slot 299-300 

Macintosh SE 68000 Direct Slot 
282-287,288 

Macintosh SE/30 68030 Direct 
Slot 317 

Macintosh IIsi 68030 Direct 
Slot 317 

NuBus signals 108 
EMI guidelines 532-534 
enable clock signal 289 
expansion connectors. See 

connectors 
expansion strategy 1-7 

application-specific 7 
NuBus 3 
processor-direct slot 3 

/EXT.DTK signal 289 
external connections, Macintosh 

PDS computers 389, 410, 
414,420 

F 

false, defined 46 
FCO-FC2 signals 289, 337 
feature summary 

Macintosh computers with 
application-specific 
expansion interfaces 
432-433 

Macintosh NuBus computers 
14-17 

Macintosh PDS computers 
266-267,280 

firmware structure 153-155 
Macintosh EtherTalk Interface 

Card 155 
Macintosh II Video Card 153-

154 
fixed video devices 205 
format block 143, 156 
format block examples 158 
Format field 159 
FPU/ROM expansion, Macintosh 

Classic II 
connector pinout 487 
expansion card 485 

functional signal description 
MC68000 signals 288 
MC68020 signals 306 
Mc68030 Signals 335 
Mc68HCOOO signals 301 

G 

gamma correction 213-216 
gamma table 207, 215 

data structure 215 
global cache coherency, defined 

47 

H 

halfword 
defined xxxiii 
NuBus 95 

/HALT signal 289,337 
hardware architecture 

Macintosh computers with 
application-specific 
expansion interfaces 
434-441 

Index 615 



hardware architectur~ 
(continued) 

Macintosh NuBus computers 
13-35 

Macintosh PDS computers 
266-274 

hardware overview 
Macintosh computers with 

application-specific 
expansion interfaces 
431-441 

Macintosh NuBus computers 
13-30 

Macintosh PDS computers 
265..:..280 

heat dissipation guidelines 127, 
534-536 

Nu13us cards 127, 534 
processor-direct slot cards 

535 
high, defined 47 

I 

icons 184 
black and white 184 
color 185 

identifying direct devices 183 
identifying 32-bit addressable 

configurations 183 
/IDx signals 42-43 
inactive, defined 47 
indexed pixel mode 205 
indexed video devices 183, 205 
interrupt handling 

Macintosh Quadra 700 377 
Macintosh Quadra 900 377 
Macintosh SE 68000 Direct Slot 

296 
Macintosh SE/30 68030 Direct 

Slot 352 
Macintosh IIfx 68030 Direct 

Slot 356 
Macintosh IIsi 68030 Direct 

Slot 352 
interrupt operations, NuBus 65 
interrupt queue routines 

SIntInstall 198 
SIntRemove 199 

/IPLO-/IPL2 signals 289,337 
/IRQ1-/IRQ3 signals 339 
/iRQ6 signal 340 
/IRQ15 signal 340 

L 

/LDS signal 289 
Length field 160 
locking, NuBus 102 
longword, defined xxxiii 
low, defined 47 

M 

Macintosh Classic 
major features 432-433, 437 
RAM expansion 453 
RAM expansion card design 

guide 458 
Macintosh Classic II 

address space 489-490 
FPU/ROM expansion 484, 486 

design guide 491 

power budget 492 
major features 432-433 
power budget 486 

Macintosh computers 
address/ data bus architecture 

30 
Macintosh Coprocessor Platform 

173,188 
Macintosh LC 

card selection logic 312 
major features 266-267,274 
memory map 310 
pseudoslot design 311 

Macintosh LC 68020 Direct Slot 
277 

connector pinout 305 
Signals, loading or driving 

capability 308 
power budget 313 

Macintosh Portable 
backlit version 444,449,450, 

452,453 
major features 266-267 
modem slot 499 
power control 498-499 

616 Designing Cards and Drivers for the Macintosh Family 

MaCintosh Portable (continued) 
RAM expansion 444-450 

wait states 449,451,453 
ROM expansion 476 
timing, RAM expansion slot 

452 
Macintosh Portable 68000 Direct 

Slot 277; 299..:..302 
Macintosh Quadra 700 

bus master priority 374 
RAM 28 
ROM 29 
68040 Direct Slot 279,363-381 
32-bit physical address spaces 

375 
Macintosh Quadra 900 

bus master priority 374 
ROM 29 
68040 Direct Slot 279,363-381 
32-bit physical address spaces 

375 
Macintosh SE 

address space 296, 297 
disk controller design 

example 419-428 
major features 266-267 

Macintosh SE 68000 Direct Slot 
277 

cOnnector pinout 284 
power budget 298 
signals, loading or driver 

capability 285 
Macintosh SE/30 

major features 266-267 
PDS expansion card design 

hints 352 
pseudoslot expansion card 

design guidelines 349, 
351 

32-bit physical address spaces 
342 

Macintosh SE/30 68030 Direct Slot 
278 

connector pinout 318 
connector signals 319-322 
electrical description 317 
interrupt handling 351 
machine-specific signals 338 



Macintosh SE/30 68030 Direct Slot 
(continued) 

power consumption 
guidelines 353 

Macintosh IIci 
cache memory expansion 

517-530 
RAM 28 

Macintosh IIfx 68030 Direct Slot 
278 

bus master priority scheme 
356 

cache memory use 358 
card design hints 354 
connector pinout 329 
connector signals 330 
effect of clock speeds 357 
electrical description 327 
interrupt handling 356 
memory cycle termination 

355 
power consumption 

guidelines 359 
pseudoslot design guidelines 

355 
signals, loading and driving 

capability 333 
Macintosh IIsi 

adapter card, power budget 
362 

NuBus adapter kit 128-129 
PDS adapter card 316,317, 

413,414,415 
PDS expansion card design 

hints 352 
pseudoslot expansion card 

design guidelines 349, 
351 

RAM 28 
32-bit physical address spaces 

344 
timing, RAM burst read 347 
timing, RAM burst write 345 
timing; RAM random read 

348 
timing, RAM random write 

346 

Macintosh IIsi 68030 Direct Slot 
278 

adapter 360, 361 
connector pinout 318 
connector signals 319 
electrical description 317 
interrupt handling 351 
machine-specific signals 338 
power consumption 

guidelines 353 
Macintosh II Video Card 245-260 

access to video RAM space 
251 

color look-up table (CLUT) 
252 

declaration ROM 255-257 
external signal connector 260 
firmware interfaces 257 
Frame Buffer Controller 248 
functional operation 247 
horizontal and vertical Scan 

timing 252 
overview 246 
processor-ta-video card 

interface 248 
timing generation 248 
video connector 259 
video RAM 249 

Maj orBaseOS entry 170 
Maj orDeviceAddr entry 171 
major features 

Macintosh computers with 
PDS 26fr.267 

Macintosh NuBus computers 
14 

Ma j orLength entry 170 
Maj orRAMAddr entty 171 
Maj orROMAddr erttry 171 
master, defined 47 
master, NuBus expansion card 

171 
master flow control, defined 47 
MC68000 signals, functional 

description 288 
Mc68020 microprocessor 18 
Mc68020 signals, functional 

description 306 
MC68030 microprocessor 18 
MC68030 signals, functional 

description 335 

Mc68040 microprocessor 18 
Mc68HCOO signals, functional 

description 301 
memory expansion, Macintosh 

Portable 450 
M,E,S,I 82 

di£med 81 
MinorBaseOS entry 170 
MinorDeviceAddr entry 171 
MinorLength entry 170 
MinorRAMAddr entry 171 
MinorROMAddr entry 171 
modem 

cold-start 499, 511 
power-control interface 499, 

509 
power-up/power-dowrt 499, 

511 
warm-start 499, 511 

/MODEM.BUSY signal 509-510 
modem card 

Macintosh Portable 494-501 
PowerBook 100 502-513 
PowerBook 140 502-513 
PowerBook 170 502-513 
standards information 514 

MODEM.PWR signal 499, 509-
510 

multitasking 188 

N 

/NMRQ signal 42-43, 53, 65 
nonaligned NuBus reads and 

writes 93 
NuBus 

adapter kit, Macintosh IIsi 
128, 129 

address/data signals 57 
address space 132 
address translations, 24-to-32-

bit 134 
advantages and disadvantages 

3. 
arbitration 97-105 
bit and byte structure 13fr. 

137, 138 
block data transfer 45, 80 
bus parity signals 58 
byte lanes 137,158 

Index 617 



NuBus (continued) 
byte swapping 137 
cache coherency 58, 64, 81, 

113 
cache-coherency states 88 
cache line, defined 81 
compliance categories 94 
connector 122 
connector pin assignment 

111 
control signals 56 
copyback cache 81,87 
copyback transaction 85, 86 
data block transfers 180, 181 
data-transfer signals 56 
data-transfer specifications 58 
definitions 44-50 
design examples 221-243 
design objectives 38 
electrical requirements 108 
elements 39 
expansion strategy 3 
features 38 
interface architecture 31 
interface logic 129 
internal connectors 125 
licensing 12 
line drive requirements and 

load allowances 109 
1990 specification 38, 41, 52, 

81, 108, 112, 113, 180, 
181 

IX block data transfer 67 
power budget 114 
power supply specifications 

113 
read miss 86 
read transactions timing 60 
signal line dependency 55 
signals 41, 108 
single data cycle transactions 

59 
slot allocations 136 
snooping 85, 86, 90 
tirrling 44, 116-118 
transfer mode encoding 56, 

57, 71, 83, 113 
transfer status coding 63 

NuBus (continued) 
utility signals 52-53 
write miss 86 
write transactions timing 61 

NuBus cards 
component placement 121 
driver design 189 
electrical design guide 108-

118 
firmware 141 
heat dissipation guidelines 

127 
memory access 131-138 
no-component area 126 
physical design guide 119, 125 
spacing 121 
thickness 121 

NuBus halfword 59,95 
/NUBUS signal 339 
NuBus signals 

/ACK 42-43 
/ARBx 42-43 
/CLK 42-43 
/CLK2X 43 
/CLK2XEN 43 
/IDx 42-43 
/NMRQ 42-43 
/PFW 42-43 
/RESET 42-43 
/RQST 42-43, 98 
/SP 42-43 
/SPV 42-43 
/STDBYPWR 43 
/TMx 42-43 

NuBus Test Card (NTC) 
byte swapping 223 
hardware organization 226 
master operation 230 
overview of operation 222 
programming 225 
programming model 222 
slave operation 230 

NuBus-to-processor bus state 
machine 34 

NuBus word 59 

618 Designing Cards and Drivers for the Macintosh Family 

o 
IX block read, NuBus 

timing 67-68 
IX block transfer errors, NuBus 

70 
IX block write, NuBus 68-70 
open collector, defined 47 
Open routine 203 
overview 

p 

Macintosh computers with 
application-specific 
expansion interfaces 
431-441 

Macintosh NuBus computers 
13-30 

Macintosh PDS computers 
265-280 

parity signals, NuBus 58 
parked, defined 47 
PDS 

advantages and disadvantages 
3-4 

expansion strategy 3-4 
interface 262-263, 276-280 

/PDS.BG signal 340 
/PDS.BR signal 340 
/PDS.MASTER signal 340 
PDS signals 

Macintosh LC 68020 Direct Slot 
306 

Macintosh Portable 68000 
Direct Slot 301 

Macintosh Quadra 700 364 
Macintosh Quadra 900 364 
Macintosh SE 68000 Direct Slot 

288 
Macintosh IIfx machine

specific 339, 340 
68030 Direct Slot common 

336 
period, defined 47 
/PFW signal 42-43, 53, 337 

interaction with power supply 
110 

physical design guide, Macintosh 
PDS expansion cards 383 



physical guidelines 
Macintosh LC expansion cards 

395 
Macintosh Portable expansion 

cards 392 
Macintosh SE expansion cards 

384-386 
Macintosh SE/30 expansion 

cards 401-407 
Macintosh IIfx expansion 

cards 412 
Macintosh IIsi expansion 

cards 413 
NuBus cards 119, 125 

/PMCYC signal 289 
PollRoutine routine 199 
PowerBook 100 

major features 432-433, 439 
memory map 467 
modem expansion card 502-

513 
RAM expansion 467 

design guide 474 

wait states 474 
PowerBook 140 

major features 432-433 
modem expansion card 502-

513 
RAM expansion 459 

wait states 465 
PowerBook 170 

major features 432-433, 440 
modem expansion card 502-

513 
RAM expansion 459 

wait states 465 
power budget 

Macintosh Classic II 
FPU/ROM expansion 
486,492 

Macintosh LC 68020 Direct Slot 
313 

Macintosh NuBus cards 114 
Macintosh Portable 68000 

Direct Slot 302 
Macintosh SE 68000 Direct Slot 

298 
Macintosh SE/30 68030 Direct 

Slot 353 

power budget (continued) 
Macintosh IIfx 68030 Direct 

Slot 359 
Macintosh IIsi adapter card 

362 
Macintosh !lsi 68030 Direct 

Slot 353 
Power Manager 509-510 
power supply specifications, 

NuBus 113 
power-up/power-down, modem 

499, 512 
PRAMlni tData entry 176 
Primarylnit 176---178 
processor bus-to-NuBus state 

machine 32 
processor-direct slot. See PDS 
processor-direct slot interface 

276-278,279,280 
product safety 536-538 
pseudoslot design 6, 142,311, 

338,349-350,351,354, 
374-377 

Q 

QuickDraw 147,200 

R 

Color 147 
interaction with the 

declaration ROM 149 
interaction with the Slot 

Manager 149 
32-bit 147, 183 

RAM 
Macintosh computers 28 
Macintosh computers with 

application-specific 
expansion interfaces 
441 

Macintosh PDS computers 
275 

RAM expansion, Macintosh 
Classic 453-459 

address space 453-454 
electrical description 454-457 
physical design guide 457 

RAM expansion, Macintosh 
Portable 444-450 

address space 444 
card design guide 450 
connector pinout 446, 448 
connector signals 449 
expansion card 447 

RAM expansion, PowerBook 100 
address space 467 
expansion card design guide 

474 
expansion connector signals 

469 
RAM expansion, PowerBook 140 

and PowerBook 170 
connector pin assignments 

460 
expansion card design guide 

465 
read miss 82,84 
read transactions, NuBus 60 
released, defined 48 
Reserved field 159 
/RESET signal 42-43, 52, 289, 337 
resolution field 187 
resource locking, NuBus 102, 104 
RevisionLevel field 159 
/RMC signal 337 
ROM 

Macintosh computers 28 
Macintosh computers with 

application-specific 
expansion interfaces 
441 

Macintosh PDS computers 
276 

ROM expansion, Macintosh 
Classic II 

address space 489 
connector pinout 487 
physical design guidelines 491 
power budget 492 

ROM expansion, Macintosh 
Portable 476 

card design guide 478 
connector pinout 477 
connector Signals 478 
design considerations 479 
expansion card 476 

Index 619 



/RQST signal 42-43 
R!W signal 289,337 

s 
sampling edge, defined 48 
/SBO signal 54 
/SB1 signal 54 
SCSI-NuBus Test Card 231-236 

hardware overview 231 
PAL descriptions 236 
software overview 231 

sDri ver record 193 
Secondarylnit 179-180 
sGammaDir entty 185 
simple disk controller, NuBus 

236-243 
SIntlnstall function 198 
SIntRemote function 199 
68000 Direct Slot 4,277,281-302 

96-pin connector 386 
68020 Direct Slot 4, 303-313 
68030 Direct Slot 5, 278, 315-362 

electrical description for 
Macintosh SE/30 317 

electrical description for 
Macintosh IIfx 327 

electrical description for 
Macintosh IIsi 317 

electrical design guide 315-
359 

120-pin connector 408 
68040 Direct Slot 5,279,363-381 

connector signals 365, 366-
370 

electrical design guide 363-
381 

interrupt handling 377 
interrupt mapping 378 
memoty mapping 374 
snooping 381 
virtual memoty 381 

68040 processor 379 
data cache 379 

SIZO-SIZ1 signals 337 
slave, defined 48 
slot, NuBus 

as address space 54 
defined 48 

slot allocations, NuBus 136 

slot device interrupts 197-199 
/SLOT,E signal 340 
slot ID, defined 49 
Slot Manager 144, 149, 171 

interaction with declaration 
ROM 142-145 

interaction with QuickDraw 
150 

in startup procedure 157 
and video drivers 200 

sMemoty resource 171-172 
snooping 83, 381 
/SP Signal 42-43 
/SPV signal 42-43 
sResource directoty 161 
sResources 143, 151, 162-185, 191 

board 144 
defined 143 
entries 163-185 
functional 144 
implementation 145 
use at startup 201 

sRsrcBootRec entty 168-169 
sRsrcCicn entty 170 
sRsrcDrvrDir entty 166 
sRsrcFlags entty 169 
sRsrcHWDevld entty 169 
sRsrclc14 entty 171 
sRsrclc18 entty 170 
sRsrclcon entty 166,184 
sRsrcLoadRec entty 167-168 
sRsrcName entty 166,171 
sRsrcType entty 145,165,166, 

171 
fields 146,148 
format 145 

sRsrcVidNames entty 185 
standard slot space, NuBus 132 

as address space 54 
defined 49 

start cycle, defined 49 
/START signal 32, 98 
status routines 211-212 
/STDBYPWR signal 43 
STERM signal 337 
sTimeOut entty 176 
super slot space, NuBus 133 

as address space 55 
defined 49 

620 Designing Cards and Drivers for the Macintosh Family 

T 

tenure, defined 49 
TestPatternfieid 159 
timing 

Macintosh IIsi RAM random 
write 346 

Macintosh LC accesses to I/O 
devices 313 

Macintosh Portable 
modem 500 

Macintosh Portable modem 
card 499 

Macintosh SE accesses to RAM 
291-295 

Macintosh IIsi RAM burst read 
347 

Macintosh IIsi RAM burst write 
345 

Macintosh IIsi RAM random 
read 348 

Macintosh II Video Card 252-
254 

modem cold-start 511 
modem power-up/power-

down 512 
modem warm-start 511 
NuBus arbitration 117-118 
NuBus IX block read 66 
NuBus IX block write 69 
NuBus utility and data transfer 

116 
/TMx signals 42-43, 71 
transaction, defined 49 
transfer mode encoding, NuBus 

56,57,113 
tristate, defined 50 
true, defined 49 

u 
IUDS signal 289 
unasserted, defined 50 
utility signals, NuBus 52-53 



v 
Vendor Info entty 178 
video cards. See also Macintosh II 

Video Card 
additional firmware 

requirements 182-185 
name 187 

video devices 
direct 183, 205 
fixed 183,205 
indexed 183, 205 

video driver routines 
Close 203 
control 203 
Open 203 
status 203 

video drivers 200 
data structures 204 
declaration ROM information 

201 
device record 201 
parameter IDs 201 
routines 202-212 

video mode name directory 186 
video sResource 200 
video sResource ID numbers 185 
NMA signal 289 
NP A signal 289 

w 
warm-start, modem 499 
word, defined xxxiii, 50 
write-back, defined 50 
write miss 82, 84 

defined 50 
write-through cache, dermed 50 
write transactions, NuBus 61 

Index 62t 



THE APPLE PUBLISHING SYSTEM 

This Apple manual was written, edited, and 
composed on a desktop publishing system using 
Apple Macintosh computers and Microsoft Word 
software. Proof pages were created on an Apple 
LaserWriter IINTX printer. Final pages negatives 
were output directly from text files on an Agfa ProSet 
9800 imagesetter. Line art was created using Adobe 
Illustrator. PostScript®, the page-description 
language for the LaserWriter, was developed by 
Adobe Systems Incorporated. 

Text type and display type are Apple's corporate 
font, a condensed version of ITC Garamond@ 
Bullets are ITC Zapf Dingbats@ Some elements, 
such as program listings, are set in Apple Courier. 

Writer: Cathy Donovan 
Developmental Editor: Jeanne Woodward 
Illustrator: Sandee Karr 
Production: Janet M. Anders 

Special thanks to Jano Banks, Mark Baumwell, 
Rich Collyer, Jon Fitch, David Fung, Denis Hescox, 
Ron Hochsprung, Brian Howard, Jerry Katzung, 
Jon Krakower, Ann Nunziata, Noah Price, Craig Prouse, 
Mike Puckett, and Jim Stockdale for their technical 
assistance. 

Also, a very special thanks to Rolly Reed and Roy Smith, 
writers of the first and second editions of this publication. 



~ ... 
~ 
~ 
:T 
:T 

co 
\:l 

o X 
~ 

I , 

'Pi' 
m 
~ 
~ ,... ... 
III ... 

STANDARD (APPLE I D5-;5 
LOCATION 

.-------'-----~I!'!'il_:____j'-- 98.32 [3. 87IJ 

, ...... E----SS.30 [2.I77J 

o 

PIN A-I (LOGIC BOARD 
INTERFACE CON~ECTORI 

DETAIL A 

I 
101.5 

[,+.OOJ 
REF 

I 
CONNECTOR AND FENCE DETAIL 

ON SIDE VIEW IS OMITTED 
FOR CLARITY 

NOTE: UMl.ESS OTHftWISE SPECl~ 

12X) ¢ 3.17 [.)25J 

CROSS HATCHING !NDICATES 
NO COMPONENTS THIS AREA 

n£ LONG" VERSJON DlMENSHJ4 1'322.30 (12.68911 (S THE APPLE 
PREf"ERREO MAX tM~ OOARD LENGTH THAT MA TCI-£S THE STMIJARD 
PANEL SIZE. 

THIS DIMENSION MAXltr.tJM LENGTH PERMISSIBLE FM NOH INTERFERENCE 
WITH CPU INTERNAL COMPONENTS. THIS SIZE IS It. NON STA/'4DA~O 
PANEL SIZE. 

'" ... 
0 

0 

...:.. 
0 
N 

ci 
~ 

0 
0 

.0 
III 
':' 

~--------------------------~330.20 MAX----------------------------4 
1 [13.000] 
~ REF 

1---. _______ . ____ 322.30 

m 
~ 

.! '" \0 ... \0 
III ... 

'" w 
Cl 

'" W 
0 
N 

ci 
0 N 

~ I 

0 
~ ... 
~ 

,... 
III 

ai 
:l" 

N 
N 

':' ':' 

ffi [1 2 .089] 
REF 

(LONG VERSIONI 

296.75------------------------------~ 

[I! .683] 
REF 

(STANDARD VERSION) 

~---------------I97.eq----------------~ 

[7.789] 
REF 

ISHORT VERSION) 

LONG VERS 1 ON -
ONLY 

If.. 

< 
Z 

c:: 
o 
t-

ILOGIC BOARD 
INTERFACE CONNENTORI 

o 
j-78. 7'+ [3.100]-~ 
I REF 

X 
:l" 

PIN A-IlLOGIC BOARD 
INTERFACE CONNECTORl 

I 
7S.79 [Z.98i.f]-i 

SEE OETAIL A 

1.0 .~.4 

[ .0'1 +.021 -.co_ 

• Foldout 1 Design guide for Macintosh family 
standard NuBus cards 

22.86 [.900J---r--l 

TV? I 

"""~~r CF BOARD , 

CPU LOGIC BOARD/PERIPHERAL BOARD SPACIN~ 
13 BOAR~S SHOWN FOR CLAR!TY) 

62; 



'r::' 
I' 

II! 
~ 
:t 
": 
lfl 
oD 

o X 
N 

'iii' 
(IJ 

~ 

"'" I' 

": 
lfl 
I' 

STANDARD I APPLE 1 DB-15 
LOCATION 

.----I-----~!OO'i -:----j'---- 98.32 [3.871 J 

1e-6---55.3o [2.177J 

1..-£3----22.00 [.866J 

PIN A-IlLOGIC BOARD 
INTERFACE CONNECTOR 1 

VIEW A 

2X ¢ 3.17 [.125J 

1--------------(330.20) MAX--------------! 

~[(13.0oo)J 

t---------------(322.30)-----------------------~ 

ffi [(12.689)J 

ILONG VERSloNI 

~----------1296.751----------------~ 

[111.683IJ 

'iii' 'iii' 
(IJ "! 
I' I' 
W W 

~ ~ 
(IJ :t 
Ol (IJ 

ISTANOARD VERSloNI 

1--------- 1197.8'+1----------1 

[(7. 789)J 

ISHoRT VERSIONI 

SHORT VERS ION 
ONLY 

« 
z 
a. 
o 
f-

'+X '+5· 

• Foldout 2 Design guide for Macintosh Quadra-family 
NuBus and PDS expansion cards 

22 . 86 [. 900 r--r-------i 
TYP I I 

TOPSIDE~ OF BOARD 

I I I 

I I 

I 
96.52 [3.8ooJ 

9'+.0 [3. 70J_~_---=:~~~~~~~~:'::"~~~t;f::zz:~~~~~~~T===11~~~ (92.17) [(3.629)J---1:------. 
188.27 [3.,+75JI ....... (--+-(87.17) [(3.,+32) 

86.5 [3.4IJ 82.25 [3.238JMAX 

176.20 [3.000 JI------I-+----+-+---------./ 

(101.6) 

[('+.oo)J 

¢ 3.38 +~.05 

[. m ~ :~~~] 
5X 

~ 1.57 [.062J------N----N 

TO PIN A-I 0 
-0.33 [- .013J ~ 

CONNECTOR AND FENCE DETAIL 
ON SIDE VIEW IS OMITTED 

FOR CLARITY 

-5.08 [-.20oJ--'-/ 

2X ¢ 2.3[.091 

KEL P/N 8807-140-170LX 
I COPROCESSOR 
CONNECTOR 1 

NOTES LN..ES5 OTHERWISE SPE:CIFIEO 

THE LONG VERSION DIMENSION 1322.30 I 12.689 II IS THE APPLE 
PREFERRED MAXIMUM BOARD LENGTH THAT MATCHES THE STANDARD 
PANEL SIZE. 

DIRECT 

THIS DIMENSION IS THE MAX LENGTH PERMISSIBLE FOR NO INTERFERENCE 
WITH CPU INTERNAL COMPONENTS. THIS SIZE IS A NON-STAf\I)ARD 
PANEL SIZE. 

'iii' 
0 a 
,; 
Ol 
I' 
~ 
~ 
W 
a 
N 

a 
-+I 

a a 
ill 
lfl 

~ 

'iii' 
0 
0 

'CD' 'CD' 
8 '" lfl ,; 

CD 

,; 
~ '" oD 

": 
oD 

'" ": (IJ 

Ol 
W 

(IJ ill w 
0 
N 

0 ~ 
N 

a a 
-+I -+I 

~ I' 
lfl 

ai N 
:t N 

~ ~ 

---tl-- ----t-:; 
EUROCARD TYPE C 

CONNECTOR 
96-POSTION 

AMP P /N 532505 - I 

~ 
:t 

I' 

lfl 
~ 

'::' 
tD 
:t 
.::, 

'CD' a a 
.; 
Ol 

al 
.; 
w 
a 
N 

a 
-+I 

I' 
oD 

'" N 
, 

PIN A- I 
ILOGIC BOARD 

INTERFACE 
CONNECTOR 1 

ct.. 

o 
, 
« 
z 
a. 
a 
f-

ILOGIC BOARD 
INTERFACE CONNENTORI 

o 
(78.74) [(3. 100)J 

PIN A-IlLOGIC BOARD 
INTERFACE CONNECTOR 1 

N 
Ol 

~ 
a 
N 

a 
-+I 

a 
N 

:t 
I' 

87.25 +~.30 

[3.,+35 ~:~~~] 
15.'+'+ [.608J MIN 

87.25.0.13 

[3.435 •• oo5J 

'+.92 [.194J------.--+---------'-

2X ¢ 3.50 

[.138J 

SEE VIEW A 

STANDARD AND 
SHORT VERSION 

ONLY 

1.0 +~.4 

[.04 ~ :~~J 
CPU LOGIC BOARD/PERIPHERAL BOARD SPACING 

13 BOARDS SHOWN FOR CLARITYI 

627 



NOTE: UNLESS OTHERWISE SPECIFIED 

NUBUS BOARDS WHICH CONFORM TO THE ANSI/IEEE STD 1196 SPECIFICATION. lAS SHOWN IN THE.PARTIAL 
REAR VIEW)FDR "MAXIMUM CONNECTOR CUTOUT" WILL PROPERLY FIT 
AS LONG AS THE DESIGN ALSO ALLOWS CLEARANCE FOR SURROUNDING PLASTIC AND I/O SHIELD. 
REFERENCE SECTION A-A AND DETAIL B. 

PLASTJ C HOUSI NG CLEARANCE 0 I MENS I 0N5 • THESE SHOULD BE USED AS 
DESIGN LIMITS FOR MATING CABLES OR COMPONENTS THAT REOUIRE REAR ACCESS. 

I/O SHIELD CLEARANCE DIMENSIONS. THESE SHOULD BE USED AS DESIGN 
LIMITS FOR BOARO MOUNTED CONNECTOR OR COMPONENTS THAT REOUIRE REAR ACCESS_ 

APPLE COMPUTER NUBUS BOARD CONNECTOR CLEARANCE DIMENSIONS. 
THESE SHOULD BE USED AS DESIGN LIMITS FOR APPLE SPECIFICATION 062-0484. NUBUS 
BOARDS WITH NOTCHES. REFERENCE DETAIL B. 

CENTER LI NE FOR 
MOUNTING HOLE AT 
NUBUS CARD 

& 

- & 
I-- 17.00 

& 
f--f-- 14.00 

, __ -{SEE DETAIL 

TOP COVER 

5.00l I I 

..JL--____ .L[_ 9.92 I ----.r- 2.51 

~ J ! ! I ~·-.1 111~-- I 

/\ I I jl II 

L0, & ~: :: :: I > & 
74.55 55

1
.81 II: ii ii: 80

1
.00 

Ii::: :: I 

.....l ______ ======h:~L~-a.:-jl:: __ :: If---- : 
I ; J dl ~ dl ~;l--'J~I·.I-, __ -I--__ --.lL.. ____ -'-

L.~~ L~....Io L-t....:l 

/- /- /-~ 

81.00 

I 

1 

Ai 

II 
I 
I 

1 
I 
I 

iA 

11 
I 
I 

,~ ~:~~ t; ==~-=~=, 

& 
14.00-

--I- - ------

I--
f-

I-- 12.70 ''""'''', ,,", l.~ 
OF NUBUS BOARD ~9).59 

COMPONENT SIDE OF 
NUBUS BOARD 

j 
15X) 
17.00 

15X) 
2.23 

-I-- 0.80 

-I-- 0.72 

& 
PARTIAL REAR VIEW 

�7.42--14-------~----------74.17--------------

14.38--. OF NUB US BOARD 
15.84

1 
{COMPONENT SIDE 

R~EF ____________ ~~==tt---li~ ---r 
t 15XI 

15XI /\ 12.70 

, 
I 
I 
I 

15X) 22.85 

I~VOJ-~L0, REF 1 ___ ~ __ ~-+ ______ -L 

/\ 15XI & 
~ 2rP °R~~ J L II 

BOTTOM COVER 1~0.81 
4.00 II" EXPANSION 

COVER ~~0.81 
I/O SHIELD 

SECTION A-A 
SCALE: 2/1 

FENCE 

REF 

16X) 
8 0.00 

16X) 
9.67 -

o 

PIN A-I 
SEE APPLE NUBUS 
DESIGN GUIDE 

& 
.-9.92 I REF ~ 

ra = 

[ 
L.: 

J ~~F25 _____________ 

Ii 
& I 65.81 I 

T 
I 

L 
[ 

-= 

• Foldout 3 

o 

NuBus card clearance requirements for 
Macintosh II, Macintosh I1x, Macintosh IIfx, 
and Macintosh Quadra 900 computers 

BOTTOM COVER 

LOGIC PCB 

16X) 
83.40 

~ ---, 
I 

• I 
_'./L.....J 
---, 

( 

--

(£) 

DETAIL B 
SCALE: 2/1 

> 

& 
jNOTCHES 

92.17 

z 
SEE APPLE NUBUS 
DES I GN GU IDE 

629 



NOTE: UNLESS OTHERWISE SPECIFIED 

.1 
.70 
EF 

f 

NUBUS BOARDS WHICH CONFORM TO THE ANSI/IEEE STD 1196 SPECIFICATION 
lAS SHOWN IN THE PARTIAL REAR), FOR "MAXIMUM CONNECTOR . 
CUTOUT" WILL FIT PROPERLY AS LONG AS THE 
DESIGN ALSO ALLOWS CLEARANCE FOR SURROUNDING PLASTIC. 
REFERENCE SECTJON A-A AND DETAIL B. 

PLASTIC HOUSING CLEARANCE DIMENSIONS FOR THE MAC Ilex. 
THESE SHOULD BE USED AS DESIGN LIMITS FOR BOARD MOUNTED 
CONNECTORS OR COMPONENTS AND MATING CABLES. 

APPLE COMPUTER NUBUS BOARD CONNECTOR CLEARANCE DIMENSIONS 
THESE SHOULD BE USED AS DESIGN LIMITS FOR 
APPLE SPECIFICATION 062-0484. NUBUS BOARDS WITH NOTCHES, 
REFERENCE DETAIL B. 

14.42 

12.01 

2.00 

1 
&. 13XI 

14.00 

f 

&0.80 
REF j 

! 

If3XI 
17 j38 

9.75 

1 
~ 

! 
i 
~ 

&. 
0.55 

& 
14.00 

ffi & 
12. 70 ---11--11--- 0 • 80 

[

CENTER LI NE FOR MOUNT I NG 
HOLE AT NU8US CARD 

ffi &. _ r4.95 
[5.00 _ 

14.00 

PARTIAL REAR VIEW 

74.20 

/ COMPONENT SIDE 
OF NUBUS BOARD 

= 

I '3L 
21. SO 

> I 
~ 

-~ANSI/IEEE STD 119 
"MAX I MUM CONNECT 

, CUTOUT" REF 

5 
OR 

-~ ~ 
Fs:> I 

13XI 
24.13 

~ 

13XI ] 
4.51 

0.20 

- 0.81 
4.00-

L:SHIELD 

I-- EXPANS JON FENCE 
COVER 

SECTION A-A 
SCALE' 2/1 

• 

/,,_~SEE DETAIL B 

( 
A I : A 

f i I f 
L __ -+I -U.~.~~I __ --.J 

9.92 

I I 
I I 

i I 

I 

l , 
.... / 

'" 
88.52 
REF 

13XI 
75.51 

55.81 
REF 

--0] 

08-25 
REF 

I 

i 
I 
I 

...L.-...,A-l----'~--<EJ 

DETAIL B 
SCALE: 2/1 

CAD GENERATED 

Foldout 4 NuBus card clearance requirements for 
Macintosh IIcx, Macintosh IIci, and 
Macintosh Quadra 700 computers 

TOP COVER 

PIN A-I 
SEE APPLE NU8US 
DESIGN GUIDE 

92.17 

PIN A-I 
SEE APPLE NUBUS 
DESIGN GUIDE 

631 



0 

;j-~ 
;j- .... 
• 1/1 

1/1 • 
ID~ 

~ 

.... 'Pi' 
":1lI 
~.ci. 

STANDARD (APPLE) DB-IS 
LOCATION 

!a:::=I::f~---SS. 30 [2.177] 

1 ..... -1=3------- 22.00 [.866] 

o 
PIN A-I (LOGIC BOARD 
INTERFACE CONNECTOR) 

VIEW A 

2X ¢ '3.17 [.IZS] 

CROSS HATCHING INDICATES 
NO COMPONENTS THIS AREA 

~--------------------------330.20 MAX--------------------------~ 

~[13.000] 

~--------~(322.~)----------------------------------~ 

&[(12.689)] 

~----~(~L~0~N=G-V~E~R5~I~0~N~I-----(296.7SI--------------------------~ 

[(11.683)] 

(STANDARD VERSIDN) 

(197.8'+1 

[(7.789)] 

'0' 
(SHORT VERSIONI 

0 
'Pi' 'iii' ID '0' 
II! "! ;j" N 
.... .... w CD 

w w a; .::, 
(JI c: I" 
CD ;j-

ID SHORT VERSION "! 
(JI CD -;' ONLY , , 

1 '+'+ • 8 [S. 70] ~jrzj.zzzz=ii!ZZO~~l=zi!ZZOZZZZZZZZZZZZoFzFIZI21Iz=ZZZZZZZZi!ZZOi!ZZO ..... ZZZZ~i!ZZO ..... ....dIpZZ.rI=q,ji 
1 '37. '3 [S. '+ 1]-----++---+----1=.1 

I 
I 

• Foldout 5 

I I ...-I-"'--I+------L... (101.S2) [(3.997)] 

188.26 ['3.'+7s]I----+;-----r' .--------1 (96.S2) [(3.800)] 
(92.17) [('3.629)] I 

Design guide for oversized Macintosh 
Quadra 900 NuBus card 

22.86 [. 900J-t--l 

TYP I I 
OF ElQARD ~"~-w 

176.20 ['3.ooo]I-----U~-W----J--:I·.. (87.17) [3.,+32] 

¢ 3. 38 :~:~6 : : 82.2S [3.238]1 
87.2S .0.1'3 

CONNECTOR AND FENCE DETAIL 
ON SIDE VIEW IS OMITTED 

FOR CLARITY 

VIEW lB 

SX [3.,+3S '.OOS] 

[. l'33 : :~~~] I N-- (DB-2S1 87 .2'5 +~. '30 

I.S7 [.062] I IS.'+'+ [.608] MIN ['3.'+'3S ::~b~] 

TO PIN A-I ()_~~~~~~~~~~~-~-~-~~I ~-~1-~~~~~~~~~~~~~~==~~l+~~1=='+=.=9:2~[~.~19~'+~]:::::~~~=~ ______ ~ __ --1 -0.33[-.013] __ _ -0.8[-.0031 

-S.08 [-.200]~ ----r--i-
KEL P/N 8807-1'+0-170LX 
(COPROCESSOR DIRECT 'iii' 'iii' 'iii' CD CONNECTOR I 0 0 0 I" q 0 ~ IJ) 

,; ,; ... cD 
(JI CD I" W .... ID 10 10 0 ": ": CD 
0 (JI CD 

10 W W 
W 

0 0 ':" 
0 N N 
N c:i c:i c:i ... ... ... 

S .... 

'0' 
(JI 

~ 
.!:::, 
IJ) 
N 

0 
(JI 

EUROCARD TYPE C 
CONNECTOR 

96-POSTION 
AMP P/N S32S0S- [ 

"'" 'iii' PIN A-I 
1/1 8 (LIONGTI{R~AOtERD .... ,; CONNECTOR I 
IJ) 

(JI ,'-:', 
10 

~ II! 
;j" 

ui w 
;j" 0 

'-.J 
N 

c:i ... 
.... 

0 
,'-:', 
,-, .... 
I" 

rio 

f 

-2.S'+ [- .100] 

¢ 3.S0 
[.138] 

STANDARD AND 
SHORT VERSION 

ONLY 

1.0 +~.'+ 

[.0'+ ::~~] 
CPU LOGIC BOARD/PERIPHERAL BOARD SPACING 

(3 BOARDS SHOWN FOR CLARITY) 

0 ~ 0 ai N If.. 
10 

~ .,; NOTEs. lJILESS OTHERWISE SPECIFIED 

.c ;j" N 
IJ) ':" ':" ':" 

~ (LOGIC BOARD 
INTERFACE CONNECTOR) 

PIN A-I (LOGIC BOARD 
INTERFACE CONNECTOR I 

o 

633 



18.97 

-A-

-B-

IJ.57 

I---/-- 19.22 .to. 10 

2.93 
20.50 

94.60 

z.o R 

11-1'1----1.5 :~:~ 

z.oo---l-lH 
<0.00 
-0.30 I 

18.57 ----l ~ 

7.00 

/\ hot 3.0 
~ 2PL 

REF 

<t. 

-B-

7.B2 

--I;. 

4.0 

TOP DETAIL 
OMITTED FOR 
CLARITY 

4.92 
+O.ZO 
-0.00 

. 
7.50 
:to.l0 

-A-

i-
I 

6.00 

:1:0.10 

[ 10.35 r 5.35 

---, --rTo;. 
.1 ~7.25 

::.: ~.~ J~. 
hot 3.0 1\ 
2PL ~ 

• Foldout 6 Connector shield for 
Macintosh II-family computer 

-5-

~E~ TYP, 

,,7.50 
I .to.\0 
j REF" 

Q -L -..f'Al L~:!-L.._-.--= 1:!d::=!Z;r=\=r#=o =-- ._-- --. 

I 
IB.97 
REF 

I 

5.25 

-8-

2.57 
REF 

SECTION D-D 
SCALE. 2.5 

635 



Address NuBus 
or Data ADHnes 
from/tO 
MC68020 Byte lane 

Byte 3 
3 

BltsD7-DO 

Byte 2 

Bits 015-08 
2 

Byte 1 
Bits 023-016 

Byte 0 
Bits 031-D24 

o 

GAB3 
fA031 
1AD3fJ 
/AJ>29 
IAD28 
IA027 
1AD26 
IA025 
IA024 

CAB 
SAB 

GAI!21Q 
IA023 
/AD'12 
IA021 
1"'020 
/11019 
IA018 
/AOI7 
IA016 

CBA 
SBA 

,-DCLK IDOE---, ACLK IAOE---"l IGSA 
I 

1 CAB Vee 24 

--, 
2 SAB CSA 23 

-111~ 20 1!.,f> Vee 20 
A31D7 

3 GAB SBA 22 

1~1 07 Q7 19-

~ 

4 A7 ~ 21 
1~1 07 Q7 19-

1~!DO ~ 16 
5 20 -17 DO Q6 16 

15-
A28D4 

A6 56 19 
- 14 05 Q5 15- l~- ~ Q4 12-

-A27D3 

6 ~ 85 7 18 
13 D4 ~ ~2 

8 03 Q3 9 -
8 A3 B4 17 

~~Q26- 7 02 Q2 6 
9 A2 B3 16 

10 15 ~28~ ~- Dl QI 5 
A24DO 

Al ~ .. OJ QI 5 r 
300 Q02 

14 
00 QOr-2 -

II AD SO 13 19 ~Gnd...QIP 1 ""1 12 G~ 
Ul US I 

1 CABVcc 24 
t: r SAB CSA 2232 r:;-::::] 
, 3 GAS SBA -11 ~_ veel 20 

. C 4 A7 GSA7 2201 --rrrr'-- Hi 07 Q7 19-
'5 A6 B , 17 06 Q6 1 165~= ;- 19 Q5 J 

6 AS 56 14 05 12-t: 7 A4 85B4 18 13 04 Q4 

f-~-~ B3 II ~ g~ ~~~::: 
1.

9 A I B2 15 r-- 4 01 Ql 5-
10 AO Bl 14 t::=: 3 ~DO QOr2-11 Gnd 8Or- 13 -10 ~...QU> I 

U2 U6 

10 IGld_QU> I-
U9 

-11~2O 
18 '07 Q7 19-
17 06 Q6 16-
14 05 Q5 15-
13 04 Q4Q3 912 -_"1"0_ A19D11 
8 03 A18DlO 
7 02 Q2 6 AI7D9 Ir 4 01 QI 5 J 1: 3 DO QOr2-
10~~1-

Ul0 

IClK 

7 
8 

+5 

3K 

IID3 ~+-+--r----, 

IID2 - ....... -r-,. I 

IIDI 

liDO 

• Foldout 7 NuBus Test Card (NTC) schematic 
diagram 

------1- 1 ~ 2 --- ClK IClK ~ 
ISTART ------ I 
IACK----- I 

U16 20 

I ClK Vee 
2 I R 19- SLAVE 

18 -/ACKCY 3 I S R 
17 -/ROMOE I L R 8 4 
16-IRESET 5 I A 
15 -MASTER IMSTDN 6 I V 
14 -TMll ITMI 7 I E 
13 - A19D11l A19D11 8 I 
12 -A18DlOl A18Dl0 9 I 

"""'H'""'t'"T-~ ~IJ : = : '-----t1m,--- 9 8 -- 11 

121 11-- 12 '----rr,,_ 13 U 15 

U14 
+5 

16 J 
15 
14- U17 20 
13-
12- IARBCY 
11-
10 
9 

U18 20 

ClK Vee 
19-/ARBCY 

I I Vee 
19 - GRANT 

I R 
0 

MASTER- 2 
18-/ADRCY 

2 I 
1/0 18 - lorb2oe 

GRANT- 3 I M R 
17 -/DTACY 

3 I 
A I/O 17 - /orbloe 

/RQST - 4 I A R 
4 I 

16 - /orbOoe 5 I R I/O 
16-IOWNER I S R 15-- /ARB3 /START - 5 

T R 15-/busy 
B 1/0 

lACK - 6 I 
6 I 

14-- IARB2 I/O 7 I +5 

14-lorbdn I E R MASTERD- 7 
13-/lOCKED 

I/O 13--/ARBI 
/RESET - 8 I R R 

12-A17D9l 

8 I 
12T IARBO 

I 
9 I 0 

A17D9 - 9 I 11 Gnd 

1 IJ 
2 15 
3 14-

IMSTDN -+------ttttHtt-r-C== 
r1-1 CAB Vee 24 

SAB CBA 23 
..., 

r1= GAB SB~ 22 
'4 A7 GB 21 

MASTERD ---- r 
II f> ~ 20 /ADI5 

5 A6 B7 - 20 IAD14 
6 A5 86 19 IADI 3 
7 A4 85 - 18 IADI 2 
8 A3 B4 - 17 IADI 1 
9 A2 B3 16 IADI 0 

10 Al B2 - 15 lAD 9 
11 AO Bl r 14 lAD 8 
12 Gnd 80 'r 13 

U3 

~ 1 CAB Vee - 24 
I 2 SAB CBA-23 _ 
~ 3 GAB SBA - 22 II J> Vee' 20 

A7 GBA 21 r- 113 :::J 07 Q7 19-IADD67_-= 45 A6 B7 2Q-----..- 17 106 Q6 16-
IAD5 _ 6 A5 86-19 I~J05 Q5 l~-
IAD4 _ 7 A4 85-18 13 04 Q4 9-~~D3- ~ ~ ~::ll- ~ g~ ~~ 6-
IAD2- 0 Al B2 15 - 4 OIQO Qlr~-_ 
IAD1-11 AO Bl -14 3 I~" ()~~I _ 
IADO- 12 Gnd 80 -13 10;.:.;; ..... ..-. 

U4 U8 
Address 

18 07 Q7 1~:1-17 06 Q6 _ 
14 05 Q5 15 _+_t_-- 1 
13 D4 Q4 12 
8 03 Q3 9_ -:;:~==-,_ 7 02 Q2 6 
4 01 Qlr5-
3 DO QOr2-

- 10 IGnd.~ I -

U11 

II A13l-21 _1- AI2l -19 

I 
Al1l-22 

--=AlOl-23 
A9l - 1 

===~ A8l - 2 l> Vee 20 A7l _ 3 ~ l~ ~r07 Q7 19 ::~~=== A6l _ 4 e l7 06 Q6 16 A5l _ 5 
f--14 05 Q5 15 A4l _ 6 
1-13 D4 ~~ ~2 A3l _ 7 
t-8 g~ Q26 A2l- 8 
t= ~ 01 QI 5 -r- _ r 2 
' 3 DO QO 2 -r- IROMOE-+- 18 .L- IO Ll:ind....,QU> I 

Address and data 
buffers (U 1-U4) 

U12 
Oata 

) ----'-'----- -v 
Address and 
data registers 

24 
All Vee 
AIO D7 
A9 D6 
A8 D5 
A7 2 D4 
A6 D3 
A5 7 D2 
A4 Dl 
A3 3 DO 
A2 2 Al 
AO 
OE 
CE Gnd 

12 U13 

4 

17 
16 
15 
14 
13 
II 
10 
9 

4 13- 10 
12-
11-
10 
9 

U19 20 
20 

IACKCY- I I Vee 
19-/RQST 

ClK - 1 I Vee 
19- GAB3 

/ARBCY - 2 I 0 
18- /START 

SLAVE - 2 I 0 
18- /AClK 

IADRCY - 3 I N I/O 
17-/ACK 

I I/O 

I B I/O 

TMll - 3 
Milo 17- IDClK 

IDTACY - 4 
D I/O 16-/rqstoe 

A19Dlll- 4 I 
16- /AOE 

10WNER - 5 I 
15-/MSTDN 

I I I/O 

I R 1/0 

A18DlOl - 5 
I S I/O 15- IDOE 

flOCKED - 6 
I V 1/0 14-/tmoe 

/ARBCY - 6 
14- CAB 

- 7 
13- /TMI 

IADRCY- 7 I C I/O 
13- /GBA 

A19Dlll - 8 I R 1/0 
12- /TMO 

I I/O 

I 0 

IDTACY - 8 
12- GAB210 

AI8DlOl - 9 
/ROMOE- 9 I 0 

11 I 
Gnd 

MASTER - 11 I 
Gnd 

10 
10 

Note' Allie terminals 
. labeled Gnd are 

connected to power 
ground. 

~ 12-SAB IGBA-13 -v'" 

~4-CBA IARBCY-3 -v'" 

~6-SBA /ADRCY-5 -v'" 

U21 

~8-AClK IAClK-9 -v'" 

~ ID-DClK /DClK-II -v'" 

637 



4.00 

NOTE: UNLESS OTHERWISE SPECIFIED 

INDICATED DIMENSIONS SPECIFY MAXIMUM BOARD OUTLINE. NO COMPONENTS, 
INCLUDING MATING CONNECTOR FROM EXPANSION BOARD, TO PROTRUDE 
BEYOND THE BOARD EDGES. 
INDICATED AREA WILL CONTACT THE METAL CHASSIS WHEN BOARD IS INSTALLED. 
NO TRACES OR FEEDTHROUGHS ARE PERMITTED. 

INDICATED AREA IS RESERVED FOR I/O CONNECTORS, WHICH ARE TO BE MOUNTED 
ON THE CIRCUIT SIDE AS SHOWN. NO OTHER COMPONENTS PERMITTED ON CIRCUIT SIDE. 

~ MAXIMUM LEAD LENGTH AFTER SOLDERING TO BE 2.5 MM. 

5. WARP AND TWIST OF FINISHED BOARD NOT OT EXCEED 0.25 MM (.010 IN.) PER 
INCH WHEN MEASURED IN ACCORDANCE WITH IPC-A-500. 

f 
11.86 

j 

2 3 

~--------------------g6.00--------------------~ 

CIRCUIT SIDE 

_____ L_ ~1'57' 0.16 

I -------, 
: I 

I I I I I I 

! I I I---~f __ -L 

56.00 & 

L ______________________________ ~ ____________________ ~ 

L,., ~, 

3.50-

COMPONENT HEIGHT 

• Foldout 8 Connector card design guide for 
Macintosh PDS computers 

~-----------------------111.00------------------------~ 

& 

r-------------------------------j 
I : I 

~---- - ------ - -------- ------ -~ I\ ____________________________ ~_J 

~,." '" 2 HOLES 

~---------------------104.00----------------------~ 

COMPONENT SIDE 

I 
13.50 

I 

639 



o 

I 

n£ LON& VERSION DI_ION IWZ. ~ I 12._ II IS n£ APPLE 
PREFERRED IlA)(IIotAUII I!OAIID LENGTH THAT .... TQ£S n£ STANDARD 
PANEl.. SIZE. 

THIS DI_ION IlAXIIoUI LENGTH PERUISSI!II..E FOR NON INTERFERENCE 
WITH' CPU INTERNAL COWPCIENTS. TH ISS I ZE I S A NON STANDARD 
PANEl.. SIZE. 

...... ___ .-----98."32 [3.871] 

ST AN:lARD 1 APPLE 1 08- 15 
LOCATION 

~-----------------330.ZO WAX -----------------~ 
&[13,.;ooJ 

1Ii==E'F-----55.3O [2. I77J ~---------~-~.3O-----------------------~ 
&[I~689J 

It. OF 08-1'5 
CONIECTOR 

L~-l::'----Z2.00 [.1166] 

PIN A-I (LOGIC BOARD 
INTERFACE CONNECTOR I 

DETAIL A 

I 
101.6 

[ ... 00] 
REF 

~ 
CONNECTOR ANO FENCE DET AI L 

ON SIDE VIEW IS OMITTED 
FOR CLAA1TY 

12)(1 {IS 3.17 [.I2'5J 

CROSS HATCH I NG I r.tJ I CATES 
NO COI<PONENTS TH I S APE.A 

I as. Z6 [3 ... 75) 

86.5 [3."IJ----4-+-' 

15)(1 {IS '3.113 +go05 

[.m ::=] 

TO PIN A-I 0 

-5.08 [_.200J-( 

f l . . 
~ i 
,j, ,.; 

...!... ...!... 

Ii! Ii! 
~ ~ 
~ Ii? 
... tio 
'!! ~ 

r LQI.IG VEAS r ON I 

~--------------~.75-------------------~ 

(I 
¥~ i ' 
• !!! 
~ . 
W !! 
Ii! 0;-

~ 
!:: 

~ 

'" ~ 

I I 

.. 
II! 

I 
...!... 
on 
II' 

tio 
~ 

It. 
1 LOG I C IIOARD 

[11.683] 
REF 

(STANDARO vERSION) 

o LONG VE..s I ON 
ONLY 

PIN 1.-1 
1 LOG I C IIOARD 

INTERFACE 
CONNECTOR I 

STANDARD 
VERSION 

ONLY 

)( 

:!: 
'::1~ 
~ ;: 
~~ 

f-------- I2XI 160.20 ______ ---1 "I 
[6.307] 

0 
C 
z 
ii: 
~ 

I NTERf' ACE CONNENTOR 1 

PIN A-I (LOGIC IlIlARD 
I NTERf' ACE CONNECTOR I 

o 

1--------- 'N.' ...... ~ 

f . 
II: ... 
~ 
Ii! 
~ 
~ 
N 
!:: 

• Foldout 9 Design guide for Macintosh IIfx PDS 
expansion card 

(","Xl '+5-

12)(1 {IS 3.50 
[.138] 

87.25 .~. '30 

[3.'<35 ::~] 

I 

SEE DETAIL A 

22. B6 [.900J----t-----j 

TVP I I 
OF IIOARD ~"~~ 

97.25 .0.1'3 

[3 ... 35 •. 005] 

CPU LOG I C IIOARD/PER I PHERAL IIOARD SPAC I NG 
13 IIOAADS SHOWN FOR CLAIII TY I 

641 



The Official 
Publication from 

Apple Computer, Inc. 

> $29.95 USA 
> $38·95 CANADA 

Designing Cards and Drivers for the Macintosh Family 
Third Edition 

In continuing Apple's tradition of providing new product information, Designing 
Cards and Drivers for the Macintosh Family, third edition, gives you up-to-date 
expansion gUidelines for all expandable Macintosh models, including the six new 
models introduced in late 1991. A companion book, Guide to the Macintosh Family 
Hardware, provides detailed information on the hardware design of the Macintosh 
family of computers. 

The third edition includes comprehensive gUidelines for designing expansion cards 
and drivers for the following Macintosh models: 

• Macintosh SE • Macintosh IIsi • Macintosh PowerBook 100 
• Macintosh SE/30 • Macintosh IIfx • Macintosh PowerBook 140 
• Macintosh II • Macintosh LC • Macintosh PowerBook 170 
• Macintosh IIx • Macintosh Classic • Macintosh Quadra 700 
• Macintosh IIcx • Macintosh Classic II • Macintosh Quadra 900 
• Macintosh IIci • Macintosh Portable 

This book consists of an introduction providing an overview of Apple 's expansion 
strategy, three main parts, and five appendixes. 

Part I describes the implementation of the NuBus™ intelface, provides electrical and 
mechanical gUidelines for designing NuBus expansion cards, and supplies 
information that is essential to the design of declaration ROM and driver software. 

Part II describes the processor-direct slot (PDS) expansion interface and provides 
guidelines for designing expansion cards for the 68000, 68020, 68030, and 68040 
Direct Slot expansion interfaces used in current Macintosh computers. 

Part III discusses application-specific expansion interfaces and describes how they are 
implemented in the Macintosh family of computers to satisfy a unique purpose. 

The appendixes provide information on a variety of subjects such as electromagnetic 
intelference, heat dissipation, and safety standards; sample code for a declaration 
ROM and video drivers; and PAL listings for NuBus and SCSI-NuBus test cards. The 
book also contains a glossary of technical terms and an index. 

Apple Computer, Inc. 
20525 Mariani Avenue 
Cupertino, California 95014 
408-996-10 10 
TLX 171-576 

9 780201 608557 

52995 

Addison-Wesley Publishing Company ISBN 0-201-60855-3 
60855 

- - - - ------ -


